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Abstract—Many existing testing techniques adopt diversity as
an important criterion for the selection and prioritization of
tests. However, mutation adequacy has been content with simply
maximizing the number of mutants that have been killed. We
propose a novel mutation adequacy criterion that considers the
diversity in the relationship between tests and mutants, as well
as whether mutants are killed. Intuitively, the proposed criterion
is based on the notion that mutants can be distinguished by
the sets of tests that kill them. A test suite is deemed adequate
by our criterion if the test suite distinguishes all mutants in
terms of their kill patterns. Our hypothesis is that, simply by
using a stronger adequacy criterion, it is possible to improve
fault detection capabilities of mutation-adequate test suites. The
empirical evaluation selects tests for real world applications using
the proposed mutation adequacy criterion to test our hypothesis.
The results show that, for real world faults, test suites adequate
to our criterion can increase the fault detection success rate by
up to 76.8 percentage points compared to test suites adequate to
the traditional criterion.

I. INTRODUCTION

One fundamental limitation of software testing is the fact
that, to validate the behavior of the Program Under Test (PUT),
we can only ever sample a very small number of test inputs out
of the vast input space. Almost all existing testing techniques
are, at some level, attempts to answer the following question:
how does one sample a finite number of test inputs to cover
as wide a range of program behaviours as possible?

The concept of diversity has received much attention while
answering the above question. For example, Adaptive Random
Testing (ART) [1] seeks to increase diversity of randomly
sampled test inputs by choosing an input that is as different
from those already sampled as possible. Clustering-based test
selection and prioritization [2], [3] assumes that a diverse set
of test inputs would explore and validate a wider range of
program behaviors. Diversity in test output has been studied
as a test adequacy criterion for black box testing of web
applications [4]. Information theoretic measures of diversity
has also been studied as a test selection criterion [5], [6].

In contrast, diversity has received little attention in relation
to mutation testing. Mutation adequacy remains essentially as a
simple count of the number of killed mutants. Many of existing
works focus either on reducing the cost of mutation testing
(i.e., do fewer, do smarter, and do faster as summarized by
Offutt and Untch [7]) or analyzing equivalent mutants [8], [9]

(i.e., mutants semantically equivalent to an original program).
Relatively very few attention has been paid to improve the
fault detection capability of the mutation adequacy criterion
itself.

The existing mutation adequacy as a count of killed mutants
does not cater for diversity. Consequently, despite its potential
correlation to the fault detection capability, many diverse
mutants are generated but wasted. Suppose a pathological case
in which a single test can kill all generated mutants. In terms
of the kill information, it means that the single test does
not capture the diversity of the mutants enough, while the
traditional mutation adequacy simply determines the single test
as adequate. Such a case calls for a richer adequacy criterion
in mutation testing.

This paper proposes a novel adequacy criterion called
distinguishing mutation adequacy criterion, which includes
the notion of diversity. The proposed metric is based on our
previous work on theoretical framework for mutation testing
[10]. At the core of the new criterion lies the idea that mutants
can be distinguished from each other by the set of tests that
kill them. Our mutation adequacy criterion aims not only to
kill, but also to distinguish as many mutants as possible. The
aforementioned pathological case of a single test killing all
mutants will perform poorly under our new criterion.

By aiming to distinguish the maximum number of mutants,
the proposed adequacy criterion can select more diverse set
of test cases. Suppose there exist two mutants. Test t1 kills
both, while t2 and t3 kill different one each. Under the
existing criterion, the set {t1} is deemed adequate, whereas
the proposed criterion will choose the set {t2, t3} instead. We
hypothesize that this, more diverse set of tests will show higher
fault detection capability.

The hypothesis on fault detection capability is validated by
an empirical study. We use the Defects4J [11] data set
to study real world faults in non-trivial systems. The control
group consists of sets of test suites selected based on the
traditional mutation adequacy (i.e., ones that kill all mutants),
while the treatment group consists of sets of test suites that
can collectively kill and distinguish all mutants. Both groups
are evaluated for their fault detection capabilities by executing
them against faulty and fixed versions of programs collected
from the real world. The results show that our novel mutation



adequacy criterion shows either equal or higher fault detection
capabilities for all studied subject faults.

The technical contributions of this paper are as follows:
• This paper introduces a novel mutation adequacy criterion

called distinguishing mutation criterion. A test suite is
mutation adequate with respect to this criterion if all
considered mutants have unique sets of tests that kill
them, i.e. can be distinguished by their kill patterns.

• The proposed adequacy criterion is empirically evaluated
using real faults in the Defects4J repository and
random testing. The results show that the new adequacy
criterion shows at least equal or higher fault detection ca-
pability than the traditional mutation adequacy criterion.
The increase in the fault detection success rate is up to
76.8 percentage points.

The rest of the paper is organised as follows. Section II
presents a formal definition of the existing mutation adequacy
criterion. Section III introduces the distinguishing mutants
adequacy criterion using the same formal notations. Section IV
describes the design of our empirical evaluation, the results of
which are presented and analysed in Section V. Section VI
discusses related work, and finally Section VII concludes.

II. BACKGROUND

A. Formal Model of Mutation Testing

To formally represent mutation adequacy criteria considered
in this paper, we summarize the essential elements of the
formal framework for the mutation-based testing methods.
Detailed descriptions for the formal framework are presented
in [10].

Let P be a set of programs which includes the program un-
der test. In mutation testing, there are three essential programs
in P : an original program po ∈ P , a mutant m ∈ M ⊆ P
generated from po, and a correct program ps ∈ P which
represents the true requirements1 about po. For a test t ∈ T
for P , if the behaviors of po and ps are different, it is said
that t detects a fault in po. Similarly, if the behaviors of po
and m are different for t, it is said that t kills m. Note that
the notion of behavioral difference is an abstract concept. It
is formalized by a testing factor, called a test differentiator,
which is defined as follows:

Definition 1: A test differentiator d : T × P × P → {0, 1}
is a function,2 such that

d(t, px, py) =

{
1 (true), if px is different with py for t
0 (false), otherwise

for all tests t ∈ T and programs px, py ∈ P .

By definition, a test differentiator concisely represents whether
the behaviors of px ∈ P and py ∈ P are different for t.

1While ps is not a real program, this is not a serious assumption, because
we only require the behavior of ps for a given set of tests. In practice, a
human may play the role of ps, acting as a human oracle.

2This function-style definition is replaceable by a predicate-style definition,
such as d ⊆ T × P × P .

We make no attempt to incorporate any specific definition
of program differences. The specific definition of differences
can only be decided in context. For example, while 0.3333 is
different with 1/3 in the strict sense, 0.3333 will be regarded
as the same as 1/3 in some cases. To keep things general,
we consider a set of test differentiators D that includes all
possible test differentiators for P .

A test differentiator, or simply differentiator, can formally
describe the notion of differences in mutation testing. For
example, when t detects a fault in po, it is clearly formalized
as follows3:

d(t, po, ps) = 1

On the other hand, when t kills a mutant m, it is also clearly
formalized as follows:

d(t, po,m) = 1

Note that po, ps, and m are general entities, and largely
separated from any specifics such as programming languages
or mutation methods.

B. Mutation Adequacy Criterion
Since mutation testing was first proposed in the 1970s, it has

been widely studied in the aspects of both theory and practice,
and a mutation adequacy criterion has played the key role in
the studies of mutation testing. A mutation adequacy criterion
is a predicate that determines the adequacy of a test suite
using mutants. It is said that a test suite is mutation-adequate
when the test suite kills all of the generated mutants. Using a
differentiator, it is clearly and concisely formalized as follows:

∀m ∈M,∃t ∈ TS, d(t, po,m) = 1. (1)

In other words, a test suite TS is mutation-adequacy if all
mutants m ∈M are killed by at least one test t ∈ TS.

Equation (1) is general enough to consider various muta-
tion testing approaches. For example, there is a spectrum of
mutation approaches from a strong mutation [12] to a weak
mutation [13], depending on which d is used. In a strong
mutation analysis, a test t kills a mutant m when the output
of m differs from the output of the original program po for
t. In a weak mutation analysis, t kills m when the internal
states of m and po are different for t. In the rest of this paper,
we refer (1) as the traditional mutation adequacy criterion in
compared to the new mutation adequacy proposed in Section
III-B.

III. EXTENDING MUTATION ADEQUACY CONSIDERING
DIVERSITY OF MUTANTS

A. Limitation of Traditional Mutation Adequacy
To see the limitation of the traditional mutation adequacy

criterion, we provide a working example with four mutants and
three tests in Figure 1. Each of the values represents whether
a test kills a mutant. For example, d(t1, po,m1) is 1 which
means that t1 kills m1.

3In experiments, when the correct version of a program for a fault is
known in advance, the correct version can be used as po. In this case, the
corresponding faulty version should be used as ps so that the difference
between po and ps implies the fault.



Test 𝑑(𝑡$ , 𝑝',𝑚)) 𝑑(𝑡$ , 𝑝',𝑚+) 𝑑(𝑡$ , 𝑝',𝑚,) 𝑑(𝑡$ , 𝑝',𝑚-)

𝑡) 1 1 1 1
𝑡+ 0 0 1 1
𝑡, 0 1 0 1

Fig. 1. An working example for demonstrating the limitation of the traditional
mutation adequacy criterion. The table represents whether a test kills a mutant.
For example, d(t1, po,m1) is 1 which means that t1 kills m1.

In the working example, a test suite TS1 = {t1} is adequate
to both the traditional mutation adequacy criterion and the
traditional mutation adequacy criterion, because all the four
mutants are killed by t1. However, TS1 does not capture
the diversity of the four mutants, and the mutants are simply
redundant to TS1. This implies that mutants are generated but
wasted in terms of the traditional mutation adequacy criterion,
because it does not consider the diversity of mutants.

B. Diversity-Aware Mutation Adequacy Criterion

To consider the diversity of mutants in terms of the ad-
equacy criterion of test suites, we first formally define the
distinguishment of mutants with respect to a test as follows:

Definition 2: Two mutants mx and my generated from po
are distinguished by a test t if and only if the following
condition holds:

d(t, po,mx) 6= d(t, po,my)

for a differentiator d.

In other words, two mutants are distinguished by a test
when the test differentiates the two mutants’ kill patterns. In
the working example, the four mutants are undistinguished
from each other by t1 because d(t1, po,mi) = 1 for all
i ∈ {1, · · · , 4}. By t2, m1 is distinguished from m3 and m4

but not from m2. By t3, m1 is distinguished from m2 and m4

but not from m3.
In terms of a set of tests, a mutant is killed by a set of tests

when there is at least one test that kills a mutant. Similarly,
we extend the distinguishment of mutants with respect to a
set of tests as follows: two mutants are distinguished by a set
of tests when there is at least one test that distinguishes the
two mutants. In the working example, if we consider a test
suite TS2 = {t1, t2}, m1 is distinguished from m3 and m4

but not distinguished from m2. By another test suite TS3 =
{t1, t2, t3}, all of the four mutants are distinguished from each
other.

We now define a new mutation adequacy criterion, called a
distinguishing mutation adequacy criterion, as follows:

Definition 3: For a set of mutants M generated from an
original program po, a test suite TS is distinguishing mutation-
adequate when the following condition holds:

∀mx,my ∈M ′,∃t ∈ TS, d(t, po,mx) 6= d(t, po,my)

where mx 6= my , M ′ =M ∪ {mo}, and mo = po.

In other words, a test suite TS is distinguishing mutation-
adequate if all possible pair of different mutants mx and my

in M ′ are distinguished by at least one test t ∈ TS. In the
working example, M ′ is {mo,m1, · · · ,m4} and there are(
5
2

)
= 10 pairs of mutants including (mo,m1), (mo,m1),

· · · , (m1,m2), (m1,m3), · · · , (m3,m4). Among the test
suites TS1, TS2, and TS3, only TS3 is adequate to the
distinguishing mutation adequacy criterion.

It is important to appreciate the role of mo in the dis-
tinguishing mutation adequacy. Consider my = mo, the
distinguishing mutation adequacy criterion is simplified as
follows:

∀mx ∈M, ∃t ∈ TS, d(t, po,mx) 6= d(t, po,mo). (2)

Since it is trivial that d(t, po,mo) = 0 for all t ∈ T , (2) is
exactly same as (1) (i.e., the traditional mutation adequacy cri-
terion). This means that the distinguishing mutation adequacy
criterion subsumes the traditional mutation adequacy criterion.
In other words, if a test suite is adequate to the distinguishing
mutation adequacy criterion, the test suite is guaranteed to be
adequate to the traditional mutation adequacy criterion.

For the sake of simplicity, let d-criterion hereafter refer to
the distinguishing mutation adequacy criterion (i.e., diversity-
aware) and, similarly, k-criterion to the traditional mutation
adequacy criterion (i.e., kill-only).

C. Time Complexity for Calculating Adequacy

In mutation testing, most time consuming computation is
the execution of mutants for tests to determine whether it
is killed or not. However, this cost is featured equally for
both d-criterion and k-criterion because both criteria needs to
determine whether a mutant is killed by a test or not. What
differs is that d-criterion additionally needs to compare the kill
information of each mutant as a pair. In Section V-D, we will
see how much additional time takes for the comparison.

As a test suite selection criterion, for each test, the d-
criterion should decide whether it should add a test to the
test suite or not. It may initially appear that the number of
comparison for n mutants is

(
n
2

)
because it is the number of all

possible pairs among the set of n elements. However, we need
to compare not all n mutants but only k (≤ n) undistinguished
mutants among them because the distinguishment of mutants
is monotonic—once two mutants are distinguished, they are
never subsequently undistinguished.

Further, the number of comparison for k undistinguished
mutants is only k − 1 because a test can partition the set
of undistinguished mutants into only two groups—one for the
mutants that are killed by the test, and the other for the mutants
that are not killed by the test. In the working example, for the 5
initially undistinguished mutants (mo, · · · ,m4), t3 partitions
it into two groups (m0,m1,m3) and (m2,m4). Here, it is
required to consider not all

(
5
2

)
= 10 pairs but only the 4

pairs (i.e., (m0,m1), (m0,m2), (m0,m3), and (m0,m4)) to
calculate the distinguishment of mutants by t3. As a result, the
number of comparison for each test is linearly proportional to
the number of undistinguished mutants, making the d-criterion



more practical. The detailed algorithm for test suite selection
will be explained in Section IV-B.

D. Generalized Equivalent Mutant Problem

In the k-criterion, it is possible that a mutant is semantically
equivalent to an original program so that there is no test to
kill it. The mutant is called an equivalent mutant. Formally, an
equivalent mutant me is described as ∀t ∈ T, d(t, po,me) = 0.
Unfortunately, deciding whether a mutant is equivalent or not
is undecidable. However, many researchers have attempt to
tackle this problem with practical approximation [14]–[16].

In the d-criterion, it is possible that two mutants are se-
mantically equivalent to each other so that there is no test to
distinguish them. Let us call the mutants universally undistin-
guishable mutants. Formally, the universally undistinguishable
mutants mx and my are described as ∀t ∈ T, d(t, po,mx) =
d(t, po,my). This is essentially the extension of the equivalent
mutant, which means the deciding whether a pair of mutants
are universally undistinguishable or not is another undecid-
able problem. Many ideas developed to tackle the traditional
equivalent mutant problem are fully applicable to this extended
problem as well. However, attempting to solve this problem
is not in the scope of this paper.

IV. EMPIRICAL EVALUATION DESIGN

In the experimental evaluation, we investigate the following
four main research questions:
• RQ1: Are there rooms for improvement of the fault

detection capability by distinguishing more mutants?
• RQ2: Is the distinguishing mutation adequacy criterion

more likely to detect faults than the traditional mutation
adequacy criterion?

• RQ3: How many tests are needed to be a mutation-
adequate test suite?

• RQ4: How much time takes for selecting a mutation-
adequate test suite?

RQ1 deals with the necessary question before we analyze
the improvement of fault detection capability. For example,
it may be the case that a traditional mutation-adequate test
suite is capable of distinguishing all mutants for some faults
in practice. In this case, it is not possible for a distinguishing
mutation-adequate test suite to improve the fault detection
capability by distinguishing more mutants. We classify faults
as several types and analyze the room for improvement for
each type of faults.

RQ2 is the main question of this paper: improving the
fault detection capabilities of mutation-adequate test suites.
If using a new test adequacy criterion improves the fault
detection capabilities for real faults, it is worth to consider
to adapt the new adequacy criterion not only in research but
also in practice. We compare the fault detection capabilities of
the traditional and distinguishing mutation adequacy for real
faults.

RQ3 is a practical question. The number of tests is directly
related to the testing efforts, especially when the cost of test
oracles is considered. A test suite with too many tests may

Real fault

Random test data 
generation tool

Mutation 
analysis tool

Test pool (𝑇)

Mutants’ kill 
information

Fault detection 
informationRun 𝑝# for 𝑇

Distinguishing 
mutation adequacy
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mutation adequacy

𝑇𝑆%&'
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𝑘-suite
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Faulty version (𝑝#)
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Defects4J

Randoop
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Fig. 2. Experimental setup: overview

be practically useless even if its fault detection effectiveness
is promising. We compare the size of adequate test suites
(i.e., the number of tests) for the traditional and distinguishing
mutation adequacy.

RQ4 considers the time complexity for calculating the
mutant distinguishment in terms of test suite selection. We
compare the test suite selection times for the traditional and
distinguishing mutation adequacy.

To answer the above questions, we design our experiments
as described in Figure 2.

We use the developer-fixed and manually-verified faults of
the real applications in the database of Defects4J [11]. For
each fault, we generate a large number of random tests as
a test pool with the aid of Randoop [17]. The test pool
is used to execute many mutants generated by the mutation
analysis tool Major [18], and it returns the kill information
for all mutants to the test pool. We then generate distinguish-
ing mutation-adequate test suites and traditional mutation-
adequate test suites using the kill information. Meanwhile,
since Defects4J provides both faulty and fixed version of
programs for each fault, it is measurable whether each of the
generated test suites detects the fault or not.

A. Subject Faults

We conduct experiments on real applications provided by
Defects4J. Its database includes 357 developer-fixed and
manually-verified real faults and corresponding fixes from
five applications (JFreeChart, Closure compiler, Commons
Math, Joda-Time, and Commons Lang). For each fault, the
faulty version and the fixed version of the fault is given. The
difference between the faulty and fixed version of a fault does
not include unrelated changes such as refactorings. Since each
fault is given as an independent fault-fix pair of program
versions, we treat each fault as that of a separate subject
program.

We study the subset of the 357 faults which satisfy the
following conditions: (1) a fault must be detected by a test
pool, and (2) at least one mutant generated from the fault
must be killed by the test pool. As a result, 45 real faults are
remained. In Table I, the column labeled as fault represents
the identifiers of the 45 faults given by the Defects4J



database. For example, Chart-5 means the fifth real fault of
the JFreeChart program.

B. Test Pool Generation

As we attempt to generate a large number of unbiased tests
as a test pool for the test suite selection, we use a random test
generation tool, Randoop [17]. For each fault, we generate at
most 10,000 tests with the 200 seconds time limit. However,
not all test pools for the studied faults reached 10,000 tests
because Randoop may generate tests that make compile
errors, runtime errors, and sporadically fails as noted in [11].
We automatically removed those problematic tests using the
script given in Defects4J. In Table I, the columns labeled
test pool size and trigs represent the total number of tests in
the test pool and the number of fault-triggering tests among
the test pool, respectively, for each fault. For example, Chart-
5 has the test pool whose size is 10,000, and only 165 tests
among the pool are capable of detecting the Chart-5 fault.

C. Mutant Generation and Execution

We use Major [18] mutation analysis tool for generating
and executing all mutants to the test pool for each fault. Be
default, Major provides a set of commonly used mutation
operators [19] including binary operator replacement, unary
operator replacement, constant value replacement, branch con-
dition manipulation, and statement deletion. We applied all the
mutation operators and generate all possible mutants for each
fault. In Table I, the columns labeled as mutation analysis
represent the mutation-related information including the total
number of generated mutants (allM), killed mutants (by the
test pool) (kM), distinguished mutants (by the test pool) (dM),
and the mutants-tests execution time (time), for each fault.
The number of killed and distinguished mutants (by the test
pool) are the maximum number of killable and distinguishable
mutants in test suite selection, respectively.

D. Test Suite Generation

We generate an adequate test suite by selecting tests from a
test pool for each fault. We define the fault detection capability
of an adequacy criterion as the probability that a test suite
selected to be adequate to the criterion will detect a fault [20].
Considering that test suites adequate to the same adequacy
criterion may have different fault detection capabilities in
practice, we generate 500 adequate test suites for each criterion
and analyze them to obtain statistically sound analysis results.
Let 500 distinguishing mutation-adequate test suites as a d-
suite (i.e., distinguish-suite) and 500 traditional mutation-
adequate test suites as a k-suite (i.e., kill-suite). For example,
let x be the number of fault-detecting test suites among k-suite
for a fault. Then, the fault detection success rate of the k-suite
x/500 implies the fault detection capability of the k-criterion
for the fault.

Algorithm 1 shows how to generate a d-suite from a test
pool. The algorithm takes a test pool T , a set of mutants
M , an original program po, and the maximum number of
distinguishable mutants (with respect to the test pool) maxδ

as inputs, and returns a distinguishing mutation-adequate test
suite TSdist. In Algorithm 1, δmap represents the dictionary
of mutant distinguishment. The values of δmap are the set
of undistinguished mutants. For each set of undistinguished
mutants, one mutant in the set is selected (and removed from
the set) as the key for the dictionary. For example, Line 4
initializes δmap with the key po and the value M , because
all mutants m ∈ M and po = mo are undistinguished at
first. Lines 8-16 calculate and handle the distinguishment of
previously undistinguished mutants. Lines 17-20 update δmap
and check the exit condition of the while-loop.

Algorithm 1 d-suite generation
1: function GENERATEDISTTS(T,M, po,maxδ)
2: TSdist ← SET()
3: δmap ← DICT() . k: a mutant, v: a set of mutants
4: PUT(δmap[p0],M )
5: while True do
6: t←POP(T )
7: δ′map ← DICT()
8: for all mk ∈ KEYS(δmap) do
9: Mtmp ← SET()

10: for all mu ∈ δmap[mk] do
11: if d(t, po,mk) 6= d(t, po,mu) then
12: ADD(Mtmp,mu)
13: if ISNOTEMPTY(Mtmp) then
14: REMOVEALL(δmap[mk],Mtmp)
15: mk′ ← POP(Mdist)
16: PUT(δ′map[mk′ ],Mtmp)
17: if ISNOTEMPTY(δ′map) then
18: ADD(TSdist, t)
19: PUTALL(δmap, δ′map)
20: if SIZE(KEYS(δmap)) = maxδ then
21: break
22: return TSdist

V. RESULTS AND ANALYSIS

A. RQ1: Are there rooms for improvement of the fault detec-
tion effectiveness by distinguishing more mutants?

To consider the room for improvement of the fault detection
success rates of d-suites by distinguishing more mutants in
compared to k-suites, we have classified the studied faults
based on the fault detection success rate and the distinguished
mutants rate of the k-suite of each fault. The distinguished
mutants rate of a k-suite for a fault is the ratio of the
average number of distinguished mutants by the k-suite to the
maximum number of mutants distinguished by the test pool.
The results are presented in Figure 3.

There are four types of faults in Figure 3. For type1 faults,
k-suites neither certainly detect the faults nor distinguish
all mutants from the faults. More type1 faults means more
potential rooms for improvement of fault detection success
rates of d-suites. Type2 faults are not certainly detected by k-
suites while all mutants are distinguished by k-suites. Type3
includes faults that are certainly detected by k-suites while
not all mutants are distinguished by k-suites. Type4 faults are
certainly detected and their mutants are fully distinguished
by k-suites. The sum of type3 and type4 faults implies the



TABLE I
SUBJECT FAULTS, TESTS, AND MUTANTS

Test pool Mutation analysis Test pool Mutation Analysis
Fault size trigs allM kM dM time (sec) Fault size trigs allM kM dM time (sec)

Chart-5 10000 165 271 168 110 2157 Math-9 3788 1 84 51 31 106
Chart-11 236 34 221 26 13 82 Math-14 5492 2 24 10 6 206
Chart-12 6759 2 51 44 24 1314 Math-22 2865 62 285 267 84 293
Chart-14 5693 9 762 198 88 1320 Math-27 8567 7 400 296 227 2733
Chart-15 5639 24 198 147 113 12502 Math-29 3574 11 220 146 89 396
Chart-16 9341 6254 161 153 131 4880 Math-35 10000 21 33 15 8 206
Chart-17 3398 376 316 146 71 280 Math-60 10000 2 125 116 76 2474
Chart-18 1897 147 218 121 73 652 Math-61 3896 296 64 57 36 569
Chart-22 3370 307 112 63 28 204 Math-66 3740 3 22 6 4 57
Chart-24 930 238 35 28 27 31 Math-68 3728 9 10 2 2 53

Closure-56 6411 14 174 128 59 813 Math-77 1229 1 918 542 217 1902
Closure-107 5421 1 119 3 3 296 Math-90 515 13 60 48 32 35

Lang-12 857 8 139 76 45 526 Math-92 541 13 927 623 278 3128
Lang-37 6956 55 1924 1319 817 6307 Math-93 273 1 794 517 207 525
Lang-41 749 368 214 99 19 675 Math-95 872 23 74 67 42 40
Lang-45 9114 28 300 215 127 220 Math-98 3026 811 1366 950 401 2625
Lang-56 3707 381 495 337 246 12223 Math-102 2844 46 282 206 61 217
Lang-59 1199 28 1412 652 321 408 Math-103 5878 226 108 91 75 707
Math-1 2045 3 710 415 236 962 Math-104 4216 319 337 302 167 1783
Math-3 2087 6 1535 1292 911 2151 Time-8 890 5 379 170 56 1282
Math-4 3537 1 48 6 6 65 Time-9 5686 21 369 221 150 5023
Math-5 1476 2 670 506 291 2689 Time-13 1695 5 910 398 84 1263
Math-6 6672 12 37 18 16 270 average 4018.0 230.2 398.1 250.2 135.7 1703.3

Fault detection success
rate of 𝑘-suite < 1
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rate of 𝑘-suite = 1
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Type1: not certainly 
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by the 𝑘-suite while there 
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𝑘-suite= 1
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detected by the 𝑘-suite

while there is no 
undistinguished mutants.

Type4: certainly detected 
by the 𝑘-suite while there 

is no undistinguished 
mutants.

Fig. 3. Types of faults. If the fault detection success rate of the k-suite for
a fault is equal to 1, it means that the k-criterion certainly detects the fault.
If the distinguished mutants rate of the k-suite for a fault is equal to 1, it
means that the k-criterion distinguishes all mutants generated from the faulty
program.

0% 20% 40% 60% 80% 100%

Type1 Type2 Type3 Type4

11.1% 51.1%11.1% 26.7%

Fig. 4. The percentages of types of faults. Each percentage of a type represents
the ratio of the number of faults for the type to the number of all faults. For
example, the first box shows that 11.1% (5/45) of faults are type1.

proportion of faults that are certainly detected by the k-
criterion. The sum of type2 and type4 faults implies the mutant
distinguishment power of k-suites.

We provide the proportions of types in Figure 4. As a result,

11.1% of faults are type1 which means that there are rooms
for improvement in 11% of faults. In other words, 11.1% of
faults are not effectively detected by the k-criterion possibly
because the k-criterion failed to distinguish mutants. We will
carefully investigate the amount of improvements for the type1
faults in Section V-B.

Type2 faults are 11.1% of all faults. This means that
distinguishing all mutants cannot guarantee to detect all faults.
For example, the fault detection success rate of both the k-
criterion and the d-criterion for Closure-107 (i.e., one of the
type2 fault) is zero. While it is not in the scope of this work,
a further investigation on this type of faults would be an
interesting future work.

The sum of type3 and type4 faults are 77.8% of all faults,
meaning that the k-criterion can detects 77.8% of the studied
faults without explicitly considering the diversity of mutants.
This accounts for why the k-criterion seems effective at detect-
ing faults in many previous studies. Still, there is considerable
room for improvement with the type1 faults, and it would be
worthwhile to investigate the d-criterion to explicitly consider
the diversity of mutants.

Note that the results given in Figure 4 are bounded by
several experimental parameters including test data generation
methods, studied faults, and mutation operators. However, the
results clearly show that, simply by using a stronger adequacy
criterion while using the same set of mutants and tests, it is
possible to improve fault detection capabilities of mutation-
adequate test suites.



TABLE II
EXPERIMENTATION RESULTS SUMMARY

Fault detection capability Dist. mutants rate Fault detection capability Dist. mutants rate
Fault d-suite k-suite p-value OR d-suite k-suite Fault d-suite k-suite p-value OR d-suite k-suite

Chart-5 0.976 0.970 0.728 1.248 1.000 1.000 Math-9 0.552 0.486 0.018 1.302 1.000 0.757
Chart-11 1.000 1.000 - 1.000 1.000 0.864 Math-14 0.172 0.166 0.400 1.043 1.000 1.000
Chart-12 0.808 0.040 0.000 98.25 1.000 0.533 Math-22 1.000 1.000 - 1.000 1.000 0.523
Chart-14 1.000 1.000 - 1.000 1.000 0.924 Math-27 0.432 0.328 0.000 1.557 1.000 0.834
Chart-15 1.000 1.000 - 1.000 1.000 0.712 Math-29 1.000 1.000 - 1.000 1.000 0.899
Chart-16 1.000 1.000 - 1.000 1.000 0.759 Math-35 0.774 0.754 0.772 1.117 1.000 1.000
Chart-17 1.000 1.000 - 1.000 1.000 1.000 Math-60 1.000 1.000 - 1.000 1.000 0.530
Chart-18 1.000 1.000 - 1.000 1.000 0.893 Math-61 1.000 1.000 - 1.000 1.000 0.664
Chart-22 1.000 1.000 - 1.000 1.000 0.980 Math-66 1.000 1.000 - 1.000 1.000 0.974
Chart-24 1.000 1.000 - 1.000 1.000 0.724 Math-68 0.184 0.162 0.179 1.166 1.000 1.000

Closure-56 1.000 1.000 - 1.000 1.000 0.850 Math-77 1.000 1.000 - 1.000 1.000 0.862
Closure-107 0 0 - 1.000 1.000 1.000 Math-90 0.594 0.374 0.000 2.444 1.000 0.755

Lang-12 1.000 1.000 - 1.000 1.000 0.776 Math-92 1.000 1.000 - 1.000 1.000 0.806
Lang-37 1.000 1.000 - 1.000 1.000 1.000 Math-93 1.000 1.000 - 1.000 1.000 1.000
Lang-41 1.000 1.000 - 1.000 1.000 1.000 Math-95 1.000 1.000 - 1.000 1.000 1.000
Lang-45 1.000 1.000 - 1.000 1.000 1.000 Math-98 1.000 1.000 - 1.000 1.000 1.000
Lang-56 1.000 1.000 - 1.000 1.000 1.000 Math-102 1.000 1.000 - 1.000 1.000 1.000
Lang-59 1.000 1.000 - 1.000 1.000 1.000 Math-103 1.000 1.000 - 1.000 1.000 1.000
Math-1 1.000 1.000 - 1.000 1.000 1.000 Math-104 1.000 1.000 - 1.000 1.000 0.437
Math-3 1.000 1.000 - 1.000 1.000 0.756 Time-8 1.000 1.000 - 1.000 1.000 0.909
Math-4 1.000 1.000 - 1.000 1.000 0.977 Time-9 1.000 1.000 - 1.000 1.000 0.799
Math-5 1.000 1.000 - 1.000 1.000 0.748 Time-13 1.000 1.000 - 1.000 1.000 0.864
Math-6 0.182 0.006 0.000 31.76 1.000 0.863 average 0.882 0.851 - 3.91 1.000 0.885

B. RQ2: Is the distinguishing mutation adequacy criterion
more likely to detect faults than the traditional mutation
adequacy criterion?

To investigate the difference of the fault detection capabili-
ties between the d-criterion and the k-criterion, for each fault,
we calculate the percentage points (pp) of the fault detection
success rate of the d-suite in compared to the k-suite. For
example, if the fault detection success rate of the d-suite for a
fault is 90% and the fault detection success rate of the k-suite
for the fault is 40%, then the increased fault detection success
rate for the fault is 50 pp. The results for all faults, ranked in
descending order, are presented in Figure 5.

In Figure 5, it is clear that the increased fault detection suc-
cess rates for all faults never be negative. This means that the
d-criterion is always better than or equal to the k-criterion in
terms of fault detection capability. This is intuitive considering
the subsumption relationship between the distinguishing and
k-criterion as explained in Section III-B.

The top five faults (Chart-12, Math-90, Math-6, Math-
27, and Math-9) in Figure 5 show that the d-criterion is
statistically better than the k-criterion in terms of the fault
detection capability, based on non-parametric proportion test
with α = 0.05. While Math-68, Math-35, Math-14, and Chart-
5 also show increased fault detection success rates, their results
are not statistically significant. Additionally, we provide effect
sizes for the improvements of the fault detection capabilities
in Table II. We calculate the odd ratio (OR) as the effect size
because the fault detection result of a test suite for each fault
is dichotomous [21]. If OR= 1, it means that the difference
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Fig. 5. Effect size of the d-criterion on fault detection. Each bar represents the
increased fault detection success rate for each fault. The results are given in
descending order. A fault with dark-grayed bar signifies that the fault detection
success rate of the d-criterion is statistically greater than the fault detection
success rate of the k-criterion (non-parametric proportion test, one-sided, N =
500, α = 0.05) for the fault.

has no practical significance. The higher the OR value is, the
stronger the association between the success of fault detection
and the d-criterion in compared to the k-criterion becomes.

Interestingly, the five faults with the significant results
exactly correspond to the five type1 faults. In other words,
the d-criterion statistically significantly improves the fault
detection capability for all type1 faults. It means that the d-
criterion successfully improves the fault detection capabilities
of adequate test suites whenever mutants are undistinguished
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Fig. 6. Fault detection success rate of the r-suite and the d-suite for Chart-12.
The r-suite is composed of randomly selected test suites whose size is equal
to the average size of the d-suite.

by the k-criterion.
In Figure 5, the result for Chart-12 (i.e., 76.80 pp) is

especially surprising. We first investigate the influence of test
set size. In Figure 6, we compare the fault detection rates
of test suites d-suite and r-suite (i.e., 500 randomly selected
test suites whose size is equal to the average size of d-suite).
Note that the fault detection success rate of the r-suite is very
smaller than the fault detection success rate of the d-suite
while their test suite sizes are equal. This means that the fault
detection effectiveness of the d-criterion is not because of the
test suite size.

We also manually investigated the fault-detecting tests and
kill information of all mutants with respect to the test pool
for Chart-12. We found a general case where the d-criterion
outperforms the k-criterion. Consider two distinguishable mu-
tants m and m′, we can think of two different test sets Tkill
and Tdist as follows:

Tkill = {t ∈ T | d(t, po,m) = 1 ∨ d(t, po,m′) = 1}
Tdist = {t ∈ T | d(t, po,m) 6= d(t, po,m

′)}

In other words, Tkill is the set of tests that kills m or m′,
and Tdist is the set of tests that distinguishes m and m′.
Interestingly, Tdist is the subset of Tkill by their formal
descriptions. In this sense, if there exists a fault-detecting test
ttrig in Tdist, it is more frequently selected from Tdist than
Tkill. Note that the k-criterion considers only Tkill while the
d-criterion considers not only Tkill but also Tdist. Thus, the
d-criterion outperforms the k-criterion if ttrig ∈ Tdist for two
arbitrary mutants, and the amount of improvement increases
as decreasing the size ratio of Tdist to Tkill.

C. RQ3: How many tests are needed to be a mutation-
adequate test suite?

Considering all k-suites and d-suites for all faults, we
provide the test suite sizes of k-suites and d-suites and their
ratios in Table III. For each fault, each size value represents
the average test suite size of the k/d-suite. For example, the
test suite size of the d-suite for Chart-5 is 81.37. This means
that 81.37 tests are selected to satisfy the d-criterion for Chart-
5 in average. The test suite size ratio column represents the
size ratio of the d-suite to the k-suite for each fault. Figure 7
shows the representative ratios in descending order.
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Fig. 7. Test suite size ratio of the d-suite to the k-suite for each fault. The
results are given in descending order, while the average value is given instead
of the results in the middle. In average, the d-criterion needs 1.67 times more
tests than the k-criterion.

For all faults, the average of the size ratios of d-suites to
k-suites is 1.67. This means that the d-criterion needs 1.67
times more tests than required by the k-criterion in average.
While the d-criterion needs more tests than the k-criterion,
the improvement of fault detection effectiveness is not simply
because of the larger test suite size. For example, there are
only two fault-detecting tests in the test pool for Chart-12,
which means that randomly adding more tests to the test suite
would hardly improve the fault detection capability.

D. RQ4: How much time takes for selecting a mutation-
adequate test suite?

Similar to the test suite sizes, we provide the test suite
selection times of all k-suites and d-suites and their ratios
in Table III. For each fault, the selection time of the k/d-suite
is the average selection time of all test suites in the k/d-suite.
For example, the selection time of the d-suite for Chart-5 is
33.56 milliseconds. This means that selecting a distinguishing
mutation-adequate test suite takes 33.56 milliseconds in aver-
age. The selection time ratio column represents the selection
time ratio of the d-suite to the k-suite for each fault. Figure 8
shows the representative ratios in descending order.

For all faults, the average of the selection time ratios of
d-suites to k-suites is 5.74. This means that the d-criterion
needs 5.74 times more selection time than the k-criterion in
average. While the d-criterion takes more time for selecting
an adequate test suite than the k-criterion, it is acceptable in a
sense that each of distinguishing mutation-adequate test suites
is selected within 0.078 seconds in average.

E. Threats to Validity

There may be several threats to validity for our empirical
evaluations. One threat is due to the representativeness of the
studied faults. While this threat can only be properly addressed
by further study, we tried to use a non-trivial number of real
faults collected in defect4j repository. Our results are also
dependent on the test pool generated by Randoop. While an-
other test pool generated by a coverage-aware test generation



TABLE III
EXPERIMENTATION RESULTS SUMMARY FOR TEST SUITE SIZE AND TEST SUITE SELECTION TIME

Test suite size Selection time (m sec) Test suite size Selection time (m sec)
Fault d-suite k-suite ratio d-suite k-suite ratio Fault d-suite k-suite ratio d-suite k-suite ratio

Chart-5 81.37 55.68 1.46 33.56 5.17 6.49 Math-9 21.15 12.59 1.68 2.53 0.75 3.37
Chart-11 9.76 6.83 1.43 1.28 0.39 3.30 Math-14 5.00 5.00 1.00 0.66 0.42 1.59
Chart-12 20.22 9.31 2.17 5.22 1.30 4.03 Math-22 52.09 23.69 2.20 6.00 0.46 12.98
Chart-14 74.03 61.04 1.21 18.75 11.03 1.70 Math-27 128.94 72.90 1.77 49.90 4.37 11.42
Chart-15 89.10 44.96 1.98 15.23 1.93 7.88 Math-29 64.11 46.94 1.37 7.95 1.56 5.11
Chart-16 118.79 77.66 1.53 26.85 2.35 11.45 Math-35 6.18 4.75 1.30 1.62 0.94 1.71
Chart-17 56.77 41.69 1.36 7.09 2.29 3.10 Math-60 50.31 19.47 2.58 16.18 1.27 12.73
Chart-18 54.07 37.04 1.46 3.92 0.83 4.71 Math-61 25.76 13.17 1.96 2.62 0.25 10.34
Chart-22 24.13 18.58 1.30 2.51 0.84 2.98 Math-66 3.00 2.90 1.04 0.42 0.32 1.30
Chart-24 18.93 10.18 1.86 0.24 0.05 4.74 Math-68 1.00 1.00 1.00 0.12 0.10 1.19

Closure-56 38.65 26.86 1.44 9.27 1.68 5.53 Math-77 140.25 96.38 1.46 9.66 2.49 3.87
Closure-107 2.00 2.00 1.00 0.96 1.39 0.69 Math-90 19.58 9.02 2.17 0.29 0.04 7.76

Lang-12 28.00 14.88 1.88 0.94 0.25 3.78 Math-92 168.07 120.02 1.40 5.00 1.43 3.49
Lang-37 450.18 291.36 1.55 185.93 19.98 9.31 Math-93 119.74 94.55 1.27 2.11 0.82 2.56
Lang-41 13.46 6.73 2.00 0.40 0.19 2.09 Math-95 25.56 13.18 1.94 0.72 0.11 6.75
Lang-45 80.84 41.40 1.95 30.03 3.74 8.03 Math-98 246.04 179.75 1.37 44.17 6.87 6.43
Lang-56 175.89 58.22 3.02 21.66 2.61 8.30 Math-102 38.14 29.30 1.30 4.69 1.03 4.56
Lang-59 176.69 132.40 1.33 13.11 4.76 2.75 Math-103 51.07 21.71 2.35 9.79 0.86 11.40
Math-1 137.96 96.53 1.43 13.08 2.83 4.62 Math-104 91.23 26.20 3.48 18.55 1.00 18.50
Math-3 294.12 132.97 2.21 59.58 3.95 15.07 Time-8 37.50 28.28 1.33 1.65 0.81 2.04
Math-4 5.00 4.86 1.03 0.57 0.57 1.01 Time-9 101.90 63.40 1.61 22.58 3.86 5.85
Math-5 127.37 63.51 2.01 11.39 1.53 7.44 Time-13 32.22 22.12 1.46 5.33 3.17 1.68
Math-6 13.39 9.92 1.35 1.92 0.76 2.51 average 78.21 47.80 1.67 15.20 2.30 5.74
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Fig. 8. Test suite selection time ratio of the d-suite to the k-suite for each
fault. The results are given in descending order, while the average value is
given instead of the results in the middle. In average, the d-criterion needs
5.74 times more time than the k-criterion.

tool, such as EvoSuite [22], may detect a different set of
faults, we initialised our study with Randoop because we
wanted to generate a large number of unbiased tests. In the
future work, we will investigate different test pools using both
Randoop and EvoSuite.

The fault detection capability of a test adequacy criterion
may vary depending on the testing scenarios. For example, a
test adequacy criterion may be used for not test suite selection
but test data generation (e.g., Counter-exampled based test
generation [23], [24] and search-based test generation [25],
[26]). Further information about the testing scenarios and their
impact on the fault detection capability is well-described in
Zhu et al. [27]. We have a plan for developing a method for

test generation for directly satisfy the d-criterion.

VI. RELATED WORK

Ammann et al. [28] recently discussed the notion of “undis-
tinguished” mutants. They stated that, if two mutants are killed
by precisely the same set of tests, the mutants are undis-
tinguished, even though the mutants may involve different
syntactic changes to po. We follow this concept to formally
define the mutant distinguishment. However, they tried to
remove such undistinguished mutants to establish minimal set
of mutants, while we attempt to utilize the undistinguished
mutants to improve the fault detection capabilities of mutation-
adequate test suites.

Baudry et al. [29] studied the idea of distinguishment of
execution traces to improve the fault localization effectiveness.
They defined the concept of a Dynamic Basic Block (DBB)
which is the set of statements that is covered by the same set of
tests. A Large DBB implies low accuracy of fault localization
since all statements in the DBB are equally suspicious as the
faulty statement. They reported that optimizing a test suite to
distinguish statements in a DBB leads the improvement of the
fault localization accuracy. While both work use the concept
of distinguishment in similar ways, we consider the mutant
distinguishment to improve fault detection capability.

VII. CONCLUSION

This paper introduces a novel mutation-based test adequacy
criterion called distinguishing mutation adequacy criterion
based on the formal definition of the mutant distinguishment.
The new adequacy aims to make adequate test suites capture
the diversity of mutants.



We provide an empirical evaluation for the comparison
of the distinguishing mutation adequacy criterion with the
traditional mutation adequacy criterion in terms of their fault
detection capabilities, test suite sizes, and test suite selection
times. We use 45 real faults to study real worlds applications.
The results show that the distinguishing mutation adequacy
improves the fault detection success rate up to 76.8 percentage
points compared to the traditional mutation adequacy, while
the distinguishing mutation adequacy requires more tests and
selection times to adequate test suites. In average, the distin-
guishing mutation adequacy requires 1.67 times and 5.74 times
more tests and selection times compared to the traditional
mutation adequacy, respectively.

While the cost of mutation is a long-stranding problem,
we should not miss the fault detection capability as well.
Since a mutation adequacy criterion is independent to the
other mutation-related artifacts, studying stronger mutation
adequacy is one promising way to improve the fault detection
capability of mutation. We will provide more comprehensive
investigations on the distinguishing mutation adequacy in the
future work.
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