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Abstract

In this thesis, we develop the program of supersymmetric localization for the compu-

tation of the functional integral of string theory on AdS3×S2. We are placed in the

framework of off-shell 5d N = 2 supergravity coupled to vector multiplets. We first

present how to set up a consistent Euclidean version of this theory. We then show

how the condition of supersymmetry in the Euclidean H3/Z×S2 geometry naturally

leads to a twist of the S2 around the time direction of AdS3. The twist gives us

a five-dimensional Euclidean supergravity background which is dual to the elliptic

genus of (0, 4) SCFT2 at the semiclassical level. On this background we set up the

off-shell BPS equations for one of the Killing spinors, such that the functional inte-

gral of five-dimensional Euclidean supergravity on H3/Z×S2 localizes to its space of

solutions. We obtain a class of solutions to these equations by lifting known off-shell

BPS solutions of four-dimensional Euclidean supergravity on AdS2×S2. In order to

do this consistently, we construct and use a Euclidean version of the off-shell 4d/5d

lift of arxiv:1112.5371, which could be of independent interest. We then assess

the consistency of these localization solutions with the standard AdS3×S2 bound-

ary conditions on which the functional integral is defined. We find that the off-shell

gauge fields respect their usual conditions, but that the off-shell metric in the AdS3

directions is not compatible with the Brown-Henneaux conditions. We show instead

that the metric fluctuations are consistent with a set of chiral boundary conditions

recently constructed by Compere, Strominger and Song (CSS) in arxiv:1303.2662.

We subsequently use this observation to propose a partial set of boundary terms for

the 5d supergravity derived from these boundary conditions. We evaluate the bulk ac-

tion and these boundary terms on the localization solutions, which yields a finite and

tractable expression. Lastly, we perform a numerical search for additional localization

solutions in the space of asymptotic metrics obeying CSS or Brown-Henneaux bound-

ary conditions, using recursive methods analogous to those employed in holographic

renormalization.
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Chapter 1

Introduction

A curious notion that emerges in certain natural phenomena is that physical infor-

mation contained in a d+ 1- dimensional “volume” can be viewed as encoded into an

associated d- dimensional “surface”. For such systems, one might picture the dynam-

ics playing out in the volume as a type of hologram that is being projected from said

surface. The broad terminology used to describe this physical interplay is Holography.

Since the latter half of the 20th century, holographic frameworks have played an

increasingly important role in the description of gravitational physics beyond the

classical models. In today’s landscape, a powerful realization of this principle, the

AdS/CFT correspondence [1], constitutes a concrete theoretical laboratory in which

to describe and test the high-energy effects of many gravititational theories of interest.

Black Holes: the holographic stars

Black holes in Einstein’s theory of General Relativity set the stage for an early

holographic description of gravitational effects beyond the purely classical regime.

In general relativity, gravity is an entirely geometric concept. More precisely, the

spacetime-continuum is modeled as a manifold, whose geometric properties are en-

coded in a metric gµν , and which is itself the dynamical field in the theory. This

geometry is then able to acquire curvature through various classical physical pro-

cesses that are either intrinsic or extrinsic to the spacetime. It is precisely the effect

of this curvature, as felt by objects interacting with the spacetime, that is interpreted

as the gravitational force.

Black holes represent a very special class of strongly curved Einstein geometries.

They feature an “interior” subregion which is separated from the “exterior” by a

causal surface known as the event horizon. The location of this horizon relative to
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Chapter 1. Introduction

the centre of the spacetime is entirely determined by the macroscopical properties

of the black hole. In the simplest case, this is just the mass. In more complicated

examples, there may also be electromagnetic charges and angular momentum. Now,

at this classical (i.e. geometric) level, no physical process can cross the event horizon

from the inside to the outside. In a thermodynamic sense, black holes in general

relativity are therefore black bodies with zero temperature.

A paradigm shift towards a more modern understanding of black holes occurred

in the 1970s. The underlying ideas revolved around dressing classical black holes with

semi-classical processes involving matter particles that interact with the geometry.

This program culminated in a set of elegant equations involving the macroscopic

parameters of the black hole which turned out to be in striking analogy with the well-

known laws of thermodynamics [2, 3, 4]. Most remarkably, Bekenstein and Hawking

described an identification of the area of the event horizon with the usual notion

of entropy in thermal systems [5, 6]. Their eponymous Bekenstein-Hawking entropy

formula is given as 1

SBH =
kB
G

c3

ℏ
A

4
, (1.1)

where A denotes the area of the event horizon, c is the speed of light, kB is the Boltz-

mann constant, G is Newton’s constant. We note the following remarks. Firstly, (1.1)

has a distinctly holographic flavour. Indeed, it suggests that the some type of gravita-

tional information SBH associated with the black hole is captured onto its “surface”.

Secondly, the presence of ℏ and G together signals that this entropy stems from a

interplay of quantum and gravitational effects. Perhaps then, one should expect a

notion of further quantum corrections which could only be seen beyond the semi-

classical analysis. Finally, if the quantity SBH on the left-hand-side of (1.1) is truly

to be understood as a thermodynamic entropy of the black hole, one should seek an

analogous statistical-mechanical description, à la Boltzmann, in terms of a counting

of microstates of the system. The second and third remarks may be summarized in

the following equation:

SBH + corrections
?
= kB log

(
#microstrates

)
. (1.2)

While (1.2) is only schematic, it is a good representative of the challenges faced in

probing gravity beyond the semi-classical regime. Indeed, on the right-hand-side, an

1In (1.1), we include all fundamental constants for full transparency. In the rest of this thesis, we
take c = ℏ = 1.
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Chapter 1. Introduction

obvious point of contention is how to even characterize a “microstate” in a gravita-

tional system. On the left-hand-side, computing corrections to the thermodynamic

entropy might require control over various high-energy regimes of the macroscopic

theory. One such regime could correspond to allowing for stronger curvature of the

spacetime, which at the level of the Einstein theory would be incorportated by higher-

derivative terms in the action. Another high-energy regime could correspond to the

inclusion of quantum-gravitational effects in perturbation theory, i.e. graviton loops.

However, since general relativity is not a renormalizable theory, a direct approach

with the usual methods of quantum field theory will fall short.

One framework in which both sides of (1.2) have successfully been explored is

string theory. In the architecture of this theory, black holes have a well-understood

description in terms of certain D-brane [7] configurations. It is in such a set-up

that Strominger and Vafa [8] showed an explicit agreement between the Bekenstein-

Hawking entropy, computed from the area of the horizon associated to these ob-

jects, and a counting of the supersymmetric states (“microstates”) on their world-

volume theory. In fact, the microstate computation also included corrections to the

Bekenstein-Hawking side. While we do not delve into a more detailed account of the

calculation, we wish conclude with the following remark: The near-horizon geometry

of the D-brane configuration that was considered in [8] is AdS3×S3 (times an inter-

nal compact manifold). Meanwhile, the worldvolume theory of the branes is, in an

appropriate limit, a supersymmetric gauge theory.

It was three years after Strominger and Vafa’s result that, beyond the specific

context of black hole entropy, a profound holographic duality between gravity on

Anti-de-Sitter spaces and certain supersymmetric gauge theories was proposed.

The AdS/CFT correspondence

The AdS/CFT correspondence [1, 9, 10] is the duality between theories of quantum

gravity in d+ 1 dimensions with asymptotically Anti-de-Sitter (AdSd+1) boundary

conditions and a d-dimensional conformal field theory (CFTd) living on the conformal

boundary of the bulk. Crucially, the conformal field theory is not a gravitational

theory. In its strongest form, the duality can be taken as the very definition of a

quantum theory of gravity (on asymptotically AdS spaces) as a quantum field theory

with no gravity in one dimension less.

One important feature of the correspondence, among others, is the inverse relation

between coupling strength on either side. In particular, the weak-coupling regime in

the CFT is dual to the strong-coupling sector of the gravitational side, over which
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Chapter 1. Introduction

there is little control. Vice-versa, the strong-coupling regime of the CFT is in cor-

respondence with the low-energy effective sector of the gravitational theory, which

is typically tractable, and which in the case of string theory is described by two-

derivative supergravity. The earliest concrete example of the AdSd+1/CFTd duality

was realized in the low-energy sector of string theory in d = 4. Here, we have the

equivalence between type IIB string theory on an AdS5×S5 background and the max-

imally supersymmetric N = 4 Super-Yang-Mills theory in four dimensions. Another

canonical example is with d = 2, where we have a duality between type IIB super-

gravity on an AdS3×S3 background compactified on T 4 or K3 and a N = (4, 4) 2d

conformal theory describing a system of D1-D5 branes [8, 11]. For an in-depth review

of both the above examples, we refer to [12].

A hard problem in AdS/CFT: quantum corrections

A hard problem on both sides of the AdS/CFT correspondence is the computation

of quantum corrections to dual quantities. In the language of the correspondence,

these correspond to finite 1/N corrections on the CFT side and finite gstring corrections

on the string theory side. The presence of supersymmetry, however, makes this

problem more approachable. Firstly, we can focus on observables which are protected

by the supersymmetry, and therefore do not change under a continuous deformation

of the weak/strong-coupling constant. Secondly, there exist powerful computational

tools to capture quantum corrections which are available precisely thanks to this

additional fermionic symmetry.

The quantum computation of protected observables in this context has primarily

been approached from the CFT side of the duality. In contrast, it has not been ex-

plored as much on the gravitational side. One successful example in AdS/CFT where

a protected observable was successfully matched at the exact level (by which we mean

including all quantum corrections) is the recent program of black hole entropy in

AdS2/CFT1. In the gravitational interpretation, the protected observable computes

the quantum entropy of supersymmetric black holes with AdS2×S2 near-horizon ge-

ometry, and has a formal path-integral formulation given by the so-called quantum

entropy function [13]. The exact calculation of this string- functional integral was

performed in [14] using an adaptation of supersymmetric localization to the string

fields (further analysis followed in [15, 16]). In fact, instead of a localizing onto a full

action of string theory, the authors conducted the calculation on a classical off-shell

action for supergravity [17, 18, 19] with a certain renormalization. The remarkable

fact that, under localization, the classical action could capture quantum corrections
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Chapter 1. Introduction

without recourse to perturbation theory (see [14, 20] for details on this phenomenon)

has motivated further research on the application of this technique to other super-

gravity theories. More recently, this has produced similarly accurate results for the

quantum entropy of the higher-dimensional AdS2×S3 black hole [21, 22].

As alluded to above, the overarching motivation of this thesis follows in the pro-

gramme of computing exact protected observable in gravitational side of the duality

using localization. In particular, we wish to find out whether this strategy can be

applied to higher-dimensional examples in AdSd+1. A humble but sensible start-

ing point is simply one dimension higher. We are therefore placed in the setting

of AdS3/CFT2, where the supersymmetric observable is known in the CFT side as

the elliptic genus [23]. Before introducing this object in more detail, we make a

small aside about general partition functions and thermality in AdS3/CFT2. Written

schematically, the correspondence postulates that

ZCFT2(τ, τ) = ZAdS3(τ, τ) , (1.3)

where Z should be thought as a dual observable which, for now, is not supersymmetric.

The parameter τ (τ) is part of the moduli of the theory that couple to the conserved

charges (we will say more on these later). Focusing on the left-hand-side of the duality,

the observable can usually be expressed in terms of a trace over the Hilbert space H of

the quantum field theory. In the simplest case, we have a thermal partition function

given as

ZCFT2(τ, τ) = TrH

[
e−βHeℓP

]
, (1.4)

where β is the inverse temperature 1/T . The Hamiltonian H and angular momen-

tum P of the theory are given in terms of the zero-modes L0, L0 of the 2d conformal

algebra as

H = L0 + L0 , P = L0 − L0 , (1.5)

and β, ℓ are given in terms of the moduli τ, τ as

β =
1

T
= −iπ(τ − τ) , ℓ = iπ(τ + τ) . (1.6)

The Hamiltonian in (1.5) naturally splits into Hamiltonians for the left- and right-

moving part as H = HL +HR, with HL = L0, HR = L0 (similarly for the angular

momentum). The temperature T may also be split as 1/T = 1/TL + 1/TR with

TL = −i/(πτ), TR = i/(πτ). Then, the trace (1.4) separates into an independent left-

and right- moving sector, with temperatures given by TL and TR respectively. Now
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Chapter 1. Introduction

suppose taking TR → 0, which should be thought of as imposing supersymmetry on

the right-moving sector. With this value of TR, it is clear from the relation between T ,

TL and TR, that despite TL still being non-trivial, T will nevertheless vanish. The

message we wish to highlight is this: the computation of a right-moving supersym-

metric version of the finite-temperature partition function (1.4) is a computation at

zero temperature. Yet, on the left-movers, one still has a notion of thermality (and

therefore states that are thermal-like excitations).

From here on, we turn to setting our problem up in a more technical manner. The

approach to compute a supersymmetric protected observable in AdS3/CFT2 from the

bulk using localization should naturally begin with the following steps. In Section 1.1

we introduce the elliptic genus as the protected observable of certain supersymmetric

conformal field theories in two dimensions. We also discuss expectations on the form

of the dual gravitational theory and its low-energy effective theory. In Section 1.2

we review the methodology of supersymmetric localization which, applied to the

low-energy effective gravitational action, we hope can yield an exact result for the

functional integral in the bulk. The chapter is concluded with Section 1.3, where we

give an overview of the various upcoming steps taken in this thesis.

1.1 Elliptic genera in (0,4) SCFT2 and the dual

set-up

In this thesis we work in AdS3/CFT2. We take the boundary theory to be a

Lorentzian (1+1)-d superconformal field theory (SCFT2) with N = (0, 4) supersym-

metry, living on S1 × R (i.e. an infinite cylinder). The protected observable is the

elliptic genus, which is a supersymmetric index of the theory. It is defined as the

following trace over the Hilbert space of the theory (we suppress the subscript H for

the Hilbert space):

χ(τ, µ) := TrR

[
(−1)F qL0− c

24 qL0− c̄
24 eqIµ

I
]
, (1.7)

where q ≡ e2πiτ , q ≡ e−2πiτ , c and c̄ are the central charges for the left- and right-

moving Virasoro algebras respectively, and where we have a collection of left-moving U(1)

charges, denoted as qI , coupled to their corresponding chemical potentials µI . The

6



Chapter 1. Introduction

operator (−1)F = (−1)2J
3
0 is the fermion number operator, where J3

0 is the SU(2) R-

current of the N = 4 superconformal algebra of the right-moving sector. The R sub-

script on the trace is related to fact that the supersymmetric theory has fermions, and

so their periodicity around the S1 need to be specified. The letter stands for the Ra-

mond sector, which indicates that we choose periodic conditions. Alternatively, one

could choose anti-periodic fermions, which corresponds to the Neveu-Schwarz (NS)

sector. The two sectors are related by an automorphism of the N = 4 superconfor-

mal algebra known as the spectral flow 2. The counting of states that the elliptic

genus performs is as follows: In the right-moving sector, where we have supersymme-

try, (1.7) is a Witten index with Hamiltonian HR = L0 − c̄/24. Therefore, the only

right-moving states that contribute are the ground states L0 = c̄/24. Note that this

is why χ(τ, µ) is independent of τ . Meanwhile, all left-moving states can contribute.

Now, by the usual rules of statistical field theory, the trace (1.7) is equivalent to

a Euclidean path integral. More precisely, we have a Wick-rotated (i.e. Euclidean)

time direction which has been compactified as tE ∼ tE + β, where β = 2πIm(τ)

as in (1.6). In this formalism, the SCFT2 now lives on a S1×S1, i.e. a torus. We

must then recall the periodicities of the fields when integrating along the new (time-)

circle: generically, bosonic fields are periodic while fermions are anti-periodic. For the

fermions, however, the (−1)F in the trace (1.7) translates to an additional subtlety.

Indeed, this operator insertion flips the sign of the fermions as they are taken around

the time circle. Spinors in the Euclidean path-integral for the elliptic genus (1.7)

therefore have periodic boundary conditions around time.

What can we say about the gravitational dual?

Under the AdS3/CFT2 correspondence, the functional integral for the elliptic

genus (1.7) is dual to the functional integral of a quantum-gravitational theory with

eight supercharges and AdS3 boundary conditions. By AdS3 boundary conditions, we

mean that the conformal boundary should be fixed to a T 2 with complex structure τ .

Furthermore, it is known that the (0, 4) SCFT2 necessarily has an SU(2) R-symmetry,

and this should therefore be reflected in the bulk. The most natural implementation

of this comes in the form of an additional S2 factor, which the SU(2) rotates. Our

expectation for the asymptotic geometry in the bulk is therefore AdS3×S2. Finally,

the coupling in (1.7) to U(1) charges implies that the gravitational theory should also

contain U(1) gauge fields W I , where their values at the asymptotic boundary of the

bulk will source the chemical potentials µI in the SFCT2.

2A presentation of the N = 4 superconformal algebra, along with a discussion on spectral flow,
is given in Appendix B.
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It turns out that there are known examples in the full string theory, for which these

considerations manifest themselves. A well-established family comes from a class of

embeddings due to Maldacena, Strominger and Witten (MSW) [24]. One starts from

M-theory compactified on R1,4×CY and wraps a fivebrane (M5) around four-cycles of

the Calabi-Yau. This gives a (1+1)-dimensional string in five dimensions. The string

has a horizon (it is referred to as a black string). In the near-horizon limit, it exhibits

an AdS3×S2 geometry. Moreover, at low energies, the theory on the worldsheet of

the string flows to a SCFT2 with N = (0, 4). This set up suggests that the suitable

low-energy gravitational dual to the N = (0, 4) theory is the 5d N = 2 supergravity

(i.e. 8 supercharges) coupled to vector-multiplets that governs the dynamics of the

black string.

Setting up the dual functional integral

These considerations suggest that the dual of the elliptic genus (1.7) can be derived

exactly by solving the localization problem for the following functional integral:

ZPI(τ, µ) :=

∫
T 2

[DΦ] exp
(
Sren[Φ]

)
, (1.8)

where Sren denotes the action for the 5d supergravity theory described above, renor-

malized by potential boundary terms. Recall that τ and µ enter through the boundary

conditions on the metric and the U(1) gauge fields respectively. Note that while we

have suppressed the notation associated to sphere factor, readers should keep in mind

that the topology of the conformal boundary is T 2×S2 and not just T 2.

Two important immediate comments on the computation of (1.8) are in order.

Firstly, as we will describe in upcoming review of localization in Section 1.2, the

supergravity action entering Sren should not be the Poincaré theory but rather its off-

shell adaptation. Secondly, gravitational path integrals on AdS3 such as (1.8) have

been shown by Strominger and Maldacena [25] to admit a special structure, which

we simply quote here (but also briefly review in Chapter 3). The statement is that

the functional integral with T 2 boundary conditions splits into a discrete sum, where

each term in the sum is itself a functional integral with T 2 boundary conditions and

fixed contractible cycle in the bulk. There are infinitely many ways of fixing this cycle

(and therefore infinitely many terms in the sum), and the choices are labelled by a

distinct pair of relatively prime integers (c, d) with c ≥ 0. More formally, this allow
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Chapter 1. Introduction

us to write

ZPI(τ, µ) =
∑
(c,d)

∫
∂Mc,d

[DΦ] exp
(
Sren[Φ]

)
,

≡
∑
(c,d)

ZPI
c,d (τ, µ) .

(1.9)

Here Mc,d denotes the solid torus with contractible cycle as (c, d) = (c, d). The sim-

plest representative of the Mc,d geometries is M0,1 geometry, which corresponds to

the torus with contractible circle along the spatial direction of AdS3. A further sim-

plification of (1.9), which reduces the computation of the infinitely many functional

integrals to the computation of one, comes from the fact that theMc,d geometries can

obtained by action with the elements of PSL(2,Z)/Z on the boundary T 2 of M0,1 (or

of any representative). In this way, (1.9) is in fact a sum over PSL(2,Z)/Z images,

and it becomes sufficient to compute the functional integral on the one representative

M0,1. From here on, our working expression for the functional is therefore

ZPI
0,1 =

∫
∂M0,1

[DΦ] exp
(
Sren[Φ]

)
. (1.10)

We close with a remark on the periodicities of the fermions in the computation of this

contribution (1.10). Because the spatial cycle in M0,1 is contractible in the bulk, the

fermions are forced to be anti-periodic around that circle. Therefore, we expect that

the calculation of ZPI
0,1 is in the NS-sector of the elliptic genus. This is made explicit

in Chapter 5.

1.2 Exact functional integrals with supersymmet-

ric localization

In supersymmetric theories, the principle of (supersymmetric) localization lever-

ages the presence of fermionic symmetries to reduce an a-priori infinite-dimensional

functional integral to a finite number of ordinary integrals. This strategy was initially

approached in the context of physics by Witten in [26]. Much later, concrete results in

certain supersymmetric quantum field theories were derived by Pestun in [27]. In this

section, we review the key features of the methodology, and discuss the particularities

and challenges relevant to its application to supergravity theories.

9



Chapter 1. Introduction

We consider functional integrals of the form

W =

∫
[DΦ] exp

(
S[Φ]

)
, (1.11)

where S is the action functional for the system and Φ collectively denotes set of quan-

tum fields of the theory. The basic assumption to begin the algorithm of localization

is that the theory admits a fermionic charge Q under which the action is Q-exact,

i.e. QS = 0, and such that Q2 = H where H is a compact bosonic generator on

the isometry space of the background spacetime. Now, let V be a fermionic function

satisfying Q2V = 0. One makes the following deformation in the exponent of the

path integral:

W (λ) =

∫
[DΦ] exp

(
S[Φ] + λQV

)
. (1.12)

Assuming the integration measure is also Q-invariant, it can be shown [26] that

dW (λ)

dλ
= 0 , (1.13)

and so the functional invariant is invariant under the choice of λ. In particular, we

have that

W (λ = 0) = W = W (λ → ∞) . (1.14)

In the expression on the right-hand-side, the λ-dependent term will dominate the ex-

ponent and so the functional integral localizes onto the saddle points of the functional

QV = 0 . (1.15)

Finally, one chooses

V =
∑
α

(
Qψα, ψα

)
, (1.16)

where ψα denotes the fermionic fields of the theory and (·, ·) is an appropriate inner

product for the fermions. Restricting to a bosonic background (i.e. ψα = 0), the

localizing equation (1.15) reduces to

QV = 0 ⇐⇒ Qψα = 0 . (1.17)

In the language of supersymmetric theories (including supergravity), note that the

10



Chapter 1. Introduction

equation on the right is simply the set of BPS equations of the theory. Practically

speaking, these are the equations given by setting the supersymmetry variation (with

respect to the SUSY-parameter ϵ of Q) of the fermions to zero, i.e. δϵψα = 0. The

field configurations that solve the BPS equations are typically referred to as the

BPS solutions. In the context of the localization problem, we also commonly use

the term localization solutions. The set of all localization solutions for Q is called

the localization manifold, and is denoted as MQ. With (1.17), we therefore have

that the infinite-dimensional path integral (1.12) simplifies to an integration over the

submanifold MQ of the full configuration space:

W = W (λ → ∞) =

∫
MQ

[dϕQ] e
S[ϕQ]W1-loop , (1.18)

where ϕQ denotes coordinates on MQ, S[ϕQ] is the action evaluated on an arbitrary

point on MQ, and W1-loop is a one-loop functional determinant factor due to the

fluctuations in the non-BPS directions around MQ.

A key point to highlight is that this technology requires an off-shell formulation of

the supersymmetric theory at hand. Indeed, since the functional integral is computed

over off-shell fluctuations, the superalgebra involving the localization supercharge Q
must be realized off-shell (i.e. must close without imposing equations of motion). Now,

compared to the case of supersymmetric QFTs, it turns out that for supergravities

such off-shell formulations are notoriously involved. This constitutes a large part

of the technical challenge when working with localization in these bulk theories. In

our case, recall from Section 1.1 that the relevant low-energy holographic dual to a

(0, 4) SCFT2 with left-moving U(1) charges is minimal supergravity in five dimensions

coupled to U(1) gauge fields (with certain AdS3×S2 boundary conditions). The off-

shell realization of this theory exists and was constructed as part of the conformal

supergravity program in [28, 29, 30] and [31, 32]. Its Euclidean version, whose relation

the original Lorentzian theory we clarify in Section 5.1, is the supersymmetric bulk

theory that we will work with throughout this thesis.

1.3 Strategy and outline of this thesis

In this thesis, we work towards the exact calculation of the functional inte-

gral (1.10) for the theory on M0,1 (times S2) using localization in the dual Euclidean

11



Chapter 1. Introduction

5d N = 2 supergravity with U(1) vector multiplets. Here, we present our strategy in

more detail, before giving an overview of each of the following chapters.

Breakdown of strategy

As discussed in Section 1.1, the M0,1 geometry is the solid torus with contractible

cycle in the spatial direction of AdS3. We therefore work with the five-dimensional off-

shell theory defined on global AdS3×S2 with a periodic Euclidean time coordinate,

i.e. the manifold H3/Z×S2. Following the methodology presented in Section 1.2,

the problem then begins with finding all bosonic gravitational configurations that

admit a Killing spinor whose asymptotic limit is one of the supercharges of the clas-

sical H3/Z×S2 vacuum. Secondly, one finds all matter configurations invariant under

this supercharge. Thirdly, one constructs a suitable set of boundary terms for the

bulk supergravity and evaluates the resulting renormalized action at a generic point

in the resulting localization manifold. Finally one calculates the one-loop determinant

of the non-BPS fluctuations around said manifold. In this thesis, we reach the third

point.

To reach the first rung of the procedure, we require a consistent set of super-

symmetry transformations in the off-shell five-dimensional Euclidean supergravity

theory. Starting from the Lorentzian 5d N = 2 conformal supergravity coupled to

vector- and hyper-multiplets, which we review in Chapter 4, we explain how to ob-

tain such transformations in Section 5.1. We soon run into another subtlety, also

due to the Euclidean signature of the problem, which regards the set-up of the su-

persymmetric H2/Z×S2 vacuum configuration of the theory. Indeed, with the naive

identifications of the coordinates on H3/Z×S2, the Killing spinors are not well-defined

with respect to the periodicities of fermions around the non-contractible circle of the

torus. We resolve this problem in Section 5.2 by turning on a twist of the S2 around

this circle, which allows for spinors which are now constant in time and therefore well-

defined.3 In this same section, we also show that this twist reduces the asymptotic

algebra to be a sub-algebra of the Brown-Henneaux-Coussaert [35, 36] (0, 4) algebra

on AdS3. Finally, because the Killing spinors on H3/Z×S2 are anti-periodic along the

spatial circle (which is expected due to its contractibility) we relate in Section 5.3 the

bulk calculation of the functional integral to the NS-sector calculation of the elliptic

genus (1.7). We also evaluate the 5d action on the H3/Z×S2 configuration and com-

pare with the result of the effective 3d Einstein-Hilbert-Maxwell action evaluated on

thermal AdS3.

3A related supersymmetric set-up has been discussed in the literature in the context of super-
symmetric black holes in AdS space [33] and, in particular, for BTZ black holes in [34].
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With this non-trivial groundwork in place, we then approach the first and second

steps of the localization procedure, namely the computation of localization solutions

in the gravitational and matter-coupling sectors of the off-shell supergravity theory

on H2/Z×S2. Our idea is to use the 4d/5d lift [37], which relates solutions of off-

shell 4d supergravity to those of off-shell 5d supergravity compactified on a circle.4

The localization manifold in 4d N = 2 supergravity on asymptotically AdS2× S2 has

been completely determined [39], and we can lift those solutions to obtain localization

solutions to AdS3×S2. Although this is not guaranteed to produce all BPS solutions,

it should give all solutions that are independent of the circle of compactification.

Similar ideas have been used successfully to make progress in the localization problems

on AdS2× S3 theories in [40], [21, 22].

It transpires that implementing this idea is not straightforward. Firstly, the 4d/5d

map in [37] is given for Lorentzian backgrounds while we need it for Euclidean back-

grounds. To this end, we modify the map to reflect the Euclidean supersymmetry

transformations in both the four- and five-dimensional theory. In four dimensions

we use the Euclidean supergravity discussed in [41, 42, 43, 44], [45], while in five

dimensions we employ the Euclidean transformations discussed in Section 5.1. Here

there is an additional problem compared the Lorentzian setting, namely that the 4d

Euclidean theory carries a redundancy of allowed reality conditions which has no coun-

terpart in the 5d Euclidean theory. We show that this redundancy can be absorbed

in a parameter whose role is to implement the symmetry breaking SO(1, 1)R → I.5

The second problem has to do with the global identifications of the background that

we are interested in, i.e. H3/Z×S2, which is not a Kaluza-Klein lift of Euclidean

AdS2× S2. The Kaluza-Klein condition was used in [37] for the off-shell 4d/5d lift

and, indeed, general off-shell configurations do not consistently lift from Euclidean

AdS2× S2 to H3/Z×S2. Nevertheless, the class of off-shell solutions relevant for the

4d black hole problem can be lifted to the supersymmetric H3/Z×S2, due to their

enhanced rotational symmetry. Taking all these considerations into account, we ob-

tain an adaptation of the 4d/5d lift relevant for the Euclidean AdS3/CFT2 problem,

whose details we work out in Chapter 6. In Chapter 7, we apply this lift to find a

highly non-trivial class of off-shell solutions in the theory on H3/Z×S2.

However, we promptly show in Chapter 8 that while the off-shell gauge fields in

these solutions are consistent with the boundary conditions for the functional inte-

gral, the same is not true for the off-shell metric. Indeed, we find that the metric

4This is different from the 4d/5d lift of [38] which involves a lift on a Taub-NUT space.
5This parameter is the Euclidean analog of the parameter that enforces SO(2)R → I in [37].
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fluctuations in the AdS3 directions explicitly violate the Brown-Henneaux boundary

conditions. We nevertheless persevere with an analysis of the solutions and find that

the gravitational modes in fact obey a recent, more exotic construction of asymp-

totically AdS3 boundary conditions developed by Compère, Strominger and Song

(CSS) [46]. In Section 8.2, this finding encourages us to explore a renormalization

scheme of the supergravity action with respect to these boundary conditions for the

metric, following a set of boundary terms prescribed in the context of the pure three-

dimensional theory in [46]. The gauge-field sector is also renormalized with respect

to their standard boundary conditions. We then evaluate the localization solutions

on this renormalized action and discuss its structure. In Section 8.3, we initialize a

parallel study on the existence of additional BPS solutions, and in particular met-

ric solutions that obey the Compere-Strominger-Song boundary conditions in the

AdS3 directions. Our idea is to explore the space of solutions to the off-shell Killing

spinor equation in the asymptotic regime using Fefferman-Graham-like ansätze for

the bosonic fields. We then recursively solve for the coefficients order-by-order in the

Killing spinor equation. We find evidence for additional BPS modes obeying the CSS

boundary conditions, as well as modes living in the left-moving Brown-Henneaux sec-

tor. We conclude with a short analysis of these Brown-Henneaux modes under the

off-shell 4d/5d reduction to the theory on AdS2×S2.

Outline of this thesis

Review chapters: The first three chapters that follow this introduction contain im-

portant background material in the set up of the localization problem. In Chapter 2,

we review the classical theory of pure Einstein gravity in (2+1) dimensions with neg-

ative cosmological constant. We gain an understanding of the geometrical properties

of AdS3 solutions, their asymptotic structure, and boundary conditions. In Chap-

ter 3, we move to a Euclidean setting of the same classical (2+1)-dimensional theory

with suitable boundary conditions. In this setting, we briefly review the computation

of the gravitational partition function on AdS3, which is the dual of (1.4), as a sum

over a Maldacena-Strominger family of geometries [25]. We then move towards the

gravitational dual of the elliptic genus (1.7) by introducing into the Einstein action

a coupling to U(1) matter gauge fields. In Chapter 4, the five-dimensional theory

with eight supercharges (N = 2) and matter couplings is introduced. As required

by the localization procedure, we focus on the off-shell superconformal formalism of

this theory. In this framework, we review the classical Lorentzian AdS3×S2 solution,

focusing on the derivation of its Killing spinors and superalgebra. This has been

studied in a series of insightful papers [47, 48].
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Chapters containing new results: Upon conclusion of these review chapters, we

move on to the novel elements that we have developed towards the localization com-

putation, and which we described in the“Breakdown of strategy” discussion above.

In Chapter 5 we first set up the Euclidean counterpart of the five-dimensional off-

shell N = 2 supergravity reviewed in Chapter 4. We then construct the twisted

supersymmetric H3/Z background, and derive its Killing spinors and superalgebra.

Finally, we present the relation of the path integral to the trace definition of the

elliptic genus. In Chapter 6, we present the off-shell 4d/5d map modified to the

Euclidean signature and present the lift from the Euclidean AdS2×S2 background

of the 4d N = 2 off-shell supergravity to the H3/Z×S2 background constructed in

the prior chapter. In Chapter 7 we apply our formalism to lift localization solutions

around AdS2×S2 to localization solutions on H3/Z×S2. In Chapter 8, we analyze the

asymptotics of the new localization solutions and propose a boundary term structure

for the bulk action. Lastly, we perform a numerical search in the asymptotic regime

for additional localization solutions in the Weyl multiplet.
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AdS3 gravity

In this chapter, we review the classical theory of general relativity with a cosmological

constant, in Lorentzian signature, focusing on the (2+1)-dimensional setting. After

emphasizing the unique subtleties of the theory in this dimensionality, we restrict to

the sign of the cosmological constant compatible with locally Anti-de-Sitter (AdS)

spacetimes, and highlight a selection of relevant solutions. Finally, we review aspects

of the near-boundary regime of the theory, in particular the notions of asymptotically

AdS3 spaces and boundary conditions. This latter discussion includes a brief review of

the Brown-Henneaux boundary conditions [35], which are the standard AdS3 bound-

ary conditions on which the gravitational functional integral is defined, as well as an

alternative set of boundary conditions recently constructed by Compère, Strominger

and Song [46].

2.1 3d Einstein-Hilbert theory

In this section we review the key features of classical Einstein-Hilbert gravity in

(2+1) dimensions coupled to an arbitrary cosmological constant.

Action and conventions

The Einstein-Hilbert action for a three-dimensional Lorentzian spacetime (M, g),

coupled to a cosmological constant Λ ∈ R, is

S =
1

16πG3

∫
M
d3x

√
−g(R− 2Λ) , (2.1)

where G3 is the three-dimensional Newton’s and R is the Ricci scalar, or scalar

curvature. The metric determinant is denoted throughout this work as g ≡ Det(gµν).
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Chapter 2. AdS3 gravity

The field equations derived from (2.1) strongly constrain the geometry of solutions, as

we will shortly see. For instance, we will show that all solutions to the field equations

have constant scalar curvature proportional to the cosmological constant Λ. The

solution space is then further partitioned according to the sign of Λ. Before describing

this partition, we note the following remark about our curvature conventions (which

are summarized in Appendix A): our expression for the Riemann tensor (A.6) in

terms of gµν has an overall opposite sign compared to the standard GR literature

(e.g. see [49]), and so our Ricci scalar R is also related to that in standard conventions

by an overall sign. For convenience 1, we then also flip the sign of the cosmological

constant Λ. These differences result in our Lorentzian Einstein-Hilbert action (2.1)

appearing with an overall opposite sign compared to the standard literature (which

is minus).

Now, in our conventions, the choice Λ > 0 in (2.1) leads to solutions correspond-

ing to locally Anti-de-Sitter (AdS) spacetimes, which have constant positive scalar

curvature. The theory (2.1) with this sign of Λ is correspondingly referred to as AdS

gravity. The Λ < 0 sector yields locally de-Sitter (dS) spacetimes, which have con-

stant negative scalar curvature. Finally, setting Λ = 0 leads to solutions with zero

curvature, i.e. locally Minkowski spacetimes. In this thesis, the focus is exclusively

on the AdS sector.

Einstein’s equations

To obtain the field equations for the metric tensor field gµν , consider the first

variation of (2.1) with respect to the inverse metric gµν :

(16πG3)δS =

∫
M
d3x

√
−g
(
Rµν −

1

2
gµνR + Λgµν

)
δgµν

−
∫
M
d3x

√
−g∇σ

(
gµνδΓσµν − gµσδΓννµ

)
.

(2.2)

In this section only, we assume that the variational principle has been made well-

defined, i.e. that fall-off conditions have been imposed on gµν such that the total

derivative term in the second line vanishes (either identically or with the addition of

suitable boundary terms). Then, setting the surviving bulk integrand in (2.2) to zero,

one reads off the Einstein’s equations:

Rµν −
1

2
gµνR = −Λgµν . (2.3)

1More precisely: it is convenient to have that solutions obtained from Λ > 0, Λ < 0, have scalar
curvature R > 0, R < 0, respectively.

17



Chapter 2. AdS3 gravity

Note that equation (2.3) with µ, ν = x0, · · ·xd−1 is, in fact, the field equation

for the generic d-dimensional2 Einstein-Hilbert theory. This allows us to perform the

following manipulations in this more general setting. Acting on (2.3) with gµν and

using gµνg
µν = d gives

R =
2d

d− 2
Λ . (2.4)

This relation indicates that Einstein metrics have constant scalar curvature propor-

tional to the cosmological constant Λ. In particular, solutions in the AdS-gravity

sector (Λ > 0) have constant positive curvature. Substituting (2.4) into (2.3), the

Einstein equation reduces to:

Rµν =
2Λ

d− 2
gµν . (2.5)

Now, we return to the case of d = 3. A special feature of this dimensionality is

that the Weyl tensor vanishes identically. This additional geometric constraint, which

is not present in Einstein theory with d > 3, further restricts the solution space. A

vanishing Weyl tensor indeed implies that the Riemann tensor is entirely determined

by the Ricci tensor as

Rµνσλ = 2
(
gµ[σRλ]ν − gν[σRλ]µ

)
− gµ[σgλ]νR . (2.6)

Substituting (2.4) and (2.5) into the above, we then have that

Rµνσλ = Λ(gµσgνλ − gµλgνσ) . (2.7)

The implications of (2.7) are major: we have that all three-dimensional Einstein

metrics of (2.1) are locally diffeomorphic to one another. In particular, they are

locally diffeomorphic to the vacuum solution of the theory, which in the case of Λ > 0

is pure AdS3.

The following equivalent statement is typically made: there are no propagating lo-

cal degrees of freedom in three-dimensional Einstein gravity. This is can be illustrated

by counting the physical degrees of freedom of a 3d Einstein-metric tensor: the metric

in three dimensions has six independent components, but only three are dynamical

(in the sense that only three appear with a timelike derivative in the Lagrangian).

Taking the 3d diffeomorphisms into account, we are then left with zero physical de-

2Note that we now use d to denote the dimensionality of the bulk spacetime, and not the dimen-
sionality of the boundary theory.
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grees of freedom. In other words, the theory does not admit local excitations on the

vacuum solution.

While these considerations seem to render 3d gravity trivial, a closer inspection

reveals a more subtle story. Firstly, different global properties can be imposed on

the boundary manifold which leads to physically distinct solutions, as we will see. It

so turns out, in particular, that these “global degrees of freedom” can account for

many features of gravity in higher dimensions, notably black hole solutions [50] in

the case of Λ > 0. Secondly, studying the theory under certain choices of boundary

conditions for gµν reveals the emergence of rich boundary dynamics, such as the so-

called boundary gravitons discovered by Brown and Henneaux [35].

From here onwards, we fix the cosmological constant as

Λ =
1

4ℓ2
, (2.8)

thus restricting to the AdS-gravity sector. By (2.4), all Einstein metrics have scalar

curvature

R =
3

2ℓ2
. (2.9)

Here, ℓ ∈ R is a scale that will appear as an overall prefactor in the Einstein metrics.

We now turn to describing solutions to the theory with (2.8).

2.2 AdS3 solutions

The spectrum of solutions to (2.1) with (2.8) consists of locally diffeormophic geome-

tries with constant positive curvature, which are known as Anti-de-Sitter spaces. In

this section, we briefly review the description of locally AdS3 metrics through the

so-called embedding formalism, before restricting our attention to two particular so-

lutions of interest. These are, firstly, the global patch of the AdS3 vacuum itself, or

pure AdS3, and secondly, the three-dimensional black hole solution. The distinction

in the global properties of these solutions will be highlighted.

Embedding formalism

A powerful formalism for describing locally AdS3 metrics (more generally AdSd

metrics) is the embedding formalism.

Consider the space R2,2 covered by coordinates T1, T2 in the timelike directions

and X1, X2 in the spacelike directions. With signature conventions (−,−,+,+), the
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metric is

ds2 = −(dT1)
1 − (dT2)

2 + (dX1)
2 + (dX2)

2 . (2.10)

AdS3 is then defined as the hyperboloid in R2,2 given through the following embedding

equation:

−(T1)
1 − (T2)

2 + (X1)
2 + (X2)

2 = −L2 , (2.11)

where in our context we take L = 2ℓ. The hyperboloid defined by (2.11) mani-

festly inherits boosts- and rotation-invariance from the R2,2 metric (2.10) (but breaks

translations). The isometry group of locally AdS3 spaces is therefore SO(2, 2).

A set xµ of coordinates on the hyperboloid are obtained by choosing a parametriza-

tion for T1,2(x), X1,2(x) in terms of xµ, such that (2.11) is satisfied. The correspond-

ing AdS3 metric is then the induced metric on the hyperboloid, obtained by substi-

tuting the chosen parametrization into (2.10). For instance, denoting xµ = (ρ, ψ, t),

one such parametrization is:

T1 = L cosh ρ cos t , T2 = L cosh ρ sin t ,

X1 = L sinh ρ sinψ , X2 = L sinh ρ cosψ .
(2.12)

with ρ ∈ [0, ∞), ψ ∈ [0, 2π), t ∈ [0, 2π). The AdS3 metric with the choice (2.12) is

special, as we now discuss.

Global AdS3

The vacuum solution to the Einstein’s equations (2.5) with Λ > 0 is pure AdS3.

We analyze this space in the so-called global patch, or global coordinates.

A line element for pure AdS3 in global coordinates is obtained as the induced met-

ric on the hyperboloid (2.11) with embedding-space parametrization given in (2.12):

ds2 = (2ℓ)2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dψ2

)
. (2.13)

where t is the time coordinate with range (−∞,∞) 3, ρ is the radial coordinate

with range [0,∞), and ψ is the compact angular direction with range [0, 2π). The

constant ℓ ∈ R, which appears through the choice of cosmological constant in (2.8),

is referred to as the radius, or scale of AdS3
4. These coordinates give a universal

covering of the hyperboloid (hence global coordinates), and we note that the boundary

3Note that, compared to (2.12), we have unwrappped the range of t from t ∈ S1 to t ∈ R. This
is required to avoid closed timelike curves.

4The choice (2ℓ) for the radius in (2.13) is chosen for later convenience. The more conventional
radius ℓ is obtained by choosing, instead of (2.8), the value Λ = ℓ−2.
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topology of the space is R×S1, i.e. an infinite cylinder located at ρ→ ∞ and extending

in the timelike direction.

From the embedding formalism, the symmetries AdS3 are known. It is nevertheless

useful to decouple from this construction and analyze them directly from (2.13). One

finds that the metric (2.13) is maximally symmetric with the following six Killing

vector fields:

ℓ− = 1
2

[
tanh ρ e−i(t−ψ)∂t − coth ρ e−i(t−ψ)∂ψ + ie−i(t−ψ)∂ρ

]
ℓ0 = − i

2
(∂t − ∂ψ)

ℓ+ = −1
2

[
tanh ρ ei(t−ψ)∂t − coth ρ ei(t−ψ)∂ψ − iei(t−ψ)∂ρ

]
ℓ̄− = 1

2

[
tanh ρ e−i(t+ψ)∂t + coth ρ e−i(t+ψ)∂ψ + ie−i(t+ψ)∂ρ

]
ℓ̄0 = − i

2
(∂t + ∂ψ)

ℓ̄+ = −1
2

[
tanh ρ ei(t+ψ)∂t + coth ρ ei(t+ψ)∂ψ − iei(t+ψ)∂ρ

]

(2.14)

It is important to highlight that these Killing vectors are all well-defined with respect

to the identifications of (2.13). Under the Lie bracket, they form the following non-

trivial commutation relations:

[ℓ0 , ℓ±]Lie = ±ℓ± , [ℓ+ , ℓ−]Lie = −2ℓ0 ,[
ℓ̄0 , ℓ̄±

]
Lie

= ±ℓ̄± ,
[
ℓ̄+ , ℓ̄−

]
Lie

= −2ℓ̄0 ,

(2.15)

corresponding to two commuting copies of SL(2,R). We therefore have that the

isometry group of pure AdS3 is, as expected, SL(2,R)L×SL(2,R)R ∼= SO(2, 2). Here,

the L- and R- subscripts is notation referring to the sets of left-moving (unbarred)

and right-moving (barred) algebras respectively.

The BTZ black hole

Another solution to (2.3) of major interest is the 3d black hole, nowadays com-

monly referred to as the Banados-Teitelboim-Zanelli (BTZ) black hole [50].

The line element for the BTZ black hole is conveniently written as 5

ds2 = −N2
r dτ

2 +N−2
r dr2 + r2

(
dφ+Nφdτ

)2
, (2.16)

5Note that the τ symbol employed in this section is not to be confused with the modular parameter
used in all other chapters.
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where

Nr ≡

√
−8GM +

r2

(2ℓ)2
+

16G2J2

r2
, Nφ ≡ −4GJ

r2
, M, J ∈ R . (2.17)

Here, the coordinates have ranges τ ∈ (−∞, ∞), r ∈ (0, ∞) and φ ∈ [0, 2π). The

parameters M and J are the mass and angular momentum of the black hole, respec-

tively. The radial values for which Nr = 0 are two coordinate singularities

r± = 2ℓ
[
4GM

(
1±

√
1−

( J

2Mℓ

)2)]1/2
, (2.18)

which correspond to an inner Cauchy surface (r−) and an outer event horizon (r+).

Note that (2.18) is a constraint on the spectrum of allowed black holes, in that

both |J | ≤ 2Mℓ and M > 0 are required. The limiting case is |J | = 2Mℓ for which

the surfaces r+, r− coincide, giving rise to the extremal BTZ black hole. We can also

invert (2.18), so as to express the charges in terms of r±:

M =
r2+ + r2−
8G3(2ℓ)2

, J =
r+r−

4G3(2ℓ)
. (2.19)

Finally, we note that the black hole admits the semiclassical thermodynamic prop-

erties discussed in the introduction to this thesis. In particular, its Hawking en-

tropy (1.1) (in units c = ℏ = kB = 1) is

SBTZ =
2πr+
4G3

. (2.20)

We now wish to highlight that the metric (2.16) of the black hole is locally pure

AdS3 at every point, but differs at the level of global identifications. To see this

explicitly, we first substitute the expressions for the charges (2.19) back into the

metric (2.16). Then, this BTZ metric is mapped into the form of the global AdS3

metric (2.13), with coordinates that we denote (ρ′, ψ′, t′), by the following diffeomor-

phism: 6

sinh ρ′ =

√
r2 − r2+
r2+ − r2−

, ψ′ =
i

2ℓ

(r+
2ℓ
τ − r−φ

)
, t′ = − i

2ℓ

(r−
2ℓ
τ − r+φ

)
.

(2.21)

6Note that while the transformations (2.21), which directly relate (2.13) and (2.16), are complex,
the two sets of transformations that respectively map from the embedding metric (2.10) to (2.13)
and (2.16) are real (see (2.12) for the map to (2.13), while for the map to (2.16) we refer to [51]).
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Given the periodicities of the black hole coordinates (φ, τ), it is clear that the pe-

riodicities of (ψ′, t′) in (2.21) are different to those of the true global AdS3 coor-

dinates (ψ, t). The BTZ black hole therefore differs from global AdS3 by global

identifications.

We conclude this discussion with a remark on the symmetries. Because the black

hole is locally diffeomorphic to global AdS3 via (2.21), the Killing vectors (2.14) of

global AdS3 are also locally Killing vectors of the black hole. However, only two of

them (∂t′ and ∂ψ′) are compatible with the periodicities of (ψ′, t′). We therefore have

that the SL(2,R)L× SL(2,R)R isometry group of pure AdS3 is broken to the R×SO(2)

subgroup. This exhibits the general fact that the set of global symmetries of an

AdS3 space with non-trivial identifications is typically smaller than its set of local

symmetries.

2.3 Asymptotic structure of AdS3 gravity

In addition to the interior solutions of the theory e.g. pure AdS3 or the BTZ black hole,

we are interested in an asymptotic (i.e. near-boundary) treatment of AdS3 gravity.

Our aim with this section is to explore this rich asymptotic structure. In particu-

lar, we discuss the notion of locally ”asymptoticlly AdS3 spaces” which, as we see

in a later section, is crucial to the set-up of the gravitational path integral. More

generally, we review how, even in the classical theory, AdS3 gravity near the bound-

ary already exhibits certain striking features suggestive of a quantum duality with a

two-dimensional conformal field theory.

Two related principles enter this analysis. First, the asymptotic structure of the

gravitational theory is constrained by Einstein’s equations near the boundary. We

explore this in detail in Section 2.3.1. Secondly, one requires a notion of consistent

boundary conditions which must be imposed by hand. At the classical level, such

conditions are required to fix degrees of freedom of the fields near the boundary and

allow for a well-defined variational principle. We approach the topic of boundary

conditions by describing two known examples, which both play an important role in

this thesis. The first are the celebrated Brown-Henneaux boundary conditions [35],

which we discuss in Section 2.3.2. The second, which we review in 2.3.3, are the

(much more modern) Compère-Song-Strominger (CSS) boundary conditions [46].
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2.3.1 Asymptotic Einstein’s equations

We begin this analysis with a treatment of Einstein’s equations near the boundary

and how they constrain the asymptotic structure of their solutions. The starting point

is the following theorem by Fefferman and Graham [52]. Let gµν denote a 3d metric

that satisfies Einstein’s equations with a positive cosmological constant Λ = 1/(2ℓ)2

and potential matter couplings. Then, there exists a distinguished coordinate sys-

tem yµ = (ρ, xα) such that the metric takes the form 7

gµν = (2ℓ)2dρ2 + γαβ(ρ, x) dx
αdxβ , (2.22)

where ρ is an outgoing radial coordinate, and where the induced metric on a constant ρ

slice γαβ admits the following expansion in ρ≫ 1:

γαβ(ρ, x) = e2ργ
(0)
αβ (x) + γ

(2)
αβ (x) +O(e−2ρ) . (2.23)

The above expansion is known as the Fefferman-Graham expansion, and will be used

extensively throughout this thesis. Note that no assumptions are made on boundary

manifold. Note also that, while the leading- and first subleading term in (2.23)

are universal irrespective of matter couplings, the further subleading terms are not.

(It is worth pointing out that for the pure 3d Einstein theory (2.1), the expansion

terminates after the second subleading term e−2ργ
(4)
αβ (x) [53], though this is not an

important feature of the analysis.)

A corresponding expansion for the inverse induced-metric γαβ is determined by

requiring that γαβγβλ = δαλ . One obtains

γαβ(ρ, x) = e−2ργ(0)αβ(x)− e−4ργ(0)αλγ(0)βδγ
(2)
λδ (x) +O(e−6ρ) , (2.24)

where γ(0)αβ is the inverse of γ
(0)
αβ , defined as γ(0)αβγ

(0)
βλ = δαλ . It is useful to introduce

the notation that indices on γ(2) are raised/lowered using γ(0), i.e. we write:

γ(2)αβ ≡ γ(0)αλγ(0)βδγ
(2)
λδ , (2.25)

7Note: Fefferman and Graham show that (2.22) is always available for generic AdSd spaces, not
just AdS3. This is highly non-trivial in d > 3. In d = 3 however, one can simply appreciate (2.22)
from the fact that all solutions are locally diffeomorphic to pure AdS3 (2.13), which is already in
the form (2.22).
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such that the Fefferman-Graham expansions (2.24) with (2.25) becomes

γαβ(ρ, x) = e−2ργ(0)αβ(x)− e−4ργ(2)αβ +O(e−6ρ) . (2.26)

An immediate exercise is to substitute the metric (2.22) with (2.23) back into the

Einstein’s equations. This yields constraints between the various coefficients γ(n) of

the expansion. We demonstrate this explicitly, focusing on the pure theory (2.1) with

Einstein’s equations given (2.3). The first step is the substitution of the Fefferman-

Graham gauge (2.22) into (2.5), which gives Einstein’s equations in terms of the

induced metric γαβ as

1

2ℓ
∂ρK +KαβK

αβ − 2Λ = 0 , (2.27)

∇β(Kαβ − γαβK) = 0 , (2.28)

2KαλK
λ
β −KαβK − 1

2ℓ
∂ρKαβ − R̃αβ + 2Λγαβ = 0 , (2.29)

where, recalling from Section 2.1, we have Λ = 1/(4ℓ2). The extrinsic curvature Kαβ

for Fefferman-Graham metrics (2.22) is

Kαβ =
1

2(2ℓ)
∂ργαβ , (2.30)

and K ≡ γαβKαβ. All indices in (2.27 - 2.29) are raised/lowered using γαβ. In (2.28), ∇̃α

is the covariant derivative with respect to γαβ:

∇̃αVβ = ∂αVβ − Γ̃λαβVλ , Γ̃λαβ ≡ 1

2
γλδ(∂αγβδ + ∂βγαδ − ∂δγαβ) . (2.31)

In (2.29), we have introduced R̃αβ, the Ricci tensor of γαβ:

R̃αβ = −2
(
∂[λΓ̃

λ
α]β + Γ̃δλ[δΓ̃

λ
α]β

)
. (2.32)

The second step is to substitute the Fefferman-Graham expansion (2.23) for the in-

duced metric into the decomposed Einstein equations (2.27 - 2.29). A useful set of
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intermediate quantities is:

Kαβ =
1

2ℓ
(e2ργ

(0)
αβ − e−2ργ

(4)
αβ ) +O(e−4ρ) ,

Kαβ =
1

2ℓ
(e−2ργ(0)αβ − 2e−4ργ(2)αβ) +O(e−6ρ)

K =
1

2ℓ
(2− e−2ργ(2)αβγ

(0)
αβ ) +O(e−6ρ) ,

R̃αβ = R̃
(0)
αβ +O(e−2ρ) ,

(2.33)

where R̃
(0)
αβ is the Ricci tensor for γ

(0)
αβ , i.e.

R̃
(0)
αβ = −

(
∂[λΓ̃

(0)λ
α]β + Γ̃

(0)δ
λ[δ Γ̃

(0)λ
α]β

)
, Γ̃

(0)λ
αβ ≡ 1

2
γ(0)λδ(∂αγ

(0)
βδ + ∂βγ

(0)
αδ − ∂δγ

(0)
αβ ) . (2.34)

With these substitutions, one finds the following three relations. The trace with

respect to γ(0) of the leading order equation of (2.29) gives

Tr(0)[γ
(2)] = 2ℓ2R̃(0) , (2.35)

where R̃(0) = γ(0)αβR̃
(0)
αβ and Tr(0)[γ

(n)] ≡ γ(0)αβγ
(n)
αβ . Subleadings orders of (2.29)

and (2.27) give relations that determine further subleading coefficients γ
(n)
αβ in the

Fefferman-Graham expansion. For instance, for the pure theory, we have:

γ
(4)
αβ =

1

4
(γ

(2)
αλγ

(0)λδγ
(2)
δβ ) . (2.36)

Finally, one finds that (2.28) is identically satisfied at leading order, but yields the

following differential constraint at the first subleading order:

∇̃(0)β
(
γ
(2)
αβ − Tr(0)[γ

(2)]γ
(0)
αβ

)
= 0 , (2.37)

where ∇̃(0)
α is the covariant derivative constructed from γ

(0)
αβ and its index is raised

with γ(0)αβ.

The relations (2.35) and (2.37) imply that for a given γ(0), the tensor γ(2) is only

determined up to its trace and a constraint on its divergence. It is useful for a

later discussion to introduce an equivalent representation of this fact, by making the

following definition:

Tαβ := γ
(2)
αβ − Tr(0)[γ

(2)]γ
(0)
αβ = γ

(2)
αβ − 2ℓ2R̃(0)γ

(0)
αβ (2.38)
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where we used the trace relation (2.35) to substitute for R̃(0). Re-arranging for γ(2),

one has

γ
(2)
αβ = Tαβ + 2ℓ2R̃(0)γ

(0)
αβ . (2.39)

and the constraints (2.35), (2.37) are, respectively,

Tr(0)[T ] = −2ℓ2R̃(0) , (2.40)

∇̃(0)βTαβ = 0 . (2.41)

In this picture, the ambiguity in γ
(2)
αβ is recast in the form of a symmetric tensor Tαβ,

which is determined by γ(0) only up to its trace and divergence as in (2.40), (2.41).

One concludes that the asymptotic form of Einstein metrics is entirely character-

ized by six functions of the boundary coordinates xα, of which only five are indepen-

dent. The six functions correspond to the components of the symmetric tensors γ
(0)
αβ

and γ
(2)
αβ . They are subjected to the algebraic trace condition (2.35), and are further

constrained by the two differential equations (2.37). (Equivalently, in the language

of (2.39), the inputs for γ
(2)
αβ are traded for the two components of Tαβ subjected to

the trace condition (2.40) and the differential constraints (2.41).)

We now turn to the subject of boundary conditions. Boundary conditions corre-

spond to fixing a certain amount of the input data summarized above to a specified

reference value. In the classical theory, this reduces the overall ambiguity in the

asymptotic metric (in fact, the metric becomes almost entirely determined by the

equations of motion). In the quantum level, all degrees-of-freedom that are not fixed

by the boundary conditions are allowed to fluctuate.

We study two particular sets of boundary conditions. The first is Brown-Henneaux,

where the input data that is fixed are all the components of γ(0), and the only re-

maining degrees of freedom in the asymptotic solution appear as an arbitrary choice

of one left-moving and one right-moving function for the two unfixed components

of γ(2). The second set are the CSS conditions, where the input data that is fixed are

two components of γ(0) and one component of γ(2). The third component of γ(0) is

also partially fixed to be an arbitrary right-moving function. The remaining degrees

of freedom in the asymptotic solution are then this very right-moving function and

another independent arbitrary right-moving function for the unfixed γ(2) component.

For both choices of boundary conditions, the following two key criteria [54] are sat-

isfied: the interior solutions of interest (e.g. global AdS3 and the BTZ black hole) are
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allowed. Furthermore, a consistent variational principle is reached upon the addition

of suitable boundary terms.

2.3.2 Boundary conditions I: Brown-Henneaux

The seminal works by Brown and Henneaux [35] on Einstein theory in asymptotically-

AdS3 spaces constitutes a pioneering step towards a holographic description of (semi-)

quantum gravity.

Boundary conditions

Their treatment relies on the introduction of the now-called Brown-Henneaux

boundary condition:

γ(0) = η . (2.42)

In other words, the conformal boundary metric is fixed to be locally Minkowski, while

the subleading terms in (2.23) are left unconstrained. To proceed, it is useful to make

an explicit choice of coordinates. The most convenient choice for our analysis is to

take the global AdS3 metric (2.13) as a reference, i.e. we identify its ρ coordinate

with the ρ coordinate appearing in the Fefferman-Graham gauge (2.22). Then, by

performing the asymptotic expansion in eρ of (2.13) and comparing to (2.23), we fix

ds2(0) ≡ γ
(0)
αβ dx

αdxβ = ℓ2(−dt2 + dψ)2 = ℓ2dx+dx− , (2.43)

where we have introduced light-cone-type coordinates defined as x± ≡ ψ ∓ t. 8

Asymptotic form of Brown-Henneaux metrics

With γ(0) fixed, the remaining degrees-of-freedom in the asymptotic metric ex-

pansion (2.23) are the components of γ(2) subjected to the Einstein-equation con-

straints (2.35), (2.37). The trace constraint is algebraic and entirely fixes one of the

components:

γ
(2)
+− = 0 , (2.44)

Meanwhile, the two dynamical constraints imply that the remaining two modes, γ
(2)
++

and γ
(2)
−−, are purely left-moving and right-moving functions respectively:

∂−γ
(2)
++ = ∂+γ

(2)
−− = 0 ⇒ γ

(2)
++(x) ≡ ℓ2L(x+) , γ

(2)
−−(x) ≡ ℓ2L̄(x−) , (2.45)

8Note that x± are not the usual light-cone coordinates X± = t ± ψ = ±x∓, for which the
flat metric is ds2 = −dX+dX−. Our choice is made such that under Wick rotation t = −itE , the
coordinates x± map directly to the standard complex coordinates as (x+, x−) 7→ (z, z̄), where (z, z̄) =
(ψ + itE , ψ − itE).
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where the factor of ℓ2 is chosen for convenience. Note that, beyond their left/right-

moving profile, these functions are entirely arbitrary. They are commonly referred

to as the Brown-Henneaux modes, or the boundary gravitons of AdS3. The direct

substitution of (2.42), (2.44), (2.45), into (2.23) now gives the most general asymptotic

form (up to trivial diffeomorphisms) of solutions to the vacuum AdS3 theory (2.1)

with Λ = 1/(2ℓ)2 and with Brown-Henneaux boundary condition (2.43):

ds2 = (2ℓ)2dρ2 + ℓ2
(
e2ρdx+dx− + L(x+)(dx+)2 + L̄(x−)(dx−)2 +O(e−2ρ)

)
. (2.46)

One may check that the bulk solutions discussed in Section 2.2 take the asymptotic

form (2.46) upon suitable choices for L, L̄. For instance, global AdS3 (2.13) is reached

with the choice

L = L̄ = −1 . (2.47)

Variational principle

We turn to the variational principle of the theory with these boundary conditions.

Since the Brown-Henneaux boundary conditions are Dirichlet conditions, one fol-

lows the usual treatment for Dirichlet problems in general relativity on non-compact

spaces. Recall that this corresponds to the addition of the so-called Gibbons-Hawking-

York boundary term and a cosmological counterterm. For metrics in the Fefferman-

Graham gauge (2.22), these terms are respectively given as

SGH = − 1

8πG3

∫
∂M

d2x
√
−γK , (2.48)

SCC =
1

8πG3(2ℓ)

∫
∂M

d2x
√
−γ , (2.49)

where γ ≡ Det(γαβ). For a stationary solution, the variation of (2.1) together with

its boundary terms (2.48), (2.49), gives, upon substituting the Fefferman-Graham

expansion (2.23):

δ
(
S + SGH + SCC

)
=

1

16πℓG3

∫
d2x
√
−γ(0)

(
γ(0)αβTr[γ(2)]− γ(2)αβ

)
δγ

(0)
αβ , (2.50)

which indeed vanishes once the Brown-Henneaux conditions are imposed, i.e. that γ(0)

is fixed (δγ
(0)
αβ = 0). The variational principle is therefore well-defined. Note the

emergence of Tαβ, as introduced in (2.38), which now acquires the interpretation of a

holographic stress tensor [55] (we have Tr[T ] = 0 by (2.40)).
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Asymptotic symmetries

The symmetry group under which an asymptotically AdS3 metric obeying Brown-

Henneaux boundary conditions is mapped to another asymptotically AdS3 metric

obeying the same boundary conditions is much larger than the SO(2, 2) isometry

group of the bulk AdS3 solutions. Most remarkably, the group in question turns out

to be the 2d conformal group. Here, we review the first and main step in deriving

this result, namely to compute the asymptotic Brown-Henneaux Killing vector fields

that generate this asymptotic algebra.

Consider an arbitrary diffeomorphism ξµ(ρ, x
α) on (2.22) where, recall, (ρ, xα)

are Fefferman-Graham coordinates. We say that ξ is an asymptotic Brown-Henneaux

Killing vector if (a) it preserves the Fefferman-Graham gauge (2.22) 9 and (b) it leaves

γ(0) in (2.43) invariant under the Lie derivative Lξ, but not necessarily the subleading

metrics γ(2), · · · of γαβ. The condition (a) is equivalent to the constraints

Lξgρρ = 0 , (2.51)

Lξgρα = 0 . (2.52)

Meanwhile, (b) corresponds to

Lξgαβ = O(1) . (2.53)

We now solve these constraints for ξ. The first, (2.51), immediately gives

∂ρ ξ
ρ = 0 ⇒ ξρ(ρ, x) ≡ C(x) . (2.54)

Using this, the second constraint (2.52) gives

γαβ ∂ρξ
β + (2ℓ)2∂αC(x) = 0 ⇒ ξβ(ρ, x) = Dβ(x)−

∫
dρ γαβ∂αC(x) (2.55)

where we have introduced the arbitrary ρ-independent mode as Dα(x). Note that

while this mode is O(1), the integral term is subleading because γαβ = e−2ργ(0)αβ+· · ·
as in (2.26). For the third constraint (2.53), we have

2γ
(0)
αβ C(x) +Dλ(x)∂λγ

(0)
αβ + 2γ(0)λ(α∂β)D

λ(x) = 0 , (2.56)

9Note that this aspect can be relaxed. Indeed, Brown and Henneaux derive the asymptotic
symmetry algebra while also allowing for subleading fluctuations in the gρρ and gρα components,
which clearly violates the Fefferman-Graham gauge (2.22).
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which is the result of the leading order O(e2ρ) of the equation with (2.54), (2.55), and

with the fact that the Brown-Henneaux boundary conditions set ∂λγ
(0)
αβ = 0. Finally,

taking the trace of (2.56) with γ(0)αβ, we have

C(x) = −1

2
∂λD

λ(x) , (2.57)

which we substitute back into (2.56) to give the equation

2∂(αDβ)(x) = γ
(0)
αβ∂λD

λ(x) . (2.58)

Notice that this equation is nothing but the conformal Killing vector equation for 2d

Minkowski space (recall γ(0) = η). The components of the leading order Dα(x) of the

diffeomorphism ξα(ρ, x) along the boundary directions are therefore the infinitesimal

generators of the 2d conformal group. Explicitly, we have the usual infinite set of

left/right-moving functions

D+ = D+(x+) , D− = D−(x−) . (2.59)

The subleading orders of ξα are then determined by (2.55), and we have

ξ+(ρ, x) = D+(x+) +
1

2

∫
dρ e−2ργ(0)−+∂−∂−D

−(x−) +O(e−4ρ) ,

ξ−(ρ, x) = D−(x−) +
1

2

∫
dρ e−2ργ(0)+−∂+∂+D

+(x+) +O(e−4ρ) ,

(2.60)

where we used (2.57) to substitute for C(x) in the integral terms. Finally, ξρ is

expressed from (2.54) with (2.57) as

ξρ(ρ, x) = −1

2

(
∂+D

+(x+) + ∂−D
−(x−)

)
. (2.61)

With (2.60) and (2.61), we have finally obtained the (infinite number of) asymptotic

Brown-Henneaux Killing vector fields:

ξ = D+(x+) ∂+ +D−(x−) ∂− − 1

2

(
∂+D

+(x+) + ∂−D
−(x−)

)
∂ρ

+
1

2

(∫
dρ e−2ργ(0)−+∂−∂−D

−(x−)
)
∂+

+
1

2

(∫
dρ e−2ργ(0)+−∂+∂+D

+(x+)
)
∂− +O(e−4ρ) ,

(2.62)
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which split into the left/right-moving parts

ξ(+) = D+(x+) ∂+ − 1

2
∂+D

+(x+) ∂ρ +
1

2

(∫
dρ e−2ργ(0)+−∂+∂+D

+(x+)
)
∂− ,

ξ(−) = D−(x−) ∂− − 1

2
∂−D

−(x−) ∂ρ +
1

2

(∫
dρ e−2ργ(0)−+∂−∂−D

−(x−)
)
∂+ ,

(2.63)

where we suppressed the O(e−4ρ).

The remaining step, which we simply state here, consists of computing the algebra

associated to these asymptotic symmetries. A subtlety here is that directly computing

the Lie bracket algebra of the vector fields (2.63) that generate these symmetries gives

only the classical part of the 2d conformal algebra, namely two commuting copies

of the centerless Virasoro algebra (a.k.a. the Witt algebra). This incompleteness

stems from the fact that the canonical generator associated with a given vector field

is not unique: it is only determined up to the addition of a constant (i.e. a ”central

extension”), which commutes with everything, and which the naive computation of

the Lie bracket does not capture. To observe the quantum 2d conformal group, the

algebra must be instead be computed from the Poisson brackets of the conserved

charges Q(±) associated to these vector fields (recall that these charges are non-trivial

because ξ(±) are not exact diffeomorphisms in the bulk). This approach correctly

gives rise to the central extension of the Witt algebra, and comes from the O(e−2ρ)

piece of ξ
(±)
n . Upon introducing Fourier modes Q

(±)
n for the generators, the resulting

algebra is finally matched to virL⊕ virR with central charge identified in terms of the

gravitational constants as

c =
3(2ℓ)

2G3

. (2.64)

This is the Brown-Henneaux central charge of AdS3 gravity.

2.3.3 Boundary conditions II: Compere-Song-Strominger

We now present an alternative, more recent set of boundary conditions, the Compere-

Song-Strominger (CSS) boundary conditions [46]. The construction of these condi-

tions was at the time strongly motivated by the emergence of the so-called Kerr/CFT

correspondence [56], but we underline that this is not the relevant context for our

problem. Instead, we will later find these boundary conditions are compatible with a

set of localization solutions around AdS3.
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The boundary conditions

The CSS boundary conditions are:

γ
(0)
−− = ℓ2∂−P̄ (x

−) , γ
(0)
+− =

ℓ2

2
, γ

(0)
++ = 0 , γ

(2)
++ = 4G3∆ℓ , (2.65)

where ∂−P̄ (x
−) is an arbitrary fluctuating function of the right-movers and ∆ is a

fixed constant that is related to the charges of specific BTZ-type solutions. Note that,

as with Brown-Henneaux, the boundary conditions fix the conformal boundary metric

to be Ricci-flat: R̃(0) = 0. However, unlike with Brown-Henneaux, the CSS conditions

are chiral, in the sense that they do not treat the left- and right- moving sectors on

the same footing. They also allow for fluctuations in the conformal boundary metric,

at the expense of fixing one component of the subleading order metric γ(2).

Asymptotic form of CSS metrics

We substitute the boundary conditions (2.65) into the asymptotic Einstein’s equa-

tions (2.35), (2.37). The trace constraint (2.35) gives

γ
(2)
+− = 4ℓG3∆∂−P̄ (x

−) . (2.66)

To solve the dynamical equations (2.37), note that the only non-trivial component

of Γ̃(0) with the CSS conditions (2.65) and (2.66) is Γ̃(0)+
−− = ∂−∂−P̄ . The choice x

α = x+

in (2.37) then gives

∂+∂−P̄ = 0 , (2.67)

which is trivially satisfied, and the choice α = x− in (2.37) gives, using (2.66), that

∂+γ
(2)
−− = 0 ⇒ γ

(2)
−− ≡ 4Gℓ(L̄(x−) + ∆(∂−P̄ )

2) . (2.68)

Here, we have introduced an arbitrary right-moving function L̄, and have split off

a (∂−P̄ (x
−))2 for convenience. The most general asymptotic metric obeying the

Einstein’s equations with the CSS conditions is therefore

ds2 = (2ℓ)2dρ2 + ℓ2e2ρ
(
dx+ + ∂−P̄ (x

−)dx−
)
dx−

+ 4G3ℓ
(
L̄(x−)dx−

2
+∆(dx+ + ∂−P̄ (x

−)dx−)2
)
+O(e−2ρ) .

(2.69)

Global AdS3 (2.13) is reached with the choice:

∂−P̄ (x
−) = 0 , L̄ = ∆ = −ℓ/(4G3) . (2.70)
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More generally, note that setting ∂−P̄ to zero and keeping L̄ arbitrary reduces the

metric (2.69) to that of the right-moving sector of Brown-Henneaux, where L̄ plays

the role of the Brown-Henneaux mode L̄ in (2.46). In this picture, the left-moving

Brown-Henneaux sector is to be seen as fixed to L ∼ ∆.

Variational principle

The variational principle with these boundary conditions requires an additional

boundary term on top of the Gibbons-Hawking term (2.48) and cosmological coun-

terterm (2.49) of the Brown-Henneaux story. This is due to the fact that, unlike with

Brown-Henneaux, we do not have δγ
(0)
αβ = 0 for any α, β, and so the surface term (2.50)

does not vanish. Explicitly, (2.50) with the CSS boundary conditions (2.65) gives:

δ
(
S + SGH + SCC

)
|CSS = − 1

16πℓG3

∫
d2x
√
−γ(0)γ(2)αβδγ(0)αβ ,

= −∆

ℓ4

∫
d2x
√

−γ(0)δγ(0)z̄z̄ ,

(2.71)

where used that γ(0)αβδγ
(0)
αβ = 0 and γ(2)z̄z̄ = 16∆G3/ℓ

3 by the boundary condi-

tions (2.65). The extra boundary term that is added to cancel (2.71) is given in [46]

as

Sbdry
CSS = −∆

4π

∫
∂M

d2x
√
−γ(0) γ(0)++ . (2.72)

with which one can check that

δ
(
S + SGH + SCC + Sbdry

CSS

)
|CSS = 0 . (2.73)

Asymptotic symmetries

The derivation of the asymptotic symmetries preserving the CSS boundary con-

ditions follows a strategy analogous to the derivation for Brown-Henneaux case. We

refer to [46] for the details. Here, it suffices to state that the asymptotic symme-

try algebra corresponds to a chiral (right-moving) Kac-Moody-Virasoro with central

extension. The central charge of the Virasoro is cR = 3(2ℓ)
2G3

.
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Aspects of AdS3 partition functions

In Chapter 2, we reviewed the classical AdS3 theory in Lorentzian signature, its

solution space, and the topic of asymptotically AdS3 boundary conditions. At this

stage, we are in a good position to introduce basic aspects of partition functions

in this classical and non-supersymmetric setting, in preparation for moving to the

supergravity formalism of Chapter 4 and beyond.

The analysis in this chapter begins with a Wick rotation of the Einstein theory to

Euclidean signature. This gives the semiclassical framework in which we then discuss

the partition function dual to the generic CFT2 trace given in (1.4). In this setting, we

review the rewriting of the gravitational partition function as a sum over PSL(2,Z)/Z
geometries [25]. The simplest such geometry, M0,1, or thermal AdS3, is presented.

In the spirit of moving one step closer towards the gravitational dual of the elliptic

genus (1.7), we introduce into the Einstein action a coupling to an arbitrary number

of right-moving U(1) matter gauge fields. The long-distance dynamics of these fields

are governed by a Chern-Simons action, and their boundary conditions require the

addition of a boundary term. In this Einstein-Maxwell-Chern-Simons theory, we

evaluate the action on the thermal AdS3 configuration.

3.1 Semiclassical limit and sum over geometries

As the simplest example, we study the semi-classical limit of the gravitational path

integral dual to the thermal CFT2 partition function (1.4). In this limit, the path-
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integral is dominated by the (Euclidean) AdS3 saddles of the Einstein theory:

Z(τ) =
∑
gc

exp
(
SE(gc) + · · ·

)
, (3.1)

where SE is the Euclidean action for the Einstein theory (with suitable renormaliza-

tion), gc denotes its saddles, and the (+ · · · ) represents suppressed quantum (loop)

corrections to SE(gc) in perturbation theory. Note that we suppress the τ argument

which should also enter in Z(). To proceed, two aspects need to be clarified. First,

we need the Euclidean version of the Einstein action (2.1). Secondly, we need to

take into consideration the boundary conditions that enter the definition of the path-

integral, and that therefore restrict the types of saddles which appear in (3.1). For

this discussion, our groundwork on Brown-Henneaux in Section 2.3.2 will help.

Euclidean Einstein-Hilbert action and conventions

First, we require the Euclidean version of the action for AdS3 gravity given in (2.1).

This is obtained through the Wick rotation:

t = −itE , (3.2)

where tE is the Euclidean time coordinate. Note that light-cone coordinates (x+, x−)

introduced in Section 2.3.2 are respectively mapped to the complex coordinates (z, z),

given as:

z = ψ + itE , z = ψ − itE . (3.3)

Here, let L and S =
∫
dt d2xL generically denote the Lagrangian density and action

functional of a Lorentzian theory, respectively. The Wick rotation (3.2) gives the

Euclidean counterpart LE of L as L = LE. We then define the Euclidean action SE

in terms of LE as

SE =

∫
dtE d

2xLE . (3.4)

With this definition, SE is related to the Lorentzian action as

iS = SE . (3.5)

Note that our definition (3.4), through (3.5), implies that Euclidean path integrals

are of the form
∫
D[Φ] exp(SE) (which is indeed the form we have been employing

throughout this thesis). In these conventions, the path integral is perturbatively

well-defined if SE is negative-definite. Now, according to (3.4), the action for the
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Euclidean Einstein-Hilbert action with cosmological constant (2.8) is

SE =
1

16πG3

∫
dtE d

2x
√
g
(
R− 1

2ℓ2

)
. (3.6)

The space of solutions to the field equations of (3.6) is also mapped by the Wick

rotation (3.2) from the Lorentzian solutions. In particular, recalling from Chapter 2

that all Lorentztian solutions are locally diffeomorphic to AdS3, we have that all

Euclidean solutions metrics are locally diffeomorphic to the 3d hyperbolic space H3.

The isometry group of H3 is SL(2,C).

Maldacena and Strominger’s sum of geometries

We turn to the boundary conditions for the path integral. As stated in Section 1.1,

the metric configurations that contribute to the gravitational functional integral are

those with asymptotic geometry corresponding to a T 2 with complex structure τ .

More precisely, these are all configurations that obey the (Wick-rotated) Brown-

Henneaux boundary conditions

γαβ dx
αdxβ = ℓ2e2ρdzdz +O(1) , (3.7)

where (z, z) must be coordinates on a T 2, i.e. z ∼ 2π ∼ 2πτ . In the semiclassical

limit, where the path-integral takes the discrete form (3.1), the contributions are

just saddles of the theory, which as described above are locally H3. By this virtue,

they automatically have asymptotic form (3.7). The non-trivial question that remains

is therefore how to classify all H3 spaces with a T 2 boundary. We review this in the

following paragraphs.

Starting with H3, one takes the quotient H3/Z of the hyperbolic space with the

discrete subgroup Z of its isometry group SL(2,C). This defines the solid torus man-

ifold, which is unique at the level of hyperbolic geometry. The conformal boundary

of this torus is equipped with the modular parameter τ , which is defined only up to

actions by the elements of the modular group PSL(2,Z) =SL(2,Z)/Z2:

τ 7→ aτ + b

cτ + d
, a, b, c, d ∈ R , ad− bc = 1 . (3.8)

(The action of Z2 in the quotient is the simultaneous sign flip of (a, b, c, d).)

Although at the level of the geometry the modular group is a symmetry, its action

does nevertheless change which cycle of the T 2 is contractible in the bulk. Explicitly,

consider the two coordinates (ψ, tE) on the T 2, which are related to (z, z) of (3.7)
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as in (3.3). The geometry in which the ψ-circle is contractible is called the M0,1

geometry, or the thermal geometry. The action on M0,1 with an element

γ =

a b

c d

 ∈ PSL(2,Z) (3.9)

produces a new configuration with modular parameter given in (3.8) and with a

contractible cycle along the

c tE + dψ (3.10)

direction (note that by Euclid’s algorithm, the condition ac−bd = 1 implies that (c, d)

are relative primes). While it therefore seems that the gc geometries that should be

summed in (3.1) are all the PSL(2,Z) images of the thermal geometry, this turns out

to be too broad. Indeed, we note that after specifying (c, d) there is one further equiv-

alence relation as (a, b) → (a, b) + t(c, d), t ∈ Z. Therefore, the independent sum is

only over distinct pairs (c, d). The associated geometries are the images of M0,1 un-

der PSL(2,Z)/Z, which we denote as Mc,d. The gravitational partition function (3.1)

becomes

Z(τ) =
∑
(c,d)

Zc,d(τ) , (3.11)

where the summation is over all relatively prime c and d with c ≥ 0, and where

Zc,d ≡ exp
(
SE(Mc,d) + · · ·

)
. (3.12)

This family ofMc,d geometries is the interpretation of what Maldacena and Strominger

termed an “SL(2,Z) family of black holes” [25]. Note that, because the Mc,d are the

PSL(2,Z)/Z images of M0,1, we may also express (3.11) as

Z(τ) =
∑

γ∗∈PSL(2,Z)/Z

Z0,1(γ
∗ · τ) . (3.13)

Written in this way, it is clear that all contributions to the partition function are

known once the contribution Z0,1 of thermal AdS3 is known. The exercise of comput-

ing the partition function therefore reduces to the calculation of Z0,1. In particular, if

the quantum (+ · · · ) corrections in (3.12) with (c, d) = (0, 1) can be computed, then

the partition function is known exactly. Recall that theses are the considerations that

were invoked in Section 1.1 when motivating the exact computation of Z0,1 (1.10) in

38



Chapter 3. Aspects of AdS3 partition functions

the supersymmetric theory.

The M0,1 geometry: thermal AdS3

As described above, the simplest classical configuration with boundary T 2 is ther-

mal AdS3, corresponding to the solid torus with contractible cycle along the spatial ψ

direction. We will require an explicit form for this geometry. We realize it, as is

usual, as the Wick rotation (3.2) of the global AdS3 metric (2.13). This gives the line

element

ds2 = 4ℓ2
(
cosh2 ρ dtE

2 + dρ2 + sinh2 ρ dψ2
)
. (3.14)

We then impose the required thermal periodicities as

(
tE , ψ

)
∼
(
tE + 2πτ2 , ψ + 2πτ1

)
∼
(
tE , ψ + 2π

)
. (3.15)

Note that we introduced notation for the real and imaginary part of τ as

τ ≡ τ1 + iτ2 . (3.16)

3.2 Introducing U(1) gauge fields

In this section, we insert into the low-energy gravitational theory the relevant dual

structure for constant chemical potentials µI coupled to a number of conserved U(1)

charges qI =
∫
JI in the boundary CFT2. Here, JI are the corresponding conserved

currents in the CFT, which we will take to be right-moving. We then compute the

action on thermal AdS3 with these U(1) couplings. Once exponentiated, this action

value corresponds to the leading order contribution to the function integral for Z0,1.

In the presence of the U(1) charges qI with chemical potentials µI , the thermal

partition function (1.4) of the generic CFT2 is modified as

ZCFT2(τ, µ) = TrH

[
e−βH+ℓP+µIqI

]
, (3.17)

where as before, H and P are the Hamiltonian and angular momentum operator

coupled to their chemical potentials β, ℓ given as in (1.5), (1.6), respectively.1 In the

dual gravitational theory (3.6), this additional matter structure should be reflected

by including the same number of U(1) gauge fields W I . The most relevant term

1Again, we highlight that ℓ appearing in (1.4) and now (3.17) is not the AdS3 radius appearing
in expressions like (2.13).
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governing their dynamics at low energies is given by the Chern-Simons (CS) action

− i

8π
kIJ

∫
W I ∧ dW J = − i

8π
kIJ

∫
d3x εµνλW I

µ ∂νW
J
λ . (3.18)

Gauge fields on asymptotically AdS3 spaces admit a large ρ expansion analogous to

the Fefferman-Graham expansion (2.23) as:

W I
α(ρ, x) = W I (0)

α (x) + e−2ρW I (2)
α (x) + · · · . (3.19)

The asymptotic equations of motion further imply thatW
I (0)
α is flat (i.e. independent

of ρ). We choose the U(1) gauge W I
ρ = 0.

As is well-known, the CS term has a first order kinetic term so that the two

legs W I
z, z̄ form canonical pairs in the Hamiltonian theory [57]. One should therefore

impose Dirichlet boundary conditions on only one of the legs:

δW I (0)
z = 0 , W

I (0)
z̄ not fixed. (3.20)

Now, in accord with the bulk/boundary correspondence, the boundary source µI must

be identified with the asymptotic value of the gauge field W
I (0)
z . Focusing on the

thermal AdS3 geometry, where the ψ-cycle is contractible, any smooth configuration

must have W I
ψ = 0 at the origin. The saddle-point configurations have flat gauge

fields due to the equations of motion, and therefore obey

W I
z = −W I

z = −iµI . (3.21)

The semiclassical thermal AdS3 contribution

We turn to computing the semiclassical contribution of this U(1)-matter-coupled

thermal AdS3 configuration to the gravitational dual of the trace (3.17). As discussed

in Section 3.1, this just involves computing the exponential of the renormalized action

Sren ≡ Sbulk + Sbdry (3.22)

on the field configuration. Here, Sbulk is the bulk Euclidean action of the Einstein-

Hilbert-Chern-Simons theory given by the sum of (3.6) and (3.18). Note that a

Maxwell term for W I is of course also present in the theory, but it vanishes on

the constant gauge fields (3.21). Meanwhile, the action Sbdry is the boundary action

required to make the total action finite and well-defined under our choice of boundary
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conditions. This corresponds to the Gibbons-Hawking boundary term (2.48) and

counter term (2.49), and a Chern-Simons boundary term given by

− i

8π
kIJ

∫
dz dz̄

[
W I
z W

J
z̄

]
bdry

. (3.23)

This last term is required to ensure the consistency of the variational principle of the

gauge fields with the boundary conditions (3.20).

We may now evaluate Sren on the field configuration (3.14), (3.21), with identifi-

cations (3.15). The result is

Sren(τ, µ) = −πτ2k − πτ2 kIJ µ
IµJ , (3.24)

where 6k = 3(2ℓ)
2G3

is the Brown-Henneaux central charge of the gravitational theory

for the AdS3 space (3.14), and kIJ is the level of the Chern-Simons term (3.18). We

remind the reader that the boundary U(1) current obtained from (3.18), (3.23) is

right-moving. The opposite chirality is described upon imposing opposite boundary

conditions to (3.20), i.e. fixing W
(0)
z instead of W

(0)
z , which requires an opposite

relative sign between (3.18) and (3.23) (for the variational principle to remain well-

defined).
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5d conformal supergravity and

AdS3×S2

In this section, we turn from the 3d Einstein-Hilbert setting studied in Chapters 2

and 3 to 5d Lorentzian supergravity on AdS3×S2, with N = 2 (minimal) supersym-

metry (i.e. 8 real supercharges) and coupled to U(1) vector multiplets. In the context

of the localization formalism, we are particularly interested in the off-shell formula-

tion of this theory, whose key features we review in Section 4.1. In Section 4.2, we

move on to describe the classical global AdS3×S2 solution of this theory. We present

the Killing spinors preserved by this configuration and the consequent superalgebra.

4.1 Off-shell 5d supergravity

Off-shell supergravity in the superconformal formalism in Lorentzian signature in var-

ious dimensions has been known for many decades (see the book [58]). The idea of

this framework relies on the well-known fact that Poincaré gravity theories can con-

sistently be described as conformal gravity theories coupled to compensating matter.

It then turns out that this conformal description for supergravity theories allows to

have off-shell representations for supersymmetry, albeit in the presence of additional

auxiliary fields.

In this thesis, we are interested in the matter-coupled N = 2 theory in five

spacetime dimensions, which was constructed in [28, 29, 30], and in [32, 31, 59]. It is

reviewed in the more recent [60, 37] whose conventions we follow.
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Weyl EM
A , Ψi

M , bM , VM i
j , TMN , D , χi

Vector σI , W I
M , ΩI i , Y I

ij

Hyper Ai
α , ζα

SUSY parameters ϵi , ηi

Table 4.1: Independent fields of the supersymmetric multiplets and Q, S-
supersymmetry parameters in five-dimensional N = 1 conformal supergravity.

Supermultiplets

For the N = 2 5d conformal supergravity theory, we follow the conventions of [60].

We consider the Weyl multiplet, which couples toNv number of U(1) vector multiplets

as well as a single hyper multiplet. One of the Nv vector multiplets and the single

hypermultiplet constitute the two compensators to be added to the Weyl multiplet in

order for the off-shell theory to correctly describe the N = 2 Poincaré supergravity.

The reduction from the off-shell theory to the Poincaré theory is discussed at the end

of this Section. We now review the field content each multiplet. For a summary, see

Table 4.1.

The Weyl multiplet consists of the gauge fields corresponding to all the symmetry

generators of the N = 2 superconformal algebra {PA ,MAB , D ,KA , Qi , Si , Vj
i},

where D andKA are the dilatation and special conformal transformation respectively.

Among all the gauge fields, the gauge fields associated with {MAB , KA , Si} are

composite, i.e. they are expressed in terms of other gauge fields. The independent

gauge fields in Weyl multiplet are the vielbein EM
A, dilatation gauge field bM , gaugino

ψiM , and the SU(2)R gauge field VMj
i.1 For the Weyl multiplet to be realized as an

off-shell supermultiplet, it includes an auxiliary two-form tensor TAB, an auxiliary

fermion χi, and an auxiliary scalar D. Hence the independent fields of the Weyl

multiplet are summarized as

Weyl: {EMA , Ψi
M , bM , VM, i

j ; TMN , χ
i , D} . (4.1)

Here, the indices {A,B, · · · }, {M,N, · · · }, {i, j, · · · } are five-dimensional flat tan-

gent space, curved spacetime, and SU(2) fundamental indices, respectively, which are

summarized in Appendix A. We use the special conformal symmetry (that acts only

1Note that the SU(2)R of the supergravity is not the same as the SU(2) coming from the rotation
of the S2 geometry (which, recall, is dual of the R-symmetry of the (0,4) boundary theory.
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on bM) to gauge-fix bM = 0, so that from here on this field will not appear. We

consider Nv vector multiplets labeled by I, each of which consists of

Vector: {σI , W I
M , ΩI i , Y I

ij} , I = 1 , 2 , · · · , Nv . (4.2)

They corresponds to a scalar, a U(1) gauge field, gaugini, and an auxiliary symmet-

ric SU(2) triplet. The i, j indices are raised and lowered using the SU(2) symplectic

metric ε, where, explicitely, ε12 = ε12 = 1. In particular, we have Yij = εik εjℓ Y
kℓ.

We finally consider a single hypermultiplet, which consists of

Hyper: {Aiα , ζα}, (4.3)

corresponding to the hyper scalar, and the hyper fermion, where α = 1, 2. Note

that this is an on-shell hypermultiplet. There is in fact no known off-shell Lorentz-

covariant hypermultiplet with finite number of fields. While this limitation plays no

role in the contents of this thesis, it is interesting to note that the construction of

off-shell hypermultiplets for one supercharge in the context of localization has been

studied [61, 20].

Supersymmetry algebra

The infinitesimal supersymmetry transformations of the various spinor fields under

the Q and S supersymmetry are parametrized by the Q- and S- Killing spinors ϵi, ηi,

respectively. Up to higher order in fermions, we have:

δΨi
M = 2DMϵ

i +
i

2
TAB(3γ

ABγM − γMγ
AB)ϵi − iγMη

i ,

δχi = 1
2
ϵiD +

1

64
RMNj

i(V )γMNϵj +
3i

64
(3γABγC + γCγAB)ϵiDCTAB

− 3

16
TABTCDγ

ABCDϵi +
3

16
TABγ

ABηi ,

δΩi = −1

2
(FAB − 4σTAB)γ

ABϵi − iγAϵiDAσ − 2εjkY
ijϵk + σηi ,

δζα = −iγAϵiDAAi
α +

3

2
Ai

αηi .

(4.4)

where the curvature RMNi
j(V ) is given by:

RMNi
j(V ) = 2 ∂[MVN ]i

j − 2V[Mi
kVN ]k

j . (4.5)

The relevant covariant derivatives acting on each field are covariant with respect to
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all bosonic gauge symmetries except conformal boosts:

DM ϵi =

(
∂M − 1

4
ωM

AB γAB +
1

2
bM

)
ϵi +

1

2
VMj

i ϵj ,

DMTAB = (∂M − bM)TAB − ωMA
CTCB − ωMB

CTAC ,

DM σI = (∂M − bM) σI ,

DM Ai
α =

(
∂M − 3

2
bM

)
Ai

α − 1

2
VMi

jAj
α .

(4.6)

Two Q-supersymmetry transformations, parametrized by spinors ϵ1 and ϵ2 respec-

tively, close into the bosonic symmetries of the theory as

[δQ(ϵ1) , δQ(ϵ2)] = δcgct(ξ
µ) + δM(λ) + δS(η) + δK(ΛK) (4.7)

where δcgct are the covariant general coordinate transformations, δM is a local Lorentz

transformation, δS is a conformal supersymmetry transformation, and δK is special

conformal transformation. Explicitly, the relevant parameters to this thesis are

ξµ = 2ϵ̄2iγ
µϵi1 ,

λAB = −ξµω AB
µ +

i

2
TCD ϵ̄2i(6γ

[AγCDγ
B] − γABγCD − γCDγ

AB)ϵi1 .
(4.8)

The action

The bosonic Lagrangian at two-derivative level is

Lbulk = E (LV + LVW + LH + LHW + LCS) , (4.9)

where E ≡ det(EM
A), LV contains purely vector multiplet terms, LVW contains

mixing between vector and Weyl, LH is the kinetic hyper scalar piece, LHW contains
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coupling of hyper to Weyl, and LCS is the five-dimensional Chern-Simons action:

LV =
1

2
cIJK σ

I

(
1

2
DMσJ DM σK +

1

4
F J
MN F

MN K − 3σJ FK
MN T

MN − Y J
ij Y

K ij

)
,

LVW = −C(σ)
(
1

8
R− 4D − 39

2
T 2

)
,

LH = −1

2
Ωαβ ε

ijDM Ai
αDMAj

β ,

LHW = χ

(
3

16
R + 2D +

3

4
T 2

)
,

LCS = − i

48E
εMNOPQcIJKW

I
MF

J
NOF

K
PQ .

(4.10)

In the Chern-Simons Lagrangian LCS, the object εMNOPQ is a fully antisymmetric

tensor density taking values ±1. The scalar norms appearing in LVW and LHW are:

C(σ) :=
1

6
cIJK σ

IσJσK , (4.11)

χ :=
1

2
Ωαβ ε

ijAi
αAj

β . (4.12)

The action of the theory is

Sbulk =
1

8π2

∫
M
d5xLbulk , (4.13)

for coordinates xM on the 5d manifold M.

Relation to Poincaré theory

In this thesis, while we work almost exclusively in the above off-shell formulation

of the supergravity, we nevertheless require an understanding of its connection to the

Poincaré frame. Here, we present this connection.

For our purposes, it is sufficient to describe the transition of only the bosonic sector

of the off-shell theory, as given in (4.10), to the bosonic sector of the corresponding

Poincaré frame.2 We focus on the pure case, i.e. where the Poincaré theory has only

a gravity multiplet. Recall that this multiplet should contain in the bosonic sector

only the vielbein EM
A and the graviphoton W g

M . To reach this frame from the off-

2The transition of the fermionic sector follows an analogous mechanism. See [30] for the complete
treatment.
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shell theory, one starts with the Weyl multiplet and the compensating multiplets. In

the following steps, we therefore take Nv = 1 such that I = 1 denotes the vector-

compensator.

Since we have already gauge-fixed the special conformal symmetry with bM = 0,

the only extra bosonic symmetry that is present in the off-shell theory (4.10) is the

dilatational symmetry. We gauge-fix this symmetry by setting the scalar norm χ

of the compensating hypermultiplet to a dimensionful constant (the “D-gauge”)3.

Note that in the Lagrangian (4.10), the auxiliary scalar D appears as the Lagrange

multiplier of C(σ) and χ. Its equation of motion gives the algebraic constraint:

C(σ) = −χ
2
, (4.14)

and so applying the D-gauge and imposing the field equations will also fix C(σ),

which removes the scalar degree of freedom of the compensating vector multiplet. In

this vector multiplet, the surviving bosonic degrees of freedom are now Y 1
ij and the

gauge field W 1
M . The former is an auxiliary field and is removed through its algebraic

field equation:

Y 1
ij = 0 . (4.15)

The gauge field W 1
M ≡ W g

M joins, as the graviphoton, the supergravity multiplet of

the Poincaré frame. At this stage we have therefore eliminated the compensating

vector multiplet and gained a graviphoton in exchange. The remaining extra fields

of the off-shell multiplets are now the auxiliary TMN and VMi
j in the Weyl multiplet

(note that D is absent from the action upon substituting (4.14)), and three hyper-

scalar components of Ai
α in the compensating hypermultiplet. The two Weyl fields

are eliminated by their equations motion, which are

TAB =
F 1
AB

4σ1
, Ωαβε

ijDMAi
α · Akβ = 0 . (4.16)

Finally, the three Ai
α components are fixed to constants using the SU(2)R (the

“SU(2)-gauge”). Putting all the above steps together, we are left with the bosonic

3The role of the compensating vector multiplet is to ensure consistent field equation for D in
the presence of the compensating hypermultiplet: if the compensating vector multiplet were absent,
then the D field would only appear in the Lagrangian as χD, and so the field equations for D would
force χ = 0.
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action for pure 5d N = 2 Poincaré supergravity:

SPC
bulk =

1

8π2

∫
d5xE

[
− C(σ)

2
R− c111σ

1

16
F 1
MN F

MN 1

− ic111
48E

εMNOPQW 1
MF

1
NOF

1
PQ

]
.

(4.17)

Recall that, according to the D-gauge followed by the D-field equation (4.14), the

quantity C(σ) (and therefore σ) should be seen as a dimensionful constant. In par-

ticular, to reach the conventional (16πG5)
−1 prefactor for the Ricci scalar in the

action (4.17), one chooses

χ =
2π

G5

⇒ C(σ) = − π

G5

. (4.18)

4.2 Global Lorentzian AdS3× S2

We consider the fully supersymmetric AdS3× S2 solution of the Lorentzian off-shell

supergravity described in Section 4.1, corresponding to the near-horizon geometry of

the half-BPS magnetic black string [62]. To present the most general configuration,

we reinstate an arbitrary number Nv of off-shell vector multiplets I = 1 , · · · , Nv.

Field configuration

The metric in Lorentzian signature is

ds2 = 4ℓ2 (− cosh2 ρ dt2 + dρ2 + sinh2 ρ dψ2) + ℓ2 (dθ2 + sin2 θdϕ2) , (4.19)

where the coordinates of the AdS3 have the ranges ρ ∈ [0, ∞), ψ ∈ [0, 2π), t ∈
(−∞, ∞) and the angles on the S2 have ranges θ ∈ [0, π), ϕ ∈ [0, 2π). The radii

of the AdS3 and the S2 are (2ℓ) and ℓ respectively, where this relative factor of 2

is determined by supersymmetry. Note that in the off-shell theory, ℓ is free and

parametrizes the dilatations of the theory, while in the on-shell theory (where dilata-

tions are broken) it is determined by the magnetic charges of the solution via the

D-gauge condition. These magnetic charges pI enter the solution through the vector

multiplet. The non-trivial fields of the vector multiplet are:

σI = −p
I

ℓ
, F I

θϕ = pI sin θ . (4.20)

Note that the solution does not have electric flux, which allows us to turn on flat
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gauge connections on the AdS3. This aspect will become relevant in the following.

In the off-shell formalism of Section 4.1, one requires additional auxiliary fields.

In the Weyl multiplet, the non-trivial fields are:

Tθϕ = − ℓ
4
sin θ . (4.21)

In the compensating hypermultiplet, the BPS equation is solved by

Ai
α = ci

α , (4.22)

where the constants ci
α are determined in terms of the charge pI by the field equation

for the auxiliary field D to be

Ωαβ ε
ijci

αcj
β =

2

3ℓ3
cIJK p

IpJpK . (4.23)

In this thesis, we fix an explicit choice for the ci
α as

c1
2 = c2

1 = 0 , c1
1 = c2

2 =

√
p3

3ℓ3
. (4.24)

Relation to AdS3

It useful to note the relation between the Brown-Henneaux central charge (6k) = 3(2ℓ)
2G3

and the magnectic charges pI of the black string. This involves the D-gauge proce-

dure, described at the end of Section 4.1, whereby the vector-scalar norm C(σ) is

fixed in terms of the five-dimensional Newton’s constant as in (4.18). Substituting

into (4.18) the field configuration (4.20) for the background, we have

C(σ) = −πG−1
5 ⇒ 2p3 =

3(2ℓ) · 2πℓ2

G5

, (4.25)

where p3 ≡ cIJKp
IpJpK . A relation between G5 and the three-dimensional Newton’s

constant G3 can be identified by performing the on-shell reduction of the geometry

onto the S2 factor and comparing the resulting action with the 3d effective action (3.6).

After substituting for the D-gauge (4.25), the Ricci-coupled part of the 5d action is

Sbulk =
1

16πG5

∫
d3x

√
g(3) dθdϕ sin θ(R

(3) +R(2)) + · · · , (4.26)

where we used that on AdS3×S2 (4.19), the 5d Ricci scalar is simply the sum of

the Ricci scalar of each factor. We also split the 5d metric determinant into the
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AdS3 and S2 part. Note that the R(2) factor contributes an additive constant that

can be omitted for the sake of this argument. Performing the integration of the S2

coordinates now gives for the right-hand-side of (4.26):

4πℓ2

16πG5

∫
d3x

√
g(3)R

(3) + · · · (4.27)

The comparison of (4.27) with the effective theory (3.6) in three dimensions then sets

the relation between Newton’s constants: G5 = AreaS2 ×G3 = 4πℓ2G3. Combining

with (4.25), one reaches the relation for the central charge:

2p3 = 6k . (4.28)

This result has also been elegantly derived in [48] using the principle of c-extremization.

We will also require a relation between the level kIJ of the U(1) current algebra

and the pI . This can be derived by on-shell reduction of the 5d Chern-Simons action

on the S2. We have

1

8π2

∫
d5xE LCS = −4pK

8π2

∫
d3x dθ dϕ sin θ

icIJK
48

εµνσθϕW I
µF

J
νσ

= − icIJKp
K

24π

∫
d3x εµνσW I

µF
J
νσ ,

(4.29)

where LCS is given in (4.10). Comparing with the Chern-Simons action (3.18) of the

three-dimensional effective theory, we identify:

2

3
cIJK p

K = kIJ . (4.30)

4.3 Supersymmetry algebra in Lorentzian AdS3×
S2

Killing spinors

The Q- and S- supersymmetry parameters, ϵi and ηi respectively, that are pre-

served by the bosonic fields of the global AdS3 × S2 background are determined by

setting the variation of the gravitino and the variation of the auxiliary fermion in (4.4)
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to zero. These two equations are, respectively,

0 = 2DMϵ
i +

i

2
TAB(3γ

ABγM − γMγ
AB)ϵi − iγMη

i . (4.31)

0 =
1

2
ϵiD +

1

64
RMNj

i(V )γMNϵj +
3

64
i(3γAB /D + /DγAB)TABϵ

i (4.32)

− 3

16
TABTCDγ

ABCDϵi +
3

16
TABγ

ABηi .

On our bosonic background, the second equation (4.32) immediately determines the

S-supersymmetry spinor as ηi = 0. The first equation is referred to as the Killing

spinor equation. We analyze its solutions in Appendix C and summarize the results

below.

The complex basis of the Killing spinor on AdS3× S2 is given by the the following

four Killing spinors,

ϵ +
+ =

√
ℓ
2
ϵ+AdS3

⊗ ϵ+
S2
, ϵ −

+ =
√

ℓ
2
ϵ+AdS3

⊗ ϵ−
S2
,

ϵ +
− =

√
ℓ
2
ϵ−AdS3

⊗ ϵ+
S2
, ϵ −

− =
√

ℓ
2
ϵ−AdS3

⊗ ϵ−
S2
,

(4.33)

with

ϵ+AdS3
= e

i
2
(t+ψ)

 cosh ρ
2

− sinh ρ
2

 , ϵ−AdS3
= e−

i
2
(t+ψ)

 − sinh ρ
2

cosh ρ
2

 ,

ϵ+
S2

= e
i
2
ϕ

 cos θ
2

sin θ
2

 , ϵ−
S2

= e−
i
2
ϕ

 − sin θ
2

cos θ
2

 .

(4.34)

These four Killing spinors organize themselves into the eight pairs of symplectic Ma-

jorana spinors

ϵ i(1) = (−iϵ +
+ , ϵ −

− ) , ϵ i(2) = (ϵ +
+ ,−iϵ −

− ) , ϵ i(3) = −(ϵ −
− , iϵ +

+ ) , ϵ i(4) = −(iϵ −
− , ϵ +

+ ) ,

ϵ̃ i(1) = (ϵ −
+ , iϵ +

− ) , ϵ̃ i(2) = (iϵ −
+ , ϵ +

− ) , ϵ̃ i(3) = (−iϵ +
− , ϵ −

+ ) , ϵ̃ i(4) = (ϵ +
− ,−iϵ −

+ ) ,

(4.35)

to form the 8 real basis of the Killing spinor on AdS3×S2. Each pair satisfies

the symplectic-Majorana condition (A.11) appropriate to the 5d Lorentzian theory,

i.e. (ϵi)†γt̂ = εij(ϵ
j)TC in the conventions of Appendix C.
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Superconformal algebra: Let us denote

Qa = δ(ϵi(a)) , Q̃a = δ(ϵ̃i(a)) , a = 1 , 2 , 3 , 4 , (4.36)

with the Grassmann even Killing spinors ϵi, ϵ̃i. Then,

{
Qa ,Qb

}
= −2iδab(L0 − J

3
) ,

{
Q̃a , Q̃b

}
= −2iδab(L0 + J

3
) ,

{
Qa , Q̃b

}
=



−2iJ
2

2iJ
1 −(L̄+ − L̄−) i(L̄+ + L̄−)

−2iJ
1 −2iJ

2 −i(L̄+ + L̄−) −(L̄+ − L̄−)

L̄+ − L̄− i(L̄+ + L̄−) −2iJ
2 −2iJ

1

−i(L̄+ + L̄−) L̄+ − L̄− 2iJ
1 −2iJ

2


,

(4.37)

where the SL(2, R) generators L0 , L± and SO(3) generators J
a
, a = 1, 2, 3, satisfy

[L+, L−] = −2L0 , [L0 , L̄±] = ±L± , [J
a
, J

b
] = iϵabcJ

c
. (4.38)

Their representation as differential operators on the AdS3×S2 is given in Appendix D.

Note from (D.1) that the L−1,0,1 generators act in the (t + ψ)- sector, which in our

conventions is the right-moving sector (hence the bar on the generators). The super-

charges Qa, Q̃a also manifestly act in the right-moving sector.

Let us define the supercharges Ḡiα
γ

Ḡ++
+ ≡ iQ1 +Q2

2
, Ḡ+−

− ≡ −Q3 + iQ4

2
,

Ḡ−−
− ≡ Q1 + iQ2

2
, Ḡ−+

+ ≡ iQ3 −Q4

2
,

Ḡ+−
+ ≡ Q̃1 − iQ̃2

2
, Ḡ++

− ≡ iQ̃3 + Q̃4

2
,

Ḡ−+
− ≡ −iQ̃1 + Q̃2

2
, Ḡ−−

+ ≡ Q̃3 + iQ̃4

2
,

(4.39)

where γ is the sign of the L0 eigenvalue, i is the outer automorphism from the SU(2)

R-symmetry of the supergravity, and α is the SU(2) R-symmetry index corresponding
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to isometries of the S2. Then, we obtain the non-trivial commutation relations:

{
Ḡ+α

± , Ḡ−β
∓
}

= ϵαβL0 ± (ϵτa)
βαJ

a
,

{
Ḡ+α

± , Ḡ−β
±
}

= ∓iϵαβL± , (4.40)

where τ a are the Pauli sigma matrices, and ϵαβ has ϵ+− = −ϵ−+ = 1. We also have:

[
L̄0 , Ḡ

iα
±
]
= ±1

2
Ḡiα

± ,
[
L̄± , Ḡ

iα
∓
]
= −i Ḡiα

± ,[
J̄3 , Ḡi±

γ

]
= ±1

2
Ḡi±
γ ,

[
J̄± , Ḡi∓

γ

]
= Ḡi±

γ ,

(4.41)

where J̄± ≡ J
1 ± iJ

2
. The algebra (4.38), (4.40), (4.41) is su(1, 1|2) and corresponds

to the global part of the NS-sector chiral N = 4 superconformal algebra. Denoting

the super Virasoro charges as Ln, n ∈ Z and Ḡα
Ȧ,r

, r ∈ Z + 1
2
, Ȧ = (+,−), the

embedding into the N = 4 superconformal algebra as presented e.g. in [63] is given

by L± = ∓iL∓1, L0 = L0, Ḡ
±α
± = ± Ḡα∓,∓1/2, Ḡ

∓α
± = ± Ḡα±,∓1/2, and the su(2) zero-

modes are unchanged. The algebra in this form is also summarized in Appendix B.
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Supersymmetric H3/Z×S2 and

twisting

In this section we finally develop the supergravity theory on H3/Z×S2 relevant to

the localization computation of (1.10). First, in Section 5.1, we discuss the Eu-

clidean counterpart to the 5d off-shell matter-coupled conformal supergravity that

we reviewed in Chapter 4. We explain that this Euclidean theory is obtained by

redefinitions of fields of the Lorentzian theory that follow simply from the Wick rota-

tion. In Section 5.2, we then construct the H3/Z×S2 vacuum solution of this theory

from the Lorentzian AdS3×S2 configuration presented in Section 4.2. This is the

supersymmetric version of thermal AdS3 (the M0,1 torus) discussed in Chapter 3.

As described in Section 1.3, a non-trivial twist of the S2 around the Euclidean time

circle is required to define consistent Killing spinors on the torus. We compute the

superalgebra generated by these Killing spinors. In Section 5.3, we identify a suitable

localization supercharge Q. We then discuss the Hamiltonian trace interpretation of

the functional integral on this twisted configuration, and discuss how this is related

to the elliptic genus in the semi-classical limit. We conclude with an evaluation of

the 5d supergravity action and boundary terms on the H3/Z×S2 background.

5.1 A 5d Euclidean off-shell supergravity

Constructions of Euclidean supergravities are scarcely studied compared to their

Lorentzian counterparts, and few references exist (e.g. [41, 42, 43, 44]). In these

references the method of time-like reduction from a five-dimensional Lorentzian theory

is used to systematically construct the Euclidean-signature theory in four dimensions.
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One potential systematic approach to construct our five-dimensional Euclidean theory

would be to perform a timelike reduction on a 6d theory. However, we use a less

formal approach here: we start from a Wick rotation and make an appropriate set of

transformations on all the fields of the Lorentzian theory so that we obtain a consistent

5d Euclidean theory. This approach was successfully employed for the N = 2 off-shell

supergravity in four dimensions and the result agrees with the timelike reduction [45].

The starting point is the off-shell Lorentzian supergravity in Section 4.1. We

consider a Wick rotation as t = −itE, which relates the Lorentzian and Euclidean

time coordinates. This is followed by the corresponding transformations of all tensors

for this coordinate change (including the time-directional gamma matrices, which is

related as γt = iγtE). Here, there can be subtleties involving the fermionic fields

of the theory: indeed changing the signature of spacetime by this Wick rotation, in

general, demands changing the nature of irreducible spinors. For instance, in 4d,

while the Majorana representation of irreducible spinors is allowed in the Lorentzian

theory, the same is not true in the Euclidean theory. In this dimensionality, an

appropriate field redefinition of spinors is therefore needed. This can be achieved in

by going to the symplectic-Majorana basis, which exists in both the Lorentzian and

Euclidean theory, and in which the charge conjugation matrix is the same in both the

theories (we refer to [45] for the full presentation of this 4d procedure). In our present

five-dimensional case, the situation is simpler: 5d fermions are necessarily symplectic-

Majorana in both Lorentzian and Euclidean signatures, and so the above spinorial

subtleties are not present. We therefore carry on with the usual implementation of

the Wick rotation.

The transformation of the Lagrangian and action functional of the Lorentzian the-

ory under the Wick rotation follows as for the Einstein-Hilbert discussion around (3.4)

and (3.5): the Lagrangian density is invariant under coordinate transformations, and

so we obtain a Euclidean Lagrangian density LE that is unchanged from its Lorentzian

counterpart L given in (4.10). The Lorentzian action S =
∫
dt d4xL then maps to

iS =
∫
dtE d

4xLE, and we can identify the right-hand-side as the Euclidean action,

i.e. SE ≡
∫
dtE d

4xLE.1 With this identification, note that the Euclidean action is

formally identical to the Lorentzian action. Now consider the infinitesimal super-

symmetry transformations (4.4) of the Lorentzian theory. Note that they are also

manifestly invariant under coordinate transformations. Under the Wick-rotation,

they therefore map to identical transformations in the Euclidean theory.

1Recall that our identification SE ≡
∫
dtE d

4xLE implies that exp(iS) = exp(SE). Therefore, for
path integrals to be perturbatively well-defined, SE should be negative-definite.
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In short, we have set up a Euclidean theory which, at the level of the action and

supersymmetry transformations, is formally identical to the Lorentzian theory. Going

forward, we may therefore refer with (4.10), (4.13) and (4.4) to the Lagrangian, the

action, and the supersymmetry transformations of the off-shell 5dN = 2 supergravity

in both Lorentzian and Euclidean signature.

We conclude with a brief remark on the reality conditions of the fields. Generically,

the reality conditions for the fields in Lorentzian and Euclidean theories are different.

For instance, in the five-dimensional case, an SU(2)R spinor doublet ψi with i = 1, 2

in Lorentzian signature follows the symplectic-Majorana condition

(ψi)†γt̂ = εij(ψ
j)TC , (5.1)

where C is the unique choice of the charge conjugation matrix in five dimensions

(this is more generally true in odd dimensions). Imposing (5.1) on the infinitesimal

supersymmetry transformations of the fermions leads to a set of reality conditions for

the bosons, e.g. the gauge fields and the metric are found to be real. In Euclidean

signature, where the reality condition for 5d spinors is

(ψi)† = εij(ψ
j)TC , (5.2)

repeating this procedure of imposing supersymmetry leads to bosonic reality condi-

tions which do not in fact guarantee a negative-definite sign for the kinetic terms in

the Euclidean Lagrangian. These types of subtleties surrounding Euclidean reality

conditions in localization are, in fact, already well known from the four-dimensional

localization problem around AdS2×S2 [14, 39, 64]. The resolution is understood to

be as follows: one abandons the Euclidean fermion- reality condition, which in our 5d

case would be (5.2), and treat ψ1 and ψ2 as two independent Dirac spinors instead.

The bosonic reality conditions consistent with the desired sign of the Euclidean ac-

tion can then consistently be imposed, at the cost of having formally doubled the

fermionic degrees of freedom. At the level of the functional integral, this doubling

has to be compensated by choosing a half-dimensional contour of integration for the

fermions.2 In this thesis, since we do not reach the computation of the quantum func-

2By half-dimensional contour of integration, we are referring to the following concept: consider
a Lorentzian theory with one real scalar degree of freedom (d.o.f.) X = X∗. Now suppose there
is a corresponding Euclidean theory where X and X∗ are independent, i.e. with two real d.o.f. In
this Euclidean setting, path integrals are in the complex plane spanned by (X,X∗). To describe the
original number of d.o.f., we choose any straight-line contour in that plane, e.g.X∗ = X orX∗ = −X.
In short, we integrate the two d.o.f. along a one-dimensional (thus half -dimensional) contour.
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tional integral, we postpone a study of these aspects in the five-dimensional theory

to future work.

5.2 Twisted background and superalgebra

We now construct the supersymmetric vacuum solution of the 5d Euclidean theory.

Under the Wick rotation t = −itE, the global AdS3×S2 metric (4.19) rotates to that

of Euclidean H3 × S2. The non-trivial fields in the Weyl multiplet are:

ds2 = 4ℓ2 (cosh2 ρ dt2E + dρ2 + sinh2 ρ dψ2) + ℓ2 (dθ2 + sin2 θ dϕ2) , (5.3)

Tθϕ = − ℓ
4
sin θ . (5.4)

If the Euclidean time coordinate tE runs from (−∞, ∞), the topology is that of a

solid cylinder times a sphere, which we call the Euclidean cylinder frame. Although

the Killing spinor equations (4.31) and (4.32) are formally solved by the same set

of eight spinors (4.35) in this background, these spinors are no longer well-defined

because they diverge at the ends of the Euclidean cylinder. The solution to this

problem involves compactifying the Euclidean time on a circle and simultaneously

rotating the S2 as we go around the time circle. This twisted quotient makes for a

well-defined background, as we now describe.

We start from the configuration (5.3) describing an infinite solid cylinder (times

a sphere), and make the following identifications,

(tE , ψ , ϕ) ∼ (tE , ψ + 2π , ϕ) ∼ (tE + 2πτ2 , ψ + 2πτ1 , ϕ+ i2πτ2Ω) . (5.5)

Equivalently, we can define a new set of “twisted” coordinates,

t′E = tE , ϕ′ ≡ ϕ− iΩtE , (5.6)

which have the identification

(t′E , ψ , ϕ
′) ∼ (t′E , ψ + 2π , ϕ′) ∼ (t′E + 2πτ2 , ψ + 2πτ1 , ϕ

′) . (5.7)

We denote the corresponding complex coordinates as z′ = ψ + it′E , z̄′ = ψ − it′E ,

which have the usual identifications on a T 2 as (z′ , z̄′) ∼ (z′ + 2πτ , z̄′ + 2πτ̄).
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In these twisted coordinates, the on-shell background configuration is

ds2 = 4ℓ2
(
cosh2ρ dt′2E + dρ2 + sinh2ρ dψ2

)
+ ℓ2

(
dθ2 + sin2 θ

(
dϕ′ + iΩdt′E

)2)
,

Tθϕ′ = − ℓ
4
sin θ , Tθt′E = −i

ℓ

4
Ω sin θ ,

σI = −p
I

ℓ
, W I

tE ′ = 2µI − iΩ pI cos θ , W I
ϕ′ = −pI cos θ ,

A1
1 = A2

2 =

√
p3

3ℓ3
.

(5.8)

The S2 in (5.8) is fibered over the time circle of AdS3, and we refer to this configuration

as the twisted torus background. We also note that in the expression for W I
tE ′ we

have introduced an arbitrary constant µI which is allowed by the supersymmetry and

equations of motion, and which we will interpret as the source of a U(1) current in the

boundary CFT. In fact, the BPS equations also allow W I
ψ to take a constant value,

but this constant is forced to be zero due to the contractibility of the ψ-cycle.

To see that the twisted torus background (5.8) has well-defined supersymmetry,

we solve the Killing spinor equation from the variation of gravitino (4.4), which is

rewritten now as

0 = 2DMε
i − i

4ℓ
(3γ θ̂ϕ̂γM − γMγ

θ̂ϕ̂) εi , (5.9)

where εi is the Killing spinors on this background. Here we use the following gamma

matrices in the Euclidean theory, which follow from the Wick rotation,

γt̂E = σ3⊗τ 3 , γρ̂ = σ1⊗τ 3 , γψ̂ = σ2⊗τ 3 , γθ̂ = I⊗τ 1 , γϕ̂ = I⊗τ 2 , (5.10)

where σ3 is related to the Lorentzian gamma matrix σ0 in (C.4) by σ3 ≡ −iσ0.

We will take the representation (σ3 ,σ1 ,σ2) = (−τ 3 , τ 1 , τ 2) with the Pauli sigma

matrix τ a. Note that unlike the case of global AdS3× S2 in the Section 4.3, the

Killing spinor equation (5.9) does not split into the equations of AdS3 and S2. This

is because we have the following spin connections

ωt̂E ρ̂t′E
= − sinh ρ , ωθ̂ϕ̂t′E

= iΩ cos θ , ωρ̂ψ̂ψ = cosh ρ , ωθ̂ϕ̂ϕ′ = cos θ , (5.11)

where there is mixing between AdS3 and S2 directions through the non-zero twisting

parameter Ω.

58



Chapter 5. Supersymmetric H3/Z×S2 and twisting

The solution of Killing spinors can be easily found by following the twisting con-

struction. It is clear that the Euclidean continuation of the set of 8 Lorentzian Killing

spinors (4.33), (4.35), followed by the coordinate transformation (5.6) obeys the new

Killing spinor equation. Upon setting the parameter

Ω = 1 + i
τ1
τ2
, (5.12)

the following3 four of the original eight Killing spinors

ε i(1) = (−iε +
+ , ε −

− ) , ε i(2) = (ε +
+ ,−iε −

− ) ,

ε i(3) = −(ε −
− , iε +

+ ) , ε i(4) = −(iε −
− , ε +

+ ) ,
(5.13)

where

ε +
+ =

√
ℓ

2
e

1
2
(1−Ω)t′E+ i

2
(ψ+ϕ′)

 cosh ρ
2

− sinh ρ
2

⊗

 cos θ
2

sin θ
2

 ,

ε −
− =

√
ℓ

2
e−

1
2
(1−Ω)t′E− i

2
(ψ+ϕ′)

 − sinh ρ
2

cosh ρ
2

⊗

 − sin θ
2

cos θ
2

 ,

(5.14)

respect the periodicity (5.7) (they are periodic around the non-contractible circle and

anti-periodic around the contractible circle).

One could also directly solve the Killing spinor equations (5.9) in the twisted

coordinates (ρ, ψ, θ, ϕ′, t′E). The only differences compared to solving them in the

cylinder coordinates (ρ, ψ, θ, ϕ, tE) arise in the equation for the t′E direction, which

corresponds to:

0 =
(
2∂t′E − ωt̂E ρ̂t′E

γt̂E ρ̂ − ωθ̂ϕ̂t′E
γθ̂ϕ̂
)
ε±

±

− i

2ℓ
Et′E

t̂Eγθ̂ϕ̂γt̂E ε±
± − i

ℓ
Et′E

ϕ̂(γθ̂ϕ̂γϕ̂) ε±
± . (5.15)

The difference with the equation for tE in the cylinder frame is that in (5.15) above,

2∂t′E acting on the Killing spinors (5.14) brings down ±(1− Ω) instead of ±1. Also,

the third and the last terms are new. By the projection property along S2 direction

of the Killing spinor (1 ⊗ e−iτ2θτ 3)ε±
± = ±ε±±, one can check that the effect of the

3The choice Ω = −1− i τ1τ2 also gives rise to a different set of four Killing spinors.
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third and the last term indeed cancels the contribution of Ω from the time-derivative

acting on the Killing spinor.

Supersymmetry algebra

The supercharges Qa = δ(εi(a)), with the Killing spinors εi(a), a = 1 , 2 , 3 , 4 defined

in (5.13), obey

{Qa ,Qb} = −2iδab(L0 − J
3
) , [L0 − J

3
,Qa] = 0 . (5.16)

Consider the following four supercharges Ḡiα
γ ,

Ḡ++
+ ≡ iQ1 +Q2

2
, Ḡ−−

− ≡ Q1 + iQ2

2
,

Ḡ+−
− ≡ −Q3 + iQ4

2
, Ḡ−+

+ ≡ iQ3 −Q4

2
,

(5.17)

where γ is the sign of the L0 eigenvalue, i is the doublet index under the outer

automorphism coming from the SU(2) R-symmetry of the supergravity, and α is the

doublet index under the SU(2) R-symmetry arising from the isometry of the S2. They

are charged under the bosonic generators of the right-moving generators L0 and J
3

as [
L0 , Ḡ

i±
±
]
= ±1

2
Ḡi±

± ,
[
J
3
, Ḡi±

±

]
= ±1

2
Ḡi±

± , (5.18)

so that [
L0 − J

3
, Ḡi±

±
]
= 0 , (5.19)

and they obey the anticommutation relations

{
Ḡ+±

± , Ḡ−∓
∓
}

= ±
(
L0 − J

3
)
,

{
Ḡ+±

± , Ḡ−±
±
}

= 0 . (5.20)

The above algebra (5.19), (5.20) forms a subalgebra of the global part of the

N = 4 superconformal algebra in the NS sector given in Section 4.3. Note that the

subalgebra can also be thought of as the spectral flow4, with parameter η = 1, to the

following Ramond sector zero-modes as

L̄0 − J
3
+ c/24 7→ L̄R0 , Ḡ±∓

∓ 7→ ∓Ḡ∓
∓,0 , Ḡ±±

± 7→ ±Ḡ±
∓,0 . (5.21)

4The spectral flow is taken on the charges with N = 4 algebra as presented in Appendix B, which

goes as as Ln 7→ Ln + ηJ
3

n + η2 c
24δn,0, J

3

m 7→ J
3

m + η c
12δn,0, J̄

±
m 7→ J̄±

m±η, Ḡ±
Ȧ,r

7→ Ḡ±
Ȧ,r±η/2

.
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5.3 The trace interpretation and the semiclassical

limit

In this section, we discuss the boundary dual of the gravitational functional inte-

gral ZPI corresponding to the partition function on the twisted torus (5.7), (5.8). We

then evaluate the supergravity action (with a set of boundary terms) on this torus

and compare with the result for thermal AdS3 in the untwisted theory in Section 3.2.

The trace interpretation of the functional integral

The bosonic generators corresponding to the translations (L0, L0) around the

torus and to the rotations of the sphere (J
3
) have the following representation in the

twisted coordinates of (5.8):

L0 = i
1

2
(i∂t′E −∂ψ+Ω ∂ϕ′) , L0 = i

1

2
(i∂t′E +∂ψ+Ω ∂ϕ′) , J

3
= i∂ϕ′ , (5.22)

with Ω = 1 + iτ1/τ2. The Hamiltonian H = −∂t′E and angular momentum P = −i∂ψ

on twisted torus are therefore

H = L0 + L0 − ΩJ
3
, P = L0 − L0 . (5.23)

Recall that the potentials β and ℓ that respectively couple to H and P are given in

terms of the modular parameter τ = τ1 + iτ2 on the torus as β = 2πτ2 and ℓ = 2iπτ1.

In addition, we have the chemical potentials µI coupling to U(1) current(s) qI . Now

consider the periodicities of the fermions. We have seen in Section 5.2 that they

are anti-periodic around the contractible ψ circle and are periodic around the t′E-

circle. Respectively, these statements dictate that the partition function computes a

Hamiltonian trace that is in the NS-sector and that has a (−1)F insertion (recall the

concepts discussed in Section 1.1). Assembling these various statements, we therefore

have:

eC(τ,µ) ZPI(τ, µ) = TrNS (−1)F exp
(
2πτ2 ∂t′E + 2πτ1 ∂ψ + µIqI

)
= TrNS (−1)F exp

(
−2πτ2 (L0 + L0 − ΩJ

3
) + 2πiτ1 (L0 − L0) + µIqI

)
,

= TrNS (−1)F qL0 qL0−J
3

eµ
IqI , (5.24)

with q = e2πiτ , q = e−2πiτ , and τ = τ1 + iτ2. We immediately recognize the right-

hand side of (5.24) as the elliptic genus in the NS sector, given by the spectral flow
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of (1.7).5 Notice the presence of the extra term C(τ, µ) on the left-hand-side, which

we write for the first time in this thesis. It corresponds to a Casimir-energy-type term

which is needed to relate the functional integral form to the Hamiltonian trace form

for generic partition functions in AdS3/CFT2 [65]. We will not discuss it further in

this work.

From the anticommutator (5.20) we see that the above trace can additionally be

written as

eC(τ,µ) ZPI(τ, µ) = TrNS (−1)F qL0 qiQ
2

eµ
IqI , (5.25)

where we have chosen a localization supercharge

Q ≡ 1√
2
Q1 =

1√
2
(Ḡ−−

− − iḠ++
+ ) . (5.26)

The pairing of all non-BPS modes with respect to the supercharge Q enforces that

the elliptic genus is an anti-holomorphic function of τ .

On-shell action on the twisted torus background

Now that we have set up the twisted torus background, a natural step is to evaluate

its semiclassical contribution to the functional integral, as we did for thermal AdS3

in the 3d untwisted theory in Section 3.1. This follows the same steps: we evaluate

the bulk action of the theory (in this case the 5d supergravity (4.13)) and a set

of boundary terms corresponding to a Chern-Simons boundary term, a Gibbons-

Hawking boundary term, and a gravitational counter term.

The bulk supergravity action (4.13) evaluated on the twisted torus (5.8) is

Sbulk(τ2, p, µ) =
1

8π2

∫ ρ0

0

dρ

∫ 2π

0

dψ

∫ π

0

dθ

∫ 2π

0

dϕ′
∫ 2πτ2

0

dt′E Lbulk ,

= −πτ2
3
p3 +

πτ2
6
p3e2ρ0 ,

(5.27)

where we explicitly present the various integration ranges for clarity. The second

term on the right-hand side denotes terms in the bulk action that diverge when the

radial cutoff ρ0 → ∞, and is absorbed by standard boundary terms that we shortly

present.

The boundary terms in the action of the gauge fields behave essentially in the same

way as in the untwisted theory, but with slightly different details. In the coordinates

5The spectral flow acts on the right-moving generators. To match the left-moving generators
of (1.7) to that of (5.24), one additionally requires a simple redefinition of L0 by a constant shift
as L0 7→ L0 + c/24.
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of the cylinder frame (5.3), the gauge fieldsWz,z̄ on the AdS3 factor have the boundary

conditions (3.20), while the components Wθ,ϕ on the S2 are fixed at the boundary.

Twisting these boundary conditions using (5.6) gives the boundary conditions for the

gauge fields on the twisted torus:

δW
I (0)
z′ = 0 , W

I (0)
z̄′ not fixed, δW

I (0)
θ,ϕ′ = 0 , (5.28)

where the (0) indicates the boundary values in the large-ρ expansion as in (3.19).

The Chern-Simons boundary action consistent with these boundary conditions is:

Sbdry
CS = −cIJK

ipI

48π2

∫
∂M

dz′dz̄′dθdϕ′ sin θ
[
(W J

z′ −
1

2
ΩW J

ϕ′)W
K
z̄′

]
bdry

. (5.29)

which on the twisted torus (5.8) evaluates to6

Sbdry
CS = −2πτ2

3
cIJK µ

IµJpK . (5.30)

The boundary terms in the gravitational sector also follow analogously from the

three-dimensional theory. In particular, we recall the renormalization scheme with

respect to the Brown-Henneaux conditions that was discussed in Section 2.3.2. This

scheme dictates the addition of the Gibbons-Hawking boundary term (2.48) and a

local counterterm on the boundary to cancel the divergences arising from the bulk

action as in (5.27) as well as from the Gibbons-Hawking term. In the five-dimensional

theory, these boundary terms are modified in the expected manner to include the

volume form over the S2, as well as a coupling to the dilaton fields of the off-shell 5d

Lagrangian (4.10). We have 7

SGH = − 1

4π2

∫
∂M

d4x
√
hΦK , (5.31)

SCC =
1

8ℓπ2

∫
∂M

d4x
√
hΦ . (5.32)

where

Φ ≡ −C(σ)
8

+
3χ

16
(5.33)

6Evaluating actions of this type is more conviently done by transforming back from the (z′, z̄′)
to the (ψ, t′E) coordinates where the integration ranges are as in (5.27).

7In fact, to demonstrate that Sbulk+SGH +SCC is well-defined under the variational principle of
the 5d metric, the boundary conditions for the S2 directions of the metric as well as for the dilaton Φ
need to be specified. These considerations are discussed in Section 8.2.
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is the dilaton that appears in the off-shell action action (4.13) as

Sbulk =
1

8π2

∫
d5xE

(
ΦR + · · ·

)
, (5.34)

and h = det(hij), x
i = (ψ, θ, ϕ′, t′E), is the determinant of the induced metric hij

of AdS3×S2, i.e. which appears through ds2 = (2ℓ)2dρ2 + hij dx
idxj. The boundary

terms (5.31) and (5.32) evaluate on the twisted torus to

SGH = −e2ρ0
πτ2
3
p3 SCC = e2ρ0

πτ2
6
p3 . (5.35)

In anticipation of Chapter 8, we note that the off-shell localization solutions com-

puted in Chapter 7 will lead us to consider a different set of boundary conditions to

Brown-Henneaux for the AdS3 directions of the 5d metric. Correspondingly, we will

propose a slightly different structure of gravitational boundary terms to (5.31), (5.32).

However, these differences are only relevant when the metric goes off-shell, and do

not change the on-shell background that we have discussed so far. Thus the value of

the renormalized action on the twisted background (5.8) is

Sren ≡ Sbulk + Sbdry
CS + SGH + SCC = −πkτ2 − πτ2 kIJ µ

IµJ , (5.36)

which matches the result (3.24) of the thermal AdS3 computation. To express (5.36)

in terms of k and kIJ , note that we have used the relations (4.28), (4.30), which

continue to be valid in the twisted theory. Indeed, the twisting procedure only affects

global properties and does not change the Newton’s constant. Therefore the central

charge continues to be c = 6k = 2p3 as in (4.28). Similarly, the level kIJ of the

boundary current algebra also does not change. To see this, note that the relation

between the twisted and cylinder-frame fields is:

Wz′ = Wz +
1

2
ΩW I

ϕ (θ) , Wz̄′ = Wz̄ −
1

2
ΩW I

ϕ (θ) , Wϕ′ = Wϕ(θ) , (5.37)

whereWz,z̄ are functions of the AdS3 coordinates (ρ, z, z̄) = (ρ, z′, z̄′) whileW I
ϕ = −pI cos θ.

Substituting (5.37) into (5.29) gives:

Sbdry
CS = −cIJK

ipI

12π

∫
∂M

dz′dz̄′
[
W J
z W

K
z̄

]
bdry

, (5.38)

which is the same as the 3d Chern-Simons boundary term (3.23), since the integration

ranges of (z′, z̄′) are the same as for (z, z̄). This shows that kIJ = 2
3
cIJK p

K as
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in (4.30).
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Chapter 6

The Euclidean 4d/5d lift

In this section we present a formalism to obtain off-shell localization solutions in

5d supergravity by lifting the localization manifold around Euclidean AdS2× S2. In

particular, this allows us to obtain localization solutions around the supersymmetric

twisted torus H3/Z×S2 background presented in (5.8).

We briefly recall the first step of the localization problem that the formalism

addresses. We define the localization supercharge Q = 1√
2
Q1 = 1√

2
δ(εi(1)) where the

Killing spinor εi(1) is given in (5.13). (Equivalently, Q = 1√
2
(Ḡ−−

− − iḠ++
+ ) in terms of

the super-Virasoro generators.) It acts only in the right-moving sector of the theory,

where it obeys the algebra

Q2
= −i(L0 − J

3
) , [L0 − J

3
,Q] = 0 . (6.1)

We would like to study the space of solutions to the BPS equations given by setting

the supersymmetry variations generated by Q of all the fermions (4.4) to zero.

The BPS equations form a system of matrix-valued partial differential equations

in terms of the bosonic fields of the theory. One systematic approach to solve them,

assuming no fermionic backgrounds, begins by forming various Killing spinor bilin-

ears [66, 67]. The BPS equations may then be expressed as a set of coupled first-order

equations for these tensor fields, which describe the bosonic background of the solu-

tion. This approach was used in [39, 21] to solve the off-shell problem in the AdS2× S2

(and S3) background. The general solutions to the resulting equations are, however,

typically difficult to obtain, and we do not solve this problem of general classification

in this paper. Instead, we leverage what is already known about the localization so-

lutions in 4d supergravity around the Euclidean AdS2×S2 background [14, 39, 64], by

lifting them to five dimensions. This involves the Kaluza-Klein (KK) lift of AdS2×S2
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to AdS3× S2, which we describe in Section 6.1. Note, however, that while the 4d

localization manifold has been determined completely, there may be additional solu-

tions in 5d that do depend on the KK direction, and that will therefore not emerge

from the lift. We postpone the discussion of such solutions to future work.

To lift the 4d localization solutions, we use the idea of the 4d/5d off-shell con-

nection of [37]. However, as mentioned in the introduction, implementing this idea is

not straightforward for the following reasons. Firstly, while the formalism in [37] was

developed for Lorentzian supergravities, our 4d/5d connection needs to be adapted to

accommodate the Euclidean supergravities in both four and five dimensions. A sub-

tlety here, as we will shortly see, is that the 4d Euclidean theory has a redundancy

in the choice of reality conditions and correspondingly a redundancy of AdS2×S2

backgrounds, which has no counterpart in the 5d theory. Secondly, recall that the

4d/5d lift produces a five-dimensional background in the Kaluza-Klein ansatz and

so, in order to reach the five-dimensional theory on the supersymmetric twisted torus

H3/Z×S2 from the four-dimensional theory on AdS2×S2, we require a mapping of

the twisted torus (5.8) into the Kaluza-Klein frame of AdS3×S2. In Section 6.1 we

present the mapping from the Kaluza-Klein frame to the cylinder frame. The twisted

frame can then easily be mapped to the cylinder frame (5.3) by the local coordinate

transformation (5.6). In Section 6.2 we review the 4d Euclidean supergravity and the

AdS2×S2 background. In Section 6.3, we present our construction of the Euclidean

4d/5d off-shell lift. Further, we show that the redundancy of the 4d theory men-

tioned above can be absorbed into the mapping parameter. We conclude the section

by presenting the steps of lifting the 4d off-shell solutions to the 5d twisted torus.

6.1 The Kaluza-Klein coordinate frame

In this subsection we map the cylinder frame to the Kaluza-Klein frame. This map-

ping requires the local coordinate transformations as well as local Lorentz transfor-

mations. After presenting the general mechanism, we find the specific coordinate

and Lorentz transformations, and the resulting background configuration and super-

charges for AdS3× S2 in the Kaluza-Klein frame.

The general mechanism is as follows. Let {Ṁ, Ṅ , · · · } and {Ȧ, Ḃ, · · · } be the

spacetime and tangent indices, respectively, in this Kaluza-Klein frame. The vielbein

in the Euclidean cylinder frame EM
A maps to the vielbein in the KK frame ĖṄ

Ȧ

under a diffeomorphism together with some local rotation LA
Ȧ which acts on the
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frame as [68]

EM
A(x) =

∂ẋṄ

∂xM
ĖṄ

Ȧ(ẋ)L−1

Ȧ

A . (6.2)

Correspondingly, the spin connection transforms as

ωMA
B =

∂ẋṄ

∂xM

(
LA

Ȧω̇ṄȦ
ḂL−1

Ḃ

B + (∂NLA
Ȧ)L−1

Ȧ

B
)
. (6.3)

Likewise, the remaining non-trivial background fields and the Killing spinors are

mapped into the KK frame using the same diffeomorphism and local rotation LA
Ȧ,

and a corresponding spinor rotation L, as

TAB = LA
ȦLB

ḂṪȦḂ , FAB = LA
ȦLB

ḂḞȦḂ , ϵi = L ε̇j , (6.4)

where LA
Ȧ and L are related such that the gamma matrix is preserved:

LA
Ḃ L γḂ L−1 = γA . (6.5)

The diffeomorphism and local rotation in (6.2) should be chosen such that the

vielbein in KK frame ĖṄ
Ȧ has the following reduction ansatz. Decomposing the KK

frame coordinate as xṀ = {xµ, x5} and xȦ = {xa , 5}, the reduction ansatz of the

vielbein is

ĖṀ
Ȧ =

(
eµ
a Bµϕ

−1

0 ϕ−1

)
, ĖȦ

Ṁ =

(
ea
µ −eaµBµ

0 ϕ

)
, (6.6)

where all the fields in the KK frame are independent of the compactified x5 coordinate.

Note that the KK ansatz (6.6) breaks the 5d diffeomorphisms to 4d diffeomorphisms

and a U(1)gauge, and breaks the 5d local rotation symmetry O(5) to O(4)×Z2. Using

the Z2 we can fix the ϕ to have a fixed sign, say, positive. The vielbein (6.6) is

equivalent to the following metric in the KK frame (with x5 ∼ x5 + 2π), 1

ĠṀṄ dx
ṀdxṄ = gµν dx

µdxν + ϕ−2(dx5 +Bµ dx
µ)2 . (6.7)

We see from the (6.6) and (6.7) that the five-dimensional vielbein ĖṄ
Ȧ or metric ĠṀṄ

are related to the four-dimensional veilbein eµ
a or metric gµν , a gauge field Bµ and a

1From this point onwards in the thesis, gµν denotes the four-dimensional metric tensor rather
than the three-dimensional tensor in chapters 2 and 3.
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scalar ϕ. The reduction ansatz leads to the following reduction of the spin connection

as

ω̇Ȧ
bc =

(
ωa

bc

1
2
ϕ−1F (B)bc

)
ω̇Ȧ

b5 =

(
−1

2
ϕ−1F (B)a

b

−ϕ−1Dbϕ

)
. (6.8)

Here we see that the gauge field Bµ appears through its field strength F (B)ab in four

dimensions.

Now we find the coordinate transformations and the local rotation in (6.2) that

map the cylinder frame background in (5.3) to fit into the KK frame ansatz (6.6)

and (6.7). The cylinder frame coordinates xM and and the KK frame coordinates ẋṀ

xM = (ρ , ψ , θ , ϕ , tE) , ẋṀ = (η , χ , θ , ϕ , x5) , (6.9)

are related as

( ρ, ψ, tE) =
( η
2
, χ+ i

x5

2
,
x5

2

)
⇔ (η , χ , x5) = (2ρ , ψ − itE , 2tE) , (6.10)

with the coordinates (θ, ϕ) remaining the same. Note that the global conditions on

the periodicities are not respected by this map (e.g. x5 is compact whereas tE is not).

The corresponding local rotation matrix LA
Ȧ is given as a rotation in the 2− 5 plane

(along ψ̂ and t̂E direction) with angle ω = −iη/2:

L1
1̇ = L3

3̇ = L4
4̇ = 1 , L2

2̇ = L5
5̇ = cosh

η

2
, L2

5̇ = −L5
2̇ = i sinh

η

2
. (6.11)

In the exponential form, we have LA
Ȧ = (eΩ)A

Ȧ , where the 2− 5 component of the

matrix in the exponent is Ω25 = −Ω52 = −ω = iη/2. 2 By the relation (6.5), the

corresponding spinor rotation is

L = exp

(
1

4
ΩABγ

AB

)
= exp

(
i

4
η γ25

)
=

(
cosh η

4
− sinh η

4

− sinh η
4

cosh η
4

)
⊗ I2 . (6.12)

We note that although the spin connection in the cylinder frame has zero component

for ωρ̂
ψ̂t̂E , as can be seen in (C.2), the corresponding spin connection of KK frame

2The rotation with angle ω is exp

(
ω
(

0 −1
1 0

))
=
(

cosω − sinω
sinω cosω

)
. Here, we take ω = −iη/2 for

the rotation in 2–5 plane. Note that the angle is imaginary, because the coordinate x5 is Euclidean
time.
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mapped by (6.3), ω̇η̂
ψ̂t̂E(= ω̇1̇

2̇5̇), is non-zero due to the contribution of the Lorentz

transformation matrix in the second term of (6.3). According to (6.8), this non-zero

component gives the non-zero value of the electric flux along AdS2 . This explains

why there is electric flux on AdS2 even though the AdS3 does not have any electric

flux.

We now summarize the on-shell supersymmetric field configuration in the KK

coordinates. By using the transformations (6.10) (6.11) (6.12) on the background

Weyl multiplet as in (5.3) and matter multiplets as in (4.20) (4.22), we obtain the

following configuration:

ds5
2 = ℓ2 (dη2 + sinh2 η dχ2 + dθ2 + sin2 θ dϕ2) + ℓ2 (dx5 + i(cosh η − 1) dχ)2 ,

Ṫ34 = − 1

4ℓ
, (6.13)

σ̇I = −p
I

ℓ
, Ḟ I

θϕ = pI sin θ , Ẇ I
x5 = µI ,

Ȧ1
1 = Ȧ2

2 =

√
p3

3ℓ3
.

We note that the background geometry has an S1 fibration over the four-dimensional

base, which is Euclidean AdS2×S2. The angular coordinate χ of Euclidean AdS2 has

periodicity 2π. By comparing the metric with the KK ansatz (6.7), we identify the

following values for the KK one-form and scalar:

B = i(cosh η − 1) dχ , ϕ = ℓ−1 . (6.14)

The background configuration given in (6.13) has well-defined supersymmetry.

To see this, we look for the Killing spinors. By the Euclidean continuation of the

Lorentzian Killing spinors (4.35) followed by the coordinate transformation (6.10)

and the Lorentz transformation (6.12) we obtain

ε̇ i(1) = (−iε̇ +
+ , ε̇ −

− ) , ε̇ i(2) = (ε̇ +
+ ,−iε̇ −

− ) ,

ε̇ i(3) = (−ε̇ −
− ,−iε̇ +

+ ) , ε̇ i(4) = (−iε̇ −
− ,−ε̇ +

+ ) ,

˙̃ε i(1) = (ε̇ −
+ , iε̇ +

− ) , ˙̃ε i(2) = (iε̇ −
+ , ε̇ +

− ) ,

˙̃ε i(3) = (−iε̇ +
− , ε̇ −

+ ) , ˙̃ε i(4) = (ε̇ +
− ,−iε̇ −

+ ) .

(6.15)
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where the spinors ε̇ ±
± and ε̇ ∓

± are

ε̇ +
+ =

√
ℓ

2
e

i
2
(χ+ϕ)

(
cosh η

2

− sinh η
2

)
⊗

(
cos θ

2

sin θ
2

)
,

ε̇ −
+ =

√
ℓ

2
e

i
2
(χ−ϕ)

(
cosh η

2

− sinh η
2

)
⊗

(
− sin θ

2

cos θ
2

)
,

ε̇ +
− =

√
ℓ

2
e−

i
2
(χ−ϕ)

(
− sinh η

2

cosh η
2

)
⊗

(
cos θ

2

sin θ
2

)
,

ε̇ −
− =

√
ℓ

2
e−

i
2
(χ+ϕ)

(
− sinh η

2

cosh η
2

)
⊗

(
− sin θ

2

cos θ
2

)
.

(6.16)

Note that they are well-defined with respect to the global structure of the geome-

try (6.7) because they do not depend on the x5 direction (the spinors above are in

fact precisely the four-dimensional Killing spinors on AdS2× S2, as we spell out in

Appendix E). Note also that, as in the twisted torus frame, we cannot impose any

reality conditions on the Euclidean spinors. This is because although they formally

satisfy (εi)†iγ5 = εij(ε
j)TC, which is formally the symplectic-Majorana condition of

the Lorentzian theory (A.11), this condition is not compatible with the local Lorentz

rotations of the Euclidean theory.

6.2 4d Euclidean supergravity and AdS2×S2 back-

ground

The Kaluza-Klein formalism described in the previous subsection naturally connects

the 5d supergravity on the AdS3×S2 background in KK coordinates given in (6.13)

to the 4d supergravity on an AdS2×S2 background. In this subsection, we review the

4d Euclidean conformal supergravity and the AdS2×S2 background in more detail.

In the 4d Euclidean theory, there is a one-parameter redundancy for describing this

background that comes from the possible choice of reality condition for the fermions.
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4d N = 2 supergravity

For the 4d N = 2 Euclidean conformal supergravity, we consider the Weyl mul-

tiplet, coupled to Nv + 1 vector multiplets and one hypermultiplet. One of the vec-

tor multiplets and the single hypermultiplet act as the compensators to consistently

gauge-fix the dilatations of the off-shell theory (similarly to the five-dimensional the-

ory). The fields of the Weyl multiplet are

{eµa , ψia , ADµ , ARµ , Vµij , T±
ab , D , χi4d} , (6.17)

corresponding, respectively, to the vielbein, gravitino, dilatations gauge field, SO(1, 1)R

gauge field, SU(2)R gauge field 3, auxiliary self-dual/anti-self-dual two-form, auxiliary

scalar, and the auxiliary fermion. As in the five-dimensional case, we fix ADµ = 0 using

the K-gauge. The fields of the Nv + 1 vector multiplets are

{XI , X
I
, AI

µ , λ
I i , YI ij} , I = 0 , · · · , Nv , (6.18)

corresponding to the complex scalar and its conjugate, the U(1) gauge field, the

gaugino, and the auxiliary SU(2) triplet. Finally, the hypermultiplet consists of

scalars and fermions,

{Ai
α , ζα4d} . (6.19)

The supersymmetry transformations on the spinor fields ψia, λ
I i, ζα4d are presented

in (E.1), following the conventions of [45].

The 4d N = 2 supergravity is governed by the prepotential F (X) which is homo-

geneous of degree 2. Here, we choose the prepotential as [37]

F (X) = − 1

12
cIJK

XIXJXK

X0
, (6.20)

(the sum running over I = 1, . . . Nv), such that the vector multiplet sector of the 4d

theory matches that of the 5d theory described in the section 4.1, according to the

4d/5d map that we will present shortly in Section 6.3.

Reality conditions

Note that in the Euclidean theory, the fields XI and X
I
—and, more generally,

fields related by complex conjugation in the Lorentzian theory (e.g. T+
ab and T

−
ab)—are

independent in the Euclidean theory. In order to preserve the number of degrees of

3The R-symmetry group of the Euclidean theory is SU(2)× SO(1, 1) compared to SU(2)× U(1)
in the Lorentzian case.
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freedom, we should impose reality conditions in the Euclidean theory. This may be

done by imposing an appropriate reality condition on the spinors and using super-

symmetry. Spinors in the four-dimensional Euclidean N = 2 theory can be chosen

to obey the symplectic-Majorana condition. We note that there are actually an infi-

nite number of such consistent conditions which, for any symplectic-Majorana spinor

pair ψi, are parametrized by a real number α as

(ψi)†eiαγ5 = ϵij(ψ
i)TC , α ∈ R . (6.21)

This infinite choice stems from the fact that the chiral and anti-chiral spinors are

independent in Euclidean 4d, and the symplectic-Majorana condition for the chiral

and anti-chiral spinors can be imposed with relatively different phases. Two natural

examples are:

α = π/2 : (ψi)†iγ5 = ϵij(ψ
j)TC , α = 0 : (ψi)† = ϵij(ψ

j)TC . (6.22)

A spinor satisfying the general reality condition (6.21) (which we denote by ψi(α)) is

related to spinors satisfying (6.22)

ψi(α) = e
i
2
γ5(α−π

2
)ψi(π/2) = e

i
2
αγ5ψi(0) . (6.23)

Now, if we impose one such condition on all the spinors of the theory (including the

Killing spinors), then the consistency of the supersymmetry transformations under

this condition fixes specific reality conditions on the bosonic fields. For the two

examples above we have, respectively, the following conditions for the relevant bosonic

fields:

α = π/2 :
(
T±
ab

)∗
= T±

ab ,
(
XI)∗ = XI ,

(
X

I)∗
= X

I
,

α = 0 :
(
T±
ab

)∗
= −T±

ab ,
(
XI)∗ = −XI ,

(
X

I)∗
= −XI

.

(6.24)

However, note that imposing either reality condition in (6.24) does not necessarily

make the kinetic terms of the action negative-definite 4, and therefore does not make

the path integral perturbatively well-defined. In fact, this is the case for all bosonic

4Take the reality conditions (X
)∗

= X,
(
X
)∗

= X, for instance. We can parameterize these

real and independent X, X as X = a + b, X = a − b, where a, b are real functions. The kinetic
term for the scalars in the 4d Euclidean action is ∼ ∂µX∂

µX which gives (∂a)2 − (∂b)2 on this
parametrization. The sign of this term is clearly not definite.
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reality conditions implied from supersymmetry by (6.21). As was discussed in Sec-

tion 5.1, the resolution is to impose the standard reality condition on the bosonic

fluctuations, e.g. (δXI)∗ = δX
I
, so that path integral is well-defined, and to treat

the fermion fluctuations ψ1 and ψ2 as being independent. For the background, how-

ever, the effect of the choice for α still remains: there is a one-parameter family

of Killing spinors that satisfy the reality condition (6.21), and the supersymmetric

bosonic background has a corresponding dependence on the choice of α as we will

shortly see below.

4d AdS2×S2 background

Here we present the Euclidean AdS2× S2 background, including the complete

Weyl multiplet and matter multiplets. This solution can be obtained by Wick rota-

tion of the Lorentzian AdS2× S2 solution, which carries both electric and magnetic

charges
(
qI , p

I). The non-trivial fields are:

ds4
2 = gµν dx

µdxν = ℓ2
(
dη2 + sinh2 η dχ2 + dθ2 + sin2 θdϕ2

)
,

T−
12 = −iω , T+

12 = −iω , T−
34 = iω , T+

34 = −iω

AI = −i eI(cosh η − 1) dχ− pI cos θ dϕ ,

XI =
ω

8
(eI + ipI) , X

I
=

ω

8
(eI − ipI) ,

Ai
α = ai

α = constant ,

(6.25)

By the field equation for the auxiliary scalar D, the ai
α are constrained to obey:

Ωαβ ε
ijai

αaj
β = −4i(FIX

I − F IX
I) . (6.26)

By the attractor equations [69], the electric field eI is related to the electric charge

qI as

4i

(
ω−1∂F (X)

∂X
I − ω−1∂F (X)

∂XI

)
= qI , (6.27)

and the two independent complex parameters ω and ω̄ (unlike in the Lorentzian

theory, they are not complex conjugate to each other) are related to the length scale

of the metric ℓ as

ℓ2 =
16

ωω
, (6.28)

which indeed scales consistently with Weyl weight (−2) and SO(1, 1)R weight 0. Since

the two complex parameters ω and ω̄ carry opposite charges under the SO(1, 1)R
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gauge symmetry, we can set their magnitude to be same:

|ω| = |ω| = 4/ℓ . (6.29)

Note that to match our 5d set-up, we uphold the dilatational symmetry, which is

manifested here in the form of an arbitrary value for ℓ (one may break the symmetry

by fixing ℓ to 1 for instance, as in [14]). The relation (6.28), (6.29) indicates that ω

and ω̄ are now formally conjugate to each other so that we can rewrite them using

the following parametrization:

ω(α) =
4

ℓ
eiα , ω(α) =

4

ℓ
e−iα , α ∈ R . (6.30)

Unlike in the 4d Lorentzian theory, where the phase α is fixed by the U(1)R gauge

symmetry, in the Euclidean theory it remains as a free parameter. It is, in fact, pre-

cisely the parameter that determines the choice of reality condition for the spinors as

in (6.21), i.e. the background described in (6.25) with generic α as in (6.30) preserves

the supersymmetries generated by Killing spinors obeying the reality condition (6.21).

For the case of α = π/2 the 8 pairs of Killing spinors are presented in Appendix (E.22)

and the Killing spinors for a generic α can be read off from (6.23). Note that the

Killing spinors in (E.22) are exactly same Killing spinors as those of the 5d KK frame

given in (6.15).

Now, by comparing the 4d background (6.25) to the 5d KK-frame background (6.13),

it is clear that the AdS2× S2 metric in the former is the reduction of the AdS3× S2

metric in the latter, as mentioned in Section 6.1. However, it is not yet clear how

the 4d/5d background values of the other fields are related (beyond just the metric),

and how off-shell fluctuations are connected. In the next subsection, we will elucidate

these points by describing the full off-shell map between the Euclidean 4d and 5d

supergravity. Using this map, we will explicitly present how the 4d/5d backgrounds

are mapped.

6.3 The off-shell Euclidean 4d/5d lift

In this subsection, we describe the off-shell connection between the 4d Euclidean and

5d Euclidean theory. We present how the AdS2× S2 on-shell background in (6.25)

maps to the AdS3× S2 on-shell background in KK frame (6.13). This involves a choice

of the relevant parameters of the 4d background, specifically (e0, p0) in (6.25), and
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depending on the choice of parameter ω and ω̄ (6.25), a proper mapping parameter

is determined. We then show how to reach the 5d twisted torus background. We

end the section with the steps to lift off-shell localization solutions to the 5d twisted

torus.

To obtain the Euclidean 4d/5d connection, we use the Lorentzian 4d/5d relations

of [37] and map the two theories to their consistent Euclidean counterparts. Getting

the Euclidean 5d theory by the Wick rotation is straightforward, as explained in Sec-

tion 4.1. We follow the conventions of the 4d Euclidean theory in [45]. Equivalently,

one can start from the relations between the 5d Lorentzian and 4d Euclidean theories

of [44], and Wick rotate the 5d theory. The map obtained in this approach differs

from ours only in the way that the conventions of the 4d Euclidean theory of [44]

differ from those of the 4d Euclidean theory of [45]5.

Under Kaluza-Klein reduction of the 5d conformal supergravity to 4d, the vector

multiplets I = 1, . . . , Nv reduce to the corresponding 4d matter vector multiplets I =

1, . . . , Nv, and the Weyl multiplet reduced to the 4d Weyl multiplet and the additional

Kaluza-Klein vector multiplet I = 0.

One can expect that the Kaluza-Klein scalar ϕ associated with the 5d metric (6.6)

falls into the scalar in the 4d Kaluza-Klein vector multiplet. However, directly per-

forming this reduction only gives one real scalar degree-of-freedom, while there should

be two real degree-of-freedom for the scalars of the vector multiplet. Additionally,

the 4d SO(1, 1)R symmetry factor is not realized in any of the multiplets. To recover

the missing scalar d.o.f., an additional field φ is introduced [37, 44] to define the two

4d scalars in the KK vector multiplet as

X0 = − i

2
e−φϕ , X

0
=

i

2
eφϕ . (6.31)

The field φ transforms locally under SO(1,1)R as

φ → φ+ Λ0 , (6.32)

where Λ0 is real. One can then consistently couple φ to the remaining 4d fields, so

that the SO(1, 1)R of the 4d theory is realized.

We now present the explicit 4d/5d mappings, up to quadratic order in the fermions,

keeping the general φ dependence. The 4d Weyl multiplet is related to the 5d Weyl

5The mapping between these conventions is also presented in [45].
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multiplet as:

eµ
a = Ėµ

a , (6.33)

ψia = e−
1
2
φγ5Ψ̇ i

a , (6.34)

ARa = −6iṪa5 + ea
µ∂µφ (6.35)

Vaij = V̇a j
i , (6.36)

T 4d±
ab = e±φ(24 Ṫ 5d

ab + iϕ−1εabcdF (B)cd)± , (6.37)

D = 4Ḋ +
1

4
ϕ−1eaµDµ(ea

νDνϕ) +
3

32
ϕ−2F (B)abF (B)ab (6.38)

+
3

2
ṪȦḂṪ

ȦḂ +
1

4
ϕ2V̇x5i

jV̇x5j
i , (6.39)

χi4d = 8χ̇i +
1

48
γabF (B)abΨ̇

i
x5 −

3i

4
ϕṪabγ

5γabΨ̇i
x5 (6.40)

+
1

4
ϕ−1γ5 /D(ϕ2Ψ̇i

x5)−
1

2
ϕ2Vx5j

iΨ̇j
x5 −

9

4
iϕṪa5γ

aΨ̇i
x5 ,

where εabcd is the four-dimensional Levi-Civita symbol. The 4d supersymmetry pa-

rameters are given in terms of the 5d supersymmetry parameters and 5d Weyl mul-

tiplet fields as

εi4d = e−
1
2
φγ5 ε̇i , (6.41)

ηi4d = −iγ5e
1
2
φγ5

(
η̇i − 2Ṫa5γ

aγ5ε̇i +
i

8
ϕ−1γ5(F (B)ab − 4iϕṪabγ5)γ

abε̇i
)
.(6.42)

Moving on to the vector multiplets, the 4d KK vector multiplet fields in terms of the

5d Weyl multiplet are:

X0 = − i

2
e−φϕ , X

0
=

i

2
eφϕ , (6.43)

A0
a = ea

µBµ , (6.44)

λ0 i = e−
1
2
φγ5Ψ̇ i

5 ϕ , (6.45)

Y0 i
j = ϕ V̇5 j

i , (6.46)

and the 4d matter vector multiplet fields in terms of the 5d vector multiplet fields

77



Chapter 6. The Euclidean 4d/5d lift

are:

XI = 1
2
e−φ(σI + iẆ I

5 ) , X
I
= 1

2
eφ(σI − iẆ I

5 ) , (6.47)

AIa = Ẇ I
a , (6.48)

λI i = e−
1
2
φγ5
(
Ω̇I i − Ẇ I

5 Ψ̇
i
5

)
, (6.49)

YI i
j = −2

(
Y I i

j +
1
2
Ẇ I

5 V̇5 j
i
)
. (6.50)

Finally, the 4d hypermultiplet in terms of the 5d hypermultiplet is

Ai
α = ϕ−1/2Ȧi

α . (6.51)

Using the above maps, the 4d supersymmetry transformation is obtained from the 5d

supersymmetry transformation together with a 5d local rotation,

δ4d = δ5d + δM(ε) , ε5a = −εa5 = ε̇iγaΨ
i
5 , (6.52)

where the rotation parameter εAB is chosen to fix the gauge Ėx5
a = Ė5

µ = 0. We

also need the supersymmetry transformation rule of φ,

δ5dφ = ε̇iΨ̇
i
5 . (6.53)

For the purpose of lifting the 4d configuration to 5d, we use the inverse map,

namely the 5d fields in terms of the 4d fields. The 5d Weyl multiplet fields are given

in terms of the 4d Weyl multiplet and 4d KK multiplet as:

Ėµ
a = eµ

a , Ėµ
5 = ϕ−1Bµ , Ėx5

5 = ϕ−1 , (6.54)

Ψ̇i
a = e

1
2
φγ5ψia , Ψ̇ i

5 = ϕ−1e
1
2
φγ5λ0 i , (6.55)

Ṫab =
1

24

(
e−φT+

ab + eφT−
ab − iϕ−1εabcd F (B)cd

)
, (6.56)

Ṫa5 =
i

6

(
ARa − ea

µ∂µφ
)
, (6.57)

V̇a j
i = Vaij , V̇5 j i = ϕ−1Y0 i

j , (6.58)

Ḋ =
1

4

(
D − 1

4
ϕ−1eaµDµ(ea

νDνϕ)−
3

32
ϕ−2F (B)abF (B)ab

−3

2
ṪȦḂṪ

ȦḂ − 1

4
ϕ2V̇x5i

jV̇x5j
i
)
, (6.59)
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where

ϕ = 2ieφX0 = −2ie−φX
0
, Bµ = A0

µ . (6.60)

The 5d supersymmetry parameters are:

ε̇i = e
1
2
φγ5εi4d , (6.61)

η̇i = γ5

(
ie−

1
2
φγ5ηi4d + 2Ṫa5γ

aε̇i − i

8
ϕ−1(F (B)ab − 4iϕṪabγ5)γ

abε̇i
)
. (6.62)

The 5d vector multiplet is given in term of the 4d vector multiplet as:

σ̇I = eφXI + e−φX
I
, (6.63)

Ẇ I
a = AIa , Ẇ I

5 = −i
(
eφXI − e−φX

I
)
, (6.64)

Ω̇I i = e
1
2
φγ5λi I + Ẇ I

5 Ψ̇
i
5 , (6.65)

Ẏ I i
j = −1

2
YI i

j − 1
2
Ẇ I

5 V̇5 j
i . (6.66)

The 5d hyper scalar given in terms of the 4d hypermultiplet is

Ȧi
α = ϕ1/2Ai

α . (6.67)

Mapping 4d/5d classical backgrounds

By the above 4d/5d map, the relation between the 4d AdS2×S2 backgrounds (6.25)

and 5d AdS3× S2 background in (6.13) in KK coordinates becomes more manifest.

One important subtlety is about the choice of φ in (6.60). In the case of the Lorentzian

4d/5d connection, φ is just a U(1)R gauge parameter that fixes the gauge-redundant

phase of X0 and X
0
, making the ϕ automatically real. However, in the Euclidean

case, the 4d theory has an SO(1, 1)R gauge symmetry instead of U(1)R, whereas the

background values for X0 and X
0
have a relative phase coming from the choice of

the parameter ω and ω̄ and value of the charge e0 and p0. Therefore, unlike in the

Lorentzian case, the value of φ is not a ‘gauge fixing’ to kill the phase of X0 and X
0
,

but rather a ‘choice’ to cancel the phase of X0 and X
0
. (By the SO(1, 1)R gauge

redundancy and by the rule (6.32), we shift the φ to set the magnitude of X0 and X
0

to be same.)

Recalling the background value of X0 and X
0
as given in (6.25), where the ω

and ω̄ are parametrized by α as in (6.30), the value of the mapping parameter φ is
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determined to be

φ±(α , e0 , p0) = −iα± i
π

2
− i arctan

(p0
e0

)
, (6.68)

by the condition that ϕ be real. There remains an ambiguity of ±π/2 that is related

to an overall sign choice for ϕ. We now consider specific examples for two distinct

choices of (e0 , p0), keeping the choice of α to be generic. These are:

(1) (e0, p0) = (e0, 0) , φ±
1 (α) = −iα± iπ/2 ⇒ ϕ = ∓e

0

ℓ
,

(2) (e0, p0) = (0, p0) , φ±
2 (α) = −i(α + π/2)± iπ/2 ⇒ ϕ = ∓p

0

ℓ
.

(6.69)

Here we see that, by the mapping parameter φ±, the background value of the lifted

5d field ϕ is indeed real, but there is dependence on the choice ±. We note that for

both cases in (6.69) and, more generally, with any choice (6.68), all the lifted 5d fields

are independent of the choice of phase ω ≡ exp(iα) in the 4d background (6.25).

The resulting 5d background fields are listed in Table 6.1. The 4d configuration

with (e0, p0, φ) = (e0, 0, φ±
1 ) as in (1) lifts to an AdS3×S2 background, while the one

with (e0, p0, φ) = (0, p0, φ±
2 ) as in (2) lifts to an AdS2×S3 background. For the latter

case, the localization solutions were studied in [21]. In both cases, the choice of the

sign in φ± gives the opposite sign for the background values of ϕ, ṪȦḂ, σ̇ and hyper

norm χ̇. At the level of the Killing spinor equation (that we review in Appendix C),

choosing either sign gives a set of Killing spinors corresponding, respectively, to the

right- or left-moving supercharges in terms of the 2d chiral N = 4 super algebra.

Now, for our problem, the full specification of parameters to lift the Euclidean

AdS2×S2 backgrounds (6.25) to the 5d KK frame (6.13) is

(e0, p0, φ) = (−1, 0, φ+
1 ) , (6.70)

with identification eI = µI and φ+
1 given in (6.69). To relate Euclidean AdS2×S2

to the twisted torus (5.8), this lift is then followed by the following steps: taking

the lifted 5d KK frame background (6.13) with Q- Killing spinors (6.15), one ap-

plies the local coordinate transformations (6.10), (5.6), the spinor Lorentz rotation

in (6.4) with (6.12), and finally one imposes the periodicity conditions (5.7) with Ω

given in (5.12). In this procedure, only four of the eight Q- Killing spinors mapped

from (6.15) are well-defined on the twisted torus, as expected.
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φ = φ±
1

(e0, p0) = (e0, 0)

ds2 = AdS3×S2

Ṫ34 = ∓1/(4ℓ)
σ̇I = ∓pI/ℓ ,
Ḟ I
34 = pI/ℓ2

Ȧ1,2
1,2 =

√
± p3

3ℓ3

Sbulk =
p3

12e0

φ = φ±
2

ds2 = AdS2×S3

Ṫ12 = ∓i/(4ℓ)
σ̇I = ±eI/ℓ ,
Ḟ I
12 = −ieI/ℓ2

Ȧ1,2
1,2 =

√
∓ e3

3ℓ3

Sbulk =
e3

12p0

(e0, p0) = (0, p0)

Table 6.1: The non-trivial 5d fields obtained by lifting the 4d backgrounds (6.25)
with (ω, ω) as given in (6.30) and with different choices for (e0, p0) and φ. For the
choice of (e0, p0) on the left and right panel, the 4d hyper scalar that is lifted is
determined by the D-field equation constraint (6.26) as a1

1 = a2
2 = 1/ℓ

√
−p3/3e0

and a1
1 = a2

2 = 1/ℓ
√
e3/3p0 respectively. We also include the value for the finite

piece of the bulk action (4.13). The field configurations on the right entry are solutions
corresponding to the near-horizon of the supersymmetric Euclidean 5d black hole.
The field configurations on the left entry are the Euclidean AdS3×S2 solutions.

Mapping 4d localization solution to the 5d twisted torus frame

Having identified the relevant 4d background, together with the correct mapping

parameter (6.70) that relates it to the 5d twisted torus background (5.8), we now want

to map the off-shell localization solution of 4d supergravity on that background to the

5d localization solution around the twisted torus background. The strategy for this

mapping follows the same steps as the mapping of the backgrounds presented above.

Here, we assume that phase factors in the quantum fluctuation of the scalars X0

and X
0
are appropriately cancelled by a fluctuating value of φ around its value in

(6.70), such that it makes the quantum fluctuation of the 5d field ϕ real.6 It will turn

out that for our off-shell localization solution, we can use the same value of φ as was

chosen in (6.70).

Here, we summarize the steps as follows:

1. Start with the 4d localization manifold whose background is the Euclidean

AdS2×S2 solution (6.25) with (e0, p0) = (−1, 0). Since the result does not

depend on the choice of α in (6.30), without loss of generality we take α = π/2

for convenience.

6Since we choose the reality condition for the fluctuation of X0 and X
0
to be complex conjugate

to each other, as explained after (6.24), and since this condition is the same as the condition in the
Lorentzian theory, it appears there may be some U(1)R gauge symmetry hidden in the fluctuating
field, and it may justify our assumption.
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Chapter 6. The Euclidean 4d/5d lift

2. Apply the 4d/5d lift with the mapping parameter φ = φ+
1 (π/2) = 0 to obtain

5d localization solutions in the KK frame (6.13) of Euclidean AdS3×S2.

3. Transform these localization solutions to the twisted torus frame by applying

the local coordinate maps (6.10), (5.6), the spinor Lorentz rotation in (6.4)

with (6.12), and finally imposing the periodicity conditions (5.5) with Ω given

in (5.12).

Note that a consistent lift to the twisted torus requires that the lifted solutions respect

the periodicities (5.5). As an example of an inconsistent lift, consider a scalar field

fluctuation on AdS2×S2 with non-zero momentum on χ, which therefore has 2π-

periodicity in χ. Recalling that χ = ψ − itE, we see that such a mode, lifted to 5d,

does not respect the second periodicity condition in (5.5). As we discuss in the next

section, the fields in the four-dimensional localization manifold depend only the radial

coordinate η = 2ρ and therefore lift consistently to the 5d twisted torus.
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The lift of localization solutions

on AdS2×S2 to H3/Z×S2

In this chapter, we apply the lifting procedure constructed in Chapter 6 to obtain

localization solutions around the supersymmetric H3/Z×S2 background. We find a

set of solutions to the BPS equations parametrized by Nv + 1 real coordinates CI ,

I = 0, . . . , Nv. These coordinates are inherited from the 4d localization manifold,

where each CI parametrizes the off-shell solution for the Ith vector multiplet. In

the 4d AdS2×S2 problem, the boundary conditions fix all the fields to their attractor

values at infinity. The localization solution consists of the scalar fields XI going off-

shell in the interior, with a radially-decaying shape that is fixed by supersymmetry.

The parameter CI labels the size of deviation at the origin. In 5d, the CI , I =

1, · · · , Nv parametrize the size of the off-shell solution in the vector multiplet, and C0

parametrizes a certain excitation of the Weyl multiplet. Here, we have an AdS3×S2

background, where one leg of the gauge field (Wz′) is fixed at infinity to its on-shell

value while the other (Wz′) is free to fluctuate, as we described in Section 5.3. The

parameter CI labels the deviation of bothW I
z′ andW

I
z′ from their on-shell value at the

origin as well as the boundary fluctuation of W I
z′ . The precise solutions are presented

in (7.6–7.9) for the Weyl multiplet, and in (7.12–7.15) for the vector multiplets. The

hypermultiplet also fluctuates, and the solution is given in (7.16).

4d localization solutions

The most general solution in 4d around the AdS2×S2 background is parametrized

by one real parameter in each vector multiplet and one real parameter in the Weyl

multiplet, before fixing the gauge for local scale transformations [39]. The gauge can

be chosen so that there is no off-shell fluctuations in the Weyl multiplet [14]. The
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off-shell solution in the vector multiplets takes the following form:

XI =
i

2ℓ

(
eI + i pI +

CI

cosh η

)
, X

I
= − i

2ℓ

(
eI − i pI +

CI

cosh η

)
(7.1)

AI = −i eI(cosh η − 1) dχ− pI cos θ dϕ , (7.2)

YI 1
1 = YI

12 =
−CI

ℓ2 cosh2 η
, (7.3)

where we use (ω(π/2), ω(π/2)) = (4i/ℓ, −4i/ℓ). The CI are arbitrary constants and

parametrize the off-shell fluctuations around the background (6.25).

Lift to the Weyl multiplet

For the lift to the Weyl multiplet, the relevant fields of the 4d localization solution

(7.1) are those of the KK vector multiplet I = 0. Using (6.60), we first obtain the

off-shell values for the KK scalar and one-form:

ϕ =
1

ℓ

(
1− C0

cosh η

)
, Bχ = i(cosh η − 1) . (7.4)

It is useful to define the function

ϕ(x) := 1− C0

coshx
. (7.5)

Now, using the lifting equations (6.54 - 6.59) with (e0, p0) = (−1, 0) and φ = 0, we

obtain the full Weyl multiplet configuration in the KK frame. After applying the
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coordinate maps (6.10) and (5.6) to the twisted torus frame, the non-trival fields are:

EM ′
A = ℓ



2 0 0 0 0

0
sinh ρ (2− C0

cosh 2ρ
−C0)

ϕ(2ρ)
0 0

2i C0

cosh 2ρ
cosh ρ sinh2 ρ

ϕ(2ρ)

0 0 1 0 0

0 0 0 sin θ 0

0
2i C0

cosh 2ρ
cosh2 ρ sinh ρ

ϕ(2ρ)
0 iΩ sin θ

cosh ρ (2− C0

cosh 2ρ
+C0)

ϕ(2ρ)


,(7.6)

Tθϕ′ =
ℓ sin θ

12

(
1

ϕ(2ρ)
− 4

)
, TθtE ′ =

iΩℓ sin θ

12

(
1

ϕ(2ρ)
− 4

)
, (7.7)

Vψ = −2iC0

sinh2 ρ
cosh2 2ρ

ϕ(2ρ)2
τ 3 , Vt′E = −

2C0 cosh2 ρ
cosh2 2ρ

ϕ(2ρ)2
τ 3 , (7.8)

D = C0

tanh2 2ρ
cosh 2ρ

(
3− 2C0

sinh 2ρ tanh 2ρ

)
24ℓ2ϕ(2ρ)2

. (7.9)

Recall from Section 5.2 that Ω = 1 + iτ1/τ2 in the twisted torus frame.

It remains to apply the lift to the Q- and S-Killing spinors. In principle, off-

shell fluctuations in the bosonic fields of the Weyl multiplet may induce off-shell

fluctuations in the 5d Killing spinors such that the BPS equations of the multiplet

remain solved. Note however that the 4d Weyl multiplet in the 4d localization so-

lution does not fluctuate, and so the 4d Q- and S- Killing spinors that we lift are

just those of the 4d background, namely the eight spinors εi4d(π/2), given explic-

itly in (E.22), and ηi4d(π/2) = 0 (recall we have fixed α = π/2). Further note that

the lifting equation (6.61) for the 5d Q- spinors only involves the 4d Q- spinors

(which are on-shell). We conclude that the lift of the Q- spinors is unchanged from

the on-shell case, i.e. we obtain, in the twisted torus frame, the four well-defined

on-shell Q -spinors ε(a), a = 1, 2, 3, 4, as given in (5.13). In contrast, the lifting equa-

tion (6.62) of the S- spinors η4d involves bosonic 5d fields which do fluctuate. The 5d

S- spinors, which are zero on-shell, therefore acquire a non-zero value off-shell. In the

twisted frame, we obtain four well-defined S- spinors η(a), associated with the four Q-
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spinors ε(a). The one associated to the localization supercharge ε(1) has value

η1(1) = −
C0

cosh(2ρ)
e

i
2
(ψ+ϕ′+i(Ω−1)t′E)

3
√
2ℓϕ(2ρ)



cos θ
2
cosh ρ

2

−sin θ
2
cosh ρ

2

−cos θ
2
sinh ρ

2

sin θ
2
sinh ρ

2


, (7.10)

η2(1) = −
i C0

cosh(2ρ)
e−

i
2
(ψ+ϕ′+i(Ω−1)t′E)

3
√
2ℓ ϕ(2ρ)



sin θ
2
sinh ρ

2

cos θ
2
sinh ρ

2

−sin θ
2
cosh ρ

2

−cos θ
2
cosh ρ

2


. (7.11)

Lift of the vector multiplet

The relevant 4d fields are those of (7.1) with I = I. Using the lifting equa-

tions (6.63 - 6.66) followed by the coordinate transformations (6.10) and (5.6), we

obtain the following non-trivial fields of the vector multiplet configuration in the

twisted torus frame:

σI = −p
I

ℓ
, W I

ϕ′ = −pI cos θ , (7.12)

W I
ψ =

2i
(
CI/µI + C0

)
sinh2(ρ)
cosh 2ρ

ϕ(2ρ)
µI , (7.13)

W I
t′E

= −ipIΩcos θ +

CI/µI−C0

cosh 2ρ
+ CI/µI + C0 + 2

ϕ(2ρ)
µI , (7.14)

Y I
12 =

1

2ℓ2ϕ(2ρ)

CI/µI + C0

cosh2 2ρ
µI . (7.15)

Lift of the hypermultiplet

Finally, the lift for the hypermultiplet (6.67) gives the following non-trivial com-

ponents for the off-shell hyper scalar:

A1
1 = A2

2 =

(
ϕ(2ρ)

ℓ

)1/2
√

p3

3ℓ3
. (7.16)
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To summarize, the field configuration of the Weyl multiplet (7.6)–(7.9), the vector

multiplet (7.12)–(7.15), and the hypermultiplet (7.16) are the 5d localization solu-

tions. These configurations are off-shell fixed-points of the variations generated by

the supercharge Q given in (6.1), around the supersymmetric H3/Z×S2 given in (5.8).
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Chapter 8

Boundary conditions and action

As we have emphasized throughout this thesis, boundary conditions are a neces-

sary and influential ingredient in the formulation of gravitational problems on non-

compact spaces such as Anti-de-Sitter spacetimes. Already at the level of the classical

theory, they are required to formulate meaningful notions of charge, asymptotic sym-

metries, and initial-value-problems. In the quantum theory, they become especially

important since they determine which family of configurations will contribute to the

functional integral. Boundary conditions also enter directly at the level of the action,

where they are intrinsically linked with the construction of boundary terms. These

terms are specifically chosen so as to achieve a well-defined variational principle of the

theory with said boundary conditions (and this arises independently of other condi-

tions one may wish to impose on the theory, e.g. supersymmetry or gauge invariance of

the action). In this chapter, we begin to explore these boundary-condition and action

principles in the context of the new off-shell BPS solutions around supersymmetric

H3/Z×S2, as presented in Chapter 7. In particular, we discuss how these solutions

fit into the quantum functional integral formalism, and we initialize the construction

of the renormalized action according to their obeyed boundary conditions.

In Section 8.1, what we soon find is that these new solutions in fact do not consis-

tently fit into the quantum functional integral problem as we defined it in Chapters 1

and 3. More precisely, we find that while the off-shell gauge fields in these solutions

remain consistent with the usual AdS3×S2 boundary conditions (5.28), the metric

fluctuations in the AdS3 directions explicitly violate the standard Brown-Henneaux

conditions. This is an uncomfortable fact, and a natural reaction would be to aban-

don these localization solutions entirely. However, in this chapter, we instead choose
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to persist with a further analysis on them. One reason for which this could consti-

tute the right approach is the following: First, it is known at the semi-classical level

that the quantum entropy function [13], which performs the macroscopic counting

of the degeneracies of extremal black holes with near-horizon AdS2×S2 (or, more

generally, times any compact manifold M), is intrinsically linked with the path inte-

gral on AdS3 [70] 1. Secondly, it is known that the 4d localization solutions around

AdS2×S2, parameterized by CI , contribute to this quantum entropy function in the

localization formalism [14, 15]. Therefore, since our H3/Z×S2 localization solutions

have been lifted from precisely these AdS2 solutions, it is plausible that they should

also contribute to the localization computation of the AdS3 path integral.

Now, in deciding to continue forward with our new localization solution, the next

question is whether there exists an alternative set consistent gravitational bound-

ary conditions in which to embed these solutions. Supported by a rich literature on

boundary conditions in AdS3 (e.g. see [71, 72, 46]) we indeed find one such set: the

Compère-Strominger-Song boundary conditions, which we reviewed in Section 2.3.3.

In Section 8.2, this leads us to propose a boundary term structure for the 5d super-

gravity action, according to the renormalization scheme prescribed in [46]. While the

resulting set of boundary terms is likely not complete, the value of this action on

the localization solutions already displays certain interesting characteristics, which

we discuss towards the end of the section.

In Section 8.3 we turn to the problem of exploring the existence of additional

localization solutions, distinct from the class found in Chapter 7. Here, instead of

using lifting principles, our approach is to perform a direct analysis of the supersym-

metry equations in the large ρ regime. This strategy resembles the idea of holographic

renormalization [53], where the field equations are solved recursively order-by-order

for the coefficients of Fefferman-Graham expansions (see Section 2.3.1 for the example

in pure 3d gravity). In our case, the same recursive approach is applied but to the off-

shell BPS equations for our localization supercharge Q. Note that due to the inherent

complexity of the BPS equations (we focus on the variation of the gravitino, which is

especially complicated), we employ numerical strategies to extract and perform the

recursive solving. The results of this procedure is evidence towards the existence of

an a priori infinite class of new localization solutions, only a subclass of which is

1For instance, at the level of the U(1) matter couplings, the AdS2 and AdS3 calculations are
equivalent up to a difference in fixing the ensemble. In the AdS2 case, the U(1) charges are fixed
at infinity, which places the calculation in the microcanonical ensemble. In the AdS3 case, it is the
chemical potentials for these charges (i.e. the µI) that are fixed instead, placing us in the canonical
ensemble.
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consistent with the CSS boundary conditions. The solutions which are not consis-

tent with these boundary conditions are related to the left-moving Brown-Henneaux

modes Ln.
We close this chapter with a somewhat tangential but natural follow-up analysis

on the topic of these BPS Brown-Henneaux modes in the left-sector, namely a study

of their behaviour under the dimensional reduction to the theory on AdS2×S2. Using

the technology of the off-shell 4d/5d connection, we show that they reduce to non-

normalizable modes in the four-dimensional theory.

Throughout this chapter, it should be noted that we work predominantly in the

5d cylinder-coordinate system xM = (ρ, z, z, θ, ϕ), where we recall that the complex

coordinates (z, z) are related to (ψ, tE) as:

z = ψ + itE , z̄ = ψ − itE . (8.1)

We remind the reader that the (ρ, ψ, θ, ϕ, tE) coordinates are those related to the

coordinates (ρ, ψ, θ, ϕ′, t′E) of the H3/Z×S2 background, as written in (5.8), by (5.6).

We also take this chance to (re-)introduce additional index notation that will be

relevant to the upcoming sections. We denote as xi = (z, z, θ, ϕ) the transverse

coordinates of the five-dimensional space, which are used on the induced metric hij.

As we have seen in prior sections xα = (z, z) are the boundary coordinates of the

AdS3 factor. Finally, xm = (θ, ϕ) are coordinates on the S2 factor.

8.1 Boundary behaviour of the localization solu-

tions

In this section, we analyze the asymptotic structure of the localization solutions

lifted to H3/Z×S2 in Chapter 7, focusing on the metric tensor and the gauge fields. In

the interest of self-containement, we copy the relevant field expressions here, opting for

the coordinates of the cylinder frame xM = (ρ, z, z, θ, ϕ). The non-trivial components

are as follows:
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Metric tensor

Gρρ = (2ℓ)2 , Gθθ = ℓ2 , Gϕϕ = ℓ2 sin2 θ ,

Gzz = − ℓ2

ϕ(2ρ)2
, Gzz =

ℓ2 cosh(2ρ)

ϕ(2ρ)2
,

Gzz = −ℓ2
1 + (C0)2 + cosh(4ρ)− C0

(
cosh(2ρ) + C0 cosh(4ρ)− cosh(6ρ)

)
ϕ(2ρ)2 cosh2(2ρ)

(8.2)

U(1) gauge fields

W I
ϕ = −pI cos θ ,

W I
z = −

iµI
(
1 + CI

µI cosh(2ρ)

)
ϕ(2ρ)

, W I
z =

iµI
(
1 + CI

µI
+ C0 − C0

cosh(2ρ)

)
ϕ(2ρ)

.

(8.3)

Recall that we have defined

ϕ(x) = 1− C0

cosh(x)
. (8.4)

Asymptotic form of off-shell gauge fields

Consider the off-shell U(1) gauge fields of the localization solution, as given

in (8.3). At large ρ, the components obey the expansion

W I
i (ρ, x) = W

(0)I
i (x) + e−2ρW

(2)I
i (x) +O(e−4ρ) . (8.5)

In the AdS3 directions xα = (z, z), the first two expansion coefficients read

W (0)I
z = −iµI , W

(0)I
z̄ = iµI + iµIC0 + iCI ,

W (2)I
z = −2iµI(C0 + CI/µI) , W

(2)I
z̄ = 2iµIC0(C0 + CI/µI) .

(8.6)

We observe thatW I
z remains fixed to its classical value at the boundary whileW I

z̄ has

off-shell fluctuations. In the S2 directions xm = (θ, ϕ), meanwhile, the gauge fields

are also fixed to their on-shell values at the boundary (in fact, they do not fluctuate

anywhere in the geometry):

W I
θ = W

(0)I
θ = 0 , W I

ϕ = W
(0)I
ϕ = −pI cos θ . (8.7)
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This behaviour for W I
M is consistent with the standard AdS3×S2 boundary condition

for the gauge fields, which we recall from Section 5.3 are given as

δW (0)I
z = 0 , W

(0)I
z̄ not fixed , δW (0)I

m = 0 . (8.8)

Asymptotic form of off-shell metric

Consider now the BPS solution in the Weyl multiplet, labeled by C0, and given

in (8.2). The metric GMN takes the form

GMN dx
MdxN = (2ℓ)2dρ2 + hij dx

idxj

= (2ℓ)2dρ2 + γαβ dx
αdxβ + bmn dx

mdxn + 2cαm dx
αdxm

(8.9)

where hij is the induced metric of the five-dimensional bulk metric, γαβ is the metric

over the AdS3, bmn is the metric over the S2 and cαm is the metric over the mixed

AdS3/S
2 directions. At large ρ, we have an expansion for the AdS3 factor γαβ as

γαβ(ρ, x) = e2ργ
(0)
αβ (x) + γ

(2)
αβ (x) +O(e−2ρ) , (8.10)

where the first few coefficients are

γ(0)zz = 0 , γ
(0)
zz̄ =

ℓ2

2
, γ

(0)
z̄z̄ = −ℓ2C0 ,

γ(2)zz = −ℓ2 , γ
(2)
zz̄ = 2ℓ2C0 , γ

(2)
z̄z̄ = −ℓ2(1 + 3(C0)2) .

(8.11)

The appearance of the off-shell mode C0 in γ
(0)
z̄z̄ violates the Brown-Henneaux

boundary conditions in AdS3 which, in the complex coordinates (8.1), are given as

γ(0)zz = γ
(0)
z̄z̄ = 0 , γ

(0)
zz̄ =

ℓ2

2
. (8.12)

Instead, the values for γ
(0)
αβ and the subleading component γ

(2)
zz in (8.11) together

obey to the (Wick-rotated) Compere-Strominger-Song (CSS) boundary conditions of

Einstein Gravity in three dimensions [46]. In Lorentzian signature, these boundary

conditions were reviewed in Section 2.3.3. In the Wick-rotated setting, they are given

as

γ(0)zz = 0 , γ
(0)
z̄z̄ = ℓ2∂z̄P̄ (z̄) , γ

(0)
zz̄ =

ℓ2

2
,

γ(2)zz = 4ℓG3∆ ,

(8.13)
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where recall that P̄ (z̄) is an arbitrary fluctuating function of z̄, while the constant ∆

is an input that, in the classical theory, is related to the charges of the BTZ black

hole. In the quantum theory, all other Fefferman-Graham coefficients are allowed to

fluctuate. Comparing (8.13) with (8.11), we identify

∂z̄P̄ (z̄) = −C0 , ∆ = − ℓ

4G3

. (8.14)

(Note that this means P̄ = −C0z̄ and so P̄ is not periodic.)

Finally, we have metric components on the S2 directions and mixed AdS3/S
2

directions which do not fluctuate at all. It is nevertheless useful to introduce their

asymptotic expansion as

bmn(ρ, x) = b(0)mn(x) + e−2ρb(2)mn(x) + · · · ,

cαm(ρ, x) = c(0)αm(x) + e−2ρc(2)mn(x) + · · · .
(8.15)

The boundary conditions for these metric components are that b
(0)
mn , c

(0)
αm are fixed to

their on-shell values, and this is trivially true in our case. Recall that in the (ρ, z, z, θ, ϕ)

coordinates, these on-shell values are:

b
(0)
θθ = ℓ2 , b

(0)
ϕϕ = ℓ2 sin2 θ ,

c(0)αm = 0 .
(8.16)

For upcoming analyses concerning the metric, it will in fact also be required to

specify boundary behaviour for the dilaton Φ = −C(σ)/8 + 3χ/16. The dilaton in

our localization solutions obeys the expansion:

Φ(x, ρ) = Φ(0)(x) + e−2ρΦ(2)(x) + · · · (8.17)

with Φ(0) fixed to the background value Φ(0) = p3

12ℓ3
. This corresponds to Dirichlet

conditions.

8.2 Towards a renormalized action

In this section, we consider the boundary conditions that were identified for our

localization solutions in Section 8.1 and use them to explore a corresponding bound-
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ary term structure for the 5d supergravity (4.13). We continue to focus on the metric

sector and gauge-field sector. Since the metric in our localization solutions obeys the

CSS boundary conditions, our approach to construct boundary terms for the gravi-

tational sector is to follow the CSS renormalization scheme of the three-dimensional

theory, as was reviewed in Section 2.3.3. Meanwhile, because the off-shell gauge fields

obey the standard AdS3×S2 boundary conditions, the renormalization in their sector

is identical to the construction presented in Section 5.3. Before we begin, we empha-

size that the proposal reached does not constitute a fully renormalized action for the

boundary conditions. For instance, we have not computed boundary terms for the

hypermultiplets, which we expect should contribute to the action on the localization

solutions. We postpone a comprehensive analysis of these aspects to future work.

We nevertheless note that our partial action already displays certain interesting char-

acteristics. In particular, its value on the localization solution exhibits a tractable

structure that is both finite and that can be compared to the analogous action for

the 4d localization problem on AdS2×S2 [14], as we briefly discuss towards the end

of the section.

Boundary terms for the gauge fields

We begin with the gauge-field sector, where we have shown in (8.6) that the

boundary conditions obeyed by the off-shell W I
M are the usual AdS3×S2 boundary

conditions (8.8). Therefore, the boundary term to use here is unchanged from the

five-dimensional Chern-Simons boundary term (5.29) presented in Section 5.3. For

convenience, we copy it here:

Sbdry
CS = −cIJK

ipI

48π2

∫
∂M

dz′dz̄′dθdϕ′ sin θ (W J
z′ −

1

2
ΩW J

ϕ′)W
K
z̄′ , (8.18)

Note that for uniformity with Section 5.3, we continue to write this term in the coor-

dinates of the twisted torus as in (5.8). Any other non-covariant boundary term pre-

sented in this section will be written in the cylinder coordinates xM = (ρ, z, z, θ, ϕ, tE),

as mentioned earlier in the chapter.

Boundary terms for the metric

We now turn to the renormalization for the metric field. The regularization scheme

in this sector should naturally follow that which was prescribed in the pure three-

dimensional theory by Compère, Strominger and Song in [46], and which we also

reviewed in Section 2.3.3. Recall that this scheme specifies the addition of a CSS-

specific (chiral) boundary term (2.72) on top of the usual Gibbons-Hawking and
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counter term, given in (2.48) and (2.49) respectively. The five-dimensional equivalent

of this CSS boundary term is

Sbdry
CSS =

ℓ

8π2

∫
∂M

d4x
√
h(0)
(
Φ(0) γ(0)zz

)
, (8.19)

where h(0) ≡ det(γ(0)b(0)c(0)). The five-dimensional Gibbons-Hawking and counter

term were already employed in the on-shell analysis of Section 5.3, and we copy them

here for convenience:

SGH = − 1

4π2

∫
∂M

d4x
√
hΦK , (8.20)

SCC =
1

8ℓπ2

∫
∂M

d4x
√
hΦ . (8.21)

All together: a proposal for the renormalized action

Combining the bulk action (4.13) with the gauge field and metric boundary terms

presented above, we propose a (partially) renormalized action as:

Sren = Sbulk + SGH + SCC + Sbdry
CSS + Sbdry

CS . (8.22)

We now turn to the variation of Sren (8.22) with respect the gauge fields and the

metric, constrasting to the on-shell construction of Section 5.3.

Variational principle of Sren with respect to W I

For the gauge fields, the boundary conditions and hence the boundary term Sbdry
CS

are identical to those imposed in 5.3, and so δSren vanishes as it did there. As far as

regularizing the bulk action with respect to their boundary conditions, we therefore

expect no further boundary terms for W I .

Variational principle of Sren with respect to GMN

For the metric, the situation is different to Section 5.3 for two reasons. Firstly, the

boundary conditions in the AdS3 directions are different: we are imposing the CSS

conditions rather than Brown-Henneaux. We accordingly have the extra boundary

term Sbdry
CSS (8.19) in analogy with the 3d term (2.72). Secondly, because the dila-

ton Φ is no longer constant in the off-shell configuration, there are additional surface

terms in the variation of the bulk, which are of the form δg(∇Φ), that could poten-

tially contribute non-trivially (whereas they vanished identically in the on-shell case

where Φ=constant). These considerations justify an explicit analysis of the variational

problem for the metric, to which we now turn.
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The first-order variation of the bulk supergravity action (4.13) with respect to the

metric tensor GMN is

δSbulk =
1

8π2

∫
M
d5x

√
G
[
ΦGMN +

(
∇M∇N −GMN∇Q∇Q

)
Φ− TMN

]
δGMN

− 1

8π2

∫
∂M

d4x
√
hnQ

[
Φ
(
∇MδGQM −GMN∇QδGMN

)
+GMNδGMN∇QΦ− δGQM∇MΦ

]
,

(8.23)

where GMN is the Einstein tensor

GMN = RMN − GMN

2
R , (8.24)

and where we packaged the remaining matter-couplings in a stress-tensor TMN :

TMN ≡ GMN

2

(
LV + LH + C(σ)(4D +

39

2
T 2) + χ(2D +

3

4
T 2)
)

− cIJK
2

σI
(1
2
DMσ

J DNσ
K +

1

2
F J
M

Q
FK
NQ − 6σJF(M

QTN)Q

)
− TM

QTNQ

(
39C(σ) +

3

2
χ
)
+

1

2
Ωαβε

ijDMAi
αDNAj

β .

(8.25)

(The expressions for LV and LH are given in (4.10).) The variation (8.23) has a bulk

and a boundary piece. The bulk piece corresponds to the Einstein’s equations in the

off-shell theory when set to zero. The boundary piece is the relevant starting point

to analyze the variational principle. We label it as:

δSbulk|bdry ≡ − 1

8π2

∫
∂M

d4x
√
hnQ

[
Φ
(
∇MδGQM −GMN∇QδGMN

)
+GMNδGMN∇QΦ− δGQM∇MΦ

]
,

(8.26)

The first line of (8.26) can be written as

− 1

8π2

∫
∂M

d4x
√
h
[
Φ
(
KnMnNδGMN −KMNδGMN −GMNnQ∇QδGMN

)
− nQδGMQ(∇MΦ)

]
,

(8.27)
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(where a total derivative term ∇M(ΦnNδMN) was discarded), so that

δSbulk|bdry = − 1

8π2

∫
∂M

d4x
√
h
[
Φ
(
KnMnNδGMN −KMNδGMN −GMNnQ∇QδGMN

)
+ nQ

(
GMNδGMN(∇QΦ)− 2δGMQ(∇MΦ)

)]
.

(8.28)

Now, the variation of the 5d Gibbons-Hawking (5.31) and 5d CC (5.32) terms are,

respectively:

δSGH = − 1

8π2

∫
∂M

d4x
√
h
[
Φ
(
KGMNδGMN −KnMnNδGMN + gMNnQ∇QδGMN

)
+ 2nQδGMQ(∇MΦ)

]
δSCC =

1

16π2ℓ

∫
∂M

d4x
√
hΦGMNδGMN ,

(8.29)

where a total derivative term ∇M(ΦnNδMN) was again discarded in δSGH . We there-

fore have that

δ
(
Sbulk|bdry + SGH + SCC

)
=

1

8π2

∫
∂M

d4x
√
h
[
Φ
(
KMN −KGMN +

1

2ℓ
GMN

)
δGMN

− nQGMNδGMN(∇QΦ)
]
.

(8.30)

The first line is the dilaton-coupled Brown-York term with an additional contribution

from the SCC . The second line is an effect of the dilaton. We can now develop

the (M,N) contractions over the indices (α, β), (m,n) and (α,m) and start imposing

boundary conditions. As an intermediate step, we only substitute the boundary

conditions for the metric components cαm and bmn, as given in (8.15), (8.16), as well
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as those for the dilaton Φ as in (8.17). This gives for (8.30):2

δ
(
Sbulk|bdry + SGH + SCC

)
=

1

8π2ℓ

∫
∂M

d4x
√
h(0)Φ(0)

(
γ(0)αβTr[γ(2)]− γ(2)αβ

)
δγ

(0)
αβ

− 1

8π2ℓ

∫
∂M

d4x
√
h(0) Φ(0)b(0)mn

(
b(2)mnγ

(0)αβδγ
(0)
αβ − δb(2)mn

)
− 1

8π2

∫
∂M

d4x
√
h(0)e−2ρnρ

(
γ(0)αβδγ

(2)
αβ + b(0)mnδb(2)mn

)
∂ρΦ

(2) .

(8.31)

The last line above is the one corresponding to the last line in (8.30), i.e. the dynamical

dilaton term. It is suppressed by e−2ρ and therefore drops out. The second line

in (8.30) has an interpretation coming from viewing the S2 metric components bmn

as scalars in the effective AdS3 theory. In this picture, one should add scalar-type

boundary terms for these bmn, which would be of the form
∫
d2x

√
γ nρbmn∂ρbmn.

In principle we should then correspondingly include these terms in the 5d theory,

and one expects that their variation would cancel the second line of (8.30). It is

however not necessary to do so for our practical purposes, which is ultimately to

evaluate the renormalized action on the localization solution. Indeed, since bmn in

these solutions is independent of ρ, the aforementioned boundary terms would not

contribute. In what follows we therefore suppress the second line in (8.30). It then

only remains the first line, which is immediately recognized as the holographic stress-

tensor of the three-dimensional theory, as given in (2.50), coupled to the dilaton. The

treatment of this expression under our two relevant choices of AdS3 metric boundary

conditions (Brown-Henneaux and CSS) follows in an entirely analogous way to the

three-dimensional considerations of Sections 2.3.2 and 2.3.3: under Brown-Henneaux

boundary conditions (δγ
(0)
αβ = 0), we trivially have

δ
(
Sbulk|bdry + SGH + SCC

)
|BH = 0 , (8.32)

while for CSS boundary conditions (8.13), (8.14),

δ
(
Sbulk|bdry + SGH + SCC

)
|CSS =

1

2π2ℓ3

∫
∂M

d4x
√
h(0)Φ(0)δγ

(0)
z̄z̄ . (8.33)

For this latter case, one then readily checks that the variation of Sbdry
CSS (8.19) can-

2Recall that we are also fixing the asymptotic metric to be in Fefferman-Graham gauge, for which
the unit normal vector nQ is only non-trivial in the radial direction nρ.
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cels (8.33). Indeed:

δSbrdy
CSS = − 1

2π2ℓ3

∫
∂M

d4x
√
h(0)Φ(0)δγ

(0)
z̄z̄ . (8.34)

We conclude that Sren, as given in (8.22), is well-defined with respect to the boundary

conditions of the metric field consistent with the localization solutions.

Evaluation of Sren

We now turn to the more concrete exercise of evaluating Sren (8.22) on the local-

ization solution. The individual pieces of the renormalized action give the following

values (where the radial integral is performed up to the cut-off ρ0 ≫ 1):

Sbulk = −πτ2µ
0

3ϕ0
(p3 − 2cIJKϕ

IϕJpK) +
πτ2C

0

3µ0
p3

−2πτ2
3

cIJKµ
IϕJpK +

πτ2
6
p3e2ρ0 , (8.35)

SGH =
πτ2C

0

2
p3 − e2ρ0

πτ2
3
p3 (8.36)

SCC =
πτ2C

0

12
p3 + e2ρ0

πτ2
6
p3 , (8.37)

Sbdry
CSS =

2πτ2C
0

3
p3 , (8.38)

Sbdry
CS = −2πτ2

3
cIJK µ

IϕJpK − πτ2C
0

3
cIJK µ

IµJpK , (8.39)

where we have redefined the localization modes as:

ϕI := CI + µI , (8.40)

and where, recall, I = (0, I) and µ0 = −1. All together, the value for Sren is therefore:

Sren =
πτ2
3ϕ0

(p3 − 2 cIJKϕ
IϕJpK)− 4πτ2

3
cIJK µ

IϕJpK

+
11πτ2ϕ

0

12
p3 +

11πτ2
12

p3

− 2πτ2ϕ
0

3
cIJK µ

IµJpK − 2πτ2
3

cIJK µ
IµJpK .

(8.41)
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Note that the ϕI terms form a perfect square:

Sren =πτ2p
3
( 1

3ϕ0
+

11

12
ϕ0 +

11

12

)
− 2πτ2

3
cIJK µ

IµJpK − 2πτ2
3ϕ0

cIJK(ϕ
I + ϕ0µI)(ϕJ + ϕ0µJ) pK .

(8.42)

When (8.42) is exponentiated and inserted into the path integral over the localization

modes, the integration over the ϕI will therefore be Gaussian in these variables. This

results in a power of ϕ0 being brought down in front of the exponential. Let us

assume that this integration has been done, such that the surviving action piece in

the exponential is

πτ2p
3
( 1

3ϕ0
+

11

12
ϕ0 +

11

12

)
−2πτ2

3
cIJK µ

IµJpK . (8.43)

We close this section with some remarks and speculations on the value (8.41). An

immediate comment is that it is finite and that it correctly reduces to the background

contribution (5.36) under C0 = CI = 0. As a result, a reasonable expectation is that

any further boundary terms to Sbulk are likely to make only finite contributions pro-

portional to CI . A second point, which should receive further analysis in future work,

concerns the relation of (8.41) with the renormalized action for the four-dimensional

problem on AdS2×S2 evaluated on the CI-localization solutions [14]. Here we simply

note some similarities and differences. The common structure among the two is the

presence of a term linear in ϕ0 and ϕI , a term as 1/ϕ0 and a term with ϕIϕJ/ϕ0.

However, (8.41) contains two additional contributions which are entirely absent from

the 4d result. The first is the constant term proportional to τ2 p
3, i.e. the second term

on the second line. The second is the constant term proportional to τ2 µ
IµJ , i.e. the

second term on the third line. (Here, by constant, we mean independent of ϕI .)

Recall that the latter term already arises in the on-shell result (5.36), and is related

to the Casimir-energy-type prefactor C(τ, µ) that connects the path integral to the

canonical trace form [65] as denoted in (5.24). The former constant term τ2 p
3 does

not, on the other hand, have an immediate interpretation. One possibility is that it

couples to an additional gravitational localization mode that has no counterpart in

the four-dimensional localization manifold, and which was therefore not detectable

from our lift in Chapter 7. In the following section, this motivates an investigation

in the existence of additional such BPS modes.
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8.3 A numerical search for further localization so-

lutions

We have found in Section 8.1 that the off-shell metric (8.2) in our lifted localization

solution of Chapter 7 is not compatible with the standard Brown-Henneaux boundary

conditions (8.12) of the path-integral, but is instead compatible with the CSS bound-

ary conditions (8.13). This lead to a line of questioning on whether the functional

integral for the localized supergravity action on AdS3×S2 should, perhaps, receive

contributions from BPS configurations obeying CSS rather than Brown-Henneaux.

In this light, we initialized in Section 8.2 a study of a renormalization scheme for

the bulk action (4.10) according to the CSS prescription. One obvious question that

can be approached in parallel is to ask about the existence of additional localization

solutions for Q with non-trivial fluctuations in the metric, and how these fluctuations

might fit into the candidate boundary conditions.

In this section we address this question by studying the Killing spinor equation

(KSE) of the off-shell 5d supergravity in the large ρ regime, with Killing spinor fixed

to our localization spinor εi(1) given in (5.13). This requires firstly introducing an

ansatz for the form of the asymptotic expansions of the fluctuating bosonic fields, as

well as for the fluctuating S- Killing spinor. Our ansatz for the 5d metric restricts

fluctuations to be in the AdS3 directions γαβ, and we allow these fluctuations to obey

either CSS or Brown-Henneaux boundary conditions. The approach to solve the

Killing spinor equation for the various expansion coefficients then follows a recursive

order-by-order strategy. This is reminiscent of the procedure for solving the Einstein

field equations for Fefferman-Graham coefficients in asymptotically AdS spacetimes,

as reviewed in the pure AdS3 case in Chapter 2. In this present analysis, because the

recursive BPS equations quickly become very involved, we choose to employ the help

of numerical tools instead of solving them by hand.

As we will see, the results of this analysis suggests the existence of an infinitely

large family of localization solutions, with fluctuations parameterized by two arbitrary

radial functions a+(ρ), a−(ρ). In the γαβ factor of the 5d metric, these fluctuations

appear at most at subleading order O(1). At the level of boundary conditions, we

find that the a+ fluctuations at this order are consistent with the CSS boundary

conditions, but the a− are not.
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Killing spinor equation recap

Recall that the Killing spinor equation is the supersymmetry variation of the

gravitino ψiM set to zero. It is given in (4.31), but we copy it here for convenience

(∂M − 1

4
ωM

ABγAB)ϵ
i +

1

2
(VM)j

iϵj +
i

4
TAB(3γABγM − γMγAB)ϵ

i = 0 . (8.44)

The bosonic fields in this equation belong to the 5d Weyl multiplet. They are the viel-

bein EM
A, the auxiliary two-form TAB, and the auxiliary SU(2) R-symmetry gauge-

field (VM)j
i. The spinors ϵi, ηi parametrize the Q- and S- supersymmetry. Our

gamma-matrix conventions in the Euclidean theory are given in the tangent frame

in (5.10). As mentioned in the introduction to this section, we continue to fix the Q-

Killing spinor ϵi to the localization (Q) Killing spinor εi(1) given in (5.13).

Asymptotic ansatz for the metric

We require an ansatz for the asymptotic form of the off-shell fields to substitute

into the Killing spinor equation (8.44). We begin by constructing that of the viel-

bein EM
A. Here, it useful to introduce the following “light-cone” tangent frame for

the boundary AdS3 directions, which is defined in terms of the frame (ψ̂, t̂E) frame

as

E(±) ≡ Eψ̂ ± iE t̂E . (8.45)

Note that the this frame rotation is not a Lorentz rotation. The metric tensor is

computed in this basis as ds2 = (2ℓ)2dρ2+E(+)E(−)+ds2(S2). Note also that vielbeine

that obey the Brown-Henneaux boundary conditions (8.12) are of the form 3

E(+)

ℓ
= eρdz +O(e−ρ) ,

E(−)

ℓ
= eρdz̄ +O(e−ρ) ,

(8.46)

Meanwhile, vielbeine that obey the CSS boundary conditions (8.13) are of the form

E(+)

ℓ
= eρ(dz + ∂z̄P̄ (z̄)dz̄) +O(e−ρ) ,

E(−)

ℓ
= eρdz̄ + e−ρ

4G∆

ℓ
dz +O(e−ρ)dz̄ +O(e−3ρ)dz ,

(8.47)

3To compare the Lorentzian metrics of Chapter 2 with the Euclidean metrics presented here,
recall the Wick rotation which maps the spacetime coordinates as(x+, x−) 7→ (z, z).
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where the O() structure is specified for each leg of E(−) individually in order to

indicate that E
(−)
z cannot fluctuate at order O(e−ρ) (but E

(−)
z̄ can).

We now introduce our ansatz for the off-shell vielbein. We choose to turn on

fluctuations only in the AdS3 directions of the 5d space. To cover a broader space

of solutions, we allow these fluctuations to obey either Brown-Henneaux boundary

conditions as in (8.46) or CSS boundary conditions as in (8.47). The ansatz is:

E ρ̂ = E ρ̂
∗ , E θ̂ = E θ̂

∗ , Eϕ̂ = Eϕ̂
∗ , (8.48)

E(+) = E(+)
∗ + ℓ

(
ā+(ρ)dz̄ + a+(ρ)dz

)
, (8.49)

E(−) = E(−)
∗ + ℓ

(
ā−(ρ)dz̄ + a−(ρ)dz

)
, (8.50)

where E∗ denote the background values on H3/Z×S2 (in the cylinder coordinates):

E ρ̂
∗ = 2ℓdρ , E θ̂

∗ = ℓdθ , Eϕ̂
∗ = ℓ sin θdϕ ,

E(+)
∗ = ℓ(eρdz − e−ρdz̄) , E(−)

∗ = ℓ(eρdz̄ − e−ρdz) .
(8.51)

The functions a+, ā+, a−, ā− are off-shell fluctuations that encode the following ex-

pansions:

ā+(ρ) = eρā+0 + e−ρā+2 + · · ·

a+(ρ) = eρa+0 + e−ρa+2 + · · ·

ā−(ρ) = eρā−0 + e−ρā−2 + · · ·

a−(ρ) = eρa−0 + e−ρa−2 − · · ·

(8.52)

We assume that the coefficients ā+N , a
+
N , ā

−
N , a

−
N are numerical constant. On these

coefficients, we impose the following conditions:

a+0 = a−0 = ā−0 = 0 . (8.53)

The vielbein ansatz (8.48 - 8.52) with conditions (8.53) can accommodate CSS and

Brown-Henneaux boundary conditions. Indeed, if ā+0 is abitrary and a−2 = 0, the

resulting metric obeys CSS boundary conditions (8.47). On the other hand, if ā+0 = 0,

the metric obeys Brown-Henneaux boundary conditions (8.46). Note that the ansatz
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naturally encorporates our C0 localization solutions as

ā+0 = −C0 , ā+2 = −2(C0)2 , ā+4 = −4(C0)3 , · · ·

a+2 = 2C0 , a+4 = 4(C0)2 , · · ·

ā−2 = C0 , ā−4 = 2(C0)2 , · · ·

a−2 = 0 , a−4 = −2C0 , · · ·

(8.54)

Asymptotic ansatz for the remaining fields

The fields other than the metric that enter the Killing spinor equation are TAB, VA,.

We also have the S- supersymmetry spinor ηi. The ansatze for these quantities are

chosen so as to reflect the structure of our C0-localization solutions. We let:

Tθ̂ϕ̂ = T ∗
θ̂ϕ̂

+ t(ρ) , (8.55)

Vψ̂,t̂E = V ∗
ψ̂,t̂E

+ vψ̂,t̂E(ρ) , (8.56)

ηi = ηi∗ + s(ρ)λi , (8.57)

with all else zero, and where the functions t, v, s are given as

t(ρ) = t0 + e−2ρt2 + · · · ,

vψ̂,t̂E(ρ) = e−ρ(v0)ψ̂,t̂E + e−3ρ(v2)ψ̂,t̂E ,

s(ρ) = s0 + e−2ρs2 + e−4ρs4 + · · · .

(8.58)

The coefficients tN , vN , sN are taken to be numerical constants. As before, the starred

quantities in (8.55 - 8.57) denote the background values on H3/Z×S2:

T ∗
θ̂ϕ̂

= − 1

4ℓ
, V ∗

ψ̂,t̂E
= ηi∗ = 0 . (8.59)
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The spinors λi in (8.57) are fixed to

λ1 = −e
1
2
(tE+i(ψ+θ))

3
√
2ℓ



cosh(ρ
2
) cos( θ

2
)

− cosh(ρ
2
) sin( θ

2
)

− sinh(ρ
2
) cos( θ

2
)

sinh(ρ
2
) sin( θ

2
)


,

λ2 = −i
e−

1
2
(tE+i(ψ+θ))

3
√
2ℓ



sinh(ρ
2
) sin( θ

2

sinh(ρ
2
) cos( θ

2
)

− cosh(ρ
2
) sin( θ

2
)

− cosh(ρ
2
) cos( θ

2
)


.

(8.60)

Substitution of ansatz into the KSE and results

We substitute the complete ansatz (8.49 - 8.60) into the Killing spinor equa-

tion (8.44) with ϵi = εi(1). Turning to a computer, we extract the first twelve orders of

the equation, which ranges from O(e3ρ/2) to O(e−15/2ρ) in steps of O(e−ρ). We then

task a program to solve these equations simultaneously for the expansion coefficients

of the off-shell fluctuation functions a+, a−, ā+, ā−, t, v, s in (8.49 - 8.57). The out-

put of this procedure is a set of algebraic relations between a+N , a
−
N , ā

+
N , ā

−
N , tN , vN , sN ,

for N reaching down to several subleading orders (we reach at least the N = 8 coef-

ficients for all functions). To disentangle these relations, it is useful to consider extra

assumptions on these coefficients, such as setting some of them to zero by hand. Here,

we consider two such examples of interest.

Case (1): t = v = s = 0

This is the assumption that only the vielbein fluctuations are turned on. The fields TAB,

VA and ηi are fixed to their respective background values, i.e. we set the func-

tions t, v, s to zero in (8.58). In this case, the asymptotic KSE gives only one

non-trivial relation for the fluctuations of the vielbein:

ā−2 = ā+0 (a
−
2 − 1) . (8.61)

All other fluctuation coefficients not involved in (8.61) are determined to be zero
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by the equations. In principle, we therefore have a two-parameter family of off-

shell asymptotic BPS solutions in the Weyl multiplet, parametrized by the vielbein

fluctuations (ā+0 , a
−
2 ). Note that, because the expansions for the vielbein fluctuations

terminate, these would be exact solutions.

However, these solutions are not consistent with the global properties of the space.

Indeed, recall that we have contractibility of the ψ-circle and so we require 1-forms

to vanish along this direction. In particular, we require:

E
(±)
ψ |ρ=0 = 0 . (8.62)

The fact that there are no non-trivial values for the fluctuations (ā+0 , a
−
2 ) which allow

for (8.62) is most easily seen by noting that E
(+)
ψ cannot be zero at the origin unless ā+0

vanishes. If ā+0 vanishes, so does ā−2 by (8.61). Then, E
(−)
ψ cannot vanish at the origin

unless a−2 vanishes. We conclude that there are no allowed Q-BPS solutions around

the supersymmetric torus for the case where off-shell fluctuations only occur in the

vielbein.

Case (2): Assume ā+0 = −C0, and set C0 = 0

Here, we study the case of imposing the additional boundary condition

ā+0 = −C0 (8.63)

for ā+, which corresponds to the structure of our C0 solution. We then set C0 = 0,

so that

ā+0 = 0 . (8.64)

This set-up implies that any allowed BPS solutions emerging from solving the asymp-

totic KSE must exist independently of the C0 mode.

The asymptotic KSE with this set-up gives, up to all orders considered, the fol-

lowing constraints on the vielbein fluctuations:

ā+n = ā−n = 0 , n = 2, 4, · · · ,

a+n , a
−
n arbitrary .

(8.65)

The fluctuations t(ρ), v(ρ), s(ρ) in the remaining fields of the KSE are given to be
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entirely determined in terms of a+ and a−. We note the following first few relations:

t(ρ) : t0 = 0 ,

t2 =
a+2
12

,

t4 =
2a+4 − a+2

2

12
,

v(ρ) : (v0)ψ̂ = (v0)t̂E = 0 ,

(v2)ψ̂ = −ia+2 , (v2)t̂E = −a+2 ,

(v4)ψ̂ = i(a+2
2 − 2a+4 − a−4 ) , (v4)t̂E = a+2

2 − 2a+4 + a−4 ,

s(ρ) : s0 = 0 ,

s2 = a+2 ,

s4 = 2a+4 − a+2
2

(8.66)

The asymptotic BPS solutions described by equations (8.65), (8.66) can, upon

suitable choices for a+ and a−, be made to respect contractability along the ψ-cycle

of the torus. For instance, consider the following choice for a+ and a−:

a+2 = −a+4 ≡ D0

2
, a+n+4 = 0 , n = 2, 4, · · ·

a−n = 0 .

(8.67)

The off-shell vielbein is exact, and is given as:

E(+) = E(+)
∗ + e−2ρD0 sinh ρ (dψ + idtE) , E(−) = E(−)

∗ , (8.68)

for which the dψ directions indeed vanish at ρ = 0. This choice also makes the SU(2)R

gauge field Vψ = Eψ
AVA contractible, as can be computed from (8.66).

In conclusion, the analysis of Case (2) produces a two-function family of allowed

BPS solutions on the torus, parametrized by (a+, a−). These are solutions that, by

construction of this case, persist independently of the C0-solution. We now wish to

comment on their embedding into a set of boundary conditions (i.e. Brown-Henneaux

or CSS). While this can easily be done at the level of the vielbein by comparing

with (8.46) and (8.47), it is visually most direct to convert back to metric formalism.
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In the AdS3 boundary directions, we have for generic (a+, a−):

γαβ dx
αdxβ = E(+)E(−)

= ℓ2
(
e2ρdzdz − (1− a−2 )dz

2 − dz2 + a+2 dzdz
)
+O(e−2ρ)

(8.69)

and so we identify the first few Fefferman-Graham coefficients as :

γ(0)zz = γ
(0)
z̄z̄ = 0 , γ

(0)
zz̄ =

ℓ2

2
,

γ(2)zz = −ℓ2(1− a−2 ) , γ
(2)
z̄z̄ = −ℓ2 , γ

(2)
zz̄ =

ℓ2

2
a+2 .

(8.70)

It is clear by comparison with (8.12) that both the a+ and a− modes are consistent

with the Brown-Henneaux boundary conditions. By comparison with (8.13), one finds

that the a+ mode is also consistent with the CSS boundary conditions, but the a−

mode is not (due to the fluctuating γ
(2)
zz ). We close with a remark: the mode a−2 can

be identified as a (constant) left-moving Brown-Henneaux mode L(z), as can be seen

from (2.46).4 The fact that this Brown-Henneaux mode is Q-BPS is, in fact, expected

on theoretical grounds. Indeed,Q is a supercharge that acts in the right-moving sector

of the asymptotic symmetry algebra and so it trivially commutes with the left-moving

Virasoro generators Ln . Now, faced with the existence of this infinite family of BPS

solutions in the left-moving Brown-Henneaux sector, one interesting question is how to

incorporate them in the localized path integral. To this, the functional integral being

defined over CSS boundary conditions would provide a convenient answer, namely

that these modes are simply excluded from the problem due to their violation of the

boundary conditions.

8.4 Brown-Henneaux modes and the 4d/5d lift

We close this chapter by taking a step back from the CSS-centered analysis and

returning instead to the more familiar ground of Brown and Henneaux. One natural

question the reader may have at this late stage of the thesis is the following: what

happens to the Brown-Henneaux modes of Euclidean AdS3×S2 in the KK reduction

4We emphasize that we are still working in a generically off-shell setting, so while a−2 behaves
like a Brown-Henneaux mode at the level of the O(1) metric components, it is not the case that the
further subleading terms a−4 , a

−
6 , · · · are determined in terms of it (as they would be in the on-shell

setting).
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to the theory on Euclidean AdS2×S2? After all, this should be an approachable ex-

ercise with the Euclidean 4d/5d connection that we developed in Chapter 6. The

question of the 4d/5d connection on the Brown-Henneaux modes is, in fact, also rel-

evant to the findings of Section 8.3 where recall that we have found the existence

of BPS solutions around AdS3×S2 corresponding to fluctuations in the left-moving

Brown-Henneaux sector (parametrized by the a−(ρ) function). Understanding the

reduction of these fluctuations to the four-dimensional theory may shine a light on

why they did not appear in the systematic analysis of the 4d localization manifold

of [39]. The answer, which we show in this section, is that under the 4d/5d reduc-

tion to AdS2×S2, fluctuations corresponding to left-moving Brown-Henneaux modes

around the AdS3(×S2) background violate the AdS2 boundary conditions of the 4d

supergravity. Fluctuations corresponding to right-moving Brown-Henneaux modes,

on the other hand, are allowed with respect to these boundary conditions.

We begin this treatment by first recalling the initial steps of the algorithm, devel-

oped in Chapter 6, for connecting off-shell configurations around Euclidean AdS2×S2

to configurations around the supersymmetric torus H3/Z×S2. Starting from the 5d

perspective, one first writes the torus background (5.8) as a Kaluza-Klein ansatz over

AdS2×S2. The metric in the KK ansatz takes the form

ds2 = ĠṀṄ dx
ṀdxṄ = gµν dx

µdxν + ϕ−2
(
dx5 +Bµdx

µ
)2
, (8.71)

where recall that the KK coordinates are xṀ = (η, χ, θ, ϕ, x5), gµν is the metric

tensor on AdS2×S2, and ϕ, Bµ are the KK scalar and KK gauge-field respectively.

The mapping of the H3/Z×S2 torus background metric to the form (8.71) is then

achieved by the following local coordinate transformations:

( ρ, z, z̄) =
( η
2
, χ+ ix5, χ

)
⇔ (η , χ , x5) =

(
2ρ , z̄ ,−i(z − z̄)

)
. (8.72)

With these maps, the elements of the KK metric (8.71) are the metric for Euclidean

AdS2×S2:

gµν dx
µdxν = ℓ2

(
dη2 + sinh2 η dχ2 + dθ2 + sin2 θ dϕ2

)
(8.73)

and the background KK scalar and gauge-field:

ϕ = ℓ−1 , B = i(cosh η − 1)dχ . (8.74)

Under the 4d/5d connection, ϕ and B descend to form a matter vector multiplet
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in the 4d theory. In particular, ϕ forms a complex 4d vector-scalar (X0, X
0
) and B

corresponds to a U(1) vector field A0:

X0 = − i

2
e−φϕ , X

0
=

i

2
eφϕ ,

A0
µ = Bµ .

(8.75)

The value of the lifting parameter φ is not relevant to the analysis of this section, so

we set it to zero. For the upcoming discussion, we recall the boundary conditions for

the relevant fields of the quantum theory on AdS2 [14]:

ds2AdS2
|bdry =

(
(gηη)∗ +O(e−2η)

)
dη2 +

(
(gχχ)∗ +O(1)

)
dχ2 ,

X|bdry = X∗ +O(e−η) , A0
χ|bdry = (A0

χ) ∗+O(1) ,

(8.76)

where the starred quantities are the fixed background values on AdS2, with (gηη)∗ a

constant, (gχχ)∗ proportional to e2η, X∗ a constant, and (A0
χ)∗ proportional to eη.

We now turn on Brown-Henneaux-type fluctuations around the AdS3 part of the

5d background. We do not impose the fact these fluctuations are BPS. We however

do impose they are constant, so that they are independent of x5 and therefore al-

lowed within the framework of the 4d/5d connection. In the language of the vielbein

in (8.49), (8.50), such Brown-Henneaux modes are the a−n , ā
+
n , n = 2, 4 · · · , corre-

sponding to the left-movers and right-movers, respectively (recall that the leading

orders a−0 , ā
+
0 are not Brown-Henneaux). For this analysis, we therefore write the

vielbein components as 5

E(+)

ℓ
= eρdz + e−ρ(−1 + ā+2 )dz̄ + · · · , (8.77)

E(−)

ℓ
= eρdz̄ + e−ρ(−1 + a−2 )dz + · · · , (8.78)

with the remaining components E ρ̂, E θ̂, Eϕ̂ fixed to their on-shell H3/Z× S2 val-

ues as in (8.51). We then compute the associated metric tensor to this vielbein

with ds2 = (2ℓ)2dρ2 + E(+)E(−) + ds2(S2), and then map this metric into the form of

the KK metric (8.71) using the coordinate transformations (8.72). We can then read

5In the language of the 3d gravity review in Section 2.3.2, this corresponds to Brown-Henneaux
metrics (2.46) with L = −1 + a−2 , L̄ = −1 + ā+2 .
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off the following fluctuating 4d metric and KK fields:

ϕ−2 = ℓ2(1− a−2 ) +O(e−η) ,

Bχ = i
eη

2− 2a−2
+O(1) ,

gχχ = ℓ2
e2η

4(1− a−2 )
+O(1) .

(8.79)

(The mode ā+2 appears in the subleading terms.) Given the relations (8.75) to the

4d fields on AdS2, we see that the left-moving Brown-Henneaux fluctuation a−2 in

the AdS3 metric violates all the AdS2 boundary conditions given in (8.76). Note

that the right-moving Brown-Henneaux fluctuation ā+2 , on the other hand, is a priori

consistent with these boundary conditions. Returning to the context of Section 8.3,

where recall that a−2 was found to be BPS with respect to Q, we conclude that this

solution generically violates the AdS2 boundary conditions. In fact, this can be seen

as the reason why this mode did not appear in the systematic 4d localization manifold

analysis of [39].
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In this thesis, we developed the program of supersymmetric localization for the func-

tional integral of 5d supergravity with eight supercharges on AdS3×S2. While we did

not reach the actual computation of the localized path integral, our analyses resolved

a number of intermediate problems towards this goal. We review these here.

First, we saw how the set-up of the supersymmetric H3/Z×S2 torus background

in the Euclidean 5d supergravity is itself a subtle task, due to the apparent incom-

patibility of supersymmetry with the periodicities around the time cycle of the torus.

The resolution came in the form of a twist of the S2 around the time direction of

Euclidean AdS3. Once this background was established, we derived its superalgebra

and identified a supercharge on which to set up the localization. Next, we directed

our efforts at computing the bosonic BPS configurations for this supercharge. Our

approach was to employ the off-shell 4d/5d connection to lift the known localization

manifold of the four-dimensional N = 2 theory on AdS2×S2. To this end, we first

presented a mapping of the twisted H3/Z×S2 configuration into a Kaluza-Klein lift

of AdS2×S2. Then, while the 4d/5d connection has been known in the context of

Lorentzian supergravities for some time, we required an adaptation of it for the anal-

ogous Euclidean theories. As it turned out, performing this modification required

careful considerations on the four-dimensional reality conditions, which lead to sub-

tle implications for certain lifting parameters. The Euclidean 4d/5d connection was

eventually presented, and using it we found a class of highly non-trivial localization

solutions around H3/Z×S2. To cement these off-shell configurations as players in the

functional integral, it was important to follow up with a detailed analysis of their

boundary behaviour. We focused in particular on the metric field and the U(1) gauge

fields which under the usual definition of the functional integral should have asymp-

totics fixed by the Brown-Henneaux boundary conditions and the standard chiral

boundary conditions in Chern-Simons theory, respectively. We soon found that while

the gauge fields were consistent with these boundary conditions, the metric field was

not. Indeed, an off-shell mode was found to reach the conformal boundary of the
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AdS3 factor, thus explicitly violating Brown-Henneaux. Remarkably, it turned out

that the presence of this mode was entirely consistent with a more recent, chiral

set of AdS3 metric boundary conditions: the Compere-Strominger-Song boundary

conditions. This observation lead us to push onward with these localization solutions

and further investigate these boundary conditions in the context of the localized path-

integral problem. We initiated a study of boundary terms for the bulk 5d supergravity

action with respect to CSS in the metric sector. While a full renormalization scheme

was not reached, the evaluation of this partial action on the localization solutions al-

ready yielded a simple and tractable structure. We then presented a numerical search

for additional localization solutions near the boundary, focusing on the fields of the

Weyl multiplet. The findings of this analysis were positive: we found evidence for BPS

fluctuations in the AdS3 factor of the metric, that arise independently of the lifted

modes, and that also obey the CSS boundary conditions. We also found evidence

for BPS modes in the left-moving sector of the theory. These, in fact, correspond to

left-moving Brown-Henneaux-type modes, which we know should indeed be BPS by

virtue of Q acting in the right-moving sector. We closed the thesis with a tangential

analysis on the subject of these Brown-Henneaux modes: we studied their behaviour

under reduction to AdS2×S2 using the off-shell 4d/5d connection, and showed that

they explicitly violate the four-dimensional boundary conditions.

The final sections of this thesis contained speculative material, which set the

stage for many open questions. We hope to address these in future work. First and

foremost, if the CSS boundary conditions (rather than Brown-Henneaux) are indeed

those that are relevant to the localized functional integral, one should understand why.

One possibility is that the linear deformation of the action in the functional integral

with QV , as in (1.12), induces a change from the standard boundary conditions for

the metric (and perhaps other fields). It is in fact plausible that these “deformed

boundary conditions” would be chiral, as the CSS conditions are, since we recall

that Q is a supercharge that acts in the right-moving sector. A second related task

would then be to construct a fully renormalized action for the theory, beyond our

partial proposal made in the final chapter of this thesis. Such an action should

be well-defined with respect to the boundary conditions of all fields of the theory.

Additionally, if we are to localize on this renormalized action, it should be made Q-

supersymmetric. This will likely require its own set of boundary terms (see [14]

for the four-dimensional case). Finally, there is reason to suggest the existence of

extra localization modes, which are consistent with the CSS boundary conditions,

and for which we have only established asymptotic evidence. Natural candidates
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for these missing BPS fluctuations, which we only alluded to in this thesis, might

be boundary modes corresponding to the action of specific bosonic charges of the

right-moving N = 4 superconformal algebra on the H3/Z×S2 vacuum. We note that

these charges would necessarily have to commute with the localization supercharge Q.

Also, if the CSS boundary conditions are to be insisted upon, their action should

be consistent with said boundary conditions. These types of algebraic constraints

could constitute a theoretical avenue for investigating the existence of such additional

localization solutions.
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Notations and conventions

We summarize the various index notations in Table A.1.

Index Range Description

M, N, · · · (ρ, ψ, θ, ϕ, tE) 5d cylinder coordinates

M ′, N ′, · · · (ρ, ψ, θ, ϕ′, t′E) 5d twisted torus coordinates

A, B, · · · (ρ̂, ψ̂, θ̂, ϕ̂, t̂E) tangent frame for cylinder and twisted torus coordinates

Ṁ, Ṅ , · · · (η, χ, θ, ϕ, x5) 5d Kaluza-Klein coordinates

Ȧ, Ḃ, · · · (1, 2, 3, 4, 5) tangent frame for Kaluza-Klein coordinates

µ, ν, · · · (η, χ, θ, ϕ) Euclidean AdS2×S2 coordinates*

a, b, · · · (1, 2, 3, 4) tangent frame for Euclidean AdS2×S2 coordinates

α, β, · · · (z, z) thermal AdS3 complex boundary coordinates

m, n, · · · (θ, ϕ) S2 coordinates

i, j, · · · (1, 2) or (+, −) Fundamental SU(2)**

Table A.1: Summary of index notation. (* In chapters 2, 3, and 4, gµν is used to
denote three-dimensional metrics on AdS3.) (** In Sections 5.3 and 8.2, the i, j
indices are also used to denote the four transverse coordinates xi of asymptotically
AdS3×S2 spaces.)

Curvature

We summarize our curvature conventions. Our Minkowski signature is (−, +, +, · · · ).
All expressions below are converted to Euclidean signature by simply exhanching ηab

for δab. In particular, tangent frame indices a, b are raised/lowered using η in Lorentzian
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signature, but using δ in Euclidean signature.

We denote eµ
a and gµν to be a generic vielbein and its metric tensor (in arbitrary

dimensions), respectively. As usual, we have

gµν = eµ
aηab eν

b . (A.1)

The torsion free spin connection ωµ
ab is built from the vielbein as

ωµ
ab = −2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂σeν
c . (A.2)

Note that the right-hand-side has an opposite overall sign compared to the standard

literature. This definition for the spin connection is then related to the Christoffel

symbol as

ωµ
ab = ebν ∂µeν

a − ebνeσ
aΓσµν , (A.3)

where the Christoffel symbols are the usual

Γσµν =
1

2
gσρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
. (A.4)

In terms of the spin connection, we define the Riemann tensor as

Rµν
ab = ∂µων

ab − ∂νωµ
ab − ωµ

acων c
b + ων

acωµ c
b , (A.5)

Substitution of (A.3) into (A.5) then gives the expression for the Riemann tensor in

terms of Christoffel symbols as

Rµν
σ
ρ = −2

(
∂[µΓ

σ
ν]ρ + Γσλ[µΓ

λ
ν]ρ

)
. (A.6)

Here again, we note that the right-hand-side has an opposite overall sign compared

to the standard literature. This is what very unconventionally leads us to have Anti-

de-Sitter spaces with positive scalar curvature.

Spinors and gamma matrices

We denote a basis for the the d-dimensional Clifford algebra as

{
Γ = I, γA1 , γA1A2 , · · · γA1A2···Ad

}
, (A.7)
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where:

γA1···Ak = γ[A1 · · · γAk] . (A.8)

In five dimension with Lorentzian signature, a consistent choice of gamma matrix

satisfies the following relations:

γ†A = −AγAA−1 , A = γ0 , A† = A−1 = −γ0 ,

γTA = CγAC−1 , CT = −C , C† = C−1 ,

γ∗A = −BγAB−1 , BT = CA−1 , B† = B−1 , B∗B = −1 .

(A.9)

This is followed by the property, regarding the charge conjugation matrix C,

(CΓ(r))T = −(−)r(r−1)/2CΓ(r) , (A.10)

where Γ(r) is a matrix of the set (A.7) with rank r. Due to the property of the charge

conjugation matrix, we can use the spinor representation satisfying the symplectic-

Majorana condition

ψ̄i = (ψi)†γ0 , (A.11)

where i is an SU(2)R index, and where ψ̄i is the symplectic-Majorana conjugate of

ψi, defined as

ψ̄i := εij(ψ
j)TC , (A.12)

with εij being the SU(2) symplectic metric ε12 = −ε21 = 1.

The five-dimensional Euclidean case is obtained by the Wick rotation of the time

direction x0, using the redefinition: x0 = −ix5 . This consistently redefines the 0th

gamma matrix as the 5-th directional one as γ0 = iγ5 . The relations on the Lorentizan

gamma matrices (A.9) then become, for the Euclidean case:

γ†A = γA

γ∗A = γTA = CγAC−1 , C† = C−1 , CT = −C ⇔ C∗C = −1 ,

(A.13)

with charge-conjugation matrix property:

(CΓ(r))T = −(−)r(r−1)/2CΓ(r) . (A.14)
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In the main text, we often consider Lorentz scalars of the type

λ̄i Γ
(r)ϵj . (A.15)

For two Grassman even spinors ϵi, λj, the property (A.14) leads to the following

Majorana-flip relations:

λ̄i Γ
(r)ϵj = (−)r(r−1)/2

(
δji ϵ̄k Γ

(r)λk − ϵ̄i Γ
(r)λj

)
. (A.16)

Note some useful consequences of (A.16) for λ = ϵ:

ϵ̄i ϵ
j = 1

2

(
ϵ̄k ϵ

k
)
δji , (A.17)

ϵ̄i γ
Aϵj = 1

2

(
ϵ̄k γ

Aϵk
)
δji , (A.18)

ϵ̄k γ
ABϵk = 0 , ϵ̄k γ

ABCϵk = 0 , (A.19)

where we used r = 0, 1, 2, 3 respectively. The spinors in the Euclidean theory can also

be chosen to be symplectic-Majorana, but differently from (A.11), satisfying

ψ̄i = (ψi)† , (A.20)

with the same definition of the symmplectic Majorana conjugate ψi as (A.12). How-

ever, we note that, as is commented in the begining of section 4.1, we does not impose

(A.20) for quantum theory.
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N = 4 superconformal algebra and

spectral flow

In this appendix we present the N = 4 superconformal algebra in the conventions

of [63]. The non-trivial commutation relations are the following:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[Ja
m, J

b
n] = iϵabcJc

m+n +
c

12
mδacδm+n,0 ,

[Lm, Ja
n ] = −nJa

n+m ,

[Lm, GαȦ,r] = (
m

2
− r)Gα

Ȧ,r+m
,

[Ja
m, GαȦ,r] =

1

2
(τa)β

αGβ
Ȧ,m+r

,

{Gα
Ȧ,r
, Gβ

Ḃ,s
} = ϵȦḂ

[
ϵαβLr+s − (ϵτa)

βα(r − s)Ja
r+s + ϵαβ

c

6
(r2 − 1

4
)δr+s,0

]
,

α, β = +, − , Ȧ , Ḃ = + ,− , a, b, c = 1, 2, 3 ,

(B.1)

where here ϵ+− = −ϵ−+ = 1 and ϵ+− = −ϵ−+ = −1. The subscripts r, s take integer

or half-integer values for the Ramond and NS sector respectively. In the main body,

we often employ the SU(2) generators J±
m instead of J1,2

m above. They are related as

J±
m = J1

m ± iJ2
m . (B.2)
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The non-trivial commutation relations involving the SU(2) generators become:

[J3
m, J

±
n ] = ±J±

m+n , [J+
m, J

−
n ] = 2J3

m+n +
c

6
mδm+n,0 ,

[J3
m, G±

Ȧ,r
] = ±1

2
G±
Ȧ,r+m

, [J±
m, G∓

Ȧ,r
] = G±

Ȧ,r+m
.

(B.3)

In the NS sector, the modes

L0, L±1, J
±
0 , J

3
0 , GαȦ,±1/2

. (B.4)

generate the global (i.e. centerless) part of the algebra, and the isomorphism

L0 = L0 , L± = ∓iL∓1 ,

J± = J±
0 , J3 = J3

0 ,

G±β
± = ±2Gβ∓,∓1/2 , G∓β

± = ±2Gβ±,∓1/2 .

(B.5)

maps this subalgebra to the form presented in the main body in (4.38), (4.40), (4.41).

The N = 4 algebra is isomorphic under the so-called spectral flow, parametrized

by a real number η:

Lm → Lm + ηJ3
m + η2

c

24
δm,0 ,

J3
m → J3

m + η
c

12
δm,0 ,

G±
Ȧ,r

→ G±
Ȧ,r± η

2

,

J±
m → J±

m±η .

(B.6)

In particular, the Ramond sector (i.e. integer r, s) flows to the NS sector upon choos-

ing η = 1, and vice-versa.
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Killing spinors on AdS3 and S2

In this appendix, we present solution of the Killing spinor equation (4.31) on the

AdS3×S2 background given in (4.19) and (4.21). Here, let us decompose the spacetime

and local indices into those for 3 + 2 dimensions as M = {µ ,m} and A = {a , a}.
Then the Killing spinor equation (4.31) splits as

Dµϵ
i = s

i

4ℓ
γ θ̂ϕ̂γµϵ

i , Dmϵ
i = s

i

2ℓ
γ θ̂ϕ̂γmϵ

i , (C.1)

where we inserted the sign factor s = ±1 to keep track of the choice of the background

value of TMN ; s = +1 is for our background value of TMN in (4.21), and s = −1

is for another background value by changing TMN → −TMN from the (4.21) (which

involves changing σ → −σ from (4.20) by the BPS equation of vector multiplet). Note

that, since the background metric (4.19) is direct product of 3 and 2 dimensions, the

spin connection is also well separated as −1
4
ωABµ γAB = −1

4
ωabµ γab and −1

4
ωABm γAB =

−1
4
ωab
m γab. This can be seen explicitly by noting that the non-zero spin connection

components are

ωt̂ρ̂t = − sinh ρ , ωρ̂ψ̂ψ = cosh ρ , ωθ̂ϕ̂ϕ = cos θ . (C.2)

We now decompose the spinor as

ϵi = ϵiAdS3
⊗ ϵiS2 , (C.3)
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and take the following decomposition for the gamma matrices

γt̂ = σ0 ⊗ τ 3 , γρ̂ = σ1 ⊗ τ 3 , γψ̂ = σ2 ⊗ τ 3 , γθ̂ = I⊗ τ 1 , γϕ̂ = I⊗ τ 2 ,

(C.4)

where τ a, a = 1, 2, 3, denotes the Pauli sigma matrix and σa with a = 0, 1, 2 denotes

the 3 dimensional gamma matrix. Here we choose σ0 = −σ1σ2 such that γt̂ρ̂ψ̂θ̂ϕ̂ = i

for our convention. The charge conjugation matrix can also be set to

C = −iσ2 ⊗ τ 1 , (C.5)

such that the gamma matrix relation (A.9) is satisfied. With this splitting of spinors

and gamma matrices, we arrive at the Killing spinor equations for AdS3 and S2 with

radii 2ℓ and ℓ respectively :

0 =

(
Dµϵ

i
AdS3

+ s
1

4ℓ
σµϵ

i
AdS3

)
⊗ ϵiS2 , 0 = ϵiAdS3

⊗
(
Dmϵ

i
S2 + s

1

2ℓ
τ 3τmϵ

i
S2

)
.

(C.6)

The general solutions of these equations are well known [73], and the solutions are

given by

ϵAdS3 = e−s
1
2
σ1ρe−s

1
2
σ0te

1
2
σ12ψA , (C.7)

ϵS2 = e−si
1
2
τ2θei

1
2
τ3ϕB , (C.8)

where A and B are constant two-component complex spinors.

Let us write down the Killing spinor explicitly. We set the sign factor s = 1,

denote the chiral and anti-chiral component of the constant spinors as A± and B±,

and choose the 3 dimensional gamma matrix representation as

σa = (−i τ 3 , τ 1 , τ 2) . (C.9)

Then we can rewrite the solutions as

ϵAdS3 = A+ϵ
+
AdS + A−ϵ

−
AdS , ϵS2 = B+ϵ

+
S2

+B−ϵ
−
S2
, (C.10)
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where

ϵ+AdS3
= e

i
2
(t+ψ)

(
cosh ρ

2

− sinh ρ
2

)
, ϵ−AdS3

= e−
i
2
(t+ψ)

(
− sinh ρ

2

cosh ρ
2

)
, (C.11)

ϵ+
S2

= e
i
2
ϕ

(
cos θ

2

sin θ
2

)
, ϵ−

S2
= e−

i
2
ϕ

(
− sin θ

2

cos θ
2

)
. (C.12)

By direct product of the Killing spinors (C.11) and those of (C.12), we obtain four

complex basis of Killing spinors as (4.33), or 8 pairs of symplectic Majorana spinors

as in (4.35).

Note that the effect of the different sign s is to flip the sign of both ρ and t in the

Killing spinors. We also note that in odd dimensions there are two inequivalent rep-

resentations of gamma matrix. For instance, we can also choose σa = (+iτ 3, τ 1, τ 2)

instead of (C.9). Then this is equivalent to the changing the sign of t in the Killing

spinors.
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Isometries of AdS3 and S2

Here we present the explicit coordinate representation for the Killing vectors of global

AdS3 and S2, as used in (D.5). The global AdS3 metric in the part of (4.19) has

isometries given by the following generators

ℓ− = 1
2

[
tanh ρ e−i(t−ψ)∂t − coth ρ e−i(t−ψ)∂ψ + ie−i(t−ψ)∂ρ

]
,

ℓ0 = − i
2
(∂t − ∂ψ) ,

ℓ+ = −1
2

[
tanh ρ ei(t−ψ)∂t − coth ρ ei(t−ψ)∂ψ − iei(t−ψ)∂ρ

]
,

ℓ̄− = 1
2

[
tanh ρ e−i(t+ψ)∂t + coth ρ e−i(t+ψ)∂ψ + ie−i(t+ψ)∂ρ

]
,

ℓ̄0 = − i
2
(∂t + ∂ψ) ,

ℓ̄+ = −1
2

[
tanh ρ ei(t+ψ)∂t + coth ρ ei(t+ψ)∂ψ − iei(t+ψ)∂ρ

]
.

(D.1)

They form the SL(2, R)L×SL(2, R)R algebra through the Lie bracket:

[ℓ0 , ℓ±]Lie = ±ℓ± , [ℓ+ , ℓ−]Lie = −2ℓ0 ,[
ℓ̄0 , ℓ̄±

]
Lie

= ±ℓ̄± ,
[
ℓ̄+ , ℓ̄−

]
Lie

= −2ℓ̄0 ,

(D.2)

The S2 metric in the part of (4.19) has SO(3) generated by

j1 = i(sinϕ∂θ + cosϕ cot θ∂ϕ) ,

j2 = −i(cosϕ∂θ − sinϕ cot θ∂ϕ) ,

j3 = −i∂ϕ ,

(D.3)
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which satisfy the algebra

[ji , jj]Lie = iϵijkjk . (D.4)

In the supersymmetry algebra of AdS3×S2 presented in Section 4.3, only right-

moving SL(2, R)R and the SO(3) symmetry generators appear in the bosonic sector.

Their representations are given by the combination of the coordinate representation

−ℓ̄0 ,−ℓ̄± and −ja presented in (D.1), (D.3) with the corresponding local Lorentz

transformation given as follows:

J1 = −j1 + i
2
δM(λ21̃) , J2 = −j2 + i

2
δM(λ11̃) , J3 = −j3 ,

L̄+ = −ℓ̄+ + 1
2
δM(iλ41̃ + λ31̃) , L̄− = −ℓ̄− + 1

2
δM(iλ41̃ − λ31̃) , L̄0 = −ℓ̄0 .

(D.5)

Here, δM(λ̂ab̃) is the local Lorentz transformation in the {Qa , Q̃b} algebra, as it ap-

pears in (4.7), with field dependent parameters (λab̃)AB.
1 On the background (4.19

- 4.22), their values are

(λ11̃)θ̂ϕ̂ = 2 sinϕ
sin θ

, (λ21̃)θ̂ϕ̂ = 2 cosϕ
sin θ

,

(λ31̃)t̂ρ̂ = cos(t+ψ)
cosh ρ

, (λ31̃)t̂ψ̂ = − sin(t+ ψ) , (λ31̃)ρ̂ψ̂ = − cos(t+ψ)
sinh ρ

(λ41̃)t̂ρ̂ = sin(t+ψ)
cosh ρ

, (λ41̃)t̂ψ̂ = cos(t+ ψ) , (λ41̃)ρ̂ψ̂ = − sin(t+ψ)
sinh ρ

.

(D.6)

1The δM ((λab̃)AB) acts on a spinor ψ as 1
4 (λab̃)ABγ

ABψ , and on a vector V A as (λab̃)
A
BV

B .

125



Appendix E

Euclidean 4d supersymmetry and

AdS2× S2

In this appendix, we present the supersymmetry transformation of the fermions in

Euclidean 4d conformal supergravity, following the convention of [45], and setting all

fermions to zero. The field content in Euclidean 4d superconformal gravity is given

in Table E.1. We also present the Euclidean AdS2× S2 background and its Killing

spinors. All fields appearing in this section refer to four-dimensional ones, so we omit

the 4d subscripts.

Euclidean 4d supersymmetry transformations

4d Weyl eµ
a, ψia, A

D
µ , A

R
µ ,Vµij , T±

ab , D, χi4d
4d Vector XI , X

I
, AI

µ ,YI
ij, λ

I i

4d Hyper Ai
α, ζα4d

4d SUSY parameters ϵi4d, η
i
4d

Table E.1: Independent fields of the supersymmetric multiplets and Q, S-
supersymmetry parameters in four-dimensional N = 2 conformal supergravity.
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The Q and S-supersymmetry transformations of the fermionic fields are

δψiµ = 2Dµε
i + i

1

16
γab(T

ab+ + T ab−)γµε
i + γµγ5η

i ,

δχi =
i

24
γab /D(T ab+ + T ab−)εi +

1

6
R̂(V)ijµνγµνεj −

1

3
R̂(AR)µνγ

µνγ5ε
i

+D εi + i
1

24
(T+

ab + T−
ab)γ

abγ5η
i ,

δλi+ = −2iγaDaXε
i
− − 1

2
Fabγ

abεi+ + Y ijεjkε
k
+ + 2iXηi+ ,

δλi− = −2iγaDaXε
i
+ − 1

2
Fabγ

abεi− + Y ijεjkε
k
− − 2iXηi− ,

δζα = /DAi
αεi −Ai

αγ5η
i ,

(E.1)

where:

Fµν = Fµν −
(
1
4
X T−

µν +
1
4
X T+

µν

)
. (E.2)

The covariant derivatives are:

Dµε
i = (∂µ −

1

4
ωµabγ

ab +
1

2
ADµ +

1

2
ARµ γ5)ε

i +
1

2
Vµijεj , (E.3)

DµX = (∂µ − ADµ + ARµ )X , (E.4)

DµX = (∂µ − ADµ − ARµ )X , (E.5)

DµAi
α = (∂µAi

α − bµ)Ai
α + 1

2
VµjiAj

α , (E.6)

and the curvatures are:

R̂µν(A
R) = 2∂[µA

R
ν] ,

R̂µν(V)ij = 2∂[µVν]ij + V[µ
i
kVν]kj . (E.7)
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Supersymmetric AdS2×S2 background and Killing spinors

Recall the fully supersymmetric, Euclidean AdS2×S2 solution of the 4d theory

considered in (6.25):

ds2 = ℓ2
[
dη2 + sinh2 η dχ2 + dθ2 + sin2 θ dϕ2

]
, (E.8)

AI = −ieI(cosh η − 1)dχ− pI cos θdϕ (E.9)

XI =
ω

8
(eI + ipI) , X̄I =

ω̄

8
(eI − ipI) , I = 0, 1, · · · , Nv (E.10)

T−
12 = −iω , T−

34 = iω , T+
12 = −iω̄ , T+

34 = −iω̄ . (E.11)

Here, ℓ is the radius of AdS2 and S2, and ω, ω are two independent complex constants

satisfying

ℓ2 =
16

ω̄ω
. (E.12)

As discussed in Section 6.2, we may pick the SO(1, 1)R gauge (6.29) such that (E.12)

implies the following parametrization:

ω(α) =
4

ℓ
eiα , ω(α) =

4

ℓ
e−iα , α ∈ R . (E.13)

Here, we choose α = π/2 and derive the corresponding Killing spinors.

We express the AdS2× S2 metric above in vielbein form:

e1 = ℓ dη , e2 = ℓ sinh η dχ , e3 = ℓdθ , e4 = ℓ sin θdϕ . (E.14)

We also choose the following gamma matrix representation, where τ a and σa, a =

1, 2, 3 are the Pauli matrices

γ1 = τ 1⊗σ3 , γ2 = τ 2⊗σ3 , γ3 = I2⊗σ1 , γ4 = I2⊗σ2 , γ5 = γ1234 = −τ 3⊗σ3 .
(E.15)

With this representation, the four-dimensional Killing spinor equation, given in (E.1)

as

Dµε = − i

32
(T+

ab + T−
ab)γabγµε = − 1

2ℓ
(I2 × σ3)γµε , (E.16)

splits into the Killing spinor equations of AdS2 and S2. Indeed, decomposing the

spinor ε = εAdS2 ⊗ εS2 , one obtains the AdS2 part as

(∂µ + ωµ)εAdS2 = −1

2
τ µ εAdS2 , ωχ = − i

2
cosh η τ 3 , (E.17)
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and the S2 as

(∂µ + ωµ)εS2 = −1

2
σ3σµεS2 , ωϕ = − i

2
cos θ σ3 (E.18)

The Killing spinors for AdS2 and S2 are given by

ε+AdS2
= e

i
2
χ

(
− cosh η

2

sinh η
2

)
, ε−AdS2

= e−
i
2
χ

(
sinh η

2

− cosh η
2

)
, (E.19)

and

ε+
S2

= e
i
2
ϕ

(
cos θ

2

sin θ
2

)
, ε−

S2
= e−

i
2
ϕ

(
sin θ

2

− cos θ
2

)
. (E.20)

Taking the direct product of the spinors (E.17) on AdS2 with the spinors (E.18) on

S2, we obtain the following complex basis of Killing spinors on AdS2× S2:

ε̇ +
+ =

√
ℓ
2
ε+AdS2

⊗ ε+
S2
, ε̇ −

+ =
√

ℓ
2
ε+AdS2

⊗ ε−
S2
,

ε̇ +
− =

√
ℓ
2
ε−AdS2

⊗ ε+
S2
, ε̇ −

− =
√

ℓ
2
ε−AdS2

⊗ ε−
S2
.

(E.21)

Note that, these spinors are identical to the Killing spinors on the Kaluza-Klein

frame of AdS3×S2, given in (6.16). The spinors (E.21) organize themselves to form

the following 8 real set of basis for Killing spinors on AdS2×S2,

ε̇ i(1) = (−iε̇ +
+ , ε̇ −

− ) , ε̇ i(2) = (ε̇ +
+ ,−iε̇ −

− ) ,

ε̇ i(3) = (−ε̇ −
− ,−iε̇ +

+ ) , ε̇ i(4) = (−iε̇ −
− ,−ε̇ +

+ ) ,

˙̃ε i(1) = (ε̇ −
+ , iε̇ +

− ) , ˙̃ε i(2) = (iε̇ −
+ , ε̇ +

− ) ,

˙̃ε i(3) = (−iε̇ +
− , ε̇ −

+ ) , ˙̃ε i(4) = (ε̇ +
− ,−iε̇ −

+ ) ,

(E.22)

which is the same basis as for the 5d KK-frame (6.15). The spinors in (E.22) satisfy

(εi)†iγ5 = ϵij(ε
j)TC . (E.23)

which is indeed the reality condition, given in (6.22), for α = π/2.
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