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Abstract 
 

Pathological forms of mood have been documented for centuries. Mood disorder symptomatology 

varies enormously between individuals and can be viewed as a spectrum from depression to 

mania. The two most common disorders within the mood spectrum are major depressive disorder 

and bipolar disorder. The precise mechanisms that give rise to these disorders are largely 

unknown, but we now understand that both genetic and environmental factors increase individual 

risk. Improving knowledge of risk factors for mood disorders is crucial because they are leading 

drivers of disability and can substantially impact the quality of life of the affected individual.  

 

Recent advances in technologies aimed at mapping people’s inherited DNA have facilitated a 

deeper exploration of the genetic basis of mood disorders. Genome-wide association studies, 

which utilise genotype data, have been pivotal in confirming mood disorders’ polygenic, heritable 

nature, as well as demonstrating that genetic risk factors are shared between psychiatric 

disorders. Genome-wide association studies of complex traits/diseases require sample sizes in 

the thousands to effectively capture the small effects of individual genetic variants. This is an even 

bigger priority for mood disorders due to their highly polygenic genetic architectures. Another 

factor is the level of detail included in the mood disorder phenotype, partly because this dictates 

sample size, but also because trait heterogeneity influences statistical power.  

 

Research studies and biobanks that collect self-reported data on participants’ psychiatric health, 

in addition to DNA samples, have facilitated the cumulation of samples sufficient for genetic 

studies of mood disorders. The UK Biobank, the Genetic Links to Anxiety and Depression study, 

and the COVID-19 Psychiatry and Neurological Genetics study are three UK-based studies that 

offer an opportunity to apply statistical genetics methods to self-reported data on disorders and 

symptoms within the mood spectrum. Effectively studying the genetics of any trait is rooted in the 

validity of the way it is measured, and there are many possible modes of measuring the mood 

spectrum with self-reported data. Given the sharp rise in genetic studies of mood disorders and 

the growing acceptance of their heritability, it is timely to evaluate approaches to measuring this 

disorder spectrum, to increase statistical power and to maximise the chance of replicable findings.  

 

In this thesis, three empirical chapters are presented that explore three approaches and evaluate 

their utility for genetics research. The three approaches are: diagnostic subtypes, continuous 
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measures, and analyses at the symptom-level (including symptom subgroups and individual 

symptoms). The first empirical study (chapter 2) focuses on refined phenotyping approaches to 

explore the relationship between self-reported trauma and major depressive disorder. This 

chapter calculates the genetic overlap between various subtypes of this mood disorder and 

posttraumatic stress disorder to examine whether they share a genetic basis for trauma 

sensitivity. The second empirical study (chapter 3) investigates whether the Mood Disorder 

Questionnaire, a widely used screening tool for bipolar disorder, can be leveraged to construct a 

continuous measure of mania. This chapter examines whether this mania phenotype is valid for 

genome-wide association studies. The final empirical chapter (chapter 4) also applies a 

continuous measure to a specific mood symptom: anhedonia. Anhedonia has been posited as a 

risk factor for treatment resistance in individuals with major depressive disorder. This chapter 

examines whether the two mood phenotypes share genetic risk factors.  

 

Genome-wide association studies hold great promise for improving the lives of individuals 

affected by mood disorders. However, the quality of their findings depends on the quality of the 

phenotypes examined. The final chapter (chapter 5) draws conclusions from the three studies 

together, and comments on the lessons learnt for phenotyping the mood spectrum for genetic 

studies. The thesis finds that the heterogeneity of mood disorders and their symptomatology can 

be accurately captured through various types of self-reported data and phenotyping strategies, 

but there are important caveats to this. An evaluation of the suitability of clinical tools when used 

for self-reported data collection should be prioritised. Also, data incorporated into continuous 

measures of mood psychopathology, such as composite symptom scores or staging models, 

requires careful consideration to reduce phenotypic noise and maximise statistical power. The 

hope is that the lessons presented in the thesis will be useful for other researchers who endeavour 

to study the genetic basis of mood disorders in the future.  
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(SNP)-based heritability estimates (ℎ!"#$ ), standard errors (SE), lambda GC, and mean chi-square 

statistic of anhedonic symptoms and staged treatment-resistant depression. 

Table S4.6. Genetic correlation between participants' mean anhedonic symptoms and staged 

treatment-resistant depression. Genetic correlation was estimated using the Genome-wide 

Complex Trait Analysis (GCTA) software. 

Table S4.7. Information about each psychiatric and behavioural trait included in genetic 

correlations with highest anhedonic symptoms. 

Table S4.8. Genetic correlations between participants' highest anhedonic symptoms and 42 

psychiatric and behavioural traits. Genetic correlations were estimated using Linkage 

Disequilibrium Score Regression (LDSC) and the 1000 Genomes Linkage Disequilibrium 

reference panel. 

Table S4.9. Genetic correlations between the single PHQ9 anhedonia item in the UK Biobank 

(Ward et al. 2019) and five psychiatric and behavioural traits which were significantly genetically 

correlated with anhedonic symptoms in the the COVID-19 Psychiatry and Neurological Genetics 

(COPING) study, three measures of treatment-resistant depression, and two measures of 

antidepressant response.  
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Table S4.10. Sub-cohorts of the National Institute for Health and Care Research (NIHR) 

BioResource who took part in the COVID-19 Psychiatry and Neurological Genetics (COPING) 

study and were included in the anhedonic symptoms study sample (N=7,843). 
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Chapter 1. Background 
 

Mood fluctuations, or changes in our background emotional state, are a normal and expected part 

of everyday life. Sometimes, changes in our mood may have no obvious trigger. Moods affect our 

thoughts and feelings and are often perceived as either “good” or “bad” (Thayer, 1990). In reality, 

mood is a continuum rather than dichotomous, ranging from low mood, known as depression, to 

euphoric or hyperactive mood, known as mania, with a plethora of symptoms in between these 

two poles. For some people, their mood may fall at the extreme ends of the spectrum for sustained 

periods of time. This may start to impact their quality of life, even when feeling “up” or euphoric. 

These individuals may be suffering from a “mood disorder”. The mood disorder category includes 

both depressive disorders (involving unipolar low mood) and bipolar disorders (involving low mood 

and periods of mania).  

History of the mood spectrum 

 
Pathological forms of mood have always existed and the mechanisms that give rise to them have 

been debated for centuries. Much like most human health phenomena, the earliest theories were 

based on beliefs in religion or the supernatural (Clark et al., 2017). The first natural-science theory 

of depression, then called “melancholia”, can be traced back to the Ancient Greeks (Mondimore, 

2005). Hippocrates was also one of the first individuals to note that melancholia only became 

pathological when it was present for sustained periods of time, and that grief could lead to 

despondency and depression. In “The Nature of Man”, Hippocrates (460-370 BC) proposed the 

existence of four different types of bodily fluid which were naturally balanced in well individuals 

but, when in disequilibrium, could lead to mental illness. These were called the “four humours'': 

yellow bile, black bile, blood, and phlegm (Jouanna and Allies, 2012). These were later co-opted 

by philosopher Galen (129-216 AD) who proposed four categories of temperament based on the 

humours: choleric, melancholic, sanguine, and phlegmatic respectively. Each temperament had 

an associated pathology based on having a disproportionate amount of the bodily fluid. Here is 

where we see some of the earliest notions of “melancholia” (Clark et al., 2017). Ancient Greece 

was not the only civilisation that was host to early thinkers about the mood spectrum. Evidence 

from the Islamic Golden Age (8th - 14th centuries) showed that physicians, such as Ibn Sina (also 
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known as Avicenna), wrote about melancholia, regarding it as a disease of the brain, heart, and 

blood, rather than a purely mental disorder (Yousofpour et al., 2015).  

 

The origins of what we know today as “bipolar disorder”, which involves swings from depressed 

to manic mood states, can also be traced back to the Ancient Greeks. Arataeus of Cappadocia 

(~2 AD) noted the distinction between melancholia, which presented as “sorrow and 

despondency”, and mania, which presented as “anger and sometimes joy” in his writing 

(Kotsopoulos, 1986). Despite these vast differences in emotional state, he conceptualised them 

as two parts of the same disease course: 

 
“It appears to me that melancholy is the commencement and part of mania.” 

 (Quoted in Kotsopoulos, 1986) 
 

He also wrote about the complexities of mania, whilst maintaining that its various manifestations 

nonetheless represented a single disease entity: 

 

“There are infinite forms of mania but the disease is one..... If mania is associated with joy, the patient 
may laugh, play, dance night and day, and go to the market crowned as if victor in some contest of skill. If 

it is associated with anger, the patient may tear his clothes, kill his keepers, and lay violent hands upon 
himself... Some, if intelligent and educated, believe they are experts in astronomy, philosophy or 

poetry...while some uneducated may have strange delusions… If the illness gets serious, the patient may 
become excitable, suspicious, and irritable… If aroused to anger, he may become wholly mad and run 

unrestrainedly, roar aloud, flee the haunts of men and go to the wilderness to live by himself.” 
(Quoted in Kotsopoulos, 1986) 

 

However, it is believed that these descriptions of mental impairments were not specific to 

depression and mania, but also included other forms of insanity, such as the symptoms 

experienced in schizophrenia (Kotsopoulos, 1986; Paykel, 2008).  

 

In the 17th century, we see evidence that “melancholia” was used to refer to emotional problems 

that are more aligned with our modern view of depression. For example, in 1621 an Oxfordian 

Monk named Richard Burton wrote a book called the “Anatomy of Melancholia”. Here, he 

described a range of psychiatric symptoms which we now know as depression. Burton speculated 

about the possible causes, which spanned religion and the supernatural (e.g., devils and witches) 

to social antecedents such as poverty, parenting, and employment (Burton, 1989).  
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The birth of modern psychiatry occurred in the 19th century. French psychiatrist Louis Delasiauve 

used the term “depression” to indicate a state of sadness for the first time in 1856. Following this, 

the term started to be applied more broadly. Bipolar disorder was also gaining interest in France 

during this time. In 1854, Jules Baillargar (1809-1890) used the phrase “folie à doble forme” 

(meaning “madness of two forms”) with regard to psychiatric patients experiencing switches in 

mood states, just as Arataeus of Cappadocia had noted many centuries previously. In the same 

year, Jean Pierre Falret (1794-1870) described “folie circulaire” (meaning “circular madness”) 

and, also in a manner similar to Arataeus of Cappadocia, identified depression with mania as the 

same disease entity, rather than separate psychiatric conditions (Paykel, 2008).  

 

During the 19th century, two German physicians were also advancing the study of mood 

disorders. Wilhelm Griesinger (1817-1868) proposed that melancholia was a somatic disorder 

with neurobiological origins (Jansson, 2011). He also maintained that melancholia was one of the 

most treatable psychiatric disorders, and was an advocate of treating psychiatric patients within 

the community rather than containing them in asylums (Rössler, 1992; Rössler, Riecher-Rössler 

and Meise, 1994). Karl Ludwig Kahlbaum (1829-1899) wrote about cyclical insanity and 

depression in their milder forms. Kahlbaum also proposed that mental disorders should be studied 

over the course of a long time period to identify the prodromal state, acute state, remission, and 

recovery (‘Karl Ludwig Kahlbaum, M.D. 1828–1899’, 1999). These two physicians were strong 

influences on German psychiatrist Emil Kraepelin (1856-1926).  

 

Kraepelin studied the case notes of psychiatric patients in immense detail during the late 19th 

century. This led him to propose that specific combinations of symptoms could be used to devise 

diagnostic categories which distinguished different forms of mental illness from each other. 

Kraepelin coined the term “involutional melancholia” in his earlier work, which included depressed 

states along with a number of other psychiatric symptoms (Hoch and MacCurdy, 1922), and 

“manic-depressive illness” in his later work (Paykel, 2008). Kraepelin separated “dementia 

praecox” (now known as schizophrenia) from manic-depressive illness. He proposed that 

dementia praecox was degenerative, severe, and unremitting, and this difficult clinical course led 

to permanent impairment. On the other hand, manic-depressive illness was episodic rather than 

persistent, and had comparatively better outcomes (Ebert and Bär, 2010). Despite some 

resistance, Kraepelin’s ideas, namely the classification of disorders based clinical 

phenomenology, had a gargantuan influence over much of psychiatry as we know it today. In the 

1960s, Jules Angst, Carlos Perris, and George Winokur distinguished unipolar depressive 
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disorders from bipolar disorders and suggested that they were separate disease entities (Angst 

and Marneros, 2001). This is how the two extremes of the mood spectrum are conceptualised 

today. Major depressive disorder (the most common clinically recognised depressive disorder) 

and bipolar disorder are the focuses of this thesis because they are the most common disorders 

within the mood spectrum. 

Mood disorders today 

 
In the modern day, the scientific method has allowed researchers to uncover the cause(s) of 

thousands of human diseases. Yet, despite concerted research efforts over hundreds of years, 

the aetiology of mood disorders remains largely a mystery. Nonetheless, we have a fairly solid 

appreciation of their respective risk factors, which include a combination of biological factors (such 

as hormones and inherited genetic variants) and psychosocial and environmental exposures 

(such as stressful life events, trauma exposure, or a lack of social support) (Johnson and Kizer, 

2002; Shih, Belmonte and Zandi, 2004; Otte et al., 2016; Dahl et al., 2017). Such a formulation of 

risk factors is known as the “biopsychosocial model” of medical conditions, first proposed by 

George Engel in 1977 (Borrell-Carrió, Suchman and Epstein, 2004). 

 

Knowledge of potential risk factors, in the absence of direct causal mechanisms, means that it is 

currently not possible to diagnose a mood disorder based on pathology or aetiology. For instance, 

there is no known biomarker that could inform a clinician about whether their patient currently has 

one type of mood disorder or another (Miller, Johnson and Eisner, 2009). Furthermore, despite 

having a heritable basis, there is currently no genetic test to confirm a diagnosis (Palk et al., 

2019). Instead, clinical phenomenology is the primary method for classifying psychiatric disorders. 

Observable behaviours (signs) and self-reported emotions (symptoms) are used to construct 

operational criteria for multiple discrete psychiatric syndromes (Clark et al., 2017; De Aquino and 

Ross, 2017; Smoller et al., 2019).  

 

Reflecting the work of Angst, Perris, and Winokur in the 60s, major depressive disorder and 

bipolar disorder have their own nosological categories in the most widely used diagnostic 

systems: the fifth edition of the Diagnostic Statistical Manual of Mental Disorders (DSM-5) 
and the tenth revision of the International Classification of Diseases (ICD-10). The DSM states 

that one or more depressive episodes are experienced in both major depressive disorder and 

bipolar disorder type II, and are often experienced in bipolar disorder type I. A depressive episode 



30 

can involve several symptoms including low/depressed mood, anhedonia, feelings of guilt or 

worthlessness, suicidal ideation, and other non-mood cognitive and psychomotor symptoms. 

The DSM-5 diagnostic criteria for major depressive disorder are presented in appendix 1. Note 

that major depressive disorder is sometimes referred to as “unipolar depression”. “Major 

depressive disorder” will be used throughout this thesis apart from situations where unipolar 

depression is needed to distinguish from the depression experienced in bipolar disorder.  

 

In addition to one or more depressive episodes, a diagnosis of bipolar disorder is made on the 

basis of a single lifetime episode of mania for type I or hypomania for type II (American Psychiatric 

Association, 2013). Mania can be considered on the opposite end of the mood spectrum to 

depression, involving feelings of elation, euphoria, being hyperactive and/or irritable, making 

impulsive or risky decisions, being unusually sociable, and taking on lots of new activities. The 

DSM-5 diagnostic criteria for bipolar disorder type I and II are presented in appendix 1. Criteria 

for hypomania is identical to that for mania but in a milder form and with a shortened minimum 

duration (four days versus seven days). Note also that a depressive episode is not a requirement 

for a diagnosis of bipolar disorder type I, while it is for type II (American Psychiatric Association, 

2013).  

 

It is worth noting that the “mood disorder” category encompasses a plethora of psychiatric 

syndromes other than major depressive disorder and bipolar disorder. For instance, depression 

that does not meet criteria for major depressive disorder, premenstrual dysphoric disorder, 

persistent depressive disorder (also known as dysthymia), seasonal affective disorder, and 

disruptive mood regulation disorder, and cyclothymic disorder are other types of mood disorders 

(American Psychiatric Association, 2013).  

 
The diagnostic categories in the mood spectrum are not distinct. A person with major depressive 

disorder may develop bipolar disorder at a later time point (Kessing et al., 2017; Musliner and 

Østergaard, 2018; Baryshnikov et al., 2020), while someone with bipolar disorder type II may 

subsequently experience a full manic episode and then be diagnosed with type I (Angst et al., 

2005). A portion of individuals may experience subthreshold manic or hypomanic symptoms 

throughout their life, sometimes without ever reaching clinical threshold for a bipolar disorder 

diagnosis (Cassano et al., 2004; Fiedorowicz et al., 2011; Merikangas et al., 2011). Unipolar 

organic mania (i.e., mania without depression that is not induced by a substance) is uncommon 

(Daly, 1997). Some individuals with bipolar disorder experience both depressive and manic 
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symptoms within one episode. This is known as a “mixed episode” (Muneer, 2017). For example, 

they may feel a sense of guilt, worthlessness, and sadness whilst simultaneously feeling 

energised, sociable, and sleeping much less than they usually do. Therefore, mood disorders sit 

within a continuum of symptomatology. At the same time, the individual diagnostic categories are 

not binary entities (despite often considered as such), so the individual disorders can be 

considered spectra in and of themselves. Whether someone is unaffected, 

subthreshold/subsyndromal, affected, or severely affected depends on where they fall on a 

continuum of severity and functional impairment (which are related, but not strictly the same), and 

duration (Clark et al., 2017). This is represented graphically in figure 1.1. A challenge in 

classifying mental disorders, including those in the mood spectrum, is deciding where to apply 

clinical thresholds. A further challenge is addressing whether diagnostic categories accurately 

reflect natural disease biology (Smoller et al., 2019). Epidemiological and genetics research 

suggest that the boundaries delimiting psychiatric disorder categories, and between individuals 

who are “affected” and “unaffected”, are not as obviously distinct as the prevailing multinomial 

taxonomic systems of the DSM and ICD suggest. Thus, the validity of the categories in the DSM 

and ICD, which are continually relied upon for both clinical work and research, have been called 

into question time and time again through psychiatric history.      

 

Figure 1.1. Mood disorders act on a continuum of symptomatology from mania to 
depression, with euthymia (no mood disturbance) in the middle.  
Diagnoses are made on the basis of symptom combination, severity, functional impairment, and 

duration. While sitting along a continuum, diagnostic categories also contain a spectrum of 

severity and functional impairment. This is denoted by the normal distribution curves above each 

diagnostic category. Therefore, despite diagnoses appearing as “either/or”, mood disorders are 

not binary entities.  “BD” refers to bipolar disorder and “MDD” refers to major depressive disorder. 

The dashed line represents the fact that depressive episodes, while common in bipolar disorder 

type I, are not required for a diagnosis.  
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Mood disorders show a high degree of variation, also known as “heterogeneity”. This means that 

one individual’s experience of a mood disorder can differ substantially from another individual’s. 

This heterogeneity can come in the form of symptom combinations, symptom severity, clinical 

course, clinical specifiers, treatment-response, and other factors. There are 227 different 

symptom clusters that could result in a diagnosis of major depressive disorder in the DSM-5 

(Ostergaard, Jensen and Bech, 2011). A commonly cited paper by Fried et al., (2015) showed 

that, purely on the basis of symptoms and impairment, there are upwards of 1,000 permutations 

of symptom combinations for major depressive disorder (Fried and Nesse, 2015). Bipolar disorder 

is a similarly heterogeneous disorder, complicated further by the presence of hypomania/mania 

in addition to depressive episodes.    

 

The contribution of genetics to mood disorders is gradually being uncovered due to advances in 

genomic technologies, rapid progressions in computational power, and continually expanding 

sample sizes. Genetics research has the potential to improve the way we diagnose, treat, and 

prevent mood disorders, and enhance knowledge of their causes among those affected, their 

families, and the general public. Several questions regarding the optimal approaches taken to 

classify mood disorders in genetics studies are yet to be fully addressed, especially given their 

heterogeneity (Fried and Nesse, 2015; Coombes et al., 2020). In the following sections, I will 

introduce major depressive disorder and bipolar disorder in greater detail. First, I will describe 
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their epidemiology and, second, their patterns of comorbidity with mental and physical health 

conditions. Third, I will introduce various approaches to classifying mood disorders that are 

employed in research. Fourth, I will discuss evidence for the heritable and polygenic basis of 

mood disorders. Last, I will summarise challenges posed by research into the genetics of mood 

disorders and explain how this thesis endeavours to address these. At the end of each section, 

there is a glossary of key terms that are highlighted in maroon.  

 

 

 

 

 

 

 

 

 

 

 

 

Glossary of key terms 1:  
Depression: A period of persistent feelings of sadness or loss of interest in activities.  
Mania: A period of noticeably elevated or hyperactive mood, energy or activity levels. 
Diagnostic Statistical Manual of Mental Disorders (DSM): A handbook used by clinicians 
and psychiatrists to diagnose individuals with mental disorders. The DSM contains 
descriptions, symptoms and other criteria for a number of mental disorders. It is published by 
the American Psychiatric Association (APA). There have been numerous editions of the DSM 
since its creation in 1952. The latest edition to be published was in 2013 (the DSM-5) with a 
text-revision (DSM-5-TR) published in 2022. The DSM is primarily used by clinicians in the 
United States (US) (Clark et al., 2017).  
International Classification of Disease (ICD): A guide for healthcare professionals to 
understand the extent, causes, and consequences of human diseases. Each disease has a 
clinical code which is used for standardised diagnosing of patients. The ICD includes physical 
health diseases as well as mental health diseases. The latest edition to be published was in 
2022 (ICD 11). The ICD is authored by the World Health Organisation (WHO) and is used by 
clinicians internationally (Clark et al., 2017).  
Anhedonia: The inability to experience joy or pleasure in normal daily life. Anhedonia is a core 
symptom of depression (American Psychiatric Association, 2013). 
Psychomotor symptoms: An aspect of depression symptomatology involving speech, 
posture, eye-movements, speed and degree of movement.  
Clinical specifiers: Extensions to clinical diagnoses of psychiatric disorders which allow for 
more specific classification of symptoms.  
Heritable: The proportion of phenotypic variance (Vp) that is explained by variance in genetics 
(Vg) within a population is known as “heritability” (H2). Therefore, a trait that is heritable is partly 
influenced by inherited genetics. Note that traits have no “true” heritability because they are 
dependent on the time of measurement, type of measurement, and environmental context 
(Visscher, Hill and Wray, 2008).  
Polygenic: Common diseases are caused by polymorphisms at many genetic loci in the 
genome, each of which contributes a small effect. The sum of all of these small effects, plus 
any environmental exposures, contributes to liability on an individual level. By contrast, 
monogenic disorders are those caused by mutations in a single gene (Visscher et al., 2021). 
Validity: The quality of being logically or factually sound. Within psychiatry, validity refers to 
the extent that diagnostic categories, as in the DSM and ICD, truly reflect discrete disease 
entities (Jablensky, 2016). Within research, “validity” refers to the extent that the chosen 
method of measuring a construct (e.g., a trait or disease) in a study sample accurately reflects 
the trait or disease in question in the population.  
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Epidemiology 

Prevalence 

 

Worldwide, mood disorders overall affect 10-20% of individuals during the lifetime (Weissman et 

al., 1996; Kessler et al., 2005; Steel et al., 2014). There are differences between major depressive 

disorder, bipolar disorder type I, and type II. Major depressive disorder is one of the most common 

psychiatric disorders globally. The most accurate prevalence estimates come from the World 

Mental Health (WMH) survey initiative, which used DSM-IV criteria to assess major depressive 

disorder in 18 countries. They reported the average 12-month prevalence, which is the proportion 

of individuals who have had major depressive disorder in the last year, at around 6% (Bromet et 

al., 2011). Lifetime estimates, which refers to the proportion of individuals who have experienced 

major depressive disorder in their lifetime, are usually higher at around 20% (Andrade et al., 2003; 

Alonso et al., 2004). Differences in the prevalence of major depressive disorder exist between 

countries. For instance, in the WMH survey, 12-month estimates ranged from 2% in Japan to 10% 

in Brazil. But, when the countries were categorised based on income level, prevalence estimates 

were broadly similar in ten high income countries (HICs) and eight low-and-middle income 

countries (LMICs) at around 6% (Bromet et al., 2011).  

 

Bipolar disorder affects fewer individuals than major depressive disorder. In a WMH survey 

initiative, this time of eleven countries in the Americas, Asia, and Europe, the average 12-month 

prevalence rates were 0.4% for bipolar disorder type I and 0.3% for bipolar disorder type II. The 

lifetime prevalences were marginally higher at 0.6% and 0.4% respectively. The WMH survey 

initiative also categorised individuals as having subthreshold bipolar disorder if they had at least 

one symptom on the screening questions for mania but did not meet the full diagnostic criteria for 

hypomania. The 12-month and lifetime prevalences of subthreshold bipolar disorder were higher 

at 0.8% and 1.4% respectively (Merikangas et al., 2011). As with major depressive disorder, 

prevalence estimates for bipolar disorder differed between countries. For instance, the US had 

the highest 12-month and lifetime prevalence of bipolar spectrum disorders (which included 

subthreshold bipolar disorder) at 2.8% and 4.4%, while India had the lowest estimates (both 0.1%) 

(Merikangas et al., 2011).   
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Gender differences 

 

Mood disorders disproportionately affect women (Weissman et al., 1996; Steel et al., 2014). On 

average, women are at a 2x greater liability of developing major depressive disorder than men 

(Bromet et al., 2011; Albert, 2015). This pattern has been consistently observed across different 

countries and cultural backgrounds (Kuehner, 2003; Seedat et al., 2009; Bromet et al., 2011; GBD 

2019 Mental Disorders Collaborators, 2022). This female preponderance begins after puberty and 

persists into old age (Kuehner, 2017). This does not imply that women are innately predisposed 

to depressive symptoms to a greater extent than men. Rather, a number of biological factors (e.g., 

genetic and hormonal) as well as psychosocial factors likely play a role. 

 

Bipolar disorder was initially thought to affect men and women at equal rates (Dell’Osso, Cafaro 

and Ketter, 2021). Recent research has suggested that there are clear gender differences. In the 

WMH initiative, lifetime rates of bipolar disorder type I and subthreshold bipolar disorder were 

more common in men, while bipolar disorder type II was more common in women (Merikangas et 

al., 2011). Comorbid psychiatric syndromes and the clinical course of bipolar disorder also differs 

between genders. For instance, pre-teen onset bipolar disorder, rapid cycling, depressive 

episodes, mixed episodes, and attempted or completed suicide are more common in women than 

men who have bipolar disorder. Comorbid substance use disorders and legal problems are more 

common in men (Arnold, 2003; Dell’Osso, Cafaro and Ketter, 2021).  

Age of onset 

 

Major depressive disorder involves depressive episodes which can appear for the first time at any 

age, although there are periods when the risk of experiencing a first episode is higher than in 

other periods. Mental health disorders, in general, usually begin in childhood or adolescence, but 

major depressive disorder tends to manifest later than this average. The prevalence of major 

depressive disorder in childhood is low (Maughan, Collishaw and Stringaris, 2013; Wilson et al., 

2015). Multiple studies across different countries and cultures show that the median age of onset 

is somewhere around 25 years, but the peak risk period ranges from anywhere in mid-late 

adolescence to the early forties (Kessler and Bromet, 2013; Park et al., 2014; Solmi et al., 2022). 

In HICs, the risk of developing major depressive disorder for the first time decreases slightly with 

age after early adulthood (Bromet et al., 2011).  
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Individuals with bipolar disorder usually present with a depressive episode first (Musliner and 

Østergaard, 2018; Baryshnikov et al., 2020). A study investigating average age of onset in bipolar 

disorder, which combined estimates from Europe and the US, reported a median age of onset 

between 23-30 years (Baldessarini et al., 2010). In this study, bipolar disorder type I began, on 

average, 5.8 years earlier than bipolar disorder type II. Men had a younger age of onset than 

women for both subtypes (thus adding further evidence for gender differences). However, other 

large studies have reported younger ages of onset than these. One study reported that 59% 

developed symptoms in childhood or adolescence (Lish et al., 1994). A more recent nationally 

representative study of nearly 10,000 people from the US reported that the average onset of 

bipolar disorder type I at 18.2 years, type II at 20.3 years, and subthreshold at 22.2 years 

(Merikangas et al., 2007). The WMH survey initiative reported estimates more consistent with this 

2007 study: bipolar disorder type I had an average age of onset at 18.4 years, type II at 20 years, 

and subthreshold bipolar disorder at 21.9 years (Merikangas et al., 2011). In general, although a 

person can develop new symptoms at any age, the peak risk period for developing bipolar 

disorder spans late adolescence to early adulthood. A consistent pattern is that type I tends to 

develop earlier than type II, and both tend to develop earlier than subthreshold bipolar disorder. 

Following depression, individuals with bipolar disorder will experience mania or hypomania. There 

is variability in how mania manifests initially. For some, symptoms may begin suddenly within a 

few hours or days. For others, manic symptoms may gradually develop over weeks or months 

(Daly, 1997).  

 

 

 

 

Clinical course 

 

A major depressive episode can affect people for long or short periods over the course of their 

lifetime. Some individuals may experience only one episode and then recover (known as “single 

episode depression”). Some may experience more than one episode which is punctuated by 

Disclaimer. Estimations of age of onset will differ depending on the definition of “onset” 
used by researchers.  
Studies looking at the age at which depressive symptoms first presented in the individual will 
report earlier age of onset compared to studies which use age of first diagnosis as a marker for 
onset. For instance, in an international study which combined data from multiple countries, the 
median age of onset for depressive symptoms was 26 years,  whereas the median age of first 
diagnosis was 31 years (Solmi et al., 2022).  
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asymptomatic stretches (known as “recurrent depression”). For some individuals, their depressive 

symptoms may not get better or go away for very long periods (i.e., 24 months or more) and these 

individuals are known as having “chronic depression”. Within a single depressive episode, the 

likelihood of recovery reduces as the duration of the presenting episode increases (Keller et al., 

1992). In population-based studies, the mean duration of a major depressive episode falls 

somewhere between 12-30 weeks (Blazer et al., 1994; Eaton et al., 1997; Spijker et al., 2002).  

 

Recurrence is common. More than half of individuals with major depressive disorder who initially 

recover from their first episode will go on to experience a second episode. Around 80% of 

individuals who have two episodes will experience another (Burcusa and Iacono, 2007). Even 

after full recovery, remaining subthreshold symptoms are associated with a more chronic and 

challenging disease course (Judd et al., 2000). 

 

Similarly to major depressive disorder, episodes within bipolar disorder are often recurrent. As 

mentioned above, individuals with bipolar disorder usually present with a depressive episode first 

rather than a manic episode. While correct at the time of the presenting episode, a diagnosis of 

unipolar depression may lead to pharmacological intervention which is not suitable for “hidden” 

bipolar disorder patients (Tondo, Vázquez and Baldessarini, 2010). For instance, treatment with 

an antidepressant can induce a manic episode or rapid cycling. In a study of 4,000 participants 

diagnosed with bipolar disorder, 69% had been initially misdiagnosed, with the most common 

misdiagnosis being unipolar depression (Hirschfeld, Lewis and Vornik, 2003). Studies suggest 

that subthreshold manic symptoms predict later onset of bipolar disorder (Fiedorowicz et al., 

2011).  

 

The average time between the onset of depression and a diagnosis of bipolar disorder can be 

anywhere between 7-10 years (Hirschfeld, Lewis and Vornik, 2003; Mantere et al., 2004; 

Drancourt et al., 2013), and potentially longer in cases of childhood onset (Post et al., 2010). This 

is problematic because the negative consequences of bipolar disorder have the potential to be 

profoundly lessened if diagnosis and suitable treatment occurs early (Drancourt et al., 2013; 

Ratheesh et al., 2017), and the consequences of delayed diagnosis can include worsening 

symptoms and antidepressant-induced rapid cycling (Dunner, 2003). The under-recognition of 

bipolar disorder is important to bear in mind when thinking about the typical age of onset for 

bipolar disorder. Delayed diagnoses may cause estimations to be inaccurate depending on the 

way age of onset is defined (first symptoms versus first diagnosis).  
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A few studies have investigated rates of conversion to bipolar disorder from unipolar depression. 

Initially, it was believed that rates of conversion were consistent over time (i.e., a person is just 

as likely to develop mania one year after their first depressive episode as they are after ten years) 

(Angst et al., 2005). However, this theory has been debunked based on robust evidence from a 

number of large, nationally representative cohort and register-based studies. In a Finnish 

nationwide register study of all the people who had been hospitalised for depression between 

1996-2022 (N=43,495), the conversion rate to bipolar disorder was 7.4% during a 15-year follow-

up period (Baryshnikov et al., 2020). Likewise, in a prospective cohort study of nearly 100,000 

individuals who had received their first diagnosis of major depressive disorder in a psychiatric 

hospital in Denmark, conversion to bipolar disorder was 7-8% (Musliner and Østergaard, 2018). 

Both studies found that liability to conversion decreased with time since the first depressive 

episode, with liability being the highest in the first year. Studies outside of Scandinavia have 

reported estimates of the proportion who convert to bipolar disorder ranging 5-23% (James et al., 

2015; Ratheesh et al., 2017) suggesting there may be variation between countries. A meta-

analysis of 55 studies investigating this topic found that having a family history of bipolar disorder, 

earlier age of onset, and the presence of psychotic symptoms were consistent risk factors for 

conversion (Ratheesh et al., 2017).  

 

The clinical course of bipolar disorder can be profoundly difficult for the affected individual. 

Depressive, dysthymic, and mixed episodes tend to account for the majority of the disease burden 

(Tondo, Vázquez and Baldessarini, 2017). In the WMH survey, individuals with bipolar disorder 

reported greater symptom severity in depressive episodes than manic episodes. For instance, 

around half of participants reported “severe role impairment” in their manic periods, whereas 

nearly three-quarters reported this for their depressed periods (Merikangas et al., 2011). The 

chance of recurrence is high. In the Systematic Treatment Enhancement Program for bipolar 

disorder (STEP-ipol) in the US, around 50% of the 1,469 patients who were studied experienced 

recurrences. Recurrent depressive episodes were almost twice as common as recurrent manic 

episodes (Perlis et al., 2006). Thus, recurrent episodes exacerbate impairment as affected 

individuals tend to rate their depressive episodes as more disabling than their manic episodes.   
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Treatment and recovery 

 

Widely used treatments for major depressive disorder include pharmacological intervention (e.g., 

antidepressant medication) and talking therapies (e.g., cognitive behavioural therapy). Data on 

time to remission vary depending on data collection type. In a Dutch prospective epidemiological 

study of 7,076 participants, 50% recovered within three months, 63% within half a year, 76% 

within one year, but 20% had not recovered within two years (meaning that 20% of the sample 

exhibited chronic depression) (Spijker et al., 2002). This was congruent with a previous study 

which suggested that around 80% reach remission by the two year mark (Ormel et al., 1993). A 

later Dutch study, this time with data from a clinical sample, also reported that nearly 80% of 267 

patients with pure major depressive disorder (i.e., no comorbidities) had fully recovered within two 

years (Penninx et al., 2011).  

 

In clinical samples, the course of major depressive disorder appears to be less favourable 

because recurrences are higher, and likelihood of recovery is lower. For instance, in a systematic 

review of studies investigating the prevalence of recurrent major depressive disorder, they found 

that the likelihood of recurrence in participants from mental health care settings was 85% 

compared to 35% in participants recruited from the general population (Hardeveld et al., 2010).  

 

The treatment of bipolar disorder is complex due to the different phases of the disease. First-line 

treatments for an acute manic episode primarily aim for stabilisation of the patient’s symptoms. 

Lithium, valproate and second-generation antipsychotics are commonly prescribed to achieve 

this. Lithium and valproate are then used as maintenance treatments (Gitlin, 2006). 

Antidepressants are also prescribed to individuals with bipolar disorder, although there is some 

concern that this can lead to a switch to mania (especially in type I) (Ghaemi, Lenox and 

Baldessarini, 2001; Bond et al., 2008), even when the individual is also being treated with mood 

stabilising drugs (Undurraga et al., 2012). However, a caveat is that there is difficulty disentangling 

switches due to mood-elevating drugs versus spontaneous switches as part of the natural course 

of the disease.  

 

Despite remarkable advances in pharmacological treatments for bipolar disorder, it remains a life-

long illness for many of those affected. Syndromal recovery (no longer meeting diagnostic criteria) 

is seen in up to 98% of treated patients, but full symptomatic recovery (near absence of symptoms 

on standardised rating scales) is achieved in only 26-43%. Functional recovery, which involves 
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the patient regaining near pre-illness levels of psychosocial, occupational, and residential 

functioning, lags far behind both syndromal and symptomatic recovery (potentially in as few as 

24% of treated individuals) (Keck et al., 1998; Tohen et al., 2003; Huxley and Baldessarini, 2007; 

Wingo et al., 2010). However, it should be noted that bipolar disorder patients often demonstrate 

a relatively high base level of subsyndromal symptoms, which may mean that complete recovery 

post-treatment is an unrealistic goal (Sachs and Rush, 2003). Compared to major depressive 

disorder, research into treatment-response in bipolar disorder is lacking (Baldessarini, Vázquez 

and Tondo, 2020).  

 

 

 

 

 

 

 

 

Burden of disease and mortality  

 

Research shows that psychiatric disorders are leading causes of disability across the globe. When 

considered jointly, they are the second leading cause of disability behind ischemic heart disease 

(GBD 2019 Mental Disorders Collaborators, 2022). Disability is often quantified through disability 
adjusted life years (DALYs). In 2019, mental health disorders were responsible for 125.3 million 

DALYs, which was a sizable increase since 1990 where they accounted for 80.8 million DALYs 

(GBD 2019 Mental Disorders Collaborators, 2022).  

 

When comparing categories of psychiatric disorder, mood disorders are a serious public health 

concern regarding the DALYs that they account for. Depressive disorders consistently account 

Disclaimer. Treatment response and resistance is hugely complex and challenging to 
formally define. 
Response to treatment is conventionally thought of as a clinically meaningful reduction in 
symptoms following some form of treatment (usually a reduction in symptoms of 50% or more 
although this threshold may differ depending on the patient). Remission refers to the absence, 
or near absence of symptoms, and recovery refers to the absence of symptoms for a sustained 
period (Frank et al., 1991; Rush et al., 2006). Remission is the goal of acute treatment, while 
recovery is the goal of long-term treatment. However, remission and recovery may not be 
achievable by all patients, and some may exhibit “resistance” to many forms of treatment. There 
is no universally accepted definition of treatment resistance for both major depressive disorder 
and bipolar disorder (Gitlin, 2006; Fekadu et al., 2009; Fountoulakis, 2012; Sforzini et al., 2021). 
Thus, establishing accurate estimations of the proportion of individuals who do not recover after 
a treatment course is challenging. Nonetheless, it is estimated that around one-third of 
individuals with bipolar disorder exhibit some form of treatment resistance (Sportiche et al., 
2017). Similarly, in major depressive disorder, it is estimated that 20-40% of individuals do not 
respond to their first antidepressant medication (Fava, 2003; Trivedi et al., 2006) and 7-22% do 
not respond to at least two antidepressants (Rizvi et al., 2014; Fekadu, Donocik and Cleare, 
2018; Wigmore et al., 2020). 
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for the largest number (Reddy, 2010; Whiteford et al., 2013; GBD 2019 Mental Disorders 

Collaborators, 2022) which is unsurprising given its status as the most common mental illness 

across the globe. In 2019, when the most recent Global Burden of Diseases, Injuries, and Risk 

Factors Study (GBD) was conducted, depressive disorders accounted for the most DALYs due to 

mental disorders (37.5%), with anxiety disorders in second place (22.9%), and schizophrenia in 

third place (12.2%). Bipolar disorders were in fifth place (6.8%) (see figure 1.2). This pattern was 

broadly similar to the pattern observed in the 2010 GBD, where depressive disorders were in first 

place (accounting for 40.5% of DALYs) and bipolar disorders were in sixth place (accounting for 

7.0% of DALYs) (Whiteford et al., 2013). Major depressive disorder is expected to be the top 

cause of burden of disease by 2030 (Malhi and Mann, 2018) 

 

Figure 1.2. A comparison of the global burden of mental disorders. 
The pie chart shows the proportion of global mental disorder disability adjusted life years (DALYs) 

attributable to each disorder for both sexes and all ages in 2019. This pie chart was taken from 

the supplementary material of GBD 2019 Mental Disorders Collaborators (2022).  

 
 

However, the 2019 GBD only included years of life lost to premature mortality (YLLs) in their 

estimation of DALYs for eating disorders. At a population level, individuals with mental health 

disorders have a reduced life expectancy of 10-20 years in comparison to the general population 

(Nordentoft et al., 2013; Walker, McGee and Druss, 2015). Specifically, mood disorders are 

associated with exceptionally high susceptibility of early death (Osby et al., 2001; Angst et al., 
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2002). Thus, the true impact of mood disorders on overall DALYs in this 2019 GBD may be 

underestimated (GBD 2019 Mental Disorders Collaborators, 2022).  

 

In a meta-review of 407 reviews, researchers found that individuals affected by major depressive 

disorder are 20x more likely to die by suicide than the general population, and those with bipolar 

disorder are 17-20x more likely (Chesney, Goodwin and Fazel, 2014; Miller and Black, 2020). In 

a Swedish national cohort study of nearly 7 million adults, women and men with bipolar disorder 

died, on average, 9.0 and 8.5 years earlier than the general population respectively (Crump et al., 

2013). Suicide is not the only cause of high levels of premature mortality in mood disorders. 

Medical comorbidities are also key drivers of this unfortunate statistic (Rowland and Marwaha, 

2018). In the same Swedish cohort study mentioned previously, those affected by bipolar disorder 

(N=6,618) demonstrated increased mortality compared to unaffected individuals due to a range 

of physical health conditions such as CVD, diabetes mellitus, and respiratory diseases. Women 

with bipolar disorder also demonstrated increased mortality due to cancers (Crump et al., 2013). 

Furthermore, in a study of all people who had been diagnosed with major depressive disorder or 

bipolar disorder between 1973-1995 in a hospital setting, also in Sweden, the most common 

cause of death was, in fact, a physical health disorder (CVD). Suicide was the second leading 

cause (Osby et al., 2001).  

 

 

 

 

Comorbidity 

 
Mood disorders are disabling in and of themselves due to their symptoms and associated 

interference with daily functioning. But, as mentioned above, comorbid physical health disorders 

such as cancer, diabetes, and cardiovascular disease (CVD) hugely increase their burden (Gold 

et al., 2020). A World Health Organisation (WHO) study of around 250,000 individuals from 60 

countries in all continents of the world found that 9-23% of those with either angina, arthritis, 

asthma, or diabetes also had major depressive disorder compared to 3% without one of these 

Glossary of key terms 2:  
Rapid cycling: In rapid cycling, an individual experiences four or more manic or depressive 
episodes within twelve months (Carvalho et al., 2014). 
Disability adjusted life years (DALYs): DALYs are calculated as the sum of years lost to 
disability (YLDs) and years of life lost to premature mortality (YLLs). The idea behind DALYs 
is to provide a metric which conveys the gap between the current health of the population and 
a standard life expectancy spent in full health (GBD 2019 Mental Disorders Collaborators, 
2022). 
 



43 

physical health disorders (Moussavi et al., 2007). Likewise, multiple studies have documented a 

high prevalence of bipolar disorder concurrent with various medical conditions, such as CVD, 

obesity, thyroid problems, and type II diabetes (Osby et al., 2001; Angst et al., 2002; Soreca et 

al., 2008; Kemp et al., 2010).  

 

Of course, comorbidity does not indicate directionality or causality. The experience of coping with 

a physical health disorder may lead to the development of a mood disorder (i.e., through stress 

or reduced quality of life). Equally, lifestyle correlates of mood disorders, such as an unhealthy or 

low quality diet, physical inactivity, smoking, low living standards or social deprivation, and 

reduced access to healthcare may make a person more likely to develop a comorbid physical 

health condition (Roshanaei-Moghaddam and Katon, 2009). For example, there are high levels 

of unemployment among individuals with bipolar disorder despite these individuals displaying 

relatively high academic achievement (Kupfer et al., 2002; Kogan et al., 2004). Therefore, an 

appreciation of the fact that individuals with mood disorders are more vulnerable to physical health 

conditions than those without is hugely important for improving overall health and mortality rates 

of this population. An example of this in action is the American Heart Association (AHA) who, in 

2015, made a statement that children and adolescents with depression and bipolar disorder are 

at an increased risk of developing accelerated atherosclerosis and early CVD. Due to the high 

prevalence of these mood disorders, the AHA advised doctors to monitor such patients to prevent 

onset of these medical conditions (Goldstein et al., 2015).   

 

Comorbidity is the rule, rather than the exception, in psychiatry: individuals with mental illness 

often meet diagnostic criteria for another (Plana-Ripoll et al., 2019).  Research shows that nearly 

all mental disorders are twice as likely to occur in individuals with major depressive disorder 

compared to those without (Steffen et al., 2020). Anxiety disorders are the most common 

comorbidity in major depressive disorder. This pattern has been observed in numerous studies of 

both in-patients and out-patients with estimates ranging 31-81% (Sartorius et al., 1996; Olfson et 

al., 1997; Hirschfeld, 2001; Zimmerman, Chelminski and McDermut, 2002; Lamers et al., 2011; 

Plana-Ripoll et al., 2019). Likewise, international studies demonstrate that major depressive 

disorder is more often comorbid with anxiety disorders than other types of psychiatric disorder. 

The WMH surveyed 74,000 adults in 24 countries and reported that 46% of those with major 

depressive disorder had a comorbid lifetime anxiety disorder (Kessler et al., 2015). Also, a 

nationally representative study of nearly 10,000 adults in the US reported that 59% of individuals 

with major depressive disorder had comorbid anxiety (Kessler et al., 2003).  
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Aside from anxiety disorders, comorbid substance use disorders (de Graaf et al., 2002; Scott et 

al., 2006; Kessler, Merikangas and Wang, 2007; Teesson, Slade and Mills, 2009; Lai et al., 2015; 

Steffen et al., 2020), personality disorders (Friborg et al., 2014; Steffen et al., 2020), and 

behaviour disorders (Steffen et al., 2020) are common among individuals with major depressive 

disorder. In research from the Danish registers, comorbid mood and substance use disorders 

were associated with 3x mortality compared to experiencing a mood disorder alone (Plana-Ripoll 

et al., 2020). Depressive symptoms are also the most common clinical correlates of schizophrenia 

(Siris, 2001), being apparent in 40% of those affected (Conley et al., 2007).  

 

Major depressive disorder with posttraumatic stress disorder (PTSD) is the most common 

comorbidity to develop following exposure to a traumatic event (Schindel-Allon et al., 2010). 

Approximately 50% of individuals with PTSD have a comorbid diagnosis of major depressive 

disorder (Kessler et al., 1995; Breslau et al., 1997; Blanchard et al., 1998; Rytwinski et al., 2013). 

The high prevalence of this comorbidity has led some to suggest that it could represent a specific 

trauma-related disorder, or potentially even a subtype of PTSD (Flory and Yehuda, 2015), since 

comorbid individuals show distinct clinical profiles (e.g., more severe depressive symptoms and 

higher levels of distress, impairment, and suicidal ideation) (Blanchard et al., 1998; Campbell et 

al., 2007; Ramsawh et al., 2014). The diathesis-stress model is helpful when thinking about the 

high prevalence of major depressive disorder-PTSD comorbidity (Monroe and Simons, 1991). 

This model was initially developed to explain how risk factors combine to influence whether 

someone develops schizophrenia (Rosenthal, 1963). It posits that environmental stressors may 

activate an innate vulnerability (diathesis), which turns the underlying potential for mental illness 

into a reality. In the context of major depressive disorder-PTSD comorbidity, the “stress” is 

exposure to a traumatic event: to receive a diagnosis of PTSD, the individual must have been 

exposed to trauma (American Psychiatric Association, 2013) and, while trauma is not a 

requirement for a major depressive disorder diagnosis, it is one of its strongest environmental 

predictors (Kessler, Davis and Kendler, 1997; Green et al., 2010; Nanni, Uher and Danese, 2012). 

Variability in predisposition (diathesis) may be due to individual genetic differences. Support for 

this comes from recent research showing that PTSD has, in part, a genetic basis, despite many 

viewing the disorder as purely environmentally-triggered (Nievergelt et al., 2019), and the fact that 

not everyone who is exposed to trauma develops PTSD, MDD, or both.  
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There is also a high frequency of psychiatric comorbidity in individuals with bipolar disorder, 

particularly substance abuse disorders, anxiety, and personality disorders (Baldessarini, Vázquez 

and Tondo, 2020). In the 2007 National Comorbidity Survey replication in the US, 97% of 

individuals with bipolar spectrum disorders met criteria for a comorbid psychiatric illness and 

comorbidity with more than one illness was the norm (Merikangas et al., 2007). Lower estimates 

were found in the 2011 WMH survey (which drew upon data from all around the world rather than 

just the US). There, three-quarters of participants with bipolar disorder also met diagnostic criteria 

for another psychiatric disorder. Consistent with the National Comorbidity Replication survey, 

comorbidity with multiple disorders was common. Half of comorbid participants met criteria for 

three or more disorders. As observed in individuals with major depressive disorder, anxiety was 

the most common (particularly panic attacks) (69%), followed by behaviour disorders (45%), and 

substance use disorders (37%). It was noted that patterns of comorbid anxiety disorders were 

broadly similar across different regions of the world, while patterns of comorbid behaviour 

disorders differed (higher prevalence in the US and New Zealand compared to other nations) 

(Merikangas et al., 2011). In agreement with these findings, a systematic review and meta-

analysis reported that individuals are 3x more likely to develop an anxiety disorder if they have 

bipolar disorder compared to unaffected individuals. The lifetime prevalence of anxiety disorders 

in individuals with bipolar disorder was reported at 45% while the lifetime prevalence in the general 

population is much lower (varying between 4-29%) (Kessler et al., 2005; Bandelow and Michaelis, 

2015; Pavlova et al., 2015). 

Measuring the mood spectrum 

 

As discussed at the very beginning of this chapter, a diagnosis of a mood disorder is made on the 

basis of a plethora of observable behaviours (signs) and self-reported emotional experiences 

(symptoms) (Clark et al., 2017). Placing individuals within a psychiatric category based on their 

unique combination of signs and symptoms is not a simple task. As well as a correct assessment 

of the individual’s symptoms, a diagnosis by a mental health professional requires temporal 

information and knowledge of contextual factors. The process of identifying individuals who are 

affected and unaffected by psychiatric disorders is essential for research purposes as well as in 

the clinic. To achieve this in research, there are different approaches, known as “phenotyping 

methods”, which can be adopted. These can be viewed on a spectrum from “deep” to “shallow” 
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(see figure 1.3). Each approach comes with its own merits and limitations, largely regarding a 

trade-off between cost effectiveness/efficiency and detail.  

Diagnostic interviews 

 

The gold-standard approach for identifying individuals affected by mood disorders is the 

diagnostic interview. This interview can be fully- or semi-structured, and can take place over the 

phone or in-person. A fully-structured interview involves no open-ended questions, while a semi-

structured interview allows for more flexibility in the questions asked by the interviewer. Following 

a clinical interview, the participant’s answers inform whether they are affected or unaffected by 

various psychiatric disorders according to pre-specified diagnostic criteria.  

 

One of the most well known fully-structured interviews is the Composite International Diagnostic 

Interview (CIDI). Starting in 1979, the CIDI was the result of a collaboration between the WHO 

Division of Mental Health and the US Alcohol, Drug Abuse, and Mental Health administration task 

force. The aim was to develop diagnostic interviews that were based upon diagnostic criteria for 

40 different psychiatric disorders from the ICD and DSM to be used in epidemiological studies 

(e.g., to chart their prevalence, comorbidity rates, risk factors, and societal consequences). It is 

fully-structured so that a non-clinically trained person can administer the interview (which is 

essential for collecting data at-scale). The average duration of the interview is one hour (Robins 

et al., 1988).  

 

An example of a semi-structured clinical interview is the Structured Clinical Interview for DSM-5 

diagnosis (SCID-5), which is based on diagnostic criteria from the DSM-5. The interview must be 

administered by a clinician or trained mental health professional who is familiar with the criteria. 

However, individuals without a clinical background but who have diagnostic experience with a 

particular study population can be trained to use it (First et al., 2015). For bipolar disorder, another 

semi-structured interview is the Schedule for Affective Disorders and Schizophrenia (SADS) 

(Endicott and Spitzer, 1978).  

 

Clinical interviews yield in-depth data on symptom combinations, duration, and possibly relevant 

contextual information about the patient which leads to an accurate depiction of their mental 

health status based upon internationally accepted diagnostic criteria. As such, they provide 

reproducible assessments of which diagnostic category/categories a patient fits into (Haro et al., 
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2006). However, they are costly and time-consuming to administer to large numbers of individuals 

which, accordingly, restricts the size of sample that can be obtained through this approach to data 

collection (Davis, Cullen, et al., 2019).  

Algorithm-defined diagnoses 

 

Clinical interviews are usually conducted between two individuals (i.e., the participant and the 

interviewer). However, since the CIDI is fully-structured, the questions can also be administered 

via a self-answered survey. “Algorithm-defined diagnoses” can then be derived from the 

participants’ answers. These are also known as “strictly-defined” or “detailed diagnoses” (Cai, 

Kendler and Flint, 2018; Davis, Cullen, et al., 2019; Davies et al., 2022). This method of 

ascertaining cases and controls is hugely advantageous when collecting large quantities of data 

in a research setting because, while benefiting from some of the depth of information collected in 

clinical interviews, they are nowhere near as burdensome or expensive to obtain.  

Screeners and symptom-based measures  

 

A screener is a quick tool for assessing which symptoms an individual is currently experiencing, 

how severely impacted they are by them, and, in some cases, how likely they are to meet clinical 

criteria for a diagnosis, usually utilised in a clinical context (Rush et al., 2006). Screening tools 

can be self-scored by the individual or rated by a mental health professional. Careful assessment 

of symptoms can aid clinicians in determining whether the presenting individual requires support 

and, if they do, which type of support is most suitable. There is an abundance of screening tools 

for the symptoms within the mood spectrum for children, adults, and older aged persons. They 

are usually separated into tools for depressive symptoms and manic symptoms individually, 

except for the General Behaviour Inventory (GBI) which measures both (Depue et al., 1981). 

Screeners for depressive symptoms that can be self-scored include the nine item Patient Health 

Questionnaire (PHQ9) (Kroenke, Spitzer and Williams, 2001) and the Beck Depression Inventory 

(BDI) (Beck et al., 1961). Screening tools to identify mania/hypomania among those presenting 

with mental health problems are particularly important due to significant delays in diagnosing 

bipolar disorder and associated negative outcomes (Zimmerman et al., 2009). An example of a 

self-scored screener for manic symptoms is the Mood Disorder Questionnaire (MDQ) (Hirschfeld 

et al., 2000).  
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Repeated assessment of symptom severity can be used for monitoring mental illness over time 

and evaluating progress (e.g., since receiving treatment). Tracking symptoms is a crucial process 

for adapting medication(s) where necessary. For instance, treatment-response in MDD is based 

upon a reduction of at least 50% in MDD severity on a standardised rating scale (Fava, 2003). 

Clinician-rated scales for MDD include the Montgomery-Åsberg Depression Rating Scale 

(MADRS) (Montgomery and Asberg, 1979) and the Hamilton Depression Rating Scale (Ham-D) 

(Hamilton, 1960). For mania/hypomania, the most widely used clinician-rated measures to track 

symptoms are the Young Mania Rating Scale (YMRS) (Young et al., 1978), the Bech-Rafaelsen 

Mania Rating Scale (MAS), and the mania subscale of the SADS. Self-reported measures include 

the Altman Self-Rating Mania (ASRM) Scale (Altman et al., 1997) and the Self-Rating Mania 

Inventory (SRMI) (Shugar et al., 1992).  

 

It should be emphasised that screeners and symptom-based measures are not intended to 

provide diagnostic accuracy but alert clinicians to individuals who might warrant further 

investigation and support. The sensitivity and specificity of screening tools massively vary. For 

instance, when using a cut-off threshold of ≥10, the PHQ9 has both sensitivity and specificity of 

88% for major depressive disorder (Kroenke, Spitzer and Williams, 2001). The MDQ has variable 

psychometric properties depending on the context (e.g., clinical or community) (Miller, Johnson 

and Eisner, 2009). Screeners and symptom-based measures can be applied in research settings 

to capture a picture of participants’ current or past symptoms, especially if they are suited to being 

self-rated.  

Single-item self-reported clinical diagnoses 

 

At the shallow end of the phenotyping spectrum are self-reported clinical diagnoses. This 

approach relies on a single question, asked of participants in a questionnaire, about whether they 

have received a diagnosis of a specific disorder from a healthcare/medical professional at some 

point in their lifetime. This method of ascertaining cases and controls is also known as “broad”, or 

“light-touch” phenotyping (Hyde et al., 2016; Cai, Kendler and Flint, 2018; Davis, Cullen, et al., 

2019; Davies et al., 2022). The accuracy with which this approach correctly defines cases and 

controls is reliant on the participant’s ability to recall and willingness to report which diagnoses 

they have received (if any), as well as the accuracy of the diagnoses given by healthcare 

professionals.  
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Self-reported disorder/treatment seeking for related mental health problems 

 

The shallowest phenotyping method is to categorise individuals as cases or controls based on 

whether they think they have ever had the psychiatric disorder of interest, or whether they have 

ever sought treatment for the disorder, or related mental health conditions (Howard et al., 2018). 

As is the case with single-item self-reported clinical diagnoses, the validity of this phenotyping 

method relies on the recall of the participant, or the correct classification of their own mental health 

problems in the absence of a diagnosis from an expert. Focusing on treatment-seeking for related 

issues may mean that the specificity of case/control designation is lessened.  

 

Figure 1.3. Four phenotyping approaches depicted as a swimming pool of varying depth.  
Self-reported diagnoses are considered the “shallowest” while diagnoses from structured or semi-

structured clinical interviews are considered “deep”.  

 

The genetic basis of mood disorders 

 

Before discussing the genetics of mood disorders, I will briefly describe the history of complex 

trait/disease genetics research.  
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A whistle-stop tour of the history of complex trait/disease genetics 

 

Family members resemble each other in terms of their physical and behavioural characteristics 

and which diseases they suffer with. This observation has led researchers to ponder the question 

of nature and nurture in regard to human traits for centuries. In 1897, Francis Galton proposed 

that biological parents contribute one half of their genetics to offspring, with grandparents 

contributing one quarter (Galton, 1897). At this time, little was known about the specific 

mechanisms underlying familial inheritance.  

 

Ronald A. Fisher was the first to propose a model of inheritance for complex human traits in a 

1919 paper entitled “The Correlation Between Relatives on the Supposition of Mendelian 

Inheritance”. Here, Fisher suggested that quantitative traits (such as height) could be inherited in 

the same manner as Mendelian disorders (i.e., single gene disorders) if many genes acted upon 

the trait (i.e., the trait was polygenic) (Fisher, 1919). This model of inheritance has been developed 

since 1919 and is now known as the “infinitesimal model”. Unlike the inheritance of single-gene 

disorders, also known as Mendelian disorders, the infinitesimal model assumed that quantitative 

traits are the outcome of a combination of genetic and non-genetic (environmental) influences. 

The model explained that the genetic component of offspring follows a normal distribution around 

the average genetic component of both parents. The variance of the genetic component is 

constant in a large out-crossing population (a large population with mating between unrelated 

individuals). However, in an in-breeding population, variance decreases in line with relatedness 

(Barton, Etheridge and Véber, 2017). The ‘genetic component’ comprises a number of different 

genetic factors which have small effects individually but, when taken in sum, produce a distribution 

of liability which underlies complex quantitative traits.  

 

Twin and family studies, which were first developed and utilised in the 1900s (Luxenburger, 1928; 

Heston, 1966; Kendler and Zerbin-Rüdin, 1996), confirmed that all complex human traits are 

heritable to some extent (this is known as the “first law of behavioural genetics”) (Turkheimer 

2000). For instance, twin studies estimated the broad-sense heritability of major depressive 

disorder at 35-45% (Sullivan, Neale and Kendler, 2000; Polderman et al., 2015) and of bipolar 

disorder at 65-75% (Polderman et al., 2015). However, twin studies were unable to tell which 

specific genes or genetic variants actually caused the diseases in question. Therefore, with the 

knowledge of universal heritability, and that multiple genomic loci likely influenced liability for 
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complex human traits, discovering the locations of loci which increased risk or conferred 

protection to disease became a research priority.  

 

Gene mapping by family linkage studies had been successful in Mendelian disorders which are 

caused by single genetic mutations with large effect sizes (i.e., high penetrance disorders) but 

unsuccessful in polygenic traits such as psychiatric disorders. This is because, for polygenic traits 

that involve both genetic and non-genetic influences, the effect sizes of associated genetic 

variants on their own are so tiny (i.e., low penetrance traits/disorders) they cannot be detected by 

cosegregation in pedigrees (Visscher et al., 2012). 

 

In 1996, Risch and Merikangas published a landmark paper entitled “The Future of Genetic 

Studies of Complex Human Diseases''. They demonstrated that performing an association study 

of one million genetic variants in the genomes of unrelated individuals could be more powerful 

than performing linkage analysis with a few hundred genetic markers in related individuals (Risch 

and Merikangas, 1996). In the following decade, the ability to map the genomes of hundreds of 

thousands of individuals was facilitated by profound advances in genomic technologies (Wang et 

al., 2005). As a result, the human genome was sequenced and the haplotype structure of the 

genome was characterised (both completed in 2003). This enabled the discovery of structural 

variation comprised in the human genome, such as existence of millions of common genetic 
variants, such as single nucleotide polymorphisms (SNPs; pronounced “snips”) and 

insertion-deletion variants of one or more nucleotides (indels), and the quantification of their 

correlation structure (known as linkage disequilibrium [LD]).  
 

These advancements were indicators of a new era for genomics and biomedical research in the 

early 2000s (Hofker, Fu and Wijmenga, 2014). Following this, the introduction of genome-wide 

association studies (GWAS) was facilitated by the development of fairly inexpensive SNP 

microarrays (Visscher et al., 2017) and the ability to impute millions of genetic variants from only 

a few thousand on these arrays (Coleman et al., 2016). As a result, Risch and Merikangas’s 

theoretical position was put into practice within a decade (Visscher et al., 2012) and genome-wide 

association studies substantially altered the field’s perception of the contributions of common 

genetic variation to complex traits (Hofker, Fu and Wijmenga, 2014).  
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Disclaimer. History of eugenics in complex trait/disease genetics 
This introductory chapter mentions the seminal contributions of Ronald A. Fisher and Francis 
Galton to our understanding of statistical genetics. These academics, among others such as 
Karl Pearson, were pivotal in progressing the fields of statistics and statistical genetics through 
their thinking and research. They were also proponents of eugenics: the study of how to 
artificially engineer human reproduction to maximise the occurrence of heritable characteristics 
and traits that are regarded, by some in society, as desirable. It is important to recognise that 
the modern genetic principles that are integral to psychiatric genetics research, including the 
studies presented in this thesis, rest upon foundations that were built by individuals with 
prejudiced, ableist, and racist views and intentions. The scientific community is slowly grappling 
with this reality and steps are being put in place to address it (e.g.,  by removing the names of 
eugenicists from institutions and acknowledging this dark side of scientific history in research 
outputs) (Weiss and Lambert, 2011; Bodmer et al., 2021). 
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Glossary of key terms 3: 
Broad-sense heritability: The proportion of phenotypic variance (Vp) that is explained by 
genetic variance (Vg) in a particular population. Note that “heritability” and “broad-sense 
heritability” are often used interchangeably (Knopik, Neiderhiser, DeFries & Plomin, 2017).  
Genomic locus: A specific position on a chromosome where a gene or genetic variant is 
located.  
Family linkage studies: Children inherit DNA from both their mother and their father. DNA is 
inherited in large segments which means that genetic variants that are physically close to each 
other on the chromosome are expected to be inherited together more often than random 
chance. This is why the term “linkage” (i.e., the two genetic variants are linked) is used. In 
linkage analyses, a pedigree is used to measure the existence of genetic markers within a 
family which may co-occur with a particular disease in a hypothesis-free manner. If they are 
found to co-occur, then it is assumed that the genetic variant causing the disease must be near 
(i.e., linked) to the genetic marker being studied.  
Penetrance: The penetrance of a genotype is the likelihood that the host to the genotype will 
develop clinical manifestations. Thus, penetrance is a term used to convey the proportion of 
individuals with a certain genotype who express the associated phenotype (i.e., show signs or 
symptoms of the disease or trait). Penetrance of 100% would mean that all individuals with the 
genotype go on to develop the disease. This is known as “complete penetrance”. In reality, 
complete penetrance is relatively rare because most diseases and traits are not caused by 
genes alone. An example of a disease with complete penetrance is Huntington’s disease 
(Zlotogora, 2003).  
Pedigrees: A graphical representation of the inheritance of a trait through different generations 
of a family (National Human Genome Research Institute, 2022). 
Common genetic variant: A common genetic variant is one which has a minor allele that is 
relatively frequent in the gene pool of a population. Common variants have a minor allele 
frequency of >0.05. Common variants contrast to rare variants, which have a minor allele 
frequency of <0.01. Rare variants tend to have larger phenotypic effects compared to common 
variants (Goswami, Chattopadhyay and Chuang, 2021).  
Single Nucleotide Polymorphisms (SNPs): A SNP is a genomic locus at which there is a 
change of one base for another. SNPs are the most prevalent form of genetic variation in the 
human genome. A SNP is present in one in every 300 bases (equating to around ten million 
SNPs) in the human genome (Kruglyak and Nickerson, 2001; LaFramboise, 2009).  
Insertion deletions (indels): Insertion deletions are one or more insertions or deletions in one 
or more nucleotides in the DNA sequence. Indels are the second most prevalent form of genetic 
variation in the human genome (SNPs are the most prevalent). Indels account for 15-21% of 
polymorphisms in the human genome (Mullaney et al., 2010; Lin et al., 2017). 
Linkage disequilibrium (LD): the non-random association of DNA variants at different loci 
(Slatkin, 2008). Due to recombination events during meiosis, genetic variants which are 
physically close together on a chromosome are more likely to be passed on from parent to 
offspring together. This means that certain genetic variants are found to be correlated with each 
other. The phenomenon of LD exists due to a number of factors including previous historical 
evolutionary forces, mutation, recombination rate, and natural selection. There are multiple 
ways to measure LD including D, D’, and r2 which are dependent on allele frequency.  
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An introduction to the genome-wide association study (GWAS) 

 

A GWAS is an experimental design aimed at identifying associations between traits/diseases and 

polymorphisms at hundreds of thousands (sometimes millions) of loci in samples from populations 

(Visscher et al., 2017). In brief, a GWAS performs a linear regression of a trait on each SNP 

(based on how many copies of a risk allele a participant carries [0, 1, 2] at each SNP being tested). 

A genotype is associated with the trait/disease if carrying a certain allelic variant is associated 

with a higher value of a continuous trait (e.g., height or depressive symptoms) or a higher 

likelihood of being a case than a control (e.g., if individuals affected by bipolar disorder carry the 

allelic variant at a higher frequency than individuals unaffected by bipolar disorder).  

 

 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 1.4. Individuals of European ancestries constitute a disproportionate amount of 
genome-wide association study (GWAS) samples.  
The plot shows the relative proportions of published ancestry-specific GWAS between 2006-2018. 

This plot is from Martin et al., (2019). 

Disclaimer. Genome-wide association study (GWAS) samples disproportionately contain 
individuals of European ancestries.  
Analysing the genomes of individuals from all over the world has demonstrated the genetic 
diversity of populations. Research proves that genetic differences are far greater within than 
between human populations (Rosenberg et al., 2002) and an individual’s ancestral background 
cannot be determined from their DNA alone. Nonetheless, at a population-level, ancestry is 
associated with subtle genetic differences. This is known as “population stratification” and refers 
to the process whereby structure in mating patterns leads to structures on genomic variation. 
This structure is therefore related to geographic location (Choi, Mak and O’Reilly, 2020). 
Differences can include levels of genetic diversity, the number of genetic variants in the genome, 
allele frequencies at certain variants, and the number and length of LD blocks. As a result, there 
are methodological issues that must be considered prior to conducting a GWAS. Genetic 
ancestry is calculated from genotype data and allows researchers to identify geographic 
groupings at a population level (Peterson et al., 2019). Currently, individuals comprising a 
sample intended for a GWAS must all have the same (or similar) genetic ancestral background. 
Among the published GWAS literature, there is a lack of ancestral diversity (Haga, 2010). 
Despite representing 16% of the global population, White Europeans make up 79% of all GWAS 
samples (Martin et al., 2019) (figure 1.4). 
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The primary aim of the GWAS design is to discover the locations of polymorphisms which may 

increase risk or confer protection to the trait/disease being studied. The hope is that, in doing this, 

we will understand more about the cause(s) of diseases and this knowledge will aid the 

development of preventative strategies such as treatments and therapies. However, the value of 

any finding from GWAS is dependent on whether it can be replicated in an independent sample. 

One way to achieve this is to minimise the possibility of type I error (Coleman et al., 2016). Type 

I error denotes a situation where the null hypothesis is rejected when it, in fact, was true (denoted 

as α). An example of a type I error in the context of a GWAS is the “discovery” of a statistically 

significant association between the trait and a specific polymorphism when the polymorphism is 

not actually causally related to the trait. A crucial step for minimising the chance of type I error is 

to apply strict quality control (QC) to the genetic data being used in the GWAS (Coleman et al., 

2016). QC refers to pre-analytical steps which ensure that the genetic data does not contain errors 

which could potentially lead to incorrect or biased results. Part of the QC process involves 

applying thresholds to various aspects of the genetic data and the individuals in the sample to 

ensure that any discoveries are due to true associations rather than unique characteristics of the 

data.  

 

Another way to minimise the possibility of false positives is to correct for multiple testing. In order 

to account for the many millions of SNPs being tested for an association with the trait, GWASs 

use a strict threshold for significance of an association as p<5x10-8 (Horwitz et al., 2019). This p-

value threshold was first introduced by Risch and Merikangas in 1996 (in the same paper that is 

cited above) (Risch and Merikangas, 1996). This was based upon the low replication rate of 
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findings from candidate gene studies (Chen et al., 2021). Subsequently, the International 

HapMap Project, which initially genotyped 1 million (later 3.1 million) polymorphisms the 

genomes of in 269 individuals of European, Han Chinese, Japanese, and Yoruban ancestry, 

proposed a near identical threshold for common genetic variants tested in GWASs (International 

HapMap Consortium, 2005). The widespread use of this threshold proved hugely successful in 

minimising false positives and, accordingly, increasing reproducible discoveries, the latter of 

which had been scarce in the field of complex trait genetics until the advent of the GWAS (Chen 

et al., 2021).   

 

The possibility of type II error also impacts the value of the results of a GWAS. Type II error refers 

to a situation where the null hypothesis is rejected when, in fact, the alternative is true (denoted 

as β). In the context of a GWAS, not detecting a true association between a polymorphism and 

the trait of interest is an example of a type II error (i.e., an association is not statistically significant 

when it should be).  

 

Statistical power influences the likelihood of type II error (denoted as 1-β). In a GWAS, the 

statistical power to identify genetic variants that are associated with a trait or disease is dependent 

on multiple factors. Visscher et al., (2017) outline six considerations for statistical power (Visscher 

et al., 2017): 

1) Sample size 

2) Distribution of effect sizes of causal genetic variants in study population 

3) Frequency of those variants in study population 

4) LD between observed, genotyped variants and unknown causal variants 

5) Panel of genome-wide variants used to genotype individuals in sample 

6) Heterogeneity of the trait/disease being studied (which relates to the clinical 

manifestations of the trait/disease and the way it is measured). 

 

Figure 1.5. Type I error, type II error, and statistical power.  
Multiple factors influence statistical power in a genome-wide association study (GWAS), including 

sample size, heterogeneity and genetic architecture of the trait being studied, and the panel of 

SNPs used for genotyping.   
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The first GWAS to be published was in 2005 (Klein et al., 2005). However, the year 2007 marks 

the first well-designed GWAS with a sufficient sample size for discovery. This was performed by 

the Wellcome Trust Case Control Consortium (WTCCC) on seven complex traits, one of which 

was bipolar disorder (Wellcome Trust Case Control Consortium, 2007). This was followed by 

similar studies of multiple human traits and diseases, including quantitative traits such as body 

mass index (BMI), physical health conditions such as autoimmune disorders, sociobehavioural 

traits such as intelligence, educational attainment, and psychiatric disorders (Goldstein, 2009).  

 

Despite identifying thousands of trait/disease-associated loci, the initial successes of the GWAS 

method were questioned for many reasons. First, the phenotypic variance that was attributable to 

common variants, sometimes known as SNP-based heritability (ℎ!"#$ ), fell far below broad-

sense estimates. This phenomenon was termed “missing heritability” (Maher, 2008). Second, the 

majority of significantly associated SNPs had little biological relevance or clinical utility for the 

trait/disease being studied (many of them were, in fact, not even located within genes). Third, the 

miniscule effect sizes of individual variants led some researchers to question whether they were 

truly associated with the trait/disease or simply a product of population stratification within the 

GWAS sample. As a result of these disappointments, some within the scientific field challenged 

the notion that common diseases were caused (in part) by common genetic variation at all (known 

as the common-disease-common-variant hypothesis) (Visscher et al., 2012).  

 

Since then, with vast increases in sample size and international collaboration efforts, the field of 

psychiatric genetics has seen an explosion in the discovery of robustly associated variants which 

replicate both within and between populations. A 2019 review paper of psychiatric GWASs 
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reported that, out of 514 studies, 1,123 SNPs had reached genome-wide significance (p<5x10-8) 

and, of these, 453 had been reproduced in some capacity (Horwitz et al., 2019). These successes 

have largely been due to international collaborative efforts to share and analyse data sets. While 

there are, of course, limitations to this method and (still) many unanswered questions, GWASs 

have led to a renewed understanding of the genetics behind complex traits and diseases, 

including those in the mood spectrum. 

Lessons learnt from genome-wide association studies 

 

Below, I outline three major conclusions drawn from the GWAS method with specific reference 

to recent research into disorders of the mood spectrum (Visscher et al., 2017).  

1. Complex traits are highly polygenic 

 

Candidate gene studies of both major depressive disorder (Otte et al., 2016; Border et al., 2019; 

Norkeviciene et al., 2022) and bipolar disorder (Jones and Craddock, 2001; Edvardsen et al., 

2008; Otte et al., 2016; Border et al., 2019; Oraki Kohshour et al., 2022) suffered from inconsistent 

and non-replicable results. We now understand that these mood disorders, like all complex traits, 

are multifactorial (i.e., influenced by a combination of environmental factors and the small effects 

of many genetic variants; figure 1.6). Rather than focusing on single genes, GWASs scan the 

genome looking for associations at hundreds of thousands to millions of individual SNPs.  

 

Major depressive disorder GWASs of the early 2010s yielded no positive findings (e.g., no 

genome-wide significant loci). This led to debates within the field about whether the main issue 

was the phenotyping approaches taken or the small samples. The first GWAS to identify and 

replicate any genetic variants associated with major depressive disorder was in a sample of Han 

Chinese women with recurrent major depressive disorder and 5,337 unaffected women by the 

China, Oxford, and Virginia Commonwealth University Experimental Research on Genetic 

Epidemiology (CONVERGE) consortium in 2015 (Ntotal=10,640) (CONVERGE consortium, 2015). 

This research group favoured homogeneous phenotyping over sample size and were able to 

identify and replicate two associations on chromosome 10. Although there is imperfect alignment 

between shallow and deeper measures (e.g., algorithmically-defined diagnoses) (Davis, Cullen, 

et al., 2019; Davies et al., 2022), genetics studies suggest that single-item self-reported 

diagnoses, as well as self-reported disorders and treatment-seeking, can be useful for increasing 
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statistical power in GWASs of depression because they allow for the accumulation of enormous 

samples. One year after the publication of the CONVERGE consortium’s GWAS, Hyde et al., 

(2016) published a GWAS of self-reported data from the direct-to-consumer genetic testing 

company 23andMe (Ncases=75,607, Ncontrols=231,747, Ntotal=307,354). Here, cases were 

individuals of European ancestries who had self-reported a clinical diagnosis of depression, or 

thinking that they have had depression, in a single-item question. This was a much “shallower” 

and more heterogeneous phenotype than that studied by the CONVERGE consortium but their 

large sample size meant that they were able to replicate three genome-wide significant SNPs in 

a separate sample (Hyde et al., 2016).  

 

A rule learnt from decades of GWASs of polygenic traits, not just mood disorders, is that the 

number of discovered variants is initially low, but dramatically increases after sample sizes reach 

an inflection point (Levinson et al., 2014). In 2018, the Psychiatric Genomics Consortium 
(PGC) published a GWAS of major depressive disorder including 135,458 cases and 344,901 

controls of European ancestries (Ntotal=480,359) from seven cohorts. This involved international 

collaboration to achieve a larger sample size than ever before. The seven cohorts used various 

methods to identify cases, including diagnoses from electronic health records, structured 

interviews, and self-reported clinical diagnoses. The GWAS identified 44 loci which reached 

genome-wide significance. Of these, 30 were novel findings and 14 had been genome-wide 

significant in prior GWASs (Wray et al., 2018).  

 

In recent years, research groups that have collaborated to meta-analyse GWAS summary 
statistics have seen rapid progressions in the ability to identify genome-wide significant loci. In 

2019, Howard et al., meta-analysed different measures of depression: a broad phenotype based 

on treatment seeking for “nerves, anxiety or depression” that showed high genetic overlap with 

clinically defined major depressive disorder (Howard et al., 2018), the Hyde et al., (2016) GWAS, 

and Wray et al., (2018) GWAS. They discovered 102 genome-wide significant SNPs (82 of which 

replicated in an independent cohort) with a total sample size of 807,553 (Ncases=246,363 and 

Ncontrols=561,190) (Howard et al., 2019). Last year, Levey et al., published an enormous meta-

analysed GWAS which included many of the previously published depression studies and data 

from the Million Veteran Program in the US. With a sample size of 1,154,267 of individuals of 

European ancestries (Ncases=340,591), they replicated 99% of the 211 genome-wide significant 

variants in an independent data set. Levey at al. (2021) also performed a GWAS of depression in 

59,600 individuals of African ancestries (Ncases=25,843) but found no genome-wide significant loci. 
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However, they did find that 61% of the genome-wide significant  SNPs from the European GWAS 

had the same direction of effect (i.e., risk-increasing or risk-decreasing) in the African sample 

(Levey et al., 2021) 

 

The largest GWAS of bipolar disorder to date was published by the PGC in 2021. Genetic data 

from a total of 41,917 individuals affected by bipolar disorder (cases) and 371,549 unaffected 

individuals (controls) from Europe, North America, and Australia were included in the study. This 

represented an increase of 21,565 cases and 340,191 controls since their previous GWAS (Stahl 

et al., 2019). These individuals had been recruited into one of 57 research cohorts who contributed 

data to the study. A total of 52 had contributed individual-level data which was then meta-analysed 

and five cohorts (iPSYCH30, deCODE genetics, Estonian Biobank, HUNT and UK Biobank) who 

contributed GWAS summary statistics. This GWAS identified 64 loci which were significantly 

associated with bipolar disorder (33 of which were new findings) thus reaffirming that bipolar 

disorder is a polygenic disorder (Mullins et al., 2021). Unlike many of the major GWASs in major 

depressive disorder, this PGC GWAS did not utilise self-reported data on clinical diagnoses, self-

reported disorder or treatment-seeking. All cases were required to meet DSM-IV or ICD-9/10 

criteria at some point in their lifetime, made via structured diagnostic instruments from 

assessments by trained interviewers, clinician-administered checklists, or medical records. 

 

In sum, mood disorders are polygenic. This means that each individual carries a number of risk 

alleles, and even the genomes of healthy individuals will be hosts to risk-increasing alleles 

(Gibson, 2012). Individual genetic variants confer a very small effect on overall risk (usually 

OR<1.1). But, when aggregated into a polygenic risk score (PRS), they explain a much larger 

proportion of the variance (Smoller et al., 2019). Whether a mood disorder manifests depends on 

the number of risk alleles a person carries and their unique life experiences. Therefore, inherited 

genetics cannot fully explain why an individual develops a mood disorder or not. Figure 1.6 

presents a visual aid for understanding how genetic and environmental factors act in tandem to 

influence liability to a psychiatric disorder. A PRS is based on the results of a GWAS (i.e., the 

summary statistics) and the variance that it can explain is limited by the SNP-based heritability of 

the trait being examined. Currently, the variance explained by PRS falls far below SNP-based 

heritability estimates (Choi, Mak and O’Reilly, 2020). But, the hope is that better powered GWASs 

and more sophisticated methods will enable PRSs to have far greater predictive power in the 

future.  
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2. The joint effect of common variants explains a substantial proportion of phenotypic 

variance 

 

The proportion of phenotypic variance explained by additive genetic variation is known as narrow-
sense heritability (h2) (Visscher, Hill and Wray, 2008). One type of narrow-sense heritability is 

SNP-based heritability (ℎ!"#$ ), which can be computed with a software called Linkage 

Disequilibrium Score Regression (LDSC) and GWAS summary statistics (Bulik-Sullivan et al., 

2015). These estimates fall below twin heritability estimates (Sullivan, Neale and Kendler, 2000; 

Polderman et al., 2015). The most recent GWAS of major depressive disorder from the PGC 

reported a SNP-based heritability of 8.7% on the liability scale (assuming a population 

prevalence at 15%) (Wray et al., 2018). Both smaller and larger SNP-based heritability have been 

estimated previously depending on the subtype of depression or the way it was measured (Cross-

Disorder Group of the Psychiatric Genomics Consortium et al., 2013; Hyde et al., 2016; Howard 

et al., 2018; Coleman et al., 2020).  

 

The most recent GWAS of bipolar disorder from the PGC reported a SNP-based heritability of 

15.6-18.6% on the liability scale (assuming a population prevalence at 1-2%) (Mullins et al., 2021). 

These estimates were fractionally lower than those from the previous PGC GWAS of bipolar 

disorder (17-23% assuming a population prevalence of 0.5-2%) (Stahl et al., 2019). When divided 

into subtypes, type I had a significantly larger SNP-based heritability than type II (20.9% versus 

11.6%) which supported previous findings from family-based research (Song et al., 2018). The 

two subtypes shared a high genetic correlation which was significantly different from one, thus 

demonstrating imperfect overlap in their genetic risk factors (Mullins et al., 2021).  

 

Another important point to bear in mind is that genetic risk does not explain all of the variance in 

mood disorders, as is the case with all complex, polygenic traits and diseases. Environmental 

exposures also contribute to overall risk (figure 1.6). While GWASs have been pivotal in 

confirming that common genetic variation contributes to the overall heritability of mood disorders, 

the challenge of closing the “missing heritability gap” remains. The issue of missing heritability 

has, in the past, been attributed to the assumption that GWASs can discover the effect of only a 

fraction of associated loci (Gibson, 2012). The hope is that, as sample sizes continue to grow and 

phenotypes become more refined, we will start to explain a greater percentage of disease risk 

within the population by common genetic variants. However, balancing these two requirements is 

challenging.  
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Figure 1.6. The “mental health jar” analogy developed by Professor Jehannine Austin 
(Austin, 2020).  
Mental health can be thought of as a jar. We are all born with varying levels of polygenic risk 

(yellow circles). Throughout our lives, we may experience environmental risk factors (blue 

triangles). These environmental risk factors, and our responses to them, are unique to each of us 

(demonstrated by the variable size of the blue triangles). Depending on our inherited genetic 

predisposition, we all require different amounts of environmental adversity to “fill up” our jar and 

experience an episode of mental illness. Person A has minimal genetic risk, which means they 

require a large amount of environmental risk before their jar fills up. By contrast, person C has a 

large amount of genetic risk. This means that they do not need to experience as much 

environmental adversity to have a full jar. Healthy behaviours such as, such as accessing effective 

treatment, finding effective ways to manage stress, exercise, and social support can help to make 

our jar taller and protect us from experiencing mental ill health.  

 

 

3. Complex traits/diseases share genetic risk factors 

 

An area of interest in psychiatric genetics is whether comorbidity between disorders is partially 

rooted in overlapping genetic risk factors via pleiotropy. Genetic overlap between psychiatric 

disorders was originally uncovered by family and twin studies (Smoller et al., 2019). The advent 

of GWASs meant that DNA-level overlap could be researched, and this confirmed that pleiotropy 
is widespread in the human genome (Visscher and Yang, 2016). Using GWAS summary statistics, 
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genetic correlations (rg) can be computed between polygenic traits and diseases in different study 

samples. A genetic correlation is a quantitative estimate, between -1 and 1, which represents the 

overlap in their additive genetic basis (based on a reference panel of SNPs) (van Rheenen et al., 

2019). This is based on the assumption that the trait is polygenic and pleiotropy is directional 

(Visscher and Yang, 2016). A positive genetic correlation between trait A and trait B suggests 

that, on average, the common genetic variants which increase risk for trait A also increase risk 

for trait B in the population. A negative genetic correlation between trait A and trait B suggests 

that, on average, the common variants which increase risk for trait A decrease risk for trait B 

(Abdellaoui and Verweij, 2021).  

 

GWASs have demonstrated that the same genetic variants which exert influence on mood 

disorders also influence other traits, including 1) psychiatric and neurodevelopmental 
disorders, 2) personality traits, 3) lifestyle factors and behaviours, and 4) anthropometric 
traits. These findings have pointed towards additive genetics as a driver of comorbidity. There 

are similarities and differences between bipolar disorder and major depressive disorder.  

 

Psychiatric and neurodevelopmental disorders. Mullins et al., (2021) showed that bipolar 

disorder’s additive genetics were most closely related to schizophrenia (rg=0.69), followed by 

depression-related phenotypes (major depressive disorder [rg=0.48], major depression [rg=0.44] 

and depressive symptoms [rg=0.375]). Other significant associations in a positive direction were 

found with autism spectrum disorder (rg=0.21) and attention deficit hyperactivity disorder 

(rg=0.21). Wray et al., (2018) showed that major depressive disorder’s greatest genetic overlap 

was with, unsurprisingly, depressive symptoms (rg=0.91-0.98). Other positive genetic correlations 

included anxiety disorders (rg=0.80), attention deficit hyperactivity disorder (rg=0.42), autism 

spectrum disorders (rg=0.44), schizophrenia (rg=0.34), and anorexia nervosa (rg=0.13).  

 

Personality traits. Both bipolar disorder and major depressive disorder were positively 

genetically correlated with neuroticism. Major depressive disorder showed an association which 

was over 3x stronger (rg= 0.70) than bipolar disorder’s association (rg=0.22).  

 

Lifestyle factors and behaviours. Bipolar disorder was positively correlated with daytime 

sleepiness (rg=0.13), sleep duration (rg=0.12), insomnia (rg=0.12), and smoking behaviours 

(rg=0.13-0.15) (Mullins et al., 2021). Major depressive disorder was similarly correlated with these 

sleep-related phenotypes (rg=0.19-0.67) and smoking (rg=0.29) (Wray et al., 2018).   
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Anthropometric traits. Major depressive disorder was positively genetically correlated with body 

fat, body mass index (BMI), and obesity (rg=0.09-0.20) (Wray et al., 2018) while bipolar disorder 

showed no significant associations.  

 

A revolutionary finding from the field of psychiatric genetics is that seemingly environmental 

exposures, such as negative life events, are heritable (Power et al., 2013; Dalvie et al., 2020). 

GWASs of trauma-related phenotypes have led to the discovery that they share much of their 

genetic risk with depression-related phenotypes. For instance, self-reported childhood trauma has 

been shown to share genetic risk with both major depressive disorder (rg=0.71) and depressive 

symptoms (rg=0.70) (Dalvie et al., 2020). In terms of response to trauma, the PTSD working group 

of the PGC showed that PTSD was most strongly genetically associated with depressive 

symptoms (rg=0.80), while major depressive disorder was significantly genetically correlated with 

PTSD at 0.62 (Nievergelt et al., 2019). Such results add weight to the diathesis-stress model 

because it suggests that variability in sensitivity to traumatic events may be partly driven by 

genetic differences (which may form part of someone’s diathesis to stressors).  

 

Another intriguing discovery from the literature concerns the relationship between the genetic 

basis of mood disorders and the genetic basis of intelligence. Bipolar disorder has consistently 

been proven to have a positive genetic association with years of schooling (also known as 

educational attainment) but not with intelligence (Stahl et al., 2019; Coleman et al., 2020; Mullins 

et al., 2021). By comparison, major depressive disorder has significant genetic correlations with 

both but in a negative direction (Wray et al., 2018).   

 

These findings are evidence for pleiotropic effects across different dimensions of 

psychopathology, including disorders of the mood spectrum. The next challenge involves using 

these findings to progress our understanding of how shared genetic risk contributes to the high 

prevalence of comorbidity in individuals affected by mood disorders.  
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Glossary of key terms 4: 
Candidate gene study: A study which selects a gene based on prior putative evidence that it 
may be related to the development of the trait/disease of interest. Polymorphisms within the 
gene are then assessed for associations with the trait by observing its frequency in cases and 
controls. Its functional mechanisms are then followed up if an association is discovered.  
Genotyping: A process used to measure polymorphisms at different loci (i.e., at different SNPs) 
in the human genome. The first step of genotyping is known as “hybridisation”. Here, a 
genotyping microarray, which contains oligonucleotide probes at specific positions in the human 
genome where variants/polymorphisms occur, is washed with the DNA. If the genotyped 
individual has an identical genetic variant to the variant on the genotyping chip, the nucleotide 
will hybridise to its respective probe. After hybridisation, the probe will signal a fluorescent colour 
depending on which allele the participant has. These fluorescent probes can then be read by a 
computer and assigned to a specific SNP in the human genome. The result of genotyping is 
known as “raw intensity data” based on the intensity of the fluorescent signal of each probe. To 
identify the participant’s genotype at each SNP, the raw data must then go through a process 
known as “calling” based on the clustering patterns of the fluorescent signal. This is usually 
done by a computer or (where the identity of the genotype is not clear) manually by a 
bioinformatician. This process yields genotype data which contains information about whether 
the participant is homozygous or heterozygous at various genetic variants across the genome 
(Coleman et al., 2016). An important point is that genotyping is different to sequencing.  
SNP-based heritability (h2

SNP): The proportion of phenotypic variance (Vp) in a given trait that 
is explained by additive genetic variation of SNPs (Yang et al., 2017).  
Psychiatric Genomics Consortium (PGC): A collaborative organisation of international 
researchers aimed at understanding more about the genetic basis for psychiatric disorders. The 
PGC is divided into working groups for individual disorders, as well as a cross-disorder working 
group. Currently, the PGC involves over 800 researchers from 36 countries.  
GWAS summary statistics: After conducting a GWAS, the results are presented in a tabulated 
file. Each row corresponds to each SNP. The columns include the effect size (beta or odds 
ratio), standard error, and p-value of every SNP regressed on the trait/disease of interest. Other 
columns contain further information about the two possible alleles at that SNP, the allele 
frequency, the chromosome it is found on, the base pair position, and the sample size of the 
GWAS (MacArthur et al., 2021).  
Polygenic risk score (PRS): A PRS is a weighted sum of risk alleles (0, 1 or 2) that an 
individual carries for a particular trait. The weights are derived from the SNP effect sizes in a 
discovery GWAS. PRSs can then be used in a separate sample for association testing or risk 
prediction (Maher, 2015). 
Narrow-sense heritability: The proportion of phenotypic variance explained by additive 
genetic variation (Visscher, Hill and Wray, 2008).  
Liability scale: A linear transformation applied to SNP-based heritability estimates based on 
an analyst-specified prevalence of the disorder in the population (Cross-Disorder Group of the 
Psychiatric Genomics Consortium et al., 2013). Conversion to the liability scale is performed in 
GWASs of binary traits when the ratio of cases:controls in the GWAS sample diverges from the 
true ratio of affected:unaffected individuals in the population.  
Pleiotropy: Pleiotropy is a phenomenon whereby a polymorphism at a position in the DNA 
sequence has an effect on more than one outcome (i.e., trait or disease) (Visscher and Yang, 
2016).  
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Mood disorders and rare variants 

 
Although common variants in the human genome are the focus of this thesis, it is important to 

mention emerging evidence of the role that rare genetic variation may play in mood disorders. 

The effects of rare variants, which are found in <1% of the population, would not be identified in 

GWASs of mood disorders, since GWASs rely on the common variants on a SNP chip or 

microarray. One type of rare genetic mutation relevant to psychiatric disorders is known as a copy 

number variant (CNV). CNVs are segments of a chromosome that are greater than 1kb in length 

and vary in number from person-to-person in the form of deletions, duplications, insertions, and 

inversions (Malhotra and Sebat, 2012; Gordovez and McMahon, 2020). CNVs are found in all 

regions of the genome; some have no phenotypic effects while others increase a person’s risk of 

developing certain disorders. The role of CNVs in some psychiatric and neurodevelopmental 

disorders, such as schizophrenia, autism spectrum disorders, and intellectual disability, is 

relatively well documented (Levy et al., 2011; Sanders et al., 2011; Kirov et al., 2014; Marshall et 

al., 2017; Viñas-Jornet et al., 2018), while their impact on major depressive disorder and bipolar 

disorder is less well understood.  

 

Nevertheless, there have been some key developments over the last decade in mood disorder 

research. For example, multiple studies have found that a CNV on chromosome 16p11.2 is more 

frequently observed in bipolar disorder cases compared to individuals unaffected by bipolar 

disorder (McCarthy et al., 2009; Malhotra et al., 2011; Green et al., 2016). This CNV is also known 

to be associated with autism and schizophrenia (McCarthy et al., 2009; Malhotra et al., 2011; 

Green et al., 2016). Additionally, two studies have pinpointed a CNV on chromosome 3q29 as 

potentially important (Quintero-Rivera, Sharifi-Hannauer and Martinez-Agosto, 2010; Green et al., 

2016). However, one of these was a case study (Quintero-Rivera, Sharifi-Hannauer and Martinez-

Agosto, 2010), and the other found an association with bipolar disorder that was not significant 

(Green et al., 2016), which means conclusions about 3q29 are currently tentative.  

 

With regards to major depressive disorder, two large studies of CNVs were published in 2019 

(Kendall et al., 2019; Zhang et al., 2019). Both found that CNVs were more common in individuals 

affected by major depressive disorder compared to unaffected individuals. Specifically, in Kendall 

et al., (2019), CNVs on chromosome 1q21.1, 15q11-13 (the CNV associated with an inherited 

condition called Prader-Willi syndrome), and 16p11.2 (the same CNV mentioned above in relation 

to bipolar disorder) were associated with major depressive disorder. As whole genome 
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sequencing becomes increasingly feasible for large-scale studies of mood disorders, we will likely 

discover more CNVs associated with mood disorders. Furthermore, we will be able to explore the 

way these rarer mutations interact with polygenic risk and investigate whether high rates of 

comorbidity in psychiatry can be partly explained by rare variants that affect multiple domains of 

psychopathology and neurodevelopment. 

Measuring the mood spectrum: challenges in genetics research 

 

The overarching aim of GWASs of mood disorders is to clarify their biological causes. Knowledge 

of this could improve therapeutic options by identifying novel “druggable” targets and/or providing 

personalised medicine, inform clinical processes through risk prediction, understand more about 

the epidemiology, and educate affected individuals about the cause(s) of their illness. The way 

mood disorders are phenotyped has implications for the conclusions drawn from genetic studies 

about them for two reasons. First, the phenotyping approach dictates both the sample size that 

can be obtained as well as the trait’s heterogeneity, both of which influence statistical power and 

the likelihood of statistically significant discoveries (figure 1.5). Better powered GWASs are 

crucial for many post-GWAS analyses, such as increasing the predictive power of PRSs. Second, 

the validity of the phenotype is crucial for ensuring that any discoveries actually reflect true 

disorder aetiology. Third, definitional variance between GWASs of, supposedly, the same trait 

could lead to low replication rates which hinders scientific progress.  

 

For ascertaining whether someone is a case or a control for mood disorders, clinical interviews 

are considered the gold-standard as they yield the most information and of the highest detail and 

accuracy. But, since GWASs require large samples to study the small effect sizes of common 

genetic variants, holding interviews with participants is neither cost-effective nor feasible (Davies 

et al., 2022). An alternative is to collect data on diagnoses through linked medical records, which 

is becoming increasingly common (e.g., iPSYCH). As a result, in GWASs over the years, sample 

size has often been prioritised over clinical precision through the use of self-reported data via an 

online survey. GWASs already mentioned in this chapter demonstrate the utility of single-item 

self-reported diagnosis, at least in depression (Hyde et al., 2016; Howard et al., 2018, 2019).  

 

The concept of an “inflection point” in sample size for GWASs of psychiatric disorders was 

introduced in this chapter. This refers to a critical point in sample size where the number of 
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discoveries arising from genetic studies vastly increases (Levinson et al., 2014). The UK Biobank, 

the Genetic Links to Anxiety and Depression (GLAD) study, and the COVID-19 Psychiatry and 

Neurological Genetics (COPING) study all offer avenues of ascertaining cases and controls in 

very large samples for genetic analyses, whether this be on their own or combined with other 

cohorts (as in the PGC). Beyond simply increasing sample size, discoveries can be accelerated 

by improving assessment of phenotypes, as reducing phenotypic heterogeneity is another avenue 

for increasing power (see figure 1.5). There is a diversity of phenotyping approaches that can be 

applied to mood disorders. The richness of mental health data collected by these three UK-based 

studies therefore represent an opportunity to explore alternative phenotyping strategies.   

 

This thesis incorporates data from the UK Biobank and two studies from the mental health arm of 

the National Institute of Health and Care Research (NIHR) BioResource in the UK: the GLAD 

study and the COPING study. Between 2006-2010, the UK Biobank collected data on nearly half 

a million individuals aged 40-69 with the aim of providing a large research cohort for the study of 

multiple diseases and their risk factors. In 2016, the UK Biobank invited participants to complete 

a web-based Mental Health Questionnaire (MHQ) which offered the opportunity to characterise 

psychiatric disorders and their symptoms in detail. A total of 157,366 participants took part (Davis 

et al., 2020). The GLAD study began in 2018 with the aim of recruiting 40,000 individuals aged 

16+ with lifetime depression and/or an anxiety disorder (Davies et al., 2019). The COPING study 

involved repeated assessment of mental health over the course of the COVID-19 pandemic 

(2021-2022) and was available to GLAD participants, as well as participants from the Eating 

Disorders Genetics Initiative (EDGI), and other members of the NIHR BioResource (NBR) 

(although this thesis only analyses COPING data from GLAD and NBR participants due to the 

unavailability of genetic data for EDGI participants). As a baseline assessment in the COPING 

study, all NBR participants completed the GLAD study survey, which allowed for data from these 

two independent sets of participants to be combined for analyses.  

 

All three research studies have collected a huge variety of self-reported data on participants’ 

personal experience of mental health. These data include both contemporaneous and lifetime 

measures, symptoms from screeners and psychometric tools, and DSM-5 diagnostic criteria via 

the CIDI Short Form (CIDI-SF) (Davies et al., 2019; Davis, Coleman, et al., 2019). These self-

reported data can be leveraged to construct phenotypes of disorders and their constituent 

symptoms. Participants in all cohorts supplied genetic data through blood or saliva samples. Each 

of these studies used highly similar phenotype data collection and all were genotyped on the 
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same DNA microarray. For clarity, a diagram is presented below which demonstrates the sources 

of the data that form the basis of the research conducted in this thesis (figure 1.7). 

 

Figure 1.7. United Kingdom (UK)-based studies included in the thesis. 
This thesis incorporates self-reported data from the UK Biobank and two studies from the mental 

health arm of the National Institute of Health and Care Research (NIHR) BioResource in the UK: 

the GLAD study and the COPING study. The UK Biobank participants were invited to complete 

the online Mental Health Questionnaire (MHQ) in 2016. The COPING study was conducted over 

the course of the COVID-19 pandemic, and GLAD participants and general NIHR BioResource 

(NBR) participants were invited to take part (invites were sent via email between April 2020-

January 2021). As a baseline assessment in the COPING study, all NBR participants completed 

the GLAD study survey, which allowed their self-reported data to be combined for the analyses 

presented in this thesis.  

 

 
 

 

There is a need to evaluate mood disorder phenotyping approaches to determine whether the 

resulting phenotypes accurately reflect the mood spectrum and whether their implementation in 

genetic studies can contribute to our understanding of its underlying biology. In chapters 2-4, 
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three phenotyping approaches are applied to self-reported data in the UK Biobank MHQ, the 

GLAD, and COPING studies. They are: 

 

1) Diagnostic subtypes  

2) Continuous measures  

3) Symptom-level analyses (including symptom subgroups individual symptoms) 

Aims and structure of the thesis 

 

The aim of the thesis is to explore whether various phenotyping approaches applied to self-

reported data can improve our understanding of the mood spectrum’s genetic basis. Overall, this 

thesis asks: how can we study the genetics of the mood spectrum with self-reported data? Are 

phenotypes derived from self-reported data valid for the mood spectrum? Can they improve our 

knowledge of the mood spectrum’s genetic basis?  

 

Chapter 2: There is high comorbidity (~50%) between major depressive disorder and PTSD 

(Kessler et al., 1995; Rytwinski et al., 2013). Clarifying the cause of this is challenging due to the 

complex aetiology of both the disorders. Major depressive disorder and PTSD are heritable and 

share genetic risk factors to some extent (Koenen et al., 2008; Wolf et al., 2010; Nievergelt et al., 

2019). Exposure to trauma is required for a diagnosis of PTSD, and is a strong risk factor for 

major depressive disorder (Kessler, Davis and Kendler, 1997; Green et al., 2010; Nanni, Uher 

and Danese, 2012; Otte et al., 2016). Not only this, but the two disorders have a high degree of 

overlap in terms of their diagnostic criteria. For instance, they are both characterised by the 

symptoms of anhedonia, sleep disturbances, irritability, and concentration difficulties (American 

Psychiatric Association, 2013). Previously, comorbidity between major depressive disorder and 

PTSD has been attributed to overlapping symptoms in those who have been exposed to trauma 

(Flory and Yehuda, 2015). However, several studies demonstrate that this is not an adequate 

explanation (Afzali et al., 2017). An alternative source of PTSD-major depressive disorder 

comorbidity may be a shared genetic basis for trauma. In chapter 2, statistical genetics methods 

are applied to diagnostic subtypes of major depressive disorder to test this hypothesis and to 

further unravel the relationship between major depressive disorder and PTSD.  
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Chapter 3: Due to the delays in correctly diagnosing bipolar disorder and the high rate of 

misdiagnosis of bipolar disorder as unipolar depression (Hirschfeld, Lewis and Vornik, 2003), 

effective screening for possible hypomania/mania is hugely important. Many tools have been 

developed for this purpose. A well-known and widely used example is the Mood Disorder 

Questionnaire (MDQ) (Hirschfeld et al., 2000). Based on clinical recommendations, the MDQ was 

included in the GLAD and COPING surveys as a means of assessing lifetime experience of 

thirteen manic symptoms. The hope was that the MDQ could provide an avenue for answering a 

number of research questions regarding the genetic basis of hypomania/mania in bipolar disorder. 

In chapter 3, the validity of this screening tool for genetic studies is tested. The participants’ 

answers to questions in the MDQ are used to construct a continuous measure of 

hypomanic/manic symptoms. In addition to this, the latent factor structure of the MDQ is examined 

to identify symptom subgroups. GWASs of the continuous measure and subgroups are 

performed, and genetic correlations are calculated with bipolar disorder overall, type I, and type 

II.  

 
Chapter 4: Major depressive disorder is the most common psychiatric disorder worldwide and, 

as discussed in this introductory chapter, is one of the leading causes of disability (GBD 2019 

Mental Disorders Collaborators, 2022). Thus, developing effective treatments is crucial for 

bettering the lives of hundreds of millions of people around the world. There are numerous 

antidepressant medications available, and while they prove efficacious in some individuals 

(Cipriani et al., 2018), a sizable proportion fail to show improvement in symptoms after their 

second course of antidepressants (of sufficient dose and duration). These individuals have a 

diagnostic subtype of major depressive disorder known as treatment-resistant depression 

(Fava, 2003). Two studies have proposed anhedonia as a risk factor for poor response to 

antidepressants (Uher et al., 2012; McMakin et al., 2012). Anhedonia is a core symptom of major 

depressive disorder, but is also present transdiagnostically. Only two large, well-powered GWASs 

of anhedonia have been published to date, which confirmed that anhedonia has a heritable basis. 

But, these GWASs came with limitations which hampered our understanding of the genetic basis 

for this specific symptom of major depressive disorder  (Ward et al., 2019; Thorp et al., 2020). 

To address some of these limitations, in chapter 4, a continuous measure of anhedonic 

symptoms is constructed from COPING study data. We perform a GWAS of this phenotype and 

compute genetic correlations with two measures of treatment-resistant depression and two 

measures of antidepressant response, and other external traits.    
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Chapter 5: The thesis concludes with a general discussion of lessons learnt from the three 

empirical studies, limitations of the study designs, and directions for future research of the genetic 

basis of the mood spectrum.  
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Abstract 
 
 
Background: The Mood Disorder Questionnaire (MDQ) is a common screening tool for bipolar 

disorder, assessing manic symptoms. Its utility for genetic studies of mania or bipolar traits has 

not been fully examined. 

  

Methods: We psychometrically compared the MDQ to self-reported bipolar disorder in 

participants from the United Kingdom National Institute of Health and Care Research Mental 

Health BioResource. We conducted genome-wide association studies of manic symptom 

quantitative traits and symptom subgroups, derived from the MDQ items (N=11,568-19,859). We 

calculated genetic correlations with bipolar disorder and other psychiatric and behavioural traits.  

  
Results: The MDQ screener showed low positive predictive value (0.29) for self-reported bipolar 

disorder. Neither concurrent nor lifetime manic symptoms were genetically correlated with bipolar 

disorder. Lifetime manic symptoms had a highest genetic correlation (rg=1.0) with posttraumatic 

stress disorder although this was not confirmed by within-cohort phenotypic correlations (rp=0.41). 

Other significant genetic correlations included attention deficit hyperactivity disorder (rg=0.69), 

insomnia (rg=0.55), and major depressive disorder (rg=0.42).  

  

Conclusion: Our study adds to existing literature questioning the MDQ’s validity and suggests it 

may capture symptoms of general distress or psychopathology, rather than hypomania/mania 

specifically, in at-risk populations.  

Introduction 
 
 
Mania involves periods of elevated, expansive, or irritable mood. Symptoms may include feeling 

energetic or hyperactive, having unusually inflated self-confidence, requiring little or no sleep, or 

engaging in behaviour that some might consider impulsive or risky. Hypomania involves these 

symptoms but to a milder degree (American Psychiatric Association, 2013). Mania and 

hypomania generally alternate with episodes of depressed mood in bipolar disorder type I and 

type II, respectively. The lifetime prevalences of these psychiatric disorders are 0.6% and 0.4%, 

respectively (Merikangas et al., 2011). 
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Individuals with bipolar disorder usually present with other psychiatric symptoms in the first 

instance, particularly depression (Musliner and Østergaard, 2018) and the time between initial 

presentation to services and receiving the correct diagnosis can be over ten years (Lish et al., 

1994; Hirschfeld, Lewis and Vornik, 2003). Therefore, some individuals with psychiatric problems, 

especially depression, anxiety, and substance use disorders, may later develop hypomania or 

mania (Zimmerman et al., 2009; Kessing et al., 2017; Baryshnikov et al., 2020). Identifying 

“hidden” bipolar disorder patients can aid clinicians in diagnosis and earlier prescribing of correct 

medication (e.g., mood stabilisers) which reduces risk of antidepressant-induced mania, rapid 

cycling, and the costs associated with delayed treatment (Hirschfeld, 2010; Zimmerman, 2012). 

  

Several screening tools have been developed to assess possible hypomania/mania in at-risk 

individuals. One of the most widely used is the Mood Disorder Questionnaire (MDQ) which 

involves questions about thirteen aspects of mania, symptom duration, functional impairment, and 

family history of bipolar disorder (Hirschfeld, 2010). The MDQ has been translated into 16 

languages and is used globally (Zimmerman et al., 2009; Hirschfeld, 2010). Bipolar disorder is 

heritable (Stahl et al., 2019; Mullins et al., 2021), and the MDQ has been applied in genetic studies 

of mania with mixed results. A twin study showed that the heritable basis of MDQ-assessed 

hypomania was moderately correlated with the heritable basis for bipolar disorder (rg=0.40) in a 

non-clinical youth sample, which mirrored the phenotypic correlation (rph=0.39). However, 

hypomania did not show a significant correlation with bipolar disorder polygenic risk scores 

(PRSs) based on common genetic variants (Hosang et al., 2021). Thus, the genetic basis of the 

symptoms assessed by the MDQ, and their relationship with bipolar disorder, warrant further 

examination.  

 

The Genetic Links to Anxiety and Depression (GLAD) study, a nationwide resource of participants 

with a lifetime occurrence of depression and anxiety disorders, used the MDQ to assess for 

lifetime presence of hypomanic/manic symptoms. Participants were also asked about whether 

they had received a diagnosis of bipolar disorder by a professional. This large cohort of 

participants with mental health disorders and genetic data available offers an opportunity to 

examine the validity of the MDQ among individuals who are at increased risk of developing bipolar 

disorder.  
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Here, we investigated the validity of the MDQ. First, we assessed the psychometric properties of 

the MDQ as a screener in our sample, based on self-reported diagnoses of bipolar disorder. Since 

self-reported diagnoses of mental health disorders may be inaccurate (Davies et al., 2022), we 

performed an extra step to validate the MDQ using genomic methods. We calculated the genetic 

correlation between the number of manic symptoms that participants reported in the MDQ and 

the largest available GWAS of bipolar disorder from the Psychiatric Genomics Consortium (PGC) 

(Mullins et al., 2021). All cases included in the PGC GWAS (N=41,917) met DSM-IV or ICD-9/10 

criteria for bipolar disorder, made from diagnostic interviews, clinician-administered checklists, or 

medical records. Thus, genetic correlations with this GWAS can be used to assess the external 

validity of the MDQ as a method of assessing hypomania/mania. 
 

We assessed the MDQ items as a quantitative score in two ways: a) concurrent symptoms during 

one time period and b) cumulative symptoms across the lifetime (not specifying co-occurrence). 

Since nine of the MDQ items equate to the diagnostic criteria for hypomania/mania in the DSM-

5, we hypothesised that both quantitative measures would show significant positive genetic 

correlations, a measure of the relationship between two polygenic phenotypes (van Rheenen et 

al., 2019), with bipolar disorder. We expected the genetic correlation to be greater with the 

measure of concurrent symptoms because experiencing multiple symptoms within four days or 

one week is a requirement for a hypomania and mania diagnosis respectively (American 

Psychiatric Association, 2013) and a positive screen in the MDQ is made on the basis of 

concurrent symptoms (Hirschfeld et al., 2000). In addition to bipolar disorder, we calculated 

genetic correlations with 34 other psychiatric and behavioural traits. We expected MDQ-assessed 

manic symptoms to have a higher genetic correlation with bipolar disorder compared to the other 

traits tested.  

  

Since symptoms which collectively underlie a quantitative trait may vary in terms of their biology 

(Nagel et al., 2018; Thorp et al., 2020), we hypothesised that genetic risk for symptom subgroups 

of the MDQ, identified from factor analyses, would show genetic heterogeneity. We made no a 

priori predictions about the direction or strength of the overlap. 
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Methods 
 
 
All code is available on GitHub (https://github.com/tnggroup/genetics_MDQ). This study was pre-

registered on the Open Science Framework. 

  
Study design 
  

Data were examined from participants from the mental health arm of the National Institute of 

Health and Care Research (NIHR) BioResource in the UK. The largest group of participants were 

recruited via the Genetic Links to Anxiety and Depression (GLAD) Study 

(https://gladstudy.org.uk/), an online research platform for individuals with lifetime anxiety and/or 

major depressive disorder (MDD) (Davies et al., 2019). Recruitment into GLAD began in 

September 2018 and was conducted via social media campaigns and NHS sites. Other 

participants were from the COVID-19 Psychiatry and Neurological Genetics (COPING) Study 

(https://gladstudy.org.uk/all-projects/current-projects/coping-study/). These individuals were 

initially recruited into the NIHR BioResource from various cohorts via several means (listed in 

table S3.18a and S3.18b). They were secondarily invited into the COPING study (henceforth 

referred to as “COPING NBR participants”).  

  

Individuals were eligible to participate if they were aged 16+ and lived in the UK. GLAD 

participants were additionally required to have experienced MDD or an anxiety disorder in their 

lifetime. All participants provided demographic information, mental health histories, and some 

provided a saliva or blood sample. The COPING baseline survey comprised many of the same 

questionnaires from the GLAD sign-up survey which allowed for parallel assessments. All 

questionnaires were acquired using Qualtrics survey software (Qualtrics, Provo, UT). We 

analysed data from participants who completed the GLAD study sign-up survey or COPING 

baseline survey between 17th September 2018 and 3rd September 2021. 

  

Study sample 
  
We analysed data from individuals with experience of MDD and/or anxiety. COPING NBR 

participants who met symptom-based diagnostic criteria for MDD and/or any anxiety disorder 

were combined with GLAD participants to create a cohort who had been affected by these 
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common mental health disorders (figure S3.28). To compare the distribution of manic symptoms 

between those affected and unaffected by MDD and/or anxiety, we also measured lifetime MDQ 

items in participants with no history of these disorders. COPING NBR participants who did not 

meet criteria for MDD or any anxiety disorder were categorised as “unaffected participants”. 

COPING NBR participants without the data required to determine MDD or anxiety diagnosis were 

excluded (details on symptom-based diagnostic criteria in supplementary methods). 

  
Ethics 
  

Full informed consent was obtained from all participants. Ethical approval for the GLAD study was 

granted by the London-Fulham Research Ethics Committee (REC reference: 18/LO/1218) and 

for COPING, by the NHS Health Research Authority, South West - Central Bristol Research Ethics 

Committee (20/SW/0078). 

 

Measures 

The Mood Disorder Questionnaire 

Lifetime experience of 13 hypomanic/manic symptoms were assessed via the MDQ (table 3.1) 

(henceforth “lifetime manic symptoms”). Participants who endorsed any of the lifetime manic 

symptoms were then presented with the question “You ticked 'yes' to more than one of the 

previous symptoms - have several of these ever happened during the same period of time?”. The 

participants who answered “Yes'' were subsequently presented with a list of their previously 

endorsed symptoms and were asked to “select all that occurred during the same period of time” 

(henceforth “concurrent manic symptoms”). 

For analyses of lifetime manic symptoms, GLAD and COPING NBR participants with complete 

data on all MDQ items were retained for analyses. For analyses of concurrent manic symptoms, 

only GLAD participants who reported more than one concurrent symptom and had complete data 

on all items were included in analyses. Data on concurrent manic symptoms were not available 

in COPING NBR. 
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See the supplementary methods for more information on how the MDQ screener was constructed.  

Quantitative manic symptom phenotypes 

The number of concurrent manic symptoms endorsed by participants affected by MDD and/or an 

anxiety disorder were summed. This quantitative phenotype represents the total number of MDQ 

items that a participant self-reported having experienced during one time period. Additionally, the 

number of endorsed lifetime manic symptoms were summed. This quantitative phenotype 

represents the total number of MDQ items that a participant self-reported having experienced 

during their lifetime. 

  
Table 3.1. Hypomanic/manic symptoms assessed by the Mood Disorder Questionnaire (MDQ).  
 

Question in MDQ Abbreviated 
name 

 Endorsement 
(concurrent in 

affected 
participants) 

N=30,342 

Endorsement 
(lifetime in 

affected 
participants) 

N=47,787 

Endorsement 
(lifetime in 
unaffected 

participants) 
N=6,308 

...you felt so good or so hyper 
that other people thought you 
were not your normal self or you 
were so hyper that you got into 
trouble? 

Hyperactivity 32.3% 36.2% 2.4% 

...you were so irritable that you 
shouted at people or started 
fights or arguments? 

Irritability 61.8% 71.3% 17.5% 

...you felt much more self-
confident than usual? 

More self-
confidence 

34.3% 38.0% 8.4% 

...you got much less sleep than 
usual and found you didn't really 
miss it? 

Decreased sleep 53.9% 40.7% 11.9% 

...you were much more talkative 
or spoke much faster than 
usual? 

More talkative 42.1% 43.2% 5.0% 
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...thoughts raced through your 
head or you couldn't slow your 
mind down? 

Racing thoughts 77.6% 73.9% 15% 

...you were so easily distracted 
by things around you that you 
had trouble concentrating or 
staying on track? 

Concentration 
difficulties 

70.8% 71.8% 14.3% 

...you had much more energy 
than usual? 

More energy 32.6% 35.7% 8.3% 

...you were much more active or 
did many more things than 
usual? 

More active 30.0% 37.3% 11.7% 

...you were much more social or 
outgoing than usual, for 
example, you telephoned friends 
in the middle of the night? 

More sociable 20.7% 21.7% 2.0% 

...you were much more 
interested in sex than usual? 

Higher libido 28.7% 33.9% 7.4% 

...you did things that were 
unusual for you or that other 
people might have thought were 
excessive, foolish, or risky? 

Risky behaviour 36.7% 36.8% 3.2% 

...spending money got you or 
your family into trouble? 

Reckless 
spending 

28.3% 29.3% 1.9% 

Note. “Affected” and “unaffected” refers to participants affected and unaffected by major depressive 
disorder (MDD) and/or an anxiety disorder. Each lifetime item is preceded with the question “Has there ever 
been a period of time when you were not your usual self and…”. Endorsement refers to the % of participants 
in the three analytical groups who endorsed the item. Participants who endorsed any of the lifetime MDQ 
items were then presented with the question “You ticked 'yes' to more than one of the previous symptoms 
- have several of these ever happened during the same period of time?”. The participants who answered 
“Yes'' were subsequently presented with a list of their previously endorsed MDQ items and were asked to 
“select all that occurred during the same period of time”. Note the difference in N between concurrent and 
lifetime groups (participants were excluded from the concurrent item analysis if they reported that fewer 
than two MDQ items occurred in the same time period). The reduction in overall N for this analytical group 
means that some of the concurrent symptoms appear to have a higher endorsement than the lifetime 
symptoms. 
 

Manic symptom subgroups  
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To identify symptom subgroups in the MDQ, we performed factor analyses of the concurrent and 

lifetime MDQ items (details in supplementary methods). 

  

We performed exploratory factor analysis (EFA) on 70% of each sample and selected the model 

with the best fit statistics. We then performed confirmatory factor analysis (CFA) on the remaining 

30%. The CFA model was predefined to that identified by EFA which provided a more stringent 

test of model fit compared to EFA. Factor scores were computed for each factor in the best-fitting 

model in the whole sample. Factor scores were transformed using a rank-based inverse normal 

transformation and then standardised (mean=0, standard deviation [SD]=1). All factor analyses 

were performed in R (details in supplementary methods). We also performed factor analysis of 

lifetime MDQ items in COPING NBR participants who were unaffected by MDD and/or an anxiety 

disorder (supplementary material). 

  
Validation of the Mood Disorder Questionnaire 
 

Phenotypic validation 
 
First, to assess the validity of the MDQ in our study sample, we calculated its sensitivity, 

specificity, positive predictive value (PPV) and negative predictive value (NPV) based on the 

participants' self-reported diagnoses of bipolar disorder by a professional. Note that these could 

only be calculated in GLAD participants. Second, based on the number of reported manic 

symptoms, we compared the mean reported items between participants who self-reported a 

diagnosis of bipolar disorder and those who self-reported no diagnosis. See supplementary 

methods for details on self-reported bipolar disorder diagnosis and the MDQ as a screener.  

 
Genetic validation 
 

We calculated the genetic correlation between the quantitative manic symptom phenotypes 

assessed via the MDQ with the largest GWAS of bipolar disorder from the Psychiatric Genomics 

Consortium (PGC) (Ncases=41,917, Ncontrols=371,549) (Mullins et al., 2021). In addition to bipolar 

disorder, we calculated genetic correlations with 34 other psychiatric and behavioural traits (table 
S3.11). To do this, we first had to perform genome-wide association studies (GWASs) of the 

quantitative manic symptom phenotypes and the symptom subgroups. 
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Genotyping, imputation, and quality control 

  
All data from GLAD and COPING NBR were genotyped by ThermoFisher on the Affymetrix UK 

Biobank Axiom Array v1 and v2 across numerous genotyping batches. Genetic data for GLAD 

and COPING NBR cohorts were separately subjected to quality control (QC) using the same 

pipeline (supplementary methods). For our specific analyses, additional QC was carried out. This 

included removing genotyped SNPs if missingness >5%, minor allele frequency (MAF)<0.01, or 

Hardy Weinberg Equilibrium p<10-10. SNPs imputed with low confidence (INFO<0.3) were also 

excluded. Individuals with missingness >5%, a mismatch between their self-reported assigned 

sex at birth and genetic sex, or whose genetic sex could not be determined were excluded. Lastly, 

one participant of each pair of duplicated participants between the GLAD and COPING NBR 

cohorts was excluded. 

  

Genome-wide association studies (GWASs) 

  

GWASs were conducted with a mixed linear model using REGENIE, which controls for between-

subject relatedness using whole-genome regression (Mbatchou et al., 2021). We included the 

first ten ancestry principal components and genotyping batch as covariates (principal component 

analysis plots in figure S3.18). We performed GWASs of the quantitative manic symptom 

phenotypes in participants who were affected by MDD and/or an anxiety disorder. First, we 

performed GWASs of the total number of concurrent manic symptoms and of the factor scores 

for each subgroup identified by the factor analysis in participants of European ancestry. Second, 

we performed GWASs of lifetime manic symptoms and of the factor scores for each subgroup 

identified by the FA in participants of European ancestry. 

  
SNP-based heritability and genetic correlations 

  

Linkage Disequilibrium Score Regression (LDSC) (Bulik-Sullivan et al., 2015) was used to 

estimate the SNP-based heritability (ℎ!"#$ ) of each manic symptom phenotype. The SNP-based 

heritability estimates were statistically significant if their p-value surpassed the Bonferroni-

corrected alpha of 0.006 (𝛼 = 𝟎.𝟎𝟓
𝟖

) which adjusted for the eight heritability estimates. LDSC was 

then used to calculate genetic correlations (rg) between each of the manic symptom phenotypes 

and 37 GWAS summary statistics of psychiatric and behavioural traits (table S3.11) using the 
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extended 1000 Genomes linkage disequilibrium LD scores. These traits were selected from our 

internal GWAS summary statistics database. We only included traits that were sufficiently 

powered (a heritability z-score>4 and a mean chi-square>1.02). To reduce the multiple testing 

burden, we selected the most well-powered GWASs when more than one trait, or similar traits, 

were available. Summary statistics were munged using LDSC and a list of SNPs from the 

extended 1000 Genomes phase three reference panel (1000 Genomes Project Consortium et al., 

2015) 

  

Eight sets of 37 genetic correlations were computed for each manic symptom phenotype. Within 

each set, the alpha value was adjusted to correct for multiple testing using the Bonferroni method 

giving an alpha value of 0.001 (𝛼 = 𝟎.𝟎𝟓
𝟑𝟕

). 

  

We also calculated inter-genetic correlations between the manic symptom phenotypes. Genetic 

correlations were significant if the p-value surpassed the Bonferroni-adjusted alpha of 0.008 (𝛼 =
𝟎.𝟎𝟓
𝟔

) to correct for six sets of inter-genetic correlations. 

  

Differences between genetic correlations 

  
We tested whether the genetics of the symptom subgroups were differentially associated with the 

genetics of other traits. For traits that were significantly genetically correlated with more than one 

subgroup and the overall sum score, we used a block-jackknife to calculate the standard error of 

the difference between pairs of genetic correlations. In a pairwise fashion, we first compared each 

trait’s genetic correlation with the overall sum score to that same trait’s genetic correlation with 

each of the subgroups. Second, we compared each trait’s genetic correlation with a particular 

subgroup to that same trait’s genetic correlation with another subgroup. Genetic correlations were 

significantly different to each other if the block-jackknife p-value surpassed the Bonferroni-

adjusted alpha (𝛼 = 𝟎.𝟎𝟓
𝟏𝟓

). The block-jackknife method applied to genetic correlations has been 

described elsewhere (Mundy et al., 2021). 
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Results 
 
 
Study sample 
  

A total of 52,108 GLAD and COPING NBR participants met criteria for MDD or any anxiety 

disorder. A total of 6,308 COPING NBR participants did not meet criteria for MDD and any anxiety 

disorder and 13,195 were excluded from analyses for not having complete data needed to 

determine lifetime MDD or anxiety disorder diagnoses. 

 
Manic symptoms 
  

Quantitative phenotypes were derived from answers to questions in the MDQ about the symptoms 

alone. A total of 47,787 participants with mood or anxiety disorders (N excluded=4,321) and 6,119 

unaffected participants (N excluded=189) had complete data for all 13 lifetime MDQ items. A total 

of 30,342 GLAD participants had complete data for all 13 concurrent MDQ items and endorsed 

more than one (flow-chart in figure S3.28). After inspecting a correlation matrix, the item “more 

active” had a correlation >0.8 with the item “more energy” (figures S3.1-S3.3). The item “more 

active” was removed due to the problems associated with including highly collinear items in factor 

analysis (Flora, Labrish and Chalmers, 2012). After the removal of this item, the total number of 

concurrent manic symptoms ranged 2-12 and the total number of lifetime manic symptoms ranged 

0-12. The N included in the concurrent items analysis dropped to 29,899 after we removed anyone 

whose sum score was equal to one after the removal of “more active”. 

  

The mean number of concurrent manic symptoms in participants affected by MDD and/or an 

anxiety disorder was 5.21 (SD=2.70). The mean number of lifetime manic symptoms was 5.30 

(SD=3.50) in participants affected by MDD and/or an anxiety disorder and 0.97 (SD=1.63) in 

unaffected participants. Demographic information for the three study samples for the quantitative 

manic symptom phenotypes and factor analysis are presented in table 3.2.  

  

Manic symptoms and self-reported bipolar disorder diagnosis  
 

Among 27,751 participants with complete data on concurrent MDQ items (range 2-12) and data 

on bipolar disorder diagnosis status, 2,464 (9%) self-reported a diagnosis. The mean number of 
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concurrent symptoms reported by participants with a diagnosis was 8.35 (SD=2.86). The mean 

number reported by participants without a diagnosis was 4.82 (SD=2.44) (t=-59.155, p<2.2x10-

16).  

 

Among 34,653 participants with complete data on lifetime MDQ items (range 0-12) and data on 

bipolar disorder diagnosis status, 2,614 (8%) self-reported a diagnosis. The mean number of 

lifetime symptoms reported by participants with a diagnosis was 10.62 (SD=2.83). The mean 

number reported by participants without a diagnosis was 6.35 (SD=3.28) (t=-73.101, p-

value<2.2x10-16). Descriptive statistics for the quantitative MDQ phenotypes in participants with 

and without a self-reported diagnosis of bipolar disorder are presented in table S3.1.  
  
Table 3.2. Demographic information for participants included in the three sets of analyses of the 
Mood Disorder Questionnaire (MDQ). 
From left to right these are: concurrent assessed manic symptoms in participants affected by major 
depressive disorder (MDD) and/or an anxiety disorder [range 2-12], middle), lifetime manic symptoms in 
participants affected by MDD and/or an anxiety disorder [range 0-12], and right), and lifetime manic 
symptoms in participants unaffected by MDD and/or an anxiety disorder [range 0-12]. 
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Figure 3.1. Distribution of Mood Disorder Questionnaire scores. 
A: distribution of the total number of concurrent manic symptoms reported by participants affected by major 
depressive disorder (MDD) and/or and anxiety disorder in the Mood Disorder Questionnaire (MDQ). B: 
distribution of the total number of lifetime manic symptoms reported by participants affected (yellow) and 
unaffected (blue) by major depressive disorder (MDD) and/or and anxiety disorder in the MDQ. Binary MDQ 
items (1=“Yes”, 0=“No”) were summed to create a quantitative sum score. The data originally included 13 
items but one of a pair of highly correlated items was removed. Therefore, concurrent items ranged 2-12 
and the lifetime items ranged 0-12. 
 

 
 
Manic symptom subgroups 
 

Manic symptom subgroups were identified with factor analyses (details and fit statistics in 

supplementary results).  

  

Concurrent manic symptom subgroups 
  
A total of 29,899 participants affected by MDD and/or an anxiety disorder were included in the 

factor analysis of concurrent MDQ items. Despite the scale’s Cronbach’s alpha being sufficient 

(table S3.2), results showed considerable evidence that the MDQ items, when measured 

concurrently, lacked internal consistency. Notably, there was a distinct pattern in the item-level 

correlations indicating that the items “concentration difficulties”, “racing thoughts”, and “irritability” 

did not correlate with other items (figure S3.2) (details in supplementary results). The 12 
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concurrent symptoms loaded onto three factors: energy/activity, impulsivity, and cognitive. The 

energy/activity and impulsivity factors correlated (r=0.54),  but neither correlated with the cognitive 

factor (figure 3.2; table S3.4b). The model was confirmed in CFA on the remaining 30% of the 

sample (N=8,970) and showed good fit statistics (table S3.5) (details in supplementary results). 
  

Figure 3.2. Factor analysis models of the Mood Disorder Questionnaire.  
A: Simplified diagram of the best-fitting model identified by the exploratory factor analysis (EFA) of 12 
concurrent manic symptoms reported by participants by major depressive disorder (MDD) and/or an anxiety 
disorder in the Mood Disorder Questionnaire (MDQ).  The model was confirmed with confirmatory factor 
analysis (CFA). EFA N=20,929, CFA N=8,970. B: Best-fitting model identified by EFA of 12 lifetime manic 
symptoms reported by participants affected by MDD and/or an anxiety disorder in the MDQ. Model was 
confirmed with CFA. EFA N=33,450, CFA N=14,337. Item loadings are presented in figure S3.2 and figure 
S3.5 and the correlations between the factors are presented in table S3.4b and table S3.7b. 
 

 
  

Lifetime manic symptom subgroups 
  
A total of 47,787 participants affected by MDD and/or an anxiety disorder were included in the 

factor analysis of lifetime MDQ items. After performing EFA in 70% of the sample (N=33,450) on 

12 items, a three-factor solution was selected as the final model because it had good fit statistics 

whilst retaining at least three items per factor (table S3.7). 

  

These three lifetime factors perfectly mirrored those identified in the concurrent analysis and were 

named accordingly (energy/activity, cognitive, and impulsivity). However, unlike the concurrent 

symptoms, the three subgroups correlated with each other (!"0.55) (figure 3.2; figure S3.10; 

table S3.7b). The model was confirmed in CFA on the remaining 30% of the sample (N=14,337) 

and showed good fit statistics (table S3.8) (details in supplementary results). 
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These results confirmed that the removal of “more active” from each analysis was justified. From 

inspecting the correlation matrices, it is clear that “more active” would have loaded onto the 

energy/activity, the largest factor, if it has been included. Therefore, even with this item being 

removed, energy/activity levels are well assessed by the MDQ. 

 
Validation of the Mood Disorder Questionnaire 
 
Phenotypic validation  
 

A total of 34,479 GLAD participants had complete data on their bipolar disorder diagnosis status 

and the MDQ screener. Using a cut-off at "#$%&'%(!!)'*$+,'-%$./+0*&+.1 the sensitivity of the 

MDQ screener was 0.58, the specificity was 0.89, the PPV was 0.29, and the NPV was 0.96.  

 

Genetic validation 
  

For the GWASs of concurrent MDQ-assessed manic symptoms, a total of 11,568 participants of 

European ancestries had genetic data available which passed the genotype and imputed data 

QC. The SNP-based heritability estimates from LDSC for the four concurrent manic symptom 

phenotypes ranged 3.8-6.8% but none were significantly different to zero (table S3.16). 

  

For the GWASs of lifetime MDQ-assessed manic symptoms, a total of 19,859 participants of 

European ancestries had available genetic data that passed the genotype and imputed data QC. 

The SNP-based heritability estimates for the four lifetime manic symptom phenotypes ranged 5.1-

7.6% and all were significantly different to zero (p<0.006) (table S3.16). Manhattan plots and 

quantile-quantile (QQ) plots, produced by the functional annotation and mapping software FUMA 

can be found in figures S3.19-S3.26 (Watanabe et al., 2017). 

  

Genetic correlations with bipolar disorder  

 

Against our hypothesis, we found weak genetic correlations between both of the quantitative 

manic symptom phenotypes (concurrent or lifetime) and bipolar disorder overall, type I, and type 
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II. None of these genetic correlations were significantly different to zero (table S3.14 and table 
S3.15).  

  

Genetic correlations with other traits 

  

As expected by the SNP-based heritability estimates (table S3.16), there was far stronger 

evidence of genetic influences on the lifetime symptoms compared to the concurrent symptoms. 

The concurrent manic symptom sum score and its three symptom subgroups were not genetically 

correlated with any of the psychiatric or behavioural traits (table S3.14). 

  

Contrastingly, we found significant genetic correlations between the lifetime manic symptom 

phenotypes and 16 psychiatric and behavioural traits (figure 3.3). The highest genetic correlation 

was between the overall sum score and PTSD (rg=1.04, p=0.0007). The symptom subgroups 

were not significantly correlated with PTSD (although their point estimates were similar to the sum 

score with p-values just below significance) [table S3.14]). 
  
Figure 3.3. Significant genetic correlations.  
Genetic correlations were computed by Linkage Disequilibrium Score Regression (LDSC; see methods). 
Genetic correlations, indicated by dots with standard errors indicated by the lines either side of each 
estimate, were calculated between genome-wide association study (GWAS) summary statistics of lifetime 
Mood Disorder Questionnaire (MDQ) phenotypes and GWAS summary statistics of psychiatric and 
behavioural traits. All genetic correlations presented here, apart from bipolar disorder overall, type I, and 
type II, were significant after correcting for multiple testing (p<0.001) (bipolar disorder is included for 
comparison only).  
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Note: ADHD=attention deficit hyperactivity disorder, PTSD=posttraumatic stress disorder, BMI=body mass 
index, MDD=major depressive disorder, BD=bipolar disorder, BD I=bipolar disorder type 1, BD II=bipolar 
disorder type II. PTSD (military) and PTSD symptoms (military) refer to two GWASs of United States military 
subjects from the Million Veteran Program (MVP). PTSD refers to a GWAS of PTSD from the Psychiatric 
Genomics Consortium; PGC2). MDD refers to a GWAS of MDD from the PGC; PGC2 excluding 23andMe. 
Information about all the summary statistics used in our analysis, including the original publication and N, 
can be found in Table S3.11. 
 
 Differences between genetic correlations 

  

Of the 16 traits which had a significant genetic correlation (p<0.001) with at least one of the lifetime 

manic symptom phenotypes, 15 were significantly genetically correlated with more than one 

symptom subgroup as well as the overall sum score. These were PTSD (military), PTSD 

symptoms (military), self-rated health, ADHD, insomnia, household income, depressive 

symptoms, ever smoker, years of education, anhedonia, MDD, BMI, general risk tolerance, 

number of sexual partners, and cognitive ability (table S3.15). We carried forward these 15 traits 

to a block-jackknife to test for significant differences a) between each subgroup and the overall 

sum score and b) between the subgroups themselves. 

  

Genetic correlations were significantly different to each other if the block-jackknife p-value 

surpassed the Bonferroni-adjusted alpha of 0.003 (𝛼 = 𝟎.𝟎𝟓
𝟏𝟓

). When compared to the traits’ genetic 
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correlations with the overall manic symptom sum score, none of the genetic correlations with the 

symptom subgroups differed significantly. Likewise, when compared to the traits’ genetic 

correlations with other symptom subgroups, none of the genetic correlations differed significantly 

(table S3.17). 

 

Genetic correlations between manic symptom phenotypes 

  

The concurrent manic symptom sum score was significantly genetically correlated with the 

concurrent energy/activity factor (rg=0.93, p=4.20x10-29) and the concurrent impulsivity factor 

(rg=0.89, p=2.47x10-18) but not with the concurrent cognitive factor (rg=-0.60, p=0.21). 

  

Mirroring the phenotypic correlations between the symptom subgroups (table S3.4b), the 

concurrent energy/activity factor and concurrent impulsivity factor were significantly genetically 

correlated (rg=0.89, p=1.68x10-18), but the concurrent cognitive factor was not significantly 

genetically correlated with the concurrent energy/activity factor (rg=-0.66, p=0.04) or concurrent 

impulsivity factor (rg=-0.40, p=0.42) (table S3.12). 

  

The lifetime manic symptoms sum score was significantly genetically correlated with all three of 

its symptom subgroups (with energy/activity rg=1.00, p<0.008; with cognitive rg=1.01, p<0.008; 

with impulsivity rg=1.02, p<0.008) (table S3.13). 

  

Reflected by the phenotypic correlations between the symptom subgroups (figure S3.4), the 

lifetime symptom subgroups were all significantly genetically correlated with each other in a 

positive direction (energy/activity with cognitive rg=0.97, p=7.64x10-223; energy/activity with 

impulsivity rg=1.02, p<0.008; cognitive with impulsivity rg=1.03, p=1.30x10-175) (table S3.13). 

Discussion 
 
 
We assessed the validity of the MDQ as a screening tool for bipolar disorder in a large sample of 

individuals affected by mental health problems, which is the population that the MDQ was 

designed for use in. Taking into account the number, co-occurrence, severity, and duration of 

symptoms, the MDQ screener (using a cut-off of "#$-*)+.1$,.$.(22).*)3$4/$*5)$678$3)9):&0)!.$

(Hirschfeld et al., 2000, 2003)) showed mediocre sensitivity (0.58) and high specificity (0.89). The 
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PPV was very poor (0.29). Our results showed that the MDQ may comprise three factors: 

energy/activity, impulsivity, and cognitive. When measured as concurrent symptoms, the MDQ 

items showed poor internal consistency with the cognitive factor not correlating with the 

energy/activity or the impulsivity factor. In our genetic analyses, the quantitative concurrent MDQ 

items were not heritable. When examining lifetime experience of the MDQ items (i.e., not 

specifying concurrence), the quantitative score and the three factors showed weak but significant 

SNP-based heritability. Lifetime MDQ items were genetically correlated with 16 other phenotypes, 

with the strongest correlation being with PTSD. An unexpected finding was the absence of 

significant genetic correlation with bipolar disorder overall, type I, and type II. 
 

Very few studies have investigated the latent factor structure of the MDQ (Martino, Valerio and 

Parker, 2020). One previous study found two latent factors: energised-activity and irritability-

racing thoughts (Benazzi and Akiskal, 2003). While they reported a dual factor structure to the 

MDQ (although they only included six of the items), we found that both the concurrent and lifetime 

comprised three factors: energy/activity, cognitive, and impulsivity. In terms of similarities, the 

items which loaded onto their irritability-racing thoughts factor were the same as the items which 

loaded onto our cognitive factor (“irritability”, “racing thoughts”, “concentration difficulties”). 

Likewise, their energised-activity factor contained three items (“more active”, “more energy”, and 

“decreased sleep”) which loaded onto our energy/activity factor. However, we also found that four 

additional items loaded onto this factor (“more sociable”, “more self-confidence”, “hyperactivity”, 

and “more talkative”). 

  

The concurrent items showed poor internal consistency. An unexpected observation was that the 

items in the concurrent cognitive factor (“irritability”, “concentration difficulties”, and “racing 

thoughts”) did not correlate with the other two factors (figure 3.2). This separation from the other 

items was also found when we performed a one-factor EFA to check that all the items represented 

a unified latent construct. Here, the items in the cognitive factor did not load onto the single factor 

along with the other items (table S3.3; figure S3.4). This was also reflected in the genetic results. 

This is troubling given that these items constitute part of a validated scale (Hirschfeld et al., 2000). 

  

One explanation for this finding is that irritable mood, racing thoughts, and problems concentrating 

do not coincide with the other manic symptoms assessed in the MDQ. An alternative and more 

probable explanation, given that it is unusual to have items in a psychometric scale that are not 

correlated with each other, concerns recall and memory bias. Potentially, the participants were 
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able to accurately recall that they have experienced these types of psychiatric problems at some 

point during their lifetime but failed to recognise that these symptoms occurred at the same time 

as the other MDQ items. This would explain why these three concurrent MDQ items were not 

correlated with all remaining items and branched as their own independent subgroup (figure 3.2). 

The characteristics of the study sample may also play a role. The experiences asked about in the 

“irritability”, “racing thoughts”, and “concentration difficulties” items are common features of both 

anxiety and depression (Faravelli et al., 2012; Vidal-Ribas et al., 2016). Of note is the fact that 

they were the most endorsed symptoms (table 3.1). It is likely that these symptoms are not 

specific to mania in this study sample. This may explain why they were generally not reported 

alongside other symptoms. 

  

We found that the genetics of the items in the MDQ, measured continuously either as concurrent 

or cumulative lifetime symptoms, were not genetically correlated with bipolar disorder overall, type 

I, or type II. This was contrary to our hypothesis that all of the quantitative MDQ-assessed manic 

symptom phenotypes would show significant, positive genetic correlations with bipolar disorder. 

We anticipated that the effect size would be larger for concurrent items since co-occurrence of 

hypomanic or manic symptoms within the same four days or week, respectively, is a requirement 

for DSM-5 diagnosis (American Psychiatric Association, 2013) and a positive screen in the MDQ 

(Hirschfeld et al., 2000). There are several possible explanations for this unexpected finding.  

  

First, the quantitative phenotypes were made by summing the number of MDQ items that a 

participant reported (answer options were “Yes” or “No”). Therefore, the composite scores simply 

reflect the number of manic symptoms a person has experienced and do not capture any 

information about the severity or duration of the symptoms (these are separate questions in the 

MDQ). Comparing quantitative scores between those who do and do not self-report a diagnosis 

of bipolar (table S3.1) does seem to suggest that the number of reported MDQ items is relevant 

for bipolar disorder. However, in the absence of information about duration and severity, it is 

possible that these quantitative phenotypes do not reflect hypomania/mania experienced in 

bipolar disorder. The bipolar disorder GWASs used for genetic correlations were from the most 

recent PGC analysis, with cases that had clinically diagnosed bipolar disorder. The DSM-5 

stipulates that hypomanic or manic symptoms must be present for four days or one week for a 

diagnosis of bipolar type II or type I, respectively, to be given. For bipolar disorder type I, a 

diagnosis can only be made when the “mood disturbance is sufficiently severe to cause marked 

impairment in social or occupational functioning” (American Psychiatric Association, 2013). 
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Therefore, the phenotype of the PGC GWAS relates not just to the number of symptoms but also 

their duration and associated impairment. By contrast, the GWASs performed in our study only 

captured the number of symptoms a participant had experienced. These phenotypes therefore 

tell us nothing about whether the participant has experienced no clinically relevant symptoms, 

subthreshold symptoms, hypomania, or mania.  

 

In support of this conclusion is the genetic correlation of 0.38 with depressive symptoms in the 

most recent PGC bipolar disorder GWAS (Mullins et al., 2020). Since bipolar disorder involves 

both depressive and manic episodes, we expected bipolar disorder to show a similarly high 

genetic correlation with manic symptoms in our study. A crucial difference between our 

quantitative mania scores and the depressive symptom score was that information about severity 

and duration were included in the latter; depressive symptoms were assessed with two items from 

the nine item Patient Health Questionnaire (PHQ9) and the answer options were “Not at all”, 

“Several days”, “More than half the days”, “Nearly everyday” (Okbay et al., 2016). By contrast, 

the individual MDQ items can be answered with “Yes” or “No”, while two separate questions 

measure duration and severity. Therefore, it is not straightforward to construct a quantitative 

hypomania/mania phenotype with the MDQ without applying the same severity and duration to all 

endorsed items.  

  

The second possible explanation for our lack of genetic correlation with bipolar disorder relates 

to the type of genomic methodology that we applied to the MDQ. GWASs are only able to capture 

additive genetic risk from the SNPs in the genotyping or imputation panel. Similar to our results, 

the study of the MDQ by Hosang et al. (2022) found that MDQ-assessed hypomania was not 

significantly genetically correlated with bipolar disorder PRS, but they did find a positive and 

significant twin-based genetic correlation (Hosang et al., 2021). A study by Mistry et al. (2019) 

reported a similar result. Hypomania, assessed via the Hypomania Checklist 32, was not 

significantly associated with bipolar disorder PRS (Mistry et al., 2019). Taken together with the 

results of our study, it may be the case that common variant influences on hypomania/mania are 

not the same as those influencing bipolar disorder. Other sources of genetic variation, such as 

rare variants, could drive shared genetic influences between the two but these would not be 

captured by GWAS or PRS methods.  

 

The final possible explanation for the lack of positive genetic correlation with bipolar disorder is 

that the MDQ is not a valid measure of hypomania/mania in our study sample. Most studies 
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reporting high sensitivity and specificity of the MDQ screener include participants with well-

established mood disorder diagnoses, who are stabilised, or undergoing treatment. 

Consequently, their insight into the clinical utility of the MDQ in classifying bipolar disorder among 

outpatients, or those presenting with a variety of psychiatric complaints and unknown diagnoses, 

is limited (Zimmerman et al., 2009). The few studies that have investigated this report sensitivity 

values of 46-64% and specificity values of 65-83% (Hardoy et al., 2005; Konuk et al., 2007; 

Gervasoni et al., 2009; Zimmerman et al., 2009). Therefore, nearly half of individuals with bipolar 

disorder, in the population that the MDQ was designed for, could screen negatively, and a 

significant proportion who do not have bipolar disorder could screen positively. In our study, the 

sensitivity of the MDQ as a screener was similar to these previous studies at 0.58, and the 

specificity was good at 0.89. The PPV was low at 0.29. This suggests that, while the MDQ 

performed well at identifying participants without bipolar disorder, it falsely identified lots of 

participants as having bipolar disorder when they actually do not.  

 

The MDQ has poorer accuracy in identifying bipolar type II compared to type I (Hirschfeld et al., 

2000; Hardoy et al., 2005; Gervasoni et al., 2009; Zimmerman et al., 2009). This, combined with 

the fact that the MDQ performs more poorly in community samples compared to clinical samples 

(Miller, Johnson and Eisner, 2009), suggests that symptom severity is an important factor dictating 

the psychometric properties of the MDQ. Due to the characteristics of our study sample, some of 

the MDQ items were very highly endorsed (table 3.1). This could be because, among individuals 

with MDD and/or anxiety, they ask about relatively common experiences rather than symptoms 

of hypomania/mania. This is supported by the finding that MDQ overestimated the prevalence of 

bipolar disorder in our study sample (PPV of 0.29). Overall, it is possible that the items in the 

MDQ are not capturing hypomanic/manic symptoms with much precision. This may also be a 

factor influencing our genetic correlation results; lack of specificity to hypomania/mania could 

have led to noise into our phenotypes which, as a result, may have diluted the MDQ’s genetic 

sharing with bipolar disorder.  

 

Viewing our genetic correlation results overall, there is no obvious pattern. It appears that the 

MDQ items are indexing many traits. Significant genetic correlations were found with MDD, 

depressive symptoms, insomnia, anhedonia, and PTSD symptoms, as well as with risk-taking 

and smoking. Although the genetic correlation between lifetime MDQ items with PTSD was high, 

notably this was not confirmed by its phenotypic correlation with PTSD symptoms measured in 

the same participants (supplementary material). In table 3.1, there is a notable difference in 
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endorsement of the MDQ items between participants affected and unaffected by MDD and 

anxiety. One explanation for this is that a proportion of the affected participants have undiagnosed 

bipolar disorder and therefore report more of the MDQ items. However, given the psychometric 

properties of the MDQ screener in our study, a more likely explanation is that the MDQ items are 

capturing non-specific aspects of mental illness. Combined with the genetic correlation results, 

this suggests that, among individuals with MDD and/or anxiety, the MDQ captures symptoms of 

general distress or psychopathology rather than mania specifically.  

 

A strength of our study was that we were able to measure manic symptoms quantitatively within 

individuals with experience of MDD or anxiety. Previous GWASs that have isolated mania for 

genetic analyses have dealt with the phenotype as a binary variable which often incurs a loss of 

statistical power (Greenwood, Bipolar Genome Study (BiGS) Consortium and Kelsoe, 2013; Lee 

et al., 2013). Another strength was the measurement of two different types of manic symptoms: 

concurrent and lifetime symptoms. Our findings suggest that the internal consistency of 

concurrent MDQ items is compromised when applied to at-risk populations, possibly due to recall 

and memory biases. The process of screening via the MDQ involves participants self-reporting 

their symptoms. Our findings suggest that this may be inadequate, especially for individuals who 

are presenting with symptoms of anxiety and/or depression, due to poor recall of their experience 

of “irritability”, “racing thoughts”, and “concentration difficulties”. This may have implications for 

the application of the MDQ as a bipolar disorder screener to these individuals.  

  

Our conclusions should be considered in light of several limitations. First is the relatively modest 

size of our study sample for genetic analyses compared to modern GWAS standards. This may 

have impacted statistical power, especially in the GWASs of concurrent symptoms (which had an 

already attenuated sample size). Second, the criteria for the MDQ screener was based upon 

symptoms causing “moderate” or “severe” functional impairment (Hirschfeld et al., 2000, 2003). 

Therefore, it is possible that some individuals with bipolar disorder type II may have been missed. 

However, even with possible under recognition of type II, the MDQ screener showed an 

overestimation of bipolar disorder cases in our study sample. Third, the GLAD study is a cohort 

with generally severe symptomatology, and we cannot generalise to individuals with milder forms 

of MDD and anxiety (Davies et al., 2019). These sample characteristics also meant that the SNP-

based heritability estimates were difficult to interpret, as they depend on the population in which 

the phenotype is measured. Since we did not use a general population sample, it is difficult to 

gauge what the SNP-based heritability represents in our study. Another way to measure 



124 

hypomania/mania’s SNP-based heritability would be to perform GWAS of bipolar disorder type 

I/type II vs. MDD. However, some eventually convert to bipolar disorder from MDD (Angst et al., 

2005; Baryshnikov et al., 2020) which means that we may inadvertently include “hidden” bipolar 

disorder cases in the MDD comparison group which would dilute the genetic signal of mania. This 

point relates to a final limitation that our assessment of bipolar disorder was based on self-reports. 

Calculations of sensitivity, specificity, PPV, and NPV should be made against a “gold-standard” 

reference (e.g., a diagnosis from a clinical interview). Given that bipolar disorder can go 

undiagnosed for up to ten years (Hirschfeld, Lewis and Vornik, 2003; Mantere et al., 2004; 

Drancourt et al., 2013) and unipolar depression is the most likely misdiagnosis (Hirschfeld, Lewis 

and Vornik, 2003) the eligibility criteria of the GLAD study means that it is highly probable that a 

proportion of the participants have undiagnosed bipolar disorder. This may have contributed to 

the seemingly low PPV (0.29). 

 

Overall, our study adds to existing literature questioning the MDQ’s validity by showing that, 

among individuals with MDD and/or anxiety, the items alone capture dimensions of general 

psychopathology rather than hypomania/mania. Furthermore, our results question the concurrent 

items’ internal consistency. Researchers using the MDQ to measure bipolar disorder in 

epidemiological studies or biobanks should be cautious of its ability to accurately index symptoms 

of hypomania/mania and should consider ways to incorporate symptom severity and duration into 

their phenotyping method. 
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Abstract  

 
Background: Anhedonia is a core symptom of major depressive disorder (MDD) but also 

presents transdiagnostically. Anhedonia has been proposed as a risk factor for poor response to 

antidepressants in those who have MDD. Anhedonia has a heritable basis.  

 

Aims: We aimed to investigate whether anhedonic symptoms share genetic overlap with 

treatment-resistant depression, antidepressant response, and other traits including MDD.  

 

Methods: We measured anhedonic symptoms in participants in the COVID-19 Psychiatric and 

Neurological Genetics (COPING) study. We used the anhedonic depression subscale of the 30-

item Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30) to create a continuous score 

representing anhedonic symptoms (range 0-40). We performed a genome-wide association study 

and calculated genetic correlations with other psychiatric and behavioural traits, including 

measures of treatment resistance and treatment response in MDD. We compared our GWAS of 

anhedonic symptoms to a previous GWAS of the single anhedonia item from the nine item Patient 

Health Questionnaire (PHQ9). 

 

Results: Anhedonic symptoms had a SNP-based heritability of 8% and a genetic correlation (rg) 

of 0.45 with the previous single item PHQ9 anhedonia GWAS. The phenotypic correlation was 

higher at 0.59. Anhedonic symptoms did not have significant genetic correlations with treatment-

resistant depression or antidepressant response, but had positive genetic correlations with 
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depressive symptoms (rg=0.71), anxiety (rg=0.50), and neuroticism (rg=0.46), and negative 

genetic correlations with self-rated health (rg=-0.42), and risk-taking behaviour (rg=-0.28).  

 

Conclusion: We found no evidence to suggest that anhedonic symptoms share genetic overlap 

with either treatment response in MDD. The AD-MASQ-D30 is a more detailed method of 

assessing anhedonia than the single PHQ9 item due to the inclusion of ten items each rated 0-4. 

The AD-MASQ-D30 may be better able to capture anhedonia distinct from MDD than the single 

anhedonia item from the PHQ9 (range 0-3).  

Introduction 

 

Anhedonia, a cardinal symptom of major depressive disorder (MDD), is defined in the the 5th 

edition of the Diagnostic Statistical Manual of Mental Disorders (DSM-5) as “markedly diminished 

interest or pleasure in all, or almost all activities most of the day, nearly every day” (American 

Psychiatric Association, 2013). Anhedonia was implicated as a risk factor for poor treatment 

outcomes, including longer time to remission and fewer depression-free days, in 12-18 year olds 

with MDD (McMakin et al., 2012). In a study of 811 participants being treated for moderate to 

severe MDD, baseline interest-activity symptoms (created to represent anhedonic symptoms 

across multiple measures of depression) were associated with lower likelihood of remission 

irrespective of depression severity, type of prescribed antidepressant, and type of scale used to 

measure depressive symptoms (Uher et al., 2012). Therefore, knowledge of a patient’s propensity 

for experiencing anhedonia may be useful for predicting treatment response in MDD.   

 

As well as MDD, anhedonia is observed in many other forms of psychopathology including 

schizophrenia (Horan, Kring and Blanchard, 2006), obsessive compulsive disorder (OCD) 

(Abramovitch et al., 2014; Li et al., 2019), and some anxiety disorders (Winer et al., 2017). 

Anhedonia is also present in neurological disorders such as Parkinson’s disease (Loas, 

Krystkowiak and Godefroy, 2012), and epilepsy (Roberts-West, Vivekananda and Baxendale, 

2022), and is a risk factor for greater impairment in Alzheimer’s disease (Natta et al., 2013). 

Additionally, anhedonia is a symptom often reported by trauma-exposed individuals, such as 

those with posttraumatic stress disorder (PTSD) (American Psychiatric Association, 2013). 
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Anhedonia is heritable (Bogdan and Pizzagalli, 2009; Liu et al., 2016) but few studies have 

explored its genetic basis. The largest study analysed data from the UK Biobank. Participants 

were asked to complete the nine item Patient Health Questionnaire (PHQ9) as part of the baseline 

assessment which assessed current depression symptoms (Kroenke, Spitzer and Williams, 

2001). The PHQ9 included a single question aimed at capturing anhedonia: “Over the past two 

weeks, how often have you had little interest or pleasure in doing things?”. Numeric answers 

(ranging 0-3) were then used as an ordinal phenotype in a GWAS of 375,275 participants of 

European ancestries. This phenotype had a SNP-based heritability of 5.6% and significant, 

positive genetic correlations with MDD, bipolar disorder, and schizophrenia. The GWAS identified 

11 loci, some of which had been previously implicated in MDD (e.g., NCAM1 on chromosome 11), 

schizophrenia (e.g., PRKD1 on chromosome 14, and NRG4 on chromosome 15), mood instability, 

and suicidality (e.g., DCC on chromosome 18) (Ward et al., 2019). 

 

While a strength of this study was the large sample size, the authors recognised that relying on a 

single item to measure a trait as complex as anhedonia is insufficient. Research has shown that 

the experience of anhedonia, although a symptom of depression on its own, is complex and 

involves a number of different dimensions (Thomsen, 2015; Winer, Jordan and Collins, 2019). In 

addition, the PHQ9 was only assessed at one time point and external factors influencing 

participant answers (such as season or current health status) were not controlled for. 

Furthermore, genetic correlations were estimated only with MDD, bipolar disorder, schizophrenia, 

Parkinson’s disease, and OCD. These psychiatric and neurological disorders were selected a 

priori because anhedonia is sometimes reported by individuals affected by them. Therefore, 

significant genetic associations with other traits may have gone unnoticed.  

 

To overcome the limitations of Ward et al. (2019) and to better understand the genetic basis of 

anhedonia, there is a need to perform a well-powered GWAS with a detailed and valid measure 

from multiple time points. Additionally, an exploration into whether anhedonia shares genetic 

variants with a broader range of traits than has already been measured is needed, especially with 

MDD treatment response. To address this, we analysed mental health and genetic data from a 

large cohort of individuals affected and unaffected by MDD or anxiety disorders in the United 

Kingdom (UK). We measured anhedonic symptoms quantitatively with a validated ten-item scale, 

estimated its SNP-based heritability, and calculated genetic correlations with 42 traits, including 

two measures of treatment-resistant depression and two measures of antidepressant response. 
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We aimed to elucidate whether the relationship between anhedonia and treatment-response in 

MDD is partly rooted in shared genetic risk factors. 

Methods  

 

All code is available on GitHub (https://github.com/tnggroup/genetics_anhedonia). This study was 

pre-registered on the Open Science Framework (https://osf.io/pb769/).  
 
Study sample 

 

Anhedonic symptoms: Data were analysed from participants in the mental health arm of the 

National Institute of Health and Care Research (NIHR) BioResource in the UK who took part in 

the COVID-19 Psychiatry and Neurological Genetics (COPING) study. Collectively, this cohort 

comprises participants from three independent cohorts: the Genetic Links to Anxiety and 

Depression (GLAD) study, the Eating Disorders Genetics Initiative (EDGI), and participants from 

the NIHR BioResource (NBR). Recruitment for the GLAD study began in September 2018 and 

was conducted via social media campaigns and NHS sites. GLAD participants were recruited 

based on having lifetime experience of an anxiety or depressive disorder. EDGI participants were 

recruited from February 2020 based on having lifetime experience of an eating disorder. NBR 

participants were recruited via existing research studies (table S4.10) and included individuals 

affected and unaffected by mental illnesses. Henceforth, these individuals will be referred to as 

COPING participants.  

 

Baseline invitations to participate in the COPING study were first sent to existing GLAD, EDGI, 

and NBR participants on 30th April 2020 with all invites sent by 11th May 2020. Invitations were 

sent to newly enrolled (i.e., not already enrolled on 30th April 2020) GLAD and EDGI participants 

periodically throughout the pandemic with the last round of invites sent on 19th January 2021. 

Individuals were eligible to participate if they were aged 16+ and lived in the UK. All participants 

provided demographic information, detailed mental health information, and a saliva or blood 

sample. Surveys were sent to participants every 14 days until the 28th July 2021, at which point 

they were sent every 28 days.  
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Treatment-resistant depression: Treatment-resistant depression was defined based on data 

collected when the participants completed the GLAD sign-up survey. We analysed data from 

participants who completed the GLAD study sign-up (for staged treatment-resistant depression) 

or COPING baseline survey (for anhedonic symptoms) between 17th September 2018 and 3rd 

September 2021 and had available genetic data. 

 
Ethics  
 
Informed consent was obtained from all participants. Ethical approval for the GLAD study was 

granted by the London-Fulham Research Ethics Committee (REC reference: 18/LO/1218). 

Ethical approval for COPING was granted by the NHS Health Research Authority, South West - 

Central Bristol Research Ethics Committee (20/SW/0078). 
 
Main measures 
 
Current anhedonic symptoms  
 
As part of the repeated assessment of mental health in the COPING study, participants 

answered questions from a subscale in the 30-item short adaptation of the Mood and Anxiety 

Symptoms Questionnaire (MASQ-D30) every two weeks. The original MASQ was developed by 

Clark & Watson (1999) to represent their tripartite model of anxious, depressive, and somatic 

symptoms (Clark and Watson, 1991). The subscale included ten questions about “feelings, 

sensations, problems, and experiences that people sometimes have” over the past two weeks 

(table 4.1). Participants could answer with the following options: “Not at all”, “A little bit”, 

“Moderately”, “Quite a bit” and “Extremely”. These statements refer to different aspects of 

positive affect (table 4.1). When these items are reverse scored, thus representing a lack of 

positive affect, they are a valid and internally consistent measure of symptoms of anhedonic 

depression (Wardenaar et al., 2010). Henceforth, this subscale will be referred to as the 

“anhedonic depression subscale of the MASQ-D30” (AD-MASQ-D30). 

At each completed COPING survey, we reverse coded the numeric answers for each participant 

[4-0] and summed them. This resulted in a sum score for each participant ranging 0-40 which 

represented the severity of anhedonic symptoms, with higher scores representing more severe 

levels of anhedonia. Note that participants with any item(s) missing were removed from the 
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creation of a sum score. They were therefore deemed as “missing” for that particular COPING 

survey.   

Exclusions: We first excluded participants who had complete data on the AD-MASQ-D30 at 

fewer than three COPING survey time points. Following this, we excluded anyone who’s genetic 

data did not pass the standard genotype quality control (QC) (more details in supplementary 

methods). More detail about the rationale behind the exclusion criteria and genotype QC is 

presented in the supplementary methods.  

The AD-MASQ-D30 was included at each COPING survey time point throughout the pandemic 

so the majority of participants had data about their anhedonic symptoms at more than one point 

in time. We therefore created three phenotypes for GWASs from the participants’ available data. 

These were scores representing each participant’s highest, lowest, and mean anhedonic 

symptoms. A flow-chart depicting each stage of exclusions can be found in table S4.10. 

Treatment-resistant depression 

 

Response to antidepressants is  not a dichotomous phenotype (Sforzini et al., 2021), although it 

is often referred to as so. To address this, tools have been designed to measure treatment 

resistance continuously, which takes into account variability in response to treatments. One such 

method is the Maudsley Staging Method (MSM) (Fekadu et al., 2009). The MSM uses a points-

based system in three domains: 1) severity of illness, 2) duration of presenting illness, and 3) 

treatment response. The MSM was included in the GLAD study baseline survey and participants 

were eligible to answer the scale if they were currently experiencing a depressive episode (i.e., a 

severity score of 1/“mild” or more on the PHQ9). The questions included in the MSM are presented 

in table S4.1 and the supplementary methods. The first domain, severity of the presenting 

depressive episode, was assessed via the PHQ9 at the same time the MSM was completed 

(Kroenke, Spitzer and Williams, 2001).  

Exclusions: We excluded anyone who had missing data on either the PHQ9 or the MSM. This 

included participants who were not currently depressed at the time of completing the GLAD survey 

(i.e., a PHQ9 severity score of 0/”None”) and therefore did not complete the MSM. It also included 
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participants who reported that they had not taken any antidepressants for six weeks or longer for 

their current or most recent depressive episode (these participants were not shown the next 

question about add-on/augmentation medications). Individuals who have experienced depression 

may appear treatment-resistant if they have undiagnosed bipolar disorder (McAllister-Williams et 

al., 2018). We wanted to maximise the chance that all individuals in our GWAS sample were 

affected by major depressive disorder and not bipolar disorder. (Individuals were eligible to 

complete the MSM if they were currently depressed at the time of completing the GLAD study 

survey. This means that individuals with bipolar disorder who happened to be in a depressive 

episode answered the MSM). Therefore, we retained participants who self-reported that they had 

NOT received a diagnosis of bipolar disorder in BOTH of these questions. Following this, we 

excluded anyone who’s genetic data did not pass the standard genotype QC. More detail about 

the rationale behind the exclusion criteria and genotype QC is presented in the supplementary 

methods. A flow-chart depicting each stage of exclusions can be found in table S4.11. 

In those who completed all questions of the MSM, we summed their answers to create a score 

(ranging 2-10). This was then added to their PHQ9 severity score (ranging 1-4). Thus, their score 

(ranging 3-14) represented levels of treatment resistance which also took into account the severity 

of their presenting depressive episode. A more detailed explanation of how staged treatment-

resistant depression was phenotyped in the GLAD study is presented in the supplementary 

methods.  

Additional measures for phenotypic analyses 

We calculated phenotypic correlations between participants’ highest anhedonic symptoms and 

their concurrent depression and anxiety symptoms (i.e., that they were experiencing at the time 

of their highest anhedonia score). We also calculated the correlation between the participants’ 

highest anhedonic symptoms measured with the AD-MASQ-D30 and their concurrent anhedonia 

measured by the single PHQ9 item: “Over the past two weeks, how often have you had little 

interest or pleasure in doing things?”. This was the same phenotype used for the Ward et al. 

(2019) GWAS of anhedonia (Ward et al., 2019). A correlation matrix of Pearson's product-moment 

correlations was computed using R.  

Current depression symptoms  
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Current depression symptoms were measured continuously with the PHQ9 (Kroenke, Spitzer and 

Williams, 2001), which asked questions relating to mood and feelings that participants may have 

experienced over the past two weeks. Participants could answer with the following: “Not at all”, 

“Several days”, “More than half the days”, and “Nearly every day” which were coded as 0, 1, 2, 

and 3 respectively. Numeric answers were summed to create a continuous measure of current 

depression symptoms ranging 0-27 at each COPING survey, with higher values reflecting more 

severe symptoms.   

 

Current anxiety symptoms  
 

Current generalised anxiety symptoms were measured continuously with the seven item 

Generalised Anxiety Disorder questionnaire (GAD7) (Spitzer et al., 2006), which asked questions 

relating to “problems” that participants may have experienced over the past two weeks. 

Participants could answer with the following: “Not at all”, “Several days”, “More than half the days”, 

and “Nearly every day” which were coded as 0, 1, 2, and 3 respectively. Numeric answers were 

summed to create a continuous measure of current anxiety ranging 0-21 at each COPING survey, 

with higher values reflecting more severe symptoms. 

 

Similarly to anhedonic symptoms, participants with any item(s) missing at a COPING survey were 

removed from the creation of a symptom sum score. They were therefore deemed as “missing” 

for that particular COPING survey.  
 
Genetic analyses 
 
Genotyping, imputation and quality control 
 
All data from GLAD and COPING NBR were genotyped by ThermoFisher on the Affymetrix UK 

Biobank Axiom Array v1 and v2 across numerous genotyping batches. Genetic data for the GLAD 

and NBR cohorts were separately subjected to QC with the same pipeline. For our specific 

analyses, additional QC was carried out (see supplementary methods for QC pipeline and 

analyses-specific QC).  

 
Genome-wide association studies 
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First, we conducted GWASs of the COPING participants’ lowest, highest, and mean anhedonic 

symptoms using a mixed linear model with REGENIE, which controls for between-subject 

relatedness using whole-genome regression (Mbatchou et al., 2021). Second, we conducted a 

GWAS of staged treatment-resistant depression in GLAD participants, also using a mixed linear 

model with REGENIE. We included the first ten ancestry principal components (PCs) and 

genotyping batch as covariates.  

A previous GWAS of treatment-resistant depression recommended combining cohorts to increase 

statistical power to detect and replicate genetic variants (Li et al., 2020). Therefore, we meta-

analysed our results with a previous GWAS of binary treatment resistant depression assessed 

from primary care records in the UK Biobank (treatment-resistant depression vs. non treatment-

resistant depression; Ncases=2,165, Ncontrols=14,207, Ntotal=16,372) (Fabbri et al., 2021). We used 

METAL for the meta-analysis with p-values and directions of SNP effects as inputs. We allowed 

for heterogeneity. We filtered the resulting summary statistics to keep SNPs which were present 

in both sets of input GWAS summary statistics.  

The three resulting GWAS summary statistics were each inputted into the Functional Annotation 

and Mapping (FUMA) software (Watanabe et al., 2017) to produce Manhattan plots, quantile-

quantile (QQ) plots, and to investigate whether any gene-based associations reached statistical 

significance. Gene-based associations were computed by the Multi-marker Analysis of GenoMic 

Annotation (MAGMA) software.   

 
SNP-based heritability  

We estimated the SNP-based heritability with individual-level data using genomic relatedness–

based restricted maximum likelihood (GREML) in the software Genome-wide Complex Trait 

Analysis (GCTA) (Yang et al., 2011). GCTA uses all genotyped SNPs and a genetic-relatedness 

matrix (GRM) to estimate the variance explained by the genotyped SNPs regarding a particular 

complex trait while controlling for gross genetic similarity (i.e., relatedness) between participants. 

The GRMs were adjusted for incomplete tagging of causal SNPs and then pruned for relatedness 

(i.e., one of a pair of individuals with estimated relatedness larger than or equal to a pi-hat of 0.05 

was removed). Since GCTA-GREML requires individual-level genotype data, we were not able to 

calculate GCTA-heritability of meta-analysed GLAD-UK Biobank treatment-resistant depression.  
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We also calculated SNP-based heritability estimates using Linkage Disequilibrium Score 

Regression (LDSC) (Bulik-Sullivan et al., 2015). To maximise the power to detect significant 

associations with other traits, we selected the measure of anhedonic symptoms with the largest 

SNP-based heritability estimated by LDSC to calculate genetic correlations with external traits. 

LDSC uses GWAS summary statistics and linkage disequilibrium (LD) between SNPs based on 

a chosen reference panel.  

The SNP-based heritability estimates were statistically significant if their p-value surpassed the 

Bonferroni-corrected alpha of p<0.017 (𝛼 = 𝟎.𝟎𝟓
𝟑

) to adjust for the three independent phenotypes 

(anhedonia, staged treatment-resistant depression, and meta-analysed GLAD-UK Biobank 

treatment-resistant depression). Since the three correlated measures of anhedonic symptoms 

[highest, lowest, and mean] were calculated in the same participants, the estimations accounted 

for one independent statistical test (figure S4.1).  

Genetic correlations (GCTA bivariate-REML) 

 

GCTA requires individual-level genotype data for genetic correlations. Since we had this for 

participants in COPING and GLAD participants, we calculated the genetic correlation between 

anhedonic symptoms and staged treatment-resistant depression using GCTA bivariate-REML. 

For this, we prioritised the measure of anhedonic symptoms with the largest heritability estimated 

by GCTA-GREML, which were the mean symptoms (table 4.2 and table S4.4). We created a 

new GRM for this analysis which was based upon the merged COPING NBR and GLAD genotype 

data (details of the merge process are presented in the supplementary methods).  

Genetic correlations (bivariate LDSC) 

We also used LDSC to calculate genetic correlations between GWAS summary statistics of 

anhedonic symptoms and external psychiatric and behavioural traits. For this analysis, we 

prioritised the highest anhedonic symptoms, rather than the mean anhedonic symptoms, as the 

phenotype of interest. This is because LDSC computes genetic correlations based on the SNPs 

in an LD reference panel, rather than full genotype data. We wanted to maximise power to detect 

significant genetic correlations, so we selected the phenotype with the highest heritability as 
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estimated by LDSC (highest anhedonic symptoms). We calculated genetic correlations (rg) 

between this phenotype and external psychiatric and behavioural traits (table S4.5) including 

staged treatment-resistant depression. Where possible, we included traits that had been analysed 

in the previous Ward et al. (2019) GWAS of anhedonia in the UK Biobank, and this GWAS itself 

for comparison of the two different approaches to measuring anhedonia. We also included other 

psychiatric and behavioural traits which were sufficiently powered (a heritability z-score>4 and a 

mean chi-square>1.02) from our internal GWAS summary statistics database (table S4.7). To 

reduce the multiple testing burden, we selected the most well-powered GWASs when more than 

one trait, or similar traits, were available.  

 

In addition to our measure of staged treatment-resistant depression, we included three further 

traits representing different aspects of treatment resistance or response to antidepressants in 

depression. The first was the aforementioned GWAS of treatment-resistant depression in the UK 

Biobank (Ncases=2,165, Ncontrols=14,207, Ntotal=16,372) (Fabbri et al., 2021). The second and third 

were the results of two GWASs of antidepressant response in 10 cohorts from Europe and the 

United States. This included a continuous measure (percentage improvement in symptoms after 

treatment) (N=5,218) and a binary measure (responders vs. non-responders) (Ncases=1,852, 

Ncontrols=3,299, Ntotal=5,151) (Pain et al., 2022). Information about the external traits is presented 

in table S4.7.  

 

Summary statistics were munged with the extended 1000 Genomes reference panel in LDSC. A 

total of 42 genetic correlations were computed. The alpha value for the genetic correlations was 

adjusted to correct for multiple testing with the Bonferroni method. This meant that genetic 

correlations were significantly different to zero if p<0.001 (𝛼 = 𝟎.𝟎𝟓
𝟒𝟐

).  

 

We also calculated the LDSC genetic correlations between the Ward et al. (2019) GWAS of 

anhedonia in the UK Biobank and any traits which were significantly genetically correlated with 

AD-MASQ-D30-assessed anhedonic symptoms, plus the three measures of treatment-resistant 

depression and two measures of antidepressant response (Fabbri et al., 2021; Pain et al., 2022). 

This totalled 10 phenotypes. These genetic correlations were significantly different to zero if 

p<0.005 (𝛼 = 𝟎.𝟎𝟓
𝟏𝟎

).  
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Results 

Study sample  
 
Anhedonic symptoms 
 
The study sample for our analysis of anhedonic symptoms included a total of 13,433 COPING 

participants who had complete data available for the AD-MASQ-D30 in at least three COPING 

surveys and had genetic data that passed the standard genotype QC. Of these participants, 

5,590 were GLAD participants (42%) and 7,843 were NBR participants (58%) (no genetic data 

was available for EDGI participants). The mean age was 53 years (SD=15). The sample was 

mainly female (67%). Bearing in mind that individuals aged 16+ were eligible to take part in the 

COPING study and therefore some may not have yet completed university, 58% of the sample 

had a university degree.  

Staged treatment-resistant depression  

The study sample for our analysis of staged treatment-resistant depression included 8,165 

participants who completed the MSM, had genetic data that passed the standard genotype QC, 

and self-reported that they had not received a diagnosis of bipolar disorder. The mean age was 

53 (SD=15). The sample was overwhelmingly female (80%). Those with a university degree 

constituted 55%. Since we limited our analytical samples to those with available genetic data 

which passed the standard genotype QC, our sample is of European ancestry. Full descriptive 

statistics are presented in table 4.1. Note that 2,669 GLAD participants were in both the 

anhedonic symptoms and staged treatment-resistant depression study samples.  

Table 4.1. Demographic descriptive statistics for the two analytical study samples (anhedonic 
symptoms and staged treatment-resistant depression).  
Anhedonic symptoms were measured in participants from the COVID-19 Psychiatry and Neurological 

Genetics (COPING) study with the anhedonic depression subscale of the 30-item short adaptation of the 

Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30) [ranging 0-40]. Staged treatment-resistant 

depression was measured in participants from the Genetic Links to Anxiety and Depression (GLAD) study 

using two questionnaires: the Maudsley Staging Method (MSM) and the nine item Patient Health 
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Questionnaire (PHQ9) [ranging 3-14]. All participants included in analyses had genetic data available that 

passed the standard genotype quality control (QC).  

 
Note: anhedonic symptoms were measured at multiple timepoints throughout the COPING study (surveys 

were sent every two weeks at first, and then every month). This means that participants had data on 

anhedonic symptoms at multiple timepoints. We calculated three phenotypes, highest, lowest, and mean 

anhedonic symptoms, for each participant. The values shown in the table are the mean values and standard 

deviations of each of these three phenotypes. Plots of the three anhedonic symptoms and staged treatment-

resistant depression are presented in figure 4.1.  

 

Phenotype descriptive statistics  
 
Anhedonic symptoms 
 
At each survey time point, we calculated sum scores from the participants’ answers to the AD-

MASQ-D30 which represented current anhedonic symptoms. The sum scores ranged 0-40 with 

higher scores representing higher levels of anhedonia. The average (mean) of the participants’ 
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highest score (i.e., most severe anhedonia across all non-missing timepoints) was 32.0 (SD=7.2), 

the average of their lowest score (i.e., least severe anhedonia across all non-missing timepoints) 

was 18.1 (SD=8.5), and the average of their mean score (i.e., average anhedonia across all non-

missing time points) was 25.8 (SD=6.7). Bar plots (highest and lowest) and a histogram (mean) 

of the symptoms are presented in figure 4.1. 

 

Staged treatment-resistant depression 
 
We calculated a sum score, representing stages of treatment-resistant depression, based on 

answers to the MSM and PHQ9 in the GLAD study sign-up questionnaire (ranging 3-14) which 

also takes into account the severity of their presenting depressive episode (based on severity in 

the PHQ9). A bar plot of the GLAD participants’ scores is presented in figure 4.1. Note that 

participants can score three or more in the overall sum score (i.e., it is impossible to gain a score 

of one or two) (Fekadu et al., 2009). An explanation for this is presented in the supplementary 

methods. The mean score was 5.22 (SD=1.68) and the modal score was 5.  

 
Figure 4.1. A-C: Plots of the three measures of anhedonic symptoms calculated for participants in 
the COVID-19 Psychiatry and Neurological Genetics (COPING) study (N=13,334). 
Anhedonic symptoms were measured with the anhedonic depression subscale of the 30-item short 
adaptation of the Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30). D: Plot of staged 

treatment-resistant depression in Genetic Links to Anxiety and Depression (GLAD) study participants 

(N=8,165). Treatment-resistant depression was measured as a continuous scale with the Maudsley Staging 

Method (MSM) and nine item Patient Health Questionnaire (PHQ9).   
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Phenotypic analyses 
 
The correlations between the highest, lowest, and mean anhedonic symptoms among COPING 

participants, and the correlations between highest anhedonic symptoms and concurrent 

depression and anxiety symptoms, and the single anhedonia item from the PHQ9, are presented 

in the supplementary results. A key finding was that anhedonic symptoms had moderate 

correlations with concurrent depression (PHQ9) and anxiety (GAD7) symptoms.  

 

Another key finding was that the single anhedonia item from the PHQ9 showed a much lower 

correlation with anhedonic symptoms measured by the AD-MASQ-D30 than its correlations with 

depression and anxiety symptoms (figures S4.1-S4.2). In participants who overlapped between 

the two analytical study samples (N=2,669), there were low correlations between their staged 

treatment-resistant depression (assessed when they completed the GLAD study) and their 

highest and mean anhedonic symptoms (assessed during the COPING study) (highest symptoms 

rph=0.23, SE=0.02, p=1.70x10-32; mean symptoms rph=0.29, SE=0.02, p=2.12x10-54).  

 
Genetic analyses 
 

For the estimation of heritability with GCTA-GREML, two separate GRMs were computed for 1) 

COPING participants and 2) GLAD participants. In each GRM, we included the same participants 

from the respective GWASs but some were removed by pruning for relatedness. For anhedonic 

symptoms in COPING participants, 13,271 were included in the estimation of the GRM (162 

removed). For staged treatment-resistant depression in GLAD participants, 8,062 participants 

were included in the estimation of the GRM (184 removed).   

 
SNP-based heritability 
 

GCTA: GCTA estimated the participants’ mean anhedonic symptoms as the most heritable and 

significantly different to zero (ℎ!"#$ =0.13, SE=0.04, p=0.001). GCTA estimated the SNP-based 

heritability of staged treatment-resistant depression at 0.03 (SE=0.06, p=0.35) but this was not 

significant (table 4.2 and table S4.4).  
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Table 4.2. Single Nucleotide Polymorphism (SNP)-based heritability estimates (𝒉𝑺𝑵𝑷𝟐 ). 

SNP-based heritability estimates (ℎ!"#$ ), standard errors (SE), z-scores, and p-values of participants’ 

anhedonic symptoms and staged treatment-resistant depression.   

 

Phenotype Study sample N ℎ!"#$
 SE Z-score P-value 

(0) 

Highest anhedonic 

symptoms  COPING participants 13,271 0.11 0.04 2.48 3.83x10-3 

Lowest anhedonic 

symptoms  COPING participants 13,271 0.09 0.05 2.08 2.19x10-2 

Mean anhedonic 

symptoms  COPING participants 13,271 0.13 0.04 2.81 1.96x10-3 

Staged treatment-

resistant depression GLAD participants 8,062 0.03 0.06 0.41 0.35 

 

Note: anhedonic symptoms were measured in participants of the COVID-19 Psychiatry and Neurological 

Genetics (COPING) study. Staged treatment-resistant depression was measured using the nine item 

Patient Health Questionnaire (PHQ9) and Maudsley Staging Method (MSM) in participants of the Genetic 

Links to Anxiety and Depression (GLAD) study. The ℎ!"#$  estimates were calculated using Genome-wide 

Complex Trait Analysis (GCTA). “N” refers to the number of individuals included in the genetic-relatedness 

matrix (GRM) in GCTA. P-values were calculated by GCTA.  

 
 
LDSC: LDSC estimated the participants’ highest anhedonic symptoms as the most heritable 

(ℎ!"#$ =0.07, SE=0.03, p=0.006). For staged treatment-resistant depression, LDSC gave a non-

significant SNP-based heritability estimate of 0.05 (SE=0.04, p=0.20) (table 4.2).  

 

After meta-analysing our GWAS results with the results of the staged treatment-resistant 

depression in the UK Biobank, the summary statistics had 12,114,577 SNPs. We filtered the 

summary statistics for overlapping SNPs (i.e., those present in both the GLAD GWAS and UK 

Biobank GWAS). This removed 7,347,155 SNPs altogether and left 4,767,422 remaining. The 

SNP-based heritability of meta-analysed GLAD-UK Biobank treatment-resistant depression was 

0.02 (SE=0.01, p=0.08) (table 4.2 and S5).  
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LDSC suggested that there was no evidence of genomic inflation for all phenotypes (i.e., lambda 

GC<1.05) (table S4.5). Manhattan plots and QQ plots for SNP associations for highest anhedonic 

symptoms, staged treatment-resistant depression, and meta-analysed GLAD-UK Biobank 

treatment-resistant depression are presented in figures S4.4, S4.6 and S4.8 respectively).  

 

SNP and gene-based associations (FUMA) 
 
In genome-wide analysis of highest anhedonic symptoms, staged treatment-resistant depression, 

and meta-analysed GLAD-UK Biobank treatment-resistant depression, no SNPs were associated 

at genome-wide statistical significance (p<5x10-8) and no genes were significant after Bonferroni 

correction (figures S4.4-S4.9).  

 
Genetic correlations between anhedonic symptoms, treatment-resistant depression, and 
antidepressant response   
 
GCTA: A total of 13,199 participants with data on mean anhedonic symptoms and 8,012 

participants with data on staged treatment-resistant depression were included (Ntotal=21,211). The 

genetic correlation between the COPING participants’ mean anhedonic symptoms and staged 

treatment-resistant depression was not significant (rg=0.40, SE=0.62, p=0.15) (table S4.6).  

 
LDSC: The COPING participants’ highest anhedonic symptoms were not significantly correlated 

with staged treatment-resistant depression in GLAD (rg=0.10, SE=0.34, p=0.76), treatment-

resistant depression in the UK Biobank (rg=0.32, SE=0.44, p=0.47), or the meta-analysis of the 

two (rg=0.26, SE=0.32, p=0.42). Additionally, there were no significant genetic correlations with 

the binary measure of antidepressant response by Pain et al. (2022) (rg=-0.08, SE=0.32, p=0.79). 

The genetic correlation with the continuous measure of antidepressant response (percentage 

improvement) could not be computed because its LDSC-estimated SNP-based heritability was 

not significant (Pain et al., 2022) (table S4.8).  

 

Genetic correlations between anhedonic symptoms and other traits  
  

AD-MASQ-D30 anhedonic symptoms in COPING: Based on GWAS summary statistics, there 

were significant positive genetic correlations between the participants’ highest anhedonic 

symptoms and four external traits, and significant negative genetic correlations with two traits. 
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The positive genetic correlations were with: depressive symptoms (rg=0.71, SE=0.21, p=6.75x10-

4), anxiety (rg=0.50, SE=0.14, p=2.10x10-4), neuroticism (rg=0.46, SE=0.10, p=7.60x10-6), and 

anhedonia measured in the UK Biobank with the single PHQ9 item (rg=0.45, SE=0.12, p=1.08x10-

4). The negative genetic correlations were with self-rated health (rg=-0.42, SE=0.12, p=4.98x10-4) 

and automobile speeding propensity (rg=-0.28, SE=0.08, p=6.90x10-4) (figure 4.4). All genetic 

correlations were significantly different to one except for depressive symptoms (p=0.16).  

 
Figure 4.2. Significant genetic correlations between the participants’ highest anhedonic symptoms 
and external traits.  
Genetic correlations were estimated with Linkage Disequilibrium Score Regression (LDSC) and the 

extended 1000 Genomes Linkage Disequilibrium (LD) reference panel. Genetic correlations were 

significantly different to zero if they surpassed the Bonferroni-corrected alpha of 0.001 to correct for 42 

tests. The bars represent the point estimates +/- their respective standard errors (SEs). Details of these 

external phenotypes are presented in table S4.7 and all LDSC genetic correlation results are presented in 
table S4.8. 

 

 

UK Biobank GWAS of the single anhedonia item from the PHQ9: Similarly to anhedonic 

symptoms measured by the AD-MASQ-D30, the single item measure of anhedonia from the 

PHQ9 was not significantly correlated with staged treatment-resistant depression (rg=0.23, 
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SE=0.17, p=0.18), binary treatment-resistant depression (rg=0.57, SE=0.53, p=0.28), or a meta-

analysis of the two (rg=0.38, SE=0.15, p=0.01). Likewise, this phenotype was not significantly 

correlated with the binary measure of antidepressant response (rg=0.006, SE=0.12, p=0.95). 

Regarding the traits that we found to be significantly genetically correlated with AD-MASQ-D30-

assessed anhedonic symptoms, the single item measure of anhedonia from the PHQ9 was 

significantly genetically correlated with all of them. Each genetic correlation was in the same 

direction as its respective genetic correlation with AD-MASQ-D30-assessed anhedonic symptoms 

(table S4.9).  

Discussion  

We performed GWASs of continuous measures of anhedonic symptoms (N=13,433) and staged 

treatment-resistant depression (N=8,165) and investigated whether they were significantly 

genetically correlated. We also explored the relationship between anhedonic symptoms and 

antidepressant response using previously published GWAS summary statistics (Pain et al., 2022). 

Anhedonia has been hypothesised as a potential factor influencing treatment resistance in 

individuals with MDD (McMakin et al., 2012; Uher et al., 2012). To our knowledge, our study is 

the first to investigate the genetic links between them. While prior research has shown that 

anhedonia and treatment-resistant depression are both heritable, our results suggest that the 

genetics underlying anhedonia, whether measured continuously via the AD-MASQ-D30 or the 

single item from the PHQ9, are not shared with either staged treatment-resistant depression or 

binary treatment-resistant depression (the latter of which was defined from electronic health 

records) (Fabbri et al., 2021). Likewise, we did not find any significant genetic correlations with 

two measures of antidepressant response (Pain et al., 2022). In phenotypic analyses, we found 

low but highly significant correlations between participants’ anhedonic symptoms during the 

COPING study and their staged treatment-resistant depression when they completed the GLAD 

study survey (r=~0.2). Our results add evidence for a weak association between anhedonia and 

treatment resistance in MDD but do seem to suggest that this association is not primarily due to 

overlapping genetic risk factors.  

The largest GWAS of anhedonia was performed by Ward et al. (2019) based on the single PHQ9 

item, treated continuously, in UK Biobank participants. They reported a SNP-based heritability of 
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5.6% estimated by BOLT-LMM. We adopted a different approach in our study by collecting data 

on ten different aspects of anhedonia at multiple timepoints over the course of 16 months and 

collating them into a composite score which represented anhedonic symptoms. We performed a 

GWAS of the participants’ highest, lowest, and mean anhedonic symptoms. In GCTA, which uses 

individual-level genotype data, the genome-wide common variant heritability (often termed SNP-

based heritability) was 0.11 (SE=0.04, p=3.83x10-3). The participants’ mean and lowest 

anhedonic symptoms also both had significant SNP-based heritability estimates (ℎ!"#$ =0.13 and 

ℎ!"#$ =0.09 respectively). While our GCTA estimates of heritability were significant for all 

phenotypes, only the participants’ highest anhedonic symptoms was significantly heritable in 

LDSC (ℎ!"#$ =7.6%). Another UK Biobank GWAS of the single anhedonia item from the PHQ9 

reported an LDSC SNP-based heritability of 3.8% when treated continuously and 8.1% when 

dichotomised (Thorp et al., 2020). Since the highest anhedonic symptoms phenotype was the 

only one that was significantly heritable in LDSC, we used this phenotype to test for genetic 

correlations with other psychiatric and behavioural traits. We included the UK Biobank single item 

GWAS of anhedonia (Ward et al., 2019) as one of these traits and the resulting genetic correlation 

was highly significant but moderate (rg=0.45, SE=0.12, p=0.0001). This demonstrates that the 

additive genetic risk factors which contribute to variance in both traits are not completely 

overlapping.   

Overall, our continuous anhedonia measure was more heritable than that estimated in either of 

the UK two Biobank single item analyses (Ward et al., 2019; Thorp et al., 2020). Considering our 

modest sample size compared to these two previous GWASs of continuous anhedonia (COPING 

N=13,433; Ward et al. (2019) N=375,275; Thorp et al. (2020) N=148,752), the magnitude and 

significance of our heritability estimates may owe to increased variance in the continuous 

measure of anhedonia through the use of a more detailed phenotyping approach. The moderate 

genetic correlation between two anhedonia phenotypes (COPING vs. Ward et al.) may also be 

due to the two different approaches taken to measure them. In our phenotypic analyses, we found 

only a moderate phenotypic correlation between anhedonic symptoms and this single item 

measure of anhedonia from the PHQ9 (r=0.59, SE=0.006, p<2.22x10-16). This adds further weight 

to the notion that the single anhedonia item from the PHQ9 and AD-MASQ-D30-assessed 

anhedonic symptoms, while related, only partially capture the same trait, even in the same 

individual at the same point in time.  
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A benchmark for evaluating these two differing modes of measuring anhedonia is to compare 

their respective associations with depression-related phenotypes. In terms of genetic results, we 

found that AD-MASQ-D30-assessed anhedonic symptoms were not significantly correlated with 

MDD, whereas the UK Biobank GWAS of the single anhedonia item from the PHQ9 was (rg=0.77, 

p=1.34x10-139) (Ward et al., 2019). However, this is not wholly unsurprising given that the 

anhedonia symptom asked about in the PHQ9 is one of two core symptoms ∂for diagnosing MDD. 

We did find a high and significant genetic correlation between AD-MASQ-D30-assessed 

anhedonic symptoms and a previous meta-analysis GWAS of depressive symptoms (Okbay et 

al., 2016) (rg=0.71, SE=0.21, p=0.0007). When the genetic correlation of depressive symptoms 

(Okbay et al., 2016) was calculated with the UK Biobank GWAS of the single anhedonia item from 

the PHQ9, we found an even stronger result (rg=0.96, SE=0.03, p=1.8x10-213) but neither of these 

estimates were significantly different to one (p<0.005). However, it should be noted that the 

depressive symptoms phenotype definition from Okbay et al. (2016) involved two questions, one 

of which is the single PHQ9 anhedonia item, which likely explains the high genetic correlation with 

the Ward et al. (2019) GWAS.  

In phenotypic analyses of COPING participants, we found that depressive symptoms sum score 

(assessed via the PHQ9) was more strongly correlated with the single PHQ9 anhedonia item than 

the it was with AD-MASQ-D30-assessed anhedonic symptoms (PHQ9 anhedonia item rph=0.87 

vs. AD-MASQ-D30=assessed anhedonic symptoms rph=0.59). This pattern remained even after 

we removed the anhedonia item from the overall PHQ9 sum score (PHQ9 anhedonia item 

rph=0.82 vs. AD-MASQ-D30 anhedonic symptoms rph=0.58). This finding, along with the fact that 

the UK Biobank single PHQ9 anhedonia item GWAS was highly genetically correlated with MDD, 

demonstrates that it is difficult to disentangle the single PHQ9 anhedonia item from MDD overall. 

Conversely, our measure of anhedonic symptoms was not significantly genetically correlated with 

MDD, suggesting they are biologically distinct traits. These findings have implications for 

phenotyping decisions in future studies of anhedonia. While the single PHQ9 item is a more 

efficient method to collect data on a large-scale it may not fully represent the complex, multi-

faceted trait of anhedonia. Furthermore, using the single item measure may mean that genetic 

liability for MDD is captured because it is one of the core symptoms used to define a depression 

diagnosis, rather than transdiagnostic anhedonia which may be separate from depression.    
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Antidepressants are one of the most commonly prescribed medications but a substantial 

proportion do not show signs of improvement after their first course (Rush et al., 2006). Treatment 

resistance is said to occur when an individual does not show clinically significant improvement in 

symptoms after two different types of antidepressant medications, each at an adequate dose and 

duration, and is a concerning issue facing public health due to associated distress, high rate of 

comorbidities, and health care costs (Fekadu, Donocik and Cleare, 2018). Previous studies of 

treatment resistance, using electronic health records or prescription data, have reported 

significant SNP-based heritability estimates of 8% (Li et al., 2020; Fabbri et al., 2021). In our 

study, we conducted a GWAS of staged treatment-resistant depression phenotypes in the GLAD 

study based on the MSM (Fekadu et al., 2009), but did not have a significant SNP-based 

heritability based upon individual-level genotype data (GCTA; rg=0.03, SE=0.06, p=0.35) or 

GWAS summary statistics (LDSC; LDSC rg=0.02, SE=0.01, p=0.08). Post-hoc power analyses 

using the GCTA-GREML power calculator revealed that, with a sample size of 8,062, we were 

powered at 80% to detect a SNP-based heritability of 10.989%. Thus, a heritability of 2% would 

require a much larger sample to be significantly different to zero.  

Other than the genetic correlation with the single anhedonia item from the PHQ9 and depressive 

symptoms, we found significant genetic correlations between the participants’ highest anhedonic 

symptoms and four psychiatric and behavioural traits. Positive genetic correlations were with 

anxiety (rg=0.50, SE=14, P=0.0002) and neuroticism (rg=0.46, SE=0.10, p=7.6x10-6). Negative 

genetic correlations were with self-rated health (rg=-0.42, SE=0.12, p=0.0005) and automobile 

speeding propensity (rg=-0.29, SE=0.08, 0.0007). We did not replicate significant associations 

found in Ward et al. (2019) with MDD, bipolar disorder, or schizophrenia. However, similar to 

findings from Ward et al. (2019), the participants’ highest anhedonic symptoms were not 

genetically correlated with OCD (Ward et al., 2019).  

The relationship between anhedonia and anxiety, and anhedonia and neuroticism, is not well 

understood, but there has been some research proposing mechanistic links between them 

(Jacobson and Newman, 2014; Liao et al., 2019; Winer, Jordan and Collins, 2019). The literature 

on anhedonia and risk-taking is mixed. In one study alone, different dimensions of anhedonia had 

both a positive and a negative relationship with risk-taking behaviours (Currin et al., 2022), and 

another study found a link between some types of risk-taking behaviours but not others (Testa 

and Steinberg, 2010). The final significant genetic correlation discovered with anhedonic 
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symptoms was with self-rated health (rg=-0.42, SE=0.12, p=5.0x10-4) in a negative direction, as 

expected. Explanations for this include the fact that individuals with mental illnesses, especially 

MDD, are at a higher risk of comorbid physical and mental health disorders for a variety of reasons 

(Kessler, Merikangas and Wang, 2007; Robson and Gray, 2007; Gao et al., 2013), and the 

possibility that individuals with more severe anhedonia are more likely to perceive their own health 

negatively.  

The conclusions discussed here should be considered alongside some important limitations of 

our study design. First, we relied on self-reported data to phenotype anhedonic symptoms as well 

as treatment-resistant depression that may have suffered from recall bias. However, both 

measures use current symptoms, for which recall bias may be more limited (Young et al., 2021). 

Nonetheless, parts of the MSM may have been retrospective for some participants (e.g., about 

how long their current/most recent depressive episode had lasted for, how many medications they 

had tried, and whether or not they had received ECT). The use of retrospective, self-reported data 

may have introduced noise into the staged treatment-resistant depression phenotype which may 

have contributed to low statistical power in addition to the small sample size. A further limitation 

is the fact that, because the MSM was only asked of individuals currently experiencing a 

depressive episode, people who may have once scored highly on the MSM, but have since shown 

symptomatic recovery, were not included. Even though these individuals may now be in 

remission, they would arguably be regarded as having treatment resistance. This may have 

reduced the variance in the phenotype which also could have contributed to low power.  

Another limitation is the fact that the COPING data in our analyses was collected from May 2020 

to September 2021. For some of this time period, the UK was in a national lockdown due to the 

COVID-19 pandemic. This unprecedented change in circumstance for individuals all over the 

world profoundly affected mental health (Xiong et al., 2020). Thus, the COPING participants may 

have experienced better or worse mental health than usual which could have biased measures in 

either direction. A final limitation is the small sample sizes. GWASs of psychiatric disorders are 

now being regularly performed on samples well into the tens to hundreds of thousands (Pardiñas 

et al., 2018; Wray et al., 2018). Our sample sizes of ~13,000 and ~8,000 are potentially insufficient 

for discovery. The depth of our phenotyping approach to anhedonic symptoms may have 

compensated for low power, but our GWAS of treatment-resistant depression likely suffered from 
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both a small sample and a noisy phenotype. The GLAD study is continuing to recruit and genotype 

participants and therefore sample sizes available for these analyses will grow.  

In conclusion, we found that anhedonic symptoms are heritable and share genetic associations 

with a number of other traits, including anxiety, neuroticism, and risk-taking. The use of a detailed 

phenotyping method and a continuous measure likely increased statistical power in our GWAS 

and suggests that this is an optimal way to study psychiatric traits in the future. We found no 

evidence for genetic links between anhedonia and treatment resistance or treatment-response in 

those with MDD. However, GWASs of treatment-response in MDD are currently underpowered. 

A priority for future research is the collection of data on a larger number of individuals to allow for 

the relationship between this important dimension of MDD and other traits to be studied 

effectively.  
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Chapter 5. General discussion 
 

Mood disorders represent a significant public health concern due to their high prevalence and 

associated disability. Family and twin studies, now supported by research from the field of 

statistical genetics, confirm that genetic variation is responsible for a substantial proportion of 

susceptibility for mood disorders in the population. Research into genetic influences on mood 

disorders aims to better understand their underlying biology, with the overarching hope of 

improving risk stratification, prevention, and treatment for the hundreds of millions of people 

affected by them. The purpose of this thesis was to explore various phenotyping approaches that 

can be applied to self-reported data about disorders and symptoms within the mood spectrum. 

Phenotyping approaches are of particular importance in mood disorder research due to their 

substantial heterogeneity. Many of the largest GWASs of mood disorders have employed a 

case/control design. The UK Biobank, the GLAD, and COPING study have collected rich self-

reported data on the mood spectrum in samples large enough for genetic analyses. This thesis 

endeavoured to explore these self-reported data and apply three phenotyping approaches to 

them: diagnostic subtypes, continuous measures, and symptom-level analyses. The validity of 

mood disorder phenotypes for genetic studies is crucial for maximising the potential for discovery, 

decreasing the chance of type I and type II error, and increasing the likelihood of replication in 

other datasets. This final chapter draws together findings from the three empirical chapters. First, 

I will discuss three lessons that have been learnt from this body of research. These relate to 

phenotyping decisions that a researcher may encounter when studying the genetics of the mood 

spectrum. Second, I will consider general limitations relating to the study design. Last, I will 

discuss challenges that remain and directions for future research.  

Three lessons learnt from this thesis  

Lesson 1. Refined phenotypes offer insight into genetics as a driver of 

comorbidity   

 

Researchers studying mood disorders are required to make a number of phenotyping decisions 

before conducting their study. One is the choice between taking a broad, sweeping view of a 

disorder category or zooming in on a diagnostic subtype or even a specific 
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symptoms/symptom domains. Within psychiatric genetics, sample size has traditionally been 

prioritised due to the challenges of studying the small effects of common genetic variants (Nishino 

et al., 2018). As a result, many of the most well powered GWASs, such as those from the PGC, 

have focused on “umbrella” diagnostic categories (e.g., “depression”, “major depressive disorder”, 

“bipolar disorder”, “schizophrenia”, “anxiety disorders”) (Howard et al., 2018; Pardiñas et al., 2018; 

Wray et al., 2018; Purves et al., 2019; Stahl et al., 2019; Mullins et al., 2021). This strategy has 

been undeniably successful for achieving the many aims of GWASs: discovering robustly-

associated loci, increasing the variance explained by the additive effect of SNPs (SNP-based 

heritability), and calculating significant genetic correlations with other traits. But, this strategy has 

limited scope to explore differences in genetic architecture between disorder subtypes (termed 

“genetic heterogeneity”) and the intricate relationships between them and other traits (Polimanti, 

2022).  

 

The heterogeneous nature of major depressive disorder was introduced in chapter 1 (Ostergaard, 

Jensen and Bech, 2011; Fried and Nesse, 2015). This stems from variability in symptom 

presentation, recurrence, severity, duration, age of onset, sex, clinical specifiers, aetiology, 

comorbidity, and response to treatment, among other features (Nguyen et al., 2022). Gender-

specific subtypes have also been posited (Kuehner, 2017). Individuals classified as having the 

umbrella category of “major depressive disorder” may actually present with diverse disorder 

manifestations (Fried and Nesse, 2015). As a result, major depressive disorder can be separated 

into subtypes which can then be examined individually. In this thesis, chapter 2 and chapter 4 
collectively studied five diagnostic subtypes of major depressive disorder: 1) recurrent 

depression, 2) single episode depression, 3) major depressive disorder with self-reported trauma, 

4) major depressive disorder without self-reported trauma (chapter 2), and treatment-resistant 

depression (chapter 4).  

 

In chapter 2, I explored whether recurrence and self-reported trauma were relevant factors in 

major depressive disorder’s genetic overlap with PTSD. The rationale behind this was rooted in 

the high prevalence of comorbid major depressive disorder in individuals with PTSD, the fact that 

trauma is a key risk factor for both, and emerging evidence for a heritable basis for trauma 

response. I hypothesised that the heritability of trauma sensitivity is shared between major 

depressive disorder and PTSD, and this could be a factor driving their high levels of comorbidity 

among the trauma-exposed. I used diagnostic subtypes of major depressive disorder to test my 

hypothesis. The main conclusions from chapter 2 were, firstly, the underlying additive genetic 
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basis of recurrent major depressive disorder was not significantly more correlated with that of 

PTSD compared to single-episode major depressive disorder. Likewise, at a genome-wide level, 

major depressive disorder in the presence of self-reported trauma was not more genetically 

correlated with PTSD than major depressive disorder in the absence of self-reported trauma. 

However, this lack of difference may have resulted from statistical power that was too minimal to 

detect small differences. But, by looking at the participants’ individual genetic liability through 

PRSs, I found that individuals with major depressive disorder who self-reported trauma had a 

significantly higher genetic liability for PTSD than individuals with major depressive disorder who 

self-reported no trauma (Mundy et al., 2021). This provided some evidence in favour of my 

hypothesis, although I recommended that future studies should attempt to replicate this finding in 

external cohorts.  

 

All the UK Biobank participants included in the case groups in chapter 2 could be categorised as 

having “major depressive disorder” but focusing on the subtypes was helpful for further unravelling 

the intricate relationship with PTSD. Therefore, a lesson from this thesis is that refined mood 

disorder phenotypes, such as diagnostic subtypes, hold promise for understanding more about 

whether shared genetic liability could drive comorbidity. Subtypes may have distinctive underlying 

biology, including their additive genetic risk factors, which contribute to their disease 

manifestations and would be missed when grouped together under one umbrella diagnostic 

category (Feczko et al., 2019). In the Australian Genetics of Depression Study (AGDS), which 

runs parallel to the GLAD study, ubiquitous genetic heterogeneity among subtypes of major 

depressive disorder has been reported (Mitchell et al., 2022). In the UK Biobank, a recent study 

showed similar findings based on sixteen major depressive disorder diagnostic subtypes. While 

the inter-genetic correlations ranged 0.55-0.86, indicating a degree of genetic sharing, there were 

some clear differences between the genetics of the individual subtypes. For instance, depression 

with mild impairment or later age of onset had lower SNP-based heritability estimates compared 

to “major depressive disorder” as a general diagnostic category. Also, clinically challenging 

subtypes (e.g., earlier age of onset, presence of suicidal ideation/self harm, recurrent episodes, 

and severe impairment) had higher genetic correlations with other psychiatric disorders, such as 

schizophrenia, compared to less clinically challenging/milder subtypes (Nguyen et al., 2022). I 

also found evidence of genetic heterogeneity among the major depressive disorder subtypes in 

chapter 2 (see table S2.4).  
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In chapter 4, I tested the hypothesis that additive genetic risk factors for treatment-resistant 

depression were partly shared with anhedonia, as there have been two studies which purported 

to find a link between them (McMakin et al., 2012; Uher et al., 2012). I found no evidence in 

support of this hypothesis. However, power issues (mentioned in chapter 4) could have been a 

cause of this. Also in chapter 4, I studied an even more refined phenotype than a diagnostic 
category by focusing on a specific symptom domain of major depressive disorder. Our analysis 

revealed that anhedonic symptoms had a SNP-based heritability of 9-13% and showed significant 

positive genetic correlations with depressive symptoms, anxiety, and neuroticism. Aside from 

depressive symptoms, there is a dearth of published literature on the relationship between 

anhedonia and these internalising phenotypes, but one 2017 study proposed that anhedonia 

could be a factor explaining the high rates of anxiety-depression comorbidity. In this study, anxiety 

and depression were positively associated in individuals showing anhedonic tendencies (e.g., 

avoidance of activities). They also found that anxiety led to anhedonia, which then encouraged 

the development of a depressive episode (Winer et al., 2017). They proposed a pathway whereby 

anxiety leads to avoidance of pleasurable or rewarding experiences which, in turn, puts the 

individual at high risk of developing major depressive disorder (Jacobson and Newman, 2014). 

For example, social anxiety might make a person withdraw from their peer group, avoid meeting 

new people, or stop attending activities where there are (or even might be) large groups. As a 

result of missing out on these important, sociable, and pleasurable experiences, they may begin 

to experience anhedonia which, in turn, makes them more vulnerable to experiencing depression. 

Previous research shows that a lack of positive experiences is predictive of depression 

(Spinhoven et al., 2011). This hypothesis could be easily tested with the data used in this thesis, 

since the COPING study has collected data longitudinally on depression, anxiety, and anhedonic 

symptoms on upwards of 20,000 UK-based participants, many of which have genetic data 

available.  

 

Focusing on specific symptoms, as opposed to disorder categories, is beginning to attract more 

attention in psychiatric genetics research. For example, Thorp et al., (2020) studied each of the 

nine symptoms in the PHQ9 and found widespread genetic heterogeneity, both in the individual 

symptom’s heritability, and their genetic associations with psychiatric disorders and complex traits 

(Thorp et al., 2020). They also found that this phenotyping approach led to the discovery for seven 

genome-wide significant loci which had not been identified in previous major depressive disorder 

GWASs. A similar approach was taken by Nagel et al., (2018) who conducted item-level GWASs 

of neuroticism items (Nagel et al., 2018). Studies such as these highlight the importance of 
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examining the individual symptoms which make up a composite/sum score or a binary 

case/control phenotype, as grouping them together may hide important differences in genetic 

architecture and relationships with other traits. In chapter 3 of this thesis, a similar approach was 

adopted by applying factor analysis to the items in the MDQ. The results showed that the MDQ 

may comprise three symptom subgroups but, contrary to expectations, there were no significant 

differences between the three symptom subgroups and their genetic correlations with other 

psychiatric and behavioural traits. This was likely due to low power to detect small differences, 

thus emphasising the need for large sample sizes when comparing refined phenotypes to one 

another.  

 

Summary: There is value in refining phenotypes for genetic studies of mood disorders. This can 

be achieved by delving into diagnostic subtypes or going even further by focusing on specific 
symptoms or symptom subgroups. When measured with precision, refined phenotypes reduce 

heterogeneity and increase statistical power (see figure 1.5). Not only this, but differentiating 

between them may reveal specific genetic mechanisms which are lost when studying general 

“umbrella” diagnostic categories, including shared genetic liability with other disorders. The 

application of genetic methods to refined phenotypes in chapter 2 and chapter 4 revealed 

possible mechanisms explaining comorbidity. The results of the staged treatment-resistant 

depression GWAS (chapter 4) and the GWASs of the MDQ (chapter 3) emphasise that sufficient 

sample sizes and valid phenotyping instruments are paramount for studying the genetics of 

refined mood disorder phenotypes and looking for subtle differences between them. A key 

question which should be addressed in the future is whether diagnostic subtypes represent 

variations of one disorder or biologically distinct disorders which share symptoms. From the 

perspective of genetic aetiology, this question will only be answered with large sample sizes 

combined with precision phenotyping.  
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Figure 5.1. Mood disorders are heterogeneous.   
General “umbrella” categories can be refined into diagnostic subtypes based upon episode 

recurrence, symptom severity, treatment resistance, aetiology, clinical specifiers, and other 

features (represented by the circles beneath the umbrellas). 

 

 
 

Lesson 2. Continuous measures can increase statistical power in a GWAS if 

used appropriately 

 

Statistical power is influenced not only by sample size, but by the way the phenotype is assessed 

(see figure 1.5). Phenotypes for GWASs can be measured continuously (e.g., regressing the 

number of copies of a risk allele a participant carries against their numeric score), or by 

categorising participants as cases and controls (e.g., comparing allele frequencies between cases 

and controls). Compared to a case-control design, continuous measures (e.g., a sum score 

representing varying levels in symptom severity) have greater statistical power because a smaller 

amount of information is lost to artificially categorising participants and phenotypic variance is 

maintained (van der Sluis et al., 2013). For instance, binary categorisation of participants into 

cases (who are given a value of one) and controls (who are given a value of zero) means that all 

information on phenotypic differences between cases, or phenotypic differences between 

controls, is lost. Furthermore, individuals who are very mild cases may be genetically very similar 

to controls, which can reduce power to detect genetic differences between the two experimental 

groups. Despite the benefits of using a continuous measure, the largest published GWASs of 

mood disorders have opted for binary phenotypes (Wray et al., 2018; Howard et al., 2019; Levey 

et al., 2021; Mullins et al., 2021). This is because these large-scale GWASs required meta-

analysis of different cohorts around the world and constructing a continuous measure would 
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require access to, and harmonisation of, the underlying symptom-based tools that defined cases 

and controls. This would be a hugely complex and time-consuming task.  

 

If researchers do have access to uniform symptom-based data among participants, using a 

continuous measure for a GWAS may be an alternative to a case-control design. The UK 

Biobank, the GLAD study, and the COPING study included many questionnaires and scales which 

can be used to construct continuous measures of dimensions of the mood spectrum. In this 

thesis, I applied continuous measures to three mood disorder phenotypes: manic symptoms 

(chapter 3), anhedonic symptoms (chapter 4), and treatment resistant depression (chapter 4). 

When viewed collectively, the results of these chapters offer insight into the optimal way to 

construct continuous measures for genetic studies of psychiatric disorders.  

 

First, when the phenotype is intended to represent a participant’s collective experience of many 

symptoms, the individual items that make up the composite score must have adequate internal 

consistency. In chapter 3, the concurrent MDQ items had poor internal consistency: the items 

“irritability”, “racing thoughts”, and “concentration difficulties” were not correlated with the other 

items (figure 3.1). These three items loaded onto the factor which I named the cognitive factor, 

and this factor did not correlate with the other two factors (energy/activity and impulsivity). This 

was reflected in the genetic analysis: the cognitive factor was not genetically correlated with the 

other two factors (table 12 in appendix 3). This lack of internal consistency introduced phenotypic 

heterogeneity which likely hampered power in the GWAS. As a result, the sum score, representing 

the number of concurrent manic symptoms a participant had experienced, was not heritable. 

Thus, when researchers are planning to perform a GWAS of symptoms in a continuous manner, 

they should first ensure that the items in the score are well correlated, as this suggests that they 

all capture different elements of the same underlying trait.  

 

Second, continuous measures comprising detailed information (e.g., multiple scale items) have 

more power than continuous measures based on a single item from a scale. Part of the reason 

for this is that composite scores that are based on multiple scale items likely have larger ranges 

than single items, and large ranges do a comparatively better job at representing the phenotypic 

variation in the population. In chapter 4, GCTA-GREML detected a SNP-based heritability of 8% 

for anhedonic symptoms assessed by the AD-MASQ-D30 with a sample of 13,000 COPING 

participants. The Ward et al., (2019) GWAS detected a SNP-based heritability of 6% for 

anhedonia assessed by the single item from the PHQ9 with a sample of 375,000 UK Biobank 
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participants (Ward et al., 2019). By using the AD-MASQ-D30, chapter 4 utilised data on ten 

different facets of anhedonia, each scored 0-4. This contrasts with Ward et al., (2019)’s use of a 

single item from the PHQ9, scored 0-3. The inclusion of a larger amount of data into the phenotype 

increased the range (0-40 versus 0-3) and likely boosted statistical power to compensate for the 

fairly modest sample size. I also found that the single anhedonia item from the PHQ9 had a 

genetic correlation with major depressive disorder that was not significantly different to one. By 

contrast, the more detailed measure of anhedonic symptoms was not significantly genetically 

correlated with major depressive disorder. Anhedonia is a core symptom of major depressive 

disorder but is also present transdiagnostically. A more detailed phenotyping approach meant 

that I was able to create a continuous measure of anhedonia that is partially distinct from major 

depressive disorder. Compared to the option of using the single PHQ9 item, my phenotyping 

method with the AD-MASQ-D30 may be more useful for future studies wishing to understand the 

role genetics plays in the presence of anhedonia in other psychiatric and neurodevelopmental 

disorders compared to the simple item measure from the PHQ9, which likely only captures liability 

for major depressive disorder.   

 

Third, when a continuous measure is intended to represent symptoms of a disorder, it is 

necessary to include information about severity and/or duration, rather than just a count of 

symptoms. In chapter 3, I posited that the lack of significant genetic correlation with bipolar 

disorder may have been due to the composite score not containing information about severity or 

duration. I compared this to a previous depressive symptoms GWAS which, being based on the 

PHQ9, included such information and found a significant positive genetic correlation with bipolar 

disorder (Okbay et al., 2016; Mullins et al., 2021). Overall, symptom counts alone are potentially 

not sufficiently informative for genetic studies.  

 

Lastly, retrospective data may not be suitable for constructing continuous measures. In chapter 
3, the MDQ assessed lifetime rather than current manic symptoms. This could have led to the 

issues with internal consistency for the concurrent items. Likewise, some of the questions in the 

MSM might have required some of the participants to recall information from a long time ago, 

especially those who had been in their current depressive episode for a very long period (e.g., 

two years or more). In a paper that I contributed to during my PhD, we showed that GLAD 

participants rated their depression and anxiety as worsening during the pandemic. But, when we 

looked at objective current measures, the participants had actually shown an overall improvement 

in their symptoms (Young et al., 2022), thus demonstrating the inaccuracy of retrospective data. 



169 

In chapter 4, individuals who had been prescribed numerous different medications, or those who 

had been depressed for many years, may have given erroneous answers to the first three 

questions of the MSM. Exacerbating this is the fact that memory is sometimes impaired in 

individuals suffering from depression (Burt, Zembar and Niederehe, 1995; Rock et al., 2014). This 

may be especially important in my interpretation of the staged treatment-resistant depression 

phenotype, since I limited the sample to those who were currently depressed.   

 

Summary. In theory, continuous measures increase statistical power in GWAS over case-

control studies and offer a promising avenue for increasing replicable discoveries and the 

detectable SNP-based heritability. However, there are some important caveats. The first is that, 

when constructing a composite score of symptoms, all contributing items should be adequately 

correlated to ensure good internal consistency. The second is that composite scores should utilise 

as much information as possible so that the numeric variance represents the phenotypic variance 

in the population as best as it can. Third, continuous symptom scores should try to include data 

on severity and duration. Lastly, retrospective data may compromise reliability and validity of 

continuous measures. 

Lesson 3. Clinical tools are not always suitable for data collection via self-

reports  

 

In this thesis, I measured mood disorder symptomatology with self-reported data from a variety 

of scales and instruments. In chapter 3, a mania screener (the MDQ) was used. In chapter 4, a 

psychometric scale (the AD-MASQ-D30) and a clinical staging tool (the MSM) was used. The 

results of chapter 4 suggested that the AD-MASQ-D30 captured anhedonia with a fair degree of 

accuracy. For instance, the symptoms in the AD-MASQ-D30 had a high genetic correlation with 

depressive symptoms, as well as moderate phenotypic correlations with the anhedonia item from 

the PHQ9 and depressive symptoms. By contrast, chapter 3 suggested that self-reported 

answers to the MDQ, a clinical screening tool, did not reflect the type of hypomanic and manic 

symptoms experienced in bipolar disorder. Chapter 4 revealed problems with collecting self-

reported data via the MSM, which is also a clinical instrument. Thus, a lesson learnt from this 

thesis is that tools intended for use by mental health professionals are not always appropriate for 

collecting self-reported data via an online survey.  
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Treatment response is a hugely complex area of psychiatry. Indeed, a whole spectrum that 

involves different levels of “response” has been previously posited (figure 5.2) (McAllister-

Williams et al., 2018; Sforzini et al., 2021). To gain an understanding of where a patient is 

positioned along this spectrum, information on length of depressive episode, medications, 

alternative treatments, and episode severity needs to be assessed, hence the existence of staging 

tools such as the MSM (Fekadu et al., 2009). The staged treatment-resistant depression 

phenotype in chapter 4 was not heritable. The fairly small sample size (N=8,154) could have 

been a cause of this. However, another GWAS of stages of treatment resistance, and a GWAS 

of a related phenotype (antidepressant response), both had significant non-zero SNP-based 

heritabilities with even smaller samples (N=3,452 and N=5,151 respectively) (Wigmore et al., 

2020; Pain et al., 2022). These two previous GWASs assessed treatment 

resistance/antidepressant response objectively via prescription records/comparing depressive 

symptoms pre- and post-treatment respectively. By contrast, the assessment of treatment-

resistant depression in the GLAD study relied on self-reported data. The MSM’s developers state 

that it is intended for use by “a clinician with mental health training” (Fekadu, Donocik and Cleare, 

2018) thus suggesting that the staging process benefits from interaction between patient and 

professional. Accuracy might significantly improve if the patient is known to the mental health 

professional and/or they have objective answers to the MSM’s questions, including the exact 

number of antidepressant and/or augmentation medications from prescription records, and the 

length of current depressive episode. Furthermore, a group of experienced psychiatrists in the 

UK suggested that psychosocial factors, such as the patient’s mindset and willingness to engage 

in antidepressant treatment, should be assessed alongside more obvious indicators of treatment 

resistance (McAllister-Williams et al., 2018). Overall, treatment response and resistance requires 

an enormous complexity of information. Such information could be garnered from the patient in a 

one-to-one medical setting, but not via an online survey. For these reasons, my assessment of 

treatment resistance in the GLAD study might have lacked validity and this could have contributed 

to noise in the GWAS.  

 

The same could be true for the MDQ which, although self-scored (Hirschfeld et al., 2000), is 

intended for screening patients for possible bipolar disorder in a primary-care setting rather than 

data collection via an online survey. Bipolar disorder, despite being one of the most debilitating 

psychiatric disorders, is difficult to classify correctly (Phillips and Kupfer, 2013). As a result of this, 

unipolar depression is a common misdiagnosis (Hirschfeld, Lewis and Vornik, 2003). While mania 

is more pronounced, hypomania is milder and can often go unnoticed. Further complicating the 
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diagnosis of bipolar disorder is the fact that insight into symptoms is often impaired, even in 

euthymic periods, among individuals with bipolar disorder (Varga et al., 2006). Not only this, but 

hypomania and mania show a high degree of phenotypic heterogeneity, and the symptoms 

involved are experienced in other disorders such as schizoaffective disorder (American 

Psychiatric Association, 2013). Thus, screening tools with good psychometric properties are 

essential for identifying individuals who potentially have undetected bipolar disorder and enabling 

access to effective treatments. Mentioned already in chapter 3 is the attenuation of the MDQ’s 

sensitivity and specificity when removed from clinical contexts (Miller, Johnson and Eisner, 2009). 

In chapter 3, I found that, based on the symptoms alone, the MDQ had no significant genetic 

correlation with bipolar disorder. Even with information on duration and severity of symptoms, the 

MDQ screener poorly identified individuals with bipolar disorder in the GLAD study.  

 

A previous study showed that hypomania assessed by the MDQ was not significantly associated 

with bipolar disorder PRS constructed in a community sample (Hosang et al., 2021). GLAD 

participants, although recruited based on lifetime experience of depression and/or anxiety, do not 

represent a clinical sample. Nonetheless, given that a higher proportion of individuals who have 

experienced depression develop bipolar disorder than those who have never experienced 

depression, I assumed that levels of hypomanic/manic symptoms would be more severe than a 

traditional community sample. However, the GLAD participants’ subjective experience of the 

symptoms asked in the MDQ may not reflect those involved in hypomania/mania but another, 

unknown, dimension of psychopathology. This could explain why I observed significant genetic 

correlations with an array of psychiatric and behavioural traits but not with bipolar disorder. 

Despite its recommendation from clinical experts, the results of chapter 3 suggest that the MDQ 

was not the optimal mode of assessing hypomanic/manic symptoms in the GLAD study.  

 

During my PhD, I wrote diagnostic algorithms for bipolar disorder type I and type II using MDQ 

data in GLAD, EDGI, and NBR participants. Based on the results of chapter 3, we decided that 

the MDQ is not suitable for this purpose. For example, of the 2,428 participants identified with 

lifetime mania, only 43% self-reported a diagnosis of bipolar disorder by a healthcare professional. 

An important caveat here, however, is that bipolar disorder can go undiagnosed for up to ten 

years (Hirschfeld, Lewis and Vornik, 2003; Mantere et al., 2004; Drancourt et al., 2013), and 

unipolar depression is the most likely misdiagnosis (Hirschfeld, Lewis and Vornik, 2003). Given 

the eligibility criteria of the GLAD study, it is highly probable that a proportion of the participants 

have undiagnosed bipolar disorder. This may have contributed to the misalignment between the 
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diagnostic algorithm and the single-item self-report measure. Having said this, of the 2,760 

participants who did self-report a diagnosis, 34% were categorised as having never experienced 

mania or hypomania by the algorithm, thus calling into question the utility of this MDQ-based 

algorithm to identify bipolar disorder cases and controls in future studies. By comparison, the 

case/control status designation from diagnostic algorithms of other major depressive disorder and 

anxiety disorders in GLAD and NBR participants’ (derived from answers to the CIDI-SF), while 

showing variable overlap with self-reported diagnoses, was more often correct than incorrect. 

Algorithms for major depressive disorder had the highest accuracy (84% correct overlap) (Davies 

et al., 2022). Questions from a structured interview, which are specifically designed for 

epidemiological assessments, might have been a better choice than the MDQ, although they 

would still suffer from issues of retrospective data collection.  

 

Overcoming the difficulties of assessing hypomania/mania in research studies is not a simple 

task. Digital phenotyping methods, which collect data on moment-by-moment symptoms but also 

more objective indicators of mood (e.g., keyboard strokes, speech patterns, sleep, and activity 

levels) might offer a better route (McInnis, Gideon and Mower Provost, 2017; Zulueta et al., 2018; 

Ebner-Priemer et al., 2020; Orsolini, Fiorani and Volpe, 2020). However, this involves longitudinal 

assessments with technology equipped for digital phenotyping which is much more intensive and 

costly than administering self-reported online surveys. Digital phenotyping may yield richer and 

more precise measures of hypomanic/manic symptoms but the resulting sample sizes would likely 

be insufficient for genetic analyses.  

 

Summary: Clinical tools, especially those intended for screening, may not be suitable for studying 

the mood spectrum when used to collect self-reported data for two reasons. First, they are 

designed for interaction between physician and patient which is lost during self-report surveys. 

Second, they are intended for patients who are presenting at primary care settings rather than 

large-scale epidemiological assessments. As a result, their ability to accurately capture specific 

mood disorder symptoms/dimensions may be lessened when taken out of this context. For 

particularly challenging mood disorder phenotypes, alternative approaches to data collection 

(e.g., medical records or digital phenotyping) may be preferred, although these come with limits 

on feasible sample sizes.  
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Figure 5.2. A proposed spectrum of treatment response in major depressive disorder 
(MDD) (McAllister-Williams et al., 2018; Sforzini et al., 2021). 
In a paper by Sforzini et al., (2021) which draws upon a 2018 paper by McAllister-Williams et al., 

(2018), a spectrum of treatment response was proposed. This ranges from partially-responsive 

depression (a 25-50% reduction in depressive symptoms after treatment), to treatment-resistant 

depression (no clinically significant improvement in symptoms after two antidepressant 

treatments), to multi-therapy resistant MDD (no clinically significant improvement in symptoms 

after more than two interventions, including non-pharmacological treatments), and finally to 

refractory depression (absence of response to all currently available treatments).  

 

 

Limitations  

 

Within each empirical chapter, study-specific limitations have been raised. In this next section, 

broader challenges that have arisen from the research presented in this thesis are discussed.  

The study samples lack generalisability  

 

The first limitation is the lack of generalisability of the study samples included in this thesis. This 

stems from selection biases regarding demographic and health-related characteristics. Selection 

bias refers to a situation where the way in which research participants are recruited means that, 

collectively, they do not represent the population from which they were sampled (Holmberg and 

Andersen, 2022). Between 2006-2010, over half a million participants provided their data to the 

UK Biobank. This represented just 5% of the original number who were sent invitations. 

Compared to the UK population as a whole, those who chose to participate were more likely to 

be of a White ethnic background, be female, and come from a higher socioeconomic background 

(Fry et al., 2017). In addition to this, the UK Biobank suffers from “healthy volunteer” selection 

bias. This refers to a phenomenon whereby individuals who participate in research show, on 

average, higher levels of health than those who tend not to participate (Manolio et al., 2012). For 

instance, UK Biobank participants tended to have a lower BMI and a smaller waist circumference, 

report fewer diseases, and have lower rates of all-cause mortality and cancer than those in the 
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same age bracket from the general population (Fry et al., 2017). This is not wholly unsurprising, 

participating in research involves dedication of time and effort, and those with poorer health may 

not have the capabilities or motivation to engage with the research.  

 

The GLAD study suffers from similar concerns about demographic generalisability, including a 

lack of ethnic diversity (95% of participants are White), high levels of education (54.8% have a 

university degree), and primarily female participants (79.7%) (Davies et al., 2019). An extra 

consideration is the GLAD study’s overall picture of mental health. Unlike the UK Biobank, the 

GLAD study recruited individuals specifically on the basis of having lifetime experience of 

depression and/or an anxiety disorder. Accordingly, the health-related characteristics differ 

substantially from the UK Biobank. Initial analyses show that GLAD participants have high levels 

of symptom severity and comorbidity. Furthermore, trauma exposure and PTSD are frequently 

reported by the participants: as much as 63% self-report a traumatic event, and 60% meet criteria 

for PTSD in the last month (Davies et al., 2019). This means that GLAD participants fall towards 

the severe end of the psychopathology spectrum compared to individuals with depression and/or 

anxiety in the general population.  

 

Lack of generalisability is problematic for studies wishing to provide accurate prevalences of 

certain exposures and outcomes. But, this was not the goal of this thesis. In the body of research 

presented here, lack of generalisability may be a problem for the construction of valid phenotypes. 

For instance, in chapter 2, summary statistics from GWASs of major depressive disorder with 

and without trauma in UK Biobank MDQ respondents were assessed for a genetic association 

with PTSD. Here, trauma exposure was assessed via the CTS, ATS, and PCL6 and events with 

a >2.5 odds ratio with major depressive disorder were combined to create a single binary variable 

(Coleman et al., 2020). Traumatic experiences among those of a higher socioeconomic status 

may have different consequences to those who were socioeconomically disadvantaged. Factors 

such as levels of social support and access to treatment, which are generally higher among more 

socioeconomically advantaged groups (Weyers et al., 2008; McMaughan, Oloruntoba and Smith, 

2020), may moderate post-trauma mental wellness and resilience (Ozbay et al., 2007; Lee, 2019; 

Cho and Bulger, 2021), including whether or not they develop major depressive disorder. 

Therefore, the characteristics of the UK Biobank sample may have influenced which traumatic 

events were selected. By studying a narrow section of society, the research presented in chapter 
2 may not have captured the full range of experiences in this important risk factor for mood 

disorders. Likewise, the high rates of trauma and PTSD reported by GLAD participants could have 
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contributed to the lack of genetic validity of the MDQ items presented in chapter 3. For instance, 

I found a phenotypic correlation of 0.41 (p<2x10-16) between the MDQ sum score and PTSD 

symptoms. This association may have artificially inflated the genetic correlation with PTSD (as 

seen in the genetic correlation results), thus calling into question the external validity of the 

findings.  

 

The aims of this thesis were to explore phenotyping approaches that can be applied to self-

reported data about the mood spectrum’s disorders and symptoms. Research studies which 

expect to gather information on a more representative slice of the UK population may find different 

results to those presented in this thesis. Thus, the conclusions drawn about optimal methods for 

phenotyping mood disorders may not have applicability to more other study populations.  An 

example is the upcoming study Our Future Health which hopes to recruit five million UK-based 

adults. Their aim is to ensure that this five million represents the UK population on a variety of 

demographic features. Unless increasing diversity is specifically prioritised with sufficient funding 

and time, as Our Future Health has done, the ascertainment biases discussed above are likely to 

persist in research studies of the future. Therefore, the conclusions presented here are still useful 

for researchers designing studies to study the mood spectrum. The likely biases of a study sample 

(demographic, health-related, or otherwise) should ideally be anticipated and given due 

consideration during initial deliberation about which scales and measures to include. For instance, 

forthcoming epidemiological or genetics-focused studies should take note of the MDQ’s 

unexpected poor ability to assess symptoms specific to hypomania/mania. If these studies recruit 

participants by similar means as the GLAD study, and therefore expect similar biases, alternative 

hypomania/mania scales should be prioritised.    

 

The GWASs presented in this thesis only included individuals of European 

ancestries 

 
A second shortcoming, which is one faced by the field of psychiatric genetics and genetics more 

broadly (Haga, 2010; Sirugo, Williams and Tishkoff, 2019), is the lack of ancestral diversity in the 

GWAS samples. Currently, there is a disproportionate amount of published GWASs which contain 

only individuals of European genetic ancestries (Haga, 2010; Martin et al., 2019; Mills and Rahal, 

2019). Chapter 1 already highlighted this grave issue. All the empirical chapters presented in this 
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thesis restricted their GWAS samples to individuals of European ancestries. The primary reason 

for this relates to sample size. As mentioned in chapter 1, the statistical power in genetics studies 

of polygenic traits and diseases is partly dependent on the number of individuals included in the 

study sample (see figure 1.5). Different traits and diseases require varying minimum sample sizes 

due to their unique genetic architectures (e.g., polygenicity and heritability). In the UK Biobank, 

the GLAD study, and the COPING study, individuals from racially minoritised groups constitute 

<5% of the overall study sample (Fry et al., 2017; Davies et al., 2019). Thus, after further limiting 

the sample to individuals with information on the phenotypes of interest for this thesis, they would 

have been insufficiently sized to conduct well-powered GWASs.  

The challenge faced here is not unique. The lack of diverse participants in GWAS samples has 

persisted since the dawn of the GWAS method (see figure 1.2). At the root of the overabundance 

of published genetic studies involving only individuals of European ancestries is a complex web 

of  “logistical, systematic, and historical factors'' (Popejoy and Fullerton, 2016). Oft-cited logistical 

factors include the vast majority of researchers who publish scientific GWAS being based in North 

America or Europe, and the well documented challenges of engaging individuals from racially 

marginalised backgrounds in scientific research (Paskett et al., 2008; Haga, 2010). Both issues 

relate to wider systematic factors, such as disparities in funding allocation, and historical factors, 

such as mistrust and suspicion of medical organisations. This mistrust stems from countless 

examples of horrific medical exploitation of racially minoritised groups throughout history. The 

lower uptake of the COVID-19 vaccine among such groups in the UK, as observed in many other 

countries too, serves as a pertinent reminder that regaining the confidence of minoritised groups 

in science and medicine is not straightforward (Dolby et al., 2022). These historical factors are 

even more pertinent for research which asks participants to provide a DNA sample. Worries, or a 

lack of understanding, about the collection, storage, and use of DNA may contribute to individuals 

from racially minoritised backgrounds being even less likely to feel comfortable participating in 

genetics research (Moorman et al., 2004; Catz et al., 2005). 

The absence of diversity in the genetic research presented in this thesis has implications for the 

wider conclusions drawn. The genetic results may generalise poorly to those of non-European 

ancestry. The scientific community has highlighted examples of ethnicity influencing association 

between biomarkers and outcomes. As a result, a “one-size-fits-all” approach is incorrect and 

some clinical tests need to be adjusted for application in different groups (Veeranna et al., 2013; 

Rappoport et al., 2018). Genetic risk is not exempt from this. Existing research already shows 

that findings from GWASs of White Europeans and, by extension, any findings produced from 
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methods which rely on them (e.g., PRS) have limited applicability to groups of different genetic 

ancestries (Martin et al., 2019). An example of this low generalisability is the consistent 

observation that genome-wide significant variants often do not replicate with effects in the same 

direction, or at all, in non-European samples (Gudbjartsson et al., 2007; Lewis et al., 2008; 

Yamada et al., 2009; Levey et al., 2021). Much more pressing than the limitations of this thesis is 

the very real threat that the application of GWASs to human traits and diseases could exacerbate 

pre-existing health disparities between ethnic groups (Martin et al., 2019). In doing so, the GWAS 

method would actively contradict its primary goal of improving health outcomes of humans. 

Personalised polygenic risk information is gradually being entered into mainstream healthcare. 

While this is an exciting time for genomic medicine, the prospect that not all members of society 

will benefit equally from these advancements is hugely concerning. This will be the situation as 

long the European bias in GWAS is not addressed.  

 

Increasing participation of individuals from racially minoritised backgrounds is paramount. The 

principal investigators and research team behind the GLAD study are keenly aware of this and 

efforts have been made to try to access minoritised pockets of society and encourage them to 

enrol (Davies et al., 2019). During my PhD, I attended the GLAD NIHR BioResource team 

meetings and learnt about the strategies that have been employed to achieve this, including 

targeted social media campaigns and increasing representation of non-White individuals in 

recruitment material. An acknowledgement of the issue from scientists in their various research 

outputs is also crucial. A key challenge here is ensuring that conversations about genetic ancestry 

do not inadvertently stir up false theories or beliefs about distinctions between “races” being 

rooted in biology (Carlson et al., 2022). Part of this relates to human geneticists using correct 

terminology in discussions of genetic ancestry and ensuring that its complexity is well presented 

and explained. For instance, disseminated research should emphasise that individuals from 

different populations may be more genetically similar than two individuals from the same 

population (Witherspoon et al., 2007), and that ancestral origins do not follow modern geopolitical 

borders or concepts of “race” but a continuum of genetic variation (Jorde and Wooding, 2004). 

Rather, a complex combination of geographical, topographical, socio-cultural, and historical 

factors, which impact migration, admixture, gene flow, and genetic drift, influence human genetic 

diversity within and between populations (Li et al., 2008). Overall, in addition to striving for better 

representation of minoritised groups, scientists must also improve the communication of findings 

from genetic studies where population stratification and/or the participants’ genetic ancestral 

origins are mentioned.  
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Absence of replication in external data sets 

 

A final limitation of the research presented in this thesis is the absence of replication in external 

data sets. As mentioned in chapter 1, replication is a crucial part of the GWAS method because 

it ensures that findings are not simply a product of the characteristics of the study sample (i.e., 

false positives). Robust findings that generalise to external study samples are important for 

ensuring that time, money, and effort is not wasted following up false results. The absence of 

replication in this thesis is due to the unavailability of suitable samples to achieve this. At the time 

of conducting analyses for chapter 2, no external study sample had data on major depressive 

disorder via the CIDI-SF, and the CTS, ATS, and PCL6. Now, this information is available in 

GLAD, EDGI, and NBR participants. Thus, replication of the UK Biobank results is possible (albeit 

with the caveat that UK Biobank and GLAD/NBR have dissimilar mental health-related 

characteristics). Likewise, for chapter 3 and chapter 4, no external cohort had data on the MDQ, 

anhedonic symptoms, and staged treatment-resistant depression alongside genetic data. Now, 

the next phase of the Twins Early Development Study (TEDS26) has been launched. TEDS26 

included the MDQ in its questionnaire. It will be interesting to see if the results of chapter 3 can 

be replicated in this twin-based cohort, as the TEDS twins are not recruited based on lifetime 

history of depression or anxiety and are generally more demographically representative of 

England and Wales than the GLAD study is of the UK (Rimfeld et al., 2019).  

Remaining challenges and future directions 

Medical record linkage in the GLAD study 

 

An exciting prospect for the study of mood disorders in the GLAD study is the newly granted 

medical record linkage via the UK Longitudinal Linkage Collaboration (UK LLC). Medical record 

linkage will include data from cancer registers, General Practitioner (GP) records, Hospital 

Episode Statistics (HES), Improving Access to Psychological Therapies (IAPT), and Mental 

Health Services Data Set (MHSDS). Such wide ranging data will be pivotal in validating mood 

disorder phenotypes that have been derived from self-reported data in this thesis. For instance, 

the number of antidepressant and augmentation medications that an individual has taken will be 
accessible from prescription records. Furthermore, the length of an individual's depressive episodes 

could be estimated more accurately from GP records, IAPT, and MHSDS. Cross-referencing these 
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data with the participants’ answers to the MSM could help to finetune the staged treatment-resistant 
depression phenotype in chapter 4. Following this, the GWAS could be repeated with a (hopefully) 

less noisy phenotype and, accordingly, more power. This would confirm whether the lack of a 
significant SNP-based heritability was due to issues regarding the retrospective self-reported nature 

of the MSM. Additionally, access to prescription records will open up alternative avenues to measure 
treatment resistance in MDD. For example, the GWAS by Wigmore et al., (2020), which used 

antidepressant-switching to derive a staged treatment-resistant phenotype, could be replicated with 
data from the GLAD study. Another future direction could involve investigating whether individuals with 

a diagnosis of bipolar disorder from GP records fall on the upper end of the distribution of MDQ items. 
Given the results of chapter 3, it is likely that this will not be the case.  

Diagnostic categories versus spectrum of mental illness 

 

As mentioned in chapter 1, psychiatric disorders are classified on the basis of operational criteria, 

such as those in the DSM. This multinomial taxonomic system was established based on 

consensus from experts about which signs and symptoms “belonged” to each category. This 

practice, which has been upheld for decades, has undeniably been useful clinically (being 

diagnosed with a psychiatric disorder is often the first step towards receiving treatment) and for 

progressing research (diagnostic categories offer operational criteria for researchers to define 

cases and controls in a reproducible manner). Yet, there is little evidence for the boundaries 

between disorders (Jablensky, 2016), as well as the boundary demarcating “affected” from 

“unaffected” within each disorder (see figure 1.1).  

 

Epidemiological and psychiatric literature show that subthreshold symptoms are common among 

individuals who would be deemed unaffected by clinical cutoffs (Murphy et al., 2012; Rodríguez 

et al., 2012; Burstein et al., 2014), including depressive and hypomania/mania symptoms. These 

individuals are more susceptible to developing later major depressive disorder and bipolar 

disorder respectively compared to individuals who have no symptoms (Fiedorowicz et al., 2011; 

Hill et al., 2014; Axelson et al., 2015) thus adding weight to the argument that psychiatric disorders 

operate on a continuum. Furthermore, the co-occurrence of two or more forms of mental illness 

within the same individual is the rule rather than the exception (Clark et al., 2017). Even in cases 

of non-comorbidity, an individual diagnosed with one psychiatric disorder may report subclinical 

symptoms of another. Therefore, while arguably useful for clinical purposes, the validity of discrete 

diagnostic categories, as in the DSM and ICD, is questionable.  
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Findings from genetics research similarly challenge the “DSM paradigm” (Craddock and Owen, 

2010; Smoller et al., 2019). This includes the clustering of nosologically separate psychiatric 

disorders within biological relatives, the fact that a single de novo mutation can contribute to risk 

for numerous psychiatric and neurodevelopmental outcomes, and genetic correlations across a 

web of psychiatric disorders (Malhotra and Sebat, 2012; Bulik-Sullivan et al., 2015; Smoller et al., 

2019). Such research demonstrates that underlying genetics do not support the clear-cut 

boundaries between psychiatric disorders upheld by diagnostic systems. Nonetheless, many 

published scientific papers employ dichotomous phenotyping methods suggesting there is some 

value in doing so. Even within this thesis, dichotomous diagnostic subtypes were helpful in 

unravelling the relationship between major depressive disorder and PTSD (chapter 2). A 

challenge now faced by the field of psychiatric and statistical genetics is whether diagnostic 

categories should continue to be pursued, or whether research efforts could be better spent 

exploring the “continuum hypothesis” by prioritising cross-disorder, dimensional phenotypes. 

 

In chapters 3 and 4, mood symptomatology was measured as a composite score, as opposed to 

a case/control study design. Assessing symptoms quantitatively outside the boundaries of a 

traditional diagnosis is consistent with the continuum hypothesis, which is backed up by research 

showing that subsyndromal symptoms confer risk for the later development of a psychiatric 

disorder. There is evidence to suggest that psychiatric disorders are the extreme end of a 

quantitative trait within a population (Plomin, Haworth and Davis, 2009). The concept of mental 

illness as a continuum from “unaffected” to “severely affected” is also backed up by genetics 

research showing that PRSs increase linearly with increasing odds of being a case versus a 

control (Mitchell et al., 2022). The questionable validity of the MDQ and the biases of the GLAD 

study sample means the results of chapter 3 are not particularly helpful here, but chapter 4 

emphasises the value of applying genomic methods to quantitative measures of psychopathology. 

Assessing a trait continuously, as opposed to a case/control design, captures more phenotypic 

variance and bolsters statistical power (van der Sluis et al., 2013). Not only this but focusing on a 

specific symptom (anhedonia) revealed potential mechanisms that would otherwise have been 

missed when studying major depressive disorder, which contains a plethora of symptoms, as a 

general category. Future research should aim to combine these two approaches. Such an 

approach could be considered “transdiagnostic” for two reasons. First, continuous measures 

transcend the binary affected/unaffected paradigm. Second, specific symptoms often present 

across a range of psychiatric syndromes. Adopting a transdiagnostic perspective in this way could 
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contribute to our understanding of mood disorders as a spectrum, above and beyond what could 

be achieved by studying a general disorder as a dichotomous phenotype.  

Is it possible to marry the two positions?  

 

Methods which unveil the underlying genetic architecture of multiple complex traits, such as 

Genomic Structural Equation Modelling (Genomic SEM) (Grotzinger et al., 2019), represent an 

opportunity to actually use the nosological categories to investigate the dimensional basis of 

mental health. Genomic SEM has unearthed clusters of psychiatric phenotypes which are 

influenced by joint sources of additive genetic liability. For instance, a study of schizophrenia, 

bipolar disorder, major depressive disorder, PTSD, and anxiety revealed that all diagnostic 

categories loaded onto one “p” factor (Grotzinger et al., 2019). A study published earlier this year 

combined GWAS of five diagnostic categories (bipolar type I, bipolar type II, schizophrenia, 

schizoaffective disorder, and major depressive disorder) with GWAS of their cardinal symptoms 

(psychosis, depression, and mania) in Genomic SEM. Results showed two correlated but distinct 

factors with divergent genetic architectures (Mallard et al., 2022). Genomic SEM provides the 

analytical tools to unpack the continuum on which diagnostic categories lie by drawing attention 

to psychiatric syndromes which share similar genetic bases and those which diverge. Thus, the 

application of a common factor model to discrete diagnostic categories can provide evidence of 

the blurred boundaries between their aetiologies (as paradoxical as that may seem).  

 

A future direction for mood disorder genetics could involve models, such as those described 

above, with much more refined phenotypes. Chapter 2 highlighted the value of focusing on 

diagnostic subtypes for exploring genetic correlations with other traits. Given the vast 

heterogeneity of mood disorders (Fried and Nesse, 2015; Coombes et al., 2020), future research 

could apply Genomic SEM to diagnostic subtypes based on a variety of variables, for example, 

recurrence, treatment resistance, aetiology, and clinical specifiers. A previous study of UK 

Biobank data already hinted at the utility of this research design by highlighting the varying 

strength of pairwise genetic pathways between mood disorders. Recurrent, single-episode, and 

subthreshold depression correlated highly (rg=0.9-0.94) and each genetic correlation did not differ 

significantly from one. The bipolar disorder type I and type II correlation was also not significantly 

different from one (rg=0.87). Interestingly, bipolar disorder type II shared high genetic correlations 

with recurrent depression (rg=0.69) and single-episode depression (rg=0.61), while bipolar 

disorder type I did not. The authors concluded that this pattern represented evidence for a 
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spectrum of genetic liability mirroring clinical observations, with major depressive disorder and 

bipolar disorder at either pole, and bipolar disorder type II acting as a bridge between them 

(Coleman et al., 2020). To build on this research design, one could divide these disorder 

categories into more refined phenotypes, perform GWASs of them, and apply Genomic SEM to 

the summary statistics. Similar to findings from genetic studies of major depressive disorder 

subtypes (Mitchell et al., 2022; Nguyen et al., 2022), recent research has demonstrated that 

clinical heterogeneity in bipolar disorder, beyond type I and II, is reflected by genetic heterogeneity 

(Coombes et al., 2020; Richards et al., 2022). Thus, diagnostic subtypes within type I and type 

II could be explored in a Genomic SEM model along with major depressive disorder diagnostic 
subtypes. This type of research design, illustrated in figure 5.3, would allow a more fine-grained 

analysis of the genetic risk underlying the complexity of the mood spectrum by revealing which 

mood subtypes cluster together (suggesting common genetic risk) and which segregate 

(suggesting divergent genetic risk).  

 

An extension to the research design in figure 5.3 involves including disorders outside the mood 

spectrum. A PRS analysis demonstrated that bipolar disorder subtypes had unique genetic 

overlap with other psychiatric disorders such as schizophrenia, attention-deficit hyperactivity 

disorder (ADHD), and major depressive disorder. For instance, those with bipolar disorder and a 

history of psychosis had a higher PRS for schizophrenia, while those who had experienced rapid 

cycling had a higher PRS for ADHD (Coombes et al., 2020). A similar approach was adopted in 

a recent PRS study of over two million Swedish adults to clarify which aspects of liability to non-

mood psychopathology was shared and separate from subtypes of bipolar disorder. They found 

a high degree of overlap between the top two PRS deciles of major depressive disorder and 

bipolar disorder genetic risk (both influenced risk for nonpsychotic bipolar disorder) but they also 

found some key differences. High bipolar disorder PRS and low major depressive disorder PRS 

increased risk for psychotic bipolar disorder, non-psychotic bipolar disorder, and SAD, while low 

bipolar disorder PRS and high major depressive disorder PRS increased for non-psychotic major 

depressive disorder, non-psychotic bipolar disorder, and anxiety disorders (Kendler et al., 2022). 

The symptom-level analyses of depressive symptoms by Thorp et al., (2021) showed that the 

nine symptoms in the DSM-5 criteria of major depressive disorder had differential genetic 

correlations with other psychiatric disorders. This led to the conclusion that studying symptom 

combinations could prove beneficial for understanding disease pathogenesis and, one day, 

tailoring treatments to the individual (Thorp et al., 2021). Taken together, these studies hint at the 



183 

potential discoveries that could be made by integrating mood disorder diagnostic subtypes in a 

model with non-mood psychiatric disorders.  

 

A practical consideration is sample size. Before the proposed research design in figure 5.3 can 

be realised, the sample sizes of the GWASs of mood subtypes need to be sufficient, especially if 

relatively minor differences in their genetic liabilities are hoped to be discovered. This important 

issue was exemplified by the results of chapter 2: comparing GWAS summary statistics of the 

different major depressive disorder subtypes revealed no significant differences. But, when 

looking at individual-level genetic susceptibility through PRS, I did find that those who had self-

reported having been exposed to trauma carried a higher genetic loading for PTSD than those 

who self-reported no trauma. In the discussion of chapter 2, I highlighted the need for larger 

sample sizes before small differences between phenotypes can be detected. The GLAD study, 

which continues to recruit participants with detailed mental health data and DNA samples, 

represents an opportunity to do this. Confidence in the refined phenotypes will grow once they 

have been validated against linked medical records. Sample size may be particularly limiting for 

bipolar disorder, which has a far lower lifetime prevalence than major depressive disorder. To 

overcome this, collaboration and data-sharing between different bipolar disorder-focused 

research studies will be crucial.  

 
Figure 5.3. Hypothetical research study framework.  
Diagnostic subtypes in the mood spectrum can be used in Genomic Structural Equation Modelling 

(SEM) to identify shared and divergent genetic risk factors. 
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Integration of multimodal data to investigate the mood spectrum 

 

The chapters in this thesis combined participants’ self-reported phenotypic data on mood 

disorders and their symptoms with their genotype data. While genetics and genomics research 

has been pivotal in advancing our understanding of the mood spectrum, the integration of other 

data types would accelerate discoveries and paint a more holistic picture of the underlying biology. 

Researchers from different fields could join forces to collate and analyse multiple data types from 

individuals with different mental illnesses. For instance, the Bipolar-Schizophrenia Network on 

Intermediate Phenotypes (B-SNIP) Consortium collected various cognitive and neuroimaging 

data from individuals with psychosis who had been diagnosed with either bipolar disorder, 

schizoaffective disorder, or schizophrenia, their first degree relatives, and individuals with no 

history of psychosis. From this, three neurobiologically distinct groups were identified (which the 

authors called “biotypes”). These biotypes were agnostic to the taxonomy of the DSM as each 

one spanned the three diagnostic categories (Clementz et al., 2016). Data on individual genetic 

risk (e.g., PRS) could very easily supplement a research design like this. The Danish High Risk 

and Resilience study (also known as the VIA study) is an example of a study which has collected 

wide-ranging data types to provide a comprehensive picture of the antecedents and outcomes of 

psychiatric illness. A total of 522 seven year olds born to a parent with bipolar disorder, 

schizophrenia, or two healthy parents have been followed up over the course of their childhood 

and adolescence. Data on neuro and social cognition, motor functioning, psychopathology, home 

life, attachment, socioeconomic indicators, brain structure (from age eleven), and genetics have 

been collected. Furthermore, by studying the children from before puberty, their developmental 

course will also be able to be assessed (Thorup et al., 2018, 2022). The study of individuals based 

upon multiple facets of disease biology represents a transition towards pathology-based 

definitions and away from definitions based purely on signs and symptoms. Such an approach 

would also help to clarify the dimensional nature of mood disorders, by addressing whether they 

can be classified based on biomarkers rather than purely their emotional and/or behavioural 

manifestations. For this approach to be realised in the future, collaboration, skills-sharing, and 

data-sharing from experts across multiple disciplines, including molecular and statistical genetics, 

psychiatry and psychology, neuroimaging, and bioinformatics, will be paramount.  

 



185 

Public education about risk factors for psychiatric disorders 

 

Personal genetic information is gradually becoming embedded into healthcare and support for 

genetic testing for psychiatric disorders is  growing (Morosoli et al., 2021). Although there are no 

formal genetic tests for psychiatric disorders, interested individuals can very easily access their 

PRSs through direct-to-consumer genetic testing companies (e.g., “23andMe”) and websites such 

as “impute.me”. Without the careful guidance of a genetic counsellor or healthcare professional 

trained in genetics, such information could easily be misinterpreted. This is hugely problematic 

because research shows that personal beliefs about the cause(s) of mental illness can influence 

emotional and behavioural outcomes, such as self-stigma, feelings of blame or guilt, or 

reproductive concerns  (Austin, Smith and Honer, 2006; Meiser et al., 2007; Austin, Hippman and 

Honer, 2012). Therefore, education about the joint contributions of genes and the environment to 

mental illness is paramount for ensuring that affected individuals, their families, and the general 

public base their perceptions in accurate and up-to-date science.  

 

The task of communicating information about personal psychiatric risk is not straightforward for 

several reasons. First, while genetic literacy appears to be improving over time, it is typically poor 

among the general public, even in those who are well-educated (Chapman et al., 2019; Little, 

Koehly and Gunter, 2022). Second, an individual’s liability for a psychiatric disorder is complex 

and comes with a high degree of uncertainty. This uncertainty may be difficult to convey, 

especially if basic knowledge of genetics is low, or if individuals hold deterministic views about 

heritable conditions. Emerging research from the genetic counselling literature suggests that, 

even in the absence of a genetic test, individuals affected by mental health disorders can benefit 

from receiving explanations of the relative influences of inherited genetic factors and 

environmental exposures to their disorder(s) (Austin and Honer, 2005; Moldovan, Pintea and 

Austin, 2017; Michael et al., 2020). This can be achieved with the “mental health jar” analogy 

presented in figure 1.6 (Austin, 2020). One US study delivered fake genetic test results to 165 

participants with depression and showed that those who were told that their result “contains a 

gene that has been shown to significantly increase a person’s risk of developing major 

depression” exhibited lower levels of agency with regard to mood regulation than those who were 

told that they did not have the susceptibility gene. However, members of the “gene-present” group 

who were also shown a short, informative video about the non-deterministic nature of genetics in 

psychiatric disorders did not show this reduction in mood regulation agency, thus demonstrating 
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the importance of nuanced education when delivering personalised genetic information to 

individuals with depression (Lebowitz and Ahn, 2018).  

 

Although the precise causes are still unknown, the scientific community understands much more 

about the contribution of genetics to psychiatric disorders compared to thirty years ago. Even 

without delivering personalised genetic risk information, it is important to extend this knowledge 

to the public in an understandable format. During my PhD, myself and another PhD student 

designed and launched the Perceptions of Psychiatric Risk (PerPsych) project to achieve this. 

The PerPsych project has two arms: 1) “lived experience” and 2) “mental health professionals, 

students, and trainees” which aim to learn about how individuals affected by mental ill health, and 

the professionals to interact with them, think about the possible cause(s) of mental illness.  

PerPsych: lived experience  

 

The “lived experience” arm recruits participants from the GLAD study and asks them to complete 

three surveys which are each sent two weeks apart. The primary aim is to explore the way in 

which the participants evaluate the cause(s) of their major depressive disorder/anxiety and how 

this impacts their emotional wellbeing and behaviour. We also adapted an animated video from 

Professor Danielle Dick’s lab which used the “mental health jar” analogy (see figure 1.6) to 

explain that both genetic and environmental risk factors contribute to mental illness, that certain 

behaviours can protect against future episodes, and that feeling better is very much possible. We 

want to investigate whether watching this video, compared to a ‘control’ animated video which 

talks about mental health generally and does not mention genetic and environmental risk, can 

improve participants’ understanding of risk factors for depression and anxiety and encourage 

healthy behaviours. We also ask participants if they have questions about their disorder that have 

not been adequately answered by healthcare services to identify gaps in knowledge that need 

addressing. Note that we are also running a parallel PerPsych study for EDGI UK participants. 

Figure 5.4 contains a flow-chart summarising the study design for the “lived experience” arm.  

 

Figure 5.4. Flow-chart of the study design for the “lived experience” arm of the Perceptions 
of Psychiatric Risk (PerPsych) project.  
Participants from the Genetic Links to Anxiety and Depression (GLAD) study and Eating Disorders 

Genetics Initiative (EDGI UK) are invited to take part via email. Participants complete the part 1 

survey (15-20 minutes) and are asked to watch either a ‘test’ video (which includes the “mental 
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health jar” analogy) or a ‘control’ video from Mind the mental health charity (which does not 

discuss genetic or environmental risk). They are then immediately asked follow-up questions. Two 

weeks and one month after the part 1 survey is completed, the participants are sent the part 2 

and part 3 surveys respectively (5-10 minutes). An example question is presented in figure 5.5.  

 

 
 

 
Figure 5.5. Example Qualtrics question from the “lived experience” arm of the Perceptions 
of Psychiatric Risk (PerPsych) survey.  
This question aims to capture the perceptions of participants about the possible genetic and/or 

environmental causes of their disorder.  
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PerPsych: mental health professionals, students, and trainees 

 

Mental health professionals are in a position to clarify risk factors for mental illness but their 

knowledge of the heritable basis of psychiatric disorders, and confidence discussing this, are 

lacking (Finn et al., 2005; Martorell et al., 2019). Through the PerPsych project, we are aiming to 

investigate the perceptions of professionals who work with mentally unwell individuals, and those 

in training for such careers, of genetic and environmental contributions to mental illness. We are 

interested in gaining a broad set of perspectives from UK-based clinical psychologists, 

psychiatrists, educational psychologists, assistant psychologists, general practitioners (GPs), 

social workers, psychological wellbeing practitioners (PWPs), mental health nurses, therapists, 

and counsellors (invited to take part via email or social media advertisement). The survey asks 

questions to ascertain their level of genetic knowledge and how confident they feel discussing 

genetic and environmental risk with their patients/clients. We also ask for their opinions on 

whether they believe the animated video (as in the “lived experience” arm) would be beneficial for 

their patients/clients.  

 
Figure 5.6. Positive feedback about the test animated video in the “lived experience” arm 
of the Perceptions of Psychiatric Risk (PerPsych) project.  
The test animated video used the “mental health jar” analogy (see figure 1.6). The full script of 

this video can be found in appendix 5. I received consent from participants to present their data 

from fee-text boxes.  
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We pre-registered the PerPsych project on the Open Science Framework (OSF) prior to its 

launch. This can be found in appendix 5 including all measures and proposed research 

questions. At the time of submitting this thesis, we have recruited 2,598 GLAD and 979 EDGI UK 

participants, and 162 mental health professionals, students, and trainees. Once we have 

completed data collection, we will begin analysing the data with regard to the research questions 

posed in the OSF pre-registration (included in appendix 5). To continue to engage the 

participants in the research process, we plan to send out a newsletter with lay summaries of our 

results to participants to keep them updated about what we have found.  Additionally, we plan to 

send the test video (with the “mental health jar” analogy) to all participants at the end of the study. 

This is to ensure that even those who were randomly allocated the control video can benefit from 

this information. Some positive feedback from participants about the ‘test’ animated video is 

presented in figure 5.6.  

Conclusion 

 

Mood psychopathology has existed throughout human history. Despite centuries of dedicated 

study, the precise causes of mood disorders are unclear. Genetic studies offer one avenue of 

investigation and, over the past two decades, mood disorder genetics research has been 
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expanding. There are multiple end goals of such research: identifying risk variants for druggable 

targets, stratifying individuals based on risk, exploring shared aetiology with other human traits 

and disorders, and using aetiological knowledge to inform and educate affected individuals. 

Accurate phenotyping is important for achieving all these goals. Research studies collecting both 

phenotypic and genetic data offer the opportunity to study the genetic basis of both major 

depressive disorder and bipolar disorder. However, such studies require very large sample sizes 

to study these polygenic conditions, and this means that self-reported data collection is routinely 

used. While offering many opportunities, self-reported data also brings with it challenges 

regarding the construction of phenotypes for analyses, including GWASs. In this thesis, I 

investigated the various ways that mood psychopathology can be phenotyped with self-reported 

data and applied statistical genetics methods to them. Phenotypic validity is essential for 

minimising the likelihood of false positive findings and increasing likelihood of replication, which 

are key goals of genetics research. The studies presented in this thesis emphasise the value of 

taking refined phenotypes (e.g., diagnostic subtypes) as well as continuous measures of mood. 

These strategies can be combined, as per chapter 4. However, researchers wishing to adopt 

these methods in future studies should be warned of the limitations of retrospective data as well 

as the application of clinical tools to self-reported data collection. To continue to unravel the 

perpetual debate about mental ill health as a spectrum, it is paramount that researchers adopt 

data-driven/bottom-up approaches to classifying mood disorders, which considers genetic risk as 

one of many aetiological indicators.  
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Appendix 1. Supplementary material for chapter 1 

Supplementary material 
 
Diagnostic criteria of a major depressive episode as outlined in the 5th edition of the 
Diagnostic Statistical Manual for Mental Disorders (DSM-5) (American Psychiatric 
Association, 2013) 
 

• Five (or more) of the following symptoms have been present during the same two week 

period and represent a change from previous functioning; at least one of the symptoms is 

either (1) depressed mood or (2) loss of interest or pleasure.  

• Note: Do not include symptoms that are clearly attributable to another medical 

condition. 

1. Depressed most of the day, nearly every day as indicated by subjective 
report (e.g., feels sad, empty, hopeless) or observation made by others (e.g., 
appears tearful)  

2. Markedly diminished interest or pleasure in all, or almost all, activities most 
of the day, nearly every day (as indicated by subjective account or 
observation). 

3. Significant weight loss when not dieting or weight gain (e.g., change of more than 

5% of body weight in a month), or decrease or increase in appetite nearly every 

day. 

4. Insomnia or hypersomnia nearly every day. 

5. Psychomotor agitation or retardation nearly every day (observable by others, not 

merely subjective feelings of restlessness or being slowed down).  

6. Fatigue or loss of energy nearly every day Feelings of worthlessness or excessive 

or inappropriate guilt (which may be delusional) nearly every day (not merely self-

reproach or guilt about being sick).  

7. Diminished ability to think or concentrate, or indecisiveness, nearly every day 

(either by subjective account or as observed by others)  

8. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation 

without a specific plan, or a suicide attempt or a specific plan for committing suicide 
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• The symptoms cause clinically significant distress or impairment in social, occupational, 

or other important areas of functioning. 

• The episode is not attributable to the physiological effects of a substance or to another 

medical condition.  

o The above criteria represent a major depressive episode.  

• The occurrence of the major depressive episode is not better explained by schizoaffective 

disorder, schizophrenia, schizophreniform disorder, delusional disorder, or other specified 

and unspecified schizophrenia spectrum and other psychotic disorders.  

• There has never been a manic episode or a hypomanic episode. 

o Note: This exclusion does not apply if all of the manic-like or hypomanic-like 

episodes are substance-induced or are attributable to the physiological effects of 

another medical condition. 

 

Diagnostic criteria of a manic and hypomanic episode as outlined in the 5th edition of the 
Diagnostic Statistical Manual for Mental Disorders (DSM-5) (American Psychiatric 
Association, 2013) 
Key differences between mania and hypomania are highlighted in bold. 
 

Manic episode:  
 

• A distinct period of abnormally and persistently elevated, expansive, or irritable mood 

and abnormally and persistently increased goal-directed activity or energy, lasting at 
least 1 week and present most of the day, nearly every day (or any duration if 

hospitalization is necessary).  

• During the period of mood disturbance and increased energy or activity, 3 (or more) of 

the following symptoms (4 if the mood is only irritable) are present to a significant degree 

and represent a noticeable change from usual behavior:  

o Inflated self-esteem or grandiosity  

o Decreased need for sleep (e.g., feels rested after only 3 hours of sleep)  

o More talkative than usual or pressure to keep talking  

o Flight of ideas or subjective experience that thoughts are racing  

o Distractibility (i.e., attention too easily drawn to unimportant or irrelevant external 

stimuli), as reported or observed  
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o Increase in goal-directed activity (either socially, at work or school, or sexually) or 

psychomotor agitation (i.e., purposeless, non-goal-directed activity)  

o Excessive involvement in activities that have a high potential for painful 

consequences (e.g., engaging in unrestrained buying sprees, sexual 

indiscretions, or foolish business investments)  

• The mood disturbance is sufficiently severe to cause marked impairment in social or 

occupational functioning, or to necessitate hospitalization to prevent harm to self or 

others, or there are psychotic features.  

• The episode is not attributable to the physiological effects of a substance (e.g., a drug of 

abuse, a medication, or other treatment) or to another medical condition.  

o Note: A full manic episode that emerges during antidepressant treatment [e.g., 

medication, electroconvulsive therapy (ECT)], but persists at a fully syndromal 

level beyond the physiological effect of treatment is sufficient evidence for a 

manic episode, and therefore, a bipolar I diagnosis 

 
Hypomanic episode:  
 

 

• A distinct period of abnormally and persistently elevated, expansive, or irritable mood 

and abnormally and persistently increased activity or energy, lasting at least 4 
consecutive days and present most of the day, nearly every day.  

• During the period of mood disturbance and increased energy and activity, 3 (or more) of 

the above (manic) symptoms (4 if the mood is only irritable) have persisted, represent a 

noticeable change from usual behavior, and have been present to a significant degree.  

• The episode is associated with an unequivocal change in functioning that is 

uncharacteristic of the individual when not symptomatic.  

• The disturbance in mood and the change in functioning are observable by others.  

• The episode is not severe enough to cause marked impairment in social or 

occupational functioning or to necessitate hospitalization. If there are psychotic features, 

the episode is, by definition, manic.  

• The episode is not attributable to the physiological effects of a substance (e.g., a drug of 

abuse, a medication, or other treatment).  

o Note: A full hypomanic episode that emerges during antidepressant treatment 

(e.g., medication, ECT) but persists at a fully syndromal level beyond the 
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physiological effect of that treatment is sufficient evidence for a hypomanic 

episode diagnosis. However, caution is indicated so that one or two symptoms 

(particularly increased irritability, edginess or agitation following antidepressant 

use) are not taken as sufficient for a diagnosis of a hypomanic episode nor 

necessarily indicative of a bipolar diathesis 

 

Bipolar disorder type I and type II: 
 

• A person can be diagnosed with bipolar disorder type I if they meet criteria for a manic 

episode. This manic episode may have been preceded and/or followed by a 
hypomanic or major depressive episode.  

• A person can be diagnosed with bipolar disorder type II if they meet criteria for at least 

one hypomanic episode and at least one major depressive episode and there has never 
been a manic episode.  

 

Supplementary references 

American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders 

(DSM-5®). American Psychiatric Pub. 
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Appendix 2. Supplementary material for chapter 2 

Supplementary material 
 
Supplementary methods 

Study sample and phenotype definitions 

UK Biobank 

Between 2006 and 2010, the UK Biobank recruited over 500,000 individuals for a cohort study 

aimed at improving diagnosis, treatment and prevention of serious diseases(Allen et al., 2014). 

Participants gave full informed consent, answered surveys and provided physical measurements 

including DNA samples at a baseline visit to one of 22 assessment centres across the UK (Sudlow 

et al., 2015). The phenotypes assessed in this study were derived from the online follow-up Mental 

Health Questionnaire (MHQ), which received 157,366 responses. This online questionnaire 

comprises a number of adapted versions of clinically used psychiatric questionnaires to assess 

common mental health disorders. Case definitions based on responses to the psychiatric 

questionnaires were derived by the working committee who wrote the MHQ (Davis et al., 2020). 

The individual-level analysis sample for the present study specifically focused on participants who 

had completed the MHQ and met criteria for lifetime major depressive disorder (MDD) (N=29,41). 

 

Major depressive disorder (MDD) 

Participants were considered cases for probable MDD based on their responses to questions 

derived from the Composite International Diagnostic Interview Short Form (CIDI-SF). Reporting 

on a period of depression lasting at least two weeks, cases endorsed at least one of the two core 

symptoms (“ever had prolonged feelings of sadness or depression” and “ever had prolonged loss 

of interest in normal activities”), at least five of the nine symptoms queried overall, and reported 

that they were affected almost every day, most days during the period, with more than a little 

impact on normal functioning. Controls did not meet case criteria and did not meet criteria for a 

current episode of depression. Participants who self-reported a diagnosis of schizophrenia, other 

psychoses, or bipolar disorder were excluded. Controls were excluded if they self-reported any 
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mental illness, taking any drug with an antidepressant indication, or had been hospitalised with a 

mood disorder or met previously defined criteria for a mood disorder. 

Major depressive disorder with/without reported psychological trauma  

Participants were classified as having either “MDD with reported exposure to psychological 

trauma” or “MDD without reported exposure psychological trauma”. Phenotype definitions for 

these are included in the Supplementary Material of Coleman et al. (2020). Questions relating to 

traumatic experiences in childhood were assessed on a five point scale (ranging from “never” to 

“often”) using the Childhood Trauma Screener (an adapted version of the Childhood Trauma 

Questionnaire (Bernstein et al., 1994; Grabe et al., 2012; Bellis et al., 2014). An equivalent 

screener was constructed for traumatic events in adulthood. Only traumatic experiences with an 

odds ratio >2.5 with MDD were selected to obtain a single binary variable for trauma exposure. 

This included: three events in childhood (did not feel loved, felt hated by a family member, sexually 

abused); three events in adulthood (physical violence, belittlement, sexual interference); and one 

PTSD-related event (ever a victim of sexual assault). Participants were included in the “MDD with 

reported exposure to psychological trauma” analysis if they reported two or more of these events 

and met criteria for MDD. Participants were included in the “MDD without reported exposure to 

psychological trauma” analysis if they reported none of these events and met case criteria for 

MDD (Coleman et al., 2020). 

Recurrent and single-episode major depressive disorder 

Participants were classified as having either recurrent MDD or single-episode MDD. The 

definitions of the recurrent and single-episode MDD phenotypes can be found in the 

Supplementary Material of Coleman et al. (2019). In brief, participants who met criteria for MDD 

were classified with recurrent MDD if they reported multiple depressed periods across their 

lifetime and single-episode MDD otherwise (Coleman et al., 2019). 

Posttraumatic stress disorder phenotypes 
  
Posttraumatic stress disorder in the UK Biobank 

  
The definition of posttraumatic stress disorder (PTSD) in the UK Biobank is included in the 

Supplementary Material of Nievergelt et al. (2019). In brief, the PTSD phenotype was derived 

from six questions asked in the follow-up online mental health questionnaire. These questions 
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were derived from the brief civilian version of the PTSD Checklist Screener (PCL-S) which 

measures PTSD symptoms experienced in the previous month: avoidance of activities; disturbing 

thoughts; and feeling upset; and two additional questions related to feeling distant and feeling 

irritable. Each item was scored on a five-point Likert item measuring the amount of concern 

caused by that symptom in the past month (1="Not at all" to 5="Extremely"). In addition, a “trouble 

concentrating” question from the Patient Health Questionnaire-9 (PHQ9) depression 

questionnaire was added to replace a similar item that would normally be included in the PCL-S. 

This item was scored on a four-point Likert item according to frequency of difficulties associated 

with trouble concentrating (1="Not at all" and 4="Nearly every day"). For each participant, all items 

were summed into a total score ranging 3-29. Participants were considered PTSD cases if they 

had an overall PCL-S score ≥ 13. Participants were considered PTSD controls if they responded 

to all of the initial three questions and had PCL-S score ≤ 12 (Nievergelt et al., 2019). 

 Posttraumatic Stress Disorder working group of the Psychiatric Genomics Consortium 

  
The PTSD working group of the Psychiatric Genomics Consortium (PGC) meta-analysed data 

from 59 studies of PTSD to perform a GWAS known as the PTSD Freeze 1.5 (PGC1.5-PTSD). 

This sample involved 12,823 cases and 35,648 controls. The PGC gathered data for PGC1.5-

PTSD through a number of independent studies who used a wide range of methods, primarily 

telephone diagnostic interviews and face-to-face clinical assessments. Some of the participants 

included in this cohort are veterans who have been combat or war-zone exposed. Other traumatic 

events assessed by the PGC include serious car accidents, campus shootings, domestic 

violence, and childhood physical and sexual abuse. Participants were assessed for current and 

lifetime PTSD using various instruments and different versions of the DSM (Nievergelt et al., 

2019). Further details of the contributing studies and instruments used to assess PTSD are 

contained in the Supplementary Material of Nievergelt et al. (2019). 

 

To maximise power in genome-wide analysis, the UK Biobank and PTSD Freeze 1.5 (PGC1.5-

PTSD) were combined. This combined data set is known as the PTSD Freeze 2 (PGC2-PTSD). 

In this sample, the number of cases was 23,212 and the number of controls was 151,447. The 

SNP-based heritability (liability scale) of the PGC2-PTSD phenotype was 0.06 (SE=0.011). In the 

main paper, we present genetic correlations between the MDD categories and the PGC1.5-PTSD 

summary statistics. We also calculated genetic correlations with the PGC2-PTSD summary 

statistics which are presented in Supplementary Table 1. 
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The Million Veteran Program 

  

The Million Veteran Program (MVP) is a longitudinal study of United States military veterans who 

provided a blood sample for biobanking and responses to various questionnaires (Gaziano et al., 

2016). While the MVP sample consists of United States veterans, only 27.5% have confirmed 

war- or combat- exposure, while 29.3% who had not been exposed. The remaining 43.1% had 

unknown war- and combat-exposure (Stein et al., 2020). The MVP-PTSD GWAS was of a binary, 

algorithmically-defined probable PTSD phenotype based on the veterans’ Electronic Health 

Records. Further details of how the MVP phenotype was defined can be found in Stein et al. 

(2020). 

  

Computational Methods 

High Definition Likelihood inference of genetic correlations 

Genetic correlations were estimated using High Definition Likelihood (HDL). Firstly for each 

phenotype, GWAS summary statistics were used to estimate the proportion of variance explained 

by common genetic variants (h2
SNP) using High Definition Likelihood (HDL). While this is not a 

specific aim of the study, this step is necessary for interpreting genetic correlations between the 

PTSD phenotypes and the four MDD categories. HDL rests upon the principle of linkage-

disequilibrium and extends the regression formula used by Linkage Disequilibrium Score 

Regression (LDSC) (see below). Unlike LDSC, HDL uses a full, likelihood-based method to 

estimate genetic correlations (Ning et al., 2020). Further details can be found in the original paper 

by Ning et al. (2020). 

  

All summary statistics were wrangled using the built-in HDL function for data wrangling 

(https://github.com/zhenin/HDL/wiki/Format-of-summary-statistics). All GWAS summary statistics 

used in this analysis had at least 99% SNP overlap with the UK Biobank LD reference panel using 

HapMap3 variants, apart from the Million Veteran Program (MVP) GWAS which had an overlap 

of 94.23%. Through correspondence with the HDL authors, we are confident that this level of SNP 

overlap is acceptable since the mismatch is not due to differences in the ancestral population 

from which the samples were created (e.g European vs. non-European populations) since both 

the MVP and the UK Biobank samples comprise participants from European ancestries only. The 

authors of HDL have performed a simulation to test this and discovered that missing SNPs lead 
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to more conservative results but should not generate false positives (Z Ning, personal 

correspondence). Therefore, a missing rate around 5% is acceptable. Furthermore, we repeated 

the data wrangling using the smaller HapMap2 (as opposed to HapMap3) reference panel and 

this did not improve the SNP overlap appreciably (data not shown). The authors of HDL therefore 

advised us that we continue to use the HapMap3 reference panel for the wrangling of the MVP 

Case-Control GWAS summary statistics. 

  

High Definition Likelihood block-jackknife 

The block-jackknife method was used to compare genetic correlations for a statistically significant 

difference between them. Each genetic correlation was compared in a pairwise fashion with all 

other genetic correlations within each set (the sets being UKB-PTSD, PGC2-PTSD, and MVP-

PTSD presented in the main paper and PGC1.5-PTSD presented in the Supplementary Material). 

The block-jackknife uses a resampling method to estimate standard errors for each genetic 

correlation, which is then used to determine whether the differences between the genetic 

correlations are significantly different to zero. Here we provide an explanation of the block-

jackknife method (Z Ning, personal correspondence). 

When estimating genetic correlations, rg1 and rg2, one may then want to test whether the 

difference between them, referred to as the “global difference”, is significantly different to zero. 

This would mean the null hypothesis is: rg1 - rg2 = 0. For rg1, by setting jackknife.df=TRUE when 

using the HDL tool, you can get jackknife estimates of rg1.1 to rg1.61. This creates a file with 61 

jackknife estimates because the genome is split into 61 pieces during the resampling process.  

rg1.k represents the estimated rg with piece k removed. Similarly, you have rg2.1 to rg2.61 for rg2. 

With these two files containing the values in for both correlations, one can create the block-

jackknife estimates by doing rg1.1 - rg2.1 all the way up to rg1.61 - rg2.61. The block-jackknife 

standard error can be found using this formula: 

 	

𝑠𝑒2345( =	)
𝑛 − 1
𝑛

-(𝜃0(7) − 𝜃0(.))$
9

7:;
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Where  𝑛 = 61 (for each of the resampling estimates),  𝜃0 = the difference between each resampling 

estimate (e.g., rg1.1 - rg2.1 all the way up to rg1.61 - rg2.61), 𝜃 = the mean of these estimates. 

Then, the block-jackknife standard error and the global difference between the two correlations 

can be used to perform a Wald test: 

Z = global difference ÷  block-jackknife standard error 

The Wald test will give a z-score, which can then be used to find the two-tailed p-value, which will 

tell you whether the global difference is significantly different to zero. In our study, we corrected 

for multiple testing by considering p<0.008 as the threshold for significance (0.05/6 = 0.008, to 

account for the 6 block-jackknife tests carried out for each PTSD phenotype). Supplementary 

Table 5 contains all results from the HDL block-jackknife analysis. 

 

Converting observed scale heritability estimates to the liability scale 

The heritability of each trait was estimated by the HDL programme irrespective of population 

prevalence. Therefore, these estimates were converted to the liability scale in R, using code from 

the Nievergelt Lab github: 

https://gist.github.com/nievergeltlab/fb8a20feded72030907a9b4e81d1c6ea. Standard errors 

were also converted to the liability scale using the same formula(Lee et al., 2011). Population 

prevalence for PTSD was adopted from Nievergelt et al. (2019), from Coleman et al. (2020) for 

reported trauma in MDD and from Burcusa & Iacono (2007) for recurrence in MDD. 

Linkage Disequilibrium Score Regression 

In addition to using HDL, we calculated genetic correlations using Linkage Disequilibrium Score 

Regression (LDSC). LDSC is a command line tool for estimating heritability and genetic 

correlation from GWAS summary statistics. It rests upon the principle of linkage-disequilibrium 

(LD). LD describes the degree to which an allele of one SNP is inherited or correlated with an 

allele of another SNP within a population (Bush and Moore, 2012). In this method, an “LD Score” 

of a given SNP refers to “the sum of LD r2 measured with all other SNPs”. LDSC works by 

performing regression analysis on the LD scores and the test statistic of each SNP included in 

the GWAS, including those that do not meet genome-wide significance (Bulik-Sullivan et al., 

2015a). LDSC relies on the fact that the GWAS effect-size estimate for a given SNP incorporates 
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the effect of all SNPs in LD with that particular SNP. For most complex human traits, which are 

polygenic, SNPs with high LD will have higher chi-square test statistics, on average, than SNPs 

with low LD (Bulik-Sullivan et al., 2015b). 

  

As in the HDL analysis, GWAS summary statistics were used to estimate the proportion of 

variance explained by common genetic variants (h2
SNP) using LDSC. While this is not a specific 

aim of the study, this step is necessary for interpreting genetic correlations. 

  
Linkage Disequilibrium Score Regression (LDSC) block-jackknife 
  
The block-jackknife method was used to compare genetic correlations for a statistically significant 

difference between them. Each genetic correlation was compared in a pairwise fashion with all 

other genetic correlations within each set (the sets being UKB-PTSD, PGC1.5-PTSD, PGC2-

PTSD, and MVP-PTSD).  As described above for HDL, the block-jacknife works by repeated re-

estimation of blocks of jack-knife estimates. In the case of LDSC, the number of blocks is set by 

the user (we used 200), but otherwise the calculation of significant differences follows the 

description provided for HDL. 

  

Polygenic Risk Scores 

PRS were calculated PRSice v2.3.1, a command line programme that uses GWAS summary 

statistics to calculate genetic risk of a base phenotype in individuals from an independent sample. 

A PRS refers to the summation of alleles across many genetic loci associated with a particular 

trait or disease. These alleles are typically weighted by effect sizes estimated from GWAS 

(Euesden et al., 2015). In our study, the PRS represents the aggregated PTSD risk conferred by 

many DNA variants in participants of the UK Biobank who have MDD. Since even well-powered 

GWAS offer only tentative evidence for causally associated variants, PRS are calculated at a 

range of different P-value thresholds to provide the ‘best-fit’, or most predictive, PRS (Dudbridge, 

2013). Once the best fitting PRS has been estimated, these are used as predictors of a target 

phenotype in individuals in an independent sample in a regression. PRS were calculated at 11 p-

value thresholds (5x10-8, 1x10-5, 1x10-3, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1). Phenotype 

permutations (implemented in PRSice) were used to produce an empirical p-value for the 

association at the best-fitting PRS, which accounts for testing multiple thresholds. We then 

performed a logistic regression to examine whether the risk scores are more strongly associated 
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with MDD with reported trauma or MDD without reported trauma, and recurrent or single-episode 

MDD. 

Power calculations 

We calculated the power of our PRS analyses using the Additive Variance Explained and Number 

of Genetic Effects Method of Estimation (AVENGEME) programme in R (Dudbridge, 2013). We 

were uncertain about the covariance between genetic effects in the target sample (MVP PTSD) 

and the two target samples. Therefore, based on the parameters required by the AVENGEME 

package (see below), we calculated that for the PRS analysis testing the risk score’s association 

with MDD with and without reported trauma to be powered at least 80%, the covariance between 

the genetic effect sizes in the training and target samples would need to be at least 0.024. We 

calculated that for the PRS analysis testing the risk score’s association with recurrent and single-

episode MDD to be powered at least 80%, the covariance between the genetic effect sizes in the 

training and target samples would need to be at least 0.0305. Due to these minimum covariance 

estimates being so low, we were confident that the PRS analyses were powered by at least 80%. 

Parameters required by the AVENGEME package: 

●  Number of SNPs included in PRS after clumping = 183,881 

●  Proportion of variance in PTSD explained by genetic effects = 0.03 (Stein et al., 

2020) 

●  Training sample prevalence of PTSD = 0.18 (Stein et al., 2020) 

●  Population prevalence of PTSD = 0.30 (Nievergelt et al., 2019) 

●  Target sample prevalence of reported trauma among MDD cases = 0.59 

●  Population prevalence of reported trauma among MDD cases = 0.52 (Coleman et 

al., 2020) 

●  Target sample prevalence of recurrent MDD = 0.59 

●  Population prevalence of recurrent MDD among MDD cases = 0.5 (Burcusa and 

Iacono, 2007) 

Supplementary results 

High Definition Likelihood block-jackknife 

The results of the HDL block-jackknife analysis can be found in Supplementary Table 5. 

Differences between genetic correlations were considered statistically significant if they 
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surpassed the Bonferroni corrected alpha (0.05/6 = 0.008; i.e. to correct for the six block-jackknife 

tests per PTSD phenotype). 

 

Linkage Disequilibrium Score Regression genetic correlations 
  

Genetic correlations (Supplementary Table 6) estimated by LDSC were considered significantly 

different to zero and to one if they reached or surpassed the Bonferroni-corrected alpha in each 

analysis (0.05/4 = 0.0125; i.e. to correct for the four tests).   

  

Linkage Disequilibrium Score Regression block-jackknife 
  

We tested the differences between the genetic correlations using a block-jackknife. Differences 

were considered statistically significant if they passed a Bonferroni-corrected alpha of 0.008 

(0.05/6 = 0.008; i.e. to correct for the six block-jackknife tests per PTSD phenotype). 

Supplementary Table 7 contains the results of the LDSC block-jackknife. 

 

Comparison of the two methods for estimating genetic correlations 

In our study, we performed the genetic correlation and block-jackknife analyses in both HDL and 

LDSC. We have opted to only present the HDL results in the main text since it is the preferable 

method (for reasons discussed in the paper). Nonetheless, there are some key differences 

between the HDL and LDSC results which need to be discussed here. 

An anticipated difference was that no genetic correlations were found to differ significantly from 

any other genetic correlations when using LDSC. The absence of statistically significant 

differences in genetic correlation must be interpreted in the context of the power of the original 

GWAS from which the summary statistics used in this study were created. As shown in 

Supplementary Table 6, the standard errors surrounding the LDSC point estimates are notably 

large, meaning that any differences between genetic correlation would need to be large to be 

detected as significantly different to zero in the block-jackknife analysis. The advantage of using 

HDL to estimate genetic correlations is reduction in variance of the point estimate (Ning et al., 

2020), which provides better power to observe differences between genetic correlations. This was 

the case in our study, where we found that PTSD is significantly more genetically correlated with 

recurrent MDD than it is genetically correlated with MDD without reported trauma when using 
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HDL. Similar to the HDL results, when using LDSC we find that all PTSD phenotypes have a 

higher genetic correlation with recurrent MDD than with MDD without reported trauma; however, 

unlike when using the HDL block-jackknife, this difference was not significantly different to zero 

in the results of LDSC block-jackknife. 

Another difference between the HDL and LDSC results is the pattern of genetic correlations. 

Firstly, when using LDSC, we observe a clear pattern where all PTSD phenotypes are more 

genetically correlated with recurrent MDD than single-episode MDD. We do not see this pattern 

when using HDL. Secondly, the consistent pattern whereby all PTSD phenotypes are more 

genetically correlated with MDD with reported trauma compared MDD without reported trauma 

when using HDL only holds true for the PGC 1.5, PGC 2 and MVP PTSD phenotypes when using 

LDSC, whereas the UK Biobank PTSD phenotype appears to be slightly more genetically 

correlated with MDD with without reported trauma (rg difference = 0.0039). 

These differences are likely due to inconsistent SNP reference panels used by HDL and LDSC, 

which are needed to estimate the LD-scores. Therefore, a difference in the reference panel 

between the two methods is likely to lead to differing results. In HDL, the reference panels with 

imputed SNPs are based on genotypes in UK Biobank, which were imputed to HRC and UK10K 

+ 1000 Genomes. Specifically in our study, we used the 1,029,876 Quality Controlled UK Biobank 

imputed HapMap3 SNPs reference panel (https://github.com/zhenin/HDL/wiki/Reference-

panels). On the other hand, LDSC uses a reference panel from the 1000 Genomes Project which 

is not specific to the UK Biobank (Bulik-Sullivan et al., 2015b). According to correspondence with 

the authors, HDL uses the UK Biobank reference panels instead of 1000 Genomes because the 

UK Biobank has a larger sample size. This therefore leads to more accurate estimates of LD. 

Further details can be found at the discussion section of Ning et al. (2020). However, this increase 

in the accuracy of LD estimation is likely to apply most strongly to summary statistics from the UK 

in general and UK Biobank in particular, and less so to samples descended from European 

ancestry populations from elsewhere in Europe. This being the case, it is feasible that the 

differences in genetic correlations we observe in our study partly reflect differences in the 

proportion of UK ancestry in the PTSD summary statistics (as all of the MDD summary statistics 

were drawn from UK Biobank). This inconsistency between LDSC and HDL, and its potential 

relationship to UK ancestry in the summary statistics assessed, is likely to have wider implications 

than our study alone and requires a detailed examination beyond the scope of this study. 

Polygenic risk scores 
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Polygenic risk scores for PTSD were calculated PRSice v2.3.1. Two PRS analyses were 

performed: two regressions using PRS based on the MVP PTSD summary statistics. Full results 

of these analyses can be found in Supplementary Table 8. Beta coefficients were exponentiated 

in R to give odds ratios (OR) and 95% confidence intervals (CI). 

  

Nagelkerke’s R2 
  

The PRS were initially calculated without consideration of the prevalence of the target phenotype 

(reported psychological trauma in individuals with MDD and episode recurrence in individuals with 

MDD) within the population. Based on the results from PRSice, Nagelkerke’s R2 was calculated 

for the estimated population prevalence, +10% and -10% in R. We obtained an estimated 

population prevalence for trauma exposure among MDD cases of 52% from the Supplementary 

Material of Coleman et al. (2020). We obtained an estimated population prevalence for recurrence 

among MDD cases of 50% from Burcusa & Iacono (2007). For the regression testing the PTSD 

risk scores’ association with MDD with reported trauma and MDD without reported trauma, the 

Nagelkerke’s R2 based on a population prevalence of 42%, 52% and 62% were 0.0563%, 

0.0569% and 0.0555% respectively. For the regression testing the PTSD risk scores’ association 

with recurrent MDD compared to single-episode MDD, the Nagelkerke’s R2 based on population 

prevalence 40%, 50% and 60% were 0.0296%, 0.0301% and 0.0296% respectively. 
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Supplementary tables 
 
Table S2.1. High Definition Likelihood (HDL) genetic correlation estimates (rg), standard errors (SE) and 95% confidence 
intervals (CI) of Psychiatric Genomics Consortium 2 PTSD (PGC2-PTSD) with the four major depressive disorder (MDD) 
categories. P (diff 0) refers to p-value to test whether the rg estimate differs from 0. P (diff 1) refers to p-value to test whether 
the rg estimate differs from 1. Genetic correlations were considered significant if they reached or surpassed the Bonferroni 
adjusted threshold (p<0.0125). Significant p-values are shown in bold. The SNP-based heritability of the PGC2-PTSD 
phenotype was estimated by HDL to be 0.06 (SE = 0.006). 

 

PTSD Phenotype MDD phenotype rg SE Lower CI Upper CI P (diff 0) P (diff 1) 

PGC2-PTSD MDD with reported trauma 0.6497 0.0825 0.4880 0.8114 3.39x10-15 2.18x10-5 

PGC2-PTSD MDD without reported trauma 0.5509 0.1107 0.3339 0.7679 5.12x10-7 4.24x10-5 
PGC2-PTSD Recurrent MDD 0.7915 0.0821 0.6306 0.9524 8.45x10-22 0.01 
PGC2-PTSD Single-episode MDD 0.8147 0.1129 0.5934 1.0360 5.27x10-13 0.1 
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Table S2.2. Difference in reporting rates of traumatic life events, assessed by the Mental Health Questionnaire (MHQ), between 
individuals with recurrent and single-episode major depressive disorder (MDD) in UK Biobank MHQ respondents who met 
criteria for lifetime MDD (N=29,471). Traumatic events include two childhood events, two adulthood events and five 
catastrophic/posttraumatic stress disorder (PTSD)-related events. Differences were considered significant if they surpassed 
the Bonferroni adjusted alpha (p<0.006) to correct for the nine chi-square tests. Significant differences are shown in bold.  

 

 

 

Trauma category Traumatic event Endorsement in 
single-episode 

MDD (%) 

Endorsement in 
recurrent MDD 

(%) 

𝝌2 statistic P-value 

Childhood physical 
abuse 

Physically abused by family as 
a child 

2,644 (22%) 4,846 (28%) 126 3.82x10-29 

Childhood physical 
neglect 

Someone to take to doctor 
when needed as a child 

1,948 (16%) 3,556 (20%) 80 3.80x10-19 

Adulthood emotional 
neglect 

Been in a confiding 
relationship as an adult 

3,758 (32%) 6,937 (40%) 205 2.08x10-46 

Adulthood physical 
neglect 

Able to pay rent/mortgage as 
an adult 

1,963 (17%) 3,603 (21%) 87 1.07x10-20 

PTSD-related: 
experience of war or 
combat 

Been involved in combat or 
exposed to war-zone 

400 (3%) 595 (3%) 0.13 0.72 

PTSD-related: serious 
accident 

Been in serious accident 
believed to be life-threatening 

1,247 (10%) 2,313 (13%) 
 

55 9.47x10-14 

PTSD-related: life-
threatening illness 

Diagnosed with life-threatening 
illness 

2,092 (17%) 3,211 (18%) 5 0.03 

PTSD-related: physically 
violent crime 

Victim of physically violent 
crime 

2,332 (19%) 4,273 (25%) 106 8.12x10-25 

PTSD-related: witnessed 
sudden violent death 

Witnessed sudden violent 
death 

1,778 (15%) 2,866 (16%) 14 0.0002 
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Table S2.3. High Definition Likelihood (HDL) genetic correlation estimates (rg), standard errors (SE), and 95% confidence 
intervals (CI) between the four posttraumatic stress disorder (PTSD) phenotypes: 1) UK Biobank PTSD (UKB-PTSD), 2) 
Psychiatric Genomics Consortium 1.5 PTSD (PGC1.5-PTSD), 3) PGC 2 PTSD (PGC2-PTSD), 4) Million Veteran Program PTSD 
(MVP-PTSD). P (diff 0) refers to p-value to test whether the rg estimate differs from 0. P (diff 1) refers to p-value to test whether 
the rg estimate differs from 1. Genetic correlations were considered significant if they surpassed the Bonferroni adjusted 
threshold (p<0.008) to correct for the 6 tests. Significant p-values are shown in bold.  
 

Phenotype 1 Phenotype 2 rg SE Lower CI Upper CI P (diff 0) P (diff 1) 

UKB-PTSD PGC1.5-PTSD 0.5738 0.1155 0.3474 0.8001 6.83Ex10-7 0.0002 

UKB-PTSD PGC2-PTSD 0.8016 0.0703 0.6638 0.9394 3.80x10-30 0.005 

UKB-PTSD MVP-PTSD 0.6702 0.0707 0.5316 0.8088 2.56x10-21 3.10x10-6 

PGC1.5-PTSD PGC2-PTSD 0.9853 0.1481 0.6950 1.2756 2.85x10-11 0.92 

PGC1.5-PTSD MVP-PTSD 1.0053 0.1669 0.6782 1.3324 1.71x10-9 0.97 

PGC2-PTSD MVP-PTSD 0.9810 0.1105 0.7644 1.1976 6.96x10-19 0.86 
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Table S2.4. High Definition Likelihood (HDL) genetic correlation estimates (rg), standard errors (SE), and 95% confidence 
intervals (CI) between the four major depressive disorder (MDD) categories: 1) MDD with reported trauma, 2) MDD without 
reported trauma, 3) recurrent MDD, 4) single-episode MDD. P (diff 0) refers to p-value to test whether the rg estimate differs 
from 0. P (diff 1) refers to p-value to test whether the rg estimate differs from 1. Genetic correlations were considered 
significant if they surpassed the Bonferroni adjusted threshold (p<0.008) to correct for the 6 tests. Significant p-values are 
shown in bold. 
 

 

 

 

 

 

 

 

Phenotype 1 Phenotype 2 rg SE Lower CI Upper CI P (diff 0) P (diff 1) 
MDD with reported 
trauma 

MDD without 
reported trauma 0.6068 0.0727 0.4643 0.7493 7.11x10-17 6.35x10-8 

MDD with reported 
trauma Recurrent MDD 0.8120 0.0438 0.7262 0.8978 1.46x10-76 1.77x10-5 
MDD with reported 
trauma Single-episode MDD 0.8508 0.0629 0.7275 0.9741 1.13x10-41 0.02 
MDD without 
reported trauma Recurrent MDD 0.8686 0.0748 0.7222 1.0152 3.31x10-31 0.08 
MDD without 
reported trauma Single-episode MDD 0.9175 0.1013 0.7190 1.1160 1.35x10-19 0.42 

Recurrent MDD Single-episode MDD 0.9424 0.0596 0.8256 1.0592 2.49x10-56 0.33 
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Table S2.5. Genetic correlation results from the High Definition Likelihood (HDL) block-jackknife analysis of posttraumatic 
stress disorder (PTSD) and the four major depressive disorder (MDD) categories. The four PTSD phenotypes include: 1) UK 
Biobank PTSD (UKB-PTSD), 2) Psychiatric Genomics Consortium 1.5 PTSD (PGC1.5-PTSD), 3) PGC 2 PTSD (PGC2-PTSD), 4) 
Million Veteran Program PTSD (MVP-PTSD). Each genetic correlation was compared in a pairwise fashion with all other 
genetic correlations in the set (i.e. for each PTSD phenotype). rg difference refers to the difference between the two genetic 
correlation estimates, SE refers to the standard error and P (diff 0) refers to p-value to test whether the rg difference differs 
significantly from 0. Differences between genetic correlations were considered statistically significant if they surpassed the 
Bonferroni adjusted threshold (p<0.008). Significant p-values are shown in bold.  

HDL genetic correlation 1 HDL genetic correlation 2 rg difference SE P (diff 0) 
UKB-PTSD and MDD with reported trauma UKB-PTSD and MDD without reported trauma 0.1339 0.0910 0.14 
UKB-PTSD and MDD with reported trauma UKB-PTSD and recurrent MDD -0.1094 0.0572 0.06 
UKB-PTSD and MDD with reported trauma UKB-PTSD and single-episode MDD -0.0426 0.0864 0.62 
UKB-PTSD and MDD without reported 
trauma 

UKB-PTSD and recurrent MDD -0.2433 0.0696 4.77x10-4 

UKB-PTSD and MDD without reported 
trauma 

UKB-PTSD and single-episode MDD -0.1765 0.0773 0.02 

UKB-PTSD and recurrent MDD UKB-PTSD and single-episode MDD 0.0668 0.0752 0.37      

PGC1.5-PTSD and MDD with reported 
trauma 

PGC1.5-PTSD and MDD without reported 
trauma 

0.0679 0.0988 0.49 

PGC1.5-PTSD and MDD with reported 
trauma 

PGC1.5-PTSD and recurrent MDD -0.1417 0.0730 0.05 

PGC1.5-PTSD and MDD with reported 
trauma 

PGC1.5-PTSD and single-episode MDD -0.2040 0.1413 0.15 

PGC1.5-PTSD and MDD without reported 
trauma 

PGC1.5-PTSD and recurrent MDD -0.2096 0.0745 4.90x10-3 

PGC1.5-PTSD and MDD without reported 
trauma 

PGC1.5-PTSD and single-episode MDD -0.2719 0.1183 0.02 
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PGC1.5-PTSD and recurrent MDD PGC1.5-PTSD and single-episode MDD -0.0623 0.1228 0.61 
     
PGC2-PTSD and MDD with reported trauma PGC2-PTSD and MDD without reported trauma 0.0988 0.1261 0.43 
PGC2-PTSD and MDD with reported trauma PGC2-PTSD and recurrent MDD -0.1418 0.0875 0.10 
PGC2-PTSD and MDD with reported trauma PGC2-PTSD and single-episode MDD -0.1650 0.1047 0.12 
PGC2-PTSD and MDD without reported 
trauma 

PGC2-PTSD and recurrent MDD -0.2406 0.0862 5.28x10-3 

PGC2-PTSD and MDD without reported 
trauma 

PGC2-PTSD and single-episode MDD -0.2638 0.1062 0.01 

PGC2-PTSD and recurrent MDD PGC2-PTSD and single-episode MDD 0.0232 0.1024 0.82 
     
MVP-PTSD and MDD with reported trauma MVP-PTSD and MDD without reported trauma 0.0538 0.1197 0.65 
MVP-PTSD and MDD with reported trauma MVP-PTSD and recurrent MDD -0.0203 0.0722 0.78 
MVP-PTSD and MDD with reported trauma MVP-PTSD and single-episode MDD -0.0894 0.1028 0.38 
MVP-PTSD and MDD without reported 
trauma 

MVP-PTSD and recurrent MDD -0.0741 0.0880 0.40 

MVP-PTSD and MDD without reported 
trauma 

MVP-PTSD and single-episode MDD -0.1432 0.1080 0.18 

MVP-PTSD and recurrent MDD MVP-PTSD and single-episode MDD -0.0691 0.1130 0.54 
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Table S2.6. Linkage Disequilibrium Score Regression (LDSC) genetic correlation estimates (rg) and standard errors (SE) and 
95% confidence intervals (CI) of 1) UK Biobank posttraumatic stress disorder (PTSD), 2) Psychiatric Genomics Consortium 
(PGC) 1.5 PTSD (PGC1.5-PTSD), 3) PGC 2 PTSD (PGC2-PTSD), 4) Million Veteran Program PTSD (MVP-PTSD) with the four 
major depressive disorder (MDD) categories. P (diff 0) refers to p-value to test whether the rg estimate differs from 0. P (diff 
1) refers to p-value to test whether the rg estimate differs from 1. Genetic correlations were considered significant if they 
passed the Bonferroni adjusted threshold (p<0.0125). Significant p-values are shown in bold.  
 

 

 

 

 

PTSD Phenotype MDD phenotype rg SE Lower CI Upper CI P (diff 0) P (diff 1) 
UKB-PTSD MDD with reported trauma 0.6499 0.0832 0.4868 0.8130 5.70x10-15 2.58x10-5 
UKB-PTSD MDD without reported trauma 0.6538 0.1365 0.3863 0.9213 1.67x10-6 0.01 
UKB-PTSD Recurrent MDD 0.7815 0.0550 0.6737 0.8893 7.55x10-46 7.11x10-5 
UKB-PTSD Single-episode MDD 0.7158 0.1045 0.5110 0.9206 7.29x10-12 6.54x10-3 
        
PGC1.5-PTSD MDD with reported trauma 0.6976 0.2131 0.2799 1.1153 1.06x10-3 0.16 
PGC1.5-PTSD MDD without reported trauma 0.4514 0.2471 -0.0329 0.9357 6.77x10-2 0.03 
PGC1.5-PTSD Recurrent MDD 0.7438 0.1545 0.4410 1.0466 1.48x10-6 0.10 
PGC1.5-PTSD Single-episode MDD 0.5743 0.1696 0.2418 0.9067 7.07x10-4 0.01 
        
PGC2-PTSD MDD with reported trauma 0.6263 0.1160 0.3989 0.8537 6.72x10-8 1.27x10-3 
PGC2-PTSD MDD without reported trauma 0.5461 0.1680 0.2168 0.8754 1.15x10-3 6.90x10-3 
PGC2-PTSD Recurrent MDD 0.7592 0.0880 0.5867 0.9317 6.47x10-18 6.21x10-3 
PGC2-PTSD Single-episode MDD 0.6597 0.1161 0.4321 0.8873 1.32x10-8 3.38x10-3 
        
MVP-PTSD MDD with reported trauma 0.3906 0.0766 0.2405 0.5407 3.40x10-7 1.78x10-15 
MVP-PTSD MDD without reported trauma 0.3593 0.1035 0.1564 0.5622 5.15x10-4 6.00x10-10 
MVP-PTSD Recurrent MDD 0.4812 0.0624 0.3589 0.6035 1.30x10-14 9.24x10-17 
MVP-PTSD Single-episode MDD 0.4392 0.0885 0.2657 0.6127 6.84x10-7 2.35x10-10 
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Table S2.7. genetic correlation results from the Linkage Disequilibrium Score Regression (LDSC) block-jackknife analysis of 
posttraumatic stress disorder (PTSD) and the four major depressive disorder (MDD) categories. The four PTSD phenotypes 
include: 1) UK Biobank PTSD (UKB-PTSD), 2) Psychiatric Genomics Consortium 1.5 PTSD (PGC1.5-PTSD), 3) PGC 2 PTSD 
(PGC2-PTSD), 4) Million Veteran Program PTSD (MVP-PTSD). rg difference refers to the difference between the two genetic 
correlation estimates, SE refers to the standard error and P (diff 0) refers to p-value to test whether the rg difference differs 
significantly from 0. Each genetic correlation was compared in a pairwise fashion with all other genetic correlations in the 
set (i.e. for each PTSD phenotype). Differences between genetic correlations were considered statistically significant if they 
passed the Bonferroni adjusted threshold (p<0.008).  
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LDSC genetic correlation 1 LDSC genetic correlation 2 rg difference SE P (diff 0) 

UKB-PTSD and MDD with reported trauma UKB-PTSD and MDD without reported trauma -0.0039 0.1677 0.99 
UKB-PTSD and MDD with reported trauma UKB-PTSD and recurrent MDD -0.1316 0.0825 0.08 
UKB-PTSD and MDD with reported trauma UKB-PTSD and single-episode MDD -0.0659 0.1234 0.55 
UKB-PTSD and MDD without reported trauma UKB-PTSD and recurrent MDD -0.1277 0.1238  0.25 
UKB-PTSD and MDD without reported trauma UKB-PTSD and single-episode MDD -0.0620 0.1271 0.57 
UKB-PTSD and recurrent MDD UKB-PTSD and single-episode MDD 0.0657 0.1091 0.51      

PGC1.5-PTSD and MDD with reported trauma PGC1.5-PTSD and MDD without reported 
trauma 

0.2462 0.2851 0.40 

PGC1.5-PTSD and MDD with reported trauma PGC1.5-PTSD and recurrent MDD -0.0462 0.1724 0.76 
PGC1.5-PTSD and MDD with reported trauma PGC1.5-PTSD and single-episode MDD 0.1233 0.2004 0.58 
PGC1.5-PTSD and MDD without reported trauma PGC1.5-PTSD and recurrent MDD -0.2924 0.2110 0.16 
PGC1.5-PTSD and MDD without reported trauma PGC1.5-PTSD and single-episode MDD -0.1229 0.2305 0.57 
PGC1.5-PTSD and recurrent MDD PGC1.5-PTSD and single-episode MDD 0.1695 0.1774 0.36 
     
PGC2-PTSD and MDD with reported trauma PGC2-PTSD and MDD without reported 

trauma 
0.0802 0.1959 0.65 

PGC2-PTSD and MDD with reported trauma PGC2-PTSD and recurrent MDD -0.1329 0.1125 0.23 
PGC2-PTSD and MDD with reported trauma PGC2-PTSD and single-episode MDD -0.0334 0.1348 0.87 
PGC2-PTSD and MDD without reported trauma PGC2-PTSD and recurrent MDD -0.2131 0.1448 0.12 
PGC2-PTSD and MDD without reported trauma PGC2-PTSD and single-episode MDD -0.1136 0.1626 0.49 
PGC2-PTSD and recurrent MDD PGC2-PTSD and single-episode MDD 0.0995 0.1250 0.36 
     
MVP-PTSD and MDD with reported trauma MVP-PTSD and MDD without reported trauma 0.0313 0.1261 0.82 
MVP-PTSD and MDD with reported trauma MVP-PTSD and recurrent MDD -0.0906 0.0736 0.14 
MVP-PTSD and MDD with reported trauma MVP-PTSD and single-episode MDD -0.0486 0.0992 0.60 
MVP-PTSD and MDD without reported trauma MVP-PTSD and recurrent MDD -0.1219 0.0954 0.15 
MVP-PTSD and MDD without reported trauma MVP-PTSD and single-episode MDD -0.0799 0.0953 0.40 
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MVP-PTSD and recurrent MDD MVP-PTSD and single-episode MDD 0.0420 0.0904 0.52 
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Table S2.8. Results table from PRSice analysis. Polygenic Risk Scores (PRS) for postraumatic stress disorder (PTSD) were 
calculated based on the Million Veteran Program (MVP-PTSD) summary statistics. Table includes the best fitting p-value 
threshold used in the analyses (Threshold), the standardised beta coefficient from regression (Standardised beta) and 
standard error (SE), the odds ratio (OR) and 95% confidence intervals (CI), p-value from regression (P), the number of single 
nucleotide polymorphisms used in creating the risk scores (Number of SNPs) and empirical p-value accounting for testing at 
multiple thresholds (Empirical P). Regression coefficients were considered statistically significant if they surpassed the 
Bonferroni adjusted alpha (p<0.025). Significant p-values are shown in bold. 
 

 

Regression Threshold Standardised 
beta 

SE OR (95% CI) P Number of 
SNPs 

Empirical P 

MDD with reported trauma vs. 
MDD without reported trauma 

0.4 0.04 0.014             1.04 
(1.01 – 1.07) 

 

0.003 101111 0.02 

Recurrent MDD vs. single-
episode MDD 

0.001 -0.03 0.013 0.97  
(0.95 – 0.99) 

      
0.01 

646 0.08 
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Appendix 3. Supplementary material for chapter 3 

Supplementary material 
 
Supplementary methods 
 
Major depressive disorder and anxiety disorder diagnostic criteria  
 
COPING NBR participants who met symptom-based diagnostic criteria for major depressive 

disorder (MDD) and/or any anxiety disorder were combined with GLAD participants to create a 

cohort of “affected” participants. The category of “any anxiety disorder” included generalised 

anxiety disorder (GAD), specific phobia, social phobia, panic disorder, and agoraphobia. COPING 

NBR participants who did not meet criteria for MDD or any anxiety disorder were categorised as 

unaffected participants. These criteria were based upon the MDD, GAD, specific phobia, social 

anxiety disorder, panic disorder, and agoraphobia modules from an adapted version of the short 

form Composite International Diagnostic Interview (CIDI-SF) in the COPING baseline survey. 

Diagnostic algorithms were written in R to categorise COPING NBR participants as having a 

lifetime symptom-based diagnosis for these disorders if their responses on the CIDI-SF 

corresponded to Diagnostic Statistical Manual V (DSM-V) criteria. Further detail of these 

symptom-based diagnoses have been described elsewhere (Davies et al., 2022).  

 

Self-reported bipolar diagnosis 
 

GLAD participants have two opportunities to self-report a diagnosis of bipolar disorder. The first 

is in the Mental Health Disorders (MHD) section and the second is in the MDQ section of the 

survey. Participants who self-reported that they had received a diagnosis of bipolar disorder by a 

professional in one of the two questions, but had missing data in the other, were categorised as 

a bipolar disorder case. Participants who answered “No” to one question but had missing data on 

the other question, had answers that did not match, or had missing data on both questions were 

excluded from analyses. NBR participants only have one opportunity to self-report a diagnosis of 

bipolar disorder in the MHD section of the COPING survey. Participants who had missing data for 

this question were excluded from analyses.  
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Mood Disorder Questionnaire screener 
 

A positive screen in the MDQ requires that seven or more items are endorsed, that at least several 

of the items co-occurred, and that the symptoms caused at least moderate impairment (Hirschfeld 

et al., 2000, 2003).   

 

Statistical analyses  
 

Exploratory and confirmatory factor analyses  
 
Exploratory factor analysis (EFA) is a classic latent variable technique which finds latent variables 

based on the correlation structure of the manifest input variables (here, the MDQ items). EFA is 

distinguished from confirmatory factor analysis (CFA) in that in CFA the model is determined by 

the researcher based on an underlying theory or from a model identified in the EFA (Mair, 2018).  

 

In our paper, each sample of participants was randomly split into two (without replacement) using 

the “rsample” R package; 70% for EFA and 30% for CFA. Before splitting the sample, the 

nearZeroVar R package was used to diagnose variables that have one unique value (i.e., are 

zero variance predictors) or are near zero variance predictors.  

 

Polychoric correlation matrices were then computed for all items using the “polycor” R package; 

the answers to the MDQ were binary and tetrachoric correlations are a special case of polychoric 

correlations. To check for multicollinearity of the items, the determinant of the matrix was 

computed. If the determinant was greater than 0.00001 then the matrices were inspected for 

highly correlated items and were removed accordingly. To test for singularity, the matrices were 

inspected for values <0.3. Any items that correlated <0.3 with all other items were removed from 

the analysis. The ordinal alpha statistic, the Kaiser-Meyer-Olkin (KMO) statistic (Kaiser, 1974) 

and Bartlett’s Test of Sphericity (Bartlett, 1950) were computed to assess whether the data were 

appropriate for exploratory factor analysis (EFA). Parallel analysis (Horn, 1965), Very Simple 

Structure (VSS) (Revelle and Rocklin, 1979), and Velicer’s Minimum Average Partial (MAP) 

criterion (Velicer, 1976) were estimated to gain an initial idea of the number of factors suited to 

the data.  
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The EFA was performed in the 70% of the sample using the minimum residuals method in the 

“psych” R package. Factors were allowed to correlate using oblimin rotation. First, we performed 

EFA specifying a one factor solution to investigate whether all the items loaded onto one factor 

and therefore represent a single latent construct.  We then continued performing EFA, by adding 

one more factor at a time, until the minimum number of items loading onto a factor reached one.  

 

A number of fit criteria were used to assess which factor model fit the data best: the root mean 

square error of approximation (RMSEA) <0.5 (good fit) or 0.06-0.08 (fair fit), Tucker–Lewis Index 

(TLI) ≥0.90, root mean square residuals (RMSR) as small as possible (preferably <0.08) (Mair, 

2018), and small Bayesian Information Criterion (BIC) relative to other factor solutions. Items were 

retained in a factor if the loading was ≥0.3 and greater than all loadings on other factors. Where 

multiple models showed comparable fit statistics, the model that encompassed the highest 

number of items was selected and models where the minimum number of items per factor was 

greater than three were preferred.  

 

To validate the EFA-derived model, CFA was conducted on the remaining 30% of the sample 

using the “lavaan” R package. A number of fit statistics were interpreted: the TLI ≥0.9, 

Standardised Root Mean Square of the Residuals (RSMR) as small as possible, a smaller BIC 

compared to other factor solutions and Comparative Fit Index (CFI) ≥0.9. The CFA was then 

applied to the whole sample using the lavaan R package to provide overview fit statistics.  

 

Factor scores for each factor in the best-fitting model were computed for every participant to gain 

individual values for participants which represent their “placement” on each factor. Factor scores 

were computed with the “lav_predict” function from the “lavaan” R package using the Empirical 

Bayes Modal (EBM) method. The factor scores were then transformed using a rank-based inverse 

normal transformation (INT) using the “RNOmni” R package and standardised using  base R 

functions. Prior to transformation, ties in the data were broken using the “surveillance” R package.  
 
Genetic analyses  
 
Genotyping, imputation, and quality control 
 

Genotyping 
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Quality assurance measures were calculated by ThermoFisher: samples with a dish QC value 

≥0.82 (capturing the resolution of true signal from background noise on the genotyping array) and 

an initial call rate ≥0.97 were retained. Variants were recommended for inclusion if they were 

genotyped with high resolution (classified as "PolyHighResolution", "NoMinorHom", or 

"MonoHighResolution" by ThermoFisher). Data passing quality assurance was transferred to the 

Social, Genetic, and Developmental Psychiatry Centre at King's College London for further quality 

control, adapted from previous pipelines (Coleman et al., 2016). 

 

Data for GLAD and COPING NBR were processed separately following the same pipeline.  An 

initial set of quality control was performed to determine sample ancestry. This consisted of 

excluding variants with a minor allele frequency (MAF) <0.01, variants and individuals with a call 

rate <95%, and variants with Hardy-Weinberg p<10-10. Additional checks were performed on 

individuals to exclude outliers for sex discrepancies, heterozygosity, and relatedness. Samples 

were merged with data from Phase 3 of the 1000 Genomes project and principal component 

analyses were performed on genome-wide genotype data. Samples clustering with known 

individuals from European ancestries in the 1000 Genomes project formed the majority of the 

genotyped GLAD and COPING NBR cohorts (96% and 98% respectively; figure S3.18) and so 

further analyses were restricted only to these participants. Quality control was repeated, on raw 

data restricted to European ancestry participants. This comprised the same measures as above.  

 

Imputation 

 

For GLAD and COPING NBR separately, high quality genotype data was lifted to build 38 of the 

human genome and imputed to TopMed freeze 8, using version 1.5.7 of the dedicated imputation 

server provided by the University of Michigan (Taliun et al., 2021) with prior phasing using 

EAGLE2 (Loh et al., 2016). Following imputation, data (in variant call format [VCF] files) was 

restricted to variants with MAF ≥ 0.001 and imputation R2 ≥ 0.3. Post-imputation VCFs were 

updated to include sex information and rsIDs, which were collected from the Single Nucleotide 

Polymorphism Database, build 153. 

 

GLAD & NBR merge 

 

Data from GLAD and COPING NBR were merged post-imputation using bcftools, and converted 

to PLINK2 pfile format, retaining genotype dosage information (Chang et al., 2015). Only bi-allelic 
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SNPs were retained in the resulting merged pfiles. Post-merge, the data was filtered with a MAF 

threshold of 0.01 and a variant missingness of 0.02. Duplicate samples, related individuals with 

pihat > 0.1875, and samples with mismatched sex were also excluded.  

 

Post-hoc phenotypic correlation between manic symptoms and PTSD symptoms  
 

Based on the finding that the lifetime manic symptom sum score, which represents the total  

number of lifetime manic symptoms that a participant reported, was most genetically correlated 

with PTSD (figure 3), we calculated the phenotypic correlation between the lifetime manic 

symptom sum score and current PTSD symptoms in affected participants. PTSD symptoms were 

based on answers to the 6-item PTSD checklist (PCL-6), scored 6-30. As per the MDQ, GLAD 

participants answered the PCL-6 in the GLAD sign-up questionnaire and COPING participants 

answered the PCL-6 in the COPING baseline questionnaire. Participants were asked six 

questions relating to their experience of PTSD symptoms: 

 

1. Repeated, disturbing memories, thoughts, or images of a stressful experience? 

2. Feeling very upset when something reminded you of a stressful experience? 

3. Avoiding activities or situations because they reminded you of a stressful situation? 

4. Feeling distant or cut off from other people? 

5. Feeling irritable or having angry outbursts? 

6. Difficulty concentrating? 

 

Participants could answer with “Not at all”, “A little bit”, “Moderately”, “Quite a bit”, and “Extremely” 

based on how they were feeling over the past month. These were coded numerically 1-6. Answers 

were then summed to create a sum score ranging 6-30 with lower scores representing lower 

levels of PTSD symptoms and higher scores representing higher levels of PTSD symptoms. Only 

participants with complete data on all six questions were included in the sum score. We used R 

to calculate Pearson’s correlation between the lifetime manic symptom sum score and the current 

PTSD symptom sum score.  

 

Supplementary results 
 

Factor analyses  
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Concurrent manic symptoms in participants affected by MDD and/or anxiety 
 

As mentioned in the main paper, the item “concurrent more active” was removed from the factor 

analysis due to having a correlation of 0.87 with “concurrent more energy” (“concurrent more 

active” was removed due to lower endorsement rate of the two items) (table 3.1). This left 12 

concurrent MDQ items remaining. In order to avoid including participants who (now) only 

endorsed one out of the 12 concurrent MDQ items, we removed 82 participants. These were 

participants who initially had a concurrent manic symptom sum score of 2 and now only had a 

score of 1 (because “concurrent more active” had been removed from the score). This left a final 

N of 29,899. None of the remaining items were correlated <0.3 so no further items were removed. 

None of the items had near zero variance which showed that the data was suitable to be randomly 

split into an EFA and CFA sample. After the sample was split, the determinant of the matrix of the 

EFA sample was 0.003 which suggested that multicollinearity was not a problem and therefore 

no further items were removed (table S3.2). The ordinal alpha statistic, Kaiser-Meier-Olkin (KMO) 

statistic and Bartlett’s test of sphericity p-value also demonstrated that the data were suitable for 

factor analysis (table S3.2).  

 

After performing EFA in 70% of the sample (N=20,929), the one factor model showed that 

concurrent irritability, racing thoughts, and concentration problems did not load onto the factor. A 

decision was made to keep these items in the factor analysis because the correlation matrix 

suggested they would form their own factor and to keep comparability with the lifetime MDQ items 

factor analysis. The three factor solution was selected as the final model because it showed the 

best fit statistics while retaining at least three items per factor (figure 3.2; table S3.3). All fit 

statistics demonstrated that the three factor model was a good fit for the data (table S3.4a). Factor 

one, two and three included six, three, and three items respectively. We named the three factors 

according to their loaded items: energy/activity, cognitive, and impulsivity (figure 3.2; figure 
S3.6). The energy/activity and impulsivity factors correlated with each other at 0.54. As expected, 

concurrent “irritability”, “racing thoughts”, and “concentration problems” formed their own factor. 

This factor (concurrent cognitive) did not correlate with the other two factors (figure 3.2; figure 
S3.7; table S3.4b) which reflected the absence of correlations between “concentration problems”, 

“racing thoughts”, and “irritability” and the other MDQ items (figure S3.1). It is important to note 

that “irritability” had a fairly weak loading onto the cognitive factor (figure S3.6).  The model was 

confirmed in CFA on the remaining 30% of the sample (N=8,970) and showed good fit statistics 
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(table S3.5). The three factor model was then applied to the full sample (N=29,899) to provide 

overall model fit statistics (table S3.5).  
 
Lifetime manic symptoms in participants affected by MDD and/or anxiety 
 

As mentioned in the main paper, the item “more active” was removed from the factor analysis due 

to having a correlation of 0.90 with “more energy”. None of the remaining items were correlated 

<0.3 so no further items were removed. None of the items had near zero variance which showed 

that the data was suitable to be randomly split into an EFA and CFA sample. After splitting the 

sample, the determinant of the matrix in the EFA sample was 0.0002 which suggested that 

multicollinearity was not a problem and therefore no further items were removed (table S1). The 

ordinal alpha statistic, KMO statistic and Bartlett’s test of sphericity p-value also demonstrated 

that the data were suitable for factor analysis (table S3.1).  

 

After performing EFA in 70% of the sample (N=33,450), the three factor solution was selected as 

the final model because it showed the best fit statistics while retaining at least three items per 

factor (figure 3.2; table S3.7). Factor one, two and three included six, three, and three items 

respectively. We named the three factors according to the loaded items: energy/activity, cognitive 

and impulsivity. These factors perfectly mirrored those identified in the concurrent MDQ items 

factor analysis, with the exception that all factors correlated with each other (!"$0.55) (table 

S3.7b). CFA on the remaining 30% of the sample (N=14,337) confirmed that the three factor 

model fit the data very well (table S3.8). CFA was then applied to the full sample (N=47,787) to 

provide overall model fit statistics (table S3.8). 

 

Lifetime manic symptoms in participants unaffected by MDD and/or anxiety 
 

As mentioned in the main paper, the item “more active” was removed from the factor analysis due 

to having a correlation of 0.90 with “more energy”. None of the remaining items were correlated 

<0.3 so no further items were removed. Five of the items had near zero variance (the items 

“hyperactivity”, “more talkative”, “more sociable”, “risky behaviour”, and “reckless spending”) 

which showed that the data may not have been suitable to be randomly split into an EFA and CFA 

sample. Therefore, after splitting the sample, the frequencies of these five items were compared 

between the EFA and CFA sample. We were satisfied that the frequencies were comparable and 
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we continued with the factor analysis. The determinant of the matrix in the EFA sample was 

0.0004 which suggested that multicollinearity was not a problem and therefore no further items 

were removed. The ordinal alpha statistic, KMO statistic and Bartlett’s test of sphericity p-value 

also demonstrated that the data were suitable for factor analysis (table S3.2).  

 

After performing EFA in 70% of the sample (N=4,283), none of the factor solutions showed 

adequate fit (table S3.10). Therefore, no solution was carried forward to CFA. 

 
Post-hoc phenotypic correlation between manic symptoms and posttraumatic stress 
disorder symptoms  
 

Based on the unexpected finding that the lifetime manic symptom sum score was most strongly 

genetically correlated with PTSD (figure 3.3; table S3.15), we calculated the phenotypic 

correlation between lifetime manic symptom sum score and current PTSD symptoms in affected 

participants. PTSD symptoms were based on answers to the 6-item PTSD checklist (PCL-6) and 

were scored 6-30. The phenotypic correlation was far lower than the genetic correlation (rph=0.41, 

p<2x10-16). See supplementary methods for more details of the PCL-6 and figure S3.27 for a 

scatter plot of the two measures.  
 
Supplementary discussion 
 
Genetics of manic symptom subgroups  
 

We hypothesised that the genetics of the symptom subgroups identified in the factor analyses 

would differentially genetically correlate with other psychiatric and behavioural traits. We did not 

make any a priori assumptions about which subgroups would correlate with which traits. The 

concurrent symptom subgroups had no significant genetic correlations with other traits but 

concurrent energy/activity and concurrent impulsivity significantly genetically correlated with each 

other. Neither of these subgroups genetically correlated with concurrent cognitive (table S3.12). 

This mirrors the pattern of phenotypic correlations between the factors found in our study (figure 
3.2). The concurrent cognitive symptom subgroup was also not genetically correlated with the 

overall concurrent manic symptom sum score. This, combined with the phenotypic results, 

suggest that the MDQ items within this subgroup do not capture the same trait as the other MDQ 
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items when measured as concurrent. This suggests that the concurrent MDQ lacks internal 

consistency and is therefore unreliable.  

 

This lack of internal consistency may explain why the concurrent manic symptom phenotypes 

were not significantly genetically correlated with any of the external traits in our study (table 
S3.14). Compared to the lifetime MDQ items, the GWASs of the concurrent MDQ items already 

had reduced statistical power (smaller N [11,568 vs. 19,859] and smaller variance [range 2-12 

items vs. 0-12 items]). This was likely exacerbated by the three concurrent cognitive symptoms 

being included in the composite score despite, as learned from our findings, operationalising a 

fundamentally different trait to the other nine items. This may also explain the non-significant 

heritability of the sum score.  

 

The results with the lifetime manic symptom subgroups, where we did find significant genetic 

correlations with other traits, confirms that our hypothesis (that manic symptoms would show 

significant positive genetic correlations with bipolar disorder) was not supported. The symptom 

subgroups showed broadly similar rg estimates with the traits to each other as well as the overall 

sum score and none differed from each other significantly. This is reflected by the finding that the 

genetic correlations between the lifetime manic symptom subgroups all hovered around 1 (table 
S3.13). These estimates far exceed the phenotypic correlations found in the factor analysis 

(figure S3.6).  
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Figure S3.1. Correlations between concurrent Mood Disorder Questionnaire (MDQ) items 
in individuals affected by major depressive disorder (MDD) and/or an anxiety disorder. 
Tetrachoric correlation matrix of concurrent manic symptoms from answers to the Mood Disorder 
Questionnaire (MDQ) in participants affected by major depressive disorder (MDD) and/or an 
anxiety disorder (N=31,427). Participants can answer with “Yes” or “No” which were coded as 1 
or 0 respectively. Correlation matrix was computed using the hetcor R package. Participants can 
answer with “Yes” or “No” which were coded as 1 or 0 respectively. Correlations are therefore 
tetrachoric (which is a special case of polychoric). “More active” was removed from analysis 
following inspection of the correlation matrix due to its correlation of 0.87 with “more energy”. 
Then, 83 participants were excluded from further analyses because they previously endorsed two  
concurrent items and now, after the removal of the item “more active”, only endorsed one 
concurrent item. This left a final N of 29,889.  
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Figure S3.2. Correlations between lifetime Mood Disorder Questionnaire (MDQ) items in 
individuals affected by major depressive disorder (MDD) and/or an anxiety disorder. 
Tetrachoric correlation matrix of lifetime manic symptoms from answers to the Mood Disorder 
Questionnaire (MDQ) in participants affected by major depressive disorder (MDD) and/or an 
anxiety disorder (N=47,787). Participants can answer with “Yes” or “No” which were coded as 1 
or 0 respectively. Correlation matrix was computed using the hetcor R package. Participants can 
answer with “Yes” or “No” which were coded as 1 or 0 respectively. Correlations are therefore 
tetrachoric (which is a special case of polychoric). “More active” was removed from analysis 
following inspection of the correlation matrix due to its correlation of 0.90 with “more energy”. 
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Figure S3.3. Correlations between lifetime Mood Disorder Questionnaire (MDQ) items in 
individuals unaffected by major depressive disorder (MDD) and/or an anxiety disorder. 
Tetrachoric correlation matrix of lifetime manic symptoms from answers to the Mood Disorder 
Questionnaire (MDQ) in participants unaffected by major depressive disorder (MDD) and/or an 
anxiety disorder (N=6,119). Correlation matrix was computed using the hetcor R package. 
Participants can answer with “Yes” or “No” which were coded as 1 or 0 respectively. Correlations 
are therefore tetrachoric (which is a special case of polychoric). “More active” was removed from 
analysis following inspection of the correlation matrix due to its correlation of 0.90 with “more 
energy”. 
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Figure S3.4. Exploratory factor analysis (EFA): one factor solution of 12 concurrent Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  

 
 
 
 
 
 
 
 
 
 
 
 
 



242 

Figure S3.5. Exploratory factor analysis (EFA): two factor solution of 12 concurrent Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.6. Exploratory factor analysis (EFA): three factor solution of 12 concurrent 
Mood Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



244 

Figure S3.7. Exploratory factor analysis (EFA): four factor solution of 12 concurrent Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.8. Exploratory factor analysis (EFA): one factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.9. Exploratory factor analysis (EFA): two factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.10. Exploratory factor analysis (EFA): three factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.11. Exploratory factor analysis (EFA): four factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in affected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.12. Exploratory factor analysis (EFA): one factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in unaffected participants. 
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.13. Exploratory factor analysis (EFA): two factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in unaffected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.14. Exploratory factor analysis (EFA): three factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in unaffected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.15. Exploratory factor analysis (EFA): four factor solution of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in unaffected participants.  
EFA was performed with the psych R package. Oblimin rotation method was used to allow the 
latent factors to correlate with each other and the factoring method was “minimum residuals”.  
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Figure S3.16. Raw factor scores from factor analysis of 12 concurrent manic symptoms 
measured by the Mood Disorder Questionnaire (MDQ) in affected participants.  
The item “more active” was removed due to a correlation of 0.87 with “more energy”. Factor scores 
were computed, based on the best-fitting model identified in EFA, with the lavaan R package 
following confirmatory factor analysis (CFA).  
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Figure S3.17. Raw factor scores from factor analysis of 12 lifetime manic symptoms 
measured by the Mood Disorder Questionnaire (MDQ) in affected participants.  
The item “more active” was removed due to a correlation of 0.9 with “more energy”. Factor scores 
were computed, based on the best-fitting model identified in EFA, with the lavaan R package 
following confirmatory factor analysis (CFA).  
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Figure S3.18. Principal component analysis (PCA) plots. 
Top: Principal component analysis (PCA) plot of Genetic Links to Anxiety and Depression (GLAD) 
Study participants. Bottom: PCA plot of GLAD Study participants and COVID-19 Psychiatry and 
Neurological Genetics (COPING) Study participants. 

 

 
 
Note: ASW (African Ancestry in SW USA), CEU (Europeans, from Utah), CHB (Northern Han 
Chinese from Beijing), CHS (Southern Han Chinese, from Shanghai), CLM (Colombian in 
Medellín, Colombia), FIN (Finnish in Finland), GBR (Western Europeans from Britain), IBS 
(Southern Europeans from Spain), JPT (Japanese in Tokyo, Japan), LWK (Luhya from Webuye, 
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Kenya), MXL (Mexican ancestry in Los Angeles, CA, USA), PUR (Puerto Rican in Puerto Rico), 
TSI (Southern Europeans from Tuscany in Italy), YRI (Yoruba in Ibadan, Nigeria), GIH (Gujarati 
Indians in Houston, Texas, USA), NA (GLADv2 or COPING NBRv1) 
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Figure S3.19. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of the concurrent manic symptom sum score measured by the Mood 
Disorder Questionnaire (MDQ) in affected participants of European ancestry (N=11,568).  
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA. 
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Figure S3.20. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of concurrent energy/activity factor measured by the Mood Disorder 
Questionnaire (MDQ) in affected participants of European ancestry (N=11,568).  
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA. 
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Figure S3.21. Quantile-quantile (QQ) plot and Manhattan plot of the genome-wide 
association study (GWAS) results of concurrent cognitive factor measured by the Mood 
Disorder Questionnaire (MDQ) in affected participants of European ancestry (N=11,568). 
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA.  
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Figure S3.22. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of the concurrent impulsivity factor measured by the Mood Disorder 
Questionnaire (MDQ) in affected participants of European ancestry (N=11,568).  
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA.  
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Figure S3.23. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of the lifetime manic symptom sum score measured by the Mood 
Disorder Questionnaire (MDQ) in affected participants of European ancestry (N=19,859). 
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA.  
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Figure S3.24. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of the lifetime energy/activity factor measured by the Mood Disorder 
Questionnaire (MDQ) in affected participants of European ancestry (N=19,859).  
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA.  
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Figure S3.25. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of the lifetime cognitive factor measured by the Mood Disorder 
Questionnaire (MDQ) in affected participants of European ancestry (N=19,859).  
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA.  
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Figure S3.26. Quantile-quantile (QQ) plot and Manhattan plot of genome-wide association 
study (GWAS) results of the lifetime impulsivity factor measured by the Mood Disorder 
Questionnaire (MDQ) in affected participants of European ancestry (N=19,859).  
GWAS was performed with REGENIE covarying for the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using FUMA.  
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Figure S3.27. Scatter plot of affected participants’ lifetime manic symptoms measured by 
the Mood Disorder Questionnaire (MDQ) and current posttraumatic stress disorder (PTSD) 
symptoms. 
PTSD symptoms were measured by the six item PTSD Checklist (PCL-6). Lifetime manic 
symptoms were scored 0-12 and current PTSD symptoms were scored 6-30. 
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Figure S3.28. Flow-chart detailing how Genetic Links to Anxiety and Depression (GLAD) 
Study and COVID-19 Psychiatry and Neurological Genetics Study participants from the 
NIHR Bioresource (COPING NBR) were categorised as either “affected” or “unaffected’ by 
major depressive disorder (MDD) and/or any anxiety disorder. MDQ=Mood Disorder 
Questionnaire.  
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Supplementary tables 
 
 

Table S3.1. Descriptive statistics of the quantitative manic symptom phenotypes (sum scores) 
derived from the Mood Disorder Questionnaire (MDQ) in participants with and without a self-

reported diagnosis of bipolar disorder (BD) by a professional.  

Statistic 
Concurrent manic symptoms (range 2-

12) 
Lifetime manic symptoms (range 0-

12) 
No BD diagnosis BD diagnosis No BD diagnosis BD diagnosis 

Minimum 2 2 0 0 
Maximum 12 12 12 12 
Mean 4.82113339 8.34659091 5.95056025 9.77390972 
SD 2.43840507 2.85869768 2.96597055 2.59893268 
Q1 3 6 3 9 
Median 4 9 5 11 
Q3 6 11 8 12 
IQR 3 5 5 3 
Skewness 1.0047145 -0.3971134 0.43410554 -1.421352 
Kurtosis 0.37916083 -0.9299915 -0.9037836 1.67662905 
SD=standard 
deviation 

    

Q1=quartile 1     

Q3=quartile 3     

IQR=interquartile 
range 
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Table S3.2. Statistics from testing assumptions for factor analysis of the Mood Disorder 
Questionnaire (MDQ) items. "Affected" refers to participants affected by major depressive disorder 

(MDD) and/or an anxiety disorder. 

Statistic Alpha KMO MSA BTS p-value EFA 
determinant 

Information >=0.7 >=0.8 <0.05 >=0.00001  
Concurrent manic symptoms in 
affected participants [12 MDQ 
items] 

0.817082527 0.867492235 1.17E-36 0.002977618 

Lifetime manic symptoms in 
affected participants [12 MDQ 
items] 

0.934309472 0.939568417 5.85E-27 0.000184876 

Lifetime manic symptoms in 
unaffected participants [12 
MDQ items] 

0.917241615 0.854195991 2.23E-27 0.000417324 

Alpha = Ordinal alpha     

KMO MSA = Kaiser-Meier-Olkin Measure of Sampling Adequacy   

BTS p-value = Bartlett's Test of Sphericity p-value    

EFA determinant = matrix determinant of MDQ items in EFA sample   
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Table S3.3. Item loadings for all factor solutions for the exploratory factor analysis (EFA) of 12 concurrent manic symptoms 
derived from the Mood Disorder Questionnaire (MDQ) in affected participants. "concurrent more active" was previously 

removed due to having a correlation of 0.87 with "concurrent more energy". EFA was performed with the psych R package. 
Oblimin rotation method was used to allow the latent factors to correlate with each other and the factoring method was 

“minimum residuals”.   
  Factor 1     

Co_hyperactivity 0.76577364     

Co_irritability -0.215551363     

Co_self_confident 0.817727099     

Co_decreased_sleep 0.56864355     

Co_more_talkative 0.689658203     

Co_racing_thoughts 0.016184611     

Co_concentration_difficulties -0.007670273     

Co_more_energy 0.854658142     

Co_more_sociable 0.86526375     

Co_interested_in_sex 0.658093279     

Co_risky_behaviour 0.59878025     

Co_spending_money 0.378508664     

  Factor 1 Factor 2    

Co_hyperactivity 0.763655784 0.059432698    

Co_irritability -0.220065062 0.397943677    

Co_self_confident 0.833260526 -0.261960118    

Co_decreased_sleep 0.566761575 -0.018941502    

Co_more_talkative 0.689514939 0.112810134    

Co_racing_thoughts 0.021112057 0.592485934    

Co_concentration_difficulties -0.004021691 0.656042199    

Co_more_energy 0.853096615 -0.072788086    

Co_more_sociable 0.863141366 0.077289698    
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Co_interested_in_sex 0.656927808 0.040564985    

Co_risky_behaviour 0.608306102 0.263580697    

Co_spending_money 0.386608791 0.291554874    

  Factor 1 Factor 2 Factor 3   

Co_hyperactivity 0.74539424 0.079676456 0.079741139   

Co_irritability -0.337432605 0.341072103 0.17340554   

Co_self_confident 0.768387426 -0.261071079 0.091585444   

Co_decreased_sleep 0.472096269 -0.04067178 0.140755726   

Co_more_talkative 0.860658721 0.221136578 -0.115428495   

Co_racing_thoughts 0.1098626 0.723411141 -0.024548254   

Co_concentration_difficulties -0.061585168 0.620161875 0.141955722   

Co_more_energy 0.859767267 -0.04804931 0.041459219   

Co_more_sociable 0.579176971 -0.016889102 0.391642908   

Co_interested_in_sex 0.171225298 -0.153974867 0.652236184   

Co_risky_behaviour 0.016590215 0.071023084 0.820967538   

Co_spending_money -0.062837332 0.132421829 0.607023321   

  Factor 1 Factor 2 Factor 3 Factor 4  
Co_hyperactivity 0.89433639 -0.043419126 0.058109279 -0.093041183  

Co_irritability 0.082789767 0.222133828 0.075735955 -0.502104922  

Co_self_confident 0.503518681 -0.245414549 0.194118886 0.29073742  

Co_decreased_sleep 0.319313336 -0.037129748 0.198085765 0.15655854  

Co_more_talkative 0.709488779 0.175180576 -0.066929585 0.187347656  

Co_racing_thoughts 0.101650013 0.700206038 -0.058139402 -0.00548232  

Co_concentration_difficulties -0.114440824 0.679283168 0.120545853 0.024847171  

Co_more_energy 0.373425394 0.056451776 0.16677706 0.561300634  

Co_more_sociable 0.288584558 0.028556664 0.488288393 0.277527372  

Co_interested_in_sex -0.062979382 -0.092117164 0.750828875 0.170354022  

Co_risky_behaviour 0.02004378 0.061340508 0.832526291 -0.087602582  
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Co_spending_money 0.062537469 0.082565452 0.5983209 -0.212297168  
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Table S3.4a. Fit statistics for each factor solution in exploratory factor analysis (EFA) of 12 concurrent manic symptoms 
derived from the Mood Disorder Questionnaire (MDQ) in affected participants. "concurrent more active" was previously 

removed due to having a correlation of 0.87 with "concurrent more energy". EFA was performed with the psych R package. 
Oblimin rotation method was used to allow the latent factors to correlate with each other and the factoring method was 

“minimum residuals”.  

Fit statistics TLI RMSEA index (95% 
CIs) BIC RMSR Min items 

Information ≥0.90 ≤0.05 = good  
0.06-0.08 = fair As low as possible 

As close to 0 as 
possible, preferably 

<0.08 
Out of 12 

1 factor 0.694 0.164 (0.163 - 0.166) 29991.99 0.11 9 
2 factors 0.773 0.141 (0.14 - 0.143) 17621.63 0.7 3 
3 factors 0.917 0.085 (0.083 - 0.087) 4727.53 0.03 3 
4 factors 0.944 0.07 (0.068 - 0.073) 2258.51 0.02 2 
TLI = to Tucker Lewis Index     

RMSEA index = Root Mean Squared Error of Approximation index   

BIC = Bayes Information Criterion     

RMSR = Root Mean Squared Residual    

Min items = minimum number of concurrent MDQ items loading onto any factor.   

Table S3.4b: Correlations between each factor in the best-fitting model (three factor 
solution) identified by exploratory factor analysis (EFA) of 12 lifetime Mood 

Disorder Questionnaire (MDQ) items in affected participants. "concurrent more 
active" was previously removed due to having a correlation of 0.87 with 

"concurrent more energy". EFA was performed with the psych R package. Oblimin 
rotation method was used to allow the latent factors to correlate with each other 

and the factoring method was “minimum residuals”.  
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  Energy/activity Cognitive Impulsivity   

Energy/activity 1 -0.07 0.54   

Cognitive   1 -0.02   

Impulsivity     1   
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Table S3.5. Confirmatory Factor Analysis (CFA) fit statistics of the three factor model of 12 concurrent manic symptoms derived from 
the Mood Disorder Questionnaire (MDQ) in affected participants. "concurrent more active" was previously removed due to having a 
correlation of 0.87 with "concurrent more energy". "CFA sample" refers to fit statistics for the remaining 30% of the sample, "whole 

sample" refers to fit statistics for all participants.  

Fit statistic CFI TLI RMSEA (90% CI) SRMR 

  Standard  Robust  Standard  Robust  Standard  Robust Standard  Robust 

CFA sample 0.969 0.945 0.959 0.928 0.064 (0.061 - 
0.066) 

0.070 (0.068 - 
0.073) 0.083 0.083 

Whole sample 0.967 0.94 0.958 0.923 0.064 (0.063 - 
0.065) 

0.072 (0.071 - 
0.073) 0.082 0.082 

CFI = Comparative Fit Index        

TLI = Tucker Lewis Index        

RMSEA = Root Mean Squared Error of Approximation      

SRMR = Standardised Root Mean Residual       
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Table S3.6. Item loadings for all factor solutions for the exploratory factor analysis (EFA) of the 
lifetime manic symptoms derived from the Mood Disorder Questionnaire (MDQ) in affected 
participants. "More active" was previously removed due to having a correlation of 0.9 with 

"more energy". EFA was performed with the psych R package. Oblimin rotation method was 
used to allow the latent factors to correlate with each other and the factoring method was 

“minimum residuals”.  
  Factor 1     

Hyperactivity 0.85095301     

Irritability 0.50738741     

Self_confident 0.7741318     

Decreased_sleep 0.73382358     

More_talkative 0.83799407     

Racing_thoughts 0.68908489     

Concentration_difficulties 0.6489075     

More_energy 0.83681652     

More_sociable 0.84434475     

Interested_in_sex 0.74098112     

Risky_behaviour 0.78693801     

Reckless_spending 0.58949702     

  Factor 1 Factor 2    

Hyperactivity 0.67304098 0.2345476    

Irritability 0.00407216 0.60956683    

Self_confident 0.90647271 -0.1115699    

Decreased_sleep 0.6271817 0.14946448    

More_talkative 0.62328079 0.27663306    

Racing_thoughts 0.09286457 0.73281022    

Concentration_difficulties -0.0165301 0.81822703    

More_energy 0.96766688 -0.1046592    

More_sociable 0.86419293 0.01443488    
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Interested_in_sex 0.68525969 0.09210445    

Risky_behaviour 0.51554938 0.34024336    

Reckless_spending 0.24040797 0.4265651    

  Factor 1 Factor 2 Factor 3   

Hyperactivity 0.55284399 0.23430669 0.17612479   

Irritability -0.0923223 0.49919478 0.24504357   

Self_confident 0.78055843 -0.0568748 0.12077433   

Decreased_sleep 0.53086456 0.16160149 0.13145418   

More_talkative 0.65078596 0.35081601 -0.0476101   

Racing_thoughts 0.13597407 0.75322784 -0.0121227   

Concentration_difficulties -0.001263 0.75944035 0.08643548   

More_energy 0.98266049 -0.0102504 -0.0573819   

More_sociable 0.61009724 -0.0234989 0.35466139   

Interested_in_sex 0.33935754 -0.0488147 0.55776089   

Risky_behaviour 0.06727452 0.13760035 0.74778725   

Reckless_spending -0.0347398 0.28029764 0.48051784   

  Factor 1 Factor 2 Factor 3 Factor 4  
Hyperactivity 0.74138335 0.05678441 -0.020297 0.25744074  

Irritability -0.0214545 0.42546073 0.09947175 0.22139872  

Self_confident 0.76169326 -0.0832505 0.1564618 0.00164743  

Decreased_sleep 0.51215719 0.1480174 0.14107328 0.02320955  

More_talkative 0.7313219 0.25793414 -0.099981 0.05646338  

Racing_thoughts 0.08203737 0.8188706 -0.0042084 -0.0453165  

Concentration_difficulties -0.0447389 0.79495729 0.06883547 0.02884334  

More_energy 0.94110411 -0.0193559 0.04234262 -0.1041426  

More_sociable 0.49521794 0.03862883 0.42918497 -0.0151276  

Interested_in_sex 0.07340199 0.08289353 0.7630015 -0.0305878  

Risky_behaviour 0.09353636 0.12536008 0.55786005 0.29286279  
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Reckless_spending 0.08914627 0.12806324 0.24594171 0.42247571  
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Table S3.7a. Fit statistics for each exploratory factor analysis (EFA) of the 12 lifetime manic symptoms derived from 
the Mood Disorder Questionnaire (MDQ) in affected participants. "More active" was previously removed due to 

having a correlation of 0.90 with "More energy". EFA was performed with the psych R package. Oblimin rotation 
method was used to allow the latent factors to correlate with each other and the factoring method was “minimum 

residuals”.  
Fit statistics TLI RMSEA Index (95% CIs) BIC RMSR Min items 

Information >0.90 <0.05 = good, 0.06-0.08 
= fair As low as possible 

As close to 0 as 
possible, preferably 

<0.08 
Out of 12 

1 factor 0.835 0.147 (0.145 - 0.148) 38267.35 0.07 12 
2 factors 0.909 0.109 (0.108 - 0.111) 16723.03 0.03 4 
3 factors 0.96 0.072 (0.07 - 0.074) 5419.4 0.02 3 
4 factors 0.97 0.062 (0.06 - 0.064) 2860.05 0.01 1 
TLI = to Tucker Lewis Index     

RMSEA index = Root Mean Squared Error of Approximation 
index 

   

BIC = Bayes Information Criterion     

RMSR = Root Mean Squared Residual    

Min items = minimum number of lifetime MDQ items loading onto any factor   

Table S3.7b: Correlations between each factor in the best-fitting model (three 
factor solution) identfied by exploratory factor analysis (EFA) of 12 lifetime Mood 
Disorder Questionnaire (MDQ) items in affected participants. "More active" was 

previously removed due to having a correlation of 0.9 with "more energy". EFA was 
performed with the psych R package. Oblimin rotation method was used to allow 

the latent factors to correlate with each other and the factoring method was 
“minimum residuals”.  

  

  Energy/activity Cognitive Impulsivity   

Energy/activity 1 0.57 0.68   

Cognitive   1 0.56   
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Impulsivity     1   
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Table S3.8. Confirmatory Factor Analysis (CFA) fit statistics of the three factor model of 12 lifetime manic symptoms derived 
from the Mood Disorder Questionnaire (MDQ) in affected participants. "CFA sample" refers to fit statistics for the remaining 30% 

of the sample, "whole sample" refers to fit statistics for all participants.  

Fit statistic CFI TLI RMSEA (90% CI) SRMR 

  Standard  Robust  Standard  Robust  Standard  Robust Standard  Robust 

CFA sample 0.995 0.986 0.994 0.982 0.038 (0.036 - 
0.040) 

0.049 (0.047 - 
0.051) 0.042 0.042 

Whole sample 0.995 0.986 0.993 0.982 0.039 (0.037 - 
0.040) 

0.049 (0.048 - 
0.050) 0.042 0.042 

CFI = Comparative Fit Index        

TLI = Tucker Lewis Index        

RMSEA = Root Mean Squared Error of Approximation      

SRMR = Standardised Root Mean Residual       
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Table S3.9. Item loadings for all factor solutions for the exploratory factor analysis (EFA) of 12 
lifetime manic symptoms derived from the Mood Disorder Questionnaire (MDQ) in unaffected 

participants. "More active" was previously removed due to having a correlation of 0.9 with "more 
energy". EFA was performed with the psych R package. Oblimin rotation method was used to allow 
the latent factors to correlate with each other and the factoring method was “minimum residuals”.  

  Factor 1     

Hyperactivity 0.70991762     

Irritability 0.55315936     

Self_confident 0.76928341     

Decreased_sleep 0.62847847     

More_talkative 0.80231045     

Racing_thoughts 0.68064597     

Concentration_difficulties 0.66700987     

More_energy 0.80045915     

More_sociable 0.75441632     

Interested_in_sex 0.7512914     

Risky_behaviour 0.69606546     

Spending_money 0.50393777     

  Factor 1 Factor 2    

Hyperactivity 0.34152709 0.44824618    

Irritability -0.0260664 0.66677763    

Self_confident 0.53985393 0.3095114    

Decreased_sleep 0.35608866 0.34084029    

More_talkative 0.38348565 0.50953345    

Racing_thoughts 0.0021399 0.79028051    

Concentration_difficulties -0.0519544 0.83609632    

More_energy 0.70617724 0.17883806    

More_sociable 0.96004838 -0.1085601    
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Interested_in_sex 0.8700588 -0.0296635    

Risky_behaviour 0.49097034 0.27825387    

Spending_money 0.24669291 0.31434293    

  Factor 1 Factor 2 Factor 3   

Hyperactivity 0.31976898 0.41513339 0.13171471   

Irritability -0.0634236 0.60464691 0.22833719   

Self_confident 0.60271355 0.38088239 -0.2237536   

Decreased_sleep 0.35351473 0.34660733 0.01141159   

More_talkative 0.39764076 0.54477744 -0.0668074   

Racing_thoughts 0.00593106 0.7894727 0.02282195   

Concentration_difficulties -0.0516867 0.79760892 0.10077476   

More_energy 0.72965175 0.21657269 -0.0978341   

More_sociable 0.9227459 -0.1163067 0.09842847   

Interested_in_sex 0.8398451 -0.0571405 0.12868482   

Risky_behaviour 0.43682489 0.17373529 0.36089031   

Spending_money 0.09923871 0.13833721 0.77255623   

  Factor 1 Factor 2 Factor 3 Factor 4  
Hyperactivity 0.36116894 0.20497774 0.35218241 0.02202473  

Irritability -0.0901625 0.149094 0.60940212 0.04146895  

Self_confident 0.27048517 -0.2208162 0.39431537 0.40125727  

Decreased_sleep 0.36631139 0.09078157 0.28837473 0.05501479  

More_talkative 0.35955599 -0.0049177 0.50135652 0.11100108  

Racing_thoughts 0.04701742 -0.0210933 0.79497387 -0.0075381  

Concentration_difficulties -0.0012909 0.04520876 0.79442782 -0.017709  

More_energy 0.8532458 0.07489328 0.06172489 0.09010003  

More_sociable 0.32050197 0.07688478 -0.0871199 0.65169728  

Interested_in_sex 0.04274237 -0.0080708 -0.0291266 0.90917033  

Risky_behaviour -0.2065013 0.20213694 0.23893081 0.65892069  



283 

Spending_money 0.03905191 0.98222476 0.00825179 0.02010126  
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Table S3.10. Fit statistics for each exploratory factor analysis (EFA) of 12 lifetime manic symptoms derived from the 
Mood Disorder Questionnaire (MDQ) in unaffected participants. "More active" was removed due to correlation of 0.90 

with "More energy". EFA was performed with the psych R package. Oblimin rotation method was used to allow the latent 
factors to correlate with each other and the factoring method was “minimum residuals”.  

Fit statistic TLI RMSEA index (95% CIs) BIC RMSR Min items 

Information ≥0.90 ≤0.05 = good  
0.06-0.08 = fair 

As low as 
possible 

As close to 0 as 
possible, preferably 

<0.08 
Out of 12 

1 factor 0.685 0.192 (0.189 - 0.196) 8150.9 0.09 12 
2 factors 0.765 0.166 (0.163 - 0.17) 4777.31 0.06 5 
3 factors 0.791 0.157 (0.152 - 0.161) 3225.49 0.04 1 
4 factors 0.85 0.133 (0.128 - 0.138) 1638.01 0.02 1 
TLI = to Tucker Lewis Index     

RMSEA index = Root Mean Squared Error of Approximation index    

BIC = Bayes Information Criterion     

RMSR = Root Mean Squared 
Residual 

    

Min items = minimum number of lifetime MDQ items loading onto any factor.   
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Table S3.11. Information about each psychiatric and behavioural trait included in genetic 
correlations with the manic symptom phenotypes derived from the Mood Disorder Questionnaire 
(MDQ). Genome-wide association summary statistics of each trait were used to calculate genetic 
correlations with the manic symptom phenotypes using Linkage Disequilibrum Score Regression 

(LDSC) (Bulik-Sullivan et al. 2015). "Nca" refers to number of cases, "Nco" refers to number of 
controls, and "N" refers to overall sample size. 

Phenotype Published paper Nca Nco N 

ADHD Demontis et al. (2019) 19099 34194 53293 

Alcohol dependence Walters et al. (2018) 11569 11569 46568 

Daily alcohol use Schumann et al. (2016)     70460 

Alzheimer's disease Jansen et al. (2019) 71880 383378 455258 

Anhedonia  Ward et al. (2019)     375,275 

Anorexia nervosa Watson et al. (2019) 16992 55525 73050 

Anxiety (lifetime, probable) Purves et al. (2020) 25453 58113 83566 

Autism spectrum disorder Grove et al. (2019) 18381 27969 46350 

Bipolar disorder Mullins et al. (2021) 41,917 371,549 413466 

Bipolar disorder type I Mullins et al. (2021) 25060 449978 475038 

Bipolar disorder type II Mullins et al. (2021) 6781 364075 370856 

Body mass index Hübel et al. (2019)     353972 

Cannabis use (lifetime) Stringer et al. (2016) 14374 17956 32330 
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Chronotype Jones et al. (2016)     128266 

Sleep duration Jones et al. (2016)     128266 

Oversleeper Jones et al. (2016)     128266 

Undersleeper Jones et al. (2016)     128266 

Major depressive disorder 
(PGC2 including 23andme) Wray et al. (2018) 154649 394409 549058 

Depressive symptoms Okbay et al. (2016)     161460 

Major depressive disorder 
(PGC2 excluding 23andme) Wray et al. (2018)  59851 113154 173005 

Years of education Lee et al. (2018)     766345 

Self-rated health Harris et al. (2017)     111483 

Household income Hill et al. (2016)     112151 

Insomnia  Hammerschlag et al. (2017) 32384 80622 113006 

Cognitive ability Savage (2018)     269867 

Neuroticism Hübel et al. (2019)       

Obsessive compulsive disorder 

International Obsessive 
Compulsive Disorder Foundation 
Genetics Collaborative (IOCDF-

GC) and OCD Collaborative 
Genetics Association Studies 

(OCGAS) (2018) 

2688 7037 9725 

Physical activity NA     66224 
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Posttraumatic stress disorder Nievergelt et al. (2019) 32428 174227 206655 

Posttraumatic stress disorder 
(military) Stein et al. (2020) 36301 178107 214408 

Posttraumatic stress disorder 
symptoms (military)  Stein et al. (2020)     186689 

General risk tolerance (self-
report) Linner et al. (2019)     466571 

Automobile speeding 
propensity Linner et al. (2019)     404291 

Number of sexual partners Linner et al. (2019)     370711 

Schizophrenia  Pardinas et al. (2018) 11260 24542 35802 

Ever smoker Linner et al. (2019)     518,663 

Subjective well-being Okbay et al. (2016)     298420 
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Table S3.12. Genetic correlations between the four concurrent manic symptom phenotypes derived from the Mood Disorder 
Questionnaire (MDQ) in affected participants. Genetic correlations were estimated using Linkage Disequilibrium Score 

Regression (LDSC) and the 1000 Genomes Linkage Disequilibrium reference panel. rg=genetic correlation, SE=standard error, 
and p-value=p-value for rg difference from zero. Genetic correlations were significantly different to zero if the p-value 

surpassed the Bonferroni-adjusted alpha of 0.008 (0.05/6) to correct for the six tests. Significant p-values are shown in bold. 

  
Concurrent energy/activity 

factor Concurrent cognitive factor Concurrent impulsivity factor 

rg SE p rg SE p rg SE p 

Concurrent manic 
symptoms (sum score) 0.9307 0.08312 4.20x10-29 -0.6045 0.4857 2.13x10-1 0.8887 0.1019 2.74x10-18 

Concurrent energy/activity 
factor       -0.6607 0.3217 4.00x10-2 0.8936 0.1018 1.68x10-18 

Concurrent cognitive factor             -0.395 0.488 0.42 

Concurrent impulsivity 
factor                   
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Table S3.13. Genetic correlations between the four lifetime manic symptom phenotypes derived from the Mood Disorder 
Questionnaire (MDQ) in affected participants. Genetic correlations were estimated using Linkage Disequilibrium Score 

Regression (LDSC) and the 1000 Genomes Linkage Disequilibrium reference panel. rg=genetic correlation, SE=standard error, 
and p-value=p-value for rg difference from zero. Genetic correlations were significantly different to zero if the p-value surpassed 

the Bonferroni-adjusted alpha of 0.008 (0.05/6) to correct for the six tests. Significant p-values are shown in bold. 

  
Lifetime energy/activity 

factor Lifetime cognitive factor Lifetime impulsivity factor 

rg SE p rg SE p rg SE p 

Lifetime manic symptoms 
(sum score) 1.0076 0.0134 <0.008 1.0135 0.0208 <0.008 1.0172 0.0204 <0.008 

Lifetime energy/activity 
factor       0.967 0.0303 7.64x10-223 1.0241 0.0242 <0.008 

Lifetime cognitive factor             1.0298 0.0364 1.30x10-175 

Lifetime impulsivity factor                   
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Table S3.14. Genetic correlations between concurrent manic symptom phenotypes derived from the Mood Disorder Questionnaire (MDQ) in affected 
paricipants and 36 psychiatric and behavioural phenotypes. Genetic correlations were estimated using Linkage Disequilibrium Score Regression 

(LDSC) and the extended 1000 Genomes Linkage Disequilibrium reference panel. rg=genetic correlation, SE=standard error, and p-value=p-value for 
rg difference from zero. Genetic correlations were significantly different to zero if the p-value surpassed the Bonferroni-adjusted alpha of 0.001 

(0.05/36) to correct for the 36 tests for each phenotype. Significant genetic correlations are shown in bold. 

Phenotype 
Lifetime manic symptoms (sum 

score) Lifetime energy/activity factor Lifetime cognitive factor Lifetime impulsivity factor 

rg  SE p-value rg SE p-value rg SE p-value rg SE p-value 

ADHD 0.4375 0.2183 4.51E-02 0.2665 0.1778 1.34E-01 0.3221 0.2365 1.73E-01 0.3988 0.1636 1.48E-02 

Alcohol 
dependence 0.4731 0.4652 3.09E-01 0.3068 0.5369 5.68E-01 0.2194 0.451 6.27E-01 0.734 0.5455 1.78E-01 

Daily alcohol use -0.08212 0.4092 8.41E-01 NA NA NA -0.2633 0.628 6.75E-01 NA NA NA 

Alzheimer's 
disease 0.37 0.2205 9.34E-02 0.195 0.1935 3.14E-01 0.211 0.2264 3.51E-01 0.2012 0.198 3.09E-01 

Anhedonia 0.2753 0.1093 1.18E-02 0.1634 0.0992 9.94E-02 0.2493 0.2627 3.43E-01 0.2821 0.113 1.25E-02 

Anorexia Nervosa 0.4987 0.2769 7.16E-02 0.6014 0.6334 3.42E-01 -0.1071 0.2115 6.13E-01 0.3244 0.209 1.21E-01 

Lifetime probable 
anxiety 0.2821 0.1568 7.21E-02 0.2512 0.1319 5.69E-02 -0.0159 0.1999 9.36E-01 0.3979 0.1689 1.85E-02 

Autism spectrum 
disorder 0.3937 0.2019 5.12E-02 0.4199 0.1703 1.37E-02 0.06611 0.2341 7.78E-01 0.413 0.1907 3.03E-02 

Bipolar disorder 0.1423 0.1243 2.52E-01 0.229 0.1086 3.49E-02 -0.279 0.1829 1.27E-01 0.1597 0.112 1.54E-01 

Bipolar disorder 
type I 0.05769 0.1012 5.69E-01 0.103 0.1088 3.44E-01 -0.1856 0.159 2.43E-01 0.02146 0.1011 8.32E-01 

Bipolar disorder 
type II 0.1289 0.2176 5.54E-01 0.3474 0.2283 1.28E-01 -0.5588 0.2774 4.40E-02 0.2897 0.253 2.52E-01 

Body mass index 0.2629 0.09217 4.34E-03 0.04011 0.06467 5.35E-01 0.3848 0.2274 9.07E-02 0.2348 0.08844 7.92E-03 
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Lifetime cannabis 
use  1.115 3.104 7.19E-01 NA NA NA -0.7794 0.7651 3.08E-01 0.6631 3.179 8.35E-01 

Chronotype 0.1714 0.124 1.67E-01 0.1563 0.1175 1.83E-01 -0.025 0.1544 8.71E-01 0.2113 0.1268 9.56E-02 

Sleep duration -0.06384 0.1521 6.75E-01 0.0688 0.1348 6.10E-01 -0.495 0.2715 6.83E-02 -0.1783 0.148 2.28E-01 

Oversleeper 0.04659 0.2274 8.38E-01 -
0.07759 0.2219 7.27E-01 0.264 0.34 4.37E-01 -0.0027 0.2302 9.91E-01 

Undersleeper 0.0673 0.1838 7.14E-01 -0.0325 0.1776 8.55E-01 0.5275 0.2955 7.42E-02 0.2404 0.1898 2.05E-01 

Major depressive 
disorder (PGC2 
including 
23andme) 

0.1694 0.2939 5.64E-01 0.04402 0.1955 8.22E-01 0.08546 0.1423 5.48E-01 0.3844 0.5109 4.52E-01 

Depressive 
symptoms 0.216 0.3458 5.32E-01 0.1314 0.5267 8.03E-01 0.4604 0.6705 4.92E-01 0.2693 0.2265 2.35E-01 

Major depressive 
disorder (PGC2 
excluding 
23andme) 

0.4259 0.2847 1.35E-01 0.3778 0.25 1.31E-01 0.05304 0.1624 7.44E-01 0.5504 0.3767 1.44E-01 

Years of education -0.1568 0.08466 6.40E-02 0.06934 0.07296 3.42E-01 -0.4984 0.3153 1.14E-01 -0.1269 0.07995 1.12E-01 

Self-rated health -0.4559 0.1726 8.25E-03 -0.3278 0.1241 8.25E-03 -0.2338 0.2169 2.81E-01 -0.4929 0.1642 2.68E-03 

Household income -0.6602 0.2271 3.65E-03 -0.328 0.1734 5.86E-02 -0.4555 0.277 1.00E-01 -0.6741 0.2319 3.65E-03 

Insomnia  0.2429 0.1871 1.94E-01 0.1808 0.1655 2.75E-01 0.2633 0.2543 3.01E-01 0.2999 0.1788 9.36E-02 

Cognitive ability -0.1278 0.07137 7.34E-02 0.01416 0.06967 8.39E-01 -0.3601 0.2699 1.82E-01 -0.0402 0.07258 5.80E-01 

Neuroticism 0.05856 0.09642 5.44E-01 -
0.02081 0.08586 8.09E-01 0.1346 0.1694 4.27E-01 -0.0052 0.08757 9.53E-01 

Obsessive 
compulsive 
disorder 

NA NA NA NA NA NA -0.3929 0.2982 1.88E-01 -0.5949 1.53 6.97E-01 
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Physical activity 0.02677 0.1381 8.46E-01 0.02188 0.1439 8.79E-01 -0.0222 0.2 9.12E-01 -0.0442 0.1482 7.65E-01 

Posttraumatic 
stress disorder  1.125 0.527 3.27E-02 1.136 0.4635 1.42E-02 -0.3309 0.5086 5.15E-01 1.596 0.645 1.33E-02 

Posttraumatic 
stress disorder 
(military) 

0.3768 0.1742 3.06E-02 -
0.00854 0.1613 9.58E-01 0.7971 0.3988 4.57E-02 0.2601 0.1444 7.17E-02 

Posttraumatic 
stress disorder 
symptoms 
(military) 

0.4403 0.1582 5.37E-03 0.206 0.1294 1.11E-01 0.2925 0.1761 9.66E-02 0.3261 0.1286 1.12E-02 

General risk 
tolerance 0.4368 0.1486 3.28E-03 0.4354 0.1411 2.04E-03 -0.2096 0.174 2.28E-01 0.4614 0.155 2.92E-03 

Automobile 
speeding 
propensity 

-0.268 0.1204 2.61E-02 -0.1756 0.09515 6.50E-02 -0.2149 0.1804 2.33E-01 -0.2591 0.1171 2.70E-02 

Number of sexual 
partners 0.2804 0.1119 1.22E-02 0.2753 0.1001 5.96E-03 -0.0807 0.1272 5.26E-01 0.346 0.1244 5.43E-03 

Schizophrenia  0.6393 2.796 8.19E-01 0.673 1.48 6.49E-01 -0.1853 0.1283 1.49E-01 0.3452 0.3787 3.62E-01 

Ever smoker 0.2492 0.08871 4.97E-03 0.1543 0.07924 5.15E-02 0.1455 0.1271 2.53E-01 0.2518 0.09508 8.08E-03 

Subjective 
wellbeing 0.3161 0.5896 5.92E-01 NA NA NA NA NA NA NA NA NA 
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Table S3.15. Genetic correlations between lifetime manic symptom phenotypes derived from the Mood Disorder Questionnaire (MDQ) in affected 
participants and 37 psychiatric and behavioural phenotypes. Genetic correlations were estimated using Linkage Disequilibrium Score Regression 

(LDSC) and the extended 1000 Genomes Linkage Disequilibrium reference panel. rg=genetic correlation, SE=standard error, and p-value=p-value for 
rg difference from zero. Genetic correlations were significantly different to zero if the p-value surpassed the Bonferroni-adjusted alpha of 0.001 

(0.05/36) to correct for the 36 tests for each phenotype. Significant genetic correlations are shown in bold. 

Phenotype 
Lifetime manic symptoms 

(sum score) Lifetime energy/activity factor Lifetime cognitive factor concurrent impulsivity factor 

rg  SE p-value rg SE p-value rg SE p-value rg SE p-value 

ADHD 0.6888 0.1251 3.68E-08 0.5975 0.1202 6.73E-07 0.6317 0.1057 2.31E-09 0.7742 0.1837 2.51E-05 

Alcohol 
dependence 0.6162 0.2398 0.010186 0.5098 0.2321 0.028059 0.5979 0.2158 0.005597 0.8297 0.3161 0.008672 

Daily alcohol use 0.1846 0.1668 0.26833 0.2277 0.1717 0.18466 0.0522 0.15 0.72789 0.2623 0.1844 0.1549 

Alzheimer's 
disease 0.1053 0.1154 0.36137 0.072 0.1212 0.55245 0.087 0.1121 0.43757 0.0779 0.1365 0.56846 

Anhedonia 0.4356 0.0943 3.84E-06 0.4963 0.102 1.14E-06 0.45 0.0877 2.92E-07 0.539 0.1236 1.30E-05 

Anorexia Nervosa 0.043 0.1066 0.68654 -0.0004 0.1172 0.99755 0.0656 0.0994 0.50917 0.0811 0.1407 0.56433 

Lifetime probable 
anxiety 0.0744 0.0962 0.43945 0.1336 0.101 0.1861 0.0909 0.0887 0.30576 0.1064 0.113 0.34621 

Autism spectrum 
disorder 0.1664 0.1194 0.16313 0.1528 0.1212 0.20737 0.1705 0.1002 0.088946 0.2123 0.1579 0.17883 

Bipolar disorder 0.0929 0.0748 0.21433 0.1279 0.0845 0.13015 -0.0177 0.0586 0.76217 0.1423 0.1009 0.15853 

Bipolar disorder 
type I 0.04 0.0746 0.59167 0.0805 0.084 0.33764 -0.0335 0.0601 0.57713 0.0614 0.0968 0.52589 

Bipolar disorder 
type II 0.158 0.1418 0.26521 0.236 0.1512 0.11868 -0.0196 0.1171 0.86706 0.2353 0.1778 0.18575 

Body mass index 0.4013 0.0624 1.24E-10 0.3917 0.0658 2.65E-09 0.3951 0.0562 2.03E-12 0.467 0.0813 9.14E-09 

Lifetime cannabis 
use  0.367 0.1928 0.057051 0.4291 0.2049 0.036253 0.2548 0.1587 0.10825 0.423 0.2393 0.077184 
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Chronotype 0.1347 0.0822 0.10109 0.0944 0.0864 0.27474 0.0779 0.0795 0.32743 0.1233 0.0952 0.19552 

Sleep duration -0.0363 0.0998 0.71608 -0.0405 0.1054 0.70103 -0.05 0.0968 0.60522 -0.0489 0.1162 0.67359 

Oversleeper 0.3303 0.1683 0.049772 0.3482 0.1738 0.045128 0.4085 0.1619 0.011599 0.4771 0.2035 0.019063 

Undersleeper 0.1994 0.1155 0.084179 0.2158 0.1225 0.078113 0.2754 0.1138 0.015524 0.3091 0.1383 0.025398 

Major depressive 
disorder (PGC2 
including 
23andme) 

0.2063 0.0789 0.008924 0.2007 0.0755 0.007837 0.1933 0.0679 0.004433 0.2322 0.0952 0.014723 

Depressive 
symptoms 0.506 0.1438 0.000434 0.562 0.1586 0.000394 0.4367 0.1259 0.000524 0.6496 0.2034 0.001401 

Major depressive 
disorder (PGC2 
excluding 
23andme) 

0.4185 0.1033 5.14E-05 0.3998 0.0982 4.69E-05 0.3591 0.0868 3.56E-05 0.4505 0.1262 0.000356 

Years of 
education -0.4519 0.0633 9.79E-13 -0.4134 0.0679 1.11E-09 -0.4927 0.0658 7.10E-14 -0.5357 0.0948 1.60E-08 

Self-rated health -0.6004 0.101 2.76E-09 -0.6148 0.1162 1.21E-07 -0.5553 0.0918 1.48E-09 -0.742 0.1391 9.53E-08 

Household 
income -0.5947 0.1256 2.19E-06 -0.5475 0.1349 4.92E-05 -0.5968 0.1198 6.28E-07 -0.6832 0.1623 2.56E-05 

Insomnia  0.5501 0.1495 0.000232 0.6235 0.1593 9.04E-05 0.5491 0.136 5.38E-05 0.722 0.197 2.48E-04 

Cognitive ability -0.2541 0.0577 1.07E-05 -0.2505 0.0593 2.42E-05 -0.2856 0.0552 2.29E-07 -0.3073 0.0748 3.95E-05 

Neuroticism 0.1248 0.0627 0.046398 0.134 0.0638 0.035588 0.1675 0.0582 0.003966 0.1566 0.0746 0.035885 

Obsessive 
compulsive 
disorder 

-0.2513 0.1484 0.090377 -0.0783 0.1458 0.59139 -0.2725 0.1388 0.049513 -0.1471 0.1845 0.42525 

Physical activity 0.0325 0.0875 0.71003 0.062 0.0936 0.50739 0.0505 0.0794 0.52522 0.0174 0.1034 0.8662 
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Posttraumatic 
stress disorder 1.037 0.306 0.000702 1.0367 0.3218 0.001276 0.9086 0.2819 0.001268 1.2328 0.3869 0.00144 

Posttraumatic 
stress disorder 
(military) 

0.5691 0.1167 1.07E-06 0.5898 0.1379 1.90E-05 0.5843 0.1053 2.86E-08 0.6997 0.1705 4.05E-05 

Posttraumatic 
stress disorder 
symptoms 
(military) 

0.6096 0.0976 4.16E-10 0.6151 0.1154 9.84E-08 0.5657 0.0833 1.10E-11 0.6943 0.1336 2.04E-07 

General risk 
tolerance 0.3592 0.0761 2.33E-06 0.3781 0.0837 6.19E-06 0.2979 0.0687 1.44E-05 0.4244 0.0997 2.08E-05 

Automobile 
speeding 
propensity 

-0.1772 0.0692 0.010473 -0.1631 0.0722 0.023933 -0.1801 0.0681 0.008174 -0.1891 0.084 0.024265 

Number of sexual 
partners 0.2304 0.062 0.000203 0.249 0.0648 0.000122 0.1671 0.056 0.002844 0.2786 0.0733 1.45E-04 

Schizophrenia  0.1541 0.079 0.051233 0.2158 0.092 0.018919 0.0783 0.0661 0.23636 0.1927 0.0963 0.04533 

Ever smoker 0.3138 0.064 9.28E-07 0.3414 0.0711 1.58E-06 0.2948 0.0623 2.20E-06 0.3955 0.0828 1.78E-06 

Subjective 
wellbeing 0.0423 0.1266 0.7381 0.0066 0.1333 0.96033 -0.0006 0.1071 0.99525 -0.0434 0.1476 0.76856 
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Table S3.16. Single Nucleotide Polymorphism (SNP) based heritability estimates (h2SNP), standard errors (SE), lamdba GC, 
and mean chi-square statistic of the manic symptom phenotypes derived from the Mood Disorder Questionnaire (MDQ) 

calculated by Linkage Disequilibrium Score Regression (LDSC). “N items” refers to the number of MDQ items included in the 
phenotype and “N” refers to the number of individuals included in the genome-wide association study (GWAS). Genetic 

correlations were significantly different to zero if the p-value surpassed the Bonferroni-adjusted alpha of 0.006 (0.05/8) to 
correct for the four tests within both groups (concurrent/lifetime) and are shown in bold. P-value is calculated in R using 

pchisq((h2/se)^2,1,lower.tail = FALSE) as recommended by LDSC developers. 

MDQ items phenotype N 
items N h2

SNP SE z-score p-value Lambda 
GC 

Mean 
X2 

Concurrent manic symptoms (sum score) 12 11,568 0.056 0.0293 1.911262799 0.05597082 1.0046 1.0087 
Concurrent energy/activity factor 6 11,568 0.0676 0.0318 2.125786164 0.03352107 1.0046 1.0114 
Concurrent cognitive factor  3 11,568 0.038 0.0315 1.206349206 0.2276829 1.0075 1.0115 
Concurrent impulsivity factor 3 11,568 0.056 0.0279 2.007168459 0.04473173 1.0016 1.0079 
Lifetime manic symptoms (sum score) 12 19,958 0.0716 0.0166 4.313253012 1.61E-05 1.0255 1.0306 
Lifetime energy/activity factor 6 19,958 0.0648 0.0161 4.02484472 5.70E-05 1.0315 1.0286 
Lifetime cognitive factor 3 19,958 0.0764 0.0175 4.365714286 1.27E-05 1.0315 1.0349 
Lifetime impulsivity factor 3 19,958 0.0506 0.0158 3.202531646 0.00136225 1.0195 1.0258 
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Table S3.17. Block-jackknife results comparing genetic correlations between 16 traits and the lifetime manic symptom 
phenotypes derived from the Mood Disorder Questionnaire (MDQ). The block-jackknife tested two genetic correlations for a 

significant difference from 0. Genetic correlations were significantly different to each other if the block-jackknife p-value 
reached or surpassed the Bonferroni-adjusted alpha of 0.003 (0.05/16) to correct for the 16 sets of tests. 

Genetic correlation 1  Genetic correlation 2  rg 1 rg 2 Difference  p-value 

1. Attention deficit hyperactivity disorder (ADHD) 
ADHD and lifetime manic symptoms 
(sum score) 

ADHD and lifetime energy/activity 
factor 0.6888 0.5975 0.0913 0.102483911 

ADHD and lifetime manic symptoms 
(sum score) ADHD and lifetime cognitive factor 0.6888 0.6317 0.0571 0.458902729 

ADHD and lifetime manic symptoms 
(sum score) 

ADHD and lifetime impulsivity 
factor 0.6888 0.7742 -0.0854 0.483056341 

ADHD and lifetime energy/activity 
factor ADHD and lifetime cognitive factor 0.5975 0.6317 -0.0342 0.527049603 

ADHD and lifetime energy/activity 
factor 

ADHD and lifetime impulsivity 
factor 0.5975 0.7742 -0.1767 0.150396951 

ADHD and lifetime impulsivity factor ADHD and lifetime cognitive factor 0.7742 0.6317 0.1425 0.344596659 
2. Anhedonia 

Anhedonia and lifetime manic 
symptoms (sum score) 

Anhedonia and lifetime 
energy/activity factor 0.4356 0.4963 -0.0607 0.057001895 

Anhedonia and lifetime manic 
symptoms (sum score) 

Anhedonia and lifetime cognitive 
factor 0.4356 0.45 -0.0144 0.58978234 

Anhedonia and lifetime manic 
symptoms (sum score) 

Anhedonia and lifetime impulsivity 
factor 0.4356 0.539 -0.1034 0.068062319 

Anhedonia and lifetime 
energy/activity factor 

Anhedonia and lifetime cognitive 
factor 0.4963 0.45 0.0463 0.386171571 

Anhedonia and lifetime 
energy/activity factor 

Anhedonia and lifetime impulsivity 
factor 0.4963 0.539 -0.0427 0.571070113 
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Anhedonia and lifetime impulsivity 
factor 

Anhedonia and lifetime cognitive 
factor 0.539 0.45 0.089 0.245263636 

3. Body mass index (BMI) 
BMI and lifetime manic symptoms 
(sum score) 

BMI and lifetime energy/activity 
factor 0.4013 0.3917 0.0096 0.676458185 

BMI and lifetime manic symptoms 
(sum score) BMI and lifetime cognitive factor 0.4013 0.3951 0.0062 0.735055699 

BMI and lifetime manic symptoms 
(sum score) BMI and lifetime impulsivity factor 0.4013 0.467 -0.0657 0.13987387 

BMI and lifetime energy/activity factor BMI and lifetime cognitive factor 0.3917 0.3951 -0.0034 0.969783097 
BMI and lifetime energy/activity factor BMI and lifetime impulsivity factor 0.3917 0.467 -0.0753 0.092389254 
BMI and lifetime impulsivity factor BMI and lifetime cognitive factor 0.467 0.3951 0.0719 0.134187833 

4. Cognitive ability 
Cognitive ability and lifetime manic 
symptoms (sum score) 

Cognitive ability and lifetime 
energy/activity factor -0.2541 -0.2505 -0.0036 0.864753715 

Cognitive ability and lifetime manic 
symptoms (sum score) 

Cognitive ability and lifetime 
cognitive factor -0.2541 -0.2856 0.0315 0.302367996 

Cognitive ability and lifetime manic 
symptoms (sum score) 

Cognitive ability and lifetime 
impulsivity factor -0.2541 -0.3073 0.0532 0.23673494 

Cognitive ability and lifetime 
energy/activity factor 

Cognitive ability and lifetime 
cognitive factor -0.2505 -0.2856 0.0351 0.378957478 

Cognitive ability and lifetime 
energy/activity factor 

Cognitive ability and lifetime 
impulsivity factor -0.2505 -0.3073 0.0568 0.24004897 

Cognitive ability and lifetime 
impulsivity factor 

Cognitive ability and lifetime 
cognitive factor -0.3073 -0.2856 -0.0217 0.810876489 

5. Depressive factor 
Depressive factor and lifetime manic 
symptoms (sum score) 

Depressive factor and lifetime 
energy/activity factor 0.506 0.562 -0.056 0.429928182 

Depressive factor and lifetime manic 
symptoms (sum score) 

Depressive factor and lifetime 
cognitive factor 0.506 0.4367 0.0693 0.320219865 
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Depressive factor and lifetime manic 
symptoms (sum score) 

Depressive factor and lifetime 
impulsivity factor 0.506 0.6496 -0.1436 0.282544126 

Depressive factor and lifetime 
energy/activity factor 

Depressive factor and lifetime 
cognitive factor 0.562 0.4367 0.1253 0.214041279 

Depressive factor and lifetime 
energy/activity factor 

Depressive factor and lifetime 
impulsivity factor 0.562 0.6496 -0.0876 0.503598285 

Depressive factor and lifetime 
impulsivity factor 

Depressive factor and lifetime 
cognitive factor 0.6496 0.4367 0.2129 0.165246308 

6. Ever smoker 
Ever smoker and lifetime manic 
symptoms (sum score) 

Ever smoker and lifetime 
energy/activity factor 0.3138 0.3414 -0.0276 0.394329412 

Ever smoker and lifetime manic 
symptoms (sum score) 

Ever smoker and lifetime cognitive 
factor 0.3138 0.2948 0.019 0.49127302 

Ever smoker and lifetime manic 
symptoms (sum score) 

Ever smoker and lifetime 
impulsivity factor 0.3138 0.3955 -0.0817 0.017493235 

Ever smoker and lifetime 
energy/activity factor 

Ever smoker and lifetime cognitive 
factor 0.3414 0.2948 0.0466 0.282138887 

Ever smoker and lifetime 
energy/activity factor 

Ever smoker and lifetime 
impulsivity factor 0.3414 0.3955 -0.0541 0.069369301 

Ever smoker and lifetime impulsivity 
factor 

Ever smoker and lifetime cognitive 
factor 0.3955 0.2948 0.1007 0.013945361 

7. General risk tolerance 
General risk tolerance and lifetime 
manic symptoms (sum score) 

General risk tolerance and lifetime 
energy/activity factor 0.3592 0.3781 -0.0189 0.571766873 

General risk tolerance and lifetime 
manic symptoms (sum score) 

General risk tolerance and lifetime 
cognitive factor 0.3592 0.2979 0.0613 0.077684687 

General risk tolerance and lifetime 
manic symptoms (sum score) 

General risk tolerance and lifetime 
impulsivity factor 0.3592 0.4244 -0.0652 0.260104317 

General risk tolerance and lifetime 
energy/activity factor 

General risk tolerance and lifetime 
cognitive factor 0.3781 0.2979 0.0802 0.086965984 
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General risk tolerance and lifetime 
energy/activity factor 

General risk tolerance and lifetime 
impulsivity factor 0.3781 0.4244 -0.0463 0.447987548 

General risk tolerance and lifetime 
impulsivity factor 

General risk tolerance and lifetime 
cognitive factor 0.4244 0.2979 0.1265 0.056737171 

8. Household income 
Household income and lifetime manic 
symptoms (sum score) 

Household income and lifetime 
energy/activity factor -0.5947 -0.5475 -0.0472 0.488628999 

Household income and lifetime manic 
symptoms (sum score) 

Household income and lifetime 
cognitive factor -0.5947 -0.5968 0.0021 0.974594491 

Household income and lifetime manic 
symptoms (sum score) 

Household income and lifetime 
impulsivity factor -0.5947 -0.6832 0.0885 0.230892979 

Household income and lifetime 
energy/activity factor 

Household income and lifetime 
cognitive factor -0.5475 -0.5968 0.0493 0.63016136 

Household income and lifetime 
energy/activity factor 

Household income and lifetime 
impulsivity factor -0.5475 -0.6832 0.1357 0.089055452 

Household income and lifetime 
impulsivity factor 

Household income and lifetime 
cognitive factor -0.6832 -0.5968 -0.0864 0.350726386 

9. Insomnia 
Insomnia and lifetime manic 
symptoms (sum score) 

Insomnia and lifetime 
energy/activity factor 0.5501 0.6235 -0.0734 0.237582548 

Insomnia and lifetime manic 
symptoms (sum score) 

Insomnia and lifetime cognitive 
factor 0.5501 0.5491 0.001 0.952544561 

Insomnia and lifetime manic 
symptoms (sum score) 

Insomnia and lifetime impulsivity 
factor 0.5501 0.722 -0.1719 0.090351987 

Insomnia and lifetime energy/activity 
factor 

Insomnia and lifetime cognitive 
factor 0.6235 0.5491 0.0744 0.442609033 

Insomnia and lifetime energy/activity 
factor 

Insomnia and lifetime impulsivity 
factor 0.6235 0.722 -0.0985 0.32903187 

Insomnia and lifetime impulsivity 
factor 

Insomnia and lifetime cognitive 
factor 0.722 0.5491 0.1729 0.183515918 

10. Major depressive disorder (MDD) excluding 23andMe 
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MDD and lifetime manic symptoms 
(sum score) 

MDD and lifetime energy/activity 
factor 0.4185 0.3998 0.0187 0.674353904 

MDD and lifetime manic symptoms 
(sum score) MDD and lifetime cognitive factor 0.4185 0.3591 0.0594 0.242903227 

MDD and lifetime manic symptoms 
(sum score) MDD and lifetime impulsivity factor 0.4185 0.4505 -0.032 0.803226335 

MDD and lifetime energy/activity 
factor MDD and lifetime cognitive factor 0.3998 0.3591 0.0407 0.48099871 

MDD and lifetime energy/activity 
factor MDD and lifetime impulsivity factor 0.3998 0.4505 -0.0507 0.602501987 

MDD and lifetime impulsivity factor MDD and lifetime cognitive factor 0.4505 0.3591 0.0914 0.332026549 
11. Number of sexual partners 

Number of sexual partners and 
lifetime manic symptoms (sum score) 

Number of sexual partners and 
lifetime energy/activity factor 0.2304 0.249 -0.0186 0.282683577 

Number of sexual partners and 
lifetime manic symptoms (sum score) 

Number of sexual partners and 
lifetime cognitive factor 0.2304 0.1671 0.0633 0.063800305 

Number of sexual partners and 
lifetime manic symptoms (sum score) 

Number of sexual partners and 
lifetime impulsivity factor 0.2304 0.2786 -0.0482 0.071245261 

Number of sexual partners and 
lifetime energy/activity factor 

Number of sexual partners and 
lifetime cognitive factor 0.249 0.1671 0.0819 0.034008295 

Number of sexual partners and 
lifetime energy/activity factor 

Number of sexual partners and 
lifetime impulsivity factor 0.249 0.2786 -0.0296 0.282297942 

Number of sexual partners and 
lifetime impulsivity factor 

Number of sexual partners and 
lifetime cognitive factor 0.2786 0.1671 0.1115 0.00879042 

12. Posttraumatic stress disorder (PTSD) (military) 
PTSD (military) and lifetime manic 
symptoms (sum score) 

PTSD (military) and lifetime 
energy/activity factor 0.5691 0.5898 -0.0207 0.799148448 

PTSD (military) and lifetime manic 
symptoms (sum score) 

PTSD (military) and lifetime 
cognitive factor 0.5691 0.5843 -0.0152 0.79276324 
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PTSD (military) and lifetime manic 
symptoms (sum score) 

PTSD (military) and lifetime 
impulsivity factor 0.5691 0.6997 -0.1306 0.205064469 

PTSD (military) and lifetime 
energy/activity factor 

PTSD (military) and lifetime 
cognitive factor 0.5898 0.5843 0.0055 0.976363885 

PTSD (military) and lifetime 
energy/activity factor 

PTSD (military) and lifetime 
impulsivity factor 0.5898 0.6997 -0.1099 0.216628654 

PTSD (military) and lifetime 
impulsivity factor 

PTSD (military) and lifetime 
cognitive factor 0.6997 0.5843 0.1154 0.377923423 

13. Posttraumatic stress disorder (PTSD) factor (military) 
PTSD factor (military) and lifetime 
manic symptoms (sum score) 

PTSD factor (military) and lifetime 
energy/activity factor 0.6096 0.6151 -0.0055 0.852050555 

PTSD factor (military) and lifetime 
manic symptoms (sum score) 

PTSD factor (military) and lifetime 
cognitive factor 0.6096 0.5657 0.0439 0.250812548 

PTSD factor (military) and lifetime 
manic symptoms (sum score) 

PTSD factor (military) and lifetime 
impulsivity factor 0.6096 0.6943 -0.0847 0.458032758 

PTSD factor (military) and lifetime 
energy/activity factor 

PTSD factor(military) and lifetime 
cognitive factor 0.6151 0.5657 0.0494 0.474645755 

PTSD factor (military) and lifetime 
energy/activity factor 

PTSD factor (military) and lifetime 
impulsivity factor 0.6151 0.6943 -0.0792 0.373466893 

PTSD factor (military) and lifetime 
impulsivity factor 

PTSD factor (military) and lifetime 
cognitive factor 0.6943 0.5657 0.1286 0.202490917 

14. Self-rated health 
Self-rated health and lifetime manic 
symptoms (sum score) 

Self-rated health and lifetime 
energy/activity factor -0.6004 -0.6148 0.0144 0.797000991 

Self-rated health and lifetime manic 
symptoms (sum score) 

Self-rated health and lifetime 
cognitive factor -0.6004 -0.5553 -0.0451 0.450735929 

Self-rated health and lifetime manic 
symptoms (sum score) 

Self-rated health and lifetime 
impulsivity factor -0.6004 -0.742 0.1416 0.063275416 

Self-rated health and lifetime 
energy/activity factor 

Self-rated health and lifetime 
cognitive factor -0.6148 -0.5553 -0.0595 0.449166013 
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Self-rated health and lifetime 
energy/activity factor 

Self-rated health and lifetime 
impulsivity factor -0.6148 -0.742 0.1272 0.062671358 

Self-rated health and lifetime 
impulsivity factor 

Self-rated health and lifetime 
cognitive factor -0.742 -0.5553 -0.1867 0.037495987 

15. Years of education 
Years of education and lifetime manic 
symptoms (sum score) 

Years of education and lifetime 
energy/activity factor -0.4519 -0.4134 -0.0385 0.169497147 

Years of education and lifetime manic 
symptoms (sum score) 

Years of education and lifetime 
cognitive factor -0.4519 -0.4927 0.0408 0.39069002 

Years of education and lifetime manic 
symptoms (sum score) 

Years of education and lifetime 
impulsivity factor -0.4519 -0.5357 0.0838 0.163343592 

Years of education and lifetime 
energy/activity factor 

Years of education and lifetime 
cognitive factor -0.4134 -0.4927 0.0793 0.135028893 

Years of education and lifetime 
energy/activity factor 

Years of education and lifetime 
impulsivity factor -0.4134 -0.5357 0.1223 0.034293922 

Years of education and lifetime 
impulsivity factor 

Years of education and lifetime 
cognitive factor -0.5357 -0.4927 -0.043 0.504565758 

Highlighted cells indicates that that particular genetic correlation was not significant  
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Table S3.18a. Sub-cohorts of the National Institute for Health and Care Research 
(NIHR) BioResource who were included in the "affected" study sample (N=5,380). 

  N Recruitment 
methods Eligibility criteria Recruitment 

area 

Inflammatory 
Bowel Disease 
(IBD) cohort 

1,283 

IBD clinics in 
participating 

hospitals across 
the United 
Kingdom 

16+, have a 
diagnosis of Crohn’s 
disease, ulcerative 

colitis, indeterminate 
colitis, IBD type 
unspecified, or 
suspected IBD 

England, Wales, 
Scotland, 

Northern Ireland 

NHS Blood and 
Transplant 
studies 
(COMPARE, 
STRIDES, 
INTERVAL) 

2,503 Blood donation 
centres 16+, live in England England 

Research Tissue 
Bank - Generic 1,594 

Biomedical 
Research Centres, 
Clinical Research 
Facilities, hospital 
clinics, community 
recruitment, online 

16+, live in England England 

Total 5,380    
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Table S3.18b. Sub-cohorts of the National Institute for Health and Care Research 
(NIHR) BioResource who were included in the "unaffected" study sample (N=6,308). 

  N Recruitment 
methods Eligibility criteria Recruitment 

area 

Inflammatory 
Bowel Disease 
(IBD) cohort 

749 

IBD clinics in 
participating 

hospitals across 
the United 
Kingdom 

16+, have a 
diagnosis of Crohn’s 
disease, ulcerative 

colitis, indeterminate 
colitis, IBD type 
unspecified, or 
suspected IBD 

England, Wales, 
Scotland, 

Northern Ireland 

NHS Blood and 
Transplant 
studies 
(COMPARE, 
STRIDES, 
INTERVAL) 

4,081 Blood donation 
centres 16+, live in England England 

Research Tissue 
Bank - Generic 1,478 

Biomedical 
Research Centres, 
Clinical Research 
Facilities, hospital 
clinics, community 
recruitment, online 

16+, live in England England 

Total 6,308    
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Appendix 4. Supplementary material for chapter 4 

Supplementary material 

 
Supplementary methods 
 
Phenotype definition of treatment-resistant depression 
 
Treatment-resistant depression was measured continuously in GLAD participants with the 

Maudsley Staging Method (MSM) (Fekadu et al., 2009) and the nine item Patient Health 

Questionnaire (PHQ9) (Kroenke, Spitzer and Williams, 2001). This is referred to as the “staged 

treatment-resistant depression” phenotype in the main text. The MSM is a tool to measure 

varying levels of treatment resistance in individuals currently affected by MDD. The MSM uses a 

points system that is based on three domains: 1) severity of presenting illness, 2) duration of 
presenting illness, and 3) antidepressant treatment-response. The MSM can be interpreted 

as a continuous measure of treatment resistance in relation to an individual’s current or most 

recent depressive episode. Information regarding how the three domains are scored and how 

this was implemented into the GLAD study survey is shown below.  

 

1) Severity of presenting illness (scored 1-4): 
 
In the MSM, the scoring of depressive symptom severity ranges from subsyndromal depression 

(scored as 1) to severe syndromal depression with psychosis (scored as 5). We used the PHQ9 

to measure this in the GLAD study. The PHQ9 asked nine questions relating to mood and 

feelings that individuals may have experienced over the past two weeks. Individuals could 

answer with: “Not at all”; “Several days”; “More than half the days”; and “Nearly every day” 

xfwhich are coded as 0, 1, 2 and 3 respectively. Numeric answers were summed to create a 

continuous measure of current depression symptoms ranging 0-27 with higher values reflecting 

more severe symptoms. The PHQ9 does not ask about the presence of psychotic symptoms (as 

is required in the MSM). So, for the purpose of scoring GLAD Study participants’ current 

depression severity for use in the MSM, the PHQ9 was scored as follows:  
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- PHQ9 score of 5-9 = mild (scored as 1) 

- PHQ9 score of 10-14 = moderate (scored as 2) 

- PHQ9 score of 15-19 = moderately severe (scored as 3) 

- PHQ9 score of  20-27 = severe (scored as 4)  

Therefore, instead of ranging 1-5 (as is required for the MSM), we used an adapted version where 

current depression severity ranged 1-4. Note that individuals who scored 0-4 on the PHQ9 (i.e., 

a severity score of 0/”None”) were not eligible to complete the MSM and were therefore excluded 

from analyses.  

2) Duration of presenting illness (scored 1-3): 

In the MSM, the duration of presenting illness is measured with the question “How long ago did 

your current or most recent episode of depression or low mood begin?”. Individuals can answer 

with the following: 

- “Less than 1 year ago” (scored as 1) 

- “1-2 years ago” (scored as 2) 

- “More than 2 years ago” (scored as 3) 

This question was implemented word-for-word in the GLAD study survey. Thus, participants who 

were experiencing "mild depression" or more (a severity score of at least 1 in the PHQ9) answered 

the MSM and could score between 1-3 to reflect the duration of their presenting illness.  

3) Antidepressant treatment-response (scored 0-7) 

In the MSM, antidepressant treatment-response is measured with three questions. The first, 

relating to how many antidepressant medications an individual has tried, is “During the current or 

most recent episode of depression or low mood, how many antidepressant medications have you 

taken for 6 weeks or longer?”. Individuals can answer with the following: 



308 

- “None” (scored as 0) 

- “One to two” (scored as 1) 

- “Three to four” (scored as 2) 

- “Five to six” (scored as 3) 

- “Seven to ten” (scored as 4) 

- “More than ten” (scored as 5) 

The second question, relating to additional/augmentation medications, is “If individuals don’t 

respond fully to antidepressants, doctors sometimes prescribe “add-on” or “augmentation” 

medications in addition to the antidepressants. During the current or most recent episode of 

depression or low mood, have you taken an add-on medication for 6 weeks or longer?”. 

Individuals can answer with the following: 

- “No” (scored as 0)  

- “Yes” (scored as 1) 

The final question was “Have you ever received electroconvulsive therapy?”. Individuals can 

answer with the following: 

- “No” (scored as 0) 

- “Yes” (scored as 1) 

These three questions were implemented word-for-word in the GLAD study survey. Thus, 

participants could score anywhere between 0-7 in relation to their antidepressant treatment 

response. Note that individuals who answered “None” to the question about the number of 

antidepressant medications skipped the next question about add-on/augmentation medications.  

Clarification of scoring system (ranging 3-14) 

The MSM ranges 3-14 (with 3 representing “mild resistance” and 14 representing “severe 

resistance”) (Fekadu et al., 2009). GLAD participants who did not meet the required threshold on 

the PHQ9 (i.e., their severity score was 0/“None”) were not eligible to complete the MSM during 
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the GLAD study survey. These individuals were deemed to not be experiencing a current or most 

recent depressive episode and were therefore excluded. In those who were experiencing “mild 

depression” or more and did complete the MSM, the scores/points were attributed to each 

participant in the three domains described above. Their PHQ9 severity score (ranging 1-3) was 

added to their score from the MSM questions (ranging 2-10). Accordingly, GLAD participants 

could score anywhere between 3-14* for the treatment-resistant depression sum score.  

Please also be reminded that the MSM is usually scored 3-15, however we used an adapted 

version which did not measure the presence of psychotic symptoms (explained above). Therefore, 

MSM was scored 3-14 in GLAD. This adapted version was confirmed via personal 

correspondence with Professor Anthony Cleare (one of the authors of the MSM).  

*It is impossible to gain a score of two in the MSM because we excluded participants who reported 

that they have not taken any antidepressants for six weeks or more. We excluded these 

participants for two reasons. First, we cannot be sure of their treatment status as we do not know 

whether they have not taken antidepressants for six weeks or longer because a) they weren't 

prescribed any or b) they were prescribed them but they stopped taking them before six weeks. 

Second, participants who reported that they had not taken any antidepressants for six weeks or 

longer skipped the next question about add-on/augmentation medications. This means they have 

missing data on the MSM. 
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In order to gain a score of two, a participant would need to have been scored as having “mild 

depression” on the PHQ9 (+1 to score) and then, in the MSM, they would need to have reported 

that their current or most recent depressive episode had lasted less than one year (+1 to score). 

Additionally, they would have needed to score zero on the further two questions about their current 

or most recent depressive episode, by reporting that they had taken zero antidepressants for six 

weeks or longer and had not been prescribed any augmentation/add-on medications (+0 to 

score). They also would have needed to report that they had never received electroconvulsive 

therapy (+0 to score). This combination of answers would gain a participant a score of two. Since 

we excluded participants who scored zero on the question about taking antidepressants for six 

weeks or longer, no participant was able to gain a score of two. Therefore, the MSM ranged 3-

14. 

 
Exclusions  
 
Anhedonic symptoms in COPING NBR:  We first excluded participants who had complete data 

on the AD-MASQ-D30 at fewer than three COPING survey time points. We excluded these 

participants because, as part of our analyses, we calculated the highest, lowest, and mean 

anhedonic symptoms across all available COPING surveys for each participant. Therefore, we 

wanted to ensure that the participants had sufficient data points in order to robustly calculate 
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these values. Following this, we excluded anyone who’s genetic data did not pass the standard 

genotype quality control (QC) (more detail below). 
 
Treatment-resistant depression in GLAD: We excluded anyone who had missing data on either 

the PHQ9 or the MSM. This included participants who were not currently depressed at the time 

of completing the GLAD survey (i.e., a PHQ9 severity score of 0/”None”) and therefore did not 

complete the MSM. It also included participants who reported that they had not taken any 

antidepressants for six weeks or longer for their current or most recent depressive episode (these 

participants were not shown the next question about add-on/augmentation medications). 

Additionally, we wanted to maximise the chance that all individuals were affected by major 

depressive disorder and not bipolar disorder. (Individuals were eligible to complete the MSM if 

they were currently depressed at the time of completing the GLAD study survey. This means that 

individuals with bipolar disorder, who happened to be in a depressive episode, answered the 

MSM). In the GLAD study survey, there were two questions about whether the participant has 

received a diagnosis of bipolar disorder by a professional. We retained anyone who self-reported 

that they had NOT received a diagnosis in BOTH questions (i.e., we excluded anyone who 

answered “Yes”, “Don’t know”, “Prefer not to answer”, or had missing data for either of these two 

questions). Following this, we excluded anyone who’s genetic data did not pass the standard 

genotype QC (more detail below).  

 
Genetic analyses 
 
Genotyping, imputation, and quality control (QC) 
 

Genotyping 

 

Quality assurance measures were calculated by ThermoFisher: samples with a dish quality 

control (QC) value ≥0.82 (capturing the resolution of true signal from background noise on the 

genotyping array) and an initial call rate ≥0.97 were retained. Variants were recommended for 

inclusion if they were genotyped with high resolution (classified as "PolyHighResolution", 

"NoMinorHom", or "MonoHighResolution" by ThermoFisher). Data passing quality assurance was 

transferred to the Social, Genetic, and Developmental Psychiatry Centre at King's College London 

for further QC, adapted from previous pipelines (Coleman et al., 2016). 
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Initial QC 

 

Data for GLAD and COPING NBR were processed separately following the same pipeline.  An 

initial set of quality control was performed to determine sample ancestry. This consisted of 

excluding variants with a minor allele frequency (MAF) <0.01, variants and individuals with a call 

rate <95%, and variants with Hardy-Weinberg p<10-10. Additional checks were performed on 

individuals to exclude outliers for sex discrepancies, heterozygosity, and relatedness. Samples 

were merged with data from Phase 3 of the 1000 Genomes project and principal component 

analyses were performed on genome-wide genotype data. Samples clustering with known 

individuals from European ancestries in the 1000 Genomes project formed the majority of the 

genotyped GLAD and COPING NBR cohorts (96% and 98% respectively; figure S4.3) and so 

further analyses were restricted only to these participants. QC was repeated, on raw data 

restricted to European ancestry participants. This comprised the same measures as above.  

 

Imputation 

 

For GLAD and NBR separately, high quality genotype data was lifted to build 38 of the human 

genome and imputed to TopMed freeze 8, using version 1.5.7 of the dedicated imputation server 

provided by the University of Michigan (Taliun et al., 2021) with prior phasing using EAGLE2 (Loh 

et al., 2016). Following imputation, data (in variant call format [VCF]) were restricted to variants 

with MAF≥0.001 and imputation R2≥0.3. Post-imputation VCFs were updated to include sex 

information and rsIDs, which were collected from the Single Nucleotide Polymorphism Database, 

build 153. 

 

GLAD & NBR merge 

 

Data from GLAD and COPING NBR were merged post-imputation using bcftools, and converted 

to PLINK2 pfile format, retaining genotype dosage information (Chang et al., 2015). Only bi-allelic 

SNPs were retained in the resulting merged pfiles. Post-merge, the data was filtered with a MAF 

threshold of 0.01 and a variant missingness of 0.02. Duplicate samples, related individuals with 

pi-hat>0.1875, and samples with mismatched sex were also excluded.  

 

Analyses-specific QC 
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Both study samples were subjected to further QC before GWAS using REGENIE. This included 

removing genotyped SNPs if missingness >5%, MAF<0.01, or Hardy Weinberg p<10-10. SNPs 

imputed with low confidence (INFO<0.3) were also excluded. Individuals with missingness >5%, 

a mismatch between their self-reported assigned sex at birth and genetic sex, or whose genetic 

sex could not be determined were excluded. Individuals who were more than three SDs away 

from the mean pairwise relatedness (identical-by-descent [IBD]) of the data set (henceforth 

“individual IBD outliers”) were also excluded. Lastly, for the analysis of anhedonic symptoms, one 

participant of each pair of duplicated participants between the GLAD and NBR cohorts was 

excluded.  

 
Supplementary results 
 
 
Exclusions 
 
Anhedonic symptoms in COPING: The initial sample included 26,411 individuals who had 

participated in the COPING survey. A total of 4,103 participants were excluded for having 

complete data on the AD-MASQ-D30 at fewer than three COPING survey timepoints. A further 

8,343 were excluded for having no available genetic data. This left a total of 13,965 COPING 

participants. Of which, 289 were removed due to missing information about PCs, 16 were 

removed due to being duplicates between the GLAD and NBR cohorts, 85 were removed due to 

having a mismatch between their biological sex and self-reported sex or because their genetic 

sex could not be determined, and 158 individual IBD outliers were removed. This left a final 

sample size of 13,433.  
 

Treatment-resistant depression in GLAD: The initial sample included 46,725 participants who 

participated in the GLAD study. A total of 4,455 and 13,363 participants were excluded for having 

missing data on the PHQ9 or the MSM respectively. A further 6,648 participants were excluded 

for not being currently depressed at the time of completing the MSM (i.e., a PHQ severity score 

of zero). Following this, 1,469 participants were excluded for self-reporting a diagnosis of bipolar 

disorder by a professional. A total of 12,201 were then excluded for having no available genetic 

data. This left a total of 8,652 GLAD participants. Of which, 330 were removed due to missing 

information about PCs, 27 were removed due to having a mismatch between their biological sex 

and self-reported sex or because their genetic sex could not be determined, and 130 individual 

IBD outliers were removed. This left a final sample size of 8,165.  
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Phenotypic analyses 
 
Correlations between highest, lowest, and mean anhedonic symptoms 
 
There were medium-to-high phenotypic correlations between the three measures of anhedonic 

symptoms and they all were significantly different to zero. The correlation between the 

participants’ highest and lowest anhedonic symptoms was 0.69 (SE=0.004, p=0.0). The 

correlation between highest and mean anhedonic symptoms was larger at 0.89 (SE=0.002, 

p=1.67x10-301). The correlation between lowest and mean anhedonic symptoms was larger again 

at 0.90 (SE=0.002, p=1.60x10-214). A plot of these correlation coefficients is presented in figure 
S4.2.  

 
Correlations between anhedonic symptoms, concurrent depression and anxiety 
symptoms, and the single anhedonia item from the PHQ9  
 
We assessed whether there was an association between the participants’ highest anhedonic 

symptoms and the depressive and anxiety symptoms they were experiencing at that time. These 

concurrent symptoms were assessed via the PHQ9 and GAD7 respectively. There were medium-

to-high phenotypic correlations between the participants’ highest anhedonic symptoms and 

concurrent depression and anxiety symptoms and both were significantly different to zero. 

Anhedonic symptoms were correlated with concurrent depression symptoms at 0.59 (SE=0.006, 

p<2.22x10-16) and with concurrent anxiety symptoms at 0.49 (SE=0.008, p<2.22x10-16). 

Depressive and anxiety symptoms were much more strongly correlated with each other at 0.82 

(SE=0.003, p=3.74x10-258).  

 

We also assessed whether there was an association between two different measures of 

anhedonia: anhedonic symptoms measured via the AD-MASQ-D30 and the single anhedonia 

item from the PHQ9. This single item is based on the question “Over the past two weeks, how 

often have you had little interest or pleasure in doing things?”. Participants could answer with  

“Not at all”, “Several days”, “More than half the days”, and “Nearly every day” which were coded 

as 0, 1, 2, and 3 respectively. The correlation between the participants’ highest anhedonic 

symptoms and their anhedonia score from the single PHQ9 item was 0.59 (SE=0.006, p<2.22x10-

16). Depression and anxiety symptoms were much more strongly correlated with the single 
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anhedonia item from the PHQ9: depressive symptoms were correlated at 0.86 (SE=0.002, 

p<2.22x10-16) and anxious symptoms were correlated at 0.68 (SE=0.006, p<2.22x10-16). A plot of 

these correlation coefficients is presented in figure S4.3.  

 
Correlation between anhedonic symptoms and treatment-resistant depression 
 
A total of 2,669 GLAD participants who were included in the analysis of treatment-resistant 

depression also took part in COPING and were included in the analysis of anhedonic symptoms. 

In these individuals, we calculated the correlation between their highest and mean anhedonic 

symptoms and their treatment-resistant depression sum score (to reflect the genetic correlations 

performed in our study). We found low but highly significant correlations. Highest anhedonic 

symptoms were correlated at 0.23 (SE=0.02, p=1.70x10-32). Mean anhedonic symptoms were 

correlated at 0.29 (SE=0.02, p=2.12x10-54).  
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Supplementary figures  
 
Figure S4.1. Phenotypic correlation matrix between the participants’ highest, lowest, and 
mean anhedonic symptoms.  
Anhedonic symptoms were measured with the anhedonic depression subscale of the 30-item 
short adaptation of the Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30). The 
correlation matrix of Pearson's product-moment correlations was computed in R.  
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Figure S4.2. Phenotypic correlation matrix between the participants’ highest anhedonic 
symptoms, their depressive and anxiety symptoms at that time (i.e., concurrent 
symptoms), and their concurrent score on the single anhedonia item from the nine item 
Patient Health Questionnaire (PHQ9).  
Current anhedonic symptoms were measured with the anhedonic depression subscale of the 30-
item short adaptation of the Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30). 
Concurrent depressive symptoms were measured with the PHQ9 and concurrent anxiety 
symptoms were measured with the seven item Generalised Anxiety Disorder Questionnaire 
(GAD7). We also calculated the correlations with current depressive symptoms (measured via the 
PHQ9) with the anhedonia PHQ9 item removed. The correlation matrix of Pearson's product-
moment correlations was computed in R.  
 

 
 
 
 
Anh (AD-MASQ-D30) = Anhedonic symptoms assessed via AD-MASQ-D30 
Dep (PHQ9) = Concurrent depressive symptoms assessed via PHQ9 
Anx (GAD7) = Concurrent anxiety symptoms assessed via GAD7 
Anh (PHQ9) = Concurrent anhedonia assessed via single item in PHQ9 
Dep (PHQ9 minus anh) = Concurrent depression symptoms assessed via PHQ9 with single item 
anhedonia removed 
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Figure S4.3. Principal component analysis (PCA) plots. 
Above: principal component analysis (PCA) plot of genotype data of Genetic Links to Anxiety and 
Depression (GLAD) study participants. Below: PCA plot of genotype data of GLAD study 
participants and NIHR BioResource (NBR) study participants (merged data set). In both plots, the 
first principal component is plotted against the second principal component. 
 

 

 
 
Note: ASW (African Ancestry in SW USA), CEU (Europeans, from Utah), CHB (Northern Han 
Chinese from Beijing), CHS (Southern Han Chinese, from Shanghai), CLM (Colombian in 
Medellín, Colombia), FIN (Finnish in Finland), GBR (Western Europeans from Britain), IBS 
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(Southern Europeans from Spain), JPT (Japanese in Tokyo, Japan), LWK (Luhya from Webuye, 
Kenya), MXL (Mexican ancestry in Los Angeles, CA, USA), PUR (Puerto Rican in Puerto Rico), 
TSI (Southern Europeans from Tuscany in Italy), YRI (Yoruba in Ibadan, Nigeria), GIH (Gujarati 
Indians in Houston, Texas, USA), NA (GLADv2 or COPING NBRv1) 
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Figure S4.4. Quantile-quantile (QQ) plot and Manhattan plot of Single Nucleotide 
Polymorphism (SNP) associations with the COVID-19 Psychiatry and Neurological 
Genetics (COPING) participants' maximum anhedonic symptoms (sum score) (N=13,433).  
Anhedonic symptoms were measured by the anhedonic depression subscale of the 30-item short 
adaptation of the Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30) in COPING study 
participants with available genetic data that passed the standard genotype quality control (QC). 
The genome-wide association study (GWAS) was performed with REGENIE. We covaried for the 
first ten ancestry principal components and genotyping batch. Manhattan and QQ plots were 
produced using FUMA. The genome-wide significance threshold was set at 5x10-8. 
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Figure S4.5. Quantile-quantile (QQ) plot and Manhattan plot of gene associations with the 
COVID-19 Psychiatry and Neurological Genetics (COPING) participants' maximum 
anhedonic symptoms (sum score) (N=13,433).  
Anhedonic symptoms were measured by the anhedonic depression subscale of the 30-item short 
adaptation of the Mood and Anxiety Symptoms Questionnaire (AD-MASQ-D30) in COPING study 
participants with available genetic data that passed the standard genotype quality control (QC). 
The genome-wide association study (GWAS) was performed with REGENIE.  We covaried the 
first ten ancestry principal components and genotyping batch. Manhattan and QQ plots were 
produced using MAGMA (implemented in FUMA). The input SNPs from the GWAS summary 
statistics were mapped to 19,397 protein coding genes. Genome-wide significance (red dashed 
line in the plot) was defined at P=0.05/19397= 2.578x10-6 to account for the 19,397 protein coding 
genes tested. 
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Figure S4.6. Quantile-quantile (QQ) plot and Manhattan plot of Single Nucleotide 
Polymorphism (SNP) associations with the Genetic Links to Anxiety and Depression 
(GLAD) study participants’ treatment-resistant depression sum score (N=11,234).  
Treatment-resistant depression was measured with the nine item Patient Health Questionnaire 
(PHQ9) and Maudsley Staging Method (MSM) in GLAD participants with available genetic data 
that passed the standard genotype quality control (QC). The genome-wide association study 
(GWAS) was performed with REGENIE. We covaried for the first ten ancestry principal 
components and genotyping batch. Manhattan and QQ plots were produced using FUMA. The 
genome-wide significance threshold was set at 5x10-8. 
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Figure S4.7. Quantile-quantile (QQ) plot and Manhattan plot of gene associations with the 
Genetic Links to Anxiety and Depression (GLAD) study participants’ treatment-resistant 
depression sum score (N=8,165).  
Treatment-resistant depression was measured with the nine item Patient Health Questionnaire 
(PHQ9) and Maudsley Staging Method (MSM) in GLAD participants who had available genetic 
data that passed the standard genotype quality control (QC). The genome-wide association study 
(GWAS) was performed with REGENIE.  We covaried the first ten ancestry principal components 
and genotyping batch. Manhattan and QQ plots were produced using MAGMA (implemented in 
FUMA). The input SNPs from the GWAS summary statistics were mapped to 19,188 protein 
coding genes. Genome-wide significance (red dashed line in the plot) was defined at 
P=0.05/19188= 2.606x10-6 to account for the 19,188 protein coding genes tested. 
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Figure S4.8. Quantile-quantile (QQ) plot and Manhattan plot of Single Nucleotide 
Polymorphism (SNP) associations with the meta-analysed treatment-resistant depression 
phenotype (N=24,537). 
Treatment-resistant depression was measured with the nine item Patient Health Questionnaire 
(PHQ9) and Maudsley Staging Method (MSM) in participants of the Genetic Links to Anxiety and 
Depression (GLAD) study (N=8,165). This was meta-analysed with the results of a genome-wide 
association study (GWAS) of treatment-resistant depression by Fabbri et al. (2021) (N=16,372). 
The total N for the meta-analysed phenotypes was 24,537. The meta-analysis was performed 
with the METAL software. Manhattan and QQ plots were produced using FUMA. The genome-
wide significance threshold was set at 5x10-8. 
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Figure S4.9. Quantile-quantile (QQ) plot and Manhattan plot of gene associations with the 
meta-analysed treatment-resistant depression phenotype (N=24,537).  
Treatment-resistant depression was measured with the nine item Patient Health Questionnaire 
(PHQ9) and Maudsley Staging Method (MSM) in participants of the Genetic Links to Anxiety and 
Depression (GLAD) study (N=8,165). This was meta-analysed with the results of a genome-wide 
association study (GWAS) of treatment-resistant depression by Fabbri et al. (2021) (N=16,372). 
The total N for the meta-analysed phenotype was 24,537. The meta-analysis was performed with 
the METAL software. Manhattan and QQ plots were produced using MAGMA (implemented in 
FUMA). The input SNPs from the GWAS summary statistics were mapped to 18,465 protein 
coding genes. Genome-wide significance (red dashed line in the plot) was defined at 
P=0.05/18465=2.708e-6 to account for the 18,465 protein coding genes tested. 
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Figure S4.10. Flow-chart of participant exclusions in the COVID-19 Psychiatry and 
Neurological Genetics (COPING) study sample.  
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Figure S4.11. Flow-chart of participant exclusions in the Genetic Links to Anxiety and 
Depression (GLAD) study sample.  
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Supplementary tables  
 
Table S4.1. Anhedonic depression subscale of the 30-item short adaptation of the Mood 

and Anxiety Symptoms Questionnaire (AD-MASQ-D30) and questions included in the 
Maudsley Staging Method (MSM) to stage treatment-resistant depression (plus the 

measure of depression severity from the nine-item Patient Health Questionnaire 
[PHQ9]). In the AD-MASQ-D30, each item is preceded with the question “Below is a list 
of feelings, sensations, problems, and experiences that people sometimes have. Read 
each item and then select the appropriate choice that best describes how much you 

have felt or experienced things this way during the past two weeks, including today.” 
The numeric values (reverse coded for AD-MASQ-D30) used to calculate the sum scores 
are shown in brackets next to the possible answers for each item in the questionnaire. 

Items 
measuring 

positive affect 
in the AD-
MASQ-D30 

Answer values 
for each of the 
items included 

in the AD-
MASQ-D30 

Items measuring treatment-resistant 
depression in the MSM 

Answer 
values for 
each of the 

items 
included in 

the MSM 

Felt successful 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

Severity of current depressive episode 
measured via the PHQ9 

Mild (1) 
Moderate (2) 
Moderately 
severe (3) 
Severe (4) 

Felt really happy 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

How long ago did your current or most 
recent episode of depression or low mood 

begin? 

Less than 1 
year ago (1) 

1-2 years ago 
(2) 

More than 2 
years ago (3) 

Felt optimistic 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

During the current or most recent episode 
of depression or low mood, how many 
antidepressant medications have you 

taken for 6 weeks or longer? 

None (0) 
One to two (1) 
Three to four 

(2) 
Five to six (3) 
Seven to ten 

(4) 
More than ten 

(5) 

Felt like I was 
having a lot of 

fun 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 
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Felt like I 
accomplished a 

lot 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

If individuals don’t respond fully to 
antidepressants, doctors sometimes 
prescribe “add-on” or “augmentation” 

medications in addition to the 
antidepressants. During the current or 

most recent episode of depression or low 
mood, have you taken an add on 
medication for 6 weeks or longer? 

No (0) 
Yes (1) 

Felt like I had a 
lot to look 
forward to 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

Felt really 'up' or 
lively 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

Have you ever received electroconvulsive 
therapy? 

No (0) 
Yes (1) 

Felt like I had a 
lot of energy 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

Felt really good 
about myself 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

Felt really 
talkative 

Not at all (4) 
A little bit (3) 

Moderately (2) 
Quite a bit (1) 
Extremely (0) 

Total 0-40 Total 2-14 
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Table S4.2. Descriptive statistics of the three anhedonic symptoms (N=13,433). Sum 
scores were created by summing participant answers to the anhedonic depression 

subscale of the 30-item short adaptation of the Mood and Anxiety Symptoms 
Questionnaire (AD-MASQ-D30). Only participants with non-missing data at at least three 

COVID-19 Psychiatry and Neurological Genetics (COPING) survey time points were 
included. The mean sum score was computed by summing all non-missing sum scores 

for each participant and then dividing this total by the number of non-missing sum 
scores.  

Statistic Highest anhedonic 
symptoms 

Lowest anhedonic 
symptoms 

Mean anhedonic 
symptoms 

Minimum 0 0 0 

Maximum 40 40 40 

Mean 31.7764461 18.6270379 18.6270379 

Standard 
deviation 7.21378464 8.338824446 8.33882445 

Quartile 1 28 13 20.1666667 

Median 33 18 25.9375 

Quartile 3 38 24 31.33333333 

Interquartile 
range 10 11 11.1666667 

Skewness -0.9312074401 0.1787904 -0.3228312 

Kurtosis 0.38878431 -0.4169021 -0.3969597 
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Table S4.3. Descriptive statistics of staged treatment-resistant depression (N=8,165). A 
sum score was created with a combination of answers to the Patient Health 

Questionnaire (PHQ9) which measures current depression severity and the Maudsley 
Staging Method (MSM) (both in the Genetic Links to Anxiety and Depression sign-up 

questionnaire). A detailed explanation of how this sum score was created is presented 
in the supplementary methods. 

Statistic Staged treatment-resistant depression  
Minimum 3 

Maximum 14 

Mean 5.21518677 

Standard deviation 1.68352672 

Quartile 1 4 

Median 5 

Quartile 3 6 

Interquartile range 2 

Skewness 0.97772878 

Kurtosis 1.22393656 
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Table S4.4. Genome-wide Complex Trait Analysis (GCTA) Single Nucleotide 
Polymorphism (SNP)-based heritability estimates (h2SNP), standard errors (SE), and z-
scores of anhedonic symptoms and staged treatment-resistant depression. Anhedonic 
symptoms were measured in participants of the COVID-19 Psychiatry and Neurological 

Genetics (COPING) study and staged treatment-resistant depression was measured 
using the nine item Patient Health Questionnaire (PHQ9) and Maudsley Staging Method 
(MSM) in participants of the Genetic Links to Anxiety and Depression (GLAD) study. “N” 

refers to the number of individuals included in the genetic-relatedness matrix (GRM) 
used to calculate the h2SNP estimate. The h2SNP estimates were significantly different 

to zero if the p-value surpassed the Bonferroni-adjusted alpha of 0.025 (0.05/2) to 
correct for the two independent tests (and are shown in bold). P-values were calculated 

by GCTA.  
Phenotype Study sample N h2SNP SE Z-score P-value 

Highest anhedonic 
symptoms  

COPING 
participants 13,271 0.108084 0.043656 2.475810885 3.83E-

03 
Lowest anhedonic 
symptoms  

COPING 
participants 13,271 0.09435 0.045385 2.078880687 2.19E-

02 
Mean anhedonic 
symptoms  

COPING 
participants 13,271 0.126469 0.044946 2.813798781 1.96E-

03 
Staged treatment-
resistant 
depression  

GLAD 
participants 8,062 0.025604 0.062608 0.4089573217 3.47E-

01 
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Table S4.5. Linkage Disequilibrium Score Regression (LDSC) Single Nucleotide 
Polymorphism (SNP)-based heritability estimates (h2SNP), standard errors (SE), lambda 

GC, and mean chi-square statistic of anhedonic symptoms and staged treatment-
resistant depression. Anhedonic symptoms were measured in participants of the 

COVID-19 Psychiatry and Neurological Genetics (COPING) study and staged treatment-
resistant depression was measured using the nine item Patient Health Questionnaire 
(PHQ9) and Maudsley Staging Method (MSM) in participants of the Genetic Links to 

Anxiety and Depression (GLAD) study. “N” refers to the number of individuals included 
in the genome-wide association study (GWAS). The h2SNP estimates were significantly 
different to zero if the p-value surpassed the Bonferroni-adjusted alpha of 0.017 (0.05/3) 

to correct for the three independent tests (and are shown in bold). P-values were 
calculated in R using pchisq((h2/se)^2,1,lower.tail = FALSE) as recommended by LDSC 

developers. 

Phenotype Study 
sample N h2SNP SE Z-score P-value Lambda 

GC 
Mean 

X2 
Highest 
anhedonic 
symptoms 

COPING 
participants 13,433 0.0763 0.0259 2.945945946 0.003219687 1.0135 1.017 

Lowest 
anhedonic 
symptoms 

COPING 
participants 13,433 0.0195 0.0242 0.805785124 0.4203668 1.0016 1.0096 

Mean 
anhedonic 
symptoms 

COPING 
participants 13,433 0.045 0.025 1.8 0.07186064 1.0105 1.0153 

Staged 
treatment-
resistant 
depression 

GLAD 
participants 8,165 0.0499 0.0389 1.28277635 0.1995704 1.0075 1.0068 

Meta-
analysed 
GLAD-UK 
Biobank 
treatment-
resistant 
depression 

GLAD 
participants 

and 
participants 

from two 
UK cohorts 

24,537 0.0242 0.014 1.728571429 0.08388583 1.0075 1.0158 
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Table S4.6. Genetic correlation between participants' mean anhedonic symptoms and 
staged treatment-resistant depression. The genetic correlation was estimated using the 

Genome-wide Complex Trait Analysis (GCTA) software (bivariate-REML). Anhedonic 
symptoms were measured in participants of the COVID-19 Psychiatry and Neurological 

Genetics (COPING) study and staged treatment-resistant depression was measured 
using the nine item Patient Health Questionnaire (PHQ9) and Maudsley Staging Method 

(MSM) in participants of the Genetic Links to Anxiety and Depression (GLAD) study. 
N=number of individuals included in esimation of GRM, rg=genetic correlation, 

SE=standard error, and p-value=p-value for rg difference from zero. Genetic correlations 
were significantly different to zero if the p-value surpassed p<0.05 (and are shown in 

bold). P-values were calculated by GCTA. 
Phenotypes N rg SE P-value 

Mean anhedonic symptoms and staged 
treatment-resistant depression 21,211 0.39733 0.61646 1.50E-01 
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Table S4.7. Information about each psychiatric and behavioural trait included in genetic 
correlations with maximum anhedonic symptoms (sum score). Genome-wide 

association study (GWAS) summary statistics of each trait were used to calculate 
genetic correlations using Linkage Disequilibrum Score Regression (LDSC) (Bulik-

Sullivan et al. 2015). "Nca" refers to number of cases, "Nco" refers to number of 
controls, and "N" refers to overall sample size. 

Phenotype Published paper Nca Nco N 
Attention deficit 
hyperactivity disorder Demontis et al. (2019) 19099 34194 53293 

Alcohol dependence Walters et al. (2018) 11569 11569 46568 

Daily alcohol use Schumann et al. (2016)   70460 

Alzheimer's disease Jansen et al. (2019) 71880 383378 455258 

Anhedonia  Ward et al. (2019)   375,275 

Anorexia nervosa Watson et al. (2019) 16992 55525 73050 

Antidepressant 
response (% 
improvement) 

Pain et al. (2022)   5218 

Antidepressant 
response (non-
remission vs. remission) 

Pain et al. (2022) 1852 3299 5151 

Treatment-resistant 
depression Fabbri et al. (2021) 2165 14207 16372 

Anxiety Purves et al. (2020) 25453 58113 83566 

Autism spectrum 
disorder Grove et al. (2019) 18381 27969 46350 

Bipolar disorder Mullins et al. (2021) 41,917 371,549 413466 

Bipolar disorder type I Mullins et al. (2021) 25060 449978 475038 

Bipolar disorder type II Mullins et al. (2021) 6781 364075 370856 

Body mass index Hübel et al. (2019)   353972 

Cannabis use (lifetime) Stringer et al. (2016) 14374 17956 32330 

Chronotype Jones et al. (2016)   128266 

Sleep duration Jones et al. (2016)   128266 

Oversleeper Jones et al. (2016)   128266 

Undersleeper Jones et al. (2016)   128266 

Major depressive 
disorder (PGC2 
including 23andme) 

Wray et al. (2018) 154649 394409 549058 
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Depressive symptoms Okbay et al. (2016)   161460 

Major depressive 
disorder (PGC2 
excluding 23andme) 

Wray et al. (2018)  59851 113154 173005 

Years of education Lee et al. (2018)   766345 

Self-rated health Harris et al. (2017)   111483 

Household income Hill et al. (2016)   112151 

Insomnia  Hammerschlag et al. (2017) 32384 80622 113006 

Cognitive ability Savage (2018)   269867 

Neuroticism Hübel et al. (2019)    

Obsessive compulsive 
disorder 

International Obsessive Compulsive 
Disorder Foundation Genetics 

Collaborative (IOCDF-GC) and OCD 
Collaborative Genetics Association 

Studies (OCGAS) (2018) 

2688 7037 9725 

Physical activity NA   66224 

Posttraumatic stress 
disorder Nievergelt et al. (2019) 32428 174227 206655 

Posttraumatic stress 
disorder (military) Stein et al. (2020) 36301 178107 214408 

Posttraumatic stress 
disorder symptoms 
(military) 

Stein et al. (2020)   186689 

General risk tolerance 
(self-report) Linner et al. (2019)   466571 

Automobile speeding 
propensity Linner et al. (2019)   404291 

Number of sexual 
partners Linner et al. (2019)   370711 

Schizophrenia  Pardinas et al. (2018) 11260 24542 35802 

Ever smoker Linner et al. (2019)   518,663 

Subjective well-being Okbay et al. (2016)   298420 

Staged treatment-
resistant depression Internal (GLAD participants in this study)   11,234 

Meta-analysed GLAD-
UK Biobank treatment-
resistant depression  

GLAD meta-analysed with Fabbri et al. 
(2021) 

  27,606 
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Table S4.8. Genetic correlations between participants' highest anhedonic symptoms 
and 42 psychiatric and behavioural traits. Genetic correlations were estimated using 
Linkage Disequilibrium Score Regression (LDSC) and the extended 1000 Genomes 

Linkage Disequilibrium reference panel. rg=genetic correlation, SE=standard error, and 
p-value=p-value for rg difference from zero (diff 0) or one (diff 1). Genetic correlations 

were significantly different to zero or one if the p-value surpassed the Bonferroni-
adjusted alpha of 0.001 (0.05/42) to correct for the 42 tests (traits with genetic 

correlations that were significantly non-zero are shown in bold).  

Phenotype rg SE P-value 
(diff 0) 

P-value (diff 
1) 

Attention deficit hyperactivity disorder 0.04403 0.1114 6.93E-01 0.00E+00 
Alcohol dependence 0.3421 0.2624 1.92E-01 1.22E-02 
Daily alcohol use 0.1812 0.2355 4.42E-01 5.07E-04 
Alzheimer's disease 0.07512 0.135 5.78E-01 7.34E-12 
Anhedonia (UK Biobank) 0.4532 0.1171 1.08E-04 3.02E-06 
Anorexia nervosa 0.08617 0.1373 5.30E-01 2.82E-11 
Antidepressant response (% 
improvement) NA NA NA NA 

Antidepressant response (non-remission 
vs. remission) -0.08444 0.32 7.92E-01 7.02E-04 

Treatment-resistant depression 0.3152 0.4393 4.73E-01 1.19E-01 

Anxiety 0.5023 0.1355 2.10E-04 2.40E-04 
Autism spectrum disorder 0.09851 0.1433 4.92E-01 3.16E-10 
Bipolar disorder 0.09103 0.08871 3.05E-01 0.00E+00 
Bipolar disorder I 0.1055 0.09954 2.89E-01 0.00E+00 
Bipolar disorder II -0.02199 0.1865 9.06E-01 4.26E-08 
Body Mass Index (BMI) 0.0799 0.05949 1.79E-01 0.00E+00 
Lifetime cannabis use 0.04198 0.2075 8.40E-01 3.89E-06 
Chronotype -0.05809 0.08813 5.10E-01 0.00E+00 
Sleep duration -0.2204 0.1068 3.90E-02 0.00E+00 
Oversleeper 0.1064 0.1677 5.26E-01 9.90E-08 
Undersleeper 0.2122 0.1419 1.35E-01 2.83E-08 
Major depressive disorder (including 
23andme) 0.4204 0.1469 4.22E-03 7.96E-05 

Depressive symptoms 0.7094 0.2087 6.75E-04 1.64E-01 
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Major depressive disorder (excluding 
23andme) 0.2831 0.1095 9.74E-03 5.87E-11 

Years of education -0.1346 0.05122 8.57E-03 0.00E+00 
Self-rated health -0.4214 0.121 4.98E-04 0.00E+00 
Household income -0.325 0.1307 1.29E-02 0.00E+00 
Insomnia 0.4452 0.1807 1.38E-02 2.14E-03 
Cognitive ability -0.1476 0.06715 2.79E-02 0.00E+00 
Neuroticism 0.459 0.1026 7.60E-06 1.34E-07 
Obsessive Compulsive Disorder 0.2734 0.1906 1.51E-01 1.38E-04 
Physical activity -0.2261 0.1048 3.10E-02 0.00E+00 
Posttraumatic stress disorder 0.899 0.344 8.97E-03 7.69E-01 
Posttraumatic stress disorder (military) 0.2392 0.1373 8.14E-02 3.00E-08 
Posttraumatic stress disorder symptoms 
(military) 0.4259 0.1331 1.37E-03 1.61E-05 

General risk tolerance -0.09922 0.07649 1.95E-01 0.00E+00 
Automobile speeding propensity -0.2833 0.0835 6.90E-04 0.00E+00 
Number of sexual partners 0.07351 0.06485 2.57E-01 0.00E+00 
Schizophrenia 0.08304 0.08437 3.25E-01 0.00E+00 
Ever smoker 0.1558 0.06789 2.17E-02 0.00E+00 
Subjective wellbeing -0.7129 0.2927 1.49E-02 4.86E-09 
Staged treatment-resistant depression 0.1014 0.3373 7.64E-01 7.72E-03 
Meta-analysed GLAD-UK Biobank 
treatment-resistant depression  0.2633 0.3237 4.16E-01 2.29E-02 

NA = LDSC SNP-based heritability was out of bounds 
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Table S4.9. Genetic correlations between anhedonia in the UK Biobank (Ward et al. 2019) 
and five psychiatric and behavioural traits which were significantly genetically correlated 

with anhedonic symptoms in the COVID-19 Psychiatry and Neurological Genetics (COPING) 
study, three measures of treatment-resistant depression, and two measures of 

antidepressant response. Genetic correlations were estimated using Linkage Disequilibrium 
Score Regression (LDSC) and the 1000 Genomes Linkage Disequilibrium reference panel. 
rg=genetic correlation, SE=standard error, and p-value=p-value for rg difference from zero 

(diff 0) or one (diff 1). Genetic correlations were significantly different to zero or one if the p-
value surpassed the Bonferroni-adjusted alpha of 0.005 (0.05/10) to correct for the 11 tests 

(traits with genetic correlations that were significantly non-zero are shown in bold).  
Phenotype rg SE P-value (diff 0) P-value (diff 1) 
Antidepressant response (% improvement) NA NA NA NA 

Antidepressant response (non-remission 
vs. remission) 0.006463 0.1226 0.958 5.55E-16 

Treatment-resistant depression 0.5744 0.5336 0.2817 4.25E-01 

Anxiety 0.5962 0.03814 4.37E-55 0.00E+00 

Depressive symptoms 0.9596 0.03077 1.80E-213 1.89E-01 

Self-rated health -0.6949 0.03793 5.61E-75 0.00E+00 

Neuroticism 0.7044 0.02171 7.20E-231 0.00E+00 

Automobile speeding propensity -0.1851 0.03111 2.70E-09 0.00E+00 

Staged treatment-resistant depression 0.2313 0.1737 0.1828 9.62E-06 

Meta-analysed GLAD-UK Biobank 
treatment-resistant depression  0.3773 0.149 0.01131 2.93E-05 

NA = LDSC SNP-based heritability was out of bounds 
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Table S4.10. Sub-cohorts of the National Institute for Health and Care Research (NIHR) 
BioResource who took part in the COVID-19 Psychiatry and Neurological Genetics 

(COPING) study who were included in the anhedonic symptoms study sample (N=7,843) 

 N Recruitment 
methods Eligibility criteria Recruitment 

area 

Inflammatory 
Bowel Disease 
(IBD) cohort 

573 

IBD clinics in 
participating hospitals 

across the United 
Kingdom 

16+, have a diagnosis of 
Crohn’s disease, 
ulcerative colitis, 

indeterminate colitis, IBD 
type unspecified, or 

suspected IBD 

England, Wales, 
Scotland, 

Northern Ireland 

NHS Blood and 
Transplant studies 
(COMPARE, 
STRIDES, 
INTERVAL) 

4,997 Blood donation centres 16+, live in England England 

Research Tissue 
Bank - Generic 2,273 

Biomedical Research 
Centres, Clinical 

Research Facilities, 
hospital clinics, 

community 
recruitment, online 

16+, live in England England 

Other 0 
Recruitment from 

BioResource at King's 
College London 

16+, live in England England 

Total 7,843    
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Appendix 5. Perceptions of Psychiatric Risk 

(PerPsych) project 

Open Science Framework pre-registration 

 
 

 
GLAD lived experience. Jessica Mundy, Helena L. Davies, Molly R. Davies, Evangelos 

Vassos, Janet Treasure, Jehannine Austin, Danielle Dick, Morgan Driver, Thalia C. Eley, 

Gerome Breen 

 

EDGI lived experience. Helena L. Davies, Jessica Mundy, Molly R. Davies, Evangelos Vassos, 

Janet Treasure, Jehannine Austin, Danielle Dick, Morgan Driver, Thalia C. Eley, Gerome Breen 

 
Mental health professionals, trainees and students: Helena L. Davies*, Jessica Mundy*, 

Karla Mohoric, Molly R. Davies, Evangelos Vassos, Janet Treasure, Jehannine Austin, Danielle 

Dick, Morgan Driver, Thalia C. Eley, Gerome Breen 

*Joint first author 

 

The PerPsych project encompasses two studies which will run in parallel to each other: 

 

1) PerPsych: Lived experience (GLAD & EDGI) 

2) Perpsych: Mental health professionals, students, and trainees 
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All data will be cleaned by Jessica Mundy, Helena Davies, and Karla Mohoric (all King’s College 

London students). All data cleaning and analysis scripts will be uploaded to an online GitHub 

repository. 

 

Ethical approval 
 
The PerPsych project was approved by King’s College London Research Ethics Management 

Application System committee on 15th July 2021 (reference number: HR/DP-20/21-22019).  

 

PerPsych: Lived experience 

 
Rationale 
 

Thousands of genetic variants and environmental factors contribute to risk for psychiatric 

disorders (Tsuang et al., 2004; Dick, 2011) therefore, unlike for Mendelian disorders, it is not 

possible for current genetic testing to confirm a psychiatric diagnosis (Palk et al., 2019). 

Accordingly, communicating information about psychiatric genetic risk is challenging, especially 

to the general public. Genetic knowledge amongst the general public is lacking (Haga et al., 2013); 

after almost a century of educational efforts, studies show that both school children and adults 

lack an accurate understanding of Mendelian genetics (Richards, 1996), as well as the role of 

additive genetics in complex traits (Condit and Shen, 2011).  

 

Furthermore, the general public often erroneously evaluate the chances of future children 

developing a psychiatric illness as higher than what is suggested by their family history, which is 

indicative of a lack of understanding of complex genetics. This overestimation can influence the 

decision to have children (Meiser et al., 2007; Austin, Hippman and Honer, 2012), with 

overestimation being correlated with the increasing likelihood of deciding against having children 

(Austin, Smith and Honer, 2006). In addition to this, individuals with psychiatric illness and their 

families often experience negative emotional responses, such as shame, which are heavily tied 

up with misconceptions about the cause of their illness (Inglis, Morris and Austin, 2017), as well 

as feelings of guilt or a heavy burden of personal responsibility (Corrigan et al., 2002).  
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For these reasons, accurate and accessible information about the causes of psychiatric 

disorders needs to be communicated, particularly to individuals who are affected by mental 

illness. In a recent paper by Lewis and Vassos (2020) that evaluated the possibility of involving 

genetics in psychiatric clinical work, the authors outlined that “Education for clinicians and the 

public will be necessary to increase understanding and genetic literacy” (Lewis and Vassos, 

2020). The proposed work aims to take a step towards achieving this amongst individuals with 

depression, anxiety, and eating disorders.  

 
Proposed work 
 

The PerPsych (Perceptions of Psychiatric Risk) project seeks to understand more about 

the way in which individuals with mental health disorders think about the contribution of genetic 

and environmental factors to their illness and how this impacts their emotions and behaviours, as 

well as the way information about psychiatric genetics could be communicated accurately and 

effectively to them. The PerPsych project will recruit participants from the Genetic Links to Anxiety 

and Depression (GLAD) Study and the Eating Disorders Genetics Initiative (EDGI). Both studies 

are part of the National Institute for Health Research (NIHR) Bioresource and have been 

developed to examine contributions of genetic and environmental factors to psychiatric disorders, 

specifically anxiety, depression, anorexia nervosa, bulimia nervosa, and binge-eating disorder. At 

sign-up, participants consent to be recontacted in the future about involvement in new research.  

 
The project will be conducted entirely online. First, participants from the GLAD Study and 

EDGI will be invited to participate via email from the respective study teams. Individuals who 

consent to be contacted by the PerPsych team will be sent an email containing the full study 

information sheet and consent form.  

 

Second, individuals who consent to participate in the PerPsych study will be taken to the 

baseline survey which consists of questions about current symptoms, medication and therapy, 

self-stigma and general mental health stigma, recent behaviours, belief in genetic determinism, 

genetic knowledge, experience of genetic counselling and perceptions of genetic and 

environmental contribution to their disorder.  

 

Third, a randomly-selected half of the GLAD participants will view a short, animated video 

that explains the contribution of genes and environment to anxiety and depression (the ‘case’ 
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group) using the mental health jars’ analogy developed by Professor Jehannine Austin. The video 

explains that having a mental health disorder is nobody’s “fault” and that feeling better and 

managing one’s mental health is possible. The other half of the GLAD participants will be invited 

to watch a control video (the ‘control’ group) developed by Mind (the mental health charity) that 

discusses causes of mental ill health more generally but does not mention the role of genetics. 

This animated video is of similar length and style to the case video.  

 

Similarly, a randomly-selected half of the EDGI participants will view an almost identical 

video, with the major difference being that this video will explain the contribution of genes and 

environment to eating disorders and will explain that recovery is possible. Again, we will invite 

the other half of the participating EDGI participants to watch the control video.  

 

Fourth, after participants have watched the video, they will then be presented with 

immediate follow-up questions which will measure whether participants' responses have 

changed (perceptions of genetic and environmental contributions to their disorder, self-stigma 

and general mental health stigma). They will also be asked whether they found the video helpful 

in any way.  

 

Finally, after two weeks, participants will be sent a shorter survey (follow up 2) and again 

at a 1 month follow-up (follow up 3).   
 

Questions included in the study: 

 
● 7-item version of Eating Disorder examination questionnaire (EDE-Q-7) (Grilo et al., 

2013) with the six bingeing and purging items from the EDE-Q 6.0 (Luce and Crowther, 

1999) [to measure eating behaviour over the past 14 days] (EDGI only) 

● Patient health questionnaire (PHQ-9) to measure current depressive symptoms 

(Kroenke and Spitzer, 2002) (GLAD only) 

● Generalised anxiety disorder screener (GAD-7) to measure current anxiety symptoms 

(Spitzer et al., 2006) (GLAD only) 

● Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) 

questionnaire (Carver et al., 2017) 

○ Selected questions to assess belief genetic in genetic determinism 

● International Genetic Literacy and Attitudes Survey (iGLAS) (Chapman et al., 2017) 
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○ Selected questions to assess genetic knowledge 

● Perceptions of causes of mental illness 

○ Question to assess perceived cause of mental illness, adapted from (Kalb et al., 

2017)) and (Michael et al., 2020)) 

● Feelings related to disorder/impact on living adapted from (Kalb et al., 2017)) and 

(Michael et al., 2020)) 

● Pursuit of information about risk for mental disorders adapted from (Kalb et al., 2017)) 

and (Michael et al., 2020)) 

● Measures of self-care behaviours (adapted from the Repeated Assessment of Mental 

Health in Pandemics [RAMP] baseline questionnaire) 

● Measures of concern for family and perceived level of support from the healthcare 

system (developed by a genetic counsellor task force to help people self identify if they 

might benefit from meeting with a genetic counsellor) 

● Recent treatment/medication 

○ Question about whether participants have ever been prescribed 

medication/enrolled in therapy for their disorder 

○ Question about whether participants have recently started a new treatment for 

their disorder 

○ Question about whether participants have spoken to a healthcare professional 

about starting a new treatment for their disorder 

● Experience of genetic counselling adapted from (Kalb et al., 2017)) and (Michael et al., 

2020)) 

○ Personal experience of genetic counselling 

● Opinions on whether psychiatric genetic counselling would be helpful 

 
Aims  
 

We aim to:  

 

● Understand how individuals with current or past depression, anxiety, and eating disorders 

evaluate the causes of their own disorder (i.e., perceptions of genetic and environmental 

contributions to their own mental health)  

● Understand how this evaluation is associated with emotional wellbeing, stigma and 

behaviours 
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● Investigate whether exposure to a short, informative video about the way in which genes 

and environment combine to produce psychiatric disorder risk can improve emotional 

wellbeing and lead to re-evaluation of one’s psychiatric disorder and the adoption of self-

care behaviours in the short- and long-term  

 

The case video has been created in collaboration with Professor Danielle Dick and the ALTLab 

at Virginia Commonwealth University (VCU) who previously created an educational, animated 

video about substance use disorders (which can be found here: https://rampages.us/coga/). The 

GLAD and EDGI videos have been adapted from this video by PhD students Jessica Mundy and 

Helena Davies.  

 

Preliminary Work 
 

No preliminary work has been carried out and there are no plans for pilot work. 

  
Datasets 
 
GLAD. The Genetic Links to Anxiety and Depression (GLAD; https://gladstudy.org.uk) Study was 

launched in September 2018 by the National Institute for Health Research. The GLAD Study is 

ongoing and aims to collect genetic and phenotypic data from 40,000 participants with lifetime 

anxiety and/or depression as defined in the Diagnostic and Statistical Manual of Mental Disorders, 

5th Edition (DSM-5). GLAD is a re-contactable data resource and participants are recruited via 

advertising on social and traditional media channels in addition to clinical recruitment through 

National Health Service (NHS) organisations. Additional details of the design and implementation 

of the GLAD Study are described elsewhere (Davies et al., 2019).  

 

EDGI. The Eating Disorders Genetics Initiative (EDGI; https://edgiuk.org/about/) Study was 

launched in February 2020 by the National Institute for Health Research. EDGI is ongoing and 

aims to collect genetic and phenotypic data from 10,000 participants with lifetime eating disorder 

as defined in the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). 

EDGI is a re-contactable data resource and participants are recruited via advertising on social 

and traditional media channels in addition to clinical recruitment through National Health Service 

(NHS) organisations.  
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Descriptives 
 

First, we will describe the attrition of the overall sample (number of participants at baseline 

versus each follow-up [immediate follow-up, follow up 2, and follow up 3]) as well as their 

demographic characteristics (i.e., age, sex, gender) at each phase. Next, we will create a 

heterogeneous correlation matrix to assess the relationship between all variables of interest, e.g., 

overall higher genetic attribution to risk than environmental (i.e., binary variable of any answer of 

“Only genetic factors”, “Almost only genetic factors”, “Mainly genetic factors” or “Slightly more 

genetic factors”), equal genetic and environmental attribution to risk (i.e., answers of “Equal 

genetic and environmental factors”), overall higher environmental attribution to risk than genetic 

(i.e., binary variable of any answer of “Only environmental factors”, “Almost only environmental 

factors”, “Mainly environmental factors” or “Slightly more environmental factors”), genetic 

knowledge score, and being female. 

 

We will also generate plots for the following: 

 
● Genetic knowledge measured by the 6-item iGLAS (Chapman et al., 2017)  

○ Plot of percentage correct (baseline only) 

■ NB: Any questions which have been skipped will be counted as incorrect.  

● Belief in genetic determinism measured by a subset of the PUGGS questionnaire 

(Carver et al., 2017) 

○ Histogram of continuous score (baseline only) 

● Percentage of participants who endorsed each answer option to the question: “Please 

select an option according to how much you think your disorder was caused by inherited 

genetic factors and/or environmental factors” at baseline, immediate follow-up, follow up 

2 (two week follow-up), and follow up 3 (one month follow-up). 

● Percentage of participants who endorsed each answer option to each statement 

following the question: “This question is about your feelings towards mental 

health/mental ill health more generally. To what extent do you agree with the following 

statements:” at baseline, immediate follow-up, follow up 2, and follow up 3. 

○ We will generate two plots for each time-point: participant in case versus the 

control video.  

● Self-stigma (experienced and anticipatory)  
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○ Bar plot showing percentage of participants who endorsed each answer option 

category for each question (bars representing baseline, immediate follow up, 

follow up 2 and follow up 3) and case versus control 

● Treatment adherence and self-care behaviours 

○ Bar plot showing percentage of each category for every question (bars 

representing baseline, immediate follow up, follow up 2, and follow up 3) and 

case versus control 

 

Research questions 
 
In our papers, we will investigate seven research questions looking at the effectiveness of the 

case video in terms of 1) perceptions and beliefs, 2) stigma, 3) mental health, 4) treatment 

adherence and/or uptake, and 5) health behaviours, in comparison to the control video. 

 
Impact on perceptions and beliefs 
 

The first and broadest research question we will answer is whether participants found 

watching the case video helpful in any way, i.e., answered “Yes” to the question “Did you find this 

video helpful in any way?”. We will report the percentage of participants who said it was helpful 

and compare this percentage to that of the participants who found the control video helpful. We 

will also perform a chi-square statistical test to investigate whether this difference is significant. 

We will also report demographic information of those who reported that the case video was helpful 

and compare it to those who answered “No”, ”Not sure” or “Prefer Not To Answer”. We will conduct 

regression analyses to investigate who the video was helpful for, e.g., whether being a woman is 

associated with significantly higher odds of finding the video helpful compared to being a man. 

We will also repeat this analysis for those participants who found the control video helpful. 

 

The second research question we will answer is whether watching the case video is 

associated with a change in participants’ perceived genetic and environmental contribution to their 

mental health disorder and their confidence in this perception. Plots will show the distribution of 

answers at baseline, immediate follow-up, follow up 2 and follow up 3. In addition to this, we will 

report on any shift in average (mean or median depending on score distribution) scores (i.e., 

baseline compared to follow-up surveys) and the percentage of participants who show a change 

in their perceptions or their confidence. We will also group participants into 3 categories based on 
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their baseline answers: “more genetic”, “more environmental”, “equal genetic and environmental”. 

Within each of these groups, we will report on the percentage who moved into another group (and 

which group), percentage who moved within a group (and in which direction), and percentage 

whose group did not change. We will do the same with the participants who watched the control 

video in order to draw conclusions about the influence of the case video.  

 

We will also investigate whether participants would like to have a session with a psychiatric 

genetic counsellor and whether this is associated with genetic and/or environmental determinism.  

 

Impact on stigma 
 

The third research question we will answer is whether watching the case video is 

associated with changes in participants’ self-stigma and general mental health stigma. We will 

report on any shift in average (i.e., baseline compared to follow-up surveys), percentage of people 

whose self-stigma increased, percentage of people whose self-stigma decreased, and 

percentage of people whose self-stigma did not change. We will also comment on whose self-

stigma was helped by watching the animated video (i.e., report demographics of those whose 

self-stigma level decreased). We will also compare this with the control video.  

 

The fourth question we will answer is whether people perceive their mental health 

disorder as “more genetic” or “more environmental” (i.e., falling at the extremes of this scale) have 

higher levels of self-stigma and general mental health stigma compared to participants who 

perceive their mental health as due to equal genetic and environmental factors. We will perform 

regressions to investigate this. We will regress baseline self-stigma onto answers about 

perceptions of genetic and environmental contributions to their mental health disorder. We will 

then repeat this for follow-up 2 answers and follow-up 3 answers. Current symptoms will be 

included as covariates to control for possible reporting bias.  

 

Impact on mental health 
 

The fifth research question we will answer is whether watching the case video affected 

symptom levels. We will report on the percentage of people whose symptoms improved, got 

worse, or stayed the same (i.e., baseline compared to follow up 2 and follow up 3). We will also 

perform regressions to establish whether the type of video watched by the participants (i.e., case 
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vs. control video) influences change in symptoms at follow up 2 and follow up 3 (compared to 

baseline). In the regression of symptoms at follow up 2, we will use the baseline symptom scores 

as a covariate. In the regression of symptoms at follow up 3, we will use baseline and follow up 2 

symptom scores as covariates. 

 

Impact on treatment adherence and/or uptake 
 

The sixth research question we will answer is whether watching the case video is 

associated with treatment adherence or new interest/uptake in psychological therapy and/or 

medication. First, we will report the percentage of participants who newly considered or started 

prescription medication and/or therapy at follow up 2 and follow up 3. We will use chi-squared 

tests to compare this to the percentages within the control group. Secondly, we will limit the 

analysis to anyone in the case group who, at baseline, reported being currently prescribed 

medication (but not taking it as prescribed) and/or enrolled in therapy (but not attending regularly). 

We will then comment on the percentage of people who started taking their medication as 

prescribed and/or started regularly attending therapy at follow up 2 and follow up 3. Finally, we 

will limit our analysis to those who, at baseline, self-reported that they were taking their medication 

and/or attending their therapy sessions. For each behaviour in this group, we will comment on the 

percentage of participants who stopped as well as the percentage of those who continued. We 

will compare this to the control video. 

 

Impact on health behaviours 
 

The seventh research question we will answer is whether watching the case video 

increased the adoption of health behaviours. We will report on the percentage of people whose 

health behaviours improved, got worse, or stayed the same (i.e., baseline compared to follow up 

2 and follow up 3). We will then compare these results to those from the participants in the control 

group (i.e., watched the control video).  

 

Sensitivity analysis 

 

As a sensitivity analysis, we will identify to what extent people for whom watching the 

video was associated with improvements in health behaviours, medication and treatment 
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adherence/uptake, self-stigma, and current symptom levels are the same people who self-

reported that the video was helpful (i.e., assess awareness of the helpfulness of video).  

PerPsych: Mental health professionals, students, and trainees  

 
Rationale 
 
Recently, advances in genomic technologies have allowed researchers to identify genetic variants 

(e.g., single nucleotide polymorphisms) associated with many psychiatric disorders, including 

major depressive disorder (Wray et al., 2018), anxiety (Purves et al., 2019) and eating disorders 

(Watson et al., 2019) via genome-wide association studies (GWAS). From GWAS results, 

polygenic risk scores (PRS) can be computed. A PRS is a weighted sum of the number of risk 

alleles an individual carries for a particular trait and disease and therefore represents their 

individual genetic risk (Lewis and Vassos, 2020), or individual genetic susceptibilities to diseases 

based on additive genetic variants (Wray et al., 2021).  

 

The results of PRS analyses arguably have the potential to become a key part of the 

clinical examinations and for prediction of prognosis. This has already been applied to breast 

cancer screening with some success (Mavaddat et al., 2019). Research has shown that support 

for genetic testing in psychiatry is common. In a study of 352 psychiatrists, a large proportion 

indicated willingness to use genetic test results to confirm diagnoses in adult or child patients 

showing symptoms of schizophrenia (adults 75%, children 75%), bipolar disorder (74% and 72%), 

or panic disorder (66% and 63%) (Finn et al., 2005). In addition, many of the psychiatrists 

surveyed showed keenness to offer genetic testing to asymptomatic patients (for preventative 

strategies) and 83% considered it their responsibility to discuss genetic information with patients 

and families. While this seems promising, that same study found that knowledge of psychiatric 

genetic principles was poor among psychiatrists, and fewer than 25% felt prepared or competent 

to discuss the topic with their patients(Finn et al., 2005). This suggests that identifying the areas 

in which knowledge of psychiatric genetics needs improvement, as well as the best way of 

supporting clinicians in achieving this, is imperative.  

 

As mentioned previously, people suffering from psychiatric illness may benefit from 

understanding their disorder in the context of their inherited genetic risk, especially for reducing 

self-stigmatisation(Laegsgaard et al., 2010). Since clinicians are in a position to offer 



358 

conversations about psychiatric genetic risk to patients, this represents an important area in which 

clinicians are able to make a substantial difference to patients in terms of their perception of the 

genetic contribution to their illness, with the potential to reduce negative emotions including guilt, 

shame, fear and stigma. 

 

Despite a clear need for such discussion, psychiatric disorders present distinct challenges 

due to their multifactorial aetiology and the absence of genetic tests to confirm diagnosis or predict 

risk(Palk et al., 2019). For these reasons, accurate and accessible information about the causes 

of psychiatric disorders needs to be communicated by clinicians who work in this area to patients. 

In a recent paper by Lewis &  (2020) evaluating the possibility of involving genetics in psychiatric 

clinical work, the authors emphasise that “Education for clinicians and the public will be necessary 

to increase understanding and genetic literacy”. The proposed work aims to take a step towards 

achieving this amongst mental health professionals. We plan to conduct a project to understand 

more about the way in which a range of UK mental health clinicians think about the contribution 

of genetic and environmental factors to illness, and how information about psychiatric genetics 

could be communicated accurately and effectively.  

 
Proposed Work 
 

In the PerPsych: Mental health professionals, students, and trainees study, we plan 

to recruit UK-based mental health professionals (such as clinical psychologists, assistant 

psychologists, psychiatrists, psychological wellbeing practitioners [PWPs], social workers, 

General Practitioners [GPs] mental health nurses, therapists, and counsellors) as well as students 

and trainees who are entering into mental health careers.   

 

We will use a survey delivered via Qualtrics to assess participants’ knowledge of genetics 

and genomics and their belief in genetic determinism, and to identify whether they believe 

psychiatric genetic counselling would be helpful for their patients. In this survey, they will also be 

invited to watch a short animated video detailing how genes and environment combine to produce 

risk for psychiatric illnesses (i.e., one of the ‘case’ videos from the ‘PerPsych: Lived experience’ 

project). This will be followed by questions assessing whether the participants believe the content 

of the video would be beneficial for their patients/clients.  

 

Questions included in the study: 
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● Demographic questions (e.g., gender, sex, age, and ethnic background) 

● Questions about professional setting and year of qualification/starting role 

● Questions about which disorders the participants work with and how often patients/clients 

and the relatives of patients/clients raise questions about the genetic and environmental 

risk of each disorder  

● Public Understanding and Attitudes towards Genetics and Genomics (PUGGS) 

questionnaire (Carver et al., 2017)  

● International Genetic Literacy and Attitudes Survey (iGLAS) (Chapman et al., 2017) 

○ Selected questions to assess genetic knowledge 

● Questions about knowledge of psychiatric genetics 

● Questions about whether psychiatric genetic counselling would be beneficial for 

patients/clients 

● Questions assessing whether the participants think the content of the animated video 

would be beneficial for their patients/clients 

 
Aims 
 

We aim to understand:  
 

● How often patients/clients ask questions about the cause(s) of their disorder(s) 

● How often the relatives of patients/clients ask questions about the causes(s) of their 

disorder(s) 

● Whether mental health professionals and trainees have an adequate understanding of a) 

genetics and genomics and b) psychiatric genetics 

● Whether mental health professionals and trainees feel confident discussing psychiatric 

genetics with their patients 

● Whether exposure to the content of the animated video would be beneficial for their 

patients/clients 

● Whether mental health professionals and trainees believe psychiatric genetic counselling 

would be beneficial for their patients/clients 

 
Preliminary Work 
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No preliminary work has been carried out and there are no plans for pilot work. 

  
Datasets 
 
We will recruit mental health professionals, students, and trainees through a number of avenues. 

Participants must fulfil the criteria of working with or training to work with patients in the field of 

mental health in the UK. We will advertise the study on social media (e.g., Instagram and Twitter) 

and we will also send out emails to mailing lists at relevant institutions and organisations (such 

as SLaM and the Royal College of Psychiatrists). We aim to recruit a minimum of 100 participants 

for this study. 

 

Descriptives 
 
First, we will describe the overall sample’s demographic characteristics (i.e., age, sex, gender, 

education level, ethnic background, and professional setting).  

 

We will also generate plots for the following: 

 
● Genetic knowledge measured by the 6-item International iGLAS questionnaire 

(Chapman et al., 2017) 

○ Plot of percentage correct  

■ NB: Any questions which have been skipped will be counted as incorrect.  

● Belief in genetic determinism measured by a subset of the PUGGS questionnaire 

(Carver et al., 2017) 

○ Histogram of continuous score 

● Percentage of participants who endorsed each answer option to the question: “Please 

select an option according to how much you think [disorder] is caused by inherited 

genetic factors and/or environmental factors” per disorder.  

● Percentage of each answer to the question “How often do patients/clients raise 

questions about their genetic predisposition for that disorder?” and the equivalent 

question about environmental risk 

● Percentage of each answer to the question “How often do relatives of patients/clients 

raise questions about patient’s/clients’ genetic predisposition for that disorder” and the 

equivalent question about environmental risk per disorder. 
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● Percentage of each answer to the question “I think it would be beneficial for my 

patients/client to see a psychiatric genetic counsellor” and the equivalent question about 

environmental risk per disorder 

● Percentage of how confident participants feel discussing genetic risk vs. environmental 

risk with their patients 

 
Research questions 
 
Generally, we are interested in understanding current mental health professionals’ and trainees’ 

belief in the value of delivering genetic risk information to patients/clients as well as their 

confidence in doing so. More specifically, we would like to assess whether there are any gaps in 

their belief or confidence, for instance, regarding a specific psychiatric disorder or within a specific 

clinical profession. 

 

We will group participants by profession. Depending on our final sample size, this will either be a 

fine-grained grouping by specific profession or we will create overarching groups (e.g., “medical” 

[including GPs, psychiatrists, mental health nurses], “psychology” [including clinical 

psychologists, PWPs, therapists, and counsellors] and “social workers”). 

 
Differences across profession  
We will report the following: 

1) Association between profession (covarying for age, sex, and time in job) and: 

a) How confident participants feel discussing genetic risk with patients 

b) How confident participants feel discussing environmental risk with patients 

c) Genetic knowledge scores 

d) Belief in genetic or environmental determinism 

 

Differences across disorders 
We will report the following per disorder: 

● How often patients/clients (or relatives of patients/clients) raise questions about 

genetic/environmental risk for that disorder 

● Percentage of participants who believe that psychiatric genetic counselling would be 

beneficial for their patients/clients with that disorder 
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Script for animated video 

Video script the GLAD study (depression and anxiety) 

You may have heard people say… 
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...that both genes and environment influence whether or not people develop mental health 

conditions such as depression or anxiety.
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But what does that really mean?

 

For every one of us, our mental health can be thought of as a jar.

 
 

For a person to be experiencing an episode of depression or anxiety, their jar has to be full. 
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It’s important to understand that even though depression and anxiety are genetically 

influenced… 
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...you don’t inherit the disorders themselves.

 
  

What we inherit is a vulnerability to them. All of us are born with a certain amount of genetic 

vulnerability. 

There is no single “gene for” depression or anxiety. 

  

There are probably thousands of common genetic variants in hundreds of genes that each 

contribute a tiny amount to overall risk. Because they are so common in the population, all of us 



369 

have some or even many of them.

 

A few people have very little genetic vulnerability…
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….a few people inherit a lot of genetic vulnerability…

 

...but most people fall somewhere in the middle.
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Genes alone aren’t enough to cause mental illness.

 

We all start with some level of genetic vulnerability for mental ill health and over time we may 

experience environmental risk factors.
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What these environmental risk factors are will be different for each person.

 

They could include stressful life experiences or traumatic events.
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Day-to-day events, such as financial worries or stress, are also risk factors.

 

These stressful or adverse life events are unique to each of us.         

You can start life with a lower genetic vulnerability, but still experience a lot of environmental 

risk, which could lead to your jar becoming full and experiencing mental ill health.       
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Or, you could start with a high genetic vulnerability. Then, it doesn’t take as many stressful 

environmental events to fill up your jar.       

                             

But you can also have a lot of genetic risk, and not encounter many stressful environments, so 

your jar may never fill up, and you may never experience mental ill health.       
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Understanding genetic and environmental risk can also help you understand how it’s possible to 

reduce risk for developing depression or anxiety.

 

By adding protective factors, it makes it possible for a person to experience more environmental 

risk without their jar becoming full and without actively experiencing mental ill health.
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What are these protective factors?

 

Many of them are things that are good for all of us… 

Adopting a positive sleep pattern… 

 

...nutrition… 
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...being physically active in our own personal way… 

 

…social support… 
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...finding more effective ways to manage stress… 

 

...or accessing effective treatment. 
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We may also be able to work to remove environmental risk factors.

 

In this way, regardless of your genetic vulnerability, you are not destined to experience mental 

illness. And even if you have experienced depression or anxiety, by adding protective factors 
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and removing environmental risk, managing your mental health…

 

...and feeling better is possible!        

                        

Scientists, such as those working on the Genetic Links to Anxiety and Depression study, are still 

in the process of finding the many genetic variants that influence risk for depression and anxiety 
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and other mental illnesses.

 

 

As the science advances we’ll be able to do a better job of giving people an estimate of how 

much genetic vulnerability is in their jar.  
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But this will always be only a part of the story. Our experiences are the other part.

 

By participating in this study, you are making a huge difference to future treatment and 

understanding of depression and anxiety. 
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Appendix 6. Data cleaning example 
Below is an example of an R script used to clean one of the surveys in the GLAD study and 
EDGI.  

PHQ9 GLAD & EDGI data cleaning 

Jessica Mundy 

30/07/2021 

Set up 
rm(list=ls()) 

source(file = "scripts/functions/add_numeric.R") 

source(file = "scripts/functions/sumscores.R") 

source(file = "scripts/functions/package_check.R") 

source(file = "scripts/functions/remove_duplicates.R") 

source(file = "scripts/functions/imp_check.R") 

Note: always load tidyverse last 

packages = c( 

  "summarytools", 

  "sjlabelled", 

  "Amelia", 

  "knitr", 

  "gtsummary", 

  "tidyverse" 

  ) 

package_check(packages) 

date <- Sys.Date() 

date 

[1] "2022-12-06" 

source("scripts/credentials/paths.R") 
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Read in data 
 
GLAD data 
glad_dat <- read_rds( 

  file = paste0(ilovedata,"/data_raw/latest_freeze/glad/phq9_glad.rds") 

  ) 

 

#Check 

glad_dat %>% 

  colnames() 

 [1] "externalDataReference"                           

 [2] "startDate"                                       

 [3] "endDate"                                       

 [4] "phq9.little_interest_or_pleasure_in_doing_things" 

 [5] "phq9.feeling_down_depressed_or_hopeless"         

 [6] "phq9.staying_asleep_sleeping_trouble"            

 [7] "phq9.feeling_tired_or_having_little_energy"      

 [8] "phq9.poor_appetite_or_overeating"                

 [9] "phq9.feeling_bad_failure_family"                 

[10] "phq9.trouble_concentrating_reading_newspaper"    

[11] "phq9.moving_fidgety_noticed_opposite"            

[12] "phq9.dead_hurting_thoughts"                    

glad_dat %>% 

  dim() 

[1] 46853 12 

 

Specify columns to be excluded from add_numeric function  

Continuous variables should be excluded, as they are already numeric 

exclude_cols_numeric <- c( 

  "ID", 
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  "sample", 

  "startDate", 

  "endDate" 

  ) 

 

Select & rename relevant columns 
glad_dat_id <- glad_dat %>% #new dataset with ID 

  drop_na(externalDataReference) %>% # drop NAs in ID 

  remove_duplicates("externalDataReference") %>% 

  

  add_column(sample = "GLAD", 

          .after = "externalDataReference") %>% #create new column with sample 

  select( 

      ID = externalDataReference, # ID 

      startDate, 

      endDate, 

      sample, 

      phq9.dead_hurting_thoughts, 

      phq9.feeling_bad_failure_family, 

      phq9.feeling_down_depressed_or_hopeless, 

      phq9.feeling_tired_or_having_little_energy, 

      phq9.little_interest_or_pleasure_in_doing_things, 

      phq9.moving_fidgety_noticed_opposite, 

      phq9.poor_appetite_or_overeating, 

      phq9.staying_asleep_sleeping_trouble, 

      phq9.trouble_concentrating_reading_newspaper 

      ) %>% 

  add_numeric(exclude = exclude_cols_numeric) 
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# Inspect colnames 

colnames(glad_dat_id) 

 [1] "ID"                                                      

 [2] "startDate"                                               

 [3] "endDate"                                                 

 [4] "sample"                                                  

 [5] "phq9.dead_hurting_thoughts"                              

 [6] "phq9.feeling_bad_failure_family"                         

 [7] "phq9.feeling_down_depressed_or_hopeless"                 

 [8] "phq9.feeling_tired_or_having_little_energy"              

 [9] "phq9.little_interest_or_pleasure_in_doing_things"        

[10] "phq9.moving_fidgety_noticed_opposite"                    

[11] "phq9.poor_appetite_or_overeating"                        

[12] "phq9.staying_asleep_sleeping_trouble"                    

[13] "phq9.trouble_concentrating_reading_newspaper"            

[14] "phq9.dead_hurting_thoughts_numeric"                      

[15] "phq9.feeling_bad_failure_family_numeric"                 

[16] "phq9.feeling_down_depressed_or_hopeless_numeric"         

[17] "phq9.feeling_tired_or_having_little_energy_numeric"      

[18] "phq9.little_interest_or_pleasure_in_doing_things_numeric" 

[19] "phq9.moving_fidgety_noticed_opposite_numeric"            

[20] "phq9.poor_appetite_or_overeating_numeric"                

[21] "phq9.staying_asleep_sleeping_trouble_numeric"            

[22] "phq9.trouble_concentrating_reading_newspaper_numeric"    

# Inspect dimensions 

glad_dat_id %>% 

  dim() 

[1] 46725 22 

#Differences 
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glad_excluded <- dim(glad_dat_id)[1]-dim(glad_dat)[1] 

glad_excluded 

[1] -128 

 
Inspect numeric variables 

Add summary table with questions as columns, factor levels as rows, with absolute frequencies 

glad_dat_id %>% 

  select(all_of(ends_with("numeric"))) %>% 

  tbl_summary(missing_text = "Missing") 

Table printed with {flextable}, not {gt}. Learn why at 

http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html 

To suppress this message, include `message = FALSE` in the code chunk header. 

Characteristic N = 
46,7251 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Feeling bad about yourself or that you are a failure or 
have let yourself or your family down 

  

-77 44 
(<0.1%) 

0 9,695 
(22%) 

1 14,069 
(32%) 

2 8,630 
(19%) 
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3 11,838 
(27%) 

Missing 2,449 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Feeling down, depressed or hopeless 

  

-77 50 
(0.1%) 

0 8,563 
(19%) 

1 18,765 
(42%) 

2 8,384 
(19%) 

3 8,514 
(19%) 

Missing 2,449 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Feeling tired or having little energy 

  

-77 30 
(<0.1%) 

0 3,249 
(7.3%) 
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1 13,023 
(29%) 

2 10,305 
(23%) 

3 17,669 
(40%) 

Missing 2,449 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Little interest or pleasure in doing things 

  

-77 36 
(<0.1%) 

0 9,759 
(22%) 

1 18,028 
(41%) 

2 8,353 
(19%) 

3 8,100 
(18%) 

Missing 2,449 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Poor appetite or overeating 
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-77 49 
(0.1%) 

0 10,208 
(23%) 

1 12,345 
(28%) 

2 9,521 
(22%) 

3 12,153 
(27%) 

Missing 2,449 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Trouble falling or staying asleep, or sleeping too much 

  

-77 35 
(<0.1%) 

0 6,318 
(14%) 

1 13,424 
(30%) 

2 9,327 
(21%) 

3 15,172 
(34%) 
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Missing 2,449 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Trouble concentrating on things, such as reading the 
newspaper or watching television 

  

-77 42 
(<0.1%) 

0 11,472 
(26%) 

1 14,588 
(33%) 

2 9,154 
(21%) 

3 9,020 
(20%) 

Missing 2,449 

1n (%) 

Check missingness by missmap 
glad_miss_map <- glad_dat_id %>% 

  missmap() 

Warning: Unknown or uninitialised column: `arguments`. 

Unknown or uninitialised column: `arguments`. 

Warning: Unknown or uninitialised column: `imputations`. 

glad_miss_map 
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NULL 

 
EDGI data 

Note: this is an optional questionnaire in EDGI. 

edgi_dat <- readRDS( 

  file = paste0(ilovedata, "/data_raw/latest_freeze/edgi_opt/phq_edgi_opt.rds") 

  ) 

 

#Check 

edgi_dat %>% 

  colnames() 

  [1] "externalDataReference"                                  

  [2] "startDate"                                              

  [3] "endDate"                                                

  [4] "phq9.little_interest_or_pleasure_in_doing_things"       

  [5] "phq9.feeling_down_depressed_or_hopeless"                

  [6] "phq9.staying_asleep_sleeping_trouble"                   

  [7] "phq9.feeling_tired_or_having_little_energy"             

  [8] "phq9.poor_appetite_or_overeating"                       

  [9] "phq9.feeling_bad_failure_family"                        

 [10] "phq9.trouble_concentrating_reading_newspaper"           

 [11] "phq9.moving_fidgety_noticed_opposite"                   

 [12] "phq9.dead_hurting_thoughts"                             

 [13] "tb.felt_sad_blue_row"                                   

 [14] "tb.hobbies_work_lost_interest"                          

 [15] "tb.day_feelings"                                        

 [16] "tb.did_you_feel_this_way"                               

 [17] "tb.tired_energy_usual_low"                              

 [18] "tb.didyour_weight_change"                               
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 [19] "tb.10lbs_weight_change"                                 

 [20] "tb.did_your_sleep_change"                               

 [21] "tb.trouble_falling_asleep"                              

 [22] "tb.waking_too_early"                                    

 [23] "tb.sleeping_too_much"                                   

 [24] "tb.depression_episode_sleeping"                         

 [25] "tb.sleep_hours_average_day.txt"                         

 [26] "tb.hours_average_sleep_depressed.txt"                   

 [27] "tb.appetite_change_experience"                          

 [28] "tb.mood_brighten_positive_events"                       

 [29] "tb.arms_legs_experience_heavy"                          

 [30] "tb.forhow_hours_day_heaviness.txt"                      

 [31] "tb.were_you_overly_sensitive_to_interpersonal_rejection" 

 [32] "tb.was_your_mood_worse"                                 

 [33] "tb.trouble_concentrating_usual_lot"                     

 [34] "tb.good_worthless_people_feel"                          

 [35] "tb.death_general_lot_elses"                             

 [36] "tb.long_altogether_feel"                                

 [37] "tb.longest_episode_low_mood"                            

 [38] "tb.longest_period_low_mood"                             

 [39] "tb.roles_problems_interfere_activities"                 

 [40] "tb.low_mood_life_lasting"                               

 [41] "tb.low_mood_life_lasting.1"                             

 [42] "tb.approximate_age_age_fine.txt"                        

 [43] "tb.approximate_age_age_fine.txt.1"                      

 [44] "tb.giving_birth_suggested_episodes"                     

 [45] "tb.distressing_event_significant_close"                 

 [46] "tb.aprofessional_problems"                              

 [47] "tb.medication_prescribed_weeks"                         
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 [48] "tb.unprescribed_medication_more_than_once"              

 [49] "tb.drugs_or_alcohol_more_than_once"                     

 [50] "tb.talking_therapy_psychotherapy"                       

 [51] "tb.structured_wellbeing_activity"                       

 [52] "tb.regular_physical_exercise"                           

 [53] "tb.none_of_the_above"                                   

 [54] "tb.prefer_not_to_answer"                                

 [55] "tb.enrolled_psychotherapy_nhs_funded"                   

 [56] "tb.did_you_take_your_medication_as_advised"             

 [57] "tb.did_you_find_the_medication_helpful"                 

 [58] "tb.counselling"                                         

 [59] "tb.mindfulness"                                         

 [60] "tb.relationship_therapy"                                

 [61] "tb.group_therapy"                                       

 [62] "tb.guided_selfhelp"                                     

 [63] "tb.family_therapy"                                      

 [64] "tb.cbt"                                                 

 [65] "tb.workshops"                                           

 [66] "tb.online_therapy"                                      

 [67] "tb.other"                                               

 [68] "tb.othertext.txt"                                       

 [69] "tb.never"                                               

 [70] "tb.dont_know"                                           

 [71] "tb.prefer_not_to_answer.1"                              

 [72] "tb.talking_therapy_complete_psychotherapy"              

 [73] "tb.talking_therapy_helpful_find"                        

 [74] "tb.low_mood_begin_long"                                 

 [75] "tb.antidepressantmedications_recent_episode_low"        

 [76] "tb.low_mood_haveyou_addition"                           
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 [77] "tb.have_you_received_electroconvulsive_therapy"         

 [78] "tb.hyper_normal_trouble_people"                         

 [79] "tb.shouted_started_fights_irritable"                    

 [80] "tb.usual_felt_selfconfident"                            

 [81] "tb.found_miss_usual_sleep"                              

 [82] "tb.faster_spoke_usual_talkative"                        

 [83] "tb.head_mind_couldnt_slow"                              

 [84] "tb.staying_track_easily_distracted"                     

 [85] "tb.you_had_much_more_energy_than_usual"                 

 [86] "tb.usual_active_things"                                 

 [87] "tb.middle_outgoing_telephoned_friends"                  

 [88] "tb.sex_usual_interested"                                

 [89] "tb.excessive_foolish_risky_unusual"                     

 [90] "tb.spending_money_trouble_family"                       

 [91] "tb.ticked_happened_period_time"                         

 [92] "tb.prefer_not_to_answer.2"                              

 [93] "tb.dont_know.1"                                         

 [94] "tb.hyper_normal_trouble_people.1"                       

 [95] "tb.shouted_started_fights_irritable.1"                  

 [96] "tb.usual_felt_selfconfident.1"                          

 [97] "tb.found_miss_usual_sleep.1"                            

 [98] "tb.faster_spoke_usual_talkative.1"                      

 [99] "tb.head_mind_couldnt_slow.1"                            

[100] "tb.staying_track_easily_distracted.1"                   

[101] "tb.you_had_much_more_energy_than_usual.1"               

[102] "tb.usual_active_things.1"                               

[103] "tb.middle_outgoing_telephoned_friends.1"                

[104] "tb.sex_usual_interested.1"                              

[105] "tb.excessive_foolish_risky_unusual.1"                   
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[106] "tb.spending_money_trouble_family.1"                     

[107] "tb.longest_time_lasted_quothighquot"                    

[108] "tb.legal_troubles_unable_fights"                        

[109] "tb.bipolar_disorder_told_health"                        

[110] "tb.bipolar_disorder_blood_relatives"                    

[111] "tb.mania_irritable_periods_psychosis"                   

[112] "tb.diagnosis_psychosis_episode_primary"                 

edgi_dat %>% 

  dim() 

[1] 749 112 

 

Select & rename relevant columns 
edgi_dat_id <- edgi_dat %>% #new dataset with ID 

  drop_na(externalDataReference) %>% # drop NAs in ID 

  remove_duplicates("externalDataReference") %>% 

  add_column(sample = "EDGI", 

          .after = "externalDataReference") %>% #create new column 

  select( 

      ID = externalDataReference, # ID 

      sample, 

      startDate, 

      endDate, 

      phq9.dead_hurting_thoughts, 

      phq9.feeling_bad_failure_family, 

      phq9.feeling_down_depressed_or_hopeless, 

      phq9.feeling_tired_or_having_little_energy, 

      phq9.little_interest_or_pleasure_in_doing_things, 

      phq9.moving_fidgety_noticed_opposite, 

      phq9.poor_appetite_or_overeating, 
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      phq9.staying_asleep_sleeping_trouble, 

      phq9.trouble_concentrating_reading_newspaper 

      ) %>% 

  add_numeric(exclude = exclude_cols_numeric) 

 

# Inspect colnames 

colnames(edgi_dat_id) 

 [1] "ID"                                                      

 [2] "sample"                                                

 [3] "startDate"                                               

 [4] "endDate"                                                 

 [5] "phq9.dead_hurting_thoughts"                              

 [6] "phq9.feeling_bad_failure_family"                         

 [7] "phq9.feeling_down_depressed_or_hopeless"                 

 [8] "phq9.feeling_tired_or_having_little_energy"              

 [9] "phq9.little_interest_or_pleasure_in_doing_things"        

[10] "phq9.moving_fidgety_noticed_opposite"                    

[11] "phq9.poor_appetite_or_overeating"                        

[12] "phq9.staying_asleep_sleeping_trouble"                    

[13] "phq9.trouble_concentrating_reading_newspaper"            

[14] "phq9.dead_hurting_thoughts_numeric"                      

[15] "phq9.feeling_bad_failure_family_numeric"                 

[16] "phq9.feeling_down_depressed_or_hopeless_numeric"         

[17] "phq9.feeling_tired_or_having_little_energy_numeric"      

[18] "phq9.little_interest_or_pleasure_in_doing_things_numeric" 

[19] "phq9.moving_fidgety_noticed_opposite_numeric"            

[20] "phq9.poor_appetite_or_overeating_numeric"                

[21] "phq9.staying_asleep_sleeping_trouble_numeric"            

[22] "phq9.trouble_concentrating_reading_newspaper_numeric"    
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# Inspect dimensions 

dim(edgi_dat_id) 

[1] 733  22 

#Differences 

edgi_excluded <- dim(edgi_dat_id)[1]-dim(edgi_dat)[1] 

edgi_excluded 

[1] -16 

edgi.excluded EDGI participants excluded due to missing data 

Inspect numeric variables 

Add summary table with questions as columns, factor levels as rows, with absolute frequencies 

edgi_dat_id %>% 

  select(all_of(ends_with("numeric"))) %>% 

  tbl_summary(missing_text = "Missing") 

Table printed with {flextable}, not {gt}. Learn why at 

http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html 

To suppress this message, include `message = FALSE` in the code chunk header. 

Characteristic N = 
7331 

Over the last 2 weeks, how often have you been bothered by any of the following 
problems? Feeling bad about yourself or that you are a failure or have let 
yourself or your family down 

  

0 61 
(17%) 

1 89 
(25%) 
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2 62 
(18%) 

3 138 
(39%) 

Missing 383 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Feeling down, depressed or hopeless 

  

0 56 
(16%) 

1 143 
(41%) 

2 76 
(22%) 

3 75 
(21%) 

Missing 383 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Feeling tired or having little energy 

  

0 40 
(11%) 

1 92 
(26%) 
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2 66 
(19%) 

3 152 
(43%) 

Missing 383 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Little interest or pleasure in doing things 

  

0 66 
(19%) 

1 131 
(37%) 

2 79 
(23%) 

3 74 
(21%) 

Missing 383 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Poor appetite or overeating 

  

0 79 
(23%) 

1 82 
(23%) 
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2 81 
(23%) 

3 108 
(31%) 

Missing 383 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Trouble falling or staying asleep, or sleeping too much 

  

0 63 
(18%) 

1 91 
(26%) 

2 73 
(21%) 

3 123 
(35%) 

Missing 383 

Over the last 2 weeks, how often have you been bothered by any of the 
following problems? Trouble concentrating on things, such as reading the 
newspaper or watching television 

  

0 70 
(20%) 
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1 114 
(33%) 

2 73 
(21%) 

3 93 
(27%) 

Missing 383 

1n (%) 

Check missingness by missmap 
edgi_miss_map <- edgi_dat_id %>% 

  missmap() 

Warning: Unknown or uninitialised column: `arguments`. 

Unknown or uninitialised column: `arguments`. 

Warning: Unknown or uninitialised column: `imputations`. 

edgi_miss_map 

NULL 

 
Bind rows of GLAD and EDGI data 
dat <- bind_rows( 

 glad_dat_id, 

 edgi_dat_id 

 ) 

 

There should be ID, sample and the 9 PHQ9 variables in categorical form and 9 PHQ9 variables 
in numeric form. 
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Data cleaning 

Recode Non-answer values to 3 digits -555 ‘Not applicable’ response from participant -777 
Seen but not answered -888 Don’t know -999 Prefer not to answer/Prefer not to say NA Were 
not shown the question (genuinely missing value) 

dat <- dat %>% 

   mutate( 

  across( 

    ends_with("numeric"), 

          ~case_when( 

          . == -55 ~ -555,   

          . == -77 ~ -777, 

          . == -88 ~ -888, 

          . == -99 ~ -999, 

          TRUE ~ .) 

   ) 

   ) 

 
Numeric variables 

Select numeric PHQ9 variables for cleaning 

This will select all of the PHQ9 numeric variables 

phq9_variables_numeric <- dat %>% 

  select( 

 contains("_numeric") 

 ) %>% 

  colnames() 

 

 

# check 

phq9_variables_numeric 

[1] "phq9.dead_hurting_thoughts_numeric"                      
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[2] "phq9.feeling_bad_failure_family_numeric"                 

[3] "phq9.feeling_down_depressed_or_hopeless_numeric"         

[4] "phq9.feeling_tired_or_having_little_energy_numeric"      

[5] "phq9.little_interest_or_pleasure_in_doing_things_numeric" 

[6] "phq9.moving_fidgety_noticed_opposite_numeric"            

[7] "phq9.poor_appetite_or_overeating_numeric"                

[8] "phq9.staying_asleep_sleeping_trouble_numeric"            

[9] "phq9.trouble_concentrating_reading_newspaper_numeric"    

Vector of plausible numeric values for PHQ9 variables 
phq9_vector_numeric <- c( 

  0, 

  1, 

  2, 

  3, 

  -777, 

  NA 

  ) 

Use imp_check function to find if any implausible values and obtain summary table of variables 

imp_check(data = dat, 

       variables = phq9_variables_numeric, 

       values = phq9_vector_numeric) 

[1] "There are no implausible values in the dataset. Can leave these variables as they are." 

Table printed with {flextable}, not {gt}. Learn why at 

http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html 

To suppress this message, include `message = FALSE` in the code chunk header. 

Characteristic N = 47,4581 

phq9.feeling_bad_failure_family_numeric   
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-777 44 (<0.1%) 

0 9,756 (22%) 

1 14,158 (32%) 

2 8,692 (19%) 

3 11,976 (27%) 

Missing 2,832 

phq9.feeling_down_depressed_or_hopeless_numeric   

-777 50 (0.1%) 

0 8,619 (19%) 

1 18,908 (42%) 

2 8,460 (19%) 

3 8,589 (19%) 

Missing 2,832 

phq9.feeling_tired_or_having_little_energy_numeric   

-777 30 (<0.1%) 
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0 3,289 (7.4%) 

1 13,115 (29%) 

2 10,371 (23%) 

3 17,821 (40%) 

Missing 2,832 

phq9.little_interest_or_pleasure_in_doing_things_numeric   

-777 36 (<0.1%) 

0 9,825 (22%) 

1 18,159 (41%) 

2 8,432 (19%) 

3 8,174 (18%) 

Missing 2,832 

phq9.poor_appetite_or_overeating_numeric   

-777 49 (0.1%) 

0 10,287 (23%) 
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1 12,427 (28%) 

2 9,602 (22%) 

3 12,261 (27%) 

Missing 2,832 

phq9.staying_asleep_sleeping_trouble_numeric   

-777 35 (<0.1%) 

0 6,381 (14%) 

1 13,515 (30%) 

2 9,400 (21%) 

3 15,295 (34%) 

Missing 2,832 

phq9.trouble_concentrating_reading_newspaper_numeric   

-777 42 (<0.1%) 

0 11,542 (26%) 

1 14,702 (33%) 
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2 9,227 (21%) 

3 9,113 (20%) 

Missing 2,832 

1n (%) 

Categorical variables 

Select categorical variables for cleaning 

This will select all the non-numeric PHQ9 variables 

phq9_variables <- dat %>% 

  select( 

 contains("phq9.") # select variables with phq9. at the start 

 ) %>% 

  select( 

 !contains("_numeric") # deselect the numeric variables 

 ) %>% 

  colnames() 

 

# check 

phq9_variables 

[1] "phq9.dead_hurting_thoughts"                      

[2] "phq9.feeling_bad_failure_family"                 

[3] "phq9.feeling_down_depressed_or_hopeless"         

[4] "phq9.feeling_tired_or_having_little_energy"      

[5] "phq9.little_interest_or_pleasure_in_doing_things" 

[6] "phq9.moving_fidgety_noticed_opposite"            

[7] "phq9.poor_appetite_or_overeating"                
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[8] "phq9.staying_asleep_sleeping_trouble"            

[9] "phq9.trouble_concentrating_reading_newspaper"    

 

Vector of plausible categorical values for PHQ9 variables 
phq9_vector <- c( 

  "Not at all", 

  "Several days", 

  "More than half the days", 

  "Nearly every day", 

  "Seen but not answered", 

  NA 

  ) 

Use imp_check function to find if any implausible values and obtain summary table of variables 

imp_check(data = dat, 

       variables = phq9_variables, 

       values = phq9_vector) 

[1] "There are no implausible values in the dataset. Can leave these variables as they are." 

Table printed with {flextable}, not {gt}. Learn why at 

http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html 

To suppress this message, include `message = FALSE` in the code chunk header. 

Characteristic N = 47,4581 

phq9.feeling_bad_failure_family   

Seen but not answered 44 (<0.1%) 

Not at all 9,756 (22%) 
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Several days 14,158 (32%) 

More than half the days 8,692 (19%) 

Nearly every day 11,976 (27%) 

Missing 2,832 

phq9.feeling_down_depressed_or_hopeless   

Seen but not answered 50 (0.1%) 

Not at all 8,619 (19%) 

Several days 18,908 (42%) 

More than half the days 8,460 (19%) 

Nearly every day 8,589 (19%) 

Missing 2,832 

phq9.feeling_tired_or_having_little_energy   

Seen but not answered 30 (<0.1%) 

Not at all 3,289 (7.4%) 

Several days 13,115 (29%) 
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More than half the days 10,371 (23%) 

Nearly every day 17,821 (40%) 

Missing 2,832 

phq9.little_interest_or_pleasure_in_doing_things   

Seen but not answered 36 (<0.1%) 

Not at all 9,825 (22%) 

Several days 18,159 (41%) 

More than half the days 8,432 (19%) 

Nearly every day 8,174 (18%) 

Missing 2,832 

phq9.poor_appetite_or_overeating   

Seen but not answered 49 (0.1%) 

Not at all 10,287 (23%) 

Several days 12,427 (28%) 

More than half the days 9,602 (22%) 
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Nearly every day 12,261 (27%) 

Missing 2,832 

phq9.staying_asleep_sleeping_trouble   

Seen but not answered 35 (<0.1%) 

Not at all 6,381 (14%) 

Several days 13,515 (30%) 

More than half the days 9,400 (21%) 

Nearly every day 15,295 (34%) 

Missing 2,832 

phq9.trouble_concentrating_reading_newspaper   

Seen but not answered 42 (<0.1%) 

Not at all 11,542 (26%) 

Several days 14,702 (33%) 

More than half the days 9,227 (21%) 

Nearly every day 9,113 (20%) 
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Missing 2,832 

1n (%)  

  

  

  

  

  

  

 

Produce sumscores 

Reference to scoring guidance here: Kroenke K, Spitzer RL, Williams JB; The PHQ-9: validity of 
a brief depression severity measure. J Gen Intern Med. 2001 Sep 16(9):606-13. 

Sumscore inputs 
keys <- c( 

  1, #1 

  1, #2 

  1, #3 

  1, #4 

  1, #5 

  1, #6 
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  1, #7 

  1, #8 

  1 #9 

  ) # should be 9 1s (none of the PHQ9 items are reverse coded) 

 

sum_vars <- c( 

  "phq9.dead_hurting_thoughts_numeric", 

  "phq9.feeling_bad_failure_family_numeric", 

  "phq9.feeling_down_depressed_or_hopeless_numeric", 

  "phq9.feeling_tired_or_having_little_energy_numeric", 

  "phq9.little_interest_or_pleasure_in_doing_things_numeric", 

  "phq9.moving_fidgety_noticed_opposite_numeric", 

  "phq9.poor_appetite_or_overeating_numeric", 

  "phq9.staying_asleep_sleeping_trouble_numeric", 

  "phq9.trouble_concentrating_reading_newspaper_numeric" 

  ) 

 
Generate sumscores 

Generate sumscores from questionnaire data and add to dat as new column  

Sumscores assumes that all items in the questionnaire have the SAME minimum and maximum 
scores for ALL items, ensure that this is correct before proceeding 

When adding the column name for your sumscore use “questionnaire.score_name” 

dat <- dat %>% 

  mutate( 

 phq9.sum_score = 

      sumscores(input = dat, 

                sum_vars = sum_vars, 

                coding_keys = keys, 

                na_allowed = 0, 
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                min_item = 0, 

                max_item = 3, 

                min_score = 0, 

                max_score = 27 

                )$scores 

      ) 

Warning in sumscores(input = dat, sum_vars = sum_vars, coding_keys = keys, : 

Input contains non-answer values. These will be converted to NA_real_ for this calculation. 

Warning in sumscores(input = dat, sum_vars = sum_vars, coding_keys = keys, : 

Scores vector contains missing values. 

# check 

dat %>% 

  descr(phq9.sum_score) 

Descriptive Statistics  

dat$phq9.sum_score  

N: 47458  

 

                 phq9.sum_score 

----------------- ---------------- 

          Mean         12.26 

       Std.Dev          6.98 

           Min          0.00 

            Q1          7.00 

        Median         12.00 

            Q3         18.00 

           Max         27.00 

           MAD          7.41 

           IQR         11.00 

            CV          0.57 
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      Skewness          0.23 

   SE.Skewness          0.01 

      Kurtosis         -0.86 

       N.Valid      44462.00 

     Pct.Valid         93.69 

Clinical phenotyping of PHQ9 
 
Current depression 

;!),*)$4-',!/$05)'&*/0).$4,.)3$&'$<=8>$.%&!-'2$%!-*)!-,$?,:-3-*/$5,.$4))'$,..)..)3$,2,-'.*$
,'$-'3)0)'3)'*$.*!(%*(!)3$+)'*,:$5),:*5$0!&@)..-&',:$A6=<B$-'*)!9-)CD$<=8E>$.%&!)$"FG$5,3$,$
.)'.-*-9-*/$&@$HHI$,'3$,$.0)%-@-%-*/$&@$HHI$@&!$+,J&!$3)0!)..-&'D 

# numeric 

dat <- dat %>% 

  mutate( 

 phq9.binary_depression_numeric = 

   case_when( 

     phq9.sum_score >= 10 ~ 1, # current depression 

     phq9.sum_score < 10 ~ 0 # no current depression 

     ) 

 ) 

 

# recode as categorical 

dat <- dat %>% 

  mutate( 

 phq9.binary_depression = 

   recode_factor(phq9.binary_depression_numeric, 

     "1" = "Current depression", # current depression 

     "0" = "No current depression" # no current depression 

     ) 
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 ) 

 

# check 

dat %>% 

  select( 

 phq9.binary_depression_numeric, 

 phq9.binary_depression 

 ) %>% 

   tbl_summary(missing_text = "Missing") 

Table printed with {flextable}, not {gt}. Learn why at 

http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html 

To suppress this message, include `message = FALSE` in the code chunk header. 

Characteristic N = 47,4581 

phq9.binary_depression_numeric 27,133 (61%) 

Missing 2,996 

phq9.binary_depression   

Current depression 27,133 (61%) 

No current depression 17,329 (39%) 

Missing 2,996 

1n (%) 

dat %>% 



420 

  select( 

 phq9.binary_depression, 

 phq9.binary_depression_numeric) %>% # variable is fine - just tbl_summary() giving 
wrong result 

  freq() 

Frequencies  

dat$phq9.binary_depression  

Type: Factor  

 

                            Freq   % Valid   % Valid Cum.   % Total   % Total Cum. 

--------------------------- ------- --------- -------------- --------- -------------- 

      Current depression   27133  61.03       61.03  57.17       57.17 

   No current depression   17329  38.97      100.00  36.51       93.69 

                    <NA> 2996                            6.31      100.00 

                   Total   47458 100.00      100.00 100.00      100.00 

 

dat$phq9.binary_depression_numeric  

Type: Numeric  

 

            Freq   % Valid   % Valid Cum.   % Total   % Total Cum. 

----------- ------- --------- -------------- --------- -------------- 

       0   17329  38.97       38.97  36.51       36.51 

       1   27133  61.03      100.00  57.17       93.69 

    <NA> 2996                            6.31      100.00 

   Total   47458 100.00      100.00 100.00      100.00 

 
Severity of depression 
# numeric 

dat <- dat %>% 
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  mutate( 

 phq9.severity_threshold_numeric = 

   case_when( 

     phq9.sum_score <= 4 ~ 0, 

     phq9.sum_score > 4 & phq9.sum_score <= 9 ~ 1, 

     phq9.sum_score > 9 & phq9.sum_score <= 14 ~ 2, 

     phq9.sum_score > 15 & phq9.sum_score <= 19 ~ 3, 

     phq9.sum_score > 19 & phq9.sum_score <= 27 ~ 4 

     ) 

 ) 

 

# recode as categorical 

dat <- dat %>% 

  mutate( 

 phq9.severity_threshold = 

   recode_factor(phq9.severity_threshold_numeric, 

     "0" = "None", 

     "1" = "Mild", 

     "2" = "Moderate", 

     "3" = "Moderately severe", 

     "4" = "Severe" 

     ) 

 ) 

 

# check 

dat %>% 

  select( 

 phq9.severity_threshold, 

 phq9.severity_threshold_numeric 
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  ) %>% 

   tbl_summary(missing_text = "Missing") 

Table printed with {flextable}, not {gt}. Learn why at 

http://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html 

To suppress this message, include `message = FALSE` in the code chunk header. 

Characteristic N = 47,4581 

phq9.severity_threshold   

None 6,731 (16%) 

Mild 10,598 (25%) 

Moderate 10,604 (25%) 

Moderately severe 6,617 (16%) 

Severe 8,050 (19%) 

Missing 4,858 

phq9.severity_threshold_numeric   

0 6,731 (16%) 

1 10,598 (25%) 

2 10,604 (25%) 
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3 6,617 (16%) 

4 8,050 (19%) 

Missing 4,858 

1n (%) 

Save cleaned data 
 
Save variables for export 
export_variables <- c("ID", 

                   "startDate", 

                   "endDate", 

                   "sample", 

                   "phq9.dead_hurting_thoughts",                               

                   "phq9.feeling_bad_failure_family",                         

                   "phq9.feeling_down_depressed_or_hopeless",                  

                   "phq9.feeling_tired_or_having_little_energy",              

                   "phq9.little_interest_or_pleasure_in_doing_things",         

                   "phq9.moving_fidgety_noticed_opposite",                    

                   "phq9.poor_appetite_or_overeating",                        

                   "phq9.staying_asleep_sleeping_trouble",                    

                   "phq9.trouble_concentrating_reading_newspaper",             

                   "phq9.dead_hurting_thoughts_numeric",                      

                   "phq9.feeling_bad_failure_family_numeric",                  

                   "phq9.feeling_down_depressed_or_hopeless_numeric",         

                   "phq9.feeling_tired_or_having_little_energy_numeric",       

                   "phq9.little_interest_or_pleasure_in_doing_things_numeric", 
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                   "phq9.moving_fidgety_noticed_opposite_numeric",             

                   "phq9.poor_appetite_or_overeating_numeric",                

                   "phq9.staying_asleep_sleeping_trouble_numeric",             

                   "phq9.trouble_concentrating_reading_newspaper_numeric",    

                   "phq9.sum_score",                                         

                   "phq9.binary_depression",                                  

                   "phq9.binary_depression_numeric",                           

                   "phq9.severity_threshold",                                

                   "phq9.severity_threshold_numeric" 

                   ) 

 
GLAD 
dat %>% 

  select(all_of(export_variables)) %>% 

  filter(sample == "GLAD") %>%  # select only GLAD participants 

  saveRDS( 

 file = paste0(ilovedata, "/data/latest_freeze/glad/clinical/phq9_glad_clean.rds") 

 ) 

 
EDGI 
dat %>% 

  select(all_of(export_variables)) %>% 

  filter(sample == "EDGI") %>%  # select only EDGI participants 

  saveRDS( 

 file = paste0(ilovedata, "/data/latest_freeze/edgi/clinical/phq9_edgi_clean.rds") 

 ) 

 
GLAD & EDGI 
dat %>% 

  select(all_of(export_variables)) %>% 
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  saveRDS( 

 file = paste0(ilovedata, 
"/data/latest_freeze/glad_edgi/clinical/phq9_glad_edgi_clean.rds") 

 ) 

 

 


