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Abstract
The synthetic control method (SCM) represents a notable innovation in estimating 
the causal effects of policy interventions and programs in a comparative case study 
setting. In this paper, we demonstrate that the data-driven approach to SCM requires 
solving a bilevel optimization problem. We show how the original SCM problem 
can be solved to the global optimum through the introduction of an iterative algo-
rithm rooted in Tykhonov regularization or Karush–Kuhn–Tucker approximations.

Keywords Causal effects · Comparative case studies · Policy impact assessment · 
Bilevel optimization

JEL Classification C31 · C54 · C61

1 Introduction

The synthetic control method (SCM), originally introduced by Abadie and 
Gardeazabal (2003), is an appealing tool for evaluating the causal treatment 
effects of policy interventions and programs in comparative case studies (Athey & 
Imbens, 2017). SCM has been employed in a large number of important applica-
tions (e.g., Abadie et al., 2010, 2015; Acemoglu et al., 2016; Cavallo et al., 2013; 
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Gobillon & Magnac, 2016; Kleven et al., 2013; Bayer & Aklin, 2020). Since the 
outbreak of the COVID-19 pandemic, SCM has extensively been applied to iden-
tify the impacts of the pandemic-related restrictions (e.g., Alfano et  al., 2021; 
Bonander et al., 2021; Cole et al., 2020; Lang et al., 2022; Mills & Rüttenauer, 
2022; Mitze et al., 2020; Sehgal, 2021; Xin et al., 2021).

SCM estimates the causal treatment effect by constructing a counterfactual 
of the treated unit (i.e., synthetic control) using a convex combination of similar 
units not exposed to the treatment (i.e., donors). The convex combination requires 
non-negative weights that sum to one to avoid extrapolation. The weights are deter-
mined to ensure that the treated unit and the synthetic control resemble each other as 
closely as possible prior to the treatment, both with respect to the outcome of inter-
est and some observed predictors. Since there are typically multiple predictors, the 
predictors are also weighted using another set of non-negative weights. Abadie and 
Gardeazabal (2003) and Abadie et al. (2010) discuss several alternative approaches 
to specify the predictor weights, including the use of subjective weights. In prac-
tice, a majority of published SCM applications resort to a data-driven procedure 
where the weights of predictors and donors are jointly optimized to minimize the 
mean squared prediction error of the synthetic control over the pre-treatment period, 
applying the Synth package described in Abadie et al. (2011), which is available for 
R, Matlab, and Stata.

Despite the popularity of SCM, rather surprisingly, no explicit mathematical for-
mulation of how the predictor weights and the donor weights are jointly optimized 
has been presented in the literature. Several recent studies note that the synthetic 
controls produced by standard computational packages available for SCM may 
encounter numerical instability or fail to achieve the optimum (e.g., Albalate et al., 
2021; Becker & Klößner, 2017, 2018; Becker et  al., 2018; Klößner, 2015; Kuos-
manen et al., 2021).

The purpose of the present paper is to provide a comprehensive investigation into 
the optimization problem that needs to be solved to compute the synthetic control 
weights. Unfortunately, the explicit formulation of the SCM problem reveals that 
computing the synthetic controls entails solving an NP-hard problem, referred to as 
a bilevel optimization problem (e.g., Hansen et al., 1992; Vicente et al., 1994). In 
essence, the task of computing synthetic controls turns out to be more challenging 
than any previous SCM studies recognize. This insight sheds light on the numerical 
instability reported by Klößner et  al. (2015), among others. To address this prob-
lem, we develop an iterative algorithm for solving the original SCM problem, based 
on Tykhonov regularization or Karush–Kuhn–Tucker approximations. We formally 
prove that the proposed algorithm is guaranteed to converge to the optimal solution.

The rest of the paper is organized as follows. Section  2 introduces the SCM 
method and formulates the data-driven approach to compute the predictor and donor 
weights as a bilevel optimization problem. Section 3 develops an iterative algorithm 
that is guaranteed to converge to the optimal solution. Section 4 applies the proposed 
algorithm to the data of the seminal SCM application to the California tobacco con-
trol program and compares the empirical results with those produced by the exist-
ing computational tools for SCM. Section 5 presents our concluding remarks and 
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discusses potential avenues for future research. Proofs of theorems and the imple-
mentation of the descent algorithm are presented in the Appendices.

2  Synthetic Control Method

2.1  Preliminaries

Following the usual notation (e.g., Abadie, 2021), suppose we observe units 
j = 1,… , J + 1 , where the first unit is exposed to the intervention and the J remain-
ing units are control units that can contribute to the synthetic control. The set of J 
control units is referred to as the donor pool. For the sake of clarity, we denote the 
number of time periods prior to treatment as Tpre and the number of time periods 
after the treatments as Tpost . The outcome of interest is denoted by Y: column vectors 
Y
pre

1
 and Ypost

1
 with Tpre and Tpost rows, respectively, refer to the time series of the pre-

treatment and post-treatment outcomes of the treated unit. Similarly, matrices Ypre

0
 

and Ypost

0
 with J columns refer to the pre-treatment and post-treatment outcomes of 

the control group, respectively.
Ideally, the impact of treatment could be measured as

where Ypost,N

1
 refers to the counterfactual outcome that would occur if the unit was 

not exposed to the treatment. If one could observe the outcomes Ypost,N

1
 in an alterna-

tive state of nature, where the unit was not exposed to the treatment, then one could 
simply calculate the elements of vector � . The main challenge in the estimation of 
the treatment effect is that only Ypost

1
 is observable, whereas the counterfactual Ypost,N

1
 

is not.
The goal of SCM is to construct a synthetic control group to estimate the coun-

terfactual Ypost,N

1
 . The key idea of the SCM is to use the convex combination of the 

observed outcomes of the control units Ypost

0
 as an estimator of Ypost,N

1
 . Formally, the 

SCM estimator is defined as

where the elements of vector W are non-negative and sum to one. The weights W 
characterize the synthetic control, that is, a counterfactual path of outcomes for the 
treated unit in the absence of treatment.

To set the weights W , the simplest approach considered by Abadie and Gardeaza-
bal (2003) is to track the observed path of pre-treatment outcomes as closely as pos-
sible to minimize the mean squared prediction error (MSPE). That is, one could 
apply the weights W that solve the following constrained least squares problem

where

(1)� = Y
post

1
− Y

post,N

1
,

(2)�̂� = Y
post

1
− Y

post

0
W,

(3)min
W∈W

L(W) =
1

Tpre

‖‖‖Y
pre

1
− Y

pre

0
W
‖‖‖
2

,
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is the set of admissible weights for control units and ‖ ⋅ ‖ denotes the usual Euclidean 
norm. The constraints on the weights W ensure that the synthetic control is a convex 
combination of the control units in the pool of donors. The fact that SCM does not 
involve extrapolation is considered one of its greatest advantages over regression 
analysis (e.g., Abadie, 2021). Note that if we relax the constraints on weights W , 
then the unconstrained minimization problem reduces to the classic OLS problem 
without the intercept term. In that case, one could simply regress the time series Ypre

1
 

on the parallel outcomes of the J donors in the control group and set the weights 
W equal to the corresponding OLS coefficients. While the OLS problem has the 
well-known closed-form solution that satisfies the first-order conditions, the optimal 
solution to the constrained least squares problem stated above is typically a corner 
solution where at least some of the constraints on weights W are binding. The con-
strained least squares problem can be efficiently solved by quadratic programming 
(QP) algorithms such as CPLEX, which are guaranteed to converge to the global 
optimum.

In addition to the outcome of interest, an integral part of SCM is to utilize addi-
tional information observed during the pre-treatment period. Suppose we observe 
K variables referred to as predictors (also known as growth factors, characteristics, 
or covariates), which are observed prior to the treatment or are unaffected by the 
treatment, which can influence the evolution of Y. These predictors are denoted by a 
(K × 1) vector X1 and a (K × J) matrix X0 , respectively.1 Abadie et al. (2010) prove 
unbiasedness and consistency of the SCM under the condition that the synthetic 
control yields perfect fit to the predictors, that is, X1 = X0W . Abadie (2021) notes 
that “In practice, the condition X1 = X0W is replaced by the approximate version 
X1 ≈ X0W . It is important to notice, however, that for any particular dataset, there 
are no ex-ante guarantees on the size of the difference X1 − X0W . When this differ-
ence is large, Abadie et al. (2010) recommend against the use of synthetic controls 
because of the potential for substantial biases.”

Since the K predictors included in X do not necessarily have the same effect 
on the outcomes Y, Abadie and Gardeazabal (2003) introduce a (K × K) diagonal 
matrix V where the diagonal elements are weights of the predictors that reflect the 

(4)W =

{
W ∈ ℝ

J ∶

J+1∑

j=2

Wj = 1, Wj ≥ 0, j = 2,… , J + 1

}

1 A common practice in SCM is to include some convex combinations of the pre-treatment outcomes 
also as predictors (see Abadie et  al., 2010, 2015, for discussion). However, Kaul et  al. (2022) demon-
strate that including all pre-treatment outcomes as predictors is not a good idea because the predictors 
become completely redundant in that case.



1 3

Computing Synthetic Controls Using Bilevel Optimization  

relative importance of the predictors. The diagonal elements of V must be non-nega-
tive2 and are usually normalized to sum to unity.3 That is

which is a subset of all non-negative diagonal matrices.
Both Abadie and Gardeazabal (2003) and Abadie et  al. (2010) suggest that 

weights V could be subjectively determined. However, virtually all known applica-
tions of SCM resort to the data-driven procedure suggested by the authors. Unfor-
tunately, these seminal papers do not explicitly state the required optimization prob-
lem. A closer examination of the SCM problem in the next section reveals that the 
SCM problem is far from trivial from the computational point of view.

2.2  Bilevel Optimization Problem

Since Abadie and Gardeazabal (2003) and Abadie et al. (2010) only state the SCM 
problem implicitly, to gain a better understanding of the data-driven approach, the 
first step is to formulate the SCM problem explicitly. By comparing with the original 
SCM articles, it is easy to verify that the optimal weights V⋆ , W⋆ must be obtained 
as an optimal solution to the following optimistic bilevel optimization problem (cf. 
Albalate et al., 2021)

where ‖ ⋅ ‖V is a semi-norm parametrized by V, and Ψ ∶ V ⇉ W denotes the solu-
tion set mapping from upper-level decisions to the set of global optimal solutions of 
the lower-level problem. For any (K × 1) real vector Z, we define ‖Z‖V = (Z⊤VZ)1∕2 . 
This becomes a proper norm only when V is positive-definite. If we denote the diag-
onal elements of V by v1,… , vK , we can write the lower-level objective as

(5)V ∈

{
diag(V) ∶ V ∈ ℝ

K×K ,

K∑

k=1

Vkk = 1, Vkk ≥ 0

}
=∶ V,

(6)min
V , W

LV (V ,W) =
1

T pre
‖Ypre

1
− Y

pre

0
W(V)‖2

(7)
s.t. W(V) ∈ Ψ(V) ∶= argmin

W∈W

LW (V ,W) = ‖X1 − X0W‖2
V
,

V ∈ V,

LW (V ,W) =

K∑

k=1

vk

(
Xk,1 −

J+1∑

j=2

Xk,jWj

)2

,

2 While Abadie et al. (2010) assume that the diagonal elements must be positive, a positive real num-
ber can be arbitrarily close to zero, and therefore, the distinction between positive and non-negative 
model variables has no real meaning in optimization unless one imposes some explicit lower bound, e.g., 
V
kk
≥ 0.01 . Becker and Klößner (2018) set a lower bound V

kk
≥ 0.00000001 , which is so low that it has 

no practical meaning.
3 Of course, other normalizations are possible, but we here restrict attention to the most standard nor-
malization that allows one to interpret the diagonal elements of V as shared weights that sum to one.
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which allows the lower-level problem to be interpreted as an importance-weighted 
least squares with weight constraints. As pointed out by Klößner and Pfeifer (2015), 
this original setup can be easily extended to allow the treatment of predictor data as 
time series, while maintaining the original structure of the optimization problem.

The explicit formulation of the optimization problem reveals several points 
worth noting. First, the SCM problem is a bilevel optimization problem, which is 
far from trivial from the computational point of view. The minimization problem 
(7) referred to the lower-level problem, and problem (6) is called the upper-level 
problem; the SCM literature commonly uses the terms inner and outer problems, 
but the meaning is the same. The problem is solvable when it is interpreted as an 
optimistic bilevel problem, but the global optimum is not necessarily unique.

Proposition 1 The synthetic control problem defined by (6)–(7) has a global opti-
mistic solution (V̄ , W̄) ∈ V ×W.

Unfortunately, the bilevel optimization problems are generally NP-hard 
(Hansen et al., 1992; Vicente et al., 1994). In particular, the hierarchical optimi-
zation structure can introduce difficulties such as non-convexity and disconnect-
edness (e.g., Sinha et al., 2013), which are also problematic in the present setting, 
as will be demonstrated in the next section.

Second, the explicit statement of the optimization problem makes it more evi-
dent that the optimal solution will typically be a corner solution where at least 
some of the first-order conditions do not hold. This causes a serious problem 
for the usual derivative-based optimization tools. This observation can help to 
explain at least partly the numerical instability of the SCM results, observed by 
Becker and Klößner (2017) and Klößner et al. (2015), among others. The general-
purpose computational tools are simply ill-equipped for the task at hand. If the 
weights W,V  are arbitrarily determined by an ad hoc computational tool that fails 
to converge to a feasible and unique global optimum, then all attractive theoreti-
cal properties of the estimator are no longer guaranteed.

3  Iterative Algorithm

The purpose of this section is to discuss a general algorithm for solving the origi-
nal SCM problem (4)–(5) where the predictor weights V are jointly optimized 
with the donor weights W  . Since the general algorithm proves computationally 
demanding, we start by checking whether the unconstrained SCM problem (3) is 
a feasible solution as well as the possibility of corner solutions. It is noteworthy 
that surprisingly many of the SCM problems encountered in practice admit either 
an unconstrained solution or a corner solution. In case the optimal solution is not 
found through these feasibility checks, we suggest continuing the search for an 
optimal solution using a descent algorithm based on the Tykhonov regularization 
technique or Karush–Kuhn–Tucker (KKT) approximations.
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To highlight the importance of coordination between the upper-level and 
lower-level problems, we can rephrase the lower-level problem (7) as

where 𝜀 > 0 denotes an infinitesimally small non-Archimedean scalar.4 Introducing 
the upper-level objective as a part of the lower-level QP problem in (8) makes a sub-
tle but important difference compared to problem (7): the primary objective of both 
(7) and (8) is to minimize the loss function LW with respect to predictors X. How-
ever, if there are alternate optima W⋆ that minimize the loss function LW , problem 
(8) will choose the best solution for the upper-level problem.

Proposition 2 For a given set of weights V⋆ , let W𝜀(V
⋆) denote the unique optimal 

solution to problem (8) for any 𝜀 > 0 . Then, we have that

The proof of the proposition is simple and can be omitted. Having ensured that 
constraint (5) holds, it is important to note that the optimal weights W that minimize 
‖X1 − X0W‖2

V⋆ need not be unique. This is particularly relevant when there exist 
W that satisfy ‖X1 − X0W‖2

V⋆ = 0 . In such cases, the non-Archimedean � plays an 
important role by allowing us to select among the alternate optima for (5) the opti-
mal weights W to minimize the upper-level objective (6).

Proposition 2 provides a useful result for SCM applications where the weights 
V are given. Recall that weights V might be subjectively determined, as Abadie 
and Gardeazabal (2003) and Abadie et al. (2010) suggest. Proposition 2 also dem-
onstrates the critical importance of introducing an explicit link between the lower-
level problem and the upper-level problem. In general, there can be many alternate 
optima where the loss function goes to zero, LW = 0 . Without coordination, there is 
no guarantee that the SCM package would converge to the optimum. The lack of an 
explicit link between the upper-level and the lower-level problem is the most funda-
mental reason why the Synth package fails to reach the optimum.

3.1  Checking the Feasibility of an Unconstrained Solution

Consider first the situation where no predictors are used (i.e., K = 0 ). In this case, 
the bilevel optimization problem (6)–(7) reduces to the constrained regression 
problem (3). Problem (3) has a quadratic objective function and a set of linear con-
straints, which guarantees the existence of a unique global optimum when the usual 
assumptions of regression analysis hold (i.e., no rank deficiency). Such quadratic 
programming problems are considered straightforward from the computational 
point of view. While general-purpose derivative-based tools may struggle with the 

(8)min
W∈W

L𝜀
W
(V ,W) =

1

K
‖X1 − X0W‖2

V⋆ + 𝜀‖Ypre

1
− Y

pre

0
W(V)‖2

lim
𝜀→0+

W𝜀(V
⋆) ∈ argmin

W

{LV (V
⋆,W) ∶ W ∈ Ψ(V⋆)}.

4 The use of non-Archimedean � was introduced by Charnes (1952) to avoid degeneracy in linear pro-
gramming.
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constraints, the simplex-based algorithms (e.g. the CPLEX solver) will converge to 
the global optimum.

Let L(W⋆⋆) = minW∈W L(W) denote the optimal solution to the problem (3), 
which is unique when no rank deficiency is present. As Kaul et al. (2022) correctly 
note, this solution is the lower bound for the optimal solution to the problem (6):

Intuitively, imposing additional constraints can never improve the optimal solution. 
To test if there exist importance weights V ∈ V such that W⋆⋆ is a feasible solution 
to the lower-level problem (7), we next solve the following linear programming (LP) 
problem

While the objective function of problem (10) is the same as that of the lower-level 
problem (7) in that both problems minimize the same loss function, problem (7) 
is minimized with respect to weights W, whereas problem (10) is minimized with 
respect to weights V, taking W⋆⋆ as given. This LP problem finds the optimal pre-
dictor weights V to support the relaxed problem (3). Denote the optimal solution to 
problem (10) as V⋆⋆ . If LW (V⋆⋆,W⋆⋆) = 0 , the optimal solution has been found. In 
other words, there exists matrix V⋆⋆ ∈ V such that W⋆⋆ is a feasible solution to the 
lower-level problem (7), i.e. W⋆⋆ ∈ Ψ(V⋆⋆) . Hence, this is also the optimal solution 
to the bilevel optimization problem (6)–(7).

3.2  Establishing an Upper Bound for L
V

In the context of SCM, the domain of predictor weights V 
has K basic solutions, with the following diagonal elements: 
V1 = (1, 0, … , 0),V2 = (0, 1, … , 0), … ,VK = (0, 0, … , 1) . That is, we assign all 
weight to just one of the predictors and leave zero weight to all other predictors. We 
can insert the basic solution Vk, k = 1,… ,K as the weights V in problem (8), and 
solve the QP problem to find the optimal Wk for each k = 1,… ,K . For each candi-
date weights Wk, k = 1,… ,K , we calculate the value of the upper-level loss func-
tion LV stated in (6). Finally, we select the basic solution s in 1,… ,K that minimizes 
LV . If LW (Vs,Ws) = 0 and LV (Vs,Ws) = L(W⋆⋆) , then the corner solution (Vs,Ws) is 
one of the optimal solutions. If only LW (Vs,Ws) = 0 but LV (Vs,Ws) > L(W⋆⋆) , the 
corner solution can be viewed as an upper bound for the optimal value.

Proposition 3 If there exist weights (Ṽ , W̃) ∈ V ×W satisfying X0kW̃ = x1k for some 
predictor k, then there exists another feasible solution (Vk, W̃) for the SCM problem 
(6)–(7), where Vk ∈ V is a corner solution satisfying LW (Vk, W̃) = 0 . If (Ṽ , W̃) is an 
optimal solution, then also (Vk, W̃) is an alternative optimal solution for the SCM 
problem.

(9)LV (V ,W) ≥ L(W⋆⋆) for all V ∈ V,W ∈ W.

(10)min
V∈V

LW (V ,W
⋆⋆) = (X1 − X0W

⋆⋆)⊤V(X1 − X0W
⋆⋆).
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This result demonstrates that whenever the donor weights W satisfy the basic con-
dition required for the consistency of the SCM, X1 = X0W , even just for a single pre-
dictor k, then it is easy to generate feasible solution candidates that are obtained by 
considering corner solutions with respect to predictor weights V. Intuitively, when 
the number of predictors is large, it is practically impossible to construct a convex 
combination of control units that matches the treated unit; in other words, no matrix 
W that satisfies X0W = X1 exists. But if we use weights V to reduce the dimension-
ality of X by assigning some of the predictors a zero weight, then it becomes con-
siderably easier to find vectors W that satisfy x0kW = x1k at least for some predictor 
k (note x0k is the kth row of matrix X0 and x1k is a scalar). Consequently, the set of 
feasible solutions for the SCM problem often contains several candidate solutions 
that “switch off” the constraints concerning predictors X by assigning zero weight, 
except for a single predictor k for which a perfect fit is possible. Therefore, it is 
understandable that many ad hoc tools attempting to solve the SCM problem (6)–(7) 
may end up assigning all weight to the most favorable predictor and discard all other 
predictors by assigning the zero weight. These observations can help to explain the 
empirical observation that the predictors often turn out to have little impact on the 
synthetic control, which has been noted by several authors (e.g., Ben-Michael et al., 
2021; Doudchenko & Imbens 2017; Kaul et al., 2022). While these solutions may 
not necessarily be optimal for the SCM problem, they can still provide good approx-
imations for the optimal value of the upper-level objective. Note that the previous 
iterations provide us with the corner solution (Vk,Wk) and the unconstrained solu-
tion W⋆⋆ , which can be used for constructing the following bounds for the loss func-
tion of the true optimum (V⋆,W⋆):

If the margin of LV is small and Ws ≈ W⋆⋆ by reasonable tolerance, there is no need 
to iterate further. But if there is a significant gap, the following iterative procedure is 
guaranteed to find the optimum.

3.3  Finding an Optimal Solution Using Tykhonov Regularization

Building on Proposition 2, the basic idea is to construct an iterative descent algo-
rithm to find the bilevel optimal solution by using the following regularized lower-
level problem:

where 𝜀 > 0 . Note that problem (11) is just a re-stated version of the QP problem (8) 
above. When the optimal solution to the upper-level problem is uniquely defined, the 
regularized lower-level problem has considerably better regularity properties than 
the original formulation. In the literature on bilevel programming, this approach is 

LV (Vs,Ws) ≥ LV (V
⋆,W⋆) ≥ L(W⋆⋆).

(11)min
W∈W

L�
W
(V ,W) = LW (V ,W) + �LV (V ,W),
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known as Tykhonov regularization (Dempe, 2002). By requiring positive definite-
ness in the upper-level problem, we can make relatively strong claims regarding the 
properties of the optimal solutions for the regularized problem. Specifically, it can 
be shown that the unique optimal solution function to the problem (11), denoted by 
W⋆

𝜀k
(V) , is Lipschitz continuous and directionally differentiable.

Definition 1 (Lipschitz continuity) A function z ∶ ℝ
n
→ ℝ

m is called locally Lip-
schitz continuous at a point x0 ∈ ℝ

n if there exists and open neighborhood U�(x
0) of 

x0 and a constant l < ∞ such that

Definition 2 (Directional differentiability) A function z ∶ ℝ
n
→ ℝ is directionally 

differentiable at x0 if for each direction r ∈ ℝ
n the following one-sided limit exists:

The value z�(x0;r) is called the directional derivative of z at x = x0 in direction r.

Proposition 4 Consider the synthetic control problem in (6)–(7) and let the upper-
level cross-product matrix Y⊤

0
Y0 be positive definite. Take any sequence of positive 

numbers {�k}∞
k=1

 converging to 0+ . Then, 

1. the optimal value of the regularized bilevel problem converges to the optimal 
value of the original problem as k → ∞ i.e. 

where 

 denote the optimal solution set mapping for (11) and the upper-level optimal 
value of the original problem, respectively.

2. for each �k , the unique optimal solution to the regularized lower-level prob-
lem (11), denoted by W⋆

𝜀k
(V) ∈ Ψ𝜀k

(V) , is directionally differentiable and 

 for every fixed V ∈ V.

||z(x) − z(x�)|| ≤ l||x − x�|| ∀x, x� ∈ U�(x
0).

z�(x0;r) = lim
t→0+

t−1[z(x0 + tr) − z(x0)].

min
V ,W

{
LV (V ,W) ∶ W ∈ Ψ𝜀k

(V), V ∈ V
}
→ L⋆

V
,

Ψ𝜀k
(V) = argmin

W∈W

L𝜀
W
(V ,W),

L⋆
V
= min

V ,W

{
LV (V ,W) ∶ W ∈ Ψ(V), V ∈ V

}

lim
k→∞

{W�k
(V)} = argmin

W

{LV (V ,W) ∶ W ∈ Ψ(V)}
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Based on this result, solving the synthetic control problem is equivalent to con-
sidering a sequence of problems

where the implicitly defined objective function L𝜀k (V) = LV (V ,W
⋆
𝜀k
(V)) is direction-

ally differentiable with respect to V. The implementation of the descent algorithm is 
discussed in Appendix B.1. As an alternative to the Tykhonov algorithm, the prob-
lem can be also solved using a recently developed approach based on KKT condi-
tions for bilevel problems (Dempe & Franke, 2019). This alternative is briefly 
described in Appendix B.2.

To summarize this section, the good news is that the SCM problem (6)–(7) is 
solvable. The bad news is that the required computations prove much more demand-
ing than the original SCM studies assumed. Worse yet, the optimal solution is often 
a corner solution where most predictors are assigned a zero weight or have a neg-
ligible impact. We stress that imposing some small bounds for V (e.g., Vkk ≥ 0.01 ) 
would have little impact in practice; the corner solution would simply assign the 
minimum weight to all predictors, except for the most favorable predictor that would 
get the maximum weight ( = 1 − 0.01(K − 1)).

4  Empirical Comparisons

Applying the iterative algorithm proposed in Sect. 3 to the data of the seminal SCM 
application to the California tobacco control program (Abadie et  al., 2010),5 we 
empirically verify that the optimal solution in this original case is indeed a corner 
solution. Table 1 reports the loss function values of the upper-level problem ( LV ) 
and the lower-level problem ( LW ) as well as the donor weights ( W ) and the predictor 
weights (V) estimated by different SCM packages available for R.

The corner solution is found superior to the solutions obtained by the stand-
ard implementation of Synth package described in Abadie et  al. (2011)6 and the 
MSCMT (Multivariate Synthetic Control Method using Time Series) package pro-
posed by Becker and Klößner (2018). This observation demonstrates that the exist-
ing SCM packages fail to find the optimal solution even in one of the original appli-
cations of SCM, which is also used as one of the examples to demonstrate the Synth 
package.

Recall that the value of LV measures how well the synthetic control matches the 
pre-treatment outcomes of the treated unit, and this is the upper-level objective to be 
minimized. In this respect, all computational packages come relatively close to the 

(12)min
V

{L�k (V) ∶ V ∈ V} for �k → 0+,

5 The R code to implement the interactive algorithm is available as online supplementary material at 
https:// github. com/ Xun90/ SCM- Debug. git. The original data of the California application are embedded 
in the Matlab implementation of Synth available at https:// web. stanf ord. edu/ ~jhain/ synth page. html.
6 In addition to the standard Synth command, we have also considered the genoud() option available in 
Synth, as noted in Abadie et al. (2011). However, the use of the genoud() option does not improve the 
matter; in fact, the solution is only worse.

https://github.com/Xun90/SCM-Debug.git
https://web.stanford.edu/%7ejhain/synthpage.html
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global optimum. It is worth noting that the magnitude of LV is contingent upon the 
measurement units of outcomes: for example, multiplying Ypre

1
 and Ypre

0
 by 1 thou-

sand would increase LV by a factor of 1 million. Therefore, it is helpful to measure 
empirical fit with respect to the pre-treatment outcomes in terms of the coefficient 
of determination ( R2)—after all, the upper-level problem is just constrained least 
squares regression without intercept. Such a comparison reveals that the differences 
in empirical fit are rather marginal; the R2 statistic varies between 0.97518 (Synth) 
and 0.97878 (optimum). In contrast, the differences in weights W and V across dif-
ferent computational packages are rather dramatic. The results of Table  1 help to 
illustrate that good empirical fit may be achieved with a wide variety of weights W 
and V, but there is only one unique global optimum.

The value of LW measures how well the synthetic control matches the predictors 
X1 . While the minimization of LW is the lower-level objective, the consistency of 
SCM depends on the (nearly) perfect match with the predictors. In this regard, the 
value of LW approaches zero at the global optimum, suggesting a perfect match in 
terms of the weighted predictors. In contrast, the relatively high value of LW given 
by the standard Synth command points to the fact that Synth fails to converge to 
the global optimum in the California example. Furthermore, the MSCMT procedure 
greatly improves LW in this case and converges to the global optimum. However, 
the optimal solution is a corner solution that assigns all weight to a single predictor: 
cigarette sales per capita in 1980 in the California tobacco control application (see 

Table 1  California tobacco 
control application revisited: 
donor weights, predictor 
weights, loss functions, and 
empirical fit by different 
algorithms

Synth MSCMT Optimum

W

Utah 0.3432 0.3351 0.3939
Nevada 0.2358 0.2356 0.2049
Montana 0.1820 0.2019 0.2318
Colorado 0.1747 0.1595 0.0148
Connecticut 0.0624 0.0679 0.1091
New Hampshire 0.0000 0.0000 0.0454
V
Income per capita 0.0006 0.0000 0
Retail price of cigarettes 0.0312 0.3333 0
Population aged 15–19 (%) 0.0034 0.3333 0
Beer consumption per capita 0.0124 0.0000 0
Cigarette sales per capita 1988 0.0682 0.0000 0
Cigarette sales per capita 1980 0.3917 0.0000 1
Cigarette sales per capita 1975 0.4925 0.3333 0
L
V

3.20908 3.07666 2.74366
L
W

0.00170 0.00000 0.00000
R
2 0.97518 0.97621 0.97878
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Table 1). The MSCMT package allocates the weight evenly across three predictors, 
while the Synth package appears to use more balanced weights for predictors; how-
ever, note that Synth also assigns almost 90% of the predictor weight to cigarette 
sales per capita (the outcome variable) during two years of the pre-treatment period. 
Unfortunately, the Synth package proves inadequate in solving the optimization 
problem it is supposed to solve; its predictor weights are not what they are claimed 
to be, but just artifacts of a computational failure.

Figure 1 illustrates the impact of suboptimal donor weights on the evolution of 
synthetic California. Fortunately, the qualitative conclusions of this original and 
highly influential application remain, although the use of the suboptimal weights 
results in a reduced treatment effect.

5  Conclusions

SCM has proved a highly appealing approach to estimating causal treatment effects 
within the context of comparative case studies, as demonstrated by numerous pub-
lished applications. Unfortunately, the standard computational packages aimed at 
jointly solving the donor weights and the predictor weights have proved numerically 
unstable. The explicit formulation of the SCM problem as an optimistic bilevel opti-
mization problem highlights that the SCM problem is far from trivial from the com-
putational perspective: the SCM problem is generally NP-hard, significantly exceed-
ing the scope of the computational packages currently in use.

Fig. 1  The impact of suboptimal W weights on the evolution of synthetic California
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The main contribution of our paper was the introduction of an iterative compu-
tational algorithm for solving the original SCM problem. We were the first ones to 
prove that our SCM algorithm converges to the optimal solution under relatively mild 
assumptions. This underscores the existence of a theoretically valid approach for 
solving the SCM problem. However, the optimal solutions to the original SCM for-
mulation are still typically obtained as corner solutions, where most of the predictors 
carry zero weight. Thus, in practice, it is rarely necessary to apply Tykhonov regu-
larization or KKT approximations to locate the optimal solution. Instead, an optimal 
solution is usually identified already during the early stages of the iterative procedure.

The computational difficulties of the original SCM formulation do not diminish 
the conceptual allure of synthetic controls. While we do recognize the value of the 
data-driven approach to weight determination, it remains crucial to ensure the opti-
mality of the synthetic controls, rather than allowing them to be artifacts of a subop-
timal computational tool.

Our findings open various avenues for future research, encompassing both empirical 
and methodological studies. From the empirical point of view, it would be interesting 
to apply the proposed algorithm to replicate published SCM studies in order to examine 
the potential impacts of suboptimal weights on the qualitative conclusions. Becker and 
Klößner (2017) is an excellent example of such a replication study. We hope that the 
qualitative results of the influential SCM studies prove robust to the optimization errors 
that are evidently present, yet this remains to be tested empirically.

From the methodological point of view, the joint optimization of the predictor 
weights and the donor weights calls for further examination. In particular, the loss 
function to be minimized requires careful reconsideration to ensure that the opti-
mal solution is reasonable for the intended purposes of using the predictors and that 
the problem remains computationally tractable. One possibility could involve adopt-
ing stepwise optimization of the predictor weights and donor weights, such that the 
predictor weights are first determined based on alternative criteria (e.g., regression 
analysis) and subsequently the donor weights are optimized taking the predictor 
weights as given. We leave this as a fascinating avenue for future research.

Finally, we hope that the insights of our paper could potentially foster further inte-
gration of SCM with other estimation approaches such as the difference-in-differences, 
panel data regression, and machine learning; several recent studies (e.g., Abadie, 2020; 
Amjad et al., 2018; Arkhangelsky et al., 2021; Ben-Michael et al., 2021; Doudchenko 
& Imbens, 2017; Xu, 2017) have made impressive progress in this direction.

Appendix A: Proofs of Theorems

A.1 Regularity Conditions for Parametric Optimization

In this section, we will briefly review a few central concepts from parametric opti-
mization literature that we will later need while discussing the notions of optimality 
for the synthetic control problem. Without loss of generality, the lower-level prob-
lem can be stated as a parametric optimization problem
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where f ∶ ℝ
n ×ℝ

m
→ ℝ , g ∶ ℝ

n ×ℝ
m
→ ℝ

p , h ∶ ℝ
n ×ℝ

m
→ ℝ

q . The constraints

are assumed to be smooth vector-valued functions. The problem is a convex para-
metric optimization problem, when all functions f (x, ⋅) , gi(x, ⋅) , i = 1,… , p , are 
convex and the functions hj(x, ⋅) , j = 1,… , q , are affine-linear on ℝn for each fixed 
x ∈ ℝ

n . The solution set mapping Ψ ∶ ℝ
n
⇉ ℝ

m is defined by

which is a point-to-set mapping from the upper-level decisions to the set of global 
optimal solutions of the parametric problem. For convex problems, the solution sets 
Ψ(x) are closed and convex subsets of ℝm.

When it comes to regularity conditions in bilevel programming, the following 
two conditions have often been utilized. The first condition is concerned with the 
compactness of the feasible set of the lower-level problem:

Definition 3 (C) The set {(x, y) ∶ ℝ
n ×ℝ

m ∶ g(x, y) ≤ 0, h(x, y) = 0} is non-empty 
and compact.

This is enough to guarantee that the set of optimal solutions for the parametric 
problem

is non-empty and compact for each x ∈ {z ∶ Ω(z) ≠ �} , where

is the feasible set mapping for the lower-level problem.
The second regularity condition is the commonly applied Mangasarian-Fromow-

itz constraint qualifications:

Definition 4 (MFCQ) We say that Mangasarian-Fromowitz constraint qualification 
is satisfied at point (x0, y0) if there exists a direction d ∈ ℝ

m such that

and the gradients of the equality constraints {∇yhj(x
0, y0) ∶ j = 1,… , q} are linearly 

independent.

(13)min
y
{f (x, y) ∶ g(x, y) ≤ 0, h(x, y) = 0},

g(x, y) = (g1(x, y),… , gp(x, y))
⊤,

h(x, y) = h1(x, y),… , hq(x, y))
⊤,

Ψ(x) = argmin
y

{f (x, y) ∶ g(x, y) ≤ 0, h(x, y) = 0},

Ψ(x) ∶= argmin
y

{f (x, y) ∶ g(x, y) ≤ 0, h(x, y) = 0}

Ω(x) = {y ∈ ℝ
m ∶ g(x, y) ≤ 0, h(x, y) = 0}

∇ygi(x
0, y0)d < 0, for each i ∈ I(x0, y0) = {j ∶ gj(x

0, y0) = 0},

∇yhj(x
0, y0)d = 0, for each j = 1,… , q
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These regularity conditions play an important role in ensuring the existence 
of optimal solutions for optimistic bilevel problems such as the synthetic con-
trol problem discussed in this paper. Let F ∶ ℝ

n ×ℝ
m
→ ℝ denote the upper-

level objective function that is minimized with respect to upper-level constraints 
X ∶= {x ∶ G(x) ≤ 0} , G ∶ ℝ

n
→ ℝ

l . An optimistic solution to a bilevel problem 
can then be defined as a point solving the following minimization problem:

where �0(x) = miny{F(x, y) ∶ y ∈ Ψ(x)}.

Theorem 1 (Dempe, 2002) Let the assumptions (C) and (MFCQ) be satisfied at all 
points (x, y) ∈ X ×ℝ

m with y ∈ Ω(x) . Then, a global solution of the bilevel prob-
lem (14) exists provided there is a feasible solution.

In addition to the existence of optimal solutions, the regularity conditions 
imply upper-semicontinuity of the optimal solution set mapping.

Definition 5 (Upper semicontinuity) A set-valued mapping Ψ ∶ ℝ
n
⇉ ℝ

m is said to 
be upper semicontinuous at a point x ∈ ℝ

n if, for each open set V with Ψ(x) ⊂ V  , 
there exists an open neighborhood U�(x) of x such that Ψ(x�) ⊂ V  for each x� ∈ U�(x).

In the special case, where Ψ is a single-valued mapping, the notion of upper 
semicontinuity corresponds to the usual continuity of a function.

Theorem 2 (Bank et al., 1982; Dempe, 2002) Consider the parametric optimization 
problem (13) at x = x0 ∈ ℝ

n and let the assumptions (C) and (MFCQ) be satisfied 
for all feasible points (x, y) with x = x0 and y ∈ Ω(x0) . Then, the solution set map-
ping Ψ is upper semicontinuous and the optimal value function � is continuous at x0.

While the solution set mapping is upper semicontinuous under these relatively 
weak regularity conditions, it is generally not continuous. The continuity of a 
solution set mapping is possible only under considerably stronger assumptions 
such as the strong sufficient optimality condition of second order (SSOC) and 
constant rank constraint qualification (CRCQ).

Definition 6 (SSOC) The strong sufficient optimality condition of second order 
holds at (x0, y0) if for each pair of Lagrange multipliers (�,�) ∈ Λ(x0, y0) and for 
each direction d ≠ 0 with

we have that

(14)min
x
{�0(x) ∶ x ∈ X},

∇ygi(x
0, y0)d = 0, ∀i ∈ J(𝜆) ∶= {j ∶ 𝜆j > 0},

∇yhj(x
0.y0)d = 0, j = 1,… , q
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Definition 7 (CRCQ) The constant rank constraint qualification holds at point 
(x0, y0)) if there exists an open neighborhood U�(x

0, y0) of (x0, y0) such that for each 
subset

the family of gradient vectors

has the same rank for all (x, y) ∈ U�(x
0, y0).

Let L(x, y, 𝜆,𝜇) = f (x, y) + 𝜆⊤g(x, y) + 𝜇⊤h(x, y) denote the Lagrangian function of 
problem (13) and let

be the set of Lagrange multipliers at (x, y).

Theorem  3 (Dempe, 2002) Consider the problem  (13) at x = x0 ∈ ℝ
n and let the 

assumptions (MFCQ), (SSOC), and (CRCQ) be satisfied at (x0, y0) with y0 being 
a unique local optimal solution. Then, there exists a unique local optimal solution 
function y(⋅) that is locally Lipschitz continuous and directionally differentiable at 
x = x0 . The directional derivative in direction r coincides with the unique optimal 
solution of the following quadratic programming problem

for any (�0,�0) ∈ Λ(x0, y0) that solve

A.2 Proof of Proposition 1

To show the existence of a global optimal solution, it is enough to verify that assump-
tions (C) and (MFCQ) are satisfied.

Let g(V ,W) = −W and h(V ,W) =
∑J

j=1
Wj − 1 denote the constraints in the lower-

level problem. Clearly, the set {(V ,W) ∈ ℝ
K×K ×ℝ

J ∶ g(V ,W) ≤ 0, h(V ,W) = 0} is 
non-empty and compact. Therefore, condition (C) holds.

To check (MFCQ), let (V0,W0) ∈ V ×W and define

d⊤∇yyL(x
0, y0, 𝜆,𝜇)d > 0.

I ⊂ I(x0, y0) ∶= {i ∶ gi(x
0, y0) = 0}, J ⊂ {1,… , q},

{∇ygi(x, y) ∶ i ∈ I} ∪ {∇yhj(x, y) ∶ j ∈ J}

Λ(x, y) = {(𝜆,𝜇) ∈ ℝ
p ×ℝ

q ∶ 𝜆 ≥ 0, 𝜆⊤g(x, y) = 0,∇yL(x, y, 𝜆,𝜇) = 0}

min
d

0.5d⊤∇2
yy
L(x0, y0, 𝜆0,𝜇0)d + d⊤∇2

xy
L(x0, y0, 𝜆0,𝜇0)r,

s.t. ∇ygi(x
0, y0)d + ∇xgi(x

0, y0)r

{
= 0, if i ∈ J(𝜆0),

≤ 0, if i ∈ I(x0, y0)⧵J(𝜆0),

∇yhj(x
0, y0)d + ∇xhj(x

0, y0)r = 0 for allj = 1,… , q,

max
(�,�)∈Λ(x0,y0)

∇xL(x
0, y0, �,�).
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If W0 > 0 , we have I0 = � and (MFCQ) holds trivially. If there exists at least 
some index j such that W0,j = 0 , we need to check the gradient conditions. Let 
d ∈ ℝ

J be a candidate direction. From the inequality constraints we have that 
∇wg(V ,W)d = −d < 0 , which means that for every j ∈ I0 , we require dj > 0 . When 
combined with the equality constraint we have that

where Ic
0
= {j ∶ gj(V0,W0) ≠ 0} . Since h(V0,W0) = 0 and all coefficients cannot be 

zero, the set Ic
0
 is non-empty. Therefore, we can find d such that (MFCQ) holds. Now 

the existence of the optimal solution follows from Theorem 1, which concludes the 
proof.

A.3 Proof of Proposition 3

Note that the convex combination X0W̃ is a K-dimensional vector, where each sca-
lar element X0kW

⋆ is a convex combination of predictor k = 1,… ,K . Suppose 
X0kW̃ = X1k for some arbitrary k, but not necessarily for other predictors. In this case, it 
is easy to verify that W̃ remains an optimal solution to the reduced single-dimensional 
problem using Vk such that the loss function of the lower-level problem goes to zero. 
Since the lower-level loss function cannot be improved, we have W̃ ∈ Ψ(Vk) and the 
solution is considered feasible for the bilevel problem (6)–(7). Furthermore, if the origi-
nal solution was bilevel optimal, then also the other solution (Vk, W̃) remains optimal, 
since the upper-level objective value depends only on W̃ . This concludes the proof.

A.4 Proof of Proposition 4

Given that the assumptions of Theorem 2 are satisfied, the solution set mapping Ψ�k
 

of the regularized lower-level problem (8) is upper semi-continuous. That is, for each 
sequence {(Vk,Wk, �k)}

∞
k=1

 with limk→∞ Vk = V̄ , limk→∞ �k = 0+ and Wk ∈ Ψ�k
(Vk) 

for all k, each accumulation point of the sequence {Wk}∞
k=1

 is an optimal solution to the 
lower-level problem, i.e. the accumulation points belong to Ψ0(V̄) = Ψ(V̄) . Then, by 
continuity of LV the first assertion follows.

To show the second assertion it is enough to verify that the regularized lower-
level problem meets the assumptions of Theorem 3. This is easy to check because the 
requirement that Y⊤

0
Y0 is positive definite means that ∇wwLV (V ,W) is positive definite 

at each (V ,W) ∈ V ×W , which means that (SSOC) is satisfied at all feasible points. 
As a result, Theorem 3 implies that the set Ψ�k

(Vk) = {Wk(Vk)} is a singleton and the 
optimal solution function Wk(Vk) is uniquely defined and directionally differentiable at 
each 𝜀k > 0 . The remaining part of the claim follows from the inequality

I0 = {j ∶ gj(V0,W0) = −Wj = 0}.

∇wh(V0,W0)d =
∑

j∈I0

dj +
∑

j∈Ic
0

dj = 0,

LW (V
k,Wk(Vk)) ≥ min

W∈W
LW (V

k,W)
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that holds due to feasibility. As a result, we have that

which then implies the last assertion for every fixed Vk ∈ V . This concludes the 
proof.

Appendix B: Implementation of SCM Algorithm

B.1 Descent Algorithm Based on Tykhonov Regularization

Based on Proposition 4, the original synthetic control problem can be solved by 
considering a sequence of single-level problems

where the implicitly defined objective function L𝜀k (V) = LV (V ,W
⋆
𝜀k
(V)) is direction-

ally differentiable with respect to V. In the literature on bilevel programming, such 
an approach is commonly referred to as Tykhonov regularization (Dempe, 2002). 
This approach is not often available because of the strictness of (SSOC) and (CRCQ) 
conditions. However, when these criteria are satisfied, they enable the use of algo-
rithms that are essentially similar to gradient descent.

Let EΛ(V ,W) be the vertex set of lower-level Lagrange multipliers correspond-
ing to point (V, W),

where L(V ,W, 𝜆,𝜇) = L𝜀
W
(V ,W) + 𝜆⊤g(V ,W) + 𝜇⊤h(V ,W) denotes the Lagrangian 

function for the regularized lower-level problem. Under (MFCQ) condition, the set 
Λ(V ,W) is known to be a non-empty, convex and compact polyhedron. Here func-
tions g(V, W) and h(V, W) denote the vector of lower-level inequality constraints and 
the equality constraint, respectively.

For a fixed vertex (�0,�0) ∈ Λ(V0,W0) at a point (V ,W) = (V0,W0) , we write 
I(�0) to denote the family of all index sets

that satisfy the following two conditions: 

 (C1) There is (�,�) ∈ EΛ(V0,W0) such that J(𝜆) ∶= {i ∶ 𝜆i > 0} ⊂ I ⊂ I(V0,W0).
 (C2) The gradients {∇wgi(V

0,W0) ∶ i ∈ I} ∪ {∇wh(V
0,W0)} are linearly independ-

ent.

Following Dempe (2002), the solution algorithm, which is essentially an adapta-
tion of gradient descent, can be outlined as follows:

LV (V
k,Wk(Vk)) ≤ min

W
{LV (V

k,W) ∶ W ∈ Ψ(Vk)},

(15)min
V

{L�k (V) ∶ V ∈ V} for �k → 0+,

Λ(V ,W) = {(𝜆,𝜇) ∶ 𝜆 ≥ 0, 𝜆⊤g(V ,W) = 0,∇wL(V ,W, 𝜆,𝜇) = 0},

I ⊂ I(V0,W0) ∶= {i ∶ gi(V
0,W0) = 0}
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The directional derivative in Step 2 can be computed using quadratic program-
ming based on Theorem 3 by Dempe (2002). Let Kk ∈ I(�k) be some index set and 
�k = (�k,�k) ∈ EΛ(zk) be a vertex, where zk = (Vk,Wk) . Then the descent direction 
rk is obtained as part of a solution to the following problem:

When the problem has a feasible solution (dk, rk, �k, �k, sk) such that the objective 
value is negative, sk < 0 , for some index set Kk and vertex �k , then the point (Vk,Wk) 
is not locally optimal. This means that there exists a direction rk for which the direc-
tional derivative of L�k is negative at Vk.

When parametrizing the algorithm, it is useful to choose the value for �′ to be 
small enough to ensure that Step 3 terminates only if a set Kk is selected in Step 2b 
such that the problem (16) has a negative optimal value. It is also noteworthy that 
Step 2b should be considered only when the value of L�k (V

k;rk) is sufficiently small 
and even then only for small � . Otherwise, there is a risk of increasing numerical 
effort substantially. For discussion on the convergence of this kind of algorithm to a 
Bouligand stationary point, we refer to Dempe and Schmidt (1996).

B.2 Algorithm Based on KKT Approximations

The use of KKT reformulations has been a common practice when solving bilevel 
problems. Unfortunately, this has turned out to be far more difficult than anticipated. 
Quite commonly, the local optimal solutions obtained by solving KKT reformulated 
problems do not correspond to the local optimal solutions of the original bilevel 
problem. While the KKT reformulations are equivalent to the original problem in 
terms of global optimal solutions, the equivalence is lost when numerical algorithms 
need to be used. Since KKT reformulations typically lead to a nonconvex optimiza-
tion problem, the solution algorithms tend to find only stationary or local optimal 
solutions, which may not correspond to the solutions of the original problem.

Fortunately, there is still some good news left when it comes to the use of 
KKT conditions in practice. In their recent paper, Dempe and Franke (2019) sug-
gest a numerically stable approach for handling optimistic bilevel problems with 
convex lower-level problems. The idea is based on a clever approximation of 
the KKT transformation which enables us to use general solution algorithms for 

(16)min
d,r,� ,�,s

s

s.t. L�
𝜀k
(Vk;rk) ∶= ∇wLV (z

k)d + ∇vF(z
k)r ≤ s

∇vGi(V
k)r ≤ −Gi(V

k) + s, i = 1,… ,K + 2

∇2
ww
L(zk, 𝜈k)r + ∇⊤

w
g(zk)𝛾 + ∇⊤

w
h(zk)𝜂 = 0

∇wgi(z
k)d + ∇vgi(z

k)r

�
= 0, i ∈ Kk

≤ −gi(z
k) + s, i ∉ Kk

∇wh(z
k)d + ∇yh(z

k)r = 0

𝜆i + 𝛾i + s ≥ 0, i ∈ Kk, 𝛾i = 0, i ∉ Kk, ‖r‖ ≤ 1.
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non-convex optimization problems to approximate the local optimal solution of 
the original bilevel optimization problem.

Now instead of considering the classical KKT reformulation of the problem, 
the idea developed in the paper by Dempe and Franke (2019) is to construct 
perturbed problems that approximate the original formulation. Let L denote the 
Lagrangian corresponding to the lower-level problem,

We then solve a sequence of perturbed problems

for (e1, e2) → 0+ and � → 0+ . Here, the norm || ⋅ || can be chosen to be for instance 
the Chebyshev norm ||a||∞ = maxi=1,…,n |ai| or the usual Euclidean norm 
��a��2 =

�∑n

i=1
a2
i
 . The function G is defined such that it matches the definition of 

set V = {V ∶ G(V) ≤ 0} in (5). Similarly, g represents the lower-level constraints 
such that W = {W ∶ g(V ,W) ≤ 0} corresponds to (4).

Earlier, a similar approach of using a sequence of perturbed problems to solve 
bilevel problems has also been considered by Mersha and Dempe (2011), who 
suggested a specifically tailored algorithm to solve the problem. Later, how-
ever, Dempe and Franke (2019) have shown that the assumptions made earlier 
have been too restrictive and the sequence of perturbed problems can actually be 
solved by an arbitrary algorithm.
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LV (V ,W)

G(V) ≤0
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� ≥0,

−�igi(V ,W) ≤e2, i = 1,… , J + 2,
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