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Abstract

This dissertation advances the research of mesh generation for Finite Element

Method simulation for mechanical applications. In order to target further research

at user needs, a survey is conducted to identify the most pressing issues in FEM

software.

The concept of Combinatorial Meshing is proposed as a novel approach to grid

based meshing. While conventional grid based meshing works on trivial Cartesian

grids, the use of a Precursor Mesh instead of a grid is proposed. Appropriate

Precursor Meshes are selected by analyzing the internal feature structure of the

provided CAD data.

The cells of this Precursor Mesh are then filled with precomputed mesh templates

– called Super Elements. The selection of appropriate Super Elements is modeled

as a combinatorial optimization problem. To solve this problem, Answer Set pro-

gramming (ASP) and a heuristic approach are compared with respect to their time

complexity and result quality.

The resulting mesh is a rough approximation of the target geometry which then has

to be fitted to the geometric entities. For this process a novel algorithm is presented

which is able to automatically identify the geometric entities on which the surface

nodes of the mesh have to be drawn in order to generate high quality meshes and

correctly approximate the desired geometry.

For the generation of Super Element Meshes, a novel approach based on ASP is

developed. In order to enable meshing with ASP, a graph representation of a mesh

is developed and the meshing process is formulated as a graph selection problem.

It is then solved with an ASP solver for multiple optimization goals. The graph

formulation will also aid the theoretical understanding of meshing complexity.
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1 Introduction

The use of simulations based on the Finite Elements Method (FEM) has prolifer-

ated in all branches of mechanical engineering over the last years. Even though

FEM software has become more user friendly it is stagnating at a point at which

expert knowledge is still need for many tasks. This demand excludes many small

organisations from profiting from FEM simulations as they cannot afford to hire ex-

perts.

FEM simulations need a representation of a geometry as a mesh. The quality and

usability of the results from FEM simulation massively depend on the quality of this

mesh. The main driver of user facing complexity in FEM software is meshing, as

the generation of high quality meshes often requires extensive geometry prepro-

cessing and configuration of meshing algorithms. Thus, the existing fully automatic

methods often yield unusable results so that – in industrial practice – meshing re-

quires extensive manual work by expert users.

When examining commercial FEM software it becomes clear that they do not im-

plement the state of the art of meshing research, but lag behind substantially. This

suggests that developers assume that their users will have no substantial bene-

fits from these advancements. From a researcher’s point of view this seams hard

to conceive. Thus, this dissertation starts by assessing user needs with a survey

(see chapter 2). The main result of this survey is that FEM software users are very

dissatisfied with the usability and result quality of available meshing methods in

commercial FEM software. Improving algorithms which provide robust fully auto-

matic meshing with high quality should thus be the focus of further research in the

field.

This dissertation aims at improving available meshing techniques in order to al-

low for robust, fully automatic meshing of arbitrary parts with reasonable quality.

Initially, different measurements of mesh quality are discussed for their practical

applicability in section 3.3 in order to select an appropriate quality metric to be
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used in this thesis.

At first, strengths, weaknesses and open problems of known meshing methods

are assessed (see chapter 3.4). As a result of this analysis grid based meshing

is identified as the ideal starting point to develop an algorithm with the desired

characteristics: full automation, high result quality and robustness.

However, the state of the art in grid based meshing has issues which require im-

provement: The quality of some elements may degrade severely, the generated

meshes are orientation sensitive, local refinement of meshes is hard to achieve

and the algorithms struggle with accurately mapping the mesh to sharp and smooth

geometries without user intervention.

In order to improve the state of the art in grid based meshing the novel concept

of combinatorial meshing is developed within this dissertation. The central idea of

this concept is modeling meshing as a graph selection problem (see section 4.3).

The second novel idea is to solve the meshing problem using logical programming

(LP), which is enabled by the representation as a graph selection problem. Using

LP to solve meshing allows to compute meshes with proven optimality.

The downside of this approach is its exponential time complexity. However, the

de facto requirement for the complexity of meshing algorithms with practical use is

linear time complexity (see section 3.2.2). An algorithm is searched which allows

to leverage the advantages of LP with linear or near linear time complexity when

generating a mesh. As third novel idea, the algorithm developed in this dissertation

exploits the structure of the CAD (computer aided design) model tree, thus obtain-

ing problem adapted grids instead of Cartesian grids which are hereafter called

Precursor Meshes. The developed LP based algorithm works by precomputing ge-

ometry independent mesh segments named Super Elements (see chapter 5). To

build the target geometry, the Super Elements are combined in a building block like

fashion by filling all cells of the Precursor Mesh with Super Elements (see chapter

6). The so created mesh is then fine tuned to fit the target geometry by assigning all

parts of the surface mesh to entities of the target geometry such as curves or cor-

ners (see chapter 7). Then all surface nodes are draw on their assigned geometric

entities. The resulting mesh fits the geometry. Element quality can be optimized by

moving nodes.

In comparison to state of the art grid based meshing techniques meshes generated
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with the algorithm developed within this dissertation have the following advantages:

1. Meshes can be guaranteed not to fall below a minimum element quality.

2. Meshes are insensitive to orientation.

3. Meshes may be locally refined.

4. Meshes can represent sharp and smooth geometric features without manual

fixing.
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2 Requirements of Mechanical Engineering

toward FEM Software

FEM simulations have become the dominating method to simulate elastic mechan-

ical systems. Mechanical simulations require high quality meshes. In contrast to

other simulation physical domains, hexahedral elements are highly desirable for

elastic mechanics (Roca Navarro, 2009; Kremer et al., 2014). This results in mesh-

ing being a main part of the total effort of creating a mechanical FEM simulation.

Halpern (1997) attributes up to 90% of the time spend on a simulation by engineers

to meshing. A report on the use of resources at the Sandia National Laboratories

(USA) states that 50% of man hours on linear simulations are used for meshing

related tasks, for nonlinear simulations 62% are mentioned (Harwick et al., 2005)1.

In order to deepen the understanding of user needs for advancements in FEM, a

user survey was undertaken. (Stromberg et al., 2021) The remainder of this chap-

ter presents results from this survey. The questionnaire can be found in appendix

A. The study was conducted as an online survey with 44 participants from industry

and academia. The largest industry in the sample is mechanical and plant engi-

neering (see fig. 2.1). 70% of the participants work in non management positions.

10% are students in assistant positions, 13% have department management re-

sponsibilities while the remaining 7% have a position as managing director. Half of

the interviewees have 5 or less years of professional experience, about one quarter

between 5 and 10 years and the remaining quarter more than 10 years.

The questionnaire identifies company sizes according to the classification of the

European Union in terms of employees and turnover. (European Union, 2003) The

employers of 40% of the participants are classified micro and small companies with

50 employees or less. 24% are medium size companies with up to 250 employees

and the remaining 36% are large companies.

1In this context geometry decomposition, meshing and mesh manipulation are viewed as meshing related
tasks. The stated numbers are the sum of these categories from (Harwick et al., 2005).
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R&D: 25%

Universities: 25%

Mechanical
and Plant
Engineering: 28%

Miscellaneous: 15%

Automotive: 5%

fig. 2.1: Industries of study participants (Stromberg et al., 2021)

93% of the interviewees answer that FEM simulations are either done within their

organisation or performed by external engineering service providers. A majority of

70% personally uses FEM software while 21% answer that such work is done by

colleagues.

The importance of FEM simulations from the interviewee’s point of view is rated

high or very high by 82% of the participants (see. fig. 2.2). The given answers

do not correlate (R = 0.26) with professional experience. When asked for the per-

ceived evaluation of the importance of FEM simulations by the entire organisation

the affirmation slightly reduces to 62%.

The participants are asked for the FEM software they use the most. Subsequent

questions on general satisfaction and specific wishes for improvement are aimed

at the program specified by the participant. The FEM software used by the inter-

viewees allows for the estimation of estimate market shares (see. fig. 2.3).

The reliability of the determined market shares are reduced by the rather small

sample size and might be biased slightly towards Ansys, as Ansys is the primary

FEM software used at TU-Clausthal. When removing all participants from TU-

Clausthal from this evaluation, the market share of Ansys drops to 75%. Even with

this uncertainty, Ansys is clearly leading the market. Accordingly, Ansys is used for

further tests in this dissertation. Results on the market share for CAD software are

included in the original publication.
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fig. 2.2: Importance of FEM from the interviewee’s point of view (Stromberg et al.,
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fig. 2.3: Market share of FEM software tools in survey (Stromberg et al., 2021)
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fig. 2.4: User satisfaction in the survey (Stromberg et al., 2021)

The main concerns of the survey are user satisfaction and needs. Participants are

asked to evaluate the usability and feature set of their currently most used FEM

software. The feature set is generally given high scores. The notable exception

here is Creo Simulate. The given wishes for improvement for Creo Simulate explain

these low scores as users criticise the lack of features considered basic by them

such as computation of reaction forces, contact simulation or geometry optimization

in the standard licence package.

Usability is rated similarly for all software packages. This result stands in stark

contrast to improvement suggestions made for Ansys which contained strong cri-

tique of the usability. For SolidWorks, Comsol Multiphysics and NX Nastran, no

suggestions are made by the interviewees which could be compared against the

given rating. A possible explanation for the deviation between usability rating and

suggestions might be that most survey participants consider the presented user ex-

perience to be unavoidable as over 90% of the interviewees only have experience

with the FEM software they are rating (see fig. 2.5).

For Ansys significant improvement suggestions are given by the participants. When

grouped into categories, lack of software quality is the most frequent complaint.

The second most frequent suggestion for improvement is automated meshing with

usable quality and improved robustness of the mesher. The third most frequent

suggestions are improvement of the documentation and automation. Especially
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fig. 2.5: Count of FEM programs interviewees are familiar with (Stromberg et al.,
2021)

abolishing the proprietary APDL programming language of Ansys is demanded

(see fig. 2.6). A more detailed analyses is presented in the publication.

From these results a strong need for the improvement of the mesh quality, and

robustness of automated mesh generators can be derived.

Participants are also asked to comment on their willingness to use online FEM

tools in a software as a service approach. 62% agreed while 35% disagreed for

data protection concerns and 3% disagreed for other reasons.

Lastly the interviewees are asked to comment on the need for an extension of the

STEP file format specified by ISO 10303 (ISO, 2020) to contain information on the

CAD tree, thus preserving editability. Such a feature was approved by 81% of the

participants.
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fig. 2.6: Requested areas of improvements (Stromberg et al., 2021)
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3 State of the Art

3.1 Finite Element Method

This section provides an introduction to the Finite Element Method. The explanation

is based on works by Wriggers (2001) and Bathe (2006). More details can be found

in these sources.

3.1.1 Solved Problem

In mechanical engineering, stresses, deflections and other mechanical quantities

have to be calculated in order to allow for the adequate dimensioning of parts. The

knowledge to perform such calculations was formed in the 18th century. It was more

then likely a driving force behind the industrial revolution, as it allowed for a great

reduction of prototyping cycles.

Early mechanical laws were restricted to point masses and trivial geometry. Their

extension onto an ambiguous continuum yields partial differential equations.

ρ ¨⃗u(x⃗ ) = ρg⃗ + ∇⃗ · σ(x⃗ ) (3.1)

σ(x⃗ ) = h(E(x⃗ ), ...) (3.2)

E(x⃗ ) =
1
2
(H(x⃗ ) + H(x⃗ )T ) (3.3)

H(x⃗ ) = ∇⃗u⃗(x⃗ ) (3.4)

(3.1) constitutes the conservation of momentum. On the left hand side is the prod-

uct of the acceleration field ¨⃗u(x⃗ ) and the density. It describes the impulse due to

acceleration. The first summand on the right hand side is the product of density

and the vector of gravitational acceleration g⃗ . It constitutes the impulse caused by
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gravity. Further such terms for other field forces such as electromagnetism may be

added. The second summand on the right hand side is the gradient of the stress

field σ(x⃗ ).

3.1.2 Principal of Virtual Work

The principal of virtual work allows to acquire a weak formulation of (3.1). It is

known as Galerkin’s method. (Galerkin, 1915) The stress algorithm h in (3.2) com-

putes the local stress from strain E(x⃗ ) and other factors such as the strain velocity

for viscoelastic materials. Strain is computed as the symmetric part of the defor-

mation gradient H in (3.3).

These laws constitute a partial differential equation system, which can be solved

using the Method of Finite Elements. In order to do so (3.1) is transformed into a

weak formulation through the principal of virtual work (see (3.5)).

ˆ
V
δu⃗(x⃗ ) · ρ ¨⃗u(x⃗ ) dV +

ˆ
V
σ(x⃗ ) · δE(x⃗ ) dV =

ˆ
A
δu⃗(x⃗ ) · t⃗(x⃗ ) dA +

ˆ
V
δu⃗(x⃗ ) · ρg⃗ dV (3.5)

For this transformation arbitrary virtual deflections δu⃗ are applied to the body which

result in the virtual strain δE. The virtual deflections have to be 0 wherever dis-

placement boundary conditions are applied. The virtual work of external forces

and the resulting potential energy of the body is integrated over the whole body.

t⃗0 are stresses induced into the body via its surface. As δu⃗ is unknown it must be

factored out. To achieve this, B is defined in (3.6).

B =
δE
δu⃗

(3.6)

By substituting δE in (3.5) δu⃗ can be factored out (see (3.7)). As δu⃗ is required to

be exclusively 0 for x⃗ with deflection boundary conditions, the left factor of (3.7) will

fulfill the equation locally for all Dirichlet boundary conditions. For all other x⃗ the
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right factor must be 0.

δu⃗(x⃗ ) ·
[ˆ

V
ρ ¨⃗u(x⃗ ) dV +

ˆ
V
σ(x⃗ ) · B(x⃗ ) dV −

ˆ
A

t⃗(x⃗ ) dA −

ˆ
V
ρg⃗ dV

]
= 0

(3.7)

The primary solution to a given problem is the deflection field u⃗(x⃗ ). Other solutions

such as stresses are derived from it. In order to solve (3.7) for an actual problem

the integrals have to be solved. This is enabled by approximating the problem

domain with elements of trivial geometry such as simplices (in 2D triangles). For

these trivial geometries (see 3.1) integration schemes can be found to integrate

polynomials exactly. Accordingly the solution is modeled as a piecewise polynomial

function.

Hexahedron Tetrahedron Pyramid Wedge

QuadrangleTriangle

Node

Edge

Face

fig. 3.1: Used element types

The mesh consists of elements of various types such as triangles, quadrangles,

wedges or hexahedrons. Each element has one basis function for each of its nodes.

Basis functions have to be 1 at their corresponding node and 0 at all other nodes of

the element. They are only defined within the element. That creates the piecewise

polynomial characteristic of the solution. Elements have an internal vector space ξ⃗

in which the element has its ideal shape and unit size (see fig. 3.2).
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ξ vector space x vector space

fig. 3.2: ξ to x space transformation

The solution u⃗(ξ⃗) is the sum of all basis functions of the element for the given ξ⃗

weighted with the deflection at each node ûk (see (3.8)). Linear or quadratic basis

functions N (ξ⃗) are typically used for mechanical FEM applications.

As a discontinuity in the deflection field u⃗(x⃗ ) causes a singularity in stress and

strain according to (3.3), the basis functions between elements must be contin-

uous over element boundaries. This requirement may be circumvented by novel

approaches such as non conforming finite element methods but is enforced in clas-

sical FEM. As a consequence so called hanging nodes as shown in fig. 3.3 are

prohibited.

hanging node

fig. 3.3: hanging nodes

u(ξ⃗) =
k∑

i=0

ûiNi(ξ⃗) (3.8)

Polynomial basis functions can be derived trivially with respect to the ξ vector

space. However its derivatives with respect to the x vector space are required

in order to formulate B(x⃗ ). For this purpose a transformation ξ⃗ −→ x⃗ is required.

The most widely used element types are isoparametric. This means, that the same

basis functions are used to represent the solution and to transform from ξ space to

x space (see (3.8) and (3.9)).
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x (ξ⃗) =
k∑

i=0

x̂ iNi(ξ⃗) (3.9)

Hence the node locations ˆ⃗xk , which are constant with respect to ξ⃗ (3.9), can be

derived trivially to obtain ∂x⃗
∂ξ⃗

. With these derivatives the Jacobian matrix J of x⃗ (ξ⃗)
can be assembled (see (3.10)). Its transposed inverse (see (3.11)) can be used to

transform ξ space derivatives of N (ξ⃗) into x space derivatives (see (3.12)).

J =


∂x1
∂ξ1

∂x2
∂ξ1

∂x2
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ2

∂x2
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ3

∂x2
∂ξ3

 (3.10)

JT−1 =


∂ξ1
∂x1

∂ξ2
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ2
∂x2

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ2
∂x3

 (3.11)


∂ξ1
∂x1

∂ξ2
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ2
∂x2

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ2
∂x3




∂Ni
∂ξ1
∂Ni
∂ξ2
∂Ni
∂ξ3

 =


∂Ni
∂x1
∂Ni
∂x2
∂Ni
∂x3

 (3.12)

With ∂Ni
∂x⃗ calculated, B can be assembled. In order to do so, (3.7) must be brought

into a matrix form using a tensor to matrix convention such as Voigt notation (see

(3.13)). In this equation N (ξ⃗) is a matrix of values of the basis functions. B(ξ⃗)

contains derivatives of the basis functions in the x vector space. The stress tensor

T̃ is computed using the stress algorithm h(Ẽ (ξ⃗), ...). For linear elastic material

behaviour h(Ẽ (ξ⃗), ...) = C̃ Ẽ is used. Here C̃ is the Voigt notation of the elasticity

tensor. A more detailed explanation if provided by Wriggers (2001).

δu⃗(x⃗ ) ·
[ˆ

V
N (ξ⃗)T (ξ⃗)ρN (ξ⃗) ¨⃗u(x⃗ ) dV +

ˆ
V

B(ξ⃗)Th(Ẽ (ξ⃗), ...) dV −

ˆ
A

N (ξ⃗)T t⃗(x⃗ ) dA −

ˆ
V

N (ξ⃗)Tρg⃗ dV
]
= 0

(3.13)
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B is the discrete numerical differential operator of FEM. It allows Ẽ to be com-

puted from the vector of node deflections in the element û (see (3.14)). For large

deflections or strains nonlinear terms of B be can no longer be neglected, so that

a different formula is needed.

Ẽ = B û (3.14)

3.1.3 Numerical Solution

In order to solve the integrals in (3.13) the integration domain is split into the used

elements, so that they can be solved elementwise (see (3.15)).

δu⃗(x⃗ ) ·

[
ne∑
e=0

ˆ
Ve

... dVe +

ne∑
e=0

ˆ
Ve

... dVe −

ne∑
e=0

ˆ
Ae

... dAe −

ne∑
e=0

ˆ
Ve

... dVe

]
= 0

(3.15)

Within the elements the integrals are solved using Gaussian quadrature. This

method allows the exact quadrature of a given polynomial over a unit domain by

sampling the polynomial at specified points – the so called Gauss points – and

computing a weighted sum of them. The count and position of the samples de-

pends on the order of the integrated polynomial.

δu⃗(x⃗ ) ·
ne∑
e=0

ngp∑
g=0

wg


N (ξ⃗g)

T (ξ⃗g)ρN (ξ⃗g) ¨⃗u(x⃗g)︸ ︷︷ ︸
M

+

B(ξ⃗g)
Th(E (ξ⃗g), ...)︸ ︷︷ ︸

r

−
(
N (ξ⃗g)

T t⃗(x⃗ )
)
−
(
N (ξ⃗g)

Tρg⃗
)

︸ ︷︷ ︸
f

 = 0

(3.16)
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ne∑
e=0

ngp∑
g=0

wg

(
B(ξ⃗g)

Th(E (ξ⃗g), ...)
)

︸ ︷︷ ︸
r

=

ne∑
e=0

ngp∑
g=0

wg

(
N (ξ⃗g)

T t⃗(x⃗ )
)
−
(
N (ξ⃗g)

Tρg⃗
)

︸ ︷︷ ︸
f

(3.17)

If the problem is statically determinate and deformation speeds are low, M in (3.16)

can be neglected. This simplification is chosen as all further deliberations are valid

in both situations. In order to obtain node deflections for degrees of freedom without

deflection, the displacement boundary conditions (3.16) is rearranged to (3.17).

(3.17) produces an equation system. If the material law represented by h(Ẽ (ξ⃗), ...)

is exclusively linear in Ẽ , (3.17) is a linear equation system. Other nonlinearities

such as contacts or large deflections are beyond the scope of this section.

In this case r in (3.17) is reduced to B(ξ⃗g)
TC B(ξ⃗g)û with C being the linear

elasticity tensor in Voigt notation. As a result the linear equation system (3.18) is

formed as shown in (3.19).1

K û = F (3.18)

ne∑
e=0

ngp∑
g=0

wgB(ξ⃗g)
TC B(ξ⃗g)︸ ︷︷ ︸

K

û =

ne∑
e=0

ngp∑
g=0

wg

(
N (ξ⃗g)

T t⃗(x⃗ )
)
−
(
N (ξ⃗g)

Tρg⃗
)

︸ ︷︷ ︸
F

(3.19)

Within the equation system matrix K most elements are zeros. This is referred to

as a sparse matrix. Nodes which share elements will cause nonzero values in K
for their respective degrees of freedom.

This equation system (3.18) can be solved for its unknowns – the node deflections

– using an equation system solving algorithm. Such algorithms are described in

1Splitting of degrees of freedom with deflection boundary conditions to the right hand side is neglected
here for simplification.
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section 3.2.3. The non zero elements of K have a band structure. The secondary

bands kb are introduced by nodes being part of multiple elements.

Mathematically speaking a linear equation system can be solved exactly, if a so-

lution exists. For practical problems the accuracy is limited by the floating point

arithmetic error of the machine solving the system. This error is small compared

to mesh induced errors and can be neglected. The process described above intro-

duces three errors which are mesh dependent.

The stiffness matrix K (3.20) can be visualized as a mechanical framework.

Nonzero elements in the matrix are represented by by rods in this mental model.

Fig. 3.4 is such a representation for the stiffness matrix in (3.20). Each rod couples

four degrees of freedom – two nodes with two dimensions each.

This representation of the problem could be used in post processing of simulation

results to extract force flows by gradually merging rods of the framework. Software

pursuing this ideas does not exist.

fig. 3.4: Representation of a stiffness matrix of a single element with a framework
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k0,0 k1,0 k2,0 k3,0 k4,0 k5,0 k6,0 k7,0

k0,1 k1,1 k2,1 k3,1 k4,1 k5,1 k6,1 k7,1

k0,2 k1,2 k2,2 k3,2 k4,2 k5,2 k6,2 k7,2

k0,3 k1,3 k2,3 k3,3 k4,3 k5,3 k6,3 k7,3

k0,4 k1,4 k2,4 k3,4 k4,4 k5,4 k6,4 k7,4

k0,5 k1,5 k2,5 k3,5 k4,5 k5,5 k6,5 k7,5

k0,6 k1,6 k2,6 k3,6 k4,6 k5,6 k6,6 k7,6

k0,7 k1,7 k2,7 k3,7 k4,7 k5,7 k6,7 k7,7


(3.20)

3.1.4 Mesh Induced Errors in Finite Element Approximations

The first mesh induced error occurs at the transformation between x and ξ vector

space. For this step the element basis functions are used. However, a given basis

function cannot exactly match any given contour (see fig. 3.5). For example a circle

can only be approximated using polynomials. Thus a low Residual Volume (RV)

between mesh and geometry is desirable.

linear base function

quadratic base function

fig. 3.5: Residual area between mesh and geometry for a circle discretized with
linear and quadratic elements

The second error caused by mesh quality is the sampling error. Deflection can

only be computed at nodes, stress and strain only at Gauss points. For all points

inbetween only an interpolation can be provided, rendering the simulation blind

for any local effects in this interval. As a result local stress peaks between Gauss
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points cannot be detected by an FEM simulation. A mesh should have dense

nodes and Gauss points in areas of fluctuating solution quantities.

Third the distortion on an element between x and ξ space causes excessive stiff-

ening of the elements as Stricklin et al. (1977) and others have found. This shows,

that the quality of B is very dependent on element distortion.

Nonlinear problems have further associated sources for errors.

3.2 Computer Science Fundamentals

This section introduces a variety of concepts from computer science which are vital

to this dissertation, but not broadly known in mechanical engineering.

3.2.1 Geometry Representations

Arbitrary geometry can be represented in various forms within computer memory.

These forms differ in geometric accuracy and mathematical intricacy. All shown

representations theoretically work in n-dimensional vector spaces, but are typically

used for 2D or 3D objects.

In order to save memory, geometry is generally stored as a boundary represen-

tation (BREP) if possible. This means, that a watertight2 surface of the object is

saved instead of the object. This is advantageous as the surface contains fewer

points, making this approach more memory efficient. Furthermore common algo-

rithms – which are run on geometry, such as collision tests or point in geometry

tests – only interact with an object’s surface. A BREP has two types of dimensions:

its nodal dimension and its element dimension. The nodal dimension is the vector

space in which the body exists. The element dimension is the local vector space of

its elements. A triangle for example has an internal 2D vector space but may reside

in a 2D or 3D vector space. The element dimension must be less than or equal to

the nodal dimension.

2A watertight surface is a surface which fully encloses one or multiple volumes.
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Polygons are the most widely used type of BREP. Their prevalent use is computer

graphics. A polygon represents a body by approximating its surface with linear

elements, usually simplices. These are the most trivial geometric elements in n
dimensions (e.g. a triangle in 2D). A simplex has edges which connect it to one

other simplex of the polygon (see fig. 3.6). In the 2D case the term face refers to

an edge.

fig. 3.6: 1D, 2D and 3D simplex

A polygon (see fig 3.7) is stored in two matrices. One contains its nodes, the other

node IDs of all simplices. The object represented by the polygon is now enclosed

in the simplices. Viewed globally the side of the simplices on which the object lies

can be found by testing which of the two options yields a finite object. As the global

test is expensive to perform in terms of computation time, simplex normal vectors

are stored to be able to execute this test locally. For the given storage format there

has to be a convention whether the normal vectors point inwards or outwards.

node face
fig. 3.7: Polygon

The accuracy of polygons can be varied by using more or less simplices at a given
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spot. However, a polygon will never exactly match a non polygonal geometry such

as a a sphere. Polygon faces are planar so that resulting collision computations

are linear problems. Polygons are mostly used in applications where this limitation

is not relevant and simple computation with great speed is required. One such ap-

plication is to compute propagation of light through the scene in a computer game.

Polygon representations are also used in rapid prototyping. The popular STL data

format aggregates node coordinates, triangles and normal vectors. For modern

rapid prototyping techniques, with lower tolerances, high triangle resolutions are

required in order to reduce the geometric approximation error below manufactur-

ing tolerances. This results in large files which are slow to process and increasing

inaccuracies when scaling up geometry.

There are several methods to test whether a point is within a polygon. The most

reliable according to Hormann and Agathos (2001) is ray casting (see fig. 3.8). In

this algorithm, a ray starting from R is cast in an arbitrary direction. If the number

of intersections is divisible by 2 the point is outside of the polygon.

fig. 3.8: Point in polygon test with ray casting (Hormann and Agathos, 2001)

Modern CAD systems use BREPs based on non-uniform rational basis spline

(NURBS). NURBS are parametric splines. They take a parameter u as an argu-

ment and return a point in any n-dimensional vector space. By inserting, values

of u for a given interval [umin , umax ] into the NURBS function, an approximation

of the spline is created. As the NURBS function can be derived symbolically the

NURBS’s tangent can be computed swiftly. The tensor product of two NURBS

curves can be used to create a NURBS surface, which now has two arguments,

u and v . Derivatives and normal for NURBS surfaces vectors can be computed

symbolically. (Piegl and Tiller, 1997)

In contrast to polygons NURBS splines can exactly represent circles. Extended to
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u

v X

Y
Z

fig. 3.9: Example of a NURBS surface in its parameter and image space

3D this lets NURBS based BREPS exactly represent a cylinder jacket. As such

features are very common in mechanical engineering, modern CAD software is

founded on the concept of NURBS based BREP geometry representation. As the

(u, v) vector space of NURBS surfaces is by definition rectangular, the resulting

geometry in the image space is always a deformed rectangle (see fig. 3.9). This

limitation makes it very challenging to model arbitrary geometry as shown by Kang

and Youn (2015), so CAD software typically resorts to trimming NURBS surfaces

with NURBS curves. This is achieved by using a geometrically hierarchical model

as shown in 3.10.

With this approach the edges between surfaces of the part are represented by

NURBS curves, which in turn start and terminate in geometric nodes. These will be

referred to as vertexes within this dissertation to avoid confusion with mesh nodes.

Within this data structure, a NURBS surface may be bordered by any number of

NURBS curves which are used to trim surfaces into non rectangular shapes, such

as the hexagon on the bolt head in fig. 3.10. A NURBS cyclic curve starts and

ends with the same vertex. A non cyclic NURBS curve terminates in two different

vertexes.

The storage of NURBS BREP models has been standardized by ISO 10303 which

implements the STEP (STandard for the Exchange of Product model data) file for-

mat. (ISO, 2020) This is a text based file format to exchange CAD models between

different CAD software. It stores the resulting geometry and metadata but not the
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corner

volume

surface

curve

fig. 3.10: Geometric entities of CAD models

user input into the CAD software that generated the geometry. Accordingly it is not

possible to easily edit (e.g. change a diameter) of a part provided in STEP format.

STEP files are the quasi standard for exchanging CAD files between companies.

Other formats with a similar feature set such as IGES exist.

All formats for CAD data described so far contain BREP data. BREPs however

are an incomplete description of a solid geometry as they do not describe the part

internally. This description though is required for FEM calculations. For this pur-

pose, a volumetric mesh of the element types shown in fig. 3.1 is required. It is

stored similar to a polygon mesh with one matrix holding the node coordinates and

one incidence matrix for each element type. Each line of the incidence matrices

contains the node IDs for the involved nodes for one element.

For the results presented in this dissertation the Open CASCADE CAD kernel

is used. (Open Cascade, 2022) Surface meshes are generated using GMSH.

(Geuzaine and Remacle, 2009)

3.2.2 Complexity Theory

In the context of computer science the term complexity is defined as the amount

of resources required to solve a problem or run an algorithm. The main resources
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of concern are typically computation time and memory space. The complexity of a

problem is the amount of resources consumed by the best possible algorithm. This

property might not be known for a given problem. Complexity theory is tasked with

identifying the complexity of problems. (Cormen et al., 2001)

The first example problem is the following: given a sorted set A of integers with n
elements, an algorithm shall find the index of a given number k .

A = {1, 2, 3, 4, 5, 12} , k = 3 (3.21)

This can be achieved by performing the following algorithm:

n = length of A

index = 0

for i = 0 To n {

if A[i] = k {

index = i

}

}

return index

For now, time consumption is measured in lines of code executed and space as

integers saved. More complex models of resource consumption may be defined.

This leads to time complexity Ct ,l and space complexity Cs,l in (3.22), (3.23) for

the algorithm above.

Ct ,l(n) = 3n + 4 (3.22)

Cs,l(n) = n + 3 (3.23)

In complexity theory resource consumption is viewed with respect to problem size.

(Cormen et al., 2001) In the given example this is the number of elements in A. For

both time and space the growth is linear in the number of elements in the list.

As a second example the sort of A is exploited. Now searching for k can be

achieved with the bisection method (binary search):
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min_index = 0

max_index = length of A - 1

while min_index <= max_index {

middle_index = floor ((max_index + min_index) / 2)

if A[middle_index] == k {

return middle_index

}

else if A[middle_index] < k {

min_index = middle_index + 1

}

else {

max_index = middle_index - 1

}

}

return -1

The second algorithm has the following complexity:

Ct ,b(n) = 3 + 5 log2(n) (3.24)

Cs,b(n) = n + 4 (3.25)

The second algorithm will be advantageous in terms of speed. Computation time

for the second algorithm only grows logarithmic with n. For any significant n, this

difference between the two algorithms will outrun the additive constant 5 as well as

the multiplicative constant 3 or 4 respectively. This idea is captured by the O no-

tation. It groups algorithms and problems in classes by comparing them to bench-

mark functions. If the benchmark function is an upper bound for the execution time

of the algorithm for a sufficiently large n the benchmark function is the complexity

class of the algorithm. Accordingly if f (n) ⩽ cg(n) then f (n) = O(g(n)) may be

written to indicate that f is a member of the complexity class g . This comparison is

always dominated by the fastest growing term of f (n) so that lower order terms and

the multiplicative constant c are neglected. (Cormen et al., 2001) Fig. 3.12 shows

some of these complexity classes with problem size n and execution effort N . The

two algorithms are thus grouped into the linear and the logarithmic complexity class

(see (3.26), (3.27) and fig. 3.11).
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fig. 3.11: Comparison of the complexity of both algorithms

Algorithms are grouped into complexity classes by the type of growth their compu-

tation time has with respect to problem size. Problems are assigned to a class if it

can be proven that no algorithm can exist which would have a more shallow growth.

Ct ,l(n) = 3n + 4 = O(n) (3.26)

Ct ,l(n) = 3 + 5 log2(n) = O(log n) (3.27)

Fig. 3.12 shows that for large problems the complexity class will dominate execu-

tion time and in many cases the overall feasibility of an algorithm. For example

there are no known algorithms to perform a prime factorization in polynomial time.

This makes the factorization of large numbers practically impossible whereas the

inverse is of quadratic complexity. This idea is the mathematical basis of the RSA

encryption algorithm. (Rivest et al., 1978) For smaller problems, however, the con-

stant factor in execution time may be more important, making an algorithm with a

worse complexity faster in practise. As described in section 3.1, FEM programs

generate an equation system which has to be solved. This system may be nonlin-

ear. For linear equation systems the most efficient solver type currently available
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fig. 3.12: Comparison of complexity classes

are multi grid solvers as they have linear complexity (O(n)). (Briggs et al., 2000)

For more details see subsection 3.2.3.

As the meshers should not become the bottleneck of any FEM software their time

complexity in number of nodes has to be linear or better. Thus it may not con-

tain sub algorithms with significant multiplicative constants that have a complexity

above O(n).
This idea is supported by experimental data gathered from performance tests of

the mesher of Ansys Mechanical 2022 R2. (Ansys Inc., 2022) Meshes for two test

geometries – B0 and B1 – form the MAMBO test data set (Ledoux, 2022) were

generated for different sizings. For B0 a fully hexahedral mesh was generated; for

B1 a tetrahedral mesh was created. The runtimes for generating of the meshes are

shown in 3.13. Both mesh generators show linear complexity.

Optimizing the complexity of algorithms is in general the most fruitful route to im-

proving software performance. A practical problem with relevance for meshing al-

gorithms is the point proximity problem. Given are a group of points G and a further

point P . Now an algorithm is required to return the point of G which is closest to P .

The trivial approach to the problem with linear complexity is to iterate over all points

in G and compute the distance to P . When now both the number of points in G and

the number of points P , which are queried, derived from a common size parameter
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fig. 3.13: Complexity of meshing algorithms in Ansys

such as the mesh size n by a similar function, overall complexity is quadratic in n:

Ct = O(n2). In order to be able to generate large meshes, an algorithm with a

more advantageous complexity is required.

A well known solution to this problem are k-dimensional trees (k-d tree) as de-

scribed by Bentley (1975). A k-d tree contains the nodes of G and arranges them

in a tree which reflects their position. Level by level the tree cyclically iterates over

the dimensions of the underlying vector space splitting it in such a way that half of

the points present on the current node propagate on each branch (see fig. 3.14).

The tree construction is locally terminated by creating a tree leaf (square in fig.

3.14) when the number of points to propagate falls below a threshold. Then a list

of these points is written to the leaf.
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fig. 3.14: Setup of a k-d tree with vector space in the upper illustration and the tree
below (example from Bentley (1975))

When looking up the nearest neighbour of a point P , the tree is first searched

for the leaf containing P . The distance between P and all points assigned to the

leaf is computed and the minimum distance plus the point ID are saved. Now the

algorithm runs up the tree back to the root node. On the way it checks at each tree

node whether there might be a node on the opposing branch which is closer than

the currently best node. If this is the case the currently closest node is substituted.

This process has an average complexity of O(log n). (Bentley, 1975) Therefore
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the case outlined above with O(n2) is reduced to O(n log n) which reduces it close

enough down to the complexity target of O(n) of multigrid algorithms for typical

problem sizes in the magnitude to n ≈ 107.

An alternative to k-d-trees are octrees. While k-d-trees only split one dimension in

each level, an octree splits all dimensions at each node (see fig. 3.15). The name

is motivated from the eight sub nodes created at one node in the three dimensional

case. (Meagher, 1982)

fig. 3.15: Example of an octree

3.2.3 Equation System Solvers

Linear equation systems are generally written in the form Ax = b. In the context

of Finite Element software A is a sparse matrix. This has implications for efficient

storage and solver algorithms.

While a dense matrix stores all entries of the matrix in order, sparse matrix storage

only stores nonzero values. For those, their position within the matrix and the

value are saved. Sparse storage is advantageous when more then 2/3 of all values

are zeros, as row and column positions also have to be saved in sparse storage.3

Executing arithmetic operations on sparse matrices requires adapted algorithms to

avoid unnecessary index searches. (Pissanetzky, 1984)

Linear equation systems can be solved with direct or iterative methods. Direct

methods strive to compute x by rearranging terms. Iterative methods improve a
3This ratio neglects potentially different sizes between index and value data types in memory.
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given solution xn to obtain a better solution xn+1, thus converging to x over mul-

tiple iterations. The leading direct method is LU decomposition. When used with

state of the art matrix multiplication algorithms it has a time complexity of about

O(n2.4) (Demmel et al., 1999). It can be massively parallelized in modern com-

puter architectures as shown by Demmel et al. (1999) in their implementation of

the superLU library.

Multigrid algorithms are the state of the art technology for iterative equation system

solvers. They exhibit O(n) complexity while the multiplicative factor of their run

time is driven by the spectral radius of A. To reduce the required computation

time to solve a given problem the spectral radius of A has to be minimized. The

spectral radius of A is its maximum eigenvalue. Due to the better complexity order,

multigrid algorithms are generally preferred over direct solvers. (Briggs et al., 2000)

Nonlinear equation systems in the form f (x ) = b can be solved using for example

the Newton-Raphson algorithm which internally also solves multiple linear equation

systems with one of the methods described above. (Ortega and Reinbolt, 2000)

3.2.4 Graph Theory

Graphs as they are subject to graph theory are sets of nodes which are connected

by edges. Graphs can be used to model a wide range of problems. Since they are

a well researched domain of computer science, modeling a problem in terms of a

graph often improves the understanding of the given problem and makes a wide

range of algorithms available to use on it. Graph nodes do not have a position, thus

a graph can be arranged at will.

1
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fig. 3.16: Example graph representing a road map

A typical application of graphs is road map navigation (see fig. 3.16). All cities on
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the map are modeled as nodes, and their connecting roads are modeled as edges.

The number of edges on a particular node is its valency. The time required to travel

one of these roads is assigned as an attribute to each edge. The total travel time

from 1 to 5 is either 100 minutes when traveling via 2, 80 minutes when traveling

via 4 and 3, or 95 minutes via 4. The fastest way can be computed by using,

for example, Dijkstra’s weighted shortest path algorithm. (Krumke and Noltemeier,

2012) A graph is called planar if it is possible to draw it in 2D space without its edges

crossing each other. A road map might not be planar, as bridges may cause edges

to cross. Many theorems only hold for planar graphs. For a given graph, tasks such

as finding disconnected groups, finding cycles, or finding the shortest way between

two nodes with weighted edges can be solved by well-known algorithms. For this

thesis, the graph theory library networkx by the NetworkX developers (2022) was

used.

Within this dissertation, multiple problems are solved by applying answer set pro-

gramming (ASP) to graph problems. Specifically, ASP is used to find subgraphs of

a given graph which satisfy given constraints and are optimal in terms of a given

criterion. An ASP program consists of atoms and rules linking the atoms. An atom

may be true or false. In the context of finding a subgraph, each node of the par-

ent graph is represented as an atom, denoting whether the node is selected to be

part of the subgraph. Within this dissertation, the ASP solver Clingo (Gebser et al.,

2019) is used. Clingo uses concepts from satisfiability solving (SAT).

The basic function of a SAT solver is to determine if there is an assignment of val-

ues for a set of Boolean variables, for which a provided Boolean formula is true. The

SAT solver exhaustively explores the search space of possible value assignments

for the variables. In a worst-case situation, this results in testing every solution in

the search space. As the search space for n variables is 2n , the runtime of this

algorithm would be exponential in the number of variables. The practical runtime

of SAT solvers is usually much better, as they can use heuristics to exclude large

areas of the search space by reasoning about few tested solutions. The actual run-

time of a SAT solver mostly depends on how well the implemented heuristics of the

solver work for the structure of the given problem. In the context of this dissertation,

the main advantage that ASP holds over directly using SAT is that ASP allows im-

plementing a reachability constraint easier than SAT. It is needed to ensure that the

solution is one cohesive graph. Generally speaking, using a solver which provides

capabilities not needed for the problem to solve can be disadvantageous, as it can-
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not use heuristics that might be applicable in the simpler given problem. (Knuth,

2015; Biere et al., 2021)

3.3 Mesh quality

3.3.1 Element Quality

In the literature many element quality metrics are described. They differ in ap-

plicability for element types and prediction of numerical mesh performance. For

hexahedral elements Gao et al. (2017) have studied the correlation of 19 quality

metrics with solution accuracy and stability in several applications.

tbl. 3.1: Quality metrics examined by Gao et al. (2017)

Metric Range Range* Trend

diagonal [0, 1] [1, 1] ↑
dimension [0, +∞] [0, +∞] ↑
distortion [−∞, +∞] [0, 1] ↑
edge ratio [1, +∞] [1, +∞] ↓
Jacobian [−∞, +∞] [0, +∞] ↑
maximum edge ratio [1, +∞] [1, +∞] ↓
aspect Frobenius [1, +∞] [1, +∞] ↓
mean aspect Frobenius [1, +∞] [1, +∞] ↓
Oddy [0, +∞] [0, +∞] ↓
relative size squared [0, 1] [0, 1] ↑
Scaled Jacobian [-1, 1] [0, 1] ↑
shape [0, 1] [0, 1] ↑
shape size [0, 1] [0, 1] ↑
shear [0, 1] [0, 1] ↑
shear size [0, 1] [0, 1] ↑
skew [0, 1] [0, 1] ↓
stretch [0, 1] [0, 1] ↑
taper [0, +∞] [0, +∞] ↓
volume [−∞, +∞] [0, +∞] ↑

Tbl. 3.1 is a list of all examined mesh quality metrics. Range indicates possible

values of the metric while Range* are the maximum boundaries for numerical use

of elements. Trend marks whether high or low values indicate a good element.

Accuracy is measured with the L2 norm of all local errors. Accuracy and stability
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fig. 3.17: Measured correlation of mesh quality metrics with accuracy and stability
for solving a linear elasticity problem (Gao et al., 2017)

are evaluated for the primary solution – node deflection. These results are shown

in figure 3.17.

For accuracy and stability about half of the metrics are equally well suited to pre-

dict mesh performance. The main limitations of the work by Gao et al. (2017) for

mechanical FEM are that L2 norms of errors were evaluated and that only the error

of the primary solution is evaluated. The most common problem mechanical engi-

neers solve with FEM is to evaluate the maximum stress of a given part. Stricklin

et al. (1977) and others have found the quality of the B matrix to be very sensitive

towards element quality. As high stresses correlate with sharp radii which in turn

correlate with bad element quality, elements with bad quality often experience high

stresses. Thus the maximum stress over the whole part may exhibit an error above

the norm of all errors. A followup study evaluating the maximum error for stresses

would be very helpful for the field.

The same issues renders the findings of Schneider et al. (2019) on the superiority
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of tetrahedral elements with quadratic basis functions over hexahedrons irrelevant

for FEM applications in mechanical engineering.

For purely hexahedral meshes the current consensus in the community is to use

Scaled Jacobian (SJ) as the main measurement of element quality. The term is

slightly misleading as it must not be confused with the Jacobian matrix used in

FEM theory (see (3.10)). The Scaled Jacobian is computed for all nodes of a given

element. Then the minimum value encountered is used. The Jacobian matrix Ji

for a node i is constructed by arranging vectors from the node to its neighbours in

a matrix. (Shepherd, 2007)

J0 =

x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

 (3.28)

fig. 3.18: Jacobian formulation (Shepherd, 2007)

The order of rows in (3.28) must be chosen in such a way that a hexahedron with

identical x⃗ and ξ⃗ coordinates returns a positive determinant of J0. This has to be

done for all 8 nodes. The presented example shows the matrix for node 0.

|J | is a signed volume metric. In order to obtain a universally comparable metric

from |J | it has to be scaled with the volume of an optimal element. This can either

be done by computing the product of the length of the three longest edges of the

element (see (3.29)) or by taking the maximum edge length to the third power

(3.30).
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Js0 =

∣∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣∣
|x⃗1 − x⃗0||x⃗2 − x⃗0||x⃗3 − x⃗0|

(3.29)

Js0 =

∣∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0

y1 − y0 y2 − y0 y3 − y0

z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣∣
(max (li))3

(3.30)

These approaches are not sufficiently distinguished in literature. It must be noted,

that (3.29) neglects the elements aspect ratio. Any cuboid element – even with an

excessive aspect ratio – is rated with Js = 1. The second option (3.30) punishes

high aspect ratios; thus use of the latter is recommended.

Scaled Jacobians has a range of −1 through 1. A negative Scaled Jacobian shows

that the element is self-intersecting. As such elements are not usable for FEM

applications a Scaled Jacobian threshold of 0.2 is typical. (Shepherd, 2007)

Lobos (2015) formulates the idea of a unified metric for the quality of elements of

different types. Most research is focused on purely hexahedral or purely tetrahedral

meshes. A classical mixed element setup of hexahedrons, terahedrons, wedges

and pyramids is considered. The quality of hexahedrons is evaluated using the SJ

metric described above.

For tetrahedrons, Lobos (2015) uses the inverse of the Aspect Ratio Gamma (ARG)

metric (3.31)4 which was originally described by Parthasarathy et al. (1994). ARG

returns values between 1 and ∞ with 1 being optimal. Consequently ARG−1 re-

turns values from −1 to 1 for tetrahedrons with signed volumes.

ARG =

(
5∑

i=0

l2
i

) 3
2 √

3
216V

(3.31)

The Scaled Jacobian metric for tetrahedrons is constructed analogously to hex-

ahedrons with a SJ for each node. In the case of a tetrahedron, however, it is

4original equation simplified
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impossible for all nodes to reach a Scaled Jacobian of 1 simultaneously. The best

attainable value for the minimum SJ is JS ,opt =
√

2
2 for an equilateral tetrahedron.

With this limit known, the Element Normalized Scaled Jacobian JENS is defined.

(Lobos, 2015)

JENS =


(1 + JS ,opt ) − JS if JS > JS ,opt

JS/JS ,opt if JS ⩽ JS ,opt

−(1 + JS ,opt) − JS if JS < −JS ,opt

(3.32)

The resulting metric JENS produces values very similar to ARG−1 for typical and

defective elements as shown by Lobos (2015).

This principal is now extended onto pyramids and wedges. The optimum SJ of

a pyramid is also JS ,opt =
√

2
2 , so (3.32) can be applied here as well. The top

node of a pyramid, however, needs to be treated specifically as it has four neigh-

bouring nodes. For this node the minimum Scaled Jacobian of all four possible

combinations with other nodes is chosen. Lobos (2015) observes that inverted

base quadrangles (see fig. 3.19) are not detected.

fig. 3.19: Defective element with positive Normalized Scaled Jacobian (Lobos,
2015)

This issue can be overcome by extending the ideas of Lobos (2015). For the whole

element the normalized SJ is computed as the minimum of all nodes and a fictive

hexahedron on the base quadrangle. The height of the hexahedron should be

chosen to be the average of the edge lengths in the quadrangle in order to make a

perfect element with JS = 1 possible.

For wedge elements, JS ,opt =
√

3
2 as this is the optimum SJ for a wedge. (Lobos,

2015)

Extending the definition of SJ to mixed meshes improves their optimizability as
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the SJ metric is a node specific characteristic which allows an optimizer to identify

the most problematic nodes within a mesh. (Lobos, 2015) Such an approach is

limited to situations in which the identified nodes are moveable. If they are fixed

on geometric entities, other nodes of an element with a low SJ have to be moved.

The concept is a very useful tool to increase the applicability and quality of mixed

meshes.

3.3.2 Mesh Structure

Important tools for the evaluation of mesh structure are derived from the mathe-

matical field of topology. Topology is concerned with the shape of objects while

neglecting their precise geometry. Two objects are – topologically speaking – iden-

tical if they can be deformed into each other without cutting or gluing. They are

homeomorphic. It is necessary, but not sufficient for two bodies to have the same

number of holes in order to be homeomorphic. The number of holes of an object is

called its genus.

The most regular hexahedral mesh that can be constructed is a Cartesian grid.

Within such a mesh each element has 6 adjacent elements, each edge has 4 adja-

cent elements and each node has 8 adjacent elements. Each node has a valence

of 6. For surface nodes these numbers reduce accordingly. As shown by Tautges

(2004) structured meshes can be stored more efficiently than unstructured meshes.

Furthermore the time and memory efficiency of solving the linear equation system

created with FEM is better for lower valence nodes as the number of non zero

entries in the stiffness matrix is reduced.

Such a mesh can only be obtained for geometries which are homeomorphic to a

cube, since the Cartesian mesh of such a cube can be deformed into the desired

geometry. Since a cube is homeomorphic to a sphere only geometries which are

also homeomorphic to a sphere can be deformed into a cube according to the

classification theorem for surfaces. (Gallier and Xu, 2012) The extension of this

problem to higher dimensions is the famous Poincaré conjecture proven by Perel-

man. (Perelman, 2002, 2003a,b)

Even if a geometry is homeomorphic to a cube the obtainable mesh might be un-

desirable due to highly distorted elements. This is, for example, the case for ge-

ometries with high aspect ratio – needle like – protrusions. Meshes created in the
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described manner are called structured. (Pietroni et al., 2022)

Any node of the mesh within the volume that does not have a valence of 6 or a

surface node which does not have a valence of 5 is considered to be singular.

Edges within the volume which do not have 4 adjacent elements or surface edges

which do not have 2 adjacent elements are also singular. In a purely hexahedral

mesh both ends of a singular edge are also singular nodes. Consequently singular

edges form singular arcs which start and terminate on the geometry’s surface (see

fig. 3.20). The fraction of nodes which are singular is denoted as rV . The minimum

number of singular nodes in any fully hexahedral mesh is 8. (Pietroni et al., 2022)

fig. 3.20: Graph of singular edges (Pietroni et al., 2022)

Any hexahedral mesh can be decomposed into structured blocks with 8 singular

nodes each. This decomposition is not distinct. However, there is a distinct de-

composition with a minimum number of blocks B . The minimum number of blocks

divided by the number of elements in the mesh is denoted as rB . The quotients

rV and rB can now be used to categorize the structure of meshes (see tbl. 3.2).

Examples are shown in fig. 3.21 with the graph of singularities over minimum block

decompositions.
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tbl. 3.2: Evaluation of mesh structure according to Pietroni et al. (2022)

Structure type rV rB

Structured ↓ ↓ (B = 1)
Semi structured ↓ ↓
Valence semi-structured ↓ ↑
Unstructured ↑ ↑

If rV is small and the mesh is composed of one block it is denoted as structured.

Semi structured meshes exhibit low values for both. They can be decomposed

into a few structured blocks (see fig. 3.21). Valence semi-structured meshes have

more blocks and hence a larger rB . They are still structured in terms of valence.

Unstructured meshes show high values for rB and rV . They are neither structured

in terms of blocks nor in terms of singular nodes. (Pietroni et al., 2022)

fig. 3.21: examples of mesh structure (Pietroni et al., 2022)

The structure of meshes generated by Sweeping, which is the state of the art for

meshing in mechanical FEM depends largely on the structure of the underlying

surface mesh. As the volume mesh Sweeping only mildly increases the number of

blocks and singular nodes; the resulting meshes are mostly semi structured.
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3.4 Meshing

In general meshes for FEM can be grouped into three categories: fully tetrahedral,

fully hexahedral and mixed. In order to obtain volumetric meshes a number of

methods has been conceived.

3.4.1 Tetrahedral Mesh Generation

Triangular meshes of surfaces are polygons (see. fig. 3.7). Delaunay (1934) is the

first systematic approach to the triangulation of surfaces. For the described algo-

rithm, points need to be pre-generated. This may be done by generating random

points or with a systematic technique. The algorithm presented by Delaunay (1934)

offers an approach to generate and improve a triangular mesh in an iterative pro-

cedure. First all points at the boundary of the domain are connected with edges.

Then for each edge one point in the interior is selected to construct a triangle. This

process finishes with a triangular mesh of poor quality.

A

B

CD

A

B

CD

fig. 3.22: Element improvement in Delaunay triangulation

It can be enhanced by iterating over all internal edges of the mesh. Each of these

edges is part of two triangles which together have four nodes. If the circumcircle

of at least one of these triangles contains the fourth point, the quality of the two

triangles can be improved by flipping the diagonal edge. In the example in fig. 3.22

this can be achieved by flipping the diagonal of the quadrangle from AC to BD .
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This algorithm cannot only be performed on planar domains but also on NURBS

surfaces. A surface mesh for 3D geometry is obtained according to the geometric

hierarchy shown in fig. 3.10 by first creating seed nodes on all curves and then tri-

angulating the surfaces from there as shown, for example, by Cignoni et al. (1993).

Tetrahedral meshers are observed to be less preformant in terms of nodes gener-

ated per second compared to hexahedral mesh generators (see fig. 3.13 in sec-

tion 3.2.2). This however is rather a characteristic of unstructured meshers as

they iterate over a generated element multiple times and cannot preallocate mem-

ory. Current hexahedral mesh generating algorithms are in fact considered to be

slower then tetrahedral meshers when leveling the playing field in terms of struc-

tural awareness. (Shepherd, 2007)

3.4.2 Hexahedral Mesh Generation

As shown in section 3.4.1 tetrahedral meshers revolve around locally changing the

mesh in an iterative fashion. For hexahedral meshes this approach does not work

as local changes propagate globally through the mesh. (Kremer et al., 2014) Con-

sequently, hexahedral meshing is significantly more challenging then tetrahedral

meshing.

Hexahedral meshing algorithms are categorized as a direct type if they generate

a mesh from the geometry representation. They are called indirect if a tetrahe-

dral mesh is used as an intermediate step. (Shepherd, 2008; Pietroni et al., 2022)

display the capabilities as well as the state of current research for all prevalent hex-

ahedral meshing techniques. The processing related traits of meshing algorithms

are listed in tbl. 3.3 lists while traits of the resulting meshes are listed in tbl. 3.4.

Ansys mechanical, the leading FEM software in mechanical engineering (see chap-

ter 2) implements the Sweeping and Hexdominant algorithms. Successful genera-

tion of meshes from complex parts with Sweeping requires a lot of effort (Harwick

et al., 2005), as well as a deep insight into the inner workings of the mesher. Hex-

dominant on the other hand tends to deliver results of poor quality, has excessive

meshing time or may terminate unsuccessfully. As is shown in tbl. 3.5 most re-

search is accumulated in these two algorithms.

Even though there is much current research on Frame Field algorithms, they still
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fig. 3.23: Hexahedral meshing with sweeping approach

offer poor robustness and are not fully automatic. Sweeping algorithms create ele-

ments of good quality. The element quality of Hexdominant algorithms is described

to be "often good". (Pietroni et al., 2022) However this statement is slightly mis-

leading as ill shaped elements often occur in areas with high stresses, thereby

jeopardizing the simulation’s quality as a whole as shown in section 3.3.1. Besides

the required user input, a major downside of Sweeping algorithms in comparison

to the Hexdominant method is their inability to offer local element size control (see.

tbl. 3.4).

The main area of current research for Sweeping based meshing is to automatically

decompose bodies into sweepable sections. e.g. (Sonthi’ et al., 1997; Lu et al.,

2001)). A section is sweepable if a 2D mesh can be constructed on a surface which

is then dragged along a spline to form the part (see fig. 3.23). Obtaining these

decompositions is the main part of the required user input for Sweeping methods.

The state of the art in this field is described by Pietroni et al. (2022) in detail.

Mesh structure as defined in section 3.3.2 is also heavily influenced by the used

meshing algorithm. Hexdominant algorithms are attributed with producing semi-

structured meshes by Pietroni et al. (2022) which is for example backed up by cur-

rent works by Reberol et al. (2021). However the structure in critical areas of parts

tends to be worse due to sharp radii. Pietroni et al. (2022) also describe meshes

generated with Sweeping methods to be semi-structured. In most cases Sweep-

ing methods produce meshes of superior structure compared to Hexdominant (see

section 3.3.2).

The stated disadvantages of Hexdominant and Sweeping methods have not
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changed substantially compared to the amount of research that went into im-

proving them. In this situation the improvement of a method with less current

research coverage may be advantageous. For this dissertation grid methods were

chosen as the basis of the further work as they can be fully automatic and excel

in robustness which are important traits for the application in FEM for mechanical

engineering as shown in chapter 2.

Further information on the other methods from tbl. 3.3 can be found in the literature

reviews by Sarrate et al. (2014) and Pietroni et al. (2022).

tbl. 3.3: Application perspective on meshing methods (Pietroni et al., 2022)

Method Type User Shape Robustness
Interaction class

Advancing Direct Automatic CAD oriented Poor
font

Dual Both Automatic, CAD oriented Poor
Methods semi automatic

Sweeping Both Semiautomatic CAD oriented Good (manual)
methods

Grid Indirect Automatic Any shape Great (commercial,
based product,

demonstrated
on many datasets)

Polycube Indirect Automatic, Any shape Good
maps semiautomatic (demonstrated on

medium datasets)

Frame fields Indirect Automatic, Any shape Poor
manual fixing

Hexdominant Both Automatic Any shape Good
(demonstrated on
medium datasets)
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tbl. 3.4: Qualities of meshes generated with different methods (Pietroni et al., 2022)
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tbl. 3.5: Current research on meshing methods (Pietroni et al., 2022)

Method Total works Recent works Open problems

Advancing font 7 0 Improve handling,
colliding fronts,

complex topologies

Dual Methods 13 2 Robust handling of
self-intersecting

sheets

Sweeping methods 35 11 Automatic definition
of

sweepable
sub-volumes

Grid based 18 3 Feature
preservation,

mesh size. mapping

Polycube maps 18 8 Polycube topology,
mapping,

feature preservation

Frame fields 17 12 Generation of
hexable fields,
field aligned

mapping

Hexdominant 20 11 Hybrid elements
(topological control,

amount, quality)

3.4.3 Mesh Optimization

Once generated, meshes can be subject to further optimization. Mesh optimization

strives to improve quality metrics of the mesh. This can either be achieved by

altering the structure of the mesh or by moving nodes.

Local remeshing can be used to improve the local quality of tetrahedral meshes.
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It can either be used on surface meshes (Pellerin et al., 2011) or on volumetric

meshes (Anderson et al., 2005; Zheng et al., 2005). In both cases elements of low

quality and their immediate surrounding are replaced with a new mesh. Such ap-

proaches are only known for tetrahedral meshes as their structure can be changed

and improved locally.

Moving nodes to improve the quality of a mesh is more versatile as it can be used

on any mesh but more limited in its effect. The improvement of mesh quality by

moving nodes can be achieved with force directed graph layout or with nonlinear

optimization. For this method the optimization of the mesh is perceived as a non-

linear equation system (3.33). In this context f computes the desired quality metric

of the mesh based on the position x⃗ of all nodes. When computing a nodal metric

such as the SJ version suggested by Lobos (2015) Q and x⃗ have the same length.

When an elementwise metric is used, sizes may vary. The quality metric can now

be improved by using nonlinear optimization techniques. Such an approach is pre-

sented by Nealen et al. (2006).

Q = f (x⃗ ) (3.33)

The main alternative to this approach are force directed graph layout techniques

such as the one presented by Bhowmick and Shontz (2010). The main idea behind

force directed graph layout is to model all edges of the mesh as springs pulling at

the nodes. For each node the net force vector is computed and it is then moved

in the direction of the net force by a distance proportional to the forces magnitude.

This process has to be performed iteratively as the angles between nodes change

in each iteration making the problem nonlinear.

3.4.4 Grid Based Meshing

Grid based meshing can be seen as a mesh first, geometry second approach. In

contrast to Sweeping or Hexdominant methods, in which a mesh is created within

a preexisting geometry, a mesh is created and then adapted to the target geom-

etry. Such algorithms can be fully automated and have been found to produce

high quality meshes with convergence characteristics similar to meshes generated

with Sweeping methods for mechanical problems. Grid based methods are more
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fig. 3.24: Sculpt algorithm (Owen and Shelton, 2015)

tolerant towards CAD model errors such as gaps and non watertight BREPs. By

nature they produce purely hexahedral meshes. However, some elements may de-

generate to unusable shapes with low Scaled Jacobians. In such cases they can

be replaced with other element types such as tetrahedrons. (Owen and Shelton,

2015)

Owen and Shelton (2015) describe their sculpt algorithm which is a specific imple-

mentation of the grid based meshing concept. Sculpt creates a mesh in a pipeline

with 5 stages (see fig. 3.24). First a grid mesh is created which encloses the whole

geometry to be meshed. Then nodes close to the boundary of the geometry or the

boundaries of zones with different materials are moved onto the boundary. In or-

der to reduce distortion a padding layer of elements is introduced into the boundary

zone. Lastly the mesh is smoothed to improve element quality. (Owen and Shelton,

2015)

The grid based method described above uses an equidistant polycube grid. This
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fig. 3.25: 2D octree of a geometry (Yerry and Shephard, 1984)

guarantees optimal mesh quality, but impedes local mesh refinement. Octree

based methods mitigate this limitation by using an octree as their base grid. As

the maximum depth of the tree may change locally, varying local mesh densities

can be achieved. Fig. 3.25 shows a geometry represented by an octree. This

structure cannot be used as a mesh for FEM as it is non conforming (see section

3.1.2). In order to obtain a usable mesh from an octree, rules to fill the cells of

the tree with elements have to be formulated. In the 2D case 24 = 16 different

cases with their transformations exist. Mesh templates for all these cases have to

be formulated to be combined into a mesh. (Yerry and Shephard, 1984; Yamakawa

et al., 2011) Octree meshers may use different element types depending on their

templates. They can be used in 2D or 3D applications. (Maréchal, 2009)

Practical implementations of grid based meshers such as snappyHexMesh by

OpenCFD Ltd (2022) tend to have difficulties with exactly approximating sharp

boundary geometry. (Pietroni et al., 2022) Enabling the representation of sharp

features may require user input to assign edges to curves.

In order to improve the applicability of grid based meshers for mechanical FEM
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fig. 3.26: 2D mesh created from octree (Yerry and Shephard, 1984)

several issues have to be addressed (see tbl. 3.4 and tbl. 3.5):

• orientation sensitivity

• no automatic geometry mapping

• bad mesh structure

• no local mesh sizing

Orientation sensitivity of a mesh denotes whether the mesh will changes when

the represented part is rotated in the coordinate system. Such behaviour is not

desirable as a suboptimal orientation of a part will result in a suboptimal mesh.

This issue is even worse for parts with multiple rotation symmetric features such

as gear teeth since they will all vary in mesh quality and consequently computed

stresses. Geometry mapping refers to identifying which edges of the mesh map to

which curves of the geometry. Local mesh sizing is only possible when the sizing is

inherent to the underlying grid. This may be achieved with the formally introduced

octree technique.
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4 Combinatorial Meshing

Within this dissertation the method of Combinatorial Meshing is developed. It is

meant to augment known methods of grid based meshing. This chapter gives an

overview on the proposed algorithm and its motivation. The method is called Com-

binatorial Meshing as a novel combinatorial interpretation of the meshing problem

is one of its cornerstones.

4.1 Consequences from Engineering Needs

In this section user needs and technical requirements for meshing in mechanical

FEM are summarized. As shown in chapter 2 users expect more robust automatic

meshing with usable mesh quality. Element quality can be measured sufficiently

via the SJ metric and its extension to mixed elements by Lobos (2015). Meshes

may not exhibit hanging nodes (see sec. 3.1.2). As most part geometries contain

curved surfaces and also bend, when subjected to loads, quadratic basis functions

are advantageous for most applications (see sec. 3.1.4). In the case of quadratic

elements, hanging edges as well as hanging nodes cause singularities. A hanging

edge is created when one side of a quadrangular face is occupied by two triangles

(see fig. 4.1). Element edges with quadratic shape need a midside node to fully

define it. This situation occurs when, for example, two tetrahedrons are put onto

a hexahedron instead of a pyramid. In this case the basis functions become dis-

continuous between the elements as the midside node of the diagonalizing edge is

now a hanging node. Such configurations are created by some mesh generators

(Ansys Inc., 2022) but must be avoided.

Grid based meshing algorithms generally excel in satisfying these needs. (Owen

and Shelton, 2015) Their main drawbacks for use in FEM meshing for mechanical

engineering is that the resulting meshes are orientation sensitive and lack auto-

matic detection of geometric edges. (Pietroni et al., 2022) Orientation sensitivity
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fig. 4.1: Hanging edge between a hexahedron and two tetrahedrons marked in red

means, that the quality of the mesh changes when moving the geometry in the

global coordinate system. Furthermore they work well on box like parts but deliver

inferior results on cylindrical objects such as shafts or gears. In consequence im-

proving on grid based meshing techniques to resolve these issues is a worthy goal

to pursue.

4.2 The Concept of Combinatorial Meshing

The common method of grid based meshing fills the bounding box of the target

geometry with a grid mesh and then tries to form a valid mesh, representing the

geometry, by carving it out of this grid mesh. From the perspective of a mechanical

engineer this process is similar to milling the part from a block of material. Even

though arbitrary parts can in theory be machined from a bounding box block, parts

are usually made from bar stock with appropriate geometry. For example a shaft is

typically manufactured from a cylinder and not from a block.

This concept is utilized to replace the basis grid of conventional grid based meshing

with a problem adapted mesh. This mesh is called Precursor Mesh. As bar stocks

are manufactured in a continuous rolling process they always have a sweapable

geometry. Hence it can be meshed with ease. Figure 4.2 shows how a complex

non-sweapable part is machined from an I-beam and meshed accordingly.

Since sweeping paths can be circular, any geometry which can be produced with

a lathe can also be swept and thus be used as a Precursor Mesh. The Precursor
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Manufacturing Meshing

Bar
Stock

Finished
Part

fig. 4.2: Manufacturing and meshing of an I-beam with a cut groove

Mesh may also be locally refined to allow local variations in mesh sizing.

Since it is good engineering practice to follow the manufacturing process in the

setup of a CAD model, information on the bar stock geometry can be retrieved from

the structure of the CAD model. Such data is not part of the current implementation

of exchange file formats such as STEP specified by ISO 10303. (ISO, 2020)

As users advocate for including this information in novel exchange file formats for

portability reasons (see chapter 2), it should be implemented to aid in meshing pro-

cesses. For the presented results of this dissertation, augmented STEP files were

created using a custom made CAD plugin. Such efforts should be standardized in

future.

The most obvious way of cutting a mesh would be to either remove all elements

which contain nodes outside of the target geometry or only remove an element if
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fig. 4.3: Results of trivial nodes removal for a circular geometry with unrecoverable
elements are marked in red

all of its nodes lay outside of the target geometry. Neither of these is practical as

both approaches cause a staircase effect when applied to curved geometry (see

fig. 4.3). Such a mesh will have boundary elements with very low SJ which cannot

be fixed by moving nodes, once all nodes at the perimeter are drawn onto the target

geometry.

A practical method to enable node deletion is to generate a Precursor Mesh, which

is more coarse than the target mesh, and insert small mesh templates into each cell

of the Precursor Mesh depending on which nodes of the cell are to be kept. Within

this dissertation these templates are called Super Elements. Practically speaking

the Super Elements act as bricks shaped in different ways which are assembled to

represent the target geometry. The problem of choosing the right Super Elements

is a combinatorial problem.

The Super Elements only contain very few nodes and can be computed indepen-

dently from the target geometry in advance. This opens up the possibility to sacri-

fice speed of generation for quality by using unorthodox methods for their compu-
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tation. Such a method is logical programming (LP).

LP is chosen, as it allows to solve a problem with proven optimality. In general

the runtime of the current solving technology is not guaranteed to be polynomial in

respect to the number of variables to solve. To enable meshing to be solved with

LP, the meshing problem has to be transformed into a suitable formulation. Such a

formulation is a graph selection problem.

The graph representation of a mesh is discussed in chapter 4.3 while the solution

to the problem of mesh generation based on this representation is shown in chapter

5. In chapter 6 two approaches for solving the Super Element selection problem

are presented and discussed. In order to be able to fit the resulting mesh to a

target geometry, its nodes and faces have to be assigned to geometric entities on

which they are drawn. In this dissertation this process is called Entity Mapping.

Two approaches for solving this problem are shown and compared in chapter 7.

4.3 Graph representation of a mesh

In order to make meshing a graph selection problem, an analogous graph for a

mesh has to be defined. Furthermore the previously defined criteria for a well

defined mesh have to be expressed in terms of such a graph.

An appropriate graph of a mesh for this purpose is a graph in which all elements of

the mesh are graph nodes and all element faces are graph edges. Such a graph is

shown in fig. 4.4. Triangular faces are marked in red and quadrangular faces are

marked in green.
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fig. 4.4: Graph representation of a mesh

Each element face must belong to one or two elements. If it only belongs to one

element it is considered to be part of the mesh’s surface. Furthermore no elements

present in the mesh may intersect other elements. Scaled Jacobian of the elements
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and node valence can be checked using its graph representation. The approxima-

tion quality of the mesh for the target geometry can be evaluated by comparing the

surface mesh to the geometry BREP.
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5 Generation of Super Elements

The method described in this chapter has been developed together with Valentin

Mayer-Eichberger and is subject of a joint publication. (Stromberg et al., 2023) In

this joint work Valentin Mayer-Eichberger has contributed the solver code.

5.1 Problem Definition

Super Elements are intended to be used as building blocks (see 4) to construct a

mesh from. These blocks have to be designed in such a way that the assembled

mesh does not have hanging nodes (see fig. 3.3). This is achieved by defining for

each node of the Precursor Mesh if it is present in the final mesh. These nodes are

called Outer Nodes. Furthermore, rules for touching faces of Super Elements have

to be established in order to enforce their compatibility with each other.

All faces of Super Elements touching other Super Elements have to comply with

the faces shown in 5.1 and 5.2. Outer Nodes which are defined as present are

marked green and non present Outer Nodes are marked red. The black nodes are

inserted into the mesh to allow for the removal of Outer Nodes while maintaining

a valid mesh. Consequently the mesh on these faces is given by the presence

configuration of the Outer Nodes of the Super Element.

Precursor Meshes discussed in this dissertation may consist of hexahedrons, tetra-

hedrons, prisms and pyramids. Thus Super Elements for these four element types

have to be generated. For each element type each node may or may not be present

within the mesh, so 2n different Super Elements are required for an element type

with n nodes. Some of these configurations can be derived trivially by transforming

other configurations. Since this can also be done with the solution, the number of

Super Elements for which solutions have to be found is reduced as shown in tbl.

5.1.
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fig. 5.1: Possible reduced triangular faces on Super Elements
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fig. 5.2: Possible reduced quadrangular faces on Super Elements
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tbl. 5.1: Relevant cases for Super Element types

Element Node Count Super Element
Count

Reduced Super Element
Count

Hexahedron 8 256 23
Tetrahedron 4 16 5
Prism 6 64 13
Pyramid 5 32 12

For each of these cases a mesh has to be generated in order to provide a complete

set of building blocks for arbitrary meshes. These Super Element meshes are

independent of the mesh assembled from them. Therefore they can be computed

in advance. Thus only a limited amount of meshes with low node count has to

be computed once in order to generate the Super Elements. This enables the

use of rather costly meshing approaches with superior quality. In this dissertation

Super Elements are generated using ASP. This chapter focuses on hexahedral

Super Elements. The described process however can be adapted for all other types

of Super Elements. For the results presented in this dissertation Super Element

meshes for tetrahedrons, prisms and pyramids were created manually.

In order to enable the application of ASP for generating meshes the problem of

generating a mesh is reformulated into a graph selection problem as shown in

section 4.3.

As arbitrary node locations have to be considered, the space from which graphs

are chosen is a priori not finite. This problem can be made finite by selecting a set

of Considered Node locations (see fig. 5.3, fig. 5.4, fig. 5.5 and fig. 5.6). The

size of this set drives the computation time required for the ASP based meshing

progress.

5.2 Considered Node Locations

The number of possible elements with k nodes each which can be constructed

from n nodes, is generally n !
(n−k)! . For each set of nodes only one order has to

be considered as only one order has a positive SJ, or in the case of tetrahedral

elements, all orders are equal in quality. Thus the count of considered elements is
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reduced to
(n
k

)
.

As n !
(n−k)! is a very steep function and computation time is proportional to it, only

very few nodes can be considered for constructing meshes with this method. In

figures 5.3,5.4, 5.5 and 5.6 the Considered Node locations for all Precursor Mesh

element types are shown. The Outer Nodes are marked in green. Black nodes are

Considered Nodes on the surface and red circles are nodes within the Precursor

Mesh element. The internal lines show the internal mesh of the Super Elements in

the case of conserving all Outer Nodes.

The Considered Node locations are chosen to be compatible over all four element

types of the Precursor Mesh. The most common Super Elements are the ones

which conserve all Outer Nodes. Thus node positions for the Super Elements are

advantageous which only contain elements of the same quality as the parent ele-

ment from the Precursor Mesh. This criterion holds for the proposed positioning of

internal nodes for all Super Element types but pyramids. A pyramid with all nodes

retained is split into six pyramids and four tetrahedrons. This solutions was chosen

in order to avoid badly shaped pyramids inside the Super Elements. The internal

nodes – visualized as red circles – were chosen to allow the placement of well

shaped pyramids in the quadrangular outer faces. They are needed in order to al-

low transitions from quadrangular faces to triangular faces within a Super Element.

In the chosen schema hexahedrons have 35 Considered Nodes, prisms 24, pyra-

mids 14 and tetrahedrons 10. Tables with the coordinates of the Considered Nodes

can be found in appendix B.

fig. 5.3: Considered Node Locations for hexahedral Super Elements
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fig. 5.4: Considered Node Locations for prismatic Super Elements

fig. 5.5: Considered Node Locations for pyramid Super Elements

fig. 5.6: Considered Node Locations for tetrahedral Super Elements

The reminder of this chapter focuses on computing Super Element meshes for

hexahedral Super Elements based on the 35 Considered Nodes from fig. 5.3. For

these 35 nodes about 18 million elements with positive SJ exist (see tbl. 5.2).
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In order to exclude elements with inferior quality and to allow the generation of

meshes in feasible time only elements with SJ over the thresholds specified in tbl.

5.2 are used in the further process.

tbl. 5.2: Considered Sub Elements for Hexahedrons (Stromberg et al., 2023)

Element type All elem. (SJ> 0) Min. SJ Count

Tetrahedrons 44850 0.16 22750
Hexahedrons 16333575 0.3 3809
Prisms 1351685 0.45 2751
Pyramids 264501 0.35 1626
Total 17994611 - 32061

All 18 million elements are generated and their SJ according to Lobos (2015) is

evaluated in order to generate the data shown in tbl. 5.2.

5.3 Meshing ASP Model

Generating a mesh for a given geometry can be seen as selecting a set of elements

from the elements generated in section 5.2. This selection must be valid in terms

of the criteria established in section 4.3. The ASP model used to find these graphs

is described in this section.

Fig. 5.7 shows the structure of the used ASP model. Each element is assigned the

IDs of the faces it uses. These IDs are signed to account for the side of a face an

element uses. Each face must either be used on both sides or is considered part of

the Super Element’s hull in order to guarantee the resulting mesh to be cohesive.

For each possible element, its type and SJ are also part of the ASP model to be

used as optimization goals.

Surface triangles are assigned to each face. For a triangular face one triangle is

assigned. Quadrangular faces are broken in two triangles along their diagonal. As

the quadrangle may be split along any of its two diagonals all four possible triangles

are assigned to the face. The relation between faces and triangles is also signed

to propagate the direction of normal vectors through the model.

The triangles are used to implement a rule for local convexity. This rule is enforced
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Element

Face

Edge

Node

Triangle
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Not Self
Intersecting
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Element
Type

fig. 5.7: Used ASP model
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fig. 5.8: Legal and illegal combination of normal vectors

for all triangles steming from faces which are only used by an element from one

side and are as a result part of the surface of the Super Element. If two of those

triangles share an edge, their normal vectors can be used to enforce local convexity

(see fig. 5.8). This local convexity rule is useful as it prohibits impractical solutions

such as meshes with internal voids.

The local convexity rule is found not to safely exclude all non convex solutions as

it is possible to construct self-intersecting meshes which satisfy all rules stated so

far. This issue is resolved by adding a rule which explicitly excludes self-intersecting

solutions.

In order to do so, the model is expanded to store the IDs of all edges which are part

of a face. Now a list of edges can be computed for each triangle. Members of this

list may not be part of the solution once the triangle is as the edges intersect said

triangle.

For all edges, the IDs of their nodes are stored in the model. This information can

be used to compute node valence as an optimization target function.

With the SJ cutoffs from tbl. 5.2 a model with 767020 clauses is created. This

model is created only once and can be reused for different hexahedral Super Ele-

ments and optimization targets.

The Super Element for which a mesh is computed is specified by the Outer Nodes

which ought to be present in the mesh. These then dictate the mesh for all side

faces of the Super Element as shown in fig. 5.1 and fig. 5.2. In the ASP model

these surface meshes are enforced by selecting the faces used by the defined

regions of the surface mesh and by prohibiting the use of any other faces there.
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fig. 5.9: Example for a boundary mesh defining the task to be fulfilled by the ASP
model

The resulting ASP program tasks the solver with finding a mesh filling a partially

defined boundary with a convex mesh as is shown in fig. 5.9.

The described ASP model is implemented using the ASP solver clingo by Gebser

et al. (2019). The model is provided in the following form:

info(element_id , element_type , sj).
% Assignes type and SJ converted to an integer to an

available elements.
...
filter(tet , min_sj).
filter(hex , min_sj).
filter(pyr , min_sj).
filter(prsm , min_sj).
% Specifies SJ thresholds for all element types.
element2face(element_id, (sgn_face_id; ...)).
% Lists all faces ids for an element with the normal

orientation encoded in the sign.
face2triangle(face_id, sgn_triangle_id).
% Defines a triangle to be part of a face. If the sign is

negative their normal vectors are opposite.
convex(sgn_triangle_id , sgn_triangle_id).
% Defines a the legal combination of signs for two touching

triangles.
face2edge(face_id, (edge_id; ...)).
% Lists all edges belonging to a face.
triangleRemoveEdge(triangle_id, (edge_id; ...)).
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% Lists all edges which may not be used if the given
triangle is used.

edge2node(edge_id, (node_id; node_id)).
% Assignes nodes to edges.
boundary_in(sgn_face_id; ...).
% Lists all faces which must be used for the boundary with

their orientation encoded via their sign.
boundary_out(sgn_face_id; ...).
% Lists all faces which must not be used for the boundary

with their orientation encoded via their sign.

In order to compute this input file, all possible elements (see tbl. 5.2) are computed

and evaluated for SJ. Implemented in a mixture of Python and C++, this takes about

12 hours on a state of the art workstation.

This input file with the resulting 32061 elements is passed into clingo together with

the solver code listed below. This solver code is contributed by Valentin Mayer-

Eichberger. (Stromberg et al., 2023)

% Contributed by Valentin Mayer -Eichberger
% Only use elements that have Scaled Jacobian above Min from

filter
element2faceF(E,F) :- element2face(E,F), info(E,T,SC),

filter(T,Min), SC >= Min.

elementIn(E) :- element2faceF(E,_).
faceIn(F) :- element2faceF(_,F).
faceIn(F) :- boundary_in(F).
faceIn(F) :- boundary_out(F).
firstFace(F) :- F = #min { X : boundary_in(X) }.

{ element(E) } :- elementIn(E).
{ face(F) } :- faceIn(F).

% the faces part of the boundary of the shape need to be in
the model

:- boundary_in(F), not face(F).

% the faces that cannot be part of the boundary of the shape
need to be excluded

:- boundary_out(F), face(F).

% if F is chosen Face then exactly one element needs to be
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chosen of which contains that face
:- face(F), not 1 { element(E) : element2faceF(E,F) } 1.

% if an element is chosen , then all faces need to be in the
model

:- element(E), element2faceF(E,F), not face(F).

% if a face contacts a void (= not face) then it is on the
surface

face2triangle(-F,-T) :- face2triangle(F,T).
surfaceTriangle(T) :- face(F), not face(-F), face2triangle(F

,T).
strict_concave(-T1,T2) :- convex(T1,T2).
strict_concave(T1,-T2) :- convex(T1,T2).
strict_concave(-T1,-T2) :- convex(T1,T2), not convex(-T1,-T

2).

% concave combination of faces on the surface are forbidden
:- strict_concave(T1,T2), surfaceTriangle(T1),

surfaceTriangle(T2).

% Infer edges
edge(E) :- face(F), face2edge(F,E).

% Infer inner triangles
triangle (|T|) :- face(F), face2triangle(F,T).

% each chosen triangle removes all edges it violates (
intersection)

:- triangleRemoveEdge(T,E), triangle(T), edge(E).

% the first face of the boundary is the starting point of
the connectivity analysis

reachedFace(F) :- firstFace(F).

% contact faces pass reachability forward
reachedFace(-F) :- reachedFace(F), face(-F).

% if a face is reached , then also the chosen element that it
connects to

reachedElement(E) :- reachedFace(F), element2faceF(E,F),
element(E).

% if an element is reached , then also all faces it has
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contact with are reached
reachedFace(F) :- reachedElement(E), element2faceF(E,F).

% all chosen elements need to be reached!
:- element(E), not reachedElement(E).

% N is a SJ in info
num(N) :- info(_, _, N).

% J is successor of I
next(I,J) :- num(I), num(J), I<J, not I<T : T<J, num(T),num(

I),num(J).

% choose to remove all elements with SJ with value I
{ remove(I,J) } :- next(I,J).

% if we remove all SJ with J, then we also need to remove I
:- not remove(I,J), next(I,J), remove(J,K).

% if remove(I,_) is true , then remove all elements with SJ I
:- remove(SJ ,_), info(E,_,SJ), element(E).

#maximize { 1@2,I : remove(I,_) }.

% minimize number of elements on second level
#minimize{ 1@1,E : element(E) }.

5.4 Results

Executing this model for all unique 23 hexahedral Super Elements on a state of the

art workstation takes approximately 4 hours.

The described ASP model is capable of optimizing the resulting mesh for various

qualities. It is possible to maximize SJ, to minimize node valence and to minimize

element count. Combinations of these criteria may also be implemented. Tbl.

5.4 summarizes the results for these three criteria on all unique hexahedral Super

Elements. The generated meshes can be found in appendix C. All these results

are proven to be optimal by the solver. A range of results is shown in tbl. 5.3.

Hexahedrons are printed green, tetrahedrons red, prisms blue and pyramids yellow.
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tbl. 5.3: Multiple examples of generated Super Elements optimized for maximum
SJ

tbl. 5.4: Optimization results (Stromberg et al., 2023)

Case Min. Valence Max SJ Min Element Count

0 0 n.a. 0
1 3 0.5 1
2 4 0.577 2
3 6 0.408 6
4 8 0.5 10
5 5 1.0 4
6 5 0.385 4
7 11 0.302 20
8 10 0.302 24
9 7 0.5 12
10 9 0.5 15
11 10 0.302 24
12 8 0.348 13

Continued on the following page
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Case Min. Valence Max. Min. SJ Min Element Count

13 9 0.348 18
14 6 0.577 8
15 8 0.5 15
16 6 0.577 8
17 8 0.5 22
18 8 0.5 16
19 8 0.5 17
20 8 0.5 22
21 8 0.5 15
22 6 1.0 8

As any mesh constructed from Super Elements only contains elements from these

Super Elements, the minimum element quality is guaranteed to be the minimum

element quality from the used Super Element set.
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It is also possible to generate Super Elements which can function as refinement

adapters between two mesh regions with different node distance. An example

boundary mesh for such an element is shown in fig. 5.10. In order to compute such

meshes the list of possible faces (see fig. 5.2) would have to be extended for faces

with some missing midside nodes.

fig. 5.10: Boundary mesh for computing a refinement Super Element
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6 Combinatorial Mesh Assembly

6.1 Problem Description

Super Elements can be combined to form arbitrary geometry. In order to obtain a

legal mesh the faces of the combined Super Elements have to be compatible. The

faces of Super Elements generated with the method shown in chapter 5 conform

with the established rules for face meshes in fig. 5.1 and fig. 5.2. Hence Super

Elements which are inserted into elements of the Precursor Mesh have conforming

faces if they coincide in the existence of shared Outer Nodes in the final mesh.

Therefore, selecting a valid combination of Super Elements can be achieved by

declaring each node of the Precursor Mesh (which are the Outer Nodes of the

Super Elements) to be included or excluded from the final mesh. Super Elements

are then selected accordingly.

Meshes are thus formed based on a Precursor Mesh by coloring its nodes in red or

black, in which a black node is kept and a red node is removed. Each coloring of the

nodes of the Precursor Mesh is correlated with one resulting mesh. The quality of

this coloring can be assessed by computing the geometric deviation between mesh

and target geometry. The deviation can be expressed as a Residual Volume (RV),

which is the negated intersection of both bodies. A good coloring should minimize

this volume.

6.2 Residual Volume Integration

This volume can be computed by means of numerical integration. In this approach

the elements of the Precursor Mesh are divided into integration subdomains. Now

the center of each subdomain is checked that it is contained in the RV. RV is then

computed as the sum of volume of all subdomains which are in the RV.
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This straightforward process turns out to produce inferior results for cases in which

the geometry cuts through the Precursor Mesh parallel to the element faces. As

minor variations in the mesh or geometry will cause the preference for coloring a

node red or black to flip, a zigzag pattern of kept and removed nodes is created

(see fig. 6.1). To combat this issue RV which makes the resulting mesh too small is

raised to the power of two. This target function leads to more smooth results. The

integration process is summarized in fig. 6.2.

fig. 6.1: Bad mesh quality due to instability of trivial RV function

R = 22 + 0 = 4

R = 12 + 0 = 1

Precursor Mesh Possible Super Elements

fig. 6.2: Target function for node coloring optimization

For the whole mesh the sum of RV has to be minimized. This process can be

made easier regardless of the selected optimization method by computing whether

integration subdomains are inside or outside of a Super Element with respect to
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ξ-space in advance and independently from the geometry. The same computation

can now be performed for the subdomains of the Precursor Mesh with respect to

the target geometry in x -space. For the division of elements into subdomains the

lowest number of divisions for each dimension was chosen which ended up creating

a unique integration result for each Super Element. The resulting grids are shown

in fig. 6.3, fig. 6.4, fig. 6.5 and fig. 6.6.

fig. 6.3: Chosen integration subdomains of a hexahedron

fig. 6.4: Chosen integration subdomains of a tetrahedron
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fig. 6.5: Chosen integration subdomains of a prism

fig. 6.6: Chosen integration subdomains of a pyramid

6.3 ASP Approach

Finding the node coloring which minimizes RV is an optimization problem. In a first

attempt an ASP encoding for this problem is created to obtain solutions with known

optimality. Then the scalability of this approach is tested and a faster heuristic is

developed.

The ASP model is outlined in fig. 6.7. For each node of the Precursor Mesh a color

is chosen. Then for each Precursor Element a Super Element is assigned. The

ASP model uses three types of clauses. The “decomposition“ clause defines the

RV caused by using a given Super Element for a given element of the Precursor

Mesh. The “in“ clause lists all nodes of the Precursor Mesh which are Outer Nodes

of the noted Super Element when it is used for the given Precursor Element while
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the “out“ clause does the same for all nodes which are not Outer Nodes.

decomposition(precursor_element_id, super_element_id, rv
).

...
in(precursor_element_id, super_element_id , (node , node ,

...)).
...
out(precursor_element_id, super_element_id, (node , node ,

...)).
...

This model is constructed geometry-specific and has to be solved in order to obtain

a mesh for the geometry. For solving the model, a solver code for Clingo contributed

by Mayer-Eichberger. (Stromberg et al., 2023)

% Contributed by Valentin Mayer - Eichberger
#show decompose /2.

% find min cost for each element
decomp_cost(E,C) :- decomposition(E,_,C).
has_less(E,C2) :- decomp_cost(E,C1), decomp_cost(E,C2),

C1 < C2.
min_cost(E,C1) :- decomp_cost(E,C1), not has_less(E,C1).

element(E) :- decomposition(E,_,_).
node(N) :- out(_,_,N).
node(N) :- in(_,_,N).

1 { decompose(E, D) : decomposition(E,D,_) } 1 :-
element(E).

is_in(N) :- decompose(E,D), in(E,D,N).

:- decompose(E,D), out(E,D,N), is_in(N).

#minimize{ C-X@1,D,E : decompose(E,D), decomposition(E,D
,C), min_cost(E,X) }.

#minimize{ X@1,E: min_cost(E,X) }.

While computing the model input data has linear time complexity in terms of size of

the Precursor Mesh, solving the model with clingo requires exponential time as ex-

pected and measured. The data shown in fig. 6.8 was obtained by meshing a cube
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decomposition in out

Precursor
Element

Precursor
Element

Precursor
Element

Super
Element

Super
Element

Super
Element

RV Black
Nodes

Red
Nodes

Precursor
Element

Node
Coloring

Super Element Super Element

RV

fig. 6.7: ASP model to compute node coloring
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with a cylindrical hole based on a cube grid Precursor Mesh (see tbl. 6.1). The el-

ement count denoted on the x-axis refers to the Precursor Mesh. The performance

may be improved upon by optimizing the model and clingo options. However, it is

not likely to be feasible for the generating meshes of practical use. The computation

time in relation to the element count of the Precursor Mesh is highly nonlinear. The

next largest test case with 1000 elements did not finish in 24 hours. Since the node

count of meshes for practical application is orders of magnitude greater, a heuristic

algorithm is developed.

0 50 100 150 200 250
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250

elements

tim
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[s
]

Measured time for ASP approach
1.6807s ∗ e0.0065n

fig. 6.8: Computation time for node coloring with ASP

6.4 Heuristic Approach

The proposed heuristic is based on local greedy optimization. First the best pos-

sible Super Element for each Precursor Element is chosen. Then these Super

Elements vote on the node coloring. Each Super Element votes +1 for its black

nodes and −1 for its red nodes. Now all nodes with a positive score are colored

black and all others red. Finally, the assigned Super Elements are chosen so that

they satisfy this coloring.

The heuristic has linear time complexity as shown in equations (6.1), (6.2) and
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(6.3). Experimental time complexity fulfills this prediction (see fig. 6.9). Linear time

complexity is achieved by sacrificing the ability to accept locally disadvantageous

Super Elements in order to profit from positive propagation effects.

nnodes = O(nelem) (6.1)

Ct (nelem) = nelem ∗ k1 + nnodes ∗ k2 (6.2)

Ct (nelem) = O(nelem) (6.3)
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fig. 6.9: Computation time for node coloring with heuristic

The presented performance was achieved on a typical workstation running a

Python implementation on a single core. Considering room for improvement of the

implementation the required computation time for typical meshes with 106 elements

can be neglected.

Results for both algorithms on an example geometry are shown in tbl. 6.1. The

objective in this test case is to subtract a cylinder from a grid meshed cube. The

element count of the Precursor Mesh cube is varied. Both algorithms struggle on

very coarse meshes. The results for 1 element and 8 elements from both are not

fit for practical use.
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The other cases show high similarities of the results of both algorithms. However

the solutions selected by the heuristic approach for 64 and 512 elements are in-

ferior to the results of the ASP approach. Such issues can be resolved by slightly

adjusting the number of elements in the Precursor Mesh. When implementing such

a measure, the heuristic approach is deemed to be practically viable.

tbl. 6.1: Comparison of results for voting heuristic

Precursor Element
count

ASP result Heuristic Result

1

8

27

64

Continued on the following page
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Precursor Element
count

ASP result Heuristic Result

512

1000
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7 Entity Mapping

Established mesh generation techniques such as sweeping or hex-dominant re-

combination of tetrahedrons start with a surface mesh which is developed into a

volume mesh. Since this volume mesh is generated from the geometric entities

of the target BREP, (see fig. 3.10) the assignment of mesh entities to geometric

entities is known. This relation (see tbl. 7.1) is important to allow for the adaptive

refinement of the mesh, the elevation of the element order and the assignment of

boundary conditions. Typical implementations of grid based meshers rely on user

interaction to map mesh entities to geometric entities. Since users prefer a higher

degree of automation (see chapter 2) a better method for the Entity Mapping pro-

cess is required.

tbl. 7.1: Required geometry mapping

Geometric entity Mesh entity

corner node
curve edge

surface face

The proposed algorithm is a top down approach which first maps mesh faces to

geometric surfaces and then deduces a mapping for curves and corners as outlined

in fig. 7.2. For each element face of the surface mesh, a ray is cast from its center.

For this ray the nearest intersection with a geometric surface is searched. The

element face is now mapped to this surface. Each surface element face has to be

mapped to exactly one geometric surface.
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Computing the intersection of a ray with a NURBS surface is a nonlinear root search

problem. Since the known methods for finding roots such as the Newton–Raphson

method cannot guarantee finding the closest root to the chosen starting point (see

fig. 7.1) it is not possible to perform the ray casting with NURBS BREP geometry.

Instead a surface triangulation is computed using Delaunay’s method. (Delaunay,

1934)

f (x )

x

x0x1

fig. 7.1: Convergence of a Newton iteration to a far away root

The intersection of a ray with a polygon is a linear problem and can be solved

exactly. The triangulation is computed with a target edge length of half the min-

imum edge length of the mesh which needs to be mapped. By doing so, small

surfaces are automatically defeatured. The term defeaturing describes the removal

of geometric features which are small and do not impact simulation results but hin-

der meshing. Since the underling surfaces for each simplex of the triangulation

are known from the triangulation process, the mapping of faces to surfaces is now

completed.

Finding the intersection of a ray with n triangles can be achieved in logarithmic

time for an average case when implemented with an k-d tree or octree (see sec-

tion 3.2.2). The worst case complexity however is linear in n. (Szirmay-Kalos and

Márton, 1998) As this has to be performed for each face and the number of faces

is linearly proportional to the number of triangles (see above), the total time com-

plexity of computing the mapping is O(n · log n).
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Ct ,oct (n) = O(log n) (7.1)

nfaces ∝ ntrgs (7.2)

Ct ,map(n) = O(n · log n) (7.3)

fig. 7.2: Entity Mapping process

Each curve has one or two adjacent surfaces. Since the mapping must also repre-

sent this neighbourhood constraints it can be exploited for deducing the mapping

of curves to edges from the mapping of faces to surfaces. An edge is mapped to a

curve if the adjacent faces of the edge are mapped to the surfaces adjacent to the
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curve. Edges may end up not mapped to a curve. If no continuous path of edges is

mapped to a curve it is defeatured. All mappings to defeatured curves are dropped.

Nodes are mapped to corners if all edges connected to the node within the surface

mesh are mapped to curves connected to the corner.

Once this mapping is computed it can also be used for mesh optimization. For do-

ing so, each node of the surface mesh is assigned to an entity of the geometry (see

fig. 7.2). In this process nodes assigned to corners keep this assignment. Nodes

are assigned to curves if two of the surface mesh edges connected to the node are

assigned to the curve. A node is assigned to a surface if all surface mesh faces

adjacent to the node are mapped to this geometric surface. Now mesh quality is im-

proved by moving surface nodes on their assigned geometric entities. Nodes within

the volume may be moved freely. This method may be used to improve Laplacian

smoothing as shown by Owen and Shelton (2015) while keeping nodes on the tar-

get geometry and preserving sharp edges. It can also be used in conjunction with

force directed layout techniques.

In tbl. 7.2 the fitting of several meshes to their respective geometry is shown. Hex-

ahedrons are printed in green, prisms in blue, pyramids in yellow and tetrahedrons

in red.

tbl. 7.2: Results of Entity Mapping process

Raw mesh Mapped mesh

Continued on the following page
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Raw mesh Mapped mesh
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8 Demonstration Results

In table 8.1 results of Combinatorial Meshing for some geometries from the

MAMBO data set (Ledoux, 2022) are presented. It is a collection of geome-

tries for evaluating the performance of meshing algorithms. For all geometries,

type wise element counts and Scaled Jacobian are given. For these examples the

Entity Mapping process was not executed in order to preserve geometry defects for

inspection and due to excessive time consumption of the current implementation

of the Entity Mapping (see chapter 7).

In some cases (for example B0) no cutting of the Precursor Mesh is required. In

cases where the Precursor Mesh has rotational symmetry and cannot be sweeped

in axial the direction (see B42), the results are superior to the industry standard

tools for automated meshing such as Ansys. (Ansys Inc., 2022) This advantage is

achieved by exploiting information provided through the CAD tree of the geometry.

Furthermore the structure information can be utilized to use 2D mesh templates for

recognized sketch geometries as shown in B11.

Successful cutting operations by using Super Elements are, for example, shown

with B6, B19 or B21. For test geometry B2, a suboptimal mesh is generated.

The algorithm fails to generate an adequate mesh for the sharp transition from the

box to the cylinder. The cause for this behaviour of the algorithm is that the used

Super Elements are enforced to be convex (see section 5.3). Such issues may be

circumvented by using a wider spectrum of Super Elements.



94 8 Demonstration Results

tbl. 8.1: Results of Combinatorial Meshing on geometries from the MAMBO
dataset

Meta Data Generated Mesh

Geometry: MAMBO B0

Hex. Tet. Prsm. Pyr.

Count 756 0 0 0
Min.
SJ

0.24 0.0 0.0 0.0

Mean
SJ

0.51 0.0 0.0 0.0

Max.
SJ

0.88 0.0 0.0 0.0

Geometry: MAMBO B10

Hex. Tet. Prsm. Pyr.

Count 2665 0 0 0
Min.
SJ

0.24 0.0 0.0 0.0

Mean
SJ

0.54 0.0 0.0 0.0

Max.
SJ

0.82 0.0 0.0 0.0

Geometry: MAMBO B11

Hex. Tet. Prsm. Pyr.

Count 9600 0 0 0
Min.
SJ

0.21 0.0 0.0 0.0

Mean
SJ

0.41 0.0 0.0 0.0

Max.
SJ

0.63 0.0 0.0 0.0

Continued on the following page
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Meta Data Generated Mesh

Geometry: MAMBO B12

Hex. Tet. Prsm. Pyr.

Count 48 0 0 0
Min.
SJ

0.09 0.0 0.0 0.0

Mean
SJ

0.15 0.0 0.0 0.0

Max.
SJ

0.26 0.0 0.0 0.0

Geometry: MAMBO B14

Hex. Tet. Prsm. Pyr.

Count 192 0 0 0
Min.
SJ

0.03 0.0 0.0 0.0

Mean
SJ

0.04 0.0 0.0 0.0

Max.
SJ

0.06 0.0 0.0 0.0

Continued on the following page
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Meta Data Generated Mesh

Geometry: MAMBO B15

Hex. Tet. Prsm. Pyr.

Count 217 0 0 0
Min.
SJ

0.26 0.0 0.0 0.0

Mean
SJ

0.61 0.0 0.0 0.0

Max.
SJ

0.87 0.0 0.0 0.0

Geometry: MAMBO B17

Hex. Tet. Prsm. Pyr.

Count 9330 140 264 204
Min.
SJ

0.35 0.35 0.35 0.35

Mean
SJ

0.99 0.49 0.73 0.65

Max.
SJ

1.0 0.55 1.0 1.0

Continued on the following page
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Meta Data Generated Mesh

Geometry: MAMBO B19

Hex. Tet. Prsm. Pyr.

Count 950 88 76 120
Min.
SJ

0.35 0.35 0.35 0.35

Mean
SJ

0.95 0.49 0.49 0.62

Max.
SJ

1.0 0.55 0.55 1.0

Geometry: MAMBO B2

Hex. Tet. Prsm. Pyr.

Count 3996 176 280 300
Min.
SJ

0.35 0.35 0.35 0.35

Mean
SJ

0.98 0.47 0.67 0.69

Max.
SJ

1.0 0.55 1.0 1.0

Geometry: MAMBO B21

Hex. Tet. Prsm. Pyr.

Count 2010 7 76 6
Min.
SJ

0.5 0.5 0.5 0.5

Mean
SJ

0.98 0.5 0.94 0.5

Max.
SJ

0.98 0.5 0.98 0.5

Continued on the following page
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Meta Data Generated Mesh

Geometry: MAMBO B4

Hex. Tet. Prsm. Pyr.

Count 576 0 32 0
Min.
SJ

0.1 0.0 0.1 0.0

Mean
SJ

0.18 0.0 0.18 0.0

Max.
SJ

0.47 0.0 0.47 0.0

Geometry: MAMBO B42

Hex. Tet. Prsm. Pyr.

Count 1456 0 0 0
Min.
SJ

-0.0 0.0 0.0 0.0

Mean
SJ

0.17 0.0 0.0 0.0

Max.
SJ

0.53 0.0 0.0 0.0

Geometry: MAMBO B5

Hex. Tet. Prsm. Pyr.

Count 3360 0 480 0
Min.
SJ

0.23 0.0 0.23 0.0

Mean
SJ

0.43 0.0 0.44 0.0

Max.
SJ

0.71 0.0 0.71 0.0

Geometry: MAMBO B6

Hex. Tet. Prsm. Pyr.

Count 22848 24 3511 14
Min.
SJ

0.08 0.08 0.08 0.08

Mean
SJ

0.48 0.17 0.48 0.17

Max.
SJ

0.83 0.23 0.83 0.22

Continued on the following page
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Meta Data Generated Mesh

Geometry: MAMBO B7

Hex. Tet. Prsm. Pyr.

Count 1710 0 149 23
Min.
SJ

0.05 0.0 0.05 0.09

Mean
SJ

0.35 0.0 0.36 0.33

Max.
SJ

0.71 0.0 0.71 0.71

Geometry: MAMBO B9

Hex. Tet. Prsm. Pyr.

Count 11264 0 671 51
Min.
SJ

0.05 0.0 0.05 0.05

Mean
SJ

0.38 0.0 0.39 0.34

Max.
SJ

0.84 0.0 0.84 0.81
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9 Summary

Within this dissertation the concept of generating meshes by solving a graph se-

lection problem with an ASP solver is introduced. This method allows for the gen-

eration of small meshes with proven optimality. The underlying modeling enables

researchers to to solve meshing problems with a wide range of methods from other

fields of computer science which are currently not in use for meshing.

The presented approach for utilizing this method for meshing larger geometries is

not the only combinatorial algorithm worth considering. Many other combinations

with other grid based meshing techniques are possible and may be investigated in

the future. Furthermore the graph representation of the meshing problem may aid

the better theoretical understanding of the complexity of the problem.

The discussed approach of combinatorial meshing brings several advancements to

the field of grid based meshing:

1. It enables the generation of meshes with guaranteed minimum element qual-

ity by using Super Elements.

2. It generates meshes independent from the orientation of the geometry and is

better suited for meshing shaft like geometries by using Precursor Meshes.

3. It is capable of automatically capturing sharp and smooth features.

4. It allows for local refinements with refined Precursor Meshes and in the future

also with refinement Super Elements.

The parts of the algorithm which are executed when meshing a geometry are the

generation of the Precursor Mesh, the computation of the Residual Volume for each

element of the Precursor Mesh, Super Element Assignment and Entity Mapping. In

tbl. 9.1 the time complexity with respect to the number of elements of these stages

are summarized with reference to the argument for these complexities.
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tbl. 9.1: Time complexity of all components with respect to element count of the
algorithm

Step Time complexity Reference Page

Generate Precursor Mesh O(n) figure 3.13 29
Compute Residual Volume O(n logn) section 6.4 83
Super Element Assignment O(n) section 6.2 77
Entity Mapping O(n logn) chapter 7 87

For the complete process, O(n log n) is dominant. Compared to established un-

structured methods which have linear time complexity (see fig. 3.13), this is slightly

slower but can be tolerated as for typical problems n < 107. The implementation

used to produce the results shown in this dissertation does not implement a spacial

tree (for example an octree) for Entity Mapping. In turn the current implementation

has a complexity of O(n2) and is limited to small meshes. However, this issue

only relates to the implementation, not to the method. (Szirmay-Kalos and Márton,

1998)

The meshes produced by the current implementation of the method are good for

some examples but need further improvements. The ability to create sharp concave

geometries should be enhanced by widening the pallet of provided Super Elements.
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10 Outlook

The results of this dissertation open two main paths for future research. The gen-

eration of meshes with ASP based on a graph model of the problem is a Non

Polynomial (NP) algorithm. An open question is whether the problem itself is NP

hard. This seams likely and would prove optimal generation of large meshes to be

futile. The formulation of meshing as a graph selection problem is strict enough

to enable its time complexity analysis. Thus it will aid the complexity analyses of

hexahedral meshing.

The second path to tread is to develop the algorithm presented in this dissertation

– or a combination of it and the algorithm by Owen and Shelton (2015) – into an

industry viable software. In this process the implementation of the Entity Mapping

algorithm has to be enhanced and more Super Elements have to be added in order

to improve results for sharp concave geometries. Doing so would make performing

FEM simulations in mechanical engineering a much more effective tool.
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A Questionnaire



Vielen Dank, dass Sie sich die Zeit nehmen meine Forschung durch die Teilnahme an
dieser Umfrage zu unterstützen,

Henrik Stromberg

Teil A: Einordnung des Unternehmens

Zur statistischen Einordnung Ihrer Antworten möchte ich mit einigen Fragen zu dem Unternehmen, in dem Sie tätig sind,
beginnen. Falls Sie in einem Konzern arbeiten, betrachten Sie bitte nur ihre autonome Organisation (z.B. MAN statt VW
Konzern).

A1. In welchem Sektor ist Ihr Unternehmen vorwiegend tätig?

 
Produktion

Dienstleistung

A2. In welcher Branche ist das Unternehmen hautsächlich tätig?
 

A3. Wie viele Mitarbeiter beschäftigt das Unternehmen insgesamt?

 
Bis zu 50

Bis zu 250

Bis 1000

Mehr als 10000

A4. Wie viele Umsatz generiert das Unternehmen jährlich?

 
Bis 10 Mio. €

Bis 50 Mio. €

Bis 500 Mio. €

Mehr als 1 Mrd. €

A5. Wo hat das Unternehmen Standorte? (Mehrfachnennung möglich)
Ozeanien

Asien

Afrika

Südamerika



Nordamerika

Weiteres Europa

Deutschland, Österreich, Schweiz

A6. Bitte schätzen Sie die Zahl der Entwicklungsingenieure im
Unternehmen.

Teil B: Nutzung von FEM-Software

B1. Nutzen Sie FEM-Software in Ihrem Unternehmen?

 
Ja, ich selbst

Ja, meine Kollegen

Ja, extern beauftragt

Nein

B2. Wie zufrieden sind Sie mit der Reaktionsgeschwindigkeit (z.B.
Kostenvoranschlag, Ergebnismitteilung, Bericht, …) Ihres
Berechnungsdienstleisters? (5 entspricht maximaler Zufriedenheit)

 
1

2

3

4

5

B3. Wie zufrieden sind Sie der Qualität der Berechnungsergebnisse und
der Berichte Ihres Dienstleisters? (5 entspricht maximaler
Zufriedenheit)

 
1

2

3

4

5



B4. Welche FEM-Software benutzen Sie oder andere Mitarbeiter des
Unternehmens aktuell vorwiegend?

 
Ansys

NX Nastran

Abaqus

Comsol Multiphysics

Hyperworks

Marc

Sonstiges

Sonstiges
 

B5. Wie zufrieden sind Sie mit der Benutzerfreundlichkeit dieser
Software? (5 entspricht maximaler Zufriedenheit)

 
1

2

3

4

5

B6. Wie zufrieden sind Sie mit dem Funktionsumfang dieser Software?
(5 entspricht maximaler Zufriedenheit)

 
1

2

3

4

5

B7. Haben Sie Verbesserungswünsche für diese Software?
 



B8. Würden Sie lieber mit einer anderen Software als der aktuell
genutzten arbeiten wollen?

 
Ja

Nein

B9. Welchen Stellwert misst das Unternehmen, in dem Sie tätig sind,
Simulationssoftware bei? (5 entspricht maximalem Stellenwert)

 
1

2

3

4

5

B10. Welchen Stellenwert würden Sie persönlich Simulationssoftware
beimessen (unabhängig von Ihrer aktuellen Nutzung)? (5 entspricht
maximalem Stellenwert)

 
1

2

3

4

5

B11. Sehen Sie einen Bedarf für die Nutzung von FEM-Software in Ihrem
Unternehmen?

 
Ja

Nein

B12. Haben Sie bereits vor Ihrer aktuellen Tätigkeit Erfahrung mit FEM-
Software gesammelt?

 
Ja, in wissenschaftlichen Tätigkeiten (z.B. Studium oder Promotion)

Ja, an einem früheren Arbeitsplatz

Ja, beides

Nein



B13. Welche FEM-Software haben Sie selbst in der Vergangenheit
genutzt? (Mehrfachnennung möglich)

 
Ansys

NX Nastran

Abaqus

Comsol Multiphysics

Hyperworks

Marc

Sonstiges

Sonstiges
 

B14. Könnten Sie sich vorstellen eine FEM-Software als Onlineservice zu
nutzen?

 
Ja

Nein, aus Datenschutzgründen

Nein, aus organisatorischen Gründen

Nein, aus anderen Gründen

B15. Welche CAD-Software wird im Unternehmen genutzt?
(Mehrfachnennung möglich)

Inventor

AutoCAD

SolidWorks

CATIA

NX

Creo

Sonstiges

Sonstiges
 



B16. Besteht aus Ihrer Sicht Bedarf nach einem neutralen CAD-Format,
das bearbeitbare Feature enthält?

 
Ja

Nein

Teil C: Angaben zur Person

C1. Bitte nennen Sie Ihre Position bzw. Ihr Tätigkeitsfeld im
Unternehmen.
 

C2. Wie viele Jahre Berufserfahrung haben Sie bereits?

 
Bis zu 5 Jahre

Bis zu 10 Jahre

Bis zu 20 Jahre

Mehr als 20 Jahre

Vielen Dank für Ihre Teilnahme!
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B Considered Node locations

The following tables list the Considered Node locations as shown in 5.3, 5.4, 5.5,

5.6. Outer nodes are printed in bold.

Table B.1: Considered Node locations for hexahedrons

Node index ξ η ζ

0 -1.0 -1.0 -1.0
1 1.0 -1.0 -1.0
2 1.0 1.0 -1.0
3 -1.0 1.0 -1.0
4 -1.0 -1.0 1.0
5 1.0 -1.0 1.0
6 1.0 1.0 1.0
7 -1.0 1.0 1.0
8 0.0 -1.0 -1.0
9 -1.0 0.0 -1.0
10 -1.0 -1.0 0.0
11 1.0 0.0 -1.0
12 1.0 -1.0 0.0
13 1.0 0.0 1.0
14 0.0 -1.0 1.0
15 -1.0 0.0 1.0
16 0.0 1.0 -1.0
17 1.0 1.0 0.0
18 0.0 1.0 1.0
19 -1.0 1.0 0.0
20 0.0 0.0 -1.0
21 1.0 0.0 0.0
22 0.0 0.0 1.0
23 -1.0 0.0 0.0
24 0.0 -1.0 0.0
25 0.0 1.0 0.0
26 0.0 0.0 0.0
27 0.5 -0.5 -0.5
28 0.5 0.5 -0.5
29 -0.5 0.5 -0.5

Continued on the following page
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Node index ξ η ζ

30 -0.5 -0.5 -0.5
31 0.5 -0.5 0.5
32 0.5 0.5 0.5
33 -0.5 0.5 0.5
34 -0.5 -0.5 0.5

Table B.2: Considered Node locations for tetrahedrons

Node index ξ η ζ

0 0.0 0.0 0.0
1 1.0 0.0 0.0
2 0.0 1.0 0.0
3 0.0 0.0 1.0
4 0.5 0.0 0.0
5 0.0 0.5 0.0
6 0.0 0.0 0.5
7 0.5 0.5 0.0
8 0.5 0.0 0.5
9 0.0 0.5 0.5

Table B.3: Considered Node locations for prisms

Node index ξ η ζ

0 0.0 0.0 -1.0
1 1.0 0.0 -1.0
2 0.0 1.0 -1.0
3 0.0 0.0 1.0
4 1.0 0.0 1.0
5 0.0 1.0 1.0
6 0.5 0.0 -1.0
7 0.0 0.0 0.0
8 0.5 0.5 -1.0
9 1.0 0.0 0.0
10 0.0 0.5 -1.0
11 0.0 1.0 0.0
12 0.5 0.0 1.0
13 0.5 0.5 1.0
14 0.0 0.5 1.0

Continued on the following page
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Node index ξ η ζ

15 0.0 0.5 0.0
16 0.5 0.5 0.0
17 0.5 0.0 0.0
18 1

3
1
3 -1.0

19 1
3

1
3 1.0

20 1
6

1
6 -0.5

21 2
3

1
6 -0.5

22 1
6

2
3 -0.5

23 1
6

1
6 0.5

24 2
3

1
6 0.5

25 1
6

2
3 0.5

Table B.4: Considered Node locations for pyramids

Node index ξ η ζ

0 -1.0 -1.0 0.0
1 1.0 -1.0 0.0
2 1.0 1.0 0.0
3 -1.0 1.0 0.0
4 0.0 0.0 1.0
5 0.0 -1.0 0.0
6 1.0 0.0 0.0
7 0.0 1.0 0.0
8 -1.0 0.0 0.0
9 -0.5 -0.5 0.5
10 0.5 -0.5 0.5
11 0.5 0.5 0.5
12 -0.5 0.5 0.5
13 0.0 0.0 0.0
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C Super Elements

In the following tables the generated Super Elements are visualized. Hexahedrons

are printed in green, tetrahedrons in red, prisms in blue and pyramids in yellow. In

many cases the different optimizations converge into the same mesh.

Table C.1: Hexahedral Super Elements with different optimization goals

Index Max. SJ Min. Element Count Min. Valence

0

1

2

3

Continued on the following page



126 C Super Elements

Index Max. SJ Min. Element Count Min. Valence

4

5

6

7

8

Continued on the following page
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Index Max. SJ Min. Element Count Min. Valence

9

10

11

12

13

Continued on the following page
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Index Max. SJ Min. Element Count Min. Valence

14

15

16

17

1

Continued on the following page

1In this case the resulting meshes for Max. SJ and Min.Valence are identical
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Index Max. SJ Min. Element Count Min. Valence

18

19

20

21
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Table C.2: Incidence matrices for hexahedral Super Elements optimized for
maximized SJ

Super Element Incidence Matrix

0

1 0 8 9 10

2
0 9 10 8 20 24
1 11 12 8 20 24

3

11 17 20 26
16 17 20 26
0 8 20 9 10
2 11 20 16 17
8 10 26 11 20
9 10 26 16 20

4

8 20 24 27
9 16 20 26
11 20 21 27
20 21 26 27
20 24 26 27
0 9 10 8 20 24
2 16 17 11 20 21
1 8 20 11 27
1 8 24 12 27
1 11 21 12 27
9 10 24 20 26
12 21 26 24 27
16 17 21 20 26

5

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25

6

2 11 16 17
4 10 14 15
10 14 17 16 11
10 14 17 16 15

Continued on the following page
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Super Element Incidence Matrix

7

4 14 15 26
8 24 26 31
9 23 26 33
14 15 26 32
14 24 26 31
14 26 31 32
15 23 26 33
15 26 32 33
17 26 31 32
17 26 32 33
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
2 11 20 16 17
4 10 24 14 26
4 10 23 15 26
8 11 17 26 20
8 11 17 26 31
9 16 17 26 20
9 16 17 26 33

8

2 16 17 26
4 14 15 26
9 16 20 26
9 16 26 33
9 23 26 33
12 14 21 26
12 14 24 26
14 15 26 32
14 21 26 32
15 23 26 33
15 26 32 33
16 17 26 33
17 21 26 32
17 26 32 33
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
1 8 20 11 26
1 8 24 12 26
1 11 21 12 26
2 11 20 16 26
2 11 21 17 26
4 10 24 14 26
4 10 23 15 26

Continued on the following page
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Super Element Incidence Matrix

9

11 16 20 26
12 14 24 26
15 19 23 26
20 23 24 26
1 11 12 8 20 24
3 16 19 9 20 23
4 14 15 10 24 23
8 9 23 24 10
8 9 23 24 20
11 12 24 20 26
14 15 23 24 26
16 19 23 20 26

10

8 20 24 30
9 20 23 30
10 23 24 30
11 16 20 26
12 14 24 26
15 19 23 26
20 23 26 30
20 24 26 30
23 24 26 30
1 11 12 8 20 24
3 16 19 9 20 23
4 14 15 10 24 23
0 8 20 9 30
0 8 24 10 30
0 9 23 10 30
11 12 24 20 26
14 15 23 24 26
16 19 23 20 26

Continued on the following page
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Super Element Incidence Matrix

11

2 11 17 26
4 14 15 26
8 11 20 26
8 11 26 31
8 24 26 31
11 17 26 31
14 15 26 32
14 24 26 31
14 26 31 32
15 19 23 26
15 19 26 32
17 25 26 32
17 26 31 32
19 25 26 32
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
2 11 20 16 26
2 16 25 17 26
3 9 20 16 26
3 9 23 19 26
3 16 25 19 26
4 10 24 14 26
4 10 23 15 26

12

14 15 26 32
14 21 26 32
15 25 26 32
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 14 15 10 24 23
8 9 20 24 23 26
8 9 23 24 10
12 21 26 24 14
14 15 23 24 26
26 23 19 25 15
17 21 26 25 32

Continued on the following page
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Super Element Incidence Matrix

13

10 23 24 30
14 15 26 32
14 21 26 32
15 25 26 32
23 24 26 30
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 14 15 10 24 23
0 8 20 9 30
0 8 24 10 30
0 9 23 10 30
8 20 26 24 30
9 20 26 23 30
12 21 26 24 14
14 15 23 24 26
26 23 19 25 15
17 21 26 25 32

14

2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
9 10 23 20 24 26
11 12 21 20 24 26
13 17 21 22 25 26
15 19 23 22 25 26

15

8 20 24 30
20 24 26 30
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
11 12 21 20 24 26
13 17 21 22 25 26
15 19 23 22 25 26
0 8 20 9 30
0 8 24 10 30
0 9 23 10 30
24 12 11 20 8
9 20 26 23 30
10 23 26 24 30

Continued on the following page
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Super Element Incidence Matrix

16

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
13 17 21 22 25 26
15 19 23 22 25 26

17

10 23 24 34
11 20 21 27
12 21 24 27
15 22 23 34
20 21 26 27
21 24 26 27
22 23 26 34
23 24 26 34
3 9 20 16 19 23 26 25
6 13 22 18 17 21 26 25
8 9 20 24 23 26
13 14 22 21 24 26
16 17 25 20 21 26
18 19 25 22 23 26
1 8 20 11 27
1 8 24 12 27
1 11 21 12 27
4 10 24 14 34
4 10 23 15 34
4 14 22 15 34
8 9 23 24 10
8 20 26 24 27
21 17 16 20 11
24 14 13 21 12
14 22 26 24 34
23 19 18 22 15

Continued on the following page
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Super Element Incidence Matrix

18

13 21 22 32
17 21 25 32
18 22 25 32
21 22 26 32
21 25 26 32
22 25 26 32
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
11 16 20 21 25 26
12 14 24 21 22 26
15 19 23 22 25 26
6 13 21 17 32
6 13 22 18 32
6 17 25 18 32
11 16 25 21 17
12 14 22 21 13
15 19 25 22 18

19

14 22 24 34
15 22 23 34
22 23 26 34
22 24 26 34
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
6 13 22 18 17 21 26 25
12 13 21 24 22 26
18 19 25 22 23 26
4 10 24 14 34
4 10 23 15 34
4 14 22 15 34
10 23 26 24 34
12 13 22 24 14
23 19 18 22 15

Continued on the following page
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Super Element Incidence Matrix

20

12 21 24 31
19 23 25 29
21 24 26 31
23 25 26 29
0 8 20 9 10 24 26 23
2 11 21 17 16 20 26 25
4 10 23 15 14 24 26 22
6 13 22 18 17 21 26 25
8 11 20 24 21 26
15 18 22 23 25 26
3 9 20 16 29
3 9 23 19 29
3 16 25 19 29
5 12 21 13 31
5 12 24 14 31
5 13 22 14 31
8 11 21 24 12
9 20 26 23 29
13 21 26 22 31
14 22 26 24 31
15 18 25 23 19
16 20 26 25 29

21

19 23 25 29
23 25 26 29
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
6 13 22 18 17 21 26 25
15 18 22 23 25 26
3 9 20 16 29
3 9 23 19 29
3 16 25 19 29
9 20 26 23 29
15 18 25 23 19
16 20 26 25 29

22

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
6 13 22 18 17 21 26 25
7 15 23 19 18 22 26 25
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Table C.3: Incidence matrices for hexahedral Super Elements optimized for
minimized element count

Super Element Incidence Matrix

0

1 0 8 9 10

2
0 9 10 8 20 24
1 11 12 8 20 24

3

2 11 17 26
2 16 17 26
0 8 20 9 10
2 11 20 16 26
8 10 26 11 20
9 10 26 16 20

4

0 9 10 26
2 16 17 26
9 16 20 26
0 8 20 9 26
0 8 24 10 26
1 8 20 11 26
1 8 24 12 26
1 11 21 12 26
2 11 20 16 26
2 11 21 17 26

5

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25

6

2 11 16 17
4 10 14 15
10 14 17 16 11
10 14 17 16 15

Continued on the following page
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Super Element Incidence Matrix

7

4 14 15 26
8 24 26 31
9 23 26 33
14 15 26 32
14 24 26 31
14 26 31 32
15 23 26 33
15 26 32 33
17 26 31 32
17 26 32 33
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
2 11 20 16 17
4 10 24 14 26
4 10 23 15 26
8 11 17 26 20
8 11 17 26 31
9 16 17 26 20
9 16 17 26 33

8

2 16 17 26
4 14 15 26
9 16 20 26
9 16 26 33
9 23 26 33
12 14 21 26
12 14 24 26
14 15 26 32
14 21 26 32
15 23 26 33
15 26 32 33
16 17 26 33
17 21 26 32
17 26 32 33
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
1 8 20 11 26
1 8 24 12 26
1 11 21 12 26
2 11 20 16 26
2 11 21 17 26
4 10 24 14 26
4 10 23 15 26

Continued on the following page
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Super Element Incidence Matrix

9

11 16 20 33
12 14 24 33
15 19 23 33
20 23 24 33
1 11 12 8 20 24
3 16 19 9 20 23
4 14 15 10 24 23
8 9 23 24 10
8 9 23 24 20
11 12 24 20 33
14 15 23 24 33
16 19 23 20 33

10

1 11 12 26
3 16 19 26
4 14 15 26
11 16 20 26
12 14 24 26
15 19 23 26
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
1 8 20 11 26
1 8 24 12 26
3 9 20 16 26
3 9 23 19 26
4 10 24 14 26
4 10 23 15 26

Continued on the following page
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Super Element Incidence Matrix

11

2 11 17 26
4 14 15 26
8 11 20 26
8 11 26 31
8 24 26 31
11 17 26 31
14 15 26 32
14 24 26 31
14 26 31 32
15 19 23 26
15 19 26 32
17 25 26 32
17 26 31 32
19 25 26 32
0 8 20 9 26
0 8 24 10 26
0 9 23 10 26
2 11 20 16 26
2 16 25 17 26
3 9 20 16 26
3 9 23 19 26
3 16 25 19 26
4 10 24 14 26
4 10 23 15 26

12

14 15 26 32
14 21 26 32
15 25 26 32
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 14 15 10 24 23
8 9 20 24 23 26
8 9 23 24 10
12 21 26 24 14
14 15 23 24 26
26 23 19 25 15
17 21 26 25 32
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Super Element Incidence Matrix

13

10 23 24 30
14 15 26 32
14 21 26 32
15 25 26 32
23 24 26 30
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 14 15 10 24 23
0 8 20 9 30
0 8 24 10 30
0 9 23 10 30
8 20 26 24 30
9 20 26 23 30
12 21 26 24 14
14 15 23 24 26
26 23 19 25 15
17 21 26 25 32

14

2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
9 10 23 20 24 26
11 12 21 20 24 26
13 17 21 22 25 26
15 19 23 22 25 26

15

12 21 24 31
21 24 26 31
0 8 20 9 10 24 26 23
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
8 11 20 24 21 26
13 17 21 22 25 26
15 19 23 22 25 26
5 12 21 13 31
5 12 24 14 31
5 13 22 14 31
8 11 21 24 12
13 21 26 22 31
14 22 26 24 31
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Super Element Incidence Matrix

16

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
13 17 21 22 25 26
15 19 23 22 25 26

17

8 9 10 24
8 9 20 26
8 9 24 26
11 16 17 25
11 16 20 26
11 16 25 26
12 13 14 22
15 18 19 22
4 10 23 15 14 24 26 22
6 13 22 18 17 21 26 25
1 8 20 11 26
1 8 24 12 26
1 11 21 12 26
3 9 20 16 26
3 9 23 19 26
3 16 25 19 26
26 23 10 24 9
26 21 17 25 11
26 21 13 22 12
26 22 14 24 12
15 22 26 23 19
18 22 26 25 19
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Super Element Incidence Matrix

18

11 16 17 20
12 13 14 24
15 18 19 23
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
6 13 21 17 26
6 13 22 18 26
6 17 25 18 26
11 20 26 21 17
12 21 26 24 13
26 22 14 24 13
15 22 26 23 18
16 20 26 25 17
26 23 19 25 18

19

14 22 24 34
15 22 23 34
22 23 26 34
22 24 26 34
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
6 13 22 18 17 21 26 25
12 13 21 24 22 26
18 19 25 22 23 26
4 10 24 14 34
4 10 23 15 34
4 14 22 15 34
10 23 26 24 34
12 13 22 24 14
23 19 18 22 15
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Super Element Incidence Matrix

20

11 20 21 28
18 22 25 32
20 21 26 28
22 25 26 32
0 8 20 9 10 24 26 23
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
8 12 24 20 21 26
15 19 23 22 25 26
2 11 20 16 28
2 11 21 17 28
2 16 25 17 28
6 13 21 17 32
6 13 22 18 32
6 17 25 18 32
8 12 21 20 11
13 21 26 22 32
15 19 25 22 18
16 20 26 25 28
17 21 26 25 28
17 21 26 25 32

21

15 22 23 34
22 23 26 34
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
5 12 24 14 13 21 26 22
6 13 22 18 17 21 26 25
18 19 25 22 23 26
4 10 24 14 34
4 10 23 15 34
4 14 22 15 34
10 23 26 24 34
14 22 26 24 34
23 19 18 22 15

22

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
6 13 22 18 17 21 26 25
7 15 23 19 18 22 26 25
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Table C.4: Incidence matrices for hexahedral Super Elements optimized for
minimized node valence

Super Element Incidence Matrix

0

1 0 8 9 10

2
0 9 10 8 20 24
1 11 12 8 20 24

3

0 8 10 26
0 9 10 26
0 8 20 9 26
2 11 20 16 17
8 11 17 26 20
9 16 17 26 20

4

9 16 20 29
1 8 24 12 11 20 26 21
0 8 30 9 20 29
2 11 28 16 20 29
8 24 30 20 26 29
11 21 28 20 26 29
0 8 24 10 30
0 9 29 30 10
2 11 21 17 28
2 16 29 28 17
30 24 26 29 10
29 26 21 28 17

5

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25

6

2 11 16 17
4 10 14 15
10 14 17 16 11
10 14 17 16 15

Continued on the following page
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Super Element Incidence Matrix

7

4 14 15 34
8 11 20 31
8 20 30 31
9 16 20 29
9 20 29 30
11 17 20 31
14 24 31 34
16 17 20 29
17 20 29 31
20 29 30 31
29 30 31 34
29 31 33 34
0 8 30 10 24 34
0 9 30 10 23 34
0 8 20 9 30
2 11 20 16 17
4 10 24 14 34
4 10 23 15 34
8 24 34 30 31
9 23 34 30 29
14 15 33 31 34
15 23 29 33 34
21 25 33 31 29
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Super Element Incidence Matrix

8

2 16 17 28
4 14 15 34
14 15 32 34
15 23 33 34
15 32 33 34
16 17 28 33
17 21 28 32
17 28 32 33
0 8 30 10 24 34
0 9 30 10 23 34
1 8 27 11 20 28
1 12 27 11 21 28
0 8 20 9 30
1 8 24 12 27
2 11 20 16 28
2 11 21 17 28
4 10 24 14 34
4 10 23 15 34
8 20 28 27 30
8 24 34 30 27
9 16 28 30 20
9 16 28 30 33
9 23 34 30 33
12 14 34 27 24
12 14 34 27 32
12 21 28 27 32
27 28 33 34 30
27 28 33 34 32

9

11 16 20 28
12 14 24 31
15 19 23 33
1 11 12 8 20 24
3 16 19 9 20 23
4 14 15 10 24 23
11 20 28 12 24 31
14 24 31 15 23 33
16 20 28 19 23 33
20 23 24 28 33 31
8 9 23 24 10
8 9 23 24 20
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Super Element Incidence Matrix

10

1 11 12 27
3 16 19 29
10 23 24 30
14 15 33 31 24 23 29 27
4 14 15 10 24 23
20 27 29 30 24 23
0 8 20 9 30
0 8 24 10 30
0 9 23 10 30
1 8 20 11 27
1 8 24 12 27
3 9 20 16 29
3 9 23 19 29
30 20 27 24 8
30 20 29 23 9
11 12 31 28 27
11 20 29 28 16
11 20 29 28 27
31 14 24 27 12
15 33 29 23 19
16 19 33 28 29
27 29 33 31 28
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Super Element Incidence Matrix

11

4 14 15 34
11 17 26 31
11 24 26 31
14 15 32 34
14 24 31 34
14 31 32 34
15 19 23 25
16 20 25 29
17 25 26 32
17 26 31 32
19 23 25 29
20 25 26 29
23 25 26 29
24 26 31 34
26 31 32 34
0 8 20 9 10 24 26 23
2 11 17 16 20 25
3 9 20 16 29
3 9 23 19 29
3 16 25 19 29
4 10 24 14 34
4 10 23 15 34
8 20 26 24 11
9 20 26 23 29
10 23 26 24 34
11 17 25 20 26
34 23 25 32 15
23 25 32 34 26

12

14 15 26 32
14 21 26 32
15 25 26 32
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 14 15 10 24 23
8 9 20 24 23 26
8 9 23 24 10
12 21 26 24 14
14 15 23 24 26
26 23 19 25 15
17 21 26 25 32
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Super Element Incidence Matrix

13

10 23 24 30
14 15 26 32
14 21 26 32
15 25 26 32
23 24 26 30
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 14 15 10 24 23
0 8 20 9 30
0 8 24 10 30
0 9 23 10 30
8 20 26 24 30
9 20 26 23 30
12 21 26 24 14
14 15 23 24 26
26 23 19 25 15
17 21 26 25 32

14

2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
9 10 23 20 24 26
11 12 21 20 24 26
13 17 21 22 25 26
15 19 23 22 25 26

15

11 20 21 28
20 21 26 28
0 8 20 9 10 24 26 23
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
8 12 24 20 21 26
13 17 21 22 25 26
15 19 23 22 25 26
2 11 20 16 28
2 11 21 17 28
2 16 25 17 28
8 12 21 20 11
16 20 26 25 28
17 21 26 25 28
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Super Element Incidence Matrix

16

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
13 17 21 22 25 26
15 19 23 22 25 26

17

9 20 23 29
11 20 21 27
13 21 22 32
15 22 23 34
8 20 27 10 23 34
12 21 27 14 22 34
16 20 29 17 21 32
18 22 32 19 23 29
20 21 27 23 22 34
20 23 29 21 22 32
1 8 20 11 27
1 8 24 12 27
1 11 21 12 27
3 9 20 16 29
3 9 23 19 29
3 16 25 19 29
4 10 24 14 34
4 10 23 15 34
4 14 22 15 34
6 13 21 17 32
6 13 22 18 32
6 17 25 18 32
8 10 23 20 9
8 10 34 27 24
21 17 16 20 11
12 14 22 21 13
12 14 34 27 24
23 19 18 22 15
16 17 32 29 25
18 19 29 32 25
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Super Element Incidence Matrix

18

13 21 22 32
17 21 25 32
18 22 25 32
21 22 26 32
21 25 26 32
22 25 26 32
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
11 16 20 21 25 26
12 14 24 21 22 26
15 19 23 22 25 26
6 13 21 17 32
6 13 22 18 32
6 17 25 18 32
11 16 25 21 17
12 14 22 21 13
15 19 25 22 18

19

13 21 22 32
18 22 25 32
21 22 26 32
22 25 26 32
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
12 14 24 21 22 26
15 19 23 22 25 26
6 13 21 17 32
6 13 22 18 32
6 17 25 18 32
12 14 22 21 13
15 19 25 22 18
17 21 26 25 32
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Super Element Incidence Matrix

20

12 21 24 31
15 22 23 34
21 24 26 31
22 23 26 34
0 8 20 9 10 24 26 23
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
6 13 22 18 17 21 26 25
8 11 20 24 21 26
18 19 25 22 23 26
4 10 24 14 34
4 10 23 15 34
4 14 22 15 34
5 12 21 13 31
5 12 24 14 31
5 13 22 14 31
8 11 21 24 12
10 23 26 24 34
13 21 26 22 31
14 22 26 24 31
14 22 26 24 34
23 19 18 22 15

21

18 22 25 32
22 25 26 32
0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
15 19 23 22 25 26
6 13 21 17 32
6 13 22 18 32
6 17 25 18 32
13 21 26 22 32
15 19 25 22 18
17 21 26 25 32

22

0 8 20 9 10 24 26 23
1 8 24 12 11 20 26 21
2 11 21 17 16 20 26 25
3 9 20 16 19 23 26 25
4 10 23 15 14 24 26 22
5 12 24 14 13 21 26 22
6 13 22 18 17 21 26 25
7 15 23 19 18 22 26 25



155

Table C.5: Incidence matrices for manually created tetrahedral Super Elements

Super Element Incidence Matrix

0

1 0 4 5 6

2

0 4 5 6
1 4 8 7
6 4 8 7
6 7 4 5

3

0 4 5 6
1 4 8 7
2 5 7 9
6 5 9 7
6 5 7 4
6 7 8 4
6 7 8 9

4

0 4 5 6
1 4 8 7
2 5 7 9
3 6 8 9
6 5 9 7
6 5 7 4
6 7 8 4
6 7 8 9

Table C.6: Incidence matrices for manually created pyramidal Super Elements

Super Element Incidence Matrix

0

1 0 5 8 9

2
5 13 9 10
0 5 13 8 9
1 5 13 6 10

3

0 5 13 8 9
2 6 13 7 11
5 6 11 9 13
7 8 9 11 13
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Super Element Incidence Matrix

4

5 13 9 10
6 13 10 11
9 10 11 13
0 5 13 8 9
1 5 13 6 10
2 6 13 7 11
9 11 7 8 13

5

5 13 9 10
6 13 10 11
7 13 11 12
8 13 9 12
5 8 13 9
2 6 13 7 11
1 5 13 6 10
3 7 13 8 12
9 10 11 12 13
9 10 11 12 4

6 9 10 11 12 4

7

5 9 8 0
10 12 9 4
10 12 11 4
5 10 12 8 9

8

5 13 10 9
6 13 10 11
13 8 9 12
9 10 11 12 4
0 5 13 8 9
1 5 13 6 10
9 10 11 12 13

9

5 13 9 10
6 13 10 11
7 13 11 12
8 13 9 12
5 6 13 10
8 7 13 12
0 5 13 8 9
2 6 13 7 11
9 10 11 12 13
9 10 11 12 4
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Super Element Incidence Matrix

10

5 13 9 10
6 13 10 11
7 13 11 12
8 13 9 12
8 7 13 12
0 5 13 8 9
1 5 13 6 10
2 6 13 7 11
9 10 11 12 13
9 10 11 12 4

11

13 7 12 11
13 8 9 12
13 6 10 11
5 13 9 10
9 10 11 12 4
9 10 11 12 13
0 5 13 8 9
1 5 13 6 10
2 6 13 7 11
3 7 13 8 12

Table C.7: Incidence matrices for manually created prismatic Super Elements

Super Element Incidence Matrix

0

1 0 10 6 7

2
6 8 10 17
0 6 17 7 10
6 1 9 17 8

3

0 10 6 7 15 17
1 6 8 9 17 16
2 8 10 11 16 15
6 8 10 17 16 15

4
0 10 6 7 15 17
7 15 17 3 14 12

5

12 9 17 8
7 17 6 8
14 12 8 17
7 17 14 8
1 6 17 9 8
3 7 17 12 14
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Super Element Incidence Matrix

6

9 12 17 22
19 22 9 17
22 19 17 15
0 6 10 7 17 15
3 14 12 7 15 17
1 6 17 9 19
6 10 15 17 19
12 14 15 17 22

7

9 16 17 12
11 15 16 14
1 6 8 9 17 16
6 8 10 17 16 15
2 8 10 11 16 15
3 12 14 7 17 15
6 10 15 17 7
12 14 15 17 16

8

0 10 6 7 15 17
2 10 8 11 15 16
10 6 8 15 17 16
7 15 17 3 14 12
9 16 17 4 13 12
15 16 17 14 13 12
6 8 16 17 9
13 14 15 16 11

9

0 6 10 7 17 15
7 17 15 3 12 14
1 6 8 9 17 16
9 17 16 4 12 13
6 8 10 17 16 15
17 16 15 12 13 14

10

17 16 9 12
11 15 16 14
0 6 10 7 17 15
6 1 8 17 9 16
6 8 10 17 16 15
8 2 10 16 11 15
7 15 17 3 14 12
12 14 15 17 16
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Super Element Incidence Matrix

11

0 10 6 7 15 17
1 6 8 9 17 16
2 10 8 11 15 16
10 6 8 15 17 16
7 15 17 3 14 12
9 16 17 4 13 12
15 16 17 14 13 12
13 14 15 16 11

12

0 10 6 7 15 17
1 6 8 9 17 16
2 10 8 11 15 16
10 6 8 15 17 16
7 15 17 3 14 12
9 16 17 4 13 12
15 16 17 14 13 12
5 13 14 11 16 15
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