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Abstract 
Common mental disorders, including anxiety and depression, have a detrimental impact on 

global disease burden and quality of life. Both the risk and treatment of anxiety and depression 

are associated with the complex interplay between genetic, psychological, and socio-

environmental factors. Integrating these factors has posed a challenge in research efforts 

aimed at improving the prevention and treatment of these disorders. The recent growth of 

genomic data and advancements in multi-trait methodology allows for the incorporation of 

genetics with psycho-social factors at an unprecedented level. This thesis applies statistical 

genetic approaches to further understand the genetic influences on the risk and resolution of 

common mental disorders. The first empirical study (Chapter 2) presents the largest genome-

wide association study (GWAS) meta-analysis of lifetime fear-based anxiety disorders (N total 

=188,812; N cases =30,861) and examines the shared and distinct genetic relationship with 

generalised anxiety disorder (N total =172,248; N cases =54,928) and broad domains of other 

complex traits. Chapter 3 builds on previous research finding a genetic component of reported 

trauma, a major socio-environmental risk factor for anxiety and depression. By leveraging pre-

existing GWAS summary statistics, genetic correlations and genomic multiple regression 

analyses are used to identify heritable psychological and behavioural traits that capture the 

common genetic variant-based heritability of reported childhood maltreatment (N=185,414). 

Chapter 4 represents the largest GWAS meta-analysis of outcomes following psychological 

treatment for anxiety and depression (N total =15,131; N reported positive outcomes =11,408). 

The utility of genetic factors is also assessed by incorporating polygenic scores of complex 

traits into multivariable prediction models of psychological treatment outcomes alongside 

known clinical and demographic predictors. The final chapter discusses the implications of the 

findings from this thesis within the context of challenges emerging in anxiety and depression 

genomics. With the ongoing expansion of GWAS data, consideration should be taken into how 

phenotyping approaches influence downstream analyses, including the genetic structure 

observed across psychopathologies and the psycho-social components involved in gene-

environment interplay.  
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Chapter 1. General introduction 
 

Anxiety and depression comorbidity is extensive and associated with 
adverse outcomes 
Common mental disorders account for a significant proportion of the global disease burden1. 

They comprise multiple anxiety and depressive disorders and are a leading cause of disability, 

with a global lifetime prevalence of approximately 16% and 11%, respectively2–4. Anxiety, fear 

and sadness are typical emotions experienced in everyday life, but when experienced at 

pathological levels can interfere with day-to-day functioning and become debilitating5. The 

impairing features of anxiety and depression lead to a widespread disability affecting broad 

aspects of quality of life, including problems maintaining relationships, poor educational 

attainment, unemployment and financial difficulties5–8. 

In addition to the detrimental impact on quality of life, there is a strong economic case for 

improving the prevention and treatment of common mental disorders. In the UK, anxiety and 

depression contribute 17.5% (£20.5 billion) and 22.5% (£26.6 billion), respectively, to a 

minimum annual cost of £117.9 billion arising from mental health problems. This equates to 

5% of the total gross domestic product. These costs include the effect of mental health 

problems on disability, occupational productivity and health services. Moreover, current UK 

mental health services are under extreme demand and struggle to meet the needs of all those 

who seek a diagnosis or treatment9. When left untreated, anxiety disorders and depression 

are often experienced for extensive periods, becoming either chronic or recurrent, contributing 

to a large proportion of suicide1,10–12.  

Anxiety disorders are characterised by excessive fear and anxiety, accompanied by impairing 

features such as avoidance behaviours, physical anxiety reactions and panic attacks. In the 

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), specific clusters 

of symptoms differentiate one anxiety disorder from the other and include generalised anxiety 

disorder (GAD), agoraphobia, social anxiety disorder, specific phobia and panic disorder13. 

The breadth and focus of the threat that causes anxiety or fear differs across the disorders. 

General anxiety is the anticipation and pathological preoccupation with a range of future 

potential threats. Essential criteria for a GAD diagnosis include experiencing general anxiety 

persistently for at least six months and difficulties controlling the worry. In contrast, fear is an 

emotional and physiological reaction to immediate threats. The particular focus of perceived 

threat distinguishes the phobias from each other and must consistently be feared or avoided 

for a minimum period of six months for a diagnosis. The focus of fear is the broadest in 
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agoraphobia; the fear that escape might not be possible or help might not be available if 

something were to go wrong in a range of situational exposures. In social anxiety disorder 

(also known as social phobia), a narrower focus is placed on situations involving social 

scrutiny. In specific phobias, the focus is limited to a certain situation or object that elicits fear. 

A panic disorder diagnosis requires experiencing recurrent, unexpected panic attacks for at 

least one month and consistent worry and avoidance of situations associated with having 

panic attacks5. 

Major depressive disorder (MDD) is the most common depressive disorder and has 

considerable diagnostic heterogeneity. For a diagnosis of MDD, a low mood or the reduced 

capacity to experience pleasure must be present and persist for at least two weeks, along with 

the presence of other symptoms5. Clinical subtype specifiers can be symptom-based (with, 

e.g. anxious-distress, mixed hypomanic, atypical, psychotic, melancholic features), temporal 

or etiological-based (e.g. seasonal patterning, postpartum onset) and recurrence-based 

(single episode or recurrent MDD)5,14. 

Anxiety and depressive disorders are highly comorbid with one another, as well as other 

psychiatric disorders and physical health problems. Estimates of comorbidity with another 

mental health disorder are as high as 89% for anxiety disorders15 and approximately 75% for 

major depressive disorder16,17. This includes comorbidity with a range of emotional and 

behavioural psychopathologies, namely alcohol and substance use disorders, post-traumatic 

stress disorder, obsessive-compulsive disorder, personality disorders and attention deficit 

hyperactivity disorder5,15,18,19. However, the most common co-occurrence is among individual 

anxiety disorders and depression. Approximately half of those who meet the diagnostic criteria 

for one anxiety disorder have a history of another anxiety disorder10. Similarly, over half of 

those with depression have at least one anxiety disorder and vice versa16,20,21. 

In addition to anxiety and depression comorbidities being extensive, they are also associated 

with various adverse clinical outcomes. A broad range of comorbid physical health problems 

is common, including cardiovascular disease, diabetes, cancer, and irritable bowel 

syndrome5,22–24. The presence of anxiety and depression is also linked with poor prognostic 

outcomes in both chronic somatic diseases24 and, to some extent, treatment response in other 

psychiatric disorders25. Compared to individuals with one psychiatric disorder, anxiety-

depression comorbidity is associated with increased symptom severity, impairment, 

chronicity, the likelihood of suicide attempts, and is harder to treat20,21,26,27. 
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Research into understanding drivers of comorbidity whilst accounting for 
clinical heterogeneity 
Due to the magnitude and clinical severity of anxiety-depression comorbidity, examining 

factors driving shared liability has been a focus in decades of research28. Comorbidity can be 

modelled for clinical and research utility by examining covariance patterns within a structural 

equation modelling (SEM) framework. Modelling patterns of comorbidity highlight the 

distinctive and shared features between disorders and indicate overlapping or unique liability 

factors29. Such research has implications for improving diagnostic systems and understanding 

transdiagnostic or disorder-specific risk factors and treatment targets. Previous research 

examining shared liability underpinning comorbidity patterns has challenged diagnostic 

categories and continues to do so today28,30,31. These studies have aimed to address the 

problem of pervasive comorbidity whilst taking into account clinical heterogeneity. 

The extensiveness of anxiety-depression comorbidity is reflected in well-replicated disorder-

based and symptom-based factor analyses. These have revealed a broad shared liability to 

both anxiety and depression along with other disorders characterised by emotional symptoms 

(e.g. PTSD, OCD and eating disorders). Anxiety and depressive disorders are often 

conceptualised as being core to this internalising disorder dimension, thought to be driven by 

shared negative affect31. Disorders outside of this dimension are differentiated by other core 

components of psychopathology. For example, disorders characterised primarily by 

behavioural difficulties comprise an externalising disorder spectrum (e.g. substance use 

disorders, borderline personality disorder). Disorders characterised by disturbances in thought 

content with delusions, hallucinations or dissociative symptoms form the thought disorder 

spectrum (i.e. schizophrenia spectrum disorders)32–34. The placement of some aspects of 

disorders varies, for example, neurodevelopmental disorders (e.g. ASD, ADHD) and mania 

(i.e. bipolar disorders)35,36. As discussed above, anxiety disorders and depression are also 

comorbid with disorders in other spectra. This is captured by an overarching psychopathology 

liability dimension, known as the ‘p-factor’, which accounts for shared features and high rates 

of comorbidity observed across psychiatric disorders37. 

Within these spectra lie subfactors that represent disorder-specific clinical heterogeneity. 

These subfactors reflect differences in core features and comorbidity patterns among the 

specific disorders. For example, GAD has higher rates of comorbidity with depression than 

other anxiety disorders17. A well-replicated structure in the internalising spectrum is splitting 

anxiety disorders and depression into two highly correlated subfactors: distress and fear. 

Distress-based disorders are mainly characterised by broad, pervasive negative emotionality 
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(i.e. GAD is grouped with major depression). In contrast, fear-based disorders have more 

context-specific features of distress, with fearful arousal and behavioural avoidance of a 

narrower range of stimuli (i.e. agoraphobia, social anxiety disorder, specific phobia and panic 

disorder)31,38. The splitting of internalising into distress and fear subfactors suggests an 

overarching shared liability and some subfactor-specific risk factors that are not shared across 

distress-fear dimensions. 

The complex aetiology of common mental disorders poses a challenge to understanding what 

drives comorbid psychopathologies and within-disorder heterogeneity. Both the risk and 

treatment of anxiety and depression are associated with a broad range of genetic, 

psychological and socio-environmental factors11,13. Such factors on their own are not enough 

to cause the disorders or explain why some individuals respond better to certain treatments 

than others. Furthermore, they do not act independently of one another, with a complex, multi-

layered interplay across different types of biological, psychological and social/environmental 

factors. The interplay between these influences is dynamic, varying across the lifespan, from 

person to person and across different psychiatric disorders39. Thus, resolving heterogeneity 

and comorbidity problems in psychiatric research requires not only data on a broad range of 

psychopathologies, but also a multi-level approach that integrates genetic, psychological, and 

environmental factors. 

In the next sections of this thesis introduction, progress in research of each facet of the bio-

psycho-social approach in the risk and treatment of anxiety and depression will be described. 

By leveraging the complex interplay between genetic, environmental and psychological 

influences, a focus will be placed on how genomic data can be used to understand each facet 

and how this thesis aims to address key gaps in anxiety and depression genomics research, 

depicted in Figure 1. A glossary of key statistical genetic terms and concepts relevant to this 

thesis is provided in Boxes 1-4. 
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Figure 1: An overview of the three empirical chapters presented in this thesis and the 
overlap among genomic, socio-environmental and psychological factors.  
Through the application of genome-wide data, the overlap between genomic and 
psychosocial factors can be harnessed to better understand risk factors and treatment 
outcomes for common mental disorders. 

 

Transdiagnostic and disorder-specific genetic influences 

Twin study findings 
Pivotal findings from family and twin studies formed the basis for understanding genetic 

influences on anxiety and depression, which paved the way for future genomic studies. 

Research dating to the early-mid 20th century showed that anxiety and depressive disorders 

aggregate in families. A four to six-fold increased risk of anxiety disorders and a three-fold risk 

of depression were observed in individuals with an affected first-degree relative compared to 

unaffected controls40,41. Co-aggregation across individual anxiety disorders and depression 

was also observed42. 

Twin studies confirmed that the familial aggregation of anxiety and depressive disorders is 

largely due to heritable factors and, to a lesser extent, environmental factors40–42. Definitions 
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and approaches to estimate heritability, including twin study estimates, are provided in Box 1. 

Twin study heritability estimates of anxiety and depressive disorders are moderate, ranging 

from 30-50%40–43. While substantial, these estimates are lower than rarer psychiatric disorders 

such as schizophrenia and bipolar disorder (65-80%)43,44. Family and twin studies largely 

support that familial risk and heritability estimates are similar across anxiety and MDD 

subtypes; however, some find earlier-onset and recurrent MDD show greater familial risk and 

heritability40,42,43,45. Twin studies have found that heritability estimates of anxiety and 

depression measures are broadly similar across age groups43, although some report lower 

heritability for childhood than adult depressive symptoms46. Stable genetic influences may 

largely explain the moderate, long-term stability of anxiety and depressive symptoms across 

the lifespan47,48. Furthermore, both stable and time-specific genetic factors are shared among 

anxiety and depressive disorders49. These findings highlight how shared genetic influences 

on anxiety and depression risk are important across the lifespan. 

A major finding from twin studies is that high levels of shared genetic influences largely explain 

the high comorbidity across anxiety and depressive disorders and related symptom 

dimensions. Several twin studies found that GAD and MDD overlap almost entirely in genetic 

variance50. A high genetic overlap across individual anxiety disorders is also consistently 

greater than disorder-specific genetic influences42. Twin models of genetic covariation have 

shown substantial shared genetic liability among anxiety and depression in childhood, 

adolescence and adulthood50–53. A broad, internalising genetic factor is well-replicated across 

twin datasets, supporting the overarching phenotypic structure of the internalising spectrum 

discussed earlier51,53–55. The high genetic overlap between neuroticism, anxiety and 

depression indicates genetic influences on shared negative affectivity drive internalising 

psychopathology and anxiety-depression comorbidity56. Twin studies have further explored 

the genetic relationship between anxiety and depression and disorders outside of the 

internalising spectrum, showing pervasive genetic overlap with practically all forms of 

psychopathology42,50. This overlap indicates cross-disorder genetics and the genetic factors 

structure across disorders can be modelled as an overarching ‘p-factor’ liability that drives 

comorbidity57,58. Studies also support partitioning psychiatric disorders into two distinct but 

correlated lower-order internalising and externalising clusters59. As such, compared to their 

overlap with other disorders, the genetic overlap is highest between anxiety and depression. 

Notably, some multivariate twin modelling also supports the distress-fear subfactors structure 

within the internalising dimension51,60,61. Multiple studies find that the extent of genetic overlap 

between individual anxiety disorders and depression varies50. GAD and MDD show the 

highest genetic overlap and are core to the internalising factor, indicating distress is a key 
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driver of general emotional problems59. Panic disorder and phobias have robust genetic 

correlations with distress but also show some genetic distinction from GAD and MDD, forming 

a genetic liability fear factor51,60,61. Together, twin study findings indicate that grouping 

disorders is appropriate to identify higher-order genetic influences that broadly influence 

internalising. However, genetic studies that group distress with fear disorders may also miss 

important sources of heterogeneity and insight into mechanistic differences.  

 

Box 1: Definitions and approaches to estimate trait heritability  
Heritability: The proportion of total phenotypic variance observed within a population (VP) 
explained by genetic factors, with estimates ranging from zero to one. Heritability estimates 
of a trait can vary across time and populations due to differences in, for example, 
environmental contexts, the type of phenotypic instrument and age at measurement62,63. 
Broad-sense heritability: Defined as H2 = VG / VP with genetic values (VG) attributed to both 
additive and non-additive genetic factors. Non-additive influences include interactions 
between alleles located within the same genetic locus (dominance) or located on different 
loci (epistasis)62–64. 
Narrow-sense heritability: Defined as h2 = VA / VP with genetic values (VA) attributed only to 
additive genetic factors; the sum of the average effect of multiple alleles contributing to a 
trait62–64. 
Twin study heritability: Twin studies are a commonly used family-based approach to 
estimate trait heritability and environmental components. Phenotypic differences between 
genetically identical monozygotic twins (MZ) and ~50% genetically similar dizygotic twins 
(DZ) are compared. Traits that are more phenotypically similar in MZ than in DZ twins indicate 
the role of genetic variation. Variance components modelled in twin designs include additive 
genetics (A), non-additive genetics (D), the individual environment not shared among sibling 
pairs (E), and the common environment shared among siblings growing up in the same 
family, thus accounting for some within family resemblance (C). In the classical ACE twin 
model, narrow-sense heritability is estimated based on the assumption that the non-additive 
effects are zero. In the ADE model, the C component is replaced to estimate D, enabling 
broad-sense heritability to be calculated from the combined variance of A and D64,65. Twin 
studies have found stronger evidence for the role of additive genetic influences on complex 
traits than non-additive43,66.  
SNP-based heritability (h2

SNP): The proportion of phenotypic variance explained by a given 
set of genome-wide common genetic variants67. 
GREML h2

SNP: Genomic relatedness restricted maximum likelihood (GREML) is a commonly 
used method to estimate narrow-sense h2

SNP using individual-level genomic data in unrelated 
individuals68. GREML is implemented in the software GCTA69. Genome-wide common SNPs 
are leveraged to construct a genomic relatedness matrix (GRM) containing the relatedness 
coefficient between each pair of individuals across each SNP. The extent to which genomic 
similarity can predict pair-wise phenotypic similarity for a given trait is used to deconstruct 
trait variance into additive genetic variance and residual variance components (e.g. non-
additive genetics, environment, error)64,67. 
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Box 1: Definitions and approaches to estimate trait heritability  
LDSC regression h2

SNP: Linkage disequilibrium score (LDSC) regression is a method to 
estimate narrow-sense h2

SNP using GWAS summary statistics. LDSC regression assumes 
under a polygenic model that common variants in higher LD regions are, on average, more 
likely to be tagged by a causal variant in GWAS and therefore are more likely to be associated 
with a given trait. An LD score quantifies the level of tagging of variants. A higher score 
corresponds to a variant that tags more causal variants than those with a lower score and, 
therefore, on average, has a higher association test statistic. LD scores are created using a 
population reference panel representing the LD structure. For accurate estimates, the 
population must be well-matched to the ancestry of the target GWAS population. An estimate 
of h2

SNP is quantified as the regression coefficient from regressing the observed mean chi-
square association test statistic (Χ 2) against the LD score of each variant. The intercept can 
be used to quantify bias from population stratification but can arise from an increase in sample 
size and heritability of a trait. The attenuation ratio ([intercept -1]/ [Χ 2 -1]) provides an estimate 
of inflation not due to polygenicity, with a higher estimate indicating confounding67,70,71. 
Liability scale h2

SNP: Observed scale h2
SNP estimates of categorical traits are converted to 

the liability scale by accounting for the assumed population prevalence. The liability threshold 
model presumes that genetic factors influence disorders under a normal distribution. An 
individual meets case disorder status once reaching above a certain threshold of liability (on 
the upper tail end of the normal distribution). The proportions of affected (cases) and 
unaffected individuals (controls) in a GWAS sample often do not reflect the incidence of a 
disorder observed in the population. The observed h2

SNP scale is often lower than the liability 
h2

SNP scale, as information is lost by dichotomising the trait62,72.  

 

 
From twin studies to genome-wide methods to understand biological aetiology 
The heritable component and pervasive genetic overlap between anxiety and depressive 

disorders showed the potential for employing genetic techniques to unravel biological 

aetiology. Initial attempts to identify the genes associated with anxiety and depression 

involved candidate gene and linkage analysis studies. As with all complex traits, these failed 

to identify robust associations with anxiety and depression that survived replication42. As 

knowledge of the human genome expanded, it was soon realised that psychiatric and other 

complex traits are affected by many genetic variants, each of small effect size. In an attempt 

to uncover this polygenicity, the era of genome-wide association studies (GWAS) began73. 

A period of accelerated progress in genomics that led to the development of GWAS began 

with the completion of the first human genome sequence, revealing millions of genetic 

variants74,75. Box 2 provides a description of the various forms of human genetic variation. 

Single nucleotide polymorphisms (SNP) are the most extensively analysed in GWAS, followed 

by short insertion-deletion variants or ‘indels’. The majority of variants analysed in GWAS are 

located within non-coding sequences of genes or in intergenic regions, which are potentially 

involved in gene regulation76–78. 
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Box 2: Definitions of types and consequences of human genetic variation 
Allele: Alternative versions of base pair changes of a variant79. 
Polygenic: A phenotype influenced by many genetic variants79. Each genetic variant 
contributes to phenotypic variation with a small effect size. The sum of each small effect, 
along with environmental influences, contributes to the continuous distribution of complex 
trait variation observed in a population80.  
Polymorphism: Multiple definitions of genetic polymorphism exist in the literature81. Here, 
polymorphism is defined as a population-specific term related to the occurrence of two or 
more alleles at a position in a DNA sequence, with the rarer allele occurring in at least 1% of 
a given population82–84. 
Single nucleotide variant: Variation from a reference genome at a single base pair change. 
The most abundant form of genetic variation in the human genome76,77. 
Single nucleotide polymorphism (SNP): A single nucleotide variant with the minor allele 
present in at least 1% of the population77,85. 
Insertions and deletions (indels): A variant that corresponds to the insertion or deletion of 
one or more base pairs not found in the reference genome. The second most abundant form 
of genetic variation in the human genome76,77.  
Copy number variation: An intermediate-large scale form of structural variation, 
corresponding to additional copies (duplications) or deletions of segments of sequences > 
1,000 base pairs85,86. 
Tandem repeats: A segment of sequences with a number of base pair repeats. Variants 
with repeat sequences of 2-6 bases are termed short tandem repeats, and those 7-10 bases 
are termed variable number tandem repeats77. 
Synonymous and non-synonymous variants: SNVs, and to a lesser extent SNPs, can 
occur in protein-coding sequences within genes (exons), and cause a change in the amino 
acid sequence, termed a non-synonymous variant. In contrast, variants within exons that do 
not change the amino acid sequence are termed synonymous variants77.  
Missense variant: A type of non-synonymous variant that alters one amino acid in the 
protein, potentially influencing protein function77. 
Nonsense variant: A type of non-synonymous variant that results in a premature STOP 
codon and an incomplete and potentially non-functional protein product77. 
Intergenic variant: A variant located between genes77. 
Intronic variant: A variant that falls within an intron - the non-coding sequences of genes77. 

Since the completion of the first human genome sequence, technological advancements have 

provided cost-effective tools to rapidly conduct GWAS77. As the number of sequenced human 

genomes increased, the depth and detail of publicly available reference genomes 

improved87,88. Such advancements have led to an improved understanding of the structural 

properties of the human genome and population genetic concepts that are leveraged for 

genome-wide analyses (Box 3). The cost of generating genotyping data for GWAS through 

microarrays has decreased substantially over the years. It is the most commonly used 

approach to gather genotype data as it costs approximately ~95% less than next-generation 

sequencing89. Reference genomes are then used for imputation to expand the number of 

variants detected from microarrays, improving the overlap of variants across datasets using 
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different microarray technologies, thereby facilitating data harmonisation. The millions of 

variants generated by these approaches are used in GWAS to conduct a hypothesis-free 

study by testing across the entire genome if the frequency of alleles differs between cases 

and controls (e.g. an allele is more common in individuals with anxiety disorder than in those 

without), or along a trait dimension (e.g. an allele is associated with a higher GAD symptom 

score)77. Variant associations may be causally or non-causally related to phenotype 

expression, but are indirectly detected in GWAS due to being correlated with nearby causal 

variants (in linkage disequilibrium [LD]). Haplotype blocks with regions of high LD are 

leveraged to identify causal variants without the need for genotyping all causal SNPs90–92. 

However, interpreting GWAS results is complicated by LD, giving rise to multiple associated 

variants within a region, and subsequent analyses are required to determine causal 

associations92–94. 

 

Box 3: Structural properties of the human genome and related population genetic 
concepts leveraged in genome-wide analyses 
Reference panel: A database of densely genotyped haplotypes measured in a given set 
of individuals from a specific population. Used to represent structural properties of the 
genome in a given population, including allele frequencies and LD patterning. Examples of 
commonly used reference panels include the Haplotype Reference Consortium, 1000 
Genomes Project, and TOPMed95. 
Allele frequencies: Allele frequency is the incidence of a certain allele in a population. In 
a given population, minor allele frequency (MAF) is the frequency of the less common 
allele, while major allele frequency is the frequency of the more common allele of a variant. 
MAF is used to distinguish common from rare variants, with MAF > 1-5% considered 
common79,90.  
Linkage disequilibrium (LD): The non-random association between alleles located on 
two distinct loci in a given population. Linkage equilibrium (LE) implies independence, in 
which alleles at two loci are randomly associated by chance, with a theoretical 
disequilibrium coefficient of 0. When the frequency of association between alleles at two 
different loci deviates from expected when in LE, they are considered to be in LD. Levels 
of LD are dependent on recombination events during meiosis that occur across 
generations, natural selection, population bottlenecks, genetic drift, mutations, and 
genomic inversion. LD can occur at a short-range, whereby LD is higher among physically 
nearby genetic variants that are less likely to be separated by recombination events than 
more distant variants. LD can occur at a long range, whereby the correlation between 
genetic variants occurs at a larger distance, caused by various population processes91,96. 
Haplotype block: Across the human genome are chromosomal regions with block-like 
patterns of different LD levels. Low LD regions exist in recombination hot spots. In between 
these hotspots are haplotype blocks, regions with high LD (from a few kb-100kb) and low 
recombination, resulting in the inheritance of single-unit haplotype blocks across 
generations. Haplotype blocks, therefore, reflect population history and geographical 
subdivisions, with block sizes varying across ancestral populations91. 
Genotype imputation: A statistical method that estimates genotypes of individuals at 
unmeasured variants based on data from a more densely-genotyped population-specific 
reference panel95,97.  
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Box 3: Structural properties of the human genome and related population genetic 
concepts leveraged in genome-wide analyses 
Genetic ancestry group: A label to denote groups of individuals who share more similar 
genetic ancestors. Genetic ancestry is estimated in GWAS participants by comparing 
genotypes with global reference panels. A continuum of genetic differences across 
ancestry populations arises as those with more common ancestors have more similar 
genomic structural patterns due to a number of influences. This includes ancestors mating 
within nearby geographic locations and the sharing of more recombination events than 
those of more distant ancestors. These differences confer variable frequencies of alleles 
and patterning of linkage disequilibrium across ancestry populations. It is, therefore, 
common practice to limit GWAS to more homogenous genetic ancestry groups. This 
reduces false-positive associations arising from allele-frequency differences across 
populations instead of reflecting phenotypic variation. It should be noted that ancestry 
groups are an oversimplification of the complex dimension of human genetic variation and 
demography95,98. 
Population structure and stratification: Population structure is the genetic structure (i.e. 
LD and allele frequencies) of an underlying population due to non-random mating and 
restricted geographical movement. When a phenotype is correlated with a population 
structure in a sample, this gives rise to population stratification that can confound genome-
wide analyses95.  
Principal component analysis (PCA): A method used to estimate population structure 
within a GWAS dataset. PCA reduces the dimensions of large-scale data (i.e. millions of 
variants measured across thousands of individuals) into components that capture a large 
proportion of variance, reflecting the underlying structure of a dataset. PCs are used to 
estimate and assign participants to genetic ancestry groups by comparing the data with a 
population reference panel of known ancestries. Additionally, including PCs as covariates 
in genome-wide analyses is a commonly used approach to control for population 
stratification95,99,100. 

Genetic variants tested in GWAS are typically restricted to alleles more common in a given 

population, with a minor allele frequency of at least 1-5%76,90. This approach has shown that 

many common variants of small effect size spread across the genome contribute to the genetic 

liability of complex traits and are, therefore, highly polygenic101. Consequently, large sample 

sizes are required to detect robust associations of small effect sizes across the millions of 

tested variants. To account for this multiple testing burden, a Bonferroni correction for one 

million independent statistical tests (5 x 10-8) is applied to establish a genome-wide 

significance threshold and reduce the chance of false positives. An approximately linear 

relationship exists between the number of genome-wide significant associations and sample 

size73,102. 

Large, well-powered GWAS are pivotal to understanding the aetiology of complex traits. 

Summary results can be made publicly available and used for various downstream analyses 

(Figure 2), including elucidating the biological underpinnings of complex traits through 

systems biology approaches. GWAS summary results can be integrated with various 

functional genomic data types, including features from cells and tissues, such as gene 

expression data. The small effect of common genetic variant associations can be aggregated 
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to the level of the gene and then combined into sets and translated to biological functions and 

pathways enriched with a phenotype103. 

 
Figure 2: An illustration of the various stages of genome-wide analyses.  
Key population genetic concepts are applied to genome-wide association analyses (GWAS), 
as described in Box 3. Summary results from GWAS can be used for several downstream 
analyses. GWAS summary statistics are often made publicly available, enabling data on 
various complex traits to be integrated into multiple-trait (e.g. multivariate or multivariable) 
analyses. PC = principal component, LD = Linkage disequilibrium.  

In addition to uncovering the genomic mechanisms associated with complex traits, GWAS 

data can be used to estimate narrow-sense heritability captured by common genetic variants, 

most often termed SNP-based heritability (see Box 1)67. Estimates of SNP-based heritability 

can guide researchers on the sample size and power required to detect genome-wide 

significant loci and the potential for future risk prediction based on GWAS data70. More 

prevalent and highly polygenic psychiatric disorders with a lower SNP-based heritability, such 

as anxiety and depression, require larger sample sizes than more heritable, rarer disorders, 

such as schizophrenia, to achieve sufficient statistical power104. Estimates of SNP-based 

heritability can be calculated directly from individual-level data used in GWAS, or through 

summary-level GWAS results. As individual-level-based methods use full SNP data instead 

of summary scores, they tend to yield higher estimates but are limited in computational speed, 

and load with large sample sizes64,67. Using GWAS summary results is an alternative, 

computationally efficient approach to estimating lower bounds of SNP-based heritability. This 

has the additional benefit of not requiring access to individual-level genetic data for GWAS 

datasets, often not possible in large-scale, collaborative meta-analyses. A widely used 

summary-level method is linkage disequilibrium score (LDSC) regression (Box 1), which 
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exploits the fact that some SNPs are more correlated with each other than others (i.e. are in 

higher LD, as described in Box 3)67,70,71. 

A genetic correlation between two traits can be estimated using extensions of the same 

approaches used to estimate SNP-based heritability. To estimate genetic correlations across 

a wide range of complex traits, the computationally light and flexible approach of using GWAS 

summary statistics in LDSC regression is common. LDSC regression estimates global (Box 
4) correlations by estimating genetic covariation across a pair of phenotypes (as captured by 

common genetic variants) and scaling by genetic variances (i.e. from SNP-based 

heritability)105,106. A significant global genetic correlation between two phenotypes arises when 

the direction of the effect of common genetic variants is consistent across the genome105. 

When genetic effects in both traits are, on average, in the same direction, this results in a 

positive correlation of up to 1, or when in the opposite direction, a negative correlation of up 

to -1107. Of note, genetic correlations cannot be used to determine causality but can be used 

to generate novel hypotheses about the relationship between two traits to be then tested in 

follow-up analyses. 

Box 4: Definitions of pleiotropy, bivariate and multi-trait genetic analyses 
Pleiotropy: When a genetic variant (or locus, gene) is associated with more than one 
trait106. 
Horizontal pleiotropy: When a genetic variant influences two traits, either directly or 
indirectly, through an additional intermediate phenotype. Indicative of shared biological 
processes between two traits (also termed biological pleiotropy)106.   
Vertical pleiotropy: When a genetic variant influences one trait, which in turn is causally 
associated with a second trait (i.e. one trait mediates the effect of the genetic variant on 
another trait). Reverse causation of a causal cascade between two phenotypes is also 
possible. The presence of vertical pleiotropy can be useful for intervention purposes106. 
Environmentally mediated pleiotropy: A type of vertical pleiotropy when a genetic variant 
influences a phenotype that shapes the environment, which in turn influences a second 
phenotype108. 
Spurious pleiotropy: When a genetic variant is falsely associated with two traits. This can 
arise due to multiple different sources of biases. For example, design artefacts such as 
phenotype misclassification or ascertainment bias. High LD can also lead to spurious 
pleiotropy by a variant tagging multiple causal variants located in different genes with 
different functions, which are not causally related to both phenotypes106,109. Variants in 
regions of extreme LD (e.g. the major histocompatibility complex) are sometimes removed 
for genetic correlation analyses110.   
Global genetic correlations: A bivariate global genetic correlation between two traits is 
the average effect of pleiotropy across the whole genome106. 
Local genetic correlations: A bivariate local genetic correlation between two traits 
analyses region-specific pleiotropy (e.g. at a given locus). Different regions may show 
genetic correlations in opposite directions, contributing to a non-significant global genetic 
correlation111. 
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Multi-trait analyses: Pervasive pleiotropy observed across multiple complex traits can be 
leveraged through multi-trait analyses112–114. For example, multivariate genetic analyses (of 
more than one outcome phenotype) can be used to extend bivariate genetic correlations 
into multivariate Genomic Structural Equation Modelling115. Multivariable genetic analyses 
(of one outcome phenotype and multiple predictors) can be used to model multiple 
polygenic scores to predict a trait outcome jointly113,116. 

A significant global genetic correlation can reflect multiple forms of underlying mechanisms 

(Box 4). They may capture variants with a causal effect on multiple disorders, indicating 

shared biological pathways70,106. Genetic correlations between psychiatric disorders and 

health-related lifestyle factors may reflect causal relationships70. Genetic correlations 

observed between personality and psychiatric disorders may be environmentally mediated108. 

As such, measuring genetic correlations from GWAS across broad domains of phenotypes is 

useful for understanding not only shared biological aetiology but also other sources of genetic 

signals107. 

To further strengthen hypotheses on shared and distinct mechanisms, a genetic overlap 

across phenotypes can be harnessed for several downstream multi-trait analyses (Box 4). 

Genetic correlations can be used to assess the genetic structure of traits related to psychiatric 

disorders through multivariate modelling of genetic covariances. One example is the software 

Genomic Structural Equation Modelling (Genomic SEM), which extends multivariate twin 

modelling to genomic data using GWAS summary statistics115. This method constructs 

estimates of SNP-based heritabilities and genetic correlations into matrices, often calculated 

in LDSC regression. The genetic covariance matrix contains SNP-based heritabilities of each 

trait and genetic correlations scaled relative to the heritabilities. A second sampling covariance 

matrix contains the precision of these estimates (i.e. the sampling variance of each estimate 

in the genetic covariance matrix), and the association between sampling errors to account for 

GWAS sample overlap. A number of different structural equation models can then be fit to 

these matrices. For example, this method can be used to evaluate hypotheses on why a group 

of phenotypes are correlated or the extent to which other traits explain the genetic variance of 

a trait in a model, or are unique to that phenotype115. 

An alternative approach that leverages a genetic overlap between traits to build multi-trait 

models is through polygenic scoring113. Polygenic scores are an aggregate of the number of 

phenotype-associated alleles an individual carries. For example, for common mental 

disorders, both individuals affected and unaffected by a disorder will carry a range of alleles 

across the genome associated with an increased risk (coded as a 0, 1 or 2). To calculate a 

polygenic score, alleles are summed and weighted by the effect size estimate of their 

association with a given phenotype, derived from GWAS summary statistics in an independent 
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sample117. A polygenic score for one trait can be used to explain the phenotypic variance of 

another trait. This is particularly useful for examining the genetic overlap between two traits 

where one trait does not have a well-powered GWAS available for genetic correlation analysis. 

Even for polygenic scores derived from well-powered GWAS, the amount of phenotypic 

variance explained is relatively small73,102. For example, one of the most powerful psychiatric 

polygenic scores is for schizophrenia, which explains 8.5% of the variance in schizophrenia 

liability118. As such, polygenic scores are not yet sufficiently powered for prediction at the 

individual level. Prediction at the group level can be improved by combining multiple well-

powered polygenic scores and non-genetic predictors into multivariable models. As GWAS 

sample sizes grow, the hope is that the power of polygenic scores will improve to the extent 

that multivariable predictive models can be implemented for clinical application119. 

 
Progress in depression and anxiety disorder genomics 
Since the start of the GWAS era approximately 16 years ago, significant progress has been 

made in psychiatric genomics research120. Collaborative efforts and large-scale data collection 

have enabled sample sizes to reach the level of power needed to start identifying the 

abundance of common genetic variants associated with psychiatric disorders. This has been 

facilitated by the Psychiatric Genomics Consortium (PGC), where large-scale meta-analyses 

of multiple GWAS have transformed psychiatric genomics research. Large national cohorts 

such as the UK Biobank and the Million’s Veteran Programme (MVP) have also been crucial 

in these developments by contributing data to the largest GWAS of depression and anxiety to 

date45,121,122. 

Considerable progress has been made in depression genomics and led to a broad array of 

findings on the neurobiology of depression. The largest MDD GWAS identified 178 

independent loci in a sample of approximately 370,000 cases123. The translation of depression 

GWAS results have highlighted the role of several brain regions, nervous system 

development, synaptic processes, and immune-related function123–126. Such findings have 

progressed our understanding of the aetiology of depression by corroborating previous 

hypotheses and generating new ones. 

Anxiety disorder genomics, and thus an understanding of genomic-associated systems 

biology, is somewhat behind compared to depression. A lack of datasets with measures on 

the multiple types of anxiety disorders has hindered progress. This may partly be due to the 

complexity of phenotyping anxiety, a highly comorbid trait with somewhat vague boundaries 

between ‘normal’ to pathological states127,128. The largest GWAS of anxiety identified five 

genome-wide significant loci associated with GAD symptoms in 175,000 individuals129. Two 
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additional loci were associated with a case-control phenotype of anxiety and panic disorder in 

34,000 cases129. A follow-up study applied a novel phenotyping approach to increase 

statistical power by imputing GAD symptoms, identifying a further seven independent loci. 

Integrating these GWAS results with functional genomic data found associations with the 

dorsolateral prefrontal cortex and GABAergic neurons130. Although these studies represent 

significant progress, larger datasets are still needed to further our understanding of the 

genomic mechanisms underpinning anxiety disorders. Efforts are underway to publish the first 

large-scale PGC anxiety disorder GWAS, representing a milestone in anxiety disorder 

genomics127. 

The SNP-based heritability estimates for anxiety and depression are broadly similar but are 

also notably smaller than twin study estimates. Individual-level methods report ~26% SNP-

based heritability for any anxiety disorder131, and ~20% for MDD132,133. The ‘missing’ heritability 

between SNP-based heritability and twin heritability estimates of complex traits are thought to 

be explained by the role of genetic factors contributing to heritability not measured in GWAS 

data, such as rare variants, non-additive genetics or gene-environment interactions73. As 

noted earlier, summary-level SNP-based heritability estimates are even smaller than those 

calculated from individual-level SNP data and twin data. The LDSC SNP-based heritability 

estimate for MDD is 10.5%70,124 and 9% for broad depression125. Similarly, the largest GWAS 

of anxiety reported an LDSC SNP-based heritability of 8.8%134, which is in line with other 

anxiety disorder GWAS 135 and neuroticism GWAS136. However, meta-analysis SNP-based 

heritability estimates of psychiatric disorders may also be biased downwards due to incorrect 

conversions to the liability scale, not taking into account cohort-specific ascertainment (e.g. 

an increase from 10.5% to 11.5% was observed for MDD)137. Furthermore, smaller, single-

study GWAS of anxiety disorders reported LDSC SNP-based heritability estimates as high as 

28%138. This highlights how SNP-based heritability can vary across populations and 

phenotypic measures73. Such heterogeneity across samples may, in part, limit the ability to 

detect SNP-based heritability and contribute to missing heritability102. 

As GWAS of anxiety and depression increase, a growing issue in the field is the balance 

between increasing sample size and consistent and detailed phenotyping121,139,140. Many 

large-scale genetic datasets use brief phenotypic measures, often limited to a few self-report 

items to assess a broad psychiatric phenotype, as this approach is time and cost-effective. 

Brief phenotyping has been key for making progress in loci discovery for both anxiety and 

depression and will likely be vital for future risk prediction using GWAS data. The predictive 

power of depression polygenic scores derived from GWAS is more dependent on increased 

sample size than the detail of phenotyping. This indicates that sample size should be 



 28 

prioritised over phenotyping depth for risk estimation141. However, when GWAS sample sizes 

are equal, polygenic scores for more detailed measures have captured more specific genetic 

influences on MDD141,142. Loci identified by GWAS of briefly phenotyped broad depression are 

also less specific to MDD140,142. A tradeoff thus exists between maximising sample size and 

the depth of phenotyping. 

While research on the depth of GWAS phenotyping for anxiety disorders is lacking, lessons 

learnt from phenotyping strategies in depression genomics may apply to anxiety genomics. 

Larger samples ascertained from brief phenotyping may increase loci discovery, but some 

associations may not be disorder-specific. An improvement in power may lead to disorder-

specific biology or non-specific treatment targets of broader phenotypes such as neuroticism. 

Genetic risk prediction may improve, but identify a broader group of individuals than the 

specific disorder under analysis140. Therefore, both brief and detailed phenotyping are of 

research value. Genetic datasets with both brief and detailed phenotyping are needed to make 

significant progress in anxiety disorder genomics and ultimately translate GWAS findings for 

clinical utility139. 

 

Leveraging genomic data to understand pervasive comorbidity and clinical 
heterogeneity 
As discussed earlier, with evidence from twin studies, the pervasive comorbidity across 

anxiety disorders and depression is likely partly driven by genetic overlap. Findings from 

GWAS data further support this notion. GWAS consistently report substantial polygenic 

overlap between anxiety and depression and other psychopathologies123,124,131,134. The largest 

GWASs of anxiety and MDD show a genetic correlation of 0.72123,134. Estimates from other 

GWAS are similar, with 0.78 reported between a clinically ascertained MDD phenotype and 

lifetime anxiety disorder and up to 0.88 with GAD symptoms124,131. Neuroticism also shows 

high genetic correlations with anxiety and depression (0.69-0.73)123,125,131,134, providing further 

support for genetic influences on shared negative affectivity driving comorbidity. Significant 

global genetic correlations have also been reported between anxiety and depression and a 

range of other psychiatric disorders, health, and behavioural traits123,125,131,134. This broad array 

of significant genetic correlations calculated from GWAS data can be leveraged for various 

analyses to better understand shared and distinct aetiology106.  

 

Unlike twin studies, molecular genetic assessment of disorder subfactors, such as the 

distress-fear subdomain, is still in its infancy. A major limiting factor is the availability of 

detailed phenotyping to measure subtypes for GWAS sufficiently. Anxiety and depression 
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disorder subtype GWASs are needed to discern subtype-specific from transdiagnostic 

common genetic influences. Failure to consider clinical heterogeneity may result in 

overlooking specific biological pathways that can provide important insights into the genomic 

influences on psychopathology. Furthermore, variable clinical heterogeneity across studies, 

for example, inconsistent groupings of subtypes, may lead to inconsistent findings140. 

More progress has been made in examining the genomic differences between the subtypes 

of depression than for anxiety disorders. Subtyping of depression has found some evidence 

that genetic heterogeneity reflects clinical heterogeneity143–145, although to a lesser extent in 

some studies133,146,147. Differences in SNP-based heritability estimates have been reported. 

More severe subtypes, including those treated with ECT, atypical, recurrent, and depression 

with anxiety comorbidity, have shown higher heritability estimates than less clinically severe 

forms of depression143,145. Genetic correlations across a range of subtypes from one study 

suggested that 30-70% of genetic influences are shared143. Testing genetic differences 

between subtypes of differing severity with a range of other complex traits has revealed 

significant differences in genetic overlap with other psychiatric disorders, BMI, personality and 

cognitive-related traits143,145,148. The more severe subtypes of depression are genetically less 

similar to neuroticism145 and more similar to bipolar disorder and schizophrenia132. Such 

analyses shed light on the genetic spectrum from manic to distress clusters (Figure 3), 

showing both shared and unique genetic influences underlying depression and bipolar 

disorder subtypes148. GWAS of depression subtypes have been largely underpowered for loci-

discovery and thus comparison149, but recent GWAS reveal evidence for some subtype-

specific loci143. Inconsistencies in subtyping have slowed progress in depression-subtype 

genomics140. 



 30 

 
Figure 3: An illustration of the genomic continuum of the mood disorder spectrum 
from mania genomics to internalising genomics. 
Adapted from Coleman et al.148. 
 

Examining anxiety disorder subtypes at the genome-wide level has been especially limited in 

psychiatric genomics. This is even though diagnostic subtypes of anxiety disorders are more 

well-established than depression subtypes5. Anxiety genomics has lagged behind due to the 

lack of genetic datasets with detailed phenotyping on anxiety. Datasets with detailed 

measures on all five anxiety disorders are even more scarce. Thus, a more prominent focus 

has been placed on ‘any’ anxiety disorder groupings to maximise power122,131,134,135. It remains 

unclear what genomic influences are shared or specific to individual anxiety disorders without 

assessing comorbid conditions. 

GWAS of individual anxiety disorders has been largely underpowered for loci-discovery and 

genetic correlation analyses to assess disorder-specific and transdiagnostic genetic liability. 

Recent progress has been made on GWAS of current GAD symptoms130,134, but well-powered 

GWAS of lifetime GAD has been limited150. GWAS of individual fear-based disorders is further 

lacking151. One genome-wide significant locus has been reported in a GWAS of panic 

disorder152, and one in a GWAS of agoraphobia symptoms153. Therefore, a comprehensive 

assessment of the distress-fear model at the molecular genetic level is lacking. Preliminary 

GWAS findings in the UK Biobank indicate some genetic specificity among the fear-based 

disorders that is not shared with distress disorders150. Chapter 2 expands upon this study by 

conducting GWAS meta-analyses of fear-based disorders and GAD with newly established 
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datasets that have detailed phenotyping on all five anxiety disorders. An improvement in 

GWAS power enables a more comprehensive assessment of the common genetic variant 

architecture of GAD and fear-based disorders and their genetic overlap with depression and 

broad domains of other complex traits.  

 

Social environmental influences on anxiety and depression 
Research on the genetic basis of anxiety and depression is important for understanding 

disorder aetiology, particularly for advancing our understanding of biology. However, 

incorporating environmental information into genetic analyses is necessary to understand the 

nature of genetic signals and the interplay between biological and social factors140. The 

following sections of this chapter will first discuss how exposure to social environmental factors 

is not independent of genetic influences. Psychological factors are discussed second, which 

are the lens through which we experience environmental exposures and act as a bridge 

between genetic and environmental influences on psychopathology. Figure 4 illustrates the 

mechanisms involved in the interplay between genomics and different types of experiences in 

the risk and treatment of common mental disorders. 

Figure 4: An illustration of the potential mechanisms underpinning the course and 
resolution of common mental disorders, which are influenced by the interplay 
between genetic, socio-environmental and psychological factors.
Brown arrows represent genetic influences on biological pathways associated with the risk of 
developing subtypes of common mental disorders, measured through genome-wide 
association studies (GWAS). Experiences of negative and positive exposures and their 
influence on the risk and treatment of psychopathology do not act independently of genetics. 
Genomics can therefore be leveraged to understand these experiences. Blue arrows 
represent the interplay between heritable characteristics associated with shaping adverse 
environmental exposures and the risk of psychopathology, known as gene-environment 
correlation. Green arrows represent the interaction between genetic liability to a disorder and 
a psychological intervention (depicted here as a positive environmental exposure), leading to 
variation in experiences and response, such as with psychological treatment. 
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Approximately half of the phenotypic variability of anxiety and depressive disorders is not 

explained by genetics. Twin studies (see Box 1) show that the remaining variance is primarily 

attributed to the individual environment (sometimes called “non-shared”). The common 

environment explains some variance during childhood but declines with age and is no longer 

present during adulthood47,154. Individual-specific environmental liability is partially shared 

across anxiety disorders and depression, though some disorder-specific influences are also 

observed51. As such, unique individual-specific environmental factors are thought to explain 

why anxiety disorders and depression present as distinct conditions155. Anxiety and 

depression are associated with both positive and negative social environmental contexts. 

Positive environments can mitigate the effects of adverse environmental risk factors. For 

example, social support is a particularly important transdiagnostic buffer for the effects of 

severe adverse environments, notably traumatic experiences156. 

Psychologically traumatic experiences, which can be defined as those perceived by the 

individual as devastating and overwhelming, are major risk factors for internalising disorders 

and psychopathology more broadly5. Traumas experienced during childhood are the most 

robust transdiagnostic environmental risk factors31,157. Childhood trauma is reported to 

increase psychopathology risk by approximately two-fold158,159. The mechanisms underlying 

the causal effects of trauma on psychopathology are an ongoing area of research. A recent 

meta-analysis found that after controlling for pre-existing risk factors such as environmental 

adversities and genetics, an attenuated but significant causal effect of childhood trauma on 

broad psychopathology remained160. Transdiagnostic theories on the long-term biological 

effects of early-life trauma include altered brain structure and function, such as disruption to 

the development of the hypothalamic-pituitary-adrenal axis. This may lead to elevated 

glucocorticoid signalling in response to stress and abnormal brain development with long-

lasting effects on emotion and behaviour161,162. Difficulties with emotions include dysregulation 

and increased emotional reactivity, which, together with elevated informational processing of 

social cues as threatening, can influence maladaptive behavioural responses156. Given its 

transdiagnostic effects, understanding the risk and consequences of trauma is an important 

area of research. Furthermore, targeting trauma exposure in prevention and intervention 

strategies may be more effective in reducing psychopathology risk than disorder-specific 

environmental risk factors157. 

The heritability of environmental measures 
A complexity of disentangling the causal effects of environmental exposures on 

psychopathology is that the environment does not operate independently of genetics. Twin 

studies show that almost all measures of the environment are themselves genetically 
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influenced163. This includes the reporting of positive, negative, and traumatic social exposures, 

which have a heritability ranging from 24-62%163–167. Significant SNP-based heritability 

estimates have also been found for reported traumatic and stressful exposures (6-

30%)132,168,169. Twin studies find that life events dependent on one’s behaviour are more 

heritable than independent events163,170,171, likely due to heritable behavioural characteristics 

influencing the environments we are exposed to. These environments can be shaped 

passively by our parents during childhood, or we actively select them in later life and by how 

others engage with us. Correlations between genetic factors and environmental exposures 

can arise through these mechanisms, termed gene-environment correlation172,173. As such, 

the association between environmental measures and psychopathology may partly be 

explained by shared genetic influences on both the likelihood of environmental exposure and 

the development of psychopathology. 

Identifying the genetically influenced traits that contribute to the heritability of environmental 

measures would elucidate key traits involved in gene-environment correlations. Such findings 

help narrow down characteristics to target in follow-up analyses assessing causal pathways 

and ultimately inform intervention or prevention strategies. Multivariate twin modelling has 

been used to deconstruct the heritability of an environmental measure by jointly modelling 

genetically correlated personality and behavioural traits174,175. For example, one study found 

that genetic propensity for non-cognitive traits is as important as genetic influences on 

cognitive ability in explaining the heritability of educational attainment. This study highlighted 

plausible alternative candidates for non-cognitive interventions to improve engagement with 

the schooling environment174. As noted earlier, recent advancements in genomics research 

enable the systematic assessment and multi-trait modelling of genetic correlations between a 

broad range of traits, including environmental exposures and psychiatric and behavioural 

traits115. For example, genomic multiple regression models in Genomic SEM have been used 

to estimate genetic correlations between psychiatric disorders and smoking behaviours, 

independent of other heritable behavioural traits176. This method could also be used to 

deconstruct the SNP-based heritability of adverse environments and identify uniquely 

genetically associated psychiatric and behavioural traits. Thus, such approaches provide the 

opportunity to better understand key environmental risk factors for psychopathology at the 

genomic level. Chapter 3 explores the genomic influences of multiple traits on vulnerability to 

childhood trauma and aims to identify the traits that may be involved in gene-environment 

correlation mechanisms through genomic multiple regression modelling.  
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Heritable psychological influences on anxiety and depression: from risk to 
treatment 
As outlined earlier, twin studies show that the individual environment explains more 

phenotypic variation in anxiety and depression than the common environment. This is partly 

due to the important role of individual differences in psychological influences that shape how 

people experience their environment, which is unique to each person177,178. Genetics also 

plays a role in how sensitive we are and the context in which we perceive exposures, which 

in turn influences our response179. Genetics can therefore be leveraged to understand 

characteristics associated with vulnerability to experiencing adverse exposures as traumatic 

and a greater risk of subsequent psychopathology180.  

 

Heritable influences on subjective self-reports of adverse experiences 
Various genetically influenced psychological and cognitive factors impact sensitivity to 

adverse environments. The stress-diathesis model describes sensitivity to negative (i.e. 

stressful) environmental experiences and explains why not all those exposed to adverse 

environments develop a common mental health problem. Genetic pathogenic effects depend 

on environmental exposure and vice versa13,179,181,182. It is plausible that psychological factors 

that influence sensitivity to adverse environments also influence reporting of events as 

stressful or traumatic. As such, using self-reports to capture environmental exposures is often 

conceptualised as a limitation to studies due to potential biases in reporting183. Meta-analyses 

show that subjective and objective measures of adversity identify largely different groups of 

individuals184. Thus, if research aims only to understand the influences on objective exposure, 

then subjective reporting may capture influences on reporting biases as opposed to 

mechanisms associated with exposure. Such research is important for prevention strategies. 

However, understanding the genetic components contributing to subjective reporting is also 

valuable. The subjective experience of trauma, as captured by retrospective self-reports, is 

key for developing psychopathology, more so than trauma exposure. Some individuals 

identified as exposed through objective measures, such as court documentation of childhood 

maltreatment, do not subjectively report trauma in later life. These individuals are less likely 

to develop post-traumatic psychopathology than those who retrospectively self-report 

trauma184. This may reflect a group of individuals with low sensitivity to adverse environments, 

which acts as a protective factor and resilience to adversity. Thus, understanding the 

psychological and cognitive factors associated with retrospective and subjective reporting may 

be informative for psychopathology intervention. 
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Psychological factors, including personality traits and cognitive biases, may influence how 

individuals experience and engage with adverse environments and later risk of 

psychopathology. Neuroticism is associated with cognitive biases towards negative stimuli, 

elevated stress levels, and environmental sensitivity185,186. Twin studies suggest that genetics 

primarily explain the correlation between neuroticism and adverse environmental sensitivity186, 

highlighting the role of genetics in the subjective appraisal of adversity. Individuals with higher 

levels of neuroticism tend to self-report more adversity in the absence of prospective records. 

This is in contrast to agreeableness, which is associated with lower rates of retrospective 

reports than indicated by the level of prospective accounts187. Higher neuroticism is also linked 

with reporting traumatic and stressful events as more central to one's identity, a risk factor for 

later psychopathology188,189. A potential mechanism explaining the link between neuroticism 

and posttraumatic psychopathology is the increased emotional availability of trauma memories 

through more frequent retrieval and rehearsal and, thus, maintenance of the memory189. A 

genetic overlap has been observed between neuroticism, depressive symptoms, and 

perceived stress190. Thus, genetic influences on neuroticism may influence the reporting of 

events as traumatic166. Indeed, genetic correlations between GWASs of neuroticism and 

retrospective self-reports of trauma have been observed132. Chapter 3 explores the extent to 

which genomic influences on psychological traits such as neuroticism can explain the 

heritability of retrospectively self-reporting adverse environments, aiming to identify key traits 

involved in the experience of adverse environments. 

Heritable influences on positive experiences and application to psychological 
treatment 

Genetic influences on psychological factors impact not only vulnerability to respond negatively 

following trauma (as in the diathesis-stress model) but also sensitivity to positive 

environments. The differential susceptibility model extends environmental sensitivity to 

genetic influences on psychological factors affecting the experience and response to both 

negative and positive environments. Under this framework, we can leverage genetic 

information to understand who is more likely to benefit from support environments, providing 

a more positive outlook on intervention research of psychopathology. Indeed, a core focus on 

anxiety and depression genomics is understanding risk factors. However, genomics can also 

be harnessed to improve treatment selection. For example, individuals with high 

environmental sensitivity may translate to a better response to protective and supportive 

exposures, such as psychological intervention179,191,192. 

There is substantial individual variability observed in treatment response for anxiety and 

depression. Given the overlap in risk factors, it is not surprising that treatments for anxiety and 
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depression are highly similar, with comparable treatment response rates across disorders31. 

Medication and psychological therapy are both first-line treatments for anxiety and depression. 

However, not all individuals respond to them equally, with approximately only 50% responding 

to current treatments193,194. Predicting who will respond best to which treatment is poor and is 

therefore often prescribed in a trial and error fashion13,194. Research understanding the factors 

that influence treatment response is needed to aid in identifying suitable predictors to guide 

treatment selection. 

Genetic influences on antidepressant response show the potential for using genetic 

information in guiding treatment. Psychiatric pharmacogenomics, which aims to harness 

genetic variants associated with variability in response to medication to guide treatment 

selection, has grown over recent years with some progress in antidepressant response 

research. Although findings have been mixed, a meta-analysis of randomised controlled trials 

of pharmacogenomic testing for antidepressant response showed a 71% increased likelihood 

of depressive symptom remission in individuals receiving pharmaco-guided antidepressant 

prescribing compared to standard practice prescribing195. Based on individual-level estimates, 

the SNP-based heritability of antidepressant response is approximately 42%196 and 13% for 

depressive symptom remission following antidepressant treatment197. These findings 

represent considerable progress in the field of antidepressant response genetics. However, 

antidepressants are not always beneficial to patients, and an integrated approach with 

psychological therapy and medication outperforms pharmacotherapy alone. Thus, a combined 

understanding of factors associated with response to both forms of treatment would be of even 

greater clinical utility in guiding treatment selection. 

Identifying predictors of improvement in anxiety and depressive symptoms following 

psychological therapy is an ongoing area of research. Cognitive behavioural therapy (CBT) is 

the gold standard psychological treatment for anxiety and depression198, including disorder-

specific and transdiagnostic approaches199, which are equally as effective200,201. Grouping 

internalising disorders may prove useful in improving the prediction of psychological treatment 

outcomes31. The ultimate goal is to incorporate a range of variables into predictive models to 

aid in treatment decision-making202. Adding genetic factors to these models requires 

advancements in examining the genetics of psychological treatment outcomes. 

Considering there are genetic influences on a range of behavioural, psychological and 

cognitive traits, which in turn influence response to positive environments163, there is likely a 

genetic component to psychological treatment. No twin studies have found a significant 

heritability of outcomes following psychological therapy, also known as ‘therapygenetics’. 

However, evidence from examining related phenotypes suggests that a heritable component 
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exists. Twin studies report a significant heritability of fear extinction of 15-36%, a key 

mechanism involved in exposure-based CBT for anxiety disorders203,204. Half of the genetic 

influences on fear acquisition also overlap with fear extinction. This suggests that some 

genetic influences on anxiety-related traits could be used to understand responses to 

psychological therapy203. For example, polygenic scores from existing well-powered GWAS of 

anxiety or depression may be useful in predicting psychological therapy outcomes alongside 

other predictors. As such, incorporating pre-existing polygenic scores from well-powered 

GWAS of related complex traits may be a promising avenue for therapygenetics research205. 

Therapygenetics can be understood through the framework of gene-environment interaction, 

in which psychological intervention is the environmental exposure and genetics influence 

sensitivity to the exposure206. Preliminary findings using polygenic scores derived from a small 

GWAS of environmental sensitivity in twins indicates that a higher genetic propensity for 

environmental sensitivity is associated with a better response to more intensive CBT than less 

intensive207. As was the case for many polygenic traits in candidate gene studies, early 

attempts to identify specific genetic variants with robust gene-environment interaction effects 

on psychological treatment outcomes were unsuccessful206,208. Response to psychological 

therapy is unlikely to be influenced by a few genes, but rather highly polygenic, as is the case 

for all heritable psychological traits.  

A challenge for genome-wide therapygenetics is phenotyping at the scale required for GWAS. 

GWAS of prognostic outcomes following CBT for anxiety and depression have been limited in 

power due to the difficulty in ascertaining such phenotypes. The largest published GWAS 

meta-analysis thus far was small, with 2,724 participants, and did not detect a significant SNP-

based heritability or genome-wide significant loci209. Alternative phenotyping strategies are 

required to achieve sufficient power to detect the thousands of loci underpinning complex 

traits. As with anxiety and depressive disorder genomics research, an improvement in power 

has largely been achieved through brief phenotyping. The utility of brief phenotyping in GWAS 

of psychological therapy outcomes has yet to be explored. Furthermore, subjective self-

reports of benefitting from psychological therapy may be useful in capturing genetic influences 

that impact the perception of experiences, as with self-reports of environmental adversity. 

Chapter 4 uses brief self-reports of psychological treatment outcomes to increase the sample 

size for GWAS and prediction models that incorporate polygenic scores of related traits. 
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Summary and aims 
The overarching aim of this thesis was to further the understanding of the risk and treatment 

of common mental disorders by integrating bio-psycho-social components and leveraging 

large genomic datasets (Figure 1). Chapters 2 and 3 focus on understanding genetic 

influences on risk factors, while Chapter 4 explores genetic influences on treatment outcomes 

(see Figure 4). Chapter 2 focuses more on the biological and genomic mechanisms 

associated with clinical heterogeneity, whilst Chapters 3 and 4 harness genomic data to 

understand psychological influences on environmental experiences. To improve statistical 

power for genomic analyses of phenotypes that currently lack GWAS with sufficient sample 

sizes, Chapters 2 and 4 leverage novel genotyped datasets with detailed measures of anxiety 

and depression outcomes. All three empirical chapters harness pre-existing, well-powered 

GWAS summary statistics across bio-psycho-social domains of complex traits related to 

common mental disorders. This includes psychopathologies and physical health problems 

commonly co-occurring with anxiety and depression, reported socio-environmental 

experiences, and cognitive-related and psychological traits. Examining a broad range of 

complex traits enables the assessment of shared and distinct genetic influences on common 

mental disorders and the interplay with psychosocial influences at a large scale. 
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Abstract 
Background: Twin studies have consistently shown a high genetic overlap amongst anxiety 

disorders and depression that contributes to the internalising spectrum. Research has also 

identified modest genetic specificity to fear-based anxiety disorders, not shared with general 

anxiety and depression (often grouped as distress disorders). Due to the lack of datasets with 

detailed phenotyping of all five anxiety disorders, genome-wide analysis of anxiety has 

typically been limited to “any anxiety diagnosis”. Further genome-wide evidence is needed to 

establish if fear-based disorders are genetically distinct from distress disorders.  

Methods: We undertook a genome-wide association study (GWAS) meta-analysis of fear-

based disorders (panic, social anxiety disorder, specific phobia, and agoraphobia) and 

generalised anxiety disorder (GAD). Cases and controls were defined using a combination of 

brief single-item and detailed symptom-based diagnoses from three large datasets. We 

explored two approaches to define controls. First, we screened for any anxiety disorder and 

depression. Second, we screened specifically for fear or GAD. We estimated genetic 

correlations between fear and GAD and compared their correlations with broad domains of 

other complex traits.  

Results: Our GWAS meta-analyses identified a total of three independent loci associated with 

fear (up to 30,861 Ncases; 157,951 Ncontrols) and four with GAD (up to 54,928 Ncases; 117,320 

Ncontrols). The genetic correlation between fear and GAD was not significantly different from 

one, except for when excluding a depression-enriched dataset and screening controls 

specifically (rg = 0.85; P = 4.57 × 10-3). Most complex traits did not have a significantly different 

genetic correlation with fear versus GAD, including depression. The exceptions to this 

included general cognitive ability, educational attainment, and coronary artery disease with 

stronger negative genetic correlations with fear than GAD. Bipolar disorder type I, anorexia 

nervosa, and neuroticism had stronger positive genetic correlations with GAD than fear.  

Conclusions: Our findings partially support a distress-fear genetic distinction. However, we 

found stronger evidence for an overarching genetic liability to internalising psychopathology 

that drives comorbidity across anxiety disorders and depression. 
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Introduction 
Anxiety disorders, including panic disorder, agoraphobia, specific phobia, social anxiety 

disorder, and generalised anxiety disorder (GAD), are among the most common mental health 

conditions, with an international lifetime prevalence of 16%1,2. The core symptoms of anxiety 

disorders are persistent and excessive fear and worry, accompanied by impairing features 

such as avoidance behaviours, physiological arousal, and panic attacks3. Individual disorder 

diagnoses across the anxiety spectrum are based upon their distinct clinical features, although 

high rates of comorbidity exist between them4,5. GAD is characterised by excessive and 

chronic worry about a broad range of future potential threats. Panic disorder is an extreme 

version of a flight or fight response with repeated experiences of a sudden unexpected feeling 

of fear in the absence of a threat (i.e. panic attack). Recurrent, unexpected panic attacks are 

necessary for a diagnosis of panic disorder. Panic attacks, however, are also transdiagnostic 

and can occur in certain situations, as in phobic disorders. The phobias, including 

agoraphobia, social anxiety disorder and specific phobia, are characterised by excessive fear 

and avoidance of particular signals of perceived threat4,6. As they are all characterised by fear, 

panic disorder and the phobias are often grouped together as ‘fear-based’ disorders. 

Shared risk factors for anxiety disorders include being female, exposure to stressful 

experiences, and a family history of anxiety and depression3. Familial aggregation of these 

disorders reflects a partial genetic basis, with twin study estimates of heritability ranging from 

20-60%3,7,8. Twin studies consistently show that most genetic influences on anxiety disorders 

overlap, contributing to a broad anxiety-related genetic factor, which has considerable overlap 

with genetic risk for depression9–12. However, evidence suggests this higher-order internalising 

genetic liability can be differentiated into lower-order genetic components. Fear-based 

disorders are reported to be partly genetically distinct from those characterised by distress 

(GAD and depression), forming two distinct but correlated genetic liability fear-distress 

subfactors9,13. Overall, twin studies show that anxiety disorders mostly share common genetic 

factors but also have some genetic specificity. 

Although twin studies have been crucial in revealing the overall genetic structure of the anxiety 

disorder spectrum, they do not identify the specific genetic variants that contribute to the 

heritability and high genetic overlap between the disorders. Genome-wide association studies 

(GWAS) have begun to identify common genetic variants underpinning anxiety disorders. 

Fewer GWAS have been performed in anxiety disorders than in other psychiatric disorders14. 

However, recent developments have enabled several large-scale GWAS of broadly defined 

anxiety and GAD symptoms15–18. Such studies have identified significant genetic correlations 

with all other psychiatric disorders, including depression, schizophrenia, bipolar disorder, and 
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attention deficit hyperactivity disorder (ADHD)15–17. Consistent with evidence from twin 

studies9, preliminary genome-wide findings indicate that a lifetime diagnosis of any fear-based 

disorder (as a grouping) and depression are less genetically correlated with one another than 

they each are with lifetime GAD19. However, the common genetic variants associated with 

fear-based disorders remain unclear, which limits our understanding of their genetic overlap 

at the molecular level.  

Previous GWAS of fear-based disorders have been underpowered for loci discovery and to 

assess genetic correlations with a broad range of traits19–21.  Such analyses would provide 

more molecular genetic evidence and fine-grained detail to the current hierarchical structures 

of the psychiatric spectrum, which could have implications for improving diagnostic systems22. 

A formal comparison of fear and GAD genetic correlations with other psychiatric, behavioural, 

cognitive, or health traits could suggest transdiagnostic or subtype-specific mechanisms. 

Further well-powered genome-wide evidence of the genetic distinction between distress and 

fear is needed in the broader context of their relationships with other complex traits. 

The way in which anxiety disorders are measured is an important consideration when 

identifying genetic similarities and differences. Dealing with comorbidity is a particular 

challenge in identifying anxiety-specific genetic influences, as anxiety disorders are among 

the most highly comorbid disorders across psychopathology23. Screening controls for co-

occurring traits in GWAS could inflate genetic correlations24. A comparison of different control 

screening approaches is needed. Furthermore, genetic influences captured by using brief 

phenotyping measures may be less specific to the focal trait than those captured via detailed 

phenotyping, reflecting more general psychopathology25,26. The previous GWAS reporting 

distress-fear genetic correlations was limited to brief, single-item reports of receipt of a 

diagnosis by a health professional for each fear disorder19. A recent study found that rates of 

fear-based disorder diagnoses were lower when using brief self-report diagnoses than 

detailed symptom-based measures, and observed the opposite pattern for GAD27. Since 

identifying genetic variants requires large sample sizes, a trade-off exists between maximising 

sample size and the level of detail in phenotyping. One way to achieve larger sample sizes 

while retaining phenotypic specificity is by combining detailed symptom-based diagnoses with 

brief single-item self-report diagnoses28. 

Here, we aimed to assess the shared and non-shared genetic influences on fear-based 

disorders and GAD at the level of common genetic variants. We increased sample size and 

thus power for loci-discovery and genetic correlation analyses by combining detailed 

symptom-based diagnoses with brief single-item diagnoses. We examined differences in 

genetic correlations between fear-based disorders and GAD with a range of other complex 
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traits, and also assessed broad, and more specific approaches to screening controls. Our 

study represents progress in the anxiety disorder genomics field and adds further detail on the 

distress-fear distinction at the genome-wide level.  
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Methods 

Phenotypes 

Anxiety disorder phenotypes 

Analyses were part of a pre-registered plan on the Open Science Framework (accessible at 

https://tinyurl.com/OSFfearGAD). We conducted GWAS meta-analyses of two lifetime anxiety 

disorder phenotypes: i) fear-based disorders (referred to as ‘fear’ hereafter; panic, 

agoraphobia, specific phobia and social anxiety disorder; N cases = 30,861) and ii) GAD (N 

cases = 54,928). We used the term “panic” instead of “panic disorder” as brief diagnostic 

measures of self-reported panic attacks were used in addition to brief and detailed diagnostic 

measures of panic disorder. This increased power and data harmonisation, as the UK Biobank 

Mental Health Questionaire only had brief measures on panic attacks29 (Supplementary 
Tables 1 & 2). Although panic attacks are not specific to panic disorder, the brief diagnostic 

measure of panic attacks has shown reasonable agreement with detailed diagnostic measures 

of panic disorder27. Five samples were included in the GWAS meta-analyses. The five 

samples resulted in three case and control datasets, as detailed below (see Table 1 for a 

summary of sample sizes). Individuals were screened for an anxiety disorder using a 

combination of detailed symptom-based diagnoses and brief, self-report diagnoses. Fear 

cases were defined as participants who endorsed at least one fear disorder.  

Detailed diagnostic measures 

Detailed symptom-based measures of anxiety disorders were derived using previously 

described algorithms27. Cases for each phenotype were defined as those who met DSM-5 

criteria for a lifetime symptom-based disorder diagnosis. Each anxiety disorder was assessed 

using an online, self-report questionnaire version of the Composite International Diagnostic 

Interview short-form (CIDI-SF)30,31. The availability of questionnaires in each study is 

summarised in Supplementary Table 1. 

Brief diagnostic measures 

Individuals meeting case status on brief measures endorsed a single-item self-report question 

for the corresponding disorder, e.g. “Have you ever been diagnosed with one or more of the 

following mental health problems by a professional, even if you do not have it currently?”. The 

exact phrasing of the question and responses in each study, as well as mapping to disorders, 

are provided in Supplementary Table 2. 
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Control groups 

We explored two different ways of defining control groups. First, controls were screened for 

any anxiety disorder or depression (fearanx-dep and GADanx-dep). Due to the high genetic 

correlation between these disorders19, this was the most powerful approach for loci discovery. 

Detailed and brief measures were used to screen controls for any anxiety disorder 

(Supplementary Tables 1 & 2). Controls were screened for depression using brief, self-report 

diagnoses in all datasets. Second, to better distinguish genetic differences between GAD and 

fear, we defined specifically screened controls whereby participants were only screened for 

the specific disorder being analysed (fearspecific and GADspecific). This is because both fear and 

GAD have high genetic overlap with one another and with depression, thus screening controls 

for any anxiety disorder and depression could further increase the genetic correlation between 

them. Fearspecific GWAS controls were only screened for any fear disorder, and GADspecific 

GWAS controls were only screened for GAD where possible. Screening controls specifically 

for only GAD or only fear-based disorders was not possible in the QIMR dataset as we were 

limited to using a broad, single-item self-report diagnosis of “anxiety”. Controls were not 

screened for the presence of other psychiatric disorders as this can bias genetic correlation 

estimates24. 

Samples 

The GLAD Study and COPING Study (GLAD+ dataset) 

Data from two studies within the National Institute for Health and Care Research (NIHR) 

BioResource were included. Cases were primarily ascertained from the Genetic Links to 

Anxiety and Depression (GLAD) study32. The GLAD study is an online research platform 

launched in September 2018 to recruit participants with lifetime anxiety and/or depressive 

disorder. Recruitment is ongoing and is open to individuals residing in the UK and aged at 

least 16 years. Initial recruitment involved a widespread media campaign, followed by ongoing 

social media advertising and participating NHS trusts and GP practices. Controls for analyses 

with GLAD cases were ascertained from a longitudinal survey run by the GLAD team, 

collecting data within GLAD and other NIHR BioResource cohorts called the COVID-19 

Psychiatric and Neurological Genetics (COPING) study33. The phenotyping in COPING for 

anxiety disorders was identical to GLAD. A proportion of COPING study participants met the 

criteria for an anxiety disorder and were defined as cases (Table 1). Cases and controls in the 

GLAD and COPING studies were defined using both brief and detailed measures of all five 

anxiety disorders. We refer here to the GLAD and COPING combined study samples as the 

GLAD+ dataset. 
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Queensland Institute of Medical Research (QIMR) Berghofer dataset 

A second unrelated set of case-control analyses included data from two Australian QIMR 

Berghofer studies. Cases were obtained from the Australian Genetics of Depression Study 

(AGDS), launched in September 2016, to collect genetic and phenotypic data on individuals 

with a lifetime experience of depression31. Recruitment is ongoing and has been conducted 

via pharmaceutical prescription history provided by the Australian government and through 

media campaigns. Participation is open to individuals aged at least 18 years across Australia. 

AGDS cases were defined using detailed and brief self-report measures of all five anxiety 

disorders. Controls for analyses with AGDS cases were obtained from the QIMR Berghofer 

QSkin Sun & Health Study34, defined using a brief self-report measure of any anxiety disorder.  

The UK Biobank dataset 

The UK Biobank is a population-based dataset of over 500,000 participants aged between 40 

and 69 recruited from 2006 to 201035. In 2017, a subset of participants (N = 157,366) 

completed the online follow-up Mental Health Questionnaire (MHQ) assessing mental health 

and well-being through self-report measures29. Participants were defined as cases or controls 

using brief measures of fear disorders and brief and detailed measures of GAD.
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Table 1. Sample sizes in each study, GWAS dataset, and meta-analysis of fear-based disorders and GAD. 
  Control criteria N dataset total 

 (Ncases + Ncontrols) 

Anxiety disorder GWAS 
Datasets 

Study 
Sample Ncases 

Anx-dep controls Specific controls Anx-
dep Specific Ncontrols Neffective Ncontrols Neffective 

Fear 

GLAD+ GLAD 12,243 - 13,300 - 16,961 17,848 19,626 COPING 1,186 4,419 6197 
UKB 10,789 83,236 38,204 137,209 40,010 94,025 147,998 

QIMR AGDS 6,643 - 17,457 - 18,241 19,365 21,188 Qskin - 12,722 14,545 
Total meta-analysis N 

(GLAD+, UKB & QIMR) 30,861 100,377 68,960 157,951 75,212 131,238 188,812 

Total meta-analysis N 
(GLAD+ & UKB) 24,218 87,655 51,504 143,406 56,971 111,873 167,624 

GAD 

GLAD+ GLAD 14,339 - 13,857 - 19,606 20,452 23,093 COPING 1,694 4,419 7060 
UKB 26,067 83,236 79,402 95,715 81,950 109,303 121,782 

QIMR AGDS 12,828 - 25,550 - 27,265 25,550 27,373 Qskin - 12,722 14,545 
Total meta-analysis N 
GLAD+, UKB & QIMR) 54,928 100,377 118,808 117,320 128,822 155,305 172,248 

Total meta-analysis N 
(GLAD+ & UKB) 42,100 87,655 93,259 102,775 101,556 129,755 144,875 

Numbers shown in bold are total sample size used in GWAS meta-analyses. Effective sample size was calculated as: Neffective = 4/[(1/ncase) + 
(1/ncontrol)], which converts the power of a study sample size to one with a balanced case-control ratio (i.e. equivalent to a study with a sample 
prevalence of 50%, with Ncases = Neffective and Ncontrols = Neffective). 
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Genome-wide association analyses 
Genotyping and quality control was performed separately in each study (Supplementary 
Materials). Common genetic variants in the GLAD+ and QIMR datasets were imputed to the 

Top Med imputation panel (Version R2 on GRC38) and the UK Biobank to the Haplotype 

Reference Consortium and the UK10K Consortium reference panels. GWAS analyses were 

restricted to common genetic variants (MAF > 1%) and high confidence-imputed variants 

(INFO score > 0.3 for TOPMed imputed variants; > 0.4 for UK Biobank).  

We ran four anxiety disorder GWASs; fearspecific, GADspecific, fearanx-dep and GADanx-dep. A 

separate GWAS was conducted for each of the three datasets (GLAD+, UK Biobank, QIMR). 

Sample sizes for each GWAS are shown in Table 1. The software REGENIE v3.1.3 was used 

for analyses in the GLAD+ and the UK Biobank datasets, whilst SAIGE v0.44 was used in the 

QIMR dataset36,37. The first ten principal components and genotyping batch were included as 

covariates. Additionally, the assessment centre was included as a covariate for GWAS in the 

UK Biobank. GWAS were limited to participants of European-associated genetic ancestry 

clusters, defined using principal component analysis (PCA). 

Meta-analyses and annotation 

We used the software METAL to perform inverse-variance weighted meta-analyses of each 

anxiety disorder phenotype38. In our primary analyses, we meta-analysed GWAS results from 

the GLAD+, QIMR Berghofer, and UK Biobank datasets (termed full meta-analysis 

throughout). As all cases from the AGDS also had comorbid depression, we conducted a 

second set of meta-analyses excluding the QIMR datasets (referred to as GLAD+ and UKB 

meta-analysis). A depression-enriched dataset might increase depression/distress genetics in 

anxiety disorder GWAS, elevating the genetic correlation between fear, GAD, and depression. 

Meta-analysis sample sizes are shown in Table 1. We restricted common genetic variants to 

those overlapping across datasets in each meta-analysis. Associated variants were mapped 

and annotated using FUMA v1.4.0 (with default parameters applied) and the UKB release2b 

10K European reference panel39. MAGMA v1.08 was used with default parameters to identify 

gene-level and biological pathway associations. Gene-level association analysis aggregates 

the combined effect of associated common genetic variants at the level of the gene. Results 

from gene-level analyses were then applied to gene-set analysis to conduct biological pathway 

analyses40.  
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SNP-based heritability 

We estimated the heritability captured by common genetic variants (h2
SNP) of fear and GAD. 

Population prevalences for liability scale estimates were based on the assumption of accurate 

sampling from the COPING study, in which both detailed and brief measures were available 

to define cases and controls for all five anxiety disorders (Supplementary Table 3). GWAS 

meta-analysis summary results were used in LDSC regression to estimate h2
SNP

41. 

Genetic correlations 

Using LDSC regression42, we calculated genetic correlations (rg) between i) fear and GAD and 

ii) fear and GAD with 345 external complex traits respectively. Traits were considered 

sufficiently powered for genetic correlation analysis if they had a GWAS mean Χ2 > 1.02 and 

a heritability Z score > 4, calculated in LDSC regression. We tested if the genetic correlation 

between fear and GAD was significantly different from 0 (using default parameters in bivariate 

LDSC regression) and significantly different from 1 (calculated in R using the chi-squared 

distribution function and [(|rg|−1)/se]2 ). To correct for multiple testing, we applied a Bonferroni 

corrected P-value threshold (𝛼 [0.05] / the number of fear-GAD rg tested [4] = P  ≤ 0.0125). 

Fear and GAD GWAS with a genetic correlation significantly different from 1 were then tested 

for genetic correlations with external traits. We selected external traits in a hypothesis-free 

manner and applied a Bonferroni-corrected significance threshold (0.05 / number of external 

traits tested [345] = P ≤ 1.45 × 10-4). We tested for differences between fear versus GAD in 

terms of their respective genetic correlations with external traits using the block-jackknife 

method implemented in LDSC regression42,43. Fear and GAD were considered to have a 

significantly different genetic correlation with an external trait if the P-value derived from the 

block-jackknife Z statistic result exceeded the Bonferroni-corrected threshold  

(P  ≤ 1.45 × 10-4).  
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Results 
Genome-wide association meta-analyses 
Manhattan plots for the most well-powered GWAS are shown in Figure 1 (fearanx-dep and 

GADanx-dep in the full meta-analysis). Manhattan plots for all other GWAS with genome-wide 

significant loci are shown in Supplementary Figures 2, 4, 14 and 16. We found little evidence 

of confounding in all GWAS (LDSC intercept = 0.96-1.04). LDSC intercepts >1 indicate some 

inflation, which is expected as the GWAS sample size increases44. The majority of inflation in 

our meta-analyses was due to polygenicity (90-97%), as indicated by LDSC attenuation ratio 

calculations. The genomic inflation factor, LDSC intercept, attenuation ratio, and Q-Q plots for 

each GWAS are shown in Supplementary Figures 1, 3, 12, 13 and 15. Regional plots for 

independent genome-wide significant loci are also in Supplementary Figures 5-11.   

Fear-based disorders 
Across the four GWASs, we found a total of three independent genome-wide significant loci 

associated with fear. In each fear GWAS, a different locus was identified, except for fearspecific 

in the GLAD+ and UKB meta-analysis, where no loci reached P < 5 × 10−8. The locus with the 

most significant lead variant was rs10047892 on chromosome 14 in the fearanx-dep GWAS in 

the full meta-analysis (P = 2.99 × 10−8; Figure 1, upper panel). The fearspecific GWAS in the 

full meta-analysis showed a locus on chromosome 5 as genome-wide significant (lead variant 

rs3996354; P = 4.71 × 10−8). A locus on chromosome 1 with lead variant rs11576254 was 

found in the fearanx-dep GWAS in the GLAD+ and UKB meta-analysis 

 (P = 4.70 × 10−8; Table 2).  

Generalised anxiety disorder 
In all, we identified four independent genome-wide significant loci associated with GAD 

(P < 5 × 10−8), although not all four loci reached genome-wide significance in each GAD 

GWAS. The most significantly associated locus was on chromosome 9 (lead variant 

rs10120318; P = 3.1 × 10−13; Figure 1, lower panel) and was genome-wide significant in all 

four GAD GWASs (Table 2). The locus on chromosome 6 was the second most significant 

(lead variant rs3858; P = 1.1 × 10−9; Figure 1, lower panel) and reached genome-wide 

significance in all GWAS meta-analyses of GAD, except for GADspecific in the UKB and GLAD+ 

meta-analysis. The locus on chromosome 2 exceeded genome-wide significance in the 

GADspecific GWAS in the full meta-analysis (lead variant rs11688767; P = 4.20 × 10−8), and a 

locus on chromosome 5 in the GADspecific GWAS in the UKB and GLAD+ meta-analysis (lead 

variant rs3095951; P = 4.33 × 10−8; Table 2). 
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Figure 1: Genome-wide association study Manhattan plots for anxiety disorder 
phenotypes meta-analysed across the GLAD+, QIMR and UKB datasets.
Fear-based disorder GWAS (upper panel) and GAD GWAS (lower panel) results from 
phenotypes with controls screened for any anxiety disorder and depression. Dashed line 
red; common genetic variant genome-wide significance threshold (P < 5 × 10−8), black; 
suggestive significance threshold (P < 1 × 10−5).
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Table 2: Independent genome-wide significant loci associated with anxiety disorder phenotypes 

Anxiety 
disorder Datasets 

Control 
screening 

criteria 
Locus 

no. Region CHR Lead SNP Base pair A1:A2 Func; gene (kb) P OR 
N cand. 
SNPs 

Ind. Sig. 
SNPs 

Previous report in 
GWAS catalog 

Fear 

QIMR, 
GLAD+ & 

UKB 

Anx-dep 1 14q24.3 14 rs10047892 75111346 T:C intergenic; 
AREL1 (8793) 2.99E-08 1.07 26 rs10047892 EA, worry, systolic blood 

pressure 

Specific 2 5q31.3 5 rs3996354 143264699 A:G intergenic; CTB-
57H20.1 (56361) 4.71E-08 0.93 20 rs3996354 Novel 

GLAD+ & 
UKB 

Anx-dep 3 1p34.1 1 rs11576254 44835833 T:C intergenic; ERI3 
(14900) 4.70E-08 1.09 64 rs11576254 

None at genome-wide 
significance. At suggestive 

threshold: metabolite 
levels, reaction time, 

anxiety 
Specific -  - - -  - - - - - - 

GAD 
QIMR, 

GLAD+ & 
UKB 

Anx-dep 

4 9p23 9 rs10120318 11645069 A:T intergenic; RP11-
23D5.1 (368754) 3.07E-13 0.93 301 rs10120318; 

rs11515172 

Neuroticism, depression, 
wellbeing, any anxiety 

disorder, GAD symptoms, 
worry, BMI 

5 6p22.1 6 rs385816 29480224 A:G 
intergenic; 
XXbac-

BPG13B8.10 
(1890) 

1.08E-09 0.92 184 rs385816 

SCZ, HDL, BIP, cognitive 
performance, depression, 

cardiometabolic & 
hematological traits, lung 
cancer, worry, smoking, 

neuroticism 

Specific 

4 9p23 9 rs10960024 11616820 C:G intergenic; RP11-
23D5.1 (340505) 7.17E-13 0.93 301 rs10960024; 

rs11515172 As locus 4 above 

5 6p22.1 6 rs385816 29480224 A:G 
intergenic; 
XXbac-

BPG13B8.10 
(1890) 

7.32E-09 0.93 184 rs385816 As locus 5 above 

6 2p16.1 2 rs11688767 57988194 A:T 
ncRNA intronic; 
CTD-2026C7.1 

(0) 
4.20E-08 0.95 19 rs11688767 

Cross-disorder, sleep, 
SCZ, cognitive ability, 

depression, neuroticism, 
epilepsy, neuroticism 
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Table 2: Independent genome-wide significant loci associated with anxiety disorder phenotypes 

Anxiety 
disorder Datasets 

Control 
screening 

criteria 
Locus 

no. Region CHR Lead SNP Base pair A1:A2 Func; gene (kb) P OR 
N cand. 
SNPs 

Ind. Sig. 
SNPs 

Previous report in 
GWAS catalog 

GAD GLAD+ & 
UKB 

Anx-dep 

4 9p23 9 rs17189482 11513617 T:G intergenic; RP11-
23D5.1 (237302) 1.24E-11 1.09 295 rs17189482; 

rs11515172 As locus 4 above 

5 6p22.1 6 rs3117427 29274136 T:C upstream; 
OR14J1 (266) 8.70E-09 1.09 219 rs3117427 As locus 5 above 

7 5q34 5 rs3095951 164616460 A:G 
intergenic; CTC-

340A15.2 
(17810) 

4.33E-08 1.06 142 rs3095951 
Any anxiety disorder, 

depression, neuroticism, 
wellbeing, BMI 

Specific 4 9p23 9 rs10960024 11616820 C:G intergenic; RP11-
23D5.1 (340505) 1.63E-11 0.92 250 rs10960024 As locus 4 above 

Locus no. = annotated locus number; CHR = chromosome; A1 = effect allele; A2 = noneffect allele; Func gene (kb) = functional consequence of the SNP on the nearest gene 
with distance in kilobase; OR = odds ratio; N cand. SNPs = Number of genome-wide candidate SNPs that are in LD (r2 = 0.6) with Ind. Sig. SNPs; Ind. Sig. SNPs = independent 
significant SNPs in the locus. Previous report = GWASs of other phenotypes that reported a genome-wide association with one or more of the candidate SNPs identified in this 
study (full results shown in Supplementary Tables 4 & 5 for fear and GAD loci, respectively). EA = educational attainment; BMI = body mass index; SCZ = schizophrenia, HDL 
= high-density lipoprotein cholesterol, BIP = bipolar disorder. 
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Gene-level and gene-set association analyses 

Fear-based disorders 
Three genes were significantly associated with fear-based disorders after Bonferroni 

correction for the number of genes tested (see Table 3 for P-value thresholds). The gene 

SNX29 on chromosome 16 was significantly associated with fear in all GWASs. The gene 

YWHAG on chromosome 7 was only significantly associated with both fear GWAS in the full 

meta-analysis, whilst the gene ERI3 on chromosome 1 was only significantly associated with 

both fear GWAS in the GLAD+ and UKB meta-analysis (Table 3). The gene ERI3 includes 

the SNP-level genome-wide significant locus 1p34.1. No gene sets were significantly 

associated with fear (Bonferroni correction threshold for 10678 gene sets = P ≤ 4.68 × 10−6). 

Generalised anxiety disorder 
A total of three genes were significantly associated with GAD. All three genes were identified 

in the GADanx-dep GWAS in the full meta-analysis. The most significantly associated gene was 

TMEM106B on chromosome 7. This gene was also found in GADspecific GWAS in the full meta-

analysis and the GADanx-dep GWAS in the GLAD+ and UKB meta-analysis. The gene TRIM31 

on chromosome 6 was also associated with GADspecific GWAS in the full meta-analysis. This 

gene region includes common genetic variants on locus 6p22.1 identified in SNP-level 

association analyses. The gene SORCS3 on chromosome 10 was only associated with 

GADanx-dep GWAS in the full meta-analysis (Table 3). No gene sets were significantly 

associated with GAD (P ≤ 4.68 × 10−6).    
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Table 3: Gene-level associations with anxiety disorder phenotypes. 

Anxiety 
disorder Datasets 

Control 
screening 

criteria 
Gene 

symbol CHR 
N 

SNPS Z P 

P Bonf. 
Threshold 

(0.05/ 
N genes) Previous report in GWAS catalog Gene description 

Fear 

QIMR, 
GLAD+ & 

UKB 

Anx-dep 

SNX29 16 1560 5.09 1.77E-07 
2.702E-6 
(18502 
genes) 

EA, insomnia, smoking, IQ Sorting nexin 29 

YWHAG 7 46 4.67 1.49E-06 Blood protein levels. Suggestive 
significance: SCZ, multiple sclerosis 

Tyrosine 3-
monooxygenase/tryptophan 5-

monooxygenase activation protein 
gamma 

Specific SNX29 16 1560 4.97 3.31E-07 2.702E-
6 (18502) 

As above As above 
YWHAG 7 46 4.64 1.75E-06 As above As above 

GLAD+ & 
UKB 

Anx-dep 
SNX29 16 1561 5.17 1.19E-07 2.698E-6 

(18531) 

As above As above 

ERI3 1 159 5.05 2.23E-07 EA, alcohol consumption ERI1 exoribonuclease family member 
3 

Specific SNX29 16 1562 5.07 1.96E-07 2.698E-6 
(18531) 

As above As above 
ERI3 1 159 4.62 1.94E-06 As above As above 

GAD 

QIMR, 
GLAD+ & 

UKB 

Anx-dep 

TMEM106B 7 125 4.98 3.22E-07 

2.702E-6 
(18503) 

Depression, EA, wellbeing, insomnia, 
Alzheimer’s, neuroticism, GAD, PTSD, 

HDL 
Transmembrane protein 106B 

SORCS3 10 1422 4.92 4.33E-07 
EA, depression, blood pressure, 
externalising behaviours, CAD, 

insomnia, neuroticism, smoking, ADHD 
Sortilin related VPS10 domain 

containing receptor 3 

TRIM31 6 45 4.81 7.74E-07 Cholesterol, depression, insomnia, IQ Tripartite motif containing 31 

Specific 
TMEM106B 7 125 4.71 1.27E-06 2.702E-6 

(18503) 
As above As above 

TRIM31 6 45 4.58 2.31E-06 As above  

GLAD+ & 
UKB 

Anx-dep TMEM106B 7 125 4.58 2.27E-06 2.698E-6 
(18529) As above As above 

Specific - - - - - 2.698E-6 
(18530) - - 

Gene-level association analyses conducted in MAGMA. CHR = chromosome; Previous report = GWASs of other phenotypes that report genome-wide significant 
loci that map onto the gene-level associations identified in this study (Supplementary Tables 6 & 7); EA = educational attainment; IQ = general cognitive ability; 
SCZ = schizophrenia; GAD = generalised anxiety disorder; PTSD = post-traumatic stress disorder; HDL = high-density lipoprotein cholesterol; CAD = coronary 
artery disease; ADHD = Attention deficit hyperactivity disorder. 
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SNP-based heritability
We report results here for the most powerful GWAS in the full meta-analyses, as measured 

by GWAS mean Χ2, and present results for other GWAS in the supplementary. We identified 

modest liability-scale LDSC h2
SNP for Fearanx-dep of 9.6% (SE = 0.006, mean Χ2 = 1.17) and 

10% for GADanx-dep (SE = 0.006, mean Χ2 = 1.25), assuming a population prevalence of 8.8% 

and 12.9%, respectively. Population prevalence was based on COPING study sample 

prevalence (Supplementary Table 3). We note that this is not a population-based study, and 

a proportion of participants were recruited through an inflammatory bowel disease study45. 

However, COPING study anxiety disorder prevalence estimates were within the range of 

epidemiological studies, which report broad estimates for panic disorder (1-5%), agoraphobia 

(1-3%), social anxiety disorder (3-13%), specific phobia (8-14%), and GAD (3-13%)46,47. To 

our knowledge, no previous epidemiological studies have estimated the population prevalence 

of fear-based disorders as a group. Supplementary Table 8 shows h2
SNP

 liability-scale 

estimates calculated from prevalences 10% higher and lower than COPING study sample 

prevalences. Supplementary Table 8 also reports h2
SNP

 liability-scale estimates for 

phenotypes with specifically screened controls, and in the meta-analysis excluding QIMR.  

Genetic correlation between fear-based disorders and GAD 
The genetic correlation between fear and GAD was high (rg= 0.85-0.96) and significantly 

different from 0 when analysing both GWAS phenotypes (fearspecific–GADspecific and fearanx-dep–

GADanx-dep) in both GWAS meta-analyses datasets (full meta-analysis and GLAD+ and UKB 

meta-analysis excluding depression-enriched QIMR dataset). The genetic correlation between 

fear and GAD was significantly less than 1 when controls were screened specifically and when 

the QIMR dataset was excluded from the meta-analysis. All other fear–GAD genetic 

correlations were not significantly different from 1 (Table 4; Bonferroni-corrected significance 

threshold P ≤ 0.0125).
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Table 4: Genetic correlations (rg ) between fear-based disorder and GAD phenotypes 
Datasets Control criteria rg se Z P (0) P (1) 

GLAD+ & 
UKB 

Specific 0.85 0.05 15.63 4.90E-55 4.57E-03 

Any anx-dep 0.92 0.03 27.52 9.65E-167 0.0215 
QIMR, 

GLAD+ & 
UKB 

Specific 0.95 0.03 28.77 4.77E-182 0.1282 

Any anx-dep 0.97 0.02 47.03 0.00E+00 0.1808 

Genetic correlations estimated using LDSC regression. P (0) - P-value for test of genetic 
correlation different from 0. P (1) - P-value for test of genetic correlation different from 1. 

 
Genetic correlations with external phenotypes 
We calculated genetic correlations between fear and GAD with 345 external phenotypes. Only 

fearspecific and GADspecific in the GWAS meta-analysis excluding the depression-enriched QIMR 

dataset were tested for genetic correlations with external phenotypes (as the fear–GAD 

genetic correlation was significantly different from 1). There was no statistically significant 

difference in genetic correlations with most external traits across fearspecific and GADspecific 

(Bonferroni-corrected significance threshold P ≤ 1.45 × 10-4; Figure 2; left panel). Exceptions 

were observed for educational attainment, general cognitive ability, which showed significantly 

stronger negative genetic correlations with fearspecific than with GADspecific. Coronary artery 

disease also showed a significantly higher positive genetic correlation with fearspecific than with 

GADspecific. Conversely, a diagnosis of any bipolar disorder (type I and type II), bipolar disorder 

type I, anorexia nervosa, and neuroticism showed significantly stronger positive genetic 

correlations with GADspecific than with fearspecific (Figure 2; right panel). Full genetic correlation 

results with external phenotypes are shown in Supplementary Table 9. 
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Figure 2: Genetic correlations between anxiety disorder phenotypes and external traits estimated in LDSC regression.
Fear-based disorder GWAS and GAD GWAS results from phenotypes with specifically screened controls, meta-analysed across the UKB and GLAD+ datasets. 
Genetic correlations with 345 phenotypes were tested (Bonferroni-corrected significance threshold P ≤ 1.45 × 10-4 ). Only traits with genetic correlation P-values 
significantly different from 0 with at least one of the anxiety disorder phenotypes are shown (after Bonferonni correction for multiple testing). Full results are shown in 
Supplementary Table 9. External phenotypes were tested for significantly different genetic correlations with fear-based disorders versus GAD using a block 
jackknife (Bonferroni correction for significance [P ≤ 1.45 × 10-4]). Left panel: phenotypes with no statistically significant different genetic correlations between fear-
based disorders and GAD, though in the lower two segments, there was a significant association with one trait and not the other. Right panel: phenotypes with 
statistically significant different genetic correlations between fear-based disorders and GAD. Bars represent standard errors. ADHD = attention deficit hyperactivity 
disorder; ASD = autism spectrum disorder; BIP = bipolar disorder; GAD = generalised anxiety disorder; MDD = major depressive disorder; OCD = obsessive-
compulsive disorder; PGC = Psychiatric Genomics Consortium; PTSD = post-traumatic stress disorder; SCZ = schizophrenia; UKB = UK Biobank.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

GAD & fear rg not significantly different from each other

Both significantly different from
 0

O
nly fear signif.

O
nly G

AD
 signif.

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Ever smoker
Automobile speeding

ADHD
Schizophrenia

Insomnia
Childhood maltreatment

Self−rated health
Bipolar disorder type II
Subjective well−being

Self−reported tiredness
PTSD symptoms
GAD symptoms

Neuroticism, no psychiatric illness
MDD (PGC2, no 23andme, no UKB)

Depressive symptoms
Cross 12 psychiatric disorders

MDD (PGC2 + 23andme + UKB)
Lifetime anxiety

Body fat percentage
Verbal−numerical reasoning

Father's age at death
Mother's age at death

Age first birth
Undersleeper

Household income

Problematic consequences of drinking
Autism spectrum disorder

OCD
Alcohol dependence

Genetic correlation rg

●

●

●

●

●

●

●

●

●

GAD & fear rg significantly different from each other

Significantly stronger rg w
ith fear

Significantly stronger rg w
ith G

AD

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Educational Attainment

College/university degree attainment

General cognitive ability

Coronary Artery Disease

Anorexia nervosa

Bipolar disorder type I

Bipolar disorder type I & II

Cross disorders (ADHD, ASD, BIP, SCZ)

Neuroticism UKB

Genetic correlation rg

●

●

Fear−based disorders: significant
GAD: significant
Fear−based disorders: non−significant
GAD: non−significant

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

GAD & fear rg not significantly different from each other

Both significantly different from
 0

O
nly fear signif.

O
nly G

AD
 signif.

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Ever smoker
Automobile speeding

ADHD
Schizophrenia

Insomnia
Childhood maltreatment

Self−rated health
Bipolar disorder type II
Subjective well−being

Self−reported tiredness
PTSD symptoms
GAD symptoms

Neuroticism, no psychiatric illness
MDD (PGC2, no 23andme, no UKB)

Depressive symptoms
Cross 12 psychiatric disorders

MDD (PGC2 + 23andme + UKB)
Lifetime anxiety

Body fat percentage
Verbal−numerical reasoning

Father's age at death
Mother's age at death

Age first birth
Undersleeper

Household income

Problematic consequences of drinking
Autism spectrum disorder

OCD
Alcohol dependence

Genetic correlation rg

●

●

●

●

●

●

●

●

●

GAD & fear rg significantly different from each other

Significantly stronger rg w
ith fear

Significantly stronger rg w
ith G

AD

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Educational Attainment

College/university degree attainment

General cognitive ability

Coronary Artery Disease

Anorexia nervosa

Bipolar disorder type I

Bipolar disorder type I & II

Cross disorders (ADHD, ASD, BIP, SCZ)

Neuroticism UKB

Genetic correlation rg

●

●

Fear−based disorders: significant
GAD: significant
Fear−based disorders: non−significant
GAD: non−significant



 71 

Discussion 
This is the first study to report genome-wide significant loci (three in total) associated with any 

lifetime fear-based disorder diagnosis, hereafter referred to as fear. In addition, we identified 

four genome-wide significant loci for lifetime GAD diagnosis, previously identified in other 

GWAS of anxiety15,48 and distress-related traits49–51. The increase in power compared to 

previous GWAS of fear19 was achieved by combining detailed and brief diagnostic measures. 

In agreement with twin studies, we found that fear and GAD were highly genetically correlated 

with each other and with depression9,11,12. When we excluded the depression-enriched dataset 

and only screened controls for the specific anxiety disorder being analysed, genetic 

correlations between these disorders were reduced, suggesting some genetic specificity 

between them. Differences in common genetic variant-based genetic correlations between 

fear and GAD with broad domains of other complex traits were explored. Compared with GAD, 

fear showed significantly stronger negative genetic correlations with general cognitive ability 

and educational attainment and stronger positive genetic correlations with coronary artery 

disease. Conversely, neuroticism, bipolar disorder type I and anorexia nervosa were among 

the traits with significantly higher positive genetic correlations with GAD than fear. 

We found independent loci and gene-level associations that support previous GWAS findings 

of other phenotypes and some novel associations. We identified a novel variant associated 

with fear that has not been previously reported in GWASs of complex traits. The nearest gene 

to the intergenic variant is the uncharacterised, non-coding gene CTB-57H20.1. Other loci and 

gene-level associations with fear that we identified have been previously implicated in GWAS 

of educational attainment52, general cognitive ability53, insomnia54 and broad depression49, 

including sorting nexin 29. The sorting nexin family of proteins is thought to play a role in 

neuronal function, synaptic plasticity, learning, and memory55. One locus associated with fear 

was previously reported in a worry-neuroticism GWAS in the UK Biobank50. No fear loci or 

gene-level associations overlapped with our GAD results. As GWASs of specific anxiety 

disorders improve in power, we expect this overlap to increase.  

Some of our loci and gene-level associations with GAD were reported in previous UK Biobank 

GWASs of lifetime anxiety and GAD symptoms15,48, which is expected given the sample 

overlap. Loci and gene-level associations with GAD were consistently replicated in previous 

GWASs of other distress-related phenotypes, with all four loci previously identified in 

depression and neuroticism49–51. This includes the SORCS3 gene, which is highly expressed 

in the CA1 hippocampus region and has been implicated in aversive memory extinction in 

mice56. SORCS3 was also associated with anxiety-like behaviour in mice, mediated by 

changes in gut microbiome measures suggesting the role of the gut-brain axis57. Our finding 
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warrants further animal modelling and functional genomic interrogation of the role of SORCS3 

in distress liability and translational potential. 

The high genetic correlations we observed between fear, GAD, and depression are consistent 

with previous twin studies9,11,12. Our results are compatible with our previous preliminary 

GWAS in the UK Biobank19 but add further detail to the genetic structure of fear and GAD by 

assessing a broad range of other complex traits. We verified that screening controls 

specifically for the disorder grouping being analysed improved our ability to distinguish genetic 

differences between highly genetically correlated disorders (e.g. controls in the fear GWAS 

were only screened for any fear-based disorder). We found evidence of some genetic 

differences between fear and GAD once we screened controls specifically and after excluding 

the depression-ascertained QIMR dataset. This highlights the necessity for careful 

consideration of how to screen controls when attempting to identify disorder-specific genetics.  

Genetic correlations with depression were high and not significantly different between fear 

and GAD, supporting a common genetic liability factor shared among these disorders9,11,12,58. 

A common liability factor is often conceptualised as being driven by shared negative affectivity, 

which is also well captured by measures of the personality trait neuroticism22,59. We found 

neuroticism had a significantly stronger genetic correlation with GAD than fear. This is in line 

with twin studies that reported genetic influences on GAD (and depression) were more core 

to a higher-order dimension of genetic liability to negative affectivity than fear60. General 

negative affectivity also influences fear-based disorders but is less central to them; instead, 

they are characterised by more specific elements of acute fearful and physiological 

hyperarousal61. Our findings partially support a distress-fear genetic distinction. However, we 

found stronger evidence for an overarching genetic liability to internalising that drives 

comorbidity across anxiety disorders and depression. 

Compared with GAD, fear had stronger negative genetic correlations with educational 

attainment and general cognitive ability and a higher positive genetic correlation with coronary 

artery disease (heart disease). These correlations were non-significant with GAD. The specific 

genetic relationship observed between fear and cognitive-related traits may reflect shared 

cognitive mechanisms, such as those involved in learning, that are less central to GAD. 

Associative learning is a key mechanism that distinguishes fear-based disorders from GAD6. 

Our finding that heart disease is uniquely genetically correlated with fear may be explained by 

genetics playing a bigger part in driving comorbidity between heart disease and fear than with 

GAD. Core symptoms of fear-based disorders, including experiencing phobic fears and 

somatic arousal, are linked to a higher risk of heart disease and cardiac fatality 62–65. Our 

findings align with a phenotypic study that revealed fear-based disorders were stronger 
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predictors of heart disease development than distress disorders66. The earlier age of onset of 

chronically experienced fear-based disorders compared to distress may give rise to longer-

term exposure to mechanisms associated with heart disease risk1,66,67. Overlapping genetics 

with heart disease may underpin shared physiological mechanisms in inflammatory pathways 

or autonomic dysfunction68.  

GAD showed significantly stronger positive genetic correlations than fear with a diagnosis of 

any bipolar disorder (type I or II). Bipolar type II disorder involves episodes of hypomania and 

is more similar to depression, whereas bipolar type I disorder is characterised by more severe 

manic episodes4. When we analysed bipolar disorder I and II separately, we found GAD and 

fear had no significantly different genetic correlation with bipolar II, whereas bipolar I was 

significantly more positively genetically correlated with GAD. This indicates that bipolar II 

drives down the genetic correlations with fear when analysed together with bipolar I. This 

aligns with previous studies that found bipolar I had a lower genetic correlation with depression 

than bipolar II and was more genetically similar to rarer psychiatric illnesses, including 

schizophrenia69,70. Genetic correlation analyses of the mood disorder spectrum reflect a 

genetic continuum from manic to depressive clusters. Bipolar I sits on one end of the spectrum, 

and depressive disorders on the other, with bipolar type II connecting the two disorders71. Our 

novel finding adds further fine-grained detail to this genetic structure by highlighting 

heterogeneity at the internalising pole of the genetic continuum. On the opposite end of the 

spectrum to bipolar type I lies fear-based disorders, with distress disorders (GAD and 

depression) sitting between bipolar and fear-based disorders. 

We found that fear had a significantly weaker genetic correlation with anorexia nervosa (~0.10) 

than GAD (~0.30). This is somewhat unexpected given that fear-based disorders have similar 

rates of comorbidity with anorexia nervosa compared to GAD, thought to be driven by an 

overlap in genetic susceptibility and fear-conditioning mechanisms72–74. Few studies have 

assessed genetic correlations specifically between anorexia nervosa and the individual 

anxiety disorder subtypes, with analyses restricted to GAD75. However, the genetic overlap 

between other eating disorder phenotypes and fear-based disorders has been reported76,77. 

One twin study found that a broad eating disorder phenotype had moderate genetic 

correlations with panic disorder (0.62) and GAD (0.51) and a slightly lower genetic correlation 

with specific phobias (0.40), agoraphobia (0.38), and social anxiety disorder (0.33)77. Thus, 

further research is required to establish whether genetic correlations with anorexia nervosa 

differ between individual fear-based disorders. There may also be shared loci that affect traits 

in different directions, making us unable to detect a global genetic correlation. Studies 

conducting local genetic correlation analyses may identify specific shared regions of the 
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genome supporting shared mechanisms that link fear-based disorders with anorexia 

nervosa78,79. 

Our study is the first to identify fear-based disorder-associated genetic loci. However, findings 

should be considered in light of limitations that impacted our ability to detect fear-specific 

genetic influences. First, we were underpowered to assess the fear-based disorders 

individually. Some twin studies suggest the proportion of disorder-specific genetic influences 

on individual fear-based disorders varies11,12, with specific phobia being less genetically similar 

to GAD than panic disorder and agoraphobia11. Second, results may have differed if we had 

sufficient sample sizes to only use panic disorder diagnosis instead of combining it with panic 

attack measures. Panic attacks are transdiagnostic and can be included as a specifier for a 

range of DSM-5 psychiatric disorders4. Using self-reports of panic attacks may have elevated 

the genetic correlations between fear and other psychiatric disorders. However, 

epidemiological estimates of lifetime panic disorder comorbidity with other mental disorders 

are also high (80%)80. Third, specifically screening controls for a certain anxiety disorder was 

not possible in the QIMR data as we were limited to using a single-item brief measure of any 

anxiety disorder. Fourth, although a strength of our study was incorporating detailed measures 

of anxiety disorders, we could not compare genetic differences between brief versus detailed 

diagnostic measures. Studies suggest that more detailed measures increase genetic 

specificity25. Combining detailed with brief measures may have limited genetic specificity and 

elevated the genetic correlation between fear, GAD, and related disorders such as depression.  

Finally, we could not account for the high comorbidity observed across anxiety disorders and 

depression. We previously found that cases rarely met criteria for only one anxiety disorder 

and no comorbid MDD (5%) in the GLAD+ dataset81. Thus, ascertaining data for well-powered 

GWAS of a single anxiety disorder without comorbidities will be challenging and are less 

representative of the broader lived experience of these disorders. We did not include heritable 

comorbid traits as GWAS covariates as this can bias results82. Future studies with well-

powered GWAS of anxiety subtypes could discern subtype-specific genetics through 

multivariate genomic structural equation modelling83. As individual-level methods advance84,85, 

this will enable testing genetic covariances across comorbid disorders and comparing 

measures in smaller samples than is required for GWAS summary-level modelling. 

In summary, our results add further evidence that fear-based disorders and GAD share a high 

proportion of genetic liability, as well as with depression, while also revealing some genetic 

differences between them. We identified differences in the genetic relationship between fear 

and GAD, including those with neuroticism, bipolar type I, anorexia nervosa, general cognitive 

ability, and coronary artery disease. Our findings add more fine-grained detail to the proposed 
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hierarchical structure of internalising disorders and partially support fear-based disorders and 

GAD as separate subfactors of distress and fear. Quantitatively-based dimensional modelling 

of shared and distinct distress and fear symptoms on the genomic level would further complete 

this hierarchical structure22. The growth of datasets with detailed phenotyping of all anxiety 

disorders, such as those used in this study, will be key for further identifying subtype-specific 

and transdiagnostic genetic factors of the full anxiety disorder spectrum. 
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Abstract 
Background: Decades of research have shown that environmental exposures, including self-

reports of trauma, are partly heritable. Heritable characteristics may influence exposure to and 

interpretations of environmental factors. Identifying heritable factors associated with self-

reported trauma could improve our understanding of vulnerability to exposure and the 

interpretation of life events.  

Methods:  We used genome-wide association study summary statistics of childhood 

maltreatment, defined as reporting of abuse (emotional, sexual and physical) and neglect 

(emotional and physical) (N=185,414). We calculated genetic correlations (rg) between 

reported childhood maltreatment and 576 traits to identify phenotypes that might explain the 

heritability of reported childhood maltreatment, retaining those with |rg|>0.25. We specified 

multiple regression models using genomic structural equation modelling to detect residual 

genetic variance in childhood maltreatment after accounting for genetically correlated traits.  

Results: In two separate models, the shared genetic component of twelve health and 

behavioural traits and seven psychiatric disorders accounted for 59% and 56% of heritability 

due to common genetic variants (h2
SNP) of childhood maltreatment, respectively. Genetic 

influences on the h2
SNP of childhood maltreatment were generally accounted for by a shared 

genetic component across traits. The exceptions to this were general risk tolerance, subjective 

well-being, post-traumatic stress disorder and autism spectrum disorder, identified as 

independent contributors to its h2
SNP. These four traits alone were sufficient to explain 58% of 

the h2
SNP of childhood maltreatment.  

Conclusions: We identified putative traits that reflect the h2
SNP of childhood maltreatment. 

Elucidating the mechanisms underlying these associations may improve trauma prevention 

and posttraumatic intervention strategies.  
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Introduction 
Traumatic events, namely those perceived as physically or emotionally threatening and 

violating, are associated with various adverse outcomes, including psychopathology1–4. 

Decades of behavioural genetics research has shown that reported trauma exposures, like 

many environmental measures and behavioural traits, are partly heritable5,6. Twin studies 

estimate 6-62% of the variance in reporting different types of trauma is attributable to 

genetics7–12. Interpersonal assaultive traumas (e.g., physical and sexual assault) have higher 

heritability than non-interpersonal or non-assaultive traumas (e.g., accidents)7,9,13. In relation 

to these observations, stressful life events (SLEs) dependent on one’s behaviour (e.g., fights) 

are more heritable than those that are independent (e.g., natural disasters), with the latter 

occurring more often due to chance14. However, being at higher genetic risk for reported 

trauma does not signify that an individual is genetically predestined to experience trauma. 

Furthermore, a large proportion of the total phenotypic variability of reported trauma is not 

attributable to genetics. The environment itself may be harmful, or a perpetrator may exploit 

those in vulnerable circumstances11,15. However, environmental risk factors are generally 

unstable, idiosyncratic, and thus, unpredictable and challenging to examine16. Exploring traits 

genetically related to reported trauma in different environmental contexts may provide a 

framework for social research to help determine trauma risk factors and protect vulnerable 

individuals6.

Heritable behavioural characteristics may contribute to the likelihood of experiencing certain 

events. Personality traits, such as openness to experience and antisocial behaviour, are 

phenotypically and genetically correlated with reporting interpersonal assaultive trauma17. 

Such partially heritable characteristics may contribute to the heritability of reported trauma 

through gene-environment correlation (rGE), whereby the environment reflects an individual’s 

genetic propensities via three different processes18. Passive rGE occurs when a relative’s 

genotype, such as parental genetic variation contributing to risk-taking behaviours, shapes the 

child’s environment and potentially creates an unsafe home19,20. The environment that the 

parent creates and the parental genotype are correlated as the child receives both from their 

biological parents. Thus, parental environmental effects may be captured in genetic analyses 

of offspring traits18. Evocative rGE arises when an individual’s genotype shapes how others 

engage with them. For example, a child’s behavioural difficulties may evoke verbal and 

physical discipline due to the carer’s expectations of how a child should behave18. Active rGE 

involves an individual’s genetic disposition to, for example, risk-taking modifying and selecting 

their environment18,21, leading to differing risks of exposure to adverse environments.  
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Correlations between genetic factors and retrospective reports of trauma may also, in part, be 

driven by heritable characteristics influencing the subjective interpretation, willingness to 

disclose and recollection of events22,23. Genetic research has largely relied on retrospective 

self-reports of trauma exposure which may be more susceptible to genetically influenced 

perceptions and recollection of events, as opposed to more objective measures prospectively 

recorded closer to the time of exposure (e.g., court records, caregiver reports)23. Memory, 

emotional regulation and interpretation biases are partly heritable24–27 and are associated with 

retrospective reporting of trauma in early life28. Individual differences in subjective experiences 

are partly influenced by genetics29,30. Subjective appraisal of trauma is important for 

posttraumatic psychopathology, which is more strongly associated with retrospective self-

reports of trauma than objective court records31. Individual, partially heritable differences in 

personality traits such as neuroticism and agreeableness may explain the discrepancy 

between retrospective and prospective measures of trauma31–33. Furthermore, the consistency 

and frequency of self-reports are impacted by individual factors involved in the willingness to 

disclose a traumatic event, such as perception of stigma, fear of negative consequences, or 

pre-existing relationships with the perpetrator34–37. Lack of disclosure is a barrier to therapeutic 

and legal interventions36. Thus, a better understanding of the heritable factors that impact the 

retrospective report of trauma experiences could help improve posttraumatic support. 

In sum, the influences on retrospectively reported trauma are complex and difficult to 

disentangle. A range of heritable traits may be involved. Heritability and genetic correlations 

between traits can be estimated using genome-wide association study (GWAS) summary 

statistics38. The proportion of heritability explained by common genetic variants (h2
SNP) ranges 

from 6-9% for reported interpersonal trauma during childhood21,39 to 18% during childhood and 

adulthood combined40. This accounts for a large proportion of the reported twin heritabilities 

estimated at 20-62%7,9–12. Reported trauma shows genetic correlations with psychiatric 

disorders, current mental state, personality traits, lifestyle factors, and sociodemographic 

traits21,39,40. However, these studies did not analytically explain the extent to which the h2
SNP of 

reported traumas reflects genetic correlations with these complex traits. Identifying specific 

traits that explain a large proportion of h2
SNP can guide follow-up analyses in assessing certain 

characteristics involved in rGE and/or the subjective experience of trauma. 

We hypothesised that genetic variants associated with relevant behavioural and cognitive 

traits would overlap with those associated with reported trauma, such that no residual genetic 

variance of reported trauma would remain after accounting for genetically correlated traits. 

Twin studies have used multivariate structural equation modelling (SEM) to examine the 

residual genetic variance of life event measures after accounting for genetically correlated 
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traits41,42. To our knowledge, multivariate SEM has not been used to explore the extent to 

which specific heritable characteristics capture the heritability of reported trauma. Twin studies 

are limited in assessing only a moderate number of traits and environmental measures in the 

same individuals, which may be particularly challenging in the case of more severe 

environmental exposures such as trauma43. In contrast, the multivariate SEM extension to 

GWAS summary statistics44 allows the inclusion of many more traits measured in different 

individuals. Here, we decompose the h2
SNP of reported trauma using genomic multiple 

regression with the Genomic SEM R package44. Our primary aim was to measure the amount 

of residual genetic variance of reported trauma that remains after accounting for genetically 

correlated traits. Our secondary aim was to identify the traits contributing to the h2
SNP of 

reported trauma from hundreds of complex traits that were systematically assessed.  
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Methods and Materials 

Samples and measures 

We used summary statistics from the largest published GWAS of reported trauma as of 2021, 

on childhood maltreatment21. This GWAS built on our previous work (Coleman et al., 2020), 

extending it to assess childhood maltreatment specifically, and included 185,414 participants 

predominantly of European ancestry from five datasets: the UK Biobank45, the Adolescent 

Brain Cognitive Development Study46, the Avon Longitudinal Study of Parents and 

Children47,48, Generation R49,50 and the Psychiatric Genomics Consortium39. Childhood 

maltreatment was defined as reports of emotional, sexual, and physical abuse, and emotional 

and physical neglect. Most traumas (91.5%) were retrospectively self-reported (N = 169,766); 

however, a small proportion (8.5%) were reported prospectively by a parent or caregiver (N = 

15,651). The genetic correlation between retrospective and prospective childhood 

maltreatment was previously reported as 0.72 (SE = 0.36; P = 0.05)21. Further methodological 

details can be found elsewhere21. In the original publication, the h2
SNP of the continuous meta-

analysed phenotype of childhood maltreatment was 0.08 (SE = 0.01) using linkage 

disequilibrium score (LDSC) regression21. We also analysed GWAS summary statistics from 

Coleman et al.40 of a retrospectively reported lifetime trauma phenotype that more broadly 

captures trauma occurring in both childhood and adulthood in the UK Biobank40,45 

(Supplementary Methods). 

Bivariate genetic correlations 

To identify traits associated with the genetic component of reported trauma, we used bivariate 

LDSC regression51,52 to measure the genetic correlations (rg) between reported trauma and a 

wide range of complex traits. We tested 576 traits from GWAS summary statistics for an rg 

with reported trauma. We excluded the major histocompatibility complex (MHC) region from 

our analyses51,53. We considered traits for downstream analyses in Genomic SEM if they met 

the following criteria: a |rg| with reported trauma of > 0.25 and |Z| statistic ≥ 5, a GWAS mean 

Χ2 value >1.02 and an h2
SNP Z statistic ≥ 5. These thresholds were based on recommendations 

by the software developers54,55. All traits that met these criteria were also statistically significant 

after Bonferroni correction for multiple testing (𝛼 = 0.05/ the number of traits; P ≤ 8.68  × 10−5), 

which was less stringent than our selected threshold rg |Z| statistic ≥ 5 (equivalent to P ≤ 5.73 

× 10−7). The criteria were stringent to restrict the number of traits included in downstream 

analyses to well-powered GWAS with potentially larger genetic contributions to the h2
SNP of 

reported trauma. 



 87 

Genomic structural equation modelling 
To decompose the h2

SNP of reported trauma, we used the Genomic SEM R package version 

0.0.5 (https://github.com/MichelNivard/GenomicSEM/wiki)44. Genomic SEM is a multivariate 

extension of LDSC that constructs covariance matrices from h2
SNP and rg calculated by LDSC. 

GWAS samples can overlap for Genomic SEM as the sampling covariance matrices adjust for 

potential sample overlap. All GWAS summary statistics in our analyses were based on 

individuals drawn from European ancestries.  

We fitted fully saturated genomic multiple regression models. This approach simultaneously 

regressed the outcome (i.e., reported childhood maltreatment) on various explanatory 

variables, which modelled genetic correlations between each explanatory variable. This was 

informative in two ways. First, we estimated the residual genetic variance of reported trauma 

not explained by the genetics of the explanatory variables. Second, we estimated the unique 

contribution of each explanatory variable to the genetic component of reported trauma 

independent of other explanatory variables (i.e. conditional genetic association, termed bg). 

We selected explanatory variables based on results from bivariate LDSC regression. We 

introduced one explanatory variable at a time, iteratively, from the most highly correlated trait 

with reported trauma to the least correlated trait. For all models, we used the default diagonally 

weighted least-squares estimator, in which the precision of genetic covariances (e.g. due to 

GWAS sample size) is considered.  

We identified a practical limit of ≤11 explanatory variables in a fully saturated multiple 

regression model. Standard errors increased as more explanatory variables were added (>11 

explanatory variables resulted in standard errors >1). Therefore, we had to fit two models for 

categorically distinct traits identified in LDSC regression analysis: model 1) health and 

behavioural traits and model 2) psychiatric disorders. 
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Results 
Results from analysing reported childhood maltreatment were highly similar to that of reported 

lifetime trauma. We therefore present results for the more highly powered GWAS of childhood 

maltreatment (power quantified by h2
SNP Z statistic = 18.7; mean Χ2 value = 1.27) and report 

our findings for reported lifetime trauma (h2
SNP Z statistic = 15.6; mean Χ2 value = 1.22) in the 

Supplementary Results and Supplementary Tables 7-11.  

 

Traits genetically correlated with reported childhood maltreatment 
Figure 1 shows the 18 bivariate genetic correlations with childhood maltreatment (|rg| > 0.25 

and rg |Z| statistic ≥ 5). Genetic correlations with all 576 traits are summarised in 

Supplementary Table 1. After filtering for sufficiently powered GWAS, 18 traits were 

genetically correlated with childhood maltreatment with |rg| > 0.25 and rg |Z| statistic ≥ 5 (Figure 
1; Supplementary Table 2). The pairwise genetic correlations amongst the health and 

behavioural traits and psychiatric disorders modelled in Genomic SEM are shown in 

Supplementary Tables 3L and 4H, respectively. The most well-powered GWAS was retained 

in cases where pairwise |rg| in each category was not significantly different from one 

(calculated using the chi-squared distribution function and [(|rg|−1)/se]2 in R v. 4.1.1)40,56.
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Figure 1. Top bivariate genetic correlations (rg) between reported childhood 
maltreatment and various heritable traits. 
We calculated the correlations using linkage disequilibrium score (LDSC) regression. We 
tested correlations with 576 traits. Only traits with an |rg| > 0.25 and rg |Z| statistic ≥ 5, 
sufficiently powered with a mean 𝛸2 value > 1.02 and a common genetic variant-based 
heritability Z statistic ≥ 5 are shown. Bars represent standard errors. ADHD = attention deficit 
hyperactivity disorder; PTSD = post-traumatic stress disorder. 

 

Genomic multiple regression 
 
Health and behavioural traits 

As noted above, due to being able to include a maximum of 11 explanatory variables at once, 

we specified separate models for health and behavioural traits and psychiatric disorders. The 

path diagram in Figure 2A shows the results for eleven health and behavioural traits 

simultaneously specified as explanatory variables of the genetic component of childhood 

maltreatment. Heritability can be defined as the proportion of variance between individuals for 

a given trait or disorder that is accounted for by genetic factors. The residual genetic variance 

is the amount of heritable variation of childhood maltreatment that is unexplained by the 

genetic factors of the explanatory variables in the model. The genetic influences on these 

health and behavioural traits explained 59% of the h2
SNP

 of childhood maltreatment (one minus 

the residual genetic variance of 0.41± 0.07; P = 7.76 × 10−9).  
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Once controlling for the genetic influences of the other explanatory variables, the majority of 

conditional genetic associations between reported childhood maltreatment and health and 

behavioural traits were non-significant (P > 0.05; dashed lines in Figure 2A & Supplementary 
Table 3K). Therefore, most of the genetic correlations between childhood maltreatment and 

health and behavioural traits were shared with the other health and behavioural traits in the 

model. The shared genetic component across these traits may drive the direction of some 

bivariate genetic correlations, as several traits showed conditional associations with childhood 

maltreatment in the opposite direction (e.g. reported health rg = -0.48; bg = 0.16). However, 

two traits were uniquely genetically associated with childhood maltreatment, over and above 

their genetic correlations with the other traits: subjective well-being (bg = -0.47 ± 0.18; P = 0.01) 

and general risk tolerance (the reporting of how comfortable you are with taking risks; bg = 

0.31 ± 0.06; P = 9.96 × 10-7). Models where each health trait was introduced iteratively are 

shown in Supplementary Tables 3A-K.  

Psychiatric disorders 

When taking into account the genetic influences of all nine psychiatric disorders in a genomic 

multiple regression model (Figure 2B), the residual genetic variance of reported childhood 

maltreatment was 0.44 ± 0.08 (P = 9.23 × 10−9). Thus, 56% (calculated as 1 – 0.44) of the h2
SNP 

of childhood maltreatment was explained by genetic components of these psychiatric 

disorders. In this model, most psychiatric disorders shared their genetic overlap with childhood 

maltreatment, as indicated by non-significant conditional associations after accounting for 

shared genetics (P > 0.05; Figure 2B and Supplementary Table 4G). Autism spectrum 

disorder (ASD) (bg = 0.25 ± 0.11, P = 0.02) and post-traumatic stress disorder (PTSD) 

symptoms (bg = 0.29 ± 0.09, P = 1.40 × 10−3) had significant independent associations with 

childhood maltreatment independent of other disorders. Supplementary Tables 4A-G show 

genomic multiple regression results when psychiatric disorders were included in iterative 

stages. 
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Figure 2. Path diagrams representing results from genomic multiple regression 
analyses.   
Models were specified in Genomic SEM. The genetic component of A) eleven health and behavioural 
traits B) nine psychiatric disorders are the simultaneously fitted explanatory variables of the genetic 
component of reported childhood maltreatment using a weighted least-squares estimator. Single-headed 
arrows are conditional genetic associations (bg ± SE) between the explanatory variables and childhood 
maltreatment independent of the genetic influences of the other explanatory variables. A solid line 
indicates that the conditional genetic association is significant, and a dashed line indicates the conditional 
genetic association is non-significant. Double-headed arrows connecting explanatory variables represent 
genetic correlations; for simplicity, these values are not shown here but are in Supplementary Tables 3L 
and 4H. Double-headed arrows connecting the genetic component of childhood maltreatment to itself is 
the residual genetic variance of childhood maltreatment (umaltreatment ± SE) that is unexplained by the 
genetic influence of either the psychiatric disorders or the health and behavioural traits. ADHD = attention 
deficit hyperactivity disorder; ALCH = alcohol dependence; MDD = major depressive disorder; PTSD = 
post-traumatic stress disorder; SCZ = schizophrenia. 
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Model of independently contributing health and psychiatric traits 

To explore the contribution of the independently genetically associated traits (i.e., ASD, PTSD, 

general risk tolerance, and subjective well-being), as a sensitivity analysis, we specified the 

genetic component of these four traits as explanatory variables of the genetic component of 

reported childhood maltreatment simultaneously (Supplementary Figure 1 & 

Supplementary Table 5). The residual genetic variance of reported childhood maltreatment 

was 0.42 ± 0.06 (P = 1.24 × 10−12). This means 58% of the h2
SNP

 of childhood maltreatment 

was explained by the genetic component of ASD, PTSD, general risk tolerance, and subjective 

well-being. In a model with two additional traits (ADHD and self-reported tiredness), the 

residual genetic variance of childhood maltreatment only decreased by ~2% (0.40 ± 0.06; 

P = 2.11 × 10−12; Supplementary Results & Supplementary Table 6). 
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Discussion
Using genomic multiple regression in genomic SEM, we identified traits that accounted for 

~60% of the h2
SNP of reported trauma. Health and behavioural traits together accounted for 

59% of h2
SNP

 variance, whilst the model exploring psychiatric disorders explained 56%. In both 

models, a shared genetic component was observed across traits except subjective well-being, 

general risk tolerance, PTSD symptoms and ASD, which were independently associated with 

childhood maltreatment. Together, these latter four traits alone were sufficient to explain 58% 

of the h2
SNP of reported childhood maltreatment.  

We found similar results for retrospective lifetime trauma, which included adult trauma. We 

could not directly compare adulthood and childhood trauma as the lifetime trauma phenotype 

included both measures. Our findings suggest that the exact timing of trauma does not strongly 

affect the proportion of genetic variance accounted for by health and psychiatric traits. 

However, replication in non-overlapping datasets and appropriate trauma measures are 

required to make strong conclusions about differences between adulthood and childhood 

trauma.  

Independently associated traits, in addition to the genetic components shared across health 

and psychiatric traits, may be involved in rGE, and/or the reporting of such environments as 

traumatic. This raises the question of which processes explain these associations and could 

inform strategies to minimise risk and consequences of trauma. 

General risk tolerance is measured by endorsing a willingness to take risks, broadly capturing 

risk-taking behaviours57. rGE may explain the genetic contribution of risk tolerance to the 

genetic component of reported trauma, consistent with a previous study that found 

environmental adversities mediate the association between genetic propensity for risk-taking 

and reported childhood maltreatment23. A child may passively inherit a parent’s genetic 

propensity for risk-taking behaviours, such as substance use, and be exposed to an 

environment where the child may be neglected or abused20,23. An individual’s own genetic 

propensity for risk-taking may increase exposure to potentially adverse environments17,21,58. 

However, active rGE is less prominent during childhood than passive rGE and, therefore, a 

less plausible explanation for our findings59. Alternatively, risk tolerance may capture 

behaviours associated with disclosure of trauma. A barrier to disclosing trauma includes 

perceiving it as a risk and fearing negative consequences34. As such, individuals who take 

fewer risks may also be less inclined to disclose traumas. Further research is required to 

elucidate the mechanisms that explain the genetic association between general risk tolerance 

and reported trauma.  
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Subjective well-being captures an individual’s cognitive evaluation of life satisfaction and 

positive affectivity60,61. Our findings may reflect the role of such cognitions in the perception, 

recall, and thus reporting of trauma exposure. As found with life events, those with a genetic 

propensity to positive subjective well-being may be less likely to report trauma retrospectively, 

while the converse may occur with negative subjective well-being30. A positive disposition 

could bias towards a more positive recall of experiences32,33. This could explain why some 

individuals with objective records of experiencing childhood maltreatment do not 

retrospectively self-report maltreatment31. Such individuals are also less likely to develop 

posttraumatic psychopathology31. Positive emotional affectivity may contribute to resiliency by 

countering the adverse effects of stressful experiences due to a lack of subjective valence62. 

Conversely, if negative affectivity indicates greater sensitivity to trauma and vulnerability to 

psychopathology, this could have implications for screening for psychopathology risk following 

trauma63. 

The independent genetic association between ASD and childhood maltreatment is supported 

by several previous studies23,64,65. Family-based polygenic score analyses exploring genetic 

differences between siblings suggest a greater risk of childhood maltreatment in those with 

ASD is partly attributable to evocative and active rGE21. Difficulty processing social cues may 

place an individual at greater risk of harmful environmental situations such as exploitation by 

a perpetrator64,66. Furthermore, individuals with ASD may experience a broader range of life 

experiences as traumatic67. An association between the polygenic score for ASD and trauma 

has been consistently found with retrospectively but not prospectively reported 

trauma23,64,65,68,69. One study found the association between a polygenic score for ASD and 

retrospectively reported trauma was independent of rGE23. Together, these findings suggest 

the importance of subjective trauma interpretation in ASD. Future research should determine 

the specific heritable components of ASD related to the subjective experience of and exposure 

to trauma, and the potential for screening for posttraumatic symptoms in ASD to provide 

appropriate support67. 

As trauma exposure is necessary for a PTSD diagnosis, the unique genetic association 

between reported trauma and PTSD symptoms could be explained by trauma exposure 

increasing the risk of PTSD. However, there are plausible reverse or bidirectional 

mechanisms. This includes passive rGE, whereby parental genetic predisposition to PTSD 

may act to increase the risk of trauma exposure in the child, as suggested by studies of PTSD 

and parenting70. However, evidence suggests the association between a higher genetic risk 

for PTSD and increased self-report of childhood trauma could be explained by subjective 

interpretation processes and not rGE23. This is supported by previous findings that PTSD 
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polygenic scores are not associated with objectively assessed trauma exposure severity71. 

Except for ASD and PTSD, genetic associations between reported childhood maltreatment 

and the other psychiatric disorders were explained by genetic factors shared across all other 

psychiatric disorders included in the model. However, GWAS often use brief phenotypic 

measures to achieve sufficient power, which may impact our ability to detect disorder-specific 

genetic influences72. Shared genetics may underlie transdiagnostic psychological 

mechanisms, such as those involved in the subjective experience of trauma, which is more 

robustly associated with psychiatric disorders than objective measures of trauma31. Our 

findings support targeting transdiagnostic pathways to reduce the general risk of 

psychopathology following trauma73,74. 

Our modelling approach has several limitations. First, the model is fully saturated, and we 

could not objectively estimate which model best fits the data. Second, we were limited by the 

number of traits that could be fitted in one model. However, sensitivity analyses did not indicate 

that all of the residual genetic variance of childhood maltreatment could be explained if all 

available genetically correlated traits were accounted for in one model. Third, our estimates 

are based on lower bounds of the total genetic variance explained by common genetic variants 

that can be, as captured by h2
SNP, estimated from summary statistics and may differ from 

results using more advanced methods or individual-level genetic data40,75. 

Further research is needed to establish the role of traits in terms of whether they are 

associated with the risk of exposure or the interpretation and recollection of events. 

Preliminary evidence suggests that the h2
SNP

 of prospective trauma is lower than 

retrospectively reported trauma21. Thus, genetic factors involved in the retrospective reporting 

of trauma may have a greater impact on the h2
SNP of trauma than traits involved in the exposure 

of events. The residual h2
SNP

 of trauma may reflect traits involved in memory recall17,28,33 that 

lack adequately powered GWASs. Alternatively, unaccounted for parental traits involved in 

passive rGE, such as antisocial behaviour contributing to an unsafe environment, may partly 

explain the residual genetic variance. Disentangling the genetic associations with vulnerability 

to exposure and those with the subjective experience of trauma will be important for 

distinguishing whether factors are relevant to trauma prevention or posttraumatic 

interventions. 

In summary, we systematically examined traits genetically correlated with reported trauma, 

implicating possible mechanisms that partly explain the h2
SNP of trauma. Potentially, indirect 

genetic effects regulating behaviour and cognition are associated with trauma exposure and/or 

retrospectively self-reporting trauma. We emphasise that our findings do not suggest that an 

individual is ever at fault or responsible for their exposure to trauma. Furthermore, an h2
SNP

 of 
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reported trauma does not mean some individuals are genetically determined to experience 

trauma. Most of the phenotypic variance of reported trauma is explained by the environment, 

which is malleable and can be modified into a more supportive and protective environment to 

mitigate vulnerabilities. For example, if a genetic propensity for ASD, PTSD, general risk 

tolerance, and subjective well-being reflect genetic risk to reported trauma, more social 

support may protect such individuals and alleviate adverse posttraumatic effects. However, 

our findings are correlational, not necessarily causal, and better delineation of the processes 

involved is needed. Future studies could assess the specific role of these traits in large family-

based datasets using within-family designs43. Disentangling passive from evocative and active 

rGE that may explain our trait-specific associations could have implications for prevention 

strategies. As GWASs increase in power, the direction of causal relationships or testing the 

types of pleiotropy could be explored through Mendelian randomisation techniques21,76. Such 

approaches are crucial to understanding vulnerability to trauma exposure and the subjective 

interpretation of trauma.  
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Abstract 
Background: Common genetic variation is anticipated to contribute to psychological 

treatment outcomes. However, statistical power to identify genetic associations has been 

limited by challenges in recruiting large samples with prospective treatment outcome data. We 

aimed to investigate genetic influences on outcomes following psychological treatment for 

depression and anxiety disorders using retrospective self-reports.  

Methods: We conducted a genome-wide association study meta-analysis of retrospectively 

self-reported outcomes following psychological treatment for depression or anxiety, combining 

measures across two datasets (total N=15,131; ~75% reported positive outcomes). In a 

subset of individuals (N=4,439), predictive models for self-reported treatment outcomes were 

estimated using elastic net regularisation and evaluated using nested 10-fold cross-validation. 

Polygenic scores of related traits were included as genetic predictors. Models incorporating 

genetic predictors were compared to models of known sociodemographic/clinical predictors 

to assess whether genetic influences on psychiatric, cognitive and related traits contributed to 

prediction over and above existing predictors.  

Results: The single nucleotide polymorphism (SNP)-based heritability of self-reported 

treatment outcomes was not significantly different from zero. No common genetic variants 

were associated with this phenotype at the genome-wide significance level. Elastic net models 

containing polygenic scores explained 0.4% of the variance in self-reported treatment 

outcomes. Incorporating genetic predictors did not significantly improve prediction beyond 

existing sociodemographic and clinical predictors.  

Conclusions: Identifying the common genetic variants associated with retrospectively self-

reported treatment outcomes requires larger sample sizes. A small proportion of the variance 

explained by polygenic scores supports the hypothesis that self-reported treatment outcomes 

has a heritable component. Further research is needed to validate single-item self-reported 

measures assessing psychological treatment outcomes.
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Introduction 
Depression and anxiety disorders are highly prevalent, affecting up to 29% of the global 

population at some point in their lifetime1,2. The UK Improving Access to Psychological 

Therapies (IAPT) programme, which provides psychological treatment for mild-moderate 

depression and anxiety, receives over 1.25 million referrals annually, with approximately 65% 

of referred individuals receiving treatment3. The IAPT treatments include guided self-help, 

counselling, group therapies and couples therapy, with Cognitive Behavioural Therapy (CBT) 

being the primary form of treatment4. However, treatment outcomes are variable, and many 

individuals do not experience improvement in symptoms5–8. A meta-analysis of 228 

randomised trials of psychological therapy for depression found that only 41% of patients 

demonstrated treatment response, defined as a 50% reduction in depressive symptoms9. 

Furthermore, only one-third of patients reached criteria for remission, described as falling 

below a clinical cut-off for symptom scores. Response rates are consistent across different 

forms of psychological treatment9 and for the treatment of anxiety disorders10. In addition to 

variable outcomes, access to psychological therapies is limited by the cost of treatment and a 

shortage of trained healthcare professionals11,12. There is a strong rationale for investigating 

who is most likely to benefit from psychological treatment given the limited resources 

available. 

Several clinical, treatment and patient characteristics have been associated with differential 

outcomes following psychological treatment for anxiety and depression. The term outcomes 

is used here to broadly refer to any measure capturing a lack of improvement in symptoms, 

including a reduction in symptoms and complete remission of case status. Clinical 

characteristics including longer duration of illness13–16, earlier age of onset17, greater functional 

impairment18–20, greater symptom severity21,22 and comorbid anxiety, depressive or personality 

disorders13,23–25 are consistently associated with poor outcomes. Treatment factors such as 

lower patient engagement26, poor treatment adherence21 and previous courses of 

treatment13,27 are also associated with unfavourable outcomes. Associations with 

sociodemographic characteristics are less well-established. However, evidence suggests that 

being single28, not being in full-time employment19,29,30, having lower educational attainment29, 

and experiencing childhood maltreatment17 are associated with worse prognosis.  

Although numerous clinical, treatment and patient factors are associated with psychological 

treatment outcomes, the prediction of individual response remains poor31–33. Identifying novel 

sources of information to improve the prediction of treatment outcomes is essential for 

developing models with greater utility. One possible avenue is to investigate genetic factors 

associated with treatment outcomes. Pharmacological treatments, such as antidepressants, 
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have yielded promising results in genetic investigations, demonstrating that common genetic 

variants explain ~13% of the variance in remission34,35. Response to psychological therapies 

is also anticipated to have a genetic component, given that outcomes are influenced by 

learning behaviours, interpersonal factors and personality characteristics21,26,36, all of which 

are partly heritable37–39. However, in the field of ‘therapygenetics’, studies investigating genetic 

influences on psychological treatment outcomes have not found genome-wide significant 

associations between common genetic variants and symptom change during treatment, nor 

have they identified a significant common genetic variant-based heritability estimate40,41. The 

primary explanation for these findings is that the sample sizes in these studies (both under 

3,000 individuals) were insufficient to detect the many common genetic variants that each 

explain a small amount of variance in treatment outcomes42. Achieving the statistical power 

required for detecting a genetic basis of psychological treatment outcomes is challenging due 

to the financial and time constraints of collecting prospective symptom data throughout 

treatment for the thousands of individuals required for well-powered genome-wide association 

studies (GWAS). 

To progress towards identifying genetic factors associated with treatment outcomes, sample 

size challenges must be overcome. One approach is to use ‘minimal’ or ‘brief’ phenotyping, 

whereby a single self-reported questionnaire item is used to capture the trait of interest43. This 

strategy has been used in GWAS of psychiatric phenotypes, such as depression, to achieve 

sufficient sample sizes to detect genome-wide significant loci (e.g. Howard et al.44). However, 

brief phenotyping has been criticised for capturing qualitatively different traits to more detailed 

clinical assessments45,46. Nonetheless, briefly assessed depression phenotypes have high 

genetic correlations with clinically-derived phenotypes for major depressive disorder. ‘Broad’ 

depression, which was assessed using two single-item self-reported measures on help-

seeking for “nerves, anxiety, tension or depression”, had a genetic correlation of 0.87 with 

clinically-derived major depressive disorder47,48. Similarly, depression assessed through self-

reported clinical diagnosis or treatment history had a genetic correlation of 0.8548,49. Although 

brief measures may not detect disorder-specific genetic influences as effectively as detailed 

phenotypic measures46, the high genetic correlation observed across phenotyping strategies 

indicates a similar underlying genetic architecture is captured. 

A brief phenotyping approach can be applied to psychological treatment responses. 

Retrospectively self-reported outcomes following treatment can be used instead of 

prospective symptom data during treatment. In phenotypic analyses, outcomes assessed 

using retrospective self-reports display a similar pattern of association with sociodemographic 

and clinical factors as prospective indicators of therapy response50. Participants with a lifetime 
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experience of depression and/or anxiety were asked to retrospectively report how much their 

symptoms and day-to-day functioning had improved following a previous course of therapy. 

Responses were assessed using a scale adapted from the Global Rating of Change scale: 

much worse (-2), a little worse (-1), no change (0), a little better (+1), much better (+2)51. 

Having university-level education and using additional therapeutic activities were associated 

with favourable self-reported outcomes, while the number of disorder episodes, personality 

disorder symptoms, being male, and receiving therapy for the first time were associated with 

less favourable self-reported outcomes50. Effect sizes were consistent with previous literature, 

with odds ratios ranging from 0.89 to 1.45. These results indicate that retrospective self-

reports capture some aspects of treatment outcomes that overlap with responses measured 

using traditional approaches. This provides support for the use of retrospectively self-reported 

outcomes as an alternative to traditional prospective data collection. Combining data from 

studies that have utilised this simple brief phenotyping approach could enable reaching large 

enough sample sizes to identify genetic variants associated with treatment outcomes. The 

associated genetic variants can then be summed to create a polygenic score that captures 

genetic propensity to favourable treatment outcomes, which could be used in predicting 

psychological treatment response. 

A second route to identifying the genetic basis of treatment outcomes is to incorporate 

polygenic scores for traits related to treatment response in prediction models, capitalising on 

pre-existing well-powered GWAS. Previous studies found that higher polygenic scores for 

autism spectrum disorder and lower polygenic scores for depression and intelligence were 

associated with remission in depressive symptoms following internet-based CBT (iCBT)52,53. 

Genetic predictors also independently contributed to the prediction of iCBT outcomes 

alongside demographic and clinical factors53, indicating that genetic propensity for relevant 

psychiatric or cognitive traits provides additional information in predicting treatment outcomes. 

However, evidence is limited for the clinical utility of genetic influences in predicting outcomes 

for in-person psychological treatments. Similar to GWAS, progress in developing treatment 

models incorporating genetics has been hindered by the challenge of collecting large samples 

with both polygenic scores and psychological treatment outcome data available. 

We aimed to investigate the genetic influences on retrospectively self-reported outcomes in 

individuals who have received psychological therapy for anxiety and depressive disorders. 

Two approaches were used to address this aim. First, we performed a genome-wide 

association study meta-analysis of retrospectively self-reported single-item questions 

assessing outcomes following psychological therapy for depression/anxiety. We used this 

approach to assess whether this phenotype has a heritable basis that can be captured by 
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common genetic variants, also known as single-nucleotide polymorphisms (SNP-based 

heritability). Second, we used elastic net regression with nested 10-fold cross-validation to 

build and evaluate models predicting retrospectively self-reported treatment outcomes from 

genetic, sociodemographic and clinical factors. Using this approach, we aimed to determine 

whether genetic influences on psychiatric, cognitive and related traits contribute to the 

prediction of retrospectively self-reported outcomes beyond known clinical and demographic 

predictors.
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Methods 
Phenotypic definitions and genome-wide association analyses were pre-registered on the 

Open Science Framework (accessible at https://osf.io/h7d9a/). Analysis plans for prediction 

modelling were formulated following pre-registration and prior to commencing analyses. 

 
Samples 
This study included data collected in 15,131 genotyped individuals from two datasets. The first 

dataset was created by combining data from two studies within the National Institute for Health 

and Care Research (NIHR) BioResource; the Genetic Links to Anxiety and Depression Study 

(GLAD)54 and the COVID-19 Psychiatry and Neurological Genetics Study (COPING)55, 

forming the GLAD+ dataset. The second dataset comprised the Australian Genetics of 

Depression Study (AGDS)56. We included participants of predominantly European-associated 

genetic ancestry from these samples who met the following three criteria. First, they indicate 

lifetime experience of a depressive or anxiety disorder based on symptom reports or self-

reported diagnoses. Second, they reported receiving any type of psychological therapy for a 

depressive or anxiety disorder and have completed at least one measure of self-reported 

treatment outcomes. Third, they provided genetic data that passed quality control criteria. 

 
The GLAD+ dataset 
 
The Genetic Links to Anxiety and Depression (GLAD) Study 

The GLAD study aims to facilitate research investigating genetic and environmental risk 

factors for depression and anxiety disorders by recruiting participants into the NIHR Mental 

Health BioResource54. Recruitment is open to individuals in the UK aged 16+ with lifetime 

anxiety or depressive disorders. Individuals were initially recruited through a widespread 

media campaign. Ongoing recruitment is supported by social media advertising and 

recruitment through NHS Trusts and GP practices. Participants sign up through the GLAD 

study website (https://gladstudy.org.uk), provide informed consent, and complete online, self-

report questionnaires including detailed symptom reports. Eligibility is assessed from 

questionnaire responses using self-reported diagnoses and diagnostic algorithms. Eligible 

participants are sent a saliva DNA kit in the post to their preferred address and are able to 

take part in additional optional questionnaires. Saliva samples were genotyped using the UK 

Biobank v2 Axiom array57. Recruitment began in September 2018 and is ongoing. See Davies 

et al.54 for a full description of the GLAD recruitment and data collection procedures. The 

GLAD study was approved by the London Fulham Research Ethics Committee (REC 
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reference: 18/LO/1218) following a full review by the committee.   

 

The COVID-19 Psychiatry and Neurological Genetics (COPING) Study 

The NIHR BioResource is a resource of UK volunteers who have provided medical, clinical, 

and genetic data and have consented to re-contact for future research. Volunteers were 

recruited through several initiatives across the country, including NHS blood transfusion 

services and disorder-specific clinics and research studies. In April 2020, participants from the 

NIHR BioResource (https://bioresource.nihr.ac.uk/) were invited to take part in the COPING 

study, which aimed to assess mental health and well-being throughout the COVID-19 

pandemic55. Participants that consented to take part in COPING completed a baseline survey, 

similar to that in GLAD, details of which are given elsewhere58. COPING study participants 

are made up of those from several genotyped subsamples within the NIHR BioResource, 

including the Inflammatory Bowel Disease BioResource (N = 237); NHS blood and transplant 

studies, including INTERVAL (N = 659), COMPARE (N = 253), and STRategies to Improve 

Donor Experiences (STRIDES; N = 57); and the Research Tissue Bank - Generic (N = 663). 

The NIHR BioResource was approved as a Research Tissue Bank by the East of England, 

Cambridge Central Committee (REC reference: 17/EE/0025). Ethical approval for the 

COPING study was obtained by the South West, Central Bristol Research Ethics Committee 

(REC reference: 20/SW/0078). The combined GLAD and COPING participants used in this 

analysis are referred to as GLAD+ participants from here on.  

 

Australian Genetics of Depression Study (AGDS) dataset 

The Australian Genetics of Depression Study aims to contribute to research assessing the 

role of genetic variation in the risk of depression and therapeutic response to antidepressants. 

Recruitment was open to adults across Australia who “had been treated by a doctor, 

psychiatrist or psychologist for depression”. Individuals were recruited via an open media 

campaign and a targeted mailout based on recent antidepressant prescription history. 

Participants registered through the AGDS website (https://www.geneticsofdepression.org.au), 

where they provided informed consent and completed an online self-report questionnaire 

assessing mental health diagnoses and antidepressant responses. Registered participants 

were mailed a saliva DNA kit to their preferred address. Recruitment began in September 

2016 and is ongoing. See Byrne et al.56 for a full description of the AGDS recruitment and data 

collection procedures. The AGDS was reviewed and approved by QIMR Berghofer Medical 

Research Institute's Human Research Ethics Committee. 
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Measures  

Self-reported treatment outcomes 

Self-reported outcome following psychological therapy for depression and anxiety was defined 

using two retrospectively reported single-item questions assessing benefit from therapy and 

improvement in symptoms/functioning (Table 1). 

Self-reported benefit from therapy 

Within the GLAD+ baseline survey, participants completed self-report modules of the 

Composite International Diagnostic Interview - Short Form (CIDI-SF) adapted for major 

depression, generalised anxiety disorder, social anxiety, agoraphobia, panic disorder and 

specific phobia59. Within this, participants were asked, ‘Did you ever try or are currently trying 

the following for these problems?’. Those who selected the answer ‘Psychotherapy or other 

talking therapy more than once’ for depression or ‘Psychotherapy’ for anxiety were presented 

with further questions, including ‘Did you find psychotherapy or other talking therapy helpful?’, 

which has the response options ‘Yes’, ‘No’, ‘Don’t know’ and ‘Prefer not to answer’. Answers 

to this item are used to identify those with self-reported benefit from therapy, with binary 

options ‘Yes’ and ‘No’.  

For individuals within GLAD+ who responded to self-reported benefit from therapy questions 

in relation to multiple disorders, responses were selected hierarchically. Responses from the 

major depression module were preferentially selected (94% of responses) to correspond as 

closely as possible with participants from AGDS, who were all ascertained on the basis of a 

lifetime depression diagnosis. When unavailable, responses were selected in relation to 

generalised anxiety disorder (4%), panic disorder (2%), agoraphobia (<1%), specific phobia 

(<1%), then social anxiety (<1%). The proportion of participants meeting diagnostic criteria for 

each disorder is given in Supplementary Table S1. As participants were asked to report all 

psychological therapies that they attended more than once, we did not differentiate by the type 

of treatment received. The proportion of participants reporting each type of treatment is given 

in Supplementary Table S2. 

Self-reported improvement in symptoms/functioning 

Following completion of the sign-up questionnaires, participants from the GLAD study and 

AGDS were invited to take part in an optional follow-up survey about therapy outcomes. The 

survey was made available to all participants on the study websites, and active GLAD 

participants were sent an email to invite them to take part in a self-report questionnaire about 

lifetime treatment history50. As part of this questionnaire, participants were asked if they had 
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ever tried psychological therapy for help with anxiety or depression. In the GLAD study, 

participants were asked about ‘Talking therapies’ in line with the terminology used in UK IAPT 

services. In AGDS, participants were asked about ‘Psychological treatment or Counselling’. 

Those who endorsed this item were asked their age at the time of therapy, the main diagnosis 

that the treatment was for, additional diagnoses, whether therapy was one-to-one or group, 

the type of therapy, concurrent medication and improvement in symptoms for the most recent 

and second most recent times they tried therapy. Improvement in symptoms was assessed 

with the item ‘How much did your symptoms and day to day functioning improve?’, which had 

Likert scale response options of ‘Much better’, ‘A little better’, ‘No change’, ‘A little worse’ and 

‘Much worse’. Answers to this item are used to identify those with self-reported improvement 

in symptoms/functioning. For individuals who reported two courses of therapy, we selected 

the response relating to their most recent course.  

Due to the small sample size across each of the five ordinal categories, a binary definition of 

the improvement in symptoms/functioning phenotype was created, with ‘Much better’ and ‘A 

little better’ response options denoting ‘Improvement’, and ‘No change’, ‘A little worse’ and 

‘Much worse’ responses denoting ‘No improvement’. This binary variable was used to 

supplement data from the CIDI-SF, being combined with self-reported benefit from therapy to 

create one phenotype representing general self-reported outcomes following therapy. This 

phenotype is referred to as self-reported treatment outcomes. 

Table 1. Number of participants from the GLAD+ and AGDS datasets with data on 
each measures of self-reported outcomes following therapy (Total N = 15,131) 
 

Phenotype 

GLAD+ 
AGDS 

GLAD COPING 

Self-reported benefit from therapy - adapted 
CIDI-SF modules 3,206  1,869 - 

Self-reported improvement in 
symptoms/functioning - optional lifetime 
treatment history questionnaire 

2,461 - 7,595 

    
Sociodemographic and clinical predictors of self-reported treatment outcomes 

Sociodemographic and clinical predictors previously associated with retrospectively self-

reported improvement in symptoms/functioning in the GLAD+ dataset were selected50. As 

participants retrospectively reported outcomes of past treatments, these variables were 

chosen to reflect the entire period of illness rather than the specific episode in which treatment 

was sought. We only included associated predictors assessed in the adapted CIDI-SF 

modules that formed part of the GLAD+ baseline survey to retain a sample size sufficient for 

prediction modelling. This resulted in three predictors being taken forward. Two were 
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sociodemographic predictors: self-reported biological sex (male/female) and education level 

dichotomised from six categorical responses using the median category (University degree: 

yes/no). The clinical predictor, number of episodes of illness, was assessed as a continuous 

variable. Although personality disorder symptoms had been previously associated with 

retrospectively self-reported improvement in symptoms/functioning50, this variable was not 

included due to a lack of consistent measurement across the GLAD and COPING studies. 

 

Aim 1: Genome-wide association study meta-analysis of retrospectively self-
reported treatment outcomes 
 
Genotyping quality control and imputation 

Participants from the NIHR BioResource dataset were genotyped using the Affymetrix UK 

Biobank Axiom Array v1 and v2. Genotype data quality control was performed separately in 

the GLAD and COPING datasets. Genetic variants were excluded if they were rare (with a 

minor allele frequency < 1%), were missing > 5% per variant, or displayed Hardy-Weinberg 

equilibrium deviation (P < 10-10). Individuals were excluded with genetic variant missingness 

> 5%, genetic duplication across both samples, undetermined genetic sex, and outliers of 

identify by descent (indicating genetic contamination). Genotyping and genetic quality control 

performed in the AGDS dataset is described in detail elsewhere60. In both the GLAD+ and 

AGDS datasets, imputation was performed using the TOPMed imputation panel (Version R2 

on GRC38), and variants were filtered to quality info metric > 0.3. Due to small sample size of 

non-European genetic ancestry participants, analyses in both datasets were restricted to 

European-associated ancestry clusters selected through principal component analysis (PCA).

  

 

Genome-wide association study 

For our first aim, we conducted GWAS of single-item questions assessing retrospectively self-

reported treatment outcomes in each sample. Logistic mixed model analyses were performed 

using the software REGENIE for analyses in the GLAD+ dataset and SAIGE in the AGDS 

dataset. Logistic regression score tests were applied to account for unbalanced case-control 

ratios, with approximate Firth logistic regression test used in REGENIE and the saddle point 

approximation test used in SAIGE61,62. The first 10 principal components and genotyping 

batches were included as covariates. Results were filtered on MAF > 0.01 and R2 imputation 

quality metric > 0.3.  
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GWAS meta-analysis 

We meta-analysed the GWAS summary statistics from each sample to obtain a GWAS of 

overall self-reported treatment outcomes following psychological therapy. We used the 

software METAL to perform an inverse-variance weighted meta-analysis63. We restricted 

genetic variants for downstream analyses to those that overlapped across samples. 

 

Gene-level association analysis 

Gene-level association analyses were performed with MAGMA v1.08 using the FUMA 

platform to aggregate the joint effect of genetic variant associations to the level of the gene64,65. 

A Bonferroni significance threshold was applied by adjusting the alpha-value (0.05) for the 

number of genes tested for each phenotype.  

 

Estimation of SNP-based heritability 

We used GCTA-GREML to estimate the SNP-based heritability of self-reported treatment 

outcomes using individual-level genotype data66. Analyses in the GLAD+ and AGDS datasets 

were conducted separately. In each dataset, a genomic relatedness matrix was created using 

unpruned genotype data and adjusted for sample relatedness based on a threshold of > 0.05 

and variants were filtered with a minor allele frequency > 0.01. We included the first 10 

principal components and six genotyping batches as covariates. To estimate the SNP-based 

heritability of self-reported treatment outcomes using summary-level genetic data, Linkage 

Disequilibrium Score (LDSC) regression was used with default parameters applied67. Genetic 

variants were filtered to those within the HapMap 3 reference panel. SNP-based heritability 

estimates were transformed to the liability scale, assuming a population prevalence of 41% 

for response to psychological therapy9.  

 

Aim 2: Prediction of retrospectively self-reported treatment outcomes using 
genetic, sociodemographic and clinical predictors 
 
Creation of polygenic scores 

Prediction analyses were conducted in a subset of the GLAD+ dataset in which we had access 

to both baseline sociodemographic/clinical predictors and individual genetic data (N = 4,439). 

Polygenic scores were derived using the GenoPrep pipeline, a reference-standardised 

framework using a common set of genetic variants, linkage disequilibrium estimates, and allele 

frequency estimates to aid reproducibility68. We created scores using MegaPRS69, which 
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applies the LDAK heritability model70. MegaPRS has good predictive utility in comparison to 

other common PRS methods, including P-value thresholding and clumping (pT+clump), 

SBLUP, lassosum, LDpred and SBayesR68. We selected the optimal MegaPRS model using 

the pseudo-validation approach, which estimates the best set of effect size distribution 

parameters out of 236 that were tested without the need for an external validation sample68,71. 

We created 27 polygenic scores representing genetic predisposition to a range of psychiatric, 

cognitive and socio-demographic traits related to psychological treatment outcomes. A list of 

previously published GWAS summary statistics and trait SNP-based heritabilities (h2SNP) 

corresponding to each polygenic score is given in Supplementary Table S3. To ensure 

polygenic scores were derived from GWAS with good statistical power, we only selected traits 

with an LDSC SNP-based heritability z-score greater than 5, calculated as the SNP-based 

heritability estimate divided by its standard error72.  

 

Prediction modelling 

We created three prediction models to assess whether the inclusion of polygenic scores 

improved the prediction of retrospectively self-reported treatment outcomes over and above 

previously associated sociodemographic/clinical predictors. Prior to analyses, the first 10 

principal components and genotyping batches were regressed out of the polygenic scores, 

and the residuals were used as predictors. All predictors were scaled and centred based on 

the mean and standard deviation of the sample, using the ‘scale’ function in R. Model 

development and evaluation was carried out in R using the Model Builder format from the 

GenoPred pipeline68,71, which incorporates functions from the ‘glmnet' and 'caret' 

packages73,74. 

Prediction models were created using logistic elastic net regression, which incorporates the 

ridge regression penalty into Least Absolute Shrinkage and Selection Operator (LASSO) 

regularisation to reduce model complexity and prevent overfitting75. LASSO regularisation 

applies the L1 penalty, which shrinks the size of all coefficients based on the sum of the 

absolute values, resulting in some coefficients being reduced to zero and dropped from the 

model. This method allows for variable selection, typically retaining only one predictor from 

groups of highly correlated variables76. In ridge regression, an L2 penalty is applied to the sum 

of squared coefficients, shrinking the value of all coefficients without dropping any from the 

model. This method may be more suited to models with correlated predictors77. By combining 

these penalties, shrinkage is applied to coefficients to enable variable selection while allowing 

correlated predictors to be retained in the model. The tuning parameter lambda (λ) determines 

the degree of the penalty, with values closer to 1 indicating greater shrinkage. Alpha (α) 



 116 

determines the relative weightings of the L1 and L2 penalties, with values of alpha closer to 1 

favouring the L1 penalty73. 

Parameter tuning and predictive utility was determined using nested 10-fold cross-validation78. 

Nested 10-fold cross-validation occurs in loops two levels (for an illustration, see 

Supplementary Figure S1). At the outer level, data are randomly split into training and test 

sets. The model is developed in 80% of the sample (the “training” set), and the performance 

of the model is evaluated in the remaining 20% (the “test” set). Nested within the training set, 

ten further folds are used at the inner level to tune the λ parameter through cross-validation, 

which determines the degree of the penalty by maximising the predictive ability of the model 

in “unseen” data. In nine of the inner training data folds, 100 values of λ are assessed to 

identify the value with the greatest reduction in prediction error for the tenth “validation” fold. 

This is repeated ten times, with each inner fold of the training data acting as the validation fold 

once. Through this process, the optimal value of λ is identified in the training set. The 

performance of this model is then evaluated at the outer level in the unused 20% test set 

originally held out of the data. Observed outcome values are regressed on the values 

predicted by the model to determine the proportion of variance in the outcome explained by 

the prediction model (R2). The process occurs iteratively, with distinct 20% chunks of the 

original data, each acting as the independent test set once. The power of this nested approach 

comes from the full sample contributing to both parameter tuning via cross-validation and 

model performance evaluation. As each individual in the data forms part of the test set once, 

they each have one predicted value of the outcome, estimated from the model derived from 

the inner cross-validation that they were held out of. 

Three models were created and compared: (1) genetic predictors only, (2) 

sociodemographic/clinical predictors only and (3) sociodemographic/clinical and genetic 

predictors. The relative predictive utility of the models was assessed by comparing 

correlations between the observed and predicted values of the outcome, using the Hotelling-

Williams test as implemented in the ‘psych’ R package79; P-values were calculated under a 

two-sided test. As we pre-selected a limited number of previously associated 

sociodemographic/clinical predictors, this analysis aimed not to create a model with the 

highest possible predictive utility but to assess whether the inclusion of genetic predictors 

increased predictive power over and above known demographic and clinical predictors. Hence 

we have refrained from interpreting the predictive utility of models including pre-selected 

sociodemographic/clinical predictors, which may have been prone to overfitting, and have 

focused primarily on model comparisons.
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Results 
Sample descriptives 
Descriptive statistics for each sample are given in Table 2. Both samples were on average 

middle-aged and were primarily female. The most common education level across samples 

was having a University degree or higher, with most participants being employed. In both 

samples, ~75% of participants self-reported positive outcomes following treatment.

Table 2. Descriptive table for GLAD+ and AGDS datasets, total N = 15,131 
Study GLAD+ AGDS 
Sample size 7,536 7,595 
Age 43.82 (15.1) 47.95 (14.9) 
Sex 

  

Female 5932 (78.7%) 5848 (77.0%) 
Male 1603 (21.3%) 1745 (23.0%) 
Missing 1 2 

Education 
  

University degree or higher1 4339 (57.6%) 5062 (66.7%) 
A-levels/AS-levels or equivalent2 1514 (20.1%) 468 (6.2%) 
NVQ/HND/HNC or equivalent3 607 (8.1%) 1675 (22.1%) 
GCSEs/CSEs/O-levels or equivalent4 824 (10.9%) 366 (4.8%) 
None of the above 140 (1.9%) 21 (0.2%) 
Missing 112 3 

Employment status 
  

In paid employment or self-employed 4663 (61.9%) 4262 (56.2%) 
Full or part-time student 575 (7.6%) 452 (6.0%) 
Unable to work because of sickness or 

disability 
739 (9.8%) 515 (6.8%) 

Retired 907 (12.0%) 1186 (15.6%) 
Other (looking after home and/or family, doing 
unpaid or voluntary work) 

337 (4.5%) 412 (5.4%) 

Unemployed 252 (3.3%) 251 (3.3%) 
None of the above 47 (0.6%) 505 (6.7%) 
Missing 16 12  

Retrospectively self-reported outcomes 
following psychological treatment 

  

Reported benefit/improvement 5693 (75.5%) 5715 (75.2%) 
No reported benefit/improvement 1843 (24.5%) 1880 (24.8%) 

Descriptives given as Mean (SD) or N (%) 
1Qualifications are taken one year earlier in Australia, so the first year of University is 
typically equivalent to Year 13 in the UK, for a 4 year bachelor’s degree 
2Years 11-12 in Australia 
3Certificate or diploma, a vocational qualification from TAFE (Technical and Further 
Education) 
4Years 8-10 in Australia 



 118 

Aim 1: Genome-wide association study meta-analysis of retrospectively self-
reported treatment outcomes 
In both datasets, no significant genetic variants were identified at the level of genome-wide 

significance (P < 5 × 10−8) (Supplementary Figures S2 and S3). We then meta-analysed the 

results from the GWAS in both samples in METAL (N = 15,131; 75% reported positive 

treatment outcomes). Approximately 6 million genetic variants were shared across the GLAD+ 

and AGDS datasets. No genetic variants were identified as associated with positive treatment 

outcomes at the level of genome-wide significance (Figure 1). We found little evidence for 

confounding, with the quantile-quantile plot of the meta-analysed GWAS result showing no 

inflation (Figure 1). 

Gene-level association analysis 

 No genes were significantly associated with self-reported treatment outcomes after 

Bonferonni correction for the number of genes tested in each GWAS (GLAD+: α = 0.05 / 18581 

genes = P < 2.69x10-6; AGDS: 18656 genes = P < 2.68x10-6; Meta-analysis: 18844 genes = 

P < 2.65x10-6).  

 

SNP-based heritability 

We did not identify an SNP-based heritability of retrospectively self-reported treatment 

outcomes that was significantly different from zero using LDSC regression and GCTA-GREML 

(Table 3 and Table 4). GCTA-GREML power calculations80 indicate that the sample size in 

each dataset (in which individual-level data was available) had a minimum of 80% power to 

detect an SNP-based heritability of 25%, assuming a population prevalence of 41% for 

response to psychological therapy9. As we did not detect a significant SNP-based heritability, 

this suggests that the SNP-based heritability of this phenotype is less than 25%. 

Table 3. LDSC SNP-based heritability estimates (using summary-level data) in 
GLAD+ and AGDS datasets, total N = 15,131 
Dataset h2

SNP
 Observed h2

SNP SE Z h2
SNP

 Liability 
GLAD+ 0.04 0.07 0.57 0.08 
AGDS -0.05 0.06 -0.87 -0.11 
Meta-analysis 0.01 0.03 0.34 0.02 

 

Table 4. GCTA-GREML SNP-based heritability estimates (using individual-level data) 
in GLAD+ and AGDS datasets 
Dataset h2

SNP
 Liability h2

SNP SE P-value  N 
GLAD+ 0.003 0.13 0.49 7442 
AGDS 0.027 0.06 0.32 7595 
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Figure 1: Q-Q plot (left) and Manhattan plot (right) of associations from a meta-analysis of retrospectively self-reported treatment 
outcomes following psychological therapy (N = 15,131; 75% reported positive outcomes).
In the Manhattan plot, dashed line indicates suggestive threshold (P < 1 x 10−5) for genetic variants associated with retrospectively self-reported 
treatment outcomes.   



 120 

 

Aim 2: Prediction of retrospectively self-reported treatment outcomes using 
genetic, sociodemographic and clinical predictors 
These analyses included a sub-sample of participants from the GLAD+ dataset who had 

provided both genetic data for polygenic score creation and data on sociodemographic and 

clinical predictors (N = 4,439). Univariable associations with each predictor are provided in 

Table 5. Education level, number of episodes and polygenic scores for ADHD, self-reported 

health and age at first birth were significantly associated with retrospectively self-reported 

treatment outcomes at Bonferroni corrected threshold (P ≤ 0.0017). 

Elastic net models were estimated using nested 10-fold cross-validation to assess whether 

the inclusion of polygenic predictors improved the prediction of retrospectively self-report 

treatment outcomes over and above previously associated sociodemographic/clinical 

predictors. Variance explained on the liability scale (R2) was determined using a prevalence 

of 41% for response to psychological therapy9. 

Polygenic scores explained 0.4% of the variance in retrospectively self-reported treatment 

outcomes (Table 6; P = 0.007). Sociodemographic and clinical predictors previously 

associated with retrospectively self-reported treatment outcomes in this sample (sex, number 

of episodes, University level education) explained 3.5% of the variance in retrospectively self-

reported treatment outcomes (Table 6; P = 2.1x10−16). Including polygenic scores in the model 

of sociodemographic/clinical predictors did not significantly improve the predictive utility of the 

model, as assessed by the correlation between the observed and predicted phenotype (R; P-

value of difference in R = 0.409; Supplementary Table S4). Coefficients for the predictors 

retained in the model estimated using the optimal λ tuning parameter derived from 10-fold 

cross-validation are given in Supplementary Table S5. 
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Table 5. Univariable associations between predictors and retrospectively self-
reported treatment outcomes in the GLAD+ dataset (N = 4,439) 
Predictor Univariable β 

(SE) 
P-value R2

Observed R2
Liability 

Sociodemographic 
Sex 0.027 (0.04) 0.456 0.000 0.000 
University degree* 0.172 (0.04) 3.2x10-6 0.005 0.012 

Clinical 
Number of episodes* -0.278 (0.04) 4.3x10-14 0.013 0.031 

Genetic (polygenic score) 
ADHD* -0.124 (0.04) 0.001 0.003 0.006 
Self-reported health* 0.121 (0.04) 0.001 0.002 0.006 
Age at first birth* 0.119 (0.04) 0.001 0.002 0.005 
Body mass index -0.084 (0.04) 0.024 0.001 0.003 
Depressive symptoms -0.085 (0.04) 0.023 0.001 0.003 
Educational attainment 0.097 (0.04) 0.009 0.002 0.004 
Daily alcohol use 0.012 (0.04) 0.751 0.000 0.000 
Anorexia nervosa 0.005 (0.04) 0.884 0.000 0.000 
Anxiety 0.031 (0.04) 0.405 0.000 0.000 
Autism -0.024 (0.04) 0.511 0.000 0.000 
Bipolar disorder 0.027 (0.04) 0.468 0.000 0.000 
Sleep duration 0.072 (0.04) 0.053 0.001 0.002 
Cross disorder -0.07 (0.04) 0.061 0.001 0.002 
Major depressive disorder 
(PGC2, no 23andMe) 

-0.036 (0.04) 0.335 0.000 0.000 

Broad depression 0.017 (0.04) 0.640 0.000 0.000 
Diabetes Type 2 0.004 (0.04) 0.912 0.000 0.000 
Household income 0.031 (0.04) 0.410 0.000 0.000 
Insomnia -0.071 (0.04) 0.055 0.001 0.002 
Intelligence 0.046 (0.04) 0.218 0.000 0.001 
Memory -0.022 (0.04) 0.553 0.000 0.000 
Neuroticism 0.024 (0.04) 0.511 0.000 0.000 
Obsessive compulsive 
disorder 

-0.027 (0.04) 0.471 0.000 0.000 

Physical activity 0.023 (0.04) 0.543 0.000 0.000 
Post-traumatic stress 
disorder 

-0.045 (0.04) 0.223 0.000 0.001 

General risk tolerance 0.03 (0.04) 0.426 0.000 0.000 
Schizophrenia 0.008 (0.04) 0.836 0.000 0.000 
Ever smoker -0.047 (0.04) 0.207 0.000 0.001 

Bold indicates significance at p<.05, *indicates significance at bonferroni corrected 
threshold p<0.0017 (0.05 / 30 tests). β = logistic regression coefficient denotes the 
expected change in log odds of having the outcome per unit change in the predictor. 
Hence, one standard deviation increase in a polygenic score increases the odds of 
reporting favourable treatment outcomes by a factor of eβ . SE = standard error. R2

Observed = 

Variance explained on the observed scale. R2
Liability = Variance explained on the liability 

scale.   
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Table 6. Models predicting self-reported outcomes following psychological therapy 
for depression/anxiety using genetic, sociodemographic and clinical predictors in 
the GLAD+ dataset (N = 4,439) 

Model R R SE R P-value  R2 
Genetic predictors 0.041 0.015 0.007 0.004 

(0.4%) 
Sociodemographic and clinical 
predictors 0.123 0.015 2.1×10−16 0.035 

(3.5%) 
Sociodemographic, clinical and 
genetic predictors 

0.115 0.015 1.3×10−14 0.031 
(3.1%) 

R = Pearson correlation between model predictions and outcome. R2 = Variance explained 
on the liability scale. 

 

Sensitivity analyses 
To assess the impact of combining the binary phenotype from the CIDI-SF with the ordinal 

option treatment history scale, we ran sensitivity analyses with a more homogenous 

phenotype using only responses from the depression and generalised anxiety CIDI-SF 

modules in the GLAD+ dataset. Using this phenotype did not influence the significance of the 

SNP-based heritability estimate using GCTA-GREML (h2 Liability = 0.36; h2 SE = 0.26; P = 0.087; 

N = 4,280), and did not change the pattern of the results from the prediction model (R for 

genetic model = 0.044; R for sociodemographic/clinical model = 0.122; R for full model = 

0.112; P-value of difference in R = 0.334; N = 3,843). 

Two sensitivity analyses were run to assess whether current student status was confounding 

associations with education level in the prediction analysis. First, participants who reported 

being a full-time or part-time student or who were below the age of 25 were excluded (N = 

532). The aim of this analysis was to create a subsample of participants in which the University 

degree variable captured likely lifetime educational attainment. These exclusions did not 

change the pattern of the results (R for genetic model = 0.034; R for sociodemographic/clinical 

model = 0.108; R for full model = 0.094; P-value of difference in R = 0.232; N = 3,907). Second, 

education level was removed as a predictor. This also did not change the pattern of the results 

(R for genetic model = 0.041; R for sociodemographic/clinical model = 0.110; R for full model 

= 0.107; P-value of difference in R = 0.716; N = 4,439).
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Discussion 
This study presents the largest genetic investigation of psychological treatment outcomes to 

date (N = 15,131). Two approaches were used to investigate genetic influences on 

retrospectively self-reported outcomes following psychological treatment for anxiety and 

depression. First, we performed a genome-wide association study (GWAS) meta-analysis of 

self-reported treatment outcomes to assess whether this phenotype has a heritable basis that 

common genetic variants can capture (i.e. SNP-based heritability). Second, we evaluated 

whether genetic influences on psychiatric, cognitive and related traits improve the prediction 

of self-reported treatment outcomes over and above known sociodemographic and clinical 

predictors. 

No common genetic variants associated with self-reported treatment outcomes reached 

genome-wide significance in our GWAS meta-analysis. The benefit of brief phenotyping 

approaches may only be seen in much larger scale analyses, such that the sample size 

outweighs the imprecision of the phenotype. Previous genomic analyses using prospective 

indicators of treatment outcomes did not find genome-wide significant associations in samples 

of 980 and 2,724 individuals, respectively40,41. Power calculations based on these findings 

indicated that sample sizes of ~4500 individuals would be necessary to achieve 80% power 

to detect a SNP-based heritability of 20%, when treatment outcomes are defined as a 

continuous measure of change in symptom severity from start to end of treatment. However, 

brief phenotyping approaches result in a lower SNP-based heritability than symptom-based 

measures. For depression, lifetime cases defined using diagnostic algorithms have a SNP-

based heritability of 26%. In comparison, cases derived from single-item measures assessing 

self-reported diagnoses or seeking treatment for depressive symptoms have lower SNP-

based heritabilities of 11% and 13%, respectively81. These results are attributed to brief 

phenotyping approaches capturing only a proportion of the genetic liability to depression81,82. 

Hence, it is reasonable to assume that the SNP-based heritability of self-reported outcomes 

following psychological therapy would be lower than that of prospective indicators of treatment 

outcomes.  

We had approximately 80% power to estimate a SNP-based heritability of 25% in GCTA-

GREML. Estimates were calculated separately in each of the two datasets due to the 

availability of individual-level genetic data, with a 3:1 case-control ratio in 7,536 and 7,596 

individuals in the GLAD+ and AGDS datasets, respectively.  Therefore, in line with brief 

phenotyping of other psychiatric traits, the results of this study indicate that the SNP-based 

heritability of self-reported outcomes following psychological therapy as a binary measure is 

lower than 25%. To detect a SNP-based heritability of 10%, these datasets had only 
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approximately 20% power. To achieve 80% power, individual-level genetic data on 18,600 

participants would be needed, corresponding to 2.5 times the size of the current GLAD+ 

dataset. These sample sizes are not inconceivable in psychiatric genetic research, in which 

sample sizes with individual-level genetic data and brief measures on depression have 

exceeded 300,00044,45. With the ongoing recruitment of individuals to studies collecting self-

reported treatment outcome data, we anticipate such sample sizes will not take too long to 

reach. 

These conclusions, however, raise questions over the clinical importance of identifying genetic 

influences that only amount to 10-24% (or less) of the SNP-based heritability of self-reported 

treatment outcomes. The aim of detecting these variants would be to create a polygenic score 

that captures genetic propensity to favourable outcomes following psychological treatment. 

This polygenic score could be utilised in predicting treatment outcomes to help allocate 

resources to those who are most likely to benefit or provide additional support to those with 

low propensity to benefit from standard psychological therapy alone. The utility of this 

polygenic score can be hypothesised from comparisons to related traits. For depression, a 

polygenic score derived from a GWAS with a SNP-based heritability estimate of 9% explained 

1.5-3.2% of the variance (R2) in diagnoses in independent samples48. To put this into context 

of existing predictors, in our sample the strongest clinical predictor, number of disorder 

episodes, explained 3.1% of the variance and the strongest demographic predictor, University-

level education, explained 1.2% of the variance. These estimates indicate that a polygenic 

score of self-reported treatment outcomes could explain a comparable proportion of the 

variance in treatment outcomes to existing sociodemographic/clinical predictors. 

Currently, prediction models incorporating the best known clinical and sociodemographic 

predictors explain ~17% of the variance in outcomes assessed broadly across psychological 

and antidepressant treatments for depression in primary care31. However, the predictive power 

of models assessing psychological treatment outcomes specifically are less well quantified. If 

a polygenic score of psychological treatment outcomes could contribute an additional 1.5% to 

the variance explained above these existing predictors, this would represent a 9% increase in 

predictive utility. One additional advantage of polygenic scores in comparison to clinical 

predictors is that the genetic liability that they capture is consistent across life. Hence, once 

genetic scores are obtained for an individual, this information can be used across numerous 

instances without any additional burden of repeated data collection. 

Consistent with previous models predicting remission following iCBT for depression, we found 

that higher polygenic scores for neurodevelopmental disorders and lower scores for cognitive 

traits were associated with poorer self-reported treatment outcomes in the univariable 
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models52,53. In addition to the six phenotypes that have previously been investigated, which 

included major depressive disorder, bipolar disorder, ADHD, autism spectrum disorder, 

intelligence and educational attainment52, we tested associations with polygenic scores for a 

range of other psychiatric, personality, health and demographic traits. We also found 

significant positive associations with polygenic scores for self-reported health and age at first 

birth, which are compatible with the shared polygenic nature of these traits with phenotypes 

associated with treatment outcomes, including educational attainment, ADHD and depression 

symptoms83,84. Interestingly, both traits also display strong phenotypic and genetic 

relationships with longevity, indicating a role of psychological well-being in general health 

status throughout life85,86. As these associations are based on univariable analyses, they may 

be inflated as they are not mutually adjusted for related traits that share genetic overlap. 

Nevertheless, polygenic scores for ADHD, depressive symptoms, broad depression, 

educational attainment, intelligence, self-reported health and age at first birth were all retained 

in the optimal model derived from 10-fold cross-validation, indicating that they independently 

contribute to the prediction of self-reported treatment outcomes (Supplementary Table S5). 
Before strong conclusions can be drawn about the overall predictive utility of these models, 

external validation in independent samples is essential33. 

Despite these associations, the inclusion of polygenic scores did not significantly improve the 

prediction of self-reported treatment outcomes over previously associated 

sociodemographic/clinical predictors. This is in contrast with the prediction of remission 

following iCBT, in which genetic, demographic and clinical predictors displayed comparable 

importance to prediction53. There are several possible explanations for these differences. First, 

the definition of outcomes predicted in these two models differed, and therefore heritable traits 

may not contribute to their classification in the same way. For iCBT, remission was defined as 

a score ≤10 following treatment on the Montgomery-Åsberg Depression Rating Scale-Self 

report (MADRS-S)87. This phenotype is more objective than self-reported treatment outcomes, 

which may be more greatly influenced by external factors, such as the therapist-client 

relationship, that influence the overall perception of treatment as beneficial, independently of 

whether or not symptoms improved. 

A second plausible explanation is that the inclusion of several treatment types in the current 

study masked associations with genetic predictors. As well as including both individual and 

group therapies, treatment types included CBT, counselling, guided self-help, relationship or 

family therapy and internet-based therapies (Supplementary Table S2). This contrasts with 

past research exclusively assessing outcomes of iCBT, which followed a rigid structure with 

regulated module content, duration and therapist contact88. Although different forms of 
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psychological treatment are found, on average, to be equally effective89, they may target 

different mechanisms or processes. For example, CBT is centred around cognitive 

restructuring and behavioural exposure with a focus on changing maladaptive thoughts and 

behaviours to improve symptoms and functioning. Conversely, counselling involves a 

discussion between the therapist and client about life events, emotions, reactions and 

behaviours, with the therapist challenging the client to understand themselves better and 

develop coping strategies90. Hence, the heritable traits that influence the outcomes of one 

treatment may have no association, or even the opposite association, with other treatment 

types. Consistent with this possibility, CBT has been shown to be more effective than 

counselling for individuals with shorter duration of depression, higher expectations of 

treatment, and who were taking concurrent antidepressants91. It is plausible that combining 

these different treatment types limited the ability to identify associations with heritable traits 

associated with the outcomes of one treatment specifically. 

A final possibility is that the differences in the predictive utility of polygenic scores arise from 

differences in the samples across these two studies. Previous studies finding a meaningful 

contribution of genetic factors to the prediction of iCBT outcomes have included individuals 

receiving treatment as part of the public psychiatric care services in Stockholm, including 

those referred by their general practitioner or through online self-referrals52. These individuals 

were likely to represent a range of presentations of depression, as demonstrated through 

differing rates of severity indicators. Only 23% of the sample had a comorbid disorder, 57.5% 

were currently taking psychotropic medication, and approximately half reported recurrent 

episodes. This is in contrast to the datasets included in the current study, the majority of whom 

volunteered to be part of research on the basis of their lifetime experience of depression or 

anxiety. In the GLAD study and AGDS, participants broadly display similar profiles. The 

majority of participants have a comorbid psychiatric disorder, over 90% report taking 

antidepressant medication, and almost all participants report numerous episodes. This 

highlights that these datasets are enriched for those with severe and recurrent psychiatric 

disorders, who are likely to have similarly high genetic predisposition to depression, anxiety 

and related traits. This results in less variation between those who report favourable and 

negative treatment outcomes, reducing power to identify factors associated with different 

outcomes. This would suggest that datasets recruited on the basis of lifetime disorder may not 

be the most suited to this type of research, and their use in combination with less selective 

naturalistic samples of individuals seeking treatment may provide greater power to identify 

predictors of outcomes. 
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In addition to increasing sample size, there are several key considerations for future research 

relating to the limitations of existing work in this field. First, this study used a combination of 

two self-reported single-item questions, assessing benefit from therapy and improvement in 

symptoms/functioning. This approach was taken to maximise sample size in the GLAD+ 

dataset and facilitate meta-analysing with AGDS. However, these two types of questions may 

capture different aspects of treatment response. Using a consistent item in future may help to 

reduce heterogeneity and increase power. Additionally, the brief phenotyping items used have 

not been validated against prospective measures of symptom improvement or change in case 

status. Validation of these items may help to elucidate the brief phenotyping assessments that 

most closely resemble traditionally assessed treatment outcomes. Second, ~75% of 

participants in the current sample reported positive treatment outcomes. The imbalance of this 

“case-control” ratio may indicate that those with perceived negative outcomes are not well 

represented in these samples. This may also reflect the self-selecting nature of participants 

who have volunteered to engage with research about their experiences of depression and 

anxiety. Additionally, imbalanced ratios can result in problems applying statistical methods92. 

More balanced samples may arise from greater recruitment from naturalistic treatment 

settings or could be achieved by oversampling those with negative outcomes. 

Third, our ability to assess whether polygenic scores increase the prediction of self-reported 

treatment outcomes over and above known predictors was limited by the availability of specific 

sociodemographic and clinical variables in these datasets. Other factors previously associated 

with treatment outcomes, such as baseline symptoms, functional impairment and treatment 

factors, were not included in this analysis due to either the absence of their assessment or 

inconsistent assessments across studies. Although this limitation is unlikely to have altered 

the conclusions that polygenic scores did not significantly improve prediction, it does impact 

the ability to estimate the maximum variance explained in psychological treatment outcomes 

by a best fitting model including all identified predictors. In addition, clinical predictors were 

selected to reflect the entire period of illness rather than the specific episode for which 

treatment was sought50. Hence, it is possible that the lifetime assessment of the number of 

episodes confounded associations with self-reported treatment outcomes. Nevertheless, this 

association is also demonstrated when outcomes are assessed using traditional prospective 

measures of symptom change17. Finally, issues of diversity and generalisability are evident in 

all genetic investigations, including only participants of predominantly European ancestry. 

These issues are particularly pertinent in studies of treatment outcomes, given the disparities 

in access and receipt of mental health care for minoritised groups in the UK93. Research 

centred around improving outcomes based only on European-associated genetic ancestry 
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data may exacerbate these inequalities in treatment seeking and receipt, which already 

disproportionately affect minoritised groups. 

These analyses have several implications for future investigations of genetic influences on 

psychological treatment outcomes. The results indicate that consistent with brief phenotyping 

approaches of related psychiatric traits, identifying the SNP-based heritable component of 

retrospectively self-reported treatment outcomes will require larger sample sizes than were 

reached through the current meta-analysis. To achieve this, increased collection of data 

relating to psychological treatment outcomes as part of studies that assess mental health 

history will be vital. Polygenic scores of related psychiatric, cognitive and demographic traits 

explained a small proportion of variance in self-reported treatment outcomes. This supports 

the hypothesis that a heritable component to self-reported treatment outcomes exists, 

warranting further investigation in larger samples. Future work should focus on validation of 

different items for briefly phenotyped psychological treatment outcomes and investigate 

whether polygenic scores have greater predictive utility to differentiate between positive and 

negative outcomes within specific treatment types. 



 129 

References 
1. Steel, Z. et al. The global prevalence of common mental disorders: a systematic review 

and meta-analysis 1980-2013. Int. J. Epidemiol. 43, 476–493 (2014). 
2. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV 

disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 
593–602 (2005). 

3. Wakefield, S. et al. Improving Access to Psychological Therapies (IAPT) in the United 
Kingdom: A systematic review and meta-analysis of 10-years of practice-based 
evidence. Br. J. Clin. Psychol. 60, 1–37 (2021). 

4. Clark, D. M. Realizing the Mass Public Benefit of Evidence-Based Psychological 
Therapies: The IAPT Program. Annu. Rev. Clin. Psychol. 14, 159–183 (2018). 

5. Cuijpers, P., Karyotaki, E., de Wit, L. & Ebert, D. D. The effects of fifteen evidence-
supported therapies for adult depression: A meta-analytic review. Psychother. Res. 30, 
279–293 (2020). 

6. Cipriani, A. et al. Comparative Efficacy and Acceptability of 21 Antidepressant Drugs for 
the Acute Treatment of Adults With Major Depressive Disorder: A Systematic Review 
and Network Meta-Analysis. Focus  16, 420–429 (2018). 

7. Slee, A. et al. Pharmacological treatments for generalised anxiety disorder: a systematic 
review and network meta-analysis. Lancet 393, 768–777 (2019). 

8. Hunot, V., Churchill, R., de Lima, M. S. & Teixeira, V. Psychological therapies for 
generalised anxiety disorder. Cochrane Database of Systematic Reviews Preprint at 
https://doi.org/10.1002/14651858.cd001848.pub3 (2006). 

9. Cuijpers, P. et al. The effects of psychotherapies for depression on response, 
remission, reliable change, and deterioration: A meta-analysis. Acta Psychiatr. Scand. 
144, 288–299 (2021). 

10. Loerinc, A. G. et al. Response rates for CBT for anxiety disorders: Need for 
standardized criteria. Clin. Psychol. Rev. 42, 72–82 (2015). 

11. Marcus, S. C. & Olfson, M. National trends in the treatment for depression from 1998 to 
2007. Arch. Gen. Psychiatry 67, 1265–1273 (2010). 

12. Blane, D., Williams, C., Morrison, J., Wilson, A. & Mercer, S. Cognitive behavioural 
therapy: why primary care should have it all. British Journal of General Practice vol. 63 
103–104 Preprint at https://doi.org/10.3399/bjgp13x663235 (2013). 

13. Buckman, J. E. J. et al. The contribution of depressive ‘disorder characteristics’ to 
determinations of prognosis for adults with depression: an individual patient data meta-
analysis. Psychol. Med. 51, 1068–1081 (2021). 

14. Fournier, J. C. et al. Prediction of response to medication and cognitive therapy in the 
treatment of moderate to severe depression. J. Consult. Clin. Psychol. 77, 775–787 
(2009). 

15. Hölzel, L., Härter, M., Reese, C. & Kriston, L. Risk factors for chronic depression--a 
systematic review. J. Affect. Disord. 129, 1–13 (2011). 

16. Lorenzo-Luaces, L., Rodriguez-Quintana, N. & Bailey, A. J. Double trouble: Do 
symptom severity and duration interact to predicting treatment outcomes in adolescent 
depression? Behav. Res. Ther. 131, 103637 (2020). 

17. Buckman, J. E. J. et al. Risk factors for relapse and recurrence of depression in adults 
and how they operate: A four-phase systematic review and meta-synthesis. Clin. 
Psychol. Rev. 64, 13–38 (2018). 

18. Delgadillo, J., Huey, D., Bennett, H. & McMillan, D. Case complexity as a guide for 
psychological treatment selection. J. Consult. Clin. Psychol. 85, 835–853 (2017). 

19. Delgadillo, J., Moreea, O. & Lutz, W. Different people respond differently to therapy: A 
demonstration using patient profiling and risk stratification. Behav. Res. Ther. 79, 15–22 
(2016). 



 130 

20. Saunders, R., Cape, J., Fearon, P. & Pilling, S. Predicting treatment outcome in 
psychological treatment services by identifying latent profiles of patients. J. Affect. 
Disord. 197, 107–115 (2016). 

21. El Alaoui, S. et al. Predicting Outcome in Internet-Based Cognitive Behaviour Therapy 
for Major Depression: A Large Cohort Study of Adult Patients in Routine Psychiatric 
Care. PLoS One 11, e0161191 (2016). 

22. Hollon, S. D. et al. Effect of Cognitive Therapy With Antidepressant Medications vs 
Antidepressants Alone on the Rate of Recovery in Major Depressive Disorder. JAMA 
Psychiatry vol. 71 1157 Preprint at https://doi.org/10.1001/jamapsychiatry.2014.1054 
(2014). 

23. Angstman, K. B. et al. Personality Disorders in Primary Care: Impact on Depression 
Outcomes Within Collaborative Care. J. Prim. Care Community Health 8, 233–238 
(2017). 

24. Dennehy, E. B., Marangell, L. B., Martinez, J., Balasubramani, G. K. & Wisniewski, S. 
R. Clinical and functional outcomes of patients who experience partial response to 
citalopram: secondary analysis of STAR*D. J. Psychiatr. Pract. 20, 178–187 (2014). 

25. Newton-Howes, G., Tyrer, P. & Johnson, T. Personality disorder and the outcome of 
depression: meta-analysis of published studies. Br. J. Psychiatry 188, 13–20 (2006). 

26. Renaud, J., Russell, J. J. & Myhr, G. Predicting who benefits most from cognitive-
behavioral therapy for anxiety and depression. J. Clin. Psychol. 70, 924–932 (2014). 

27. DeRubeis, R. J. et al. The Personalized Advantage Index: translating research on 
prediction into individualized treatment recommendations. A demonstration. PLoS One 
9, e83875 (2014). 

28. Buckman, J. E. J. et al. Role of age, gender and marital status in prognosis for adults 
with depression: An individual patient data meta-analysis. Epidemiol. Psychiatr. Sci. 30, 
e42 (2021). 

29. Chekroud, A. M. et al. Cross-trial prediction of treatment outcome in depression: a 
machine learning approach. Lancet Psychiatry 3, 243–250 (2016). 

30. Skelton, M. et al. Trajectories of depression and anxiety symptom severity during 
psychological therapy for common mental health problems. Psychol. Med. 1–11 (2022). 

31. Buckman, J. E. J. et al. Predicting prognosis for adults with depression using individual 
symptom data: a comparison of modelling approaches. Psychol. Med. 1–11 (2021). 

32. O’Driscoll, C. et al. The importance of transdiagnostic symptom level assessment to 
understanding prognosis for depressed adults: analysis of data from six randomised 
control trials. BMC Med. 19, 109 (2021). 

33. Chekroud, A. M. et al. The promise of machine learning in predicting treatment 
outcomes in psychiatry. World Psychiatry 20, 154–170 (2021). 

34. Tansey, K. E. et al. Contribution of common genetic variants to antidepressant 
response. Biol. Psychiatry 73, 679–682 (2013). 

35. Pain, O. et al. Identifying the Common Genetic Basis of Antidepressant Response. Biol 
Psychiatry Glob Open Sci 2, 115–126 (2022). 

36. Mojtabai, R. Nonremission and time to remission among remitters in major depressive 
disorder: Revisiting STAR* D. Depress. Anxiety (2017). 

37. Bralten, J. et al. Genetic underpinnings of sociability in the general population. 
Neuropsychopharmacology 46, 1627–1634 (2021). 

38. Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide 
association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 
1112–1121 (2018). 

39. Luciano, M. et al. Association analysis in over 329,000 individuals identifies 116 
independent variants influencing neuroticism. Nat. Genet. 50, 6–11 (2018). 

40. Rayner, C. et al. A genome-wide association meta-analysis of prognostic outcomes 
following cognitive behavioural therapy in individuals with anxiety and depressive 
disorders. Transl. Psychiatry 9, 150 (2019). 



 131 

41. Coleman, J. R. I. et al. Genome-wide association study of response to cognitive-
behavioural therapy in children with anxiety disorders. Br. J. Psychiatry 209, 236–243 
(2016). 

42. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. 
Am. J. Hum. Genet. 101, 5–22 (2017). 

43. Sanchez-Roige, S. & Palmer, A. A. Emerging phenotyping strategies will advance our 
understanding of psychiatric genetics. Nat. Neurosci. 23, 475–480 (2020). 

44. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK 
Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1470 
(2018). 

45. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low 
specificity for major depression. Nat. Genet. 52, 437–447 (2020). 

46. Flint, J. The genetic basis of major depressive disorder. Mol. Psychiatry (2023) 
doi:10.1038/s41380-023-01957-9. 

47. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine 
the genetic architecture of major depression. Nat. Genet. 50, 668 (2018). 

48. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 
independent variants and highlights the importance of the prefrontal brain regions. 
BioRxiv 433367 (2019). 

49. Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major 
depression in individuals of European descent. Nature Genetics vol. 48 1031–1036 
Preprint at https://doi.org/10.1038/ng.3623 (2016). 

50. Rayner, C. et al. Patient characteristics associated with retrospectively self-reported 
treatment outcomes following psychological therapy for anxiety or depressive disorders 
- a cohort of GLAD study participants. BMC Psychiatry 22, 719 (2022). 

51. Button, K. S. et al. Minimal clinically important difference on the Beck Depression 
Inventory - II according to the patient’s perspective. Psychological Medicine vol. 45 
3269–3279 Preprint at https://doi.org/10.1017/s0033291715001270 (2015). 

52. Andersson, E. et al. Genetics of response to cognitive behavior therapy in adults with 
major depression: a preliminary report. Mol. Psychiatry 24, 484–490 (2019). 

53. Wallert, J. et al. Predicting remission after internet-delivered psychotherapy in patients 
with depression using machine learning and multi-modal data. medRxiv 
2021.04.30.21256367 (2021). 

54. Davies, M. R. et al. The Genetic Links to Anxiety and Depression (GLAD) Study: Online 
recruitment into the largest recontactable study of depression and anxiety. Behav. Res. 
Ther. 123, 103503 (2019). 

55. Young, K. S. et al. Depression, anxiety and PTSD symptoms before and during the 
COVID-19 pandemic in the UK. Psychol. Med. 1–31 (2022). 

56. Byrne, E. M. et al. Cohort profile: the Australian genetics of depression study. BMJ 
Open 10, e032580 (2020). 

57. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 
Nature 562, 203–209 (2018). 

58. Davies, M. R. et al. Comparison of symptom-based versus self-reported diagnostic 
measures of anxiety and depression disorders in the GLAD and COPING cohorts. J. 
Anxiety Disord. 85, 102491 (2022). 

59. Kessler, R. C., Andrews, G., Mroczek, D., Ustun, B. & Wittchen, H.-U. The World Health 
Organization composite international diagnostic interview short-form (CIDI-SF). Int. J. 
Methods Psychiatr. Res. 7, 171–185 (1998). 

60. Mitchell, B. L. et al. The Australian Genetics of Depression Study: New Risk Loci and 
Dissecting Heterogeneity Between Subtypes. Biol. Psychiatry (2021) 
doi:10.1016/j.biopsych.2021.10.021. 

61. Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative 
and binary traits. Nat. Genet. 53, 1097–1103 (2021). 

62. Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness 
in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018). 



 132 

63. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

64. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping 
and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017). 

65. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-
set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015). 

66. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide 
complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 

67. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 
polygenicity in genome-wide association studies. Nature Genetics vol. 47 291–295 
Preprint at https://doi.org/10.1038/ng.3211 (2015). 

68. Pain, O. et al. Evaluation of polygenic prediction methodology within a reference-
standardized framework. PLoS Genet. 17, e1009021 (2021). 

69. Zhang, Q., Privé, F., Vilhjálmsson, B. & Speed, D. Improved genetic prediction of 
complex traits from individual-level data or summary statistics. Nat. Commun. 12, 4192 
(2021). 

70. Speed, D., Holmes, J. & Balding, D. J. Evaluating and improving heritability models 
using summary statistics. Nat. Genet. 52, 458–462 (2020). 

71. Pain, O. & Lewis, C. M. Using Local Genetic Correlation Improves Polygenic Score 
Prediction Across Traits. bioRxiv 2022.03.10.483736 (2022) 
doi:10.1101/2022.03.10.483736. 

72. Krapohl, E. et al. Multi-polygenic score approach to trait prediction. Mol. Psychiatry 
(2017). 

73. Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear 
Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010). 

74. Kuhn, M. Building Predictive Models inRUsing thecaretPackage. J. Stat. Softw. 28, 
(2008). 

75. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. 
Soc. Series B Stat. Methodol. 67, 301–320 (2005). 

76. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction. (Springer Science & Business Media, 2013). 

77. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning. 
Springer Texts in Statistics Preprint at https://doi.org/10.1007/978-1-4614-7138-7 
(2013). 

78. Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of 
the Royal Statistical Society: Series B (Methodological) vol. 36 111–133 Preprint at 
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x (1974). 

79. Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychological 
Bulletin vol. 87 245–251 Preprint at https://doi.org/10.1037/0033-2909.87.2.245 (1980). 

80. Visscher, P. M. et al. Statistical power to detect genetic (co)variance of complex traits 
using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014). 

81. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low 
specificity for major depression. Nature Genetics vol. 52 437–447 Preprint at 
https://doi.org/10.1038/s41588-020-0594-5 (2020). 

82. Kendler, K. S. et al. Shared and specific genetic risk factors for lifetime major 
depression, depressive symptoms and neuroticism in three population-based twin 
samples. Psychol. Med. 49, 2745–2753 (2019). 

83. Mills, M. C. et al. Identification of 371 genetic variants for age at first sex and birth linked 
to externalising behaviour. Nat Hum Behav 5, 1717–1730 (2021). 

84. Harris, S. E. et al. Molecular genetic contributions to self-rated health. Int. J. Epidemiol. 
46, 994–1009 (2017). 

85. Wuorela, M. et al. Self-rated health and objective health status as predictors of all-cause 
mortality among older people: a prospective study with a 5-, 10-, and 27-year follow-up. 
BMC Geriatr. 20, 120 (2020). 



 133 

86. Shadyab, A. H. et al. Maternal Age at Childbirth and Parity as Predictors of Longevity 
Among Women in the United States: The Women’s Health Initiative. American Journal 
of Public Health vol. 107 113–119 Preprint at https://doi.org/10.2105/ajph.2016.303503 
(2017). 

87. Zimmerman, M., Posternak, M. A. & Chelminski, I. Derivation of a definition of remission 
on the Montgomery–Asberg depression rating scale corresponding to the definition of 
remission on the Hamilton rating scale for depression. Journal of Psychiatric Research 
vol. 38 577–582 Preprint at https://doi.org/10.1016/j.jpsychires.2004.03.007 (2004). 

88. Hedman, E. et al. Effectiveness of Internet-based cognitive behaviour therapy for 
depression in routine psychiatric care. J. Affect. Disord. 155, 49–58 (2014). 

89. Cuijpers, P., van Straten, A., Andersson, G. & van Oppen, P. Psychotherapy for 
Depression in Adults: A Meta-Analysis of Comparative Outcome Studies. FOCUS vol. 8 
75–75 Preprint at https://doi.org/10.1176/foc.8.1.foc75 (2010). 

90. Pybis, J., Saxon, D., Hill, A. & Barkham, M. The comparative effectiveness and 
efficiency of cognitive behaviour therapy and generic counselling in the treatment of 
depression: evidence from the 2 UK National Audit of psychological therapies. BMC 
Psychiatry 17, 215 (2017). 

91. Delgadillo, J. & Gonzalez Salas Duhne, P. Targeted prescription of cognitive-behavioral 
therapy versus person-centered counseling for depression using a machine learning 
approach. J. Consult. Clin. Psychol. 88, 14–24 (2020). 

92. Dai, X., Fu, G., Zhao, S. & Zeng, Y. Statistical Learning Methods Applicable to Genome-
Wide Association Studies on Unbalanced Case-Control Disease Data. Genes  12, 
(2021). 

93. Rayner, C. et al. Sociodemographic factors associated with treatment-seeking and 
treatment receipt: cross-sectional analysis of UK Biobank participants with lifetime 
generalised anxiety or major depressive disorder. BJPsych Open 7, (2021). 

 

 

 



 134 

Chapter 5. General discussion 
 
General overview of findings  
The overarching aim of this thesis was to use genomic data to better understand genetic 

contributions to the risk of anxiety and depression and psychological treatment outcomes. 

Chapter 2 examined genomic risk factors associated with the clinical heterogeneity of anxiety 

disorders. Chapter 3 explored genomic factors associated with vulnerability to experiencing 

trauma, which is an important socio-environmental risk factor for anxiety and depression. 

Finally, Chapter 4 assessed genomic influences on outcomes of positive environmental 

exposures (i.e. psychological treatment for anxiety or depression). The findings from these 

studies are now discussed in relation to three key themes that emerged from the results and 

how these relate to current challenges in anxiety and depression genomics. General 

limitations and future avenues for genetics research on the risk and treatment of common 

mental disorders are then discussed. 

Chapter 2 investigated the genomic risk factors associated with fear-based disorders versus 

GAD, two key subtypes that reflect clinical heterogeneity in the anxiety disorder spectrum. 

Combining detailed and brief diagnostic measures of anxiety disorders improved the power to 

refine the genomic relationship between fear and GAD and other complex traits. Genetic 

correlation results supported the utilisation of both a higher-order internalising grouping and 

lower-order fear and distress subgroupings in research on genetic risk factors. Case 

ascertainment and control screening criteria influenced the detection of genetic differences 

between fear and GAD, highlighting the challenge of handling high comorbidity levels in 

anxiety GWAS. Genetic correlations between fear and GAD were high and did not significantly 

differ in genetic correlation with several psychiatric traits, including depression, PTSD, OCD, 

and bipolar disorder type II. The exceptions were neuroticism, bipolar disorder type I and 

anorexia nervosa, where GAD showed stronger positive genetic correlations with these traits 

than with fear. This underscores the value of subtype-specific GWAS in understanding the 

genetic structure across different psychopathologies. Genetic correlations with environmental 

risk factors, including reported childhood maltreatment, did not differ between fear and GAD. 

This may indicate shared genetic risk factors, such as heritable behaviours, in gene-

environment interplay. Fear and GAD had significant negative genetic correlations with one 

risk-taking behaviour (automobile speeding) but not with other risk-taking behaviours. Gene-

environment interplay was also indicated by an overlap in genome-wide significant loci and 

genetic correlations with sociodemographic-related traits. Of these phenotypes, fear had 

stronger negative genetic correlations with educational attainment and general cognitive ability 
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than GAD. In summary, these findings highlight potential mechanisms linking the similarities 

and differences between fear and distress by assessing differential genetic correlations across 

anxiety subtypes and a wide range of complex traits. The GWAS summary statistics from this 

thesis can be used in future analyses to further explore mechanisms of transdiagnostic and 

subtype-specific genetic influences on the anxiety disorder spectrum. 

Chapters 3 and 4 investigated the genetic component of retrospectively self-reported 

measures of environmental experiences. Chapter 3 expands upon previous research 

demonstrating a significant SNP-based heritability of self-reported trauma, a major socio-

environmental risk factor for anxiety and depression. Genomic multiple regression modelling 

of the heritable component of self-reported childhood maltreatment indicated the role of traits 

involved in the subjective appraisal of reporting adversity, such as subjective well-being. Risk-

taking behaviour, PTSD and ASD were also identified as key traits that capture the SNP-

based heritability of reported trauma. These results highlight the value of using self-report 

measures of adversity to understand the subjective experience of negative exposures and 

vulnerability to adversity. In contrast, Chapter 4 did not find a significant SNP-based 

heritability for brief, retrospectively self-reported outcomes following psychological treatment 

for anxiety and depression. Furthermore, although some polygenic scores showed significant 

univariable associations with self-reported treatment outcomes, adding multiple polygenic 

scores to prediction models did not significantly improve prediction beyond clinical and 

sociodemographic predictors. However, polygenic scores jointly explained a small, yet 

significant, proportion of the variance in self-reported psychological treatment outcomes. This 

suggests that a significant SNP-based heritability may be detected with larger sample sizes. 

The lack of power to detect a genetic component may reflect noise and heterogeneity 

associated with the phenotyping strategy to assess psychological treatment outcomes. Brief 

instead of detailed phenotyping and subjective self-reports rather than objective measures 

were used. Moreover, the grouping of treatment outcomes of all five anxiety disorders and 

depression together may have affected noise and heterogeneity. In Chapter 3, anxiety and 

depression overlapped in their genetic influences on reported trauma, possibly capturing a 

broad internalising trauma-associated psychopathology. Anxiety and depression genetic 

influences on reported trauma were also shared with other psychiatric disorders included in 

the multiple regression models, suggesting trauma-related risk factors may reflect the genetics 

of psychopathology more broadly. 

Across Chapters 3 and 4, some traits emerged as having genetic associations with both 

reported adversity and psychological treatment outcomes. Three traits had significant 

univariable polygenic score associations with psychological treatment outcomes in Chapter 
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4. These traits also had significant bivariate genetic correlations with reported trauma in 

Chapter 3 (although this was not independent of other traits included in the multiple regression 

models). Among these were ADHD, which had one of the strongest positive genetic 

correlations with reported trauma (Chapter 3). A higher polygenic score for ADHD was 

associated with worse psychological treatment outcomes (Chapter 4). Sociodemographic-

related traits also showed genetic associations in both chapters. In Chapter 3, self-reported 

health, and age at first offspring birth were negatively genetically correlated with reported 

trauma, while social deprivation and parents’ attained age (i.e. lifespan) showed positive 

genetic correlations. In Chapter 4, polygenic scores for higher self-reported health and older 

age at first birth were associated with better psychological treatment outcomes. These findings 

could potentially suggest some overlap in genetic influences on traits involved in gene-

environment interplay in reporting adversity and psychological treatment outcomes. 

Three key themes emerge from the broader context of these findings (Figure 1). First, in 

theme 1, the strengths and limitations of GWAS using less detailed phenotyping and self-

reported measures of environmental exposures are discussed. The effects of the phenotyping 

strategy can be seen in downstream analyses, such as the genetic structure observed across 

psychiatric disorders and influences on psychosocial factors. In theme 2, the implications of 

these findings are discussed in the context of the genetic structure of psychopathology and 

the extent to which disorders can be grouped to increase the statistical power of GWAS. 

Psychosocial influences may also impact the genetic structures of psychopathology. Finally, 

in theme 3, the possible psychosocial influences involved in gene-environment interplay 

mechanisms are discussed. 
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Figure 1: An illustration of the emergence of three key themes based on the findings 
of this thesis and the way they relate to various stages of GWAS. 
 

Theme 1: Phenotyping depth and the utility of self-reported measures 
The phenotyping strategy can have broad implications for interpreting GWAS findings. As 

outlined in Chapter 1, a growing discussion in psychiatric genomics is the balance between 

the depth of phenotyping and GWAS sample size and biases of self-reported measures. 

Based on the findings from this thesis and the wider literature, this theme discusses the extent 

to which brief phenotyping can be used instead of detailed phenotyping or subjective self-

report measures in place of objective measures. 

In Chapter 2, we combined brief and detailed anxiety disorder measures to increase GWAS 

power to detect genomic influences on clinical heterogeneity. This may have increased broad 

genetic influences compared to using detailed phenotyping alone. However, our findings likely 

reflect a balance in specificity and power by combining these two measures. While we could 

still detect genetic differences between fear and GAD using this approach, notably with 

neuroticism, the ability to detect distress-fear genetic specificity did not extend to differences 

in genetic correlations with depression. If we had the sample size to use only the more detailed 

phenotyping, this may have increased the chance of detecting distress-fear genetic 

differences. In relation to this, a twin study found that broadly defined depression measures 

capture approximately a third of the genetic influences identified on more strictly defined, 

interview-based lifetime MDD1. This highlights how the precision and detail of phenotyping 

impact genetic specificity. The SNP-based heritability of more detailed, stringent measures of 

depression is also higher than briefer, lightly phenotyped measures2–5. A GWAS of MDD in 
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AGDS using detailed phenotyping reported one locus in a relatively small sample and 

increased discovery by 23 loci once meta-analysing with the PGC broad depression GWAS. 

This underscores how GWAS of more heritable, detailed phenotypes (as used in Chapter 2) 

may increase statistical power5. 

In Chapter 3, retrospective self-reports of trauma were used to capture exposure to negative 

experiences. The findings in the chapter indicate associations with traits likely to influence the 

subjective appraisal of trauma, such as subjective well-being. Previous research indicates that 

measures capturing the subjective appraisal of trauma are more strongly associated with 

psychopathology than measures of objective exposure6. Thus, the experience may matter 

more than the exposure. As subjective appraisal is key for psychopathology, this suggests 

that using self-reports has value in genomics research of trauma7. Of note, the psychiatric 

disorders identified in Chapter 3 as independently genetically associated with self-reported 

trauma (PTSD and ASD) were replicated in an external dataset, also using retrospective self-

reports to define trauma7. This contrasts with a study of prospectively measured trauma, that 

found polygenic scores for other psychiatric disorders (ADHD, depression, schizophrenia) to 

be more strongly associated with exposure than ASD8. Thus, the method used to assess 

trauma phenotypes may potentially determine which psychosocial components and 

mechanisms can be detected. A future direction in this area of research is to disentangle 

genetic influences on the subjective appraisal of trauma from influences on vulnerability to 

exposure. For example, genetic correlation results from GWAS using subjective trauma 

measures could be compared with those using objective measures.  

In contrast, for the studies of genetic factors of psychological treatment outcomes, 

prospectively assessed, objective, and/or detailed measures may be more appropriate than 

retrospective self-reports. In Chapter 4, analyses were underpowered to detect a significant 

SNP-based heritability using brief, retrospective self-reports. Furthermore, polygenic scores 

did not significantly improve the prediction of treatment outcomes, in contrast to a study in a 

smaller sample that used more objective measures of psychological treatment outcomes9. 

Objective measures may prove more useful in future GWAS to detect a significant SNP-based 

heritability of psychological treatment outcomes. They are more likely to reduce noise (e.g. 

less variability in understanding the question) and ensures true exposure to the intervention. 

Indeed, in pharmacogenomics, measuring drug side effects has shown promise as a 

phenotyping strategy in GWAS10, with the added benefit of ensuring objective exposure (i.e. 

the drug intervention was given). Furthermore, clinically ascertained measures on 

antidepressant response have more power to detect a significant SNP-based heritability than 

retrospective self-reports of treatment outcomes11–13. As discussed above in relation to 
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Chapter 2, this is consistent with phenotyping strategies for depression, where clinically 

ascertained phenotypes show higher heritability estimates than brief, retrospective self-

reports2,14. 

The lack of power in Chapter 4 does not imply that genetic analyses of self-reported positive 

experiences more broadly are less valuable than objective measures. Twin studies indicate 

that heritability estimates of the perceived quality of social support may be higher than more 

objective measures of the quantity of social support15. Similar to findings on trauma (Chapter 
3), perceived quality (i.e. the experience) of social support is also more important than quantity 

(i.e. objective exposure) of social support for protecting against poor mental health. This 

highlights the importance of subjective appraisal in positive experiences15. In the case of 

psychological intervention (Chapter 4), the noise that comes with retrospective self-reporting 

may outweigh the benefits of capturing subjective perceptions of psychological treatment.   

In summary, the findings of these chapters partially support the use of brief, retrospective self-

reported measures in GWAS. In the context of measures aiming to capture clinical outcomes 

(e.g. disorder diagnoses, treatment outcomes), objective, detailed measures are preferred, 

although these may often be unavailable at the scale required for GWAS. For phenotypes 

aiming to capture the experience of environments, regardless of the exposure, brief, 

retrospective self-reported measures can capture important genetic influences on perceptions 

of experiences. This thesis also highlights the need to compare detailed and brief measures 

of clinical outcomes of psychiatric disorders2,14, much like the need to compare objective and 

subjective measures of environmental experiences6,16. These comparisons are important for 

understanding the implications of different strategies on GWAS results. This includes the 

impact on the power of GWAS but also on detecting genetic structures across 

psychopathologies and the psychosocial components captured in the GWAS signal. The 

emergence of medical record linkage in genetic datasets, such as the GLAD study, will provide 

the opportunity for such comparisons.   

 

Theme 2: the genetic structure of internalising disorders and implications 
for disorder grouping 
An important implication of GWAS results is the evidence it provides for the genetic structure 

of the psychiatric spectrum. As raised in Chapter 1, an aim of modelling covariances between 

disorders is to understand pervasive comorbidity while considering clinical heterogeneity17. 

Such findings have had implications for changing diagnostic criteria. For example, researchers 

have proposed that classifying anxiety and depressive disorders into higher-order internalising 
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and lower-order distress-fear dimensions are incorporated into diagnostic systems. Such 

hierarchical models, like the Hierarchical Taxonomy Of Psychopathology (HiTOP), have been 

put forward to simplify diagnoses, research and treatment of psychiatric disorders18. These 

groupings are often used in etiological research and treatment and, to some extent, have 

supported the hierarchical model18. Results from GWAS provide molecular genetic evidence 

that can validate these hierarchical structures. Although this was not a specific aim of this 

thesis, as dimensional phenotypes were not tested, the empirical chapter findings can be 

interpreted in the context of these structures. Furthermore, in GWAS, there is a balance 

between maximising power by grouping disorders to extract shared components and 

analysing disorders separately to detect disorder-specific factors. Taking these considerations 

together, this thesis provides recommendations for future analyses to detect anxiety genetic 

risk factors, understand trauma as a risk factor for psychopathology, the interplay with genetic 

risk, and the genetic influences on psychological treatment outcomes.  

In Chapter 2, there was strong evidence to support a higher-order internalising grouping in 

understanding genetic risk factors. Given the high genetic overlap between fear, GAD, and 

depression, this grouping can increase the power to extract shared genetic components. 

Molecular genetic evidence for shared internalising liability is supported by multivariate 

GWASs19,20. These studies used Genomic SEM to test the genomic factor structure of traits 

based on genetic correlations. These factors were then used to improve power for loci 

discovery and elucidate shared biological pathways19,20. By modelling genetic covariances 

across anxiety and depression and nine other psychiatric disorders, one study found evidence 

for a transdiagnostic genomic liability ‘p-factor’. However, the ‘p factor’ had limited utility in 

elucidating shared biology. Instead, four lower-order factors, including an internalising factor, 

provided more biological insight. Genetic liability to anxiety and depression were core 

components of this internalising factor19. A dimensional approach modelling neuroticism, GAD 

and depressive symptoms found genomic evidence supporting earlier twin study findings for 

genetic liability to internalising negative affectivity driving anxiety and depression co-

occurrence20. This study also found some genetic distinctions between GAD and depressive 

symptoms20. Thus, these multivariate approaches highlight the utility of examining both higher- 

and lower-order dimensions.  

Although there was considerable genetic overlap between fear and GAD (Chapter 2), there 

was also evidence to support a lower-order distress-fear grouping to understand genetic risk 

factors. Fear and GAD were differentially genetically correlated with neuroticism, bipolar 

disorder and anorexia nervosa. By incorporating more specific distress-fear components of 

internalising, these findings add to previous molecular genetic structures of the mood disorder 
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spectrum21, as depicted in Figure 2. Although differential genetic correlations between fear 

and GAD were not found in many psychiatric disorders, these findings help address remaining 

questions on placing some disorders in the hierarchical model. The HiTOP model has been 

revised several times since its conception22. OCD has recently been placed in the fear 

subfactor18,23. We found no molecular genetic evidence for a significant difference between 

fear and GAD genetic correlations with OCD. Similarly, PTSD has been placed within distress, 

and we found no difference in the genetic overlap between fear and GAD. Analyses of OCD 

and PTSD GWAS subtypes may reveal differential fear-GAD genetic associations24. In 

summary, Chapter 2 showed the potential for using more homogenous internalising 

phenotypes to test and refine the molecular genetic structure of the psychiatric spectrum. 

 
Figure 2: An illustration of the genetic continuum across the mood disorder spectrum 
to the internalising disorder spectrum, with the addition of fear and GAD. 
The genetic continuum from mania genetics to internalising genetics. The findings from 
Chapter 2 add further detail to the findings from Coleman et al.21 (see Chapter 1, Figure 3), 
showing distress-fear genetic heterogeneity at the end of the internalising dimension (bold 
circle borders represent the addition of new findings from Chapter 2). 

 

It is important to account for both shared and unique genetic influences on disorders to 

differentiate between transdiagnostic and disorder-specific biology. As illustrated in Chapter 
3 with reported trauma, Genomic SEM also enables a way of extracting what is unique to a 

phenotype by estimating residual genetic variances. This approach could be applied in future 
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studies using the GWAS summary statistics of fear and GAD from Chapter 2 to examine 

transdiagnostic and subtype-specific genetics of internalising. Subtype multivariate modelling 

would leverage both the higher-order and lower-order dimensions of internalising to increase 

the power to extract what is common as well as unique. In addition, studies could test the 

factor structure proposed by the HiTOP model of distress and fear more broadly by 

incorporating other disorders, such as OCD, PTSD and bipolar disorder subtypes18. This 

would provide more granular molecular genetic evidence for the hierarchical structure of 

internalising disorders and their place on the genetic continuum of psychopathology. 

A strength of this thesis was the use of data from both GLAD and AGDS, which have detailed, 

consistent measures across anxiety and depression, facilitating meta-analysis. Analyses from 

these datasets also highlighted important issues in case-control ascertainment. The screening 

criteria used to define cases and controls influenced the ability to detect genetic differences 

between fear-based disorders and GAD. As such, future studies should consider the effect of 

ascertainment on detecting subtype-specific influences when designing data collection and 

analysis. This is especially problematic in studies of anxiety and depression due to their high 

comorbidity. Indeed, previous GWAS of other psychiatric disorders often broadly screen 

controls for any psychiatric disorder. Given their high prevalence and comorbidity, this may 

disproportionately screen controls for anxiety and depression, potentially inflating genetic 

correlation estimates with internalising disorders25. Publicly available GWAS summary 

statistics of psychiatric disorders are widely used for downstream analyses, and this should 

be considered when interpreting results, e.g. the genetic structure of psychopathology. In 

conclusion, the findings from Chapter 2 support future research to continue efforts to conduct 

subtype-specific GWAS. This includes establishing and increasing datasets with detailed 

measures on the internalising spectrum to achieve the large sample sizes required for 

disorder-specific GWASs (e.g. the individual fear-based disorders). Such datasets also 

provide the opportunity to examine dimensional phenotyping, a necessity to adequately test 

the proposed hierarchical structures of dimensional psychopathology. 

The findings from Chapters 2 and 3 indicate how internalising disorders can be modelled to 

understand trauma as a shared risk factor and its interplay with genetic risk. In Chapter 2, the 

bivariate genetic correlation with reported trauma did not significantly differ between fear and 

GAD. As shown in Chapter 3, Genomic SEM can be used to model genetic covariation 

between psychiatric disorders and shared environmental risk factors. The model in Chapter 
3 assessed ‘any’ anxiety disorder instead of looking at fear and GAD separately. When using 

this phenotype, the genetic relationship between anxiety and reported trauma was shown to 

be shared with depression. This indicates that similar results may have been observed in 
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Chapter 3 had fear and GAD been measured separately rather than grouped as ‘any’ anxiety 

disorder. This suggests that combining anxiety and depression into a broad internalising 

grouping may be appropriate to understand the internalising factors associated with 

vulnerability to trauma. This aligns with the HiTOP model, which highlights trauma as a shared 

transdiagnostic risk factor to the internalising spectrum18. In contrast to anxiety and 

depression, findings in Chapter 3 suggested that some genetic influences of PTSD and ASD 

on reporting trauma are not shared with the other psychiatric disorders in the model. The 

potential mechanisms involved in experiencing adverse exposures to anxiety and depressive 

disorders, PTSD and ASD are discussed below as part of Theme 3.  

The extent to which internalising disorders can be grouped to detect genetic influences on the 

psychological treatment outcomes of each disorder remains to be clarified. In Chapter 4, the 

lack of power to detect a genomic component may indicate that grouping all six disorders 

increased heterogeneity. Future studies may benefit from more homogeneous phenotypes, 

such as subtype-specific GWAS of treatment outcomes. A significant twin heritability of 15%-

36% has been found for fear extinction, a more homogenous phenotype related to the 

treatment of fear in anxiety disorders26,27. This is in contrast to psychological treatment 

outcomes for depression and anxiety more broadly, where significant heritability has yet to be 

found in twin or genome-wide studies. The GWAS dataset in Chapter 4 largely comprised 

individuals who had received psychological treatment for depression. We were, therefore, 

underpowered to conduct fear treatment-specific analyses and detect a SNP-based heritability 

of response to exposure-based fear treatment. Given the evidence from twin findings of a 

heritable component of fear extinction, future studies could focus on ascertaining GWAS data 

on exposure-based fear treatment outcomes. Of note, at the current GWAS sample size, we 

only had statistical power to detect an SNP-based heritability of 25% for treatment outcomes 

using individual-level based methods. As twin heritability estimates represent the upper limit 

of what GWAS data detect28, the SNP-based heritability of fear extinction is likely lower than 

25%. Thus, GWAS datasets on exposure-based fear treatment outcomes will also likely need 

to be larger than the available sample size in Chapter 4 (~7,550) used for the GWAS of 

psychological treatment outcomes for depression and anxiety. 

 

Theme 3: interpreting GWAS findings in the context of psychosocial 
influences 
As put forward in Chapter 1, environmental effects are not independent of genetics. A portion 

of the genetic signal from GWAS captures the interplay with the environment29. It has been 

posited that gene-environment interplay may partly explain the high comorbidity and genetic 
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covariation observed across psychiatric disorders, contributing to the ‘p-factor’30. For example, 

genetic influences on experiencing environmental stressors such as trauma may mediate the 

genetic covariation across psychiatric disorders30. In Chapter 3, most genetic influences on 

reporting trauma were shared across psychiatric disorders. Multiple gene-environment 

interplay pathways may explain these findings. In this Theme 3, plausible heritable 

characteristics relevant to how individuals engage with the world are discussed, including 

personality and behavioural traits, cognitive biases, and socioeconomic factors. 

Personality, behaviour and cognitive biases  

One relevant mechanism to consider here is a gene-environment correlation, whereby 

heritable influences on shared behavioural and personality traits influence the risk of exposure 

to adversity, which, in turn, influences the risk of multiple disorders30. As discussed in Chapter 
3, this may include risk-taking behaviours, which was identified as a key trait that captured the 

SNP-based heritability of reported trauma. Risk-taking behaviours are considered important 

risk factors for trauma exposure31 and are strongly associated with externalising 

psychopathology (e.g. ADHD), which may increase vulnerability to later internalising 

problems32. In Chapter 2, most risk-taking behaviours were not significantly associated with 

fear or GAD. The exception to this was automobile speeding propensity which had a modest, 

negative genetic correlation with both anxiety disorders. This negative genetic correlation 

indicates that genetic variants associated with a higher risk of anxiety is associated with lower 

reporting of automobile speeding. Recent findings indicate the causal effect of genetic risk for 

externalising disorders (i.e. ADHD) on distress disorders (i.e. PTSD) is partly mediated by 

genetic influences on risk-taking behaviours, sociodemographic factors, and trauma 

exposure. However, an independent causal relationship was also found31. ADHD is also 

associated with negative bias recall of adversity33, which may partly explain its genetic 

correlation with retrospective self-reported trauma (Chapter 3). Thus, other plausible 

mechanisms linking psychopathologies with adversity include heritable cognitive biases 

affecting the perception of experiences, which may be independent of gene-environment 

correlations7. 

Shared cognitive biases, which, in turn, may increase sensitivity to the environment, may link 

distress and fear disorders with the adverse effects of traumatic experiences identified in 

Chapters 2 and 3. Cognitive biases impact how people interpret and, thus, respond to their 

environments. For example, anxiety-related cognitive biases are associated with an increased 

risk of anxiety disorders, depression and other distress-related disorders, including PTSD34–

36. Such biases are heritable and are genetically correlated with anxiety, depression37,38, and 

environmental sensitivities39. The shared genetic influences between cognitive biases and 
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environmental sensitivity account for some of the heritability of self-reporting of life events39. 

Thus, cognitive biases and environmental sensitivities are plausible characteristics that may 

partly explain how GWAS of distress-related disorders capture the SNP-based heritability of 

reporting childhood maltreatment in Chapter 3. 

This thesis also found some evidence to suggest that genetic influences on comorbid 

psychiatric disorders influence negative experiences (Chapter 3) as well as a lack of 

improvement in anxiety and depressive symptoms from positive experiences, such as 

psychosocial treatment (Chapter 4). In Chapter 3, neurodevelopmental disorders (ADHD and 

ASD) were positively genetically correlated with self-reported trauma. Intriguingly, the 

polygenic score for ADHD was significantly associated with self-reported negative 

psychological treatment outcomes in Chapter 4. This is consistent with findings from a 

previous study that reported worse treatment outcomes among those with higher polygenic 

scores for ASD40. Higher polygenic scores for ADHD and ASD are also negatively associated 

with response to social skills group training41. This could reflect genetic liability to these 

disorders influencing symptoms, such as learning or social difficulties, impacting response to 

psychosocial interventions42. If these findings are replicated, they may indicate that a higher 

genetic propensity for neurodevelopmental disorders is associated with increased adversity 

and poorer outcomes of psychosocial interventions. 

The mechanisms explaining the genetic association between ADHD, ASD, and poor outcomes 

of both positive (Chapter 4) and negative (Chapter 3) environmental experiences are unclear. 

Under the environmental sensitivity framework, hypersensitivity would contribute to the 

vulnerability of adverse environments and improve responsiveness to positive environments43. 

Individuals with neurodevelopmental disorders may exhibit hypersensitivity to environmental 

stimuli43 and difficulties in social information processing42. Potentially, a combination of these 

factors may increase the adverse effects of stressful environments44 and negate the positive 

benefits of supportive social environments, such as psychological treatment. A broader array 

of interpersonal circumstances may be experienced as stressful in ASD44. This may extend to 

psychological treatment, an inherently social process that may require adaptations to meet 

the needs of those with neurodevelopmental disorders45,46. Indeed, social cognitive biases, 

such as interpreting ambiguous social stimuli as negative, are a potential target for adapting 

psychological treatment in ASD and ADHD47,48. 

Although there is considerable overlap between ASD and ADHD, they are still clinically and 

genetically distinguishable and may influence experiences and treatment outcomes in different 

ways49,50. Of note, a higher genetic risk for ADHD was more strongly associated with 

treatment-resistant depression than non-treatment resistance51. In contrast, a higher 
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polygenic score for ASD has been associated with an improved response to 

antidepressants11. Genetic components of ASD and ADHD associated with environmental 

experiences do not overlap entirely, as indicated in Chapter 3. Future research could examine 

the specific heritable symptom dimensions of neurodevelopmental disorders associated with 

vulnerability to adversity and response to treatment. 

Socioeconomic status 

Associations with sociodemographic-related traits are found in all three empirical chapters. 

This could reflect the role of socioeconomic status (SES) in genetic signals. Genetic influences 

on characteristics such as general cognitive ability impact educational and economic 

achievements, in turn influencing a range of phenotypes30. This includes lifestyle and 

sociodemographic traits that influence the environments we are exposed to, and thus risk and 

protective factors for physical and mental health outcomes30. Partner selection within 

socioeconomic groups is common, and offspring born into a higher SES level can inherit both 

an advantage in environmental circumstances and a genetic propensity to maintain higher a 

SES level than those born into a lower SES group with greater environmental disadvantages. 

These mechanisms represent a perpetual cycle in which society rewards those with a higher 

genetic propensity for educational (i.e. economic) achievements with environmental 

advantages, increasing the effect of genetics52. As such, a complex relationship arises 

between SES-related traits and influences on genetic correlations across traits, including 

psychiatric disorders. For example, previous research has shown that when conditioning for 

genetic influences on SES-related traits, the genetic structuring of psychiatric disorders 

changes, including among internalising traits53,54. This additional complex relationship should 

be considered when interpreting the biological, environmental and treatment outcome findings 

reported in this thesis. 

Overlapping genetic influences on educational attainment across psychiatric disorders may 

indicate gene-environment correlation mechanisms, complicating the interpretation and 

identification of causal transdiagnostic biological mechanisms53,54. As observed in Chapter 2, 

loci associated with anxiety disorders were previously reported in GWAS of SES-related traits. 

Global negative genetic correlations were also observed between anxiety disorders and SES-

related traits, as found in previous GWAS and epidemiological studies55–58. This chapter 

showed that fear had a significantly stronger negative genetic correlation with educational 

attainment and general cognitive ability than GAD. The implications of these findings are not 

clear and warrant further investigation. This could reflect differences in cognitive mechanisms, 

gene-environment correlations, or biases in sampling (e.g. participation bias, as discussed 

further below). Future research could assess how educational attainment and general 
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cognitive ability differentially influence fear and GAD, and their genetic correlations with other 

traits. For example, the uncorrelated cognitive and non-cognitive components of educational 

attainment could be tested for differences in genetic correlations between fear and GAD59. 

Genetic influences on SES-related traits could be partialled out53,54, which may differentially 

influence fear and GAD and their genetic correlations with other traits, giving a broader picture 

of how SES may influence the anxiety disorder spectrum. 

Findings from Chapters 3 & 4 may reflect the effect of SES on the risk and resolution of 

psychopathology through gene-environment correlation mechanisms. In Chapter 3, among 

the top genetic correlations with reported trauma were sociodemographic-related traits 

associated with lower SES, including social deprivation, poor self-reported health, younger 

age at first birth and parents' attained age. Genetic influences on socioeconomic status are 

associated with access to living in safe (or unsafe) neighbourhoods60. A genetic propensity for 

higher SES is linked with migration to safer neighbourhoods, in which exposure to adverse 

environments is lower, decreasing the risk of experiencing posttraumatic physical and mental 

health problems60. Furthermore, those with a higher SES have better access to healthcare 

and social support than those with a lower SES61,62. Traits related to socioeconomic 

advantages are known indicators of treatment outcomes as they influence access to 

treatment9,61–63. As shown in Chapter 4, higher educational level was a significant, non-genetic 

predictor of better psychological treatment outcomes. The effect of SES may also have been 

reflected in polygenic signals. Polygenic scores for SES-related traits were associated with 

better psychological treatment outcomes. This includes higher self-reported health and older 

age at first birth, which more broadly capture higher SES64,65. Similarly, a higher polygenic 

score for general cognitive ability was previously associated with better responses to 

psychological treatment9. However, these findings may also reflect spurious associations. 

Further investigation is required to establish the mechanisms underlying these associations16. 

Future studies with sufficient power could examine the influence of SES on reporting adversity 

and psychological treatment outcomes by conducting genetic analyses across different SES 

strata. If replicated, these findings could support the need for improving social and educational 

provisions in socioeconomically disadvantaged areas52,60 to minimise the risk and 

consequences of adverse exposures and improve treatment outcome equity. 

General Limitations 

Lack of replication and sources of bias 
The lack of availability of the measures used in this thesis at the scale required for genomic 

analyses limited the ability to assess replication in independent datasets. Many genomic 
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analyses rely on large datasets, often the UK Biobank, which has multiple sources of potential 

biases, and thus biases may be observed across multiple variables. A large proportion of the 

publicly available GWAS summary statistics used in this thesis included data from UK 

Biobank. A strength of this thesis was the use of novel genotyped datasets with rich phenotypic 

measures of anxiety and depression. However, these datasets were also not free of potential 

bias.  

The UK Biobank has a problem of ‘healthy volunteer bias’, in which participants generally have 

better health than the general UK population66,67. Participation across the main studies used 

in this thesis was also associated with higher SES-related factors, including higher educational 

achievements. In England and Wales, approximately 34% of the population aged 16 and over 

have a university-level qualification68. In contrast, approximately half of the participants have 

university-level education in the GLAD study69, in the QSkin study70, and in the subsample of 

the UK Biobank that completed the mental health questionnaire71. Approximately three-

quarters of participants in AGDS have university-level qualifications70. Therefore, those with a 

higher education level may be more likely to enrol in genetic studies70. Providing genetic data 

in the GLAD and COPING studies was associated with higher education, older age, and fewer 

smoking behaviours72. 

Further sources of participation bias are reflected in the lack of ethnic diversity in these studies. 

Approximately 96% of participants self-report identifying as White ethnicity in the GLAD study 

and the UK Biobank mental health questionnaire subset69,71. In contrast, this group comprises 

82% of the population in England and Wales73. Due to this lack of diversity, genetic analyses 

in this thesis were restricted to European-associated genetic ancestry, as discussed in detail 

below. Improving participation among racially minoritised groups is an active area of ongoing 

work in the GLAD study. A number of complex systemic and historical factors influence 

participation in mental health and genetic studies. This includes (but is not limited to) a lack of 

representation among researchers from racially minoritised groups, which may influence 

mistrust in research stemming from historical injustices, with fear that genetic research could 

lead to further racial discrimination74–76. Therefore, the data used in this thesis are missing 

important socio-cultural environmental factors (e.g. lived experience of racial discrimination) 

associated with the risk of mental health problems, adversity, and treatment outcomes75,77,78. 

 

Given that a number of heritable traits may be associated with the likelihood of volunteering 

in these studies (e.g. health-related and SES-related traits), participation bias may have 

influenced the genetic signal in this thesis29. Recent analyses in the UK Biobank revealed that 

participation bias has a particularly strong effect on GWAS of socio-behavioural traits79. This 
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bias can deflate the effect size of SNPs in anxiety and depression GWAS and may have 

impacted the power to detect genome-wide significant loci in Chapters 2 and 4. Participation 

bias can also inflate SNP-based heritability and, thus, a polygenic signal of educational 

attainment and SES-related traits (Chapters 3 and 4). Participation bias can also affect 

estimates of genetic correlations across several socio-behavioural traits79. A downward bias 

in genetic correlations can arise when two phenotypes influence participation in a study (i.e. 

collider bias)80,81. For instance, UK Biobank participation bias may underestimate genetic 

correlations between anxiety and depression and risk-taking, education and physical health79, 

which may have influenced genetic correlation results in Chapter 2. The independent genetic 

association found in Chapter 3 between reported trauma and general risk tolerance may be 

partly driven by participation bias. Underestimation of genetic correlations due to participation 

bias was previously found between risk-taking and several UK Biobank traits modelled in 

Chapter 3, including insomnia, SES-related traits and physical illnesses79. Therefore, an 

important future direction is to replicate findings from this thesis in a population-representative 

sample82, or by using recently established methods that correct for participation bias79,83.  

Lack of ancestral diversity 
The analyses presented in this thesis were restricted to individuals of PCA-derived European-

associated genetic ancestry. Consequently, the findings of this thesis may not be 

generalisable across genetic ancestry groups. Across the global human population, a 

continuum of variation exists in structural properties that reflect population history, conferring 

differences in LD patterning and allele frequencies, as outlined in Chapter 1, Box 3. To avoid 

the occurrence of false-positive associations arising from allele-frequency differences across 

populations, GWAS are typically limited to groups of individuals of more similar genetic 

ancestry77. Due to the availability of samples, and historical and systemic influences84, the 

most commonly studied from the five major global populations is European-associated 

ancestry. This has led to the problem of Eurocentric GWAS bias85. 

Eurocentric GWAS bias is a major problem in psychiatric genetics86, and statistical genetics 

more broadly85. In 2021, approximately 86% of all GWASs were based on samples of 

European-associated genetic ancestry75, despite only contributing to 16% of the world 

population85. The potential lack of generalisability of the findings from this thesis to non-

European ancestry groups adds to a growing obstacle in health equity75. If the Eurocentric 

GWAS bias continues, translating GWAS findings to clinically benefit those with mental health 

problems may further health disparities among racially minoritised communities85,87. For 

example, polygenic score prediction attenuates when applied to genetic ancestry groups that 

differ from the sample the polygenic score was derived from85,88. Furthermore, the phenotypic 



 150 

measures used in this thesis are based on Eurocentric beliefs78,89,90. Presentation of disorders, 

their associated risk factors and treatment outcomes, may therefore differ from non-European 

populations. This emphasises the need to diversify genetic ancestry in samples and adapt 

measures to avoid Eurocentric biases at the phenotypic level. Efforts to achieve more globally 

representative samples for psychiatric genetics research are currently underway75. The 

development of methods to diversify genomic analyses is also rapidly improving91–93. 

 

Future directions 

Establishing causality, and disentangling individual from familial genomic 
effects 
A key future avenue to the research conducted in this thesis is establishing mechanisms 

underlying associations between traits and inferring causality. One powerful approach to 

assessing causal relationships between two variables is Mendelian Randomization (MR). 

Results from GWAS summary statistics can be used for MR analyses, where robustly 

associated genetic variants are used as instrumental variables to test for a causal effect of 

one variable on another. Both directions of causality can be tested through bidirectional MR94. 

GWASs of anxiety disorders have not yet reached sufficient power for summary-level MR. A 

number of robust genome-wide significant variants are required to be used as instrumental 

variables. For example, some methods suggest an analysis of fewer than 30 instruments is 

limited in power95. The release of the first PGC anxiety GWAS summary statistics will be key 

in providing the tools to test causal relationships with anxiety.  

As GWASs of fear and GAD increase in size, bidirectional causal relationships could be tested 

between fear and GAD, and traits with overlapping genetics, such as the health-related traits 

identified in Chapter 2, including heart disease, insomnia, or comorbid psychiatric disorders. 

Anxiety often precedes the onset of other psychiatric disorders. MR could be used to test the 

causality of temporal comorbidity patterns, such as with depression, PTSD and ADHD. The 

causal relationship across distress-related traits could be examined using multivariable 

approaches, such as between anxiety, depression and shared negative affectivity (i.e. 

neuroticism). Multivariable MR takes into account independent and correlated horizontal 

pleiotropy, estimating the direct effects of one risk factor independent of another and the role 

of mediation or confounding94,96. As GWAS of environmental measures such as reported 

trauma grows, this will provide the opportunity to jointly test the direction of the effect of traits 

in Chapter 3 and their relationship with one another. Recent applications of such methods 

have proven promising in testing the causal relation between ADHD and PTSD whilst 

accounting for various mediating phenotypes31. Of note, robust application of MR methods to 
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identify true causal effects may be challenging for heterogeneous phenotypes such as anxiety 

and depression. Thus, stratifying GWAS into more homogeneous subgroups may be needed 

as well as using detailed phenotyping to capture more specific genetic effects94. This 

underscores the importance of GWAS subtyping (Chapter 2) and using studies with detailed 

measures, as in this thesis. 

A further future direction in establishing mechanisms of associations is disentangling gene-

environment interplay processes. Psychiatric genomics has benefitted from ‘borrowing’ 

methods from developmental family-based studies and vice versa, driving innovative 

research97,98. This includes methods that allow for disentangling between genetic influences 

that reflect individual genetic effects (i.e. genetic variation in the individual influences their own 

trait directly) or familial genetic effects (i.e. indirect genetic effects from the parent influences 

a child trait through the rearing environment)16,98. Familial genetic effects can lead to passive 

gene-environment correlations. Individual genetic effects can also be mediated by the 

environment the individual shapes, leading to evocative and active gene-environment 

correlation98. Both individual and familial genetic effects can be tested for causality if the 

associations are free from biases16.  

Integrating genomic analyses into within-family studies can disentangle individual from familial 

genomic effects, establish the causality of these influences by minimising biases, and 

understand the origins of gene-environment interplay98. Of relevance to this thesis, GWAS in 

unrelated individuals aim to detect individual genetic effects on a phenotype (i.e. Chapter 2) 

but inadvertently may detect familial genetic effects (e.g. as suggested in Chapter 3) and 

other sources of bias, including assortative mating. Partners are more likely to choose 

someone with similar characteristics, including internalising symptoms99. These other sources 

of a genetic signal can impact the interpretation of biological mechanisms underpinning 

psychiatric disorders, SNP-based heritability estimates, genetic correlations, and MR tests100–

102. Within-family GWAS are less affected by such biases and are therefore key for estimating 

individual genetic effects that more directly influence a phenotype of interest102. Integrating 

polygenic scores into a within-family design can elucidate the role of familial genetic effects 

on child outcomes103. Such designs could be applied to understand genomic influences on the 

risk of trauma exposure (e.g. risk-taking behaviour in Chapter 3) and the development of 

internalising psychopathology (Chapter 2). Identifying true environmental influences from 

parents has implications for prevention strategies that could aim to modify the environment of 

at-risk families. As within-family genotyped datasets increase in size, these will be key for 

addressing key gaps in this thesis and the developmental translation of findings more broadly 
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in anxiety and depression genomics.  

 

Expanding and integrating genome-wide data 
A major future direction of anxiety and depression genomics is expanding genome-wide data 

to the full spectrum of allele frequencies. The GWAS used in this thesis were limited to 

common genetic variants. Common variants are more likely to have lower penetrance on 

phenotypes due to selective pressures104,105. Thus, the GWAS signal also reflects the role of 

natural selection in common traits106. Rarer variants with larger effect sizes likely also influence 

common disorders and may better elucidate biological mechanisms due to greater 

penetrance. However, rare variants are challenging and expensive to capture at the scale 

required for association analyses86,107. As such, brief phenotyping approaches may be 

prioritised to attain the large sample sizes required for rare variant analysis of common mental 

disorders. More progress has been made in identifying rare variants associated with 

depression than with anxiety108–110. Of note, a recent study indicates that rare variants only 

contribute to a small proportion of the heritability of complex traits, suggesting that rare 

variants do not fully explain the missing heritability between GWAS and twin estimates106. As 

whole genome sequencing and exome sequencing data become more cost-effective to 

generate and increase in size, this will progress our understanding of the role of rare variants 

as a risk factor for common mental disorders and, hopefully, lead to emerging biological 

insights. 

Future biological insights on the risk and treatment of common mental disorders can stem 

from integrating genomic data with other sources. For example, findings on molecular genetics 

can be extended to understand brain structure and function by integrating GWAS with 

neuroimaging data. This has the potential to generate and test novel hypotheses. For 

example, differences in genetic influences on neurocircuitry could be tested between distress 

and fear or in understanding differences in the neurobiology of treatment response111,112. Such 

initiatives include the ENIGMA-anxiety disorder working group, which aims to ascertain neuro-

imaging data across anxiety disorders113. 

Improvement in the prediction of risk and treatment of common mental disorders will require 

the integration of multimodal data. For example, the integration of neuroimaging data may 

improve prediction models of treatment response in anxiety and depression111,112,114. 

Incorporating more detailed data on environmental risk factors into prediction modelling, such 

as contextual information on childhood maltreatment, is another promising avenue for 

treatment response research115. Prediction from polygenic scores may improve once they 

contain a broader spectrum of allele frequencies116. Integrating biological pathway-based data 
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into polygenic scores may have greater power for predicting disorder subtypes than SNP-

based scores117. Recent methodological developments show that polygenic scores derived 

from more diverse populations of genetic ancestry can be used to improve predictive 

power118,119. Large-scale GWAS analyses in non-European genetic ancestry groups are 

expected to significantly improve the clinical potential for polygenic scores88. Furthermore, this 

will be vital to ensure that progress in predicting risk and treating common mental disorders 

benefits individuals globally.  

 

Conclusions 
The balance between phenotyping depth and sample size and using self-reported versus 

objective measures likely impact the genetic specificity and psychosocial components of 

GWAS findings. The genetic structure of internalising disorders provides evidence for the 

hierarchical classification of anxiety and depressive disorders into higher-order internalising 

and lower-order distress-fear dimensions. Future genomic studies aiming to detect subtype 

genetic risk factors should examine both higher-order and lower-order dimensions of 

internalising to increase the power to extract what is common and unique. The genetic signals 

from GWAS also capture the interplay with the environment, in which multiple pathways may 

partly explain the high comorbidity and genetic covariation across psychopathologies. This 

includes heritable behaviours, cognitive biases, and the impact of neurodevelopmental 

disorders and socioeconomic factors on responses to adverse environments and 

psychological treatments. 



 154 

 

References 
1. Kendler, K. S. et al. Shared and specific genetic risk factors for lifetime major 

depression, depressive symptoms and neuroticism in three population-based twin 
samples. Psychol. Med. 49, 2745–2753 (2019). 

2. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low 
specificity for major depression. Nat. Genet. 52, 437–447 (2020). 

3. Giannakopoulou, O. et al. The Genetic Architecture of Depression in Individuals of East 
Asian Ancestry: A Genome-Wide Association Study. JAMA Psychiatry 78, 1258–1269 
(2021). 

4. Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and 
meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. 
Neurosci. 24, 954–963 (2021). 

5. Mitchell, B. L. et al. The Australian Genetics of Depression Study: New Risk Loci and 
Dissecting Heterogeneity Between Subtypes. Biol. Psychiatry (2021) 
doi:10.1016/j.biopsych.2021.10.021. 

6. Danese, A. & Widom, C. S. Objective and subjective experiences of child maltreatment 
and their relationships with psychopathology. Nat Hum Behav 4, 811–818 (2020). 

7. Peel, A. J. et al. Genetic and early environmental predictors of adulthood self-reports of 
trauma. Br. J. Psychiatry 1–8 (2022). 

8. Baldwin, J. R. et al. A genetically informed Registered Report on adverse childhood 
experiences and mental health. Nat Hum Behav (2022) doi:10.1038/s41562-022-01482-
9. 

9. Wallert, J. et al. Predicting remission after internet-delivered psychotherapy in patients 
with depression using machine learning and multi-modal data. Transl. Psychiatry 12, 
357 (2022). 

10. McInnes, G., Yee, S. W., Pershad, Y. & Altman, R. B. Genomewide Association Studies 
in Pharmacogenomics. Clin. Pharmacol. Ther. 110, 637–648 (2021). 

11. Pain, O. et al. Identifying the Common Genetic Basis of Antidepressant Response. Biol 
Psychiatry Glob Open Sci 2, 115–126 (2022). 

12. Li, Q. S., Tian, C., Hinds, D. & 23andMe Research Team. Genome-wide association 
studies of antidepressant class response and treatment-resistant depression. Transl. 
Psychiatry 10, 360 (2020). 

13. Tansey, K. E. et al. Contribution of common genetic variants to antidepressant 
response. Biol. Psychiatry 73, 679–682 (2013). 

14. Flint, J. The genetic basis of major depressive disorder. Mol. Psychiatry (2023) 
doi:10.1038/s41380-023-01957-9. 

15. Wang, R. A. H., Davis, O. S. P., Wootton, R. E., Mottershaw, A. & Haworth, C. M. A. 
Social support and mental health in late adolescence are correlated for genetic, as well 
as environmental, reasons. Sci. Rep. 7, 13088 (2017). 

16. Pingault, J.-B. et al. Research Review: How to interpret associations between polygenic 
scores, environmental risks, and phenotypes. J. Child Psychol. Psychiatry 63, 1125–
1139 (2022). 

17. Waszczuk, M. A., Kotov, R., Ruggero, C., Gamez, W. & Watson, D. Hierarchical 
structure of emotional disorders: From individual symptoms to the spectrum. J. Abnorm. 
Psychol. 126, 613–634 (2017). 

18. Watson, D. et al. Validity and utility of Hierarchical Taxonomy of Psychopathology 
(HiTOP): III. Emotional dysfunction superspectrum. World Psychiatry 21, 26–54 (2022). 

19. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at 
biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 
54, 548–559 (2022). 



 155 

20. Thorp, J. G. et al. Symptom-level modelling unravels the shared genetic architecture of 
anxiety and depression. Nat Hum Behav 5, 1432–1442 (2021). 

21. Coleman, J. R. I. et al. The Genetics of the Mood Disorder Spectrum: Genome-wide 
Association Analyses of More Than 185,000 Cases and 439,000 Controls. Biol. 
Psychiatry (2019) doi:10.1016/j.biopsych.2019.10.015. 

22. Kotov, R. et al. The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional 
alternative to traditional nosologies. J. Abnorm. Psychol. 126, 454–477 (2017). 

23. Forbes, M. K. et al. Principles and procedures for revising the Hierarchical Taxonomy of 
Psychopathology. (2023) doi:10.31234/osf.io/xr48p. 

24. Levin-Aspenson, H. F., Watson, D., Ellickson-Larew, S., Stanton, K. & Stasik-O’Brien, 
S. M. Beyond Distress and Fear: Differential Psychopathology Correlates of PTSD 
Symptom Clusters. J. Affect. Disord. 284, 9–17 (2021). 

25. Kendler, K. S., Chatzinakos, C. & Bacanu, S.-A. The impact on estimations of genetic 
correlations by the use of super-normal, unscreened, and family-history screened 
controls in genome wide case-control studies. Genet. Epidemiol. 44, 283–289 (2020). 

26. Purves, K. L. et al. Evidence for distinct genetic and environmental influences on fear 
acquisition and extinction. Psychol. Med. 1–9 (2021). 

27. Hettema, J. M., Annas, P., Neale, M. C., Kendler, K. S. & Fredrikson, M. A twin study of 
the genetics of fear conditioning. Arch. Gen. Psychiatry 60, 702–708 (2003). 

28. Barry, C.-J. S. et al. How to estimate heritability: a guide for genetic epidemiologists. Int. 
J. Epidemiol. (2022) doi:10.1093/ije/dyac224. 

29. Abdellaoui, A. & Verweij, K. J. H. Dissecting polygenic signals from genome-wide 
association studies on human behaviour. Nat Hum Behav 5, 686–694 (2021). 

30. Avinun, R. The E Is in the G: Gene-Environment-Trait Correlations and Findings From 
Genome-Wide Association Studies. Perspect. Psychol. Sci. 15, 81–89 (2020). 

31. Wendt, F. R. et al. The Relationship of Attention-Deficit/Hyperactivity Disorder With 
Posttraumatic Stress Disorder: A Two-Sample Mendelian Randomization and 
Population-Based Sibling Comparison Study. Biol. Psychiatry 93, 362–369 (2023). 

32. Adler, L. A., Kunz, M., Chua, H. C., Rotrosen, J. & Resnick, S. G. Attention-
deficit/hyperactivity disorder in adult patients with posttraumatic stress disorder (PTSD): 
is ADHD a vulnerability factor? J. Atten. Disord. 8, 11–16 (2004). 

33. Vrijsen, J. N. et al. ADHD symptoms in healthy adults are associated with stressful life 
events and negative memory bias. Atten. Defic. Hyperact. Disord. 10, 151–160 (2018). 

34. Taylor, S., Koch, W. J., Woody, S. & McLean, P. Anxiety sensitivity and depression: 
How are they related? J. Abnorm. Psychol. 105, 474–479 (1996). 

35. Schmidt, N. B., Zvolensky, M. J. & Maner, J. K. Anxiety sensitivity: prospective 
prediction of panic attacks and Axis I pathology. J. Psychiatr. Res. 40, 691–699 (2006). 

36. Olatunji, B. O., Armstrong, T., Fan, Q. & Zhao, M. Risk and resiliency in posttraumatic 
stress disorder: Distinct roles of anxiety and disgust sensitivity. Psychol. Trauma 6, 50–
55 (2014). 

37. Eley, T. C., Gregory, A. M., Clark, D. M. & Ehlers, A. Feeling anxious: a twin study of 
panic/somatic ratings, anxiety sensitivity and heartbeat perception in children. J. Child 
Psychol. Psychiatry 48, 1184–1191 (2007). 

38. Zavos, H. M. S., Rijsdijk, F. V., Gregory, A. M. & Eley, T. C. Genetic influences on the 
cognitive biases associated with anxiety and depression symptoms in adolescents. J. 
Affect. Disord. 124, 45–53 (2010). 

39. Peel, A. J. et al. A multivariate genetic analysis of anxiety sensitivity, environmental 
sensitivity and reported life events in adolescents. J. Child Psychol. Psychiatry 64, 289–
298 (2023). 

40. Andersson, E. et al. Genetics of response to cognitive behavior therapy in adults with 
major depression: a preliminary report. Mol. Psychiatry 24, 484–490 (2019). 

41. Li, D. et al. The influence of common polygenic risk and gene sets on social skills group 
training response in autism spectrum disorder. NPJ Genom Med 5, 45 (2020). 



 156 

42. Schmidt, N. B. & Vereenooghe, L. Interpersonal Cognitive Biases in Children and Young 
People with Neurodevelopmental Disorders: A Systematic Review. Current 
Developmental Disorders Reports 8, 219–235 (2021). 

43. Greven, C. U. et al. Sensory Processing Sensitivity in the context of Environmental 
Sensitivity: A critical review and development of research agenda. Neurosci. Biobehav. 
Rev. 98, 287–305 (2019). 

44. Rumball, F., Happé, F. & Grey, N. Experience of Trauma and PTSD Symptoms in 
Autistic Adults: Risk of PTSD Development Following DSM-5 and Non-DSM-5 
Traumatic Life Events. Autism Res. (2020) doi:10.1002/aur.2306. 

45. Cooper, K., Loades, M. E. & Russell, A. J. Adapting Psychological Therapies for Autism 
- Therapist Experience, Skills and Confidence. Res. Autism Spectr. Disord. 45, 43–50 
(2018). 

46. Gallant, C., Roudbarani, F., Ibrahim, A., Maddox, B. B. & Weiss, J. A. Clinician 
Knowledge, Confidence, and Treatment Practices in Their Provision of Psychotherapy 
to Autistic Youth and Youth with ADHD. J. Autism Dev. Disord. (2022) 
doi:10.1007/s10803-022-05722-9. 

47. Schmidt, N. B. & Vereenooghe, L. Inclusiveness of cognitive bias modification research 
toward children and young people with neurodevelopmental disorders: A systematic 
review. Int J Dev Disabil 68, 86–101 (2022). 

48. Miranda, A., Berenguer, C., Roselló, B., Baixauli, I. & Colomer, C. Social Cognition in 
Children with High-Functioning Autism Spectrum Disorder and Attention-
Deficit/Hyperactivity Disorder. Associations with Executive Functions. Front. Psychol. 8, 
1035 (2017). 

49. Mattheisen, M. et al. Identification of shared and differentiating genetic architecture for 
autism spectrum disorder, attention-deficit hyperactivity disorder and case subgroups. 
Nat. Genet. 54, 1470–1478 (2022). 

50. Antshel, K. M. & Russo, N. Autism Spectrum Disorders and ADHD: Overlapping 
Phenomenology, Diagnostic Issues, and Treatment Considerations. Curr. Psychiatry 
Rep. 21, 34 (2019). 

51. Fabbri, C. et al. Genetic and clinical characteristics of treatment-resistant depression 
using primary care records in two UK cohorts. Mol. Psychiatry 26, 3363–3373 (2021). 

52. Abdellaoui, A., Dolan, C. V., Verweij, K. J. H. & Nivard, M. G. Gene-environment 
correlations across geographic regions affect genome-wide association studies. Nat. 
Genet. 54, 1345–1354 (2022). 

53. Wendt, F. R. et al. Multivariate genome-wide analysis of education, socioeconomic 
status and brain phenome. Nat Hum Behav 5, 482–496 (2021). 

54. Marees, A. T. et al. Genetic correlates of socio-economic status influence the pattern of 
shared heritability across mental health traits. Nat Hum Behav 5, 1065–1073 (2021). 

55. Mwinyi, J. et al. Anxiety Disorders are Associated with Low Socioeconomic Status in 
Women but Not in Men. Womens. Health Issues 27, 302–307 (2017). 

56. de Graaf, R., ten Have, M., Tuithof, M. & van Dorsselaer, S. First-incidence of DSM-IV 
mood, anxiety and substance use disorders and its determinants: results from the 
Netherlands Mental Health Survey and Incidence Study-2. J. Affect. Disord. 149, 100–
107 (2013). 

57. Sareen, J., Afifi, T. O., McMillan, K. A. & Asmundson, G. J. G. Relationship between 
household income and mental disorders: findings from a population-based longitudinal 
study. Arch. Gen. Psychiatry 68, 419–427 (2011). 

58. Levey, D. F. et al. Reproducible Genetic Risk Loci for Anxiety: Results From ∼200,000 
Participants in the Million Veteran Program. Am. J. Psychiatry 177, 223–232 (2020). 

59. Demange, P. A. et al. Investigating the genetic architecture of noncognitive skills using 
GWAS-by-subtraction. Nat. Genet. 53, 35–44 (2021). 

60. Abdellaoui, A. et al. Genetic correlates of social stratification in Great Britain. Nature 
Human Behaviour. Preprint at (2019). 



 157 

61. Delgadillo, J., Asaria, M., Ali, S. & Gilbody, S. On poverty, politics and psychology: the 
socioeconomic gradient of mental healthcare utilisation and outcomes. Br. J. Psychiatry 
209, 429–430 (2016). 

62. Saxon, D. et al. Psychotherapy provision, socioeconomic deprivation, and the inverse 
care law. Psychother. Res. 17, 515–521 (2007). 

63. Rayner, C. et al. Patient characteristics associated with retrospectively self-reported 
treatment outcomes following psychological therapy for anxiety or depressive disorders 
- a cohort of GLAD study participants. BMC Psychiatry 22, 719 (2022). 

64. van Roode, T., Sharples, K., Dickson, N. & Paul, C. Life-Course Relationship between 
Socioeconomic Circumstances and Timing of First Birth in a Birth Cohort. PLoS One 12, 
e0170170 (2017). 

65. Alvarez-Galvez, J. et al. The impact of socio-economic status on self-rated health: study 
of 29 countries using European social surveys (2002-2008). Int. J. Environ. Res. Public 
Health 10, 747–761 (2013). 

66. Stamatakis, E. et al. Is Cohort Representativeness Passé? Poststratified Associations of 
Lifestyle Risk Factors with Mortality in the UK Biobank. Epidemiology 32, 179–188 
(2021). 

67. Fry, A. et al. Comparison of Sociodemographic and Health-Related Characteristics of 
UK Biobank Participants With Those of the General Population. Am. J. Epidemiol. 186, 
1026–1034 (2017). 

68. Waddington, B. Education, England and Wales - Office for National Statistics. 
https://www.ons.gov.uk/peoplepopulationandcommunity/educationandchildcare/bulletins
/educationenglandandwales/census2021 (2023). 

69. Davies, M. R. et al. The Genetic Links to Anxiety and Depression (GLAD) Study: Online 
recruitment into the largest recontactable study of depression and anxiety. Behav. Res. 
Ther. 123, 103503 (2019). 

70. Byrne, E. M. et al. Cohort profile: the Australian genetics of depression study. BMJ 
Open 10, e032580 (2020). 

71. Davis, K. A. S. et al. Mental health in UK Biobank - development, implementation and 
results from an online questionnaire completed by 157 366 participants: a reanalysis. 
BJPsych Open 6, e18 (2020). 

72. Bright, S. J. et al. Sociodemographic, mental health, and physical health factors 
associated with participation within re-contactable mental health cohorts: an 
investigation of the GLAD Study. Research Square (2022) doi:10.21203/rs.3.rs-
2367106/v1. 

73. Catney, G. et al. Ethnic diversification and neighbourhood mixing: A rapid response 
analysis of the 2021 Census of England and Wales. Geogr. J. (2023) 
doi:10.1111/geoj.12507. 

74. Folorunso, O. O. et al. Building an intentional and impactful summer research 
experience to increase diversity in mental health research. Neuropsychopharmacology 
47, 2189–2193 (2022). 

75. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 
243–250 (2022). 

76. Kraft, S. A. et al. Beyond Consent: Building Trusting Relationships With Diverse 
Populations in Precision Medicine Research. Am. J. Bioeth. 18, 3–20 (2018). 

77. Peterson, R. E. et al. Genome-wide Association Studies in Ancestrally Diverse 
Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell 179, 589–
603 (2019). 

78. Faheem, A. ‘Not a cure, but helpful’ – exploring the suitability of evidence-based 
psychological interventions to the needs of Black, Asian and Minority Ethnic (BAME) 
communities. Cogn. Behav. Ther. 16, e4 (2023). 

79. Schoeler, T. et al. Correction for participation bias in the UK Biobank reveals non-
negligible impact on genetic associations and downstream analyses. bioRxiv 
2022.09.28.509845 (2022) doi:10.1101/2022.09.28.509845. 



 158 

80. van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic 
correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. (2019) 
doi:10.1038/s41576-019-0137-z. 

81. Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider scope: 
when selection bias can substantially influence observed associations. Int. J. Epidemiol. 
47, 226–235 (2018). 

82. Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: new directions for 
unravelling genetic and environmental architectures of severe mental disorders. Mol. 
Psychiatry 23, 6–14 (2017). 

83. van Alten, S., Domingue, B. W., Faul, J., Galama, T. & Marees, A. T. Correcting for 
volunteer bias in GWAS uncovers novel genetic variants and increases heritability 
estimates. medRxiv (2022) doi:10.1101/2022.11.10.22282137. 

84. Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature vol. 538 161–
164 (2016). 

85. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health 
disparities. Nat. Genet. 51, 584–591 (2019). 

86. Andreassen, O. A., Hindley, G. F. L., Frei, O. & Smeland, O. B. New insights from the 
last decade of research in psychiatric genetics: discoveries, challenges and clinical 
implications. World Psychiatry 22, 4–24 (2023). 

87. Bansal, N. et al. Understanding ethnic inequalities in mental healthcare in the UK: A 
meta-ethnography. PLoS Med. 19, e1004139 (2022). 

88. Fatumo, S. & Inouye, M. African genomes hold the key to accurate genetic risk 
prediction. Nat Hum Behav (2023) doi:10.1038/s41562-023-01549-1. 

89. Ecks, S. The strange absence of things in the ‘culture’ of the DSM-V. CMAJ 188, 142–
143 (2015). 

90. Madigoe, T., Burns, J., Zhang, M. & Subramaney, U. Towards a culturally appropriate 
trauma assessment in a South African Zulu community. Psychol. Trauma 9, 274–281 
(2017). 

91. Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. 
Genet. 54, 573–580 (2022). 

92. Zhang, H. et al. Novel Methods for Multi-ancestry Polygenic Prediction and their 
Evaluations in 5.1 Million Individuals of Diverse Ancestry. bioRxiv 2022.03.24.485519 
(2023) doi:10.1101/2022.03.24.485519. 

93. Atkinson, E. G. et al. Cross-ancestry genomic research: time to close the gap. 
Neuropsychopharmacology 47, 1737–1738 (2022). 

94. Wootton, R. E., Jones, H. J. & Sallis, H. M. Mendelian randomisation for psychiatry: how 
does it work, and what can it tell us? Mol. Psychiatry 27, 53–57 (2022). 

95. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred 
from GWAS summary data. Nat. Commun. 9, 224 (2018). 

96. Rosoff, D. B., Smith, G. D. & Lohoff, F. W. Prescription Opioid Use and Risk for Major 
Depressive Disorder and Anxiety and Stress-Related Disorders: A Multivariable 
Mendelian Randomization Analysis. JAMA Psychiatry 78, 151–160 (2021). 

97. Friedman, N. P., Banich, M. T. & Keller, M. C. Twin studies to GWAS: there and back 
again. Trends Cogn. Sci. 25, 855–869 (2021). 

98. Cheesman, R., Ayorech, Z., Eilertsen, E. M. & Ystrom, E. Why we need families in 
genomic research on developmental psychopathology. JCPP Adv. (2023) 
doi:10.1002/jcv2.12138. 

99. Mathews, C. Assortative mating in the affective disorders: A systematic review and 
meta-analysis. Comprehensive Psychiatry vol. 42 257–262 Preprint at 
https://doi.org/10.1053/comp.2001.24575 (2001). 

100. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic 
correlation estimates. Science 378, 754–761 (2022). 

101. Grotzinger, A. D. & Keller, M. C. Potential bias in genetic correlations. Science vol. 378 
709–710 (2022). 



 159 

102. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in 
estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022). 

103. Demange, P. A. et al. Estimating effects of parents’ cognitive and non-cognitive skills on 
offspring education using polygenic scores. Nat. Commun. 13, 4801 (2022). 

104. Michaelson, J. J. Genetic Approaches to Understanding Psychiatric Disease. 
Neurotherapeutics 14, 564–581 (2017). 

105. O’Connor, L. J. et al. Extreme Polygenicity of Complex Traits Is Explained by Negative 
Selection. Am. J. Hum. Genet. 105, 456–476 (2019). 

106. Weiner, D. J. et al. Polygenic architecture of rare coding variation across 394,783 
exomes. Nature 614, 492–499 (2023). 

107. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. 
Am. J. Hum. Genet. 101, 5–22 (2017). 

108. Tian, R. et al. Whole exome sequencing in the UK Biobank reveals risk 
geneSLC2A1and biological insights for major depressive disorder. bioRxiv (2021) 
doi:10.1101/2021.05.04.21256398. 

109. Kendall, K. M. et al. Association of Rare Copy Number Variants With Risk of 
Depression. JAMA Psychiatry 76, 818–825 (2019). 

110. Olfson, E. et al. Whole-exome DNA sequencing in childhood anxiety disorders identifies 
rare de novo damaging coding variants. Depress. Anxiety 39, 474–484 (2022). 

111. Lueken, U. et al. Neurobiological markers predicting treatment response in anxiety 
disorders: A systematic review and implications for clinical application. Neurosci. 
Biobehav. Rev. 66, 143–162 (2016). 

112. Klumpp, H. & Fitzgerald, J. M. Neuroimaging Predictors and Mechanisms of Treatment 
Response in Social Anxiety Disorder: an Overview of the Amygdala. Curr. Psychiatry 
Rep. 20, 89 (2018). 

113. Bas-Hoogendam, J. M. et al. ENIGMA-anxiety working group: Rationale for and 
organization of large-scale neuroimaging studies of anxiety disorders. Hum. Brain 
Mapp. 43, 83–112 (2022). 

114. Sajjadian, M. et al. Prediction of depression treatment outcome from multimodal data: a 
CAN-BIND-1 report. Psychol. Med. 1–11. 

115. Harkness, K. L. et al. The Differential Relation of Emotional, Physical, and Sexual 
Abuse Histories to Antidepressant Treatment Remission and Persistence of Anhedonia 
in Major Depression: A CAN-BIND-1 Report. Can. J. Psychiatry 07067437231156255 
(2023). 

116. Fusar-Poli, L., Rutten, B. P. F., van Os, J., Aguglia, E. & Guloksuz, S. Polygenic risk 
scores for predicting outcomes and treatment response in psychiatry: hope or hype? Int. 
Rev. Psychiatry 34, 663–675 (2022). 

117. Choi, S. W. et al. PRSet: Pathway-based polygenic risk score analyses and software. 
PLoS Genet. 19, e1010624 (2023). 

118. Naret, O. et al. Improving polygenic prediction with genetically inferred ancestry. HGG 
Adv 3, 100109 (2022). 

119. Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel 
genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022). 

 

  



 160 

Appendix A. Supplementary materials for Chapter 2 
 
Table of contents 
Supplementary Methods ...................................................................................... 162 

Ethical approval ............................................................................................................... 162 

Genotyping quality control .................................................................................. 162 

GLAD+ ............................................................................................................................. 162 
UK Biobank ...................................................................................................................... 162 
QIMR ............................................................................................................................... 163 

Sensitivity analyses .............................................................................................. 163 

Supplementary Results ........................................................................................ 164 
GWAS meta-analyses across GLAD+, QIMR and UKB datasets ................................... 164 

Supplementary Figure 1: Q-Q plots ............................................................................. 164 
Supplementary Figure 2: Manhattan plots ................................................................... 165 

GWAS meta-analyses across GLAD+ and UKB datasets (excluding QIMR) .................. 166 
Supplementary Figure 3: Q-Q plots ............................................................................. 166 
Supplementary Figure 4: Manhattan plots ................................................................... 167 

Region plots of genome-wide significant loci ................................................................... 168 
Fear-based results ....................................................................................................... 168 
Supplementary Figure 5: Locus on 14q24.3 ................................................................ 168 
Supplementary Figure 6: Locus on 5q31.3 .................................................................. 168 
Supplementary Figure 7: Locus on 1p34.1 .................................................................. 169 
GAD results ................................................................................................................. 169 
Supplementary Figure 8: Locus on 9p23 ..................................................................... 169 
Supplementary Figure 9: Locus on 6p22.1 .................................................................. 170 
Supplementary Figure 10: Locus on 2p16.1 ................................................................ 170 
Supplementary Figure 11: Locus on 5q34 ................................................................... 171 

GWAS within each dataset .............................................................................................. 171 
Supplementary Figure 12: Q-Q plots for GAD and fear GWASs in the GLAD+ dataset
 ..................................................................................................................................... 172 
Supplementary Figure 13: Q-Q plots for GAD and fear GWASs in the QIMR dataset 173 
Supplementary Figure 14: Manhattan plots for GAD and fear GWASs in the QIMR dataset
 ..................................................................................................................................... 174 
Supplementary Figure 15: Q-Q plots for GAD and fear GWASs in the UKB dataset. . 175 
Supplementary Figure 16: Manhattan plots for GAD GWASs in the UKB dataset ...... 176 

Supplementary Tables .......................................................................................... 177 
Supplementary Table 1: Summary of available measures in each study for genome-wide 
association analysis. .................................................................................................... 177 
Supplementary table 2: Self-report diagnoses defined by responses to a single self-report 
item .............................................................................................................................. 178 
Supplementary Table 3: Population prevalence estimates calculated from COPING 
sample prevalence. ..................................................................................................... 178 
Supplementary Table 4: Independent genome-wide significant loci associated with fear-
based disorders, and their association with previously published GWAS of complex traits, 
reported in the GWAS Catalog. ................................................................................... 179 



 161 

Supplementary Table 5: Independent genome-wide significant loci associated with 
generalised anxiety disorder, and their association with previously published GWAS of 
complex traits, reported in the GWAS Catalog. ........................................................... 179 
Supplementary Table 6: Gene-level associations with fear-based disorders, and their 
association with previously published GWAS of complex traits, reported in the GWAS 
Catalog. ....................................................................................................................... 187 
Supplementary Table 7: Gene-level associations with GAD, and their association with 
previously published GWAS of complex traits, reported in the GWAS Catalog. ......... 189 
Supplementary Table 8: LDSC regression SNP-based heritability (h2SNP) estimates of 
GAD and fear-based disorder phenotypes .................................................................. 198 
Supplementary Table 9: Genetic correlations (rg) between anxiety disorder phenotypes 
and 345 external traits estimated in LDSC regression. ............................................... 200 
Supplementary Table 10: SNP-based heritability (h2SNP) estimates of GAD and fear-
based disorders screened using detailed versus brief diagnostic measures. ............. 210 

 

 



 162 

Supplementary Methods 
Ethical approval 
The GLAD Study was approved by the London Fulham Research Ethics Committee on 21st 

August 2018 following a full review by the committee (REC reference: 18/LO/1218). Ethical 

approval for the COPING Study was granted following a full review by the South West Central 

Bristol Research Ethics Committee (REC reference: 20/SW/0078) on 27th April 2020. The 

AGDS and QSkin cohorts were reviewed and approved by the QIMR Berghofer Medical 

Research Institute's Human Research Ethics Committee. Analyses in the UK Biobank were 

performed under UK Biobank Project Application 82087. The UK Biobank has ethical approval 

from the North West Multi-centre Research Ethics Committee (MREC) as a Research Tissue 

Bank (RTB) approval. 

Genotyping quality control 
GLAD+ 
In both the GLAD and COPING studies, genotyping was performed using the Affymetrix UK 

Biobank Axiom Array v1 and v2. Participants were defined as having European-associated 

ancestry based on genomic principal component analysis (PCA) conducted in Plink. 

Genotyping quality control was performed on the PCA-defined European-associated ancestry 

subsample. Pre-imputed variants that were rare (MAF < 1%), not present in > 95% of 

participants, and showed deviation from the Hardy-Weinberg equilibrium (HWE; p < 1x 10-10) 

were removed. Individuals were excluded if they had > 95% of variants missing, a genetic 

duplicate across the two studies, a mismatch between self-reported and chromosomal sex 

and were outliers of identity by descent, indicating sample contamination (> 3 standard 

deviations from the mean).  

UK Biobank 
Pre-processing and collection of genotype data was conducted centrally as described 

elsewhere1. Participants were genotyped using the Affymetric UK BiLEVE Axiom and 

Affymetric UK Biobank Axiom array. Participants were defined as having European-associated 

ancestry based on genomic PCA four-means clustering. In the PCA-defined European-

associated ancestry dataset, pre-imputed variants with MAF < 1%, missing in > 98% of 

individuals, and significant result from the HWE deviation test (p < 1 × 10−8 ). Participants were 
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removed if they had > 98% of variants missing and a mismatch between genetic and 

phenotypic sex. 

QIMR 
Participants in the AGDS and QIMR studies were genotyped using the Illumina Global 

Screening Array v2. Genotyping quality control was performed in a PCA-defined European-

associated ancestry subsample, as described in Mitchell et al 2022. Briefly, prior to imputation 

variants were removed with MAF < 1%, high missingness > 95% and deviation from the HWE 

(p < 1 × 10-6).

Sensitivity analyses 
As a sensitivity analysis, we estimated the h2

SNP of GAD and the fear-based disorder where 

we screened cases and controls using only i) detailed symptom-based measures ii) brief self-

report measures. Analyses were restricted to the GLAD+ dataset, where both diagnostic 

measures were available to screen cases and controls for all five anxiety disorders. Controls 

were specifically screened for the disorder being analysed. GCTA-GREML was used to 

estimate h2
SNP on the liability scale using individual-level data3. Sample sizes were unpowered 

to estimate h2
SNP in LDSC regression. 
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Supplementary Results 
 
GWAS meta-analyses across GLAD+, QIMR and UKB datasets 
 
Supplementary Figure 1: Q-Q plots 
Q-Q plots of GWAS of fear and GAD meta-analysed across the GLAD+, QIMR and UKB 
datasets.  
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Supplementary Figure 2: Manhattan plots  
Manhattan plots for GWAS of GAD and fear with specifically screened controls meta-
analysed across the GLAD+, QIMR and UKB datasets. 
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GWAS meta-analyses across GLAD+ and UKB datasets (excluding QIMR) 
 
Supplementary Figure 3: Q-Q plots 
Q-Q plots for GWAS of GAD and fear meta-analysed across the GLAD+ (NIHR) and UKB 
datasets. 
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Supplementary Figure 4: Manhattan plots 
Manhattan plots for GWAS of GAD and fear meta-analysed across the GLAD+ and UKB 
datasets. No loci reached genome-wide significance in the fear specific GWAS. 
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Region plots of genome-wide significant loci 
 
Fear-based results 
 
Supplementary Figure 5: Locus on 14q24.3 

 
Supplementary Figure 6: Locus on 5q31.3 
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Supplementary Figure 7: Locus on 1p34.1 

 

 
GAD results 
 
Supplementary Figure 8: Locus on 9p23 
Regional plot for the 9p23 locus shown for the most well-powered GAD GWAS (anx-dep 
controls in the full meta-analysis). 
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Supplementary Figure 9: Locus on 6p22.1 
Regional plot for the 6p22.1 locus shown for the most well-powered GAD GWAS (anx-dep 
controls in the full meta-analysis).

 

 
Supplementary Figure 10: Locus on 2p16.1
 

 



 171 

 
Supplementary Figure 11: Locus on 5q34

 

 

 
GWAS within each dataset 
No genome-wide significant loci were identified for GAD and fear GWASs in the GLAD+ 

dataset. Manhattan plots in which SNPs exceeded genome-wide significance are shown in 
Supplementary Figures 14 & 15 for GWAS in the QIMR dataset and UKB dataset, 

respectively. In the QIMR dataset, the lead SNP in the fearanx-dep GWAS was intergenic variant 

rs80182515 on 10q21.1. No loci reached genome-wide significance in the fearanx GWAS 

(where controls were screened for any anxiety disorder and not depression). The lead SNP in 

the QIMR GADspecific and GADanx GWAS was a long non-coding RNA intronic variant 

rs61547418 on 16p13.3, which mapped onto the gene RBFOX1, also previously reported in 

GWAS of MDD in QIMR2. The lead SNP in the UKB GADspecific and GADanx-dep GWAS was 

rs17189482 on 9p23, which was genome-wide significant in the GAD meta-analyses. No loci 

reached genome-wide significance in UK Biobank fear GWASs. 
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Supplementary Figure 12: Q-Q plots for GAD and fear GWASs in the GLAD+ dataset 
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Supplementary Figure 13: Q-Q plots for GAD and fear GWASs in the QIMR dataset
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Supplementary Figure 14: Manhattan plots for GAD and fear GWASs in the QIMR 
dataset
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Supplementary Figure 15: Q-Q plots for GAD and fear GWASs in the UKB dataset. 
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Supplementary Figure 16: Manhattan plots for GAD GWASs in the UKB dataset
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Supplementary Tables 

Supplementary Table 1: Summary of available measures in each study for genome-wide association analysis. 
Study 

sample 
Measure 

Detailed phenotyping: symptom-based diagnoses Brief phenotyping: self-report diagnoses 
GAD Panic 

disorder 
Agoraphobia Social 

phobia 
Specific 
phobia 

GAD Panic disorder and/or 
panic attacks 

Agoraphobia Social 
phobia 

Specific 
phobia  

GLAD x x x x x x x x x x 
 

COPING x x x x x x x x x x 
 

AGDS x x x x x x x x x x 
 

Qskin* 
           

UKB x 
    

x x x x x 
 

* Only available measure in Qskin is brief, self-report diagnosis of "anxiety", used to screen control for any anxiety disorder. 
 

x = the availablity of measures in each study; GLAD, Genetic Links to Anxiety and Depression Study; COPING, COVID-19 Psychiatric and Neurological 
Genetics Study; AGDS, Australian Genetics of Depression Study; UKB, UK Biobank, GAD; generalised anxiety disorder 
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Supplementary table 2: Self-report diagnoses defined by responses to a single self-report item 
Study sample and item phrasing Response options for screening using self-report diagnoses 

GAD Panic Agoraphobia Social phobia Specific phobia 

GLAD & COPING: Have you ever been diagnosed 
with one or more of the following mental health 

problems by a professional, even if you don’t have it 
currently? 

Anxiety, nerves or 
generalised anxiety 

disorder 

Panic 
disorder  

or  
Panic 

attacks 

Agoraphobia Social anxiety or 
social phobia 

Specific phobia (e.g. phobia of 
flying) 

AGDS:  
Have you ever been diagnosed with any of  the 

following? 

Anxiety disorder 
(Generalised anxiety 

disorder) 

Panic 
disorder Agoraphobia 

Social anxiety 
disorder (also 

known as Social 
phobia) 

Specific phobia (e.g. animals, 
heights, storms, blood, 

injection/ injury, flying, enclosed 
spaces) 

QSkin:  
Have you ever been diagnosed with, experienced or 

been treated for any of the following conditions? 

Anxiety  
Note:only used for screening controls, not cases 

UKB:  
Have you been diagnosed with one or  more of the 
following mental health problems by a professional, 

even if you don't have it currently? 

Anxiety, nerves or 
generalised anxiety 

disorder 
Panic 

attacks Agoraphobia Social anxiety or 
social phobia 

Any other phobia (e.g. disabling 
fear of heights or spiders) 

GLAD, Genetic Links to Anxiety and Depression Study; COPING, COVID-19 Psychiatric and Neurological Genetics Study; AGDS, Australian Genetics of 
Depression Study; UKB, UK Biobank, GAD; generalised anxiety disorder 
 
Supplementary Table 3: Population prevalence estimates calculated from COPING sample prevalence. 

Phenotype N COPING 
cases 

N COPING 
total 

Population prevalence = 
COPING sample prevalence 10% Population prevalence = COPING 

sample prevalence + 10% 
Population prevalence = COPING 

sample prevalence - 10% 
GAD 3210 24903 0.129 0.013 0.142 0.116 
Fear 2198 24903 0.088 0.009 0.097 0.079 

Sample prevalence was calculated in the full COPING study (not restricted to individuals with genotype data available). 
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Supplementary Table 4: Independent genome-wide significant loci associated with fear-based disorders, and their association with 
previously published GWAS of complex traits, reported in the GWAS Catalog. 
GWASs of other phenotypes are shown if they that reported a genome-wide association with one or more of the candidate SNPs identified in 
this study.
 

Region 
Locus 
no. chr Trait PMID First Auth P bp snp Mapped Gene Strongest Context 

Region 14q24.3 
14q24.3 1 14 Systolic blood pressure 30224653 Evangelou E 3.00E-13 75074316 rs11159091 LTBP2 rs11159091-A intron 
14q24.3 1 14 Systolic blood pressure 30578418 Giri A 2.00E-11 75098313 rs11159096 LTBP2 - AREL1 rs11159096-A regulatory region 
14q24.3 1 14 Worry 29942085 Nagel M 1.00E-08 75109195 rs888415 LTBP2 - AREL1 rs888415-A regulatory region 

14q24.3 1 14 
Educational attainment 
(MTAG) 30038396 Lee JJ 1.00E-08 75113682 rs7154563 LTBP2 - AREL1 rs7154563-T intergenic 

14q24.3 1 14 Worry 29942085 Nagel M 5.00E-08 75099883 rs11159097 LTBP2 - AREL1 rs11159097-C intergenic 
Region 1p34.1 
1p34.1 3 1 Anxiety 33859377 Thorp JG 9.00E-08 44751710 rs325163 ERI3 rs325163-T intron 
1p34.1 3 1 Metabolite levels 23823483 Rhee EP 3.00E-06 44602159 rs6662888 KLF17 - KLF18 rs6662888-? intergenic 
1p34.1 3 1 Reaction time 29844566 Davies G 3.00E-06 44701277 rs7525929 ERI3 rs7525929-? intron 
1p34.1 3 1 Reaction time 29844566 Davies G 3.00E-06 44826511 rs12078192 ERI3 - RNU6-369P rs12078192-? intergenic 
1p34.1 3 1 Metabolite levels 23823483 Rhee EP 7.00E-06 44630318 rs6700522 OOSP1P1 - DMAP1 rs6700522-? intergenic 
 
Supplementary Table 5: Independent genome-wide significant loci associated with generalised anxiety disorder, and their association 
with previously published GWAS of complex traits, reported in the GWAS Catalog.
GWASs of other phenotypes are shown if they reported a genome-wide association with one or more of the candidate SNPs identified in this 
study.  
 

Region 
Locus 
no. chr Trait PMID FirstAuth P bp snp MappedGene Strongest Context 

Region 9p23 
9p23 4 9 Neuroticism 30643256 Baselmans BML 1.00E-19 11651144 rs10960067  rs10960067-G intron 
9p23 4 9 Depressive symptoms 30643256 Baselmans BML 2.00E-19 11651144 rs10960067  rs10960067-G intron 
9p23 4 9 Well-being spectrum 30643256 Baselmans BML 6.00E-17 11455955 rs10491952  rs10491952-T intergenic 
9p23 4 9 Neuroticism 29255261 Luciano M 2.00E-16 11453149 rs56116032  rs56116032-A intergenic 
9p23 4 9 Neuroticism 29255261 Luciano M 2.00E-16 11651144 rs10960067  rs10960067-A intron 
9p23 4 9 Neuroticism 30643256 Baselmans BML 8.00E-16 11139180 rs10959560  rs10959560-T intergenic 
9p23 4 9 Depressive symptoms 30643256 Baselmans BML 8.00E-16 11139180 rs10959560  rs10959560-T intergenic 
9p23 4 9 Neuroticism 30643256 Baselmans BML 1.00E-15 11400078 rs10959767  rs10959767-G intron 
9p23 4 9 Depressive symptoms 30643256 Baselmans BML 1.00E-15 11400078 rs10959767  rs10959767-G intron 
9p23 4 9 Depression 30718901 Howard DM 1.00E-15 11513019 rs1982277  rs1982277-T intergenic 
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9p23 4 9 Positive affect 30643256 Baselmans BML 6.00E-14 11139180 rs10959560  rs10959560-T intergenic 
9p23 4 9 Bipolar disorder or MDD 31926635 Coleman JRI 1.00E-13 11379630 rs10959753  rs10959753-C intron 
9p23 4 9 Anxiety 33859377 Thorp JG 1.00E-13 11553381 rs10959925 AKAP8P1 - JKAMPP1 rs10959925-G intergenic 
9p23 4 9 Neuroticism 29255261 Luciano M 2.00E-13 11786602 rs1565001  rs1565001-C intron 
9p23 4 9 Neuroticism 29255261 Luciano M 3.00E-13 11699270 rs10960103  rs10960103-G intron 
9p23 4 9 Neuroticism 29942085 Nagel M 1.00E-12 11449346 rs62550480  rs62550480-T intergenic 
9p23 4 9 Neuroticism 30595370 Kichaev G 7.00E-12 11453149 rs56116032  rs56116032-? intergenic 
9p23 4 9 Neuroticism 29942085 Nagel M 1.00E-11 11257041 rs11496294  rs11496294-C intergenic 
9p23 4 9 Depressive symptoms 29292387 Turley P 2.00E-11 11557797 rs10809520  rs10809520-T intergenic 
9p23 4 9 Neuroticism (MTAG) 29292387 Turley P 2.00E-11 11557797 rs10809520  rs10809520-T intergenic 
9p23 4 9 Lifetime anxiety disorder 31748690 Purves KL 3.00E-11 11519984 rs10959883  rs10959883-C intergenic 
9p23 4 9 Mood instability 31168069 Ward J 6.00E-11 11453149 rs56116032  rs56116032-? intergenic 
9p23 4 9 Neurociticism 29500382 Nagel M 9.00E-11 11449346 rs62550480  rs62550480-T intergenic 
9p23 4 9 Neuroticism 29255261 Luciano M 1.00E-10 11369213 rs12378446  rs12378446-C intron 
9p23 4 9 Neurociticism 29500382 Nagel M 1.00E-10 11703892 rs56318386  rs56318386-T intron 
9p23 4 9 Neuroticism 27089181 Okbay A 2.00E-10 11699270 rs10960103  rs10960103-C intron 
9p23 4 9 Depressive symptoms 29292387 Turley P 5.00E-10 11557797 rs10809520  rs10809520-T intergenic 
9p23 4 9 General factor of neuroticism 30867560 Hill WD 7.00E-10 11453149 rs56116032  rs56116032-A intergenic 
9p23 4 9 Experiencing mood swings 29500382 Nagel M 1.00E-09 11703892 rs56318386  rs56318386-T intron 
9p23 4 9 Experiencing mood swings 29500382 Nagel M 2.00E-09 11445598 rs10959813 PTPRD - NA rs10959813-A intergenic 
9p23 4 9 Anxiety symptoms 31748690 Purves KL 4.00E-09 11513617 rs17189482  rs17189482-G intergenic 
9p23 4 9 Depression 29700475 Wray NR 5.00E-09 11544964 rs10959913  rs10959913-T intergenic 
9p23 4 9 Neurociticism 29500382 Nagel M 6.00E-09 11257041 rs11496294  rs11496294-C intergenic 
9p23 4 9 Depression 27089181 Okbay A 6.00E-09 11557797 rs10809520  rs10809520-T intergenic 
9p23 4 9 Mood instability 29187730 Ward J 8.00E-09 11459410 rs10959826  rs10959826-G intergenic 
9p23 4 9 Feeling hurt 29500382 Nagel M 9.00E-09 11256918 rs10117184  rs10117184-A intergenic 
9p23 4 9 Neuroticism 27067015 Smith DJ 9.00E-09 11369213 rs12378446  rs12378446-T intron 
9p23 4 9 Adolescent idiopathic scoliosis 30019117 Liu J 1.00E-08 11701596 rs10809558  rs10809558-? intron 
9p23 4 9 Feeling worry 29500382 Nagel M 2.00E-08 11431990 rs10959797  rs10959797-A intron 
9p23 4 9 Worry 29942085 Nagel M 2.00E-08 11610677 rs62551581  rs62551581-C intergenic 
9p23 4 9 Body mass index 31669095 Zhu Z 3.00E-08 11727896 rs62555664  rs62555664-? intron 
9p23 4 9 Major depressive disorder 31969693 Coleman JRI 4.00E-08 11256041 rs11515172  rs11515172-T intergenic 
9p23 4 9 Feeling worry 29500382 Nagel M 4.00E-08 11610896 rs62551583  rs62551583-A intergenic 
Region 6p22.1 
6p22.1 5 6 Peak expiratory flow 30804560 Shrine N 1.00E-48 28301099 rs7752448 ZSCAN31 rs7752448-A intron 
6p22.1 5 6 Schizophrenia 29483656 Pardinas AF 2.00E-44 29206683 rs3130820 OR2G1P - OR2U1P rs3130820-? intron 
6p22.1 5 6 Hemoglobin levels 32327693 Oskarsson GR 2.00E-38 29342775 rs3749971 OR12D3, OR5V1 rs3749971-A missense 
6p22.1 5 6 FEV1 30804560 Shrine N 3.00E-35 28301099 rs7752448 ZSCAN31 rs7752448-A intron 
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6p22.1 5 6 Schizophrenia 31740837 Lam M 7.00E-30 29144532 rs9257566 OR2J2 - OR2J4P rs9257566-? intergenic 
6p22.1 5 6 Schizophrenia 30285260 Ikeda M 1.00E-29 29206683 rs150817755 OR2G1P - OR2U1P rs150817755-T intron 
6p22.1 5 6 Schizophrenia 26198764 Goes FS 2.00E-29 28306671 rs13217619 ZSCAN31 rs13217619-T intron 
6p22.1 5 6 Schizophrenia 26198764 Goes FS 2.00E-28 29244219 rs144447022 OR2U2P - OR14J1 rs144447022-G intron 
6p22.1 5 6 Schizophrenia (MTAG) 32606422 Wu Y 9.00E-28 29244219 rs144447022 OR2U2P - OR14J1 rs144447022-? intron 

6p22.1 5 6 

Anorexia nervosa, attention-
deficit/hyperactivity disorder, 
autism spectrum disorder, bipolar 
disorder, major depression, 
obsessive-compulsive disorder, 
schizophrenia, or Tourette 
syndrome (pleiotropy) 31835028 

Cross-Disorder Group of 
the Psychiatric Genomics 
Consortium 1.00E-27 28306671 rs13217619 ZSCAN31 rs13217619-? intron 

6p22.1 5 6 
Autism spectrum disorder or 
schizophrenia 28540026 Anney RJL 3.00E-26 28667669 rs116137698 LINC00533 - RPSAP2 rs116137698-A intergenic 

6p22.1 5 6 
Cardiometabolic and 
hematological traits 27668658 Iotchkova V 3.00E-26 29118747 rs3130725 OR2J3 - OR2J2 rs3130725-G intergenic 

6p22.1 5 6 Schizophrenia 30285260 Ikeda M 1.00E-25 28983274 rs116757206 ZNF311 - OR2AD1P rs116757206-G intergenic 
6p22.1 5 6 Schizophrenia 30285260 Ikeda M 7.00E-25 29342775 rs114071887 OR5V1, OR12D3 rs114071887-G missense 
6p22.1 5 6 Apolipoprotein A1 levels 32203549 Richardson TG 9.00E-25 28682725 rs9393926 LINC00533 - RPSAP2 rs9393926-G intergenic 
6p22.1 5 6 Lung function (FVC) 30804560 Shrine N 1.00E-22 28301099 rs7752448 ZSCAN31 rs7752448-A intron 
6p22.1 5 6 Major depressive disorder (MTAG) 33479212 Yao X 2.00E-22 28366151 rs2232423 ZSCAN12 rs2232423-A missense 

6p22.1 5 6 
Well-being spectrum (multivariate 
analysis) 30643256 Baselmans BML 6.00E-21 28349698 rs13213152 ZSCAN12 rs13213152-G 3_prime_UTR 

6p22.1 5 6 Depressive symptoms 30643256 Baselmans BML 7.00E-21 28349698 rs13213152 ZSCAN12 rs13213152-G 3_prime_UTR 

6p22.1 5 6 
Sarcoidosis (Lofgren's syndrome vs 
non-Lofgren's syndrome) 26651848 Rivera NV 1.00E-20 29356331 rs9257809 OR5V1 rs9257809-G intron 

6p22.1 5 6 
Sarcoidosis (Lofgren's syndrome vs 
non-Lofgren's syndrome) 26651848 Rivera NV 1.00E-20 29461730 rs1233491 RPS17P1 - LINC02829 rs1233491-C intergenic 

6p22.1 5 6 HDL cholesterol levels 32203549 Richardson TG 2.00E-20 28992159 rs3129797 ZNF311 - OR2AD1P rs3129797-C intergenic 

6p22.1 5 6 
Sarcoidosis (Lofgren's syndrome vs 
non-Lofgren's syndrome) 26651848 Rivera NV 7.00E-20 28803291 rs9257248 NOP56P1 - LINC01623 rs9257248-A intergenic 

6p22.1 5 6 Bipolar disorder (MTAG) 32606422 Wu Y 7.00E-20 29244219 rs144447022 OR2U2P - OR14J1 rs144447022-? intron 
6p22.1 5 6 Cognitive performance 30038396 Lee JJ 8.00E-20 28934352 rs148696809 LINC01556 - KRT18P1 rs148696809-T intergenic 
6p22.1 5 6 Blood protein levels 28240269 Suhre K 1.00E-19 29283672 rs3129682 OR14J1 - DDX6P1 rs3129682-T intergenic 

6p22.1 5 6 
Sarcoidosis (Lofgren's syndrome vs 
non-Lofgren's syndrome) 26651848 Rivera NV 4.00E-19 28905791 rs3130895 TRIM27 - LINC01556 rs3130895-A intergenic 

6p22.1 5 6 Neuropsychiatric disorders 33479212 Yao X 5.00E-19 28354835 rs67981811 ZSCAN12 rs67981811-C 3_prime_UTR 

6p22.1 5 6 
Sarcoidosis (Lofgren's syndrome vs 
non-Lofgren's syndrome) 26651848 Rivera NV 7.00E-19 29057639 rs3129788 OR2B3 - OR2J1 rs3129788-A intergenic 
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6p22.1 5 6 Lung cancer 28604730 McKay JD 7.00E-19 29607101 rs115870917 SUMO2P1 - MOG rs115870917-C intergenic 
6p22.1 5 6 Body size at age 10 32376654 Richardson TG 2.00E-18 28831611 rs3131336 LINC01623 rs3131336-C intron 

6p22.1 5 6 
Sarcoidosis (Lofgren's syndrome vs 
non-Lofgren's syndrome) 26651848 Rivera NV 5.00E-18 28349698 rs13213152 ZSCAN12 rs13213152-G 3_prime_UTR 

6p22.1 5 6 
Bipolar disorder or major 
depressive disorder 31926635 Coleman JRI 7.00E-18 28673998 rs145410455 LINC00533 - RPSAP2 rs145410455-G intergenic 

6p22.1 5 6 
Cognitive aspects of educational 
attainment 33414549 Demange PA 2.00E-17 28411941 rs67381177 ZSCAN23 - COX11P1 rs67381177-G regulatory_region 

6p22.1 5 6 Verbal-numerical reasoning 32895543 de la Fuente J 2.00E-17 28678357 rs7775835 LINC00533 - RPSAP2 rs7775835-? intergenic 
6p22.1 5 6 Lung function (FEV1/FVC) 30804560 Shrine N 7.00E-16 28301099 rs7752448 ZSCAN31 rs7752448-A intron 
6p22.1 5 6 Brain morphology (MOSTest) 32665545 van der Meer D 7.00E-16 29607101 rs3131856 SUMO2P1 - MOG rs3131856-? intergenic 
6p22.1 5 6 General cognitive ability 29844566 Davies G 5.00E-15 29372323 rs429479 OR5V1 rs429479-A intron 
6p22.1 5 6 Urate levels 31578528 Tin A 7.00E-15 28301099 rs7752448 ZSCAN31 rs7752448-A intron 
6p22.1 5 6 Triglyceride levels 32203549 Richardson TG 1.00E-14 28796071 rs3131337 NOP56P1 - LINC01623 rs3131337-G intergenic 
6p22.1 5 6 Intelligence (MTAG) 29326435 Hill WD 1.00E-13 29244219 rs144447022 OR2U2P - OR14J1 rs144447022-T intron 
6p22.1 5 6 Number of sexual partners 30643258 Karlsson Linner R 2.00E-13 28671343 rs6908726 LINC00533 - RPSAP2 rs6908726-C intergenic 
6p22.1 5 6 Triglycerides 30275531 Klarin D 3.00E-13 28793904 rs3118359 NOP56P1 - LINC01623 rs3118359-T intergenic 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 3.00E-13 29415464 rs115482250 OR11A1 rs115482250-A intron 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 6.00E-13 28827879 rs116711004 LINC01623 rs116711004-T Non coding transcript exon 

6p22.1 5 6 Depression (broad) 29662059 Howard DM 8.00E-13 29549653 rs1233393 GABBR1 rs1233393-G intron 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 1.00E-12 28318331 rs35744819 ZSCAN31, ZKSCAN3 rs35744819-T intron 

6p22.1 5 6 Depression (broad) 29662059 Howard DM 1.00E-12 28345282 rs35017208 ZKSCAN3 - ZSCAN12 rs35017208-T intergenic 
6p22.1 5 6 Lung cancer 28604730 McKay JD 1.00E-12 28796071 rs116461399 NOP56P1 - LINC01623 rs116461399-C intergenic 
6p22.1 5 6 Lung cancer 28604730 McKay JD 1.00E-12 29254982 rs139244745 OR2U2P - OR14J1 rs139244745-G intron 
6p22.1 5 6 Depression (broad) 29662059 Howard DM 1.00E-12 29415464 rs2523443 OR11A1 rs2523443-A intron 
6p22.1 5 6 Lung cancer 28604730 McKay JD 2.00E-12 28281894 rs34661125 PGBD1 - SMIM15P2 rs34661125-A intergenic 
6p22.1 5 6 Pork consumption 32066663 Niarchou M 2.00E-12 28314880 rs35016036 ZSCAN31 rs35016036-? intron 
6p22.1 5 6 Oily fish consumption 32066663 Niarchou M 2.00E-12 28314880 rs35016036 ZSCAN31 rs35016036-? intron 
6p22.1 5 6 Cognitive traits (MTAG) 32895543 de la Fuente J 2.00E-12 29206251 rs3117342 OR2G1P  rs3117342-? intron 
6p22.1 5 6 Depression (broad) 29662059 Howard DM 2.00E-12 29254982 rs9257681 OR2U2P - OR14J1 rs9257681-G intron 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 2.00E-12 29254982 rs139244745 OR2U2P - OR14J1 rs139244745-G intron 

6p22.1 5 6 Urate levels 31578528 Tin A 2.00E-12 29372323 rs429479 OR5V1 rs429479-A intron 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 3.00E-12 28436145 rs55690788 OR2E1P - GPX6 rs55690788-C intergenic 
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6p22.1 5 6 Lung cancer 28604730 McKay JD 3.00E-12 28934352 rs148696809 LINC01556 - KRT18P1 rs148696809-C intergenic 
6p22.1 5 6 Depression (broad) 29662059 Howard DM 3.00E-12 29133642 rs4947263 OR2J3 - OR2J2 rs4947263-T Non coding transcript exon 
6p22.1 5 6 Depressive symptoms (MTAG) 32606422 Wu Y 3.00E-12 29244219 rs144447022 OR2U2P - OR14J1 rs144447022-? intron 
6p22.1 5 6 Squamous cell lung carcinoma 28604730 McKay JD 3.00E-12 29254982 rs139244745 OR2U2P - OR14J1 rs139244745-G intron 
6p22.1 5 6 Depression (broad) 29662059 Howard DM 4.00E-12 28482917 rs13191038 GPX6, GPX6 rs13191038-C intron 
6p22.1 5 6 Help-seeking from a GP 32231276 Cai N 4.00E-12 28795856 rs3135296 NOP56P1 - LINC01623 rs3135296-A intergenic 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 4.00E-12 28939283 rs115218101 KRT18P1 - RN7SL471P rs115218101-C intergenic 

6p22.1 5 6 Lung cancer 28604730 McKay JD 4.00E-12 29148394 rs116826541 OR2J2 - OR2J4P rs116826541-G intergenic 
6p22.1 5 6 Urate levels 31578528 Tin A 6.00E-12 28839908 rs3118365 LINC01623 - ZNF90P2 rs3118365-A regulatory_region 
6p22.1 5 6 Lung cancer 28604730 McKay JD 7.00E-12 28394680 rs13201681 RNU2-45P - ZSCAN23 rs13201681-T intergenic 
6p22.1 5 6 General cognitive ability 29844566 Davies G 9.00E-12 28678357 rs7775835 LINC00533 - RPSAP2 rs7775835-T intergenic 
6p22.1 5 6 Depression (broad) 29662059 Howard DM 1.00E-11 28630691 rs13194504 LINC00533 - RPSAP2 rs13194504-A intergenic 
6p22.1 5 6 Squamous cell lung carcinoma 28604730 McKay JD 1.00E-11 28796071 rs116461399 NOP56P1 - LINC01623 rs116461399-C intergenic 

6p22.1 5 6 
Aerodigestive squamous cell 
cancer (pleiotropy) 33667223 Lesseur C 1.00E-11 29044701 rs116345369 SAR1AP1 rs116345369-A Non coding transcript exon 

6p22.1 5 6 
Estimated glomerular filtration 
rate in diabetes 31451708 Hellwege JN 1.00E-11 29413003 rs2023463 OR11A1 rs2023463-T intron 

6p22.1 5 6 
Chronic obstructive pulmonary 
disease 33909500 Moll M 2.00E-11 28366151 rs2232423 ZSCAN12 rs2232423-G missense 

6p22.1 5 6 Depression (broad) 29662059 Howard DM 2.00E-11 28954293 rs3129791 HCG15 rs3129791-A intron 

6p22.1 5 6 
Receptor for advanced 
glycosylation end products levels 33067605 Folkersen L 2.00E-11 29274136 rs3117427 OR14J1 rs3117427-T intron 

6p22.1 5 6 

Chronic obstructive pulmonary 
disease x ever smoker interaction 
(2df) 33106845 Kim W 2.00E-11 29549653 rs1233393 GABBR1 rs1233393-G intron 

6p22.1 5 6 Squamous cell lung carcinoma 28604730 McKay JD 3.00E-11 29133642 rs141600123 OR2J3 - OR2J2 rs141600123-T Non coding transcript exon 

6p22.1 5 6 
Chronic obstructive pulmonary 
disease 33909500 Moll M 3.00E-11 29342775 rs3749971 OR12D3, OR5V1 rs3749971-A missense 

6p22.1 5 6 

Chronic obstructive pulmonary 
disease x current smoker 
interaction (2df) 33106845 Kim W 3.00E-11 29549653 rs1233393 GABBR1 rs1233393-G intron 

6p22.1 5 6 Depression (broad) 29662059 Howard DM 4.00E-11 28803291 rs9257248 NOP56P1 - LINC01623 rs9257248-T intergenic 
6p22.1 5 6 Squamous cell lung carcinoma 28604730 McKay JD 4.00E-11 28934352 rs148696809 LINC01556 - KRT18P1 rs148696809-C intergenic 
6p22.1 5 6 Squamous cell lung carcinoma 28604730 McKay JD 7.00E-11 28358009 rs13213986 ZSCAN12 rs13213986-A 3_prime_UTR 
6p22.1 5 6 Pork consumption 32066663 Niarchou M 7.00E-11 29340743 rs9257800 OR5V1 rs9257800-? intron 
6p22.1 5 6 Oily fish consumption 32066663 Niarchou M 7.00E-11 29340743 rs9257800 OR5V1 rs9257800-? intron 
6p22.1 5 6 Help-seeking from a psychiatrist 32231276 Cai N 1.00E-10 29111775 rs3129120 OR2J3 - OR2J2 rs3129120-T intergenic 
6p22.1 5 6 Fish- and plant-related diet 32066663 Niarchou M 2.00E-10 28301099 rs7752448 ZSCAN31 rs7752448-? intron 
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6p22.1 5 6 Squamous cell lung carcinoma 28604730 McKay JD 2.00E-10 28482917 rs114242735 GPX6, GPX6 rs114242735-C intron 
6p22.1 5 6 Cortical thickness (MOSTest) 32665545 van der Meer D 2.00E-10 29607101 rs3131856 SUMO2P1 - MOG rs3131856-? intergenic 
6p22.1 5 6 Biological sex 33888908 Pirastu N 4.00E-10 29548089 rs926552 GABBR1 rs926552-G intron 
6p22.1 5 6 Lung cancer in ever smokers 28604730 McKay JD 7.00E-10 28304384 rs67340775 ZSCAN31 rs67340775-C intron 
6p22.1 5 6 Cutaneous lupus erythematosus 25827949 Kunz M 8.00E-10 29461730 rs1233491 RPS17P1 - LINC02829 rs1233491-C intergenic 
6p22.1 5 6 Breast cancer 29059683 Michailidou K 1.00E-09 28332141 rs13214023 ZKSCAN3 rs13214023-A intron 
6p22.1 5 6 Blood protein levels 28240269 Suhre K 1.00E-09 29044701 rs3131085 SAR1AP1 rs3131085-A Non coding transcript exon 

6p22.1 5 6 
Estimated glomerular filtration 
rate 31451708 Hellwege JN 1.00E-09 29432173 rs2143668 OR2H1 - UBDP1 rs2143668-A intergenic 

6p22.1 5 6 Lung cancer in ever smokers 28604730 McKay JD 2.00E-09 28411941 rs67381177 ZSCAN23 - COX11P1 rs67381177-C regulatory_region 
6p22.1 5 6 Heel bone mineral density 30048462 Kim SK 2.00E-09 29223493 rs3130825 OR2G1P - OR2U1P rs3130825-? intron 

6p22.1 5 6 

Chronic obstructive pulmonary 
disease x current smoker 
interaction (main effect) 33106845 Kim W 2.00E-09 29549653 rs1233393 GABBR1 rs1233393-G intron 

6p22.1 5 6 
Chronic obstructive pulmonary 
disease in non-current smokers 33106845 Kim W 2.00E-09 29549653 rs1233393 GABBR1 rs1233393-G intron 

6p22.1 5 6 
Estimated glomerular filtration 
rate in diabetes 31451708 Hellwege JN 3.00E-09 28868494 rs3132374 HCG14 - TRIM27 rs3132374-C intergenic 

6p22.1 5 6 Intelligence 29942086 Savage JE 3.00E-09 29342775 rs3749971 OR12D3, OR5V1 rs3749971-A missense 

6p22.1 5 6 
White matter microstructure (axial 
diusivities) 31666681 Zhao B 3.00E-09 29458241 rs1233493 RPS17P1 - LINC02829 rs1233493-? intergenic 

6p22.1 5 6 Barrett's esophagus 22961001 Su Z 4.00E-09 29356331 rs9257809 OR5V1 rs9257809-A intron 

6p22.1 5 6 
Asthma and major depressive 
disorder 31619474 Zhu Z 5.00E-09 28934352 rs148696809 LINC01556 - KRT18P1 rs148696809-? intergenic 

6p22.1 5 6 Breast cancer 29059683 Michailidou K 5.00E-09 29248149 rs3130834 OR2U2P - OR14J1 rs3130834-C intron 
6p22.1 5 6 Breast cancer 29059683 Michailidou K 6.00E-09 29075088 rs3129178 OR2J1 - OR2J3 rs3129178-A intergenic 
6p22.1 5 6 Barrett's esophagus 27527254 Gharahkhani P 6.00E-09 29356331 rs9257809 OR5V1 rs9257809-A intron 

6p22.1 5 6 
Barrett's esophagus or Esophageal 
adenocarcinoma 27527254 Gharahkhani P 6.00E-09 29356331 rs9257809 OR5V1 rs9257809-A intron 

6p22.1 5 6 Lung cancer in ever smokers 28604730 McKay JD 7.00E-09 28619353 rs114385935 LINC00533 - RPSAP2 rs114385935-G intron 
6p22.1 5 6 Positive affect 30643256 Baselmans BML 8.00E-09 28314880 rs35016036 ZSCAN31 rs35016036-T intron 

6p22.1 5 6 
Estimated glomerular filtration 
rate in non-diabetics 31451708 Hellwege JN 9.00E-09 29458241 rs1233493 RPS17P1 - LINC02829 rs1233493-A intergenic 

6p22.1 5 6 
Smoking initiation (ever regular vs 
never regular) 30679032 Brazel DM 1.00E-08 28366151 rs2232423 ZSCAN12 rs2232423-G missense 

6p22.1 5 6 
Smoking initiation (ever regular vs 
never regular) 30679032 Brazel DM 1.00E-08 28366151 rs2232423 ZSCAN12 rs2232423-G missense 

6p22.1 5 6 
White matter microstructure 
(mean diusivities) 31666681 Zhao B 1.00E-08 29458241 rs1233493 RPS17P1 - LINC02829 rs1233493-? intergenic 
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6p22.1 5 6 
Smoking initiation (ever regular vs 
never regular) 30679032 Brazel DM 1.00E-08 29548089 rs926552 GABBR1 rs926552-A intron 

6p22.1 5 6 Depression 29942085 Nagel M 2.00E-08 28678357 rs7775835 LINC00533 - RPSAP2 rs7775835-T intergenic 
6p22.1 5 6 Lung adenocarcinoma 19836008 Landi MT 2.00E-08 28776117 rs4324798 NOP56P1 - LINC01623 rs4324798-A intergenic 
6p22.1 5 6 Worry 29942085 Nagel M 2.00E-08 29260431 rs3117425 OR2U2P - OR14J1 rs3117425-T Non coding transcript exon 
6p22.1 5 6 Myopia (age of diagnosis) 29808027 Tedja MS 3.00E-08 29144532 rs145283874 OR2J2 - OR2J4P rs145283874-T intergenic 
6p22.1 5 6 Breast cancer 29059683 Michailidou K 3.00E-08 29356331 rs9257809 OR5V1 rs9257809-G intron 
6p22.1 5 6 Waist-to-hip ratio adjusted for BMI 34021172 Christakoudi S 4.00E-08 28734676 rs1233604 RPSAP2 - NOP56P1 rs1233604-A intergenic 

6p22.1 5 6 
Major depressive disorder 
(lifetime) 32231276 Cai N 4.00E-08 29548089 rs926552 GABBR1 rs926552-G intron 

Region 2p16.1 

2p16.1 6 2 

Anorexia nervosa, attention-
deficit/hyperactivity disorder, 
autism spectrum disorder, bipolar 
disorder, major depression, 
obsessive-compulsive disorder, 
schizophrenia, or Tourette 
syndrome (pleiotropy) 31835028 

Cross-Disorder Group of 
the Psychiatric Genomics 
Consortium 2.00E-14 57988194 rs11688767 ACTG1P22 rs11688767-? intron 

2p16.1 6 2 Sleep duration 30804565 Jansen PR 1.00E-13 57987593 rs11682175 ACTG1P22 rs11682175-C intron 

2p16.1 6 2 
Autism spectrum disorder or 
schizophrenia 28540026 Anney RJL 1.00E-12 57987593 rs11682175 ACTG1P22 rs11682175-? intron 

2p16.1 6 2 Schizophrenia 26198764 Goes FS 1.00E-12 57987593 rs11682175 ACTG1P22 rs11682175-C intron 

2p16.1 6 2 

Cognitive ability, years of 
educational attainment or 
schizophrenia (pleiotropy) 31374203 Lam M 2.00E-12 57988194 rs11688767 ACTG1P22 rs11688767-? intron 

2p16.1 6 2 Schizophrenia 31268507 Periyasamy S 4.00E-12 57987593 rs11682175 ACTG1P22 rs11682175-? intron 
2p16.1 6 2 Schizophrenia (MTAG) 33479212 Yao X 4.00E-12 57987593 rs11682175 ACTG1P22 rs11682175-T intron 
2p16.1 6 2 Schizophrenia (MTAG) 32606422 Wu Y 5.00E-12 57987593 rs11682175 ACTG1P22 rs11682175-? intron 
2p16.1 6 2 Body fat distribution (arm fat ratio) 30664634 Rask-Andersen M 1.00E-11 57961602 rs13011472 NA - ACTG1P22 rs13011472-G intergenic 
2p16.1 6 2 Schizophrenia 25056061 Ripke S 1.00E-11 57987593 rs11682175 ACTG1P22 rs11682175-C intron 
2p16.1 6 2 Depressive symptoms (MTAG) 32606422 Wu Y 1.00E-11 57987593 rs11682175 ACTG1P22 rs11682175-? intron 

2p16.1 6 2 
Bipolar disorder or major 
depressive disorder 31926635 Coleman JRI 2.00E-11 57987593 rs11682175 ACTG1P22 rs11682175-C intron 

2p16.1 6 2 Schizophrenia 30285260 Ikeda M 2.00E-11 57987593 rs11682175 ACTG1P22 rs11682175-C intron 
2p16.1 6 2 Bipolar disorder (MTAG) 32606422 Wu Y 1.00E-09 57987593 rs11682175 ACTG1P22 rs11682175-? intron 
2p16.1 6 2 Depression 29700475 Wray NR 5.00E-09 57987593 rs11682175 ACTG1P22 rs11682175-C intron 

2p16.1 6 2 Epilepsy 30531953 
International League 
Against Epilepsy 8.00E-09 57950346 rs4671319 NA - ACTG1P22 rs4671319-G intergenic 
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Epilepsies 

2p16.1 6 2 Lung function (FVC) 30595370 Kichaev G 9.00E-09 57956088 rs13025126 NA - ACTG1P22 rs13025126-? intergenic 
2p16.1 6 2 Positive affect 30643256 Baselmans BML 1.00E-08 57942325 rs7606466 NA - ACTG1P22 rs7606466-G intergenic 
2p16.1 6 2 Major depressive disorder 29728651 Li X 1.00E-08 58041936 rs2717046 ACTG1P22 - VRK2 rs2717046-T intergenic 
2p16.1 6 2 Irritable mood 29500382 Nagel M 1.00E-08 57987593 rs11682175 ACTG1P22 rs11682175-T intron 
2p16.1 6 2 Schizophrenia (MTAG) 32606422 Wu Y 1.00E-08 57961602 rs13011472 NA - ACTG1P22 rs13011472-? intergenic 
2p16.1 6 2 Body shape index 34021172 Christakoudi S 2.00E-08 57988194 rs11688767 ACTG1P22 rs11688767-T intron 
2p16.1 6 2 Neuroticism 29942085 Nagel M 2.00E-08 57988194 rs11688767 ACTG1P22 rs11688767-A intron 
2p16.1 6 2 Neuropsychiatric disorders 33479212 Yao X 2.00E-08 57987593 rs11682175 ACTG1P22 rs11682175-T intron 
2p16.1 6 2 Life satisfaction 30643256 Baselmans BML 3.00E-08 57942325 rs7606466 NA - ACTG1P22 rs7606466-G intergenic 

2p16.1 6 2 
Waist circumference adjusted for 
body mass index 34021172 Christakoudi S 3.00E-08 57942325 rs7606466 NA - ACTG1P22 rs7606466-C intergenic 

2p16.1 6 2 Depression 29942085 Nagel M 3.00E-08 57988194 rs11688767 ACTG1P22 rs11688767-A intron 
Region 5q34 
5q34 7 5 Depression 30718901 Howard DM 2.00E-30 164523472 rs11135349  rs11135349-C intron 

5q34 7 5 
Broad depression or major 
depressive disorder (self-reported) 30626913 Amare AT 8.00E-16 164475774 rs7714851  rs7714851-T intron 

5q34 7 5 
Well-being spectrum (multivariate 
analysis) 30643256 Baselmans BML 1.00E-14 164484948 rs4543289  rs4543289-G Non coding transcript exon 

5q34 7 5 Neuroticism 30643256 Baselmans BML 1.00E-13 164522204 rs6873557  rs6873557-G intron 
5q34 7 5 Life satisfaction 30643256 Baselmans BML 2.00E-11 164477151 rs6896348  rs6896348-G intron 

5q34 7 5 
Bipolar disorder or major 
depressive disorder 31926635 Coleman JRI 3.00E-11 164523472 rs11135349  rs11135349-C intron 

5q34 7 5 Positive affect 30643256 Baselmans BML 6.00E-11 164481879 rs4077277  rs4077277-T intron 
5q34 7 5 Depressive symptoms (MTAG) 29292387 Turley P 6.00E-11 164488849 rs10434704  rs10434704-C intron 
5q34 7 5 Major depressive disorder (MTAG) 33479212 Yao X 2.00E-10 164523472 rs11135349  rs11135349-A intron 
5q34 7 5 Depression 29700475 Wray NR 1.00E-09 164523472 rs11135349  rs11135349-C intron 
5q34 7 5 Depressive symptoms 29292387 Turley P 1.00E-09 164530809 rs10045971  rs10045971-C intron 
5q34 7 5 Body mass index 30239722 Pulit SL 2.00E-09 164557954 rs2861089 NA - LINC01938 rs2861089-A intron 
5q34 7 5 Lifetime anxiety disorder 31748690 Purves KL 3.00E-09 164593555 rs2861139 NA - LINC01938 rs2861139-C intron 
5q34 7 5 Neuroticism 29942085 Nagel M 8.00E-09 164487132 rs7721129  rs7721129-A intron 
5q34 7 5 Major depressive disorder 27479909 Hyde CL 1.00E-08 164484948 rs4543289  rs4543289-T Non coding transcript exon 
5q34 7 5 Neuroticism (MTAG) 29292387 Turley P 1.00E-08 164488849 rs10434704  rs10434704-C intron 
5q34 7 5 Lamb consumption 32066663 Niarchou M 2.00E-08 164548126 rs766120 NA - LINC01938 rs766120-? intron 
5q34 7 5 Depressive symptoms 32606422 Wu Y 4.00E-08 164484948 rs4543289  rs4543289-? Non coding transcript exon 
5q34 7 5 Depression 29942085 Nagel M 4.00E-08 164484948 rs4543289  rs4543289-T Non coding transcript exon 
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Supplementary Table 6: Gene-level associations with fear-based disorders, and their association with previously published GWAS of 
complex traits, reported in the GWAS Catalog. 
Reported trait Study accession Variant and risk allele P-value Location Mapped gene 
ERI3 
Educational attainment GCST90105038 rs1738050-C 1.00E-24 737361:23:00 ERI3 
Drinks per week GCST90243989 rs11808967-G 3.00E-13 738377:17:00 ERI3 
Educational attainment (years of education) GCST006442 rs1778904-C 2.00E-12 737329:36:00 ERI3 
Educational attainment (MTAG) GCST006571 rs1738050-C 4.00E-12 737361:23:00 ERI3 
Educational attainment (years of education) GCST006442 rs1738050-C 1.00E-10 737361:23:00 ERI3 
      
YWHAG 
Heat shock protein beta-1 levels GCST90161270 rs36119738-TG 3.00E-23 1271811:18:00 HSPB1, YWHAG 
Blood protein levels GCST009696 rs184260005-? 1.00E-13 1272342:45:00 YWHAG 
Blood protein levels GCST009696 rs61536380-? 2.00E-11 1272449:02:00 YWHAG 
Schizophrenia GCST007205 rs6946310-T 3.00E-07 1271786:42:00 HSPB1, YWHAG 
Schizophrenia GCST007201 rs2961033-C 5.00E-07 1272257:26:00 YWHAG 
3-hydroxypropylmercapturic acid levels in smokers GCST002956 rs2908197-? 2.00E-06 1271802:32:00 HSPB1, YWHAG 
Theophylline levels in elite athletes GCST90134212 rs2961047-? 3.00E-06 1271769:19:00 YWHAG, HSPB1 
Multiple sclerosis GCST001096 rs17149161-A 6.00E-06 1272488:52:00 YWHAG 
Multiple sclerosis GCST001096 rs7789940-G 6.00E-06 1272038:53:00 HSPB1, YWHAG 
Multiple sclerosis GCST001096 rs7779014-T 8.00E-06 1272444:49:00 YWHAG 
Multiple sclerosis GCST001096 rs758944-T 8.00E-06 1272073:20:00 HSPB1, YWHAG 
      
SNX29 
Educational attainment GCST90105038 rs9922788-A 2.00E-22 202517:15:00 SNX29 
Educational attainment GCST90105038 rs12448347-A 1.00E-18 206950:14:00 SNX29 
Insomnia GCST90131901 rs830734-A 7.00E-17 204031:50:00 SNX29 
Insomnia GCST90131901 rs111505982-A 7.00E-17 204307:42:00 SNX29 
Educational attainment (years of education) GCST006442 rs34098770-A 3.00E-16 202415:15:00 SNX29 
Educational attainment GCST90105038 rs34321532-C 4.00E-16 200422:43:00 SNX29 
Educational attainment (MTAG) GCST006571 rs34565142-T 8.00E-16 202307:30:00 SNX29 
Educational attainment (years of education) GCST006442 rs350281-T 1.00E-14 202314:02:00 SNX29 
Insomnia GCST90131901 rs9927276-C 2.00E-14 204370:20:00 SNX29 
Smoking initiation GCST90243985 rs11075066-G 3.00E-14 206688:44:00 SNX29 

Total PHF-tau (SNP x SNP interaction) GCST010340 
rs1560104-? x 
rs2732932-? 3.00E-13 

16:12614351|2:
18034351 

SNX29 - CPPED1 x 
KCNS3 

Insomnia GCST90131901 rs60866545-A 3.00E-13 203295:48:00 SNX29 
Educational attainment GCST90105038 rs3851013-A 3.00E-13 202086:26:00 SNX29 
Insomnia GCST90131901 rs830728-A 1.00E-12 203642:37:00 SNX29 
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Insomnia GCST90131901 rs2911494-C 2.00E-12 205175:17:00 SNX29 
Insomnia GCST90131902 rs830734-A 3.00E-12 204031:50:00 SNX29 
Cigarettes smoked per day GCST90243976 rs11648938-C 4.00E-12 200020:52:00 SNX29 
Insomnia GCST007988 rs830716-C 9.00E-12 203843:32:00 SNX29 
Educational attainment (MTAG) GCST006571 rs12926226-C 2.00E-11 206934:42:00 SNX29 
Educational attainment (years of education) GCST006442 rs1035578-A 3.00E-11 207307:48:00 SNX29 

Total PHF-tau (SNP x SNP interaction) GCST010340 
rs7319335-? x 
rs7206244-? 5.00E-11 207872:15:00 

No mapped genes x 
SNX29 

Insomnia GCST90131901 rs1701111-A 5.00E-11 203431:47:00 SNX29 
Breast milk fatty acid composition (maternal genotype effect) GCST005586 rs7198595-A 5.00E-11 207866:50:00 SNX29 
Intelligence GCST006250 rs2457192-A 3.00E-10 201742:24:00 SNX29 
Insomnia GCST90131901 rs6498291-A 3.00E-10 206771:14:00 SNX29 
Insomnia GCST90131903 rs11639640-A 3.00E-10 204394:03:00 SNX29 
Cognitive performance (MTAG) GCST006570 rs2457192-A 3.00E-10 201742:24:00 SNX29 
Monocyte percentage of white cells GCST90002394 rs35986807-C 5.00E-10 199889:27:00 SNX29 
Insomnia GCST90131902 rs9936260-A 5.00E-10 204305:57:00 SNX29 
Insomnia GCST90131903 rs1701111-A 6.00E-10 203431:47:00 SNX29 
Educational attainment GCST90100570 rs350201-? 6.00E-10 202095:25:00 SNX29 
Educational attainment GCST90105038 rs7195739-A 7.00E-10 209264:58:00 SNX29 
Heel bone mineral density GCST006979 rs1703492-A 9.00E-10 200734:17:00 SNX29 
Insomnia GCST90131901 rs830719-C 1.00E-09 203813:48:00 SNX29 
Insomnia GCST90131903 rs830733-T 1.00E-09 204167:55:00 SNX29 
Attention deficit hyperactivity disorder or autism spectrum disorder or 
intelligence (pleiotropy) GCST90134330 rs2457192-? 1.00E-09 201742:24:00 SNX29 

Total PHF-tau (SNP x SNP interaction) GCST010340 
rs992131-? x 
rs1560104-? 3.00E-09 210255:11:00 

No mapped genes x 
SNX29 - CPPED1 

Neurofibrillary tangles (SNP x SNP interaction) GCST010343 
rs2485954-? x 
rs11648938-? 3.00E-09 200020:52:00 

No mapped genes x 
SNX29 

Educational attainment (years of education) GCST007037 rs12599793-? 3.00E-09 202053:50:00 SNX29 
Cognitive ability, years of educational attainment or schizophrenia 
(pleiotropy) GCST008595 rs1035578-? 3.00E-09 207307:48:00 SNX29 
3-hydroxypropylmercapturic acid levels in smokers GCST002956 rs116383923-? 3.00E-09 206371:45:00 SNX29 
Insomnia GCST007988 rs9936260-A 4.00E-09 204305:57:00 SNX29 
Insomnia GCST90131901 rs6498269-A 4.00E-09 202767:18:00 SNX29 
Cigarettes smoked per day GCST90243987 rs11648938-C 4.00E-09 200020:52:00 SNX29 
Carotid Intima-media thickness (mean of the maximum cIMT) GCST90092504 rs190770959-C 6.00E-09 201094:37:00 SNX29 
Insomnia GCST90131902 rs2904423-A 7.00E-09 204318:21:00 SNX29 
Free thyroxine concentration GCST006896 rs8063103-C 8.00E-09 210174:58:00 SNX29, CPPED1 
Phospholipid levels in very large HDL GCST90093012 rs28731373-T 1.00E-08 210282:26:00 CPPED1, SNX29 
Insomnia GCST90131901 rs4780414-A 1.00E-08 202606:15:00 SNX29 
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Highest math class taken (MTAG) GCST006568 rs2457192-A 1.00E-08 201742:24:00 SNX29 
General cognitive ability GCST006269 rs2457192-A 1.00E-08 201742:24:00 SNX29 
Educational attainment (years of education) GCST006442 rs387027-A 1.00E-08 199874:06:00 SNX29 
Total lipid levels in very large HDL GCST90093010 rs28731373-T 2.00E-08 210282:26:00 CPPED1, SNX29 
Protein quantitative trait loci (liver) GCST011427 rs58049731-T 2.00E-08 204419:30:00 SNX29 
Intelligence (MTAG) GCST005316 rs350251-A 2.00E-08 201827:55:00 SNX29 
Intelligence GCST006250 rs168407-A 2.00E-08 202045:40:00 SNX29 
Height GCST007841 rs11075041-? 2.00E-08 200164:50:00 SNX29 
Free cholesterol levels in large HDL GCST90092848 rs28731373-T 2.00E-08 210282:26:00 CPPED1, SNX29 
Cholesteryl ester levels in very large HDL GCST90093006 rs28731373-T 2.00E-08 210282:26:00 CPPED1, SNX29 
Age at first sexual intercourse GCST90000047 rs2870488-T 2.00E-08 204292:17:00 SNX29 
Adolescent idiopathic scoliosis GCST006287 rs3902080-? 2.00E-08 208364:38:00 SNX29 
Type 2 diabetes GCST90018926 rs143708136-T 3.00E-08 201537:12:00 SNX29 
Smoking initiation (ever regular vs never regular) (MTAG) GCST007468 rs67119854-G 3.00E-08 206502:29:00 SNX29 
LDL cholesterol levels x short total sleep time interaction (2df test) GCST009365 rs12598569-? 3.00E-08 202156:40:00 SNX29 
Insomnia GCST90131903 rs60866545-A 3.00E-08 203295:48:00 SNX29 
Insomnia GCST90131903 rs2911494-C 3.00E-08 205175:17:00 SNX29 
Cholesterol levels in very large HDL GCST90093004 rs28731373-T 3.00E-08 210282:26:00 CPPED1, SNX29 
Monohexosylceramide (d18:1/22:0) levels GCST90024127 rs140132652-T 4.00E-08 209876:58:00 SNX29, CPPED1 
Intelligence GCST006250 rs72784651-T 4.00E-08 201458:47:00 SNX29 

 

Supplementary Table 7: Gene-level associations with GAD, and their association with previously published GWAS of complex traits, 
reported in the GWAS Catalog. 
Reported trait Study accession Variant and risk allele P-value Location Mapped gene 
TMEM106B 
Serum levels of protein  GCST90090262 rs1548884-C 1.00E-42 204009:15:00 TMEM106B 
Blood protein levels GCST006585 rs10950398-A 6.00E-27 203761:05:00 TMEM106B 
Educational attainment GCST90105038 rs7810903-A 8.00E-26 197748:52:00 THSD7A, TMEM106B 
Depression GCST007342 rs2043539-A 8.00E-24 203577:54:00 TMEM106B 
Differential aging in older adults (frontal cortex) GCST008795 rs1990622-A 3.00E-23 204076:21:00 VWDE, TMEM106B 
Depression GCST012355 rs10950393-T 3.00E-22 203739:00:00 TMEM106B 
Differential aging (frontal cortex) GCST008800 rs1990622-A 2.00E-19 204076:21:00 VWDE, TMEM106B 
Depression GCST90239706 rs2043539-? 3.00E-16 203577:54:00 TMEM106B 
Frontotemporal dementia GCST006154 rs7791726-G 4.00E-16 204068:43:00 TMEM106B, VWDE 
Major depressive disorder GCST90020227 rs1054169-? 2.00E-15 203904:50:00 TMEM106B 
High density lipoprotein cholesterol levels GCST90239649 rs4721060-? 3.00E-15 203805:46:00 TMEM106B 
Depressive symptoms GCST007340 rs6460895-G 2.00E-14 203555:34:00 TMEM106B 
Frontotemporal dementia with GRN mutation GCST006148 rs7791726-G 2.00E-14 204068:43:00 TMEM106B, VWDE 
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Educational attainment GCST90105038 rs73676288-A 3.00E-14 198677:01:00 TMEM106B, THSD7A 
Liver enzyme levels (alkaline phosphatase) GCST90013406 rs6460898-A 6.00E-14 203561:27:00 TMEM106B 
Type 2 diabetes GCST010557 rs13237518-C 2.00E-13 203839:47:00 TMEM106B 
Help-seeking from a GP GCST010011 rs3807866-A 5.00E-13 203519:32:00 TMEM106B 
Well-being spectrum (multivariate analysis) GCST007341 rs7805419-C 9.00E-13 204054:05:00 TMEM106B 
Insomnia GCST90131901 rs4721061-C 2.00E-12 203805:53:00 TMEM106B 
Height GCST007841 rs11509137-? 3.00E-12 203743:13:00 TMEM106B 
Depression (broad) GCST005902 rs3807865-A 7.00E-12 203519:56:00 THSD7A, TMEM106B 
Major depressive disorder (MTAG) GCST012090 rs3807865-A 9.00E-12 203519:56:00 THSD7A, TMEM106B 
Depressed affect GCST006475 rs10950393-C 2.00E-11 203739:00:00 TMEM106B 
High density lipoprotein cholesterol levels GCST90239652 rs1990622-G 2.00E-11 204076:21:00 VWDE, TMEM106B 
Smoking initiation GCST90243985 rs4719302-A 3.00E-11 203440:14:00 THSD7A, TMEM106B 
Experiencing mood swings GCST006944 rs11509880-A 4.00E-11 203711:45:00 TMEM106B 
Triglyceride levels GCST90239661 rs34046032-? 4.00E-11 203814:37:00 TMEM106B 
Depression GCST006477 rs3823612-C 5.00E-11 203659:09:00 TMEM106B 
Cortical thickness GCST90091061 rs5011439-C 5.00E-11 203826:45:00 TMEM106B 
Alzheimer's disease GCST90027158 rs13237518-A 5.00E-11 203839:47:00 TMEM106B 
Depressive symptoms (MTAG) GCST010642 rs3823612-? 5.00E-11 203659:09:00 TMEM106B 
Depressive symptoms GCST010647 rs3823612-? 5.00E-11 203659:09:00 TMEM106B 
Neuroticism GCST006476 rs11509880-A 6.00E-11 203711:45:00 TMEM106B 
Neurofibrillary tangles (SNP x SNP interaction) GCST010343 rs17127497-? x 

rs17665337-? 
6.00E-11 203341:27:00 No mapped genes x N/A - 

TMEM106B 
Bipolar disorder or major depressive disorder GCST010416 rs4721057-G 7.00E-11 203800:15:00 TMEM106B 
Neurociticism GCST006940 rs11509880-A 9.00E-11 203711:45:00 TMEM106B 
Aspartate aminotransferase levels GCST90018944 rs3807865-A 9.00E-11 203519:56:00 THSD7A, TMEM106B 
HDL cholesterol levels GCST010242 rs10950390-C 1.00E-10 203091:42:00 TMEM106B 
Neuroticism GCST007339 rs62435692-T 1.00E-10 203392:13:00 TMEM106B, THSD7A 
Generalized anxiety disorder (phenotype risk score) GCST90103930 rs12699336-A 1.00E-10 204067:24:00 TMEM106B, VWDE 
Neuroticism GCST010017 rs11509880-A 2.00E-10 203711:45:00 TMEM106B 
Type 2 diabetes GCST010555 rs13237518-C 8.00E-10 203839:47:00 TMEM106B 
Feeling tense GCST006952 rs11509880-A 1.00E-09 203711:45:00 TMEM106B 
F-dessert liking (derived food-liking factor) GCST90094754 rs2043539-A 1.00E-09 203577:54:00 TMEM106B 
Vertex-wise cortical thickness GCST90095131 rs5011439-C 1.00E-09 203826:45:00 TMEM106B 
Depression GCST90058037 rs76854159-A 2.00E-09 203764:13:00 TMEM106B 
Major depressive disorder or stroke (pleiotropy) GCST90095484 rs4721058-? 2.00E-09 203800:50:00 TMEM106B 
Depressed affect GCST006475 rs57506017-? 2.00E-09 203433:39:00 THSD7A, TMEM106B 
Post-traumatic stress disorder (phenotype risk score) GCST90103931 rs4721064-A 2.00E-09 204086:12:00 VWDE, TMEM106B 
Aspartate aminotransferase levels GCST90019497 rs145666097-T 2.00E-09 203244:03:00 TMEM106B 
HDL cholesterol GCST006611 rs3173615-C 2.00E-09 203836:51:00 TMEM106B 
Late-onset Alzheimer's disease GCST90044699 rs5011436-? 3.00E-09 203825:52:00 TMEM106B 
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HDL cholesterol GCST90018956 rs397715721-GT 3.00E-09 203548:34:00 TMEM106B 
Serum alkaline phosphatase levels GCST90011900 rs13229988-G 4.00E-09 203810:31:00 TMEM106B 
Serum alkaline phosphatase levels GCST90018942 rs1990620-G 4.00E-09 204080:02:00 TMEM106B, VWDE 
Insomnia GCST90131902 rs6460902-A 5.00E-09 203605:05:00 TMEM106B 
Neuroticism GCST005232 rs57506017-A 6.00E-09 203433:39:00 THSD7A, TMEM106B 
Triglycerides GCST006613 rs3173615-C 7.00E-09 203836:51:00 TMEM106B 
General factor of neuroticism GCST007709 rs7805419-T 1.00E-08 204054:05:00 TMEM106B 
Crisps liking GCST90094747 rs10230959-G 1.00E-08 200664:32:00 THSD7A, TMEM106B 
Insomnia GCST90131901 rs62435692-T 1.00E-08 203392:13:00 TMEM106B, THSD7A 
Apolipoprotein A1 levels GCST010241 rs10950390-C 2.00E-08 203091:42:00 TMEM106B 
F-highly palatable foods liking (derived food-liking factor) GCST90094785 rs2043539-A 2.00E-08 203577:54:00 TMEM106B 
F-sauces liking (derived food-liking factor) GCST90094831 rs2043539-A 2.00E-08 203577:54:00 TMEM106B 
Major depressive disorder (probable) GCST005904 rs5011432-C 2.00E-08 203824:22:00 TMEM106B 
Coronary artery disease GCST005195 rs11509880-A 3.00E-08 203711:45:00 TMEM106B 
Coronary artery disease GCST010866 rs11509880-? 3.00E-08 203711:45:00 TMEM106B 
Johnsonella ignava abundance in stool GCST90032438 rs2356054-T 3.00E-08 201953:33:00 THSD7A, TMEM106B 
Coronary artery disease GCST005196 rs11509880-A 3.00E-08 203711:45:00 TMEM106B 
Cigarettes smoked per day in Schizophrenia GCST012180 rs148253479-? 3.00E-08 203149:56:00 TMEM106B 
Depression GCST005839 rs10950398-A 3.00E-08 203761:05:00 TMEM106B 
Coronary artery disease GCST90132314 rs11509880-? 4.00E-08 203711:45:00 TMEM106B 
Triglyceride levels GCST90239664 rs5011439-C 4.00E-08 203826:45:00 TMEM106B 
TRIM31 
High light scatter reticulocyte count GCST90002385 rs2523990-G 5.00E-71 501830:12:00 TRIM31-AS1, TRIM31 
Immature fraction of reticulocytes GCST90002387 rs115333019-G 8.00E-43 502235:48:00 TRIM40, TRIM31-AS1 
Lymphocyte count GCST90085815 rs3132681-C 1.00E-38 501543:44:00 TRIM31, RNF39 
Eosinophil percentage of white cells GCST004600 rs1111180-C 4.00E-37 501709:25:00 TRIM31, RNF39 
Eosinophil percentage of granulocytes GCST004617 rs1111180-C 2.00E-35 501709:25:00 TRIM31, RNF39 
High light scatter reticulocyte percentage of red cells GCST90002386 rs2523990-G 2.00E-32 501830:12:00 TRIM31-AS1, TRIM31 
Neutrophil percentage of granulocytes GCST004623 rs3132682-C 2.00E-30 501282:51:00 TRIM31, RNF39 
High light scatter reticulocyte percentage of red cells GCST90002386 rs11961190-T 3.00E-29 501811:40:00 TRIM31, TRIM31-AS1 
Total cholesterol levels GCST90239673 rs2844795-? 8.00E-29 501773:50:00 TRIM31, TRIM31-AS1 
High light scatter reticulocyte count GCST90002385 rs115254023-T 8.00E-29 502003:08:00 TRIM31-AS1, TRIM40 
Apolipoprotein A1 levels GCST010241 rs2523978-C 7.00E-28 501938:11:00 TRIM31-AS1, TRIM40 
High light scatter reticulocyte count GCST90002385 rs11961190-T 4.00E-27 501811:40:00 TRIM31, TRIM31-AS1 
Lymphocyte count GCST90085815 rs2023472-A 6.00E-25 501807:27:00 TRIM31, TRIM31-AS1 
HDL cholesterol levels GCST010242 rs2523978-C 4.00E-24 501938:11:00 TRIM31-AS1, TRIM40 
Total cholesterol levels GCST90239676 rs2844795-T 7.00E-24 501773:50:00 TRIM31, TRIM31-AS1 
Reticulocyte count GCST90002405 rs11961190-T 1.00E-23 501811:40:00 TRIM31, TRIM31-AS1 
Ebbinghaus illusion (overestimation) GCST011568 rs6915823-? 1.00E-23 501766:53:00 TRIM31-AS1, TRIM31 
Reticulocyte fraction of red cells GCST90002406 rs11961190-T 2.00E-22 501811:40:00 TRIM31, TRIM31-AS1 
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Shingles GCST005001 rs9261431-? 2.00E-19 501983:25:00 TRIM40, TRIM31-AS1 
Triglyceride levels GCST90239661 rs2517601-? 7.00E-19 501777:35:00 TRIM31, TRIM31-AS1 
Low density lipoprotein cholesterol levels GCST010204 rs9378220-? 4.00E-18 501828:38:00 TRIM31-AS1, TRIM31 
Waist-to-hip ratio adjusted for BMI GCST012230 rs1264712-A 9.00E-17 501425:25:00 TRIM31, RNF39 
Mumps GCST005003 rs111537560-? 5.00E-16 501756:31:00 TRIM31 
Non-HDL cholesterol levels GCST90239670 rs9378220-A 2.00E-15 501828:38:00 TRIM31-AS1, TRIM31 
Beta-2 microglubulin plasma levels GCST001863 rs2023472-A 3.00E-15 501807:27:00 TRIM31, TRIM31-AS1 
Linoleic acid levels GCST90092880 rs2844795-C 4.00E-14 501773:50:00 TRIM31, TRIM31-AS1 
Autism spectrum disorder or schizophrenia GCST004521 rs116676919-? 4.00E-14 501884:39:00 TRIM31, TRIM31-AS1 
MHC class I polypeptide-related sequence A levels GCST90101316 rs2523987-C 2.00E-13 501876:16:00 TRIM31, TRIM31-AS1 
Depression (broad) GCST005902 rs2517601-C 5.00E-13 501777:35:00 TRIM31, TRIM31-AS1 
Omega-6 fatty acid levels GCST90092933 rs2844795-C 5.00E-13 501773:50:00 TRIM31, TRIM31-AS1 
Mouth ulcers GCST007839 rs2517664-T 9.00E-13 501764:02:00 TRIM31, TRIM31-AS1 
Hepatocellular carcinoma in hepatitis B infection GCST005746 rs1110446-? 9.00E-13 501725:20:00 TRIM31 
Total lipid levels in medium HDL GCST90092898 rs1264705-G 2.00E-12 501604:17:00 TRIM31, RNF39 
Immature fraction of reticulocytes GCST004628 rs17187854-T 3.00E-12 501635:26:00 RNF39, TRIM31 
Insomnia GCST90131901 rs2844795-T 4.00E-12 501773:50:00 TRIM31, TRIM31-AS1 
Estimated glomerular filtration rate in diabetes GCST008746 rs2517601-C 4.00E-12 501777:35:00 TRIM31, TRIM31-AS1 
Insomnia GCST90131903 rs2844795-T 3.00E-11 501773:50:00 TRIM31, TRIM31-AS1 
Human milk oligosaccharide concentration (lacto-N-fucopentaose III) in non-
secretors 

GCST90027228 rs13214608-? 3.00E-11 501686:36:00 RNF39, TRIM31 

Chronic obstructive pulmonary disease GCST011766 rs2523989-T 1.00E-10 501847:38:00 TRIM31, TRIM31-AS1 
Psoriatic arthritis GCST007043 rs115618145-? 1.00E-10 501714:18:00 RNF39, TRIM31 
General cognitive ability GCST006269 rs1362104-A 2.00E-10 502237:19:00 TRIM31-AS1, TRIM40 
Hepatocellular carcinoma in hepatitis B infection GCST005746 rs1110446-? 3.00E-10 501725:20:00 TRIM31 
A body shape index GCST012231 rs1264712-A 4.00E-10 501425:25:00 TRIM31, RNF39 
General cognitive ability GCST006269 rs2844790-C 4.00E-10 502111:36:00 TRIM31-AS1, TRIM40 
Insomnia GCST90131903 rs3132680-A 5.00E-10 501762:58:00 TRIM31, TRIM31-AS1 
Insomnia GCST90131903 rs9378220-A 6.00E-10 501828:38:00 TRIM31-AS1, TRIM31 
Takayasu arteritis GCST90137503 rs1116221-? 1.00E-09 501731:53:00 TRIM31 
F-sweet food liking (derived food-liking factor) GCST90094854 rs2517664-T 1.00E-09 501764:02:00 TRIM31, TRIM31-AS1 
Total fatty acid levels GCST90092987 rs2844795-C 2.00E-09 501773:50:00 TRIM31, TRIM31-AS1 
Total lipid levels in lipoprotein particles GCST90092989 rs2844795-C 2.00E-09 501773:50:00 TRIM31, TRIM31-AS1 
Mean corpuscular hemoglobin GCST004630 rs78026509-G 2.00E-09 501781:33:00 TRIM31-AS1, TRIM31 
Total phospholipid levels in lipoprotein particles GCST90092991 rs2844795-C 2.00E-09 501773:50:00 TRIM31, TRIM31-AS1 
Itch intensity from mosquito bite GCST004861 rs143211693-? 4.00E-09 501659:37:00 RNF39, TRIM31 
Insomnia GCST90131901 rs6457150-C 5.00E-09 501686:33:00 RNF39, TRIM31 
Neuritic plaques (SNP x SNP interaction) GCST010342 rs11746354-? x 

rs2517592-? 
5.00E-09 502095:20:00 No mapped genes x 

TRIM31-AS1 - TRIM40 
Total cholines levels GCST90092812 rs2844795-C 6.00E-09 501773:50:00 TRIM31, TRIM31-AS1 
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Protein quantitative trait loci (liver) GCST011427 rs1419674-T 7.00E-09 502091:58:00 TRIM40, TRIM31-AS1 
Insomnia GCST90131901 rs9378220-A 8.00E-09 501828:38:00 TRIM31-AS1, TRIM31 
General cognitive ability GCST006269 rs2517664-T 1.00E-08 501764:02:00 TRIM31, TRIM31-AS1 
Takayasu arteritis GCST011936 rs1264697-? 1.00E-08 501669:11:00 TRIM31, RNF39 
Free cholesterol to total lipids ratio in small HDL GCST90092949 rs142292417-T 1.00E-08 501473:16:00 RNF39, TRIM31 
Tuberculosis GCST005006 rs2844790-? 1.00E-08 502111:36:00 TRIM31-AS1, TRIM40 
Neurociticism GCST006940 rs9261418-A 2.00E-08 501820:43:00 TRIM31, TRIM31-AS1 
Prostate cancer GCST006085 rs7767188-A 2.00E-08 501772:39:00 TRIM31, TRIM31-AS1 
General cognitive ability GCST006269 rs3132681-A 2.00E-08 501543:44:00 TRIM31, RNF39 
Prostate cancer GCST002606 rs115457135-A 2.00E-08 501772:39:00 TRIM31-AS1, TRIM31 
Type 1 diabetes and autoimmune thyroid diseases GCST002876 rs2523989-A 2.00E-08 501847:38:00 TRIM31, TRIM31-AS1 
Haemorrhoidal disease GCST90014033 rs1156533-? 2.00E-08 501628:52:00 RNF39, TRIM31 
Cholesteryl esters to total lipids ratio in large LDL GCST90092859 rs2844795-C 3.00E-08 501773:50:00 TRIM31, TRIM31-AS1 
Ratio of linoleic acid to total fatty acids GCST90092881 rs1245372-A 3.00E-08 501309:41:00 RNF39, TRIM31 
SORCS3 
Educational attainment GCST90105038 rs2491365-T 2.00E-41 1746296:58:00 SORCS3 
Educational attainment GCST90105038 rs61867294-A 2.00E-36 1746834:09:00 SORCS3 
Smoking initiation GCST90243968 rs9787523-C 8.00E-27 1745021:42:00 SORCS3 
Depression GCST007342 rs1021363-A 4.00E-23 1747528:01:00 SORCS3 
Educational attainment (MTAG) GCST006571 rs902305-A 2.00E-22 1746217:46:00 SORCS3 
Systolic blood pressure GCST012376 rs181200083-C 1.00E-21 1746030:17:00 SORCS3 
Age at first sexual intercourse GCST90000047 rs3896224-A 3.00E-21 1745144:55:00 SORCS3 
Externalizing behaviour (multivariate analysis) GCST90061435 rs11596214-G 6.00E-21 1744911:14:00 SORCS3 
Highest math class taken (MTAG) GCST006568 rs10786832-T 6.00E-20 1747654:50:00 SORCS3 
Major depressive disorder GCST90020227 rs1021363-? 1.00E-19 1747528:01:00 SORCS3 
Educational attainment GCST90105038 rs11192147-A 1.00E-19 1744231:28:00 SORCS3 
Depression GCST012355 rs11596214-G 2.00E-18 1744911:14:00 SORCS3 
Depression GCST012355 rs7906899-A 2.00E-18 1749572:27:00 SORCS3 
Educational attainment GCST90105038 rs10786823-C 2.00E-18 1747312:41:00 SORCS3 
Cardiovascular disease GCST007072 rs145158522-? 4.00E-18 1747845:01:00 SORCS3 
Educational attainment (years of education) GCST006442 rs790647-A 4.00E-18 1750288:46:00 SORCS3 
Diastolic blood pressure GCST006627 rs191784289-C 5.00E-18 1752263:04:00 SORCS3 
Highest math class taken (MTAG) GCST006568 rs17118088-A 5.00E-18 1750093:10:00 SORCS3 
Systolic blood pressure GCST012376 rs535313355-C 1.00E-17 1743999:42:00 SORCS3 
Depression GCST90239706 rs1021363-? 2.00E-17 1747528:01:00 SORCS3 
Diastolic blood pressure GCST012378 rs181200083-C 6.00E-17 1746030:17:00 SORCS3 
Major depressive disorder GCST90020227 rs17186548-? 2.00E-16 1746529:46:00 SORCS3 
Self-reported math ability (MTAG) GCST006569 rs2864034-A 2.00E-16 1748636:23:00 SORCS3 
Educational attainment GCST90105038 rs4400723-T 2.00E-16 1755812:25:00 SORCS3, RNU6-463P 
Medication use (agents acting on the renin-angiotensin system) GCST90018988 rs74157123-T 4.00E-16 1741791:26:00 SORCS3, LINC02620 



 194 

Medication use (agents acting on the renin-angiotensin system) GCST007930 rs74157123-T 4.00E-16 1741791:26:00 SORCS3, LINC02620 
Educational attainment GCST90105038 rs72819955-T 5.00E-16 1754870:26:00 SORCS3, RNU6-463P 
Insomnia GCST90131901 rs9787523-T 7.00E-16 1745021:42:00 SORCS3 
Well-being spectrum (multivariate analysis) GCST007341 rs11599236-C 1.00E-15 1744925:14:00 SORCS3 
Educational attainment GCST90105038 rs72819942-T 2.00E-15 1754592:45:00 RNU6-463P, SORCS3 
Anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum 
disorder, bipolar disorder, major depression, obsessive-compulsive disorder, 
schizophrenia, or Tourette syndrome (pleiotropy) 

GCST009600 rs61867293-? 8.00E-15 1746746:06:00 SORCS3 

Systolic blood pressure GCST012376 rs540369678-T 2.00E-14 1750769:53:00 SORCS3 
Educational attainment GCST90105038 rs1490176-A 2.00E-14 1746684:27:00 SORCS3 
Major depressive disorder (MTAG) GCST012090 rs1021363-A 2.00E-14 1747528:01:00 SORCS3 
Medication use (calcium channel blockers) GCST90018987 rs191572726-C 3.00E-14 1753731:10:00 SORCS3 
Medication use (calcium channel blockers) GCST007929 rs191572726-C 3.00E-14 1753731:10:00 SORCS3 
Diastolic blood pressure GCST012378 rs535313355-C 4.00E-14 1743999:42:00 SORCS3 
Depressive symptoms (MTAG) GCST005323 rs2496022-C 4.00E-14 1747888:40:00 SORCS3 
Educational attainment (MTAG) GCST006571 rs12252384-T 5.00E-14 1750152:03:00 SORCS3 
Cognitive performance (MTAG) GCST006570 rs3896224-A 5.00E-14 1745144:55:00 SORCS3 
Smoking initiation (ever regular vs never regular) (MTAG) GCST007468 rs9787523-C 6.00E-14 1745021:42:00 SORCS3 
Insomnia GCST90131901 rs67700133-A 1.00E-13 1745024:11:00 SORCS3 
Depressive symptoms GCST007340 rs1021363-G 1.00E-13 1747528:01:00 SORCS3 
Educational attainment (years of education) GCST006442 rs11599236-T 1.00E-13 1744925:14:00 SORCS3 
Diastolic blood pressure GCST012378 rs540369678-T 2.00E-13 1750769:53:00 SORCS3 
Insomnia GCST90131901 rs10786831-A 2.00E-13 1747590:13:00 SORCS3 
Systolic blood pressure GCST007087 rs191784289-? 3.00E-13 1752263:04:00 SORCS3 
Educational attainment GCST90105038 rs10884009-C 3.00E-13 1741910:20:00 SORCS3, LINC02620 
Depressive symptoms (MTAG) GCST010642 rs2496024-? 5.00E-13 1747957:18:00 SORCS3 
Educational attainment GCST90105038 rs703482-C 7.00E-13 1752167:24:00 SORCS3 
Externalizing behaviour (multivariate analysis) GCST90061435 rs12356045-G 9.00E-13 1756862:16:00 RNU6-463P, SORCS3 
Neuroticism GCST007339 rs1490176-A 1.00E-12 1746684:27:00 SORCS3 
Self-reported math ability GCST006573 rs2864034-C 1.00E-12 1748636:23:00 SORCS3 
Feeling miserable GCST006943 rs11599236-T 2.00E-12 1744925:14:00 SORCS3 
Subjective well-being (MTAG) GCST005325 rs1961639-G 2.00E-12 1747947:19:00 SORCS3 
Positive affect GCST007338 rs1490176-A 2.00E-12 1746684:27:00 SORCS3 
Insomnia GCST90131903 rs9787523-T 2.00E-12 1745021:42:00 SORCS3 
Cognitive performance (MTAG) GCST006570 rs790647-A 3.00E-12 1750288:46:00 SORCS3 
Neuropsychiatric disorders GCST012088 rs1021363-A 4.00E-12 1747528:01:00 SORCS3 
Bipolar disorder or major depressive disorder GCST010416 rs61867293-C 6.00E-12 1746746:06:00 SORCS3 
Diastolic blood pressure GCST90132904 rs7082671-A 7.00E-12 1750371:08:00 SORCS3 
Highest math class taken GCST006574 rs902305-A 7.00E-12 1746217:46:00 SORCS3 
Lifetime smoking index GCST009096 rs3896224-A 1.00E-11 1745144:55:00 SORCS3 
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Attention deficit hyperactivity disorder (MTAG) GCST010644 rs6584649-? 1.00E-11 1749765:46:00 SORCS3 
Life satisfaction GCST007337 rs1490176-A 1.00E-11 1746684:27:00 SORCS3 
Attention deficit hyperactivity disorder (MTAG) GCST012093 rs12265655-T 2.00E-11 1749756:16:00 SORCS3 
Pulse pressure GCST012377 rs181200083-C 2.00E-11 1746030:17:00 SORCS3 
Insomnia GCST90131901 rs113316302-A 2.00E-11 1746372:46:00 SORCS3 
Lifetime smoking GCST90100569 rs3896224-? 2.00E-11 1745144:55:00 SORCS3 
Highest math class taken GCST006574 rs10400054-A 2.00E-11 1750083:55:00 SORCS3 
Depressed affect GCST006475 rs11599236-C 3.00E-11 1744925:14:00 SORCS3 
Neuropsychiatric disorders GCST012088 rs11192230-A 3.00E-11 1748593:47:00 SORCS3 
Insomnia GCST90131903 rs7900775-T 4.00E-11 1747353:05:00 SORCS3 
Highest math class taken (MTAG) GCST006568 rs11192147-A 5.00E-11 1744231:28:00 SORCS3 
Neuroticism (MTAG) GCST005326 rs2451500-T 6.00E-11 1747895:19:00 SORCS3 
Attention deficit hyperactivity disorder or autism spectrum disorder or intelligence 
(pleiotropy) 

GCST90134330 rs11591402-? 6.00E-11 1749803:16:00 SORCS3 

Depressive symptoms GCST005324 rs2496022-C 7.00E-11 1747888:40:00 SORCS3 
Attention deficit hyperactivity disorder or autism spectrum disorder or intelligence 
(pleiotropy) 

GCST90134330 rs11192193-? 8.00E-11 1746834:55:00 SORCS3 

Medication use (diuretics) GCST90018985 rs145158522-T 9.00E-11 1747845:01:00 SORCS3 
Medication use (diuretics) GCST007928 rs145158522-T 9.00E-11 1747845:01:00 SORCS3 
Age of smoking initiation (MTAG) GCST007462 rs2491383-G 1.00E-10 1747624:42:00 SORCS3 
Risk-taking behavior (multivariate analysis) GCST90239693 rs9787523-? 1.00E-10 1745021:42:00 SORCS3 
Treatment or medication use - amlodipine (UKB data field 20003_1140879802) GCST90042195 rs540369678-T 1.00E-10 1750769:53:00 SORCS3 
Age of smoking initiation GCST90243972 rs142708876-ACTT 2.00E-10 1748020:27:00 SORCS3 
Neuroticism GCST007084 rs2791459-? 2.00E-10 1750458:05:00 SORCS3 
Gut microbiota (beta diversity) GCST008901 rs184389714-T 2.00E-10 1752870:15:00 SORCS3 
Educational attainment (years of education) GCST006442 rs7914674-T 2.00E-10 1749658:37:00 SORCS3 
Systolic blood pressure GCST007267 rs111790405-T 3.00E-10 1744771:27:00 SORCS3 
Educational attainment (MTAG) GCST006571 rs10509790-C 3.00E-10 1755786:52:00 SORCS3 
Cognitive performance (MTAG) GCST006570 rs55680960-C 3.00E-10 1755057:46:00 SORCS3 
Highest math class taken (MTAG) GCST006568 rs12356045-A 3.00E-10 1756862:16:00 RNU6-463P, SORCS3 
Smoking initiation (ever regular vs never regular) (MTAG) GCST007468 rs727341-C 4.00E-10 1752773:00:00 SORCS3 
Anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum 
disorder, bipolar disorder, major depression, obsessive-compulsive disorder, 
schizophrenia, or Tourette syndrome (pleiotropy) 

GCST009600 rs9787523-? 4.00E-10 1745021:42:00 SORCS3 

Gastroesophageal reflux disease GCST90000514 rs1021363-A 5.00E-10 1747528:01:00 SORCS3 
Mood instability GCST008357 rs11599236-? 5.00E-10 1744925:14:00 SORCS3 
Neuropsychiatric disorders GCST012088 rs11599236-T 6.00E-10 1744925:14:00 SORCS3 
Smoking initiation (ever regular vs never regular) GCST007474 rs11192347-A 6.00E-10 1752835:55:00 SORCS3 
Schizophrenia GCST90128471 rs7900775-T 6.00E-10 1747353:05:00 SORCS3 
Smoking status GCST007085 rs3896224-? 7.00E-10 1745144:55:00 SORCS3 
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Depression GCST005839 rs61867293-C 7.00E-10 1746746:06:00 SORCS3 
Insomnia GCST90131901 rs61867344-A 9.00E-10 1748741:25:00 SORCS3 
Adolescent idiopathic scoliosis GCST006287 rs10884064-? 9.00E-10 1748565:16:00 SORCS3 
Attention deficit hyperactivity disorder or autism spectrum disorder or intelligence 
(pleiotropy) 

GCST90134330 rs3896224-? 9.00E-10 1745144:55:00 SORCS3 

Attention deficit hyperactivity disorder (MTAG) GCST010644 rs11192193-? 1.00E-09 1746834:55:00 SORCS3 
Smoking initiation (ever regular vs never regular) GCST007474 rs9787523-C 1.00E-09 1745021:42:00 SORCS3 
Insomnia GCST90131903 rs67700133-A 1.00E-09 1745024:11:00 SORCS3 
Insomnia GCST90131901 rs11192154-C 2.00E-09 1744568:12:00 SORCS3 
Systolic blood pressure GCST90132903 rs7082671-A 2.00E-09 1750371:08:00 SORCS3 
Self-reported math ability (MTAG) GCST006569 rs4537697-A 2.00E-09 1744330:11:00 SORCS3 
Well-being spectrum (multivariate analysis) GCST007341 rs61867341-A 2.00E-09 1748523:36:00 SORCS3 
Age at first birth GCST90000050 rs755895472-C 2.00E-09 1747619:56:00 SORCS3 
Educational attainment (MTAG) GCST006571 rs11192147-A 3.00E-09 1744231:28:00 SORCS3 
Depressive symptoms GCST007340 rs11192283-C 3.00E-09 1750322:32:00 SORCS3 
Neuroticism GCST007339 rs11192283-C 3.00E-09 1750322:32:00 SORCS3 
Educational attainment GCST90100570 rs790647-? 3.00E-09 1750288:46:00 SORCS3 
Depression GCST006477 rs1961639-A 4.00E-09 1747947:19:00 SORCS3 
Depressive symptoms GCST010647 rs1961639-? 4.00E-09 1747947:19:00 SORCS3 
Neuropsychiatric disorders GCST012088 rs11599313-T 4.00E-09 1746668:49:00 SORCS3 
Educational attainment (MTAG) GCST006571 rs1484246-A 4.00E-09 1753370:46:00 SORCS3 
Pulse pressure GCST012377 rs535313355-C 4.00E-09 1743999:42:00 SORCS3 
Highest math class taken (MTAG) GCST006568 rs703482-C 4.00E-09 1752167:24:00 SORCS3 
Schizophrenia GCST011769 rs7900775-T 4.00E-09 1747353:05:00 SORCS3 
Age of smoking initiation GCST90243986 rs142708876-ACTT 4.00E-09 1748020:27:00 SORCS3 
Attention deficit hyperactivity disorder GCST007543 rs11591402-T 4.00E-09 1749803:16:00 SORCS3 
Depression GCST90058037 rs1021363-A 5.00E-09 1747528:01:00 SORCS3 
Autism spectrum disorder (MTAG) GCST010643 rs6584649-? 6.00E-09 1749765:46:00 SORCS3 
Highest math class taken GCST006574 rs11192147-C 7.00E-09 1744231:28:00 SORCS3 
Cognitive ability, years of educational attainment or schizophrenia (pleiotropy) GCST008595 rs11192193-? 7.00E-09 1746834:55:00 SORCS3 
Childhood maltreatment GCST012253 rs3896224-A 7.00E-09 1745144:55:00 SORCS3 
General factor of neuroticism GCST007709 rs2791459-C 7.00E-09 1750458:05:00 SORCS3 
General factor of neuroticism GCST007709 rs11596214-G 7.00E-09 1744911:14:00 SORCS3 
General factor of neuroticism GCST007709 rs12416372-G 7.00E-09 1744991:09:00 SORCS3 
Major depressive disorder GCST006041 rs10786831-G 8.00E-09 1747590:13:00 SORCS3 
Depressive symptoms (MTAG) GCST010642 rs11596241-? 1.00E-08 1746417:38:00 SORCS3 
Attention deficit hyperactivity disorder GCST010649 rs11591402-? 1.00E-08 1749803:16:00 SORCS3 
Autism spectrum disorder (MTAG) GCST012092 rs1021363-A 1.00E-08 1747528:01:00 SORCS3 
Adolescent idiopathic scoliosis GCST006287 rs11192399-? 1.00E-08 1755419:16:00 SORCS3 
Educational attainment (years of education) GCST007037 rs1869165-? 1.00E-08 1750769:52:00 SORCS3 
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Mental disorder (without autoimmune disease) GCST011007 rs12265655-? 1.00E-08 1749756:16:00 SORCS3 
Total PHF-tau (SNP x SNP interaction) GCST010340 rs17239258-? x 

rs703462-? 
1.00E-08 4:182341902|10:1

05083666 
TENM3 x SORCS3 

Depression (broad) GCST005902 rs1021363-G 1.00E-08 1747528:01:00 SORCS3 
Cognitive ability (MTAG) GCST005141 rs1947988-? 1.00E-08 1753130:48:00 SORCS3 
Biological sex GCST90013473 rs12356045-G 1.00E-08 1756862:16:00 RNU6-463P, SORCS3 
Depressed affect GCST006475 rs1490176-? 2.00E-08 1746684:27:00 SORCS3 
General risk tolerance (MTAG) GCST007325 rs2491392-C 2.00E-08 1746646:26:00 SORCS3 
Schizophrenia (MTAG) GCST010640 rs61867294-? 2.00E-08 1746834:09:00 SORCS3 
Schizophrenia (MTAG) GCST012089 rs61867294-A 2.00E-08 1746834:09:00 SORCS3 
Insomnia GCST90131902 rs113316302-A 2.00E-08 1746372:46:00 SORCS3 
Educational attainment GCST90105038 rs117430256-T 2.00E-08 1742828:42:00 SORCS3, LINC02620 
Intelligence (MTAG) GCST005316 rs1947988-T 2.00E-08 1753130:48:00 SORCS3 
Total bone mineral density x gut microbiota ( genus Dialister) interaction GCST90094982 rs78032159-G 2.00E-08 1755058:47:00 RNU6-463P, SORCS3 
Life satisfaction GCST007337 rs11192283-C 2.00E-08 1750322:32:00 SORCS3 
Self-reported math ability (MTAG) GCST006569 rs12356045-A 2.00E-08 1756862:16:00 RNU6-463P, SORCS3 
Feeling miserable GCST006943 rs12359689-A 3.00E-08 1755603:32:00 SORCS3 
Intelligence GCST006250 rs3896224-A 3.00E-08 1745144:55:00 SORCS3 
Multisite chronic pain GCST008512 rs11599236-T 3.00E-08 1744925:14:00 SORCS3 
Educational attainment GCST90105038 rs141468874-A 3.00E-08 1751389:55:00 SORCS3 
Help-seeking from a GP GCST010011 rs11599236-T 3.00E-08 1744925:14:00 SORCS3 
Cognitive performance GCST006572 rs7895991-T 3.00E-08 1753963:26:00 SORCS3 
Multisite chronic pain GCST012332 rs11599236-? 3.00E-08 1744925:14:00 SORCS3 
Attention deficit hyperactivity disorder or autism spectrum disorder or intelligence 
(pleiotropy) 

GCST90134330 rs1490182-? 3.00E-08 1747047:51:00 SORCS3 

Cognitive aspects of educational attainment GCST90011875 rs7895991-C 3.00E-08 1753963:26:00 SORCS3 
Feeling nervous GCST006948 rs2930456-C 4.00E-08 1754850:10:00 SORCS3 
Cheese consumption GCST90133000 rs191288851-G 4.00E-08 1750280:38:00 SORCS3 
Insomnia GCST90131901 rs2451469-A 4.00E-08 1747570:40:00 SORCS3 
Positive affect GCST007338 rs11192283-C 4.00E-08 1750322:32:00 SORCS3 
Educational attainment GCST90105038 rs140163394-A 4.00E-08 1752598:00:00 SORCS3 
Attention deficit hyperactivity disorder or autism spectrum disorder or intelligence 
(pleiotropy) 

GCST90134330 rs11596241-? 4.00E-08 1746417:38:00 SORCS3 

Sib-shared facial trait 902; Facial segment 53; 3D morphology of the chin GCST90016415 rs7915785-? 4.00E-08 1758730:33:00 SORCS3, RNU6-463P 
Neuroticism GCST007084 rs11599236-? 7.00E-08 1744925:14:00 SORCS3 
Neurofibrillary tangles (SNP x SNP interaction) GCST010343 rs11113836-? x 

rs1475762-? 
7.00E-08 1744208:08:00 No mapped genes x 

SORCS3 
Depression (broad) GCST005902 rs11599236-C 8.00E-08 1744925:14:00 SORCS3 
Neurofibrillary tangles (SNP x SNP interaction) GCST010343 rs4420651-? x 

rs2451463-? 
9.00E-08 1746603:49:00 No mapped genes x 

SORCS3 
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Alzheimer disease and age of onset GCST003427 rs117792039-A 2.00E-07 1750857:37:00 SORCS3 
Trauma exposure GCST009982 rs3896224-A 3.00E-07 1745144:55:00 SORCS3 
Cognitive ability GCST005142 rs1947988-? 8.00E-07 1753130:48:00 SORCS3 
Autism and major depressive disorder (MTAG) GCST007553 rs61867293-T 1.00E-06 1746746:06:00 SORCS3 
General cognitive ability GCST006269 rs1484246-? 1.00E-06 1753370:46:00 SORCS3 
Cis-4-decenoylcarnitine (C10:1) levels in elite athletes GCST90133911 rs975145-? 2.00E-06 1742102:30:00 LINC02620, SORCS3 
Rosacea symptom severity GCST005790 rs78911933-G 2.00E-06 1744571:20:00 SORCS3 
Schizophrenia GCST003048 rs61867294-A 2.00E-06 1746834:09:00 SORCS3 
Depression GCST003769 rs7074335-T 2.00E-06 1749020:36:00 SORCS3 
Help-seeking from a GP GCST010011 rs10786831-A 2.00E-06 1747590:13:00 SORCS3 
Memory T-cell telomere length GCST90101890 rs117670274-T 3.00E-06 1743522:05:00 SORCS3, LINC02620 
Diabetic kidney disease GCST003098 rs1997066-? 4.00E-06 1750073:25:00 SORCS3 
Interleukin-16 levels GCST004430 rs12765671-G 5.00E-06 1748750:11:00 SORCS3 
Metabolite levels GCST009391 rs6584642-? 6.00E-06 1748871:35:00 SORCS3 
Non-alcoholic fatty liver disease activity score in non-alcoholic fatty liver disease GCST008471 rs61861255-A 6.00E-06 1744878:32:00 SORCS3 
Serum bilirubin levels x sex interaction in metabolic syndrome GCST007016 rs10786848-? 7.00E-06 1752934:11:00 SORCS3 
Breast cancer GCST004988 rs1855581-G 7.00E-06 1743543:46:00 SORCS3 
Reaction time GCST006268 rs771652991-? 8.00E-06 1755096:01:00 SORCS3 
Colonoscopy-negative controls vs population controls GCST005147 rs11818462-? 8.00E-06 1755301:54:00 SORCS3 
N-methylpipecolate levels in elite athletes GCST90134229 rs11192362-? 8.00E-06 1753491:51:00 SORCS3 
Gut microbiota relative abundance (unassigned genus belonging to family 
Lachnospiraceae) 

GCST90006999 rs11016281-C 9.00E-06 2141704:06:00 SORCS3 

General cognitive ability GCST006269 rs902305-? 9.00E-06 1746217:46:00 SORCS3 
Schizophrenia GCST90128471 rs11192131-C 9.00E-06 1743338:00:00 SORCS3, LINC02620 

 

Supplementary Table 8: LDSC regression SNP-based heritability (h2SNP) estimates of GAD and fear-based disorder phenotypes 
  h2SNP converted to Liability scale 

Datasets 
Anxiety 
disorder 

Control 
criteria 

GWAS 
mean �2 

Population  
prevalence = COPING 

sample prevalence 

Population  
prevalence = COPING sample 

prevalence + 10% 

Population  
prevalence = COPING sample 

prevalence - 10% 

GLAD+ & UKB 

GAD 
Specific 1.17 0.074 (0.006) 0.076 (0.006) 0.072 (0.006) 
Any anx-dep 1.19 0.088 (0.007) 0.090 (0.007) 0.085 (0.006) 

Fear 
Specific 1.09 0.054 (0.007) 0.056 (0.007) 0.052 (0.006) 
Any anx-dep 1.13 0.084 (0.007) 0.086 (0.008) 0.080 (0.007) 

GAD Specific 1.23 0.087 (0.006) 0.088 (0.006) 0.083 (0.005) 
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QIMR, GLAD+ 
& UKB 

Any anx-dep 1.25 0.100 (0.006) 0.103 (0.006) 0.096 (0.006) 

Fear 
Specific 1.12 0.063 (0.006) 0.064 (0.006) 0.060 (0.005) 
Any anx-dep 1.17 0.096 (0.006) 0.098 (0.006) 0.092 (0.006) 

h2SNP estimated using LDSC regression. Standard errors are presented in parentheses 
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Supplementary Table 9: Genetic correlations (rg) between anxiety disorder phenotypes and 345 external traits estimated in LDSC 
regression.
 p (0) - p-value for test of rg different from 0. Bold - rg significantly different from 0, or significant jack-knife p value for difference in rgs (p < 
1.45E-04, Bonferroni correction threshold for 345 phenotypes). 

External Phenotype GAD Fear-based disorders Comparison GAD & fear rg 
Trait name PMID h2SNP 

obs z 
rg se z p(0) Sig. 

p(0) 
rg se z p(0) Sig. 

p(0) 
z p Sig. p(diff.) 

Educational Attainment (2018) 30038396 34.91 -0.01 0.03 -0.47 6.38E-01 No -0.28 0.04 -7.56 3.95E-14 Yes 7.35 2.00E-13 Sig. stronger 
fear 

College/university degree attainment 27046643 19.35 0.00 0.04 0.01 9.94E-01 No -0.32 0.05 -6.01 1.91E-09 Yes 6.23 4.79E-10 Sig. stronger 
fear 

Educational Attainment (female) 27225129 23.24 -0.02 0.04 -0.40 6.89E-01 No -0.31 0.05 -6.02 1.70E-09 Yes 6.12 9.61E-10 Sig. stronger 
fear 

Educational Attainment (2016) 27225129 29.07 -0.03 0.03 -0.76 4.50E-01 No -0.31 0.04 -6.94 4.05E-12 Yes 6.10 1.09E-09 Sig. stronger 
fear 

Bipolar disorder (PGC2) 31043756 20.98 0.38 0.05 8.28 1.28E-16 Yes 0.15 0.05 2.90 3.80E-03 No 5.16 2.51E-07 Sig. stronger 
GAD 

Bipolar disorder type I & II 34002096 25.71 0.41 0.04 9.45 3.54E-21 Yes 0.21 0.04 4.69 2.77E-06 Yes 4.80 1.55E-06 Sig. stronger 
GAD 

Educational Attainment (male) 27225129 21.83 -0.03 0.04 -0.80 4.25E-01 No -0.29 0.05 -5.70 1.23E-08 Yes 4.70 2.59E-06 Sig. stronger 
fear 

Cross disorders (ADHD, ASD, BIP, SCZ) 23453885 14.74 0.58 0.05 11.50 1.30E-30 Yes 0.30 0.06 4.96 6.92E-07 Yes 4.67 3.00E-06 Sig. stronger 
GAD 

Bipolar disorder (PGC1) 21926972 10.90 0.37 0.06 6.25 4.24E-10 Yes 0.03 0.07 0.42 6.77E-01 No 4.66 3.10E-06 Sig. stronger 
GAD 

Coronary Artery Disease (2017) 28714975 15.96 0.13 0.04 3.50 5.00E-04 No 0.33 0.05 6.78 1.17E-11 Yes -4.60 4.25E-06 Sig. stronger 
fear 

Bipolar disorder type I 34002096 24.18 0.33 0.04 7.83 5.01E-15 Yes 0.13 0.05 2.73 6.30E-03 No 4.35 1.37E-05 Sig. stronger 
GAD 

Age first birth (male) 27798627 10.90 -0.09 0.06 -1.49 1.37E-01 No -0.43 0.08 -5.32 1.05E-07 Yes 4.15 3.33E-05 Sig. stronger 
fear 

General cognitive ability (2018) 29942086 29.98 -0.09 0.03 -2.61 9.10E-03 No -0.28 0.05 -6.05 1.43E-09 Yes 4.06 4.87E-05 Sig. stronger 
fear 

Anorexia nervosa (PGC2) 31308545 15.42 0.31 0.05 6.15 7.78E-10 Yes 0.08 0.06 1.43 1.52E-01 No 3.90 9.50E-05 Sig. stronger 
GAD 

BMI (Locke) female 25673413 18.74 -0.06 0.04 -1.54 1.23E-01 No 0.13 0.04 3.04 2.40E-03 No -3.90 9.52E-05 Sig. stronger 
fear 

Neuroticism UKB 30593698 19.22 0.75 0.03 22.40 3.60E-111 Yes 0.56 0.05 12.19 3.40E-34 Yes 3.83 1.27E-04 Sig. stronger 
GAD 
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External Phenotype GAD Fear-based disorders Comparison GAD & fear rg 
MDD (PGC2 + 23andme, no UKB) 29700475 23.17 0.81 0.04 20.55 7.10E-94 Yes 0.59 0.05 11.87 1.66E-32 Yes 3.82 1.36E-04 Sig. stronger 

GAD 
BMI (EUR Locke) 25673413 18.21 -0.04 0.03 -1.26 2.09E-01 No 0.12 0.04 2.93 3.40E-03 No -3.79 1.48E-04 Not Sig. diff. 
Coronary Artery Disease (mixed ancestry) 26343387 14.55 0.14 0.04 3.44 6.00E-04 No 0.32 0.05 6.23 4.56E-10 Yes -3.78 1.54E-04 Not Sig. diff. 
MDD (PGC2 + 23andme + UKB) 29700475 23.88 0.84 0.04 21.90 2.90E-106 Yes 0.62 0.05 12.50 7.29E-36 Yes 3.76 1.73E-04 Not Sig. diff. 
Body fat % 30593698 29.63 0.02 0.03 0.60 5.49E-01 No 0.14 0.04 3.81 1.00E-04 Yes -3.75 1.80E-04 Not Sig. diff. 
BMI (MIX Locke) 25673413 18.24 -0.04 0.03 -1.19 2.33E-01 No 0.12 0.04 3.11 1.90E-03 No -3.67 2.46E-04 Not Sig. diff. 
SCZ & bipolar 24280982 17.92 0.44 0.05 9.35 8.49E-21 Yes 0.21 0.05 3.86 1.00E-04 Yes 3.63 2.81E-04 Not Sig. diff. 
Fat mass meta-analysis of males & females 31852892 27.70 -0.01 0.03 -0.32 7.47E-01 No 0.11 0.04 2.82 4.80E-03 No -3.63 2.83E-04 Not Sig. diff. 
Body fat % meta-analysis of males & females 30593698 29.40 0.02 0.03 0.67 5.02E-01 No 0.14 0.04 3.64 3.00E-04 No -3.57 3.64E-04 Not Sig. diff. 
Neuroticism UKB (female) 30593698 17.30 0.73 0.04 18.10 3.49E-73 Yes 0.53 0.05 10.86 1.77E-27 Yes 3.54 3.96E-04 Not Sig. diff. 
Age first birth 27798627 17.52 -0.15 0.05 -3.26 1.10E-03 No -0.37 0.06 -5.90 3.59E-09 Yes 3.49 4.82E-04 Not Sig. diff. 
Body fat % (female) 30593698 26.51 0.01 0.04 0.14 8.87E-01 No 0.16 0.04 3.93 8.43E-05 Yes -3.48 5.02E-04 Not Sig. diff. 
Overweight 23563607 16.66 -0.08 0.05 -1.71 8.69E-02 No 0.10 0.05 1.87 6.16E-02 No -3.44 5.88E-04 Not Sig. diff. 
Neuroticism (2016) 27089181 12.38 0.80 0.04 18.72 3.35E-78 Yes 0.58 0.06 10.17 2.71E-24 Yes 3.44 5.92E-04 Not Sig. diff. 
Depressive symptoms 27089181 12.24 0.81 0.06 14.21 8.20E-46 Yes 0.57 0.07 7.82 5.32E-15 Yes 3.39 6.90E-04 Not Sig. diff. 
BMI 31852892 26.87 -0.01 0.03 -0.20 8.43E-01 No 0.12 0.04 3.08 2.10E-03 No -3.35 7.95E-04 Not Sig. diff. 
Neuroticism UKB (male) 30593698 12.52 0.77 0.04 18.54 9.10E-77 Yes 0.58 0.06 9.59 9.17E-22 Yes 3.27 1.09E-03 Not Sig. diff. 
General cognitive ability (2017) 28530673 18.70 -0.05 0.05 -1.12 2.62E-01 No -0.26 0.06 -4.63 3.66E-06 Yes 3.24 1.19E-03 Not Sig. diff. 
Waist circumference all ancestries 25673412 16.12 -0.05 0.04 -1.42 1.55E-01 No 0.11 0.05 2.24 2.54E-02 No -3.23 1.24E-03 Not Sig. diff. 
Verbal-numerical reasoning 27046643 10.78 -0.06 0.06 -1.10 2.69E-01 No -0.32 0.07 -4.51 6.48E-06 Yes 3.21 1.32E-03 Not Sig. diff. 
Fat mass female 31852892 24.76 -0.03 0.04 -0.78 4.35E-01 No 0.11 0.04 2.76 5.70E-03 No -3.20 1.36E-03 Not Sig. diff. 
Body fat % healthy 30593698 24.52 0.03 0.04 0.66 5.11E-01 No 0.15 0.04 3.29 1.00E-03 No -3.15 1.61E-03 Not Sig. diff. 
Weight EU female 23754948 18.24 -0.13 0.04 -2.85 4.30E-03 No 0.05 0.05 1.01 3.12E-01 No -3.14 1.71E-03 Not Sig. diff. 
SCZ (PGC2) 25056061 25.06 0.39 0.04 9.64 5.58E-22 Yes 0.25 0.05 5.51 3.58E-08 Yes 3.12 1.78E-03 Not Sig. diff. 
Waist circumference EUR 25673412 16.49 -0.05 0.04 -1.38 1.68E-01 No 0.10 0.05 2.18 2.91E-02 No -3.12 1.81E-03 Not Sig. diff. 
Fat mass 31852892 27.96 -0.01 0.03 -0.38 7.03E-01 No 0.11 0.04 2.93 3.40E-03 No -3.11 1.88E-03 Not Sig. diff. 
Household income, one per household 27818178 9.91 -0.20 0.06 -3.35 8.00E-04 No -0.42 0.07 -5.89 3.87E-09 Yes 3.09 1.98E-03 Not Sig. diff. 
SCZ (PGC2) (mixed ancestry) 25056061 26.09 0.39 0.04 9.79 1.26E-22 Yes 0.25 0.04 5.75 9.18E-09 Yes 3.07 2.11E-03 Not Sig. diff. 
Waist circumference EUR female 25673412 16.57 -0.05 0.04 -1.19 2.33E-01 No 0.11 0.05 2.34 1.91E-02 No -3.06 2.19E-03 Not Sig. diff. 
Household income 27818178 10.54 -0.20 0.06 -3.60 3.00E-04 No -0.42 0.07 -6.16 7.43E-10 Yes 3.04 2.40E-03 Not Sig. diff. 
Neuroticism, no psychiatric illness (male) 30593698 7.75 0.79 0.06 14.52 9.46E-48 Yes 0.57 0.08 7.57 3.79E-14 Yes 2.97 2.99E-03 Not Sig. diff. 
BMI male 31852892 24.83 -0.01 0.04 -0.25 8.04E-01 No 0.10 0.04 2.18 2.95E-02 No -2.94 3.30E-03 Not Sig. diff. 
Neuroticism, no psychiatric illness 30593698 12.44 0.75 0.04 18.66 1.14E-77 Yes 0.57 0.06 10.41 2.30E-25 Yes 2.94 3.34E-03 Not Sig. diff. 
Parents attained age 27015805 12.40 0.02 0.05 0.44 6.62E-01 No 0.19 0.06 3.29 1.00E-03 No -2.92 3.47E-03 Not Sig. diff. 
BMI meta-analysis of males & females 31852892 27.18 -0.01 0.03 -0.25 8.04E-01 No 0.11 0.04 2.95 3.20E-03 No -2.91 3.58E-03 Not Sig. diff. 
Waist-hip ratio EUR 25673412 16.32 -0.01 0.04 -0.17 8.65E-01 No 0.14 0.05 2.66 7.70E-03 No -2.90 3.70E-03 Not Sig. diff. 
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External Phenotype GAD Fear-based disorders Comparison GAD & fear rg 
Mother's age at death 27015805 8.81 -0.07 0.07 -0.97 3.30E-01 No -0.32 0.08 -4.01 6.11E-05 Yes 2.88 4.01E-03 Not Sig. diff. 
Anorexia nervosa (PGC1) 28494655 7.33 0.32 0.07 4.57 4.93E-06 Yes 0.06 0.09 0.61 5.43E-01 No 2.84 4.52E-03 Not Sig. diff. 
MDD (PGC2, no 23andme, no UKB) 29700475 16.24 0.77 0.05 14.79 1.78E-49 Yes 0.58 0.07 8.66 4.83E-18 Yes 2.83 4.65E-03 Not Sig. diff. 
Fat mass healthy meta-analysis (not alco/smoking-
adjust) 

31852892 23.27 0.00 0.04 0.03 9.73E-01 No 0.11 0.05 2.36 1.83E-02 No -2.82 4.80E-03 Not Sig. diff. 

Body fat % healthy meta-analysis (not 
alcohol/smoking-adjust) 

30593698 24.69 0.02 0.04 0.62 5.34E-01 No 0.14 0.04 3.20 1.40E-03 No -2.82 4.86E-03 Not Sig. diff. 

BMI female 31852892 24.00 -0.01 0.04 -0.32 7.48E-01 No 0.12 0.04 2.90 3.80E-03 No -2.81 5.03E-03 Not Sig. diff. 
College completion 23722424 13.47 -0.12 0.05 -2.18 2.91E-02 No -0.32 0.07 -4.55 5.41E-06 Yes 2.80 5.05E-03 Not Sig. diff. 
Hip circumference all ancestries female 25673412 16.70 -0.05 0.04 -1.34 1.81E-01 No 0.09 0.05 1.80 7.21E-02 No -2.76 5.85E-03 Not Sig. diff. 
BMI healthy meta-analysis of males & females 31852892 23.39 -0.01 0.04 -0.15 8.77E-01 No 0.11 0.05 2.48 1.33E-02 No -2.75 6.02E-03 Not Sig. diff. 
Waist-hip ratio all ancestries 25673412 16.49 -0.01 0.04 -0.18 8.58E-01 No 0.14 0.05 2.69 7.20E-03 No -2.72 6.48E-03 Not Sig. diff. 
Fat mass healthy meta-analysis of males & females 31852892 23.51 0.00 0.04 0.01 9.93E-01 No 0.10 0.05 2.31 2.11E-02 No -2.68 7.38E-03 Not Sig. diff. 
Body fat % anorexia-free meta-analysis of males & 
females 

30593698 24.44 0.03 0.04 0.67 5.02E-01 No 0.14 0.04 3.12 1.80E-03 No -2.68 7.43E-03 Not Sig. diff. 

Body fat % anorexia-free 30593698 24.65 0.03 0.04 0.73 4.66E-01 No 0.15 0.05 3.25 1.20E-03 No -2.67 7.70E-03 Not Sig. diff. 
Father attained age 27015805 13.45 0.08 0.06 1.34 1.81E-01 No 0.23 0.06 3.93 8.40E-05 Yes -2.66 7.71E-03 Not Sig. diff. 
BMI anorexia-free male 31852892 19.49 -0.03 0.05 -0.56 5.76E-01 No 0.10 0.05 1.98 4.83E-02 No -2.61 9.08E-03 Not Sig. diff. 
Body fat % healthy meta-analysis of males & females 30593698 24.63 0.02 0.04 0.61 5.44E-01 No 0.14 0.04 3.15 1.60E-03 No -2.59 9.63E-03 Not Sig. diff. 
Age at Menarche (marker of puberty in females) 28436984 20.27 -0.09 0.03 -2.69 7.10E-03 No 0.01 0.04 0.17 8.69E-01 No -2.58 9.77E-03 Not Sig. diff. 
BMI healthy 31852892 23.21 0.00 0.04 -0.06 9.52E-01 No 0.11 0.05 2.50 1.25E-02 No -2.56 1.06E-02 Not Sig. diff. 
BMI anorexia-free 31852892 23.07 0.00 0.04 -0.02 9.81E-01 No 0.11 0.05 2.42 1.55E-02 No -2.55 1.07E-02 Not Sig. diff. 
BMI Locke & UKB (updated) 30124842 28.98 -0.02 0.03 -0.52 6.04E-01 No 0.08 0.04 2.11 3.48E-02 No -2.53 1.14E-02 Not Sig. diff. 
Fat mass healthy male 31852892 19.00 -0.01 0.05 -0.11 9.12E-01 No 0.10 0.05 1.93 5.39E-02 No -2.52 1.19E-02 Not Sig. diff. 
BMI healthy male 31852892 19.52 -0.03 0.05 -0.55 5.83E-01 No 0.10 0.05 1.96 4.96E-02 No -2.50 1.24E-02 Not Sig. diff. 
Mother attained age 27015805 9.82 0.04 0.07 0.63 5.30E-01 No 0.24 0.07 3.29 1.00E-03 No -2.50 1.24E-02 Not Sig. diff. 
Obesity class 2 23563607 14.25 -0.01 0.05 -0.25 7.99E-01 No 0.13 0.06 2.20 2.80E-02 No -2.50 1.25E-02 Not Sig. diff. 
Body mass index healthy meta-analysis (not 
alcohol/smoking-adjust) 

30593698 23.18 -0.01 0.04 -0.12 9.07E-01 No 0.12 0.05 2.56 1.05E-02 No -2.49 1.27E-02 Not Sig. diff. 

Obesity class 1 23563607 18.43 -0.04 0.04 -1.01 3.15E-01 No 0.10 0.05 1.97 4.90E-02 No -2.49 1.28E-02 Not Sig. diff. 
Fat mass anorexia-free meta-analysis of males & 
females 

31852892 23.33 0.00 0.04 0.07 9.46E-01 No 0.10 0.05 2.28 2.25E-02 No -2.49 1.29E-02 Not Sig. diff. 

Heavy versus never smoker 28166213 15.46 0.09 0.05 1.75 8.05E-02 No 0.24 0.06 4.14 3.46E-05 Yes -2.47 1.36E-02 Not Sig. diff. 
Extreme BMI 23563607 12.61 -0.11 0.06 -1.73 8.38E-02 No 0.07 0.07 1.02 3.07E-01 No -2.46 1.39E-02 Not Sig. diff. 
Hip circumference EUR 25673412 16.99 -0.07 0.04 -1.86 6.35E-02 No 0.05 0.05 0.97 3.35E-01 No -2.45 1.41E-02 Not Sig. diff. 
BMI anorexia-free meta-analysis of males & females 31852892 23.24 -0.01 0.04 -0.13 8.97E-01 No 0.11 0.05 2.41 1.59E-02 No -2.45 1.42E-02 Not Sig. diff. 
Plateletcrit 27863252 12.24 -0.01 0.03 -0.38 7.07E-01 No 0.09 0.04 2.38 1.75E-02 No -2.44 1.47E-02 Not Sig. diff. 
Ever smoker 30643258 28.66 0.15 0.04 4.07 4.76E-05 Yes 0.24 0.05 5.37 7.75E-08 Yes -2.43 1.52E-02 Not Sig. diff. 
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Fat mass male 31852892 24.43 0.00 0.04 0.08 9.37E-01 No 0.10 0.04 2.23 2.59E-02 No -2.42 1.57E-02 Not Sig. diff. 
Fat mass healthy 31852892 23.49 0.00 0.04 0.04 9.66E-01 No 0.10 0.05 2.33 2.00E-02 No -2.41 1.60E-02 Not Sig. diff. 
Hip circumference EUR female 25673412 16.70 -0.05 0.04 -1.31 1.90E-01 No 0.09 0.05 1.75 7.96E-02 No -2.40 1.65E-02 Not Sig. diff. 
Self-rated health 27864402 15.67 -0.34 0.05 -6.43 1.29E-10 Yes -0.51 0.06 -8.12 4.56E-16 Yes 2.38 1.75E-02 Not Sig. diff. 
Social deprivation 27818178 8.04 0.17 0.06 2.68 7.50E-03 No 0.37 0.09 3.95 7.76E-05 Yes -2.35 1.86E-02 Not Sig. diff. 
Hip circumference all ancestries 25673412 16.80 -0.07 0.04 -1.91 5.68E-02 No 0.05 0.05 0.99 3.25E-01 No -2.33 1.97E-02 Not Sig. diff. 
Age first birth (female) 27798627 14.57 -0.17 0.05 -3.42 6.00E-04 No -0.34 0.07 -5.13 2.87E-07 Yes 2.32 2.01E-02 Not Sig. diff. 
Fat mass anorexia-free 31852892 23.31 0.00 0.04 0.11 9.14E-01 No 0.10 0.05 2.29 2.19E-02 No -2.31 2.09E-02 Not Sig. diff. 
Type-2 Diabetes 2017 28566273 13.24 0.06 0.05 1.34 1.79E-01 No 0.21 0.06 3.60 3.00E-04 No -2.28 2.29E-02 Not Sig. diff. 
Undersleeper 27494321 10.43 0.20 0.06 3.18 1.50E-03 No 0.38 0.08 4.76 1.92E-06 Yes -2.27 2.31E-02 Not Sig. diff. 
Body fat % healthy female 30593698 19.07 0.03 0.05 0.68 4.94E-01 No 0.17 0.06 2.99 2.80E-03 No -2.26 2.41E-02 Not Sig. diff. 
ADHD (male) 29325848 12.06 0.24 0.06 4.39 1.15E-05 Yes 0.40 0.08 4.98 6.35E-07 Yes -2.24 2.53E-02 Not Sig. diff. 
Mean diameter for HDL particles 27005778 4.12 0.22 0.10 2.27 2.33E-02 No -0.05 0.11 -0.44 6.59E-01 No 2.21 2.69E-02 Not Sig. diff. 
Lifecourse bone mineral density: -15 29304378 8.18 -0.01 0.07 -0.18 8.61E-01 No -0.21 0.09 -2.34 1.91E-02 No 2.20 2.79E-02 Not Sig. diff. 
MDD (PGC1) 22472876 5.75 0.80 0.10 7.72 1.20E-14 Yes 0.59 0.11 5.58 2.48E-08 Yes 2.20 2.80E-02 Not Sig. diff. 
SCZ PGC 2018 (mixed ancestry) 31740837 30.04 0.38 0.04 10.79 3.92E-27 Yes 0.28 0.04 7.19 6.44E-13 Yes 2.20 2.80E-02 Not Sig. diff. 
Obesity class 3 23563607 8.42 -0.01 0.08 -0.07 9.48E-01 No 0.18 0.09 2.13 3.31E-02 No -2.20 2.80E-02 Not Sig. diff. 
Body fat % healthy male 30593698 20.18 0.01 0.05 0.31 7.58E-01 No 0.11 0.05 2.32 2.03E-02 No -2.19 2.88E-02 Not Sig. diff. 
Lifetime anxiety (female) 31748690 11.65 0.98 0.03 32.26 2.38E-228 Yes 0.85 0.06 14.93 2.20E-50 Yes 2.18 2.93E-02 Not Sig. diff. 
Body fat % male 30593698 25.32 0.04 0.04 0.92 3.56E-01 No 0.12 0.04 2.76 5.80E-03 No -2.18 2.93E-02 Not Sig. diff. 
BMI (Locke) male 25673413 15.40 -0.03 0.04 -0.79 4.32E-01 No 0.08 0.05 1.74 8.21E-02 No -2.17 3.00E-02 Not Sig. diff. 
Parents' age at death 27015805 10.44 -0.06 0.07 -0.81 4.17E-01 No -0.23 0.08 -3.10 1.90E-03 No 2.17 3.01E-02 Not Sig. diff. 
Autism spectrum disorder 30804558 13.25 0.34 0.06 6.15 7.55E-10 Yes 0.21 0.07 3.22 1.30E-03 No 2.16 3.07E-02 Not Sig. diff. 
Schizophrenia 29483656 27.32 0.36 0.04 9.73 2.23E-22 Yes 0.26 0.05 5.66 1.52E-08 Yes 2.16 3.08E-02 Not Sig. diff. 
Cholesterol esters in large HDL 27005778 4.43 0.23 0.10 2.41 1.60E-02 No -0.02 0.11 -0.18 8.57E-01 No 2.16 3.08E-02 Not Sig. diff. 
Age at Menarche (marker of puberty in females) 25231870 19.98 -0.07 0.04 -1.61 1.07E-01 No 0.03 0.05 0.67 5.02E-01 No -2.15 3.14E-02 Not Sig. diff. 
Waist-hip ratio all ancestries BMI-adjusted 25673412 12.36 0.02 0.04 0.38 7.04E-01 No 0.11 0.05 2.21 2.71E-02 No -2.15 3.19E-02 Not Sig. diff. 
Body fat % anorexia-free male 30593698 20.12 0.02 0.05 0.34 7.35E-01 No 0.11 0.05 2.33 1.96E-02 No -2.13 3.29E-02 Not Sig. diff. 
Body fat % anorexia-free female 30593698 19.01 0.04 0.05 0.77 4.44E-01 No 0.16 0.06 2.93 3.40E-03 No -2.11 3.48E-02 Not Sig. diff. 
Neuroticism, no psychiatric illness (female) 30593698 10.65 0.71 0.06 13.02 9.56E-39 Yes 0.57 0.06 8.91 5.14E-19 Yes 2.09 3.65E-02 Not Sig. diff. 
Fat mass anorexia-free male 31852892 18.97 0.00 0.05 -0.09 9.27E-01 No 0.10 0.05 1.95 5.08E-02 No -2.06 3.93E-02 Not Sig. diff. 
Lifecourse bone mineral density: meta-analysis 29304378 12.26 -0.04 0.04 -1.03 3.02E-01 No -0.14 0.05 -2.91 3.60E-03 No 2.05 4.01E-02 Not Sig. diff. 
Insomnia 30804565 21.95 0.28 0.04 7.39 1.48E-13 Yes 0.39 0.05 7.20 6.09E-13 Yes -2.04 4.14E-02 Not Sig. diff. 
High FEV1 versus average FEV1 never smokers 28166213 5.85 0.05 0.08 0.58 5.65E-01 No 0.28 0.10 2.70 6.90E-03 No -2.01 4.48E-02 Not Sig. diff. 
Lean mass (fat free mass) 30593698 24.18 -0.07 0.03 -2.49 1.27E-02 No -0.01 0.03 -0.35 7.26E-01 No -2.00 4.55E-02 Not Sig. diff. 
Lean mass (fat free mass) male 30593698 21.16 -0.06 0.03 -2.02 4.37E-02 No 0.00 0.04 -0.07 9.48E-01 No -2.00 4.57E-02 Not Sig. diff. 
Osteoporosis: femoral neck bone mineral density 26367794 7.14 -0.30 0.12 -2.57 1.01E-02 No -0.06 0.10 -0.59 5.55E-01 No -2.00 4.59E-02 Not Sig. diff. 
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ADHD 30478444 15.95 0.22 0.05 4.67 3.09E-06 Yes 0.35 0.06 5.52 3.41E-08 Yes -1.98 4.79E-02 Not Sig. diff. 
Body fat % (Lu. et al) 26833246 12.66 0.05 0.06 0.89 3.73E-01 No 0.19 0.07 2.75 5.90E-03 No -1.97 4.89E-02 Not Sig. diff. 
Father's age at death 27015805 10.06 -0.12 0.06 -2.08 3.80E-02 No -0.27 0.07 -3.90 9.54E-05 Yes 1.96 4.96E-02 Not Sig. diff. 
Primary Biliary Cirrhosis 26394269 6.11 0.13 0.07 1.97 4.94E-02 No 0.28 0.08 3.75 2.00E-04 No -1.94 5.23E-02 Not Sig. diff. 
Low FEV1 versus high FEV1 never smokers 28166213 12.95 0.00 0.05 0.03 9.76E-01 No -0.12 0.06 -1.85 6.39E-02 No 1.94 5.24E-02 Not Sig. diff. 
Systemic Lupus Erythematosus 26502338 5.73 0.11 0.09 1.15 2.52E-01 No 0.29 0.09 3.35 8.00E-04 No -1.90 5.69E-02 Not Sig. diff. 
Hemoglobin concentration 27863252 11.11 0.03 0.04 0.69 4.89E-01 No 0.12 0.05 2.49 1.27E-02 No -1.90 5.72E-02 Not Sig. diff. 
Heart Rate 23583979 8.48 0.11 0.05 2.17 2.97E-02 No 0.24 0.07 3.47 5.00E-04 No -1.90 5.79E-02 Not Sig. diff. 
Concentration of large HDL particles 27005778 4.66 0.19 0.09 2.09 3.64E-02 No -0.01 0.10 -0.06 9.54E-01 No 1.88 6.08E-02 Not Sig. diff. 
Fat mass healthy female 31852892 17.69 0.00 0.05 0.02 9.83E-01 No 0.10 0.06 1.80 7.13E-02 No -1.83 6.69E-02 Not Sig. diff. 
Lifetime anxiety 31748690 14.52 0.98 0.02 63.72 0.00E+00 Yes 0.90 0.05 19.60 1.72E-85 Yes 1.82 6.91E-02 Not Sig. diff. 
Age at Menopause 26414677 8.58 -0.06 0.05 -1.12 2.61E-01 No -0.18 0.06 -2.88 3.90E-03 No 1.80 7.20E-02 Not Sig. diff. 
serum creatinine, non diabetes mellitus) 26831199 10.89 -0.04 0.05 -0.76 4.45E-01 No 0.07 0.06 1.05 2.92E-01 No -1.79 7.28E-02 Not Sig. diff. 
Total lipids in large HDL 27005778 4.61 0.20 0.09 2.13 3.29E-02 No -0.01 0.10 -0.11 9.09E-01 No 1.79 7.35E-02 Not Sig. diff. 
Severe early onset obesity vs controls 30677029 7.61 0.25 0.08 3.35 8.00E-04 No 0.08 0.09 0.93 3.54E-01 No 1.78 7.56E-02 Not Sig. diff. 
ADHD (mixed ancestry) 30478444 16.29 0.23 0.05 4.74 2.10E-06 Yes 0.34 0.06 5.54 3.00E-08 Yes -1.77 7.72E-02 Not Sig. diff. 
BMI healthy female 31852892 17.43 0.01 0.05 0.22 8.27E-01 No 0.11 0.06 1.98 4.75E-02 No -1.76 7.78E-02 Not Sig. diff. 
Triglycerides 20686565 5.36 0.05 0.04 1.22 2.22E-01 No 0.15 0.06 2.72 6.40E-03 No -1.76 7.79E-02 Not Sig. diff. 
Waist circumference EUR male 25673412 12.48 -0.07 0.05 -1.24 2.16E-01 No 0.06 0.06 0.89 3.76E-01 No -1.76 7.90E-02 Not Sig. diff. 
Creatinine 27005778 4.52 0.01 0.09 0.15 8.79E-01 No -0.19 0.11 -1.72 8.47E-02 No 1.75 8.04E-02 Not Sig. diff. 
Waist circumference all ancestries BMI-adjusted 25673412 16.12 -0.04 0.04 -1.03 3.04E-01 No 0.03 0.04 0.70 4.84E-01 No -1.74 8.22E-02 Not Sig. diff. 
Phospholipids in large HDL 27005778 4.22 0.17 0.10 1.82 6.88E-02 No -0.02 0.11 -0.15 8.83E-01 No 1.73 8.42E-02 Not Sig. diff. 
Lean mass (fat free mass) meta-analysis males & 
females 

30593698 24.33 -0.08 0.03 -2.79 5.20E-03 No -0.02 0.03 -0.63 5.29E-01 No -1.72 8.48E-02 Not Sig. diff. 

High FEV1 versus average FEV1 heavy smokers 28166213 5.42 -0.06 0.07 -0.79 4.31E-01 No -0.23 0.11 -2.18 2.91E-02 No 1.72 8.63E-02 Not Sig. diff. 
Total body less head bone mineral density children 28743860 8.86 0.08 0.07 1.09 2.78E-01 No 0.22 0.09 2.61 9.00E-03 No -1.69 9.10E-02 Not Sig. diff. 
Lean mass (fat free mass) healthy male 30593698 17.07 -0.04 0.04 -1.09 2.76E-01 No 0.02 0.04 0.34 7.33E-01 No -1.68 9.30E-02 Not Sig. diff. 
Male pattern baldness 28196072 7.07 0.01 0.04 0.29 7.73E-01 No -0.07 0.05 -1.32 1.87E-01 No 1.65 1.00E-01 Not Sig. diff. 
Fat mass anorexia-free female 31852892 17.41 0.01 0.05 0.11 9.10E-01 No 0.10 0.06 1.74 8.27E-02 No -1.64 1.00E-01 Not Sig. diff. 
Platelet count 27863252 12.75 0.00 0.03 -0.13 9.00E-01 No 0.07 0.04 1.68 9.35E-02 No -1.63 1.02E-01 Not Sig. diff. 
PTSD EUR female 28439101 4.24 0.25 0.11 2.35 1.88E-02 No 0.04 0.13 0.28 7.81E-01 No 1.62 1.05E-01 Not Sig. diff. 
Consumption (AUDIT-C) 30336701 15.89 -0.07 0.05 -1.30 1.92E-01 No -0.16 0.06 -2.59 9.70E-03 No 1.62 1.06E-01 Not Sig. diff. 
Type 2 Diabetes 2012 22885922 9.48 -0.01 0.07 -0.11 9.15E-01 No 0.12 0.08 1.52 1.28E-01 No -1.61 1.08E-01 Not Sig. diff. 
eGFRcrea (serum creatinine) 26831199 11.18 -0.02 0.05 -0.46 6.43E-01 No 0.06 0.06 1.00 3.20E-01 No -1.61 1.08E-01 Not Sig. diff. 
Waist circumference EUR BMI-adjusted 25673412 16.25 -0.04 0.04 -0.94 3.49E-01 No 0.03 0.05 0.70 4.87E-01 No -1.59 1.13E-01 Not Sig. diff. 
Hematocrit 27863252 11.04 0.03 0.04 0.97 3.34E-01 No 0.11 0.05 2.39 1.71E-02 No -1.58 1.14E-01 Not Sig. diff. 
Lean mass (fat free mass) female 30593698 23.30 -0.10 0.03 -3.01 2.60E-03 No -0.04 0.04 -1.14 2.54E-01 No -1.58 1.14E-01 Not Sig. diff. 
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Eosinophil % of white cells 27863252 9.42 -0.09 0.04 -2.47 1.35E-02 No -0.01 0.05 -0.22 8.23E-01 No -1.56 1.19E-01 Not Sig. diff. 
AUDIT total score 30336701 16.87 0.01 0.05 0.13 8.99E-01 No -0.09 0.06 -1.50 1.34E-01 No 1.56 1.19E-01 Not Sig. diff. 
Lifecourse bone mineral density: 45-60 29304378 9.69 -0.09 0.07 -1.36 1.74E-01 No -0.21 0.08 -2.71 6.60E-03 No 1.56 1.19E-01 Not Sig. diff. 
Visceral adipose tissue volume adj. for BMI female 27918534 4.83 0.16 0.10 1.59 1.13E-01 No -0.01 0.11 -0.05 9.58E-01 No 1.55 1.20E-01 Not Sig. diff. 
Waist-hip ratio EUR BMI-adjusted 25673412 12.42 0.02 0.04 0.42 6.73E-01 No 0.11 0.05 2.19 2.82E-02 No -1.55 1.22E-01 Not Sig. diff. 
Celiac Disease 20190752 5.71 0.02 0.08 0.26 7.97E-01 No 0.17 0.10 1.72 8.60E-02 No -1.54 1.23E-01 Not Sig. diff. 
Cholesterol in large HDL 27005778 4.08 0.19 0.10 1.96 4.97E-02 No 0.01 0.11 0.06 9.50E-01 No 1.54 1.23E-01 Not Sig. diff. 
Bipolar disorder type II 34002096 8.20 0.53 0.07 7.28 3.42E-13 Yes 0.41 0.09 4.70 2.59E-06 Yes 1.53 1.27E-01 Not Sig. diff. 
Rheumatoid Arthritis 2014 24390342 5.82 -0.02 0.05 -0.39 6.93E-01 No 0.07 0.06 1.05 2.96E-01 No -1.52 1.28E-01 Not Sig. diff. 
Childhood maltreatment 33740410 17.17 0.44 0.04 10.20 2.04E-24 Yes 0.36 0.05 6.75 1.53E-11 Yes 1.51 1.31E-01 Not Sig. diff. 
Mean corpuscular hemoglobin MCH 27863252 8.33 0.01 0.03 0.22 8.25E-01 No 0.08 0.04 1.91 5.65E-02 No -1.50 1.34E-01 Not Sig. diff. 
Type 2 diabetes dominance deviation model 26961502 4.17 0.06 0.08 0.75 4.55E-01 No 0.21 0.10 1.99 4.69E-02 No -1.48 1.40E-01 Not Sig. diff. 
Eosinophil % of granulocytes 27863252 9.39 -0.09 0.04 -2.67 7.50E-03 No -0.02 0.05 -0.33 7.41E-01 No -1.47 1.41E-01 Not Sig. diff. 
Weight EU male 23754948 15.23 -0.02 0.05 -0.34 7.33E-01 No 0.06 0.06 1.08 2.81E-01 No -1.47 1.41E-01 Not Sig. diff. 
Total cholesterol 20686565 5.81 0.04 0.04 1.02 3.08E-01 No 0.14 0.06 2.46 1.41E-02 No -1.47 1.43E-01 Not Sig. diff. 
Longest 10% survival 27015805 8.00 -0.05 0.07 -0.76 4.50E-01 No -0.18 0.08 -2.22 2.64E-02 No 1.45 1.46E-01 Not Sig. diff. 
Autism spectrum disorder worldwide 28540026 9.02 0.21 0.08 2.73 6.30E-03 No 0.10 0.08 1.19 2.33E-01 No 1.43 1.53E-01 Not Sig. diff. 
Tourette Syndrome 30818990 8.03 0.18 0.07 2.60 9.30E-03 No 0.31 0.08 3.76 2.00E-04 No -1.42 1.56E-01 Not Sig. diff. 
Neutrophil % of granulocytes 27863252 9.45 0.09 0.04 2.60 9.40E-03 No 0.00 0.05 0.08 9.39E-01 No 1.42 1.57E-01 Not Sig. diff. 
Mean corpuscular volume 27863252 9.01 0.02 0.03 0.65 5.17E-01 No 0.09 0.04 2.15 3.17E-02 No -1.41 1.59E-01 Not Sig. diff. 
Neutrophil % of white cells 27863252 11.26 0.08 0.04 2.10 3.57E-02 No 0.01 0.04 0.27 7.84E-01 No 1.41 1.59E-01 Not Sig. diff. 
Self-reported tiredness 28322280 11.46 0.63 0.06 10.66 1.51E-26 Yes 0.51 0.07 7.10 1.24E-12 Yes 1.39 1.65E-01 Not Sig. diff. 
BMI anorexia-free female 31852892 17.13 0.01 0.05 0.29 7.70E-01 No 0.10 0.06 1.85 6.42E-02 No -1.39 1.65E-01 Not Sig. diff. 
Fasting glucose (BMI-adjusted) 22581228 5.43 -0.06 0.07 -0.91 3.65E-01 No 0.04 0.08 0.57 5.69E-01 No -1.36 1.74E-01 Not Sig. diff. 
Insomnia (2017) 28604731 9.42 0.31 0.06 5.33 9.83E-08 Yes 0.43 0.09 4.83 1.35E-06 Yes -1.36 1.75E-01 Not Sig. diff. 
Reproductive behavior: No. Children Ever Born 
Female 

27798627 9.57 0.06 0.07 0.91 3.64E-01 No 0.16 0.09 1.79 7.37E-02 No -1.35 1.76E-01 Not Sig. diff. 

Persistent thin individuals vs severe early onset obesity 30677029 8.85 0.17 0.07 2.41 1.57E-02 No 0.06 0.08 0.73 4.66E-01 No 1.35 1.76E-01 Not Sig. diff. 
Atopic dermatitis 26482879 4.22 0.06 0.08 0.77 4.39E-01 No 0.18 0.10 1.84 6.52E-02 No -1.33 1.84E-01 Not Sig. diff. 
Physical activity (objectively-measured) male 34753499 7.72 -0.11 0.07 -1.65 9.88E-02 No -0.23 0.08 -2.72 6.50E-03 No 1.30 1.94E-01 Not Sig. diff. 
Sum eosinophil basophil counts 27863252 8.91 -0.07 0.03 -2.18 2.93E-02 No 0.00 0.05 0.03 9.77E-01 No -1.29 1.98E-01 Not Sig. diff. 
Reproductive behavior: Number of Children Ever Born 27798627 14.06 0.08 0.06 1.46 1.45E-01 No 0.17 0.07 2.35 1.88E-02 No -1.25 2.11E-01 Not Sig. diff. 
Height female 2013 23754948 14.55 -0.11 0.04 -2.63 8.50E-03 No -0.04 0.05 -0.88 3.78E-01 No -1.23 2.19E-01 Not Sig. diff. 
Tobacco: CPD (cigarets per day) 20418890 4.22 0.00 0.08 -0.03 9.77E-01 No 0.14 0.11 1.25 2.13E-01 No -1.22 2.21E-01 Not Sig. diff. 
Childhood Intelligence 23358156 5.90 -0.20 0.08 -2.54 1.10E-02 No -0.37 0.12 -3.01 2.60E-03 No 1.22 2.21E-01 Not Sig. diff. 
Rheumatoid Arthritis 2014 EUR 24390342 5.89 -0.02 0.05 -0.31 7.57E-01 No 0.06 0.06 1.01 3.15E-01 No -1.22 2.23E-01 Not Sig. diff. 
Physical activity (objectively-measured) 34753499 13.98 -0.07 0.05 -1.36 1.74E-01 No -0.16 0.07 -2.44 1.48E-02 No 1.22 2.24E-01 Not Sig. diff. 
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Physical activity (objectively-measured) female 34753499 10.36 -0.06 0.06 -1.02 3.08E-01 No -0.16 0.07 -2.29 2.21E-02 No 1.22 2.24E-01 Not Sig. diff. 
Concentration of chylomicrons & largest VLDL particles 27005778 4.26 -0.03 0.10 -0.30 7.67E-01 No 0.12 0.11 1.12 2.61E-01 No -1.21 2.28E-01 Not Sig. diff. 
Subjective well-being 27089181 11.71 -0.58 0.06 -9.22 3.06E-20 Yes -0.50 0.07 -6.90 5.12E-12 Yes -1.17 2.41E-01 Not Sig. diff. 
Lean mass (fat free mass) anorexia-free male 30593698 17.06 -0.04 0.04 -1.11 2.67E-01 No 0.02 0.04 0.37 7.11E-01 No -1.17 2.41E-01 Not Sig. diff. 
Osteoporosis: lumbar spine bone mineral density 26367794 7.10 -0.28 0.12 -2.40 1.64E-02 No -0.14 0.10 -1.40 1.61E-01 No -1.16 2.45E-01 Not Sig. diff. 
Autism spectrum disorder EUR 28540026 7.82 0.20 0.08 2.34 1.95E-02 No 0.11 0.09 1.26 2.09E-01 No 1.15 2.51E-01 Not Sig. diff. 
BMI childhood: 3-10 years 26604143 10.30 -0.03 0.06 -0.44 6.61E-01 No 0.05 0.06 0.77 4.40E-01 No -1.15 2.52E-01 Not Sig. diff. 
Insomnia (female) 28604731 4.99 0.31 0.08 3.89 9.97E-05 Yes 0.44 0.11 4.01 6.10E-05 Yes -1.12 2.61E-01 Not Sig. diff. 
Low FEV1 versus high FEV1 heavy smokers 28166213 10.56 0.08 0.05 1.51 1.30E-01 No 0.15 0.07 2.29 2.22E-02 No -1.11 2.66E-01 Not Sig. diff. 
Fasting insulin (BMI-adjusted) 22581228 6.50 0.03 0.08 0.35 7.28E-01 No 0.14 0.10 1.38 1.68E-01 No -1.10 2.73E-01 Not Sig. diff. 
Hip circumference all ancestries male 25673412 11.84 -0.12 0.05 -2.33 1.97E-02 No -0.05 0.06 -0.81 4.20E-01 No -1.09 2.74E-01 Not Sig. diff. 
Birth Length 25281659 7.28 0.07 0.08 0.80 4.22E-01 No -0.03 0.10 -0.34 7.38E-01 No 1.08 2.80E-01 Not Sig. diff. 
Hip circumference EUR male 25673412 12.13 -0.12 0.05 -2.28 2.24E-02 No -0.05 0.06 -0.79 4.32E-01 No -1.08 2.82E-01 Not Sig. diff. 
Cross-disorder: autism subset 23453885 8.04 0.13 0.08 1.71 8.69E-02 No 0.03 0.09 0.38 7.02E-01 No 1.07 2.85E-01 Not Sig. diff. 
Oversleeper 27494321 4.51 0.04 0.09 0.42 6.73E-01 No 0.15 0.11 1.39 1.65E-01 No -1.01 3.11E-01 Not Sig. diff. 
Eosinophil count 27863252 8.79 -0.07 0.03 -2.09 3.63E-02 No 0.00 0.05 -0.02 9.81E-01 No -1.00 3.17E-01 Not Sig. diff. 
Granulocyte % of myeloid white cells 27863252 8.68 0.01 0.04 0.19 8.53E-01 No -0.04 0.05 -0.82 4.15E-01 No 0.99 3.24E-01 Not Sig. diff. 
Sleep Duration 27494321 10.73 -0.11 0.06 -1.74 8.11E-02 No -0.19 0.08 -2.52 1.17E-02 No 0.97 3.34E-01 Not Sig. diff. 
Chronotype 27494321 16.62 -0.02 0.05 -0.35 7.25E-01 No -0.07 0.06 -1.17 2.43E-01 No 0.96 3.37E-01 Not Sig. diff. 
Lean mass (fat free) anorexia-free 30593698 20.55 -0.05 0.03 -1.40 1.62E-01 No -0.01 0.04 -0.34 7.37E-01 No -0.96 3.39E-01 Not Sig. diff. 
Triglycerides in very large VLDL 27005778 4.29 0.01 0.10 0.08 9.35E-01 No -0.08 0.11 -0.72 4.70E-01 No 0.95 3.42E-01 Not Sig. diff. 
Monocyte % of white cells 27863252 8.26 0.02 0.04 0.46 6.49E-01 No 0.04 0.05 0.95 3.41E-01 No -0.95 3.44E-01 Not Sig. diff. 
Insomnia male 28604731 6.98 0.28 0.08 3.31 9.00E-04 No 0.36 0.10 3.61 3.00E-04 No -0.94 3.49E-01 Not Sig. diff. 
Problematic consequences of drinking 30336701 12.68 0.25 0.06 4.18 2.98E-05 Yes 0.20 0.07 3.03 2.50E-03 No 0.93 3.51E-01 Not Sig. diff. 
Concentration of medium VLDL particles 27005778 4.35 0.05 0.08 0.58 5.61E-01 No 0.14 0.10 1.39 1.66E-01 No -0.93 3.54E-01 Not Sig. diff. 
Lifecourse bone mineral density: 30-45 29304378 6.32 -0.14 0.08 -1.75 7.95E-02 No -0.05 0.10 -0.47 6.39E-01 No -0.91 3.65E-01 Not Sig. diff. 
PTSD symptoms 33510476 19.05 0.55 0.05 11.36 6.69E-30 Yes 0.60 0.05 11.56 6.84E-31 Yes -0.89 3.75E-01 Not Sig. diff. 
Lean mass (fat free mass) healthy 30593698 20.52 -0.05 0.03 -1.42 1.56E-01 No -0.02 0.04 -0.37 7.14E-01 No -0.87 3.82E-01 Not Sig. diff. 
OCD 28761083 7.13 0.34 0.08 4.21 2.57E-05 Yes 0.25 0.10 2.56 1.06E-02 No 0.87 3.86E-01 Not Sig. diff. 
Autism 2015 26998691 8.94 0.14 0.08 1.86 6.35E-02 No 0.06 0.09 0.73 4.68E-01 No 0.86 3.88E-01 Not Sig. diff. 
Birth weight EUR 27680694 14.81 0.02 0.04 0.53 5.93E-01 No -0.03 0.05 -0.52 6.02E-01 No 0.86 3.91E-01 Not Sig. diff. 
Adiponectin 22479202 4.88 0.08 0.08 1.07 2.87E-01 No 0.00 0.10 0.03 9.77E-01 No 0.86 3.91E-01 Not Sig. diff. 
Lifetime cannabis use 27023175 5.61 0.17 0.09 1.94 5.23E-02 No 0.07 0.12 0.59 5.56E-01 No 0.86 3.91E-01 Not Sig. diff. 
Reaction time 27046643 13.47 0.11 0.06 2.02 4.39E-02 No 0.17 0.06 2.67 7.50E-03 No -0.85 3.94E-01 Not Sig. diff. 
Lymphocyte % of white cells 27863252 12.68 -0.07 0.04 -1.88 6.05E-02 No -0.02 0.04 -0.47 6.42E-01 No -0.83 4.07E-01 Not Sig. diff. 
Red cell distribution width 27863252 8.53 -0.04 0.05 -0.81 4.17E-01 No -0.01 0.04 -0.33 7.42E-01 No -0.83 4.08E-01 Not Sig. diff. 
ADHD female 29325848 4.65 0.26 0.10 2.54 1.10E-02 No 0.17 0.12 1.39 1.63E-01 No 0.81 4.15E-01 Not Sig. diff. 
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HbA1c 20858683 5.33 -0.04 0.08 -0.45 6.51E-01 No -0.12 0.10 -1.17 2.42E-01 No 0.81 4.19E-01 Not Sig. diff. 
Cholesterol esters in large VLDL 27005778 4.94 0.06 0.09 0.67 5.00E-01 No 0.14 0.10 1.46 1.44E-01 No -0.78 4.34E-01 Not Sig. diff. 
Childhood obesity 22484627 9.64 0.02 0.06 0.35 7.29E-01 No -0.04 0.07 -0.59 5.52E-01 No 0.77 4.44E-01 Not Sig. diff. 
Lifecourse bone mineral density: 60+ 29304378 9.06 0.01 0.06 0.22 8.28E-01 No -0.05 0.06 -0.73 4.63E-01 No 0.76 4.47E-01 Not Sig. diff. 
Alcohol dependence (mixed ancestry) 30482948 5.45 0.44 0.09 4.85 1.21E-06 Yes 0.38 0.10 3.62 3.00E-04 No 0.73 4.64E-01 Not Sig. diff. 
Crohn's disease 26192919 9.03 0.07 0.05 1.42 1.55E-01 No 0.13 0.06 2.02 4.36E-02 No -0.73 4.68E-01 Not Sig. diff. 
Granulocyte count 27863252 8.37 0.05 0.04 1.32 1.87E-01 No 0.02 0.05 0.40 6.90E-01 No 0.73 4.68E-01 Not Sig. diff. 
Ratio: visceral-to-subcutaneous adipose tissue vol. 
female 

27918534 4.23 0.17 0.11 1.51 1.30E-01 No 0.07 0.13 0.50 6.20E-01 No 0.72 4.69E-01 Not Sig. diff. 

Daily alcohol use 27911795 6.65 -0.04 0.08 -0.48 6.31E-01 No -0.12 0.09 -1.31 1.90E-01 No 0.72 4.71E-01 Not Sig. diff. 
Birth weight 23202124 6.13 0.04 0.08 0.56 5.78E-01 No -0.02 0.09 -0.26 7.95E-01 No 0.72 4.72E-01 Not Sig. diff. 
Fasting insulin (age- & sex-adjusted) 20081858 6.22 -0.03 0.09 -0.31 7.60E-01 No 0.04 0.10 0.38 7.04E-01 No -0.71 4.81E-01 Not Sig. diff. 
Sum basophil neutrophil counts 27863252 8.35 0.06 0.04 1.45 1.47E-01 No 0.02 0.05 0.53 5.94E-01 No 0.70 4.83E-01 Not Sig. diff. 
Fasting glucose (age- & sex-adjusted) 20081858 5.07 -0.05 0.07 -0.73 4.63E-01 No -0.01 0.09 -0.11 9.16E-01 No -0.68 4.96E-01 Not Sig. diff. 
Total body lean mass adulthood 28724990 8.44 -0.11 0.07 -1.61 1.07E-01 No -0.16 0.09 -1.85 6.46E-02 No 0.65 5.17E-01 Not Sig. diff. 
Birth weight all ancestries 27680694 14.89 0.02 0.04 0.42 6.75E-01 No -0.03 0.05 -0.64 5.25E-01 No 0.65 5.18E-01 Not Sig. diff. 
Inflammatory bowel diseases (ulcerative colitis + 
Crohn's disease) 

26192919 10.02 0.10 0.05 2.09 3.69E-02 No 0.15 0.06 2.37 1.79E-02 No -0.64 5.23E-01 Not Sig. diff. 

Neutrophil count 27863252 8.34 0.06 0.04 1.53 1.26E-01 No 0.02 0.05 0.49 6.25E-01 No 0.64 5.23E-01 Not Sig. diff. 
Visceral adipose tissue volume adj. for BMI 27918534 5.56 0.10 0.09 1.11 2.68E-01 No 0.04 0.10 0.38 7.07E-01 No 0.62 5.34E-01 Not Sig. diff. 
urinary albumin-to-creatinine ratio, non diabetes 
mellitus 

26631737 5.19 -0.11 0.09 -1.22 2.22E-01 No -0.03 0.12 -0.25 8.04E-01 No -0.62 5.36E-01 Not Sig. diff. 

Total cholesterol in HDL 20686565 5.32 0.04 0.05 0.82 4.11E-01 No -0.02 0.06 -0.26 7.92E-01 No 0.60 5.46E-01 Not Sig. diff. 
Offspring birth weight 29309628 9.84 -0.09 0.06 -1.50 1.32E-01 No -0.04 0.08 -0.51 6.11E-01 No -0.60 5.46E-01 Not Sig. diff. 
Lean mass (fat free) anorexia-free meta-analysis of 
males & females 

30593698 21.26 -0.06 0.03 -1.62 1.05E-01 No -0.04 0.04 -0.92 3.56E-01 No -0.60 5.48E-01 Not Sig. diff. 

UACR (urinary albumin-to-creatinine ratio) 26631737 5.28 -0.08 0.09 -0.86 3.88E-01 No 0.00 0.11 -0.04 9.72E-01 No -0.59 5.53E-01 Not Sig. diff. 
Total lipids in medium VLDL 27005778 4.22 0.09 0.09 1.07 2.83E-01 No 0.16 0.10 1.50 1.33E-01 No -0.59 5.55E-01 Not Sig. diff. 
Leptin (BMI-adjusted) 26833098 5.68 0.14 0.08 1.90 5.80E-02 No 0.09 0.11 0.86 3.90E-01 No 0.59 5.56E-01 Not Sig. diff. 
Automobile speeding 30643258 25.40 -0.22 0.04 -5.37 7.89E-08 Yes -0.26 0.05 -5.63 1.81E-08 Yes 0.58 5.59E-01 Not Sig. diff. 
Appendicular (arms & legs) lean mass 28724990 9.53 -0.11 0.07 -1.52 1.28E-01 No -0.15 0.09 -1.73 8.45E-02 No 0.58 5.62E-01 Not Sig. diff. 
Height (2018) 30124842 22.59 -0.05 0.02 -2.31 2.11E-02 No -0.05 0.03 -1.59 1.12E-01 No -0.57 5.68E-01 Not Sig. diff. 
Schizophrenia-vs-bipolar 24280982 8.32 0.06 0.06 0.89 3.73E-01 No 0.11 0.08 1.26 2.09E-01 No -0.57 5.68E-01 Not Sig. diff. 
Sum neutrophil eosinophil counts 27863252 8.55 0.05 0.04 1.12 2.64E-01 No 0.02 0.05 0.37 7.14E-01 No 0.56 5.72E-01 Not Sig. diff. 
High light scatter reticulocyte count 27863252 9.36 0.12 0.04 3.04 2.30E-03 No 0.11 0.05 2.27 2.31E-02 No 0.56 5.77E-01 Not Sig. diff. 
Tobacco: smoking cessation 20418890 5.73 -0.01 0.09 -0.09 9.29E-01 No -0.06 0.11 -0.59 5.53E-01 No 0.56 5.79E-01 Not Sig. diff. 
White blood cell count 27863252 10.55 0.03 0.04 0.71 4.75E-01 No 0.01 0.05 0.32 7.53E-01 No 0.53 5.94E-01 Not Sig. diff. 
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Visceral adipose tissue volume 27918534 5.49 0.04 0.09 0.44 6.59E-01 No 0.09 0.11 0.83 4.06E-01 No -0.53 5.96E-01 Not Sig. diff. 
Mean corpuscular hemoglobin concentration MCHC 27863252 8.94 -0.02 0.04 -0.61 5.40E-01 No 0.01 0.05 0.11 9.16E-01 No -0.52 6.04E-01 Not Sig. diff. 
Lean mass (fat free mass) healthy meta 30593698 21.24 -0.06 0.03 -1.68 9.36E-02 No -0.04 0.04 -0.95 3.42E-01 No -0.50 6.16E-01 Not Sig. diff. 
Lymphocyte count 27863252 12.36 -0.03 0.03 -0.94 3.45E-01 No 0.00 0.04 0.10 9.19E-01 No -0.50 6.17E-01 Not Sig. diff. 
Glaucoma (primary angle closure) 27064256 7.08 -0.09 0.07 -1.35 1.78E-01 No -0.06 0.08 -0.74 4.62E-01 No -0.49 6.22E-01 Not Sig. diff. 
Alcohol dependence 30482948 5.60 0.42 0.10 4.42 9.65E-06 Yes 0.36 0.12 3.12 1.80E-03 No 0.48 6.31E-01 Not Sig. diff. 
Subcutaneous adipose tissue volume 27918534 5.99 0.01 0.09 0.11 9.10E-01 No 0.07 0.10 0.66 5.09E-01 No -0.48 6.31E-01 Not Sig. diff. 
Extreme Height 23563607 11.28 -0.04 0.05 -0.74 4.59E-01 No -0.01 0.06 -0.23 8.21E-01 No -0.48 6.34E-01 Not Sig. diff. 
Total lipids in large VLDL 27005778 4.61 0.08 0.09 0.83 4.08E-01 No 0.12 0.11 1.13 2.58E-01 No -0.47 6.40E-01 Not Sig. diff. 
Hip circumference EUR male BMI-adjusted 25673412 12.23 -0.08 0.05 -1.57 1.15E-01 No -0.11 0.06 -1.88 6.07E-02 No 0.46 6.45E-01 Not Sig. diff. 
Myeloid white cell count 27863252 8.90 0.06 0.04 1.41 1.58E-01 No 0.03 0.05 0.54 5.91E-01 No 0.44 6.59E-01 Not Sig. diff. 
Concentration of very large VLDL particles 27005778 4.28 0.06 0.09 0.58 5.63E-01 No 0.11 0.11 0.96 3.39E-01 No -0.44 6.61E-01 Not Sig. diff. 
Concentration of small VLDL particles 27005778 4.28 0.12 0.08 1.44 1.49E-01 No 0.16 0.10 1.64 1.02E-01 No -0.44 6.62E-01 Not Sig. diff. 
Low FEV1 versus average FEV1 never smokers 28166213 6.35 0.08 0.10 0.78 4.36E-01 No 0.11 0.10 1.12 2.61E-01 No -0.42 6.72E-01 Not Sig. diff. 
Reproductive behavior: No. of Children Ever Born Male 27798627 6.67 0.12 0.08 1.40 1.61E-01 No 0.16 0.11 1.54 1.23E-01 No -0.41 6.85E-01 Not Sig. diff. 
Daily alcohol use male 27911795 5.44 -0.04 0.08 -0.51 6.11E-01 No -0.09 0.11 -0.87 3.85E-01 No 0.40 6.86E-01 Not Sig. diff. 
Memory 27046643 8.13 0.19 0.06 3.17 1.50E-03 No 0.17 0.08 2.07 3.84E-02 No 0.38 7.03E-01 Not Sig. diff. 
Asthma 20860503 4.71 0.01 0.09 0.15 8.78E-01 No 0.07 0.12 0.61 5.44E-01 No -0.37 7.10E-01 Not Sig. diff. 
Platelet distribution width 27863252 8.24 0.01 0.04 0.12 9.01E-01 No 0.03 0.04 0.58 5.63E-01 No -0.36 7.18E-01 Not Sig. diff. 
GAD symptoms 31906708 13.54 0.62 0.06 11.02 2.99E-28 Yes 0.64 0.06 9.90 4.08E-23 Yes -0.36 7.22E-01 Not Sig. diff. 
Pubertal growth: diff. in height age 8 & adult in females 23449627 4.04 0.14 0.10 1.36 1.73E-01 No 0.09 0.14 0.65 5.13E-01 No 0.35 7.27E-01 Not Sig. diff. 
HOMA-IR: insulin resistance (age- & sex-adjusted) 20081858 5.62 0.01 0.10 0.06 9.53E-01 No 0.05 0.11 0.50 6.15E-01 No -0.34 7.37E-01 Not Sig. diff. 
Phospholipids in very large VLDL 27005778 4.02 0.03 0.10 0.33 7.39E-01 No 0.01 0.11 0.09 9.30E-01 No 0.32 7.46E-01 Not Sig. diff. 
Mean platelet volume 27863252 7.22 0.00 0.03 -0.10 9.22E-01 No 0.02 0.04 0.53 5.97E-01 No -0.32 7.47E-01 Not Sig. diff. 
Osteoporosis: heel bone mineral density 28869591 10.20 -0.05 0.04 -1.24 2.13E-01 No -0.04 0.04 -0.91 3.61E-01 No -0.32 7.52E-01 Not Sig. diff. 
Total body lean mass childhood 28743860 8.36 -0.16 0.07 -2.36 1.83E-02 No -0.13 0.09 -1.43 1.53E-01 No -0.31 7.55E-01 Not Sig. diff. 
Hip circumference all ancestries BMI-adjusted 25673412 17.26 -0.06 0.04 -1.63 1.03E-01 No -0.07 0.05 -1.51 1.32E-01 No 0.31 7.55E-01 Not Sig. diff. 
Total lipids in very large VLDL 27005778 4.87 0.04 0.09 0.41 6.85E-01 No 0.01 0.11 0.09 9.27E-01 No 0.31 7.56E-01 Not Sig. diff. 
Fat-free/lean mass healthy meta-analysis (not 
alcohol/smoking-adjust) 

30593698 21.17 -0.06 0.03 -1.67 9.50E-02 No -0.04 0.04 -0.94 3.48E-01 No -0.31 7.57E-01 Not Sig. diff. 

HOMA-B: beta-cell function (age- & sex-adjusted) 20081858 6.42 0.04 0.09 0.44 6.57E-01 No 0.07 0.10 0.66 5.07E-01 No -0.31 7.60E-01 Not Sig. diff. 
HbA1c EUR 28898252 8.39 -0.05 0.05 -0.96 3.37E-01 No -0.02 0.06 -0.39 6.98E-01 No -0.30 7.62E-01 Not Sig. diff. 
Monocyte count 27863252 8.51 0.03 0.04 0.93 3.50E-01 No 0.05 0.05 1.06 2.91E-01 No -0.29 7.74E-01 Not Sig. diff. 
Lean mass (fat free mass) healthy female 30593698 18.69 -0.08 0.04 -1.93 5.39E-02 No -0.09 0.05 -1.78 7.48E-02 No 0.28 7.80E-01 Not Sig. diff. 
Height male 2013 23754948 15.05 -0.02 0.04 -0.53 5.94E-01 No 0.00 0.05 -0.06 9.56E-01 No -0.26 7.92E-01 Not Sig. diff. 
Hip circumference EUR BMI-adjusted 25673412 17.12 -0.06 0.04 -1.57 1.17E-01 No -0.07 0.05 -1.47 1.42E-01 No 0.26 7.97E-01 Not Sig. diff. 
Coronary Artery Disease (EUR, South & East Asian) 26343387 8.45 0.06 0.05 1.19 2.33E-01 No 0.07 0.07 1.00 3.18E-01 No -0.25 8.05E-01 Not Sig. diff. 
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Total lipids in chylomicrons & largest VLDL particles 27005778 4.35 0.01 0.10 0.08 9.40E-01 No 0.05 0.12 0.46 6.44E-01 No -0.25 8.06E-01 Not Sig. diff. 
Leptin (not BMI-adjusted) 26833098 6.61 0.10 0.07 1.43 1.54E-01 No 0.13 0.09 1.43 1.53E-01 No -0.24 8.08E-01 Not Sig. diff. 
Pubertal growth: height at age 10 in girls & 12 in boys 23449627 9.11 -0.17 0.06 -2.63 8.50E-03 No -0.17 0.09 -1.97 4.85E-02 No 0.23 8.15E-01 Not Sig. diff. 
Visceral adipose tissue volume adj. for BMI male 27918534 4.07 0.03 0.10 0.24 8.10E-01 No 0.07 0.13 0.56 5.76E-01 No -0.23 8.17E-01 Not Sig. diff. 
number of sexual partners (risky behaviour) 30643258 26.78 0.09 0.04 2.19 2.84E-02 No 0.10 0.05 2.25 2.46E-02 No -0.23 8.17E-01 Not Sig. diff. 
Hip circumference all ancestries male BMI-adjusted 25673412 12.34 -0.09 0.05 -1.68 9.20E-02 No -0.11 0.06 -1.90 5.79E-02 No 0.23 8.18E-01 Not Sig. diff. 
Sitting height ratio (SHR) Sitting/total height EUR male 25865494 4.91 -0.05 0.10 -0.53 5.93E-01 No -0.07 0.11 -0.63 5.32E-01 No 0.23 8.20E-01 Not Sig. diff. 
Total lipids in small VLDL 27005778 4.20 0.12 0.08 1.52 1.28E-01 No 0.16 0.10 1.60 1.10E-01 No -0.22 8.25E-01 Not Sig. diff. 
Subcutaneous adipose tissue volume female 27918534 4.44 0.15 0.10 1.44 1.49E-01 No 0.14 0.13 1.11 2.69E-01 No 0.22 8.29E-01 Not Sig. diff. 
Sitting height ratio (SHR) Sitting/total height EUR 25865494 7.75 -0.05 0.08 -0.65 5.17E-01 No -0.06 0.09 -0.72 4.72E-01 No 0.21 8.31E-01 Not Sig. diff. 
Extreme Waist-Hip Ratio 23563607 5.94 0.03 0.08 0.41 6.79E-01 No 0.05 0.10 0.50 6.19E-01 No -0.21 8.32E-01 Not Sig. diff. 
Basophil % of granulocytes 27863252 6.67 0.00 0.05 0.08 9.40E-01 No 0.01 0.06 0.16 8.75E-01 No -0.20 8.40E-01 Not Sig. diff. 
Height 2014 25282103 19.82 -0.06 0.03 -2.28 2.24E-02 No -0.06 0.04 -1.51 1.30E-01 No -0.20 8.45E-01 Not Sig. diff. 
Infant Head Circumference 22504419 5.09 -0.28 0.10 -2.89 3.80E-03 No -0.24 0.13 -1.88 6.08E-02 No -0.19 8.49E-01 Not Sig. diff. 
Reticulocyte fraction of red cells 27863252 8.85 0.10 0.04 2.71 6.70E-03 No 0.11 0.04 2.60 9.40E-03 No -0.18 8.58E-01 Not Sig. diff. 
Extraversion (item response theory) 26362575 6.65 -0.08 0.08 -0.91 3.65E-01 No -0.10 0.09 -1.11 2.68E-01 No 0.18 8.61E-01 Not Sig. diff. 
Red blood cell count 27863252 9.93 0.01 0.04 0.18 8.56E-01 No 0.02 0.04 0.51 6.13E-01 No -0.17 8.62E-01 Not Sig. diff. 
Pubertal growth: height age 12 in boys 23449627 4.73 -0.08 0.09 -0.95 3.41E-01 No -0.10 0.11 -0.96 3.39E-01 No 0.17 8.65E-01 Not Sig. diff. 
Cholesterol esters in medium VLDL 27005778 4.34 0.13 0.08 1.57 1.16E-01 No 0.14 0.10 1.46 1.44E-01 No -0.15 8.82E-01 Not Sig. diff. 
Ulcerative Colitis 26192919 8.29 0.10 0.06 1.72 8.60E-02 No 0.13 0.07 1.89 5.89E-02 No -0.15 8.82E-01 Not Sig. diff. 
Hip circumference all ancestries female BMI-adjusted 25673412 13.97 -0.05 0.04 -1.24 2.14E-01 No -0.05 0.05 -0.82 4.10E-01 No 0.14 8.87E-01 Not Sig. diff. 
Lifetime anxiety (male) 31748690 5.27 0.98 0.07 14.41 4.43E-47 Yes 0.99 0.10 9.60 8.16E-22 Yes -0.14 8.89E-01 Not Sig. diff. 
Free cholesterol in large VLDL 27005778 4.45 0.05 0.09 0.53 5.94E-01 No 0.04 0.10 0.37 7.12E-01 No 0.14 8.91E-01 Not Sig. diff. 
High light scatter % of red cells 27863252 9.56 0.11 0.04 2.97 2.90E-03 No 0.10 0.05 2.26 2.38E-02 No 0.14 8.93E-01 Not Sig. diff. 
Ratio of visceral-to-subcutaneous adipose tissue vol. 27918534 5.77 0.13 0.09 1.48 1.39E-01 No 0.13 0.10 1.26 2.09E-01 No 0.14 8.92E-01 Not Sig. diff. 
Basophil % of white cells 27863252 6.08 0.03 0.05 0.59 5.53E-01 No 0.02 0.06 0.34 7.37E-01 No 0.13 8.93E-01 Not Sig. diff. 
PTSD 31594949 5.83 0.65 0.09 7.23 4.72E-13 Yes 0.67 0.12 5.72 1.06E-08 Yes -0.13 8.96E-01 Not Sig. diff. 
General risk tolerance (UKB + 10 replication cohorts) 30643258 22.70 0.04 0.05 0.95 3.43E-01 No 0.05 0.05 0.85 3.94E-01 No -0.13 8.99E-01 Not Sig. diff. 
Immature fraction of reticulocytes 27863252 8.29 0.11 0.04 2.60 9.40E-03 No 0.09 0.05 1.62 1.06E-01 No 0.12 9.05E-01 Not Sig. diff. 
Major depressive disorder (CONVERGE) 26176920 4.54 -0.29 0.09 -3.45 6.00E-04 No -0.28 0.11 -2.48 1.33E-02 No -0.12 9.05E-01 Not Sig. diff. 
Common epilepsies 25087078 4.78 0.08 0.10 0.84 3.99E-01 No 0.08 0.11 0.70 4.87E-01 No -0.11 9.14E-01 Not Sig. diff. 
Basophil count 27863252 7.27 0.04 0.05 0.76 4.47E-01 No 0.03 0.06 0.53 6.00E-01 No -0.09 9.29E-01 Not Sig. diff. 
Pubertal growth: diff. in height age 8 & adult males & 
females 

23449627 5.97 0.08 0.08 0.89 3.73E-01 No 0.08 0.10 0.73 4.66E-01 No -0.08 9.34E-01 Not Sig. diff. 

Pubertal growth: height age 10 in girls 23449627 7.54 -0.20 0.08 -2.41 1.60E-02 No -0.21 0.10 -2.16 3.10E-02 No 0.08 9.35E-01 Not Sig. diff. 
Ratio of visceral-to-subcutaneous adipose tissue vol. 
adj. for BMI 

27918534 5.40 0.12 0.09 1.34 1.79E-01 No 0.12 0.11 1.11 2.69E-01 No 0.08 9.38E-01 Not Sig. diff. 
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Total cholesterol in large VLDL 27005778 4.15 0.04 0.09 0.45 6.53E-01 No 0.03 0.11 0.32 7.52E-01 No -0.07 9.41E-01 Not Sig. diff. 
Cross 12 psychiatric disorders 36471075 25.80 0.71 0.04 19.84 1.30E-87 Yes 0.71 0.07 10.72 8.63E-27 Yes -0.06 9.49E-01 Not Sig. diff. 
Smoking initiation 20418890 12.27 0.26 0.06 4.27 1.94E-05 Yes 0.24 0.08 2.97 3.00E-03 No 0.06 9.52E-01 Not Sig. diff. 
Lean mass (fat free mass) anorexia-free female 30593698 18.59 -0.07 0.04 -1.83 6.71E-02 No -0.09 0.05 -1.76 7.79E-02 No -0.05 9.57E-01 Not Sig. diff. 
Primary sclerosing cholangitis 27992413 4.48 -0.09 0.08 -1.03 3.03E-01 No -0.08 0.09 -0.86 3.88E-01 No 0.05 9.63E-01 Not Sig. diff. 
Triglycerides in very small VLDL 27005778 4.10 0.15 0.08 1.86 6.32E-02 No 0.16 0.11 1.49 1.37E-01 No -0.03 9.73E-01 Not Sig. diff. 
Sitting height ratio EUR female 25865494 4.44 -0.05 0.11 -0.52 6.06E-01 No -0.06 0.12 -0.49 6.24E-01 No -0.02 9.87E-01 Not Sig. diff. 
Reticulocyte count 27863252 8.84 0.10 0.04 2.82 4.80E-03 No 0.11 0.04 2.61 9.10E-03 No -0.01 9.91E-01 Not Sig. diff. 
Persistent thin individuals versus controls 30677029 4.33 0.01 0.10 0.06 9.54E-01 No 0.01 0.12 0.05 9.64E-01 No 0.00 9.97E-01 Not Sig. diff. 
Hip circumference EUR female BMI-adjusted 25673412 13.80 -0.05 0.04 -1.15 2.50E-01 No -0.04 0.06 -0.80 4.23E-01 No 0.00 9.99E-01 Not Sig. diff. 

 

Supplementary Table 10: SNP-based heritability (h2SNP) estimates of GAD and fear-based disorders screened using detailed versus 
brief diagnostic measures. 
Anxiety disorder Diagnostic measure Cases Controls h2 se P 

GAD 

Detailed 10826 7986 0.037 0.037 0.152 

Brief 15257 9160 0.107 0.031 4.59E-05 

Fear 
Detailed 12261 6621 0.08 0.036 0.0116 
Brief 5523 10156 0.049 0.031 0.0481 

h2SNP estimated in GCTA-GREML on the liability-scale. 
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Supplementary methods 
Sample and measures 
Self-reported lifetime trauma in the UK Biobank 

We also analysed published GWAS summary statistics of a lifetime trauma phenotype that 

more broadly captures trauma occurring in both childhood and adulthood in the UK Biobank1,2. 

The lifetime trauma GWAS included 35,269 individuals who retrospectively reported trauma 

and 63,451 individuals who reported no traumas1. Participants were predominantly of 

European ancestry and answered the online mental health questionnaire 3. Participants were 

considered reporters of trauma if they self-reported at least two types of lifetime trauma and 

were excluded from analyses if they only reported one. These trauma types were selected 

based on their association in the UK Biobank with major depressive disorder (MDD) and 

needed to show an odds ratio >2.5 for selection. These pre-selected self-reported traumas 

occurred in childhood (i.e., felt loved less than often, felt hated by a family member, sexually 

abused), adulthood (i.e., partner physical violence, belittlement, and sexual interference) and 

one-lifetime item (i.e., victim of sexual assault). Individuals were considered non-reporters of 

trauma if they did not self-report any pre-selected traumas. Further methodological details can 

be found in the original publication1. The h2
SNP of this self-reported lifetime trauma definition 

using LDSC was 0.18 (s.e = 0.01) on the liability scale1. We also calculated the genetic 

correlation between reported childhood maltreatment and retrospectively reported lifetime 
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trauma, and tested if the genetic correlation was significantly different from 1 (calculated using 

the chi-squared distribution function and [(|rg|−1)/se]2 in R v. 4.1.1)1,4.   

 

Supplementary results 
Sensitivity analyses 
Model of independently contributing health and psychiatric traits 

All four traits had significant conditional associations with reported childhood maltreatment 

independent of the other traits; subjective well-being (bg = -0.32 ± 0.08; P = 1.22 × 10-4), 

general risk tolerance (bg  = 0.36 ± 0.04; P = 9.15 × 10-21), PTSD symptoms (bg = 0.32 ± 0.05; 

P = 7.98 × 10-10) and ASD (bg = 0.21 ± 0.06; P = 5.80 × 10-4). The residual genetic variance of 

reported childhood maltreatment was 0.42 ± 0.06 (P = 1.24 × 10−12; Supplementary Figure 
1). Direct estimation of the overlap in the residual genetic variance of childhood maltreatment 

that remained in the psychiatric disorder model and the health trait model was not possible. 

To address this, we specified a genomic multiple regression model that included the four 

independently contributing traits and two additional traits. These two additional traits broadly 

capture the shared genetic associations observed across the psychiatric disorders (ADHD) 

and health and behavioural traits (self-reported tiredness). In this sensitivity model, the 

residual genetic variance of childhood maltreatment was 0.40 ± 0.06 (P = 2.11 × 10−12), 

explaining 60% of the h2
SNP of childhood maltreatment (Supplementary Table 6). The addition 

of these traits made only a ~2% difference in the residual genetic variance of childhood 

maltreatment. Thus, if all psychiatric, health, and behavioural traits could be accounted for in 

one model, it is unlikely this would greatly reduce the h2
SNP

 of childhood maltreatment. This 
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means that 40-42% of the h2
SNP

 of childhood maltreatment remains unexplained by the genetic 

components of traits included in our models. 

Supplementary Figure 1. Path diagram representing results from genomic multiple 
regression analyses of independently contributing traits to the genetic component of 
childhood maltreatment.
 Autism spectrum disorder (ASD), post-traumatic stress disorder (PTSD) symptoms, general 
risk tolerance, and subjective well-being were selected based on results shown in Figures 2A 
and 2B. A genomic multiple regression was specified in Genomic SEM. We regressed the 
genetic component of childhood maltreatment on the genetic components of four 
independently genetically associated traits. We used a weighted least-squares estimator. 
Single-headed arrows are conditional genetic associations (bg ± SE) between the explanatory 
variables and childhood maltreatment independent of the genetic influences of the other 
explanatory variables. A solid line indicates that the conditional genetic association is 
significant. Double-headed arrows connecting explanatory variables represent genetic 
correlations (rg ± SE). Double-headed arrows connecting the genetic component of childhood 
maltreatment to itself is the residual genetic variance of childhood maltreatment 
(umaltreatment ± SE) that is unexplained by the genetic influence of the explanatory variables. 

 
Self-reported lifetime trauma  
The genetic correlation between reported childhood maltreatment and retrospectively reported 

lifetime trauma was high (rg = 0.884 ± 0.04; P = 1.00 × 10-122), but significantly different from 1 

(P =  0.0211). Results for lifetime trauma are in Supplementary Tables 7-11. We identified 

18 traits with significant genetic correlations (rg >±.25) with retrospective lifetime trauma after 

Bonferroni correction for multiple testing. Most of these traits were also top genetic correlations 

with childhood maltreatment and categorised into the same two groups of psychiatric disorders 

and health and behavioural traits. In genomic multiple regression analyses, the residual 

genetic variance of lifetime trauma was 0.25 ±0.13 (P = 0.059) and 0.47 ±0.07 

(P = 8.00 × 10−11) after taking into account the genetic associations with health and behavioural 
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traits and psychiatric disorders, respectively. In these models, independent genetic 

associations with lifetime trauma were identified for ASD (bg = 0.36 ± 0.10, P = 2.28 × 10-4), 

PTSD symptoms (bg = 0.28 ± 0.09; P = 1.13 × 10-3), subjective well-being (bg = -0.67 ± 0.33; 

P = 0.048) and general risk tolerance (bg  = 0.42 ± 0.10; P = 4.29 × 10-5). When these four 

traits were included in one genomic multiple regression model, the residual genetic variance 

of lifetime trauma was 0.33 ±0.07 (P = 1.46 × 10−6). Given the consistency in findings between 

retrospectively reported lifetime trauma and reported childhood maltreatment, this suggests 

that the inclusion of a small prospective sample in the reported childhood maltreatment meta-

analysis did not impact our results. Our findings likely reflect associations with retrospectively 

reported and not prospectively reported childhood maltreatment, given the lack of power of 

the prospective GWAS (h2
SNP Z score = 1.39)5. 
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Supplementary Tables 

Supplementary tables for reported childhood maltreatment
 
Supplementary Table 1: LDScore genetic correlation (rg) results for all phenotypes with reported childhood maltreatment.
 Traits with a rg |Z| statistic ≥ 5 are in bold. For brevity, results are shown here for traits with rg |Z| statistic ≥ 2. Full results for all traits can be 
accessed via the following link: https://tinyurl.com/Chapter3AppendixBTables.  

GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
number of sexual partners (risky behaviour) 30643258 0.48 0.02 20.04 2.44E-89 0.10 0.00 29.24 
Major depressive disorder (PGC2 + 23andme) 29700475 0.56 0.03 19.98 8.50E-89 0.06 0.00 23.08 
Major depressive disorder (PGC2 + 23andme, no UKBiobank) 29700475 0.55 0.03 19.14 1.13E-81 0.06 0.00 22.28 
PTSD Avoidance symptoms 33510476 0.58 0.03 18.72 3.51E-78 0.06 0.00 16.74 
Total PTSD symtoms (MVP) 33510476 0.56 0.03 18.30 7.65E-75 0.07 0.00 18.31 
Major depressive disorder (PGC2, no 23andme, no UKBiobank) 29700475 0.63 0.04 16.91 3.82E-64 0.07 0.00 16.11 
PTSD Hyperarousal symptoms 33510476 0.54 0.03 16.64 3.42E-62 0.07 0.00 18.21 
PTSD Re-experiencing symptoms 33510476 0.52 0.03 16.62 5.08E-62 0.07 0.00 17.57 
General risk tolerance (UKB + 10 replication cohorts) 30643258 0.42 0.03 15.56 1.46E-54 0.05 0.00 22.52 
Depressive symptoms 27089181 0.66 0.04 15.15 7.95E-52 0.05 0.00 13.06 
ADHD 30478444 0.56 0.04 15.09 1.96E-51 0.24 0.01 16.38 
Schizophrenia PGC 2018 Mixed ancestry 31740837 0.35 0.02 15.07 2.68E-51 0.34 0.01 30.45 
ADHD (Mixed ancestry) 30478444 0.56 0.04 14.82 1.08E-49 0.36 0.02 16.51 
Schizophrenia PGC 2014 25056061 0.36 0.03 13.64 2.35E-42 0.45 0.02 28.52 
Schizophrenia PGC 2014 European 25056061 0.35 0.03 13.46 2.65E-41 0.47 0.02 27.87 
ADHD male 29325848 0.58 0.05 12.88 5.79E-38 0.25 0.02 11.90 
Schizophrenia PGC2 European + CLOZUK 29483656 0.36 0.03 12.20 2.95E-34 0.42 0.02 27.27 
Self-rated health 27864402 -0.48 0.04 -12.09 1.22E-33 0.10 0.01 16.74 
ever smoker (UKB + TAG) 30643258 0.32 0.03 11.95 6.59E-33 0.09 0.00 28.53 
Neuroticism 300K meta-analysis female 30593698 0.34 0.03 11.63 2.86E-31 0.11 0.01 18.77 
Reproductive behavior: Age First Birth 27798627 -0.40 0.03 -11.56 6.76E-31 0.06 0.00 17.81 
Lifetime probable anxiety diagnosis 31748690 0.45 0.04 11.52 1.01E-30 0.10 0.01 15.10 
Heavy versus never smoker in UKBileve 28166213 0.45 0.04 11.36 6.69E-30 0.26 0.02 15.27 
Self-reported tiredness 28322280 0.52 0.05 11.06 2.04E-28 0.07 0.01 11.57 
Subjective well-being: survey questions on life satisfaction, positive affect, or happiness 27089181 -0.52 0.05 -10.73 7.10E-27 0.02 0.00 12.45 
Reproductive behavior: Age First Birth Female 27798627 -0.41 0.04 -10.49 9.27E-26 0.05 0.00 14.53 
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GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
Lifetime probable anxiety diagnosis female 31748690 0.50 0.05 10.41 2.33E-25 0.14 0.01 11.63 
Cross-psychiatric disorders (ADHD, autism, bipolar disorder, and schizophrenia) 23453885 0.40 0.04 10.10 5.56E-24 0.18 0.01 16.37 
Neuroticism 300K female. 30593698 0.34 0.04 9.81 9.81E-23 0.12 0.01 16.71 
Insomnia (2019) 30804565 0.32 0.03 9.64 5.56E-22 0.05 0.00 21.86 
PTSD PGC2 case control 31594949 0.76 0.08 9.55 1.28E-21 0.02 0.00 5.72 
Autism spectrum disorder (PGC + iPSYCH) 30804558 0.41 0.04 9.48 2.51E-21 0.20 0.02 13.19 
BMI meta-analysis of males and females 31852892 0.19 0.02 9.46 3.15E-21 0.23 0.01 28.64 
BMI 31852892 0.19 0.02 9.35 8.71E-21 0.23 0.01 28.73 
Neuroticism. 27089181 0.39 0.04 9.26 2.08E-20 0.09 0.01 12.00 
Social deprivation, as measured using Townsend scores 27818178 0.50 0.06 8.92 4.83E-19 0.04 0.00 8.42 
Household income, one person per household 27818178 -0.43 0.05 -8.81 1.30E-18 0.07 0.01 10.38 
ADHD female 29325848 0.65 0.07 8.63 6.36E-18 0.14 0.03 4.87 
Neuroticism 300K meta-analysis male 30593698 0.33 0.04 8.54 1.32E-17 0.11 0.01 12.26 
BMI male 31852892 0.20 0.02 8.47 2.37E-17 0.25 0.01 25.06 
PTSD MVP case control 33510476 0.42 0.05 8.46 2.68E-17 0.03 0.00 11.47 
Household income 27818178 -0.41 0.05 -8.43 3.41E-17 0.06 0.01 10.54 
Schizophrenia+bipolar 24280982 0.30 0.04 8.31 9.33E-17 0.38 0.02 16.73 
Body mass index healthy meta-analysis (not alcohol/smoking-adjust) 30593698 0.20 0.02 8.18 2.85E-16 0.22 0.01 24.46 
BMI healthy meta-analysis of males and females 31852892 0.21 0.03 8.15 3.78E-16 0.22 0.01 24.10 
BMI healthy 31852892 0.20 0.03 8.13 4.23E-16 0.21 0.01 23.92 
Neuroticism 150K healthy meta-analysis. 30593698 0.31 0.04 8.09 5.84E-16 0.10 0.01 12.32 
Educational Attainment: EduYears 30038396 -0.19 0.02 -8.07 7.04E-16 0.11 0.00 36.26 
BMI anorexia-free meta-analysis of males and females 31852892 0.20 0.03 8.05 7.96E-16 0.22 0.01 24.22 
BMI anorexia-free 31852892 0.20 0.03 8.01 1.17E-15 0.21 0.01 23.79 
BMI Locke & UKB (updated) 30124842 0.17 0.02 7.96 1.73E-15 0.17 0.01 28.70 
Fat mass meta-analysis of males and females 31852892 0.16 0.02 7.88 3.39E-15 0.22 0.01 30.00 
Fat mass 31852892 0.16 0.02 7.81 5.68E-15 0.22 0.01 29.96 
Bipolar disorder 31043756 0.23 0.03 7.63 2.39E-14 0.35 0.02 20.75 
Educational Attainment: EduYears 27225129 -0.21 0.03 -7.44 9.94E-14 0.17 0.01 27.56 
BMI female 31852892 0.18 0.02 7.39 1.50E-13 0.23 0.01 26.20 
Intelligence (Cognitive ability) 29942086 -0.20 0.03 -7.33 2.36E-13 0.19 0.01 28.06 
Reproductive behavior: Age First Birth Male 27798627 -0.36 0.05 -7.19 6.48E-13 0.11 0.01 10.75 
BMI anorexia-free male 31852892 0.21 0.03 7.13 1.00E-12 0.24 0.01 20.48 
BMI healthy male 31852892 0.21 0.03 7.12 1.07E-12 0.24 0.01 20.50 
Major depressive disorder (PGC1) 22472876 0.55 0.08 6.98 2.93E-12 0.16 0.03 5.95 
Tobacco: smoking initiation (ever versus never been a regular smoker) 20418890 0.34 0.05 6.95 3.74E-12 0.08 0.01 11.80 
Body fat percentage meta-analysis of males and females 30593698 0.16 0.02 6.94 3.80E-12 0.22 0.01 31.63 
Body fat percentage 30593698 0.16 0.02 6.94 3.85E-12 0.21 0.01 31.96 
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GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
Educational Attainment: EduYears Men 27225129 -0.24 0.03 -6.90 5.12E-12 0.20 0.01 21.86 
Fat mass male 31852892 0.17 0.02 6.72 1.79E-11 0.23 0.01 25.71 
Insomnia 28604731 0.33 0.05 6.72 1.85E-11 0.05 0.00 9.82 
Fat mass healthy meta-analysis of males and females 31852892 0.16 0.03 6.47 9.86E-11 0.21 0.01 25.49 
Fat mass healthy 31852892 0.16 0.03 6.45 1.13E-10 0.21 0.01 25.53 
Fat mass anorexia-free meta-analysis of males and females 31852892 0.16 0.03 6.40 1.58E-10 0.21 0.01 25.60 
Father's age at death 27015805 -0.29 0.05 -6.36 2.00E-10 0.02 0.00 11.50 
Fat mass anorexia-free 31852892 0.16 0.03 6.36 2.05E-10 0.21 0.01 25.34 
Fat mass healthy meta-analysis (not alcohol/smoking-adjust) 31852892 0.16 0.03 6.35 2.09E-10 0.21 0.01 25.86 
BMI (EUR Locke) 25673413 0.15 0.02 6.34 2.25E-10 0.14 0.01 18.13 
BMI (MIX Locke) 25673413 0.15 0.02 6.31 2.79E-10 0.14 0.01 18.41 
Mother attained age 27015805 0.30 0.05 6.28 3.47E-10 0.02 0.00 10.75 
Parents attained age 27015805 0.25 0.04 6.28 3.49E-10 0.03 0.00 13.74 
Fat mass female 31852892 0.15 0.02 6.24 4.33E-10 0.23 0.01 27.89 
Alcohol dependence all ancestries 30482948 0.54 0.09 6.23 4.72E-10 0.05 0.01 5.42 
Parents' age at death 27015805 -0.28 0.05 -6.22 5.10E-10 0.02 0.00 11.24 
Neuroticism 150K healthy male. 30593698 0.32 0.05 6.17 6.79E-10 0.10 0.01 7.51 
Body fat percentage female 30593698 0.16 0.03 6.05 1.44E-09 0.23 0.01 29.56 
Neuroticism 150K healthy female. 30593698 0.29 0.05 6.04 1.58E-09 0.10 0.01 10.37 
Mother's age at death 27015805 -0.30 0.05 -5.96 2.45E-09 0.01 0.00 9.13 
BMI healthy female 31852892 0.19 0.03 5.95 2.61E-09 0.20 0.01 17.57 
Alcohol dependence European 30482948 0.53 0.09 5.93 3.10E-09 0.05 0.01 5.41 
Binary variable for college completion 23722424 -0.24 0.04 -5.78 7.34E-09 0.10 0.01 13.58 
BMI anorexia-free female 31852892 0.19 0.03 5.77 7.81E-09 0.20 0.01 17.42 
Intelligence 28530673 -0.20 0.04 -5.76 8.49E-09 0.19 0.01 18.25 
Body fat percentage male 30593698 0.15 0.03 5.75 8.89E-09 0.24 0.01 26.74 
Father attained age 27015805 0.25 0.04 5.74 9.50E-09 0.03 0.00 12.83 
Attainment of a college or a university degree 27046643 -0.19 0.03 -5.65 1.60E-08 0.15 0.01 19.42 
Reproductive behavior: Number of Children Ever Born 27798627 0.25 0.04 5.58 2.46E-08 0.02 0.00 14.00 
Obesity class 1 23563607 0.17 0.03 5.53 3.14E-08 0.17 0.01 19.53 
Body fat percentage healthy 30593698 0.15 0.03 5.48 4.14E-08 0.20 0.01 26.08 
Fat mass anorexia-free male 31852892 0.16 0.03 5.48 4.29E-08 0.22 0.01 20.98 
Fat mass healthy male 31852892 0.16 0.03 5.48 4.38E-08 0.22 0.01 21.01 
Body fat percentage healthy meta-analysis of males and females 30593698 0.15 0.03 5.45 5.12E-08 0.21 0.01 26.15 
Waist circumference all ancestries 25673412 0.14 0.03 5.44 5.34E-08 0.14 0.01 16.26 
Waist circumference European 25673412 0.14 0.03 5.42 5.88E-08 0.14 0.01 16.29 
Body fat percentage anorexia-free 30593698 0.15 0.03 5.38 7.64E-08 0.20 0.01 25.90 
Body fat percentage anorexia-free meta-analysis of males and females 30593698 0.15 0.03 5.36 8.28E-08 0.21 0.01 25.96 
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GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
BMI (Locke) female 25673413 0.15 0.03 5.36 8.36E-08 0.17 0.01 18.51 
Educational Attainment: EduYears Women 27225129 -0.17 0.03 -5.35 8.67E-08 0.18 0.01 23.06 
Body fat percentage healthy meta-analysis (not alcohol/smoking-adjust) 30593698 0.15 0.03 5.34 9.11E-08 0.21 0.01 26.25 
BMI (Locke) male 25673413 0.15 0.03 5.29 1.25E-07 0.17 0.01 15.19 
Body fat percentage (Lu. et al) 26833246 0.20 0.04 5.24 1.62E-07 0.11 0.01 13.20 
Lifetime probable anxiety diagnosis male 31748690 0.35 0.07 5.20 1.97E-07 0.07 0.01 6.02 
Undersleeper 27494321 0.29 0.06 5.08 3.87E-07 0.04 0.00 10.48 
Coronary Artery Disease 28714975 0.15 0.03 5.02 5.10E-07 0.04 0.00 14.67 
Obesity class 2 23563607 0.19 0.04 5.02 5.10E-07 0.16 0.01 15.05 
Verbal-numerical reasoning 27046643 -0.23 0.05 -4.99 5.92E-07 0.20 0.02 11.23 
Longest 10% survival 27015805 -0.28 0.06 -4.95 7.62E-07 0.01 0.00 8.88 
Insomnia female 28604731 0.32 0.07 4.87 1.12E-06 0.05 0.01 5.81 
Problematic consequences of drinking (AUDIT-P) 30336701 0.21 0.04 4.81 1.54E-06 0.06 0.00 12.20 
Fat mass healthy female 31852892 0.15 0.03 4.80 1.57E-06 0.21 0.01 18.55 
Tobacco: smoking cessation (former versus current smokers) 20418890 -0.35 0.07 -4.70 2.55E-06 0.06 0.01 6.05 
Fat mass anorexia-free female 31852892 0.15 0.03 4.68 2.89E-06 0.21 0.01 18.44 
Lean mass (fat free mass) 30593698 0.09 0.02 4.54 5.56E-06 0.29 0.01 24.77 
Overweight 23563607 0.15 0.03 4.53 5.96E-06 0.09 0.01 16.57 
Lifetime cannabis use 27023175 0.30 0.07 4.47 7.68E-06 0.09 0.02 5.59 
Waist circumference European female 25673412 0.14 0.03 4.46 8.08E-06 0.16 0.01 16.56 
Reproductive behavior: Number of Children Ever Born Female 27798627 0.24 0.05 4.45 8.63E-06 0.02 0.00 10.48 
Severe early onset obesity vs controls 30677029 0.26 0.06 4.44 9.00E-06 0.32 0.04 7.36 
Body fat percentage anorexia-free male 30593698 0.14 0.03 4.44 9.14E-06 0.23 0.01 23.15 
Body fat percentage healthy female 30593698 0.15 0.03 4.43 9.42E-06 0.20 0.01 19.58 
Body fat percentage healthy male 30593698 0.14 0.03 4.43 9.62E-06 0.23 0.01 22.97 
Oversleeper 27494321 0.39 0.09 4.38 1.17E-05 0.02 0.00 4.61 
Lean mass (fat free mass) meta-analysis of males and females 30593698 0.09 0.02 4.36 1.29E-05 0.28 0.01 25.32 
ADHD symptoms 27663945 0.58 0.13 4.29 1.79E-05 0.07 0.03 2.51 
Insomnia male 28604731 0.29 0.07 4.25 2.14E-05 0.06 0.01 6.77 
Body fat percentage anorexia-free female 30593698 0.14 0.03 4.24 2.20E-05 0.20 0.01 19.51 
Waist-hip ratio all ancestries 25673412 0.14 0.03 4.22 2.44E-05 0.10 0.01 16.32 
Waist-hip ratio EUR 25673412 0.14 0.03 4.20 2.62E-05 0.10 0.01 16.16 
Reproductive behavior: Number of Children Ever Born Male 27798627 0.25 0.06 4.05 5.06E-05 0.03 0.01 6.94 
Lean mass (fat free mass) mass healthy 30593698 0.10 0.02 4.05 5.16E-05 0.30 0.01 20.76 
Lean mass (fat free mass) anorexia-free 30593698 0.10 0.02 4.03 5.48E-05 0.30 0.01 20.81 
Primary sclerosing cholangitis 27992413 -0.23 0.06 -3.97 7.06E-05 0.15 0.03 4.42 
Autism spectrum disorder worldwide 28540026 0.21 0.05 3.96 7.39E-05 0.32 0.04 9.07 
Extreme BMI 23563607 0.17 0.04 3.94 8.17E-05 0.59 0.05 12.54 
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GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
Lean mass (fat free mass) male 30593698 0.09 0.02 3.93 8.48E-05 0.33 0.02 21.37 
Age at Menarche (marker of puberty in females) 25231870 -0.12 0.03 -3.93 8.51E-05 0.16 0.01 20.16 
PTSD European female 28439101 0.34 0.09 3.92 8.76E-05 0.46 0.12 3.76 
Type-2 Diabetes 2017 28566273 0.14 0.04 3.89 1.00E-04 0.08 0.01 13.72 
Hip circumference all ancestries 25673412 0.11 0.03 3.87 1.00E-04 0.15 0.01 16.62 
Lean mass (fat free mass) anorexia-free meta-analysis of males and females 30593698 0.09 0.02 3.84 1.00E-04 0.29 0.01 21.51 
Hip circumference European 25673412 0.11 0.03 3.84 1.00E-04 0.15 0.01 16.66 
Lean mass (fat free mass) healthy meta 30593698 0.09 0.02 3.84 1.00E-04 0.29 0.01 21.47 
Weight EU female 23754948 0.12 0.03 3.78 2.00E-04 0.19 0.01 17.43 
Fat-free mass/lean mass healthy meta-analysis (not alcohol/smoking-adjust) 31852892 0.09 0.02 3.74 2.00E-04 0.29 0.01 21.73 
Waist circumference European male 25673412 0.14 0.04 3.71 2.00E-04 0.18 0.02 10.59 
Lean mass (fat free mass) female 30593698 0.08 0.02 3.64 3.00E-04 0.30 0.01 23.99 
Lean mass (fat free mass) healthy male 30593698 0.09 0.03 3.61 3.00E-04 0.34 0.02 17.04 
Coronary Artery Disease (European, South Asian and East Asian) additive model 26343387 0.13 0.03 3.60 3.00E-04 0.07 0.01 12.94 
Lean mass (fat free mass) anorexia-free male 30593698 0.09 0.03 3.60 3.00E-04 0.34 0.02 17.03 
Childhood Intelligence 23358156 -0.27 0.07 -3.59 3.00E-04 0.28 0.04 6.26 
Citrate 27005778 -0.34 0.10 -3.57 4.00E-04 0.07 0.02 3.44 
Weight EU male 23754948 0.12 0.03 3.55 4.00E-04 0.19 0.01 14.92 
PTSD European 28439101 0.53 0.15 3.52 4.00E-04 0.12 0.05 2.28 
Aggression 26087016 0.57 0.16 3.51 4.00E-04 0.05 0.02 2.08 
Bipolar disorder 21926972 0.17 0.05 3.48 5.00E-04 0.43 0.04 11.48 
Obesity class 3 23563607 0.17 0.05 3.48 5.00E-04 0.12 0.01 8.98 
Anxiety Disorders meta-analysis: case-control 26754954 0.48 0.14 3.46 5.00E-04 0.08 0.03 2.53 
Hip circumference all ancestries female 25673412 0.11 0.03 3.36 8.00E-04 0.18 0.01 16.88 
Hip circumference European female 25673412 0.11 0.03 3.34 8.00E-04 0.18 0.01 17.04 
Autism spectrum disorder European 28540026 0.19 0.06 3.29 0.001 0.33 0.04 7.73 
Age at Menarche (marker of puberty in females) 28436984 -0.08 0.02 -3.26 0.0011 0.16 0.01 19.78 
High FEV1 versus average FEV1 never smokers 28166213 0.21 0.06 3.20 0.0014 0.21 0.03 6.32 
Schizophrenia-vs-bipolar 24280982 0.19 0.06 3.17 0.0015 0.31 0.04 7.66 
Total cholesterol in HDL 20686565 -0.11 0.04 -3.07 0.0022 0.11 0.02 5.45 
Lean mass (fat free mass) anorexia-free female 30593698 0.09 0.03 3.01 0.0026 0.30 0.02 18.23 
Lean mass (fat free mass) healthy female 30593698 0.09 0.03 3.00 0.0027 0.30 0.02 18.16 
Consumption (AUDIT-C) 30336701 -0.11 0.04 -2.95 0.0031 0.08 0.01 14.96 
Alzheimer's Disease 2019 (clinically diagnosed AD and AD-by-proxy) 30617256 0.25 0.08 2.93 0.0034 0.01 0.00 1.90 
Persistent thin individuals vs severe early onset obesity 30677029 0.16 0.05 2.91 0.0037 1.32 0.15 8.69 
Childhood obesity 22484627 0.14 0.05 2.87 0.0041 0.41 0.05 8.99 
Tobacco: CPD (cigarets per day) 20418890 0.23 0.08 2.84 0.0046 0.06 0.02 3.67 
ADHD 20732625 0.29 0.11 2.75 0.006 0.25 0.09 2.85 
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GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
Cross-disorder: ADHD subset 23453885 0.26 0.10 2.74 0.0061 0.26 0.08 3.05 
Coronary Artery Disease (European, South Asian and East Asian) recessive model 26343387 0.11 0.04 2.71 0.0066 0.02 0.00 8.90 
Glycine male 31043756 0.16 0.06 2.64 0.0084 0.19 0.06 3.44 
Fasting glucose (age- & sex-adjusted) 20081858 0.14 0.06 2.62 0.0089 0.09 0.02 4.61 
Mean corpuscular hemoglobin MCH 27863252 0.06 0.02 2.60 0.0093 0.22 0.03 8.72 
Loneliness: Case-control 27629369 0.38 0.15 2.58 0.01 0.12 0.06 1.96 
Loneliness: Linear 27629369 0.48 0.19 2.57 0.0102 0.10 0.06 1.74 
BMI childhood: 3-10 years 26604143 0.11 0.04 2.53 0.0115 0.25 0.02 10.06 
Visceral adipose tissue volume 27918534 0.17 0.07 2.51 0.012 0.14 0.03 5.52 
Height (2018) 30124842 -0.05 0.02 -2.51 0.0122 0.50 0.02 22.01 
Anxiety Disorders meta-analysis: factor scores 26754954 0.31 0.13 2.49 0.0127 0.07 0.03 2.46 
PTSD Mixed Ancestry 28439101 0.60 0.25 2.44 0.0148 0.06 0.04 1.48 
Hip circumference all ancestries male 25673412 0.09 0.04 2.43 0.015 0.19 0.02 11.16 
Hip circumference European male 25673412 0.09 0.04 2.36 0.0184 0.19 0.02 11.43 
Pericardial adipose tissue volume female 27918534 0.24 0.10 2.35 0.019 0.19 0.07 2.79 
eGFRcys (serum cystatin) 26831199 -0.11 0.05 -2.33 0.0198 0.17 0.07 2.51 
Concentration of very small VLDL particles 27005778 0.17 0.07 2.29 0.0219 0.12 0.04 3.25 
Mean corpuscular volume 27863252 0.06 0.02 2.29 0.022 0.24 0.03 9.29 
Concentration of small LDL particles 27005778 0.21 0.09 2.29 0.0223 0.10 0.04 2.28 
Mono-unsaturated fatty acids 27005778 0.24 0.10 2.28 0.0227 0.11 0.04 2.47 
Physical activity (objectively-measured) female 34753499 -0.11 0.05 -2.26 0.0238 0.16 0.01 11.18 
Subcutaneous adipose tissue volume 27918534 0.14 0.06 2.26 0.0238 0.16 0.03 6.37 
Visceral adipose tissue volume female 27918534 0.19 0.09 2.26 0.0239 0.15 0.04 3.70 
Total lipids in very small VLDL 27005778 0.18 0.08 2.17 0.0301 0.11 0.04 3.01 
Chronotype 27494321 -0.09 0.04 -2.15 0.0319 0.10 0.01 17.72 
Hip circumference European male BMI-adjusted 25673412 -0.07 0.03 -2.14 0.032 0.20 0.02 12.31 
Total lipids in small LDL 27005778 0.21 0.10 2.14 0.0321 0.09 0.04 2.02 
Obsessive compulsive disorder 28761083 0.13 0.06 2.13 0.0331 0.34 0.05 6.86 
Anorexia nervosa (PGC2) 31308545 0.08 0.04 2.10 0.0354 0.18 0.01 14.79 
Serum total cholesterol 27005778 0.27 0.13 2.10 0.0354 0.07 0.04 1.76 
Asthma 20860503 0.12 0.06 2.10 0.0355 0.12 0.02 5.31 
Omega-9 and saturated fatty acids 27005778 0.27 0.13 2.10 0.0359 0.09 0.04 1.95 
Concentration of IDL particles 27005778 0.23 0.11 2.10 0.036 0.08 0.04 1.87 
Triglycerides in IDL 27005778 0.17 0.08 2.09 0.0363 0.11 0.03 3.09 
UACR (urinary albumin-to-creatinine ratio) 26631737 0.15 0.07 2.07 0.0388 0.05 0.01 5.15 
Fasting insulin (BMI-adjusted) 22581228 0.13 0.06 2.07 0.0389 0.07 0.01 6.97 
Triglycerides 20686565 0.08 0.04 2.06 0.0393 0.15 0.03 5.75 
PTSD Mixed Ancestry 28439101 0.73 0.35 2.06 0.0395 0.03 0.02 1.15 
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GWAS rg with childhood maltreatment h2SNP (Observed scale) 
Phenotype PMID rg SE Z P h2SNP  SE Z 
TWEAK 28240269 -0.33 0.16 -2.05 0.0408 1.06 0.64 1.67 
Apolipoprotein B 27005778 0.21 0.10 2.05 0.0408 0.08 0.04 2.13 
Hip circumference all ancestries male BMI-adjusted 25673412 -0.07 0.03 -2.04 0.0412 0.20 0.02 12.33 
Hip circumference European BMI-adjusted 25673412 -0.06 0.03 -2.04 0.0413 0.15 0.01 16.46 
Hip circumference all ancestries BMI-adjusted 25673412 -0.06 0.03 -2.02 0.0431 0.15 0.01 16.61 
Total lipids in IDL 27005778 0.23 0.11 2.01 0.0443 0.08 0.04 1.78 
HOMA-IR: insulin resistance (age- & sex-adjusted) 20081858 0.14 0.07 2.00 0.0454 0.07 0.01 5.20 
Glycine 27005778 0.12 0.06 2.00 0.0459 0.21 0.12 1.86 
 
 
Supplementary Table 2: LDScore genetic correlation (rg) results for genetically correlated phenotypes with reported childhood 
maltreatment |rg| > 0.25 and rg |Z| statistic ≥ 5, a heritability Z statistics ≥ 5, mean chi-square > 1.02.
Traits that met criteria and were selected for multiple regression analyses in table 2A. Traits with |rg| > 0.25 and rg |Z| statistic ≥ 5 but were not 
included in downstream analyses in 2B. These traits were exluded for the following reasons: the sample was mixed ancestry, or a very similar 
trait was the preffered phenotype for analyses due to power, sample characteristics or phenotyping.  
2A) 22 top rg traits included in analyses on childhood maltreatment 

 

GWAS  rg with reported childhood maltreatment h2SNP (Observed scale)  Assigned category for 
analyses 

 

Phenotype  PMID Year mean 
chi2 

rg se z p  Gcov 
int 

Gcov int 
se 

h2SNP  SE Z 
 

ADHD  30478444 2017 1.29 0.56 0.04 15.09 1.96E-51 0.00 0.01 0.24 0.01 16.38 Psychiatric Disorder 
 

Total PTSD symtoms (MVP) 33510476  2021 1.35 0.56 0.03 18.30 7.65E-75 0.01 0.01 0.07 0.00 18.31 Psychiatric Disorder 
 

MDD (PGC2 + 23andme + UKB) 29700475 2018 1.53 0.56 0.03 19.98 8.50E-89 0.01 0.01 0.06 0.00 23.08 Psychiatric Disorder 
 

Alcohol dependence European 30482948 2017 1.07 0.53 0.09 5.93 3.10E-09 0.00 0.01 0.05 0.01 5.41 Psychiatric Disorder 
 

Self-reported tiredness 28322280 2017 1.14 0.52 0.05 11.06 2.04E-28 0.02 0.01 0.07 0.01 11.57 Health & behavioural 
 

Subjective well-being: survey questions on life 
satisfaction, positive affect, or happiness 

27089181 2016 1.15 -0.52 0.05 -10.73 7.10E-27 -0.02 0.01 0.02 0.00 12.45 Psychiatric Disorder 
 

Social deprivation, as measured using Townsend 
scores 

27818178 2016 1.09 0.50 0.06 8.92 4.83E-19 0.02 0.00 0.04 0.00 8.42 Health & behavioural 
 

number of sexual partners (risky behaviour) 30643258 2019 1.72 0.48 0.02 20.04 2.44E-89 0.06 0.01 0.10 0.00 29.24 Health & behavioural 
 

Self-rated health 27864402 2016 1.23 -0.48 0.04 -12.09 1.22E-33 -0.03 0.01 0.10 0.01 16.74 Health & behavioural 
 

Lifetime probable anxiety diagnosis 31748690 2020 1.16 0.45 0.04 11.52 1.01E-30 0.15 0.01 0.10 0.01 15.10 Psychiatric Disorder 
 

General risk tolerance (UKB + 10 replication 
cohorts) 

30643258 2019 1.48 0.42 0.03 15.56 1.46E-54 0.05 0.01 0.05 0.00 22.52 Health & behavioural 
 

Autism spectrum disorder (PGC + iPSYCH) 30804558 2019 1.19 0.41 0.04 9.48 2.51E-21 0.01 0.01 0.20 0.02 13.19 Psychiatric Disorder 
 

Reproductive behavior: Age First Birth 27798627 2016 1.22 -0.40 0.03 -11.56 6.76E-31 -0.01 0.01 0.06 0.00 17.81 Health & behavioural 
 

Schizophrenia PGC 2014 European 25056061 2014 1.74 0.35 0.03 13.46 2.65E-41 0.01 0.01 0.47 0.02 27.87 Psychiatric Disorder 
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Neuroticism 300K meta-analysis. (UKB) 30593698 2017 1.67 0.34 0.03 11.63 2.86E-31 0.07 0.01 0.11 0.01 18.77 Health & behavioural 
 

Insomnia (2019) 30804565 2019 1.36 0.32 0.03 9.64 5.56E-22 0.03 0.01 0.05 0.00 21.86 Health & behavioural 
 

Tobacco: ever smoker (UKB + TAG) 30643258 2019 1.92 0.32 0.03 11.95 6.59E-33 0.05 0.01 0.09 0.00 28.53 Health & behavioural 
 

Parents attained age 27015805 2017 1.34 0.25 0.04 6.28 3.49E-10 0.01 0.01 0.03 0.00 13.74 Health & behavioural 
 

 

B) Top rg traits excluded from analyses of childhood maltreatment 
GWAS  rg with reported childhood maltreatment h2SNP (Observed scale)   Reason for exclusion  
Phenotype  PMID Year mean 

chi2 
rg se z p  Gcov 

int 
Gcov 
int se 

h2SNP  SE Z 

PTSD PGC2 case control 31594949 2019 1.08 0.76 0.08 9.55 1.28E-21 0.10 0.01 0.02 0.00 5.72 > powerful MVP PTSD total symptoms included 
Depressive symptoms 27089181 2016 1.15 0.66 0.04 15.15 7.95E-52 0.02 0.01 0.05 0.00 13.06 > powerful depression GWAS included 
MDD (PGC2, no 23andme, no UKB) 29700475 2018 1.20 0.63 0.04 16.91 3.82E-64 0.00 0.01 0.07 0.00 16.11 > powerful MDD GWAS included 
PTSD Avoidance symptoms 33510476 2021 1.31 0.58 0.03 18.72 3.51E-78 0.01 0.01 0.06 0.00 16.74 > powerful MVP PTSD tot. symp. included (rg 

across these traits is not signif. diff. from 1) 
ADHD male 29325848 2017 1.18 0.58 0.05 12.88 5.79E-38 0.00 0.01 0.25 0.02 11.90 > powerful ADHD GWAS included 
ADHD (Mixed Ancestry) 30478444 2017 1.29 0.56 0.04 14.82 1.08E-49 0.00 0.01 0.36 0.02 16.51 Mixed Ancestry 
MDD (PGC1) 22472876 2013 1.07 0.55 0.08 6.98 2.93E-12 0.00 0.01 0.16 0.03 5.95 > powerful MDD GWAS included 
MDD (PGC2 + 23andme, no UK) 29700475 2018 1.48 0.55 0.03 19.14 1.13E-81 0.00 0.01 0.06 0.00 22.28 > powerful MDD GWAS included 
Alcohol dependence all ancestries 30482948 2017 1.07 0.54 0.09 6.23 4.72E-10 -0.01 0.01 0.05 0.01 5.42 Mixed Ancestry 
PTSD Hyperarousal symptoms  33510476  2021 1.35 0.54 0.03 16.64 3.42E-62 0.00 0.01 0.07 0.00 18.21 > powerful MVP PTSD tot. symp. included (rg 

across these traits is not signif. diff. from 1) 
PTSD Re-experiencing symptoms  33510476  2021 1.32 0.52 0.03 16.62 5.08E-62 0.00 0.01 0.07 0.00 17.57 > powerful MVP PTSD tot. symp. included (rg 

across these traits is not signif. diff. from 1) 
Lifetime probable anxiety diagnosis female 31748690 2020 1.10 0.50 0.05 10.41 2.33E-25 0.13 0.00 0.14 0.01 11.63 > powerful Anxiety GWAS included 
Heavy versus never smoker in UKBileve 28166213 2017 1.29 0.45 0.04 11.36 6.69E-30 0.01 0.01 0.26 0.02 15.27 > powerful tobacco smoking GWAS included  
Household income, 1 per household 27818178 2016 1.15 -0.43 0.05 -8.81 1.30E-18 -0.02 0.00 0.07 0.01 10.38 > powerful household income GWAS included  
PTSD MVP case control  33510476  2021 1.17 0.42 0.05 8.46 2.68E-17 0.00 0.01 0.03 0.00 11.47 > powerful MVP PTSD total symptoms included 
Reproductive behavior: Age First Birth 
Female 

27798627 2016 1.16 -0.41 0.04 -10.49 9.27E-26 -0.01 0.01 0.05 0.00 14.53 > powerful Age First Birth GWAS included 

Household income 27818178 2016 1.16 -0.41 0.05 -8.43 3.41E-17 -0.03 0.01 0.06 0.01 10.54 Social depriv. GWAS included (rg across these traits 
is not signif. diff. from 1) 

Cross-psychiatric disorders (ADHD, ASD, 
bipolar disorder, & SCZ) 

23453885 2013 1.22 0.40 0.04 10.10 5.56E-24 0.00 0.01 0.18 0.01 16.37 ADHD GWAS and ASD GWAS included 

Neuroticism. 27089181 2016 1.31 0.39 0.04 9.26 2.08E-20 0.04 0.01 0.09 0.01 12.00 > powerful Neuroticism GWAS included 
SCZ PGC2 European + CLOZUK 29483656 2018 2.01 0.36 0.03 12.20 2.95E-34 0.01 0.01 0.42 0.02 27.27 SGZ PGC 2014 GWAS included 
Reproductive behavior: Age First Birth Male 27798627 2016 1.05 -0.36 0.05 -7.19 6.48E-13 0.00 0.00 0.11 0.01 10.75 > powerful Age First Birth GWAS included 
SCZ PGC 2014 (EUR and East Asian) 25056061 2014 1.76 0.36 0.03 13.64 2.35E-42 0.00 0.01 0.45 0.02 28.52 Mixed Ancestry 
Lifetime probable anxiety diagnosis male 31748690 2020 1.06 0.35 0.07 5.20 1.97E-07 0.08 0.01 0.07 0.01 6.02 > powerful Anxiety GWAS included 
SCZ PGC Mixed ancestry 31740837 2019 2.13 0.35 0.02 15.07 2.68E-51 0.01 0.01 0.34 0.01 30.45 Mixed Ancestry 
Neuroticism 300K female. (UKB) 30593698 2017 1.35 0.34 0.04 9.81 9.81E-23 0.05 0.01 0.12 0.01 16.71 > powerful Anxiety GWAS included 
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Tobacco: smoking initiation (ever versus 
never been a regular smoker) 

20418890 2010 1.10 0.34 0.05 6.95 3.74E-12 0.00 0.01 0.08 0.01 11.80 > powerful tobacco smoking GWAS included 

Insomnia 28604731 2017 1.11 0.33 0.05 6.72 1.85E-11 0.02 0.00 0.05 0.00 9.82 > powerful Insomnia 2019 GWAS included 
Neuroticism meta-analysis. (UKB) 30593698 2017 1.34 0.33 0.04 8.54 1.32E-17 0.05 0.01 0.11 0.01 12.26 > powerful neuroticism GWAS included 
Neuroticism 150K healthy meta-analysis. 30593698 2017 1.33 0.31 0.04 8.09 5.84E-16 0.05 0.01 0.10 0.01 12.32 > powerful neuroticism GWAS 
Mother's age at death 27015805 2016 1.17 -0.30 0.05 -5.96 2.45E-09 -0.02 0.01 0.01 0.00 9.13 Parents age GWAS included 
Schizophrenia+bipolar 24280982 2014 1.31 0.30 0.04 8.31 9.33E-17 0.00 0.01 0.38 0.02 16.73 SCZ GWAS included 
Undersleeper 27494321 2016 1.11 0.29 0.06 5.08 3.87E-07 0.02 0.01 0.04 0.00 10.48 > powerful insomnia 2019 GWAS included 
Father's age at death 27015805 2016 1.19 -0.29 0.05 -6.36 2.00E-10 -0.01 0.01 0.02 0.00 11.50 Parents age GWAS included  
Neuroticism 150K healthy female. (UKB) 30593698 2017 1.15 0.29 0.05 6.04 1.58E-09 0.04 0.01 0.10 0.01 10.37 > powerful neuroticism GWAS included 
Parents' age at death 27015805 2017 1.21 -0.28 0.05 -6.22 5.10E-10 -0.01 0.01 0.02 0.00 11.24 > powerful parents attained age GWAS included 

 
 
Supplementary table 3: A-K Genomic SEM multiple regression models where each psychological, social and health trait is introduced 
in iterative stages, in order of the most highly genetically correlated trait with reported childhood maltreatment. 
Model K standardised results is the final model included in the main analyses. Each model takes into account the genetic correlations across 
Psychological and Social traits, but for simplicity, these genetic correlations are only shown in Table L.

A) Childhood maltreatment ~ Tiredness 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.05 0.00 0.73 0.06 0.73 0.00 
Childhood maltreatment ~ Tiredness 0.54 0.06 0.52 0.06 0.52 0.00          
B) Childhood maltreatment ~ Tiredness + Subjective well-being 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.05 0.00 0.65 0.06 0.65 0.00 
Childhood maltreatment ~ Tiredness 0.34 0.08 0.33 0.08 0.33 0.00 
Childhood maltreatment ~ Subj. wellbeing -0.57 0.14 -0.33 0.08 -0.33 0.00          
C) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.58 0.07 0.58 0.00 
Childhood maltreatment ~ Tiredness 0.19 0.10 0.18 0.09 0.18 0.05 
Childhood maltreatment ~ Subj. wellbeing -0.55 0.14 -0.32 0.08 -0.32 0.00 
Childhood maltreatment ~ Social dep 0.42 0.12 0.31 0.08 0.31 0.00          
D) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.51 0.06 0.51 0.00 
Childhood maltreatment ~ Tiredness 0.20 0.09 0.20 0.09 0.20 0.03 
Childhood maltreatment ~ Subj. wellbeing -0.52 0.13 -0.31 0.08 -0.31 0.00 
Childhood maltreatment ~ Sexual partners 0.26 0.04 0.30 0.05 0.30 0.00 
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Childhood maltreatment ~ Social dep 0.22 0.13 0.16 0.09 0.16 0.08          
E) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self rated health 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.51 0.06 0.51 0.00 
Childhood maltreatment ~ Tiredness 0.16 0.12 0.15 0.12 0.15 0.20 
Childhood maltreatment ~ Subj. wellbeing -0.52 0.13 -0.31 0.08 -0.31 0.00 
Childhood maltreatment ~ Sexual partners 0.27 0.05 0.31 0.05 0.31 0.00 
Childhood maltreatment ~ Social dep 0.18 0.16 0.13 0.11 0.13 0.25 
Childhood maltreatment ~ Health -0.07 0.11 -0.08 0.12 -0.08 0.54          
F) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self-rated health + general risk tolerance  
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.00 0.44 0.06 0.44 0.00 
Childhood maltreatment ~ Tiredness 0.13 0.13 0.12 0.13 0.12 0.32 
Childhood maltreatment ~ Subj. wellbeing -0.64 0.15 -0.38 0.09 -0.38 0.00 
Childhood maltreatment ~ Sexual partners 0.08 0.07 0.10 0.08 0.10 0.21 
Childhood maltreatment ~ Risk 0.38 0.07 0.32 0.06 0.32 0.00 
Childhood maltreatment ~ Social dep 0.26 0.17 0.19 0.13 0.19 0.14 
Childhood maltreatment ~ Health -0.03 0.11 -0.03 0.13 -0.03 0.82          
G) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self-rated health + general risk tolerance + Age 
first birth 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.00 0.42 0.06 0.42 0.00 
Childhood maltreatment ~ Tiredness 0.18 0.14 0.17 0.13 0.17 0.19 
Childhood maltreatment ~ Subj. wellbeing -0.71 0.16 -0.42 0.09 -0.42 0.00 
Childhood maltreatment ~ Sexual partners 0.09 0.07 0.11 0.08 0.11 0.17 
Childhood maltreatment ~ Risk 0.35 0.07 0.30 0.06 0.30 0.00 
Childhood maltreatment ~ Social dep 0.16 0.19 0.12 0.14 0.12 0.39 
Childhood maltreatment ~ Health 0.09 0.13 0.11 0.16 0.11 0.50 
Childhood maltreatment ~ Age first birth -0.24 0.10 -0.21 0.09 -0.21 0.02          
H) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self-rated health + general risk tolerance + Age 
first birth + Neuroticism 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.00 0.42 0.07 0.42 0.00 
Childhood maltreatment ~ Tiredness 0.22 0.20 0.22 0.19 0.22 0.26 
Childhood maltreatment ~ Subj. wellbeing -0.78 0.27 -0.46 0.16 -0.46 0.00 
Childhood maltreatment ~ Sexual partners 0.08 0.07 0.10 0.08 0.10 0.25 
Childhood maltreatment ~ Risk 0.35 0.07 0.30 0.06 0.30 0.00 
Childhood maltreatment ~ Social dep 0.14 0.20 0.10 0.15 0.10 0.48 
Childhood maltreatment ~ Health 0.12 0.18 0.14 0.21 0.14 0.50 
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Childhood maltreatment ~ Age first birth -0.27 0.14 -0.23 0.13 -0.23 0.07 
Childhood maltreatment ~ Neuroticism -0.06 0.12 -0.07 0.14 -0.07 0.63          
I) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self-rated health + general risk tolerance + Age 
first birth + Neuroticism + Insomnia 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.01 0.42 0.07 0.42 0.00 
Childhood maltreatment ~ Insomnia -0.07 0.06 -0.07 0.06 -0.07 0.25 
Childhood maltreatment ~ Tiredness 0.25 0.21 0.24 0.21 0.24 0.25 
Childhood maltreatment ~ Subj. wellbeing -0.80 0.28 -0.47 0.17 -0.47 0.00 
Childhood maltreatment ~ Sexual partners 0.08 0.07 0.10 0.09 0.10 0.25 
Childhood maltreatment ~ Risk 0.35 0.07 0.30 0.06 0.30 0.00 
Childhood maltreatment ~ Social dep 0.14 0.20 0.10 0.15 0.10 0.49 
Childhood maltreatment ~ Health 0.12 0.18 0.14 0.21 0.14 0.52 
Childhood maltreatment ~ Age first birth -0.28 0.15 -0.25 0.13 -0.25 0.06 
Childhood maltreatment ~ Neuroticism -0.05 0.12 -0.07 0.15 -0.07 6.439661e-          
J) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self-rated health + general risk tolerance + Age 
first birth + Neuroticism + Insomnia + Ever smoker 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.00 0.41 0.07 0.41 0.00 
Childhood maltreatment ~ Neuroticism -0.03 0.12 -0.04 0.15 -0.04 0.78 
Childhood maltreatment ~ Insomnia -0.07 0.06 -0.07 0.06 -0.07 0.26 
Childhood maltreatment ~ Tiredness 0.21 0.22 0.21 0.21 0.21 0.34 
Childhood maltreatment ~ Subj. wellbeing -0.78 0.28 -0.46 0.17 -0.46 0.01 
Childhood maltreatment ~ Sexual partners 0.11 0.07 0.13 0.09 0.13 0.12 
Childhood maltreatment ~ Risk 0.35 0.07 0.30 0.06 0.30 0.00 
Childhood maltreatment ~ Social dep 0.19 0.23 0.14 0.17 0.14 0.40 
Childhood maltreatment ~ Health 0.09 0.19 0.11 0.22 0.11 0.63 
Childhood maltreatment ~ Age first birth -0.28 0.15 -0.24 0.13 -0.24 0.07 
Childhood maltreatment ~ Ever smoker -0.09 0.06 -0.10 0.07 -0.10 0.16          
K) Childhood maltreatment ~ Tiredness + Subjective well-being + social deprivation + number of sexual partners + self-rated health + general risk tolerance + Age 
first birth + Neuroticism + Insomnia + Ever smoker + Parents attained age 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.01 0.41 0.07 0.41 7.76E-09 
Childhood maltreatment ~ Neuroticism -0.04 0.13 -0.05 0.16 -0.05 7.60E-01 
Childhood maltreatment ~ Insomnia -0.07 0.06 -0.07 0.06 -0.07 2.49E-01 
Childhood maltreatment ~ Parents attained age 0.10 0.18 0.06 0.12 0.06 5.85E-01 
Childhood maltreatment ~ Tiredness 0.24 0.25 0.23 0.24 0.23 3.45E-01 
Childhood maltreatment ~ Subj. wellbeing -0.80 0.31 -0.47 0.18 -0.47 1.00E-02 
Childhood maltreatment ~ Sexual partners 0.11 0.07 0.14 0.09 0.14 1.25E-01 
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Childhood maltreatment ~ Risk 0.36 0.07 0.31 0.06 0.31 9.96E-07 
Childhood maltreatment ~ Social dep 0.17 0.25 0.12 0.18 0.12 5.02E-01 
Childhood maltreatment ~ Health 0.14 0.25 0.16 0.29 0.16 5.84E-01 
Childhood maltreatment ~ Age first birth -0.29 0.16 -0.25 0.14 -0.25 8.05E-02 
Childhood maltreatment ~ Ever smoker -0.09 0.06 -0.10 0.07 -0.10 1.21E-01 
 
L) Cross Psychological & Social trait genetic correlations 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value_diff_0 p_value_diff_1 
Neuroticism ~~ Insomnia 0.04 0.00 0.37 0.03 0.37 2.85E-38 1.8E-106 
Neuroticism ~~ Parents attained age 0.00 0.00 0.04 0.04 0.04 2.86E-01 1.2E-124 
Insomnia ~~ Parents attained age 0.01 0.00 0.26 0.04 0.26 5.34E-12 5.92E-87 
Tiredness ~~ Neuroticism 0.05 0.00 0.57 0.04 0.57 1.39E-40 2.33E-23 
Tiredness ~~ Insomnia 0.04 0.00 0.53 0.04 0.53 1.71E-38 1.05E-31 
Tiredness ~~ Parents attained age 0.01 0.00 0.31 0.05 0.31 1.33E-10 9.43E-46 
Tiredness ~~ Subj. wellbeing -0.02 0.00 -0.57 0.06 -0.57 4.07E-24 1.06E-14 
Tiredness ~~ Sexual partners 0.02 0.00 0.23 0.04 0.23 9.80E-11 8.4E-101 
Tiredness ~~ Risk 0.01 0.00 0.13 0.04 0.13 4.64E-04 4.8E-118 
Tiredness ~~ Social dep 0.03 0.00 0.51 0.07 0.51 2.45E-13 8.47E-13 
Tiredness ~~ Health -0.06 0.00 -0.77 0.06 -0.77 2.17E-37 9.82E-05 
Tiredness ~~ Age first birth -0.02 0.00 -0.34 0.04 -0.34 2.76E-15 2.1E-51 
Tiredness ~~ Ever smoker 0.02 0.00 0.26 0.03 0.26 2.35E-14 2.8E-109 
Subj. wellbeing ~~ Neuroticism -0.04 0.00 -0.66 0.05 -0.66 2.29E-45 7.02E-13 
Subj. wellbeing ~~ Insomnia -0.02 0.00 -0.43 0.04 -0.43 1.78E-22 1.2E-39 
Subj. wellbeing ~~ Parents attained age 0.00 0.00 -0.16 0.05 -0.16 3.29E-03 4.16E-57 
Subj. wellbeing ~~ Sexual partners -0.01 0.00 -0.17 0.04 -0.17 7.81E-07 1.3E-122 
Subj. wellbeing ~~ Risk 0.00 0.00 0.05 0.04 0.05 1.58E-01 5.5E-148 
Subj. wellbeing ~~ Social dep -0.01 0.00 -0.31 0.07 -0.31 2.00E-05 3.99E-21 
Subj. wellbeing ~~ Health 0.02 0.00 0.48 0.05 0.48 1.67E-19 5.54E-23 
Subj. wellbeing ~~ Age first birth 0.00 0.00 0.09 0.05 0.09 4.71E-02 4.5E-88 
Subj. wellbeing ~~ Ever smoker -0.01 0.00 -0.16 0.03 -0.16 1.51E-06 2.3E-143 
Sexual partners ~~ Neuroticism 0.00 0.00 0.01 0.03 0.01 7.70E-01 8.1E-279 
Sexual partners ~~ Insomnia 0.01 0.00 0.15 0.03 0.15 3.76E-08 5E-204 
Sexual partners ~~ Parents attained age 0.01 0.00 0.13 0.03 0.13 4.14E-05 2.5E-162 
Sexual partners ~~ Risk 0.04 0.00 0.59 0.03 0.59 1.31E-81 2.06E-39 
Sexual partners ~~ Social dep 0.03 0.00 0.48 0.05 0.48 3.37E-25 3.01E-29 
Sexual partners ~~ Health -0.02 0.00 -0.19 0.03 -0.19 1.51E-09 1E-152 
Sexual partners ~~ Age first birth -0.02 0.00 -0.23 0.03 -0.23 1.03E-17 1.4E-181 
Sexual partners ~~ Ever smoker 0.05 0.00 0.54 0.03 0.54 1.75E-99 6.61E-75 
Risk ~~ Neuroticism 0.00 0.00 -0.05 0.03 -0.05 6.98E-02 7.2E-226 
Risk ~~ Insomnia 0.01 0.00 0.09 0.03 0.09 1.93E-03 4.1E-221 
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Risk ~~ Parents attained age 0.00 0.00 0.04 0.03 0.04 2.57E-01 3.7E-179 
Risk ~~ Social dep 0.01 0.00 0.21 0.05 0.21 3.65E-05 1.29E-55 
Risk ~~ Health -0.01 0.00 -0.11 0.04 -0.11 1.60E-03 3.6E-132 
Risk ~~ Age first birth -0.01 0.00 -0.22 0.03 -0.22 1.67E-11 9.8E-123 
Risk ~~ Ever smoker 0.02 0.00 0.32 0.03 0.32 8.67E-35 1.4E-147 
Social dep ~~ Neuroticism 0.01 0.00 0.11 0.04 0.11 8.12E-03 2.38E-94 
Social dep ~~ Insomnia 0.02 0.00 0.34 0.05 0.34 1.62E-10 1.05E-36 
Social dep ~~ Parents attained age 0.02 0.00 0.50 0.06 0.50 3.00E-16 4.64E-16 
Social dep ~~ Health -0.04 0.00 -0.62 0.06 -0.62 4.32E-23 1.7E-09 
Social dep ~~ Age first birth -0.03 0.00 -0.57 0.06 -0.57 5.02E-20 5.67E-12 
Social dep ~~ Ever smoker 0.03 0.00 0.58 0.04 0.58 1.05E-41 1.53E-22 
Health ~~ Neuroticism -0.03 0.00 -0.31 0.05 -0.31 5.83E-11 5.55E-50 
Health ~~ Insomnia -0.04 0.00 -0.49 0.04 -0.49 2.11E-38 5.2E-42 
Health ~~ Parents attained age -0.03 0.00 -0.60 0.04 -0.60 5.81E-44 3.67E-21 
Health ~~ Age first birth 0.04 0.00 0.60 0.04 0.60 2.10E-49 6.08E-23 
Health ~~ Ever smoker -0.04 0.00 -0.38 0.03 -0.38 5.26E-40 9.2E-106 
Age first birth ~~ Neuroticism -0.01 0.00 -0.13 0.03 -0.13 1.31E-05 1.9E-176 
Age first birth ~~ Insomnia -0.02 0.00 -0.32 0.04 -0.32 4.14E-20 4.43E-81 
Age first birth ~~ Ever smoker -0.03 0.00 -0.40 0.03 -0.40 3.96E-39 2.06E-88 
Ever smoker ~~ Neuroticism 0.01 0.00 0.10 0.02 0.10 1.44E-05 0.00 
Ever smoker ~~ Insomnia 0.02 0.00 0.21 0.03 0.21 2.15E-16 5.5E-199 
Ever smoker ~~ Parents attained age 0.02 0.00 0.36 0.03 0.36 1.84E-39 3.8E-119 
 

Supplementary table 4: A-G Genomic SEM multiple regression models where each Psychiatric disorder is introduced in iterative stages, 
in order of the most highly genetically correlated trait with reported childhood maltreatment. 
Model (G) standardised results is the final model included in the main analyses. Each model takes into account the genetic correlations across 
Psychiatric disorders, but for simplicity, these genetic correlations are only shown in Table H.

A) Childhood maltreatment ~ ADHD 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.05 0.00 0.69 0.06 0.69 8.35E-27 
Childhood maltreatment ~ ADHD 0.32 0.02 0.56 0.04 0.56 1.07E-36          
B) Childhood maltreatment ~ ADHD + PTSD 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.58 0.06 0.58 5.49E-24 
Childhood maltreatment ~ ADHD 0.21 0.03 0.37 0.05 0.37 1.99E-11 
Childhood maltreatment ~ PTSD 0.38 0.05 0.38 0.05 0.38 7.10E-14          
C) Childhood maltreatment ~ ADHD + PTSD + MDD 
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Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.53 0.05 0.53 9.84E-24 
Childhood maltreatment ~ ADHD 0.17 0.03 0.31 0.06 0.31 6.43E-08 
Childhood maltreatment ~ PTSD 0.24 0.06 0.24 0.06 0.24 7.30E-05 
Childhood maltreatment ~ MDD 0.26 0.05 0.28 0.05 0.28 1.38E-07          
D) Childhood maltreatment ~ ADHD + PTSD + MDD + alcohol dependence 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.51 0.06 0.51 5.57E-17 
Childhood maltreatment ~ ADHD 0.15 0.04 0.26 0.07 0.26 0.00 
Childhood maltreatment ~ PTSD 0.20 0.07 0.20 0.07 0.20 0.00 
Childhood maltreatment ~ MDD 0.21 0.06 0.23 0.06 0.23 0.00 
Childhood maltreatment ~ ALCH 0.18 0.11 0.20 0.13 0.20 0.11          
E) Childhood maltreatment ~ ADHD + PTSD + MDD + alcohol dependence + anxiety (ANX) 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.04 0.00 0.49 0.07 0.49 8.88E-13 
Childhood maltreatment ~ ADHD 0.13 0.05 0.23 0.09 0.23 0.01 
Childhood maltreatment ~ PTSD 0.23 0.08 0.22 0.08 0.22 0.00 
Childhood maltreatment ~ MDD 0.38 0.17 0.42 0.18 0.42 0.02 
Childhood maltreatment ~ ALCH 0.21 0.13 0.24 0.15 0.24 0.11 
Childhood maltreatment ~ ANX -0.16 0.15 -0.23 0.22 -0.23 0.29          
F) Childhood maltreatment ~ ADHD + PTSD + MDD + alcohol dependence + anxiety (ANX) + autism spectrum disorder  
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.01 0.45 0.08 0.45 5.12E-08 
Childhood maltreatment ~ ADHD 0.07 0.07 0.13 0.12 0.13 0.28 
Childhood maltreatment ~ PTSD 0.30 0.09 0.30 0.09 0.30 0.00 
Childhood maltreatment ~ MDD 0.25 0.18 0.27 0.20 0.27 0.17 
Childhood maltreatment ~ ALCH 0.28 0.16 0.32 0.18 0.32 0.08 
Childhood maltreatment ~ ANX -0.17 0.17 -0.25 0.24 -0.25 0.30 
Childhood maltreatment ~ ASD 0.21 0.08 0.27 0.10 0.27 0.01          
G) Childhood maltreatment ~ ADHD + PTSD + MDD + alcohol dependence + anxiety (ANX) + autism spectrum disorder + Schizophrenia 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.01 0.44 0.08 0.44 9.23E-09 
Childhood maltreatment ~ ADHD 0.09 0.07 0.15 0.12 0.15 0.21 
Childhood maltreatment ~ PTSD 0.29 0.09 0.29 0.09 0.29 0.00 
Childhood maltreatment ~ MDD 0.24 0.18 0.27 0.19 0.27 0.17 
Childhood maltreatment ~ ALCH 0.24 0.17 0.28 0.19 0.28 0.15 
Childhood maltreatment ~ ANX -0.18 0.16 -0.26 0.23 -0.26 0.26 
Childhood maltreatment ~ ASD 0.19 0.08 0.25 0.11 0.25 0.02 
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Childhood maltreatment ~ SCZ 0.06 0.03 0.11 0.06 0.11 0.06 
 
H) Cross psychiatric disorder genetic correlations 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value_diff_0 abs_p_value_diff_1 
MDD ~~ ANX 0.0984 0.0049 0.8643 0.0427 0.8643 3.04E-91 1.48E-03 
ANX ~~ PTSD 0.0584 0.0044 0.5614 0.0426 0.5614 9.77E-40 6.57E-25 
MDD ~~ PTSD 0.0449 0.0024 0.5753 0.0303 0.5753 1.63E-80 1.06E-44 
ANX ~~ ASD 0.0491 0.0076 0.3686 0.0571 0.3686 1.1E-10 2.10E-28 
MDD ~~ ASD 0.0473 0.0035 0.4737 0.0346 0.4737 1.11E-42 2.78E-52 
PTSD ~~ ASD 0.0118 0.0040 0.1295 0.0438 0.1295 0.0031 4.86E-88 
MDD ~~ ALCH 0.0422 0.0052 0.4738 0.0585 0.4738 5.78E-16 2.47E-19 
ANX ~~ ALCH 0.0602 0.0106 0.5057 0.0891 0.5057 1.37E-08 2.87E-08 
PTSD ~~ ALCH 0.0387 0.0066 0.4746 0.0814 0.4746 5.46E-09 1.06E-10 
ASD ~~ ALCH 0.0038 0.0085 0.0366 0.0817 0.0366 0.6542 4.15E-32 
MDD ~~ ADHD 0.0608 0.0047 0.4419 0.0340 0.4419 1.4E-38 1.67E-60 
ANX ~~ ADHD 0.0616 0.0077 0.3356 0.0418 0.3356 9.29E-16 5.52E-57 
PTSD ~~ ADHD 0.0637 0.0048 0.5064 0.0385 0.5064 1.6E-39 1.19E-37 
ASD ~~ ADHD 0.0582 0.0084 0.3614 0.0524 0.3614 5.45E-12 3.89E-34 
ALCH ~~ ADHD 0.0658 0.0115 0.4576 0.0801 0.4576 0.0000 1.25E-11 
PTSD ~~ SCZ 0.0329 0.0037 0.2414 0.0268 0.2414 2.35E-19 7.10E-176 
ADHD ~~ SCZ 0.0300 0.0076 0.1249 0.0316 0.1249 0.0001 6.30E-169 
MDD ~~ SCZ 0.0502 0.0040 0.3371 0.0269 0.3371 3.84E-36 1.75E-134 
ALCH ~~ SCZ 0.0567 0.0082 0.3637 0.0529 0.3637 6.28E-12 2.71E-33 
ANX ~~ SCZ 0.0689 0.0071 0.3467 0.0357 0.3467 3.01E-22 1.15E-74 
ASD ~~ SCZ 0.0388 0.0069 0.2221 0.0396 0.2221 2.02E-08 6.40E-86 

 

Supplementary table 5: Genomic SEM genomic multiple regression analyses of independently contributing traits selected based on 
results shown in figure 2A/ supplmentary table 3K and figure 2B/ supplementary table 4G. 
The model takes into account the genetic correlations across traits. 
 
Final independent traits model: Childhood maltreatment ~ ASD + Risk + Subjective wellbeing 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.00 0.42 0.06 0.42 1.24E-12 
Childhood maltreatment ~ ASD 0.16 0.05 0.21 0.06 0.21 5.8E-04 
Childhood maltreatment ~ Risk 0.42 0.04 0.36 0.04 0.36 9.15E-21 
Childhood maltreatment ~ Subjective_wellbeing -0.54 0.14 -0.32 0.08 -0.32 1.2E-04 
Childhood maltreatment ~ PTSD 0.32 0.05 0.32 0.05 0.32 7.98E-10 
ASD ~~ PTSD 0.01 0.00 0.13 0.04 0.13 3.1E-03 
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Risk ~~ PTSD 0.01 0.00 0.24 0.03 0.24 6.66E-18 
Subjective_wellbeing ~~ PTSD -0.02 0.00 -0.40 0.04 -0.40 3.39E-19 
PTSD ~~ PTSD 0.07 0.00 1.00 0.05 1.00 1.80E-75 
ASD ~~ ASD 0.12 0.01 1.00 0.08 1.00 5.0E-39 
ASD ~~ Risk 0.00 0.00 0.02 0.05 0.02 7.3E-01 
ASD ~~ Subjective wellbeing -0.02 0.00 -0.46 0.05 -0.46 4.3E-18 
Risk ~~ Risk 0.05 0.00 1.00 0.04 1.00 9.6E-115 
Risk ~~ Subjective wellbeing 0.00 0.00 0.05 0.04 0.05 1.6E-01 
Subjective wellbeing ~~ Subjective wellbeing 0.02 0.00 1.00 0.08 1.00 5.9E-35 
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Supplementary table 6 of sensitivity analysis: Genomic SEM genomic multiple regression analyses of independently contributing traits 
(in figure 3/ supplementary table 5) and two additional traits that broadly capture the shared genetic associations observed across the 
psychiatric disorders (as captured by ADHD) and health traits (as captured by self-reported tiredness). 
The model takes into account the genetic correlations across traits. 
 
Sensitivity analysis model: Childhood maltreatment ~ ASD + General risk-tolerance + Subjective wellbeing + PTSD + ADHD + Self-repored tiredness 
Phenotype 1 op Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Childhood maltreatment ~~ Childhood maltreatment 0.03 0.00 0.40 0.06 0.40 2.11E-12 
Childhood maltreatment ~ ASD 0.12 0.05 0.16 0.07 0.16 1.69E-02 
Childhood maltreatment ~ Risk 0.37 0.05 0.31 0.04 0.31 1.20E-12 
Childhood maltreatment ~ Subjective wellbeing -0.54 0.15 -0.32 0.09 -0.32 4.23E-04 
Childhood maltreatment ~ PTSD 0.26 0.09 0.26 0.09 0.26 6.52E-03 
Childhood maltreatment ~ Tiredness -0.01 0.13 -0.01 0.12 -0.01 9.56E-01 
Childhood maltreatment ~ ADHD 0.09 0.04 0.17 0.07 0.17 1.34E-02 
ASD ~~ ASD 0.12 0.01 1.00 0.08 1.00 4.99E-39 
ASD ~~ Risk 0.00 0.00 0.02 0.05 0.02 7.29E-01 
ASD ~~ Subjective wellbeing -0.02 0.00 -0.46 0.05 -0.46 4.33E-18 
ASD ~~ PTSD Avoidance 0.01 0.00 0.15 0.05 0.15 1.22E-03 
ASD ~~ Tiredness 0.03 0.00 0.32 0.05 0.32 1.25E-09 
Risk ~~ Risk 0.05 0.00 1.00 0.04 1.00 9.56E-115 
Risk ~~ Subjective wellbeing 0.00 0.00 0.05 0.04 0.05 1.57E-01 
Risk ~~ PTSD Avoidance 0.01 0.00 0.24 0.03 0.24 4.58E-16 
Risk ~~ Tiredness 0.01 0.00 0.13 0.04 0.13 4.64E-04 
Subjective wellbeing ~~ Subjective wellbeing 0.02 0.00 1.00 0.08 1.00 5.91E-35 
Subjective wellbeing ~~ PTSD Avoidance -0.02 0.00 -0.44 0.05 -0.44 2.06E-19 
Subjective wellbeing ~~ Tiredness -0.02 0.00 -0.57 0.06 -0.57 4.07E-24 
PTSD Avoidance ~~ PTSD Avoidance 0.06 0.00 1.00 0.06 1.00 5.00E-63 
PTSD Avoidance ~~ Tiredness 0.05 0.00 0.71 0.05 0.71 9.76E-48 
Tiredness ~~ Tiredness 0.07 0.01 1.00 0.09 1.00 1.99E-30 
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Supplementary tables for self-reported lifetime trauma  

Link to access to Supplementary Tables 7-8: LDScore genetic correlation (rg) results between self-reported trauma and 576 phenotypes.
Genetic correlation results between self-reported lifetime trauma and 576 complex traits were highly similar to genetic correlation results observed 
with reported childhood maltreatment. For brevity, Supplementary Table 7 and 8 are not presented here, and can be accessed via the link 
https://tinyurl.com/Chapter3AppendixBTables.Supplementary Table 7 shows the genetic correlation results for all phenotypes with self-reported 
trauma, and Supplementary Table 8 shows significantly genetically correlated traits and those selected for genomic multiple regression.  

 
 Supplementary table 9: A-K Genomic SEM multivariable models where each psychological, social and health trait is introduced in 
iterative stages, in order of the most highly genetically correlated trait with self-reported lifetime trauma. 
Model K standardised results is the final model included in the main analyses. Each model takes into account the genetic correlations across 
Psychological and Social traits, but for simplicity, these genetic correlations are only shown in Table L.

A) Lifetime trauma ~ Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.1268 0.0100 0.6986 0.0550 0.6986 5.64E-37 
Lifetime trauma ~ Sexual Partners 0.7424 0.0399 0.5490 0.0295 0.5490 3.60E-77 
         
B) Lifetime trauma ~ Tiredness + Sexual Partners  
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0925 0.0114 0.5097 0.0630 0.5097 6.12E-16 
Lifetime trauma ~ Sexual Partners 0.6018 0.0436 0.4450 0.0322 0.4450 2.10E-43 
Lifetime trauma ~ Tiredness 0.7347 0.0936 0.4469 0.0569 0.4469 4.07E-15 
         
C) Lifetime trauma ~ Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0812 0.0111 0.4471 0.0612 0.4471 2.84E-13 
Lifetime trauma ~ Sexual Partners 0.5838 0.0447 0.4317 0.0330 0.4317 4.64E-39 
Lifetime trauma ~ Tiredness 0.4564 0.1320 0.2776 0.0803 0.2776 5.44E-04 
Lifetime trauma ~ Subj.wellbeing -0.8207 0.2134 -0.3041 0.0791 -0.3041 1.20E-04 
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D) Lifetime trauma ~ Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0661 0.0122 0.3640 0.0673 0.3640 6.36E-08 
Lifetime trauma ~ Sexual Partners 0.2834 0.0664 0.2096 0.0491 0.2096 2.00E-05 
Lifetime trauma ~ Tiredness 0.3854 0.1375 0.2344 0.0837 0.2344 5.07E-03 
Lifetime trauma ~ Subj.wellbeing -1.0421 0.2332 -0.3861 0.0864 -0.3861 7.84E-06 
Lifetime trauma ~ Risk 0.6885 0.1015 0.3677 0.0542 0.3677 1.20E-11 
         
E) Lifetime trauma ~ Social deprivation + Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0640 0.0121 0.3527 0.0669 0.3527 1.37E-07 
Lifetime trauma ~ Sexual Partners 0.1989 0.0977 0.1471 0.0722 0.1471 4.17E-02 
Lifetime trauma ~ Tiredness 0.2896 0.1708 0.1761 0.1039 0.1761 9.00E-02 
Lifetime trauma ~ Subj.wellbeing -1.0468 0.2328 -0.3879 0.0863 -0.3879 6.93E-06 
Lifetime trauma ~ Risk 0.7186 0.1064 0.3838 0.0568 0.3838 1.44E-11 
Lifetime trauma ~ Social dep 0.3011 0.2407 0.1378 0.1101 0.1378 2.11E-01 
         
F) Lifetime trauma ~ Health + Social dep + Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0607 0.0134 0.3345 0.0739 0.3345 5.97E-06 
Lifetime trauma ~ Sexual Partners 0.1379 0.1251 0.1020 0.0925 0.1020 2.70E-01 
Lifetime trauma ~ Tiredness 0.5097 0.2210 0.3100 0.1344 0.3100 2.11E-02 
Lifetime trauma ~ Subj.wellbeing -1.0953 0.2537 -0.4058 0.0940 -0.4058 1.57E-05 
Lifetime trauma ~ Risk 0.7523 0.1156 0.4017 0.0617 0.4017 7.49E-11 
Lifetime trauma ~ Social dep 0.5046 0.3315 0.2309 0.1517 0.2309 1.28E-01 
Lifetime trauma ~ Health 0.3257 0.2059 0.2388 0.1510 0.2388 1.14E-01 
         
G) Lifetime trauma ~ Age first birth + Health + Social dep + Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0561 0.0144 0.3089 0.0792 0.3089 9.59E-05 
Lifetime trauma ~ Sexual Partners 0.1504 0.1281 0.1112 0.0947 0.1112 2.40E-01 
Lifetime trauma ~ Tiredness 0.5914 0.2316 0.3597 0.1408 0.3597 1.06E-02 
Lifetime trauma ~ Subj.wellbeing -1.2061 0.2859 -0.4468 0.1059 -0.4468 2.47E-05 
Lifetime trauma ~ Risk 0.7001 0.1190 0.3739 0.0636 0.3739 4.04E-09 
Lifetime trauma ~ Social dep 0.3391 0.3692 0.1552 0.1689 0.1552 3.58E-01 
Lifetime trauma ~ Health 0.5231 0.2448 0.3836 0.1795 0.3836 3.26E-02 
Lifetime trauma ~ Age first birth -0.4110 0.2126 -0.2263 0.1171 -0.2263 5.32E-02 
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H) Lifetime trauma ~ Ever Smoker + Age first birth + Health + Social dep + Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0556 0.0144 0.3063 0.0792 0.3063 1.10E-04 
Lifetime trauma ~ Sexual Partners 0.1822 0.1235 0.1347 0.0913 0.1347 1.40E-01 
Lifetime trauma ~ Tiredness 0.5731 0.2353 0.3485 0.1431 0.3485 1.49E-02 
Lifetime trauma ~ Subj.wellbeing -1.2040 0.2856 -0.4461 0.1058 -0.4461 2.49E-05 
Lifetime trauma ~ Risk 0.7045 0.1203 0.3762 0.0643 0.3762 4.76E-09 
Lifetime trauma ~ Social dep 0.3907 0.3996 0.1788 0.1829 0.1788 3.28E-01 
Lifetime trauma ~ Health 0.5051 0.2457 0.3704 0.1802 0.3704 3.98E-02 
Lifetime trauma ~ Age first birth -0.4178 0.2110 -0.2300 0.1162 -0.2300 4.77E-02 
Lifetime trauma ~ Ever smoker -0.0967 0.0926 -0.0687 0.0657 -0.0687 2.96E-01 
         
I) Lifetime trauma ~ Neuroticism + Ever Smoker + Age first birth + Health + Social dep + Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0532 0.0175 0.2930 0.0962 0.2930 2.31E-03 
Lifetime trauma ~ Neuroticism -0.2462 0.2578 -0.1938 0.2029 -0.1938 3.40E-01 
Lifetime trauma ~ Sexual Partners 0.1337 0.1470 0.0988 0.1087 0.0988 3.63E-01 
Lifetime trauma ~ Tiredness 0.7916 0.4134 0.4815 0.2515 0.4815 5.55E-02 
Lifetime trauma ~ Subj.wellbeing -1.5155 0.5728 -0.5615 0.2122 -0.5615 8.15E-03 
Lifetime trauma ~ Risk 0.7016 0.1315 0.3747 0.0702 0.3747 9.45E-08 
Lifetime trauma ~ Social dep 0.2843 0.4785 0.1301 0.2190 0.1301 5.52E-01 
Lifetime trauma ~ Health 0.6516 0.3785 0.4779 0.2776 0.4779 8.52E-02 
Lifetime trauma ~ Age first birth -0.5221 0.3189 -0.2875 0.1756 -0.2875 1.02E-01 
Lifetime trauma ~ Ever smoker -0.0504 0.1246 -0.0357 0.0885 -0.0357 6.86E-01 
         
J) Lifetime trauma ~ Number of offspring + Neuroticism + Ever Smoker + Age first birth + Health + Social dep + Risk + Subj.wellbeing + Tiredness + Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0513 0.0206 0.2826 0.1132 0.2826 1.26E-02 
Lifetime trauma ~ Neuroticism -0.3229 0.3775 -0.2542 0.2972 -0.2542 3.92E-01 
Lifetime trauma ~ Number offspring -0.4613 0.6782 -0.1669 0.2454 -0.1669 4.96E-01 
Lifetime trauma ~ Sexual partners 0.0839 0.1948 0.0620 0.1441 0.0620 6.67E-01 
Lifetime trauma ~ Tiredness 0.9590 0.6509 0.5833 0.3959 0.5833 1.41E-01 
Lifetime trauma ~ Subj.wellbeing -1.6329 0.7584 -0.6050 0.2810 -0.6050 3.13E-02 
Lifetime trauma ~ Risk 0.7707 0.1724 0.4116 0.0921 0.4116 7.84E-06 
Lifetime trauma ~ Social dep 0.2354 0.5586 0.1077 0.2556 0.1077 6.73E-01 
Lifetime trauma ~ Health 0.8305 0.6314 0.6090 0.4630 0.6090 1.88E-01 
Lifetime trauma ~ Age first birth -0.8258 0.7510 -0.4547 0.4135 -0.4547 2.72E-01 
Lifetime trauma ~ Ever smoker -0.0329 0.1514 -0.0234 0.1074 -0.0234 8.28E-01 
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K) Lifetime trauma ~ Insomnia + Number of offspring + Neuroticism + Ever Smoker + Age first birth + Health + Social dep + Risk + Subj.wellbeing + Tiredness + 
Sexual Partners 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0451 0.0239 0.2483 0.1316 0.2483 5.92E-02 
Lifetime trauma ~ Neuroticism -0.3443 0.4291 -0.2711 0.3378 -0.2711 4.22E-01 
Lifetime trauma ~ Number offspring -0.6231 0.8197 -0.2254 0.2965 -0.2254 4.47E-01 
Lifetime trauma ~ Insomnia -0.3507 0.2304 -0.2404 0.1579 -0.2404 1.28E-01 
Lifetime trauma ~ Sexual partners 0.0791 0.2128 0.0585 0.1574 0.0585 7.10E-01 
Lifetime trauma ~ Tiredness 1.1702 0.8056 0.7117 0.4900 0.7117 1.46E-01 
Lifetime trauma ~ Subj.wellbeing -1.7841 0.9023 -0.6610 0.3343 -0.6610 4.80E-02 
Lifetime trauma ~ Risk 0.7841 0.1917 0.4187 0.1024 0.4187 4.29E-05 
Lifetime trauma ~ Social dep 0.2508 0.6178 0.1148 0.2827 0.1148 6.85E-01 
Lifetime trauma ~ Health 0.8974 0.7256 0.6581 0.5321 0.6581 2.16E-01 
Lifetime trauma ~ Age first birth -1.0058 0.9178 -0.5538 0.5054 -0.5538 2.73E-01 
Lifetime trauma ~ Ever smoker -0.0292 0.1683 -0.0207 0.1195 -0.0207 8.62E-01 

 

L) Cross Psychological & Social trait genetic correlations 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value_diff_0 p_value_diff_1 
Neuroticism ~~ Number offspring 0.0017 0.0018 0.0322 0.0346 0.0322 3.52E-01 3.652E-172 
Neuroticism ~~ Insomnia 0.0370 0.0043 0.3779 0.0444 0.3779 1.58E-17 1.3302E-44 
Number offspring ~~ Insomnia 0.0054 0.0028 0.1199 0.0632 0.1199 5.79E-02 4.426E-44 
Sexual partners ~~ Neuroticism 0.0009 0.0029 0.0081 0.0278 0.0081 7.70E-01 8.117E-279 
Sexual partners ~~ Number offspring 0.0075 0.0017 0.1536 0.0342 0.1536 7.10E-06 3.215E-135 
Sexual partners ~~ Insomnia 0.0190 0.0041 0.2067 0.0440 0.2067 2.66E-06 1.1423E-72 
Sexual partners ~~ Tiredness 0.0190 0.0029 0.2327 0.0360 0.2327 9.8E-11 8.439E-101 
Sexual partners ~~ Subj.wellbeing -0.0086 0.0017 -0.1734 0.0351 -0.1734 7.83E-07 1.26E-122 
Sexual partners ~~ Risk 0.0425 0.0022 0.5928 0.0310 0.5928 1.32E-81 2.0617E-39 
Sexual partners ~~ Social dep 0.0295 0.0028 0.4803 0.0463 0.4803 3.32E-25 3.087E-29 
Sexual partners ~~ Health -0.0184 0.0030 -0.1866 0.0309 -0.1866 1.51E-09 1.029E-152 
Sexual partners ~~ Age first birth -0.0170 0.0020 -0.2299 0.0268 -0.2299 1.03E-17 1.392E-181 
Sexual partners ~~ Ever smoker 0.0511 0.0024 0.5367 0.0253 0.5367 1.75E-99 6.6078E-75 
Tiredness ~~ Neuroticism 0.0498 0.0037 0.5728 0.0429 0.5728 1.39E-40 2.326E-23 
Tiredness ~~ Number offspring 0.0089 0.0023 0.2217 0.0573 0.2217 1.09E-04 5.0585E-42 
Tiredness ~~ Insomnia 0.0436 0.0050 0.5758 0.0665 0.5758 4.74E-18 1.7831E-10 
Tiredness ~~ Subj.wellbeing -0.0232 0.0023 -0.5670 0.0560 -0.5670 4.07E-24 1.0575E-14 
Tiredness ~~ Risk 0.0078 0.0022 0.1315 0.0376 0.1315 4.64E-04 4.804E-118 
Tiredness ~~ Social dep 0.0256 0.0035 0.5059 0.0691 0.5059 2.45E-13 8.6458E-13 
Tiredness ~~ Health -0.0620 0.0049 -0.7663 0.0600 -0.7663 2.17E-37 9.8199E-05 
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Tiredness ~~ Age first birth -0.0209 0.0026 -0.3439 0.0435 -0.3439 2.76E-15 2.103E-51 
Tiredness ~~ Ever smoker 0.0201 0.0026 0.2560 0.0335 0.2560 2.35E-14 2.814E-109 
Subj.wellbeing ~~ Neuroticism -0.0351 0.0025 -0.6633 0.0469 -0.6633 2.28E-45 7.017E-13 
Subj.wellbeing ~~ Number offspring -0.0001 0.0013 -0.0021 0.0547 -0.0021 9.69E-01 2.3457E-74 
Subj.wellbeing ~~ Insomnia -0.0201 0.0028 -0.4356 0.0602 -0.4356 4.75E-13 6.8904E-21 
Subj.wellbeing ~~ Risk 0.0019 0.0013 0.0518 0.0366 0.0518 1.57E-01 5.539E-148 
Subj.wellbeing ~~ Social dep -0.0096 0.0022 -0.3117 0.0730 -0.3117 1.98E-05 4.1494E-21 
Subj.wellbeing ~~ Health 0.0236 0.0026 0.4779 0.0529 0.4779 1.66E-19 5.6409E-23 
Subj.wellbeing ~~ Age first birth 0.0034 0.0017 0.0908 0.0457 0.0908 4.71E-02 4.499E-88 
Subj.wellbeing ~~ Ever smoker -0.0076 0.0016 -0.1587 0.0330 -0.1587 1.51E-06 2.301E-143 
Risk ~~ Neuroticism -0.0041 0.0023 -0.0535 0.0295 -0.0535 6.98E-02 7.197E-226 
Risk ~~ Number offspring 0.0107 0.0015 0.3052 0.0433 0.3052 1.89E-12 6.0783E-58 
Risk ~~ Insomnia 0.0058 0.0030 0.0869 0.0450 0.0869 5.33E-02 1.5407E-91 
Risk ~~ Social dep 0.0092 0.0022 0.2083 0.0504 0.2083 3.62E-05 1.3262E-55 
Risk ~~ Health -0.0081 0.0026 -0.1144 0.0362 -0.1144 1.60E-03 3.564E-132 
Risk ~~ Age first birth -0.0119 0.0018 -0.2224 0.0330 -0.2224 1.67E-11 9.099E-123 
Risk ~~ Ever smoker 0.0222 0.0018 0.3222 0.0262 0.3222 8.69E-35 1.441E-147 
Social dep ~~ Neuroticism 0.0074 0.0028 0.1139 0.0430 0.1139 8.14E-03 2.3762E-94 
Social dep ~~ Number offspring 0.0084 0.0021 0.2811 0.0715 0.2811 8.56E-05 8.7725E-24 
Social dep ~~ Insomnia 0.0233 0.0044 0.4101 0.0773 0.4101 1.11E-07 2.3239E-14 
Social dep ~~ Health -0.0379 0.0038 -0.6219 0.0628 -0.6219 4.33E-23 1.7366E-09 
Social dep ~~ Age first birth -0.0261 0.0029 -0.5711 0.0623 -0.5711 4.98E-20 5.8019E-12 
Social dep ~~ Ever smoker 0.0343 0.0025 0.5811 0.0429 0.5811 1.04E-41 1.5979E-22 
Health ~~ Neuroticism -0.0320 0.0049 -0.3058 0.0467 -0.3058 5.83E-11 5.5535E-50 
Health ~~ Number offspring -0.0108 0.0024 -0.2248 0.0508 -0.2248 9.55E-06 1.4159E-52 
Health ~~ Insomnia -0.0466 0.0053 -0.5109 0.0583 -0.5109 1.99E-18 4.8877E-17 
Health ~~ Age first birth 0.0439 0.0030 0.5996 0.0406 0.5996 2.1E-49 6.0784E-23 
Health ~~ Ever smoker -0.0357 0.0027 -0.3775 0.0285 -0.3775 5.26E-40 9.24E-106 
Age first birth ~~ Neuroticism -0.0105 0.0024 -0.1334 0.0306 -0.1334 1.31E-05 1.946E-176 
Age first birth ~~ Number offspring -0.0241 0.0016 -0.6669 0.0456 -0.6669 1.62E-48 2.7763E-13 
Age first birth ~~ Insomnia -0.0238 0.0036 -0.3477 0.0530 -0.3477 5.49E-11 8.2492E-35 
Age first birth ~~ Ever smoker -0.0281 0.0021 -0.3960 0.0303 -0.3960 3.96E-39 2.0642E-88 
Ever smoker ~~ Neuroticism 0.0101 0.0023 0.1000 0.0231 0.1000 1.44E-05 0.00E+00 
Ever smoker ~~ Number offspring 0.0098 0.0016 0.2104 0.0345 0.2104 1.07E-09 6.267E-116 
Ever smoker ~~ Insomnia 0.0205 0.0035 0.2317 0.0395 0.2317 4.35E-09 2.8786E-84 
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Supplementary table 10: A-G Genomic SEM multivariable models where each psychiatric disorder is introduced in iterative stages, in 
order of the most highly genetically correlated trait with self-reported lifetime trauma.
 Model (G) standardised results is the final model included in the main analyses. Each model takes into account the genetic correlations across 
Psychiatric disorders, but for simplicity, these genetic correlations are only shown in Supplementary Table 4H.   

A) Lifetime trauma ~ MDD 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.1179 0.0111 0.6496 0.0612 0.6496 2.43E-26 
Lifetime trauma ~ MDD 0.8637 0.0447 0.5920 0.0306 0.5920 2.57E-83 
         
B) Lifetime trauma ~ Anxiety + MDD  
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.1166 0.0102 0.6426 0.0563 0.6426 3.21E-30 
Lifetime trauma ~ MDD 0.6535 0.2292 0.4479 0.1571 0.4479 4.35E-03 
Lifetime trauma ~ ANX 0.1822 0.1841 0.1667 0.1684 0.1667 3.22E-01 
         
C) Lifetime trauma ~ PTSD symptoms + Anxiety + MDD  
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.1080 0.0106 0.5951 0.0586 0.5951 3.16E-24 
Lifetime trauma ~ MDD 0.5134 0.2264 0.3518 0.1552 0.3518 2.34E-02 
Lifetime trauma ~ ANX 0.1074 0.1897 0.0983 0.1736 0.0983 5.71E-01 
Lifetime trauma ~ PTSD 0.4303 0.0921 0.2697 0.0577 0.2697 3.00E-06 
         
D) Lifetime trauma ~ ASD + PTSD symptoms + Anxiety + MDD  
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0943 0.0115 0.5195 0.0633 0.5195 2.15E-16 
Lifetime trauma ~ MDD 0.1941 0.2709 0.1331 0.1857 0.1331 4.74E-01 
Lifetime trauma ~ ANX 0.1458 0.2064 0.1334 0.1888 0.1334 4.80E-01 
Lifetime trauma ~ PTSD 0.5338 0.1017 0.3345 0.0638 0.3345 1.55E-07 
Lifetime trauma ~ ASD 0.3976 0.0880 0.3191 0.0706 0.3191 6.18E-06 
         
E) Lifetime trauma ~ Alcohol dependence + ASD + PTSD symptoms + Anxiety + MDD 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0864 0.0135 0.4757 0.0743 0.4757 1.50E-10 
Lifetime trauma ~ MDD 0.1290 0.2932 0.0884 0.2009 0.0884 6.60E-01 
Lifetime trauma ~ ANX 0.0642 0.2428 0.0587 0.2221 0.0587 7.92E-01 
Lifetime trauma ~ PTSD 0.4377 0.1151 0.2743 0.0722 0.2743 1.44E-04 
Lifetime trauma ~ ASD 0.4563 0.0943 0.3662 0.0757 0.3662 1.30E-06 
Lifetime trauma ~ ALCH 0.3579 0.1829 0.2565 0.1310 0.2565 5.03E-02 
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F) Lifetime trauma ~ ADHD + Alcohol dependence + ASD + PTSD symptoms + Anxiety + MDD 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0862 0.0138 0.4750 0.0758 0.4750 3.64E-10 
Lifetime trauma ~ MDD 0.1406 0.3096 0.0964 0.2122 0.0964 6.50E-01 
Lifetime trauma ~ ANX 0.0496 0.2710 0.0454 0.2479 0.0454 8.55E-01 
Lifetime trauma ~ PTSD 0.4602 0.1415 0.2884 0.0887 0.2884 1.15E-03 
Lifetime trauma ~ ASD 0.4716 0.1157 0.3785 0.0929 0.3785 4.60E-05 
Lifetime trauma ~ ALCH 0.3759 0.2174 0.2694 0.1558 0.2694 8.37E-02 
Lifetime trauma ~ ADHD -0.0338 0.1042 -0.0373 0.1152 -0.0373 7.46E-01 
         
G) Lifetime trauma ~ SCZ + ADHD + Alcohol dependence + ASD + PTSD symptoms + Anxiety + MDD 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0847 0.0130 0.4667 0.0718 0.4667 8.00E-11 
Lifetime trauma ~ MDD 0.1328 0.2980 0.0910 0.2042 0.0910 6.56E-01 
Lifetime trauma ~ ANX 0.0426 0.2612 0.0390 0.2389 0.0390 8.70E-01 
Lifetime trauma ~ PTSD 0.4466 0.1371 0.2799 0.0859 0.2799 1.13E-03 
Lifetime trauma ~ ASD 0.4429 0.1202 0.3555 0.0964 0.3555 2.28E-04 
Lifetime trauma ~ ALCH 0.3253 0.2256 0.2331 0.1617 0.2331 1.49E-01 
Lifetime trauma ~ ADHD -0.0149 0.1048 -0.0164 0.1159 -0.0164 8.87E-01 
Lifetime trauma ~ SCZ 0.0857 0.0453 0.1026 0.0542 0.1026 5.84E-02 
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Supplementary table 11: Genomic SEM genomic multiple regression analyses of independently contributing traits to self-reported 
lifetime trauma, selected based on results shown in supplmentary table 9K and supplementary table 10G.  
The model takes into account the genetic correlations across traits.         

Final independent traits model: Lifetime trauma ~ ASD + Risk + Subjective wellbeing + PTSD Symptoms 
Phenotype 1 op  Phenotype 2 Unstand_Est Unstand_SE STD_Genotype STD_Genotype_SE STD_All p_value 
Lifetime trauma ~~ Lifetime trauma 0.0598 0.0124 0.3292 0.0683 0.3292 1.46E-06 
Lifetime trauma ~ Subjective wellbeing -0.8918 0.2254 -0.3304 0.0835 -0.3304 7.60E-05 
Lifetime trauma ~ Risk 0.8521 0.0833 0.4550 0.0445 0.4550 1.45E-24 
Lifetime trauma ~ ASD 0.3528 0.0756 0.2832 0.0607 0.2832 3.06E-06 
Lifetime trauma ~ PTSD 0.3947 0.0932 0.2474 0.0584 0.2474 2.27E-05 
ASD ~~ PTSD 0.0118 0.0040 0.1295 0.0438 0.1295 3.1E-03 
Subjective wellbeing ~~ ASD -0.0248 0.0029 -0.4603 0.0531 -0.4603 4.33E-18 
Risk ~~ ASD 0.0013 0.0036 0.0161 0.0464 0.0161 7.3E-01 
Subjective wellbeing ~~ PTSD -0.0169 0.0019 -0.4007 0.0447 -0.4007 3.39E-19 
Risk ~~ PTSD 0.0148 0.0017 0.2436 0.0283 0.2436 6.66E-18 
Subjective wellbeing ~~ Risk 0.0019 0.0013 0.0518 0.0366 0.0518 1.6E-01 
Trauma ~~ Trauma 0.0598 0.0124 0.3292 0.0683 0.3292 1.46E-06 
Subjective wellbeing ~~ Subjective wellbeing 0.0249 0.0020 1.0000 0.0811 1.0000 5.91E-35 
Risk ~~ Risk 0.0518 0.0023 1.0000 0.0439 1.0000 9.56E-115 
ASD ~~ ASD 0.1169 0.0089 1.0000 0.0765 1.0000 4.99E-39 
PTSD ~~ PTSD 0.0713 0.0039 1.0000 0.0544 1.0000 1.80E-75 

 
 
Link access to Supplementary Table 12: GWAS summary statistics data availability information.
Details on data availability and download link for each GWAS summary statistic used in Chapter 3 is available via the following link 
https://tinyurl.com/Chapter3AppendixBTables. 
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Supplementary Tables  
 
 
Supplementary Table 1: Proportion of participants with lifetime experience of a 
depressive or anxiety disorder diagnoses in the GLAD+ and AGDS datasets, total N 
= 15,131  

GLAD+  AGDS 
GLAD Study  COPING Study  

N = 5,667 N = 1,869 N = 7,595 
Depression 3102 (96.8%)  1692 (90.5%) 7595 (100.0%) 
Generalised anxiety disorder 2762 (86.2%) 1037 (55.5%) 5274 (69.4%) 
Panic disorder 1393 (43.4%) 241 (12.9%) 2496 (32.9%) 
Agoraphobia 562 (17.5%) 83 (4.4%) 489 (6.4%) 
Social anxiety 1430 (44.6%) 243 (13.0%) 1555 (20.5%) 
Specific phobia 810 (25.3%) 195 (10.4%) 941 (12.3%) 

Lifetime experience of a depressive or anxiety disorder is defined by participants either 
meeting diagnostic criteria based on reported symptoms or reporting receiving a diagnosis 
from a medical professional (any doctor, nurse or person with specialist training, such as a 
psychologist or psychiatrist). Further detail is given in Davies et al.1. 
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Supplementary Table 2: Proportion of types of reported psychological treatments. 

Treatment type 

GLAD+ 

AGDS  
GLAD 
Study 

COPING 
Study 

Self-reported benefit from therapy - adapted CIDI-SF 
modules* n = 3206 n = 1869  

Cognitive behavioural therapy (CBT) 
2075 

(64.7%) 878 (47.0%) - 

Counselling 
2579 

(80.4%) 
1569 

(83.9%) - 

Group therapy 
652 

(20.3%) 244 (13.1%) - 

Guided self-help 
897 

(28.0%) 365 (19.5%) - 

Workshops 
441 

(13.8%) 156 (8.3%) - 
Relationship therapy 272 (8.5%) 203 (10.9%) - 
Family therapy 218 (6.8%) 97 (5.2%) - 

Online therapy 
519 

(16.2%) 161 (8.6%) - 
Other 279 (8.7%) 102 (5.5%) - 

Self-reported improvement in symptoms/functioning 
- optional lifetime treatment history questionnaire N =2461  N=7595 

Cognitive behavioural therapy (CBT) 
839 

(34.1%) - 2462 
(32.4%) 

Counselling 
1076 

(43.7%) - 4041 
(53.2%) 

Group therapy 241 (9.8%) - 240 (3.2%) 

Other 
305 

(12.4%) - 852 
(11.2%) 

*For individuals from the GLAD+ dataset with self-reported benefit from therapy in relation to 
multiple disorders, responses were selected hierarchically. Responses from the major 
depression module were preferentially selected (94% of responses) to correspond as closely 
as possible with participants from AGDS, who were all ascertained on the basis of a lifetime 
depression diagnosis. When unavailable, responses were selected in relation to generalised 
anxiety disorder (4%), panic disorder (2%), agoraphobia (<1%), specific phobia (<1%), then 
social anxiety (<1%). Breakdown of treatment types is provided in relation to the selected 
disorder. Rates of different treatment types were comparable across disorder, but are not 
given for each disorder due to small sample sizes for some disorders resulting in potentially 
identifiable data. In the CIDI-SF modules, participants were able to report receiving more 
than one type of treatment, hence the total responses is greater than the sample size.  
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Supplementary Table 3: Genome-wide association study summary statistics used to 
derived polygenic scores in the GLAD+ dataset 

Trait GWAS reference 
N  
(N cases) h2

SNP (SE) 

ADHD Demontis et al. (2019) 
53,293 
(19,099) 0.240 (0.015) 

Daily alcohol use Schumann et al. (2016) 70,460 0.052 (0.008) 

Anorexia nervosa Watson et al. (2019) 
72,517 
(16,992) 0.174 (0.011) 

Anxiety Purves et al. (2018) 
83,566 
(25,453) 0.104 (0.07) 

Autism Grove et al. (2019) 
46,350 
(18,381) 0.203 (0.015) 

Bipolar disorder Stahl et al. (2019) 
51,710 
(20,352) 0.347 (0.016) 

Body mass index Locke et al. (2018) 693,529 0.158 (0.005) 
Sleep duration Jones et al. (2016) 128,266 0.055 (0.005) 

Cross disorder PGC (2013) 
61,220 
(33,332) 0.175 (0.011) 

Depressive symptoms Okbay et al. (2016) 161,460 0.047 (0.004) 
Major depressive disorder 
(PGC2, no 23andMe) Wray et al. (2018) 

143,265 
(45,591) 0.072 (0.001) 

Broad depression 
Howard et al. (2019) 
excl 23andme 

500,199 
(329,443) 0.089  (0.003) 

Diabetes Type 2 Scott et al. (2017) 
159,208 
(26,676) 0.078 (0.005) 

Educational attainment Lee et al. (2018) 766,345 0.107 (0.003) 
Health Harris et al. (2017) 111,483 0.098 (0.006) 
Household income Hill et al. (2016) 112,151 0.060 (0.006) 

Insomnia Jansen et al. (2019) 
386,533 
(109,402) 

0.0459 
(0.002) 

Intelligence Savage et al. (2018) 269,867 0.183 (0.006) 
Memory Davies et al. (2016) 112,067 0.043 (0.005) 
Neuroticism Hübel et al. (2019) 287,535 0.110 (0.005) 
Obsessive compulsive disorder IOCDF (2018) 9,725 (2,688) 0.338 (0.048) 

Physical activity 
Unpublished - 
Hanscombe (2018) 66,224 0.143 (0.010) 

Post-traumatic stress disorder Nievergelt et al. (2019) 
174,659 
(23,212) 0.016 (0.003) 

Age at first birth Barban et al. (2016) 251,151 0.055 (0.003) 
General risk tolerance Linnér et al. (2019) 466,571 0.052 (0.002) 

Schizophrenia PGC (2014) 
77,096 
(33,640) 0.455 (0.016) 

Ever smoker Linnér et al. (2019) 518,663 0.109 (0.003) 
   

 

  



 245 

 
Supplementary Table 4: Comparison of models predicting retrospectively self-
reported psychological treatment outcomes using genetic, sociodemographic and 
clinical predictors, and all predictors in the GLAD+ dataset (N = 4,439) 

Model 1 Model 2 

Pearson correlation 
between model 
predictions and 
outcome (R) 

Differen
ce in R 

p-value of 
difference 
in R Model 1 Model 2 

Genetic predictors 

Sociodemograph
ic and clinical 
predictors 0.041 0.123 0.082 3.9×10−5 

Genetic predictors All predictors 0.041 0.115 0.075 3.2×10−9 
Sociodemographic 
and clinical 
predictors All predictors 0.123 0.115 -0.008 0.409 

 
 
Supplementary Table 5: Standardised coefficients for the predictors retained in the 
final model based on the average optimal λ tuning parameter following 10-fold 
cross validation  
Predictor Beta  
(Intercept) 1.392 
Sociodemographic 

Sex 0.024 
University degree 0.122 

Clinical 
Number of episodes -0.239 

Genetic 
ADHD -0.081 
Daily alcohol use 0.003 
Anorexia nervosa . 
Anxiety 0.026 
Autism . 
Bipolar disorder 0.036 
Body mass index -0.031 
Sleep duration 0.044 
Cross disorder -0.075 
Depressive symptoms -0.042 
Major depressive disorder (PGC2, no 23andMe) . 
Broad depression 0.076 
Diabetes Type 2 0.014 
Educational attainment 0.001 
Self-reported health 0.066 
Household income -0.020 
Insomnia -0.038 
Intelligence -0.008 
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Memory -0.014 
Neuroticism 0.043 
Obsessive compulsive disorder -0.029 
Physical activity 0.001 
Post-traumatic stress disorder -0.016 
Age at first birth 0.060 
General risk tolerance 0.051 
Schizophrenia 0.023 
Ever smoker . 

Variance explained on the liability scale (R2) 6.01% 
R2 represents variance explained on the liability scale within the full dataset, determined 
using a prevalence of 41% for response to psychological therapy 2.  
 
Standardised coefficients for the predictors retained in the model following elastic net 
regularisation were obtained by re-estimating the cross-validated model in the full data set 
using the average optimal λ tuning parameter, identified from each inner model 
development loop (Supplementary Figure S1). Out of the 30 predictors, 26 were retained 
in the final model, based on an average λ tuning parameter of 0.009210859 (range: 
0.008790644–0.009591377) and α of 0.1. 
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Supplementary Figures 
 
Supplementary Figure 1: Nested 10-fold cross validation.
Figure adapted from Meehan et al.3 
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Supplementary Figure 2: Q-Q plot (upper) and Manhattan plot (lower) of results from 
GWAS of retrospectively self-reported treatment outcomes in the GLAD+ dataset. 
In the Manhattan plot, dashed line indicates suggestive threshold (p < 1 x 10−5) for genetic 
variants associated with retrospectively self-reported treatment outcomes (N = 5693; 75% 
reported benefit/improvement).  
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Supplementary Figure 3:  Q-Q plot (upper) and Manhattan plot (lower) of results from 
GWAS of retrospectively self-reported treatment outcomes in the AGDS dataset.  
In the Manhattan plot, dashed line indicates suggestive threshold (p < 1 x 10−5) for genetic 
variants associated with retrospectively self-reported treatment outcomes (N = 5715; 75% 
reported improvement)).  
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