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Abstract—Edge computing has gained attention in recent years
due to the adoption of many Internet of Things (IoT) applications
in domestic, industrial and wild settings. The resiliency and
reliability requirements of these applications vary from non-
critical (best delivery efforts) to safety-critical with time-bounded
guarantees. The network connectivity of IoT edge devices remains
the central critical component that needs to meet the time-
bounded Quality of Service (QoS) and fault-tolerance guarantees
of the applications. Therefore, in this work, we systematically
investigate how to meet IoT applications mixed-criticality QoS
requirements in multi-communication networks. We (i) present
the network resiliency requirements of IoT applications by
defining a system model (ii) analyse and evaluate the bandwidth,
latency, throughput, maximum packet size of many state-of-the-
art LPWAN technologies, such as Sigfox, LoRa, and LTE (CAT-
M1/NB-IoT) and Wi-Fi, (iii) implement and evaluate an adaptive
system Resilient Edge and Criticality-Aware Best Fit (CABF)
resource allocation algorithm to meet the application resiliency
requirements using Raspberry Pi 4 and Pycom FiPy development
board having five multi-communication networks. We present our
findings on how to achieve 100% of the best-effort high criticality
level message delivery using multi-communication networks.

Index Terms—Internet of Things (IoT), Wireless Networks,
Resiliency, Quality of Service (QoS), Low Power Wide Area
Networks, Wifi.

I. INTRODUCTION

IOT devices are everywhere sensing, collecting data and

providing information to make a better-informed decision

about the environment. Many safety-critical IoT applications

such as self-health monitoring through wearable IoT devices

connect to a mobile phone/local hub via Bluetooth, ZigBee or

Wi-Fi and further send the data to a cloud service or hospital

central processing system through Internet [1], [2].

In the event of a network-failure, e.g., power outage or

any other incidental connection failures, the Wi-Fi could

be disconnected temporarily, resulting in either data loss or

delayed data communication [3]. Depending on the time of

the day, it may take from one minute to several minutes to

regain connectivity to the Wi-Fi. On the other hand, according

to a survey [4], the average amount of broadband downtime

per year in the UK ranges from 25.4 hours to 168.9 hours.

However, for safety-critical applications, it is essential to

maintain resilient data connectivity at all time for the delivery
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of a time-critical message. The LPWAN technologies have

explicitly been designed to meet IoT application requirements.

They are built on existing cellular systems to provide improved

battery life, power efficiency and indoor and outdoor coverage

area [5] at an affordable cost. Availability of alternate low

power long-range network mediums at a meagre cost opens a

new horizon of opportunities.

However, LPWAN technologies also have challenges in

terms of limited bandwidth; the number of messages allowed

per day and payload size. On the other hand, IoT edge

application requirements are defined in terms of message

criticality (such as high/low priority), privacy settings, message

data length, message sending frequency and user trust on

a particular network. Based on the application requirements

and available network medium, application traffic can be

routed through a specific network medium. Further, in case

of a particular network medium unavailability or failure, the

application can be informed of the network state and can

decide on the suitability of the network and adapt accordingly.

For instance, assuming the application is sending data over

Wi-Fi and because of power failure Wi-Fi is disconnected, the

application can choose to send data over Long-Term Evolu-

tion (LTE)(LTE for Machines (LTE-M)/NarrowBand-IoT (NB-

IoT)), LoRa (Long Range), Sigfox and adapt parameters such

as payload size and frequency accordingly. Despite all the hype

and hope of LPWAN, it is not fully understood that if we

can achieve network resiliency at the Edge using LPWAN

and Wi-Fi for time-critical IoT applications [6], [3], [7].

Therefore in this work, we propose a hypothesis that using

LPWAN technologies and Wi-Fi, we can achieve network

resiliency at the edge IoT device by providing a capability to

choose a suitable network medium based on the application

requirements. For the implementation, we utilise affordable,

readily-available MicroPython enabled, multi-network micro-

controller Pycom FiPy board [8] providing connectivity to

Bluetooth, Wi-Fi, LoRa, LTE (CAT-M1/NB-IoT) and Sigfox.

Contributions:

• We present use cases for resiliency requirements of the

IoT edge networks;

• provide a detailed analysis of many state-of-the-art LP-

WAN technologies, such as Sigfox, LoRa, LTE (CAT-

M1/NB-IoT) and evaluate their bandwidth, latency,

throughput and maximum packet size using an experi-

ment;

• identify and compare resource management approaches
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that consider QoS requirements at multiple levels of

criticality;

• define an adaptive system Resilient Edge to meet the

application resiliency requirements using underlying LP-

WAN technologies;

• provide open-source implementation of Resilient Edge

and detailed insights considering hardware and network

limitations.

The remainder of this paper is organised as follows: § II

provides a technical background about the different LPWAN

technologies. In § III, we define the adaptive Resilient Edge to

meet the application resiliency requirements by providing two

example applications. In § IV, we formulate a criticality-aware

QoS allocation problem using Integer Linear Programming

(ILP) and bin packing algorithms. § V provides the imple-

mentation details of Resilient Edge prototype and evaluate the

baseline metrics. In § VI, we perform the evaluation of our

prototype and discuss hardware and network limitations. In

§ VII and § VIII, we present related work and conclusion,

respectively.

II. BACKGROUND

In this section, we provide a background on multi-mode

communication network technologies such as LPWAN tech-

nologies (LoRa, Sigfox, LTE (CAT-M1/NB-IoT)) and Wi-Fi

that we use to provide resilience through redundancy in the

Resilient Edge end-to-end system as shown in Figure 1. We

provide a brief introduction to the technology, its range, use-

case, security and energy-efficiency. We also provide various

performance metrics (max payload length, the possibility of

sending continuous data, latency, throughput, time to connect

and reconnect) stated and observed in the wild in § V-A.

A. LPWAN Technologies

LoRa: LoRa is an Radio frequency (RF) modulation tech-

nology for low-power, wide area networks (LPWANs) protocol

developed by Semtech. It has a range of up to 5 KM in urban

areas and up to 15 KM or more in rural areas (line of sight) [9].

LoRa is suitable for specific use cases having requirements

of long-range, low power, low cost, low bandwidth, secure

with coverage everywhere. For example, measuring water flow

using a water flow meter [10] sending data over LoRa.

A LoRa based network consists of end devices, gateways,

a network server, and application servers. End devices send

data to gateways (Up link (UL)) using single-hop LoRa or

Frequency-shift keying (FSK) communication. The gateways

send the data to the network server via a secured Internet

Protocol (IP) connection, which, in turn, passes it on to the

application server. Additionally, the network server can send

messages (either for network management or on behalf of the

application server) through the gateways to the end devices

(Down link (DL)). LoRa allows intermediate gateways to

relay messages between the end-devices to the network server,

which routes it to the associated application server. Commu-

nication between the end-devices and gateway is performed

on different frequencies and data rates, which is a trade-

off between message length, communication range [11]. The

data transfer from the end device to the application server is

encrypted using Advanced Encryption Standard (AES) [12].

From the energy-efficiency perspective, LoRa devices have

three classes [13]. Class A device can send data anytime

and opens two receive windows after one and two seconds

after an UL transmission. They are the most energy-efficient;

however, the DL is only available after transmission. Class

B is energy efficient with latency controlled DL. They utilize

time-synchronized beacons transmitted by the gateway to sync

up receive windows. Class C is not efficient in terms of

power as they keep the receive window open after transmis-

sion [14]. LoRa also implements Adaptive Data Rate (ADR)

by managing the data rate and RF output for each end-device

individually to maximize battery life and maintain network

capacity.

Sigfox: Sigfox uses publicly available and unlicensed bands

to exchange radio messages over the air (868-869 MHz and

902-928 MHz). It uses Ultra-Narrow Band (UNB) technology

combined with differential binary phase-shift keying (DBPSK)

and Gausian FSK (GFSK) modulation. It has a range of

approximately 10 km (urban), 40 km (rural). Sigfox mainly

caters to IoT applications allowing small messages. For ex-

ample, a letterbox sensor [15] sending a message to the user

on receiving a post.

The end-device sends the message to the base stations

(gateways), which forwards it to the Sigfox backend via a

backhaul (3G/4G/digital subscriber line (DSL)/Satellite). The

backend stores the messages to be retrieved by the end-user via

browser/Representational state transfer (REST) Application

Programming Interface (API) or set up a callback. For achiev-

ing high QoS, the end-device sends the message at a random

frequency and then sends two replicas on different frequency

and time (time and frequency diversity). The message can be

received by any number of base stations (spatial diversity).

However, Sigfox does not provide any authentication or en-

cryption for the message and device [12].

From an energy-saving perspective, the end-device does not

require pairing or sending synchronization messages to send

the message, thus increasing battery life [16].

LTE (CAT-M1/NB-IoT): NB-IoT is a 3rd Generation Part-

nership Project (3GPP) radio technology standard designed

for extended range operation, higher deployment density, and

in-building penetration. It utilizes 180 kHz bandwidth and is

deployed in-band, guard-band, or standalone mode. On the

other hand, LTE-M provides high latency communication,

support for extended coverage, LTE-M half-duplex mode/full-

duplex, short message service (SMS), coverage enhancement,

connected mode mobility [17]. Both NB-IoT and LTE-M have

a range of approx. 1 km (urban) and 10 km (rural) [12]. Both

follow 3GPP standards and have LTE encryption by default.

NB-IoT is suited for static, low throughput, and low power

applications. For example, Nortrace tracked sheep’s location

and well-being over mountainous regions using NB-IoT [18].

In contrast, LTE-M is best for applications requiring mobility,

voice, and SMS [19]. For example, Telstra tracks the location

of high-value, non-powered assets, such as shipping contain-

ers, semi-trailers, rail freight wagons, and large machinery

using LTE-M [20].
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Fig. 1: Resilient Edge End-to-end System.

From the energy-efficiency perspective, both include Power

Saving Mode (PSM) and Extended Discontinuous reception

(eDRX). PSM reduces the energy used by User Equipment

(UE) which defines how often and how long the UE will be

active to send and receive data. eDRX improve end-device

life for mobile-terminated traffic by switching off the receiver

circuit for a defined period [21].

Integration - LoRa/Sigfox: NB-IoT/LTE-M is an IP-based

network allowing data to be transferred to its associated cloud

server. However, in the case of the LoRa and Sigfox, data

is sent to The Things Network (TTN) console and Sigfox

backend, respectively. Currently, TTN console and Sigfox

backend provide multiple integration methods to retrieve data

such as AWS IoT, AllThingsTalk, Microsoft Azure IoT Hub,

HTTP, Emails, and other callbacks.

B. Wi-Fi

Mostly IoT devices have a low-cost, low-power system on

a chip micro-controller with integrated Wi-Fi and dual-mode

Bluetooth. Wi-Fi on IoT devices support different wireless

modes such as 802.11 b/g/n/e/i, provide automatic beacon

monitoring and scanning. The Pycom FiPy board used in our

prototype has a Wi-Fi radio system on chip with 1KM Wi-Fi

range.

III. SYSTEM MODEL AND MOTIVATING EXAMPLE

To better understand the network requirements of Resilient

Edge applications, we start by considering a use-case with

a concrete example. Figure 1 and 5 show an edge device

running two sample applications to support assisted living

facilities: one of the applications monitors the health of

the resident (HealthApp), the other monitors their residential

unit (HomeApp). In the real-world setting, the similar new

applications can be configured for the data rates defined

by the application QoS requirements and maximum network

bandwidth availability. To achieve continuous network connec-

tivity needed by these applications, we make use of a multi-

mode communication network (details are provided in the next

section).

We now present an abstract system model defining the

attributes of application data flows so that we can reason

about the QoS needs of each application, and about ways

to (partially) fulfill those needs under different scenarios and

different levels of multi-network connectivity. We propose

that the communication needs of specific applications must

be explicitly declared as message flows. An application can

declare an arbitrary number of message flows, and each mes-

sage flow represents a potentially infinite series of messages

TABLE I

Message flows on an edge device for assisted living facilities.

C: maximum message size (bytes)

T: minimum interval between subsequent message (seconds).

Criticality Level 1 2 3

Applications Message Flow τ C T C T C T

HealthApp 1 fall detection 1000 10 40 20 10 60
” 2 heart monitoring 1000 5 80 10 10 20
” 3 body temperature 30 30 10 120

HomeApp 4 sensor bedroom 40000 10 10 30
” 5 sensor bathroom 80 10 10 30
” 6 sensor lounge/kitchen 40000 10 10 30
” 7 sensor front door 40000 10 10 30
” 8 energy usage 40 3600

to be sent through one of the local network interfaces. To

allow application developers to quantitatively declare the QoS

needs for each message flow, we revisit the notion of mixed-

criticality communication proposed in [22] and support the

definition of QoS requirements at distinct levels of criticality.

As in [22], our goal is to allow the system to guarantee

a predefined level of service for all message flows during

normal operation, but also provide graceful degradation of

service in adverse circumstances by allowing the most critical

communication to be maintained. Unlike [22], however, we

are not interested in meeting hard real-time deadlines and will

instead use the notion of criticality-specific QoS requirements

to manage multi-network resources.

Our model allows system designers and administrators to

decide how many levels of criticality L = Lmax to support,

and then to allow the specification of the QoS requirements

of each message flow at each of those levels. The Resilient

Edge, as shown in Figure 1 is designed to support three

levels of criticality, and the Table I shows the QoS required

by each message flow at each level. The message flows in

Table I have been defined by taking a bottom to top approach.

We assume that high criticality level messages are necessary

to be delivered messages and are rare and have smaller

size. In this example, for message flow 1, when criticality

level 3 is requested and served, underlying network interface

guarantees a message delivery service with message size of

10 bytes with 60 seconds subsequent message interval. The

applications (designed by application developers) can request

any message size and message interval; however, the values

in our example reflect the prototype application data size and

are intuitively set by authors considering several state-of-the-

art IoT applications. Additionally, the message flows and the

requirements are driven by the network capacity available on

the edge device (e.g., FiPy[8] in our prototype).

We define L = 1 as the criticality level denoting normal

operation mode, so the QoS requirements at that level should

declare the largest communication volumes and injection rates

of each message flow to account for all critical and non-critical

traffic. QoS requirements at higher levels of criticality (L = 2
and L = 3) should only be declared for message flows that

carry critical data and should account only for the necessary

communication volumes and injection rates at each of those

levels. By declaring or not a QoS requirement at a given level,

application developers can explicitly distinguish the criticality

of each message flow, and to explicitly define a number of
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Fig. 2: System model summary with different applications with criticality, message size and frequency defined by application

developers and different network availability scenarios (Faded symbol represents network unavailability).

service degradation levels each of them can support.

We can now define a message flow τi as a tuple (Ai, Ci, Ti)

where Ai denotes the application to which the message flow

belongs to, Ci denotes the maximum message size (in bytes)

and Ti denotes the minimum interval between subsequent

messages of the flow (in seconds). The bandwidth utilisation

Ui of a flow τi can be calculated by the quotient Ci/Ti.

To support multiple criticality levels, Ci and Ti are defined

as arrays of length Lmax, so CL
i and TL

i denote, respectively,

the maximum message size and the minimum interval between

subsequent messages of τi at criticality level L.

In normal operation (i.e. L = 1), message flows declare their

most generous QoS requirements, with larger data volumes for

home monitoring (e.g. including camera snapshots in most

of them) and resident monitoring (e.g. detail accelerometer

data for fall detection, full electrocardiogram data for heartbeat

monitoring). The next criticality level (i.e. L = 2) allows the

declaration of degraded QoS levels, which in this example is

provided for all message flows except for the one monitoring

energy usage (which will not be forwarded by the edge

device in case of degraded service). Notice that the QoS

requirements declared for L = 2 show that monitoring will

be performed less often and less data will be provided (e.g.

simple movement detectors for home monitoring, average

temperature and heartbeat for health monitoring). Finally, only

two message flows declare QoS requirements at the highest

level of criticality (i.e. L = 3), representing the alarms for fall

or severe arrhythmia/cardiac arrest. In the case of degraded

service, all available resources should be used to provide those

two flows with their declared QoS requirements.

IV. MULTI-NETWORK RESOURCE MANAGEMENT

Given the system model proposed in Section III, we can

now formulate a criticality-aware QoS allocation problem.

A straightforward way to ensure QoS to the application

message flows is to prevent the over-utilisation of the network

interfaces they are assigned to. For example, by providing

criticality level L = 2 guarantees to all message flows of the

HealthApp application from Table I it would be possible to

allocate all of them to a LoRa network (as their compound

bandwidth utilisation would not exceed 6 bps), but the same

network would be over-utilised if flows operate at criticality

level L = 1 (where their compound bandwidth utilisation

would exceed 1700 bps).

We can therefore formulate the criticality-aware QoS al-

location problem as the choice, for each message flow of

each application, of its allowed criticality level of service and

its allocated network interface. Such problem is similar to a

Variable Size Bin Packing Problem (VSBPP) [23], but with a

fixed number of bins (i.e. the different networks, each of them

with their bandwidth and payload size limitations) and with a

choice of sizes for each element (i.e. the message flows, with

their choice of criticality level).

A. ILP Formulation

Similarly to the standard VSBPP, we can formulate our

problem with an ILP model. For the sake of simplicity, we

describe the size of bins and elements by their bandwidth

capacity and utilisation, respectively. We claim that an ex-

tension to a multi-dimensional formulation (i.e. that can also

capture maximum payload sizes, maximum number of daily

messages, etc.) is straightforward but left as future work. The

assumption is that the QoS requirements of all applications can

be satisfied provided there is enough bandwidth of one net-

work or combined bandwidth of multiple networks. However,

in practice, the network capacity is limited, and there would

be applications whose QoS requirements cannot be satisfied.

Let us then consider a set T of elements representing our

message flows τi, i = 1...n, each of them with a potential

choice of values UL
i representing the different bandwidth util-

isations CL
i /T

L
i at each level of criticality they are designed

to support (or ∞ if that flow does not specify service at a

given criticality level, e.g. energy usage flow at levels L = 2
and L = 3 in Table I).

Likewise, let us consider a set Γ of bins representing

our network interfaces γj , j = 1...m, each of them with a

bandwidth capacity Bj . Finally, we define a set of binary

variables xi,j,L ∈ {0, 1}, and assume that xi,j,L = 1 if

message flow τi is assigned to network γj and configured to

operate at criticality level L, or xi,j,L = 0 otherwise. Given
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the ranges 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ L ≤ Lmax we

will have at most n×m×Lmax binary variables for a given

problem.

To ensure the assignment of values to the binary variables

represent a valid solution to our problem, we must now

state a number of constraints. First, we make sure that a

message flow τi is allocated to a single network interface and

configured to operate at a single criticality level by stating

that
m∑
j=1

Lmax∑
L=1

xi,j,L = 1 for all 1 ≤ i ≤ n. Secondly, we

ensure that no network interface γj is overloaded by stating

that
n∑

i=1

Lmax∑
L=1

xi,j,L × UL
i ≤ Bj for all 1 ≤ j ≤ m.

Finally, we can state our maximisation objective function

as:

objective =

n∑

i=1

m∑

j=1

Lmax∑

L=1

xi,j,L × (1 + Lmax − L) (1)

The rationale behind the maximisation of the objective

is to configure message flows at the lowest possible levels

of criticality (i.e. lowest values for L), thus providing each

message flow with the most generous possible QoS, while

avoiding network overload. The unit added to the last term of

the equation is crucial to allow the objective to distinguish a

flow that is allocated at the highest criticality and one that is

not allocated at all.

An additional constraint could be formulated, in case all

message flows must be allocated to a network interface and

receive some level of service:
n∑

i=1

m∑
j=1

Lmax∑
L=1

xi,j,L = n. This is

not always necessary or desirable, as it may the intention of

application designers that, under limited network availability,

only a subset of the application message flows should be

provided service (e.g. in the example from Table I, under the

most stringent conditions at L = 3, only the fall detection

and heart monitoring message flows require service). In such

cases, such a constraint may be rewritten to ensure that

specific message flows are always allocated service, or even

be reformulated as part of the objective function, aiming to

maximise the number of message flows that are guaranteed

some level of service.

B. Bin-Packing Algorithms

While the formulation given in subsection IV-A can be

optimally solved by an ILP solver, it may not be reasonable

to expect that such a software package could be installed

and executed by resource-constrained edge devices such as

the ones considered in this work. We, therefore, propose the

use of simple bin-packing algorithms that are able to achieve

acceptable results with a much lower computational overhead.

In particular, we define a criticality-aware best fit (CABF)

algorithm and show its performance compared to classic first

fit, best fit, and worst fit algorithms (FF, BF, and WF) as well

as their decreasing variants (FFD, BFD, and WFD).

Since the classic algorithms are unaware of the different

criticality levels, we implemented two alternatives for each of

them, one that tries to fit message flows to networks at their

Algorithm 1: Criticality-Aware Best Fit (CABF)

Result: Set of 3-tuples indicating the allocated

network and configured criticality level for all

message flows that can be provided service

CABF (T ,Γ)
inputs : set T of message flows, set Γ of networks

output: set Q of 3-tuples q = (τi, γj , L)
Q← ∅;
for (l = Lmax; l > 0; l = l − 1) do

foreach (q ∈ Q | q(τ) ∈ Tl ∧ q(L) > l) do

Q← Q− q;

γreloc ← BestF it(q(τ), l,Γ);
if γreloc 6= ∅ then

q ← (τ, γreloc, l);

Q← Q+ q;

foreach (τnew ∈ Tl | τnew /∈ Q(τ)) do

γnew ← BestF it(τnew, l,Γ);
if γnew 6= ∅ then

Q← Q+ (τnew, γnew, l);

return Q;

highest level of criticality (i.e. H-FF, H-BF, H-WF and their

decreasing counterparts) and another that does the same with

the lowest defined criticality of each message flow (i.e. L-FF,

L-BF, L-WF and their decreasing counterparts).

Algorithm 1 describes the proposed CABF algorithm, which

takes as inputs the sets T of message flows and Γ of networks,

and outputs a set Q of 3-tuples q = (τi, γj , L), each of them

representing the allocation of a message flow τi to a network

γj at criticality level L. Algorithm 1 uses the following

notation: q(τ), q(γ) and q(L) denote the first, second and

third element of a 3-tuple q, and likewise Q(τ), Q(γ) and

Q(L) denote the sets of all first, second and third element of

the 3-tuples in Q; TL is the subset of T including all message

flows that are declared at a given criticality level L (as not all

flows must be declared for all levels); and BestF it(τ, L,Γ)
denotes a function which returns the network γ ∈ Γ which is

the best fit allocation for the message flow τ at its criticality

level L, or ∅ if τ does not fit in any of the networks in Γ,

taking into account the allocations already in Q.

The intuition behind the CABF algorithm is as follows.

It tries to allocate first the message flows defined at higher

criticalities, as shown by the outer for loop decreasing from

Lmax to 1. As it iterates over that loop towards lower criticality

levels, and before it allocates flows defined at the criticality

level of the current iteration, it first attempts to lower the

criticalities of flows allocated in the previous iterations. This

is shown by the first inner forall loop, which iterates over

tuples in Q with flows that have definitions at the criticality

level of the current iteration (i.e. q(τ) ∈ Tl). Within the

first inner forall loop, the algorithm removes the original

allocation from Q, then tries to find a network γreloc which

is the best fit for the flow using its lower criticality figures.

If the best-fit algorithm succeeds to find an allocation with
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TABLE II

Obtained criticality level (1 | 2 | 3) and network allocation

(* Wi-Fi | # Lora | + Sigfox) for motivating example

Message Flows % flows avg objective
1 2 3 4 5 6 7 8 served crit

Requested

crit level
1,2,3 1,2,3 1,2 1,2 1,2 1,2 1,2 1 level

Allocation
algorithms

Allocated Criticality Level

L-FF 1* 1* 1* 1* 1* 1* 75 1 18
L-FFD 1# 1# 1* 1# 1* 1+ 75 1 18
H-FF 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
H-FFD 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
L-WF 1* 1* 1* 1* 1* 1* 75 1 18
L-WFD 1# 1# 1* 1# 1* 1+ 75 1 18
H-WF 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
H-WFD 3* 3* 2* 2* 2* 2* 2* 1* 100 2.12 15
L-BF 1# 1* 1+ 1* 1# 1+ 75 1 18
L-BFD 1# 1+ 1* 1# 1* 1+ 75 1 18
H-BF 3+ 3+ 2+ 2+ 2+ 2+ 2+ 1+ 100 2.12 15
H-BFD 3+ 3+ 2+ 2+ 2+ 2+ 2+ 1+ 100 2.12 15
CABF 2+ 1# 1+ 2+ 1# 1* 1* 1+ 100 1.25 22
CABFinv 1# 2# 1+ 2+ 1# 1* 1* 1+ 100 1.25 22
Optimal 1* 1* 1* 1* 1* 2* 2* 1* 100 1.25 22

the lower criticality values, a 3-tuple representing that new

allocation is added to Q. If it fails to find a network that is

able to accommodate the requirements at a lower criticality,

the original allocation is returned back to Q. Once the first

inner forall loop finishes, the second inner forall loop uses the

best-fit algorithm to allocate, when possible, all unallocated

message flows that have definitions at the criticality level of

the current iteration.

The proposed order of the two inner forall loops reflects

an assumption that flows that have definitions at higher levels

of criticality should always be given more resources if they

become available. This will not always be the case in every

application domain, and in many cases it may be better to first

use resources to provide some service to less-critical message

flows rather than improve the service to highly-critical ones.

Reversing the proposed order of the two inner forall loops

would achieve exactly that, therefore we name that variant

CABFinv .

C. Evaluation - Motivating Example

Table II shows the network allocations and choice of crit-

icality level for each of the message flows of the motivating

example described in Section III. The table shows allocations

produced by each of the baseline bin-packing algorithms, by

both variants of the proposed algorithm, and one solution

(out of many possible ones) produced by an optimal solver.

The allocations assume the availability of three networks with

bandwidths of 64000, 1760 and 48 bits per second, represent-

ing Wi-Fi, LoRa SF9 and Sigfox networks (but disregarding

maximum payload size or the number of daily messages), and

represented by the symbols ∗, # and +, respectively.

Both variations of the proposed algorithm are able to

produce optimal solutions in this example, providing service

to all flows, with all-but-two at their lowest criticality level

(which leads to an objective result of 22 according to Equation

1).

D. Evaluation - Synthetic Applications

To show the superiority of proposed algorithms over a

much larger number of examples, we created hundreds of

synthetic application models and compared the performance

of the proposed algorithms against all the baseline bin-packing

algorithms described in subsection IV-B. Each synthetic appli-

cation has a well-defined number of message flows nFlows,

and a number of available criticality levels nCrit. Just as in

the motivating example, message flows do not have their QoS

requirements defined at every level of criticality (as they may

be completely dropped in case of severe network degradation).

To model that, the generation of synthetic applications uses a

probability factor 0 < hC < 1 that determines if a given

message flow has a definition for any given criticality level

above normal operation (i.e. L > 1). The factor is re-applied

for each additional level of criticality, so for example a factor

hC = 0.8 means that a message flow has an 80% chance of

having a QoS definition for L=2, 64% chance for L=3, 51.2%

for L=4, and so on. A multiplicative factor 0 < multC < 1
is then used to generate the QoS requirements of the message

flow at a higher criticality level (by multiplying the period

T and maximum packet size C requirements defined at the

preceding level of criticality).

To perform our experiments, we generated four sets of 100

synthetic applications. All applications within the first set have

10 message flows each (nFlows = 10) and are therefore similar

to our motivating example, which has 8 flows. Applications

in the other three sets are much larger, with nFlows = 20,

40 and 80, respectively. The QoS requirements under normal

operation were generated for each message by uniformly

sampling a range of periods (5 to 120 seconds) and maximum

message sizes (7 to 260 kilobytes). The number of available

criticality levels nCrit was set to 4, the value for the hC factor

was set to 0.8, and the value of the factor multC was uniformly

sampled for each flow from an interval between 0.4 and 0.8.

Again, we assumed a platform with three networks with

available bandwidths of 64000, 1760 and 48 bits per second.

Once we generated all applications and their respective mes-

sage flows, we used each bin-packing algorithms described in

subsection IV-B to decide which network interface should be

allocated to each message flow, and which level of criticality

should be supported. For each allocation of each application,

we recorded two metrics:

• servP - the percentage of traffic flows of the application

that were provided some level of network service.

• avCL - the average criticality level that was supported for

the flows of the application.

The servP metric is straightforward: for an application with

nFlows=20, a servP value of 60% denotes that 12 of its

flows were allocated to a network interface. The avCL metric

is slightly more complex, as it has to be expressed as a

percentage of the highest criticality level supported by the

application (since not every application has flows with QoS

requirements defined at all possible levels of criticality). This

means that, for example, if an application has its flows defined

at 4 criticality levels, and the average criticality level assigned

to all its flows is 1.4 (i.e. the sum of the criticality level

assigned to each flow, divided by nFlows), the value of avCL

would be 35% (i.e. 1.4 is 35% of 4). If that same application

had the same average criticality of 1.4, but its flows only had
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Fig. 3: Experimental results for synthetically generated applications with (a) 10, (b) 20, (c) 40 and (d) 80 message flows each.

definitions up to 3 criticality levels, the value of avCL would

then be 46.66

Figure 3 shows four plots, one for each of the sets of 100

applications. The number of flows per application is shown

in the upper-left corner of each plot. The metric servP is

plotted against the x axis, and the metric avCL against the

Y axis. Every point in the plot represents one allocation of

an application of the set, and the shape of the point shows

which bin-packing algorithm was used for that particular

allocation. That means that each plot should have 1400 points

(100 applications allocated using 14 different bin-packing

algorithms), but in most cases that number of visible points

is much smaller because multiple allocations and multiple

applications actually have the same values for both metrics

and therefore overwrite one another on the plot.

In the optimal case, a bin-packing algorithm would produce

the highest possible value for the servP metric (meaning all

flows were provided some service) and the lowest possible

value for the avCL metric (meaning that flows were allocated

QoS service levels that were the closest possible to L=1, i.e.

normal operation). Given the large number of applications and

message flows considered in this evaluation, it was not feasible

to solve each case to optimality, so all the results achieved by

the proposed algorithms and baselines are a trade-off between

both metrics.

Therefore, the key findings of this experiment are obtained

by observing which bin-packing algorithms produced the best

allocations: those at the lower-right corner of the plot, with

the highest values for servP and the lowest values for avCL.

In the plot for the set with nFlows=10, we can see that

many algorithms were able to provide network service to 100%

of the flows of most applications, albeit at a high level of

criticality in the case of many of the H bin-packing variants

(i.e.blue and yellow markers). As expected, the L bin-packing

variants were able to allocate message flows at their lowest

criticality level (i.e. normal mode), but could only allocate a

small percentage of them before reaching the saturation of all

available network interfaces.

As we increase the number of message flows per application

(i.e. plots with nFlows=20 and 40), we can see that the

additional workload to be allocated pushes the results away

from the lower-right part of the plot: allocations either have

lower servP (i.e. fewer message flows are allowed access to

a network interface) or higher avCL (i.e. message flows are

allocated at higher levels of criticality, anf therefore more re-

strictive QoS levels). It is clearly noticeable, however, that the

two proposed algorithms CABF and CABFinv are consistently

producing the results that are closest to the optimal lower-right

corner.

With the largest applications (nFlows=80), we can see that

the proposed algorithms are the only ones that are able to

provide network service to more than half of the flows, for

some applications. In this scenario, it is also possible to

see clearly the distinct behaviours of CABF and CABFinv:

the former tries to allocate flows with more generous QoS

levels (i.e. lower criticality), while the latter puts emphasis on

providing service to as many flows.
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V. RESILIENT MULTI-NETWORK EDGE PLATFORM

This section describes a resilient multi-network edge plat-

form we have designed and implemented, aiming to validate

the concepts proposed in the previous sections over real off-

the-shelf hardware and using realistic network deployments.

Firstly, we describe the chosen hardware platform based on

a Raspberry Pi and a Pycom FyPy communication board.

The FyPy board supports multi-network connectivity over five

different networks Wi-Fi, Bluetooth, LoRa, Sigfox and LTE

(CAT-M1/NB-IoT). The Raspberry Pi, in turn, handles the

proposed multi-network resource management approaches. A

detailed description of the functionality of each board, and

their integration will be provided, as well as their inter-

operation with the cloud to perform realistic data transfer

scenarios. Additionally, we will provide details about key

performance metrics that show the strengths and weaknesses of

each type of network supported by the platform, namely max-

imum payload length, inter-message gap, latency, throughput,

connection and reconnection time. The detailed description

of our multi-network edge platform is then followed by a

practical evaluation, where we implement the proposed multi-

network resource management algorithms from Section IV.

Platform Overview

The Resilient Edge prototype setup is shown in Figures 4

and 5. A Raspberry Pi model 4 [24] (RPi) is interfaced with

Pycom FiPy [8]. RPi has Broadcom BCM2711, Quad-core

Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz with 4 GB

RAM, FiPy has an Xtensa® dual-core 32–bit LX6 micropro-

cessor and on-chip SRAM of 520KB and external SRAM 4MB

with an external flash of 8 MB. FiPy provides connectivity to

five different networks Wi-Fi, Bluetooth, LoRa, Sigfox and

LTE (CAT-M1/NB-IoT). More details about the interworking

of FiPy can be found in the FiPy datasheet [25]. The RPi Uni-

versal Asynchronous Receiver/Transmitter (UART) (GPIO14-

TXD/ GPIO15-RXD) is connected to the expansion board

pins (P3-TXD/P4-RXD) of FiPy to transfer the data from

the RPi to FiPy. We implemented and simulated the message

flow of HealthApp and HomeApp on RPi and multi-network

resource allocator on FiPy, respectively. To enable the data

transfer between RPi and FiPy, a message payload from the

applications is written to the RPi UART and read by FiPy

continuously. On FiPy, a python script checks the messages

received from the RPi, the network interface assigned to the

message flow, its criticality level, and attempt to send it via

that network interface.

Implementation details of RPi components: We utilise

Transmission Control Protocol (TCP)/IP serial bridge1 to

create a socket listening on port 8080 connecting to the UART

(/dev/ttyAMA0) to send and receive data to and from the

UART. Further, we utilise python select lib 2 to monitor sockets

for incoming data to be read and send outgoing data when

there is room in the buffer and utilise message queues to

1TCP/IP - serial bridge https://pyserial.readthedocs.io/en/latest/examples.
html#tcp-ip-serial-bridge

2Select - Waiting for I/O completion https://docs.python.org/3/library/
select.html

store the outgoing messages. To send and receive a message

over UART efficiently and without breaking, we add a header

with (:ML:<MessageLength>) at a start and a newline

’\n’ at the end. On both sides, RPi reading a socket and

FiPy reading the UART, we ensure that we have received

the full message. To simulate the message flows running on

the RPi, we utilise threads to write a message payload on

the socket with <MessageFlow Name, Criticality

level, the payload>. The thread sleeps for the period

specified by the message flow before sending the next mes-

sage. We store the statistics about the number of messages

sent by a particular message flow, acknowledgment or error

received.

The FiPy runs a multi-network resource allocator and sends

an allocation message back to the RPi stating which message

flows have been assigned with which criticality level. A

sample Message Flow Element Allocation (MFEA) message

is:

MFEA:[’PS’: 41, ’N’: ’Wi-Fi’, ’PE’: 10,

’MF’: ’Kitchen Sensor’, ’CL’: 1]

where PS is payload size, N is network assigned, PE
is the period (time in seconds) between two subsequent

messages, MF is message flow name, and CL is criticality

level assigned. If the network conditions at the FiPy are

changed, and a new MFEA message is received, the previous

thread sending the messages are stopped, and new threads

for sending a message with a particular criticality level and

period are launched.

Implementation details of FiPy components: On FiPy,

before assigning any network to a message flow, we need

to create a network "bin" of the available networks (Wi-

Fi, LTE (CAT-M1/NB-IoT), LoRa and Sigfox) and add the

corresponding network interfaces to the network "bins".

While doing so, we take into some limitations that are posed

by underlying hardware such as if Wi-Fi is available, we

do not add a network "bin" for LTE (CAT-M1/NB-IoT)

because in the current version of FiPy if both Wi-Fi and

LTE (CAT-M1/NB-IoT) are connected at the same time, FiPy

does not provide routing capabilities to direct the traffic [26].

If Wi-Fi is unavailable, then we connect via LTE (CAT-

M1/NB-IoT). Similarly, if the LoRa network is available, we

add LoRa to the network "bin". If LoRa is unavailable,

we add Sigfox, mainly because Sigfox and LoRa share the

same radio module. As part of the Multi-network resource

allocator - we implement variant Criticality-Aware Best Fit

(CABFinv) and set the initial parameters, and perform the

allocations of the message flows to the network interface.

After the allocations, we continuously read the UART for

the messages from the RPi. The messages from the RPi are

in the format of <MessageFlow Name, Criticality

Level, Payload>. On the FiPy, we check if the Message

Flow with criticality level has been assigned; if assigned, an

attempt to send the payload is made. If the message flow is not

allocated, an error message is sent back to RPi, mentioning

message flow is not allocated. Similarly, if the payload is

delivered, an ACK message is sent to the RPi; if not delivered,

an error message with not delivered is sent through UART.
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Fig. 4: Block diagram of current experimental setup.

Fig. 5: Current Experimental Setup.

FiPy provides multi-network connectivity, and powering on

all the network interfaces could result in significant power

consumption. With that in mind, currently, we initialize all

the network interfaces at the boot and connect to a specific

network based on network availability and conditions. For

instance, the NB-IoT connection is skipped if the Wi-Fi

network is available; if the LoRa network joins successfully,

the Sigfox socket is not created. Further, we have mentioned

the time (in seconds) for different technologies to connect

to the network (§ V-A) and time complexity and context

switching of the CABFinv algorithm (§ VI-B) that provides a

rough estimate on switching overhead if the IoT devices need

to switch between network interfaces and to turn on/off the

interface.

The multi-network resource meets the QoS requirements

of IoT applications by determining the different network

interfaces available and the communication parameters of

the selected technology (bandwidth). For instance, when a

network interface is defined (whether it is available or not),

we determine the bandwidth provided by that network. For

instance, LoRa starts the connection with adaptive Spreading

Factor (SF), i.e., it would start with SF7; if it did not connect

with SF7, it would try with SF8 and so on. Based on the

connection, we take the bandwidth of the connected SF.

Receiving messages on Cloud: To store the messages sent

by the FiPy (as shown in Fig. 4), we utilise Tornado - a

python web framework and asynchronous networking library
3 to run an HTTP server on a machine hosted on a cloud.

The HTTP server accepts HTTP POST messages and receives

them directly from the FiPy via Wi-Fi, TTN application server

via LoRa, Sigfox backend via Sigfox and Pybytes4 via NB-

IoT. When the message flow allocated interface is Wi-Fi, an

HTTP POST request is sent from FiPy to the cloud machine

using urequests micro-python library. When the

assigned interface for message flow is LoRa, Sigfox and NB-

IoT, the message is sent via the respective interface. On TTN

application server, Sigfox backend and Pybytes for NB-IoT,

we have configured the HTTP Integration as defined in § II-A.

HTTP integration sends the UL data received from FiPy to

our cloud machine. The HTTP server checks for the URI and

fetch the data from the post data and stores it in a influxdb

database.

A. Platform Metrics

For performance evaluation, we considered the following

metrics: maximum payload length, inter-message gap, latency,

throughput, time to connect and reconnect, and performed the

initial experiments to get the baseline results for each network

(LoRa, Sigfox, NB-IoT, Wi-Fi) before deploying the multi-

network resource allocator on FiPy. In Table III, we provide a

summary of the metrics found in these baseline experiments.

Application developers can decide on the suitable network

medium for the application based on the application require-

ments and the use-case. First, we provide how each network

compares with each other, followed by more information about

the experiment.

Maximum Payload Length: Maximum payload size deter-

mines how much information (in bytes) can be sent in one

message and helps to determine the suitability for an IoT

application. For LoRa, the max payload size varies from 51

bytes to 2225/242 bytes based on the configuration settings.

On the other hand, Sigfox allows an UL payload of up to

12 bytes and a limit of up to 140 messages per day bytes

payload with a limit of 4 messages per day DL. Most suitable

from the payload perspective, is NB-IoT/Wi-Fi. LTE Transport

block sizes (TBS) can support a maximum of 85 bytes DL

and 125 bytes UL. However, as TCP/UDP protocol is used in

Wi-Fi/NB-IoT, the payload is sent as multiple packets (the

3Tornado Web Server https://www.tornadoweb.org/en/stable/
4Pybytes https://docs.pycom.io/pybytes/
5The payload size is 222 bytes when the device is a repeater and requires

optional FOpt control field [27].
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TABLE III

Baseline metrics summary

Metrics LoRaWAN SigFox LTE (CAT-M1/NB-IoT) Wi-Fi

Max-payload length 1 - 222 bytes 1-12 bytes UDP/TCP/IP UDP/TCP/IP

Sending continuous data 0.165 ms 10.5 s 1-100 ms 1-100 ms

Latency 24 - 2800 ms + 1-100 secs 1 - 4.5 s 500 ms (avg) 8 ms (avg)

Throughput 250 - 11000 bps
UL: 100 bps
DL: 600 bps

NB-IoT: UL: 66 kbps; DL: 26 kbps
LTE-M: DL: 300 kbps; UL: 380 kbps

Local: 3550 Kbps
Remote: 770 Kbps

Time to connect to network
OTAA: 5.6 s
ABP (join not required)

1-100 ms
With LTE Reset: 20 s
Without LTE Reset: 15.5 s

7.7 s

TABLE IV

LoraWAN airtime for max payload in Europe [28]

Configuration
Bitrate
(bits/sec)

Max payload
size (bytes)

Time on Air
(ms)

Max
number of
messages/day

SF12/125 250 51 2793.5 12
SF11/125 kHz 440 51 1560.6 23
SF10/125 kHz 980 51 698.4 51
SF9/125 kHz 1760 115 676.9 53
SF8/125 kHz 3125 222 655.9 54
SF7/125 kHz 5470 222 368.9 97
SF7/250 kHz 11000 222 184.4 195

size and number of which depend on the path Maximum

Transmission Unit (MTU)). So, the payload length for NB-

IoT/Wi-Fi is bounded by the memory assignment capability

of the device.

Table IV represents the max payload sizes with max number

of messages per day at different SF/bandwidth and respective

airtime for LoRa [29]. We use TTN, a public community

network having a fair access policy [30] that limits the UL

airtime to 30 seconds per day per node and the DL messages

to 10 messages per day per node. The max number of

messages in Table IV is calculated based on the 1 percent duty

and the fair usage policy with maximum payload message.

Further, to utilize application payloads efficiently, LoRa best

practices [31] to limit application payloads can be referred.

Sigfox provides Link Quality Indicator (LQI) [32] based on

the Received Signal Strength Indicator (RSSI) and number of

base stations that received a message. However, as only four

DL messages per day are allowed, it is advisable to set up an

HTTP/Email callback to get service-related information.

Inter-message gap: We conducted this primitive experiment

to understand the limitation of the time between sending two

consecutive messages. For LoRa, on average it took 0.165 ms
to send a message. For Sigfox, in terms of sending a continuous

message on Pycom FiPy end-device, it takes around an average

of 10.5 s, with the minimum 9 s and maximum 12 s to send

a message on Sigfox in RC1 region with 100 bps. Suppose

the application priority is to send the messages fast. In that

case, sending a message via Wi-Fi and NB-IoT takes a few

milliseconds.

To experiment, for LoRa, we sent 40 messages with dif-

ferent payloads, ten messages with four SF options offered

by LoRa, i.e., (SF7 - 1 byte, SF12 - 1 byte, SF7 - 242

bytes, SF12 - 51 byte). For Sigfox, a message with a 12-

bytes payload takes 2.08 s over the air with a rate of 100 bps.

Further, the device emits a message on a random frequency

TABLE V

Sigfox Payload time approximate time provided by

Sigfox [33] and observed for Average, Good/Excellent

Quality at RC1 Region

Stated Observed Observed

Payload Length
Approximate
(sec)

Average (sec)
Good/Excellent
(sec)

<1 bit 1.1 2 1
2 bit - 1 byte 1.2 1.6 2.0
2-4 byte 1.45 2.3 2.1
5-8 byte 1.75 4.5 2.5
9-12 byte 2 4.5 3

and then sends two replicas on different frequencies and

time [16]. We experimented with sending continuous data on

Sigfox of variable length starting from 1 byte to 12 bytes.

We measured the time before sending the message using

‘socket.send(msg)’ and after that. We sent 60 (5× 12)

messages, three times on average LQI, and one time each on

good and excellent LQI.
Latency: We define latency as the delay between transmit-

ting a packet and its arrival at its destination. It combines

transmission, propagation, and processing time at both ends.

For LoRa, TTN latency ranges between 24 ms (smallest

payload - fastest bit-rate) to 2800 ms (max-payload on slowest

bit-rate) from the end-device to the gateway. For Sigfox,

Table V provides the approximate time taken by the message

to reach Sigfox backend from the edge device provided by

Sigfox [33] and observed time taken by payload of different

sizes at different LQI (average/good/excellent) in RC1 region

for Sigfox. For NB-IoT, on average, it has a latency of 576ms.

It is important to mention that when ping is used the first time,

the latency is high in the range of 10 s and then stabilises

slowly (after 5 − 10 pings) to the range of 500 − 800 ms.

From literature, NB-IoT latency ranges around 1− 10 s [34]

depending on normal coverage or extended coverage. Latency

in LTE-M is around 100 − 150 ms in normal coverage. For

Wi-Fi, latency has an average of 8.32 ms and 16.70 ms with a

standard deviation of 9.93 ms and 12.19 ms for the machine

in local and remote networks, respectively. Fig. 6 provides

latency of the Wi-Fi network when FiPy pings a machine in

the same local network and remotely in the cloud network.

The network latency of NB-IoT varies significantly compared

to the Wi-Fi.

For LoRa, the transit time from the gateway to the appli-

cation completely depends on the solution implemented. On

TTN and with a gateway connected through wired Ethernet,
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Fig. 6: Latency results for pinging a local machine and cloud

machine via Wi-Fi and gateway via NB-IoT network.

TABLE VI

Sigfox radio configuration [39]

Frequency (MHz) RC1/RC3/RC5 RC2/RC4

Uplink center 868.130/923.200/923.300 902.200/920.800
Downlink center 869.525/922.200/922.300 905.200/922.300

Uplink data rate (bit/s) 100 600
Downlink data rate (bit/s) 600 600

it will take tens of milliseconds (at the current load levels).

If the gateway uses a slow cellular connection, the delay will

increase. Further, up to a few seconds can add up based on the

selected callback mechanism (HTTP, AWS IoT, others). At a

high level, latency would be a sum of time-on-air, gateway to

network server network latency, duplication window, routing

services processing time, a selected callback to application

network latency. LoRa TTN fair usage policy only allows at

most 10 DL messages. If we also consider the DL latency,

one or two seconds could be added to the latency as there

are two receive windows after a UL message. For Sigfox, to

understand the latency, we calculated the time when we started

sending the message using the device and when it was received

at the Sigfox backend. We synced the end-device time using

Network Time Protocol (NTP) with pool.ntp.org server.

For NB-IoT, we connected to the NB-IoT Vodafone network

with Pycom provided subscriber identity module (SIM) [35]

having pycom.io Access Point Name (APN). We figured out

our IP Address using AT command ‘AT+CGCONTRDP’ and

sent around 100 ping requests to the gateway, which was three

hops away (calculated from TTL). For Wi-Fi, we connected

the end-device FiPy to the home Wi-Fi network and calculated

the latency by sending 100 uping [36], [37] requests to a local

machine in the same network and to a remote machine on a

cloud.

Throughput: This experiment measured the average

throughput (bits per second) achieved on each network indi-

vidually. For LoRa, bit-rate depends on the bandwidth and SF.

In Europe, the regional parameters [38] allow a bandwidth

of 125 KHz to 250 KHz and SF of 7 − 12 [27]. LoRa

data rates range from 0.3 Kbps to 50 Kbps [11]. For Sigfox,

Table VI provides UL and DL frequency and data rate for

different regions. Based on the Sigfox frequency, the data rate

could be determined. For NB-IoT, data rate [34] is 26 Kbps
in the DL, and 66 Kbps in the UL. LTE-M has approximately
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Fig. 7: Bandwidth results using iperf when running on local

network and cloud.

300 Kbps in DL and 380 Kbps in the UL in half-duplex.

On an average on the field, 100 to 150 Kbps are reached

in both directions. For Wi-Fi, bandwidth has an average of

3550.8 Kbps and 770.181 Kbps with a standard deviation of

157.19 Kbps and 71.86 Kbps when iperf3 is hosted locally

in the local network and cloud network, respectively. Fig. 7

provides the bandwidth of the Wi-Fi network when FiPy pings

and connects to the iperf server in the same local network

and remotely in the cloud network.

For our experiments, for NB-IoT, we are using Pycom

provided Vodafone SIM; the User Equipment (UE) can only

communicate to a white-listed IP address because of which

we were unable to host an instance of iperf on a server

and calculate throughput. For Wi-Fi, Pycom FiPy utilises

ESP32 which provides 20 Mbps TCP RX/TX in the test [40]

performed in the lab. The bandwidth and throughput was

calculated using uiperf3 [41].

Time to connect to the network: We conducted baseline

experiments to understand the connection time an end device

takes to join the different networks. It helps to estimate

switching overhead if the IoT devices need to switch from one

network technology to another. LoRa allows activation by two

methods Over-the-Air Activation (OTAA) and Activation by

Personalisation (ABP). OTAA took on an average 5.6 s with

a minimum 4 s to a maximum 7 s to join the network. On the

other hand, ABP provides hard-coded session keys and allows

the sending of data without joining. In case of an emergency

where the device tries to send only one message and is unsure

about the coverage of LoRa, the message can be sent using

maximum SF12 to have a maximum range. For Sigfox, creating

a socket for Sigfox taken an average of few ms. For NB-IoT,

we present the timings for the different methods in Table VII.

When the LTE modem is connected to the network first

time, it takes a significant amount of time to connect to the

network as it searches, registers itself to the network, it could

take approximately 15 mins to 60 mins to attach to the

network, whereas Wi-Fi takes approx 5.6 seconds to connect

to the specified network.

We conducted a baseline experiment for Lora to understand

the connection time an end device takes to join the LoRa

network through OTAA and repeated it 24 times. For NB-

IoT, we conducted experiments to measure the time taken for

initialisation, attach, connect, detach, disconnect, deinit and

modem reset. We performed two experiments - one when
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TABLE VII

NB-IoT connect times in seconds

NB-IoT Reset Init Attach Connect Disconnect Deattach Deinit

With Reset Avg 6.37 0 12.64 1.29 7.23 1.13 0.09
Min 6 0 11 1 7 0 0
Max 7 0 17 2 8 2 1

Without Reset Avg - 2.07 12.15 1.31 7.23 0.98 0.15
Min - 1 8 1 7 0 0
Max - 3 20 2 8 2 1

LTE modem is reset before initialisation and one without

the reset. LTE allows PSM by configuring the period how

often the device will connect and how long it will stay

actively connected. During the sleep, the LTE modem will

go into a low power state, but it will stay attached to the

network; thus, no time is spent for attaching after waking

up. For Wi-Fi, to understand the time taken to connect to

Wi-Fi, we calculated the time taken for Wi-Fi init, scan,

connect, disconnect, deinit. We experimented 80 times and

found that it takes approximately 2.1 seconds to scan the

Wi-Fi networks and approximately 5.6 seconds to connect to

the specified network. Wi-Fi init, disconnect, and deinit were

almost instantaneously in the range of milliseconds.

Time to reconnect to Wi-Fi, Internet: To understand how

much time an IoT device takes to reconnect with the Wi-Fi and

the internet. We connected a Smart Citizen Kit (SCK) [42],

Pycom FiPy to Home Wi-Fi, a machine via Ethernet to

the home router and turn-off-on the Wi-Fi. We created a

python script that pings the three hosts: the router, the IoT

device (SCK, FiPy), and the cloud machine (google.com) and

provided time between the device going offline and coming

online. It took approx 1 min 16 sec, 1 min 40 sec, 3 min 5

seconds to get the connectivity back to the router, IoT device,

and the internet.

VI. EVALUATION AND DISCUSSIONS

In § IV, we have shown that both variants of the proposed

resource management algorithm (CABF and CABFinv)

perform better than the baseline bin-packing algorithms we

considered. In this section, we implemented one of the vari-

ants, namely CABFinv , as part of a multi-network resource

allocator running over our Resilient Edge platform. We then

performed a number of experiments to evaluate the algorithm

performance over an edge-node prototype following the ex-

periment setup as shown in the Figures 4 and 5. The choice

of the CABFinv was made in order to try to provide service

to all message flows (rather than focus on increasing service

for the most critical flows, which would perhaps be the goal

in a real deployment) for the sake of demonstrability, i.e. so

we can show the sharing of the network interfaces by several

flows operating at different levels of criticality.

A. Criticality-aware allocation of network resources using

CABFinv

In this section, we show the performance of the proposed

CABFinv algorithm when allocating network resources to

application flows in a criticality-aware manner. We consider

the same application flows and QoS requirements presented

in Section § III and follow the approach described in Section

TABLE VIII

Obtained criticality level (1 | 2 | 3) and network allocation

(* Wi-Fi | # LoRa | + Sigfox | - NB-IoT) for motivating

example in FiPy

Message Flows % flows avg
1 2 3 4 5 6 7 8 served crit

Requested
Criticality level

1,2,3 1,2,3 1,2 1,2 1,2 1,2 1,2 1 level

Network

Interfaces
Allocated Criticality Level

Wi-Fi 1 1 1 1 1 1 1 1 100 1
LoRa 1 1 1 2 1 2 1 1 100 1.25

NB-IoT 1 1 1 1 1 1 1 1 100 1
Sigfox 2 2 1 2 1 2 2 1 100 1.625

Wi-Fi + LoRa 1# 1# 1# 1* 1# 1* 1# 1# 100 1
Wi-Fi + Sigfox 1# 1# 1+ 1# 1+ 1# 1# 1+ 100 1
NB-IoT + LoRa 1* 1* 1* 1- 1* 1- 1* 1* 100 1
NB-IoT + Sigfox 1- 1- 1+ 1- 1+ 1- 1- 1+ 100 1

§ IV where application flows can request service at different

criticality levels from the multi-network resource allocator

running at FiPy. The multi-network resource allocator run-

ning CABFinv algorithm provides service according to those

requirements while considering the network availability condi-

tions, so in this experiment we consider a number of realistic

scenarios and evaluate the percentage of served requests and

the corresponding criticality levels they were assigned.

In this experiment we consider the four available networks

have following maximum bandwidths Wi-Fi (750 Kbps), NB-

IoT UL (55 Kbps), LoRa SF7-125KHz (5.47 Kbps) and

Sigfox UL (100 bps).

Table VIII shows the allocated criticality level, percentage

of flows served and average criticality level for the messages

flows defined in Table I. Each row of the table shows the

metrics obtained by running the CABFinv algorithm over a

different network scenario. Scenarios include situations such

as when only a single network is available (only Wi-Fi,

LoRa, NB-IoT or Sigfox) or when two different networks are

available (such as Wi-Fi or NB-IoT with LoRa and Sigfox).

When a high-bandwidth network such as Wi-Fi and NB-IoT

is available, we can see that CABFinv is able to assign

the lowest criticality level to all flows and to provide all

of them with service. We also observe that when only low-

bandwidth network interfaces are available (e.g. Sigfox), all

flows are still serviced but the average allocated criticality is

higher (i.e. flows are only allowed to use the network under

more constrained levels of service). Average criticality level

is calculated as the sum of all the assigned criticality level

divided by the number of message flow allocated.

Such results, which are based on a realistic scenario and

network bandwidths, consistently show the same outcomes

that were obtained in Section IV for our motivating example

and for the synthetic applications: the proposed algorithms

are superior to all baselines when one considers together the

ability to allocate bandwidth to message flows according to

their criticality and to the availability of multiple networks.

There are, of course, limitations with regard to the perfor-

mance of the proposed algorithms, our ability to fully exploit

its advantages over the current platform, and the algorithms’

ability to handle highly dynamic scenarios. We provide more

details and discussion in the following subsections.
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B. Time complexity and Context Switching of CABFinv al-

gorithm

We measured the running time of CABFinv algorithm on

the FiPy board and the RPi, repeated it ten times, and average

run on FiPy takes 1300ms whereas on RPi it takes 7.1ms.

When a networking event (such as Wi-Fi is disconnected),

the allocation algorithm CABFinv has to be executed again.

This results in time delay due to de-allocation of old message

flows and allocation of new message flows. During this time

delay, there’s a possibility that the RPi would have written a

message on the UART.

As there is a possibility that by the time, Message Flow

Element Allocation (MFEA) message was received by RPi,

the previous running threads (simulating message flows)

would have written few messages to the UART. To resolve

this, before doing the re-allocation, we send a message

<INFO:RE-ALLOC:INIT> to RPi that, we are going to do

the re-allocation, stop sending any message to the UART to

minimise the loss of messages. On receiving that message,

RPi pauses all the current threads of message flow. Further,

FiPy store the old allocations and until it receives an acknowl-

edgement message <INFO:RE-ALLOC:ACCEPTED> from

the RPi that it has received the MFEA, it keeps allocating

using previous allocation (except the network interface which

was lost).

In this case, we log the time, when RE-ALLOC:INIT mes-

sage was written to the UART by FiPy initiating re-allocation,

the time RPi received MFEA message flow allocation message

from FiPy, and the time taken by RPi to stop all previous

threads (which are simulating the message flows) and generate

new threads (as per new allocation). We calculated the time for

context switching as the time difference between re-allocation

init message written by FiPy and the re-allocation accept

message received by FiPy. This whole context switching takes

1.3 s to 1.5 s which includes stopping thread, creating new

threads, re-alloc init message, re-alloc MFEA time from RPi

to FiPy and re-alloc accept from FiPy to RPi.

C. Discussions

Our work also has certain limitations. Firstly, the CABF

algorithm currently does not handle network dynamics such

as a change in network bandwidth due to dynamic change of

wireless channel and link conditions. The preliminary decision

about the network capacity is based on the network availability

(whether the network is available or not), and the algorithm

calculates the network bandwidth at the start of the network

connection. Currently, it is difficult to generate or simulate net-

work problems during application communication to evaluate

the consequences on the flows (latency, loss, throughput). For

instance, currently, FiPy does not provide the Wi-Fi callback

function [43] and does not provide any way to know that Wi-

Fi is disconnected. In LTE, we can remove the SIM card

or the LTE antenna during a stable connection to simulate

network connectivity loss. However, removing SIM or antenna

is not officially recommended as they can cause damage to the

device. Regarding generating network loss in Lora and Sigfox,

both are stateless. FiPy provides a way to check if the device

has joined LoRaWAN; however, no way to find whether it

is still connected or not. Because of the above reasons, to

simulate the loss of Wi-Fi, we have manually set the Wi-Fi

bandwidth to zero and then called the re-allocation function.

The multi-network resource allocator successfully allocates

the message flows to the available network interfaces. From

the network bandwidth perspective (change in bandwidth due

to network conditions), a for loop that checks for the LoRa

SF, Wi-Fi, and NB-IoT bandwidth at regular intervals can be

implemented. However, it requires better support for threading.

We will eventually implement the features based on the device

support for Wi-Fi callback in the future.

Secondly, there are few device limitations. FiPy does not

provide Wi-Fi callback to indicate if the device got dis-

connected from the Wi-Fi network. Currently, when FiPy is

connected to both Wi-Fi and NB-IoT simultaneously, it does

not provide a way to define the network interface to be used for

sending the packet. Further FiPy team does not advise using

both networks simultaneously to simulate a WiFi-LTE bridge,

as it will be very slow and expensive [26].

Thirdly, currently, we take a set of message flows and

allocate them all together. Because of this, old message flows

are de-allocated and re-assigned with either the same or

different criticality levels. In future work, we will provide the

capability to allow an application to define a new message

flow and allocate it from the existing networks without de-

allocating and re-allocating the old ones.

Further, there are different industrial products [44], [45]

in the market that provide communication via multiple radio

interfaces (such as Wi-Fi, 4G, LoRa, LTE (CAT-M1/NB-IoT)).

However, either they provide only LoRa or LTE (CAT-M1/NB-

IoT) with Wi-Fi. Currently, we are only aware of FiPy that

provides multi-network connectivity for LoRa, LTE (CAT-

M1/NB-IoT), Sigfox, Wi-Fi, and Bluetooth. Further, our work

enables criticality-aware applications to send messages by allo-

cating resources (network) per the criticality level and network

availability. The transmission range of Wi-Fi and other WPAN

is different, and it is possible to assign the communication

resources to different types of traffic. There can be different

factors for consideration in the case of multiple radio devices,

e.g., bandwidth, delay, rate adaptation, IP support, and others.

Currently, our work considers bandwidth and availability to

ensure that applications can send messages as per the defined

criticality level.

With the development and popularization of 4G/5G net-

works, the IoT edge has also shown more possibilities in

IoT, VR, and AI intelligence. In this context, NB-IoT, LoRa,

and Sigfox provide low-bandwidth network communication

methods that are very limited. There might be a case where

LPWAN might seem insignificant. On the other hand, our work

targets critical edge applications that need to work even when

high-bandwidth networks are unavailable.

VII. RELATED WORK

This section presents related work that crosses the inter-

section of LPWAN, edge resilience, and ILP (Integer Linear

Programming) formulations for IoT and edge computing.
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Chaudhari et al. [46] provided a comprehensive survey on

various LPWAN technologies and presented these technolo-

gies concerning application requirements, such as coverage,

capacity, cost, low power, and deployment complexity, and

provided a comprehensive survey on both standard and non-

standard LPWAN technologies. Hossain et al. [47] presented

the comparison of different LPWAN technologies in terms of

cost structure and scalability and stated that a large rollout

with a single LPWAN technology is not cost-efficient.

Similarly, from the use case perspective, Santos et al. [48]

evaluated LPWAN technologies for air quality application

during “City of Things” project. Further, it also performed

anomaly detection for smart city applications using differ-

ent unsupervised and outlier detection algorithms. Roque et

al. [49] created a prototype to detect fire detection in outdoor

environments (forests) based on LPWAN networks (Sigfox)

and temperature and gas sensor measurements. Rubio-Aparicio

et al. [5] implemented an LPWAN residential water manage-

ment solution supported by hybrid IoT LoRa-Sigfox architec-

ture. All the above solutions provide resiliency by sending data

on Lora and Sigfox without guaranteeing applications’ QoS

requirements. The work aims to achieve network resiliency

by connecting the end devices with inadequate coverage to a

Lora-Sigfox Gateway device via LoRa and then forwarding

the data to a Sigfox network. These use-uses demonstrate

the use of LPWAN for meeting resiliency and low-power

communication requirements.

ILP formulations for resource provisioning are widely used

for many scheduling problems and are well studied in the

literature. For IoT applications, ILP has been used at the

gateway level. For example, Santos et al. [50] presents a MILP

(Mixed ILP) formulation for resource provisioning in Fog

computing, taking into account the Service Function Chain-

ing (SFC) concepts, different LPWAN technologies (LoRa,

IEEE 802.11 ah), and multiple optimization objectives. The

solution considers end-to-end systems into three segments -

sensors/things level, gateways/routers (Fog), and the cloud and

presents smart-city use-cases for garbage collection, air quality

monitoring, and closed-circuit television (CCTV) monitoring.

Tajiki et al. [51] used ILP to select a set of monitoring flow

injected into the network to infer a link delay vector and meet

the QoS for delay-sensitive applications in the network. Kim

et al. [52] use ILP formulation to create secure migration

policies for the communication between things (sensors) and

a trusted edge system providing authentication services in the

event of Denial-of-Service (DoS) attacks or failures, resulting

in resilient authentication and authorization for IoT. In com-

parison, our work shows that IPL can also be used at the IoT

device level to optimize the latency and resiliency of different

applications using a Multi-communication network.

From the QoS perspective, multiple research papers have

highlighted that the end-to-end perceived QoS on cloud-

edge continuum deployment environments depends on many

complex system factors [53], [54], [55].

Each abstraction (either vertical or horizontal) adds another

level of complexity and delays, affecting QoS. The delays can

depend on each edge node’s virtualization and containeriza-

tion techniques [56]. Additionally, many QoS (latency and

processing delays) metrics depend on the current load of the

local physical/virtual CPU/memory, network acceleration and

service invocation techniques [56], [57].

For example, Cicconetti et al. [54] identified four reference

execution models (external, in-edge, in-function, in-client) for

providing state to enable stateful applications on serverless

platforms deployed on the edge nodes. Similarly, Pfandzelter et

al. [58] and Feraudo et al. [59] designed a lightweight server-

less platform, tinyFaaS and Colearn middleware explicitly for

edge environments and IoT applications.

From the literature, it is evident that edge-enabled FaaS

scenarios with serverless support are emerging, and our work

is complementary to state-of-the-art work. It can be integrated

with middleware or service orchestration architecture by inter-

facing the Resilient Edge at the communication layer interface

or as the network functions virtualization (NFV) in Software-

Defined Networking (SDN) architecture.

From the perspective of improving resilience, Qin et

al. implemented Multinetwork INformation Architecture

(MINA) [60], [61] a reflective Observe Analyse Adapt (OAA)

middleware approach to manage dynamic and heterogeneous

multi-network (such as ZigBee, Bluetooth, PANs, MANETs,

3G/4G, WLAN) in pervasive environments to ensure reliable

communication for end applications. The paper presented

a formal analysis that can guide network administrators in

their decisions to proactively adapt network configurations

to achieve mission or application objectives. Compared to

this work in our paper, we analyzed seamless switching of

the networks on a hardware testbed to meet the resiliency

requirements. In our prototype we provided seamless switch-

ing while maintaining the critical application requirements

without overhead of virtualization and service orchestration

middleware. However, our solution could be easily integrated

to other intermediate middleware to support application critical

requirements while providing seamless network connectivity.

The SCALE2 [62] leveraged MINA and implemented a

multi-tier and multi-network approach to drive data flow from

IoT devices to cloud platforms. The authors implemented

a local Software-defined networking (SDN)-enabled the net-

work, which is adaptive to the network changes to which IoT

client devices are connected. This solution’s architecture and

deployment examples used separate adapters (device) for each

communication radio, thus needing another computing device

to run the SCALE client software. However, in our work,

we use all radios integrated on a single board to allow fast

switching between networks on the device level.

Wider aspects of resilience have been discussed in mission-

critical applications like autonomous driving, tactile health-

care, and public safety. For example, Modarresi et al. [63]

presented a graph-theoretical approach to model IoT systems

in smart homes with integrated heterogeneous networks and

explored resilience properties. Similarly, Chaterji et al. [64]

presents the resilience of Cyber Physical System (CPS) and

discusses two techniques resilience-by-design and resilience-

by-reaction. Harchol et al. [65] proposed a framework to

improve edge-computing resilience for session-oriented appli-

cations. They utilized message replay and checkpoint-based

mechanisms to make client-edge-server systems more tolerant
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to edge failures and client mobility. Carvalho et al. [66]

implement a replication mechanism LoRa-REP for replicating

critical messages on LoraWAN by sending them at different SF

and improving redundancy in LoRaWAN for mixed-criticality

scenarios.

The literature shows that different forms of replication and

redundancy mechanisms are used to achieve resilience in the

networks. However, none of those mentioned above work

used different LPWAN and Wi-Fi as seamless multi-network

infrastructure at the device and the Edge network to meet the

guaranteed message delivery.

Our work focuses on achieving network resiliency using

the LPWAN network on resource-constrained end devices

by providing the capability to the end device to evaluate

the application requirements and select the suitable network

medium while allowing graceful degradation of services in the

event of failures. Further, our work implements an ILP solver

in micro-python that can run on a resource-constrained device.

Also, multi-network connectivity has benefits in terms of

deployment in mission-critical applications (tactile healthcare,

public safety in smart cities). For mobility-based IoT like

autonomous driving, for example, if one type of network exists

in one area. In contrast, there is another network in another

geographical location, and the application can perform smooth

and seamless network switching.

VIII. CONCLUSION AND FUTURE WORK

The resiliency and reliability requirements of IoT ap-

plications vary from non-critical (best delivery efforts) to

safety-critical with time-bounded guarantees. In this work,

we systematically investigated how to meet these applications

mixed-criticality QoS requirements in multi-communication

networks.

We presented the network resiliency requirements of IoT

applications by defining a theoretical multi-network resource

system model and proposed and evaluated a list of resource

allocation algorithms and found Criticality-Aware Best Fit

(CABFinv) algorithm works better to meet high criticality

requirements of the example applications. The algorithm pro-

vides the best-effort QoS match by taking into considera-

tion the underlying dynamic multi-network environments. We

analysed and evaluated the bandwidth, latency, throughput,

maximum packet size of LPWAN technologies, such as Sig-

fox, LoRa, and NB-IoT and implemented and evaluated an

adaptive Resilient Edge system with Criticality-Aware Best Fit

(CABF) resource allocation to meet the application resiliency

requirements using underlying LPWAN technologies on RPi

and FiPy.

In the current implementation of Resilient Edge, we took

bandwidth and subsequent inter-message period into consid-

eration for defining criticality 6. In future, we would like to

extend multi-network resource allocator to include message

6Github repository:

https : //github.com/pooyadav/smartcity multimode networks

payload size, message transmission frequency, security, pri-

vacy and energy consumption parameters in the allocation

algorithm. The new allocator would provide applications more

flexibility to choose and optimise their resources and QoS for

a multi-communication network. In summary, we investigated

the limits and metrics required for the best-effort high critical-

ity resilience in multi-communication networks. We presented

our findings on how to achieve 100% of the best-effort high

criticality level message delivery using multi-communication

networks. Our work will help build reliable applications on

IoT Edge and provide solutions from the perspective of

communication networks to improve service quality and fault

tolerance on resource-constrained edge devices. It also opens

up new research directions to build reliable and trustworthy

IoT applications over robust and resilient IoT Edge.
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