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Dynamics from statics:
A conceptual reformulation of Green’s

function perturbation theories

Abstract

The use of the single-particle Green’s function in quantum chemistry has become widespread as a
result of its correspondence with the spectral function, allowing the study of a wide range of
materials. The spectral function is a quantity central to spectroscopic investigations and
characterisations, and there exists many paradigms and methods to probe it. In this thesis, an
approach to finding the Green’s function will be presented. This method, based on the block
Lanczos algorithm, has been investigated previously in the literature, however a new formulation
that permits the access of ‘full-frequency’ dynamic Green’s functions and self-energies using only
a set of static expectation values is presented. These expectation values, taking the form of the
spectral moments of the particular function, are conserved through the familiar Lanczos recursion
in order to physically inform the solution, and allow a systematic improvability with respect to
the number of moments conserved.

The reformulations of the block Lanczos algorithm will be presented, along with necessary
considerations and a discussion of their application to the Dyson equation. Following this, a number
of specific examples of their use for efficiently performing existing quantum chemical methods
will be presented, based on many-body perturbation theory and coupled cluster theories. These
discussions will include deriving and outlining the working equations, discussing any algorithmic
considerations important to their implementation, and comparisons to existing solvers with respect
to the existence of multiple solutions.

The performance of these methods will then be benchmarked using a number of datasets in order
to quantify the change in accuracy of the methods with the number of spectral moments conserved.
This data will be used to show that few spectral moments must be conserved in order to faithfully
represent the spectral function within the regimes of interest, such as the frontier excitations close to
the Fermi energy defining the ionisation potential and electron affinity of the particular material.
Furthermore, in the case of self-consistent many-body perturbation theory, similar discussions
will be used to show that an increase in the resolution of the dynamics via additional moments
is actually a detriment to the accuracy of the resulting excitations, leading to an accurate and
efficient approach. This approach will be applied to the important drug molecule artemisinin as
an example of its applicability in elucidating physical properties, and early investigations into the
suitability of the method for extended solids will be presented.
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Chapter 1

Introduction

In their application of the novel quantum mechanics to the study of diatomic hydrogen and
helium molecules, the seminal 1927 paper of London and Heitler presented proof of stability in
the former, but not the latter, a finding that Pauling remarked “marks the genesis of the science
of subatomic theoretical chemistry” .1,2 The mathematical basis upon which quantum chemistry is
built had already been laid by Schrödinger in 1926, then applied only to the hydrogen atom.3,4 A
comprehensive account of the discoveries and developments which therein led to the state of the
art would be exhausting, with notable advances in Hund and Mulliken’s molecular orbital (MO)
theory,5 Slater and Pauling’s valence-bond (VB) theory,6,7 and the long-neglected contributions
of Hückel in applying such descriptions to conjugated hydrocarbons, thereby realising many of
the advances thus far in the interpretation of organic molecules.8–10 Owing to observations by
Born and Oppenheimer, the problem of determining the properties and behaviour of chemical
systems according to the laws of quantum mechanics became essentially an issue of determining
the electronic wavefunction, and hence the field is often referred to as electronic structure theory.

The apparatus developed during the early twentieth century led to a detailed understanding
of the mathematical theory required to explain chemical properties, with Dirac claiming that “the
difficulty is only that the exact application of these laws leads to equations much too complicated
to be soluble” .11 In the near century since this remark, a bifaceted approach to overcoming such
difficulty has ensued, with the increasing sufficiency of approximations complemented by increases
in available computing resources such as that observed by Moore’s law. As a result, the elucidation
of chemical activity and properties has continuously progressed, with a focus on quantifying the
effects of electron correlation—that is, the quantum mechanical interaction between electrons, both
due to electron dynamics (dynamic correlation) and as a result of the multideterminental nature of
the true ground state (static correlation). Moving beyond an independent-particle picture is crucial
to the quantification of correlation, within which many physical phenomena are unexplained. These
include the broadening and finite lifetime of excited states, along with the components of van
der Waals interactions that involve induced dipoles.12 The latter gives rise to many macroscopic
phenomena such as droplet formation and surface tension, and the extraordinary climbing ability
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of many animals.13,14 The term correlation was first coined by Löwdin in 1955, having been
previously studied by Wigner in 1934.15,16 An exact computational model to quantify the electron
correlation suffers from a dimensionality problem, with the number of floating-point operations
(FLOPs) required to achieve it increasing exponentially with the number of electrons in the system.
Calculation of the exact many-body wavefunction in this manner is not required for an accurate
description of many properties, and feasibility of calculations can be improved substantially by
employing a diverse range of approximations such as perturbation theories, stochastic formulations,
and renormalisation approaches.

The study of electronic structure has connections to and ramifications in many other fields, with
many larger scale biological models basing their parameterisation on more accurate calculations
on a smaller scale, and methodological development requiring contemporary tools and concepts
from mathematics and computer science. A multitude of computer implementations for quantum
chemical methods have been established, both open-source and proprietary, specialising in different
regimes, properties, and methods.17,18 A number of these packages are significantly optimised
for modern hardware, and support massively parallel calculations to extend the applicability of
electronic structure theory to high performance computing (HPC) platforms.19–24 Many of these
packages further facilitate the rapid development of new tools and methods through convenient
high-level programming languages, leveraging low-level compiled code to maintain competitive
speeds,25–29 thereby assisting in the modernisation of the field. No single method or codebase
reigns omnipotent, with choices of approximations and algorithms introducing diverse options
depending on the required accuracy, desired speed, and available resources. Electronic structure
is intimately related to the field of quantum computing, presenting a proliferating area of research
that may be pivotal to future developments, and quantum chemistry has also been applied to
other less conventional architectures such as the blockchain.30 Three Nobel Prizes in Chemistry
can be attributed to the field of quantum chemistry, that of Mulliken in 1966, of Pople and Kohn
in 1998, and Karplus, Levitt and Warshel in 2013. The advances made in the years since the
pioneering works can be no better evidenced than a final quote, demonstrating the vast difference
in capabilities nearly a century has afforded:

The calculation of a wave function took about two afternoons, and five wave
functions were calculated on the whole.

E. Wigner and F. Seitz, May 193331

The prediction and mathematical modelling of physical phenomena is not complete without
observation in nature through experiment. One such category of experiment probing the
electronic structure of materials is photoelectron spectroscopy (PES) and its counterpart inverse
photoelectron spectroscopy (IPES).32–37 These methods are general monikers for various
techniques to ionise or inject an electron, respectively, typically via irradiation with ultraviolet or
X-ray light. By doing so, one can probe the energy of the bound state in the case of PES, which
defines the ionisation potential (IP) of the material after multiplying by a factor of minus one.



3

This can be interpreted as the energy required to remove an electron from the state, and the IP
is always a positive number. In IPES an incident electron transitions into an unbound state and
the emitted photon provides its energy, giving the electron affinity (EA), which can be positive or
negative. The sum of the IP and EA is often referred to as the fundamental band gap, reflecting
its role as the energy difference between the valence and conduction bands when energy levels are
represented by continua, e.g. in the solid state. The theoretical counterpart to experiments of
this kind is the spectral function, related to the photocurrent, and which can be calculated using
an object called the single-particle Green’s function. This object gives the probability amplitude
of a particle created (destroyed) at one time being destroyed (created) at another, and its
determination will to a large extent make up the contents of the present work. The structure of
the spectral function is influenced by the interaction between electrons in the material, and
therefore accurate descriptions of electron correlation are of crucial importance in its quantitative
study. Spectroscopic techniques of this kind involve perturbing a system and then considering
how the system responds, and therefore perturbation theories can be readily applied as the
mathematical framework for the determination of the single-particle Green’s function.
Spectroscopy is of vital importance in material characterisation in many areas such as
atmospheric chemistry,38 photovoltaics and dyes,39,40 and determining band structure edges.41,42

The aim of this thesis will be to introduce a new perspective on the solution of the Dyson
equation. This includes an efficient reformulation of the block Lanczos algorithm, which has been
applied to the single-particle Green’s function previously in the literature, though in many cases
it is not efficient enough to be practical within the many frameworks to be discussed.43–50 These
reformulations will be used to outline a number of novel approaches with utility in the field both for
improving the efficiency of existing formulations, and also as alternatives to existing methodology
offering superiority in some regimes. This will be shown using both pedagogical examples and
diverse benchmark sets. Reformulating the block Lanczos solver in this way also lends connections
to the idea of self-energies as an auxiliary space with which the physical space couples in order
to mimic the effects of a dynamic function, with the auxiliary space compressed according to
conservation in its moments by the Lanczos recursion. This property of moment conservation is
central to the efficacy of Lanczos-based recurrence schemes in coarse-graining the dynamics in this
way.

The structure of this thesis is as follows:

• Chapter 1: Introduction
This Chapter, outlining the context of the work in terms of the history of the field and aims.

• Chapter 2: Background
A summary of the fundamental principles and mathematical detail of the state of the art,
upon which the novel approaches will be built. Section 2.1 begins with an outline of the
mathematical details and theorems fundamental to quantum chemistry, followed by a
description of the Hartree–Fock (HF) method that forms a basis for the correlated methods
in Section 2.2. Section 2.3 further builds upon Section 2.1 by describing a shorthand
diagrammatic notation important in the discussion of methods based in perturbation
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theory. Section 2.4 introduces the central quantities this work will be concerned with, the
Green’s function and the self-energy, linked by the Dyson equation. Sections 2.5 to 2.9 then
turn to describing common and relevant methods for quantifying electron correlation, some
of which will be recalled in later Chapters from an alternative perspective.

• Chapter 3: Block Lanczos
Section 3.2 discusses the common Lanczos method for the iterative solution of eigenproblems,
and its extension to the block Lanczos method is discussed thereafter in Section 3.3. Whilst
these Sections concern the eigenproblem in a general sense, Section 3.4 will discuss their
role specifically in the case of solving the Dyson equation introduced in Section 2.4. The
important developments leading to efficient formulations of this problem in the context of
self-energies and Green’s functions will then be introduced in Sections 3.5 and 3.6, followed
by a final note on extrapolation within this formulation.

• Chapter 4: Second-order auxiliary Green’s function perturbation theory
Application of both the self-energy and Green’s function recurrence relations to many-body
Green’s function perturbation theory, specifically in the case of the second-order
self-energy. This results in a method that can be made to be extremely efficient and
accurate. Section 4.2 will introduce this method, followed by derivations of functionals for
the energy and density matrices in Sections 4.3 and 4.4. Algorithmic considerations will be
discussed in Section 4.5. The extension of this method to the solid state is briefly outlined
in Section 4.6, and finally a discussion on the existence of multiple solutions in this method
compared to other perturbation theories in Section 4.7.

• Chapter 5: Auxiliary GW approximation
Application of the self-energy recurrence relations to the GW method. Section 5.2 introduces
this method. This requires the efficient calculation of moments at the level of the random
phase approximation (RPA), introduced in Section 5.3.

• Chapter 6: Moment-resolved coupled cluster Green’s function
Application of the Green’s function recurrence relations to the Green’s function coupled
cluster (GF-CC) method, introduced in Section 6.2 and discussed algorithmically in
Section 6.4.

• Chapter 7: Results
Presentation and discussion of various results, with data generated for both existing
quantum chemical methods along with the new contributions outlined throughout this
work. Section 7.2 will introduce the simple example of a H2O molecule to initiate analysis
of the accuracy of the moment-conserving solvers in a qualitative sense. Sections 7.3
and 7.4 will then perform more quantitative analyses on diverse molecular benchmark
datasets. Section 7.5 presents an example of a larger calculation and comparison to
experimental data in an important drug molecule. Finally, Section 7.6 discusses results in
solid state systems, both for a benchmark dataset and for the band structure of silicon.
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• Chapter 8: Conclusion
Wrap up of the work by recapping the developments, the conclusions based on the results and
their discussion, and the outlook of the project including both future aims and directions.

The work contained in this thesis was done by the author between October 2018 and December
2022 in partial fulfilment for the degree of Doctor of Philosophy at King’s College London. The
work of Section 3.6 and Chapter 5 build upon work performed by other members of the Booth
group, with subsequent collaboration leading to the methods for which results are presented in
Chapter 7. The results at the level of ∆CCSD(T) were computed by A. Santana-Bonilla, in
the case of GW100 for Ref. 51 and in the case of W4-11 specifically for this thesis. The other
methodological accounts of Chapters 3 to 6 were developed by the author, along with all data
collection and plotting. The applications of the block Lanczos solvers outlined in Chapters 4 to 6
have resulted in four publications, and a further one in preparation:

• Chapter 4:

– Backhouse, O. J.; Nusspickel, M.; Booth, G. H. J. Chem. Theory Comput. 2020, 16,
1090–1104.52

– Backhouse, O. J.; Booth, G. H. J. Chem. Theory Comput. 2020, 16, 6294–6304.53

– Backhouse, O. J.; Santana-Bonilla, A.; Booth, G. H. J. Phys. Chem. Lett. 2021, 12,
7650–7658.51

• Chapter 6:

– Backhouse, O. J.; Booth, G. H. J. Chem. Theory Comput. 2022, 18, 6622–6636.53

• Chapter 5:

– Scott, C. J. C.; Backhouse, O. J.; Booth, G. H. in preparation.54
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2.1 Quantum chemistry

The field of quantum chemistry principally seeks to find approximate and tractable solutions to the
Schrödinger equation for elucidating the properties of molecules and materials. In the case of the
present work, we are concerned with the non-relativistic time-independent Schrödinger equation3

Ĥ |Ψ⟩ = E |Ψ⟩ , (2.1)

where E is the energy corresponding to solution (wavefunction) Ψ, and Ĥ is the Hamiltonian
operator for a system composed of M atomic nuclei and N electronsa

Ĥ = −
N∑

i=1

1
2∇

2
i

electronic
kinetic energy

−
M∑

A=1

1
2µA
∇2

A

nuclear
kinetic energy

−
N∑

i=1

M∑
A=1

ZA

|ri −RA|

nuclear-electron
attraction

+
N∑

i=1

N∑
j>i

1
|ri − rj |

electron-electron
repulsion

+
M∑

A=1

M∑
B>A

ZAZB

|RA −RB |

nuclear-nuclear
repulsion

. (2.2)

In the above equation µA is the nuclear-electron mass ratio for the nucleus A, ZA its proton number
(nuclear charge), and∇2

i and∇2
A a pair of Laplacian operators involving differentiation with respect

to the positions of the ith electron and Ath nucleus, ri and RA, respectively. These terms can be
classified as operators corresponding to different interactions, as labelled in Equation 2.2.

2.1.1 Born–Oppenheimer approximation

Central to quantum chemistry is the Born–Oppenheimer approximation, based upon the
observation that nuclei are significantly heavier than electrons (i.e. µA ≫ 1) and as such their
motion is far slower than that of the electrons.55 It is therefore a reasonable approximation to
assume the nuclei to be fixed and the remaining electrons existing in a field resulting from these
fixed nuclei. The result of this approximation on Equation 2.2 is that the nuclear kinetic energy
term can be approximated as zero, and the nuclear-nuclear repulsion term a constant for any
given system of nuclei. Thus, we define an ‘electronic’ Hamiltonian

Ĥelec = −
N∑

i=1

1
2∇

2
i −

N∑
i=1

M∑
A=1

ZA

|ri −RA|
+

N∑
i=1

N∑
j>i

1
|ri − rj |

Ĥelec = −
N∑

i=1

(
1
2∇

2
i + vext(ri)

)
+

N∑
i=1

N∑
j>i

1
|ri − rj |

= ĥcore + v̂ee, (2.3)

where ĥcore is often referred to as the core Hamiltonian and contains the electronic kinetic energy
and nuclear-electron attraction terms, the latter of which is considered an external potential and
denoted vext, and v̂ee is the electron-electron repulsion.

aUnless explicitly stated, atomic units are used throughout this work.
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One can then write an electronic Schrödinger equation

Ĥelec |Ψelec⟩ = Eelec |Ψelec⟩ , (2.4)

where the electronic wavefunction Ψelec and energy Eelec depend only parametrically on the nuclear
coordinates. The total energy can then be recovered by including the nuclear-nuclear repulsion
term of Equation 2.2

E = Eelec +
M∑

A=1

M∑
B>A

ZAZB

|RA −RB |
= Eelec + Enuc. (2.5)

2.1.2 Linear combination of atomic orbitals

In quantum chemistry, one is typically concerned with single-particle orbitals ψ, for which a
common choice are molecular orbitals (MOs). These delocalised orbitals are expanded as a
superposition of a chosen basis of atomic-centred functions called atomic orbitals (AOs)

ψp(r) =
aos∑
α

Cαpϕα(r). (2.6)

This technique is commonly referred to as the linear combination of atomic orbitals (LCAO)
approach. A common choice of AOs in molecular quantum chemistry are Gaussian-type orbitals
(GTOs) due to their mathematical convenience, whilst Slater-type orbitals (STOs) are more
physically relevant however are harder to work with.a Periodic solid state calculations often make
use of other basis sets, such as plane waves (PWs). This work will only consider basis sets
consisting of GTOs.

The orbital ψp(r) is sufficient to describe the spatial distribution of the electron it is associated
with, and in the case of MOs belongs to an orthonormal set∫

drψ∗
p(r)ψq(r) = δpq. (2.7)

The complete description of an electronic wavefunction also requires one to specify its spin. For
orbitals that are eigenfunctions of Ŝz, the spin takes the values σ = ± 1

2 , often referred to as α and
β or spin-up and spin-down. We introduce the composite spatial and spin coordinate xi = (ri, σi),
and each spatial orbital contributes two possible spin orbitals depending on the value of σ.

aUnlike GTOs, STOs possess a physical cusp condition akin to the Coulomb potential, however any product of
two GTOs on different atomic centres can be written as a finite sum of GTOs at some position along the straight line
connecting them. As such, high-order integrals of GTOs can be recursively computed as finite sums over one-centre
integrals, and therefore one is still afforded speedups when using a relatively large GTO basis.
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2.1.3 Slater determinants

Taking into account the positions and spins of the electrons, the N -electron wavefunction can be
written Ψ(x0,x1, . . . ,xN ). Electrons are indistinguishable and cannot share quantum states as a
result of the Pauli exclusion principle. In order to satisfy this condition, the probability density
associated with a wavefunction must be invariant under the exchange of two particles

|Ψ(x0, . . . ,xi, . . . ,xj , . . . ,xN )|2 = |Ψ(x0, . . . ,xj , . . . ,xi, . . . ,xN )|2 , (2.8)

which restricts the factor associated with particle exchange to ±1. It is a fact of nature that
fermions obey antisymmetry and bosons obey symmetry with respect to particle exchange, i.e.
fermions possess a factor −1 and bosons +1. Therefore, for our purely fermionic wavefunctions we
can write

|Ψ(x0, . . . ,xi, . . . ,xj , . . . ,xN )⟩ = − |Ψ(x0, . . . ,xj , . . . ,xi, . . . ,xN )⟩ . (2.9)

Simply taking the product of the orbitalsa is therefore insufficient to satisfy the antisymmetry of
electrons. The most obvious way to write an N -body wavefunction that satisfies the antisymmetry
principle is to use a determinant

Ψ(x1,x2, . . . ,xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ψi(x1) ψi(x2) . . . ψi(xN )
ψj(x1) ψj(x2) . . . ψj(xN )

...
...

. . .
...

ψk(x1) ψk(x2) . . . ψk(xN )

∣∣∣∣∣∣∣∣∣∣
, (2.10)

and this is commonly referred to as the Slater determinant.56 Including the normalisation factor,
the determinant explicitly respects fermionic antisymmetry. The cumbersome nature of the
determinant makes it necessary to introduce a shorthand notation for the Slater determinant

Ψ(x1,x2, · · · ,xN ) = |ψi(x1)ψj(x2) . . . ψk(xN )⟩ = |ψiψj . . . ψk⟩ , (2.11)

where the dropped coordinate labels are always assumed to be in numerical order, and the
shorthand notations implicitly include the normalisation factor.

2.1.4 Second quantisation

In the notation of second quantisation Equation 2.3 can be written

Ĥ =
∑
pq

hpqâ
†
pâq + 1

2
∑
pqrs

vpqrsâ
†
pâ

†
qâsâr, (2.12)

where the subscript denoting the electronic Hamiltonian has been dropped for brevity, and the
operators â†

p and âp denote the creation and annihilation of an electron in the orbital labelled p,
respectively. These operators can be defined using the Slater determinant notation as

â†
i |ψj . . . ψk⟩ = |ψiψj . . . ψk⟩ , (2.13a)

âi |ψiψj . . . ϕk⟩ = |ψj . . . ψk⟩ , (2.13b)
aAlso known as a Hartree product.
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and they are related by an adjoint operation. The antisymmetry of the Slater determinant is
respected by each of the operators owing to their anticommutativity

â†
i â

†
j + â†

j â
†
i = {â†

i , â
†
j} = 0, (2.14a)

âj âi + âiâj = {âj , âi} = 0, (2.14b)

and in the case of i = j

â†
i â

†
i = 0, (2.15a)

âiâi = 0, (2.15b)

where Equation 2.15a can be read as the Pauli exclusion principle, and Equation 2.15b as the fact
that you cannot remove an electron twice. A further anticommutation relation exists between the
creation and annihilation operators

âiâ
†
j + â†

j âi = {âi, â
†
j} = δij . (2.16)

The matrix elements hpq and vpqrs result from the expression of the operators of Equation 2.3 in
a basis of single particle orbitals ψ

hpq =
∫

dx1ψ
∗
p(x1)ĥcoreψq(x1), (2.17)

vpqrs =
∫

dx1 dx2ψ
∗
p(x1)ψ∗

q (x2)v̂eeψr(x1)ψs(x2), (2.18)

the latter of which shall be referred to as electronic repulsion integrals (ERIs) and are commonly
written in two alternative notations

vpqrs = ⟨pq|rs⟩
physicists’
notation

= (pr|qs)
chemists’
notation

, (2.19)

where an additional notation exists for the physicists’ notation to denote antisymmetrised ERIs

⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨ps|rq⟩ . (2.20)
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2.2 Hartree–Fock

The Hartree–Fock (HF) approximation considers the N -electron wavefunction to be a single Slater
determinant.57 As discussed in Section 2.1.3 this satisfies antisymmetry with respect to exchange
in particles, which is neglected by the simple Hartree method. Additionally, the determinant
explicitly respects the Pauli exclusion principle.58 Since electrons are treated independently, save a
Coulomb interaction with the average positions of the other electrons in the systems, this approach
is classified as a mean-field method and is solved in a self-consistent field (SCF). The total energy
in HF can be evaluated as

EHF =
〈

ΨHF

∣∣∣Ĥelec

∣∣∣ΨHF

〉
=
∑

p

hpp + 1
2
∑
pq

⟨pp||qq⟩ , (2.21)

where ΨHF is the Slater determinant that will be referred to in this context as the HF wavefunction.
The energy obeys the variational principle, stating that the exact energy for a given Hamiltonian
is a minimum, and any approximation to the energy is therefore an upper bound. The usual form
of the HF equations used to minimise EHF with respect to choice of spin orbitals ψ is written as
the pseudo-eigenproblema

f̂(x)ψi(x) = εiψi(x), (2.22)

where the eigenpairs ψi, εi indicate the ith orbital and its energy, and f̂ is the Fock operator which
takes the form

f̂(x) = ĥcore(x) + vHF(x)

= ĥcore(x) +
∑

q

[
Ĵq(x)− K̂q(x)

]
. (2.23)

In Equation 2.23 the electron-electron interaction of Equation 2.3 is replaced by the HF potential
vHF, which incorporates the Coulomb and exchange operators Ĵ and K̂, respectively. The operators
can be written as

Ĵq(x1)ψp(x1) =
[∫

dx2ψ
∗
q (x2) 1

|r1 − r2|
ψq(x2)

]
ψp(x1), (2.24a)

K̂q(x1)ψp(x1) =
[∫

dx2ψ
∗
q (x2) 1

|r1 − r2|
ψp(x2)

]
ψq(x1). (2.24b)

The exchange operator is non-local, with no existing potential defined at a single point in space.
We must now consider the HF equations in a basis, following the procedure of Section 2.1.2.

Since the GTOs we typically use as basis functions are non-orthogonal, we introduce an overlap
matrix S with matrix elements

Spq =
∫

dxϕ∗
p(x)ϕq(x), (2.25)

aThe HF equations can be described as a pseudo-eigenvalue equation as the Fock operator has a functional
dependence on the solution eigenvectors ψ.
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and allows us to recast Equation 2.22 as
mos∑
α

f̂(x)Cαqϕα(x) = εi

mos∑
α

Cαqϕα(x). (2.26)

Multiplying by ϕq(x) and integrating over the coordinate gives a generalised eigenproblema

including the overlap matrix59,60

aos∑
α

FpqCαq = εi

aos∑
α

SpqCαq, (2.27)

which in matrix notation is

FC = SCε. (2.28)

The eigenvectors C are known as the MO coefficients, and constitute a unitary matrix that is
sufficient to rotate from a basis of AOs to MOs, and the eigenvalues ε are referred to as the MO
energies. The coefficients can be used to calculate the density matrix

γµν =
occ∑

i

CµiC
∗
νi, (2.29)

where i runs over occupied MOs. We can write the matrix elements of Equation 2.22 as

⟨µ|f̂ |ν⟩ = Fµν = ⟨µ|ĥcore|ν⟩+ ⟨µ|Ĵ |ν⟩ − ⟨µ|K̂|ν⟩

= hµν + Jµν −Kµν , (2.30)

and with the basis expansion we can write the matrix elements of the Coulomb and exchange
operators as

⟨µ|Ĵ |ν⟩ = Jµν =
occ∑

i

aos∑
σλ

⟨µσ|νλ⟩C∗
σiCλi, (2.31a)

⟨µ|K̂|ν⟩ = Kµν =
occ∑

i

aos∑
σλ

⟨µσ|λν⟩C∗
σiCλi, (2.31b)

where i runs over occupied MOs. As such, we can replace the coefficients with the density matrix of
Equation 2.29, and combine the two terms using the notation of Equation 2.20 to write a compact
expression for the Fock matrix

Fµν = hµν +
aos∑
σλ

γλσ ⟨µσ||νλ⟩ . (2.32)

The energy can be computed using the Fock matrix with the expression

EHF = 1
2

aos∑
µν

γµν [hµν + Fµν ] . (2.33)

aThe eigenproblem is sometimes referred to as the Roothaan equation, or Roothaan–Hall equation,
acknowledging an independent development of the same year.
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2.2.1 Restricted Hartree–Fock

The equations derived thus far have considered MOs to be spin orbitals of a general nature. Whilst
this serves as a platform for deriving theory, in practical calculations one can typically exploit
symmetries in the nature of the spin orbitals in order to reduce the computational requirements. We
will consider two such symmetries, the first being restricted Hartree–Fock (RHF) which considers
pairs of α and β spin orbitals to be constrained to have the same spatial coordinate. This means
that each occupied MO is now occupied by a pair of electrons rather than a single electron of
specified spin, and we must consider N

2 spatial MOs, where N is the number of spin orbitals.
In this basis, the density matrix must be prepended by a factor two to account for the double
occupancy

γµν = 2
occ∑

i

CµiC
∗
νi (2.34)

and the Fock matrix elements are equal to

Fµν = hµν + 2Jµν −Kµν . (2.35)

The factor two appears before the Coulomb matrix due to the equality in integrating over functions
with α or β spins in Equation 2.24, however not in front of the exchange matrix since the integration
over pairs of functions that differ in spin is zero. Bringing this together, we can write the Fock
matrix in RHF as

Fµν = hµν + 1
2

aos∑
σλ

γλσ [2 (µν|σλ)− (µλ|σν)] , (2.36)

where the Chemists’ notation has been used for the ERIs, as is the common choice in the case of
spatial orbitals. The energy can be computed in the same fashion as Equation 2.33

EHF = 1
2

aos∑
µν

γµν [hµν + Fµν ] . (2.37)

2.2.2 Unrestricted Hartree–Fock

Since RHF considers orbitals containing pairs of electrons when occupied, it is insufficient to apply
to open shell systems. Instead, the unrestricted Hartree–Fock (UHF) method allows the spatial
orbitals associated with α and β electrons to be different, and one must consider N

2 spatial MOs
for each spin channel, where N is the number of spin orbitals. This results in separate generalised
eigenproblems for each spin

FαCα = SCαεα, (2.38a)

FβCβ = SCβεβ , (2.38b)
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which are sometimes referred to as the Pople–Nesbet equations.61 The coefficients yield separate
density matrices for each spin channel

γα
µν =

α
occ∑

i

Cα
µiC

α,∗
νi , (2.39a)

γβ
µν =

β
occ∑

i

Cβ
µiC

β,∗
νi . (2.39b)

Whilst these eigenproblems are independent, they are coupled through the fact that both Fα and
Fβ are functions of the coefficients of both spins. The Fock matrices are defined as

Fα
µν = hµν + Jα

µν + Jβ
µν −Kα

µν , (2.40a)

F β
µν = hµν + Jβ

µν + Jα
µν −Kβ

µν , (2.40b)

where the opposite spin exchange contributions are zero as discussed in Section 2.2.1, and h has no
spin dependence in the AO basis. Matrix elements of the Fock matrices can therefore be expanded
as

Fα
µν = hµν +

aos∑
σλ

[(µν|σλ)− (µλ|σν)] γα
λσ +

aos∑
σλ

(µν|σλ) γβ
λσ, (2.41a)

F β
µν = hµν +

aos∑
σλ

[(µν|σλ)− (µλ|σν)] γβ
λσ +

aos∑
σλ

(µν|σλ) γα
λσ. (2.41b)

The energy can be found by summing the contributions according to Equation 2.37 for both spin
channels

EHF = 1
2

aos∑
µν

γα
µν

[
hµν + Fα

µν

]
+ 1

2

aos∑
µν

γβ
µν

[
hµν + F β

µν

]
. (2.42)

2.2.3 Solving the eigenproblem

To solve the generalised eigenproblem of Equation 2.28, consider an orthogonal matrix X satisfying
X†SX = I. Let C = XC′, then Equation 2.28 can be transformed into a regular eigenproblem

FXC′ = SXC′ε, (2.43a)

X†FXC′ = X†SXC′ε, (2.43b)

F′C′ = C′ε, (2.43c)

where the orthogonalised Fock matrix F′ = X†FX. An obvious choice is simply S 1
2 , which can be

computed using the eigenpairs of the Hermitian matrix S.
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2.2.4 Koopmans’ theorem

Koopmans’ theorem is a powerful tool in quantum chemistry, allowing the physical interpretation of
the orbital energies in Equation 2.28. It states that the negative of the highest occupied molecular
orbital (HOMO) is equal to the first IP of a molecule in closed-shell HF.62 It can be generalised
to open-shell excitations and to EAs (where the lowest unoccupied molecular orbital (LUMO)
is now used in place of the HOMO), though the latter is sensitive to choice of basis and is less
appropriate in the limit of a complete basis set.63 Koopmans’ theorem fails to take into account
orbital relaxation, since the same orbitals are used to describe the ground and excited state, with
the alternate approach being to take the difference between energies of separate calculations on
each system, with the calculations differing in electron number.

At the mean-field level, the Koopmans’ excitations are associated with δ-functions in the
spectrum, reflecting the uncorrelated single-particle picture. This can be extended to the
correlated many-particle picture using the concept of Dyson orbitals, which generalise the overlap
between the ground and excited state wavefunction.64,65 This concept will be discussed in more
detail in Section 2.4.
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2.3 Diagrammatic notation

Many-body diagrams are a convenient way to summarise the often cumbersome mathematics
associated with many-body perturbation theories. Several closely related notations based on
Feynman diagrams are employed to summarise expressions diagrammatically, with the two most
common being Goldstone and Hugenholtz diagrams.66–68 The principal difference in these
diagrams is that the Hugenholtz diagrams consider only antisymmetric matrix elements, whereas
in Goldstone diagrams one must explicitly enumerate additional diagrams corresponding to the
antisymmetry. Goldstone diagrams have the advantage of naturally corresponding to RHF and
UHF equations that are the practical basis in which many-body perturbation theories are
implemented, however the lack of implicit antisymmetry means they are far greater in number for
any given theory. Phase factors are also much more straightforward to determine in Goldstone
diagrams, as the order of indices in (N > 1)-body operators is no longer determined. A simple
solution to this scintillating dilemma is to combine the advantages in the form of antisymmetric
Goldstone diagrams.69 In this form, a single diagram with the appearance of a Goldstone
diagram, complete with determined order of labels, represents the associated Hugenholtz
diagram. The Goldstone diagram therefore maintains the antisymmetry in derived expressions.
Since there can be many Goldstone diagrams per Hugenholtz diagram, the antisymmetric
Goldstone representation for a given expression is not unique, however any expansion of the
respective Hugenholtz diagram can be used granted the correct phase is determined by the rules
prescribed to Goldstone diagrams. The weight factor of an antisymmetric Goldstone diagram is
determined according to the Hugenholtz prescription. Due to the obvious benefits of this
representation, we shall consider only antisymmetric Goldstone diagrams.

Order of operations

As Feynman diagrams arise in time-dependent perturbation theories, the perturbation is ‘switched
on’ in a given direction, which represents the flow of time and the sequence of events in the
diagram. We are concerned with time-independent perturbation theories only, however one must
still consider the order of application of operators and therefore the time axis is retained. We
will consider a vertical time axis flowing from the bottom of a diagram to the top, such that the
bottommost operators are applied before the uppermost.a

Second quantised operators

The reference state (e.g. the HF wavefunction) is denoted by a position on the time axis where
there is nothing. Therein, the creation and annihilation operators introduced in Section 2.1.4 can

aOther such notations commonly rotate the time axis such that it runs horizontally.
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be represented by lines going upwards and downwards from the reference state

â† ≡ , (2.44a)

â ≡ , (2.44b)

respectively.

One-body operators

The point of action for a one-body operator is represented by a vertex, with an interaction line
extending to some one-body operator marker

× , (2.45)

where the marker indicates the particular one-body operator. In this case × indicates the Fock
operator, and therefore we can define different contributions to the Fock matrix based on the time-
ordering

⟨i|f̂ |j⟩ ≡ × , (2.46a)

⟨i|f̂ |a⟩ ≡ × , (2.46b)

⟨a|f̂ |i⟩ ≡ × , (2.46c)

⟨a|f̂ |b⟩ ≡ × . (2.46d)

Two-body operators

Two-body operators are similarly represented by an interaction line, this time the interaction
connecting two vertices, each with one incoming and one outgoing line. The order of indices
follows the convention

⟨ left out right out || left in right in ⟩ . (2.47)
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The permutations of antisymmetrised ERIs that are unique under symmetry are therefore

⟨ab||cd⟩ ≡ , (2.48a)

⟨ai||jb⟩ ≡ , (2.48b)

⟨ab||ic⟩ ≡ , (2.48c)

⟨ai||bc⟩ ≡ , (2.48d)

⟨ij||kl⟩ ≡ , (2.48e)

⟨ia||jk⟩ ≡ , (2.48f)

⟨ij||ak⟩ ≡ , (2.48g)

⟨ab||ij⟩ ≡ , (2.48h)

⟨ai||bj⟩ ≡ , (2.48i)

⟨ij||ab⟩ ≡ . (2.48j)

The corresponding Hugenholtz representations, for example the ⟨ai||jb⟩ case, would take the form

⟨ai||jb⟩ ≡ , (2.49)

from which it is clear to see why the labels are no longer determined, as the integral ⟨ai||bj⟩ is
represented by the same diagram.

Products of operators

Products can be expressed by connecting the lines between vertices, for example

∑
ia

⟨i|f̂ |a⟩⟨a|f̂ |i⟩ ≡

×

×

, (2.50)

where the summation indicates that non-external lines are contracted over. In the case of two-body
operators, the antisymmetry results in equal diagrams, for example

1
4
∑
ijab

⟨ij||ab⟩ ⟨ab||ij⟩ ≡

≡ −1
4
∑
ijab

⟨ij||ab⟩ ⟨ab||ji⟩ ≡ . (2.51)
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In the (non-antisymmetrised) Goldstone notation, these two diagrams constitute the so-called
‘direct’ and ‘exchange’ diagrams at second-order. The phase (sign of the factor) of each diagram can
be determined according to the Goldstone prescription as (−1)h+l, whereas the weight (magnitude
of the factor) is ( 1

2 )n, n being the number of equivalent pairs of lines. Two lines are said to be
equivalent if they connect the same pair of vertices with the same directionality. The h and l

values correspond to the topology of the diagrams, l being the number of (fermionic) loops and h

the number of hole connections. For a detailed description of their determination, see e.g. Ref. 68.

Perturbation theory

In perturbation theory, one inserts a resolvent line between each point of interaction, and a
denominator contribution appears for every line passing through the resolvent line. This
denominator consists of a sum of the orbital energies, with their values being in the occupied or
virtual sector, depending on whether the lines are hole or particles ones. As examples,
Equations 2.50 and 2.51 can be rewritten with their respective denominators to obtain the full
perturbation theoretical expressions

∑
ia

⟨i|f̂ |a⟩⟨a|f̂ |i⟩
εi − εa

=

×

×

, (2.52)

1
4
∑
ijab

⟨ij||ab⟩ ⟨ab||ij⟩
εi + εj − εa − εb

= , (2.53)

where the resolvent lines are marked as the red dashed line. In more complicated diagrams with
more positions on the time axis and therefore more resolvent lines, multiple denominators may
contribute, resulting in products over said denominators.
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2.4 Green’s functions in quantum chemistry

Green’s functions, named after British mathematician George Green,70 are tools for solving
inhomogeneous differential equations within particular boundary conditions. Consider the linear
differential operator L̂ with a corresponding differential equation

L̂f(x1) = h(x1), (2.54)

one can define the associated Green’s function G(x1;x2) as the solution of

L̂G(x1;x2) = δ(x1 − x2), (2.55)

where δ is the δ-function. The solution f(x1) can then be determined according to

f(x1) =
∫

dx2G(x1;x2)h(x2). (2.56)

Green’s functions have been used extensively throughout physics and mathematics, and can be
readily applied to the Schrödinger (differential) equation. For the time-dependent case of the
Schrödinger equation for a single particle, we can transform the differential equation such that its
Green’s function is the solution to

ĤG(r1, t1; r2, t2) = δ(r1 − r2)δ(t1 − t2), (2.57)

where the solution wavefunctions can be determined as in Equation 2.56

Ψ(r1, t1) =
∫

dr2G(r1, t1; r2, t2)Ψ(r2, t2), (2.58)

corresponding to the evolution of the wavefunction Ψ in space and time. This propagation of
the wavefunction through space and time resulted in Green’s functions being readily applied as
propagators in diagrammatic theories throughout many-body physics.

2.4.1 Single particle Green’s function

The single particle Green’s function is perhaps the most ubiquitous correlation function in electronic
structure theory. It is composed of ‘greater’ and ‘lesser’ propagators, where the ‘lesser’ part
quantifies the correlation between the annihilation of a particle at time t1 and creation at t2

G<(x1, t1; x2, t2) = i
〈
ψ̂†(x2, t2)ψ̂(x1, t1)

〉
. (2.59)

and the ‘greater’ part quantifies the correlation between the creation of a particle at time t2 and
annihilation at t1

G>(x1, t1; x2, t2) = −i
〈
ψ̂(x1, t1)ψ̂†(x2, t2)

〉
, (2.60)

For a Hamiltonian Ĥ that is translationally invariant in time, Equations 2.59 and 2.60 do not
depend on both t1 and t2, but only their difference τ = t1 − t2. Green’s functions of this kind
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are the scope of the present work, as we will not consider time-dependent external potentials.
For an N -electron ground-state |ΨN

0 ⟩ with an associated time-independent Schrödinger equation
Ĥ|ΨN

0 ⟩ = EN
0 |Ψ

N
0 ⟩ we can rewrite Equations 2.59 and 2.60 as71

G<
pq(τ) = i

〈
ΨN

0

∣∣∣ â†
qe+i(Ĥ−EN

0 )τ âp

∣∣∣ΨN
0

〉
, (2.61a)

G>
pq(τ) = −i

〈
ΨN

0

∣∣∣ âpe−i(Ĥ−EN
0 )τ â†

q

∣∣∣ΨN
0

〉
, (2.61b)

respectively. By introducing the Heaviside step function

Θ(x) =

1 if x ≥ 0,

0 if x < 0,
(2.62)

the hole and particle Green’s functions can now be defined as, respectively

GH
pq(τ) = Θ(−τ)G<

pq(τ), (2.63a)

GP
pq(τ) = Θ( τ)G>

pq(τ), (2.63b)

which give the probability amplitudes for the propagation of a particle or hole through the ground
state of an interacting system.

Alternatively we can define different time-orderings in the combined Green’s function, for the
retarded

GR
pq(τ) = Θ( τ)

(
G>

pq(τ)−G<
pq(τ)

)
, (2.64)

advanced

GA
pq(τ) = Θ(−τ)

(
G<

pq(τ)−G>
pq(τ)

)
, (2.65)

and time-ordered

GT
pq(τ) = GR

pq(τ) +G<
pq(τ)

= GA
pq(τ) +G>

pq(τ), (2.66)

cases. This object can be considered to be a generalisation of the one-particle density matrix in
the time domain; the density matrix can be recovered from this object simply by integrating over
spin with x1 = x2 and τ = 0+.

The Fourier transform of Equation 2.66 can be written

Gpq(ω) =
〈

ΨN
0

∣∣∣∣ â†
q

[
ω − (Ĥ − EN

0 )− i0+
]−1

âp

∣∣∣∣ΨN
0

〉
+
〈

ΨN
0

∣∣∣∣ âp

[
ω − (Ĥ − EN

0 ) + i0+
]−1

â†
q

∣∣∣∣ΨN
0

〉
. (2.67)

By introducing completeness relations, one can write an expression for the Lehmann representation
of Equation 2.67

G(x1,x2;ω) =
∑

i

ui(x1)u∗
i (x2)

ω −
(
EN

0 − E
N−1
i

)
− i0+

+
∑

a

ua(x1)u∗
a(x2)

ω −
(
EN+1

a − EN
0
)

+ i0+
, (2.68)
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where the so-called Dyson orbitals (quasiparticle states) u are defined as

ui(x) =
〈

ΨN−1
i

∣∣∣ ψ̂(x)
∣∣∣ΨN

0

〉
, (2.69a)

ua(x) =
〈

ΨN
0

∣∣∣ ψ̂(x)
∣∣∣ΨN+1

a

〉
. (2.69b)

The N ± 1 eigenstates ΨN±1
p indicate addition or removal of an electron in the pth orbital,

respectively, with energies EN±1
p . As such, the two terms in Equation 2.68 correspond to hole

and particle parts of the Green’s function, respectively. These will typically be denoted G< and
G>, respectively, reflecting the time-orderings.

As introduced in Section 2.2.4, the Dyson orbitals generalise the overlap between ground and
excited state wavefunctions in a single-particle picture, and are agnostic to whether or not the
wavefunction is correlated. In the mean-field (uncorrelated) picture they are simply δ-functions,
whereas in the correlated picture the Dyson orbitals may enumerate many more states than just
those who can be described in a Koopmans’ picture and have non-unitary weights. These
one-particle wavefunctions describe the transition between a wavefunction with N and N ± 1
electrons.64,65,72–74 The energy differences EN

0 − EN−1
i and EN+1

a − EN
0 correspond to the IP

and EA, respectively.
Alternatively, one can define a Lehmann representation of the other time-orderings according

to the sign of the imaginary infinitesimal, first for the retarded Green’s function of Equation 2.64

G(x1,x2;ω + i0+) =
∑

i

ui(x1)u∗
i (x2)

ω −
(
EN

0 − E
N−1
i

)
+ i0+

+
∑

a

ua(x1)u∗
a(x2)

ω −
(
EN+1

a − EN
0
)

+ i0+
, (2.70)

and for the advanced Green’s function of Equation 2.65

G(x1,x2;ω − i0+) =
∑

i

ui(x1)u∗
i (x2)

ω −
(
EN

0 − E
N−1
i

)
− i0+

+
∑

a

ua(x1)u∗
a(x2)

ω −
(
EN+1

a − EN
0
)
− i0+

. (2.71)

Frequency-dependent functions shall be considered to be time-ordered unless their parameter
specifies the sign of the infinitesimal in this way.

Figure 2.1 shows a schematic diagram for the poles of the time-ordered Green’s function, where
the infinitesimal shifts the poles above and below the real frequency axis for the hole and particle
parts, respectively. The Lehmann representation of the single-particle Green’s function permits
the theoretical prediction of the direct and inverse photoelectron spectra via the IP and EA parts.
The spectral function is typically defined with respect to the retarded Green’s function75,76

A(ω) = 1
π

Tr
(
Im
[
G(ω + i0+)

])
, (2.72)

which in the case of an independent particle picture consists of a series of δ-functions positioned at
the IPs and EAs. At zero temperature these time-orderings are equal within a sign, i.e. A(ω+i0+) =
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Im(ω)

Re(ω)
µ

EN − EN−1,i

EN+1,a − EN

Band gap

0+

0+

Figure 2.1: Schematic showing the positions of poles on the complex frequency axis for the time-ordered
Green’s function. The poles are positioned above and below the real axis, shifted by the infinitesimal
factor. The position of the Fermi energy is shifted by the chemical potential µ.

−A(ω− i0+). In a correlated (non-independent particle) regime, these peaks have non-unit height
and finite lifetimes. The positive infinitesimal displaces the spectral function above or below
(depending on the time-ordering) the real axis in the complex plane, for the purpose of plotting and
in cases where one requires regularisation of integrals, this is often replaced by a finite broadening
parameter η. Figure 2.2 shows an example of broadened spectra at the HF level for the N2 molecule
in a minimal basis. The bottom spectrum with the smallest η is closest to a series of δ-functions,
with differences in peak height due to resolution and degeneracy of poles in the Green’s function.

2.4.2 Dyson equation and the self-energy

When applying Green’s function methods to problems in quantum chemistry, we wish to leverage
the frequency dependence to model correlation by shifting the positions and lifetimes of peaks in
the (static) one-body density, which the dynamic nature of the Green’s function permits. From this
we can derive the Dyson equation, requiring another dynamic quantity known as the self-energy,
and this derivation allows us to view the frequency dependence from another perspective that will
form a core feature of the present work.

The Green’s function associated with some Hamiltonian, given as a matrix in a basis of single-
particle orbitals H, can be written

(ω −H) G = I, (2.73)

where I is an identity matrix, and the behaviour in the complex plane is unspecified. In this case,
G is the total Green’s function corresponding to H, and therefore if H is the full many-body
Hamiltonian G is indeed the full many-body Green’s function. We next consider a partition in H
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Figure 2.2: Spectral functions for N2 in a minimal basis at the HF level of theory, for three different values
of broadening parameter η. The spectral function has been shifted in energy such that the Fermi level is
at zero. The difference in peak height is due to degeneracy of poles (with some small differences due to
resolution on a grid).

such that it represents the coupling of a small space to a large space71

H =
[

HSS HSL

HLS HLL

]
, (2.74)

where the submatrix HSS is of dimension n × n and HLL is (m − n) × (m − n); here we use n
to denote the size of the smaller space and m the size of the total space. The small space can be
considered a reduced Hilbert space that contains effective interactions among selected degrees of
freedom, which differ from the bare interactions via coupling HSL to the larger space. Whereas G
represents the total Green’s function corresponding to the Hamiltonian H, GSS instead spans only
this reduced space which may incorporate only one-particle states, for example, when we consider
the single-particle Green’s function.

With this partitioning, we rewrite Equation 2.73(
ω −

[
HSS HSL

HLS HLL

])[
GSS GSL

GLS GLL

]
=
[

ISS 0
0 ILL

]
. (2.75)

It is trivial to algebraically manipulate Equation 2.75 to arrive at an expression for GSS in terms
of the blocks of H

GSS(ω) =
(
ω −HSS −HSL [ω −HLL]−1 HLS

)−1

=
(
ω −Σ(∞)−V [ω − (K+C)]−1 V†

)−1

=
([

G0
SS(ω)

]−1 −V [ω − (K+C)]−1 V†
)−1

, (2.76)
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where we have introduced a new notation in which V is the coupling between the small and large
Hamiltonians HSL, and the Hamiltonian in the large space HLL is decomposed into two blocks
K and C, the first of which is diagonal and the second of which is not. In this case we assume
Hermiticity i.e. HSL = HLS , and non-Hermitian theories will be explicitly stated as such. The
Hamiltonian in the small space HSS has also been denoted Σ(∞) in this notation, for reasons that
will become clear shortly. C represents the coupling (effective interaction) between elements in the
large space, and this representation can easily be transformed into a purely diagonal one where
these elements are non-interacting, by diagonalising (K+C) and appropriately rotating V into this
diagonal basis. The eigenvalue problem within this ‘arrowhead’ representation of the self-energy
has been discussed in Ref. 77. The ‘zeroth-order’ Green’s function in the small space has been
defined as G0

SS = (ω −HSS)−1. This technique of representing the static problem in the large
space as a dynamic problem in the small space is often referred to as Löwdin downfolding.78–90

We now arrive at an expression for the Dyson equation

G(ω) =
([

G0(ω)
]−1 −Σ(ω)

)−1
, (2.77)

where we have dropped the S and L subscripts since all the matrices in Equation 2.77 are in the
small (SS) space, and Σ is called the self-energy, the dynamic (frequency dependent) part of which
is defined as

Σ(ω) = V [ω − (K+C)]−1 V†. (2.78)

The non-dynamic (frequency independent) self-energy is given by91,92

Σpq(∞) =
mos∑
rs

⟨pr||qs⟩
(

1
2πi

∮
dωGrs(ω)

)
(2.79a)

=
mos∑
rs

⟨pr||qs⟩ γrs, (2.79b)

where in this notation the static self-energy also contains the effects of the mean-field Fock matrix,
and in the case of G = G0 can be seen to be simply equal to it. The contour integration in
Equation 2.79a encloses the upper half-plane of the complex frequency ω, i.e. all poles below the
Fermi energy.a In the case of Σ(∞) = F, G0 can be considered the mean-field Green’s function
equal to (ω − F)−1.b Once ‘upfolded’ (i.e. the opposite of downfolded) to remove the frequency
dependence we can write

Σ =
[

Σ(∞) V
V† (K+C)

]
, (2.80)

aIn the case of the time-ordered Green’s function, where the poles below the Fermi energy are on the upper
half-plane, as shown in Figure 2.1.

bOther notations often consider the Fock matrix contribution as separate to the static self-energy, which is
common in the GW community. In this case, Equation 2.79a would integrate over Grs(ω)−G0

rs and Equation 2.79b
would sum over γrs − γ0

rs.
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where columns of V, along with the matrices K and V, are now in the space of the configurations
contained in the self-energy. The self-energy is a formally energy dependent object quantifying the
effect on a propagator due to the interactions within the system itself, such as screening. It can
also be interpreted as a hybridisation between the physical degrees of freedom and an auxiliary
space, as shown by the upfolding procedure in Equation 2.80, which represents a coupling between
the frequency independent part (including Fock matrix contributions) and a fully static auxiliary
space spanning the configurations.

We can rearrange Equation 2.77 to

G(ω) =
(
I−G0(ω)Σ(ω)

)−1 G0(ω)

= G0(ω) + G0(ω)Σ(ω)G0(ω) + G0(ω)Σ(ω)G0(ω)Σ(ω)G0(ω) + . . .

= G0(ω) + G0(ω)Σ(ω)G(ω), (2.81)

which can be considered the recursive form of the Dyson equation, since G appears on both
sides. From this form, we can understand the Dyson equation as that which computes all possible
insertions of the Σ(ω) into the bare propagator G0. These objects can be represented
diagrammatically as

G0(ω) = , (2.82a)

G(ω) = , (2.82b)

Σ(ω) = Σ , (2.82c)

and therefore the recursive form of the Dyson equation in Equation 2.81 can be represented as

G0(ω) + G0(ω)Σ(ω)G(ω) = + Σ , (2.83)

where the direction of the propagators in time is unspecified in this case.
Another interpretation of the manipulations leading to Equation 2.76 is that the eigenpairs of

the upfolded matrix Σ [
Σ(∞) V

V† (K+C)

][
u
w

]
= λ

[
u
w

]
(2.84)

directly give the spectral representation of G(ω) akin to that of Equation 2.68

G(ω) = u [ω − λ]−1 u†, (2.85)

for which only the projection of the eigenvectors onto the small space u (defining the Dyson
orbitals) are required to obtain the Green’s function in the small space. Whilst Equation 2.84 is
a linear problem, this projection onto the small (physical) space is a non-linear operation. The
equivalence of Equation 2.84 with Equation 2.77 in this way will be a common theme of this work.
Clearly, a full eigenvalue decomposition of Σ is a very expensive operation scaling as O(m3), and
so rarely will one encounter a method relying on this operation directly.
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2.4.3 Solving the Dyson equation

A number of ways exist in the literature to obtain energies and Dyson orbitals resulting from a
given self-energy. These approaches will be classified into four general categories here, and their
details reviewed. This is not an exhaustive review, but rather a generalisation to provide context
to discussions going forward.

Iterative eigenvalue problem (upfolded)

Once upfolded into its static configuration space, rather than using a dense eigensolver
Equation 2.84, can be solved using an iterative eigensolver such as the Lanczos93,94 or
Davidson95–97 algorithms. The strength of these methods largely comes from the fact that rather
than storing the entire matrix Σ in memory and operating on it, one only needs to provide the
action that computes the product of Σ with an arbitrary state vector. This benefit is two-fold;
the Σ matrix is likely to be very large since it is upfolded into a configuration space typically
spanning excitations scaling unfavourably with the size of the system, but also in the fact that
the matrix may be sparse, and this sparsity affords reductions in the cost of the diagonalisation.
This is particularly apparent in the common scenario where C = 0. The frequency independent
part Σ(∞) is typically calculated and stored in RAM since its size only scales quadratically with
system size, whilst the other blocks of Equation 2.84 are typically contracted with the vector
algebraically in terms of their tensorial components. The disadvantage of these methods is that
they can often exhibit numerical instability and their convergent behaviour is subject to
limitations. The details of these limitations are largely out of the scope of the present work,
though we will revisit such themes in Chapter 3 in the context of the block Lanczos algorithm.

Solutions leveraging an iterative eigensolver do not account for the entire eigenspectrum, but
rather target a particular (usually extremal, or otherwise targeted) part of it. This is of no
consequence when one wishes to do a one-shot computation of IPs or EAs for a given self-energy,
but it offers no opportunity to self-consistently solve the Dyson equation since the propagators are
not fully accounted for. In the case of many settings this is of little consequence, since the initial
self-energy accounts for most of the correlation-driven changes, whereas renormalisation of the
propagators accounts for only small improvements, or in some cases such as equation-of-motion
coupled cluster (EOM-CC) the ground state already accounts for the renormalised correlation
effects.

Self-consistent eigenvalue problem (downfolded)

Rather than solving the eigenvalue problem in the configuration space using an iterative eigensolver,
one can also generate eigenpairs via an eigenvalue problem of the downfolded self-energy. Observing
that the Green’s function has poles where det G(ω) diverges, we can infer that those poles exist at
ω where

det G−1(ω) = 0. (2.86)
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Taking the inverse of Equation 2.77 and recasting Equation 2.86 as an eigenvalue problem we can
write

[Σ(∞) + Σ(ω)] C = Cω. (2.87)

This can be considered a generalisation of Equation 2.28 in an orthonormal basis, in which Σ(∞)
can be considered a Fock matrix subjected to a correlated one-particle density matrix, and in which
Σ(ω) provides additional (non-local) correlation and orbital relaxation. At self-consistency in ω,
the eigenvalues ω are equal to the energies λ of the Dyson orbitals and can therefore be interpreted
as IPs and EAs, whilst the eigenvectors C are proportional to the Dyson orbitals.98,99 Principally,
they recover the quasiparticle weight(

1−C†
x

∂Σ(ω)
∂ω

∣∣∣∣
ω=λx

Cx

)−1

= |ux|2 , (2.88)

and the Dyson orbitals can be interpreted by scaling the eigenvectors according to the square root
of the weights

ũx =
(

1−C†
x

∂Σ(ω)
∂ω

∣∣∣∣
ω=λx

Cx

)− 1
2

Cx. (2.89)

In the case of a diagonal self-energy Equation 2.87 can be simplified to

Σpp(∞) + Σpp(ω) = ω. (2.90)

The diagonal equivalent of Equation 2.88 reads

Zp =
(

1− ∂Σpp(ω)
∂ω

∣∣∣∣
ω=λxp

)−1

, (2.91)

where λxp
is a pole in the Green’s function overlapping sufficiently with the pth MO. That is

to say that the pth MO is a good approximation to the perturbatively determined xpth pole in
the Green’s function; Ref. 99 suggests a threshold in Zp of 0.85 to consider the pole of use in
characterising an IP or EA under a diagonal approximation. Equation 2.91 is often referred to
as the quasiparticle renormalisation factor, as it can be used to linearise Equation 2.90 about the
poles to avoid the need for self-consistency.100 Note that in the case of a diagonal self-energy, the
Dyson orbitals are necessarily equal to the MOs, since the density matrix remains diagonal.

The diagonal approximation leads to the quasiparticle equations

λxp
= εp + Re[Σpp(λxp

)], (2.92)

which is a ubiquitous approximation in the GW community. It too is often linearised according to
the quasiparticle renormalisation factor, leading to

λxp = εp + Zp Re[Σpp(εp)]. (2.93)
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Ignoring the imaginary part of the self-energy results in infinite quasiparticle lifetimes as one
observes at mean-field, however the energies of the quasiparticle states are still adjusted due to
correlation as a result of the real part of the (diagonal) self-energy.

Methods of this type have the benefit of not having to store any quantities in the space of the
configurations contained in the self-energy, nor does one even have to find analytical expressions
for the components of the Σ matrix, but rather just for the downfolded frequency dependent
form. However, they target only largely quasiparticle-like poles for which the MOs are good
approximations, and a separate self-consistent eigenvalue calculation is required to calculate such
a pole corresponding to each MO. This also means that obtaining the full eigenspectrum
corresponding to a particular self-energy is not possible, and hence is not a practical method for
quantifying spectral functions.

Self-consistency in Dyson equation (downfolded)

The Dyson equation can be solved numerically for a given self-energy when expressed in the
downfolded frequency dependent format. In order to efficiently contract the Green’s functions with
the interaction in a fashion that represents the diagrammatic expansion of the given self-energy, the
update of the self-energy must typically be computed in the time domain.101 In this domain, the
algebraic interpretation of the diagrams and associated time-orderings is particularly simple. This
however requires one to perform a Fourier transform in order to return to the frequency domain
where the Green’s function can be interpreted as a spectrum of electron removals and additions,
and equivalently it requires inverse Fourier transforms of the Green’s function in order to compute
an update for the self-energy. The number of points in the time grid will appear in the formal
scaling of the method when the construction of the self-energy is the bottleneck, and the use of
non-uniform quadrature is non-trivial, with some recent research looking to remedy this.102–104

Furthermore, to obtain a smooth and efficient frequency-domain Green’s function one must use the
Matsubara (imaginary frequency) representation, which is necessarily finite in temperature.105,106

Whilst this can be an advantage for the expression of some thermal properties and extension to
non-equilibrium systems, it can present an obstacle when one wishes to perform calculations at
zero temperature, convergence to which can be poor for small-gapped systems. Obtaining the
spectral function when one employs a Matsubara axis requires the use of analytic continuation,
which is ill-conditioned, exhibiting numerical artefacts and poor precision.107

Whilst this allows the self-consistent treatment of self-energies according to the Dyson
equation, it does not offer an explicit pole representation, as one obtains when the self-energy is
upfolded into the configuration space. One such solution to calculating the IP and EA is to
employ the extended Koopmans’ theorem (EKT).101,108–111 This method infers the excitations
from the dynamical Green’s function in a fashion that uses (and conserves) the first two (zeroth
and first) moments of the Green’s function.112,113 The excitations are therefore determined under
the lack of conservation of higher-order moments that contribute to the definition of the Green’s
function. One can also obtain poles of the Green’s function by combining the self-consistency in
frequency space with the concepts of the self-consistent eigenvalue problem. For a detailed
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discussion of the computation of quasiparticle energies and Dyson orbitals from Matsubara
Green’s functions, see Ref. 110.

Another advantage of self-consistent Green’s function theories are their reference independence,
with the iteration to a fixed point being irrespective of the initial Green’s function. In the case of
approximations to the self-energy that can be considered conserving approximations, observables
calculated with non-converged Green’s functions in a self-consistent scheme may not respect some
conservation laws of the Hamiltonian. This can result in unphysical solutions such as ones with
an incorrect particle number.101,114,114 Conserving self-energies are ones that can be obtained
according to the functional derivative101,115

Σ(x1,x2; τ) = ∂Φ
∂G(x1,x2;−τ) , (2.94)

where Φ[G] is some functional of the Green’s function such as the Luttinger–Ward functional.116

Diagrammatically, the partial derivative of Equation 2.94 can be considered to be the cutting of a
propagator line in the diagrams contained within Φ. We also note that energies calculated with a
Green’s function in a conserving approximation are in agreement with the virial theorem.101

Reduced dimensionality eigenvalue problem (upfolded)

As discussed previously, solving Equation 2.84 exactly will typically scale unfavourably.
Furthermore, since in this case the size of the full eigenspectrum will scale superlinearly with the
system size, performing a self-consistency via the Dyson equation in this manner results in a
combinatorial explosion of poles that quickly becomes intractable. Therefore, one must apply an
approximation that ‘freezes’ a sufficient number of the configurations in the self-energy that the
size of the eigenspectrum does not grow with iterations. One such method originated in the
nuclear physics community, in which the block Lanczos algorithm is applied in order to
diagonalise the self-energy in a Krylov subspace, thereby conserving its spectral
moments.44,45,117–125 We will save any detailed discussion of this approach since the novel
developments of this thesis largely revolve around efficient formulations of this concept, and we
will revisit it in detail in Chapter 3. An additional perspective seeks to discretise the frequency
variable into intervals which, whilst large in number, do not increase with system size.126,127

In a similar fashion to the block Lanczos approach, Ref. 128 applies the single-vector
biorthogonal Lanczos algorithm to compute the Green’s function at the level of CC in a Krylov
subspace. This similarly preserves elements of the moments of the self-energy and circumvents
the need for explicit frequency-resolved spectral functions. This is similar to other model-order
reduction techniques that also follow the general principle of projecting the problem onto a
smaller subspace.129–132
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2.4.4 Spectral moments

The central moments of the spectral function can be defined by the integral

Ξ(G,n) =
∫ ∞

−∞
dωA(ω)ωn (2.95a)

= 1
π

∫ ∞

−∞
dω Im[G(ω + i0+)]ωn, (2.95b)

where the Green’s function in Equation 2.95b is the retarded variant. The notation Ξ(G,n) refers to
the object with which this moment relates, in this case the Green’s function, and the order of the
moment n. The spectral representation in Equation 2.85 can be used to evaluate Equation 2.95b
analytically in order to write an expression for the moments in terms of the Dyson orbitals and
energies

Ξ(G,n) = uλnu†. (2.96)

The dynamic self-energy also possesses an equivalent structure and therefore central moments

Ξ(Σ,n) = 1
π

∫ ∞

−∞
dω Im[Σ(ω + i0+)]ωn, (2.97)

and we can similarly write an analytic expression in terms of the poles and residues in Equation 2.78

Ξ(Σ,n) = V (K+C)n V†. (2.98)

Both distributions can be represented at large frequencies on the Matsubara axis according to the
expansion133–136

G(iω) =
∞∑
n

Ξ(G,n)

(iω)n+1 , (2.99)

Σ(iω) =
∞∑
n

Ξ(Σ,n)

(iω)n+1 . (2.100)

Often it will be necessary or convenient to exploit the separability between the hole and particle
parts of the self-energy and Green’s function, and in both cases the hole and particle
distributions possess their own moments. These moments are defined by constraining the
integrals in Equations 2.95 and 2.97 to run over the interval (µ,∞) for the particle moment, and
over (−∞, µ) for the hole moment, where µ indicates the chemical potential. The hole and
particle moments of the Green’s function can therefore be written as

Ξ(G<,n) = 1
π

∫ 0

−∞
dω Im[G(ω + i0+)]ωn, (2.101a)

= u<
(
λ<
)n u<,†, (2.101b)

Ξ(G>,n) = 1
π

∫ ∞

0
dω Im[G(ω + i0+)]ωn, (2.101c)

= u>
(
λ>
)n u>,†, (2.101d)
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and of the self-energy as

Ξ(Σ<,n) = 1
π

∫ 0

−∞
dω Im[Σ(ω + i0+)]ωn, (2.102a)

= V<
(
K<+C<

)n V<,†, (2.102b)

Ξ(Σ>,n) = 1
π

∫ ∞

0
dω Im[Σ(ω + i0+)]ωn, (2.102c)

= V>
(
K>+C>

)n V>,†. (2.102d)

The intervals defining the central and hole or particle moments constitute Hamburger and Stieltjes
moment problems, respectively, in which the moments do not uniquely determine the functions
as they would in the case of a bounded interval, the condition required in the Hausdorff moment
problem.137–139 In practice however, the functions both go to zero in the limit of large frequencies,
and as such they are bounded by the function values rather than the interval. A sufficiently large
number of moments is therefore likely to uniquely define the Green’s function or self-energy they
represent.

Given that the Green’s function and self-energy can be considered probability distribution
functions, these moments can be intuited as the moments of such a distribution, with the ordinal
names often referred to as the mean, variance, skewness, kurtosis, and so on. One can derive
relations between the moments by considering the insertion of the expansions of Equations 2.99
and 2.100 into the recursive expression for the Dyson equation in Equation 2.81

∞∑
n

Ξ(G,n)

(iω)n+1 =
∞∑
n

Ξ(G0,n)

(iω)n+1 +
∞∑
n

Ξ(G0,n)

(iω)n+1

∞∑
n

Ξ(Σ,n)

(iω)n+1

∞∑
n

Ξ(G,n)

(iω)n+1 (2.103)

=
∞∑
n

Ξ(G0,n)

(iω)n+1 +
∞∑

nmk

Ξ(G0,n)Ξ(Σ,m)Ξ(G,k)

(iω)n+m+k+3 . (2.104)

By considering separately all terms that are of equal order in 1
iω , and noting that G0(iω) =

[iω −Σ(∞)]−1 and therefore Ξ(G0,n) = [Σ(∞)]n, one obtains the following relationships between
the moments134,135

Ξ(G,0) = I, (2.105a)

Ξ(G,1) = Σ(∞), (2.105b)

Ξ(G,2) = [Σ(∞)]2 + Ξ(Σ,0)Ξ(G,0)

=
[
Ξ(G,1)

]2
+ Ξ(Σ,0), (2.105c)

Ξ(G,3) = [Σ(∞)]3 + Σ(∞)Ξ(Σ,0)Ξ(G,0) + Ξ(Σ,1)Ξ(G,0) + Ξ(Σ,0)Ξ(G,1)

=
[
Ξ(G,1)

]3
+ Σ(∞)Ξ(Σ,0) + Ξ(Σ,1) + Ξ(Σ,0)Ξ(G,1), (2.105d)

. . .

For a given self-energy, these expressions can be rearranged to obtain relations in terms of the
moments of the self-energy. An important conclusion of Equation 2.105 is that knowledge of the
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central moments of the Green’s function up to order n also provides knowledge of the central
moments of the self-energy up to order n − 2. Since the hole and particle moments cannot be
separated in the high-frequency expansions of Equations 2.99 and 2.100, this rule does not apply
separably to the hole and particle moments of the self-energy.

2.4.5 Energy functionals

A significant feature of conserving self-energies is that the total energy computed using the self-
consistent Green’s function—that which is a fixed point on the Dyson equation—will be identical
between a number of different energy functionals. For non-self-consistent theories this does not
hold, with different functionals providing differing total energies.101,140,141 Despite total energies
being outside the scope of the present work, their limited discussion will consider the partitioning
into one- and two-body contributions.

The one-body contribution is computed as

E1b = 1
2

mos∑
pq

γpq [Hpq + Σpq(∞)] , (2.106)

and is therefore identical to the HF energy functional, where the Fock matrix is replaced with the
frequency-independent self-energy including both the mean-field Fock contribution along with any
non-dynamic correlation contributions, and the one-body density matrix may be correlated.

The two-body energy can be calculated according to a prescription due to the Galitskii–Migdal
formula leading to an expression on the Matsubara axis103,142–144

E2b = 1
2

1
2π

mos∑
pq

∫ ∞

−∞
dωΣpq(iω)Gpq(iω). (2.107)

In Section 4.3 it will be shown how this functional can be used to derive analytic expressions for
given Green’s function theories based on the algebraic structure of their self-energy, as shown in
Ref. 52 and similarly for a pedagogical example in Ref. 145. For more detailed discussions of
Green’s function energy functionals the reader is pointed to Refs. 101,141,144.



2.5 Møller–Plesset perturbation theory 35

2.5 Møller–Plesset perturbation theory

A simple method to incorporate the effects of electron correlation to improve upon the wavefunction
calculated at the HF level is to apply Rayleigh–Schrödinger perturbation theory (RSPT).4,146 In
this context, the perturbation theory is known as Møller–Plesset perturbation theory (MP), and
defines a series of methods depending on the order of perturbation. The most common such
method is second-order Møller–Plesset perturbation theory (MP2).147–150 We introduce an order
parameter λ that systematically improves the HF Hamiltonian of Equation 2.4 (where we drop the
subscript for brevity)

Ĥ = f̂ + λV̂ . (2.108)

We can then expand the eigenpairs using a Taylor series in λ

E = E(0) + λE(1) + λ2E(2) + . . . , (2.109)

|Φ⟩ = |Ψ(0)⟩+ λ|Ψ(1)⟩+ λ2|Ψ(2)⟩+ . . . , (2.110)

where E(n) and |Ψ(n)⟩ are the energies and wavefunctions of nth-order, with the zeroth-order
components equal to the unperturbed quantities. One can derive expressions for E(n) in terms of
the perturbation, and manipulate these expressions to yield equations in terms of one- and two-
particle quantities in the canonical basis. The details of these derivations can be found in e.g. Ref.
57.

Zeroth- and first-order

The zeroth-order energy is equal to a sum over the orbital energies

E(0) =
〈

Ψ(0)
∣∣∣ f̂ ∣∣∣Ψ(0)

〉
=

occ∑
i

εi. (2.111)

The first-order energies can be defined as

E(1) =
〈

Ψ(0)
∣∣∣ V̂ ∣∣∣Ψ(0)

〉
= −1

2

occ∑
ij

⟨ij||ij⟩ . (2.112)

First-order Møller–Plesset perturbation theory (MP1) can therefore be defined as the sum of the
zeroth and first-order energies, which is equal to the HF energy

EMP1 = E(0) + E(1)

=
occ∑

i

εi −
1
2

occ∑
ij

⟨ij||ij⟩

= EHF. (2.113)

As such, MP1 energies do not offer any correction due to correlation.
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Second-order

The second-order energy can be evaluated as

E(2) =
〈

Ψ(0)
∣∣∣ V̂ ∣∣∣Ψ(1)

〉
= 1

4

occ∑
ij

vir∑
ab

⟨ij||ab⟩ ⟨ab||ij⟩
εi + εj − εa − εb

, (2.114)

where contributions only originate from doubly excited configurations since ⟨Ψ(0)|V̂ |Ψa
i ⟩ = 0 due

to Brillouin’s theorem (see Appendix B). Similarly, the Slater–Condon rules (see Appendix A)
exclude higher-order contributions. The antisymmetric Goldstone diagram associated with the
single term at second-order has the form

1
4

occ∑
ij

vir∑
ab

⟨ij||ab⟩ ⟨ab||ij⟩
εi + εj − εa − εb

= , (2.115)

The MP2 method can therefore be defined as

EMP2 =
2∑

n=0
E(n) = EHF + E(2). (2.116)

Formally, MP2 scales as O(n4
mo) where nmo is the number of MOs, however in practice one requires

a rotation of the ERIs into the HF basis, an operation which has a O(n5
mo) cost.a It accounts

for dynamical independent pair correlation, and is commonly applied to problems in quantum
chemistry, often with one of many approximations such as local and Laplace-transformed variants,
and the use of resolution of the identity (RI) or Cholesky decomposition (CD).151–154

Higher-order

Higher-order corrections can be generated by evaluating the expression

E(n) =
〈

Ψ(0)
∣∣∣ V̂ ∣∣∣Ψ(n−1)

〉
, (2.117)

which, for example with n = 3, evaluates to148,155

E(3) = 1
8

occ∑
ij

vir∑
abcd

⟨ab||ij⟩ ⟨cd||ab⟩ ⟨ij||cd⟩
(εi + εj − εa − εb) (εi + εj − εc − εd)

+ 1
8

occ∑
ijkl

vir∑
ab

⟨ab||ij⟩ ⟨ij||kl⟩ ⟨kl||ab⟩
(εi + εj − εa − εb) (εk + εl − εa − εb)

+
occ∑
ijk

vir∑
abc

⟨ab||ij⟩ ⟨cj||kb⟩ ⟨ik||ac⟩
(εi + εj − εa − εb) (εi + εk − εa − εc) , (2.118)

aSince only the ⟨oo|vv⟩ blocks of the ERIs are required this operation has a slightly lower prefactor than n5
mo,

however scales the same with system size.
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for which we can again assign antisymmetric Goldstone diagrams to the terms

1
8

occ∑
ij

vir∑
abcd

⟨ab||ij⟩ ⟨cd||ab⟩ ⟨ij||cd⟩
(εi + εj − εa − εb) (εi + εj − εc − εd) = , (2.119a)

1
8

occ∑
ijkl

vir∑
ab

⟨ab||ij⟩ ⟨ij||kl⟩ ⟨kl||ab⟩
(εi + εj − εa − εb) (εk + εl − εa − εb) = , (2.119b)

occ∑
ijk

vir∑
abc

⟨ab||ij⟩ ⟨cj||kb⟩ ⟨ik||ac⟩
(εi + εj − εa − εb) (εi + εk − εa − εc) = . (2.119c)

General MPn energies can be calculated as

EMPn =
n∑

m=0
E(m) = EHF +

n∑
m=2

E(m). (2.120)

To obtain energies of nth-order one can algorithmically generate all diagrams and then apply the
rules of e.g. Ref. 57 to write the equivalent mathematical expressions. In the case of Hugenholtz
diagrams, this can be done for n ≥ 2 by arranging n vertices in a vertical line, and then enumerating
all topologically distinct arrangements of propagator lines such that each diagram satisfies the
following rules:

1. Each vertex in the diagram has four propagator lines connected to it.
2. The diagram is linked (connected).
3. Vertices do not have a propagator that both enters and exits itself.

These diagrams can be generated computationally using graph theory, and their number grows
extremely rapidly with order.57,156–167 Alternatively, one can also extract arbitrary-order MPn
energies from high-order CC ansatzes or from a full configuration interaction (FCI)
expansion.168–170 The nth-order energies are written in terms of only linked (connected)
diagrams, as a consequence of the linked cluster theorem.171 This theorem proves that unlinked
(disconnected) diagrams do not appear in the nth-order energy and furthermore the algebraic
terms proportional to N2 can be written in terms of these unlinked diagrams; from this we can
conclude that the MPn energies are size-extensive, i.e. they increase linearly with system size.
The equivalence of these diagrams with the mathematical formulae can be seen by following the
steps in e.g. Ref. 57. Similarly, one can derive spatial orbital expressions by either algebraically
spin adapting Equation 2.114, or by generating the non-antisymmetric Goldstone diagrams
corresponding to Equation 2.115, thereby eliminating the antisymmetric matrix elements and
resulting in a greater number of diagrams. The MPn series tends to be oscillatory in calculated
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properties with respect to n, and in many systems can be erratic or divergent.169,170,172–176 The
deficiencies of the MP series at some orders are often remedied using empirically assigned weights
such as the common MP2.5 method, mixing the MP2 and third-order Møller–Plesset
perturbation theory (MP3) energy.177–179

2.5.1 Many-body Green’s functions

Green’s functions and associated self-energies can be derived for MP according to two separate but
related formalisms, which will be reviewed in this section.180–182 The first of these perspectives,
which will be referred to as the ∆MPn class of self-energies, can be summarised as the nth-order
perturbation correction to the IP or EA of the xth electron

Σ̄(n)
x =

(
E

(n)
N − E(n)

(N−1),x

)
+
(
E

(n)
(N+1),x − E

(n)
N

)
, (2.121)

where E(n)
(N±1),x indicates the nth-order correction to the energy of the N ± 1 electron determinant

in which an electron has been added to or removed from orbital x. The frequency argument ω
has been omitted, since the dependency of Equation 2.121 on frequency depends on n, with some
orders being frequency independent and depending on the orbital energy as Σ̄(n)

x (ϵx), and others
being self-consistent in Σ̄(n)

x (ω). This class of diagrams corresponds to taking all topologically
distinct ways to cut a propagator line in the diagrammatic representations of the nth-order energy,
leaving an external edge, which as discussed in Section 2.4.3 results in a conserving approximation.
The external edges correspond to the same physical index, as the self-energy is under a diagonal
approximation. We note that the so-called ∆MPn method of calculating IPs and EAs differs from
this self-energy since it involves separate determinants for the N and N ± 1 reference states.

The second perspective again takes all topologically distinct cuts with two external edges,
this time without a diagonal or frequency independent approximation, but also includes a further
set of diagrams resulting from the vertex insertion of a ‘bubble’ diagram into the diagrams for
the (n − 1)th order self-energy. This results in additional frequency independent diagrams for
n ≥ 3. These self-energies will be referred to as the nth-order self-energies. Taking a frequency
independent diagonal approximation to the nth-order self-energy yields the ∆MPn self-energy for
n ≤ 3

Σ̄(n)
p = Σ(n)

pp (εp) ∀ n ≤ 3, (2.122)

and both self-energies converge systematically to FCI in the limit of infinite order n.

Zeroth- and first-order

The self-energy at zeroth-order is equal to the HF orbital energies,

Σ(0)
pq = δpqεp, (2.123)

and is zero at first-order

Σ(1)
pq = 0, (2.124)
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both of which are independent of frequency, and as such only contribute to Σ(∞). Equation 2.123
explains the notational decision to include the Fock matrix as part of the static self-energy, since
it is a member of the perturbation theoretical series.

Second-order

The dynamical self-energy at second-order can be defined as

Σ(2)
pq (ω) = 1

2

occ∑
ij

vir∑
a

⟨ij||ap⟩ ⟨aq||ij⟩
ω − (εi + εj − εa) (2.125a)

+ 1
2

occ∑
i

vir∑
ab

⟨pi||ab⟩ ⟨ab||qi⟩
ω − (εa + εb − εi)

, (2.125b)

where Equation 2.125a corresponds to the occupied (2h1p) and Equation 2.125b to the virtual
(1h2p) spaces. The diagrams associated with the terms can be obtained by taking the two
topologically distinct ways to cut a propagator in the diagram shown in Equation 2.115

1
2

occ∑
ij

vir∑
a

⟨ij||ap⟩ ⟨aq||ij⟩
ω − (εi + εj − εa) = , (2.126a)

1
2

occ∑
i

vir∑
ab

⟨pi||ab⟩ ⟨ab||qi⟩
ω − (εa + εb − εi)

= . (2.126b)

Equation 2.125 clearly possesses a structure compatible with Equation 2.78, and one can therefore
write the occupied self-energy with the substitutions

Vp,ija = 1√
2
⟨ij||ap⟩ , (2.127a)

Vp,iab = 1√
2
⟨pi||ab⟩ , (2.127b)

Kija,klb = δikδjlδab (εi + εj − εa) , (2.127c)

Kiab,jcd = δijδacδbd (εa + εb − εi) , (2.127d)

Cija,klb = 0, (2.127e)

Ciab,jcd = 0. (2.127f)

The diagonal nature of the Hamiltonian in the large space indicates that the 2h1p (and indeed
1h2p) configurations do not couple with each other at second-order. The expression for the energy
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in Equation 2.114 can be recovered from Equation 2.125 by evaluating the Galitskii–Migdal formula
in the presence of the HF Green’s function and performing integration over frequency, as shown in
Ref. 52, and will be recapped in Section 4.3.

Higher-order

At third-order, there are 12 frequency dependent diagrams, along with 6 frequency independent
ones resulting from vertex insertion. These diagrams can be found in the literature,183 along with
expressions for Σ(3) (including frequency independent parts),184 and the parameters satisfying V,
K and C.185,186 At third-order C is non-zero, indicating that there exists a coupling between
the 2h1p and separately between the 1h2p configurations. The expressions at n > 3 become
rather cumbersome, and typically are not defined explicitly, but rather using expansions based
on configuration interaction (CI).181,182 The order of configuration space spanned increases with
every other order n, i.e. n = 4, 5 span also 3h2p and 2h3p spaces, n = 6, 7 span 4h3p and 3h4p
spaces, and so forth. This corresponds to an increase in the span of K with every even n, and in
the span of C with every odd n.

2.5.2 Algebraic diagrammatic construction

The algebraic diagrammatic construction (ADC) can be considered an excited state extension to
MP perturbation theory, and whilst several perspectives, derivations, and applications exist in
the literature, this work will be concerned with ADC only in the context of the single-particle
Green’s function.91,185,187–195 We note that an alternative and common application of ADC is to
the two-particle Green’s function in the form of the polarisation propagator, which serves to
calculate neutral excitations energies rather than the IPs and EAs we are concerned with.196–204

ADC can be considered as a solution to a single iteration of Equation 2.77 where the
aforementioned perturbative self-energies are used. Therein, the poles of the Green’s function (λ
values of Equation 2.68) are interpreted as IPa and EA excitations at the given level of
perturbation theory, with the couplings (u of Equation 2.68) permitting the calculation of
transition moments. These calculations typically start with the dynamical self-energy upfolded
into its static configuration space, leading to a series of secular matrices in the form of
Equation 2.80 that are consistent up to consecutive orders in perturbation theory. Figure 2.3
shows schematic representations of this series of matrices, where the numbers denote the order of
each block in the matrix in perturbation theory.

From Equations 2.123 and 2.124 the zeroth-order algebraic diagrammatic construction
(ADC(0)) and first-order algebraic diagrammatic construction (ADC(1)) secular matrices can be
understood to be equal to the Fock matrix in the canonical basis, and therefore the solutions at
these levels of theory are simply the MOs. This reflects the fact that MP1 theory is simply equal
to HF, with no frequency dependence existing to alter the spectrum. In second-order algebraic
diagrammatic construction (ADC(2)) the frequency-independent self-energies of zeroth and

aMore accurately, in the nomenclature used throughout this work, they are minus one times the IP.
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ADC(0) ADC(1) ADC(2) ADC(3)

Figure 2.3: Schematic representations of the ADC(n) series of matrices for n between 0 and 3. The numbers
denote the order of each block in perturbation theory. Adapted from Ref. 201.

first-order are retained in the small block, however the dynamic 2h1p and 1h2p contributions are
upfolded into their respective configuration spaces and concatenated to give V and K, where the
coupling C between these configurations is zero. The forms of these quantities are identical to
Equation 2.127. Higher-order ADC(n) calculations can be derived by similarly upfolding the
nth-order self-energy as discussed in Section 2.5, and matrix elements can be derived
diagrammatically or via other frameworks.181,182,185,188,205 Additionally, the extended
second-order algebraic diagrammatic construction (ADC(2)-x) method is defined by increasing
the order in the K+C block to that of third-order algebraic diagrammatic construction (ADC(3))
whilst retaining the V and Σ(∞) of ADC(2). This method however is not rigorously justified
diagrammatically, and in the case of excitation energies offers a consistent underestimation.200

Iterative eigensolvers, typically the Davidson algorithm, are employed to solve the self-energy
in ADC to obtain the poles and transition amplitudes of the Green’s function. This reduces the
cost of the eigenproblem to be linear in the cost of the operation computing the dot-product
between the self-energy matrix and an arbitrary state vector, but is only sufficient to calculate
an O(1) number of the smallest eigenvalues. In order to compute the excitations closest to the
Fermi level (i.e. the first few IPs and EAs), one requires a separation between the occupied and
virtual parts of the self-energy. Whilst these parts are completely separable (c.f. Equation 2.125)
there still exists a coupling between the virtual (occupied) MO space and the entire higher-order
configuration space, meaning that the solution does not yield purely occupied (purely virtual) poles
of the Green’s function. As such, one must employ the ‘non-Dyson’ approximation to fully separate
the occupied and virtual Green’s functions, thereby only solving for Σij(ω) in the occupied case
and for Σab(ω) in the virtual case.186,192,206 Solving for the lowest poles of the Green’s function
using the ADC(n) ansatz in this way exhibits the same scaling as the parent MPn method. When
referred to as simply ADC, we will mean the ‘non-Dyson’ variant, except when explicitly referred
to as Dyson-ADC.
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2.5.3 Green’s function perturbation theory

An alternative method for solving for the Green’s function at the level of nth-order perturbation
theory is Green’s function perturbation theory. Instead of upfolding the self-energy into the
configuration space and solving as an eigenproblem, one instead numerically solves the Dyson
equation using the self-energy at a given order. This in turn allows one to reinsert the dressed
propagators back into the self-energy, which can in turn be solved for an updated Green’s
function. As such, this defines an iterative procedure that can be performed self-consistently, and
is referred to as Green’s function perturbation theory (GFn).42,101,103,123,136,143,184,207–214 At the
level of second-order Green’s function perturbation theory (GF2), diagrammatically this
corresponds to inserting in all possible ways the self-energy of Equation 2.126 into Equation 2.83,
resulting in a pair of antisymmetric Goldstone diagrams that have the same topology as
Equation 2.126 but in which the propagator lines are dressed (renormalised)

Σ(2,occ)
pq [G] = , (2.128a)

Σ(2,vir)
pq [G] = . (2.128b)

The two-body component of the total energy can then be calculated by evaluating the Galitskii–
Migdal formula as discussed in Section 2.4.5. Diagrammatically, it is equivalent to the MP2 energy
of Equation 2.115 with all propagators dresseda

E2b[Σ(2)[G]] = (2.129)

This self-consistency was briefly discussed in Section 2.4.3, involving Fourier transforms
between time and frequency grids, and sometimes analytic continuation between real and
complex domains. The details of this procedure are out of the scope of this work and can be
found in the literature,42,101,123,143,208,209,212 but it is important to note that these numerical
methods are often badly conditioned or hard to converge, and the size of the time grid appears in
the formal scaling of method. In addition, self-consistent Green’s function methods are inherently

aIt should be noted that this is referred to as the ‘two-body’ energy rather than the correlation energy because
additional correlation-induced changes to the one-body density matrix result in a one-body energy that is not equal
to that of HF, and therefore the correlation energy is actually Ecorr = (E1b + E2b) − EHF.
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hard to converge with respect to the Dyson equation.145,215,216 On top of the self-consistency in
the Dyson equation, one requires that the Fock matrix is self-consistent with the
correlation-induced changes to the one-body density matrix, and this in turn requires one to
maintain a chemical potential since particle number conservation laws are not strictly obeyed. As
such, self-consistent Green’s function perturbation theory has only limited use in the literature,
with some use of the second-order GF2 method.

Whilst ADC is not traditionally derived from a Green’s function perspective, the framework
used here to describe both ADC and Green’s function perturbation theory allow the conclusion
that GFn can be considered a self-consistent extension to Dyson-ADC(n). GFn however does not
allow one to easily obtain an explicit pole representation of the Green’s function from which IPs
and EAs can be inferred, but rather it provides a grid-resolved Green’s function across the entire
spectrum. As discussed in Section 2.4.3 one option to obtaining such excitations and effective
Dyson amplitudes is to apply the EKT procedure, as outlined in Ref. 109. In Chapter 4 we
will look to combine these perspectives in order to define a method that not only self-consistently
solves the Dyson equation, but also provides an explicit pole representation of the resulting Green’s
function.
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2.6 Electron propagator theory

Electron propagator (EP) theory can be considered an umbrella term that collects the many
approximations to the self-energy, in the context of their solution to yield a single-particle
Green’s function.65,74,98,183,184,187,188,217–233 The nth-order self-energies discussed in Section 2.5
are included in this family, including a multitude of approximations incorporating diagrams at
different levels of perturbation theory. Typical derivations are performed in the context of
superoperator theory however the resulting self-energies can still be applied in identical fashion to
those already discussed, with EP implementations typically leveraging a self-consistent eigenvalue
equation in order to solve the Dyson equation. As such, we will review some common
self-energies employed in EP theory.

Choice of the configuration space to span the 2h1p and 1h2p spaces whilst neglecting
couplings between them define the non-diagonal second-order self-energy ΣND2, which is identical
to the second-order self-energy of Equation 2.125. Considering only diagonal elements
ΣD2

pq = ΣND2
pq δpq results in the diagonal second-order self-energy which, as per Equation 2.122, is

equal to the ∆MP2 self-energy when evaluated at the MO energies. Expansion of the spin
orbitals and the subsequent neglect of same-spin interactions defines the opposite-spin D2
self-energy Σos−D2. Similar approaches exist where the same-spin and opposite-spin interactions
are assigned empirically determined weighting factors, with these methods being related to the
scaled opposite-spin (SOS) and spin-component scaled (SCS) variants of MP calculations.234–238

The variants ΣnD−ND2 and ΣnD−D2 employ the non-Dyson approximation as discussed in
Section 2.5.2 affording a number of computational advantages. Depending on the solver, this may
relax bottlenecks, whilst offering a satisfactory approximation in many applications.186 ADC(2)
is therefore the application of an iterative eigensolver to ΣnD−ND2 upfolded into the space of its
configuration space.

Owing to the Tamm–Dancoff approximation (TDA), the 2p1h-TDA self-energy Σ2p1h−TDA

incorporates first-order couplings between the 2h1p couplings and between the 1h2p couplings. This
self-energy can be parameterised identically to Equation 2.127 with the additional contributions
to the C blocks84,239

Cija,klb = (1− Pij)(1− Pkl)δik ⟨al||bj⟩ − δab ⟨kl||ij⟩ , (2.130a)

Ciab,jcd = δij ⟨cd||ab⟩ − (1− Pab)(1− Pcd)δac ⟨id||jb⟩ , (2.130b)

where the permutation operator Pxy permutes the indices x and y.
The 3+ self-energy Σ3+ incorporates all third-order contributions to the self-energy, as

discussed in Section 2.5.1. Typical ADC(3) calculations can therefore be considered to be an
evaluation of the non-Dyson variant ΣnD−3+. The subsequent calculation of the resolvent or
Dyson orbitals therefore generates terms beyond third-order; one may alternatively neglect terms
in the self-energy that result in these higher-order terms defining the third-order ΣND3 and its
associated diagonal approximation ΣD3, along with associated opposite-spin and non-Dyson
variants. As stated for second-order, ΣD3 evaluated at the MO energies returns the so-called
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Methods
CPU bottleneck

RAM bottleneck
Iterative Non-iterative

D2 noccn
2
vir noccn

2
vir

ND2 noccn
3
vir noccn

3
vir

D3, OVGF noccn
4
vir n2

occn
3
vir n4

vir

P3, P3+ n3
occn

2
vir n2

occn
3
vir noccn

3
vir

2p1h-TDA noccn
4
vir n4

vir

NR2 n2
occn

3
vir n3

occn
3
vir noccn

3
vir

3+ noccn
4
vir n2

occn
4
vir n2

occn
2
vir

Table 2.1: Scaling of the EP methods in terms of the iterative and non-iterative CPU bottlenecks, and the
storage bottleneck, with respect to the number of occupied orbitals nocc and number of virtual orbitals nvir.
The non-iterative steps must only be calculated once, typically representing the parts of the self-energy
independent of frequency, whilst the iterative steps must be calculated multiple times at each iteration of
either an iterative eigensolver or a self-consistent eigenvalue formulation. These costs represent those of
the calculation of a single IP or EA, where nvir ≫ nocc is assumed. Adapted from Refs. 74,99,233,240,247.

∆MP3 self-energy. The terms entering the diagonal third-order ΣD3 can be reformulated into
approximate self-energies under the class of outer-valence Green’s functions (OVGFs), which are
competitive with ADC(3) calculations for the calculation of low-lying IPs.74,188,224,240 These
variants are denoted ΣOVGF−A, ΣOVGF−B, and ΣOVGF−C, and their form can be found in e.g.
Refs. 188,224. The diagonal partial third-order ΣP3 neglects a number of terms in ΣD3,241,242

requiring separate approximations for the IP and EA, and ΣP3+ introduces a renormalisation
factor in some terms.243 Furthermore, ΣNR2 can be considered a non-diagonal extension to these
methods, with the name originating from the effective renormalisation in low-order terms.74,244

Many other related self-energies can be found, for example those reported in e.g. Ref. 99. An
additional perspective on effective renormalisation of the propagator is to perform EP
calculations in a basis of Brueckner orbitals, which can have significant effect on those terms in
the self-energy that are vanishing.73,225,245,246 Table 2.1 shows the computational scaling for the
various EP self-energies discussed in this section in terms of the number of occupied orbitals nocc

and virtual orbitals nvir.74,99,233,240,247 The iterative bottleneck represents the scaling of the steps
that must be recomputed at each iteration of either an iterative eigensolver or a self-consistent
eigenvalue formulation, whilst the non-iterative bottleneck represents the scaling of steps that
only need to be calculated once. In most scenarios, this can be separated into the frequency
independent parts (non-iterative) and frequency dependent parts (iterative). The CPU
bottlenecks are listed in terms of the calculation of a single IP or EA, where nvir ≫ nocc is
assumed.
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2.7 Coupled cluster

The coupled cluster (CC) method considers an exponential ansatz for the ground state, which is
explicitly size-extensive.248–255 With respect to a HF reference state we can write this as∣∣∣ΨR

CC

〉
= eT̂ |ΨHF⟩ , (2.131)

where we have introduced a cluster operator T̂ that can be expanded in terms of consecutive orders
of particle-hole excitations

T̂ = T̂1 + T̂2 + . . . (2.132a)

=
occ∑

i

vir∑
a

tai âaâ
†
i +

occ∑
i<j

vir∑
a<b

tab
ij âaâbâ

†
j â

†
i + . . . . (2.132b)

The operator eT̂ is non-unitary, and therefore the corresponding bra cannot be expressed simply
as the adjoint of the ket. Instead, introduce a pair of biorthogonal wavefunctions68,256

〈
ΨL

CC

∣∣∣ΨR
CC

〉
= 1, (2.133)

where the bra is typically defined as〈
ΨL

CC

∣∣∣ = ⟨ΨHF| (1 + Λ̂)e−T̂ , (2.134)

where Λ̂ is a linear de-excitation operator defined similarly to Equation 2.132

Λ̂ = Λ̂1 + Λ̂2 + . . . (2.135a)

=
occ∑

i

vir∑
a

liaâiâ
†
a +

occ∑
i<j

vir∑
a<b

lijabâiâj â
†
bâ

†
a + . . . . (2.135b)

The energy of a CC model can be evaluated by projection against the reference state

ECC =
〈

ΨHF

∣∣∣Ĥ ∣∣∣ΨR
CC

〉
, (2.136)

where cluster operators of greater than second-order do not contribute, Ĥ being a two-particle
operator. Additionally, Brillouin’s theorem tells us that ⟨ΨHF|ĤT̂1|ΨHF⟩ = 0 and therefore we
can expand Equation 2.136 to get

ECC =
〈

ΨHF

∣∣∣[Ĥ,(1 + T̂2 + 1
2 T̂

2
1

)]∣∣∣ΨHF

〉
(2.137a)

=
occ∑

i

vir∑
a

Fiat
a
i + 1

4

occ∑
ij

vir∑
ab

⟨ij||ab⟩ tab
ij + 1

2

occ∑
ij

vir∑
ab

⟨ij||ab⟩ tai tbj . (2.137b)
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The corresponding diagrams for these terms are

occ∑
i

vir∑
a

Fiat
a
i =

×

, (2.138a)

1
4

occ∑
ij

vir∑
ab

⟨ij||ab⟩ tab
ij = , (2.138b)

1
2

occ∑
ij

vir∑
ab

⟨ij||ab⟩ tai tbj = , (2.138c)

which is the subset of diagrams responsible for the energy in any CC ansatz including at least
singly and doubly excited cluster amplitudes. The notation indicates a cluster operator T̂ , with
its rank indicated by the number of hole and particle lines entering and exiting it. Projection onto
excited wavefunctions produces sets of non-linear equations that can be used to update the cluster
amplitudes t self-consistently, and can be written generally as

0 =
〈

Ψab...
ij...

∣∣∣ĤN

∣∣∣ΨR
CC

〉
, (2.139)

where the normal-ordered Hamiltonian ĤN is defined as

ĤN = Ĥ −
〈

ΨHF

∣∣∣Ĥ ∣∣∣ΨHF

〉
= Ĥ − E0. (2.140)

This results in a set of equations to be converged, not necessarily variationally, although it is
both size-consistent and size-extensive. Whilst the diagrams corresponding to the energy are the
same for any ansatz including at least singly and doubly excited cluster operators, the T̂1 and
T̂2 operators contain different subsets of diagrams for higher-order ansatzes via Equation 2.139.
There exist many in-depth discussions of the diagrams contained in Equation 2.139 for different CC
ansatzes, which we will not show here.68,252,257–265 The condition under which the Λ̂ amplitudes
are optimised can be written in a similar fashion

0 =
〈

ΨL
CC

∣∣∣ĤN

∣∣∣Ψab...
ij...

〉
. (2.141)

Density matrices can be computed at the level of CC using familiar second quantised
expressions, i.e. for the one-body reduced density matrix

γpq =
〈

ΨL
CC

∣∣∣ â†
qâp

∣∣∣ΨR
CC

〉
, (2.142a)

=
〈

ΨHF

∣∣∣(1 + Λ̂)e−T̂ â†
qâpeT̂

∣∣∣ΨHF

〉
, (2.142b)

=
〈

ΨHF

∣∣∣(1 + Λ̂)ā†
qāp

∣∣∣ΨHF

〉
, (2.142c)
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where we have introduced the compact notations āp = e−T̂ âpeT̂ and ā†
p = e−T̂ â†

peT̂ , noting that
eT̂ e−T̂ = 1. Equivalent expressions can be written for higher-order density matrices such as the
second-order reduced density matrix Γpqrs, and these expressions can be evaluated algebraically
and diagrammatically. By default, the density matrices are non-Hermitian as a result of the non-
Hermitian CC ansatz.

2.7.1 Equation-of-motion coupled cluster

The equation-of-motion coupled cluster (EOM-CC) method can be used to target a state in a
linear operation starting from a CC ground state wavefunction.68,256,266–270 This concept can be
readily applied to probe the IP, EA, and electron excitation (EE) at the level of a particular CC
ansatz. Considering a target state Ψk in addition to the ground state ΨCC, we seek to determine
the difference in energies ωk = Ek −EHF. This can be expressed considering a pair of Schrödinger
equations

Ĥ |ΨCC⟩ = ECC |ΨCC⟩ , (2.143a)

Ĥ |Ψk⟩ = Ek |Ψk⟩ . (2.143b)

where the target excited state is related to the ground state wavefunctions by linear operators R̂
and L̂, whose form depends on the character of the desired target state. The expressions can be
manipulated to arrive at the EOM-CC expressions[

H̄, R̂k

]
|ΨHF⟩ = (Ek − ECC)R̂k |ΨHF⟩ = ωkR̂k |ΨHF⟩ , (2.144)

which can be interpreted as the (manifestly non-Hermitian) matrix eigenvalue problem H̄R =
Rω, with the left-handed analogue possessing the same energy, i.e. L†H̄ = L†ω. The right-hand
excitation operators for EE-EOM-CC, IP-EOM-CC and EA-EOM-CC can be written

R̂EE
k =

occ∑
i

vir∑
a

ra
i â

†
aâi +

occ∑
i<j

vir∑
a<b

rab
ij â

†
aâ

†
bâj âi + . . . , (2.145a)

R̂IP
k =

occ∑
i

riâi +
occ∑
i<j

vir∑
a

ra
ij â

†
aâj âi + . . . , (2.145b)

R̂EA
k =

vir∑
a

raâ†
a +

occ∑
i

vir∑
a<b

rab
i â†

aâ
†
bâi + . . . . (2.145c)

The left-handed excitation operators have the same form and can be read from Equation 2.145 with
the substitutions R̂←→ L̂ and r ←→ l. Typically, one expands R̂ (or L̂) to the same truncation as the
ground state CC cluster operator T̂ . The eigenfunctions are biorthogonal and when appropriately
normalised satisfy 〈

ΨHF

∣∣∣L̂kR̂m

∣∣∣ΨHF

〉
= δkm, (2.146)



2.7 Coupled cluster 49

and give a resolution of the identity

1 =
∑

k

R̂k |ΨHF⟩ ⟨ΨHF| L̂k. (2.147)

This relationship allows us to connect to Green’s function theory with the Lehmann representation
for a non-Hermitian single-particle Green’s function270

Gpq(ω + i0+) =
∑

k

uL
pku

R
qk

ω − ωk + i0+ , (2.148)

where the Dyson orbitals are defined as

uL
pk =

〈
ΨHF

∣∣∣L̂kāp

∣∣∣ΨHF

〉
, (2.149a)

uR
qk =

〈
ΨHF

∣∣∣(1 + Λ̂)ā†
qR̂k

∣∣∣ΨHF

〉
, (2.149b)

which are fully separable into occupied and virtual components since they only depend on either
the R̂ and L̂ corresponding to IPs or EAs.

The eigenvalue problem of Equation 2.144 can be considered that of an effective self-energy
upfolded into its configuration space as detailed in Section 2.4.2. This effective self-energy is not
equal to the true CC self-energy (the identity of which will be discussed in Section 2.7.2) by virtue
of the EOM-CC formalism. A principal difference between these self-energies manifests in the
same fashion as the ‘non-Dyson’ approximation to ADC discussed in Section 2.5.2. To recap,
the small space of H̄ spans only occupied (virtual) MOs in the case of R̂IP (R̂EA), and the virtual
(occupied) self-energy does not contribute to the dynamic part of the self-energy when folded down
into those spanned MOs. For a detailed discussion of these differences in terms of diagrams and
time orderings, the reader should refer to Ref. 270.

2.7.2 Green’s function coupled cluster

Recalling the expressions for the single-particle Green’s function in frequency space shown in
Equation 2.67, the Green’s function in the case of a CC ground state, defining the Green’s function
coupled cluster (GF-CC) method, can be written as128,130,131,271–282

Gpq(ω + i0+) =
〈

ΨL
CC

∣∣∣∣ â†
q

[
ω + ĤN + i0+

]−1
âp

∣∣∣∣ΨR
CC

〉
+
〈

ΨL
CC

∣∣∣∣ âp

[
ω − ĤN + i0+

]−1
â†

q

∣∣∣∣ΨR
CC

〉
, (2.150a)

=
〈

ΨHF

∣∣∣(1 + Λ̂)ā†
q

[
ω + H̄N + i0+]−1

āp

∣∣∣ΨHF

〉
+
〈

ΨHF

∣∣∣(1 + Λ̂)āp

[
ω − H̄N + i0+]−1

ā†
q

∣∣∣ΨHF

〉
, (2.150b)

where the signs in front of the respective H̄N correct the sign of the poles of the Green’s function
in the case of IPs. It is then necessary to introduce a pair of frequency-dependent many-body
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operators that can be expanded perturbatively

X̂p(ω) = X̂p,1(ω) + X̂p,2(ω) + . . .

=
occ∑

i

[
xi(ω)

]
p
âi +

occ∑
i<j

vir∑
a

[
xij

a (ω)
]

p
â†

aâj âi + . . . , (2.151)

Ŷp(ω) = Ŷp,1(ω) + Ŷp,2(ω) + . . .

=
vir∑
a

[ya(ω)]p â
†
a +

occ∑
i

vir∑
a<b

[
yab

i (ω)
]

p
â†

aâ
†
bâi + . . . , (2.152)

yielding a system of linear equations in frequency space

PX

(
ω + H̄N + i0+)Xp |ΨHF⟩ = PX āp |ΨHF⟩ , (2.153a)

PY

(
ω − H̄N + i0+)Yp |ΨHF⟩ = PY ā

†
p |ΨHF⟩ . (2.153b)

The projectors PX and PY project onto appropriate excited configurations

PX = PX,1 + PX,2 + . . .

=
occ∑

i

âi |ΨHF⟩ ⟨ΨHF| â†
i +

occ∑
i<j

vir∑
a

â†
aâj âi |ΨHF⟩ ⟨ΨHF| â†

i â
†
j âa, (2.154a)

PY = PY,1 + PY,2 + . . .

=
vir∑
a

â†
a |ΨHF⟩ ⟨ΨHF| âa +

occ∑
i

vir∑
a<b

â†
aâ

†
bâi |ΨHF⟩ ⟨ΨHF| â†

i âbâa. (2.154b)

These equations allow the construction of Equation 2.150 using the X and Y operators determined
at a given frequency

Gpq(ω) =
〈

ΨHF

∣∣∣(1 + Λ̂)ā†
qXp(ω)

∣∣∣ΨHF

〉
+
〈

ΨHF

∣∣∣(1 + Λ̂)āpYq(ω)
∣∣∣ΨHF

〉
. (2.155)

Typically, one truncates the X̂, Ŷ , and respective P to the same order as the T̂ and Λ̂ operators. For
example, at the level of coupled cluster singles and doubles (CCSD) the operators are truncated to
1h and 2h1p spaces for the IP, and 1p and 1h2p spaces for the EA. This ensures that the fluctuation
space describing singly-charged excitations is not complete, but consistent in its description of both
the ground state and the excited state. As a result, applying the Galitskii–Migdal formula using the
Green’s function obtained in the Green’s function coupled cluster singles and doubles (GF-CCSD)
method does not yield an energy that agrees with the CCSD energy calculated in the canonical
fashion, which requires dynamical fluctuations into the 3h2p space.270–272
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2.8 GW approximation

Hedin’s equations present a self-consistent formalism for the single-particle Green’s function in
the case of a screened Coulomb interaction W , rather than the bare interaction V given by the
ERIs.76,283–296 The GW approximation seeks to solve these equations with the so-called vertex
corrections Γ equal to identity. The screened interaction can be understood by its own Dyson-like
equation

W = V + V χV, (2.156)

which can be interpreted diagrammatically as

W = , (2.157a)

V + V χV = + , (2.157b)

where χ is the reducible polarisation propagator. In GW , the self-energy is defined by the integral

ΣGW (x1,x2;ω1) = i

2π

∫
dω2e(i0+ω2)G(x1,x2;ω1 + ω2)Wcorr(x2,x1;ω2), (2.158)

where Wcorr = W − V indicates the correlation part of W , and χ can be written as a sum over its
poles

χ(x1,x2;ω) =
∑

n

ρn(x1)ρ∗
n(x2)

ω − Ωn + i0+ +
∑

n

ρn(x1)ρ∗
n(x2)

ω + Ωn − i0+ , (2.159)

where the neutral excitations Ω possess transition densities ρ, and n enumerates the excitations.
These equations lead to an analytic expression for the self-energy

ΣGW
pq (ω) =

∑
n

occ∑
i

(pi|n) (n|qi)
ω − (ϵi − Ωn)− i0+ +

∑
n

vir∑
a

(pa|n) (n|qa)
ω − (ϵa + Ωn) + i0+ , (2.160)

where ϵ are the pole energies of G entering Equation 2.158, and the three-centre integrals (n|pq)
are defined by

(n|pq) =
∫

dx1 dx2ρn(x1) 1
|r1 − r2|

ψ∗
p(x1)ψq(x2). (2.161)

The transition densities can be defined as

ρn(x) = ⟨ΨHF | n̂(x) |Ψn⟩ =
∑
pq

ψ∗
p(x)ψq(x)

〈
ΨHF

∣∣ â†
pâq

∣∣Ψn

〉
, (2.162)
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and as such one must construct the set of Ωn and Ψn in order to determine the self-energy. The
two parts of the self-energy can be interpreted diagrammatically as

∑
n

occ∑
i

(pi|n) (n|qi)
ω − (ϵi − Ωn) = , (2.163a)

∑
n

vir∑
a

(pa|n) (n|qa)
ω − (ϵa + Ωn) = , (2.163b)

where the infinitesimals used to regularise Equation 2.158 have been omitted. The polarisability is
typically determined using the (direct) RPA approximation starting from the eigenproblem297–301[

A B
−B∗ −A∗

][
Xn

Yn

]
= Ωn

[
Xn

Yn

]
, (2.164)

where the eigenvectors X and Y define the amplitudes ρ of the polarisation propagator. The
transition amplitudes can then be computed as

(n|pq) =
occ∑

i

vir∑
a

[Xn
ia ⟨ip|aq⟩+ Y n

ia ⟨ap|iq⟩] . (2.165)

In the case of the time-dependent Hartree dielectric function, the matrix elements of Equation 2.164
can be written

Aia,jb = (εa − εi) δabδij + ⟨aj|ib⟩ , (2.166a)

Bia,jb = ⟨ij|ab⟩ . (2.166b)

The TDA can be defined by setting B = 0, effectively decoupling the excitation and de-excitation
spaces.302 Whilst RPA constitutes a correlated ground state, without this coupling the
de-excitation is symmetric with respect to excitation and therefore cannot induce correlation into
the ground state.303,304 RPA is closely connected to CC theory.270,304–306

By inspection of Equations 2.160 to 2.162 one can infer that in the case of Ψn = ΨHF, Ωn =
εa − εi, and ϵk = εk, the self-energy in Equation 2.160 can be summarised by the diagrams that
are topologically identical to those in Equation 2.126. The first two of these conditions can be
interpreted as approximating the polarisability to be equal to its value at the level of HF, and
the third condition the assumption that G = G0. The conclusion of this observation is that GW
is simply second-order perturbation theory in the case of a screened Coulomb interaction and
neglect of second-order exchange. The bare second-order exchange term can be reintroduced to
the self-energy by instead employing the RPAx, within which ERIs of the GW self-energy are
antisymmetrised as they are in the standard second-order self-energy. This is known to suffer from
complex solutions in the case of unstable reference states.307 The so-called second-order screened



2.8 GW approximation 53

exchange (SOSEX) extension to GW can be used to introduce a screened exchange interaction
that remedies these instabilities and includes additional diagrams.308–311

Ref. 312 details parameters for the self-energies in the case of both TDA and RPA screening,
for TDA these are

Vp,ija = ⟨pa|ij⟩ , (2.167a)

Vp,iab = ⟨pi|ba⟩ , (2.167b)

Kija,klb = δikδjlδab (εi + εj − εa) , (2.167c)

Kiab,jcd = δijδacδbd (εa + εb − εi) , (2.167d)

Cija,klb = −⟨jb|al⟩ δik, (2.167e)

Ciab,jcd = ⟨aj|ic⟩ δbd. (2.167f)

This is closely related to the 2p1h-TDA method discussed in Section 2.6. In the case of RPA, Ref.
312 details the operations contributing to the dot-product of the self-energy matrix with a vector.
It is important to note that the dot-product of the self-energy matrix and a vector in the case
of TDA can be performed as O(n4

mo) if one employs a density fitting (DF) scheme, leading to an
efficient route to perform non-self-consistent GW in the case of TDA.

The most common form of GW neglects self-consistency in both G and W and is called G0W0,
and is known to be accurate and efficient.215,295,296,313–318 This can be seen from the additional
bare interaction terms in the C blocks compared to the second-order self-energy, corresponding
to the insertion of the bare form of Equation 2.157b into the second-order diagrams. Further
approximations ignore just one of the self-consistencies leading to GW0 and G0W , with other
partial self-consistencies existing.215,285,319–333 Unless explicitly referred to as self-consistent, the
name GW will be used for the non-self-consistent variant.
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2.9 Configuration interaction

FCI expands the wavefunction in all possible excited state determinants57,334

|Φ⟩ = c0 |ΨHF⟩+
occ∑

i

vir∑
a

ca
i |Ψa

i ⟩+
occ∑
i<j

vir∑
a<b

cab
ij

∣∣∣Ψab
ij

〉

+
occ∑

i<j<k

vir∑
a<b<c

cabc
ijk

∣∣∣Ψabc
ijk

〉
+ . . . . (2.168)

For a system of nmo spin orbitals of which nocc are occupied and nvir unoccupied, the number of
determinants entering the nth term of Equation 2.168 (where we consider the c0 term to be the
zeroth term) equals (

nocc

n

)(
nmo − nocc

n

)
, (2.169)

which even for modest system sizes is a prohibitively large number. The FCI matrix can be written

⟨0|Ĥ|0⟩ 0 ⟨0|Ĥ|D⟩ 0 0 · · ·
0 ⟨S|Ĥ|S⟩ ⟨S|Ĥ|D⟩ ⟨S|Ĥ|T ⟩ 0 · · ·

⟨D|Ĥ|0⟩ ⟨D|Ĥ|S⟩ ⟨D|Ĥ|D⟩ ⟨D|Ĥ|T ⟩ ⟨D|Ĥ|Q⟩ · · ·
0 ⟨T |Ĥ|S⟩ ⟨T |Ĥ|D⟩ ⟨T |Ĥ|T ⟩ ⟨T |Ĥ|Q⟩ · · ·
0 0 ⟨Q|Ĥ|D⟩ ⟨Q|Ĥ|T ⟩ ⟨Q|Ĥ|Q⟩ · · ·
...

...
...

...
...

. . .


, (2.170)

where a compact notation has been used such that |0⟩ = |ΨHF⟩, |S⟩ = |Ψa
i ⟩, and so forth. Some

observations can be made from the structure of Equation 2.170:

• As a consequence of Brillouin’s theorem (see Appendix B), ⟨0|Ĥ|S⟩ = 0. This manifests in
no direct coupling with singly excited determinants and the ground state wavefunction, and
therefore, little effect on the ground state energy. In contrast, the doubly excited
configurations are the only ones that couple directly with the ground state and therefore are
typically of the greatest importance in describing the ground state energy.

• Matrix elements of the Hamiltonian between determinants who differ in more than two spin
orbitals are zero. This results in ⟨0|Ĥ|T ⟩ = 0, ⟨S|Ĥ|Q⟩ = 0, etc., but also in sparsity of the
blocks away from the diagonal such as ⟨D|Ĥ|Q⟩ for which most of the possible configurations
do not satisfy this condition.

The nth eigenvalue of Equation 2.170 gives an upper bound to the energy of the n-tuply excited
state of the system, and is exact in the limit of a complete basis and within the Born–Oppenheimer
approximation. As such, the difference between EHF and the lowest eigenvalue gives the exact
correlation energy within that basis. As a result of Equation 2.169, the size of Equation 2.170 grows
exponentially with system size. This makes FCI only computationally feasible for the smallest
systems, where one employs typically the Davidson algorithm to avoid storage of Equation 2.170 on
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memory. A considerable number of approximations, numerical techniques, and simple truncations
exist to reduce the computational effort required to perform CI calculations, none of which will
be discussed in the present work.90,335–337 One feature of truncated CI that we note is that it is
not, in the trivial case, size-extensive; this in part affords CC the supremacy it has amassed in the
field of quantum chemistry. The single-particle Green’s function can be defined according to the
(appropriately normalised) excited state determinants using Equation 2.67, where ΨN

0 and EN
0

are the ground state wavefunction and energy calculated at the level of FCI. This represents a
summation over all possible Goldstone diagrams for an N -electron system to infinite order.
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3.1 Introduction

This Chapter will begin by introducing the Lanczos algorithm, followed by the subsequent
extension to the block Lanczos algorithm. The Lanczos algorithm is an iterative approach to
solving the eigenproblem, named after Cornelius Lanczos who formulated the original idea in a
1950 publication.93 Subsequent improvements in the numerical stability have resulted in a
popular method, particularly when applied to the calculation of extremal eigenvalues, and which
is very effective when applied to sparse matrices. The block Lanczos algorithm extends the
Lanczos procedure to allow the account of multiplicity in eigenvalues. Whilst the single-vector
Lanczos algorithm considers the orthogonal projection of the particular matrix onto a tridiagonal
matrix within a subspace, the block Lanczos algorithm considers block vectors and the projection
onto a block tridiagonal matrix, and this procedure will also be outlined in this Chapter. Therein,
the utility of block Lanczos will be described in the context of solving the Dyson equation in
Green’s function perturbation theories. Much of this is based on the work of Refs. 44,45. Several
works have applied the block Lanczos procedure to many-body problems, and more specifically
problems of determining the Green’s function, however in many cases the requirement of vectors
spanning the entire configuration space of the particular self-energy do not offer particularly
great applicability to larger problems.

We then shift our focus to reformulating the block Lanczos algorithm within the context of
solving the Dyson equation, leveraging the spectral moments introduced in Section 2.4.4. The
reformulation in Section 3.5 was introduced in the simplest example in Ref. 51, and was therein
extended to arbitrary numbers of Lanczos iterations for applications in work yet to be published.
The second reformulation from the perspective of moments of the Green’s function in Section 3.6
was originally developed by P. V. Sriluckshmy for the work discussed in Ref. 338, and therein
extended to the case of non-Hermitian Green’s functions by the author for Ref. 339. These two
algorithms permit an efficient approach to applying block Lanczos to the solution of the Dyson
equation, exploiting similar benefits to other existing solvers, and permitting tractable
self-consistency in an upfolded representation. They are not without downsides, mostly
originating in the exponentiation of the spectral parameters in the calculation of the moments,
which will also be discussed.
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3.2 Lanczos algorithm

The Lanczos algorithm is an iterative eigensolver originally formulated by Cornelius Lanczos, and
later by Ojalvo and Newman to improve the numerical stability.93,94 The input to the algorithm
is the function

q 7→Mq, (3.1)

where M is a Hermitian matrix of dimension n,a that can act upon an arbitrary state vector q.
The algorithm seeks to construct a vector space called a Krylov subspace K

Ki(M,q) = span (q,Mq,M2q, . . . ,Mi−1q), (3.2)

into which M can then be projected, yielding a new matrix whose eigenvalues are approximations
to those of M. For an arbitrary initial unit vector q1 ∈ Cn the algorithm proceeds as

ri = Mqi, (3.3a)

αi = vi
†ri, (3.3b)

ri = ri − βi−1qi−1 − αiqi, (3.3c)

βi = ||ri||, (3.3d)

qi+1 = ri/βi, (3.3e)

with β0 = 0 and q0 a zero vector. This can be summarised by the three-term recurrence

Mqi = βi−1qi−1 + αiqi + βiqi+1. (3.4)

The values α and β then define a tridiagonal matrix

T =



α1 β1 0
β1 α2 β2

β2 α3
. . .

. . . . . . βi−1

0 βi−1 αi


, (3.5)

which can then be diagonalised. In the case of i = n and exact arithmetic, the eigenvalues of T
are those of M, and the eigenvectors of T can be transformed into those of M using the Lanczos
vectors q. In the case of i ≪ n, the eigenspectrum of T can be viewed as a compression of
that of M, with particular emphasis on the preservation of extremal eigenvalues at the upper and
lower regions of the eigenspectrum. Under floating point arithmetic, the Lanczos vectors q quickly
suffer from a loss in orthogonality, whereas they should in principle form an orthonormal basis.
This can also result in a linearly dependent q and hence spurious eigenvalues, and the problem
is propagated through successive iterations. Computer implementations of the Lanczos algorithm
must typically employ methods to remedy this loss in orthogonality, which have presented a large
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Figure 3.1: Loss in orthogonality for the fully converged Lanczos algorithm for a number of matrix sizes,
with four different reorthogonalisation schemes. No reorthogonalisation does not change the vectors, full
reorthogonalisation enforces orthogonality of each new vector with every previous vector, whilst the local
schemes enforce it with the previous n vectors. Random Hermitian matrices were generated, and each
point is the mean over 100 of such matrices, where elements are double precision (64 bit) floating point
values.

area of research in the past.341 Whilst we will not review the details of these schemes, Figure 3.1
shows the difference in the loss of orthogonality with some naive reorthogonalisation schemes, which
are not optimal in practice. The full reorthogonalisation with every previous vector predictably
results in a constantly (numerically) zero error in the orthogonality of the Lanczos vectors, whereas
the lack of reorthogonalisation quickly results in very large errors. Reorthogonalisation with the
previous n vectors is not sufficient for the single-vector Lanczos method, only having an effect in
extremely small matrices close to n in size.

Consider the matrix of Lanczos vectors q(j) = [q1,q2, . . . ,qj ] that satisfies the basis Kj(M,q),
i.e. transforms M into the matrix T(j) denoting the truncation of T up to αj . We can define a
truncation of M as its projection into this space

M(j) = q(j)T(j)q(j)†

= q(j)q(j)†Mq(j)q(j)†, (3.6)

where for the sake of the following arguments we will assume j < n and exact arithmetic.
Considering also the residual W(j) such that M = M(j) + W(j), we obviously have M(n) = M
and W(n) = 0 at full convergence of the Lanczos algorithm. One can then use Equation 3.4 to

aThe Lanczos method can be considered as a special case of the Arnoldi method in the case of a Hermitian
matrix. 340
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show that44

q†
l′Mkql = 0 ∀ l′ > l + k, (3.7a)

W(j)ql = 0 ∀ l ≤ j − 1, (3.7b)

q†
l′W(j)ql = 0 ∀ l, l′ ≤ j, (3.7c)

which leads to

W(j)Mkq1 = 0 ∀ 0 ≤ k ≤ j − 2, (3.8a)

q†
1Mk′

W(j)Mkq1 = 0 ∀ 0 ≤ k, k′ ≤ j − 1, (3.8b)

and finally to the relationships with which we are concerned(
M(j)

)k

q1 = Mkq1 ∀ 0 ≤ k ≤ j − 1, (3.9a)

q†
1

(
M(j)

)k

q1 = q†
1Mkq1 ∀ 0 ≤ k ≤ 2j − 1. (3.9b)

The result in Equation 3.9b indicates an important relationship in the present work. It tells us
that a truncated Lanczos algorithm exactly preserves the first 2j− 2 (up to order 2j− 1) moments
of M, with respect to starting vector q1, and M(j) can be considered an optimal approximation to
M in the context of Equations 3.9a and 3.9b. In fact, there is no Hermitian rank j approximation
that exactly preserves moment orders higher than does M(j).44
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3.3 Block Lanczos algorithm

Instead of a single initial vector q, consider the action of a matrix M upon a block vector Q =
[q1,q2, . . . ,qb]43,341–345

Q 7→MQ. (3.10)

The subspace we seek to construct is

Ki(M,Q) = span (Q,MQ,M2Q, . . . ,Mi−1Q), (3.11)

the projection of M into which results in a matrix that is block tridiagonal rather than tridiagonal.
For an initial block of vectors with orthonormal columns Q1 ∈ Cn the algorithm proceeds as

Ri = MQi, (3.12a)

Ai = Q†
i Ri, (3.12b)

Ri = Ri −QiAi −Qi−1Bi−1, (3.12c)

Qi+1B†
i = Ri, (3.12d)

where Equation 3.12d is a QR factorisation of Ri. We can again summarise this using a three-term
recurrence

MQi = Qi−1Bi−1 + QiAi + Qi+1B†
i , (3.13)

and the resulting block tridiagonal matrix has the form

T =



A1 B1 0
B†

1 A2 B2

B†
2 A3

. . .
. . . . . . Bi−1

0 B†
i−1 Ai


. (3.14)

We note that there is an additional variant known as ‘banded’ Lanczos, which is identical to
block Lanczos in exact arithmetic but exhibits some operational differences in non-exact
arithmetic.346,347 We will only consider block Lanczos here as it is a more convenient formulation
of the algorithm in the context of the present work. The block variant was originally formulated
to identify the multiplicity of degenerate eigenvalues, not accounted for in the Lanczos algorithm.

We can proceed with a similar analysis of the conserving properties of the block Lanczos
algorithm as in Section 3.2 by defining again a matrix of (block) Lanczos vectors
Q(j) = [Q1,Q2, . . . ,Qj ] satisfying the basis Kj(M,Q). The analogue of Equation 3.6 is

M(j) = Q(j)T(j)Q(j)†

= Q(j)Q(j)†MQ(j)Q(j)†, (3.15)
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Figure 3.2: Loss in orthogonality for the fully converged block Lanczos algorithm for a number of matrix
sizes, with block sizes of 5, and with four different reorthogonalisation schemes. No reorthogonalisation
does not change the vectors, full reorthogonalisation enforces orthogonality of each new vector with every
previous vector, whilst the local schemes enforce it with the previous n vectors. Random Hermitian
matrices were generated, and each point is the mean over 100 of such matrices, and elements are double
precision (64 bit) floating point values.

and an equivalent analysis to Equations 3.7 to 3.9 leads to the expressions44

(
M(j)

)k

Qm = MkQm ∀ 0 ≤ m ≤ n ∀ 0 ≤ k ≤ j − 1, (3.16a)

Q†
m′

(
M(j)

)k

Qm = Q†
m′MkQm ∀ 0 ≤ m,m′ ≤ n ∀ 0 ≤ k ≤ 2j − 1, (3.16b)

where n is the block size (number of vectors in each block vector). In contrast to Equation 3.9,
this preserves on- and off-diagonal moments equally. This provides convergence in the global
eigenspectrum rather than only in extremal parts. For the operator functional f(Ô) it offers an
efficient route to compute matrix elements ⟨ψp|f(Ô)|ψq⟩ where one observes exponential
convergence to the true matrix elements with the number of iterations.

As a result of the QR factorisation in Equation 3.12d, The block Lanczos vectors are orthogonal
within their block, but they still suffer from loss of orthogonality with respect to other blocks
between vectors. As such, similar considerations of reorthogonalisation must be taken. Figure 3.2
shows the loss of orthogonality with some naive reorthogonalisation schemes, equivalent to that
shown in Figure 3.1. Comparing these figures, we can conclude that in the case of block Lanczos
the local (partial) reorthogonalisation schemes are more effective at restoring the orthogonality of
the Lanczos vectors, which is likely aided by the existing orthogonality within blocks.
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3.4 Application to the Dyson equation

It can be concluded from Section 3.3 that the block Lanczos algorithm offers a method to obtain
truncated solutions to the eigenproblem in Equation 2.84, with the truncation systematically and
exponentially converging to the true Green’s function. This involves projecting the (K+C) matrix
block, along with the columns of V, into the Krylov subspace spanned by the Lanczos vectors. This
has the effect of projecting the full self-energy matrix into a block tridiagonal representation, and
a truncation to a non-complete subspace is sufficient to preserve particular properties as shown in
the previous Section. In the context of the Dyson equation, this can be considered a compression
of the configuration space of the self-energy in a fashion that preserves its spectral moments.
This configuration space consists of static auxiliary functions whose downfolding is responsible for
the dynamic nature of the self-energy, and the application of the algorithm equally represents a
compression of this coupling to an auxiliary space.

A convenient choice of starting vectors are the couplings of the small and large parts of the
self-energy matrix V. Since the starting vectors must be orthonormal, the algorithm begins with
a QR factorisation of the transposed couplings45

V† = Q1X†, (3.17)

where X is a lower triangular matrix of the same dimension as the static Σ(∞) in Equation 2.84.
The block Lanczos algorithm is then applied to (K+C) as outlined in Section 3.3, yielding the
block tridiagonal matrix T(j)

T(j) = Q(j)† (K+C) Q(j), (3.18)

where j indicates the number of iterations. By applying identity in the physical space (i.e. the small
space of the self-energy matrix) we can write the full transformation vectors for the self-energy
matrix into this reduced representation

Q̃(j) =
[

I 0
0 Q(j)

]
, (3.19)

which is sufficient to transform Equation 2.80 as

Σ̃(j) = Q̃(j)†ΣQ̃(j) = Q̃(j)†

[
Σ(∞) V

V† (K+C)

]
Q̃(j)

=



Σ(∞) X 0
X† A1 B1

B†
1 A2 B2

B†
2 A3

. . .
. . . . . . Bj−1

0 B†
j−1 Aj


. (3.20)
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Since X and B are the lower-triangular matrices resulting from QR factorisations, one can see
how Σ̃ exhibits a banded structure in practice. The matrices X represent couplings between the
frequency-independent physical space Σ(∞) and the first on-diagonal block A1. The matrix Σ̃ is
a compressed self-energy, conserving the first 2j moments of the dynamic part of the self-energy
as defined in Section 2.4.4. The eigenvalues of Σ̃ are approximate energies of the Dyson states,
numbering norb(j + 1), whereas the Dyson orbitals can be obtained by projecting onto the space
of the MOs and back-transforming the eigenvectors using X

u = XPmosũ, (3.21)

where ũ are the eigenvectors of Σ̃ and Pmos corresponds to a projector into the space of MOs.
Equation 3.20 can easily be rotated into a representation in which the large subspace is diagonal
by first diagonalising T(j), and then rotating the large subspace of Equation 3.20 into this diagonal
representation, including the coupling terms X.

For a self-energy with a matrix-vector operation scaling with the number of MOs as O(np
mo),

the block Lanczos algorithm scales as O(np+1
mo ), with this increase reflecting the need to compute

the product between the self-energy matrix and a block vector whose block size enumerates the
MOs. Whilst this may at first appearance reduce its efficacy as a drop-in replacement for single-
vector iterative solvers in many-body methods involving Green’s functions, in many cases this is
remedied by the fact that methods often have iterative costs (those originating from the matrix-
vector product) that are less expensive than the one-shot cost. Some electron propagator methods
exhibiting this feature are listed in Table 2.1, with the second-order self-energies also falling into
this category due to the necessity to transform the ERIs at a cost of O(n5

mo). Additionally, the
equation-of-motion coupled cluster singles and doubles (EOM-CCSD) method requires a O(n6

mo)
ground state calculation despite exhibiting a matrix-vector operation scaling as O(n5

mo).
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3.5 Self-energy recurrence relations

A significant drawback of the block Lanczos algorithm in the context of its application to the
Dyson equation as outlined in Section 3.4 is the necessity to store vectors spanning the large space
of (K+C). Even with no reorthogonalisation the algorithm requires the storage of two matrices
of dimension norb × nK+C, which can become prohibitively large with nK+C scaling cubically in
norb even at the level of second-order perturbation theory. Figure 3.2 clearly shows that this is
not an option, and at least very local reorthogonalisation is required, which further increases this
storage overhead. To solve this problem, the present work will derive recurrence relations in terms
of the moments of the self-energy that permit a modified block Lanczos algorithm, which operates
purely within the inner space of the block vectors.

Rearranging Equation 3.13 in the case of the application to the Dyson equation, we can write
an expression for the (i+ 1)th Lanczos vector Qi+1

Qi+1 = [(K+C) Qi −QiAi −Qi−1Bi−1] B−1,†
i (3.22)

= RiB−1,†
i . (3.23)

We can use this expression along with the ith Lanczos vector Qi to define the recurrence relations

S(n)
i+1,i = Q†

i+1 (K+C)n Qi

= B−1
i [(K+C) Qi −QiAi −Qi−1Bi−1]† (K+C)n Qi

= B−1
i

[
Q†

i (K+C)n+1 Qi −AiQ†
i (K+C)n Qi −B†

i−1Q†
i−1 (K+C)n Qi

]
= B−1

i

[
S(n+1)

i,i −AiS(n)
i,i −B†

i−1S(n)
i−1,i

]
, (3.24a)

S(n)
i+1,i+1 = Q†

i+1 (K+C)n Qi+1

= B−1
i [(K+C) Qi −QiAi −Qi−1Bi−1]† (K+C)n [(K+C) Qi −QiAi −Qi−1Bi−1] B−1,†

i

= B−1
i

[
Q†

i (K+C)n+2 Qi + AiQ†
i (K+C)n QiAi + B†

i−1Q†
i−1 (K+C)n Qi−1Bi−1

−P
(

Q†
i (K+C)n+1 QiAi

)
− P

(
Q†

i (K+C)n+1 Qi−1Bi−1

)
+P

(
AiQ†

i (K+C)n Qi−1Bi−1

)]
B−1,†

i

= B−1
i

[
S(n+2)

i,i + AiS(n)
i,i Ai + B†

i−1S(n)
i−1,i−1Bi−1 − P

(
S(n+1)

i,i Ai

)
−P

(
S(n+1)

i,i−1 Bi−1

)
+ P

(
AiS(n)

i,i−1Bi−1

)]
B−1,†

i , (3.24b)

where the permutation operator P is defined as

P (Z) = Z + Z†. (3.25)
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Due to the symmetry in the target matrix, we note that

S(n)
i,j = S(n),†

j,i , (3.26)

Ai = A†
i . (3.27)

The zeroth-order Lanczos vectors are zero and therefore

S(n)
i,0 = S(n)

0,i = S(n)
0,0 = 0, (3.28)

and since we desire the vectors to be orthogonal, we can also say

S(0)
i,j = δijI ∀ i, j > 0. (3.29)

Observing from Equation 3.17 that Q1 can be written as Q1 = VX−1,†, we can initialise the
recurrence coefficients as

S(n)
1,1 = Q†

1 (K+C)n Q1

= X−1V (K+C)n V†X−1,†

= X−1Ξ(Σ,n)X−1,†, (3.30)

which are simply the moments of the self-energy orthogonalised under the metric of X−1. Whilst
intuitively Equation 3.17 seems to require that V is stored in memory, we can get around this by
employing the Cholesky QR algorithm that proceeds as348,349

X† =
(
VV†) 1

2

=
(

Ξ(Σ,0)
) 1

2
, (3.31a)

Q1 = V†X−1,†. (3.31b)

This algorithm can be unstable in the case of a badly conditioned V, which can be remedied with
an iterative approach. We find that in typical self-energies the coupling is not badly conditioned,
which likely reflects the regularisation of the coupling value due to both the basis set and decay of
the Coulomb interaction. Furthermore, if one computes the square root of the matrix not by CD
but instead via the eigendecomposition, X and therefore the B matrices become Hermitian. Whilst
this means that T is no longer banded but truly block tridiagonal, it simplifies the equations and
their subsequent implementation as conjugate transposition does not need to be of concern.

The B matrices can be evaluated by expanding the expressions for R

B2
i = R†

i Ri

=
[
S(2)

i,i + A2
i + B†

i−1Bi−1 − P
(

S(1)
i,i Ai

)
− P

(
S(1)

i,i−1Bi−1

)]
, (3.32)

which is equivalent to the squared-bracketed term of Equation 3.24b in the case of n = 0, and by
removing terms that are necessarily zero. From Equations 3.12a and 3.12b we can also derive an
expression for A

Ai = Q†
i (K+C) Qi

= S(1)
i,i . (3.33)
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This can be seen from the projection of Equation 3.17 onto the space spanned by the Lanczos vectors
of a single iteration. This observation also leads to a second definition for B terms, corresponding
to a similar projection

Bi = Q†
i (K+C) Qi+1

= S(1)
i,i+1, (3.34)

though in practice, the use of this definition leads to infinite recursion. As such, the S(1)
i,j terms

can be understood to be blocks of the block tridiagonal matrix T.
These expressions are sufficient to perform the recursive calculation of the coefficients and then

extract the relevant A and B terms to construct T, with a storage overhead scaling as O(n3
orb),

regardless of the size of the self-energy configuration space. Instead, the algorithm requires a priori
knowledge of the moments of the self-energy being diagonalised. With respect to the notation in
Equation 3.20, this process requires the first 2j moments as an input, i.e. up to and including
the n = 2j − 1 moment. Similarly, the resulting compression conserves the first 2j moments. As
described in Section 3.4 this matrix can easily be rotated into a representation where the large
subspace is diagonal, and therein moments can easily be computed to check the correctness of the
process. The eigenpairs can be interpreted in the same fashion as those of Section 3.4, with the
eigenvalues giving energies and the eigenvectors simple to rotate into Dyson orbitals.

The inclusion of reorthogonalisation terms in the Lanczos vectors cancels out when transformed
into the inner space in the derivation above. That is not to say however that loss of orthogonality is
not a factor in the present reformulation, but that it symbolically cancels out when infinite precision
is assumed. Despite this, the loss of orthogonality of subsequent block vectors is exceptionally
simple to diagnose and cure in the case of the present algorithm, as it can be tracked directly from
the error in the left- and right-hand side of Equation 3.29, and the S(0)

i,j can be forcefully stored to
satisfy this equality in order to maintain a good amount of orthogonality throughout. This method
still observes significant numerical instability due to the exponentiation of energies in the moments
of the self-energy. Since the moments involve powers of (K+C), they exponentially grow in value
with order n, as does the range of values the moments take. As such, the scale of values upon
which arithmetic operations are applied in the recurrence relations grows beyond the precision of
a 64 bit floating point value, and numerical noise becomes significant. The point at which this
becomes worrisome depends on the self-energy being used, and therefore on the system, but for the
studied self-energies sufficient iterations to render the algorithm useful can be performed before
overwhelming numerical instability.

We have therefore presented a method to diagonalise an arbitrary self-energy and obtain an
approximate Green’s function that treats the entire eigenspectrum rather than targeting an
extremal part of it, and whose approximation systematically converges to the exact
diagonalisation in the limit of infinite moments and exact arithmetic. Furthermore, this is done
in a fashion that is computationally efficient with the limiting step performed ahead of time, and
with a manageable storage overhead. As a final comment on notation, we note that in the
context of the application of this algorithm to moments at different levels of theory, we will
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consider number of iterations niter to refer to the number of B blocks in the block tridiagonal
matrix—that is to say, a calculation using these recurrences at the level of niter = 0 represents
the block tridiagonal matrix as the coupling between the static self-energy and the A1 block via
coupling X. This diagonalisation therefore conserves the first two (zeroth- and first-order)
moments.
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3.6 Green’s function recurrence relations

We now turn to the problem of reconstructing a self-energy, and therefore computing the
resulting Green’s function, according to the conservation in moments of the Green’s function
rather than those of the self-energy.338,350,351 We wish to find a different set of Lanczos vectors
Q(j) that similarly rotate the self-energy matrix into a block tridiagonal form, but rather than
doing so in a way that conserves the moments of the self-energy, the representation conserves
moments of the Green’s function following diagonalisation. Whilst the orthonormality of the
Dyson orbitals requires that the zeroth central moment of the Green’s function is identity, this
may not be satisfied if i.e. one separates hole and particle moments, which is convenient or
necessary in many applications. Generally speaking, the moments must therefore be
orthogonalised under the metric of the zeroth moment in a fashion similar to that of Section 3.5

Ξ̃(G,n) =
[
Ξ(G,0)

]− 1
2 Ξ(G,n)

[
Ξ(G,0)

]− 1
2
. (3.35)

It is instructive to write the trivial example, where in the notation of Equation 3.20 we wish to
construct a compressed self-energy that conserves the first two (zeroth- and first-order) moments
of the Green’s function

Σ̃(j=1) = A1 = Ξ̃(G,1)
, (3.36)

which can be intuited simply as the diagonalisation of the Fock matrix with possible correlation-
induced changes through the static self-energy, the correspondence of which to the first moment of
the Green’s function was shown in Equation 2.105b. In the case of a Green’s function completely
defined by G0, that is to say there is no dynamic self-energy contribution, this eigenproblem fully
determines the poles of the Green’s function.

We also note that the moments of the Green’s function can be written as powers of the self-
energy matrix they originate from, projected down onto the space of the Green’s function

Ξ̃(G,n) = Q̃†
1ΣnQ̃1, (3.37)

where the first element of the expanded Lanczos vectors in Equation 3.19 have been used to indicate
the projection. Let the recurrence coefficients S now satisfy

Q̃i =
i+1∑
j=1

Σj−1Q̃1Si,j , (3.38)

which implies the conditions

S1,1 = I, (3.39)

Si,j = 0 ∀ i < 1, j < 1, i < j. (3.40)

By inserting Equation 3.38 into the expression for the A blocks in terms of the Lanczos vectors in
Equation 3.33, we can write expressions for the A blocks in the case of conservation of moments
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of the Green’s function

Ai = Q̃†
i ΣQ̃i

=
i+1∑
j=1

i+1∑
k=1

S†
i,jQ̃†

1Σj+k−1Q̃1Si,k

=
i+1∑
j=1

i+1∑
k=1

S†
i,jΞ̃(G,j+k−1)Si,k. (3.41)

Similarly, by inserting Equation 3.38 into the expression for the B blocks in terms of the Lanczos
vectors in Equation 3.34, we can write expressions for the B blocks

Bi = Q̃†
i ΣQ̃i+1

=
i+∑

j=1

i+2∑
k=1

S†
i,jQ̃†

1Σj+k−1Q̃1Si+1,k

=
i+1∑
j=1

i+2∑
k=1

S†
i,jΞ̃(G,j+k−1)Si+1,k. (3.42)

By replacing the Lanczos vectors in Equation 3.13 with their respective coefficients, we can also
obtain a recurrence relation for the coefficients

Si,j−1 = Si−1,jB†
i−1 + Si,jAi + Si+1,jBi. (3.43)

These expressions must be rearranged to yield useful recursion relations, which are338

Ai+1 =
i+2∑
j=1

i+2∑
k=1

S†
i+1,jΞ̃(G,j+k−1)Si+1,k, (3.44a)

B2
i+1 =

i+1∑
j=1

i+2∑
k=1

S†
i+1,jΞ̃(G,j+k−1)Si+1,k−1 −A2

i+1 −B2†
i , (3.44b)

Si+1,j =
[
Si,j−1 − Si,jAi − Si−1,jB†

i−1

]
B−1

i . (3.44c)

One can then write the compressed self-energy matrix whose eigenvalues yield the moment
conserving Dyson orbitals and energies, which in the form of Equation 3.20 is

Σ̃(j) = Q̃(j)†ΣQ̃(j) = Q̃(j)†

[
Σ(∞) V

V† (K+C)

]
Q̃(j)

=



A1 B1 0
B†

1 A2 B2

B†
2 A3

. . .
. . . . . . Bj−1

0 B†
j−1 Aj


. (3.45)
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As previously, the eigenvalues give energies of the Dyson states (Green’s function poles), and the
eigenvectors can be projected and back-transformed to obtain Dyson orbitals are

u =
[
Ξ(G,0)

] 1
2 Pmosũ, (3.46)

where ũ are the eigenvectors of Σ̃ and Pmos is a projector onto the space of MOs.
This algorithm has been extended to the case of non-Hermitian Green’s function moments to

facilitate its application to the CC Green’s function. The resulting expressions are

Ai+1 =
i+2∑
j=1

i+2∑
k=1

SL
i+1,jΞ̃(G,j+k−1)SR

i+1,k, (3.47a)

B2
i+1 =

i+1∑
j=1

i+2∑
k=1

SL
i+1,jΞ̃(G,j+k−1)SR

i+1,k−1 −A2
i+1 −C2

i , (3.47b)

C2
i+1 =

i+1∑
j=1

i+2∑
k=1

SL
i+1,j−1Ξ̃(G,j+k−1)SR

i+1,j −A2
i+1 −B2

i , (3.47c)

SL
i+1,j =

[
SL

i,j−1 − SL
i,jAi − SL

i−1,jBi−1
]

C−1
i , (3.47d)

SR
i+1,j = B−1

i

[
SR

i,j−1 −AiSR
i,j −Ci−1SR

i−1,j

]
, (3.47e)

where the coefficients now satisfy

Q̃R
i =

i+1∑
j=1

Σj−1Q̃R
1 SR

i,j , (3.48a)

Q̃L
i =

i+1∑
j=1

SL
i,jQ̃L

1 Σj−1, (3.48b)

and the subsequent rotation is

Σ̃(j) = Q̃(L,j)ΣQ̃(R,j) = Q̃(L,j)

[
Σ(∞) VL

VR (K+C)

]
Q̃(R,j)

=



A1 B1 0
C1 A2 B2

C2 A3
. . .

. . . . . . Bj−1

0 Cj−1 Aj


. (3.49)

Σ̃ now permits a non-symmetric eigenproblem, of which the eigenvalues give energies of the Dyson
states, and the eigenvectors can be transformed to admit left- and right-hand Dyson orbitals as

uL =
[
Ξ(G,0)

] 1
2 Pmosũ, (3.50a)

uR =
(

ũ−1Pmos

[
Ξ(G,0)

] 1
2
)†

, (3.50b)
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where ũ are the eigenvectors of Σ̃. This therefore defines a non-Hermitian system of Dyson orbitals
sufficient to recover the non-Hermitian moments of the Green’s function as

Ξ(G,n) = uLλnuR,†, (3.51)

where λ is a diagonal matrix of the eigenvalues of Σ̃. The dynamic Green’s function and therefore
the spectral function can also be obtained with the non-Hermitian system of Dyson orbitals.

The notation we shall use for methods employing this algorithm are similar to those of
Section 3.5 in that a calculation using niter = 0 still incorporates a single A1 block in the block
tridiagonal Hamiltonian, and which conserves the first two (zeroth- and first-order) moments.
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Input No. of Dyson orbitals Cost (CPU) Cost (RAM)

Ξ(Σ,n) ∀ 0 ≤ n ≤ 2niter + 1 nmo(niter + 2) O(n2
itern

3
mo) † O(n2

itern
2
mo)

Ξ(G,n) ∀ 0 ≤ n ≤ 2niter + 1 nmo(niter + 1) O(n3
itern

3
mo) O(n2

itern
2
mo)

Table 3.1: Required input moments and corresponding number of output states for the self-energy and
Green’s function block Lanczos recurrence schemes, along with the scaling of the cost in terms of both CPU
and RAM for each algorithm. †This scaling represents the cost to perform the block Lanczos recurrence,
however the diagonalisation of the resulting compressed self-energy will scale as O(n3

itern
3
mo).

3.7 Comparison

In summary, the two schemes for performing the Dyson equation under the metric of the
conservation of moments of the self-energy or Green’s function can be compared using Table 3.1.
Both schemes require a priori the moments of either the self-energy or Green’s function, for all n
in 0 ≤ n ≤ 2n+ 1 (i.e. the first 2n+ 2 moments). In the case of the self-energy recurrence, these
moments result in nmo more Dyson states due to the inclusion of the static self-energy. Table 3.1
considers a self-energy without a non-Dyson approximation, hence the number of states and costs
depend on nmo. These numbers do not depend on whether one uses the central, hole, or particle
parts of the distributions, however if one separately performs the recursion on the hole and
particle moments before combining the Dyson orbitals, the total number will be doubled. In the
case of a non-Dyson approximation nmo in Table 3.1 is replaced by nocc or nvir depending on
whether one is considering hole or particle moments, respectively—more generally, nmo represents
the size of whichever basis the input moments are in.

Whilst the self-energy recurrence has a CPU bottleneck scaling less than the Green’s function
recurrence by a factor niter, the subsequent diagonalisation of the compressed block tridiagonal
matrix scales as n3

itern
3
mo in both cases. Since niter scales in the large system limit with system size

as O(1), this can be considered an O(n3
mo) algorithm—obviously, this is significantly lower than

most canonical quantum chemistry algorithms that one may use to compute the moments, and
therefore the moment computation is almost always the bottleneck for any calculation involving
these algorithms. One drawback of this is the possible extension to two-particle Green’s function
theories, in which one may wish to express moments in a pair basis of size noccnvir, and therefore
scaling would increase to O(n6

mo).
In the Hermitian variants of the recurrence schemes, non-causality in the respective distributions

can result in B2 blocks that are not positive semi-definite. In order to produce a causal set of
Dyson orbitals from the block Lanczos recurrence, the space of B2 corresponding to negative
eigenvalues must be removed in order to compute B, which may discard information and result in
a representation that does not conserve the desired moments. Furthermore, the calculation of B−1

implies a non-singular B and therefore B2, and any null space of B must be removed. This is likely
to occur closer to the limit of the number of blocks for a particular system. In the case of central
moments, no positive or negative definiteness is required in the moments. By construction, particle
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moments are positive semi-definite, and hole moments are positive semi-definite for even n and
negative semi-definite for odd n. Deviation from this implies non-causality, however satisfaction of
this rule does not necessarily imply causality.a Implementations of the block Lanczos recurrence
should pay careful observation to the eigenspectrum of the B2 at each iteration.

aFor example, consider a spectrum in which two poles couple to a single physical orbital, with one pole causal
and one non-causal, where e1, v1 are the energy and coupling of the causal pole and e2, v2 of the non-causal pole.
Any moment n for which v1en

1 v1 > v2en
2 v2 is positive definite.
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3.8 Moment extrapolation

While in-depth discussion of the convergent behaviour of the block Lanczos algorithm is out of
the scope of the present work, it is generally understood that the algorithm affords exponential
convergence in the eigenvalues with increasing numbers of iterations in gapped systems.45,352 A
simple way to intuit this is by considering the connection between the block tridiagonal form of
the Hamiltonian and the continued fraction form of the resolvent48,353,354

G(ω) = 1
ω −A1 −B†

1
1

ω−A2−B†
2

1
··· B2

B1
, (3.52)

for which the blocks generated by later iterations have a diminishing effect on the Green’s function.
In a similar fashion to basis set extrapolation, we can exploit this exponential convergence in order
to extrapolate calculations on finite numbers of moments to the result one would expect at an
infinite number of moments. In order to do so, we wish to fit a linear function f(n−1

iter) that is a
function of the inverse of the number of iterations of one of the recurrence schemes

f(n−1
iter) = An−1

iter + c, (3.53)

and thus the value of this function in the limit of infinite moments, and therefore infinite iterations,
can be read from the intercept

lim
niter→∞

f(n−1
iter) = c. (3.54)

In the context of IPs and EAs, it is clearly important that we fit f to excitations sharing sufficient
character that we can consider them part of a convergent series. If one wishes to apply this
methodology for excitations far away from the Fermi energy rather than simply the IP and EA, one
can achieve this by considering only the excitations that have the most overlap with each MO. This
is a valid approximation if the excitations we extract in this fashion are sufficiently quasiparticle-
like; that is to say, they have near-unit overlap with the MOs. Another way to interpret this is
that the MOs must be sufficiently good approximations to the targeted excitations, which is a
necessity for the validity of perturbation theory, of which we can classify all the methods studied
in this work. If the excitations that have the most overlap with the MOs are indeed sufficiently
quasiparticle-like, truncating the set of excitations to this set of size nmo will not neglect any
excitations of significant weight due to particle number conservation rules.

As well as ensuring that the character of the extrapolated quantities is reasonably similar, we
can verify an extrapolation using the R2—the square of the Pearson correlation
coefficient—between the values used in the least squares fitting of Equation 3.53 and the values
predicted by the fitted line. In the domain n−1

iter this would be expected to be linear in the case of
exponential convergence. We also note that in theory, extrapolation using the limit of niter → ∞
is not technically accurate, since the number of iterations is not unbounded from above—at the
point where the Lanczos vectors span the full space of the self-energy or Green’s function with
which one has obtained the moments, additional iterations offer no improvement on the spectrum
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Figure 3.3: Example of the extrapolation scheme for excitations found using the block Lanczos recurrence
algorithms. The example shown is for a hypochlorous acid (HOCl) molecule in a cc-pVDZ basis set,
with iterations of the self-energy recurrence at the level of IP-ADC(2). The extrapolations each use three
iterations, and these iteration numbers and the respective R2 value are shown in the legend.

and therefore the value of the excitations saturate. Since the vast majority of self-energies has
significantly more poles than there are HF orbitals, the number of iterations required to reach
this limit is high enough that 1

nmax
iter

is sufficiently close to 0 and therefore simply reading the
intercept c is a good estimate of the extrapolated value. Additionally, it should be noted that
despite niter = 0 being used in the notation of this work, that value clearly cannot be used in the
extrapolation—however one should aim to extrapolate with the largest accessible iteration
calculations possible. Figure 3.3 shows an example of the extrapolation for a hypochlorous acid
(HOCl) molecule in a cc-pVDZ basis set, with iterations of the self-energy recurrence at the level
of IP-ADC(2). Despite the 1, 2, 3 extrapolation showing a good R2, since it involves small
iteration numbers it does not extrapolate a good IP. On the other hand, 2, 3, 4 and 3, 4, 5 have
poorer R2 (depending on where one places their threshold for ‘poor’), indicating that they may
poorly extrapolate the IP due to the erratic nature of convergence with iterations. The 4, 5, 6
result has an R2 of 1.000, indicating the very strong linearity of these points in the domain n−1

iter.
This example extrapolates an IP that is extremely close to that predicted by the canonical
ADC(2) algorithm.a

aNote that this example is one that was chosen to best exemplify the extrapolation, and is not respective of the
behaviour or R2 for other such systems.
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Chapter 4

Second-order auxiliary Green’s
function perturbation theory
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4.1 Introduction

As outlined in Section 2.5.3 a method exists to numerically iterate the Dyson equation in order
to screen (renormalise) the propagators in the diagrams at nth-order. This method is
algorithmically complicated, with a discretisation of the time and frequency variables introducing
an often significant prefactor. Since a Fourier transform is required between these domains the
use of non-uniform quadrature is non-trivial, and imaginary frequency (Matsubara) axes are
typically required to ensure the Green’s function is represented smoothly introducing a finite
temperature.102,103 This means that real frequency spectra require analytic continuation to the
real frequency axis which is an ill-conditioned problem. Instead, we wish to exploit the
techniques discussed in Chapters to perform the renormalisation without the use of these
troublesome continuous variables.

The recurrences outlined in Chapter 3 afford a systematically improvable perspective to solving
the Dyson equation without the need for any frequency or time grids. Whilst the most obvious
application of these algorithms is simply as a drop-in block-box solver instead of other iterative
eigensolvers, their property of allowing tractable iteration according to the Dyson equation result
in the possibility for an efficient route to renormalised physics.

The second-order auxiliary Green’s function perturbation theory (AGF2) method has been
developed throughout the course of the present work, with significant improvements in efficiency
and understanding of the parameterisation according to number of recurrence iterations. This
has lead to an efficient and readily applicable method for applying renormalised second-order
perturbation theory to electronic structure calculations, and has featured in a number of
publications,51–53,355 as well as an implementation in the PySCF programming package.26,27

Conceptually, AGF2 is similar to earlier work in Ref. 123, where the authors applied a block
Lanczos procedure to the self-energy at second-order to achieve self-consistency in the Dyson
equation, for which they apply a numerical procedure. Their method considers the Green’s
function and self-energy to be diagonal in their basis, which they note only has a minor effect in
the atomic systems they study. The study however does not consider the effect of different
numbers of iterations in the block Lanczos procedure, nor do they consider a generalisation to
molecular systems. AGF2 seeks to extend this initial work to outline a practical method for the
solution of the Dyson equation at the level of second-order perturbation theory.

In principle, the order of perturbation theory is not constrained to the second-order.
Expressions for the moments of self-energies at different orders of perturbation theory, including
the various EP self-energies discussed in Section 2.6, should be readily applicable to this scheme
in order to find their respective solutions on the Dyson equation under the constraint of the
conservation of their moments. Future work will seek to apply these concepts to other
self-energies, including the GW moments to be introduced in Chapter 5, with the latter
permitting self-consistent GW calculations.
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4.2 Method

As presented in Equation 2.125, the hole and particle parts of the self-energy at second-order can
be written as

Σ(2)
pq (ω) = Σ(2),<

pq (ω) + Σ(2),>
pq (ω) (4.1a)

Σ(2),<
pq (ω) = 1

2

occ∑
ij

vir∑
a

⟨ij||ap⟩ ⟨aq||ij⟩
ω − (εi + εj − εa) (4.1b)

Σ(2),>
pq (ω) = 1

2

occ∑
i

vir∑
ab

⟨pi||ab⟩ ⟨ab||qi⟩
ω − (εa + εb − εi)

, (4.1c)

which have been separated into their respective parts below and above the chemical potential. As
discussed in Section 2.4.4, this separation corresponds to the constraint of the moment integrals to
the intervals (−∞, µ) and (µ,∞) for the hole and particle moments, respectively. The parameters
satisfying the upfolded self-energy take the form

V <
p,ija = 1√

2
⟨ij||ap⟩ , (4.2a)

V >
p,iab = 1√

2
⟨pi||ab⟩ , (4.2b)

K<
ija,klb = δikδjlδab (εi + εj − εa) , (4.2c)

K>
iab,jcd = δijδacδbd (εa + εb − εi) , (4.2d)

C<
ija,klb = 0, (4.2e)

C>
iab,jcd = 0. (4.2f)

The moments at second-order can be written in the case of AGF2 by inserting the parameters in
Equation 4.2 into the expression for the moments in Equation 2.98. This results in the expressions

Ξ(Σ(2),<,n)
pq = 1

2

occ∑
ij

vir∑
a

⟨ij||ap⟩ (εi + εj − εa)n ⟨aq||ij⟩ , (4.3a)

Ξ(Σ(2),>,n)
pq = 1

2

occ∑
i

vir∑
ab

⟨pi||ab⟩ (εa + εb − εi)n ⟨ab||qi⟩ . (4.3b)

Performing the recursion outlined in Section 3.5 allows one to diagonalise the self-energy with
a consistency in these moments up to a desired order n, yielding a Green’s function expressed
as a sum-over-states of its pole positions and associated Dyson orbitals. This can be considered
to be a solution to the ADC(2) matrix in the absence of the usual non-Dyson approximation,
approximated up to a given accuracy via the moment expansion. The separation of the hole and
particle moments allows the resolution of the low-energy dynamics, whilst also ensuring that the
high-energy expansion of the central moments is resolved.

In order to further iterate the Dyson equation one can reinsert these states into the self-
energy, effectively replacing the occupied (i, j) and virtual (a, b) MO indices in Equation 4.3 with
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occupied and virtual Dyson orbitals and energies, which are sometimes referred to as the quasi-
molecular orbitals (QMOs). This extended space still represents an idempotent density when its
density matrix is defined in the entire space of the Dyson orbitals, but its projection onto the MOs
provides a non-idempotent (correlated) density matrix resulting from the pair correlation effects
contained in the self-energy of choice. This space would usually span the entire 1h, 1p, 2h1p and
1h2p spaces in which the second-order self-energy matrix is defined, for example if one were to
perform a full diagonalisation at the level of ADC(2), but the effective compression introduced
by the moment expansion results in a compressed QMO space. Furthermore, we can perform an
additional compression to this space by writing the moments of the Green’s function using the
compressed QMOs as the Dyson orbitals and energies, and applying the recurrence discussed in
Section 3.6.

This compression allows one to iterate the Dyson equation without expressing the Green’s
function and self-energy on dynamically resolved quadrature, as the diagonalisation of the self-
energy now results in a O(nmo) number of QMOs, whereas the diagonalisation of the full self-energy
results in O(n3

mo) roots. This method has been termed AGF2, referencing its connection to the
many-body Green’s function perturbation theory in the case of a self-energy expressed in terms of
its explicitly static configuration (or ‘auxiliary’) space.

As well as the outermost iterations of the Dyson equation, there exists an additional SCF on
the correlated density matrix resulting from the QMOs, and its associated Fock matrix. This can
be considered a renormalisation of the propagators in the first-order diagrams (whilst the Dyson
equation renormalises the propagators in the second-order diagrams), relaxing the density matrix
and resulting in a Fock matrix that is no longer diagonal in the basis of MOs. This is equivalent
to updating the static part of the self-energy using the updated Green’s function according to
Equation 2.79. The non-idempotent density matrix resulting from this update is not guaranteed
to trace to the correct (physical) number of electrons, and so a shift in the poles of the self-energy
must also be self-consistently determined such that the resulting relaxed density matrix is both a
minimum with respect to the SCF, and also one which satisfies the correct number of electrons in
the system.

The moniker AGF2 without specification of the number of moments in the self-energy and
Green’s function expansions will refer to the simplest such compression, that is, a conservation in
only the first two (zeroth- and first-order) moments of the self-energy. Otherwise, the notation
AGF2(nG

iter, nΣ
iter) is used. We will later show that increasing the number of moments and

approaching the GF2 limit is detrimental to the accuracy.
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4.3 Energy functionals

As discussed in Section 2.4.5 and Section 2.5.3, the energy in many-body Green’s function
perturbation theory is typically partitioned into contributions due to one- and two-body
quantities. This differs from the partition into mean-field and correlation, since the first-order
(HF) diagrams also change due to the renormalisation of their propagators through the
intermediate SCF. The one-body energy can be trivially calculated using Equation 2.106, where
the frequency-independent self-energy in AGF2 takes the form of the Fock matrix updated due to
correlation

E1b = 1
2

mos∑
pq

γpq [Hpq + Fpq] . (4.4)

The two-body part of the energy can be calculated by analytically evaluating the Galitskii–Migdal
formula for the two-body energy shown in Equation 2.107, using the explicit pole representation
of the self-energy and Green’s function afforded in AGF2. We can proceed by inserting the pole
representations into the Galitskii–Migdal formula on the Matsubara axis

E2b = 1
2

1
2π

mos∑
pq

∫ ∞

−∞
dωΣpq(iω)Gpq(iω) (4.5a)

= 1
2

1
2π

mos∑
pq

aux∑
α

qmos∑
x

VpαV
∗

qαupxu
∗
qx

∫ ∞

−∞
dω (iω −Kα)−1 (iω − λx)−1

, (4.5b)

where α enumerates the compressed configuration space (auxiliaries) of the self-energy, which is
expressed in a basis in which (K+C) is diagonal and hence C = 0. The integral can be evaluated
as (see Appendix C)

∫ ∞

−∞
dω (iω −Kα)−1 (iω − λx)−1 =


2π

λx−Kα
if Kα > 0, λx < 0,

2π
Kα−λx

if Kα < 0, λx > 0,

0 otherwise,

(4.6)

which restricts the energy expression to one that sums over separate occupied and virtual self-
energy and Green’s function poles, and we can exploit symmetry in the two permutations leading
to

E2b =
mos∑
pq

occ
aux∑
α

vir
qmos∑

x

VpαV
∗

qαupxu
∗
qx

Kα − λx
. (4.7)

If one replaces the self-energy poles with the explicit (uncompressed) parameters at second-order,
expressed in a basis of QMOs as they are in an AGF2 calculation, this expression becomes

E2b = 1
2

mos∑
pq

occ
qmos∑

yz

vir
qmos∑
wx

⟨yz||wp⟩ ⟨wq||yz⟩upxu
∗
qx

λy + λz − λx − λw
. (4.8)
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We can then consume the Dyson orbitals along with the summation over MOs, by interpreting
them as a rotation of the remaining MO indices into the QMO space

E2b = 1
2

occ
qmos∑

yz

vir
qmos∑
wx

⟨yz||wx⟩ ⟨wx||yz⟩
λy + λz − λx − λw

. (4.9)

By comparing Equation 4.9 to Equation 2.114, one can easily see that in the case of G = G0

(i.e. when the QMO space is the original MO space), this equals twice the MP2 energy. We
can also rationalise the two-body energy functional as the calculation of half the MP2 energy
in a basis of QMOs, rather than the original MOs. The discrepancy in the partitioning of the
energy is compensated by the changes to the one-body density matrix, such that in the limit of
infinite moments the zeroth iteration AGF2 energy still yields the MP2 energy. This partitioning
is discussed in detail in Ref. 143.
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4.4 Density matrices

The one-particle density matrices are trivially computed by the projection of the inner space of
the occupied Dyson orbitals onto the MO space

γpq =

occ
qmos∑

x

upxu
∗
qx, (4.10)

where p and q run over the MOs. The cumulant part of the two-particle density matrix can be
defined by an integral on the Matsubara axis at zero temperature356,357

Γ = 1
2

1
2π

∫ ∞

−∞
dωTr

(
∂Σ(iω)
∂λ

)
G,h

G(iω), (4.11a)

Γpqrs = 1
2

1
2π

∫ ∞

−∞
dωItrpq(iω)Gts(iω), (4.11b)

where the partial derivative is with respect to the perturbation λ (not to be confused with the
Green’s function energies), originating from the derivative of the self-energy in Equation 2.77. It
can be interpreted diagrammatically as the cutting of an interaction line in the diagrams shown in
Equation 2.128, and therefore can be written (on the Matsubara axis) in terms of the QMOs that
enter the self-energy

Itrpq(iω) =

occ
qmos∑

ij

vir
qmos∑

a

urau
∗
piuqj ⟨at||ij⟩

iω − (λi + λj − λa) +

occ
qmos∑

i

vir
qmos∑

ab

uriu
∗
pauqb ⟨ti||ab⟩

iω − (λa + λb − λi)
. (4.12)

where i, j, a, b run over QMOs and p, q, r, s, t run over MOs. These terms do not inherit the factor
1
2 of the second-order self-energy, not due to the diagrammatic topology (see Section 2.3), but
rather because they gain an additional factor two since there are two symmetric ways to cut the
interaction in the second-order diagrams. This is entirely equivalent to considering the symmetry
in the terms resulting from the expansion of the derivative in Equation 4.11a under the product
rule. Expanding Equation 4.11 in terms of Equation 4.12 and the explicit pole representation of
the Green’s function yields

Γpqrs = 1
2

1
2π

mos∑
t

qmos∑
x

occ
qmos∑

ij

vir
qmos∑

a

∫ ∞

−∞
dω

utxu
∗
sxurau

∗
piuqj ⟨at||ij⟩

(iω − λx) (iω − λi + λj − λa)

+ 1
2

1
2π

mos∑
t

qmos∑
x

occ
qmos∑

i

vir
qmos∑

ab

∫ ∞

−∞
dω

utxu
∗
sxuriu

∗
pauqb ⟨ti||ab⟩

(iω − λx) (iω − λa + λb − λi)
. (4.13)
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We can again exploit the integral evaluation of Equation 4.6 (see Appendix C for the derivation),
along with the orthogonality condition in the Dyson orbitals, to yield the expression

Γpqrs = 1
2

mos∑
t

qmos∑
x

occ
qmos∑

ij

vir
qmos∑

a

N (λi, λj , λa;λx)
utxu

∗
sxurau

∗
piuqj ⟨at||ij⟩

λi + λj − λa − λx

+ 1
2

mos∑
t

qmos∑
x

occ
qmos∑

i

vir
qmos∑

ab

N (λa, λb, λi;λx)
utxu

∗
sxuriu

∗
pauqb ⟨ti||ab⟩

λa + λb − λi − λx
, (4.14)

where

N (i, j, k; l) =


1 if l > 0, i+ j − k < 0,

−1 if l < 0, i+ j − k > 0,

0 otherwise.

(4.15)

Equation 4.14 can be simplified by inserting Equation 4.15

Γpqrs = 1
2

occ
qmos∑

ij

vir
qmos∑

ab

u∗
sburau

∗
piuqj ⟨ab||ij⟩

λi + λj − λa − λb
− 1

2

occ
qmos∑

ij

vir
qmos∑

ab

u∗
sjuriu

∗
pauqb ⟨ji||ab⟩

λa + λb − λi − λj

=

occ
qmos∑

ij

vir
qmos∑

ab

u∗
piuqju

∗
rausb ⟨ij||ab⟩

λi + λj − λa − λb
. (4.16)

This expression can be verified by observing that

E2b = 1
2

mos∑
pqrs

⟨pq||rs⟩Γpqrs, (4.17)

satisfies Equation 4.9.
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4.5 Algorithm

The described method results in a solution to the Dyson equation with an overall cost scaling as
O(n5

mo), i.e. the same as MP2 and ADC(2), and has no dependency on grid size. The number of
moments used provides a parameterisation that systemically improves toward canonical GF2 in
the limit of infinite moments. This limit is rigorously diagrammatic, whilst truncations of AGF2
at given numbers of moments are not.a Algorithm 4.1 can be used to construct the moments of

Algorithm 4.1: Calculation of the first nmom moments of the hole and particle self-
energy for AGF2.

Data: ERIs in the MO basis ⟨pq||rs⟩, Dyson orbitals u and pole energies λ.
Result: AGF2 self-energy moments for the hole Ξ(Σ<,n) and particle Ξ(Σ>,n) cases.
⟨ij||ap⟩ ←

∑mos
qrs ⟨qr||sp⟩u∗

qiurju
∗
sa

⟨aq||ij⟩ ←
∑mos

prs ⟨pq||rs⟩u∗
pau

∗
riusj

⟨pi||ab⟩ ←
∑mos

qrs ⟨pq||rs⟩uqiu
∗
rausb

⟨ab||qi⟩ ←
∑mos

prs ⟨pr||qs⟩u∗
paurbusi

Ξ(Σ<,n)
pq ← 0

Ξ(Σ>,n)
pq ← 0

† for i ∈ occ do
xpja ← ⟨ij||ap⟩
yqja ← ⟨aq||ij⟩
for n = 0→ nmom do

Ξ(Σ<,n)
pq ← Ξ(Σ<,n)

pq +
∑occ

j

∑vir
a xpjayqja

if n ̸= nmom then
‡ xpja ← xpja (λi + λj − λa)

end
end

end
† for a ∈ vir do

xpbi ← ⟨pi||ab⟩
yqbi ← ⟨ab||qi⟩
for n = 0→ nmom do

Ξ(Σ>,n)
pq ← Ξ(Σ>,n)

pq +
∑vir

b

∑occ
i xpbiyqbi

if n ̸= nmom then
‡ xpbi ← xpbi (λa + λb − λi)

end
end

end

aThe dynamic quantities that are rigorously diagrammatic have been coarse-grained into a representation that
is not exact in the diagrammatic sense.
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Algorithm 4.2: Relaxation of the density matrix in AGF2 calculations.
Data: Dyson orbitals u and pole energies λ, the core Hamiltonian matrix elements H,

and the static part of the self-energy Σ(∞).
Result: Updated Dyson orbitals u and energies λ satisfying the correct number of

electrons and are a minimum with respect to the SCF.
γpq ←

∑occ
x upxu

∗
qx

while
∣∣∣γ(i)

pq − γ(i−1)
pq

∣∣∣ > threshold do

‡ while
∣∣∣∑mos

p γpp − nelec

∣∣∣ > threshold do
‡ Σ← shift (Σ)
† u,λ← Σ,Σ(∞)

γpq ←
∑occ

x upxu
∗
qx

end
Fpq ← Hpq +

∑mos
rs γrs ⟨pr||qs⟩

Σpq(∞)← Fpq

† u,λ← Σ,Σ(∞)
γpq ←

∑occ
x upxu

∗
qx

end

the self-energy required for an AGF2 calculation, where daggered (†) line indicate loops that are
typically distributed across CPUs or nodes via the message passing interface (MPI) protocol, and
double daggered (‡) lines are dispatched using general matrix-multiplication (GEMM) routine via
a basic linear algebra subprogram (BLAS) interface and typically also leverage open
multi-processing (OpenMP) parallelism. This permits the algorithm to be applicable on HPC
environments, allowing AGF2 calculations on large systems. In practice, one would implement
Algorithm 4.1 in a spatial-orbital representation by spin-integrating the required quantities, and
this further allows the use of a DF scheme that reduces the storage requirements to scale with
system size as O(n3

mo). The SCF used to relax the density matrix in the presence of the updated
self-energy follows an adapted SCF algorithm, outlined in Algorithm 4.2. The daggered (†) lines
indicate the diagonalisation of the compressed self-energy matrix, and the double daggered (‡)
correspond to optimising a shift in the energy of the poles of said self-energy, typically handled
using Newton iterations. This step scales with system size as O(n4

mom) due to the construction of
the Fock matrix, which can be parallelised according to either MPI or OpenMP protocols, or
both. The present algorithm has been implemented in the open-source PySCF26,27 including
hybrid MPI and OpenMP parallelism. This should amount to an embarrassingly parallel task in
the case of all O(n5

mo) parts of the algorithm.

To aid convergence, self-consistent quantum chemical methods often leverage direct inversion
of the iterative subspace (DIIS) to accelerate convergence.358,359 This can be readily applied to
AGF2 by considering the convergence of the self-energy moments, which should be unchanging at
a fixed point on the Dyson equation. The moments in the hole and particle sector can therefore
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Algorithm 4.3: Full AGF2 calculation.
Data: Total energy EHF, coefficients C and orbital energies ε from a HF calculation.
Result: Converged Dyson orbitals u and energies λ.
Etot ← EHF

u,λ← C, ε
while

∣∣∣E(i)
tot − E

(i−1)
tot

∣∣∣ > threshold do
Ξ← u,λ (Algorithm 4.1)
Σ← Ξ (Section 3.5)
u,λ← Σ (Equation 2.84)
Relax u,λ self-consistently. (Algorithm 4.2)
Calculate E1b. (Equation 4.4)
Calculate E2b. (Equation 4.7)
Etot ← E1b + E2b.

end

be concatenated into a vector, with the corresponding error vector being the vector at the current
iteration minus that of the previous iteration. This facilitates the solving of the linear equations
for the DIIS coefficients, allowing the extrapolation of the moments in a linear combination. A
simpler alternative is to damp the moments by taking a linear combination of the moments at the
current iteration with those of the previous iteration, with the coefficients summing to one and
their values provided as a parameter.

Shown in Figure 4.1 is a benchmark for the AGF2 algorithm as implemented in PySCF, detailing
the parallel speedup and timings per-iteration for AGF2 calculations on a guanine molecule in an
aug-cc-pVDZ basis set. This system consists of 298 AOs and 78 electrons, and a DF scheme
was used with the aug-cc-pVTZ-RI auxiliary basis. The calculations were performed on nodes
consisting of two 20-core Intel Xeon Gold 6248 2.5 GHz processors. The plot on the left shows the
parallel speedup, with the ideal linear speedup indicated as the black line, of both the full timings
and those due to the leading-order scaling (O(n5

mo)) steps. The latter will dominate the cost of
AGF2 calculations in the limit of large systems, and so the parallel speedup of these steps are
of the most interest in benchmarking the method. The scaling of these steps can be seen to be
almost completely linear in the plotted regime (up to 100 CPUs), indicating the scalability of the
algorithm and suitability for application to large systems on HPCs. The full algorithm has slightly
poorer parallel speedup, due to steps such as the SCF and Fock matrix construction that are not
as well distributed to large numbers of cores. These steps however constitute a smaller fraction of
the total runtime as the size of the system increases.
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Figure 4.1: Benchmark of the AGF2 implementation in PySCF with calculations on a guanine molecule in
an aug-cc-pVDZ basis set, with 298 AOs and 78 electrons. A DF scheme was used with the aug-cc-pVTZ-
RI auxiliary basis. The times shown are for a single iteration of AGF2, on nodes consisting of two 20-core
Intel Xeon Gold 6248 2.5 GHz processors. The left plot shows the speedup with respect to the single core
timing, whilst the right plot shows the actual times. Shown are the timings for the entire AGF2 algorithm,
along with timings only for the leading-order scaling (O(n5

mo)) steps, which will dominate the cost in the
limit of very large systems. The black line on the left plot indicates the ideal linear speedup.
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4.6 Application to solids

The ideas presented thus far largely focus on real-space orbitals and the application to molecular
systems. They are however readily applicable to orbitals resolved in momentum space, or k-space,
exploiting the periodic symmetry in crystalline systems. To apply this to AGF2 we can simply
rewrite Equation 4.3 in k-space

Ξ(Σ(2),<,n)
kpkq,pq = 1

2

occ∑
ij

vir∑
a

〈
iki
jkj

∣∣∣∣aka
pkp

〉 (
εki,i + εkj ,j − εka,a

)n 〈
aka

qkq

∣∣∣∣iki
jkj

〉
, (4.18a)

Ξ(Σ(2),>,n)
kpkq,pq = 1

2

occ∑
i

vir∑
ab

〈
pkpiki

∣∣∣∣akabkb

〉
(εka,a + εkb,b − εki,i)n 〈

akabkb

∣∣∣∣qkq iki

〉
. (4.18b)

Whilst Equation 4.18 appears to formally scale with the fifth power of the number of k-space
vectors, it can be simplified by noting that

Ξ(··· ,n)
kpkq,rs = δpqΞ(··· ,n)

kpkq,rs, (4.19)

and also by considering the law of momentum conservation requiring

(kp − kq + kr − ks) · a = 2nπ, (4.20)

where a are the lattice vectors of the unit cell. As a result the number of permutations of k-space
vectors in Equation 4.18 scale only as the third power of the number of k-points, in order to
calculate the moments at every k-point (where the moments are diagonal in k-space as a result
of Equation 4.19). The overall scaling of AGF2 for periodic solids is therefore O(n3

kptsn
5
mo) where

nkpts is the number of k-points and nmo is the number of MOs in a single unit cell.
In non-self-consistent Green’s function methods applied to ab initio solids such as EOM-CCSD,

GW , and more recently ADC, one typically calculates the Green’s function only at a single k-point,
most often computing the direct band gap at the highest symmetry point Γ in the first Brillouin
zone.205,296,360–364 One then has the option to perform separate calculations with a shifted k-point
mesh in order to trace out bands through high-symmetry points in the first Brillouin zone. AGF2
is different in this respect, since the self-consistent formalism requires one to build subsequent self-
energies with sums over quantities in the basis of the Dyson orbitals at different k-points, as can
be seen in Equation 4.18. This requires the calculation of the Green’s function at every sampled
k-point at each iteration, and has the effect of including some non-local correlation effects, with the
self-energy incorporating diagrams whose configurations can consist of combinations of k-points,
so long as momentum conservation is adhered to. A simple approximation can be made in periodic
AGF2 to only perform self-consistency at the Γ point where one wishes to probe the direct band
gap, with the propagator at all other sampled k-points remaining at the level of MP2. The non-
self-consistent self-energy already provides sufficient long-range dispersion effects at the level of
MP2 such that this approximation will be satisfactory for many systems, without the need for self-
consistency away from the Γ point, with these self-consistencies likely to be small in effect. This
reduces the iterative cost to O(n2

kptsn
5
mo), and whilst there still exists a O(n3

kptsn
5
mo) non-iterative

cost, the prefactor for this step is reduced significantly. This method is denoted Γ-AGF2.



92 4 Second-order auxiliary Green’s function perturbation theory

4.7 Multiple solutions

The existence of multiple solutions at different levels (or absence) of self-consistency in Green’s
functions methods is well known and documented.145,216,357,365–374 As discussed in Sections 2.4.2
and 2.4.3 the Dyson equation can be solved linearly when upfolded into its configuration space,
despite the subsequent projection of the Dyson orbitals onto the space spanned by MOs (the
physical space) still being non-linear. The equation however is commonly solved non-linearly
i.e. downfolded into the frequency domain, leading to the fulfilment of the non-linear equations
by multiple solutions.357 Furthermore, the introduction of self-consistency necessarily results in
additional non-linearities since in a linear form the number of configurations would grow intractably.
The compression of these configurations, either by moment constraints or simply downfolding
onto the physical space, affects the number of solutions. These non-linearities can manifest in
discontinuous surfaces for many properties such as the IP and EA including within several flavours
of GW and in GF2.370 An example of this is with the quasiparticle equation, whose solution
corresponds to that with the largest renormalisation factor as written in Equation 2.91. When the
renormalisation factor of two such quasiparticle states cross over along the reaction coordinate of
a particular energy surface, the character of the solution therefore changes to the dominant factor,
and a discontinuity can be observed. This can become particularly erratic when spurious poles
occur in the self-energy due to singularities, often resulting in a fragmented energy surface where
the dominant solution changes multiple times in a short range of the reaction coordinate.370

Figure 4.2 shows the discontinuities in the quasiparticle energies λp, self-energy elements
Σpp(λp), and quasiparticle renormalisation factors Zp with increasing atomic separation of H2 in
a 6-31G basis set. The panels show results for single-shot GW with both a HF and
Perdew–Burke–Ernzerhof (PBE) density functional, for ADC(2), and for two parameterisations
of AGF2 with niter = 0 and 5 in the self-energy recurrence algorithm, respectively. The canonical
GW results employ the quasiparticle approximation. In the ADC(2) and AGF2 results, the
quasiparticle solutions were determined by the roots in the Green’s function with the largest
overlap with each MO, whereas GW applies the quasiparticle equation to similar effect.
Significant discontinuities can be observed for the GW results, whilst this manifests most
intuitively in the quasiparticle energy surface in the first column its source can be understood
best from the renormalisation factor in the third column; across the reaction coordinate the
dominant renormalisation factor changes multiple times resulting in the selection of a different
quasiparticle solution, in both the LUMO+1 and LUMO+2. Similar observations can be made
for the ADC(2) results, where a clear crossover in renormalisation factor curves occurs for the
LUMO+2 at around 0.6 Å. A similar feature can be seen at around 1.0 Å likely due to a spurious
pole in the self-energy. At the level of AGF2, all three panels are completely continuous in this
range of separations in the case of niter = 0 in the self-energy recurrence, however the
discontinuities are almost identical to those of ADC(2) with niter = 5. The latter method, termed
AGF2(None, 5), is likely converged to the full-frequency GF2 result numerically exactly, with
very few moments required to capture the dynamics of the self-energy in such a simple system.
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Figure 4.2: Discontinuities in the quasiparticle energies λp, self-energy elements Σpp(λp), and quasiparticle
renormalisation factors Zp with increasing atomic separation of H2 in a 6-31G basis set. Plots are shown for
single-shot GW with both a HF and Perdew–Burke–Ernzerhof (PBE) density functional, for ADC(2), and
for two parameterisations of AGF2 with niter = 0 and 5 in the self-energy recurrence algorithm, respectively.
The canonical GW results employ the quasiparticle approximation. The orbitals p enumerate the HOMO,
LUMO, LUMO+1, and LUMO+2, respectively. All results were computed with the PySCF programming
package.26,27 In the ADC(2) and AGF2 results, the quasiparticle solutions were determined by the roots
in the Green’s function with the largest overlap with each MO, whereas GW applies the quasiparticle
equation to similar effect. The transparent lines follow the alternate solutions where discontinuities occur
in the case of the final three rows, which is more difficult to show in the case of the top two rows that rely
on the quasiparticle equation.
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The self-consistent renormalisation of the propagators according to the Dyson equation therefore
does not remedy the unphysical discontinuities in this example, however the reduction of
resolution in the self-energy offered by AGF2(None, 0) does. The reduced resolution means that
spurious poles in the self-energy that do not contribute significantly to the zeroth or first
moments do not appear, with their dynamics coarsely represented by more significant
neighbouring poles such that the self-energy still reproduces the moments. This results in a
Green’s function with far fewer poles with non-quasiparticle-like behaviour. This is not a strict
feature; the Green’s function at the level of AGF2(None, 0) consists of 3nmo poles, which still
obey sum rules, meaning that there must be some poles with small weights.
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Chapter 5

Auxiliary GW approximation
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5.1 Introduction

Performing GW calculations in a numerically exact fashion using the RPA has a bottleneck
scaling as O(n6

mo). Whilst an exhausting number of approximations exist to make GW

calculations practical, such approximations are often harsh and consequential. These include
using quasiparticle equation formulations, diagonal approximations to the self-energy, or both.
Many also employ numerical methods such as analytic continuation and Fourier transforms, with
necessary resolutions on discrete grids and often a finite temperature. Ref. 333 recently reported
a GW implementation scaling with system size as low as O(n3

mo), without exploiting locality or
sparsity. This leverages a susceptibility calculated in the time domain over real-space
coordinates, leveraging an RI along with a modern analytical continuation approach applied
directly to the screened Coulomb interaction.

The techniques outlined in Chapter 3 can be applied to GW calculations, and in combination
with some recently developed numerical integration techniques an efficient and tractable moment-
resolved GW solver can be formulated, the details of which shall be outlined in this Chapter. The
developments leading to the evaluation of the RPA moments is largely the work of C. J. C. Scott
building upon Ref. 375. The combination of this formulation with the self-energy recurrence of
Section 3.5 results in this efficient GW solver, and is the topic of a paper currently in preparation.54

In the spirit of the AGF2 nomenclature, we term this method auxiliary GW (AGW ) and will often
use AGW (niter) to denote the number of iterations applied in the block Lanczos recurrence.

GW solvers aiming to bypass the numerical quadrature of typical implementations have been
discussed previously in the literature, with a recent implementation offering a O(n4

mo)
implementation in the case of TDA screening and DF outlined in Ref. 312, in which the GW is
upfolded into its configuration space and solved using an iterative eigensolver. The authors
discuss initial efforts to also formulate a similar scheme in the case of RPA screening. The
present Chapter will outline a scheme scaling also with system size as O(n4

mo), and naturally
employing the RPA for screening.

The approach outlined here also offers a very simply extension to perform self-consistent GW
calculations with moment constraints, in a fashion analogous to that of AGF2. This will also
require some of the considerations of additional self-consistencies in the physical density matrix,
as well as maintenance of the particle number, borrowing many ideas from Chapter 4. This will
be the topic of future work.
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5.2 Method

Recapping its definition in Equation 2.159, the reducible polarisation propagator can be written
as a sum over its poles

χ(x1,x2;ω) =
∑

n

ρn(x1)ρ∗
n(x2)

ω − Ωn + i0+ +
∑

n

ρn(x1)ρ∗
n(x2)

ω + Ωn − i0+ . (5.1)

The reducible polarisation propagator was previously discussed in the context of the RPA in
Section 2.8. A more compact form of the polarisation propagator can be written in terms of the
eigenpairs in Equation 2.164, by summing together 1h1p and 1p1h contributions

ηia,jb(ω) =
∑
m

(Xm
ia + Y m

ia )(Xm
jb + Y m

jb )∗

ω − Ωm
, (5.2)

which only needs to be defined in the positive frequency sector, owing to the boson-like symmetry
in the RPA eigenproblem. It is clear that Equation 5.2 is of a form very appropriate to the present
work, as its spectral moments read

Ξ(η,n)
ia,jb = − 1

π

∫ ∞

0
dω Im[ηia,jb(ω)]ωn (5.3a)

=
∑
m

(Xm
ia + Y m

ia ) Ωn
m

(
Xm

jb + Y m
jb

)
, (5.3b)

which is analogous to the moments of the single-particle Green’s function shown in Section 2.4.4,
here, for a two-particle Green’s function. RPA can be reformulated entirely in terms of these
moments with no loss of information, and recurrence relations can be defined to calculate higher-
order moments from the zeroth moment and the A and B matrices entering the RPA problem

Ξ(η,n) = (A−B) (A + B) Ξ(η,n−2) (5.4a)

=
[
Ξ(η,0) (A + B)

]n

Ξ(η,0). (5.4b)

The details leading to these recurrence relations are discussed in Ref. 375. Also of note is that in
the case of the TDA, the moments become trivial

Ξ(η,n) = An, (5.5)

and therefore identity in the case of the zeroth moment. This reflects the lack of correlation in the
ground state.303,304
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5.3 Efficient evaluation of moments

Whilst Equation 5.3b can be constructed naively with a bottleneck scaling as O(n6
mo), we seek to

find a low-scaling algorithm to construct these objects in order to obtain a practical GW algorithm.
The algorithm requires a linear transformation from the 1h1p space to a space scaling linearly with
system size. This is achieved by the standard DF approximation in quantum chemistry, in which
the RI basis has a linear scaling with system size but conserves well the ERIs on the rotation of
two MO indices into it. Under a density fitting approximation, Equation 2.166 becomes

Aia,jb = (εa − εi)δabδij +
aux∑
Q

(ia|Q) (Q|jb) , (5.6a)

Bia,jb =
aux∑
Q

(ia|Q) (Q|jb) , (5.6b)

and the response can also be (partially) rotated using the interaction matrices

η̃ia,Q =
occ∑
j

vir∑
b

ηia,jb (jb|Q) , (5.7)

along with the associated moments

Ξ(η̃,n)
ia,Q =

occ∑
j

vir∑
b

Ξ(η,n)
ia,jb (jb|Q) . (5.8)

To retain a bottleneck scaling with system size as O(n4
mo), we wish to write the part of the

recurrence of Equation 5.4a involving A and B as a diagonal matrix plus a low-rank correction.
This is applicable to RPA since

Aia,jb −Bia,jb = (εa − εi)δabδij = Dia, (5.9)

is diagonal, and (A + B) can be written as

Aia,jb +Bia,jb = Dia + 2
aux∑
Q

(ia|Q) (Q|jb) . (5.10)

These definitions allow us to express (A−B)(A+B) as a diagonal matrix plus low-rank correction

(A−B)(A + B) = D2 + (DV)(2V)†

= D2 + LR†, (5.11)

where the matrix V has been introduced such that

ViaV†
jb =

∑
Q

(ia|Q) (Q|jb) = ⟨ij|ab⟩ . (5.12)

The first-order moments can be trivially extracted from these matrices as

Ξ(η̃,1) = DV = L. (5.13)
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An expression for the zeroth moment without the DF approximation can be derived from
Equation 5.4b

Ξ(η,0) = [(A−B)(A + B)]
1
2 (A + B)−1, (5.14)

and can therefore be written in the low-rank format

Ξ(η̃,0) = (D2 + LR†) 1
2 (D + 2VV†)−1V. (5.15)

This expression can be evaluated using integration over numerical quadrature, the details of which
are to be discussed in Ref. 54. Higher-order moments can then be computed from the zeroth- and
first-order moments according to the recurrence relations in Equation 5.4.
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5.4 Calculation of self-energy moments

The moments of the polarisation propagator can be used to obtain the moments of the self-energy
at the level of GW , from which one can apply the recurrence of Section 3.5 to obtain approximate
quasiparticle excitation energies. This can be achieved via the binomial theorem, corresponding
to the moments of a convolution

Ξ(Σ<,n)
pq =

occ∑
ij

vir∑
ab

aux∑
P Q

V
(Q)

ia V
(P )

jb

occ∑
k

V
(Q)

pk V
(P )

qk

n∑
t=0

(
n

t

)
(−1)tεn−t

k Ξ(η̃,t)
ia,jb, (5.16a)

Ξ(Σ>,n)
pq =

occ∑
ij

vir∑
ab

aux∑
P Q

V
(Q)

ia V
(P )

jb

vir∑
c

V (Q)
pc V (P )

qc

n∑
t=0

(
n

t

)
εn−t

c Ξ(η̃,t)
ia,jb. (5.16b)

These operations can be ordered such that the scaling with system size does not exceed O(n4
mo),

for example in the case of the hole moment

Ξ(Σ<,n)
pq =

occ∑
k

n∑
t=0

(
n

t

)
(−1)tεn−t

k Ξ(Σ̃<,n)
pqk , (5.17a)

Ξ(Σ̃<,n)
pqk =

aux∑
Q

(
V

(Q)
pk

aux∑
P

(
V

(P )
qk Ξ(η̃,t)

QP

))
, (5.17b)

Ξ(η̃,t)
QP =

occ∑
ij

vir∑
ab

V
(Q)

ia V
(P )

jb Ξ(η,t)
ia,jb, (5.17c)

where Equation 5.17c represents the moments of the polarisation propagator in the basis of DF
auxiliary functions. Finally, the moments can simply be passed to the self-energy recurrence
relations of Section 3.5 in order to calculate approximate quasiparticle excitations at the level of
GW . As discussed in Section 4.2, this is performed separately for the hole and particle moments
in order to appropriately resolved the low-energy dynamics.

Additionally, this scheme offers a simple extension to self-consistent forms of GW in the future,
where the Green’s function obtained via the diagonalisation of the compressed self-energy matrix
can be reinserted into the self-energy diagrams. This is identical to the ideas used to obtain self-
consistency in AGF2, and may too require considerations of correlation-induced updates to the
static self-energy, along with maintenance of the particle number via a chemical potential.
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5.5 Multiple solutions

Section 4.7 showed that the coarse representation afforded by low numbers of iterations in the
block Lanczos recursion relaxed many of the issues associated with multiple quasiparticle solutions
resulting from calculations at (self-consistent) second-order perturbation theory. Figure 5.1 shows
the discontinuities in the quasiparticle energies λp, self-energy elements Σpp(λp), and quasiparticle
renormalisation factors Zp with increasing atomic separation of H2 in a 6-31G basis set. The panels
show results for single-shot GW with both a HF and PBE density functional, for ADC(2), and
for two parameterisations of AGW with niter = 0 and 5 in the self-energy recurrence algorithm,
respectively. The AGW calculations use a HF reference. The canonical GW results employ the
quasiparticle approximation. The top three rows are identical to those of Figure 4.2, and are only
repeated here for ease of comparison with the last two rows, which show the equivalent AGW
results rather than the AGF2 ones of Figure 4.2. Like in AGF2, the results at niter = 0 (conserving
only the zeroth and first moment of the separate hole and particle GW self-energies) relax the
discontinuities observed in the canonical GW results, and which also appear in the AGW results
when one uses a greater number of iterations. At this level the renormalisation factors are all
continuously close to unity with the only deviation occurring towards the maximum of the domain
for the LUMO+1 state, where the crossover occurs with the LUMO+2. That being said, within
the plotted domain no discontinuity is observed in the self-energy or in the quasiparticle energies,
whilst the canonical GW@HF and indeed the niter = 5 result both observe discontinuities in this
regime. This is an advantage of low-iteration AGW calculations, which will be shown to rapidly
converge the IP and EA to the full-frequency result in Chapter 7.
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Figure 5.1: Discontinuities in the quasiparticle energies λp, self-energy elements Σpp(λp), and quasiparticle
renormalisation factors Zp with increasing atomic separation of H2 in a 6-31G basis set. Plots are
shown for single-shot GW with both a HF and PBE density functional, for ADC(2), and for two
parameterisations of moment-resolved GW (AGW ) with niter = 0 and 5 in the self-energy recurrence
algorithm, respectively. The AGW calculations use a HF reference. The canonical GW results employ the
quasiparticle approximation. The orbitals p enumerate the HOMO, LUMO, LUMO+1, and LUMO+2,
respectively. All results were computed with the PySCF programming package.26,27 In the ADC(2) and
AGW results, the quasiparticle solutions were determined by the roots in the Green’s function with the
largest overlap with each MO, whereas GW applies the quasiparticle equation to similar effect. The
transparent lines follow the alternate solutions where discontinuities occur in the case of the final three
rows, which is more difficult to show in the case of the top two rows that rely on the quasiparticle equation.
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Chapter 6

Moment-resolved coupled cluster
Green’s function
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6.1 Introduction

Section 2.7.2 outlined a method by which one can construct the Green’s function at the level of
an arbitrary CC ansatz. This is a powerful tool for probing the spectrum of materials at the level
of CC, and has seen recent popularity with efficient formulations, often based on projecting the
problem onto a subspace that drastically reduces the number of FLOPs required.128,130 Despite
this, most of these formulations still retain either a formal scaling dependency on the size of the grid,
or at least incorporate the grid and broadening parameter into the calculation requiring entirely
separate calculations to alter such parameters. Instead, we can make use of the techniques outlined
to obtain an explicit pole representation of the CC Green’s function, which offers both an efficient
construction and the ability to adjust dynamic parameters when plotting the spectrum without a
separate calculation. This can be achieved by deriving expressions to calculate the moments of the
Green’s function, in a similar fashion to how one would compute the density matrix at the level of
CC. Therein one can apply the recurrence relations on the Green’s function moments—in contrast
to the previous two Chapters where the recurrence was applied to moments of the self-energy—in
order to obtain the effective Dyson orbitals and energies.

This method has been discussed in a recent publication,339 and at the time of writing open-
source code has been submitted to the PySCF programming package.26,27 This publication and
implementation concerns the application of the solver to the CCSD ansatz, however the discussion
can be generalised to virtually any other ansatz, requiring the derivation of expressions for matrix
elements at the particular level of CC. Future work will seek to derive such expressions for higher-
order CC ansatzes, including less familiar ones that handle active spaces at higher levels of theory.

Other implementations of GF-CC methods similarly look to transform the problem according
to projection into a smaller subspace. These include the implementations in the GFCCLib package
based on the model-order reduction technique, where the iterative cost at each frequency is
relaxed to avoid excessive computational resources being required to resolve the spectrum
well.130,131 This approach however still requires one to perform separate calculations in order to
adjust the grid parameters. To combat this requirement, Ref. 128 seeks to project the
similarity-transformed Hamiltonian into a Krylov subspace using a single-vector biorthogonal
Lanczos algorithm, corresponding to a conservation of elements of the moments of the effective
self-energy of the system. Their method however has a cost with system size scaling as O(n7

mo) in
order to access off-diagonal elements of the Green’s function, which is of little impact in their
application which is based on embedding problems and therefore scaling of some contractions is
relaxed to O(1). The benefit of this method is that it does not require the separate solution of a
linear equation at each frequency point. The method described in this Chapter will seek to
combine the benefits of subspace projection with the lack of a frequency dependence in the
working equations.
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6.2 Method

Recalling the expressions for the Green’s function at the level of a given CC ansatz in Equation 2.150

Gpq(ω + i0+) =
〈

ΨHF

∣∣∣(1 + Λ̂)ā†
q

[
ω + H̄N + i0+]−1

āp

∣∣∣ΨHF

〉
+
〈

ΨHF

∣∣∣(1 + Λ̂)āp

[
ω − H̄N + i0+]−1

ā†
q

∣∣∣ΨHF

〉
, (6.1)

the moments of the Green’s function can be written

Ξ(G<,n)
pq =

〈
ΨHF

∣∣∣(1 + Λ̂
)
ā†

q

[
−PY H̄NPY

]n
āp

∣∣∣ΨHF

〉
, (6.2a)

Ξ(G>,n)
pq =

〈
ΨHF

∣∣∣(1 + Λ̂
)
āp

[
PXH̄NPX

]n
ā†

q

∣∣∣ΨHF

〉
, (6.2b)

where the projectors PX and PY as given in Equation 2.154 ensure projection onto the correct set
of excitations. We note that these are moments of the hole and particle Green’s function, i.e. the
hole energies are below the Fermi energy, whereas previous derivations such as that of Ref. 339
take the hole moment in the context of IPs where the sign of the energies is flipped and therefore
the minus sign in Equation 6.2a is missing. One can see that the expression for Ξ(G<,0)

Ξ(G<,0)
pq =

〈
ΨHF

∣∣∣(1 + Λ̂
)
ā†

qāp

∣∣∣ΨHF

〉
= γCC

pq , (6.3)

is equal to the one-particle CC density matrix. Whereas higher-order moments are defined simply
by powers of the n = 1 moment in a mean-field picture, in this correlated picture additional order
moments provide more information resulting in additional spectral features, resulting from the
existence of a dynamic self-energy.

As discussed in Section 2.7.1, H̄ is only referred to as an effective self-energy upfolded into its
configuration space, rather than a proper self-energy. This can be seen by the fact that the Green’s
function moments are not simply equal to powers of H̄ projected down onto the physical space,
but rather they must be acted upon by similarity transformed operators in the bra and ket. These
are defined as

x<
p = ā†

p |ΨHF⟩ , (6.4a)

x>
p = āp |ΨHF⟩ , (6.4b)

y<
p = ⟨ΨHF| (1 + Λ̂)āp, (6.4c)

y>
p = ⟨ΨHF| (1 + Λ̂)ā†

p, (6.4d)

which must be evaluated within a given ansatz to obtain tensorial expressions. Unlike the EOM-CC
similarity transformed Hamiltonian, these vectors (specifically the bra) depend on the de-excitation
amplitudes Λ̂. This reflects the biorthogonal correlated ground state at the level of CC, rather than
simply the HF ground state. The most common choice of ansatz is to truncate the excitation and
de-excitation operators to span only singles and doubles, leading to the ubiquitous CCSD method.
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At this level, in the case of the hole Green’s function, the bra and ket span the 1h and 2h1p spaces
and are defined according to the character of the index of the second-quantised operator128

x<
i,j = δij , (6.5a)

x<
a,j = taj , (6.5b)

x<
i,klb = 0, (6.5c)

x<
a,klb = tab

kl , (6.5d)

y<
i,j = δij −

vir∑
e

ljet
e
i −

1
2

occ∑
k

vir∑
ab

ljk
abt

ab
ik , (6.5e)

y<
a,j = lja, (6.5f)

y<
i,klb =

vir∑
a

tai l
lk
ab + δikl

l
b − δill

k
b , (6.5g)

y<
a,klb = llkba. (6.5h)

In the case of the particle Green’s function, the bra and ket span the 1p and 1h2p spaces and are
defined as

x>
i,b = −tbi , (6.6a)

x>
a,b = δab, (6.6b)

x>
i,cdj = tdc

ij , (6.6c)

x>
a,cdj = 0, (6.6d)

y>
i,b = −lib, (6.6e)

y>
a,b = δab −

occ∑
i

libt
a
i −

1
2

occ∑
ij

vir∑
c

lijbct
ac
ij , (6.6f)

y>
i,cdj = lji

cd, (6.6g)

y>
a,cdj =

vir∑
i

tai l
ji
cd + δacl

j
d − δadl

j
c . (6.6h)

These expressions can be generated for arbitrary CC ansatzes using Wick’s theorem, which is
implemented in many symbolic algebra packages allowing computer generation of the
expressions.376–381 The product between the similarity transformed Hamiltonian projected into
the particular configurations can also be generated diagrammatically, and is implemented in
many modern quantum chemistry packages, allowing the dot-product with an arbitrary state
vector.26,27,267,273

One can then perform the recursion outlined in Section 3.6 for each set of moments, obtaining
a set of Dyson orbitals and pole energies that conserve the separate hole and particle Green’s
function moments. This must be done using the non-Hermitian variant of the algorithm as the
non-unitary CC exponential parameterisation results in non-Hermitian moments. These moments
can be forcefully Hermitised in order to use the Hermitian recursion, though this is ad hoc approach
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introduces additional errors and does not guarantee the necessary definiteness of the moments. The
non-Hermitian nature of these moments can also result in complex Dyson orbitals and pole energies,
even in the case of a real self-energy.382 This results in the possibility of non-causal parts of the
resulting spectrum.
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6.3 Explicit self-energy construction

Chapter 3 briefly discussed the possibility of rotating the block tridiagonal Hamiltonian into a
familiar ‘arrowhead’ representation, from which one can read off auxiliary self-energy parameters.
We now turn to discussion of this technique in the general case of a non-Hermitian Green’s function
(and therefore self-energy). This is of particular interest within the application of the moment-
resolved solvers to GF-CC theory, because obtaining the EOM-CC self-energy is difficult otherwise.
Note that as discussed previously, the matrix H̄ is not equal to the EOM-CC self-energy upfolded
into its configuration space, but rather is an effective self-energy.

The diagonalisation of the non-Hermitian approximate self-energy as defined in Equation 3.49
yields left- and right-hand Dyson amplitudes uL and uR, as per the projection onto the space of
MOs and back-transformation according to the orthogonalisation metric outlined in Equation 3.50.
The separation of the hole and particle moments results in separate orbitals for each sector which
can be concatenated

uL =
[
uL,< uL,>

]
, (6.7a)

uR =
[
uR,< uR,>

]
, (6.7b)

which have dimension nmo×(L+M), where L and M are the sizes of the hole and particle Dyson
orbital spaces, respectively. These orbitals can be transformed into full-rank square matrices
maintaining the projection onto MOs by constructing additional (L + M) − nmo rows, using any
complete biorthogonal basis that does not change the existing vectors. A simple and efficient
choice is a two-sided Gram–Schmidt, however one could also use the eigenvectors corresponding to
the non-null-space of I − uL,†uR. We define a biorthogonal eigenbasis spanning the MOs and an
additional external space, which conserves the spectrum exactly

H̄comb = uL

[
λ< 0
0 λ>

]
uR,†, (6.8)

where λ< and λ> are the eigenvalues associated with the Dyson orbitals in the hole and particle
sector, respectively. We now wish to rotate the ‘external’ (auxiliary) subspace of Equation 6.8 into
a diagonal representation such that we can read off a set of non-interacting self-energy parameters
(where C = 0) thus defining a sum-over-states of self-energy pole positions and amplitudes. Taking
the projector Pext = I−Pmos, the eigenvalues of the subspace matrix are computed as

PextH̄combPextc = cK, (6.9)

and the self-energy parameters can therein be defined as

Σ(∞) = PmosH̄combPmos, (6.10)

VL = PmosH̄combPextc, (6.11)

VR,† = c−1PextH̄combPmos, (6.12)

K = c−1PextH̄combPextc, (6.13)

C = 0. (6.14)
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These parameters therefore define a self-energy either in its configuration space according to
Equation 2.80, or folded into frequency space according to Equation 2.78, with the only
modification being that in this non-Hermitian case the couplings V and V† are replaced by VL

and VR,†, respectively. The Green’s function can then be written according to the Dyson
equation

G(ω) =
(
ω −Σ(∞)−VR,† [ω − (K+C)]−1 VL

)−1
. (6.15)

One particular advantage of this approach is that it permits the analytical evaluation of Fermi
liquid parameters, as well as the quasiparticle renormalisation factors as per Equation 2.91. In
condensed matter they can quantify phase transitions due to correlation, and in finite systems as
previously discussed they can be used as a proxy to quantify correlation on a particular MO.
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6.4 Algorithm

Algorithm 6.1: Calculation of the first nmom moments of the hole and particle Green’s
function for a given CC ansatz.

Data: Excitation operator tensors T and de-excitation operators Λ converged for the
given CC ansatz.

Result: CC Green’s function moments for the hole Ξ(G<,n) and particle Ξ(G>,n) cases.
Ξ(G<,n)

pq ← 0
Ξ(G>,n)

pq ← 0
x<

q ← āq |ΨHF⟩
x>

q ← ā†
q |ΨHF⟩

† for p ∈ mos do
y<

p ← ⟨ΨHF| (1 + Λ̂)ā†
p

y>
p ← ⟨ΨHF| (1 + Λ̂)āp

for n = 0→ nmom do
‡ Ξ(G<,n)

qp ← Ξ(G<,n)
qp + y<

p x<
q

‡ Ξ(G>,n)
pq ← Ξ(G>,n)

pq + y>
p x>

q

if n ̸= nmom then
IP y<

p ← −y<
p [PXH̄NPX ]

EA y>
p ← y>

p [PY H̄NPY ]
end

end
end

Algorithm 6.1 summarises the algorithm to build the moments of the Green’s function for a given
CC ansatz. The daggered (†) lines indicate those which can be distributed using MPI parallelism,
and the double daggered (‡) lines indicates those which are dispatched efficiently and with OpenMP
parallelism via a GEMM routine in a BLAS interface. The lines marked IP and EA represent
standard EOM-CC matrix-vector product routines for the IP and EA, respectively. In this case,
the left-sided matrix-vector product is used, which reduces the distribution overhead in the case
of MPI due to the relative structural simplicity of the ket compared to the bra. As can be seen in
Equations 6.5 and 6.6, the ket x only depends on T̂ and the delta functions, and as such the dot-
product y ·x can be computed without explicit storage of x by instead considering the contractions
with the individual components. On the other hand, it would be more difficult to compute these
contractions directly (without storage of the full vector) if one were to use the more standard
right-hand matrix-vector product of the similarity transformed Hamiltonian. The details of the
construction of the bra and ket vectors and the matrix-vector product routines vary depending
on the chosen ansatz in the ground state, with the example of CCSD shown in Equations 6.5
and 6.6. It is also important to note that the dot-product y ·x assumes that the vectors span only
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non-repeated index pairs with respect to the indistinguishability of antisymmetric dummy indices,
for example in the hole case

yp · xq =
occ∑

i

yp,ixq,i +
occ∑
i<j

vir∑
a

yp,ijaxp,ija, (6.16)

which is entirely equivalent to including a factor 1
2 in the doubles (2h1p or 1h2p) part of the

contraction with the vector spanning the entire doubles space. In the case of non-antisymmetric
restricted expressions resulting from a spin adaptation of the spin orbital expressions, this
consideration is not required.

The present algorithm requires only nmomnmo evaluations of each of the IP- and EA-EOM-CC
matrix-vector product routines, which is familiar with regard to discussions in Chapter 3, where
we observed that the cost of using the block Lanczos solver is typically a factor nmo greater than
the cost with the single-vector iterative eigensolver. This is an improvement on naive algorithms
that may require one to converge an iterative process at each frequency point, increasing the
number of evaluations to niternmonfreq, where niter is the average number of iterations required and
nfreq the number of frequency points one wishes to plot. This may also present further numerical
challenges such as increased difficulty to converge around a pole, which is not a feature of the
present algorithm, and also the need to increase the grid size if one wishes to probe larger energy
scales at the same resolution.
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Chapter 7
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7.1 Introduction

In this Chapter, the performance of the block Lanczos recurrence for the self-energy and Green’s
function will be benchmarked in the context of a number of quantum chemical methods. This
includes benchmark sets, along with several isolated systems, in order to stimulate a diverse
discussion of the performance of the recurrences and the schemes presented in Chapters 4 to 6.
In the discussion of errors aggregated over benchmark sets, the convention for the sign of signed
errors is

∆system
method = Esystem

reference − E
system
method, (7.1)

such that a positive error indicates an underestimated quantity, and a negative error indicates an
overestimated quantity. Discussion of the aggregate errors within benchmark sets will leverage a
number of error measures in order to more simply quantify the distribution of error. The mean
absolute error (MAE) is a measure of the mean deviation from the true values with no consideration
of sign in the error

MAEmethod = 1
nsystem

∑
system

∣∣∆system
method

∣∣ , (7.2)

whilst the mean signed error (MSE) gives a measure of the true mean error

MSEmethod = 1
nsystem

∑
system

∆system
method, (7.3)

and in the case of a completely biased (one-sided) prediction will be identical (within a sign) to the
MAE, however for a completely unbiased prediction may approach zero. The maximum deviation
from the reference values can be measured using the greatest absolute error (GAE)

GAEmethod = max
system

∣∣∆system
method

∣∣ , (7.4)

and the distribution of the error can be quantified using the standard deviation (STD)

STDmethod =
(

1
nsystem

∑
system

∣∣∆system
method

∣∣2) 1
2

. (7.5)
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Figure 7.1: Convergence of the first IP (left) and EA (right) for the H2O molecule in a cc-pVDZ basis with
number of iterations in the moment recurrence algorithms. Results for ADC(2) and ADC(3) are shown for
both the self-energy moment recurrence, marked Σ, and the Green’s function moment recurrence, marked
G. Results for GF-CCSD are shown for the Green’s function moment recurrence. The inset shows the
same data as MAE with respect to the exact eigenvalues at each level of theory. The moments and exact
eigensolutions were found using via brute-force calculation of the full Hamiltonians.

7.2 Water

To facilitate a more in-depth discussion of the results using detailed benchmarks, we begin with a
prototypical system to illustrate the techniques discussed thus far. By using a very small system
we allow the brute-force computation of moments from existing quantum chemistry programs, and
will therefore proceed with a simple water molecule with an O–H bond length of 0.9579 Å and
H–O–H bond angle of 104.12◦. We use a cc-pVDZ basis, resulting in 23 orbitals and 10 electrons.
The RHF ground-state energy for this system calculated using the PySCF programming package is
−76.016 789 472Eh.

7.2.1 Ionisation potential and electron affinity

The convergence of the moment-resolved block Lanczos solvers is shown for the ADC(2),
ADC(3), and GF-CCSD Hamiltonians in Figure 7.1 for the first IP and EA of the H2O molecule
in a cc-pVDZ basis set. Both the self-energy and Green’s function recurrence are shown for the
ADC methods, whilst only the Green’s function recurrence is shown for GF-CCSD since explicit
self-energy moment expressions are unavailable, and a non-Hermitian variant of the self-energy
recurrence has not yet been derived. The inset plots show the error taken with respect to the
separate converged value for each level of theory, obtained using the eigenvalues of the
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Hamiltonians with a dense eigensolver. Convergence to chemical accuracya is rapid for both the
IP and EA, typically requiring around six iterations for the IPs and around five for the EAs.
Only a small number of moments of the respective distributions are therefore required in order to
faithfully recover the frontier excitations of the system, and the introduction of additional
moments systematically improves the accuracy in such excitations. The moment representation
offers an extremely compact representation of the dynamics of the self-energy and Green’s
function.

For both the IP and EA the accuracy with zero iterations is much better in the case of the
self-energy recurrence. Subsequent iterations of the Green’s function recurrence can be seen to
give equal results to the previous number of iterations in the self-energy recurrence. This fact
reflects the relationship between the moments of the self-energy and Green’s function in the case
of a non-Dyson theory, as outlined in Equation 2.105. The Green’s function recurrence at zero
iterations simply represents a diagonalisation of the static self-energy, which can be seen to give
similar results for each of the three theories.

There are no particularly evident differences in the rate of convergence for the IPs, however the
ADC(2) results for the EA can be seen to converge slightly faster than those of the higher order
theories. This likely reflects the fact that there are significantly more diagrams in third-order
perturbation theory and CCSD, as discussed throughout Chapter 2. The configuration space in
the case of ADC(3) and CCSD formally has non-zero coupling between configurations, i.e. C ̸= 0,
whereas ADC(2) does not. This results in significantly more information being contracted over
when constructing the moments, whereas the algorithm does not produce a greater number of
poles in the resulting spectrum in proportion to this, and as such is a (relatively) more coarse
representation. This reflects the more diagrammatically complete self-energy in these levels of
theory. This is less pronounced in the case of the IP, since in any good quality basis the 1h2p
states will far outnumber of the 2h1p states.

7.2.2 Spectral functions

Figures 7.2 to 7.4 show the convergence of the spectral functions resolved on the real frequency
axis for these calculations. The spectral functions allow us to consider also the global convergence
properties of the moment recurrence approaches. For all of the examples one can observe a general
trend of convergence from mean-field (HF) to the correlated spectrum with increasing numbers
of iterations, resulting from the increase in resolution of the dynamics. The convergence is faster
in regimes where the HF spectrum is more representative of the correlated spectrum, such as the
low-energy regimes around the Fermi energy, whilst the higher energy regimes are more slowly
converging. This reflects the need for higher-order moments to resolve more complicated features
in the spectrum.

Once again, the equivalence between the Green’s function and self-energy recurrences for non-
Dyson theories can be observed in these results, with the spectra for Green’s function recurrence

a ‘chemical accuracy’ is considered to be 1 kcal mol−1, or approximately 0.04 eV for a single molecule.
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Figure 7.2: Convergence of the spectral functions for the H2O molecule in a cc-pVDZ basis with number
of iterations in the moment recurrence algorithms, for the ADC(2) Hamiltonian using the self-energy
recurrence (a) and the Green’s function recurrence (b). A broadening factor of η = 1.0 eV was applied.
The HF result is shown at the bottom, and the ‘full’ result is rendered faintly behind each of the other
spectra.
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Figure 7.3: Convergence of the spectral functions for the H2O molecule in a cc-pVDZ basis with number
of iterations in the moment recurrence algorithms, for the ADC(3) Hamiltonian using the self-energy
recurrence (a) and the Green’s function recurrence (b). A broadening factor of η = 1.0 eV was applied.
The HF result is shown at the bottom, and the ‘full’ result is rendered faintly behind each of the other
spectra.
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Figure 7.4: Convergence of the spectral functions for the H2O molecule in a cc-pVDZ basis with number of
iterations in the moment recurrence algorithms, for the GF-CCSD Hamiltonian using the Green’s function
recurrence. A broadening factor of η = 1.0 eV was applied. The HF result is shown at the bottom, and
the ‘full’ result is rendered faintly behind each of the other spectra.
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iterations being equal to those of the previous self-energy recurrence iteration. This is accompanied
by the zero iteration Green’s function recurrence result being much closer to the HF spectrum
than the zero iteration self-energy recurrence, the latter representing the full correlated spectrum
particularly well.

The convergence of the high-lying particle states can often be seen to be quite erratic and not
particularly systematic. These peaks in the spectrum are due to a significant number of 1h2p
states that, except for in ADC(2), have non-zero interaction with each other, and are mixed upon
solving the Dyson equation. These peaks are not however of significant interest much of the time,
with excitations close to the Fermi energy along with core hole states being those with the most
utility; and it is unlikely both practically and numerically that one would resolve these peaks well
using a traditional iterative eigensolver.

The larger relative errors in GF-CCSD are once again reflected in the spectra qualitatively.
Despite this, the convergence of the spectra even in the high frequency regime appears to be
suitably systematic and robust, and with very few moments one can still very accurately depict the
spectrum around the Fermi energy. Since GF-CCSD requires that the Green’s function recurrence
is performed using a non-Hermitian Green’s function, there is the possibility for non-causal poles
to appear in the spectrum. These may have formally complex energies and negative weight in the
spectrum, however we find that in broadened spectra at the GF-CCSD these poles cancel, and the
traced spectral function is positive over the domain plotted. Ref. 382 provides a detailed discussion
of complex roots in CC theory.
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Figure 7.5: Heatmaps for MAE, MSE, GAE, and STD values for different numbers of iterations in the
self-energy recurrence nΣ

iter and Green’s function recurrence nG
iter in AGF2 calculations for the W4-11

benchmark in a cc-pVDZ basis set. ‘None’ indicates that no compression according to the particular
algorithm was applied. Errors are taken with respect to ∆CCSD(T). The first row shows errors for the
IPs, and the second row for the EAs. The columns correspond to each aggregated statistical measure,
indicated by the labelled colour bar at the top of each column, which provides the colour key for both the
IP and EA heatmap.

7.3 W4-11

In order to quantify the accuracy of AGF2 with respect to different numbers of iterations niter in
the self-energy and Green’s function recurrence, a subset of the W4-11 benchmark set will be
used.383–385 This benchmark set consists of small molecules, typically for the purpose of
benchmarking thermochemistry, however in our case it offers a sufficiently sized set of molecules
that are not prohibitively large when one moves to large niter. The set is constrained to all
systems with no more than fifty orbitals in a cc-pVDZ basis set, and with an equal number of α
and β electrons to permit the use of restricted spin symmetry in the calculations.

Figure 7.5 shows heatmaps for the MAEs, MSEs, GAEs, and STDs in the IPs and EAs for
the W4-11 set at different levels of moment conservation in AGF2. Results are shown for different
numbers of iterations in the two-step compression scheme conserving first the moments of the
self-energy by applying nΣ

iter recurrence iterations, followed by conservation of the moments of the
Green’s function by applying nG

iter recurrence iterations. Table 7.1 tabulates this data. The limit
in the accuracy of the subsequent Green’s function recurrence is bound by that of the initial self-
energy recurrence, which is necessary to obtain a tractable number of Green’s function poles with
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nΣ
iter nG

iter

IP EA

N MAE MSE GAE STD N MAE MSE GAE STD

ADC(2) 72 0.522 0.494 1.975 0.452 72 0.354 0.352 1.685 0.293
CCSD 72 0.100 -0.007 0.641 0.148 72 0.072 0.064 0.808 0.123

0 None 72 0.192 -0.040 0.700 0.254 72 0.162 0.093 1.799 0.265
0 0 72 0.398 -0.324 1.108 0.325 72 1.227 -1.226 2.600 0.605
0 1 72 0.188 -0.044 0.700 0.246 72 0.156 0.105 1.799 0.252

1 None 72 0.328 0.287 0.920 0.246 72 0.387 0.326 2.179 0.381
1 0 72 0.217 -0.080 0.723 0.253 72 1.263 -1.263 2.758 0.644
1 1 72 0.277 0.262 0.866 0.203 72 0.173 0.145 1.833 0.255
1 2 72 0.326 0.316 0.920 0.202 72 0.376 0.371 2.179 0.319

2 None 72 0.610 0.536 1.376 0.406 72 0.520 0.426 2.571 0.481
2 0 72 0.221 0.132 0.766 0.250 72 1.299 -1.299 2.923 0.683
2 1 72 0.515 0.515 1.111 0.236 72 0.189 0.164 2.609 0.327
2 2 72 0.613 0.613 1.263 0.267 72 0.399 0.396 2.366 0.329
2 3 72 0.699 0.699 3.541 0.441 72 0.592 0.592 3.096 0.486

3 None 72 0.747 0.684 1.504 0.460 72 0.577 0.446 1.346 0.496
3 0 72 0.254 0.201 0.878 0.255 72 1.307 -1.307 2.933 0.692
3 1 72 0.627 0.627 1.260 0.275 72 0.186 0.162 1.082 0.196
3 2 72 0.754 0.754 1.426 0.325 72 0.431 0.428 3.053 0.393
3 3 72 0.856 0.856 3.791 0.491 72 0.626 0.626 3.263 0.537
3 4 72 0.834 0.834 1.597 0.350 72 0.638 0.638 1.679 0.366

4 None 72 0.868 0.816 1.687 0.499 72 0.651 0.512 1.449 0.541
4 0 72 0.285 0.257 0.976 0.254 72 1.309 -1.309 2.944 0.695
4 1 72 0.731 0.731 1.432 0.303 72 0.202 0.182 1.077 0.202
4 2 72 0.849 0.849 1.611 0.361 72 0.453 0.450 3.077 0.400
4 3 72 1.009 1.009 4.026 0.634 72 0.694 0.694 3.775 0.658
4 4 72 1.047 1.047 4.125 0.640 72 0.771 0.771 3.823 0.674

Table 7.1: MAE, MSE, GAE, and STD values for different numbers of iterations in the self-energy
recurrence nΣ

iter and Green’s function recurrence nG
iter in AGF2 calculations for the W4-11 benchmark

in a cc-pVDZ basis set. ‘None’ indicates that no compression according to the particular algorithm was
applied. Errors are taken with respect to CCSD(T). N indicates the number of data points available for
a particular method.
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which one can compute their moments. The errors are taken with respect to ∆CCSD(T) results,
which calculate the IP and EA using the differences between the N -electron and (N ∓ 1)-electron
CCSD(T) wavefunctions, respectively, calculated using the ORCA programming package.20,21

The second truncation to nG
iter = nΣ

iter + 1 provides a representation of similar quality to not
applying any Green’s function recurrence whatsoever; this reflects the fact that the conservation
of the nmom central moments of the Green’s function also conserves nmom − 2 central moments of
the self-energy by virtue of Equation 2.105. Applying this truncation is likely to be slightly worse
than not applying it, as the latter already conserves the same number of moments of the separate
hole and particle self-energy by virtue of the self-energy recurrence applied beforehand, which
is relaxed to only a conservation of the central moments if one does apply the nG

iter = nΣ
iter + 1

recurrence iterations. The difference between applying this step and not applying any Green’s
function recurrence iterations becomes more pronounced as the number of iterations increases.

The most significant conclusion from this data is that AGF2(None, 0) and AGF2(1, 0) offer
the smallest errors, with their respective MAEs just 0.192 and 0.188 eV for the IPs and 0.162 and
0.156 eV for the EAs, despite these schemes being the most coarse-grained. The significance of this
owes to the fact that these schemes are by far the most computationally efficient AGF2 models.
At this level, the MAEs in both the IP and EA improve on those of ADC(2) by at least a factor of
two.a AGF2(None, 0) corresponds to a conservation of only the first two (zeroth- and first-order)
moments of the separate hole and particle moments, and is the most simple form of self-consistency
that the block Lanczos recurrence schemes offer.

For nG
iter > 0, there is a systematic increase in the MAE and MSE with increasing resolution

through additional iterations in both recurrences. The most complete method consisting of niter = 4
in both the self-energy and Green’s function recurrence exhibits very poor results, with the MAEs
of both the IP and EA being approximately a factor of two worse than those of ADC(2). Ref. 109
similarly shows that self-consistency of the Dyson equation with a second-order self-energy is not
necessarily beneficial to the accuracy of the IPs and EAs in the context of the EKT. They also
show that GF2 systematically underestimates both the IP and EA, reflected by the positive MSE in
the high niter AGF2 models. This underestimation exists at second-order without self-consistency,
and is exacerbated by the self-consistency. The models AGF2(0, None), AGF2(0, 0), AGF2(0, 1),
and AGF2(1, 0) however overestimate the IP, and similarly the models with nG

iter = 0 overestimate
the EA. This suggests that the extremely reduced resolution offered by the truncation in these
cases offers a cancellation in the error, with the cancellation not only balancing the error induced
by the self-consistency, but also achieving some cancellation in the error that already exists in the
non-self-consistent second-order self-energy.

The results at the level of nG
iter = 0 are particularly anomalous. In the case of the IP the errors

tend to be anomalously good, with smaller MAEs than one would expect observing the trend at
nG

iter > 0, and MSEs slightly negative for nΣ
iter = 0 and 1, and slightly positive for nΣ

iter > 1. For
the EA the errors are anomalously poor, with the MSE being very negative for all nΣ

iter and the

aThis benchmark only uses a relatively small basis set and a restricted set of molecules, and Section 7.4 will
offer a more systematic comparison between the accuracies of AGF2(None, 0) and ADC(2).
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respective MAEs being extremely high, indicating a very large overestimation of the EAs. The
nG

iter = 0 approximation conserves the first two (zeroth and first-order) moments of the separate
hole and particle Green’s functions, and was seen to be a very poor approximation in the case
of the H2O example in Section 7.2 even for the frontier excitations close to the Fermi energy.
The zeroth-order central moment of the Green’s function is implicitly conserved so long as one
obtains any orthonormal set of Dyson orbitals, and offers little information whatsoever, whilst the
conservation of the first-order central moment corresponds to a conservation of the static part of
the self-energy Σ(∞); as such recurrence to nG

iter = 0 does not directly conserve any dynamics of
the self-energy.

The observation of the trends with respect to numbers of iterations in each recurrence scheme in
AGF2 has led to the use of the simple AGF2 acronym to refer to the AGF2(None, 0) approximation.
Apart from AGF2(1, 0) this level of self-consistency is the most accurate, but is however incredibly
simple and efficient to implement. At each iteration, one is only required to evaluate the zeroth and
first moments of the second-order self-energy in the basis of the Dyson orbitals from the previous
iteration, which can be efficiently calculated according to Algorithm 4.1. The block tridiagonal
matrix one must diagonalise to obtain said Dyson orbitals consists of Equation 3.20 with only a
single on-diagonal block A1, coupling to the static part of the self-energy via X, which as shown in
Equation 3.31 is equal to the square root of the zeroth moment. The block A1 can then be simply
computed within the self-energy recurrence scheme from the first moment as

A1 = X−1Ξ(Σ,1)X−1,†. (7.6)

Such a simple scheme and the requirement for only the first two (zeroth- and first-order)
moments also means that the numerical instability observed at large numbers of iterations is not
an issue. AGF2 calculations will herein refer to the AGF2(None, 0) approximation, with any
other approximation explicitly specified in the brackets.
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7.4 GW 100 dataset

The implementation details of methods under the name GW vary wildly, with many different
approximations existing, codes varying in their type of basis functions, and the most common
non-iterative GW calculations exhibiting a starting point dependence. This unfortunate reality in
part motivated the creation of the GW100 benchmark, which is a diverse set of small molecules
possessing a wide range of early periodic species and chemical bonding types.270,294,386 As an
example, the IP of the molecules in the set ranges from ∼4 eV to ∼25 eV, including molecules with
bound metal atoms, strongly ionic bonding, and molecules with a strongly delocalised electronic
structure. The molecules range in size from simple atomic systems to the five canonical nucleobases,
offering a diversity in size without being particularly restrictive in terms of computational effort
required. Additionally, all systems are closed-shell (even number of electrons), meaning that the
entire benchmark set can be treated using a restricted reference and those who wish to benchmark
their methods are not required to adapt their code to unrestricted references. The benchmark is
therefore useful to pronounce differences in GW implementations and allow both a quantitative
and qualitative platform for understanding and benchmarking approximations and computational
methods.

In the Dyson-orbital-based methods, i.e. those that are not computed as the difference between
two independent determinants, we limit reported excitations to those with a quasiparticle weight
of at least 0.1, meaning that at least 10% of its character is physical. This excludes completely
non-physical excitations that have all their weight on the configurations of the particular self-
energy, but does not only limit the excitations to be Koopmans’-like. The latter would imply
non-black-box results that require a per-system treatment and consideration, and may encounter
issues in cases where Koopmans’ theorem is known to break down such as N2.387 Furthermore, the
EOM-CC eigenvectors are not proportional to the Λ amplitudes and therefore the squared norm of
the eigenvector projected onto single excitations only offers an approximation to the quasiparticle
weight, which is often inaccurate.

7.4.1 System details

As pointed out in Ref. 317, two of the structures in the original 100 systems of the benchmark
were originally provided with incorrect structures. Whilst this is problematic for the comparison
to experimental data, since we will be concerned with a comparison to computational methods
performed on the same set of geometries both versions of these systems will be included. These
systems are vinyl bromide (CH2 ––CHBr) and phenol (C6H5OH). Therefore, the GW100 in the
context of the present work consists of 102 systems.

Features of the set include, but are not limited to

• Hydrocarbons (both aliphatic and aromatic) such as ethane (C2H6), ethylene (C2H4),
acetylene (C2H2), and benzene (C6H6).

• Halogenated hydrocarbons.
• Many oxides and sulfides, and a selenide.
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• The five canonical nucleobases adenine, cytosine, guanine, thymine, and uracil, which are
some of the largest molecules in the set.

• Dimers of metallic atoms such as copper (Cu2), silver (Ag2), lithium (Li2), sodium (Na2),
and rubidium (Rb2).

• Dimers of most of the non-metallic atoms.
• Small metallic clusters for sodium (Na4, Na6),
• The atoms helium (He), neon (Ne), argon (Ar) and krypton (Kr).
• The hydrosilicons silane (SiH4), disilane (Si2H6), and pentasilane (Si5H12), along with

germane (GeH4).
• Alkaline metal hydrides with both extremely ionic bonding such as lithium fluoride (LiF),

and more moderate ones such as potassium bromide (KBr).
• Periodic series, such as F2 → Cl2 → Br2 → I2, allowing trends to be studied.

All calculations in this work using the GW100 set do so using the def2-TZVPP basis set as
implemented in the PySCF programming package, and in the case of DF the RI basis of the same
name.26,27,388,389 Additionally, the atoms Rb, Ag, I, Cs, Au, and Xe are treated by an effective
core potential (ECP) specified as def2-TZVPP in PySCF. This uses an ECP that is the same for all
def2 basis sets in PySCF.390–394 There are a total of 7 systems containing at least one such atom.

7.4.2 ADC(2) moments

Figure 7.6 shows the convergence of the IP and EA with increasing numbers of iterations of the
self-energy moment recurrence for ADC(2), for the GW100 benchmark set in a def2-TZVPP basis
set. The extrapolated results are indicated by ∞ and extrapolate values at the three largest
iteration numbers, with extrapolations exhibiting an R2 of less than 0.95 being rejected. Table 7.2
shows aggregated error values for this same data, including the number of systems involved in the
extrapolation. The majority of the systems, 90 for the IP and 86 for the EA, which suggests that
the convergence is robust in the vast majority of cases. In both the IP and the EA there is a
monotonic decrease in the MAE with increasing numbers of iterations. The extrapolations both
offer MAEs that improve on the highest iteration studied, at 0.279 and 0.108 eV for the IP and
EA respectively, but overshoot the true value such that the MSEs have the opposite sign to those
calculated data. The STDs improve with each iteration, and the extrapolated STDs are of similar
quality to those at 5 iterations.

The IPs are recovered better than the EAs by approximately a factor of two, a somewhat
surprising result considering that there are significantly more configurations one must contract
over when calculating the moments for the EA case in any good quality basis set. This result
is similar to that observed for the simple example of a H2O molecule in Figure 7.1 in which the
convergence of the EA at the level of ADC(2) is faster than the IP or the EA for the other levels
of theory.

There are several clear outliers in the case of the IP; whilst one may initially conclude that
the moment extrapolation fails to converge robustly in these cases, study of the IPs compared to
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Figure 7.6: Distribution of errors in the moment-resolved ADC(2) calculations for IPs (a) and EAs (b) for
the GW 100 benchmark in a def2-TZVPP basis set. Errors are taken with respect to canonical ADC(2),
and the central points show the MSEs. The number of iterations of the self-energy recurrence is indicated
by the second bracketed number, with ∞ indicating the extrapolation using the results corresponding to
the three most complete moment expansions. Extrapolations with an R2 of less than 0.95 are removed.

niter
IP EA

N MAE MSE GAE STD N MAE MSE GAE STD

0 102 1.659 -1.659 5.150 0.930 102 0.920 -0.920 2.621 0.576
1 102 1.116 -1.116 4.308 0.698 102 0.616 -0.616 2.063 0.404
2 102 0.826 -0.826 3.700 0.584 102 0.415 -0.415 1.564 0.294
3 102 0.579 -0.579 3.427 0.503 102 0.278 -0.278 1.215 0.212
4 102 0.375 -0.375 3.064 0.420 102 0.195 -0.195 0.993 0.162
5 102 0.284 -0.284 3.001 0.388 102 0.131 -0.131 0.644 0.115
∞ 90 0.279 0.178 2.786 0.407 86 0.108 0.105 0.429 0.086

Table 7.2: MAE, MSE, GAE and STD values for the moment-resolved ADC(2) calculations for the GW 100
benchmark in a def2-TZVPP basis set. Errors are taken with respect to canonical ADC(2). N indicates
the number of data points available for a particular method, and ∞ indicates the extrapolation using the
results corresponding to the three most complete moment expansions. Extrapolations with an R2 of less
than 0.95 are removed.
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high levels of theory indicates that the canonical ADC(2) is actually performing poorly for these
systems. The three extremely problematic systems are copper (Cu2), copper cyanide (CuCN), and
magnesium oxide (MgO). These systems are examples of stronger correlation in the benchmark.
Ref. 294 observe significant quasiparticle renormalisation for these systems, indicated by large
values in ∂Σ(ω)

∂ω , and note that non-self-consistent GW calculations also find non-unique solutions
and convergence difficulties. The EA for titanium fluoride (TiF4) is an outlier, which is another
system exhibiting relatively strong correlation.

7.4.3 GW moments

Figure 7.7 shows the convergence of the IP and EA with increasing numbers of iterations of the
self-energy moment recurrence for AGW , for the GW100 benchmark set in a def2-TZVPP basis
set. Table 7.3 shows the aggregated error values for this data. The extrapolation is much less
robust for the IP, with only 41 systems being valid under the R2 threshold of 0.95, compared with
84 systems for the EA.

In both the IP and EA the extrapolation produces error distributions with larger MAEs and
STDs than the non-extrapolated data at high iteration numbers, giving a less successful
extrapolation than ADC(2). The IP and EA are predicted with roughly equal quality at this
level of theory, in contrast to the poorer IPs for ADC(2) and the poorer EAs in GF-CCSD as will
be shown in Section 7.4.4. The MAEs are however significantly better for the coarse-grained GW

calculations than those at the ADC(2) level, indicating that the GW self-energy is more
effectively compressed by the block Lanczos recurrence scheme. The self-energy at the level of
GW lacks the second-order exchange term existing in the bare second-order self-energy of
ADC(2), perhaps simplifying the information lost in the contraction to the moments, however the
remaining (direct) second-order diagram has interactions screened at the level of RPA. The
MAEs of the IP and EA for AGW at niter = 5 are 0.284 and 0.131 eV respectively, compared to
0.035 and 0.041 eV when applying the same number of iterations to the GW self-energy. This
extremely small error means that the use of extrapolative schemes to access the high niter limit is
considerably less important.

As discussed in Section 7.4.2, the outliers for the IP generally belong to the systems that have a
large quasiparticle renormalisation, or more generally are systems exhibiting stronger correlation.
This indicates that the AGW IPs agree more faithfully than those of ADC(2), between the moment-
conserving solver and the quasiparticle equation used to solve the canonical GW quasiparticle
energies. The single significant outlier in the EA data is titanium fluoride (TiF4).
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Figure 7.7: Distribution of errors in the moment-resolved AGW calculations for IPs (a) and EAs (b)
for the GW 100 benchmark in a def2-TZVPP basis set. Errors are taken with respect to canonical
(single-shot) GW , and the central points show the MSEs. The number of iterations of the self-energy
recurrence is indicated by the second bracketed number, with ∞ indicating the extrapolation using the
results corresponding to the three most complete moment expansions. Extrapolations with an R2 of less
than 0.95 are removed.

niter
IP EA

N MAE MSE GAE STD N MAE MSE GAE STD

0 102 0.230 -0.142 1.068 0.310 102 0.382 -0.382 1.165 0.219
1 102 0.149 -0.099 0.777 0.195 102 0.243 -0.243 0.926 0.157
2 102 0.088 -0.052 0.561 0.129 102 0.150 -0.150 0.718 0.113
3 102 0.053 -0.024 0.349 0.077 102 0.088 -0.085 0.560 0.083
4 102 0.042 -0.019 0.257 0.060 102 0.055 -0.048 0.458 0.069
5 102 0.035 -0.011 0.190 0.052 102 0.041 -0.024 0.290 0.059
∞ 41 0.059 0.032 0.178 0.069 84 0.096 0.081 0.346 0.084

Table 7.3: MAE, MSE, GAE and STD values for the moment-resolved AGW calculations for the GW 100
benchmark in a def2-TZVPP basis set. Errors are taken with respect to canonical (single-shot) GW . N

indicates the number of data points available for a particular method, and ∞ indicates the extrapolation
using the results corresponding to the three most complete moment expansions. Extrapolations with an
R2 of less than 0.95 are removed.
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Figure 7.8: Distribution of errors in the moment-resolved GF-CCSD calculations for IPs (a) and EAs (b)
for the GW 100 benchmark in a def2-TZVPP basis set. Errors are taken with respect to EOM-CCSD, and
the central points show the MSEs. The number of iterations of the self-energy recurrence is indicated by
the second bracketed number, with ∞ indicating the extrapolation using the results corresponding to the
three most complete moment expansions. Extrapolations with an R2 of less than 0.95 are removed.

niter
IP EA

N MAE MSE GAE STD N MAE MSE GAE STD

0 102 0.150 -0.150 0.495 0.117 102 1.519 -1.519 4.151 0.900
1 102 0.051 -0.051 0.227 0.046 102 0.721 -0.721 2.159 0.476
2 102 0.036 -0.032 0.357 0.049 102 0.499 -0.498 1.495 0.333
3 102 0.024 -0.022 0.124 0.025 102 0.356 -0.347 1.059 0.247
4 102 0.018 -0.016 0.102 0.023 102 0.244 -0.243 0.806 0.170
5 102 0.011 -0.009 0.069 0.013 102 0.192 -0.191 0.980 0.160
∞ 32 0.013 0.011 0.039 0.012 76 0.097 0.093 0.250 0.077

Table 7.4: MAE, MSE, GAE and STD values for the moment-resolved GF-CCSD calculations for the
GW 100 benchmark in a def2-TZVPP basis set. Errors are taken with respect to canonical GF-CCSD. N

indicates the number of data points available for a particular method, and ∞ indicates the extrapolation
using the results corresponding to the three most complete moment expansions. Extrapolations with an
R2 of less than 0.95 are removed.
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System
niter

0 1 2 3 4 5

H2O 0.9229 0.9206 0.8642 0.9182 0.9178 0.9175
HCN 0.8858 0.9178 0.9041 0.9165 0.9161 0.9160

Table 7.5: GF-CCSD quasiparticle weights of the IPs of H2O and HCN with increasing number of iterations
of the Green’s function recurrence. A discontinuity in the convergent behaviour can be seen at niter = 2.

7.4.4 GF-CCSD moments

Figure 7.8 shows the convergence of the IP and EA with increasing numbers of iterations of the
self-energy moment recurrence for GF-CCSD, for the GW100 benchmark set in a def2-TZVPP
basis set. Table 7.4 shows the aggregated error values for this data. As seen in Section 7.4.3,
the extrapolation is much less robust for the IP, with only 32 systems being valid under the R2

threshold of 0.95 compared with 76 systems for the EA.
The convergence of the EA with number of iterations is significantly poorer than that of the

IP by approximately an order of magnitude, perhaps a reflection of the fact that the configuration
space is significantly larger for the particle self-energy since the basis is reasonably large. This
results in a particle spectrum with a more detailed pole structure, and the representation at a
given number of moments is therefore coarser than the hole spectrum with an equivalent number
of moments. This is in contrast to the results for ADC(2) where the EA is better recovered than the
IP, with CCSD containing many more diagrams compared to ADC(2), however it must be noted
that these two results are not directly comparable since the former conserves the Green’s function
moments and the latter those of the self-energy. That being said, the extrapolation performs
particularly well for the EA, with roughly a factor 2 improvement on the aggregated errors. Once
again, the extrapolation largely overshoots the converged value, flipping the sign of the MSE. The
errors in the IP converge extremely quickly, even faster than those of the self-energy recurrence
with the GW self-energy, with niter = 5 giving a MAE of just 0.011 eV and even niter = 1 exhibit
just 0.051 eV.

In the case of the IP at niter = 2 there are two very anomalous results identified as water (H2O)
and hydrogen cyanide (HCN). In both cases, the quasiparticle weight of the IP is convergent
with respect to the number of iterations, yet experiences a jump in the weight at the niter = 2
result, as detailed in Table 7.5. This is a drawback of the moment-conserving approach, since the
algorithms simply produce a spectral distribution that best reproduces the input moments, rather
than directly targeting a physically appropriate representation. In most cases the reproduction
of these moments results in a good representation of the converged spectrum around the Fermi
energy, and therefore gives a good IP and EA, but outliers of this sort remain a possibility.
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7.4.5 ∆CCSD(T) benchmark

Thus far, we have considered benchmarks of methods under moment-conserving solvers with the
canonical algorithms as a point of comparison. Whilst this quantifies the error of such solvers
in the case of each of these methods, it does not make reference to the implicit error of the
methods themselves, and how they perform when compared to an accurate quantum chemical
benchmark. To this end, CCSD(T) calculations have been performed for the GW100 benchmark
for the N , N − 1, and N + 1 electron variants of each molecule, allowing accurate ∆CCSD(T)
reference energies for both the IP and EA.51 The CCSD(T) calculations were performed using the
ORCA programming package, and unlike the other methods employed a frozen core approximation to
reduce computational difficulty due to their expense.20,21 The number of electrons frozen in this way
correspond to the default values introduced in the 4.0 version of ORCA. Whilst this approach does
not allow Dyson orbitals to be computed, it includes orbital relaxation through the independent
mean-field calculations, and provides extremely accurate IP and EA values.

As discussed in Ref. 99, there is some discrepancy between reported CCSD(T) values for the
GW100 benchmark set. Major differences are noted between the work of Ref. 318 and Ref. 395
which can be explained by the preference of the latter for stable HF solutions, whereas the former
ignore HF instabilities completely. The use of stability analysis on the mean-field results in lower
total energies which may have broken symmetries, accounting more fully for orbital relaxation. In
the present data, we prefer the stable HF solution, allowing the more accurate account of orbital
relaxation. In systems with large orbital relaxation effects in their single particle excitations, this
may provide IPs or EAs that are less similar to those calculated using EOM-CC or other single
reference approaches. We consider this to be the more appropriate target benchmark for arbitrary
quantum chemical methods.

Figure 7.9 and Table 7.6 summarise the errors across the GW100 benchmark for some selected
quantum chemical methods, with errors taken with respect to ∆CCSD(T). The sets are complete
for all methods shown except for AGF2, which experienced convergence problems in the case of
xenon (Xe) and hexafluorobenzene (C6F6). ADC(2) underestimates the IP with nearly perfect
consistency, with only very small errors in cases where it is overestimated. Despite this fact, the
errors are only slightly improved with respect to HF, with MAEs of 0.589 and 0.689 eV for ADC(2)
and HF, respectively. In the case of EAs ADC(2) offers a much greater improvement, exhibiting
an MAE of 0.297 eV compared to 1.003 eV at the level of HF, and again underestimates more often
than not. AGF2 offers small improvements in both the IP and EA at the level of ADC(2), with
MAEs of 0.437 and 0.222 eV for the IPs and EAs, respectively. In both cases, the general trend in
the sign of the errors flips with respect to that of ADC(2), likely indicating an overcorrection due to
the renormalisation of the propagators in second-order diagrams. Section 7.3 previously discussed
this cancellation of error in more detail. AGF2 similarly offers good improvements in the GAE
and STD for both excitations compared to ADC(2) and even ADC(3), which may benefit from the
fact that AGF2 does not have to leverage iterative eigensolvers which can be numerically unstable
and may be influenced by preconditioning and choice of initial guess. Despite this improvement,
GW offers even greater improvements in errors, indicating that a simple one-shot screening of the
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Figure 7.9: Distribution of errors in various quantum chemical methods for IPs (a) and EAs (b) for the
GW 100 benchmark in a def2-TZVPP basis set. Errors are taken with respect to ∆CCSD(T), and the
central points show the MSEs.

Method
IP EA

N MAE MSE GAE STD N MAE MSE GAE STD

HF 102 0.689 -0.395 6.422 0.980 102 1.003 -0.954 2.536 0.581
ADC(2) 102 0.589 0.587 3.760 0.672 102 0.297 0.272 2.468 0.344
ADC(3) 102 0.209 -0.038 1.852 0.327 102 0.134 -0.065 1.830 0.231
GW 102 0.278 -0.250 0.851 0.230 102 0.172 -0.107 0.799 0.184

EOM-CCSD 102 0.067 -0.019 0.686 0.109 102 0.051 -0.008 0.521 0.084
AGF2 100 0.437 -0.392 1.627 0.407 100 0.222 -0.208 0.692 0.160

Table 7.6: MAE, MSE, GAE and STD values for selected quantum chemical methods applied to the
GW 100 benchmark in a def2-TZVPP basis set. Errors are taken with respect to ∆CCSD(T). N indicates
the number of data points available for a particular method. In the case of AGF2, xenon (Xe) and
hexafluorobenzene (C6F6) suffer from convergence problems and are removed.
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Coulomb potential perhaps more effectively captures correlation than a self-consistent screening of
the propagators in both second-order diagrams. The MAEs at the level of GW are only bettered
by those of ADC(3) and EOM-CCSD, which is to be expected since both scale with system size
as O(n6

mo). Unsurprisingly, EOM-CCSD has extremely small aggregated errors for both IPs and
EAs along with very few outliers. Increasing the order of perturbation theory in ADC to the
third-order ADC(3) improves on both excitations and offers particularly unbiased errors, however
does not boast quality near to that of EOM-CCSD.

By combining the information afforded by Tables 7.2 to 7.4 with Table 7.6, we can observe
when the error due to the moment-conserving solver becomes less than, or of a similar magnitude
to, the implicit error in the method without a moment approximation. This is useful to measure, as
it gives an estimate as to when one can consider the moment-conserving solvers to be ‘converged’,
with additional iterations possibly being futile since they improve the excitations on scales that are
smaller than the implicit error in such excitation. For ADC(2), this threshold is met at niter = 3
for both the IP and EA. In the case of AGW , convergence is more rapid with the threshold met
at niter = 1 for the IP and niter = 2 for the EA. For GF-CCSD the threshold is also met at
niter = 1 for the IP, however the error due to the moment approximation in the EA never meets
values less than those due to the CC ansatz, with the extrapolated MAE still being approximately
twice as large as the MAE for EA-EOM-CCSD. By virtue of most of these methods converging the
frontier excitations extremely quickly and with the requirement of very few moments, the moment-
conserving solvers can be considered to be very practical in the context of calculating IPs and EAs.
The issue of numerical instability at large numbers of iterations is balanced by this observation
since at some point any subsequent iterations are improving the accuracy of the solver on scales
smaller than the accuracy of the method itself, and in some cases such as AGF2, more iterations
may even deteriorate results.

Table 7.7 shows errors in the moment-resolved data reviewed in Sections 7.4.2 to 7.4.4 with
respect to the ∆CCSD(T) benchmark, rather than with respect to the converged moment limit.
Therefore, whilst the errors in the previous Section 7.4.5 have ignored the implicit error of the
methods, this data includes that error. One of the most significant observations from the data in
this format is how poorly the EA is recovered by the moment-conserving GF-CCSD method; at
all iterations the MAEs at the level of ADC(2) and AGW are smaller than that of GF-CCSD,
however the GF-CCSD excitations extrapolate better and outperform ADC(2) and AGW in the
limit of infinite moments. It should be noted that comparison at the same number of iterations
between these methods is somewhat ad hoc, since in the case of ADC(2) and AGW the moments
of the self-energy are conserved whereas moments of the Green’s function are conserved for the
GF-CCSD application. For ADC(2), there is an equivalence in the two recurrences, as discussed
in Section 7.2, however AGW does not employ a non-Dyson approximation and therefore the
recurrences are not equivalent. The rapid saturation of the improvement in the MAEs for the IPs
further shows how the error due to the moment approximation quickly becomes smaller than the
implicit error in these methods. In the case of ADC(2) the MSE experiences significant changes
with increasing numbers of iterations, whilst the MAE is controlled by the implicit error. This
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niter
IP EA

N MAE MSE GAE STD N MAE MSE GAE STD

ADC(2)
0 102 1.072 -1.072 2.125 0.457 102 0.648 -0.648 2.225 0.374
1 102 0.536 -0.530 1.625 0.378 102 0.352 -0.344 1.346 0.252
2 102 0.316 -0.239 1.009 0.351 102 0.178 -0.144 0.904 0.211
3 102 0.282 0.008 0.921 0.343 102 0.135 -0.006 1.254 0.217
4 102 0.379 0.212 1.735 0.458 102 0.159 0.077 1.476 0.239
5 102 0.396 0.303 1.931 0.473 102 0.194 0.140 1.824 0.268
∞ 90 0.790 0.787 3.566 0.752 86 0.397 0.383 1.079 0.305

AGW

0 102 0.456 -0.392 1.613 0.423 102 0.491 -0.489 1.415 0.245
1 102 0.394 -0.349 1.221 0.320 102 0.357 -0.350 1.177 0.197
2 102 0.339 -0.302 1.106 0.270 102 0.267 -0.257 0.964 0.175
3 102 0.304 -0.273 0.874 0.239 102 0.213 -0.192 0.846 0.164
4 102 0.300 -0.269 0.802 0.234 102 0.188 -0.155 0.707 0.163
5 102 0.293 -0.261 0.802 0.231 102 0.176 -0.131 0.623 0.170
∞ 41 0.314 -0.248 0.953 0.264 84 0.144 -0.035 0.627 0.186

GF-CCSD
0 102 0.187 -0.170 0.837 0.165 102 1.528 -1.528 4.271 0.889
1 102 0.100 -0.070 0.760 0.122 102 0.730 -0.730 2.280 0.467
2 102 0.084 -0.051 0.711 0.114 102 0.507 -0.507 1.616 0.326
3 102 0.079 -0.042 0.722 0.113 102 0.365 -0.356 1.179 0.245
4 102 0.078 -0.036 0.707 0.114 102 0.254 -0.252 0.926 0.174
5 102 0.072 -0.029 0.698 0.111 102 0.202 -0.200 0.961 0.169
∞ 32 0.081 -0.042 0.663 0.135 76 0.103 0.095 0.314 0.096

Table 7.7: MAE, MSE, GAE and STD values for the moment-resolved calculations for the GW 100
benchmark in a def2-TZVPP basis set. Errors are taken with respect to ∆CCSD(T), N indicates the
number of data points available for a particular method, and ∞ indicates the extrapolation using the
results corresponding to the three most complete moment expansions. Extrapolations with an R2 of less
than 0.95 are removed.
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shows that a low-moment approximation to ADC(2) overestimates the IP, whilst a more converged
representation underestimates the IP, which is also observed in the canonical ADC(2) results. This
helps to rationalise why AGF2 has MSEs of the opposite sign to ADC(2), since loosely speaking
it is based on an nΣ

iter = 0 representation of ADC(2). The same features are observed for the EA
in ADC(2). On the other hand, the error in the EAs for GF-CCSD at high numbers of iterations
is dominated by the error in the moment approximation.

From this we can conclude that (with the exception of the EA in GF-CCSD) the block Lanczos
solvers are very effective methods to solve the respective self-energies for the purpose of obtaining
quasiparticle energies. This is in combination with the other benefits of the solvers such as their
efficiency and provision of a full eigenspectrum, rather than just targeting specific quasiparticle
energies, and also the ease and convenience of self-consistency thereafter.

The data comprising the GW100 benchmark in this Section (with respect to the accurate
CCSD(T) benchmark) is shown as a series of scatter plots in Appendix D. These scatter plots
are also coloured according to the quasiparticle weight of the excitations in appropriate methods.
Additionally, the value for the IP and EA of every system in the set are listed in Appendix E.
This large repository of data includes the first report of CCSD(T) results in the case of the EA,
with values only for the IP previously reported in the literature.395 Also included are results for
HF, GW (single-shot with a HF reference), ADC(2), ADC(3), AGF2, and EOM-CCSD. It is
hoped that this data contributes to the field by assisting other benchmark studies, and promotes
reproducibility of the present conclusions.

7.4.6 Multiple solutions

As previously mentioned, several examples within the GW100 dataset present large derivatives of
the self-energy, and therefore renormalisation factors (Equation 2.91) that are noticeably smaller
than one. This can result in problems due to multiple physical solutions when applying a
quasiparticle approximation, or when attempting to converge on a particular pole with e.g. the
Davidson algorithm. Sections 4.7 and 5.5 showed that in the simple example of the stretching of
H2 in a small basis set, some issues associated with multiple solutions can be significantly relaxed
when one uses a very coarse resolution offered by lower niter approximations in the block Lanczos
recurrence schemes. Ref. 294 observes that magnesium oxide (MgO), ozone (O3), boron nitride
(BN), and beryllium oxide (BeO) exhibit multiple solutions in the IP emerging where the
intersection corresponding to solutions of the quasiparticle equation are close to poles in the
self-energy. For the systems potassium bromide (BrK), lithium hydride (LiH), potassium hydride
(KH), copper cyanide (CuCN), and the copper dimmer (Cu2), the self-energy around the IP has
a large derivative and therefore the solution has a renormalisation factor noticeably less than one.
For typical methods of solution this does not result in multiple solutions since despite the
self-energy having a large derivative, the derivative is typically fairly constant between the
mean-field and quasiparticle IPs.294 Since the IP is close in energy to poles of the self-energy
however, the value of the IPs in these systems can be extremely sensitive to changes in the
self-energy using different methodologies, resulting in inconsistencies. Figure 7.10 shows the
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Figure 7.10: Structure of the self-energy about the IP for six systems in the GW 100 dataset. Shown are
methane (CH4), hydrogen fluoride (HF), ozone (O3), magnesium oxide (MgO), copper (Cu2), and copper
cyanide (CuCN), all in a def2-TZVPP basis set. Each plot shows a comparison in the relative gradients
of the AGW self-energies around the energy of the IPs for different numbers of iterations niter in the
self-energy recurrence, with the renormalisation factor (Equation 2.91) shown in the legend, along with
the canonical single-shot GW self-energy calculated using the quasiparticle equation. The vertical lines
show the GW , HF, and CCSD(T) IPs, where the inset zooms in on this domain including labels, showing
also the convergence of the IPs at each niter.
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self-energies of several of the GW100 systems; the first row shows two non-problematic
systems—methane (CH4) and hydrogen fluoride (HF)—for reference, the second row shows two
of the second class of problematic systems (O3 and MgO), and the third row shows two of the
first class of problematic systems (Cu2 and CuCN). Each plot compares the relative gradient in
the self-energies of each niter of AGW with the canonical GW result for the regime immediately
around the energy of the IPs. The canonical GW calculation employs the quasiparticle equation
to find a solution, and is therefore sensitive to the issues related to multiple solutions. The
vertical lines indicate the positions of the IPs at the levels of HF, GW , and CCSD(T), with the
lines labelled in the inset, which zooms into this regime. The inset also indicates the convergence
of the IPs with increasing niter in AGW , where units have been omitted since once again the
convergence relative to the positions of the HF, GW , and CCSD(T) values is the important
observation. The legend of each plot indicates the quasiparticle renormalisation factors according
to Equation 2.91, i.e. a smaller factor indicates a larger self-energy derivative about the IP.

In the non-problematic examples of the first row, the self-energy within the moment-conserving
solvers systematically converges to that obtained with the canonical GW calculation, indicated
graphically by the curves in the plot and quantitatively by the convergence of the renormalisation
factors in the legend. The renormalisation factors remain high, indicating that the derivative of
the self-energies are low and that the there are not particularly pronounced correlation-induced
changes to the IP in these regimes. Cu2 does not exhibit a particularly large derivative indicated
by the reasonably large renormalisation factor of the full GW self-energy, with O3 and CuCN
observing slightly smaller factors, and MgO having a very small factor of 0.875. In all four cases,
the convergence of the renormalisation factors with increasing niter is less systematic than the two
non-problematic systems, with this accompanied by a stark inability of the AGW IP to converge to
the canonical GW result in MgO and CuCN. In both of these cases, however, the IP converges to
a value closer to the CCSD(T) result. This difference is caused by the more coarse representation
of the self-energy resulting in fewer poles, thereby causing the derivative of the self-energy to be
smaller around the IP, and relaxing the possibility of multiple solutions.

Despite ‘decluttering’ the self-energy, the block Lanczos solvers can of course still result in a
solution with several Dyson orbitals close in energy that can be interpreted as multiple solutions,
however an intrinsic feature of these solvers is that one always obtains solutions spanning the full
eigenspectrum, and it is therefore easier to identify these multiple solutions without requiring any
tricky numerical analysis. One can conclude that reduced-resolution solvers controlled by the
moments of the Green’s function or self-energy have promise in handling convergence of
conventional methodology in systems exhibiting stronger correlation.
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Figure 7.11: Artemisinin (C15H22O5) molecular structure with the different oxygen types labelled as Op

(peroxidic), Oe (etheric), Ol (inner-ring lactonic), and Oc (carbonyl lactonic).

7.5 Artemisinin

Earning a share of the Nobel Prize in Medicine in 2015, the 1972 discovery of artemisinin proved
an important advance in the area of antimalarial combination therapy. Essential in its activity is
the site of removal and addition of an electron, with a reactive endoperoxide bond facilitating an
electrophilic attack, and the subsequent radicals affording antiparasitic properties.396,397

Figure 7.11 shows the molecular structure of the molecule, with labels assigned to the different
types of oxygen atom to ease discussion of excitation character. These types are Op (peroxidic),
Oe (etheric), Ol (inner-ring lactonic), and Oc (carbonyl lactonic). The IP of artemisinin has been
identified in Ref. 398 as 9.40 eV using ultraviolet PES, who use density functional theory (DFT)
calculations with the B3LYP functional to assign the bands in a Koopmans’ fashion. This
characterisation considered the ionisation as having n(Op)− character, corresponding to lone
pairs on the endoperoxidic oxygen atoms. Ref. 399 corroborates the IP at a value of 9.75 eV, but
assign it to two energetically close states with n(Oc,Ol) and n(Op,Oc,Oe,Ol) character. Their
assignment leveraged OVGF calculations and so their differences with respect to the
characterisation of Ref. 398 may be due to the incorporation of correlation through the electron
propagator, and is significantly more delocalised. Ref. 399 similarly study the EA using electron
transmission spectroscopy, and assign a value of 1.76 eV. Using OVGF calculations, they
attribute it to primarily σ∗(OpOp) with contributions also from π∗(COc). This results in an
experimental band gap of 7.69 eV whereas the OVGF calculations significantly underestimate it
at 5.4 eV.

Given that it is capable of producing Dyson orbitals renormalised under the effects of
correlation, and considering the appropriate system size of artemisinin, AGF2 may be a suitable
method to elucidate the character going beyond DFT or OVGF assignment. The single-particle
spectrum of artemisinin at the level of AGF2 was produced in an aug-cc-pVDZ basis, totalling
658 orbitals and 152 correlated electrons, which converged in around 2,500 CPU hours. The
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Figure 7.12: Spectral functions for the artemisinin molecule in an aug-cc-pVDZ basis set, at the levels of
HF and AGF2. The bars below the spectra indicate the gap size at the plotted levels, and also at the level
of domain-based local pair natural orbital (DLPNO)-EOM-CCSD and from the experimental data in Ref.
399. The HF and AGF2 band gaps are also indicated with vertical stripes behind the spectra. The spectra
are centred about zero frequency by applying a chemical potential.

geometry was obtained from The Cambridge Crystallographic Data Centre, with identifier
QNGHSU03.400 Figure 7.12 shows a comparison between the spectra at the levels of HF and
AGF2 for this calculation. The bars below the spectra additionally indicate the size of the band
gaps, including the experimental data from Ref. 399 and data obtained from the domain-based
local pair natural orbital (DLPNO)-EOM-CCSD method using the ORCA program,20,21,401,402 at
a value of 7.69 eV. This method is expected to be a good approximation to the accurate
EOM-CCSD method, but is applicable in this larger system, and has a discrepancy of just
0.16 eV. In comparison, the gap at the level of AGF2 has a discrepancy of 0.28 eV, which is less
than double that of the DLPNO-EOM-CCSD calculation. This provides evidence that the
conclusions made about the accuracy of AGF2 for calculating charged excitations in the GW100
benchmark translates to this larger application.

Figure 7.13 shows the AGF2 spectrum projected onto Löwdin orthogonalised AOs on each type
of oxygen. This allows one to visualise the contribution to the spectra, and more specifically the
IP and EA, originating from each type of oxygen atom. The vertical stripe shows the band gap,
centred about zero frequency. The spatial realisation of the Dyson orbitals corresponding to the
IP and EA is also shown in Figure 7.14. The ionisation peak possesses a quasiparticle weight
of 0.947 and can be seen to be dominated by contributions due to both the peroxidic (Op) and
etheric (Oe) oxygen atoms, corroborated by both the spatial localisation and the projected spectra.
Smaller contributions can be observed on the inner-ring lactonic (Ol) atoms. This is in agreement
with the assignment made in Ref. 398, whereas the assignment made in Ref. 399 highlighted the
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Figure 7.13: Projected spectral functions for the artemisinin molecule in an aug-cc-pVDZ basis set at the
level of AGF2. The AGF2 band gap is indicated with a vertical stripe behind the spectra. The spectra
are centred about zero frequency by applying a chemical potential. The spectra are projected onto AOs
of each oxygen type, using Löwdin orthogonalised AOs.
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Figure 7.14: Dyson orbitals calculated at the level of AGF2 for the artemisinin molecule in an aug-cc-pVDZ
basis set.
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lactone group as the primary site of ionisation, which makes an insignificant contribution at the
level of AGF2. The EA is represented by a dense manifold of relatively low-weighted excitations
at the level of AGF2, and therefore the projection of Figure 7.13 gives a better visualisation of the
character than the state-specific Dyson orbital of Figure 7.14b. All of the oxygen atoms have some
degree of contribution to this manifold, with the peroxidic (Op) ones being the most dominant, with
additional contributions due to the etheric (Oe) atoms. This is in agreement with the assignment
to σ∗ antibonding orbitals in Ref. 399.
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Systems

AlAs AlP AlSb BP BaO BaS BaSe BeSe
C CaO CaS CaSe KBr KCl LiBr LiCl

LiF Mg2Ge Mg2Si MgO NaBr NaCl NaF NaI
RbBr RbCl RbF RbI Si SrO SrS SrSe

Table 7.8: List of systems included in the solids benchmark set. The details of the unit cells corresponding
to each crystal can be found in Ref. 403.

7.6 Solids

In the solid state, the fundamental band gap is of great importance in describing and classifying
materials. Principally, it can be used to classify the electrical conductivity of a solid, quantifying
the energy gap between the valence band and the conduction band. The valence band corresponds
to the continua of occupied states, whereas the conduction band to the unoccupied states, and
therefore the band gap can be calculated according to the sum of the IP and EA of the material.
The band gap can be further classified into direct and indirect band gaps. Direct band gaps occur
in the case where the highest energy state in the valence band and the lowest energy state in the
conduction band have the same momentum, whilst indirect band gaps are between states differing
in momentum. Electronic transitions across an indirect gap must therefore also undergo a transfer
in momentum.

As outlined in Section 4.6, AGF2 can be simply extended to periodic solids by resolving the
expression for the moments in k-space. This Section will seek to benchmark the AGF2 in this
setting, and compare the conclusions to those made for molecular systems. Application of
perturbation theories to gapped systems in the solid state is a field of great importance, with
GW calculations being perhaps the most common correlated level of theory used.

7.6.1 Benchmark

In order to benchmark AGF2 in the case of a k-space resolution, we select a subset of the systems
presented in Ref. 403 and use a GTH-DZVP-MOLOPT-SR basis set with the GTH-PADE ECP.404 This
subset does not include systems with significantly heavy atoms requiring relativistic treatment,
and ignores the noble gas crystals. This leaves a total of 32 systems, which are listed in Table 7.8.

Figure 7.15 shows distributions for the errors in the direct band gaps for the benchmark set
for three different k-point meshes. The aggregated error values for this data are summarised
in Table 7.9. For comparison, we include both mean-field and GW data using HF and DFT
calculations using the PBE functional.405 Since AGF2 has no dependency on the reference due to it
reaching a fixed point on the Dyson equation, we need only show it for a single arbitrary mean-field
reference. GW on the other hand exhibits a significant dependency on the reference. HF typically
overestimates the band gap in solids, consistently so in this subset for k-point meshes of 3×3×3 or
larger. On the other hand, PBE tends to underestimate the band gap, with the underestimation
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Figure 7.15: Distribution of errors in the direct band gap from AGF2 calculations on ab initio solids in a
GTH-DZVP-MOLOPT-SR basis set and the GTH-PADE ECP. Errors are taken with respect to experiment, and
the central points show the MSEs. Shown are results for three different k-point meshes, 2×2×2 (a), 3×3×3
(b), and 4×4×4 (c). Both GW and mean-field data is shown for HF as well as the DFT data using the
PBE functional.
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Method N MAE MSE GAE STD

2×2×2
HF 32 1.430 -1.384 3.716 1.223

GW@HF 32 1.291 0.255 2.727 1.472
PBE 32 2.093 1.844 5.500 1.821

GW@PBE 32 1.343 0.667 3.400 1.486
AGF2 32 1.178 0.603 2.409 1.272

Γ-AGF2 32 1.156 0.614 2.271 1.242

3×3×3
HF 32 2.791 -2.791 4.806 1.065

GW@HF 32 0.988 -0.528 2.967 1.140
PBE 32 2.033 1.764 5.410 1.813

GW@PBE 32 1.079 0.354 2.741 1.236
AGF2 32 0.722 0.287 1.571 0.787

Γ-AGF2 32 0.720 0.352 1.483 0.761

4×4×4
HF 32 3.572 -3.572 5.532 1.048

GW@HF 32 1.050 -0.984 3.214 0.989
PBE 32 2.026 1.751 5.405 1.816

GW@PBE 32 0.969 0.194 2.417 1.128
AGF2 32 0.513 0.145 1.242 0.583

Γ-AGF2 29 0.532 0.332 1.104 0.542

Table 7.9: MAE, MSE, GAE and STD values for AGF2 calculations on ab initio solids in a
GTH-DZVP-MOLOPT-SR basis set and the GTH-PADE ECP. Errors are taken with respect to experiment,
and the central points show the MSEs. Shown are results for three different k-point meshes, 2×2×2 (a),
3×3×3 (b), and 4×4×4 (c). Both GW and mean-field data is shown for HF as well as the DFT data using
the PBE functional. N indicates the number of systems available for each method.
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increasing in proportion to the magnitude of the gap and therefore becoming consistent at even
moderately large values. This is a result of the unphysical self-Coulomb repulsion.406–410 In both
cases one-shot GW corrections offer an improvement on the band gap prediction, with GW@HF
still overestimating the gap as one approaches the thermodynamic limit, and GW@PBE offering
fairly unbiased errors at this limit.

AGF2 offers direct band gaps that are slightly improved on those of GW@PBE, with a smaller
MAE and MSE, along with a smaller STD and GAE indicating fewer outliers. For the 4×4×4 mesh,
AGF2 offers extremely unbiased errors with a MSE of just 0.145 eV, with similar observations for
GW@PBE which has a MSE of 0.194 eV. The Γ-AGF2 calculations incorporating self-consistency
only at the Γ point offer MAEs that are barely worse than those of AGF2, with the MAE actually
being lower for the smallest 2×2×2 mesh. This is reflected by the extremely similar distribution of
errors in Figure 7.15, showing that the Γ-only self-consistency introduces extremely small errors and
is a very promising approximation to full AGF2 in ab initio solids. The only limit to this conclusion
is that as the resolution of the k-point mesh increases, the robustness of the convergence of the
Dyson equation in Γ-AGF2 tends to be worse than that of AGF2, culminating in three systems
failing to converge for Γ-AGF2 in a 4×4×4 k-point mesh that successfully converged for AGF2.
This may be due to the unbalanced description of correlation at neighbouring k-points having
more effect when those k-points are closer in k-space, resulting in inconsistencies in the curvature
of bands, which has significant physical consequences relating to the effective mass of electrons.
AGF2 can therefore be considered a promising method for studying ab initio solids, however more
in-depth benchmarking including basis set dependency and behaviour at the thermodynamic limit
is required to make a more reliable conclusion.

The MAE of AGF2 is similar to the quality observed for the molecular benchmark in Section 7.4,
In the molecular benchmark of AGF2 in Section 7.4, the IP had a MAE of 0.437 eV and the EA of
0.222 eV. For both excitations this reflects a negative MSE, i.e. an overestimation compared to the
reference. An overestimation in both excitations indicates that the resulting band gap calculated
using the IP and EA are also overestimated, with the errors compounding. The combined error
in the gap for the solid benchmark is 0.513 eV, which is of similar magnitude to the sum of the
errors in the molecular benchmark. The gaps in the solids benchmark are fairly unbiased, with
a reasonably even spread of overestimated and underestimated values, however the overall MSE
indicates that those errors are slightly biased towards an underestimation.

7.6.2 Silicon bands

The AGF2 calculations on ab initio solids allow one to resolve the spectra in both frequency and
k-space, which can be simply achieved by performing multiple AGF2 calculations with a k-point
mesh shifted along a given path through the first Brillouin zone. This is shown in Figure 7.16
for a silicon crystal in a 3×3×3 k-point mesh and the GTH-DZVP-MOLOPT-SR basis set with the
GTH-PADE ECP.404 The uppermost plot shows the broadened spectrum giving an indication of
the differences in quasiparticle weight in different regions of frequency-momentum space, whereas
the lower plot shows the path of each excitation through the first Brillouin zone regardless of
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Figure 7.16: Band structure of silicon with a 3×3×3 k-point mesh in a GTH-DZVP-MOLOPT-SR basis set
and the GTH-PADE ECP. Plot (a) shows the AGF2 bands broadened with a broadening parameter η of
1.5 eV, and plot (b) shows each excitation in the spectrum as lines through the path in k-space, with the
high-symmetry points in the first Brillouin zone labelled on the x-axis. The horizontal stripe indicates the
experimental band gap. The density-of-states on the right-hand side indicates the spectrum summed over
k-space, and uses a broadening η of 1.0 eV.
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weight. The experimental gap, indicated by the horizontal stripe about zero frequency, has a
value of 1.17 eV.403,411 In comparison HF predicts a direct gap of 5.89 eV, whilst local density
approximation (LDA) gives 2.52 eV and AGF2 gives 2.40 eV. LDA is particularly accurate for
calculating the silicon band gap, and AGF2 successfully relaxes the inaccurate HF gap to a value
closer to the experimental data.

Another solution to producing detailed spectra tracing the first Brillouin zone would be to
employ interpolation between the sampled k-points, thereby avoiding the need to perform many
calculations on shifted k-meshes, or relaxing the number of them necessary to produce smooth
band structures. This has been successfully employed in Ref. 412 using Wannier orbitals where
interpolation of the self-energy is shown to be more successful than interpolation of the Green’s
function. This is not a surprising result, given that interpolation of the Green’s function means
one must also interpolate the mean-field effects in the spectrum, whereas doing so with the self-
energy only requires one to interpolate the correlation effects on top of the mean-field. These
ideas should be readily applicable to AGF2, and in fact will be made more convenient by the
moment representation of the self-energy, where the GTOs will behave in the same fashion as the
Wannier orbitals used in Ref. 412. This presents an avenue for future research that could yield
significant improvements in the capabilities of studying band structures at the level of many-body
perturbation theories.
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Chapter 8

Conclusion

The previous Chapters have described the state of the art within the field of quantum chemistry,
and presented efficient reformulations of the block Lanczos algorithms in the context of solving
the Dyson equation in Green’s function perturbation theories. Using these reformulations, three
methods have been outlined that leverage the efficient and compact moment representation,
offering new perspectives on existing quantum chemical methods with a focus on the systematic
improvability of the representation. The algorithms associated with these reformulations have
been show to converge quickly, and provide very good estimates to IPs and EAs in diverse
benchmarks of small molecules. These approximate excitations have been shown to rapidly reach
accuracies surpassing that of their respective methods, and as such very few iterations are
required to use the solvers in place of existing ones.

The study of the behaviour of AGF2 with increasing numbers of iterations in the block
Lanczos recurrences showed that such increases were detrimental to the accuracy of the
calculated IPs and EAs. This led to the efficient and competitively accurate AGF2 model, with
applicability to systems larger than just the small molecule benchmarks, exemplified using a
study on the artemisinin molecule. Resulting also from this study was an insight into a debate
over the character of excitations in the important drug molecule, giving some credence to the
practical use of AGF2. Finally, a benchmark of ab initio solids was used to show that AGF2
shows much promise when formulated for extended systems, where it is capable of producing
detailed correlated band diagrams. In the molecular case, AGF2 has been implemented within
the PySCF programming package,26,27 supporting both OpenMP and MPI parallel architectures,
with applicable system sizes likely to surpass the 1000 orbital point depending on available
resources.

The approximate AGW calculations leveraging the RPA moments show much promise, and will
feature in a future publication and open-source implementation. The convergence of the IP and
EA are particularly systematic and the implicit accuracy of GW is rapidly achieved. Whilst there
are many existing GW implementations achieving very low scaling with system size, many of them
make very harsh approximations not required in the scheme introduced in Chapter 5. There are
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opportunities within this formulation to reduce the scaling with system size to O(n3
mo), which will

result in a very attractive GW solver. Furthermore, GW methods are utilised frequently in the field
of solid state physics, and a k-space resolution of this framework will be an extremely worthwhile
endeavour in the future. As discussed in Chapter 5 there exists many natural extensions of this
framework to a diverse range of self-consistencies, which we also plan to implement.

The GF-CC work in this thesis only considered the Green’s function at the level of GF-CCSD,
which is perhaps the most popular and most frequently used CC ansatz. Recent work in the
Booth group has applied algorithmic code generation to CC theory, and this can also be applied to
generating the contributions to the vectors required to compute the GF-CC moments, as discussed
in Chapter 6. These techniques have been implemented in the open-source package ebcc which is
planned to include less straightforward ansatzes, such as those that treat active spaces at higher
levels of theory within a cheaper CC calculation of the frozen space. Future work will look to
applying the moment-resolved GF-CC techniques to some of these less traditional ansatzes, offering
a route to quantifying the effect on the single-particle spectrum due to strongly correlated orbital
fragments.

The limiting factors in the block Lanczos recurrences originate from the numerical instability
associated with the moment formulation. The need to take increasingly large powers of the energies
associated with the distributions results in instability under finite precision arithmetic. Future
work related to this project should seek to remedy these numerical instabilities, which may be
possible with an alternative polynomial expansion of the moments that constrains their values
within a manageable interval, rather than the unconstrained monomial representation. The Green’s
function recurrence may also suffer from a loss in orthogonality of the Lanczos vectors, which is
much easier to diagnose and cure in the self-energy recurrence, and may offer another possible area
of improvement in the numerical stability. Improvements of this kind would allow the recurrence
to proceed to much higher numbers of iterations, thereby better converging high-lying unoccupied
or core states, and increasing the applicability of the algorithms. Extension of the self-energy
recurrence to the case of non-Hermitian self-energies is also an important future development, and
will complete the set of algorithms, allowing the compression of non-causal self-energies for example
those found in CC theory.

The block Lanczos recurrences have pertinence in the field of EP theory, where a significant
number of diagrammatically justified self-energies have been formulated beyond the simple
examples shown at second and third order. As these diagrammatic expansions increase in
complexity, as do the algebraic expressions for the blocks contributing to the self-energies, and
therefore expressions for the moments become very involved, particularly when many
contributions to the C block exist. Producing expressions to compute the moments of these
self-energies may breathe new life into EP theory, particularly since in some cases the coarser
representations have been shown to produce more accurate results than in the limit of infinite
moments. Future work will seek to collect functions for producing moments at a diverse range of
levels of theory. Obtaining such expressions for the moments of various self-energies also
seamlessly permits the application of the AGF2 solver with very few modifications except for the
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function computing the moments, easily offering renormalised physics at the level of many
existing EP methods. Since many of the EPs implicitly include diagrams corresponding to partial
renormalisation of lower-order ones, they may constitute different starting points leading to
identical fixed points on the Dyson equation.

The moment matrices may also be opportune for interpolation, both in k-space such as the
techniques discussed in Ref. 412, and also in the space of molecular geometry or basis functions
employing a machine learning approach such as that of Refs. 413,414. We are also exploring
avenues for collaboration with work on quantum Gaussian process states, according to the work in
Ref. 415, and in relation to the computation of Green’s functions on quantum devices according to
Ref. 416. An important consideration in these approaches is that the definiteness of the moments
must be conserved by any interpolative or predictive scheme.

Application of embedding theory to self-energies is an area of modern interest, with many
papers detailing developments allowing the study of strongly correlated fragments embedded within
self-energies computed at the level of perturbation theories.136,417–424 In addition, work within the
group has recently been focused largely on embedding problems, specifically in developing methods
and algorithms for such calculations in the open-source project Vayesta.425–428 This builds upon
previous embedding work in the group that eventually led to the Green’s function recurrence
schemes of Section 3.6.338,350,351 The moments of the self-energy are likely to be amenable to similar
embedding approaches as the fully dynamic function, since the moment expansion can be roughly
considered as a coarse-graining of the frequency dependency. This may permit more efficient
self-energy embedding calculations which do not have to rely on poorly conditioned numerical
algorithms. Additionally, the Green’s function moments can be related to familiar objects in
quantum chemistry, with the zeroth moment of the hole Green’s function interpretable as the
density matrix and the first moments as effective Fock matrices. As such, many of the techniques
already developed in quantum embedding are applicable in combination with the Green’s function
recurrence. Work within the group is currently investigating the applicability of the approaches
in Ref. 427 in the context of moments of the Green’s function at the level of CC, as discussed in
Chapter 6. These developments will permit high-level correlated calculations for the purpose of
computing charged excitations and spectral functions in much larger systems, and in a way that
is seamlessly extended to ab initio solids.

The application of AGF2 to solids is deserving of more investigation, particularly in order
to obtain data at both the thermodynamic limit and the complete basis limit. These limits are
particularly hard to reach and require significant overheads in terms of computational resources,
and therefore may benefit from some partial self-consistent scheme along the lines of the Γ-AGF2
approach outlined in Chapter 4 and quantified in Section 7.6. As discussed in Section 7.6, there
are concerns over the convergence properties in this method, likely due to inconsistencies in the
bands at closely neighbouring k-points. Finding a middle ground in terms of completeness of the
self-consistency and consistent treatment of neighbouring k-points may lead to an efficient and
highly applicable approach for computing band structures in the solid state. The combination
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therein with embedding approaches to exploit locality may result in an approach that can surpass
GW accuracy with similar cost.

In conclusion, the moment representation offers an extremely compact and physically
informed perspective to many existing theories, and opens up a wealth of avenues for less
conventional approaches. In contrast to the resolution of the functions on explicit dynamic
quadrature, the moments are interconvertible with the static pole representation offered by the
Lehmann representation, where the efficient block Lanczos recurrence schemes allow the
conversion of moments into this representation. Given the ubiquity of Green’s functions
throughout the wider field, we ultimately hope that this will provide a constructive impact to
other pertinent areas.
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A Slater–Condon rules

The Slater–Condon rules allow the expression of one- and two-body integrals involving fermionic
wavefunctions (as Slater determinants) in terms of the constituent orthonormal orbitals. These
rules are of great utility in the derivation of quantum chemical theory.

Consider the decomposition of a one-body operator in an N -body system

F̂ =
N∑
i

f̂(i). (A.1)

The Slater–Condon rules can be written56,429

⟨ΨHF|F̂ |ΨHF⟩ =
N∑
p

⟨p|F̂ |p⟩, (A.2a)

⟨ΨHF|F̂ |Ψa
i ⟩ = ⟨i|F̂ |a⟩, (A.2b)

⟨ΨHF|F̂ |Ψab
ij ⟩ = 0. (A.2c)

Similarly, two-body operators in an N -body system decompose as

V̂ =
∑
p<q

v̂(p, q), (A.3)

and the associated Slater–Condon rules are

⟨ΨHF|V̂ |ΨHF⟩ =
N∑

p<q

(⟨pq|v̂|pq⟩ − ⟨pq|v̂|qp⟩) , (A.4a)

⟨ΨHF|V̂ |Ψa
i ⟩ =

N∑
p

(⟨ip|v̂|ap⟩ − ⟨ip|v̂|pa⟩) , (A.4b)

⟨ΨHF|V̂ |Ψab
ij ⟩ = ⟨ij|v̂|ab⟩ − ⟨ij|v̂|ba⟩. (A.4c)



B Brillouin’s theorem 161

B Brillouin’s theorem

Consider the leading correction to the HF wavefunction in a multideterminental representation
considering the singly excited determinants

|Φ⟩ = c0 |ΨHF⟩+
occ∑

i

vir∑
a

ca
i |Ψa

i ⟩ . (B.5)

The coefficients ci
a can be found according to the variational principle by diagonalising the

Hamiltonian in the basis of the HF and singly-excited wavefunctions[
⟨ΨHF|Ĥ|ΨHF⟩ ⟨ΨHF|Ĥ|Ψa

i ⟩
⟨Ψa

i |Ĥ|ΨHF⟩ ⟨Ψa
i |Ĥ|Ψa

i ⟩

][
c0

ca
i

]
= E0

[
c0

ca
i

]
. (B.6)

Using the Slater–Condon rules (see Appendix A) we can evaluate the off-diagonal elements as

⟨ΨHF|Ĥ|Ψa
i ⟩ = ⟨i|ĥcore|a⟩+

∑
j

⟨ij||aj⟩

= ⟨i|f̂ |a⟩. (B.7)

Since i and a correspond to indices in occupied and virtual sectors respectively, they cannot be
equal, and therefore Equation B.7 will always evaluate to zero since the Fock matrix is required to be
diagonal by the HF eigenproblem. The HF ground-state can not be improved by mixing with singly
excited determinants, which only couple indirectly via coupling with higher-order determinants in
the exact ground state. Equation B.6 can be written for the lowest solution[

E0 0
0 ⟨Ψa

i |Ĥ|Ψa
i ⟩

][
1
0

]
= E0

[
1
0

]
. (B.8)

This fact is referred to as Brillouin’s theorem.
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C Spectral product integral

Consider two functions written as spectral forms on an imaginary frequency (Matsubara) domain

f(iω) = 1
iω − x, (C.9a)

g(iω) = 1
iω − y , (C.9b)

which in this case simply contain unit poles at x and y, respectively. We wish to evaluate the
integral ∫ ∞

−∞
dωf(iω)g(iω), (C.10)

By multiplying the numerator and denominator of f(ω) and g(ω) by i, Equation C.10 can be
transformed as ∫ ∞

−∞
dωf(iω)g(iω) =

∫ ∞

−∞
dω
(

1
iω − x

)(
1

iω − y

)
= −

∫ ∞

−∞
dω
(

1
ω + ix

)(
1

ω + iy

)
. (C.11)

Equation C.11 now has simple poles at complex values −ix and −iy.
Applying contour integration, the integral of Equation C.11 is therefore equal to the sum of

the residues of poles contained in the contour. The contour can be closed in the upper half-plane
if x and y are positive, in which case the poles −ix and −iy are clearly in the lower half-plane.
Similarly, if x and y are negative then the poles are in the upper half-plane and the contour can
be closed in to lower half-plane. In both of these cases the integral is zero. When x and y differ
in sign, the contour in either half-plane must enclose one of the poles and therefore the integral
is non-zero, more specifically equal to the residue of the enclosed pole. In the case of x > 0 and
y < 0, the pole at −iy is enclosed, and the residue is equal to i

x−y . For the case of x < 0 and
y > 0, the pole at −ix is enclosed, and the residue is equal to i

y−x . Incorporating the factor 2πi
from the residue theorem, we can collect the cases and evaluate the integral as

∫ ∞

−∞
dωf(iω)g(iω) =


2π

x−y if x > 0, y < 0,
2π

y−x if x < 0, y > 0,

0 otherwise.

(C.12)
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D GW 100 scatter plots
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Figure D.1: Comparison between CCSD(T) values and several quantum chemical methods for the IPs
(first two rows) and EAs (final two rows) of the GW 100 dataset in a def2-TZVPP basis set. The colour of
the points indicates the quasiparticle weight of the excitation.
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Figure D.2: Comparison between CCSD(T) values and moment-resolved ADC(2) calculations for the IPs
(first two rows) and EAs (final two rows) of the GW 100 dataset in a def2-TZVPP basis set. The number
of iterations of the self-energy recurrence is indicated by the niter value. The colour of the points indicates
the quasiparticle weight of the excitation.
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Figure D.3: Comparison between CCSD(T) values and moment-resolved GW calculations for the IPs (first
two rows) and EAs (final two rows) of the GW 100 dataset in a def2-TZVPP basis set. The number of
iterations of the self-energy recurrence is indicated by the niter value. The colour of the points indicates
the quasiparticle weight of the excitation.
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Figure D.4: Comparison between CCSD(T) values and moment-resolved GF-CCSD calculations for the
IPs (first two rows) and EAs (final two rows) of the GW 100 dataset in a def2-TZVPP basis set. The
number of iterations of the Green’s function recurrence is indicated by the niter value. The colour of the
points indicates the quasiparticle weight of the excitation.
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E GW 100 data
CAS Name HF ADC(2) ADC(3) AGF2 GW EOM-CCSD CCSD(T)

100-41-4 ethylbenzene 8.787 8.529 8.698 8.964 9.051 8.873 8.859
10028-15-6 ozone 13.282 11.004 12.708 13.644 13.495 12.801 12.645
10043-11-5 boron nitride 11.531 10.956 12.113 11.929 11.690 11.939 11.863

106-97-8 butane 12.418 11.019 11.578 11.926 12.130 11.576 11.573
108-88-3 toluene 8.800 8.583 8.737 9.001 9.084 8.917 8.905
108-95-2 phenol 8.749 8.264 8.590 8.882 8.956 8.707 8.709

108-95-2v2 phenol v2 8.606 8.187 8.465 8.754 8.834 8.602 8.597
110-86-1 pyridine 9.448 8.647 9.530 9.772 9.843 9.729 9.709

12184-80-4 tetracarbon 11.483 10.911 11.102 11.331 11.554 11.281 11.263
12185-09-0 phosphorus dimer 10.064 10.431 10.310 10.458 10.505 10.592 10.458
12187-06-3 silver dimer 6.316 7.278 7.321 7.168 7.122 7.387 7.481
12190-70-4 copper dimer 6.461 4.340 7.917 7.173 7.130 7.370 7.585

124-38-9 carbon dioxide 14.807 13.050 13.796 14.519 14.161 13.743 13.718
1304-56-9 beryllium oxide 10.517 8.264 10.758 10.468 9.759 9.892 9.958
1309-48-4 magnesium oxide 8.703 4.526 9.331 8.756 7.826 8.165 7.479

13283-31-3 borane 13.562 13.232 13.215 13.550 13.624 13.318 13.281
1333-74-0 hydrogen 16.170 16.291 16.313 16.367 16.445 16.397 16.403

13768-60-0 boron fluoride 11.018 10.986 10.907 11.158 11.262 11.205 11.090
14452-59-6 lithium dimer 4.951 5.174 5.050 5.101 5.285 5.270 5.266
14868-53-2 pentasilane 9.821 9.177 9.248 9.792 9.760 9.361 9.261
1590-87-0 disilane 11.067 10.583 10.593 11.072 11.053 10.706 10.638
1603-84-5 carbonyl selenide 10.564 10.335 10.306 10.678 10.652 10.499 10.461

17108-85-9 gallium monochloride 9.513 9.538 9.832 9.832 9.864 9.767 9.765
17739-47-8 phosphorus mononitride 12.030 10.415 12.088 12.417 12.320 11.807 11.734
19287-45-7 diborane 12.842 12.185 12.198 12.609 12.766 12.295 12.266
23878-46-8 arsenic dimer 9.219 9.785 9.717 9.644 9.706 9.874 9.760
25681-79-2 disodium 4.522 4.850 4.801 4.713 4.927 4.947 4.952
25681-80-5 dipotassium 3.605 4.023 3.891 3.828 4.026 4.081 4.062
25681-81-6 dirubidium 3.423 3.858 3.780 3.723 3.849 3.933 3.925

302-01-2 hydrazine 10.683 8.946 9.761 10.198 10.110 9.630 9.722
392-56-3 hexafluorobenzene 10.473 9.788 9.743 10.554 10.162 9.942

39297-86-4 sodium tetramer 3.824 4.083 4.103 3.996 4.238 4.257 4.225
39297-88-6 sodium hexamer 4.068 4.253 4.208 4.231 4.410 4.375 4.352

463-58-1 carbonyl sulfide 11.442 11.046 10.956 11.534 11.502 11.253 11.175
50-00-0 formaldehyde 12.032 9.694 11.130 11.480 11.308 10.786 10.845

507-25-5 tetraiodomethane 9.790 9.049 9.096 9.654 9.499 9.287 9.261
542-92-7 1,3-cyclopentadiene 8.396 8.318 8.528 8.633 8.793 8.707 8.684
544-92-3 copper cyanide 11.293 7.115 11.212 11.466 10.826 10.627 10.875
558-13-4 carbon tetrabromide 11.235 10.125 10.494 10.990 10.726 10.470 10.484
56-23-5 carbon tetrachloride 12.497 11.264 11.508 12.343 11.956 11.623 11.564
57-13-6 urea 11.354 8.965 10.339 10.942 10.614 10.089 10.059

593-60-2 vinyl bromide 9.183 8.975 9.186 9.317 9.408 9.290 9.282
593-60-2v2 vinyl bromide v2 9.895 9.521 9.765 9.982 10.008 9.856 9.856

593-66-8 iodoethene 9.362 9.128 9.179 9.492 9.463 9.358 9.329
60-29-7 ethyl ether 11.370 8.666 10.199 10.543 10.424 9.757 9.819
62-53-3 aniline 8.082 7.567 7.873 8.167 8.275 7.989 8.000

629-20-9 1,3,5,7-cyclooctatetraene 8.278 7.983 8.210 8.372 8.606 8.418 8.356
630-08-0 carbon monoxide 15.374 14.020 13.719 14.746 15.000 14.384 14.214
64-17-5 ethanol 12.016 9.634 10.970 11.390 11.225 10.622 10.689
64-18-6 formic acid 12.892 10.317 11.801 12.299 11.888 11.433 11.427
65-71-4 thymine 9.591 8.744 8.897 9.440 9.611 9.164 9.088
66-22-8 uracil 10.022 8.988 9.306 9.907 10.021 9.579 9.490
67-56-1 methyl alcohol 12.305 10.024 11.300 11.748 11.507 10.969 11.046
71-30-7 cytosine 9.323 8.269 8.654 9.207 9.209 8.797 8.777
71-43-2 benzene 9.142 9.019 9.140 9.396 9.452 9.329 9.299
73-24-5 adenine 8.358 7.934 8.163 8.518 8.633 8.345 8.339
73-40-5 guanine 8.124 7.678 7.806 8.244 8.362 8.057 8.042
74-82-8 methane 14.842 14.077 14.327 14.661 14.724 14.390 14.377
74-84-0 ethane 13.244 12.380 12.666 12.988 13.130 12.713 13.048
74-85-1 ethylene 10.283 10.346 10.485 10.595 10.709 10.698 10.674
74-86-2 acetylene 11.175 11.321 11.220 11.479 11.539 11.570 11.433
74-90-8 hydrogen cyanide 13.514 12.904 13.485 13.898 13.823 13.917 13.734
74-98-6 propane 12.740 11.544 12.048 12.395 12.569 12.060 12.054

7439-90-9 krypton 14.251 13.766 14.046 14.206 13.968 13.962 13.956
7440-01-9 neon 23.105 20.007 21.868 22.531 21.341 21.217 21.329
7440-37-1 argon 16.053 15.423 15.556 16.100 15.726 15.637 15.550
7440-59-7 helium 24.949 24.529 24.444 24.915 24.560 24.500 24.512
7440-63-3 xenon 5.835 12.260 12.170 12.325 12.314 12.257
7446-09-5 sulfur dioxide 13.471 11.413 12.419 13.077 12.889 12.388 12.422

75-01-4 chloroethene 10.093 9.796 9.957 10.256 10.311 10.142 10.100
75-02-5 fluoroethene 10.477 10.167 10.423 10.657 10.767 10.611 10.563
75-07-0 acetaldehyde 11.560 9.112 10.494 10.915 10.748 10.193 10.213
75-15-0 carbon disulfide 10.118 9.875 9.736 10.262 10.275 10.027 9.982
75-19-4 cyclopropane 11.362 10.329 10.856 11.102 11.233 10.869 10.874
75-73-0 tetrafluoromethane 18.637 15.083 16.741 17.719 16.785 16.249 16.308

7553-56-2 iodine 9.804 9.307 9.422 9.787 9.672 9.534 9.505
7580-67-8 lithium hydride 8.209 7.972 7.835 8.260 8.133 7.961 7.962
7647-01-0 hydrogen chloride 12.929 12.426 12.568 13.033 12.766 12.657 12.597
7647-14-5 sodium chloride 9.577 8.728 9.101 9.541 9.192 9.132 9.029
7664-39-3 hydrogen fluoride 17.624 14.634 16.563 17.067 16.163 15.910 16.032
7664-41-7 ammonia 11.648 10.146 10.875 11.289 11.141 10.777 10.811
7693-26-7 potassium hydride 6.525 6.044 6.007 6.368 6.255 6.126 6.128
7722-84-1 hydrogen peroxide 13.275 10.281 11.721 12.530 12.002 11.400 11.593
7726-95-6 bromine 11.021 10.182 10.634 10.900 10.712 10.534 10.554
7727-37-9 nitrogen 16.708 14.982 15.494 16.311 16.300 15.611 15.577
7732-18-5 water 13.823 11.475 12.865 13.353 12.814 12.485 12.571
7758-02-3 potassium bromide 8.518 7.842 8.284 8.412 8.176 8.168 8.138
7782-41-4 fluorine 18.141 14.109 15.944 17.190 16.257 15.540 15.717
7782-50-5 chlorine 12.038 11.107 11.410 12.024 11.728 11.473 11.415
7782-65-2 germane 12.904 12.460 12.510 12.883 12.835 12.515 12.490
7782-79-8 hydrogen azide 10.974 10.354 10.383 11.023 11.038 10.731 10.684
7783-06-4 hydrogen sulfide 10.443 10.174 10.250 10.596 10.479 10.368 10.314
7783-40-6 magnesium fluoride 15.427 12.083 14.610 14.827 13.785 13.712 13.713
7783-60-0 sulfur tetrafluoride 13.785 11.924 12.656 13.506 13.247 12.721 12.609
7783-63-3 titanium tetrafluoride 17.984 14.063 16.638 17.111 16.028 15.702 15.483
7784-18-1 aluminum fluoride 17.234 13.897 16.062 16.657 15.566 15.306 15.444
7784-23-8 aluminium iodide 10.176 9.696 9.661 10.190 9.969 9.824 9.807
7784-42-1 arsine 10.355 10.233 10.413 10.517 10.537 10.393 10.392
7786-30-3 magnesium chloride 12.263 11.436 11.716 12.274 11.887 11.770 11.667
7789-24-4 lithium fluoride 12.876 9.664 12.176 12.360 11.302 11.284 11.326
7803-51-2 phosphine 10.572 10.413 10.445 10.730 10.762 10.587 10.540
7803-62-5 silane 13.243 12.818 12.720 13.254 13.196 12.838 12.784

Table E.1: List of IPs (in units of eV) calculated for the GW 100 dataset in a def2-TZVPP basis set.
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CAS Name HF ADC(2) ADC(3) AGF2 GW EOM-CCSD CCSD(T)

100-41-4 ethylbenzene 3.361 1.235 1.932 1.903 1.863 1.750 1.681
10028-15-6 ozone -1.206 -1.681 -1.950 -1.995 -1.956 -1.535 -1.659
10043-11-5 boron nitride -2.931 -3.858 -3.700 -3.436 -3.832 -3.175 -3.250

106-97-8 butane 3.777 2.787 2.928 3.023 3.095 2.883 2.860
108-88-3 toluene 3.272 1.224 1.891 1.855 1.810 1.703 1.643
108-95-2 phenol 3.126 1.143 1.814 1.729 1.681 1.612 1.601

108-95-2v2 phenol v2 3.186 1.192 1.876 1.790 1.739 1.666 1.641
110-86-1 pyridine 2.772 0.759 1.379 1.393 1.312 1.223 1.177

12184-80-4 tetracarbon -0.554 -2.992 -2.173 -2.200 -2.194 -2.375 -2.324
12185-09-0 phosphorus dimer 0.629 -0.443 -0.174 0.141 -0.230 -0.114 -0.110
12187-06-3 silver dimer 0.252 -0.873 -0.803 -0.391 -0.457 -0.689 -0.773
12190-70-4 copper dimer 0.451 -0.363 -0.841 0.175 -0.130 -0.323 -0.516

124-38-9 carbon dioxide 3.644 2.605 2.966 2.926 2.981 2.799 2.828
1304-56-9 beryllium oxide -1.661 -2.166 -1.917 -1.857 -2.087 -2.022 -1.979
1309-48-4 magnesium oxide -1.305 -1.339 -1.983 -1.532 -1.519 -1.291 -1.812

13283-31-3 borane 1.473 0.266 0.374 0.598 0.676 0.324 0.322
1333-74-0 hydrogen 4.565 4.234 4.187 4.246 4.306 4.220 4.223

13768-60-0 boron fluoride 2.245 1.459 1.403 1.707 1.642 1.506 1.502
14452-59-6 lithium dimer 0.368 -0.099 -0.239 0.241 -0.036 -0.118 -0.198
14868-53-2 pentasilane 2.310 0.485 0.838 1.368 1.052 0.763 0.701
1590-87-0 disilane 3.226 2.111 2.262 2.670 2.471 2.244 2.208
1603-84-5 carbonyl selenide 2.656 0.844 1.676 1.750 1.369 1.427 1.501

17108-85-9 gallium monochloride 0.964 0.132 0.155 0.576 0.330 0.281 0.282
17739-47-8 phosphorus mononitride 1.222 0.169 0.339 0.609 0.341 0.453 0.434
19287-45-7 diborane 2.548 1.017 1.284 1.434 1.532 1.192 1.174
23878-46-8 arsenic dimer 0.327 -0.490 -0.473 -0.174 -0.364 -0.234 -0.289
25681-79-2 disodium 0.140 -0.303 -0.400 0.068 -0.233 -0.264 -0.328
25681-80-5 dipotassium 0.046 -0.422 -0.417 -0.104 -0.310 -0.323 -0.364
25681-81-6 dirubidium 0.014 -0.455 -0.479 -0.178 -0.346 -0.367 -0.415

302-01-2 hydrazine 3.210 2.440 2.517 2.612 2.679 2.508 2.488
392-56-3 hexafluorobenzene 2.562 0.383 1.529 0.912 1.056 1.121

39297-86-4 sodium tetramer 0.013 -0.649 -0.689 -0.087 -0.471 -0.537 -0.603
39297-88-6 sodium hexamer 0.165 -0.709 -0.583 0.057 -0.422 -0.494 -0.554

463-58-1 carbonyl sulfide 3.057 1.339 2.044 2.106 1.778 1.834 1.945
50-00-0 formaldehyde 2.958 1.396 1.636 1.858 1.865 1.655 1.621

507-25-5 tetraiodomethane -0.125 -2.465 -1.258 -1.247 -1.407 -1.607 -1.596
542-92-7 1,3-cyclopentadiene 3.256 1.263 1.898 1.851 1.866 1.761 1.717
544-92-3 copper cyanide -0.314 -0.981 -1.432 -0.621 -0.771 -0.962 -1.117
558-13-4 carbon tetrabromide 1.162 -1.276 -0.137 -0.137 -0.255 -0.477 -0.486
56-23-5 carbon tetrachloride 2.736 0.018 1.295 1.463 1.090 0.859 0.902
57-13-6 urea 3.124 2.219 2.409 2.484 2.509 2.332 2.312

593-60-2 vinyl bromide 3.385 1.537 2.185 2.254 2.157 2.016 2.039
593-60-2v2 vinyl bromide v2 3.378 1.403 2.142 2.216 2.085 1.935 1.954

593-66-8 iodoethene 2.747 0.945 1.526 1.753 1.660 1.399 1.393
60-29-7 ethyl ether 3.834 2.879 2.994 3.126 3.173 2.962 2.930
62-53-3 aniline 3.358 1.345 2.016 1.954 1.910 1.820 1.791

629-20-9 1,3,5,7-cyclooctatetraene 2.474 0.158 0.959 0.854 0.911 0.782 0.692
630-08-0 carbon monoxide 2.153 1.001 1.175 1.307 1.151 1.203 1.277
64-17-5 ethanol 3.637 2.796 2.861 3.014 3.056 2.859 2.821
64-18-6 formic acid 3.800 2.388 2.730 2.878 2.879 2.686 2.660
65-71-4 thymine 2.429 0.126 1.076 0.875 0.822 0.755 0.782
66-22-8 uracil 2.296 0.086 0.991 0.805 0.743 0.685 0.729
67-56-1 methyl alcohol 3.731 2.975 3.030 3.162 3.213 3.026 2.999
71-30-7 cytosine 2.587 0.281 1.224 1.067 0.985 0.907 0.952
71-43-2 benzene 3.315 1.294 1.964 1.932 1.861 1.771 1.728
73-24-5 adenine 3.090 0.707 1.427 1.450 1.420 1.270 1.278
73-40-5 guanine 2.848 0.887 1.830 1.768 1.868 1.564 1.611
74-82-8 methane 4.079 3.422 3.470 3.570 3.617 3.454 3.448
74-84-0 ethane 3.855 3.054 3.143 3.237 3.296 3.114 3.102
74-85-1 ethylene 3.892 2.283 2.717 2.793 2.796 2.624 2.634
74-86-2 acetylene 4.225 3.258 3.525 3.629 3.580 3.486 3.513
74-90-8 hydrogen cyanide 4.094 3.000 3.192 3.350 3.277 3.197 3.211
74-98-6 propane 3.774 2.873 2.986 3.084 3.149 2.950 2.931

7439-90-9 krypton 10.946 10.376 10.398 10.555 10.479 10.407 10.419
7440-01-9 neon 21.757 20.878 20.762 21.047 21.200 20.844 20.781
7440-37-1 argon 15.393 14.636 14.771 15.063 14.799 14.717 14.744
7440-59-7 helium 22.667 22.331 22.222 22.392 22.115 22.244 22.217
7440-63-3 xenon 5.153 7.574 7.691 7.707 7.646 7.689
7446-09-5 sulfur dioxide 0.436 -0.634 -0.389 -0.298 -0.494 -0.357 -0.260

75-01-4 chloroethene 3.512 1.619 2.294 2.328 2.249 2.112 2.145
75-02-5 fluoroethene 4.054 2.432 2.894 2.930 2.910 2.784 2.802
75-07-0 acetaldehyde 3.474 1.548 1.940 2.162 2.138 1.901 1.828
75-15-0 carbon disulfide 1.412 -0.351 0.608 0.567 0.191 0.277 0.454
75-19-4 cyclopropane 4.336 3.345 3.498 3.596 3.657 3.455 3.437
75-73-0 tetrafluoromethane 5.760 4.804 4.941 5.053 5.157 4.892 4.844

7553-56-2 iodine -0.451 -1.875 -1.460 -1.262 -1.336 -1.490 -1.459
7580-67-8 lithium hydride 0.245 0.104 0.068 0.177 0.103 0.089 0.086
7647-01-0 hydrogen chloride 3.459 2.549 2.725 2.962 2.836 2.692 2.719
7647-14-5 sodium chloride -0.449 -0.594 -0.589 -0.529 -0.560 -0.587 -0.584
7664-39-3 hydrogen fluoride 3.473 3.060 3.053 3.110 3.163 3.072 3.064
7664-41-7 ammonia 3.416 2.802 2.849 2.931 2.993 2.841 2.827
7693-26-7 potassium hydride 0.117 -0.053 -0.048 -0.011 -0.024 -0.036 -0.028
7722-84-1 hydrogen peroxide 3.646 2.646 3.004 3.106 3.174 3.009 2.963
7726-95-6 bromine 0.171 -1.245 -1.062 -0.742 -0.753 -0.937 -0.955
7727-37-9 nitrogen 4.185 2.848 2.996 3.239 3.074 3.035 3.043
7732-18-5 water 3.413 2.855 2.868 2.953 3.022 2.882 2.865
7758-02-3 potassium bromide -0.232 -0.455 -0.434 -0.404 -0.382 -0.445 -0.438
7782-41-4 fluorine 2.385 -0.040 0.166 0.643 0.810 0.381 0.261
7782-50-5 chlorine 1.175 -0.666 -0.134 0.299 -0.031 -0.210 -0.148
7782-65-2 germane 4.084 3.149 3.073 3.513 3.421 3.177 3.126
7782-79-8 hydrogen azide 3.251 1.473 2.189 2.177 2.062 2.015 2.068
7783-06-4 hydrogen sulfide 3.573 2.660 2.811 3.080 2.965 2.779 2.795
7783-40-6 magnesium fluoride 0.303 -0.007 -0.072 0.073 0.046 -0.033 -0.081
7783-60-0 sulfur tetrafluoride 2.252 0.445 1.246 1.166 1.004 0.920 1.001
7783-63-3 titanium tetrafluoride 1.247 -3.190 1.109 -0.877 -1.520 -1.058 -0.721
7784-18-1 aluminum fluoride 1.369 0.604 0.604 0.812 0.772 0.619 0.565
7784-23-8 aluminium iodide 0.912 -0.837 -0.097 0.213 -0.223 -0.335 -0.304
7784-42-1 arsine 3.708 2.792 2.828 3.148 3.089 2.871 3.008
7786-30-3 magnesium chloride 0.494 -0.291 -0.155 0.161 -0.056 -0.187 -0.184
7789-24-4 lithium fluoride 0.057 -0.021 -0.009 0.011 -0.012 -0.022 -0.022
7803-51-2 phosphine 3.737 2.859 2.954 3.261 3.150 2.938 3.115
7803-62-5 silane 3.894 3.059 3.103 3.399 3.283 3.095 3.093

Table E.2: List of EAs (in units of eV) calculated for the GW 100 dataset in a def2-TZVPP basis set.
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