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’Tis time
I should inform thee farther. Lend thy hand
And pluck my magic garment from me.

- Prospero

3



4



Acknowledgements

I acknowledge support by the EPSRC Centre for Doctoral Training in Cross-disciplinary
Approaches to Non-Equilibrium Systems (CANES EP/L015854/1), and the use of the
research computing facility at King’s College London, Rosalind (https://rosalind.kcl.ac.uk).

Special thanks goes to (in alphabetical order by last name) Mark Crumpton, Dr Diede
Fennema and Jan-Paul Lerch for proofreading all or parts of this thesis, and to DF twice
over for suggesting the verb “to crimp” instead of “to necklacify” and for taking my lame
jokes about the Dutch with humour. To Gioia Boschi, Pierpaolo Modugno, Vito A.R. Susca
and Claudio Zeni for enduring my inflexibility in our small flat in Waterloo. And finally to
Luca Gamberi for excellent companionship during the ups and downs of the PhD.

5

https://rosalind.kcl.ac.uk


6



Abstract

This thesis proposes computational modelling to further the quantitative understanding of
legal problems. We design a model for the behaviour of a law user retrieving information
hidden in legal texts. The latter are typically organised in a hierarchical structure, which the
reader needs to explore down to the ‘deepest’ level (Articles, Clauses, etc ), until they have
identified an answer to their question. Following previous works on transport properties
of networks, the mean first-passage time (MFPT) taken by a random reader to retrieve
information planted in the leaves is nominated as a measure of structural complexity of
legal trees. The reader is assumed to initially skim the contents of a text, identifying
keywords based on their interests, and be drawn towards the sought information based on
keyword affinity. That is, they estimate how well the Chapter and Section headers of the
hierarchy seem to match the informational content they expect to see in their target-answer,
and follow the more promising ones with higher probability. Using randomly generated
keyword patterns, we investigate the effect of two main features of the text – the horizontal
and vertical coherence – on the searching time, and derive a few plausible high-level
consequences. We obtain numerical and analytical results, the latter by approximating
the biases imposed on the reader by the keyword patterns with the average bias obtained
by averaging over the distribution of keyword patterns. This method leads to an explicit
expression for the complexity of legal trees as a function of the structural parameters of
the model.

We present in a simple workflow how one can prepare a real Act of Parliament for
calculating its complexity and how the model parameters, for the text ensemble, can be
estimated to obtain the complexity of the ensemble, as well. This is demonstrated explicitly
on the example of the Housing Act 2004. We briefly discuss potential steps to test the
validity of the various assumptions and results of our model.

Our analytical results are powered by a novel method to calculate MFPTs for random
walks on graphs. This is a general result based on a dimensionality reduction technique for
Markov state models, known as local-equilibrium (LE). We can prove that for a broad class
of graphs, LE coarse-graining preserves the MFPTs between certain nodes if the coarse-
grained states (or clusters) are suitably chosen. The amenable class of graphs includes trees.
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This relation is exact for graphs that can be coarse-grained into a one-dimensional lattice,
where each cluster connects to the lattice only through a single node of the original graph.
The proof produces a generalisation of a well-known lemma about MFPTs along bridges,
or essential edges. This essential edge lemma (EEL) is valid for reversible random walks,
whereas our generalisation also applies to irreversible walkers. It leads to explicit formulae
for the MFPTs between certain nodes in the necklace-class of graphs. We first demonstrate
our method for the simple random walk on the 𝑐-ary tree, then we consider other graph
structures and more general random walks, including irreversible random walks. This
result is used to facilitate the analytical calculations for the reader model mentioned above.

For graphs that do not fall within the necklace class, we show that the generalised
EEL provides useful approximations if the graph allows a one-dimensional coarse-grained
representation and the clusters are either weakly interconnected or have a single dominating
edge qualifying as a nearly essential edge. The error made in this approximation can be
efficiently estimated by means of a perturbative expansion, given that the random walker is
reversible. We provide references to other works on perturbations of Markov chains that
may be useful in bounding the approximation error.
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Chapter 1

Introduction

Recent years have seen a surging interest in quantitative studies of legal systems, one of the
most elusive and intriguing properties being their complexity. As it stands, conventional
wisdom tells us that dealing with legal systems is a complex task. However, the word
“complexity” can have different meanings depending on the user of the word and what kind
of object they are describing. The present thesis puts forward an innovative approach to
define and address the complexity of a small component of legal systems - codified law.

In this chapter, we present a non-exhaustive overview of the literature related to our
work. We begin by reviewing some important achievements of social physics, before
moving over to the literature on legal network science and legal complexity. We finish the
introduction by contextualising our work within these previously mentioned topics.

1.1 Social physics

Our work follows the movement of methods from statistical physics diffusing into a
large variety of other sciences. Many of these advances have been remarkably successful,
begetting a field of research (often referred to by the very broad term socio-physics or
social physics) in its own right. It is fair to comment that the use of computational models
in some fields (such as linguistics) is not limited to “physicists invad[ing] en masse” [1].
There is, therefore, a subjective component to whether a model is deemed “mathematical”,
“physical” or computational but from “within” the relevant community. For this reason,
we largely follow the presentation of some authoritative reviews, in particular [2, 3] on a
selection of topics. Withal, there are tell-tale signs of statistical physics described in the
following paragraph, which we use as a rule of thumb to assemble a few additional works.

The effort of a social physicist on a given problem may be broadly divided into two
steps: firstly, to define a model with meaningful microscopical rules, and secondly, to
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tease out macroscopic observables therefrom. In doing so, the researcher needs to find
the balance between the refinement of the microscopic and its amenability to be studied
numerically or analytically. Frequently, the main interest lies in systems of very large
size (the thermodynamic limit), in which case the researcher can resort to statistical tools
instead of trying to solve the dynamics exactly for finite size [2]. Additionally, phase
transitions play an important role in social physics since the phases can often have a direct
interpretation in the phenomenology of the real system. For instance in [4] the two phases
in a system of Ising spins are interpreted as the situation in which either all staff work or
all staff are on strike.

A classical example is the Voter Model (reviewed in [2] and references therein).
This model describes an election with two candidates, in which every voter expresses a
preference for one or the other while interacting with their neighbours’ opinions. The
model was initially studied on a regular lattice, which implies that every node has the same
number of neighbours. In the simplest case, first introduced in [5], the system evolves by
one time step by choosing a random voter and changing their preference to the preference
of a randomly selected neighbour. The simplicity of this construction comes at the loss
of fine-grain details about individual voters, but makes the model exactly solvable. As
such, one can determine whether - in the thermodynamic limit of an infinite number of
voters - the voters will reach consensus in finite time or not. Thus, a model with simple
microscopic rules leads to macroscopic observables with obvious interpretations.

The common response to such results is to make the model gradually more interesting,
general, or realistic while retaining enough regularity to be studied. In the case of the Voter
Model, one can change the update rule for each voter (many examples are mentioned in
[2]), or place the voters on any arbitrary network, as presented in great generality in [6].
Other generalisations include time-evolving networks and multistate opinions, e.g. when
there are more than two candidates in an election [2], or the addition of a layer of “private”
opinions [7].

Physical and mathematical models have found applications in language dynamics, too -
that being the study of: evolution of, death of, and interactions between languages. Here –
before the influx of physicists – simulations have aided challenges to conventional wisdom
on reported occasions [1]. An important example contributed by mathematicians is the
seminal paper [8], which uses a minimal model to describe the evolution of two competing
languages based on each language’s social status and fraction of speakers. Microscopic
models (on the level of human interaction) for language evolution exist, in the form of
so-called language games. A popular specimen of such models is the Naming Game [9],
exhibited in its minimal form in [10]. Fundamentally, the agents of the Naming Game
engage in pairwise conversations with a positive payoff if the exchange is successful [2].
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1.1 Social physics

In the minimal game, which is amenable to analysis and simulations, one can observe a
drastic drop in the total number words in circulation after a transient period. After the
decline, all conversations are successful (i.e. all agents agree on all object-word pairs)
[10].

The evolution of language on the scale of populations is contrasted by its dynamics on
the cognitive level of individuals. While the study of human cognition is not limited to
language, it has proved a fertile environment for network science and statistical physics.
The earliest source credited with connecting cognitive processes to a semantic network
of words is [11]. Subsequently, this idea has led to a multitude of network-based studies.
Examples of works that use the physical terminology of phase transitions are given by
[12] and references therein. The authors argue that children’s command over grammar
has a sudden jump around the age of two, which is mirrored in a phase transition of their
syntactic word-network from tree-like to scale-free. More generally, [13] identifies the
sudden emergence (around the age of seven) of a large word-cluster that is connected on
several layers of word relations (e.g. similar meaning and similarities in spelling). For a
broad survey of cognitive (both semantic and lexical) network science we refer to [14, 15].

The idea of human dynamics is to model the spatial behaviour of humans as agents
based on simple movement rules. Similar efforts have been made to understand movement
patterns of foraging animals. Studies may focus on individual trajectories or on crowd
behaviour, also including vehicular traffic [3]. The analysis of individual movement
patterns especially has been marred by an absence of data, with only gradual improvements
aided by technology. A prominent example is the article [16], which used the displacement
of registered dollar bills over time as a proxy for human mobility. Reference [17] managed
to zoom in onto individual people with the help of anonymised but individually tracked
mobile phone locations. Their findings evidenced that individual trajectories are statistically
highly regular and confined, but the authors argued that the convolution of trajectories with
different scales may give rise to the scale-free statistics observed in [16]. We refer to [18]
for a survey of the cornerstones in human dynamics. Later, in chapter 4, we find ourselves
studying what are effectively individual human trajectories. However, our agent does not
move in physical but in a semantic space.

Many of the early developments in social physics suffer from the aforementioned
lack of data to utilise for comparison to theoretical predictions [2]. Econophysics, the
application of statistical physics to economic problems, is an exception to this rule. This is
because its beginnings were in the study of economic times series, for which there exists an
ample supply of empirical data [3]. The landscape of research in this area is vast and varied.
We refer to [19] for an extensive review on the recent developments and achievements of
econophysics and limit ourselves to giving one example: An important point of interest
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is the collapse from an operational to a failed system; the constituents may be banks
interconnected by their liabilities, or producers and service providers interconnected by
products and infrastructure [3]. The core idea is that the failure of one node may disrupt
the supply chain and cause a cascade of failures. In the instance of banking networks, a
defaulting bank may cause a certain asset to be devalued substantially, which may in turn
push other banks holding that asset into default. A comprehensive survey specifically on
systemic risk in financial systems is given in [20].

Computational models for the spread of diseases have gained some prominence in
recent years due to the well-known developments of the COVID-19 pandemic, when
epidemiologists used computer simulations of disease-spreading models as part of their
information package for the UK government [21]. So called compartmental models are
widespread tools in epidemiological research. These models divide the population into
groups (compartments) characterising their state with regards to the disease: One of the
simplest models frequently considered is the SIR model, attributed to [22] but independently
developed by Reed and Frost [23]. Therein an individual can be either “susceptible”,
“infected” or “recovered” (and hence, immune). Placing the dynamics of human-to-human
infections on a complex network is a natural way to allow for heterogeneity in the way
agents interact [24]. Other generalisations, particularly important for policy decisions,
include the refinement of compartments, e.g. by gender, age or occupation, or accounting
for mobility between sub-populations [21]. At the extreme end of the fine-graining
spectrum lie agent-based approaches, made feasible by increasingly powerful computers
and vast amounts of data available through online sources [3]. As a matter of fact, COVID
outbreak statistics in the UK have been partially produced by a large-scale agent-based
model [21]. Much in the spirit of statistical physics, the analysis of these models in the
context of social physics often focuses on stability and phase transitions. The phases in the
case of epidemiological modelling differ in whether a small number of infections will or
will not lead to a major outbreak [3].

We conclude the overview of social physics with a brief note on statistical network
models. A number of these have proven highly relevant, partially because they exhibit key
statistics found in social networks, and partially because one can often extract the asymp-
totic behaviour of macroscopic observables from their generative models. A comprehensive
overview can be found in the survey [25].

A foundational network model is the Erdős-Rényi(-Gilbert) model [26], which is a
network on a fixed set of 𝑁 nodes, in which every possible link appears independently
from the others with probability 𝑝. The independence of the edges often lends itself to
analytical methods, at the expense of realism: every node degree in the network is a sample
from a binomial random variable with the same parameters 𝑁 −1 and 𝑝. As such, all nodes
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tend to have very similar degrees, whereas broad or even fat-tailed degree distributions are
often considered key-characteristics that a model should exhibit [25, 27].

The Barabasi-Albert (preferential attachment) model [28] is one model giving rise to
a scale-free degree distribution via an intuitive generating mechanism: at each time step,
a new node is introduced with a set number of initial edges. The epithet “preferential
attachment” refers to the fact that new nodes connect preferentially to old nodes with high
degrees. It can then be shown that the degree distribution of this model approaches a
power-law [25]. From the generating mechanism of this model one can sometimes extract
asymptotic properties for the network ensemble in the thermodynamic limit: for instance
[29] (with involvement of this author) studies the number of communities formed in a
democratic society with two parties; the interaction network of the citizens is constructed
following the Barabasi-Albert model.

Other models have been devised to produce network statistics other than degree distri-
butions: famously, Watts and Strogatz [30] applied a rewiring algorithm to a ring-shaped
lattice. The rewiring of a fraction of edges drastically reduces the diameter of the network
while keeping a high clustering coefficient – a property now referred to as small-world

[27].
We now progress from the overview of the broad field of social physics to the more

specialised quantitative studies of legal systems, beginning with legal networks.

1.2 Legal network science

If we identify the relevant agents in a legal system and draw a dot (node or vertex) for each
of them, and if we proceed to represent their interactions by lines (edges or links), we have
represented the legal system by a network.

On a smaller scale, say for an Act of Parliament, the nodes represent pieces of the text,
usually respecting some form of hierarchy. For instance, one may draw a node for every
text Item on the level of Paragraphs and higher, and draw a line between two nodes if one
of them contains the other, such as a given “section 1” may contain a “subsection 1.2”.
The network thus reflects the natural hierarchy of the text structure. Further edges may
be employed to indicate, for instance, that one node contains text that modifies, refers to,
or annuls the text in another node (these relationships are called amendment, reference

and repeal, respectively). Bodies of text which have been modelled in this way include:
codified law, court decisions (common law) and scientific citation networks. It is this kind
of abstract system of documents that is predominantly studied in legal network science.
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Several papers from the collaboration between Katz and Bommarito from the early
2010s, [31–33], have attained seminal status in legal network science. Reference [31]
introduces a network-based distance measure for nodes in directed acyclic graphs; this
measure is used to explore clustering phenomena on the citation network of US Supreme
Court judgements. Similarly, [34] investigates the correlation between network statistics
and the importance of precedents, as well as their time evolution, in the opinion network.
In [32], the network-view of codified law described in the beginning of this section is
employed for the first time. Here, the authors study the degree distribution of the US Code.
In a later paper, [33], the authors significantly expand upon their work by conducting
an extensive statistical study of its network “skeleton” (such as size and depth of its
constituents, or interdependencies introduced by cross-references) and language (e.g. word
entropy, size of vocabulary, or length of words). An algorithm is proposed to compose a
complexity measure from their statistics that allows them to rank the Titles (highest level
of organisation in the US Code) by their complexity.

Recent studies focus on the time-evolution of legal texts in the US and Germany, using
a clustering algorithm [35]; similarly, [36] correlates changes in the Korean constitutional
law to societal changes. Other references within [35] treat the time-evolution of national
and super-national legal corpora from a network-perspective.

Several authors have noted important analogies between software and legal systems, for
instance [37], analyses the US Code based on software engineering terms. More recently,
[38] has expanded on the analogy, with a focus on symptoms and markers (called smells)
of software that are likely to become problematic in the future, e.g. through long reference
trees or duplicate phrases.

Further studies base their analysis on topic modelling, a family of machine learning
algorithms that extract “topics” from a given text (one of the most important ones, latent

Dirichlet allocation, introduced in [39]). For instance, [40] presents cases studies of the
network of opinions expressed by the Supreme Court of the Unites States, tracking proxies
for the change in topic proportions over time. The conceptual bridge to law search is
built in [41]: the authors study again the corpus of US Supreme Court opinions, where
two opinions can be connected either by a citation (directed link) or by textual similarity
(undirected or symmetric link). Textual similarity is evaluated with the help of a topic
model. The resulting graph defines a random walker whose stationary properties serve
to define a distance measure between nodes in the network. Additionally, a geometric
interpretation is used to assess the transport properties of the network, which give a measure
of how quickly a reader following the links leaves the environment of the starting node.
[42] proceeds from the work presented in [41] by testing law search models directly - the
models are tested by predicting whether, of two given texts, one should cite the other, or
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whether a human would classify the pair as “related”. These works are among the first to
study legal networks through the lens of “user experience”.

Besides explicitly network- or data-driven studies of the written law, legal scholars
have been interested in the network of agents in a legal system. The next section indicates
a number of notable works in this direction.

1.3 Legal complexity

As said in the introduction to the previous section, one can take a general stance by casting
any legal systems into a network. Notable publications are pointed out in this section.
These discuss complexity as it relates to the connection between the world, the policy-
maker, the legal practitioner, and the citizen that is subject to legal rules. Much of the work
in this area is descriptive, such as the influential article [43]. The author considers how
complexity may arise in institutional and public challenges, to what cost, and to what and
whose benefit. They compile a number of principles by which to assess and potentially
reduce complexity. Reference [44] explores the idea of beneficiaries of complexity further,
coming to the conclusion that a lawyer’s interest may lie in an intermediate level of
complexity: too high complexity deters individuals from taking cases to the courts, while
too low complexity does not warrant hiring a lawyer.

Reference [45] pushes towards a more quantitative, information theoretical understand-
ing of legal uncertainty and discusses the inequalities and biases caused by it. Expanding
on the notion of uncertainty, [46] proposes to estimate the Shannon entropies of various
aspects of legal systems and assign a total entropy based on these estimates. We also refer
to [46] for an overview of the historical development of legal entropy.

By correlating network properties of legal systems and their potential outputs and
effects (e.g. laws leading to the creation of commentary and by-laws), [47] understands
complexity as a problem of knowledge management. One of the first to apply the language
of complex adaptive systems to legal systems is [48]. The author proffers an extensive list
of correspondences between the two. An earlier discussion and extensive review of the
description of legal systems as complex adaptive systems is given in [49].

1.4 A parametric model for law search

The matter of this thesis touches on some of the above topics from an angle that has
until now been largely absent from the field. Instead of data-driven studies, we follow
the school of social physics by constructing a “physical” model based on intuitive and
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simple microscopic rules to study their effect on a macroscopic observable. The principal
model presented in this thesis is, in part, a model for a reader navigating a heterogeneous
semantic landscape, and in the other part a model of the semantic landscape itself. To
our knowledge, such a combination of models has not been studied before, neither in the
context of human dynamics nor in fields focusing on text models or text comprehension.
Moreover, in contrast to most works in social physics, we can extract approximate results
from networks of finite size.

In the review [50], the Office of the Parliamentary Council acknowledged the complex-
ity of legal systems as a timely problem. The text outlines a number of specific causes
for “excessive” complexity and concerns attached to them. With the present thesis, we
extend this idea by proposing a complexity measure for Acts of Parliament that facilitates
the comparison of different layouts and drafts. Our complexity measure depends on the
structural layout (the topology) of the Act and can either incorporate a single instance of
text (numerically) or some macroscopic parameters thereof (analytically).

For over a decade the field of legal network science has been maturing under the
influence of researchers with a variety of backgrounds. We hope that a line of research
looking to state quantifiable hypotheses will be widely appreciated. The remaining chapters
describe the attempts of our own to do so.

In chapter 2, we propose a novel method to calculate mean first-passage times (MFPTs)
for random walks on graphs. This method is based on a dimensionality reduction technique
for Markov state models known as local equilibrium (LE). We show that for a broad class
of graphs, LE coarse-graining preserves the MFPTs between certain nodes, upon making a
suitable choice of the coarse-grained states (or clusters). Trees are included in this class of
graphs. We prove that this relation is exact for graphs that can be coarse-grained into a
one-dimensional lattice where each cluster connects to the lattice only through a single
node of the original graph. The proof also produces a generalisation of the well-known
essential edge lemma (EEL), which is valid for reversible random walks. The generalised
EEL (GEEL) also applies to irreversible walkers. Such a generalised EEL leads to explicit
formulae for the MFPTs between certain nodes in this class of graphs. We first demonstrate
our method for the simple random walk on the 𝑐-ary tree, then we consider other graph
structures and more general random walks including irreversible random walks. We refer
the reader to section 2.2 for a brief review of basic facts and definitions concerning Markov
chains on finite state spaces and in discrete time.

In chapter 3, we show evidence that if a graph allows a one-dimensional coarse-grained
representation with clusters that are sparsely interconnected, the GEEL provides useful
approximations even if the graph is not a necklace. This chapter comprises numerical
studies alongside a method to estimate the error made in this approximation.
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Chapter 4 introduces a model for the retrieval of information hidden in Acts of Par-
liament. These are typically organised in a hierarchical (tree) structure, which a reader
interested in a given provision needs to explore down to the “deepest” level (Articles1,
Clauses, or lower). We assess the structural complexity of legal trees by computing the
MFPT a random reader takes to retrieve information planted in the leaves. The reader is
assumed to skim through the content of a legal text based on their interests and relating
keywords, and be drawn towards the sought information based on keywords affinity. That
is, they judge how well the Chapter and Section headers of the hierarchy seem to match
the informational content of the leaves. Using randomly generated keyword patterns, we
investigate the effect of two main features of the text – the horizontal and vertical coherence
– on the searching time. We obtain numerical and analytical results, the latter based on
a mean-field approximation on the level of patterns. This leads to an explicit expression
for the complexity of legal trees as a function of the structural parameters of the model.
We discuss the implications of our results on the policy drafting process, as well as their
limitations and potential for further development.

In chapter 5, we go through the practical task of taking an Act of Parliament, reducing it
to its most informative keywords, and calculating its complexity as defined in the previous
chapter 4. The procedure is modular, such that various preprocessing and estimation steps
can be easily switched for others. Building blocks and a Jupyter notebook in Python are
provided for the interested reader.

Chapter 6 summarises our findings and highlights the connections between the technical
and applied chapters. We also point out some of the open problems left or created by our
work. Finally, we consider ways to test the results of chapter 4 experimentally using real
legal texts.

1Hierarchical Items of a legal text will be capitalised to distinguish them from the items of the present
thesis.
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Chapter 2

Mean first-passage time formulae from
dimensionality reduction

2.1 Introduction

In this first technical chapter, we develop a method that is useful for calculating the mean
first-passage times of random walkers on certain networks. It bears great importance for
the analytical calculations in chapter 4, but is interesting in its own right. We begin with a
brief review of the literature around search processes and Markov models before going
into technicalities of our results.

Random walks on networks are intuitive and highly general stochastic processes that
enjoy attention in many different applications. Examples include models for foraging
and predator-prey behaviour [51, 52] among numerous other biological applications [53],
centrality measures such as the famous PageRank [54, 55], and search strategies [56] as
in hide-and-seek games [57]. As a consequence, random walks on networks, especially
the simple random walk, where the hopping probabilities from any network node to all
adjacent nodes are uniform, are well studied.

First-passage times (FPTs), i.e. times at which certain events occur for the first time, are
important observables of many stochastic processes, and in particular Markov processes,
with random walks being no exception. Consider for instance the Gambler’s ruin (the
first time a Gambler’s budget hits zero) or break-even points in trading (when the selling
price of a stock exceeds the price paid for the first time) [58], and extinction events in
birth-death-processes [59] (see [60–62] for further examples). The mean first-passage
times (MFPTs) between states of a Markov process encapsulate fundamental properties
of the system’s kinetics. They are in fact closely related to the spectrum and eigenvectors
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of the transition matrix [60, 63, 64] and the relaxation times of the random walker, all of
which are all of particular computational importance [65].

MFPTs have also been shown to provide important information about correlations
and heterogeneity in complex systems [66], and optimal coarse-graining in Markov State
Models [64].

MFPTs of random walks on networks encode global properties of the random walkers
and the network they explore, hence their explicit and exact calculation can in general be
hard for networks larger than a few nodes. There are many ways to express the full matrix
of MFPTs theoretically; one of the classical and most general methods is to employ the so-
called fundamental matrix, as proposed in [67]. The fundamental matrix is also connected
to equilibrium properties and commute times of the walker and has been revisited and
reformulated over time, for instance in [68]. Reversible random walkers, where hopping
probabilities are in detailed balance with the equilibrium node-occupancy probabilities,
are often more accessible. Here, some popular approaches include the network analogue
of resistance theory (see [69] for application to trees and [60] for a general introduction)
and the essential edge lemma, which applies when the graph consists of subgraphs that are
connected by a single edge (see e.g. [62]).

These exact methods rarely lead to explicit results even in simple cases, when one
would hope to express MFPTs, e.g. in terms of the graph parameters of a model. Only
for specific problems, e.g. in the presence of a high degree of symmetry and hierarchy,
can the problem be solved explicitly by successive “decimation” procedures [70–72]. This
has led to the development of various approximation schemes – for instance, mean-field
approaches based on node degree [73], or on the distance from a target [74]. For sufficiently
dense networks with random weights, the information contained in the neighbourhood of
the target node is sufficient to formulate an accurate rank-1 approximation for the MFPT
from any other node [75]. For sparser networks, the approach presented in [76] exploits
locally tree-like structures to derive asymptotic expressions for a large number of nodes.
Moreover, tail-estimates for first-passages of rare events can be constructed for many
different applications [61]. The approximations made in these works tend to be valid either
in the limit of large graphs, 𝑛→∞, or are restrictive about the type of random walker to
which they can be applied. For example, many are developed for simple (purely diffusive)
random walks. For more general dynamics, explicit results are scarce.

In this chapter, we show that kinetic coarse-graining techniques, introduced to reduce
the dimensionality of Markov State Models, can be used to derive explicit formulae for
MFPTs in terms of the graph parameters. These are exact for a broad class of graphs,
which includes tree-graphs.
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The method is based on three key ideas: (i) upon kinetically coarse-graining random
walks on graphs, the calculation of MFPTs simplifies due to the reduced dimensionality
of the coarse-grained system, (ii) for certain graph structures, it is possible to adopt
coarse-grained representations that drastically simplify the calculations, leading to explicit
formulae for the MFPTs in the coarse-grained space, (iii) for the graph structures referred
to in (ii), under some conditions, the MFPTs of the coarse-grained system match exactly
certain MFPTs in the original system.

In particular, we prove that in graphs with special “necklace” topologies, certain MFPTs
in the original dynamics can be calculated exactly using a coarse-graining technique
known as local-equilibrium (LE). Our proof is valid for general random walks, including
irreversible random walks, as long as they have a unique steady-state distribution. In
addition to this proof, which leads to eq. (2.26), our analysis provides two main results.
The first one, eq. (2.18), is a generalisation of the popular essential edge1 lemma (EEL)
[62], which is only valid for reversible random walks. It is retrieved here as a special case
of a more general equation, which does not require dynamical reversibility. This result
leads to explicit formulae for MFPTs in simple random walks on graphs with necklace
topologies. The second main result, eq. (2.22), provides a way of obtaining approximate
MFPTs when the graph topology is not an exact necklace. We explore the potential of this
method in chapter 3.

In section 2.2, we review the notions of MFPTs and LE coarse-graining. In section 2.3,
we show that LE coarse-graining preserves certain MFPTs for general random walks on a
broad class of graphs with “necklace” structure. We also provide a generalisation of the
essential edge lemma, valid for reversible random walks, to irreversible random walks. In
section 2.4, we demonstrate how the LE coarse-graining method can be used to derive
explicit MFPT formulae for the simple random walk on 𝑐-ary trees. These expressions are
consistent with those resulting from the essential edge lemma. In section 2.5, we apply the
generalised EEL, derived in section 2.3, to simple random walks on non-tree graphs with
necklace structures. In section 2.6, we apply the method to irreversible random walkers,
where the popular EEL does not apply. We summarise results in section 2.7. Some of the
technical definitions of our derivations are elaborated in appendix 2.A. In appendix 2.B, we
briefly explore the possibility to extend our results to higher moments and full distributions
of FPTs.

1In modern literature the term bridge seems to be preferred.
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2.2 Definitions: Markov chains and MFPTs

We begin by reviewing a few fundamental notions about finite, stationary Markov chains
in discrete time. A thorough introduction can be found in the popular albeit unfinished
textbook [62], in references therein and most introductory texts on stochastic processes.
Given a finite set 𝑆 = {1, . . . , 𝑛} of “states”, a Markov chain on those states is a sequence
of random variables (𝑋𝑡) taking values in 𝑆, and with the additional property that the
probability distribution of 𝑋𝑡 depends only on 𝑋𝑡−1, that is

P {𝑋𝑡 = 𝑖 | 𝑋0, . . . , 𝑋𝑡−1} = P {𝑋𝑡 = 𝑖 | 𝑋𝑡−1} , (2.1)

for all 𝑖 ∈ 𝑆. We will assume throughout this thesis that this quantity does not depend in 𝑡.
In that case, the Markov chain is called stationary. Thus, conditional on the previous state
𝑋𝑡−1, we can encode the distribution of the next state in a constant matrix q with entries

𝑞𝑖 𝑗 B P {𝑋𝑡 = 𝑗 | 𝑋𝑡−1 = 𝑖} . (2.2)

The entries of q are non-negative, and the elements in each row sum to one, as they contain
the transition probabilities given a certain 𝑋𝑡−1. In the notation chosen above, let the row
vector 𝑥𝑥𝑥𝑇 be the vector of occupation probabilities 𝑥𝑖 = P {𝑋𝑡−1 = 𝑖} at time 𝑡−1. Then, the
occupation probabilities at the next time step 𝑡 are given by the row vector 𝑥𝑥𝑥𝑇q. Inductively,
the transition matrix for 𝑠 time steps is given by the matrix power q𝑠. Note that here and
below, we think of vectors as columns, referring to row vectors as the transpose (−)𝑇 of a
column.

A finite Markov chain is called aperiodic if for every 𝑖, the greatest common divisor
of the set {𝑡 | (q𝑡)𝑖𝑖 > 0} is equal to one. It is called irreducible or ergodic if there is an 𝑁
such that for any 𝑖 and 𝑗 the chain can reach 𝑗 from 𝑖 in less than 𝑁 steps with a positive
probability. For an irreducible Markov chain, by virtue of the Perron-Frobenius theorem
[77], q has a unique left eigenvector 𝜋𝜋𝜋𝑇 with non-negative entries and unit eigenvalue. As
this implies

𝜋𝜋𝜋𝑇q = 𝜋𝜋𝜋𝑇 , (2.3)

this vector is called the stationary distribution, or steady-state, of the chain. Moreover,
given the chain is aperiodic, its distribution will converge to 𝜋𝜋𝜋𝑇 irrespective of the initial
conditions. Finally, 𝜋𝜋𝜋𝑇 is called the equilibrium distribution if the detailed balance

condition
𝜋𝑖𝑞𝑖 𝑗 = 𝜋 𝑗𝑞 𝑗𝑖 (2.4)
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is satisfied for all pairs of two states 𝑖 and 𝑗 . An irreducible Markov chain satisfying
detailed balance is also called reversible.

The first-passage time (FPT) 𝑡𝑖 𝑗 of (𝑋𝑡) from 𝑖 to 𝑗 is a non-negative integer random
variable. It is defined as the number of steps required by the chain to reach 𝑗 given that it
was initially at 𝑖,

𝑡𝑖 𝑗 B min
𝑡≥0

{𝑡 |𝑋𝑡 = 𝑗 , 𝑋0 = 0} , (2.5)

if the minimum exists. Note that in this convention 𝑡𝑖𝑖 = 0. The FPT 𝑡𝑖 𝑗 exists (i.e. is finite)
if there is a sequence of states connecting 𝑖 to 𝑗 , and the probability that this sequence is
followed is positive. As we focus on irreducible Markov chains, this is the case for every
pair of states 𝑖 and 𝑗 . In that case, the expected value, given by the MFPT 𝑚𝑖 𝑗 B E(𝑡𝑖 𝑗 ),
exists as well. The set of all MFPTs 𝑚𝑖 𝑗 from any state 𝑖 to any state 𝑗 is determined by
the recurrence equations

𝑚𝑖 𝑗 = 𝑞𝑖 𝑗 +
∑︁
𝑘≠ 𝑗

𝑞𝑖𝑘 (𝑚𝑘 𝑗 +1) . (2.6)

The first term of eq. (2.6) accounts for the chain going from 𝑖 to 𝑗 directly (which occurs
with probability 𝑞𝑖 𝑗 ), while the second term accounts for the chain visiting any other state
𝑘 first and starting a first-passage process from there (at the next time step). Using the fact
that the rows of q are normalised, eq. (2.6) can be rearranged into matrix notation for the
vector 𝑚𝑚𝑚 𝑗 of MFPTs to 𝑗 starting from all other states. 𝑚𝑚𝑚 𝑗 is then given by [78]

𝑚𝑚𝑚 𝑗 =
(
1𝑛−1 − q̂ 𝑗

)−1 111𝑛−1 , (2.7)

where 1𝑛 and 111𝑛 are the identity matrix and the all-1 vector of size 𝑛, respectively, and
𝑞̂𝑞𝑞 𝑗 is the transition matrix of the walker from which the 𝑗-th row and column have been
removed. For reversible Markov chains, a number of exact methods to obtain MFPTs do
exist, see e.g. [60, 62]. However, in this work, we will not assume that eq. (2.4) is satisfied.
We will simply assume that the system has a unique steady-state.

In this thesis, we largely use the terminology of random walkers on finite (possibly
directed) graphs that are equivalent to finite Markov chains. We consider random walkers
on 𝑛-node graphs, with vertices labelled as 𝑖, 𝑗 , . . . and transition probability matrix q. If
there is no edge from node 𝑖 to node 𝑗 , then 𝑞𝑖 𝑗 = 0. Thus, the matrix q defines a directed
graph in which every directed edge (or arc) (𝑖, 𝑗) is weighted by the hopping probability 𝑞𝑖 𝑗
of the walker. Note that we use the term “node” as synonymous with “vertex” and “edge”
as synonymous with “link”. It is worth mentioning that a random walk on an undirected
graph (where the stepping probabilities at 𝑖 are proportional to the weights of the edges
connecting to 𝑖) automatically defines a reversible chain, and vice-versa [62]. Moreover, it
is well known and easy to check that the steady-state probabilities on undirected graphs
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are given by the node strengths

𝜋𝑖 =
𝑘̃𝑖

𝑍
(2.8)

with the normalising factor 𝑍 ensuring that
∑𝑛
𝑖=1 𝜋𝑖 = 1. The strength 𝑘̃𝑖 =

∑
𝑗 𝑒𝑖 𝑗 is the sum

of weights of all edges connecting to 𝑖, and 𝑒𝑖 𝑗 is the weight of the edge (𝑖 𝑗) (𝑒𝑖 𝑗 = 0 if
there is no edge connecting 𝑖 to 𝑗).

Given a random walk q on 𝑛 nodes, one can define a coarse-grained random walk 𝑄𝑄𝑄
on 𝑁 nodes, where 𝑁 < 𝑛, by grouping together the nodes 𝑖, 𝑗 , . . . of the original network
into 𝑁 subgraphs, or clusters, labelled by upper case indices 𝐼, 𝐽, . . .. This operation can be
encoded into an 𝑛×𝑁 matrix C, whose elements 𝐶𝑖𝐼 ∈ {1,0} denote whether (1) or not (0)
node 𝑖 belongs to subgraph 𝐼, for all 𝑖 = 1, . . . , 𝑛 and 𝐼 = 1, . . . , 𝑁 . Given a coarse-graining
protocol, we will use small letters – e.g. 𝑞𝑞𝑞, 𝑚𝑖 𝑗 , 𝜋𝜋𝜋 – to refer to properties of the original
random walker, and capital letters – 𝑄𝑄𝑄, 𝑀𝐼𝐽 , Π – for corresponding properties of the
coarse-grained walker.

Recently, there has been active research into how to optimally define the transition
matrix 𝑄𝑄𝑄 of hopping probabilities between clusters, for a given choice of the clustering C
[79]. For𝑄𝑄𝑄 to retain the equilibrium properties of the original dynamics, its left eigenvector
associated to the unit eigenvalue must satisfy Π𝑇 = 𝜋𝜋𝜋𝑇C. I.e. the steady-state occupancy
probability of a cluster must equate to the sum of the steady-state occupancy probabilities
of the nodes in that cluster. This, however, does not determine 𝑄𝑄𝑄 uniquely and further
conditions must be imposed. A popular prescription, known in the literature as the local-

equilibrium (LE) clustering [79], requires that the probability flow from cluster 𝐼 to cluster
𝐽 be equal to the sum of the probability flows from any node 𝑖 in cluster 𝐼 to any node 𝑗 in
cluster 𝐽

𝑄 𝐼𝐽 =
1
Π𝐼

∑︁
𝑖 𝑗

𝐶𝑖𝐼𝜋𝑖𝑞𝑖 𝑗𝐶 𝑗 𝐽 . (2.9)

Due to the reduced dimensionality of 𝑄𝑄𝑄, when compared to q, certain observables may be
easier to calculate in the coarse-grained graph.

In the next section, we focus on a broad class of graphs where subgraphs can be
arranged in a line, such that each subgraph connects to the line only through one vertex.
We prove that the MFPTs between these vertices in the original dynamics are equal to
the MFPTs between the corresponding clusters in the LE coarse-grained dynamics, for
which we are able to derive explicit formulae. The result is general, in particular it does
not require reversible dynamics. Hence, our method provides quick access to an explicit
MFPT formula whenever information on the steady-state cluster occupancy probability Π

is available.
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2.3 Conservation of mean first-passage times under coarse-graining

2.3 Conservation of MFPTs under coarse-graining

In this section, we prove that coarse-graining according to LE preserves certain MFPTs
of the random walker exactly, if the graph has a special “necklace” structure, i.e. if it can
be regarded as a one-dimensional “chain of graphs”. More precisely, we consider graphs
consisting of 𝐻 +1 disjoint, connected subgraphs 0, . . . , 𝐻 hanging from the line 𝑣0, . . . , 𝑣𝐻
(the backbone) of distinguished vertices 𝑣𝐼 ∈ 𝐼, with 𝐼 = 0, . . . , 𝐻; see the top of fig. 2.1
for an illustration. The subgraphs can have any arbitrary structure, as long as their only
interconnections are the links in the backbone. We are interested in MFPTs to the target
node 𝑣𝐻 , from another node in the backbone, initially set to 𝑣0. Without loss of generality,
we define the target subgraph as containing only the target node, 𝐻 = {𝑣𝐻}, as we are only
concerned with MFPTs to 𝑣𝐻 from outside 𝐻. We denote vertices within the subgraph 𝐼
other than 𝑣𝐼 by 𝑣𝐼𝑖 with 𝑖 = 1, . . . , |𝐼 | −1 , where |𝐼 | is the number of vertices in 𝐼. To keep
the notation uniform, we denote 𝑣𝐼 as 𝑣𝐼0 if necessary.
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Fig. 2.1 Top: Example of a necklace with 𝐻 = 3. Bottom: Dotted arrows form a spanning tree with
root 𝑣3. Since the subgraph interconnections consist of single edges, every such spanning tree must
contain the edges (𝑣0, 𝑣1), (𝑣1, 𝑣2) and (𝑣2, 𝑣3), with weight 𝑞𝑣0,𝑣1 , 𝑞𝑣1,𝑣2 and 𝑞𝑣2,𝑣3 , respectively.

In the following, we derive a general formula for the MFPT 𝑚𝑣0𝑣𝐻 from 𝑣0 to 𝑣𝐻 that
outmanoeuvres the inversion formula in eq. (2.7), and we demonstrate that this matches
exactly the MFPT 𝑀0𝐻 of a walker in the coarse-grained graph, where each subgraph is
regarded as a cluster, and the hopping probabilities between clusters are defined according
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Mean first-passage time formulae from dimensionality reduction

to the LE prescription. The results can be generalised immediately to arbitrary pairs of
nodes in the backbone.

To the best of our knowledge, our result is the first to lead to explicit and exact formulae
for MFPTs in graphs with necklace structure. This is a broad class of graphs, which
includes tree-graphs, as we will show in the next sections 2.4, 2.5 and 2.6. Similar graph
structures were considered in [80], where expected escape-times from clusters connected to
a one-dimensional lattice each by a single edge, were calculated. This approach, however,
did not rely on coarse-graining techniques, which broaden the usability of our formula.

Our proof relies on a combinatorial approach to the calculation of MFPTs, which
consists in finding all the spanning trees and two-tree forests in the graph hosting the
random walk (see appendix 2.A for the definition of spanning trees and forests). Upon
defining the weight of a tree 𝔱 as the product of all its edge weights

𝑤(𝔱) =
∏
(𝑖 𝑗)∈𝔱

𝑞𝑖 𝑗 , (2.10)

where the product runs over the edges of the tree, the MFPT from node 𝑖 to 𝑗 is found
within this approach as [81, 82]

𝑚𝑖 𝑗 =
𝑠𝑖 𝑗

𝑠 𝑗
. (2.11)

Here, 𝑠 𝑗 is the sum of the weights of all spanning trees rooted in 𝑗 , which we denote by
𝔱→ 𝑗 (as, by definition of root, all edges “point toward” the root),

𝑠 𝑗 =
∑︁
𝔱→ 𝑗

𝑤(𝔱) . (2.12)

Moreover, 𝑠𝑖 𝑗 is the sum of the weights of all two-tree forests (𝔱,𝔰), such that 𝔱 has root 𝑗
and 𝔰 contains 𝑖 (but can have any root; cf. fig. 2.2 and further examples in appendix 2.A)

𝑠𝑖 𝑗 =
∑︁
𝔱→ 𝑗 ;
𝑖∈𝔰

𝑤(𝔱)𝑤(𝔰) . (2.13)

Conveniently, one can express the stationary probabilities of an irreducible random walker
in terms of the same quantities [62]

𝜋 𝑗 =
𝑠 𝑗∑𝑛
𝑘=1 𝑠𝑘

. (2.14)

We apply eq. (2.11) to the sites 𝑣0 and 𝑣𝐻 . For graphs with necklace structure, as shown
in fig. 2.1, any spanning tree with root 𝑣𝐻 must contain all edges of the backbone pointing
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2.3 Conservation of mean first-passage times under coarse-graining

in the direction of 𝑣𝐻 , as these are essential edges. That is, the graph becomes disconnected
when any one of them is removed. This means that the path weight 𝑞𝑣0𝑣1 · · · · · 𝑞𝑣𝐻−1𝑣𝐻 is a
common factor in the sum in eq. (2.12). We will use the shorthand

𝑤𝐼𝐽 =


∏𝐽−1
𝐾=𝐼 𝑞𝑣𝐾 𝑣𝐾+1 if 𝐼 < 𝐽∏𝐼−1
𝐾=𝐽 𝑞𝑣𝐾+1𝑣𝐾 if 𝐼 > 𝐽

1 else

(2.15)

for products of the hopping probabilities 𝑞𝑣𝐼 𝑣𝐽 , and𝑊𝐼𝐽 for the corresponding products of
the hopping probabilities 𝑄 𝐼𝐽 between clusters.
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Fig. 2.2 Top: Example of a necklace with 𝐻 = 3, as in fig. 2.1. Bottom: Dotted arrows show a two-
tree forest with one component rooted in 𝑣3, the other containing 𝑣0. In this case, the 𝑣0-component
has root 𝑣03. For a 𝑣0-component with any other root in subgraph 0, all edges outside 0 stay the
same, as any path coming in to 0 must go through 𝑣0.

Furthermore, every subgraph 𝐼 is connected to the backbone only via 𝑣𝐼 , forcing the
sub-spanning trees within each 𝐼 to be rooted in 𝑣𝐼 . Denoting the sum of weights of all
sub-spanning trees of 𝐼 by 𝑤(𝐼 → 𝑣𝐼), and noting that the backbone and the attached
subgraphs account for all of the vertices in the graph, we can write 𝑠𝑣𝐻 in the factorised
form

𝑠𝑣𝐻 = 𝑤0𝐻

𝐻∏
𝐼=0
𝑤(𝐼 → 𝑣𝐼) . (2.16)
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Mean first-passage time formulae from dimensionality reduction

Similarly, we can decompose the two-tree forest weight 𝑠𝑣0𝑣𝐻 defined in eq. (2.13).
Each relevant two-tree forest consists of a tree rooted in 𝑣𝐻 , and a tree that contains 𝑣0 but
can be rooted in any of its vertices, including vertices that are not on the backbone. Firstly,
we observe that whenever 𝑣𝐻 and 𝑣0 lie in different trees of a spanning forest, one of the
(undirected) edges of the backbone, say (𝑣𝐼−1, 𝑣𝐼) with 𝐼 > 1, must have been omitted in
the forest, e.g. in fig. 2.2, it is (𝑣1, 𝑣2). All other edges of the backbone must necessarily be
included, each in one direction. Consequently, the 𝑣𝐻-component contributes the weight
𝑤𝐼𝐻

∏𝐻
𝐽=𝐼 𝑤(𝐽→ 𝑣𝐽) for the forest in which subgraphs 𝐼, 𝐼 +1, . . . , 𝐻 are included in the

𝑣𝐻-component. The other component contributes three factors:

1. for any fixed 𝐾 = 0, . . . , 𝐼 − 1 there is a weight 𝑤0𝐾𝑤𝐼−1,𝐾 for the backbone edges
pointing towards subgraph 𝐾 ,

2. for any vertex 𝑣𝐾𝑚 ∈ 𝐾 with 𝐾 fixed as above, we have a weight 𝑤(𝐾 → 𝑣𝐾𝑚) for
the spanning trees of 𝐾 pointing towards the vertex,

3. the remaining subgraphs 𝐽 = 0, . . . , 𝐾 −1, 𝐾 +1, . . . , 𝐼 −1 give rise to 𝑤(𝐽→ 𝑣𝐽).

For instance, the 𝑣0-component in fig. 2.2 is rooted in the node 𝑣03 of 0 and has weight
𝑤(0 → 𝑣03)𝑤(1 → 𝑣1)𝑞𝑣1𝑣0; the other component has weight 𝑤(2 → 𝑣2)𝑤(3 → 𝑣3)𝑞𝑣2𝑣3 .
Summing the product of these weights over 𝐼, 𝐽, 𝐾 and 𝑚, one obtains

𝑠𝑣0𝑣𝐻 =

𝐻∑︁
𝐼=1

[
𝑤𝐼𝐻

𝐻∏
𝐽=𝐼

𝑤(𝐽→ 𝑣𝐽)

×
𝐼−1∑︁
𝐾=0

( |𝐾 |−1∑︁
𝑚=0

𝑤(𝐾 → 𝑣𝐾𝑚)𝑤0𝐾 𝑤𝐼−1,𝐾

𝐼−1∏
𝐽=0,𝐽≠𝐾

𝑤(𝐽→ 𝑣𝐽)
)]

=

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

[
𝑤𝐼𝐻 𝑤0𝐾 𝑤𝐼−1,𝐾

∏𝐻
𝐽=0𝑤(𝐽→ 𝑣𝐽)
𝑤(𝐾 → 𝑣𝐾)

|𝐾 |−1∑︁
𝑚=0

𝑤(𝐾 → 𝑣𝐾𝑚)
]
. (2.17)

To apply eq. (2.11), we divide this expression by the one in eq. (2.16). Due to the
factorisation 𝑤0𝐻 = 𝑤0𝐾𝑤𝐾𝐼𝑤𝐼𝐻 implied by eq. (2.15), the factors 𝑤0𝐾 and 𝑤𝐼𝐻 in the
numerator are cancelled by 𝑤0𝐻; we therefore arrive at the simplified formula

𝑚𝑣0𝑣𝐻 =

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑤𝐼𝐻 𝑤0𝐾 𝑤𝐼−1,𝐾

𝑤0𝐻
∏𝐻
𝐽=0𝑤(𝐽→ 𝑣𝐽)

∏𝐻
𝐽=0𝑤(𝐽→ 𝑣𝐽)
𝑤(𝐾 → 𝑣𝐾)

|𝐾 |−1∑︁
𝑚=0

𝑤(𝐾 → 𝑣𝐾𝑚)

=

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑤𝐼−1,𝐾

𝑤𝐾𝐼

Π𝐾

𝜋𝑣𝐾
, (2.18)
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2.3 Conservation of mean first-passage times under coarse-graining

where we have written 𝜋𝜋𝜋 in terms of tree weights via eq. (2.14) and used the identity of
Π𝐾 =

∑|𝐾 |−1
𝑚=0 𝜋𝑣𝐾𝑚 for the equilibrium cluster occupancy probability of the random walker.

Eq. (2.18) is a useful result in its own right, which we demonstrate in the remaining
sections 2.4 to 2.6 of this chapter. Due to its connection to the EEL shown at the end of
this section, we refer to eq. (2.18) as the generalised essential edge lemma (GEEL).

We now make the same simplification for the coarse-grained walker. Retaining our
convention of using capital letters for reference to coarse-grained dynamics, we are
interested in

𝑀0𝐻 =
𝑆0𝐻
𝑆𝐻

. (2.19)

Upon choosing the subgraphs 𝐼 = 0, . . . , 𝐻 as the clusters of the coarse-grained dynamics,
these are collapsed into single vertices, and all spanning trees become lines (see as
illustrations figs. 2.1 and 2.2 where all nodes within the same shaded area are identified).
Consequently, 𝑆𝐻 is the weight of the directed path from 0 to 𝐻,

𝑆𝐻 =

𝐻−1∏
𝐼=0

𝑄 𝐼,𝐼+1 =𝑊0𝐻 . (2.20)

On the other hand, all two-tree forests contributing to 𝑆0𝐻 can again be found by omitting
one edge of the path 0, . . . , 𝐻, directing the 𝐻-component towards 𝐻 and having the
0-component point anywhere. As above, these two requirements can be condensed into

𝑆0𝐻 =

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑊0𝐾𝑊𝐼−1,𝐾𝑊𝐼𝐻 . (2.21)

In the quotient of eqs. (2.20) and (2.21), we can again use the factorisation 𝑊0𝐻 =

𝑊0𝐾𝑊𝐾𝐼𝑊𝐼𝐻 in the denominator as above, such that the term𝑊0𝐾𝑊𝐼𝐻 is cancelled. Thus
eq. (2.11) becomes

𝑀0𝐻 =

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑊𝐼𝐻𝑊0𝐾𝑊𝐼−1,𝐾

𝑊0𝐻
=

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑊𝐼−1,𝐾

𝑊𝐾𝐼

. (2.22)

For the comparison with eq. (2.18), we express the LE path weights 𝑊 in terms of the
unclustered weights 𝑤. To this end, we apply the LE definition of coarse-graining, eq. (2.9),
and the chain structure of the coarse-grained graph, which implies

𝑄 𝐼𝐽 =
(
𝛿𝐼,𝐽+1 + 𝛿𝐼,𝐽−1

) 𝜋𝑣𝐼
Π𝐼

𝑞𝑣𝐼 𝑣𝐽 . (2.23)
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Substituting the transition probabilities of the coarse-grained dynamics in the definition of
𝑊𝐼𝐽 given in eq. (2.15), we can rewrite the fraction in eq. (2.22) as follows

𝑊𝐼−1,𝐾

𝑊𝐾𝐼

=

[
𝐼−2∏

𝐽=𝐾+1

𝑄𝐽,𝐽−1

𝑄𝐽,𝐽+1

]
𝑄 𝐼−1,𝐼−2

𝑄𝐾,𝐾+1𝑄 𝐼−1,𝐼
=

[
𝐼−2∏

𝐽=𝐾+1

𝑞𝑣𝐽,𝐽−1

𝑞𝑣𝐽,𝐽+1

𝑞𝑣𝐼−1,𝐼−2

𝑞𝑣𝐾,𝐾+1

]
Π𝐾

𝑞𝑣𝐼−1,𝐼𝜋𝑣𝐾

=
𝑤𝐼−1,𝐾

𝑤𝐾𝐼

Π𝐾

𝜋𝑣𝐾
. (2.24)

Substituting eq. (2.24) in eq. (2.22) and comparing with the right-hand side of eq. (2.18),
we finally get

𝑚𝑣0𝑣𝐻 = 𝑀0𝐻 . (2.25)

We remark that eq. (2.25) generalises directly to arbitrary pairs of vertices 𝑣𝐼 , 𝑣𝐽 along
the backbone and is not restricted to 𝑣0 and 𝑣𝐻 , thus it holds that

𝑚𝑣𝐼 𝑣𝐽 = 𝑀𝐼𝐽 (2.26)

for arbitrary 𝐼, 𝐽. The proof is valid for arbitrary random walkers; it implies that along the
backbone of the necklace, coarse-graining according to LE preserves MFPTs.

Since random walks on graphs with necklace structure can be coarse-grained into
one-dimensional random walks, explicit MFPT formulae can be derived for such random
walks, using eq. (2.22). In the next section, section 2.4, we demonstrate this method in
detail for the simple random walk on c-ary trees.

In addition, we note that for graphs with necklace structure, where eq. (2.26) holds
exactly, MFPTs can also be computed from eq. (2.18). Conversely, when graphs do not
have necklace structure, neither eq. (2.18) nor eq. (2.26) hold exactly, however, when
deviations from the necklace structure are small, one may expect eq. (2.26) to hold
approximately. This means that MFPTs for the coarse-grained dynamics can be used
as proxies for certain MFPTs in the original dynamics. Importantly, the coarse-grained
MFPTs can still be computed exactly via eq. (2.22), as long as the coarse-grained graph
is a one-dimensional lattice. Hence, the LE coarse-graining method can be used to get a
reliable estimate of MFPTs in graphs with a more general structure than that of necklaces,
as long as they can be coarse-grained into one-dimensional lattices.

We conclude this section by showing that for reversible random walks on non-directed
graphs, with edge weights 𝑒𝑒𝑒, such that 𝑒𝑖 𝑗 = 𝑒 𝑗𝑖 ∀ 𝑖, 𝑗 , and the matrix of transition probabil-
ities

𝑞𝑖 𝑗 =
𝑒𝑖 𝑗

𝑘̃𝑖
(2.27)
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2.3 Conservation of mean first-passage times under coarse-graining

with the node strength 𝑘̃𝑖 =
∑
𝑗 𝑒𝑖 𝑗 , eq. (2.18) retrieves the EEL as given in Lemma 5.1 of

[62].
Firstly, as the MFPTs between the nodes of the backbone are additive, i.e. 𝑚𝑣𝐼 𝑣𝐽 +

𝑚𝑣𝐽 𝑣𝐾 = 𝑚𝑣𝐼 𝑣𝐾 for 𝐼 < 𝐽 < 𝐾 , we may also write eq. (2.18) as

𝑚𝑣0𝑣𝐻 =

𝐻∑︁
𝐼=1
𝑚𝑣𝐼−1𝑣𝐼 , (2.28)

such that for each 𝐼 ≥ 1

𝑚𝑣𝐼−1𝑣𝐼 =

𝐼−1∑︁
𝐾=0

𝑤𝐼−1,𝐾

𝑤𝐾𝐼

Π𝐾

𝜋𝑣𝐾
. (2.29)

Due to the symmetry of 𝑒𝑒𝑒, the equilibrium occupancy probabilities are given by

𝜋𝑣𝐾 =
𝑘̃𝑣𝐾

𝑍
=

1
𝑍

(
𝑒𝑣𝐾 𝑣𝐾−1 + 𝑒𝑣𝐾 𝑣𝐾+1 +

|𝐾 |−1∑︁
ℓ=1

𝑒𝑣𝐾 𝑣𝐾ℓ

)
, (2.30)

where 𝑍 =
∑𝐻
𝐾=0

∑|𝐾 |−1
ℓ=0 𝑘̃𝑣𝐾ℓ is the normalising factor and we stipulate that 𝑒𝑣0,𝑣−1 = 0 (for

𝐾 = 0). Similarly, the equilibrium occupation probability for the cluster 𝐾 is the sum of
the corresponding probabilities of its vertices

Π𝐾 = 𝜋𝑣𝐾 +
1
𝑍

|𝐾 |−1∑︁
ℓ=1

|𝐾 |−1∑︁
𝑚=0

𝑒𝑣𝐾ℓ𝑣𝐾𝑚

=
1
𝑍

(
𝑒𝑣𝐾 𝑣𝐾−1 + 𝑒𝑣𝐾 𝑣𝐾+1 +

|𝐾 |−1∑︁
𝑚=0

𝑒𝑣𝐾 𝑣𝐾𝑚 +
|𝐾 |−1∑︁
ℓ=1

|𝐾 |−1∑︁
𝑚=0

𝑒𝑣𝐾ℓ𝑣𝐾𝑚

)
=

1
𝑍

(
𝑒𝑣𝐾 𝑣𝐾−1 + 𝑒𝑣𝐾 𝑣𝐾+1 +

|𝐾 |−1∑︁
ℓ,𝑚=0

𝑒𝑣𝐾ℓ𝑣𝐾𝑚

)
. (2.31)

Moreover, the first factor in the sum of eq. (2.29) can be simplified by expanding the 𝑤’s
according to their definition in eq. (2.15)

𝑤𝐼−1,𝐾

𝑤𝐾𝐼
=

𝐼−1∏
𝐽=𝐾+1

𝑒𝑣𝐽 ,𝑣𝐽−1

𝑘̃𝑣𝐽

𝐼−1∏
𝐽=𝐾

𝑘̃𝑣𝐽

𝑒𝑣𝐽 ,𝑣𝐽+1

=
𝑘̃𝑣𝐾

𝑒𝑣𝐼−1𝑣𝐼

. (2.32)

43



Mean first-passage time formulae from dimensionality reduction

This expression substituted into eq. (2.29) produces the EEL derived in Lemma 5.1 of [62]

𝑚𝑣𝐼−1𝑣𝐼 =
1

𝑒𝑣𝐼−1𝑣𝐼

𝐼−1∑︁
𝐾=0

(
𝑒𝑣𝐾 𝑣𝐾−1 + 𝑒𝑣𝐾 𝑣𝐾+1 +

|𝐾 |−1∑︁
ℓ,𝑚=0

𝑒𝑣𝐾ℓ𝑣𝐾𝑚

)
(2.33)

= 1+ 2
𝑒𝑣𝐼−1𝑣𝐼

©­«
𝐼−2∑︁
𝐾=0

𝑒𝑣𝐾 𝑣𝐾+1 +
𝐼−1∑︁
𝐾=0

∑︁
0≤ℓ<𝑚≤|𝐾 |−1

𝑒𝑣𝐾ℓ𝑣𝐾𝑚
ª®¬ ,

where in the last step we have used again the symmetry of 𝑒𝑒𝑒.
Eq. (2.33) replaces the matrix inversion in eq. (2.7) by a sum over edge weights, a

much less expensive operation. It provides particularly great leverage when a graph has
many essential edges, the limiting case being a tree, for which every edge is essential.

For non-directed unweighted graphs, 𝑒𝑒𝑒 is replaced by an adjacency matrix A, with
entries 𝐴𝑖 𝑗 ∈ {1,0} denoting presence (1) or absence (0) of links. Then, the inner sum in
eq. (2.33) counts the number of edges 𝐸𝐾 within subgraph 𝐾, and the sum

∑𝐼−2
𝐾=0 𝑒𝑣𝐾 𝑣𝐾+1

counts the number of backbone edges connecting 𝑣0 and 𝑣𝐼−1, amounting to 𝐼−1. Therefore,
eq. (2.33) yields in this case

𝑚𝑣𝐼−1𝑣𝐼 = 2𝐼 −1+2
𝐼−1∑︁
𝐾=0

𝐸𝐾 . (2.34)

Hence, for simple random walks on non-directed unweighted graphs, all that is required
to compute MFPTs between the “hanging points” of two clusters 𝐼 and 𝐽 is the number
of edges in the subgraphs 0, . . . , 𝐼. It is important to stress, however, that eqs. (2.33) and
(2.34) apply only to reversible random walks, while eq. (2.18) applies to general random
walks.

In the following section 2.4, we demonstrate how the LE coarse-graining method can
be used to derive explicit MFPT formulae for the simple random walk on 𝑐-ary trees. In
the subsequent sections 2.5 and 2.6, we apply the GEEL, eq. (2.18), to non-tree graphs
with necklace structure and more general random walks, including irreversible random
walks.

2.4 Mean first passage times in c-ary trees: exact results

In this section, we apply the LE coarse-graining method to the simple random walk on an
unweighted, non-directed 𝑐-ary tree of height 𝐻, which consists of a root with degree 𝑐,
𝐻 −1 levels of descendants with degree 𝑐+1 (one of which corresponds to the “upward”
edge) and a bottom level of leaves with unit degree (see fig. 2.3 for an illustration). The
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v0

v1

v2

v3

0

1

2

3

Fig. 2.3 Ternary tree with height 𝐻 = 3. The root is 𝑣0 and the target is 𝑣3. Shaded areas show
clusters 0,1,2,3.

transition matrix has elements
𝑞𝑖 𝑗 =

𝐴𝑖 𝑗

𝑘𝑖
, (2.35)

where 𝐴𝐴𝐴 is the adjacency matrix and 𝑘𝑖 =
∑
𝑗 𝐴𝑖 𝑗 is the degree of node 𝑖. The equilibrium

occupancy probability of node 𝑖 is 𝜋𝑖 = 𝑘𝑖/(2𝐸) where 𝐸 = 1
2
∑𝑛
𝑖=1 𝑘𝑖 is the total number of

links. The MFPTs 𝑚𝑖 𝑗 between any two nodes 𝑖, 𝑗 can in principle be obtained by solving
numerically the system of equations (2.6), however, in this work we are concerned with
the derivation of explicit formulae. Since the simple random walker defined by eq. (2.35)
is reversible, and every link is essential, the EEL in eq. (2.33) is also applicable here
(as are other methods for reversible random walkers). However, we apply here the LE
coarse-graining method, with the purpose of demonstrating it on a simple example, where
results are available via other methods and can be easily validated. Our first objective is to
calculate the MFPT from the root to a target leaf, then we turn to MFPTs between arbitrary
vertices.

2.4.1 MFPT from root to leaf: exact results in the coarse-grained tree

Consider a 𝑐-ary tree of height 𝐻, with root 𝑣0, as shown in fig. 2.3. Without loss of
generality, we set the target in the first leaf, 𝑣𝐻 , noting that, due to the symmetry of the
tree, it is always possible to draw the diagram in such a way that the target is the first leaf.

The starting point of our derivation consists in reducing the dimensionality of the
problem by coarse-graining the tree according to the LE method. We coarse-grain the tree
into 𝐻 +1 subgraphs, in such a way that every node in the path 𝑣0, 𝑣1, . . . , 𝑣𝐻 (see fig. 2.3)
is assigned its own subgraph. We define each subgraph 𝐼 = 0, . . . , 𝐻 as containing 𝑣𝐼 , and
all the vertices of the tree rooted in 𝑣𝐼 , excluding the branches through 𝑣𝐼−1 and 𝑣𝐼+1, as
shown by the shaded areas in fig. 2.3. Note that subgraph 𝐻 contains only the node 𝑣𝐻 .
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By regarding fig. 2.3, it is clear that 𝑐-ary trees belong to the class of graphs with
necklace structure considered in section 2.3, hence the MFPT from root to leaf can be
computed as the MFPT from cluster 0 to cluster 𝐻 in the LE coarse-grained dynamics.

We thus define the hopping probability between clusters according to the LE definition
eq. (2.9), where Π𝐼 =

∑
𝑖𝐶𝑖𝐼𝜋𝑖. Since the 𝐻 +1 clusters are sitting on a one-dimensional

lattice, the transition matrix 𝑄𝑄𝑄 of the coarse-grained dynamics will be a (𝐻 +1) × (𝐻 +1)
tridiagonal matrix. Its elements are obtained from eq. (2.9) as follows: Writing

∑
𝑖𝐶𝑖𝐼 · · · =∑

𝑖∈𝐼 · · · and
∑
𝑗∈𝐼 =

∑
𝑗 −

∑
𝑗∉𝐼 , we have

𝑄 𝐼 𝐼 =
1∑

𝑖∈𝐼
𝑘𝑖

∑︁
𝑖∈𝐼

(∑︁
𝑗

𝐴𝑖 𝑗 −
∑︁
𝑗∉𝐼

𝐴𝑖 𝑗

)
. (2.36)

Noting that 𝑘𝑖 =
∑
𝑗 𝐴𝑖 𝑗 and that the number of links between cluster 𝐼 and any other cluster

is
∑
𝑖∈𝐼, 𝑗∉𝐼 𝐴𝑖 𝑗 = 2 for all 𝐼 (except clusters 𝐼 = 0, 𝐻 that have a single out-going edge, each),

we have

𝑄 𝐼 𝐼 =


1− 1∑

𝑖∈𝐼
𝑘𝑖

: 𝐼 ∈ {0, 𝐻}

1− 2∑
𝑖∈𝐼
𝑘𝑖

: 1 ≤ 𝐼 ≤ 𝐻 −1 ,
(2.37)

and similarly

𝑄 𝐼𝐽 =
1∑

𝑖∈𝐼
𝑘𝑖
(𝛿𝐼,𝐽−1 + 𝛿𝐼,𝐽+1) : 𝐼, 𝐽 = 0 . . . 𝐻 , (2.38)

with the understanding that 𝛿𝐼,−1 = 𝛿𝐼,𝐻+1 = 0. The sums
∑
𝑖∈𝐼 𝑘𝑖 can be derived using the

following facts:

1. Every subgraph 𝐼 consists of a top node at height 𝐻− 𝐼, and 𝑐−1 copies of the 𝑐-ary
tree with height 𝐻 − 𝐼 −1.

2. A 𝑐-ary tree with height 𝐻 has

𝑛 = (𝑐𝐻+1 −1)/(𝑐−1) (2.39)

vertices.

3. The sum of degrees of any graph is twice the number of its edges.

4. Any tree with 𝑛 vertices has exactly 𝑛−1 edges.
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Using these observations, we find

∑︁
𝑖∈𝐼
𝑘𝑖 =


2( |𝐼 | −1) +1 = 2𝑐𝐻−𝐼 −1 : 𝐼 ∈ {0, 𝐻} ,

2( |𝐼 | −1) +2 = 2𝑐𝐻−𝐼 : 1 ≤ 𝐼 ≤ 𝐻 −1 ,
(2.40)

where we have denoted the size of subgraph 𝐼, i.e. the number of its vertices, by |𝐼 |. Hence,
the local-equilibrium transition probabilities read

𝑄 𝐼𝐽 =


(𝛿𝐽,𝐼−1 + 𝛿𝐽,𝐼+1) 1

2𝑐𝐻−𝐼−1 : 𝐼 ∈ {0, 𝐻} ,

(𝛿𝐽,𝐼−1 + 𝛿𝐽,𝐼+1) 1
2𝑐𝐻−𝐼 : 1 ≤ 𝐼 ≤ 𝐻 −1 ,

(2.41)

𝑄 𝐼 𝐼 =


2𝑐𝐻−𝐼−2
2𝑐𝐻−𝐼−1 : 𝐼 ∈ {0, 𝐻} ,
𝑐𝐻−𝐼−1
𝑐𝐻−𝐼 : 1 ≤ 𝐼 ≤ 𝐻 −1 .

(2.42)

Eq. (2.25) from section 2.3 implies that the MFPT 𝑚𝑣0𝑣𝐻 from root to target in the
original tree matches the MFPT 𝑀0𝐻 between the first and last cluster in the LE coarse-
grained dynamics, when the clusters are defined as above. Thus, we can now calculate
𝑚𝑣0𝑣𝐻 by appealing to eqs. (2.25) and (2.22). In the latter, the fractions can be cancelled
efficiently since 𝑄 𝐼,𝐼−1 =𝑄 𝐼,𝐼+1 for 𝐼 = 1, . . . , 𝐻 −1,

𝑊𝐼−1,𝐾

𝑊𝐾𝐼

=

𝐼−1∏
𝐽=𝐾+1

𝑄𝐽,𝐽−1

𝑄𝐽,𝐽+1

1
𝑄𝐾,𝐾+1

=
1

𝑄𝐾,𝐾+1
, (2.43)

leading us to

𝑀0𝐻 =

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

1
𝑄𝐾,𝐾+1

. (2.44)

Substituting the transition probabilities from eq. (2.41), we obtain the final result

𝑀0𝐻 = 2
𝐻−1∑︁
𝑗=1

𝑗𝑐 𝑗 +𝐻 (2𝑐𝐻 −1)

= 𝐻

(
2𝑐𝐻+1

𝑐−1
−1

)
−2𝑐

𝑐𝐻 −1
(𝑐−1)2 . (2.45)

The above expression matches exactly the MFPT 𝑚𝑣0𝑣𝐻 in the original system (i.e.
without coarse-graining), as derived in Example 5.14 of [62] by using the EEL on every
edge between 𝑣0 and 𝑣𝐻 and adding up the results. We note that thanks to the tridiagonal
nature of the coarse-grained transition matrix 𝑄𝑄𝑄, one could have also pursued the matrix
inversion in eq. (2.7), however, computations via this route are more involved.
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2.4.2 MFPTs between arbitrary vertices of the c-ary tree

In this section, we complement the results obtained in section 2.4.1 for the MFPT from root
to leaf by deriving explicit formulae for the MFPTs between any two vertices 𝑠 and 𝑡 of a
𝑐-ary tree. In contrast to the previous section 2.4.1, here we appeal directly to eq. (2.18),
which provides an equivalent route to eq. (2.22).

Firstly, we can always permute the branches in such a way that 𝑠 lies on an outer branch
of the diagram, as shown in fig. 2.4. We can then proceed by (i) finding their common
ancestor 𝑎, which also lies on the outer branch, on the path between 𝑠 and the root, (ii)
calculating the MFPTs from the source 𝑠 to the ancestor 𝑎 and from the ancestor to the
target 𝑡 separately, and finally (iii) adding up the results.

a

s

t

Ha −Hs

0

Fig. 2.4 Ternary tree as shown in fig. 2.3, with an example of source 𝑠, target 𝑡 and common ancestor
𝑎 marked in red. Shaded areas enclose the subgraphs 0 and 𝐻𝑎 −𝐻𝑠 defined for the first-passage
process from 𝑠 to 𝑎 (intermediate clusters not shown). For this example, 𝐻𝑠 = 1 and 𝐻𝑡 = 0. For the
first-passage process from 𝑎 to 𝑠, subgraphs are labelled in reverse order. Dashed lines indicate
potentially omitted levels.

For the purpose of this section, 𝐻 denotes the height of the tree, not the number of
clusters employed in the coarse-graining approach. For this, we denote by 𝐻𝑠 the height
of 𝑠 (defined as the distance to the leaves of the tree rooted in 𝑠), and by 𝐻𝑎 the height
of 𝑎. The “upward” MFPT 𝑚𝑠𝑎 can be obtained by defining 𝐻𝑎 −𝐻𝑠 + 1 subgraphs as
follows: subgraph 0 contains the tree rooted in 𝑠 excluding the branch pointing towards
𝑎. Subgraph 𝐻𝑎 −𝐻𝑠 is formed by the tree rooted in 𝑎 excluding the branch leading to 𝑠.
For instance, in the diagram shown in fig. 2.4, the subgraph 0 consists of the children of
𝑠, and 𝐻𝑎 −𝐻𝑠 contains all branch-offs at 𝑎 leading away from 𝑠. Following the notation
introduced in section 2.3, we identify 𝑣0 = 𝑠, 𝑣𝐻𝑎−𝐻𝑠 = 𝑎 and enumerate the vertices
along the line connecting 𝑠 to 𝑎 as 𝑣1, . . . , 𝑣𝐻𝑎−𝐻𝑠−1. Each intermediate subgraph 𝐼 for
𝐼 ∈ {1, . . . , 𝐻𝑎 −𝐻𝑠 −1} contains the tree rooted in 𝑣𝐼 , excluding both branches leading to
𝑠 and 𝑎.
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In order to apply eq. (2.18), we need to compute for each 𝐼 = 1, . . . , 𝐻𝑎 −𝐻𝑠 and
𝐾 = 0, . . . , 𝐼 −1 the summands

𝑤𝐼−1,𝐾

𝑤𝐾𝐼

Π𝐾

𝜋𝑣𝐾
=

𝐼−1∏
𝐽=𝐾+1

𝑞𝑣𝐽 𝑣𝐽−1

𝑞𝑣𝐽 𝑣𝐽+1

Π𝐾

𝑞𝑣𝐾 𝑣𝐾+1𝜋𝑣𝐾
(2.46)

which follows from the definition of the weights 𝑤 given in eq. (2.15). To handle the
product, we notice that leaves and the root can only appear on the backbone as the source
𝑠 = 𝑣0 and the ancestor 𝑎 = 𝑣𝐻𝑎−𝐻𝑠 , respectively. Meanwhile, the vertex 𝑣𝐽 with the product
index 𝐽 = 𝐾 + 1, . . . , 𝐼 − 1 runs from 𝑣1 if 𝐾 = 0 to 𝑣𝐻𝑎−𝐻𝑠−1 if 𝐼 = 𝐻𝑎 −𝐻𝑠. Therefore,
the degree of 𝑣𝐽 is always 𝑘𝑣𝐽 = 𝑐 +1, and thus 𝑞𝑣𝐽 𝑣𝐽+1 = 𝑞𝑣𝐽 𝑣𝐽−1 =

1
𝑐+1 . Consequently, the

product in the above formula can be cancelled. Inserting eq. (2.46) into eq. (2.18) then
gives

𝑚𝑠𝑎 =

𝐻𝑎−𝐻𝑠∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝐼−1∏
𝐽=𝐾+1

𝑞𝑣𝐽 𝑣𝐽−1

𝑞𝑣𝐽 𝑣𝐽+1

Π𝐾

𝑞𝑣𝐾 𝑣𝐾+1𝜋𝑣𝐾
=

𝐻𝑎−𝐻𝑠∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

1
𝑞𝑣𝐾 𝑣𝐾+1

Π𝐾

𝜋𝑣𝐾
. (2.47)

Since for the simple random walker the equilibrium probabilities of the vertices are
proportional to their degrees, we can expand

Π𝐾 =

|𝐾 |−1∑︁
ℓ=0

𝜋𝑣𝐾ℓ =
1
𝑍

|𝐾 |−1∑︁
ℓ=0

𝑘𝑣𝐾ℓ , (2.48)

with normalising factor 𝑍 . Similarly to the argument in section 2.4.1, the sum of the
degrees in 𝐾 counts the number of edges leaving 𝐾 , and double-counts the edges within it.
Using the fact that each inner subgraph 𝐾 = 1, . . . 𝐻𝑎−𝐻𝑠 is connected to two neighbouring
subgraphs, while the outer subgraphs 𝐾 = 0, 𝐻𝑎 −𝐻𝑠 only are connected to one, each, we
have

Π𝐾 =


1
𝑍
[2( |𝐾 | −1) +1] : 𝐾 ∈ {0, 𝐻𝑎 −𝐻𝑠} ,

1
𝑍
[2( |𝐾 | −1) +2] : 1 ≤ 𝐾 ≤ 𝐻𝑎 −𝐻𝑠 −1 .

(2.49)

The sizes of the subgraphs 𝐾 are now given by

|𝐾 | =


𝑐𝐻𝑠+1−1
𝑐−1 : 𝐾 = 0 ,

𝑐𝐻+1−𝑐𝐻𝑎
𝑐−1 : 𝐾 = 𝐻𝑎 −𝐻𝑠 ,

𝑐𝐻𝑠+𝐾 : 1 ≤ 𝐾 ≤ 𝐻𝑎 −𝐻𝑠 −1

(2.50)

with the same reasoning as in section 2.4.1. Moreover, the equilibrium occupancy prob-
abilities 𝜋𝑣𝐾 =

𝑘𝑣𝐾
𝑍

as well as the hopping probabilities 𝑞𝑣𝐾 𝑣𝐾+1 =
1
𝑘𝑣𝐾

can be combined

49



Mean first-passage time formulae from dimensionality reduction

into
1

𝑞𝑣𝐾 𝑣𝐾+1

Π𝐾

𝜋𝑣𝐾
=


2( |𝐾 | −1) +1 : 𝐾 ∈ {0, 𝐻𝑎 −𝐻𝑠} ,

2( |𝐾 | −1) +2 : 1 ≤ 𝐾 ≤ 𝐻𝑎 −𝐻𝑠 −1 .
(2.51)

Substituting this expression together with the subgraph sizes |𝐾 | from eq. (2.50) into
eq. (2.47), we arrive at the result

𝑚𝑠𝑎 =

𝐻𝑎−𝐻𝑠∑︁
𝐼=1

(
𝐼−1∑︁
𝐾=1

2|𝐾 | +2|0| −1

)
(2.52)

=

𝐻𝑎−𝐻𝑠∑︁
𝐼=1

(
𝐼−1∑︁
𝐾=0

2𝑐𝐻𝑠+𝐾 +2
𝑐𝐻𝑠+1 −1
𝑐−1

−1

)
= 2

𝑐𝐻𝑎+1 − 𝑐𝐻𝑠+1

(𝑐−1)2 − (𝐻𝑎 −𝐻𝑠)
𝑐+1
𝑐−1

.

In the opposite direction, downward from 𝑎 to 𝑠, we have to consider the 𝑣𝐼’s in reverse
order

𝑚𝑎𝑠 =

𝐻𝑎−𝐻𝑠∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

1
𝑞𝑣𝐻𝑎−𝐻𝑠−𝐾 ,𝑣𝐻𝑎−𝐻𝑠−𝐾−1

Π𝐻𝑎−𝐻𝑠−𝐾
𝜋𝑣𝐻𝑎−𝐻𝑠−𝐾

, (2.53)

into which we can again substitute eq. (2.51) to obtain

𝑚𝑎𝑠 =

𝐻𝑎−𝐻𝑠∑︁
𝐼=1

(
𝐼−1∑︁
𝐾=1

2𝑐𝐻𝑎−𝐾 +2
𝑐𝐻+1 − 𝑐𝐻𝑎
𝑐−1

−1

)
(2.54)

= (𝐻𝑎 −𝐻𝑠)
(
2𝑐𝐻+1

𝑐−1
−1

)
−2

𝑐𝐻𝑎+1 − 𝑐𝐻𝑠+1

(𝑐−1)2 .

Note that the limiting case 𝐻𝑠 = 0, 𝐻𝑎 = 𝐻 reproduces eq. (2.45) for the MFPT from the
root to any leaf, as it should.

In order to obtain 𝑚𝑠𝑡 , we need to add 𝑚𝑠𝑎 and 𝑚𝑎𝑡 ; the latter is obtained by replacing 𝑡
for 𝑠 in eq. (2.54). The final result can be written as

𝑚𝑠𝑡 = 𝑚𝑠𝑎 +𝑚𝑎𝑡 (2.55)

= 2(𝑛−1) (𝐻𝑎 −𝐻𝑡) +2
𝑐𝐻𝑡+1 − 𝑐𝐻𝑠+1

(𝑐−1)2 + (𝐻𝑠 −𝐻𝑡) +
2

𝑐−1
(𝐻𝑠 −𝐻𝑡) ,

where 𝑛 is the total number of vertices of the tree, eq. (2.39). This result is in agreement
with those derived in Example 5.14 of [62].

50



2.5 Exact results on non-tree graphs with necklace structure

2.5 Exact results on non-tree graphs with necklace struc-
ture

This section applies the GEEL eq. (2.18) on two further examples of the necklace type,
namely the 𝑐-star and a concatenation of 𝐻 +1 cliques of size 𝑐. We note that the 𝑐-star
graph is, in fact, a 𝑐-ary tree of height 1, so the results obtained here also follow trivially
from those obtained in section 2.4, via eq. (2.22).

2.5.1 Star graph

In this section, we consider a star graph of 𝑐 vertices around a middle vertex 𝑣0 as shown
in fig. 2.5.

v0 v1

Fig. 2.5 A star with 𝑐 = 5 vertices. The subgraph 1 is just the vertex 𝑣1; all other vertices form the
subgraph 0.

In analogy to what was done in section 2.4, we define subgraph 1 as containing only
vertex 𝑣1, and subgraph 0 as containing all other vertices. This makes clear that the star
graph belongs to the family of necklace graphs, as required for our approach to work.

Proceeding as in the previous calculations, we apply the GEEL, eq. (2.18), to determine
𝑚𝑣0𝑣1 for the simple random walker on the 𝑐-star. As with two clusters we have 𝐻 = 1, the
GEEL in this case contains but a single summand,

𝑚𝑣0𝑣1 =

1∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑤𝐼−1,𝐾

𝑤𝐾𝐼

Π𝐾

𝜋𝑣𝐾
=

1
𝑞𝑣0𝑣1

Π0
𝜋𝑣0

, (2.56)

using that 𝑤00 = 1 and 𝑤01 = 𝑞𝑣0𝑣1 . The equilibrium probabilities on the right hand side
of eq. (2.56) are given by 𝜋𝑣0 =

𝑐
2𝑐 and Π0 =

2𝑐−1
2𝑐 , because there is one central vertex 𝑣0

with degree 𝑐, and 𝑐−1 outer vertices with degree 1 in cluster 0. Substituting these values
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together with the hopping probability 𝑞𝑣0𝑣1 =
1
𝑐

into eq. (2.56), we find the MFPT

𝑚𝑣0𝑣1 =
𝑐(2𝑐−1)

𝑐
= 2𝑐−1 . (2.57)

Given the simplicity of the star graph, MFPTs can be calculated explicitly, through
a variety of methods. For instance, eq. (2.57) could have been alternatively derived by
noticing that the random walker steps to any outer node with uniform probability at every
second step, and from a leaf back to the central vertex at every other step [62]. On the
other hand, as noted above, the star graph is a 𝑐-ary tree with height 1, therefore it adheres
to eq. (2.45). Finally, the matrix inversion in eq. (2.7) can also be performed directly [75].

2.5.2 Cliques on a necklace

Consider 𝐻 + 1 cliques, i.e. complete subgraphs, of size 𝑐, arranged in a chain passing
through the hanging points 𝑣0, . . . , 𝑣𝐻; an example for 𝑐 = 4 is shown in fig. 2.6. As this
graph has necklace structure, we will again apply the GEEL, eq. (2.18), to determine 𝑚𝑣0𝑣𝐻
for the simple random walker on this graph.

0

. . .

H − 1H

v0vH−1vH

Fig. 2.6 A necklace with 𝐻 +1 clusters, each of which is a clique with 𝑐 = 4 vertices.

The transition probabilities between the nodes of the chain for the simple random
walker are given by

𝑞𝑣𝐼 𝑣𝐽 =


(𝛿𝐼,𝐽−1 + 𝛿𝐼,𝐽+1) 1

𝑐
: 𝐼 ∈ {0, 𝐻} ,

(𝛿𝐼,𝐽−1 + 𝛿𝐼,𝐽+1) 1
𝑐+1 : 1 ≤ 𝐼 ≤ 𝐻 −1 ,

(2.58)

as the degrees 𝑘𝑣𝐼 are either 𝑐 (first case) or 𝑐 + 1 (other cases). As in eq. (2.47) for the
𝑐-ary tree, this implies that the summands in eq. (2.18) simplify,

𝑚𝑣0𝑣𝐻 =

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

𝑤𝐼−1,𝐾

𝑤𝐾𝐼

Π𝐾

𝜋𝑣𝐾
=

𝐻∑︁
𝐼=1

𝐼−1∑︁
𝐾=0

Π𝐾

𝑞𝑣𝐾 𝑣𝐾+1𝜋𝑣𝐾
. (2.59)
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To determine the equilibrium probabilities, we notice that within each subgraph there are
𝑐−1 vertices 𝑣𝐾𝑖 (𝑖 ≠ 0) with degree 𝑘𝑣𝐾𝑖 = 𝑐−1, while the hanging vertex 𝑣𝐾 has degree
𝑘𝑣𝐾 = 𝑐 +1 if 𝐾 = 1, . . . , 𝐻 −1 or 𝑘𝑣𝐾 = 𝑐 if 𝐾 ∈ {0, 𝐻}. Hence, the stationary probability
ratios amount to

𝜋𝑣𝐾

Π𝐾
=

𝑘𝑣𝐾

𝑘𝑣𝐾 + (𝑐−1)2 =


𝑐

𝑐+(𝑐−1)2 : 𝐾 = 0, 𝐻 ,

𝑐+1
𝑐+1+(𝑐−1)2 : 1 ≤ 𝐾 ≤ 𝐻 −1 .

(2.60)

Given that the random walker is the simple random walker, we can now write the summands
in eq. (2.59) as

Π𝐾

𝑞𝑣𝐾 𝑣𝐾+1𝜋𝑣𝐾
= 𝑘𝑣𝐼 + (𝑐−1)2 , (2.61)

which allows us to conclude

𝑚𝑣0𝑣𝐻 =

𝐻∑︁
𝐼=1

(
𝐼−1∑︁
𝐾=1

(
𝑐+1+ (𝑐−1)2

)
+ 𝑐+ (𝑐−1)2

)
=
𝑐(𝑐−1)𝐻 (𝐻 +1)

2
+𝐻2 . (2.62)

For a simple path of length 𝐻 we have 𝑐 = 1, thus reproducing the well-known 𝑚𝑣0𝑣𝐻 =

𝐻2 [63]. For later reference, we also note that for 𝐻 = 1 and arbitrary 𝑐, we find 𝑚𝑣0𝑣1 =
𝑐(𝑐−1) +1.

2.6 Applications to irreversible random walks

In this section, we verify that the GEEL, eq. (2.18), can also be applied to irreversible
random walks (on necklace graphs), where the classical EEL, eq. (2.33), is not applicable.
To this purpose, we consider below two simple examples where results can be validated by
direct computations.

2.6.1 Example 1 – irreversible random walk

Consider the Markov chain in fig. 2.7, representing a random walk with transition matrix

q =

©­­­­­«
0 2

3+𝛼
1

3+𝛼
𝛼

3+𝛼
1
3 0 2

3 0
2
3

1
3 0 0

1 0 0 0

ª®®®®®¬
, (2.63)
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where the order of the states has been chosen as 𝑣0, 𝑣01, 𝑣02, 𝑣1. For the avoidance of doubt,
in fig. 2.7 we have labelled edges using unnormalised weights 𝑒𝑖 𝑗 .

v1

v0

v01

v02

1

α

2

1

21

2

1

Fig. 2.7 A weighted graph with asymmetrical edge weights that define an irreversible Markov chain
on its vertices.

Given the stationary probability vector

𝜋𝜋𝜋𝑇 =
1

9+2𝛼
(3+𝛼,3,3, 𝛼) (2.64)

we can confirm that detailed balance with the transition probabilities above is not satisfied,
e.g. for the nodes 𝑣02 and 𝑣0, where the probability flows

𝜋𝑣0𝑞𝑣0𝑣02 =
3+𝛼

9+2𝛼
1

3+𝛼 =
1

9+2𝛼
(2.65)

and
𝜋𝑣02𝑞𝑣02𝑣0 =

3
9+2𝛼

2
3
=

2
9+2𝛼

(2.66)

do not equate. As a consequence, the EEL, eq. (2.33), is not applicable. On the other
hand, we can calculate MFPTs via the GEEL, eq. (2.18), which does not rely on dynamical
reversibility. With the subgraphs for eq. (2.18) defined as 0 = {𝑣0, 𝑣01, 𝑣02} and 1 = {𝑣1},
we have 𝐻 = 1, which means that as in eq. (2.56), there is a single summand in the GEEL.
Into this, we substitute the details of this example, eqs. (2.63) and (2.64)

𝑚𝑣0𝑣1 =
1
𝑞01

Π0
𝜋𝑣0

=
9+𝛼
𝛼

. (2.67)
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This result is easily validated by computing MFPTs directly, using eq. (2.7). This
requires the first row sum of the inverse

(
13 − q̂𝑣1

)−1
=

1
𝛼

©­­«
3+𝛼 3 3
3+𝛼 9𝛼+21

7
6𝛼+21

7
3+𝛼 3𝛼+21

7
9𝛼+21

7

ª®®¬ , (2.68)

which gives the same result as eq. (2.67).
Incidentally, a naïve appeal to the EEL can, despite its inapplicability, return the correct

result here, if we replace the summands 2𝑒𝑣0ℓ𝑣0𝑚 in eq. (2.33) by 𝑒𝑣0ℓ𝑣0𝑚 + 𝑒𝑣0𝑚𝑣0ℓ :

𝑒𝑣0𝑣01 + 𝑒𝑣01𝑣0 + 𝑒𝑣0𝑣02 + 𝑒𝑣02𝑣0 + 𝑒𝑣01𝑣02 + 𝑒𝑣02𝑣01

𝑒𝑣0𝑣1
+1 =

2+1+1+2+1+2
𝛼

+1 =
9+𝛼
𝛼

. (2.69)

This observation can be traced back to the fact that for this particular example, the sum of
edge weights

𝑒0,01 + 𝑒01,0 + 𝑒0,02 + 𝑒02,0 + 𝑒01,02 + 𝑒02,01 + 𝑒01 = 9+𝛼 (2.70)

is actually the proportional weight of the cluster 0 in the steady-state. Also by coincidence,
we have 𝑞𝑣0𝑣1𝜋𝑣0 = 𝑒𝑣0𝑣1 . Therefore, the numerator in eq. (2.69) is actually Π0 (up to
normalisation), while the denominator is 𝑞𝑣0𝑣1𝜋𝑣0 . Thus, we are back to the GEEL for two
clusters. This equality is coincidental, particularly because 𝑞𝑣0𝑣1𝜋𝑣0 = 𝑒𝑣0𝑣1 is only a given
for reversible dynamics. Doing the same check in the following example shows that the
GEEL and the EEL generally disagree for irreversible dynamics.

2.6.2 Example 2 – irreversible random walk

As a second example, we consider the graph in fig. 2.8. The edge weights define a random
walker with transition matrix (in the order 𝑣0, 𝑣01, 𝑣02, 𝑣03, 𝑣1)

q =

©­­­­­­­«

0 2
3+𝛼 0 1

3+𝛼
𝛼

3+𝛼
1
5 0 2

5
2
5 0

0 1
3 0 2

3 0
1
2

1
4

1
4 0 0

1 0 0 0 0

ª®®®®®®®¬
(2.71)

which has the stationary distribution

𝜋𝜋𝜋𝑇 =
1

20𝛼+141
(30+10𝛼,40,27,44,10𝛼) . (2.72)
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v1

v0

v01

v02

v03

1

α

2

1

2

1

2

1

2

1

21

Fig. 2.8 A weighted graph extending the example given in fig. 2.7.

Defining the subgraphs 0 = {𝑣0, 𝑣01, 𝑣02, 𝑣03}, 1 = {𝑣1} for eq. (2.18), we proceed as in
the previous example to find the MFPT

𝑚𝑣0𝑣1 =
3+𝛼
𝛼

Π0
𝜋𝑣0

=
3+𝛼
𝛼

10𝛼+141
10𝛼+30

= 1+ 141
10𝛼

. (2.73)

This result again is easily validated using eq. (2.7) and the first row sum of the inverse

(
13 − q̂𝑣1

)−1
=

1
𝛼

©­­«
3+𝛼 4 27

10
22
5

3+𝛼 5𝛼+12
3

10𝛼+27
10

20𝛼+22
15

3+𝛼 2𝛼+12
3

7𝛼+27
10

130𝛼+330
75

ª®®¬ . (2.74)

For the comparison to the EEL, eq. (2.33), let us again add up all internal edge weights
of cluster 0: ∑︁

𝑖, 𝑗∈0
𝑒𝑖 𝑗 = 5 ·3 = 15 , (2.75)

giving us 15+𝛼
𝛼

≠ 𝑚𝑣0𝑣1 . It is clearly visible by comparison with the previous example,
that in the present example the sum of edge weights within cluster 0 is simply not the
steady-state mass of 0. Similarly, 𝜋𝑣0𝑞𝑣0𝑣1 ≠ 𝑒𝑣0𝑣1 , i.e. the steady-state probability of 𝑣0 is
not the node strength, either. This leads us to conclude that the EEL and GEEL agree for
irreversible dynamics if the sum of internal edge weights of 0 accidentally gives the correct
Π0 and if the node strength of 𝑣0 is accidentally given by 𝜋𝑣0𝑞𝑣0𝑣1 (up to normalisation).
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2.7 Conclusions

In this chapter, we explored the behaviour of MFPTs of random walkers on graphs under
LE approximation. We show that for graphs resembling a necklace, the end-to-end MFPT
of the “natural” coarse-grained graph is equal to the MFPT between the vertices of the line
connecting the subgraphs. The defining property of a necklace is that its subgraphs are
arranged linearly and each one hangs via a single vertex from a one-dimensional chain.
Cayley trees, the T-graph, 𝑐-ary trees etc. – being trees – all fall into this class. To the best
of our knowledge, conservation of MFPTs under LE coarse-graining for the necklace type
of graphs was previously unknown.

In virtue of the LE approach, we are able to generalise the essential edge lemma (EEL)
to non-reversible walkers and produce explicit and exact formulae for the MFPTs in cases
where the EEL is inapplicable. We have checked our exact analytical formulae against
well-known results (or limits thereof) where available, or against results obtained by the
established standard formula, eq. (2.7).

Explicit formulae in terms of network parameters for MFPTs are hard to come by: our
LE approach offers a way to outmanoeuvre the infamous matrix inversion in eq. (2.7),
which in most cases can only be tackled numerically. Applications abound where explicit
formulae are called for, as MFPTs are used as a low-order quantitative indicator in many
different contexts. There is for instance an interest in MFPTs and FPTs to evaluate search
strategies and transport for random walks, and models for diffusion on complex media
([56] and references therein). Further fields include the description of ill-mixed gene
regulatory network models [83] and kinetics of reactions in high-dimensional potentials
[64]. In addition, MFPTs have recently been applied to assess the heterogeneity of complex
social systems [66]. Moreover, [84] shows that the numerical error incurred using eq. (2.7)
– or other theoretically exact but numerically expensive methods – may lead to large errors
for MFPTs between different communities of vertices. For this reason, explicit albeit
approximate formulae may be preferable over exact but expensive or imprecise methods.
We address the potential of our method to deliver useful approximations in chapter 3.

There are several interesting pathways for future work. First, in this work we have only
considered graphs that can be coarse-grained into a one-dimensional lattice. However, one
may envisage to extend this framework to graphs that can be coarse-grained into loop-less
graphs, i.e. unbalanced trees.

In this chapter, we have focused on nodes along the “backbone” of graphs with necklace
structure. MFPTs between nodes residing “far” from the backbone may be poorly described
by the LE coarse-graining and other frameworks may be better suited for them. Recently, it
has been shown that a coarse-graining method, which was proposed by Hummer and Szabo
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[79], preserves MFPTs averaged over node pairs of different clusters [64]. This coarse-
graining may provide more accurate estimates for nodes residing far from the backbone,
however, it leads to a more complex relation between the transition matrices of the original
and clustered network. It would be interesting to see whether analytical progress can be
made for graph structures that allow one-dimensional coarse-grained representations, for
such coarse-graining protocols.

Finally, we have focused entirely on mean first-passage times. Higher moments and
full distributions of FPTs are considerably less tractable than their mean, such that only
specialised results limited to certain moments or as approximations in specific problems are
available [69, 85]. However, numerical simulations presented in appendix 2.B suggest that
our LE-coarse graining method might preserve higher moments of FPTs approximately if
the graph is an exact necklace.

In the next chapter, we proceed to show that we can capitalise on the LE approach in a
second way. We demonstrate that it provides accurate and explicit (though approximate)
formulae for MFPTs on graph structures that are not exact necklaces. Thus, we extend the
virtues of the results of this chapter to a much larger class of graphs.

Appendix

Appendix 2.A Spanning trees, spanning forests and essen-
tial edges

As explained in section 2.3, one can calculate the MFPTs on a graph by solving the
combinatorial problem of finding all the spanning trees and forests of certain kinds (i.e.
two-tree forests) in the graph (see eq. (2.11)). Below, we provide the definitions of spanning
trees and forests for the reader who is not familiar with these concepts.
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Fig. 2.A.1 Directed graph (left panel) and two examples of spanning trees with root 0 (middle and
right panels). Note that the undirected edge (0,1) is essential: Every spanning tree has to contain
either 0 → 1 or 1 → 0, depending on the root.
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Fig. 2.A.2 Directed graph (left panel) and two examples of spanning forests (middle and right
panels). The middle forest has roots 0 and 1, the right forest has roots 1 and 2.

Given a directed graph, one defines a spanning forest as a loopless directed subgraph
that covers all vertices, while every vertex has at most one outgoing edge. Those vertices
without outgoing edges are the roots of the forest. There is always at least one root, and if
there are several, they define the different components, or trees, of the forest. In particular,
a single-component spanning forest is called a spanning tree. For instance, fig. 2.A.1
shows two different directed spanning trees with root 0. Similarly, fig. 2.A.2 shows two
directed spanning forests with roots {0,1} and {1,2}, respectively.
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The problem of finding the spanning trees and two-tree forests of a graph is in general
a formidable combinatorial task for large graphs. However, it may become feasible for
special graph structures. For instance, if the graph itself has the structure of a tree, it will
possess exactly one spanning tree for every root.

Appendix 2.B Higher moments of FPTs

In this section, we present some evidence for a generalisation of eq. (2.26) to higher
moments, and in fact full distributions, of FTPs. We recall from eq. (2.5) that the FPT 𝑡𝑖 𝑗
is the first time step at which the walker is in state 𝑗 , after having started from state 𝑖. We
denote the 𝑚-th moment of 𝑡𝑖 𝑗 by

𝜆𝑚𝑖 𝑗 := E(𝑡𝑚𝑖 𝑗 ) =
∞∑︁
𝑠=0

𝑠𝑚P
{
𝑡𝑖 𝑗 = 𝑠

}
(2.76)

for 𝑚 ≥ 0. Evidently, 𝜆0
𝑖 𝑗
= 1 due to normalisation, and 𝜆1

𝑖 𝑗
=𝑚𝑖 𝑗 by definition of the MFPT

from 𝑖 to 𝑗 .
For the first-passage process to 𝑗 , we may without loss of generality assume that 𝑗 is

an absorbing state. In that case, the 𝑗-th row of the transition matrix q has a unit entry in
the 𝑗-th column and 0 everywhere else. The probability that 𝑡𝑖 𝑗 ≤ 𝑠 is then given by the
probability that the walker is in state 𝑗 at time 𝑠 (as it can have entered 𝑗 either before time
𝑠 and never left, or entered at time 𝑠). In terms of q, this reads

P
{
𝑡𝑖 𝑗 ≤ 𝑠

}
= (q𝑠)𝑖 𝑗 , (2.77)

or for the probability mass function (PMF)

P
{
𝑡𝑖 𝑗 = 𝑠

}
= (q𝑠)𝑖 𝑗 −

(
q𝑠−1

)
𝑖 𝑗
. (2.78)

Analogously, we denote FPTs and their moments on the coarse-grained graph by 𝑇𝐼𝐽 and
Λ𝑚
𝐼𝐽

, respectively.
Led by eq. (2.26), we now test if on a necklace the original and coarse-grained walker

have the same FPT distributions or moments, i.e. if P
{
𝑡𝑣0𝑣𝐻 = 𝑠

}
= P {𝑇0𝐻 = 𝑠} or 𝜆𝑚𝑣𝐼−1𝑣𝐼 =

Λ𝑚
𝐼−1,𝐼 for any 𝑚 > 1. We do this by way of example, considering a necklace of five cliques

with five vertices, each, following the examples in section 2.5.2. Additionally, every edge
is weighted by a number drawn independently and uniformly from the unit interval, and
both edge directions are taken to be independent as well. That is, the edges (𝑖, 𝑗) and ( 𝑗 , 𝑖)
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are both present and weighted independently for each edge (𝑖, 𝑗) present in the necklace as
per section 2.5.2).

For a single realisation of edge weights, the PMFs obtained using eq. (2.78) are shown
in fig. 2.B.1 along with their Kullback-Leibner (KL) divergence. To this end, both PMFs
were truncated such that

P
{
𝑡𝑣0𝑣𝐻 ≤ 𝑡trunc

}
≈ P {𝑇0𝐻 ≤ 𝑡trunc} ≈ 0.9999 (2.79)

to avoid numerical problems with the Kullback-Leibler divergence when the PMFs range
close to zero. The two PMFs show an excellent agreement, with only a slight relative shift
of the mode of 𝑇0𝐻 to higher values.
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Fig. 2.B.1 Probability mass functions of the FPTs of the coarse-grained and full walker, obtained
using eq. (2.78). The shown part of the mass functions account for a fraction of 0.9999 of the total
mass, each. The Kullback-Leibner (KL) divergence measures the deviation between the curves.

Similarly, in fig. 2.B.2, the root-moments 𝑚
√︁
Λ𝑚0𝐻 of the coarse-grained walker are

plotted against the root-moments 𝑚
√︁
𝜆𝑚𝑣0𝑣𝐻 of the original walker for 𝑚 = 2,3,4,5,10 and

15 over 200 realisations of edge weights. The moments were computed by truncating the
PMFs, eq. (2.78), at 𝑡 = 880 and applying eq. (2.76) (again truncated at 𝑡 = 880).
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Mean first-passage time formulae from dimensionality reduction

Fig. 2.B.2 shows an excellent – though not exact – agreement between the moments
Λ𝑚0𝐻 and 𝜆𝑚𝑣0𝑣𝐻 . There is a substantial disagreement between the two only for comparatively
low values of 𝜆𝑚𝑣0𝑣𝐻 .
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Fig. 2.B.2 𝑚-th root-moments of the FPTs of the coarse-grained and the full walker for 200
realisations of edge weights.
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Chapter 3

Beyond necklaces: A perturbative error
approximation

In chapter 2, we derived an exact equation for MFPTs in graphs with necklace structure,
eq. (2.18), and have proven its equivalence with eq. (2.22). We have shown that both
equations lead to explicit MFPT formulae when steady-state probabilities are known. This
chapter addresses ways to apply the method of chapter 2 to obtain approximate MFPTs
when the system under study deviates from this ideal setting. An obvious generalisation
consists of a necklace to which additional links with small weights have been added
between adjacent clusters. In a slight abuse of nomenclature, we continue referring to the
inter-cluster links of the original necklace as the backbone edges. Regarding the newly
added edges, as they “bypass” the backbone edges, we refer to them as leaks. If the total
leakage between two clusters is small compared to the weight of their backbone edge, we
expect eq. (2.25) to be approximately true. Our aim is to investigate the error made in that
approximation.

The two sides of eq. (2.25), 𝑚𝑣0𝑣1 and 𝑀01, are difficult to compare directly using
otherwise powerful algebraic methods – the reason being that they are properties of graphs
with different sets of nodes. We propose an approach that consists of first mapping the
problematic non-necklace to a related necklace, its necklacification, with the same set
of nodes. A perturbative expansion is then available to compare 𝑚𝑣0𝑣1 and 𝑀01 to the
corresponding quantities of the necklacification. The choice of a necklacification is far
from unique; we present one choice that is tailored to simplify the analysis for reversible
walkers.

Investigating the sensitivity of Markov chains under perturbations has been an active
field of research for a number of decades, focusing mostly on the effects on the steady-
state distribution. The earliest two representatives are the references [86, 87], treating
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Beyond necklaces: A perturbative error approximation

perturbations in absolute size and relative to the original hopping probabilities, respectively.
An assortment of condition numbers of the steady-state are compared in [88]. [89] is one of
the first to study the sensitivity of MFPTs under perturbations. We refer to [90, 88, 89] and
references therein for an overview of the results available. Our approach presented here is
largely about constructing an appropriate approximating Markov chain whose perturbation
gives rise to the chain of interest. This method is tailored towards necklace-like graphs and
leverage their properties to use matrix-forest theorems, e.g. eqs. (2.11) and (2.14), to our
advantage.

The analysis in the present chapter is most appropriate for reversible random walkers,
i.e. for non-directed weighted graphs. After introducing the general method (section 3.1),
we demonstrate the technique with examples of walkers on undirected (section 3.2) and
directed (section 3.3) graphs and uncover a limitation of the method in the latter case. We
finish with three numerical studies of our theoretical results in section 3.4.

3.1 Necklacification: General method and linear approxi-
mation of error

As in the previous chapter, let q be the transition matrix of a walker on a graph with
two clusters 0 and 1, and a dominant edge (backbone) (𝑣0, 𝑣1) connecting the two. Let
𝐾1, . . . , 𝐾ℓ0 and 𝐿1 . . . , 𝐿ℓ1 be the leaking nodes of the two clusters, respectively, which is
to say that each link between 0 and 1 that is not the backbone1 can be written as (𝐾𝑟 , 𝐿𝑠)
for some 𝑟 and 𝑠; these links we call leaks.

Next, we define a necklacification with transition matrix q0. At this point we only
require that in the necklacification all the leaks are removed, 𝑞0

𝐾𝑟 ,𝐿𝑠
= 0 = 𝑞0

𝐿𝑠 ,𝐾𝑟
for all 𝑟

and 𝑠, and that the only non-zero rows of the perturbation 𝑑q := q−q0 correspond to the
surface nodes 𝑣0, 𝑣1, {𝐾1, . . . , 𝐾ℓ0}, and {𝐿1, . . . , 𝐿ℓ1}. The superscript −0 is used to denote
quantities pertaining to a given necklacification throughout this chapter.

Our aim is to interpret eq. (2.25) as an approximation for the MFPT𝑚𝑣0,𝑣1 by 𝑀01 on the
coarse-grained network (with hopping probabilities defined by the local equilibrium rule
eq. (2.9)). To quantify the resulting error, we compare 𝑚𝑣0,𝑣1 and 𝑀01 to the corresponding
quantities, 𝑚0

𝑣0,𝑣1 and 𝑀0
01, calculated for the necklacified walker. For the latter, eq. (2.25)

manifests as
𝑚0
𝑣0𝑣1 = 𝑀

0
01 , (3.1)

and is once again true.

1However, for any given leak, either 𝑣0 or 𝑣1 - not both - may participate.
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3.1 Necklacification: General method and linear approximation of error

We can now split the error-bound on 𝑚𝑣0,𝑣1 in two upon inserting 0 = 𝑀0
01 −𝑚

0
𝑣0𝑣1 and

using the triangle inequality,��𝑚𝑣0,𝑣1 −𝑀01
�� = ��𝑚𝑣0,𝑣1 −𝑚0

𝑣0,𝑣1 +𝑀
0
01 −𝑀01

�� ≤ ��𝑚𝑣0,𝑣1 −𝑚0
𝑣0,𝑣1

��+ ��𝑀01 −𝑀0
01

�� . (3.2)

This allows us to bound the errors on the right hand side individually. In the following two
sections 3.1.1 and 3.1.2, we study these two separately, beginning with the contribution
from the “microscopic” dynamics, 𝑚𝑣0𝑣1 −𝑚0

𝑣0𝑣1 .

3.1.1 Contribution from microscopic dynamics

By virtue of the necklacification introduced above, we now have two Markov chains on the
same state space to compare. In this section, we provide a general perturbative way of doing
so. Essentially, we will treat the necklacification as the “ground state” Markov chain (with a
benign topology) that is perturbed by a matrix 𝑑q, leading to a more complicated topology.

For convenience, we denote the inverse matrices
(
1𝑛−1 − q̂𝑣1

)−1 and
(
1𝑛−1 − q̂0

𝑣1

)−1
by 𝐺𝐺𝐺

and 𝐺𝐺𝐺0, respectively.
The first summand in eq. (3.2) can be tackled by some basic matrix calculus, using the

derivative rule
𝑑

𝑑𝑡
𝑋𝑋𝑋−1(𝑡) = −𝑋𝑋𝑋−1(𝑡)

(
𝑑

𝑑𝑡
𝑋𝑋𝑋

)
(𝑡)𝑋𝑋𝑋−1(𝑡) . (3.3)

Eq. (3.3) allows us to expand the vector of MFPTs of 𝑣1, given by eq. (2.7). There are
two conceptually different cases that we formally distinguish: in the first one, we assume
that the total leakage 𝜀 takes continuous values in an interval starting at 0. In this case,
we assume that the perturbation 𝑑q(𝜀) is smoothly parametrised by 𝜀 such that all entries
of 𝑑q(0) vanish. In the second case, we consider leak weights as discrete; we may only
control the number of leaks and how many leak edges attach to each leaking node. Again,
we should have 𝑑q= 0 in the absence of leakage. As both setups can be treated similarly, we
provide the details of the former, continuous-leakage problem first and state the necessary
modifications for the latter problem afterwards.

In the continuous-leakage situation, expanding eq. (2.7) at 𝜀 = 0, the zeroth order
coefficient of 𝑚𝑣0𝑣1 is just 𝑚0

𝑣0𝑣1 (0). Taking the first derivative using eq. (3.3), we obtain

𝑚𝑣0,𝑣1 (𝜀) −𝑚0
𝑣0,𝑣1 (𝜀) = −𝜀

[
𝐺𝐺𝐺 (0)

(
− 𝑑

𝑑𝜀
𝑑q𝑣1 (0)

)
𝐺𝐺𝐺0(0)111𝑛−1

]
𝑣0

+𝑅 (𝜀)

= 𝜀

[
𝐺𝐺𝐺 (0) 𝑑

𝑑𝜀
𝑑q𝑣1 (0)𝑚𝑚𝑚

0
𝑣1 (0)

]
𝑣0

+𝑅 (𝜀) (3.4)
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for the error of the microscopic approximation, where we used eq. (2.7) to rewrite 𝐺𝐺𝐺0111𝑛−1

as 𝑚𝑚𝑚0
𝑣1 . The remainder of the expansion, 𝑅(𝜀), is of order O(𝜀2). We deal with 𝑅 at the

end of the section and turn towards rewriting the linear term now.
As stated above, the only non-zero rows of 𝑑q are those corresponding to the surface

nodes, for which we find[
𝑑

𝑑𝜀
𝑑q𝑣1𝑚𝑚𝑚

0
𝑣1

]
𝑣0

=
∑︁
𝑗∈0

𝑑

𝑑𝜀
𝑑𝑞𝑣0, 𝑗𝑚

0
𝑗 𝑣1

+
∑︁
𝑠

𝑑

𝑑𝜀
𝑑𝑞𝑣0,𝐿𝑠𝑚

0
𝐿𝑠𝑣1

, (3.5)[
𝑑

𝑑𝜀
𝑑q𝑣1𝑚𝑚𝑚

0
𝑣1

]
𝐾𝑟

=
∑︁
𝑗∈0

𝑑

𝑑𝜀
𝑑𝑞𝐾𝑟 , 𝑗𝑚

0
𝑗 𝑣1

+
∑︁
𝑠

𝑑

𝑑𝜀
𝑑𝑞𝐾𝑟 ,𝐿𝑠𝑚

0
𝐿𝑠𝑣1

, (3.6)

and [
𝑑

𝑑𝜀
𝑑q𝑣1𝑚𝑚𝑚

0
𝑣1

]
𝐿𝑠

=
∑︁
𝑗∈1

𝑑

𝑑𝜀
𝑑𝑞𝐿𝑠 , 𝑗𝑚

0
𝑗 𝑣1

+
∑︁
𝑟

𝑑

𝑑𝜀
𝑑𝑞𝐿𝑠𝐾𝑟𝑚

0
𝐾𝑟 𝑣1

+ 𝑑

𝑑𝜀
𝑑𝑞𝐿𝑠𝑣0𝑚

0
𝑣0𝑣1 . (3.7)

Moreover, one can use a matrix forest theorem (related to the one used in the proof in

section 2.3) to express the elements of 𝐺𝐺𝐺0 =
(
1𝑛−1 − q̂0

𝑣1

)−1
in terms of spanning forest

weights [82]: given two nodes 𝑖 and 𝑗 , let {𝔣 | roots(𝔣) = {𝑣1, 𝑗}, 𝑖→ 𝑗} be the set of all
spanning forests with two trees rooted in 𝑣1 and 𝑗 such that 𝑖 and 𝑗 are in the same tree.
For our convention of rooted spanning forests, see appendix 2.A. We then have(

1𝑛−1 − q̂0
𝑣1

)−1

𝑖 𝑗
=

1
𝑤0(𝑣1)

∑︁
𝔣; 𝑖→ 𝑗 ,

roots(𝔣)={𝑣1, 𝑗}

𝑤0(𝔣) (3.8)

wherein

𝑤0(𝑣1) :=
∑︁
𝔱;

roots(𝔱)={𝑣1}

𝑤0(𝔱) , (3.9)

with 𝑤0(·) denoting the weight of a tree or forest consisting of edges of the necklacification.
As we are estimating the error for the MFPT between 𝑣0 and 𝑣1, we only need to obtain

the entries of this matrix for 𝑖 = 𝑣0. For the 𝑣0-th row, it is easy to see that all 𝐿𝑠 elements
have to vanish: as the only connection between clusters 0 and 1 in the necklacified network
is the backbone (𝑣0, 𝑣1), no spanning forests exists with roots 𝑣1 and 𝐿𝑠 such that 𝑣0 and 𝐿𝑠
are in the same component2. For this reason, and because the non-zero rows 𝑑𝑞𝑞𝑞 correspond

2Alternatively, q̂0 is block-diagonal – with blocks given by the partition of the nodes into their clusters –
as the only connection between the clusters in the necklacification is encoded in the 𝑣1-th row and column of
q0. Therefore

(
1− q̂0)−1 is block-diagonal.
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3.1 Necklacification: General method and linear approximation of error

exactly to the surface nodes, it suffices to find the 𝑣0, 𝑣0 and 𝑣0,𝐾𝑟 entries of the matrix
𝐺𝐺𝐺0. Due to the presence of the essential edge (𝑣0, 𝑣1), the spanning forest and tree weights
must factorise

𝑤0(𝑣1) = 𝑤0(0 → 𝑣0)𝑞𝑣1𝑣0𝑤0(1 → 𝑣1) ,
𝑤0(𝔣 : roots(𝔣) = 𝑣1,𝐾𝑟 , 𝑣0 → 𝐾𝑟) = 𝑤0(0 → 𝐾𝑟)𝑤0(1 → 𝑣1) , (3.10)

using the notation for weights of sub-spanning trees of the clusters defined in section 2.3
above eq. (2.16). The above factorisation and the tree-formula for the steady-state proba-
bilities in eq. (2.14) directly imply that

𝐺𝐺𝐺0
𝑣0,𝐾𝑟

=
𝑤0(0 → 𝐾𝑟)

𝑤0(0 → 𝑣0)𝑞0
𝑣0𝑣1

=
𝜋0
𝐾𝑟

𝜋0
𝑣0𝑞

0
𝑣0𝑣1

. (3.11)

Similarly, we obtain

𝐺𝐺𝐺0
𝑣0,𝑣0 =

𝑤0(0 → 𝑣0)
𝑤0(0 → 𝑣0)𝑞0

𝑣0𝑣1

=
1
𝑞0
𝑣0𝑣1

(3.12)

for the 𝑣0, 𝑣0 element. Finally, on the necklacified graph, the first-passage processes
starting anywhere within cluster 0 must pass through 𝑣0, i.e. for all 𝑗 ∈ 0 \ {𝑣0} we have
𝑚0
𝑗 ,𝑣1

= 𝑚0
𝑗 ,𝑣0

+𝑚0
𝑣0,𝑣1 . In summary, the above can be combined to yield (all quantities

evaluated at 𝜀 = 0)[
𝐺𝐺𝐺
𝑑

𝑑𝜀
𝑑q𝑣1𝐺𝐺𝐺

0111𝑛−1

]
𝑣0

=
1
𝑞0
𝑣0𝑣1

[
𝑑

𝑑𝜀
𝑑q𝑣1𝑚𝑚𝑚

0
𝑣1

]
𝑣0

+
∑︁
𝑟

𝜋0
𝐾𝑟

𝜋0
𝑣0𝑞

0
𝑣0𝑣1

[
𝑑

𝑑𝜀
𝑑q𝑣1𝑚𝑚𝑚

0
𝑣1

]
𝐾𝑟

=
∑︁
𝑟

𝜋0
𝐾𝑟

𝜋0
𝑣0𝑞

0
𝑣0𝑣1


∑︁

𝑗∈0\{𝑣0}

𝑑

𝑑𝜀
𝑑𝑞𝐾𝑟 , 𝑗

(
𝑚0
𝑗 𝑣0

+𝑚0
𝑣0,𝑣1

)
+ 𝑑

𝑑𝜀
𝑑𝑞𝐾𝑟 ,𝑣0𝑚

0
𝑣0,𝑣1 +

∑︁
𝑠

𝑑

𝑑𝜀
𝑑𝑞𝐾𝑟 ,𝐿𝑠𝑚

0
𝐿𝑠𝑣1


+ 1
𝑞0
𝑣0𝑣1


∑︁

𝑗∈0\{𝑣0}

𝑑

𝑑𝜀
𝑑𝑞𝑣0, 𝑗

(
𝑚0
𝑗 𝑣0

+𝑚0
𝑣0,𝑣1

)
+ 𝑑

𝑑𝜀
𝑑𝑞𝑣0,𝑣0𝑚

0
𝑣0,𝑣1 +

∑︁
𝑠

𝑑

𝑑𝜀
𝑑𝑞𝑣0,𝐿𝑠𝑚

0
𝐿𝑠𝑣1

 ,
(3.13)

giving the coefficient for the first order in 𝜀 of 𝑚𝑣0𝑣1 −𝑚0
𝑣0𝑣1 . For 𝑑q based on discrete

leakage, we use eq. (3.3) by setting 𝐺𝐺𝐺 (𝜀) =
(
1𝑛−1 − q̂0

𝑣1 − 𝜀 · 𝑑q𝑣1
)−1

. This leads to the

same expressions as just given, with 𝑑
𝑑𝜀
𝑑𝑞𝑖 𝑗 replaced by 𝑑𝑞𝑖 𝑗 .
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For the microscopic contribution to eq. (3.2), we are only left to discuss the remainder,
𝑅, in the first order expansion in eq. (3.4). As exploited in previous steps, the error
𝑚𝑣0𝑣1 −𝑚0

𝑣0𝑣1 is given by the 𝑣0-entry of
(
𝐺𝐺𝐺 −𝐺𝐺𝐺0

)
111𝑛−1 for which we can easily compute

the first and second derivatives as

𝑑

𝑑𝜀
(𝐺𝐺𝐺 −𝐺𝐺𝐺0) =𝐺𝐺𝐺

(
𝑑

𝑑𝜀
q
)
𝐺𝐺𝐺 −𝐺𝐺𝐺0

(
𝑑

𝑑𝜀
q0

)
𝐺𝐺𝐺0 , (3.14)

𝑑2

𝑑𝜀2 (𝐺𝐺𝐺 −𝐺𝐺𝐺0) =𝐺𝐺𝐺
(
𝑑2

𝑑𝜀2 q
)
𝐺𝐺𝐺 +2𝐺𝐺𝐺

(
𝑑

𝑑𝜀
q
)
𝐺𝐺𝐺

(
𝑑

𝑑𝜀
q
)
𝐺𝐺𝐺 −𝐺𝐺𝐺0

(
𝑑2

𝑑𝜀2 q0
)
𝐺𝐺𝐺0

−2𝐺𝐺𝐺0
(
𝑑

𝑑𝜀
q0

)
𝐺𝐺𝐺0

(
𝑑

𝑑𝜀
q0

)
𝐺𝐺𝐺0 . (3.15)

To obtain the corresponding remainder, we need to compute this previous second derivative
for general 𝜀 ≠ 0. However, doing so requires explicit knowledge of 𝐺𝐺𝐺 first, at which point
we could as well have used eq. (2.7) to calculate 𝑚𝑣0𝑣1 without any approximations. We
have, however, full knowledge of q and assume that we can do the easier computations
relating to 𝐺𝐺𝐺0. We therefore propose to replace all 𝐺𝐺𝐺’s by 𝐺𝐺𝐺0’s to approximate the
equation above, while keeping the correct q’s and q0’s. This way we can identify some of
the summands above, arriving at the simplified expression

𝑑2

𝑑𝜀2 (𝐺𝐺𝐺 −𝐺𝐺𝐺0) ≈𝐺𝐺𝐺0
(
𝑑2

𝑑𝜀2 𝑑q
)
𝐺𝐺𝐺0

+2𝐺𝐺𝐺0
[(
𝑑

𝑑𝜀
q
)
𝐺𝐺𝐺0

(
𝑑

𝑑𝜀
q
)
−

(
𝑑

𝑑𝜀
q0

)
𝐺𝐺𝐺0

(
𝑑

𝑑𝜀
q0

)
𝐺𝐺𝐺0

]
𝐺𝐺𝐺0 . (3.16)

We now hold all the ingredients of the remainder term 𝑅(𝜀). As usual, if we can bound����( 𝑑2

𝑑𝜀2 (𝐺𝐺𝐺 −𝐺𝐺𝐺0)111𝑛−1

)
𝑣0

���� (or its approximation) by a constant 𝐶, we can write down a (con-

servative) bound

|𝑚𝑣0,𝑣1 (𝜀) −𝑚0
𝑣0,𝑣1 (𝜀) | ≤ 𝜀

����� [𝐺𝐺𝐺0(0) 𝑑
𝑑𝜀
𝑑q𝑣1 (0)𝑚𝑚𝑚

0
𝑣1 (0)

]
𝑣0

�����+ 𝜀2

2
𝐶 . (3.17)

As in the previous paragraph under eq. (3.13), the version for unparametrised leaks is
obtained by replacing the derivative of 𝑑q𝑣1 with 𝑑q𝑣1 itself.

As a final remark in this section, we recall that the MFPTs 𝑚𝑚𝑚0
𝑣1 must decompose into

𝑚0
𝑣0𝑖𝑣1 = 𝑚

0
𝑣0𝑖𝑣0 +𝑚

0
𝑣0𝑣0 for all nodes 𝑣0𝑖 in cluster 0 as a consequence of the necklacification.

For the intra-cluster MFPTs, approximations such as the one discussed in [75] can provide
useful estimates for𝑚0

𝑣0𝑖𝑣0 and𝑚0
𝑣1 𝑗 𝑣1 , provided the spectrum of q̂0

𝑣1 has a large gap between
its largest two eigenvalues.
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3.1 Necklacification: General method and linear approximation of error

We continue our treatment of eq. (3.2) with the contribution from the coarse-grained
dynamics.

3.1.2 Contribution from macroscopic dynamics

For completeness, we include a general discussion for the second summand of the right
hand side of the inequality (3.2). In full generality, however, it is of limited use since not
all involved quantities can be bounded in the required way. Recall from section 2.5.2 that
in the coarse-grained systems with two clusters the MFPTs are given by

𝑀0
01 =

1
𝑄0

01
=

Π0
0

𝜋0
𝑣0𝑞

0
𝑣0𝑣1

,

𝑀01 =
1
𝑄01

=
Π0∑

𝑖∈0, 𝑗∈1 𝜋𝑖𝑞𝑖 𝑗
=

Π0
𝜋𝑣0𝑞𝑣0𝑣1 +

∑
𝑟,𝑠 𝜋𝐾𝑟 𝑞𝐾𝑟 𝐿𝑠

. (3.18)

This implies that the difference between the two macroscopic MFPTs is given by

𝑀01 −𝑀0
01 =

{
𝑑Π0𝜋

0
𝑣0𝑞

0
𝑣0𝑣1 −Π0

0

∑︁
𝑟,𝑠

𝜋0
𝐾𝑟
𝑞𝐾𝑟 𝐿𝑠

−Π0
0

[
𝑑𝜋𝑣0𝑑𝑞𝑣0𝑣1 + 𝜋0

𝑣0𝑑𝑞𝑣0𝑣1 + 𝑑𝜋𝑣0𝑞
0
𝑣0𝑣1 +

∑︁
𝑟,𝑠

𝑑𝜋𝐾𝑟𝑞𝐾𝑟 𝐿𝑠

]}
×

[
𝜋0
𝑣0𝑞

0
𝑣0𝑣1

(
𝜋𝑣0𝑞𝑣0𝑣1 +

∑︁
𝑟,𝑠

𝜋𝐾𝑟𝑞𝐾𝑟 𝐿𝑠

)]−1

. (3.19)

Knowing the relationship between q and q0, we thus have to quantify the differences
𝑑Π := Π−Π0 and 𝑑𝜋𝜋𝜋 := 𝜋𝜋𝜋− 𝜋𝜋𝜋0 in order to compare 𝑀01 and 𝑀0

01.
Calculating 𝑑𝜋𝜋𝜋 exactly can be challenging. However, many results exist bounding its

norm by the norm of the perturbation 𝑑q [88]

𝑑𝜋 := | |𝑑𝜋𝜋𝜋 | | ≤ 𝑘
(
q0

)
| |𝑑q| | , (3.20)

where 𝑘 is a suitable condition number, depending on the necklacification, and | | − | | is any
norm. If | | − | | is the maximum-norm, it clearly follows that

𝑑Π0 := | |𝑑Π0 | | ≤ |000| · 𝑘
(
q0

)
| |𝑑q| | , (3.21)
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Beyond necklaces: A perturbative error approximation

yielding the bound

|𝑀01 −𝑀0
01 | ≤

{
𝑞0
𝑣0𝑣1

(
𝑑Π0𝜋

0
𝑣0 +Π

0
0𝑑𝜋

)
+Π0

0

∑︁
𝑟,𝑠

𝜋0
𝐾𝑟
𝑞𝐾𝑟 𝐿𝑠

+Π0
0

[
𝑑𝜋𝑑𝑞𝑣0𝑣1 + 𝜋0

𝑣0𝑑𝑞𝑣0𝑣1 +
∑︁
𝑟,𝑠

𝑑𝜋𝑞𝐾𝑟 𝐿𝑠

]}
×

[
𝜋0
𝑣0𝑞

0
𝑣0𝑣1

[
𝜋𝑣0𝑞𝑣0𝑣1 +

∑︁
𝑟,𝑠

𝜋𝐾𝑟𝑞𝐾𝑟 𝐿𝑠

] ]−1

. (3.22)

At this point, we require a lower bound for either 𝑑𝜋 or 𝑑Π to use in the denominator. In
general, such a (non-trivial) bound can’t exist, as remarked for birth-death processes by
[91].

In the next section, we apply the results of this discussion to a useful necklacification
for non-directed graphs. This necklacification has the desirable property that 𝑀01 = 𝑀

0
01,

such that eq. (3.17) is the only bound that we need to consider. In fact, it satisfies Π = Π0,
and therefore provides another example for a situation in which the optimal lower bound is
the trivial one, 0 ≤ 𝑑Π.

3.2 Reversible chains

For reversible walkers, the difficulty outlined at the end section 3.1.2 can be easily avoided.
In fact, provided the walker is reversible, we can construct necklacifications q0 that have
the same coarse-grained MFPT 𝑀0

01 as q. In this section, we show by example how to
construct this necklacification and the error calculation that follows.

For ease of presentation, we consider a simple example where we could even do exact
calculations. It is a prototype model for block-model situations where one has densely
connected communities that are only weakly interconnected. Thus, let us consider two
clusters 0 and 1 formed by fully connected subgraphs (cliques) of size 𝑛 and𝑚, respectively.
Let the clusters be connected by the backbone (𝑣0, 𝑣1) with unit weight and a single leak
(𝑣0𝐾 , 𝑣1𝐿) weighted 𝜀, and let all other edges in the graph carry unit weight. A sketch of
this graph with 𝑚 = 𝑛 = 5 is given in the upper diagram of fig. 3.2.1.

Clearly, all nodes within the bulk of cluster 0, i.e. 0 \ {𝑣0, 𝑣0𝐾}, are interchangeable.
For this reason, we can aid the calculation by inserting an additional coarse-graining step:
we replace the bulk by a single node, say 𝑣0𝑖, with a weighted self-loop. If the edges
connecting to 𝑣0𝑖 are to represent the correct dynamics of the walker entering, leaving or
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v1

v11

v12

v13

v14

v0

v01

v02

v03

v04

ε

v1

v11

v12

v13

v14

v0

v01

v02

v03

v04

e0v0v1

Fig. 3.2.1 Necklacification (bottom) of an undirected graph (top). The walkers on both graphs have
the same coarse-grained stationary distributions (Π = Π0) and coarse-grained MFPT (𝑀01 = 𝑀

0
01)

if 𝑒0
01 = 1+ 𝜀. Unlabelled edges have unit weight.

remaining in the bulk, we naturally arrive at the transition matrix

q =

©­­­­­­­­­­«

0 1
𝑛

𝑛−2
𝑛

0 0 1
𝑛

1
𝑛−1+𝜀 0 𝑛−2

𝑛−1+𝜀
𝜀

𝑛−1+𝜀 0 0
1
𝑛−1

1
𝑛−1

𝑛−3
𝑛−1 0 0 0

0 𝜀
𝑚−1+𝜀 0 0 𝑚−2

𝑚−1+𝜀
1

𝑛−1+𝜀
0 0 0 1

𝑚−1
𝑚−3
𝑚−1

1
𝑚−1

1
𝑚

0 0 1
𝑚

𝑚−2
𝑚

0

ª®®®®®®®®®®¬
. (3.23)

Here, we have made the same replacement of the bulk nodes of cluster 1 by the representa-
tive 𝑣1 𝑗 , and consider nodes in the order 𝑣0, 𝑣0𝐾 , 𝑣0𝑖, 𝑣1𝐿 , 𝑣1 𝑗 , 𝑣1.

For future reference, we apply eq. (2.7) to obtain, with the help of Mathematica, the
true MFPT

𝑚𝑣0𝑣1 =
4𝜀2𝑛+𝑚𝑛(𝑛2 −𝑛+1) + 𝜀(𝑚2𝑛+2𝑛(𝑛2 −𝑛+1) +𝑚(𝑛2 −𝑛+2))

2𝜀(𝑛+𝑚) +𝑛𝑚(1+ 𝜀) . (3.24)
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Beyond necklaces: A perturbative error approximation

The steady-state probabilities are simply proportional to the node strengths (the sum
of weights connecting a given node, self-loops counted once only), such that the LE-
approximated quantity can be derived with ease3

𝑀01 =
𝑛(𝑛−1) +1+ 𝜀

1+ 𝜀 . (3.25)

For this model, we now introduce a useful necklacification that admits obvious general-
isations.

3.2.1 Necklacification with preserved coarse-grained MFPT

A necklacification for which the equality 𝑀01 = 𝑀
0
01 holds is given in the bottom diagram

in fig. 3.2.1: one simply removes the leak and adds its weight to the backbone weight.
Symbolically, this mapping amounts to

𝑒0
𝑣0𝑣1 := 𝑒𝑣0𝑣1 + 𝑒𝑣0𝐾 𝑣1𝐿 , 𝑒0

𝑣0𝐾 𝑣1𝐿 := 0 (3.26)

and all other edge weights remain unchanged. To see why this mapping preserves 𝑀01,
let 𝑒𝑖 𝑗 denote the weight of the edge (𝑖, 𝑗) (setting 𝑒𝑖 𝑗 = 0 if the edge (𝑖, 𝑗) does not exist).
Using again that stationary probabilities are proportional to the node strengths, we observe
that Π0 = Π since

Π0 =
1
𝑍

∑︁
𝑖∈0
𝑘𝑖 =

1
𝑍

©­«
∑︁
𝑖, 𝑗∈0

𝑒𝑖 𝑗 + 𝜀 +1ª®¬ . (3.27)

Here, the summand 𝜀 arises from the leak (𝑣0𝐾 , 𝑣1𝐿). For the necklacified walker, we
obtain the same expression, 𝜀 now being a summand in 𝑤0

𝑣0,𝑣1 = 1+ 𝜀, while no other edge
weights change. Similarly, the probability flowing out of 0 is the same for both models, as∑︁

𝑖∈0,
𝑗∈1

𝜋𝑖𝑞𝑖 𝑗 =
1
𝑍
(1+ 𝜀) =

∑︁
𝑖∈0,
𝑗∈1

𝜋0
𝑖 𝑞

0
𝑖 𝑗 (3.28)

by construction.
This way we can show the equality for 𝑀01 and 𝑀0

01 of the necklacified walker,

𝑀0
01 =

Π0
0

𝜋0
𝑣0𝑞

0
𝑣0,𝑣1

=
Π0

𝜋𝑣0𝑞𝑣0,𝑣1 + 𝜋𝑣0𝐾𝑞𝑣0𝐾 ,𝑣1𝐿
= 𝑀01 . (3.29)

3In 0, there is one node with strength 𝑛, one with strength 𝑛−1+ 𝜀 and 𝑛−2 nodes with strength 𝑛−1
each.
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3.2 Reversible chains

Moreover, a straightforward generalisation of the above argument shows that 𝑀0
01 = 𝑀01

for the analogous necklacification with an arbitrary number of leaks, where all leaks have
been removed and their total weight is added to the backbone.

We may write the necklacification of our example in terms of the transition matrix

q0 =

©­­­­­­­­­­«

0 1
𝑛+𝜀

𝑛−2
𝑛+𝜀 0 0 1+𝜀

𝑛+𝜀
1
𝑛−1 0 𝑛−2

𝑛−1 0 0 0
1
𝑛−1

1
𝑛−1

𝑛−3
𝑛−1 0 0 0

0 0 0 0 𝑚−2
𝑚−1

1
𝑚−1

0 0 0 1
𝑚−1

𝑚−3
𝑚−1

1
𝑚−1

1+𝜀
𝑚+𝜀 0 0 1

𝑚+𝜀
𝑚−2
𝑚+𝜀 0

ª®®®®®®®®®®¬
(3.30)

or, given in the form of a perturbation,

𝑑q = 𝜀 ·

©­­­­­­­­­­«

0 1
𝑛(𝑛+𝜀)

𝑛−2
𝑛(𝑛+𝜀) 0 0 − 𝑛−1

𝑛(𝑛+𝜀)
− 1

(𝑛−1) (𝑛−1+𝜀) 0 − 𝑛−2
(𝑛−1) (𝑛−1+𝜀)

1
𝑛−1+𝜀 0 0

0 0 0 0 0 0
0 1

𝑚−1+𝜀 0 0 − 𝑚−2
(𝑚−1) (𝑚−1+𝜀) − 1

(𝑚−1) (𝑚−1+𝜀)
0 0 0 0 0 0

− 𝑚−1
𝑚(𝑚+𝜀) 0 0 1

𝑚(𝑚+𝜀)
𝑚−2

𝑚(𝑚+𝜀) 0

ª®®®®®®®®®®¬
.

(3.31)
It is straightforward to apply eq. (3.13) to this model by using the derivatives of 𝑑q in

eq. (3.31), given by

𝑑𝑞′𝑣0𝑣0𝐾 (0) =
1
𝑛2 , 𝑑𝑞′𝑣0𝑣0𝑖 (0) =

𝑛−2
𝑛2 , (3.32)

𝑑𝑞′𝑣0𝐾 𝑣0 (0) = − 1
(𝑛−1)2 , 𝑑𝑞′𝑣0𝐾 𝑣0𝑖 (0) = − 𝑛−2

(𝑛−1)2 , 𝑑𝑞′𝑣0𝐾 𝑣1𝐿 (0) =
1

𝑛−1
, (3.33)

and the following quantities for the present necklacification

𝜋0
𝑣0𝐾

𝜋0
𝑣0

=
𝑛−1
𝑛+ 𝜀 , (3.34)

𝑚0
𝑣0𝑖𝑣0 = 𝑚

0
𝑣0𝐾 𝑣0 = 𝑛−1 , (3.35)

𝑚0
𝑣1𝐿𝑣1 = 𝑚−1 . (3.36)

These quantities substituted into eq. (3.13) we obtain

𝑚𝑣0𝑣1 (𝜀) −𝑚0
𝑣0𝑣1 (𝜀) = 𝜀(𝑚−𝑛) +O(𝜀2) (3.37)
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Beyond necklaces: A perturbative error approximation

to first order in 𝜀.
An analogous calculation allows us to generalise to the case with multiple leaking

nodes 𝐾𝑟 ∈ 0 and 𝐿𝑠 ∈ 1 weighted by discrete non-negative numbers 𝑒𝐾𝑟 𝐿𝑠 . We begin
by only assuming that the clusters are close to fully connected, such that 𝑚𝑣0𝑖𝑣0 ≈ 𝑛− 1,
𝑚𝑣1 𝑗 𝑣1 ≈ 𝑚 − 1, but allow the node degrees 𝑘0

𝑣 to vary slightly. This makes the formula
more widely applicable. We introduce the following symbols for different sums of leakage
terms

ℓ𝐾𝑟 =
∑︁
𝑠

𝑒𝐾𝑟 𝐿𝑠 , (3.38)

ℓ̃𝐾𝑟 =
ℓ𝐾𝑟 𝑘

0
𝐾𝑟

ℓ𝐾𝑟 + 𝑘0
𝐾𝑟

, (3.39)

ℓ =
∑︁
𝑟

ℓ𝐾𝑟 , (3.40)

ℓ̃ =
∑︁
𝑟

ℓ̃𝐾𝑟 , (3.41)

ℓ̃𝜕𝑣0 =
∑︁
𝐾𝑟∈𝜕𝑣0

ℓ𝐾𝑟 𝑘
0
𝐾𝑟

ℓ𝐾𝑟 + 𝑘0
𝐾𝑟

. (3.42)

In this notation, error to first order reads[
𝐺𝐺𝐺0𝑑q𝐺𝐺𝐺0111𝑛−1

]
𝑣0
≈
𝑚0
𝑣0𝑣1

1+ ℓ

[
ℓ(𝑘0

𝑣0 −1)
𝑘0
𝑣0

− ℓ̃
]
+ 𝑛−1

1+ ℓ

[
ℓ(𝑘0

𝑣0 −1)
𝑘0
𝑣0

+ ℓ̃𝜕𝑣0

]
+ ℓ̃

1+ ℓ [𝑚−𝑛] ,

(3.43)

where 𝑚0
𝑣0𝑣1 ≈ 1+ 𝑛(𝑛−1)

1+ℓ . If the clusters are complete (sub)graphs, then all degrees are
given by 𝑘0

𝑣0 = 𝑛, 𝑘0
𝑣0𝑖 = 𝑛−1, 𝑘0

𝑣1 𝑗 = 𝑚−1 and 𝑘0
𝑣1 = 𝑚, and the above formula reduces to

[
𝐺𝐺𝐺0𝑑q𝐺𝐺𝐺0111𝑛−1

]
𝑣0
=
𝑚0
𝑣0𝑣1

1+ ℓ

[
ℓ(𝑛−1)

𝑛
− ℓ̃

]
+ 𝑛−1

1+ ℓ

[
ℓ(𝑛−1)

𝑛
+ ℓ̃

]
+ ℓ̃

1+ ℓ [𝑚−𝑛] , (3.44)

which is an exact equality.
Upon setting the number of leaks to a single one with weight 𝜀, we retrieve the result

for small 𝜀, eq. (3.37), when differentiating with respect to 𝜀 at 0. It is possible to calculate
the remainder of the expansion in 𝑑q if the spectra of q and q0 are known; we do not
follow this route, but refer to [92] for a general treatment. In numerical experiments later
in this chapter, we make liberal use of eq. (3.43), especially in section 3.4.3, where the
distinction between leak and backbone is merely formal as all edges have unit weight.
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From a close look at eqs. (3.43) and (3.44), we notice that – contrary to our initial
hopes – the error does necessarily approach 0 as 𝑛 and 𝑚 increase, unless the leak weights
are scaled down accordingly. The reason for this is that the probability of following a leak
and the backbone scale in the same way with 𝑛, so the graph does not approach a necklace
as 𝑛 increases. However, as 𝑚0

𝑣0𝑣1 = 1+ 𝑛(𝑛−1)
1+ℓ is still dominated by 𝑛, the relative error(

𝑚𝑣0𝑣1 −𝑚0
𝑣0𝑣1

)
/𝑚𝑣0𝑣1 approaches 0 as 𝑛 increases.

Returning to the present case with one leak, we are to determine the remainder via
eq. (3.16). Aided by Mathematica, we find

𝑑2

𝑑𝜀2

(
𝑚𝑣0𝑣1 −𝑚0

𝑣0𝑣1

)
(𝜀) ≈ − 2(𝑛−1)𝑁𝜀

(𝜀 +1)3𝑚𝑛(𝜀 +𝑚−1)2(𝜀 +𝑛−1)4 , (3.45)

where the factor 𝑁𝜀 in the numerator is given by

𝑁𝜀

=(𝜀 +1)𝑚4(𝑛−1)
(
2(𝜀 +1) +𝑛3 +2𝜀𝑛2 +

(
𝜀2 −3𝜀−3

)
𝑛

)
+𝑚3

[
−4(𝜀−1) (𝜀 +1)2 + (𝜀−3)𝑛5 +

(
7𝜀2 −2𝜀 +9

)
𝑛4 +

(
11𝜀3 −6𝜀2 −2𝜀−13

)
𝑛3

+
(
5𝜀4 −17𝜀3 −15𝜀2 +7𝜀 +15

)
𝑛2 −2

(
2𝜀4 −5𝜀3 −9𝜀2 +4𝜀 +6

)
𝑛

]
+𝑚2

[
−2

(
𝜀2 −1

)2
−2(𝜀 +1)𝑛6 −4

(
𝜀2 +2𝜀−3

)
𝑛5 +

(
𝜀3 −19𝜀2 +21𝜀−31

)
𝑛4

+
(
6𝜀4 −29𝜀3 +23𝜀2 −11𝜀 +43

)
𝑛3 +

(
3𝜀5 −20𝜀4 +23𝜀3 +23𝜀2 +4𝜀−33

)
𝑛2

−
(
𝜀5 −14𝜀4 −5𝜀3 +27𝜀2 +4𝜀−13

)
𝑛

]
+𝑚𝑛

[
−2(𝜀−1)2

(
4𝜀2 +9𝜀 +5

)
+4(𝜀 +1)𝑛5 +

(
𝜀3 +7𝜀2 +7𝜀−15

)
𝑛4

+
(
3𝜀4 +18𝜀2 −20𝜀 +31

)
𝑛3 +

(
3𝜀5 −8𝜀4 +29𝜀3 −25𝜀2 +4𝜀−43

)
𝑛2

+
(
𝜀6 −5𝜀5 +14𝜀4 −28𝜀3 −18𝜀2 +3𝜀 +33

)
𝑛

]
−2(𝜀 +1) (𝑛−1)𝑛(𝜀 +𝑛−1)2

(
2𝜀 +𝑛2 + 𝜀𝑛+2

)
. (3.46)

While this expression is not very handy, by plotting it for various values of 𝑛 and 𝑚 we
observe that it is maximal at 𝜀 = 0, where it attains the value

𝑑2

𝑑𝜀2

(
𝑚𝑣0𝑣1 −𝑚0

𝑣0𝑣1

)
(0) ≈

4
(
𝑛2 +2

)
𝑚

− 2𝑚(𝑛+2)
𝑛

+6𝑛−4 . (3.47)
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Thus, we arrive at the result that

|𝑚𝑣0𝑣1 −𝑚0
𝑣0𝑣1 | ⪅ |𝑚−𝑛|𝜀 +

�����4 (
𝑛2 +2

)
𝑚

− 2𝑚(𝑛+2)
𝑛

+6𝑛−4

����� 𝜀2

2
. (3.48)

Fig. 3.2.2 shows this last expression in comparison with the true error. We can see that,
indeed, eq. (3.48) provides an upper bound to the LE coarse-graining error |𝑚𝑣0𝑣1 −𝑀01 |,
and indeed a good approximation for the error at low values of 𝜀.
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Fig. 3.2.2 Comparison of eq. (3.48) to the true error |𝑚𝑣0,𝑣1 −𝑀01 |. In this example, we set
𝑛 = 20,𝑚 = 40.

We will test the above formulae in different incarnations in section 3.4.

3.3 Irreversible chains: Problems induced by directed
leaks

By way of example, consider the directed graph at the top of fig. 3.3.1, consisting of two
cliques of equal size 𝑛, that we will regard as cluster 0 and 1, respectively. As before, we
assume that there is a backbone-like edge represented by the directed arcs (𝑣0, 𝑣1) and
(𝑣1, 𝑣0) with unit weight. In addition, each vertex 𝑣0𝑖 in cluster 0 is paired with a unique
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3.3 Irreversible chains: Problems induced by directed leaks

vertex 𝑣1𝑖 in cluster 1 by two directed edges, (𝑣0𝑖, 𝑣1𝑖) and (𝑣1𝑖, 𝑣0𝑖), with weight 𝜀 and
𝛿, respectively, which are assumed to be small. In this example, we lose the symmetry
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Fig. 3.3.1 Two cliques 0 = {𝑣0, 𝑣01, 𝑣02, 𝑣03, 𝑣04} and 1 = {𝑣1, 𝑣11, 𝑣12, 𝑣13, 𝑣14} of size 𝑛 = 5, connected
to the backbone 𝑣0, 𝑣1. Top: Additional directed edges (𝑣0𝑖 , 𝑣1𝑖) with weight 𝜀 (“leaks”, dashed)
interconnect the cliques; for every edge with weight 𝜀 the reverse edge has weight 𝛿. Unlabelled
edges carry unit weight. Bottom: Necklacification of the top graph, where the leaks have been
absorbed into an increment 𝑤 of the backbone weight.

given by the undirected graph, but we have introduced another by turning all nodes into
surface nodes and by giving identical weights to all leaks. Thus, there are four classes
of nodes, represented by 𝑣0, 𝑣01, 𝑣1, 𝑣11, and the nodes in each class share the same steady
state probability. To compute 𝜋𝜋𝜋, it is then convenient to use a reduced representation of
the dynamics, in terms of classes (rather than nodes). To this purpose, we note that the
hopping probability between nodes of different classes is given by the 4×4 matrix

𝔮red =

©­­­­­«
0 1

𝑛
1
𝑛

0
1

𝑛−1+𝜀 0 0 𝜀
𝑛−1+𝜀

1
𝑛

0 0 1
𝑛

0 𝛿
𝑛−1+𝛿

1
𝑛−1+𝛿 0

ª®®®®®¬
. (3.49)

77



Beyond necklaces: A perturbative error approximation

This matrix is not row-normalised as it only shows the hopping probabilities between the
representatives 𝑣0, 𝑣01, 𝑣1, 𝑣11. Additionally, between nodes of the same class the hopping
probabilities amount to

𝑞𝑣0𝑖𝑣0 𝑗 =
1

𝑛−1+ 𝜀 , (3.50)

𝑞𝑣1𝑖𝑣1 𝑗 =
1

𝑛−1+ 𝛿 . (3.51)

Writing the eigenvector equation 𝜋𝜋𝜋𝑇 = 𝜋𝜋𝜋𝑇q for 𝜋𝑣0 , for instance, we then find

𝜋𝑣0 =

𝑛−1∑︁
𝑗=0
𝜋𝑣0 𝑗𝑞𝑣0 𝑗 𝑣0 +

𝑛−1∑︁
𝑗=0
𝜋𝑣1 𝑗𝑞𝑣1 𝑗 𝑣0 (3.52)

= 𝜋𝑣0𝑞𝑣0𝑣0 + (𝑛−1)𝜋𝑣01𝑞𝑣01𝑣0 + 𝜋𝑣1𝑞𝑣1𝑣0 + (𝑛−1)𝜋𝑣11𝑞𝑣11𝑣0 .

In the second equality, we used the observation that there are 𝑛 − 1 nodes in each of
the symmetry classes each represented by 𝑣01 and 𝑣11, respectively. With the hopping
probabilities between classes given in eq. (3.49), 𝜋𝑣0 simplifies to

𝜋𝑣0 =
𝑐−1

𝑐−1+ 𝜀 𝜋𝑣01 +
1
𝑐
𝜋𝑣1 . (3.53)

The remaining elements of 𝜋𝜋𝜋 for each symmetry class can be expanded in the same way,
leading to the system of equations

𝜋𝑣01 =
1
𝑛
𝜋𝑣0 +

𝑛−2
𝑛−1+ 𝜀 𝜋𝑣01 +

𝛿

𝑛−1+ 𝛿 𝜋𝑣11 , (3.54)

𝜋𝑣1 =
1
𝑛
𝜋𝑣0 +

𝑛−1
𝑛−1+ 𝛿 𝜋𝑣11 , (3.55)

𝜋𝑣11 =
𝜀

𝑛−1+ 𝜀 𝜋𝑣01 +
1
𝑛
𝜋𝑣1 +

𝑛−2
𝑛−1+ 𝛿 𝜋𝑣11 . (3.56)

Solving the above (reduced) set of equations gives

©­­­­­«
𝜋𝑣0

𝜋𝑣01

𝜋𝑣1

𝜋𝑣11

ª®®®®®¬
=

1
𝑍

©­­­­­«
𝑛(1+𝑛𝛿+ 𝜀)

(1+ 𝛿+𝑛𝛿) (𝑛−1+ 𝜀)
𝑛(1+ 𝛿+𝑛𝜀)

(𝑛−1+ 𝛿) (1+ 𝜀 +𝑛𝜀))

ª®®®®®¬
, (3.57)

with normalising constant 𝑍 .
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We can now calculate the LE hopping probabilities, eq. (2.9), again by grouping nodes
by their symmetry classes

𝑄01 =
1
Π0

𝑛−1∑︁
𝑖, 𝑗=0

𝑞𝑣0𝑖𝑣1 𝑗𝜋𝑣0𝑖 =
1
Π0

(
𝑞𝑣0𝑣1𝜋𝑣0 + (𝑛−1)𝑞𝑣01𝑣11𝜋𝑣01

)
. (3.58)

Substituting the entries for 𝜋𝜋𝜋 obtained in eq. (3.57) and the hopping probabilities from
eq. (3.49), we find the expression

𝑄01 =
1+𝑛𝛿+ 𝜀 + 𝜀(𝑛−1) (1+ 𝛿+𝑛𝛿)

𝑛(1+ 𝜀 +𝑛𝛿) + (𝑛−1) (𝑛−1+ 𝜀) (1+ 𝛿+𝑛𝛿) , (3.59)

which, due to eq. (2.18), is again the reciprocal of the MFPT

𝑀01 =
1
𝑄01

=
𝑛(1+ 𝜀 +𝑛𝛿) + (𝑛−1) (𝑛−1+ 𝜀) (1+ 𝛿+𝑛𝛿)

1+𝑛𝛿+ 𝜀 + 𝜀(𝑛−1) (1+ 𝛿+𝑛𝛿) . (3.60)

We also record the correct value

𝑚𝑣0𝑣1 =
−2𝛿𝜀 + 𝛿+𝑛2(𝛿+ 𝜀 +1) +𝑛(𝛿(2𝜀−1) −1) +1

𝛿+ 𝜀𝑛+1
. (3.61)

of the MFPT for this simple model, obtained with the help of Mathematica.
In light of the previous section 3.2, it seems natural to necklacify this walker by

removing the leaks and adding an appropriate weight to the backbone. And since the arc
𝑣1 → 𝑣0 does not affect the first-passage process, we can make the backbone symmetrical.
The correct additional weight should be a function of 𝜀 as well as 𝛿, as in the original
dynamics the walker can follow leaks back and forth without being absorbed at 𝑣1. To
find the appropriate weight function, we first consider a general variable 𝑤 and define the
necklacification

q0 =

©­­­­­­­­­­«

0 1
𝑛+𝑤

𝑛−2
𝑛+𝑤 0 0 𝑤+1

𝑛+𝑤
1
𝑛−1 0 𝑛−2

𝑛−1 0 0 0
1
𝑛−1

1
𝑛−1

𝑛−3
𝑛−1 0 0 0

0 0 0 0 𝑛−2
𝑛−1

1
𝑛−1

0 0 0 1
𝑛−1

𝑛−3
𝑛−1

1
𝑛−1

𝑤+1
𝑛+𝑤 0 0 1

𝑛+𝑤
𝑛−2
𝑛+𝑤 0

ª®®®®®®®®®®¬
, (3.62)

which is reversible, and thus exhibits the MFPT

𝑚0
𝑣0𝑣1 = 𝑀

0
01 =

1+𝑛(𝑛−1) +𝑤
1+𝑤 . (3.63)
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We may then optimise 𝑤 = 𝑤(𝜀, 𝛿) such that4 𝑀01 =𝑚
0
𝑣0𝑣1 , which produces in an elementary

but error-prone calculation

𝑤(𝜀, 𝛿) =
(𝑛−1)

(
−𝛿+ 𝜀 + 𝛿𝜀𝑛2 + 𝛿𝜀𝑛+ 𝜀𝑛

)
−𝛿+ 𝜀 + 𝛿𝑛2 + 𝛿𝑛+𝑛

. (3.64)

We have now restored the situation given in section 3.2 where the coarse-grained MFPTs
are identical and we need only to consider the microscopic error discussed in section 3.1.1.

Computing the matrix products 𝐺𝐺𝐺0
(
𝑑
𝑑𝜀
𝑑q

)
𝐺𝐺𝐺0 and 𝐺𝐺𝐺0

(
𝑑
𝑑𝛿
𝑑q

)
𝐺𝐺𝐺0 supported by Mathe-

matica, we notice that the contribution involving 𝑑
𝑑𝛿
𝑑q vanishes! For the other summand,

we find at 𝜀 = 𝛿 = 0 [
𝐺𝐺𝐺0

(
𝑑

𝑑𝜀
𝑑q

)
𝐺𝐺𝐺0111𝑛−1

]
𝑣0

�����
𝜀=𝛿=0

= − 1
𝑛2 . (3.65)

The linear error in 𝜀 is non-zero, but quadratically suppressed by the cluster size.
We compare the results of this section to simulations in section 3.4.2. From the results

of the present section, however, we can already anticipate a weakness of the presented
method: LE relies on equilibrium properties, which are implicitly encoded in the weights
of undirected graphs. Even if an essential edge has nominally different weights in its two
directions, only the weight of the arc pointing from cluster 0 to 1 matters for the first-
passage process. This arc can be symmetrised without loss of generality. In the presence
of leaks, however, the reverse leak weights matter as they allow switching between the
clusters without the walker being absorbed. In the numerical study in section 3.4.2, we see
that 𝑀01 still offers a good approximation for 𝑚𝑣0𝑣1 . However, it appears that our method
of determining corrections to this approximation is unable to pick up any contribution from
the leaks in the reverse direction.

3.4 Numerical studies

3.4.1 Bidirectional leaks with random weights

We begin with the situation of section 3.2, depicted in fig. 3.2.1, where two clusters 0 and
1 are given by unweighted cliques which are connected by an unweighted backbone and
some symmetrically weighted leaks.

Fig. 3.4.1 compares the value of the clustered MFPT 𝑀01 to the true value of the
original MFPT 𝑚𝑣0𝑣1 , obtained by solving eq. (2.7) numerically for different numbers of

4It would certainly be preferable to optimise 𝑤 such that 𝑚0
𝑣0𝑣1 = 𝑚𝑣0𝑣1 . However, if 𝑚𝑣0𝑣1 is known, we

need not approximate it.
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leaks 𝑘 , and different 𝜀’s, i.i.d. sampled from the probability density

𝑓𝜇 (𝑥) =
1
𝜇
𝑒−𝑥/𝜇, 𝑥 ≥ 0 . (3.66)

Here, we fix 𝜇 to the inverse number of leaks, 𝜇 = 1/𝑘 , and the size of both cliques to
𝑛 = 𝑚 = 40.
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Fig. 3.4.1 Left: Exact MFPTs 𝑚𝑣0𝑣1 according to eq. (2.7) vs 𝑀01 as per eq. (3.25), for the random
walker with 𝑘 leaks (see section 3.4.1) and clique size 𝑚 = 𝑛 = 40. Right: Relative deviation,
see eq. (3.67). The 𝑘 leaks are drawn without replacement from all possible pairings of vertices
(𝑣0𝑖 , 𝑣1 𝑗); the values for the 𝜀𝑣0𝑖𝑣0 𝑗 ’s are drawn independently with density 𝑓1/𝑘 as in eq. (3.66). For
each value of 𝑘 , 1000 realisations of leaks and 𝜀𝑣0𝑖𝑣0 𝑗 ’s were sampled. The error bars on both plots
show the linear order expression from eq. (3.44); the error is divided by 𝑚𝑣0𝑣1 in the right panel.

Firstly, we notice that the relative deviation

𝑑 =
𝑚𝑣0𝑣1 −𝑀01

𝑚𝑣0𝑣1
(3.67)

in the right panel of fig. 3.4.1 increases with 𝑘 , as the total leakage increases. This is in fact
expected, since higher leakage moves the graph further from having necklace structure.
Secondly, 𝑀01 systematically underestimates the true MFPT; this is reasonable to expect,
as the coarse-grained walker is absorbed immediately when it crosses over to block 1,
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Beyond necklaces: A perturbative error approximation

whereas in the microscopic model it has the chance to cross via a leak, hit a non-absorbing
node in 1, and return. With 𝑘 = 0, only the backbone exists and we recover the necklace-
case. Moreover, all values of 𝑀01 lie within the linear order error in eq. (3.44), which
decreases accordingly as the number of leaks decreases to a single one.

3.4.2 Directed leaks with random weights

Fig. 3.4.2 compares the approximation derived in section 3.3 to the true value of 𝑚𝑣0𝑣1 ,
computed by solving eq. (2.7) numerically for different values of 𝑛 and different values of
𝜀 and 𝛿, i.i.d. sampled from the exponential probability density in eq. (3.66) with mean
𝜇 = 1/𝑛2.
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Fig. 3.4.2 Left: Exact MFPTs 𝑚𝑣0𝑣1 according to eq. (2.7) vs approximate results 𝑀01 as per
eq. (3.60), for the random walker with leaks of section 3.3. Right: Relative deviation, see eq. (3.67).
Each data point represents a pair of 𝜀 and 𝛿 drawn independently with density 𝑓1/𝑛2 as in eq. (3.66).
Colours indicate the clique size 𝑛. For each 𝑐, 1000 samples for 𝜀 and 𝛿 were drawn.

The right panel of fig. 3.4.2 shows that the relative deviations, eq. (3.67), decrease with
increasing 𝑛. As the total mean leakage amounts to 1/𝑛 (in any direction, so to and from 0,
respectively), this means that the approximation becomes better as less relative weight is
accumulated on the leaks. This is as expected, for the lower the total leakage, the closer the
graph is to having necklace structure, and the more precise the approximation in eq. (2.26)
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becomes. Note, however, that our linear approximation for the error is unusable in this
example: the error bars in fig. 3.4.2 are shorter than the symbols.

3.4.3 Stochastic Block Model

In this last section of the more abstract part of this thesis, we apply the methods outlined
above to a popular basic model for social networks with communities, the Stochastic Block
Model (SBM) [93]. In the simplest SBM with two blocks, the set of nodes is partitioned in
two, 𝑉0 and 𝑉1 say, with sizes 𝑛0 and 𝑛1, respectively. Stochasticity enters the model as the
edges are sampled randomly: two nodes are connected with probability 𝑝0 if they are both
in 𝑉0, and with probability 𝑝01 otherwise. Similarly, two nodes in 𝑉1 are connected with
probability 𝑝1. Usually, one chooses 𝑝01 to be much smaller than 𝑝0 and 𝑝1, leading to
the formation of two communities.

Let us denote the (random) number of edges within blocks 0 and 1, and between 0 and
1 as 𝐸0, 𝐸1 and 𝐸01, respectively. Clearly, there can only be a first-passage event within
finite time if there is at least one edge between the blocks. Our discussion shall therefore
be conditional on |𝐸01 | > 0. Since all edges have unit weight in this model, we pick the
backbone (𝑣0𝑣1) randomly from 𝐸01. In analogy to the previous discussions, 𝜋𝜋𝜋 and Π are
essentially the node strengths (or degrees, in this unweighted case), which allows us to
immediately write

𝑀01 =
𝐸01 +2𝐸0
𝐸01

= 1+2
𝐸0
𝐸01

. (3.68)

We can proceed to calculate the expected value of 𝑀01, averaging over the ensemble of
edge sets in the block model. As all edges are independent, the expectation can be written
as

E (𝑀01 |𝐸01 > 0) = 1+𝑛0(𝑛0 −1)E
(

1
𝐸01

����𝐸01 > 0
)
. (3.69)

The number of edges within and between clusters follow binomial distributions, which we
briefly review in the appendix 4.A. Using basic properties of the binomial distribution, the
conditional expectation on the right can be rewritten as the unconditional expectation of

1
(𝑋+1)2 , where 𝑋 follows a binomial distribution with parameters 𝑛 = 𝑛0𝑛1 −1 and 𝑝 = 𝑝01,
in the notation of eq. (4.28). There exists a closed form representation for the latter
expectation, involving a generalised hypergeometric function. For simplicity’s sake, we
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replace the expected value using E
(

1
(𝑋+1)2

)
≈

[
E

(
1
𝑋+1

)]2
. We can thus write

E (𝑀01 |𝐸01 > 0) ≈1+𝑛0(𝑛0 −1)
[
1− (1− 𝑝01)𝑛0𝑛1

𝑝01𝑛0𝑛1

]2

=1+ (𝑛0 −1) [1− (1− 𝑝01)𝑛0𝑛1]2

𝑛0 (𝑝01𝑛1)2 , (3.70)

using the first negative moment of a binomial variable, for instance reported in [113]. We

600 800 1000 1200 1400 1600

averaged MFPT 〈mv0v1〉

200

400

600

800

1000

1200

1400

1600

a
ve

ra
g

ed
L

E
a

p
p

ro
xi

m
a

te
d

M
F

P
T
M

0
1

Identity

linear order error

600 800 1000 1200 1400 1600

0.0

0.1

0.2

0.3

0.4

0.5

re
la

ti
ve

er
ro

r
d

Fig. 3.4.3 MFPTs on 100 realisations of a SBM with block sizes 𝑛0 = 60 and 𝑛1 = 80, 𝑝0 = 𝑝1 = 0.9
and 𝑝01 = 2/(𝑛0𝑛1) ≈ 4.2×10−4. Each data point is generated by choosing every inter-block edge
connecting 0 to 1 as the backbone once, and averaging the results obtained for the different choices
of backbone. Left: LE-approximated MFPT given in eq. (3.68) over true MFPT, calculated as per
eq. (2.7). Right: relative deviation (see eq. (3.67)) over true MFPTs. The error bars on both plots
show the linear order expression from eq. (3.43)

test the quality of eq. (3.68) by simulating an ensemble of SBMs with block sizes 𝑛0 = 60
and 𝑛1 = 80, and 𝑝0 = 𝑝1 = 0.9, 𝑝01 = 2/(𝑛0𝑛1). This way we can assume to have on
average two edges connecting the clusters. The results of this simulation are depicted
in fig. 3.4.3. In this simulation, we discard all network realisations with 𝐸01 = 0, for the
reason described above. Furthermore, we do not show values obtained for 𝐸01 = 1 as this
is the trivial case in which eq. (3.68) is certain to be exact.
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3.5 Conclusions

Similar to section 3.4.1, we observe that 𝑀01 systematically underestimates 𝑚𝑣0𝑣1
as expected. Moreover, the approximation error lies within the linear error estimate,
eq. (3.43).

3.5 Conclusions

We have shown how the method developed in chapter 2 can be applied to graphs whose
necklace-structure is only approximate. More precisely, we considered clusters that
had more than one interconnection. Of these interconnections, one link qualified as the
backbone, whereas the others were either sparse as compared to the density of edges
within the clusters, or carried low weights as compared to the backbone. Furthermore, we
have quantified the error made in this approximation for archetypical test cases, including
the Stochastic Block Model, and shown that our error-estimate markedly improves the
agreement between MFPTs based on microscopic and macroscopic dynamics.

In essence, our error approximation relies on constructing a new microscopic model
that reproduces the dynamics of the coarse-grained walker on the nodes of the original
graph. This enables us to use matrix calculus to quantify the deviation between their
MFPTs. However, we show that this approach is problematic if leaks are directed (i.e. if
their weights in both directions differ). While the original approximation derived from
eq. (2.25) still seems usable, our error estimate to linear order does not depend on the
“returning” weight of the leaks and vastly underestimates the true error. Devising a coarse-
graining procedure that allows us to estimate its effect on MFPTs therefore remains open
for future research.

Among the many remaining open problems we highlight the following. We have only
clustered graphs in such a way leading to loop-less graphs. This will not always be possible
or desirable, if the nodes of interest are not located at a boundary between suitable clusters.
This may frequently be the case, for instance in small-world models where “long-distance”
edges may introduce loops between clusters [30]. Moreover, we have for the sake of clarity
focused on almost-necklaces with two clusters. What does not appear in this setting is the
question whether the dominant links connecting cluster 𝐼 to 𝐼 −1 and 𝐼 +1 attach to the
same node in 𝐼. It is a requirement for exact necklaces that this be the case, but it will
need to be relaxed in approximate settings. A natural extension of our necklacification
technique should encompass such problems, too.

Finally, extensive research has already been done on perturbations of Markov chains
with general statements: see for instance [89] and works cited within that article. It is
likely that our method can be supplemented by some of these results.
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Beyond necklaces: A perturbative error approximation

This chapter concludes the abstract half of the thesis. In the next chapter we deliver the
announced model for an information-seeking user of the law.
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Chapter 4

Complexity of codified law: Searching
times

4.1 Introduction

What is the maximum number of tenants that a UK landlord may let a property of a
given size to, without incurring in penalties? Faced with a legal question of this nature, a
layperson would naturally resort to consulting the institutional repository www.legislation.
gov.uk, where a quick keyword search (say, “overcrowding”) would return – as most recent
reference – the Housing Act 1985. The requested information will eventually be found in
the Articles 325 et sqq., which can be located after following the path “UK Public General
Acts”, “Housing Act 1985”, “Part X: Overcrowding”, “Definition of Overcrowding”, “324
Definition of Overcrowding”, through several Part and Section headers of the Act.

Arguably, a definition of how “complex” a piece of legislation is should reflect how
fast and reliably information hidden in its text can be retrieved. The concept of “legal
complexity” and quantitative measures thereof – in one of its many incarnations – have
been considered by legal scholars and – to a lesser extent – by scientists in recent years
(as discussed in chapter 1), so far without reaching a satisfactory and widely accepted
consensus on the best framework to use. In this chapter, we develop a detailed model
for the search process of information hidden in a legal text – organised in a hierarchical
fashion – by a reader unfamiliar with the text, who needs to extract a precise answer out
of a potentially messy structure of semantic dependencies. The level of detail of the model
is such that the reader is defined by intuitive probabilistic behaviour that can be controlled
at several levels of the hierarchy.

We consider a tree structure that mimics the organisation of a typical Act of Parliament,
with primary focus on the usual structure of legislative bills in the United Kingdom. To
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standardise labels, we always use the capitalised terms “Act”, “Part”, “Chapter”, “Section”,
“Article”, and “Paragraph” for ease of reference. If applicable, the list can be extended
by adding “sub”-Items, e.g. Sub-Sections between Sections and Articles. For the sake
of clarity, references to items of this thesis have and will be made in small letters. Each
Item in the hierarchy is identified by a header or set of keywords, which ideally reflect the
general content of the corresponding sub-tree: for example, the tree in fig. 4.1.1 represents
a selection of the Housing Act 1985, with some of the nodes labelled by their textual
content.

Housing Act 1985

Part IX
Slum Clearance

Part X
Overcrowding

Definition of over-
crowding

324.
Definition of
overcrowding.

(a) refer to 325

(b) refer to 326

325.
The room
standard.

(1) [. . . ] (2) [. . . ]

(a) [. . . ](b) [. . . ]

326.
The space
standard.

(1) [. . . ] (2) [. . . ]

(a) [. . . ](b) [. . . ]

(3) The permitted number of persons in
relation to a dwelling is whichever is the
less of

(a) the number specified in Ta-
ble I in relation to the number of
rooms in the dwelling available
as sleeping accommodation, and

(b) the aggregate for all such
rooms in the dwelling of the
numbers specified in column 2 of
Table II in relation to each room
of the floor area specified in col-
umn 1 [. . . ]

(4) [. . . ] (5) [. . . ]

[. . . ]
Responsibilities
of landlord

[. . . ] [. . . ]

Powers and duties
of local housing au-
thority [. . . ]

Part XI
Houses in Multiple
Occupation

Fig. 4.1.1 Example from an excerpt of the UK Housing Act 1985, c.68, to be found at https:
//www.legislation.gov.uk/ukpga/1985/68/contents. The nodes of the tree represent structural
Items of the text such as the Act itself, its Parts, Sections, etc, and two Items are linked if one is
contained in the other. The dashed edges label the ideal path of a reader researching the question
“What is the maximum number of tenants that a UK landlord may let a property with a given number
of rooms to, without incurring in penalties?”
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4.1 Introduction

Higher up in the hierarchy, the textual content mainly consists of short titles, containing
only a small number of keywords (e.g. “Housing” and “Occupation”), while lower
nodes often contain full sentences. The Chapter “Definition of Overcrowding” of Part X
“Overcrowding” in fig. 4.1.1 contains the text [94]

324 Definition of overcrowding.
A dwelling is overcrowded for the purposes of this Part when the number of

persons sleeping in the dwelling is such as to contravene—

(a) the standard specified in section 325 (the room standard), or

(b) the standard specified in section 326 (the space standard).

Based on the headers and keywords, and assuming they reflect the content underneath,
the reader will be more or less inclined to follow a certain path rather than another in their
search for a piece of information, planted in one of the leaves of the tree. For the sake of
simplicity, we do not consider more complicated network structures with cycles and long-
range connections, determined for instance by cross-references or internal amendments.
The relative number of edges thus ignored depends on the legislative style of the country:
for the UK Housing Act 2004, [115] finds that the entirety of the Act roughly encompasses
3,500 elements when paragraphs are considered as leaves; meanwhile, its five most-cited
sections receive a total of about 100 references from within the Act, which corresponds
to about 3% of the number of edges of the backbone tree. Reference [35] reports that for
the US code, roughly 10%-12% of the edges are cross-references. On the other had, in
the German federal legislation 60% (in 1994) to 86% (in 2018) text elements contain a
reference, such that the number of references are comparable to the size of the tree in that
system. Clearly, the approximation made by omitting cross-references is hardly justified in
the latter case, although we do not study the quality of this approximation in the present
thesis.

We characterise the complexity of a legal tree in terms of the time a random reader
takes on average to reach the sought information by hopping through the nodes of the tree,
guided by the Items’ keywords. The hopping probabilities reflects the search strategy of the
reader and is defined in section 4.2. As our observable of choice, we will therefore focus
on the MFPTs to reach the target stating from the root, for which we will give analytical
estimates. Reintepreting the MFPTs of random readers of “legal trees”, we will be able to
formulate a closed-form expression for their structural complexity in terms of the network
parameters, and draw some real-life policy implications for the drafting of legal texts.
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4.1.1 Studies of (randomised) search models

Since the previous chapters have focused largely on the technical aspects of MFPTs, in
this section, we present an overview of the literature relating to search models – legal and
more general ones. After that, we review a few works on information retrieval and text
models that capitalise on document interrelations.

The searching behaviour of agents in a diverse range of systems has been the subject
of intensive study for many decades. Following similar developments in economics
[95, 96] and biology [97, 98], understanding law-search has been gathering traction recently
[41, 99, 42]. In these works, searching is framed as an optimal stopping problem: upon
sampling a resource (information, trading opportunities, food) a number of times in one
location, how does the searcher decide when to stop and change location? Our approach
will be different in that our searcher has sufficient information to know exactly when to
stop. The modelling of such problems in terms of random walks (on networks or grids,
say) has proven successful in many cases – see for instance [100] and references therein
for search strategies involving resets of the random walker to its starting position. Another,
similar class of problems concerns moving and hiding targets and optimal strategies for a
random-walk searcher [57].

The references [41, 99, 42], further an approach based on a joint empirical analysis of
structure and contents of legal text networks. This is done by means of network-based
topic modelling, a method largely developed in [39, 101, 102] to extract a set of topics
given a sufficiently large body of text, and assign one or more topic labels to each section.
For instance, this analysis can be based on the movements of a random walker in the
textual landscape, studying in which regions the walker tends to sojourn for longer periods
of time, as well as the overlap between such regions. In [42], the authors demonstrate
that this analysis may be useful to predict citations in US legal opinions and statutory law.
Moreover, they propose a law-search model based on their findings on link prediction, and
compare it with human law-searchers. Further references on this topic can be found in
[42, 99].

Other lines of research have been more interested in the particular behaviour of an
information-seeker. Important foundations to this field are laid out in [103], leading to
further studies in various contexts. In particular, [104] (and references therein) examines
the information-seeking behaviour of legal professionals. These are shown to primarily
use informal sources of information, including their own professional experience where
applicable, or consulting knowledgeable colleagues and acquaintances regarding topics
outside their own expertise. Comprehensive reviews of the area are given in [105] and
[106].
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Shifting our focus towards our own contributions, in section 4.2 we provide the main
definitions of our model for a keyword-driven ‘random reader’, hopping through Sections
of a legal tree according to suitably defined probabilistic rules. Section 4.3 analyses some
of the statistical properties of this model. Our main results are shown in section 4.4: these
are based on a mean-field – or rather, ‘mean-text’ – approximation for the MFPT between
the starting point and a target node of our random reader model. This approximation serves
as the definition of our ‘complexity function’ for legal trees. We compare analytical and
numerical results in section 4.5, and summarise our findings in section 4.6. Technical
derivations of our results are shown in the appendices 4.A to 4.E. The supplementary
material contains an animation of the model discussed in this chapter.

4.2 Definition of the model

We consider a finite tree of 𝑁 nodes – in which every node stands for an “Item” in the law
as described in section 4.1 – and two nodes are connected as parent and daughter if one
contains the other (e.g. a Section within a Chapter, or an Article within a Section). There
are no limitations on the exact shape of the tree. For simplicity of the analysis, however,
we consider 𝑐-ary trees, i.e. trees in which a designated root, 𝑟, has degree 𝑐 and every
other node is either a leaf, or has degree 𝑐+1.

We model the textual content of every node 𝑣 in terms of a binary string of length 𝐿,
that we will refer to as pattern. We denote patterns as 𝜉𝜉𝜉𝑣 = (𝜉𝑣1, . . . , 𝜉

𝑣
𝐿
) where 𝜉𝑣

𝑖
∈ {0,1}

encodes presence (1) or absence (0), in the textual content of node 𝑣, of keyword 𝑖, from
a predetermined glossary of 𝐿 keywords (which is typically defined by the user). A
reduced glossary for the example in fig. 4.1.1 may be the list {“slum”, “demolition”,
“clearance”, “overcrowding”, “room”, “space”, “responsibilities”, “occupation”, “escape”},
which would lead to the assignment of patterns shown in fig. 4.2.1. We argue that
these are sufficient for a rough model of reader behaviour on structured text. In a recent
eye-fixation study, [107] looked at the attention patterns of participants to conclude that
humans, when searching for specific information in a text, do not read it word for word.
Instead, they search it in a two-stage process that involves skimming and only reading the
thus pre-selected Items afterwards. Thus is seems reasonable to assume that our model
reader uses rapidly extracted keyword patterns rather than the full textual information for
navigating the text.

We assume that a reader is interested in the information hidden in a particular leaf of
the tree, which we call the target 𝑡. We model the search process of the reader as a random
walker that moves randomly along the links of the tree, starting from the root. We assume
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[000 000 000]

[101 000 000] [000 100 000]

[000 100 000]

[000 100 000]

[000 000 000]

. . .

[000 001 000]

[000 000 000]

. . .

[000 000 000]

. . .

[000 010 000]

[000 000 000] . . .

. . . . . .

[000 000 000]

[000 001 000]

[000 010 000]

[000 000 000] [000 000 000]

. . . [000 000 100]

[000 000 000]

. . .

[000 000 000] . . .

[000 000 010]

Fig. 4.2.1 Representation of the excerpt of the UK Housing Act 1985 c.68 shown in fig. 4.1.1 by
binary patterns for the (shortened) glossary {“slum”, “demolition”, “clearance”, “overcrowding”,
“room”, “space”, “responsibilities”, “occupation”, “escape”} of length 𝐿 = 9. Every node is assigned
a binary pattern of length 𝐿, whose bits represent the presence or absence of the corresponding
keyword. The boldface bits stand for keywords specific to the Part in which their node is located.
Dots are used to omit some of the all-0 patterns.

that the reader is more likely to step on a node when the text associated with it has a higher
semantic similarity with the sought (target) information. Hence, we assume that when on
a node, the walker will step to one of the neighbouring nodes 𝑣 with a probability that
depends on the semantic similarity between the node 𝑣 and the target node, and it does not
depend on the starting node. The semantic dissimilarity of two nodes is measured as the
Hamming distance of their patterns

𝑑 (𝜁𝜁𝜁, 𝜉𝜉𝜉) := 𝑑𝐻 (𝜁𝜁𝜁, 𝜉𝜉𝜉) :=
𝐿∑︁
ℓ=1

|𝜁ℓ − 𝜉ℓ | , (4.1)

which equals the number of bits on which the two patterns disagree. We will refer to such
distance as “pattern-distance”. This distance is not to be confused with the “edge-distance”
between the corresponding nodes on the graph, defined as the number of edges constituting
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the shortest path between them. As the probability to step onto a node 𝑣 does not depend
on the node from which the walker is stepping, we can define, for any link pointing to 𝑣, a
weight

𝜔(𝑣) = 1
𝑑
(
𝜉𝜉𝜉𝑣, 𝜉𝜉𝜉 𝑡

)
+1

(4.2)

which increases with the semantic similarity between the patterns in 𝑣 and 𝑡. Using these
non-negative weights, we can define a matrix of transition probabilities between two
connected nodes 𝑢 and 𝑣 as

𝑞𝑢,𝑣 =
𝜔(𝑣)∑

𝑥∈𝜕𝑢𝜔(𝑥)
, (4.3)

where 𝜕𝑢 is the neighbourhood of node 𝑢.
We will characterise the complexity of the search process in terms of the average

number of steps taken until the target is first found. Our object of study will be the
dependence of this quantity on the way patterns are assigned to nodes as well as on the
properties of the tree itself.

We will assume a stochastic set-up, where patterns are regarded as quenched random
binary vectors, with statistics controlled by two tunable parameters, which we call tight-

ness and overlap, representing the vertical and horizontal coherence of the legal text,
respectively. In particular, we will assume that the components of the root pattern are
independent random variables with fixed expected value 𝑎. All patterns on the lower levels
are generated from their parent node via a Markov process, according to which the entries
of the patterns in the child node are mutated with a given rate with respect to those of
the parent node. The idea that content similarity and structural closeness are covariates
follows recent developments in topic modelling (e.g. structural topic models [108]) and
information retrieval [109]. The tightness 𝜏 is defined as a decreasing function of the
mutation rate such that tighter sets of patterns are generated by lower rates of mutation.
Additionally, assuming that each part covers a unique topic with corresponding specific
keywords, we define the overlap (denoted 2Δ), quantifying the number of keywords that
are expected to be shared by two successive Parts.

In later sections, we will study the impact of 𝜏 and Δ on the complexity of the defined
search process. We will first quantify their role on the statistics of pattern distances
(section 4.3), then we will study their role on the average number of steps taken by the
walker to first reach the target node where the information of interest is hidden (sections 4.4
and 4.5).

In the remainder of the present section, we provide details about the Markov process
used to generate patterns. These reflect the hierarchy of the tree and have the desired
properties of tightness and overlap.
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ξr

ξ1

ξ1,1

Q1,1

ξ1,2

Q1,2

R1

ξ2

ξ2,1

Q2,1

ξ2,2

Q2,2

R2

ξ3

ξ3,1

Q3,3

ξ3,2

Q3,2

R3

Fig. 4.2.2 Pattern hierarchy and their relations. The 𝑖-th bit of each pattern is generated from the
parent bit by a two-state Markov process, the transition matrix of which is indicated next to the
edge between the two patterns. For instance, the transition matrix relating 𝜉2

𝑖
to 𝜉𝑖 is 𝑅𝑅𝑅2

𝑖 .

We will index the vertices by lexicographical labels. Thus, the 𝑐 descendants of the
root will be denoted by a single index 𝜇1 ∈ {1, . . . , 𝑐}; the 𝜇2-th descendant of the 𝜇1-th
descendant of the root will be denoted by the two indices 𝜇1, 𝜇2, and a node 𝑣 in the
𝑘-th generation will be denoted by 𝑘 indices 𝜇1, . . . , 𝜇𝑘 . As the tree is 𝑐-ary, we have
𝜇 𝑗 ∈ {1, . . . , 𝑐} for all 1 ≤ 𝑗 ≤ 𝑘 . We refer to fig. 4.2.2 for a schematic representation of the
genealogy of patterns. We denote by 𝜉𝜉𝜉 the textual pattern at the root. For the root pattern,
we assume the entries to be drawn from a factorised distribution

𝑃(𝜉𝜉𝜉) =
𝐿∏
𝑖=1

𝑃𝑖 (𝜉𝑖) (4.4)

with
𝑃𝑖 (𝜉𝑖) = 𝑎𝜉𝑖 + (1− 𝑎) (1− 𝜉𝑖) , (4.5)

so for all 𝑖 = 1, . . . , 𝐿 the expectation is ⟨𝜉𝑖⟩ = 𝑎. For the first level of hierarchy (i.e.
Part-level), we assume that the patterns are generated with distribution

𝑃𝜇 (𝜉𝜉𝜉𝜇 |𝜉𝜉𝜉) =
𝐿∏
𝑖=1

𝑅
𝜇

𝑖
(𝜉𝜇
𝑖
|𝜉𝑖) (4.6)

from the root pattern. Here, the 𝑅𝜇
𝑖
(𝜉𝜇
𝑖
|𝜉𝑖) for 𝜉𝜇

𝑖
, 𝜉𝑖 ∈ {0,1} form the entries of the 2×2

transition matrix of the Markov process generating the Part-pattern entry 𝜉𝜇
𝑖

from the root.
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By the law of total probability, 𝜉𝜇
𝑖

is described by the marginal probability distribution

𝑃
𝜇

𝑖
(𝜉𝜇
𝑖
) =

1∑︁
𝜉𝑖=0

𝑃𝑖 (𝜉𝑖)𝑅𝜇𝑖 (𝜉
𝜇

𝑖
|𝜉𝑖) . (4.7)

Fixing
〈
𝜉
𝜇

𝑖

〉
= 𝑎

𝜇

𝑖
, 𝑅𝑅𝑅𝜇

𝑖
has the elements

𝑅𝑅𝑅
𝜇

𝑖
=

(
𝑃
𝜇

𝑖
(0|0) 𝑃

𝜇

𝑖
(1|0)

𝑃
𝜇

𝑖
(0|1) 𝑃

𝜇

𝑖
(1|1)

)
=

(
1−Γ′ Γ′

1− 𝑎
𝜇

𝑖
−(1−𝑎)Γ′

𝑎

𝑎
𝜇

𝑖
−(1−𝑎)Γ′

𝑎

)
, (4.8)

where the parameter Γ′ ∈ [0,1] determines the rate of mutation from 𝜉𝑖 to 𝜉𝜇
𝑖

.
We take the 𝑎𝜇

𝑖
to satisfy some constraints, motivated by the idea that different Parts

treat individual topics. If a given keyword is highly related to the topic of some Part, it will
have a high probability to appear in that Part. If each keyword is related to one topic only,
it will appear with high probability in the Part treating that topic, and with low probability
in all other Parts. This situation is represented in the top panel of fig. 4.2.3. However, we
allow for a degree of topic similarity between two successive Parts 𝜇 and 𝜇+1, realised by
a subset of size 2Δ of keywords that appear with high probability in 𝜇, as well as in 𝜇+1.

ξ1

ξ2

ξ3

ξ1

ξ2

ξ3

`c ∆ = 3 ∆ = 3

Fig. 4.2.3 A schematic drawing of patterns with 𝐿 = 12 and 𝑐 = 3, with boxes marking bits with
high expectation

〈
𝜉
𝜇

𝑖

〉
= 𝑎ℎ. Top: Δ = 0, i.e. specific keywords of different Parts do not overlap.

Bottom: Δ = 3, i.e. two neighbouring Parts have 2Δ = 6 specific keywords in common. For Δ = 0
there are ℓ𝑐 (𝑐−1) keywords that are generic for any Part, therefore the maximum value for Δ is
ℓ𝑐

(𝑐−1)
2 = 4.

This situation for 2Δ = 6 is shown in the bottom panel of fig. 4.2.3, representing the
appearance of topic-specific keywords in the Parts. In particular, we introduce Δ as a
parameter that controls the number of Part-specific keywords shared by neighbouring Parts
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𝜇, 𝜇+1. We say that the Parts have an overlap and define

𝑎
𝜇

𝑖
=


𝑎ℎ : (𝜇−1)ℓ𝑐 −Δ < 𝑖 ≤ 𝜇ℓ𝑐 +Δ ,

𝑎𝑙 : else ,
(4.9)

where ℓ𝑐 is the ratio 𝐿/𝑐, Δ ∈ [0, ℓ𝑐 𝑐−1
2 ] and we consider periodic boundaries, i.e. 𝑎𝜇

𝑖
=

𝑎
𝜇

𝑘𝐿+𝑖 for all 𝑘 ∈ Z (see fig. 4.2.3 for a schematic representation). Moreover, we assume
0 < 𝑎𝑙 < 𝑎ℎ < 1 (the indices 𝑙 and ℎ stand for “low” and “high”). However, since elements
of 𝑅𝑅𝑅𝜇

𝑖
are probabilities, one can derive the stricter bounds

(1− 𝑎)Γ′ ≤ 𝑎𝜇
𝑖
≤ (1− 𝑎)Γ′+ 𝑎 (4.10)

for all 𝜇 = 1, . . . , 𝑐 and 𝑗 = 1, . . . , 𝐿. For our purposes, it will be useful to define

𝑎𝑙 = (1− 𝑎)Γ′+ 𝛽𝑙 (4.11)

𝑎ℎ = (1− 𝑎)Γ′+ 𝑎 (4.12)

for some 𝛽𝑙 satisfying 0 < 𝛽𝑙 < 𝑎 to enforce 𝑎𝑙 < 𝑎ℎ. The set of indices 𝑖 such that 𝑎𝜇
𝑖
= 𝑎ℎ

we refer to as the 𝑎ℎ-domain of 𝜇, and to the complementary set as 𝑎𝑙-domain.
We now extend the above prescription to generate patterns at the lower levels of the

hierarchy. Consider the pattern 𝜉𝜉𝜉𝜇1,...𝜇𝑘 on level 𝑘 , generated with probabilities

𝑃𝜇1...𝜇𝑘 (𝜉𝜉𝜉𝜇1...𝜇𝑘 |𝜉𝜉𝜉𝜇1...𝜇𝑘−1) =
𝐿∏
𝑖=1
𝑄
𝜇1...𝜇𝑘
𝑖

(𝜉𝜇1...𝜇𝑘
𝑖

|𝜉𝜇1...𝜇𝑘−1
𝑖

) (4.13)

for a 2×2 transition matrix 𝑄𝑄𝑄𝜇1...𝜇𝑘
𝑖

, so the marginal probabilities can be written in terms
of the marginal of the parent pattern

𝑃
𝜇1...𝜇𝑘
𝑖

(𝜉𝜇1...𝜇𝑘
𝑖

) =
1∑︁

𝜉
𝜇1 ...𝜇𝑘−1
𝑖

=0

𝑃
𝜇1...𝜇𝑘−1
𝑖

(𝜉𝜇1...𝜇𝑘−1
𝑖

)𝑄𝜇1...𝜇𝑘
𝑖

(𝜉𝜇1...𝜇𝑘
𝑖

|𝜉𝜇1...𝜇𝑘−1
𝑖

) . (4.14)

For simplicity, we assume that 𝑎𝜇1...𝜇𝑘
𝑖

:=
〈
𝜉
𝜇1...𝜇𝑘
𝑖

〉
is inherited from the parent, i.e.

𝑎
𝜇1...𝜇𝑘
𝑖

= 𝑎
𝜇1...𝜇𝑘−1
𝑖

= · · · = 𝑎𝜇1
𝑖
, (4.15)
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which equals either 𝑎ℎ or 𝑎𝑙 , according to eq. (4.9). Then, 𝑄𝑄𝑄𝜇1...𝜇𝑘
𝑖

takes the form

𝑄𝑄𝑄
𝜇1...𝜇𝑘
𝑖

=

(
𝑃
𝜇1...𝜇𝑘
𝑖

(0|0) 𝑃
𝜇1...𝜇𝑘
𝑖

(1|0)
𝑃
𝜇1...𝜇𝑘
𝑖

(0|1) 𝑃
𝜇1...𝜇𝑘
𝑖

(1|1)

)
=

(
1− 𝑎𝜇1

𝑖
Γ 𝑎

𝜇1
𝑖
Γ

(1− 𝑎𝜇1
𝑖
)Γ 1− (1− 𝑎𝜇1

𝑖
)Γ

)
. (4.16)

Here, the parameter Γ ∈ [0,1] controls the level of noise in the patterns below Part-
level. The relation between patterns in terms of the transition matrix families 𝑅𝑅𝑅 and 𝑄𝑄𝑄 is
summarised in fig. 4.2.2.

With all model parameters defined, in the next section we study the statistical properties
of the distances between patterns sitting on different nodes of the network, as these will
determine the kinetics of the random walk and, in particular, the complexity of the search
process that the random walk is meant to model. We add as a final note that if the
ground-truth glossary of relevant words of an Act and its Parts where known, one could
immediately compute the pattern distances and other statistics described above. This way
one could potentially classify Acts by the statistical properties of their pattern distances.
Modern keyword extraction methods can be used to estimate the glossary, as is briefly
described in chapter 5.

4.3 Expected pattern-distances along and across branches

In this section, we provide analytical expressions, in terms of the model control parameters
𝜏 and Δ, for the expected values of two classes of pattern-distances. To be precise, we
study the distances of (i) adjacent Part-level patterns 𝜉𝜉𝜉𝜇 and 𝜉𝜉𝜉𝜇+1 and (ii) any Part-level
pattern 𝜉𝜉𝜉𝜇1 and leaf patterns of the same Part, 𝜉𝜉𝜉𝜇1...𝜇ℎ . For clarity of presentation, we state
here the main results and present their derivations in appendix 4.A.

4.3.1 Overlap: Distance between neighbouring patterns

Let 𝜉𝜉𝜉𝜇, 𝜉𝜉𝜉𝜇+1 be two child patterns of the root pattern 𝜉𝜉𝜉, with marginal expectations as
described by eq. (4.9). With 𝑑 being the Hamming distance, eq. (4.1), we are interested
in the properties of the distance on Part-level 𝑑𝜇,𝜇+1 := 𝑑

(
𝜉𝜉𝜉𝜇, 𝜉𝜉𝜉𝜇+1

)
as we vary Δ. Ap-

pendix 4.A shows that the expectation of the pattern-distance over the distribution of
patterns 𝑑 (Δ) :=

〈
𝑑𝜇,𝜇+1〉 is given by the expression

𝑑 (Δ) =

𝑑0 +2ℓ𝑐 (𝑎− 𝛽𝑙)

(
(𝑐−2) 𝛽𝑙

𝑎
+1

)
−4Δ (𝑎−𝛽𝑙)𝛽𝑙

𝑎
: Δ ≤ Δtrans ,

𝑑0 +2ℓ𝑐 (𝑐−1) (𝑎− 𝛽𝑙) −4Δ(𝑎− 𝛽𝑙) : else ,
(4.17)
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with Δtrans = ℓ𝑐
(𝑐−2)

2 and 𝑑0 = 2(1− 𝑎)Γ′(1−Γ′)𝐿. We recall that ℓ𝑐 = 𝐿/𝑐, where 𝐿 and 𝑐
are the pattern length and the number of children of each node, respectively.

Fig. 4.3.1 compares eq. (4.17) to the numerical average of distances 𝑑𝜇,𝜇+1. The
agreement is excellent, showing the accuracy of our calculation.
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Fig. 4.3.1 Scatter plot for the expected distance 𝑑 on the horizontal axis, compared to eq. (4.17) on
the vertical axis. 𝑑 is sampled in simulations with the parameters shown at the top.

We observe that 𝑑 is a decreasing function of Δ, in the physical range of parameters
𝛽𝑙 < 𝑎 that we identified after eq. (4.11). Hence, the parameter Δ controls the “topical
overlap” between adjacent Parts as described in the previous section 4.2.

4.3.2 Tightness: Distance between ancestor and descendant patterns

Having examined the “horizontal” variation of patterns in the previous section, we now
turn towards the “vertical” pattern-distance; that is to say, the expected pattern-distance
between the “Part” node at the top of a certain branch, and any leaf in the same branch. To
this end, let 𝜉𝜉𝜉𝜇1 be any Part-level pattern, and let 𝜉𝜉𝜉𝜇1...𝜇ℎ−1 be the pattern of any leaf in the
same branch, i.e. descending from 𝜇1. Appendix 4.A shows that we have for the expected
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pattern-distance between 𝜉𝜉𝜉𝜇1 and 𝜉𝜉𝜉𝜇1...𝜇ℎ−1

⟨𝑑 (𝜉𝜉𝜉𝜇1 , 𝜉𝜉𝜉𝜇1...𝜇ℎ−1)⟩ = 𝑔(ℎ−1) (𝑎𝑙) (ℓ𝑐 (𝑐−1) −2Δ) +𝑔(ℎ−1) (𝑎ℎ) (ℓ𝑐 +2Δ) , (4.18)

with
𝑔(𝑘) (𝑥) := 1−2𝑥(1− 𝑥) (1−Γ)𝑘 . (4.19)

In fig. 4.3.2, we compare eq. (4.18) to the numerical average of 𝑑 (𝜉𝜉𝜉𝜇1 , 𝜉𝜉𝜉𝜇1...𝜇ℎ−1), observing
an excellent agreement between the two.
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Fig. 4.3.2 Mean pattern-distance across ℎ = 4 levels, simulated with the shown parameters on the
𝑥-axis, and the predicted expectation value according to eq. (4.18) on the 𝑦-axis.

In contrast to Δ, the corresponding pattern-distance does not depend linearly on Γ.
However, as it strictly decreases as Γ increases, we see that Γ acts as expected from
a mutation rate, namely, the higher the mutation rate, the higher the distance between
Part- and leaf-level patterns. Eq. (4.16) shows that upon setting Γ = 1, the 𝜉𝜇1

𝑖
’s and

𝜉
𝜇1...𝜇ℎ−1
𝑖

’s become independent. This is the state of least tightness and also the maximum of
⟨𝑑 (𝜉𝜉𝜉𝜇1 , 𝜉𝜉𝜉𝜇1...𝜇ℎ−1)⟩. Similarly, Γ = 0 enforces ⟨𝑑 (𝜉𝜉𝜉𝜇1 , 𝜉𝜉𝜉𝜇1...𝜇ℎ−1)⟩ = 0, representing highest
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tightness. We define the tightness as the following monotonically decreasing function of Γ

𝜏(Γ) = 1−𝑔(ℎ−1) (𝑎 𝑗 )/[2𝑎 𝑗 (1− 𝑎 𝑗 )] = (1−Γ)ℎ−1 . (4.20)

As discussed in section 4.2, this parameter controls the (expected) similarity between an
ancestor-descendant pair of patterns, just as Γ controls the level of mutation from the
former to the latter. Tuning 𝜏 (as opposed to Γ) allows us to achieve a better resolution in
simulations for Γ→ 1.

In analogy to the relation between Δ and 𝑑, the distance ⟨𝑑 (𝜉𝜉𝜉𝜇1 , 𝜉𝜉𝜉𝜇1...𝜇ℎ−1)⟩ is linearly
decreasing in 𝜏.

4.4 Complexity measure for legal trees from approximate
MFPTs

In this section, we present an expression for the complexity of the Act represented by the
model introduced in section 4.2. For the definition of the complexity, recall that every
assignment of patterns defines a transition matrix q for the random walker due to eq. (4.3).
Denoting by 𝑚𝑟𝑡 (q) the MFPT from root 𝑟 to target 𝑡 given such a transition matrix, we
define the complexity as the average of 𝑚𝑟𝑡 (q) over the distribution of patterns,

𝐶 := ⟨𝑚𝑟𝑡 (q)⟩ . (4.21)

The quantity 𝐶 does not depend on any particular realisation of patterns; it reflects the
“higher-level” properties encoded in the model parameters and the tree. However, evaluating
the expectation in eq. (4.21) based on the formulae in eq. (2.7) or eq. (2.18) analytically is
a formidable task. We avoid this difficulty by introducing the mean-field approximation

𝐶MF := 𝑚𝑟𝑡 (⟨q⟩) ≈ ⟨𝑚𝑟𝑡 (q)⟩ = 𝐶 , (4.22)

i.e. we calculate 𝑚𝑟𝑡 for the random walker subject to the averaged transition matrix
⟨q⟩, with the average taken over the pattern distribution. Since q is always a stochastic
matrix, so is ⟨q⟩, and it does indeed define a random walker on the tree. Eq. (4.22) is an
approximation because 𝑚𝑟𝑡 is a non-linear function of q, which can be seen from eq. (2.7).
We dub the approximate, left-hand quantity in eq. (4.22) the approximate complexity.

𝐶MF is an explicit (though complicated) function of all model parameters, though we
are mostly interested in its dependencies on Δ (defined in eq. (4.9)), 𝜏 (defined in eq. (4.20))
and 𝑎 (defined in eq. (4.5)). Furthermore, recall the parameters ℎ and 𝑐 of the tree itself,
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being the height of the tree, and the number of children to a (non-leaf) node, respectively.
The derivation of 𝐶MF is deferred to appendix 4.E; in the following, we only summarise
the results. The expressions are also implemented in Python in the mean_field module of
the pattern_walker package provided in the supplementary material of this thesis.

𝐶MF decomposes into ℎ summands

𝐶MF = 𝐶MF0 +𝐶MF1 +
ℎ−1∑︁
𝐾=2

𝐶MF𝐾 . (4.23)

The constituents are given by

𝐶MF0 =
Π0
𝜋𝑣0

×

∏𝑐
𝜇=2 𝜀

(
𝑓
(ℎ−1,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜇)
Δ

)
+∑𝑐

𝜇=2
∏𝑐
𝜈=2;𝜈≠𝜇 𝜀

(
𝑓
(ℎ−1,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜈)
Δ

)
𝛿0

×
ℎ−1∑︁
𝐼=1

𝐼−1∏
𝐽=2

1

𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

) , (4.24)

with the denominator

𝛿0 =𝜀
(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

)
×

𝑐∏
𝜇=2

𝜀

(
𝑓
(ℎ−1,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜇)
Δ

)
(4.25)

101



Complexity of codified law: Searching times

for 𝐾 = 0 and

𝐶MF1 =
Π1
𝜋𝑣1

1

𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

)
×

(
(𝑐−1)𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
+ 𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

)
+ 𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

))
×
ℎ−1∑︁
𝐼=2

𝐼−1∏
𝐽=2

1

𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

) , (4.26)

𝐶MF𝐾 =
Π𝐾

𝜋𝑣𝐾

[
𝑐+ 𝜀

(
𝑓
(ℎ−𝐾−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐾+1,0,0,0;1)
Δ

)]
×

𝐼−1∑︁
𝐼=𝐾+1

𝐼−1∏
𝐽=𝐾

1

𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

) , (4.27)

where the fractions Π𝐾/𝜋𝑣𝐾 for 𝐾 > 1, Π1/𝜋1 and Π0/𝜋0 are given in appendix 4.E in
eqs. (4.74), (4.75) and (4.77), respectively. Moreover, the weight function 𝜀 are defined in
eq. (4.66), and the 𝑓Δ’s in eqs. (4.51) and (4.60).

We shall now verify our expression for 𝐶MF by comparing it to 𝐶MF obtained from
numerical simulations. In the simulations below, we fixed a tree with 𝑐 = 3 and ℎ = 4,
as well as the parameters 𝐿 = 48, 𝑎 = 0.7, 𝛽𝑙 = 0.07 and Γ′ = 0.3. For each given pair
of values for Δ and 𝜏, we calculate 𝐶MF with the following procedure: Generate a set
of patterns, and subsequently a transition matrix q as described in section 4.2; repeat
100 times and take the average of the resulting matrices, denoted ⟨q⟩emp; this average
approximates ⟨q⟩. The value of 𝑚𝑟𝑡 (⟨q⟩emp) calculated numerically using eq. (2.7) is our
benchmark for 𝐶MF in eq. (4.23). The two values of 𝐶MF are plotted against each other in
fig. 4.4.1. We see from the figure that the agreement is excellent, in spite of the fact that
the derivation in appendix 4.D uses two approximations (eqs. (4.51) and (4.68)) to obtain
explicit expressions for the entries of ⟨q⟩.
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Fig. 4.4.1 Complexity 𝐶MF obtained from eq. (4.23) vs 𝐶MF calculated using eq. (2.7) with an
empirically transition matrix ⟨q⟩emp averaged over 100 realisations for each set of parameters. Each
data point refers to a pair (Δ, 𝜏), grouped by colour and symbol according to 𝜏. For all points, we
fixed 𝑎 = 0.7 and Γ′ = 0.3.

In the next section, we proceed by testing the goodness of the approximation eq. (4.22)
numerically.

4.5 Simulations and observations

This section contains numerical validations of the approximation in eq. (4.22) by comparing
𝐶MF to 𝐶, computed numerically as an average over quenched MFPTs 𝑚𝑟𝑡 (q). We then
proceed to consider the behaviour of 𝐶 and 𝐶MF as we vary the model parameters.

For given values of the parameters 𝑎,Δ and 𝜏, we calculate 𝐶 (𝑎, 𝜏,Δ) by repeating
the following steps 500 times: Generate a set of patterns, and subsequently the transition
matrix q according to eq. (4.3); record the value 𝑚𝑟𝑡 (q) calculated numerically using
eq. (2.7). The average of these values is approximately (due to the finite size of the sample)
equal to 𝐶 (𝑎, 𝜏,Δ). We fix a tree with 𝑐 = 3 and ℎ = 4, as well as the parameters 𝐿 = 48,
𝛽𝑙 = 0.07 and Γ′ = 0.3. With these values for 𝑐 and ℎ, the total number of nodes is 𝑁 = 121
and the MFPT for the diffusive random walker (i.e. all edges unweighted) is 𝑚diff

𝑟𝑡 = 848.
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Fig. 4.5.1 Complexity 𝐶MF obtained via section 4.4 vs 𝐶, being the average MFPT ⟨𝑚𝑟𝑡 (q)⟩,
where the average is taken over the distribution of patterns. For each realisation of q, 𝑚𝑟𝑡 (q) was
computed using eq. (2.7). Error bars represent one standard deviation of 𝑚𝑟𝑡 (q). Each data point
refers to a pair (Δ, 𝜏), grouped by colour and symbol according to 𝜏. For all points, we fixed 𝑎 = 0.7
and Γ′ = 0.3.

In fig. 4.5.1, we directly compare 𝐶MF as per eq. (4.23) to 𝐶 in a scatterplot for fixed
𝑎. The standard deviation of 𝑚𝑟𝑡 (q) with respect to variations in q is indicated as error
bars. The plot confirms for all parameters considered that eq. (4.22) leads to a systematic
underestimation while accurately reflecting the correct trend.

Next, we analyse the dependence of 𝐶MF on the different parameters of our model.
Fig. 4.5.2 plots 𝐶MF and 𝐶 as a function of 𝑎 =

〈
𝜉 𝑗

〉
, the expectation of root-level bits 𝜉 𝑗 .

The dashed lines represent the mean-field approximation 𝐶MF in eq. (4.23), the symbols
the value of 𝐶 as obtained in the beginning of this section. Fig. 4.5.2 confirms that 𝐶MF

tracks 𝐶 faithfully, also for varying 𝑎.
For small values of 𝜏, i.e. little vertical coherence between patterns, the complexity𝐶MF

first shows a slight increase as a function of 𝑎 (approximately in the interval 0 < 𝑎 < 0.2)
before a more pronounced decrease to about 1/3 of its maximum (for 𝑎 > 0.2). As 𝜏
approaches 1, the curves for 𝐶MF first become notably flatter and lower, which is as
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Fig. 4.5.2 Complexity 𝐶MF as a function of 𝑎 for different values of 𝜏 and Δ. The points show the
numerical average for 𝐶 on the right hand side of eq. (4.22), taken over 500 realisations of q.

expected since higher vertical coherence is more likely to put the reader on the right track
faster. This effect is only seen up to 𝜏 = 0.8, as too high coherence – given if 𝜏→ 1 –
forces all patterns within the same Part to be equal, which does not help the reader navigate
at all.

Fig. 4.5.2 suggests the following conclusion: For fixed, low values of 𝜏, the complexity
can be minimised by increasing 𝑎 as much as possible. Since 𝑎 represents the keyword
density of the root pattern, this means that the Title of the represented Act should reference
as many keywords as possible. For high values of 𝜏, the complexity increases with 𝑎,
though the increase is far less pronounced than the decrease at low 𝜏.

Fig. 4.5.3 shows 𝐶MF as dashed lines and 𝐶 as symbols as functions of Δ. The panels
and different curves per panel correspond to different values for 𝑎 and 𝜏, respectively. We
make the same observation as above about the systematic underestimation incurred in
eq. (4.22), although in addition to 𝜏, the offset also seems to decrease with 𝑎→ 1.

𝐶 is largely constant in Δ for Δ ≤ 8. Beyond this value, 𝐶 begins to increase with Δ,
except for the lowest tested value 𝑎 = 0.05. 𝐶 increases by about a factor of 2 for Δ > 8.
Strikingly, 𝐶MF and 𝐶 show a slight decrease up to Δ ≤ 8 for 𝑎 = 0.8, which is contrary to
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Fig. 4.5.3 Complexity 𝐶MF as a function of Δ for different values of 𝑎 and 𝜏. The points show the
numerical average for 𝐶 on the right hand side of eq. (4.22), taken over 500 realisations of q.

our intuition that higher overlap between adjacent Parts should increase the complexity as
it leads to more initial missteps of the random walker. However, the observed decrease is
minor compared to the observed increase exhibited at higher Δ. The fact that such increase
in complexity is less significant for higher 𝜏 is again in line with our expectation that a
more “vertically coherent” text should be overall easier to navigate. We note that the range
of values of 𝐶 over Δ is less than the one over 𝑎, shown in fig. 4.5.2, demonstrating that Δ
has weaker influence.

We deduce from fig. 4.5.3 that in order to reduce 𝐶, Δ should not be chosen too high.
Further simulations suggest that depending on the coordination number 𝑐 of the tree, the
complexity can also rise if Δ is chosen too low. This means that 𝐶 has a local minimum in
Δ, which represents the optimal keyword overlap between adjacent Parts.

Fig. 4.5.4 presents 𝐶MF as a function of 𝜏 as dashed lines, with different curves and
panels representing different values for Δ and 𝑎, respectively. Different symbols are used
to represent the values of 𝐶 = ⟨𝑚𝑟𝑡 (q)⟩. The plot shows that 𝐶MF has a pronounced local
minimum in 𝜏 between 0.8 and 0.9 for all values of Δ and 𝑎 tested. At 𝜏 = 1, the random
walker becomes diffusive whenever inside a Part, because all patterns within a given Part
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Fig. 4.5.4 Complexity 𝐶MF as a function of 𝜏 for different values of Δ and 𝑎. The points show the
numerical average for 𝐶 on the right hand side of eq. (4.22), taken over 500 realisations of q.

are identical. Therefore, it makes sense that the minimal complexity should not be realised
at this value, since the patterns cease to guide the walker to the target node 𝑡. The range of
variation of 𝐶 over 𝜏 is comparable to that over 𝑎, as shown in fig. 4.5.2.

To conclude the analysis of fig. 4.5.4, we summarise that 𝐶 may be minimised by
choosing an appropriately high value for 𝜏, which should not be too close to 1. This means
that one should allow the keywords within one Part to vary slightly, to avoid keyword
patterns that are either almost identical or approximately independent.

Figs. 4.5.2, 4.5.3 and 4.5.4 suggest that an increasing Δ, or decreasing 𝜏 or 𝑎, results
in a higher rate of mistakes made by the walker, thus leading to a higher searching time.
Since Δ has its primary effect on the root (Act) level, it is dominated by 𝜏, which controls
noise on all (bar the Act) levels. Since 𝑎 also affects the values of 𝑎ℎ and 𝑎𝑙 , it has an effect
on all levels as well; accordingly, we observe that varying 𝑎 and 𝜏 have comparable effects
on 𝐶, and dominate variations over Δ. Form here, we conclude that the priority should be
on maximising the tightness 𝜏 and keyword frequency 𝑎 to reduce the complexity of the
modelled ensemble of Acts.
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The present section shows that 𝐶MF faithfully reproduces the trends of 𝐶 for varying 𝜏,
Δ and 𝑎. This entails a significant benefit because it allows us to optimise the parameters of
the model with respect to 𝐶MF without the need for costly simulations. As a consequence,
one can imagine optimising a real legal text, by estimating its parameter values for our
model and tweaking the text and layout to minimise 𝐶MF.

Here, we have not considered the effects of the parameters 𝑐, ℎ, 𝐿 and Γ′. The former
two of these deserve a word of caution: The number of nodes increases as 𝑐ℎ+1, and 𝑚𝑟𝑡 for
the regular random walker as ℎ𝑐ℎ+1. Therefore, without appropriate rescaling, the values
of 𝐶 and 𝐶MF do not allow for the comparison of graphs of different size.

4.6 Conclusions and outlook

We presented a quantitative theory of informational complexity of legal trees by analysing
a random walker model for the retrieval of information planted in the leaves of a legal tree.
The model assumes that the reader proceeds by keyword affinity, such that they are drawn
towards nodes whose content looks similar to the target information. The searched text
is generated randomly, with two main parameters controlling its horizontal and vertical
coherence. Our analysis and numerical simulations show that these properties of the text
have the desired effect on the random walker: With high vertical coherence, the content of
the leaves is well-reflected in the top Items (Parts) of the text, and the reader finds their
target more quickly. High horizontal coherence, on the other hand, means that different
Parts are difficult to discern, leading to more initial errors by the reader.

As a measure of complexity, we propose the MFPT of the random reader from the root
of the tree to the predefined target information; it gives an intuitive account of how difficult
it is for a typical reader to navigate the legal text by following only local information.
Similarly, MFPTs have also been employed successfully to assess the heterogeneity and
transport properties of social and other complex networks [66].

So far, we have limited our analysis to trees, where we were able to compute our
complexity measure analytically using simple approximations. However, considering the
various relations between different paragraphs of a legal text, legal networks usually exhibit
interconnections on top of the tree-like backbone. A direct generalisation of the present
work can be the inclusion of cross-references which introduce a dependency between
the citing and the cited paragraph, and have to to be considered as the law is maintained.
Cross-references can also lead to detours and act as shortcuts. In fact, studies of European
civil law have found that these legal systems can exhibit small-world properties [110]. In
other studies, more general directed acyclic graphs are used to represent citation networks,
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e.g. the network of precedents in the US [31] or of the total citation network in a system
of statute law [32, 35]. Recently, [38] has elaborated on the similarity between legal and
software systems, drawing from best practices on the latter to propose improvements on
the former. The framework developed in the present chapter may prove useful in providing
a more quantitative ground to assess the methods in these lines of research as well.

Moreover, our model definitions rely on a number of assumptions on the details of
how keywords are distributed over the text: firstly, the definition of overlap assumes that
the Parts of an Act are ordered in such a way that consecutive pairs realise the maximal
overlap in that Act, and that this overlap is the same for all adjacent pairs. Secondly, we
assume that below the Part level, the activation probability for every keyword is fixed
within each Part, which might be unrealistic for “deep” laws with many levels. Relaxing
these assumptions – introduced for the sake of computational simplicity – may render the
model even more realistic and general.

We have modelled a reader as a Markovian random walker, that is to say that it is
“memoryless”. To replicate the behaviour of a real reader more closely, more general types
of walks (e.g. self-avoiding walks [112]) might be appropriate.

Finally, on the side of our analysis, it should be possible to refine the approximation in
eq. (4.22). Perhaps, more of the information contained in the pattern-dependent 𝑚𝑟𝑡 (q)
can be exploited by carrying the analysis beyond its mean to higher moments.

We can derive three broad and intuitive lessons from the results in section 4.5 to reduce
the “complexity” of a legal tree: (i) Keywords at the lowest levels should be reflected
at higher levels, i.e. a legal text should be “tightly” formulated. Yet, it is possible to
make it overly tight, which happens when all text Items look too similar to one another.
This situation is identical to giving no clues at all to the reader. (ii) Parts should be well
separated by their keywords (and hence by topic); some keyword overlap is acceptable, as
long as sufficiently many Part-specific keywords remain to guide the reader. (iii) Text at
higher levels should not be too sparse. If high-level entries contain only a small number
of keywords (such as a short headline), little information about its subordinate Items can
be conveyed (except by interpretation, e.g. through association of keywords and related
words). A higher keyword frequency at the top levels saves the reader time-costly detours
into wrong Parts.

After this thorough treatment of theoretical aspects of our model, in the final chapter 5,
we describe a procedure by which one can actually extract the keywords from a given Act
and estimate the model parameters. We can then compute 𝐶MF and related quantities for
an existing hierarchical collection of legal documents.
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Appendix

Appendix 4.A Expected pattern distances

In this appendix, we derive the expected pattern distances eqs. (4.17) and (4.18) in sec-
tion 4.3. Before we start, it will be useful to recall that 𝑋 is a binomial random variable
(denoted 𝑋 ∼ Binom (𝑝 ,𝑛)) if it has the probability mass function (PMF)

P {𝑋 = 𝑥} =
(
𝑛

𝑥

)
𝑝𝑥 (1− 𝑝)𝑛−𝑥 (4.28)

with expectation
E(𝑋) = 𝑛𝑝 . (4.29)

We begin with the expectation of the Hamming distance on Part-level, 𝑑𝜇,𝜇+1 :=
𝑑

(
𝜉𝜉𝜉𝜇, 𝜉𝜉𝜉𝜇+1

)
. From the model definitions in section 4.2, we see that this is a combination

of binomial random variables, for either 𝜉𝜇
𝑗
= 𝜉

𝜇+1
𝑗

or 𝜉𝜇
𝑗
≠ 𝜉

𝜇+1
𝑗

, and the probabilities of
both events depend on whether both bits have the same marginal expectation 𝑎ℎ (or 𝑎𝑙), or
if one is equal to 𝑎ℎ and the other equal to 𝑎𝑙 .

Let the numbers of indices 𝑗 such that
〈
𝜉
𝜇

𝑗

〉
=

〈
𝜉
𝜇+1
𝑗

〉
= 𝑎ℎ and

〈
𝜉
𝜇

𝑗

〉
=

〈
𝜉
𝜇+1
𝑗

〉
= 𝑎𝑙 be

𝐿ℎℎ and 𝐿𝑙𝑙 , respectively, and let the number of indices with
〈
𝜉
𝜇

𝑗

〉
≠

〈
𝜉
𝜇+1
𝑗

〉
be 𝐿ℎ𝑙 . The

𝐿’s are functions of Δ (cf. fig. 4.2.3)

𝐿ℎℎ (Δ) =

{
2Δ
4Δ− ℓ𝑐 (𝑐−2)

: Δ ≤ ℓ𝑐 (𝑐−2)
2 ,

: else ,

𝐿𝑙𝑙 (Δ) =

{
ℓ𝑐 (𝑐−2) −2Δ
0

: Δ ≤ ℓ𝑐 (𝑐−2)
2 ,

: else ,

𝐿ℎ𝑙 (Δ) =

{
2ℓ𝑐
2ℓ𝑐 (𝑐−1) −4Δ

: Δ ≤ ℓ𝑐 (𝑐−2)
2 ,

: else ,

(4.30)

where 𝐿 is the number of bits per patterns, 𝑐 is the number of Parts, and ℓ𝑐 = 𝐿/𝑐. The
reason for the presence of different cases is that the inequality

(𝜇−1)ℓ𝑐 −Δ+ 𝐿 < (𝜇+1)ℓ𝑐 +Δ (4.31)

is true if and only of Δ > ℓ𝑐 𝑐−2
2 . Now (𝜇−1)ℓ𝑐 −Δ+ 𝐿 is the “left” boundary of the 𝑎ℎ-

domain of Part 𝜇 after applying the 𝐿-periodicity of eq. (4.9), and (𝜇+1)ℓ𝑐+Δ is the “right”
boundary of the 𝑎ℎ-domain of Part 𝜇+1; therefore, Δ ≤ ℓ𝑐 𝑐−2

2 implies
〈
𝜉
𝜇

𝑗

〉
=

〈
𝜉
𝜇+1
𝑗

〉
= 𝑎ℎ

if and only if 𝜇ℓ𝑐 −Δ < 𝑗 ≤ 𝜇ℓ𝑐 +Δ, while for Δ > ℓ𝑐 𝑐−2
2 there is a second set of solutions
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given by (𝜇−1)ℓ𝑐−Δ+𝐿 < 𝑗 ≤ (𝜇+1)ℓ𝑐+Δ (refer to fig. 4.2.3 for a schematic illustration).
Notice that with Δ > ℓ𝑐

𝑐−2
2 , we necessarily have 𝐿𝑙𝑙 = 0, i.e. the 𝑎ℎ-domains of both patterns

together cover all of {1, . . . , 𝐿}.
The probabilities of {𝜉𝜇

𝑗
≠ 𝜉

𝜇+1
𝑗

} can be derived using the law of total probability and
the conditional independence of the Part patterns given the root pattern 𝜉𝜉𝜉,

P
{
𝜉
𝜇

𝑗
≠ 𝜉

𝜇+1
𝑗

}
=

1∑︁
𝑧=0
P
{
𝜉
𝜇

𝑗
≠ 𝜉

𝜇+1
𝑗

���𝜉 𝑗 = 𝑧}P {𝜉 𝑗 = 𝑧}
=

1∑︁
𝑧=0
P
{
𝜉 𝑗 = 𝑧

} [
P
{
𝜉
𝜇

𝑗
= 𝑧

���𝜉 𝑗 = 𝑧}P {𝜉𝜇+1
𝑗

≠ 𝑧

���𝜉 𝑗 = 𝑧}
+P

{
𝜉
𝜇

𝑗
≠ 𝑧

���𝜉 𝑗 = 𝑧}P {𝜉𝜇+1
𝑗

= 𝑧

���𝜉 𝑗 = 𝑧} ]
, (4.32)

where the factors in the square brackets are given by the elements of the 𝑅𝑅𝑅 𝑗 ’s in eq. (4.8)
for each of the combinations of 𝑎ℎ and 𝑎𝑙 . In fact, by definition of 𝑅𝑅𝑅 𝑗 , we have

P
{
𝜉
𝜇

𝑗
≠ 𝜉

𝜇+1
𝑗

���𝜉 𝑗 = 0
}
=𝑅𝑅𝑅

𝜇

𝑗
(0|0)𝑅𝑅𝑅𝜇+1

𝑗
(1|0) +𝑅𝑅𝑅𝜇

𝑗
(1|0)𝑅𝑅𝑅𝜇+1

𝑗
(0|0)

=2(1−Γ′)Γ′

P
{
𝜉
𝜇

𝑗
≠ 𝜉

𝜇+1
𝑗

���𝜉 𝑗 = 1
}
=𝑅𝑅𝑅

𝜇

𝑗
(0|1)𝑅𝑅𝑅𝜇+1

𝑗
(1|1) +𝑅𝑅𝑅𝜇

𝑗
(1|1)𝑅𝑅𝑅𝜇+1

𝑗
(0|1) (4.33)

=
𝑎− 𝑎𝜇

𝑗
+ (1− 𝑎)Γ′

𝑎

𝑎
𝜇+1
𝑗

− (1− 𝑎)Γ′

𝑎

+
𝑎
𝜇

𝑗
− (1− 𝑎)Γ′

𝑎

𝑎− 𝑎𝜇+1
𝑗

+ (1− 𝑎)Γ′

𝑎
. (4.34)

With the decomposition in eq. (4.32), and using that
〈
𝜉 𝑗

〉
= P

{
𝜉 𝑗 = 1

}
= 𝑎 for all 𝑗 , this

produces the marginal probability

P
{
𝜉
𝜇

𝑗
≠ 𝜉

𝜇+1
𝑗

}
=2(1− 𝑎)Γ′(1−Γ′)

+ 1
𝑎

[
(𝑎− 𝑎𝜇

𝑗
+ (1− 𝑎)Γ′) (𝑎𝜇+1

𝑗
− (1− 𝑎)Γ′)

+ (𝑎𝜇
𝑗
− (1− 𝑎)Γ′) (𝑎− 𝑎𝜇+1

𝑗
+ (1− 𝑎)Γ′)

]
. (4.35)

Considering now all 𝐿ℎℎ bits 𝑗 for which
〈
𝜉
𝜇

𝑗

〉
=

〈
𝜉
𝜇+1
𝑗

〉
= 𝑎ℎ, the above expression

reduces to 2(1− 𝑎) (1−Γ′)Γ′ since 𝑎ℎ = (1− 𝑎)Γ′+ 𝑎 (given in eq. (4.12)) sets the other
two summands to zero. The sum of the distances |𝜉𝜇

𝑗
− 𝜉𝜇+1

𝑗
| for these bits then forms a

binomial random variable with “success” probability 2(1− 𝑎) (1− Γ′)Γ′. Similarly, we
can treat the other bits in two groups of size 𝐿𝑙ℎ and 𝐿𝑙𝑙 , respectively, as described in the
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beginning of this appendix. For this purpose, it is useful to recall from eq. (4.11) that
𝑎𝑙 − (1− 𝑎)Γ′ = 𝛽𝑙 . The total distance 𝑑𝜇,𝜇+1 is then given by a sum of binomial random
variables

𝑑𝜇,𝜇+1 ∼Binom (2(1− 𝑎)Γ′(1−Γ′) , 𝐿ℎℎ)
+Binom (2(1− 𝑎)Γ′(1−Γ′) + 𝑎− 𝛽𝑙 , 𝐿ℎ𝑙)

+Binom
(
2(1− 𝑎)Γ′(1−Γ′) +2

(𝑎− 𝛽𝑙) 𝛽𝑙
𝑎

, 𝐿𝑙𝑙

)
, (4.36)

expressed in terms of 𝛽𝑙 for conciseness.
The expected pattern-distance between neighbours is readily calculated using the

linearity of ⟨·⟩, the above characterisation for 𝑑𝜇,𝜇+1 and the expectation for binomial
random variables, eq. (4.29). These ingredients give the result reported for 𝑑 =

〈
𝑑𝜇,𝜇+1〉 in

eq. (4.17). We can see that 𝑑 is a decreasing function in Δ with maximum and minimum

𝑑max =𝑑0 +2ℓ𝑐 (𝑎− 𝛽𝑙)
(
(𝑐−2) 𝛽𝑙

𝑎
+1

)
, (4.37)

𝑑min =𝑑0 , (4.38)

with 𝑑0 = 2(1− 𝑎)Γ′(1−Γ′)𝐿. Moreover, 𝑑 is a combination of two affine linear function,
with the transition between the two occuring at Δtrans = ℓ𝑐

𝑐−2
2 with value

𝑑trans = 𝑑 (Δtrans) = 𝑑0 +2ℓ𝑐 (𝑎− 𝛽𝑙) . (4.39)

We now examine the expected distance of two patterns 𝜉𝜉𝜉𝜇, 𝜁𝜁𝜁 , where the former
represents Part 𝜇, and the latter is a descendant of the former, at distance 𝑘 . We are
particularly interested in the situation where 𝜁𝜁𝜁 is a leaf-level pattern, i.e. the edge-distance
between the two is 𝑘 = ℎ−1. To determine ⟨𝑑 (𝜁𝜁𝜁, 𝜉𝜉𝜉𝜇)⟩, we need to know the probabilities
of the events {𝜉𝜇

𝑗
≠ 𝜁 𝑗 } which we calculate from the 𝑘-th power of 𝑄𝑄𝑄 defined in eq. (4.16)

𝑄𝑄𝑄𝑘 (𝑎𝜇
𝑗
) =

(
1− 𝑎𝜇

𝑗

(
1− (1−Γ)𝑘

)
𝑎
𝜇

𝑗

(
1− (1−Γ)𝑘

)
(1− 𝑎𝜇

𝑗
)
(
1− (1−Γ)𝑘

)
1− (1− 𝑎𝜇

𝑗
)
(
1− (1−Γ)𝑘

)) , (4.40)
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where 𝑎𝜇
𝑗

is the marginal expectation
〈
𝜉
𝜇

𝑗

〉
= 𝑎

𝜇

𝑗
. As 𝑎𝜇

𝑗
can take the values 𝑎𝑙 and 𝑎ℎ, as

defined in eqs. (4.11) and (4.12), the 𝑗-th bits are different with probability

P
{
𝜉
𝜇

𝑗
≠ 𝜁 𝑗

}
= P

{
𝜁 𝑗 = 0|𝜉𝜇

𝑗
= 1

}
P
{
𝜉
𝜇

𝑗
= 1

}
+P

{
𝜁 𝑗 = 1|𝜉𝜇

𝑗
= 0

}
P
{
𝜉
𝜇

𝑗
= 0

}
=𝑄𝑄𝑄𝑘 (0|1)𝑎𝜇

𝑗
+𝑄𝑄𝑄𝑘 (1|0) (1− 𝑎𝜇

𝑗
)

= 2𝑎𝜇
𝑗
(1− 𝑎𝜇

𝑗
)
[
1− (1−Γ)𝑘

]
=: 𝑔(𝑘) (𝑎𝜇

𝑗
) . (4.41)

For the full pattern-distance composed by all bits, we have to take both possible values,
𝑎𝑙 and 𝑎ℎ, for 𝑎𝜇

𝑗
into account. Again, the full pattern-distance is a sum of two independent

binomial random variables

𝑑 (𝜁𝜁𝜁, 𝜉𝜉𝜉𝜇) ∼ Binom
(
𝑔(𝑘) (𝑎ℎ) , ℓ𝑐 +2Δ

)
+Binom

(
𝑔(𝑘) (𝑎𝑙) , ℓ𝑐 (𝑐−1) −2Δ

)
, (4.42)

with expectation given by eq. (4.29),

⟨𝑑 (𝜁𝜁𝜁, 𝜉𝜉𝜉𝜇)⟩ = 𝑔(𝑘) (𝑎𝑙) (ℓ𝑐 (𝑐−1) −2Δ) +𝑔(𝑘) (𝑎ℎ) (ℓ𝑐 +2Δ) . (4.43)

For 𝑘 = ℎ−1, we obtain the result given in the main text in eq. (4.18).

Appendix 4.B 5-Tuple labels for paths and nodes

The statistical properties of the pattern-distance of any node to the target are determined
by the location of the node in the tree. The determining criteria are (i) the edge-distance
between the node and the target, (ii) whether the root lies on the shortest path between the
node and the target, and (iii) the Part containing the node, as Part patterns have different
switching probabilities over the edges incident to the root.

We will label directed paths along the edges of the tree by 5-tuples, which encode
features of the paths that influence the statistical properties of pattern-distance between the
start and end nodes of these paths.

Let 𝑃 be a directed path of length ℓ such that at no point following its direction, one
moves closer (in the sense of edge-distance) to 𝑡 (see fig. 4.B.1 for examples). Without
loss of generality, we may assume that the Parts 𝜇 are enumerated such that 1 is the
Part containing 𝑡. The remaining Parts may be in any order. We assign to 𝑃 a 5-tuple
𝑃 ∼ (𝑃1, 𝑃2, 𝑃3, 𝑃4;𝑃5), where 𝑃1 is the number of edges of 𝑃 connecting its starting node
to the Part node 𝜇 = 1. We set 𝑃2 = 1 if the edge (1, 𝑟) from Part 1 to the root lies on 𝑃,
and otherwise we have 𝑃2 = 0. We define 𝑃3 = 1 if 𝑃 has an edge (𝑟, 𝜇) from the root to a
Part node with 𝜇 ≥ 2, and otherwise we set 𝑃3 = 0. 𝑃4 counts the number of edges of 𝑃
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connecting its end node to the nearest Part node 𝜇 ≥ 2. 𝑃5 records the Part 𝜇 containing
the end node of 𝑃.

r

t

(3,0,0,0;1)

r

t

(2,1,0,0;1)

r

t

(1,1,1,0;2)

r

t

(0,1,1,1;3)

Fig. 4.B.1 Labels for different paths of length 3 oriented away from 𝑡, shown by arrows. The number
of densely dashed and densely dotted arrows give the first and fourth coordinate, respectively. The
number of thinner, loosely dashed and loosely dotted arrows give the second and third coordinates,
respectively. The latter two are always associated with the root, so the second and third entries are
both either 0 or 1. Note that the first four coordinates always sum to the path-length.

In practice, the label (𝑃1, 𝑃2, 𝑃3, 𝑃4;𝑃5) can be determined by making the following
observation. If the root node 𝑟 lies on 𝑃 and ℓ is the length of the path 𝑃, there are two
numbers 𝑘,𝑚 ≥ 0 such that 𝑃 consists of 𝑘 edges in Part 1 and 𝑚 = ℓ− 𝑘 edges in exactly
one other Part, say 𝜇 (we count the edge (𝑟, 𝜇) as belonging to Part 𝜇). By construction,
we have 𝑘 = 0 if and only if 𝑃 starts in the root node 𝑟 and 𝑚 = 0 if and only if 𝑃 ends in 𝑟 .
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Then, we label 𝑃 as

𝑃 ∼


(𝑘 −1,1,0,0;1) : 𝑃 ends with 𝑟,

(0,0,1,𝑚−1;𝜇) : 𝑃 begins with 𝑟,

(𝑘 −1,1,1,𝑚−1;𝜇) : else.

(4.44)

If 𝑟 does not lie on 𝑃, we assign the label

𝑃 ∼

(𝑝,0,0,0;1) : 𝑃 lies in the target-Part ,

(0,0,0, 𝑝;𝜇) : 𝑃 lies in Part 𝜇 > 2.
(4.45)

Various examples for labelled paths are given in fig. 4.B.1. In all cases, the sum of the first
four indices equals the length of the path 𝑃.

We anticipate that our notation will not be well defined for most directed paths in
the tree, but it will be well defined for those paths relevant to the analysis in this chapter.
Moreover, the above definition does not identify paths uniquely; for instance, the label
(𝑘,0,0,0;1) applies to all paths of length 𝑘 not leaving the target-Part and with the
additional constraint of being directed away from 𝑡. However, due to the constraint on
the path direction, the pattern-distances between the start and end nodes of each path are
identically distributed, and the distribution is determined by (𝑘,0,0,0;1).

We can now use these labels to refer to classes of nodes as well. Given a class of paths
with label (𝑘, 𝑙,𝑚,𝑛;𝜇), consider only those paths 𝑃 starting at 𝑡. We may then label nodes
𝑣 via the labels of the shortest path starting in 𝑡 and ending in 𝑣. Examples are shown in
fig. 4.B.2.

We stress that by (𝑘, 𝑙,𝑚,𝑛;𝜇) we always refer to shortest paths, which are unique in
trees, therefore the label for each node is always well-defined in this way. However, just
as paths are not uniquely identified by their label, the same is true for nodes labelled in
the way just introduced – for instance, fig. 4.B.2 shows two nodes that can be described
by (2,0,0,0;1). The only nodes fully identifiable by their labels are 𝑡 ∼ (0,0,0,0;1) and
𝑟 ∼ (ℎ−1,1,0,0;1). However, the “resolution” provided by these labels is sufficient for a
statistical description of the pattern-distances to 𝑡 for each node in the graph. This is the
subject of the next appendix.
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r=(3,1,0,0;1)

(2,0,0,0;1)

t=(0,0,0,0;1)

(2,0,0,0;1)

(4,0,0,0;1)

(5,0,0,0;1)

(3,1,1,0;2)

(3,1,1,1;2)

(3,1,1,0;3)

(3,1,1,1;3)

Fig. 4.B.2 5-tuple labels for various nodes in the tree; these are obtained by finding the shortest
paths from 𝑡 and forming the path labels as in fig. 4.B.1. Note that the first four coordinates always
sum to the edge-distance to 𝑡.

Appendix 4.C Conditional pattern-distance along short-
est paths

In this appendix, we derive the conditional PMF P {𝑑𝑣 = 𝑥 | 𝑑𝑢} for the pattern-distance of
node 𝑣 to 𝑡 given the pattern-distance to 𝑡 of another node 𝑢, located on the shortest path
between 𝑡 and 𝑣. To this purpose, we first derive an expression for the probability of the
event {𝜉𝑣

𝑗
≠ 𝜉 𝑡

𝑗
} given 𝑑𝑢, which can be calculated appealing to Bayes’ rule. Bayes’ rule

states that the conditional probability of the event 𝐴 given an event 𝐵 with P {𝐵} ≠ 0 obeys

P {𝐴 | 𝐵} = P {𝐵 | 𝐴} P {𝐴}
P {𝐵} ; (4.46)

consequently, we can write the probability of {𝜉𝑣
𝑗
≠ 𝜉 𝑡

𝑗
} given 𝑑𝑢 as

P
{
𝜉𝑣𝑗 ≠ 𝜉

𝑡
𝑗

���𝑑𝑢 = 𝑦} = P {𝑑𝑢 = 𝑦 ���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 } P
{
𝜉𝑣
𝑗
≠ 𝜉 𝑡

𝑗

}
P {𝑑𝑢 = 𝑦} , (4.47)

and we proceed calculating the terms on the right hand side individually.
Clearly, the pattern distance 𝑑𝑢 to the target is a sum of binomial random variables,

whose statistics depend on Δ. If Δ = Δmax, all bits of the pattern 𝜉𝜉𝜉𝑢 have the same
expectation

〈
𝜉𝑢
𝑗

〉
= 𝑎ℎ, and are therefore identically distributed. As the bits are independent,
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𝑑𝑢 is the binomial random variable

𝑑𝑢 ∼ Binom
(
𝑓 𝑡𝑢Δmax

, 𝐿

)
(4.48)

with “success probability”
𝑓 𝑢𝑣Δmax

:= P
{
𝜉𝑢𝑗 ≠ 𝜉

𝑣
𝑗

}
. (4.49)

In contrast to this, Δ < Δmax implies that 𝑎𝑢
𝑗
=

〈
𝜉𝑢
𝑗

〉
, and hence P

{
𝜉 𝑡
𝑗
≠ 𝜉𝑢

𝑗

}
, depends on 𝑗

and on the Part containing 𝑢 as prescribed by eq. (4.9). Therefore, instead of eq. (4.49) we
consider

𝑔𝑢𝑣
(
𝑎𝑢𝑗 , 𝑎

𝑣
𝑗

)
= P

{
𝜉𝑣𝑗 ≠ 𝜉

𝑢
𝑗

}
. (4.50)

In order to extend eq. (4.48) to general Δ, we make the simplifying assumption that the
bits of a given pattern are identically distributed, with probabilities averaged over all bits
of that pattern. That is, we make the approximation

𝑑𝑢 ∼ Binom
(
𝑓 𝑡𝑢Δ , 𝐿

)
,

𝑓 𝑢𝑣Δ :=
∑︁

𝑥,𝑦∈{ℎ,𝑙}
𝑂
𝜇𝜈

Δ
(𝑎𝑥 , 𝑎𝑦)𝑔𝑢𝑣 (𝑎𝑥 , 𝑎𝑦) , (4.51)

where 𝜇 and 𝜈 are the parts containing 𝑢 and 𝑣, respectively, and 𝑂𝜇𝜈

Δ
(𝑎𝑥 , 𝑎𝑦) is the fraction

of indices 𝑗 such that 𝑎𝜇
𝑗
= 𝑎𝑥 while 𝑎𝜈

𝑗
= 𝑎𝑦. By definition of Δ in section 4.2, and with

the help of fig. 4.2.3, we can write these fractions as

𝑂
𝜇𝜈

Δ
(𝑎ℎ, 𝑎ℎ) =


1
𝐿
[ℓ𝑐 +2Δ] : 𝜇 = 𝜈 ,

1
𝐿
[max (0, (2− 𝜈)ℓ𝑐 +2Δ) +max (0, 𝜈ℓ𝑐 − 𝐿 +2Δ)] : 𝜇 = 1 ≠ 𝜈 ,

𝑂
𝜇𝜈

Δ
(𝑎𝑙 , 𝑎𝑙) =


1
𝐿
[𝐿− ℓ𝑐 −2Δ] : 𝜇 = 𝜈 ,

1
𝐿
[max (0, (𝜈−2)ℓ𝑐 −2Δ) +max (0, 𝐿− 𝜈ℓ𝑐 −2Δ)] : 𝜇 = 1 ≠ 𝜈 ,

𝑂
𝜇𝜈

Δ
(𝑎ℎ, 𝑎𝑙) =𝑂𝜇

Δ
(𝑎𝑙 , 𝑎ℎ) =

1
2

(
1−𝑂𝜇

Δ
(𝑎ℎ, 𝑎ℎ) −𝑂𝜇

Δ
(𝑎𝑙 , 𝑎𝑙)

)
. (4.52)

Notice that the definition of the 𝑓Δ’s is consistent with eq. (4.49) because𝑂𝜇𝜈

Δmax
(𝑎ℎ, 𝑎ℎ) = 1.

Under the assumptions of eq. (4.51), the fraction in eq. (4.47) can be written as

P
{
𝜉𝑣
𝑗
≠ 𝜉 𝑡

𝑗

}
P {𝑑𝑢 = 𝑦} =

𝑓 𝑡𝑣
Δ(𝐿

𝑦

) (
𝑓 𝑡𝑢
Δ

) 𝑦 (
1− 𝑓 𝑡𝑢

Δ

)𝐿−𝑦 , (4.53)

using the expression for the binomial PMF in eq. (4.28).
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To calculate the conditional probability P
{
𝑑𝑢 = 𝑦

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 } in eq. (4.47), we can use
the fact that bits are independent, and consider the pattern-distance 𝑑𝑢( 𝑗) of 𝑢 that disregards
bit 𝑗 . This allows us to split the event {𝑑𝑢 = 𝑦} into the cases where 𝜉𝑢

𝑗
= 𝜉 𝑡

𝑗
and 𝜉𝑢

𝑗
≠ 𝜉 𝑡

𝑗
,

respectively:

P
{
𝑑𝑢 = 𝑦

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 } =P {𝑑𝑢( 𝑗) = 𝑦, 𝜉𝑢𝑗 = 𝜉 𝑡𝑗 ���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 }
+P

{
𝑑𝑢( 𝑗) = 𝑦−1, 𝜉𝑢𝑗 ≠ 𝜉

𝑡
𝑗

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 }
=P

{
𝑑𝑢( 𝑗) = 𝑦

}
P
{
𝜉𝑢𝑗 = 𝜉

𝑡
𝑗

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 }
+P

{
𝑑𝑢( 𝑗) = 𝑦−1

}
P
{
𝜉𝑢𝑗 ≠ 𝜉

𝑡
𝑗

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 } . (4.54)

In this expression, the marginal probabilities of 𝑑𝑢( 𝑗) are given by the binomial PMF,

eq. (4.28), with 𝑛 replaced by 𝐿 −1 and 𝑝 = 𝑓 𝑡𝑢
Δ

, whereas
{
𝜉𝑢
𝑗
≠ 𝜉 𝑡

𝑗

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 } is the same

event as
{
𝜉𝑢
𝑗
= 𝜉𝑣

𝑗

���𝜉𝑣𝑗 ≠ 𝜉 𝑡𝑗 }, which has probability 1− 𝑓 𝑢𝑣
Δ

. We can now combine the
eqs. (4.53) and (4.54) into eq. (4.47) to obtain

P
{
𝜉𝑣𝑗 ≠ 𝜉

𝑡
𝑗

���𝑑𝑢 = 𝑦} = (1− 𝑓 𝑢𝑣Δ ) 𝑓 𝑡𝑣
Δ

𝑓 𝑡𝑢
Δ

(𝐿−1
𝑦−1

)(𝐿
𝑦

) +
𝑓 𝑢𝑣
Δ
𝑓 𝑡𝑣
Δ

(1− 𝑓 𝑡𝑢
Δ
)

(𝐿−1
𝑦

)(𝐿
𝑦

)
=
(1− 𝑓 𝑢𝑣

Δ
) 𝑓 𝑡𝑣

Δ
𝑦

𝑓 𝑡𝑢
Δ
𝐿

+
𝑓 𝑢𝑣
Δ
𝑓 𝑡𝑣
Δ
(𝐿− 𝑦)

(1− 𝑓 𝑡𝑢
Δ
)𝐿 . (4.55)

Due to the assumption of eq. (4.51), this expression is independent of 𝑗 , which implies
that 𝑑𝑣 | 𝑑𝑢 is a binomial random variable as well, with “success” probability as in eq. (4.55),
and 𝐿 trials. Therefore, we can calculate the conditional expectation

⟨𝑑𝑣 | 𝑑𝑢⟩ = 𝑑𝑢
( (1− 𝑓 𝑢𝑣

Δ
) 𝑓 𝑡𝑣

Δ

𝑓 𝑡𝑢
Δ

−
𝑓 𝑢𝑣
Δ
𝑓 𝑡𝑣
Δ

(1− 𝑓 𝑡𝑢
Δ
)

)
+

𝑓 𝑢𝑣
Δ
𝑓 𝑡𝑣
Δ

(1− 𝑓 𝑡𝑢
Δ
) 𝐿 . (4.56)

To finish this calculation, we have to find the 𝑔’s defined in eq. (4.50), which will determine
the probabilities 𝑓 𝑢

Δ
, 𝑓 𝑣

Δ
and 𝑓 𝑢𝑣

Δ
by their definition in eq. (4.51). For this, the label-notation

introduced in appendix 4.B will be useful.
We consider a pattern 𝜉𝜉𝜉𝑢 at some node 𝑢 in Part 𝜇, and a path 𝑃 ∼ (𝑘, 𝑙,𝑚,𝑛;𝜈) starting

from 𝑢 and ending in 𝑣. The transition probability from the 𝑗-th bit of pattern 𝜉𝜉𝜉𝑢 to the
𝑗-th bit of the pattern at the end of the path 𝑃 is given by

𝑄𝑄𝑄𝑃
𝑗 :=

(
𝑄𝑄𝑄

↑𝜇
𝑗

) 𝑘 (
𝑅𝑅𝑅
↑𝜇
𝑗

) 𝑙 (
𝑅𝑅𝑅𝜈𝑗

)𝑚 (
𝑄𝑄𝑄𝜈
𝑗

)𝑛
. (4.57)
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The 𝑄𝑄𝑄’s are as defined in eq. (4.16), with powers as in eq. (4.40). The matrix 𝑅𝑅𝑅𝜈𝑗 is defined
as in eq. (4.8) depending only on the Part-index of the label 𝑃, and that only if Δ < Δmax; if
Δ = Δmax, the 𝑅𝑅𝑅𝜈𝑗 are equal for all 𝑗 and 𝜈. Moreover, 𝑅𝑅𝑅↑ is the family of transition matrices
comprised by elements 𝑅𝑅𝑅↑𝜇

𝑗
(𝜉 𝑗 |𝜉𝜇𝑗 ) = 𝑃

𝜇

𝑗
(𝜉 𝑗 |𝜉𝜇𝑗 ) for 𝜉𝜇

𝑗
, 𝜉 𝑗 ∈ {0,1}, which are given by

Bayes’ rule, eq. (4.46). Consequently, the elements of 𝑅𝑅𝑅↑𝜇
𝑗

read

𝑅𝑅𝑅
↑𝜇
𝑗
=

©­«
1−𝑎

1−𝑎𝜇
𝑗

(1−Γ′) 1− 1−𝑎
1−𝑎𝜇

𝑗

(1−Γ′)
(1−𝑎)Γ′

𝑎
𝜇

𝑗

1− (1−𝑎)Γ′

𝑎
𝜇

𝑗

ª®¬ . (4.58)

Similarly,
(
𝑄𝑄𝑄

↑𝜇
𝑗

) 𝑘
is the matrix with elements 𝑃𝑣

𝑗
(𝜉𝜇
𝑗
|𝜉𝑣
𝑗
) for 𝜉𝑣

𝑗
, 𝜉
𝜇

𝑗
∈ {0,1} . However, due

to our stipulation that 𝑎𝑣
𝑗

depend only on the Part 𝜇 in which 𝑣 is located (see eq. (4.15)), a

quick calculation reveals that 𝑄𝑄𝑄↑𝜇
𝑗
=𝑄𝑄𝑄

𝜇

𝑗
. Thus, the probabilities 𝑔𝑃 (𝑎𝜇

𝑗
, 𝑎𝜈

𝑗
) = P

{
𝜉𝑢
𝑗
≠ 𝜉𝑣

𝑗

}
are given by

𝑔(𝑘,𝑙,𝑚,𝑛;𝜈) (𝑎𝜇
𝑗
, 𝑎𝜈𝑗 ) := 𝑔𝑢𝑣 (𝑎𝜇

𝑗
, 𝑎𝜈𝑗 ) = 𝑎

𝜇

𝑗
𝑄

(𝑘,𝑙,𝑚,𝑛;𝜈)
𝑗

(0|1) + (1− 𝑎𝜇
𝑗
)𝑄 (𝑘,𝑙,𝑚,𝑛;𝜈)

𝑗
(1|0) , (4.59)

where the dependence on 𝑎𝜈
𝑗

is implicit in 𝑄𝑄𝑄𝜈
𝑗 . In the following paragraph, we report the

relevant values for 𝑔 by explicitly expanding eq. (4.59) in terms of the matrix elements
given in eqs. (4.8), (4.58) and (4.40).

There are essentially five different cases to consider for eq. (4.59), each one correspond-
ing to 𝑃 being one of the paths (𝑘,0,0,0;1), (𝑘,1,0,0;1), (𝑘,1,1,𝑚;𝜈), (0,0,1,𝑚;𝜈) or
(0,0,0,𝑚;𝜈). By direct calculation starting from eq. (4.59), we find the probabilities

𝑔(𝑘,0,0,0;1) (𝑥, 𝑦) = 2𝑥(1− 𝑥)
[
1− (1−Γ)𝑘

]
,

𝑔(𝑘,1,0,0;1) (𝑥, 𝑦) = 𝑎 + 𝑥−2𝑎𝑥 +2(1− 𝑎) (1−Γ)𝑘 (Γ′− 𝑥) ,

𝑔(𝑘,1,1,𝑚;𝜈) (𝑥, 𝑦) = 2
𝑎
(1−Γ)𝑘+𝑚 [(1− 𝑎)Γ′ (𝑥 + 𝑦−Γ′) − 𝑥𝑦] + 𝑥 + 𝑦−2𝑥𝑦(1− (1−Γ)𝑘+𝑚) ,

𝑔(0,0,1,𝑚;𝜈) (𝑥, 𝑦) = 2𝑎(1− 𝑎) +2(1− 𝑎) (1−Γ)𝑚 [Γ′− 𝑎] ,
𝑔(0,0,0,𝑚;𝜈) (𝑥, 𝑦) = 2𝑦(1− 𝑦) [1− (1−Γ)𝑚] . (4.60)

The results presented in this appendix are the probabilistic building blocks required to
calculate the elements of the expected transition matrix ⟨q⟩, needed in section 4.4. This
calculation is shown in the next appendix 4.D.
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Appendix 4.D Local weights in the mean transition ma-
trix

This appendix combines the results of the previous appendices 4.B and 4.C to find approxi-
mate expressions for the elements of ⟨q⟩, which are needed to derive the main result of
section 4.4, eq. (4.23).

In what follows, we will use again the convention to enumerate the Parts of the tree in
such a way that 𝑡 is a node descending from Part 1, which we call the target-Part. Also,
given a node 𝑣, we will say that the neighbour closest (in terms of edge-distance) to 𝑡 lies in
the target-wards neighbourhood of 𝑣, and the neighbour closest to 𝑟 lies in the root-wards

neighbourhood of 𝑣. The remaining – non-target – Parts can be enumerated in any order.

v

v1

t
v2

vc

. . .

vc+1

qvv1

qvv2

qvvc

qvvc+1

Fig. 4.D.1 Neighbourhood of the node 𝑣, separated into target-ward, root-ward and all other
neighbours. The 𝑞’s denote weights of edges pointing away from 𝑣. If 𝑣 is the root, then there is no
root-ward neighbour 𝑣𝑐+1, and if 𝑣 is a leaf, there is only the neighbour 𝑣𝑐+1.

The derivation in this appendix is based on the observation that every node except 𝑡
has exactly one target-wards neighbour, enumerated as 𝑣1, with corresponding edge weight
𝑞𝑣𝑣1 . We will denote the other neighbours of 𝑣 by 𝑣𝑖 with corresponding edge weights 𝑞𝑣𝑣𝑖
for 𝑖 > 1, as depicted in fig. 4.D.1. By convention, if the root-wards node is different from
𝑣1, then 𝑣𝑐+1 denotes that root-wards neighbour. Our model definitions suggest that 𝑞𝑣𝑣1
should on average exceed the other edge weights associated to 𝑣. However, evaluating〈
𝑞𝑣𝑣𝑖

〉
is a complicated task due to the fact that it involves the pattern-distances of all nodes

of the neighbourhood to normalise the 𝑞𝑣𝑣𝑖 ’s (see eqs. (4.3) and (4.2)). It is, thus, more
convenient to calculate the ratios of such 𝑞’s,〈

𝑞𝑣𝑣1

𝑞𝑣𝑣𝑖

〉
=: 𝜀𝑖 . (4.61)
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This can be done by temporarily assuming that the pattern-distance 𝑑𝑣1 = 𝑑 (𝜉𝜉𝜉𝑣1 , 𝜉𝜉𝜉 𝑡) of the
target-wards neighbour is given. Then, we can first calculate the conditional expectations〈

𝑞𝑣𝑣1

𝑞𝑣𝑣𝑖

����𝑑𝑣1〉 = 〈
𝑑𝑣𝑖 +1
𝑑𝑣1 +1

����𝑑𝑣1〉 = ⟨𝑑𝑣𝑖 +1 | 𝑑𝑣1⟩ 1
𝑑𝑣1 +1

. (4.62)

Moreover, under the assumption of eq. (4.51), 𝑑𝑣1 is a binomial random variable with
parameters 𝑝 = 𝑓

𝑡𝑣1
Δ

and 𝑛 = 𝐿 in the notation of eq. (4.28). Hence, the expectation of
[𝑑𝑣1 +1]−1 is known to be [113]

〈
1

𝑑𝑣1 +1

〉
=

1−
(
1− 𝑓 𝑡𝑣1

Δ

)𝐿+1

(𝐿 +1) 𝑓 𝑡𝑣1
Δ

. (4.63)

Therefore, we can write
〈
𝑞𝑣𝑣1/𝑞𝑣𝑣𝑖

〉
explicitly by substituting eqs. (4.56), (4.62) and (4.63)

into eq. (4.61)〈
𝑞𝑣𝑣1

𝑞𝑣𝑣𝑖

〉
=
(1− 𝑓 𝑣1𝑣𝑖

Δ
) 𝑓 𝑡𝑣𝑖

Δ

𝑓
𝑡𝑣1
Δ

−
𝑓
𝑣1𝑣𝑖
Δ

𝑓
𝑡𝑣𝑖
Δ

(1− 𝑓 𝑡𝑣1
Δ

)

+
1−

(
1− 𝑓 𝑡𝑣1

Δ

)𝐿+1

(𝐿 +1) 𝑓 𝑡𝑣1
Δ

(
1+

𝑓
𝑣1𝑣𝑖
Δ

𝑓
𝑡𝑣𝑖
Δ

(1− 𝑓 𝑡𝑣1
Δ

)
𝐿−

(1− 𝑓 𝑣1𝑣𝑖
Δ

) 𝑓 𝑡𝑣𝑖
Δ

𝑓
𝑡𝑣1
Δ

+
𝑓
𝑣1𝑣𝑖
Δ

𝑓
𝑡𝑣𝑖
Δ

(1− 𝑓 𝑡𝑣1
Δ

)

)
, (4.64)

where 𝑓 𝑡𝑣1
Δ

and 𝑓
𝑡𝑣𝑖
Δ

are given by the probabilities described in eq. (4.60), in terms of the
paths connecting 𝑣1 and 𝑣𝑖 to 𝑡, respectively. 𝑓 𝑣1𝑣𝑖

Δ
is given by 𝑓 𝑃

Δ
with 𝑃 the labelled path

connecting 𝑣1 to 𝑣𝑖 over 𝑣. In the notation of eq. (4.61), we thus have〈
𝑞𝑣𝑣1

𝑞𝑣𝑣𝑖

〉
= 𝜀𝑖 = 𝜀

(
𝑓
𝑡𝑣1
Δ
, 𝑓

𝑡𝑣𝑖
Δ

)
(4.65)

with

𝜀(𝑥, 𝑦) :=
(
1+ 𝐿𝑦𝑧(𝑥, 𝑦)

1− 𝑥 − 𝑦(1− 𝑧(𝑥, 𝑦))
1− 𝑥 + 𝑦𝑧(𝑥, 𝑦)

1− 𝑥

)
1− (1− 𝑥)𝐿+1

(𝐿 +1)𝑥

+ 𝑦(1− 𝑧(𝑥, 𝑦))
𝑥

− 𝑦𝑧(𝑥, 𝑦)
1− 𝑥 (4.66)

and 𝑧(𝑥, 𝑦) representing the 𝑓Δ for the path connecting 𝑣1 and 𝑣𝑖

𝑧

(
𝑓
𝑡𝑣1
Δ
, 𝑓

𝑡𝑣𝑖
Δ

)
= 𝑓

𝑣1𝑣𝑖
Δ

. (4.67)
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Having derived an expression for the ratios 𝜀𝑖 = ⟨𝑞𝑣𝑣1/𝑞𝑣𝑣𝑖⟩, we now use these to
compute the averages ⟨𝑞𝑣𝑣𝑖⟩ that we were originally interested in, by venturing the approxi-
mation 〈

𝑞𝑣𝑣1
〉
=

〈
𝑞𝑣𝑣1

𝑞𝑣𝑣𝑖
𝑞𝑣𝑣𝑖

〉
≈

〈
𝑞𝑣𝑣𝑖

〉
𝜀𝑖 (4.68)

for all 𝑖 > 1 in the neighbourhood of 𝑣 (see fig. 4.D.1). Now all expected weights
〈
𝑞𝑣𝑣𝑖

〉
in

the neighbourhood of 𝑣 are approximately determined by the system of equations〈
𝑞𝑣𝑣1

〉
− 𝜀𝑖

〈
𝑞𝑣𝑣𝑖

〉
= 0 (∀𝑖 > 1) ,∑︁

𝑖≥1

〈
𝑞𝑣𝑣𝑖

〉
= 1 . (4.69)

The unique solution of this linear system is given by〈
𝑞𝑣𝑣1

〉
=

1
𝑍

∏
𝑖>1

𝜀𝑖 ,〈
𝑞𝑣𝑣𝑖

〉
=

1
𝑍

∏
𝑗>1; 𝑗≠𝑖

𝜀 𝑗 (𝑖 > 1) , (4.70)

with 𝑍 being the normalising constant.
Important specialisations of this formula are those for which (i) all 𝑓 𝑡𝑣𝑖 ’s and 𝑓 𝑣𝑖𝑣1’s for

𝑖 > 1 are equal, i.e. when all 𝑣𝑖 (𝑖 > 1) have the same path label 𝑃𝑖 relative to the target,
and (ii) all 𝑣𝑖’s for (1 < 𝑖 < 𝑐 +1) are labelled by the same 𝑃𝑖, but 𝑣𝑐+1 = 𝑟, which has its
own unique label. Case (i) applies unless 𝑣 is the root or the Part level node 𝜇 = 1. Case
(ii) applies if 𝑣 is the Part node 𝜇 = 1.

In the first case, all
〈
𝑞𝑣𝑣𝑖

〉
’s and 𝜀𝑖’s for 𝑖 > 1 have to be equal, which produces〈

𝑞𝑣𝑣1
〉
≈ 𝜀𝑖

𝑐+ 𝜀𝑖
,〈

𝑞𝑣𝑣𝑖
〉
≈ 1
𝑐+ 𝜀𝑖

. (4.71)

In the second case, we have to distinguish
〈
𝑞𝑣𝑣𝑖

〉
for 1 < 𝑖 < 𝑐 + 1 and

〈
𝑞𝑣𝑣𝑐+1

〉
with the

result 〈
𝑞𝑣𝑣1

〉
≈ 𝜀𝑖𝜀𝑐+1

(𝑐−1)𝜀𝑐+1 + 𝜀𝑖 + 𝜀𝑖𝜀𝑐+1
,〈

𝑞𝑣𝑣𝑖
〉
≈ 𝜀𝑐+1

(𝑐−1)𝜀𝑐+1 + 𝜀𝑖 + 𝜀𝑖𝜀𝑐+1
,〈

𝑞𝑣𝑣𝑐+1

〉
≈ 𝜀𝑖

(𝑐−1)𝜀𝑐+1 + 𝜀𝑖 + 𝜀𝑖𝜀𝑐+1
. (4.72)
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Appendix 4.E MFPT from mean transition matrix

This appendix combines the findings of the appendices 4.B, 4.C and 4.D with eq. (2.18) to
state the main result of section 4.4 in eq. (4.23).

As laid out in the previous appendices, we can approximately calculate the elements
of the transition matrix, averaged over realisations of patterns. The symmetries of this
approximate matrix allow us to employ a relatively simple combinatorial argument for
eq. (2.18), where the 𝑣𝐼’s are the nodes of the path (ℎ− 1,1,0,0;1) from 𝑡 to 𝑟, though
enumerated in reverse order, 𝑟 = 𝑣0, . . . , 𝑡 = 𝑣ℎ. In fact, we can express the fractions Π𝐽/𝜋𝑣𝐽
in terms of sums of fractions of 𝜀’s as described in the following paragraphs.

In section 2.3, we introduced the notation {𝔱→ 𝑢} for the set of all directed spanning
trees rooted in 𝑢. For an exact tree, there is exactly one such tree for every 𝑢, which we
denote 𝔱𝑢. Further dividing the tree into clusters (cf. fig. 2.3), let us label the nodes within
a given cluster 𝐽 as 𝑣𝐽𝑖, with 0 ≤ 𝑖 ≤ |𝐽 | and |𝐽 | being the size of cluster 𝐽. By convention,
the index 𝑖 = 0 is reserved for the node of 𝐽 connecting 𝐽 to the path (ℎ−1,1,0,0;1), i.e.
𝑣𝐽0 = 𝑣𝐽 . For any node 𝑣𝐽𝑖 ∈ 𝐽, the set 𝔱𝑣𝐽𝑖 differs from 𝔱𝑣𝐽 only by the direction of the edges
between 𝑣𝐽 and 𝑣𝐽𝑖. For instance, let 𝐽 > 1; if 𝑣𝐽𝑖 is an immediate descendant of 𝑣𝐽 , then
the edge-distance between 𝑡 and 𝑣𝐽 is ℎ− 𝐽, and

𝜋𝑣𝐽𝑖

𝜋𝑣𝐽
=

𝑐+ 𝜀
(
𝑓
(ℎ−𝐽,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+2,0,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−𝐽,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+2,0,0,0;1)
Δ

) [
𝑐+ 𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

)] , (4.73)

using eq. (4.71) and 𝜀 defined as in eq. (4.66). We also utilised that in this instance, the
shortest paths from 𝑡 to 𝑣𝐽 and 𝑣𝐽𝑖 have the form (ℎ− 𝐽,0,0,0;1) and (ℎ− 𝐽 +1,0,0,0;1),
respectively.

In Π𝐽/𝜋𝑣𝐽 , this term appears as a summand 𝑐 − 1 times, because 𝑣𝐽 has that many
immediate descendants that are not on the path to the target, i.e. that have label (ℎ− 𝐽 +
1,0,0,0;1). Repeating this analysis for all ℎ− 𝐽 lower levels of the cluster 𝐽 (where there
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are now 𝑐 immediate descendants to each node that is not a leaf), we find the expression

Π𝐽

𝜋𝑣𝐽
=1+ 𝑐−1

𝑐+ 𝜀
(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

)
×


ℎ−𝐽−1∑︁
ℓ=1

𝑐ℓ−1
𝑐+ 𝜀

(
𝑓
(ℎ−𝐽−1+ℓ,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1+ℓ,0,0,0;1)
Δ

)
∏ℓ
𝑘=1 𝜀

(
𝑓
(ℎ−𝐽−1+𝑘,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1+𝑘,0,0,0;1)
Δ

)
+ 𝑐ℎ−𝐽−1∏ℎ−𝐽−1

𝑘=1 𝜀

(
𝑓
(ℎ−𝐽−1+𝑘,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1+𝑘,0,0,0;1)
Δ

)  . (4.74)

The last summand within the brackets arises from the fact that all leaves have only one
outgoing edge.

If 𝐽 = 1, then the mean edge weights at 𝑣𝐽 are given by eq. (4.72), whereas lower edges
inside the cluster still follow eq. (4.71),

Π1
𝜋𝑣1

= 1

+
(𝑐−1)𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝑑1

×

ℎ−2∑︁
ℓ=1

𝑐ℓ−1
𝑐+ 𝜀

(
𝑓
(ℎ−2+ℓ,0,0,0;1)
Δ

, 𝑓
(ℎ+ℓ,0,0,0;1)
Δ

)
∏ℓ
𝑘=1 𝜀

(
𝑓
(ℎ−2+𝑘,0,0,0;1)
Δ

, 𝑓
(ℎ+𝑘,0,0,0;1)
Δ

)
+ 𝑐ℎ−2∏ℎ−2

𝑘=1 𝜀
(
𝑓
(ℎ−2+𝑘,0,0,0;1)
Δ

, 𝑓
(ℎ+𝑘,0,0,0;1)
Δ

)  , (4.75)

with the denominator

𝑑1 =(𝑐−1)𝜀
(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
+ 𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

)
+ 𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

)
. (4.76)
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Finally, for 𝐽 = 0, we have 𝑣0 = 𝑟, which brings us back to eq. (4.70) for the edges
connecting to 𝑣 𝑗 = 𝑟. This observation leads us to

Π0
𝜋𝑣0

= 1

+ 1∏𝑐
𝜇=2 𝜀

(
𝑓
(ℎ−1,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜇)
Δ

)
+∑𝑐

𝜇=2
∏𝑐
𝜈=2;𝜈≠𝜇 𝜀

(
𝑓
(ℎ−1,0,0,0)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜈)
Δ

)
×

𝑐∑︁
𝜇=2

𝑐∏
𝜈=2;𝜈≠𝜇

𝜀

(
𝑓
(ℎ−1,0,0,0)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜈)
Δ

) 
𝑐+ 𝜀

(
𝑓
(ℎ−1,1,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,1;𝜇)
Δ

)
𝜀

(
𝑓
(ℎ−1,1,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,1;𝜇)
Δ

)
+

𝑐+ 𝜀
(
𝑓
(ℎ−1,1,1,0;𝜇)
Δ

, 𝑓
(ℎ−1,1,1,2;𝜇)
Δ

)
𝜀

(
𝑓
(ℎ−1,1,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,1;𝜇)
Δ

)
𝜀

(
𝑓
(ℎ−1,1,1,0;𝜇)
Δ

, 𝑓
(ℎ−1,1,1,2;𝜇)
Δ

)
+
ℎ−1∑︁
ℓ=3

𝑐ℓ−1
𝑐+ 𝜀

(
𝑓
(ℎ−1,1,1,𝑙−2;𝜇)
Δ

, 𝑓
(ℎ−1,1,1,𝑙;𝜇)
Δ

)
𝑑
𝜇

0,ℓ
+ 𝑐ℎ−1

𝑑
𝜇

0,ℎ−1

 (4.77)

with the denominator terms

𝑑
𝜇

0,ℓ =𝜀
(
𝑓
(ℎ−1,1,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,1;𝜇)
Δ

)
𝜀

(
𝑓
(ℎ−1,1,1,0;𝜇)
Δ

, 𝑓
(ℎ−1,1,1,2;𝜇)
Δ

)
×

ℓ∏
𝑘=3

𝜀

(
𝑓
(ℎ−1,1,1,𝑘−2;𝜇)
Δ

, 𝑓
(ℎ−1,1,1,𝑘;𝜇)
Δ

)
. (4.78)

For eq. (2.18), we need to combine these expression with appropriate path weights
connecting the clusters. More precisely, we need the fractions〈

𝑞𝑣𝐼−1𝑣𝐼−2

〉
. . .

〈
𝑞𝑣𝐾+1𝑣𝐾

〉〈
𝑞𝑣𝐾 ,𝑣𝐾+1

〉
. . .

〈
𝑞𝑣𝐼−1𝑣𝐼

〉 =

〈
𝑞𝑣𝐼−1𝑣𝐼−2

〉〈
𝑞𝑣𝐼−1𝑣𝐼

〉 〈
𝑞𝑣𝐼−2𝑣𝐼−3

〉〈
𝑞𝑣𝐼−2𝑣𝐼−1

〉 · · · 〈
𝑞𝑣𝐾+1𝑣𝐾

〉〈
𝑞𝑣𝐾+1𝑣𝐾+2

〉 1〈
𝑞𝑣𝐾 𝑣𝐾+1

〉 . (4.79)

If 𝐾 > 1 this fraction can be written as〈
𝑞𝑣𝐼−1𝑣𝐼−2

〉
. . .

〈
𝑞𝑣𝐾+1𝑣𝐾

〉〈
𝑞𝑣𝐾 ,𝑣𝐾+1

〉
. . .

〈
𝑞𝑣𝐼−1𝑣𝐼

〉 =

[
𝑐+ 𝜀

(
𝑓
(ℎ−𝐾−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐾+1,0,0,0;1)
Δ

)]
×
𝐼−1∏
𝐽=𝐾

1

𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

) . (4.80)
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Due to the distinct form of the weights close to 𝑟, the same fractions for 𝐾 = 1 and 𝐾 = 0
take the form〈

𝑞𝑣𝐼−1𝑣𝐼−2

〉
. . .

〈
𝑞𝑣2𝑣1

〉〈
𝑞𝑣1,𝑣2

〉
. . .

〈
𝑞𝑣𝐼−1𝑣𝐼

〉 =

1

𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

) (4.81)

×
(
(𝑐−1)𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
+ 𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

)
+ 𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,0,0;1)
Δ

)
𝜀

(
𝑓
(ℎ−2,0,0,0;1)
Δ

, 𝑓
(ℎ,0,0,0;1)
Δ

))
×
𝐼−1∏
𝐽=2

1

𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

) (4.82)

and〈
𝑞𝑣𝐼−1𝑣𝐼−2

〉
. . .

〈
𝑞𝑣1𝑣0
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. . .
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Δ

)
𝜀
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𝜀

(
𝑓
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(ℎ,0,0,0;1)
Δ

) ∏𝑐
𝜇=2 𝜀

(
𝑓
(ℎ−1,0,0,0;1)
Δ

, 𝑓
(ℎ−1,1,1,0;𝜇)
Δ

)
×
𝐼−1∏
𝐽=2
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𝜀

(
𝑓
(ℎ−𝐽−1,0,0,0;1)
Δ

, 𝑓
(ℎ−𝐽+1,0,0,0;1)
Δ

) , (4.83)

respectively. Combining these expressions in the manner of eq. (2.18) produces the
function 𝐶MF shown in section 4.4.
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Chapter 5

A step-by-step guide to estimating the
complexity of a given Act of Parliament

The previous chapter developed a theoretical idea of complexity for Acts of Parliament
based on some of their textual parameters. In this chapter, we demonstrate how one may
practically estimate the complexity of a given Act employing the results of chapter 4.
During the presentation we occasionally refer to code-snippets assembled in a Jupyter-
notebook that is available in the supplementary material (see also appendix B) to this thesis
and to download. All codes - including the pattern_walker modules - are available
on the author’s github page https://github.com/YPFoerster/pattern_walker. The reader is
invited to play and experiment with the provided material.

Section 5.1 shows one of many ways of vectorising an Act of Parliament, i.e. to
translate its text Items into keyword patterns. In section 5.2, we estimate the parameters of
the random reader model from the vectorised Act. In section 5.3, we feed these pieces of
information - either the patterns or the parameters - into the relevant Python classes which
implement the complexity functions defined in chapter 4. The chapter is summarised in
section 5.4, and appendix 5.A contains a brief error calculation pertaining to section 5.2.

5.1 Retrieving and vectorising the Act

The provided notebook retrieves a version of the Housing Act 2004 (parsed into JSON)
from Graphie [115, 116] in a nested JSON-file. The nesting defines a hierarchy which
is shown in as a tree in fig. 5.1.1. Some preprocessing follows in order to strip the text
of stopwords (words not conveying any information on their own, e.g. “to”), special
characters, punctuation marks and grammatical inflection [117, 118]. Within the module
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Fig. 5.1.1 Tree representation of the Housing Act 2004 [114]. Nodes marked in red are the root
(“Housing Act”) and an arbitrarily chosen target node, here Part 7, Section 239, Paragraph 10.

utils, one can see that we added a few custom stopwords such as “act”, “provision” or
“section”, as we do not expect these to contribute to the semantic content either.

We are left with a corpus in which every document consists of so-called lemmas.
Lemmatisation is required to allow for a sensible computer-based analysis, as otherwise
two inflected versions of the same word or stem (say, “house” and “houses”) would be
classified as different although presumably, they should be understood as a single concept
[117].

Having preprocessed the texts, the next task is to identify the important keywords that
define our glossary. Below we focus on only one methods of doing so. The algorithm
produces a vocabulary ranked by some measure of importance. The number of top-ranked
words we decide to use for our glossary implicitly defines our first model parameter, the
pattern length 𝐿. Given the glossary, it is then a straightforward task to vectorise the
documents, i.e. to replace the texts by patterns.

Since we have some a priori information about the topology of the corpus, we use
that knowledge to estimate the overlap between the different Parts. We do so by obtaining
separate glossaries for each Part first; the overlap of these glossaries determines the
overlap between the Parts (note that different Parts may overlap by different amounts,
contrary to our simple model in chapter 4). Our full vocabulary is then the union of the
Part-vocabularies.

Automated keyword extraction methods have been enjoying active research throughout
recent years. Consequently, a variety of specialised methods exist, discussion of which is
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5.1 Retrieving and vectorising the Act

beyond the scope of the present chapter. We choose one method specifically, as it is based
on intuitive statistics of term occurrences within and across documents. The outcome of
the analysis will to an extent depend on the method used to extract keywords. However,
these methods usually are tested on keyword annotated texts (cf. [120]), such that “high
ranking” methods should produce almost identical results.

5.1.1 Term frequency statistics

In information retrieval, term frequency, inverse document frequency (tf-idf) is a statistic
that assigns importance to terms (words or sequences of words, up to a given length) in
a corpus. Its rationale is that important terms should appear often in certain documents,
while terms appearing in many documents will be less important. The tf-idf of a given
term 𝑡 in a document 𝑑 is the product tf(𝑡, 𝑑) · idf(𝑡). tf(𝑡) is the proportional count of 𝑡
among all terms in 𝑑. idf(𝑡) is the logarithm of the inverse relative number of documents
containing 𝑡 [117]. The implementation we use in our Jupyter notebook looks for 𝑛-grams,
i.e. sequences of words of length 𝑛; the minimal and maximal length of 𝑛-grams considered
are parameters to be specified. We choose to include 𝑛-grams of lengths up to and including
four in the example provided in the supplementary material.

To actually build the glossary and vectorise the text, we take the 100 terms with the
highest tf-idf values from each Part; these are the terms specific to the Part from which
they have been taken. The union of these sets represents the total glossary. Some of the
terms might appear multiple times, as they are extracted from separate Parts independently.
Consequently, the total glossary is shorter than the number of Parts multiplied by 100.
This is an expression of the overlap between the Parts. In order to vectorise a text item, we
associate with it a 0-1-vector: the 𝑖-th component of that vector simply records if the 𝑖-th
word of the glossary appears in that piece of text (1) or not (0).

The top-five terms of each Part-vocabulary obtained via tf-idf are shown in tab. 5.1.1.
Part 5 sticks out in that the algorithm finds substantially fewer key terms than in the other
Parts. Moreover, from the table we can see that three of the five top key-terms overlap
in two or three words. In fact, upon inspection we find that Part 5 has been repealed in
2011 such that the online version shows only the headlines and no contents [114, 119].
Arguably, the extracted key-terms don’t necessarily invoke associations to any clear-cut
topics. We refer to [38], which remarks that legal texts may suffer from “natural language
obsession” (among other problematic textual patterns), which can pose a challenge to
data extraction. This is an issue that may be alleviated using pattern-detection methods
and a better keyword extraction algorithm. For reviews of state-of-the-art methods, see
[120, 118].
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Table 5.1.1 The five top-ranked terms (𝑛-grams with 𝑛 up to four) of each Part, obtained by applying
tf-idf to the Parts separately.

Part terms
1 prepare, premise landlord common, tenant premise landlord, purpose operation

relate, order possible soon
2 authority publish, contract circumstance, deal application licence granting, appli-

cation licence granting refusal, approval give relation description
3 include welfare, authority time time review, housing offence england, account

follow, date specify authority
4 let breach banning order, come force order precede, remain, agreement instrument

effect interim, recover virtue remain
5 supplementary, act estate agent, duty person act estate, person act estate agent,

home information pack
6 c. security tenure, amendment effect month, discount apply take, repayment

discount apply, require result notice give
7 group prescribe relationship, wale order connection, commit consent connivance,

occupier premise, consent connivance attributable

We can now compute the pattern-distance between all neighbours in the tree. The
resulting histogram is shown in fig. 5.1.2, which we compare to the frequencies predicted
by a binomial distribution. For the sake of transparency, we point out that the extent to
which the histogram agrees with a binomial distribution starkly depends on the parameters
of the tf-idf procedure.

The steps above fix our values for 𝐿 and the Part overlaps, and all documents are now
vectorised. As such, the corpus is now intelligible for our random reader from chapter 4,
allowing us to assign an value of complexity to the Act. For comparison with an ensemble
of Acts with the same layout and textural parameters, we compute 𝐶MF as well. To this
end, we must estimate our model parameters first.

5.2 Estimating the parameters of the model

In this section, we use our knowledge about the model in chapter 4 to derive estimates for
the relevant parameters. The order in which we do so (and thus introduce dependencies
among them) is visualised in fig. 5.2.1, and the results of this process are summarised
in tab. 5.2.1. We also report standard deviations of our estimators calculated via error
propagation. The latter is briefly summarised in the appendix 5.A.

Some of the parameters, 𝐿,Δ, we have by virtue of the above vectorisation; 𝐿 is the
length of the merged vocabulary and Δ is the number of topic-specific keywords shared
by two Parts. The latter will, in general, depend on the Parts compared, so we adopt an
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Fig. 5.1.2 Histogram of pattern-distances between neighbouring nodes of the tree, taking only the
𝑛 = 550 non-specific keywords for each Part into account. Blue crosses show frequencies predicted
by a binomial distribution with the same 𝑛 and 𝑝 estimated from the data.

average procedure – close to the definition of overlap in section 4.2 – for simplicity: In the
absence of overlap, each Part has 𝐿/𝑐 topic-specific keywords, where 𝑐 is the number of
Parts. We estimate Δ as the excess of specific keywords over 𝐿/𝑐, i.e. Δ̂ = 𝐿ℎ − 𝐿

𝑐
, where

𝐿ℎ is the number of specific keywords of a given Part (by the setup above, 𝐿ℎ = 100).
The parameters 𝑎ℎ and 𝑎𝑙 , given in eq. (4.9) are marginal probabilities of keyword

occurrence, depending on whether the word in question appertains to the topic of the
current Part or to a different Part. Let 𝑎𝑣

ℎ
be the fraction of Part-specific keywords present

in the text at 𝑣, then the Maximum Likelihood Estimator (MLE) 𝑎̂ℎ of 𝑎ℎ is the average
of the 𝑎𝑣

ℎ
over all nodes 𝑣 in the graph. Similarly, the estimator 𝑎̂𝑙 is computed from the

fraction 𝑎𝑣
𝑙

of non-specific keywords appearing in 𝑣, averaged over all 𝑣,

𝑎𝑙 =
1
𝑛𝐿𝑙

∑︁
𝑣≠root

∑︁
𝑗 ;

E
(
𝜉𝑣
𝑗

)
=𝑎𝑙

𝜉𝑣𝑗 , (5.1)

with the outer sum running over all nodes excluding the root, and the inner sum selecting
the non-specific keyword bits of each pattern. 𝐿𝑙 is the number of such keywords for any
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L̂l, L̂h ∆̂

âl, âh

Γ̂ â

Γ̂′

Fig. 5.2.1 Order or parameter estimation. Arrows indicate dependency, with the “dependent”
parameter at the end of the arrow.

given pattern, which we assume to be a constant. We use the same estimator of 𝑎ℎ with the
obvious replacements.

Subsequently, we can apply eq. (4.43) and the distance-histogram to estimate

Γ̂ =
𝑝 𝑗

2𝑎̂ 𝑗 (1− 𝑎̂ 𝑗 )
, (5.2)

where 𝑗 can be ℎ or 𝑙 and 𝑝 𝑗 is the MLE estimator of the parameter 𝑝 for a binomial
model (see eq. (4.28)) for the distances. If 𝑗 = 𝑙, 𝑝𝑙 is given by the average pattern-distance
between two given neighbours, considering only non-specific keywords, divided by the
number of non-specific keywords. That is,

𝑝𝑙 =
1
𝑡𝐿𝑙

∑︁
𝑢∼𝑣;

𝑢,𝑣≠root

∑︁
𝑗 ;

E
(
𝜉𝑣
𝑗

)
=𝑎𝑙

���𝜉𝑢𝑗 − 𝜉𝑣𝑗 ��� , (5.3)

with the outer sum running over all 𝑡 pairs of neighbours not involving the root. The
analogous procedure yields an estimate for 𝑝ℎ. Since usually there are more generic than
topic-specific keywords, it is advantageous to choose 𝑗 = 𝑙 as that choice provides a larger
sample.

The parameters 𝑎 and Γ′ are problematic because the sample is small (one sample for
the former, seven for the latter). We may often observe the Title vector to have no or only
singular entries1, which would imply that 𝑎 is zero or tiny! However, given eqs. (4.11) and

1In the example presented here, the Title vector indicates two present keywords, the title of the Act is
“Housing Act”.
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(4.12), where we set 𝑎ℎ ≈ (1− 𝑎)Γ′+ 𝑎 and 𝑎𝑙 ≈ (1− 𝑎)Γ′, the spread between 𝑎ℎ and 𝑎𝑙
should approximate 𝑎, thus

𝑎̂ = 𝑎ℎ − 𝑎𝑙 . (5.4)

In eq. (4.11), we introduced a small deviation 𝛽𝑙 to the difference 𝑎ℎ − 𝑎𝑙 . If we had a
reliable way of estimating 𝑎 directly, we could use eq. (5.4) to estimate 𝛽𝑙 instead. In this
chapter, for the sake of simplicity, we set 𝛽𝑙 = 0 a priori.

Next we can, for instance, use eq. (4.8) to derive the estimator

Γ̂′ =
𝑝′
𝑗
− 𝑎̂− 𝑎̂ 𝑗

2(1− 𝑎̂) , (5.5)

for Γ′. Here, 𝑝′
𝑗

is the estimator of the binomial model for the pattern-distances between
root and Part nodes, analogous to 𝑝 𝑗 above. We report the values of all estimatiors in
tab. 5.2.1.

Table 5.2.1 Estimators derived from the Part-wise models using the 100 “most relevant” terms
of each Part, reported to two significant figures of the uncertainty. Uncertainties are standard
deviations calculated in appendix 5.A, using error propagation for 𝑎, Γ and Γ′.

parameter estimated value
𝐿 650
Δ 3.57
𝑝 3.9×10−4 ±1.6×10−7

𝑝′ 2.4×10−4 ±3.4×10−5

𝑎ℎ 1.9×10−3 ±9.0×10−4

𝑎𝑙 1.2×10−3 ±7.2×10−4

𝑎 6.8×10−4 ±1.2×10−3

Γ 1.6×10−1 ±9.2×10−2

Γ′ 4.0×10−4 ±2.7×10−3

5.3 Computing complexities for the instance and the en-
semble

Even before estimating the parameters of the model, we can feed our tree and vectors into
an empiricalPatternWalker, which is essentially a container for the graph and pattern
information, the root and the target node. For the mean-field calculation for the ensemble
of texts with our estimated parameters, we employ the MFPatterWalker_general class,
which accepts the tree and the estimators. As the hierarchy of the Housing Act 2004 is not a
𝑐-ary trees (cf. fig 5.1.1), the simplifications in the appendices of chapter 4 do not apply in
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full. However, since trees are sparse graphs, we can return to eq. (2.7), which can be solved
efficiently using sparse matrices. To this end, we use the function utils.mfpt with key-
word arguments method=’grounded_Laplacian’ and sparse=’True’. Passing the key-
word argument weight_str=’weight’ for the walker using the empirical pattern data, we
obtain 𝐶emp B 𝑚𝑟𝑡 (q) as discussed in section 4.4. Passing weight_str=’mean_weight’

together with the above instance of MFPatterWalker_general, we obtain 𝐶MF as defined
in eq. (4.22).

We can thus compare the actual complexity of the Act to the approximate complexity of
the ensemble and to the complexity of the tree itself by passing the parameters appropriate
to enforce unit edge weights (which makes the walker diffusive). The numerical values for
each are given in tab. 5.3.1 as absolute values and normalised by the size of the tree. For a
more thorough evaluation of the table, it would be best to estimate the distribution of 𝐶 by
sampling repeatedly from the ensemble, which would given an indication of how common
the observed value of 𝐶emp is for the ensemble.

Table 5.3.1 Complexity values for the Housing Act 2004, prepared as in the main text. The different
columns base the calculation on: edge weights based on vectorised text, mean edge weights based
on estimated parameters, and unit edge weights, respectively. The second row shows 𝐶/𝑛 where
𝑛 = 2359 is the number of nodes in the tree.

𝐶emp 𝐶MF 𝐶diff
22220.0 15712.0 22243.0

normalised 9.42 6.66 9.43

The numbers reported in tab. 5.3.1 depend on the target node chosen, but other choices
lead to similar results. Our target is Part 7, Section 239, Paragraph (10) [114]:

A person authorised for the purposes of this section must, if required to do so,

produce his authorisation for inspection by the owner or any occupier of the

premises or anyone acting on his behalf.

Tab. 5.3.1 seems to suggest that for the given target within the Housing Act 2004, the
complexity 𝐶emp is only marginally lower than for completely uninformative text 𝐶diff,
compared to the ensemble average 𝐶MF. However, this result is likely to be a consequence
of the shortcomings of the keyword extraction method described in the previous section.
Moreover, we find that 𝐶MF is very sensitive to varying the estimators reported in tab. 5.2.1
within one standard deviation. The fact that we can show tab. 5.3.1 at all demonstrates
that we can build a full pipeline, taking an Act of Parliament as an input, and returning a
numerical value for its complexity. Yet, for this value to be meaningful, the components of
the pipeline must be optimised to the use case of legal corpora.
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5.4 Conclusions and outlook

This chapter shows an exemplary workflow implementing the results of chapter 4. The
aim of this undertaking is a proof of concept, elucidating the most necessary steps. Our
minimalist setup shows how to prepare the input data from an Act of Parliament given in a
suitably parsed form (this being an undertaking of its own, cf. [115]) and how to interact
with the most important functionalities of the code developed for chapter 4.

We have pointed out some potential improvements throughout the chapter. To sum-
marise, the basic modules – each with its own potential – of the workflow are: preprocessing
the text into tokens (e.g. lemmatisation), creating a glossary taking into account the im-
portance of each keyword for each Part, vectorising all text Items, estimating the model
parameters from chapter 4 and calculating the complexities defined therein based on the
results of the previous steps.

The vision of the present thesis always was that any insight into legal systems obtained
through social physics, may also be useful to improve them. The workflow described above
is a significant step towards designing a tool not only to navigate legal text (a graph-based
open source solution being presented in [115]), but also to support policy makers in the
drafting process. Every element of the workflow used in this chapter is available in the
supplementary material to this thesis, as well as free to be downloaded, modified and
improved upon.

Appendix

Appendix 5.A Error propagation for parameter estimates

Here, we report our calculations producing the uncertainties in tab. 5.2.1, obtained via error
propagation. Error propagation is a standard tool in physics and engineering to estimate
the uncertainty of a function evaluated on a measured value – we refer the reader to [121]
or most introductory texts on physics laboratory courses, measurements and error analysis.
We will make the simplifying assumption that all estimators are independent, from which
follows the well known formula for the variance of a sufficiently differentiable function 𝑓

𝜎2
𝑓 ≈

𝑘∑︁
𝑖=1

(
𝜕 𝑓

𝜕𝑥𝑖
(𝑥̂1 . . . 𝑥̂𝑘 )

)2
𝜎2
𝑖 , (5.6)

evaluated at a number of estimators 𝑥̂1, . . . 𝑥̂𝑘 with variances 𝜎2
1 , . . . ,𝜎

2
𝑘
.
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Our estimate for 𝑎𝑙 (𝑎ℎ) was the the mean “activation” rate within the off-topic (topic-
specific) keywords of a given Part, see eq. (5.1). If in a very rough approximation we
assume that all patterns are independent, it is well known that the variance of this estimator
is given by

𝜎2
𝑎̂ 𝑗
=
𝑎 𝑗 (1− 𝑎 𝑗 )

𝑛
, (5.7)

with 𝑗 being either ℎ or 𝑙. Similarly, we estimated 𝑝𝑙 as the mean of nearest-neighbour
pattern-distances, divided by the number of keywords involved, eq. (5.3). In our model,
pattern-distances between nearest neighbours are indeed independent due to the Markov
property of the pattern mutation process (cf. section 4.2). Therefore, we again have

𝜎2
𝑝𝑙
=
𝑝𝑙 (1− 𝑝𝑙)

𝑡
, (5.8)

in which 𝑡 is the number of neighbour-pairs considered.
By virtue of eqs. (5.2) and (5.6), we obtain for the variance of Γ̂

𝜎2
Γ̂
=

1
4𝑎𝑙2(1− 𝑎𝑙)2

[
𝜎2
𝑝𝑙
+ 𝑝2 (1−2𝑎𝑙)2

𝑎𝑙
2(1− 𝑎𝑙)2

𝜎2
𝑎𝑙

]
. (5.9)

Furthermore, employing eq. (5.4) for the variance of 𝑎̂, we have,

𝜎2
𝑎̂
= 𝜎2

𝑎𝑙
+𝜎2

𝑎ℎ
, (5.10)

and using eq. (5.5) for the variance of Γ̂′

𝜎2
Γ′ =

1
4(1− 𝑎̂)2

[
𝜎2
𝑝′ +𝜎2

𝑎𝑙
+𝜎2

𝑎̂

1
(1− 𝑎̂)2

]
. (5.11)

The uncertainties reported in the main text in tab. 5.2.1 are the square-roots of the
variances above.
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Chapter 6

Conclusions

We set off in chapters 2 and 3 with a technical exposition on mean first-passage times
(MFPTs) for general random walkers on networks. For walkers navigating on networks of
a certain class, we derived a new result which led the way into MFPT approximations for
a much larger family of networks. We presented analytical and numerical studies of our
results.

We proceeded to establish a new point of view onto the old problem of complexity
in the law. The model presented in chapter 4 is the first to consider a reader’s behaviour
in conjunction with generative properties of the text on which they wander. This opens
the door to making testable statements about the complexity of an Act of Parliament
manifested in the interaction between its textual properties and a user of that law. In
chapter 5, we showed in a simple prototype how one can construct an algorithm to
determine the complexity of different Acts in practice.

Many other expressions of complexity have been identified over the decades. To name
only two: firstly, paraphrasing [43], a legal text may be ambiguous or it may not be clear
if a given Paragraph is the best answer available to a given question – we have so far
considered the situation where the answer to the question becomes immediately apparent
upon encounter. Secondly, the minimum complexity layout of an Act from the point of
view of the reader may be suboptimal from a maintenance perspective: as amendments
are enacted in an effort to adapt existing laws to real world events, one must carefully
consider the interdependencies with other laws – this was for instance pointed out by [37]
in analogy to software systems.

Our results of chapter 4 are driven by the main theorem of chapter 2, but for the full
picture, extensions are required: we completely disregard cross-references, which break
the tree structure of the hierarchical organisation, adding detours and shortcuts to legal
corpora [110, 35]. Similarly, the network of judicial precedents is not a tree but merely
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devoid of directed cycles [122]. In common law systems like the UK, this network is a
highly relevant source of information, which is however not tractable with the methods
from chapters 2 and 3.

While the probabilistic rules defined in chapter 4 seem intuitive, they forego a deeper
analysis of the processes involved in searching for information. Attention patterns studied
via eye-movements suggest that readers engaged in a search do focus on keywords initially,
before reading any paragraph in detail [107]. Other cognitive phenomena relevant to the
search process are associations between keywords, misinterpretation, and the fact that the
reader may already be familiar with a law or parts of it. These phenomena are distinct
from information seeking, in that the latter describes the methods and procedures used by
individuals to find information based on a current information need. Information seeking
behaviour has been studied for a variety of professions, e.g. for lawyers [104]. We refer
to [42] for a collection for further references. These studies highlight the importance of
informal sources of information (such as asking knowledgeable colleagues) and searchable
databases which increasingly supersede “traditional” index-based text searches. We focus
on the legal amateur who may have only partial or no access to any of these sources, or
might be unable to translate their information need into a suitable query - an issue that
professionals experience as well, see e.g. [123]. In our case, we make the assumption
that the glossary of a law is provided, is unambiguous to the reader, and that the reader
is not familiar with the text. Research on how individuals search their own mental
or conceptual space suggest that the mental search process resembles the spatial search
process of foraging animals [124, 125]. These results may be used to build evidence for a
model of text search based on similarity and distances as discussed in chapter 4.

There is hope that our research will be taken up by the legal community for further
theoretical studies. Especially via the aspect of information seeking, our work is very
much related to the references [42, 41], which study how topical similarity correlates with
the network of citations in legal opinions.

We conclude by taking up a general criticism on social physics issued in [2]: the scarcity
of empirical verification. Chapter 4 makes a number of assumptions and statements about
the behaviour of human readers and the keyword-related properties of structured corpora.
The properties of the keyword-distribution may be tested with the help of state-of-the-
art keyword-extraction algorithms – these in turn are usually tested by comparing the
results to keyword labels written by humans (see [128] and references therein). Direct
experiments on readers’ behaviour on an online mask are conceivably close, but are at
danger of conflating comprehension time and stepping time units. A reader’s movements
on a corpus can be tracked if they retrieve the text on a device. The platform developed
in [115] with involvement of the author of this thesis, or other commercially available
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databases for legal research, should be able to accommodate experiments involving readers.
In such an experiment it would be preferable to measure the number of steps taken rather
than the time spent searching, as the latter relates the cognitive task of comprehending the
written information, too. Our model may then be compared to a suitable null-model to
separate the influence imposed by policy design from cognitive processes on the side of
the reader. Specifically, a human reader can be expected to use memory to avoid parts of
the text already visited, unless their search elsewhere turned out to be unsuccessful, too. In
a null-model, this could be represented by a random walk with self-avoiding properties
(see e.g. [112]). For instance, the walker may have a memory of a certain length in which
the most recent steps are kept, and the walker will not repeat these unless there is no other
option. Additionally, [100] suggests stochastic resetting as a natural component of search
processes. Stochastic resets allow the walker to be reset to the initial (or a random) node
with a fixed probability at each step.

With further developments following the direction of the present thesis, the future holds
methods and tools for policy-makers to evaluate their drafts in terms of various aspects of
complexity. In the face of modern information retrieval tools, such “analogue” structural
layouts seem outdated. However, we still argue that there is an element of importance
to the “analogue” design. Firstly, as described in [123], even professionals occasionally
struggle formulating the right query for their information need, preventing them from using
full-text databases efficiently. Secondly, studies like [126, 127] have found that readers
without prior knowledge in the subject of a text navigate it more efficiently if provided
with a hierarchical (hypertext) layout. In fact, statistical models such as structural topic
models, presented in [108], can capitalise on the correlates represented by the relationships
encoded in structured documents.
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Appendix B

Supplementary Material

With this thesis comes the code used for chapters 4 and 5. Alongside the pattern_walker
module, we provide a three-minute animation of the walker, generated using the notebook
“animation-example.ipynb” in the directory “examples” of the module.

Below we include a snapshot of a notebook performing the steps as described chapter 5.
This notebook can be found at the location “examples/inference_example.ipynb”.
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{'pattern_len': 650, 'overlap': 3.5714285714285694} 

In [17]: import numpy as np 
import utils 
import matplotlib.pyplot as plt 
 
import pattern_walker as pw 
from pattern_walker.mean_field import MF_patternWalker_general,MF_mfpt_cary_tree 
import networkx as nx 
 
from copy import deepcopy 
 
import warnings 
warnings.filterwarnings('ignore') # suppress warning for presentability 

In [2]: source = 'HousingAct.json' 

In [3]: data = utils.load_data(source) 

In [4]: # dictionary where all documents within the same part are stored in one "flat" list 
parts_flat = utils.flat_parts_json(data) 

In [5]: # keyword parameters for preprocessing 
instructions = {'analyzer':'words', 'ngram_range':(1,4),'norm':'l1','sublinear_tf':True} 
vocabs = utils.get_vocabs(parts_flat,num_top_terms=100,**instructions) 
     

In [6]: estimators = {} #hold the parameters passed to patternWalker class later 
#can also be solved with utils.get_mask_length once on a tree 
 
estimators['pattern_len'] = len(vocabs[0]) # L 
c = len(vocabs[2]) #number of parts 
#estimate Delta 
estimators['overlap'] = np.max([ (sum(p)-len(vocabs[0])/c)/2 for p in vocabs[2] ])  
print(estimators) 

In [7]: # data dict with all text items replace by patterns under key "name" 
vec_data = utils.vectorise_json(vocabs[0],data,binary=True) 
# add binary vector to part nodes indicating topic-specific and generic keywords 
for ndx,part in enumerate(vec_data['_children']): 
    part['mask'] = vocabs[-1][ndx] 
     

In [8]: other_params={} #for standard deviations and other estimators not to be fed  
#into patternWalker class 
 
#make a networkx.DiGraph from the dict 
tree = utils.build_tree(vec_data,int_ids=True) 
other_params['number of nodes'] = len(tree) 
root=vec_data['node_id'] 
 
estimators['root']=root 
 
# for convenience, add to each node a hint to which part it belongs 
utils.add_part_attribute(vec_data,tree) 
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# list of nodes on part level... 
part_nodes = [node['node_id'] for node in vec_data['_children'] ] 
# ...and below part level 
non_part_nodes = list(set(tree.nodes)-set(part_nodes)-set([root])) 
 
# list of lists indicating part membership 
parts = [ 
            [ node for node in non_part_nodes  
              if tree.nodes[node]['part']==part ]  
         for part in part_nodes] 
 
# estimate a_h from topic-specific keyword presence (masked=True)... 
temp_h = np.array(list(utils.estimate_a(tree,tree.nodes,masked=True)[1].values())) 
# ... and a_l from generic keyword presence (masked='inverse') 
temp_l = np.array(list(utils.estimate_a(tree,tree.nodes,masked='inverse')[1].values())) 
 
# a_h is the mean of the above list 
a_h = np.mean(temp_h) 
sigma_h = np.sqrt(a_h*(1-a_h)/len(temp_h)) 
a_l = np.mean(temp_l) 
sigma_l = np.sqrt(a_l*(1-a_l)/len(temp_l)) 
 
# estimate a_root as the difference between a_h and a_l 
a_root,sigma_root = a_h-a_l, np.sqrt(abs(sigma_h**2+sigma_l**2)) 
 
# get next-neighbour distances in the tree, excluding part and root nodes.  
#'inverse' has most equidistributed bits 
distances = utils.get_distances_to_parent(tree,masked='inverse',nodes=non_part_nodes)  
n=utils.get_mask_length(tree,nodes=non_part_nodes,masked='inverse') 
 
p=np.mean([ distances[node]/n[node] for node in distances.keys() ]) 
sigma_p = p*(1-p)/len(distances) 
 
 
# plot next-neighbour distances as histogram and compare to binomial 
hist_data=utils.get_distance_histogram(tree,masked='inverse',nodes=non_part_nodes) 
plt.xlabel('Pattern-distance between neighbours') 
plt.ylabel('Frequency') 
 
# same as above between part-level and root nodes 
root_part_distances = utils.get_distances_to_parent(tree,masked='inverse', 
                                                        nodes=part_nodes) 
root_hist_data=utils.get_distance_histogram(tree,masked='inverse',nodes=part_nodes) 
 
n_part = utils.get_mask_length(tree,part_nodes,'inverse') 
 
p_p =  np.mean([ root_part_distances[node]/n_part[node]  
                for node in root_part_distances.keys() ] ) 
sigma_p_p = p_p*(1-p_p)/len(root_part_distances) 
 
 
# save estimated parameters 
estimators['a_high'] = a_h 
estimators['a_low'] = a_l 
estimators['a_root'] = a_root 
estimators['Gamma']=p/(2*a_l*(1-a_l)) 
estimators['Gamma_root'] = (p_p-a_root+a_l)/(2*(1-a_root)) 
 
other_params['p']=p,sigma_p 
other_params['p_p']=p_p,sigma_p_p 
 
other_params['sigma_h'] = sigma_h 
other_params['sigma_l'] = sigma_l 
other_params['sigma_root']= sigma_root 
other_params['sigma_Gamma']=\ 
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Power_divergenceResult(statistic=206.60692931734678, pvalue=3.557208439393673e-05) 
Power_divergenceResult(statistic=0.08601682890853525, pvalue=1.0) 

({'pattern_len': 650, 
  'overlap': 3.5714285714285694, 
  'root': 0, 
  'a_high': 0.0019097130823901027, 
  'a_low': 0.0012321690184285603, 
  'a_root': 0.0006775440639615424, 
  'Gamma': 0.1574520636295045, 
  'Gamma_root': 0.0003982386721382268}, 
 {'number of nodes': 2359, 
  'p': (0.00038753700918737067, 1.6477533996336911e-07), 
  'p_p': (0.00024131274131274132, 3.446492992480306e-05), 
  'sigma_h': 0.0008990773893079629, 
  'sigma_l': 0.0007224295716393701, 
  'sigma_root': 0.0011533623185902451, 
  'sigma_Gamma': 0.09220141508608323, 
  'sigma_Gamma_root': 0.002725918432365252})

            1/(2*a_l*(1-a_l))*np.sqrt(sigma_p**2+p**2*sigma_l**2*\ 
                                          (1-2*a_l)**2/(a_l**2*(1-a_l)**2)) 
other_params['sigma_Gamma_root'] =\ 
            2/(1-a_root)*np.sqrt(sigma_p_p**2+sigma_l**2+sigma_root**2/(1-a_root)**2) 

In [9]: estimators,other_params 

Out[9]:

In [10]: #print top-5 terms 
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['publish', 'premise landlord', 'tenant premise', 'reference premise', 'specified period d
ay'] 
['exemption notice serve respect', 'date temporary exemption notice', 'temporary exemption 
notice serve', 'designation authority', 'person require pay'] 
['reference matter circumstance', 'financial penalty person respect', 'relevant award', 't
ime review operation designation', 'penalty alternative prosecution'] 
['planning include', 'letting', 'legal owner premise purpose', 'house right', 'local autho
rity deal'] 
['supplementary', 'act estate agent', 'duty person act estate', 'person act estate agent', 
'home information pack'] 
['relation agreement arrangement day', 'time deposit hold accordance', 'tenancy time depos
it hold', 'tenancy require deposit consist', 'mobile home c. particular'] 
['apply converted block', 'household regulation', 'wale order connection', 'consent', 'pre
mise effectively secure trespasser'] 
----------- 

{'pattern_len': 650, 'overlap': 3.5714285714285694, 'root': 0, 'a_high': 0.001909713082390
1027, 'a_low': 0.0012321690184285603, 'a_root': 0.0006775440639615424, 'Gamma': 0.15745206
36295045, 'Gamma_root': 0.0003982386721382268, 'target': 226} 

15712.192504210238 6.660530947100567 

22219.661904768953 9.419102121563778 

for part in vocabs[1]: 
    print(part[:5]) 
print('-----------') 

In [11]: estimators['target'] = 226 # for reproducibility 
print(estimators) 

In [12]: #store vectors under new name 'pattern' in tree... 
pattern_tree = deepcopy(tree) 
pattern_dict=nx.get_node_attributes(pattern_tree,'name') 
for node,vector in pattern_dict.items(): 
    pattern_dict[node]=np.squeeze(vector) 
nx.set_node_attributes(pattern_tree,pattern_dict,'pattern') 
PW_emp = pw.empiricalPatternWalker(pattern_tree,root=estimators['root'],\ 
                                   target=estimators['target']) 
PW_MF= MF_patternWalker_general(pattern_tree,**estimators) 

In [13]: #make a diffusive version too, in which all patterns are just 0 
PW_diffusive = MF_patternWalker_general(pattern_tree,estimators['root'],\ 
                                        estimators['pattern_len'],0.,0.,0.,0.,0.,0.,\ 
                                        target=estimators['target'] 
                                       ) 

In [14]: m_MF=pw.utils.mfpt(PW_MF,[(PW_MF.root,PW_MF.target_node)],weight_str='mean_weight',\ 
                   method='grounded_Laplacian') 
print(m_MF,m_MF/len(PW_MF)) 

In [15]: m_emp=pw.utils.mfpt(PW_emp,[(PW_emp.root,PW_emp.target_node)],weight_str='weight',\ 
                    method='grounded_Laplacian') 
print(m_emp,m_emp/len(PW_emp)) 

In [16]: m_diff=pw.utils.mfpt(PW_diffusive,[(PW_diffusive.root, 
          PW_diffusive.target_node)],weight_str='weight',\ 
                     method='grounded_Laplacian') 
print(m_diff,m_diff/len(PW_diffusive)) 
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22243.000000010714 9.428995337011749 
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