
Bangor University

DOCTOR OF PHILOSOPHY

Capturing and categorising user interaction

Hunnisett., David

Award date:
2009

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Sep. 2023

https://research.bangor.ac.uk/portal/en/theses/capturing-and-categorising-user-interaction(9b117865-4713-48bc-8b39-7be4be34db5b).html

Capturing and Categorising User Interaction

David Hunnisett

February 27, 2009

Abstract

Capturing meaningful interactions between a user and an application is useful.

A meaningful interaction is an interaction that causes a change in state of one of

the participants. Meaningful interaction capture is well established for console based

applications. No techniques exist that capture only the meaningful interactions with

a graphical interface. Data collected by such a system could be used for a variety of

applications, such as HCI studies, authorship identification, cognitive modelling and

screen recording.

A methodology for capturing the meaningful interactions between a user and a

graphical application is described. An implementation of this methodology has been

developed, together with a supporting tool-set. A new corpus consisting of captured

interactions between users and two applications with contrasting graphical interfaces

has been collected and published. This corpus is analysed and used for authorship

attribution.

The use of this interaction capture system is evaluated as a high compression

screen recorder. By using the interaction capture system as a screen recorder it is

shown that the size of captured files are an order of magnitude smaller than the

equivalent file created by a video based screen recorder.

Analysis of the captured corpus gives an overall accuracy of 83 percent when

predicting the author of a stream. This is significant, showing that the way people

interact with an application is unique.

ii

Acknowledgments

I would like to thank my supervisor Bill who didnt let me give up.

The results in chapter 4 were generated in collaboration with Daniel Thomas from

Bangor University.

A great deal of thanks go to my editor, who ensured that what I wrote down made

sense.

lll

Contents

1 Introduction 1

1.1 Background 1
1.2 Thesis Statement 2
1.3 Reasons for Attempting the Authorship Task . 2
1.4 Aims and Objectives 3
1.5 Thesis Contributions 3
1.6 Thesis Summary .. 4

2 Human Computer Interaction Background 6

2.1 Introduction 6
2.2 Defining Human Computer Interaction 6

2.2.1 The Evolution of HCI 8

2.3 Rationale for Studying HCI 9

2.3.1 Performance Enhancement 9

2.3.2 Resource Conservation 10
2.3.3 Acceptance .. 10
2.3.4 Cost Reduction 10

2.3.5 Human welfare 10

2.4 H CI and Software Development 12
2.4.1 Guidelines ... 13

2.5 HCI Experimentation . 13
2.5.1 Standard HCI experimental techniques 14
2.5.2 Disadvantages of a HCI Lab 15

lV

CONTENTS

2.5.3 Discounted HCI

2.6 Cognitive Modelling and HCI

2.6.1 Producing a Cognitive Model

2.6.2 User Taxonomy and HCI .

2.6.3 Task Discovery and HCI

2.6.4 Capturing Interactions

2. 7 Conclusions

3 Stream-Based Categorisation Background

3.1 Introduction

3.2 Defining Text Categorisation .

3.2.1 Multi-class and Multi-label.

3.2.2 Multi-class and Binary .. .

3.2.3 Symbol Streams

3.3 Rationale for Automated Text Categorisation

3.3.1 Electronic Libraries .

3.3.2 Text Filtering

3.3.3 Word Sense Disambiguation

3.3.4 Recent Developments .

3.4 Information Entropy

3.4.1 Compression

3.5 Stream Based Algorithms for Text Categorisation

3.5.1 Hidden Markov Model

3.5.2 Variable Order Markov Model

3.5.3 Off The Shelf Compression Programs

3.5.4 Count Based Measures

3.6 Using Compression Algorithms to Perform Categorisation.

3.6.1 Minimum Descriptive Length

3. 7 Experimentation . .

3. 7.1 Stream Types

3. 7.2 Categories ..

V

16

16

17

17

17

18

19

20

20

21

22

22

22

23

23

24

24

25

26

27

29

29

30

32

33

34

35

35

36

36

CONTENTS

3.7.3 Text Categorisation Corpora ..

3.8 Authorship and Text Categorisation ..

3.9 Combining HCI and Text Categorisation

3.9.1 Predictive Text

3.9.2 Console Based Applications

3.9.3 User Interface Improvements .

3.9.4 Authorship

3.10 Graphical Applications

3.11 The Missing Link

4 Stream Based Text Categorisation

4.1 Introduction .

4.2 Protocols

4.2.1 Concatenation verses Non Concatenation .

4.2.2 Static and Dynamic Models

4.2.3 The Fourth Protocol ..

4.2.4 Document Concatenation

4.3 C Measure

4.3.1 C Measure Algorithm .

4.3.2 C Measure Formula .

4.3.3 Variations

4.4 Experimental Setting

4.4.1 Reuters Corpus

4.4.2 NewsGroups and Gutenberg

4.4.3 Experimental Results .

4.5 Conclusions

Vl

38

39

41

41

42

42

43

43

43

45

45

45

46

46

47

47

51

51

52

52

53

53

55

57

60

5 Capturing User Interaction Streams 61

5.1 Introduct ion 61

5.2 The Anatomy of a Desktop Application . 61

5.3 Design Objectives for Developing an Interaction Capturing System . 65

5.3.1 General Objectives 65

CONTENTS

5.3.2 Technical Objectives

5.4 Definitions of New Terminology .. .

5.4.1 Definition of Target Symbols .

5.4.2 Conventions

5.4.3 Definition of an Action Symbol

67

68

68

71

71

5.4.4 Definition of an Action Event . 72

5.4.5 Definition of a User Interaction Stream 72

5.4.6 Using only the Mouse to Perform the Operation 5 + 2 = 73

5.4.7 Using only the Keyboard to Perform the Operation 5 + 2 =
5.5 Language Properties of User Interaction Streams

5.5.1 The Grammar Of a Limited Application

5.6 Summary

6 Implementing A Capture System

6.1 Choosing a Language and Framework .

6.2 Evaluating Methodologies for Capturing Interactions

6.2.1 Evaluating Methodologies for Identifying the Target Symbol

6.2.2 Evaluating Methodologies for Identifying the Action Symbol

6.3 Choosing a Methodology

6.3.1 Assessing Source Code Changes

6.3.2 Conclusion

6.4 Implementing the Methodology

6.4.1 Associating the Target Symbols

6.4.2 Automating the Tagging Process

77

78

78

83

84

84

85

85

88

88

88

89

90

90

93

6.4.3 How to Enforce the Unique Assignment of Target Symbols 95

6.4.4 Capturing the Action Symbol 96

6.4.5 Logging the User Interaction Stream 96

6.5 Discussion

7 Visualisation

7.1 Suffix Structure Visualisation

7.2 Stream Visualisation

97

98

98

101

CONTENTS

7.2.1 Character Visualisation .

7.2.2 Word Visualisation . .

7.3 User Interaction St ream Visualisation .

7.4 Discussion

8 Creating the BUIS Corpus

8.1 Research Proposal

8.2 Rationale for Selecting an Application

8.2.1 Rationale for Selecting Application One

8.2.2 Rationale for Selecting Application Two

8.3 Selecting the Applications

8.4

8.5

8.3.1 Selecting Application One - WEKA ..

8.3.2 Selecting Application Two - Asteroids .

Users

8.4.1 WEKA User Group .

8.4.2 Asteroids User Group .

Experimental Setting for WEKA

8.5.1 Lab Script

8.5.2 Part 4: Performing Classification

8.5.3 Part 5: Clustering

8.5.4 Lab Ten . . .

8.5.5 The Experiment .

8.5.6 Experimental Observations .

8.5.7 Application Modification . .

8.5.8 Experimental Notes . . .

8.6 Experimental Sett ing for Asteroids

8.6.1 Lab Script

8.6.2 Experimental Observations .

8.6.3 Application Modification .

8.7 Summary of the BUIS Corpus ..

Vlll

101

104

108

109

110

110

111

111

112

113

113

114

115

116

117

117

118

122

126

129

130

130

130

131

131

132

132

133

133

CONTENTS

9 Experimental Results & Analysis of the BUIS Corpus

9.1 BUIS WEKA Analysis

9.1.1 Statistical Analysis ...

9.1 .2 Natural Language Similarities

9.1.3 Categorisation .

9.2 BUIS Asteroids Analysis

9.2.1 Statistical Analysis

9.2.2 Similarities to a Natural Language

9.2.3 Categorisation .

9.3 Conclusion

10 Compressing User Interaction Streams

10 .1 Terminology . . .

10.2 Screen Recorder ...

10.2.1 Compression .

10.2.2 Compression Quality

10.3 User Interaction Stream Compressor

10.3.1 Compression ...

10.3.2 Decompression

10.3.3 Compression Quality

10.4 Equivalence

10.4.1 Interaction Capt ure of 3D interfaces .

10.4.2 Practical Equivalence .

10.5 Compression Performance

10.6 Experimental Setting .

10. 7 Results

10.8 Lossless User Interaction Compression

10.8.1 Weka Compression performance

10.8.2 Asteroids Compression Performance .

10.9 Summary

IX

134

134

134

141

153

161

162

165

168

169

171

171

172

172

172

173

173

173

174

175

175

175

176

176

177

178

178

184

185

CONTENTS

11 Conclusions and Discussion

11. l Contributions

11.1.1 Capture System .

11.1. 2 Interaction Corpus

11.1.3 C Measure ..

11.1.4 Visualisation

11.2 Results And Conclusions

11.2.1 WEKA ..

11.2.2 Asteroids

11.2.3 Summary

11.3 Further Work .

11.3.1 Corpus .

11.3.2 Potential Uses of the Interaction Capture System

11.3.3 Testing System

11.3.4 Cognitive Monitoring .

11.3.5 Tool Extensions ...

11. 3. 6 Grammar Discovery

11.4 Conclusion

A Lab Script

A.l Lab One

A.2 Lab Two.

B Cross Validation Technique

X

186

186

186

187

188

188

188

189

189

189

190

190

191

192

193

193

194

195

196

197

205

209

List of Tables

2.1 The Evolution of Interaction Types

3.1 DNA Contexts at Order Two. . .

4. 1 The Four Protocols for Stream-based Text Categorisation.

4.2 Contexts at Order 3 for Document A

4.3 Contexts at Order 3 for Document B

4.4 Method One Concatenation

4.5 Correct Contexts at Order 3

4.6 Contexts at order 3 for document A with a Sentinel Symbol

4. 7 Contexts at Order 3 for Document B with a Sentinel Symbol .

4.8 Contexts at Order 3 with a Sentinel Symbol.

4.9 Model size against Algorithm Reuters

9

30

47

48

48

48

48

49

49

50

54

4.10 Frequency-based Categorisation Accuracy, Twenty Newsgroups . 57

4.11 PPM Categorisation Accuracy, Twenty Newsgroups 58

4.12 Frequency-based Categorisation Accuracy, Gutenberg 59

4.13 Categorisation accuracy for Gutenberg using PPM-based methods 60

5.1 Widget Symbols 70

5. 2 Action Symbols 72

5.3 A User Performing the Operation 2 + 5 = Using the Mouse . 73

5.4 A User Performing the Operation 2 + 5 = Using only the Keyboard. 78

5.5 Possible States of the Simple Application. 80

Xl

LIST OF TABLES xii

9.1 User against Events Generated 135

9.2 User against Unique Target Symbols 136

9.3 User against Unique Action Symbols 137

9.4 User against Unique Action Event .. 138
9.5 User against Number of Recorded Tasks 140

9.6 Categorisation Performance for All Users using PPM Order Size 4 .. 154
9.7 Recall and Precision for Three Users at Order 4 .. 156

9.8 User and Task against Number of Action Events . 157

9.9 Categorisation Performance for Three Users. 160

9.10 User against Events Generated 162
9.11 User against Unique Target Symbols 163
9.12 User against Unique Action Symbol . 163
9.13 User against Unique Action Event .. 164

9.14 Categorisation Performance for All Users (PPM). 170

10.1 Compression Performance of Screen Capture Systems 178

10.2 Minimum Compression of Person against Target Symbol. 181
10.3 Minimum Compression of Person against Action Symbol. 183

10.4 Minimum Compression of Person against Action Symbol. 184

List of Figures

2.1

4.1

Evolution Button

Context Size against Categorisation Performance Reuters

18

55

5.1 A Typical Graphical User Interface. 63

5.2 Basic Graphical Widgets 64

5.3 Example of Target Symbols Assigned to the Interface in Figure 5.1 69

5.4 The Mouse Path Taken for the Operation 5 + 2 = 76

5.5 Simple Application Consisting of Two Buttons and a Frame 79

5.6 Finite State Automata of a Simple Application. 81

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Suffix Tree Visualiser After Starting . .

Suffix Tree Visualiser Showing the

Stream Visualiser Showing abracadabra

Stream Visualiser Showing "the cat sat on the mat" .

Stream Visualiser Showing Context.

Stream Visualiser Showing "the cat sat on the mat" as Words.

Stream Visualiser Showing Alice in Wonderland

Stream Visualiser Showing Playback of Alice in Wonderland.

Stream Visualiser Showing User Interaction Stream

8.1 The Asteroids Interface.

8.2 The WEKA Chooser Interface.

8.3 The WEKA Explorer.

99

100

102

103

104

105

106

107

108

115

118

119

LIST OF FIGURES

8.4 The Explorer Interface After Loading Contact Lens Data ..

8.5 WEKA: After Selecting Astigmatism in the Interface.

8. 6 wekaclassify

8. 7 wekaclassifytree

8.8 The Output of the J48 Classifier.

8.9 The J48 Parameters Dialogue Box.

8.10 The Cluster Tab.

8.11 Cluster Algorithm Selection Dialogue Box.

8.12 Cluster Parameter Selection.

8.13 Visualisation Dialogue Box.

8.14 Filter Parameters Dialogue Box.

8.15 This label also functions as a button.

9.1 Relative Position for Top Three Users .

9.2 Log Frequency against Log Letter Rank for LOB corpus.

9.3 Log Frequency vs Log Target Symbol Rank for each user.

9.4 Log Frequency vs Log Action Symbol Rank for each user. .

9.5 Log Frequency against Log Word Rank for LOB corpus.

9.6 Log Frequency vs Log Action Event Rank for each user ..

9. 7 Precision against Order for Top Three Users

9.8 Precision against Order for Top Three Users (PPM).

9.9 Precision against Order for Top Three Users (PPM).

9 .10 Precision against Order for Top Three Users (C Measure).

9.11 Relative Position of The First Occurrence of Action Event.

9.12 Log Frequency against Log Word Rank for Target Symbols.

9.13 Log Frequency against Log Word Rank for Action Symbols.

9.14 Log Frequency against Log Word Rank for Action Events.

9.15 Accuracy against Order Size . .

10.1 Target Symbol Compression ..

10.2 User Interaction Stream Compression

10.3 User Interaction Stream Compression.

XlV

120

121

122

123

124

125

126

127

127

128

129

130

139

142

143

146

149

150

155

159

159

160

165

166

167

168

169

180

182

185

LIST OF FIGURES

B.l Cross Validation Size Five

B.2 Mult i Cross Validation Size Five .

xv

209

210

Chapter 1

Introduction

1.1 B ackgro und

Writing an application interface that is both efficient and user friendly is a chal­

lenge. Over the years the way a user interacts with an application has changed

dramatically. As computers have become more powerful and cheaper, the methods of

interaction have changed. Initially, interaction was entirely console based. However,

this has evolved into today's modern rich graphical applications. As a result of these

changes, computing has become ubiquitous. The user has moved out of the labora­

tory and into the home and office. Application interfaces have also evolved as part of

this movement.

For a developer, writing an effective interface is a vital part of producing an

application. Techniques have been developed to study the effectiveness of an interface

in terms of ease of learning, efficiency and ease of use. These studies are expensive

and t ime consuming, putting them out of the reach of many developers, but they are

currently the only available method to evaluate the use of a graphical application.

The evaluation of interactions with console based interfaces presents less of a challenge

than graphical applications. This is because the interactions take place as a stream

of characters in a natural language. The automated analysis of these streams can

be carried out using techniques developed for analysis of character streams. These

techniques have been developed over many years and are still the focus of ongoing

1

CHAPTER 1. INTRODUCTION 2

research.

This thesis aims to bring together the analysis of interactions between a graphical

application and character streams.

1. 2 Thesis Statement

This thesis proposes that the interaction between a person and a graphical appli­

cation is as unique as their writing style. In order to test t his hypothesis, the existing

and novel algorithms that perform well at the authorship task on natural language

documents will be tested on graphical desktop applications. A large body of work

exists that demonstrates that an author's use of language is unique. This fact is

exploited by algorithms to determine authorship in written documents. In order to

perform this task on a graphical application, it will be necessary to develop a method

to capture the interactions as a stream of symbols. It will then be possible to perform

the authorship task on the captured streams using the same algorithms as are used

for natural language documents. The performance can then be evaluated to test the

proposal.

1.3 Reasons for Attempting the Authorship Task

The task of authorship attribution has been chosen for the following reasons:­

Performance Excellent results at the task of authorship with natural lan-

guage documents have already been achieved.

Existing Work There is a large body of research in this area to draw on.

Practicality Authorship does not require specialist equipment to evaluate it.

Matching The tasks of identifying the author of a document and the author

of an interaction stream are obviously analogous.

CHAPTER 1. INTRODUCTION 3

1.4 Aims and Objectives

The main aim of this thesis is to:

perform the task of authorship attribution on a stream produced by cap­

turing interactions between a human and a computer.

The objectives are:-

1. To examine the history of Human Computer Interaction and Text categorisa­

tion. Overlaps between these two areas will be examined.

2. To design a system to capture interactions between a human and a computer.

3. To implement the capture system after first choosing a suitable language and

framework.

4. To evaluate other uses of the capture system such as playback and visualisation

techniques.

5. To create a corpus consisting of interactions between a human and different

applications.

6. To perform the authorship attribution task on the new corpus.

7. Show that the meaningful interactions have been captured by using the capture

system as a screen recorder. The performance of a traditional screen recorder

will be compared to the capture system.

1.5 Thesis Contributions

The major contributions made by this thesis are outlined below:-

• A rationale for capturing interactions between a human and a graphical appli­

cation has been devised;

CHAPTER 1. INTRODUCTION 4

• A technique to capture and record meaningful interactions with an applica­

t ion has been described and implemented. As part of this a tool set has been

produced;

• A new corpus has been collected and published - the Bangor User Interaction

Stream corpus (BUIS);

• A new character based text categorisation algorithm has been developed and

published Hunnisett & Teahan (2004);

• A highly efficient lossy screen recorder has been developed;

• The following publications have been made as a result of this thesis:

Hunnisett, D. & Teahan, W. (2004), Context-based methods for text cate­

gorisation, in M. Sanderson, K. Jarvelin, J. Allan & P. Bruza, eds, 'SIGIR

2004: Proceedings of the 27th Annual International ACM SIGIR Confer­

ence on Research and Development in Information Retrieval', ACM.

Brooks, R. , Hunnisett, D. & Teahan, W. J. (2007), 'A practical implemen­

tation of automatic text categorisation and correction for the conversion

of noisy ocr documents into braille and large print'.

Teahan , W. J. , Thomas, D. & Hunnisett, D. (2009), Protocols for stream­

based text categorization. Submitted to ECIR09.

• A collection of stream visualisation tools have been built.

1.6 Thesis Summary

Chapter 2 is a discussion of the background of human computer interaction. Fol­

lowing this, chapter 3 discusses the background of text categorisation research. It also

contains an examination of the existing body of work that combines the two fields.

From this new areas of further study are identified. A detailed evaluation of text

categorisation algorithms is made in chapter 4. In addit ion a new algorithm for text

categorisation is introduced.

CHAPTER 1. INTRODUCTION 5

A description of the design objectives for an interaction capture system is given

in chapter 5. Chapter 6 details the implementation of this capture system in J ava.

Methods of visualising streams of symbols are described in chapter 7. The cre­

ation of a new corpus (the BUIS corpus) is documented in chapter 8. This corpus

contains User Interaction Streams captured by users interacting with two very differ­

ent applications - WEKA and Asteroids. The BUIS corpus is analysed in chapter 9.

This chapter looks at the similarities between a language and the captured user in­

teraction streams. The authorship attribut ion task is then carried out on the corpus.

Chapter 10 shows how the interaction capture system, implemented in chapter 6, can

be applied as a compression system similar to a screen recorder.

Finally, chapter 11 discusses the contribut ions made by this thesis to computer

science and suggests possible avenues for further research.

Chapter 2

Human Computer Interaction

Background

2.1 Introduction

It is hypothesised that a user's interaction with an application is as unique as an

author's writing style. This chapter examines the existing research into Human Com­

puter Interaction (HCI). An understanding of the field of HCI is necessary to build a

system that captures meaningful interactions between a human and a computer.

The chapter will provide a reader with a broad understanding of the key features

of Human Computer Interaction. It will begin by defining what is meant by Human

Computer Interaction. A rationale for studying HCI will be given. The links between

HCI and Software Development will be explored. The methodologies for performing

HCI experiments will be discussed. Finally, the role of Cognitive Modelling in HCI

will be explored.

2.2 D efining Human Computer Interaction

Human Computer Interaction (hereafter referred to as HCI) has no formal def­

inition. In coming to a common understanding of what is meant by the term HCI

6

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 7

in the context of this research, the definition given by the Association for Comput­

ing Machinery (ACM) Association for Computing Machinery (1947) Special Interest

Group on Computer-Human Interaction (SIGCHI ACM's Special Interest Group on

Computer-Human Interaction (2008)) provides a useful starting point for discussion.

They define H CI as follows:

Human-computer interaction is a discipline concerned with the design,

evaluation and implementation of interactive computing systems for hu­

man use and with the study of major phenomena surrounding them.

This definition will be examined in more detail and the implications of the meaning

of the term HCI will be discussed in depth.

At a basic level, a more in depth understanding of "Human Computer Interaction"

can be made by examining the OED definitions of the individual words:

Human of or belonging to the genus Homo.

Computer an electronic device for storing and processing data, typically in

binary form, according to instructions given to it in a variable program.

Interaction a point where two systems, subjects, organizations, etc., meet

and interact.

From these definitions, it can be said that HCI is the study of the meeting point

between a human and an electronic device operating on a program. However, as the

meeting point and interaction is not specified it is necessary in terms of this thesis to

provide further clarification. For an interaction to take place between a human and

a computer, the state of one of the meeting participants has to alter in some way.

On the human side, the interaction must affect one or more of the senses. On the

computing side, an interaction changes the state of the software.

Historically, the interaction between a human and a computer was mainly via a

teletype console. The development of more powerful computers and display devices

resulted in a revolutionary paradigm switch in Human Computer Interaction. The

revolution was started during research at (Xerox Palo Alto Research Center 1999).

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 8

The result of the research was the (Xerox Alto 1972), the first computer that used

the Desktop Metaphor as an interface. The desktop metaphor relied on the use of a

mouse to manipulate a virtual desktop. The desktop metaphor is also referred to as

the window, icon, menu, pointing device (WIMP) interface.

As computing power has increased, the size of the devices has shrunk. Comput­

ers have now become ubiquitous. Ubiquitous computing has resulted in ubiquitous

Human Computer Interaction. The type and kind of these interactions is drastically

varied, from operating a modern washing machine, driving a car, making a withdrawal

from an ATM to ordering cinema tickets. All these activities are examples of HCI.

In conclusion, the term HCI has a very wide ranging definition. For the purposes

of this research a more narrow definition will be used. Throughout this thesis, the

term HCI will be used only to refer to interactions between a user and a desktop

application.

2.2.1 The Evolution of HCI

As the power of computing increases, the interactions between the increasingly

complex hardware and software becomes more and more complex. Instead of in­

teracting with a computer using a phone keypad to navigate a menu, for example,

modern systems now enable the computer to understand from spoken words what a

user has requested. New hardware facilitates different interactions. Haptic devices

such as the PHANTOM Omni Massie & Salisbury (1994) allow a user to feel inter­

actions. Another example of the changing face of user interactions are in Heads Up

Displays (HUD). These have long been used in aerospace but as the costs to build

and implement these systems has been falling HUD's have been finding there way into

other devices, used by a wider range of people, for example in cars and bike glasses.

Augmented and mixed reality - i.e. the mixing of the real world and computer

generated information - is a very active field of HCI research. Again, the lower cost

of hardware has enabled this to propagate to consumers. Sony's Eye Toy (2008) allows

a user to augment reality in real time. Other types of augmented reality gaming, such

as those described by Kim et al. (2008), where a plot for a game is delivered through

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 9

a large variety of different media, for example the World Wide Web, email, phone and

print media, are upcoming areas of interest for HCI research, due to their increasing

popularity.

Table 2.1 shows how the user and method of interaction with a computer has

evolved over time. It is based on the table that is part of the work on non command

interfaces Nielsen (1993).

Table 2.1: The Evolution of Interaction Types
J Generation I User Type I Interaction Hardware

1945-1955 Inventor Punch Cards
1955-1965 Technocrats, Computer Scientists Glass Terminals
1965-1980 Domain Specialists Full Screen Terminals
1980-1995 Home and Office WIMP

1995-present Ubiquitous Desktop Search and the Web

2.3 Rationale for Studying HCI

As the complexity of interactions between users and computers has changed over

time and the types of user has changed, the need to develop effective interfaces has

become not only more important but also more feasible.

Human Factors Society (1984) identified key areas where improvements to inter­

faces can be beneficial:-

2.3.1 P erformance Enhancement

By improving interactions, users are better able to use applications more effi­

ciently, learn new applications more easily and therefore perform tasks quicker. Where

the application interface has been improved, performance can also be enhanced, as

less cognitive resources are required to operate the application .

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 10

2.3.2 Resource Conservation

Improved interfaces can reduce both the number of people and the power of the

equipment needed to perform tasks. An extreme example of this is shown in world

wide patent number 010689 SMITH (1995). This patent describes how better inter­

faces can reduce the flight crew of an aeroplane from three to two. Interfaces that are

more intuitive will also need less resources for training.

2.3.3 Acceptance

An application that is easy to learn and quick to use will be more readily accepted

by its users than a complex, difficult to use application. The user experience level

(both domain specific and general computing skill) and type of application also play

a large part in acceptance.

2.3.4 Cost Reduction

It is clear that by reducing the amount of time and the number of resources needed

to use an application, the cost will be reduced. This is correlated with both perfor­

mance enhancements and resource conservation. Unfortunately, in most commercial

applications the cost savings are made by the user , not the developer. This can (and

does) reduce the incentive to the developers to improve the interface. However, in a

competitive market, having a good interface can be a major selling point. The cost

savings of better HCI are well known and significant. For example, an analysis of the

cost benefits of an HCI study, followed up with interface improvements of an appli­

cation used by an Australian Insurance Company in 1990, showed they had saved $

(Australian) 536k a year Fisher & Sless (1990). The cost for the study and interface

improvements together was less than $ (Australian) 100, k.

2.3.5 Human welfare

As has already been discussed, more and more time is spent interacting with com­

puters in vastly different places. Computers are now common place in, for example,

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 11

controlling cars, airplanes and medical systems. In all of these cases it is easy to see

how a bad interface could result in harm to the operator or a third party. In short,

bad interfaces can (and, in some extreme cases, do) kill. A graphic example of this

can be seen in the following case study:-

Hospital Computerized Physician Order Entry (CPOE) have been shown to reduce

medical errors Bates et al. (1998). Although the new systems reduced the occurrence

of some errors the new interfaces also introduced different errors Koppel et al. (2005).

Koppel et al describe how interface problems in CPOE systems have lead to "double

dosing" errors where the patient receives both t he previous and new dosage. Whilst

this is clearly an extreme case, it does highlight the need to evaluate interfaces. A

well-designed interface can improve a user 's well being in subtle but important ways.

For example, reducing mouse movements and key presses has been shown to reduce

the occurrence of repetitive strain injury.

In order to improve an interaction, a developer must understand how and why a

user uses an application. By understanding the user 's task, a developer is better able

to assist the user in accomplishing their goal. For example, where a user is blind or

partially sighted, the study of HCI has resulted in improved layouts and hints for

screen readers Theofanos & Redish (2003). This has enabled greater accessibility for

users, who would otherwise miss some of the visual inputs and outputs provided by

an application.

Shackel & Richardson (1991) describes the usability of an interface in ways that

can be numerically measured. Page 25 of this book provides an operational definit ion

of usability:

Effectiveness Are the users able to perform the tasks with an acceptable perfor­

mance / error rate in all environments;

Learnability How difficult is it to train a new user, support and existing user and

re-learn after non use;

Flexibility Is the system also usable for additional tasks and in new environments;

Attitude are the users happy to user the system.

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 12

From these identified categories it can be seen that there is a clear rationale for

continued study of HCI.

2.4 HCI and Software Development

In this section, some of the existing tools for assisting developers with HCI are

examined. There already exists a large quantity of quality work describing how

a developer should write an application. This documentation is, however, only in

the form of guidelines. There is no quick way of checking that a developer has

been following the guidelines without running and evaluating the application. When

non interactive applications, their are many tools, like PMD (Copeland 2005) and

FindBugs™ (Ayewah et al. 2007) that provide a simple way for a developer to check

that they have been following the coding guidelines for a platform. Although tools

like these do not catch every bug, they do provide another source of information for a

developer to consider. The guidelines in HCI are far more lax, though in recent years

some tools have started to be developed to assist a developer in this area. Dengo is

an example of such an application Dengo (2006). It is described by the authors as

follows:-

Dengo is an application that allows a programmer to inspect GObjects

live in their program and perform a series of tests to check compliance to

the GNOME HIG.

GObjects are the objects that form the interface of a GNOME application. The

GNOME Human Human Interface Guidelines (HIG) are a set of guides for a devel­

oper. They are discussed in more detail below. This project , however, has yet to

release any code. Another similar tool is GNOME Usability Analysis Tool (2006).

GUAT (GNOME Usability Analysis Tool) is an application that takes

.glade files as inputs and summarises/ evaluates the UI elements using the

GNOME HIG.

This tool, like Dengo, has yet to release any code.

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 13

In addition to tools to verify the compliance of an application to HCI guidelines

there has been some work into producing formal specifications for HCI. Jacob (1983b)

describe two different techniques to formally describe an interface. This work has been

extended (Jacob 1983a) this shows how the specifications can be executed to evaluate

the interface specification.

2.4.1 Guidelines

One of the main products of HCI is guidelines for application developers. By fol­

lowing these guides, a developer is able to produce applications that look and behave

consistently for the platform. An application that behaves consistently with other

applications on the same platform will allow a user to complete their tasks quicker.

This is due to being able to transfer skills and experiences to the new application.

An excellent illustration of this is found in the 'save' function. Many applications

have a save icon attached to a button on the toolbar. A user will expect that an

application with a save button will save the current document. The guidelines are

typically provided by the platform vendors, for example, the Apple human interface

guidelines Apple (2004), GNOME Human Interface Guidelines GNOME (2008) and

Top Rules for the Windows Vista User Experience Microsoft (2005) . The interface

design guidelines are also used as a basis for passing laws to enable equal access to

web sites and applications to users who are disabled. The guides are produced by

performing HCI experiments as described in section 2.5.

2.5 HCI Experimentation

There is a standard methodology for performing HCI experiments. The strengths

and weaknesses of the standard methodology will be evaluated and other methods

examined. It will be shown that although the standard method is effective and has

many advantages, there are some disadvantages to using HCI labs. These disadvan­

tages will also be discussed.

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 14

2.5.1 Standard HCI experimental techniques

The key feature of the standard HCI methodology is that it is laboratory based.

The SIGCHI maintain a list of HCI laboratories around the world.

The usability lab photo gallery (2008) have a link to photographic tours of thirty two

HCI labs in various places around the world.

In an HCI laboratory, typically participants must use an application in a dedicated

laboratory, rather than at their usual place of work. The lab will be fitted with one

way glass and video recorders. The user may be aware of being observed, but the

observation is designed to be as unobtrusive as possible. Any comments they make

are recorded by one of the observers behind the one way glass. These recordings are

then analysed at a later date. The advantages of these facilities are as follows:

Eye tracker One of the facilities often provided by a HCI lab is eye tracking.

This is used to monitor where, on a screen, a users is actually looking.

One Way Glass The user can be observed whilst using the application.

Video Recording Facilities Video recordings of both the screen and the

user are taken. In addition to recording the screen, video cameras also record

the movements and interactions between the user and the application.

Device Zoo A collection of hardware, both in the form of input/output de­

vices such as haptic devices and also software are available.

Consistent Hardware All users will use the same hardware so the interface

performance will be consistent.

Audio Recording In addition to recording videos of the users, comments

made by the users are also recorded.

Playback Facilities Facilities to allow simultaneous playback of the separate

streams captured as the users operate the application.

Dedicated Staff Staff are trained in the use of the hardware and techniques.

Typically two researchers will perform the interaction study.

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 15

Screen R ecorder Software and Hardware to record what occurs on the screen.

Simple 2D applications (a typical desktop application) can be recorded using

software. More complex 3D applications often require dedicated capture equip­

ment to record the rendered image.

A description of the facilities available in the Pennsylvania State University HCI

lab is shown in Lab Resources (2004).

In summary, the main advantages of having access to a HCI lab are:-

Dedicated Lab

Dedicated/Trained Staff

Specialist Hardware

Another benefit of the research undertaken in HCI labs is that results, in the form

of User recordings, are sometimes made available so that developers and researchers

can review the work. For example, the Better Desktop Project The B etter Desktop

Project (2006), provides a collection of videos that are produced by users performing

a series of tasks using GNOME and KDE applications and are available to download

from the Better Desktop Project's websiteBetter Desktop Data (2008).

2.5.2 Disadvantages of a HCI Lab

The major disadvantage of an HCI lab is the cost. They are expensive because

they require a dedicated room and specialist equipment. Users must also travel to the

labs to take part in a study. For example, in 1988 the monetary cost of an HCI study

was estimated at $128, 330 Mantei (1988). This was for a relatively small application,

with only 32, 000 lines of code. To put this figure in context , WEKA (Witten & Frank

2005), used for analysis in this thesis, has approximately, 270,000 lines of code. This

does not include the additional functionality from modern graphical frameworks.

There are also very few developers who have access to these facilities. Another

disadvantage concerning the use of HCI labs is that users can often find a visit to

the HCI lab obtrusive and intimidating. As a result, their performance may well

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 16

be different to their performance in a more naturalistic environment. As a result

of these disadvantages, other techniques have been developed. These are referred

to as Discounted or Guerrilla HCI Nielsen (1994a) studies, henceforth referred to as

Discounted HCI.

2.5.3 Discounted HCI

As the name implies, Discounted HCI methodologies have been developed to al­

leviate some the costs (both monetary and time) incurred by using a dedicated HCI

lab. The development of video-conferencing applications and cheaper bandwidth have

led to the development of cheaper and less obtrusive HCI studies. Key features of

Discounted HCI studies are that they will generally use the following resources:-

Screen Recorder Basic screen recording software is used to record interac­

tions between the user and the application.

W eb Cam A small low resolution camera is used to record the user whilst

they operate the application.

Video Conferencing Video conferencing software is used to show the inter­

actions and provide an audio stream to the researcher.

Although some of the inconvenience and costs of performing a HCI study are

alleviated by performing Discounted HCI, there are still some significant shortcomings

to these methods. A user must still use the software at a pre-determined time for the

observations to take place. Although the user is in their natural environment, there

is still a significant intrusion, as they will be aware that they are being watched as

they operate the computer. There is also a cost associated in configuring the software

and hardware for the study.

2.6 Cognitive Modelling and HCI

One area of very active research in the HCI area is in that of Human Information

Processing. By producing a model of how someone interacts with an application, a

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 17

developer can then use this model to design an interface that will assist the user in

performing a particular task. This model also allows a developer to predict how their

application will be used. This can be used to further improve the design. Given that

a model is algorithmic, it is quicker and cheaper to evaluate an interface on a model,

rather than build the interface then test it in a HCI lab.

2.6.1 Producing a Cognitive Model

An example of a cognit ive model is Fitts law Fit ts (1954) and Fitts & Peterson

(1964). Fit ts law describes how the t ime taken to select an object is related to both

the distance and size of the target. Fit ts law has been extended many t imes, for

example in the work of Hornof & Kieras (1997). In this paper , the time taken to

select an item from a menu was modelled. The result ing cognitive model can be used

to estimat e how long it will take a user to select an item from a menu. Soukoreff &

MacKenzie (2004) reviews Fitts law, and how it applies to ISO standards.

2.6.2 User Taxonomy and HCI

The human component of HCI is extremely varied. Understanding the taxonomy

of the users informs decisions about the interface design. User taxonomy is the

process of categorising users. The categories typically used are expert, intermediate

and novice. These groups can be further split. For example, a user may well be

inexperienced at using a computer in general, yet may have a great deal of domain

specific knowledge. Understanding the taxonomy of users allows a developer to target

specific groups. For example, a user group may be defined by a variety of people,

such as all card holders who access hole-in-the-wall ATMs. At the other end of

the spectrum a user group may be a single user , only accessing an application after

undergoing several weeks of intensive training.

2.6.3 Task Discovery and H CI

An important piece of information for a developer is:-

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 18

What task is the user trying to accomplish?

Knowing what task a user is trying to accomplish enables the developer to improve

the application by optimizing the interface. The terms "affordance" and "perceived

affordance" were first described by (Gibson 1979), though the HCI community was

introduced to the concepts by (Norman 1988). The term "affordance" is used to

describe the actual function of an object. The term "perceived affordance" refers to

what a user thinks the function of an object will be. An example of this is shown

in figure 2.1. The button tells evolution (an email client for gnome platform) to

Figure 2.1: Evolution Button

\liew F:Ql-der Mes

I Send !ceive

send any mail in the outgoing mail and check for new mail (its affordance) . When

new users were set the task of sending a new mail, many of them clicked on the

send part of the button marked 'send and receive' thinking that this would let them

send a message (the perceived affordance). By making the software aware of the

task that a user is trying to perform, either by inferring it from how they use the

application or by simply asking t hem, the developer can either alter the interface to

make accomplishing the task easier or guide the user through the steps needed to

accomplish the task effectively.

2.6.4 Capturing Interact ions

There has been some previous work in capturing meaningful interactions. This

work has resulted in th

CHAPTER 2. HUMAN COMPUTER INTERACTION BACKGROUND 19

2. 7 Conclusions

This chapter has examined the history and current research into Human computer

Interaction. The difficulties for developers designing and implement ing high quality

interfaces have been examined. The benefit of better interfaces have been clearly

shown. The next chapter will examine stream based categorisation in detail and

outline how HCI and text categorisation have been linked in the past.

Chapter 3

Stream-Based Categorisation

Background

3 .1 lntrod uction

As stated in the thesis statement, the aim of this thesis is to show that:­

perform the task of authorship attribut ion on a stream produced by cap­

turing interactions between a human and a computer.

This section will explore a definition of stream based categorisation and how this

applies to the problem of attributing authorship. The process of performing categori­

sation on text documents is more commonly referred to as text categorisation. This

is the area of interest relevant to this thesis, which aims to use these techniques on

streams produced from the interactions between a human and computer. The aim of

stream based text categorisation is to analyse a stream of symbols and then assign

it to one or more categories. In stream based categorisation the symbols that make

up a stream are analysed sequentially. Natural language text categorisation can also

take place by first extracting features (typically words) from the text . Feature based

categorisation is less suitable for this research as the features are unclear and the

categories depend on the problem domain.

20

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 21

Text categorisation research occurs within the wider area of research called Infor­

mation Retrieval. Informat ion Retrieval (IR), like HCI, has its own special interest

group, SIGIR Special Interest Group on Information Retrieval (2008). Init ial text

categorisation research sought to perform language ident ification Cavnar & Trenkle

(1994) . These techniques have been extended to perform authorship attribution.

The rationale and practical applications of text categorisation will be explored in

section 3.3.

Section 3. 7.1 describes a small subsection of some of the types of data that can be

represented as a stream of symbols. This selection is relevant to this thesis as these

non natural language streams have been used to research stream-based categorisation

using the same techniques and family of algorithms as are used to perform text

categorisation of natural language. Section 3.8 will argue that text categorisation has

been shown to be extremely effective at the task of authorship attribut ion.

3.2 Defining Text Categorisation

A simple definit ion of text categorisation is a follows:-

The process of assigning text to one or more pre-determined categories.

This is, however, a limited definition as it specifies neither how the assignment

is made nor what the categories are. How the assignment is made is determined by

the content and context of t he text. What the categories are is determined by the

problem domain. When performing categorisation, all other meta data, such as the

publisher , is ignored.

A formal mathematical definition of text categorisation is given by the following

binary pairing decision:-

(di, Ci) E D X C

where:

di is a document from the set of documents D = d1 ... dldl and

Ci is a category from the set of C = C1 ... Ciel categories.

The boolean assignment of t rue to (di , ci) indicates that the document di is a member

of the categories Ci . Conversely, an assignment of false shows that the document di is

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 22

not a member of the category. As can seen be from this definition, a document can

be a member of multiple categories.

Text categorisation is only concerned with assigning documents to pre-determined

categories. The process of discovering the categories in addition to performing the

categorisation is referred to as text clustering and is not of relevance to this thesis.

3.2.1 Multi-class and Multi-label

The formal mathematical definition above shows there is no restriction on the

number of classes that a document can belong to. This is applicable to some problem

domains, for example topic discovery, where a document may cover one or more

topics. This is often referred to as Multi-class and Multi-label Luo & Zincir-Heywood

(2005) classification.

3 .2.2 Mult i-class and Binary

In some problem domains, for example authorship where a document can only have

been written by a single author, a further restriction can be added. This additional

restriction ensures that a document can only be a member of a single category. This is

often referred to as binary classification. When referring to the formal mathematical

definition above, the following additional constraint is added:-

The boolean assignment of true to (di, ci) implies that (di , c,i) must be false. Where

there are multiple different categories, this case is referred to as multi-class. If there

is only one class, then the term binary classification is used as the decision is true or

false.

3.2.3 Symbol St reams

The algorithms, rationale and experimentation details described in this thesis are

all used to process streams of symbols. If the symbol stream is a document in a

natural language then the symbol is more typically referred to as a character. The

word 'character' in this context is not the primitive data type of a character. It is

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 23

used to represent a symbol in a language. The word 'stream' refers to the fact that

each of these symbols is ordered sequentially and the order is necessary to provide

meaning.

3.3 Rationale for Automated Text Categorisation

The practical applications of automating text categorisation have long been recog­

nised. Text categorisation is of obvious benefit when dealing with large quantities of

text that would otherwise be impractical or prohibitively expensive to categorise by

hand. As more text is digit ised, the need for automated systems becomes ever more

important.

Historically, one of the biggest drives for improved automated text categorisation

has been information retrieval. The practical uses for text categorisation have grown

from the increasing use of digitised documents in electronic libraries. Three important

areas of research within information retrieval are: electronic libraries; text filtering;

and word sense disambiguation. These three fields have provided the main drive to

develop high performance text categorisation techniques. This will be explored in

more detail below. As well as these motivations, it has become apparent that the

techniques developed have other practical applications.

3.3.1 Electronic Libraries

As early as 1961, Maron (1961) described how text categorisation could be used

to improve library services. This work has been widely extended (e.g. Kim (2005)

and Wang & Desai (2007)) as the power of computer systems and the number of

electronically digitised documents has increased.

Library systems rely on meta data to accurately retrieve documents. The meta

data is used to describe the topics, author and other attributes of a document. The

process of discovering and then adding the meta data by hand to existing documents

is t ime consuming. Text categorisation has been used to automate the process of

adding the meta data to existing and new documents.

CHAPTER 3. STREAM-BASED CATEGORISATI ON BACKGROUND 24

3.3.2 Text F iltering

Over time, the amount of documents available in a digitised form has grown

massively. At the same time the level of detail has increased. There is simply too

much information to process by hand. For example, a search in the Bangor University

Library for books that have the word "Elephant" in the title returns 24 books available

for loan from the library. Performing the same search on Amazon.com returns 5,838

books. Users are mostly interested in documents that are relevant to them. Text

filtering is a useful tool for sifting through this information to enable the user to fine­

tune a search. So, for example, a personalised news delivery system that monitors

breaking headlines that only shows a section of that news according to a pre-selected

subject e.g. changes in stock prices, can be used by companies or individuals who

own stock.

Text filtering has also been applied to the problem of unsolicited commercial email,

better known as spam. These systems aim to categorise email into 'spam' and 'not

spam' so that a user is not overwhelmed by having to read too many unwanted emails.

3.3 .3 Word Sense Disambiguation

Text categorisation has been used to perform word sense disambiguation (WSD)

for computational linguistics when encountering a homonym. When faced with a word

with multiple meanings but different spellings, text categorisation enables a given

word with mult iple meanings to be selected according to context, by categorising

the text to detect the context. WSD aims to identify the meaning of the word by

using other words to provide context. For example the words 'scale' has the following

definitions:-

• scales on a fish;

• an instrument for weighing;

• a measuring system;

• relative size;

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 25

• musical scale;

• to climb something;

As can be seen, the word 'scale' on its own is ambiguous but in any given context , for

example 'she scales a mountain' its meaning becomes clear. WSD can also be used

when performing speech recognition on encountering heterographs, i.e. words that

sound the same but have different spellings. An example of a heterograph is witch

and which.

Witch This is also a homonym. The OED gives the definitions as a "a woman

thought to have evil magic powers" and "an edible North Atlantic flatfish" .

These are both nouns.

Which The OED defines which as a pronoun and adjective that is used for

"specifying one or more people or things from a definite set" .

By performing text categorisation, the correct meaning can often be established. This

has been shown by Gale et al. (1992) where a category is created for each meaning

and then categorisation is used to assign the word to the correct meaning.

3.3.4 R ecent D evelopments

The problem domains described above have spurred the development of a large

range of techniques. The techniques have been applied to a large variety of different

problems. Some of these are described below. Text categorisation has also been

applied to the problem of plagiarism detection. Since the invention of word processing,

plagiarism has become easier, with the problem becoming even more pronounced

with t he proliferation of the Internet. Automated systems to detect plagiarism have

therefore become increasingly desirable. Lukashenko et al. (2007) describes some of

the techniques and tools currently available to detect plagiarism. This field is still

an area of very active research. (Hoad & Zobel (2003) and Leung & Chan (2007)).

The task of plagiarism detection is a natural extension of previous work that seeks to

identify the author of a document Matthews & Merriam (1964) . Text categorisation

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 26

has already been used to identify the author of anonymous texts Stamatatos (2008)

for criminal investigations. By categorising student essay submissions, a system to

automate the grading process has also been developed Larkey (1998). This automated

grading system has been further improved by Rose et al. (2003).

3.4 Information Entropy

As described earlier, this thesis is concerned with symbol streams. This is referred

to as a "message" in information theory. The "entropy" of a symbol stream describes

its predictability or the amount of order. The OED defines entropy as "the degree

of disorder or randomness in the system". Information entropy, as referred to in this

discussion, is defined by the OED as "a logarithmic measure of the rate of transfer

of information in a particular message or language." The information entropy is

measured as the number of bits required to encode each character. This was first

described by Shannon (1948) and is a measure of the information contained in a

message. The more predictable the message, the lower the entropy. As the entropy

describes the predictability of a message, it is also a measure of the best possible

compression it is possible to achieve for that message. Information entropy is also

referred to as Shannon entropy.

The standard measure of entropy is bits per symbol, i.e. the number of bits needed

to encode each symbol. In this context, the term 'compression' is concerned with

reducing the amount of space needed to store data. For example, to record the status

of an event that has only two possible outcomes, each equally likely, such as a fair

coin toss, this would take exactly one bit. If the coin was altered so that one side was

more likely to be chosen, then less bits are needed. Compression is described in more

detail below.

Formal Definition

Shanon entropy is formally defined as follows:-

Let X be a discrete random variable on a finite set X = { x1 , ... , Xn }, with probability

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 27

distribution function p(x) = Pr(X = x) . The entropy H (X) of Xis defined as

H (X) = - L P(x) logbp(x) . (3.1)
xEX

It is taken that O log O = 0 as part of the definition. If the logarithm is taken in base

2 then it measures the number of "bits" .

When looking at symbol streams, for the majority of these streams the optimal

compression is not known. This is especially true for natural language. For a natural

language such as English, the correct (optimal) Shannon Entropy is not known. As

a result it can only be estimated. This is because the statistical model for English

is not known. Current estimates of the entropy of English vary greatly. Shannon

(1948) has shown empirically the entropy of English text to be between 0.6 and

1.1 bits per character. The best English language compression algorithm to date,

paq8hp12 Ratushnyak (2007) (other compressors from this family are evaluated by

Skibinski et al. (2005)) has achieved compression as low as 1.6 bits per character

50000 euro Prize for Compressing Human Knowledge (2007). Compression of some

English texts has achieved performance of 1.4 bits per character Teahan (1998). This

is still higher than the estimates provided by Shannon, showing that there is still

room for further improvements of computer models.

3.4.1 Compression

A definition of compression from the OED is: "To alter the form of (data) to

reduce the amount of storage necessary." .

Shorthand is a good example of compression. It has been in use since the early

Greeks Manuals (1935). Shorthand is a compressed representation of natural language

that is fast enough to be used in dictation. Another example of compression is the

telegraph. Here a style of writing was developed to minimise the number of words

used. The booklet ent itled "HOW TO WRITE TELEGRAMS PROPERLY" Ross

(1928) describes how to use this compression system. Recently, similar techniques

to optimize language have been used by mobile phone users when sending messages

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 28

using the Short Message Service (SMS) where a message is limited by the specification

to 160, 7 bit characters 3GPP (2007) .

Compression of any type of data has always been very important . This has been

driven by the desire to store more data and transfer it more quickly. Improved com­

pression results in increased storage capacity and faster data transfer. Compression

has been important long before the invention of the computer , but since the devel­

opment of the electronic computer, compression has undergone a revolution. Within

the field of Computer Science the term compression refers to two distinct fields of

research:- lossy and lossless compression. Formally:-

A document a is compressed with the compression function C. This produces a com­

pressed document ac where ac = C(a) . The compressed document ac can then decom­

pressed by function D to produce the decompressed document ad where ad= D (ac)-

The compession can be measured by the ratio of l~~I .

Lossless Compression Lossless compression produces the same output after

decompression as was used for the source. This means that ad in the equation

above is identical to the document a i.e. ad = a.

Lossy Compression Lossy compression discards some of the data. In the

equation above, ad =J. a; the result of decompression is different to the origi­

nal source. Examples of lossy compression are JPEG JPEG File Interchange

Format (1992), and mp3 International Organization for Standardization (2005).

When the data is evaluated, it is usually done so by a human who can interpret

the data despite the missing information. The aim of the process of compression

is to produce something that is similar enough to the original but with a very

high compression ratio. Lossy compression is more commonly used to compress

images and sound but not text.

Data compression can be measured by comparing the number of bits needed to store

the uncompressed message with the number of bits needed to store the compressed

data. This is called "the compresion ratio" and is typically measured in bits per

character (bpc). This evaluation can be made for both lossy and lossless compression.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 29

However , in the case of lossy compression the uncompressed message will not be

identical to the compressed message.

3.5 Stream Based Algorithms for Text Categori­

sation

In this section, algorithms that are used to perform stream-based text categori­

sation are examined. These algorithms can be split into two distinct families:- those

that operate on the character level and those that operate on the word level.

As these algorithms will be used later in this research to perform stream-based

categorisation of symbol streams that are not natural language, only the algorithms

that deal with categorisation of characters will be examined. These will be exam­

ined in three distinct groups:- Hidden Markov Models; Off The Shelf Compression

Algorithms; and Count Based Measures.

3.5.1 Hidden Markov Model

A Markov Model is a statistical model for prediction. As the true model is un­

known, the model and hence the state must be inferred by looking at the available

data. Hence the term "Hidden" Markov Model. A Markov Model can be thought of

as a state machine. From any state in the state machine there is a set of transitions

to other states. Each of these transitions has an associated probability. The proba­

bility of a transition is determined not just by the current state but also the previous

states. As has been noted earlier the true model is not known and the model must

be inferred by training on available data, as demonstrated in the following example.

Using a limited alphabet of the letters AJTIGJC, the probability of each of these

letters occurring in a stream is equally likely, ¼. With this knowledge, given a docu­

ment such as AAGTTACTAACATATTTA, the document can be used for training.

The table below (Table 3.1) shows contexts of length three that are found in the

example document. From the table, it can be seen that if the context is AG then

the next character must be a T. If the context is TA then there is a probability of

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 30

½ that the next character will be either C or A or T. The context TT, however ,

provides a probability of ½ that the next character is T , but the probability of the

next character being A is l These probabilities form the transition probabilities for

the Hidden Markov Model.

Table 3.1: DNA Contexts at Order Two.
I Context I Potential States I

AA CIC
AC T IA
AG T
AT AIT
CA T
CT A
GT T
TA CIAIT
TT AITIA

3.5.2 Variable Order M arkov Model

A Variable Order Markov Model (VOMM) is an extension of the Hidden Markov

Model described above. Here 'Order ' refers to the number of previous symbols that

are considered to make up a context, as described below. Although called Variable

Order, the word Variable can be confusing. Many of the algorithms that use VOMMs

define a maximum order. i.e. the maximum number of contexts that should be

considered. If a context is not found at this maximum order the algorithm then

backs off or escapes to a lower order. Hence the term variable.

The Variable Order size helps to overcome the zero frequency problem. The

zero frequency problem is when the encoder encounters a context that has not been

encountered before. A Fixed Order Markov Model must default to the base model.

So, for example from table above (Table 3.1) if the stream contains the sequence TCT
this is a probability of ¼- A VOMM can look for smaller sections of the context at

lower orders, in this case CT, thus providing a more accurate probability.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 31

The following algorithms are also used for text categorisation. Each use the Vari­

able Order Markov Models.

Prediction by Partial Matching Prediction by Partial Matching (PPM) is

a technique used for compression. It was first described by Bell et al. (1989).

The PPM compressor uses the previously seen uncompressed symbols in the

stream to predict the next symbol. The number of previous symbols used to

provide the context n is often added to the name, i.e. PP M3 is PPM using a

maximum context size of 3. The broad title of PPM refers to a large collection

of algorithms. These algorithms build upon each other to improve compression

performance using techniques such as smoothing and exclusions, described by

Cleary et al. (1995) . Moffat (1990) describes the implementation of PPMC.

This is generally considered the standard PPM implementation.

PPM* PPM* is an extension the PPM family of algorithms as described in

Cleary et al. (1995). This further improves the compression and does not have

a fixed maximum order size.

Context Tree Weighting Method The Context Tree Weighting Method

(CT\iV) described by Willems et al. (1995) uses a combination of many VOMMs.

CTW operates on binary trees. To compress character streams, the characters

must first be encoded into binary before the CTW algorithm can be applied.

This decomposition process, as described by Volf (2002) can be tricky, as in

many cases the position of the bits within a byte is significant. By discarding

the positional information, performance is detrimentally affected. A number of

approaches to performing the decomposition have been tried, for example, the

technique described by Tjalkens et al. (1997). Volf (2002) describes and eval­

uates a number of other decomposition techniques. From this evaluation it is

clear that CTW-DE, as described in Volf's thesis, has the optimal performance.

Probabilistic Suffix Tree Probabilistic Suffix Tree (PST) uses a single VOMM

of fixed maximum length. After the initial VOMM is constructed, it is filtered

and only m eaningful contexts are retained in the model. A context is said to

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 32

meaningful if its probability is greater than a threshold set by the user and the

probability of context is significantly different to the probability of its parent.

Here, significance is defined as < userth;eshold or p > userthreshold.

3.5.3 Off The Shelf Compression Programs

All of the above algorithms have been used to perform compression and can there­

fore be used for text categorisation. A description of how compression algorithms can

be used to perform text categorisation is given in section 3.6. However "off the shelf"

compression programs are very popular as they do not require a researcher to imple­

ment the algorithm. The program contains a tried and tested implementation ready

to use. Some of the compression programs, such as rar Scheurer (2005) use algorithms

already outlined above. Below, some of the other popular "off the shelf" compression

programs are described.

Lempel-Ziv-Welch The compress and associated uncompress commands have

been part of the BSD distribution since version 4.3 was released in 1986. This

program performs compression using the Lempel-Ziv-Welch (LZW) algorithm.

The implementation and algorithm is described by Welch (1984). The output of

the compressor is also used as a specification see RFC1950 Deutsch & 1. Gailly

(1996). The algorithm operates using a sliding window.

gzip gzip is a compression algorithm developed by the GNU project be­

cause of patent problems with LZW. The format of the output is specified

by RFC1952Deutsch (1996) and the algorithm is described by Gailly & Adler

(2008). Like LZW, gzip also uses a sliding window. The performance of gzip

is generally better than LZW.

bzip2 bzip2 is a block based compression algorithm. It uses a Burrows­

Wheeler system to sort the blocks used for compression. The compression per­

formance is better than gzip but is achieved at the cost of memory and CPU.

The algorithm is described in detail by Fenwick (1996).

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 33

RAR RAR is technically a file format and is patented. Internally, RAR has a

number of compression algorithms that are selected based on the content of the

data being compressed. It is chosen by researchers as it provides excellent com­

pression performance when dealing with character streams. This performance

is due to the internal use of PPM.

The algorithms and programs described above are all used to perform data compres­

sion. The compression is achieved by either predicting what is likely to occur (the

VOMM family of algorithms) or by pointing to previous repetitions of the same se­

quence (algorithms like gzip.) The methods for using both these types of algorithm to

perform text categorisation, along with a description of algorithms where the primary

purpose is categorisation, will be examined in the section below.

3.5.4 Count Based Measures

The following algorithms have been developed primarily to perform categorisation.

Unlike the algorithms discussed so far , they do not aim to compress the data.

R Measure

This is a normalized count based on the occurrences of common sub strings be­

tween the testing and training documents. It is described by Khmelev & Teahan

(2003). The formula for the R Measure is as follows:-

Given a collection of n documents, each document (Dn) can be considered as a

set of strings Sk = Sk[l ... ISkl] where ISnl is the length of the document Sn. The

R Measure is defined as a measure between document D and the remainder of the

collection. It is defined as:-
~----------

R(TITI , . . . Tm) = JI:~=1Q(S[k ... l]ID1 ... DN) where l = IDI is the length of

document D , S[k .. l] is the kth of document D and Q(SIT1, ... , Tm) is the length of

the longest prefix of S, repeated in one of documents D1, .. . , Dn.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 34

Other Categorisation Techniques

There has been previous work using techniques such as Neural Networks, Bysian

classifiers and Support Vector Machines(SVM) to perform text classification. These

techniques all require feature extraction to occur before classification. When per­

forming categorisation of natural languages the features typically used are words of

these techniques, SVM has the highest performance at categorisation text Yang & Liu

(1999). The performance of SVM is however no better than the best stream based

categorisation as shown in Teahan & Harper (2003a).

3.6 Using Compression Algorithms to Perform Cat­

egorisation

In t his section, techniques that allow compression algorithms to be used for text

categorisation are discussed. All these techniques rely on the assumption that docu­

ments from the same category will be similar.

For the purpose of this explanation the following set of assumptions are made:-

• there exists a set of training documents and a set of categories;

• each category will contain a minimum of one training document;

• there is no limit on the number of training documents that can be assigned to

a category;

• each t raining document however can only be assigned to a single category;

• there is a single testing document.

The aim of t he process is to use compression algorithms to determine which category

the testing document should be assigned to. For the purpose of this explanation, it

will be assumed that the compressor is an off the shelf compression programme and

as such is treated as a black box.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 35

A technique to use compression algorithms to perform categorisation is described

by Benedetto et al. (2002) as follows:-

A document is produced by concatenating the testing document with each training

document in turn. This new document is then compressed. When using a prediction

based algorithm, when the boundary between the correct and incorrect document is

encountered the prediction mechanism will become less accurate. The algorithms that

look for repetitions will be unable to find repetitions, or the repetitions will be shorter.

As a result of either of these events, the compression performance will be detrimentally

affected. After compressing the testing document with each of the training documents,

the compression ratios are again compared and the lowest ratio is selected. This

technique measure the relative entropy of the two documents. Using compression

algorithms has been shown to have excellent performance at categorisation. (c. f.

Teahan & Harper (2003b)).

3.6.1 Minimum D escriptive Length

Minimum Descriptive Length (MDL) is documented in detail by Grunwald (2007).

MDL describes the principle that:-

the more we are able to compress a set of data, the more regularities we

have found in it and therefore, the more we have learned from the data.

An alternative way to consider this is that MDL represents a formalised description

of Occam's Razor. This represents an information theoretic approach to machine

learning.

3 . 7 Experimentation

In this section the variety of experiments that stream categorisation have been

applied to are described. First, the variety of streams types are examined. This is

followed by a discussion on the different categories evaluated.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 36

3.7.1 Stream Types

The list below is a non-exhaustive list of the types of streams that text categori­

sation has been applied to. As can be seen from this list, there is a wide variety in

the types of stream that have been categorised.

Natural Language Documents written in any natural language such as En­

glish, French, Chinese etc.

DNA DNA sequences can be categorised using the same set of algorithms.

DNA sequences are limited to the alphabet ACTG. The commonly used soft­

ware GeneMark™ (Borodovsky & Mclninch 1993) and GENSCAN (1997) both

use Hidden Malkov models to perform categorisation of gnome sequences. The

algorithm used by GENESCAN is described in Burge & Karlin (1997).

Music Hidden Marklov Models have been used to categorise music. For ex­

ample, Chen et al. (Oct. 2006) use text categorisation to identify musical genre.

3 . 7.2 Categories

Below is a description of some of the different types of categories used for text

categorisation. The list is not exclusive and obviously has a great deal of overlap with

the rationale for text categorisation, described in section 3.3.

Authorship Attribution Authorship attribution is the task of determining

who is the author of a given document, from a choice of many potential authors.

This has many practical uses, one of the major ones being plagiarism detection.

The same techniques that are used for language detection are also used to

determine authorship. As this is the subject of this thesis a more detailed

discussion will take place in section 3.8.

Language Identification The goal of language identification, given a text of

unknown language and a set of training documents, is to identify which of the

training documents is most closely related to the test document. To do this,

one or more of the testing documents will have had to have been written in the

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 37

same language as the test document. In the case of languages that use different

alphabets, this task is trivial. However, many languages share alphabets. When

two or more languages share the same alphabet, such as English, French and

German, then the task of identifying the language is no longer trivial.

The task of identifying the language of a document was shown to be feasible and

highly accurate by Teahan & Harper (2003b). It has been shown to be successful

even when the text is noisy by Cavnar & Trenkle (1994). Further developments

in language categorisation have targeted the problem of identifying the language

of individual blocks of text within a document, rather than the entire document.

Dialect Detection Dialect detection is a natural extension of the task of

identifying the language of a document. When performing dialect detection,

not only is the language identified but also the dialects within the language

Huang & Hansen (15-20 April 2007).

Topic Identification Given a document, text categorisation is used to de­

termine what the subject(s) of the document are. There may be more than

one subject per document. For example, this technique has been used to detect

student essays that are off-topic Higgins et al. (2006).

Genre Identification This was demonstrated by Kessler et al. (1997) and

more recently by Lee & Myaeng (2002) and has been further developed by Ferizis

& Bailey (2006). McCallum & Nigam (1998) show how Bayesian Classifiers can

be used to classify the genre of news groups.

Age A similar task to identifying authorship, the aim here is to categorise the

text based on the age of the author.

Sentiment Text categorisation has been used to determine the sentiment of

an author on a given subject. For example, Pang & Lee (2004) describe a

system to identify positive or negative opinions of a movie. This has since been

extended by the same group Pang & Lee (2005) to try and assess a movie review

in terms of the number of stars that the reviewer would have assigned the film.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 38

Bias Text categorisation has been used to determine the bias of an author

towards a subject.

SP AM Email spam has become a massive problem in recent years. There is

an ongoing battle between the spammers and end users and developers trying

to keep their inboxes free of junk. Text categorisation is ideally suited to the

t ask of sort ing mail into spam and not spam. There is a large body of work in

t his area and there has been a spam track as part of TREC from 2002 till 2007

SPAM Track Guidelines (2005 - 2007).

Initially, basic regular expressions were used to ident ify spam. This solution was

quickly broken by spammers, who introduced random misspellings for example

"vlagra" rather than "viagra" . Developers fought back by developing Baysian

classifiers Graham (2004) but again these were defeated by spammers. Recent

developments in the Trek 2005 spam t rack Bratko & Filipic (2005) and more

recently by Bratko et al. (2006) have shown that PPM is excellent at performing

the task of spam identification.

Gender The task of identifying the gender of the author of a document is

another area where text categorisation is useful. For example, Corney et al.

(2002) show how the gender of the author of an email can be determined by

performing text categorisation, as have Koppel et al. (2003) .

Opinion It has been shown by Pang & Lee (2008) that opinion can be cate­

gorised.

Computer Intrusions Warrender et al. (1999) describe a system that uses

Hidden Markov Models to detect computer intrusions.

3. 7 .3 Text Categorisation Corpora

There are a number of standard corpora that are available for use in evaluating

text categorisation. Each corpus consists of a collection of text documents. Each of

the documents within the corpus has been analysed by a human and tagged. Part of

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 39

the tagging process involves assigning the document to one or more categories, such

as the author or major topics. The corpora are publicly available, so the performance

of a new technique can be evaluated against known data. This thesis will make use

of two published corpora, the Stig Johansson (1978) and the REUTERS CORPUS

(2000) . These are both freely available corpora that have been used extensively in

the past and so have been well tested.

3 .8 A uthorship and Text Categorisation

As described in the thesis statement, the aim of this work is to show that the

streams produced by the use of a graphical application behave in a similar way to

streams of characters in a natural language.

Given that the task chosen to show t his is that of authorship discovery, it is

important to examine in more detail the current state of research in this area. (n. b.

this thesis is concerned only with the task of determining the author of a document.

It is not concerned with authorship verification, which is a related area of research.)

When performing authorship discovery, the following assumpt ions are usually

made:-

The Author is Present in the Training Set The set of training documents

contain at least one document written by the author to be tested.

Unique Authorship Each document has only one author. As such, each

document will only appear once in the training set and the testing document

will only be assigned to a single category.

From these assumptions it can be seen that the task of determining authorship will

be a multi-class classification.

The corpora that are used to test algorithms when performing this task contain

many authors and as a result many more documents. Although each testing document

is processed individually, the results are compared over the entire set. From this, t he

performance can t hen be evaluated, by comparing the number of correct assignments

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 40

with the number of incorrect assignments. This gives a percentage accuracy. This

percentage accuracy can be split further to show the accuracy by author.

As well as the percentage accuracy, the other statistics used to evaluate the perfor­

mance of the classification are Recall and Precision. These are calculated as follows:-

Recall Recall is the number of documents correctly assigned to the author,

divided by the actual number of documents written by that author.

Precision Precision is the number of documents marked as being written by

the author which actually were written by the author, divided by the number

of documents marked as being written by that author.

Historically, the problem of determining authorship has been of interest since at

least the turn of the last century. Holmes (1998) provides an excellent summary of

the history and development of algorit hms up to 1998. Initially, categorisation was

undertaken by hand and it was not until the 1960's and the analysis of the Federal­

ist papers that these techniques achieved widespread recognition as documented by

Mosteller & Wallace (1966).

The field underwent steady improvements unt il the early 1990's, when computing

power had increased so much that new algorithms had to be developed to perform

authorship attribution. These new algorithms came from the field of Artificial In­

telligence, where Neural Networks in the form of Multi-Layer Perceptions were used.

These built on the previous work in the area and used words to perform the cat­

egorisation. A problem with this technique was that the documents needed to be

segmented and significant features identified by hand.

By performing the categorisation on a character level, a number of problems with

the traditional approach can be avoided. These are the problem of segmenting the

data and the problem of identifying which features are significant.

As this thesis is concerned with performing authorship on document streams that

are not a natural language, the techniques used to perform authorship on a char­

acter level will be of more relevance than those that perform on a word level. As

shown above, the performance of character level algorithms has now reached, and

even surpassed, the performance of word based algorithms. Therefore , the use of

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 41

character based algorithms to categorise streams of symbols of non natural language

has a sound theoret ical basis.

3.9 Combining HCI and Text Categorisation

The move away from console applications has resulted in an almost complete split

between HCI and Information Retrieval. When the data is available, for example,

web site traversal and text based searching, there has been some crossover between

the two communities. Section 3.9.2 will examine how text categorisation has been

applied to console applications.

3.9.1 Predictive Text

Many mobile phones have, for some years now, supported and encouraged users

to use a facility marketed as predictive text. As a phone keypad is limited to twelve

keys, each key has a minimum of three and a maximum of four letters assigned to it .

A user picks the correct character by pressing the relevant button repeatedly. This

is a very slow way of entering text. Repeated letters were particularly difficult, as

the user had to wait for the current selection to timeout before st arting on the same

button. To speed up the input ting of text, manufactures have implemented a system

known as T9@ predictive text James & Longe (2000).

T9 uses a Bag of Words model. The user only has to press the button that contains

the desired character. The computer then looks up from a pre-defined dictionary 1

all t he possible words that could match the potential characters entered so far. The

user then selects t he correct word, by cycling through the possibilities. More recent

developments have introduced new devices, such as the iPhone. These have relatively

large, but not full sized, keyboards. The computer predicts what word a user is trying

to type and also corrects minor spelling mistakes.

1The dictionary is often expandable by the user, who can add new words

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 42

3.9.2 Console Based Applications

Console based interfaces, for example t csh and bas h FSF (2006) are by their very

nature text based. They provide and store a history of previously entered commands,

allowing a user to edit these commands before having the new command interpreted

by the computer. The commands inputted by the user, and the respective output to

the user provided by the computer, are character streams. These character streams

are an obvious target for text categorisation. The analysis of these character streams

has been used to improve interfaces and also to perform verification of the current

user.

3.9.3 User Interface Improvements

As early as 1982 developers were examining methods to improve interfaces. For

example, Witten (1982) describes how an interface could guess what the user was

trying to type and allow a user to select the guess, rather than typing the entire com­

mand. This has been extended to build a Reactive Keyboard Darragh et al. (1990) .

This provides a faster input mechanism for typing, by predicting what word is going

to occur next. These experimental input enhancements have now become a standard

part of modern software. Modern integrated development environments (IDEs) such

as Eclipes Eclipse Foundation (2008a) and Netbeans Strobl (2008) provide context

sensitive auto completion. Emacs has further expanded this concept to develop a fea­

ture called Hippie Expand HippieExpand (2004) which provides suggested completions

based on locality. The completion feature has also been added to word processors

such as OpenOffice OpenOffice.org 2.x Writer Guide, Using word completion (2008) .

It has been known for a long time that users will repeat many of t heir actions.

Further work has examined repetition and the effectiveness of the history feature of

command lines by Greenberg & Witten (1988). This knowledge has resulted in the

inclusion of interactive command line histories.

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 43

3.9.4 Authorship

Character analysis techniques have been used to identify users impersonating other

users. This technique was started as long ago as 1988 by Leggett & Williams (1988) by

using statistical techniques. It has also been used to provide an authentication system

by monitoring key strokes (Monrose & Rubin (1997) and Coull et al. (2003)). Recent

developments have shown increased accuracy by using support vector machines Seo &

Cha (2007). The previous work in this area has concentrated on identifying authorship

to show who was typing commands. The knowledge of who is using a computer is

important. It can provide information for prosecutions in cases of intrusions. It can

also be used to detect a user masquerading as a different user. Another valuable

function of ident ifying authorship is showing whether commands are being executed

by a computer program or a human. To do this a combination of timing and command

analysis has been shown to be effective see Alata et al. (2006).

3.10 Graphical Applications

There has been much less work that combines categorisation and graphical appli­

cations, although in recent years this has started to change. The main cause for the

lack of work is the difficulties in capturing the interactions. Pusara & Brodley (2004)

describe how mouse movements can be used to authenticate users. The work shown

by Garg et al. (2006) shows a capture system designed to capture user interactions

and then categorise them for the purpose of performing aut horship. This has since

been extended by Imsand & Hamilton (2007). The capture system described in this

work is inserted at the system level and captures all interactions with the computer.

3.11 The Missing Link

As has been described in this chapter, there is little work that combines text

categorisation and HCI with graphical applications. At first this may seem to be

because interactions are not text based. However, as shown earlier in this chapter text

CHAPTER 3. STREAM-BASED CATEGORISATION BACKGROUND 44

categorisation techniques have been used for a variety of different stream types. All

that is needed to recombine these two areas is a method for capturing the interactions

as a stream of symbols.

A Graphical Desktop application is, by definition, a program running on a Turing

machine. As a result, it will be in one of many fixed set of states. For graphical desk­

top applications, the main mechanism by which states are changed is by interactions

between the user and the application. These interactions are limited to input and

output devices connected to the computer. This leads to the conclusion that there

will be a language that describes the states of the application, where the transitions

between the states are defined by interactions between the application and the user.

If this language can be discovered then text categorisation algorithms can be applied.

This will result in the categorisation of a graphical desktop application. Although

the resultant stream is not a natural language, previous research has shown that text

categorisation techniques can successfully be applied to other character streams with

excellent results.

Chapter 4

Stream Based Text Categorisation

4.1 Introduction

As stated in the thesis statement, the aim of this thesis is to perform the task

of authorship identification on captured interactions between a user and a graphi­

cal application. In order to do this, it is necessary to understand the techniques

and tools used to undertake the authorship task in text categorisation. This chapter

is an extension of the work published in SIGIR'2003 Hunnisett & Teahan (2004).

This paper undertook an experimental analysis of several stream based text cate­

gorisation algorithms on a standard text corpus. It demonstrated that the optimum

compression model size was not the optimum model size for categorisation. This

chapter extends this work and also introduces four different protocols for performing

text categorisation (section 4.2). These four protocols are applicable to all stream

based text categorisation algorithms, not just the new algorithm the C measure. The

performance of these protocols are then examined (section 4.4.3).

4. 2 Protocols

In this section, four distinct protocols that can be used to perform text categori­

sation are discussed. Each of these protocols is applicable to any stream based text

categorisation algorithms (see section 3.5 in chapter 3). Three of the four protocols

45

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 46

have been identified and described by Marton et al. (2005). The three protocols that

they identify are named as:-

SMDL Standard Minimum Description Length. This will be refered to as

Protocol I.

ADML Approximate Description Length. This will be referred to as Protocol

II.

BCN Best Compression Neighbor. This will be referred to as Protocol III.

In addition to these protocols there is a fourth protocol. This protocol has not yet

been tested and is described in section 4.2.3. ADML and BCN allow the use of

algorithms without modification (i.e. off the shelf algorithms). As they are simpler

to test, there already exists a large body of reasearch in this area. The differences

between ADML and BCN are described below.

4.2.1 Concatenation verses Non Concatenation

It is usual to have more than one document from each different author for testing.

Previous research has looked at the difference between comparing each training file

exclusively with each testing file (BCN), and producing a single training file, by con­

catenating the training documents together (ADML). This single training document

is then tested against each testing document.

4.2.2 Static and Dynamic Models

As with the difference between BCN and ADML, there is a simple difference

between ADML and SMDL. The difference, in this case, is whether or not the model

is allowed to change during the testing phase. If the model is allowed to change

during the testing phase the model is said to be dynamic. A typical off the shelf

compression algorithm, such as gzip or bzip, will be dynamic, as this leads to much

better compression. Although the algorithm is the same for both static and dynamic

protocols, it requires much more work to produce a categorisation system using a

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 47

static model. The extra work involved is that of modifying an existing, off the shelf

dynamic algorithm to be static. Once the system has been developed, however , it

tends to perform better. (See the results in section 4.4.3.) A further benefit is that

the algorithm is either much faster and more memory efficient. ·

4.2.3 The Fourth P rotocol

The previous work, described above, clearly describes three protocols. As has

been alluded to earlier, there is a forth protocol. By drawing the protocols diagram­

matically, as shown in table 4.1 this fourth protocol can be clearly seen. This uses

non concatenated training models together with a stat ic model.

Table 4.1: The Four Protocols for Stream-based Text Categorisation.
I 11 Static I Dynamic I

Contcatonated Protocol I Protocol II
(SMDL) (AMDL)

Non Concatonated Protocol IV Protocol I I I
(BCN)

None of the previous research has clearly identified which of these protocols is

optimal. To date, protocol IV has not been tested.

4.2.4 Document Concatenation

The concatenation of documents can be carried out in three distinct ways. One

method requires concatenation to occur as a separate process, preceding the docu­

ments being processed by the algorithm. The algorithm then simply processes the

document as a single stream of text. There is, however , an inherent problem with

doing this. The boundary between document A and document B will introduce new

contexts. For example, if document A consists of the text "abra" and document B

consists of the text "cad", by concatenating A with B a training document , "abracad"

is produced. However , if the documents are concatenated in the other order , i.e.B

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 48

then A, the training document becomes "cadabran. The following tables (table 4.2

and table 4.3) show the contexts at order size three for documents A and B .

Table 4.2: Contexts at Order 3 for Document A

~
Table 4.3: Contexts at Order 3 for Document B

J cad I

Table 4.4: Contexts at Order 3 for Document A Concatenated with Document B
using Method One

abr
bra --cad

The second method of performing concatenation does not depend on the con­

catenation order . This is achieved by making the categorisation system able to load

multiple files as part of the same model.

Table 4.5: Correct Contexts at Order 3 for Document A Concatenated with Document
B.

abr
bra
cad

Table 4.5 shows the contexts that should be available from concatenating the

documents together. If the command line utility cat is used (method one) then the

additional contexts, highlighted in red in table 4.4, are added to the model. It is

obvious that the number of addit ional contexts introduced by this concatenation

process is related to the number of documents in the training set. The number of

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 49

new contexts will be n(k - 1) where k is the context size and n is the number of

documents in the training set.

If the modification of the categorisation system is not possible (for example, when

using an off the shelf compression algorithm) the additional contexts can be avoided

by the use of a special "Sentinel" symbol, as described below. This is the third

concatenation technique. By adding a marker to denote the end of the file (henceforth

referred to as a Sentinel Symbol) then the normal cat can be used. This is explored

in more detail below.

Again, using the same two documents t he Sentinel Symbol 0 can be appended.

Table 4.6: Contexts at order 3 for document A with a Sentinel Symbol
abr
bra
ra0

Table 4. 7: Contexts at Order 3 for Document B with a Sentinel Symbol

~
The introduction of the Sentinel Symbol has increased the size of the individual model

by one. However, as the size of the models is unimportant for text categorisation, this

is not a problem. Examining the table of contexts for the concatenated documents

(table 4.8) it can be seen that there are still two new contexts, r0c and 0ca. However,

both these contexts contain the Sentinel Symbol. When analysing a testing document ,

an analysis will cease when a Sentinel Symbol is encountered, so these extra contexts

will never be used for prediction; i.e. although they are present in t he model, they

will never be encountered and therefore are not a problem for categorisation.

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 50

Table 4.8: Contexts at Order 3 for Document A Concatenated with Document B
using cat with a Sentinel Symbol.

abr
bra
ra0

cad

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 51

4.3 C Measure

This section describes a new algorithm for performing text categorisation, called

the C Measure. This has been developed as part of this thesis, first published by

H unnisett & Teahan (2004).

The C Measure is a simple context based measure, based on the presence of

contexts within the training text. Only the maximum fixed order length is considered.

Like PPM, this is a character based technique. However, due to the simplicity of the

algorithm it is possible to produce a highly optimised implementation.

4.3.1 C M easure Algorithm

This section will describe the C Measure algorithm in det ail. As has already been

discussed, the C Measure is a context based algorithm with a fixed maximum order

size. The development of the C Measure algorithm took place using two thousand

Reuters News articles. The algorithm has two distinct st ages, as out lined below.

These are:- a) accumulating the count; b) the normalisation of the count.

Accumulating the Count

for context in testing document do

if context found in training document(s) then

count++

end if

end for

Norm alising the Count

Aft er all the contexts in the training document have been analysed, the count is

normalised . The normalisation process produces a score between zero and one. A

score of one indicates that every context in the testing document was found in the

training document(s) . A score of O indicates that non of the contexts in the testing

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 52

document were found in the training document(s). The normalisation processes takes

place as follows:-

The count of matching contexts is divided by the length of the testing document

minus the context size (as shown by the divisor in the formula below).

4.3.2 C Measure Formula

The formal definition of the C Measure is as follows:- let A be an alphabet con­

sisting of N symbols, and text string xn = x1 , x 2 , ... , Xn where xi EA.

For a training document dtrain and testing document dtest the C Measure at order k

of the testing document dtest is defined as:-
~i=Jdtest l F()

C = i-k i where
ldtestl - (k + 1)

Fi l if content Xi-k+l , Xi - k+2, ... , Xi is present in the training text, dtrain

- 0 otherwise.

4.3.3 Variations

Many variations of this algorithm have been tested and shown to be none optimal.

Some of the variations tested are:-

Minimum Occurrence This variation, rather than incrementing the count

by one if the context is found, only increments the count if the context occurs

at least n times in the training text. The normalisat ion is applied the same way

as for the standard C Measure.

Count Incrementation In this variation, the count is incremented by the

number of occurrences of the context in the training set. The normalisation of

this algorithm is more difficult than the other variation. The same normalisation

algorithm is used to test a document. The normalisation algorithm, however, no

longer produces a number between zero and one. This normalisation algorithm

does not take into account the size of the training set. However, when testing

the variation, the training sets were of similar size so this was not thought to be

a problem. Had the performance been equal to or greater than the C Measure,

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 53

a normalisat ion algorithm that takes into account the size of the training set

would have been developed.

4.4 Experimental Setting

Three different copora were used to evaluate the performance of the four protocols

and the C Measure. The C Measure algorithm was evaluated against the Reuters

corpus RCVl. The four protocols (discussed earlier , in sect ion 4.2.3) were evaluated

using two different corpora:- t he twenty Newsgroups collection; and Gutenberg texts.

These are the same corpora that were used by Marton et al. (2005). The same paper

also discusses some of the protocols described in this chapter .

4.4.1 R euters Corpus

The two thousand Reuters News articles REUTERS CORPUS (2000) were split

into training and testing sets. A data structure was constructed for each of the fifty

authors, based only on the training data. The data structure is suitable for use by

each of the algorithms, allowing all the algorithms to be tested simultaneously. After

the training is completed the data structure is frozen. Each of the testing data files

is then tested against each of the authors, using each algorithm. The best prediction

is picked for each author and checked against the correct answer. The following

algorithms were tested:-

C Count New algorithm explained in section 4.3

PPM D without Exclusions PPMD without exclusions.

PPM De with Exclusions PPMD with exclusions

Exclusions

Exclusions in PPMD provide a way of improving the compression by not encoding

probabilit ies for contexts that have already been seen. This leads to improvement in

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 54

compression in the region of 1-2 percent as shown in the original paper describing

PPM Cleary & Witten (1984).

Results

Table 4.9: Model size against Algorithm Reuters
Order PPMD PPMDe C Count

1 0.602 0.602 0.122
2 0.772 0.772 0.509
3 0.809 0.826 0.818
4 0.843 0.865 0.851
5 0.882 0.893 0.877
6 0.892 0.900 0.887
7 0.899 0 .906 0.895
8 0.896 0.906 0.898
9 0.891 0.904 0.904
10 0.891 0.902 0.908
12 0.888 0.901 0.907
12 0.886 0.896 0.910
13 0.884 0.891 0 .911

Table 4.9 shows the performance of C-Measure and PPM both with and without

exclusions. The protocol used is I. The highest performance for each protocol has

been highlighted in bold. The overall optimum performance is 91 percent. This is

produced by C-Measure at order 13. As can be seen in figure 4.1 , all three algorithms

start off with improved performance as the model size increases. Both of the PPM

models have a maximum at order 7.

Performance

The C count performs very well. At lower orders the categorisation is quite poor.

However , at higher orders the categorisation improves to surpass PPM without ex­

clusions. The difference in performance between PPM with and without exclusions

is very interesting, as it contradicts the assumption that better compression will lead

to better categorisation.

CHAPTER 4. STREAM BASED TEXT CATEGORISATION

Figure 4.1: Context Size against Categorisation Performance Reuters
1800 .-----.-------,-----,-- -,---,-----.-------,---,

'ppmresullsdata'
'ppmExesuttsdata'

'rresultSdata' 1600

1400

1200

1000

800

600

400

200 _,

0 '-----'----L------'------'---'-----'---_J_----'
0

Model Size

4.4.2 NewsGroups and Gutenberg

55

This section will evaluate the performance of the C Measure against PPM and R

Measure.

The two corpora will now be discussed in more detail:-

Twenty N ewsgroups This corpus consists of 8998 postings to Usenet dis­

cussion groups. They vary in size between 71K and hundreds of bytes. The

categories for this corpus are not the author but are the NewsGroup to which

the message was published. The categories are:-

• alt.atheism

• comp.graphics

• comp.os.ms-windows.misc

• comp.sys.ibm. pc.hardware

• comp.sys.mac.hardware

• comp. windows.x

• misc.forsale

• rec.autos

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 56

• rec.motorcycles

• rec.sport.baseball

• rec.sport.hockey

• sci.crypt

• sci.electronics

• sci.med

• sci.space

• soc.religion.christian

• talk. politics.guns

• talk.politics.mideast

• talk. politics.misc

• talk.religion.misc

Gutenberg This corpus is a small subset of the works available from the

Gutenberg project Gutenberg (1992) . Ten well known authors, each with four

books, were selected. This provides a corpus of forty documents. The docu­

ments are much larger than the NewsGroup corpus. The smallest is 19K and

the largest 1.05M.

The NewsGroup corpus was chosen because it allows the algorithms and protocols

to be evaluated with categories other than author.

R measure

The R measure was developed by Khmelev & Teahan (2003). Like the C measure,

it produces a normalised comparison between two documents and performs very well

at the task of authorship. The R measure and C measure are very closely related.

The R measure is the sum of the C measure at all orders Teahan et al. (2009).

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 57

4.4.3 Experimental Results

This section will examine the results of performing text categorisation using the

four protocols and four algorithms previously described.

N ews G roup Corpus

Table 4.10 shows the categorisation performance of the frequency based categoris­

ers , C Measure and R Measure, with the Ten Newsgroup corpus.

Table 4.10: Categorisation Accuracy for Twenty Newsgroups using Frequency-based
Methods.

Protocol
Method I II IV III

R-Measure 0.953 0 .951 0.866 0.874
C1 0.089 0.089 0.122 0.121
C2 0.378 0.371 0.310 0.252
C3 0.872 0.874 0.387 0.350
C4 0.920 0.920 0.517 0.490
C5 0.933 0.933 0.642 0.616
c6 0.939 0.937 0.734 0.717
C7 0.941 0.938 0.801 0.789
Cs 0.942 0.940 0.842 0.838
Cg 0.944 0.943 0.868 0.869
Cw 0.946 0.945 0.889 0.893
Cn 0.947 0.946 0.904 0.907
C12 0.948 0.947 0.909 0.915
C13 0.947 0.947 0.913 0.919
C14 0.946 0.946 0.914 0.922
C15 0.945 0.945 0.915 0.923
cl6 0.943 0.943 0.914 0.921
C17 0.941 0.943 0.913 0.920
C1s 0.939 0.939 0.911 0.919
C19 0.937 0.938 0.910 0.918
C20 0.935 0.936 0.909 0.917

The column labelled "method" shows the method used where Cn is used to indicate

the C measure with an order of n. The highest performing method for each protocol

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 58

has been highlighted in bold. R Measure under protocol I is 95.3 percent accurate.

This is the highest performace for the frequency-based measures. The highest C

measure accuracy, 94.8, is again using protocol I at order 12.

Table 4.11 shows the categorisation performance using PPM both with and with­

out exclusions.

Table 4.11: Categorisation Accuracy for Twenty Newsgroups using PPM Based Meth­
ods

Protocol
With Exclusions Without Exclusions

Maximum I II IV III I II IV III
Order Size

2 0.927 0.931 0.833 0.866 0.928 0.933 0.821 0 .848
3 0.947 0.952 0.829 0.515 0.946 0.951 0.836 0.509
4 0.951 0 .954 0.828 0.386 0.950 0.954 0.851 0.383
5 0.951 0.951 0.830 0.438 0.951 0.951 0.868 0.417
6 0.953 0.937 0.834 0.502 0.951 0.939 0.878 0.477
7 0 .953 0.906 0.836 0.557 0.952 0.906 0 .885 0.531

As can be seen from this table the performance of PPM is better than the

frequency-based methods for the Newsgroups corpus. PPM achieves overall accu­

racy of 95.4 percent using protocol I I.

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 59

Gutenberg Corpus

Table 4.12 shows the performance of the frequency based measures when perform­

ing text categorisation on the Gutenberg Corpus. As with Table 4.10, the method

column indicate the order size n in the form Cn and the highest performance for each

protocol has been highlighted in bold.

Table 4.12: Categorisation Accuracy for Gutenberg using Frequency-Based Methods
Protocol

Method I II III IV
R-Measure 0.525 0.450 0.475 0.475

Cn 0.575 0.475 0.475 0.425
C12 0.575 0.525 0.500 0.500
C13 0.600 0.550 0.550 0.525
C14 0.600 0.575 0.600 0.550
C15 0.625 0.575 0.600 0.600
cl6 0.625 0.625 0.625 0.600
C11 0.625 0.600 0.650 0.650
C1a 0.700 0.625 0.700 0.725
C19 0.725 0.725 0.700 0.700
C20 0.750 0.725 0.700 0.700
C21 0.775 0.750 0.750 0.775
C22 0.750 0.750 0.750 0.775
C23 0.750 0.750 0.775 0.775
C24 0.750 0 .775 0.750 0.775
C25 0.750 0 .775 0.750 0.775
c26 0.750 0.750 0.750 0.775
C21 0.750 0.750 0.700 0.775
C2a 0.725 0.750 0.650 0.725
C29 0.725 0.700 0.600 0.700
C30 0.625 0.650 0.575 0.650

In this experiment, the same maximum accuracy, 77.5 percent was achieved with

each protocol by using the C Measure. Protocol IV had the same maximum perfor­

mance for order 21 - 27. Of the other protocols, two (I and I I I) each had a single

maximum at different order sizes. Protocol I I had two maximum performances at

orders 24 and 25.

CHAPTER 4. STREAM BASED TEXT CATEGORISATION 60

Table 4.13 shows the performance of the PPM based algorithms on the Gutenberg

Corpus. The highest overall performance is 95.0 percent. This is achieved using

protocol I I and order three. Exclusions had no effect on the performance.

Table 4.13: Categorisation accuracy for Gutenberg using PPM-based methods
Protocol

With Exclusions Without Exclusions
Maximum I II III IV I II III IV
Order Size

2 0.750 0.750 0.575 0.600 0.725 0.750 0.550 0.575
3 0.750 0 .950 0.550 0.875 0.675 0.950 0 .550 0.875
4 0 .750 0.900 0.575 0.900 0.650 0.900 0.500 0.825
5 0.700 0.900 0.575 0.925 0.575 0.875 0.525 0.875
6 0.700 0.875 0.625 0.575 0.600 0.900 0.525 0.450
7 0.700 0.425 0 .625 0.275 0.625 0.350 0.525 0.225

4.5 Conclusions

In this chapter a new algorithm called the C measure has been introduced. This

algorithm has been shown to have the best performance at the authorship task for the

Reuters News corpus. The C measure, however, did not beat the traditional approach

of PPM for either the Gutenberg or News Groups corpora.

In addition to introducing a new algorithm, this chapter also described a new

protocol for performing text categorisation. This new protocol was evaluated on the

Gutenberg and News Group corpora.

The evaluation has shown that there is not a single best algorithm for performing

text categorisation. It is clear, however, that the performance of the PPM algorithm

is excellent across all of the corpora tested.

Chapter 5

Capturing User Interaction

Streams

5.1 Introduction

As described in the thesis statement 1.2, the use of a graphical application such as

a calculator can be modelled as a stream of symbols. In this chapter a novel method

of capturing Human Computer Interaction as a stream of symbols will be discussed.

In order to do this, an underst anding of the anatomy of a modern desktop application

is required. This will be described in section 5.2.

Following this , t he design objectives for capturing a stream of symbols will be

explored (section 5.3). Technical objectives will also be out lined in section 5.3.2.

As part of the process of developing the methodology, it is necessary to define the

new terminology that will be used in the remainder this thesis (section 5.4). Finally,

section 5.5 explores the definition of a User Interaction Stream as a language and

considers the implications of this for a simple application.

5.2 The Anatomy of a Desktop Application

This research has developed a method for capturing meaningful user interactions.

Towards an out line of this development , it will be useful to discuss the way a user

61

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 62

interacts with a graphical interface.

Modern operating systems provide programmers with a collection of graphical

widgets, such as buttons, labels and other graphical components, for example, radio

buttons, text fields, labels and frames. These allow a programmer to build appli­

cations that abstract the user from the technical operations. These widgets also

allows a programmer to build applications that resemble interfaces found in the real

world. This reduces the amount of training and knowledge required to operate the

application as discussed in chapter 2.

A typical example of a modern graphical application is the virtual calculator, such

as the one shown in figure 5.1. This is provided by most operating systems. This

interface closely matches the appearance of a real desktop calculator. Someone who

has used a desktop calculator will be immediately familiar with the virtual calculator

and therefore be able to use it confidently to perform tasks. The user interacts with

the application by moving the mouse over buttons, clicking and releasing the mouse

and pressings keys on the keyboard. These actions represent all the interactions

between a user and an application. When a user interacts with an application such as

the calculator, the interaction takes place with a widget. For example, when clicking

the D, the interaction is a button click, and the widget is the Dutton. At

first glance it might appear that a user can also drag objects to interact with them,

but a drag consists of a mouse move, after a mouse button down but before a mouse

button up, and so is already encapsulated by the actions already listed.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS

Figure 5.1: A Typical Graphical User Interface.

n 0 n Calculator

0

M- M~

* C!J =="""
8 g

6

63

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 64

The pallet shown in figure 5.2 is an example of a small collection of the basic

graphical widgets available to a Java developer.

Figure 5.2: Basic Graphical Widgets
: Palette

B Swing Containers

D Panel El Tabbed Pane

l:J Scroll Pane EQ: Tool Bar

EJ Internal Frame Ill Layered Pane

B Swing Controls

1o1->1 Label

a - Check Box

CE Combo Box

E] Text Area

~ Progress Bar

cm Spinner

ffil Editor Pane

1±1 Swing Menus
1±1 Swing Windows
1±1 AWT
B Beans

• Choose Bean

Ci] Button

® - Radio Button

~ List

ffiTit Scroll Bar

r:::i Formatted Field

H Separator

§:I Tree

D► X

]{ Split Pane

!EJ Desktop Pane

Giil Toggle Button

i = Button Group

□ Text Field

CO: Slider

lilli Password Field

IT] Text Pane

~ Table

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 65

5.3 Design Objectives for Developing an Interac­

tion Capturing System

One of the objectives of this thesis is to develop a method of capturing the inter­

actions between a user and a graphical desktop application as a stream of symbols.

(1.2). As shown in section 3.11, there is a need to develop this system as it does

not currently exist. Ideally, the overall design objective for an interaction capturing

system should be that it is both meaningful and unobtrusive. In order to meet these

aims, a number of general and technical objectives must be considered. These are

outlined below.

5 .3.1 General Objectives

The general objectives of producing a quality interaction capturing system are:­

consistency, meaningful interaction and minimal user impact. These are each outlined

in detail below.

Consistency

The product of an interaction capturing system will be a stream of symbols that

represent the captured interactions. This stream will hereafter be referred to as the

User Interaction Stream and will be fully defined in section 5.4.5. The User Interaction

Streams should be consistent. They will be said to be consistent if the same User

Interaction Stream is produced by any user performing the same series of actions

regardless of:

Application Screen Size Resizing the application should have no effect.

Screen Location Repositioning the application should have no effect, in a

similar way to the way a document written by an author is not effected by

where the author was sit ting or what the author used in order to write the

document.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 66

Physical Location Running the same application on a different computer

should produce the same User Interaction Stream.

Restarting Restarting the application should always produce the same User

Interaction Stream for the same series of interactions.

Version Different versions of the application with t he same widgets should

produce the same User Interaction Stream. This can be illustrated as follows:-

Given a basic calculator (figure 5.1) a newer version of the same calculator that

has additional features, e.g. the inclusion of scientific functions (sin cos tan etc.)

will still produce the same stream for operations when a user only interacts with

the basic widgets (i.e. those that were already present in the original version).

Meaningful Interaction

The interaction capture system must capture meaningful interactions between the

user and the graphical desktop application. In this context, the term meaningful

refers to any interaction that changes the state of the application that is being ob­

served. Although it would be possible to capture all interactions between a user and

an application, this task would be overwhelming. Capturing all interactions would

include the position of every mouse movement and every key press. It would also

include a video stream of where the user was looking. Even excluding the capture

of eye movement, this would produce a large volume of data, most of it unhelpful.

A useful analogy would be like trying to capture every stroke of a pen made when

writing a single letter of the alphabet.

To address this difficulty, only meaningful interactions will be captured. A useful

definition of a meaningful interaction is "one that changes the state of the applica­

tion." Using this definition, only actions that meet this criteria will be recorded.

For example, moving the mouse pointer around within a GUI component, such as

a button, does not change the state of the application or indicates intent. However

when the mouse leaves that component, the state is changed. It is this action that

will be regarded as meaningful and will therefore be recorded.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 67

User Impact

Another design objective is to avoid affecting the user 's experience when using

the application. The two main considerations for this are:-

Speed The application should not appear to run more slowly when the inter­

action capture system is running.

Visual Appearance The interaction capture system should not alter the vi­

sual appearance of the application in any way.

5.3.2 Technical Objectives

In addition to the above general objectives, there are technical design objectives

to consider:

Reusable The same interaction capture system should be applicable to any

of the graphical applications.

Adaptable Changing the application should not be made more difficult by

the inclusion of the interaction capture system.

Maintenance The application should still be maintainable by the original

authors despite the inclusion of an interaction capture system.

Stable The introduction on the interaction capture system should not intro­

duce addit ional instability into the application.

At present, there are no effective methods for capturing the interactions between

a user and a graphical desktop application as a stream of symbols that meet all of

the objectives laid out above.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 68

5 .4 Definitions of New Terminology

5 .4.1 D efinition of Target Symbols

A simple definition of a Target Symbol is "a unique symbol assigned to an indi­

vidual widget in order to identify which widget is the target of an interaction.,,

By looking at the way Target Symbols are assigned to the calculator interface

(shown in figure 5.1 in section 5.2) a more complete understanding of the meaning

and generation of a Target Symbol can be reached. As has been discussed previously,

the interface of the calculator is made up of a frame containing a label widget and

a number of button widgets. A unique symbol, called the Target Symbol, will be

assigned to each of these widgets. The symbol is a property of the widget. As the

symbol represents the widget and not its relative or absolute position, moving, resizing

or even rearranging the layout of widgets will not alter the Target Symbol.

The calculator shown in figure 5.3 shows the Target Symbols attached to a number

of widgets. The naming convention for the Target Symbols is explained later, in

section 5.4.1.

In this instance, Target Symbol B3 refers to the button widget 0. The

Target Symbol Ll refers to the label and the Target Symbol F l refers to the ent ire

frame.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 69

Figure 5.3: Example of Target Symbols Assigned to the Interface in Figure 5.1

"
0

M-

+ X

9

6 +

3

-

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 70

Table 5.1 shows the complete Target Symbol list for all the button widgets for the

calculator application shown in figure 5.1.

Table 5.1: Widget Symbols
Button Text I Symbol II Button Text I Symbol I

~ Bl ~ B2

0 B3 ~ B4

CD B5 GJ B6

GJ B7 0 B8

D B9 0 B10

0 Bll D B12

IT]
B13 DJ B14

CD B15 GJ B16

D B17 CD B18

0 B19 □ B20

[0) D B21 B22

Although the fundamental property of each symbol is its uniqueness, by encoding

an additional piece of information in each symbol - e.g. prefixing all buttons with

the symbol B - the Target Symbol will thereby identify the class of widget. Again,

referring back to the calculator example, all buttons have been given the Target

Symbol in the form Bn, where n is a counter from 1 to the total number of buttons

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 71

in the application and B denotes the widget is a button. There is no additional

information encoded in the number. Similarly, the frame has t he symbol Fl, where

the F prefix denotes that it is a frame widget and one indicates that this is the first

frame.

5.4.2 Conventions

As a convention, symbols are contained within a box. For example I KP I represents

a single Action Event symbol. When two symbols are concatenated together to form

and Action Event, the box will contain both the Target Symbol and the Action

Symbol delimited by a "," . For example [KP,Fl [contains combined symbols: The

Action Symbol I KP I and the Target Symbol [EI].

5.4.3 Definition of an Action Symbol

An Action Symbol is a symbol, with or without a value, used to denote a unique

action performed by a user on an application in order to capture the full meaning of

the interaction.

In this definition, a symbol is used to identify the class of the action. For example,

I KP I is the symbol to denote that a user has pressed a key down and NI R denotes

that the user has released the mouse button. Given that there are any number of

keys that a user could press, t he symbol alone does not capture the full meaning of

the user's interaction. By assigning a value to the symbol e.g. d when the key d on

the keyboard is pressed, or h where t he user has pressed the h key, the full meaning

of the interaction is captured.

As can be seen from table 5.2, Action Symbols provide a simple method to record

an action. So I KPf I I KUf I describes the action of the user pressing and releasing the

f key on a keyboard.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 72

Table 5.2: Action Symbols
I Symbol I Value I Action Description I

MM Mouse Moved
MC button number Mouse Clicked.
MR button number Mouse Released.
KD Key Value Key Pressed.
KU Key Value Key Released.

5.4.4 Definition of an Action Event

An Action Event is the combination of a Target Symbol and an Action Symbol.

From this simple definition, it can be seen that an Action Event encodes the action

the user performed and the widget that the user interacted with. The Target Symbol

provides the context for the action which is encoded in the Action Symbol. Together ,

this combination captures the meaning of the interaction between the user and the

application. An example of an Action Event is: I MC1 ,B18 I. If this is broken down it

can be seen that this Action Event is made up of the Action Symbol/ MCl [(Mouse

button one click) and the Target Symbol (B18) (CTI). i.e. the user clicked

Mouse Button 1 on the button CTI.
5.4.5 D efinition of a User Interaction Stream

A User Interaction Stream is a stream of Action Events that contains enough

informat ion for the all interactions made by the user to be recreated in the same

order that they were produced.

Below are explanations of two contrasting examples of User Interactions Streams.

Each of these examples show a user performing the same operation on the calculator

application (figure 5.1). In each example the user performs the operation 5 +2 = but

using a different interaction technique. By examining these two operations, it can be

seen how different and distinct User Interaction Streams are produced:

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 73

5.4.6 Example One: Using only the Mouse to Perform the

Operation 5 + 2 =

In this example, the User Interaction Stream generated by performing the opera­

tion 5 + 2 = using the mouse is examined. It can be seen that this User Interaction

Stream is made up of twenty nine Action Events. Each Action Event is composed of

a Target Symbol and an Action Symbol. The first Action Event to make up the User

Interaction Stream is denoted as I MM,Fl I, where I MM I, the Action Symbol, refers to

a mouse movement and I Fl I refers to the Target Symbol Frame one. The meaning of

I MM,Fl I can be seen to be "mouse enters the frame" (line one in table 5.3). Referring

to table 5.3, it is possible to follow each Action Event sequentially.

A ction

Table 5.3: A User Performing the Operation 2 + 5

Using the Mouse

M eaning User In-
Event teraction

N umber
IMM,Fl ! Mouse enters the frame. 1

Mouse leaves frame and moves over button (
0] !MM,B21 j 2

Mouse leaves button [
0

)and moves over frame. IMM,Fl ! - 3

!MM,B18j Mouse leaves frame and moves over button 0. 4

I MCl,B18 l Mouse button 1 is clicked on button 0. 5

IMRl ,B18 ! Mouse button 1 is released on button 0. 6

jMM,Fl! Mouse leaves button 0and moves over frame. 7

Continued on next page

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 74

Table 5.3 - continued from previous p age

Action Meaning User In-
Event teraction

N umber

IMM,Bl9I Mouse leaves frame and moves over button 0. 8

IMM,Fll 0 Mouse leaves button and moves over frame. 9

IMM,Bl5I Mouse leaves frame and moves over button 0. 10

IMM,Fl l Mouse leaves button 0and moves over frame. 11

IMM,Bl6 I Mouse leaves frame and moves over button 8 . 12

IMC1,Bl 6 I Mouse button 1 is clicked on button 8 . 13

IMR1,Bl 6I Mouse button 1 is released on button 8. 14

IMM,Fll Mouse leaves button 8and moves over frame. 15

/MM,Bl 5I Mouse leaves frame and moves over button 0 . 16

IMM,Fl l Mouse leaves button 0and moves over frame. 17

IMM,Bl 4I Mouse leaves frame and moves over button 0. 18

/ MC1,Bl4 I Mouse button 1 is clicked on button CJ 19

/MR1,Bl 4I Mouse button 1 is released on button CJ 20

IMM,Fll Mouse leaves button □and moves over frame. 22

Continued on next page

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 75

Table 5.3 - continued from previous page

A ction Meaning User In-

Event teraction

Number

IMM,Bl5I Mouse leaves frame and moves over button D. 23

IMM,Fll Mouse leaves button Dand moves over frame. 24

IMM,Bl9I Mouse leaves frame and moves over button D. 25

IMM,Fll Mouse leaves button Dand moves over frame. 26

IMM,B20 1 Mouse leaves frame and moves over button□. 27

IMC1,Bl4I Mouse button I is clicked on button □ 28

IMR1 ,Bl4I Mouse button I is released on button□. 29

Another way to demonstrate the path taken by the mouse to generate the User

Interaction Stream whilst performing the operation 5 + 2 = using only the mouse can

be seen in figure 5.4.

CHAPTER 5. CAPTURING USER INTERACTI ON STREAMS 76

Figure 5.4: The Mouse Path Taken When Performing the Operation 5 + 2 = Using
Only the Mouse.

n Calculator CaJculator

0 0

MC ~0 MR:

(: GJGJ X

r s g -

4 5 -- +

. =

(a) Moving from O to 2. (b) Moving from 2 to + .

Calculator n
0 0

~[2] M- M~

C ::t • X

8 9 -

(c) Moving from + to 5. (d) Moving from 5 to=.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 77

Here, the user starts with the mouse off screen. In figure 5.5(a) the user moves

to [~J This sequence generates User Interactions numbered one to four - see

table 5.3. The user then presses and releases mouse button 1. This corresponds to

User Interactions five and six. Figure 5.5(b) shows the user moving the mouse from

0over to w. This corresponds to User Interactions numbered from seven

to twelve. The user then clicks 0, User Interactions thirteen and fourteen.

Figure 5.5(c) shows the user moving the mouse from wto □and then

clicking the button. This corresponds to User Interactions numbered fifteen to twenty.

Finally, figure 5.5(d) shows the passage of the mouse from □to the □and
the user then clicking □. These are the remaining User Interactions.

5.4.7 Example Two: Using only the Keyboard to P erform

the Operation 5 + 2 =

In this example, the User Interaction Stream generated by performing the opera­

tion 5 + 2 = using only the keyboard is examined. It is shown to be made up of four

Action Events. Each Action Event is composed of a Target Symbol and an Action

Symbol, so that the first Action Event to make up the User Interaction Stream is

denoted as I KP2,Fl j, where I KP2 I, the Action Symbol, refers to a keyboard press of

the key 2 and [EI] refers to the Target Symbol Frame one. The meaning of I KP2,Fl I
can be seen to be as follows. The user presses the button marked 2 on the keyboard

(line one in table 5.4). Using table 5.4, it is possible to follow each Action Event se­

quentially. In this example, the User Interaction Stream contains four Action Events.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 78

Table 5.4: A User Performing the Operation 2 + 5 = Using only the Keyboard.
Action Event / Meaning / User Interaction Number /

KP2Fl / Press keyboard button 2 / 1 /

KP2Fl / Press keyboard button + / 2 /

KP2Fl / Press keyboard button 5 / 3 /

KP2Fl / Press keyboard button enter / 4 I

5.5 Language Properties of User Interaction Streams

In this section, the formal definition of a User Interaction Stream as a language

will be described. As has already been defined, a User Interaction Stream consists of

a series of Action Events. Each Action Event is composed of a Target Symbol and

an Action Symbol. This can be expressed formally as follows:- A User Interaction

Stream is a stream of symbols S in the language L. The stream of symbols S will be

composed of letters from the alphabet below:-

CJ = {TargetSymbols} +
a = { ActionSymbols}

The grammar for the language Lis defined as:­

L = {aCJ}*

This grammar, although complete, does not entirely restrict the possible streams.

Certain Action Events can never follow others. For example, it is not possible to

have the Action Event "Mouse Button l released" on button one without first having

a ' "mouse button l click" Action Event on button one. Therefore, there is a more

restrictive grammar that takes this into account. This is discussed in more detail

below.

5.5.1 The Grammar Of a Limited Application

This section fully defines the grammar of a limited application. The application

that will be used to define the grammar consists of a frame and two buttons. The

application can be seen in figure 5.5.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 79

Figure 5.5: Simple Application Consisting of Two Buttons and a Frame

(Butto,n 1)

(Butto,n 2)

Interactions

In order to limit the grammar for illustrative purposes within this section, the

interactions have been limited to the following:-

Mouse Movement The user can move the mouse from the frame to button

one or button two and from button one or button two to frame one.

Mouse Pressed The user can press a mouse button. (For simplicity, this

example will only have one mouse button available.)

Mouse Released A mouse button that was previously pressed is released.

Key Pressed The user presses a key on the keyboard. (Again, for simplicity,

t his example will only have a single key.)

Key Released A key that was previously pressed is released.

States

By considering the effect of each of the interactions above with the application

shown in figure 5.5, a list of all the possible states can be generated. This list of

states is shown in table 5.5.

Finite State Automata

Using the application shown in figure 5.5, the limited set of interactions can be

used to move between states of a finite state automata. The states are described

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 80

Table 5.5: Possible States of the Simple Application.
I State I Description

S1 Mouse over button one. Key and button pressed.
S2 Mouse over button one. Mouse pressed, no keys pressed.
S3 Mouse over button one. No mouse buttons or Keys pressed.
S4 Mouse over button one. Key pressed, no mouse buttons pressed
S5 Mouse over frame one. Mouse pressed, no keys pressed.
s6 Mouse over frame one. No mouse buttons or Keys pressed.
S7 Mouse over frame one. Key pressed, no mouse buttons pressed
Ss Mouse over button two. Key and button pressed.
S9 Mouse over button two. Mouse pressed, no keys pressed.

S10 Mouse over button two. No mouse buttons or Keys pressed.
Su Mouse over button two. Key pressed, no mouse buttons pressed
S12 Mouse over button two. Key and button pressed.

in the section 5.5.1. Figure 5.6 shows the complete finite state automata. Moving

between states occurs only on user input. The label associated with a mouse move

shows the end destination of a mouse move This finite state automata can be used to

define the language of the simple application.

This finite state automata has been constructed for a very simple application and

has been limited to a small number of interactions.

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 81

Figure 5.6: Finite State Automata of a Simple Application with Only Two But tons
and a Frame.

, ,
I ,

,
, , ---,

< Mouse Move

• Key Press

◄----Key Release

... <-- Mouse Button Press

◄ ----Mouse Button Release

------------ .. _

.... ------- ---

............
\

\
\

\
\

\
\

\

, , , ,

\
\

' \
' ' ' ' '

I
I

I
I , , , , ,

, , , , ,-
--- , ,,,'

CHAPTER 5. CAPTURING USER INTERACTION STREAMS 82

Example of User Interaction Streams Language

The interactions with the application shown in figure 5.5 can be captured as a

User Interaction Stream. This stream will be restricted by a grammar. The defini­

tion of this grammar is given below. As the interactions have been restricted, the

Action Symbols are limited to the following (rather than the full set described in

section 5.4.3):-

MM Mouse moved.

MP Mouse button pressed.

MR Mouse button released.

The Target Symbols are:

Fl Frame one.

Bl Button one.

B2 Button two.

The state t ransition table below describes the valid transitions from each of the states.

There is no specific starting or end states. The start states would be where the

application launches. That is, essentially all states can be considered as potential

start states. As there is no way to terminate the program there is no end state.

The state table can be converted to a regular grammar using one of the standard

algorithms however valid start and end states would have to be defined.

S1 -, S,dS2ISs

S2 -t S5/S3IS1

S3 -, S5/S2/S4

S4 -, S3/S6/S1

S5 -t Ss/S61S2 /Sg

S6 -t S5/S3/S7/S10

S7-, S6 /S4/Ss/S11

Ss-, S1/S5/S7/S12

CHAPTER 5. CAPTURING USER INTERACTION STREAMS

Sg ---+ S5IS10IS12
S10---+ S5jS9IS11
Sn ---+ S1IS10IS12
S12---+ SslS9IS11

5.6 Summary

83

A novel method of capturing Human Computer Interaction as a stream of symbols

has been described. A typical desktop application and the components that are

assembled to form the interface was used to demonstrate the principles. A detailed

exploration of the design objectives for capturing a stream of symbols was outlined.

As part of this, t he importance of capturing a meaningful interaction was discussed

and a definition of meaningful was given. A definition of the technical objectives

was also given. Towards a common understanding of terminology, new terminology

used throughout this thesis was introduced and defined. Finally, the definition of a

User Interaction Stream as a language was explored. The exploration included an

example of a full language for a simple application. From this an implementation can

be developed and explained.

Chapter 6

Implementation of an Interaction

Capture System

This chapter is concerned with the implementation of an interaction capture sys­

tem that fulfills the design objectives, as laid out in the previous chapter. The design

objectives describe the properties of the interaction capture system. They are not

concerned with the practical implementation of the system. In order to implement

a system to capture interactions, a language and a GUI platform must be chosen.

Once this choice has been made, methodologies to capture the interactions using this

language and framework can be evaluated. A methodology can then be chosen and

implemented.

6.1 Choosing a Language and Framework

There are a vast array of different languages and graphical frameworks in exis­

tence. As this thesis is concerned with the capture of interactions between a user and

a graphical desktop application, clearly the language chosen should facilitate the pro­

duction of such an application. One of the key technical objectives (see section 5.3.2)

is that the capture system will have no adverse effects on the stability of the ap­

plication. This requirement encourages limiting the choice of language to strongly

typed, safe languages. As the interaction capture system will be generic, picking a

84

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 85

commonly used language is desirable. This means there will then be a variety of ap­

plications available for use in later evaluations. It will also be advantageous to have

access to the source code for the application, as this will simplify the production of

an interaction capture system. In addition to having a wide variety of applications, it

will be beneficial for the applications to use a common GUI framework. By capturing

interactions with a common GUI framework, a large number of different applications

can then be evaluated.

J ava fulfills all these requirements. It is a safe, strongly typed language. There is

an active development community that release many applications with source code.

Java desktop applications mostly use the Java Swing framework to provide a desktop

interface 1
. By building an interaction capture system that captures interactions with

the Swing toolkit, it will then be possible to capture interactions with many different

kinds of applications. Therefore, the combination of Java and the Swing framework

have been selected as the tools to be used throughout this research.

6.2 Evaluating M ethodologies for Capturing In­

teractions

As discussed in section 5.4.5, the Action Events that make up a User Interaction

St ream are composed of an Action Symbol (5.4.3) and a Target Symbol (5.4.1). In

order to produce t he User Interaction Stream, a method for capturing each of these

symbols must be identified. This is discussed in the following sections.

6 .2.1 Evaluating M ethodologies for Identifying the Target

Symbol

The Target Symbol described in section 5.4.1, is used to ident ify the graphical

widget that a user performs an interaction with. This section will evaluate three

different potential techniques for identifying the Target Symbol with Java Swing
1Some applications are written using SWT Eclipse Foundation (2008b).

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 86

applications. Each technique will be outlined and the strengths and weaknesses of

the technique will be considered.

Technique One - Modifying the Java Virtual Machine

This technique involves modifying the Java Virtual Machine (JVM) in order to

identify the Target Symbol of the graphical objects. The Sun Java Virtual Machine

(JVM) keeps the address of every object allocated in the heap. This is used by projects

such as the Java Heap Analysis Tool SUN (2006) to uniquely identify objects within

a heap dump. The unique identifiers are referred to as objectID's. As identified

in the design objectives (chapter 5) , consistency is a key goal. In order to use the

objectID to identify the Target Symbol, and for the resultant stream to be consistent,

the JVM would need to be modified. The modification would need to ensure that

different invocations of the JVM were assigned to the same objectID each time the

same graphical widget object was instantiated. A significant benefit of this technique

would be that no changes would be needed to the source code of the application.

There are, however, a number of significant drawbacks to choosing this technique.

The work involved in modification would be tantamount to maintaining a separate

fork of a JVM. This would be difficult to complete and keep up to date, as new versions

of the JVM are released regularly. There is also the potential for the introduction of

new, difficult-to-fix bugs within the JVM.

Technique Two - Extending the Swing Framework

A toolkit that extends each Java Swing Class to contain a Target Symbol could be

developed. This would require re-writing every Java application in order to use the

new toolkit. The advantages of this technique are that the User Interaction Streams

would satisfy the requirement for consistency, as outlined in the design requirements

(chapter 5). Also, the risk of introducing additional instabilities into the application

would be minimal.

However, there are a number of disadvantages to this technique. Access to the

source code would be required. Also, the source code would be altered in many places,

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 87

although the task of altering the code could be automated, using a similar technique

to the one described later in section 6.4.1. Each Primitive Swing component would

need to be extended.

Technique Three - Using JavaHelp

Java provides a system to enable developers to associate help with a GUI widget.

This is called JavaHelp (Lewis 2000). It is used to associate context specific help

with individual graphical widgets. The J avaHelp API is designed to provide context

sensitive help to end users. This is accessed by a user pressing the Fl key on their

keyboard, then clicking on a graphical widget. The help system then loads a help file

with the specific help topic about the widget that they have clicked on. The J avaHelp

API is designed so that the help can be written by a documentation writer with little

or no J ava application development skills. The application developer simply has to

assign a special tag to each widget that has a help description.

The advantages of this technique are many. J avaHelp system tags are persistent

across both multiple invocations of the same program on different machines and

persistent across different versions of the same application. This satisfies the design

objective to produce consistent streams. Using JavaHelp is very safe. For example,

if an object does not have an ID assigned, then only the Target Symbol information

would be lost. The J avaHelp API is already extensively used and well understood.

There are, however, some disadvantages. If an application already takes advantage

of the JavaHelp, it will have tags already assigned to some, though not necessarily

all, of the graphical widgets. It is, however, possible to work around this problem

relatively easily. As with extending the Swing framework, access to the source code

would be required and the code could then be altered. The code alterations could

then be automated. The alterations would be relatively minor, as they would consist

only of adding a few lines of code. Another potential problem is t hat there is no

requirement for each object to have a unique J avaHelp ID or helpID.

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 88

6.2.2 Evaluating Methodologies for Identifying the Action

Symbol

The Action Symbol, described in section 5.4.3, is used to identify the type of

interaction that a user has performed. This section will evaluate a technique for

identifying the Action Symbol with a Java Swing application. The Java Swing Toolkit

processes interactions by passing them through the event queue Java Event Queue

AP! (2004). To capture events and turn them into an Action Symbol, a component

that converts the interaction into an Action Symbol can be pushed onto the top of

this queue. All events will then be converted into Action Symbols by this component,

before then being handled by the application. The only drawback of this approach

is that interactions with modal windows would not be captured. A modal window

is one that does not permit the user to enter data into any other window until the

window has been dismissed. A modal dialogue is typically used to display warnings.

6.3 Choosing a Methodology

The choice of methodology for capturing the Action Symbol is unambiguous, as

the method described above (6.2.2) satisfies all the requirements.

The choice of methodology for capturing the Target Symbol, however, is less clear

cut. Altering the JVM can be immediately dismissed, due to the risks involved. This

narrows the choice to either using JavaHelp or extending the Swing Framework. As

both of these techniques alter the source code of the application, it will be necessary

to examine the alterations made to the source code using both methods and then

asses the impact of these changes to the original source code.

6.3.1 Assessing Source Code Changes

Listing 6.1 shows the code used to create a J ava button.

Listing 6.1: Button Creation Code

1 import j avax. swing. JButton;

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM

public c l ass ButtonCode

3 {

JButton myButton = new JButton ();

5 }

89

The code shown in listing 6.2 shows how the code from the above listing would

have to be changed to use the extension of the Swing Framework.

Listing 6.2: Button Creation Using Extended Toolkit

1 import j avax. swing. JButton;

public clas s ButtonCode

3 {

JButton myButton = new ExtendedJButton ();

5 }

Listing 6.3 shows the modification needed to listing 6.1 to use the JavaHelp system.

Listing 6.3: Button Creation Using JavaHelp

1 import javax.help.CSH;

import javax . swing . JButton;

3 public class ButtonExample

{

s publc ButtonExample()

{

r Jbutton myButton = new JButton ();

CSH. setHelpID (myButton, 11 jb01");

9 }

}

6.3.2 Conclusion

From looking at the code differences between listing 6.1 and the altered versions,

it is clear that the alterations needed to use the JavaHelp system (listing 6.3) are less

invasive than those needed to use the Swing Framework extension (listing 6.2). The

code modification consists only of the addition of a line to the original code rather

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 90

than the modification of an existing line. The new line that is added is simple to track

with source code management systems and so makes spotting the additions simpler.

The additional simplicity of the modifications to the code needed to use JavaHelp

more than outweighs the work required to avoid other problems. Therefore using

JavaHelp was chosen for this research.

6.4 Implementing the Methodology

This section demonstrates the chosen methodology for capturing and recording

User Interaction Streams. The method for associating the Target Symbol with the

graphical widget will be outlined in section 6.4.1. Section 6.4.2 will describe an au­

tomated tool that can be used to perform this association. A method to enforce

uniqueness to each association will be discussed in section 6.4.3, followed by a de­

scription of capturing Interaction Symbols (section 6.4.4). The final , section 6.4.5,

details the logging process.

6.4.1 Associating the Target Sy mbols

As has already been discussed, associating the Target Symbols with graphical

widgets was facilitated by the JavaHelp system. To use JavaHelp for this t ask, each

time a graphical widget is instantiated it must be registered with the JavaHelp system

and a unique Target Symbol assigned. The standard J avaHelp has no enforcement

that helpID's are unique. The designated Target Symbol is set as the helplD of the

graphical widget. As unique Target Symbols are necessary to produce User Interac­

tion Streams, a mechanism for ensuring the helpID's are unique was created. This is

described in detail in section 6.4.3.

The assigning of a helpID (i.e. Target Symbol) to a graphical widget takes place

at the source code level. The source code for a J ava application is scanned and

a Target Symbol assigned to each GUI component as it is created. The scanning

and assignments can be done manually or in an automated fashion. The scanner,

either human or computer , looks for the creation of new Java objects that extend an

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 91

AWT component. The example, in Listing 6.4, shows the creation of a new graphical

widget, a JButton.

Listing 6.4: Button Creation Code

import j avax. swing. JButton;

2 public class ButtonCode

{

JButton myButton new JButton ();

}

When a line like the listing is found, a new line is added that assigns a Target to the

graphical component. This is shown in the next code example:

Listing 6.5: But ton Creation Using JavaHelp

1 import j avax. h e lp .CSH ;

import j avax. swing . JButton ;

3 public class ButtonExample

{

s publc ButtonExa mple()

{

1 Jbutton myButton = new JButton ();

CSH. setHelpID (myButton , "jb01");

9 }

}

The Code above registers the myButton graphical widget with the J avaHelp system

and sets the helpID jb01.

For a large graphical application, the process of associating a Target Symbol

with each graphical widget would be very time consuming. There is also a huge

potential for error, for example, missing a widget creation, as the creation code may

well be buried within the application logic. It is non trivial to check that every

component has been associated with a Target Symbol. The reason this is difficult is

that if a component does not have a helpID, the J avaHelp system will recurse up the

component stack to return the helpID of the first component with a helpID assigned.

The following is an example of recursion:-

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 92

A JButton is added to a panel, which is then added to a JFrame. The JFrame

has a helpID assigned to it but no helpID is assigned to any of the other components.

When the helpID of the button is requested, JavaHelp will fail to find a helpID for

the button. JavaHelp will then request the helpID of the panel (as it is the button's

parent). As the panel also has no helpID the call is passed on to the panel's parent ,

the frame. The frame has a helpID assigned and so this is returned.

The source code example below shows the effect of this recursion. It demonstrates

that the assert on line twenty four will always pass. The passing of the assert on line

twenty four indicates that both the JButton, created on line 15, called button and the

JFrame created on line 13, called frame, have both been returning the same helpID.

This is despite only the JFrame fame being assigned a helpID. The JButton button

was never assigned a helpID.

Listing 6.6: JavaHelp Recursion Example

import javax. swing. JFrame;

2 import javax.swing .JButton ;

import javax. swing. JP anel ;

4 import j avax. h e lp .CSR;

6

public class ButtonFrameExample

8 {

10 public ButtonFrameExample ()

12 {

JFrame frame = new JFrame ();

14 J Panel panel = new JPanel ();

JButton b u tton = new JButton ();

16 p a n el. add (bu tton);

frame. add (pan el);

1s CSR . set Hel p ID String (frame , 11 someHelpid 11
);

Str i ng buttonID = CSH. getR elp IDString (button);

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM

20 String p anelID = CSR . getR elpIDS t ring (panel);

String fr ameID = CSR. getRe lpIDString (frame);

22

93

24 asse r t (buttonID.equals(fr ameID) && panelID. equ a ls(fr ameID));

26 }

}

Recognising the potential problem of recursion, the extended helpID class described

in section 6.4.3 has a check to ensure that the helpID returned is only set on the

component that the request was made, i.e. no recursion has taken place.

6.4.2 Automating the Tagging Process

As discussed above (sect ion 6.4.2) the process of manually associating a Target

Symbol with each graphical widget would be very time consuming and error prone.

For the purpose of this research, this process was automated. This section will outline

the method of automation that was used.

Automation Methodology

By targeting an application that has already been written in Java there are a

number of propert ies of the source code that can be exploited. Because the application

is known to compile it must , therefore, comply to the Java grammar. The Java

grammar is provided as part of the Java Compiler Compiler kit - javacc JavaCC

(2008) .

Using the Java grammar and javacc, an application was built to look for declara­

tions that matched a specific pattern. The parser that is generated by the combination

of javacc and the java grammar assigns a type to each token that has been scanned.

Initially the following code sequence was searched for:-

J DENT IF I ER1 , ASSI GN, NEW, I DENT IF I ER2

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 94

$VARIABLE (IDENTIFIER1) is the variable name of the object that is being

instantiated which will be referred to as $VARIABLE.

$CLASS The final identifier (I DENT I F I ER2) is the class that is being instanti-

ated which will now be referred to as $CLASS.

In the code shown in listing 6.1 $VARIABLE is myButton and $CLASS is JButton.

The automated tool is only concerned with altering the code when the $CLASS is

part of the Swing toolkit or an extension of a Swing component. The $CLASS is

checked to ensure it is an interesting class (i.e. a swing component).

To assess if the $CLASS is interesting, it could be instantiated via reflection.

However, to instantiate the $CLASS there is a potential for there to be a dependency

on other objects, which would in turn also require instantiation. For example, if

a developer had extended JButton to wrap around his or her own code, then the

extended JButton constructor would require the instantiation of their wrapped object

first. It was therefore decided that rather than try and use reflection, the program

would take an optional list of classes to consider as interesting (a member of the

Swing classes). It is important to note that methods that return a Swing object will,

at some point, instantiate the object to be returned, or the object will already have

been instantiated and therefore have had its helpID set.

Encoding the Graphical Widgets Class

As part of the automation process, the class of the graphical widget is encoded as

part of the Target Symbol. For example, all buttons are members of the button class.

When using the automation outlined above, each graphical widget was assigned a

Target Symbol that contained two pieces of information:-

1. The class of the Object e.g. all JButton instances were assigned a helpID with

the same prefix e.g. the letter a.

2. A numeric count based on the total number of assigns of that class made in the

application so far.

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM 95

6.4.3 How to Enforce the Unique Assignment of Target Sym­

bols

The code below (6.7) was written to enforce that the Target Symbol for each

graphical widget is unique. This meets the design objective 5.4.1. In addition to

enforcing a unique assignment, the code also ensures that the returned Target Symbol

is assigned to the actual graphical widget and not to the graphical widget's parent(s).

Listing 6. 7: Unique Help Enforcement.

1 import j ava . awt. Component;

import j ava. u t i 1 . HashMap;

3 import j av a . u t i 1 . Map;

import j avax . h e lp .CSH;

s public class UniqueHelpID extends CSH {

7

9

11

13

15

17

19

21

23

private static Map<Component , String> ass igned =
new HashMap<Com ponen t , String > () ;

public s t at ic void setHelpl dString (Component c, Str ing id)

throws KeyVio l at ionException {

.if(assigned . va l ues ().contains (id)) {
String currentID = ass ig n ed . get (c);

.if (curren tID != null) {

.if (! curren t ID. equ a l s (id)) {

throw new KeyViolationExcep t ion (c, id);

}}}
.if (assigned. get (c) != null) {

String curren t ID = CSH. getH elpIDS t ring (c);

.if (id . e qu a ls (cur ren tID)) {

return ;

}

throw new KeyViolat ionException (currentID , id);}

CSH. set He 1 p ID String (c , id) ;

ass igned. put (c, id) ; }

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM

25 public stat i c String getR elpIDString (Component c) {

String res u It = CSR. getRelpIDSt ring (c);

96

27 String parentID = CSR . get R elpIDString (c. getParent ());

.i.f (result.equals(parentID)) {

29 return null ;

}

31 return result;}}

6.4.4 Capturing the Action Symbol

This section describes in detail the necessary steps undertaken by the component

used to capture and convert User Interactions into Action Symbols.

When processing an interaction, there are a number of steps that take place. First

the Target Symbol is identified. This is used to determine whether the interaction

is meaningful or not. (In this context, the term meaningful refers to an interaction

that changes the state of the application.) After identifying the Target Symbol, the

interaction type is determined. If the interaction type is a mouse movement and the

Target Symbol is identical to the previous Target Symbol, then no further action is

taken because the interaction is not meaningful. In all other cases, the interaction

type and, where appropriate the value, are used to construct an Action Symbol. This

Action Symbol and associated Target Symbol are then passed to the logging system.

The logging system is outlined below (6.4.5.)

6.4.5 Logging the User Interaction Stream

The captured Action Events - which are composed of an Action Symbol and

Target Symbol - must be recorded in the order that they are produced to form a

User Interaction Stream. These streams can then either be written to disk or written

directly into a database. When monitoring users, it was found that a Postrgres

database PostgreSQL Global Development Group (2003) running on a SUN ultra 70,

was more than capable of logging the events from 25 simultaneous participants in

real time, without the users noticing any effects on the application. This satisfies the

CHAPTER 6. IMPLEMENTING A CAPTURE SYSTEM

design objective 5.3, that a capture system should be unobt rusive:-

The application should not appear to run more slowly when the interaction

capture system is running.

6.5 Discussion

97

A number of different techniques to capt ure User Interaction Streams from a

graphical desktop application were discussed, leading to a decision to target applica­

tions writ ten in J ava using the Swing Framework.

As a result of this decision, a number of different approaches to capturing Target

Symbols were evaluated against the design objectives out lined in chapter 5. Following

this evaluation, the JavaHelp approach was chosen and implemented. As part of the

implementation process, a tool was created to assist with the task of associating the

Target Symbols with graphical widgets.

A methodology for capturing the Action Symbols was also outlined and finally

the system for logging the resultant Action Events was detailed.

Chapter 7

Visualisation

This chapter describes two visualisation systems that were developed as part of

this research to aid understanding of the data structures and the streams.

7 .1 Suffix Structure Visualisation

The prediction by partial matching, C measure and R measure algorithm im­

plementations, developed in chapter 4, use a suffix tree structure Knuth (1997) to

store the counts needed to calculate probabilities and the counts needed for the other

measures. As the suffix tree structure is complex, and therefore hard to ensure its

correctness, a tool was developed to allow graphical inspection of the data structure.

This tool was then used to manually verify the counts and hence show the correctness

of the structure. Figure 7.1 shows the visualiser after starting the application.

When st arting the application, the suffix tree is loaded with the phrase:-

"In the beginning the Universe was created. This has made a lot of people

very angry and been widely regarded as a bad move." Adams (1995)

As can be seen in figure 7.1 , the tree on the right shows the suffix tree structure.

The root node of the tree is labelled null. This forms the parent of all the contexts

of one character. A symbol has been appended to each character to indicate the

end of the character. This was added to distinguish between the various white space

98

CHAPTER 7. VISUALISATION

?igure 7.1: Suffix Tree Visualiser After Startin~
"'"~
File

Node Properties

Symbol: value

Coun1 coun1

Total: total

Tokens: tokens

j 1nsert a Siring here ...

a null

► I+ : 1
► il n♦ : 15
► Iii ♦ : 45

► iil t♦ : 7
► h+ : 7

► ll e♦ : B
► ill b♦ : S
► g+ : 7

► lii l+ : 9
► u+ : I
► liiil v+ : s
► ii r♦ : 11

• ► s♦ : 9

► w♦ : 3

► Iii a♦ : 21

► liiil c♦ : l
► d♦ : 13

► Iii .♦ : 3
► T♦ : I

► m♦ : 3

► fil t+ : S
► il o♦ : 7
► liil f♦ : l
► p♦ : 3
► lil v♦ : s

[j : I

99

characters such as line feed, space tab etc. Next to each node there is a count to show

the number of occurrences of that node.

When a node has been selected, the node properties are displayed on the left pane.

The node properties are:-

Symbol This is the symbol of the current node.

Count The number of occurrences of this symbol in its current context. This

count has had count scaling applied, as described by Cleary et al. (1995) .

Tokens The number of tokens at this depth.

Total This is the total count of all the nodes at this depth.

Each node of the tree can be expanded to show contexts.

CHAPTER 7. VISUALISATION 100

Figure 7.2 shows the full expansion of "the". From this, we can see that the letter

tis followed by either the letter h three times, or by the letter e once, or by the space

character. From the original phrase, it can be seen that these counts corresponds to

the word "the" , that occurs twice (count scaling has been applied - hence the count

of three) the word "created" and the space after the word "lot".

Figure 7.2: Suffix Tree Visualiser Showing the
· r,nr

File

Node Properties

Symbol: I>+
Count 1

Total: 2

Tokens: 2

j 1nsert a String here ...

■ null
► riil i+ : l
► n+ : 1S

► • + : 4S

T ■ 1+ : 7

... ■h+ : 3
,.. ■ e+ : 3

... . + : 3

C:l lmm
!J u+ : 1

► iii e+ : I
► iilil + : 1

► iiil h+ : 7
, ► Iii e+ : 33
► b+ : s
► lil !J+ : 7
► il i+ : 9
► u+ : 1
► la v+ : s
► r+ : 11
► s+ : 9

► ~ w+ : 3

► l;i a+ : 21
► 111 ~ : J
► Qi d+ : 13
► liil .+ : 3
► liil r+ : I

.!.

As can be seen, the tree has only one branch until after the space character that

always occurs following the complete word. At this point, there are two leaf nodes b

and u. These leaf nodes represent "the beginning" and "the universe" . The selected

symbol is b. As can be seen, there are two different tokens at this level. Each token

occurs once, hence the total of two. The effect of count scaling can be seen, as the leaf

nodes both have counts of one, whereas their common parent has a count of three. At

the bottom of the window there is a text field. This field allows a user to enter text

CHAPTER 7. VISUALISATION 101

and then have this converted into the appropriate suffix tree structure that is then

visualised. The tool also allows a user to load a text file and visualise the resulting

suffix tree structure.

7 .2 Stream Visualisation

The Stream Visualisation tool has been developed to show the relationship be­

tween unique symbols in a variable order Markov Model in a graphical form. The

tool shows a graphical representation of t he symbols in a stream, with directed arrows

between symbols. The tool can be used to visualise streams at a character level and

at a word level. This section will show the operation and output of t he tool, looking

first at the character level and then at the word level. Finally, a demonstration of t he

tool being used on streams produced by the event capture system will be outlined.

7.2.1 Character Visualisation

This section will introduce the stream visualisation tool and show its operation

on character streams of English text . The first view of the stream visualiser is shown

in figure 7.3.

This shows the tool in its default state, with the stream abracadabra displayed. As

can be seen, each letter forms a node of the graph and the edges show relationships to

other characters. The letter a is followed by b1 c, or d. This can be seen by following

the edges from a.

CHAPTER 7. VISUALISATION 102

Figure 7.3: Stream Visualiser Showing abracadabra
· " r- "' Stream Visualiser ·

File Layout Options Help

II Context Size: !31§

b

I
C

CHAPTER 7. VISUALISATION 103

Figure 7.4: Stream Visualiser Showing "the cat sat on the mat".
' " "' ,.... Stream Visualiser ·

File Layout Options Help

II Context Size: 137GJ

e

Ii
h

a

e----

m o

//
n

Figure 7.4 shows the phrase "the¢cat¢sat¢on¢the¢matc:" loaded as characters.

The node in the center of the graph is the space character. This has been substituted

with the symbol ¢ . There is another white space character, the carriage return. This

has been substituted with the symbol c:.

The basic view shows the structure of a file that has been loaded. However, the

tool provides a way to visualise contexts, because the stream is stepped through

character by character. The control labelled context size allows a user to select the

size of the context to be displayed. By default , this is 3 characters. When a user has

CHAPTER 7. VISUALISATION 104

selected a context size, then they can select watch from the file menu. This starts the

playback of the current stream, highlighting context along the way.

Figure 7.5 shows the playback at the point where the context consists of the first

three characters of abradabra, i.e. abr.

The current character is r. This node is highlighted orange. The gray nodes show

the previous context. The edges highlighted in blue, a.re the edges involved in the

current context. The display shows the current context. This is shown on the progress

bar at the bottom of the window. To t he right of context, a progress bar shows the

position of the current context relative to the entire length of the stream.

Figure 7.5: Stream Visualiser Showing Context.
8 i5-Ualiser-
File Layout Options Help

II Context Size: 13]§

C

,,

CurrentContext: a b r !!!!i iiiia:::::;::;;::;:::~=;~~

7.2.2 Word Visualisation

As has already been mentioned, the Stream Visualiser can also display streams

based on words rather than characters. This section will demonstrate the use of the

tool on streams of English text with words rather than characters.

CHAPTER 7. VISUALISATION 105

Figure 7.6 shows the tool with the phrase «the cat sat on the mat" loaded as

words.

As the phrase is short there is very little repet it ion. The word the is followed by

both cat and mat.

Figure 7.6: Stream Visualiser Showing "the cat sat on the mat" as Words.
8 0 Vi uallser.
File Layout Options Help

II Context Size: 13!§
the

ca
/ l
\

at

sat

\
on

CHAPTER 7. VISUALISATION 106

Figure 7.7 shows the first section of Alice in Wonderland Carroll (1865) .

As can be seen there are many more words than in the simple example shown

above. As a result, the graph has been zoomed out to show all the words.

Figure 7.7: Stream Visualiser Showing Alice in Wonderland.
Str,am Visualiser

File layout Options Help

II Cont•xt Slzo: l31G)

....

... t t
rm ,

nOl'I.I - " - ..
1u.ot nllw1v ,.

""""· ,

.. ·~
,,., ,._ ..

tht,n bw{ LO! I,

UOPII' "(\

di N(IO,,, -
htul

ld~OMd~ I
... ,

I '0-M
- OI~ \o I

l,~SN tht•--bul, ► on ➔ hiph. <t'" ctu,r --"" /
--.. rm

1

CHAPTER 7. VISUALISATION 107

As when visualising characters, the tool allows a user to playback the input stream.

This is shown in figure 7.8.

Again, the graph has been zoomed out to show more detail. The status label at

the bottom of the screen shows the current context: "filled with tears again she went

on."

A e
Figure 7.8: Stream Visualiser Showing Playback of Alice in Wonderland.

File Layout Options Help

CurrentContext; filled whh tears ,1giiJn u she went on,

CHAPTER 7. VISUALISATION 108

7 .3 User Interaction Stream Visualisation

The Stream Visualiser can also be used to visualise the User Interaction Streams

produced by the capture system, as described in chapter 5. A User Interaction Stream

is made up of Action Events, where each Action Event consists of a Target Symbol

and an Action Symbol. The Target Symbol and Action Symbol are analogous to

letters in a natural language (section 5.5). The Target Symbol, Action Symbol and

resulting Action Event are not easily representable in a meaningful visual way. The

most meaningful way would be to capture images of each component that each taget

symbol represents and display these. This would need to be carried out by hand after

taking a screen shot of the application. Figure 7.9 shows the visualisation tool with

a User Interaction Stream loaded.

Figure 7.9: Stream Visualiser Showing User Interaction Stream
~ n ~ [Appllcacion.cltle nots ec,fiedJ
File layout Options Help

II Context Size: l31GJ

JFrame 13. 10, 0

JFramel3, 10, 32

J'=•B. "·~ JFramel3. 10. 80

1
JFramel3. 10. 39 JFramel3. 10. 157

The User Interaction Stream displayed was captured by playing the game Aster­

oids (described later, in chapter 8.) This diagram is not very useful because it is

not very clear what the symbols (the node labels) correspond to. To enhance the

CHAPTER 7. VISUALISATION 109

meaning of the diagram, the diagram has been combined with the User Interaction

Playback mechanism, described in chapter 10. This combination allows a developer

to see patterns as a user interacts with the application. For this reason videos of the

visualiser have been produced to accompany this thesis.

7 .4 Discussion

Two different techniques for visualisation were developed. The first was developed

to ease the checking of data structures used in the algorithms for text categorisation.

The second visualiser showed the interrelationship between components of a stream.

This visualiser can also be used to visualise the User Interaction Streams. The play­

back mechanism described in chapter 10 was coupled to this visualiser , allowing a

user to see the stream as it is being used.

Chapter 8

Creating the BUIS Corpus

8.1 Research Proposal

A corpus was created, called the BUIS corpus, to experimentally evaluate the User

Interaction Streams captured during the use of an application. This corpus has been

made available to other researchers Bangor User Interaction Stream Corpus (2008).

As out lined in the thesis statement "it is hypothesised that the interactions between

a user and a graphical desktop application will be similarly unique." To examine

this hypothesis a new corpus was produced and subsequently analysed. This chapter

describes the rationale and selection of two applications. The choice of user groups

and the experimental settings are then outlined and this results in the production of

the new corpus described.

As described in chapter 6, a mechanism for capturing User Interactions has been

developed. The capture mechanism is applicable to any application writ ten in Java

using the Swing toolkit. This chapter describes the rat ionale for choosing two con­

trasting applications to create a corpus of User Interaction Streams that can then

be analysed. The two applications have contrasting user interfaces. The first has a

complex graphical interface and the second a much simpler interface.

110

CHAPTER 8. CREATING THE BUIS CORPUS 111

8.2 Rationale for Selecting an Application

In order to choose an application to perform the experimental analysis in chapter 9,

it is important that any chosen application satisfies a number of criteria, as outlined

below.

8.2.1 Rationale for Selecting Application One

Source Code Language

To use t he capture system developed in chapter 6, the application must: a) be

written in J ava b) must use Swing toolkit to provide the user with a graphical inter­

face. c) ideally, it should have no existing context sensitive help. In order to capture

the User Interaction Stream, an application must satisfy the first two criteria. The

third criteria, though not mandatory, is desirable as it allows the use of the automated

tool to tag the Target Symbols (discussed in chapter 6 section 6.4.2)

Source Code Availability

In order to modify the application to record User Interaction Streams, the source

code must be available. It is also desirable that the source code is available to others

so that the experiment can be repeated and extended. Ideally t his means that the

application should be available under an open source or free software license, such as

the GNU GPL Free Software Foundation (2007).

User Base

For the purpose of this research, it is necessary to choose a set of users who are

all using the same application to perform the same task. If users were performing

different tasks, then it would be difficult to differentiate between the authorship and

task identification problems. It is also important that t he application has been tried

and tested and is therefore stable. Furthermore, it is desirable that the users be

available to use the application under conditions where their usage can be recorded.

This is discussed in more detail later in section 8.4.1.

CHAPTER 8. CREATING THE BUIS CORPUS 112

Application Interface Complexity

An application with many UI components is desirable as this increases the poten­

t ial number of interactions. Simple applications such as the calculator, given as an

example in chapter 5, have a limited range of User Interaction Streams. Simple appli­

cations also limit the number and types of tasks that users can be asked to perform.

As this would result in smaller User Interaction Streams, a more complex application

is desirable. However, t he complexity of the application must not compromise the

potential user base. i.e. It must not be so complex that there are very few users of

t he application. The application should still be user friendly.

8.2.2 Rationale for Selecting Application Two

This section describes the selecting of the second application. This application is

much less complex than the first application and is chosen explicitly for the second

experiment. This application meets the following criteria:

Source Code Language

The application must be written in J ava and use the Swing Toolkit.

Source Code Availability

The source code must be available with a licence that allows redistribution.

User Base

A pool of users must be available to run the application. Finding a suitable simple

application with a captive user group is problematic. There are few simple commonly

used applications. A desktop calculator application, similar to the one used to explain

concepts in chapter 5, could have been used. Although calculators are used frequently,

their usage is sporadic and unpredictable. For this reason, it was decided to try and

find a computer game with a simple interface instead. Users could be encouraged to

CHAPTER 8. CREATING THE BUIS CORPUS 113

form a league and be rewarded for playing the game by competing with each other

to get the highest score, thus rewarding constant use over a short period of time.

Application Interface Complexity

The application should have a simple user interface to meet the criteria for the

second experiment.

8.3 Selecting the Applications

8.3.1 Se lecting Application One - WEKA

WEKA (Witten & Frank 2005) was chosen as it fulfils all the requirements dis­

cussed above (8.2.1).

WEKA is described by its authors as follows:

WEKA is a collection of machine learning algorithms for data mining

tasks. The algorithms can either be applied directly to a dataset or called

from your own Java code. WEKA contains tools for data pre-processing,

classification, regression, clustering, association rules, and visualization.

It is also well-suited for developing new machine learning schemes.

WEKA provides a graphical interface to a collection of machine learning algorithms.

Source Code Language

WEKA is written in Java and uses the swing graphical framework, satisfying the

requirement 8.2.1. In addition it also has no context sensitive help.

Source Code Availability

WEKA is distributed under the GNU GPL licence, satisfying the second require­

ment.

CHAPTER 8. CREATING THE BUIS CORPUS 114

Application Interface Complexity

The interface for WEKA is complex, satisfying the complexity requirement as

stated in section 8.2.1. The complexity of the WEKA interface can be seen in the

section below (8.5.1) detailing the tasks that the users perform.

User Base

The last consideration is the user base. WEKA has a large user base across

the world. WEKA also forms a key component of the Artificial Intelligence course

at the University of Wales Bangor. Students must use WEKA to perform a series

of experiments, in order to familiarise themselves with some of the algorithms and

techniques that WEKA provides. As a result , they represent a captive test group. In

addition, as they are made up of Computer Science students, they have some similar

previous experience of using computers, though it must be noted that there is still a

fairly wide range of computing experience within this general level.

8.3.2 Selecting Application Two - Asteroids

A version of the classic computer game Asteroids was chosen. The reasons this

application meets the objectives outlined above will now be evaluated. Asteroids has

been written as an example application for the Xito application manager The Xito

platform (2005). It is a Java version of the popular classic computer game Asteroids.

The Asteroids interface is shown in figure 8.1.

Source Code Language

It is written in J ava and uses the Swing Toolkit and has no Java help.

Source Code Availability

The source code is public domain so the application is freely distributable.

CHAPTER 8. CREATING THE BUIS CORPUS 115

Figure 8.1: The Asteroids Interface.
n

Game View

Application Interface Complexity

The game has a few simple user interface components.

U ser Base

The game, being a classic, is familiar to many people and, as it has a high score

system, users are rewarded for playing the game.

8.4 Users

In this section, the rationale for selecting user groups for each application is eval­

uated. The User groups are then described.

CHAPTER 8. CREATING THE BUIS CORPUS

8.4.1 WEKA User Group

Choosing a WEKA User Group

116

As has already been discussed in the section above, the choice of application was

heavily influenced by the availability of a user group within the timescale parameters

of this research. It would have been desirable if each user could use the application

in a HCI lab (as described in chapter 2 section 2.5.1). The recorded stream could

then be augmented with lots of additional meta data, such as user experience, verbal

comments, eye tracking etc. But, as has already been discussed, (section 2.5.1) these

facilities are expensive and significantly intrude on the user using the application.

Additionally at the time of performing this experiment, there was no available access

to these facilit ies. The experiment had to be designed with this fact in mind.

Given the fact that the Interaction capture system was capable of capturing t he

interactions of many users simultaneously and unobt rusively, by choosing the task

of authorship attribution with a user group of similar abilities performing the same

task, the requirement of carrying out a traditional HCI study becomes unnecessary.

The required meta data (the stream author) is available without the need of specialist

tools.

User Group Chosen

As has already been noted, the chosen application WEKA forms a key component

of the Artificial Intelligence module, taken as part of the Computer Science course at

Bangor University. The application is invariably new to the students, so, although

there is some variance in the general computer usage experience of the users, none

had prior exposure to WEKA.

This captive group of naive users were all required to complete a lab script in order

to finish the course. The majority of the students chose to complete the Lab using

the computing facilities provided by the department. As a result, the application that

they ran was under the control of the lab supervisors.

The course ran in the same form for two years, with the same lab script. This

provided an ideal User Group that fitted the time and money constraints of the

CHAPTER 8. CREATING THE BUIS CORPUS 117

research, as well as meeting important criteria related to the choice of application. In

total, sixteen unique users completed the lab session over two years.

8.4.2 Asteroids User Group

Choosing an Asteroids User Group

This group was selected from a volunteer group of experienced computer users,

competent in playing computer games. The high scoring system of the game was

modified, in order to allow the automatic sharing of high scores, thus producing

a competitive environment for playing the game. This ensured a large number of

interactions for analysis were performed by each player.

User Group Chosen

The location for the game was sent to a group of users who enjoyed playing

computer games and also to the staff of a software development company. Of the users

invited to play the game, a user group consisting of ten users who were motivated to

play the game on multiple occasions, was self selected.

8.5 Experimental Setting for WEKA

In this section, the experimental setting is described. WEKA was chosen as an

application and students undertaking an Artificial Intelligence course provided the

user group. As part of the course, students had to complete a number of laboratory

assignments. Two of these assignments (labs nine and ten) introduced the students to

WEKA. The lab was timetabled for 3 hours a week, during which the Course Lecturer

and two Postgraduate Students were available to provide assistance. In addition to

the timetabled labs, the students could work on the assignments in their own t ime,

either at the laboratory or at home. Only those students who used the computer

systems laboratory had their events logged. Students who worked at home did not

have their events logged. The experiment ran for two years, with a different batch of

CHAPTER 8. CREATING THE BUIS CORPUS 118

students each year. The total number of students over the two year period was 16.

The section below describes the script that users followed to complete t he assignment.

8.5.1 Lab Script

The users followed a lab script. The full script can be found in appendix A. The

script is very prescriptive, telling users where to click. Below is a walk-through of

that script as followed by the students. The titles of the sections below correspond to

the task tit les from the lab script available in appendix A. Upon completing a task,

the user was asked to note this in a separate window. The completion of the task was

recorded as part of the corpus.

Part 2: Starting WEKA

After starting WEKA a user is presented with the screen shown in figure 8.2.

Figure 8.2: The WEKA Chooser Interface.
0 () 0 Weka GUI Chooser

Waikato Environment for
Knowledge Analysis

Version 3.4.10

(c) 1999 - 2007
University of Waikato

New Zealand

(Simple CU)(Explorer)

(Experimenter)(KnowledgeFlow)
/4

CHAPTER 8. CREATING THE BUIS CORPUS 119

The script then asks the user to start the explorer by clicking on the explorer

button. The explorer window, shown in figure 8.3, is then displayed. The user is then

asked to explore the user interface and note any comments about the interface.

Figure 8.3: The WEKA Explorer.
000 Weka Explorer

r
1 Preprocess j Classify Cluster I Associate / Select attributes I Visualize 1

(Open file ...) (Open URL. ..) (Open DB ...) (Undo) (Edit ... ~ (Sav~ ...)
! Filter

(Choose)!None k Apply)I
Current relation

Relation: None
Instances: None Attributes: None

Attributes

(All ~ (Noni! } (Invert

(Remove

- -
' Status

Welcome to the Weka Explorer

Selected attribute

Name: None
Missing: None

I
~ I

(

:}

Type: None
Distinct: None Unique: None

7

ii

: I (Visualize.All)

(log)

..
xO

/4

CHAPTER 8. CREATING THE BUIS CORPUS 120

Part 3: Loading a data file

The user is asked to load a data file into WEKA by clicking the ccopen file'' button

and locating the cccontact-lenses.arff" file.

The user is then presented with the screen shown in figure 8.4.

Figure 8.4: The Explorer Interface After Loading Contact Lens Data.
, 8 0 6 Weka Explorer

------- Preprocess Classify I Cluster Associate Select attributes Visualize -------

(Open file... ~ (Open URL... ~ (Open DB... ~ (_ __ U_n_do __ J (..._ __ E_di_t .. _. _ _) (..._ __ Sa_v_e._ .. _ _,)

rFilte,

I_(Choose) None

Current relation-------------~

Relation: contact-lenses
Instances: 24 Attributes : 5

Attributes-----------------,

(..._ __ A_II _ __.) (..._ __ N_on_e _ _,) (..._ __ ln_v_ert __)

No.

1 age
2 0 spectacle-pre scrip
3 0 astigmatism
4 0 tear-prod-rate
5 O contact-lenses

Name

C Apply) I
Selected attribute------------~

Name: age
Missing: 0 (0%)

Label
young
pre-presbyopic
presbyoplc

Distinct: 3

----~--
8
8
8

Type: Nominal
Unique: 0 (0%)

Count

..,_C_l_a_ss_:_co_n_t_ac_t_-l_en_s_e_s _(N_o_m_) ___ _,__, (Visualize All)

(Log) xO
/4

CHAPTER 8. CREATING THE BUIS CORPUS 121

The user is then asked to look at the different attributes. Figure 8.5 shows the

astigmatism attribute display.

When a different attribute is selected, the relevant attribute information and as­

sociated graphs are displayed.

Figure 8.5: WEKA: After Select ing Astigmatism in the Interface.
o n o Weka Explorer

------~ Preprocess I Classify I Cluster I Associate I Select attributes I Visualize t------- -.

(Open file...) (Open URL...) (Open DB...) L.._ __ u_n_do _ __,J (.._ __ E_di_t .. _. _ __,) C.._ _ _ Sa_v_e_ ... _ _,)

1
rnt.,,

j (Choose) None (Apply) I
Current relation--------------, Selected attribute•------------~

Relation: contact-lenses Name: astigmatism Type: Nominal
Instances: 24 Attributes: 5 Missing: 0 (096) Distinct: 2 Unique: O (096)

Attributes--------------~ ,_ ____ La_be_l ___ -'---____ c_o_u_nt __
no

(..__ __ A_I_I _ __.) (..._ __ N_o_ne _ ___,) (..__ __ ln_ve_rt _ __,) lyes

No. I
l Q age

Name

12
12

2 Q spectacle-prescrip
3 D as~tlsm
4 0 tear-prod-rate
5 0 contact-lenses

[,,_C_l_as_s_: c_o_n_ta_ct_-_le_n_se_s_(N_o_m_) ____ !.J) (Visualize All)

.J

(Remove

12

(Log) xo
M

CHAPTER 8. CREATING THE BUIS CORPUS 122

8.5.2 Part 4 : Performing Classification

The user is asked to switch to the classifier tab. Figure 8.6 shows what the user

was presented with after they had switched to this tab.

Figure 8.6: wekaclassify
Weka Explorer

~ Preprocess Classify I Cluster I Associate Select attributes I Visualize 1

f°'"''"" _ (Choose) /ZeroR

Test options Classifier output

0 Use training set

0 Supplied test set (Set ...)
S Cross-validation Folds 10 _]
0 Percentage split ~ 66

(More options ...) 1,

I ((Nom) contact-lenses l+I

(Start) (Stop)

'
Result list (right-click for options)-

I

-~- ~ - -- --

(Log)

--

l

I I

I

xO
~

CHAPTER 8. CREATING THE BUIS CORPUS 123

The user is then told to choose a classifier by clicking on the "Choose,, button.

This brings up the tree view shown in figure 8. 7.

The user is told to pick the weka.classifiers.trees.J48classifier. After selecting this

opt ion the user is asked to ensure that the default option of "Cross-validation" is set.

Figure 8. 7: wekaclassifytree
weka

.., classifiers

► bayes
► functions
► lazy
► meta
► misc

► L trees
.., rules

....'.: ConJunctlveRule
DeclslonTable

_ JRlp
MS Rules

_ NNge

~ OneR
..2 PART

Prism
Rldor
ZeroR

The user is asked to record the output of the classifier. An example of such output

is shown in figure 8.8.

CHAPTER 8. CREATING THE BUIS CORPUS

Figure 8.8: The Output of the J48 Classifier.
000 Weka Explorer

Preprocess Classify Cluster j Associate Select attributes Visualize

1
Classifiei

_ (Choose)IJ48 -C 0.25 - M 2

Test options Classifier output

0 Use training set Size of the trQC : 7

0 Supplied test set l Set ... J Tilllo tako.n to build model : 0. 07 ooconda

0 Cross-validation Folds
---,
10 •- Stratifiod cross-validation -

0 Percentage split " 66 - Sunn&ry --

Corroctly Classified Inatancoa 20 83. 3333

(More options ...) Incorroctly Claa■ifiod Inatancos 4 16. 6667
xappa. atatiatic o. 71
Mean absolute error 0.15

((Nom) contact-lenses : I Root moan squared error 0. 3249
Relative absolute e.rror 39. 7059 \
Root relative aqua.red error 74 .3898 \
TOta.l Number of Inatancoa 24

(Start) ~
Stop) - Detailed Accuracy By Claaa m

Result list (right-click for options)- TP Rate n> Rate Prociaion Recall F-Mca■urc Claes

13:02:25 - treesJ48 l 0.053 0. 833 l 0. 909 ao!t
o. 75 0.1 0 . 6 o. 75 0 . 661 hard
0.0 0 . 111 0.923 0 . 0 0. 857 none

- Confusion Matrix --

a b C <-- claaaitiod aa
5 0 0

I
a • aoft

0 3 l b • hard
l 2 12 c • none

- - - ... -

{ Log)

\
\

124

I I
~

'
I

... .. .
c.. .

xO
~

CHAPTER 8. CREATING THE BUIS CORPUS 125

Part4: Task Three

The user then experiments with the effects of changing the parameters of t he J48

algorithm. Figure 8.9 shows the dialogue box they are presented with to enable them

to change the parameters.

Figure 8.9: The J48 Parameters Dialogue Box.

Part 4: Task Four

1 8 0 B woka.vul.CtnerlcObjtctEdiror

weka.classtfius.treesJ◄8

Abou,r---- ---

Ous ror genera11ng .11 pruned or unpruned C◄ .

binvySpllts (Foist f; I
~::::::===========-=---=--~~· conndenceFactor 0.25

dtbuv ::F=•'="========-=---=---=---=---=-------'_~
minNumObj 2

numFolds 3

reducedErrorPrunfng LF-=•':..:•• _______ -<..;_;

savelnstanceData ..cfc..::;alc:..:s•:__ ______ ~

$ttd 1

ustl>place l.._~_•1•_• ___ ____ -'-'-J

(Open...) (Savo...) (OK) (Cancol ~

The user is told to change the classifier to divide-and-conquer decision tree

algorithm, ID3 weka.classifiers.trees. Jd3. This is done by selecting ID3 from the tree

shown in figure 8. 7.

After selecting the alternate classifier, the user is asked to note differences between

the classification made by the J48 and ID3 on the same data set.

Part 4: Task Five

The user is asked to experiment with different classifiers from the tree in figure 8. 7.

CHAPTER 8. CREATING THE BUIS CORPUS 126

8.5.3 Part 5: C lustering

In this part, the user is asked to use the cluster tab in WEKA. The user is told

to load the "zoo.arff" file , then switch to the cluster tab. The cluster tab is shown in

figure 8.10.

Figure 8.10: The Cluster Tab.
000 Weka Explorer

Preprocess 1 Classify Cluster j Associate Select attributes I Visualize

rClustere1

_ (Choose)!EM - I 100 -N -1 - S 100 -M l.0E- 6 I I
Cluster mode Clusterer output

0 Use training set

0 Supplied test set (Set ... ,
0 Percentage split -

" 66

0 Classes to clusters evaluation

(Norn) type ~

61 Store clusters for visualization

(Ignore attributes)

(Start) ~ Stop J
Result list (right-click for options)

I
I
: _,_ -~-~-- - - .:;;;_ - _,~--- - -

r sotaKtus I
I ~ ,tf/J/1' x 0 c__ ___________________________ _, ~

CHAPTER 8. CREATING THE BUIS CORPUS 127

The user is then asked to select the SimpleKMeans from the cluster tree shown

in figure 8.11. Before running the cluster algorithm, the user is asked to change the

Figure 8.11: Cluster Algorithm Selection Dialogue Box.
weka

T (; clusterers

Cobweb

" EM
FarthestFtrst

_ MakeDensftyBasedClusterer
_ SlmpleKMeans

cluster parameters. After bringing up the cluster parameters dialogue box, the user

is asked to change the number of clusters to three in the dialogue box, as shown in

figure 8.12.

Part 5: Task Six

Figure 8.12: Cluster Parameter Selection.
0 0 0 weka.gul.GenerlcObJectEditor

weka.clusterers.SimpleKMeans

Abou,0---------------~

Cluster data using the k means algorithm

numClusters 3

seed 10

(Open...) (Save...) (OK

(More)

) (Cancel 'I
/4

The user is told to use the cluster tab and experiment with a different data file,

"primary-tumor.arff" .

Part 5: Task Seven

This task encourages the user to explore the visualize tab. The user is asked to

do this using the "primary-tumor.arff" that they used in part six.

CHAPTER 8. CREATING THE BUIS CORPUS 128

There was a discrepancy between the instructions and the interface provided by

WEKA. This was because the instructions were written for a previous version of

WEKA. To get to the visualization, a user had to right click on the results list and

select visualize cluster assignments. This then presented them with the dialogue box

shown in figure 8.13.

Figure 8.13: Visualisation Dialogue Box.
000 Weka Clusterer Visualize: 12:17:17 - SimpleKMeans (primary-tumor)

(X: class (Nom)

Colour: class (Nom) Select Instance

(___ R_e_se_t __) (.._ __ C_le_a_r -~) (_ _ _ S_a_ve _ __,)

lung h.ead and noc eoopll•gu• thy c<>ld duoden and a rect1.111
gallbladder iverkidney teatia ova.ry corpua utar ..

Jitter

p&ncrea.a
vagin.braaat

y

X

'--/4

CHAPTER 8. CREATING THE BUIS CORPUS 129

8.5.4 Lab Ten

The aim of this lab is to introduce the user to text categorisation tasks using

WEKA. The user is asked to load ReutersCorn-train.arff. As this is text data it

requires pre-processing. To do this the user is asked to select the

weka.classifiers.meta.FilteredClassifierfrom the dialogue box shown in figure 8.7.

After selecting the Filtered classifier, the user has to select the filter parameters.

The filter parameters dialogue box is shown in figure 8.14.

Figure 8.14: Filter Parameters Dialogue Box.
· r, " n weka.gul.GenericObJectEditor ·

weka.classlflers.meta.FllteredClassifler
About

Class for running an arbitrary classlfler on data that has ~
been passed through an arbitrary filter. ~

classifier (Choose) ._!J4_8_-_c_o_.2_S -_M_ 2~-------'

debug 1...I -'Fa-'ls.:...e _________ ..:;..::::..__~:J

fil ter (Choose) lo 1scretlze - R firs t-last

(Open...) (Save...) (OK) (Cancel)

The filter filters .unsupervised.attribute.StringWordVector is used in combination

with the classifiers. bay es. NiaveB ayesMultinomial classifier. After setting the filter

and classifier options, the user is told to specify a specific file for testing: ReutersCorn­

train. arff. When the user has run this analysis, the user is asked to repeat the

experiment with different train and test files:-

Corporate Acquisitions.

Crude Oil.

Grain.

The rest of the lab consists of experimenting with the data files above, and with

different classifiers, from the following list:-

Support Vector Machines weka.classifiers.functions.SMO

CHAPTER 8. CREATING THE BUIS CORPUS

Nearest Neighbour weka. classifiers. lazy. !Bk

decision tree weka. classifiers. trees.148

8.5.5 The Experiment

130

The lab was undertaken by sixteen students over two years. This section describes

how the events were recorded and observations made by the support staff whilst the

students carried out the lab assignment.

8.5.6 Experimental Observations

As stated in the rationale for choosing an application, a complex application was

desirable. The complexity of the WEKA interface has been demonstrated by two

of the tasks outlined above. The laboratory assistants all noted that many of the

students found two components of the WEKA interface unintuitive. The two problems

appear to share the same root cause. The cause appears to be the overloading of a

JLable component, to show not just text data, but to also function as a button.

Figure 8.15 shows the dual purpose label.

F igure 8.15: This label also functions as a button.
1IEM -1 100 - N - 1 -s 100 -M l.0E-6

The first of these tasks was described in section 8.5.2. This task involved changing

the classifier parameters. The other task that caused difficulties for many users was

the task of modifying the cluster parameters (described in section 8.5.3). It was not

clear to the user that clicking the label shown in figure 8.15 next to the chosen button

would have an effect.

8.5. 7 Application Modification

The application chosen in section 8.2 was modified with the automated tool (de­

scribed in section 6.4.2). The tool assigned a unique Target Symbol to each of the

CHAPTER 8. CREATING THE BUIS CORPUS 131

graphical widgets that make up the WEKA interface. After assigning target sym­

bols, the next stage was to modify the application so that Action Symbols were

recorded. This was done by modifying the main method. The modification to the

main method ensured that, on starting the application, the logging component, (de­

scribed in section 6.4.4) moved to the top of the J ava Event Queue. The component

was configured so that after creating an Action Event, the Action Event was then

logged to a database.

8.5.8 Experimental Notes

Task two (section 8.5.1) asked the user to experiment with the WEKA interface.

This task was non prescriptive and as such the events recorded when performing this

task were not used in the analyses performed in chapter 9.

8.6 Experimental Setting for Asteroids

As with the previous experiment, the modified application records Action Events

to a database. As this application was not run in a laboratory environment, it was

necessary to provide a convenient way for users to play the game and enable the

recording of the User Interaction Streams generated whilst playing the game.

To accomplish this goal, the application was packaged and delivered using Java

WebstartJava Web Start Technology (2008). The database was configured to allow

remote connections. When the application was launched, it connected to the database

remotely. This worked well, although it did limit the location that users could play

the game in, as some institutions had firewalls that prohibited outgoing connections

for anything other than Web based traffic. These users could download and start the

game, but could not play as their events could not be recorded.

A Web site was created in order to explain the purpose of playing the game. It

was also used to distribute the game. To start, a user simply had to click on a link. In

addition, some technical details were available for users interested in the experiment.

In addition to being used to distribute the application, the Web site also recorded

CHAPTER 8. CREATING THE BUIS CORPUS 132

and displayed the highest scores. By seeing the score, this encouraged users to com­

pete for t he highest score, ensuring full usage for recording purposes.

8.6.1 Lab Script

There was no script for users to follow when playing the game. Users were simply

asked to play the game as often as they liked.

8 .6.2 Experimental Observations

Initially, some users commented that the application felt very jerky. The sec­

t ion below outlines the changes that were made to remove this problem. No other

comments were made by users.

Changes to the Interaction Capture System

The only change that needed to be made to the interact ion capture system was

to move the logging of captured events to a separate thread. Users were encouraged

to play the game on their own computers. As a result of this, t here was significant

latency when recording generated events to the database.

In the init ial implementation of the capture system, the recording was done on the

Swing thread as this was simpler. When carrying out the first experiment , events were

recorded over a local area network, so there was no perceivable effect of recording the

events. To alleviate the effect of the much bigger latencies between the users playing

Asteroids and the database logging the recorded Action Events, the recording and

logging of events were split into two separate threads. When an event was generated,

this happened on the SwingThread. The recorded Action Event was then pushed onto

a queue. When the application was started, a second thread was started. This thread

removed Action Events from the queue and logged them to the remote database. The

use of a queue ensured that t he order of action events was preserved.

CHAPTER 8. CREATING THE BUIS CORPUS 133

8.6.3 Application Modification

The automated tool described in section 6.4.2 was used to find and assign Target

Symbols to the user interface components that made up the application.

8. 7 Summary of the BUIS Corpus

The BUIS corpus consists of the results of the two experiments out lined above.

The users are anonymous. The corpus is available to download from Bangor User

Interaction Stream Corpus (2008) . The corpus contains two files:

W EKA.sql The User Interaction Streams captured by the sixteen users using

WEKA.

Asteroids.sq! The User Interaction Streams captured by the ten users play­

ing the Asteroids game.

Each file is a stand alone database dump for the postgresql database. The dumps

consist of three tables:-

sessions This table has t hree columns that contain First Name (f _name) , Last Name

(s_name) and a ses s i onID. The names have been made anonymous.

tasks This table has four columns. The first, i d references a sess i onID in the

session table. The second and third are the task name (taskname) and task

details (taskdetails). The final column, t askid is an identifier.

events The Act ion Symbol is recorded in two columns, event and value. The event

column is used to store the Symbols type and the value column is used to store

the value, for example the mouse button number . The target symbol is recorded

in the column named obj ect , The date and t ime of the event is recorded in the

column labeled eventtime, The column taskid references the taski d in the

tasks table.

T his corpus is analysed in the next chapter.

Chapter 9

Experimental Results and Analysis

of the BUIS Corpus

This chapter will analyse the BUIS Corpus t hat was created in chapter 8. The

chapter will be split into two distinct sections. Section One will analyse the results

of data collected using WEKA. Section two will analyse the results collected using

Asteroids.

Each section will detail the basic statistics of the collected data. The similarities

between a natural language, both in relation to letters and words, will be explored.

Finally the categorisation performance at the task of authorship will be evaluated.

9.1 BUIS WEKA Analysis

This section will examine the data collected for Part One of the BUIS corpus.

This part of the Corpus contains User Interaction Streams for sixteen users using the

WEKA machine learning application following a lab script.

9.1.1 Statistical Analysis

Analysis of the raw collected data shows that of the sixteen users who participated

in t he experiment, all generated a different number of action events. Table 9.1 shows

134

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl35

the number of events generated against the person.

Table 9.1: User against Events Generated
Person Number Of

Action Events
N 28794
D 12919
C 11478
L 6660
J 6361
G 6096
E 6004
B 5367
H 4343
K 3625
0 2724
A 2401
M 2201
F 2140
p 1749
I 1425

As can be seen from table 9.1 , there is a wide variety in the number of events. The

three users with the largest number of events - N, D and C - also had the largest

number of tasks. One user, N, produced twice as many events as the next highest

user, D. Overall, the average number of events per user was 6518, with a standard

deviation of 6805. The standard deviation is very large. However, it was shown that

the figure was skewed by the presence of 3 very high counts. By creating a sub set

of the data to ignore the highest three users (C ,D and N) the average drops to 3930

and the standard deviation falls to 1952.

Target Symbols

In total, 545 user interface components of WEKA were assigned a Target Symbol.

The sixteen users interacted with a total of 236 unique Target Symbols. From this,

it can be seen that users interacted with less than half the components present in the

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl36

WEKA interface. This was to be expected, as the tasks they were given do not cover

all of the functionality available in WEKA.

Table 9.2 shows the number of unique target symbols against each user.

Table 9.2: User against Unique Target Symbols
Person Number Unique Target Symbols

Interactions Unique to User
N 188 4
E 169 5
L 154 0
B 151 5
D 151 0
M 144 1
C 143 3
G 139 0
K 137 1
I 135 2
0 135 0
F 110 0
J 107 0
A 99 7
p 99 0
H 84 0

As can be seen from the table 9.2, the same user , N , generated both the largest

number of events and interact ed with the largest number of Target Symbols. Despite

interacting with more Target Symbols than any other user, N only interacted with

188 of the 236 Target Symbols that were interacted with by all other user. From this,

it is clear that some users have interacted with different parts of the WEKA interface

than other users.

The Table 9.2 also shows the number of Target Symbols that were unique to that

user. From this, it can be seen that user A , despite not generating many events and

only interacting with 99 unique Target Symbols, interacted with the most Target

Symbols not used by other users.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS137

Action Symbols

It was not possible to determine the total potential number of unique Action

Symbols, as this was dependant on the hardware used. For example, the number of

keys on the keyboard may vary, as could the number of buttons on a mouse. The users

using the modified version of WEKA generated 34 unique Action Symbols. Table 9.3

shows the number of Action Symbols generated by each user.

Table 9.3: User against Unique Action Symbols
Person Number Unique Action Symbols

Interactions Types Unique To User
F 30 12
E 18 0
D 18 0
N 17 0
C 13 1
L 13 0
J 12 0
M 10 0
G 10 0
K 10 0
A 9 0
B 9 0
H 9 0
I 8 0
0 8 0
p 7 0

From Table 9.3 it can be seen that as well as there being less unique Action

Symbols than Target Symbols in total, apart from user F, the distribution of Action

Symbols was more homogeneous than the distribution of Target Symbols across all

users. Only two of the sixteen users generated Action Symbols that were unique to

them.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS138

A ction Events

This section examines the statistics relating to the number of unique Action Events

captured against the user. (As described in section 5.4.4, an Action Event is the

combination of a Target Symbol and an Act ion Symbol). Table 9.4 shows the number

of unique Action Events generated by each user. It also shows the number of Action

Events that were unique to that user, i.e. the number of Action Events that the user

generated that no other user created.

Table 9.4: User against Unique Action Event
Person Number Unique Action Events

Interactions Types Unique To User
N 712 88
D 537 34
E 469 23
L 424 8
C 419 21
M 409 23
B 375 14
G 358 9
J 333 7
K 331 6
F 330 25
0 310 0
I 302 10
A 278 29
p 242 3
H 216 3

From the table, it can be seen that the number of users with a unique Action

Events (17) is much higher than the number with either unique Target Symbols (8)

or with unique Action Symbols (2). Furthermore, it can be seen from the table that

even though each of the users was interacting with the same graphical components,

the method of interaction was different for different users.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS139

Uniqueness Across a User Interaction Stream

So far in this chapter, the number of unique Target Symbols, Action Symbols and

Action Events have been analysed and discussed. It has been shown that there are

a large number of both Target Symbols and Action Events that are unique to an

individual user. The following graph, figure 9.1, shows the relative position of the

first unique Action Event for the top three Users.

..., 1
~
::l 0.9 0 u
~ 0.8
~ 0.7 µJ

~
0 0.6,
u 0.5
~

Cl) 0.4 ::l
O'
·2 0.3
~

Cl)

-~ 0.2
...,

0.1 co .--.
Cl)

cc 0

Figure 9.1: Relative Position for Top Three Users

Relative Position of The First Occurence of Action Event

- - --- --- · ~_,

........... ,,
y

__ ,------------------

C -t--

D ----+· ----

N .. · -11'····

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Position in Stream

As can be seen from this graph, initially there was a large number of unique

events. The first ten percent of the file contains between fifty and seventy percent of

the unique actions. User N had more events than any other user, but has generated

a larger percentage of the unique action events in the first ten percent of his or her

User Interaction Stream than any of the other users. There is a common pattern of

a large number (nearly 50 percent) of unique Action Events generated in the first 10

percent of the stream. After this there is then a steady, mostly flat section with the

remaining rises as a series of small jumps.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl40

Tasks

When following the lab scripts, the users were asked to record when they had

completed a task. There was no way of enforcing this. As a result, many users simply

forgot. Table 9.5 shows user against number of recorded tasks.

As can be seen, there is a large variation in the number of recorded tasks. The

top three users N , D , and C were also the users who recorded the most tasks.

Table 9.5: User against Number of Recorded Tasks
User Number

Of Tasks
A 4
B 4
C 14
D 13
E 8
F 1
G 8
H 7
I 2
J 11
K 1
L 8
M 1
N 12
0 2
p 2

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl4l

9.1.2 Natural Language Similarities

In this section, User Interaction Streams will be compared and contrasted with

the components of a Natural Language. The comparison will be discussed in two

stages. First, the similarities of Target Symbols and Action Symbols to letters will be

evaluated. This will be followed by a comparison of the similarities between Action

Events and words. For both of these comparisons, the LOB corpus Stig Johansson

(1978) described in chapter 3.7.3, will be used as an example of English.

Letters

In this section, the similarities between Target Symbols and Action Symbols to

letters in a natural language is examined. It will be shown that the 'letters' produced

by the interaction with an application show similar characteristics to the letters of a

natural language, such as English.

Zipf's law Zipf (1968) describes the letter frequency distribution of English. This

states that:-

The log frequency of a letter is inversely proportional to the log of its

position in the rank table.

This can be understood more clearly when seen plotted as a graph, showing Log

Frequency against Log Letter Rank for the letters of the LOB corpus. See figure 9.2.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS142

Figure 9.2: Log Frequency against Log Letter Rank for LOB corpus.

17

16

15

14
>,
u
~
Q) 13
;:I
O" 12 Q)

~
b.O 11
0

....::l
10

9

8

7
0 0.5 1 1.5

Person: AllLetters -1-

2

Log Rank
2.5 3 3.5

As can be seen the plot is made up of two straight lines.

Target Symbol

4

Figure 9.3 shows log frequency plotted against log Target Symbol rank for each

user.

The relationship is clearly linear. This fits well Zipfs law.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl43

e
:,

"' " g'
ct
.3

Figure 9.3: Log Frequency vs Log Target Symbol Rank for each user.

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2
0 0.5

Person: A
y = - 0.88x + 6.076 -­

fit, is: 43.00

1.5 2 2.5 3 3.5
Log Rank

o~-- --~-~-~-~--- -~
crson: C

8

7

3

y = - 1.32x + 8.35 - ­
fit is: 85.00

2 '--~- ~-~--'--~-'--~-~---'
0 0.5 1.5 2 2.5 3 3.5 4 4.5

Log !lank

e
"' "' " g'
ct
bO
0

...:i

c
§

" O'

"' ct
bO

..3

7.5

7

6" ·"
6

5.5

5
4.5

4

3.5

3

2.5

2
0

9

8

7

6

5

4

3

2
0 0.5

0.5

crson: B
y = - 1.123· + 7.37 -­

fit is: 56.00

1.5 2 2.5 3 3.5
Log Rank

Person: D
y = - l.20x + 8.36 -­

fit is: 109.00

4.5

1.5 2 2.5 3 3.5 4 4.5 5
Log flank

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl44

Figure 9.3
7.5

crson: E
7 y = - l.05x + 7.17 --

6.5 fi t is: 73.00

6

c 5.5
13 = 5 C"

ct 4 .5

"" 4 .3 ..
3.5 ·-,.~

3

2.5

2
0 0 .5 1.5 2 2.5 3 3.5 4 4.5

Log Rank

8
erson: G

y = - 1.144637 + 7.478687 --
7 fit is: 67.000000

~ G
;:;
g 5
it -'
~

,_J 4

3

~
2

0 0.5 1.5 2 2.5 3 3.5 4 4.5

Log Rank

5.5
Person: I

5
y = - 0.82x + 5.33 --

fit is: 30.00

4.5
g
§l 4
C'

ct 3.5 so
0

,_J

3

2.5

2
0 0.5 1.5 2 2.5 3 3.5

Log Rank

(continued)
6.5

6

5.5

c 5
c::
!: 4.5 g
it 4
~

,_J 3.5

3

2.5

2
0 0.5

7.5

7

G.5

G
c 5.5
13 = 5 g
it 4.5
bO
0

,_J
4

3.5

3

2.5

2
0 0.5

8

7

>,

" "
6

" =
~

1£:
5

~
,_J 4

3

2
0 0.5 1.5

1.5

Person: F
:1/ = - 0.95x + 6.021 - ­

fit is: 42.00

•·· ...

2 2.5 3 3.5
Log Rank

Person: H
y = - L_17,· + 7.27 - -

111 is: 48.00

1.5 2 2.5 3 3.5
Log Rank

Person: J
y = -1.23 + 7.72 --
. fit is: 53.00

--- ...
~

' '

~
2 2.5 3 3.5 4

Log Rank

4

4

4.5

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS145

Figure 9.3 (continued)
7 7.5

Person: I< crson: L 6.5 y = -1.llx + 6.89 -- 7 y = - 1.03:i: + 7.26 --
fit. is: 50.00

6.5 fit is: 79.00 6

5.5 6
c c 5.5 C 5 " ~ § 5 "'" 4.5 0-
" it -,-..., ~ 4.5
~ 4 .. . ~ -·~-.3 .

.3 4
3.5

3.5 '~ 3
3 .,

2.5 ·• .. , .. -;
2.5

2 2
0 0.5 1.5 2 2.5 3 3.5 4 0 0.5 1.5 2 2.5 3 3.5 4 4.5

Log Rank Log Rank

6 10
Person: M Person: I

5.5 y = - 0.77:i: + 5.57 --
9 y = - l.34,: + 9.50 - -

fit is: 52.00 fit is: 125.00

5 8

c 4.5 c 7 " 5 " ::,

g-g- 4 6
~ ~
~ 3.5 ~ 5 0 0 ...J ...J

3 4

2.5 3

2 2
0 0.5 l.5 2 2.5 3 3.5 4 0 0.5 1.5 2 2.5 3 3.5 4 4.5 5

Log Rank Log Rank

6.5 6.5
Person: 0 Person: p

6 y = - 1.01 +6.43 -- 6 y = - 1.14:t + 6.19 --
fit is: 36.00 fit is: 25.00

5.5 5.5

>, 5 c 5 " C § " 4.5 4.5 ::, g. f Q
~ 4 ~ 4 so .., so 0

' 0 ...J 3.5 ...J 3.5

3 ., 3
' 2.5 •. 2.5

2 2
0 0.5 1.5 2 2.5 3 3.5 4 0 0.5 1.5 2 2.5 3 3.5

Log Rank Log Rank

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS146

Action Symbol

Figure 9.4 shows log frequency plotted against log Action Symbol, ranked for each

user.

Figure 9.4: Log Frequency vs Log Action Symbol Rank for each user.

7.5
Pcrsou: A

y =-l.06x + G.71 -­
fit is: 7.00

9 r---~- -~-- ~.,,,P-crs-o-n:=Bc----,

7

6.5
a
§ 6 ::,
O'

if 5.5
g,

,-l

5

4.5

4

12

10

8
C: .,
::,

8

g-
iZ

G

bO
0

4 ,-l

2

0
0

0 0.5

0.5

1 1.5 2
Log RHnk

erson: C ~
y = - 2.93.v + 10.17 -­

fit is: 11.00

1.5 2 2.5
Log Rank

2.5

3

s 1J = - 2.35x + 8.58 -
fit is: 7.00

7

>, 6
" = g 5
~
t: 4
bO

.3 3

2

0
0

12

10

8 8
5
::,
O'

" iZ
6

bO

.3 4

2

0
0

0.5

0.5

1.5

Log Rank
2

crson: D •
y = - 3. 19x + 10.61 -­

fit is: 16.00

1.5 2 2.5
Log Rank

There appears to be two distinct patterns. An almost linear relationship, corre­

sponding to Zipfs law for users: A ,D,F,H,I,N,O and P, and a very different pattern

for users: B,C,E,G,J,K,L and M.

2.5

3

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl47

Figure 9.4 (continued)
10

erson: E
8

Person: F
9 y = - 2.56x + 9.27 - -

7 y = -l.88x + 7.41 --fit is: !G.00 fit is: 28.00
8

6 e 7 e Q

8 5 ~ 6 g- §.
"' .I: 5 .I: 4

"° "° 0
4 .3 ..J

3
3

2 7 2 ·-,
1 I L, • .

0 0.5 1.5 2 2.5 3 0 0.5 1.5 2 2.5 3 3.5
Log Rnnk Log Rank

!) 8 Person: G Person:
8 y = - 2.43x + 8.8G --

7.5
y = - 1.17x + 7.42 --

fi t is: 8.00 lit is: 7.00
7

7
>, e u 6 C

§ g
::: 6.5

g- 5 c-
"' .I: .I: 6

~ 4 "° 0 ..J ..J

3 5.5

2 5

l 4.5
0 0.5 1.5 2 2.5 0 0.5 1.5 2 2.5

Log Rank Log Rank

6.5 10
Person: I Person: J

y = -l.14 + 6.32 -- 9 y = - 2.68x + 9.25 - -
6 fi t is: 6.00 fit is: 10.00

8

5.5 7 >, q u
Q

Q G "' ::,
§. c- 5 5 "' J; .I:

"° ~ 4 0
4.5 ..J ..J 3

4 2

3.5 0
0 0.5 1.5 2 2.5 0 0.5 1.5 2 2.5

Log Rank Log Rank

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS148

Figure 9.4 (continued)
8

Person: I<
10

crson: L

7
y=-l.8Ix+ 7. 4 --

fit is: .00
9 y = - 2.761· + 9.41 --

fit is: I 1.00
8

G
a >, 7

" § 5 §
6 g ::,

8"
ct 4 ct 5

"° "° .3 0
4 ..J

3
3

2
2

I 1
0 0.5 1.5 2 2.5 0 0.5 1.5 2 2.5 3

Log flank Log flonk

8
Person: .1

12
crson: 1'

7
y = - l.91x + 7.42 -- y = -2.931· + 11.15 --

fi t is: 8.00 10 fit is: 15.00

G
a a 8
C C
<> 5 ~

l l (j

4
~ ~

4 ..J ..J
3

2 2

I 0
0 0.5 1.5 2 2.5 0 0.5 1.5 2 2.5 3

Log flank Log fl ank

7.5 G.6
Person: 0 Person:

y = - 1.l0x + G.92 -- 6.4 y = - 1.02x + G.52 --
7 fit is: 6.00

6.2
Ht is: 5.00

6

i7 G.5 e 5.8
C C

"' " 5.6 ::, ::,

8" 6 i
ct tZ 5.4

"° 0
..J 5.5

~
..J

5.2

5

5 4.8

4.6

4.5 4.4
0 0.5 1.5 2 2.5 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2

Log Runk Log Rank

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl49

Words

As with letters, the relationship between log frequency and log rank for words also

closely follows Zipfs law (see Li (1992)) . Figure 9.5 shows the log frequency against

log rank graph for the LOB corpus.

Figure 9.5: Log Frequency against Log Word Rank for LOB corpus.

16

14

12

>-,
(.)

.:::
10

Q.)
;:::l
O"

8
Q.)

~ 6
bl)
0

4 ...:l

2

0

-2
0 2 4

Person: AllWords --+­

y = - l.36x + 14.32
fit is: 40684.00

6

Log Rank
8 10 12

Figure 9.6 shows log frequency plotted against log rank Action Event for each user.

This is equivalent to plotting the log frequency against log word rank. Section 5.5

describes the language like properties of a User Interaction Stream.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl50

Figure 9.6: Log Frequency vs Log Action Event Rank for each user.

8 ~--,---..,...-----r--~-- r--~
crson: A

7

G
>,
g 5
" g 4
it
~ 3 ...,

2

()
0 2

10

!)

8

7 e
§ G

~ 5
it
so 4
3

3

2

0
0 2

y =-l.26x+7. ll -­
fit is: 276.00

3
Log Rauk

4 5

3

Person: C
y = - 1.5h· + 9.46 -­

fit is: 417.00

4 5 6
Log Rank

G

7

9 ~-~--..,...-----r--~----~
crson: B

8 !J = -l.40x + 8.43 --
fit is: 373.00

7

iJ G

" "' 5
8" --
it 4
so
3 3

2

0 c_ _ __._ __ _,__ _ __,,_ __ _._ __ _.__ _ __,

0 2 3 4 5 G
Log Rank

10 ------~-~-----~ PNson: D
9 y = - 1.44x + 9.53 --

fit is: 535.00
8

7
~
" 6
" ::,

8'
it

5 ·--
.3 4

3

2

0 ~-_,__-~---'----'---~-_.____,
0 2 3 4 5 G 7

Log Rank

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS151

Figure 9.6 (cont inued)
D 7

Person: E erson:
8 y = - 1.31x + 8.22 --

fit is: 467.00 6
y = - 1.I0x + 6.43 --

fit is: 328.00
7

5
e 6 >,

<)

~ 5 5 4
g ::,

g- ··-ct 4 ct 3 .,, .,,
.3 3 .3

2
2

0 0
0 2 3 4 5 6 7 0 2 3 4 5 6

Log !lank Log !lank

D
crson: C

D
crson: I

8 y = - 1.41,r + .53 --
fit is: 356.00

8 y = - 1.503' + 8.44 --
fit, is: 214.00

7 7

e 6 >, 6
C g
"' 5 " 5 g ::,

l --ct 4 4 .
~

3
I>°

3 -~-...J ...J

2 2

0 0
0 2 3 4 5 G 0 2 3 4 5 6

Log Rank Log !lank

6
Person:

D
Person:

5
y = - 1.0lx + 5.63 --

fit is: 300.00
8 y =-1.42a· +8.57 --

fit is: 331.00
7

4
e e 6
C C ., 3 .,

5 ::, ::,

l 8'
2 ct 4

g, - ~

' · -...J ...J 3

2
0

- 1 0
0 2 3 4 5 G 0 2 3 4 5 6

Log Rank L-og Rank

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS152

G'
" ~ g
it
"" .s

c
§
:,
g-
it
"" 0

...:,

>,
u
~

l
"" 0

...:,

7

6

5

4

3

2

0

7

6

5

4

3

2

0

7

G

5

4

3

2

0

- 1

0 2

·-

0 2

0 2

Figure 9. 6 (cont inued)

-.;

crson: I
y = - 1.29x + 7.63 -­

fit is: 329.00

.......
\~~~

..._

3 4 5
Log flm,k

Person: ~I
y = - 1.03,· + 6.19 --

fit is: 407.00

----~
~ ---

3 4 5 6

Log Rank

crson: 0
y = - 1.22x + G.98 --

fit is: 308.00

·-

3 4 5
Log Rank

G'
§
:,
g-
it

"" .3

6

~
8"
it
~

...:,

7

G' :::
"'
l
~

...:,

6

9 ~ -~-~--~-~-~Pc~r-so_n_: -L~-~

8 y = - 1.34,· + .41 --
fit is: 422.00

7

(i

5

4

3

2

0
0 2

12

10

8

G

4

2

0
0 2

7

6

5

4

3

2

0
0 2

3 4 5 6
Log flank

3

Person: :,.;
y = - 1.64,· + 11.09 -­

fit is: 710.00

5 ()

Log Rank

~rson: P
y = - 1.15,· + 6.31 -­

fit is: 240.00

....

~ ... -
3 4 5

Log flank

7

7

6

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS153

9.1.3 Categorisation

This section will examine the performance of categorisation at the authorship

task.

Categorisation By Task

As described in section 8.5.1, users were asked to note when they had completed

a task in the laboratory exercise. The result of this was that each user produced a

number of unique documents. This section will look at performing the categorisation

of data generated by users, treating each t ask as a separate document. Although the

users were asked to note when they had completed a task, many forgot - an excellent

example of the completion problem Karwowski (2006).

When performing this categorisation, a training set was produced. The training

set consisted of all but one of the User Interaction Streams. The excluded User

Interaction Stream was used as the document. A different User Interaction Stream

was then selected and the process repeated unt il each User Interaction Stream had

been used for testing.

Categorisation of All Users

This section will look at the performance of categorisation for every user. As

shown in chapter 4, the opt imal maximum context length for compression is not al­

ways the opt imal model size for categorisation performance. Section 10.8.1 will show

that the opt imum model size for compression is order 4. Although not guaranteed to

be optimal, this was a good size to start investigating the categorisation performance.

Section 3.8 described what should be examined when considering categorisation per­

formance: overall accuracy, recall and precision.

Table 9.6 shows the recall and precision for all users at order 4. The overall

accuracy was 23.58 percent. As can be seen from the table, only six of the sixteen users

had documents correctly attributed to them. The relatively high overall accuracy was

caused by the fact that t he users who had documents attributed correctly to them,

for example D and N , produced more documents. It is interesting to note that

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS154

user C generated the most tasks and a large number of events but did not have any

documents correctly attributed.

Table 9.6: Categorisation Performance for All Users using PPM Order Size 4.
User Number Recall Precision

Of Events
D 12919 0.385 0.294
0 2724 0.0 0.0
K 3625 0.0 0.0
H 4343 0.286 0.667
C 11478 0.0 0.0
p 1749 0.0 0
B 5367 0.0 0.0
L 6660 0.286 0.4
G 6096 0.143 1.0
I 1425 0.0 0.0

M 2201 0.0 0.0
A 2401 0.0 0
F 2140 0.0 0.0
J 6361 0.333 0.25
N 28794 0.667 0.286
E 6004 0.0 0.0

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE B UIS CORPUS155

Cat egorisation of Top Users

As described earlier, three of the users (N , D and C) produced far more events

than the other users. It has already been shown, Teahan & Harper (2001), that for

successful language identification a minimum of approximately 2, 500 characters is

needed to achieve 95 percent accuracy at the language identification task. The task

of authorship attribution requires more data.

This section will examine the categorisation performance of the 3 users with the

largest number of Action Events. As with the section above (section 9.1.3) each

recorded task will be considered as a unique document. These users also have the

largest number of tasks. As there are only three users in this set, it is possible to

graph the categorisation performance for each user against model size. Figure 9. 7

shows the precision performance against model size.

As can be seen from t he table, the optimum model size is twenty seven or twenty

~
0

·@
·o
U)
(I)
~

0..

Figure 9. 7: Precision against Order for Top Three Users

0.8

0.7

0.6

0.5

0.4

0.3
0

t I l I I I I I I I I I I I I I II

20

r ..

30
Order

.......................
C --+----
D - -- ... ___ _
N

40 50 60

eight. Both these order sizes have the same precision and recall. This is shown in

table 9.7. There is another smaller peak at order nine and ten, although this peak is

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl56

smaller.

11 and Precision for Three l Table 9.7: Reca sers at Order 4.
User Recall Precision

D 0.462 0.6
C 0.214 0.75
N 0.917 0.44

Even though these results are much better than for all users, the performance of

the categorisation of user C is still disappointing. User C categorisation performance

is much worse than the other two users. In the previous section, user C was identified

as one of the users with no streams correctly assigned at order 4. As has already been

stated, a minimum of 2, 500 characters are needed to perform language identification.

Table 9.8 shows the number of Action Events in each User Interaction Stream

used for categorisation against user for the user N ,D and C. As can be seen from

this table, many of the tasks do not meet the required number of symbols needed to

perform language identification. As a result of this there is a lack of training data

which is affecting the performance.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS157

Table 9.8: User and Task against Number of Action Events
User Task Number Of

ID Action Events
C 10 290
C 21 510
C 29 1972
C 43 365
C 61 1618
C 63 30
C 65 312
C 66 775
C 67 405
C 76 944
C 78 466
C 79 329
C 84 2290
C 94 1172
D 25 645
D 32 4068
D 48 11
D 49 1155
D 54 546
D 6 303

User Task Number Of
ID Action Events

D 7 1733
D 74 1777
D 83 386
D 86 619
D 90 614
D 92 429
D 95 633
N 102 1773
N 103 1576
N 60 2211
N 62 1090
N 64 4560
N 68 534
N 69 7037
N 70 1028
N 71 1385
N 72 1505
N 73 744
N 75 5351

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS158

Cross Validation Approach

As has been shown in the section above, using the tasks to split the User Interac­

tion Streams into documents had some problems associated with it. In this section,

the problem of different document size will be addressed, by concatenating all of the

User Interaction Streams for a user to form one document. This single document will

then be split into ten subsection to perform tenfold cross validation.

Chapter 4 identified a problem whereby, when concatenating documents, new

contexts can be introduced that are not present in the original documents. In the

case of the User Interaction Streams captured to form the corpus, this was not a

problem. The reason for this was that, although the documents were spilt by task,

the user did not stop between the tasks. So, provided the concatenation was done in

the correct order, no new contexts were introduced. Instead, the contexts that were

omitted were reintroduced. The omitted contexts are those that occur at the end of

one task and the start of the next task.

The top three users were analysed. The results are shown in figure 9.8 below:

These results are much improved, but the performance is still considerably less

than when performing the authorship task on natural language. It is possible that

user N is still swamping the other users. Another possibility is that the nature of

the streams is effecting the results. As shown in section 9 .1.1, the first occurrence of

unique Action Events did not just occur at the start of the User Interaction Stream. It

was distributed all the way across the stream. The standard cross validation approach

used above suffered as a result. An alternative method of performing cross validation

is described in the appendix B. When this mechanism was used there was a dramatic

increase in performance, as shown in the PPM results table 9.9. The performance was

the same at all orders. This can be seen in figure 9.9. This gave an overall accuracy

rate of 83.3 percent.

The same data set was also analysed using SVM, C Measure and R Measure. The

SVM implementation was provided by WEKA. The results of performing categori­

sation using SVM are shown in the table 9.9. The overall Accuracy is 60 percent.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS159

Figure 9.8: Precision against Order for Top Three Users (PPM).

0.75

X

0.7

§ 0.65
·u3
·u
<l)

x ~xxxxxxxxxxxxxx~xx

D Precision
C Precision

X N Precision X

X
XXK'XXXX

•·

0::: 0.6 t++++++++++1+++++++++++++++++++++++ +

0.55

0.5 '-----'------'----'---~++++++-+++++++++-+++++H

0 10 20 30 40 50 60
Order

Figure 9.9: Precision against Order for Top Three Users (PPM).

1

0.9

s:1
0 0.8
·u3
·u
r:n
<l)
;., 0.7 P-.

0.6

0.5
0

++++++++-1-++-H-+-+-+-+~-H-H-+++-+-++-H-+-H·++++++++H+-++,ct++++l-++->++;
---+--

20 30
Order

40

D
N ..

50 60

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS160

Table 9.9 also shows the recall and precision performance using PPM, SVM, R Mea­

sure and C Measure. The overall accuracy is for the R Measure 53 percent.

Table 9.9: Categorisation Performance for Three Users.
PPM SVM R Measure C Measure

User Recall Precision Recall Precision Recall Precision Recall Precision
D 0.9 0.9 0.7 0.636 0.75 0.6 1.0 0.8
C 0.6 1.0 1.0 0.556 0.0 0.0 0.0 0.0
N 1.0 0.714 0.1 1.0 0.75 0.3 0.75 0.3

Figure 9.10 shows the performance of C Measure with the same data set. As

can be seen the C Measure performs better than the R Measure but not as well as

PPM. The maximum accuracy achived by the C Measure is 65 percent. Both the C

Measure and R Measure have O precision and O recall indicating that neither of these

algorithms attributed any of the streams to author C.

Figure 9.10: Precision against Order for Top Three Users (C Measure).

0.66

0.64

0.62

0.6
>, 0.58 u
c,;i

~ 0.56
u
u

0.54 <r:
0.52

0.5

0.48

0.46
0 5 10 15 20 25 30

Order

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS161

Three Users

The users for this section of the BUIS corpus were all students undertaking a

course as part of their studies. It is clear that there is a significant difference between

the top three users and the other users as shown by the number of Action Events

produced by the users. As the users were anonymous it was not possible to correlate

between final marks for this module and the number of Action Events generated. The

logging version of WEKA was only available in the Computer Science Laboratory,

students who started in the laboratory and completed the assignment using their

own computers would have only generated action event streams for the part of the

work undertaken in the laboratory. It is hypothesised that the top three students

were highly motivated and so completed all parts of the assignments successfully in

the computer science laboratory.

Strengths

As has been shown, the categorisation performance for the top three users is 83

percent accurate when using cross validation. The categorisation performance has

been analysed with a number of different algorithms:- PPM, C Measure, SVM and R

Measure. PPM was shown to be the most effective.

Weaknesses

Of the sixteen users who participated in the experiment , only three produced

enough Action Events for accurate categorisation to take place.

9. 2 BUIS Asteroids Analysis

This section will examine the data collected for Part Two of the BUIS Corpus.

This part of the Corpus contains User Interaction Streams. Section 8.6 describes the

collection of this data.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl62

9.2.1 Statistical Analysis

This section examines the raw data collected to create the Asteroids section of the

BUIS corpus. There were ten users of asteroids who generated a total of 68148 events.

On average, each user generated 6195.27 Action Events. The standard deviation is

6475.04. Table 9.10 shows a complete breakdown of user against number of Action

Events.

Table 9.10: User against Events Generated
Person Number Of

Action Events
F 18140
A 16732
C 11351
E 7448
I 5634
J 2548
D 1914
B 1660
G 1531
H 1190

Target Symbols

As the Asteroids game has a much simple interface than WEKA, only 16 unique

Target Symbols were generated. The ten users interacted with all 16 Target Sym­

bols. However, not all users interacted with each target symbol. Table 9.11 shows

the number of unique target symbols against each user.

As can be seen from the table, four of the users only interacted with one target

symbol. These users operated and played only using the keyboard. None of these

users interacted with parts of the application that other users did not.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORP US163

Table 9.11: User against Unique Target Symbols
Person Number of Unique Target Symbols

Interactions Unique To User
D 16 0
H 12 0
E 9 0
F 8 0
A 4 0
I 3 0
B 1 0
C 1 0
G 1 0
J 1 0

Action Symbols

The users generated 38 unique Action symbols. Table 9.12 shows a breakdown of

user against the number of unique Action Symbols and the number of these symbols

that were unique to that user.

Table 9.12: User against Unique Action Symbol
Person Number Unique Action Events

Interactions Types Unique To User
A 22 2
B 13 0
C 24 5
D 15 0
E 23 0
F 20 1
G 14 0
H 18 0
I 16 0
J 16 1

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS164

Action Events

Table 9.13 shows the break down of user against number of unique Action Events.

The users participating in the Asteroids experiment have a much smaller alphabet

and vocabulary than the WEKA users.

Table 9.13: User against Unique Action Event
Person Number Unique Action Events User

Interactions Types Unique To
F 40 2
A 31 6
K 30 1
C 24 5
E 48 1
I 19 0
J 16 2
D 58 7
B 13 0
G 14 0
H 45 7

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS165

U niqueness Across a User Interaction Stream

Figure 9.11 shows the relative position of the first Action Event within each User

Interaction Stream.

Figure 9.11: Relative Position of The First Occurrence of Action Event.

..µ 1 -0 A
....

;::l - '
0.9 B - A,4

,.
0 ---- l'I·•-·· u C

I
:

•• ➔ :
..µ 0.8 D

:
s:::I a :

~ E
:

0.7 • :
~ F :

I :
0 0.6 G •·· .. : •
. 8 :
..µ H :
u 0.5 : , I

<I:! I : .. I
: I"

Cl) 0.4 J - ! / :

;::l :
O' :

.......
0.3

:
s:::I :

~ •
Cl) 0.2 .,j a□□c;:i

-~ • ..µ
0.1 co ••

Q)
~ 0

. .. '■ •••• • ._! •,,!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Relative Position in Stream

Comparing this to the equivalent figure in the WEKA section of the analysis

(figure 9.1) we can see that users generated the majority of their interactions at the

start of the stream.

9.2.2 Similarities to a Natural Language

This section will examine the similarities of the User Interaction Streams and a

natural language.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS166

Letters

In this section the similarities between Target Symbols and Action Symbols to

letters in a natural language is examined. As with section 9.1.2 it is shown that the

data conforms to Zipf's law.

Target Symbol

Figure 9.12 shows log frequency plotted against log Target Symbol rank for each

user.

Figure 9.12: Log Frequency against Log Word Rank for Target Symbols.

10 ~--~----,----,--- --,.-----r----.------,
Person A

9

7

6

5

4

3
D

...
•

Person B
Person C
Person D
Person E
Person F
Person G
Person H
Person I
Person J

a

• Q

---+--

I ·.

a

•

....

__,,__

C

2 L.._ __ ..,__ __ _,__ __ __._ __ ____, _ _ _ _,__ _ _ _._ _ _ __,

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Log Frequency

As t he number of Target Symbols encountered by users was small, at most sixteen,

there is very little information in this graph. It is unclear what the relationship is.

Many of the users only interacted with one target symbol so have a single data point

on this graph at x=0.

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl67

Action Symbol

Figure 9.13 shows log frequency plotted against log Action Symbol rank for each

user. As can be seen, this relationship is clearly linear , although there are still very few

data points, as only 38 unique action symbols were recorded. The linear relationship

fits Zipf's law.

Figure 9.13: Log Frequency against Log Word Rank for Action Symbols.

9 r=----.--------,-----,,----,------,------,-----,
Person A

8 ·-- ····· .

7

5

4

3

2

1

0
0 0.5 1

~-

• • •
~ ' •

'I □

•

•·- ··•·

1.5 2
Log Frequency

,
Person B ... i+-• · ·

Person C
Person D □

Person E •
Person F
Person G

Person H
Person I
Person J -----

2.5 3 3.5

CHAPTER 9. EXPERIMENTAL RESULTS & A NA LYSIS OF T HE B UIS CORPUSl68

Words

Figure 9.14 shows log frequency plotted against log rank Action Event for each

user .

Figure 9.14: Log Frequency against Log Word Rank for Action Events.

9

~ Person A ---+--

8 Person B ----+ --·-.
Person C !

•f • • •

7 Person D 0

Person E •
l l -...... :~:· .. :· .. : .. -..... Person F 6 ' Person G o·· ·~

..
A C Person H 5

....
Person I

4 Person J --
3 •
2

•··•
1 ...:.":'\

•4" - .illJl

I
0 \,, .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Log Frequency

9 .2 .3 Categorisation

This section will examine the performance of categorisation at the authorship

task.

Categorisation of All Users

The categorisation performance will be evaluated using the basic cross validation

method. It is not possible to split the users by task, as there was no ident ified tasks

for the users to carry out . Figure 9.15 shows the overall accuracy against order size

for PPM and C Measure. As can be seen from this figure, the accuracy using PPM

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUS169

jumps from 27 percent to 82 percent at order nine. At order ten further improves

this to 83 percent.

90

80

70

60
>,
(.)
<:13 50
H
;::l
(.)
(.) 40

<C
30

20

10

0
0

Figure 9.15: Accuracy against Order Size.

2 4 6 8

Order

C Measure --+­

PPM -- -·►

12 14 16

Table 9.14 shows the recall and precision for all users at order ten.

18

Table 9.14 also shows the recall and precision for the ten users using R Measure

and C measure. The overall accuracy was for the R Measure is 68 percent. Figure 9.15

shows the performance of C Measure against order size. As can be seen from this

graph, the optimal performance is at order 12 and the performance is the same as

the R Measure, 68 percent. The recall and precision for the C Measure at order 12 is

shown in table 9.14.

9.3 Conclusion

This chapter has analysed the two parts of the corpus created in the previous

chapter. The captured User Interaction Streams have been shown to conform to

Zipf 's law. The task of authorship was successfully carried out on both sections of

CHAPTER 9. EXPERIMENTAL RESULTS & ANALYSIS OF THE BUIS CORPUSl 70

Table 9.14: Categorisation Performance for All Users (PPM).
PPM10 R Measure C12 Measure

User Recall Precision Recall Precision Recall Precision
I 1.0 0.714 0.8 0.8 1.0 1.0
D 0.9 0.818 0.6 0.6 0.4 0.4
A 0.9 1.000 1.0 1.0 0.9 0.9
F 0.9 0.750 1.0 1.0 0.9 0.9
H 0.3 0.750 0.0 0.0 0.0 0.0
J 0.9 0.750 0.9 0.9 0.9 0.9
C 0.8 1.000 0.7 0.7 0.5 0.5
B 0.9 1.000 0.1 0.1 0.3 0.3
G 0.7 1.000 0.7 0.7 0.8 0.8
E 1.0 0.714 1.0 1.0 1.0 1.0

the corpus with excellent results.

These results confirm the hypothesis stated in the thesis statement that:-

The interaction between a person and a graphical application is as unique

as their writing style.

The results have shown this by correctly attributing the authorship of a stream to

greater than 80 percent for both parts of the BUIS Corpus. This corpus is available

for further research. Chapter 10 will examine the compression properties of User

Interaction Streams.

The accuracy of over 80 percent archived when performing the authorship task

is significant. Although 80 percent accuracy is not as high as the best accuracy

achieved at authorship attribution for natural language (see the results in chapter 4) .

80 percent is as high as the current best performance at gender and age attribution of

natural language. This performance has been achieved on a very limited set of inter­

actions more natural use of the applications would result in a greater diversity within

the User Interaction Streams and hence higher accuracy at authorship attribution.

Chapter 10

Compressing User Interaction

Streams

This chapter will describe how the User Interaction Streams can be used to perform

the same function as a screen recorder. It will show that the captured User Inter­

action Stream is much smaller than the equivalent files produced by typical screen

recording software. As described in chapter 6, a system for capturing and storing

User Interaction Streams was developed to capture meaningful interactions between

the user and the application. This chapter will describe how the captured streams

can be used to playback the interactions between the user and t he application.

10.1 Terminology

Typically in this thesis, the compression systems described have been lossless.

Both typical screen recorders and the User Interaction Stream are lossy compression

systems. This is explained in more detail on the section on equivalence in section 10.4.

In this chapter, however, the word compression is used specifically to refer to the

process of capturing, encoding and storing the interactions between the user and the

application. The word decompression is used specifically to refer to the process of

decoding the information stored by the compression process and displaying this on a

screen.

171

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 172

10.2 Screen Recorder

A description of how a screen recorder is used for both compression and decom­

pression is outlined below, followed by a discussion of the attributes that can be

altered to change the quality and size of the captured video.

10.2.1 Compression

The screen grabber compressor consists of a separate application that is run at the

same time as a user runs the application. The screen grabber will produce a series of

images showing the content of the application window. The images are captured at

regular intervals, the interval being set by the frame rate. The captured images are

passed as a stream to a video encoder. The encoding is then carried out by whatever

compression algorithm (or codec) has been selected. The codec used to perform the

encoding has a significant effect on how much information is lost. This is discussed

in more detail below (section 10.2.2).

D ecompression

To decompress the screen grabber video, a video player is used. Measuring the

size of the decompression program is difficult. The screen grabber ut ilises video

codecs and application frameworks that are part of the operating system, for example

Directshow Linetsky (2001), Adobe Flash Adobe (2008) and quicktime Apple (2006)

etc ..

10.2.2 Compression Quality

With the screen recorder it is possible to reduce the size of the compressed video

by altering various parameters, such as:-

Frame R ate How often a new image is grabbed. The lower the frame rate,

the more 'jumpy' the video appears. However if the frame rate is set too low

then events can be missed.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 173

Image Compression The grabbers use lossy image compression to further

reduce the size of the video. As more compression is used, t he image quality

reduces. If it is set too high, then text and image data can be lost from the

video.

The type of algorithm used to perform the encoding also has a great effect. There is

a large body of research in the area of video compression International Organization

for Standardization (2007).

10.3 User Interaction Stream Compressor

10.3.1 Compression

The compressor for the event logger makes use of t he application modified to

contain the event logger described in chapter 6. As the user uses the application,

the captured User Interaction Stream is written to a file stored on disk. The data

written to disk contains the meaningful interactions and as such is a compressed form

of the interactions between the user and t he application. The event logger is the

compression system.

10.3.2 Decompression

The decompression program for the Action Event playback consists of the appli­

cation and an Action Event Injector. The Action Event Injector inserts the recorded

events into the application as if they had been generated by a user. The Action Event

Injector, unlike the compressor, is a new component and will therefore be described

in more detail.

Action Event Injector

The Action Event Injector opens a User Interaction Stream. The stream is then

split into tokens of individual Actions Events. As described in section 5.4.4, the

Action Event contains a Target Symbol and an Action Symbol. First, the Target

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 174

Symbol is decoded. Next, the actual Java Object in the current JVM that would be

the target of the interaction, is identified.

The identification process is complicated slightly because the Java Help System

mapping is between the Java Object and its HelpID. An inverse mapping, i.e. between

helpID and Java Object, is not stored. As a result of the lack of an inverse map, it is

necessary to iterate through the key set for the object Map of the Java Help System

in order to identify the correct target.

The Action Symbol is much simpler to process. An equivalent Java Action Object

(hereafter referred to as a Synthetic Action) to that represented by the Action Event,

must be constructed. It is necessary to decode the Target Symbol first, as the Action

classes in Java all reqµire a target for the action as part of the construction process.

The exact Action Class is based on the information encoded in the original Action

Symbol. The relevant Synthetic Action can now be constructed. The synthetic action

is injected into the Java event stack at the appropriate point. The point is identical

to the point where the capture component (described in section 6.2.2) captures User

Interactions. As the playback is happening within the application, any external data

used by the user (for example, a data file that has been loaded) also has to be present

for the decompression to take place.

10.3.3 Compression Quality

The decompression of these User Interaction Streams is, as has already been

stated, lossy. The loss in the stream is not in image reproduction quality. The

loss is caused by the fact that, although the User Interaction Stream preserves the

order that the Action Events occurred in, the interactions that are recorded are only

those defined as meaningful. Interactions such as moving the mouse around within a

graphical component are not recorded. The time that an event as a delta from when

the application was started is also recorded with the Action Event.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 175

10.4 Equivalence

This section will examine differences between a typical screen recorder and a User

Interaction Stream Compressor, to show that a comparison between the files produced

by each is valid.

The User Interaction Stream Compressor records only the meaningful interactions

with no temporal information. The screen recorder records all interactions, meaning­

ful or not . Though the User Interaction Stream Compressor does not record all

interactions, any that alter the state of the application are recorded. For t he purpose

of recording a user performing a task, the two systems are therefore equivalent.

10.4.1 Interaction Capture of 3D interfaces

The Interaction capture system described in this thesis captures interactions be­

tween a typical desktop application and a user. Some applications have interfaces

that represent 3 dimensions. These applications create a large number of dynamic

objects that a user can interact with. The implementation of t he interaction capture

system out lined in this thesis would not capture the meaning of these interactions ac­

curately. The interaction capture system could however be extended to capture these

interaction in a meaningful way. This extension would require the capture system to

create new t arget symbols for each object that a user could interact with.

10.4.2 Practical Equivalence

The interaction capture system can only be used to playback a user 's events if

the same data used by the user is available to the person performing the playback.

This data may, under some circumstances be larger than a video recording, which

would offset one advantage of the interaction capture system. The playback of a

captured interaction stream can be paused, however unlike a traditional video it can

not be rewound, and it is not possible to jump to a point in the capture stream.

The interaction capture streams can not be edited to only show selected sections, for

example for use in a presentation.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 176

The interaction capture system has one significant advantage for a software devel­

oper. It can used in conjunction with an integrated development environment (IDE).

This allows developers to add breakpoints to the software to examine the internal

state of the software, or alternatively to profile the usage pattern produced by the

user.

10.5 Compression Performance

As the two different systems are equivalent, the performance of each system can be

evaluat ed by comparing the size of files produced when recording a user performing a

specific task. When evaluating the performance of the different compression systems,

the size of both the stream and the compressor/ decompressor should be compared.

This is especially difficult with screen recorders, as the operating system provides

many of the facilities needed for playback (see section 10.2.1.) As a result , the only

size that is being considered in this research is that of the file needed to perform

playback.

10.6 Experimental Setting

To compare the performance of a screen grabber with the User Interaction capture

system, three different screen recorders were selected. They are:-

CamStudio CamStudio CamStudio (2007) is an opensource screen recording

software for Microsoft Windows XP.

Freez Screen Video Capture Freez Screen Video Capture Freez Screen Video

Capture (2007) is a screen-capture and screen-recording tool to record screen

activit ies and sounds into standard AVI video files.

Instruments, UI Recorder The UI Recorder tool is provided as part of the

Instruments application Apple (2008). Instruments is part of the developer tools

for OS X. One package provided by Instruments is the UI Recorder. This is

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 177

used to record and playback User Interactions into an application, to automate

the driving of applications for testing.

The application used to perform the capturing was the same modified version of

WEKA as was used for the experimentats detailed in chapter 8.

To perform the experiment, part three and part four of lab one (described in

appendix A) were carried out. This was done once for each of the screen grabbers

and once to capture the interactions with the User Interaction capture system. The

size of the resultant files were then compared.

The performance of the application using Instruments was noticeably slower. Al­

though it was attempted to use Instruments to capture the interactions, a bug in

Instruments meant it was impossible to change the classification algorithm. As a

result of this, it was not possible to use Instruments to perform this recording. The

capture system developed for this thesis had no noticeable impact on the performance

of the application.

The second experiment consisted of performing tasks five six and seven from lab

one. This second experiment was again performed 3 times for each screen recorder.

Experiment three consisted of performing all of Lab two. Experiment four consisted

of playing the Asteroids game for two minutes.

10.7 Results

After performing the tasks described above, the size of each file produced by each

of the two screen grabbers and the User Interaction Stream was measured. This is

shown in the table 10.1. The tasks were performed three times and an average was

taken. The file size was measured in bytes.

As can be seen from the table, using a User Interaction Stream to capture the

meaningful interactions between the user and the application results in a compression

system that is considerably better than a screen recorder. On average 10 - 20 t imes

better.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 178

Table 10.1: Compression Performance of Screen Capture Systems
J Recorder Application I File Size in Bytes I Compressed with Bzip2 I

Experiment One
User Interaction Stream 10537.33 647.33

CamStudio 2290176 77412.67
Freez 2710528 88693

Experiment Two
User Interaction Stream 47508 3393

CamStudio 12656981.33 404231
Freez 21441194.67 880262.67

Experiment Three
User Interaction Stream 90111.33 6088.67

CamStudio 64473088 1771962
Freez 94799189.33 2162960.33

Experiment Four
User Interaction Stream 17453 2103.33

CamStudio 4042752 413720.33
Freez 6569130.67 643527.33

10.8 Lossless User Interaction Compression

This section will examine the compressibility of the user interaction streams in a

lossless way. The compression algorithm that will be used is PPMD. In this section,

unlike the previous sections of this chapter, the term compression here refers to lossless

compression. The compression performance of the two parts of the BUIS corpus will

be examined. Initially the WEKA part of the corpus is analysed followed by the

analysis of the Asteroids section of the corpus.

10.8.1 Weka Compression performance

In t he following section, the data is analysed to determine how compressible it is.

Compression is measured in bits per symbol. The captured data was turned into a

stream of numbers. This was then compressed using the PPM numerical compressor

from the Text Mining Toolkit (TMT) Text Minning Toolkit (2008). Which was used

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 179

to evaluate the modelling of streams of Chinese text Wu & Teahan (2005). This algo­

rithm allows each symbol to be represented as a whole number. As Chinese characters

are represented as a series of two bytes, the compression algorithm generated for this

is very appropriate for the streams that were produced in this experiment which was

also a series of two bytes.

The analysis of the BUIS corpus data was divided into two sections: the compres­

sion performance on streams consisting only of the Target Symbol and the compres­

sion performance on streams of Action Events.

Target Symbol Compression

In this section the compression of Target Symbols will be examined.

Target Symbols were sorted and assigned numbers, starting from 0. A User In­

teraction Stream was then produced, by ordering the Target Symbols sequentially.

Next, the files were compressed using the TMT's number compressor. As the TMT

uses PPM as a compression algorithm, the variable that can affect compression is the

order, or maximum model size. (Chapter 3.5.1 describes this in detail) . There has

been much research into picking the optimum order size and how this relates to the

domain of the stream. The optimum size for this type of stream has obviously not

been determined.

Maximum compression can be defined as the lowest number of bits needed to

encode a symbol. As described in section 9.1.1, there were 236 unique Target Symbols.

Without any compression, this would need 7.88 bits per symbol. Figure 10.1 shows

the number of bits per symbol against order size, when carrying out Target Symbol

compression for each of the users and all users. The User Interaction Stream all users

was obtained by concatenating the Target Symbol stream for each user together.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 180

Figure 10.1: Target Symbol Compression.

Bits per Symbol vs Order size using PPM For Target Symbols
4 ,------,-----,c-----r-----,.----,------,----r------,-----,

'' A'' _,._ ' J '' --

0 ·~ □ □ □ □ □ □ 8

2 ··;c ·····

~

1.5

1
1 2 3 4 5 6 7 8 9

Order Size

As can be seen from figure 10.1 the Target Symbol stream created by user N was

the most compressible, followed by the Target Streams of all other users concatenated

together.

Table 10.2 shows the lowest compression against user and model size. The users

who generated many events (see table 9.1) users ND and C have all produced more

compressible data than the all the other users. The average compression ratio is: 2. 75

bits per symbol with a standard deviation of 0.59. As stated earlier in this section,

encoding the symbols with no compression would result in an encoder encoding 7.88

bits per symbol. The average figure of a compression ratio, 2. 75, shows greater than

fifty percent compression.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 181

Table 10.2: Minimum Compression of Person against Target Symbol.
Person Bits per Order

Symbol Size
N 1.465 4
all 1.730 4
C 1.966 4
D 2.197 4
H 2.363 4
J 2.508 4
L 2.556 4
G 2.602 3
E 2.713 3
K 2.816 4
p 2.859 3
F 3.032 4
0 3.069 4
A 3.182 4
B 3.290 2
M 3.617 4
I 3.705 3

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 182

Action Event Compression

In this section, the compression performance of Action Symbols will be evaluated.

The performance of PPM for carrying out compression will then be examined. As

described in chapter 5.4.3, the Action Symbols are made up of two components;

the Target Symbol and the Action Event . To encode these two symbols, they were

considered as a single number. A list of all unique Action Symbols was created and

each assigned a number from 0. Each time a symbol was encountered in a stream,

this was replaced by the number assigned to that symbol.

Modelling as a single number is simple. It is directly analogous to modeling a

western language such as English, as each of the characters in ASCII maps each

English character to a single byte. Figure 10.2 shows the relationship between order

size and compression.

Figure 10.2: User Interaction Stream Compression

Bits per Symbol vs Order size using PPM For Action Events
6.5 ~-~-~-~--~-~- ~--~-~-~

'' A'' ---+-- ' J '' --
6 : : "B't ----~-! _ "k " ___ t,. ___ _

"C" ····•,M····· "L" ···· <) ----

" D" D "Ivl" 5.5 •
"E" • "N"
"E" "n "

5
........ . ,b --6- tb ~ b~ ~ ~ (!) ·

4.5 "G' ·· ·-• ··-· "P'' ---- -(!)----
- --- ---- - Ko--- - - - - - --~- - - -- ------;<------- -- - >'- - - •1' -H..,,,,.. ------:-~ -)!- - --- - _,.,.. atr'· -----~"--------

4 ---______ l' ______ ---.----.:-.:-- .----------1-----J) J'l -- ----~--■--------.. ---------■--------

3. 5 . ..,., .. ,,.-.-. -, .. ,.,·. c: .·.-.=e.·,. :·. ,, .·.-.,,s,.:·. ,, .-.-. ,: .:·.,,.-.-.,: . :·.,,.-.-.,: _. .·. ,,.·.-. :: .-,e·. ,,.·.-.,: .-,. ,,_._._,: .-,.,:

3

2.5

2

1.5

e e fl el

···- ··--•• i+ ····· ~ ---- ···········~ ·········• -W- ····· · ···· ~ ----·······¥ ·········· i

1

e .,

2 3 4

e
H

5 6 7 8 9 10
Order Size

The graph is in many ways similar to the compression of just the Target Symbol,

shown in figure 10.1. There are, however , some important differences. The User Inter­

action Stream has a much greater variance between the best and worst compression.

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS 183

Table 10.3 shows the minimum compression against user and model size.

Table 10.3: Minimum Compression of Person against Action Symbol.
Person Bits per Order

Symbol Size
N 1.957 3
all 2.063 3
C 2.623 2
D 2.999 2
H 3.021 2
J 3.345 2
L 3.439 2
G 3.478 2
E 3.923 2
K 3.997 2
B 4.203 2
0 4.332 2
p 4.661 2
A 4.725 2
F 5.249 2
I 6.001 3

M 6.106 2

From this it can be seen that, like the Target Symbol compression, user N is more

compressible than all the streams concatenated together. The order of compression

performance is preserved for the first nine users. The order with maximum compres­

sion is also of note. The optimum model size is 2 for all users apart from N and

I. N being the user with the most events and I being the user with the least. The

average compression is 4.00 bits per symbol and the standard deviation is 1.16. This

indicates a much greater range of compression than when compressing the Target

Symbols. The difference in compression ratios appears to be inversely related to the

number of Action Events that a user generated.

CHA PTER 10. COMPRESSING USER INTERACTION STREAMS 184

10.8.2 Asteroids Compression P erformance

As with the first part of the BUIS corpus, the captured User Interaction Streams'

compressibility was examined. As has already been discussed, there are only 16

Target symbols and many users only interacted with one of them. Similarly, the

Action Symbols that users generated were limited to only 38 unique symbols. As a

result of this, only the compression of Action Events was examined.

Action Event Compression

Figure 10.3 shows the relationship between order size and compression. As can be

seen in the figure, there are two distinct sets of users. The graph shows the number of

bits per symbol increasing as the order size increases for five users - A, B, C, F and

H . The other five users, D, E, G, I , and J have a more typical curve. The number of

bits per symbol decreases as the order size increases, until a minima is established.

Then the number gradually increases. Of the five users that exhibit this behavior,

all but one, D, have higher compression ratios than all the other users. The average

compression (shown by the user labeled all) is achieved at order three.

Table 10.4 shows the minimum compression ratio for each user an the order size

at which this occurs.

Table 10.4: Minimum Compression of Person against Action Symbol.
Person Bits per Symbol order size

A 2.069 1
B 1.947 1
C 2.255 1
D 2.245 2
E 1.357 3
F 1.877 2
G 1.134 3
H 2.393 1
I 1.458 2
J 1.582 3

CHAPTER 10. COMPRESSING USER INTERACTION STREAMS

10.9

Figure 10.3: User Interaction St ream Compression.

2.8 ,------.-----.---~-~-~ --~-~-~~~
A ----=:.-

2.6

2.4 '
11 ···········l"t·

2.2

•

...
0

•

..
............... ~ . .B .. ~:·:~-:.-:•· ... '

DD 00 i

E . .

• • • • .. ··•· ..
. ... ·•·· ..•..

1.8

1.6

1.4

1.2 ..
.. ·•·· ··•

1
1 2 3 4 5 6 7 8 9 10

Order Size

Summary

185

This chapter has shown how the captured User Interactions Streams can be used

as a screen recorder. This usage as a screen recorder is a lossy compression system,

although t he informat ion lost is different to a typical screen recorder. The experiments

have shown that t he compression is an order of magnitude better than a screen

recorder.

T he lossless compression characteristics of the User Interactions Streams when

compressed using PPMD have been examined. This examinat ion looked at both

parts of t he BUIS corpus. The order size with maximum compression was shown to

be different for both parts of the corpus.

Chapter 11

Conclusions and Discussion

This chapter summarises the techniques that have been developed and evaluates

their contribution to the field of Computer Science. It discusses ways forward in

applying and developing the techniques.

11.1 Contributions

The introduction described the main aim of this thesis as to:-

perform the task of authorship on a stream produced by capturing inter­

actions between a human and a computer.

In order to accomplish this task a collection of techniques and tools were developed.

This section will summarise these contributions.

11.1.1 Capt ure Syst em

In order to perform the task of authorship on interactions between a human and

a computer, it was necessary to design and implement a system to capture the inter­

actions as a stream of symbols. The design methodology for creating an interaction

capture system that captures meaningful interactions between a user and a graphical

186

CHAPTER 11. CONCLUSIONS AND DISCUSSION 187

desktop application was explored. New terminology, 'Target Symbol', 'Action Sym­

bol' and 'User Interaction Stream' was introduced and defined. These are summarised

below.

The Target Symbol refers to the graphical widget that is the target of an inter­

action. Action Symbols are used to refer to the kind of interaction made by a user,

e.g. mouse movement. The combination of the Target Symbol and Action Symbol is

referred to as an Action Event.

The implementation of the capture system in Java was described. As part of this

implementation, a tool was developed to automate the process of assigning Target

Symbols to an existing application.

In addition to capturing the meaningful interactions, it was demonstrated that the

captured User Interaction Stream could be used to replay the interactions that a user

had made with the application. The playback of interactions into the application

allowed the capture system to be used as a screen recorder with a high level of

compression.

11.1.2 Interaction Corpus

After designing and building the capture system, two very different applications

were modified to produced User Interaction Streams from users using the applica­

tions. The applications chosen were very different. WEKA is a powerful data mining

application and has a complex G UL The other application, Asteroids, is an early

computer game with a limited GUI. The first application, WEKA, was used by six­

teen University undergraduate students over two years, as part of their studies. A

detailed rationale leading to the choice of both WEKA and Asteroids was outlined.

A description of the tasks the users performed on these applications for the purposes

of this research, was given.

The User Interaction Streams captured during both experiments together form

a new corpus. The corpus, referred to as the BUIS corpus, is available for further

research from Bangor User Interaction Stream Corpus (2008).

CHAPTER 11. CONCLUSIONS AND DISCUSSION 188

11.1.3 C Measure

A new text categorisation algorithm, called the C Measure, was developed. This

algorithm was shown to have excellent performance at the task of authorship. The

relationship between compression performance and categorisation performance was

explored in detail. From this it was shown that the opt imal order size for compression

did not correspond with the optimum model size for text categorisation.

This is an interesting result and is further indication that there are st ill improve­

ments to be made in compression performance, as there is addit ional information to

be exploited at the higher orders. This is also indicated by the fact that Shannon has

estimated the entropy of English to be around 0.6 - 1.1 bits per character , and PPM

only compresses English to 1.4 bits per character. Although the C Measure performed

well in natural language, it did not perform well at the authorship attribution task

for User Interaction Streams. The reason for this is not clear. It may be that the

common sub-strings occur less often.

11.1.4 Visualisation

Two visualisation techniques were developed. One was a simple tree view of the

trie dat a structure. This was developed in order to allow manual verificat ion of the

data structure. The other visualiser showed a directed graph view of a stream. This

directed graph view can be used to explore the contents of a stream and highlight

contexts.

11.2 Results And Conclusions

A detailed analysis of the BUIS corpus, produced by capturing User Interaction

Streams using WEKA and playing Asteriods, was given in chapter 9. This analysis

was split into two sections. First, the WEKA section of the corpus was examined.

This was followed by an analysis of the Asteroids section of the corpus.

CHAPTER 11 . CONCLUSIONS AND DISCUSSION 189

11.2.1 WEKA

The similarities between the components of a User Interaction Stream and a nat­

ural language were shown. Following this, the performance of the authorship task

was evaluated. The initial results were poor. The poor results were caused by a com­

binat ion of the method of cross validation used and the relatively small number of

Action Events that were generated by all but three of the part icipants. By using the

three top users and a different cross validation technique, an accuracy of 81 percent

was achieved for the best categorisation algorithm, PPM.

11.2.2 Asteroids

This same analysis was then carried out on the Asteroids section of the BUIS

corpus. The similarit ies between the components of a User Interaction Stream and a

natural language were again evaluated. The simpler interface of the Asteroids game

resulted in very few Target Symbols. The authorship task was again evaluated. The

results, 83 percent , showed a high degree of accuracy, again using t he PPM algorithm.

11.2.3 Summary

It is interesting that WEKA, with a much more complex interface, required many

more events to achieve accurate performance at the authorship task. This may be as

a result of the combination of the strict laboratory script and much more complex

interface of WEKA. Overall accuracy (over 80 percent) was achieved for both parts

of the corpus. Although this is not as high as the current research in authorship of

natural languages (over ninety percent) it is still a significant result , supporting the

hypothesis given in the thesis statement that:- "the interaction between a person and

a graphical application is as unique as their writ ing style."

CHAPTER 11. CONCLUSIONS AND DISCUSSION 190

11.3 Further Work

The work undertaken for this thesis was concerned with test ing the hypothesis

stated in the thesis statement. In order to do this a new User Interaction Capture

System was created and a new corpus, the BUIS corpus, was produced. At the

conclusion of this work, it is evident that the techniques and tools that have been

developed as a result of this thesis have the potential to be used for further research.

Some of these experiments would require access to specialist equipment, such as a

HCI lab, facilities that were unavailable for use in this research.

11.3.1 Corpus

The BUIS corpus has been successfully used to analyse the authorship task. There

is scope for the corpus to be extended. The WEKA section of the corpus was limited

by the number of students who took the Artificial Intelligence course and the con­

straints of the course syllabus. This part of the corpus could, therefore, be extended.

For example, it could be augmented with additional users. Also, the tasks carried

out by the users could be expanded. As described in section 9.1.1 the lab script

only caused users to encounter 236 of the 545 Target Symbols that were assigned to

WEKA. A larger set of tasks could be constructed, in order to encourage the user to

interact with every unique widget in the application. In addition to covering more

of the application, additional tasks could be added to the Lab script A, to ensure

that more Action Events were generated by the users. This would then ensure that

sufficient Action Events were available to carry out the authorship task with more

participants.

For the purposes of this thesis, the BUIS corpus was used only to evaluate the

authorship task. However, it could also be used for other tasks. For example, the

corpus contains a distinction between tasks. During this research, as described in

section 9.1.3, many users forgot to record when they had completed a task. If a

mechanism could be devised to accurately record the completion of a task, then the

job of task detection could be attempted. It might be possible to determine the task

boundaries by manual examination of the User Interaction Stream and looking for

CHAPTER 11. CONCLUSIONS AND DISCUSSION 191

new Target Symbols that would be used in different tasks.

In the BUIS corpus, the users were anonymous. If, however , the experiment were

to be repeated, t he age and sex of the users could be recorded. With this additional

information, t he t asks of age and gender identification could be at tempted.

11.3.2 Potential Uses of the Interaction Capture System

As described in the thesis statement, a technique to capture human computer

interaction as a st ream of symbols (User Interaction St ream) was designed and im­

plemented. To support this technique, a toolkit was developed to automate the task

of creating an application that captures user interactions. The mechanism for record­

ing has been shown to be unobtrusive during the use of an application. A discussion

of further applications that may benefit from this technique follows.

Cheap HCI

As described in the literature review 2.5.3, a technique to perform cheap HCI

studies has been developed. The use of the interaction capture system as a compres­

sion system would enable a researcher to watch the interactions between the user and

the application, using considerably less bandwidth than a traditional screen capture

system.

The User Interaction Streams produced by the user could be played back, allowing

a developer to see how a user was interacting with an application. Although this does

not allow the developer to see the user , the simple addit ion of a cheap web cam would

provide this information.

As the streams are meaningful interaction, the User Interaction Stream could be

examined algorithmically to look for common patterns. The common patterns may

well be indicative of a common task, or a problem with the interface. These hot spots

could be found automatically then examined in detail to determine if there was a

more optimal way of helping the user with the task. A developer would then be able

to improve the application by, for example, providing a shortcut , or if t he shorcut

already existed then hinting to the users the existinace of a shortcut.

CHAPTER 11. CONCLUSIONS AND DISCUSSION 192

Black Box Recorder

By saving the User Interaction Stream constantly to disk, or a remote database,

as described in chapter 5, should the application ever crash, a developer would be

able to see all the interactions that led to the crash aiding debugging.

Continuous Authentication

By identifying users based on their interactions with an application, the presence

of a different user could be detected, as the stream would change. This would be

similar to detecting boundaries in text documents Rey & Reynar (1998). As this

authentication happens during normal use of an application, it is unobtrusive to the

user.

User Tuition Analysis

The streams produced by users could be evaluated before and after tuition is

given. This would show up whether or not the tuition had been effective, as there

would be a change in the models. In addition, the models might indicate areas where

additional tuition would be beneficial.

11.3.3 Testing System

Automated testing of graphical applications is much more difficult than automated

testing of non graphical applications. There are some tools that exist to provide

automation. For example, jemmy Netbeans (2008) is an automated test system for

swing applications. One of the major problems with automated systems like jemmy is

the time taken to produce each test. Typically, each test is a script written by hand.

These scripts tend to be brittle, as they rely on the absolute positions of the GUI

components. The User Interaction Streams could be recorded during normal use of

an application. This stream can then be played back into the application to test it.

The design of the capture system ensures that it is not brittle.

CHAPTER 11. CONCLUSIONS AND DISCUSSION 193

11.3.4 Cognitive Monitoring

There has been some previous work Jimison et al. (2004) which has shown that

it is possible to detect mild cognitive impairment by monitoring the use of the game

Freecell. The rich data stream captured using the techniques outlined in this thesis

provides researchers with an addit ional data source to analyse. It is hypothesised

that analysis of this data stream could be used to augment the research in this area

of detection.

11.3.5 Tool Extensions

Tagging Tool

A major further development of this system would be to make it idempotent and

self updating. To make the tool idempotent, it should keep a track of which lines

of code have already been altered and not alter these lines again. A self updating

system would allow re runs after adding new widgets, without hand coding, to avoid

collisions.

The system could also use reflection to instant iate all classes that are constructed

and then see if they are GUI components. This would allow the tagging system to

tag objects that extend the basic GUI widgets without intervention.

Stream Visualiser

The stream visualiser, described in chapter 7.2, has potential for a large amount

of further extension.

Clustering Analysis of the stream would show that there are clusters of sym­

bols. For example, in English the word "the" is very common. The visualiser

could be enhanced to detect and show clusters like this one.

Component Display When playing a user interaction stream, the compo­

nent represent by a Target Symbol could be imaged and displayed rather than

the target symbol. A set of icons to encode the meaning of the Action Symbol

would also increase the information displayed to a user.

CHAPTER 11. CONCL USIONS AND DISCUSSION 194

11.3.6 Grammar Discovery

Chapter 5.5.1 described how every graphical application has an associated gram­

mar. The grammar for a small application was fully described. In a more complex

application such as WEKA, the grammar is also much more complex. Evaluating the

grammar by hand would be extremely time consuming. It could be possible to gener­

ate the grammar for a J ava Swing application automatically. The potential technique

to do this is outlined below.

Every Java GUI component has a parent. The parent is accessible via the

getParent () call method. This method is defined in the Component class (Flanagan

1998), that is extended by all Swing components. Using this method, the graphical

root object can be discovered. This root of the tree will be the main frame. Given the

root, a standard treewalker algorithm can be used to determine the locations, and

hence the grammar, of the application. This technique does have some limitations,

however. Applications that add new graphical components when loaded with data

have a grammar for each data set. The outlined technique would be t ied to a specific

loaded data set.

Grammar Uses

This grammar could be used to perform automated application testing. Fuzz

testing, as described in Miller et al. (1990) started by inputting random data into

console applications, whilst monitoring the application to see if it had crashed. This

has been extended to cover graphical applications (Forrester & Miller (2000) and

Miller et al. (2007)). If the grammar of an application was known, then fuzz patterns

could be generated with the knowledge of the state that they will be driving the

application to. By comparing the User Interaction Streams generated under normal

use with the known states that an application could be in, testing could be improved

by targeting states that are not typically encountered. This would mean there would

then be a higher chance that the fuzzer would cause the application to hang or crash.

CHAPTER 11. CONCLUSIONS AND DISCUSSION 195

11.4 Conclusion

This thesis has introduced a new and novel technique to capture interactions be­

tween a user and a graphical desktop application. This technique has been used to

capture the use of two different graphical applications. These captured interactions

form the BUIS corpus which has been made available for use by other researchers.

This corpus has been analysed and the performance at the task of authorship cate­

gorisation has been examined and shown to be robust. In addition, a new algorithm

for performing text categorisations has been developed.

As a result of this research, the production of the BUIS corpus and the result ing

development of creat ing a new algorithm for performing text categorisation have

opened up further channels for interesting research in this field.

Appendix A

Lab Script

The following pages contain the full lab script used in chapter 8. The lab took

place in two sessions these have been split into lab one and lab two.

196

APPENDIX A. LAB SCRIPT

A.1 Lab One

ICP303 7 Lab 09

Data Mining with WE.KA: Introduction
Tltese labs provide sample exercises and a g11ide to materials tltat are relevant to the
module ICP303 7. The exercises are to ltelp yo11 become familiar wirlt the material and
ltelp you with the assignment.

Lab work will be assessed for this module. It will count for 15% towards your final
overall mark, and should be your own individual work. Some oft/re lab exercises
may also appear as exam questions, so it is in yo11r own best imerests to complete the
lab

For today's lab, write the answers 10 the exercises and include the requested scrccnshots
in a Microsoft WORD document, archive in a zip file the exercise 3 files and ema il the
lecturer (wjt1@infonn a1ics.bangor.ac.uk).

Background reading: Data Mi11i11g by Ian H. Wincn/ Eibe Frank.

Main WEKA website: http://www.cs.waikato.ac.n,J ml/weka/

For some lectures on Data Mining, go to /homedir/course/icp3037/wcka-docs or
N:lcoursel icp3033\weka-docs.

Note: All the files you will need for this lab arc in the wcka subdirectory of the main
module directory on the course drive (/homedir/coursc/icp3037/wcka or
N:\coursclicp3037\wcka).

Introduction to data mining

In this lab you will leam about classification through decision trees by using a powerful
tool written in Java/Swing called the Waikato Environment for Knowledge Analysis
(WEKA) . WEKA is a general tool for data mining, and can analyse data using a variety
o f methods. Today we will concentrate on classification o f data and become famil iar with
the basics of WEKA's operation.

Task I (2 marks):

197

APPENDIX A. LAB SCRIPT

How many times have you used WEKA before?

1. ARFF data files

The first, most obvious requirement, is that we need to supply WEKA with a data file to
work on.

We will first look at a very small data file pertaining to the prescription of contact lenses.
Before opening the file under WEKA, it is worthwhile having a brief look at the data fi le
in a text editor. WEKA uses "ARFF" format data files, which are effectively comma­
separated value (CSV) format files, with some additional information.

Using the text editor/viewer of your choice, open up the file "contact-lenses.arff' which
can be found in the weka sub-directory.

The first part of the file is simply a human-readable description of the data (all lines
starting with a "%" symbol are comments). Next, the file defines the attributes for the
data. These attributes correspond exactly, in order, to each of the data fields separated by
commas present in the data section of the file (delimited by the "@data" tag). The curly
braces enclose the possible values the attribute may take. The attributes are the particular
entities for which we are actually defining the data. The "@relation" line specifies the
particular .feature we desire to extract from the file; here, we wish to use the data to
detem1ine the appropriate type of contact-lens suitable for a patient, so we define relation
to be "contact-lenses" corresponding to that attribute.

The simplicity of the format means that it is very simple to create your own ARFF files
from either a spreadsheet or database for use with WEKA.

2. Starting WEKA

Using your favourite Web browser, type in the following URL:

h ttp : / /yella . informa t ics . bang or . ac . uk : 8080/

Then enter your username as your first name, and last name. Then an "Enter task details"
pop-up box appears. Then for each of the tasks below, type in the task number into the
"Task Name" field, plus a short description of the task details. (Note: if you have to
revisit a task, please add details that you are changing your answer for this task).

Now click the New Task button. When the "GUT Chooser" window appears, click on the
"Explorer" button.

Task 2 (5 marks):

198

APPENDIX A . LAB SCRIPT

Spend some time familiarizing yourself with the WEKA environment. The purpose of
this exercise is to find out as much as possible by using the software directly. The
software itself has been altered to include the ability to log everything you do (mouse
movements, tab selection, what you type in, etc.). We are recording this for this lab and
next weeks' lab as part of a research project. You will receive the full 5 marks for this
exercise simply by making a reasonable attempt at becoming familiar with the user
interface provided by WEKA.

Enter whether you feel comfortable with using WEKA at this stage. Also highlight any
problems with the user interface, or what features you like the most about it.

When.finished, click the Task Complete button, and then enter details for the next task.

3. Loading a data file

Click on the "Open file ... " button in the top-left of the "?reprocess" tab. Open the file
"contact-lenses.arff'' which we looked at earlier.

Once the file has loaded it will display a numbered list of the attributes in the "Attributes
in base relation" pane. lf you click on each of these in tum (make sure not to uncheck
them) you can view a brief summary for each attribute in the lower right pane, with a
count listing for each particular attribute value.

Classification in data mining

One of the most important tasks in data mining is c lassification. Given a large corpus of
data, what we ideally want to do is to automatically classify new instances of data in
accordance to our data set - we want to infer rules, or classification schemes, based on
our existent data. For example, if we wished to produce a system that could perform
automatic diagnosis of patients suffering from cancer, we could provide it with a large
database of the various forms of cancer and their antecedent factors (preconditions), and
through data mining allow the system to automatically adjudge a new patients risk of
contracting cancer.

Classification is this process of identification. The key point is that we wish the necessary
rules for accurate classification to be constructed automatically from the data, not
manually created by us.

Decision trees

Once such technique used in data mining to achieve this automatic "rule-creation" is the
use of decision trees . We will now get WEKA to generate a simple decision tree to
classify our contact lens data.

4. Performing the classification

199

APPENDIX A . LAB SCRIPT

Click on the "Classify" tab at the top of the Explorer window.

Next, we need to select the classification algorithm used by WEKA. WEKA provides a
large number of classification algorithms; to select the one we're interested in, click on
the thin classifier button at the top of the window (it should currently be reading
"ZeroR"). From the pop-up box that appears, select weka.classifiers.trees.J48 from the
drop down menu. Leave the other options at their defaults, and click on the "OK" button.

Make sure that "Cross-validation" option is checked in the "Test Options" pane (it should
be by default), then click on the "Start" button just below it.

Take some time to look over the output produced.

The first section is simply a summary of the data file, with a listing of the attributes and
the number of items (instances) present in the file.

Next, you should have something like the following lines:

J48 pruned tree

tear-prod-rate = reduced : none (12.0)
tear-prod-rate= normal
I astigmatism= no: soft (6.0/1.0)
I astigmat i sm = yes
I I spectacle- pre scrip
I I spectacle-pre scrip

Number of Leaves
Size of the tree

4
7

myope: hard (3.0)
hyperme trope : none (3.0/1.0)

These lines depict the decision tree WEKA has produced from the data. Each level of
indentation represents a level in the tree. The values specified after the colons are the
contact- lens value (label) that should be prescribed based on meeting those conditions.

Graphically, the decision tree looks like this:

200

APPENDIX A. LAB SCRIPT

none

myope hypeITT1ytrope

none

As you can clearly see, there are four square leaves - each here corresponding to the
appropriate types of contact lens prescription, the "decision" - and the tree has a total of
seven nodes.

lt should be fairly clear how a decision-tree enables us to determine an appropriate
decision based on the instance data by simply following the edges. The decision tree
behaves like a series of"IF ... THEN ... " rules; so we could read the tree above as:

IF tear production rate= REDUCED
assign them no contact lenses

IF tear production rate= NORMAL
AND astigmatism = NO

assign them soft contact lenses

IF the patients tear production rate= NORMAL
AND astigmatism= YES

201

APPENDIX A. LAB SCRIPT

AND spectacle prescription= MYOPE
assign them hard contact lenses

IF the patients tear production rate= NORMAL
AND astigmatism = YES

AND spectacle prescription HYPERMETROPE
assign them no contact lenses

These rules could, of course, be written more efficiently and compactly if we assume
ordering in the rules and allow ELSEs, but written this way it is clear how we can start
from the root node each time and arrive at the decision. This decision tree is compact and
simple, but the trees can become considerably larger if more complicated chains of logic
need to be followed, and ifwe have large numbers of attributes and values.

Click the Task Complete button, and then enter details for the next task.

Task 3 (5 marks)

Experiment with changing some of the options to the J48 classifier algorithm, and try
running it on some of the other data fil es in the directory. In particular, experiment with
the "binarySplits" and "unpruned" options and observe their effects on the generated
decision tree. Post a summary of what you observe here.

Click the Task Complete button, and then enter details for the next task.

Task 4 (5 marks)

Compare the perfo1mance and trees generated by the divide-and-conquer decision tree
algorithm, ID3 (weka.classifiers.trees.Id3) with J48, noting any differences.

Click the Task Complete button, and then enter details for the next task.

Task 5 (10 marks)

Experiment on the data sets with some of the other classifiers present in WEK.A. Write a
summary of what you have found out here.

Click the Task Complete button, and then enter details for the next task.

5. Clustering

Clustering is an extremely complex topic within data mining, so we will only touch on
the basics here. Essentially, clustering refers to aggregating the data into groups based on
certain criteria and mathematical transformations. Whereas with classification we already

202

APPENDIX A. LAB SCRIPT

know the classification categories prior to performing the classification, with clustering
we attempt to infer these too.

Make sure you have the fi le "zoo.arff" open.

Click on the "Cluster" tab. In the "Cluster mode" pane, select the "Classes to cluster
evaluation" option, and select "(Nom) type" from the drop-down menu. Next, click on the
"Clusterer" button at the top, and select "weka.clusterers.SimpleKMeans" from the drop
down menu. Change the "numClusters" field to 3. Click on "OK" then click on the "Start"
button to perform the analysis.

You should get some output which includes the fo llowing:

0 1 2 <- - assigned to cluster
0 0 41 mammal
1 1 9 0 bird
4 1 0 reptile

13 0 0 fis h
4 0 0 amphi b i an
0 8 0 i nsect
7 2 1 i nvertebr ate

Cluster 0 <-- f i sh
Cl uster 1 <-- bird
Clus ter 2 <-- mammal

Here, we are perfom1ing the clustering based on the type of animal. We specified that the
algorithm should generate three clusters, and these are the three clusters it has generated
based on our data. The matrix of data shows the number of instances of each type of
animal, and the cluster it was assigned to. The cluster name is determined by the majority
membership by the type of animal; whilst cluster O has I bird, 4 reptiles, 4 amphibians,
and 7 invertebrates, it has 13 fish, so it is therefore classified as "fish".

Click the Task Complete bu/Ion, and then enter details for the next task.

Task 6 (5 marks)

Experiment with different parameters to the clustering algorithm and observe the effects.
Next, open the fi le "primary-tumor.arff" and use clustering to determine which types of
tumor are most prevalent. Post your answer here.

Click the Task Complete bu/ton, and then enter details.for the next task.

Task 7 (5 marks)

WEKA also provides a convenient option for data visualisation. With the file "primary­
tumor.arft'' still open, click on the the "Visualize" tab. By default, both the X and Y axis
wi ll be set to the instance number, which is not very informative. You can select the
attribute displayed on the axis by selecting it from the drop-down menu for the

203

APPENDIX A. LAB SCRIPT

corresponding axis (i.e. the drop-down menus currently reading "X: Instance_number
(Num)" or "Y: Instance_number (num)").

Along the right-hand side panel you can view miniature previews of the graphs against
each parameter, whilst the two other drop-down boxes allow you to alter the colours used
for displaying the data. The "Jitter" slider allows you to introduce some "randomness"
into the data.

Take some time to look over the data by viewing different attributes along each axis (in
particular look at "lnstance_number "against "class"). Post your observations here.

Click the Task Complete button, and then enter details Jar the next task.

Task 8 (IO marks)

We have now briefly looked at all of the areas present in the Explorer within WEKA.
Spend any remaining time exploring other data files, performing analyses, using any of
the features as you wish. Post a summary of what you did into the box provided.

If you have some suitable data (if not, invent some!), you could create your own ARFF
data file. Simply export the data from your spreadsheet/database or data source in CSV
format, then manually edit the file in a text editor to add the other information. If you
encounter any problems, refer to the previous lab for a description of the ARFF format, or
simply look at some of the existing ARFF files in a text editor.

Once you have your data prepared, you can get WEKA to analyse it for you.

If you have created your ownARFF file, append it to the answer you typed in the box
provided below.

Click the Task Complete button.

204

APPENDIX A. LAB SCRIPT

A.2 Lab Two

Data Mining with WE.KA: Text classification
These labs provide sample exercises a11d a guide to materials that are releva11t to the module
ICP303 7. The exercises are to help you become familiar with the material a11d help you with the
assig11menl.

Lab work will be assessed for this module. It will co11111 for I 5% towards your ji11al overall mark,
a11d should be your ow11 ilrdil•idual work. Some oft/re lab exercises may also appear as exam q11es­
tio11s, so it is i11 your ow11 best interests to complete the lab

For today's lab, write the answers to the exercises and include the requested screenshots in a Microsoft
WORD document, archive in a zip fi le the exercise 3 fi les and email the lecturer (wjt@infonnatics.ban­
gor.ac.uk).

Using WEKA as a text classifier.
Continuing from last week we will use WEKA to classify text.

Using your favourite Web browser, type in the following URL:

htto : //ye lla . i nformatics . bangor . ac . uk : 8080/

Then enter your usemame as your first name, and last name. Then an "Enter task details" pop-up box
appears. Then for each of the tasks below, type in the sub-task number into the "Task Name" field, plus
a short description of the task details. (Note: if you have to revisit a task, please add details that you arc
changing your answer for this task).

(Or you can 11111 WEKA directly by going to tire weka-1 sub-directo,y and ru1111i11g the weka-3-4-6.exe
to install the latest release ofWEKA.)

The data we will be working with is from the Reuters news agency (hnp://www.reuters.com/).
The aim of this week's assignment is to classify news articles into 5 different categories:

I. corporate acquisitions
2. com
3. crude oil
4. grain

205

APPENDIX A . LAB SCRIPT 206

The arfffiles for the Reuters data are located in the sub-directory Reuters on the course drive. Note that
the arfffi les include the labels that Reuters personnel have manually assigned to each of the news
articles (i.e. by hand, not by computer).

The arff fi les for this week's assignment are paired so for each category there are 2 files - one for
training and one for testing. E.g.:

ReutersCorn-train. a,jj'
ReutersCorn-test. a,:JJ

Have a look at the fi les to see what they look like. Note that under the "@data" field, all the text has
been included as one large string for each of the articles that have been categorized into one or more of
the five categories above. The purpose of this lab's experiments is to see how accurately the classifiers
can assign the labels to the test data once they have been trained on the training data.

You may have heard of Bayesian fi lters being used in SPAM filters. WEKA has an implementation of
naiveBayes, plus many other learning algorithms.

Your task for this lab is to discover which of several classifiers - NaiveBayes, SMO, IBk or J48 (one
for each of the tasks in this lab) has the best perfonnance at classification on the Reuters articles over
all the categories above. Part of your job is also to find out which combination of WEKA options work
best for each classifier.

(Note that a "greedy" search of the options is OK. You are not expected to search all combinations
exhaustively! All of these classifiers wi ll work with their respective default options. However, for SMO
and IBk, you should try a few values of k to find the one that works best for each dataset.)

Task One (Using a Naive Bayes classifier).

Subtask One A
In WEKA, load the ReutersCorn-train.arff training file in the explorer. Switch to the classifier tab. To
make things a little more difficult than last week, the data must first be preprocessed before the
classifier can be applied. To do this you should choose weka.classifiers.meta.Fi lteredClassifier

DO NOT USE THE ?REPROCESS TAB

After selecting the classifier, set the properties for the classifier. The properties for this classifier are as
follows:

classifier classifiers.bayes.NiaveBayesMultinomial

filter filters.unsupervised.attribute.StringWordVector

No other classifier options need to be set.

In the Test options, set the supplied test set to ReutersCorn-test.arff

You should find that 94.0397% of the test data is correctly classified.

APPENDIX A. LAB SCRIPT

Subtask One B

Repeat task one with the corporate acquisitions data.

Subtask One C
Repeat task one with the crude oil data.

Subtask One D
Repeat task one with the grain data.

Repeat sub-tasks A through E by trying out di fferent options.

Exercise 1 (8 marks): Enter your results here.

Task two (Using the support vector machine classifier).
Select the support vector machine classifier:

O weka . c l assifi ers . fun c t ions . SMO

Repeat sub-tasks A through E as for Task one. Try out different options.

Exercise 2 (8 marks): Enter your results here.

Task three (Using the nearest neighbour classifier).

Select the nearest-neighbour classifier:

D weka . classifie rs . lazy . IBk

Repeat sub-tasks A through E as for Task one. Try out different options.

Exercise 3 (8 marks): Enter your results here.

Task four (Using the decision tree classifier).
Select the decision tree classifier :

□ we ka . c l assif iers . trees . J 48

Repeat sub-tasks A through E as for Task one. Try out different options.

Exercise 4 (8 marks): Enter your results here.

207

APPENDIX A. LAB SCRIPT 208

Exercise 5 (8 marks): Enter a summary of your overall results here. What did you find out?

Appendix B

Cross Validation Technique

This appendix details the cross validation technique used in chapter 9. The typical

method of cross validation is to split the dat a set into n slices. If each data point is

independent i.e. the order of the data is unimportant, then the position of the split

is unimportant . When performing cross validation on text streams, the order of the

characters in the stream is important . If a corpus contains many documents then the

cross validation can take place at the level of individual documents.

If this is not possible, i.e. when there is only a single document, then a different

approach must be taken. The first (and most commonly used) approach is to split

the file into n subsections. This is shown in figure B, where the stream is split into

five sections labelled one to five. One section is reserved for testing and the remaining

four sections are used for training. After testing the first section the split is cycled

through so all sections are used for testing once.

Figure B.1: Cross Validation Size Five

1....--11 __ _____.111....--2 __ _____.l l....-l 3 __ _____.l l....-l 4 __ ____,l l....-l 5 __ ____,

The User Interaction Streams have Action Events distributed in a non-linear way.

The Action Events are clustered together. This can be seen in section 9.1.1 where new

Action Events are generated throughout the User Interaction Stream. To overcome

this an alternate cross validation technique was developed.

209

APPENDIX B. CROSS VALIDATION TECHNIQUE 210

The alternate technique splits the stream into n sections. Each of these n sections

is split again m t imes to form n * m subsections. Each subsection is labelled in the

form nm. This is shown in figure B.2.

Figure B.2: Multi Cross Validation Size Five

1 2 3 4 5

[Ii]~~~ ~ ~ ~ ~ @J @i] ~ ~ K] ~ ~ ~ @i] @i] @i]@;J
After perfoming the split a testing document is produced by assembiling all the sub

splits with the same number i.e. In figure B.2 testing document one would be made

up of 11 , 21 , 31 , 41 and 51. The unused subsections form the training document . After

testing with split N1 the testing is repeated for each subsection. The next sections to

be used for testing in this example would be: 12 , 22 , 32, 42 and 52

211

Bibliography

3GPP (2007), Short Message Service Cell Broadcast (SMSCB) support on t he mobile

radio interface, TS 44.012, 3rd Generation Parnership Proejct (3GPP).

URL: http : //www.3gpp.org/ftp/Specs/html- info/44012 .htm

50000 euro Prize for Compressing Human Knowledge (2007).

URL: http : / /prize. hutter1. net/

ACM's Special Interest Group on Computer-Human Interaction (2008).

URL: http://www. sigchi. org/

Adams, D. (1995), The Hitchhiker's Guide to the Galaxy, Pan Books.

Adobe (2008), 'Adobe flash player'.

URL: http://www. adobe. com/products/flashplayer/

Alata, E., Nicomette, V., Kaaniche, M. , Dacier , M. & Herrb, M. (2006), 'Lessons

learned from the deployment of a high-interaction honeypot', Dependable Comput­

ing Conference, 2006. EDCC '06. Sixth European pp. 39-46.

Apple (2004), 'Apple human interface guidelines' .

URL: http://developer.apple.com/documentation/UserExperience/

Conceptual/AppleHIGuidelines/

Apple (2006), 'Quicktime framework reference'.

URL: http:/ /developer. apple. com/documentation/QuickTime/Reference/

QT_Framework_Ref/QT_Framework_Ref.pdf

212

BIBLIOGRAPHY

Apple (2008), 'Instruments user guide'.

Association for Computing Machinery (1947).

213

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J. & Zhou, Y. (2007), Evaluating

static analysis defect warnings on production software, in 'PASTE '07: Proceedings

of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software

tools and engineering', ACM, New York, NY, USA, pp. 1- 8.

Bangor User Interaction Stream Corpus (2008).

URL: http: //aiia. cs. bangor. ac. uk/PhDs/David_Hunnisett

Bates, D. W., Leape, M. L. L. , Cullen, M. D. J. , Laird, M. N., Petersen, M. L. A. ,

Teich, M. J. M. , MD, Burdick, P. E., Hickey, M. M. , Kleefield, M. S., Shea, M. B. ,

Vliet, M. M. V. & Seger, R. D. L. (1998), 'Effect of computerized physician order

entry and a team intervention on prevention of serious medication errors', Journal

of the American Medical Association 280(15).

Bell, T. , Witten, I. H. & Cleary, J. G. (1989), 'Modeling for text compression', ACM

Computing Surveys 21(4), 557- 591.

Benedetto, D. , Caglioti, E. & Loreto, V. (2002) , 'Language trees and zipping', Phys­

ical Review Letters (88), 2002.

B etter Desktop Data (2008).

URL: http ://www.betterdesktop.org/wiki/index.php?title=Data

Borodovsky, M. & Mclninch, J. (1993), 'Genmark: parallel gene recognition for both

dna strands', Comp. Chem (17) , 123- 133.

Bratko, A. & Filipic, B. (2005), Spam filtering using compression models, Technical

report.

Bratko, A. , Filipic, B. , Cormack, G. V., Lynam, T. R. & Zupan, B. (2006), 'Spam

filtering using statistical data compression models', Journal of Machine Learning

Research 7, 2673- 2698.

BIBLIOGRAPHY 214

Brooks, R. , Hunnisett, D. & Teahan, W. J. (2007), 'A practical implementation

of automatic text categorisation and correction for the conversion of noisy ocr

documents into braille and large print '.

Burge, C. & Karlin, S. (1997), 'Prediction of complete gene structures in human

genomic dna. ', J Mol Biol 268(1), 78- 94.

URL: http: //dx. doi. org/10 .1006/jmbi .1997. 0951

CamStudio (2007).

URL: http: I I camstudio. org/

Carroll, L. (1865), Alice's Adventures in Wonderland, Project Gutenberg Literary

Archive Foundation.

Cavnar, W. B. & Trenkle, J. M. (1994) , N-gram-based text categorization, in 'Pro­

ceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Infor­

mation Retrieval', Las Vegas, US, pp. 161- 175.

Chen, K. , Gao, S. , Zhu, Y. & Sun, Q. (Oct. 2006), 'Music genres classification using

text categorization method', Multimedia Signal Processing, 2006 IEEE 8th Work­

shop on pp. 221- 224.

Cleary, J. , Teahan, W. & Witten, I. (1995), 'Unbounded length contexts for ppm'.

Cleary, J. & Witten, I. (1984), 'Data compression using adaptive coding and par­

tial string matching', Communications) IEEE Transactions on (legacy, pre - 1988]

32(4) , 396- 402.

Copeland, T. (2005), PMD Applied, Centennial Books.

Corney, M. , de Vel, 0., Anderson, A. & Mohay, G. (2002), Gender-preferential text

mining of e-mail discourse, in 'ACSAC '02: Proceedings of the 18th Annual Com­

puter Security Applications Conference', IEEE Computer Society, Washington,

DC, USA, p. 282.

BIBLIOGRAPHY 215

Coull, S., Branch , J. , Szymanski, B. & Breimer , E. (2003), Intrusion detection: A

bioinformatics approach, in 'ACSAC '03: Proceedings of the 19th Annual Com­

puter Security Applications Conference', IEEE Computer Society, Washington,

DC, USA, p. 24.

Darragh, J. , Witten, I. & James, M. (1990), 'The reactive keyboard: a predictive

typing aid', Computer 23(11), 41- 49.

Dengo (2006).

URL: http://sourceforge.net/projects/dengo/

Deutsch, P. (1996), GZIP file format specification version 4.3, RFC 1952, Internet

Engineering Task Force.

URL: http://www. rfc- editor . org/rfc/rf c1952. txt

Deutsch, P. & 1. Gailly, J. (1996), ZLIB compressed data format specification version

3.3, RFC 1950, Internet Engineering Task Force.

URL: http://www. rfc-editor. org/rfc/rfc1950. txt

Eclipse Foundation (2008a), 'eclipse'.

URL: http://www. eclipse . org

Eclipse Foundation (2008b) , 'Swt: The standard widget toolkit'.

URL: http://www. eclipse. org/swt/

Eye Toy (2008).

URL: http://www . eyetoy. com/ index. asp

Fenwick, P. (1996), 'The Burrows-Wheeler transform for block sorting text compres­

sion - principles and improvements' .

Ferizis, G. & Bailey, P. (2006) , Towards practical genre classification of web docu­

ments, in 'WWW '06: Proceedings of the 15th international conference on World

Wide Web', ACM, New York, NY, USA, pp. 1013- 1014.

BIBLIOGRAPHY 216

Fisher , P. & Sless, D. (1990) , 'Information design methods and productivity in the

insurance industry.', Information Design Journal 6, 103-129.

Fitts, P. M. (1954), 'The information capacity of the human motor system in control­

ling the amplitude of movement. ', Journal of Experimental Psychology 47(6), 381-

391.

Fitts, P. M. & Peterson, J. R. (1964), 'Information capacity of discrete motor re­

sponses', Journal of Experimental Psychology 67, 103- 112.

Flanagan, D. (1998), Java Foundation Classes in a Nutshell, O'Reilly & Associates,

Inc., Sebastopol, CA, USA.

Forrester, J. E. & Miller, B. P. (2000), An empirical study of the robustness of

windows nt applications using random testing, in 'WSS'00: Proceedings of the

4th conference on USENIX Windows Systems Symposium', USENIX Association,

Berkeley, CA, USA, pp. 6- 6.

Free Software Foundation, I. (2007), 'GNU general public license'.

Freez Screen Video Capture (2007).

URL: http ://www.smallvideosoft.com/screen-video-capture

FSF (2006) , 'Bash'.

Gailly, J. & Adler, M. (2008) , 'The gzip algorithm'.

URL: http://www.gzip.org/algorithm. txt

Gale, W. A., Church, K. W. & Yarowsky, D. (1992) , 'A method for disambiguating

word senses in a large corpus', Computers and the Humanities 26(5), 415- 439.

URL: http:// dx. doi. org/ 10 . 1007 /BF00136984

Garg, A. , Rahalkar, R., Upadhyaya, S. & Kwiat, K. (2006), 'Profiling users in gui

based systems for masquerade detection', Information A ssurance Workshop, 2006

IEEE pp. 48- 54.

BIBLIOGRAPHY 217

GENSCAN (1997).

URL: http: //genes .mit. edu/GENSCAN .html

Gibson, J. J. (1979), The Ecological Approach to Visual Perception, Lawrence Erl­

baum Associates.

GNOME (2008), 'Gnome human interface guidelines'.

URL: http://developer.gnome.org/projects/gup/hig/

GNOME Usability Analysis Tool (2006).

URL: http://sourceforge.net/projects/guat

Graham, P. (2004), Hackers and Painters: Big Ideas from the Computer Age, O'Reilly

Media, Inc.

URL: http://www. paulgraham. com/ spam. html

Greenberg, S. & Witten, I. H. (1988) , How users repeat their actions on computers:

principles for design of history mechanisms, in 'CHI '88: Proceedings of the SIGCHI

conference on Human factors in computing systems', ACM, New York, NY, USA,

pp. 171- 178.

Grunwald, P. D. (2007), The Minimum Description Length Principle, The MIT Press.

Gutenberg, P. (1992), 'Project gutenberg'.

Higgins, D., Burstein, J. & Attali, Y. (2006), 'Identifying off-topic student essays

without topic-specific training data', Nat. Lang. Eng. 12(2), 145- 159.

HippieExpand (2004).

URL: http://www.emacswiki.org/cgi-bin/wiki/HippieExpand

Road, T. C. & Zobel, J. (2003), 'Methods for identifying versioned and plagiarized

documents', J. Am. Soc. Inf. Sci. Technol. 54(3), 203- 215.

Holmes, D. I. (1998) , 'The evolution of stylometry in humanities scholarship ', Literary

and Linguistic Computing (13) , 111- 117.

BIBLIOGRAPHY 218

Hornof, A. J. & Kieras, D. E. (1997), Cognitive modeling reveals menu search in

both random and systematic, in 'CHI '97: Proceedings of the SIGCHI conference

on Human factors in comput ing systems', ACM, New York, NY, USA, pp. 107- 114.

Huang, R. & Hansen, J. (15-20 April 2007) , 'Dialect classification on printed text

using perplexity measure and conditional random fields', Acoustics, Speech and

Signal Processing, 2007. ICASSP 2007. IEEE International Conference on 4, IV-

993- IV- 996.

Human Factors Society (1984), number New Frontiers for Science and Technology.

Hunnisett, D. & Teahan, W. (2004), Context-based methods for text categorisation,

in M. Sanderson, K. Jarvelin, J. Allan & P. Bruza, eds, 'SIGIR 2004: Proceed­

ings of the 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval', ACM.

Imsand, E. & Hamilton, J. (2007), 'Gui usage analysis for masquerade detection', In­

formation A ssurance and Security Workshop, 2007. JAW '07. IEEE SMC pp. 270-

276.

International Organization for Standardization (2005) , Information technology - Cod­

ing of moving pictures and associated audio for digital storage media at up to about

1,5 Mbit/s - Part 3: Audio, International standard; ISO 11172-3, 1 edn, Interna­

tional Organization for Standardization, Geneva, Switzerland.

International Organization for Standardization (2007) , Information technology - Cod­

ing of audio-visual objects - Part 10: Advanced Video Coding, ISO / IEC 14496-

10:2005, 1 edn, International Organization for Standardization, Geneva, Switzer­

land.

Jacob, R. J. (1983a), Executable specifications for a human-computer interface, in

'CHI '83: Proceedings of the SIGCHI conference on Human Factors in Computing

Systems', ACM, New York, NY, USA, pp. 28-34.

BIBLIOGRAPHY 219

J acob, R. J. K. (1983b), 'Using formal specifications in the design of a human­

computer interface', Communications of the ACM 26, 259- 264.

J ames, C. & Longe, M. (2000), Bringing text input beyond the desktop, in 'CHI '00:

CHI '00 extended abstracts on Human factors in computing systems', ACM, New

York, NY, USA, pp. 49- 50.

JavaCC (2008) .

URL: https: / / j avacc. dev. j ava. net/

Java Event Queue API (2004).

URL: http://java.sun .com/j2se/1.5 .0/docs/api/java/awt/EventQueue.

html

Java Web Start Technology (2008).

URL: https://java.sun.com/javase/technologies/desktop/javawebstart/

index. jsp

Jimison, H., Pavel, M. , McKanna, J . & Pavel, J. (2004), 'Unobtrusive monitoring of

computer interactions to detect cognitive status in elders', Information Technology

in Biomedicine7 IEEE Transactions on 8(3), 248- 252.

JPEG File Interchange Format (1992).

URL: http://www . w3 . erg/Graphics/ JPEG/jfif3. pdf

Karwowski, W. (2006), International Encyclopedia of Ergonomics and Human Fac­

tors) Second Edition - 3 Volume Set, CRC Press, Inc., Boca Raton, FL, USA,

p. 610.

Kessler , B. , Numberg, G. & Schutze, H. (1997), Automatic detection of text genre, in

'Proceedings of the 35th annual meeting on Association for Computational Linguis­

tics' , Association for Computational Linguistics, Morristown, NJ, USA, pp. 32- 38.

Khmelev, D. V. & Teahan, W. J. (2003), A repetition based measure for verification

of text collections and for text categorization, in 'SIGIR '03: Proceedings of the

BIBLIOGRAPHY 220

26th annual international ACM SIGIR conference on Research and development in

informaion retrieval', ACM, New York, NY, USA, pp. 104- 110.

Kim, H. (2005), Developing semantic digital libraries using data mining techniques,

PhD thesis, Gainesville, FL, USA. Chair-Su-Shing Chen.

Kim, J. Y., Allen, J.P. & Lee, E. (2008), 'Alternate reality gaming' , Commun. ACM

51 (2), 36- 42.

Knuth, D. (1997), The Art of Computer Programming, Sorting and Searching, Vol. 3,

Addison-Wesley, chapter 6, pp. 492- 512.

Koppel, M., Argamon, S. & Shimoni, A. R. (2003), 'Automatically categorizing writ­

ten texts by author gender' , Literary and Linguistic Computing (17), 401-412.

Koppel, R. , Metlay, J. P., Cohen, A., Abaluck, B. , Localio, A. R. , Kimmel, S. E.

& Strom, B. L. (2005), 'Role of computerized physician order entry systems in

facilitating medication errors', J. Am. Med. Assoc. 293(10), 1197- 1203.

URL: http: //dx. doi. org/10 . 1001%2Fjama. 293 .10. 1197

Lab Resources (2004).

URL: http://cscl.ist .psu.edu/public/resources. html

Larkey, L. S. (1998), Automatic essay grading using text categorization techniques, in

'SIGIR '98: Proceedings of the 21st annual international ACM SIGIR conference

on Research and development in information retrieval' , ACM, New York, NY, USA,

pp. 90- 95.

Lee, Y.-B. & Myaeng, S. H. (2002) , Text genre classification with genre-revealing

and subject-revealing features, in 'SIGIR '02: Proceedings of the 25th annual in­

ternational ACM SIGIR conference on Research and development in information

retrieval', ACM, New York, NY, USA, pp. 145- 150.

Leggett, J. & Williams, G. (1988), 'Verifying identity via keystroke characteristics' ,

Int. J. Man-Mach. Stud. 28(1), 67- 76.

BIBLIOGRAPHY 221

Leung, C.-H. & Chan, Y.-Y. (2007), A natural language processing approach to au­

tomatic plagiarism detection, in 'SIGITE '07: Proceedings of the 8th ACM SIG­

ITE conference on Information technology education' , ACM, New York, NY, USA,

pp. 213- 218.

Lewis, K. (2000), Creating effective JavaHelp, O'Reilly & Associates, Inc., Sebastopol,

CA, USA.

Li , W. (1992), 'Random texts exhibit zipf's-law-like word frequency distribution',

Information Theory, IEEE Transactions on 38(6), 1842- 1845.

Linetsky, M. (2001) , Programming Microsoft Directshow, Wordware Publishing Inc. ,

Plano, TX, USA.

Lukashenko, R. , Graudina, V. & Grundspenkis, J. (2007) , Computer-based plagiarism

detection methods and tools: an overview, in 'CompSysTech '07: Proceedings of

t he 2007 international conference on Computer systems and technologies', ACM,

New York, NY, USA, pp. 1- 6.

Luo, X. & Zincir-Heywood, A. N. (2005) , Evaluation of Two Systems on Multi-class

Multi-label Document Classification, Vol. 3488/2005 of Lecture Notes in Computer

Science, Springer Berlin / Heidelberg.

Mantei , M. M. und Teorey, T . J. (1988) , 'Cost-benefit analysis for intercorporating

human factors in the software lifecycle' .

Manuals, G. S. (1935) , 'H. j. m. milne', The Journal of Hellenic Studies 55, 252- 253.

Maron, M. E. (1961) , 'Automatic indexing: An experimental inquiry', J. ACM

8(3) , 404- 417.

Marton, Y. , Wu, N. & Hellerstein, L. (2005) , On compression-based text classification,

in 'ECIR', pp. 300- 314.

Massie, T. H. & Salisbury, K. J. (1994) , Phantom haptic interface: a device for prob­

ing virtual objects, Vol. 55-1 of Proceedings of the 1994 International Mechanical

BIBLIOGRAPHY 222

Engineering Congress and Exposition, ASME, Massachusetts Inst of Technology,

Cambridge, United States, pp. 295- 299.

Matthews, R. A. J. & Merriam, T. V. N. (1964), 'Neural computation in stylometry

i: An application to the works of shakespeare and fletcher' , Literary and Linguistic

Computing.

McCallum, A. & Nigam, K. (1998), 'A comparison of event models for naive bayes

text classification' .

URL: http://lans.ece.utexas.edu/ulg/papers/nigam-mccallum-bayes.pdf .

gz

Microsoft (2005), 'Top rules for the windows vista user experience'.

URL: http://msdn2.microsoft.com/en-us/library/aa511327 .aspx

Miller, B. P., Cooksey, G. & Moore, F. (2007) , 'An empirical study of the robustness of

macos applications using random testing', SIGOPS Oper. Syst. Rev. 41 (1), 78- 86.

Miller, B. P. , Fredriksen, L. & So, B. (1990), 'An empirical study of the reliability of

unix utilities', Commun. ACM 33(12), 32- 44.

Moffat, A. (1990) , 'Implementing the ppm data compression scheme', Communica­

tions, IEEE Transactions on 38(11), 1917- 1921.

Monrose, F. & Rubin, A. (1997), Authentication via keystroke dynamics, in 'CCS

'97: Proceedings of the 4th ACM conference on Computer and communications

security', ACM, New York, NY, USA, pp. 48- 56.

Mosteller, F. & Wallace, D. L. (1966), 'Inference and disputed authorship: The fed­

eralist', Review of the International Statistical Institute 34(2), 277- 279.

Netbeans (2008), ' Jemmy module, a java ui testing library' .

URL: http:// jemmy. net beans. org/

Nielsen, J. (1993), 'Noncommand user interfaces', Commun. ACM 36(4) , 83- 99.

BIBLIOGRAPHY 223

Nielsen, J. (1994a) , 'Guerrilla hci: using discount usability engineering to penetrate

the intimidation barrier', pp. 245- 272.

Nielsen, J. (1994b), Usability Engineering, Elsevier Science Ltd.

Norman, D. A. (1988), The Psychology of Everyday Things, Basic Books.

OpenOffice.org 2.x Writer Guide, Using word completion (2008).

URL: http: //wiki. services. openoffice. org/wiki/Documentation/

00oAuthors_User_Manual/Writer_Guide/Using_word_completion

Pang, B. & Lee, L. (2004), A sentimental education: sentiment analysis using sub­

jectivity summarization based on minimum cuts, in 'ACL '04: Proceedings of the

42nd Annual Meeting on Association for Computational Linguistics', Association

for Computational Linguistics, Morristown, NJ , USA, p. 271.

Pang, B. & Lee, L. (2005), Seeing stars: exploiting class relationships for sentiment

categorization with respect to rating scales, in 'ACL '05: Proceedings of the 43rd

Annual Meeting on Association for Computational Linguistics', Association for

Computational Linguistics, Morristown, NJ , USA, pp. 115- 124.

Pang, B. & Lee, L. (2008), 'Opinion mining and sentiment analysis', Foundations and

Trends in Information Retrieval 2(1-2) , 1- 135.

PostgreSQL Global Development Group (2003), 'Postgresql database'.

URL: http://www. postgresql . org/

Pusara, M. & Bradley, C. E. (2004), User re-authentication via mouse movements,

in 'VizSEC/DMSEC '04: Proceedings of the 2004 ACM workshop on Visualization

and data mining for computer security', ACM, New York, NY, USA, pp. 1- 8.

Ratushnyak, A. (2007) , 'The paq8hp12 compressor' .

URL: http://www.cs.fit.edu/-mmahoney/compression/

REUTERS CORPUS (2000).

URL: http://about . reuters.com/researchandstandards/corpus/

BIBLIOGRAPHY 224

Rey, J. & Reynar, C. (1998), Topic segmentation: Algorithms and applications, Tech­

nical Report IRCS-98-21, University of Pennsylvania Institute for Research in Cog­

nitive Science.

Rose, C. P. , Roque, A., Bhembe, D. & Vanlehn, K. (2003) , A hybrid text classification

approach for analysis of student essays, in 'Proceedings of the HLT-NAACL 03

workshop on Building educational applications using natural language processing',

Association for Computational Linguistics, Morristown, NJ, USA, pp. 68-75.

Ross, N. E. (1928), 'How to write telegrams properly'.

URL: http://www.telegraph-offi ce.com/pages/telegram.html

Scheurer, C. (2005), 'Unique rar file library faq'.

URL: http://www. unrarli b. org/f aq . html

Seo, J. & Cha, S. (2007), Masquerade detection based on svm and sequence-based user

commands profile, in 'ASIACCS '07: Proceedings of the 2nd ACM symposium on

Information, computer and communications security', ACM, New York, NY, USA,

pp. 398- 400.

Shackel, B. & Richardson, S. J ., eds (1991), Human factors for informatics usability,

Cambridge University Press, New York, NY, USA.

Shannon, C. E. (1948), 'A mathematical theory of communication', Bell System Tech.

J. 27, 379- 423, 623- 656.

Skibinski, P., Grabowski, S. & Deorowicz, S. (2005), 'Revisiting dictionary-based

compression: Research articles', Softw. Pract. Exper. 35(15), 1455- 1476.

SMITH, Edward TAYLOR, R. (1995), 'Cockpit conversion from three to two mem­

bers', PCT/US1994/010689.

Soukoreff, R. W. & MacKenzie, I. S. (2004), 'Towards a standard for pointing device

evaluation, perspectives on 27 years of fitts' law research in hci', Int. J. Hum.­

Comput. Stud. 61(6), 751- 789.

BIBLIOGRAPHY 225

SPAM Track Guidelines (2005 - 2007).

URL: http: //plg. uwaterloo . ca/~gvcormac/spam/

Special Interest Group on Information Retrieval (2008).

URL: http ://www. sigir. org/

Stamatatos, E. (2008), 'Author identification: Using text sampling to handle the class

imbalance problem', Inf. Process. Manage. 44(2), 790- 799.

Stig Johansson, GEOFFREY N. LEECH, H. G. (1978), 'The lancaster-oslo/bergen

corpus' .

Strobl, R. (2008), 'Netbeans code completion'.

URL: http://editor.netbeans .org/project/editor/doc/UserView/

completion.html

SUN (2006), 'J ava heap analysis tool'.

URL: http://java .sun.com/javase/6/docs/technotes/tools/share/jhat.

html

Teahan, W. J. (1998), Modelling English Text, PhD thesis, University of Waikato.

Teahan, W. J . & Harper, D. J. (2001), Using compression-based language models

for text categorization, in 'Workshop on Language Modeling and Information Re­

trieval '.

Teahan, W. J. & Harper , D. J. (2003a), 'Using compression based language models

for text categorization'.

Teahan, W . J. & Harper, D. J. (2003b), Using compression-based language models

for text categorization, in W. B. Croft & J. Lafferty, eds, 'Language Modelling for

Information Retrieval', Kluwer Academic Publishers, chapter 7, pp. 141-65.

Teahan, W. J. , Thomas, D. & Hunnisett, D. (2009), Protocols for stream-based text

categorization. Submitted to ECIR09.

BIBLIOGRAPHY 226

Text Minning Toolkit (2008).

URL: http:// aiia . cs . bangor. ac. uk/TMT /TMT-0. 08. tgz

The B etter Desktop Project (2006).

URL: http://www. betterdesktop. org

Theofanos, M. F. & Redish, J. G. (2003), 'Bridging the gap: between accessibility

and usability', interactions 10(6), 36-51.

The usability lab photo gallery (2008) .

URL: http://www. nol dus. com/si te/doc200406061

The Xito platform (2005).

URL: http:/ /xi to. sourcef orge . net/

Tjalkens, T. , Volf, P. & Willems, F. (1997), 'A context-tree weighting method for text

generating sources', Data Compression Conference, 1997. DCC '97. Proceedings

pp. 472- .

Volf, P. A. (2002), Weighting Techniques in Data Compression Theory and Algo­

rithms, PhD thesis, Technische Universiteit Eindhoven.

Wang, T . & Desai, B. C. (2007), An approach for text categorization in digital library,

in 'IDEAS '07: Proceedings of the 11th International Database Engineering and

Applications Symposium', IEEE Computer Society, Washington, DC, USA, pp. 21-

27.

Warrender, C., Forrest, S. & Pearlmutter , B. (1999), Detecting intrusions using sys­

tem calls: Alternative data models, in ' In IEEE Symposium on Security and Pri­

vacy', IEEE Computer Society, pp. 133- 145.

Welch, T . A. (1984), A technique for high-performance data compression, in 'Com­

puter ', Vol. 17, pp. 8- 19.

Willems, F. M. J. , Shtarkov, Y. M. & Tjalkens, T. J. (1995), 'The context-tree

weighting method: basic properties. ', IEEE Trans. Info. Theory pp. 653- 664.

BIBLIOGRAPHY 227

Witten, I. H. (1982), An interactive computer terminal interface which predicts user

entries, in 'Man-machine Interaction' , IEE Conference on Man-machine Interaction,

Manchester , England.

Wit ten, I. H. & Frank, E. (2005) , Data Mining: Practical Machine Learning Tools

and Techniques, Second Edition (Morgan Kaufmann Series in Data Managem ent

Systems), Morgan Kaufmann.

Wu, P. & Teahan, W. J. (2005), Modelling chinese for text compression, in 'DCC

'05: Proceedings of the Data Compression Conference', IEEE Computer Society,

Washington, DC, USA, pp. 488- 488.

X erox Alto (1972) .

X erox Palo Alto Research Center (1999).

Yang, Y. & Liu, X. (1999), A re-examination of text categorization methods, in

'SIGIR '99: Proceedings of the 22nd annual international ACM SIGIR conference

on Research and development in information retrieval', ACM, New York, NY, USA,

pp. 42- 49.

Zipf, G. K. (1968), The psycho-biology of language;: An introduction to dynamic

philology, M.I.T. Press.

