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Abstract  

 Cognitive ability (or the g-factor) enables individuals to make sense of the world 

and to navigate it appropriately. Cognitive ability is typically assessed through various 

cognitive tests of memory, processing speed, abstract reasoning, reading abilities and 

more. Research has suggested that individuals with good cognitive ability tend to be 

healthier, have higher income, live longer, and retain more autonomy in old age. 

Hence, a comprehensive understanding of the drivers of cognitive ability and its age-

related decline may lay the foundations for interventions that have the potential to 

considerably improve quality of life across the general population. 

 Research has devoted much attention to so-called brain networks of 

interconnected brain regions that may collectively underpin cognitive ability. Brain 

morphometry in the central executive brain network, for example, was demonstrated 

in a well-powered study to play a centrally important role in cognitive ability (Madole 

et al., 2021). However, different brain morphometry studies have delivered conflicting 

evidence and it remains unresolved whether structural brain networks reliably 

correlate with cognitive ability. One reason for the differences in results might be the 

lack of methodological consensus between studies. Methodological choices that dictate 

study results include covariate adjustment for brain size – which some studies 

perform, and others do not – as well as brain atlases used to subdivide the participants 

brain images into regions. Therefore, there is a need for hypothesis-free exploratory 

work to help make optimal analytical decisions and to perform meaningful hypothesis 

tests. This exploratory groundwork should help establish more reliable correlations 

between brain morphometry and cognitive ability.  
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 This thesis has two major aims: The first aim is to perform exploratory studies 

to deliver evidence in support of study designs optimal for the investigation of the 

relationship between cognitive ability and brain morphometry. The second aim is to 

investigate the multidimensional relationships among structural brain networks, 

cognitive ability, and age-related processes. This thesis aims to present comprehensive 

models of cognitive ability and its associated biology by systematically evaluating the 

impact of certain methodological decisions. Genetic analysis techniques are employed 

to triangulate phenotypic analyses using innovative and biologically-informed 

technology. Presented studies analysed genetic data and structural MRI data in two 

large samples: the UK Biobank (N ~ 40,000) and the Adolescent Cognitive Brain 

Development study (N ~ 10,000).  

 In Chapter 2 I aim to characterise the impact of brain size covariate adjustment 

on the relationships between cortical brain volumes and cognitive ability. Results 

indicated that the relationship between regional volumes and cognitive ability is 

closely entangled with brain size to the extent that their relationship cannot be reliably 

modelled when made statistically independent of brain size. This study delivered 

evidence that instead of assessing region-by-region correlations between brain 

morphometry and cognitive ability, multivariate study designs may help to account 

holistically for the complex biological underpinnings of cognitive ability. The study 

provides empirical and theoretical arguments that brain size adjustment induces 

collider bias in genome-wide analyses.  

 In Chapter 3 I derive and validate a novel multivariate framework – Genomic 

Principal Component Analysis (PCA) – that integrates multiple traits as well as 

genome-wide information. Genomic PCA takes genome-wide association data as input 

to extract genetic principal components (PCs) underlying multiple phenotypes 
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(Genomic PCA does not capture ancestral PCs of shared genetic make-up between 

individuals). I use Genomic PCA in Chapter 4 to model genome-wide PCs underlying 

multiple brain regions that are part of canonical brain networks. The study 

demonstrates that genome-wide PCs underlying nine canonical brain networks – 

unadjusted for brain size – are significantly correlated with cognitive ability and brain 

ageing. However, this study finds no evidence for localised brain network-specific 

correlates of cognitive ability, as the central executive network is not any more 

associated with cognitive ability than other brain networks. The results suggest that 

genetic correlates of brain morphometry relate to cognitive ability through general 

brain-wide features shared among multiple regions that are not specific to brain 

networks. 

 In Chapter 5 I compare brain atlases that are commonly used to subdivide study 

participants’ brain images into regions-of-interest. The brain atlas comparison in this 

study relies on multivariate prediction models of multiple behavioural traits, including 

cognitive ability. This study finds that using fine-grained brain atlases maximises the 

relationship between brain morphometry and cognitive ability. Future studies may be 

able to model more robust brain trait associations by adopting multivariate models of 

hundreds of thousands of vertex-wise brain measurements. The final chapter 

discusses the overarching implications, limitations, and future directions of these 

findings that should motivate multidisciplinary approaches to more comprehensively 

account for the complex web of biological factors that give humans advanced cognitive 

ability.  
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Chapter 1 

 

General Introduction 
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1.1 General cognitive ability  

 Life itself is a test of our cognitive abilities. Understanding what drives 

differences in cognitive abilities between people across the population is at the core of 

understanding human behaviour. In the scientific literature, cognitive ability is 

understood as an umbrella term for a human aptitude to make sense of the world. 

Cognitive ability enables an individual to “reason, plan, solve problems, think 

abstractly, comprehend complex ideas, learn quickly and learn from experience” 

(Gottfredson, 1997 cited in Deary, Penke, et al., 2010). Advanced cognitive ability sets 

humans apart from animals and requires different kinds of skills. These skills can be 

broadly grouped into fluid and crystalised cognitive abilities. Fluid abilities describe 

processing aspects of cognition, for example, processing speed in reaction time tasks 

(Deary et al., 2011), visual declarative memory, and abstract reasoning. By contrast, 

crystalised abilities are declarative and procedural knowledge acquired based on past 

experiences, for example, vocabulary, and reading abilities. Individuals in a 

population vary in those cognitive abilities which can be quantified with various 

cognitive ability tests (outlined in Table 1).  
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Table 1. Popular cognitive tests that may be used to extract a general factor of cognitive 

ability as described by Spearman (1904).  

Cognitive 
domain 

Cognitive test 
name 

Description 

Fluid cognitive abilities  

Processing 
speed 

Deary-Liewald 
reaction time task 
(Deary et al., 
2011) 

A stimulus appears on a computer screen. The tested 
individual reacts to it by pressing a key as promptly as 
possible. Test performance is judged better, the shorter the 
measured time between the appearance of the stimulus on 
the screen and the key press by the individual.  

Visual 
declarative 
memory 

Pairs Matching 
test  
(Wechsler, 2010) 

Word pairs are presented auditorily. The tested individual 
is asked to remember the word pairs, and to recall the 
matched word when prompted with a word from one of the 
pairs. Test performance is judged better, the fewer 
incorrect matches are recorded. 

Abstract 
reasoning 

Ravens 
Progressive 
Matrices  
(Bilker et al., 
2012) 

A logically ordered abstract grid pattern is presented on a 
screen. The tested individual is asked to select the correct 
multiple-choice pattern that follows the grid logic. Test 
performance is judged better, the more patterns are 
correctly solved. 

Crystalised cognitive abilities  

Language 
abilities  

Picture 
Vocabulary test 
(Dunn & Dunn, 
1965) 

A word is presented auditorily simultaneously with 4 
images on a screen. The tested individual is asked to pick 
the image that matches the spoken word. Test 
performance is judged better, the more correct matches 
are recorded. 

Ability to 
pronounce 
words and 
recognise 
letters 

Oral reading 
recognition task 
(Akshoomoff et 
al., 2013)  

The tested individual is asked to read aloud words 
presented on a screen. Test performance is rated and 
recorded by a trained examiner. 
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 Performances in different cognitive tests positively correlate with each other. 

For example, people who can memorise knowledge more accurately also tend to 

process content faster. According to theory, correlated performance across different 

cognitive abilities is caused by an underlying “talent”, a latent factor of general 

cognitive ability, or “intelligence”, sometimes simply referred to as the g-factor (Fig.1). 

General cognitive ability enables individuals to perform well across multiple cognitive 

tasks (Spearman, 1904; Tucker-Drob, 2019). This hierarchical structure (Fig.1) was 

reliably confirmed by factor analysis, which extracts an error-free latent variable that 

tends to be more reliable than individual cognitive tests (Deary, Penke, et al., 2010). 

The general cognitive ability factor typically explains about 40% of the total variance 

in peoples’ performances across different cognitive tests (Deary, Penke, et al., 2010). 

This thesis is focused on this latent construct underlying cognitive abilities (i.e., the 

variance common between cognitive test performances) rather than task-specific 

cognitive ability. Throughout this thesis, I will use the term cognitive ability (or g-

factor in Chapter 4) to refer to this latent factor.  
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Fig.1. A latent factor of general cognitive ability (g-factor) that causes a persons’ 
performance in different cognitive tasks. 

The g-factor is a latent dimension that cannot be directly observed but can be extracted from variance 
shared among multiple intercorrelated cognitive tests. The ellipsis in the penultimate box in this Figure 
indicates that the g-factor should be independent of the form, version, wording, or specific cognitive 
function included cognitive tests are testing. This definition was shown to be highly replicable and to 
explain ~40% of the variance among cognitive tests (Deary, Penke, et al., 2010). 
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 Cognitive ability evolves across the lifespan. It increases through childhood and 

early adulthood but declines throughout later adulthood (“cognitive ageing”; 

Salthouse, 2010). However, individuals of approximately the same age tend to 

maintain a ranked order among one another in their cognitive ability, and cognitive 

ability is therefore understood as a time-stable trait. As this ranked order seems to be 

maintained throughout life, cognitive ability measured in childhood can predict 

favourable outcomes in later life, such as longevity, health, and old age autonomy 

(Batty et al., 2007; Deary, Weiss, et al., 2010; Gottfredson & Deary, 2004; Tucker-

Drob, 2011). In general, individuals with higher cognitive ability tend to report higher 

income and better well-being (Davies et al., 2019; Furnham & Cheng, 2017). A 2019 

study that was designed sensitive to directions of effects corroborated that higher 

cognitive ability likely causes these favourable socioeconomic and health outcomes, 

and not vice versa (Davies et al., 2019)1. 

Due to this link between high cognitive ability and favourable lifelong 

outcomes, cognitive ability research has the potential to lay the foundations for 

interventions with important societal implications for public health, well-being, and 

prosperity. The only intervention – so far discovered – to improve cognitive ability on 

a population level is years of schooling (“educational attainment”), which was shown 

to increase an individuals’ intelligence score by 1-5 points for every year of education 

(Ritchie & Tucker-Drob, 2018). This improvement in cognitive ability through longer 

 

1 Davies et al. (2019) employed a Mendelian Randomisation (MR) approach allowing to infer directions 
of effects between cognitive ability and health outcomes. The MR design simulates a natural experiment 
by leveraging genetic data in observational studies as instrumental variables. Under certain 
assumptions, this can control for unmeasured confounding and can deliver evidence for causal 
relationships between two variables. MR is not used in this thesis, but I briefly mention the MR study 
here because it underpins cognitive ability as a reliably measured trait that may act as a lifelong factor 
that precedes and influences later life outcomes. This makes cognitive ability a promising trait to explore 
human biology, health, and socioeconomic outcomes.  
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schooling is, however, relatively small in magnitude at a cognitive ability population 

mean of 100 and a standard deviation of 15 points. Interventions that may help 

maintain adult cognitive ability or mitigate old age cognitive decline remain active 

areas of research. 

The fact that cognitive ability is time-stable implies that cognitive ability is 

likely biologically underpinned (e.g., the brain, or genetic factors), as opposed to 

mainly relying on the environment that tends to be more variable across the lifespan. 

Hence, potential interventions may be most impactful if they acted on a biological 

level, rather than an environmental one like longer schooling. This motivates the 

investigation of reliable biological correlates of healthy cognitive ability and healthy 

cognitive ageing which are both the focus of this thesis. Such investigations may enable 

early identification of individuals most in need of support for day-to-day tasks in old 

age which would help assign caring resources more efficiently. They may also lead to 

interventions capable of delaying cognitive decline, for example, in the form of drugs, 

food supplements, or brain cell stimulation using transcranial magnetic stimulation. 

In our ageing societies, identifying reliable biological correlates of healthy cognitive 

ageing may also benefit dementia research where learning and memory are core 

aspects. For example, it may help screen and identify individuals with accelerated 

cognitive decline who may be at higher risk of developing dementia later in life. 
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1.2 Brain correlates of cognitive ability 

 The human brain has 86 billion neurons and about the same number of glial 

cells (Herculano-Houzel, 2009). Over the past 2-3 million years of human evolution, 

the expansion of advanced human cognitive ability coincided with a tripling in human 

brain size (Herculano-Houzel, 2016). Compared with other animals, humans have 

larger brains, more neurons (Herculano-Houzel, 2009), and increased modularity. 

Modularity describes the locally interconnected organisation of neurons within 

regions (“modules”) that are more sparsely linked with other regions in humans than 

in other animals. This is thought to create functional specialisation necessary for 

efficient brain-wide neuronal communication and complex neuronal processes 

underpinning language, long-term memory and advanced cognitive ability more 

generally (Changeux et al., 2020). Therefore, the size of the brain has been a primary 

target in searching for biological correlates of cognitive ability. 

 Across the general modern population, a positive association between higher 

cognitive ability and total brain size recorded by magnetic resonance imaging (MRI)2 

has consistently replicated (Nave et al., 2018; Pietschnig et al., 2015). The brain size 

cognitive ability correlation, however, only explains about 5% of the variance in 

cognitive ability (i.e., r ~0.25), illustrating that total brain size as a measure does not 

convey enough information to reliably account for brain size-based correlates of 

cognitive ability. Hence, many studies have attempted to find more specific brain 

 

2 MRI is an imaging technique that utilises strong magnetic fields and radio waves to visualise brain 
anatomy and physiological processes. In this example, it was used to estimate the size of the whole brain 
across thousands of individuals. More details on how studies estimate brain morphometry and 
functional activity using MRI is in Table 2. 
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correlates by considering brain regions, rather than the whole brain. Brain regions 

seem to be differentially important for cognitive ability (Cox et al., 2019).  
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Table 2. Brain imaging techniques used across the literature to identify brain-based 

correlates of general cognitive ability. 

Brain imaging 
technique 

Description 

Structural 
MRI  
(T1-weighted 
imaging) 

Structural MRI makes use of water molecules containing protons in human 
brain tissue. The main magnetic field in an MRI scanner causes those protons to 
line up and spin at a certain frequency. A radiofrequency pulse is temporarily 
turned on, which causes the protons to line up in a different direction; until the 
pulse is turned off again, and the protons realign with the main magnetic field. 
During this process, protons emit radio frequencies that can be detected and 
localised by the scanner. Because the rate at which the protons realign with the 
main magnet varies between tissue types, the MRI scanner can generate a three-
dimensional image of where grey matter, white matter, cerebrospinal fluid, and 
the skull are located (Lerch et al., 2017). Using imaging processing software such 
as FreeSurfer (Fischl, 2012), studies use the three-dimensional images to 
estimate brain morphometry through estimates of cortical thickness, surface 
area, and grey-matter volume.  

Functional 
MRI  

Functional MRI relies on different scanner settings than structural MRI and 
makes use of the fact that performing a cognitive task (or even resting) induces 
supply of oxygenated blood to certain brain regions. Oxygenated blood has 
different magnetic properties than deoxygenated blood, and the scanner records 
local differences in those magnetic properties (Xue et al., 2010), which are 
thought to indirectly reflect neuronal activity (Logothetis et al., 2001). Hence, 
functional MRI is “blood-oxygen-level dependent” (BOLD). Compared with 
structural MRI, functional MRI is time-sensitive, but it is delayed (2-6 seconds), 
noisy, can show weak signal, and was reported to have poorer reliability (Elliott 
et al., 2020). 

Diffusion MRI Diffusion MRI is also performed in MRI scanners whereby moving water 
molecules in the brain are tracked. The molecules are in motion (they “diffuse”), 
but they are restricted by physical obstacles, such as myelinated neurons, for 
example. DTI records the direction of diffusion of the water molecules at a 
voxel-level. The directional information can be used to infer where larger 
neuronal tracts are located throughout the brain (“tractography”) (Lerch et al., 
2017).  

Lesion 
studies 

Lesion studies investigate brain lesions in individuals who suffered brain 
damage, for example, through illness, infection, or trauma. Brain matter losses 
may be identified through structural MRI. Lesion studies investigate links 
between brain matter losses and specific losses in cognitive ability to infer 
whether certain brain regions are necessary for the performance of certain 
cognitive functions. Lesion studies are typically based on small clinical between-
group differences. 

Note that this table is meant to add explanations of imaging techniques mentioned in the text. It does 
not represent an exhaustive list of existing imaging techniques. 
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 To investigate brain correlates of cognitive ability, previous studies have 

visualised the brains of their study participants using multiple brain imaging 

techniques. Some of those techniques included for example structural MRI, functional 

MRI, diffusion MRI, and lesion studies (briefly explained in Table 2). In a review 

summarising evidence across brain imaging techniques, Jung and Haier (2007) 

proposed the parieto-frontal integration theory (P-FIT) whereby specific brain regions 

collectively give rise to cognitive ability. Frontal and parietal regions were proposed to 

play a particularly important role. Briefly summarised, the P-FIT suggests that 

temporal and occipital brain regions are involved in reasoning and intelligent 

processing of a cognitive task, in that they enable an individual to perceive sensory 

information, for example through visual input. Sensory information is communicated 

to parietal brain regions for abstraction. Subsequently, parietal regions interact with 

frontal regions to evaluate different solutions to given tasks, and frontal areas are 

involved in selecting the best solution, which is acted upon. According to Jung and 

Haier (2007), advanced cognitive abilities depend on efficient between-region 

communications enabled through strong white matter connections across the brain. 

Fig.2 visualises the brain lobes to put the P-FIT and the frontal and parietal correlates 

of cognitive ability into context. 
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Fig.2. Desikan-Killiany brain parcellation coloured by brain lobes. 

 

 The P-FIT has since been criticised due to evidence in its favour being 

statistically underpowered. A more recent meta-analysis concluded that the 

highlighted frontal and parietal correlates of cognitive ability do not reliably map onto 

structural measures of grey matter (Basten et al., 2015). Conceptually, however, the P-

FIT adds value by postulating that several brain regions are collectively involved in 

cognitive ability – as opposed to isolated regions underlying cognitive ability. This is 

in line with a continuously growing body of evidence supporting the idea that 

structural and functional brain networks constrain and give rise to cognitive ability as 

a complex neuronal process (Bressler & Menon, 2010). 

1.2.1 Functional brain networks  

 Functional brain networks are groups of distributed and functionally 

interconnected brain regions that are understood to collectively produce brain 

function more broadly (and could lead to cognitive ability, for example). Typically, 

studies infer functional connectivity by statistically analysing which brain regions 
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demonstrate synchronised neuronal activity in functional MRI scans (as described in 

Table 2). More specifically, these studies identify brain regions that are correlated in 

their neuronal activity across time, and they assume that simultaneously activated 

regions communicate and form a functionally interconnected brain network. 

Functional brain networks can be characterised based on functional MRI data 

recorded either when participants are resting or conducting specific cognitive tasks 

(e.g., Power et al., 2011; Yeo et al., 2011).  

 Functional brain networks that are identified through analysing functional MRI 

data are typically named after the cognitive task participants conducted while in the 

MRI scanner. Hence, a functional network is assumed to underpin the cognitive task 

it is named after (e.g., the default mode network is found when scanned individuals 

are resting). The functional brain network literature is heterogeneous (Uddin et al., 

2019), and the cognitive tasks used to identify brain networks do not typically consider 

general cognitive ability (as defined in Section 1.1). Instead, brain networks are 

identified in association with more elementary brain functions, such as sensory 

information processing and attention.  

 Certain brain networks are considered canonical because they were repeatedly 

identified by studies over the past two decades: For example, the central executive 

network shows neuronal activity in functional MRI scans when participants are given 

cognitive tasks requiring attention and working memory (Menon & Uddin, 2010; 

Sridharan et al., 2008). The default mode network is found when participants are 

resting, or solving tasks demanding internally directed thought (Buckner & DiNicola, 

2019). The salience network activates during cognitive tasks that require participants 

to allocate attention to competing sensory information (Downar et al., 2002), which 

was shown to integrate brain functions associated with the central executive and 
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default mode networks described above (Li et al., 2018; Sridharan et al., 2008). 

Exactly which regions form those functional networks remains debated (Uddin et al., 

2019), and criticisms exist about functional brain network reliability (e.g., Singhal et 

al., 2020).  

 Building on this functional brain network literature, Barbey (2018) argues that 

cognitive ability reflects the capacity of someone’s brain to activate canonical brain 

networks (e.g., the central executive network), and the ease with which this persons’ 

brain can transition in its neuronal activity between multiple brain networks 

(“network flexibility”). Barbey (2018) theorised that this network flexibility supports 

higher cognitive ability by enabling fast information transfer across functional brain 

networks. Although my empirical chapters do not analyse functional MRI data, my 

analytical decisions aim to acknowledge the extensive functional brain network 

literature by modelling canonical brain networks described above using structural 

MRI data. 

1.2.2 Structural brain networks 

 Some studies analysing structural, instead of functional MRI data have also 

adopted a view of the brain that considers brain networks rather than isolated regions. 

Bullmore et al. (1998) argued that correlations between regional grey matter indicates 

anatomical connections among brain regions. One possible explanation may be that 

the developing brain builds interregional connections early and when regions are 

connected, they share certain growth factors. This concurrent development may make 

their macroscopic features more similar. Accordingly, researchers may identify 

structurally connected brain networks based on correlation structures among grey 

matter regions.  
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Fig.3. One possible analysis pipeline to extract individual-level structural brain 
network indices.  

(A) Structural MRI data from multiple participants are pre-processed in FreeSurfer to obtain cortical 
measures for each vertex. This step provides brain volume measures at each vertex (or surface area or 
cortical thickness). (B) The vertex-wise measures are summarised for each brain region of a chosen 
brain atlas. Here, I depict the Desikan-Killinay atlas (Desikan et al., 2006) that dictates which vertices 
belong to each of the 68 regions the atlas delineates. (C) Structural connectivity is inferred by 
calculating correlations among structural measures of brain regions. The correlations indicate the 
strength of connectivity between considered regions. (D) Principal Component Analysis (PCA) linearly 
decomposes the correlation matrix obtained in step C. It provides principal component (PC) loadings 
of each brain region onto an underlying dimension of general brain morphometry. (E) Finally, the 
pipeline calculates PC-weighted sum scores whereby a participants’ brain network connectivity is 
approximated by the sum of each regions’ brain volume weighted by a regions’ PC loading obtained in 
step D.   
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 Typically, a structural brain network analysis pipeline involves several complex 

steps. Fig.3 illustrates one possible pipeline that is of relevance to this thesis because 

it was used in a previous study (Madole et al., 2021) on which my empirical work built 

(Chapter 3 & Chapter 4). It is output from this pipeline that I refer to when discussing 

structural brain networks. Below, I expand on this pipeline in detail because it allows 

me to introduce concepts such as vertex-wise MRI data, brain atlases, Principal 

Component Analysis and how principal components may be interpreted when applied 

to structural MRI data. These concepts are central to all my empirical chapters.  

 The pipeline in Fig.3 generates interindividual indices of structural brain 

network connectivity: first, measures of cortical morphometry (e.g., cortical volumes) 

are extracted from structural MRI images on a vertex-wise basis using toolkits such as 

FreeSurfer (Fischl et al., 2002) (Fig.3A). In surface-based analyses (as implemented 

in FreeSurfer), vertices are thousands of points in a coordinate system (the “cortical 

mesh”) that are projected onto brain scans in order to make brain scans comparable 

between study participants. Subsequently, vertex-wise cortical measures of an 

individual are summarised for every region of a chosen brain atlas that dictates which 

vertices collectively form a brain region (Fig.3B). Brain atlases aim to delineate 

boundaries of functionally, micro-structurally, macro-structurally, or otherwise 

distinct brain regions. It is at the researcher’s discretion which of the many existing 

brain atlases to employ. Popularly-used brain atlases include the Desikan-Killiany 

atlas (68 regions, Desikan et al., 2006), and the Schaefer atlas (500 regions, Schaefer 

et al., 2017).  

 Subsequently, structural connectivity across brain networks is inferred by 

calculating correlations among morphometric measures (e.g., volume) of brain 

regions. Correlations between brain volumes are assumed to indicate the strength of 



 

17 

 

connectivity within a structural brain network (Fig.3C). The pipeline uses Principal 

Component Analysis (PCA) to reduce dimensionality and extract general dimensions 

of brain morphometry 3  underlying a structural brain network. PCA linearly 

decomposes the structural correlations across brain regions and provides principal 

component (PC) loadings to quantify how much each region contributes to general 

dimensions of brain morphometry underlying a brain network. PC loadings are 

interpreted to indicate how representative (or important) each region is to overall 

brain morphometry in the brain network (Fig.3D). For example, Madole et al. (2021) 

find that frontal and parietal brain regions have particularly large PC loadings onto a 

general dimension of brain morphometry3 underlying the whole brain which indicates 

that frontal and parietal regions are particularly representative of (or important for) 

overall brain morphometry.  

 Finally, Fig.3E constructs PC-weighted sum scores to represent how well 

integrated brain networks are in each sample participant. These PC-weighted scores 

sum up multiple regional brain measures multiplied by each regions’ PC loading, to 

serve as a composite score of structural brain connectivity (or integrity). Out-of-

sample predictions showed that those sum scores are associated with multiple 

domains of individual-level cognitive ability (Madole et al., 2021). It is an advantage 

of this pipeline that general dimensions of brain morphometry extracted using PCA 

are less noisy and more reliable than considering isolated brain regions. 

 

3 The term general dimensions of brain morphometry is used in Chapter 4 and Chapter 6 to describe 
principal components underlying multiple brain volumes extracted using PCA. General dimensions of 
brain morphometry may be interpreted as indirect indices of brain connectivity or brain integrity within 
the considered structural brain network. 
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1.2.3 Combining evidence from studies considering structural 

and functional MRI  data  

 Structural and functional MRI research are often separate research fields, but 

this thesis posits that considering evidence from both structural and functional MRI 

data may allow studies to more accurately approximate brain organisation. After all, it 

is reasonable to expect that functionally connected brain regions should also be 

physically connected, or at least be largely constrained by their surrounding anatomy. 

This idea motivates more comprehensive study designs of structural MRI data to take 

into account the functional MRI literature that characterised canonical brain networks 

(as described in Section 1.2.1).  

 Studies have systematically examined the role of functionally defined brain 

networks in interindividual differences of structural grey matter. These studies used 

approaches detailed in Section 1.2.2 to model structural brain networks (Fig.3). The 

selection of brain regions included in a structural brain network was decided with 

reference to functional MRI studies (Hilger et al., 2020; Madole et al., 2021). That is, 

according to functional MRI studies, the central executive network comprises eight 

frontal and parietal regions, and based on these functional MRI results, researchers 

defined the central executive network in structural MRI investigations. This approach 

has produced conflicting evidence about how these functionally-informed structural 

brain networks are associated with cognitive ability. Section 1.2.3 below focuses on 

Madole et al. (2021), a 2021 study with the largest sample size (N = 8,185). I will revisit 

how the findings by Madole et al. conflict with other studies in Section 1.2.5.  

 Following the pipeline in Fig.3, Madole et al. (2021) modelled PCs underlying 

the whole brain, as well as PCs underlying nine structural brain networks whose 
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corresponding regions reflected canonical functional brain networks. Among others, 

the canonical networks included the default mode, central executive, and salience 

networks. To obtain even more robust and multidisciplinary-informed brain network 

characterisation, the authors converged additional evidence from DTI and lesion-

based studies (e.g., Bressler & Menon, 2010).  

 The study by Madole et al. (2021) showed that the central executive network 

played a disproportionately important role – relative to other brain networks – in 

multiple domains of cognitive ability, including processing speed, visuospatial ability, 

and memory (Madole et al., 2021). More specifically, the first PC underlying the whole 

brain (83 regions) and the first PC underlying the central executive network (8 

regions) were equally strongly associated with cognitive ability (r visuospatial ability ~0.4, r 

processing speed ~0.25). The central executive network was most strongly associated with 

cognitive ability when the analysis was adjusted for its small brain network size. This 

supported the notion that the central executive network – with its eight frontal and 

parietal regions – is a neuronal correlate of cognitive ability more biologically specific 

than the whole brain. Additionally, central executive regions had high PC loadings 

onto a whole brain PC indicating that central executive regions well represent overall 

brain morphometry and brain organisation. 

  The Madole et al. (2021) study also considered age as an influential factor for 

the relationship between brain morphometry and cognitive ability. It demonstrated, 

using cross-sectional data, that central executive regions were more strongly 

associated with age than other brain regions. Counter-intuitively, this finding suggests 

that regions more centrally important to overall brain morphometry (i.e., regions that 

have large PC loadings onto a PC underlying the whole brain) are also most important 

for cognitive ability, while they tend to decline in volume most rapidly. A possible 
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explanation may be that central executive regions tend to be used more intensely 

throughout the lifespan which may put central executive regions under distinctive 

metabolic strain, accelerating their age-related atrophy compared with other regions. 

In sum, Madole et al. (2021) demonstrated that the central executive network is, 

considering its small size, most associated with cognitive ability, and that age-related 

brain atrophy may contribute to this association. It is the aim of Chapter 4 of my thesis 

to triangulate these insights using novel technology.  

1.2.4. Brain ageing 

 Madole et al. (2021) demonstrate that comprehensively describing the 

relationship between brain morphometry and cognitive ability must consider ageing 

as they simultaneously decline throughout later adulthood (Salthouse, 2010). Older 

age is associated with larger ventricles (Resnick et al., 2003), and weaker connectivity 

in functional and structural brain networks (Ferreira & Busatto, 2013; Wu et al., 2013). 

Different brain regions atrophy at different speeds, whereby frontal and temporal 

brain regions may decline the most with increasing age (Raz et al., 2010).  

 Structural MRI research has devoted much attention to the brain age gap, a 

proposed brain biomarker of ageing and health. The brain age gap is derived from the 

relationship among age and brain morphometry including grey and white matter. 

Machine learning approaches are typically used to characterise the relationship 

between age and MRI data which allows out-of-sample predictions of an individuals’ 

brain age based on their brain scans (Cole & Franke, 2017). The brain age gap 

expresses how much older (or younger) an individual’s brain may appear relative to 

their chronological age. It is calculated as the difference between chronological age 

and age predicted from MRI scans. In healthy populations, older brain age (i.e., a 
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larger brain age gap) indicates a person’s ageing is accelerated compared with their 

peers, and older brain age predicts worse cognitive ability (e.g., Cole et al., 2018). 

 Due to issues with data availability, only few longitudinal studies of brain 

ageing exist. This is unfortunate as they allow more reliable models of brain change 

than the cross-sectional investigations discussed above. As opposed to MRI scans at 

only one point in time, repeated MRI scans enable disentangling brain atrophy (i.e., 

decline in brain volume occurring from one measured time point to the next), from 

lifelong brain features that remain stable between measured time points. Using 

repeated MRI measures (N = 1,091), Cox et al. (2021) discovered that age-related brain 

atrophy across the 8th decade of life was common between brain regions, and that one 

principal dimension accounted for 66% of brain-wide changes across the Lothian Birth 

Cohort. This showed that much of the age-related atrophy happens in parallel and is 

coordinated across brain regions. This principal brain atrophy dimension was 

correlated with longitudinally measured decline in general cognitive ability (r = 0.43), 

visuospatial ability (r = 0.41), processing speed (r = 0.38), and memory (r = 0.37). 

This illustrates the fundamental role age plays in the relationship between brain 

morphometry and cognitive ability, and that it must be considered when exploring 

their relationship.  

1.2.5 Lack of methodological consensus in the investigation of 

structural brain network correlates of cognitive ability  

 To establish the central executive network as a reliable neuronal correlate of 

cognitive ability, it is important to replicate their small to moderate correlation (r 

~0.25-0.4) (Madole et al., 2021). However, results are inconsistent across studies 

which may be due to a lack of methodological consensus. Hilger et al. (2020) (N = 308) 
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showed that whether cognitive ability is significantly correlated with structural brain 

networks depends on two things: First, the detection of a significant correlation was 

conditional upon the brain atlas that was used to subdivide brain images into regions 

(Fig.2B). Hilger et al. (2020) demonstrated that an out-of-sample prediction of 

cognitive ability was only significant when brain images were subdivided into 400 

Schaefer atlas regions (Schaefer et al., 2017), as opposed to hundreds of thousands of 

brain regions (~500k voxels4). Second, a statistically significant correlation between 

structural brain networks and cognitive ability was conditional upon whether total 

brain size was included in statistical analyses as a covariate. 

 Structural MRI studies commonly adjust for total brain size as a covariate. 

Researchers argue that brain size adjustment enables them to determine whether the 

relationship between certain brain regions and cognitive ability is independent of total 

brain size (i.e., whether the correlation persists above and beyond variance accounted 

for by the whole brain). Studies adjusting for total brain size aim to avoid 

misattributing a significant association between cognitive ability and a brain region, 

when instead the whole brain may confound or entirely drive the association. Hilger 

et al. (2020) found no evidence for an association between structural brain networks 

and cognitive ability with total brain size adjustment. Hence, Hilger et al. (2020) 

concluded that cognitive ability is associated with global rather than region-specific or 

network-specific brain features. 

 Conclusions by Hilger et al. (2020), that brain network-specific correlates of 

cognitive ability do not exist, stand in conflict with conclusions by Madole et al. (2021) 

 

4 Hilger et al. used voxel-based morphometry (VBM) to estimate local grey matter volume. In VBM, grey 
matter is estimated at each of ~500,000 voxels, which are three-dimensional building blocks that 
represent the smallest image resolution from a brain image. VBM is an alternative cortical modelling 
approach to surface-based modelling employed in FreeSurfer, for example.  
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(Section 1.2.3). Madole et al. argue that the central executive network harbours 

cognitive ability. Hilger et al. (2020) and Madole et al. (2021) methodologically differ 

by adjusting or not adjusting for total brain size, and in their brain atlas choice: Madole 

et al. (2021) did not adjust for brain size and used the Desikan-Killiany brain atlas 

(Desikan et al., 2006). This illustrates the importance of seemingly trivial 

methodological choices leading to differing conclusions of these studies, where Madole 

et al. (2021) report localised neuronal correlates of cognitive ability, but Hilger et al. 

(2020) only report global brain-wide correlates. 

 The lack of methodological consensus – surrounding covariate control and 

brain atlas choice – is one of many challenges faced by structural MRI studies. 

Neuroimaging grapples with inadequate statistical power and large sampling 

variances due to small sample sizes. A study from 2022 demonstrated that 

reproducible MRI analyses require thousands of participants, but that the median 

sample size is only ~25 participants (Marek et al., 2022). Sufficiently large samples are 

rare because they are expensive to collect (~£10 million for 10,000 participants; 

www.ukbiobank.ac.uk). Only a few initiatives link cognitive data with MRI scans of 

thousands of participants including the UK Biobank (UKB; Littlejohns et al., 2020), 

and the Adolescent Brain Cognitive Development (ABCD) study (Casey et al., 2018). 

My thesis focuses on large-scale samples with thousands of participants, and I will 

therefore assume, by and large throughout the thesis that analyses are sufficiently 

powered. 

 Artefact correction in structural MRI data is another methodological choice that 

can alter associations found in structural MRI data (e.g., Botvinik-Nezer et al., 2020). 

Artefacts impact the quality of MRI images and their suitability for interindividual 

comparisons, for example, through participants’ movement in the scanner, through 

https://www.ukbiobank.ac.uk/explore-your-participation/contribute-further/imaging-study
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differences in brain sizes and shapes between participants, and through low signal to 

noise ratios. To make MRI scans comparable between participants, technical artefacts 

are corrected using motion correction, spatial normalisation, and smoothing. An in-

depth discussion of these artefact correction techniques is beyond the scope of this 

thesis. The UK Biobank and ABCD studies provide researchers with structural brain 

measures already pre-processed which ensures uniform artefact correction. Hence, I 

assume that technical artefacts have successfully been dealt with in these large-scale 

samples. Instead, I will focus on issues that arise at a later stage of analysis, namely 

the statistical modelling of brain morphometry and its association with cognitive 

ability.  

1.2.6 A focus on exploratory structural MRI research 

 In this thesis, I put emphasis on exploring potential reasons for conflicting 

evidence about the relationship between brain morphometry and cognitive ability. The 

fact that studies have produced conflicting conclusions may highlight a major 

problem: structural MRI studies may not be sufficiently equipped to test very specific 

hypotheses through confirmatory research. As brain organisation remains 

incompletely understood, we may be testing premature and unspecific hypotheses. 

When research fails to reproduce results and hence reach coherent conclusions, the 

underlying problem may lie in the setup of statistical models. Essential knowledge may 

be missing to make optimal analytical decisions which impedes meaningful hypothesis 

testing (Scheel et al., 2021).  

 Researchers must make many analytical decisions including selecting 

appropriate covariates and optimal brain atlases, and those decisions directly impact 

study results. For example, I outlined above (Section 1.2.5) that decisions about 
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whether to adjust for brain size as a covariate and decisions about which brain atlas to 

use in a study dictate whether structural brain networks are found to be significantly 

correlated with cognitive ability (Hilger et al., 2020). These important decisions lack 

consensus and are rarely explicitly justified in publications giving the impression that 

some decisions may be pure guesswork. For instance, studies investigating the 

association between brain morphometry and cognitive ability commonly adjust for 

brain size as a covariate (Williams et al., 2022), but studies also commonly do not 

include brain size as a covariate (Cox et al., 2019). Studies widely differ in their chosen 

brain atlas, and they do not tend to justify why a certain brain atlas seemed the most 

appropriate. Hence, in addition to testing for associations between structural brain 

networks and cognitive ability, empirical work presented in this thesis aims to address 

arbitrary decision-making surrounding covariate control and brain atlas choice. 

Chapter 2, Chapter 3 and Chapter 5 perform exploratory, and hypothesis-free – rather 

than confirmatory – groundwork to optimise the meaningful inputs, which future 

studies may feed to the hypothesis-testing machinery. In the future, work presented 

in this thesis may inform more transparent and testable hypotheses, which may be the 

key to determining how to ask where cognitive ability is anchored in the brain.  
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1.3 Challenges and opportunities of a genetic level of analysis 

 Investigating the relationship between cognitive ability and brain morphometry 

by using genetic analysis designs presents opportunities to perform this exploratory 

groundwork from a novel biologically informed perspective. However, integrating 

millions of genetic components for each study participant adds another dimension of 

complexity to the investigation of the brain and its many regions. It is the aim of the 

following sections to describe genetic analysis techniques that allow straightforwardly 

incorporating genetic information in the analysis of structural MRI data. Section 1.3.1 

describes genome-wide association studies, and Section 1.3.2 explains the concept 

behind Linkage Disequilibrium Score Regression (LDSC). These two methods 

facilitate the calculation of heritability5  and genetic overlap6 which have previously 

been used to quantify shared genetic aetiology between cognitive ability and brain 

morphometry (Section 1.3.3). Section 1.3.4 outlines how the integration of LDSC into 

multivariate methods promises opportunities for innovative analysis of cognitive and 

structural MRI data. These opportunities have shaped the study designs chosen in 

Chapter 2, Chapter 3 and Chapter 4. 

 

 

5 Heritability is the extent to which genetic differences between people can account for trait differences 
between people. For example, cognitive ability is 50% heritable (Deary et al., 2009) which means that 
50% of the differences between peoples’ cognitive ability systematically cooccur with genetic differences 
between them.  

6 Genetic overlap is the extent to which two traits share genetic aetiology. How heritability and genetic 
overlap are calculated is outlined in Section 1.3.2. 
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1.3.1 Genome-wide association studies 

 Genome-wide association studies (GWAS) consider large-scale samples of 

unrelated individuals to identify genetic markers associated with human traits. In 

GWAS we perform mass-univariate testing across the genome, whereby millions of 

genetic markers – that are known to vary between people (“single nucleotide 

polymorphisms”; SNPs) – are tested for their statistical association with a trait; for 

example, cognitive ability. SNPs are intercorrelated which means that GWAS tend to 

index clusters of SNPs that may collectively, in a gene for example, influence the 

manifestation of a trait (Visscher et al., 2017).  

 It is a well-established characteristic of the human genome that SNPs have a 

complex correlation structure among them. This complex correlation structure – also 

referred to as linkage disequilibrium (LD) – is the product of historical evolutionary 

pressures, including mechanisms involving gene mutations, gene recombination, and 

natural selection (Visscher et al., 2017). LD is mathematically expressed as the squared 

LD score correlation coefficient (r2) of a SNP with all other SNPs across the genome, 

which means that a SNP that frequently co-occurs with many other SNPs receives a 

larger r2 estimate.  

 LD structures across the population have been extensively studied. LD differs 

substantially between broad ancestry groups (Shi et al., 2020), and a standard record 

of LD across European ancestry is freely available online (URL). European populations 

remain, to this date, the most genetically researched ancestry group (Mills & Rahal, 

2019). To obtain sound GWAS discoveries, SNPs included in a GWAS must be 

representative of the population-wide (ancestry-specific) LD landscape surrounding 

them. Specifically, SNPs included in a GWAS should have correlations with other SNPs 

https://utexas.app.box.com/s/vkd36n197m8klbaio3yzoxsee6sxo11v
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as expected based on the LD correlation structure at their genomic location because it 

is possible that the GWAS may not have included the SNP driving causal genetic signal. 

When SNPs are representative of their LD landscape, the GWAS will still pick up the 

causal genetic signal (of the SNP that was not included) through its correlated SNPs 

included in the GWAS (Wray, 2005). That many genetic analyses require LD 

representative SNPs is also the reason why many genetic studies only consider samples 

of homogeneous ancestry (e.g., White European only). 

  Typically, GWAS reveal hundreds of SNPs significantly associated with traits, 

such as cognitive ability and brain morphometry. Hence, cognitive ability and brain 

morphometry are described as polygenic and complex. One major endeavour in 

genetics research is to account for LD, at the same time as disentangling which 

independent biological pathways may causally lead from genes to the manifestation of 

a trait (e.g., de Leeuw et al., 2015; van der Meer et al., 2020). This however is not the 

focus of this thesis. 

 Instead, I will focus on GWAS summary statistics, which are the primary 

output of a GWAS. GWAS summary statistics are a hypothesis-free summary of 

genome-wide associations between millions of genetic markers and a trait of interest. 

Researchers publicly share GWAS summary statistics, which can be safely done 

because individual-level information is untraceable in the summary-level GWAS 

summary statistics, overcoming data privacy concerns. GWAS summary statistics are 

routinely used in follow-up analyses, for example, to infer heritability of one trait, as 

well as genetic overlap between two traits. 
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1.3.2 Linkage Disequilibrium Score Regression  

 Multiple analysis techniques may be used to quantify heritability and genetic 

overlap, but this thesis focuses on Linkage Disequilibrium Score Regression (LDSC). 

LDSC utilises GWAS summary statistics to calculate heritability and genetic overlap 

estimates. Heritability is the proportion of trait variance that can be explained by 

genetic factors. Genetic overlap estimates the extent to which two traits share genetic 

aetiology. It marked an influential discovery in the field of statistical genetics when 

Bulik-Sullivan, Loh, et al. (2015) found that the polygenic signal indexed by GWAS 

systematically relates to LD structures. They discovered that a trait was heritable and 

yielded non-zero genome-wide signal in a GWAS, if SNPs with high LD across the 

genome (i.e., SNPs with a large r2 LD score estimate) also tended to be the SNPs most 

associated with the trait. This systematic relationship between LD and GWAS 

associations reflects that a SNP with high LD has greater chances – than SNPs with 

low LD – to pick up on signal driven by genetic mechanisms that are causal (i.e., 

driving the signal of association) on the trait. This phenomenon is due to the fact that 

SNPs with low LD are less likely to be correlated with other markers in the genome, 

including the ones driving the association between genetic markers and the trait of 

interest. 

 On this basis, the overall extent to which a trait is associated with genetic 

markers (i.e., heritability) can be simply expressed as a linear regression of LD scores 

against genetic trait correlates from GWAS summary statistics. This routinely used 

method is named univariate LDSC. It separates signal that systematically maps onto 

LD structure (regression slope), from signal that does not systematically relate to LD 

structure (regression intercept). The former is often referred to as SNP-heritability. 
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The regression intercept features the error term and well-approximates confounding 

factors such as population stratification (Bulik-Sullivan, Loh, et al., 2015). LDSC 

assumes that many SNPs collectively affect complex traits in an additive fashion, and 

it does not account for SNP-SNP interactions or dominance effects, for example.  

 Quantifying genetic correlations between two traits using bivariate LDSC 

follows this same principle, but considers the SNP-wise product between GWAS 

correlates of two traits: Specifically, a linear regression is calculated between LD scores 

and the product between genetic trait correlations that were taken from two different 

trait-specific sets of GWAS summary statistics (Bulik-Sullivan, Finucane, et al., 2015). 

The slope from this bivariate LDSC provides an estimate of the genetic overlap 

between the two traits and is expressed through a correlation coefficient (rg) between 

-1 and 1. In addition to population stratification, the bivariate LDSC intercept also 

accounts for sample overlap. This means that the two sets of GWAS summary statistics 

can have been derived from the same sample or two different ones, but the LDSC slope 

estimate of the genetic trait correlation will not inflate if GWAS samples overlapped.  

 Heritability and genetic overlap estimates discussed below were almost 

exclusively derived from White European population because LD structures differ 

between broad ancestry groups. This means LDSC must consider homogeneous 

ancestry groups to produce sensible results. Genetic analyses were limited to White 

Europeans due to data availability at the time of writing. It would have been preferable 

to include other ethnic groups, but unfortunately data featuring genetic, structural 

MRI, and cognitive data were not readily available for those populations to ensure 

sufficient statistical GWAS power. Genetic findings discussed below are therefore 

limited in their generalisability to more diverse populations.  
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1.3.3 Genetic correlates of cognitive ability and brain 

morphometry  

Different genetic methods, including but not limited to LDSC and GWAS, have shown 

that all human traits are heritable (Turkheimer, 2000) which extends to cognitive 

ability, regional, as well as total brain volume (Table 3). The robust phenotypic 

relationship between total brain volume and cognitive ability (discussed in Section 1.2) 

was established to be due to genetic factors (rg = 0.24), mainly implicating genes 

involved in regulating cell growth (Jansen et al., 2020). The literature quantifying a 

genetic relationship between cognitive ability and brain regions, rather than the whole 

brain, is as inconsistent as the phenotypic literature discussed above. To my best 

knowledge, Biton et al. (2020) is the only study that considered regional volumes 

unadjusted for total brain size. Biton et al. (2020) reported positive genetic 

correlations between cognitive ability and seven brain regions at approximately half 

the magnitudes (range rg = 0.07-0.13) as Jansen et al. (2020) obtained for total brain 

volume (rg = 0.24).  
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Table 3. Twin and SNP-heritability estimates for intelligence and brain volumes. 

Trait Twin 

heritability a 

SNP-

heritability b 

Number of 

associated GWAS 

loci 

Cognitive ability 50% 1 25% 2-4 187 5 

Total brain volume 83% 6 66% 7 5 8 

Regional brain 

volumes 

~30-80% † 6 ~55-65% * 7,9 365 (total number for 

multiple regions) * 8 

Example regions below 

Volume in the 

inferior parietal 

gyrus 

12% † 10 21% * 7 0 * 8 

Volume in the 

superior parietal 

gyrus 

58% † 10 49% * 7 8 * 8 

Volume in the 

inferior parietal 

gyrus 

12% † 10 21% * 7 11 * 8 

a Twin heritability indicates the proportion of interindividual trait variance (in cognitive ability, for 
example) that can be attributed to genetic factors. Twin heritability is quantified based on the 
comparison of monozygotic and dizygotic twins, who share 100% and ~50% of their genetic makeup, 
respectively. The twin method gives broad-sense heritability estimates which includes additive, as well 
as non-additive sources of genetic effects, including genetic dominance and SNP-SNP interactions. b 
SNP-heritability indicates the proportion of interindividual trait variance in the narrow-sense, which 
refers to additive effects of independent genetic alleles. Narrow-sense heritability can be inferred via 
LDSC or other methods relying on unrelated individuals, such as Genome-wide Complex Trait Analysis 
(GCTA) (Yang et al., 2011). Broad sense heritability should always be larger than narrow sense 
heritability, but the table shows that this is not the case for the volume in the inferior parietal gyrus. I 
suggest this may be due to statistical power as the broad-sense estimate10 (N = 486) is from a study 9 
years older than the narrow-sense heritability7 (N ~9,000). Estimates may also not be directly 
comparable as some have been adjusted for brain size as a covariate and others have not.  

† Calculated excluding brain size as a covariate. * Calculated including brain size as a covariate. 1 Deary 
et al. (2009); 2 Davies et al. (2015); 3 Plomin et al. (2013), 4 Savage et al. (2018); 5 Hill et al. (2019);  
6 Blokland et al. (2012); 7 Zhao, Ibrahim, et al. (2019); 8 Zhao, Luo, et al. (2019); 9 Biton et al. (2020); 10 
Winkler et al. (2010)  
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 These positive genetic correlations between cognitive ability and brain regions 

reported by Biton et al. (2020) stand in conflict with findings from studies adjusting 

for brain size, as they obtained estimates of genetic correlations between cognitive 

ability and brain regions near zero, or even negative estimates (e.g., smallest rg = -0.12 

between intelligence and caudate; de Vlaming et al., 2021) (see also Grasby et al., 

2020; Zhao, Luo, et al., 2019). This demonstrates that adjusting for brain size as a 

covariate alters genetic correlations as much as phenotypic correlations, producing a 

largely inconclusive body of evidence. To the best of my knowledge, previous genetic 

studies have also not yet quantified the genetic overlap between cognitive ability and 

structural brain networks, as opposed to considering isolated brain regions. Modelling 

multivariate brain networks at the level of their underlying genetic architecture and 

assessing the genetic overlap between brain networks and cognitive ability may allow 

for more robust analyses, than considering isolated regions only. Such multivariate 

models may also help gain a more biologically informed understanding of their 

relationships with one another.  
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1.3.4 Opportunities emerging from adopting a genetically 

informed level of analysis  

  Considerable advantages emerge from employing inter-disciplinary, 

genetically informed analysis techniques to the relationship between cognitive ability 

and brain morphometry. Firstly, LDSC allows one to straightforwardly integrate 

genome-wide data into structural MRI analyses. The bivariate LDSC framework 

reduces genome-wide information to a single estimate of genetic overlap between two 

traits. As such, LDSC dictates a standardised procedure to reducing dimensionality 

across millions of genome-wide markers, which is easily applied to GWAS summary 

statistics of cognitive ability and structural MRI phenotypes.  

 Secondly, the LDSC framework provides practical advantages that facilitate 

accessible integration of genome-wide information. LDSC genetic analyses are not 

restricted by the rarity of large data sets that simultaneously assessed cognitive ability, 

genetic and structural MRI data, because genetic overlap can be inferred from two sets 

of GWAS summary statistics calculated in separate samples. LDSC analyses rely on 

freely available GWAS summary data and do not require sensitive individual-level 

genetic data often blocked by bureaucracy or paywalls. Thus, researchers can always 

integrate the newest, and most powerful GWAS summary statistics in their own 

studies.  

 Thirdly, genetic studies provide opportunities to replicate and validate known 

phenotypic correlations using innovative technology. This assumption considerably 

influenced Chapter 2 and Chapter 4 where I triangulate phenotypic correlations 

between cognitive ability and brain morphometry using genetically informed methods. 

Based on a review of mostly animal studies, James Cheverud (Cheverud, 1988) 
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suggested that phenotypic correlations broadly mirror genetic correlations, and that 

they can be treated as proxies of one another. Cheverud’s Conjecture remains to be 

widely accepted to apply to different traits and species including humans. Using LDSC, 

a 2018 study delivered compelling evidence that Cheverud’s Conjecture indeed applies 

to human morphological traits. Specifically, phenotypic and genetic correlations were 

comparable in magnitude, but on average, genetic correlations tended to be slightly 

larger than phenotypic ones (Sodini et al., 2018). If Cheverud’s Conjecture holds for 

associations between cognitive ability and brain morphometry, genetic analyses 

should allow validating previous phenotypic findings from a biologically informed 

perspective. 

 Finally, it is an advantage that interpreting results from genetic analyses may 

be biologically simpler than results from phenotypic analyses. Compared to 

phenotypic analyses, I suggest that genetic analyses such as LDSC may be more 

objective as they bring statistical inferences closer to the underlying biology. 

Theoretically, estimates of genetic overlap should be free of environmental 

confounding, at least of environments that are not heritable (van Rheenen et al., 2019). 

Hence, these advantages may allow genetic analyses using LDSC to describe the 

biological relationship more objectively between cognitive ability and brain 

morphometry. 

 To validate phenotypic findings using genetic data, sophisticated methods are 

required that facilitate complex models of multiple traits on the level of their 

underlying genetic architecture. Building on genetic correlation matrices derived 

using bivariate LDSC, GenomicSEM is a genetic multivariate approach that enables 

testing exploratory as well as confirmatory hypotheses of complex trait 

interdependencies (Grotzinger et al., 2019). Using GenomicSEM, de la Fuente et al. 
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(2021) demonstrated that genetic correlations among multiple cognitive abilities 

mapped well onto one single underlying factor of cognitive ability (g-factor). This 

genetic g-factor was very similar to the phenotypic g-factor previously described by 

Spearman (1904) (Fig.1). In line with Cheverud’s Conjecture, these genetic analyses 

helped triangulate that variance across multiple cognitive abilities can be explained 

best by one latent factor that causes individuals’ cognitive test performances. In the 

same way that de la Fuente et al. (2021) validated the g-factor structure using genetic 

methods, genetic analyses should also help validate phenotypic relationships between 

cognitive ability and brain morphometry, as well as generate novel biologically 

informed insights. 
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1.4 Aims and structure of the thesis 

 To date, structural MRI studies have delivered conflicting evidence about how 

brain morphometry relates to cognitive ability (the g-factor) which may be due to a 

lack of methodological consensus. By systematically evaluating methodological 

decisions, studies in this thesis aim to help reduce some of the arbitrary decisions 

made across structural MRI studies. Investigations focus on the inclusion of brain size 

as a covariate in statistical models, as well as brain atlas choices that determine how 

participants’ brain images are subdivided into regions. Informed by such exploratory 

groundwork, studies aim to characterise the relationships more robustly among 

structural brain networks, cognitive ability, and age-related processes. 

 Chapter 2 performs an exploration of how adjusting for brain size as a covariate 

impacts the statistical relationship between brain regions and cognitive ability. It 

delivers evidence weighing against brain size adjustment which informs analytical 

decisions in the following chapters.  

 Inspired by multivariate genetics techniques such as GenomicSEM (Grotzinger 

et al., 2019), Chapter 3 derives and validates Genomic Principal Component Analysis 

(Genomic PCA) to add to the existing toolset of multivariate analysis techniques that 

model associations across multiple traits based on their genetic overlap.  

 Using Genomic PCA, Chapter 4 mirrors the phenotypic approach used by 

Madole et al. (2021) to triangulate on a genetic level of analysis whether the central 

executive brain network plays an important and replicable role in cognitive ability and 

healthy ageing.  

 Chapter 5 explores multiple brain atlases that may be used to subdivide 

participants’ brain images into regions. The study compares commonly used atlases to 
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deliver evidence which atlas may be most appropriate to maximise brain-based 

predictions of cognitive ability and other behavioural traits.  

 A final discussion chapter (Chapter 6) considers the overall significance and 

limitations of the presented work. It also discusses future directions and the benefits 

of multi-disciplinary studies integrating genetic and MRI data. I elaborate that 

interdisciplinary studies may be necessary to drive a more comprehensive 

understanding of the brain as an interconnected system, that depends upon many 

complex genetic, environmental, and developmental factors. 
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Chapter 2 

 

Whether to adjust for total brain size: An 

investigation of the links between regional brain 

morphometry and cognitive ability 
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1. Introduction 

 Brain size is the most robust neuronal correlate of cognitive ability (r = 0.25) 

(Lee et al., 2019; Pietschnig et al., 2015), but no reliable associations between regional 

brain morphometry and cognitive ability were found. Studies on healthy individuals 

investigating associations between regional brain volumes and cognitive ability 

produced inconsistent results (e.g., Jung & Haier, 2007). Due to these heterogeneous 

results, a 2020 study concluded that cognitive ability may have no correlates of 

localised brain morphometry beyond the association between cognitive ability and 

total brain size (Hilger et al., 2020). Likely reasons for these heterogeneous results are 

that the underlying studies are statistically underpowered with sample sizes of a 

median of 25 individuals (Marek et al., 2022). Furthermore, these studies use 

methodology inconsistently. 

 One methodological inconsistency is covariate control. Some studies of regional 

brain correlates of cognitive ability adjust for brain size while others do not (Fig.1). 

This analytical decision can drastically alter findings such that it can invert the 

direction of the association (i.e., from positive to negative; Peelle et al., 2012). To 

improve transparency, it has been suggested that brain imaging studies should report 

both brain size-adjusted and unadjusted results (O'Brien et al., 2011). Yet simply 

reporting both is no satisfactory solution because it is unclear how to interpret an 

association that is positive when unadjusted for brain size but becomes negative when 

adjusted for brain size. 
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Fig.1. Model from which correlations of interest are derived in this chapter.  

(A) Directed acyclic graph displaying the relationship of interest in the context of the confounder scenario implied by studies adjusting for a covariate. The 
correlations between 66 regional brain volumes and one of five different cognitive ability definitions is assessed before and after adjusting for brain size as a 
covariate. The arrows connecting total brain size with regional brain size and cognitive ability are directed outwards to reflect a confounder scenario, which is 
implied by studies that adjust for total brain size as a covariate. (B) Venn Diagram displaying overlapping variances between cognitive ability, total brain size 
and regional brain size. This Venn diagram demonstrates how variances may overlap in the relationship of interest. Variance uniquely shared between cognitive 
ability and regional brain size is considerably smaller after (than before) adjusting for total brain size, because variance associated with total brain size (white 
circle) is discarded as nuisance when TBV is adjusted for as a covariate. 
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 Researchers rarely explicitly outline their reasons for adjusting for brain size. 

Not adjusting associations for brain size enables more intuitive interpretation: an 

unadjusted brain volume should be proportional to the amount of cellular material in 

mm3 in this specific region. A measure of unadjusted brain volume is, therefore, 

directly translatable, for example, to judge whether someone’s brain size is healthy 

compared with population-based brain growth charts (Bethlehem et al., 2022). There 

seems to be no consensus whether grey matter volume reflects specific neurobiological 

attributes, but most researchers postulate that volume is a proxy of neuron number 

per mm3 (e.g., Genç et al., 2018). Hence, researchers interpret that a positive 

correlation between brain volume and cognitive ability indicates that greater neural 

mass leads to higher cognitive ability (Herculano-Houzel, 2017). However, if we 

considered unadjusted regional brain correlations with cognitive ability in isolation, 

their magnitude is likely partially driven by the correlated variance between regional 

and total brain volumes (Fig.1B). Brain size-unadjusted correlations fail to isolate 

whether those correlations are driven by regional or total brain morphometry.  

 Following this line of reasoning, studies tend to adjust for brain size as they 

wish to identify purely regional brain correlates (independent of total brain size). In 

doing so, they treat inter-individual variance accounted for by total brain size as 

nuisance variance 7 (e.g., Hilger et al., 2020). Taking this approach, researchers avoid 

misattributing statistically significant associations between a brain region and 

 

7 I use the term nuisance variance in this chapter to refer to the variance indexed by a covariate. I 
assume that researchers chose to adjust for a covariate because they decided that the covariate 
confounds the relationship of interest and captures variance that is of no interest to their research 
question. Hence, researchers adjust for covariates because they understand variance associated with 
the covariate to be an inconvenience to their statistical model (i.e., nuisance variance). I assume that 
researchers adjust for covariates in order to discard of the nuisance variance which they believe makes 
their results less biased and more reliable. 
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cognitive ability to the region when the association may be confounded by total brain 

size (Pietschnig et al., 2015) or body size (taller people tend to have larger brains and 

better cognitive ability; Jerison, 1973). Many studies of healthy brains that adjust for 

brain size may intend to imitate lesion studies, which can identify whether individual 

brain regions may be necessary for specific cognitive abilities (e.g., Gläscher et al., 

2009). Lesion studies differ from large-scale healthy studies in that they typically 

examine small groups of patients with localised brain damage. 

 Compared to an unadjusted regional brain volume, it is more challenging to 

illustrate the biological interpretation of a brain size-adjusted volume. It has been 

suggested that it may reflect brain regional deviations in neuron number beyond the 

expected neuron number with reference to someone’s whole brain size (Hilger et al., 

2020). Practically, regional and total brain size cannot, however, exist in isolation 

because brain size is the sum of all regional brain volumes. Based on this definition, 

regional and total brain size will always correlate substantially. If we accept this fact, 

adjusting for total brain size introduces multicollinearity leading to statistical issues. 

The multicollinearity may be so extreme such that directions of associations may get 

inverted (i.e., flipped correlation signs). Suggestions how to interpret an inverted 

correlation between regional volume and cognitive ability are ambiguous. For 

example, Genon et al. (2022) suggest that “researchers should be aware that the 

interpretation of results is conditioned by such adjustments”. How brain size 

adjustment alters correlations between brain volumes and cognitive ability is unclear 

and no clear best practice on brain size adjustment exists in studies of interindividual 

differences. 

 This chapter characterises the impact of brain size adjustment on correlation 

estimates by exploring associations between cortical brain volumes and cognitive 



 

44 

 

ability. I calculated correlations between 66 regional volumes and cognitive ability 

before and after adjusting for total brain volume (TBV) in two large samples (Ntotal ~ 

50,000). For this I used five different definitions of cognitive ability. Furthermore, I 

applied three different analysis techniques to measure associations: phenotypic 

correlations, genetic correlations, and polygenic scores. The two latter genetic analysis 

techniques triangulate phenotypic correlations with genetic information. According to 

Cheverud’s Conjecture (refer to Section 1.3.4), genetic correlations should be of similar 

magnitude as phenotypic correlations (Cheverud, 1988; Sodini et al., 2018). 

Additionally, I simulated data to benchmark real-world correlational patterns against 

correlational patterns from simulated data that should reflect the hypothetical 

scenario that true correlations between regional volumes and cognitive ability only 

exist if unadjusted for TBV. 

 Statistical analyses in this chapter are broadly split into two analyses: Analysis 

1 and Analysis 2. Analysis 1 describes how brain size adjustment impacts the 

correlations between 66 brain volumes and cognitive ability. Analysis 1 focuses on the 

average impact of brain size adjustment across the 66 regions (cross-region approach). 

Analysis 2 focuses on each brain region individually by testing meta-analytically 

whether any region is reliably associated with cognitive ability across analysis 

techniques. I assume in Analysis 2 that a regional volume is truly associated with 

cognitive ability if I find consistent results across different analyses (multiple samples, 

cognitive ability definitions, and analysis techniques). 

 Since the existing literature on the relationship between brain morphometry 

and cognitive ability is heterogeneous, the working hypothesis of this mass-univariate 

approach is that there should be no reliable correlations between regional volumes and 

cognitive ability after TBV adjustment. To illustrate this, Fig.1 displays the relationship 
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of interest: if my hypothesis was true that there was no true correlation between 

regional brain volume and cognitive ability after TBV adjustment, the white circle in 

the Venn diagram (Fig.1B) would overlap with the entire area shared between 

cognitive ability and regional brain size. In this case, correlations between cognitive 

ability and regional brain size would either be zero or not consistently replicate across 

analyses. 
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2. Methods  

2.1. UK Biobank (UKB) cohort 

 The UK Biobank is an observational study collecting health-related information 

of half a million community-dwelling participants of middle and old age (40-69 years) 

across the United Kingdom (Sudlow et al., 2015). The Research Ethics Committee 

ethically approved the UKB study and participants signed informed consent. Data 

access was obtained through application 40933. Magnetic resonance imaging (MRI) 

data were collected using identical MRI scanners and software in Manchester, 

Newcastle, and Reading. Sixty-six regional Desikan-Killiany (Desikan et al., 2006) 

volume variables were generated by the UKB team and available for download (Alfaro-

Almagro et al., 2018; Smith, Alfaro-Almagro, et al., 2020). The frontal pole region is 

not provided in the UKB due to high missingness (URL). Total brain volume (TBV) 

measures were obtained from field ID 25010-2.0. The sample had a mean age of 64 

years (range 45.2-82.3) and included 21,217 females (52%; N = 39,947). 

 Individual-level performances in seven cognitive ability tests were provided in 

the UKB data: Verbal Numerical Reasoning (field ID 20016, 20191), Trail Making – B 

(field ID 6350, 20157), Matrix Pattern Completion (field ID 6373), Tower Rearranging 

(field ID 21004), Symbol Digit Substitution (field ID 23324 & 20159), Pairs Matching 

(field ID 399), and Reaction Time (field ID 200032). The first measurement was 

considered for each participant. Cognitive tests in the UKB are short and therefore 

non-standard, but they still have good concurrent validity (r = .83) and test-retest 

reliability (mean Pearson r = .55) compared with more comprehensive standard 

cognitive tests (Fawns-Ritchie & Deary, 2020). Based on the cognitive tests available 

in UKB, I performed a one-factor confirmatory factor analysis in the lavaan package 

https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind2005&L=UKB-NEUROIMAGING&O=D&P=4857
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in R (Rosseel, 2012) to extract a g-factor of cognitive ability. The g-factor should 

explain about 40% of the total variance across cognitive tests (Deary, Penke, et al., 

2010). Model fit of the g-factor was assessed  using standard fit indices: Comparative 

Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA) (Hu & Bentler, 

1998). 

2.2. Adolescent Brain Cognitive Development (ABCD) cohort 

 The ABCD cohort is an observational and longitudinal study tracking 

developmental trajectories of ~12,000 nine-to-eleven-year-olds. Participants were 

recruited at 21 sites across the United States of America (Garavan et al., 2018). 

Individuals were excluded based on practical considerations (e.g., inability to 

communicate in English), or based on specific developmental, neurological, or 

psychiatric problems (e.g., schizophrenia, autism). The study was ethically approved 

by each site’s Institutional Review Board. Written informed consent and assent was 

obtained from the participants and their parents.  Analyses presented here used the 

ABCD Annual Data Release 3.0 (https://abcdstudy.org/scientists/data-sharing/). 

MRI methods including harmonisation protocols across sites are described in Casey et 

al. (2018).  

 FreeSurfer processed cortical volume variables were available for download 

(file ID: abcd_smrip10201.txt). To match the MRI measures in the UKB, I downloaded 

66 Desikan-Killiany (Desikan et al., 2006) volumes and TBV (field ID: 

smri_vol_cdk_total). I did not include the frontal pole region in ABCD because the 

frontal pole was not available in UKB. More information on image processing is 

available online (https://nda.nih.gov/study.html?id=1299).  

https://abcdstudy.org/scientists/data-sharing/
https://nda.nih.gov/study.html?id=1299
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 Fluid and crystallised cognitive ability variables uncorrected for age (file ID: 

abcd_tbss01) were downloaded as standardised sum scores of test performances 

across six cognitive abilities measured in the National Institute of Health (NIH) 

Toolbox Cognition Battery (Akshoomoff et al., 2013). Fluid ability scores were based 

on vocabulary and oral reading recognition tasks, and crystallised ability scores were 

based on processing speed, working memory, sequence memory, Flanker, and 

dimensional change card tasks. Instead of calculating a g-factor, I used available fluid 

and crystalised ability composite scores to increase comparability to previous 

literature. The composite fluid and crystalised cognitive scores are commonly used (a 

recent example: Zhao et al., 2022). Siblings were removed at random so that analyses 

only included unrelated individuals. My analysis included unrelated individuals with 

available cognitive scores (Ncrystalised = 8,252; Nfluid = 8,147). Mean sample age was 10 

years (range 8.9-11.0 years) and it contained 4,273 females (47%).  

 ABCD genotype data. DNA was extracted from saliva and blood samples and 

subsequently genotyped on the Affymetrix NIDA SmokeScreen Array (Baurley et al., 

2016). The genotype data underwent standard quality control (Lam et al., 2019), and 

I downloaded the genotype data in PLINK binary format (.fam, .bed, .bim) including 

516,598 genetic variants. Ambiguous and mismatched SNPs were cleaned according 

to the lassosum tutorial (URL). To account for population stratification, I calculated 

twenty ancestral Principal Components (PCs) based on a set of pruned SNPs using a 

window of 1500 variants and a shift of 150 variants between windows with an r2 cut-

off of 0.2 (as recommended by Abraham et al., 2017). The first three ancestral PCs are 

plotted in Fig.2 showing that ancestral PCs captured self-reported race reasonably 

well. Analyses using this data did not use imputed genetic data. 

 

https://choishingwan.github.io/PRS-Tutorial/lassosum/
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Fig.2. The first three (out of 20) ancestral PCs coloured according to self-reported race.  

These plots demonstrate that self-reported race (coloured) is broadly clustered along the ancestral PC gradients in the x- and y-axes. For example, self-reported 
White ancestry tends to score low on PC1, while self-reported Black African ancestry scores high on PC1. 
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2.3. Simulated data  

 To benchmark real-world correlations from the real-world observations in UKB 

and ABCD, I simulated two data sets in which any correlation between regional 

volumes and cognitive ability was purely driven by TBV. Thus, the simulated data 

should reflect the hypothetical scenario that true correlations between regional 

volumes and cognitive ability only exist if unadjusted for TBV. The simulations 

(Simulation 1 and Simulation 2) both contained 66 random simulated brain volumes 

that were correlated among each other (N = 10,000). A 67th variable was created as the 

sum of all 66 simulated regional volumes to represent a simulated measure of TBV. To 

represent cognitive ability, a 68th random variable was created which was correlated 

with simulated TBV at a magnitude of 0.25 (as empirically shown in Nave et al., 2018).  

 Simulation 1 and Simulation 2 differ in their correlation structure among the 

66 simulated brain volumes. In Simulation 1, the 66 simulated volumes are uniformly 

correlated at r = 0.4 (Fig.3). In Simulation 2, the 66 simulated brain volumes are 

correlated according to a correlation matrix empirically extracted from UKB data on 

66 regional brain volumes (mean correlation = 0.4, SD = 0.15, range = 0.25 to 0.75; 

Fig.3). Any association between volumes and cognitive ability in this simulated data 

must by definition be driven by one region’s correlation with TBV. Due to the nature 

of these simulated data, any significant TBV adjusted correlation reflects a false 

positive association. 
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Fig.3. Data simulations.  

Left panel: Simulation 1 and Simulation 2 both contain 66 regional volumes (ROIs) that are either correlated among each other at a uniform magnitude of r = 
0.4 (Simulation 1), or according to an empirical correlation matrix obtained from UKB MRI data (Simulation 2). The regional volumes are summed up to 
represent TBV, and I generated an additional variable to represent cognitive ability which is correlated with simulated TBV at r = 0.25 (as in Pietschnig et al., 
2015). In this data, I calculated correlations between cognitive ability and each of the 66 simulated regional volumes. The figure shows effect sizes unadjusted 
for TBV in orange, and effect sizes adjusted for TBV are in grey. Correlations marked with an asterisk (*) are statistically significant after correcting for multiple 
testing (99% confidence interval around the correlation). Right panel: Simulation 2 in incrementally larger sample sizes (N = 20,000; N = 30,000; N = 40,000, 
N = 50,000). Due to the nature of these simulated data, any significant TBV adjusted correlation between a volume and cognitive ability are false positive 
associations.  The simulations with increasing N show that TBV adjusted correlations are more likely positive at larger sample sizes N. 
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2.4. Genome-wide association data 

 I used genetically informed analyses to triangulate correlations between 

regional volumes and cognitive ability. The calculation of genetic correlations required 

two sets of 66 GWAS summary statistics of regional brain volume: one set adjusted for 

a proxy of brain size (i.e., volumetric scaling factor) (Smith, Douaud, et al., 2020) and 

the other that I generated myself as part of Chapter 4 was not adjusted for brain size 

(Fürtjes et al., 2021). Both sets of GWAS were based on the Desikan-Killiany brain 

volumes and approximately the same subsample of UKB participants (N~33.000 by 

Smith, Douaud, et al. (2020) and N~36.000 in Chapter 4). Both sets of GWAS were 

adjusted for age and sex, because age and sex should not be correlated with the genome 

but may spuriously induce genetic trait correlations. 

 I downloaded the GWAS summary statistics adjusted for a proxy of brain size 

from the big40 repository (Smith, Douaud, et al., 2020). In addition to brain size, age, 

and sex, this GWAS set was also adjusted for another ~200 covariates (as outlined in 

Alfaro-Almagro et al., 2021). Excluding brain size as a covariate, I adjusted the GWAS 

of regional brain volumes only for imaging centre, X, Y, and Z scanner coordinates, 

age, and sex (see Appendix).  

 To calculate genetic correlations between regional volumes and cognitive ability 

(described below in Section 2.5.2), I downloaded intelligence quotient (IQ) GWAS 

summary statistics (N ~ 100,000; Davies et al., 2018), and education GWAS summary 

statistics (N ~ 1.1Mio; Lee, Wedow, et al., 2018). Educational attainment is frequently 

used as a proxy phenotype for cognitive ability as it can be self-reported allowing the 

collection of very large samples. 
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2.5. Obtaining correlations between cognitive ability and 

regional brain volume from multiple analyses  

 I obtained correlations between cognitive ability and 66 regional brain volumes 

from multiple analyses including phenotypic analyses, genetic analyses, and polygenic 

score analyses (Fig.4). Variables were standardised (mean = 0; SD = 1) prior to 

analyses so effect sizes were interpretable in standard units. Correlations adjusted for 

TBV were obtained from linear regression models in which cognitive ability was the 

outcome, regional brain volume the predictor, and TBV the covariate (cognitive ability 

~ regional volume + TBV). For the partial regression coefficient of regional volume to 

be interpretable as a correlation, p-values of a regions’ regression effect on cognitive 

ability were converted to correlations via the t-statistic 8. This ensured that correlation 

magnitudes were comparable across phenotypic correlations, genetic correlations, and 

polygenic score correlations with and without TBV adjustment. 

2.5.1. Obtaining phenotypic correlations 

 Phenotypic correlations between cognitive ability and 66 regional volumes were 

calculated using linear regressions. Regressions were performed without adjusting 

(cognitive ability ~ regional volume) and with adjusting for TBV (cognitive ability ~ 

regional volume + TBV), which resulted in 2 x 5 x 66 = 660 correlations. Correlations 

 

8  I did this using the p2cor() function from the lassosum package (Mak et al., 2017). Taking the 
regression coefficient p-value and degrees of freedom as input, the function works out the t-statistic 
using the t distribution qt() function in R. The t-statistic is then transformed into a correlation using 
the following formula:  

𝑟 =  
𝑡

√(𝑑𝑓 − 2) + 𝑡2
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were calculated based on my two simulated data sets (Simulation 1 & Simulation 2, N 

simulated = 10,000), the UKB sample (g-factor, N = 39,947), and the ABCD sample (i.e., 

crystalised & fluid cognitive ability, N crystalised = 8,252; N fluid = 8,147). No additional 

covariates were included. Regional brain volumes differ by age as some regions 

atrophy faster than others (Raz et al., 2010) but including age in these models would 

prevent this analysis from isolating the impact of TBV adjustment on the correlations 

of interest. To test if age may alter the correlations of interest, I calculated the 

correlations in two samples of different age: adults in the UKB (mean age = 64.26 

years) and adolescents in the ABCD study (mean age = 9.9 years). I did not include sex 

as a covariate because the association between regional volumes and cognitive ability 

did not vary by sex in previous analysis of the UKB (Cox et al., 2019).  

2.5.2. Obtaining genetic correlation  

 Using bivariate LDSC (Bulik-Sullivan, Finucane, et al., 2015), I calculated 

genetic correlations among cognitive ability, educational attainment and 66 regional 

brain volumes with and without adjustment for brain size. I used the GWAS of 

cognitive ability (Davies et al., 2018), educational attainment (Lee, Wedow, et al., 

2018), 66 brain volumes adjusted for brain size (Smith, Douaud, et al., 2020), and 66 

brain volumes unadjusted for brain size (Fürtjes et al., 2021) (Section 2.4). I obtained 

2 x 2 x 66 = 264 genetic correlations.  

2.5.3. Obtaining polygenic score correlations 

 I calculated polygenic scores for 66 regional volumes in unrelated ABCD 

participants to generate measures of the genetic propensity to 66 regional volumes. 

Polygenic scores are the sum of genome-wide alleles that predispose an individual to 

a larger (or smaller) regional brain volume. Based on GWAS adjusted (Smith, Douaud, 
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et al., 2020) or unadjusted for brain size (Fürtjes et al., 2021), I calculated polygenic 

scores using lassosum (Mak et al., 2017) which is a frequentist penalty-based 

shrinkage method. Lassosum is computationally efficient and does not require 

clumping 9 which is associated with better predictive abilities (Pain et al., 2021). To 

avoid overfitting, split-validation was performed as implemented in the splitvaldidate 

R function by Mak et al. (2018). 

 Finally, I calculated linear regressions in ABCD with crystalised and fluid 

cognitive ability as outcomes and regional volume polygenic scores as predictor 

variables. The models included age, sex, and 20 ancestral PCs as covariates (cognitive 

ability ~ polygenic score + age + sex + 20 PCs). These analyses resulted in 2 x 2 x 66 = 

264 polygenic score correlations. 

 

2.6. Analysis 1: Exploring correlations between regional volumes 

and cognitive ability  

 To describe the distribution of correlations between the 66 regional volumes 

and cognitive ability, I calculated mean correlations, and 95% confidence intervals 

from multiple analyses (i.e., analyses outlined in Section 2.5). I compared correlations 

based on real-world data in ABCD and UKB with correlations from the simulated data 

to benchmark against the simulated data in which correlations among regional 

volumes and cognitive ability were entirely driven by brain size (i.e., no regional 

 

9  Clumping means that SNPs are filtered to obtain a selection of LD independent SNPs with the 
strongest signals in a GWAS. Traditionally, polygenic scores would be calculated as a weighted sum 
based on those top filtered SNPs. Using lassosum, the SNP feature space is not reduced by clumping 
but through shrinkage of the least associated SNPs.  
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variance unique of TBV). I used Wilcoxon signed-rank analysis to quantify whether 

mean ranks of the real-world correlation distributions differed from the simulated 

correlations (results reported in Section 3.1.1). I used the non-parametric Wilcoxon 

method because real-world correlations were not normally distributed (as shown in 

Fig.4).   

 Analysis 1 includes a sub-analysis measuring the extent to which correlations 

between regional volumes and cognitive ability are driven by a region’s correlation 

with TBV. I calculated the linear associations between two vectors: the first vector 

contained correlations between regional volumes and cognitive ability (obtained from 

different analyses outlined in Section 2.5) and the second vector contained 

correlations between regional volumes and TBV. The strength of the association 

between the two vectors will indicate the extent to which one can predict a regions’ 

correlation with cognitive ability purely by knowing the regions’ correlation with TBV 

(results in Section 3.1.2). 

 I performed an additional simulation to explore the impact of TBV adjustment 

on the variance inflation factor (VIF) 10 which tends to be used to decide whether 

covariate adjustment is problematic. I simulated data keeping constant a hypothetical 

 

10 Exactly how large the VIF must be to cause concern is debated but as a rule of thumb studies tend to 

accept a VIF <5 (Gareth et al., 2013) as unproblematic. Some studies set this threshold at VIF <2.5 

(Johnston et al., 2018) and others at VIF <10 (Vittinghoff et al., 2006). The following formula calculates 

the VIF when no other covariate is included in the statistical model:  

𝑉𝐼𝐹 =  
1

1 − (𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 & 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒)2
 

For example, a VIF of 1.33 is equivalent to a regions’ correlation with TBV of r = 0.5. 
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correlation between a brain region variable (predictor) and cognitive ability variable 

(outcome). This constant correlation was at r = 0.10 in Fig.6A, r = 0.15 in Fig.6B, r = 

0.20 in Fig.6C. Additionally, I simulated the region’s correlation with TBV (covariate) 

at 19 different values between r = 0.00 and 0.95 that each corresponded to a specific 

VIF 9. Using these simulated data, I compared the regression coefficients adjusted and 

unadjusted for TBV and showed how the coefficients change with reference to a 

regions’ correlation with TBV and corresponding VIF. Results of this additional 

simulation are reported in Section 3.1.3.  

 

2.7. Analysis 2: Region-by-region meta-analyses of correlations 

between regional volumes and cognitive ability across analyses  

 It was the aim of Analysis 2 to test using 66 meta-analyses whether any of the 

66 regional volumes yielded consistent non-zero correlations with cognitive ability. 

Each meta-analysis considered five correlations between a specific region and 

cognitive ability that were obtained from five different real-world analyses: a 

phenotypic correlation in UKB (g-factor), two phenotypic correlations in ABCD (fluid 

& crystalised cognitive ability), a regions’ genetic correlation with IQ and a regions’ 

genetic correlation with education. 

 I used the meta package in R (Schwarzer et al., 2015) to perform the meta-

analyses and to obtain a random effects estimator for each of the 66 regions. The 

metacor function provides random effects meta-analytic results. I report random-

effects instead of fixed-effect correlations because it is reasonable to expect some 

between-study variance in correlation magnitudes obtained from different definitions 

of cognitive ability and analysis techniques. As standard errors in genetic correlations 
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are not directly proportional to the sample size (as is the case in phenotypic 

correlations), the appropriate weighting of genetic correlations in the meta-analyses 

was ensured by iteratively finding a representative sample size that is required by the 

metacor function to produce confidence intervals equivalent to those obtained from 

LDSC 11. Random-effects meta-analytic correlations and multiple testing corrected 

99% confidence intervals are displayed in Fig.8A. 

 The metacor function also tests using the homogeneity statistic Q whether 

different analyses produced correlations that likely share a common population effect 

size. Q is chi-squared distributed at k-1 degrees of freedom (k = number of correlations 

obtained from different analysis techniques that were included in the meta-analysis), 

and indicates, if significant, that the variance between considered correlations is 

greater than would have been expected, had all studies shared a population effect size. 

I2 indicates the proportion of variability of measures included in the meta-analysis that 

can be explained by differences between the different analyses. 

  

  

 

11 The metacor function in R requires the user to input correlations and corresponding sample sizes to 
calculate the correlations’ confidence intervals. Simply inputting GWAS sample sizes however would 
not have produced accurate LDSC confidence intervals for the genetic correlations. I coded a somewhat 
inefficient function to iteratively work out the representative sample size that would produce confidence 
intervals in the metacor function equivalent to the confidence intervals obtained in LDSC. Specifically, 
I would feed the genetic correlation and a randomly generated sample size to the metacor function, 
extract the confidence interval calculated by metacor, and compare it with the corresponding 
confidence interval obtained with LDSC. For example, if the confidence interval given by the metacor 
function was too small, my function would repeat this process by inputting a smaller sample size (and 
vice versa) until the input sample size would produce the accurate LDSC confidence interval. Therefore, 
the sample size given in Fig.8 does not represent the real GWAS sample size based on which LDSC was 
calculated but it is a representative sample size that ensured appropriate weighting of the genetic 
correlations in the meta-analyses. 
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3. Results 

3.1. Analysis 1: Describing correlations between 66 regional 

volumes and cognitive ability 

 As part of Analysis 1 I explored the average distribution of correlations between 

66 regional volumes and cognitive ability – before and after brain size adjustment 

(cross-region approach). The distributions are displayed for each analysis adjusted 

and unadjusted for TBV (Table 1, Fig.4). Using confirmatory factor analysis, cognitive 

ability in the UKB sample was quantified by a factor of general cognitive ability (g-

factor) which accounted for 34% of the variance across cognitive tests. The g-factor 

model demonstrated good model fit (CFI = 0.97, RMSEA = 0.05) (Hu & Bentler, 1998). 
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Fig.4. Correlations among cognitive ability and 66 brain regions obtained from 
multiple analysis types.  

Upper panel: (A) Phenotypic correlations between 66 regional volumes and the g-factor in the UKB 
(N = 39,947). (B) Phenotypic correlations between 66 regional volumes and crystallised IQ in ABCD (N 
= 8,252). (C) Phenotypic correlations between 66 regional volumes and fluid IQ in ABCD (N = 8,147). 
(D) Genetic correlations between 66 regional volumes and IQ calculated using linkage disequilibrium 
score regression (LDSC) and GWAS summary statistics as input. (E) Genetic correlations between 66 
regional volumes and educational attainment. (F) Correlations between 66 regional volume polygenic 
scores and crystalised IQ in ABCD calculated using lassosum (N = 8,252). (G) Correlations between 66 
regional polygenic scores and fluid IQ in ABCD (N = 8,147). Correlations in orange are unadjusted for 
TBV, in grey adjusted for TBV. Correlations are sorted from largest to smallest unadjusted correlation. 
Bottom panel: Distributions of correlations between 66 cortical regions and cognitive ability 
displayed by analysis type (i.e., different samples, phenotypic and genetic analyses, and multiple 
cognitive ability definitions). Distributions marked with an asterisk (*) were significantly different in 
their mean ranks from Simulation 2 (Wilcoxon analysis). Note that the correlations between the 66 
volumes and fluid cognitive ability as defined in ABCD were smaller than those in the other analyses 
displayed in the bottom panel. That the fluid cognitive ability definition in ABCD produces smaller 
correlations with brain volume was previously shown in (Zhao et al., 2022). 
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Table 1. Describing the distributions of correlations between 66 regional volumes 

and cognitive ability adjusted and unadjusted for TBV. 

 TBV adjusted No TBV adjustment 

Analysis Mean 
correlation 

[95%] 

Minimum  
- 

Maximum 

p Mean 
correlation 

[95%] 

Minimum 
- 

Maximum 

p 

Simulation 1 0.01  
[0.01 to 0.01] 

-0.02 
- 

0.03 

0.886 0.16  
[0.16 to 0.16] 

0.14  
- 

0.17 

0.550 

Simulation 2 0.01 
[0.01 to 0.01] 

-0.03 
- 

0.03 

1 0.16 
[0.15 to 0.17] 

0.08 
- 

0.2 

1 

Phenotypic 
assoc. g-
factor (UKB) 

0.01 
[0.01 to 0.01] 

-0.04 
- 

0.05 

0.177 0.15 
[0.14 to 0.16] 

0.06 
- 

0.21 

0.976 

Phenotypic 
assoc. cryst. 
IQ (ABCD) 

0.00 
[-0.01 to 0.01] 

-0.05 
- 

0.08 

0.038 0.17 
[0.16 to 0.18] 

0.09 
- 

0.25 

0.329 

Phenotypic 
assoc. fluid 
IQ (ABCD) 

0.00 
[-0.01 to 0.01] 

-0.05 
- 

0.06 

0.062 0.09 
[0.08 to 0.1] 

0.03 
- 

0.14 

2.26 
x10-19 * 

Genetic corr. 
IQ 

0.04 
[0.03 to 0.05] 

-0.08 
- 

0.16 

2.15 
x10-5 * 

0.16 
[0.15 to 0.17] 

0.01 
- 

0.26 

0.035  

Genetic corr. 
education 

0.05 
[0.04 to 0.06] 

-0.05 
- 

0.18 

1.45 
x10-7 * 

0.16 
[0.15 to 0.17] 

0.02 
- 

0.25 

0.189 

Polygenic 
pred. 
cryst. IQ
  

-0.01  
[-0.02 to 0.00] 

-0.09 
- 

0.06 

0.000
11 * 

0.03  
[0.02 to 0.04] 

-0.03  
- 

0.08 

3.76 
x10-23 * 

 Polygenic 
pred. 
fluid IQ 

-0.01  
[-0.02 to 0.00] 

-0.08 
- 

0.05 

1.09 
x10-5 * 

0.01  
[0.01 to 0.01] 

-0.03 
- 

0.06 

3.76 
x10-23 * 

Mean correlations, 95% confidence intervals, minimum and maximum values were calculated for the 
distribution of correlations between regional volumes and cognitive ability differently defined and 
measured in different samples. Summary statistics are shown for each analysis separately. p indicates 
the p-value for a Wilcoxon signed-rank test comparing ranked means of simulated correlations 
(Simulation 2) with correlations between regional volumes and cognitive ability obtained from each 
real-world correlations. Values marked with an asterisk were statistically significant after correcting for 
multiple testing. 
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3.1.1. Adjusting for TBV substantially reduces correlations between 

cognitive ability and 66 regional volumes 

 Overall, adjusting for TBV substantially reduced correlation magnitudes 

(Fig.4B): Without TBV adjustment, correlations between regional volumes and 

cognitive ability were distributed around r ~0.15. With TBV adjustment, these 

correlations were closely distributed around zero (Table 1). Distributions from some 

analyses (e.g., genetic correlations unadjusted for brain size) significantly differed 

from this correlational pattern whereby TBV adjustment did not reduce average 

correlations to r ~0. Those divergent distributions are marked with asterisks in Fig.4B 

and are further outlined below (remainder of Section 3.1.1). 

 Genetic correlations. Distributions of genetic correlations (rg) obtained 

from GWAS adjusted for a proxy of brain size were distributed around a mean value 

significantly larger than zero (IQ: rg = 0.04 [0.03-0.05], education: rg = 0.05 [0.04-

0.06]). This was considerably larger than the TBV-adjusted correlations in the other 

analyses (Fig.4B). By contrast, genetic correlations unadjusted for brain size were 

similar to those from other analyses (both IQ and education rg = 0.16 [0.15-0.17]).  

 Polygenic score associations. Correlations between regional volume 

polygenic scores and cognitive ability were overall smaller than the correlations in 

other analyses (unadjusted and adjusted for proxy of brain size; Table 1). This is not 

further discussed below because it is expected that polygenic score associations tend 

to be smaller than phenotypic and genetic correlations (Dudbridge, 2013). The 

distributions of correlations between regional volume polygenic scores and cognitive 

ability still support the overall trend that TBV adjustment reduces volume cognitive 

ability correlations to an average of zero. 
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 Phenotypic correlations in ABCD (fluid cognitive ability). Without 

TBV adjustment, cognitive ability brain volume correlations obtained with the fluid 

cognitive ability definition in ABCD was smaller than expected from other analyses (r 

= 0.09 [0.08-0.10], Table 1). This is not further discussed below because the 

distribution obtained from the fluid cognitive ability definition still supports the 

overall trend that TBV adjustment reduces correlation magnitudes to an average of 

zero (r = 0 [-0.01-0.01]). That the fluid cognitive ability definition produces smaller 

brain volume correlations than the crystalised cognitive ability definition in the same 

sample was previously shown in Zhao et al. (2022). 
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3.1.2. Correlations between regional volumes and cognitive ability 

are larger the stronger a region is correlated with TBV  

Fig.5. Relationship between a vector of correlations between 66 regional volumes 
and cognitive ability (y-axis) and a vector of correlations between the same 66 
regional volumes and TBV (x-axis).  

Each plotted dot represents a brain region. Effect sizes of correlations between regional volumes and 
cognitive ability in the y-axis in each panel are taken from different analyses: (A) g-factor cognitive 
ability definition in UKB sample, (B) crystalised IQ cognitive ability definition in ABCD, (C)  fluid IQ 
definition in ABCD, (D) genetic correlations using IQ definition, (E) genetic correlations using 
education as proxy phenotype for cognitive ability, (F) polygenic score associations with crystalized IQ 
cognitive ability definition, (E) polygenic score associations with fluid IQ cognitive ability definition. 
Correlations between regional volumes and TBV in the x-axis were calculated in the UKB sample. The 
x-axis correlations are the same in panels A-F.  
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 This sub-analysis of Analysis 1 quantified correlations between two vectors: (1) 

66 TBV-unadjusted correlations between cognitive ability and 66 regional volumes, 

and (y-axes in Fig.5A-G) (2) 66 correlations between the same 66 regional volumes 

and TBV (x-axes in Fig.5A-G). The regions’ correlations with TBV were calculated 

based on UKB data and ranged from 0.26 to 0.75 with a median of 0.58. Substantial 

associations between the two vectors showed that a correlation between a regional 

volume and cognitive ability was larger when the region was more strongly associated 

with TBV. Depending on the analysis type the correlations between cognitive ability 

and brain volumes were calculated in, the vector associations in this analysis ranged 

in their R2 from 16% to 79% (Fig.5). For example, by knowing a region’s correlation 

with TBV one may predict with up to 79% accuracy how correlated this region will be 

with cognitive ability (Fig.5A). These substantial vector associations indicate that TBV 

drove the correlations between regional volumes and cognitive ability. TBV 

adjustment seems to affect a region’s correlation with cognitive ability differentially 

relative to the region’s correlation with TBV 12. This was not the case for polygenic 

score correlations as they were not associated with a regions’ correlation with TBV 

(Fig.5F-G).  

 

 

12 I have heard proponents of TBV adjustment argue that they think adjusting for TBV should impact 
different regions of the brain uniformly in how related they are to a trait. They assumed that even after 
TBV adjustment we would maintain a ranked order between brain volumes in how associated they are 
with a trait of interest. However, the analysis displayed in Fig.5 shows that each region is impacted by 
TBV adjustment differently relative to a regions’ correlation with TBV. This correlation with TBV widely 
ranged between 0.26 – 0.75 for different regions. 
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3.1.3. A variance inflation factor <2.5 may not be a sufficient 

criterion to decide whether TBV adjustment is problematic 

 This additional simulation explored the impact of TBV adjustment on the 

variance inflation factor (VIF, explained in Section 2.6). VIFs below 2.5 tend to be 

considered unproblematic (Johnston et al., 2018). Fig.6 illustrates that a correlation 

between cognitive ability (outcome) and the brain region (predictor) is reduced 

through TBV (covariate) adjustment as a function of a regions’ correlation with TBV. 

The stronger the correlation with TBV, the more likely the correlation of interest is 

flipped into a negative estimate. This demonstrates that negative correlations can 

result as an artefact of covariate over-adjustment whereby covariate adjustment 

removes all the systematic variance between predictor and outcome. 
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Fig.6. Simulation of TBV adjustment in the context of the variance inflation factor.  

The correlation between regional volume (predictor) and cognitive ability (outcome) is held constant. 
The correlation between the region (predictor) and TBV (the covariate) is continuously increased from 
left to the right on the x axis to illustrate the impact of TBV adjustment. The larger a regions’ correlation 
with TBV the more likely it is that the adjusted correlation between a region and cognitive ability is 
negative. Panel A shows the unadjusted correlation between regional volume and cognitive ability 
constant at 0.10, Panel B at 0.15, and Panel C at 0.20. 
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 Fig.6A-C shows that VIF <2.5 may not be a sufficient criterion to judge whether 

TBV is an appropriate covariate: Even at a VIF <2.5, TBV adjustment can invert the 

direction of a correlation. Whether TBV adjustment inverted the correlation depended 

on how great the correlation was prior to TBV adjustment (represented by the orange 

line in Fig.6A-C). When the correlation between the TBV unadjusted region and 

cognitive ability was small (r = 0.10; Fig.6A), TBV adjustment flipped their correlation 

at VIFs as small as 1.14 (equivalent to r TBV & region = 0.35). When the correlation 

between the TBV unadjusted region and cognitive ability was larger prior to TBV 

adjustment (r = -.20; Fig.6C), TBV adjustment flipped their correlation only at larger 

VIFs (e.g., VIF >1.95, r TBV & region = 0.70). This shows that whether a covariate can be 

safely adjusted for depends on interdependencies between all the variables in the 

model, not just the relationship between predictor and covariate as is considered by 

the VIF. Thus, the VIF alone is not a sufficient criterion to decide whether a covariate 

can be safely adjusted for. 

 Crucially, the Fig.6 simulation demonstrated that negative correlations 

between TBV-adjusted volumes and cognitive ability are an artefact of TBV over-

adjustment. TBV over-adjustment occurs in cases where the unadjusted correlation 

between a region and cognitive ability is so negligibly small relative to the variance 

accounted for by TBV, that no systematic variance remained after discarding of TBV 

associated variance through covariate adjustment. Hence, TBV adjustment may not be 

advisable because this brute force approach has the potential to discard most, if not all 

the variance shared between a regional volume and cognitive ability. 

  



 

73 

 

3.2. Analysis 2: Region-by-region meta-analyses of correlations 

between volumes and cognitive ability  

 In Analysis 2, I conducted 66 region-specific meta-analyses to identify regional 

volumes that had reliable correlations with cognitive ability across multiple analysis 

types (multiple samples, different cognitive ability definitions, and analysis 

techniques). Without TBV adjustment, the 66 meta-analysed correlations between 

each regional volume and cognitive ability were all significantly different from zero 

(mean unadjusted r = 0.14, range = 0.06 to 0.20; Fig.8B). These significant 

correlations were likely largely driven by TBV. 

 By contrast, only 14 (out of 66) regional volumes adjusted for TBV yielded 

significantly non-zero meta-analysed correlations with cognitive ability (Table 2). As 

negative correlations likely result from TBV over-adjustment (as demonstrated in 

Section 3.1.3), Table 2 only includes the eleven regions that yielded positive meta-

analytic correlations with cognitive ability after TBV adjustment. The following four 

regions replicated across hemispheres and were weakly associated with cognitive 

ability: parahippocampal (meta-analysed rleft hemisphere = 0.05 [0.03 to 0.08], right 

hemisphere r = 0.04 [0.01 to 0.08]), precentral (left r = 0.05 [0.04 to 0.06], right r = 

0.04 [0.03 to 0.05]), middle temporal (left r = 0.03 [0.02 to 0.04], right r = 0.04 [0.01 

to 0.06]), and lateral orbitofrontal gyrus (left r = 0.02 [0.01 to 0.03], right r = 0.01 

[0.00 to 0.02]). Forest plots for the significant meta-analysed effects are displayed in 

Fig.7. 

 The fourteen significantly positively associated regions showed low 

heterogeneity (range Q across the 14 regions = 1.19 to 19.71, mean = 5.68) compared 

with all other regions (range Q across all regions adjusted for TBV = 0.41 to 114.61, 
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mean = 22.69; Fig.8D). It supports the reliability of these results that meta-analyses 

of these fourteen regions had low heterogeneity. The fourteen regions were moderately 

to strongly correlated with TBV (rwith TBV = 0.30 to 0.72).  
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Fig.7. Forest plots for four regions in the left hemisphere that were significantly 
correlated with cognitive ability after TBV adjustment in their region-specific meta-
analysis.  

These four regions had positive correlations and replicated across hemispheres. Note that the sample 
sizes indicated for genetic correlations (rg) are not the sample sizes from the GWAS summary statistics. 
To ensure appropriate weighting of rg in the meta-analysis, I computed a representative sample size for 
the genetic correlations that I used as input to the metacor function and would produce the same 
confidence intervals as obtained in LDSC (see Methods).   
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Table 2. Fourteen regions that yielded significant meta-analysed positive correlations 

between their regional brain volume and cognitive ability after TBV adjustment.  

Regional brain 
volume 

Meta-analysed 
effect size 
[99% CI] 

Q 
(p-value) 

I2 Regions’ 
correlation 

with TBV 

Left parahippocampal 0.05  
[0.03 to 0.08] 

12.79 
(0.0124) 

69% 0.30 

Left precentral 0.05 
[0.04 to 0.06] 

2.26 

 (0.687) 

0% 0.65 

Right middle temporal 0.04 
[0.01 to 0.06] 

10.98 
(0.0268) 

64% 0.71 

Right 
parahippocampal 

0.04 
[0.01 to 0.08] 

19.71 
(0.000571) 

80% 0.32 

Right precentral 0.04 
[0.03 to 0.05] 

3.01 
(0.556) 

0% 0.64 

Left fusiform 0.03 
[0.01 to 0.04] 

4.69 
(0.32) 

15% 0.65 

Left middle temporal 0.03 
[0.02 to 0.04] 

2.07 
(0.723) 

0% 0.67 

Left caudal anterior 
cingulate 

0.02 
[0.01 to 0.03] 

1.19 
(0.88) 

0% 0.26 

Left caudal middle 
frontal 

0.02  
[0.00 to 0.03] 

3.83 
(0.429) 

0% 0.58 

Left lateral 
orbitofrontal 

0.02 
[0.01 to 0.03] 

2.13 
(0.712) 

0% 0.72 

Right lateral 
orbitofrontal 

0.01 
[0 to 0.02] 

2.00 
(0.737) 

0% 0.70 

Right cuneus -0.02 
[-0.04 to -0.01] 

4.59 
(0.332) 

13% 0.47 

Right isthmus cingulate -0.03 
[-0.05 to -0.02] 

1.23 
(0.873) 

0% 0.55 

Left isthmus cingulate -0.04 
[-0.05 to -0.03] 

9.11 
(0.0585) 

56% 0.59 

The homogeneity statistic Q indicates – if statistically non-significant (p>0.05) – that different analyses 
produced correlations that likely share a common population effect size. I2 indicates the proportion of 
variability of measures included in the meta-analysis that can be explained by differences between 
different analyses. 
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Fig.8. Results from 66 meta-analyses testing whether 66 regional volumes were significantly associated with cognitive ability across 
multiple analyses (before and after TBV adjustment).  

(A) Association of interest between regional volume and cognitive ability that I calculated adjusted and unadjusted for brain size as a covariate. (B) Sixty-six 
meta-analysed region-by-region correlations with cognitive ability (99% confidence intervals for multiple testing correction). These correlations were obtained 
from 66 region-specific meta-analyses. Correlations between regional volumes and cognitive ability unadjusted for TBV are in orange, and correlations adjusted 
for TBV are in grey. The significant correlations after TBV adjustment are in Table 2. (C) Meta-analytic correlations and heterogeneity (Q) results plotted onto 
regions’ respective cortical location. Meta-analysed effect sizes are the same as in panel B. Heterogeneity is represented by the Q statistic that ranged between 
11.8 and 187.5 for TBV-unadjusted correlations, and between 0.4 and 114.6 for TBV-adjusted correlations. (D) Correlation obtained from different analyses that 
were the basis for the meta-analyses (apart from the polygenic score predictions which are plotted here but were not included in the meta-analysis due to their 
small magnitudes). Highlighted and named regions are those whose correlations with cognitive ability differed most and least (according to Q statistic) between 
the different analyses. 
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4. Discussion  

 This is the first study to systematically examine the impact of brain size 

adjustment on the statistical relationship between regional grey matter volume and 

cognitive ability in two large samples (UKB & ABCD, N total ~50,000). Analysis 1 

demonstrated that brain size adjustment substantially reduces correlations between 

regional volumes and cognitive ability from a mean of r = 0.15 to a mean of r = 0.00 

(Section 3.1.1). This means that a regions’ correlation with cognitive ability largely 

reflects variance accounted for by brain size as opposed to variance unique to each 

region (Section 3.1.2). Moreover, brain size adjustment can even result in over-

adjustment whereby it eliminates most or all variance shared between a regional 

volume and cognitive ability. Section 3.1.3 demonstrated that brain size adjustment 

can easily invert their relationship to a negative estimate at VIFs <2.5, which would 

falsely support the opposite interpretation – to the one made without brain size 

adjustment – that larger brain volume is harmful for cognitive ability. This illustrates 

that brain size is central to the relationship between regional volumes and cognitive 

ability and that discarding variance accounted for by brain size prevents the delivery 

of robust and straightforwardly interpretable findings. Future studies should carefully 

consider whether brain size truly indexes nuisance variance in their specific research 

question and whether its inclusion as a covariate may result in over-adjustment.  

 Another study also found that a measure of brain size captures regional brain 

information (Reardon et al., 2018) further supporting that adjusting for brain size will 

discard valuable regional information. By approximating brain size with total surface 

area instead of TBV, Reardon et al. (2018) demonstrated that larger brains more likely 
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preferentially expand in higher-order areas 13  assumed to be involved in higher 

cognitive ability. This suggests that larger brains are not just larger (i.e., more cellular 

material), but inherently differ in their organisation in that higher-order regions are 

more pronounced and selectively enhance cognitive ability. 

 In Analysis 2, I showed that four regional volumes were consistently correlated 

with cognitive ability across multiple analyses and the hemispheres. Contrary to my 

hypothesis, this finding suggests that the parahippocampal, precentral, middle 

temporal, and lateral orbitofrontal gyrus contribute significantly non-zero amounts 

of variance relevant to cognitive ability independent of brain size. This region-specific 

variance is robust because it replicated across multiple definitions of cognitive ability, 

different large-scale samples, as well as phenotypic and genetic analysis approaches 

(further regional discussion in Section 4.1).  

 However, these brain size adjusted correlations were small (r = 0.01-0.05, i.e., 

R2 = 0.01-0.25%) which reduces statistical power and puts into question the validity 

of uni-regional brain models of cognitive ability. More work is needed to determine 

whether these small population-level effect sizes are practically relevant and to what 

extent they can be generalised (Anvari et al., 2022). To achieve larger and more reliable 

correlations, findings from Analysis 1 & 2 motivate avoiding brain size adjustment and 

to explicitly model brain size instead of discarding it as a covariate. For example, it 

would capture more biologically plausible brain structure underlying cognitive ability 

to use multivariate techniques that account for interdependencies between multiple 

 

13 By higher-order areas I mean association areas that integrate sensory information as opposed to areas 
that are involved in more elementary processing of sensory information (e.g., primary visual cortex). 
Higher-order areas are assumed to be involved in complex brain functions (e.g., Pandya & Yeterian, 
1985). 
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brain volumes unadjusted for brain size by modelling brain networks (as done in 

Chapter 4). 

4.1. Meta-analyses reveal reliable associations between cognitive 

ability and four brain regions after brain size adjustment  

 Four regional volumes contributed unique variance relevant to cognitive ability 

independent of brain size: the precentral, parahippocampal, lateral orbitofrontal, 

and middle temporal gyrus. Previous studies have implicated these four regions in 

different brain functions possibly related to cognitive ability and examples of such 

studies are presented in Table 3. However, they must be interpreted with caution 

because the heterogeneous literature would have supported prominent roles in 

cognitive ability for any of the 66 brain regions.  
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Table 3. Examples of brain studies delivering evidence for neural links between 

cognitive ability and the four brain regions identified in the region-specific meta-

analyses to be associated with cognitive ability. 

Brain regions 
(gyri) 

References Previously reported brain function that could link 
this region to cognitive ability 

Precentral Purves et al. 
(2001) 

The precentral gyrus marks the primary motor cortex 
involved in voluntary movement. Randomised exercise 
interventions improved cognitive ability in over 50-year-
olds (Northey et al., 2018). According to this, the precentral 
gyrus may be correlated with cognitive ability on a 
population level because people that exercise have larger 
primary motor cortices which improves cognitive ability. 

Parahippocampal Hayes et al. 
(2007) 

In a functional MRI study, increased activation in the 
parahippocampal gyrus was associated with memory 
encoding and retrieval, which may link the 
parahippocampal gyrus to higher cognitive ability. 

Lateral 
orbitofrontal 

Deng et al. 
(2017) 

Functional MRI activation in the lateral orbitofrontal gyrus 
was associated with inhibitory executive control in 14-year-
olds. Executive control is often assessed by cognitive tests 
and would positively load onto the cognitive ability g-factor. 

Middle temporal  Acheson and 
Hagoort 
(2013) 

A transcranial magnetic stimulation study found some 
evidence that the middle temporal gyrus modulates 
language and reading abilities; two cognitive abilities that 
positively load onto cognitive ability. 
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 Out of the 66 regions, the pericalcarine gyrus had the smallest and least 

significant correlation with cognitive ability (Fig.8B). Nevertheless, the literature 

would have also supported an important role of the pericalcarine gyrus in cognitive 

ability. By including brain size as a covariate, a study reported a negative association 

between cortical thickness in the pericalcarine gyrus and a memory change score – the 

difference between two cognitive assessments 12 months apart (Jiang et al., 2016). To 

make sense of this negative association, it was interpreted as evidence that the 

pericalcarine gyrus indirectly influences an individuals’ memory performance (Jiang 

et al., 2016). However, my explorations suggest that this memory change score likely 

shared limited variance with the pericalcarine gyrus which resulted in a negative 

association because it was over-adjusted by including brain size as a covariate. This 

would indicate that brain size adjustment has directly contributed to the apparent 

inconclusiveness of the literature. Future studies should transparently report 

interdependencies between all variables included in statistical models to aid in 

building scientific consensus.  

4.2. Adjusting for brain size implies causal chains that are 

challenging to defend  

 The consequences of brain size adjustment may be illustrated best when 

considering a statistical designs’ implied causal chains which correlational studies 

should be able to theoretically defend (Wysocki et al., 2022). Fig.9 shows the causal 

chains implied by phenotypic and genetic designs considered in this chapter. In 

phenotypic analyses (Fig.9A-C), it is equally likely for brain size to be a confounder, a 

mediator, or a collider. Studies adjusting for brain size as a covariate imply a 

confounder scenario that suggests that brain size causes regional volume to be larger 
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as well as cognitive ability to be greater (Fig.9A). In support of the confounder 

scenario, strong evidence exists that larger brain size causes greater cognitive ability 

(Lee et al., 2019). Evidence from Reardon et al. (2018) may support that brain size 

causes regional volumes as they report some higher-order brain regions may be more 

pronounced in large brain. However, the effect direction of brain size on regional 

volume may not always be an appropriate assumption because larger brain size does 

not strictly mean that a particular region is larger. The opposite direction would most 

likely apply to all brain regions because brain size is the sum of all individual regions 

(dotted lines Fig.9A).  

 

 

 
Fig.9. Directed acyclic graph underlying phenotypic (A-C) and genome-wide (D-F) 
association studies.  

Solid lines indicate reasonable directions of effects backed by empirical evidence. Dotted lines indicate 
less likely directions of effects: a region is more likely to cause brain size to be smaller or larger than 
vice versa because brain size is the sum of all regions. The dashed line indicates an impossible direction 
of effects because brain size cannot affect inhered genetic markers which are conceived at birth. 

 

 If we were to accept the effect of brain size on regional volume as most likely, 

we assume that brain size is a mediator whereby larger regional volume causes larger 

total brain size (Fig.9B). Brain size could also be a collider whereby higher cognitive 

ability causes the total brain size to grow (Fig.9C). This would be in line with meta-



 

85 

 

analytic reports in healthy older adults of increases in and attenuated losses of brain 

size through cognitive ability training (Nguyen et al., 2019). In summary, no 

theoretical argument can defend brain size as a clear confounder in phenotypic 

analyses (i.e., excluding mediator and collider as reasonable options). This questions 

the validity of adjusting for brain size and illustrates – should uni-regional brain 

models be necessary – that mediator and collider scenarios must be modelled and 

compared. 

 In GWAS-implied designs (Fig.9D-F), brain size can never be a confounder 

because we can assume a directional effect of genes on brain size (dashed line Fig.9D). 

Brain size may be more likely a collider (Fig.9F) than a mediator (Fig.9E) because, as 

discussed above, larger regional brain volume will always result in larger total brain 

size because it is the sum of all regions. This logical argument shows that existing 

GWAS of regional brain morphometry adjusting for brain size (or a proxy of brain size 

such as a volumetric scaling factor; as in Smith, Douaud et al., 2020) as a confound 

variable potentially suffer from collider bias (Smith, Douaud, et al., 2020; Zhao, Luo, 

et al., 2019). Future studies are needed to disentangle the extent and severity of 

different brain size proxy measures to bias GWAS results (e.g., TBV, intracranial 

volume, head circumference, or volumetric scaling of T1 head image as used in Smith, 

Douaud et al., 2020).  
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4.3. Adjusting brain regional GWAS for brain size (or proxies 

thereof) may inflate genetic correlations with cognitive ability 

through collider bias 

 The following empirical evidence from this chapter may support that GWAS 

adjusted for a proxy of brain size are likely subject to collider bias. Genetic correlations 

between cognitive ability measures (IQ and education) and regional volumes derived 

from GWAS adjusted for a proxy of brain size were distributed around a mean 

significantly larger than zero (education: rg = 0.04 [0.03-0.05], IQ: rg = 0.05 [0.04-

0.06]; Fig.4B). These genetic correlations were overall larger than corresponding 

phenotypic correlations after adjustment. Only adjusted genetic correlations (and not 

unadjusted genetic correlations) were larger than their phenotypic counterparts. 

Therefore, the comparatively larger genetic correlations adjusted for a proxy of brain 

size cannot be explained by a general tendency for genetic correlations to be slightly 

larger than phenotypic correlations (as had been previously suggested in Sodini et al., 

2018). 

 As logically argued above (Fig.9F), those comparatively larger genetic 

correlations adjusted for a proxy of brain size could have been induced by genome-

wide collider bias. Aschard et al. (2015) showed that GWAS likely capture false genetic 

trait correlates when adjusting for a heritable covariate; and brain size and its proxies 

are highly heritable (broad sense heritability ~80%; Blokland et al., 2012). Collider 

bias in GWAS can occur when the GWAS trait (the regional volume) and the covariate 

(brain size) are correlated due to genetic effects: I argue regional volume and brain 

size must be correlated due to genetic effects as both phenotypes reside in the same 

organ and regional volume directly contributes to total brain size. Consequently, there 
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is no certainty whether a GWAS adjusted for brain size indicates true SNP correlates 

or whether SNP correlates have been falsely induced by conditioning on a collider. 

Different SNPs may be affected by collider bias differentially. Considering brain 

morphometry and cognitive ability are highly polygenic (Jansen et al., 2020), even 

false positive genetic correlates of the brain may (at least partly) map onto genetic 

correlates of cognitive ability, which could have falsely inflated genetic correlations 

between IQ, education and brain volumes adjusted for brain size (Fig.4B). An 

unpublished addition to Chapter 4 delivers more empirical evidence that may support 

that GWAS adjusted for a proxy of brain size (Smith, Douaud, et al., 2020) are subject 

to collider bias.  

4.5. Limitations 

 This study has limitations in its brain size adjustment method because brain 

size was simply modelled as a linear covariate. This was intended to enable 

straightforward comparisons between analyses. Future studies are needed to examine 

whether using alternative adjustment techniques (e.g., non-linear covariate 

adjustment) would alter results presented here. Future studies should also investigate 

how results would change if models were adjusted for intracranial volume (ICV) 

instead of TBV. TBV is subject to ageing and pathology, while ICV should remain stable 

across the lifespan, and is therefore likely to alter the relationship between regional 

volume and cognitive ability to a lesser degree (especially in older samples but not in 

younger samples). The exact roles played by ageing and brain development also 

remain to be discerned. 

 For simplicity this study used within-sample regression models, but the 

presented correlations are likely over-fitted and future out-of-sample predictions are 
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needed to determine true effect sizes. Future studies should also explore the 

transferability of these findings to surface area and cortical thickness measures, as well 

as non-European populations. Results likely depend on the parcellation scheme used 

to subdivide the cortex into regions ("brain atlases”) which I specifically address in 

Chapter 5. 

4.6. Conclusion  

 This study examined the impact of brain size covariate adjustment on the 

relationship between regional grey matter and cognitive ability. Evidence presented 

here weighs against brain size covariate adjustment because it disposed of most of the 

variance shared between regional volumes and cognitive ability. Variance associated 

with brain size is not nuisance variance because it accounted for regional information 

that is lost through brain size adjustment. For most brain regions, this loss of 

information resulted in small effect sizes that could not be reliably modelled when 

made independent of brain size. Compared to those brain size adjusted uni-regional 

brain models, multivariate analyses unadjusted for brain size have better potential to 

uncover larger and more robust brain morphometric correlates of cognitive ability. 

Without disposing of brain size variance and the regional information that it carries, 

future multivariate studies promise more holistic, better interpretable, and 

biologically plausible accounts of brain organisation underlying cognitive ability (e.g., 

Chapter 4).  

  Finally, there is a lack of theoretical arguments to defend causal chains implied 

by adjusting for brain size as a covariate in phenotypic as well as genetic association 

studies. Specifically in genetic designs, brain size confounding is logically impossible 

and there are strong reasons to suggest that brain size adjustment induces collider 
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bias. Future genome-wide analyses should calculate genetic correlates of regional 

brain morphometry without adjusting for brain size, which will make GWAS summary 

data more broadly usable in multivariate follow-up analyses.  
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Chapter 3 

 

Genomic Principal Component Analysis 
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1. Background 

 The study of genetic overlap between complex traits promises a quantitative 

representation of the extent to which two traits have either the same underlying causal 

loci, or have associated genes with shared pleiotropic action (van Rheenen et al., 2019). 

GWAS summary statistics are routinely leveraged across the literature to detect 

genetic overlap between any two traits which has helped uncover that most complex 

traits share genetic bases. For example, higher cognitive ability, as measured using 

cognitive tests, is co-inherited with large brain volume to a moderate degree (rg = 0.24) 

(Jansen et al., 2020).  

 Multivariate techniques already exist to investigate genetic correlations across 

multiple traits more systematically, and they were widely adopted given the large 

public availability of GWAS summary statistics. Methods such as GenomicSEM 

(Grotzinger et al., 2019) and Genomic Independent Component Analysis (Genomic 

ICA) (Soheili-Nezhad et al., 2021) integrate multiple traits to model their genetic 

correlations, test hypotheses at the level of their underlying genetic architecture, and 

meaningfully reduce dimensionality on a SNP-wise level. This promises more 

interpretable, more robust, biologically plausible insights into genetic trait variance 

than inferences from univariate GWAS. However, GenomicSEM and Genomic ICA 

were both designed to serve specialised purposes and have specific limitations. 

 GenomicSEM (Grotzinger et al., 2019) provides a flexible framework to apply 

user-defined structural equation models (SEMs) to genetic correlations across 

multiple traits. No access to individual-level data is needed, as GenomicSEM takes 

advantage of genetic correlation matrices derived from bivariate LDSC of multiple 

GWAS phenotypes. Model fit indices allow users to test how well a proposed model 
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accounts for observed genetic correlations, and how this model compares to 

competing models. For example, excellent model fit was found for a genetic general 

factor of intelligence that accounted for 58% of the genetic variance across seven 

cognitive traits, but the genetic data did not support a hierarchical structure including 

more specific cognitive domains (e.g., crystalised and fluid ability), as is often found 

in phenotypic cognitive testing data (de la Fuente et al., 2021).  

 GenomicSEM is often used to integrate SNPs into SEMs (for example, into a 

one-factor model) to represent broad genetic propensity underpinning the proposed 

factor structure on a SNP-wise level. Though the quality of the results depends on 

model fit. Consequently, GenomicSEM is not feasible when users attempt to fit too 

complicated factor structures which could arise when considering too large numbers 

of GWAS phenotypes or complex loading structures. If model fit is inadequate, 

GenomicSEM forces SNPs to be associated with an inaccurate factor, resulting in 

unreliable SNP-wise correlates.  

 Genomic ICA (Soheili-Nezhad et al., 2021) is a data-driven technique that 

reduces the dimensional space of multiple GWAS phenotypes and their associated 

genetic signal into more interpretable, statistically independent sources by which 

genomic variants collectively influence complex traits. Genomic ICA applies 

probabilistic ICA to trait-by-SNP matrices. Independent components of genomic 

variance isolated through Genomic ICA were validated by showing that they relate to 

distinct, previously-known molecular mechanisms through which the genome acts on 

the brain (Soheili-Nezhad et al., 2021). With a focus on biological specificity of genetic 

signal underlying GWAS phenotypes, Genomic ICA can integrate thousands of GWAS 

phenotypes, though its unsupervised nature means that derived components are less 

clearly labelled (than factors in GenomicSEM, for example), and that many 
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components are needed to comprehensively account for genetic variance across the 

considered GWAS phenotypes (e.g., 200 components to explain 80% of the genetic 

variance across 1,448 phenotypes in Soheili-Nezhad et al. (2021)). 

 Here, I present Genomic PCA to integrate multiple traits and genome-wide 

information and to overcome some of the limitations of GenomicSEM and Genomic 

ICA. Genomic PCA extracts genetic principal components (PCs) underlying multiple 

GWAS phenotypes to reduce trait dimensionality to one set of genome-wide SNP 

effects. It decomposes genetic correlation matrices derived from LDSC and has fewer 

statistical assumptions than GenomicSEM: Genomic PCA permits modelling large 

numbers of GWAS phenotypes by extracting the first dimension of maximal variation 

without assuming that there is only one dimension, which is what a one-factor model 

in GenomicSEM would require. This focus on maximal variation also means it typically 

accounts for much of the genetic variance with few components, rather than isolating 

many biologically specific components of genetic variation like Genomic ICA. Genomic 

PCA enables targeted hypothesis testing of associations between genetic PCs 

underlying user-selected groups of traits and other traits in follow-up analyses. It is 

the purpose of this chapter to derive and validate Genomic PCA by demonstrating that 

a genetic PC extracted with Genomic PCA produces equivalent results to calculating a 

GWAS on a phenotypic PC.  
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2. Methods 

2.1. Input GWAS summary data 

 I downloaded freely available GWAS summary statistics from Linnér et al. 

(2019) on risky behaviours (https://www.thessgac.org/data). Linnér et al. (2019) 

performed GWAS on four self-reported behaviours: automobile speeding 

(n = 404,291), alcohol consumption (i.e., average alcoholic drinks per week, 

“drinking”; n = 414,343), lifetime number of sexual partners (n = 370,711), and 

smoking (i.e., ever been smoker; n = 518,633). In addition to the four traits, they 

extracted the first phenotypic PC (PC1) underlying these four traits in a PCA of 

phenotypic data and performed a GWAS on PC1 to obtain SNP-wise correlates of a 

general dimension underlying all four behaviours (n = 315,894). Speeding, drinking, 

number of sexual partners, and the PC1 GWAS were performed in the UK Biobank 

sample (Bycroft et al., 2018). The smoking GWAS was meta-analysed across UK 

Biobank and the MTAG consortium (Furberg et al., 2010). I validated Genomic PCA 

by modelling a genetic PC1 underlying the four risky behaviours from GWAS summary 

statistics, which I compared to the PC1 GWAS extracted from phenotypic data in 

Linnér et al. (2019). 

2.2. Genomic PCA 

 Below, I describe the step-by-step procedure required to perform Genomic PCA 

using publicly available tools in R (Fig.1). Analysis code can be found at 

https://annafurtjes.github.io/genomicPCA/.  

https://www.thessgac.org/data
https://annafurtjes.github.io/genomicPCA/
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Fig.1. Genomic PCA pipeline.  

(A) Genomic PCA takes genome-wide association data from multiple, user-selected traits as input. (B) A genetic correlation matrix is calculated quantifying the 
extent to which the input GWAS traits genetically overlap, for which it uses LDSC as implemented in GenomicSEM. This also provides LDSC intercepts which 
are needed in step 4 to adjust for unknown degrees of sample overlap. (C) Through eigen decomposition (eigen function in R), Genomic PCA decomposes the 
genetic correlation matrix into eigenvectors and eigenvalues, from which PC loadings are calculated. (D) Finally, genome-wide SNP effects are obtained through 
the displayed formula to obtain one set of GWAS summary statistics of a PC underlying the input GWAS phenotypes. 
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2.2.1 Obtain Genetic Correlation Matrix 

 Genomic PCA requires the calculation of a genetic correlation matrix which is 

inferred through LDSC as implemented in GenomicSEM (Grotzinger et al., 2019). 

First, munging (using the munge function) filters GWAS SNPs according to the 

HapMap 3 reference excluding the MHC region that has complicated linkage 

disequilibrium structures (URL). Second, LDSC is performed (using the ldsc function) 

to obtain a symmetrical genetic correlation matrix of x dimensions, where x is the 

number of considered traits. Genetic correlations quantify the extent to which GWAS 

traits share genome-wide polygenic signal.  

2.2.2 Eigen decomposition 

 Using the eigen function in R, Genomic PCA linearly decomposes the genetic 

correlation matrix into eigenvectors (its principal components) which are sorted by 

their corresponding eigenvalues (explained variance). Dimensionality reduction is 

achieved by choosing a principal component and discarding the other components 

explaining less variance. Here I model PC1 but users can also choose to model another 

component, e.g., PC2. PC loadings for each contributing trait are calculated as 

displayed in Equation 1:  

𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑠 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑥 √𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 

 

2.2.3 SNP effects of the underlying genetic PC1 

 To obtain genome-wide SNP effects of an underlying genetic PC1, Genomic PCA 

calculates SNP-wise effects according to the equation displayed in Fig.1D. Briefly 

explained, each SNP effect is the average of all SNP effects from contributing GWAS 

https://data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2
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traits weighted by a traits PC1 loading as calculated in Equation 1. Users may weight 

SNP effects by loadings onto the second PC, should they wish to obtain SNP effects 

onto PC2 (or any other principal component). Genome-wide PCs can be extracted from 

multiple GWAS phenotypes of unknown degrees of overlap as SNP effects are adjusted 

for univariate and bivariate LDSC intercepts. 

 Computationally, Genomic PCA relies on the multivariate GWAMA R package 

(Baselmans et al., 2019). It takes genome-wide association data as input and performs 

genome-wide meta-analysis across multiple traits while adjusting for sample overlap 

using LDSC intercepts. To perform Genomic PCA (instead of genome-wide meta-

analysis), I modified the multivariate_GWAMA function in order to weight 

contributing SNP effects by their PC1 loading rather than their heritability 

(https://github.com/baselmans/multivariate_GWAMA/). As a result, the modified R 

function produces one set of GWAS summary statistics of the underlying genetic PC. 

It is available on GitHub (https://annafurtjes.github.io/genomicPCA/). 

2.2.4. Parallel analysis  

 To test whether genetic PCs explained more variance than expected by chance, 

my collaborator Dr. Javier de la Fuente (University of Texas at Austin, US) developed 

a version of parallel analysis. Parallel analysis aims to determine how many 

components explain more variance than would have been expected by chance, by 

comparing variance explained in the actual data with variance explained in random 

null data. Null distributions of eigenvalues are generated by simulating null 

correlation matrices sampled from a diagonal population correlation matrix, where 

the multivariate sampling distribution is specified to take the form of the sampling 

distribution of the standardised empirical genetic correlation matrix (the VSTD matrix, 

https://github.com/baselmans/multivariate_GWAMA/
https://annafurtjes.github.io/genomicPCA/
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as estimated using GenomicSEM). This sampling correlation matrix serves as an index 

of the precision of the elements in the empirical genetic correlation matrix (i.e., 

heritabilities and genetic overlap across traits) and the sampling dependencies among 

these when generating the random null models. I specified 1,000 replications to 

simulate the null correlation matrices and used a 95% threshold for distinguishing true 

eigenvalues from noise. As the parallel analysis R function was contributed by a 

collaborator, and I simply applied and described it here. 

2.3. Validation of Genomic PCA 

 To validate that Genomic PCA produces valid genetic PCs, I calculated genetic 

correlations as a measure of similarity between a genetic PC1 underlying four risky 

behaviours obtained from Genomic PCA (“genetically extracted”) and a GWAS of a 

phenotypic PC1 of the same four risky behaviours (“phenotypically extracted”) 

calculated by Linnér et al. (2019). A high correlation would indicate that both 

approaches capture the same polygenic signal while Genomic PCA does not require 

access to individual-level data. I also report genetic correlations with both 

phenotypically and genetically extracted PC1 GWAS and the individual risky 

behaviours. 

  



 

99 

 

3. Results 

 Genetic correlation matrices and LDSC intercepts for the four risky behaviours 

used as input to Genomic PCA are displayed in Fig.2A-B. Using Genomic PCA, I 

extracted PC1 underlying four risky behaviours GWAS, which explained 50% of the 

genetic variance contained across GWAS phenotypes (Fig.2C). Parallel analysis 

demonstrated in Fig.3 that only PC1 (and not any other components) explained more 

variance than expected by chance given the empirical sampling dependencies among 

the four risky behaviour GWAS phenotypes. 

 The genetically extracted PC1 (using Genomic PCA) was genetically correlated 

at rg = 0.99 with the phenotypically extracted PC1 GWAS from Linnér et al. (2019). 

This suggests that the phenotypically and genetically extracted PC1s capture 

equivalent polygenic signal, that systematically co-varies with LD (LDSC slope). They 

were also genetically correlated with their underlying risky behaviours at comparable 

magnitudes (Fig.4A). For example, the phenotypically extracted PC1 had about the 

same genetic correlation with self-reported number of sexual partners (rg = 0.80) as 

the genetically extracted PC1 (rg = 0.79). Though, phenotypically and genetically 

extracted PC1 GWAS somewhat differed in the confounding signal they captured 

(LDSC intercept = 0.89; Fig.4B). Presented LDSC intercepts capture population 

stratification, environmental confounding, and sample overlap. 
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Fig.2. Descriptive statistics.  

A. Genetic correlations obtained through cross-trait LDSC between the four risky behaviour GWAS 
phenotypes by (Linnér et al., 2019). B. Corresponding LDSC intercepts. C. The genetic correlation 
matrix is decomposed into eigenvectors and eigenvalues. D. PC loadings are extracted from 
eigenvectors and eigenvalues. Each displayed column contains PC loadings for four traits onto an 
underlying PC, that is, column 1 from the left is PC1, column 2 is PC2 etc. 
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Fig.3. Parallel analysis.  

Parallel analysis compares simulated null data against observed data to quantify whether Genomic PCA 
extracted PCs that explained more variance than expected by chance. With the observed data based on 
the risky behaviours GWAS (Linnér et al., 2019), PC1 explained more variance than expected by chance, 
but this was not the case for the other components. 

 

 

 

Fig.4. Cross-trait LDSC results.  

Genetic correlations and intercepts between genetically and phenotypically extracted PC1 as well as four 
risky behaviour GWAS phenotypes (Linnér et al., 2019). 
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4. Discussion 

 Genomic PCA integrates multiple traits and their genome-wide associations by 

producing one set of GWAS summary statistics of a PC underlying the input GWAS 

phenotypes. To validate that Genomic PCA indeed extracts valid genetic PCs, I 

demonstrated that a genetic PC1 extracted with Genomic PCA captures equivalent 

polygenic signal (rg = 0.99) to phenotypically extracting PC1 from individual-level 

data. 

 Given the widespread availability of GWAS summary statistics, Genomic PCA 

is a convenient dimensionality reduction tool because it takes genome-wide 

association data (as opposed to individual-level data) as input to retain maximal 

genetic variance shared between multiple traits. I demonstrate above that the genomic 

PC1 extracted with Genomic PCA explained 50% of the total genetic variance 

underlying four risky behaviours. Users of Genomic PCA may obtain a robust 

dimension of genetic signal shared between multiple traits, and perform follow-up 

analyses to model associations with other traits on the level of their underlying genetic 

architecture. For example, they may theorise that a group of brain volumes form a 

brain network, model genetic variance shared between those volumes using Genomic 

PCA, and test whether their theorised brain network is genetically correlated with 

other traits such as cognitive ability. Future investigations are needed to test whether 

individual-level genetic propensity scores (“polygenic scores”) (Lewis & Vassos, 2022) 

derived from genetic PCs improve prediction accuracy of phenotypic trait variance 

compared with scores derived from univariate GWAS. 

 Genomic PCA should be used as an alternative to other techniques, such as 

GenomicSEM or Genomic ICA, should researchers wish to extract maximal genome-
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wide variation underlying large numbers of GWAS phenotypes. It must be considered 

that Genomic PCA output is limited by the quality and power of the GWAS summary 

statistics used as input. If input GWAS contain low precision and limited systematic 

variance, genetic correlations can become unstable (Lee, McGue, et al., 2018). 

Furthermore, because eigen decomposition is based on a genetic correlation matrix 

obtained from LDSC, the same limitations that apply to LDSC are relevant to Genomic 

PCA. For example, LDSC estimates can be downwardly biased with larger standard 

errors as compared with genome-wide complex trait analysis, for example (Lee, 

McGue, et al., 2018). Genomic PCA assumes that genetic correlations obtained from 

LDSC are genome-wide representative. 

 The next chapter of this thesis uses Genomic PCA to model genetic dimensions 

of brain morphometry underlying canonical brain networks. Chapter 4 describes 

canonical brain networks via the variance explained by PC1s (R2) underlying multiple 

brain volumes and their corresponding PC1 loadings. As we model genetic PCs purely 

based on GWAS input – independent of any prior phenotypic information on trait 

relationships – we can compare independently modelled genetic and phenotypic 

correlation structures to systematically investigate whether phenotypes are organised 

similarly to their underlying genetic architecture. According to Cheverud’s Conjecture, 

it is expected for phenotypic and genetic correlations to show strong correspondence 

(Cheverud, 1988; Sodini et al., 2018). Such a comparison of independent phenotypic 

and genetic models would not have been possible using PCA applied to GWAS 

summary statistics as implemented in the ‘genome-wise inferred statstics’ method 

(GWIS; Nieuwboer et al., 2016; Shin et al., 2020) because GWIS requires prior 

information on phenotypic trait relationships to extract genetic PCs. 
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 It would validate previously described phenotypic brain network structure, 

(Madole et al., 2021) if phenotypic and genetic PCA results were equivalent. It would 

support that genetics present a promising tool to triangulate phenotypic research 

findings, since it brings inference closer to underlying biological information. This will 

help shed light on whether genetics operate along the same dimensions as are evident 

phenotypically, and it may help better understand whether co-occurrence of two traits 

more likely originates from genetic or environmental influences. For example, if 

phenotypic and genetic correlations were of opposite signs (e.g., phenotypic 

correlation positive, genetic correlation negative), it would imply that there are 

environmental (or developmental) processes at play that act in opposite directions to 

the genetically-driven influences, and are in turn likely to exert substantial impacts on 

the phenotypic manifestation of a trait.  

 Beyond describing brain-wide correlation structures, the next chapter also 

assesses shared genetic aetiology between cognitive ability, aging, and multiple brain 

networks. To the best of my knowledge, this is the first study to systematically 

investigate theoretically-informed brain networks in interindividual differences of 

structural grey matter and their significance for cognitive aging on a genetically-

informed level of analysis. 
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Chapter 4 

 

General dimensions of human brain morphometry 

inferred from genome-wide association data 

 

This project was pre-registered on the Open Science Framework 

(https://osf.io/7n4qj), it was previously published as a pre-print on bioRxiv (doi: 

10.1101/2021.10.22.465437) and has undergone one round of revisions with Human 

Brain Mapping. The version presented below was adopted from the bioRxiv version 

and is the revised version resubmitted to Human Brain Mapping on the 1st of February 

2023. As of the 8th of March 2023, we have received confirmation of publication. 

Supplementary Materials, including supplementary methods, can be found in the 

Appendix. 

 

  

https://osf.io/7n4qj


 

106 

 

 

General dimensions of human brain morphometry inferred from 

genome-wide association data 

 

Anna E. Fürtjes, MSc1*, Ryan Arathimos, PhD1,2, Jonathan R. I. Coleman, PhD1,2, 

James H. Cole, PhD3,4,5, Simon R. Cox, PhD6,7, Ian J. Deary, PhD 6,7, Javier de la 

Fuente, PhD 8,9, James W. Madole, PhD 8, Elliot M. Tucker-Drob, PhD 8,9, Stuart J. 

Ritchie, PhD 1 

The names of the co-authors are listed in alphabetical order and grouped by 

affiliation. 

 

1 Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of 

Psychiatry, Psychology & Neuroscience, King’s College London, SE5 8AF, UK 

2 National Institutes for Health Research Maudsley Biomedical Research Centre, 

South London and Maudsley NHS Trust, London, SE5 8AF, UK 

3 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, 

King’s College London, London, SE5 8AF, UK 

4 Centre for Medical Image Computing, Department of Computer Science, University 

College London, London, WC1V 6LJ, UK 

5 Dementia Research Centre, Institute of Neurology, University College London, 

London, WC1N 3BG, UK 

6 Department of Psychology, The University of Edinburgh, Edinburgh, EH8 9JZ, UK 

7 Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK 

8 Department of Psychology, University of Texas at Austin, Austin, TX 78712-1043, 



 

107 

 

USA 

9 Population Research Center and Center on Aging and Population Sciences, 

University of Texas at Austin, Austin, TX 78712-1043, USA 

 

 

  



 

108 

 

Abstract 

 Background: Understanding the neurodegenerative mechanisms underlying 

cognitive decline in the general population may facilitate early detection of adverse 

health outcomes in late life. This study investigates genetic links between brain 

morphometry, ageing, and cognitive ability. 

 Methods: We develop Genomic Principal Components Analysis (Genomic 

PCA) to model general dimensions of brain-wide morphometry at the level of their 

underlying genetic architecture. Genomic PCA is applied to genome-wide association 

data for 83 brain-wide volumes (36,778 UK Biobank participants), and we extract 

genomic principal components to capture global dimensions of genetic covariance 

across brain regions (unlike ancestral principal components that index genetic 

similarity between participants). Using linkage disequilibrium score regression, we 

estimate genetic overlap between those general brain dimensions and cognitive 

ageing. 

 Results: The first genetic principal components underlying morphometric 

organisation of 83 brain-wide regions accounted for substantial genetic variance (R2 

= 40%) with the pattern of component loadings corresponding closely to obtained 

from phenotypic analyses. Genetically more central regions to overall brain structure-

-specifically frontal and parietal volumes thought to be part of the central executive 

network--tended to be somewhat more susceptible towards age (r = -0.27). We 

demonstrate moderate genetic overlap between the first principal component 

underlying each of several structural brain networks and general cognitive ability (rg 

= 0.17-0.21), which was not specific to a particular subset of the canonical networks 

examined. 
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 Conclusion: We provide a multivariate framework integrating covariance 

across multiple brain regions and the genome, revealing moderate shared genetic 

aetiology between brain-wide morphometry and cognitive aging. 

Key words: Complex traits genetics, statistical modelling, structural brain networks, 

structural neuroimaging, genetics, cognitive ability, brain age, statistical modelling 
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1. Introduction 

 Progressive ageing-related neurodegenerative processes in human brain are 

well-documented across the micro- and macro-scales within otherwise healthy adults, 

and are linked to ageing-related declines in multiple domains of cognitive function 

(Cox et al., 2016; Fjell & Walhovd, 2010; Madole et al., 2021). Understanding the 

biological processes underlying these links is paramount for identifying mechanisms 

of cognitive ageing that can ultimately be targeted by intervention. The human brain 

is a complex network of partially functionally and anatomically overlapping and 

interconnected regions (Bressler & Menon, 2010; Power et al., 2011; Sporns, 2011; Yeo 

et al., 2011), whose components age unevenly over time (Raz et al., 2010), and may be 

differentially relevant to adult cognitive ageing (Cox et al., 2019; Fjell & Walhovd, 

2010; Madole et al., 2021).  

 Whereas considerable attention has been devoted separately to the genetic 

architecture of human brain morphometry (Anderson et al., 2021; Meer et al., 2021; 

Zhao, Luo, et al., 2019) and the genetic architecture of adult cognitive ability (de la 

Fuente et al., 2021), relatively less work has explicitly linked investigations of the 

genetic architecture of human brain morphometry to the putative organisation of 

brain networks (although see (Arnatkevičiūtė et al., 2021) for a recent exception). In 

addition, there have been few investigations of how genetic links between components 

of human brain networks relate to ageing and cognition.  

 To model the underlying genetic architecture of brain organisation, we 

developed Genomic Principal Component Analysis (Genomic PCA), a multivariate 

approach in which we integrate multiple regional brain volumes and the genome to 

model general dimensions of brain structure. Using genome-wide association study 
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(GWAS) summary statistics as input, Genomic PCA extracts genetic principal 

components (PCs) underlying multiple GWAS phenotypes (unlike the ancestry-based 

PCs commonly used in genomic research that index genetic similarity between 

participants). Subsequently, genetic PCs underlying the whole brain, as well as nine 

groups of regional brain volumes that reflect canonical brain networks (Fig.1) are 

tested for associations with cognitive ability and aging. This genetically-informed 

approach parallels a previous study modelling phenotypic PCs underlying the same 

canonical brain networks, which showed that frontal and parietal brain volumes – part 

of the central executive network – were more important to overall brain structure (i.e., 

higher loadings onto a PC underlying the whole brain), and tended to have stronger 

cross-sectional associations with age than other regions of the brain (N = 8,185) 

(Madole et al., 2021).  
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Fig.1. Canonical brain network definitions.  

To scaffold the genetic architecture of human brain morphometry onto the canonical network 
organisation of the brain, we consider nine overlapping brain networks. Regional volumes thought to 
reside within these networks are represented through genome-wide association data of 83 grey-matter 
volumes (N = 36,778), and this Figure indicates which networks different volumes were allocated to. 
The network definitions were adopted from Madole et al. (2021), but are not indisputable. We used 
these theory-based network definitions to apply our novel dimensionality reduction technique Genomic 
PCA, to obtain genetic Principal Components underlying clearly labelled networks. Using these genetic 
PC1s, we tested whether different networks, or even the whole brain are genetically associated with 
cognitive aging.  
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 The canonical brain networks examined in the present manuscript are based on 

a whole-brain perspective, considering the existing literature that describes 

synchronised (i.e., correlated) regional activity in functional MRI data (Madole et al., 

2021), in addition to converging evidence from other modalities (i.e., structural MRI 

and lesion-based mapping (Bressler & Menon, 2010; Jung & Haier, 2007; Menon & 

Uddin, 2010). Among the most reported networks are the central executive (Sridharan 

et al., 2008), default mode (Buckner & DiNicola, 2019), salience (Downar et al., 2002), 

and multiple demand networks (Duncan, 2010). Our investigation focuses on brain 

volumes within these networks because they are highly heritable (Zhao, Ibrahim, et 

al., 2019), and are measured independently of mental processes during MRI scanning 

(compared with functional MRI). Grey matter volume is a robust predictor of general 

cognitive ability (Cox et al., 2019; Hilger et al., 2020), and it partly reflects age-related 

atrophy among middle-and-older adults; an important indicator of ageing and health 

outcomes (Cole et al., 2018).  

 There are substantial genetic links between brain structure and cognitive 

function in aging. For example, a recent investigation ran a GWAS on the brain age 

gap, which is an index of how much older (or younger) an individual’s brain appears 

compared to their chronological age. Substantial genetic correlations were revealed 

between a dementia screening test (Mini Mental State Examination) and brain age in 

the whole brain (rg = -0.3), as well as the four brain lobes (rg = -0.15 to -0.22), 

suggesting that there is a genetic component to how quickly one’s brain degrades with 

age.  

 Overall brain volume and cognitive ability are also genetically correlated (rg = 

0.24), implicating genes involved in regulating cell growth (Jansen et al., 2020). Biton 

et al. (2020) reported smaller genetic correlations between intelligence and seven 
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regional brain volumes (range rg = 0.07-0.13), which is the only study we are aware of 

that considered regional volumes not normalised for global brain measures. Studies 

normalising for global measures report only small, or even negative associations 

between cognitive ability and regional brain structures (e.g., rg = -0.13 between 

intelligence and frontal lobe) (see also Grasby et al., 2020; Zhao, Luo, et al., 2019), 

which is of secondary interest to our study because this only considers regional 

variance above and beyond variance that maps onto total brain size. Instead, we 

consider regional variance central to overall brain structure: rather than discarding it 

(and the regional information it carries; Reardon et al., 2018), we model interregional 

variance because cognitive ability and aging are brain-wide distributed phenomena 

(Cole et al., 2019; Hilger et al., 2020), that are more associated with shared between-

region (rather than noisy region-specific) brain features (Cox et al., 2021).  

 The aims of this pre-registered study are twofold (https://osf.io/7n4qj). First, we 

link investigations of the genetic architecture of human brain morphometry with 

canonical brain networks, to test whether genetics operate on the same dimensions as 

are evident phenotypically. As Cheverud originally speculated, “If genetically and 

environmentally based phenotypic variations are produced by similar disruptions of 

developmental pathways, genetic and environmental correlations should be similar” 

(Cheverud, 1988). We therefore hypothesised a close correspondence of phenotypic 

and genetic morphometric correlations (as demonstrated across a range of traits in 

Biton et al., 2020; Sodini et al., 2018). A dissimilar organisation of phenotypic and 

genetic brain architecture would raise questions regarding the neurobiological validity 

of canonical brain networks in interindividual differences of structural grey matter. A 

similar organisation would be consistent with a measurable genetic foundation of 

structural brain networks.  

https://osf.io/7n4qj
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 Second, we investigate the extent to which genetic correlations among brain 

organisation, cognitive ability, and aging corroborate the magnitude and direction of 

well-established phenotypic associations. We hypothesised substantial genetic 

correlations of these variables with general morphometric dimensions across the 

whole brain, and nine overlapping structural brain networks. As implied by the 

phenotypic results of Madole et al. (2021), we expected the central executive network 

to play a disproportionate role in cognitive ability, which would confirm a more precise 

neurobiological foundation of cognitive ability. 
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2. Methods 

 The UK Biobank sample consisted of 36,778 unrelated White European 

participants (54% females) with available neuroimaging data. They had an average age 

of 63.3 years at neuroimaging visit (range from 40.0 to 81.8 years; SMethods 1.1). 

Standard quality checks were performed as described in SMethods 1.2-1.3. Then, we 

derived Genomic Principal Components Analysis (Genomic PCA; Fig.2) that follows 

three major steps to extract general dimensions of human brain morphometry 

underlying genetic covariance across multiple brain GWAS phenotypes (unlike 

ancestral PCs that index genetic similarity between participants). 
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Fig.2. Genomic PCA pipeline.  

(1) Input data: The pipeline takes GWAS summary statistics as input. Here, we calculated GWAS 
summary statistics for 83 cortical and subcortical grey-matter volumes, which were the input to the 
analyses presented throughout the manuscript. (2) Calculate genetic correlation matrix: We 
calculate interregional genetic correlations based on LDSC as implemented in GenomicSEM 
(Grotzinger et al., 2019). (3a) Perform Principal Component Analysis: We perform eigen 
decomposition of the genetic correlation matrix using the eigen function in R in order to extract PC1 
loadings on the first PC underlying brain volumes for which we submitted GWAS summary statistics to 
the pipeline. Here we obtain PC1 loadings for each of the 83 brain volumes, and an estimate of R2 
quantifying how much genetic variance PC1 explained across all input volumes. (3b) Calculate 
genome-wide SNP effects: To obtain genome-wide SNP-wise effects on the underlying genetic PC1, 
we calculate each SNP effect as the average of all SNP effects contributed by the input volumes, weighted 
by respective volume-specific PC1 loadings. This creates one set of GWAS summary statistics 
representative of genetic correlates of an underlying genetic PC1. Individual SNP effects are computed 
with a modified function by Baselmans et al. (2019). We used the same procedure to also obtain PC1 
underlying different brain networks, for which we submitted fewer volumes as input. 
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 First, we calculated 83 GWAS summary statistics for 83 cortical and subcortical 

grey-matter volumes (33 cortical Desikan-Killiany (Desikan et al., 2006) regions in 

each hemisphere + 8 subcortical regions in each hemisphere + brain stem; Fig.2.1). 

UKB field IDs are listed in STable 1. GWAS effects were fitted in a linear mixed model 

using REGENIE (Mbatchou et al., 2021). SNP-heritability for each volume was 

comparable to those reported elsewhere (Zhao, Ibrahim, et al., 2019) (mean = 0.23, 

range = 0.07-0.42; Fig.3A).  

 Second, we calculated genetic correlation matrices indicating genetic overlap 

between the 83 volumes using linkage disequilibrium score regression (LDSC; Bulik-

Sullivan, Finucane, et al., 2015) as implemented in the GenomicSEM software 

(Grotzinger et al., 2019) (Fig.2.2). Genetic between-volume correlations are displayed 

in SFig.1-10.  

 Third, we extracted the first genetic principal component (PC1) underlying 

genetic variance shared across multiple GWAS phenotypes (here we used 83 brain 

volumes as input), by which we reduced dimensionality from multiple to only one set 

of GWAS summary statistics. PC1 loadings and R2 estimates were calculated with the 

eigen function in R (Fig.2.3.a). Genome-wide SNP effects are calculated as the average 

of SNP effects from multiple GWAS phenotypes weighted by (volume-specific) PC1 

loadings. Standard errors are corrected for sample overlap by taking into account 

LDSC intercepts (Fig.2.3.b). In cases of complex and highly dimensional data (e.g., 

large numbers of variables, or complex loading structure making a factor model in 

GenomicSEM (Grotzinger et al., 2019) unfeasible), Genomic PCA permits a focus on 

the first dimension of maximal variation without assuming that there is only one 

dimension (which is what fitting a one-factor model would require). Genomic PCA is 

also computationally simpler given the large number of considered ROIs. It is a major 
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advantage that no access to individual-level phenotype data is needed to perform 

Genomic PCA, and we validated the approach by demonstrating that GWAS summary 

statistics produced by Genomic PCA are identical (rg = .99) to GWAS summary 

statistics obtained from running GWAS analyses on a phenotypic PC1 (more details at 

https://annafurtjes.github.io/genomicPCA/, and in SMethods 2.5).  

 Using Genomic PCA, we performed theory-driven dimensionality reduction by 

extracting genetic PC1s from covariance structures across nine canonical brain 

networks (as well as the whole brain with 83 regions). That is, we submitted groups of 

brain volumes to Genomic PCA that are thought to be part of canonical brain networks 

(STable 2 lists volumes allocated to nine overlapping networks). Network definitions 

have been adopted from Madole et al. (2021), where networks were aligned with the 

structural, functional, and lesion-based literature (e.g., Bressler & Menon, 2010; Jung 

& Haier, 2007; Menon & Uddin, 2010).   

The remainder of the Methods outlines analyses of genetic PC1s underlying multiple 

brain volumes (derived with Genomic PCA) and is structured according to the four 

major sub-sections of the Results:  

 1) First, we reported summary statistics (including volumetric PC1 loadings and 

variance explained by PC1; R2) describing the genetic PC1s underlying the whole brain 

(83 regions), as well as nine canonical brain networks including fewer regions (Results 

3.1).  

 2) Second, we tested whether genetic interregional covariance is similarly 

organised to phenotypic interregional covariance. To obtain comparable indices of 

phenotypic covariance, we ran a standard (phenotypic) PCA on a phenotypic 

correlation matrix obtained from the same brain volume variables used to calculate 

https://annafurtjes.github.io/genomicPCA/
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GWAS. Phenotypic PCA is performed with the eigen function in R, which is also used 

in Genomic PCA. We quantified linear associations and the Tucker congruence 

coefficient (Lorenzo-Seva & Berge, 2006) to contrast genetic and phenotypic 

interregional correlations, as well as genetic and phenotypic PC1 loadings underlying 

brain-wide volumes (Results 3.2).  

 3) Third, to quantify the genetic relationship between general dimensions of 

brain morphometry and cognitive ability, we extracted a general factor of cognitive 

ability in GenomicSEM (Grotzinger et al., 2019) using factor analysis of seven 

cognitive traits as published by de la Fuente et al. (2021). The seven cognitive traits 

were Matrix Pattern Completion task for nonverbal reasoning, Memory – Pairs 

Matching Test for memory, Reaction Time for perceptual motor speed, Symbol Digit 

Substitution Task for information processing speed, Trail Making Test – B and Tower 

Rearranging Task for executive functioning, and Verbal Numerical Reasoning Test 

for verbal and numeric problem solving, or fluid intelligence. The main Results of this 

section are genetic correlations between general cognitive ability and genetic PC1s 

underlying the whole brain and nine different brain networks (Results 3.3). 

Additionally, we report genetic correlations with individual cognitive abilities, Qtrait 

analyses (Grotzinger et al., 2022), and we test whether the central executive network 

is particularly relevant for cognitive ability (SMethods 2.11).  

 4) Fourth, we tested for associations between general dimensions underlying 

the whole brain and age-related indices to understand whether generally more 

important regions for overall brain structure are also more susceptible to cognitive 

aging (which would indicate shared mechanisms). This fourth section is split into two 

parts: Firstly, we tested for a linear association between the genetic PC1 loadings of all 

83 volumes (onto a PC1 underlying the whole brain) and a volume’s cross-sectional 
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association with age (Results 3.4.1), which has previously been called its “age 

sensitivity” (Madole et al., 2021). This analysis was not repeated for smaller 

subnetworks, because the low degree of statistical power did not allow us to 

meaningfully estimate the correlation between the vectors.  

 In a second, non-registered analysis, we quantified a genetic correlation 

between a genetic PC1 underlying the whole brain and the brain age gap (the gap 

between chronological and biological brain age), for which we utilised GWAS 

summary statistics by Kaufmann et al. (2019). This brain age gap GWAS was based on 

the difference between an individual’s chronological age and age predictions of how 

old (or young) an individual’s brain appears from structural MRI measures (Results 

3.4.2). This analysis was only performed for a genetic PC1 underlying the whole brain, 

but not PC1s underlying different networks, because they were so strongly associated 

that they indexed practically the same polygenic signal (as discussed in last paragraph 

Section 3.1). More details on Methods are in SMethods. Our analysis code is displayed 

at https://annafurtjes.github.io/Genetic_networks_project/.   
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3. Results 

3.1 Descriptive statistics of genomic PC1s underlying whole brain 

and canonical brain networks 

 Genetic PC1s underlying volumes across the whole brain. In this 

section, we report variance explained (R2) by the first underlying volumetric principal 

component, PC1 and corresponding PC1 loadings obtained from Genomic PCA of the 

whole brain (83 regions), as well as nine overlapping canonical brain networks. The 

PC1 underlying the whole brain explained 40% of the genetic variance across 83 

regional volumes – larger than the 31% explained by the first phenotypic whole-brain 

PC1 (Fig.3F). For comparison, the second genetic PC2 accounted for a fraction of the 

variance that the first PC1 explained (R2 = 6.7%), indicating that the first genetic PC1 

accounted for the majority of systematic variance across structural networks. Genetic 

PC1 loadings onto the first PC1 underlying the whole brain ranged between 0.30 and 

0.81 (mean = 0.62, SD = 0.13, median = 0.65; Fig.3E, STable 3). 
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Fig.3. Descriptive statistics.  

(A) Distribution of SNP-heritability estimates for 83 regional grey-matter volumes inferred through 
univariate LDSC. (B) Distribution of genetic correlations among 83 regional grey-matter volumes 
inferred through between-volume LDSC. (C) Distribution of phenotypic correlations among 83 
regional grey-matter volumes inferred through Pearson’s correlations. Raincloud plots were created 
based on code adapted from Allen et al. (2019). Bottom row: Density distributions of PC1 loadings on 
the first PC underlying volumes in (D) phenotypic and (E) genetic networks. Vertical lines indicate 
quantiles. Genetic PC1 loadings are plotted onto corresponding brain regions in SFig.24. (F) Variance 
explained by phenotypic and genetic first PC1 underlying volumes in each network. 
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 Genetic PC1s underlying volumes in canonical networks. The first 

genetic PC1s underlying different brain networks accounted for greater R2 than the 

genetic whole-brain PC1. R2 ranged from 65% explained by the first genetic PC1 

underlying the central executive network, to 47% accounted for by the first genetic PC1 

underlying the temporo-amygdala-orbitofrontal network (Fig.3E). R2 was larger for 

networks including fewer volumes, which tended to be more homogeneous, as 

indicated by PC1 loadings (e.g., range 0.74-0.88 for central executive, range 0.43-0.89 

for sensorimotor). Parallel Analysis confirmed that genetic PC1s underlying all brain 

networks explained substantially more variance than expected by chance (Scree Plots 

SFig.11-20). Further simulations demonstrated that our theoretical grouping of 

volumes into networks resulted in more variance explained than expected by randomly 

grouping volumes (STable 5; SMethods 2.7). 

 To compare the polygenic signal captured by different brain networks, we 

calculated genetic correlations between them using Linkage Disequilibrium Score 

Regression (LDSC; Bulik-Sullivan, Finucane, et al., 2015). Those genetic correlations 

tended to be very high (mean rg between networks 0.83, SD = 0.09; range = 0.63-

0.97), suggesting different network PC1s captured roughly the same polygenic signal. 

For example, the central executive network was genetically associated with the whole 

brain at rg = 0.91. That is, we obtained practically the same polygenic signal when 

extracting a genetic PC1 from the whole brain (83 volumes), as we obtained from 

extracting a genetic PC1 from fewer volumes (e.g., 8 volumes in the central executive). 
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3.2 Comparing genetic and phenotypic interregional covariance 

 To quantify how indices of genetic and phenotypic interregional covariance 

resemble each other, we calculated linear associations between phenotypic and genetic 

between-volume correlations, as well as linear associations and Tucker congruence 

coefficient between phenotypic and genetic PC1 loadings onto an underlying whole-

brain PC1. The vectors of 3403 (
83(83−1)

2
) phenotypic and 3403 genetic interregional 

correlations were strongly positively associated (r = 0.84; b = 0.60; SE = 0.007, p < 2 

x10-16, R2 = 70%) (Fig.4A), indicating that volumes that were strongly phenotypically 

correlated were also strongly genetically correlated. Magnitudes of genetic 

correlations tended to be slightly larger than phenotypic correlations (intercept = 

0.06) which is consistent with previous reports (Biton et al., 2020).  
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Fig.4. Quantitative comparison of phenotypic and genetic interregional covariance.  

Figure (A) is contrasting 4303 between-volume correlations where the phenotypic correlations were 
obtained from phenotypic brain volumes, and the genetic correlations were obtained from LDSC of 
GWAS summary statistics of the same brain volumes. Figure (B) contrasts 83 phenotypic and genetic 
PC1 loadings onto an underlying whole-brain PC1. Regions coloured in red are regions allocated to the 
central executive network, which tend to be both phenotypically and genetically central to overall brain 
structure (i.e., high PC1 loadings). 

 

The association between phenotypic PC1 loadings and genetic PC1 loadings was large 

and significant (b = 0.65, SE = 0.06, p = 5.07 x10-17, R2 = 58%, intercept = 0.15). The 

Tucker congruence coefficient was used to index the degree of similarity between 

genetic and phenotypic PC1 loadings, taking into account both their relative ordering 

and their absolute magnitudes (Lorenzo-Seva & Berge, 2006). It revealed very high 

congruence between phenotypic and genetic PC1 loadings for the 83 volumes (Tucker 

coefficient = 0.99). These results illustrate a close correspondence and an equivalent 

organisation of phenotypic and genetic dimensions of shared morphometry; a finding 

that aligns with Cheverud’s Conjecture (see Discussion 4.2).  
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3.3 Genetic correlations between general cognitive ability and 

general dimensions of human brain morphometry 

 To quantify the genetic relationship between general dimensions underlying 

brain morphometry with cognitive ability, we fitted a general factor of cognitive ability 

indicated by seven cognitive test GWAS in GenomicSEM (Grotzinger et al., 2019) and 

calculated its genetic correlation with genetic PC1s underlying brain volumes in 

different brain networks (Fig.5). The whole-brain and all network-specific genetic 

PC1s were significantly genetically associated with general cognitive ability. 

Correlation magnitudes ranged between rg = 0.17-0.21 (Table 1). According to 

commonly-used rules of thumb from Hu and Bentler (1998) (CFI > 0.95, RMSEA < 

0.08), all models showed good model fit (STable 4).  
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Fig 5. Genomic Structural Equation Model calculating genetic correlations between 
general cognitive ability and genetic PC1s.  

We modelled a general g factor of general cognitive ability in GenomicSEM (Grotzinger et al., 2019) 
using cognitive ability GWAS summary statistics obtained from (de la Fuente et al., 2021). The genetic 
correlation between genetic g and general morphometric dimensions underlying the whole brain and 
nine canonical brain networks (modelled using Genomic PCA) are reported in Table 1. The seven 
cognitive traits and the networks are inferred through LDSC. Matrix = Matrix Pattern Completion task; 
Memory = Memory – Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit 
Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal 
Numerical Reasoning Test. Model fit: χ2 = 124.04, df = 20, p-value = 2.1 x10-20, AIC = 174.04, CFI = 
0.97, SRMR = 0.079 
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Table 1. Genetic correlations (rg) between general cognitive ability and general 

dimensions of morphometry underlying the whole brain and nine canonical brain 

networks.  

Network Included 

volumes 

rg 95% CI p-value FDR q-

value 

Whole brain 83 0.21 0.13-0.29 1.00 x10-7 3.00 x10-7 

Central 

executive 

8 0.20 0.12-0.27 1.00 x10-7 3.00 x10-7 

Cingulo-

opercular 

10 0.20 0.13-0.27 1.00 x10-7 3.00 x10-7 

Default Mode 16 0.19 0.12-0.26 2.00 x10-7 3.00 x10-7 

Hippocampal-

Diencephalic 

12 0.17 0.09-0.24 2.66 x10-5 2.66 x10-5 

Multiple 

Demand 

12 0.19 0.12-0.27 7.00 x10-7 9.00 x10-7 

P-FIT 36 0.20 0.12-0.27 2.00 x10-7 3.00 x10-7 

Salience 10 0.19 0.12-0.26 3.00 x10-7 4.00 x10-7 

Sensorimotor 12 0.19 0.11-0.27 1.20 x10-7 1.30 x10-6 

Temporo-

amygdala-

orbitofrontal 

30 0.20 0.12-0.27 2.00 x10-7 4.00 x10-7 

rg = genetic correlation between genetic PC1s underlying nine canonical brain networks and a factor of 
general cognitive ability modelled from seven cognitive traits, SE = standard error, 95% CI = 95% 
confidence interval, p-value = original p-value as indicated by the GenomicSEM model, false discovery 
rate (FDR) q-value = p-value corrected using 5% false discovery rate.  
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 We also report genetic correlations for three individual cognitive traits, because 

the available GWAS data (de la Fuente et al., 2021) did not warrant modelling separate 

cognitive domains. Each domain had a maximum of two traits only (e.g., logical 

reasoning is assessed by both Matrix Pattern Completion and Verbal Numerical 

Reasoning). Some cognitive tests are impure and contain various cognitive 

components (e.g., the Trail Making Test assesses executive and speed abilities). To 

reduce multiple testing burden, we pre-registered (https://osf.io/7n4qj) genetic 

correlations for three tests that represent relatively separate cognitive abilities: Matrix 

Pattern Completion consistently yielded the strongest genetic correlations with PCs 

underlying the brain networks (mean rg across different networks = 0.18). Genetic 

correlations for Symbol Digit Substitution Task were slightly smaller (mean rg = 0.12), 

followed by Memory which had the lowest average correlations (mean rg = 0.09). 

 The significant genetic correlations – between general cognitive ability and 

genetic PC1s underlying different brain networks – seem to act through a factor of 

general cognitive ability, rather than through individual cognitive abilities, because 

individual cognitive traits had high loadings on the genetic cognitive ability factor 

(median = 0.81, range = 0.30-0.95; SFig.22). Also, Qtrait heterogeneity analyses 

(Grotzinger et al., 2022) demonstrated that the general cognitive ability factor 

accounted well for the patterns of association between specific cognitive abilities and 

brain network genetic PC1s (SFig.23). That is, models allowing independent 

associations for all individual cognitive traits did not yield better model fit than models 

forcing any association to go through the general cognitive ability factor (∆ χ2 ~ 0; df 

= 6; STable 5).  

 Based on previous phenotypic findings that highlighted the importance of the 

central executive network to general cognitive function (Madole et al., 2021), we 

https://osf.io/7n4qj
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hypothesised to find a stronger genetic correlation between general cognitive ability 

and volumetric PC1s underlying the central executive network, relative to other brain 

networks (see pre-registered plan https://osf.io/7n4qj). There was no evidence for 

differences in correlation magnitudes between the central executive network and 

general cognitive ability compared with other networks, even after accounting for 

network sizes (SFig.22; STable 6). Adjustments for network sizes were done by 

dividing effect sizes by the number of volumes contained in a network (SMethods 2.11).  

 

3.4 Associations between aging and general dimensions of brain 

morphometry 

3.4.1 Associations between genetic whole-brain PC1 loadings and 

age sensitivity 

 Previous phenotypic work demonstrated that brain volumes more central to 

overall brain structure – indexed by PC1 loadings onto a phenotypic PC1 underlying 

83 brain-wide volumes – were most susceptible to aging. Aging was represented by 

cross-sectional Pearson’s volume-age correlations (Madole et al., 2021), that are 

typically negative in adult populations. Here, we replicated this phenotypic association 

in a larger sample (r = -0.43, p = 4.4 x10-5; Fig.6A), and we found a significant, though 

smaller association between genetic PC1 loadings and the same volume-age 

correlations (r = -0.27, p = 0.012; Fig.6B). This suggests that the more genetically 

central a region was to overall brain structure, the more sensitive that region also was 

to age-related shrinkage. Note that this association with age sensitivity emerged even 

though the PC1 loadings were extracted from brain volume GWAS residualised for age. 

https://osf.io/7n4qj
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Fig.6. Association between (A) phenotypic, and (B) genetic PC1 loadings of all 83 
volumes (onto a PC1 underlying the whole brain) and a volumes’ cross-sectional 
association with age (Section 3.4.1), which is known as “age sensitivity” (Madole et al., 
2021).  

Volumes coloured in red are regions thought to reside in the central executive network, which tended 
to be both phenotypically and genetically central to overall brain structure (high PC1 loadings), and they 
tended to be more susceptible towards age (large volume-age correlation). 

 

 

3.4.2 Genetic correlation between whole-brain genetic PC1 and 

brain age gap 

 Finally, we calculated a genetic correlation between a genetic PC1 underlying 

the whole brain and brain age, for which we used the brain age GWAS by Kaufmann 

et al. (2019). The genetic correlation was moderate and negative (rg = -0.34; SE = 

0.06), suggesting that there is a shared genetic basis to demonstrating younger brain 

age, and having consistently larger volumes across the whole brain (aging discussion 

in Section 4.3). 
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4. Discussion 

 Here, we have introduced a multivariate approach integrating covariance 

across both multiple brain regions and the genome (Genomic PCA) to help understand 

the links between the genetic architecture of human brain morphometry and the 

network organisation of the brain. In line with Cheverud’s Conjecture (Cheverud, 

1988), phenotypic and genetic brain organisation seemed to operate on the same 

major dimensions: phenotypic and genetic correlations were similar (Section 4.1). 

There was moderate genetic overlap between cognitive ability, aging, and global trends 

of morphometry underlying both the whole-brain and more parsimonious canonical 

brain networks (Sections 4.2 for cognitive ability, Section 4.3 for aging). To 

complement theory-driven perspectives like in this study, our method Genomic PCA 

may be used to identify regions most important to overall brain structure (e.g., 

volumes with largest PC loadings) to be prioritised in future investigations of the 

relationship between the brain and cognitive ability. 

4.1. Analogous phenotypic and genetic interregional covariance 

across the brain 

 To our knowledge, this is the first genetically-informed study that corroborates 

the brain organisation observed in phenotypic studies - we demonstrated analogous 

interregional covariance across the whole brain derived from both phenotypic and 

genetic indices (i.e., highly corresponding interregional correlations and whole-brain 

PC1 loadings). Analogous to phenotypic findings in Madole et al. (2021), we found that 

some volumes were genetically more important for overall brain structure than others, 

indicated by high loadings onto the first principal component underlying the whole 
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brain. For example, frontal and parietal volumes, theorised to be part of the central 

executive network, had consistently high loadings, indicating their overall importance 

for overall brain structure 

 The close phenotypic and genetic correspondence in interregional covariance 

means that inferences from genetic to phenotypic dimensions are viable. This is in line 

with previous studies comparing phenotypic and genetic correlations between 

morphometric traits (Biton et al., 2020; Sodini et al., 2018). According to Cheverud’s 

Conjecture, this indicates that genetics of brain organisation operate on the same 

dimensions as are evident phenotypically, and likely index the same developmental 

processes. More genetically-informed studies of brain organisation are needed to map 

those major dimensions onto the relevant biological pathways and mechanisms. 

 We suggest a similar organisation of phenotypic and genetic brain architecture 

is supporting evidence for the neurobiological validity of canonical brain networks 

considered in this study. The fact that our theoretical grouping of volumes into brain 

networks – informed by commonly-referenced studies of structural, functional, and 

lesion-based studies (Bressler & Menon, 2010; Jung & Haier, 2007; Madole et al., 

2021; Menon & Uddin, 2010) – yielded networks that explained more variance than 

expected by randomly grouping volumes into networks, provides some evidence for 

the ontological reality of those networks.  

 However, it was surprising to find a lack of specificity between different 

networks at the level of their broad associated polygenic signal, which was quantified 

through very high genetic correlations between genetic PC1s underlying brain volumes 

in different canonical networks (range rg = 0.63-0.97). This suggests that our Genomic 

PCA analyses picked up on general genes linked with global brain-wide features of 
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morphometric trends, which are practically the same across canonical networks and 

the whole brain. Future studies wishing to index the genetic correlates of these global 

features may focus on more parsimonious, and computationally more efficient, brain 

networks including a few volumes most representative of overall brain structure (e.g., 

8 regions in central executive network), rather than modelling the whole brain.  

4.2 Genetic correlations between general cognitive ability and 

general morphometry underlying canonical brain networks 

 Using a multivariate definition of general cognitive ability, we demonstrated 

PC1s underlying all nine brain networks, and the whole brain, were genetically 

associated with cognitive ability at small-to-moderate magnitudes (rg = 0.17-0.21). 

The effect sizes were about the same magnitude as Jansen et al. (2020) found for a 

genetic correlation between total brain volume and cognitive ability (rg = 0.24); this 

was even when some of our models considered only few brain regions (i.e., central 

executive included only 8 volumes and still yielded magnitudes as large as total brain 

size). Furthermore, our genetic network associations were numerically larger than 

genetic correlations obtained from individual brain volumes (range rg = 0.07-0.13 in 

Biton et al. (2020)). This should encourage future studies to model general trends of 

morphometry underlying multiple brain regions, instead of considering individual 

regions only. This seems to distil less noisy genetic variance, more robustly relevant to 

cognitive ability. 

 In contrast to phenotypic findings (Madole et al., 2021), there was no evidence 

that genetic correlates underlying morphometry in the central executive network was 

any more strongly associated with cognitive ability than the other networks. This is 

compatible with the lack of specificity between different brain networks at the level of 
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their associated polygenic signal (discussed in Section 4.1): each network made a 

similar prediction of cognitive ability at the genetic level. The fact that a 

disproportionate role of the central executive network did not replicate in our 

genetically-informed design (even when accounting for network size), may suggest 

that genetics are more likely to predispose towards more general genes of global brain 

features shared across the brain. Tentatively, this would also suggest that instead of 

genes, environmental processes might drive phenotypically observed specialisations 

of brain networks, causing different morphometric structures to matter more (or less) 

for optimal cognitive performance. 

4.3 Genetic associations between aging and general dimensions 

of brain morphometry 

 We demonstrated that regions genetically more important to overall brain 

structure (i.e., large whole-brain PC1 loadings) also tended to be more sensitive 

towards age-related shrinkage (i.e., cross-sectional volume-age correlations; r = -

0.27). This may be due to more strenuous metabolic burden (or other functional 

stresses) on regions central to overall structure, possibly through more heavily-

demanding cognitive processes. This could alter disproportionately the speed at which 

some regions atrophy with advancing age. Whereas this was previously described 

phenotypically, to our knowledge we present the first genetically-informed study to 

show this relation. However, we suggest it requires triangulation either by future 

longitudinal ageing studies, or cross-sectional studies modelling within-person 

atrophy by incorporating information on prior brain size (e.g., intracranial volume as 

a proxy for size at younger age). 
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 We also found a substantial genetic correlation of general trends of 

morphometry across the whole brain with the brain age gap (rg = -0.34), suggesting 

there is a shared genetic basis to brain age and general trends of brain organisation, 

even after residualising brain volume GWAS for age (which we had done prior to 

calculating interregional covariance and genetic PC1s). The genetics associated with 

younger appearing brains may act through overlapping biological processes that are 

also part of the mechanism of well-integrated global features of brain morphometry. 

That is, patterns of brain structural ageing may not just capture how quickly an 

individual’s regional volumes decline compared to their peers, but rather, general 

healthy morphometry across the brain. This would be compatible with phenotypic 

research showing that younger brain age predicts better physical fitness, better fluid 

intelligence, and longer lifespan (Cole et al., 2018). Healthy brain morphometry could 

vary between people for many non-age-related reasons; our findings suggest it may, at 

least partly, be due to genetic predisposition, possibly towards better-integrated, more 

resilient brain biology.  

4.4 Limitations 

 Analyses in this study come with limitations. Genetic correlations are 

representative for genetic associations across the entire genome, but do not give direct 

insight into specific DNA regions of sharing. As genetic correlations were calculated 

using LDSC, the limitations that apply to LDSC methodology are relevant to our study 

(discussion in Supplementary Note). We conclude based on heritability estimates, 

indexing signal-to-noise ratios in GWAS, that there was sufficient polygenic signal to 

warrant LDSC analysis (heritability ranged 7-42%). LDSC intercepts were perfectly 

associated with phenotypic correlations (R2 = 0.99), indicating that the analyses 
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successfully separated confounding signal (including environmental factors) from the 

estimates of genetic correlations. 

 This study was conducted in the UK Biobank sample, which is not fully 

representative of the general population of the United Kingdom: its participants are 

more wealthy, healthy, and educated than average (Fry et al., 2017). Cohort effects may 

affect the degree to which differential brain-regional susceptibility to ageing can be 

inferred from cross-sectional data. It remains to be tested whether our results can be 

extrapolated to socio-economically poorer subpopulations, or outside European 

ancestry. Results were also dependent on the choice of brain parcellation to divide the 

cortex into separate regions. 

4.5 Conclusion 

 To study the neurobiological bases of adult cognitive aging, we introduced a 

multivariate framework to integrate covariance across multiple brain regions and the 

genome (Genomic PCA), which allowed modelling general dimensions underlying 

brain-wide morphometry. In line with Cheverud’s Conjecture, phenotypic and genetic 

brain organisation seemed to operate on the same major dimensions, and moderate 

genetic correlations supported that genes underlying general dimensions of brain 

morphometry are implicated in cognitive aging. Genetically more important regions 

to overall brain structure tended to be more susceptible towards age-related shrinkage. 

However, instead of uncovering localised brain network-specific genetic correlates, we 

only found evidence for general genetic correlates of brain-wide morphometric 

features. This may imply that environmental, or otherwise non-genetic, processes are 

more likely than genes to drive different morphometric structures to matter more (or 

less) for better cognitive performance. The evidence presented here brings us closer to 
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characterising the aetiology and robust neurobiological correlates of cognitive aging, 

and provides a foundation for future investigations ultimately working on 

interventions for cognitive decline. 
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Unpublished addition to Chapter 4: 

Adjusting for brain size would have substantially altered study 

results 

 The results presented in Chapter 4 were obtained from sets of GWAS summary 

statistics that I calculated as part of this PhD. It may not be immediately apparent why 

this was necessary, considering several resources already provide GWAS summary 

statistics for regional Desikan-Killiany brain volumes in the UK Biobank (Smith, 

Douaud, et al., 2020). However, using these GWAS summary statistics produced 

irregular and unexpected results. This Unpublished Addition to Chapter 4 aims to add 

to the conclusions drawn in Chapter 4 by contrasting the Chapter 4 results (that used 

GWAS unadjusted for brain size) with results that would have been obtained had I 

used GWAS summary statistics by Smith, Douaud, et al. (2020) that were adjusted for 

a volumetric scaling factor from the T1 head image (i.e., a proxy of brain size) and 

many other covariates. Their comparison also adds to the brain size adjustment 

discussion in Chapter 2 as it provides evidence that I argue is indicative of collider bias 

in GWAS summary statistics adjusted for brain size (or a proxy of brain size). 

 As pre-registered, I originally planned to use GWAS summary statistics by 

Smith, Douaud, et al. (2020) (for simplicity, below, I refer to this set of GWAS as Smith 

GWAS adjusted for brain size). When using the Smith GWAS for analyses outlined in 

Chapter 4, the results were unexpected and sparked my doubt about covariate 

adjustment in GWAS summary data: Interregional genetic correlations were 

dissociated from interregional phenotypic correlations whereby many genetic 

interregional correlations were negative (Fig.1 – same as Fig.4. in Chapter 4 but here 

extracted from GWAS adjusted for brain size). Also, brain networks modelled from 
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GWAS adjusted for brain size (Smith GWAS) were not significantly genetically 

correlated with cognitive ability (g-factor). It seemed implausible that Chapter 4 was 

the first study to discover that Cheverud’s Conjecture did not apply to human brain 

morphometry.  

 

 

Fig.1. Interregional correlations and PC loadings from GWAS adjusted for brain size 
(Smith GWAS) as input.  

(A) Correlation between phenotypic and genetic correlations of 83 regional grey-matter volumes. The 
dashed red line is the line of identity. (B) Correlation between phenotypic and genetic PC loadings on 
the first PC underlying 83 regional grey-matter volumes. The dashed red line is the line of identify, 
with a slope of 1 and an intercept of 0. 

 

 It subsequently became apparent that the GWAS adjusted for brain size (Smith 

GWAS) had been controlled for ~200 covariates which were listed in the 

Supplementary Material (Smith, Douaud, et al., 2020). That covariates were only 

reported in the Supplement indicates that the importance of covariate control is often 

deemed secondary. The main manuscript associated with Smith, Douaud, et al. (2020) 

only briefly mentions the inclusion of GWAS  covariates with reference to the authors’ 

phenotypic work in “Confound modelling in UK Biobank brain imaging” (Alfaro-

Almagro et al., 2021). However, there is a difference in implied causal chains between 

phenotypic analyses and genetic analyses (as illustrated in Fig.9 in Chapter 2) which 
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suggests that different considerations apply in the covariate selection process of GWAS 

vs. phenotypic analyses.  

 Smith, Douaud, et al. (2020) used ~200 GWAS covariates including age, sex, 

acquisition site, head motion, and brain size. I would argue that variance accounted 

for by most of these variables is indeed nuisance variance because it can be reasonably 

assumed that head motion, for example, should not relate to the phenotype of interest 

or the genome and can therefore be discarded safely. This also applies to sex as only 

autosomal SNPs are considered in GWAS. On the contrary, brain size is strongly 

associated with brain regional volumes (Chapter 2) and the genome (Jansen et al., 

2020).  

 In the context of Chapter 4, I aimed to capture genetic dimensions of variance 

shared between regions by modelling PCs underlying brain networks. In this context, 

residualizing brain region GWAS for brain size seemed inappropriate because brain 

size majorly overlaps with the variance captured by brain regions. I recalculated 83 

brain volume GWAS summary statistics unadjusted for brain size in order to retain 

brain-size correlated variance and the regional information that it carries (Chapter 2), 

and to avoid potential collider bias by adjusting for heritable covariates (discussed in 

Chapter 2 and in Aschard et al. (2015)). More detail on the calculation of brain regional 

GWAS unadjusted for brain size are in the Appendix. These brain size unadjusted 

GWAS formed the basis for analyses presented in Chapter 4, and they rely on the same 

brain region phenotypes and approximately the same UKB sample as GWAS adjusted 

for brain size by Smith, Douaud, et al. (2020). 

 In my brain size unadjusted GWAS, I only included covariates about which I 

was certain that they exclusively tagged nuisance variance for my research question: 
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age, sex, genetic genotyping batch, and 40 ancestral principal components. I excluded 

time of year, scanner coordinates, and acquisition site as covariates because I found 

that they were empirically uncorrelated with brain region GWAS phenotypes (i.e., they 

explained less than an arbitrary, pre-registered 1% of brain region variance). I decided 

it was safe not to include those covariates because they unlikely act as a considerable 

confounder when they explain <1% of the variance, and it reduces the potential that I 

induce collider bias by adjusting for heritable covariates. 

 The remainder of this Addition to Chapter 4 is dedicated to briefly compare the 

published results in Chapter 4 with those obtained from GWAS adjusted for brain size 

(Smith GWAS) to illustrate how adjusting for brain size would have altered the results. 

I felt this was important because the impact of brain size adjustment was substantial, 

and all existing brain regional GWAS – I am aware of – do indeed control for measures 

of brain size as a covariate (Grasby et al., 2020; Zhao, Luo, et al., 2019), which would 

mean that all publicly available brain regional GWAS are vulnerable to collider bias 

issues. The comparisons between results obtained from GWAS adjusted and 

unadjusted for brain size contrasted below deliver evidence that brain size GWAS 

adjustment may induce collider bias. 

4a.1 Block jackknife comparisons between heritability and 

genetic overlap estimates 

 Block jackknife analyses aim to test significant differences between two 

heritability estimates (or genetic correlation estimates) through resampling. In 

essence, block jackknife enables significance testing by delivering standard errors of 

heritability (or genetic correlation) estimates. In addition to the full LDSC estimate, I 

calculated heritability (and genetic correlations) 200 times whereby a different 
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genomic LD block was excluded from the estimation to obtain pseudo heritability (or 

genetic overlap) estimates. To perform hypothesis tests, the mean and variance of the 

pseudovalues were used to derive z-statistics and corresponding confidence intervals 

(Hübel et al., 2019).  

 According to block jack-knife analyses, most brain regional volumes did not 

significantly differ in their heritability estimates when obtained from GWAS adjusted 

vs. unadjusted for brain size (Fig.2A). However, descriptively, GWAS adjusted for 

brain size (Smith GWAS) yielded somewhat smaller heritability estimates (median h2 

adjusted for brain size = 18%; range = 7-43%), than those unadjusted for brain size (median 

h2 no brain size adjustment = 23%; range = 7-42%). To assess whether GWAS adjusted and 

unadjusted for brain size were identical, I performed block jack-knife analyses to test 

whether their genetic correlation was significantly different from one (Fig.2B). For 

most brain volumes, the genetic correlation between regional GWAS adjusted and 

unadjusted for brain size tended to be significantly different from one, indicating that 

brain size adjustment substantially altered GWAS signal associated with most brain 

regions. 
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Fig.2. Block jack-knife analyses comparing GWAS adjusted and unadjusted for brain 
size in (A) heritability estimates, and (B) genetic correlations. 
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4a.2 Comparisons of genetic interregional correlations 

 Genetic interregional correlations were overall smaller when obtained from 

GWAS adjusted for brain size (median rg adjusted for brain size = 0.12; range = -0.4 – 1.0) 

than from GWAS unadjusted for brain size (median rg no brain size adjustment = 0.35; range 

= -0.08 – 1.0). GWAS adjusted for brain size had a wider spread in correlation 

magnitudes (Fig.3C vs. Fig.3D). 

 

 

Fig.3. Comparison of brain regional heritability, and interregional genetic correlations 
obtained from GWAS unadjusted (Chapter 4 GWAS) and adjusted for brain size 
(Smith GWAS). 
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4a.3 Comparisons of genetic Principal Component loadings 

 PC loadings onto the first genetic PC underlying 83 regions were overall smaller 

when obtained from GWAS adjusted for brain size (Smith GWAS; median PC loadings 

adjusted for brain size = 0.39; range = -0.12 – 0.7) than from GWAS unadjusted for brain 

size (median PC loadings no brain size adjustment = 0.65; range = 0.30 – 0.81). Presumably, this 

reflects the fact that interregional correlations from GWAS adjusted for brain size 

(Smith GWAS) were overall smaller than those from unadjusted GWAS (shown in 

Fig.3C-D). The two sets of PC loadings were nevertheless substantially related (r = 

0.74; Fig.4), suggesting that, even after brain size adjustment, regions retained 

approximately the same order in how well-representative they were of the rest of the 

brain. 

 

Fig.4. Relationship between PC loadings obtained from the Smith GWAS (“Brain size 

adjusted”) and PC loadings obtained from GWAS used in Chapter 4 (“No brain size 

adjustment”). The red dotted line is the line of identity (slope = 1, intercept = 0). 
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4a.4 Comparisons of genetic correlations between brain 

networks and cognitive ability  

 To test for significant genetic correlations between cognitive ability (g-factor) 

and brain networks, I performed Genomic Structural Equation Models (SEMs) in the 

GenomicSEM software (Grotzinger et al., 2019). In Chapter 4, Genomic SEMs were 

calculated based on genetic correlation matrices among seven individual cognitive 

abilities and nine canonical brain networks – unadjusted for brain size (Fig.5A). For 

comparison, Fig.5B displays genetic correlation matrices among the same traits but 

adjusted for brain size (Smith GWAS). Brain networks unadjusted for brain size 

yielded overall larger genetic correlations with individual cognitive traits (median rg 

brain networks & individual cognitive abilities = 0.14; range = 0.01 – 0.30), than the brain networks 

adjusted for brain size (median rg brain networks & individual cognitive abilities = 0.06; range -0.13 

– 0.36). It was unexpected that genetic brain networks obtained from GWAS adjusted 

for brain size (Smith GWAS) yielded overall more extreme genetic correlations with 

individual cognitive traits: For example, a PC underlying the default mode network – 

adjusted for brain size (Smith GWAS) – had a genetic correlation of rg = -0.06 with 

the reaction time task, but rg = 0.36 with the Tower Rearranging task (Fig.5).  
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Fig.5. Genetic correlations between structural brain networks obtained with Genomic 
PCA and individual cognitive ability traits.  

These correlation matrices are the basis for GenomicSEM analyses. Cognitive Tasks: Matrix = Matrix 
Pattern Completion, Memory = Pairs Matching, RT = Reaction Time, Symbol Digit = Symbol Digit 
Substitution, TMTB = Trail Making – B, Tower = Tower Rearranging, VNR = Verbal Numerical 
Reasoning, temporo = temporo-amygdala-orbitofrontal network, sensori = sensori-motor network, 
salience = salience network, p_fit = Parieto-Frontal-Integration Theory network, multiple = multiple 
demand network, hippocampal = hippocampal-diencephalic, default mode = default mode network, 
cingulo = cingulo-opercular network, central exec = central executive network 
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 Finally, I performed Genomic SEMs on the basis of genetic correlation matrices 

displayed in Fig.5 to quantify the genetic correlations between canonical brain 

networks and cognitive ability (g-factor). It was the aim of this to model the g-factor 

as the variance common between cognitive traits, which is then tested for a genetic 

correlation with each of the canonical brain networks. Genomic SEMs performed 

based on genetic correlations adjusted or unadjusted for brain size produced opposing 

conclusions: Brain networks unadjusted for brain size were significantly associated 

with the genetic g-factor, but brain networks adjusted for brain size (Smith GWAS) 

were not significantly associated with the genetic g-factor (Table 1; 99% confidence 

intervals multiple testing correction). 

 

Table 1. Genetic correlations between structural correlation networks and a factor of 

general cognitive ability (g-factor). 

 

Abbreviations for the canonical brain networks: temporo = temporo-amygdala-orbitofrontal network, 
sensori = sensori-motor network, salience = salience network, p_fit = Parieto-Frontal-Integration 
Theory network, multiple = multiple demand network, hippocampal = hippocampal-diencephalic, 
default mode = default mode network, cingulo = cingulo-opercular network, central exec = central 
executive network  
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4a.5 Correlational patterns of results adjusted vs. unadjusted for 

brain size are consistent with the consequences of collider bias 

 I suggest that these overall correlational patterns are consistent with the idea 

that adjusting GWAS summary statistics for brain size induces collider bias which 

means that the GWAS likely captures (at least some) false positive SNPs (Aschard et 

al., 2015). Block jackknife comparisons (Section 4a.1) are consistent with this because 

GWAS adjusted and unadjusted for brain size did not differ in their heritability 

estimates (i.e., they had the same overall amount of captured polygenic signal; Fig.2A), 

but they captured different SNPs (i.e., significantly different polygenic signal; Fig.2B). 

This suggests that GWAS adjusted for brain size capture just as many – but different 

– SNPs compared with GWAS unadjusted for brain size. However, I argue that GWAS 

adjusted for brain size should have captured overall fewer SNPs because brain size 

adjustment substantially removes regional information (Chapter 2). That adjusted and 

unadjusted GWAS capture just as many, but different (and not simply fewer) SNPs is 

compatible with the idea false positive SNPs are captured in adjusted GWAS which 

falsely inflated heritability estimates. 

 When using GWAS summary statistics adjusted for brain size, it was 

unexpected to find widely differing genetic correlations between brain networks and 

individual cognitive abilities (e.g., PC underlying the default mode network widely 

ranged in its association with different cognitive traits from rg = -0.06 to rg = 0.36; 

Fig.5; Section 4a.4). This was unexpected because individual cognitive abilities tend to 

be phenotypically and genetically similar (de la Fuente et al., 2021). The widely 

differing genetic correlations between brain networks and individual cognitive 

abilities may reflect that false positive SNPs – induced by collider bias in the GWAS 
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adjusted for brain size – may have “accidentally” mapped onto individual cognitive 

abilities. This is conceivable considering individual cognitive abilities are highly 

polygenic. I suggest that this overlap between brain networks – adjusted for brain size 

– and individual cognitive abilities is likely accidental because it is so different between 

individual cognitive abilities that should be similar. 

 When modelling Genomic SEMs of the association between brain networks and 

cognitive ability (g-factor), brain networks adjusted for brain size were genetically 

uncorrelated with the g-factor, likely because the g-factor only indexes variance 

systematically shared between individual cognitive abilities: the g-factor would not 

have captured any of the polygenic signal associated with individual cognitive abilities 

that accidentally mapped onto brain networks. In sum, SNPs overlapping between 

brain networks adjusted for brain size and individual cognitive abilities could have 

mainly been the false positive, collider induced SNPs, whereas SNPs that would have 

been systematically correlated with the g-factor were not reliably captured by the 

regional GWAS adjusted for brain size. This is a powerful example how a multivariate 

approach such as the g-factor model helped sanity check correlation patterns of noisy 

morphometric variance.  

 To summarise, adjusting GWAS summary data for brain size prohibits 

capturing reliable associations between the g-factor and brain networks. This Addition 

to Chapter 4 provides valuable context to the results presented in Chapter 4 because 

it is important to evaluate and build an intuition for the consequences of brain size 

adjustment. Brain size adjustment consequences likely affect all existing brain region 

GWAS summary statistics – I am aware of – as they all included a measure (or proxy 

measure) of brain size as a covariate (Grasby et al., 2020; Smith, Douaud, et al., 2020; 
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Zhao, Luo, et al., 2019). This also further underlines the importance of exploratory 

groundwork as presented in Chapter 2. 
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Chapter 5 

 

A Quantified Comparison of Cortical Atlases on the 

Basis of Trait Morphometricty  

 

The following manuscript is displayed as published Open Access in Cortex: 

Fürtjes, A. E., Cole, J. H., Couvy-Duchesne, B., & Ritchie, S. J. (2023). A quantified 

comparison of cortical atlases on the basis of trait morphometricity. Cortex, 158, 110-

126. Doi: 10.1016/j.cortex.2022.11.001 
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Fig.0. Embracing neural complexity through artificial intelligence.  

Image created from textual descriptions using MidJourney, an artificial intelligence algorithm 
(www.midjourney.com). I supplied this image to the journal Cortex as the front cover of the January 
2023 issue that included the empirical project presented below.  

 

http://www.midjourney.com/
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Chapter 6 

 

General discussion 
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6.1 General purpose and contributions  

 This final discussion chapter summarises the key findings from the preceding 

empirical chapters, and it discusses their significance, as well as general limitations of 

the statistical methods. I argue that the presented findings encourage an integrated 

view of the brain and its many influencing factors that may be approximated most 

accurately using multidimensional study designs. Finally, I derive lessons that may 

help improve the reliability of future large-scale neuroimaging studies. Future 

directions emerging from specific findings are integrated throughout the discussion 

chapter. Implications and limitations specific to each empirical project are already 

discussed in the respective chapters and will not be reiterated here. 

 All in all, this thesis explored morphometric brain correlates of cognitive ability 

by modelling variance across thousands of individuals. The four empirical chapters 

employ statistical designs which aim to integrate behavioural, genetic, and 

neuroimaging data with an emphasis on robustly modelling interdependencies 

between multiple brain regions (i.e., brain networks). Genetic analysis designs provide 

an innovative way to triangulate previous phenotypic investigations from a biologically 

informed perspective. Overall, findings in this thesis help develop a more 

comprehensive understanding of the neuroanatomy and genetics underlying cognitive 

ability that may ultimately lay the foundations for society-wide interventions to 

mitigate old-age cognitive decline. Such interventions could help keep people 

healthier, wealthier, and more autonomous in old age which would considerably 

improve general quality of life.  

 This thesis contributes to the existing literature by addressing two overarching 

aims. First, I aimed to perform exploratory groundwork to help optimise analytical 
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decisions when testing the relationship between cognitive ability and brain 

morphometry. To my knowledge, Chapter 2 is the first hypothesis-free exploration of 

the impact brain size covariate adjustment has on the association between cognitive 

ability and brain regional volume. Chapter 3 derived an innovative multivariate 

genetic modelling technique, Genomic PCA, to address the limitations of existing 

multivariate genetics tools. Genomic PCA can incorporate a large number of GWAS 

traits while capturing dimensions of maximal genetic variance shared between these 

multiple GWAS traits. Chapter 5 is the first quantitative comparison of cortical atlases, 

I am aware of, that formulated a data-driven recommendation about which atlas may 

maximise brain-trait relationships in large-scale structural MRI studies. 

 Second, the thesis contributed to the literature by investigating the multivariate 

relationship between brain morphometry and cognitive ability leveraging genetic 

information (Chapter 4). By modelling structural brain networks using Genomic PCA 

(derived in Chapter 3), Chapter 4 is the first study that systematically integrated 

genetic data, age-related information, and multiple brain regions unadjusted for brain 

size (as recommended in Chapter 2). On this genetic level of analysis, Chapter 4 

triangulated previous phenotypic studies by characterising the substantial role 

inherited factors play in the relationships between brain networks, cognitive ability, 

and ageing. Insights from the empirical studies are discussed below. 
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6.2 Overview of empirical findings 

 Studies in this thesis built on one another to optimise analytical decisions and 

to ensure meaningful hypothesis tests in Chapter 4. Chapter 2 provides evidence 

against adjusting for brain size in uni-regional associations between brain 

morphometry and cognitive ability. Regions’ correlations with cognitive ability mostly 

reflected variance accounted for by brain size, as opposed to variance unique to each 

region. This shows that brain size does not index nuisance variance and that brain size 

should be modelled rather than discarded as a covariate. Strong empirical and 

theoretical evidence suggested that brain size adjusted GWAS are subject to collider 

bias. Hence, I calculated the first set of regional brain volume GWAS unadjusted for 

brain size.  

 Chapter 3 derived and validated Genomic PCA, a multivariate technique 

designed to integrate genome-wide data and large numbers of brain region 

phenotypes. Genomic PCA extracts genome-wide correlates of an underlying PC 

purely using GWAS summary statistics as input. I validated that resulting genome-

wide PCs were reliable by demonstrating that the Genomic PCA extracted PCs are the 

same as are obtained by calculating GWAS of an underlying phenotypic PC based on 

individual-level data. The public availability of both GWAS summary statistics and the 

Genomic PCA analysis code contribute to the growing accessibility of genetic analyses.  

 Using Genomic PCA, Chapter 4 extracted genetic PCs from GWAS summary 

statistics of 83 brain volumes unadjusted for brain size. With these genetically 

informed analyses I demonstrate in Chapter 4 that there are moderate associations 

between morphometry across canonical brain networks, general cognitive ability, and 

cross-sectional indices of age-related neurodegeneration. The genetic links between 

https://annafurtjes.github.io/genomicPCA/
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brain networks and cognitive ability suggest that brain network-cognition associations 

in the phenotypic literature (e.g., Madole et al., 2021) have shared genetic aetiology 

and are underpinned by inherited, possibly lifelong stable factors.  

 Genetic analyses in Chapter 4 revealed no differences between canonical brain 

networks in how correlated they were with cognitive ability. This implies that the most 

robust correlates of cognitive ability are distributed across the brain, rather than 

localised. Hence, sources of co-variation between brain morphometry and cognitive 

ability likely emerge from general brain-wide morphometric features which are not 

specific to individual regions or brain networks. Future studies should avoid uni-

regional investigations of the brain and instead extract robust general morphometry 

shared across multiple brain regions. To achieve multivariate models using genetic 

information, future studies may model multiple brain phenotypes and brain 

modalities using techniques such as Genomic PCA (Chapter 3), GenomicSEM 

(Grotzinger et al., 2019), and Genomic ICA (Soheili-Nezhad et al., 2021). 

6.2.1 General brain size genes hypothesis 

 When genetic studies deliver results that disagree with those from phenotypic 

studies, speculating about the reasons for their disagreement may help generate 

original hypotheses. Madole et al. (2021) showed that the central executive brain 

network was centrally important for cognitive ability in their phenotypic analysis. By 

contrast, the genetic analysis in Chapter 4 delivered no evidence that the central 

executive network was more important for cognitive ability than other brain networks 

or the whole brain.  

 This conflicting evidence between Madole et al. (2021) and Chapter 4 cannot 

have emerged from major methodological differences. Both studies had closely 
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matched designs: both used the Desikan-Killiany brain atlas, neither adjusted for 

brain size, they used PCA to reduce dimensionality across brain networks, and they 

both analysed structural brain volume data in the UK Biobank sample. The crucial 

difference between them was that Madole et al. (2021) considered phenotypic data, 

and Chapter 4 considered genome-wide data.  

 The fact that phenotypic analyses produced different conclusions to genetic 

analyses may inspire the following general brain size genes hypothesis: It 

hypothesises that the genetic correlation between brain morphometry and cognitive 

ability is largely underpinned by general genes affecting the size of the whole brain 

(rather than individual regions or networks) through general brain features such as 

cell growth factors (as shown in Jansen et al., 2020). This hypothesis could explain 

why my genetic analyses in Chapter 4 found the same correlations between cognitive 

ability and nine canonical brain networks. In line with this hypothesis, the genetic data 

only captured general brain features underlying brain-wide morphometry shared 

across all brain networks. Contrary to Chapter 4, Madole et al. (2021) may have found 

brain network differences because their phenotypic analyses would have been 

sensitive towards combined genetic and environmental factors. Environmental factors 

could have caused morphometric specialisation of the central executive network 

relevant to cognitive ability.  

 This general brain size hypothesis suggesting that genome-wide models of 

structural brain networks reflect general brain size genes was proposed in a 2020 

review: Changeux et al. (2020) argued that brain size may be the single parsimonious 

factor accounting for the brain morphometry cognitive ability relationship. The 

general brain size hypothesis was formulated because it could explain the paradox 

that human genetics only marginally differ from primate genetics when human 
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cognitive ability greatly exceeds primate cognitive ability in language capabilities, 

abstract processing, working and long-term memory. It supports the general brain 

size hypothesis that the only consistent genetic differences found between primate and 

human genetics tend to affect brain size through genes involved in general brain 

growth, neuronal number, and neuronal maturation (Changeux et al., 2020).  

 Changeux et al. (2020) reason that larger brains do not only have more 

neurons, but they have features that are unique to humans. Such unique human 

features include selective growth in association areas, more differentiated neural 

regions, and more efficient connectivity that provide overall more workspace. Hence, 

genetic predisposition to brain size may parsimoniously account for complex human 

brain organisation that enables advanced human cognitive ability. While this 

hypothesis requires further scrutiny, it could explain why the genetic analyses in this 

thesis only found evidence for brain-wide and brain network-unspecific correlates of 

cognitive ability. Future studies are needed to further test the general brain size 

hypothesis by integrating multi-dimensional biological information including 

neuroimaging, genetic, environmental, transcriptomic, epigenetic (and more) data, as 

well as their gene-brain-environment interplay. 

6.2.2 Embracing brain complexity to better account for the 

relationship between cognitive ability and brain morphometry 

 Chapter 5 demonstrated that embracing neuroimaging data in its full vertex-

wise complexity maximises the statistical relationship between cognitive ability and 

brain morphometry. Analysing vertex-wise neuroimaging data resulted in larger brain 

cognitive ability associations compared to analyses that reduced brain dimensionality 

via traditional brain atlases. Modelling hundreds of thousands of vertex-wise brain 
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volume measures simultaneously explained ~3-times more variance in cognitive 

ability (R2 = 25%), than when the same brain measures were reduced into 68 regions 

in the Desikan-Killiany atlas (R2 = 8%). The same vertex-wise measures explained 5-

times more variance in cognitive ability than a single whole brain measure (R2 = 5%) 

(Nave et al., 2018), which was, so far, considered the most reliable correlate of 

cognitive ability.  

 Going forward, structural MRI studies should embrace the complexity of 

hundreds of thousands of vertex-wise neuroimaging variables to obtain more 

informative models of the relationship between the brain and behavioural traits. 

Sample sizes and computational power are getting large enough to obtain sensible 

estimates from vertex-wise data (e.g., Chapter 5). To achieve more informative and 

complex brain models, future studies should adopt tools based in Statistical Genetics 

to analyse large-scale neuroimaging data computationally efficiently. In Chapter 5 I 

used the genome-wide complex trait analysis (GCTA) method to gain robust estimates 

of the relationship between structural MRI data, cognitive ability, and other 

behavioural traits. Future neuroimaging studies should use the wealth of statistical 

genetics tools to advance discovery without the need for novel methods development 

(further discussion of this in the Viewpoint below). 
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6.3 General limitations 

6.3.1 Drawbacks of the cognitive ability (g-factor) definition 

 I defined cognitive ability as an abstract mathematical dimension (g-factor) 

extracted from variance shared between intercorrelated cognitive tests. This definition 

neglects specific cognitive abilities that do not map onto the g-factor but likely capture 

important variance. I focus on the g-factor as a reliable measure because it should not 

depend on the form, version, or wording of the specific cognitive tests used to index it. 

Therefore, the g-factor is objective, highly replicable, and (at least theoretically) error-

free (Humphreys, 1992), which I argue is better suited to study human biology and 

lifelong health outcomes than other less reliable measures (self-report assessment for 

example). Additional studies investigating specific cognitive abilities are needed to 

comprehensively understand human behaviours and their lifelong consequences.  

 Cognitive ability as a measure is culturally loaded which means that an 

individual’s performance in cognitive tests does not just reflect their cognitive ability, 

but also their exposure to academic activities through schooling, for example. 

Cognitive tests were developed in Western, educated, industrialised, rich and 

democratic (WEIRD) countries and tend to be delivered on a computer screen 

simulating artificial environments. Individuals raised in WEIRD countries likely 

received compulsory academic schooling and gained familiarity with computers which 

will mean they naturally perform better in cognitive tests than individuals raised in 

non-WEIRD countries who may have had less or no schooling. To widen the 

transferability of cognitive ability findings, novel cognitive tests are required to 

accommodate more diverse populations and their cultural environments.  
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 To ensure scientific discoveries are not misused, cognitive ability researchers 

bear a responsibility to ensure their research is accurately interpreted by the wider 

population. The presence of differences in cognitive ability implies by no means that 

individuals with higher cognitive ability are worth more than those with lower 

cognitive ability. Researchers must carefully consider the potential impact of cognitive 

ability studies by framing the research using neutral language. Accurately outlining 

study limitations and realistic public health benefits are particularly important to 

avoid fuelling elitist arguments 14 . To better communicate the implications and 

intentions of cognitive ability studies, scientists must strengthen efforts and resources 

invested in public engagement. 

 I would like to explicitly distance my work from elitist agendas14: By considering 

within-group interindividual differences in cognitive ability, I researched a reliable 

and stable human trait that acts as a window into human biology and may lay 

foundations for interventions to mitigate old-age cognitive decline. I do not interpret 

the presence of genetic correlates of cognitive ability as causal which I hope helped 

portray a stochastic (rather than deterministic) view of the genetics of intelligence. I 

 

14 Here I outline one contemporary example illustrating how cognitive ability studies have been misused 
to propagate elitist agendas. Referencing cognitive ability studies, Boris Johnson implied in his 2013 
Margaret Thatcher speech that people with greater cognitive ability may be worth more and deserve 
more privileges than people with lower cognitive ability. Below, I list three quotes from the speech that 
Johnson used to advocate for economic inequality:  

• “Human beings […] are already very far from equal in raw ability, if not spiritual worth”. 

• “Whatever you may think of the value of IQ tests, it is surely relevant to a conversation about 
equality that as many as 16% of our species have an IQ below 85, while about 2% have an IQ 
above 130. The harder you shake the pack, the easier it will be for some cornflakes to get to the 
top.” 

• “The income gap between the top cornflakes and the bottom cornflakes is getting wider than 
ever and I stress that I don’t believe that economic equality is possible. Indeed, some measure 
of inequality is essential for the spirit of envy […] that is a valuable spur of economic activity.” 

The quotes were taken from Gillborn (2016) and Johnson (2013). 
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would like to be explicit that none of my work is indicative of between-group 

differences (for example, between ancestries). Section 6.3.4 further elaborates how 

genetics research can become more widely translatable to non-European ancestries.  

6.3.2 Population-level inference of individual differences 

 Observational studies of healthy interindividual variability represent one of 

many approaches to investigate human traits. Compared with smaller interventional 

studies for example, interindividual studies isolate robust associations that generally 

apply to healthy humans but cannot be interpreted causally. Interindividual studies 

should be complemented by other approaches suited to uncover causal relationships 

(e.g., randomised control trials, Mendelian Randomisation, or natural experiments).  

6.3.3 Cross-sectional data  

 Due to the cross-sectional nature of the used data, Chapter 4 may have 

underestimated correlation magnitudes among brain regions. A 2021 longitudinal 

study showed that interregional correlations are considerably stronger among 

longitudinally measured brain volumes (average r = 0.81), than they are among cross-

sectionally measured brain volumes (average r = 0.35) (Cox et al., 2021). It required 

longitudinal data to definitively show that brain volume and cognitive ability do indeed 

have a mutually dependent relationship (r = 0.43) and that they change over time in a 

coordinated fashion (Cox et al., 2021). Large-scale longitudinal collection of 

neuroimaging data is available in studies such as the Lothian Birth Cohort (LBC; Deary 

et al., 2012; Taylor et al., 2018), and the UK Biobank (Littlejohns et al., 2020). 

Increasing availability of longitudinal MRI data will allow future studies to 

characterise trait relationships more accurately.  
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6.3.4 Non-representative samples  

 Genetic and phenotypic analyses were conducted in White European ancestry. 

It remains unknown whether phenotypic and genetic correlations can be translated 

from Europeans to non-Europeans because ancestral groups differ in LD structures, 

as well as geographical, environmental and cultural differences that may be 

systematically correlated with ancestry (Abdellaoui et al., 2023; Mathieson & Scally, 

2020). As genetic data of non-European ancestry – such as the African Genome 

Variation Project (Gurdasani et al., 2015), or the GenomeAsia 100K Project (Wall et 

al., 2019) – increase in size and availability, future multi-ancestral studies present 

opportunities to make findings more widely applicable.  

 Besides ancestry, analysed samples are not representative of the target 

population inferences are extrapolated to. The UKB sample is healthier, wealthier, and 

better educated than the age-matched general population in the UK: A strong 

volunteer participation bias means that healthier and well-off individuals were most 

likely to participate in the UKB data collection (Fry et al., 2017). Genetic analyses are 

significantly impacted by participation bias. A GWAS of study participation revealed 

32 significantly associated SNPs (Tyrrell et al., 2021). According to a 2022 pre-print, 

participation bias affects most SNPs that reach genome-wide significance in education 

GWAS (Schoeler et al., 2022). To balance over- and under-represented individuals in 

GWAS, propensity score methods can be used to adjust SNP effect bias induced by 

imbalances of sample representativeness (Schoeler et al., 2022).  

6.3.5 Indirect genetic effects 

 I used genetic correlations derived from GWAS summary statistics to replicate 

previous phenotypic studies more objectively. However, it would be inaccurate to 



 

185 

 

assume that genetic correlations simply captured genetic effects that directly affect 

traits under investigation. Indirect genetic effects also contribute to estimates of 

heritability (e.g., Young et al., 2018) and genetic correlations (Bulik-Sullivan, 

Finucane, et al., 2015) and they index demographic effects such as assortative mating 

and population stratification (Abdellaoui et al., 2019), as well as gene-environment 

interplay (Abdellaoui et al., 2022). Hence, heritability and genetic correlations 

presented in this thesis likely reflect interrelated genetic and environmental factors. 

 GWAS designs that consider interindividual differences within families (e.g., 

between siblings) can help isolate direct genetic effects by mitigating indirect genetic 

effects (e.g., assortative mating, or gene-environment correlation; Howe et al., 2022). 

Compared with standard GWAS, family-based GWAS tend to substantially reduce 

genetic estimates in behavioural traits (~40% reduction in SNP-based heritability of 

cognitive ability; Howe et al., 2022). Future within-family studies could add to the 

thesis findings by characterising direct and indirect sources of genetic trait 

correlations to help unpack underlying genetic and environmental mechanisms .  

6.3.6 Putative brain network characterisations 

 Finally, brain network characterisations used in Chapter 4 are putative as I 

assigned individual brain regions to canonical brain networks based on findings in 

some previous publications. The quality of theory-driven brain network models can 

only be as good as the evidence that informs them. Exactly which regions reside in 

different macro-scale brain networks remains an active area of research (Uddin et al., 

2019) and future research may encourage refinement of the brain networks modelled 

in Chapter 4. Future data-driven work is needed to refine brain network 

characterisations through different sources of brain-based information, for example, 
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cellular micro-organisation of the brain (Amunts et al., 2020) or neurotransmitter 

systems (Hansen et al., 2022). 

 

6.4 Significance of these findings for the design of 

neuroimaging studies 

 This thesis finds evidence that cognitive ability is anchored in more general 

brain-wide features (rather than localised ones) which emphasises a more integrated 

view of the brain. Such an integrated view would require holistic study designs 

integrating multiple brain regions, genetic data, environmental information and more. 

This is in line with Westlin et al. (2023) calling for a reconsideration of fundamental 

study assumptions about the brain: those fundamental assumptions tend to be 

misleading as they can dictate imprecise statistical designs in neuroimaging studies. 

Westlin et al. (2023) outline that many studies adopt a typological view of the brain 

that assumes that human cognition and behaviour emerges from (1) a simple region-

to-behaviour mapping of (2) localised neuronal signal, that is thought (3) to be 

independent of other signals, including the rest of brain, the body, and the physical 

environment. These assumptions justify simplistic statistical models mapping 

individual brain regions onto complex traits, at the same time as adjusting for brain 

size, as well as other associated factors.  

 Westlin et al. (2023) elaborate that this view of the brain stands in contrast to 

empirical evidence (e.g., functional MRI brain networks or animal studies). They argue 

that brain-behaviour relationships can become more robust and replicable when 

studies are designed under the following alternative assumptions, more in line with 

empirical evidence: Behavioural traits emerge from (1) multiple coordinated regions, 
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(2) whose activity may spread throughout the whole brain, (3) which is directly 

dependent upon a complex web of interacting signals from the brain, the body, and 

the environment. Individually, each factor that is correlated with a behavioural trait 

(e.g., cognitive ability) may have weak influences on underlying brain function, but 

together these factors give rise to cognitive ability collectively, and can therefore not 

be reasonably isolated from one another in statistical analyses.  

 Although these alternative assumptions in Westlin et al. (2023) were 

formulated mainly with reference to functional MRI studies, the alternative 

assumptions are also supported by structural MRI studies in this thesis. My thesis 

demonstrated that genetic correlates of brain morphometry relate to cognitive ability 

through (1) general features shared between multiple regions (2) that are spread across 

the whole brain and that are not specific to brain regions or brain networks. (3) 

General dimensions of brain morphometry are not independent of global brain 

features (e.g., total brain volume), and they cannot be reliably modelled when made 

statistically independent of brain size.  

 In line with the alternative more holistic view of the brain suggested by Westlin 

et al. (2023), this thesis identified four key methodological choices that may help 

produce more robust and biologically plausible brain trait correlations: First, do not 

include brain size as a covariate especially in GWAS. Second, use multivariate models 

of the brain accounting for correlations among brain regions. Third, integrate genetic 

information. Fourth, use vertex-wise cortical representations instead of low-

dimensional brain atlases. Adopting these methodological choices should support 

future studies to capture more reliable, more complex, and biologically more plausible 

correlations between brain morphometry and cognitive ability, as well as other 

behavioural traits.  
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6.5 Transferring lessons across research disciplines 

 The process of conducting the brain atlas research in Chapter 5 led me to 

appreciate the value of working between disciplines. It made me aware of the strong 

parallels between statistical genetics and neuroimaging research in the challenges and 

opportunities they face. I suggest that practices from statistical genetics – which is an 

inherently multivariate and computational discipline – can teach valuable lessons 

relevant to neuroimaging research which has a tradition of much smaller samples. 

Neuroimaging studies tend to focus on less computationally intensive analyses of 

individual brain regions in clinical settings, for example. By applying genetics analysis 

techniques to neuroimaging data (as done in Chapter 5), we may be able to drive 

innovation and accelerate the evolution of large-scale neuroimaging research without 

needing to develop new neuroimaging-specific techniques. In a Viewpoint that is 

currently under review with Cortex I present five major lessons derived from genetics 

research that could help address many issues of replicability in neuroimaging 

research. 

 First, the failure of candidate gene studies motivates neuroimaging studies to 

avoid overly simplistic studies mapping individual brain regions onto complex traits. 

 Second, genetics research findings demonstrate that the robustness of study 

results is greatly improved by increasing sample sizes. 

 Third and fourth, the success of GWAS inspires neuroimaging studies to adopt 

hypothesis-free mass-univariate testing and sharing of summary-level (vertex-wise) 

association data to aid cross-sample meta-analyses and large-scale collaboration that 

is otherwise hindered by data privacy concerns. 
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 Finally, genetics methods can account for complex data structures and are 

computationally efficiently implemented. Applying genetics analysis techniques to 

vertex-wise neuroimaging data may boost scientific discovery without the need for 

novel neuroimaging-specific methods. 

 In the Viewpoint I argue that these five practices should either be further 

endorsed, or newly adopted by the neuroimaging community which may accelerate the 

evolution of neuroimaging as the field embarks on a big-data journey of replicable 

studies of the brain. This Viewpoint summary was partially adopted from its abstract, 

and a word-by-word copy of the version submitted to Cortex is presented in the 

Appendix.  

6.6 Concluding remarks 

 The overarching aim of this thesis was to investigate brain morphometric 

correlates of general cognitive ability using novel, partly genetically informed analyses 

in well-powered samples. It contributed empirical investigations that aimed to 

improve methodological decisions in neuro-cognitive studies. Specifically, this thesis 

gathered evidence weighing against covariate adjustment for brain size, especially in 

GWAS. My work also demonstrated that vertex-wise cortical representations can help 

maximise brain-trait associations in comparison with traditional cortical atlases. 

Informed by this methodological groundwork, this thesis used structural MRI data 

and a novel multivariate and genetically informed approach to revisit the longstanding 

question of where in the brain cognitive abilities may be located. Results proposed that 

morphometric brain organisation is moderately linked with general cognitive ability, 

whereby sources of their covariation seem to emerge from brain-wide, rather than 

region-specific or network-specific features, most likely related to overall brain size 
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and cell growth. As neuroimaging research embarks on a big-data journey of 

reproducible studies, work presented here inspires interdisciplinary and 

multidimensional approaches that aim to further our understanding of the biology of 

cognitive ability by embracing the full complexity of the brain, and its genetic, 

environmental, and developmental influences. 
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Supplementary Material for Chapter 4 

Supplementary Methods 

1. Study Design 

1.1. UK Biobank data 

 The UKB study received ethical approval by the Research Ethics Committee. All 

participants signed informed consent for their data to be analysed. Access to 

phenotypic and genetic UK Biobank data was granted through the approved 

application 18177. Magnetic resonance imaging (MRI) data was collected by the UK 

Biobank study with identical hardware and software in Manchester, Newcastle, and 

Reading. Brain volumetric phenotypes were pre-processed by an imaging-pipeline 

developed and executed on behalf of UK Biobank (Alfaro-Almagro et al., 2018). More 

information on T1 processing can be found in the UK Biobank online documentation 

(Smith, Alfaro-Almagro, et al., 2020). Briefly, cortical surfaces were modelled using 

FreeSurfer, and 33 volumes were extracted based on Desikan-Killiany surface 

templates (Desikan et al., 2006) (UKB does not provide frontal pole measures due to 

high missingness); 8 subcortical areas were derived using FreeSurfer aeseg tools 

(Fischl et al., 2002). Volumetric measures (mm3) have been generated in each 

participant’s native space. We used 83 available imaging-derived phenotypes (IDPs) 

of cortical and subcortical grey-matter volumes in regions of interest spanning the 

whole brain (UK Biobank category 192 & 190; STable 1). We assume the IDPs to be 

normally-distributed. 
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1.2. Phenotypic quality control 

 Excluding participants who withdrew consent, we considered 41,776 

participants with non-missing T1-weighted IDPs that had been processed in 

conjunction with T2-weighted FLAIR (UK Biobank field ID 26500) where available. 

Using both T1 and T2 measures ensures more precise cortical segmentation (Lindroth 

et al., 2019). Extreme outliers outside of 4 standard deviations from the mean were 

excluded, which ranged between 41,686 to 41,769 available participants between 

different IDP. 381 participants were excluded as they self-reported non-European 

ethnicity. (In GWAS it is necessary to include unrelated, ethnically homogeneous 

participants. Different ethnicities display different linkage disequilibrium structures 

across the genome, and the analyses conducted here would be uninterpretable if 

conducted across ethnicities. To maximise sample size, we analyse European 

participants, as they represent the largest ethnically homogeneous group in the UKB 

cohort). Across the 83 brain volumes and the covariates, this phenotypic quality 

control resulted in 39,947 complete cases, for whom the following genetic quality 

control steps were performed.  

 

1.3. Genetic quality control 

 Out of the 39,947 UK Biobank participants, genetic data were available for 

38,957 participants. Genetic data was quality controlled by UK Biobank and were 

downloaded from the full release (Bycroft et al., 2018). We applied additional quality 

control as previously described in Coleman et al. (2020) using PLINK2 (Chang et al., 

2015). 38,038 participants were of European ancestry according to 4-means clustering 

on the first two genetic principal components available through UK Biobank (Warren 
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et al., 2017). Of those participants, we removed 72 due to quality assurance issues 

reported by UK Biobank and 204 participants due to high rates of missingness (2% 

missingness). To obtain a sample of unrelated individuals, 956 participants were 

removed using the greedyRelated algorithm (KING r < 0.044 (Manichaikul et al., 

2010)). The algorithm is “greedy” because it maximises sample size; for example, it 

removes the child in a parent-child-trio. Finally, 28 participants were removed 

because genetic sex did not align with self-reported sex, resulting in a total of 36,778 

participants (STable 10). Genetic sex was identified based on measures of X-

chromosome homozygosity (FX ; removal of participants with FX < 0.9 for phenotypic 

males, FX > 0.5 for phenotypic females). The final sample (N = 36,778) included 

19,888 females (54 %) and had an average age of 63.3 years at the neuroimaging visit 

(range from 40.0 to 81.8 years). 

 Out of 805,426 available directly genotyped variants, 104,771 were removed for 

high rates of missing genotype data (> 98%). 103,137 variants were removed due to a 

minimum allele frequency of 0.01, and 9,935 variants were removed as they failed the 

Hardy-Weinberg exact test (p-value = 10-8). After excluding 16,326 variants on the sex 

chromosomes and those with chromosome labels larger than 22, we obtained a final 

sample of 571,257 directly genotyped SNPs. Imputed genotype data was obtained by 

UK Biobank with reference to the Haplotype Reference Consortium (McCarthy et al., 

2016), and we filtered them for a minor allele frequency of above 0.01 and an IMPUTE 

INFO metric of above 0.4. 

1.4. Measures of cognitive performance  

 In this study, we considered GWAS summary statistics of performance in seven 

cognitive tests by de la Fuente et al. (2021) that were calculated with between 11,263 
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and 331,679 participants for each test. We considered the HapMap 3 reference SNPs 

with the MHC regions removed. These seven cognitive performance tests were 

assessed on a touchscreen computer: Matrix Pattern Completion task for nonverbal 

reasoning, Memory – Pairs Matching Test for memory, Reaction Time for perceptual 

motor speed, Symbol Digit Substitution Task for information processing speed, Trail 

Making Test – B and Tower Rearranging Task for executive functioning, and Verbal 

Numerical Reasoning Test for verbal and numeric problem solving, or fluid 

intelligence. Despite the non-standard and unsupervised delivery of assessment, these 

cognitive tests demonstrate strong concurrent validity compared with standard 

reference tests (r = .83) and good test-retest reliability (Pearson r range for different 

cognitive tests = 0.4–0.78) (Fawns-Ritchie & Deary, 2020). 

 

2. Statistical analysis 

2.1. GWAS summary statistics calculation 

 The 83 regional brain volumes described in Supplementary Methods 1.1. were 

quality controlled as described in Supplementary Methods 1.2-1.3. GWAS summary 

statistics for these 83 regional brain volumes (continuous variables) were calculated 

using REGENIE (Mbatchou et al., 2021), which fits polygenic effects in a linear mixed 

model using Ridge regression. The REGENIE pipeline is split into two steps: First, 

blocks of directly genotyped SNPs are used to fit a cross-validated whole-genome 

regression model using Ridge regression, to determine the amount of phenotypic 

variance explained by genetic effects. Second, the association between the phenotype 

and imputed genetic variants is calculated conditional upon Ridge regression 
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predictions from the first step. Proximal contamination is circumvented by using a 

leave-one-chromosome-out scheme.  

 Covariates included in the GWAS analyses were age at neuroimaging visit, sex, 

genotyping batch, and 40 genetic principal components as provided by UK Biobank. 

We also derived the variables time of year, head position, and acquisition site, but 

excluded them from our set of GWAS covariates because they were not associated with 

the brain volumes at the pre-registered arbitrary cut-off of r ≤ .10 (STable 9), and 

therefore explained less than 1% of the phenotype variance. Note that, in contrast to 

other existing brain-volume GWAS in UK Biobank (e.g., Smith, Douaud, et al., 2020), 

our analyses were conducted without controlling for brain size (or any other global 

brain measure such as total grey-matter volume or intracranial volume). This is 

because we wanted to represented total variance associated with regional volumes, 

rather than capturing variance that persisted above and beyond variance that mapped 

onto global measures (also discussed in the introduction of the manuscript). Genetic 

correlations calculated relative to such global measures are known to attenuate genetic 

correlations among volumes, as well as with other traits such as cognitive abilities (de 

Vlaming et al., 2021). In the context of this study, we aim to model general dimensions 

of variance shared between brain volumes which will probably closely covary with 

overall brain size. Attenuated genetic correlations would hide major dimensions of 

variance across genetic brain networks, because much of the variance shared between 

volumes overlaps with variance indexed by brain size and would therefore not tag 

general dimensions of shared genetic variance between brain volumes. This variance 

is of interest because general intelligence yields global rather than a region-specific 

associations with grey matter volume (Hilger et al., 2020). Equally, aging affects the 

whole brain rather than individual regions (Cole et al., 2019).  
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2.2. Genetic and phenotypic correlation matrices between brain volumes.  

 To derive dimensions of shared morphometry across brain volumes, we 

calculated both a phenotypic and a genetic correlation matrix from 83 grey-matter 

volumes. Phenotypic regional brain volumes were residualised for age at 

neuroimaging visit and sex, and then used to estimate a phenotypic correlation matrix 

through Pearson’s correlations with complete pairwise observations. The genetic 

correlation matrix was inferred through LDSC (Bulik-Sullivan, Finucane, et al., 2015), 

a technique quantifying shared genome-wide polygenic effects between traits using 

GWAS summary statistics. Cross-trait LDSC regresses the product of effect sizes in two 

GWAS onto linkage disequilibrium (LD) scores, indicating how correlated a genetic 

variant is with its neighbouring variants (Bulik-Sullivan, Finucane, et al., 2015). The 

slope indexes the genetic correlation, while the intercept captures signal uncorrelated 

with LD, such as population stratification, environmental confounding, and sample 

overlap (Lee, McGue, et al., 2018). Interregional genetic correlations ranged from rg = 

-0.08 (SE = 0.013) between right frontal pole and left pallidum, to rg = 0.87 (SE = 

0.017) between left middle temporal and left inferior temporal (Fig.3B, SFig.1). 

Corresponding standard errors ranged between 0.01 and 0.03 (mean = 0.014; SD = 

0.002). 

2.3. Comparing phenotypic and genetic correlations 

 To quantify the relationship between phenotypic and genetic correlations, we 

estimated the correlation between 3403 phenotypic and 3403 genetic interregional 

brain volume correlations (
83(83−1)

2
 = 3403 correlations between 83 volumes). We 

calculated genetic correlation matrices indicating genetic overlap between the 83 

volumes using linkage disequilibrium score regression (LDSC; Bulik-Sullivan, 
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Finucane, et al., 2015) as implemented in the GenomicSEM software (Grotzinger et 

al., 2019; Fig.2.2). Genetic between-volume correlations are displayed in SFig.1-10. To 

obtain comparable indices of phenotypic covariance, we ran PCA on a phenotypic 

correlation matrix obtained from the same brain volume variables used to calculate 

GWAS. 

2.4. Principal component analysis (PCA) of genetic and phenotypic 

correlation matrices  

 PCA was applied to the phenotypic and genetic correlation matrices indicating 

genetic overlap between brain volumes described above to obtain their respective first 

principal component (PC). The first PC1 represents an underlying dimension of 

common structural sharing across regional volumes, which we refer to as general 

dimensions of shared morphometry throughout this manuscript. PC1 loadings were 

calculated for all volumes in the whole brain, as well as theoretical grouping of fewer 

volumes thought to reside in smaller canonical networks to quantify contributions of 

regional volumes to this either brain-wide, or network-specific dimension of shared 

morphometry. Phenotypically, this was done using the eigen function in R, and 

genetically this was done following the pipeline outlined in detail in the main Methods 

section (Fig.2). 

2.5. Genome-wide PCs of morphometry across the whole brain and 

canonical networks 

 To statistically represent volumetric PCs on a genome-wide level, we averaged 

genome-wide SNP effects contributed by multiple grey-matter volume GWAS 

summary statistics, weighted by their respective (region-specific) PC1 loadings. We 

obtained one set of GWAS summary statistics showing SNP associations of a genetic 
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principal component underlying multiple GWAS phenotypes derived from samples of 

unknown degrees of overlap. SNP effects were calculated by adapting existing software 

for genome-wide multivariate meta-analysis by Baselmans et al. (2019). More details 

are in the main Methods section (Fig.2). 

 We tested and validated this novel approach in an independent set of GWAS 

summary statistics of four risky behaviours (Linnér et al., 2019). In addition to the 

risky behaviour GWAS, another set of summary statistics is available for a phenotypic 

PC1 underlying these risky behaviour phenotypes that the authors had calculated 

phenotypically before running GWAS analyses. We compared these phenotypic PC1 

GWAS summary statistics provided by Linnér et al. (2019) with summary statistics for 

a genetic PC1 underlying the four risky behaviours GWAS that we calculated using 

Genomic PCA. They were genetically correlated at rg = 0.99 (SE = 0.037) confirming 

that our method captures the same signal as can be obtained from phenotypic PCs, by 

simply relying on publicly available GWAS data. For details of the analysis and code 

refer to: https://annafurtjes.github.io/genomicPCA/ . 

 

2.6. Parallel analysis  

 We tested whether genetic PCs underlying multiple volumes in the whole brain, 

and canonical brain networks explained more variance than expected by chance, that 

is, whether they explained more than 95% of their corresponding PCs generated under 

a simulated null correlation matrix. We developed a version of parallel analysis to 

generate null distributions of eigenvalues by simulating null correlation matrices 

sampled from a diagonal population correlation matrix, where the multivariate 

sampling distribution is specified to take the form of the sampling distribution of the 

https://annafurtjes.github.io/genomicPCA/
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standardised empirical genetic correlation matrix (the VSTD matrix, as estimated using 

GenomicSEM (Grotzinger et al., 2019)). This sampling correlation matrix serves as an 

index of the precision of the elements in the empirical genetic covariance matrix (i.e., 

heritabilities and co-heritabilities across traits) and the sampling dependencies among 

these when generating the random null models. We specified 1,000 replications to 

simulate the null correlation matrices and used a 95% threshold for distinguishing true 

eigenvalues from noise. 

2.7. Simulation of networks with randomly included brain volumes.  

 We performed an additional sensitivity analysis simulating networks with 

randomly included brain volumes, to determine whether shared structural variance 

relied on network membership, or arose through phenotypic properties common to all 

regional brain volumes. To compare explained variances between canonical networks 

and random networks, we quantified the expected explained variance in random 

networks by randomly sampling regions 800 times each, for different numbers of 

included volumes (because networks including fewer volumes generally tend to 

explain a larger percentage of variance, as larger networks are more heterogeneous). 

That is, simulations were run for 8, 10, 12, 16, 30, and 36 included regions, to obtain a 

distribution for each networks size to compare the corresponding network’s explained 

variance to. We reported the mean explained variance by PCs for networks with 

randomly included volumes and a 95% confidence interval. Comparisons between 

explained variances for random and empirical networks were done for the same 

number of included volumes.  
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2.8. Comparing phenotypic and genetic loadings onto PC1 underlying 83 

brain-wide volumes 

 To compare whether genetic correlation structures of regional brain 

morphometry resembled the phenotypic correlation structure of the same regions, we 

calculated an un-standardised linear regression with a vector of 83 phenotypic whole-

brain PC1 loadings as the dependent variable, and a vector containing 83 genetic 

whole-brain PC1 loadings as the independent variable. We calculated the Tucker 

congruence coefficient to quantify the relative similarity between the two sets of PC1 

loadings independent of their absolute magnitude. The coefficient is insensitive to 

scalar multiplication (Tucker, 1951).  

2.9. Correlation between genetic loadings onto PC1 underlying 83 brain-

wide volumes with age sensitivity 

 Pearson’s correlations between 83 phenotypic grey-matter volumes and age at 

neuroimaging visit were calculated to quantify cross-sectional age-volume-

correlations for each of the 83 brain volumes. These age-volume correlations are 

referred to as age sensitivity throughout the manuscript. We estimated the correlation 

between a vector containing indices of age sensitivity and (1) a vector of genetic whole-

brain PC1 loadings, and for comparison (2) a vector of phenotypic whole-brain PC1 

loadings.  

2.10. Genetic correlation between general dimensions of shared 

morphometry across the whole-brain and brain age 

 Using cross-trait LDSC (Bulik-Sullivan, Finucane, et al., 2015), we calculated a 

genetic correlation between genetic PC1 underlying brain-wide volumes (as created by 
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Genomic PCA) and the brain age gap. We used the brain age GWAS summary statistics 

by Kaufmann et al. (2019). Brain age is a phenotype based on individual-level 

predictions of how much older (or younger) an individual’s brain appears, relative to 

their chronological age. It is estimated using parameters characterising the 

relationship between age and structural neuroimaging measures (volume, thickness, 

and surface area) that were tuned using machine learning in an independent sample. 

The final brain age phenotype indexed in the GWAS was calculated as the difference 

between participants chronological age and their age as predicted based on structural 

brain characteristics. 

2.11. Genomic SEMs of genetic correlations between structural brain 

networks and a factor of general cognitive ability  

 We assessed genetic correlations between genetic PC1s underlying canonical 

brain networks and general cognitive ability using GenomicSEM (Grotzinger et al., 

2019) (Fig.5). In GenomicSEM (Grotzinger et al., 2019), the genetic general cognitive 

ability factor was modelled from seven cognitive ability GWAS summary statistics 

(described in Supplementary Methods 1.4.), and the genetic correlation between 

genetic general cognitive ability and genetic brain PCs was estimated with diagonally 

weighted least squares. To quantify model fit, we reported default fit indices calculated 

by the GenomicSEM package: χ2 values, the Akaike Information Criterion (AIC), the 

Comparative Fit Index (CFI) and the Standardised Root Mean Square Residuals 

(SRMR). The multiple testing burden was addressed by correcting p-values from the 

genetic correlations for multiple testing with a false-positive discovery rate of 5% 

(Benjamini & Hochberg, 1995).  
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 We preregistered that we would test for significant differences in correlation 

magnitudes between the networks whose underlying PC1 yielded a significant 

association with general cognitive abilities. Because we hypothesised a particularly 

strong association for the central executive network, we planned to perform this 

comparison between the central executive and all other networks, to reduce the 

multiple testing burden. We fitted two GenomicSEM models in which correlation 

magnitudes between general cognitive ability and both the central executive and 

another network were either freely estimated, or they were forced to be the same. A 

significant decrease in model fit (as indicated as the difference in χ2) between the 

freely estimated model and the constrained model (df = 1) would indicate that there 

likely are differences in correlation magnitudes between the networks in how strongly 

they correlate with general cognitive ability (SFig.22). We found no evidence that the 

PC1 underlying the central executive network was any more genetically correlated with 

cognitive ability than the PC1 underlying any other network (STable 5). 

 Additionally, we assessed whether the PC1 underlying the central executive 

network was disproportionately genetically correlated with general cognitive ability 

considering its small size (i.e., few included volumes). Similar to the approach 

described above, we fitted two models: One, in which we freely estimate the correlation 

between the genetic PC1 underlying the central executive and general cognitive ability, 

and the correlation between genetic PC1 underlying another network and general 

cognitive ability. We then divided the correlation magnitude by the number of regions 

included in the network (i.e., magnitude was divided by 8 for the central executive 

network, it was divided by 16 for the default mode, by 36 for the P-FIT etc.). The second 

model had the same set up, but we forced the adjusted correlations of the two networks 

with cognitive ability to be equal (e.g., rcentral executive / 8 == rdefault / 16). We assessed 
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whether there was a significant difference in χ2 model fit between these two models. 

As above, a significant decrease in model fit between the freely estimated model and 

the constrained model (df  = 1) would indicate that there likely are differences in 

relative correlation magnitudes (i.e., magnitudes adjusted for network sizes). Based 

on previous findings, we expected the relative magnitude for the central executive 

network to be significantly larger than the relative magnitude for any other network.  

Even when accounting for network size, we found no evidence that the genetic PC1 

underlying the central executive network was any more genetically correlated with 

cognitive ability than a genetic PC1 underlying any other canonical network (STable 

6). 

 To probe whether any specific cognitive ability might have driven the genetic 

correlation between PCs underlying brain networks and general cognitive ability, we 

reported genetic correlations between the significant networks and three specific 

cognitive abilities: (1) Matrix Pattern Completion task to represent nonverbal 

reasoning, (2) Memory – Pairs Matching Test to represent memory, and (3) Symbol 

Digit Substitution Task to represent information processing speed. Reducing the 

analyses to only three consistent and representative cognitive measures reduced the 

burden of multiple testing. Matrix Pattern Completion consistently yielded the 

strongest genetic correlations with PCs underlying all the brain networks (mean rg 

across different networks = 0.18). Genetic correlations for Symbol Digit Substitution 

Task were slightly smaller (mean rg = 0.12), followed by Memory which had the lowest 

average correlations (mean rg = 0.09; STable 7). 

 We also calculated Qtrait heterogeneity indices (Grotzinger et al., 2022) to 

evaluate whether the general cognitive ability factor that we fit in the models above 

accounts well for the specific cognitive abilities. To this end, we compared the fit of 
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two models for each network as displayed in SFig.23. One model allows for 

independent associations between the seven cognitive traits, and both general 

cognitive ability and the PC1 underlying the considered brain network. The second 

model forces the association between the seven cognitive traits and the PC1 underlying 

the brain network to go through the general cognitive ability factor. We obtained χ2 fit 

statistics for both models and tested their difference for statistical significance (∆ χ2 ≠ 

0; df = 6). Non-significant results (p > 0.05/10) would suggest that genetic 

associations between cognitive abilities and brain networks are likely general and act 

through a factor of general cognitive ability. We obtained non-significant Qtrait 

heterogeneity indices (Grotzinger et al., 2022) for all brain networks, demonstrating 

that the general cognitive ability factor accounted well for the patterns of association 

between specific cognitive abilities and the brain networks (SFig.23). 

 Data and code availability. Access to phenotypic and genetic UK Biobank 

data was granted through the approved application 18177. We have made the 83 

GWAS summary statistics of regional volumes available at the GWAS catalogue 

(https://www.ebi.ac.uk/gwas/).  

GWAS summary statistics for the seven cognitive traits by (de la Fuente et al., 2021) 

were downloaded at https://datashare.ed.ac.uk/handle/10283/3756.  

The pre-registration for this analysis can be found online (https://osf.io/7n4qj).  

Full analysis code including results for this study are available at 

https://annafurtjes.github.io/Genetic_networks_project.  

 

  

https://www.ebi.ac.uk/gwas/
https://datashare.ed.ac.uk/handle/10283/3756
https://osf.io/7n4qj
https://annafurtjes.github.io/Genetic_networks_project
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Further discussion of study limitations  

 All limitations that apply to LDSC methodology are relevant to this study. It is 

known that LDSC estimates can be downwardly biased (Lee, McGue, et al., 2018) with 

larger standard errors as compared with genome-wide complex trait analysis, for 

example (van Rheenen et al., 2019). However, there is no available software allowing 

genomic structural equation modelling using any of these other methods. 

 LDSC intercepts should capture some shared phenotypic variation, which could 

confound the genetic correlation estimates. We found a perfect correlation between 

intercepts and volume-by-volume phenotypic correlations (b = 0.98, SE = 0.009, p-

value ˂  2 x10-16, R2 = 0.997), indicating that LDSC produced larger intercepts for highly 

phenotypically correlated traits. This suggests that genetic correlations found in this 

study are reliable and probably do not rely on methodological artefacts.  

 LDSC regresses effect sizes from GWAS summary statistics on LD Scores which 

separates the polygenic signal into signal that correlates with LD (slope), and signal 

that does not correlate with LD (intercept). Variation captured with the intercept 

characterises confounding on the cross-trait associations such as sample overlap, 

population stratification and environmental influences which should be uncorrelated 

with LD (Lee, McGue, et al., 2018; Yengo et al., 2018). The correlation between 

phenotypic associations and intercepts is plausible as it indicates that the intercepts 

successfully captured and removed confounding effects from the estimate of genetic 

correlations (slope). We probably obtained genome-wide representative genetic 

correlations in this study because we discovered pronounced bilateral symmetry of 

genetic influences, that is near perfect correlations between areas and their 

homologous counterpart in the opposite hemisphere. This bilateral symmetry was 
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previously reported in twin studies (Alexander-Bloch et al., 2017; Chen et al., 2011) 

that are sensitive towards overall additive genetic effects and can help inform whether 

genetic correlations are typical for the whole allelic spectrum. 

 Another limitation is that precision of genetic correlations depends on the 

polygenic signal contained in GWAS summary statistics. Low precision and limited 

systematic variance were linked with unstable genetic correlations (Lee, McGue, et al., 

2018). SNP-heritability can be used as a signal-to-noise ratio, to inform whether 

sufficient polygenic signal was present in a GWAS, and a previous study suggested to 

exclude traits with SNP-heritability estimates below 0.05 (Sodini et al., 2018). SNP-

heritability estimates of our brain-volumetric traits ranged between 7.6% (SE = 0.01) 

and 42% (SE = 0.037; median h2 across all volumes = 0.23). The left and right frontal 

poles had the lowest SNP-heritability estimates, probably because the boundaries of 

this region are ambiguous (Klein & Tourville, 2012) resulting in limited systematic 

variation. 
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Supplementary Figures  

 

Supplementary Figure 1. Genetic correlation matrix inferred through bivariate LDSC across the whole 
brain (83 volumes). High correlations along the off-diagonal lines, parallel to diagonal, indicate nearly 
perfect correlations between regions and their homologous counterparts in the opposite hemisphere 
(brain stem is an exception as it has no counterpart in the opposite hemisphere).  
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Supplementary Figure 2. Genetic correlations inferred through LDSC among the central executive 
network (8 volumes). 
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Supplementary Figure 3. Genetic correlations inferred through LDSC among the cingulo-opercular 
network (10 volumes). 
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Supplementary Figure 4. Genetic correlations inferred through LDSC among the default mode network 
(16 volumes). 
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Supplementary Figure 5. Genetic correlations inferred through LDSC among the hippocampal-
diencephalic network (12 volumes). 
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Supplementary Figure 6. Genetic correlations inferred through LDSC among the multiple demand 
network (12 volumes). 
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Supplementary Figure 7. Genetic correlations inferred through LDSC among the P-FIT network (36 
volumes). 
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Supplementary Figure 8. Genetic correlations inferred through LDSC among the salience network (10 
volumes). 
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Supplementary Figure 9. Genetic correlations inferred through LDSC among the sensorimotor network 
(12 volumes). 
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Supplementary Figure 10. Genetic correlations inferred through LDSC among the temporo-amygdala-
orbitofrontal network (30 volumes). 
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Supplementary Figure 11. Parallel analysis in the central executive network 

 
Supplementary Figure 12. Parallel analysis in the cingulo-operular network 

 
Supplementary Figure 13. Parallel analysis in the default mode network 
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Supplementary Figure 14. Parallel analysis in the hippocampal-diencephalic network 

 
Supplementary Figure 15. Parallel analysis in the multiple demand network 

 
Supplementary Figure 16. Parallel analysis in the P-FIT network 
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Supplementary Figure 17. Parallel analysis in the salience network 

 
Supplementary Figure 18. Parallel analysis in the sensorimotor network 

 

 
Supplementary Figure 19. Parallel analysis in the temporo-amygdala-orbitofrontal network 
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Supplementary Figure 20. Parallel analysis in the whole brain with 83 nodes. 
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Supplementary Figure 21. Genetic correlations between seven cognitive traits and genetic PC1s 
underlying structural covariance networks. Descriptively, performance in the Tower Rearranging Task 
has the largest association with brain networks in comparison with other cognitive tasks. Abbreviations: 
Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction 
Time; Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower 
Rearranging Task; VNR = Verbal Numerical Reasoning Test; central exec = central executive; cingulo 
= cingulo-opercular; hippocampal = hippocampal-diencephalic; multiple = multiple demand; p fit = 
parieto-frontal integration theory; sensori = sensorimotor; temporo = temporo-amygdala-orbitofrontal 
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Supplementary Figure 22. Illustration of the genomic structural equation models used to test whether 
correlation magnitudes with genetic general cognitive ability differ between the central executive 
network and other significantly associated networks. The model on the right freely estimates correlation 
parameters between two networks and genetic g while allowing for correlations between the networks. 
In the left model, we force the correlation magnitudes to be the same, and assess whether model fit 
deteriorates significantly, to conclude whether correlation magnitudes between networks are likely 
different from each other. The difference between these two models is in the paths leading from the 
networks to genetic g. In the left model, the paths can take a different value which is why they are 
labelled with a and b. In the right model, the two paths are specified to be the same and are therefore 
both labelled with a. 

 

  

Supplementary Figure 23. Structural equation models to calculate Qtrait heterogeneity indices 
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Supplementary Figure 24. PC1 loadings displayed in Fig.3 plotted onto brain regions.  
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Supplementary Tables 

Supplementary Table 1. 83 cortical and subcortical grey-matter regions of interest   

No. volumes Region of interest UK Biobank field ID 

1.       Left banks of superior temporal sulcus 26789  

2.       Left caudal anterior cingulate 26790  

3.       Left caudal middle frontal 26791  

4.       Left cuneus 26792  

5.       Left entorhinal 26793  

6.       Left fusiform 26794  

7.       Left inferior parietal 26795  

8.       Left inferior temporal 26796  

9.       Left isthmus cingulate 26797  

10.    Left lateral occipital 26798  

11.    Left lateral orbitofrontal 26799  

12.    Left lingual 26800  

13.    Left medial orbitofrontal 26801  

14.    Left middle temporal 26802  

15.    Left parahippocampal 26803  

16.    Left paracentral 26804  

17.    Left pars opercularis 26805  

18.    Left pars orbitalis 26806  

19.    Left pars triangularis 26807  

20.    Left pericalcarine 26808  

21.    Left postcentral 26809  

22.    Left posterior cingulate 26810  

23.    Left precentral 26811  

24.    Left precuneus 26812  

25.    Left rostral anterior cingulate 26813  

26.    Left rostral middle frontal 26814  

27.    Left superior frontal 26815  

28.    Left superior parietal 26816  

29.    Left superior temporal 26817  

30.    Left supramarginal 26818  

31.    Left frontal pole 26819  

32.    Left transverse temporal 26820  

33.    Left insula 26821  

34.    Right banks of superior temporal sulcus 26890  

35.    Right caudal anterior cingulate 26891  

36.    Right caudal middle frontal 26892  

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26789
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26790
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26791
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26792
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26793
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26794
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26795
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26796
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26797
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26798
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26799
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26800
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26801
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26802
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26803
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26804
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26805
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26806
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26807
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26808
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26809
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26810
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26811
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26812
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26813
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26814
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26815
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26816
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26817
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26818
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26819
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26820
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26821
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26890
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26891
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26892
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37.    Right cuneus 26893  

38.    Right entorhinal 26894  

39.    Right fusiform 26895  

40.    Right inferior parietal 26896  

41.    Right inferior temporal 26897  

42.    Right isthmus cingulate 26898  

43.    Right lateral occipital 26899  

44.    Right lateral orbitofrontal 26900  

45.    Right lingual 26901  

46.    Right medial orbitofrontal 26902  

47.    Right middle temporal 26903  

48.    Right parahippocampal 26904  

49.    Right paracentral 26905  

50.    Right pars opercularis 26906  

51.    Right pars orbitalis 26907  

52.    Right pars triangularis 26908  

53.    Right pericalcarine 26909  

54.    Right postcentral 26910  

55.    Right posterior cingulate 26911  

56.    Right precentral 26912  

57.    Right precuneus 26913  

58.    Right rostral anterior cingulate 26914  

59.    Right rostral middle frontal 26915  

60.    Right superior frontal 26916  

61.    Right superior parietal 26917  

62.    Right superior temporal 26918  

63.    Right supramarginal 26919  

64.    Right frontal pole 26920  

65.    Right transverse temporal 26921  

66.    Right insula 26922  

67.    Left thalamus proper 26558  

68.    Left caudate 26559  

69.     Left putamen 26560  

70.    Left pallidum 26561  

71.    Left hippocampus 26562  

72.    Left amygdala 26563  

73.    Left accumbens area  26564  

74.    Left ventral diencephalon (DC) 26565  

75.    Right thalamus proper 26589  

76.    Right caudate 26590  

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26893
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26894
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26895
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26896
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26897
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26898
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26899
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26900
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26901
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26902
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26903
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26904
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26905
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26906
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26907
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26908
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26909
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26910
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26911
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26912
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26913
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26914
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26915
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26916
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26917
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26918
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26919
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26920
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26921
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26922
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26558
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26559
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26560
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26561
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26562
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26563
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26564
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26565
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26589
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26590
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77.    Right putamen 26591  

78.    Right pallidum 26592  

79.    Right hippocampus 26593  

80.    Right amygdala 26594  

81.    Right accumbens area 26595  

82.    Right ventral diencephalon (DC) 26596  

83.    Brain stem  26526  

Note. This list excludes the right and left temporal pole. Both have been removed from category 192 in 
UK Biobank due to overwhelming amounts of missing data based on difficulties segmenting this area. 
 https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind2005&L=UKB-
NEUROIMAGING&O=D&P=4857 

 

  

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26591
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26592
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26593
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26594
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26595
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26596
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=26526


 

242 

 

Supplementary Table 2. Network characterisation 

Central Executive (8 nodes) 

left inferior parietal (InfP) 

left rostral middle frontal (RosMF) 

left superior frontal (SupF) 

left superior parietal (SupP) 

right inferior parietal (InfP) 

right rostral middle frontal (RosMF) 

right superior frontal (SupF) 

right superior parietal (SupP) 

Cingulo-opercular (10 nodes) 

left thalamus proper (Tha) 

right thalamus proper (Tha) 

left caudal anterior cingulate (caACg) 

left rostral middle frontal (RosMF) 

left insula (Ins) 

left frontal pole (FPo) 

right caudal anterior cingulate (caACg) 

right rostral middle frontal (RosMF) 

right insula (Ins) 

right frontal pole (FPo) 

Default mode (16 nodes) 

left inferior parietal (InfP) 

left isthmus cingulate (IsCg) 

left medial orbitofrontal (MedO) 

left parahippocampal (PaHip) 

left precuneus (PrCun) 

left rostral anterior cingulate (RosACg) 

left superior frontal (SupF) 

left frontal pole (FPo) 

right inferior parietal (InfP) 

right isthmus cingulate (IsCg) 

right medial orbitofrontal (MedO) 

right parahippocampal (PaHip) 

right precuneus (PrCun) 

right rostral anterior cingulate (RosACg) 

right superior frontal (SupF) 

right frontal pole (FPo) 

Hippocampal-Diencephalic (12 
nodes) 

left hippocampus (Hip) 

left ventral DC (VDC) 

right hippocampus (Hip) 

right ventral DC (VDC) 

left entorhinal (Ent) 
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left fusiform (Fus) 

left isthmus cingulate (IsCg) 

left parahippocampal (PaHip) 

right entorhinal (Ent) 

right fusiform (Fus) 

right isthmus cingulate (IsCg) 

right parahippocampal (PaHip) 

Multiple Demand (12 nodes) 

left caudal anterior cingulate (CaACg) 

left caudal middle frontal (CaMF) 

left paracentral (PaC) 

left rostral middle frontal (RosMF) 

left superior parietal (SupP) 

left frontal pole (FPo) 

right caudal anterior cingulate (CaACg) 

right caudal middle frontal (CaMF) 

right paracentral (PaC) 

right rostral middle frontal (RosMF) 

right superior parietal (SupP) 

right frontal pole (FPo) 

Parieto-Frontal Integration Theory 
(36 nodes) 

left caudal anterior cingulate  

left superior temporal sulcus 

left caudal middle frontal 

left fusiform 

left inferior parietal 

left lateral occipital 

left middle temporal 

left pars opercularis 

left pars orbitalis 

left pars triangularis 

left precuneus 

left rostral anterior cingulate 

left rostral middle frontal 

left superior frontal 

left superior parietal 

left superior temporal 

left frontal pole 

left transverse temporal 

right superior temporal sulcus 

right caudal anterior cingulate  

right caudal middle frontal 
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right fusiform 

right inferior parietal 

right lateral occipital 

right middle temporal 

right pars opercularis 

right pars orbitalis 

right pars triangularis 

right precuneus 

right rostral anterior cingulate 

right rostral middle frontal 

right superior frontal 

right superior parietal 

right superior temporal 

right frontal pole 

right transverse temporal 

Salience (10 nodes) 

left thalamus proper (Tha) 

left amygdala (Amg) 

left ventral DC (VDC) 

right thalamus proper (Tha) 

right amygdala (Amg) 

right ventral DC (VDC) 

left caudal anterior cingulate (caACg) 

left insula (Ins) 

right caudal anterior cingulate (caACg) 

right insula (Ins) 

Sensorimotor (12 nodes) 

left thalamus proper (Tha) 

left putamen (Put) 

right thalamus proper proper (Tha) 

right putamen (Put) 

right caudal middle frontal (CaMF) 

left paracentral (PaC) 

left postcentral (PosC) 

left precentral (PrC) 

left caudal middle frontal (CaMF) 

right paracentral (PaC) 

right postcentral (PosC) 

right precentral (PrC) 

Temporo-Amygdala-Orbitofrontal 
(30 nodes) 

left amygdala (Amg) 

right amygdala (Amg) 

left superior temporal sulcus (SupT) 
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right superior temporal sulcus (SupT) 

left caudal anterior cingulate (caACg) 

left entorhinal (Ent) 

left fusiform (Fus) 

left inferior temporal (InfT) 

left isthmus cingulate (IsCg) 

left lateral orbitofrontal (LatO) 

left medial orbitofrontal (MedO) 

left middle temporal (MidT) 

left parahippocampal (PaHip) 

left posterior cingulate (PosCg) 

left rostral anterior cingulate (RosACg) 

left superior temporal (SupT) 

left transverse temporal (TraT) 

right caudal anterior cingulate (caACg) 

right entorhinal (Ent) 

right fusiform (Fus) 

right inferior temporal (InfT) 

right isthmus cingulate (IsCg) 

right lateral orbitofrontal (LatO) 

right medial orbitofrontal (MedO) 

right middle temporal (MidT) 

right parahippocampal (PaHip) 

right posterior cingulate (PosCg) 

right rostral anterior cingulate (RosACg) 

right superior temporal (SupT) 

right transverse temporal (TraT) 

Note. The region abbreviations have been added with reference to Figure 1. There are no 
abbreviations for the regions included in the P-FIT, because Figure 1 does not display them for 
aesthetical reasons.  
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Supplementary Table 3a. Descriptive statistics of PC loadings within genetic networks 

      
PC 
loadings 

Network 
Included 
volumes 

% 
variance 

explained 
by 1st PC 

Mean SD Median Range 

Whole brain 83 39.67 0.62 0.13 0.65 0.30-0.81 

Central executive 8 65.23 0.81 0.06 0.81 0.74-0.88 

Cingulo-opercular 10 47.5 0.68 0.12 0.67 0.52-0.90 

Default mode 16 51.78 0.71 0.13 0.75 0.42-0.85 

Hippocampal-
diencephalic 

12 47.63 0.69 0.04 0.68 0.64-0.74 

Multiple demand 12 55.23 0.73 0.12 0.77 0.48-0.88 

P-FIT 36 47.56 0.68 0.09 0.69 0.43-0.83 

Salience 10 49.05 0.69 0.13 0.73 0.47-0.86 

Sensorimotor 12 55.42 0.73 0.16 0.79 0.43-0.89 

Temporo-amygdala-
orbitofrontal 

30 46.92 0.67 0.13 0.72 0.41-0.85 

PC loadings were extracted using PCA of genetic correlations indicating genetic overlap between 
brain volumes. Included volumes indicates the number of regional volumes included in a network. 
Explained variance shows the genetic variance explained by the first genetic PC. Mean, standard 
deviation (SD), median, and range relate to the distribution of PC loadings within a network 
(Figure 4).  

 

Supplementary Table 3b. Descriptive statistics of PC loadings within phenotypic canonical networks 

Network 
Included 
volumes 

Explained 
variance 

(%) 
Mean SD Median Mode 

Mini-
mum 

Maxi-
mum 

Whole brain 83 30.93 0.55 0.11 0.56 0.59 0.29 0.73 

Central 
executive 

8 53.06 0.73 0.06 0.74 0.77 0.64 0.78 

Cingulo-
opercular 

10 38.69 0.6 0.17 0.7 0.72 0.33 0.78 

Default mode 16 36.49 0.59 0.13 0.61 0.67 0.4 0.76 

Hippocampal-
diencephalic 

12 38.09 0.61 0.1 0.58 0.54 0.5 0.76 

Multiple 
demand 

12 41.17 0.63 0.15 0.68 0.68 0.34 0.77 

P-FIT 36 34.12 0.57 0.12 0.57 0.56 0.3 0.74 

Salience 10 44.43 0.63 0.22 0.67 0.78 0.24 0.84 

Sensorimotor 12 45.62 0.67 0.07 0.67 0.67 0.56 0.79 

Temporo-
amygdala-

orbitofrontal 
30 32.2 0.55 0.12 0.56 0.64 0.34 0.74 

PC loadings were extracted using PCA of phenotypic correlations between brain volumes. Included 
volumes indicates the number of regional volumes included in a network. Explained variance shows 
the phenotypic variance explained by the first genetic PC. Mean, standard deviation (SD), median, 
and range relate to the distribution of PC loadings within a network (Figure 4).  
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Supplementary Table 4. Model fit for genetic correlations between genetic general 
cognitive ability and each canonical network 

Network χ2 df p-value AIC CFI SRMR 

Whole brain 157.75 20 2.04 x10-23 189.748 0.962 0.081 

Central 
executive 

142.04 20 2.07 x10-20 174.042 0.967 0.08 

Cingulo-
opercular 

156.5 20 3.56 x10-23 188.497 0.964 0.08 

Default mode 150.83 20 4.36 x10-22 182.83 0.965 0.082 

Hippocampal-
diencephalic 

143.69 20 1.01 x10-20 175.686 0.965 0.08 

Multiple 
demand 

143.06 20 1.33 x10-20 175.057 0.966 0.079 

P-FIT 161.08 20 4.65 x10-24 193.077 0.962 0.082 

Salience 144.92 20 5.87 x10-21 176.919 0.965 0.08 

Sensorimotor 146.2 20 3.34 x10-21 178.204 0.965 0.078 

Temporo-
amygdala-

orbitofrontal 
165.98 20 5.23 x10-25 197.98 0.96 0.084 

AIC = Akaike Information Criterion, CFI = Comparative Fit Index, SRMR = Standardised 
Root Mean Square Residuals  
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Supplementary Table 5. Fit indices for the comparison between freely-varying or constrained 
correlations with general cognitive ability between central executive and other networks  

Comparison 
with central 

executive 

χ2 test constrained model 

 
freely-varying model 

∆ χ2 
∆ 
df 

p AIC CFI SRMR AIC CFI SRMR 

Cingulo-
opercular 

0.83 1 0.361 209.981 0.988 0.073 211.148 0.988 0.074 

Default Mode -0.17 1 1 198.202 0.994 0.075 200.375 0.994 0.075 

Hippocampal-
diencephalic 

1.1 1 0.294 201.567 0.974 0.074 202.466 0.974 0.074 

Multiple 
Demand 

-0.58 1 1 199.321 0.993 0.073 201.906 0.993 0.073 

P-FIT 0.79 1 0.375 217.691 0.995 0.075 218.904 0.995 0.075 

Salience 0.05 1 0.831 214.194 0.976 0.073 216.149 0.976 0.073 

Sensorimotor 0.04 1 0.85 204.424 0.982 0.072 206.388 0.982 0.072 

Temporo-
amygdala-

orbitofrontal 
0.96 1 0.328 213.984 0.988 0.077 215.028 0.988 0.077 

Whole brain 3.23 1 0.072 218.243 0.994 0.075 217.016 0.994 0.075 

Akaike Information Criterion, CFI = Comparative Fit Index, SRMR = Standardised Root Mean Square 
Residuals. This table indicates fit indices for two GenomicSEM models: a model where genetic 
correlations between networks and general cognitive abilities are estimated freely-varying, and another 
model where correlation magnitudes are forced to be the same. ∆ χ2 is the difference in χ2 values between 
the nested constrained and freely-varying model, ∆ df indicates their difference in degrees of freedom. 
AIC, CFI, and SRMR are also reported for the constrained and freely-varying models. These fit indices 
indicate no evidence for differing correlation magnitudes with cognitive abilities between the central 
executive network and all other networks.  
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Supplementary Table 6. Fit indices for the adjusted comparison between freely-varying or constrained correlations with 
general cognitive ability between central executive and other networks 

Comparison 
with central 

executive 

χ2 test constrained model freely-varying model 

∆ χ2 ∆ df p AIC CFI SRMR AIC CFI SRMR 

Cingulo-
opercular 

0.72 1 0.4 209.868 0.988 0.073 211.148 0.988 0.074 

Default Mode -1.3 1 1 197.076 0.994 0.075 200.375 0.994 0.075 

Hippocampal-
diencephalic 

1.6 1 0.21 202.065 0.974 0.075 202.466 0.974 0.074 

Multiple 
Demand 

-1.01 1 1 198.893 0.993 0.073 201.906 0.993 0.073 

P-FIT -2.65 1 1 214.258 0.995 0.075 218.904 0.995 0.075 

Salience -0.04 1 1 214.107 0.976 0.074 216.149 0.976 0.073 

Sensorimotor 0.64 1 0.42 205.032 0.982 0.073 206.388 0.982 0.072 

Temporo-
amygdala-

orbitofrontal 
-1.61 1 1 211.416 0.988 0.077 215.028 0.988 0.077 

Whole brain -0.44 1 1 214.577 0.994 0.075 217.016 0.994 0.07 

Information Criterion, CFI = Comparative Fit Index, SRMR = Standardised Root Mean Square Residuals. This table 
indicates fit indices for two GenomicSEM models in which correlation estimates have been adjusted for network size: (1) a 
model where genetic correlations between networks and general cognitive abilities are estimated freely-varying, and (2) 
another model where correlation magnitudes are forced to be the same, after they have been divided by the total number of 
included brain volumes in a respective network. ∆ χ2 is the difference in χ2 values between the nested constrained and 
freely-varying model, ∆ df indicates their difference in degrees of freedom. AIC, CFI, and SRMR are also reported for the 
constrained and freely-varying models. These fit indices indicate no evidence for differing correlation magnitudes with 
cognitive abilities between the central executive network and all other networks, even when adjusting for the size of a 
network.  
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Supplementary Table 7. Genetic correlations between three cognitive abilities and brain 
networks 

Brain 
network 

Cognitive 
trait 

rg SE 95% CI p-value 
FDR- adjusted 

p-value 

Central 
executive 

Matrix 0.2 0.09 0.03 - 0.37 0.0227 0.031 

Memory 0.12 0.04 0.04 - 0.19 0.0024 0.0193 

Symbol 
Digit 

0.14 0.05 0.05 - 0.23 0.0024 0.0193 

Cingulo-
opercular 

Matrix 0.19 0.1 0.01 - 0.38 0.0446 0.0558 

Memory 0.09 0.04 0.02 - 0.16 0.0131 0.022 

Symbol 
Digit 

0.12 0.05 0.03 - 0.21 0.0083 0.019 

Default Mode 

Matrix 0.22 0.09 0.04 - 0.40 0.0151 0.0238 

Memory 0.11 0.04 0.03 - 0.19 0.0075 0.019 

Symbol 
Digit 

0.14 0.04 0.05 - 0.23 0.0019 0.019 

Hippocampal-
diencephalic 

Matrix 0.19 0.09 
0.0008 - 

0.37 
0.0491 0.059 

Memory 0.03 0.04 -0.16 0.4866 0.487 

Symbol 
Digit 

0.13 0.05 0.04 - 0.21 0.0052 0.0193 

Multiple 
Demand 

Matrix 0.17 0.09 -0.35 0.0593 0.0684 

Memory 0.11 0.04 0.03 - 0.19 0.0048 0.0193 

Symbol 
Digit 

0.11 0.05 0.02 - 0.20 0.018 0.026 

P-FIT 

Matrix 0.23 0.09 0.06 - 0.40 0.0087 0.019 

Memory 0.11 0.04 0.04 - 0.19 0.0029 0.019 

Symbol 
Digit 

0.12 0.05 0.03 - 0.21 0.0083 0.019 

Salience 

Matrix 0.13 0.09 -0.36 0.1619 0.17 

Memory 0.05 0.04 -0.14 0.16 0.17 

Symbol 
Digit 

0.13 0.05 0.04 - 0.22 0.0063 0.019 

Sensorimotor 

Matrix 0.11 0.09 -0.34 0.2053 0.212 

Memory 0.09 0.04 0.01 - 0.17 0.0267 0.0348 

Symbol 
Digit 

0.12 0.05 0.03 - 0.21 0.0104 0.0195 

Temporo-
amygdala-

orbitofrontal 

Matrix 0.24 0.09 0.07 - 0.41 0.0061 0.019 

Memory 0.1 0.04 0.02 - 0.17 0.0133 0.022 

Symbol 
Digit 

0.11 0.05 0.02 - 0.20 0.0182 0.026 

Whole brain 

Matrix 0.23 0.09 0.06 - 0.40 0.009 0.019 

Memory 0.1 0.04 0.02 - 0.17 0.0099 0.02 

Symbol 
Digit 

0.14 0.05 0.04 - 0.23 0.0036 0.019 

This table shows genetic correlations (rg) between brain networks and three specific cognitive 
traits. SE stands for the standard error of the genetic correlation, 95% CI = 95% confidence 
interval, FDR adjusted p-value = false discovery rate adjusted p-value 
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Supplementary Table 8. Canonical networks explain more variance than 
networks with randomly included volumes 

Comparison 
with which 
network 

Variance 
explained 

by the 
canonical 
network 

No. of 
included 
volumes 

Random 
network 

R2 
Confidence interval 

Central 
Executive 

65.23 8 46.37 46.05 - 46.68 

Salience 49.05 10 45.01 44.72 - 45.31 

Cingulo-
opercular 

47.5 10 45.01 44.72 - 45.31 

Hippocampal-
diencephalic 

47.63 12 43.99 43.72 - 44.25 

Multiple 
Demand 

55.23 12 43.99 43.72 - 44.25 

Sensorimotor 55.42 12 43.99 43.72 - 44.25 

Default Mode 51.78 16 42.61 42.38 - 42.83 

Temporo-
amygdala-
orbitrofrontal 

46.92 30 40.86 40.72 - 41.01 

P-FIT 47.56 36 40.59 40.45 - 40.72 

Note. Random networks have been simulated 800 times per number of randomly 
included volumes. Comparisons with canonical networks must be made for 
matching number of included volumes. For example, the central executive 
network, which is constituted of 8 volumes, must be compared to a network 
including 8 randomly selected volumes. 
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Supplementary Table 9. Associations between brain volumes and potential covariates 
   

Region age sex time of year x coordinate y coordinate z coordinate site 

Brain stem -0.052 0.489 -0.002 0.016 -0.038 -0.064 0.032 

Left accumbens area -0.372 0.187 -0.002 -0.016 -0.133 0.045 0.117 

Left amygdala -0.296 0.351 0.001 -0.012 -0.064 0.022 0.063 

Left bankssts -0.123 0.257 0.003 0.008 -0.047 0.026 0.029 

Left caudal anterior cingulate -0.095 0.07 0.007 0.002 -0.034 0.053 0.01 

Left caudal middle frontal -0.149 0.257 -0.001 -0.002 -0.048 -0.066 0.031 

Left caudate -0.001 0.292 -0.008 -0.002 -0.05 -0.055 0.059 

Left cuneus -0.075 0.313 0.004 <0.001 -0.064 -0.03 0.047 

Left DC -0.202 0.461 -0.001 0.003 -0.096 -0.011 0.08 

Left entorhinal -0.036 0.23 -0.005 -0.011 -0.029 -0.037 0.022 

Left frontal pole -0.135 0.217 -0.004 0.003 -0.041 -0.005 0.003 

Left fusiform -0.161 0.374 -0.005 0.01 -0.074 0.004 0.046 

Left hippocampus -0.286 0.313 -0.001 0.007 -0.073 -0.01 0.055 

Left inferior parietal -0.161 0.284 -0.006 0.012 -0.068 0.015 0.046 

Left inferior temporal -0.127 0.41 -0.001 0.012 -0.067 0.015 0.045 

Left insula -0.023 0.456 -0.006 0.03 -0.053 -0.031 0.05 

Left isthmus cingulate -0.052 0.405 -0.004 0.026 -0.048 -0.034 0.044 

Left lateral occipital -0.137 0.419 0.006 0.006 -0.061 -0.022 0.046 

Left lateral orbitofrontal -0.164 0.405 0.002 0.016 -0.078 -0.031 0.055 

Left lingual -0.111 0.267 <0.001 0.005 -0.056 -0.056 0.03 

Left medial orbitofrontal -0.134 0.394 -0.003 <0.001 -0.078 0.012 0.049 

Left middle temporal -0.178 0.412 0.002 0.004 -0.071 0.03 0.055 

Left pallidum -0.097 0.399 0.003 0.006 -0.05 -0.032 0.033 

Left paracentral -0.168 0.224 0.001 0.009 -0.084 0.029 0.064 

Left parahippocampal -0.154 0.073 -0.002 -0.003 -0.051 0.026 0.023 

Left pars opercularis -0.176 0.239 -0.009 0.01 -0.054 -0.024 0.023 

Left pars orbitalis -0.182 0.325 -0.003 0.007 -0.065 -0.006 0.048 

Left pars triangularis -0.182 0.287 -0.007 0.011 -0.06 -0.01 0.039 
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Left pericalcarine -0.011 0.247 0.003 -0.004 -0.063 -0.058 0.039 

Left postcentral -0.143 0.321 -0.005 0.001 -0.067 -0.031 0.049 

Left posterior cingulate -0.1 0.306 -0.003 0.002 -0.046 -0.018 0.045 

Left precentral -0.188 0.353 <0.001 -0.006 -0.069 -0.033 0.064 

Left precuneus -0.195 0.357 -0.004 0.012 -0.088 0.001 0.051 

Left putamen -0.177 0.4 -0.006 0.011 -0.064 -0.037 0.073 

Left rostral anterior cingulate -0.084 0.323 0.004 0.003 -0.057 0.014 0.045 

Left rostral middle frontal -0.193 0.422 -0.003 0.002 -0.056 -0.028 0.039 

Left superior frontal -0.203 0.408 -0.008 <0.001 -0.06 -0.07 0.046 

Left superior parietal -0.173 0.278 0.002 0.001 -0.07 -0.011 0.041 

Left superior temporal -0.176 0.396 -0.001 0.001 -0.064 0.01 0.05 

Left supramarginal -0.128 0.398 -0.002 0.019 -0.058 -0.007 0.035 

Left thalamus proper -0.276 0.367 -0.001 0.018 -0.09 -0.026 0.063 

Left transverse temporal -0.048 0.227 0.008 0.009 -0.055 -0.023 0.032 

Right accumbens area -0.303 0.246 -0.004 0.005 -0.104 0.021 0.085 

Right amygdala -0.21 0.414 -0.006 0.017 -0.061 -0.049 0.071 

Right bankssts -0.135 0.228 -0.002 -0.011 -0.065 0.021 0.042 

Right caudal anterior cingulate -0.099 0.11 -0.002 -0.005 -0.041 0.032 0.032 

Right caudal middle frontal -0.135 0.244 -0.001 0.006 -0.049 -0.063 0.029 

Right caudate 0.029 0.318 -0.007 0.014 -0.027 -0.071 0.046 

Right cuneus -0.039 0.344 0.006 0.003 -0.046 -0.047 0.035 

Right DC -0.214 0.46 -0.003 0.006 -0.087 -0.029 0.068 

Right entorhinal -0.022 0.22 -0.01 0.01 -0.038 -0.024 0.03 

Right frontal pole -0.102 0.235 -0.006 -0.009 -0.052 -0.004 0.023 

Right fusiform -0.165 0.41 -0.004 0.001 -0.063 -0.026 0.043 

Right hippocampus -0.287 0.293 -0.007 -0.003 -0.072 -0.025 0.054 

Right inferior parietal -0.177 0.375 -0.008 0.007 -0.067 0.008 0.047 

Right inferior temporal -0.13 0.419 -0.001 0.016 -0.063 -0.016 0.051 

Right insula -0.037 0.485 -0.007 0.014 -0.054 -0.017 0.058 

Right isthmus cingulate -0.053 0.348 -0.005 -0.011 -0.041 -0.041 0.032 
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Right lateral occipital -0.12 0.442 -0.003 0.009 -0.053 -0.047 0.046 

Right lateral orbitofrontal -0.153 0.392 0.002 0.004 -0.085 -0.024 0.065 

Right lingual -0.08 0.252 -0.002 -0.003 -0.042 -0.071 0.015 

Right medial orbitofrontal -0.15 0.407 0.001 0.012 -0.099 -0.011 0.082 

Right middle temporal -0.182 0.415 0.001 0.007 -0.067 0.002 0.054 

Right pallidum -0.077 0.399 0.003 0.026 -0.06 -0.038 0.045 

Right paracentral -0.149 0.266 0.003 -0.006 -0.073 0.029 0.059 

Right parahippocampal -0.138 0.108 -0.006 -0.019 -0.048 0.015 0.018 

Right pars opercularis -0.165 0.258 -0.007 -0.014 -0.053 -0.031 0.038 

Right pars orbitalis -0.196 0.315 -0.003 0.009 -0.06 -0.019 0.045 

Right pars triangularis -0.176 0.307 0.001 -0.007 -0.055 -0.019 0.041 

Right pericalcarine 0.014 0.256 0.005 0.012 -0.055 -0.06 0.017 

Right postcentral -0.14 0.295 0.001 0.002 -0.071 -0.022 0.059 

Right posterior cingulate -0.129 0.281 -0.002 -0.003 -0.059 -0.011 0.057 

Right precentral -0.182 0.344 <0.001 0.003 -0.067 -0.036 0.071 

Right precuneus -0.168 0.398 -0.003 0.01 -0.073 -0.014 0.04 

Right putamen -0.176 0.395 -0.007 0.007 -0.053 -0.052 0.067 

Right rostral anterior cingulate -0.071 0.274 0.003 <0.001 -0.069 0.031 0.064 

Right rostral middle frontal -0.179 0.428 -0.001 0.009 -0.06 -0.024 0.054 

Right superior frontal -0.193 0.406 -0.006 0.002 -0.067 -0.061 0.05 

Right superior parietal -0.186 0.295 -0.002 0.01 -0.078 -0.018 0.051 

Right superior temporal -0.185 0.348 -0.003 0.001 -0.076 -0.005 0.06 

Right supramarginal -0.135 0.342 0.003 0.001 -0.069 -0.015 0.047 

Right thalamus proper -0.24 0.422 -0.002 -0.014 -0.071 -0.054 0.062 

Right transverse temporal -0.047 0.224 0.009 -0.004 -0.059 -0.01 0.045 

Region age sex time of year x coordinate y coordinate z coordinate site 

Average r (SD)  -0.14 (0.07) 0.33 (0.09) -0.002 (0.004) 0.004 (0.01) -0.06 (0.02) -0.02 (0.03) 0.05 (0.02) 

We pre-registered an arbitrary cut-off of r = .10 to include covariates in the GWAS. Therefore, only age and sex (of the covariates displayed in this table) were 

included as covariates in the GWAS. 
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Supplementary Table 10. Genetic quality control exclusion criteria resulting in a total GWAS 
sample of 36,778 out of 39,947 participants 

Exclusion criterion Excluded Remaining 

No genetic data 990 38,957 

Non-European 919 38,038 

Failed quality assurance by UK Biobank 72 37,966 

High missingness rates 204 37,762 

Relatedness within the sample 956 36,806 

Mismatch between biological and self-reported sex 28 36,778 (final) 

 

  



 

256 

 

Supplementary Material for Chapter 5 

Power calculation 

 Power calculations for the likelihood ratio test are not trivial and have only been 

derived for the LRT to test for significance of a vertex-wise morphometricity estimate, 

and not for ROI-based estimates (Couvy-Duchesne et al., 2020). To estimate power, 

we calculate the probability of rejecting the null hypothesis when the alternative 

hypothesis is true, as the probability that the likelihood ratio is larger than the quantile 

value of the central χ2 distribution (null model) with degrees of freedom equal to the 

amount of variance components tested (with ɑ = 0.05/588, χ2(1-ɑ)(1) = 15.34). If the 

alternative hypothesis is true, the LHR statistic is non-central χ2 distributed with a 

non-centrality parameter obtained through the hypothesised variance accounted for 

(in this case the difference of explained variance between the null and the alternative 

model), and the standard error which can be approximated with Haseman-Elston 

regression (Sham & Purcell, 2001; Visscher et al., 2014) based on the variance of the 

off-diagonal BRM (var(Bij); see Couvy-Duchesne et al. (2020)). We use realistic 

var(Bij) values from a simulation presented in Couvy-Duchesne et al. (2020) which 

differ between surface area (var(Bij) = 0.00047) and cortical thickness (var(Bij) = 

0.0017). We consider N = 38,000 and calculate non-centrality parameters of 33.93 

and 30.69, respectively, for surface area (hypothesised difference in R2 = 0.01%, SE = 

0.0017) and cortical thickness (hypothesised difference in R2 = 0.005%; SE = 0.0009). 

With these assumptions, power can be calculated using the R formula  

1-pchisq(qchisq(1-(0.05/588), 1), 1, ncp), resulting in 97.5% power for surface area at 

a R2 difference between null and alternative model of 0.01%, and a power of 95.4% for 
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cortical thickness at an even smaller R2 difference of 0.005% (STable 1). Power could 

also be calculated online (https://shiny.cnsgenomics.com/gctaPower/) 

 

Parameters for power calculations 

 Surface area Cortical thickness 

N 38,000 38,000 

effect size 0.01 0.005 

Type 1 error rate ɑ 0.05/ 588 = 8.5 x10-5 8.5 x10-5 

χ2
(1-ɑ)(1) 15.34 15.34 

var(Bij) 0.00047 0.0017 

standard error 0.0017 0.0009 

ncp 33.93 30.69 

Power (%) 97.10 94.63 

ncp = non-centrality parameter 

 

  

https://shiny.cnsgenomics.com/gctaPower/
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Linear mixed model (LMM) definitions 

 To estimate morphometricity, we fitted linear mixed models (LMMs, Fig.2). 

This approach recognises the correlation structure between the many independent 

variables, and was presented and validated elsewhere, using vertex-wise data (Couvy-

Duchesne et al., 2020). The LMM models covariates as fixed effects and fits all cortical 

measurements as a vector of random effect. The vector of random effects (b) is 

constrained to a normal distribution with a mean of zero, and a structure of variance-

covariance derived from the brain relatedness matrix (BRM, B), which quantifies the 

resemblance between each pair of individuals’ brain. b ~ 𝒩(0, 𝐁𝜎𝑏
2)  In practice, the 

BRM is an NxN variance-covariance matrix calculated for the standardised and 

centred vertices across pairs of participants. The BRM diagonal holds the variance s2 

of a participant’s vertex-wise (or ROI-wise) measurements. 

𝑣𝑎𝑟(𝑖𝑛𝑑𝑖𝑣_𝑘) =
1

𝑛 − 1
∑(𝑥𝑖𝑘 − 𝑥�̅�)

2

𝑖

 

 With 𝑥𝑖𝑘  the value of vertex i for individual k. 𝑥�̅�  the average vertex value of 

vertex i. n denotes the number of vertices. Large variances indicate that an individual 

has a bigger proportion of extremely small or large measurements, relative to the 

sample mean. 

The BRM off-diagonal holds the covariance of participant’s measurements, indicating 

how strongly participants resemble each other based on their grey-matter structure.  

𝑐𝑜𝑣(𝑖𝑛𝑑𝑖𝑣𝑘, 𝑖𝑛𝑑𝑖𝑣𝑗) =
1

𝑛 − 1
∑(𝑥𝑖𝑘

− 𝑥�̅�)(𝑥𝑖𝑗 − 𝑥�̅�)

𝑖

 

 We removed pairs of participants with outlying covariance (+-8SD from mean) 

from the analyses as they indicate oddly similar or dissimilar brains and could bias the 



 

259 

 

LMM results. The model will also include a standard vector of error terms, normally 

distributed with a mean of zero and a variance-covariance structure derived from the 

identity matrix (I): e ~ 𝒩(0, 𝐈𝜎𝑒
2), which assumes that the errors are independent and 

identically distributed. 
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Supplementary Figures 

 

 

SFig.1. General cognitive ability factor model used to define cognitive phenotype considered for 
analysis. The total variance explained by this model is 34% of the variance contained in individual 
cognitive measures. Comparative Fit Index = 0.968, Tucker-Lewis Index = 0.951, SRMR = 0.024, 
RMSEA = 0.05. According to commonly-used rules of thumb (Hu & Bentler, 1998), this model has 
excellent model fit. 
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SFig.2. Bayesian Information Criterion (BIC). The BIC is defined as the difference between model 
complexity log(n)*p and model performance 2*LogL, meaning that smaller values indicate better model 
fit. In our case, p is always 1 because we only fit one variance component for each atlas, and n is always 
the same within one phenotype. 
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SFig.3. Non-linear relationships between atlas dimensionality and morphometricity. Linear log models 
were used to model these relationships, model parameters are reported in Fig.1. 
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SFig.4. Relationship between trait morphometricity and regression coefficients obtained from linear 
log-models reported in Table 1 and SFig.3. The more morphometric a trait, the stronger its 
morphometricity estimation is impacted by atlases dimensionality. 
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SFig5. Atlas comparisons in calculated from likelihood ratio tests for education, alcohol, and cigarette 
consumption. Find the equivalent visualisation for age, sex, body mass index, and cognitive ability in 
Fig.6. Percentages displayed on the diagonal are morphometricity estimates for atlases alone, as 
indicated in Fig.4. Indices on the off-diagonal show the relative improvement made to the model by 
adding the higher dimensional atlas, which we calculated as the sum of the variance explained by two 
atlases together, divided by the morphometricity estimate of the lower dimensional atlas alone 
(jointmorphometricity/ individualmorphometricity). Squares are coloured according to this ratio, i.e., larger ratio, 
darker colour. The raw sum of variance explained is printed in brackets below the respective index. 
Non-significant results are marked with n.s.  
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SFig.6. Prediction accuracy from LASSO models (i.e., R2 between observed and LASSO predicted 
values). We split participants with available behavioural data 80-by-20% to perform out-of-sample 
prediction. Age, sex, cognitive ability, body mass index: Ndiscovery = 30,802, Nevaluation = 7,701; education: 
Ndiscovery = 30,787, Nevaluation = 7,697; alcohol consumption: Ndiscovery = 20,811, Nevaluation = 5,203; cigarette 
consumption: Ndiscovery = 29,866, Nevaluation = 7,467 

 



 

266 
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SFig.7. Morphometricity and joint-atlas variance explained estimated using LMM, LM, and LASSO. 
Grey squares indicate morphometricity explained by an individual atlas, and green squares indicate the 
joint-atlas variance explained. The darker the green colour, the more divergent LMM estimates 
manifest from LM estimates.  
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Supplementary Tables  

STable 1: Morphometricity estimates 
    

Estimates from empirical atlases, large random atlases and vertices (as displayed in Figure 4) 
 
 

Atlas Measure-
ment 
type 

Pheno-
type 

Morpho-
metricity 

Standar
d error 

LRT BIC N 95% CI 
(lower 
bound) 

95% CI 
(upper 
bound) 

Des GrayVol age 36.5803 0.027408 15577.415 368673.4185 38503 31.208332 41.952268 

DK GrayVol age 22.6325 0.030564 8777.434 375473.3985 38503 16.641956 28.623044 

Glasser GrayVol age 35.3488 0.01784 17834.44 366416.3925 38503 31.85216 38.84544 

Gordon GrayVol age 36.9436 0.018793 17762.98 366487.8525 38503 33.260172 40.627028 

JulichBrain GrayVol age 34.1846 0.020196 18187.976 366062.8565 38503 30.226184 38.143016 

Schaefer GrayVol age 46.9021 0.017139 16838.813 367412.0205 38503 43.542856 50.261344 

Yeo GrayVol age 22.455 0.042824 6329.41 377921.4225 38503 14.061496 30.848504 

vertices GrayVol age 68.3814 0.010032 27459.212 356791.6205 38503 66.415128 70.347672 

10000randomROI
s 

GrayVol age 37.6078 0.007033 28165.322 356085.5105 38503 36.229332 38.986268 

1000randomROIs GrayVol age 36.1911 0.011737 24126.624 360124.2085 38503 33.890648 38.491552 

50000randomRO
Is 

GrayVol age 42.8436 0.007112 28339.453 355911.3785 38503 41.449648 44.237552 

5000randomROIs GrayVol age 36.17 0.007494 27571.21 356679.6225 38503 34.701176 37.638824 

vertices SurfArea age 81.9581 0.010746 20202.352 364048.4805 38503 79.851884 84.064316 

Des SurfArea age 30.4885 0.025191 10168.479 374082.3545 38503 25.551064 35.425936 

DK SurfArea age 24.6918 0.032497 5605.172 378645.6605 38503 18.322388 31.061212 

Glasser SurfArea age 41.5744 0.019203 14385.586 369865.2465 38503 37.810612 45.338188 

Gordon SurfArea age 40.6923 0.019725 14051.706 370199.1265 38503 36.8262 44.5584 

JulichBrain SurfArea age 41.9453 0.021891 15511.899 368738.9325 38503 37.654664 46.235936 

Schaefer SurfArea age 55.005 0.01761 10386.267 373864.5645 38503 51.55344 58.45656 

Yeo SurfArea age 24.5316 0.045579 4718.96 379531.8725 38503 15.598116 33.465084 
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10000randomROI
s 

SurfArea age 42.8583 0.00717 22766.912 361483.9205 38503 41.45298 44.26362 

1000randomROIs SurfArea age 47.457 0.013078 17565.564 366685.2685 38503 44.893712 50.020288 

50000randomRO
Is 

SurfArea age 47.3281 0.007034 22241.394 362009.4385 38503 45.949436 48.706764 

5000randomROIs SurfArea age 43.4295 0.008015 22210.062 362040.7705 38503 41.85856 45.00044 

Des ThickAvg age 30.4347 0.025097 19377.057 364873.7745 38503 25.515688 35.353712 

DK ThickAvg age 28.8271 0.035641 14637.241 369613.5905 38503 21.841464 35.812736 

Glasser ThickAvg age 27.2135 0.015435 22480.168 361770.6645 38503 24.18824 30.23876 

Gordon ThickAvg age 26.6176 0.015767 21934.801 362316.0325 38503 23.527268 29.707932 

JulichBrain ThickAvg age 28.6363 0.01813 22316.182 361934.6505 38503 25.08282 32.18978 

Schaefer ThickAvg age 29.5182 0.01418 19719.441 364531.3925 38503 26.73892 32.29748 

Yeo ThickAvg age 25.0744 0.046074 10912.119 373338.7125 38503 16.043896 34.104904 

vertices ThickAvg age 37.396 0.00704 31386.593 352864.2405 38503 36.01616 38.77584 

10000randomROI
s 

ThickAvg age 33.3778 0.006943 30705.477 353545.3545 38503 32.016972 34.738628 

1000randomROIs ThickAvg age 28.1622 0.010327 25889.527 358361.3045 38503 26.138108 30.186292 

50000randomRO
Is 

ThickAvg age 35.6854 0.006863 31228.901 353021.9305 38503 34.340252 37.030548 

5000randomROIs ThickAvg age 31.6107 0.007183 30023.431 354227.4025 38503 30.202832 33.018568 

Des GrayVol alc 1.5987 0.002926 436.228 35610.57039 26014 1.025204 2.172196 

DK GrayVol alc 1.3743 0.003229 376.858 35669.94039 26014 0.741416 2.007184 

Glasser GrayVol alc 2.5695 0.003672 494.271 35552.52839 26014 1.849788 3.289212 

Gordon GrayVol alc 2.5813 0.003738 489.288 35557.51039 26014 1.848652 3.313948 

JulichBrain GrayVol alc 2.3703 0.003556 501.675 35545.12239 26014 1.673324 3.067276 

Schaefer GrayVol alc 2.8286 0.004379 455.973 35590.82639 26014 1.970316 3.686884 

Yeo GrayVol alc 1.3492 0.0043 339.284 35707.51439 26014 0.5064 2.192 

vertices GrayVol alc 10.0093 0.01008 551.53 35495.26839 26014 8.03362 11.98498 

10000randomROI
s 

GrayVol alc 4.627 0.004654 600.724 35446.07439 26014 3.714816 5.539184 

1000randomROIs GrayVol alc 3.3884 0.003939 568.624 35478.17439 26014 2.616356 4.160444 

50000randomRO
Is 

GrayVol alc 6.0485 0.005907 597.816 35448.98239 26014 4.890728 7.206272 
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5000randomROIs GrayVol alc 4.0255 0.004215 589.268 35457.53039 26014 3.19936 4.85164 

vertices SurfArea alc 11.1893 0.014866 569.879 35476.91839 26014 8.275564 14.103036 

Des SurfArea alc 1.4612 0.002851 535.817 35510.98239 26014 0.902404 2.019996 

DK SurfArea alc 0.908 0.002461 482.393 35564.40639 26014 0.425644 1.390356 

Glasser SurfArea alc 2.8049 0.004481 602.446 35444.35239 26014 1.926624 3.683176 

Gordon SurfArea alc 2.3068 0.003838 585.594 35461.20439 26014 1.554552 3.059048 

JulichBrain SurfArea alc 2.5949 0.004174 654.716 35392.08239 26014 1.776796 3.413004 

Schaefer SurfArea alc 2.3422 0.004553 507.735 35539.06239 26014 1.449812 3.234588 

Yeo SurfArea alc 1.4788 0.004782 517.939 35528.86039 26014 0.541528 2.416072 

10000randomROI
s 

SurfArea alc 4.886 0.00589 637.877 35408.92039 26014 3.73156 6.04044 

1000randomROIs SurfArea alc 2.781 0.004288 584.291 35462.50839 26014 1.940552 3.621448 

50000randomRO
Is 

SurfArea alc 6.6733 0.007953 630.411 35416.38639 26014 5.114512 8.232088 

5000randomROIs SurfArea alc 4.2168 0.005347 631.136 35415.66239 26014 3.168788 5.264812 

Des ThickAvg alc 2.3874 0.003873 414.339 35632.46039 26014 1.628292 3.146508 

DK ThickAvg alc 2.7092 0.005725 322.37 35724.42839 26014 1.5871 3.8313 

Glasser ThickAvg alc 3.1646 0.003784 515.833 35530.96639 26014 2.422936 3.906264 

Gordon ThickAvg alc 2.9878 0.003687 510.787 35536.01039 26014 2.265148 3.710452 

JulichBrain ThickAvg alc 2.7212 0.003597 474.59 35572.20839 26014 2.016188 3.426212 

Schaefer ThickAvg alc 3.5868 0.004155 621.634 35425.16439 26014 2.77242 4.40118 

Yeo ThickAvg alc 3.2113 0.008809 288.452 35758.34639 26014 1.484736 4.937864 

vertices ThickAvg alc 7.1666 0.005646 747.67 35299.12839 26014 6.059984 8.273216 

10000randomROI
s 

ThickAvg alc 5.6488 0.004625 738.076 35308.72239 26014 4.7423 6.5553 

1000randomROIs ThickAvg alc 3.9997 0.003829 689.854 35356.94439 26014 3.249216 4.750184 

50000randomRO
Is 

ThickAvg alc 6.4538 0.005146 743.795 35303.00439 26014 5.445184 7.462416 

5000randomROIs ThickAvg alc 5.2768 0.004387 744.537 35302.26239 26014 4.416948 6.136652 

Des GrayVol bmi 8.2979 0.009735 1650.336 146467.5557 38394 6.38984 10.20596 

DK GrayVol bmi 3.9021 0.007364 689.94 147427.9517 38394 2.458756 5.345444 

Glasser GrayVol bmi 12.4799 0.00961 2069.865 146048.0277 38394 10.59634 14.36346 
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Gordon GrayVol bmi 12.5993 0.009946 2226.739 145891.1537 38394 10.649884 14.548716 

JulichBrain GrayVol bmi 10.3028 0.009308 1963.047 146154.8457 38394 8.478432 12.127168 

Schaefer GrayVol bmi 15.1659 0.010923 1562.128 146555.7637 38394 13.024992 17.306808 

Yeo GrayVol bmi 2.4865 0.006773 367.409 147750.4837 38394 1.158992 3.814008 

vertices GrayVol bmi 37.7222 0.011286 3743.048 144374.8437 38394 35.510144 39.934256 

10000randomROI
s 

GrayVol bmi 19.7824 0.006545 4178.249 143939.6437 38394 18.49958 21.06522 

1000randomROIs GrayVol bmi 15.1967 0.007852 3359.237 144758.6557 38394 13.657708 16.735692 

50000randomRO
Is 

GrayVol bmi 24.0953 0.007364 4181.224 143936.6677 38394 22.651956 25.538644 

5000randomROIs GrayVol bmi 18.4372 0.006542 4030.3 144087.5917 38394 17.154968 19.719432 

vertices SurfArea bmi 40.6913 0.013847 2643.224 145474.6677 38394 37.977288 43.405312 

Des SurfArea bmi 7.3278 0.00886 1508.53 146609.3617 38394 5.59124 9.06436 

DK SurfArea bmi 5.819 0.010345 960.355 147157.5377 38394 3.79138 7.84662 

Glasser SurfArea bmi 11.7969 0.010086 1760.988 146356.9037 38394 9.820044 13.773756 

Gordon SurfArea bmi 10.0965 0.009122 1636.682 146481.2097 38394 8.308588 11.884412 

JulichBrain SurfArea bmi 10.0585 0.009852 1576.721 146541.1717 38394 8.127508 11.989492 

Schaefer SurfArea bmi 12.2649 0.010434 1238.405 146879.4877 38394 10.219836 14.309964 

Yeo SurfArea bmi 5.1223 0.012816 621.353 147496.5397 38394 2.610364 7.634236 

10000randomROI
s 

SurfArea bmi 21.5056 0.007555 3396.28 144721.6117 38394 20.02482 22.98638 

1000randomROIs SurfArea bmi 18.4467 0.010318 2528.566 145589.3257 38394 16.424372 20.469028 

50000randomRO
Is 

SurfArea bmi 25.6494 0.008244 3290.6 144827.2917 38394 24.033576 27.265224 

5000randomROIs SurfArea bmi 20.8025 0.007917 3305.028 144812.8637 38394 19.250768 22.354232 

Des ThickAvg bmi 12.6981 0.013735 3934.032 144183.8597 38394 10.00604 15.39016 

DK ThickAvg bmi 10.7267 0.017151 2883.993 145233.8997 38394 7.365104 14.088296 

Glasser ThickAvg bmi 11.2713 0.008449 4651.009 143466.8837 38394 9.615296 12.927304 

Gordon ThickAvg bmi 11.0039 0.008557 4585.202 143532.6897 38394 9.326728 12.681072 

JulichBrain ThickAvg bmi 10.5138 0.00898 4237.877 143880.0157 38394 8.75372 12.27388 

Schaefer ThickAvg bmi 12.2845 0.008217 4035.523 144082.3697 38394 10.673968 13.895032 

Yeo ThickAvg bmi 9.2688 0.021127 2024.23 146093.6617 38394 5.127908 13.409692 
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vertices ThickAvg bmi 20.8368 0.006509 6300.044 141817.8477 38394 19.561036 22.112564 

10000randomROI
s 

ThickAvg bmi 16.9517 0.005867 6191.57 141926.3217 38394 15.801768 18.101632 

1000randomROIs ThickAvg bmi 12.0968 0.006343 5415.254 142702.6377 38394 10.853572 13.340028 

50000randomRO
Is 

ThickAvg bmi 19.0368 0.006144 6250.103 141867.7897 38394 17.832576 20.241024 

5000randomROIs ThickAvg bmi 15.3007 0.005682 6037.764 142080.1277 38394 14.187028 16.414372 

Des GrayVol cig 2.2598 0.00345 333.874 64753.03563 37333 1.5836 2.936 

DK GrayVol cig 0.9 0.002178 132.089 64954.81963 37333 0.473112 1.326888 

Glasser GrayVol cig 2.6875 0.003316 381.534 64705.37563 37333 2.037564 3.337436 

Gordon GrayVol cig 3.061 0.003627 458.813 64628.09563 37333 2.350108 3.771892 

JulichBrain GrayVol cig 2.3245 0.003088 396.54 64690.36963 37333 1.719252 2.929748 

Schaefer GrayVol cig 3.118 0.004164 281.812 64805.09763 37333 2.301856 3.934144 

Yeo GrayVol cig 1.0802 0.003523 77.382 65009.52763 37333 0.389692 1.770708 

vertices GrayVol cig 12.258 0.008859 642.038 64444.87163 37333 10.521636 13.994364 

10000randomROI
s 

GrayVol cig 4.7965 0.003788 660.061 64426.84763 37333 4.054052 5.538948 

1000randomROIs GrayVol cig 3.4926 0.003344 549.76 64537.14963 37333 2.837176 4.148024 

50000randomRO
Is 

GrayVol cig 6.3847 0.004808 662.883 64424.02563 37333 5.442332 7.327068 

5000randomROIs GrayVol cig 4.4567 0.003587 662.797 64424.11163 37333 3.753648 5.159752 

vertices SurfArea cig 20.7596 0.014552 552.997 64533.91363 37333 17.907408 23.611792 

Des SurfArea cig 2.0252 0.003254 296.989 64789.91963 37333 1.387416 2.662984 

DK SurfArea cig 1.4143 0.003191 188.837 64898.07163 37333 0.788864 2.039736 

Glasser SurfArea cig 3.2144 0.004286 363.721 64723.18763 37333 2.374344 4.054456 

Gordon SurfArea cig 2.6525 0.003641 343.877 64743.03163 37333 1.938864 3.366136 

JulichBrain SurfArea cig 2.4581 0.003563 417.952 64668.95763 37333 1.759752 3.156448 

Schaefer SurfArea cig 3.2597 0.004764 222.276 64864.63363 37333 2.325956 4.193444 

Yeo SurfArea cig 1.9126 0.005805 150.884 64936.02563 37333 0.77482 3.05038 

10000randomROI
s 

SurfArea cig 5.4338 0.004937 508.454 64578.45563 37333 4.466148 6.401452 

1000randomROIs SurfArea cig 4.2653 0.004675 438.204 64648.70563 37333 3.349 5.1816 
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50000randomRO
Is 

SurfArea cig 8.5699 0.006974 535.696 64551.21363 37333 7.202996 9.936804 

5000randomROIs SurfArea cig 5.0672 0.004726 509.92 64576.98963 37333 4.140904 5.993496 

Des ThickAvg cig 2.215 0.003475 627.478 64459.43163 37333 1.5339 2.8961 

DK ThickAvg cig 1.6324 0.003541 515.817 64571.09163 37333 0.938364 2.326436 

Glasser ThickAvg cig 1.9949 0.002479 676.743 64410.16563 37333 1.509016 2.480784 

Gordon ThickAvg cig 2.189 0.002686 727.747 64359.16163 37333 1.662544 2.715456 

JulichBrain ThickAvg cig 1.9901 0.002616 700.322 64386.58763 37333 1.477364 2.502836 

Schaefer ThickAvg cig 2.3803 0.002858 638.862 64448.04763 37333 1.820132 2.940468 

Yeo ThickAvg cig 1.5256 0.004409 448.256 64638.65363 37333 0.661436 2.389764 

vertices ThickAvg cig 4.8146 0.003988 843.529 64243.37963 37333 4.032952 5.596248 

10000randomROI
s 

ThickAvg cig 3.5798 0.003156 815.32 64271.58963 37333 2.961224 4.198376 

1000randomROIs ThickAvg cig 2.4518 0.002537 775.034 64311.87563 37333 1.954548 2.949052 

50000randomRO
Is 

ThickAvg cig 4.2619 0.003604 830.007 64256.90163 37333 3.555516 4.968284 

5000randomROIs ThickAvg cig 3.2324 0.002936 805.076 64281.83363 37333 2.656944 3.807856 

Des GrayVol edu 2.7618 0.004003 1075.12 85789.7 38484 1.977212 3.546388 

DK GrayVol edu 1.8352 0.003791 929.977 85934.844 38484 1.092164 2.578236 

Glasser GrayVol edu 3.8352 0.00413 1270.185 85594.636 38484 3.02572 4.64468 

Gordon GrayVol edu 3.4974 0.00389 1291.662 85573.16 38484 2.73496 4.25984 

JulichBrain GrayVol edu 3.1271 0.003799 1178.088 85686.732 38484 2.382496 3.871704 

Schaefer GrayVol edu 4.763 0.005184 1062.749 85802.072 38484 3.746936 5.779064 

Yeo GrayVol edu 1.2342 0.003809 743.534 86121.288 38484 0.487636 1.980764 

vertices GrayVol edu 12.3335 0.008259 1365.868 85498.954 38484 10.714736 13.952264 

10000randomROI
s 

GrayVol edu 6.1104 0.004126 1486.988 85377.832 38484 5.301704 6.919096 

1000randomROIs GrayVol edu 4.394 0.003732 1432.626 85432.196 38484 3.662528 5.125472 

50000randomRO
Is 

GrayVol edu 7.531 0.004953 1463.376 85401.444 38484 6.560212 8.501788 

5000randomROIs GrayVol edu 5.6653 0.00394 1498.529 85366.292 38484 4.89306 6.43754 

vertices SurfArea edu 18.8645 0.012829 1144.854 85719.966 38484 16.350016 21.378984 
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Des SurfArea edu 2.351 0.003549 832.816 86032.004 38484 1.655396 3.046604 

DK SurfArea edu 1.8279 0.003855 699.431 86165.39 38484 1.07232 2.58348 

Glasser SurfArea edu 4.6733 0.005317 1040.717 85824.104 38484 3.631168 5.715432 

Gordon SurfArea edu 3.8112 0.004545 983.405 85881.416 38484 2.92038 4.70202 

JulichBrain SurfArea edu 4.5268 0.005481 1086.383 85778.438 38484 3.452524 5.601076 

Schaefer SurfArea edu 6.4127 0.007004 895.3 85969.52 38484 5.039916 7.785484 

Yeo SurfArea edu 1.9382 0.005648 594.289 86270.532 38484 0.831192 3.045208 

10000randomROI
s 

SurfArea edu 8.1597 0.005665 1366.181 85498.64 38484 7.04936 9.27004 

1000randomROIs SurfArea edu 6.3654 0.005787 1214.71 85650.112 38484 5.231148 7.499652 

50000randomRO
Is 

SurfArea edu 10.5087 0.006974 1310.383 85554.438 38484 9.141796 11.875604 

5000randomROIs SurfArea edu 7.41 0.005445 1340.454 85524.366 38484 6.34278 8.47722 

Des ThickAvg edu 3.5751 0.004885 1049.46 85815.36 38484 2.61764 4.53256 

DK ThickAvg edu 3.149 0.005982 792.686 86072.134 38484 1.976528 4.321472 

Glasser ThickAvg edu 3.1444 0.003284 1132.107 85732.714 38484 2.500736 3.788064 

Gordon ThickAvg edu 3.4664 0.003572 1221.373 85643.448 38484 2.766288 4.166512 

JulichBrain ThickAvg edu 3.2149 0.003567 1255.833 85608.988 38484 2.515768 3.914032 

Schaefer ThickAvg edu 3.6159 0.003518 1108.14 85756.68 38484 2.926372 4.305428 

Yeo ThickAvg edu 2.8678 0.00749 673.968 86190.852 38484 1.39976 4.33584 

vertices ThickAvg edu 8.0762 0.004743 1552.282 85312.538 38484 7.146572 9.005828 

10000randomROI
s 

ThickAvg edu 6.1863 0.003885 1523.818 85341.004 38484 5.42484 6.94776 

1000randomROIs ThickAvg edu 3.9632 0.003187 1345.22 85519.6 38484 3.338548 4.587852 

50000randomRO
Is 

ThickAvg edu 7.2198 0.004338 1531.755 85333.066 38484 6.369552 8.070048 

5000randomROIs ThickAvg edu 5.687 0.003686 1500.969 85363.852 38484 4.964544 6.409456 

Des GrayVol gpheno 9.0163 0.010352 4429.702 -24743.25574 38494 6.987308 11.045292 

DK GrayVol gpheno 4.7708 0.008509 3326.048 -23639.60174 38494 3.103036 6.438564 

Glasser GrayVol gpheno 8.4806 0.007183 4411.057 -24724.60974 38494 7.072732 9.888468 

Gordon GrayVol gpheno 8.3738 0.007202 4598.841 -24912.39374 38494 6.962208 9.785392 

JulichBrain GrayVol gpheno 7.8453 0.007406 4583.89 -24897.44374 38494 6.393724 9.296876 
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Schaefer GrayVol gpheno 11.5861 0.009067 4249.802 -24563.35574 38494 9.808968 13.363232 

Yeo GrayVol gpheno 4.8282 0.012046 2945.553 -23259.10574 38494 2.467184 7.189216 

vertices GrayVol gpheno 23.8461 0.009943 5521.144 -25834.69774 38494 21.897272 25.794928 

10000randomROI
s 

GrayVol gpheno 10.5224 0.004952 5628.222 -25941.77574 38494 9.551808 11.492992 

1000randomROIs GrayVol gpheno 9.0041 0.005555 5277.679 -25591.23174 38494 7.91532 10.09288 

50000randomRO
Is 

GrayVol gpheno 13.2281 0.005876 5618.84 -25932.39374 38494 12.076404 14.379796 

5000randomROIs GrayVol gpheno 9.6652 0.004774 5568.103 -25881.65574 38494 8.729496 10.600904 

vertices SurfArea gpheno 38.0167 0.013545 4793.002 -25106.55574 38494 35.36188 40.67152 

Des SurfArea gpheno 7.985 0.009422 3249.071 -23562.62374 38494 6.138288 9.831712 

DK SurfArea gpheno 6.3434 0.011015 2529.653 -22843.20574 38494 4.18446 8.50234 

Glasser SurfArea gpheno 13.1181 0.01054 3989.046 -24302.59974 38494 11.05226 15.18394 

Gordon SurfArea gpheno 12.3541 0.010192 4136.145 -24449.69774 38494 10.356468 14.351732 

JulichBrain SurfArea gpheno 12.1949 0.010934 4355.53 -24669.08374 38494 10.051836 14.337964 

Schaefer SurfArea gpheno 15.6662 0.011776 3343.229 -23656.78174 38494 13.358104 17.974296 

Yeo SurfArea gpheno 7.4033 0.017649 2301.338 -22614.89174 38494 3.944096 10.862504 

10000randomROI
s 

SurfArea gpheno 14.8144 0.00655 5095.369 -25408.92174 38494 13.5306 16.0982 

1000randomROIs SurfArea gpheno 14.3532 0.008736 4562.491 -24876.04374 38494 12.640944 16.065456 

50000randomRO
Is 

SurfArea gpheno 19.1314 0.007631 5052.247 -25365.79974 38494 17.635724 20.627076 

5000randomROIs SurfArea gpheno 14.4226 0.006747 5040.741 -25354.29374 38494 13.100188 15.745012 

Des ThickAvg gpheno 7.6382 0.008962 3707.942 -24021.49374 38494 5.881648 9.394752 

DK ThickAvg gpheno 8.0358 0.013374 2923.854 -23237.40774 38494 5.414496 10.657104 

Glasser ThickAvg gpheno 6.7863 0.005663 4130.47 -24444.02374 38494 5.676352 7.896248 

Gordon ThickAvg gpheno 7.4162 0.006219 4283.403 -24596.95574 38494 6.197276 8.635124 

JulichBrain ThickAvg gpheno 7.4544 0.006782 4317.352 -24630.90574 38494 6.125128 8.783672 

Schaefer ThickAvg gpheno 7.9811 0.005977 3860.522 -24174.07574 38494 6.809608 9.152592 

Yeo ThickAvg gpheno 7.7953 0.018191 2243.191 -22556.74374 38494 4.229864 11.360736 

vertices ThickAvg gpheno 12.4454 0.005328 5465.607 -25779.15974 38494 11.401112 13.489688 
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10000randomROI
s 

ThickAvg gpheno 10.1429 0.004636 5352.953 -25666.50574 38494 9.234244 11.051556 

1000randomROIs ThickAvg gpheno 7.6923 0.004668 4760.328 -25073.88174 38494 6.777372 8.607228 

50000randomRO
Is 

ThickAvg gpheno 11.5186 0.005005 5440.074 -25753.62774 38494 10.53762 12.49958 

5000randomROIs ThickAvg gpheno 9.4038 0.004461 5266.532 -25580.08574 38494 8.529444 10.278156 

Des GrayVol sex 32.4564 0.025979 24355.883 -39843.94751 38503 27.364516 37.548284 

DK GrayVol sex 30.7012 0.036965 20753.089 -36241.15351 38503 23.45606 37.94634 

Glasser GrayVol sex 39.8419 0.018609 29214.95 -44703.01551 38503 36.194536 43.489264 

Gordon GrayVol sex 39.2417 0.01916 29284.021 -44772.08551 38503 35.48634 42.99706 

JulichBrain GrayVol sex 41.2438 0.02165 28628.744 -44116.80951 38503 37.0004 45.4872 

Schaefer GrayVol sex 53.2406 0.016855 30183.676 -45671.74151 38503 49.93702 56.54418 

Yeo GrayVol sex 28.8669 0.05027 17498.987 -32987.05151 38503 19.01398 38.71982 

vertices GrayVol sex 80.3006 0.00916 41952.281 -57440.34551 38503 78.50524 82.09596 

10000randomROI
s 

GrayVol sex 45.3718 0.006831 43080.15 -58568.21551 38503 44.032924 46.710676 

1000randomROIs GrayVol sex 42.6399 0.012202 36919.45 -52407.51551 38503 40.248308 45.031492 

50000randomRO
Is 

GrayVol sex 50.9883 0.006716 43061.294 -58549.35951 38503 49.671964 52.304636 

5000randomROIs GrayVol sex 44.0609 0.007447 42063.716 -57551.78151 38503 42.601288 45.520512 

vertices SurfArea sex 87.9437 0.010031 36376.903 -51864.96751 38503 85.977624 89.909776 

Des SurfArea sex 28.9921 0.024522 23833.076 -39321.13951 38503 24.185788 33.798412 

DK SurfArea sex 28.0655 0.035182 21431.093 -36919.15751 38503 21.169828 34.961172 

Glasser SurfArea sex 43.9439 0.019438 30068.518 -45556.58151 38503 40.134052 47.753748 

Gordon SurfArea sex 43.0843 0.019975 30175.589 -45663.65351 38503 39.1692 46.9994 

JulichBrain SurfArea sex 41.4479 0.021787 29924.808 -45412.87151 38503 37.177648 45.718152 

Schaefer SurfArea sex 72.2982 0.014179 29523.331 -45011.39551 38503 69.519116 75.077284 

Yeo SurfArea sex 25.7536 0.047016 19560.624 -35048.68951 38503 16.538464 34.968736 

10000randomROI
s 

SurfArea sex 46.6497 0.007001 39145.185 -54633.24951 38503 45.277504 48.021896 

1000randomROIs SurfArea sex 52.2062 0.012916 34160.029 -49648.09351 38503 49.674664 54.737736 

50000randomRO
Is 

SurfArea sex 51.0285 0.006817 38582.746 -54070.81151 38503 49.692368 52.364632 
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5000randomROIs SurfArea sex 47.5001 0.007872 38353.915 -53841.97951 38503 45.957188 49.043012 

Des ThickAvg sex 33.2084 0.026242 16923.183 -32411.24751 38503 28.064968 38.351832 

DK ThickAvg sex 31.4338 0.037399 10209.324 -25697.38951 38503 24.103596 38.764004 

Glasser ThickAvg sex 37.7057 0.018061 22503.219 -37991.28351 38503 34.165744 41.245656 

Gordon ThickAvg sex 35.7916 0.018329 22271.648 -37759.71151 38503 32.199116 39.384084 

JulichBrain ThickAvg sex 34.647 0.019982 19652.852 -35140.91751 38503 30.730528 38.563472 

Schaefer ThickAvg sex 37.4534 0.015681 24608.916 -40096.98151 38503 34.379924 40.526876 

Yeo ThickAvg sex 31.5469 0.052826 6509.414 -21997.47751 38503 21.193004 41.900796 

vertices ThickAvg sex 48.9738 0.006766 39244.686 -54732.75151 38503 47.647664 50.299936 

10000randomROI
s 

ThickAvg sex 44.3096 0.006851 38165.898 -53653.96351 38503 42.966804 45.652396 

1000randomROIs ThickAvg sex 39.0063 0.011697 31094.832 -46582.89751 38503 36.713688 41.298912 

50000randomRO
Is 

ThickAvg sex 46.8694 0.006648 38951.451 -54439.51551 38503 45.566392 48.172408 

5000randomROIs ThickAvg sex 42.1844 0.007316 37012.651 -52500.71551 38503 40.750464 43.618336 
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STable 2: Summary statistics improvement Yeo vs vertex-wise measures 

Here we describe the relative improvement in morphometricty between Yeo and vertex-wise 
measures. The last column 'improvement' indicates the  vertex-wise morphometricity (300.000 ROIs) 
divided by the morphometricity yielded by the Yeo atlas (34 ROIs) 
  

Measurement type Phenotype Yeo atlas 
estimate 

Vertices 
estimates 

improvement 

GrayVol bmi 2.4865 37.7222 15.17 

GrayVol cig 1.0802 12.258 11.35 

SurfArea cig 1.9126 20.7596 10.85 

GrayVol edu 1.2342 12.3335 9.99 

SurfArea edu 1.9382 18.8645 9.73 

SurfArea bmi 5.1223 40.6913 7.94 

SurfArea alc 1.4788 11.1893 7.57 

GrayVol alc 1.3492 10.0093 7.42 

SurfArea gpheno 7.4033 38.0167 5.14 

GrayVol gpheno 4.8282 23.8461 4.94 

SurfArea sex 25.7536 87.9437 3.41 

SurfArea age 24.5316 81.9581 3.34 

ThickAvg cig 1.5256 4.8146 3.16 

GrayVol age 22.455 68.3814 3.05 

ThickAvg edu 2.8678 8.0762 2.82 

GrayVol sex 28.8669 80.3006 2.78 

ThickAvg bmi 9.2688 20.8368 2.25 

ThickAvg alc 3.2113 7.1666 2.23 

ThickAvg gpheno 7.7953 12.4454 1.6 

ThickAvg sex 31.5469 48.9738 1.55 

ThickAvg age 25.0744 37.396 1.49 
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STable 3: Schaefer atlas normalised vs. original estimates 

We noticed that the raw Schaefer atlas data as given by FreeSurfer (orig) yielded unusually large morphometricity estimates with surface area and volume measures. 
We suspected that Schaefer may violate normality assumptions, transformed Schaefer data atlas with rank-based inverse normal transformation (rint). Estimates 
displayed here are from both the raw data (orig) and the normalised data (rint) 
 

Atlas Measure-
ment 

Pheno-
type 

Original 
morpho-
metricity 

Original 
BIC 

Original 
N 

Original 
95% CI 
(lower 
bound) 

Original 
95% CI 
(upper 
bound) 

Rint 
morpho-
metricity 

Rint BIC Rint 95% 
CI (lower 

bound) 

Rint 95% 
CI 

(upper 
bound) 

Schaefer GrayVol age 46.9021 367412.0205 38503 43.542856 50.261344 36.4559 366626.1804 33.379288 39.532512 

Schaefer GrayVol alc 2.8286 35590.82639 26014 1.970316 3.686884 2.8322 35609.79835 2.033304 3.631096 

Schaefer GrayVol bmi 15.1659 146555.7637 38394 13.024992 17.306808 13.0069 146491.3876 11.220556 14.793244 

Schaefer GrayVol cig 3.118 64805.09763 37333 2.301856 3.934144 2.8475 64866.18151 2.146996 3.548004 

Schaefer GrayVol edu 4.763 85802.072 38484 3.746936 5.779064 4.4964 85857.75192 3.599896 5.392904 

Schaefer GrayVol gpheno 11.5861 -24563.35574 38494 9.808968 13.363232 9.4439 -24922.55782 8.028976 10.858824 

Schaefer GrayVol sex 53.2406 -45671.74151 38503 49.93702 56.54418 44.4569 -47498.85759 41.232112 47.681688 

Schaefer SurfArea age 55.005 373864.5645 38503 51.55344 58.45656 38.9862 373481.2704 35.763764 42.208636 

Schaefer SurfArea alc 2.3422 35539.06239 26014 1.449812 3.234588 2.3184 35569.34635 1.510684 3.126116 

Schaefer SurfArea bmi 12.2649 146879.4877 38394 10.219836 14.309964 10.841 146947.2296 9.131684 12.550316 

Schaefer SurfArea cig 3.2597 64864.63363 37333 2.325956 4.193444 2.8292 64944.14351 2.061664 3.596736 

Schaefer SurfArea edu 6.4127 85969.52 38484 5.039916 7.785484 5.5305 86039.16192 4.396248 6.664752 

Schaefer SurfArea gpheno 15.6662 -23656.78174 38494 13.358104 17.974296 12.7207 -23956.57982 10.86948 14.57192 

Schaefer SurfArea sex 72.2982 -45011.39551 38503 69.519116 75.077284 48.3203 -46515.03759 45.019856 51.620744 

Schaefer ThickAvg age 29.5182 364531.3925 38503 26.73892 32.29748 27.0261 365130.4724 24.407932 29.644268 

Schaefer ThickAvg alc 3.5868 35425.16439 26014 2.77242 4.40118 3.4511 35495.39235 2.673372 4.228828 

Schaefer ThickAvg bmi 12.2845 144082.3697 38394 10.673968 13.895032 11.4105 144228.7316 9.919724 12.901276 

Schaefer ThickAvg cig 2.3803 64448.04763 37333 1.820132 2.940468 2.2148 64571.38351 1.689716 2.739884 

Schaefer ThickAvg edu 3.6159 85756.68 38484 2.926372 4.305428 3.3981 85930.05192 2.7513 4.0449 

Schaefer ThickAvg gpheno 7.9811 -24174.07574 38494 6.809608 9.152592 7.5137 -
24234.96982 

6.4161 8.6113 

Schaefer ThickAvg sex 37.4534 -40096.98151 38503 34.379924 40.526876 35.2774 -40766.64959 32.304864 38.249936 
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STable 4: Summary statistics morphometricity null distributions 

We created parcellations with random regions boundaries (100 for each level of dimensionality), mapped these 
random parcellations onto our participant data, and used this to estimate morphometricity. The results displayed 
here are summary statistics of 100 estimates at each atlas dimensionality, non-brain trait, and measurement type. 
 
 
Number 
of ROIs 

Measurement Pheno-
type 

Mean Standard 
deviation 

Mini-
mum 

Maxi-
mum 

Median Range 

34 SurfArea age 20.24 3.32 13.0591 29.4638 20.3538 16.4047 

34 SurfArea alc 0.8 0.15 0.5278 1.3238 0.77425 0.796 

34 SurfArea bmi 6.51 0.82 4.6024 9.0372 6.5747 4.4348 

34 SurfArea cig 0.89 0.27 0.4093 1.4829 0.8749 1.0736 

34 SurfArea edu 1.85 0.41 1.0747 3.0017 1.79515 1.927 

34 SurfArea gpheno 5.48 1.15 3.2464 8.3907 5.3372 5.1443 

34 SurfArea sex 24.31 3.26 17.6613 33.6637 24.22455 16.0024 

34 GrayVol age 22.96 4.32 13.7503 35.4775 23.1704 21.7272 

34 GrayVol alc 1.14 0.2 0.7243 1.8084 1.1164 1.0841 

34 GrayVol bmi 3.36 0.79 1.5518 5.3022 3.2771 3.7504 

34 GrayVol cig 0.8 0.23 0.3293 1.7284 0.7727 1.3991 

34 GrayVol edu 1.52 0.35 0.9413 2.5215 1.4559 1.5802 

34 GrayVol gpheno 4.49 0.86 2.1894 6.4619 4.5318 4.2725 

34 GrayVol sex 26.18 3.45 19.322 35.757 26.28915 16.435 

34 ThickAvg age 27.93 2.6 21.1393 34.686 27.93805 13.5467 

34 ThickAvg alc 2.52 0.38 1.4985 3.5505 2.51575 2.052 

34 ThickAvg bmi 11.96 1.74 7.1794 16.3333 11.84725 9.1539 

34 ThickAvg cig 2.11 0.4 1.1461 2.9955 2.10325 1.8494 

34 ThickAvg edu 3.38 0.39 2.4513 4.2118 3.34105 1.7605 

34 ThickAvg gpheno 8.5 1.07 5.6611 11.1978 8.3959 5.5367 

34 ThickAvg sex 31.88 3.32 21.3362 38.1168 31.73435 16.7806 

68 SurfArea age 27.09 2.98 18.459 35.0895 27.2711 16.6305 

68 SurfArea alc 1.01 0.17 0.6523 1.4997 0.99465 0.8474 

68 SurfArea bmi 6.66 0.68 5.0985 8.5899 6.69625 3.4914 

68 SurfArea cig 1.49 0.32 0.707 2.2208 1.5129 1.5138 

68 SurfArea edu 2.51 0.43 1.52 3.5308 2.5397 2.0108 

68 SurfArea gpheno 7.73 1.16 4.7301 10.6638 7.7398 5.9337 

68 SurfArea sex 31.91 2.89 24.4323 38.9053 31.86715 14.473 

68 GrayVol age 29.83 2.85 23.4911 38.1919 29.75905 14.7008 

68 GrayVol alc 1.37 0.19 0.8896 1.7335 1.3723 0.8439 

68 GrayVol bmi 4.92 0.93 2.9377 7.5594 4.8073 4.6217 

68 GrayVol cig 1.35 0.25 0.6868 1.985 1.3357 1.2982 

68 GrayVol edu 2.29 0.39 1.4213 3.3213 2.2551 1.9 

68 GrayVol gpheno 6.37 0.83 4.3627 9.7028 6.26535 5.3401 

68 GrayVol sex 32.46 2.52 26.5826 38.3035 32.6795 11.7209 

68 ThickAvg age 27.77 1.91 23.1032 32.7326 27.698 9.6294 

68 ThickAvg alc 2.68 0.29 2.1812 3.4582 2.6382 1.277 

68 ThickAvg bmi 11.21 0.98 8.7599 13.7748 11.05635 5.0149 

68 ThickAvg cig 2.05 0.25 1.3074 2.579 2.0542 1.2716 

68 ThickAvg edu 3.27 0.3 2.5942 4.2038 3.2612 1.6096 
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68 ThickAvg gpheno 8.26 0.71 6.5893 9.9867 8.3652 3.3974 

68 ThickAvg sex 33.74 2.54 26.7485 39.8847 33.6942 13.1362 

148 SurfArea age 36.59 2.4 30.5963 42.7875 36.451 12.1912 

148 SurfArea alc 1.47 0.2 1.0475 2.0494 1.4446 1.0019 

148 SurfArea bmi 7.91 0.74 6.241 10.5281 7.9305 4.2871 

148 SurfArea cig 2.34 0.34 1.7005 2.9838 2.32935 1.2833 

148 SurfArea edu 3.67 0.4 2.6512 4.8664 3.6518 2.2152 

148 SurfArea gpheno 11.39 1 8.6436 13.7535 11.5283 5.1099 

148 SurfArea sex 40.12 2.3 35.1418 45.2621 39.8313 10.1203 

148 GrayVol age 35.64 2.36 30.33 45.3096 35.80185 14.9796 

148 GrayVol alc 1.84 0.2 1.3805 2.2809 1.862 0.9004 

148 GrayVol bmi 8.21 1.05 5.456 11.7022 8.0495 6.2462 

148 GrayVol cig 2.1 0.29 1.3702 2.7795 2.1106 1.4093 

148 GrayVol edu 3.21 0.37 2.3665 4.2028 3.238 1.8363 

148 GrayVol gpheno 8.14 0.7 6.5458 10.6105 8.02265 4.0647 

148 GrayVol sex 38.31 1.92 33.1105 42.2053 38.58225 9.0948 

148 ThickAvg age 28.14 1.49 24.4292 31.6093 28.142 7.1801 

148 ThickAvg alc 2.89 0.22 2.4741 3.5173 2.8626 1.0432 

148 ThickAvg bmi 10.53 0.73 8.9862 12.9375 10.5404 3.9513 

148 ThickAvg cig 1.99 0.14 1.6132 2.3242 1.97635 0.711 

148 ThickAvg edu 3.32 0.22 2.8864 4.0668 3.3151 1.1804 

148 ThickAvg gpheno 7.98 0.44 7.0253 9.2351 7.941 2.2098 

148 ThickAvg sex 35.88 1.49 32.8439 39.102 35.9336 6.2581 

274 SurfArea age 44.59 1.91 39.373 49.0971 44.62265 9.7241 

274 SurfArea alc 2.01 0.24 1.5652 2.6508 1.9925 1.0856 

274 SurfArea bmi 10.39 0.89 8.7966 13.9481 10.2488 5.1515 

274 SurfArea cig 2.95 0.26 2.344 3.5561 2.949 1.2121 

274 SurfArea edu 4.71 0.38 3.783 5.6136 4.72645 1.8306 

274 SurfArea gpheno 14.15 0.96 12.1801 16.565 14.1856 4.3849 

274 SurfArea sex 45.8 1.82 40.4245 50.0019 45.7619 9.5774 

274 GrayVol age 37.4 1.77 33.6607 43.26 37.5457 9.5993 

274 GrayVol alc 2.36 0.21 1.8426 2.9693 2.34745 1.1267 

274 GrayVol bmi 11.04 0.86 8.7425 13.4061 11.01885 4.6636 

274 GrayVol cig 2.66 0.2 2.1251 3.2927 2.66315 1.1676 

274 GrayVol edu 3.77 0.29 3.1109 4.4677 3.75945 1.3568 

274 GrayVol gpheno 8.88 0.55 7.6751 10.3499 8.8518 2.6748 

274 GrayVol sex 41.3 1.38 38.0404 46.1708 41.2116 8.1304 

274 ThickAvg age 27.94 0.94 25.2968 30.4152 27.88385 5.1184 

274 ThickAvg alc 3.12 0.18 2.6958 3.5709 3.10695 0.8751 

274 ThickAvg bmi 10.79 0.52 9.3664 12.0759 10.7727 2.7095 

274 ThickAvg cig 2.05 0.12 1.7809 2.3151 2.0591 0.5342 

274 ThickAvg edu 3.44 0.18 3.0109 3.9594 3.4305 0.9485 

274 ThickAvg gpheno 7.53 0.33 6.6215 8.4037 7.51035 1.7822 

274 ThickAvg sex 37.34 1.18 33.7488 41.4591 37.2547 7.7103 

334 SurfArea age 46.28 1.75 42.0046 50.5587 46.2346 8.5541 

334 SurfArea alc 2.17 0.22 1.6259 2.6435 2.1809 1.0176 

334 SurfArea bmi 11.47 0.97 9.4608 14.0247 11.4246 4.5639 
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334 SurfArea cig 3.14 0.23 2.6972 3.7533 3.1714 1.0561 

334 SurfArea edu 5.01 0.37 4.2266 6.3526 5.0468 2.126 

334 SurfArea gpheno 14.67 0.82 12.7568 16.4227 14.6914 3.6659 

334 SurfArea sex 47.33 1.63 43.4617 51.8989 47.3039 8.4372 

334 GrayVol age 37.56 1.69 33.7734 41.5952 37.65785 7.8218 

334 GrayVol alc 2.5 0.2 1.8835 3.0648 2.49805 1.1813 

334 GrayVol bmi 11.86 0.82 9.8429 13.5468 11.85955 3.7039 

334 GrayVol cig 2.83 0.21 2.433 3.7539 2.8002 1.3209 

334 GrayVol edu 3.92 0.24 3.3247 4.659 3.9275 1.3343 

334 GrayVol gpheno 9.07 0.49 7.8203 10.2586 9.03875 2.4383 

334 GrayVol sex 41.73 1.18 38.4316 45.0578 41.64365 6.6262 

334 ThickAvg age 27.76 0.89 25.9754 30.0638 27.7598 4.0884 

334 ThickAvg alc 3.19 0.16 2.7553 3.7434 3.184 0.9881 

334 ThickAvg bmi 10.92 0.45 9.7099 12.0409 10.9482 2.331 

334 ThickAvg cig 2.09 0.11 1.8065 2.3439 2.0951 0.5374 

334 ThickAvg edu 3.49 0.17 3.156 3.9765 3.4805 0.8205 

334 ThickAvg gpheno 7.42 0.29 6.7231 8.0549 7.4352 1.3318 

334 ThickAvg sex 37.68 0.98 33.7894 40.4839 37.6542 6.6945 

360 SurfArea age 46.94 1.58 43.4063 51.0843 46.8599 7.678 

360 SurfArea alc 2.24 0.21 1.7594 2.77 2.23505 1.0106 

360 SurfArea bmi 11.88 0.94 9.6643 14.1492 11.97065 4.4849 

360 SurfArea cig 3.23 0.23 2.7003 3.8642 3.2564 1.1639 

360 SurfArea edu 5.13 0.35 4.3431 6.1686 5.13585 1.8255 

360 SurfArea gpheno 14.83 0.76 13.1391 16.6705 14.80045 3.5314 

360 SurfArea sex 47.73 1.5 43.3953 51.4321 47.7894 8.0368 

360 GrayVol age 37.53 1.65 33.9354 41.8426 37.4878 7.9072 

360 GrayVol alc 2.57 0.22 2.0792 3.1563 2.5438 1.0771 

360 GrayVol bmi 12.14 0.8 9.7835 13.9045 12.14485 4.121 

360 GrayVol cig 2.87 0.19 2.4727 3.533 2.8704 1.0603 

360 GrayVol edu 3.96 0.24 3.4241 4.6501 3.96045 1.226 

360 GrayVol gpheno 9.07 0.5 7.7737 10.7572 9.02585 2.9835 

360 GrayVol sex 41.77 1.09 38.8508 44.0326 41.6848 5.1818 

360 ThickAvg age 27.83 0.86 25.9245 30.3051 27.7722 4.3806 

360 ThickAvg alc 3.24 0.17 2.8945 3.8969 3.2353 1.0024 

360 ThickAvg bmi 10.94 0.42 9.8153 12.0364 10.9302 2.2211 

360 ThickAvg cig 2.1 0.1 1.8776 2.3422 2.099 0.4646 

360 ThickAvg edu 3.52 0.15 3.2011 3.9627 3.517 0.7616 

360 ThickAvg gpheno 7.39 0.27 6.7105 7.9647 7.43915 1.2542 

360 ThickAvg sex 37.77 1 34.1975 40.2861 37.74855 6.0886 

500 SurfArea age 48.47 1.35 45.0789 51.613 48.39545 6.5341 

500 SurfArea alc 2.47 0.21 2.0326 3.0099 2.44535 0.9773 

500 SurfArea bmi 13.82 0.98 11.5838 16.6298 13.71425 5.046 

500 SurfArea cig 3.49 0.21 3.0024 4.13 3.4545 1.1276 

500 SurfArea edu 5.6 0.36 4.6927 6.4495 5.57115 1.7568 

500 SurfArea gpheno 15.14 0.67 13.7105 16.6643 15.18275 2.9538 

500 SurfArea sex 49.55 1.22 46.0471 52.2456 49.5363 6.1985 

500 GrayVol age 37.5 1.28 34.6478 40.7905 37.50145 6.1427 
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500 GrayVol alc 2.78 0.21 2.3561 3.2321 2.7417 0.876 

500 GrayVol bmi 13.32 0.66 11.8516 14.97 13.30075 3.1184 

500 GrayVol cig 3.09 0.18 2.6124 3.5693 3.0813 0.9569 

500 GrayVol edu 4.13 0.24 3.6202 4.6688 4.1155 1.0486 

500 GrayVol gpheno 9.03 0.37 8.2046 9.8486 8.9967 1.644 

500 GrayVol sex 42.2 0.97 40.0876 44.5617 42.29315 4.4741 

500 ThickAvg age 27.78 0.72 26.1928 29.6335 27.7175 3.4407 

500 ThickAvg alc 3.41 0.15 3.0676 3.8165 3.4174 0.7489 

500 ThickAvg bmi 11.08 0.42 9.9145 11.9686 11.06265 2.0541 

500 ThickAvg cig 2.17 0.1 1.9453 2.5227 2.1728 0.5774 

500 ThickAvg edu 3.64 0.14 3.2957 3.9451 3.6374 0.6494 

500 ThickAvg gpheno 7.36 0.25 6.817 8.3213 7.35155 1.5043 

500 ThickAvg sex 38.09 0.84 35.5351 40.6454 38.0153 5.1103 

 



 

284 

 

STable 4.1: Summary statistics morphometricity null distributions 

Here we aim to compare how well empirical estimates did compared with estimates obtained from 
random parcellations. We calculate the percentage of random estimates that were smaller than the 
empirical estimate. A percentage of 99%, for example, means that the empirical estimate was larger than 
99% of the random estimates. Keep in mind this is comparing point estimates only, and Fig.5 displays 
that the confidence intervals from the empirical estimates map well onto the spread in estimates from the 
random parcellations. 
  

Atlas Pheno-type Measurement Empirical 
morphometricity 

estimate 

Percentage 
larger 

Yeo alc SurfArea 1.48 1 

Yeo cig SurfArea 1.91 1 

Glasser alc SurfArea 2.8 1 

Schaefer bmi ThickAvg 12.28 1 

Des bmi ThickAvg 12.7 0.99 

Schaefer age ThickAvg 29.52 0.99 

Schaefer cig ThickAvg 2.38 0.99 

Schaefer gpheno ThickAvg 7.98 0.99 

Yeo alc ThickAvg 3.21 0.98 

JulichBrain alc SurfArea 2.59 0.98 

Schaefer sex GrayVol 44.46 0.98 

Yeo gpheno SurfArea 7.4 0.94 

Des age ThickAvg 30.43 0.93 

Des cig ThickAvg 2.21 0.93 

Yeo age SurfArea 24.53 0.92 

Yeo cig GrayVol 1.08 0.92 

Schaefer edu GrayVol 4.5 0.91 

Des gpheno GrayVol 9.02 0.9 

Des edu ThickAvg 3.58 0.89 

Schaefer alc ThickAvg 3.59 0.87 

Yeo alc GrayVol 1.35 0.86 

Gordon cig GrayVol 3.06 0.86 

Schaefer gpheno GrayVol 9.44 0.85 

Gordon cig ThickAvg 2.19 0.8 

Gordon bmi GrayVol 12.6 0.79 

Glasser bmi ThickAvg 11.27 0.79 

Yeo sex GrayVol 28.87 0.76 

Yeo sex SurfArea 25.75 0.74 

JulichBrain age ThickAvg 28.64 0.74 

Gordon alc SurfArea 2.31 0.74 

DK age ThickAvg 28.83 0.68 

Des cig GrayVol 2.26 0.68 

Gordon alc GrayVol 2.58 0.68 

Yeo gpheno GrayVol 4.83 0.67 

Des age GrayVol 36.58 0.67 

Glasser bmi GrayVol 12.48 0.67 

Yeo edu SurfArea 1.94 0.61 

Schaefer alc GrayVol 2.83 0.61 
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Des bmi GrayVol 8.3 0.59 

Gordon bmi ThickAvg 11 0.59 

DK alc ThickAvg 2.71 0.56 

JulichBrain alc GrayVol 2.37 0.54 

Des alc SurfArea 1.46 0.53 

Glasser alc GrayVol 2.57 0.53 

JulichBrain sex GrayVol 41.24 0.51 

DK alc GrayVol 1.37 0.5 

Yeo sex ThickAvg 31.55 0.48 

Gordon gpheno ThickAvg 7.42 0.48 

JulichBrain gpheno ThickAvg 7.45 0.46 

Gordon edu ThickAvg 3.47 0.45 

Glasser sex ThickAvg 37.71 0.45 

Glasser bmi SurfArea 11.8 0.43 

Glasser cig SurfArea 3.21 0.43 

Yeo age GrayVol 22.45 0.42 

DK cig SurfArea 1.41 0.42 

Schaefer edu SurfArea 5.53 0.42 

JulichBrain edu SurfArea 4.53 0.38 

Schaefer edu ThickAvg 3.62 0.38 

JulichBrain bmi SurfArea 10.06 0.37 

Gordon age GrayVol 36.94 0.36 

DK edu ThickAvg 3.15 0.35 

DK bmi ThickAvg 10.73 0.34 

DK gpheno ThickAvg 8.04 0.34 

Glasser alc ThickAvg 3.16 0.34 

JulichBrain bmi ThickAvg 10.51 0.32 

Glasser edu GrayVol 3.84 0.32 

JulichBrain cig ThickAvg 1.99 0.31 

Schaefer bmi GrayVol 13.01 0.3 

Yeo gpheno ThickAvg 7.8 0.26 

Schaefer alc SurfArea 2.32 0.26 

Yeo edu GrayVol 1.23 0.25 

DK alc SurfArea 0.91 0.25 

Glasser age ThickAvg 27.21 0.25 

DK sex GrayVol 30.7 0.23 

Des cig SurfArea 2.03 0.23 

Des gpheno ThickAvg 7.64 0.23 

Schaefer sex ThickAvg 37.45 0.22 

DK age SurfArea 24.69 0.21 

Schaefer age GrayVol 36.46 0.2 

Des bmi SurfArea 7.33 0.19 

JulichBrain bmi GrayVol 10.3 0.18 

Glasser cig GrayVol 2.69 0.17 

Yeo bmi GrayVol 2.49 0.16 

Glasser cig ThickAvg 1.99 0.16 

DK sex ThickAvg 31.43 0.15 
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DK gpheno SurfArea 6.34 0.14 

DK bmi GrayVol 3.9 0.14 

Des alc GrayVol 1.6 0.13 

Glasser edu SurfArea 4.67 0.13 

Yeo age ThickAvg 25.07 0.12 

Schaefer sex SurfArea 48.32 0.12 

DK bmi SurfArea 5.82 0.11 

Des edu GrayVol 2.76 0.11 

JulichBrain edu ThickAvg 3.21 0.11 

Gordon alc ThickAvg 2.99 0.1 

DK sex SurfArea 28.07 0.09 

DK edu GrayVol 1.84 0.09 

JulichBrain age SurfArea 41.95 0.09 

Glasser age GrayVol 35.35 0.09 

Glasser gpheno GrayVol 8.48 0.09 

Yeo cig ThickAvg 1.53 0.08 

Yeo edu ThickAvg 2.87 0.08 

Gordon bmi SurfArea 10.1 0.08 

Gordon age ThickAvg 26.62 0.08 

Gordon gpheno GrayVol 8.37 0.07 

Yeo bmi SurfArea 5.12 0.06 

DK edu SurfArea 1.83 0.05 

DK cig ThickAvg 1.63 0.05 

JulichBrain cig GrayVol 2.32 0.05 

Schaefer cig GrayVol 2.85 0.05 

Yeo bmi ThickAvg 9.27 0.04 

Gordon edu GrayVol 3.5 0.04 

DK cig GrayVol 0.9 0.03 

Des sex ThickAvg 33.21 0.03 

JulichBrain cig SurfArea 2.46 0.02 

JulichBrain sex SurfArea 41.45 0.02 

JulichBrain sex ThickAvg 34.65 0.02 

JulichBrain age GrayVol 34.18 0.02 

JulichBrain gpheno GrayVol 7.85 0.02 

Gordon sex ThickAvg 35.79 0.02 

Glasser sex GrayVol 39.84 0.02 

DK gpheno GrayVol 4.77 0.01 

JulichBrain gpheno SurfArea 12.19 0.01 

JulichBrain alc ThickAvg 2.72 0.01 

JulichBrain edu GrayVol 3.13 0.01 

Gordon sex GrayVol 39.24 0.01 

Glasser sex SurfArea 43.94 0.01 

Glasser gpheno ThickAvg 6.79 0.01 

DK age GrayVol 22.63 0 

Des age SurfArea 30.49 0 

Des edu SurfArea 2.35 0 

Des gpheno SurfArea 7.98 0 
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Des sex SurfArea 28.99 0 

Des alc ThickAvg 2.39 0 

Des sex GrayVol 32.46 0 

Gordon age SurfArea 40.69 0 

Gordon cig SurfArea 2.65 0 

Gordon edu SurfArea 3.81 0 

Gordon gpheno SurfArea 12.35 0 

Gordon sex SurfArea 43.08 0 

Glasser age SurfArea 41.57 0 

Glasser gpheno SurfArea 13.12 0 

Glasser edu ThickAvg 3.14 0 

Schaefer age SurfArea 38.99 0 

Schaefer bmi SurfArea 10.84 0 

Schaefer cig SurfArea 2.83 0 

Schaefer gpheno SurfArea 12.72 0 
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STable 5: Likelihood ratio tests (LRTs) comparing atlas performance 

LRTs were calculated for each atlas pair to quantify whether adding a second atlas to the equation would significantly improve morphometricity. Here we display 
summary statistics for the ratio of and difference between sum_G (joint variance explained by two atlases) and individual morphometricity (explained by the lower 
dimensional only). We then report summary statistics of this ratio and difference per measurement type and non-brain trait. 
 
 
Measure-ment  Pheno-

type 
Ratio 

minimum 
Ratio 

maximum 
Ratio 

median 
Ratio 
mean 

Ratio SD Difference 
minimum 

Difference 
maximum 

Difference 
median 

Difference 
mean 

Difference 
SD 

SurfArea age 1.27 3.36 1.94 2.04 0.57 11.41 57.8 31.425 30.01 12.35 

GrayVol age 1.21 3.18 1.94 1.95 0.55 7.5 48.86 27.4 25.33 10.7 

ThickAvg age 1.31 2.2 1.58 1.62 0.19 9.14 34.49 16.205 16.92 4.91 

SurfArea alc 0.93 11.73 2.02 2.75 2.3 -0.16 9.75 1.45 2.55 2.93 

GrayVol alc 1.19 7.29 1.99 2.5 1.67 0.5 8.48 1.36 2.6 2.74 

ThickAvg alc 1.22 3 1.46 1.7 0.5 0.6 4.77 1.215 1.99 1.42 

SurfArea bmi 1.34 8.14 2.61 2.96 1.56 3.85 36.57 10.025 13.93 10.48 

GrayVol bmi 1.34 15.63 3.42 4.14 3.07 4.27 36.37 11.22 14.57 9.05 

ThickAvg bmi 1.3 2.52 1.54 1.7 0.35 3.39 14.08 6.05 7.46 3.44 

SurfArea cig 1.15 14.56 1.87 3.57 3.51 0.48 19.18 1.655 5.46 7.22 

GrayVol cig 1.11 13.6 2.87 3.34 2.85 0.33 11.34 1.8 3.53 3.66 

ThickAvg cig 1.15 3.24 1.45 1.66 0.55 0.34 3.42 0.765 1.2 0.98 

SurfArea edu 1.21 10.24 2.72 3.22 2.33 0.96 17.4 3.345 5.65 5.28 

GrayVol edu 1.22 10.05 2.6 2.83 1.82 0.78 11.17 2.32 3.76 2.97 

ThickAvg edu 1.18 3.04 1.43 1.71 0.53 0.62 5.85 1.39 2.25 1.68 

SurfArea gpheno 1.25 6.03 2.02 2.38 1.17 3.01 31.92 7.79 11.63 9.05 

GrayVol gpheno 1.21 4.99 2.35 2.29 0.98 1.87 19.19 6.87 7.71 5.11 

ThickAvg gpheno 1.25 2.03 1.46 1.54 0.23 1.99 8.06 3.575 4.15 1.78 

SurfArea sex 1.22 3.49 2.02 2.18 0.62 15.64 64.08 37.485 35.62 14.4 

GrayVol sex 1.37 2.8 1.79 1.82 0.36 14.64 52.09 24.65 27.28 10.55 

ThickAvg sex 1.3 2.28 1.79 1.78 0.28 11.06 40.2 26.05 25.65 8.29 

Note. The ratio described here is an index of the relative improvement made to the model by adding the higher dimensional atlas, which is calculated as the 
morphometricity estimate of the lower dimensional atlas alone, divided by the sum of the variance explained by both atlases together. A ratio of 1 indicates no 
increase in morphometricity when adding the higher dimensional atlas to the equation, and a ratio larger than 1 indicates the proportional increase in 
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morphometricity grained by adding the higher dimensional atlas. The summary statistics here describe the ratios we obtained within measurement types and non-
brain traits. 
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STable 6: LASSO prediction accuracy 
    

LASSO prediction accuracy calculated as the correlation (R2) between predicted and observed trait values. 
 
 

 

Atlas Measurement 
type 

Pheno-
type 

R2 95% CI 
(lower 
bound) 

95% CI 
(upper 
bound) 

p-value 

Des GrayVol age 0.340379488 0.323183559 0.357561648 0 

Des SurfArea age 0.236488228 0.220016432 0.253181535 0 

Des ThickAvg age 0.389839799 0.372771206 0.406805307 0 

DK GrayVol age 0.209874899 0.19385628 0.22618565 0 

DK SurfArea age 0.133909923 0.120016154 0.148320796 1.1065E-242 

DK ThickAvg age 0.310441724 0.293306276 0.327624574 0 

Glasser GrayVol age 0.380387639 0.363275455 0.397412687 0 

Glasser SurfArea age 0.327605264 0.310422447 0.344799758 0 

Glasser ThickAvg age 0.441228946 0.424559808 0.457717729 0 

Gordon GrayVol age 0.378305303 0.361184523 0.395342529 0 

Gordon SurfArea age 0.31468071 0.297530143 0.331869691 0 

Gordon ThickAvg age 0.442902594 0.426250641 0.459371941 0 

JulichBrain GrayVol age 0.376515106 0.359387301 0.393562456 0 

JulichBrain SurfArea age 0.343399487 0.326204647 0.360574687 0 

JulichBrain ThickAvg age 0.441952166 0.425290423 0.45843258 0 

Schaefer GrayVol age 0.369694014 0.352542569 0.386776994 0 

Schaefer SurfArea age 0.25310955 0.236418179 0.269980427 0 

Schaefer ThickAvg age 0.404045045 0.38706191 0.420902164 0 

vertices SurfArea age 0.424209385 0.407380207 0.440882053 0 

vertices ThickAvg age 0.586488605 0.572184708 0.600479182 0 

vertices GrayVol age 0.525945003 0.510450647 0.541166106 0 

Yeo GrayVol age 0.155943635 0.141283668 0.1710519 8.4882E-286 

Yeo SurfArea age 0.121327196 0.107939491 0.1352726 1.5103E-218 

Yeo ThickAvg age 0.24411233 0.227534799 0.260891884 0 

Des GrayVol sex 0.462980348 0.446553162 0.4791992 0 

Des SurfArea sex 0.46324725 0.446823308 0.479462534 0 

Des ThickAvg sex 0.349168248 0.331975162 0.366330624 0 

DK GrayVol sex 0.409487587 0.392542108 0.426298579 0 

DK SurfArea sex 0.420813663 0.403955811 0.43751997 0 

DK ThickAvg sex 0.235324817 0.218871235 0.252002882 0 

Glasser GrayVol sex 0.540434506 0.52519986 0.555384315 0 

Glasser SurfArea sex 0.551854416 0.536835827 0.56657992 0 

Glasser ThickAvg sex 0.447090849 0.430483019 0.463510512 0 

Gordon GrayVol sex 0.536278931 0.520968137 0.551308082 0 

Gordon SurfArea sex 0.550319819 0.535271621 0.565075995 0 

Gordon ThickAvg sex 0.445576199 0.428952229 0.462014002 0 

JulichBrain GrayVol sex 0.534410495 0.519065897 0.549474919 0 

JulichBrain SurfArea sex 0.549770753 0.534712005 0.564537864 0 

JulichBrain ThickAvg sex 0.402800513 0.385809179 0.419667793 0 

Schaefer GrayVol sex 0.550943308 0.535907119 0.565687042 0 

Schaefer SurfArea sex 0.547206748 0.532099032 0.562024641 0 
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Schaefer ThickAvg sex 0.484959277 0.468820889 0.500863992 0 

vertices SurfArea sex 0.614744657 0.60108772 0.628077085 0 

vertices ThickAvg sex 0.66740929 0.655103631 0.679382344 0 

vertices GrayVol sex 0.667704347 0.655406774 0.679669317 0 

Yeo GrayVol sex 0.358126087 0.340946061 0.375258619 0 

Yeo SurfArea sex 0.392062198 0.375006565 0.40901109 0 

Yeo ThickAvg sex 0.15136831 0.136855918 0.166343048 9.3996E-277 

Des GrayVol bmi 0.054154499 0.044721221 0.064378314 3.33349E-95 

Des SurfArea bmi 0.051261016 0.042070004 0.061253199 4.37151E-90 

Des ThickAvg bmi 0.117184327 0.103974656 0.130965343 1.1958E-210 

DK GrayVol bmi 0.023727614 0.017465561 0.030894401 4.19158E-42 

DK SurfArea bmi 0.029549421 0.022542275 0.037439004 3.76526E-52 

DK ThickAvg bmi 0.086785165 0.075109666 0.099134672 5.182E-154 

Glasser GrayVol bmi 0.074282255 0.063375609 0.085906767 3.0331E-131 

Glasser SurfArea bmi 0.065457387 0.055156118 0.076508041 2.3507E-115 

Glasser ThickAvg bmi 0.145948448 0.131618436 0.160757611 4.2099E-266 

Gordon GrayVol bmi 0.070594146 0.059933572 0.081985701 1.3813E-124 

Gordon SurfArea bmi 0.05456434 0.045098049 0.064819564 6.08955E-96 

Gordon ThickAvg bmi 0.1325689 0.118726529 0.146932655 4.2925E-240 

JulichBrain GrayVol bmi 0.06920981 0.058644107 0.080511439 4.294E-122 

JulichBrain SurfArea bmi 0.055019498 0.045516094 0.065310168 9.50036E-97 

JulichBrain ThickAvg bmi 0.125114783 0.111569008 0.139205938 8.9194E-226 

Schaefer GrayVol bmi 0.057795309 0.048070017 0.06829773 1.1195E-101 

Schaefer SurfArea bmi 0.044780473 0.036167589 0.054218417 1.09448E-78 

Schaefer ThickAvg bmi 0.122946124 0.109490229 0.136954442 1.239E-221 

vertices SurfArea bmi 0.062248544 0.052182315 0.073075734 1.2959E-109 

vertices ThickAvg bmi 0.185510239 0.170024791 0.201356216 0 

vertices GrayVol bmi 0.106684469 0.093958811 0.12001626 6.8784E-191 

Yeo GrayVol bmi 0.011277233 0.007065855 0.01644171 9.27295E-21 

Yeo SurfArea bmi 0.018261689 0.012801172 0.024648061 1.02933E-32 

Yeo ThickAvg bmi 0.064546824 0.05431139 0.075534921 1.0054E-113 

Des GrayVol gpheno 0.109359955 0.096506122 0.122811051 6.9613E-196 

Des SurfArea gpheno 0.083706324 0.072210726 0.095886733 2.3349E-148 

Des ThickAvg gpheno 0.094009197 0.08192932 0.106738252 2.761E-167 

DK GrayVol gpheno 0.077695754 0.066569583 0.089527724 1.9775E-137 

DK SurfArea gpheno 0.058646203 0.048854375 0.069212062 3.4308E-103 

DK ThickAvg gpheno 0.079093305 0.067879428 0.091008061 5.7155E-140 

Glasser GrayVol gpheno 0.105071523 0.092424111 0.118330481 7.1888E-188 

Glasser SurfArea gpheno 0.099617162 0.087242846 0.112621446 1.0631E-177 

Glasser ThickAvg gpheno 0.10844289 0.095633189 0.121852839 3.4663E-194 

Gordon GrayVol gpheno 0.110914303 0.097988658 0.124431958 7.8387E-199 

Gordon SurfArea gpheno 0.103551645 0.090978997 0.116740953 4.9738E-185 

Gordon ThickAvg gpheno 0.111208245 0.098268976 0.124738546 2.1921E-199 

JulichBrain GrayVol gpheno 0.107224417 0.094472813 0.120580344 6.6926E-192 

JulichBrain SurfArea gpheno 0.111557746 0.098602323 0.125103039 4.8155E-200 

JulichBrain ThickAvg gpheno 0.110973481 0.09804509 0.124493685 6.0652E-199 

Schaefer GrayVol gpheno 0.102778689 0.090244455 0.115932192 1.3778E-183 
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Schaefer SurfArea gpheno 0.086556076 0.074893833 0.098893122 1.3627E-153 

Schaefer ThickAvg gpheno 0.095265109 0.083118559 0.108056452 1.252E-169 

vertices SurfArea gpheno 0.098554263 0.086234744 0.11150736 1.003E-175 

vertices ThickAvg gpheno 0.132542702 0.118701341 0.146905532 4.8222E-240 

vertices GrayVol gpheno 0.130877311 0.117100612 0.145180811 7.8082E-237 

Yeo GrayVol gpheno 0.067579529 0.057127381 0.078773441 3.6614E-119 

Yeo SurfArea gpheno 0.053829159 0.044423262 0.064026683 1.2219E-94 

Yeo ThickAvg gpheno 0.058956502 0.049140577 0.069545328 9.6179E-104 

Des GrayVol cig 0.014843162 0.009885318 0.020769592 4.31208E-26 

Des SurfArea cig 0.015282243 0.010246069 0.021285239 8.05056E-27 

Des ThickAvg cig 0.018189408 0.012663005 0.02467097 1.19085E-31 

DK GrayVol cig 0.005932563 0.002963267 0.009906536 2.65576E-11 

DK SurfArea cig 0.008630317 0.004951295 0.013303038 8.71882E-16 

DK ThickAvg cig 0.014231434 0.009384838 0.020049079 4.46585E-25 

Glasser GrayVol cig 0.017755781 0.012299627 0.024168831 6.26318E-31 

Glasser SurfArea cig 0.016093532 0.010915775 0.022234851 3.62006E-28 

Glasser ThickAvg cig 0.020310442 0.014453088 0.027114481 3.51996E-35 

Gordon GrayVol cig 0.014510816 0.009612803 0.020378883 1.54696E-25 

Gordon SurfArea cig 0.012901312 0.00830557 0.018473594 7.23512E-23 

Gordon ThickAvg cig 0.021415196 0.015392697 0.028380102 5.13974E-37 

JulichBrain GrayVol cig 0.015062752 0.010065579 0.021027627 1.86291E-26 

JulichBrain SurfArea cig 0.014749181 0.009808265 0.020659061 6.17551E-26 

JulichBrain ThickAvg cig 0.022203857 0.016067 0.029279857 2.46335E-38 

Schaefer GrayVol cig 0.013219495 0.008562736 0.018851381 2.1321E-23 

Schaefer SurfArea cig 0.012499657 0.007982726 0.017994618 3.33263E-22 

Schaefer ThickAvg cig 0.019151822 0.013472738 0.025782217 2.98577E-33 

vertices SurfArea cig 0.010136311 0.006111399 0.015148813 2.76771E-18 

vertices ThickAvg cig 0.024740471 0.018249489 0.032160526 1.43747E-42 

vertices GrayVol cig 0.014550949 0.009645931 0.020425729 1.31726E-25 

Yeo GrayVol cig 0.004421129 0.001925051 0.007928054 8.86858E-09 

Yeo SurfArea cig 0.007822016 0.004341757 0.012299258 1.91555E-14 

Yeo ThickAvg cig 0.014634098 0.00971399 0.020523633 9.58685E-26 

Des GrayVol alc 0.025213706 0.017472999 0.034285125 9.97286E-31 

Des SurfArea alc 0.0268478 0.018848856 0.036168184 1.23179E-32 

Des ThickAvg alc 0.019042098 0.012373692 0.027076445 1.53676E-23 

DK GrayVol alc 0.019385407 0.012652636 0.02748215 6.13025E-24 

DK SurfArea alc 0.023279772 0.015857376 0.032043884 1.79602E-28 

DK ThickAvg alc 0.016026822 0.009953488 0.02348343 4.89147E-20 

Glasser GrayVol alc 0.026612281 0.018649988 0.035897349 2.32124E-32 

Glasser SurfArea alc 0.031096138 0.022465832 0.041023891 1.31186E-37 

Glasser ThickAvg alc 0.025144628 0.017415047 0.034205315 1.20071E-30 

Gordon GrayVol alc 0.027136192 0.019092623 0.03649957 5.66901E-33 

Gordon SurfArea alc 0.0301722 0.021674684 0.039972369 1.58786E-36 

Gordon ThickAvg alc 0.023058694 0.015673627 0.031786735 3.25053E-28 

JulichBrain GrayVol alc 0.028824606 0.020525128 0.038434342 6.00921E-35 

JulichBrain SurfArea alc 0.034262757 0.025194345 0.044610838 2.51143E-41 

JulichBrain ThickAvg alc 0.025092241 0.017371108 0.034144776 1.38221E-30 
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Schaefer GrayVol alc 0.02276916 0.01543329 0.031449656 7.06832E-28 

Schaefer SurfArea alc 0.027149285 0.019103696 0.036514607 5.47274E-33 

Schaefer ThickAvg alc 0.029137067 0.020791195 0.038791431 2.58873E-35 

vertices SurfArea alc 0.025705176 0.017885816 0.034852457 2.66152E-31 

vertices ThickAvg alc 0.032203094 0.023416736 0.042280675 6.59694E-39 

vertices GrayVol alc 0.025216883 0.017475666 0.034288795 9.88807E-31 

Yeo GrayVol alc 0.015888973 0.00984425 0.023317764 7.071E-20 

Yeo SurfArea alc 0.022990551 0.015617031 0.031707433 3.90265E-28 

Yeo ThickAvg alc 0.016543868 0.010364394 0.024103638 1.22769E-20 

Des GrayVol edu 0.025193668 0.018733296 0.032553608 1.31625E-44 

Des SurfArea edu 0.018821829 0.013272174 0.025295645 1.171E-33 

Des ThickAvg edu 0.031788651 0.024516216 0.039935454 5.32364E-56 

DK GrayVol edu 0.019939241 0.014218582 0.026579731 1.41957E-35 

DK SurfArea edu 0.0136576 0.008981793 0.019277679 8.10469E-25 

DK ThickAvg edu 0.025569605 0.019059827 0.032977507 2.96226E-45 

Glasser GrayVol edu 0.030472137 0.023353287 0.038470365 1.01351E-53 

Glasser SurfArea edu 0.029297732 0.022319237 0.037160083 1.08921E-51 

Glasser ThickAvg edu 0.031807323 0.024532737 0.039956206 4.94149E-56 

Gordon GrayVol edu 0.029270253 0.022295081 0.037129385 1.21511E-51 

Gordon SurfArea edu 0.023394656 0.017176753 0.030519046 1.64499E-41 

Gordon ThickAvg edu 0.033419544 0.025962021 0.041745243 7.91491E-59 

JulichBrain GrayVol edu 0.028245279 0.021395401 0.035983031 7.17259E-50 

JulichBrain SurfArea edu 0.026876603 0.020198244 0.034448073 1.65259E-47 

JulichBrain ThickAvg edu 0.03756314 0.029658681 0.046320115 4.95142E-66 

Schaefer GrayVol edu 0.024147216 0.017826632 0.031371389 8.34166E-43 

Schaefer SurfArea edu 0.022322977 0.016254584 0.029301987 1.1451E-39 

Schaefer ThickAvg edu 0.030561002 0.023431662 0.038569381 7.11274E-54 

vertices SurfArea edu 0.021216926 0.015307151 0.028041589 9.09985E-38 

vertices ThickAvg edu 0.042997915 0.034551239 0.052276724 1.59651E-75 

vertices GrayVol edu 0.029209671 0.022241833 0.037061701 1.54646E-51 

Yeo GrayVol edu 0.014252292 0.009467607 0.019978926 7.79621E-26 

Yeo SurfArea edu 0.012255832 0.007847178 0.017614244 2.01758E-22 

Yeo ThickAvg edu 0.02277921 0.016646683 0.029820596 1.88178E-40 
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STable 7: Wilcoxon sign rank tests 
 

Wilcoxon tests based on LASSO prediction errors (which tests whether there is a sig.  
difference between the difference in observed vs. predicted values from two atlases) 
  

atlas1 atlas2 Measurement Pheno-
type 

N Statistic p-value Effect size 

Des Glasser GrayVol age 7701 15021636 0.312 0.011521208 

Des Glasser GrayVol alc 5203 6656389 0.298 0.014421095 

Des Glasser GrayVol bmi 7701 14912064 0.653 0.005119933 

Des Glasser GrayVol cig 7467 14134502 0.299 0.012027884 

Des Glasser GrayVol edu 7697 14898177 0.662 0.004987201 

Des Glasser GrayVol gpheno 7742 15427595 0.877 0.001740268 

Des Glasser GrayVol sex 7701 15077551 0.194 0.014787802 

Des Glasser SurfArea age 7701 15243592 0.0316 0.024488036 

Des Glasser SurfArea alc 5203 6712057 0.599 0.007298701 

Des Glasser SurfArea bmi 7701 14691033 0.494 0.007792856 

Des Glasser SurfArea cig 7467 14045434 0.575 0.006494683 

Des Glasser SurfArea edu 7697 14413268 0.0404 0.023363616 

Des Glasser SurfArea gpheno 7742 15179915 0.166 0.015616246 

Des Glasser SurfArea sex 7701 14916861 0.636 0.005400177 

Des Glasser ThickAvg age 7701 14539162 0.144 0.016665269 

Des Glasser ThickAvg alc 5203 6655255 0.293 0.014566184 

Des Glasser ThickAvg bmi 7701 14709838 0.557 0.006694255 

Des Glasser ThickAvg cig 7467 13570966 0.0471 0.022980847 

Des Glasser ThickAvg edu 7697 14747911 0.739 0.00379829 

Des Glasser ThickAvg gpheno 7742 15940915 0.0166 0.027017876 

Des Glasser ThickAvg sex 7701 15665597 0.0000162 0.04914187 

Des Gordon GrayVol age 7701 15035805 0.279 0.012348971 

Des Gordon GrayVol alc 5203 6549693 0.0429 0.028072222 

Des Gordon GrayVol bmi 7701 14965367 0.47 0.008233933 

Des Gordon GrayVol cig 7467 13757756 0.335 0.011147879 

Des Gordon GrayVol edu 7697 15123728 0.111 0.018174325 

Des Gordon GrayVol gpheno 7742 15334206 0.536 0.006972276 

Des Gordon GrayVol sex 7701 14952220 0.512 0.007465875 

Des Gordon SurfArea age 7701 15453403 0.00126 0.036745345 

Des Gordon SurfArea alc 5203 6702630 0.54 0.00850483 

Des Gordon SurfArea bmi 7701 14765901 0.764 0.003419014 

Des Gordon SurfArea cig 7467 14023130 0.644 0.005342453 

Des Gordon SurfArea edu 7697 14630776 0.35 0.010646736 

Des Gordon SurfArea gpheno 7742 14738672 0.000348 0.040336361 

Des Gordon SurfArea sex 7701 15080848 0.189 0.014980415 

Des Gordon ThickAvg age 7701 14868434 0.822 0.002571037 

Des Gordon ThickAvg alc 5203 6629144 0.196 0.017906933 

Des Gordon ThickAvg bmi 7701 14915362 0.641 0.005312605 

Des Gordon ThickAvg cig 7467 13408588 0.00454 0.032845168 

Des Gordon ThickAvg edu 7697 14686241 0.516 0.007403904 

Des Gordon ThickAvg gpheno 7742 15489920 0.877 0.001751416 

Des Gordon ThickAvg sex 7701 15451266 0.00131 0.0366205 
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Des JulichBrain GrayVol age 7701 14825388 0.996 5.62591E-05 

Des JulichBrain GrayVol alc 5203 6672713 0.374 0.012332535 

Des JulichBrain GrayVol bmi 7701 15192151 0.0594 0.021482816 

Des JulichBrain GrayVol cig 7467 14007355 0.721 0.004129089 

Des JulichBrain GrayVol edu 7697 14819990 0.971 0.0004159 

Des JulichBrain GrayVol gpheno 7742 15486585 0.89 0.001564577 

Des JulichBrain GrayVol sex 7701 14924424 0.608 0.005842013 

Des JulichBrain SurfArea age 7701 14942151 0.546 0.006877637 

Des JulichBrain SurfArea alc 5203 6671435 0.367 0.012496048 

Des JulichBrain SurfArea bmi 7701 14710643 0.56 0.006647226 

Des JulichBrain SurfArea cig 7467 14138774 0.288 0.012293274 

Des JulichBrain SurfArea edu 7697 14321580 0.0117 0.02872427 

Des JulichBrain SurfArea gpheno 7742 15440475 0.928 0.001018681 

Des JulichBrain SurfArea sex 7701 14846780 0.909 0.001305995 

Des JulichBrain ThickAvg age 7701 14509962 0.107 0.018371154 

Des JulichBrain ThickAvg alc 5203 6774897 0.957 0.000741308 

Des JulichBrain ThickAvg bmi 7701 14685912 0.478 0.008092029 

Des JulichBrain ThickAvg cig 7467 13468290 0.0112 0.029359422 

Des JulichBrain ThickAvg edu 7697 14844126 0.873 0.001827041 

Des JulichBrain ThickAvg gpheno 7742 15881475 0.0357 0.023687821 

Des JulichBrain ThickAvg sex 7701 15370463 0.00512 0.031899931 

Des Schaefer GrayVol age 7701 15258261 0.0261 0.02534501 

Des Schaefer GrayVol alc 5203 6712560 0.602 0.007234345 

Des Schaefer GrayVol bmi 7701 15000047 0.368 0.010259963 

Des Schaefer GrayVol cig 7467 13785875 0.405 0.009629985 

Des Schaefer GrayVol edu 7697 14898230 0.662 0.0049903 

Des Schaefer GrayVol gpheno 7742 15387418 0.723 0.003991136 

Des Schaefer GrayVol sex 7701 15101938 0.155 0.016212508 

Des Schaefer SurfArea age 7701 15136675 0.109 0.018241868 

Des Schaefer SurfArea alc 5203 6738161 0.775 0.003958847 

Des Schaefer SurfArea bmi 7701 14906387 0.674 0.004788279 

Des Schaefer SurfArea cig 7467 14237716 0.111 0.018439881 

Des Schaefer SurfArea edu 7697 14451125 0.0635 0.021150258 

Des Schaefer SurfArea gpheno 7742 15219812 0.235 0.013381064 

Des Schaefer SurfArea sex 7701 14841767 0.929 0.001013132 

Des Schaefer ThickAvg age 7701 14784256 0.837 0.002346702 

Des Schaefer ThickAvg alc 5203 6781957 0.906 0.001644594 

Des Schaefer ThickAvg bmi 7701 14702850 0.533 0.007102499 

Des Schaefer ThickAvg cig 7467 13468883 0.0113 0.029322583 

Des Schaefer ThickAvg edu 7697 14992720 0.356 0.010514777 

Des Schaefer ThickAvg gpheno 7742 15898736 0.0288 0.024654848 

Des Schaefer ThickAvg sex 7701 15794952 0.000000651 0.056698882 

Des vertices GrayVol age 7701 14973193 0.446 0.008691133 

Des vertices GrayVol alc 5203 6589329 0.0971 0.023001028 

Des vertices GrayVol bmi 7701 14892184 0.728 0.003958529 

Des vertices GrayVol cig 7467 13891215 0.79 0.003085914 

Des vertices GrayVol edu 7697 15035769 0.253 0.013031691 
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Des vertices GrayVol gpheno 7742 15523062 0.749 0.003608158 

Des vertices GrayVol sex 7701 15133860 0.113 0.018077414 

Des vertices SurfArea age 7701 15083082 0.185 0.015110927 

Des vertices SurfArea alc 5203 6736257 0.762 0.004202453 

Des vertices SurfArea bmi 7701 14742407 0.674 0.00479155 

Des vertices SurfArea cig 7467 14054092 0.543 0.007032547 

Des vertices SurfArea edu 7697 14979828 0.392 0.00976103 

Des vertices SurfArea gpheno 7742 15389638 0.732 0.003866764 

Des vertices SurfArea sex 7701 14891583 0.731 0.003923418 

Des vertices ThickAvg age 7701 14839925 0.937 0.000905521 

Des vertices ThickAvg alc 5203 6387774 0.000433 0.048788808 

Des vertices ThickAvg bmi 7701 14720247 0.593 0.006086153 

Des vertices ThickAvg cig 7467 13658337 0.129 0.01755307 

Des vertices ThickAvg edu 7697 14375268 0.0248 0.025585334 

Des vertices ThickAvg gpheno 7742 16006003 0.00655 0.030664354 

Des vertices ThickAvg sex 7701 15330580 0.00947 0.029569937 

Des Yeo GrayVol age 7701 14627055 0.312 0.011530497 

Des Yeo GrayVol alc 5203 6782123 0.904 0.001665833 

Des Yeo GrayVol bmi 7701 14954679 0.504 0.007609532 

Des Yeo GrayVol cig 7467 13813229 0.493 0.007930664 

Des Yeo GrayVol edu 7697 14959439 0.452 0.008568962 

Des Yeo GrayVol gpheno 7742 15453225 0.978 0.000304377 

Des Yeo GrayVol sex 7701 14971119 0.452 0.008569968 

Des Yeo SurfArea age 7701 14848705 0.901 0.001418455 

Des Yeo SurfArea alc 5203 6863378 0.384 0.012061933 

Des Yeo SurfArea bmi 7701 14888106 0.744 0.00372029 

Des Yeo SurfArea cig 7467 14016905 0.683 0.004722367 

Des Yeo SurfArea edu 7697 14671740 0.469 0.008251724 

Des Yeo SurfArea gpheno 7742 15335339 0.54 0.006908801 

Des Yeo SurfArea sex 7701 15075435 0.198 0.014664184 

Des Yeo ThickAvg age 7701 14956483 0.498 0.007714923 

Des Yeo ThickAvg alc 5203 6833547 0.552 0.008245232 

Des Yeo ThickAvg bmi 7701 14593757 0.237 0.01347579 

Des Yeo ThickAvg cig 7467 13840491 0.59 0.006237058 

Des Yeo ThickAvg edu 7697 14634048 0.359 0.010455434 

Des Yeo ThickAvg gpheno 7742 15808733 0.082 0.019612536 

Des Yeo ThickAvg sex 7701 15383701 0.00414 0.032673304 

DK Des GrayVol age 7701 14951389 0.515 0.007417328 

DK Des GrayVol alc 5203 7140436 0.00061 0.047509879 

DK Des GrayVol bmi 7701 14839686 0.938 0.000891559 

DK Des GrayVol cig 7467 13992705 0.781 0.003218982 

DK Des GrayVol edu 7697 14454522 0.066 0.020951648 

DK Des GrayVol gpheno 7742 15412208 0.818 0.002602306 

DK Des GrayVol sex 7701 14777933 0.812 0.002716096 

DK Des SurfArea age 7701 14582055 0.214 0.014159429 

DK Des SurfArea alc 5203 6889016 0.268 0.015342165 

DK Des SurfArea bmi 7701 15094110 0.167 0.015755191 
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DK Des SurfArea cig 7467 13867658 0.694 0.004549353 

DK Des SurfArea edu 7697 14864013 0.793 0.00298976 

DK Des SurfArea gpheno 7742 15613687 0.441 0.008685316 

DK Des SurfArea sex 7701 14675666 0.446 0.008690607 

DK Des ThickAvg age 7701 15063021 0.221 0.013938949 

DK Des ThickAvg alc 5203 6733715 0.744 0.004527687 

DK Des ThickAvg bmi 7701 14960185 0.486 0.007931196 

DK Des ThickAvg cig 7467 14170506 0.218 0.014264572 

DK Des ThickAvg edu 7697 14704597 0.579 0.006330698 

DK Des ThickAvg gpheno 7742 15044202 0.0395 0.023219405 

DK Des ThickAvg sex 7701 14469580 0.0689 0.020730299 

DK Glasser GrayVol age 7701 15128346 0.124 0.017525781 

DK Glasser GrayVol alc 5203 6955296 0.0857 0.023822302 

DK Glasser GrayVol bmi 7701 14951684 0.527 0.007207741 

DK Glasser GrayVol cig 7467 14123264 0.328 0.011329742 

DK Glasser GrayVol edu 7697 14547189 0.173 0.015533755 

DK Glasser GrayVol gpheno 7742 15358489 0.605 0.005830652 

DK Glasser GrayVol sex 7701 14983382 0.427 0.00905908 

DK Glasser SurfArea age 7701 15074672 0.207 0.014390922 

DK Glasser SurfArea alc 5203 6840115 0.512 0.009085569 

DK Glasser SurfArea bmi 7701 14889139 0.755 0.003554766 

DK Glasser SurfArea cig 7467 14067988 0.495 0.007895813 

DK Glasser SurfArea edu 7697 14372991 0.024 0.025718461 

DK Glasser SurfArea gpheno 7742 15121927 0.0906 0.019080387 

DK Glasser SurfArea sex 7701 14785613 0.827 0.002491727 

DK Glasser ThickAvg age 7701 14723919 0.593 0.006094998 

DK Glasser ThickAvg alc 5203 6611039 0.145 0.020223361 

DK Glasser ThickAvg bmi 7701 14828242 1 1.95659E-06 

DK Glasser ThickAvg cig 7467 13825464 0.536 0.007170585 

DK Glasser ThickAvg edu 7697 14644120 0.387 0.009866562 

DK Glasser ThickAvg gpheno 7742 15581187 0.556 0.006642567 

DK Glasser ThickAvg sex 7701 15275914 0.0218 0.026144571 

DK Gordon GrayVol age 7701 15044670 0.267 0.012638639 

DK Gordon GrayVol alc 5203 6827412 0.59 0.007460294 

DK Gordon GrayVol bmi 7701 15023632 0.317 0.011409903 

DK Gordon GrayVol cig 7467 13805945 0.481 0.008153416 

DK Gordon GrayVol edu 7697 14882248 0.722 0.004055892 

DK Gordon GrayVol gpheno 7742 15421578 0.839 0.002297064 

DK Gordon GrayVol sex 7701 14880661 0.788 0.003059604 

DK Gordon SurfArea age 7701 15253325 0.0294 0.024825248 

DK Gordon SurfArea alc 5203 6850886 0.45 0.010463655 

DK Gordon SurfArea bmi 7701 14968569 0.472 0.008193918 

DK Gordon SurfArea cig 7467 14085458 0.426 0.009215513 

DK Gordon SurfArea edu 7697 14545681 0.171 0.015621922 

DK Gordon SurfArea gpheno 7742 14784236 0.000754 0.037994313 

DK Gordon SurfArea sex 7701 14837339 0.963 0.000529359 

DK Gordon ThickAvg age 7701 15074358 0.207 0.014372583 
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DK Gordon ThickAvg alc 5203 6573239 0.0707 0.02505965 

DK Gordon ThickAvg bmi 7701 15116263 0.14 0.016820067 

DK Gordon ThickAvg cig 7467 13635132 0.105 0.018767731 

DK Gordon ThickAvg edu 7697 14596323 0.267 0.012661074 

DK Gordon ThickAvg gpheno 7742 15190139 0.176 0.015259862 

DK Gordon ThickAvg sex 7701 15132137 0.119 0.017747197 

DK JulichBrain GrayVol age 7701 14858334 0.878 0.001755583 

DK JulichBrain GrayVol alc 5203 6984596 0.0467 0.027571065 

DK JulichBrain GrayVol bmi 7701 15215194 0.0474 0.022598186 

DK JulichBrain GrayVol cig 7467 13985189 0.812 0.002752063 

DK JulichBrain GrayVol edu 7697 14535085 0.154 0.016241431 

DK JulichBrain GrayVol gpheno 7742 15533210 0.726 0.003955396 

DK JulichBrain GrayVol sex 7701 14885311 0.77 0.003331189 

DK JulichBrain SurfArea age 7701 14943633 0.554 0.006737518 

DK JulichBrain SurfArea alc 5203 6818690 0.647 0.006344366 

DK JulichBrain SurfArea bmi 7701 14871899 0.823 0.002547854 

DK JulichBrain SurfArea cig 7467 14296285 0.0564 0.022078382 

DK JulichBrain SurfArea edu 7697 14252486 0.00405 0.032763938 

DK JulichBrain SurfArea gpheno 7742 15338608 0.538 0.006944178 

DK JulichBrain SurfArea sex 7701 14706923 0.534 0.007087659 

DK JulichBrain ThickAvg age 7701 14635617 0.323 0.011252325 

DK JulichBrain ThickAvg alc 5203 6715427 0.62 0.006867529 

DK JulichBrain ThickAvg bmi 7701 14935799 0.582 0.006279969 

DK JulichBrain ThickAvg cig 7467 13715749 0.227 0.013986446 

DK JulichBrain ThickAvg edu 7697 14737244 0.698 0.00442195 

DK JulichBrain ThickAvg gpheno 7742 15598790 0.499 0.007628503 

DK JulichBrain ThickAvg sex 7701 15131416 0.12 0.017705086 

DK Schaefer GrayVol age 7701 15141820 0.108 0.018312737 

DK Schaefer GrayVol alc 5203 7108314 0.00174 0.043400057 

DK Schaefer GrayVol bmi 7701 14875597 0.808 0.002763838 

DK Schaefer GrayVol cig 7467 13763659 0.341 0.011010117 

DK Schaefer GrayVol edu 7697 14649869 0.403 0.009530439 

DK Schaefer GrayVol gpheno 7742 15440150 0.911 0.001256855 

DK Schaefer GrayVol sex 7701 15013670 0.342 0.010828067 

DK Schaefer SurfArea age 7701 14884042 0.775 0.003257073 

DK Schaefer SurfArea alc 5203 6871149 0.346 0.013056187 

DK Schaefer SurfArea bmi 7701 15177728 0.0733 0.020409964 

DK Schaefer SurfArea cig 7467 14399002 0.0139 0.028459503 

DK Schaefer SurfArea edu 7697 14523093 0.137 0.016942558 

DK Schaefer SurfArea gpheno 7742 15333722 0.522 0.007217841 

DK Schaefer SurfArea sex 7701 14619089 0.284 0.012217652 

DK Schaefer ThickAvg age 7701 14948393 0.538 0.007015528 

DK Schaefer ThickAvg alc 5203 6771590 0.982 0.000318197 

DK Schaefer ThickAvg bmi 7701 14763376 0.739 0.003790491 

DK Schaefer ThickAvg cig 7467 13646266 0.114 0.018302961 

DK Schaefer ThickAvg edu 7697 14773988 0.842 0.002273665 

DK Schaefer ThickAvg gpheno 7742 15482261 0.922 0.001101764 
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DK Schaefer ThickAvg sex 7701 15331731 0.00987 0.029404593 

DK vertices GrayVol age 7701 15027334 0.308 0.01162612 

DK vertices GrayVol alc 5203 6903806 0.214 0.017234458 

DK vertices GrayVol bmi 7701 14940434 0.565 0.006550678 

DK vertices GrayVol cig 7467 13923876 0.927 0.001056904 

DK vertices GrayVol edu 7697 14764337 0.803 0.002837923 

DK vertices GrayVol gpheno 7742 15498790 0.857 0.002027546 

DK vertices GrayVol sex 7701 15037459 0.284 0.012217476 

DK vertices SurfArea age 7701 14974342 0.454 0.008531094 

DK vertices SurfArea alc 5203 6905430 0.208 0.01744224 

DK vertices SurfArea bmi 7701 14888466 0.758 0.003515459 

DK vertices SurfArea cig 7467 14019902 0.671 0.00490855 

DK vertices SurfArea edu 7697 14918317 0.589 0.006164712 

DK vertices SurfArea gpheno 7742 15414945 0.813 0.002668576 

DK vertices SurfArea sex 7701 14856252 0.886 0.001633983 

DK vertices ThickAvg age 7701 14881667 0.784 0.00311836 

DK vertices ThickAvg alc 5203 6402599 0.000719 0.046892036 

DK vertices ThickAvg bmi 7701 14784462 0.822 0.002558951 

DK vertices ThickAvg cig 7467 13765145 0.345 0.010917802 

DK vertices ThickAvg edu 7697 14369749 0.023 0.025908009 

DK vertices ThickAvg gpheno 7742 15694497 0.249 0.01298901 

DK vertices ThickAvg sex 7701 15088530 0.182 0.015200306 

DK Yeo GrayVol age 7701 14762193 0.735 0.003859584 

DK Yeo GrayVol alc 5203 7237705 0.0000153 0.059954876 

DK Yeo GrayVol bmi 7701 14886202 0.767 0.003383229 

DK Yeo GrayVol cig 7467 13732351 0.263 0.012955074 

DK Yeo GrayVol edu 7697 14478032 0.0859 0.019577107 

DK Yeo GrayVol gpheno 7742 15525251 0.756 0.003509615 

DK Yeo GrayVol sex 7701 14984257 0.424 0.009110185 

DK Yeo SurfArea age 7701 14725527 0.598 0.006001082 

DK Yeo SurfArea alc 5203 7027664 0.017 0.033081363 

DK Yeo SurfArea bmi 7701 15114533 0.142 0.016719025 

DK Yeo SurfArea cig 7467 13922538 0.922 0.001140025 

DK Yeo SurfArea edu 7697 14554871 0.186 0.015084617 

DK Yeo SurfArea gpheno 7742 15292926 0.399 0.009502807 

DK Yeo SurfArea sex 7701 14831395 0.987 0.000182196 

DK Yeo ThickAvg age 7701 15222506 0.0433 0.023025247 

DK Yeo ThickAvg alc 5203 6835969 0.537 0.008555112 

DK Yeo ThickAvg bmi 7701 14850421 0.91 0.00129342 

DK Yeo ThickAvg cig 7467 14074181 0.474 0.008280542 

DK Yeo ThickAvg edu 7697 14416253 0.0419 0.023189094 

DK Yeo ThickAvg gpheno 7742 15459485 0.988 0.00017391 

DK Yeo ThickAvg sex 7701 15250339 0.0305 0.024650849 

Glasser Gordon GrayVol age 7701 14771085 0.769 0.003340242 

Glasser Gordon GrayVol alc 5203 6600106 0.119 0.021622175 

Glasser Gordon GrayVol bmi 7701 14808055 0.917 0.001180989 

Glasser Gordon GrayVol cig 7467 13636131 0.106 0.018705653 
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Glasser Gordon GrayVol edu 7697 15131073 0.103 0.01860376 

Glasser Gordon GrayVol gpheno 7742 15460176 0.99 0.000135207 

Glasser Gordon GrayVol sex 7701 14561362 0.171 0.015589228 

Glasser Gordon SurfArea age 7701 15078477 0.2 0.014613155 

Glasser Gordon SurfArea alc 5203 6729142 0.712 0.005112775 

Glasser Gordon SurfArea bmi 7701 15008484 0.356 0.010525176 

Glasser Gordon SurfArea cig 7467 13891880 0.808 0.002813418 

Glasser Gordon SurfArea edu 7697 15097965 0.144 0.016668059 

Glasser Gordon SurfArea gpheno 7742 15043424 0.0373 0.023477306 

Glasser Gordon SurfArea sex 7701 14891242 0.747 0.003677593 

Glasser Gordon ThickAvg age 7701 15136737 0.114 0.018015862 

Glasser Gordon ThickAvg alc 5203 6744640 0.821 0.003129897 

Glasser Gordon ThickAvg bmi 7701 15009495 0.353 0.010584224 

Glasser Gordon ThickAvg cig 7467 13615011 0.0837 0.020018049 

Glasser Gordon ThickAvg edu 7697 14785526 0.888 0.001599082 

Glasser Gordon ThickAvg gpheno 7742 15043054 0.0372 0.023498029 

Glasser Gordon ThickAvg sex 7701 14625636 0.299 0.01183527 

Glasser JulichBrain GrayVol age 7701 14617521 0.28 0.012309231 

Glasser JulichBrain GrayVol alc 5203 6785993 0.876 0.002160976 

Glasser JulichBrain GrayVol bmi 7701 15104860 0.156 0.016154069 

Glasser JulichBrain GrayVol cig 7467 13848542 0.62 0.005736903 

Glasser JulichBrain GrayVol edu 7697 14787407 0.896 0.001489106 

Glasser JulichBrain GrayVol gpheno 7742 15543417 0.688 0.004527085 

Glasser JulichBrain GrayVol sex 7701 14644098 0.345 0.010756987 

Glasser JulichBrain SurfArea age 7701 14469786 0.0662 0.020937775 

Glasser JulichBrain SurfArea alc 5203 6696591 0.503 0.009277485 

Glasser JulichBrain SurfArea bmi 7701 14862357 0.861 0.001990549 

Glasser JulichBrain SurfArea cig 7467 13981505 0.827 0.002523201 

Glasser JulichBrain SurfArea edu 7697 14537470 0.158 0.016101989 

Glasser JulichBrain SurfArea gpheno 7742 15808616 0.0857 0.019380766 

Glasser JulichBrain SurfArea sex 7701 14695681 0.497 0.007744254 

Glasser JulichBrain ThickAvg age 7701 14783353 0.818 0.002623723 

Glasser JulichBrain ThickAvg alc 5203 6848366 0.464 0.010141236 

Glasser JulichBrain ThickAvg bmi 7701 14745814 0.673 0.004816209 

Glasser JulichBrain ThickAvg cig 7467 13722148 0.24 0.013588919 

Glasser JulichBrain ThickAvg edu 7697 14826991 0.942 0.000825222 

Glasser JulichBrain ThickAvg gpheno 7742 15461512 0.996 6.03783E-05 

Glasser JulichBrain ThickAvg sex 7701 14656251 0.378 0.010047185 

Glasser Schaefer GrayVol age 7701 15119802 0.135 0.017026764 

Glasser Schaefer GrayVol alc 5203 6875656 0.325 0.013632831 

Glasser Schaefer GrayVol bmi 7701 14884649 0.773 0.003292525 

Glasser Schaefer GrayVol cig 7467 13775196 0.374 0.0102934 

Glasser Schaefer GrayVol edu 7697 14637005 0.367 0.010282549 

Glasser Schaefer GrayVol gpheno 7742 15196102 0.186 0.014925877 

Glasser Schaefer GrayVol sex 7701 15027737 0.307 0.011649658 

Glasser Schaefer SurfArea age 7701 14680233 0.448 0.008646503 

Glasser Schaefer SurfArea alc 5203 6753899 0.888 0.001945263 



 

301 

 

Glasser Schaefer SurfArea bmi 7701 15068284 0.219 0.014017827 

Glasser Schaefer SurfArea cig 7467 14172045 0.215 0.01436018 

Glasser Schaefer SurfArea edu 7697 14795107 0.927 0.001038916 

Glasser Schaefer SurfArea gpheno 7742 15538147 0.707 0.004231915 

Glasser Schaefer SurfArea sex 7701 14581951 0.207 0.014386717 

Glasser Schaefer ThickAvg age 7701 15013877 0.341 0.010840157 

Glasser Schaefer ThickAvg alc 5203 6978450 0.0534 0.02678472 

Glasser Schaefer ThickAvg bmi 7701 14853926 0.895 0.001498131 

Glasser Schaefer ThickAvg cig 7467 13757079 0.324 0.011418889 

Glasser Schaefer ThickAvg edu 7697 15206181 0.0437 0.022995044 

Glasser Schaefer ThickAvg gpheno 7742 15552782 0.654 0.005051615 

Glasser Schaefer ThickAvg sex 7701 15061448 0.232 0.013618567 

Glasser vertices GrayVol age 7701 14808397 0.919 0.001161015 

Glasser vertices GrayVol alc 5203 6707668 0.571 0.007860248 

Glasser vertices GrayVol bmi 7701 14877522 0.801 0.002876269 

Glasser vertices GrayVol cig 7467 13834106 0.566 0.006633715 

Glasser vertices GrayVol edu 7697 14995426 0.349 0.010672987 

Glasser vertices GrayVol gpheno 7742 15566385 0.606 0.005813513 

Glasser vertices GrayVol sex 7701 14899063 0.717 0.004134383 

Glasser vertices SurfArea age 7701 14645825 0.35 0.010656121 

Glasser vertices SurfArea alc 5203 6798518 0.786 0.003763477 

Glasser vertices SurfArea bmi 7701 14934676 0.586 0.006214379 

Glasser vertices SurfArea cig 7467 13876000 0.728 0.004031121 

Glasser vertices SurfArea edu 7697 15362591 0.00481 0.032139752 

Glasser vertices SurfArea gpheno 7742 15771770 0.125 0.017317038 

Glasser vertices SurfArea sex 7701 14815171 0.946 0.000765375 

Glasser vertices ThickAvg age 7701 15163264 0.086 0.019565186 

Glasser vertices ThickAvg alc 5203 6474013 0.00646 0.037755034 

Glasser vertices ThickAvg bmi 7701 14776432 0.79 0.003027948 

Glasser vertices ThickAvg cig 7467 13834282 0.567 0.006622781 

Glasser vertices ThickAvg edu 7697 14525225 0.14 0.016817908 

Glasser vertices ThickAvg gpheno 7742 15624009 0.423 0.009041008 

Glasser vertices ThickAvg sex 7701 14641531 0.338 0.010906914 

Glasser Yeo GrayVol age 7701 14522074 0.117 0.017883866 

Glasser Yeo GrayVol alc 5203 6899220 0.23 0.016647707 

Glasser Yeo GrayVol bmi 7701 14760081 0.727 0.003982937 

Glasser Yeo GrayVol cig 7467 13659286 0.131 0.017494115 

Glasser Yeo GrayVol edu 7697 14815722 0.988 0.000166366 

Glasser Yeo GrayVol gpheno 7742 15593442 0.516 0.007328964 

Glasser Yeo GrayVol sex 7701 14765848 0.749 0.003646112 

Glasser Yeo SurfArea age 7701 14498470 0.091 0.01926247 

Glasser Yeo SurfArea alc 5203 6902993 0.217 0.01713044 

Glasser Yeo SurfArea bmi 7701 15002843 0.371 0.01019571 

Glasser Yeo SurfArea cig 7467 13903448 0.841 0.002325959 

Glasser Yeo SurfArea edu 7697 15191484 0.0521 0.022135766 

Glasser Yeo SurfArea gpheno 7742 15811993 0.0827 0.019569911 

Glasser Yeo SurfArea sex 7701 14942905 0.557 0.006694998 



 

302 

 

Glasser Yeo ThickAvg age 7701 15120253 0.135 0.017053105 

Glasser Yeo ThickAvg alc 5203 6979512 0.0522 0.026920597 

Glasser Yeo ThickAvg bmi 7701 14715584 0.564 0.006581809 

Glasser Yeo ThickAvg cig 7467 14120523 0.335 0.011159462 

Glasser Yeo ThickAvg edu 7697 14724494 0.65 0.005167394 

Glasser Yeo ThickAvg gpheno 7742 15409807 0.793 0.002956353 

Glasser Yeo ThickAvg sex 7701 14685088 0.463 0.008362944 

Gordon JulichBrain GrayVol age 7701 14675276 0.433 0.008936019 

Gordon JulichBrain GrayVol alc 5203 6865136 0.375 0.012286859 

Gordon JulichBrain GrayVol bmi 7701 15001294 0.375 0.01010524 

Gordon JulichBrain GrayVol cig 7467 14094462 0.398 0.009775021 

Gordon JulichBrain GrayVol edu 7697 14543476 0.167 0.01575084 

Gordon JulichBrain GrayVol gpheno 7742 15566505 0.606 0.005820234 

Gordon JulichBrain GrayVol sex 7701 14816991 0.954 0.000659077 

Gordon JulichBrain SurfArea age 7701 14297703 0.00654 0.030988376 

Gordon JulichBrain SurfArea alc 5203 6711644 0.596 0.007351542 

Gordon JulichBrain SurfArea bmi 7701 14701214 0.515 0.007421096 

Gordon JulichBrain SurfArea cig 7467 13999283 0.739 0.003860601 

Gordon JulichBrain SurfArea edu 7697 14380483 0.0266 0.025280432 

Gordon JulichBrain SurfArea gpheno 7742 16219819 0.000169 0.042412068 

Gordon JulichBrain SurfArea sex 7701 14614935 0.274 0.012460268 

Gordon JulichBrain ThickAvg age 7701 14445600 0.0498 0.022350371 

Gordon JulichBrain ThickAvg alc 5203 6853990 0.433 0.010860794 

Gordon JulichBrain ThickAvg bmi 7701 14594078 0.23 0.013678433 

Gordon JulichBrain ThickAvg cig 7467 14012427 0.686 0.004677369 

Gordon JulichBrain ThickAvg edu 7697 15008910 0.315 0.011461346 

Gordon JulichBrain ThickAvg gpheno 7742 15820211 0.0757 0.020030197 

Gordon JulichBrain ThickAvg sex 7701 14737169 0.641 0.005321125 

Gordon Schaefer GrayVol age 7701 15116720 0.139 0.016846758 

Gordon Schaefer GrayVol alc 5203 6944333 0.106 0.02241965 

Gordon Schaefer GrayVol bmi 7701 14879435 0.793 0.002987998 

Gordon Schaefer GrayVol cig 7467 14064368 0.495 0.007904981 

Gordon Schaefer GrayVol edu 7697 14486565 0.0942 0.019078214 

Gordon Schaefer GrayVol gpheno 7742 15327748 0.503 0.007552442 

Gordon Schaefer GrayVol sex 7701 15414222 0.00267 0.034222525 

Gordon Schaefer SurfArea age 7701 14464187 0.062 0.021264787 

Gordon Schaefer SurfArea alc 5203 6718509 0.641 0.006473205 

Gordon Schaefer SurfArea bmi 7701 14912819 0.665 0.004937809 

Gordon Schaefer SurfArea cig 7467 14080211 0.442 0.008889464 

Gordon Schaefer SurfArea edu 7697 14473970 0.0821 0.019814596 

Gordon Schaefer SurfArea gpheno 7742 15942487 0.0171 0.026878823 

Gordon Schaefer SurfArea sex 7701 14610708 0.265 0.012707148 

Gordon Schaefer ThickAvg age 7701 14629950 0.309 0.011583309 

Gordon Schaefer ThickAvg alc 5203 7003053 0.0308 0.02993253 

Gordon Schaefer ThickAvg bmi 7701 14647807 0.355 0.010540361 

Gordon Schaefer ThickAvg cig 7467 13926164 0.953 0.000683011 

Gordon Schaefer ThickAvg edu 7697 15433050 0.00147 0.036259227 
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Gordon Schaefer ThickAvg gpheno 7742 16038556 0.00423 0.032259606 

Gordon Schaefer ThickAvg sex 7701 15334420 0.00948 0.029561645 

Gordon vertices GrayVol age 7701 14865816 0.847 0.002192573 

Gordon vertices GrayVol alc 5203 6811638 0.695 0.005442104 

Gordon vertices GrayVol bmi 7701 14797009 0.873 0.001826137 

Gordon vertices GrayVol cig 7467 14000709 0.733 0.003949212 

Gordon vertices GrayVol edu 7697 14690798 0.531 0.007137474 

Gordon vertices GrayVol gpheno 7742 15622594 0.427 0.008961755 

Gordon vertices GrayVol sex 7701 15061991 0.231 0.013650281 

Gordon vertices SurfArea age 7701 14445531 0.0498 0.022354401 

Gordon vertices SurfArea alc 5203 6790131 0.846 0.002690409 

Gordon vertices SurfArea bmi 7701 14855963 0.887 0.001617104 

Gordon vertices SurfArea cig 7467 13907414 0.873 0.001848136 

Gordon vertices SurfArea edu 7697 15081319 0.169 0.01569483 

Gordon vertices SurfArea gpheno 7742 16122306 0.00105 0.036950407 

Gordon vertices SurfArea sex 7701 14841610 0.946 0.000778809 

Gordon vertices ThickAvg age 7701 14766976 0.753 0.003580231 

Gordon vertices ThickAvg alc 5203 6525336 0.0245 0.031188557 

Gordon vertices ThickAvg bmi 7701 14671117 0.421 0.009178928 

Gordon vertices ThickAvg cig 7467 14079936 0.443 0.008872376 

Gordon vertices ThickAvg edu 7697 14565354 0.204 0.014471716 

Gordon vertices ThickAvg gpheno 7742 15939793 0.0178 0.026727933 

Gordon vertices ThickAvg sex 7701 14817223 0.955 0.000645527 

Gordon Yeo GrayVol age 7701 14604680 0.252 0.013059217 

Gordon Yeo GrayVol alc 5203 6993438 0.0384 0.028702347 

Gordon Yeo GrayVol bmi 7701 14708225 0.538 0.007011615 

Gordon Yeo GrayVol cig 7467 13934336 0.988 0.000175204 

Gordon Yeo GrayVol edu 7697 14574428 0.221 0.013941193 

Gordon Yeo GrayVol gpheno 7742 15541196 0.696 0.004402688 

Gordon Yeo GrayVol sex 7701 14833985 0.977 0.000333466 

Gordon Yeo SurfArea age 7701 14384518 0.0229 0.025917899 

Gordon Yeo SurfArea alc 5203 6950115 0.0948 0.023159423 

Gordon Yeo SurfArea bmi 7701 14915341 0.655 0.005085108 

Gordon Yeo SurfArea cig 7467 13936946 0.999 1.30183E-05 

Gordon Yeo SurfArea edu 7697 14918713 0.587 0.006187865 

Gordon Yeo SurfArea gpheno 7742 15987392 0.00914 0.029393932 

Gordon Yeo SurfArea sex 7701 14804358 0.902 0.001396915 

Gordon Yeo ThickAvg age 7701 14908031 0.683 0.004658163 

Gordon Yeo ThickAvg alc 5203 6994890 0.0372 0.028888122 

Gordon Yeo ThickAvg bmi 7701 14526047 0.121 0.01765182 

Gordon Yeo ThickAvg cig 7467 14255130 0.0878 0.019758925 

Gordon Yeo ThickAvg edu 7697 14776088 0.85 0.002150886 

Gordon Yeo ThickAvg gpheno 7742 15715003 0.21 0.014137543 

Gordon Yeo ThickAvg sex 7701 14769146 0.762 0.003453491 

JulichBrain vertices GrayVol age 7701 14958227 0.505 0.007589888 

JulichBrain vertices GrayVol alc 5203 6725511 0.687 0.005577341 

JulichBrain vertices GrayVol bmi 7701 14640132 0.335 0.010988624 
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JulichBrain vertices GrayVol cig 7467 13902580 0.837 0.002379883 

JulichBrain vertices GrayVol edu 7697 14919068 0.586 0.00620862 

JulichBrain vertices GrayVol gpheno 7742 15540046 0.7 0.004338277 

JulichBrain vertices GrayVol sex 7701 15011099 0.349 0.010677906 

JulichBrain vertices SurfArea age 7701 15001309 0.375 0.010106116 

JulichBrain vertices SurfArea alc 5203 6828990 0.58 0.00766219 

JulichBrain vertices SurfArea bmi 7701 14899216 0.716 0.004143319 

JulichBrain vertices SurfArea cig 7467 13744290 0.291 0.012213384 

JulichBrain vertices SurfArea edu 7697 15424494 0.00171 0.035758989 

JulichBrain vertices SurfArea gpheno 7742 15416347 0.818 0.00259005 

JulichBrain vertices SurfArea sex 7701 14983777 0.425 0.00908215 

JulichBrain vertices ThickAvg age 7701 15079924 0.197 0.014697668 

JulichBrain vertices ThickAvg alc 5203 6419344 0.00125 0.044749612 

JulichBrain vertices ThickAvg bmi 7701 14831784 0.986 0.000204916 

JulichBrain vertices ThickAvg cig 7467 14051315 0.553 0.00686003 

JulichBrain vertices ThickAvg edu 7697 14444944 0.0591 0.021511638 

JulichBrain vertices ThickAvg gpheno 7742 15548002 0.671 0.004783889 

JulichBrain vertices ThickAvg sex 7701 14887370 0.762 0.003451446 

JulichBrain Yeo GrayVol age 7701 14770409 0.767 0.003379724 

JulichBrain Yeo GrayVol alc 5203 6927458 0.144 0.020260593 

JulichBrain Yeo GrayVol bmi 7701 14509008 0.102 0.018646992 

JulichBrain Yeo GrayVol cig 7467 13753948 0.316 0.011613397 

JulichBrain Yeo GrayVol edu 7697 14806444 0.974 0.000376084 

JulichBrain Yeo GrayVol gpheno 7742 15374195 0.661 0.004950966 

JulichBrain Yeo GrayVol sex 7701 14923569 0.625 0.005565669 

JulichBrain Yeo SurfArea age 7701 14722803 0.589 0.006160179 

JulichBrain Yeo SurfArea alc 5203 6918834 0.167 0.019157203 

JulichBrain Yeo SurfArea bmi 7701 14976142 0.449 0.008636224 

JulichBrain Yeo SurfArea cig 7467 13676540 0.156 0.016422239 

JulichBrain Yeo SurfArea edu 7697 15209943 0.0417 0.023214994 

JulichBrain Yeo SurfArea gpheno 7742 15447533 0.94 0.000843336 

JulichBrain Yeo SurfArea sex 7701 14931973 0.595 0.006056509 

JulichBrain Yeo ThickAvg age 7701 15218605 0.0454 0.022797407 

JulichBrain Yeo ThickAvg alc 5203 6889032 0.268 0.015344212 

JulichBrain Yeo ThickAvg bmi 7701 14716541 0.567 0.006525914 

JulichBrain Yeo ThickAvg cig 7467 14229815 0.121 0.017949044 

JulichBrain Yeo ThickAvg edu 7697 14715401 0.617 0.005699028 

JulichBrain Yeo ThickAvg gpheno 7742 15508206 0.821 0.002554932 

JulichBrain Yeo ThickAvg sex 7701 14827167 0.995 6.47425E-05 

Schaefer JulichBrain GrayVol age 7701 14421652 0.0372 0.023749067 

Schaefer JulichBrain GrayVol alc 5203 6693536 0.486 0.009668354 

Schaefer JulichBrain GrayVol bmi 7701 15000093 0.379 0.010035095 

Schaefer JulichBrain GrayVol cig 7467 14118408 0.341 0.011028071 

Schaefer JulichBrain GrayVol edu 7697 14856864 0.821 0.002571785 

Schaefer JulichBrain GrayVol gpheno 7742 15629053 0.408 0.00932352 

Schaefer JulichBrain GrayVol sex 7701 14615278 0.275 0.012440235 

Schaefer JulichBrain SurfArea age 7701 14672508 0.425 0.009097686 
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Schaefer JulichBrain SurfArea alc 5203 6736451 0.763 0.004177632 

Schaefer JulichBrain SurfArea bmi 7701 14608112 0.259 0.012858769 

Schaefer JulichBrain SurfArea cig 7467 13944823 0.983 0.000244393 

Schaefer JulichBrain SurfArea edu 7697 14637890 0.369 0.010230807 

Schaefer JulichBrain SurfArea gpheno 7742 15666481 0.311 0.011419846 

Schaefer JulichBrain SurfArea sex 7701 14939670 0.568 0.006506057 

Schaefer JulichBrain ThickAvg age 7701 14648964 0.358 0.010472786 

Schaefer JulichBrain ThickAvg alc 5203 6749124 0.854 0.002556196 

Schaefer JulichBrain ThickAvg bmi 7701 14847144 0.923 0.001102025 

Schaefer JulichBrain ThickAvg cig 7467 13974156 0.858 0.002066657 

Schaefer JulichBrain ThickAvg edu 7697 14745897 0.731 0.003916041 

Schaefer JulichBrain ThickAvg gpheno 7742 15426220 0.857 0.002037068 

Schaefer JulichBrain ThickAvg sex 7701 14601400 0.245 0.013250787 

Schaefer vertices GrayVol age 7701 14770197 0.766 0.003392106 

Schaefer vertices GrayVol alc 5203 6644827 0.251 0.015900385 

Schaefer vertices GrayVol bmi 7701 14830056 0.993 0.000103991 

Schaefer vertices GrayVol cig 7467 14099108 0.396 0.009829091 

Schaefer vertices GrayVol edu 7697 14955778 0.464 0.008354917 

Schaefer vertices GrayVol gpheno 7742 15651781 0.347 0.010596506 

Schaefer vertices GrayVol sex 7701 14781639 0.811 0.00272383 

Schaefer vertices SurfArea age 7701 14796911 0.872 0.001831861 

Schaefer vertices SurfArea alc 5203 6786809 0.87 0.002265379 

Schaefer vertices SurfArea bmi 7701 14723693 0.592 0.006108198 

Schaefer vertices SurfArea cig 7467 13697528 0.191 0.015118395 

Schaefer vertices SurfArea edu 7697 15276968 0.0173 0.027133696 

Schaefer vertices SurfArea gpheno 7742 15686180 0.267 0.012523179 

Schaefer vertices SurfArea sex 7701 14890178 0.751 0.003615449 

Schaefer vertices ThickAvg age 7701 14940379 0.566 0.006547466 

Schaefer vertices ThickAvg alc 5203 6408153 0.000865 0.046181435 

Schaefer vertices ThickAvg bmi 7701 14809908 0.925 0.001072764 

Schaefer vertices ThickAvg cig 7467 14063094 0.512 0.007591781 

Schaefer vertices ThickAvg edu 7697 14311894 0.0102 0.029290574 

Schaefer vertices ThickAvg gpheno 7742 15521338 0.77 0.00329045 

Schaefer vertices ThickAvg sex 7701 14939115 0.57 0.006473641 

Schaefer Yeo GrayVol age 7701 14533296 0.131 0.017228439 

Schaefer Yeo GrayVol alc 5203 6827116 0.592 0.007422423 

Schaefer Yeo GrayVol bmi 7701 14866128 0.846 0.002210796 

Schaefer Yeo GrayVol cig 7467 14064462 0.507 0.007676766 

Schaefer Yeo GrayVol edu 7697 14701585 0.568 0.006506798 

Schaefer Yeo GrayVol gpheno 7742 15405752 0.778 0.003183472 

Schaefer Yeo GrayVol sex 7701 14829751 0.994 8.61774E-05 

Schaefer Yeo SurfArea age 7701 14607040 0.257 0.01292138 

Schaefer Yeo SurfArea alc 5203 6883371 0.292 0.01461992 

Schaefer Yeo SurfArea bmi 7701 14761146 0.731 0.003920735 

Schaefer Yeo SurfArea cig 7467 13611100 0.0767 0.02048759 

Schaefer Yeo SurfArea edu 7697 14927750 0.556 0.006716224 

Schaefer Yeo SurfArea gpheno 7742 15487554 0.901 0.001398223 
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Schaefer Yeo SurfArea sex 7701 15012090 0.346 0.010735786 

Schaefer Yeo ThickAvg age 7701 15047333 0.262 0.012794173 

Schaefer Yeo ThickAvg alc 5203 6764905 0.969 0.000537109 

Schaefer Yeo ThickAvg bmi 7701 14814341 0.943 0.000813852 

Schaefer Yeo ThickAvg cig 7467 14304089 0.0512 0.022563192 

Schaefer Yeo ThickAvg edu 7697 14664882 0.448 0.008652685 

Schaefer Yeo ThickAvg gpheno 7742 15700815 0.237 0.013342879 

Schaefer Yeo ThickAvg sex 7701 14693496 0.49 0.00787187 

Yeo vertices GrayVol age 7701 15046720 0.263 0.01275837 

Yeo vertices GrayVol alc 5203 6540294 0.0347 0.029274769 

Yeo vertices GrayVol bmi 7701 14864516 0.853 0.002116646 

Yeo vertices GrayVol cig 7467 14025766 0.649 0.005272842 

Yeo vertices GrayVol edu 7697 14994615 0.351 0.010625571 

Yeo vertices GrayVol gpheno 7742 15545580 0.68 0.004648234 

Yeo vertices GrayVol sex 7701 14916268 0.652 0.00513925 

Yeo vertices SurfArea age 7701 15040789 0.276 0.012411967 

Yeo vertices SurfArea alc 5203 6702711 0.54 0.008494467 

Yeo vertices SurfArea bmi 7701 14680504 0.449 0.008630675 

Yeo vertices SurfArea cig 7467 14057760 0.53 0.007260415 

Yeo vertices SurfArea edu 7697 15102123 0.138 0.016911162 

Yeo vertices SurfArea gpheno 7742 15456285 0.975 0.00035314 

Yeo vertices SurfArea sex 7701 14738124 0.644 0.005265348 

Yeo vertices ThickAvg age 7701 14694374 0.493 0.00782059 

Yeo vertices ThickAvg alc 5203 6351377 0.000116 0.053445591 

Yeo vertices ThickAvg bmi 7701 14878435 0.797 0.002929593 

Yeo vertices ThickAvg cig 7467 13714473 0.224 0.014065715 

Yeo vertices ThickAvg edu 7697 14588244 0.249 0.013133423 

Yeo vertices ThickAvg gpheno 7742 15543086 0.689 0.004508546 

Yeo vertices ThickAvg sex 7701 14942578 0.558 0.0066759 

 

 

  



 

307 

 

Lessons from Statistical Genetics may help us overcome the 

Neuroimaging replication crisis 

Anna Elisabeth Fürtjes 1 

1 Social, Genetic and Developmental Psychiatry Centre, King’s College, London UK 

 

 

 

The article is displayed as submitted to Cortex. It is currently under review.  



 

308 

 

Abstract 

 The research fields of Statistical Genetics and Neuroimaging face similar 

challenges in identifying reliable biological correlates of common traits and diseases. 

This Viewpoint focuses on five major lessons that allowed genetics research to 

overcome many of its issues of replicability, and that may be directly applicable to 

neuroimaging research. First, the failure of candidate gene studies inspires 

abandoning overly simplistic studies mapping individual brain regions onto traits and 

diseases. Second, developments in genetics research demonstrate that robust study 

results can be achieved by increasing sample sizes. Third and fourth, the success of 

genome-wide association studies motivates the use of mass-univariate testing and 

sharing summary-level association data to boost large-scale collaboration and meta-

analysis. Finally, applying genetics methods dealing with complex data structures to 

vertex-wise neuroimaging data promises novel discoveries without the need to develop 

novel neuroimaging-specific methods. Those practices – that are firmly established in 

genetics research – should either be further endorsed, or newly adopted by the 

neuroimaging community, promising to accelerate the evolution of Neuroimaging 

through robust discovery. 
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Viewpoint 

 Fifteen years ago, the scientific community was united in thinking we’d found 

a gene responsible for depression. Roughly 450 peer-reviewed studies, published in 

reputable journals, had delivered apparently supporting evidence for the hypothesis 

that the Serotonin Transporter Gene formed the biological basis of depression (Border 

et al., 2019). As the name suggests, the Serotonin Transporter Gene regulates 

serotonin levels in the brain, making it a logical therapeutic target that conformed with 

popular theories of depression at the time. Many other so-called candidate gene 

studies, which tested similar hypotheses about single genes forming the basis of other 

human traits and diseases, also claimed to have uncovered underlying genetic 

mechanisms. Those studies were cited countless times. Unfortunately, almost all this 

research later transpired to be based on oversimplified notions of human biology and 

could not be reliably replicated.  

 Candidate gene studies had mostly accumulated false results, and are now 

considered obsolete (Border et al., 2019). The full extent to which decades worth of 

research was erroneous became clear when studies with better methods and superior 

statistical power systematically contradicted candidate gene findings. The field 

overcame many of its flaws through drastically reforming approaches to analysing big 

genetic data, which eventually allowed novel insights into human biology. 

Contemporary genetic discoveries promise exciting translations into applications of 

personalised healthcare, according to which we will be able to predict disease risk from 

an individual’s genetic make-up to guide treatment, or even prevent disease 

altogether.  
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 Neuroimaging research now faces similar challenges of replicability. 

Specifically, studies looking for brain regions that may be “responsible” for functions 

(or dysfunctions) are just as difficult to replicate as candidate gene studies. For 

example, the Parieto-Frontal-Integration theory (P-FIT) – suggesting that enlarged 

frontal and parietal brain regions underpin good cognitive ability – shaped plenty of 

neuro-cognitive studies. However, meta-analytic evidence for this theory is 

inconsistent (Basten et al., 2015). It is possible, if not likely, that our future selves will 

remember the P-FIT, as the Serotonin Transporter Gene theory, as an abandoned 

piece of the self-correcting scientific process.  

 It is the aim of this essay to outline striking parallels between the challenges 

faced in the fields of Statistical Genetics and Neuroimaging. It is at the core of my 

reasoning that traits and diseases have complex genome-wide and brain-wide biology 

that both demonstrate similar characteristics. Based on their parallels, I will outline 

how genetics research overcame issues of replicability, and how it motivates practices 

that are either already endorsed by parts of the neuroimaging community, or even 

inspire adopting novel practices, that are firmly established in genetics research and 

will encourage an acceleration of the evolution of Neuroimaging.  

Lesson 1: Abandon traditional studies mapping one biological 

variable onto traits and diseases 

 To illustrate how lessons from one research field may inspire change in another, 

I will first focus on advances in Statistical Genetics that were key to moving past the 

replication crisis. Most importantly, it was a conceptual shift from candidate gene 

towards genome-wide approaches that allowed the field to reliably identify genetic 

risk factors. In essence, candidate gene and genome-wide approaches differ in that the 
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former describe the statistical relationship between a trait and one pre-specified gene-

of-interest that the researcher hypothesised to form its biological basis. Genome-wide 

approaches are hypothesis-free, and consider thousands, or millions of genetic 

markers. 

 Genome-wide methods successfully enabled robust discoveries as they 

accommodate two main characteristics of the genetic architecture of traits and 

diseases. First, genome-wide methods consider that markers across the genome are 

correlated among one another, which reflects the fact that genes are passed through 

families in conjunction with other genes. Geneticists call this linkage disequilibrium. 

Second, genome-wide methods recognise that most human traits have many genetic 

correlates that are weakly associated and diffusely distributed across the whole 

genome (as opposed to being controlled by only one strongly associated gene). 

Geneticists refer to this as polygenicity. It is now widely accepted that many genetic 

correlates (sometimes hundreds) account for why traits and diseases are heritable. For 

example, whether a person develops depression is influenced by how many genetic 

risk markers this person inherits at birth. From this perspective, it is intuitive that 

polygenic traits can only be modelled appropriately by methods that consider the 

entire genome, as opposed to one individual gene.  

 Those genetic data structures (i.e., linkage disequilibrium and polygenicity) 

both have close analogies in neuroimaging data. The parallel is strongest when 

neuroimaging data is represented in its raw vertex-wise (or voxel-wise) form, 

including hundreds of thousands of brain-wide measures. Like intercorrelated genetic 

markers, a measure of cortical thickness at a certain vertex is correlated with other 

vertex-wise brain measures, particularly with those in physical proximity. These 

interdependencies are organised along cortical gradients (Huntenburg et al., 2018). 
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Furthermore, we know from functional neuroimaging, and other modalities, that traits 

have many correlates spread across the brain (Marek et al., 2022), suggesting 

approaches considering only one brain region oversimplify matters to a substantial 

degree. Like in genetics research, it is more appropriate to model the brain based on 

thousands of brain measures, instead of considering one crudely averaged region-of-

interest (ROI).  

Lesson 2: Increase Sample Sizes  

 Using genome-wide approaches, the genetics community soon realised that 

polygenic traits have many genetic correlates with effect sizes much smaller than 

previously expected. As small effects require large samples to achieve adequate 

statistical power, it is widely accepted that insufficient samples had hindered the 

reliable identification of genetic mechanisms. For example, Serotonin Transporter 

Gene studies had a median sample size of 435 (Border et al., 2019), and resulting false 

discoveries were amplified by publication bias. Many efforts have since been devoted 

to increasing significance thresholds to counteract chance findings, as well as 

collecting large-scale genotyped samples, in some cases including millions of 

participants (Yengo et al., 2022). 

 While some neuroimaging samples are continually growing – for example, the 

UK Biobank cohort is on a trajectory to scanning 100,000 brains (Littlejohns et al., 

2020) – overall, they remain small with a median sample size of 25 (Marek et al., 

2022). Where big samples collected through consortiums improved the reliability of 

genetics studies, larger samples are imperative to improving neuroimaging studies 

too. Consortia like ENIGMA are already pioneering data sharing of tens of thousands 
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of participants which will unlock the reliable identification of many correlates spread 

across the brain. 

Lesson 3: Use Mass-Univariate Testing 

 Beyond increasing sample sizes, genetics research established statistical 

techniques handling complicated data structures, that can also model vertex-wise 

neuroimaging data and account for complex brain-trait relationships. A popular 

genome-wide technique is mass-univariate testing, which geneticists call genome-

wide association studies (GWAS). GWAS take a hypothesis-free approach to scanning 

the genome for any association between a trait and millions of genetic markers. GWAS 

results have been reliably replicated across many phenotypes and samples (Visscher 

et al., 2017). Resulting summary statistics, which conceal sensitive participant-level 

information, can be publicly shared, enabling large collaborative efforts and powerful 

meta-analyses. It has become routine for researchers to inform their genetic studies 

with the newest GWAS association data, in order to predict individual-level disease 

based on polygenic scores. Those scores reflect an individual’s propensity towards 

disease and their predictive value is improving as sample sizes grow (Visscher et al., 

2017). 

 Mass-univariate testing, which is what a GWAS does, has also been employed 

by neuroimaging studies, in which associations between traits and hundreds of 

thousands of vertex-wise brain measures are quantified. Vertex-wise mass-univariate 

testing is used in many neuroimaging studies (Ashburner & Friston, 2000), however, 

it has not fully replaced limited ROI-based studies. A downside to mass-univariate 

testing is the considerable power losses due to many significance tests that need 

correction for multiple testing. However, increasing neuroimaging sample sizes and 
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larger computational resources promise small but accurate estimates of vertex-trait 

associations, which will help uncover meaningful brain-wide association patterns in 

the future.  

Lesson 4: Use and Share Summary-Level Association Data 

 GWAS summary statistics are routinely used as input data to infer estimates of 

genetic overlap, which quantifies the level of overlapping genetic biology shared 

between two traits. Many studies focus on genetic overlap to better understand 

comorbidity or disease risk factors. Based on estimates of genetic overlap, more 

advanced statistical approaches model relationships between traits at the level of their 

underlying genetic architecture, allowing to test specific theories about the shared 

biology between traits (e.g., Genomic SEM (Grotzinger et al., 2019), Genomic ICA 

(Soheili-Nezhad et al., 2021), Genomic PCA (Fürtjes et al., 2021)). Many more 

methods build on GWAS summary data, uncovering biologically interpretable 

mechanisms, for example, by linking them with gene expression or cell type profiles 

(de Leeuw et al., 2015). 

 Adopting practices that encourage collaboration, and meta-analysis also greatly 

benefits neuroimaging research. Just like geneticists share GWAS summary statistics, 

neuroimagers should calculate trait associations for all vertices across the brain and 

share it publicly. Meaningful summary data will require great, consortium-level efforts 

to reduce noise and (scanner) bias. Inspired by practices surrounding GWAS, vertex-

wise association data may be used to infer brain-based etiology shared between traits 

(parallel to genetic overlap), or to uncover underlying biological mechanisms by 

mapping association data onto brain-specific gene expression (Shen et al., 2012) and 

neurotransmitter systems (Hansen et al., 2022).  
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Lesson 5: Use Multivariate Approaches That Were Originally 

Developed for Genetics Research 

 Alternative multivariate techniques exist that simultaneously map thousands of 

biological markers onto a trait or disease. Multivariate techniques do not require 

extensive multiple testing correction, and they therefore have more statistical power 

than mass-univariate methods. For example, the genetics technique genome-wide 

complex trait analysis (GCTA) (Yang et al., 2011) is ubiquitously used to estimate 

heritability. Implemented in efficient software, the GCTA framework employs linear 

mixed models fitting millions of variables as a vector of random effects, to quantify 

trait variance accounted for by genome-wide markers (i.e., heritability), while 

recognising the correlation structure between them. Recent neuroimaging studies 

repurposed GCTA which enabled the estimation of morphometricity, which is the trait 

variance explained by brain-wide measures (Couvy-Duchesne et al., 2020). 

 All traits are heritable (Turkheimer, 2000), and given heritability and 

morphometricity have an analogous statistical definition, it is unsurprising that most 

traits are also considerably morphometric (Couvy-Duchesne et al., 2020). Our recent 

study applied the GCTA framework to neuroimaging data, and compared the variance 

accounted for by ~300,000 cortical measures, with variance accounted for by coarser 

brain atlases (Fürtjes et al., 2023). It demonstrated that atlas-based representations 

of the cortex explained a fraction of the morphometricity that was explained by vertex-

wise measures, which highlights that considering brain-wide vertex-wise measures 

maximises the potential of uncovering neuronal underpinnings of traits and diseases. 

Like in candidate gene approaches, coarse representations of the cortex do not reliably 

enough account for trait variance.  
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 Critics may argue that modelling vertex-wise data – using genetics frameworks 

– would disregard the decade’s worth of brain sciences that derived brain atlases to 

help interpret brain-trait associations. To facilitate more biologically meaningful 

interpretation, Couvy-Duchesne et al. (Couvy-Duchesne et al., 2020) demonstrate that 

the GCTA framework permits integrating prior knowledge about brain organisation by 

grouping vertex-wise measures based on the researchers input, and fitting each set of 

vertices as random effects. This analysis has the advantage that it still models vertex-

wise cortical structure, while it drastically reduces multiple testing burden compared 

with mass-univariate testing, as it only performs a single association test per set of 

vertices. I suggest this framework has the potential and flexibility to fully replace ROI-

based studies with robust vertex-wise approaches.  

Limitations 

 It must be noted, however, that the discussion above only applies to studies 

researching traits that commonly vary across the general population. Depression is a 

prominent example, as it affects about 15% of people at some point in their lives 

(Bromet et al., 2011). It is precisely this variance across the population that the 

methods discussed above leverage to draw inference. Those methods would be 

inappropriate to model rarer monogenic traits. Huntington’s, for example, only affects 

1 in 10,000 people, and was linked to one single gene coding for a protein called 

huntingtin (Coleman et al., 2021), which would not map onto models of polygenicity. 

Nonetheless, parallels between the fields hold as monogenic traits in genetics research 

are analogous to lesion-based neuroimaging studies. The latter link localised brain 

lesions (that often result from rare accidents) with very specific loss of cognitive 

function (e.g., Scoville & Milner, 1957). Both monogenic and lesion-based correlates 



 

317 

 

are rare, they both have large effect sizes, and small clinical samples are sufficient to 

detect them.  

 A meaningful application of genetic methods to neuroimaging data must 

consider differences in data structures, which dictate the interpretation of results in 

their genetic- or brain-specific context. Primary among these differences is that 

genetic markers are inherited at conception and remain unaltered across the lifespan, 

while the brain evolves with its environment. Thus, genetic propensity towards a trait 

can imply directionality of effects, which cannot be inferred from neuroimaging 

studies. Genetic and neuroimaging data both contain interdependent measures, but 

the architecture of this interdependence is different, which may affect techniques 

deriving genetic or brain-based overlap. It complicates interpretation of genetic 

studies that trait correlates often sit in parts of the genome with complicated 

regulatory, and no direct coding functions (Visscher et al., 2017). In comparison, the 

interpretation of vertex-wise brain associations is trivial, as the strongest associations 

are between vertices in physical proximity. 

Conclusion 

 Population traits have both complex genetic and brain-based biology, and here 

I argue that practices firmly established in genetics research can be directly applied to 

improving neuroimaging. Based on striking parallels between the two fields, this essay 

transferred lessons drawn from the field of Statistical Genetics to Neuroimaging, 

which promises more robust discoveries if widely endorsed by the neuroimaging 

community. The failure to produce reliable findings, by both candidate gene and 

neuroimaging studies mapping individual brain regions onto population traits, 

illustrate that future efforts should keep increasing sample sizes, and counteract noisy 
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findings by correcting for multiple testing. Genetics research teaches that we can 

improve replicability by abandoning hypothesis-driven, overly simplistic approaches, 

and by adopting hypothesis-free methods exemplified by GWAS and GCTA. Sharing 

summary-level association data will boost large-scale collaboration and meta-analysis. 

Those genetic practices, applied to vertex-wise neuroimaging data, promise an 

acceleration of the evolution of the field, without requiring brain sciences to 

painstakingly innovate neuroimaging methods, that would overcome the same 

challenges that Statistical Genetics already solved. 
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