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Abstract

Generative simulation models and the mathematical analysis of their outputs can help us to

quantify, visualise and understand the impact of anthropogenic land cover change on terrestrial

ecosystems. In this thesis I describe a socio-ecological simulation model of land-cover change

in the Iberian Peninsula called AgroSuccess. This model integrates previous work from the

literature describing ecological succession and ecological disturbance in the form of both fire

and anthropogenic subsistence activities. AgroSuccess is an agent-based simulation model that

enables users to explore the effect of agricultural land management practices and different cli-

matic conditions on the emergent state of simulated landscapes. I demonstrate AgroSuccess by

investigating the changes to land cover resulting from the introduction of agriculture during the

mid-Holocene at six study sites in the Iberian Peninsula.

AgroSuccess requires input data to specify boundary conditions, as well as reference data against

which to compare outputs and calibrate parameters. I have developed a collection of reusable

software tools to obtain and prepare paleo-ecological pollen abundance data collected by previ-

ous researchers, as well as morphological data from remote sensing to characterise study sites.

To the best of my knowledge the way in which I have synthesised these data from disparate

sources is novel, and the approach I have taken can be easily replicated by others using the open

source software tools that I have made available online.

To address my research questions AgroSuccess represents various ecological and anthropogenic

processes. Consequently, it is an example of a complicated model that requires the collection

and assimilation of multiple forms of data to parameterise and initialise simulation runs. The

management, documentation, communication, and reuse of such a model is difficult. An example

of how I have mitigated these challenges is the development of a software application, called

Cymod, that helps users to visualise the state-and-transition model (STM) that is integral to

AgroSuccess’ ecological succession submodel. I argue that the measures taken to ensure the

correct implementation of scientific simulation models are arbitrary, and often inadequate to

provide scientists with the confidence they need to use each others’ code. In response to this

challenge, the software implementation of the AgroSuccess simulation model, and the scripts that

process its input data, are modular and well-tested. By distributing these modular components



in public software repositories, I aim to make my work transparent and help others understand

and reproduce my results.
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Chapter 1

Introduction

Humans have come to dominate our planet. Following the technological developments that led to

the industrial revolution in the 18th Century, global human population has surged from 1 billion

in 1800 to a projected 9 billion by 2050 (Steffen et al., 2004). Increasing populations have led

to increased demand for food and other products, and demand for the land to produce it on

has increased accordingly. 10–15% of the earth’s surface is now used for crop agriculture, and

an additional 6–8% is used for pastureland (Vitousek et al., 1997). Since the first agricultural

revolution, the mass of plants on Earth has decreased from two teratonnes (Tt) to one Tt, with

the biomass produced by growing crops vastly offset by that lost through deforestation and other

land use changes (Elhacham et al., 2020; Erb et al., 2018). These developments have altered

the way terrestrial ecosystems function, including the mechanisms with which they interact with

the atmosphere (Vitousek et al., 1997). Recent work (Guiot & Cramer, 2016) has predicted

that unless urgent action is taken to mitigate climate change in-line with the most ambitious of

the 2015 Paris Climate Agreement thresholds, this century will see dramatic climatic shifts in

the Mediterranean Basin. These are likely to limit the region’s capacity to provide the ecosystem

services—food, timber, fibres, and other necessities—that society demands (Dearing et al., 2014).

In recent years the significance of these issues has been recognised formally by the international

community. As part of the 2030 agenda set out by the UN in 2015, 17 Sustainable Development

Goals (SDGs) were agreed upon (UN General Assembly, 2015). These set out global objectives

to work towards for a better world. Each of these 17 goals have a number of targets associated

with them, each of which are in turn associated with one or more indicators, intended to provide

a way of quantifying progress towards attaining the SDGs. Of of these goals, one in particular
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(SDG 15) succinctly describes the target towards which research into humans’ interactions with

our terrestrial environment might contribute:

Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably

manage forests, combat desertification, and halt and reverse land degradation and

halt biodiversity loss.

Recent improvements in techniques for reconstructing past ecosystems (Carrión et al., 2010)

could help us to understand how human land management practices in the present day influ-

ence ecosystem dynamics (Conedera et al., 2017). Pollen analysis (palynology) provides a way of

studying how the abundance of pollen from different species has varied over time at a location.

When pollen falls on wet sediment it can become fossilised, and by analysing the pollen found

in sequential samples of an experimental sediment core it is possible to construct a set of sim-

ultaneous time series of the abundance of different species’ pollen. A plot composed of several

of these simultaneous time series are arranged is known as a pollen diagram. An example of

a pollen diagram is shown in Fig. 1.1. Pollen diagrams record how the character of vegetation

present in a landscape changed over periods of tens of thousands of years, and so provide a lens

through which we can peer into the past. This is only possible because of efforts over the past

few decades to improve the procedures used to date pollen sequences (Carrión et al., 2010).

Figure 1.1: Example of a pollen diagram consisting of a series of simultaneous time series of the relative
percentages of pollen contributed by various species detected at Navarrés, Spain, during the late Qua-
ternary and Holocene. Figure taken from Carrión et al., 2010.

Of special interest for the purpose of understanding socio-ecological dynamics are the presence
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of palynological indicators of the presence of humans in pollen diagrams: increases in grasses

and shrub species which are hypothesised to indicate the landscape has been opened up using

fire, for example (Carrión et al., 2010). Other trends in different species’ pollen abundance time

series might be indicative of the occurrence of a complex mixture of biophysical, ecological and

climatic processes. In short, these data can be thought of as being a signature of the processes

that created them Perry et al., 2016. The overarching aim of this thesis is the development

of an agent-based model and its use to find the combinations of processes that best explain

observed pollen sequences. Specifically I explore how ecological succession, anthropogenic land-

use change, natural disturbance and climate interact to produce the patterns represented by

pollen diagrams. This way of informing theoretical models using empirical data is known as

Pattern Orientated Modelling (POM) (Grimm et al., 2005; Perry et al., 2016).

This thesis has the following aims towards the overall objective of improving understanding of

the processes that drive land cover change:

Aim 1: Develop a spatially explicit agent-based simulation model that incorporates processes

representing ecological succession, anthropogenic land-use change, and natural disturb-

ance, and which is sensitive to climatic variation through its boundary conditions.

Aim 2: Ensure the model developed to meet Aim 1 is documented and distributed such that it

is useful to, and usable by, other researchers.

Aim 3: Devise and document a reproducible procedure to obtain and process the empirical data

needed to provide boundary conditions and reference data for the ABM described in Aim 1.

Aim 4: Use the ABM described in Aim 1 to explore counterfactual scenarios involving antrho-

pogenic land-cover change that are not possible using empirical data alone.

1.1 Thesis structure

In Fig. 1.2 I show how each of the chapters in this thesis build on each other to meet my research

goals.

Chapter 2 introduces my approach to the scientific problem of how ecological succession, anthro-

pogenic land-use change, natural disturbance and climate affect terrestrial ecosystem change. I
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Figure 1.2: Illustration of how the chapters in this thesis relate to each other. See main text in this section
for more detailed descriptions of the chapters and their relationships.

explain why understanding the respective roles of these different processes requires a view of

landscape change over decadal to centennial timescales, and how the use of simulation modelling

is key to overcoming the challenge of studying these processes empirically. I review the types

of empirical evidence that can be used to learn about ecosystem change over the timescales of

interest, and conclude the chapter with a discussion of why the human history and biogeography

of the Iberian Peninsula make it a good choice of study region.

In Chapter 3 I describe the process I followed to select study sites within Iberia, contributing

to Aim 3. These study sites serve as the basis for simulated experiments that help to address

our scientific questions. I explain how I obtained empirical data characterising how land cover

changed over centennial timescales, as well as morphological and climatic data for each of these

study sites. I then specify how I processed this secondary data to provide boundary conditions

and reference data for simulation runs representing the study sites.

The structure of the ABM described in Aim 1, which I have named AgroSuccess, is specified in

Chapter 4. AgroSuccess combines aspects of a spatially explicit landscape fire succession model

(J. D. A. Millington et al., 2009) with a model of small-holder agropastoral household agents (Ul-

lah, 2013). These model components were previously described independently in the literature.

I provide both a description and an open source implementation of an integrated model that

enables users to test hypotheses concerning ecological and anthropogenic drivers of land-cover

change. The model outputs are vegetation abundance time series which can be compared to
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empirical pollen sequences to evaluate the degree to which models are able to explain the data.

Chapter 5 concerns the tuning of parameters belonging to the AgroSuccess model. In particular

I specialise certain parameters to the study sites selected in Chapter 3 such that the simulated

wildfire regimes represented during model runs correspond to empirically observed fire regime

metrics described in the literature. In Chapter 6 I present outputs from simulations of the study

sites selected in Chapter 3, and compare the time evolution of the proportion of the simulated

landscapes occupied by different land cover types to the pollen abundance time series derived

in Chapter 3. I also consider statistical properties of the simulated time series corresponding

to similar analyses on empirical data described in the literature. I use AgroSuccess to explore

scenarios with and without anthropogenic activity in a way that is not possible with empirical

data alone. This corresponds to Aim 4.

In Chapter 7 I discuss how the adoption of certain software development best practices could im-

prove confidence in other peoples’ software in the scientific community. I argue that widespread

adoption of testing and documentation standards will help ensure the correctness of scientific

software, ensure that the results of computational experiments are reproducible, and increase

trust in others’ work. I describe how I applied these measures in my own work during the pre-

paration of the empirical data described in Chapter 3, as well as in the software implementing

the simulation model described in subsequent chapters. In the second part of the chapter I de-

scribe a novel application of graph database technology I have developed to help manage model

complicatedness, and illustrate how I used this approach to implement the ABM described in

Aim 1.
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Chapter 2

Background to scientific problem

2.1 Spatio-temporal scale

To make progress in developing a methodology for understanding landscape scale human-

environment interactions, a necessary step is to first decide on which landscapes to consider.

This will limit the range of many factors—relating to geomorphology, climate, plant functional

types, and human activities—to an extent which is manageable for modelling purposes. For

reasons I will discuss in Section 2.2 I will focus on regions in the Mediterranean basin, and the

Iberian Peninsula in particular.

It is also necessary to decide on a temporal range to study. Given my research interest in human-

environment interactions, this range is determined by the period of time during which climatic

conditions have been amenable to humans making longstanding changes to the landscape. This

period is effectively coincident with the geological epoch known as the Holocene; that is, the

stretch of time between the beginning of glacial retreat following the last glacial maximum (see

e.g. Blondel and Aronson, 1999), and the present. Since glacial retreat is a global phenomena,

there will clearly be some variation between the date of retreat at different sites. However, for

the purpose of the selection of study sites, I will define the Holocene as the range 11,650–0 BP

(Walker et al., 2009). Here the temporal unit ‘years before present’ (BP) is defined such that the

‘present’ is counted as the year 1950 by the Gregorian calendar. The use of 1950 as a reference

year is an established convention in the radiocarbon dating literature (Flint & Deevey, 1961)

and, as the data I am interested in makes use of radiocarbon dating, is therefore also a sensible

13



convention for my work.

2.2 Motivation for selecting the Mediterranean as a study region

My decision to focus on studying sites in the Iberian Peninsula within Mediterranean basin arose

quite naturally out of the need to select some site to study on one hand, and the historical

contingency of my supervisor’s (James D.A. Millington) academic familiarity with the region on

the other. Consequently my arguments for studying the Mediterranean which comprise this

section are, admittedly, post hoc. That said, approaching the problem of study site selection as I

have has given me the opportunity to think broadly about the environmental and socio-economic

problems in the region, as well as the pertinent scientific questions one might ask to address

them.

2.2.1 Biodiversity in the Mediterranean

The preservation of biodiversity ought to be a priority for governments around the world for many

reasons. In the short term, biodiverse ecosystems are more productive because the many inter-

dependent species in them can support each other by creating the finely tuned conditions each

needs to thrive. Such conditions, if managed responsibly, are able to provide a secure source

of the ecosystem services—such as crop yield and timber—which are required to sustain human

communities (Cardinale et al., 2012).

In the longer term, biodiversity provides inspiration for human innovation. For instance, while it

is possible to develop medicinal drugs using chemical combination and knowledge of the molecu-

lar target we would like to treat, the fact that 116 out of 158 new drugs licensed by the U.S. Food

and Drug Administration between 1998 and 2002 were derived from natural origins highlights

the advantages of studying natural medicines (Chivian & Bernstein, 2008). The successfulness

of natural medicines should hardly be surprising; the myriad species on Earth interact with each

other principally via chemicals, and so evolution has developed – over at least 3.5 billion years –

various antibiotics, toxic peptides and other chemical defences to protect their hosts from their

environment (Chivian & Bernstein, 2008). In addition to chemical innovation, evolution has also

produced physical structures that we can take inspiration from for engineering applications. The
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need to have their teeth withstand rasping on rocks provided the evolutionary incentive for the

ancestors of modern limpets to develop exceptionally hard teeth (Barber et al., 2015). By study-

ing their microscopic structure it is possible for scientists to exploit evolution to design the next

generation of human dental implants. Since the discoveries of both natural medicines and struc-

tures with therapeutic applications are unexpected, failure to protect biodiversity runs the risk of

destroying these sources of inspiration before they can even be discovered (Chivian & Bernstein,

2008).

The Mediterranean Basin has been noted to be particularly biodiverse. Conservation Interna-

tional maintain a list of ‘Biodiversity Hotspots’, defined such that they contain more than 1500

species of endemic vascular plants, and have less than 30% of their original (pre-industrial) ve-

getation cover (Mittermeier et al., 2004). The objective of the biodiversity hotspot concept is to

focus conservation efforts on areas which are extremely valuable in terms of biodiversity, and

which also bear the brunt of anthropogenic environmental pressures. The Mediterranean Basin

is counted as one of these hotspots.

A recent simulation study (Guiot & Cramer, 2016) provides additional motivation to understand

and protect biodiversity in the Mediterranean. With respect to the 2015 Climate Change Paris

Agreement – which aims to limit global average warming to within 2.0 °C of pre-industrial levels –

the authors found it likely that the Mediterranean would experience significant ecological change

within the next 100 years. In particular, two simulated scenarios involving warming by 2.0 °C

predict the onset of some degree of desertification in southern Iberia. This suggests that the

need to understand how species key to the provision of ecosystem services will respond to such

climatic shifts will become increasingly important over the coming decades.

2.2.2 A long history of human-environment interactions in Iberia

The state of the landscape, as observed at any particular point in time, is causally dependent,

to some extent, on all the events which took place at that location in the past (Conedera et al.,

2017). This means that in order to understand the role of humans as agents of environmental

change today it is necessary to look back to the very start of the period when humans started

changing the landscape. In the context of my project, this raises two questions whose answers –

or relevant scholarly consensus – I will need to determine from the literature:
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1. When and why did humans start manipulating vegetation cover in Iberia?

2. What factors (e.g. climate, fire regime, proximity of topological features such as rivers and

the coast) determined when and where humans started changing the landscape at the local

scale?

There are several recent papers which provide information relevant to these questions. In Mar-

tins et al., 2015 the authors treat the appearance of wheat, barley, sheep or goat – collectively

termed the ‘Neolithic package’ – at a location and time as and indicator of the transition from

the Mesolithic period (characterised by hunter-gatherer cultures) to the Neolithic period (char-

acterised by an agro-pastoral lifestyle). It is widely accepted that Neolithic culture arrived in

Iberia from outside (Martins et al., 2015), such that regional variation in the date of arrival of

the Neolithic is expected. The authors use radiocarbon dating of artefacts of the Neolithic pack-

age to determine upper bounds on the date of regional Mesolithic-Neolithic transition, finding an

earliest date for the beginning of the Neolithic in Iberia of 8500 BP. Since my working hypothesis

is that it is the transition to an agro-pastoral lifestyle which led to anthropogenic landscape scale

change, the existence of such analyses are essential for my project.

In addition to palaeoecological work concerning the beginnings of anthropogenic landscape

change in Iberia, there has also been recent work by Gordó et al., 2015 to develop Agent Based

Models to assess the likelihood of different scenarios of the spread of agriculture in Iberia. Fi-

nally Kaplan et al., 2009 provide a top-down model to help explain prehistoric deforestation in

terms of land suitability to crop and pasture.

2.2.3 Disturbance and fire

The Mediterranean region is subject to regular wildfires, and has been for millennia. Plant spe-

cies living in the Mediterranean today have been shaped by evolutionary processes in response

to fire (Thompson, 2005). Mediterranean forests and woodlands have been described as ". . . per-

turbation dependent, nonequilibrium systems. . . " (Naveh, 1994), with fire playing an important

role as an entropy generating process. The Mediterranean is home to both fire-resistant and

fire-stimulated species – pyrophytes. Pyrophytes fall into two categories: sprouters and seeders.

Sprouters maintain thermally-insulated underground structures that allow them to resprout after

a fire. Seeders meanwhile disperse heat resistant seeds that establish quickly after a fire. There
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even exist species – ‘temporal dispersers’ – whose seeds will remain dormant until they receive

a temperature shock and then begin to germinate (Blondel & Aronson, 1999). The simple fact

of the existence of pyrophytes in the Mediterranean hints at the complex relationships between

ecological processes and fire, and highlights the need to better understand these relationships

to develop effective policies to reduce wildfire risk.

It is likely that the changes brought about by industrialisation (including land use/ land cover

change) have led to changes in the size, frequency and intensity of these fires which has, in

turn, led to them becoming a serious concern for politicians in Mediterranean countries (J. M.

Moreno & Oechel, 1994). Due to a legacy of unscientific (Naveh, 1994) treatment of wildfire as a

purely destructive force with respect to nature conservation (akin to uncontrolled grazing), fire

suppression has become the predominant policy, with large amounts of money spent on fighting

fires each year (J. M. Moreno & Oechel, 1994). However, studies have found some evidence that

current fire suppression policies may exacerbate the occurrence of large fires (Seijo et al., 2015).

The main factors that govern fire regimes are fuel availability, climate, and human activity. The

interactions between these factors have been modelled in the literature (Seijo et al., 2016; Steph-

ens et al., 2014) as a “mega fire triangle” (see Fig. 2.1). In a given landscape, fuel availability

is influenced by the spatial distribution and structure (e.g. open vs. closed canopy forest) of the

land cover. Climatic variation can lead to environmental conditions that are more or less con-

ducive to fire ignition and spread, such as periods of drought. Human activity such as forestry

operations and recreational use of areas in the wildland-urban interface (WUI) have been iden-

tified as a significant source of ignitions leading to wildfires (Stephens et al., 2014). Pausas and

Fernández-Muñoz, 2012 have hypothesised that before the 1970s, the fire regime in Valencia,

Spain was ‘fuel limited’ due to an anthropogenically-induced reduction in forest cover for agri-

cultural purposes. By contrast, following a period of ‘rural abandonment‘ during the 1970s, the

fire regime in Valencia appears to have become ‘climate limited’ because in decades since the

1970s, climatic variables were better predictors of monthly summer burnt area than they were

in earlier decades. This is an example of how factors represented in the fire triangle can shift to

produce qualitative changes in a region’s fire regime.

The apparent paradox of how fire suppression can lead to increased frequency of large fires can

be explained in terms of the factors represented in the fire mega-triangle. Fire suppression can

cause an accumulation of fuel load in the landscape that provides the means for wildfires to
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Figure 2.1: The fire “mega-triangle” illustrating the factors relating to fuel availability, anthropogenic land
cover change and climate interact to create conditions suitable for extremely large fires. From Seijo et al.,
2016.

spread further than they otherwise would. Multiple studies (Fernandes et al., 2013; Khabarov

et al., 2016) have concluded that the use of prescribed burning (that is, the deliberate ignition of

relatively small controlled fires) may be an effective way to reduce area burned by reducing fuel

availability to wildfires. Seijo et al., 2016 compared the fire regimes in two Spanish municipalities

in central Spain with comparable climatic and biophysical factors: Casillas and Rozas. Authorit-

ies in Rozas have implemented strict fire exclusion policies, whereas in Casillas traditional forest

management practices including annual burning of litterfall are more widely tolerated. Despite

the fire exclusion policies in Rozas, the observed burnt area relative to landscape size represen-

ted in official fire statistics was found to be 10 times larger in Rozas compared to Casillas for the

period 1984 to 2009. While this study is small, its findings suggest that the reduction of fuel load

through preventive prescribed burning may be a more effective way to reduce the incidence of

large fires than fire exclusion.

2.2.4 Knowledge transfer to other Mediterranean type ecosystems

There are five regions around the world that have a ‘Mediterranean Climate’, characterised by

cool, wet winters and hot, dry summers (Joffre & Rambal, 2002). These are:

• the Mediterranean Basin

• south western and southern Australia

• California
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• southern Africa

• central Chile

Further, these regions are considered to be home to Mediterranean Type Ecosystems (MTEs)

in the sense that in addition to having comparable climates, they also have similar types of

vegetation community. In particular, there is a formation characterised by a predominance of

woody shrubs with sclerophyllous (i.e. small, hard and leathery) leaves which is found in all five

MTEs. This formation is variously referred to as garrigue or maquis, chaparral, heath, matorral

and fynbos in France, California, Australia, Chile and South Africa respectively (Joffre & Rambal,

2002).

Convergent evolution in multiple regions around the world

The remarkable similarities between MTEs–combined with the accepted evolutionary isolation of

Australian and South African species with respect to the other regions–provide an opportunity

to test hypotheses relating to evolutionary convergence between species in different regions in

response to similar climates (Joffre & Rambal, 2002).

From the perspective of my research aims, the similarities between the vegetation of the five

MTEs provide an interesting and ambitious test of model performance. One could first develop

a suite of models with species in the Mediterranean Basin in mind, based on life history traits

such as evergreenness, sclerophylly, and disturbance response strategy (sprouter vs seeder, see

Section 2.2.3). Although the species in the different MTEs differ, similarities in life history traits

that have arisen as a result of evolution in response to climate could mean that the MTEs are

comparable at the level of Plant Functional Types (see e.g. Rusch et al., 2003). In that case, a

robust test of a model developed for the Mediterranean Basin would be to test whether it could

convincingly explain empirical data collected from one of the other MTEs. Such an empirical test

is outside the scope of this thesis, but is an interesting consideration for possible future work.
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2.3 The Holocene

2.3.1 Overview of changes in human behaviour

The Holocene is the most recent epoch of the Earth’s geological history. It is the second epoch

in the Quaternary period, and is differentiated from the preceding epoch by the beginning of a

clear trend of climatic warming following the final cold episode of the Pleistocene (termed the

Younger Dryas). This period of mild climate began approximately 11,700 years ago and continues

to the present day (Walker et al., 2009). In addition to being markedly warmer and wetter than

the previous millennia since the last glacial maximum 20,000 years ago, the climate was also

much more consistent during the Holocene. It is understood that this decrease in variation in

temperature and precipitation over decadal timescales played an important role in providing

the opportunity for our own species, Homo sapiens, to develop agricultural technology—and the

societal changes which came with it—for the first time (Bellwood, 2004).

To put the impact which fledgling human agriculture had on terrestrial ecosystems during the

Holocene into context, it is useful to reflect on humans’ place in the world at the end of the

Pleistocene. H. sapiens evolved in Africa, with fossil evidence showing that individuals’ brains

reached sizes comparable to those of contemporary people between 150,000 and 50,000 years

ago. These individuals are considered to be anatomically modern. Anatomical modernity is dis-

tinguished from behavioural modernity—evidenced by the appearance of artefacts in the archae-

ological record which demonstrate the cognitive capacity for Culture—which is believed to have

occurred between 50,000 and 40,000 years ago (Klein, 1995). This coincides with the earliest

date for which there is evidence of the arrival of H. sapiens in Europe, which is also believed

to have occurred 40,000 years ago (Hoffecker, 2009). At this time there were other species of

archaic humans living in Eurasia whose ancestors had left Africa up to 1.4 million years ago, as

demonstrated by archaeological finds in Israel (Klein, 1995). Notably, H. neanderthalensis coex-

isted with H. sapiens in Europe for millennia before going extinct within the last 28,000 years

(Finlayson et al., 2006). Since H. sapiens were therefore the only human species extant during

the Holocene, I will refer to them unambiguously as ‘humans’.

Before the agricultural revolution which took place in the Holocene, humans subsisted by a com-

bination of hunting and gathering. This intrinsically opportunistic method of subsistence would

have led to a varied diet, with the risk of one source of food failing mitigated by the knowledge
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of alternative sources available within a group’s home range. Hunter gatherers lived in small

groups whose size was allowed to fluctuate in response to food and resource availability, limiting

their environmental impact. Additionally, pre-Holocene humans would have moved around often,

further limiting their environmental impact and mitigating the risk of local food source failure

(Moran, 2006).

The foregoing comments regarding the limitations of pre-Holocene human environmental impacts

should not be taken to mean that early humans had no environmental impact. They would, for

instance, have chased prey across the landscape—driving population dispersal—and influenced

predator/ prey balance through their hunting (Moran, 2006). They also had access to a tool which

allowed them to quickly reshape their landscape to their advantage: fire (Pausas & Keeley, 2009).

Having mastered the controlled use of fire at least 500,000 years ago (James, 1989), humans

were able to use fire to modify their environment in order to expedite travel, to assist in hunting,

and to improve access to otherwise inaccessible edible shrubs, long before the beginning of the

Holocene (Keeley, 2002; Pausas & Keeley, 2009). The use of fire for these purposes is collectively

termed "fire-stick farming" (Bliege Bird et al., 2008; Pausas & Keeley, 2009).

2.3.2 The Agricultural Revolution

The 500 years between 11,000 and 10,500 yrs BP marked the beginning of a dramatic change

in humans’ relationship with their environment—the Agricultural Revolution. This period is also

equivalently termed the Neolithic Revolution, where Neolithic refers to the last stage of human

technological development of the stone age, characterised by the development of agriculture. For

the purposes of this thesis, I will consider the Agricultural Revolution to be a series of develop-

ments that took place in an area of Southwest Asia known as the Fertile Crescent occupying what

is now the Jordan Valley, and parts of Turkey, Syria and Iraq. This is because the technological

progression to the Neolithic era in the areas I will consider as case studies (see Chapter 3) was

triggered by the spread of developments out of the Fertile Crescent. It is worth noting, however,

that parallel revolutions culminating in the development of agricultural technology took place at

approximately the same time in East Asia, Africa and the Americas (Bellwood, 2004).

The relatively short time scale of 500 years for such a profound technological shift to occur in the

Fertile Crescent, combined with the fact of the independent occurrence of similar developments

elsewhere in the world raises the question of what was special about 11,000 yrs BP to facilitate
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the beginning of agriculture. Bellwood, 2004 asserts that it was the shift towards the warm,

wet and stable climate following the end of the Younger Dryas cold period at 11,500 yrs BP

which created conditions amenable to agriculture. In particular, the increase in winter rainfall

accompanying the beginning of the Holocene provided ideal growing conditions for cereals and

legumes.

It has also been suggested that human population growth was an additional motivating factor in

the development of agriculture (Balter, 2010; Bellwood, 2004). As climate became increasingly

favourable, the amount of available wild food—including pistachio, olives, acorns and other nuts,

wheat and barley—increased. This created the prospect for humans to settle down in one location

all year round, or for part of the year at least, and establish settlements near abundant wild

food sources without the need to travel to find enough food for sustenance; a lifestyle known as

sedentism (Bellwood, 2004). It is believed that the conception rates of women in non-sedentary

hunter gatherer groups are suppressed by biological factors relating to diet and the need to carry

young children (Bellwood, 2004). Consequently, by adopting sedentism, the people living in the

Fertile Crescent 11,000 years ago may have unwittingly amplified their birth rates. This would

have created the necessity for more food to be produced from the same area of land near their

settlements, providing an incentive for the development of agriculture. For instance, Bellwood,

2004 suggests that while a family of hunter gatherers might have required more than 100 ha

of land for sustenance, a family of shifting agriculturalists (who farm a plot temporarily before

abandoning it) would require less than 10 ha. Furthermore, a family of irrigation agriculturalists

might require less than 1 ha of land to sustain them.

A foundational technology which arose 11,000 years ago was the cultivation of plants. Bellwood,

2004 defines cultivation as ". . . a sequence of human activity whereby crops are planted (as a

seed or vegetative part), protected, harvested, then deliberately sown again, usually in a pre-

pared plot of ground, in the following growing season.". The first agriculturalists are known to

have cultivated cereals and legumes including wheat, barley, peas and lentils. They also prac-

ticed artificial selection by favouring cereals whose grains are larger than the wild type and

which ripened simultaneously, and whose ears wouldn’t shatter to release the grain without hu-

man intervention. These selected mutants would therefore already have depended on human

intervention to complete their life cycle. In addition to crops, there is also evidence of special-

ised sheep and goat pastoralism, and the domestication of pigs and cattle in the Fertile Crescent

before 9,000 yrs BP (Bellwood, 2004).
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Figure 2.2: Map showing the spread of agricultural technology out of the Fertile Crescent. From Bellwood,
2004.

After a thousand year incubation period in the Fertile Crescent, the technology of the Agricultural

Revolution began to spread further afield into Europe and South Asia. This is understood to have

been driven by a need to find new areas to cultivate due to land degradation, and the need to grow

more legumes to feed animals. Both of these factors emerged as a consequence of population

growth of both plants and animals (Bellwood, 2004). They also foreshadow the impact which the

subsequent millennia of human agricultural land use were to have on ecosystems world wide.

Agropastoral technology reached Europe between 8500 and 6000 yrs BP (Bellwood, 2004), and

reached as far as Portugal between 6800 and 6200 yrs BP (Rowley-Conwy, 1995; Zilhão, 1993)

(see Fig. 2.2).

2.4 Concepts concerning terrestrial ecosystem change

This section defines concepts from the fields of ecology (including landscape ecology and histor-

ical ecology) and biogeography that are referenced in subsequent chapters. They are defined

here to provide context and background for readers with an interest in simulation modelling, but

without specific training in these fields.
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The field of Landscape Ecology

Over the last 25 years, much of the scientific investigation into the role of humans in affecting

terrestrial ecosystem change has taken place in the field of Landscape Ecology. This highly cross-

disciplinary field has been described as ". . . a young branch of modern ecology that deals with

the interrelationship between man and his open and built up landscapes. . . " (Naveh & Lieber-

man, 1994). It is a human ecosystem science which incorporates techniques and practices from

geography, ecology, landscape planning and landscape management.

An ecosystem is a theoretical entity encompassing all the organisms in a particular area, along

with all the processes which allow them to exchange energy and matter amongst themselves, and

with their physical environment (Aber & Melillo, 2001; Ricklefs, 2000).

Land cover/ land use change

As human population demands increase in a particular area, land cover is converted from a re-

latively unmanaged state to one whose anthropogenically imposed purpose is to produce food

crops, raise animals, provide space for property development, etc. (Turner & Gardner, 2015).

This process of land cover/ land use change can have dramatic impacts on ecosystems both loc-

ally to where the change has taken place and further afield. For example, cutting down trees in a

woodland to provide agricultural land can have multiple secondary effects on ecosystem function.

First, it reduces the ability of the ground to absorb water, increasing the risk of flooding further

downstream. The water retention capacity of woodland is an example of an ecosystem service

not associated with a product. Second, loss of ground cover also contributes to erosion and loss

of soil, potentially reducing the fertility of the land (Redman, 1999). Third, cutting down trees

reduces the landscape’s natural carbon sequestration. The beginning of agriculture represents a

step change in the intensity with which humans would have caused land use/ land cover change.

Before the agricultural revolution, humans subsisted as hunter gatherers who would have mod-

ified the landscape through deliberate and accidental fire and impacts on animal distributions

through hunting (see Section 2.4.1). However, these land use/ land cover modifications would

have been at lower intensity compared to those made in permanent settlements following the

agricultural revolution (see Section 2.3.1).
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Disturbance

Pickett and White, 1985 define ‘ecological disturbance’ as follows:

“A disturbance is any relatively discrete event in time that disrupts ecosystem, com-

munity, or population structure and changes resources, substrate availability, or the

physical environment.”

Note that this definition is broad enough to incorporate a wide range of phenomena incorporating

individual tree falls resulting from high winds during a storm, insect outbreaks, wildfire, and

anthropogenic land management practices such as stand clearance for timber or agricultural

purposes. This generality will be important in framing the conceptual model for my simulations,

since the vegetation response to a lightning induced wildfire, and to the practice of anthropogenic

‘slash and burn’ farming methods will be essentially equivalent.

Disturbance plays a key role in the evolutionary strategies of many plant species, with some

requiring disturbance to complete their life cycle. In many ecosystems (including those of the

Western Mediterranean), fire is an important source of disturbance and should not necessarily

be viewed as a purely destructive phenomenon (see Section 2.2.3).

Ecological succession

The species assemblage, i.e. the relative proportions of different species present at a location, are

expected to change over time (Redman, 1999). This process is known as ecological succession.

Succession is often framed in relation to a particular disturbance as the temporal starting point

for a sequence of species assemblage stages. Ecological succession is a form of self-organisation

(Redman, 1999).

2.4.1 Humans as part of nature

A pervasive attitude in the modern world–especially among those who would consider themselves

to be an environmentalist–is that there are areas which are uninhabited by people and which

are therefore entirely ‘natural’ and pristine. These places, and their colocated ecosystems, are
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treated reverentially by environmentalists, and their special status is recognised legally by the

formation of national parks (consider the Lake District and Peak District in the UK, and Yosemite

and Yellowstone in the US). Such an attitude helps to create the impression that there is a clear

distinction between humans and their artifices – cities, infrastructure, cultivated land – and true

nature (or wilderness) – windswept mountains, impenetrable rainforests, and wild savannahs.

This distinction, which Cronon refers to as "wilderness dualism", can be shown to be both ill-

founded by point of historical fact in specific cases, and to be fundamentally a cultural construct

more generally (Cronon, 1996).

The constructed nature of the concept of wilderness can be seen from the shift in meaning which

it has undergone within the last 250 years. Before the 19th century, the wilderness was asso-

ciated with desolation and waste. For example, according to the Judeo-Christian tradition, the

wilderness was where Adam and Eve went after being exiled from the garden of Eden, where

Moses led the Isrealites for forty years following their flight from Egypt, and where Jesus of

Nazareth was tempted by the devil (Cronon, 1996; Redman, 1999). In contrast, by the time

Wordsworth and his contemporaries within the romanticism movement were writing, the natural

landscapes of the wilderness provided the backdrop for religious experiences which made these

authors feel closer to God. Untouched nature had become culturally identified with the sublime.

Cronon, 1996 argues that through a process of domestication which occurred over a period of

decades as increasing numbers of people took to exploring natural landscapes for recreation, this

recently derived sense of reverence for pristine nature gave way to the modern environmentalism

movement.

Aside from the constructedness of the concept of wilderness, archaeological evidence can demon-

strate that even those ecosystems which are given national park status, or are considered as

otherwise important due to their perceived naturalness, have been perturbed to some extent by

human action. It is known, for example, that Woolly Mammoths existed in Britain and Ireland

(Kahlke, 2015) until as recently as the late Pleistocene, 14,000 yrs BP (Lister, 2009). Ongoing

scholarly contention (Redman, 1999) makes it difficult to attribute the Quaternary megafaunal

extinction to human action directly. However, a recent study using discriminative modelling to

identify whether human or climatic influences were the best predictors of megafaunal extinctions

in regions around the world, Bartlett et al., 2016 found that most of their high performing models’

power in explaining the extinction of megafauna in a region was attributable to the arrival of hu-

mans. It is currently impossible to substantiate the claim that Mammoths would be roaming the
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English Lake District had humans not intervened. However, the fact of their absence combined

with uncertainty around the degree of human involvement in their demise serves to highlight

what we don’t know about the role pre-Holocene humans played in influencing the distribution

of species which leave less obvious fossilised indications of their presence.

Sites that were subject to land use change since the development of agriculture provide more

specific examples of how ancient humans made comprehensive changes to land cover in regions

which might be naively taken to be untouched by human action. Consider, for instance, the

rainforests of Central America, which were the home of the Mayan civilisation. It is estimated

that, at their peak, the Maya cleared up to 75% of their lands for the purpose of agriculture.

Nevertheless, by the time the Spanish arrived in Central America in the sixteenth century, they

were met by unbroken rainforest (Redman, 1999).

While there is clearly cultural and aesthetic value in protecting areas of exceptional natural

beauty from being subsumed into the urban sprawl, there are important practical issues raised

by adopting a strong form of wilderness dualism. By revering the untouched wilderness and

regarding all human uses for any non-human part of the world as abuse, we are in danger of

leaving no room for people at all. Cronon, 1996 suggests that the solution to this is to recog-

nise humans as being a part of – not aside from – nature, and to seek a responsible, principled,

middle ground, whereby humans can make informed choices about how to use parts of the non-

human world which is sustainable for both ourselves and the non-human world itself. A pertinent

question, then, is how to derive the principles upon which this responsible middle ground should

be determined. I see the field of Historical Ecology (Crumley, 1994; Moran, 2006) as being an

important source of inspiration for addressing this question. Historical Ecology emphasises the

importance of incorporating human decision making into explaining the present state of ecolo-

gical systems. By understanding how humans have impacted ecosystems in the past, we might

be able to learn how to limit our impacts in the present (Beller et al., 2017).
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2.5 Evidence of land cover change over centennial timescales

2.5.1 Pollen

To provide evidence in support of certain models rather than others, I require empirical data

against which I can compare model outputs. Due to the timescales involved in the processes

I would like to model, the only evidence I can use to compare their results to is necessarily

palaeoecological. In particular I will use datasets describing the abundance of fossilised pollen

in sediment cores extracted by researchers in the field of palaeoecology (Carrión et al., 2010;

Deza-Araujo et al., 2022; Deza-Araujo et al., 2020). Since fossilisation can only take place under

specific circumstances, useful cores can only be extracted from sediment which was wet at the

time of pollen deposition, such as the banks of ancient rivers or lakes (Franks, 1957).

Sediment cores can be used to build a picture of the relative proportions of different species

of plants in a landscape over time—a key output for my models. By taking a small sample of

sediment and treating it chemically to release the pollen and charcoal within (see e.g. Magri and

Sadori, 1999 for details of this process), it is possible to inspect the fossilised plant remains under

a microscope and identify the presence of different species by the characteristic appearance of

their pollen. By counting the number of each species’ pollen grains in the sample, researchers

can calculate the proportion of pollen contributed by each species in a process known as pollen

analysis (Franks, 1957).

Pollen analysis can be combined with radiocarbon dating techniques to determine the age of

sediments at different depths below the surface at a study site of interest in a process known

as pollen stratigraphy. By extracting a vertical core of sediment and performing pollen analysis

on samples taken along its length, it is possible to construct a composite time series – known as

a pollen diagram – representing the relative abundance of each species’ pollen present around

the study site over periods of millennia (Magri & Sadori, 1999). By extracting sediment cores

at multiple locations in a landscape, pollen stratigraphy can be used to infer the distribution of

plant taxa in both time and space.

Recently Conedera et al., 2017 set a precedent for using plant fossils for the study of the re-

lationships between forest composition, human influences climate and disturbance, as I plan to

do. These authors are concerned with the establishment of effective silvicultural practices in
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the Swiss Alps, and argue for the importance of palaeoecological species distribution data in

ecosystem modelling. I fully agree with them, but would also note that due to there being more

precipitation in the Swiss Alps than in Iberia, one would expect there to be far fewer fossilisation-

friendly sites in Iberia which can provide the high quality data Conedera et al., 2017 were able

to obtain for sites in the Alps. Consequently, an important objective of my modelling efforts will

be to utilise what data is available for Iberia as efficiently as possible.

A nuance of pollen analysis data which needs to be considered in the context of my project is the

fact that each sample represents the proportion of each species’ (or genus’) pollen present at that

(stratigraphically inferred) time. Since my models will produce output in terms of the abundance

of each species/ genus, raw model outputs cannot be compared directly to empirical data. Due

to a phenomenon known as the Fagerlind effect (Prentice & Webb, 1986; Reitalu et al., 2014),

the relationships between the relative proportions of different pollen types present in a sediment

sample and the abundance of various species/ genuses living in the area at the time are expected

to be non-linear (Reitalu et al., 2014). This is a result of variation in the pollen productivity and

deposition rates between different species/ genuses.

2.6 Learning from computer simulations

Simulations are a form of scientific model that can be used to encode knowledge of how a sys-

tem or process evolves in time. In this way they are analogous to scientific models that are

expressed as differential equations that describe how a variable of scientific interest changes

over time. However, by leveraging the memory available to a computer, simulations can integ-

rate many more data sources and processes than a human being can reason about simultaneously

unassisted.

2.6.1 The role of simulation models in science

The act of creating a model formalises knowledge and provides an object of focus for future

researchers. Describing a model requires the modeller to be explicit about which processes they

consider important to explain the real-world phenomena their research questions commit them

to explaining. They also need to be explicit about which parameters are needed to describe those
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processes mathematically. Once tentative mathematical descriptions of processes are written

down, parameter values tabulated, and results plotted, future researchers can scrutinise the

work in detail. In particular, they can use evidence of the importance or sensitivity of a model to

particular parameters to motivate subsequent empirical work to improve best-estimates of those

parameters. This will, in turn, increase confidence in the outputs of models using the updated

parameter values.

2.6.2 Difficulty of direct experimentation

Direct experimentation in landscape ecology is extremely challenging because of the large spatial

and temporal extents over which relevant processes take place. An example of a large-scale

ecological experiment is the Metatron (Haddad, 2012). This experiment contains 48 patches of

100m2, and is used to perform replicated, controlled experiments on animal dispersal patterns.

The study area involved in the Metatron experiment is remarkably large, and yet 100m2 patches

would be insufficient to address problems in landscape ecology.

An alternative approach is to develop natural experiments, such as the WrEN project (Watts et

al., 2016). This involves the selection of study sites that exemplify particular values of ecological

variables of interest. In the WrEN project, this approach is used to study biodiversity. By collect-

ing a large enough sample of such sites, it is possible to argue that differences in the value of a

dependent variable (e.g. the presence of a species of bird) can be explained by the differences in

an independent variable (e.g. the proportion of the land nearby that is used for agriculture) when

other independent variables are held constant across sites. This methodology limits the range of

experimental treatments that can be applied because it is only possible to investigate effects that

have been observed somewhere at least once.

2.6.3 Agent Based Modelling

An Agent Based Model (ABM) is a computational model that represents discrete social units

(called ‘agents’) that interact with each other and their environment, and can make autonomous

decisions (Axtell et al., 2002). An agent can be any entity that can be meaningfully attributed the

ability to make decisions and interact in this way, such as an individual person, a household, or a

nation state. ABM is a ‘bottom up’ modelling approach that allows practitioners to explore how
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individual-level decisions give rise to system-level outcomes (Retzlaff et al., 2021).

Complexity

A system is complex if it exhibits emergent behaviour as a result of interactions between

autonomous sub-units (often competing for a limited resource) with no centralised controller

(Johnson, 2009; Sun et al., 2016). The system-level behaviour is emergent in the sense that it

cannot be predicted based on knowledge of the behaviour of the sub-units alone. ABMs, and the

systems they are employed to model, are complex systems. In the context of an ABM of land

cover change, the autonomous agents might be people competing for access to preferred areas

of land. If the agents are able to alter properties of the land they access, and those changes are

persistent to some degree over time, this creates both spatial and temporal interdependencies

between agents and their environment. Interdependencies are known to create “nonconvexit-

ies”, i.e. a non-smooth functional relationship between the model’s parameters and its outputs.

Additionally such systems can have multiple equilibrium states, with the equilibrium state the

system reaches in a given realisation of the model being dependent on its initial conditions

(Parker et al., 2003). This presents a challenge for the calibration and interpretation of outputs

of models of complex systems.

Scale

In ABM, a concept of scale is implied by the organisational hierarchies of agents represented in

a model. In a model of land use change, for example, we might choose to represent individual

people, households, and villages as agents. Decisions and behaviour at the person scale level

would aggregate up to the household level, and decisions and behaviour at the household level

would aggregate up to the village level. At each scale level, agent behaviour leads to emergent

behaviour at the next scale up in the hierarchy, which in turn influences behaviour at the next

level (Manson et al., 2012).
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Advantages and disadvantages of ABM

ABM allows practitioners to specify models in terms of intuitive, real world concepts even when

the behaviour of the system of a whole is not well understood. ABM can be considered in con-

trast to ‘aggregate’ or ‘top-down’ modelling approaches in which the behaviour of an aggregate

quantity is modelled directly. One example of a top-down model in ecology is the Lotka-Volterra

population model, in which in the population sizes of predator and prey species are modelled

using a system of differential equations (Wangersky, 1978). In ABM, the behaviour of aggreg-

ate quantities of interest emerge as a consequence of the interactions between the entities that

are represented in the model at a finer scale than the aggregate quantities themselves. This

allows an ABM to provide an explanation of how fine-scale interactions cause aggregate-level

behaviours in a way that a top-down model could not. Additionally, ABMs make it possible to

represent heterogeneity among the represented fine-scale entities (O’Sullivan et al., 2012). For

example, a land use change model in which both the area of land that is required per household

and the spatially heterogeneous properties of that land influences each household’s behaviour

could not be fully realised with a top-down model.

Despite their advantages, ABMs (especially those with highly heterogeneous agents) tend to re-

quire more parameters than a comparable top-down model to represent their modelled processes.

Consequently, ABMs are resource intensive in terms of both development time and computational

expense (O’Sullivan et al., 2012). Moreover, the increased number of parameters required for

ABMs make them more difficult to calibrate (Manson et al., 2012) and validate (Retzlaff et al.,

2021) than comparable top-down models. These disadvantages need to be considered in relation

to the objectives of a model before deciding to use ABM.

Modelling purpose

When developing any model (ABM or otherwise) it is important to be clear about the purpose of

the model, because a model’s purpose determines the criteria by which it will be evaluated, and

its results understood (Edmonds et al., 2019). One such modelling purpose is prediction. For a

model to be used for prediction it needs to be able to reliably produce estimates of one or more

quantities or behaviours that were not known before the model was run. The requirement that

such predictions be reliable is essential to this use case because if they are not then users would

32



have no confidence that any particular prediction could be relied upon (Edmonds et al., 2019).

An example of a class of models that are used for prediction is those that are used to produce

weather forecasts.

Alternative modelling purposes that have been proposed in the literature and are relevant to the

work in this thesis are Guide data collection, Illuminate core dynamics, Illuminate core uncer-

tainties (Epstein, 2008), and Explanation (Edmonds et al., 2019). To evaluate whether or not a

model explains the observed phenomena that it is designed to represent, a modeller would use

the model to run one or more scenarios (each comprising a specific set of boundary conditions

and parameters) for which there is corresponding empirical data that the model’s outputs can be

compared to. The model can be said to explain the modelled phenomena if its outputs satisfact-

orily approximate the empirical data. The fact that a given model’s outputs are consistent with

empirical data does not imply that it is the only model that can explain the data. It is possible that

there are other models that explain the data as well or better. This is referred to as equifinality

(Poile & Safayeni, 2016). Explanatory models are useful because the process of creating them

involves the specification of unambiguous logical rules and assumptions that can be scrutinised

and evaluated (Epstein, 2008). This is a valuable scientific exercise because it makes assump-

tions explicit, and allows us to identify situations where the modelled rules do not satisfactorily

explain observed phenomena. This, in turn, can motivate a revision of the represented processes

and highlight gaps in available empirical data in the relevant field. The model presented in this

thesis is intended to be used for explanation in the sense outlined here.

2.6.4 Comparable models

In this thesis I present an Agent Based Model that represents the effects of subsistence agricul-

ture on land cover change during the mid-Holocene (see Chapter 4). An early example of the use

of ABM to represent prehistoric communities’ interactions with their environment is the Artificial

Anasazi model (Axtell et al., 2002). This model represents demographic change and spatially ex-

plicit settlement patterns in the Long House Valley, Arizona (U.S.) from 800 CE (Janssen, 2009).

Axtell et al., 2002 state their motivation for using ABM as follows:

“Agent models offer intriguing possibilities for overcoming the experimental limita-

tions of archaeology through systematic analyses of alternative histories. Changing
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the agents’ attributes, their rules, and features of the landscape yields alternative

behavioral responses to initial conditions, social relationships, and environmental for-

cing.”

More recently, Wainwright, 2008 used spatially a explicit ABM to investigate the effect of inter-

actions between land cover and anthropogenic activity (including agriculture) on soil erosion in

Mediterranean landscapes. Additionally, modelling work by Henne et al., 2013 is comparable to

the work presented in this thesis. Those authors used the LandClim model (Schumacher et al.,

2004) to simulate the effect of fire and anthropogenic ungulate browsing activity on land cover

from 7000yrBP to the present. In their model, browsing intensity is represented as a ‘top down’

aggregate disturbance process that has the effect of reducing biomass in the landscape, rather

than an agent-based model.
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Chapter 3

Case study selection and data

processing

This chapter begins by explaining how I selected a set of study sites against which I will calibrate

the AgroSuccess model in Chapter 5, and which I will use as the subjects of simulated experi-

ments in Chapter 6. In Section 3.2 and Section 3.3 I describe the different types of data I use to

characterise the study sites, and explain the data processing steps I undertook to prepare these

data for inclusion in my simulation modelling procedure.

3.1 Study sites

In this section I discuss the sources of secondary data that are available to characterise study

sites, and provide the rationale by which I selected sites for inclusion in my analyses.

3.1.1 Data sources

There are two databases that I have identified as sources of pollen abundance data while select-

ing study sites: the European Pollen Database (EPD) (Fyfe et al., 2009; Giesecke et al., 2014)

and Neotoma (Goring et al., 2015; Williams et al., 2018). Both the EPD and Neotoma collate

paleoecological data relevant to this thesis and allow access through a standard interface; in the

case of the EPD this is a documented PostgreSQL database structure, whereas Neotoma provides

35



a web-based API. A clear advantage of accessing data through a database or API (rather than by

downloading data in the form of flat files for each site) is that queries can be reused. For example,

one might write a script to obtain the pollen sequence for a given site from one of the databases.

By simply replacing the site identifier string in this script with a variable, it is possible to obtain

the corresponding data for any site in the database. This approach will save effort in the long run

(since it will not be necessary to process data from flat files into a unified format), and enables

one to write programs to search large amounts of data automatically.

Neotoma is a project borne out of an ongoing collaboration between the EPD and the North Amer-

ican Pollen Database (Goring et al., 2015). It contains both pollen and charcoal data, and also

includes also includes data describing many other forms of palaeoecological evidence relating to

the study of fauna. As one might expect given the involvement of the EPD in the Neotoma project,

much of the data included in the EPD also appears in Neotoma. There is also an R package (called

neotoma) which can be used to query Neotoma programatically via http requests, conveniently

returning data in a format which is easy to manipulate as part of a larger R program.

The EPD is a database which was established in the 1980s specifically for the collation, archive

and distribution of European Quaternary pollen data (Goring et al., 2015). The database also now

includes plant microfossil data, including charcoal. While there is a page on the EPD’s website

intended to allow researchers to browse individual sites, the manual browser-based interface

precludes automated filtering of study sites. Rather than rely on the browser interface, I down-

loaded the entire EPD as a Postgresql database. This means of distribution makes querying the

EPD more difficult than querying Neotoma initially. However, I found that the EPD generally con-

tains data on more sites within Iberia than Neotoma. See Section 3.2.1 for details of a software

application I have developed to simplify interaction with the EPD.

3.1.2 Subdividing Mediterranean-type ecosystems

In Section 2.2 I introduced the idea of a Mediterranean-type ecosystem (MTE)—ecosystems char-

acterised by cool, wet winters and hot, dry summers (Joffre & Rambal, 2002). As all the study

sites selected will be in the Iberian Peninsula, all of them will be examples of MTEs. While select-

ing study sites, however, it is useful to be able to be more specific in my characterisation of the

bioclimatic conditions at each site. This is because differences in bioclimatic conditions between

sites are expected to cause differences in the corresponding ecological processes. To diagnose
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whether AgroSuccess is able to characterise the ecological processes in locations within Iberia

with slightly different bioclimatic conditions, it is important that the study sites I evaluate it

against represent a range of such conditions.

Previous work has classified the bioclimatic conditions found in Mediterranean regions into dis-

crete bands. We can then think in terms of the flora and fauna we would expect to find in those

conditions. An established way of doing this relies on the concept of bioclimatic life zones.

Blondel and Aronson, 1999 define life zones as "elevational/latitudinal belts of plants and an-

imals which tend to share ecological affinities and occur together." In practice, such zones can

be determined by identification of the two or three dominant tree or shrub species in an area.

Blondel and Aronson, 1999 define and describe eight such life zones. However, of these I will

focus on three specifically. In warm regions at low altitude and latitude we have the thermo-

Mediterranean life zone which is characterised by almost all woody plants being evergreen and

sclerophyllous, and whose indicator trees are the cork oak (Q. suber) and the cluster pine (P.

pinaster). At higher elevations and latitudes the meso-Mediterranean life zone occurs, indicated

by the proliferation of the evergreen holm oak (Q. ilex) and the Aleppo pine (P. halepensis). Fi-

nally at still higher altitudes and latitudes we reach the supra-Mediterranean life zone which is

dominated by deciduous oak forests. In Northern Spain the downy oak (Q. humilis) is a useful

indicator species.

The use of life zones to categorise combinations of bioclimatic conditions into qualitatively dif-

ferentiated categories makes it possible to abstract away the fine-grained differences between

study sites. While this categorisation is somewhat artificial, it will simplify thinking and dis-

cussion about differences in socio-ecological dynamics within and between life zones. On the

other hand, authors who have collected palaeoecological data from study sites are not necessar-

ily aware of the notion of a life zone, and nor would they necessarily agree with the distinctions

between them described by Blondel and Aronson, 1999. Therefore it is necessary for me to cat-

egorise sites into life zones myself, based on meta data that are reliably associated with study

sites by the original authors.

Due to the qualitative nature of the distinctions between life zones, my means of classifying study

sites is by my own convention. I make use of a semi-quantitative plot provided in Blondel and

Aronson, 1999 (reproduced in Fig. 3.1a) which delineates boundaries between life zones as a

function of latitude and altitude—data that are available for all study sites represented in the
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(a) Plot of Life Zone boundaries after Blondel and
Aronson, 1999

(b) Process of digitising the Life Zone boundary plot
using the Plot Digitizer tool (Huwaldt, 2001)

Figure 3.1: Screen-shot of the Plot Digitizer programme in the process of digitizing the plot from Blondel
and Aronson, 1999. Yellow points are points along curve d which have already been digitized, and the
program’s approximation of the plot’s Latitude and Altitude axes are indicated in red and blue respectively.

EPD. To help me classify sites into life zones programmatically, I created a digital representation

of the plot in Fig. 3.1a. First I represented each of the curves in Fig. 3.1a numerically by using

Plot Digitizer (Huwaldt, 2001), an open source project that provides a GUI to sample points in an

image of a plot within the plot’s own coordinate system. A screen-shot of the process of sampling

points along one of the curves can be seen in Fig. 3.1b. In this image, the red and blue lines are

the latitude and altitude axes of the plot as represented within Plot Digitizer. The string of yellow

points shows the sampled data. As can be seen, this GUI allows one to sample points from a plot

image with high resolution. Repeating this process for all curves in the plot, I obtained between

53 and 120 latitude-altitude pairs for each curve (depending on the curve’s total length). These

data were then exported to .csv files.

Having obtained numerical samples from the life zone boundary curves, I then used the R pro-

gramming language to create objects representing approximate functions of the curves. In par-

ticular, I used R’s approxfun() function to perform linear interpolation between the sampled

points for each curve. This enabled me to obtain the life zone within which any altitude-latitude

pair represented on the original plot falls.
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3.1.3 Study site selection criteria

I decided to focus on a selection of six study sites for the analyses described in this thesis. This

is a compromise between the requirement to confront AgroSuccess with data from a variety of

sources, and the need to be able to develop a qualitative understanding of the socio-ecological

processes that took place at each site based on the analysis of the original authors. This latter

requirement is important to ensure I am able to interpret my own results. In addition to the

inclusion of sites from various life zones and locations, I also aim to also ensure that the selected

sites are associated with data which covers a significant proportion of the temporal range of

interest (the Holocene). Based on these requirements I selected study sites according to the

following criteria:

• 4 sites should be in Mesomediterranean life zones.

• 1 site should be in a Thermomediterranean life zone.

• 1 site should be in a Supramediteranean life zone.

• Sites should be distributed as evenly as possible around Iberia to ensure adequate spatial

coverage.

• There should be variety in the date of onset of human activity between sites.

• All sites should have palynological (pollen abundance) data associated with them.

• The temporal range of all sites’ datasets should cover at least 50% of the Holocene.

3.1.4 Identification of candidate study sites

To create a long-list of study sites I drew on previous work by Carrión et al., 2010 in which

the authors summarise trends found among 156 palaeoecological sites whose data describe the

vegetation history of the Iberian Peninsula and Balearic Islands throughout the Late Glacial and

the Holocene. I draw on the expert scholarship of the specialist biogeographers who wrote this

paper (and the contained references) to interpret the palynological data sets associated with the

study sites. The journals that published the original papers reviewed in Carrión et al., 2010 did

not, in general, retain and distribute the original datasets used by the authors. Therefore, my
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strategy for obtaining suitable data sets is to match datasets recorded in Neotoma and the EPD

with studies described by the authors of Carrión et al., 2010.

While reviewing the work of Carrión et al., 2010 I first extracted information about the bioclimatic

belt (Thermo-, Meso-, and Supra-Mediterranean) that each of the sites reviewed are situated in. I

also noted if these sites had evidence of prehistoric humans in their palaeoecological record and,

if so, which period. I then used a Python program to link this information to data from the paper’s

supplementary materials to provide geographical coordinates and references for original authors

in addition to life zone and date of human onset for each site. Associating sites with references

was a crucial step in ensuring sites found in the EPD and Neotoma really did correspond with

sites discussed in Carrión et al., 2010.

Because of possible variations in the rendering of site names that might exist between the review

article and the databases (especially in light of accents associated with the Spanish language), I

used geographical coordinates as the principle method of cross referencing sites. I first queried

Neotoma for sites within a 4km2 bounding box around those studied in Carrión et al., 2010. This

procedure identified 5 sites in Neotoma. Performing the same search on the EPD yielded the

same sites as were found in Neotoma, plus an additional 4 sites. From these I selected two of the

sites that I ultimately selected as study sites—San Rafael and Navarrés (see Table 3.1) . Of the

other 7 sites found in the EPD and Neotoma, some covered a temporal range of less than 50% of

the Holocene, and the others didn’t satisfy my objectives specified in Section 3.1.3.

To obtain additional sites, I broadened my search by querying both Neotoma and the EPD to

obtain a list of all sites within a geographical bounding box encompassing Iberia. The life zone

for each site was calculated using its latitude and altitude as stated in the source database. I

also retrieved the earliest and latest radiocarbon dates associated with the data from each site,

in order to determine which datasets covered a sufficient proportion of the Holocene. From this

search I obtained a long-list of 59 sites. Of these 9 corresponded to the studies referenced in

Carrión et al., 2010, and 50 were not considered in that review but are included in the EPD or

Neotoma.
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3.1.5 Final selection of study sites from long-list

To make a final selection of study sites from the list of candidates identified in the EPD and

Neotoma I:

1. Plotted all 59 potential study sites on a map of Iberia to establish an intuition for their

distribution in space.

2. Preferentially selected sites whose database entries indicated their data covered a large

proportion of the Holocene (and excluding completely sites whose data covers less than

50% of the Holocene).

In Table 3.1 I summarise the final selection of study sites, including pertinent data relating the

the onset of human activity (if known based on the summary analysis in Carrión et al., 2010),

the temporal range of the associated data, and references to the original studies that produced

the data. Fig. 3.2 shows a map of Iberia indicating the locations of the 59 study sites considered,

with the six sites referenced in the remainder of this thesis highlighted. Of the selected sites, four

(Algendar, Atxuri, Algendar, and San Rafael) are within 20km of the coast. Consequently, readers

should note that there is a bias towards coastal regions in the study sites analysed in this thesis. I

produced Fig. 3.2 by applying the bioclimatic life zone model described above (see Section 3.1.2)

to SRTM30 Digital Elevation Model (DEM) data (Farr et al., 2007) to associate each pixel in the

DEM with a life zone category using a Python program. I then plotted the resulting image as a

map using QGIS software. The locations of study sites were extracted from the EPD.
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Figure 3.2: Map of locations of study sites within Iberia. Open circles indicate sites that were selected for
subsequent analysis. Closed circles indicate sites that were considered but not selected.
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Elevation [m] Life zone Hypothesis Prediction in terms of model attributes Citation

Charco da

Candieira
1,400 Montane

First anthropogenic impact on vegeta-

tion occurred 6500 yr BP.

Expect models in which date of arrival of

first agriculturalist, ta0, is ca. 6500 yr BP

will be deemed more likely in light of pa-

lynological data than otherwise.

van der

Knaap

and van

Leeuwen,

1995

Regime change from climate dominated

vegetation trends to human domination

occurred in the latter part of the Holo-

cene (after 5500 yr BP).

Models in which anthropogenic disturb-

ance is excluded will perform worse in

explaining pollen sequences after 5500

yr BP.

van der

Knaap

and van

Leeuwen,

1995

Humans had a modest impact on forest

composition through small-scale defor-

estation and grazing until 4500 yr BP,

after which over-grazing occurred.

Model runs in which incidence of pastur-

alism increases after 4500 yr BP will be

better predictors of pollen trends than

those in which incidence of pasturalism

does not increase around this time.

van der

Knaap

and van

Leeuwen,

1995

Regime change from small-scale to large-

scale deforestation ocurred 3200 yr BP

associated with the development of a

‘cultural landscape’.

Model’s ability to explain pollen trends

will decrease significantly after 3200 yr

BP due to lack of representation of cul-

tural landscapes.

van der

Knaap

and van

Leeuwen,

1995
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Atxuri 500 Meso

First human settlement occurred around

5000 yr BP.

Expect models in which date of arrival of

first agriculturalist, ta0, is ca. 5000 yr BP

will be deemed more likely in light of pa-

lynological data than otherwise.

Penalba,

1994

The absence of Fagus (Beech) in north-

west Spain is explained by its east-west

expansion being interrupted by anthro-

pogenic disturbance.

Models in which anthropogenic disturb-

ance is excluded will tend to predict

greater prevalence of fire intolerant spe-

cies (such as Beech) than those in which

human impact is considered.

Penalba,

1994

Monte

Areo mire
200 Meso

Human pastoralism was established in

the area by 7300 yr BP.

Expect models in which date of arrival of

first pastoralist, tp0, is around 7300 yrs BP

will be deemed more likely in light of em-

pirical data than otherwise.

López-

Merino

et al., 2010

Cereal pollen dated to 6700 yrs BP indic-

ates agriculture was established in the

area by this time.

Expect models in which date of arrival of

first agriculturalist, ta0, is before 6700 yrs

BP will be deemed more likely in light of

palynological data than otherwise.

López-

Merino

et al., 2010
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Climate and anthropogenic drivers in-

teracted together to produce observed

trends.

Models in which both anthropogenic and

climatic changes occur simultaneously

will better predict observed palynolo-

gical data than those models in which

either occur individually.

López-

Merino

et al., 2010

Navarrés 225 Thermo

Agricultural practices emerged in the re-

gion ca. 7000 yr BP, and intense agricul-

tural activity in the vicinity of Navarrés

at least as early as 5000 yr BP.

Expect models in which date of arrival of

first agriculturalist, ta0, is between 5000

yr BP and 7000 yr BP will be deemed

more likely in light of palynological data

than otherwise.

Carrión

and Dupré,

1996

Human disturbance led to abrupt change

from Pinus to Quercus dominance ca.

5930 yr BP.

Trend of switching from Pinus to Quer-

cus more likely to emerge in models in-

cluding anthropogenic disturbance than

those which don’t.

Carrión

and Dupré,

1996

Pinus to Quercus replacement driven

primarily by increase in wildfire fre-

quency after 7000 yr BP.

Pinus to Quercus transition could be

explained by increasing fire frequency

parameter, pF , after 7000 yr BP in

model runs independently of anthropo-

genic activity.

Carrión

and Van

Geel, 1999
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Algendar 21 Thermo

First human settlement occurred

between 5000 and 4000 yr BP.

Expect models in which date of arrival of

first agriculturalist, ta0, is between 4000

and 5000 yr BP will be deemed more

likely in light of palynological data than

otherwise.

Yll et al.,

1997

Abrupt change from predominantly

mesophilous communities to olea domin-

ated maquis (open landscape) between

5000 and 4000 yr BP was climatically

triggered and then exascerbated by

human settlement.

Models in which anthropogenic disturb-

ance is excluded will perform worse in

explaining pollen sequences after 4000

yr BP.

Yll et al.,

1997

San Rafael 0 Infra

Rapid deforestation and spread of steppe

communities around 5000 - 4500 yr BP

occurred in response to emergence of

the semi-arid conditions which persist in

the present.

Deforestation trend beginning ca. 4500

yr BP can be explained by models which

represent climatic changes, but no an-

thropogenic influence.

Pantaleon-

Cano et al.,

2003
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Otherwise expected trends associated

with anthropogenic disturbance in the

area are not visible in the San Rafael

sequence because they were overshad-

owed by the effects of aridification due

to climatic change.

Including anthropogenic influence into

models in addition to climatic driving

should have a negligible affect on veget-

ation trend.

Pantaleon-

Cano et al.,

2003

Table 3.1: Study sites and key characteristics considered in their selection. Also shown are summaries of hypotheses which have been proposed to explain observed
trends in pollen sequences – in most cases invoking anthropogenic influence – along with corresponding predictions in terms of model attributes.
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3.2 Empirical pollen abundance reference data

This section explains how I obtained pollen abundance data for each of the study sites selected in

Section 3.1.4. I describe the steps undertaken to process the data into a form that can be readily

compared to the outputs of simulation outputs. In Chapter 6, each simulation run will generate

data that allows us to understand how the proportion of the simulated landscape occupied by

different types of land cover changes over time. The reference data described this section links

how the land cover at each of the study sites changed over time according to physical evidence

on one hand, to the outputs of simulation runs on the other. This reference data plays a central

role in grounding the model in reality. By manipulating the model and seeing how different

settings make simulation outputs more or less like the reference data we can ‘tune’ the model

parameters to allow its outputs to most closely reproduce empirical data. The code used to

perform the analyses described in this section can be found in the pollen-abundance directory

of the agrosuccess-data repository (see Appendix G.S4).

It is necessary to use pollen abundance data as an empirical proxy of the land cover of the land-

scapes simulated by AgroSuccess because the target study period for all study sites considered

is the mid-Holocene (see Section 2.5). It is not appropriate to use contemporary land cover data

from remote sensing (e.g. the CORINE dataset from the Copernicus Land Monitoring Service)

because mid-Holocene land cover is expected to be significantly different to contemporary land

cover due to the impacts of agriculture and industrialisation that occurred in the intervening

millennia. Similarly, I do not expect to be able to meaningfully compare AgroSuccess’s outputs

to contemporary land cover data sets.

3.2.1 Obtain and clean species-level pollen abundance data

Pollen abundance data was extracted from the European Pollen Database (EPD) (Fyfe et al.,

2009) (see Section 3.1.1). The only file format in which the EPD is distributed that does not

require proprietary software to read is a dump from a Postgres database. To access this data,

users need to:

1. Set up a Postgres database on their system

2. Consult the EPD’s published documentation to learn how the data they need is organised in
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Figure 3.3: Example of a schema diagram used during the construction of a SQL query for extracting data
from the European Pollen Database.

the database

3. Construct a SQL query to relate the database tables containing the required data in the

appropriate way, possibly making use of a schema diagram such as that shown in Fig. 3.3.

Even for simple use cases, such as extracting pollen abundance time series for a list of study

sites, users are required to know how to administer a database (and have the access rights on

their system to do so), as well as how to write SQL. This limits the accessibility of the data, in

the sense of the FAIR guiding principles for data management (Wilkinson et al., 2016), to people

with specific technical skills.

These challenges created an obstacle to making the data processing steps described in this sec-

tion transparent and reproducible. In response I developed an MIT licensed application called

epd-query (Lane, 2019) that abstracts away the complexity of administering database software

and specifying SQL queries on the EPD. epd-query allows users to retrieve pollen abundance

time series as .csv files by simply providing the application with a copy of the EPD Postgres

database dump, and specifying the ID numbers of study sites for which to extract data. The

configuration file used to extract the data for the study sites selected in Section 3.1 is shown in

Listing 3.1.
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# config.yml

queries:

- site_location_info

- site_pollen_abundance_ts

sites:

- name: Charco da Candieira

epd_number: 762

settlement_period: Neolithic

- name: San Rafael

epd_number: 486

- name: Atxuri

epd_number : 76

settlement_period: Neolithic

- name: Monte Areo mire

epd_number: 1252

- name: Navarres

epd_number: 396

- name: Algendar

epd_number: 55

settlement_period: Bronze age

Listing 3.1: Configuration file for used to extract site location data and pollen abundance time series for

the study sites selected in Section 3.1 from the European Pollen Database using the epd-query application.

Having extracted .csv files containing pollen abundance time series for each study site, I carried

out data cleansing to identify potential problems with the data and ensure comparability between

study sites. The EPD contains data for three cores from Navarrés, but two of these contained 30

or fewer samples so these were excluded them from further analysis. I noted that the cores for

Navarrés, Monte Areo mire, and Charco da Candieira contained a significant amount of ‘pollen

spike’ or ‘Lycopodium spike’. This is related to a method whereby a known quantity of exotic

pollen is added to a sample, enabling workers to calculate the absolute number of pollen grains

deposited per unit area (pollen concentration), in addition to being able to compare the relat-

ive abundance of different species (Bonny, 1972). Reviewing the literature associated with the

cores from Navarrés (Carrión & Dupré, 1996), Monte Areo mire (López-Merino et al., 2010), and

Charco da Candieira (van der Knaap & van Leeuwen, 1995), I confirmed that Lycopodium spike

was indeed added to these samples. As my objective is to report the proportion of landscape

occupied by different species, my analysis does not depend on the ability to calculate absolute

50



pollen concentration. Furthermore, a later data processing step (see Section 3.2.2) will depend

on being able to discern whether at least 90% of pollen for each core has been related to a par-

ticular Plant Functional Type (PFT) corresponding to a land cover type in simulation run outputs.

As the presence of added pollen spike would otherwise complicate this calculation, I excluded all

pollen spike from the pollen abundance time series. I similarly exclude pollen originating, moss

and fungal spores, and any pollen whose species could not be identified.

Pollen from aquatic species was also excluded from the pollen abundance time series used in

subsequent analyses. It is possible that changes in the presence of aquatic species could be

signals of processes that are caused by, or drive, anthropogenic land use change. For example,

agriculturalists diverting water away from the tributaries of a lake to irrigate crops could cause

the lake to dry out. Alternatively, a nearby lake drying out might cause agriculturalists who had

previously settled nearby to move somewhere else with an available water source. However, pro-

cesses that would cause a lake to dry out are not represented in the simulation model described

in Chapter 4. Additionally, the date at which humans start practicing agriculture at each study

site is treated as a boundary condition of the model (see Section 3.1.4), rather than an emergent

phenomenon that responds to the availability of water sources (for example). I therefore focus

on changes in the abundance of terrestrial species in this analysis.

Pollen diagrams for all study sites using raw data extracted from the EPD are shown in figures

listed in Table 3.2.

Table 3.2: Listing of figures containing pollen diagrams for all study sites.

Study site Pollen diagram
Charco da Candieira Fig. 3.4
Atxuri Fig. 3.5
Monte Areo mire Fig. 3.6
Navarrés Fig. 3.7
Algendar Fig. 3.8
San Rafael Fig. 3.9

3.2.2 Aggregate species-level data to categorical land-cover types

Having excluded data relating to pollen not expected to contribute to the land cover types rep-

resented in the AgroSuccess simulation model, I aggregated species-level pollen counts to the

amounts contributed by each land cover type (LCT). In particular I map pollen species to the

following LCTs:
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Figure 3.10: Proportion of the pollen allocated to plant functional types for the duration of each study
site’s pollen record. We see that for all sites the amount of pollen which has not been allocated to any
plant functional type is less than 10%.

• Grassland

• Shrubland

• Deciduous forest

• Pine forest

• Oak forest

The EPD includes a varname field (e.g. in the p_vars table) containing taxonomic names of the

species which produced the pollen identified in each sample. The rank specificity of the names

given to pollen in each sample ranges from species to family. To map from species to LCTs,

I constructed a set of regular expressions that match taxonomic names, and associated these

search patterns with LCTs. See Table A.1 in Appendix A for the expression/ LCT pairings used, as

well as the notebook make_lct_timeseries.ipynb for the implementation. In Fig. 3.10 I show

the proportion of the total pollen for each study site that was allocated to each of the LCTs. Note

that at least 90% of the pollen identified in the sediment cores for each of the study sites was

successfully allocated to one of the LCTs.

3.2.3 Temporal interpolation

The AgroSuccess simulation model has an annual timestep, so the pollen abundance reference

data from the study sites should have a value associated with each year between the earliest and
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Figure 3.11: Pollen diagrams for the Navarrés and San Rafael study sites derived from the pollen abund-
ance time series described in this section.

latest dates of the chronology. The dates of the samples extracted from the EPD are determined

by radiocarbon dating, and do not correspond one-to-one, or even linearly with time steps. To

achieve an annual time step in the reference data I performed linear interpolation on the time

series, subject to the constraints that: i. no land cover type ever makes up a negative percentage

of land cover, and ii. total contributions from all four land cover types must total 100%. See

Fig. 3.11 for plots of these interpolated pollen abundance time series for the Navarrés and San

Rafael study sites.

3.2.4 Pollen abundance and landscape reconstruction

Note that the approach taken in this section relies on the use of pollen abundance as a proxy for

the proportion of the landscape that was occupied by vegetation of a particular type. As noted

in Section 2.5.1, the Fagerlind effect is likely to limit the correspondence between pollen abund-

ance and land cover proportion. There is ongoing work in the literature to develop quantitative

methods that correct for variation in pollen productivity and dispersal between species, most not-

ably the Landscape Reconstruction Algorithm (LRA) (Sugita, 2007), and the more recent MARCO

POLO tool that was developed with the aim of being simpler to use than the LRA (Mrotzek et

al., 2017). The application of these algorithms is beyond the scope of this thesis, but should be

considered an area of investigation for future work (see Section 8.3.1). We should be mindful of

the biases that are likely to exist in the pollen abundance data as a result of the Fagerlind effect

when comparing it to simulated land cover proportion outputs.
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3.3 Model input data

Whereas the previous section described the steps needed to produce the pollen abundance ref-

erence data against which I will compare simulation outputs to evaluate model performance, in

this section I describe the steps taken to produce the data that will serve as model inputs. The

reason the production of reference data was described before the production of input data is that

the reference data will be used below in Section 3.3.3 to establish initial conditions for land cover

types.

This section introduces some ideas from geographic data analysis that might not be familiar to

a wider audience. In particular I frequently refer to raster data. This is one of the two broad

categories of geographic data, the other being vector data. Vector data describes geometric

objects—points, lines, and polygons—that exist in geographic space. In the context of this thesis,

the geographical coordinates at which pollen-containing sediment cores were extracted are ex-

amples of points whose vectors are specified by their latitude and longitude coordinates. Raster

data, by contrast, are used to model how quantities vary across space. The geographical area

of interest is represented as a 2-dimensional grid of pixels representing the quantity of interest.

The value of each pixel encodes the value of some quantity that the raster models as being rep-

resentatives of all points falling within that pixel (O’Sullivan & Unwin, 2010, pp. 188–191).

Another aspect of geographical data analysis that is relevant in this section is the idea of a map

projection, or coordinate reference system (CRS). The geographic coordinates specified by latit-

ude and longitude are convenient for locating a point on the globe. However, because the units

of geographic coordinates are degrees of arc, their use complicates the calculation of distances

and slope between points. I therefore re-project the data from geographic coordinates into a pro-

jected coordinate reference system whose unit of measurement is a measure of distance, such as

metres.

I have used the GeoTiff file format to store raster data that will be used in AgroSuccess simulation

models, as this format is widely supported by GIS software and libraries. It also allows users to

store information about the map projection, the geographic transform (i.e. where the grid is

located with respect to the origin of the CRS), and the size of each grid cell information in the

same file as the raster grid.
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Figure 3.12: Geometric construction of the problem of finding the bounding box around study site locations
needed to provide the required raster layers for my simulations. Point P is the location from which the
sediment core used to derive pollen time series for the site was extracted according to the EPD. a is the
radius of the circle from which it is assumed pollen has contributed to the sediment core – the experimental
zone. β is a buffer parameter which controls the area around the experimental zone which will also be
included in the simulation to help account for edge effects. Points A and B are, respectively, the points of
minimum and maximum latitude and longitude defining the bounding box around the study site.

3.3.1 Digital Elevation Model and derived layers

To determine the size of the raster layers to produce for inclusion in AgroSuccess simulation runs,

we first consider the geometry of the region around the point where each study site’s sediment

core was extracted. If P is the location at which the sediment core was extracted, we will consider

the circle with area A = 30km2 centred on P as the experimental zone within which land cover

proportions will be calculated from simulation models. This circle has radius a =
√
30/π km ≃

3.1km. Let β be a parameter that controls the size of a buffer around the experimental zone,

such that a buffer of size βa will be added to the experimental zone. The inclusion of this buffer

region means it will be possible for seeds and fires to enter the experimental zone from outside

during simulation runs, reducing the impact of edge effects on the quantities measured within

the experimental zone. By setting β = 1 we introduce a buffer which is the same size as the

radius of the experimental zone. This implies that the input raster layers for simulations should

be squares with edge length 4a = 12.4km2 (see diagram in Fig. 3.12).

Digital Elevation Models (DEMs) are raster data sets in which each cell encodes the elevation

above sea level of the area of land represented each pixel. Within simulation runs, the DEM

will be used by the fire spread model to influence the relative probability of a fire spreading

uphill compared to downhill. DEMs for each study site will also be used as the basis from which

to calculate other raster layers (see below). The specific DEM dataset I use is called SRTM30

(Farr et al., 2007), which contains 30 m2 pixel size elevation data for the entire Earth. See

code in the notebook download_site_elevation_data.ipynb in the dem-derived directory in
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Appendix G.S4 for the procedure used to download the SRTM30 data, convert it from geographic

coordinates to a projected coordinate system suitable for study sites on the Iberian Peninsula—

Madrid 1870 (Madrid) / Spain (EPSG:2062)—and crop it to the geometry with respect to the

sediment core extraction points described in the previous section.

A final step taken to prepare DEMs before subsequent data processing and consumption in simu-

lation runs is to remove ‘sinks’. These are raster cells that have a lower elevation than any of their

neighbours. It is common practice in hydrological analysis to treat such pixels as spurious data

artefacts, and automated procedures to remove (or ‘fill’) them are routinely applied (Sharma &

Tiwari, 2019). I used the TauDEM application to remove sinks from the downloaded DEMs. Heat

maps of the downloaded elevation datasets for each of the study sites are included in Fig. 3.13.

Three additional raster layers based on the DEM for each study site were produced:

• Slope—used by agricultural agents to preferentially select flat land patches to convert to

crop land cover types.

• Flow direction—used to drive soil moisture calculations which depend on the direction in

which water flows over the landscape. Soil moisture then influences ecological succession

in turn.

• Binary aspect—encodes whether a patch of land is on a northerly or southerly facing slope.

This enters directly into ecological succession logic to reflect the fact that southerly facing

slopes receive more sunlight than northern slopes.

All of these raster layers were generated using an MIT licensed software tool I developed called

demproc (see Appendix G.S5). This provides an API on top of the TauDEM and gdal applications

to generate the DEM-derived raster layers described above.

3.3.2 Soil type

The type of soil at each point in the landscape can influence the degree to which water flowing

over the landscape is absorbed by the soil as opposed to forming surface runoff. This difference

is represented in AgroSuccess by considering local soil type along with flow direction in the soil

moisture calculations that are performed in each time step (see Section 4.2.5). Following Ferrér
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et al., 1995; J. D. A. Millington et al., 2009 I represent four discrete classes of soil type labelled

A to D. These are characterised by the amount of water they are able to absorb, with soil type

A able to hold the most water, and soil type D the least. Equivalently soil type A produces the

lowest runoff, and type D the highest. In the version of AgroSuccess presented in this thesis, I

assume that all landscapes have spatially uniform soil type A. The capacity to explore sensitivity

to heterogeneous study sites is included in AgroSuccess, and could be explored in future versions

(see Section 8.3.4).

3.3.3 Initial spatial distribution of land cover

As AgroSuccess simulation runs represent how land cover evolves over time, it is necessary

to provide each simulation with a raster map representing the distribution of land cover at the

beginning of the simulation as a boundary condition. The pollen abundance reference data whose

production are described in Section 3.2.2 allow us to estimate, for a given year during the time

series duration, the proportion of the landscape occupied by shrubland, pine forest, deciduous

forest, and oak forest. However, these reference data do not provide any information about the

spatial distribution of these land cover types.

As a solution to the need to generate an initial spatial configuration of land cover, I used the

modified random cluster (MRC) algorithm (Saura & Martínez-Millan, 2000) to produce spatially

random neutral landscape models. These neutral landscape models (NLMs) are constrained such

that i. the shapes of the clusters resemble an areal view of vegetation cover, and ii. the proportion

of the generated landscape occupied by different classes correspond to the proportions of land

cover type pollen present in the reference data. I used the Use NLMpy (Etherington et al., 2015)

implementation of the MRC algorithm for our analysis. See the landcover-nlms directory in

the agrosuccess-data repository (Appendix G.S4) for the implementation. Note that because

of the inclusion of a buffer zone beyond the experimental zone in the raster layers, there is an

implicit assumption that the area whose vegetation proportions can be estimated from the pollen

abundance reference data is representative of the larger area around it.

The implementation of the MRC algorithm provided in NLMpy enables us to generate an NLM in

which the proportions of different land cover types are constrained across the whole landscape.

However, it might be useful to be able to specify that all the land cover above the treeline is

shrubland, and then ensure that the lowland land cover was such that the overall land cover
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proportions matched the reference data. Here I derive some expressions to enable the imple-

mentation of such an approach.

Define N tot as the total number of cells in the model. We can separate these cells into components

contributed by each of the land-cover classes represented in the model such that

N tot = N tot(C) =
∑
c

Nc(C) (3.1)

where we define Nc(C) as the number of cells in class c ∈ {oak forest, shrubland . . . }. The land-

cover class matrix C has elements cij encoding the land cover class of the cell in position (i, j) :

i ∈ (1, . . . , Ny), j ∈ (1, . . . , Nx). In symbols,

Nc(C) =

Ny∑
i=1

Nx∑
j=1

δcij ,c (3.2)

The total number of cells in class c, Nc(C), can be further divided into Nhi
c (C,E; ϵ) and N lo

c (C,E; ϵ)

– the number of cells in class c which are above and below the treeline respectively. The matrix E

has elements eij which encode the elevation of the DEM cell in position (i, j) : i ∈ (1, . . . , Ny), j ∈

(1, . . . , Nx). The parameter ϵ is the elevation of the treeline and is study site dependent.

Nc(C) = Nhi
c (C,E; ϵ) +N lo

c (C,E; ϵ) (3.3)

Nhi
c (C,E; ϵ) =

Ny∑
i=1

Nx∑
j=1

δcij ,cΘ(eij − ϵ) (3.4)

N lo
c (C,E; ϵ) =

Ny∑
i=1

Nx∑
j=1

δcij ,c [1−Θ(eij − ϵ)] (3.5)

In the above, Θ(n) is the Heaviside step function defined such that

Θ(n) =


0, n < 0

1, n ≥ 0

. (3.6)

Since our data is expressed in terms of proportions of land-cover occupied by each class, we

define ρc = Nc/N
tot (total proportion of land-cover occupied by class c), and ρhi

c = Nhi
c /Nhi and
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ρlo
c = N lo

c /N lo (proportions of cells in class c above and below the treeline respectively). Here

Nhi =
∑

cN
hi
c and N lo =

∑
cN

lo
c . Note

∑
c ρ

hi
c =

∑
c ρ

lo
c = 1. We have

ρhi
c (C,E; ϵ) =

1

Nhi

Ny∑
i=1

Nx∑
j=1

δcij ,cΘ(eij − ϵ) (3.7)

ρlo
c (C,E; ϵ) =

1

N lo

Ny∑
i=1

Nx∑
j=1

δcij ,c [1−Θ(eij − ϵ)] (3.8)

We know the value of ρc for each c from our data. It will be useful to be able to specify, as part of

our model, the relatively simple proportion of each land-cover type occupying the area above the

treeline (e.g. 100% shrubland), and calculate the lowland proportions which preserve our target

global land cover proportions, ρc. We can derive an equation to do this based on the quantities

defined above:

Nc = Nhi
c +N lo

c (3.9)

N totρc = Nhiρhi
c +N loρlo

c (3.10)

=⇒ ρlo
c (E, ρc, ρ

hi
c ; ϵ) =

N tot(E) ρc −Nhi(E; ϵ) ρhi
c

N lo(E; ϵ)
(3.11)

Also note

Nhi(E; ϵ) =

Ny∑
i=1

Nx∑
j=1

Θ(eij − ϵ) (3.12)

N lo(E; ϵ) =

Ny∑
i=1

Nx∑
j=1

[1−Θ(eij − ϵ)] (3.13)

Example NLMs generated using the MRC algorithm for all study sites are shown in Fig. 3.13.

3.3.4 Climate data

The preceding subsections describe how I obtained DEM, derived slope, flow direction, aspect,

soil type, and NLM data sets. These are all raster data sets that, among the collection obtained

for each study site, all share the same spatial extent and pixel size. In addition to this raster

data, the simulation model described in Chapter 4 also requires climatic information to reflect

differences in temperature and rainfall between the study sites. The amount of rainfall in each
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simulated year will drive calculations characterising how soil moisture varies throughout the

landscape. Both temperature and precipitation will influence the expected number of fires that

occur in a given year, as well as the likelihood that fires spread from cell-to-cell.

To obtain estimates of temperature and precipitation at my selected study sites during the mid-

Holocene I rely on the outputs of Global Climate Models (GCMs). Specifically, I used total annual

precipitation and mean annual temperature values produced by the BCC-CSM1-1 GCM distrib-

uted as part of the WorldClim 1.4 downscaled paleo climate dataset (Hijmans et al., 2005). This

dataset comprises ‘climate surfaces’ (i.e. time series of raster grids describing spatial variation

of climatic variables) derived from paleo-simulations provided by the CMIP5 project (Harrison

et al., 2015). The BCC-CSM1-1 GCM was selected because it was readily available as part of

the WorldClim 1.4 distribution and has was evaluated as ‘Satisfactory’ (the highest ranking) in

its ability to estimate temperature and precipitation in Europe by (McSweeney et al., 2015) in

an analysis of all available CMIP5 models. Note that the WorldClim 1.4 dataset does not include

mean wind speed or direction data. For this reason I used contemporary data from weather

stations closest to my selected study sites (see Section 3.3.5).

To prepare the WorldClim 1.4 BCC-CSM1-1 data for use in my simulation model, I downloaded

the corresponding 30 arc s resolution ‘bioclimatic variables’ file from the WorldClim website,

which contains GeoTiff files covering the globe for various bioclimatic variables. I then used

the script total_precip_and_temp.py (see the climate directory in Appendix G.S4) to extract

values from the annual precipitation and mean annual temperature GeoTiff files for the raster

cells corresponding to my study sites.

As a first approximation during simulation runs I will consider annual precipitation and mean

annual temperature to remain fixed throughout simulation runs. A possible future extension

could be to incorporate time series of mean annual precipitation and mean annual temperature

from Holocene climate models. While climate models are able to produce time series at monthly

(or higher) resolution, the simulation model described in Chapter 4 has an annual time step, so

accommodating higher resolution climate data would require revisions to the model structure.

Incorporation of temporally varying temperature and precipitation data would lead to greater

realism in the model, as it would allow simulated subsistence agriculturalists to react to droughts

and floods, as well as influencing the wildfire regime.
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3.3.5 Wind speed and direction

The final piece of data required as input into the AgroSuccess model is wind speed—specifically

the probability of observing low, medium, or high wind speed on a given day—and wind direction

data. These categorical wind speed classes correspond to values on the Beaufort scale as shown

in Table 3.3.

Table 3.3: Beaufort numbers corresponding to different wind speed classes represented in simulation
models.

Wind speed class Beaufort No. range
Low 0–2
Medium 3–5
High ≥ 6

This wind speed and direction data is used to drive the fire spread sub-model during simulation

runs, reflecting the fact that fire is more likely to spread in the same direction as the wind is

blowing, and that higher wind speed increases the risk of fire spread in general.

To obtain estimates of wind speed and direction probabilities for the study sites I have assumed

that these probabilities in the present day are comparable to those in the mid-Holocene. This

enables me to collect daily wind speed and direction observations from contemporary weather

stations close to the selected study sites, and use these to calculate the probability of observing

different wind speeds and directions. The main source of this data is the Spanish State Meteoro-

logical Agency (AEMET) which provides a REST API to access daily weather observations.

To support the acquisition of daily wind data I wrote a Python package called aemet_api (avail-

able in the aemet-wind repository, see Appendix G.S2). This enables users to identify weather

stations managed by the Spanish Met office (AEMET) that are close to specific target locations,

and download daily wind speed and direction observations for those stations via the AEMET

REST API. I used this package to download wind speed and direction data collected between 1st

January 1990 and 1st November 2019 for weather stations within 50 km of all of the selected

study sites that are within Spain. See Fig. 3.14.A for the location of these weather stations with

respect to the study sites they represent.

I was unable to locate a source of daily wind data for the Portuguese study site, Charco da Can-

dieira. To work around this limitation I sought AEMET weather stations within Spain whose

locations make them suitable to represent Charco da Candieira. I reasoned that the most im-
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Charco da CandieiraAlgendar

Atxuri

Navarrés

San Rafael

Charco da Candieira

Monte Areo mireA B

Figure 3.14: (A) Location of weather stations (black dots) selected to represent study sites located within
Spain (green circles). (B): Black dots show the AEMET weather stations selected to represent the Charco
da Candieira which is located within Portugal, and for which data from nearby weather stations were
unavailable. The red region shows the region in Spain with the same distance to the Atlantic coast as
Charco da Candieira.

portant factor influencing wind speed and direction at Charco da Candieira is likely to be its

proximity to the Atlantic coast. I identified the region in Spain which is within a 50 km buffer of

the line that is the same distance from the Atlantic coast as Charco da Candieira (this region is

shown in red in Fig. 3.14.B). I also obtained a single reported average wind speed for the Por-

tuguese weather station closest to Charco da Candieira (Porto) from the UN data portal. Finally

I compared the average wind speed reported between 1st January 1990 and 1st November 2019

at each of the weather stations in the Spanish Atlantic coast region to the average wind speed

at the Porto station, and chose the station with the smallest difference to represent Charco da

Candieira.

Having identified AEMET weather stations to represent each study site, I used aemet_api to

download wind speed and direction data for all sites on all dates for which it was available

between 1st January 1990 and 1st November 2019. The numbers of daily observations for each

study site across all representative weather stations and dates ranged from 10,577 at Algendar to

50,097 at Navarrés. Finally I calculated wind speed (see Fig. 3.15) and direction (see Fig. 3.16)

probabilities for each study site.

In this analysis I have implicitly assumed that wind speed and direction are independent. A

development of this approach might consider the joint distribution of wind speed and direction.

Simulation models could then sample from this joint distribution to determine wind speed and

direction on a given day.
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Figure 3.15: Probability of observing low, medium, or high wind speed (as defined by the Beaufort scale)
at each of the study sites. These probabilities are calculated from daily observations taken between 1st
January 1990 and 1st November 1991 (where available) collected from AEMET weather stations within 50
km of the study sites.
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Figure 3.16: Probability of the wind blowing in each cardinal direction at each of the study sites. These
probabilities are calculated from daily observations taken between 1st January 1990 and 1st November
1991 (where available) collected from AEMET weather stations within 50 km of the study sites.
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Chapter 4

AgroSuccess simulation model

specification

In this chapter I first provide an overview of the ecological and anthropological processes that

are represented in AgroSuccess, before describing in detail the various rules that were used to

implement these processes as a computer simulation model. I calibrate the AgroSuccess model

in Chapter 5, and use the calibrated model to perform experimental simulation runs to evalu-

ate archaeologically motivated hypotheses explaining pollen abundance change discussed in the

literature in Chapter 6.

4.1 Model overview

To contextualise the AgroSuccess model is useful to consider the spatio-temporal grain and extent

required to meet my objectives. Having established my justification for the spatio-temporal scale

of the model, I present a table containing an overview of the model’s structure. Finally, I present

the various submodels that together constitute the AgroSuccess agent-based simulation model.

AgroSuccess has been designed to represent landscape areas on the order of 100km2. This

ensures that the spatial extent of simulated scenarios is large enough to capture the dynamics

of the disturbance processes that AgroSuccess is intended to be used to investigate (wildfire

and anthropogenic land-use change). An upper limit of 100km2 has been used by other models

used to simulate landscape-scale land-cover change in response to disturbance events, including
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LandClim (Colombaroli et al., 2010) and LANDIS (Schumacher et al., 2004). The outputs of the

version of AgroSuccess presented in this thesis are compared to pollen abundance time-series.

In future I may develop this work to instead compare the simulated outputs to empirical land-

cover proportion estimates derived from landscape reconstruction algorithms such as the LRA

(Sugita, 2007) or MARCO POLO (Mrotzek et al., 2017) (see discussion in Section 3.2.4). Previous

authors have argued that these techniques are suitable for reconstructing landscapes from pollen

abundance for areas up to 100km2 surrounding the location that sedimentary pollen cores were

extracted from (Sugita, 2007). Therefore, the outputs of AgroSuccess simulations with extents

of up to 100km2 would also be comparable to land-cover proportion estimates produced by these

techniques if they become available for study sites of interest in the future.

Since I use AgroSuccess to explain trends in pollen diagrams in terms of both ecological factors

and anthropogenic decision making around land-cover change, the spatial and temporal grain of

the model are influenced by my approach to modelling these processes. The ecological submodel

aims to represent the changing character of vegetation cover in the landscape as a consequence

of interacting succession and disturbance processes (i.e. wildfire). The process of a wildfire

converting areas of the landscape previously occupied by vegetation to burnt land takes hours

or days to occur. Meanwhile, the vegetative colonisation and growth processes that lead to

ecological succession take years or decades to become apparent. The anthropogenic submodel

in AgroSuccess aims to represent the interaction between anthropogenic actions to modify the

landscape to support subsistence agriculture and ecological succession processes. I assume that

subsistence agriculturalists would have determined the area of land to modify on an annual basis,

taking into account the number of members of their household and knowledge of whether or not

the area of land farmed in the preceding year was sufficient to meet the household’s needs. They

would then increase or decrease the planned area to farm in the next year accordingly.

These modelling considerations motivate the use of an annual time step in AgroSuccess. Although

each wildfire take less than a year to affect land-cover, the response of the slower coupled ve-

getative growth process takes years to materialise. Since there are no other processes with a

sub-annual effect represented in the model, it is sufficient to aggregate the effects of all wildfires

in a given year into an annual time step. This approach to aggregating relatively fast disturb-

ance processes is similar to that found in other ecological succession models at annual (J. D. A.

Millington et al., 2009; Perry, Wilmshurst, McGlone, McWethy et al., 2012) and even decadal

(Henne et al., 2013; Schumacher et al., 2004) temporal resolution. Additionally, an annual time
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step is directly compatible with the annual anthropogenic decision-making process represented

in the model. There is precedence for use of an annual time step in similar models of subsistence

agriculture in the literature (Ullah, 2013).

Because AgroSuccess is intended to be run for temporal extents of hundreds of years, it is pos-

sible that the agricultural practices and decision-making criteria employed within a community

or household would change during the time period represented by an individual simulation run.

For example, there could be a change in the conservativeness with which households evaluate

their subsistence needs, causing them to work harder by cultivating more land to reduce risk of

food deficiency. This type of change in anthropogenic decision-making strategy could be mod-

elled as taking place over generational timescales (e.g. evaluated every 40 simulated years).

Investigation of this type of scenario is out of scope for this thesis, but would be possible with

modest changes to the AgroSuccess model code.

4.2 Environmental submodel

4.2.1 Rule Based Community Level modelling

The approach to modelling ecological succession used in AgroSuccess is known as rule-based

community-level modelling (RBCLM) (McIntosh, 2003; J. D. A. Millington et al., 2009). This is

an approach to succession modelling designed to address situations in which modellers have

qualitative understanding of the land-cover transitions one would expect to occur under specific

conditions in a modelling scenario. RBCLM avoids the need for quantitative data to parameterise

models of inter-species competition such as that presented by M. A. Zavala and Zea, 2004.

In RBCLM, knowledge about the ecological system in question is divided into ‘declarative’ and

‘procedural’ knowledge (McIntosh, 2003). Declarative knowledge about the system is expressed

as a set of discrete states and a corresponding set of possible transitions between those states.

Each transition specifies the start and end states of the transition (the transitions are directed),

the combination of environmental conditions that cause the transition to occur, and the time

required for the transition to conclude (McIntosh, 2003). The declarative knowledge component

of an RBCLM is an example of a state-and-transition model (see Section 7.2 and McIntosh et al.,

2003; J. D. A. Millington et al., 2009). Procedural knowledge about the system modelled in an
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RBCLM specifies how the state of a particular location changes over time consistently with the

transitions that are permitted in the model.

RBCLM as a modelling paradigm is not inherently spatial (McIntosh et al., 2003), however, in

AgroSuccess I follow J. D. A. Millington et al., 2009 in using a spatial variant of RBCLM in which

each of the cells in the simulation grid representing geographic space are characterised as being

in one of a finite set of land-cover states. For example, a landscape might be represented as

a mosaic of oak forest, pine forest, and shrubland cells. Each cell is also associated with a

set of variables representing the cell’s environmental state. The RBCLM interacts with this

data structure to produce landscape evolution dynamics. The direction of state transition for a

particular cell can be influenced by its own environmental conditions, as well as by the state

of the cells that surround it. For example, a patch of shrubland might develop into pine forest

under dry conditions provided there is a source of pine seeds nearby. Alternatively, the same cell

might develop into an oak forest cell under hydric conditions, provided there is a nearby source

of acorns.

4.2.2 Land-cover states and environmental conditions

As an RBCLM, the core of AgroSuccess is a set of discrete states that characterise the land-cover

in each patch of land represented in the model, and a set of environmental conditions that govern

the circumstances under which transitions between the states occur. Environmental conditions

comprise anything about the state of the land patch that is relevant to the model and that isn’t

specifically related to its land-cover. For example, two land patches might be characterised as

pine forest, but one of the patches contains acorns while the other doesn’t. Knowledge of the

presence of acorns is relevant to understand the likely future succession pathways of the two

patches but isn’t part of the land-cover type of the patch. The presence or absence of acorns is

therefore an example of an environmental condition. In the following sub-sections I specify the

states and environmental conditions that are included in AgroSuccess.

Land-cover states

While the environmental conditions represented in the model are mainly relevant to the ecolo-

gical succession submodel (see Section 4.2.3) the land-cover types are integral to all the sub-
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models that together comprise AgroSuccess. The flammability of each land-cover type influences

the likelihood of a fire spreading into a patch of that type in the wildfire submodel (see Sec-

tion 4.2.6), and the fertility and ease of conversion to agriculture of each of the land-cover types

influence how agricultural household agents interact with land patches in the agent-based model

of subsistence agriculture submodel (see Section 4.3.4). Additionally, the model outputs that con-

tribute to my research questions are directly related to the land-cover types. At the end of each

simulation timestep, the model software counts the number of grid cells in each land-cover type

and reports the proportion of the simulated landscape in each state. These outputs are collated

across multiple stochastically varying model runs and compared to the empirical pollen abund-

ance time series described in Section 3.2 to evaluate different model parametrisations’ ability to

reproduce the observed patterns.

The land-cover types represented in AgroSuccess are:

• Water/ Quarry: area with no land-cover, included to support the representation of areas

that cannot be colonised by vegetation that causes land-cover type to change over time.

• Burnt: area that has been recently subject to fire. Land-cover represented by this type

may or may not include vegetable matter that is able to resprout, depending on the fire

frequency experienced by the patch (see Section 4.2.3, Eq. (S5)).

• Grassland: grasses in the Poaceae (or Gramineae) family, including Cerealia-type.

• Wheat: area used for wheat agriculture (Cerealia-type Poaceae).

• DAL: Depleted Agricultural Land (see below).

• Shrubland: area dominated by shrubby plants including both resprouting species (e.g.

Quercus coccifera and Pistacia lentiscus) and species that regenerate from seed (e.g. Ulex

parviflorus, Rosmarinus officinalis and Cistus species) (Baeza et al., 2007).

• Pine: area dominated by Pinus forest.

• Transition forest: area occupied by a mixture of Pinus, Quercus, and Juniperus species.

This state represents land in the transitional stage between being predominantly Pinus

forest and being predominantly Quercus forest.

• Deciduous: area occupied by mature individuals of a mixture of deciduous species includ-

ing Castanea sativa, deciduous oak (e.g. Quercus pyrenaica), Alnus species, and Populus
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species.

• Oak: area dominated by evergreen oak forest, e.g. Quercus ilex.

Table 4.1 specifies the fertility, wood value, and land-cover conversion cost attributes that are

associated with each land-cover type. These are discussed more detail in the remainder of this

section. The land-cover types in AgroSuccess are similar to those used by J. D. A. Millington

et al., 2009, but also include ‘Wheat’, ‘Depleted Agricultural Land’ (DAL), and ‘Grassland’. The

DAL land-cover type represents land whose soil’s nutrient and organic matter content has been

reduced by agricultural use, reflecting the lack of access to artificial fertiliser in pre-industrial

times. The Wheat and DAL land-cover types allow AgroSuccess to represent the effects of an-

thropogenic agricultural activity on the landscape, and to explore the impact this has on the

processes represented by the ecological succession and wildfire submodels.

While developing an STM it is necessary to limit the set of states and associated transition rules

to make the resulting model tractable. First, AgroSuccess includes four land-cover types that

represent land-cover that is predominantly occupied by mature Pine, Transition forest, Decidu-

ous, and Oak. These are ’forest types’. Our classification here assumes that individuals in the

associated land patches have reached maturity and are dominated by the respective type. This

is a simplification of the real-world situation where there will be other species (both arboreal

and non-arboreal) present, but in the model their presence is implicit as they are not explicitly

represented in the names of the states. This is an explicit modelling simplification associated

with using a state-and-transition model. This is similar to the approach taken by Henne et al.,

2013 in the use of discrete categories of land-cover type ’Evergreen shrubs’, ’Pinus type’, and

’Other deciduous’ in their simulation study incorporating paleoecological pollen analysis data.

Second, I intend to inclusively represent all evergreen oak species in the ’Oak’ land-cover type.

While I acknowledge that there are evergreen oak species other than Quercus ilex in the Iberian

landscapes under consideration, these are usually in shrub form, and therefore don’t meet the

maturity criterion to justify their own ’forest type’ (see previous point). Additionally, the use of

coarse-grained ’Oak’ and ’Pine’ land-cover types is sufficient to investigate the oak/ pine compet-

ition dynamic that has been of interest to others in the literature for some time (Barbero et al.,

1990; M. A. Zavala & Zea, 2004). This is an important issue, and therefore valuable for AgroSuc-

cess to be able to explore. Third, AgroSuccess includes only a single Shrubland land-cover type.

There is evidence that grassland land-cover can transition into qualitatively distinct shrubland
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land-cover types subject to variation in soil type. For example, Baeza et al., 2007 found that

grassland transitioned to Quercus coccifera shrubland on limestone soil, or to Ulex shrubland

and then onto Rosmarius or Mixed Rosmarius shrubland on marl soil. However, I do not treat

soil type as an environmental gradient in AgroSuccess. Therefore, I was unable to distinguish

the dynamics that would lead to different shrubland types, and so collapse all shrubland types

into a single categorical land-cover type.

Table 4.1: Land-cover types represented in AgroSuccess. Every land patch in an AgroSuccess simulation
is in one of these states. Fertility scores influence the productivity of land patches of each type. Wood value
scores influence the utility of each land-cover type as a source of fire wood. Conversion cost indicates the
relative difficulty of using a patch of a given type for wheat agriculture.

Land-cover type, Lc Fertility, FLc Wood value, WLc Conversion cost, CLc

Water/ Quarry 0 -1 -1
Burnt 5 1 1
Grassland 4 -1 1
Wheat 4 -1 1
Depleted Agricultural Land 1 -1 5
Shrubland 2 -1 2
Pine 2 5 3
Transition Forest 3 4 3
Deciduous 3 4 3
Oak 3 3 4

I have used a semi-qualitative approach to characterising soil fertility, wood value and land-

cover conversion cost for each land-cover type. Land-cover types are assigned dimensionless

scores on a scale of 0–5 as opposed to objectively measurable quantities with physical units. For

comparison, I could have attempted to characterise soil fertility in terms of the percentage of

organic matter by mass, or mg/kg of nutrients such as phosphorus and potassium (Khresat et al.,

2008). However, within the context of AgroSuccess the use of objective measurements for land-

cover fertility and conversion cost is unjustified in comparison to the inherently subjective nature

of the modelled anthropogenic decision-making processes that they inform. When an individual

or collective makes a decision, they aim to maximise their benefits and minimise their costs. They

do this using heuristics, rather than by exhaustively analysing all available data (Parker et al.,

2003). The use of semi-qualitative scores for fertility, wood value and land-cover conversion cost

reflects the decision to model household agents in AgroSuccess as using inductive reasoning

based on past experience to evaluate the costs and benefits of using different patches of land for

agriculture.

My overall approach to allocating fertility, FLc , wood value, WLc , and land-cover conversion cost,

CLc , scores for land-cover types was the following procedure:
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1. Sort the land cover types into ascending order with respect to each quantity

2. Decide whether the quantity should vary continuously between land-cover types, or whether

there should be some clustering

3. Assign values based on understanding derived from the literature (see below).

The semi-qualitative approach described here is intended to be flexible enough to support modi-

fications following discussion with subject matter experts. In the remainder of this sub-section

I justify my choices of fertility and land-cover cost scores specified in Table 4.1, using relevant

literature where available. However, in recognition of the uncertainty inherent in the model, this

is an aspect of the model that might be focused on in future for development with other experts

in the field.

In AgroSuccess, the fertility of a land-cover patch of type Lc is specified by FLc . This is a dimen-

sionless score on a scale of 0–5. A fertility score of FLc = 0 indicates that land-cover type Lc is not

fertile, and a score of FLc = 5 indicates the patch is maximally fertile. When a land plot is farmed

its fertility decreases as a consequence of the disruption of the natural interactions between ve-

getation and soil, which in turn decreases the availability of nutrients to crops (Khresat et al.,

2008; Ullah, 2013).

The rate at which the fertility of a patch of land decreases during the course of its use for

agriculture in Mediterranean-type ecosystems has been estimated to be 0.5 to 1.0%/yr (Ullah,

2013, p. 92). I integrate this information into the discrete representation of land-cover states in

AgroSuccess by imposing a rule that after TF years of use for wheat agriculture, a patch of land

will transition to a land-cover state called ‘Depleted Agricultural Land’ (DAL). Here TF is a model

parameter whose default value I choose to be TF = 50yr, representing the time taken for soil

fertility to be reduced by approximately 40% at a rate of 1.0%/yr. The assumption that soils are

depleted of nutrients after 50yr of cropping is consistent with Ullah, 2013, p. 130. Note that a

fertility depletion of 1%/yr produces a geometric rate of change in fertility such that the fertility

of a land patch after t years, Ft, is

Ft = (1− 0.01)tF0

where F0 is the initial fertility of the land patch. After a patch has become DAL, succession pro-
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cesses will cause it to transition into shrubland, and from there into each of the other possible

land-cover types represented in the model subject to local environmental conditions. Each of the

discrete land-cover states has a fertility value associated with it such that land-cover states rep-

resenting land patches occupied by later successional species are associated with larger fertility

values. This is to represent the process by which organic matter and nutrients are returned to

the soil by the natural vegetation occupying the patch during the time it is left fallow.

The fact that soil fertility decreases when it is used for agriculture doesn’t necessarily mean

that the households don’t make any effort to improve soil fertility, rather that the net effect of

agriculture is to decrease soil fertility over time. This is consistent with MedLand, in which

model scenarios are characterised in terms of whether the represented households are ‘good’ or

‘greedy’, differentiated by how intensively they work the land. ‘Good’ agriculturalists produce

fertility depletion at a rate of 1%/yr, wheres ‘greedy’ agriculturalists produce fertility depletion

at a rate of 2%/yr. The assumption that households don’t improve soil fertility by default in

AgroSuccess is analogous to the MedLand model. The default AgroSuccess fertile time of TF =

50yr corresponds to the 1%/yr depletion rate of ‘good’ agriculturalists in MedLand. ‘Greedy’

agriculturalists could be modelled in AgroSuccess by setting TF = 25yr.

Scenarios in which households work to decrease the rate of soil nutrient depletion further could

depend on increasing TF , as this would imply a reduction in the rate of soil depletion as a

consequence of the household’s efforts to fertilise the soil. I explore the model’s sensitivity

to TF = 50yr in Chapter 5.

The possibility of household agents working to replenish soil fertility in DAL is represented by the

DAL land-cover type’s land-cover conversion cost of 5 (see Table 4.1). This represents the effort

needed to convert DAL back to productive wheat-producing land e.g. using intensive artificial

fertilisation with animal manure. The MedLand authors discuss soil fertility regain in MedLand,

specifically “. . . the rates of reduction and regain [of soil fertility] are set as constants at the start

of the model. . . ” (Ullah, 2013, p. 97). The rates of soil fertility reduction are specified as aspects

of the household behaviour scenarios (Ullah, 2013, p. 161), but I have not been able to find ex-

plicit statement of the fertility regain rate in the literature around MedLand. However, I assume

based on the above quote that fertility regain is some fixed percentage that is independent of

human agricultural activities. I aim to capture this in the ecological succession processes that

transition a DAL patch to shrubland etc.
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A possible future improvement to AgroSuccess would be to investigate the use of fire to improve

soil fertility (Perry, Wilmshurst, McGlone & Napier, 2012). This could be implemented by ma-

nipulating the counter already implemented in AgroSuccess to track whether or not a cell that

is used for agriculture has exceeded its fertile time, TF . Reintroduction of nutrients into the soil

through burning could be represented by decreasing or resetting this counter.

An additional practical argument against the use of objective physical measurements to charac-

terise land patch fertility, wood value and conversion cost in AgroSuccess is that such measures

are likely to be specific to a particular study site. Unlike the number of calories an individual can

obtain from consuming 1kg of wheat (see Table 4.9), the nutrient content of the soil, or perceived

effort to cut down oak forest to grow crops is likely to differ between study sites and groups

of agents. The acquisition of data to provide measured quantities for each study site would be

prohibitively difficult and an inefficient use of resources considering that it is only the relative

difference between land-cover types at each study site that is relevant for agent decision-making.

The use of objective physical measurements as inputs as a means to persuade the reader of the

precision or accuracy of the model’s outputs would be misleading given the scale of uncertainty

present in the model’s structure and parameters. By presenting these aspects of the model

as subjective judgements in this way I provide the reader with a framework in which they can

scrutinise our proposals and suggest reasoned improvements.

Environmental conditions

The environmental conditions represented in AgroSuccess are all the variables that character-

ise the state of a land patch throughout the course of a model run apart from its land-cover

type. These are manipulated and consumed by the succession submodel (see Section 4.2.3) to

determine how land-cover state should evolve in response to ecological processes.

water: The local soil moisture class. These are, in order of increasing soil moisture, ‘xeric’,

‘mesic’, and ‘hydric’. See Section 4.2.5 for details of how the thresholds between these

classes are specified.

aspect: The binary aspect of the land patch, either ‘north’ or ‘south’.

succession: Indicates whether the land patch is on a ‘secondary’ or ‘regeneration’ succession
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pathway. See Section 4.2.3 for a detailed desciption of succession pathways.

pine: Binary variable indicating whether pine seeds are present in the patch, Jpine.

deciduous: Binary variable indicating whether seeds for non-resprouting deciduous species are

present in the patch, Jdec.

oak: Binary variable indicating whether acorns are present in the patch, Joak.

delta_t: The amount of time (in yr) the patch has been in its current land-cover state, Lc.

These environmental conditions are the same as those used by J. D. A. Millington et al., 2009.

4.2.3 Ecological succession

The succession submodel’s role is to represent the transitions between land-cover states that

occur due to the interactions between different plant species, and with their environment. It

encodes qualitative knowledge about ecology which has been discovered by observation and

experimentation at a finer spatio-temporal scale than that represented in AgroSuccess. For ex-

ample, if the supply of water in a landscape is limited, a patch of shrubland in that landscape

might develop into pine forest rather than oak forest as it might have done if the supply of wa-

ter was plentiful. The states and possible combinations of environmental conditions that are

possible in AgroSuccess are described in the preceding section (Section 4.2.2). As discussed

in Section 4.2.1, the environmental succession submodel of AgroSuccess is an RBCLM, meaning

that the possible transitions are defined in terms of start and end states, combinations of environ-

mental conditions, and the time each transition takes. Here I explain how specific combinations of

environmental conditions, start states and end states, and transition times are grouped together

to form succession rules in AgroSuccess. All possible transitions due to ecological succession

are shown in Fig. 4.1, and the time for each possible transition to occur (depending on specific

environmental conditions in the grid cell) is shown in Table 4.2.

Land-cover state update rules

The succession rules in AgroSuccess are adapted from those used by J. D. A. Millington et al.,

2009 in the Millington LFSM (Wainwright & Millington, 2010). In the supplementary materials
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Table 4.2: Land-cover transitions represented in AgroSuccess, and the time taken for each transition.
Some transitions can take a range of time to complete as they can occur faster or slower depending on the
specific combination of environmental conditions.

Initial land-cover type Final land-cover type Transition time
Burnt Grassland 1 yr
Wheat Shrubland 3 yr
Depleted Agricultural Land Shrubland 3 yr
Grassland Shrubland 1 yr
Shrubland Oak 30–50 yr
Shrubland Deciduous 15–20 yr
Shrubland Transition Forest 15 yr
Shrubland Pine 10–15 yr
Pine Transition Forest 15–40 yr
Pine Deciduous 20 yr
Transition Forest Deciduous 20–25 yr
Transition Forest Oak 20–50 yr
Transition Forest Pine 20–30 yr
Deciduous Pine 20–30 yr
Deciduous Transition Forest 30–40 yr
Oak Transition Forest 30 yr

of their paper describing the Millington LFSM, J. D. A. Millington et al., 2009 provide a table that

specifies all the possible combinations of environmental conditions that can lead to a land-cover

patch transitioning from one state to another state in their model, including the time required

for each transition to occur. In the agrosuccess-graph software repository (Appendix G.S7) I

provide programs that extract the data from the original paper’s supplementary materials spe-

cifying the succession rules (scripts/clean_millington_trans_table.py), and generate a new

succession rule table that is modified to account for the differences between the Millington LFSM

and AgroSuccess (scripts/repurpose_trans_rules_agrosuccess.py). Notably I replace the

‘cropland’ land-cover state represented in the Millington LFSM with wheat and DAL land-cover

states such that any transition from cropland to any other state in the Millington LFSM enables

the same transition from either wheat or DAL in AgroSuccess.

The transition rules that form the state-and-transition model underlying AgroSuccess are de-

signed to reflect the effect that a range of possible environmental gradients would have on the

competitive advantage of different species and, by extension, the land-cover types those spe-

cies produce. For example, pine performs better in drier soils than oak, and vice versa. This is

modelled by the transition rules in the AgroSuccess STM by having hydric soil moisture cause

Shrubland cells to transition to Oak, and xeric soil moisture causes Shrubland to transition to

Pine (all else being equal). These rules are encoded in a property graph (see Section 7.2) and

constitute the declarative knowledge component of the state-and-transition model that underpins
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the AgroSuccess ecological succession submodel. The other component of the STM is procedural

knowledge about how land-cover transitions take place (McIntosh, 2003). This is expressed in

terms of a set of logical statements that together specify the behaviour (though not the imple-

mentation) of the algorithm that is used in AgroSuccess to update the land-cover state of grid

cells during the course of a simulation run. Every transition in AgroSuccess is defined in terms

of a start state, C, a target state, ∆D, and a transition time, ∆T . ∆T is the total transition time

for a grid cell to transition from its current state to its target state under current environmental

conditions according to the STM. I also define another transition time, ∆T̂ , that represents the

total transition time for a particular grid cell in the simulation. It is not necessarily true that

∆T̂ = ∆T because while ∆T refers to the default time a transition from state C to state ∆D

takes to occur, situations can arise during a simulation run (discussed later in this section) that

cause the transition time to deviate from the default on a cell-by-cell basis. ∆T̂ represents an en-

dogenous variable specific to a particular cell. I formally define C, ∆D, ∆T , and ∆T̂ as functions

of time

C = C(t) ∈ L (4.1)

∆D = ∆D(t) ∈ L ∪ {∅} (4.2)

∆T̂ = ∆T̂ (t) ∈ N ∪ {∅} (4.3)

∆T = ∆T (t) ∈ N ∪ {∅} . (4.4)

Here

L = {Burnt, Wheat, DAL, Grassland, Shrubland, Pine, Transition Forest, Deciduous, Oak}

is the set of possible land-cover types in the succession submodel. This includes all the land-cover

types presented in Table 4.1 except ‘Water/ Quarry’ because it does not participate in ecological

processes. N = {0, 1, 2, . . . } denotes the set of natural numbers, and ∅ = {x : x ̸= x} is the empty

set. It is used in this context to represent situations where the STM underlying AgroSuccess does

not specify a target state for a combination of current state and physical attributes of the cell (see
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Section 4.2.2). This occurs when the environmental conditions in a cell favour the current land-

cover state persisting indefinitely.

The rules specifying how the land-cover types of grid cells are updated are expressed using a

series of logical sentences presented in this section. The number and complexity of the rules

that define the ecological succession model make it impractical to state them precisely in natural

language. The use of logical symbols makes it possible to express all rules concisely and unequi-

vocally, allowing them to be scrutinised to confirm that all possible simulation states have been

accounted for with corresponding rules. This will make it easier for future readers to accurately

reproduce my work than it would be if the rules were expressed in natural language. In this

sense, the use of logical expressions is the clearest way to describe the (dynamic) state update

rules analogously to how a property graph is the clearest way to describe the related (structural)

land-cover state and transition model (see Section 7.2). To assist readers who are not familiar

with the notation used in this section, I provide a set of descriptive examples in Appendix D.

The following sentences define predicates in terms of the current simulation time step, t.

Ct ↔ C(t) = C(t− 1) (4.5)

Dt ↔ ∆D(t) = ∆D(t− 1) (4.6)

D∅t ↔ ∆D(t) = ∅ ↔ ∆T (t) = ∅ (4.7)

T∅t ↔ ∆T̂ (t− 1) = ∅ (4.8)

Here Eq. (4.5) states that at time step t the land-cover state in the cell is the same as it was

in the previous time step. Eq. (4.6) states that at time step t the land-cover state the cell is

in the process of transitioning to is the same state it was transitioning to in the previous time

step. Eq. (4.7) states that at time step t, there is no target state or corresponding transition time

specified for the cell’s combination of environmental conditions in the STM. Eq. (4.8) states that

at time step t the transition time for the cell in the previous time step, ∆T̂ (t−1), was unspecified,

i.e. the cell was on a trajectory to remain in the current state indefinitely.

The sentences used to determine the number of years a simulation cell has been in its current

state, Tin(t), are
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∀t ∈ N \ {0} (¬Ct → Tin(t) = 1) (S1a)

∀t ∈ N \ {0} (Ct ∧Dt → Tin(t) = Tin(t− 1) + 1) (S1b)

∀t ∈ N \ {0} (Ct ∧ ¬Dt → Tin(t) = 1) (S1c)

The following sentences specify how simulation transition times, ∆T̂ (t), are updated

∀t ∈ N \ {0} (Ct ∧ ¬Dt ∧ ¬D∅t ∧ ¬T∅t → ∆T̂ (t) = round([∆T̂ (t− 1) + ∆T (t)]/2)) (S2a)

∀t ∈ N \ {0} (Ct ∧ ¬Dt ∧ ¬D∅t ∧ T∅t → ∆T̂ (t) = round([1 + ∆T (t)]/2)) (S2b)

∀t ∈ N \ {0} (Ct ∧Dt ∧ ¬D∅t → ∆T̂ (t) = ∆T̂ (t− 1)) (S2c)

∀t ∈ N \ {0} (Ct ∧D∅t → ∆T̂ (t) = ∅) (S2d)

∀t ∈ N \ {0} (¬Ct → ∆T̂ (t) = ∆T (t)) (S2e)

S2a and S2b account for situations where the target land-cover state has changed part-way

through a transition. If the previous simulation transition time was unspecified, I assume the

previous transition time was 1yr. This is consistent with the approach taken to using null trans-

itions in the Millington LFSM (see Section 4.2.7). S2c ensures that if neither the current state

nor the target state have changed since the last time step, the transition time will remain the

same. This prevents a situation where the transition time calculated by S2a or S2b is overwritten

by the native transition time of ∆D.

The following statements are used to determine the grid cell’s land-cover state in time step t,

C(t).

∀t ∈ N \ {0} (Tin(t− 1) ≥ ∆T̂ (t− 1) ∧ ¬T∅t → C(t) = ∆D(t− 1)) (S3a)

∀t ∈ N \ {0} (Tin(t− 1) < ∆T̂ (t− 1) ∨ T∅t → Ct) (S3b)

S3a causes a cell that has been in its current state for a sufficient amount of time to transition

to its target state according to the STM. S3b states that if a cell has not been in its current state
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for long enough to transition to a new land-cover type according to its succession trajectory, it

remains in its current state. If the current combination of physical conditions imply a simulation

cell won’t transition to a different land cover type, its land cover type in the current time step

will remain the same as its land-cover type in the previous time step.

Remove juvenile individuals in areas transitioning to mature vegetation

I consider the Pine, Oak, and Deciduous land-cover types to represent ‘mature’ vegetation com-

munities. By this I mean that in areas occupied by each of these types, individuals that are

representative of the type have successfully out-competed individuals of other land-cover types.

For example, we expect individuals in mature oak woodland to shade out pine saplings. Under

these circumstances we do not expect there to be juvenile vegetation belonging to species rep-

resentative of other land-cover types present in the understory. To represent this ecologically

motivated constraint I have included a rule in AgroSuccess stating that when a simulation cell

transitions to a mature vegetation state, any juvenile plants present in that cell (pine, oak and

deciduous) are removed.

∀t ∈ N \ {0} (¬Ct ∧ C(t) ∈ Lmature → ¬(Jpine ∨ Joak ∨ Jdec)) (S4)

where Lmature = {pine, oak,deciduous}. This rule interacts with the colonisation submodel whose

role is to distribute juvenile vegetation in the landscape. Since juvenile vegetation is otherwise

persistent (that is, if seedlings are deposited in grid cell i at time t, they will stay there in sub-

sequent time steps t + 1, t + 2, . . .), without S4 there would be no mechanism to remove juvenile

plants from the landscape (see Section 4.2.4).

Determine succession pathway

Grid cells have a ‘succession pathway’ physical attribute that determines whether they are on a

secondary or regeneration succession pathway. Secondary succession occurs when mature veget-

ation develops on an established soil that previously lacked mature resprouter species (e.g. oak).

Regeneration succession occurs when mature vegetation develops at a site where resprouting
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species had been established previously, but had been destroyed by a disturbance event leaving

some resprouter vegetative matter intact (J. D. A. Millington et al., 2009). I denote the fact that

a grid cell is on a secondary regeneration pathway by Psec, and the fact that a grid cell is on a

regeneration pathway by Preg.

In the landscapes represented by AgroSuccess, the key resprouting species is evergreen oak

(e.g. Quercus ilex), and the relevant disturbance process that leads to regenerative succession

is burning due to wildfire. A grid cell transitions to the regeneration pathway when it first

contains reproductively mature oak, i.e. individuals capable of producing acorns. Both the Oak

and Transition Forest land-cover types contain reproductively mature oak. For each grid cell I

maintain a count of the number of years it has remained in either of these states, Toak. If the

cell transitions to any state other than Oak or Transition Forest, Toak for that cell is set to 0. A

grid cell can transition from the regeneration succession pathway to the secondary succession

pathway if it experiences sufficiently frequent fire. This is referred to as ‘oak mortality.’

We define

T ′
oak =


Toak if Toak < 100yr

100yr otherwise

encoding the assumption that if oak individuals have been established for 100yr their resilience

to fire becomes constant. If the frequency of fire in the cell is sufficiently high and it is not already

on the secondary succession pathway, the cell will transition to it.

ffire > T ′
oak/Ωoak → Psec (S5)

where ffire (fire/yr) is the number of fires in the cell per year (an endogenous model variable),

and Ωoak = 200yr2/fire is an oak mortality scaling parameter (J. D. A. Millington et al., 2009). If

the antecedent of S5 is not true, the cell will remain in its current succession pathway.
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Comparison of land-cover state update rules to the Millington LFSM

The rules specifying the procedural knowledge in AgroSuccess described in the preceding para-

graphs correspond closely to rules in the Millington LFSM presented in J. D. A. Millington et al.,

2009 with some modifications described here. The succession rules in both AgroSuccess and

the Millington LFSM are expressed as sets of logical formulas. Table 4.3 shows the formulas

in AgroSuccess that correspond to equivalent statements in the Millington LFSM. During the

development of AgroSuccess I augmented the logical statements specified in J. D. A. Millington

et al., 2009 to make features of the model that were treated as implementation details in the

Millington LFSM explicit. This is important to facilitate informed discussion about the structure

of AgroSuccess without readers needing to scrutinise the relevant source code.

Table 4.3: Mapping between model rules in AgroSuccess specified in Section 4.2.3 and equivalent rules
in the Millington LFSM (J. D. A. Millington et al., 2009). The ‘Rule purpose’ column indicates the aspect
of the model each rule contributes to (see main text for details). There are serveral rules in AgroSuccess
with no counterpart in the Millington LFSM, denoted by ‘-’ in the ‘Millington LFSM rule’ column. See main
text for the motivation and description of these additional rules. Rule 2a in AgroSuccess differs from rule
4 in the Millington LFSM by making it explicit that derived transition times arising from changes in target
state part way through a transition are rounded to the nearest whole year.

Rule purpose AgroSuccess rule Millington LFSM rule

Update time in state, Tin S1a Statement 1
S1b Statement 2
S1c Statement 3

Update transition time, ∆T̂ S2a Statement 4*
S2b -
S2c -
S2d -
S2e -

Update land-cover state, C S3a Statement 5
S3b Statement 6

Remove juvenile vegetation S4 -
Determine succession pathway S5 Statement 7a, 7b

To account for the difference in my approach to representing null transitions compared to J. D. A.

Millington et al., 2009 (see Section 4.2.7 for a description of ‘null transitions’) I have added the

logical statements S2b, S2c, and S2d. Together these emulate the outcome of the null transitions

in the Millington LFSM, where the associated transition time, ∆T̂ , is set at 1yr.

Additionally, I have included S4 in the AgroSuccess succession submodel to link the process of

a patch of land-cover reaching a state of mature vegetation cover with the removal of juvenile

individuals in that land patch. This is a rule that was implemented in the Millington LFSM, but

was not formally documented in J. D. A. Millington, 2007 or J. D. A. Millington et al., 2009 (J. D. A.
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Millington 2020, personal communication, 14 July). By expressing this process as a formal rule I

aim to make the structure of the model more explicit.

4.2.4 Land-cover colonisation

An important part of the life cycle of most plant species is the production and distribution of

seeds. The presence of seeds in a particular location is a necessary condition for these species

to be able to establish dominance in that location at some future time. This includes resprouter

species such as Quercus spp. because, even in areas undergoing regeneration succession, the

presence of resprouting vegetative matter implies the colonisation of the area with oak seeds

(acorns) at some point in the past. In AgroSuccess the locations in the landscape of juvenile in-

dividuals corresponding to the mature vegetation land-cover types (pine, oak, and deciduous)

are encoded in the environmental condition attributes of each simulation grid cell (see Sec-

tion 4.2.2). Each grid cell has three binary variables that indicate the presence or absence of

juvenile individuals corresponding to the Pine, Oak, and Deciduous land-cover types—Jpine, Joak,

and Jdec respectively. These variables influence the ecological succession submodel by enabling

patches containing juvenile vegetation to transition to the corresponding land-cover type (see

Section 4.2.3). The succession submodel also accounts for the case of regeneration succession

using a separate ‘succession pathway’ environmental condition attribute, symbolised by Psec for

secondary succession and Preg for regeneration succession. In this way a patch can transition

to the Oak land-cover type if it contains regenerative oak vegetative matter even if it does not

contain acorns or juvenile oak.

In this section I present the land-cover colonisation submodel used in AgroSuccess. I depart from

J. D. A. Millington et al., 2009 by referring to the modelled process as ‘land-cover colonisation’

rather than ‘seed dispersal’ to reflect the greater level of abstraction with which I have modelled

the establishment of juvenile individuals. In AgroSuccess the land-cover colonisation model is

intended to represent the aggregate effect of all factors that culminate in successfully germinated

seedlings becoming established at locations in the simulated landscape.

I characterise ‘colonisation’ as the culmination of the processes of seed dispersal, seed germin-

ation, seedling establishment, and seedling survival (Thompson, 2005). The land-cover colonisa-

tion model in AgroSuccess takes the location of simulation grid cells containing Oak, Pine, and

Deciduous land-cover as input, and returns the locations of cells containing juvenile vegetation
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corresponding to each of those land-cover types. Colonisation implies the successful establish-

ment and survival of saplings by definition. Correspondingly, once a cell has had juvenile veget-

ation corresponding to a land-cover type deposited inside it, that juvenile vegetation will remain

there until the cell transitions to one of the mature vegetation land-cover states (Pine, Oak, or

Deciduous), at which point it is removed (see Section 4.2.3). The removal of juvenile vegeta-

tion upon transition to a mature land-cover type represents either the successful development

of juveniles into mature individuals corresponding to the same land-cover type, or the situation

where juveniles of one land-cover type are out-competed by mature individuals corresponding to

a different land-cover type.

Any cell containing mature vegetation corresponding to land-cover type σ ∈ {Pine,Oak,Deciduous}

is assumed to contain juvenile vegetation corresponding to that type. Additionally in each time

step, t, I randomly sample

Nσ,t = aNσ,t + bNtot (4.9)

grid cells and add juvenile vegetation corresponding to land-cover type σ ∈ {Pine,Oak,Deciduous}

to these cells. Here the parameter a ≥ 0 is the proportion of the number of cells in the simulated

landscape containing mature vegetation which produces juvenile vegetation, and b ≥ 0 is the

‘background rate’ of juvenile vegetation for each land-cover type in the model. The background

rate represents juvenile vegetation due to seeds entering the landscape from outside the

simulation grid, which avoids certain land-cover types going ‘extinct’ in the simulation. Nσ,t is

the number of cells containing mature vegetation corresponding to land-cover type σ at time

t, and Ntot is the total number of grid cells in the model. Note that juveniles are not added to

additional cells if the cells sampled already contain juvenile vegetation of type σ.

Land-cover colonisation model complicatedness

The land-cover colonisation model described above is completely spatially random in the sense

that the locations of cells containing juvenile vegetation are not correlated with the locations of

cells containing corresponding mature vegetation. This is a modelling approximation which is

simpler than the approach used by J. D. A. Millington et al., 2009 in the Millington LFSM (see

Section 4.2.7). However, any approach to modelling the spatial distribution of land-cover colon-
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isation is likely to be subject to simplifying assumptions. Thompson, 2005 found descriptions of

colonisation processes in the literature that suggest that the approach to modelling colonisation

using seed dispersal kernels found in the Millington LFSM is unlikely to capture the true spatial

variability of seedling establishment. For example, although many seeds of fleshy-fruited species

are dropped close to the seed source, there are peaks in the seed shadow around isolated trees

(potentially of species different to the seeds themselves) that birds carrying the seeds use as

perches (Thompson, 2005, pp. 133–134). I see no reason to believe the spatial distribution of

acorns would not follow a similar pattern (with multiple peaks centred on potential perches) and

note that the log-normal distribution used in the Millington LFSM J. D. A. Millington et al., 2009

cannot capture this pattern. Additionally, Thompson, 2005, p. 134 describes how wind-dispersed

species colonise open areas through a process called nucleation, whereby a colony emerges from

an isolated individual established from a seed dispersed over long distance. Taking the example

of Pinus sylvestris, such an individual will produce a greater abundance of cones upon reaching

maturity than a comparable individual in a stand (see e.g. Debain et al., 2003), accelerating

the establishment of a new colony. Both of these examples show that the culmination of the

colonising processes that lead to the establishment of either wind- or animal-dispersed species

are not random in the way assumed by the seed dispersal kernel method used in the Milling-

ton LFSM. Furthermore, to model these processes would require a more fine grained (perhaps

individual-based) representation of vegetation cover than is used in either the Millington LFSM

or AgroSuccess.

The above discussion highlights how the level of detail represented in a model of plant colon-

isation is a trade-off between realism and tractability, constrained by the overarching scientific

objectives of the model. I argue that the representation of colonisation in AgroSuccess should

be kept as simple as possible in terms of both processes and parameters, while satisfying the

objective that the greater the area occupied by a land-cover type, the more opportunities for

colonisation by species corresponding to that land-cover type are created in each time step.

4.2.5 Soil moisture

Soil moisture in the simulation grid is calculated for each grid cell in each time step. This is

relevant to the ecological succession submodel because the land-cover transitions available to

grid cells depends on the available soil moisture (see Section 4.2.2). AgroSuccess follows the
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Millington LFSM in using the United States Department of Agriculture’s (USDA) approach to

calculating runoff following precipitation (United States Department of Agriculture, 2004). The

USDA relate runoff, Q, to precipitation, P, as follows

Q =
(P − 0.2S)2

P + 0.8S
. (4.10)

S is the maximum potential water retention which depends on the local slope, land-cover and soil

type through a dimensionless curve number, CN, such that

S = 25.4

(
1000

CN
− 10

)
. (4.11)

See United States Department of Agriculture, 2004 for details of the approach to estimating

runoff using curve numbers. The mapping between slope, soil type and land-cover type is given

in Appendix C after J. D. A. Millington et al., 2009. P, Q, and S are all in mm.

In AgroSuccess soil moisture is calculated on a per-pixel basis such that the soil moisture of grid

cell i at time t is given by

Mi,t = Ti,t −Qi,t (4.12)

where

Ti,t = Pt +
∑
j∈Di

Qj,t (4.13)

Qi,t =
(Ti,t − 0.2Si,t)

2

Ti,t + 0.8Si,t
. (4.14)

Ti,t is the total amount of water in mm entering cell i in time step t accounting for both pre-

cipitation, Pt, and runoff from neighbouring cells. The scenarios discussed in this thesis set Pt

to be the mid-Holocene mean annual precipitation for each study site (see Section 3.3) for all

years. However, more elaborate scenarios where annual precipitation varies over time could be

explored in future. Di is the set of neighbouring cells that drain into cell i, and is determined
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using the flow direction map for each study site (see Section 3.3.1). Note that while each cell

drains into exactly one neighbour (or out of the grid in the case of edge cells), up to seven cells

can drain into a single cell depending on the topology of the terrain. This is because in AgroSuc-

cess each cell has eight neighbours (the ‘Queen’s neighbourhood’), and I have preprocessed the

digital elevation models used for our study sites to ensure that no cell has an elevation less than

all of its neighbours (this is known as ‘sink’ removal, see Section 3.3.1). Eq. (4.14) corresponds

to Eq. (4.10) provided by United States Department of Agriculture, 2004, but with Ti,t replacing

P. This reflects the fact that in AgroSuccess, the water entering each grid cell includes both

precipitation and runoff from neighbouring cells. Si,t is the maximum water retention in cell i at

time t calculated using Eq. (4.11). The dependence of Si,t on t arises because the curve number

of cell i, CNi,t, can change from one time step to the next as the cell’s land-cover type evolves

according to the ecological succession submodel.

In the ecological model, continuous soil moisture values in each cell expressed in mm are con-

verted to discrete soil moisture classes. The boundaries for these classes used in AgroSuccess

correspond to those used in the Millington LFSM and are shown in Table 4.4.

Table 4.4: Mapping of continuous soil moisture values to discrete soil moisture classes used in the ecolo-
gical succession submodel.

Soil moisture in cell i at time t, Mi,t [mm] Soil moisture class
Mi,t ≤ 500 xeric
500 < Mi,t ≤ 1000 mesic
Mi,t > 1000 hydric

4.2.6 Fire

In addition to ecological dynamics, I also follow the example of J. D. A. Millington et al., 2009

in their implementation of a Cellular Automata model of fire spread (see also Perry, Wilmshurst,

McGlone, McWethy et al., 2012; Peterson, 2002). This is a straight-forward algorithm whereby,

in each simulated year, a specified number of fire ignitions are made. Each cell has a certain

probability of catching fire influenced by its land-cover class. During each fire event, burning is

allowed to spread from neighbouring cell to cell until there are no more active fires. While simple,

J. D. A. Millington et al., 2009 showed that this model is able to reproduce wildfire frequency-size

statistics comparable to those found in empirical wildfire data characterising the fire regime in

areas of the US within a Mediterranean-type ecoregion (Malamud et al., 2005). In the following

subsections, I describe in detail how the number of ignitions per simulated year is determined
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and the algorithm used to spread these simulated fires in the landscape.

Number of ignitions per year

λ = λ(T̄ , P̄ ;m) is the average number of ignitions in the study region per year, given by Eq. (4.15).

T̄ is the average temperature taken across the year in degrees Celsius, and P̄ is total annual

precipitation in millimetres. Both T̄ and P̄ are treated as empirical data that vary by study site.

m is a climate ignition scaling parameter with units mm/◦C. m is treated as a calibrated model

parameter. See Section 5.1 for details of how m was calibrated for each study site.

λ(T̄ , P̄ ;m) = m
T̄

P̄
(4.15)

The number of fires successfully started per year follows a Poisson distribution given in Eq. (4.16).

For each fire a cell will be randomly drawn from the landscape and an ignition will be attempted.

If the selected cell is not a flammable land cover type (if it has already been burnt or is occupied

by water, for example) another cell will be drawn. This re-drawing of cells will continue until an

ignition is successful, or until there have been 1000 unsuccessful attempts to start a fire.

p(x) =
e−λλx

x!
(4.16)

Fire spread

Once a fire has started, its spread is simulated by a Monte Carlo process in which the probability

of fire spreading from a cell to its neighbours depends on the neighbouring cells’ biophysical

properties. The probability of a fire spreading from an actively burning cell to a neighbouring

cell, i is given by

pi = LCFi · SRi · FMR · WRi (4.17)

where the multiplicative risk factors are defined in the remainder of this section.
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Each land cover type represented in the model contains different quantities and distribution of

combustible fuel. Consequently, the likelihood that an active fire will spread to a particular patch

depends on the relative flammability of the land cover in that patch. The land cover flammab-

ility value for land cover type Lc is denoted by LCFLc . In recognition of the uncertainty in the

quantification of LCFLc , and the possibility that LCFLc may vary across study sites, I consider 14

land cover flammability scenarios where each scenario specifies a set of LCFLc , each with one

LCFLc value for each land cover type. These are shown in Table 4.5. The land cover flammability

scenario used for a particular simulation, SLCF, is treated as a model parameter that is calibrated

for each study site (see Section 5.1).

Table 4.5: Land-cover flammability values for land-cover types in AgroSuccess, LCFLc , after J. D. A.
Millington et al., 2009. Each row corresponds to a different scenario, with overall land-cover flammability
increasing further down the table.

Lc Grassland Wheat DAL Shrubland Pine T. Forest Deciduous Oak Mean
Scenario,
SLCF

TFN4 0.15 0.15 0.15 0.15 0.14 0.14 0.13 0.13 0.14
TFN3 0.16 0.16 0.16 0.16 0.15 0.15 0.14 0.14 0.15
TFN2 0.17 0.17 0.17 0.17 0.16 0.16 0.15 0.15 0.16
TFN1 0.18 0.18 0.18 0.18 0.17 0.17 0.16 0.16 0.17
TF0 0.19 0.19 0.19 0.19 0.18 0.18 0.17 0.17 0.18
TF1 0.20 0.20 0.20 0.20 0.19 0.19 0.18 0.18 0.19
TF2 0.21 0.21 0.21 0.21 0.20 0.20 0.19 0.19 0.20
TF3 0.22 0.22 0.22 0.22 0.21 0.21 0.20 0.20 0.21
TF4 0.23 0.23 0.23 0.23 0.22 0.22 0.21 0.21 0.22
Default 0.24 0.24 0.24 0.24 0.23 0.23 0.22 0.22 0.23
TF5 0.25 0.25 0.25 0.25 0.24 0.24 0.23 0.23 0.24
TF6 0.26 0.26 0.26 0.26 0.25 0.25 0.24 0.24 0.25
TF7 0.27 0.27 0.27 0.27 0.26 0.26 0.25 0.25 0.26
TF8 0.28 0.28 0.28 0.28 0.27 0.27 0.26 0.26 0.27

To reflect the fact that fire spreads more easily uphill than downhill I include a slope risk factor,

SRi. The values for SRi for grid cell i with percentage slope S
(%)
i are given in Table 4.6.

Table 4.6: Slope risk value for grid cell i, SRi given a slope (grade) between cell i and a burning cell of

S
(%)
i . SRi is a multiplicative factor used to determine the likelihood that a fire spreads from a cell that is

already burning to cell i.

Slope, S
(%)
i [%] Slope risk, SRi

S
(%)
i < −25 0.80

−25 ≤ S
(%)
i < −15 0.90

−15 ≤ S
(%)
i < −5 0.95

−5 ≤ S
(%)
i < 5 1.00

5 ≤ S
(%)
i < 15 1.05

15 ≤ S
(%)
i < 25 1.10

S
(%)
i ≥ 25 1.20
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The expected number of fires per year, λ, is used to determine the fuel-moisture risk of the

landscape. From Eq. (4.15) we see that λ is a linear function of the ratio of temperature to

precipitation, such that for greater values of λ we expect the likelihood of vegetation in the

landscape to catch fire when exposed to a source of ignition to increase. Consequently λ can

also be thought of as a vegetation moisture parameter. Table 4.7 shows the mapping between

vegetation moisture classes and fuel-moisture risk factors. These factors are the same as those

used in the Millington LFSM and are used to calculate the probability that a fire spreads from

one simulation grid cell to another. Notice that while the other multiplicative factors in Eq. (4.17)

depend on the local biophysical conditions of the cell the fire might spread to, FMR is common

to all cells in the landscape.

Table 4.7: Mapping from vegetation moisture class, λ, (see Eq. (4.15)) and fuel-moisture risk factors used
in the simulation model. Fuel-moisture risk factors increase the risk of fires spreading in hotter, drier
landscapes.

Vegetation moisture class, λ Fuel-moisture risk (FMR)
λ < 0.2 0.8
0.2 ≤ λ < 0.3 0.9
0.3 ≤ λ < 0.5 1.0
0.5 ≤ λ < 0.6 1.1
λ ≥ 0.6 1.2

Wind speed and direction influences wildfire spread because fire is more likely to spread into a

cell that is downwind of a burning cell, and fire is more likely to spread if wind speed is high than

if wind speed is low. Cell i is ‘downwind’ of cell j if the vector from cell j to cell i is parallel to

the direction of the wind. Following J. D. A. Millington et al., 2009 and Perry and Enright, 2002 I

use a model that allocates wind risk factors, WRi to grid cells adjacent to cells that are already

burning. These are shown in Fig. 4.2.

For each study site I derived empirical probability distributions that quantify the probability of

observing a particular wind speed category and direction on a given day (see Section 3.3). Each

time a fire occurs during a simulation run, a specific wind speed and direction are sampled from

these distributions and remain constant for the duration of the fire.

4.2.7 Relationship of AgroSuccess to the Millington LFSM

J. D. A. Millington et al., 2009 deployed RBCLM in a Landscape Fire Succession Model (LFSM)

in a manner similar to that described in Section 4.2.1. This LFSM model was subsequently in-

tegrated with an agent-based model of contemporary agricultural land-use/cover change to form
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a coupled model called SPASIMv1 (Wainwright & Millington, 2010). SPASIMv1 was successfully

used to study land-cover change in an 830km2 area of Spain (J. Millington et al., 2008), an area ap-

proximately 20 times larger than the 40km2 spatial extent of AgroSuccess. While the agent-based

component of SPASIMv1 focuses on contemporary (rather than prehistoric) land-use change, the

LFSM described in J. D. A. Millington et al., 2009 represents Mediterranean ecosystems at similar

spatio-temporal grains to those required in AgroSuccess. Motivated by these similarities I took

considerable inspiration from the LFSM developed in J. D. A. Millington et al., 2009—which I will

refer to from now on as ‘the Millington LFSM’—during our development of AgroSuccess. In par-

ticular, the design of both the ecological succession and fire spread modules used in AgroSuccess

are based on those used in the Millington LFSM. In this section I describe the similarities and

differences between AgroSuccess and the Millington LFSM, as well as how the succession mech-

anism implemented in AgroSuccess is tailored to address our research objective of investigating

the influence of early agriculturalists on land cover change.

Soil fertility and land-cover conversion cost land-cover type attributes

A key way in which AgroSuccess differs from the Millington LFSM is in its association of land-

cover states with fertility and land-cover conversion cost attributes. These attributes do not

contribute directly to AgroSuccess’ ecological succession pathways, but are used by simulated

agriculturalist households to evaluate different land cover patches’ suitability for agriculture.

This enables AgroSuccess to represent agricultural household decision-making processes similar

to those in MedLand consistently with the STM underlying its ecological succession submodel

(see Section 4.3).

Succession submodel

The RBCLM succession submodel in AgroSuccess has two components:

1. A state-and-transition model (STM) that specifies which land-cover types are represented

in the model and the transitions which occur between them under specific sets of environ-

mental conditions and time scales (declarative knowledge).

2. A set of rules that govern how simulation grid cells transition from one land-cover state to
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another (procedural knowledge).

Like the Millington LFSM, declarative knowledge about which land-cover states are represented

and which transitions are possible in AgroSuccess are encoded in an STM. However, there are

differences in the land-cover states which are represented in the two models (see above) leading

to differences in the structure of their STMs. Consequently, the behaviour of the succession

submodels will differ between the two models due to differences in the structure of the respective

STMs underlying them.

Apart from differences in structure between the STMs in AgroSuccess and the Millington LFSM,

I have also made changes to the way the STM is implemented. The STM in the Millington LFSM

is implemented as a transition table where each row encodes a single transition under a specific

set of environmental conditions (see supplementary materials in J. D. A. Millington et al., 2009).

The transition table includes a row for every combination of environmental conditions for each

pair of states for which any transition pathway exists, including ‘null transitions’. Null transitions

occur when, for a particular combination of environmental conditions, grid cells should remain

in their current land-cover type indefinitely. This reflects ecologically realistic situations where

environmental conditions persistently favour the existing land-cover type over any other. Null

transitions contribute a significant fraction of all transitions. In AgroSuccess grid cells are always

in one of 96 possible states in respect to their environmental conditions (see Section 4.2.2). The

proportion of these states that cause a cell to remain in its current state varies by land-cover

type, but is greater than one third for all types. For example, 36% of possible combinations of

environmental conditions would cause a grid cell to remain in the Pine land-cover state until

those conditions changed, whereas the equivalent proportion of combinations of environmental

conditions for the Oak land-cover type is 57%. Rows corresponding to null transitions in the

Millington LFSM STM transition table specify that grid cells with the corresponding land-cover

state and combination of environmental conditions should ‘transition’ to the same land-cover

state after a period of 1yr. This design causes a cell which has been in its current state for 5 time

steps to be indistinguishable from one which has remained in its present state for 500 time steps.

I argue that these two scenarios are qualitatively different, and that it is diagnostically useful

from a modelling perspective to be able to detect when cells have remained in a particular state

for a large proportion of the simulation run time. Such a finding might motivate a reconsideration

of additional transition rules which were previously dismissed.
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The STM in AgroSuccess is implemented as a property graph (see Section 7.2) rather than as a

transition table. The existence of null transitions is implied by the absence of transition pathways

through the property graph encoding the STM for particular combinations of environmental con-

ditions. By implementing the STM in a form which is easy to visualise (i.e. a graph) and by not

explicitly representing null transitions, the AgroSuccess STM is easier to specify and visually in-

spect than the Millington LFSM STM. These changes to the way the declarative component of the

AgroSuccess STM is implemented compared to the Millington LFSM are not intended to produce

any difference in the behaviour of the model. However, to maintain equivalence of behaviour it

is necessary to make a corresponding modification to the rules specifying procedural knowledge

about the system. Briefly, it is necessary to introduce a null state that grid cells can be classified

as being in the process of transitioning towards (as opposed to any particular land-cover state). In

addition to enabling the improvements to the representation of the STM described above, the in-

troduction of the null state simplifies the identification of those grid cells that have been involved

in a null transition for a large proportion of a simulation run time. See Section 4.2.3 for details of

the differences in the representation of procedural knowledge in AgroSuccess compared to the

Millington LFSM.

Seed distribution submodel

The Millington LFSM contains a seed dispersal submodel (see Section 3.3 in J. D. A. Millington

et al., 2009). This model simulates the distribution of seeds in the landscape by using empirically

motivated probability distributions to relate the distance of a cell from its nearest seed source

to the probability of finding seeds in it. In general, cells that are closer to a seed source have a

higher probability of having seeds in them according to the probability distributions, such that the

locations of cells containing seeds become spatially correlated with the locations of seed sources.

As noted above, the spatial extent of AgroSuccess is approximately 20 times smaller than the

Millington LFSM. I argue that over the 40km2 landscapes which are simulated in AgroSuccess,

the presence of some seeds of a particular type in the landscape is likely to mean such seeds

could be found anywhere in that area. On this basis I have chosen to implement a simpler

spatially random land-cover colonisation model (see Section 4.2.4) similar to the seed distribution

submodel used in an earlier unpublished version of the Millington LFSM (J. D. A. Millington,

2007). This model is much cheaper to run computationally, simpler to implement efficiently, and

easier to reason about and evaluate due to the smaller number of model parameters.
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Graph representation of succession submodel

The succession model in the Millington LFSM is encoded and distributed (see J. D. A. Millington

et al., 2009, supplementary material) as a 751-line table in which each row specifies an individual

transition, and the columns encode start and end states, an exhaustive set of environmental

conditions, and the transition time. During the development of AgroSuccess, I capitalised on the

inherently networked structure of RBCLMs to encode and interact with the succession submodel

as a graph database (see Section 7.2). Being able to visualise the model as a graph rather

than a table enabled me to identify some transcription errors that occurred during the manual

transfer of the details of the Millington LFSM from an unpublished PhD thesis (J. D. A. Millington,

2007) to a published journal article (J. D. A. Millington et al., 2009). The succession submodel in

AgroSuccess is encoded using automated data processing steps which can be reproduced using

code distributed in Appendix G.S7. See Section 4.2.3 for further details.

4.3 Agent-based model of subsistence agriculture

In this section I describe the agent-based subsistence agriculture component of AgroSuccess.

This submodel builds on modelling of land-cover change from subsistence agriculture developed

previously in the MedLand model (Barton et al., 2010). See Section 4.3.2 for an overview of

the relationship between AgroSuccess’ subsistence agriculture submodel and MedLand. In Sec-

tion 4.3.3 I give an overview of the entities and processes represented in the submodel, before

specifying model behaviours in detail in Section 4.3.4.

4.3.1 The ODD protocol

I have chosen to use the ODD+D protocol (Müller et al., 2013) to formally describe the human

decision-making component of AgroSuccess. This is a framework designed to assist in the clear

description of agent-based models that incorporate human decision making. It is an evolution of

the original ODD protocol for specifying agent-based models in general (Grimm et al., 2006), and

shares with its predecessor the ambition of making descriptions of ABMs more consistent, and

therefore quicker to understand and easier to reproduce. See Table B.1 in Appendix B for the

AgroSuccess ODD model specification.
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4.3.2 Relationship between AgroSuccess and MedLand

Many of the concepts, rules, and parameters that govern the subsistence agriculture submodel

in AgroSuccess are inspired by MedLand directly, as described by Ullah, 2013. MedLand—the

‘Mediterranean Landscape Dynamics project’ (Barton et al., 2010)—is a simulation modelling

laboratory originally developed by a team in the School of Human Evolution and Social Change

at Arizona State University to investigate the impact of Neolithic agropastoral land use practices

on soil erosion. At its heart is an agent-based model that represents households of agriculturalists

who interact with the landscape in the vicinity of their village to produce the food and firewood

they need to subsist.

Incorporating aspects of a model developed by other researchers into AgroSuccess is an effi-

cient use of research time. By leveraging work performed by experts in the field, I was able

to combine existing knowledge with my own understanding of ecological processes to address

novel research questions. A model like MedLand represents a formalisation of knowledge about

Neolithic land management practices. Its construction required a detailed literature review of

archaeological and ethnographic theory to specify a plausible description of life in the prehis-

toric Mediterranean. The manner in which I have been able to reuse ideas from MedLand is

an example how formalising theoretical knowledge about the mechanisms and parameters that

drive complex systems into a model helps to increase the accessibility of that knowledge to future

researchers (see Section 2.6.1).

Despite the shared features between the subsistence agriculture submodel of AgroSuccess on

one hand, and MedLand on the other, I emphasise that AgroSuccess builds on MedLand, and

present the subsistence agriculture mechanisms included in the AgroSuccess submodel as a new

model. To avoid multiple digressions from the presentation of the subsistence agriculture sub-

model in AgroSuccess to explain how and why specific mechanisms differ from their counterparts

in MedLand, Section 4.3.3 and Section 4.3.4 describe the subsistence agriculture model as it is

implemented in AgroSuccess without reference to MedLand. Summaries of MedLand’s develop-

ment history and how AgroSuccess differs from MedLand are now presented.
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MedLand publication history

In Fig. 4.3 I show a selection of papers describing the MedLanD model that have been published

throughout a period of over 12 years. The model was first described in conference proceedings

by Mayer et al., 2006, which provides an overview of the modelled processes and describes

preliminary results but does not specify any formal decision rules (e.g. in the form of equations)

for the household agents. Barton et al., 2010 summarise contributions to the model at the time

of publication in 2010 (Mayer, 2009; Mayer & Sarjoughian, 2007, 2009; Mayer et al., 2006), and

describe the agent-based component of the model as “currently in development” at that time.

Ullah, 2013 provides a full description of the household agents’ decision rules in an unpublished

PhD thesis. That thesis is the only source specifying the model decision rules that I have been able

to identify, and excerpts from it form the basis of the documentation which the authors distribute

with the model software (Barton et al., 2017). Although unpublished, I am confident Ullah, 2013

is the authoritative description of the MedLanD ABM decision rules because a subsequent paper

with several authors previously involved in developing the model cites this thesis as a reference

for the details of the MedLanD model (D. T. Robinson et al., 2018).

Summary of differences between AgroSuccess and MedLand

As stated above, the subsistence agriculture submodel of AgroSuccess is a new model with re-

spect to MedLand. No code is shared between the two models’ implementations and, because

they are each designed to answer different research questions, they emphasise different pro-

cesses in their respective representations of prehistoric subsistence agriculture. Here I give an

overview of the differences between AgroSuccess and MedLand, paying particular attention to

the reasons for the high-level differences between the two models. For specific details of how the

decision rules followed by the agropastoralist household agents in AgroSuccess differ from those

in MedLand see Appendix E.

A key difference between AgroSuccess and MedLand is the decision to exclude the soil erosion

and deposition processes represented in MedLand from AgroSuccess. This is a direct reflection

of the different research objectives of the two models. The authors of MedLand wanted to invest-

igate the impact of Neolithic subsistence farming and pastoralism on land degradation via soil

erosion in the Mediterranean. To do so they allow anthropogenic agents in the model to modify
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land cover. They then map each land-cover state represented in the model to a quantity (called

a ‘C-factor’) which determines the rate of soil erosion, i.e the degree to which different land

cover types help to reduce the effects of erosion (Ullah, 2013, pp. 99–101). These C-factors are

then fed into equations that enable MedLand simulations to represent how soil depth changes at

different points in the landscape in response to anthropogenic land-cover change. Importantly,

the tracking of land-cover state is an intermediate step to enable the modellers to calculate the

dependent variable of principal interest—soil depth.

Conversely, the research questions that motivate the development of AgroSuccess do not ex-

plicitly concern soil erosion. I consider soil erosion to be a factor that is held constant while

studying the effects of other factors—human agricultural practices, the fire regime, climate, and

succession—on ecological succession and emergent land-cover state. This change of modelling

focus justifies the exclusion of soil erosion calculations from AgroSuccess, and results in the

need to modify other aspects of the model to maintain consistency. In particular, I have modified

the MedLand equations used to calculate crop productivity because their MedLand equivalents

depended on soil depth. See Appendix E.2 for details of this change.

Like AgroSuccess, MedLand incorporates a representation of spatial variation in land-cover using

a raster grid (see Section 3.3). In both models the numerical value associated with the raster cell

representing an area of the landscape during a particular time step specifies the type of land-

cover at that location and time. In MedLand there are 38 different land-cover states a patch of

land can occupy at each time. Raster cells progress sequentially through these states such that

if a patch of ‘bare land’ is allowed to develop without disturbance for 50 simulated years, it will

eventually transition into ‘fully matured woodland’ (Ullah, 2013, pp. 108–109).

The simple, linear representation of ecological succession in MedLand is inadequate to address

my research questions. The purpose of AgroSuccess is to investigate the impact of various

factors on emergent land-cover state, so I have developed an ecological succession submodel

that makes it possible for various different succession pathways to occur in response to differing

environmental conditions, as well as natural and anthropogenic disturbance. In contrast to the

38 land-cover states represented in MedLand, AgroSuccess focuses on 10 qualitatively distinct

land-cover states (see Section 4.2.3). This is done to enable AgroSuccess to represent more de-

tail about the states themselves and, crucially, the transitions between the states. The land-cover

states in AgroSuccess are coarse-grained, making it possible to include more information in the
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model about the relationships between states. In MedLand, land-cover state is calculated as an

intermediate step during the calculation of changes to soil erosion depth, whereas in AgroSuc-

cess land-cover state is the dependent variable of interest, motivating a shift in focus towards

complex ecological succession pathways.

Model implementation

The model of subsistence agriculture within MedLand is coupled to the other model components

using a framework called DEVs Suite which was developed in-house by the MedLand team. In

the early stages of developing AgroSuccess I assessed the feasibility of integrating my work into

DEVs Suite by reading the available source code and documentation, and contacting the authors

of the model with queries which arose from our preliminary work. However, I found that the

idiosyncrasies of the original implementation of MedLand were such that it would be implausible

to build on it without establishing a close ongoing collaboration with the original authors. Due to

the differences in focus between the projects underlying the AgroSuccess and MedLand models

(see Section 4.3.2 above), I made the project management decision to develop AgroSuccess as

an independent model without input from the team behind MedLand, rather than attempt to

establish a collaboration with them.

Rather than develop the software for AgroSuccess completely from scratch, I decided to use

an established agent-based modelling framework called Repast Simphony (North et al., 2013).

Using a framework while developing a model provides the advantage of some initial structure

into which modellers can insert their model-specific components, as well as a community of other

modellers who can help to resolve problems with the software.

4.3.3 Overview of subsistence agriculture submodel

Here I present a high-level overview of the concepts entering into the subsistence agriculture

submodel of AgroSuccess as recommended in the ODD Protocol (see Section 4.3.1).
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Entities, state variables and scales

The most important entity in the subsistence agriculture submodel is the household. These are

the decision-making agents that interact with the model environment (i.e. the simulated land-

scape) to affect land-use change. Each Household agent represents a family of prehistoric sub-

sistence agriculturalists who cooperate with each other to obtain the resources they need to

survive. Households have a population variable that tracks how many people live in the house-

hold, and a memory of the mass of wheat per hectare they were able to produce in the previous

year. For ABMs other than MedLand that use the household as an anthropogenic decision-making

unit see e.g. An et al., 2005; Clark and Crabtree, 2015.

Households are organised into villages, and each Household knows which Village it belongs to.

Village agents have an immutable location variable that situates it in geographical space, and a

mutable set of Household agents that belong to the village.

A Land Patch Allocator abstract agent represents the process by which land patches are allocated

to households, and keeps track of which patches have been allocated to which household. It

can be thought of as a model of the social contract according to which households recognise

ownership of land patches by specific households.

In the preceding paragraphs I have made a distinction between ‘agents’ and ‘abstract agents’.

By ‘agent’ I mean a concrete object that exists in the model and corresponds to something tan-

gible in the world, whereas an ‘abstract agent’ encapsulates a conceptualisation of a mechanism

or process that occurs in the world and which we want to represent in the model. Naming the

abstract agents as agents simplifies the communication of the important mechanisms they rep-

resent, because within the semantics of agent-based modelling it is necessary for each action to

have a thing to do it. If one were to avoid explicit discussion of abstract agents, it would become

necessary to make concrete agents responsible for affecting processes or tracking variables in

a way that doesn’t naturally correspond to the real-world entities they represent in the model.

For example, I could have made the Village agent responsible for the process of allocating land

patches to Household agents, and tracking which patches had been allocated to which household.

This is contrived, because while a village can certainly be located somewhere, the claim that a

village allocated something might signal the speaker was using the word ‘village’ in a figurative

or otherwise non-standard way. Instead, I provided an abstract Land Patch Allocator to represent
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this modelled process.

In Table 4.8 I show the exogenous drivers of the agent-based subsistence agriculture submodel.

Note that with the exception of precipitation and temperature (the climatic boundary conditions),

all of these factors are outputs of the biophysical model components described in Section 4.2.

Precipitation drives the submodel directly through a mechanism that increases wheat yield on

patches receiving more rainfall (and decreases yield on patches experiencing drought). Other

exogenous drivers influence the subsistence agriculture submodel indirectly through their impact

on ecological succession dynamics. For example, a patch of shrubland containing oak seeds with

high soil moisture will transition into a patch of oak forest, wheres an otherwise similar patch

with low soil moisture and pine seeds will transition into pine forest. Oak forest has a higher land

cover conversion cost than pine forest (see Table 4.1 in Section 4.2.2) so higher soil moisture

indirectly causes the patch to become more difficult for households to convert to agriculture.

Table 4.8: Exogenous drivers of the AgroSuccess subsistence agriculture submodel.

Driver Direct Indirect (fire regime) Indirect (succession)
Precipitation × × ×
Temperature × ×
Fire spread × ×
Seed dispersal ×

The temporal grain of AgroSuccess is annual, and its temporal extent is 200–1000 years. This is

consistent with temporal scale (Ullah, 2013) and grain (Barton et al., 2016) for which MedLanD

has been used previously.

The spatial grain of AgroSuccess is approximately 25m2 (0.0025ha), and its spatial extent ap-

proximately 40km2. Note that the spatial grain and extent will vary slightly depending on study

site.

Process overview and scheduling

At the beginning of each simulation time step, each household decides on a subsistence plan that

specifies:

1. The number of land cover patches they need to farm in the coming simulated year to pro-

duce enough calories to support the members of the household, N
(w)
t .
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2. The number of land cover patches they need to use to gather sufficient firewood to meet

their heating and cooking needs, N
(f)
t .

The larger a household is, the more labour they are able to dedicate to cultivating land patches

and, correspondingly, the more calories they need to generate in order to survive. Each house-

hold’s objective is to harvest enough food and firewood to survive each simulated year.

Each Village agent sorts the land cover patches in its vicinity in order of their suitability for both

wheat farming and wood gathering. A patch’s suitability with respect to farming or firewood

gathering can change from one time step to the next, because different land cover types have

different land-cover suitability attributes and the land-cover type of each simulation grid cell will

change throughout the simulation run. All households within the same village value land patches

the same as each other, but households in different villages will favour land patches that are

closer to their own village’s location.

Once all households have determined their subsistence plans and the households have appraised

the grid cells in the vicinity of their village for wheat farming and firewood gathering, the Land

Patch Allocator abstract agent determines which land patches each household is allocated to

farm for the upcoming simulated year. Land patches are allocated by randomly iterating through

households until all households have satisfied their subsistence plans. Households do not retain

land patches between simulated years. Instead all patches are reallocated at the beginning

of each year. This is intended to reflect an egalitarian society in which all households get an

opportunity to farm the highest value land patches. See Section 4.3.4 for details of the land

patch allocation algorithm.

Finally, Households calculate their wheat and firewood yields for the current year’s subsistence

activity and report this value to their respective Population Update Manager abstract agents.

In the version of AgroSuccess presented in this thesis, the populations of households remain

constant throughout the simulation run.

This completes the steps required of the subsistence agriculture submodel for the current time

step. The simulated year ends with the calculation of soil moisture and the simulation of seed

dispersal, ecological succession, fire ignition and spread. See Section 4.2 for details of these pro-

cesses. See Fig. 4.4 for an overview of the simulation process sequence. For details of the rules

by which agents decide their subsistence plans and express preference for some land patches
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over others, see equations in Section 4.3.4.

4.3.4 Details

Households determine wheat subsistence plan

To determine their subsistence plan, all households calculate the number of land patches they

will need to farm to satisfy the calorie requirements of their members. The number of wheat

plots required by a household in time step t is given by

N
(w)
t =

3.65× 106 · Etot P
(h)
t (1 + ps)

E(w) µ
(w)
t−1Ar C

(4.18)

where P
(h)
t is the number of members of the household at time t, ps is the proportion of the crop

households hold back to reseed the next year, E(w) is the energy household members can extract

from 1kg of wheat, µ
(w)
t−1 is the wheat yield in kg/ha the household obtained in year t − 1, and C

is the farmer conservativeness scalar. The factor 3.65× 106 accounts for how Etot is expressed in

terms of d rather than yr, and how µ(w) is expressed in terms of ha rather than m2. See Table 4.9

and Table 4.10 for an overview of these parameters and variables, and Appendix E.1 for details

of how this equation differs from its counterpart in MedLand.

In addition to the desired number of wheat patches, households also consider whether or not

they are able to supply the amount of labour required to farm this quantity of wheat. This is done

by calculating

Lh(t) = P
(h)
t Lpers (4.19)

and

L
(w)
h (t) = 10−4N

(w)
t ArL

(w) (4.20)

Here Lh(t) is the labour the household is able to supply in the current time step, and L
(w)
h (t) is
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the labour that would be required to farm N
(w)
t plots of wheat (note that 10−4Ar is the raster cell

area in ha). If L
(w)
h (t) ≤ Lh(t) then N

(w)
t will be requested. Otherwise, the maximum number of

patches the household can farm will be requested.

The parameters entering into Eq. (4.18) are summarised in Table 4.9, and relevant endogenous

variables are shown in Table 4.10.

Table 4.9: Symbols representing parameters used in subsistence plan and yield equations. Unless other-
wise cited, values are derived from Ullah, 2013, p. 160.

Symbol Value Description

Etot 2500kcal/(pers d) Total number of kilocalories needed per person per day
(Ullah, 2013, p. 155)

E(w) 3540kcal/kg Energy yield per kilogram of wheat

ps 0.15 Proportion of crop held back to seed next year’s plots

µ
(w)
0 3500kg/ha Initial mass of wheat grown per hectare, assuming max-

imum possible yield (Ullah, 2013, p. 162)

C 0.75 Expectation scalar determining farmer conservativeness
(Ullah, 2013, p. 162)

Lpers 300pers d/yr Total labour availability per person per year (McCall,
1985)

L(w) 50pers d/(ha yr) Labour requirement for wheat (Ullah, 2013, p. 160) agri-
culture

Ar ≈ 625m2 Area of each raster grid cell (exact value is study site
dependent)

Table 4.10: Endogenous variables that occur within running models which are involved in calculating
subsistence plans.

Symbol Units Description

P
(h)
t pers Population of household at time t

µ
(w)
t kg/ha Mass of wheat per ha grown by household in year t

Households determine wood gathering plan

Households determine a number of land patches to use to gather firewood that they will use

for both cooking and heating. Like the patches they use for wheat agriculture, in each time

step households request a set of patches to use to gather firewood that only they will use for

the simulated year. However, unlike the case of patches used for agriculture, households do

not modify the land-cover type of patches used for firewood gathering. Instead, I assume that

households gather wood from patches of one of the mature land-cover types at a sustainable
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intensity, such that the land-cover type doesn’t change. The mature land-cover types are: Pine,

Transition Forest, Deciduous, and Oak (see Section 4.2.2). This process relies on the following

assumptions about the household agents:

1. Households are aware of what constitutes a sustainable harvest.

2. Households choose to harvest sustainably even at the cost of travelling further from the

village, rather than gathering from the closest available patches.

I define a sustainable harvest as the removal of 10% of biomass from a mature forest land patch

(Grabher, 2021; Schulze et al., 2012). Further, I assume the maximum biomass density of each

mature forest type to be 300 t/ha (Schumacher et al., 2004, p. 189). This was estimated by

inspecting yield tables for large trees from Italian forests (see also Schumacher et al., 2004

supplementary materials). By definition, patches occupied by mature forest land-cover have

maximum biomass.

To estimate the mass of firewood required per year by households in AgroSuccess, I assume that

neolithic households would have consumed firewood at a similar rate to modern communities that

use firewood for subsistence. This is necessary because I am not aware of any studies that have

investigated firewood use in the Neolithic period. Kirkland et al., 2007; Twine, 2003 estimate

firewood requirement per person as 1–1.1 t/pers/yr .

Using these assumptions, the number of wood gathering patches required by households in

AgroSuccess are calculated as

N
(f)
t =

⌈
P

(h)
t mf

rDAr

⌉
(4.21)

Here mf is the mass of wood required per person per year, r is the proportion of the total biomass

to be removed each year, and D is the climax forest biomass density. For example, a household of

5 using the parameter values described above and summarised in Table 4.11 would require N
(f)
= 3

patches per year.
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Table 4.11: Symbols representing parameters used in the firewood gathering plan equation.

Symbol Value Description

mf 1.1 t/pers/yr Firewood requirement per capita per year (Kirkland et
al., 2007; Twine, 2003)

D 300 t/ha Climax forest biomass density (Schumacher et al., 2004,
pp. 189)

r 0.1 Proportion of biomass per unit area to remove when gath-
ering firewood

Ar ≈ 625m2 Area of each raster grid cell (exact value is study site
dependent)

P (h) 5pers Household population

Households in each village appraise farm plots

When appraising land patches in the vicinity of their village, Household agents favour land

patches that are close to their village, are relatively flat, have fertile soil, and are currently

occupied by a land cover type that is easy to convert to wheat agriculture. Here I describe how

these factors are represented as model quantities in AgroSuccess.

To quantify the distance between a village and a given land patch it is necessary to specify a

distance metric. In AgroSuccess I use the euclidean distance between grid cells

Dij =
√

(xi − xj)2 + (yi − yj)2 (4.22)

where Dij is the euclidean distance between cell i and the village whose center is located in

cell j. Here xk and yk are the 2-dimensional Cartesian coordinates of the center of cell k. It is

important that the units of these coordinates are distances as opposed to angular units used in

geographic coordinate systems.

When comparing land patches, households need to be able to evaluate the relative distance

between different land patches and their village. To facilitate this I introduce a distance factor

defined as

D̃ij =:
Dij

supiDij
(4.23)
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where 0 ≤ D̃ij ≤ 1 is a distance measure between a grid cell i and the center of the village

located a j. The denominator in Eq. (4.23) is the maximum distance it is possible to travel from

the village j to any other grid cell in the simulated landscape. If cell k is the furthest cell in the

simulated landscape from the village in cell j then D̃kj = 1 and D̃jj = 0. The use of D̃ij rather

than the raw distance Dij in the land patch evaluation mechanism has the advantage of giving

grid cells a dimensionless distance ‘score’ that can be weighted in comparison with other factors

determining land-cover value to give grid cells and overall value score.

In addition to considering land patches’ proximity to their village, households preferentially se-

lect flat land patches to use for wheat agriculture. The spatially varying slope of the land is

provided as a raster data set for each simulation run (see Section 3.3.1). Following Ullah, 2013

I assign each land patch, i, a slope modification value SVi that depends on its slope (percentage

grade) such that steeper slopes are given a smaller slope modification value. See Table 4.12 for

the mapping of slope to slope modification value used. This approach to mapping slope ranges to

discrete classes is analogous to that used to classify slopes into different slope risk classes in the

fire spread algorithm described in Section 4.2.6, as well as in e.g. J. D. A. Millington et al., 2009;

Perry and Enright, 2002.

Table 4.12: Slope modification value for grid cell i, SVi given a slope (grade) of S(%)
i . The classification

boundary values of 0%, 18%, 36%, and 173% correspond to 0◦, 10◦, 20◦, and 60◦ respectively.

Slope, S
(%)
i [%] Slope modification value, SVi

0 ≤ S
(%)
i < 18 1.00

18 ≤ S
(%)
i < 36 0.75

36 ≤ S
(%)
i < 173 0.25

S
(%)
i > 173 0.00

The remaining attributes of land patches that household agents consider when determining which

ones to convert to agriculture are their fertility and land cover conversion cost scores. These

are intrinsically linked to the land cover type of each land patch at the time the household is

evaluating them. See Section 4.2.2 for details of the fertility and land cover conversion cost

scores assigned to each land cover type represented in the model.

In summary, agents consider the slope, distance from village, land cover fertility and land cover

conversion cost when selecting land patches to convert to agriculture. The relative importance

of distance, land cover fertility, and land cover conversion cost in household decision making is

controlled by three dimensionless model parameters: δ > 0 specifies the relative importance of a

cell’s distance to the center of the village, ϕ > 0 specifies the relative importance of soil fertility,
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and λ > 0 specifies the relative importance of land cover conversion cost.

For a household belonging to a village centered in cell j, the farming value of a land patch in cell

i is given by:

FV
(j)
i (τ ; δ, ϕ, λ) = SVi · ϕFi(τ)− δD̃ij − λCiτ (4.24)

Table 4.13 summarises the parameters that control the relative influence of different factors in

households’ decision to select particular land patches for farming purposes.

Table 4.13: Parameters which control the degree to which fertility, cost to convert to agriculture, and
distance from their village influence households’ evaluation of land patches. All parameters are dimen-
sionless.

Symbol Description
ϕ Soil fertility decision weighting
λ Land conversion cost decision weighting
δ Patch distance decision weighting

Households in each village appraise wood-gathering plots

The value that all households in a village assign to a land patch for the purpose of gathering

firewood is given in Eq. (4.25). Here WV
(j)
i (τ ; δ) is the wood value given to patch i at time τ by

households in a village centred in cell j. D̃
(j)
i has the same meaning as is defined in Eq. (4.23).

The meaning of δ is given in Table 4.13. WVi(τ) = WVi(LCi(τ)) is the value of a patch of land

i at time τ for gathering firewood. IWVi(τ) = IWVi(LCi(τ)), intrinsic wood value, is the value

attached to a patch of land has for firewood collecting purposes. This depends only on the land

cover class at that point. The intrinsic wood value for each land-cover type, WLc is specified in

Table 4.1.

WV
(j)
i (τ ; δ) =

1

1 + δ

[
IWVi(τ) + δ

(
1− D̃

(j)
i

)]
(4.25)

I assume that each household selects the patches its occupants will harvest for firewood each

year independently and in isolation from every other household in the village. It is plausible that,

in reality, households within a village would cooperate to designate an area of land close to the
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village to use communally for wood-gathering purposes. However, to simplify the behavioural

rules required in AgroSuccess, I assume that households gather firewood independently of each

other.

Allocate land patches to agents

Once each household has determined how many land patches it requires to meet its subsistence

and firewood gathering needs for the year, it is necessary to decide which patches will be al-

located to each household. In general, agents want to minimise the distance from their village

that they will need to travel to access the land they manage. When choosing land patches for

agriculture, agents favour flatter land that has fertile soil and whose current land cover can be

converted to agriculture with little effort. When choosing land patches for firewood gathering,

agents prefer land patches with forest land-cover types.

Following Ullah, 2013, p. 91 this process is carried out by the land patch allocator abstract

agent. The land patch allocator abstract agent follows a ‘round-robin’ schedule to decide the

order in which agents are allowed to request land patches. Each time step a random ordering

of households is generated within each village. Then, drawing villages at random, AgroSuccess

loops through households in each village allowing them to choose one land cover patch to manage

for the year in each iteration of the loop until all households have satisfied their subsistence and

firewood gathering plans, before moving on to the next village.

Each time a household is given the opportunity to claim a land-cover patch, they must decide

whether to claim a patch for agricultural or firewood gathering use. They do this by calculating

the proportions of the planned numbers of agricultural and wood gathering plots they require for

their subsistence plan that are already satisfied. They then prioritise selecting a patch to satisfy

the resource type for which the smallest proportion is already satisfied. In the event or a tie, a

resource type is selected to prioritise randomly with equal probability.

Households do not retain the same land patches from one year to the next, and all patches are

available for agents to request at the start of each simulated year. This modelling approach is

justified by my modelling objectives and assumptions:

1. The purpose of AgroSuccess is to explore the emergent impact of anthropogenic land-cover
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change (among other factors) on landscape evolution. While it is important to record which

land patches are converted to agriculture, my modelling objectives do not depend on know-

ledge of which households control those patches.

2. The procedure of randomly generating the order in which villages and households are al-

lowed to express preference for land-cover patches reflects a modelling assumption that

the modelled households constitute an egalitarian society (Ullah, 2013, p. 91).

If a household is allocated a land patch whose land cover type is not already Wheat, the household

will convert the cover type of that land patch from whatever its original state was to wheat

agriculture. Households’ use of land patches for firewood gathering is assumed to leave the

land-cover type of the patch unchanged.

Calculate wheat gathering returns

The approach to calculating farming returns follows Ullah, 2013, pp. 94–95. Wheat returns in

kg for grid cell i are calculated using Eq. (4.26). The parameters in this equation are: wheat

production rate for grid cell i, r
(w)
i = r

(w)
i (P, Fi) ∈ [0, 1] (see Eq. (4.27)), the slope modification

value in cell i, SVi (see Table 4.12), maximum wheat yield in kg/ha under ideal conditions, M
(w)
max,

and raster cell area in m2, Ar, such that Ar/10, 000 gives the area of each raster cell in ha.

R
(w)
i =

r
(w)
i · SVi ·M (w)

max ·Ar

10, 000
(4.26)

The expression for r
(w)
i (P, Fi) is given in Eq. (4.27). This is modified from Eq. (4.10) in Ullah,

2013, p. 95, and differs from the original authors’ approach by dropping dependence on soil

depth. This is done because, unlike MedLanD, AgroSuccess does not model soil depth. Here P is

annual precipitation in mm and Fi ∈ [0, 5] is the land cover fertility value of the cell’s land cover

type. Fi = 5 implies cell i is maximally fertile.

r
(w)
i =

(0.51 ln(P/1000) + 1.03) + (0.19 ln(Fi/5) + 1)

2
(4.27)
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Calculate wood gathering returns

The approach to the calculation of the mass of firewood collected from each grid cell follows

Ullah, 2013, p. 96. The mass of fire wood returned from raster cell i in kg is given by

R
(f)
i = I(f) ·Ar (4.28)

where I(f) is the firewood gathering intensity in kg/m2, and Ar is the area of each raster cell in

m2. Note that Eq. (4.28) assumes that the land cover type at cell i contains woody vegetation.

Household population

In AgroSuccess, household populations are held at a fixed size of six members. This is consistent

with the average Neolithic household size determined by Ullah, 2013. The overall human pop-

ulation in a simulated landscape is controlled by modifying a parameter controlling the number

of households in the village, Nh. This is a simple model of population size, but still allows users

of AgroSuccess to experiment with the impact of different human population sizes on land cover

change by running simulated scenarios with different values of Nh.

I experimented with the use of a dynamic model of household population change similar to that

described by Ullah, 2013. In this model, household populations changed over time as members

gave birth and died. The birth and death rates of each household were influenced by the extent

to which the household was able to satisfy the calorie requirements of its members through its

farming activity. The number of land patches that a household could farm was limited by their

labour availability in comparison to the labour required to farm the desired number of wheat land

patches (see Eq. (4.19) and Eq. (4.20)). However, I found that this model produced uncontrolled

population growth, and implausibly large proportions of the landscape being converted to wheat

agriculture. This can be explained by the fact that under this model, each household member

contributes both additional labour availability and the possibility of reproducing. In the absence

of any negative feedback, it is reasonable to expect exponential population growth. It is possible

that a more sophisticated model of population change that produces realistic outcomes could be

developed, for example by representing an ageing process that prevents some members from

reproducing or contributing to farming effort. However, such a model would require several
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additional parameters and assumptions, and is not essential to allow AgroSuccess to address my

research objectives.
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Figure 4.1: States and transitions represented in AgroSuccess. Self-links show land-cover states with com-
binations of environmental conditions that result in a land patch remaining in the indicated state until the
environmental conditions change, or until the patch is subject to an external disturbance (anthropogenic
or fire). This figure was automatically generated from a Neo4j graph database containing the AgroSuccess
succession model using the Graphviz package.
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Figure 4.2: Wind risk factors, WRi, for grid cells neighbouring an active fire. The risk of a fire spreading
from a cell containing a fire (indicated by an ‘F’) to one of its neighbours depends on both wind speed and
the angle between the path from the fire to the neighbouring cell and the wind direction.
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Figure 4.3: Citation relationships between papers describing the evolution of the MedLanD model
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Calculate wheat patch

requirement, N
(w)
t

Eq. (4.18)

Choose wheat patches

Table 4.12

Eq. (4.24)

Calculate patch yields

Eq. (4.27)

Eq. (4.26)

Figure 4.4: Process overview of the household agent decision-making process within each time step.
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Chapter 5

AgroSuccess model calibration

5.1 Wildfire submodel calibration

The AgroSuccess model includes two parameters that directly influence the action of the wildfire

ignition and spread model. These are the mean number of fires that occur in the simulation

grid per simulated year, λ (fires/year), and the land-cover flammability scenario, SLCF. Here I

describe my strategy for determining the most appropriate values for these parameters for each

of the study sites considered in this thesis. I present the results from simulated experiments

conducted to determine these values, and discuss the limitations of our approach. I argue that

the limitations identified during the course of this analysis motivate and justify ongoing efforts to

improve access to high frequency sedimentary charcoal data sets.

5.1.1 Wildfire submodel parameters

The mean number of fires to take place in the simulation grid per simulated year, λ, is treated as a

boundary condition and determined for each study site using empirical data (see Table 5.1). The

land-cover flammability scenario, SLCF, is a discrete parameter that controls the likelihood of an

active fire spreading to a neighbouring simulation cell, in consideration of the neighbouring cell’s

land-cover type. The specific land cover flammability values for each land cover type within all

considered land cover flammability scenarios are given in Table 4.5. The value of SLCF is selected

for each study site by calibration against empirical reference data that characterise the wildfire

regime at each study site.
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5.1.2 Strategy for calibrating the wildfire submodel

The wildfire regime of a given region over a period of time can be characterised by analysing the

frequency-area distribution of wildfires and the average burned area per year in that region. Pre-

vious authors (Malamud et al., 2005; M. V. Moreno et al., 2011) have found that the distributions

of wildfire burnt areas derived from empirical data sets are well-modelled by power-laws. These

are a family of probability distributions with cumulative distribution functions of the form

FX(x) = FX(x;β, xmin) =

(
x

xmin

)−β+1

. (5.1)

Here xmin > 0 is a parameter that sets area of the smallest fire that can be represented by

the statistical model (Clauset et al., 2009). It is a normalisation constant that emerges from

the assumption of a distribution with a PDF of the form f(x) ∝ x−β. β is the frequency-area

distribution power-law exponent. It quantifies the relative likelihood of large fires compared to

small ones. If β = 0 large and small fires are equally likely. As β increases large fires become

rarer with respect to small fires (Malamud et al., 2005). Successfully calibrated AgroSuccess

models will produce simulated wildfire regimes whose wildfire frequency-area distributions have

similar power-law exponents and average burned area per year to those that have been observed

empirically in the areas the simulations represent.

Wildfire regime reference data

I characterise the fire regime empirically for each study site using three statistics: the wildfire

frequency-size distribution power-law exponent parameter, β, the average burned area per year

per hectare, and the fire frequency. To estimate these statistics for the study sites in Spain, I use

the work of M. V. Moreno et al., 2011. They analysed a database of wildfires in Spain spanning

the time period 1988-2007 and report derived wildfire frequency-area statistics for the following

climate regions:

• Mediterranean Continental

• Mediterranean Mountain

• Mediterranean Coast
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• Oceanic

• Mountain

By overlaying the locations of the study sites identified in Chapter 3 on the map of climate region

boundaries that M. V. Moreno et al., 2011 identified, I associated Navarrés, San Rafael and

Algendar with the Mediterranean Coast climate region, and Atxuri and Monte Areo mire with the

Oceanic climate region.

The Charco da Candieira study site is located in Portugal, and is sufficiently close to the Atlantic

that I did not believe it was reasonable to assume it would be in the same climate region as

any of the Spanish study sites. Seeking a data-driven approach, I obtained fire inventory data

for the parish containing Charco da Candieira from the Portuguese Rural Fire Database (Pereira

et al., 2011). I fitted a power-law frequency-size distribution to this data to estimate a value of β,

and similarly calculated an estimate for the burned area per year and fire frequency in the area

surrounding Charco da Candieira. The fire regime reference data for all study sites is given in

Table 5.1.

Table 5.1: Power-law exponent parameter, burned area density, and fire frequency density values expected
at each study site. The values for the study sites located in Spain are derived from the wildfire frequency-
area statistics reported by M. V. Moreno et al., 2011. I estimated the corresponding values for the Charco
da Candieira study site–which is located in Portugal–using data from the Portuguese Rural Fire Database
(Pereira et al., 2011).

Study site Power-law parameter, β Burned area [ha ha−1 yr−1] Fire frequency [yr−1 ha−1]
Algendar 1.59 ± 0.25 4.65× 10−3 2.693× 10−4

Atxuri 1.99 ± 0.28 11.3× 10−3 1.616× 10−3

Charco da Candieira 1.69 27.5× 10−3 9.384× 10−4

Monte Areo mire 1.99 ± 0.28 11.3× 10−3 1.616× 10−3

Navarrés 1.59 ± 0.25 4.65× 10−3 2.693× 10−4

San Rafael 1.59 ± 0.25 4.65× 10−3 2.693× 10−4

In the following sections, the power-law parameter and burned area statistics listed in Table 5.1

are used as calibration targets. That is, simulations producing similar statistics are judged as

accurately reproducing the empirically observed fire regime. The mean number of fires per year

model parameter, λ, for each study site is calculated by multiplying the fire frequency values in

Table 5.1 by the total simulation grid area.

A limitation that any attempt to model Iberian fire regimes in the mid-Holocene is likely to en-

counter is the lack of availability of data to quantify fire regimes at that time. Because of the

great extent to which the land cover of the Iberian Peninsula has been modified by human activ-

ity over the intervening millennia, there are no ‘pristine’ landscapes (Redman, 1999) in the study
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region that we can use as contemporary proxies to infer fire regime characteristics during the

mid-Holocene. This situation could be improved by advances in the analysis of sedimentary char-

coal to reconstruct past fire regimes (Whitlock & Larsen, 2001).

5.1.3 Specification of simulated experiments

To focus on the fire spread dynamics during fire model calibration, I held all parameters except

the land cover flammability scenario, SLCF, constant. Anthropogenic agents were excluded, and

all other parameters were kept at their default values, as described in Section 6.1. To reduce

the impact of edge effects (e.g. fires appearing smaller than they would have been because

they spread to the edge of the simulation grid), only fires that started within each study site’s

experimental zone were included in subsequent data analysis. See Section 3.3.1 for details of

how experimental zones are defined.

I ran 10 calibration scenarios, one for each land cover flammability scenario with mean land cover

flammability ranging from 0.14–0.23 (scenarios TFN4–Default in Table 4.5). For each calibration

scenario I ran 10 simulation replicas. All simulations were run for 400 simulated years.

5.1.4 Calibration results

Calibration against power-law exponent parameter, β

To calculate the power-law exponent parameters that characterise the fire regimes produced

by the calibration scenarios, it is first necessary to evaluate the range of fire sizes that can be

plausibly modelled by a power law in the calibration scenario simulation outputs. Fig. 5.1 shows

the empirical survival function for all fires observed in all calibration scenarios for each study site.

If the distribution of fire sizes in these scenarios was well modelled by a power-law distribution,

these functions could be approximated by a straight line on log-log axes. Here we see that this

can be achieved for Algendar, Navarres, and San Rafael for fire sizes of up to approximately

6000ha. The roll-off for fires larger than 6000ha is likely to be an edge effect resulting from

the finite size of the simulation grid. However, the results for Atxuri, Charco da Candieira, and

Monte Areo mire show considerable curvature throughout the range of fire sizes observed in

their calibration scenarios simulations. This is evidence that the fire frequency-size distributions
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produced by AgroSuccess may not be well modelled by a power-law for all study sites of interest.

Figure 5.1: Empirical survival function, FX(x), for all simulated fires within the experimental zone for
each study site. Dotted blue lines indicate the 6000ha cut-off below which wildfire frequency-size can be
modelled with a power-law. When plotted on log-log axes, the survival function for a power-law distributed
variable appears as a straight line.

Based on the considerations above, I took the maximum fire size that can be modelled by a power-

law distribution to be 6000ha, and excluded larger fires from subsequent analysis. I calculated an

estimate of β for each of the calibration scenario simulations. For a set of fire size observations,

x, an estimate of β can be obtained using the following expression for the maximum likelihood

estimator (Clauset et al., 2009).

β̂ = 1 + n

[
n∑

i=1

ln
xi
xmin

]−1

(5.2)

where β̂ is the estimate of β given the data derived from the simulations, and n is the number of

samples (i.e. the number of simulated fires included in the analysis for a given simulation). As

in Eq. (5.1), xmin is the area of the smallest fire that is included in the power-law model. I set

xmin = 0.074 ha corresponding to the area of a single simulation cell, which is the smallest fire

that can occur in an AgroSuccess simulation model.

The results in Fig. 5.2 show the spread of β̂ values obtained for each land cover flammability
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scenario across the 10 simulation replicas performed for each scenario. As noted above, as β

increases, the likelihood of large fires decreases relative to small fires assuming the underlying

data follow a power-law distribution. The results in Fig. 5.2 appear to show that as the average

land cover flammability increases, estimates of β also increase. That is, increasing land cover

flammability decreases the likelihood of large fires. This result is contrary to the logic specified

in the wildfire spread model (see Section 4.2) and is explained by a power-law being an inappro-

priate model of the fire frequency-size distributions seen in the calibration scenario simulations.

This conclusion is also supported by the observation of curvature in the empirical survival func-

tion in three of the six study sites seen in Fig. 5.1. The fact that AgroSuccess fire sizes do not

follow a power-law is an interesting finding, but forces me to conclude that it is not possible

to calibrate the land cover flammability scenario parameter by comparing simulated values to

empirically derived values for β.

Figure 5.2: Best fit power-law exponent parameters determined by maximum likelihood for different land-
cover flammability scenarios. Boxes show the interquartile range (IQR) of values for β estimated from
10 simulation runs of 400 time steps for each LCF scenario. Whiskers extend to 150% of the IQR, and
diamonds indicate outliers.

Calibration against burnt area

To calibrate the land cover flammability scenario for each study site against burnt area, I calcu-

lated the average burnt area per hectare per year from fires starting within the experimental zone
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for each calibration scenario simulation. Fig. 5.3 shows the simulated burnt area per hectare per

year obtained by averaging over 10 simulations for each study site. The empirically derived ‘tar-

get’ burnt area values from Table 5.1 are shown as dotted red lines. I find average land-cover

flammability of 0.20, corresponding to land-cover scenario TF2, is the optimal land-cover flam-

mability for Charco da Candieira. For all other study sites the optimal land-cover flammability

scenario is TF1 (with mean land-cover flammability of 0.19). I attempted to produce land-cover

flammability scenarios with lower burned area per hectare per year than was produced by TF1

(TFN4–TF0, see Table 4.5). However, I found that land-cover flammability scenarios with smaller

average land-cover flammability than 0.19 do not produce smaller simulated burned areas. This

is a notable limitation of the wildfire spread model. Consequently the average burned areas in

simulations of the Monte Areo mire and Atxuri study sites are expected to slightly exceed the

corresponding empirical reference values.

Figure 5.3: simulated burned area per hectare per year observed in simulations for different land-cover
flammability scenarios. The dotted red lines indicate the empirical reference values expected for each
study site. Plotted points are median values for burned area per hectare per year across 10 simulations
per land-cover flammability scenario for all study sites. Error bars indicate 95% confidence intervals.

Fig. 5.4 shows examples of simulated landscapes generated from calibrated models for each

study site.
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Figure 5.4: Snapshots of simulated landscapes from calibrated models for each study site extracted from
the Repast Simphony graphical interface. Burnt cells are in red, showing the spatial pattern emerging
from recent fires. Light blue cells show shrubland, green cells show pine woodland, light purple cells
show transition forest, dark purple cells show oak forest, and orange cells show deciduous forest.
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Discussion

By comparing the average burnt area per hectare per year in a suite of AgroSuccess simulations

to corresponding empirical values, I determined that the optimal land cover flammability scenario

parameter, SLCF, for all study sites is TF1, apart from the Charco da Candieira site for which the

optimal scenario is TF2. These values will be used in the AgroSuccess simulation scenarios

explored in Chapter 6.

A notable finding from the analyses performed to calibrate the wildfire model is that the dis-

tribution of fire sizes generated by AgroSuccess do not follow a power-law. This is surprising

because AgroSuccess uses a mechanistic wildfire spread model that is similar to that used in

the Millington LFSM, and J. D. A. Millington et al., 2009 were able to find power-law distributed

fire sizes in the outputs of that model. This may be explained by AgroSuccess’ inclusion of addi-

tional empirical data about the study sites under investigation that J. D. A. Millington et al., 2009

did not. For example, in AgroSuccess wind speed and direction are drawn from an empirical

distribution (Section 3.3.5) at the start of each fire whereas in the Millington LFSM these are

completely random. Meanwhile, I have kept other aspects of the wildfire spread model the same

as in the Millington LFSM (e.g. the soil moisture threshold parameters, Section 4.2.5). This

motley approach to simulation modelling (Winsberg, 1999, 2009) has precedents in the literat-

ure, and I argue that the inclusion of additional empirical data is important. In the Millington

LFSM, parameter values were chosen for their phenomenological plausibility. In AgroSuccess

I have endeavoured to distinguish study sites from each other by using empirical data where it

is available, and fall back to selecting parameters on the basis of phenomenological plausibility

where necessary.

Another reason that AgroSuccess may not be producing power-law distributed fire sizes is that

the simulation grid may not be large enough for this phenomenon to be observed. J. D. A. Milling-

ton et al., 2009 used a simulated area of 83 000ha. The simulation grids used on the simulations

discussed above are all approximately 15 000ha. These are the same order of magnitude, but it

would still be informative to investigate whether increasing the area of the simulation grid led to

power-law distributed frequency-area distributions in the AgroSuccess simulation outputs.
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Chapter 6

Analysis of AgroSuccess simulation

outputs

6.1 Sensitivity analysis

Sensitivity analysis was performed on the AgroSuccess simulation model to allow me to under-

stand how changes in the model parameters lead to changes in a selection of simulation outputs.

This analysis allows me to evaluate the extent to which the model is behaving as expected with

respect to the parameters that influence the modelled processes. Additionally, by demonstrating

high model sensitivity to parameters that are subject to relatively high uncertainty, I am able to

argue in favour of future empirical work that could decrease uncertainty in those parameters

and, in turn, decrease overall uncertainty in the model outputs.

AgroSuccess has 17 model parameters that are described in Chapter 4. The sensitivity analysis

results presented here are based on the results of running 10 simulation replicas for 200 simu-

lated years under each of the following scenarios:

• A default parameters scenario for each study site

• A -10% scenario for each parameter and study site

• A +10% scenario for each parameter and study site

For the -10% and +10% scenarios, the corresponding parameter is decreased or increased with
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respect to its default value, and the value of all other parameters held at their default values.

This scheme allows me to isolate the effect of each individual parameter on the model outputs in

turn.

Each simulation performed for this sensitivity analysis was allowed to run for 200 simulated years.

I found that AgroSuccess simulations for all study sites tended to undergo an initial transient

period during which land cover proportions diverged rapidly from their initial conditions (See

Section 6.3). I determined that 200 simulated years was long enough for simulations to reach

an equilibrium state by visual inspection of aggregate time series of land cover proportions from

a sample of simulations. By running simulations for long enough to enter an equilibrium state,

I sought to avoid having the sensitivity analysis results affected by fluctuations in the outputs

during the initial transient period. Running the sensitivity analysis simulations for longer than

200 years would have increased the simulation run times with no analytical benefit.

The choice of 10 runs per simulated scenario was determined by the practical availability of

computational resources. The sensitivity analysis described here required a total of 306 unique

parameter combinations to be run across all study sites and parameter values. Additionally, each

simulation took approximately 10 minutes to run. Under these circumstances, 10 runs per para-

meter combination was the most I was able to perform with the computational resources available

to me. Similar computational resource constraints prevented me from exploring a greater range

of values for each parameter (compared to the ±10% of default value scenarios presented here).

See Section 8.3.3 for proposed future work to make the methodology for selecting the number of

simulation runs per parameter combination more robust.

6.1.1 Selection of output variables

I explore changes to the following aggregated model output variables under the different scen-

arios:

• Shrubland, the proportion of the simulated landscape in the Shrubland land cover state in

the final simulated year of the simulation

• Mature Forest, the proportion of the simulated landscape in one of the forest land cover

state (Pine, Transition forest, Deciduous, or Oak) in the final simulated year of the simula-
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tion

• Farmed Area, total simulated landscape area (in ha) used by households for wheat agricul-

ture in the final simulated year of the simulation

• Wood Area, total simulated landscape area (in ha) used by households for firewood gather-

ing in the final simulated year of the simulation

• Burned Area, mean proportion of the landscape burned per year (in yr−1) over the final 10

years of the simulation

These variables are selected to provide an insight into the effect of varying model parameters

on a selection of land cover types reflecting both early and late successional stages (Shrubland

and Mature Forest), human land use (Farmed Area and Wood Area), and the fire regime (Burned

Area). All output variables are intended to quantify the state of the simulated landscape at the

end of the simulation run. For all outputs except Burned Area, the value in the final simulated

year is used. The decision to use an average over the last 10 simulated years when summarising

burned area was informed by an analysis of the variation in time of each of the output parameters

in the final 10 years of all simulation runs used in the sensitivity analysis. For each simulation

run and output variable, I calculated the coefficient of variation, cv for the output in the final 10

years. Here

cv =
σx
µx

(6.1)

where µx and σx are the sample mean and sample standard deviation of the output variable in

the final 10 years of each simulation. I then calculated the mean of cv for each output across

all simulations in the sensitivity analysis for each study site to obtain an estimate of the relative

variation in time for each variable. The use of cv is appropriate for comparing variation across

variables because, unlike σx, cv is normalised by each variable’s mean.

The results of the output variable time variation analysis are shown in Fig. 6.1. I found that, on

average across simulations in the sensitivity analysis, Burned Area has coefficient of variation in

time that is an order of magnitude greater than that of the other output variables considered.

This is to be expected as a consequence of the non-linear relationship between the number of

ignitions in a given year and the burned area as a result of the wildfire spread model (see Sec-
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tion 4.2.6). Using the 10 year average burned area as a statistic to characterise burned area at

the end of each simulation helps to limit the impact of non-representative very large fires in the

final simulated year skewing the results of the sensitivity analysis. Note that cv for Wood Area

is 0 for all simulations because this is fixed for a given household size, and both the number and

size of households within each simulation is held constant (see Eq. (4.21)). There is also very

small variation found in Farmed Area. This is reasonable, as I would not expect to see large inter-

annual variation in the behaviour of agricultural households whose populations are fixed. When

a household experiences a ‘shortage’ in the sense that it does not receive the anticipated wheat

returns due to a lack of precipitation or being forced to farm patches with low soil fertility (see

Eq. (4.26)), this causes them to request more wheat patches to farm in the subsequent simulated

year through the µ
(w)
t−1 term (mass of wheat per ha collected in the previous year) in Eq. (4.18).

However, at the population densities represented in the simulations analysed for this sensitiv-

ity analysis, households are unlikely to need to resort to farming patches with low soil fertility.

Additionally, in the version of AgroSuccess presented here (Lane, 2023), annual precipitation is

held fixed. Consequently, there is little source of interannual variability in households’ farming

returns which, in turn, leads to little variability in the number of land patches they require to

farm.

Figure 6.1: Coefficient of variation, cv, across the final 10 simulated years for each sensitivity analysis
output variable. Values shown are the mean cv taken across all simulations used in the sensitivity analysis.
Burned Area exhibits an average cv that is an order of magnitude greater than that for the other output
variables.
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6.1.2 Statistical significance

It is important to be able to quantify the amount by which an output variable would need to

vary in the results from a given parameter combination in comparison to those from the default

scenario to be considered statistically significant. This can be done by calculating the standard

error of the mean,

σ̂x̄ =
σx√
n

(6.2)

for each combination of output variable and study site. In Eq. (6.2), σx is the sample standard

deviation for the output variable taken across n simulation replicas with default parameter values

for each study site. In the analysis presented here, I used n = 10 replicas per study site. The

results of this analysis are shown in Table 6.1.

Table 6.1: Standard error of the mean, σ̂x̄, for model output variables used in the sensitivity analysis across
10 replicas using default parameter values for each study site.

Shrubland Mature Forest Farmed Area Wood Area Burned Area
Study site

Algendar 0.00407 0.00480 0.00000 0.00000 0.00055
Atxuri 0.00479 0.00670 0.00000 0.00000 0.00058
Charco da Candieira 0.00414 0.00816 0.00000 0.00000 0.00103
Monte Areo mire 0.00382 0.00651 0.00000 0.00000 0.00062
Navarrés 0.00289 0.00318 0.00000 0.00000 0.00037
San Rafael 0.00507 0.00608 0.00000 0.00000 0.00049

I use the σ̂x̄ values shown in Table 6.1 to construct a confidence interval (CI) for each output

variable. Choosing a confidence level of 66% (significance level, α = 0.34), the margin of error,

ϵx, for each variable is given by

ϵx = t(n−1),α σ̂x̄ = t9,0.34 σ̂x̄ ≃ σ̂x̄ (6.3)

where t(n−1),α is the critical value of the two-tailed Student’s t-distribution as a function of n

and α. If an infinite number of batches of 10 default parameter value simulations were run,

and ϵx calculated for each batch using Eq. (6.3), the population mean for each output variable,

µx, would be in the range x̄ − ϵx ≤ µx ≤ x̄ + ϵx in 66% of the batches (where x̄ is the sample

mean of variable x for a given batch) (Cumming & Finch, 2005). Consequently, for each output

variable under the default parameter scenario, x, the population mean is likely to be in the range
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x̄ − ϵx ≤ µx ≤ x̄ + ϵx. In the following analysis, I treat the difference between mean values

for each output variable in the non-default scenarios and the corresponding mean values in the

default scenario as statistically significant if they differ by more than ϵx. Note that because this

approach relies on the comparison of means (taken from batches of simulations run using default

and non-default parameter combinations) I rely on the fact that the sample mean tends towards

the population mean for large enough sample sizes even if the underlying distribution is not

normal under the central limit theorem. See Section 8.3.3 for a discussion of how the approach

to statistical significance testing described here could be improved in future work.

The standard error values for the land cover output variables (Mature Forest and Shrubland) in

Table 6.1 are broadly similar to each other and across study sites. Standard error values for

Burned Area are small relative to the land cover output variables reflecting the fact that the

units for Burned Area are yr−1 whereas the land cover output variables are unitless landscape

proportions, such that their values are not directly comparable. Farmed Area and Wood Area have

σ̂x̄ = 0 for all study sites because their values were constant across all default parameter value

replicas. This is because the number of wheat and wood plots required by each household are

deterministically linked to the size of the household (see Eq. (4.18) and Eq. (4.21) respectively).

Since the number and size of households are held constant in AgroSuccess, it is expected that

there would not be any variation across replicas for a given combination of model parameters.

6.1.3 Discussion

Here I review the results of the sensitivity analysis for the Navarrés study site in detail. Analog-

ous results data are shown for the remaining five study sites in Appendix F. At the end of this

section I highlight common themes that can be seen across study sites, as well as some identified

differences.

The sensitivity analysis results for Navarrés are shown in Table 6.2, with statistically significant

results shown in bold. All results for the Farmed Area and Wood Area output variables would be

statistically significant according to the significance levels determined in Section 6.1.2 because

the standard error of the mean, σ̂x̄, for those variables was found to be zero. We therefore treat

changes in Farmed Area and Wood Area of ≤ −10% or ≥ +10% relative to the default scenario

as significant. Several Mature Forest values are reported as statistically significant despite rep-

resenting less than 0.5% change with respect to the default parameter scenario. This is because,
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while the output might represent a small proportional change relative to the default scenario,

only a small absolute difference of 0.003 18 is required for the difference to be statistically signi-

ficant (see Table 6.1). This, in turn, is due to there being little variation in the proportion of the

landscape occupied by Mature Forest land cover types in the last simulated year of the default

parameter simulation results.
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Table 6.2: Sensitivity analysis results for the Navarrés study site. The ‘Value’ column specifies the default value for each parameter, and the ‘Value +10%’
and ‘Value -10%’ columns give the corresponding values for parameters used in the +10% and -10% scenarios. The remaining columns give the mean values
under the +10% and -10% scenarios for the Shrubland, Mature Forest, Farmed Area Wood Area, and Burned Area output variables averaged over 10 simulation
replicas, along with the corresponding percentage change relative to the default scenario in parentheses. Values in bold show statistically significant differences
with respect to the default scenario (see Section 6.1.2). Output variables indicated by * showed 0 variance in default scenario runs, so outputs that differ from
the default scenario values by ≤ −10% or ≥ +10% are shown as significant.

Value Value -10% Value +10% Shrubland, -10% Shrubland, +10% Mature Forest, -10% Mature Forest, +10% Farmed Area, -10%* Farmed Area, +10%* Wood Area, -10%* Wood Area, +10%* Burned Area, -10% Burned Area, +10%
Parameter

Number of households per village 10.00 9.000 11.000 0.042 (-10%) 0.041 (-12%) 0.949 (1%) 0.947 (0%) 6.996 (-10%) 8.628 (11%) 2.544 (-10%) 3.109 (10%) 0.004 (-9%) 0.004 (-11%)
Labour availability 300.00 270.000 330.000 0.043 (-8%) 0.043 (-8%) 0.946 (0%) 0.943 (0%) 7.843 (1%) 7.773 (0%) 2.826 (0%) 2.826 (0%) 0.004 (-2%) 0.004 (5%)
Wheat farming labour requirement 50.00 45.000 55.000 0.044 (-5%) 0.049 (5%) 0.941 (-0%) 0.941 (-0%) 7.773 (0%) 7.773 (0%) 2.826 (0%) 2.826 (0%) 0.004 (3%) 0.004 (2%)
Maximum patch farm time 50.00 45.000 55.000 0.052 (11%) 0.041 (-12%) 0.934 (-1%) 0.945 (0%) 7.773 (0%) 7.914 (2%) 2.826 (0%) 2.826 (0%) 0.005 (20%) 0.004 (-4%)
Farmer conservativeness scalar 0.75 0.675 0.825 0.041 (-12%) 0.047 (1%) 0.947 (1%) 0.938 (-0%) 9.186 (18%) 7.137 (-8%) 2.826 (0%) 2.826 (0%) 0.003 (-17%) 0.005 (13%)
Crop reseed proportion 0.15 0.135 0.165 0.048 (3%) 0.048 (1%) 0.940 (-0%) 0.940 (-0%) 7.773 (0%) 8.479 (9%) 2.826 (0%) 2.826 (0%) 0.004 (6%) 0.004 (7%)
Farm value distance parameter 1.00 0.900 1.100 0.042 (-10%) 0.040 (-14%) 0.947 (1%) 0.947 (0%) 7.773 (0%) 7.843 (1%) 2.826 (0%) 2.826 (0%) 0.004 (-6%) 0.004 (-6%)
Farm value fertility parameter 1.00 0.900 1.100 0.043 (-9%) 0.052 (12%) 0.946 (0%) 0.934 (-1%) 7.843 (1%) 7.773 (0%) 2.826 (0%) 2.826 (0%) 0.004 (-4%) 0.005 (21%)
Farm value land cover conversion parameter 1.00 0.900 1.100 0.044 (-6%) 0.050 (7%) 0.944 (0%) 0.940 (-0%) 7.773 (0%) 7.843 (1%) 2.826 (0%) 2.826 (0%) 0.004 (-4%) 0.004 (6%)
Firewood required per capita per year 1100.00 990.000 1210.000 0.042 (-10%) 0.047 (-0%) 0.945 (0%) 0.942 (-0%) 7.794 (0%) 7.843 (1%) 2.120 (-25%) 2.826 (0%) 0.004 (-10%) 0.004 (7%)
Firewood biomass removal rate 0.10 0.090 0.110 0.048 (3%) 0.047 (1%) 0.941 (-0%) 0.940 (-0%) 7.773 (0%) 7.773 (0%) 2.826 (0%) 2.120 (-25%) 0.004 (7%) 0.004 (0%)
Wood value distance parameter 1.00 0.900 1.100 0.043 (-9%) 0.048 (3%) 0.942 (-0%) 0.941 (-0%) 7.773 (0%) 7.773 (0%) 2.826 (0%) 2.826 (0%) 0.004 (3%) 0.004 (1%)
Climax forest biomass density 300000.00 270000.000 330000.000 0.048 (3%) 0.044 (-7%) 0.938 (-0%) 0.942 (-0%) 7.773 (0%) 7.773 (0%) 2.826 (0%) 2.120 (-25%) 0.004 (4%) 0.004 (3%)
Land cover colonisation base rate 0.05 0.045 0.055 0.048 (2%) 0.042 (-11%) 0.941 (-0%) 0.948 (1%) 7.773 (0%) 7.914 (2%) 2.826 (0%) 2.826 (0%) 0.004 (-7%) 0.003 (-16%)
Land cover colonisation spread rate 0.20 0.180 0.220 0.052 (11%) 0.047 (1%) 0.931 (-1%) 0.937 (-1%) 7.773 (0%) 7.843 (1%) 2.826 (0%) 2.826 (0%) 0.005 (31%) 0.005 (12%)
Mesic threshold 500.00 450.000 550.000 0.046 (-3%) 0.046 (-2%) 0.940 (-0%) 0.941 (-0%) 7.773 (0%) 7.843 (1%) 2.826 (0%) 2.826 (0%) 0.004 (-4%) 0.004 (5%)
Hydric threshold 1000.00 900.000 1100.000 0.039 (-16%) 0.036 (-22%) 0.951 (1%) 0.952 (1%) 7.964 (2%) 7.985 (3%) 2.826 (0%) 2.826 (0%) 0.003 (-25%) 0.003 (-26%)
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The results show expected sensitivity to the main parameters that drive the subsistence agricul-

turalist submodel. Increasing ‘Number of households per village’ by 10% increases both Farmed

Area and Wood Area by approximately 10%, and decreasing ‘Number of households per village’

produces an equal and opposite effect. Increasing ‘Farmer conservativeness scalar’ decreases

Farmed Area, and the converse increases it. This is expected because the number of wheat

patches a household requires is inversely proportional to the conservativeness scalar parameter

(see Eq. (4.18)). Increasing ‘Crop reseed proportion’ (the proportion of wheat held back for

reseeding the subsequent year) increases Farmed Area as expected. Wood Area is strongly sens-

itive to ‘Firewood required per capita per year’, ‘Firewood biomass removal rate’, and ‘Climax

forest biomass density’. ‘Increasing Firewood biomass removal rate’ or ‘Climax forest biomass

density’ decreases Wood Area, and decreasing ‘Firewood per capita per year’ also decreases

Wood Area. The fact that AgroSuccess is so sensitive to ‘Number of households per village’ and

‘Climax forest biomass density’ is noteworthy because both parameters are subject to significant

empirical uncertainty (see Section 4.3.4). AgroSuccess (and other models like it) would need

to be provided with accurate estimates of the number of agriculturalists within the simulated

area, as well as key biophysical data like ‘Climax forest biomass density’, to produce realistic res-

ults. This is an example of how modelling studies such as this help to identify gaps in available

empirical data and motivate future data collection areas.

The results show some unexpected patterns in the behaviour of the land cover type output vari-

ables, especially Shrubland. There are several parameters for which both +10% and -10% scen-

arios show a significant decrease in Shrubland (e.g. ‘Number of households per village’, ‘Farm

value distance parameter’, and ‘Hydric threshold’). This could be explained by the possibility that

we are observing the secondary effect of random fluctuations in Burnt Area through its causal

effect on the proportion of Shrubland in the landscape, rather than the direct effect of the corres-

ponding parameters on these outputs. Additionally, there are several instances of ‘asymmetric

effects’ characterised by a change in a parameter in one direction having the expected effect

on an output (e.g. increasing ‘Crop reseed proportion’ increasing Farmed Area or increasing

‘Firewood required per capita per year’ increasing Wood Area), but the corresponding change in

the opposite direction not resulting in any significant change in the outputs. This is explained by

the 0.071ha resolution of the simulation grid. Households always use a discrete number of grid

cells for their farming and wood gathering activities. The 25% decrease in Wood Area to 2.120ha

resulting from a 10% decrease in ‘Firewood required per capita per year’, for example, implies

an absolute reduction of 0.71ha, corresponding to each of the 10 households in the village using
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one less land patch for firewood gathering. If the fractional increase in the number of wood

patches to gather within the ceiling function in Eq. (4.21) due to a 10% increase in ‘Firewood

required per capita per year’ is not enough to increase the result by 1, then households will not

claim an additional land patch. This effect could be mitigated by increasing the resolution of the

simulation grid at the cost of additional computational expense.

Sensitivity analysis has demonstrated that there are some parameters that AgroSuccess is not

sensitive to in the parameter regime considered here. I found that no land patches were con-

verted to Depleted Agricultural Land (DAL) in any of the simulations performed for this analysis.

This demonstrates that for a community with up to 11 households, the anthropogenic pressure on

the landscape is sufficiently low that it is not necessary to farm the same land patch 45 or more

times in a 200 year time frame. Consequently, for the range of ‘Maximum patch farm time’ and

‘Number of households per village’ values considered in this analysis, AgroSuccess is not sensit-

ive to ‘Maximum patch farm time’. However, this parameter could become useful when exploring

landscapes with larger human populations. The results show that AgroSuccess is not sensitive

to ‘Labour availability’ or ‘Wheat farming labour requirement’, indicating that for the household

sizes represented here, farming labour is not a limiting factor. Additionally, the output variables

analysed here are not sensitive to the ‘Farm value distance’, ‘Farm value fertility’, ‘Farm value

land cover conversion’, or ‘Wood value distance’ parameters. This is expected, because these

parameters are used to influence the spatial location of land patches used by households, rather

than the total area as represented by Farmed Area and Wood Area.

Several of the patterns observed in the sensitivity analysis results for Navarrés are also present

in the results for the other study sites considered in this thesis (see Appendix F). This includes

the effects of ‘Number of households per village’ and ‘Farmer con scalar’ on Farmed Area that

are described above. However, there are two key differences. First, an increase in ‘Crop reseed

proportion‘ does not produce an observed increase in Farmed Area in the results for Algendar,

Charco da Candieira, Monte Areo mire, or San Rafael. Second, while Algendar, Charco da Can-

dieira, and Monte Areo mire show analogous effects of ‘Firewood required per capita per year’,

‘Firewood biomass removal rate’, and ‘Climax forest biomass density’ on Wood Area in compar-

ison to Navarrés, San Rafael shows a different ‘asymmetric effect’–i.e. no change for increasing

‘Firewood biomass removal rate’ or ‘Climax forest biomass density’, or decreasing ‘Firewood re-

quired per capita per year’, but an observed change in the expected direction when decreasing

‘Firewood biomass removal rate’ and ‘Climax forest biomass density’, or increasing ‘Firewood
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required per capita per year’. Additionally, Atxuri doesn’t show any sensitivity to these paramet-

ers intended to influence Wood Area. These differences can be explained by the same simulation

grid resolution issue that is discussed above in the context of ‘asymmetric effects’.

The above sensitivity analysis demonstrates that AgroSuccess is sensitive to key parameters con-

trolling the anthropogenic model components. As anthropogenic activity and fire are two main

drivers of land cover change, this is evidence that AgroSuccess is useful for investigating inter-

actions between humans, fire, and climate. This analysis also showed that the range of human

populations explored here (9–11) are not enough to apply significant anthropogenic pressure to

the landscape. Although we don’t see consistent statistically significant effects on land cover

when modifying anthropogenically related parameters, this is not unexpected. For example, Ma-

ture Forest occupies such a large proportion of the simulated landscapes that it is not surprising

that human populations have a low proportional impact on it. An important finding is that a

simulation grid resolution of 0.071ha may be too coarse to capture detailed information about

the effects of small changes in parameter values on anthropogenic impacts. This is because

the change in parameter value may factor into household agents’ calculations, but not enough

to require them to change their subsistence plans up or down by a whole simulation cell (see

discussion of ‘asymmetric effects’ above).

6.2 Results: Counterfactual Scenarios

Here I present and analyse results from sets of simulations for counterfactual scenarios that

examine ecological dynamics and human activity over centennial timescales. I also investigate

whether or not the anthropogenic component of the model is able to produce statistically signi-

ficant effects in the simulated landscapes’ land cover state. In the sensitivity analysis reported

Section 6.1 I found no clear statistical signal that the number of households in the simulation had

a meaningful effect on the proportion of the landscape occupied by early-successional (Shrub-

land) or late-successional (Mature Forest) land-cover types, or the proportion of Burned Area in

the landscape. This is explained by the the range of 9–11 households explored in the sensitivity

analysis only placing low anthropogenic pressure on the landscape. In the analysis presented in

this section I also include results of simulations that include 100 households per simulation to

allow me to demonstrate the effect of increased anthropogenic pressure on land cover propor-

tion and burned area time series, and to determine whether or not this increase in number of
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households produces a statistically significant effect on land cover proportions.

For each of the six study sites, I ran simulations for three counterfactual scenarios with 20 rep-

licas each:

1. No households, representing a baseline scenario with no anthropogenic activity

2. 10 households per simulation

3. 100 households per simulation

All scenarios were run for 400 simulated years, with all model parameters except the number

of households held at the default values used in the sensitivity analysis (see Section 6.1). A

simulation length of 400 years was selected because all study sites have at least 400 years of

pollen abundance data available following the date at which it is believed humans began prac-

ticing agriculture at each site (see Section 3.1.4). Running these simulations for 400 simulated

years maximised the amount of simulated land cover proportion data that could be compared to

empirical pollen abundance time series. For each study site, the first simulated year is the hypo-

thesised date that humans began practicing agriculture at the site (see Section 3.1). The initial

conditions for each simulated run comprise a randomly generated land cover map in which the

relative proportion of each land cover type is constrained to match the land cover proportions at

the appropriate year in the corresponding empirical pollen abundance data (see Section 3.3.3 for

details of how these maps were generated).

6.2.1 Comparison to empirical pollen abundance data

Fig. 6.2 shows land cover proportion time series generated from the scenarios described above,

alongside corresponding time series derived from empirical pollen abundance data (see Sec-

tion 3.2.2).

Initial transient and equilibrium states

Results for all study sites show a large initial transient during the first 150 simulated years, before

reaching a stable ‘equilibrium’ state. The equilibrium state for all study sites is significantly
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Figure 6.2: Time series of land cover proportion from empirical pollen abundance and three simulated
scenarios (no households, 10 households, and 100 households per simulation) for each of the six study
sites. Confidence intervals for simulated results are 1 standard deviation around the mean calculated
across 20 simulation replicas.
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different than the land cover state represented in the empirical pollen abundance time series.

This demonstrates that there is a mismatch between the initial conditions inferred from the pollen

abundance time series and the model dynamics resulting from the simulation rules described in

Chapter 4.

Within each simulation, once the equilibrium land cover proportions have been reached, they

remain approximately constant in time and are subject to only minor fluctuations. Consequently,

the model fails to reproduce changes in land cover proportion observed in the empirical data.

For example, in the empirical data:

1. At the Navarrés study site, there is a decrease in Pine and increase in Grassland at

6675yrBP

2. At the Monte Areo mire study site, there is a decrease in Deciduous and increase in Oak

and Pine at 6955yrBP

3. At the Charco da Candieira study site, there is a decrease in Oak and Pine and an increase

in Deciduous at 1680yrBP

The behaviour in 1. could be reproduced by the model if there was an increase in fire or ag-

ricultural activity (or both) at this point in the simulation. This is because frequent burning

(through fire) or conversion of Pine land cover to Wheat (through agricultural activity) would

maintain a greater proportion of the landscape in early-successional states, including Shrubland

(see Fig. 4.1). The effect of decreasing Deciduous in favour of increase in Oak and Pine observed

in 2., and the inverse that process observed in 3., could be reproduced by the model by modifying

the availability of Deciduous seeds at the appropriate points in the simulation. This is because

Pine and Oak (via Transition Forest) grid cells transition to Deciduous over time given the pres-

ence of Deciduous seeds. Conversely, the absence of Deciduous seeds would have the opposite

effect.

Variability across scenarios and study sites

For each study site, all simulated scenarios show visually indiscernible patterns in the aggregated

land cover proportion outputs. This demonstrates that, even with 100 households per simulation,

land cover changes resulting from anthropogenic activity do not produce large changes in the
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observed land cover. However, it is worth noting that because the simulation grids for all study

sites have an area of 15 279ha, a human population of 100 households with 6 members each corres-

ponds to a population density of only 0.04pers/ha. By comparison, the contemporary agricultural

municipality of Casillas in central Spain had a population density of 0.70pers/ha in 2011 (Seijo

et al., 2015). While a population density of 6% of contemporary values seems plausible (or even

high) for a community in the mid-Holocene, it is unsurprising that a population of this size would

not significantly alter the character of the landscape.

Fig. 6.3 shows example land cover maps obtained after 400 simulated years for the Navarrés

and Charco da Candieira study sites with 0, 10, and 100 simulated households. These are taken

from individual runs of the simulations whose outputs were used to produce the aggregated

time series in Fig. 6.2. The examples for Navarrés show a broadly consistent spatial pattern of

land cover across simulated household scenarios. The variation that is apparent is mainly in the

location of burnt and shrubland patches, and can be explained by the occurrence of stochastic

wildfires. The examples for Charco da Candieira show relatively high variation in spatial land

cover pattern across simulation runs compared to Navarrés. This is due to differences in the fire

regime between the two sites (see below). The effect of the presence of agriculturalist households

is apparent from the presence of wheat patches in the 100 household scenarios for both study

sites, especially in the bottom left of frame for Navarrés and around the centre of the frame for

Charco da Candieira. However, in both cases wheat makes up only a small proportion of the

overall land cover.

In this section I have focused on analysing simulation outputs that have been aggregated to

produce time series, rather than the analysis of spatial difference in land cover maps across

simulation runs and between scenarios. This is because the empirical pollen abundance data

that I have used to evaluate model performance is inherently aspatial. That is, land cover change

at each study site is characterised by a time series. Consequently, I have aggregated simulation

outputs to produce time series that are comparable with the empirical data.

Across study sites we see similar patterns in the rank order of the land cover types that dominate

the landscapes in the equilibrium states of the simulation outputs:

1. Navarrés, Algendar, and San Rafael are dominated by Pine, Oak, and Shrubland

2. Atxuri and Monte Areo mire dominated by Pine, Shrubland, and Oak
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Figure 6.3: Example land cover maps produced by individual runs of AgroSuccess simulations after 400
simulated years for the Navarrés and Charco da Candieira study sites, and for scenarios that include 0,
10, and 100 simulated households.

3. Charco da Candieira is dominated by Pine, Shrubland, and Burnt area

These differences can be explained by the effect of fire in the simulated landscapes. The first

group above all have an average of 4.1 fires per year and calibrated land-cover flammability

scenario TF1, the second group have 27.2 fires per year and calibrated land-cover flammability

scenario TF1, and the third group have 14.3 fires per year and land-cover flammability scenario

TF2 (see Section 5.1.2). Increased fire frequency for the second and third groups, and increased

flammability in the case of the third group, allows early-successional Shrubland to outcompete

late-successional Oak in the equilibrium state.

Stochastic variation

Across all study sites there is limited and approximately constant stochastic variation within sim-

ulation outputs for each land cover type demonstrating that the model dynamics tend to produce

a stable equilibrium state. Among the different land cover types, we consistently see highest

stochastic variation in the proportion of the landscape occupied by Pine and Shrubland. This
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can be understood in terms of the modelled ecological dynamics. Shrubland has high land-cover

flammability (see Table 4.5) and is therefore relatively susceptible to short-term fluctuations due

to fire occurrence. The proportion of the landscape occupied by Pine is coupled to the proportion

occupied by Shrubland because Shrubland grid cells transition to Pine in 10–15 simulated years

(depending on the cell’s aspect and soil moisture) when Pine seeds are present. Because the

landscapes simulated here are dominated by Pine, there is also high availability of Pine seeds

(see rules specified in Section 4.2.4) resulting in persistent Pine dominance.

6.2.2 Signal of anthropogenic change

To evaluate whether AgroSuccess is able to produce a statistically significant signal of anthro-

pogenic change, I performed a similar analysis to that used to quantify statistical significance in

the sensitivity analysis in Section 6.1.2 but using the same simulations as those analysed in the

previous section. Table 6.3 shows the standard error of the mean, σ̂x̄, for the Shrubland, Mature

Forest and Burned Area output variables across the 20 replicas of the simulations without any

anthropogenic agents for each study site (see Section 6.1.1 for definitions of these variables).

This defines a ‘baseline’ scenario that I will compare the corresponding output statistics from the

simulations that do include anthropogenic agents to. Note that unlike in Section 6.1.2 I do not

consider the effect of adding household agents on the Wood Area and Farm Area output variables

because the baseline scenario does not include anthropogenic agents so these outputs will be 0,

making a meaningful comparison impossible.

Table 6.3: Standard error of the mean, σ̂x̄, for model output variables used to determine statistical signi-
ficance of anthropogenic effects across 20 replicas using default parameter values for each study site.

Shrubland Mature Forest Burned Area
Study site

Algendar 0.00312 0.00381 0.00037
Atxuri 0.00352 0.00465 0.00045
Charco da Candieira 0.00456 0.00688 0.00082
Monte Areo mire 0.00299 0.00350 0.00041
Navarrés 0.00242 0.00283 0.00019
San Rafael 0.00498 0.00582 0.00052

The effects of adding anthropogenic agents on Shrubland, Mature Forest and Burned Area sim-

ulation outputs are summarised in Table 6.4. While inclusion of 10 households does not produce

a clear statistical effect on land cover (as I found in the sensitivity analysis), simulations with

100 households do tend to show statistically significant differences in the outputs considered

compared to the baseline scenario (no households).
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Table 6.4: Summary of the effect of adding anthropogenic agents to AgroSuccess simulations on Shrub-
land, Mature Forest, and Burned Area output variables. For each output variable, scenario (10 households
and 100 households), and study site, mean values across 20 simulation replicas are shown. Values in par-
entheses are percentage change relative to the baseline scenario (no households). Values in bold show
statistically significant differences with respect to the baseline scenario.

Variable Shrubland Mature Forest Burned Area
No. Households 10 100 10 100 10 100
Study Site

Algendar 0.058 (7%) 0.058 (8%) 0.929 (-0%) 0.927 (-0%) 0.005 (-2%) 0.005 (12%)
Atxuri 0.211 (0%) 0.212 (1%) 0.698 (0%) 0.685 (-2%) 0.019 (0%) 0.021 (9%)
Charco da Candieira 0.304 (2%) 0.317 (6%) 0.528 (-1%) 0.505 (-5%) 0.032 (5%) 0.035 (14%)
Monte Areo mire 0.216 (2%) 0.227 (7%) 0.687 (-0%) 0.662 (-4%) 0.020 (3%) 0.023 (15%)
Navarrés 0.043 (9%) 0.044 (11%) 0.945 (-1%) 0.942 (-1%) 0.004 (20%) 0.004 (35%)
San Rafael 0.071 (4%) 0.072 (5%) 0.912 (-0%) 0.908 (-1%) 0.006 (5%) 0.007 (23%)

The statistically significant decrease in Mature Forest seen in four of the six study sites is ex-

plained by the increased anthropogenic pressure on the landscape causing agents to resort to

converting forest land cover types to agricultural land. Note that due to the rules used to select

land patches to convert to wheat agriculture specified in Section 4.3.4, households preferentially

select Burnt, Grassland, Shrubland, and existing Wheat patches to convert to Wheat over forest

types due to their relatively small land cover conversion cost (see Table 4.1 for details). The

observed increase in proportion of Shrubland in simulations with 100 households is likely caused

by the ecological succession rules causing land that agents had converted to Wheat subsequently

progressing to Shrubland. Similarly, the increase in Burned Area seen in simulations with 10

households is explained by the fact that, once households have converted a land patch to Wheat,

it will take 3yr to transition to Shrubland, and then a further 10–15 years to transition to a forest

type, e.g. Pine. Because Wheat and Shrubland are have relatively high land-cover flammability

values (see Table 4.5) this has the effect of increasing the proportion of the landscape that fire

can most easily spread to.

6.3 Discussion

As seen in Section 6.2.1, AgroSuccess simulations for the study sites considered in this thesis

exhibit an initial transient period in which land cover proportion outputs diverge rapidly from

their boundary conditions before converging on a stable equilibrium state. Additionally, we see

from the confidence intervals in the simulation output time series in Fig. 6.2 that stochastic

variability in time series outputs is quite limited. This is likely because the wildfire submodel

(see Section 4.2.6) fire is the only source of stochasticity in the model. While anthropogenic
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activity is a source of modelled ecological disturbance, the model processes that represent it are

deterministic because the human population is held fixed, and the rules governing subsistence

planning are deterministic. J. D. A. Millington et al., 2009 saw a similar pattern of initial transient

period followed by stable equilibrium when using the Millington LFSM to run a ‘no disturbance’

scenario (i.e. without fire). This points to the possibility that the AgroSuccess model may not

include sufficiently strong disturbance effects (from fire and anthropogenic activity) to produce

qualitative changes in the land cover state.

Additionally, the fact that the aggregate outputs of AgroSuccess simulations diverge rapidly from

their initial conditions implies that the model cannot be sensitive to the initial spatial configur-

ation of the landscape that is provided by the neutral landscape models (NLMs, Section 3.3.3).

Instead, the model dynamics cause the evolution of a compatible spatial configuration of land

cover during the course of the model run. Rather than using NLMs, it may be more appropri-

ate to use a model ‘burn-in period’ in which a simulation is allowed to run for sufficient time to

produce a landscape configuration that corresponds to the model dynamics, before introducing

scenario-orientated perturbations (e.g. the introduction of anthropogenic agents). Under this

methodology, it would be sufficient to use a non-informative uniform Burnt area land cover map

as an initial condition, removing the need for the generation of NLMs.

There are a number of sources of residual uncertainty that could explain why AgroSuccess’ model

dynamics do not match those of the empirically derived land cover type data that its outputs

are intended to be comparable to. First, the ecological succession model is able to incorporate

spatially heterogeneous soil type maps, but in the analyses presented here a uniform map was

used (see Section 3.3.2). Soil type indirectly influences the land cover by altering soil moisture.

Second, each simulation uses constant values for wind speed, temperature and precipitation. In

reality these are time varying quantities. Third, seeds corresponding to species represented in

the forest land cover types are ‘imported’ into the simulation grid at a fixed rate throughout each

simulation (controlled by the ‘Land cover colonisation base rate’ parameter), and moreover at

the same rate for all seed types (Pine, Oak, and Deciduous). It is possible that each seed type

would require its own ‘import rate’ representing differences in the quantity of seeds of each type

entering the simulation grid for the model to be able to accurately reproduce ecological dynamics.

See Section 8.3.4 for discussion of how these residual uncertainties could be addressed in future

work.

148



An outcome of the sensitivity analysis discussed in Section 6.1.3 is that, while AgroSuccess is

sensitive to many of the parameters related to the anthropogenic component of the model, there

are some that it is not sensitive to at all. These include ‘Labour availability’ and ‘Wheat farming

labour requirement’. Additionally, I found in the sensitivity analysis that no land patches were

converted to the Depleted Agricultural Land (DAL) land cover type. Given that the model was

not sensitive to these aspects of the model, they might be considered for removal to facilitate

model simplification. However, it is important to note that the sensitivity analysis described

in Section 6.1 did not account for possible parameter interactions. Future work on sensitivity

analysis (see Section 8.3.3) may identify such interactions. Future work may also lead to the

inclusion of dynamically evolving household populations through the addition of birth and death

processes. In this scenario, the inclusion of ‘Labour availability’ and ‘Wheat farming labour

requirement’ parameters would be useful. Consequently, removal of these parameters could be

counterproductive to ongoing model development. While the model did not appear to be strongly

sensitive to the anthropogenically related parameters ‘Farm value distance’, ‘Farm value fertility’,

‘Farm value land cover conversion’, and ‘Wood value distance’, I believe these should be retained

because of their influence on the spatial distribution of land use in the landscape.

A key finding from the analyses presented in this chapter is the high sensitivity of the model to the

‘Number of households per village’ parameter. I showed in Section 6.2.2 that adding anthropo-

genic agents has a statistically significant effect on the land cover proportions of the landscape,

but only if a sufficient number of households are included in the simulation. For AgroSuccess

to be used to reproduce landscape dynamics, it would be necessary to obtain realistic estimates

of the human population of each study site during the simulated period. See Section 8.3.5 for a

proposal of how this might be achieved as a piece of future work.

149



Chapter 7

Software implementation of

AgroSuccess

Here I discuss the general principals I followed during the implementation of the AgroSuccess

model. The implementation of a socio-ecological model as piece of software is a distinct process

with respect to the development of a conceptual model. Whereas the conceptual model is a

design (which can be analysed and critiqued in its own right), the implementation is a specific

realisation of that design which can be subject to errors or other issues that limit its usefulness

to both the original developer and prospective future users. I have endeavoured to make the

model implementation open in the sense that is available for others to scrutinise and reuse (see

Section 7.1.2). Having described my overall approach to developing the AgroSuccess model

implementation, I present a novel approach to managing the complex ecological succession rules

in the model using a graph database in Section 7.2. In Section 7.3 I summarise some of the

challenges that arose during the implementation of the model.

7.1 Simulation model implementation

7.1.1 Development framework

AgroSuccess is implemented in the Java programming language and uses the Repast Simphony

Agent Based Modeling framework (North et al., 2013). Repast Simphony was chosen because
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it provides a set of tools including a graphical user interface (GUI) to view running simulations

interactively, utilities for outputting data from running models, utilities for scheduling events

to occur in simulations (e.g. agents performing decision making activities), and the capacity to

run simulations in ‘batch mode’ including on remote machines such as those provided by Cloud

providers including AWS. Fig. 7.1 shows a screenshot of AgroSuccess running in the Repast

Simphony GUI, illustrating how it allows for interactive modification of parameter values and

visualisation of model outputs in a running simulation.

Figure 7.1: Screenshot of the AgroSuccess model running using the graphical interface provided by Repast
Simphony (North et al., 2013). The panel on the left provides interactive controls to experimentally adjust
model parameters and select study sites. The panel on the left shows a spatially explicit view of the time
evolving land-cover in the simulated landscape. See Appendix G.S8 for access to the code needed to reun
the AgroSuccess model.

There are other agent-based modelling frameworks available that could have been used in place

of Repast, including NetLogo (Tisue & Wilensky, 2004), GAMA (Taillandier et al., 2019), MASON

(Luke et al., 2005), and Mesa (Kazil et al., 2020). These options all provide an environment for de-

veloping agent-based models, with support for expressing concepts relevant to a given model in a

formal programming language, running simulations, and visualising simulation outputs. NetLogo

and GAMA provide their own domain-specific languages (DSLs) for specifying ABMs. Conversely

MASON, Mesa, and Repast are simulation tool-kits that provide reusable software components

useful for specifying agent-based models in a general purpose programming language (Java for

MASON and Repast, and Python for Mesa). The use of a DSL helps to reduce the time required for

modellers who are not already familiar with a programming language to start developing models.

Frameworks that use a DSL are good choices for modellers who are new to programming and

want to develop a model quickly without needing to learn a general-purpose language (many of

151



whose features they may not need to use). Additionally, the documentation for these frameworks

often includes self-contained example models that new users can refer to while learning the lan-

guage. However, because DSLs are niche languages that are designed to support a particular

modelling framework, they lack the mature ecosystem of tools for developing and systematically

testing the implementation of models written in them that are typically available for established

general-purpose programming languages. The additional software tools that are available for

general-purpose programming languages compared to DSLs make tool-kits like MASON, Repast,

and Mesa better suited for developing modular, well tested software.

Of the simulation tool-kits considered, I favoured the Java-based frameworks over Mesa, which

implemented in Python, because of the ease of portability of Java programs. It is desirable for

AgroSuccess to be able to run in various remote execution environments (e.g. in the cloud and

on institutional HPC infrastructure) to make it convenient to perform large numbers of simula-

tions in parallel. In my experience, it can be difficult to exactly reproduce Python environments

on different infrastructures without using a containerisation technology such as Docker (Merkel,

2014) which is not necessarily available on institutional HPC systems. By contrast, Java pro-

grams can be packaged with everything they need to run on any system where the Java Virtual

Machine (JVM) is available using standard tools. As simulation tool-kits written in Java, Repast

and MASON are broadly comparable. However, I found Repast easier to install and start working

with. Additionally, the Repast user community and associated forums are active and responsive,

making it easy to get help during the development process.

Java programs typically perform well in terms of both run time and memory utilisation compared

to an equivalent implementation in an interpreted language such as Python. This stems from

the fact that Java programs are compiled into an optimised bytecode format that can then be

executed by the JVM. By contrast, programs written in an interpreted language don’t benefit

from compile-time optimisations. Other compiled languages such as C++ may be able to achieve

better run time performance than equivalent programs written in Java. This is because in C++

the programmer is responsible for allocating and deallocating memory, whereas in Java the JVM

does this automatically at the cost of additional computational overhead. However, there is a

trade off between the run time efficiency of C++ and the additional burden on the developer

to manually manage memory in the program. Other modern programming languages such as

Rust (Perkel, 2020) my be able to achieve comparable performance to C++ without requiring the

programmer to independently guarantee that all memory is managed appropriately. Rust does
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this by enforcing correct memory management at compile time. Additionally, Rust simplifies

the process of writing concurrent programs (that is, programs that use procedures that run

simultaneously on different processor cores). This may enable developers of ABMs to better

utilise multi-core CPUs to decrease the time needed for each model run.

7.1.2 Adherence to model development standards

Modelling standards help to define a working framework to help scientific modellers create soft-

ware that is able to meet its scientific research goals and useful to others in the scientific com-

munity. An overarching objective of such standards is that of openness in the sense that models

should be transparent and available for scrutiny by others. An example of the problems caused

by lack of openness by modelling scientists came to the public attention during the COVID-19

pandemic. At this time it became apparent that researchers modelling the public health implica-

tions of COVID-19 were not universally willing to share their model source code due to concerns

about giving away a competitive advantage to other researchers. This resulted in the publication

of an open letter in the journal Science, arguing that the practice of guarding model source code

in this way is fundamentally unscientific and against the public interest (Sills et al., 2020).

The Open Modeling Foundation is an international community of modelling scientists that have

established a set of standards (The Open Modeling Foundation, 2023) around Accessibility, Doc-

umentation, Interoperability, and Reusability for other scientists to follow to maximise the use-

fulness of their work. Such a framework helps reduce the arbitrariness of the standards to which

scientific software is developed, and to make it easier to discern and evaluate the rigour with

which scientific models have been implemented. Improved confidence in the software developed

by other scientists, combined with the availability of high quality documentation of that software,

is beneficial for the community as a whole because it reduces the perceived need to re-implement

models developed by others. The issues addressed by the OMF have been raised by others in the

ABM community. Shin, 2021 presents the advantages of openness and transparency around

source code used to implement scientific software to both the individual researcher and the com-

munity as a whole (‘Accessibility’), Müller et al., 2013 advocate the development of standardised

formats of natural language descriptions of models to accompany source code (‘Documentation’),

and Polhill and Edmonds, 2007 highlight the importance of providing software licenses for simu-

lation model implementations (‘Reusability’). In the following subsections I describe the ways in
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which my implementation of AgroSuccess aspires to address the OMF standards.

Accessibility

All software used to both run AgroSuccess simulation models and generate the required input

data from publicly available data sets is available both in the Zenodo software repository and

on GitHub. Zenodo is an immutable software repository specifically designed for sharing open

scientific software. See listing of available software in Table 7.1 (available software is also listed

in Appendix G for convenience of reference). All software is under version control (Scheller et

al., 2010; G. Wilson et al., 2014), and the citations given for each piece of software reference a

specific version.

Table 7.1: Summary of open source software tools developed to support users working with AgroSuccess,
including the AgroSuccess simulation model code itself (agrosuccess-sim).

Name Description Reference Appendix
epd-query An application to help extract data

from the European Pollen Database in
a reproducible and open way

(Lane, 2019) Appendix G.S1

aemet-wind A Python library for working with
wind speed and direction data from
the Spanish State Meteorological
Agency’s weather data REST API

(Lane, 2021a) Appendix G.S2

aslib A Python library containing software
objects used in other code for working
with AgroSuccess

(Lane, 2021d) Appendix G.S3

agrosuccess-data Code used to generate input data for
the AgroSuccess simulation model

(Lane, 2021b) Appendix G.S4

demproc A Python package used to derive ras-
ter layers based on a Digital Elevation
Model

(Lane, 2021e) Appendix G.S5

cymod Application used to convert complic-
ated state-and-transition models de-
scribed in the Cypher graph query lan-
guages into Neo4j graph data stores

(Lane, 2020) Appendix G.S6

agrosuccess-graph A Python package that uses Cymod to
represent the AgroSuccess STM

(Lane, 2021c) Appendix G.S7

agrosuccess-sim The AgroSuccess simulation model
code

(Lane, 2023) Appendix G.S8

Documentation

In addition to the README document in the AgroSuccess software repository, the AgroSuccess

source code also includes detailed ‘Javadoc’ documentation of the constituent software compon-
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ents (classes and packages). Including documentation as part of the source code in this way can

be considered a form of literate programming, i.e. code that is intended to be easy for humans

to read (Scheller et al., 2010).

Interoperability

The source code implementing AgroSuccess (Lane, 2023) is organised as a collection of related

Java packages. For example, there are separate packages for the succession, fire, and subsist-

ence agriculturalist models. These can be used together as a coherent model, as I did in the

preparation of this thesis, or can be recombined to form parts of other models. This improves the

likelihood of code reuse. However, I argue a more important outcome of this method of organisa-

tion is that it makes the code easier to read. This is because the reader can focus on the software

artefacts that are mainly within a single package, making it easier to understand.

Type safety in Java helps improve the interoperability of the source code, because it forces in-

terfaces to be clearly and unambiguously defined. Users of dynamically typed languages such as

Python need to rely much more heavily on documentation of software components developed in

such languages, and the documentation is not guaranteed to match the implementation.

Reusability

AgroSuccess is implemented using the well known Repast Simphony modelling framework, mak-

ing it easy for new users to install and use it. It includes a README document that describes the

required input data, and provides references to the ancillary software tools that I have developed

to generate required input data for the study sites considered in this thesis, or potentially other

study sites that are of interest to the user. AgroSuccess is licensed under a permissive MIT

license so other perspective users should have no legal concerns about reusing the software.

7.1.3 Maintainability and extensibility

In addition to the measures described in Section 7.1.2 to ensure that my work on AgroSuccess

is useful to and understandable by other researchers, I have also taken steps to ensure that

the software implementation of AgroSuccess itself is maintainable and extensible. Maintaining
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software is the process of modifying existing software to correct faults, improve performance, or

adapt it to reflect changes in the specification of the real-world system it represents. Extending

software involves adding functionality that was not planned at the time that the software was

originally developed. Both of these activities are relevant to the development of software that

implements a scientific model. Software implementations of scientific models represent scientific

understanding that is itself subject to change. Correspondingly, software implementations of

such models should be amenable to modification and extension to enable them to remain useful

as scientific understanding evolves.

To assure the extensibility and maintainability of the software implementation of AgroSuccess,

I have organised its source code using the SOLID design principles (Martin, 2017). The SOLID

principles are a well known set of design principles commonly applied to object-orientated soft-

ware that are intended to help developers write code that is easy to maintain and extend. These

are the ‘Single Responsibility Principle, ‘Open-Closed Principle’, ‘Liskov Substitution Principle’,

‘Interface Segregation Principle’, and ‘Dependency Inversion Principle’. The following subsec-

tions describe these principles and provide examples of how I have used them in AgroSuccess,

where applicable.

Single Responsibility Principle

The Single Responsibility Principle (SRP) states that each software component should have ex-

actly one reason to change. In the context of a scientific model, the clearest example of a reason

for a component needing to change is an update to the understanding of the aspect of the model

that the component implements. In AgroSuccess, software ‘components’ are implemented as

Java classes. For example, the FarmingPlanCalculator class is responsible for calculating the

number of farm patches required by a household, and the FarmingReturnCalculator class is

responsible for calculating the mass of wheat obtained by farming a particular patch (see Sec-

tion 4.3.4). Each of these classes would only need to change if the modelling rules within their

well-defined scopes changed, with all other classes remaining unchanged.

Following the SRP helps to promote modularity (Bugmann, 1994) in the sense that all code re-

lated to each concept in the conceptual model is logically grouped together, and can be readily

scrutinised and verified independently of other model components. This results in software that

is easier to understand because each class forms its own unit of functionality.
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Open-Closed Principle

The Open-Closed Principle (OCP) states that software components should be open to extension,

but closed to modification. Following this principle allows code at a higher level of abstrac-

tion to be reliably reused by (potentially) multiple other pieces of code at a lower level of

abstraction. Examples of classes that follow this principle in AgroSuccess are SeedDisperser

and SpatiallyRandomSeedDisperser. The SeedDisperser class implements the logic needed

to manage the data structures that are used to track the location of seeds in the simu-

lation grid (a relatively high level of abstraction). The SpatiallyRandomSeedDisperser

class extends SeedDisperser and contains the logic needed to implement the specific

land-cover colonisation process described in Section 4.2.4. When developing and testing

SpatiallyRandomSeedDisperser, the modeller can focus on the logic relating to how seeds

are to be randomly distributed, while relying on the logic in SeedDisperser to manage the

required data structures. In future, other modellers or I could add a new class that implements

an alternative seed dispersal algorithm that also extends SeedDisperser, promoting code reuse.

Liskov Substitution Principle

The Liskov Substitution Principle (LSP) concerns the circumstances under which an object within

a program (i.e. an instance of a class) of a given type, T , should be interchangeable with objects

that are subtypes of T . It is closely related to the concept of inheritance in object-orientated

programming. AgroSuccess does not currently make use of inheritance in a way that facilitates

an illustration of the LSP. I refer the reader to the literature on the topic (e.g. Martin, 2017) for

further information.

Interface Segregation Principle

The Interface Segregation Principle (ISP) states that classes should only depend on interfaces

that they actually use. In Java, an ‘interface’ can be thought of as an abstract contract that

specifies the set of methods which a class that implements a given interface must provide. That

is, an interface specifies what an implementing class does. On the other hand, a class is a specific,

concrete implementation that specifies how it achieves what the interfaces it implements require

(see e.g. Schildt, 2007 for details of the relationship between interfaces and classes in Java).
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Consider, for example, the SiteAllData interface in AgroSuccess. Classes implementing this

interface must provide methods for retrieving all data associated with a study site (slope, flow

direction, and land cover type maps, wind data, precipitation data, etc.). This interface is im-

plemented by the SiteDataLoader class which reads required data from the file system. No

classes that consume site data require access to all the data provided by the SiteAllData

interface, so it is segregated into distinct SiteClimateData, SiteMetaData, SiteRasterData,

and SiteWindData interfaces. This allows, for example, the initSeedDisperser method in

the AgroSuccessContextBuilder class to depend only on the data provided by the narrowly

scoped SiteRasterData interface. This means that even if other parts of the SiteAllData in-

terface change in future (e.g. to change the way that wind data is consumed by the model), the

initSeedDisperser method can remain unchanged, aiding maintainability.

Dependency Inversion Principle

The Dependency Inversion Principle (DIP) states that, where possible, classes should depend

on abstract interfaces rather than concrete implementations (classes). As explained above in

the description of ISP, interfaces specify what implementing classes do, whereas classes specify

how they achieve what the interfaces they implement require. Following this principle simplifies

extensibility by making it straightforward to exchange one class that implements a particular

interface for another that implements the same interface, but using different logic.

In AgroSuccess, the DefaultVillage class requires a set of Household objects as input (i.e. the

households that make up the village). Household is an interface that specifies that implementing

classes must have methods to calculate a subsistence plan, claim land patches to use to fulfil that

subsistence plan, and update their population. In the current version of AgroSuccess, we use the

DefaultHousehold class to implement the logic described in Section 4.3.3. If I wanted to extend

the model by including pastoralism as well as agriculture in households’ subsistence planning,

I could add a new PastoralHousehold class that implements the additional logic required for

pastoralism and also conforms to the Household interface. Because the DefaultVillage class

depends on the Household interface rather than the DefaultHousehold class (in accordance with

DIP), I could simply provide the DefaultVillage class with PastoralHousehold objects instead

of DefaultHousehold objects without making any changes to the DefaultVillage class. It would

also be possible to specify that a particular model run should use either DafaultHousehold or
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PastoralHousehold objects through a model parameter, simplifying the execution of simulated

experiments to explore the impact of the addition of pastoralism on simulation outputs.

7.1.4 Model implementation testing

To provide assurance that the software used to implement the AgroSuccess simulation model

is free from programming errors, I have made use of extensive automated testing of its source

code. Use of automated testing is a form of model verification, specifically what Augusiak et al.,

2014 call ‘implementation verification’. Model verification is one aspect of the broader exercise of

model evaluation (Manson et al., 2012) or ‘evaludation’ (Augusiak et al., 2014). Another aspect of

model evaluation is validation. The terms ‘verification’ and ‘validation’ are used inconsistently or

even interchangeably in the literature (Augusiak et al., 2014; Oreskes et al., 1994). To be explicit,

by ‘verification’ I mean any activity that provides assurance that the software implementation of

a model accurately reflects the conceptual model that it is intended to represent, and is behaving

as intended. By ‘validation’ I mean the comparison of model outputs to real-world empirical data

to determine whether the model outputs are sufficiently accurate for it to be used for a particular

purpose (Augusiak et al., 2014; Manson et al., 2012; Schmolke et al., 2010). In addition to

the work towards implementation verification discussed in this section, the sensitivity analysis

presented in Section 6.1 is also a form of model verification.

Automated testing in scientific software

Automated testing is a routine practice in modern software development that helps developers

ensure that their software works as intended. Others in the literature have noted that automated

testing has been historically underutilised by scientists who develop software (Scheller et al.,

2010; G. Wilson et al., 2014; G. V. Wilson, 2006).

There are two main categories of automated tests (Scheller et al., 2010; G. Wilson et al., 2014).

Unit tests are used to verify that individual logical units of code, such as functions or methods,

are behaving as expected. For example, a unit test might call a class method that implements

an equation defined in the conceptual model and confirm that it returns the correct value for

a range of input values. Unit tests are often written at the same time as (or even before) the

code they are designed to test, and serve as a permanent record of how the code under test is
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intended to behave. Integration tests are used to confirm that multiple software components,

such as classes, are working together as expected. For example, they might be used to test that

data is being correctly communicated from one software object to another. Both unit tests and

integration tests should be run frequently. During development, it is possible for a new change

to cause existing code to stop working as expected. Running automated tests can help to identify

these issues as soon as they occur, at such a time that it is clear to the developer which change

caused the code to stop working. Timely identification of problems like this helps to decrease

development time and improve code correctness. This mode of using automated tests is known

as regression testing.

Scheller et al., 2010 also identify system testing in which the software system (i.e. model) as a

whole is tested to confirm that it is behaving as expected, e.g. by analysing the model outputs.

However, I have found that this type of testing usually involves some degree of critical evaluation

on the part of the modeller and therefore, while important, is difficult to incorporate into an

automated testing workflow.

The development of automated tests leads to two additional benefits besides the timely identific-

ation of defects. First, writing code that is easy to test naturally leads to more modular designs

because it encourages the developer to create each component (class or function) in isolation and

confirm that it is behaving as expected before integrating it with other components (G. Wilson

et al., 2014). Such modular designs lead to the production of components that are easier to re-

use, and the tests themselves serve as examples to other developers of how these components

are used. Second, the test code itself can be reviewed by collaborators to confirm that the model

code has been confirmed to work in the ways required by the conceptual model specification. For

example, if a collaborator notices that the code that tests a method implementing an equation

doesn’t test the full range of valid input values to that equation, they could request that the test

code be updated to confirm that the method under test continues to behave as expected for all

valid input values.

Testing in AgroSuccess

The AgroSuccess model implementation is a large piece of software (over 12,000 lines of Java),

with many interdependent software objects. It represents a complex system whose outputs are

emergent quantities resulting from the interactions between its constituent components. It is a
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good example of a project in which the correctness of its implementation cannot be inferred from

analysis of its outputs alone. It therefore benefits from the use of automated testing to provide

verification of its implementation.

All code used to run the automated tests for AgroSuccess can be found in the src/test/java

directory of its software repository on Zenodo (Lane, 2023). AgroSuccess uses the popular JUnit

testing framework for Java to implement both its unit tests and integration tests. It includes a

total of 264 individual automated tests that verify the implementations of 86 Java classes. An

example of a unit test can be seen in FarmingPlanCalculatorTest. This demonstrates the cor-

rectness of the implementation of Eq. (4.18) as specified in Section 4.3.4. An example of an

integration test can be seen in AgroSuccessLcsUpdaterTest. This tests that land cover types of

patches in a 3x3 test grid evolve from a known start state in the expected way, and verifies the cor-

rect interaction between four separate classes: SeedStateUpdater, SuccessionPathwayUpdater,

AgroSuccessLcsUpdateDecider, and AgroSuccessLcsUpdater.

Writing software to implement automated tests in addition to the software needed to implement

the model itself requires additional effort compared to writing the model implementation alone.

However, I argue that the increased speed with which automated tests allow a developer to

identify and resolve defects in the software could plausibly decrease overall development time.

Additionally, the process of writing tests encourages the development of modular software that

is easier to understand, reuse, and verify.

7.2 Graph database representation of land-cover STM

7.2.1 Introduction to Cymod

State-and-transition models (STMs) are a type of conceptual model used in the environmental sci-

ences to organise information about ecosystem and landscape change (Bestelmeyer et al., 2017).

STMs have been used to model ecological (Batllori et al., 2017; Daniel et al., 2018; McIntosh

et al., 2003; J. D. A. Millington et al., 2009; Spooner & Allcock, 2006) and geomorphic (Phillips

& Van Dyke, 2017) systems, and can encode knowledge about both natural (e.g. McIntosh et

al., 2003) and anthropogenic (e.g. Spooner and Allcock, 2006) drivers of environmental state

change. This modelling approach is particularly useful to explore how vegetation communities
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change between discrete states over time in situations where quantitative data are scarce, or

where causes and constraints of change are incompletely known but qualitative understanding

about change is available (McIntosh, 2003; McIntosh et al., 2003), or both.

The basis of all STMs is a set of discrete states and a specification of all possible transition

pathways between those states (Daniel et al., 2016), often summarised as a diagram. These

diagrammatic representations naturally take the form of graphs, with nodes representing states

and edges representing transitions (e.g. Figure 1 in McIntosh et al., 2003). Although most

modellers using STMs instinctively use diagrams depicting graphs, many do not explicitly state

that they are doing so, nor do they exploit the possibility of performing graph theoretical analysis

on their models (e.g. Daniel et al., 2018; Spooner and Allcock, 2006). While sketches using a

graph structure may be used during the development of an STM (e.g. McIntosh et al., 2003),

myriad relationships between the states due to alternate processes of change can produce a

complicated model structure that resists coherent rendering on a 2-dimensional surface such as

a piece of paper or a computer screen. Consequently, attempts to visualise (and therefore reason

about) the entire integrated STM can be challenging. By making it easier to formalise STMs as

graphs that are queryable data (rather than as graphics), researchers will be able to develop

more sophisticated visualisations and further analyse their models.

With the aim of supporting modellers in expressing STMs as computer-readable graph data struc-

tures, I have developed an open source Python package called Cymod (Lane, 2020). Available

to download from PyPI, Cymod provides an Application Programming Interface to encode know-

ledge of STMs to facilitate modelling and analysis (Fig. 7.2). It prompts a workflow for translating

the kinds of sketch diagrams already used as conceptual models when developing STMs into a

formal, queryable and visualisable data structure. In turn, this makes the iterative development

of STMs (potentially with non-scientific stakeholders, such as land managers) quicker, while also

helping to avoid logical errors.

The motivating idea behind Cymod is that STMs can be represented using a property graph data

structure (I. Robinson et al., 2015). Property graphs generalise the concept of a graph by asso-

ciating data with its nodes and relationships over and above what can be expressed in a conven-

tional directed, weighted graph. Their utility for organising data describing related concepts in

a flexible way make property graphs a natural choice of data structure to capture the ontological

richness of complex ecological systems. Focusing on the concept of a ‘view’, Cymod helps mod-
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Figure 7.2: The relationship between Cymod, subject matter knowledge, and graph database tools.

ellers transcribe diagrammatic and narrative understanding into a structured, queryable graph

database. This database structure also simplifies the steps needed to derive statistics about

model structure (Drescher & Perera, 2010; Phillips, 2011), and to use the knowledge encoded

in the STM in simulation models (Daniel et al., 2016; McIntosh et al., 2003; J. D. A. Millington

et al., 2009). Here, I present a description of what Cymod does, demonstrate its use through

a case study, and then discuss further how it is useful for facilitating research using STMs and

simulation models based upon them.

7.2.2 What does Cymod do?

Cymod prompts a workflow for specifying complicated STMs

Models describing systems which exhibit complexity often have complicated structures. The

Cymod workflow helps modellers manage model complicatedness by breaking the model down

into individual ‘views’, where each view represents an individual aspect of the model which mod-

ellers can comfortably reason about and sketch (e.g. on a piece of paper). For a relatively simple

model, a view might specify the set of all possible land cover types in a model (e.g. Figure 3 in

Daniel et al., 2016), whereas for a more complicated model views might correspond to different
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Figure 7.3: Cypher query expressing the concept that shrubland transitions into pine forest.

transition pathways in different locations of a study area due to variations in processes of change

(e.g. Figure 7 in McIntosh et al., 2003). The set of views which is appropriate for any particular

model is entirely at the discretion of the modeller. This approach to representing complicated

models as collections of simpler components improves understanding of the model, as well as

facilitating communication during the conception phase of model development.

Cymod supports the use of Cypher as a modelling language

With the conceptually manageable model views established, Cymod then supports mapping these

views directly into a computer readable format via the Cypher language. Cypher is a declarative

language designed specifically for describing connected data, such as STMs. Cypher uses ASCII

art syntax so that the textual representation of the model matches closely to the ‘box-and-arrow’

drawings which evolve naturally when describing models on paper (McConnell et al., 2011). In

Cypher, nodes are represented with pairs of opening and closing parentheses, and edges are

represented with arrows drawn with hyphens and angle brackets—see Fig. 7.3 as example. The

approach of using a declarative formal language in this way means that the computer model uses

the same terminology and semantics as the practitioners in the subject domain.

While Cypher helps the modeller to organise information about related model concepts into code

snippets (or ‘queries’ in database terminology), Cymod aims to support the modeller in organising

the sets of interrelated queries needed to describe complicated models. Thus, Cypher queries

representing individual transition pathways are in an organisational level below Cymod views

(which, in turn, represent multiple pathways).

In a typical Cymod workflow, a modeller will write all the Cypher queries needed to produce a

single view of the model in a plain text file. In this way an arbitrarily complicated model can

be described piecemeal. Cymod then wires the individual files (views) together to form a single

cohesive model within the graph database. Consequently, while the integrated model may be

too complicated to represent clearly in its entirety on a 2-dimensional surface, the modeller does

not need to contend with that complicatedness while they are describing the model. A further

advantage of using separate files to specify each model view is that each file can be individually
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placed under version control using software such as Git, enabling modellers to see which parts of

their models have changed over time. This simplifies the process of retrieving historical versions

of models, and supports reproducibility (G. Wilson et al., 2017). Finally, as models are stored in a

queryable database, it is possible to design automated tests which confirm that the implemented

model corresponds with the modellers’ intentions.

Cymod helps modellers leverage the Neo4j graph database platform

Using Cymod in the workflow outlined above, modellers will have expressed their model in a way

that can be consumed by graph database and analysis software. Cymod produces outputs that can

be used by a Neo4j database and associated tools in the Neo4j platform to visualise and further

analyse an STM. The Neo4j Community Edition graph database system is cross platform (running

on the Java Virtual Machine) and open source (distributed under GPL v3). The Neo4j Browser

is particularly useful for STM development as it provides an interactive graphical interface to

the Neo4j database that enables users to visualise the results of Cypher queries entered into the

browser, and to interactively ‘click-and-drag’ the returned nodes and relationships. In particular,

users can drill down into data associated with nodes and relationships and expand nodes to

explore their connections.

The utility of being able to visualise the data associated with nodes and relationships highlights

the significance of Neo4j databases storing property graphs and demonstrates advantages over

the ‘tables and rows’ structure of traditional relational databases (e.g. I. Robinson et al., 2015).

Within an ecological modelling context, a node might represent a land cover state, an edge might

represent a transition, and each transition might be mediated by multiple environmental factors

(e.g. soil moisture, seed presence/absence). Representing such relationships as a graph is more

intuitive and allows more powerful querying than using a table (e.g.J. D. A. Millington et al.,

2009; Spooner and Allcock, 2006) or relational database. Furthermore, whereas a weighted

graph would only allow encoding of a single number associated with an edge (e.g. transition

probability or time to transition), using a property graph enables modellers to encode the full

ontological richness of the system as understood in the subject domain.
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7.2.3 Illustrative application

In this section I discuss how I used Cymod during the development of the AgroSuccess model

(Chapter 4). This provides an example of how Cymod can be used in practice, including concrete

examples of the visualisations that can be produced using the Neo4j platform. The RBCLM

ecological succession model in AgroSuccess includes 15 possible transitions between pairs of

land-cover type states. Additionally there are 8 land-cover type transitions that occur due to

anthropogenic ’ecosystem engineering activities’. That is, agricultural households modifying

land-cover to convert patches of land to wheat agriculture.

Specifying the AgroSuccess model using Cymod

As noted above, model ‘views’ can be established in different ways for any particular model, at the

discretion of the modeller. I use four views to specify the AgroSuccess model in Cymod. Of these

two specify the attributes of the modelled anthropogenic agents (Agent_w.cql) and land-cover

types (LandCoverType_w.cql), one specifies the land-cover modifying activities of the anthro-

pogenic agents (activities_w.cql), and one provides a summary visualisation of all transitions

due to ecological succession (visualisation_summary_w.cql). This conceptualisation suggests a

natural hierarchy of views insofar as views representing the means by which transitions between

states occur depend on concepts expressed at a lower level of abstraction (the land cover states

themselves). I summarise the conceptual hierarchy as follows:

• Level 1: All the land cover states and anthropogenic agents involved in the model including

both unique identifier codes and detailed human readable descriptions of the land cover

states.

• Level 2: Transitions between land cover states (both natural and anthropogenic), e.g. pine

forest to transition forest due to sufficiently hydric conditions.

• Level 3: Summary nodes useful for visualising the completed model.

These levels and the model components expressed within them can be mapped into Cypher files

such that all the code used to specify a view are contained within a single Cypher file (with

extension .cql, see Fig. 7.4). None of the Cymod views named above encode the ecological
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Figure 7.4: Listing of files (provided in supplementary materials, see Appendix G.S7) used to specify the
AgroSuccess AgroSuccess RBCLM model and load it into a Neo4j database using Cymod.

succession rules. AgroSuccess uses a version of the RBCLM developed for the Millington LFSM,

modified to include the additional required wheat agriculture-related land-cover states. We

used Python scripts (clean_millington_trans_table.py, summarise_millington_table.py,

and repurpose_trans_rules_agrosuccess.py) to parse the transition rules expressed in the

supplementary materials provided by J. D. A. Millington et al., 2009, transform them appropri-

ately. Finally a Python script (load_agrosuccess_model.py in Fig. 7.4 and Appendix G.S7) using

Cymod as a library loads these files into a Neo4j database.

Visualising and analysing the model with the Neo4j platform

Once the Cypher files have been written and loaded into a Neo4j database using Cymod to pro-

cess and load the model files into the database, we can leverage the Neo4j Browser to interact

with the database via a graphical interface. In Fig. 7.5 I show several examples of graphical

visualisations extracted from the tool. Creating visualisations (through database queries) that

present subsets of the whole model should facilitate better analysis and communication. For

example, Fig. 7.5.B shows an example of how a user exploring the model can search for anthro-

pogenic activities involving a particular land-cover type (pine forest, in this case). Alternatively,

Fig. 7.5.C illustrates how the tool enables modellers to visualise ecological and anthropogenic

land cover change processes simultaneously, while limiting the view to transitions involving the

wheat land-cover type. This helps to reduce the number of elements in the resulting diagram

sufficiently that it can be easily studied.

As stated above, the AgroSuccess STM derives its ecological state transition rules from those
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Figure 7.5: (A) A summary visualisation generated via a user query in the Neo4j Browser tool, showing
all land-cover transitions due to ecological succession represented in the AgroSuccess STM. (B) A visu-
alisation showing anthropogenic activities that modify land-cover involving transition either to or from
Pine forest. (C) A visualisation showing how ecological succession and anthropogenic activities interact to
alternately to cause land-cover to transition to or from wheat agriculture.
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Figure 7.6: Cypher code used to query the graph database to produce a tabular structure where each row
specifies a possible ecological succession pathway. This is analogous to the look-up table that specifies the
ecological succession model of the Millington LFSM provided in the supplementary materials of J. D. A.
Millington et al., 2009.

Figure 7.7: Output from Neo4j Browser resulting from the query given in Fig. 7.6

used in the Millington LFSM (J. D. A. Millington et al., 2009). The state transition rules for that

model were recorded in a tabular format and published as supplementary materials. The visual-

isation we have developed showing all ecologically driven state transitions (Fig. 7.5.A) presents

a summarised view of the information contained in such a table but offers an alternative per-

spective that can bring potential insights that are difficult to observe from a tabular format.

For example, Fig. 7.5.A highlights the cyclical relationship between the transition forest land-

cover type and the oak, deciduous, and pine land-cover types, as well as the high betweenness

centrality of the shurbland land-cover type. Furthermore, the original tabular structure can be

recovered from the model implemented in Cypher by entering the Cypher code given in Fig. 7.6

into the Neo4j Browser, producing the output shown in Fig. 7.7.
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7.2.4 Discussion

Cymod for facilitating iterative STM development

Much of the utility of state-and-transition models (STMs) stems from their representational flex-

ibility, allowing them to capture detailed knowledge about the causes of environmental change.

Bestelmeyer et al., 2017 suggested there are three emerging ways in which STMs are being used

that exploit this flexibility: i) incorporation of participatory approaches into STM development

(often for community-based management), ii) using STM for structured decision-making (by eco-

system managers), and iii) combined use of STMs with new spatial data. Alone, Cymod offers

clear benefits to modellers working with non-modellers either to develop or use STMs (contrib-

uting to the first two ways), and when linked to a simulation model can contribute to the use of

spatial data (addressing iii; see the following section).

Local community members and ecosystem managers are often able to provide both specific in-

formation (e.g. which states and transitions pathways exist in the system) and quantitative es-

timates based on expert judgement (e.g. how long each specific transition is expected to take).

The flexibility of STMs makes them extremely useful during the stage of the modelling process in

which modellers elicit expert knowledge using explorative “what if. . . ?” questioning while sketch-

ing ‘box-and-arrow’ conceptual models (e.g. see McConnell et al., 2011; McIntosh, 2003). These

sketches can then serve as the starting point for subsequent thought and discussions as part of an

iterative model development process which culminates in a completed STM. The Cymod workflow

prompts iterative model development in two key ways. First, the suggested manner of breaking

down detailed knowledge about complicated systems into simpler components which are easy

to understand and visualise helps stimulate clarifying discussions between modellers and non-

modellers, encouraging consistency of understanding. Second, as a consequence of the close

mapping between the conceptual model and the graph data structure which can be achieved

by expressing the model in Cypher, incremental changes decided upon as a consequence of

these conversations can be easily transferred from paper sketches to the model code (and these

changes formally tracked via versioning tools such as Git).
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Cymod for translating STMs into simulation models

STMs can be used as the basis for computer simulation models whose outputs can be interpreted

as time-evolving realisations of the modelled system. These simulation models are known as

state-and-transition simulation models (STSMs) and are distinct from the underlying conceptual

model (the STM). Cymod itself does not enable the execution or running of simulations (STSMs)

but focuses instead on supporting the development and visualisation of STMs. Numerous ex-

amples of STSMs exist in the literature (e.g. Batllori et al., 2017; J. D. A. Millington et al., 2009)

and frameworks, such as ST-Sim (Daniel et al., 2016), have been developed to help modellers im-

plement such simulations. Tools such as ST-Sim are valuable to help modellers implement their

STMs and run them as STSMs, but they provide only limited structure for the development of the

STM itself (e.g. indicating which transition probabilities need to be specified once states have

been established).

By capitalising on the natural correspondence between STMs and graph data structures, Cymod

not only provides new ways to visualise STMs (as demonstrated above) but also provides a formal

means to implement STMs as STSMs. This is because by representing STMs formally as graphs,

Cymod creates data structures that computer programs—including simulation models—can inter-

act with. Thus, although Cymod does not by itself enable simulation of STMs, its role in loading

models specified using Cypher into a Neo4j database helps modellers interact with their STM

programmatically via a database connection. This is particularly desirable when an objective of

simulation is to integrate spatial data for a specific geographic location (e.g. to investigate land

cover change scenarios). Such functionality is possible because considering an STM as a graph

allows it to be queried, manipulated and visualized in flexible ways using multiple software tools.

The Cymod package supports a workflow for STMs considered as graphs, enabling modellers to

do the conceptual work in advance (as usual) and then facilitating a rendering of the model as a

graph structure that can readily be consumed by other tools such as the Neo4j system for further

visualisation and analysis.

Comparison to other graph-based modelling approaches

In the preceding sections I described how Cymod helps users to visualise STMs and to integ-

rate them into simulation models to produce STSMs. STMs are just one example of how graph
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data structures have been used in ecological modelling. Here, I review three other modelling

approaches that use graph data structures (Bayesian belief networks, decision trees, and causal

loop diagrams) and contrast their use cases with STMs that can be developed with the assistance

of Cymod.

Bayesian belief networks (BBNs) are directed acyclic graphs (DAGs) that encode the probabilistic

causal relationships between a set of variables. Nodes in the graph represent variables, and an

edge between a pair of nodes indicates that the target node’s variable is statistically dependent

on the source node’s variable. Each node is associated with a conditional probability distribution

that describes the likelihood of observing each of the possible values of the node’s variable con-

ditioned on all of the variables it is statistically dependent on. BBNs can be thought of as having

two conceptual components (Aguilera et al., 2011): a qualitative component that is the overall

graph structure, and a quantitative component that is the probability distribution associated with

each node. Once a BBN has been designed, it can be used to predict the value of a ‘goal variable‘

in a way that takes into account all available information about each of the other variables in the

BBN that the goal variable is statistically dependent on (Aguilera et al., 2011).

BBNs have been used in ecological modelling to represent complex systems in which the effects

of variables on other variables in the system are uncertain and acknowledged as such by relevant

informed stakeholders. Under these circumstances, BBNs can be used as part of a participatory

modelling approach in which both the qualitative structure of the BBN (i.e. which variables

are statistically dependent on other variables) and the quantitative relationships between the

variables are subject to discussion among various stakeholders. For example, Salliou et al., 2017

developed a BBN to represent the causal relationships between use of pesticides, prevalence of

aphids, and crop yields.

In an STM, each of the nodes represents a possible state of a vegetation community in a partic-

ular location, and edges represent the set of environmental circumstances under which a state

transition will occur with certainty between the two nodes connected by the edge. Transitions

between states is deterministic with respect to the specific combination of environmental condi-

tions associated with the edge. Stochastic variation in an STSM that is integrated with the STM

arises from the particular simulated processes represented in the STSM that lead to changes

in the cell’s environmental conditions. This is distinct from a possible alternative modelling ap-

proach involving a BBN in which vegetation communities probabilistically transition between
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land-cover states according to conditional distributions over the environmental conditions in the

area occupied by the vegetation community. In that scenario, the land-cover state of the vegeta-

tion community would be a single variable in the BBN that is statistically dependent on variables

representing all the environmental conditions represented in the model.

Decision trees are predicative models that can be used to predict the value of one or more target

variables given a set of input variable values (attributes). They are a type of supervised machine

learning technique and can be used for both classification and regression problems. As in other

supervised machine learning approaches, decision trees are trained by providing an algorithm

with a dataset that includes both attributes and their corresponding target variables as input. The

output of the training algorithm is a tree-like graph in which each non-leaf node is a ‘decision‘,

and each leaf node is a possible predicted value of the target variable (or set of values if multiple

target variables are sought). A decision is a function that takes the value of a particular data

attribute as input and returns another node in the graph as output. When using a trained decision

tree for prediction given new data, the prediction algorithm starts by inspecting the root node

and comparing the data attribute associated with its decision to the corresponding attribute in

the input data to determine the next decision in the sequence determined by the graph. This

process is repeated until a leaf-node that is associated with a predicted target value is reached

(Debeljak & Džeroski, 2011).

The structure of the graph produced by the decision tree algorithm, including which decision is

applied at each node, is ‘learned‘ automatically by the algorithm during the training step. This

makes decision trees useful in scenarios where modellers don’t have prior expert knowledge

about how attributes influence the values of target variables, and they wish to infer this informa-

tion from training data. Additionally, the structure of generated decision trees can be inspected

by modellers and decision makers, enabling them to ‘sense check‘ the decisions that are used

during the prediction process. Because of this, decision trees are understandable in a way that

other supervised machine learning approaches (e.g. neural networks) are not (Kotsiantis, 2013).

Decision trees have been used in ecology to model, for example, population dynamics (Debeljak

& Džeroski, 2011).

Decision trees provide a way to infer the relationships between input attributes and target vari-

ables in an automated data-driven way that makes use of a graph-based data structure. Their

primary purpose is to predict the value of target variables given new data attributes. This is
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fundamentally different to the objective of an STM, that is, to encode existing expert knowledge

about state transitions among vegetation communities in a form that is structured and easy to

visualise.

Causal loop diagrams (CLDs) are analytical tools from the field of systems dynamics (Lin et al.,

2020). In the context of systems dynamics, a system is a collection of components that inter-

act with each other to produce feedbacks. A useful systems dynamics model should include all

the components that are required to produce the dynamic behaviour of interest. That is, such

models should be self-contained and not rely on any external drivers to produce their dynamics

(Richardson, 2011). One example of such a system is a Lotka–Volterra predator-prey model in

which the components are the populations of predator and prey species (Wangersky, 1978). A

CLD of this system would take the form of a graph with two nodes–the number of predators and

the number of prey–and two directed edges connecting the number of predators to the number of

prey and vice versa. The edge flowing from prey to predator would be associated with a ‘positive

polarity‘ because increasing prey numbers causes increasing predator numbers. Conversely, the

edge flowing from predator to prey would have a ‘negative polarity‘ because increasing pred-

ator numbers decreases prey numbers (Lin et al., 2020). Constructing a CLD of this system

helps to visualise the balancing feedback loop that exists between predator and prey numbers

in the model. CLDs can be used to configure simulations of the modelled systems directly using

commercial software tools such as AnyLogic® or Vensim®, for example.

In a CLD, a graph structure is used to describe how the values of all the components in a system

change over time. Conversely, an STM specifies how a vegetation community could transition

between each of its possible states at any given point in time. In an STM there is only one

‘variable’ under consideration–the state of the vegetation community in a particular location. An

STM can, however, be combined with a simulation model to influence system-level dynamics.

7.3 Challenges arising during model implementation

Here I summarise some key challenges that arose during the implementation of AgroSuccess.

These relate to the inherent difficulty in reusing concepts and source code from complicated

models that have not been developed with the kind of modelling standards described in Sec-

tion 7.1.
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7.3.1 Integrating features of the MedLand model

The availability of the description of the MedLand model in Ullah, 2013 was of great import-

ance during the development of this thesis. However, as noted in Section 4.3.2, to develop a full

understanding of the model it was necessary to trace its history through nine separate publica-

tions. This highlights a major advantage of centralising model documentation in the way that is

advocated by the OMF (The Open Modeling Foundation, 2023).

Unfortunately, I was not able to run the MedLand model or obtain up-to-date source code for it,

despite contacting the original authors. There is a listing for the MedLand model on CoMSES

Catalogue (CoMSES Net, 2020), a cross-disciplinary catalogue of agent-based and individual-

based models that is maintained by the CoMSES Network. However, it was not possible to

reconcile the version of the source code in the CoMSES Catalogue with the model description

in Ullah, 2013. This is an example of how immutable software repositories like Zenodo that

provide specific references for specific software versions are valuable. The inability to run or

access the source code for MedLand led to serious inefficiencies in my work, because it was

necessary to reimplement all model concepts myself. I intend for my efforts towards assuring

the interoperability of AgroSuccess (see Section 7.1.2) to avoid a similar situation arising with

respect to AgroSuccess in the future.

7.3.2 Interpreting the Millington LFSM

While implementing the environmental submodel in AgroSuccess, I noted a number of aspects

of the description of the Millington LFSM that required clarification from the original author or

correction. First, the specification of the soil moisture model in J. D. A. Millington et al., 2009

does not make explicit the spatial dependency between grid cells (how water flows from one cell

to another). E.g. in Eq. (4) in J. D. A. Millington et al., 2009 the runoff is expressed in terms

of the precipitation entering the cell, not the total water entering the cell. Clarification of this

issue required a review of the original (unpublished) model source code in collaboration with the

original author. I also found there was an inconsistency in the derivation of Eq. (5) in J. D. A.

Millington et al., 2009 from the relevant equations in United States Department of Agriculture,

2004. This is corrected in Eq. (4.11) in this thesis. Second, in the description of the Millington

LFSM in J. D. A. Millington et al., 2009, the ecological succession rules are specified as a table in
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the supplementary materials for the published paper. I found that the numerical codes used to

identify land cover types in the paper did not match the codes for their intended land cover types

in the supplementary materials. Third, the description of the way in which juvenile individuals

of forest land cover types (seeds) persist over time in grid cells could not be inferred from the

model description in J. D. A. Millington et al., 2009, requiring detailed discussion with the original

author.

These issues highlight how difficult it is to accurately and unambiguously describe complicated

models. The first and third points highlight the importance of making model source code avail-

able for readers to review. Model rules specified in a formal programming language will always

be less ambiguous than the corresponding verbal description in the model documentation. Addi-

tionally, the second point illustrates the advantage of finding ways to describe and visualise com-

plicated models in a form that is easy for humans to understand. It would have been impossible

to diagnose the issue of mismatched land cover type codes between the paper and supplement-

ary materials by scrutinising the tabular representation of the ecological succession rules alone.

However, when I loaded these rules into a graph database using Cymod (see Section 7.2) the

issue became immediately apparent.
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Chapter 8

Conclusions

Here, I review the contributions made in this thesis in relation to the aims specified in Chapter 1.

I highlight the major challenges faced during the production of this work, and indicate the most

fruitful directions for future work. Finally, I reflect on how my work can be generalised and

applied to other problems in landscape ecology, as well as in other scientific fields where com-

plicated simulation models are used.

8.1 Key outcomes

In Chapter 4 I described the AgroSuccess agent-based simulation model. This spatially expli-

cit model represents ecological succession, wildfire and anthropogenic land-use change affected

by Neolithic subsistence agriculturalists. It can be used to represent specific geographical re-

gions in the Mediterranean by providing it with morphological, ecological, and climatic data that

characterise those regions. AgroSuccess can be used as a computational laboratory to study

the emergent ecological dynamics that arise though the interaction of anthropogenic and nat-

ural disturbance processes over centennial timescales. This makes it a valuable tool to develop

our understanding of terrestrial ecosystem change. The development of AgroSuccess addresses

Aim 1 identified in Chapter 1. Furthermore, I have published the AgroSuccess simulation model

implementation’s source code in an immutable software repository (Lane, 2023) to ensure it is

available for other scientists to use and build on. This contributes to Aim 2.

AgroSuccess combines features of two models that have been reported previously in the literat-
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ure: the Millington LFSM (J. D. A. Millington et al., 2009) and MedLand (Ullah, 2013). These

are both complicated models in the sense that they are comprised of many interacting submod-

els (Sun et al., 2016). During model development I identified shortcomings in the description of

both of these models that needed to be resolved before we understood the relevant submodels

sufficiently well to integrate them into our own work (see Section 7.3). Additionally, I was unable

to reconcile the detailed description of the MedLand model to the model code that we were able

to obtain. These difficulties point to serious threats to reproducibility in scientific fields that de-

pend on complicated models. I argued in Chapter 7 that modellers should observe some software

development best practices–especially software documentation and automated testing–to ensure

that others can understand their model code and confirm the code is behaving as expected. This

will increase confidence in models and promote code reuse. I have invested significant time and

effort to follow these recommendations in our implementation of AgroSuccess, helping to ensure

it satisfies Aim 2.

In addition to documenting and testing the AgroSuccess simulation model code, I also developed

the Cymod package to help other modellers visualise the state-and-transition (STM) model that

underpins the ecological succession submodel in AgroSuccess. Cymod is described in Section 7.2

and is publicly available to download (Lane, 2020). I published the scripts we used alongside

Cymod to adapt the STM used in the Millington LFSM for AgroSuccess as the agrosuccess-graph

package (Lane, 2021c).

As noted above, AgroSuccess requires various input data to configure it to represent a particular

geographical region. The work I did to obtain this data for the six study sites considered in

this thesis is reported in Chapter 3. To make the steps I took to obtain and process this data

explicit and reproducible I have published the software tools I developed and used for the task

as software repositories on Zenodo (Lane, 2019, 2021b, 2021e). This addresses Aim 3.

In Chapter 5 I described how I calibrated the wildfire submodel to tailor AgroSuccess for each

study site. I used the calibrated AgroSuccess model in Chapter 6 to examine its sensitivity to

input parameters. I also ran AgroSuccess for counterfactual scenarios of human activity, ad-

dressing Aim 4. The outputs from these simulations demonstrate that AgroSuccess is ready for

use and capable of generating land-cover abundance time series for simulated scenarios that

include or exclude Neolithic subsistence agriculturalists.
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8.2 Challenges

Calibrating complicated ABMs is inherently challenging. Complicated models typically have a

large number of parameters, and ABMs typically take at least 10s of minutes to run. Con-

sequently, exploration of parameter space is expensive. Furthermore, in the case of AgroSuccess,

the only empirical data available to calibrate against is pollen abundance–a proxy for land-cover

proportion. The development of additional empirical data sets to calibrate against would be ex-

tremely valuable to the development of complicated models of land-cover change in fire-prone

ecosystems. This provides support for ongoing work to develop new high frequency sedimentary

charcoal data sets (see Section 5.1).

While AgroSuccess draws extensively from the Millington LFSM J. D. A. Millington et al., 2009

and MedLand Ullah, 2013 models, I decided to implement it as a new model using only the written

descriptions of the earlier models as an exercise in scientific reproducibility. It transpired that

this was informative, as it allowed me to identify shortcomings in the description of the earlier

models that we were able to rectify in AgroSuccess. Consequently, AgroSuccess doesn’t share

any code with either the Millington LFSM or MedLand. Designing code that is easy for others

to read, documented, and well testing takes time. In a 3-year funded PhD it is ambitious to

both implement a model from scratch and apply it to an empirical problem, while maintaining

sufficient programming standards to provide assurance that the model behaves as expected.

8.3 Outlook for future work

8.3.1 Improved approach to landscape reconstruction

In the analysis presented in this thesis, the time evolution of the proportion of the landscape

occupied by different types of land cover at the included study sites was estimated using raw

pollen abundance time series from the European Pollen Database (EPD) (Fyfe et al., 2009). As

noted in Section 8.3.1 this is likely to introduce biases because pollen productivity varies by

species (the Fagerlind effect), so the proportion of pollen from species contributing to a land

cover type in a sample does not map directly to the proportion of the landscape occupied by that

land cover type at the time corresponding to the sample. These biases could be addressed in

future work by applying the Landscape Reconstruction Algorithm (LRA) (Sugita, 2007) or the
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more recent MARCO POLO tool that was developed with the aim of being simpler to use than

the LRA (Mrotzek et al., 2017) to the pollen abundance time series for the considered study

sites. The LRA and MARCO POLO attempt to correct for biases introduced by variation in pollen

abundance by using pollen data from a single large lake (or alternatively, in the case of the LRA,

multiple smaller lakes) in the same region as the study site to construct a picture of vegetation

composition (i.e. proportion of area occupied by specific genera) in a regional area of 104 km2–

105 km2. By comparing pollen data from a study site of interest to the regional background,

the LRA and MARCO POLO aim to discern local changes to vegetation composition in areas up

to 100km2 (Sugita, 2007). The LRA has been applied and deemed to perform well in studies in

Michigan and Wisonsin (Sugita et al., 2010), Norway (Hjelle et al., 2015), and the Czech Republic

(Abraham et al., 2017), and MARCO POLO is claimed to perform similarly to the LRA (Mrotzek

et al., 2017).

8.3.2 Further analysis of fire frequency-size statistics

In Section 5.1.4 I attempted to calibrate simulated wildfire regimes to empirical observations

using a methodology that assumed the burned area of simulated fires had a frequency-size dis-

tribution that is well modelled by a power-law. However, I found that fire sizes in the scenarios I

considered did not follow a power-law distribution. It would be informative to spend more time

investigating the reason that I did not observe power-law distributed wildfire burned areas in

AgroSuccess. For example, the model might be improved by revisiting and revising the phe-

nomenologically motivated parameter values that originated in the Millington LFSM (J. D. A.

Millington et al., 2009). In particular, I might treat parameters that were previously held fixed

during calibration as calibration parameters to see if this increases the incidence of large fires.

The under-representation of large fires seen during my calibration procedure indicates there is

not enough flammability in the AgroSuccess model to produce expected fire statistics. Any para-

meter that affects flammability indirectly could influence the ratio of large fires to small ones

and, therefore, the value of the power-law exponent parameter, β. Second, future work should

investigate whether the reason we didn’t see power-law distributed fire sizes in the simulation

outputs was due to ‘edge effects’ arising from the finite area of the simulation grid. This could

be done by running AgroSuccess simulations with larger simulation grids.
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8.3.3 Improved sensitivity analysis

During the production of the sensitivity analysis described in Section 6.1, I was limited in the

number of simulations I could run per parameter value by computational resource constraints.

Consequently, my results are based on a set of simulations with 10 runs per parameter value.

Future work should include rerunning this analysis with a number of simulations per parameter

value that is determined by a principled statistical analysis of the simulation outputs, rather than

resource constraints. This analysis should take particular care to ensure that burned area is

sufficiently constrained.

Sensitivity analysis should be improved in future work by using a more formal test of statistical

significance compared to that presented in Section 6.1. For example, I could use a two-sample

trimmed t-test (Yuen, 1974). The confidence level of 66% used to identify scenarios that had had a

statistically significant effect on output variables is non-standard and relatively low. Future work

to improve sensitivity analysis should use a 95% confidence level when determining statistically

significant effects, which is in line with confidence levels often used in the literature (Cumming

& Finch, 2005).

The approach to sensitivity analysis presented in Section 6.1 is an example of ‘local‘ or ‘one-

factor-at-a-time’ sensitivity analysis (Bar Massada & Carmel, 2008; Thiele et al., 2014). Under

this approach, a set of simulations are run over a range of values for each parameter while

holding the values of all other parameters constant. Local sensitivity analysis enables modellers

to identify parameters that a model is highly sensitive to relative to other parameters. The

sampling method used in local sensitivity analysis as applied to AgroSuccess in Section 6.1 was

to explore the model’s sensitivity to all parameters subject to changes of ±10% relative to their

default values. This is a simple approach that enabled me to identify parameters that individually

have a large net effect on the simulation outputs, while requiring relatively modest computational

expense. Local sensitivity analysis acts as a way of verifying that the model is behaving as

expected (e.g. increasing the number of households increases the farmed area in the landscape

as expected) and highlights parameters that should be prioritised when attempting to reduce

uncertainty in their values. It also allowed me to identify parameters that the model was not

sensitive to, which could help guide model simplification (Bar Massada & Carmel, 2008).

A more robust approach to sensitivity analysis that should be considered in future work is to
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use a ‘global’ sensitivity analysis in which groups of parameters are varied simultaneously, en-

abling the identification of the effects of interactions between parameters on simulation outputs

(Thiele et al., 2014). For example, it would be informative to quantify the strength of interaction

between the ‘Climax forest biomass density’ and ‘Number of households per village’ parameters

in AgroSuccess. This is because a given utilisation of area for firewood gathering in a landscape

could be explained by either a large number of households sourcing firewood from high density

woodland, or a small number of households collecting firewood from low density woodland. It

is therefore plausible that there would be an interaction between these two parameters. The

number of parameters in AgroSuccess (17) combined with its non-trivial run time (approximately

5 minutes to simulate enough time steps to reach an equilibrium state) means that global sensit-

ivity analysis would be computationally expensive. This could be mitigated by using a screening

method, such as Morris’s elementary effects screening (Morris, 1991; Thiele et al., 2014), to sys-

tematically identify parameters that the model is sensitive to, and progress only those parameters

to the detailed global sensitivity analysis.

8.3.4 Correspondence between empirical data and simulation outputs

In Section 6.2.1 I found that AgroSuccess tends to produce an initial transient period in which

the land cover proportions diverge from the boundary conditions followed by a stable equilibrium

state that does not match those of the target empirical data. This undermines its ability to

reproduce ecological dynamics because it shows that there is a mismatch between the model

dynamics and the target empirical land cover proportions. This should be addressed in future

work by diagnosing the aspects of the model dynamics that are causing the model outputs to

diverge from the target empirical patterns. Specifically, I should investigate whether the model’s

divergence from target land cover proportions is due to one or more of the following sources of

residual uncertainty.

Soil type

AgroSuccess is able to model the effect of spatially heterogeneous soil type on surface runoff

and soil moisture. However, in the version of AgroSuccess presented in this thesis, the model’s

sensitivity to this data input is not explored, since all models are assumed to have a uniform

categorical soil type (see Section 3.3). Future work should include the development of soil type
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maps that are compatible with AgroSuccess for the study sites used in this thesis. AgroSuccess

accepts categorical soil type maps in which all simulation cells have type A, B, C, or D, where

type A produces the least runoff and type D the most (Ferrér et al., 1995; J. D. A. Millington et al.,

2009). Soil type maps of this form could be produced by analysing soil maps provided by the

European Soil Data Centre (ESDAC), for example.

Temperature and precipitation

As noted in Section 6.3, AgroSuccess’s sensitivity to wind speed and direction, temperature, and

precipitation input data is a source of residual uncertainty and would benefit from further in-

vestigation. In the analysis described in this thesis, annual mean temperature and precipitation

were estimated from outputs of the BCC-CSM1-1 GCM model only (see Section 3.3.4). Future

work could include a systematic analysis of the variance of mean annual temperature and precip-

itation in the set of 25 GCMs that McSweeney et al., 2015 determined to provide ‘Satisfactory’

performance with respect to estimates of temperature and precipitation in Europe. This would

provide a confidence interval around which to explore AgroSuccess’s sensitivity to GCM-derived

temperature and precipitation inputs.

Seed availability

In the current version of AgroSuccess, seeds corresponding to the forest land cover types are

‘imported’ into the simulation grid at a fixed rate that is common to all seed types for the dura-

tion of each simulation (see Section 4.2.4). Consequently, AgroSuccess is not able to represent

temporal variation in the quantity of seeds entering the simulated area from the wider reason.

This, in turn, may explain why we see lack of correspondence with empirical data in the simula-

tion outputs. Future work should explore the effect of introducing more fine-grained control over

the rate at which seeds of different type are ‘imported’ into the simulated area from the wider

region. This could be done by making the ‘background rate’ parameter, b, time dependent and

including separate rates for each seed type.
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8.3.5 Generate model outputs for additional scenarios

AgroSuccess could be further analysed by running simulations of additional anthropogenic land-

use change scenarios. The pollen abundance data that I have obtained for each study site and

described in Chapter 3 may contain evidence of the earliest date of human agriculture at each

site. A natural use-case for AgroSuccess would be to investigate whether simulations that include

subsistence agriculturalists in the landscape (beginning at a certain date) produce land-cover

proportion time series that are more similar to the empirical pollen abundance data than simula-

tions that do not include subsistence agriculturalists. Each alternative date for the beginning of

agriculture would constitute a possible scenario.

I noted in Section 6.3 that to produce realistic ecological dynamics, AgroSuccess would need

to be provided with accurate estimates of the size of human populations in the model. These

estimates could be obtained using AgroSuccess itself by covarying parameters controlling both

the number of households in the simulation and various ecological factors. In this way, future

users of AgroSuccess could treat human populations as a ‘driver’ of ecological change, and search

for the size of human population that causes the land cover proportions in the model outputs to

best approximate empirical data.

8.4 Generalising the work in this thesis

A principle that has emerged during the development of this thesis is that inadequate docu-

mentation and transparency around the software used to implement scientific models creates

challenges for reproducibility. If we, as the scientific community, don’t review and evaluate code

quality, and if high quality code isn’t rewarded, then there is no incentive for scientists to produce

high quality code. This issue is especially important in fields that involve the use of complicated

models, such as in landscape ecology.

The software that implements AgroSuccess is designed to be modular and extensible. I have

provided extensive in-code documentation and a suite of unit tests that both verify the correct-

ness of the code’s implementation, and illustrate how the included software components can be

used. These contributions enable other modellers to implement alternative anthropogenic land-

cover change behaviours to address specific research problems. Doing so they could investigate
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scenarios involving anthropogenic land-cover change other than those involving Neolithic sub-

sistence agriculture. Additionally, the software tools I developed and used to obtain empirical

data to configure AgroSuccess for study sites in the Iberian Peninsula could be used by other

researchers to obtain equivalent data for other study sites.
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Regular expressions for plant

functional types table
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Functional type Description Regular expression

Grassland Grasses .*Poaceae|.*Gramineae|.*Cerealia

Shrubland Box plant (shrubby tree) .*Buxus

Bracken/ ferns .*Pteridium|.*Polypodium|.*Filicales

Celery and marthwort genus .*Apium

Celery, carrot, parsley family .*Umbelliferae

Cypress family .*Cupressaceae

Doc/ sorrel genus .*Rumex

Family of shrubby plants .*Asteroideae

Flowering plants found in wet regions .*Sparganium|.*Typha angustifolia

Flowering plants in lettuce/ dendelion family .*Cichorioideae

Flowering, perennial shrubs .*Cistus

Genus of flowering plants in the cashew family .*Pistacia

Genus of flowering plants in the family Fabaceae. Thorny, evergreen shrubs. .*Ulex

Genus of flowering plants including buttercup .*Ranunculus

Genus of gymnosperm shrubs .*Ephedra

Goosefoot family .*Chenopodiaceae

Heather family .*Calluna vulgaris|.*Erica(ceae|-type|\s)

Juniper .*Juniperus

Continued on next page

2
0
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Functional type Description Regular expression

Mugwort genus .*Artemisia

Olive genus .*Olea

Plantain/ fleawort genus .*Plantago

Quillwort .*Isoetes

Sedge family (superficially resemble grasses) .*Cyperaceae

Pine forest Pine genus \s?Pinus\s?

Deciduous forest Alder genus .*Alnus

Beech family .*Fagaceae

Beech genus .*Fagus

Birch genus .*Betula

Chestnut genus .*Castanea

Hazel genus .*Corylus

Hornbeam genus .*Carpinus

Willow genus .*Salix

Oak forest Oak genus \s?Quercus\s?

Table A.1: Regular expressions (’regexs’) used to map the names of plant species to plant functional types as described in Section 3.2.2.
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Appendix B

Model description table
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Structural

elements

Sub-elements Question

No.

Guiding questions Response

Overview Purpose 1.1.1 What is the purpose

of the study?

1. Test hypotheses which attempt to

explain changes to vegetation cover

during the first millenia of agricul-

ture in Iberia in terms of human ag-

ricultural activities, ecological suc-

cession, natural disturbance, and

climate.

2. Identify qualitatively distinct

landscape states, defined in terms

of both social and ecological vari-

ables, and which are emergent

properties of the model.

1.1.2 For whom is the

model designed?

Scientists interested in one or more

of paleoecology, landscape eco-

logy, complex adaptive systems, and

nonequilibrium systems.
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Entities, state

variables, and

scales

1.2.1 What kinds of entit-

ies are in the model?

Anthropogenic: Each agent con-

sists of a troop of humans of vari-

able size (enivsaged as an exten-

ded family group) all of whom have

opted to specialise in a particu-

lar Resource Management Strategy

(RMS). Each RMS is chosen to rep-

resent a lifestyle available to hu-

mans during the first millenia of ag-

riculture:

- Hunter-gatherer

- Pastoralist

- Agriculturalist

Ecological: Grid cell characterised

by a particular land cover type (e.g.

Oak forest, Pine forest, grassland).
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1.2.2 By what attributes

(i.e. state variables

and parameters) are

these entities char-

acterized?

Agents:

- ID number, i

- Position of home cell, (i, j)

- Resource Management Strategy,

RMSi

- Reproductive rate, ri

- Size of group, Ni

- Land occupancy (list of grid cells),

Oi

- Resource Requirement Quota,

RRQi = RRQi(Ni)

- Generational score for resource

management strategy, Si.

Grid cells:

- Position in space, (i, j)

- ID of controlling agent, Aij

- RMS of controlling agent, ARMS
ij

- Land-cover class, Lc
ij

- Land-cover flammability, Lf
ij =

Lf
ij(L

c
ij)

1.2.3 What are the exo-

genous factors

/ drivers of the

model?

Climatic variables (temperature

and precipitation), and the time

of arrival of first agent which is

not a hunter-gatherer (i.e. either a

pastoralist or an agriculturalist).

1.2.4 If applicable, how

is space included in

the model?

Space is included explicitly in the

model, and is linked via georefer-

ence to a Digital Elevation Model

(DEM) and spatially and temporally

varying climatic data.
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1.2.5 What are the tem-

poral and spatial

resolutions and ex-

tents of the model?

One timestep represents a 40 year

human generation, and simulations

are run for 5000 simulated years

(125 timesteps). Grid cells repres-

ent 30 m2 (0.003 ha) and the mod-

elled landscape comprises 30 km2

(3000 ha), giving a total of 106 grid

cells.
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Process over-

view and

scheduling

1.3.1 What entity does

what, and in what

order?

Each timestep of the anthropogenic

land cover change model consists

of the following steps which are

repeated until simulation timesteps

are completed.

Evolve vegetation in model

cells

- 40 years of succession and fire

regime

- Calculate annual food yields for

each cell

Evaluate agent performance

in preceeding generation

- Analyse annual food yields

- Wealthier neighbours share re-

sources to help others

- Assign generation scores to agents

Update agents in model

- Agents leave model grid if score <

threshold

- Remaining agents decide whether

or not to update their RMS by com-

paring their score with neighbours

- New agents arrive in the model

grid, claiming a patch of contiguous

land large enough to support them

given their initial RMS

Update model grid

- Change cell land-cover classes

according to occupying agents’

RMSs
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Design con-

cepts

Theoretical and

Empirical Back-

ground

2.1.1 Which general con-

cepts, theories or

hypotheses are un-

derlying the model’s

design at the sys-

tem level or at the

level(s) of the sub-

model(s) (apart from

the decision model)?

What is the link

to complexity and

the purpose of the

model?

Anthropogenic: Sedentism and

transition to agriculture allowed

for increase in family size result-

ing in overall population growth

Bellwood, 2004; Moran, 2006.

Pre-historic humans engaged in

strategic food sharing to mitigate

risk of food source failure Moran,

2006.

Succession submodel: Ecolo-

gical succession (Redman, 1999)

and disturbance (Pickett & White,

1985; Turner & Gardner, 2015;

Turner et al., 1993), especially the

work of Barbero et al., 1990 on the

role of Mediterranean species’ life

history traits and environmental

conditions in determining succes-

sion pathways realised at a location.

Another key concept is that of a

plant functional type as a way

to group together species which

respond similarly to environmental

conditions, including disturbance

regimes (M. Zavala et al., 2000).

Fire submodel: Fire spread is

assumed to be adequately modelled

by mechanistic cellular automata

based approaches, such as that

discussed in J. D. A. Millington

et al., 2009.
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2.1.2 On what assump-

tions is/are the

agents’ decision

model(s) based?

The overarching assumption gov-

erning agent decision-making is

that upon observing that, over

the previous generation, neighbour-

ing agents had significantly more

to eat than you did, you would

likely choose to change your own

resource management strategy to

that which turned out to be most

successful amongst your neigh-

bours.

2.1.3 Why is a/are certain

decision model(s)

chosen?

Because of the nature of archae-

ological research – namely its fo-

cus on the retrieval and study of

material artefacts – it has proved

extremely difficult to obtain data

or references to theories describ-

ing something as intangible as Neo-

lithic /culture/. The chosen model

of decision making around land

use change is presented as a gen-

eral and intuitively appealing the-

ory about how land use decisions

were made among early agricultur-

alists. I will use the model as part of

my wider Pattern Orientated Model-

ling strategy to evaluate the accur-

acy of this decision model, and pro-

pose possible improvements.
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2.1.4 If the model / a sub-

model (e.g. the

decision model) is

based on empirical

data, where does

the data come from?

The succession submodel uses cli-

mate data derived generated by

General Circulation Models running

climate simulations for the Holo-

cene (Hijmans et al., 2005). The

fire spread submodel will use a Di-

gital Elevation Model (DEM) based

on Shuttle Radar Topography Mis-

sion (STRM) data at 1 arc-sec resol-

ution.

2.1.5 At which level of ag-

gregation were the

data available?

Climate data is available at 900 m

resolution. DEM data is available

at 30 m resolution (the same resol-

ution as model grid cells).

Individual De-

cision Making

2.2.1 What are the sub-

jects and objects of

decision-making?

On which level

of aggregation is

decision-making

modeled? Are

multiple levels of

decision making

included?

The human agents are the subjects

of decision making, with the choice

of land use being the object.

2.2.2 What is the ba-

sic rationality

behind agents’

decision-making

in the model? Do

agents pursue an

explicit objective or

have other success

criteria?

The agents attempt to optimize

their food availability with respect

to the amount of effort required to

obtain it, and are assumed to be-

have rationally in the situation of

observing that other strategies have

worked better than their own.
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2.2.3 How do agents

make their de-

cisions?

Decision tree.

2.2.4 Do the agents ad-

apt their behavior to

changing endogen-

ous and exogenous

state variables? And

if yes, how?

Yes. Changing climatic condi-

tions during the course of model

runs will cause different succes-

sion pathways to become preval-

ent at different times, resulting in

changes in the productivity of dif-

ferent cells for agents with different

Resporce Management Strategies.

Additionally, the presence of fire in

the landscape means areas in the

model grid can change very quickly.

Agents adapt to these endogenous

environmental changes by choosing

an RMS which worked successfully

for their neighbours in the previous

generation.

2.2.6 Do spatial aspects

play a role in the de-

cision process?

Space plays a role in the decision

process only insofar as agents make

decisions based on the performance

of their nearest Nn neighbours.

2.2.7 Do temporal aspects

play a role in the de-

cision process?

There is no spatial aspect to the de-

cision process.

2.2.8 To which extent

and how is uncer-

tainty included in

the agents’ decision

rules?

Not at all, decision making is de-

terministic.
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Individual Sens-

ing

2.4.1 What endogenous

and exogenous state

variables are indi-

viduals assumed to

sense and consider

in their decisions?

Is the sensing pro-

cess erroneous?

Agents are able to sense whether

or not a grid cell is occupied by

any other agent, which facilitates

agents settling on an unoccupied

home cell. This sensing process is

not erroneous.

2.4.2 What state variables

of which other indi-

viduals can an indi-

vidual perceive? Is

the sensing process

erroneous?

Agents can perceive resource man-

agement strategy, RMSj and score

Sj of neighbouring Nn agents. This

sensing process is not erroneous.

2.4.3 What is the spatial

scale of sensing?

Knowledge of grid cell occupation is

global, but each agent’s knowledge

of neighbours’ Resource Manage-

ment Strategies and generational

score is limited to their Nn nearest

neighbours.

2.4.4 Are the mechanisms

by which agents

obtain information

modeled explicitly,

or are individuals

simply assumed to

know these vari-

ables?

Agents are assumed to know state

variables relavent to their decision

making.
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Individual Pre-

diction

2.5.1 Which data uses the

agent to predict fu-

ture conditions?

Observation of which of their neigh-

bours had successful Resource

Management Strategies in the

previous generation. Agents use

this knowledge to infer that a sim-

ilar RMS will perform well in the

subsequent generation.

2.5.2 What internal mod-

els are agents

assumed to use

to estimate future

conditions or con-

sequences of their

decisions?

Because timesteps represent hu-

man generations, it is assumed that

agents base their decision of which

RMS to follow exclusively on the

performance of their own RMS in

the previous generation compared

to that of their neighbours.

Interaction 2.6.1 Are interactions

among agents and

entities assumed as

direct or indirect?

Agents interact both directly

through strategic food sharing,

and and indirectly through the

environment, via seed spread from

neighbouring patches managed by

different agents.

2.6.2 On what do the in-

teractions depend?

Neighbourhood (agents detect the

wealth of their Nn neighbours).
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Heterogeneity 2.8.1 Are the agents

heterogeneous? If

yes, which state

variables and/or

processes differ

between the agents?

Yes, the main difference being

how agents with different resource

management strategies (hunter

gatherer, pasturalist and agricul-

turalist) make systematic changes

to the land under their control.

Whereas pasturalists and agricul-

turalists will use fire and practice

cultivation to modify land cover,

HG are assumed to obtain their

sustenance without directly chan-

ging the vegetative composition of

the landscape (albeit making use of

much more land).

2.8.2 Are the agents het-

erogeneous in their

decision-making?

If yes, which de-

cision models or

decision objects

differ between the

agents?

No, the decision rules for trans-

itioning between different resource

management strategies is common

to all agents.

Stochasticity 2.9.1 What processes

(including initializa-

tion) are modeled by

assuming they are

random or partly

random?

- Number of new agents from out-

side the model grid in each genera-

tion, and their initial RMS.

- Number of fires occurring natur-

ally in each simulated year.

- Fire spread mechanism

- Seed dispersal
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Observation 2.10.1 What data are col-

lected from the ABM

for testing, under-

standing, and ana-

lyzing it, and how

and when are they

collected?

At the end of each simulated gener-

ation, the model will write to disk:

- Number of cells in each land-cover

class

- Spatial statistics, including auto-

correlations for each pair of land-

cover classes

- Sizes of each fire initialised in the

40 year period

For debugging and heuristic pur-

poses, the model will be able to

output raster grids specifying the

land-cover class of every model

cell at each generation time-step.

However, as this is likely to be

computationally expensive, this will

be implemented as an option which

will be deselected for most model

runs.

2.10.2 What key results,

outputs or char-

acteristics of the

model are emerging

from the individu-

als? (Emergence)

At the end of each simulated gener-

ation, the model will write to disk

the RMS and generation score of

each agent in the model.

Details Implementation

details

3.1.1 How has the model

been implemented?

The model will be implemented in

Java using the Repast framework.
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Initialization 3.2.1 What is the initial

state of the model

world, i.e. at time

t = 0 of a simulation

run?

The initial state of the model grid

will be determined by manually

creating an artificial landscape in

which the abundance of different

vegetation types is consistent with

that found in pollen assemblage

data 100 simulated years prior to

the postulated date of the arrival

of the first agriculturalist or pas-

toralist. I will then perform a 100

year ‘Spin-up’ period (McGuffie &

Henderson-Sellers, 2005) in which

the artificial landscape will be al-

lowed to evolve away from its ini-

tial conditions consistently with the

model’s succession submodel. At

this point, the model will be coun-

ted as being at t = 0, and N0 agents

will be introduced into the manner

in the same manner as described

under ‘Update agents in model’ in

response to question 1.3.1.

3.2.2 Is initialization al-

ways the same, or

is it allowed to vary

among simulations?

Initialisation procedure is always

the same, but a variety of artificial

landscapes will be used, and the dif-

ferences in results compared.

3.2.3 Are the initial values

chosen arbitrarily or

based on data?

Arbitrarily.

Table B.1: Model specification within the ODD+D protocol proposed by Müller et al., 2013
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Appendix C

Soil moisture curve numbers

The amount of water retained in grid cells following precipitation is determined by a curve num-
ber which depends on slope, soil type, and land-cover type. After Ferrér et al., 1995; J. D. A.
Millington et al., 2009; Symeonakis et al., 2004.

Table C.1: Curve numbers for various slopes, soil types, and land-cover types in AgroSuccess.

LCT
Soil Slope [%] Pine T. Forest Wheat DAL Deciduous Shrubland Oak Burnt
A < 3 35 35 62 62 35 46 35 91
B < 3 54 54 72 72 54 68 54 91
C < 3 69 69 78 78 69 78 69 91
D < 3 77 77 82 82 77 83 77 91
A ≥ 3 39 39 65 65 39 46 39 94
B ≥ 3 60 60 76 76 60 68 60 94
C ≥ 3 73 73 84 84 73 78 73 94
D ≥ 3 78 78 87 87 78 83 78 94
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Appendix D

Logical expressions

The land-cover state update rules expressed in Section 4.2.3 are provided as expressions using
formal logical notation. To assist readers who are not familiar with the notation used in the main
text, I here provide verbal interpretations of examples of the three forms of these expressions
used in the text, along with an explanation of the symbols used. See also e.g. van Benthem et al.,
2016 for further background on the logical formalism used here.

Eq. (4.2) is

∆D = ∆D(t) ∈ L ∪ {∅}

This specifies that the symbol for a simulation cell’s target state, ∆D, is implicitly a time depend-
ent variable since ∆D = ∆D(t). The value of ∆D is either one of the elements of the set L (one
of the land-cover types included in the model) or no land-cover type. This corresponds to the
fragment ∆D(t) ∈ L ∪ {∅}. Here ∈ says the value on the left hand side is one of the elements
specified by the set on the right hand side. ∪ is the union operator, such that L ∪ {∅} equals the
set L plus ’nothing’ (expressed here as ∅).

Eq. (4.6) is

Dt ↔ ∆D(t) = ∆D(t− 1)

which could be stated as “Dt is true if and only if a simulation cell’s target state in the current
time step, ∆D(t), is the same as it was in the previous time step, ∆D(t − 1)”. This allows us to
use the symbol Dt in subsequent expressions to assert that a cell’s target state hasn’t changed,
or its logical negation, ¬Dt, to assert that a cell’s target state has changed. The symbol ↔ is the
logical biconditional operator, and is used to assert that the expressions on its left and right are
logically equivalent.

Eq. (S1c) is

∀t ∈ N \ {0} (Ct ∧ ¬Dt → Tin(t) = 1)
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This can be read as, “For any time step (specified by a natural number that is not 0), if a simulation
cell’s start state is the same as it was in the previous time step, and the cell’s target state has
changed, then the simulation cell’s ‘time in state’ value is equal to 1”. The ‘universal quantifier’,
∀t, communicates that the rule applies to any value of t, and the set notation ∈ N \ {0} limits
the values of t considered to those that represent valid time steps in the simulation (1, 2, 3, . . .).
The logical predicate inside the parentheses then specifies the rule that applies to those values
of t. Ct and Dt are defined in the sentences Eq. (4.5) and Eq. (4.6) respectively. The conditional
operator, →, specifies that if the expression to its left is true, then the expression right hand is
also true.
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Appendix E

Differences between AgroSuccess and

MedLanD

Here I provide details of how the decision rules used by agriculturalist agents in AgroSuccess
differ from those in MedLanD.

E.1 Reformulation of equation for number of required wheat

patches

Ullah, 2013, p. 89, gives Eq. (E.1) as the number of wheat plots required per household in year t.

N
(w)
t =

P
(h)
t M (w) (1 + ps)

µ
(w)
t−1C

(E.1)

As N
(w)
t is a unitless quantity, the right-hand side of Eq. (E.1) should also be unitless. However,

dimensional analysis shows its units are in fact ha. This is consistent with the fact that we expect
the number of wheat plots required to be inversely proportional to the area of each grid cell.
Eq. (E.1) can be corrected by normalising with respect to the area of each grid cell expressed in
ha, Ar/10000 such that Eq. (E.1) becomes

N
(w)
t =

10000 · P (h)
t M (w) (1 + ps)

µ
(w)
t−1Ar C

(E.2)

Although logically consistent, Eq. (E.2) is not as clear as it could be because the mass of wheat
needed per person per year, M (w) is dependent on two other parameters: the total number of
calories required per person per day, Etot, and the energy yield per kilogram of wheat, E(w).
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Specifically

M (w) =
365 · Etot

E(w)
. (E.3)

To simplify reasoning about N
(w)
t , Eq. (4.18) expresses N

(w)
t in terms of these basic parameters

explicitly.

E.2 Exclusion of calculation of soil depth

Ullah, 2013, p. 95 use “the average of three regressions against precipitation, soil depth, and
soil fertility” (their Eq. 4.10) to calculate wheat returns with respect to annual precipitation, soil
depth, and soil fertility as follows:

r
(w)
i =

(0.51 ln(P ′) + 1.03) + (0.28 ln(SDi) + 0.87) + (0.19 ln(Fi) + 1)

3

here, annual precipitation, P ′, and soil depth in cell i, SDi, are in metres, and soil fertility in cell
i, Fi, is a proportion between 0 and 1.

Since I do not model soil depth in AgroSuccess, I drop the term representing the regression over
soil depth and take the average over the remaining regressions over annual precipitation and soil
fertility. This results in Eq. (4.27) as described in the main text.

E.3 Exclusion of pastoralism

Households in MedLanD farm barley which they use as fodder to feed to sheep and goats in
addition to wheat, which is farmed for direct human consumption. While it would be interesting
to add barley farming to support pastoralism to AgroSuccess, I was unable to obtain sufficient
detail to implement this mechanism from Ullah, 2013 for the following reason.

Ullah, 2013, p. 90 used Eq. (E.4) to calculate the number of patches required for grazing.

Ng =
Ph PocDMtot (1 + pb)−DMstub

µg
(E.4)

The symbol DMstub represents the contribution to herd diet from grazing on the stubble of har-
vested fields controlled by a household. However, I have not been able to find a description of
how DMstub is calculated in Ullah, 2013. This highlights the challenge of documenting models
as complicated as MedLand. Because it is expected that wild fodder will make up a significant
fraction of ovicaprid diets, it is not appropriate to simply assume DMstub = 0. Therefore, for the
version of AgroSuccess described in this thesis, I omit any pastoralism mechanism and assume
all household calories are derived from wheat agriculture only.
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Appendix F

Additional sensitivity analysis results
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Table F.1: Sensitivity analysis results for the Algendar study site. The ‘Value’ column specifies the default value for each parameter, and the ‘Value +10%’
and ‘Value -10%’ columns give the corresponding values for parameters used in the +10% and -10% scenarios. The remaining columns give the mean values
under the +10% and -10% scenarios for the Shrubland, Mature Forest, Farmed Area Wood Area, and Burned Area output variables averaged over 10 simulation
replicas, along with the corresponding percentage change relative to the default scenario in parentheses. Values in bold show statistically significant differences
with respect to the default scenario (see Section 6.1.2). Output variables indicated by * showed 0 variance in default scenario runs, so outputs that differ from
the default scenario values by ≤ −10% or ≥ +10% are shown as significant.

Value Value -10% Value +10% Shrubland, -10% Shrubland, +10% Mature Forest, -10% Mature Forest, +10% Farmed Area, -10%* Farmed Area, +10%* Wood Area, -10%* Wood Area, +10%* Burned Area, -10% Burned Area, +10%
Parameter

Number of households per village 10.00 9.000 11.000 0.057 (13%) 0.066 (31%) 0.930 (-1%) 0.918 (-2%) 6.704 (-10%) 8.194 (10%) 2.438 (-10%) 2.980 (10%) 0.005 (2%) 0.006 (19%)
Labour availability 300.00 270.000 330.000 0.056 (11%) 0.053 (6%) 0.930 (-1%) 0.932 (-0%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (14%) 0.005 (10%)
Wheat farming labour requirement 50.00 45.000 55.000 0.053 (4%) 0.054 (7%) 0.932 (-0%) 0.934 (-0%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (5%) 0.004 (-10%)
Maximum patch farm time 50.00 45.000 55.000 0.056 (10%) 0.061 (21%) 0.931 (-1%) 0.924 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (4%) 0.005 (6%)
Farmer conservativeness scalar 0.75 0.675 0.825 0.062 (23%) 0.055 (10%) 0.924 (-1%) 0.926 (-1%) 8.126 (9%) 6.772 (-9%) 2.709 (0%) 2.709 (0%) 0.005 (9%) 0.005 (16%)
Crop reseed proportion 0.15 0.135 0.165 0.062 (22%) 0.054 (7%) 0.922 (-2%) 0.930 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.006 (19%) 0.004 (-4%)
Farm value distance parameter 1.00 0.900 1.100 0.062 (22%) 0.061 (20%) 0.917 (-2%) 0.925 (-1%) 8.939 (20%) 7.449 (0%) 3.250 (20%) 2.709 (0%) 0.007 (54%) 0.005 (-0%)
Farm value fertility parameter 1.00 0.900 1.100 0.064 (26%) 0.055 (8%) 0.918 (-2%) 0.932 (-0%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.006 (23%) 0.004 (-6%)
Farm value land cover conversion parameter 1.00 0.900 1.100 0.052 (3%) 0.062 (22%) 0.932 (-0%) 0.924 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (-1%) 0.006 (19%)
Firewood required per capita per year 1100.00 990.000 1210.000 0.066 (31%) 0.051 (2%) 0.920 (-2%) 0.932 (-0%) 7.449 (0%) 7.449 (0%) 2.032 (-25%) 2.709 (0%) 0.005 (8%) 0.005 (1%)
Firewood biomass removal rate 0.10 0.090 0.110 0.063 (24%) 0.062 (23%) 0.921 (-2%) 0.923 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.032 (-25%) 0.005 (10%) 0.005 (10%)
Wood value distance parameter 1.00 0.900 1.100 0.054 (7%) 0.054 (6%) 0.933 (-0%) 0.929 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (-2%) 0.005 (9%)
Climax forest biomass density 300000.00 270000.000 330000.000 0.052 (2%) 0.052 (2%) 0.928 (-1%) 0.929 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.032 (-25%) 0.005 (3%) 0.004 (-5%)
Land cover colonisation base rate 0.05 0.045 0.055 0.060 (18%) 0.053 (5%) 0.925 (-1%) 0.933 (-0%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (7%) 0.004 (-4%)
Land cover colonisation spread rate 0.20 0.180 0.220 0.060 (19%) 0.056 (11%) 0.927 (-1%) 0.931 (-0%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (-2%) 0.004 (-4%)
Mesic threshold 500.00 450.000 550.000 0.050 (-0%) 0.061 (21%) 0.934 (-0%) 0.926 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.004 (-15%) 0.005 (-1%)
Hydric threshold 1000.00 900.000 1100.000 0.059 (18%) 0.059 (17%) 0.926 (-1%) 0.928 (-1%) 7.449 (0%) 7.449 (0%) 2.709 (0%) 2.709 (0%) 0.005 (-1%) 0.004 (-5%)
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Table F.2: Sensitivity analysis results for the Atxuri study site. The ‘Value’ column specifies the default value for each parameter, and the ‘Value +10%’ and ‘Value
-10%’ columns give the corresponding values for parameters used in the +10% and -10% scenarios. The remaining columns give the mean values under the
+10% and -10% scenarios for the Shrubland, Mature Forest, Farmed Area Wood Area, and Burned Area output variables averaged over 10 simulation replicas,
along with the corresponding percentage change relative to the default scenario in parentheses. Values in bold show statistically significant differences with
respect to the default scenario (see Section 6.1.2). Output variables indicated by * showed 0 variance in default scenario runs, so outputs that differ from the
default scenario values by ≤ −10% or ≥ +10% are shown as significant.

Value Value -10% Value +10% Shrubland, -10% Shrubland, +10% Mature Forest, -10% Mature Forest, +10% Farmed Area, -10%* Farmed Area, +10%* Wood Area, -10%* Wood Area, +10%* Burned Area, -10% Burned Area, +10%
Parameter

Number of households per village 10.00 9.000 11.000 0.207 (-1%) 0.209 (-0%) 0.691 (-1%) 0.695 (-1%) 5.305 (-10%) 6.484 (10%) 2.358 (-10%) 2.882 (10%) 0.020 (3%) 0.020 (3%)
Labour availability 300.00 270.000 330.000 0.204 (-2%) 0.199 (-5%) 0.707 (1%) 0.708 (1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.018 (-6%) 0.020 (2%)
Wheat farming labour requirement 50.00 45.000 55.000 0.204 (-2%) 0.208 (-0%) 0.699 (-0%) 0.697 (-0%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.020 (3%) 0.020 (2%)
Maximum patch farm time 50.00 45.000 55.000 0.206 (-1%) 0.208 (-0%) 0.701 (0%) 0.689 (-2%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.019 (-1%) 0.020 (3%)
Farmer conservativeness scalar 0.75 0.675 0.825 0.206 (-1%) 0.206 (-1%) 0.694 (-1%) 0.696 (-0%) 6.549 (11%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.020 (2%) 0.020 (1%)
Crop reseed proportion 0.15 0.135 0.165 0.206 (-1%) 0.205 (-2%) 0.701 (0%) 0.702 (0%) 5.894 (0%) 6.549 (11%) 2.620 (0%) 2.620 (0%) 0.020 (1%) 0.019 (-2%)
Farm value distance parameter 1.00 0.900 1.100 0.208 (-0%) 0.202 (-3%) 0.696 (-1%) 0.701 (0%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.020 (3%) 0.020 (1%)
Farm value fertility parameter 1.00 0.900 1.100 0.211 (1%) 0.212 (2%) 0.693 (-1%) 0.692 (-1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.020 (1%) 0.020 (1%)
Farm value land cover conversion parameter 1.00 0.900 1.100 0.195 (-7%) 0.209 (0%) 0.710 (1%) 0.698 (-0%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.019 (-3%) 0.019 (-4%)
Firewood required per capita per year 1100.00 990.000 1210.000 0.204 (-2%) 0.206 (-1%) 0.699 (-0%) 0.700 (0%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.020 (3%) 0.019 (-1%)
Firewood biomass removal rate 0.10 0.090 0.110 0.209 (0%) 0.208 (-0%) 0.697 (-0%) 0.697 (-0%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.019 (1%) 0.020 (2%)
Wood value distance parameter 1.00 0.900 1.100 0.204 (-2%) 0.211 (1%) 0.696 (-1%) 0.696 (-1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.021 (6%) 0.019 (-3%)
Climax forest biomass density 300000.00 270000.000 330000.000 0.210 (1%) 0.213 (2%) 0.699 (-0%) 0.693 (-1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.020 (1%) 0.020 (2%)
Land cover colonisation base rate 0.05 0.045 0.055 0.207 (-1%) 0.209 (0%) 0.698 (-0%) 0.692 (-1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.019 (-2%) 0.020 (5%)
Land cover colonisation spread rate 0.20 0.180 0.220 0.215 (3%) 0.210 (1%) 0.691 (-1%) 0.692 (-1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.019 (-1%) 0.020 (3%)
Mesic threshold 500.00 450.000 550.000 0.186 (-11%) 0.200 (-4%) 0.728 (4%) 0.707 (1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.016 (-16%) 0.019 (-2%)
Hydric threshold 1000.00 900.000 1100.000 0.211 (1%) 0.207 (-1%) 0.691 (-1%) 0.707 (1%) 5.894 (0%) 5.894 (0%) 2.620 (0%) 2.620 (0%) 0.019 (0%) 0.019 (-2%)
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Table F.3: Sensitivity analysis results for the Charco da Candieira study site. The ‘Value’ column specifies the default value for each parameter, and the ‘Value
+10%’ and ‘Value -10%’ columns give the corresponding values for parameters used in the +10% and -10% scenarios. The remaining columns give the mean
values under the +10% and -10% scenarios for the Shrubland, Mature Forest, Farmed Area Wood Area, and Burned Area output variables averaged over 10
simulation replicas, along with the corresponding percentage change relative to the default scenario in parentheses. Values in bold show statistically significant
differences with respect to the default scenario (see Section 6.1.2). Output variables indicated by * showed 0 variance in default scenario runs, so outputs that
differ from the default scenario values by ≤ −10% or ≥ +10% are shown as significant.

Value Value -10% Value +10% Shrubland, -10% Shrubland, +10% Mature Forest, -10% Mature Forest, +10% Farmed Area, -10%* Farmed Area, +10%* Wood Area, -10%* Wood Area, +10%* Burned Area, -10% Burned Area, +10%
Parameter

Number of households per village 10.00 9.000 11.000 0.312 (2%) 0.305 (-0%) 0.516 (-0%) 0.527 (2%) 5.176 (-10%) 6.327 (10%) 2.588 (-10%) 3.163 (10%) 0.033 (-2%) 0.031 (-7%)
Labour availability 300.00 270.000 330.000 0.308 (1%) 0.308 (1%) 0.516 (-0%) 0.525 (1%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.032 (-4%) 0.032 (-4%)
Wheat farming labour requirement 50.00 45.000 55.000 0.313 (2%) 0.289 (-6%) 0.531 (3%) 0.547 (6%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.031 (-7%) 0.030 (-10%)
Maximum patch farm time 50.00 45.000 55.000 0.313 (2%) 0.309 (1%) 0.519 (0%) 0.518 (0%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.032 (-4%) 0.033 (-2%)
Farmer conservativeness scalar 0.75 0.675 0.825 0.307 (0%) 0.294 (-4%) 0.516 (-0%) 0.536 (4%) 6.470 (13%) 5.033 (-12%) 2.876 (0%) 2.876 (0%) 0.034 (1%) 0.032 (-5%)
Crop reseed proportion 0.15 0.135 0.165 0.293 (-4%) 0.300 (-2%) 0.526 (2%) 0.534 (3%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.033 (-0%) 0.029 (-13%)
Farm value distance parameter 1.00 0.900 1.100 0.304 (-1%) 0.303 (-1%) 0.522 (1%) 0.525 (2%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.033 (-3%) 0.033 (-3%)
Farm value fertility parameter 1.00 0.900 1.100 0.307 (0%) 0.301 (-2%) 0.524 (1%) 0.530 (3%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.032 (-4%) 0.032 (-4%)
Farm value land cover conversion parameter 1.00 0.900 1.100 0.304 (-1%) 0.307 (0%) 0.535 (4%) 0.510 (-1%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.031 (-9%) 0.033 (-1%)
Firewood required per capita per year 1100.00 990.000 1210.000 0.317 (4%) 0.299 (-2%) 0.513 (-1%) 0.518 (0%) 5.751 (0%) 5.751 (0%) 2.157 (-25%) 2.876 (0%) 0.032 (-4%) 0.034 (2%)
Firewood biomass removal rate 0.10 0.090 0.110 0.300 (-2%) 0.311 (2%) 0.534 (3%) 0.521 (1%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.157 (-25%) 0.031 (-7%) 0.033 (-2%)
Climax forest biomass density 300000.00 270000.000 330000.000 0.310 (1%) 0.303 (-1%) 0.526 (2%) 0.517 (-0%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.157 (-25%) 0.032 (-6%) 0.033 (-2%)
Land cover colonisation base rate 0.05 0.045 0.055 0.314 (3%) 0.303 (-1%) 0.522 (1%) 0.528 (2%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.032 (-4%) 0.033 (-3%)
Land cover colonisation spread rate 0.20 0.180 0.220 0.308 (0%) 0.287 (-6%) 0.533 (3%) 0.551 (7%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.031 (-8%) 0.029 (-14%)
Mesic threshold 500.00 450.000 550.000 0.260 (-15%) 0.310 (1%) 0.583 (13%) 0.529 (2%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.026 (-22%) 0.032 (-5%)
Hydric threshold 1000.00 900.000 1100.000 0.302 (-1%) 0.312 (2%) 0.521 (1%) 0.523 (1%) 5.751 (0%) 5.751 (0%) 2.876 (0%) 2.876 (0%) 0.032 (-4%) 0.032 (-4%)
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Table F.4: Sensitivity analysis results for the Monte Areo mire study site. The ‘Value’ column specifies the default value for each parameter, and the ‘Value
+10%’ and ‘Value -10%’ columns give the corresponding values for parameters used in the +10% and -10% scenarios. The remaining columns give the mean
values under the +10% and -10% scenarios for the Shrubland, Mature Forest, Farmed Area Wood Area, and Burned Area output variables averaged over 10
simulation replicas, along with the corresponding percentage change relative to the default scenario in parentheses. Values in bold show statistically significant
differences with respect to the default scenario (see Section 6.1.2). Output variables indicated by * showed 0 variance in default scenario runs, so outputs that
differ from the default scenario values by ≤ −10% or ≥ +10% are shown as significant.

Value Value -10% Value +10% Shrubland, -10% Shrubland, +10% Mature Forest, -10% Mature Forest, +10% Farmed Area, -10%* Farmed Area, +10%* Wood Area, -10%* Wood Area, +10%* Burned Area, -10% Burned Area, +10%
Parameter

Number of households per village 10.00 9.000 11.000 0.212 (-5%) 0.213 (-4%) 0.690 (2%) 0.693 (2%) 6.044 (-10%) 7.387 (10%) 2.417 (-10%) 2.955 (10%) 0.020 (-5%) 0.019 (-6%)
Labour availability 300.00 270.000 330.000 0.215 (-4%) 0.213 (-4%) 0.688 (1%) 0.680 (0%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.019 (-8%) 0.021 (-1%)
Wheat farming labour requirement 50.00 45.000 55.000 0.206 (-7%) 0.217 (-2%) 0.696 (3%) 0.680 (0%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.019 (-6%) 0.020 (-5%)
Maximum patch farm time 50.00 45.000 55.000 0.209 (-6%) 0.213 (-4%) 0.686 (1%) 0.685 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.020 (-3%) 0.021 (-1%)
Farmer conservativeness scalar 0.75 0.675 0.825 0.215 (-3%) 0.223 (0%) 0.684 (1%) 0.682 (0%) 7.387 (10%) 6.044 (-10%) 2.686 (0%) 2.686 (0%) 0.020 (-2%) 0.020 (-5%)
Crop reseed proportion 0.15 0.135 0.165 0.214 (-4%) 0.200 (-10%) 0.684 (1%) 0.704 (4%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.021 (1%) 0.019 (-10%)
Farm value distance parameter 1.00 0.900 1.100 0.209 (-6%) 0.213 (-4%) 0.696 (3%) 0.685 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.020 (-5%) 0.021 (-0%)
Farm value fertility parameter 1.00 0.900 1.100 0.214 (-4%) 0.215 (-3%) 0.693 (2%) 0.687 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.019 (-9%) 0.020 (-4%)
Farm value land cover conversion parameter 1.00 0.900 1.100 0.211 (-5%) 0.216 (-3%) 0.692 (2%) 0.677 (-0%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.019 (-6%) 0.021 (1%)
Firewood required per capita per year 1100.00 990.000 1210.000 0.221 (-1%) 0.219 (-2%) 0.677 (-0%) 0.681 (0%) 6.715 (0%) 6.715 (0%) 2.015 (-25%) 2.686 (0%) 0.021 (0%) 0.020 (-2%)
Firewood biomass removal rate 0.10 0.090 0.110 0.217 (-2%) 0.216 (-3%) 0.681 (0%) 0.682 (0%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.015 (-25%) 0.020 (-2%) 0.021 (1%)
Wood value distance parameter 1.00 0.900 1.100 0.221 (-1%) 0.215 (-3%) 0.674 (-1%) 0.685 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.021 (2%) 0.021 (-1%)
Climax forest biomass density 300000.00 270000.000 330000.000 0.228 (3%) 0.215 (-4%) 0.670 (-1%) 0.684 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.015 (-25%) 0.021 (1%) 0.021 (-1%)
Land cover colonisation base rate 0.05 0.045 0.055 0.217 (-2%) 0.211 (-5%) 0.685 (1%) 0.688 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.020 (-4%) 0.020 (-5%)
Land cover colonisation spread rate 0.20 0.180 0.220 0.203 (-9%) 0.212 (-5%) 0.705 (4%) 0.680 (0%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.019 (-9%) 0.021 (1%)
Mesic threshold 500.00 450.000 550.000 0.196 (-12%) 0.220 (-1%) 0.716 (5%) 0.684 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.017 (-18%) 0.020 (-5%)
Hydric threshold 1000.00 900.000 1100.000 0.217 (-3%) 0.217 (-2%) 0.690 (2%) 0.687 (1%) 6.715 (0%) 6.715 (0%) 2.686 (0%) 2.686 (0%) 0.019 (-10%) 0.020 (-4%)
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Table F.5: Sensitivity analysis results for the San Rafael study site. The ‘Value’ column specifies the default value for each parameter, and the ‘Value +10%’
and ‘Value -10%’ columns give the corresponding values for parameters used in the +10% and -10% scenarios. The remaining columns give the mean values
under the +10% and -10% scenarios for the Shrubland, Mature Forest, Farmed Area Wood Area, and Burned Area output variables averaged over 10 simulation
replicas, along with the corresponding percentage change relative to the default scenario in parentheses. Values in bold show statistically significant differences
with respect to the default scenario (see Section 6.1.2). Output variables indicated by * showed 0 variance in default scenario runs, so outputs that differ from
the default scenario values by ≤ −10% or ≥ +10% are shown as significant.

Value Value -10% Value +10% Shrubland, -10% Shrubland, +10% Mature Forest, -10% Mature Forest, +10% Farmed Area, -10%* Farmed Area, +10%* Wood Area, -10%* Wood Area, +10%* Burned Area, -10% Burned Area, +10%
Parameter

Number of households per village 10.00 9.000 11.000 0.072 (5%) 0.069 (0%) 0.906 (-1%) 0.914 (0%) 8.711 (-10%) 10.647 (10%) 2.010 (-10%) 2.457 (10%) 0.007 (18%) 0.006 (4%)
Labour availability 300.00 270.000 330.000 0.073 (7%) 0.066 (-3%) 0.909 (-0%) 0.917 (0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (8%) 0.005 (-11%)
Wheat farming labour requirement 50.00 45.000 55.000 0.056 (-19%) 0.065 (-5%) 0.926 (1%) 0.913 (0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.005 (-18%) 0.006 (10%)
Maximum patch farm time 50.00 45.000 55.000 0.070 (1%) 0.062 (-9%) 0.916 (0%) 0.921 (1%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (-0%) 0.006 (-4%)
Farmer conservativeness scalar 0.75 0.675 0.825 0.071 (4%) 0.072 (4%) 0.912 (-0%) 0.913 (0%) 10.424 (8%) 8.935 (-8%) 2.234 (0%) 2.234 (0%) 0.006 (-1%) 0.005 (-11%)
Crop reseed proportion 0.15 0.135 0.165 0.063 (-8%) 0.070 (2%) 0.919 (1%) 0.909 (-0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.005 (-6%) 0.007 (14%)
Farm value distance parameter 1.00 0.900 1.100 0.073 (6%) 0.061 (-11%) 0.912 (-0%) 0.924 (1%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (8%) 0.005 (-7%)
Farm value fertility parameter 1.00 0.900 1.100 0.065 (-5%) 0.080 (16%) 0.920 (1%) 0.899 (-1%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.005 (-13%) 0.007 (19%)
Farm value land cover conversion parameter 1.00 0.900 1.100 0.062 (-9%) 0.076 (11%) 0.918 (1%) 0.904 (-1%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (-1%) 0.006 (12%)
Firewood required per capita per year 1100.00 990.000 1210.000 0.069 (1%) 0.068 (-2%) 0.920 (1%) 0.914 (0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.978 (33%) 0.005 (-6%) 0.007 (13%)
Firewood biomass removal rate 0.10 0.090 0.110 0.062 (-10%) 0.058 (-16%) 0.919 (1%) 0.923 (1%) 9.679 (0%) 9.679 (0%) 2.978 (33%) 2.234 (0%) 0.006 (-3%) 0.006 (-4%)
Wood value distance parameter 1.00 0.900 1.100 0.070 (2%) 0.072 (5%) 0.912 (-0%) 0.911 (-0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (4%) 0.006 (4%)
Climax forest biomass density 300000.00 270000.000 330000.000 0.069 (1%) 0.072 (5%) 0.910 (-0%) 0.910 (-0%) 9.679 (0%) 9.679 (0%) 2.978 (33%) 2.234 (0%) 0.006 (10%) 0.007 (16%)
Land cover colonisation base rate 0.05 0.045 0.055 0.066 (-4%) 0.072 (5%) 0.916 (0%) 0.906 (-1%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.005 (-14%) 0.007 (28%)
Land cover colonisation spread rate 0.20 0.180 0.220 0.065 (-5%) 0.063 (-8%) 0.915 (0%) 0.917 (0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (8%) 0.005 (-7%)
Mesic threshold 500.00 450.000 550.000 0.079 (16%) 0.066 (-4%) 0.897 (-2%) 0.917 (0%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.007 (26%) 0.006 (0%)
Hydric threshold 1000.00 900.000 1100.000 0.070 (3%) 0.058 (-15%) 0.911 (-0%) 0.925 (1%) 9.679 (0%) 9.679 (0%) 2.234 (0%) 2.234 (0%) 0.006 (11%) 0.005 (-12%)
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Appendix G

Listing of online supplementary

materials

The following is a list of the software packages that were developed to meet the goals of this
thesis. The references provide links to pages in the Zenodo software repository from which the
packages can be explored and downloaded.

• S1: epd-query, an application to help extract data from the European Pollen Database in a
reproducible and open way (Lane, 2019).

• S2: aemet-wind, a Python library for working with wind speed and direction data from the
Spanish State Meteorological Agency’s weather data REST API (Lane, 2021a).

• S3: aslib, a Python library containing software objects used in other code for working with
AgroSuccess (Lane, 2021d).

• S4: agrosuccess-data, code used to generate input data for the AgroSuccess simulation
model (Lane, 2021b).

• S5: demproc, a Python package used to derive raster layers based on a Digital Elevation
Model (Lane, 2021e).

• S6: Cymod application used to convert complicated state-and-transition models described
in the Cypher graph query languages into Neo4j graph data stores (Lane, 2020).

• S7: agrosuccess-graph, a Python package that uses Cymod to represent the AgroSuccess
STM (Lane, 2021c).

• S8: agrosuccess-sim, the AgroSuccess simulation model code (Lane, 2023).
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