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Abstract 

The link between bile acid (BA) metabolism and glucose and lipid metabolism has been 

increasingly recognised with particular interest in the field of non-alcoholic fatty liver disease 

(NAFLD). BA homeostasis is regulated by a negative feedback loop which relies on the activity 

of the farnesoid X receptor (FXR) which modulates the synthesis and uptake of BA through 

many pathways in enterocytes and hepatocytes. Levels of BA and FGF19 have been found to 

be elevated in patients with NAFLD, especially in patients with progressive steatofibrosis. An 

association between elevated levels of BA with steatosis, inflammation and fibrosis has been 

observed in adults and children. Moreover, an altered expression of mRNA levels of genes 

belonging to the bile acids synthesis and transport has been described in cohorts of patients 

with NAFLD. Environmental factors, as well as genetic factors, contribute to NAFLD, and 

define its multifactorial pathogenicity. The genetic predisposition in patients with NAFLD is 

well recognized and several studies have proven the association between PNPLA3, TM6SF2, 

GCKR and MBOAT7 by genome-wide association studies (GWAS). However, these studies give 

partial information on the genetic contribution to a disease, as they only evaluated common 

variants. The gap left by GWAS could be filled using more inclusive approaches that also 

evaluate rare variants. The aim of this study was to investigate the contribution of genes 

belonging to the BA metabolism and transport to disease in a paediatric cohort of patients 

with NAFLD. 

A next-generation sequencing (NGS) candidate-gene approach was employed to investigate 

the presence of variants in a panel of 135 genes and 42 additional SNPs. The cohort, selected 

from the King’s Paediatric Liver Centre, was comprised of 99 children with a biopsy-proven 

diagnosis of NAFLD with no co-existent liver diseases. Clinical data was recorded, and blood 

samples were processed for extraction and preparation of DNA for the sequencing. In 

addition, the paediatric cohort plasma levels of BA were evaluated along with FGF19 plasma 

levels. The changes in mRNA expression of genes belonging to the BA synthesis and transport 

were investigated in primary human hepatocytes and two cell lines, HepG2 and IHH after 24h 

treatment with palmitic acid (PA) and oleic acid (OA). 

The paediatric cohort included 99 patients (13 years old; m = 62) with a diagnosis of NAFLD. 

Seventy-two patients (72.7%) had a steatosis grade greater than 2 and 66 patients (66.7%) 



had fibrosis stage greater than 2, indicating significant disease. The presence of previously 

identified variants was confirmed for the cohort, alongside with rare variants found in genes 

involved in pathways central to the pathogenesis of NAFLD. In analysis of genes involved in 

the bile acid pathway, both common and rare variants in NR1H4, NR0B2, HNF4A and SLC10A2 

have been identified among children with severe NAFLD and steatofibrosis. Plasma levels of 

CA and CDCA were increased in 99 (100%) and 74 (74.8%) patients respectively, as well as 

unconjugated levels (n=77, 77.8%). Reduced FGF19 levels were found in 72 (72.7%) patients 

confirming results from previous studies. The treatment with PA and OA induced changes in 

the gene expression in all three cell models treated with FA, showing an overall disruption of 

BA metabolism and transport as a consequence of lipid accumulation and toxicity.  

Overall, this study has demonstrated the presence of common and rare variants in genes 

encoding proteins involved in BA homeostasis, although no single statistically significant 

association with NAFLD histology staging or grading was found. An interlink between BA and 

lipid accumulation has been confirmed in vitro.  

Further studies in larger cohorts are needed to define the association of variants in genes 

involved with BA metabolism and transport with NAFLD. 
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Chapter 1 

1 INTRODUCTION 

1.1 The liver as a central fulcrum of energy metabolism  

The liver comprises cells with various functions. The hepatocytes represent the epithelial 

population of the organ, together with cholangiocytes, which surround the biliary lumen. The 

tissue structure of the liver consists of lobules. The hepatocytes are organised in hexagon-

shaped lobules around a central venule, radiating to the portal triads, which consists of a bile 

ductule, portal venule and hepatic arteriole. Along the lobule,  several zones are characterised 

by diverse functions due to different exposure to nutrients, hormones and chemicals 

(Trefts et al., 2017). The exposure of the liver to glucose, insulin, and fatty acids is much higher 

than in other organs, and the influence that nutrients and hormones exert on the liver is 

unique.  

The presence of excessive amounts of nutrients or hormones, such as carbohydrates, fats or 

insulin, and the alteration of their metabolism and homeostasis plays a crucial role in liver 

dysfunction and injury, leading to fatty liver disease.  

1.2 Non-alcoholic Fatty Liver Disease 

Non-alcoholic fatty liver disease (NAFLD) comprises a broad spectrum of liver abnormalities 

ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), characterised by 

various degrees of inflammation and progression to fibrosis (Angulo, 2002). Steatofibrosis 

may occur in the absence of significant inflammation (Hagström et al., 2018). A liver fat 

content of > 5% is described as steatosis. Ludwig et al. in 1980 (Ludwig et al., 1980) were the 

first to describe NAFLD in adults as the presence of fatty liver with or without inflammation 

and fibrosis, in the absence of another underlying condition, associated mainly with obesity 

and insulin resistance. These adults presented a pattern of liver injury which was similar to 

those with alcoholic hepatitis but denied alcohol intake. Only 3 years later, Moran at al. 

(Moran et al., 1983) reported the presence of steatohepatitis in obese children. The 

development of steatosis is driven by many risk factors such as presence of obesity, type 2 

diabetes, dyslipidaemia and insulin resistance (Bugianesi et al., 2005; Eguchi et al., 2006; 
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Hardy et al., 2016). The development of steatohepatitis or steatofibrosis is unpredictable and 

thought to be due to multiple further ‘hits’ such as inflammation, oxidative stress and 

apoptosis. In reality, separating out those with simple fatty liver from those with inflammation 

and fibrosis is challenging. 

There has been a recent drive to change the name of NAFLD to Metabolic syndrome 

associated Fatty liver disease (MAFLD); however an issue that has arisen is that the term 

“Metabolic” is as suboptimal in paediatrics as the current “Non-alcoholic”, creating confusion 

in a field that is still in evolution (Younossi et al., 2021). The suggested change of name is 

inappropriate in children as the differential of NAFLD in this age group includes many inborn 

errors of metabolism such as urea cycle defects, mitochondrial diseases, Wilson disease, and 

other disease. Thus, the term in children would be misleading (Hegarty et al., 2021). Though 

the term NAFLD is imperfect, in the absence of an established alternative, ‘Non-alcoholic fatty 

liver disease’ or the acronym ‘NAFLD’ will be used throughout this thesis.  

 

Non-alcoholic fatty liver disease has become the most common causes of liver injury in the 

world in both adults and in children. The epidemic of obesity and diabetes has undoubtedly 

led to an increase in NAFLD in recent years. Patients with NAFLD with advanced fibrosis are 7 

times more likely to progress to hepatocellular carcinoma (HCC) compared to people with no 

liver disease (Younossi et al., 2016). Mortality per 1,000 person-years was estimated at 15.44 

for patients affected by NAFLD and 25.56 for patients with NASH (Younossi, 2019), although 

the most frequent cause of death in patients with NAFLD is cardiovascular complications 

(Younossi et al., 2017). A real concern worldwide is the increasing need of liver 

transplantation (LT), for which NAFLD has become one of the most common indications. In 

the United States, NASH has become the second leading cause of LT among adults (21.5%) 

(Cotter and Charlton, 2020). In Europe, LT for NAFLD-related cirrhosis increased from 1.2% in 

2002 to 8.4% in 2016, and is predicted to become the leading cause of LT in the near future 

(Adam et al., 2018; Haldar et al., 2019).  

It is estimated that 25-30% of the general population worldwide is affected by NAFLD 

(Satapathy and Sanyal, 2015; Younossi et al., 2016), with varying frequencies in different 

populations. The prevalence in North and South America are similar, 24% and 30.5% 

respectively, while NASH prevalence is between 6% and 18% (Younossi et al., 2017). In Asia, 

NAFLD is estimated to affect 25% of the population (Fan et al., 2017) and in the Middle East 
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it is up to 32.6%, with regional variation (Das et al., 2010). NAFLD prevalence is around 24% 

in the European population (Younossi et al., 2016), with a 36.8% of cases in the Mediterranean 

area (Chiloiro et al., 2013). 

It is more difficult to estimate the prevalence of NASH or fibrotic disease within the NAFLD 

population as a whole, due to different diagnostic methodologies used by each country. 

Indeed, the sole use of blood tests to diagnose NAFLD has shown to underestimate the real 

number of cases; for example, for diagnosis, just including those with raised liver enzymes 

will not detect >40% of patients with significant fibrosis (Younossi et al., 2016).  

In children and young people, the most recent estimates of the prevalence of NAFLD range 

from 2.6% to 17.3% (Anderson et al., 2015; Fernandes et al., 2018; Younossi et al., 2019); 

however, this is possibly an underestimation of the real incidence. A landmark study using 

autopsies of children and young people aged between 2 and 19 years in the USA who died of 

accidental causes found that the prevalence of histological NAFLD was 9.6% (Schwimmer et 

al., 2006). Prevalence of fatty liver increased with age, ranging from 0.7% for 2-4 year-old 

children up to 17.3% for teenagers between 15 and 19 years, with a slight increased 

percentage in boys (11.1% ) than in girls (7.9%) (Nobili et al., 2013). Interestingly,  the age at 

diagnosis has decreased over time (Yu and Schwimmer, 2021). 

1.2.1 Diagnosis and Histology of NAFLD 

NAFLD is often asymptomatic, often found incidentally through blood tests or ultrasound 

undertaken for other reasons. To date, though impractical and not often undertaken, liver 

biopsy remains the criterion standard for the diagnosis and the identification of the 

progression of the disease. NAFLD may be histologically staged though a scoring system. 

Simple steatosis may represent the first stage of the disease where the liver is steatotic 

without inflammation or fibrosis, where there is the additional presence of inflammation and 

apoptotic bodies, ballooning degeneration, Mallory Denk bodies and spotty necrosis. Fibrosis 

is the most relevant finding in terms of disease severity. Inflammation can vary over time, 

and, thus, fibrosis is the most reliable marker of both severity and progression.  

A scoring system was developed by pathologists (Brunt et al., 1999) in order to grade and 

stage the disease, mainly for clinical trial purposes. This score, called non-alcoholic fatty liver 

disease score activity (NAS), applies a score to steatosis (0-3), lobular inflammation (0-3), 
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ballooning (0-2) and fibrosis (0-4). Though the development cohort of the Kleiner/Brunt NAS 

score included some children, the score does not fully capture the peculiarity of the young 

population, as children usually score lower on the NAS due to less lobular inflammation and 

ballooning (Fitzpatrick and Dhawan, 2019). Whereas in type 1 NAFLD/NASH activity is 

concentrated around the central vein, in type 2 NAFLD/NASH there is more of a periportal 

involvement. Indeed, when considering NAFLD/NASH histology, it is essential to mention the 

differences that exist between adult and paediatric populations. It has been extensively 

reported the presence of a type 1 pattern for adults and a type 2 predominantly for children 

(Carter-Kent et al., 2009; Patton et al., 2006; Schwimmer et al., 2005). Type 1 involves the 

presence of steatosis, ballooning and perisinusoidal fibrosis which starts in zone 3. On the 

contrary, type 2 consists in a less uniform pattern, in which steatosis is concentrated in zone 

1 with periportal presence of mild inflammation, fibrosis and absence of ballooning. Type 2 

disease has been also associated with more severe fibrosis and early progression of the 

disease (Schwimmer et al., 2005). Within the paediatric population, it is also not unusual to 

find the coexistence of both types (Carter-Kent et al., 2009; Patton et al., 2008). 

Recognising the differences between adults and children and the presence of different type 

of histological features are fundamental in establishing the appropriate criteria for diagnosis, 

in understanding pathogenesis and in developing new non-invasive markers for the 

identification of stages of the disease. 

1.2.2 Risk factors and Pathogenesis 

NAFLD can be best described as a multifactorial disease. It is widely accepted that a variety of 

factors are involved in the onset and progression of NAFLD, ranging from lifestyle habits to 

genetic predisposition and the coexistence of metabolic disorders (de Alwis and Day, 2008). 

This makes NAFLD progression more complicated than the simplistic classic “two-hit” 

hypothesis (Day and James, 1998), which considered accumulation of fat in the hepatocytes 

as a “first hit”, followed by the “second hit” represented by inflammation and oxidative stress. 

The differences in age, gender, body max index (BMI) and ethnicity reflect the multifactorial 

core of NAFLD, explaining the high rate of variability and severity of the pathology in different 

populations. For example, histological differences have been found to be related to gender 

and age. Among children, boys have more severe disease (Wiegand et al., 2010), and, on the 
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contrary, in adults a more severe disease is reported in women (Brunt and Tiniakos, 2010). 

There has been evidence that the hormonal changes in adolescents, related to puberty, might 

be involved in the susceptibility to disease and predisposed males more than females to 

develop NAFLD (Loomba et al., 2009; Manton et al., 2000; Rashid and Roberts, 2000; 

Schwimmer et al., 2005). For this reason, it is more likely that children might develop the 

disease later in childhood rather than later at younger age, although there are cases of young 

children with NAFLD. 

Alongside age and gender, ethnicity is another factor that has been investigated (Graham 

et al., 2009). It has been shown that among Hispanic American there is increased prevalence 

of NAFLD than in Caucasian or Afro-Caribbean populations. Despite African/Afro American 

and Hispanic people sharing similar rates of obesity and diabetes, for the former there is a 

lower incidence of NAFLD (Lazo et al., 2013; Schneider et al., 2014). Furthermore, Hispanic 

people show an elevated risk of presenting a more severe phenotype related to genetic 

predisposition, which will be addressed in a separate chapter. Environmental factors such as 

lifestyle habits, including physical inactivity, high fat/calorie diet, and socioeconomic 

background may influence the disparity in ethnic groups. Social and economic deprivation 

increases the risk of developing NAFLD in both adults and children, however, exposure is often 

more long standing in adults (Orkin et al., 2019).  

A high prevalence of NAFLD has been linked not only with environmental factors but also with 

metabolic risk factors, such has obesity and diabetes which are among the major epidemics 

of our modern society. And it is with these conditions that we could trace the pathogenesis 

of NAFLD. Among those with obesity, up to 90% present NAFLD, while the prevalence of the 

pathology in diabetic groups goes up to 45% (Younossi et al., 2016). Patients with steatosis 

compared with healthy controls, tend to have higher intake of calories and cholesterol 

(Gibson et al., 2015; Stefan et al., 2008) and a high carbohydrate diet could trigger a higher 

secretion of insulin. Obesity and high levels of circulating free fatty acids (FFA) are related to 

elevated VLDL production and insulin resistance (IR). It has been shown that circulating high 

FFA in obese subjects are transported to hepatocytes to be converted into triglycerides (TG). 

The accumulation of TGs into the liver is also worsened by decreased beta oxidation of FFA 

and activation of de novo lipogenesis (Donnelly et al., 2005), driven by IR. In presence of IR 

there is a high circulation of FFA, due to IR in the adipose tissue, and an impaired insulin-
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mediated suppression of glucose production and limited activation of glycogen synthesis 

(Samuel et al., 2004).  

Elevated serum glucose levels are involved in the accumulation of liver fat through impaired 

glycolysis and de novo lipogenesis by carbohydrate response element-binding protein 

(ChREBP), independently from insulin. ChREBP also increases glycolysis, producing acetyl-CoA 

that is then used to produce malonyl-CoA, first molecule required for FFA synthesis 

(Petersen et al., 2007; Yamashita et al., 2001). IR might be the first step to excess storage of 

hepatic triglycerides (Fabbrini et al., 2008; Lomonaco et al., 2012). Once fat accumulates in 

the liver, insulin signalling is inhibited in hepatocytes with the consequent decrease of insulin 

activity on glycogen synthesis and increase in gluconeogenesis (Samuel et al., 2004; Stefan et 

al., 2008). However, it is not yet very clear if IR is a cause or a consequence of steatosis. 

However, in children, IR seems to develop at later stages and not at onset of NAFLD (Manco 

et al., 2008; Shashaj et al., 2014). It has been hypothesised that the inability of adipose tissue 

to store excessive fat leads to accumulation in liver and muscle, inducing IR (Caprio et al., 

2017).  

In addition to insulin resistance and obesity, the impairment of lipid metabolism, because of 

the presence of elevated FFA and TG, may induce liver injury, with reactive oxygen species 

(ROS) production (Hotamisligil and Erbay, 2008; Santosa and Jensen, 2008) and endoplasmic 

reticulum (ER) stress (Mota et al., 2016). In fact, due to increased oxidation of FAs (via 

β-oxidation and lipogenesis), a state of stress in the hepatocytes is induced: ROS and oxidative 

stress affect the mitochondria and induce also, endoplasmic reticulum (ER) stress. On top of 

steatosis, the accumulation of free cholesterol and ceramides contribute to mitochondria and 

ER impairment (Perla et al., 2017). Excess free cholesterol induces the activation of Kupffer 

cells and stellate cells promoting inflammation and fibrogenesis (Tomita et al., 2014). 

1.3 Bile Acids 

Recently, bile acid (BA) metabolism has become the focus of studies in NAFLD. In hepatocytes, 

BA levels control the expression of several genes, many via the farnesoid X receptor (FXR), 

which modulates BA synthesis, transport and metabolism. The genes involved in BA 

homeostasis also take part in regulating several metabolic pathways, including glucose and 

lipid metabolism (Trauner et al., 2010). In fact, beside their classic role, BA have been found 
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to have hormone-like functions in the control of glucose, lipid and energy metabolism 

(Chiang, 2013). Under normal physiological conditions, in the hepatocytes, the activation of 

FXR induces changes, through the regulation of several proteins, in two different pathways: 

the synthesis and the transport of BA. In addition, FXR has been shown to modulate the 

expression of key metabolic genes (Halilbasic et al., 2013; Lefebvre et al., 2009; Staels and 

Kuipers, 2007).  

1.3.1 Bile acid synthesis and transport 

Bile acids are exclusively synthesised in hepatocytes, from cholesterol. They are amphipathic 

molecules that are transported into bile and act in the intestine to facilitate digestion and 

absorption of fats and lipophilic vitamins. 

More than 90% of bile acids are synthesised through the classic pathway, known also as the 

neutral pathway, while the alternative pathway accounts for the rest of the bile acids, not 

only in the liver but also in macrophages and adrenal glands. 

A molecule of cholesterol is converted in 7α-hydroxycholesterol by the cholesterol 

7α-hydroxylase (CYP7A1) enzyme. This first step is strictly regulated by FXR through the 

activation of small heterodimer protein (SHP) (Lee et al., 2006). The intermediate 

7α-hydroxycholesterol is then transformed in 7α-hydroxy-4-cholesten-3-one (C4) by 

3β-hydroxyΔ5-C27-steroid dehydrogenase (HSD3B7). C4 is the precursor of the two primary 

bile acids: cholic acid (CA) and chenodeoxycholic acid (CDCA), and for this reason is also used 

as a biomarker of the synthesis rate of bile acids (Honda et al., 2007). C4 is converted in 

3α,7α,12α-trihydroxycholestanoic acid (THCA), by several enzymes: the microsomal sterol 

12α-hydroxylase (CYP8B1), followed by the aldo-keto reductases AKR1D1 and AKR1C4, and 

the sterol 27-hydroxylase (CYP27A1). C4 can be also converted in dihydroxycholestanoic acid 

(DHCA) in absence of CYP8B1, which is the enzyme that regulates the CA/CDCA ratio. Indeed, 

DHCA and THCA are respectively the precursors of CDCA and CA. CYP8B1 regulates the 

presence of both steroids, determining the quantity of CA and CDCA available. 

Both DHCA and THCA are then transported into peroxisomes for steroid side chain cleavage, 

where several enzymes take part, and are transformed into Chenodeoxycholyl-CoA and 

Cholyl-CoA. The two molecules are then conjugated to taurine or glycine by the bile 

acid-CoA:amino acid Nacyltransferase (BAAT) (Vaz and Ferdinandusse, 2017). 
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The alternative pathway sees the activity of the sterol 27-hydroxylase (CYP27A1), and the 

oxysterol 7α-hydroxylase (CYP7B1) to produce oxysterol intermediates that can be then 

delivered to the liver to be converted in CDCA. 

The conjugated bile acids are then secreted into canaliculi through the bile salt export pump 

(BSEP; ABCB11), located on the canalicular membrane, which releases the bile acids into bile. 

Bile is stored in the gallbladder and released in the intestine after a meal. In the ileum, bile 

acids complete their function as facilitators to solubilise fatty acids and fat-soluble vitamins. 

In this gastrointestinal tract, some bile acids are also transformed by the bacteria in secondary 

bile acids. In ileum and colon, the bacterial bile salt hydrolase (BSH) deconjugate bile acids 

from taurine and glycine. In bacteria, the 7α-dehydroxylase removes the 7α-HO group from 

CA and CDCA forming deoxycholic acid (DCA) and lithocholic acid (LCA). Of the total BA pool, 

LCA represents <5%, while CA and CDCA represent 40% each and DCA less than 20% of the 

total pool (Chiang and Ferrell, 2019) 

From the total pool, 95% of bile acids are actively reabsorbed by the enterocytes through the 

apical Na+-dependent bile salt transporter (ASBT; SLC10A2), located at the apical membrane 

of intestinal epithelium; bile acids are then released in the blood stream by the organic solute 

transporters α and β (OST-α and -β), which are located on the basolateral membrane of the 

enterocytes. From portal blood stream, conjugated bile acids are absorbed in the hepatocytes 

principally by the Na+ taurocholate co-transporting polypeptide (NTCP; SLC10A1) and, to a 

small extent, by the organic anion transporting polypeptides (OATPs), independently from 

sodium. Approximately 5% of bile acids are lost through the faeces each day and replaced by 

synthesis (Chiang and Ferrell, 2019) 

 

In the liver, bile acid homeostasis is controlled by FXR via SHP, which acts (1) on the uptake of 

BA by inhibiting the activity of NTCP and (2) on the synthesis of BA with the inhibition of 

CYP7A1 expression by repressing the hepatocyte nuclear factor 4 α (HNF4α) bound to its 

promoter (Chiang et al., 2000; Chiang and Ferrell, 2019). 

The inhibition of the synthesis of BA occurs also independently from SHP, yet still FXR-

dependent. Apart from the liver, FXR is expressed in the intestine where it induces the 

expression of FGF19 which in the hepatocytes binds its receptor FGFR4 and downregulates 

CYP7A1 expression. FGF19 protein is delivered from the intestine to the liver via blood 
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circulation and its concentration is regulated by bile acids and FXR expression, as experiments 

with FXR agonists have shown (Holt et al., 2003; Song et al., 2009). 

 

Figure 1. Bile acid metabolism and transport. In the hepatocytes, BA synthesis is regulated by 

negative feedback, mainly by FXR. When high concentrations of BA are present in the hepatocytes, 

there is a reduction in BA synthesis and a regulation of BA import and export. FXR induces SHP, 

which inhibits CYP7A1 and CYP8B1. At the same time, FXR activates BSEP to export BA in the bile, 

lowering the concentrations in the hepatocytes, and inhibits NTCP and uptake of BA into 

hepatocytes. In the intestine, BA, absorbed through ASBT, activate FXR which regulates the 

activity of FGF19 that is released in the circulation. FGF19 reaches its receptor FGFR4 in the 

hepatocytes and reinforces the inhibition on BA synthesis. In the pancreas, in enteroendocrine L 

cells, TGR5 is activated by FXR to induce the secretion of GLP-1 which is involved in the insulin 

sensitivity.  

Abbreviations: ASBT = apical sodium-dependent bile salt transporter; BA = bile acids; BSEP = bile 

salt export pump; FGF19 = fibroblast growth factor 19; FGFR4 = fibroblast growth factor receptor 

4; FXR = farnesoid X receptor; GLP-1 = glucagon-like peptide 1; NTCP = Na+ taurocholate 

co-transporting polypeptide; SHP = small heterodimer partner; TGR5 = Takeda G protein–coupled 

receptor 5. 
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1.3.2 Bile acids as regulators of lipid and glucose metabolism 

The role of bile acids and their nuclear receptors on the metabolic homeostasis has been 

recently emphasised, especially considering their impact on metabolic disorders and possible 

therapeutic approaches (Cariou et al., 2006; Massafra and van Mil, 2018; Pineda Torra et al., 

2003; Xi and Li, 2020). Given the complexity of different signalling regulated by bile acids and 

their receptors, processes are not yet completely understood.  

The activity of FXR seems pivotal in the regulation of the lipid homeostasis, as FXR null mice 

showed increased TG and cholesterol (Sinal et al., 2000). Once activated by bile acids, FXR-

SHP pathway suppresses the liver X receptor α (LXRα; NR1H3), inhibiting the expression of 

enzymes involved in lipogenesis (Massafra and van Mil, 2018). In physiological conditions, 

together with insulin, LXRα induces the activation of the steroid response element binding 

protein-1c (SREBP-1c), which regulates fatty acid synthesis genes expression (Joseph et al., 

2002; Watanabe et al., 2004). In particular, when activated by CDCA, FXR has also been shown 

to regulate the production of very low-density lipoprotein (VLDL) via SHP by repressing 

HNF4α, a transcription factor which promotes the activity of MTTP (Hirokane et al., 2004). 

The repression of HNF4α has also a negative effect on the expression of PPAR (Jadhav et al., 

2018), which normally induces CD36 that, in hepatocytes, reduces de novo cholesterol 

synthesis (Rodrigue-Way et al., 2014) and hypothetically controls FA uptake (Xi and Li, 2020). 

FXR mediates also the fatty acid oxidation via activation of peroxisome proliferator activated 

receptor α (PPARα) (Pineda Torra et al., 2003), a nuclear receptor which regulates generally 

lipid homeostasis. PPARα has been shown to regulate oxidation of FA and triglyceride 

synthesis, and to reverse cholesterol transport and glucose and energy metabolism (Berger 

et al., 2005; Bouwens et al., 2007; Lefebvre et al., 2006). There is evidence that supports the 

role of PPARA in regulating bile acid synthesis and composition, interacting with CYP7A1 

(through HNF4α) (Marrapodi and Chiang, 2000; Patel et al., 2000) and key enzyme of CDCA 

synthesis (Hunt et al., 2000; F. Li et al., 2012). PPARα also modulates the expression of FGF21 

which inhibits lipogenesis interacting with SREBP-1c (Zhang et al., 2011). FGF21 was shown to 

increase energy metabolism, independently from insulin, in a prolonged fasting state in mice 

(Inagaki et al., 2007). The activation of FGF21 is also positively regulated by intestinal FXR 

through the release of FGF19 (Cyphert et al., 2012; Kharitonenkov et al., 2005). 



26 

 

FXR participate also to the regulation of the glucose homeostasis. In mice lacking FGF15 but 

expressing the human ortholog FGF19, glycogen synthesis was promoted independently from 

insulin (Kir et al., 2011). Moreover, FXR negatively regulates the carbohydrate response 

element binding protein (ChREBP), inhibiting glucose conversion in fatty acids (Caron et al., 

2013; Iizuka et al., 2004; Postic et al., 2007). FXR-SHP pathway also inhibits genes involved in 

gluconeogenesis by inhibiting HNF4α and signal transducer and activator of transcription 5 

(STAT5) which is responsible of the growth hormone (GH) induction of gluconeogenesis 

(Kim et al., 2012). 

Bile acids also interact with another receptor, the G protein-coupled bile acid membrane 

receptor (TGR5/GPBAR5). This receptor is expressed in liver sinusoidal endothelial cells and 

Kupffer cells (Keitel et al., 2009, 2008, 2007) but not in the hepatocytes; however it is mainly 

expressed in the intestine, in ileum and colon (Kawamata et al., 2003), and in gallbladder 

epithelial cells. TGR5 expression is mainly induced by FXR (Pathak et al., 2017) and it is 

activated by secondary bile acid concentrations, especially taurine-conjugated LCA. TGR5 is 

mainly known for stimulating glucagon-like peptide-1 (GLP-1) secretion from 

enteroendocrine L cells (Katsuma et al., 2005), promoting insulin secretion from pancreatic β 

cells and modulating glucose homeostasis (Thomas et al., 2009). The activity of TGR5 on genes 

involved in glycogen and lipid metabolism is preformed through the activation of cAMP 

response element binding protein (CREB), which stimulate mitochondrial oxidative 

phosphorylation (Herzig et al., 2003, 2001).  

FXR and TGR5 involvement in liver metabolism and in the inflammatory process has been 

shown to be important in NAFLD and in other metabolic disease related to it (Hu et al., 2018; 

Shi et al., 2021). 

1.3.3 Bile acid alterations in patients with NAFLD 

BA and their receptors have been suggested as targets for the treatment of NAFLD given their 

involvement in pathways that are part of the pathogenesis of the disease. Furthermore, 

dysfunction in BA homeostasis is known to induce liver injury (Schmucker et al., 1990).  

The role of BA in the regulation and modulation of metabolisms involved in NAFLD 

pathogenesis are yet to be unravelled.  
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The physiological level of BA in serum and liver are quite different; in the enterohepatic 

system, BA levels are higher than in the blood. In the presence of liver injury, for example, or 

alteration of the gut microbiome, the circulating levels of BA rise as a consequence of an 

alteration in their transport and metabolism. 

In faeces of patients with NAFLD levels of CA (255 pmol/mg for NAFL and 391 pmol/mg for 

NASH) and CDCA (196 pmol/mg in NAFL and 606 pmol/mg in NASH) were higher than in 

healthy controls (28 and 45 pmol/mg respectively). Unconjugated primary BA levels were 

associated with liver enzymes, steatosis, ballooning and fibrosis (Mouzaki et al., 2016).  

Another study in the liver tissue of patients with advanced liver disease showed high levels of 

BA in patients with NASH compared to healthy controls (10.6 versus 67.1 nmol/g, 

respectively) (Aranha et al., 2008). An increase of 43% and 64% was observed respectively for 

CA and CDCA in NASH patients compared with healthy controls. CA levels in patients with 

NASH were associated with inflammation and steatosis. CA to CDCA ratio also correlated with 

steatosis. CA synthesis resulted dramatically decreased, while CDCA and DCA were higher 

than in controls. It was believed that BA could induce toxicity or exacerbate liver injury, 

resulting in progressive liver disease(Aranha et al., 2008).  

Bechmann observed high serum levels of FFA and BA in patients with NASH (Bechmann et al., 

2013). Another study on serum found total BA to be increased in patients with NAFLD, 

compared with healthy controls, and even higher in patients with NASH. On the contrary, 

secondary BA were found to be decreased in patients with NAFLD and NASH; and the ratio 

between CA and CDCA was increased, independently from presence of diabetes (Puri et al., 

2018). A more recent study observed elevated levels of primary BA and total BA in patients 

with NAFLD, and found an association with inflammation and fibrosis (Nimer et al., 2021). On 

the other hand, another study showed no changes in serum BA concentration between NAFLD 

patients and controls; however an increased in BA was observed for the patients with insulin 

resistance (Legry et al., 2017). 

Serum BA levels are age-dependent, and the physiological profile of circulating BA differs in 

new-borns and children at young age; however, with increasing age in childhood, the levels 

of BA get closer to adults’ levels. Altered BA plasma levels were found in young patients with 

NASH, although fewer studies than in adult cohorts. High levels of CDCA and unconjugated 

CDCA and CA and lower levels of DCA and it conjugated forms were found in children with 

NAFLD (Lu et al., 2017). Decreased levels of BA were found in both children with NAFLD and 
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NASH compared with healthy controls, although patients with NASH had slightly higher levels 

than patients with simple steatosis (Jahnel et al., 2015a). In a small cohort of children with 

NASH total BA serum levels were 3-fold higher than in controls while CDCA levels were lower 

(Jiao et al., 2018a). 

1.3.4 mRNA levels of genes related to BA transport and metabolism 

Levels of mRNA expression of genes involved in BA metabolism and transport have been 

investigated in patients with NAFLD.  

1.3.4.1 FXR 

A decreased in NR1H4 expression was observed in several studies. Downregulation of NR1H4 

(Aguilar-Olivos et al., 2015; Nobili et al., 2018) and SHP (Bechmann et al., 2013) was found in 

patients with NASH, although 2 other studies, one in children and one in adults, found 

unchanged levels of NR0B2 between healthy controls and patients with NAFLD (Jiao et al., 

2018b; Yang et al., 2010). One study found no differences in NR1H4 and NR0B2 levels 

between healthy controls and NAFLD (Legry et al., 2017). Changes in mRNA levels of NR1H4 

could alter the balance of BA regulations and interfere with synthesis and transport of BA in 

hepatocytes. Decreased levels of NR1H4 could lead to accumulation of BA in hepatocytes and 

consequent increase in circulating BA due to lost regulation of CYP7A1 and ABCB11 (BSEP) 

and SLC10A1 (NTCP)respectively regulated by NR1H4 though NR0B2 activation. 

1.3.4.2 BSEP and NTCP: bile acid transporters 

Expression levels of BSEP, which were found decreased in patients with NAFLD and NASH 

(Legry et al., 2017; Puri et al., 2018), or unchanged (Jiao et al., 2018a). Decreasing levels of 

BSEP could depend on reduced levels of NR1H4 and general disruption for BA metabolism 

leading to accumulation and toxicity in hepatocytes. 

Upregulation of NTPC mRNA levels were observed in patients with NAFLD (Bechmann et al., 

2013; Jiao et al., 2018a; Puri et al., 2018),however one study reported reduced protein levels 

of NTCP even in presence of increased mRNA levels(Aguilar-Olivos et al., 2015). A disruption 

in NTCP levels could lead to high circulating levels of BA, in case of reduced activity of the 
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protein; on the contrary, an increased activity of NTCP could lead to accumulation of BA in 

the hepatocytes, especially in presence of disrupted regulation of BA metabolism. 

1.3.4.3 FGF19 

FGF19 is involved in the regulation of BA synthesis independently from the FXR-SHP pathway. 

Levels of intestinal FGF19 (released under FXR regulation) reach hepatocytes receptor FGFR4 

and control the activation/inhibition of CYP7A1. Levels of FGF19 have been measured in both 

adults and children, although contrasting results have been found. Two studies have found 

no differences in plasma levels of FGF19 in patients with NAFLD and controls (Appleby et al., 

2019; Legry et al., 2017; Mouzaki et al., 2016) while a study found them slightly increased in 

NAFLD compared with NASH (Bechmann et al., 2013). Overall, studies show decreased 

circulating levels of FGF19 in patients with NAFLD and, concentrations appeared to be even 

lower in patients with NASH (Friedrich et al., 2018; Jahnel et al., 2015a; Nobili et al., 2018; 

Puri et al., 2018). 

1.3.5 Bile acids as therapeutic targets for NAFLD treatment 

Given the alteration of circulating levels of BA and the changes in the expression of FXR and 

its target genes in patients with NAFLD, BA and their nuclear receptor, FXR and TGR5, have 

been considered as targets for intervention. 

Several clinical trials have been designed around FXR, because of its role in regulating lipid 

and glucose metabolism but there are also molecules created to target TGR5. The two 

receptors are activated by different BA: FXR most effective ligand is CDCA, followed by DCA, 

LCA and CA (Parks et al., 1999), while TGR5 is mostly activated by LCA, DCA CDCA and CA 

(Chiang, 2013).  

The FXR agonist, the obeticholic acid (OCA; INT747) is a synthetic derivative of CDCA and it 

was developed for the treatment of cholestasis (Pellicciari et al., 2002). Several clinical trials 

have been conducted using OCA to treat NAFLD. A study including 41 patients with NAFLD 

and T2DM after 6 weeks treatment showed improvements in insulin sensitivity, reduced 

markers of fibrosis and inflammation and increased FGF19 serum levels (Mudaliar et al.,2013). 

Another completed trial, called FLINT study, on 141 NAFLD patients found an amelioration of 

the liver histology in non-cirrhotic patients after 72 weeks of daily treatment (Neuschwander-
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Tetri et al., 2015). There are two other ongoing trails that aim to improve the liver histology 

of NAFLD patients. 

More studies have been conducted in animal models. The INT-767, a dual bile acid agonist for 

FXR and TGR5 in obese mice has led to reduced expression of proinflammatory markers, and 

improving NAFLD liver histology, including steatohepatitis and fibrosis (McMahan et al., 2013; 

Roth et al., 2018). Roth et al. demonstrated that the expression of BSEP and OSTβ were 

upregulated, while CYP8B1 was downregulated. The same molecule was used to treat high-

fat diet (HFD)-induced animals in two separate studies. In rat it restored lipid and glucose 

metabolism with consequent reduced steatosis reverting dysregulation of FXR target genes 

in lipid metabolism (Hu et al., 2018), while in rabbit INT-767 ameliorated liver histology, 

reduction of fibrosis markers and restoring insulin sensitivity (Comeglio et al., 2018). The 

study also evaluated the changing in FXR target genes showing an upregulation for SHP and 

FGF19, both regulating the synthesis of BA. Similar results were observed in HFD mice treated 

with another dual agonist for FXR and TGR5 called BAR502 (Carino et al., 2017), which 

reverted steatosis and fibrosis as well as changed the expression of some genes. BAR502 

reduced genes involved in FA synthesis and transport, alongside with reduced expression of 

genes involved in BA synthesis and increased levels of GLP1. 

An FXR agonist, GW4064, in knockout mice for FXR, which displayed impaired glucose 

tolerance and IR, induced improved insulin signalling and consequent glucose uptake 

(Cariou et al., 2006). The same molecule used to treat HFD mice for 6 weeks reduced steatosis 

and lowered TG and lipid levels in liver, reducing the expression of CD36 (Ma et al., 2013).  

Although targeting BA nuclear receptors have been shown to improve NAFLD severity and 

progression, the mechanisms by which FXR and TGR5 interact with genes involved in different 

pathways and their connection with complex processes, such as inflammation and fibrosis, 

remain to be clarified. The effect of combined dual agonist may be a successful strategy to 

intervene on different levels and may be beneficial to modulate several pathways given the 

multisystem nature of NAFLD. 

1.4 Genomic Studies 

Genomic studies can investigate single nucleotide variant(s) (SNP), exons, or the entire 

genome. There are different approaches for the identification of genetic determinants of 
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common complex diseases. Disease determination is most often characterised by the 

combination of the effect of several variants, in addition to interaction with environmental 

factors. 

1.4.1 The Genome 

The human nuclear genome consists of ~3 billion nucleotides of DNA. Contained within the 

genome are approximately 22,000 genes. The genome has many variants or heritable changes 

that may, or may not, influence the phenotype (Jackson et al., 2018). Single nucleotide 

variants (SNV) can be also called single nucleotide polymorphism (SNP); the term 

polymorphism identifies a variation that is present in >1% of the population (Brookes, 1999), 

and not necessarily with a deleterious effect. A highly frequent polymorphism indicates that 

its presence naturally occurs, independently from its effect (Karki et al., 2015). 

In contrast to Mendelian diseases, the phenotype of a complex disease is driven by 

environmental factors, such as epigenetic mechanisms, as well as genetic factors, which can 

include one or more variants in one or more genes. 

The effect that each variant has on the phenotype is highly variable and it can be large when 

the genetic factor is the predominant cause of the disease (as it happens for Mendelian 

diseases, or it can be minimal when other non-genetic factors contribute to the phenotype. 

In the first case, when the effect of a variant is large, a phenotype is defined as a proximal 

phenotype, and it is expected to depend on one or a few genetic determinants. When a 

phenotype is referred to as a distant phenotype, it is determined by several factors, where 

the genetic component is less predominant and each of the individual variants has a minimal 

effect (Marian, 2012). 

Genetic studies aim to determine the genetic component and its weight on complex 

multifactorial diseases. There are several approaches and designs which include genome-

wide association studies (GWAS), whole exome (WES) or whole genome studies (WGS), and 

candidate-gene studies.  

1.4.2 Genome-Wide Association Studies  

GWAS have been the standard approach to assess genetic variation and to identify genetic 

loci associated with several common complex diseases, such as type 2 diabetes, Crohn 
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disease, and schizophrenia (International Schizophrenia Consortium et al., 2009; Mathew, 

2008; Voight et al., 2010). GWAS are based on the assumption that the effect of a combination 

of common variants contributes to common disease; however, prior to analysis, there is no 

primary hypothesis with regard to the specific genes involved in the phenotype.  

GWAS use a high-density single nucleotide polymorphism (SNP) array platform, which 

presents hundreds of thousands of predefined SNPs, previously identified across the human 

genome, to scan the entire genome. The loci identified with GWAS can be used to determine 

genetic variants that increase the risk of a certain disease by linkage disequilibrium (LD). LD is 

measured with r2, which ranges from 0 to 1; when a SNP shows an r2 >0.8, it is considered a 

tagging SNP, a marker in close proximity to the actual locus/gene associated with the disease 

(Chang et al., 2018). The practical purpose of GWAS could be not simply to identify the exact 

causal SNPs, but to determine loci/genes that might contain them and investigate the variants 

that are present within them (Dickson et al., 2010). 

A limitation of GWAS is the power of data analysis. The first GWAS were underpowered to 

acknowledge the importance of common variants with small effects, which were excluded 

due to non-significant outcomes after data analysis. Subsequent meta-analysis studies have 

shown that increasing the sample size allows to identify the contribution to trait/disease of 

several SNPs with smaller effects (Conti et al., 2021; Lambert et al., 2013; Li et al., 2020; Yengo 

et al., 2018). 

Other limitations could be grounded in the GWAS assumption that a common disease is 

caused by common variants. Rare variants, which are overlooked by GWAS, may play an 

important role in common complex diseases, as a significant number of rare variants result in 

deleterious effects (Kryukov et al., 2007). Thus, although, GWAS has identified many risk 

variants linked to susceptibility to disease, there is a missing heritability that can be explained 

by the contribution of rare variants to complex diseases (Génin, 2020; Manolio et al., 2009). 

Alongside rare variants, structural variants referred to as copy number variations (CNVs) such 

as translocations, insertions and deletions are not properly captured and covered by GWAS 

arrays. 

The recent developments in NGS technologies are an alternative to processes and data 

analysis methods that may overcome the many limitations of GWAS. 
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1.4.3 Next Generation Sequencing  

Within the past two decades, the development of Next Generation Sequencing (NGS) 

technology has allowed the parallel sequencing of DNA, firstly in short fragments, then with 

the development of long-reads sequencing, extending the application of NGS in clinical 

research and diagnostics. NGS technology enables the investigation of the genome by 

employing a variety of approaches. For the detection of variants associated with disease, 

there are NGS approaches with no prior hypothesis such as WES and WGS; while, on the other 

hand, candidate-gene approaches are hypothesis-driven and take advantage of the 

knowledge of disease pathogenesis and the biological function of genes and pathways 

involved in disease pathogenesis to investigate a defined group of genes.  

Genetic association studies may benefit from unbiased approaches such as GWAS, WES, and 

WGS in addition to biased approaches such as candidate-gene approaches (Clark et al., 2011). 

With NGS approaches, both common and rare variants are identified, although the number 

of cases in a case-control study is fundamental in order to evaluate the effect of rare variants 

on the case population. In contrast to GWAS, NGS approaches allow to identify and study 

novel variants by covering in-depth sequences of the genome. 

The high cost and sequencing time of WGS, due to the high-dept sequencing of the whole 

genome of an individual, make the WES approach more popular, as it has a lower cost, and 

requires also a lower time for data processing. The capacity of WES requires approximately 

2% of the load of WGS, as 98% of the genome consists of non-coding regions (Petersen et al., 

2017). Moreover, these 2 types of approach can be used to complement GWAS data, enabling 

the identification of rare variants in case-control studies, where a careful choice of statistical 

methodology is required (Petersen et al., 2017). Candidate-gene studies can also be used for 

in-depth sequencing of genes that have been previously identified using GWAS.  

GWAS has been the most robust case-control genetic association study type; however, WES 

and WGS will be the future of association studies when the costs in terms of resources and 

time will decrease, allowing for studies with large sample sizes.  
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1.4.4 Study Design 

Genetic association studies often use a case-control study approach for complex diseases, 

which can include any approach, such as GWAS or NGS (Marian, 2012). Certain steps are 

essential to identify disease-associated genes, independent of the technology used and the 

approach. This section describes the different approaches ranging from unbiased population-

based studies such as GWAS, WES, and WGS to hypothesis-based studies such as candidate-

gene studies. 

For an optimal study design, the first step is to define the disease characteristics. To define 

disease characteristics accurately, it can be useful to follow the diagnostic guidelines given by 

disease-specific associations or the World Health Organisation (Zondervan and Cardon, 2007). 

Formulating an accurate and clear disease definition will help with the selection of cases and 

reduce the levels of heterogeneity that characterise complex diseases (Zondervan and 

Cardon, 2007). The aim is to have a case-cohort with reduced to minimal heterogeneity and 

consequent subsets of cases so that the effect of an allele on the phenotype could be easy to 

detect. The presence of one or more subsets could reduce power in identifying the causal 

variant or locus (Nsengimana and Bishop, 2017; Zondervan and Cardon, 2007). Alongside 

details on phenotype, demographics, ethnicity, and age (at onset and diagnosis), in presence 

of complex diseases, it is important to also collect information on family history, 

comorbidities, and lifestyle indicators (Zondervan and Cardon, 2007). 

For large-scale GWAS, as well as smaller candidate-gene studies, the selection of a cohort 

with defined phenotypical/histological characteristics will allow replication of study results by 

other independent studies. Moreover, population stratification is another factor to be 

mentioned. Population stratification is a type of bias where the difference in frequency of a 

risk allele is induced by a difference between 2 populations due to different ethnicities. In this 

case, for studies that are designed to validate other studies but carried out in different 

populations, there is a chance that the original results would not be replicated, due to 

ethnicity. It is important to evaluate how the frequency of a risk allele, or the presence of 

different risk alleles are influencing disease phenotype in various ethnicity. Population 

stratification is also the reason why a case-control study should aim to have cases and controls 

from the same population, ideally with the same ethnic background (Hemminki and Försti, 

2002), to avoid false positives or false negatives (Wojcik et al., 2022). There are strategies at 
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data analysis stage that could allow adjustment for stratification (Bacanu et al., 2000; Cardon 

and Palmer, 2003; Patterson et al., 2006; Price et al., 2006), and this is not only applicable to 

ethnicity, but also to gender, age or socioeconomic background, or any cofounder that could 

determine a heterogeneity in a population of interest. Adjustment at analysis stage is useful 

if the study is evaluating genetic risk exclusively, for candidate-gene studies as for GWAS. 

Downstream adjustments during data analysis can only be applied when the evaluation is 

restricted to the genetic risk. It is essential to rigorously design a study selecting carefully 

cases and controls, in case the evaluation aims to include environmental influence and gene-

environment interaction (Zondervan and Cardon, 2007). 

A further consideration is the number of cases and controls that allow to build a robust case-

control study. The number of cases and controls should normally be similar; however, in the 

presence of low numbers of cases, proportionately increasing the number of controls can 

increase power (Nsengimana and Bishop, 2017).  

For case-control studies, whether performed by GWAS, WES/WGS, or candidate-gene studies, 

the size of the cohorts is of particular importance because of the small effect of SNPs on the 

phenotype for complex diseases. If not on a large scale, these studies have a high probability 

of giving spurious results (Marian, 2012), a false positive association, meaning that the variant 

identified is not the causal variant.  

To estimate the required sample size in order to identify an association with a risk allele, for 

case-control studies the odds ratio (OR) can be calculated. The OR measures the association 

between 2 events; it represents the odds that event A will occur in presence of event B, 

compared to the odds of event A occurring in absence of event B (Szumilas, 2010). For 

example, a study that aims at 80% power to detect a 1.5 odds ratio will need to use 

approximately 1000 cases and 1000 controls (Zondervan and Cardon, 2007). If there are fewer 

cases available, it is possible to increase the number of controls, for example having 3 controls 

against 1 case could reduce the number of cases by approximately 36% (Nsengimana and 

Bishop, 2017). It is good practice to consider that, in determining an association between an 

allele and the disease, the size of the case population is inversely related to the frequency of 

the causal allele, so that the smaller the frequency of the causal allele (rare variant), the larger 

the number of cases needs to be to identify an association (Marian, 2012). Furthermore, as 

mentioned before, an accurate definition of disease characteristics can reduce the 
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heterogeneity within the case population, allowing for a smaller number of cases to reach 

sufficient power. 

 

Candidate-gene studies are based on a hypothesis rather than scanning SNPs or genome 

sequences in search of associations as it happens for GWAS and WES/WGS. Candidate-gene 

studies investigate regions or genes of interest for associations with disease. This type of 

study requires an additional design step. Based on a priori hypothesis, the selection of genes 

or SNPs to investigate is centred on the pathways and genes related to the disease 

pathogenesis (Kwon and Goate, 2000). Prioritisation can be performed with a systematic 

review of studies that have identified an association between genes and disease or by 

employing computational tools (Adie et al., 2005; Perez-Iratxeta et al., 2002; Tiffin et al., 

2005). 

1.4.5 Use of common controls 

Advances in gene technology and the reduction in costs are increasing the amount of genomic 

data publicly available. Accessible data from unrelated sequencing studies have made it 

possible to frequently use public common controls to accompany case-cohorts in association 

studies, from rare to common diseases. This alternative gives the possibility to reduce study 

costs due to sequencing new controls and to invest in sequencing more samples for case-

population.  

Biobanks enable access to cost-effective and hypothesis-neutral cohorts of controls by 

collecting and storing biological samples, alongside phenotype data, from a target population 

(Small et al., 2018). UK Biobank database (https://www.ukbiobank.ac.uk/) is a longitudinal 

study that follows the health of approximately 500,000 volunteer participants. There are also 

databases that collect phenotype and sequencing data. The “Public Population Project in 

Genomics and Society” (http://www.p3gobservatory.org/), for example, is an updated 

database of genomic studies, which includes a Diabetes biobank, a Renal biobank, and the 

Italian Network on Genetic Isolates. Alongside the UK biobank, there are many more, such as 

the Japan Biobank, the national Biobank of Korea, and the Auria biobank of Finland that 

collect data and sequence/genotype hundreds/thousands of healthy individuals. One of the 

https://www.ukbiobank.ac.uk/
http://www.p3gobservatory.org/


37 

 

advantages of biobanks is the large sample size available to guarantee adequate power to 

detect rare variants or common variants with modest effects (Kohane, 2011). 

Alongside the usefulness of available public common controls, there are challenges to avoid 

bias and incorrect quality control filtering that require a cautious analysis and harmonization 

between cohorts of cases and controls (Wojcik et al., 2022).  

In order to reduce errors when using common control, firstly it is essential to identify the 

common controls suited for the study. There are different populations of controls that can be 

chosen based on the study design: 1) ascertained controls - selected for the absence of a 

specific condition; 2) convenience controls - sampled through a biobank or individual 

ascertained for a different condition; or 3) population controls – selected from the general 

healthy population. For all 3 types of controls, there are advantages and disadvantages. 

Convenience and population controls although widely available, might include individuals 

that could be potentially identified as cases, due to age at onset of the disease for ascertained 

controls, or due to misclassification for population controls (Wojcik et al., 2022). However, 

the presence of misclassified control or yet undiagnosed may result in power loss(Sham and 

Purcell, 2014), which may be modest in the case of association studies for common diseases 

(Nsengimana and Bishop, 2017).  

Furthermore, the ethnicity of the controls selected from public information data should be 

taken into account and matched as much as possible to the ethnicity of the cases. A mismatch 

of the two cohorts can lead to population stratification and increase the chances of obtaining 

spurious association due to both false positive and false negative results, dependent on 

divergent genetic ancestry and not from disease (Campbell et al., 2005; Hellwege et al., 2017).  

The availability of phenotypic and demographic information on controls from publicly 

available data is another factor to consider in the choice of common control data to use. 

Biobanks have developed electronic health record (EHR) data, collecting varied information, 

and facilitating data collection and retrieval. The variety of data collected such as diagnosis, 

enrolment questionnaires, examinations, laboratory assessments, medications, and clinical 

notes improves the completeness of the EHR data and allows better results on phenotype 

information (Wei et al., 2016). Phenotypic information and demographics should be 

standardised to allow broader use of controls set in different studies. The more information, 

the broader the use of these controls.  
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Biobanks and databases of common controls distribute data information which can be divided 

into two categories: summary-level or individual-level data. The former provides descriptive 

statistics, while the latter includes detailed information per each individual (Wojcik et al., 

2022). Some biobanks allow access to data at an individual-level, such as UK Biobank, 

INTERVAL and TOPMed, while gnomAD and the Collaborative Spanish Variability Server 

release summary-level information. Individual-level data potentially endanger the privacy of 

the individuals and, therefore, they are less accessible. This means that this type of data could 

be quite challenging to be obtained as they require access-form submissions and a substantial 

number of resources in terms of data processing, time, and additional computing support. On 

the other hand, summary-level data are easy to access via download, although their use 

comes with limitations.  

When dealing with common control data, it is possible to encounter bias, such as population 

stratification and batch effect, or restrictions in adjusting for covariates. To ensure 

consistency between the two datasets, harmonisation and the same quality control filters 

should be carefully applied. The alignment of genetic ancestry between cases and controls 

could be more difficult for summary-level data due to inadequate detail of information on the 

population. On the contrary, for individual-level data, cases and controls could be matched 

by several tools, such as principal component analysis, RFMix or ADMIXTURE (Wojcik et al., 

2022), that are able to estimate ancestry at continental/subcontinental-specific and region-

specific levels, for example. It is possible to identify regions with divergent sequencing quality 

by checking depth of coverage, quality of the genotype/sequencing, Hardy-Weinberg 

equilibrium, and variant quality score. This might be hard in case of summary-level data which 

present often less detailed quality control metrics (Wojcik et al., 2022). With tight quality 

checks, it is also possible to reduce the batch effect, which describes the difference between 

internal cases and external common controls due to different technologies used to sequence 

or process the data and harmonise the control-cohort as desired.  

Common control data provide still an invaluable resource for genomic association studies. It 

is important to create tools to extend the use of publicly available data and support 

researchers with accessibility and data analysis information, and support training for 

harmonization and quality controls of data. 
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1.4.6 Methods of Data Analysis 

1.4.6.1 Quality Checks Before Testing for Associations 

It is of fundamental importance that data pass rigorous quality control (QC) checks in order 

to obtain reliable results and reduce the possibility of obtaining spurious associations. The 

assessment of the quality of the reads for NGS starts from the processing of raw data after 

sequencing and continues with the support of other programs, before data analysis. Each 

program used for quality check analyses raw sequencing data from the FastQ file generated 

after the sequencing.  

For GWAS, there are some manual steps to take into account to assure that the QC is reliable. 

As GWAS is characterised by a large cohort of individuals genotyped for a large number of 

variants, the removal of a few individuals from the analysis might have a marginal effect on 

the study power; however, it is important to limit the exclusion of individuals and their SNPs 

from the analysis. For this reason, a per-individual QC should be implemented before a per-

biomarkers QC (Anderson et al., 2010; Wang et al., 2019). With per-individual QC, data of 

each genotyped sample are checked for (1) gender information; (2) for divergent ancestry, to 

limit population stratification; and (3) a calculation of the identity by descent (IBD) on SNPs in 

low LD is made to remove duplicated samples (IBD ≥0.98) or related individuals (IBD >0.1875).  

Per-biomarker QC identifies and removes (1) SNPs with an excessive missing genotype (≥5%); 

(2) SNPs showing a significant deviation from Hardy-Weinberg equilibrium (HWE); (3) SNPs 

with significantly different missing genotype rates between cases; and (4) all markers with a 

very low MAF (<2% or higher if the sample size is smaller). After this automated per-biomarker 

QC, some manual checking is required to consider individually each result, primarily to avoid 

removing SNPs that could be important for association at data analysis stage, and to make 

sure that results are based on genetic differences between case and control cohorts in order 

to prevent false-positive. 

 

Another step considered for GWAS is the calculation of the Linkage Disequilibrium (LD) which 

measures the correlation between SNPs at sites in the same region of the genome. LD gives 

information on the transmission of 2 or more loci on a chromosome. 
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For candidate-gene studies is harder to obtain accurate information about population 

ancestry and related individuals. Removal of low call rates, is an important step of the analysis 

for candidate-gene studies, as removing an individual with few missing SNPs in a small sample 

could impair the study (Anderson et al., 2010).   

1.4.6.2 Prioritisation 

For NGS approaches, the prioritisation of variants is a useful step. For GWAS there is no 

prioritisation as all variants are considered to have the same probability to be associated with 

the disease.  

Tools for variant frequency and variant functionality filtering are featured in many software 

used for the analysis of variants. These tools use several databases as a reference, such as the 

1000 Genomes project, gnomAD, and NHLBI Exome sequencing project for filtering variants 

based on MAF. These tools are useful for selecting specifically rare variants to test for 

associations.  

A filtering strategy could be looking at the functional effect of the variant on the biological 

function of the protein. Prioritising non-synonymous variants based on the predicted 

functionality can be achieved by using in silico tools such as PolyPhen-2 (Adzhubei et al., 

2010), SIFT (Sim et al., 2012) and Mutation Tasters (Schwarz et al., 2010), which classify 

variants as benign or damaging. Researchers have found that using a combination of multiple 

tools gives better results and, therefore, is recommended (Frousios et al., 2013; Lopes et al., 

2012).  

 

For WES and WGS, before variant prioritisation, a valuable and informative strategy is to 

perform gene prioritisation for filtering high-priority genes, to reduce the false discovery rate 

(Wu et al., 2015), given the large amount of sequencing data. Any gene, and its protein, that 

have any function related to a gene/protein known to be involved with disease pathogenesis 

is a good candidate. Several tools could be used for gene prioritisation and they are based on 

different concepts. For example, ToppGene suite is a portal that ranks candidate genes based 

on annotations available and the functional similarity to gene(s) in the training gene list (eg, 

lists that include genes known to be associated with disease, and/or genes belonging to 

disease-associated pathways) (Chen et al., 2009). GeneDistiller, in addition to ToppGene 
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strategy, provides a user-driven prioritisation to integrate data relevant to the study question, 

considering also protein-protein interactions among other functions (Seelow et al., 2008). 

Endeavour is another useful tool which is based on training gene list and/or list with genes of 

interest and uses 75 databases for the analysis, to prioritise genes giving a score and a p-value 

for each gene based on disease and biological function (Tranchevent et al., 2016). 

1.4.6.3 Testing for Associations 

1.4.6.3.1 Testing for Common Variants 

Before starting the analysis, it is important to code the genotype based on the genetic model 

followed by the disease. An additive model, for example, in the case of complex disease, will 

assign the value 0 in the absence of a risk allele, and in the presence of the risk allele the value 

assigned will be 1 when for heterozygous and 2 homozygous genotypes.  

A strategy to identify an association between a SNP and a trait is the single variant association 

test for GWAS, which is based on the common disease-common variant assumption (Jiang 

and Wang, 2018). As all variants in GWAS are considered to have the same probability to be 

associated with disease, by convention, SNPs that achieve a p-value <5×10−8 are taken into 

consideration and studied for further confirmation (Goldstein et al., 2013). In case-control 

studies for categorical SNP data, statistical test for contingency table can be employed, with 

a null hypothesis that assumes that there is no association between the SNP and the 

trait/phenotype (Wang et al., 2019). The strength of the association of an allele with a disease, 

in case-control studies, is measured by the odds ratio (OR). There are several OR that 

researchers refer to (Labrecque et al., 2020, p.): 

• Disease OR: identifies the odds of disease in the exposed group divided by the odds of 

disease in the non-exposed group) - in case-control studies, it cannot be directly 

calculated 

•  Exposure OR: identifies the odds of exposure to a factor in the cases divided by the odds 

of exposure to a factor in the controls. 

For case-control studies disease and exposure OR are equal and disease OR is equal to relative 

risk, which compares the disease penetrance between individuals exposed to different 
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genotypes (Clarke et al., 2011). For single variant association tests, the Chi-squared test and 

Fisher exact test, respectively for large and smaller samples, can be performed to measure 

the association between an individual SNP and a categorical variable, while ANOVA or t-test 

are used for continuous variables. The results of these tests will be the same as the results of 

linear regression in case of t test and logistic regression in case of the OR (Wang et al., 2019).  

The generalized linear model (GLM) can be used to check for confounding variables. GML for 

binary will replicate the results of logistic regression, while for continuous variables it will 

model the results of linear regression (Wang et al., 2019). 

A simple regression model, such as linear or logistic regression, is the common method used 

for data analysis of common variants. Alongside these, some tests have been developed to 

reduce some of the intrinsic limits of simple regression model. For example, an association 

could be allocated when a SNP effect is driven by a covariate (eg, gender or ethnicity) and, as 

a consequence, this could reduce the statistical power of the study (Wang et al., 2018). There 

is, indeed, a possibility to adjust for covariates, in order to reduce bias and the possibility of 

obtaining false-positive in presence of heritable covariates. This could happen when a variant 

is associated with the heritable trait, not only with a disease trait. Some tests have been 

developed to address this problem, such as the covariate for multi-phenotype studies 

(Aschard et al., 2017) or the adjustment analysis using meta-statistic of covariate to improve 

the power of GWAS (Wang et al., 2018).  

The single SNP association test used for GWAS is currently being revisited, as genetic variants 

close in a locus cannot be considered independent (Uffelmann et al., 2021).  

Although GWAS has helped in successfully identifying many risk SNPs for several complex 

diseases, there is still the problem of the missing heritability to be explained (Eichler et al., 

2010; Manolio et al., 2009). Several additional methods have been developed, to address (1) 

the polygenic character of complex diseases and (2) the pleiotropy characteristic of complex 

diseases, which sees the contribution of one or more variants to multiple traits (Solovieff et 

al., 2013). Based on the assumption that complex diseases are polygenic, multiple regression 

models are needed to identify the causal SNP in a region/locus where there are other SNPs. 

With simple regression, it is not easy to identify the real causal SNP, as this will present same 

p-value as the closest SNPs (Banerjee et al., 2018). The evolution of multiple regression 

overcame this limit and allowed to apply multiple regression; for example, the Bayesian 

multiple Logistic Regression method (Banerjee et al., 2018). A development in addressing the 
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pleiotropy nature of complex diseases has led to the concept of Phenome-wide association 

studies for which test, such as PHENI and MV-LMM, have been established (Dahl et al., 2016; 

Zhou and Stephens, 2014). 

 

When testing for multiple variables it is necessary to correct results of analysis and maintain 

type 1 error at the lowest expected (5% or 1%). The Bonferroni correction is the most 

common method. However, a limitation of Bonferroni correction is the assumption that all 

tests are independent of each other (Joo et al., 2016). Considering that close SNPs in a region 

are not 100% independent, to overcome the stringency of Bonferroni correction, the false 

discovery rate (FDR) is applied. The FDR is the ratio between the number of expected false 

positive discoveries and the total number of positive discoveries (van den Oord, 2008).  

 

There are several open access software that can help with Association for GWAS (and some 

also with QC). Table 1 has a short list of the most common open access software used for 

GWAS quality checks and association testing. The advantage of using specific software such 

as PLINK or SNPTEST for GWAS is the possibility to store data for large studies, which improves 

computational power during analysis with default tools. 

Table 1 A list of open access software for QC and for testing SNP association in GWAS 

Software Use 

Quality Control 

PLINK/PLINK2 

Can be used for many key steps in quality control, including filtering of bad 

SNPs (based on deviation from Hardy–Weinberg equilibrium, genotyping 

call rate and minor allele frequency) and bad individuals (based on gender 

check, genotyping call rate, heterozygosity and relatedness checks) 

SMARTPCA  
Principal component analysis of raw genotyping data; provides individual-

level principal 

FlashPCA 
Similar to SMARTPCA; faster and more scalable with increasing sample 

sizes 

Association 

PLINK/PLINK2 Most widely known tool for conducting genetic associations 

SNPTEST Genetic association testing; works well with IMPUTE2 

GEMMA Genetic association testing based on linear mixed models 
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BOLT-LMM 

Genetic association testing based on the BOLT-LMM algorithm for mixed 

model association testing and the BOLT-REML algorithm for variance 

components analysis (partitioning of SNP-based heritability and estimation 

of genetic correlations) 

fastGWA Mixed-model genetic association analysis 

This table was adapted from Uffelmann et al., (2021) 

1.4.6.3.2 Testing for Rare Variants 

All methods described for common variants in the previous section, which were mainly 

described for GWAS, can be also applied to prioritise common variants identified through NGS 

approaches. The same cannot be said for the analysis of rare variants. The many challenges 

faced when testing for rare variant association have led to the development of specific tests, 

as the use of single variant association tests on rare variants would require a very large sample 

size or otherwise will lose power in detection (Sazonovs and Barrett, 2018).  

For the nature of complex diseases, the methods of association tests must consider the co-

presence of several variables and the possibility to have a compound effect between more 

variants within the same gene or region. The several tests that have been developed are 

based on what effect is expected from the variants. For example, in case it is anticipated to 

have in a region several risk variants, and their effect is thought to have the same direction 

(risk-increasing or protective) and magnitude, the burden test is expected to be more 

powerful (Lee et al., 2014). Among the methods of burden test there is the combined 

multivariate and collapsing method which bins variants over gene regions (Li and Leal, 2008).  

If the effect of the variants in a region is expected to have opposite directions and/or in the 

regions of interest there are only a few causal variants, the use of burden test could affect 

power. To overcome this, the variance-component test could be used (Sazonovs and Barrett, 

2018). Among variance-component tests there are, for example, the SKAT method (Wu et al., 

2011) and the C-alpha method (Neale et al., 2011).  

When there is no hypothesis on the direction of the effect or the causality of the variant is 

uncertain, both burden and variance-component tests would lose power in detecting 

association. In this case, for example, the optimised SKAT test (SKAT-O) could be performed 

to maximise power (Lee et al., 2012). 
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As described for common variants, testing for rare variants association requires also the 

correction with Bonferroni or FDR. 

 

For the analysis of both common and rare variants, the choice of the association test to 

employ depends on the complex disease investigated and its genetic architecture, alongside 

sample size and phenotype of the cohort. With the decrease in the cost of WES and WGS for 

large populations, more genetic studies using these approaches will be able to elucidate the 

missing heritability of complex diseases, with the investigation of rare variants, including not 

only single nucleotide variants, but also other structural variants. The development of 

powerful methods to address gene-gene, gene-environment interaction, the availability in 

the close future of more complete genetic databases, and the presence of structured and 

larger publicly available datasets of controls will give more information to researchers and 

clinicians on disease pathogenesis and improve tools for diagnosis and precision medicine. 

1.5 Genetics of NAFLD  

The diversity in NAFLD development, severity and progression displayed in patients may be 

explained by the interplay between multiple environmental and genetic factors.  

The genetic component of NAFLD finds evidence in familial and twin studies. Two decades 

ago, a clinical report from a study in kindred showed the presence of a common pathogenesis 

in patients with NASH caused by a possible genetic risk (Struben et al., 2000). Subsequently, 

a correlation between monozygotic twin and steatosis, which was not confirmed between 

dizygotic twins, was found through twin studies (Loomba et al., 2015). In addition, the 

hypothesis that genetic variations might play an important role in influencing NAFLD 

susceptibility was supported by the results of epidemiological studies that showed the 

variability of the disease prevalence in different ethnic groups (Graham et al., 2009).  

1.5.1 Genetic contribution to NAFLD 

Genome-wide association studies (GWAS) have been used to investigate the presence of 

common variants that could be associated with any of the disease’s phenotypic traits. The 

first GWAS (Romeo et al., 2008) on a vast multi-ethnic population, diagnosed with NAFLD 

through magnetic resonance spectroscopy (MRS), identified the rs738409 missense variants 
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in the patatin-like phospholipase domain-containing 3 (PNPLA3) gene to be associated with 

the hepatic fat content and alanine aminotransferase levels. This link has been confirmed by 

several studies, making PNPLA3 I148M single nucleotide polymorphism (SNP) the major well-

characterised variation studied across different NAFLD cohorts (Kawaguchi et al., 2012; 

Kollerits et al., 2009; Sookoian et al., 2009; Speliotes et al., 2011; Yuan et al., 2008). 

Furthermore, in large biopsy-proven NAFLD cohorts, the SNP was also associated, 

independently from steatosis, with histological parameters, such as inflammation and fibrosis 

(Liu et al., 2014; Rotman et al., 2010; Valenti et al., 2010a). Homozygous and heterozygous 

for the rs738409 variant were also found to have respectively 3.24 and 2.14-fold increased 

risk of developing HCC (Dai et al., 2019). 

The rs738409 frequency is not consistent among population with NAFLD; the highest is 

reported in Hispanic American and it is close to 49%. For European it is between 20 and 30%, 

over 35% in Asian countries and the lowest is 17% in African Americans (Anstee and Day, 

2015; Younossi et al., 2018). 

The PNPLA3 gene on chromosome 22 encodes for the protein adiponutrin, and its 

transcription is regulated by glucose and insulin concentrations in a dose dependent manner 

(Rae-Whitcombe et al., 2010). An experiment using PNPLA3-KO mice showed no development 

of steatosis, although there was an accumulation of triglycerides, whether the mice were fed 

regular chow or followed a high fat diet (Chen et al., 2010). The introduction of I148M 

substitution in the endogenous (human) PNPLA3 did not induce any changes in TG levels 

between wild-type (wt) and mutated mice, when fed on chow diet. On the contrary, on a high 

sucrose diet, although increased in both wt and mutated mice, the levels of triglycerides were 

3-fold higher in mice with the I148M substitution (J. Z. Li et al., 2012).  

The protein is expressed in liver, adipose tissue and adrenal gland (Baulande S et al., 2001; 

Lake AC et al., 2005). The rs738409 variant encodes an amino acid change (isoleucine to 

methionine) at codon 148 that reduces the hydrolytic activity of the protein, due to a reduced 

size of the access site for the substrate (He et al., 2010). This reduction in function variant 

promotes the accumulation of triglyceride in hepatocytes and it also confers resistance 

against protein degradation (BasuRay et al., 2017). Normally located in the lipid droplets in 

the hepatocytes, adiponutrin hydrolyses triglycerides and acts on polyunsaturated fatty acids 

(PUFA) transferring di- and tri-acylglycerols to phosphocholines. In a study done by Ruhanen 

(Ruhanen et al., 2014) it was shown that the I148M substitution results in a greater presence 
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of the mutated protein on lipid droplets compared to the wt. With a recent study, it was 

shown that steatosis is not only induced by a less active protein, but also by its accumulation 

in lipid droplets due to reduced turnover and degradation (BasuRay et al., 2019). Another 

study investigated the hypothesis of an interaction between PNPLA3 adipose triglyceride 

lipase (ATGL) and its cofactor alpha‐beta hydrolase domain containing protein 5 (ABHD5, also 

called CGI‐58) (Wang et al., 2019). The localization of PNPLA3 on the lipid droplets requires 

the interaction with CGI-58. Once on the droplets PNPLA3 is rapidly degraded. On the 

contrary, PNPLA3 I148M accumulates on the surface. The hypothesis is that, by accumulation, 

PNPLA3 sequesters the majority of CGI-58 available preventing its interaction with the lipase 

and, hence, driving TG accumulation. These type of studies of the functionality of PNPLA3 are 

ongoing and they are essential to identify the mechanism by which PNPLA3, and other genes, 

contribute to the development and progression of NAFLD.  

More recent studies have identified a variant in the transmembrane 6 super family member 

2 (TM6SF2), becoming the second well-known mutation associated with the pathology. The 

rs58542926 was found in the same study population in which the PNPLA3 variant was 

observed, using exome-wide association study (Kozlitina et al., 2014). The SNP E167K results 

in a reduced expression of the protein due to early degradation. This reduction in function 

variant has been associated with reduced levels of plasma triglyceride and LDL-cholesterol 

(Kozlitina et al., 2014; Mahdessian et al., 2014), which later, was confirmed in an obese 

paediatric cohort (Grandone et al., 2016). The protein is present in several organs, but its 

major expression is in liver and small intestine. Therefore, TM6SF2 protein is needed to 

regulate the hepatic lipoprotein secretion, but also to synthesise hepatic triglycerides 

(Mahdessian et al, 2014). A study conducted by Dongiovanni (Dongiovanni et al., 2015), 

showed that patients carrying this variant had an increased severity of steatosis, with a higher 

chance to progress to severe NASH.  

The TM6SF2 E167K variant was initially identified (Speliotes et al., 2011) in a multi-gene locus, 

which also included the gene NCAN and its variant rs2228603. The Kozlitina study showed 

that, independent of any of other SNPs found in that locus, rs58542926 maintained its 

association with NAFLD, while NCAN did not. In the same GWAS by Speliotes, SNPs in or near 

GCKR, LYLPLAL1 and PPP1R3B were identified to be linked to histological inflammation and 

fibrosis, but only the first two genes had an association with steatosis. Among the most known 

genes related to NAFLD, the rs1260326 SNP in GCKR was studied in Caucasians, Hispanics and 
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African Americans obese children and adolescents showing an association with higher serum 

TG and VLDL levels (Santoro et al., 2012; Thompson et al., 2010).  

In the past decade many more studies have enlarged the number of SNPs found in genes 

related to several altered pathways in NAFLD or that are involved in any of its risk factors and 

comorbidities. For these genetic modifiers their biological function and role in the pathology 

NAFLD remains to be determined. 

1.5.2 Genes that alter lipid and glucose metabolism 

A great deal of lipid metabolism takes place in the liver, including FA de novo synthesis and 

uptake, cholesterol metabolism and lipid conversion into TG for storage. Steatosis emerges 

when uptake, synthesis and transport of lipids are jeopardised. Many genes involved in lipid 

metabolism have been identified by several studies with the aim of understanding their role 

in NAFLD genetic susceptibility. 

The hepatic FA uptake and intracellular transport is regulated by the activity of several 

proteins, among which the FA translocase CD36, the FA-binging proteins (FABPs) and the FA 

transport proteins (FATP) (Thompson et al., 2010). The FABP family includes several proteins 

of which FABP1 is the only one expressed in liver, yet to date the mechanism of the activity 

of the FABPs remains unclear. Studies have shown inconsistent results for the expression of 

FABP1. Altered FA uptake was observed in FABP1 KO mice, which under a high saturated fat 

diet were shown to be protected against obesity and steatosis  (Newberry et al., 2009, 2006). 

A slight overexpression of mRNA for the protein was found in patients with steatosis, which 

gradually declined with each stage of NASH (Charlton et al., 2009). A year later FABP1 (and 

CD36, FATP2 and FATP5) hepatic mRNA expression was shown to be higher in children with 

NASH (Zhu et al., 2011). FABP1 is also a ligand of the hepatic peroxisome proliferator activated 

receptor ɣ (PPAR), an important transcript that if overexpressed, trigged by high fat diet for 

example, leads to lipid accumulation (Yamazaki et al., 2011). CD36 is one of the targets of 

PPARɣ and it is a multi-function protein that is involved in lipid metabolism (fatty acids uptake, 

oxidation and lipid synthesis) (Samovski et al., 2015) and inflammation (Zhao et al., 2018). Its 

expression in hepatocytes is normally low. However, studies have shown how its mRNA levels 

and protein localization were increased in NAFLD, and even more in NASH patients 

(Miquilena-Colina et al., 2011; Zhao et al., 2018), correlating its expression with the levels of 
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TG in vivo (Buqué et al., 2010). Another interesting protein involved in the regulation of 

synthesis of lipoprotein is the microsomal triglyceride transfer protein (MTTP), which 

transfers TG on APOB for the formation of VLDV particles. MTTP is well known for its possible 

correlation with NAFLD, as several SNPs on the gene have been identified, although the 

rs1800591 SNP is the most studied for its association with steatosis (Li et al., 2014; 

Mirandola et al., 2009; Namikawa et al., 2004) with conflicting results (Oliveira et al., 2010). 

The SNP changes the protein expression, reducing the quantity of TG used to assembly the 

VLDV, keeping TG levels high in the hepatocytes. Regarding VLDL, the 

phosphatidylethanolamine N-methyltransferase gene (PEMT) encodes an enzyme involved in 

de novo synthesis of phosphatidylcholine which is required for VLDL assembly and secretion. 

No association of this gene with NAFLD was found in the Romeo GWAS, although two studies 

have found an association with the rs7946 SNP in two biopsy-proven NASH cohorts (Dong et 

al., 2007; Song et al., 2005). Another enzyme involved in TG and phosphatidylcholine 

synthesis is encoded by the gene LPIN1, in particular the rs13412852 SNP which in 

homozygosity gives a less severe NASH and liver damage in a paediatric cohort (Valenti et al., 

2012a). However, other common variants in this gene confer susceptibility to metabolic 

syndrome (Wiedmann et al., 2008). Recently, a variant (rs641738) in the Membrane Bound 

O-Acyltransferase Domain Containing protein 7 gene (MBOAT7), which is involved in the 

phospholipid remodelling pathway, initially identified in alcoholic cirrhosis (Buch et al., 2015) 

was identified in a study which included multi-ethnic and European populations (Mancina et 

al., 2016a). The variant was associated with severe histology and development of fibrosis.  

Interestingly, although the SLC2A1 gene encodes the glucose transporter 1 (GLUT1) present 

in blood, the gene has been associated with NAFLD independently from diabetes. Two 

variants, rs4658 and rs841856, have been linked to the develop of NAFLD. These two SNPs 

revealed that GLUT1 interferes with lipid metabolism and inflammation pathways (Vazquez-

Chantada et al., 2013). Furthermore, GLUT1 has been shown to have a role in protecting 

mitochondria from oxidative stress, by transporting precursor of vitamin C and reducing the 

ROS production (Kc et al., 2005).  

The role of the insulin resistance is even more widely debated, as it remains unclear whether 

it is the cause or the consequence of fat accumulation in the liver. In the liver, insulin 

resistance induces an impaired insulin-mediated suppression of glucose production and 

limited activation of glycogen synthesis (Samuel et al., 2004). The interconnection of lipid and 
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glucose metabolisms can be found in the insulin activity on the lipid metabolism; in fact, in 

the presence of insulin resistance FA increase due to upregulated de novo lipogenesis and, on 

the other hand, reduced or suppressed β-oxidation. Several genes involved in both pathways 

have been studied as candidates to NAFLD predisposition. 

An example of this interlink is the glucokinase regulator (GCKR) gene which indirectly 

regulates, through glucokinase, glucose uptake and lipogenesis. Since it was a candidate gene 

for maturity-onset diabetes of the young (MODY) (Dimas et al., 2014), GCKR has also been at 

the centre of many NAFLD association studies (Lin et al., 2014; Speliotes et al., 2011; Tan et 

al., 2014). Two variants, rs780094 and rs1260326, have been associated with steatosis, by 

inducing glycolysis and promoting lipid accumulation, and fibrosis in children (Beer et al., 

2009; Petta et al., 2014; Santoro et al., 2012). A study found that patients with the rs780094 

variant had a 1.2-fold risk of susceptibility to develop NAFLD (Zain et al., 2015).  

A gene involved with insulin homeostasis, and that has been associated with NAFLD, is the 

ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). The encoded protein 

normally interacts with the alpha subunit of the insulin receptor and in vitro studies 

demonstrated cellular insulin resistance induced by increased expression of ENPP1 

(Böttcher et al., 2006; Liang et al., 2007). The presence of few variants in this gene have been 

reported in paediatric obese cohorts (Böttcher et al., 2006; Meyre et al., 2004) and, 

thereafter, the presence of the rs1044498 SNP was described in another cohort with 

paediatric NAFLD  to cause insulin resistance and fibrosis. In the same study, independently 

from the ENPP1 polymorphism, a mutation (rs1801278) in the insulin receptor substrate 1 

gene (IRS1) showed correlation with hyperglycemia and fibrosis (Dongiovanni et al., 2010).  

The protein phosphatase 1 regulatory subunit 3B gene (PPP1R3B), involved in the glycogen 

synthesis, was considered in several studies, although data are controversial. Two SNPs were 

identified, the rs4240624 for its association with computerised tomography (CT) steatosis 

(Di Costanzo et al., 2018; Speliotes et al., 2011) and the rs61756425 variant as a strong 

predictor of severe NAFLD on ultrasound (Di Costanzo et al., 2018). However, from another 

study in a large European NAFLD cohort the presence of another variant, rs4841132, 

supported the hypothesis of the protective role of the minor allele against lipid accumulation 

in hepatocytes (Dongiovanni et al., 2018).  
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1.5.3 Genes that regulate oxidative stress 

The progression of NAFLD to NASH is triggered by the onset of inflammation caused by 

mitochondrial dysfunction and ER stress. In order to reduce the presence of FA in the cell, 

mitochondria over-activate the Beta oxidation releasing a massive production of ROS. The 

lipotoxicity induced by accumulation of FA in hepatocytes leads to overproduction of ROS and 

oxidative stress. At the same time, the general dysfunction of cellular processes driven by 

lipotoxicity activate the apoptosis pathways. All these processes drive the progression of 

NAFLD to steatohepatitis. 

The best characterised protein that takes part in protecting the cells from ROS is the 

superoxide dismutase 2 (SOD2). The rs4880 variant found in SOD2 is associated with the 

severity of fibrosis (Al-Serri et al., 2012; Namikawa et al., 2004), possibly due to a lower import 

of the protein into mitochondria and  a less efficient protein activity, as shown from studies 

in vitro (Sutton et al., 2005). Similar conclusions were obtained in a study of obese children in 

European and Egyptian populations where the variant was associated with steatosis or NASH 

(El-Koofy et al., 2011; Nobili et al., 2014). Another study, identified a higher frequency of the 

variant in patients with NASH compared to subjects with simple steatosis (Huang et al., 2014). 

This study also investigated the presence of variants in the cytochrome P450 family 2 

subfamily E member 1 gene (CYP2E1), but unfortunately no variant was detected. CYP2E1 

encodes a monooxygenase involved in the metabolism of fatty acids and cholesterol, together 

with other activities. The enzyme can be activated by several substates among which there 

are circulating FA (Chalasani et al., 2003; Weltman et al., 1996). The involvement of CYP2E1 

in the oxidative stress was observed in a model where overexpression of the protein 

upregulated β-oxidation and decreased activity of enzymes involved in the antioxidative 

system (Kathirvel et al., 2010). In patients, inconclusive data were collected. While a study in 

adults’ livers showed decreased levels of CYP2E1 mRNA related to progression of NASH 

(Aljomah et al., 2015; Fisher et al., 2009), studies in children (Bell et al., 2011) and adults 

(Chtioui et al., 2007; Huang et al., 2014) showed no difference in protein levels in both NAFLD 

and NASH patients.  

Another family of proteins that participate to the mitochondria respiratory chain are the 

uncoupling proteins (UCPs), in particular UCP2 and UCP3. These have been studied for their 

activity in regulating lipid homeostasis and emerged from studies of obesity (Esterbauer et 
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al., 2001; Fleury et al., 1997; Harper et al., 2001). The expression of UCP2 was found to be 

significantly upregulated in human livers of NASH subjects (Serviddio et al., 2008). The variant 

rs659366 in UCP2 has been found to be protective in obese subjects (Brondani et al., 2014; 

Zhang et al., 2014) and a reduced risk of developing NASH (Fares et al., 2015), while the wt 

allele was linked to a higher risk of developing obesity due to the lower expression of the 

protein (Andersen et al., 2013). UCP3 is expressed in skeletal muscle and a study in a 

paediatric NAFLD Chinese cohort found that the wt allele of rs11235972 was observed more 

in NAFLD subjects than the controls (Xu et al., 2013). 

1.5.4 Genes that control inflammation and fibrosis 

Once lipotoxicity, impaired mitochondria and ER stress have caused irreversible damage, the 

hepatocytes initiate a response which involves the activation of the immune system. When 

these signals persist inducing chronic inflammation, the pathology progresses to NASH or 

fibrosis. For some genes, described in the Section 1.5.2 and 1.5.3, such as PNPLA3, MBOAT7, 

GCKR and SOD2 there is evidence of a correlation with the progressive stages of NASH and 

fibrosis. 

Proteins that intervene in the immune response, for example the inflammasomes including 

the proteins NLRP3 and NLRP6, induce the release of several interleukins and pro-

inflammatory cytokines. Although no variants have been yet described for these 2 genes in 

patents with NAFLD, interesting data have reported NLRP3 to be activated in mice with NASH 

(Mridha et al., 2017); NLRP3 KO mice proved to be protected from inflammation and fibrosis 

under stimuli, and, the evidence of its increased prolonged activation have also been 

observed in patients with NASH and fibrosis (Wree et al., 2014). Similarly, the NLRP6 KO 

showed hepatic steatosis, but more importantly this protein has been shown to maintain the 

balance of the gut microbiota (Henao-Mejia et al., 2012; Levy et al., 2015).  

A gene expressed in hepatic and immune cells is the Toll-like receptor 4 (TLR4), which is 

activated by the presence of the lipopolysaccharide (LPS), released from the gut. Once 

activated, TLR4 triggers the inflammatory response escalating liver injury. In a NASH animal 

model it was shown that TRL4 was more responsive to LPS (Szabo et al., 2005) and also the 

loss of TLR4 ameliorated the lipid accumulation, with a reduction in the expression of 

fibrogenic factors (Rivera et al., 2007). Indeed, TRL4 is known for its role in the activation of 
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Kupffer cells and hepatic stellate cells (HSC), that are involved in the process of fibrogenesis. 

In Kupffer cells, TLR4 signalling leads to the release of TNFα and several interleukins (IL), such 

as IL-10, IL1β, IL-6 (Seki et al., 2001); while in HSC it drives the production of proinflammatory 

and profibrogenic factors (Seki et al., 2007). Two previously described common 

polymorphism in this gene rs4986791 and rs4986790 have been shown to be protective 

against fibrosis, reducing the responsiveness of TLR4 signalling (Guo et al., 2009).  

The kruppel-like factor 6 (KLF6) is a transcriptional factor that participate to the regulation of 

various cellular processes, such as proliferation, differentiation, development and cell growth 

and apoptosis (Kojima et al., 2000; Suzuki et al., 2005). The SNP rs3750861 is known for its 

protective role against the progression of the NAFLD; indeed, patients carrying this SNP 

showed a less severe phenotype than patients with the wt allele of KFL6, where higher levels 

of steatosis, inflammation, and fibrosis were observed (Miele et al., 2008). This study, in 

addition, identified the wt allele of SNP rs3750861 as a predictor of level 2 fibrosis, 

independently from other known risk factors implicated in the progression of NASH.  
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1.6 HYPOTHESIS AND AIM OF THE PROJECT 

The genetic predisposition to NAFLD might be more relevant in children than in adults, given 

that children have a shorter exposure to obesity and other environmental factors by feature 

of their age. In view of the crucial role of BA in lipid metabolism and other pathways involved 

in NAFLD pathogenesis, and the fact that children have earlier onset of disease than adults, 

this study aims to determine the contribution of genetic variants related to BA metabolism 

and transport to the severity and progression of NAFLD.  

The aims of the study are the following: 

- To characterise a biopsy-proven paediatric cohort with NAFLD 

- To identify genetic variants in genes responsible for BA metabolism and transport 

- To evaluate the association of genetic variants with clinical and histological phenotype  

- To evaluate the changes in BA and FGF19 levels in a biopsy-proven paediatric cohort 

with NAFLD 

- To evaluate the variation in genetic expression of genes involved in the BA metabolism 

and transport in FA treated cell lines and primary hepatocytes 
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Chapter 2 

2 The investigation of genetic variants associated with paediatric NAFLD 

2.1 INTRODUCTION 

The extensive genetic investigation of common, multifactorial diseases such as NAFLD has 

been carried out mainly using Genome Wide Association studies (GWAS) (Anstee et al., 2012; 

Chalasani et al., 2010; Namjou et al., 2019; Romeo et al., 2008; Speliotes et al., 2011; 

Wattacheril et al., 2017). This approach has conventionally been adopted to find variants in 

multifactorial diseases, following the hypothesis that common variants drive common disease 

(Hill et al., 2008). There are several drawbacks to this approach, however. Aside from giving 

only partial information regarding a particular genetic sequence, the number of associated 

variants and traits found by GWAS explains only a small fraction of the genetic contribution 

to complex diseases. This gap is referred to as “missing heritability”(Maher, 2008). Heritability 

is given by many factors, for example interaction between environment and genes and 

between gene-gene interaction. The missing heritability unexplained by GWAS could be 

attributed to the presence of many variants in different loci or genes which might all 

contribute to a complex phenotype. Such variants could and possibly have a small effect on 

the whole disease or may be rare, hence not identified through GWAS, and have a larger 

effect on a trait (Génin, 2020).  

For this reason, the investigation of the genetic contribution to the development and 

progression of NAFLD for this project was explored using a candidate-gene approach. This 

allows the full coding sequencing of selected high priority genes. This is the first difference 

between identifying variants through candidate-gene study and GWAS; the latter is not 

hypothesis-based and started with using information from the HapMap project, combining a 

chip containing millions of SNPs (International HapMap Consortium, 2005). Although the 

number of SNPs evaluated by GWAS increases periodically thanks to new studies and data 

supplied, the investigation though this method cannot be considered inclusive and complete.  

On the contrary, sequencing and, in particular, candidate-gene approach allows a more or 

less complete investigation of the regions of interest, up to the entire exome or genome, 

depending on the method chosen (ie, WES, WGS, etc). The technology is also expanding and 



56 

 

improving rapidly, allowing soon to sequence in parallel an elevated number of samples, at 

once, to equal the thousands processed with GWAS, becoming an advantage in terms of 

power of the data analysis.  

The panel of genetic variants that was selected for this study included genes that have been 

previously described for their association with NAFLD, genes that are activated in presence of 

liver injury and genes that, based on their biological function, are likely to be involved in the 

disease pathogenesis. 

The study cohort selected for this study comprises children who had suspected sufficiently 

severe disease to require liver biopsy. The advantages of studying a paediatric cohort include 

the absence of external confounders, such as alcohol, and depicts early onset disease which 

has developed prior to a long period (usually decades) of exposure to visceral adiposity. In 

literature, there is a suggestion that children may develop a severe phenotype in a shorter 

time period than adults (Feldstein et al., 2009), where the usual time of progression from one 

stage of fibrosis to the next is estimated to be 7 years (Singh et al., 2015).  

Both common and rare variants were considered for this study. The approach was based on 

the expectation that low-frequency and rare variants could, more likely, have a functional 

impact on the protein. The analysis of low-frequency and rare variants is still quite challenging 

in terms of statistical power, especially on small cohorts and for variants that have a small 

effect on the phenotype.   
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2.2 MATERIAL AND METHODS 

2.2.1 Patients 

Clinical, anthropometric and biochemical data on the selected paediatric cohort of patients 

with NAFLD, with matched histological data were available at the King’s College Hospital (KCH) 

NHS Trust Paediatric Liver Centre. KCH Paediatric Liver Centre is the busiest centre in Europe 

and one of the most active paediatric liver centres in the world. At the KHC Paediatric Liver 

Centre over 50 liver transplants are performed in children each year, and thousands of 

children are treated for both chronic and acute liver diseases. As NAFLD is the most common 

cause of paediatric liver disease, the KCH Paediatric Liver Centre has a dedicated NAFLD clinic, 

established over a decade ago and through which children access an expert medical, nursing, 

dietetic and psychology multidisciplinary team. Children, young people and their parents 

were recruited through the KCH Paediatric Liver Biobank, a diagnostic archive established at 

the Centre more than 30 years ago, which became a formal National Research Ethics 

Service--approved Biobank in 2012. The KCH Paediatric Liver Biobank stores excess tissue and 

blood donated for research purposes at time of diagnosis and at later follow-up 

appointments. The Biobank research committee consented to the use of this fully 

anonymised data and samples of 100 paediatric patients with NAFLD for this project (REC 

number 09/H0808/15).  

Inclusion criteria were: (1) biopsy--proven NAFLD; (2) age range from 0 to 18 year; 

(3) availability of full data set; (4) blood samples; (5) consent to donate data, blood and tissue 

for research purposes; (6) patients diagnosed with well-controlled coeliac disease (with 

normal TTG) were included only in the presence of appropriate metabolic profile. Exclusion 

criteria were: (1) additional or alternative diagnosis of liver disease, including Hepatitis B and 

C, Wilson disease, autoimmune liver disease, cystic fibrosis and inborn errors of metabolism. 

All patients included in this study were less than 19 years of age at sample collection. Children 

and young people underwent a full assessment for liver disease: abdominal ultrasound, blood 

tests including viral screen, copper and caeruloplasmin, lactate, urinary organic acids, serum 

amino acids, screen for lysosomal acid lipase deficiency. A 24--hour urinary copper collection 

pre and post penicillamine was also undertaken. Children also underwent an oral glucose 

tolerance test including both glucose and insulin levels. Liver biopsy was undertaken in 
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presence of persistent abnormal liver function tests over 6 months and/or an enlarged spleen 

on ultrasound on 2 or more occasions, suggesting significant liver injury. A paediatric 

hepatologist made a positive clinical diagnosis of NAFLD prior to inclusion in this study. 

2.2.1.1 Liver biopsy and histology 

Liver biopsy was undertaken by a paediatric hepatologist using the Menghini technique. Liver 

biopsies were fixed with formalin and embedded in paraffin. Sections were stained with 

haematoxylin and eosin, Orcein, Perl’s and reticulin. Tissue copper was measured in a small 

piece (1mm) of liver biopsy. Histological assessment was performed by a single blinded 

paediatric liver-histopathologist who scored according to the Kleiner/Brunt system (Kleiner 

et al., 2005). Each biopsy was assigned a score for steatosis (0 to 3), lobular inflammation (0 

to 3), hepatocyte ballooning (0 to 2) and fibrosis (0 to 4).  

2.2.1.2 Anthropometric data and demographics  

All anthropometric measurements were collected by the lead clinician, trained nursing staff 

or dietitian. Weight (to the nearest 0.1kg) and height clothed without shoes (to the nearest 

0.1cm) were measured using digital scales and a commercial stadiometer (Marsden Weighing 

Group, Rotherham, UK). BMI were calculated using BMI calculator for Child and Teen online 

calculator (https://www.cdc.gov/healthyweight/bmi/calculator.html); BMI z score was 

obtained using The Children’s Hospital of Philadelphia, ‘Paediatric Z Score Calculator’ 

(https://zscore.research.chop.edu). Waist circumference was measured at the midway point 

between the top of the iliac crest and the bottom of the rib cage, using a commercial tape 

measure and reading to the nearest 0.5 cm. If identification of these points was not possible 

in very overweight participants, the tape measure was placed around the abdomen at the 

level of the umbilicus. Participant ethnicity was classified according to the Health and Social 

Care Information Centre, Ethnic Category Code by King’s College Hospital research staff. 

2.2.1.3 Collection of the sample from King’s College Hospital Paediatric Liver Biobank 

Ethical approval for the recruitment of the patients was obtained (09/H0808/15). Blood 

samples collected on the day on the visit were centrifuged and stored at -80°C at the KCH 

Paediatric Liver Biobank. Plasma, serum and cell pellet were separated out from the blood 

https://zscore.research.chop.edu/
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samples and stored. Only samples of patients with signed parental consent for research were 

collected for this study. 

2.2.2 Selection of candidate genes for NGS NAFLD panel 

NGS technology was employed to identify variants in specific genes known or suspected to 

contribute to NAFLD or involved in some metabolic pathways related to the pathophysiology 

of the disease. The panel of candidate genes for the study was designed as a result of a 

literature search. A review of Pubmed was undertaken to identify relevant studies at the end 

of 2016, which  included original studies and reviews published between 2006 and 2016. The 

studies included were publications wiritten in English, in patients diagnosed with NAFLD. 

2.2.3 Literature search 

For the literature search of genes associated with NAFLD or liver injury, the terms used were: 

[NAFLD OR non alcoholic fatty liver disease OR fatty liver OR non alcoholic steatohepatitis OR 

steatohepatitis OR NASH) AND genetics OR genetic]; [NAFLD AND genetic susceptibility]; 

[genetic variants AND NAFLD]; [bile acids AND NAFLD]; [bile acid metabolism]; [bile acid 

transport] [genes in bile acid metabolism]; [genes in bile acid transport]; [genetics AND 

progression of NAFLD]; [NAFLD pathogenesis]; [paediatric OR pediatric NAFLD]. The articles 

were screened by title and abstract. 

Genes were selected in presence of evidence of an association with NAFLD though GWAS or 

other candidate gene studies. Thus, genes involved in bile acid homeostasis, lipid and glucose 

metabolism, inflammation, fibrosis, oxidative stress, and liver injury were selected. The 

majority of the genes selected were genes previously found. Other genes were included for 

their biological function and possible relation with pathways that are know to be involved in 

NAFLD pathogenesis. 

A particular focus was given to genes involved in bile acid transport and metabolism as per 

our central hypothesis. In view of the fact that  finding a single genetic variant in any of the 

bile acid transport or metabolism pathways to be the isolated mechanism of NAFLD 

development was unlikely, we concentrated on the relative contribution of such a variant in 

the context of other more common variants known to convey a susceptibility to the disease. 

An electronic database was created containing the gene name and its variant(s) discovered in 
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patients with NAFLD. Alongside variants present in the coding region of the gene, some 

variants within the intron sequence of the gene were also included in the panel as they had 

been demonstrated to be relevant by previous studies. The final panel included 135 genes, 

and a total of 42 additional SNPs. Among these, 37 SNPs were intron variants from genes that 

were selected to be fully sequenced. These SNPs have been already found in patients with 

NAFLD. The other 5 additional SNPs were, instead, from genes that were not of particular 

interest for this studies, thus were not fully sequenced.  

The list of targets was then uploaded on the Agilent SureDesign website 

(https://earray.chem.agilent.com/suredesign) in order to design the probes for the 

SureSelect QXT target enrichment Kit (Agilent technologies LDA UK Limited, Cheshire, UK), 

using the human genome assembly h19, GRCh37 (released in Februry 2009). The size of the 

probes for the panel was 411.236 kb with a predicted coverage of 99.65%. 

2.2.4 DNA isolation 

Both serum and EDTA blood samples from patients were centrifuged soon after collection 

and serum, plasma and cell pellets were stored in the Liver Biobank at -80°C. DNA was 

extracted from 10 samples at a time using QIAamp DNA Blood Mini Kit (Qiagen, Manchester, 

UK). Following the protocol, 20 μL of QIAGEN Protease was added into the bottom of a 1.5 mL 

micro-centrifuge tube before adding 200 μL of blood. 200 μL Buffer AL was then added to 

each sample. The tubes were vortexed for 15 seconds and incubated at 56°C for 10 minutes. 

200 μL of ethanol (96-100%) was added to each tube and vortexed for 15 seconds. The tubes 

were briefly centrifuged. The solution was then transferred to the QIAamp Mini spin column 

and centrifuged at 6000 x g (8000 rpm) for 1 minute. Afterwards each column was transferred 

in a clean 2 mL collection tube and 500 μL of Buffer AW1 was added to each column. After 

6000 x g 1-minute centrifugation, each column was placed in a new 2 mL collection tube. This 

time, 500 μL of Buffer AW2 was added to the columns, which were then centrifuged at 

20,000 x g (14,000 rpm) for 3 minutes. The columns were moved to a new tube and another 

centrifugation was performed for 1 minute. Each column was placed in a clean 1.5 mL micro-

centrifuge tube and 200 μL of Buffer AE was added to each sample. Following an incubation 

time of 1 minute at room temperature, the columns were centrifuged at 6000 x g for 

1 minute. The quality of the samples was checked on the nanodrop before quantification. 
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2.2.5 DNA quantification 

The concentration of DNA was quantified by the QuBit 2.0 fluorometer, using the QuBit High 

Sensitivity Assay (Fisher Scientific, Ltd, Leicestershire, UK). The assay is selective towards 

double-stranded DNA with the use of a specific dye that emits only when attached to the 

target. The quantifiable emission by UV absorbance is recorded by the software and 

converted in the desired unit. A working solution for the standards was prepared using 10 μL 

of reagent and 190 μL of buffer; while for the samples, the working solution had 1 μL of 

reagent and 199 μL of buffer. The two standards were prepared in two separate tubes, each 

one containing 10 μL of the respective standard and 190 μL of working solution. For the 

samples, each tube contained 1 μL of respective DNA sample in 199 μL of working solution. 

All tubes were briefly and gently vortexed and incubated for 2 minutes. The assay can quantify 

a concentration between 2 and 1000 ng of DNA. The first measurements were made for the 

standards, in order to obtain the standard curve. Then each sample was read. 

2.2.6 Next Generation Sequencing: Samples and library preparation 

The SureSelect QXT target enrichment Kit was used to prepare the custom libraries through 

a multi-step workflow, fully described by the manufacturer protocol, in which the DNA of each 

sample is fragmented, purified, amplified and uniquely indexed.  

Eight to 16 samples at a time were processed, for a total of 100 samples. The first step was a 

single reaction that enzymatically fragments and attaches adaptors to the ends of each DNA 

fragment. Once quantified, an initial DNA concentration of 25 ng/μL per sample was 

transferred in a tube for the initial fragmentation. In a PCR plate, 17 μL of SureSelect QXT 

Buffer was added to each well. 2 μL of each DNA sample was added to the correspondent 

well, followed by 2 μL of SureSelect QXT Enzyme Mix ILM. The samples were then placed in a 

thermocycler for a first step at 45°C for 10 minutes, followed by 1 minute at 4°C. After PCR, 

32 μL of SureSelect QXT stop Solution was added to each well.  

To purify the adaptor-tagged library from the background DNA, 52 μL of AMPure XP beads 

(Beckman Coulter Life Sciences, High Wycombe, UK) was added to each well, and incubated 

for 5 minutes at RT. The plate was then placed on a magnetic stand. After 2 minutes, 200 μL 

of 70% ethanol was added to each sample. After 1 minute the ethanol solution was removed. 

This step was performed twice to wash well the DNA. After removing the ethanol, the plate 
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was left to dry for few minutes off the magnetic stand. To release the DNA from the beads, 

11 μL of H2O was added. The plate was incubated 2 minutes and then placed on the magnetic 

stand. The supernatant, containing the DNA, was transferred into a new PCR plate, following 

the previous layout. At this point the DNA was amplified in 4 steps, with the following PCR 

program: 2 minutes at 68°C, 2 minutes at 98°C followed by an 8-cycle step of 30 seconds at 

98°C, 30 seconds at 57°C and 1 minute at 37°C; the final step was at 72°C 5 minutes followed 

by a gradual decrease in temperature until 4°C.  

The PCR mix for a single well included 25 μL of H2O, 10 μL of Herculase II 5x reaction buffer, 

0.5 μL of 100mM dNTP, 2.5 μL of DMSO, 1 μL of SureSelect QXT Primer mix and 1 μL of 

Herculase II fusion DNA polymerase. The total volume of 40 μL of PCR mix was added to each 

well. After the amplification, the samples were purified one more time, as previously 

described, with AMPure XP beads. 

Afterwards the quality of the fragmentation and the quantity of DNA was assessed on the 

4200 Tape-Station bioanalyzer (Agilent technologies LDA UK Limited, Cheshire, UK). 1 μL of 

each amplified DNA sample was diluted with 3 μL of D1000 sample buffer (Agilent 

technologies LDA UK Limited, Cheshire, UK). The samples were then loaded on the 

D1000 ScreenTape and run in the bioanalyzer. The peak of DNA fragment size desired was 

included between 245bp and 325bp, as expected. 

The samples were then prepared for the capture of the library. 850 ng of DNA (approximately 

12 μL) was placed in a new PCR plate. The sample plate was placed on ice and 5 μL of 

SureSelect QXT Fast blocker mix was added to each well. After, a PCR program was started 

with 5 minutes at 95°C, 10 minutes at 65°C and 1 minute at 65°C. The program was then 

paused to add the Capture library hybridization mix. A volume of 13 μL of Capture Library 

Hybridization mix was prepared for each well using 2 μL of 25% SureSelect RNABlock (0.5 μL 

of SureSelect RNase Block diluted in 1.5 μL of H2O), 2 μL of Capture library stored at -80°C, 

6 μL of SureSelect QXT fast hybridization buffer and 3 μL of H2O. The plate was transferred to 

the thermocycler and the PCR program was resumed: a cycle of 65°C for 1 minute followed 

by 3 seconds at 37°C and a final hold step of 65° was repeated for total of 60 cycles. 

Once created, the library must be purified by using Dynabeads MyOne Streptavidin T1 beads 

(ThermoFisher, UK). This type of beads requires few washing steps before being used. A plate 

was prepared with 50 μL of Streptavidin T1 beads, well vortexed, in each well for the 8 or 

16 samples. Each well was washed with 200 μL of SureSelect Binding buffer and placed on the 
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magnetic stand for 5 minutes. Once clear, the buffer solution was removed. The washing steps 

were repeated 3 times. At the end, the beads were resuspended in 200 μL of SureSelect 

Binding buffer. 

After the hybridization PCR, 30 μL of each sample was added to the corresponding well 

containing the pre-washed beads. Each sample was gently mixed with the beads in the well 

and the plate was incubated with the beads for 30 minutes on a plate mixer. The plate was 

then transferred on a magnetic stand and incubated at RT for 1 minute, to separate the 

solution from the sample. The supernatant was removed, and the beads with the DNA 

attached were re-suspended in 200 μL of SureSelect Wash Buffer 1 at RT, vortexed and placed 

on a magnetic stand for 1 minute. The supernatant was discarded, and the beads were 

washed with 200 μL of 65°C pre-heated Wash Buffer 2 and incubated at 65°C for 10 minutes. 

The plate was then placed on the magnetic stand for 1 minute, and the washing steps were 

repeated other two times using 200 μL of Wash Buffer 2 for each well. After removing the 

supernatant from the last wash, beads with captured DNA were diluted by adding 23 μL of 

H2O per sample and the plate with the captured DNA was placed on ice. 

At this point, captured DNA library was amplified using indexing primers. During the 

amplification, each sample is linked with unique tags, represented by 2 different oligos, 

referred to as index, which will attach at each of the 2 ends of the DNA fragment. Each couple 

of indexes will identify specifically a sample, enabling multiplexing sequencing. An index 

assignment to each sample was determined, creating the following layout of the plate: 

Indexing Primers P7i1 P7i2 P7i3 P7i4 P7i5 P7i6 P7i7 P7i8 

P5i13 S1 S2 S3 S4 S5 S6 S7 S8 

P5I15 S9 S10 S11 S12 S13 S14 S15 S16 

The PCR mix was prepared using 13.5 μL of H2O, 10 μL of Herculase II 5x Reaction Buffer, 

0.5 μL of 100mM dNTPmix and 1 μL of Herculase II Fusion DNA Polymerase, per each well. 

The total volume of 25 μL of PCR mix was added into each well of the new PCR plate, following 

the layout previously designed. To this volume, 1 μL of each of the respective P7i* and P5i* 

indexing primers was added to each well, following the layout. The total volume of 27 μL of 

PCR mix completed of the indexing primers was then transferred to the corresponding well, 

containing target-enriched DNA samples bound to the beads. The plate was vortexed before 

starting the following PCR programme: 98°C for 2 minutes, a 14-cycles step at 72°C for 

1 minute, 5 minutes at 72°C before taking the temperature down to 4°C. The plate was then 
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placed on a magnetic stand to remove the beads and transfer the clear supernatant 

containing the DNA in a new PCR plate stored at 4°C.  

Afterwards, the amplified captured DNA library indexed was purified using AMPure XP beads, 

following the steps previously described using the same beads.  

Quantity and quality of DNA were then assessed using the TapeStation (as described before); 

however, this time using the High Sensitivity DNA Kit (Agilent technologies LDA UK Limited, 

Cheshire, UK). At this stage, the length of each fragment of the amplified indexed DNA library 

was between 325bp and 450bp. The plate was stored at 4°C.  

2.2.7 Sample pooling and multiplex sequencing  

The following step describes the sample pooling, for the multiplexing sequencing. The 

indexed library from each sample was then combined in the way that each DNA sample was 

present in equimolar amount, with a desired concentration between 8 and 12pM. For each 

sequencing a batch of 32 samples pooled together was prepared. To calculate the amount of 

each of the 32 samples, the following formula was used: 

Volume of Index= 

Where Vf was the desired final volume of the pool (100 μL), Cf was the final desired 

concentration of all the DNA in the pool (15nM), Z was the number of indexes (n=32) and Ci 

was the initial concentration of each sample. After pooling the samples and bringing the 

volume to 100 μL, DNA concentration of each sample was assessed one more time on the 

TapeStation bioanalyzer, to be sure that the concentrations were equivalent. 

Before preparing the samples for the sequencing, the cartridge and the HT1 buffer from the 

MiSeq Regent Kit v3 (600 cycles) (Illumina, Chesterford Research Park, Essex, UK) must be 

defrosted. The kit contains also two PR2 buffer and a flow cell. The flow cell is a single-lane 

substrate on which clusters are generated during the sequencing. Before use, the cell must 

be thoroughly washed and cleaned. The cartridge is a special sequencing plate containing 

reservoirs filled with reagents for the sequencing. Buffer HT1 is a hybridization buffer used to 

dilute denatured libraries. 

The Agilent SureSelect QXT Library Prep Kit Box 2 was used to prepare the index primers and 

custom sequencing primers needed for the sequencing on the Illumina MiSeq platform. Three 

tubes (1.5 mL) were prepared containing individually 3 μL of SureSelect QXT Read Primer 1, 
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3 μL of SureSelect QXT Index Primer and 3 μL of SureSelect QXT Read Primer 2. Then, 597 μL 

of Illumina HT1 Buffer was added to each of the 3 different tubes and vortexed. Each solution 

was loaded into Well 18, Well 19 and Well 20 of the Illumina cartridge as per instructions. 

The pooled samples are then diluted to obtain a total concentration of 4nM. The library was 

then denatured adding 5 μL of 0.2M NaOH solution to 5 μL of sample pool. The 10 μL of 

sample pool was vortexed, incubated for 5 minutes, and diluted in 990 μL of HT1 Buffer, to 

obtain 20pM denatured library pool in 1mM NaOH. For the final dilution, 360 μL of denatured 

sample pool was then transferred to 240 μL of HT1 Buffer. The library pool was then loaded 

in Well 17 of the cartridge. The MiSeq Control software was set up to load the flow cell and 

the resto of the reagents before starting the run. 

The first reaction of the sequencing is the clustering generation, through isothermal 

amplification. On the flow cell lane, there are 2 types of oligos, which are complementary to 

the adaptor regions of one of the extremities of the DNA fragment. The amplification starts 

when each fragment-adaptor hybridized with one of the two oligos on the flow cell lane, 

giving a double stranded molecule. After denaturation, the template fragments are removed, 

and the strands are amplified through bridge amplification: the strand folds over, hybridizing 

the adaptor on the other end of the fragment with the second adaptor on the flow cell. The 

double stranded bridge created is subsequently denatured. This creates two single strand 

copies, the forward and the reverse of the same fragment, which will be used as templates 

for the next amplification. The bridging amplification happens several times simultaneously 

for millions of fragments from the samples. After, the reverse strands are cleaved and 

removed, leaving only forward strands, from which the sequencing starts. Each forward 

strand is protected at the 3’ ends. The sequencing by synthesis begins when the primer 

attaches to the forward strand. All nucleotides have a fluorescent group at 3’. Every time a 

nucleotide is incorporated, the fluorochrome is excited by a laser and the unique luminous 

signal is recognised and recorded. After the 3’ fluorescent group is removed the polymerase 

can continue by adding the next nucleotide. This allows millions of clusters to be sequenced 

in parallel. Once the last nucleotide of the fragment has been read, the product is washed 

away, and the index 1 primer is released. After the index is read and washed away, the 3’ end 

of the fragments are deprotected, hence, the fragment can fold to bind the second oligo on 

the flow cell. The fragment is then sequenced, read and the 3’ end are again blocked. The 
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forward strand is then removed. The second read prime is released and the reverse strand 

can be sequenced.  The product is then washed away.  

During each cycle of sequencing, base calls for each cluster are stored by a preinstalled 

software in the MiSeq in a file called binary base call (BCL), which is then converted for the 

data analysis. The short fragments of sequenced DNA are called reads. The sequences from 

pooled sample libraries are de-multiplexed and separated based on the indexes introduced. 

For each sample, two FASTQ file are created, one for the forward and one for the reverse 

fragment., reads of the same fragments are clustered and forward and revers reads are 

paired. This allows the software to crated contiguous sequences which can then be aligned to 

the reference genome. Each file contains data of the sequence and quality information, such 

as the Phred quality score (Q-score), which represents the estimated probability that the base 

inserted during the sequencing was incorrect. 

2.2.8 Variant calling and annotation 

The FASTQ files were then processed to obtained readable files in excel. The variant calling is 

the process through which any variation from the genome of reference is detected. The 

variant calling was performed using CLCbio Genomic Workbench (Qiagen) software. Several 

bioinformatic tools are present in the CLCbio platform, used to align the sequences, identify 

the variants, and give some of the biological information of the gene and the variant. This is 

possible with the creation of a workflow which is the interface through which all the tools 

used for the analysis are connected. The output of one tool is, indeed, used as input for the 

subsequent tool. Although each tool presents default settings, the workflow can be 

configurated, as preferred by the user, and used to analyse all samples applying the same 

parameters each time. Once configurated the workflow and input the FASTQ file, the reads 

were aligned to the GRCh37/hg19 human reference genome, and in case of misalignment, 

due to insertions and deletions, the “local realignment” tool was able to realign the sequences 

to the reference genome.  

Following the alignment, several tools were set up for the variant calling. The first was the 

“basic variant detection” tool which applies quality filters and threshold to assess the 

coverage of a base and its neighbourhood bases. In a DNA region sequenced, each base is 

covered n times by a certain number of reads. This is called read depth and a base should be 
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covered at least 20 times (by 20 read) for it to be acceptable. The “Fixed Ploidy Variant 

Detection” tool was used to identify variants with high sensitivity and specificity. The tool was 

set to 80, considering a base as a variant only when 80% of its reads display a different 

nucleotide form the reference. The output of this tool was used in the workflow to add 

information about overlapping genes, amino acid changes, information including dbSNP ID of 

the variant, using several genome databases (i.e., dbSNP, 1000 Genome project) as reference. 

At the end of the variant calling and annotation, CLCbio platform released an individual file 

for each patient, called VCF (variant calling format), which stored all the sequence information 

for each sample analysed. 

2.2.9 Variant filtering 

After completing the variant calling and annotation, each variant was checked in order to 

have the dbSNP. In case the ID was missing, it was added manually after consulting the online 

public genome database gnomAD. From the VCF file of each patient, all synonymous variants 

were removed all the non-synonymous variants were combined in a single excel spreadsheet. 

In the absence of a control population for this study, the minor allele frequency (MAF) 

information of each variant was acquired from the gnomAD browser (v2.0.1 and v2.1.1), the 

genomic association online database (previously known as Ex-ac) that collects genome and 

exome sequencing data from several sequencing projects. As the study population consists of 

several ethnicities, from gnomAD the total of all population present in the database was 

considered for the comparison. In this database are also registered information about the 

type of the variant, its SNP ID and, for some variants, it includes also the results from two 

online in silico tools, SIFT and PolyPhen-2, which predict the biological faction of each variant 

on the protein transcript(s). 

After this manual filtering, with the use of the SNP & Variation Suite 8 (SVS) software, 

downloaded from the Golden Helix website (Golden Helix, Inc., US), a second filtering and 

annotation was performed. This analysis removed all non-coding variants and identified all 

coding variants. The database employed to evaluate the predicted functional effect for this 

study human coding variants (including splice region) was dbNSFP v3, which presents 

6 different algorithms used for the purpose: SIFT, PolyPhen-2, MutationTaster, 

MutationAssessor, FATHMM and FATHMM-MKL Coding. The database summed the results of 
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benign and damaging effect obtained from the 6 different prediction tools, giving a final score 

between 0 and 6. In the case a variant scored 3 or more, for this study, it was considered as 

damaging. Variants with a score from 0 to 2 were considered benign. 

In addition, the alteration of each variant on the protein sequence was annotated using the 

RefSeq Genes 105 Interim v1, NCBI database based on the GRCh37/hg19 human reference 

genome. 

The candidate variants, obtained from the variant filtering and annotation steps described, 

were then analysed to identify any association with age, fibrosis stage, steatosis score, NAS 

score and BMI z score using the Spearman correlation in GraphpPad Prism.  

2.2.10 Rare-variant filtering and association analysis  

Based on the hypothesis that rare and damaging variants are more likely to be pathogenic 

and may account for the missing heritability observed in NAFLD, a further step was taken to 

identify and select candidate rare variants for the association analysis. The tool for the 

selection of rare variants in SVS uses several databases: gnomAD, 1000 Genome Phase 3 

dataset, and the NHLBI Exome sequencing project. The filter was set to select the variants 

when the alternative allele MAF was less or equal than 0.01, including missing values.  

Patients were divided in subgroups based on the traits, as shown in the following table: 

Table 2. Paediatric cohort of patient with NAFLD divided in subgroups based on traits 

Steatosis severity 
Defined as 0 when steatosis score < 2 (72)  

Defined as 1 when steatosis score ≥ 2 (27) 

Fibrosis severity 
Defined as 0 when fibrosis stage <2 (66) 

Defined as 1 when fibrosis stage ≥2 (33) 

NAS score 
Defined as 0 when NAS score ≤ 3 (66) 

Defined as 1 when NAS score ≥ 4 (33) 

BMI z score 
Defined as 0 when BMI z score < 1.50 (80) 

Defined as 1 when BMI z score ≥ 1.50 (19) 

Age (years) 
Defined as 0 when year of age ≤ 11 (63) 

Defined as 1 when years of age ≥ 12 (36) 

The paediatric cohort of patients with NAFLD was divided in 2 subgroups for each of the traits 

analysed.  

Abbreviations: BMI = body mass index; NAS = NAFLD activity score. 
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The output of this process determined the candidate rare variants that underwent “the 

association test for rare variants of complex disease” analysis tool in SVS. 

 

There are several methods of association tests that can be adopted for the analysis of low-

frequency and rare variants that are gene or region based. Among these, the gene- or region-

based aggregation tests are more powerful that the single-variant tests. These tests bin all 

variants present in a gene or a genetic region for the test. For example, burden tests 

aggregate variants in a gene region to create a single genetic score which is then used to test 

for association with a trait. There are also some burden tests which are not based on the 

regression model; among these, the CMC method bins variants in MAF categories using the 

Hoteling’s test. However, these types of burden tests have usually the limitation of assuming 

that the effect of each variant is in the same direction and this reduces the power of the test 

in presence of trait-increasing and -decreasing variants (Lee et al., 2014; Wu et al., 2011). To 

overcome these limitations, variance-component tests, such as the sequence kernel 

association test (SKAT),(Wu et al., 2011) are used to identify variants in a gene region creating 

groups for the evaluation of the distribution of the aggregated score of single variants(Lee et 

al., 2014). Based on a multiple regression model, SKAT considers variants with positive and 

negative effects taking into account that the effect of a variant can influence a phenotype 

with different magnitude; hence, it has more power than burden test when the genetic 

regions present noncausal variants or variants influence the traits in opposite direction (Lee 

et al., 2014). To overcome the limitations of both tests, combined tests have been developed, 

such as the Optimized SKAT (SKAT-O) (Lee et al., 2014). 

The association between rare variants and traits was assessed dividing the cohort in two 

groups for the same trait. The cohort was divided (as shown in Table 2). 

2.2.11 Risk score for all genes 

The risk score for all variants was calculated to evaluate the presence of an association with 

traits. For each patient 5 score categories were calculated.  

- all variants identified in the patient from the panel (genes from the whole panel 

including genes involved in the BA metabolism and transport) 

- all damaging common variants in genes included in this chapter (Table 4 to Table 9) 
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- all damaging common variants excluding rare damaging variants (this also included 

also variants found in genes involved in BA metabolism and transport) 

- all rare damaging common variants excluding common damaging variants (this also 

included variants found in genes involved in BA metabolism and transport) 

- all damaging common variants in genes involved in BA metabolism and transport 

(which results are provided in Table 25) 

For category and individual patient, the risk allele(s) for each variant in each gene were 

summed in order to obtain a risk score. 

2.2.12 Statistical analysis 

For all variants, Spearman correlation was employed to investigate the presence of any 

association between variants in a gene and each individual trait selected. The association 

between genetic risk factor and the traits selected simple regression was performed on 

StatGraphics19 centurion. The rare variant association analysis was performed to identify any 

association between rare variants and selected traits, using SVS (Golden Helix, Inc., US). To 

carry out the rare variant association test, the Variant Analysis Tutorial (8.1) was downloaded 

from the Golden Helix website (https://www.goldenhelix.com/learning/knowledge-base/svs-

rare-variant-analysis-tutorial). The analysis on SVS performed included several tests: 

hoteling’s t test, burden test (ρ=1), SKAT (ρ=0.25 and ρ=0) and SKAT-O. 

For the risk scores analysis the simple linear regression was emploied using Statgraphics 

centurion 19. P values were adjusted for multiple testing, dividing the pvalue threshold 0.05 

by x (x = number of hypotheses tested). 
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2.3 RESULTS 

2.3.1 Clinical profile of study population 

For this study, a total of 100 patients who attended the King’s College Hospital Paediatric Liver 

Service with a diagnosis of NAFLD was selected. A full data set was available for 99 patients 

of which data are reported in Table 3. The presence of more males than females indicates the 

disease prevalence in this age range and in the KCH Paediatric Liver Centre. The median age 

at biopsy was 13 years (11, 14). The ethnic background of this cohort was diverse, although 

74.7% were Caucasian, reflecting the referring catchment of South East England. The median 

BMI z score was 1.97 (IQR: 1.61, 2.23); most patients (80.8%) had a BMI z score over 1.50, of 

which 70% was over 1.90. Median (HOMA) IR index was at 3.6 (IQR: 3, 6) and 41.4% were 

insulin resistant with a fasting insulin level of >15 IU/L which was deemed sufficiently 

abnormal by endocrinology to be suggestive of insulin resistance. In this cohort 6% were 

glucose intolerant, though none had a formal diagnosis of type 2 diabetes. Liver 

transaminases were elevated in the majority of patients, 71.7% had ALT >40 IU/L and AST 

>33 IU/L and 20.2% had GGT >55 IU/L. Spleen size was increased (defined as -when it 

measured more than 1 cm above the 90th centile for age and height) in 53.5% of patients. 

Ultrasound was used to measure the presence and degree of fatty change in the first instance, 

although steatosis was formally quantified using liver biopsy. 

Overall, 54.5% of the cohort presented a severe phenotype of NAFLD with a steatosis grade 

greater than 2 and fibrosis stage greater than 2, and within this subgroup 35.2% was below 

12 years of age. 

For some of the statistical analysis the cohort was divided based on their age (≥12 or 

<12 years) and BMI z score (≥1.50 or <1.50) and in less and more severe based on steatosis 

score, fibrosis stage and NAS score, as reported in Table 2. 

Table 3. Clinical features of paediatric cohort with NAFLD (n=99) 

 Median (IQR) 

Age (years) 13 (11, 14) 

Sex n (%) 

Male 62 (62.6%) 

Female 37 (37.4%) 
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 Median (IQR) 

Ethnicity n (%) 

Caucasian 74 (74.7%) 

Caucasian-Asian 14 (14.1%) 

Asian 9 (9.1%) 

Hispanic 2 (2.1%) 

BMI z score 1.97 (1.59, 2.25) 

Homa IR Index 3.60 (1.4, 6.2) 

ALT (IU/L) 66 (44, 94) 

AST (IU/L) 42 (33, 61) 

GGT (IU/L) 28 (18, 44) 

Steatosis Score 

0 - 1 27 (27.3%) 

2 20 (20.2%) 

3 52 (52.5%) 

Inflammation 

0 10 (10.1%) 

1 69 (69.7%) 

2 20 (20.2%) 

Ballooning 

0 32 (32.3%) 

1 40 (40.4%) 

2 27 (27.3%) 

NAS 

0, 1,2 17 (17.2%) 

3,4 33 (33.3%) 

5,6,7 49 (49.5%) 

Fibrosis 

1 1 (1%) 

1A 1 (1%) 

1C 31 (31.3%) 

2 31 (31.3%) 

3 33 (33.3%) 

4 2 (2.1%) 

The cohort included 99 patients. British, Mediterranean, Polish, Turkish, East Europe and Middle East 

were grouped under the term Caucasian. Under the term Asian the following groups were grouped: 

Chinese, Pakistani, Vietnamese, Asian and Indian. Abbreviations: ALT = alanine aminotransferase; 
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AST = aspartate aminotransferase; BMI = body mass index; HOMA IR = homeostatic assessment for 

insulin resistance; GGT = gamma-glutamyl transferase; NAS = NAFLD active score. 

 

2.3.2 Panel of Genes 

The total candidate genes selected for the NGS panel was 135, and in addition there were 42 

SNPs. The focus of this chapter is spart of the genes and SNPs which exclude the genes 

belonging to the bile acid metabolism and transport, which will be discussed in Section 3. 

Overall, 109 genes and 37 SNPs were from pathways that are involved in NAFLD onset and 

progression, identified by familial aggregation studies, GWAS, EWAS, and candidate genes 

association studies. These selected genes were categorised in the following tables (Table 4 to 

Table 8), based on the principal pathway they influence. Table 4 and Table 8 include genes 

involved in the glucose and lipid metabolisms, respectively. Genes involved in the oxidative 

stress and inflammation are listed in Table 6 and Table 7 respectively. Table 8 includes genes 

that are expressed physiologically in the liver, such as several cytochrome P enzymes; genes 

expressed in liver cells during or as a consequence of liver injury such as HFE, PDGFα, and 

LUM; genes that have been proved to have a crucial role in NAFLD-related conditions such as 

cardiovascular disease (AGT and AGTR1), diabetes or obesity (HP, NEGR1, and NEUROD1); 

and, lastly, genes that were previously associated with histological features of NAFLD (PZP, 

SERPINA1, and EHBP1L1). 

The SNPs included in the panel are provided in Table 9 and were divided in: (a) SNPs from 

intron regions of genes already included in the panel; and (b) SNPs previously described in 

genes which were not included in the panel for the sequencing. The intron SNPs were added 

separately as the design of the panel for the SureSelect QXT target enrichment Kit included 

only exons, excluding noncoding regions. Although their function is still unknown, these SNPs 

were found in several studies and were added to the panel to have an inclusive genetic profile 

of the paediatric cohort of this study.  

The 7 SNPs from genes not included in the panel were found in patents with NAFLD via GWAS 

and they are all in genes that are related to indirect pathways to NAFLD which, however, could 

be involved in disease progression.  
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Table 4. Selected genes (n=9) which modulate the glucose pathway 

GENE PROTEIN DESCRIPTION 

ENPP1 ENPP1 Ectonucleotide pyrophosphatase /phosphodiesterase 1 

GCKR GCKR Glucokinase regulatory protein 

IRS1 IRS1 Insulin receptor substrate 1 

PPARꙋ PPARꙋ Peroxisome proliferator-activated receptor gamma 

PPP1R3B PPP1R3B Protein phosphatase 1 regulatory subunit 3b 

PTEN PTEN Phosphatase and tensin homolog 

SLC2A1 GLUT1 Glucose transporter type 1 

SLC2A2 GLUT2 Glucose transporter type 2 

TCF7L2 TCF4 T-cell factor 4 

REFERENCES 

(Anstee et al., 2016; Dröge et al., 2015; Luo et al., 2016; Macaluso, 2015; Okamoto et al., 2002; 

Sharma et al., 2015; Tilg and Moschen, 2010) 

Glucose metabolism is strictly related to insulin resistance and patients with NAFLD have been found 

to frequently be insulin resistant. Moreover, glucose metabolism is linked to other metabolisms, such 

as lipid and energy metabolism, influencing each other reciprocally. Alterations and variants in genes 

belonging to glucose metabolism have been shown to be present in patients with NAFLD. 

 

Table 5. Selected genes (n=44) which modulate the lipid pathway 

GENE PROTEIN DESCRIPTION 

ABHD5 ABHD5 Abhydrolase domain containing 5 

ADRB2 ADRB2 Beta-adrenergic receptor 2 

ADRB3 ADRB3 Beta-adrenergic receptor 3 

ADIPOQ ADIPOQ Adiponectin 

ADIPOR2 ADIPOR2 Adiponectine receptor 2 

APOA5 APOA5 Apolipoprotein a5 

APOB APOB Apolipoprotein b 

APOC3 APOC3 Apolipoprotein c3 

APOE APOE Apolipoprotein e 

CD36 CD36 Cd36 molecule 

CETP CETP Cholesteryl ester transfer protein 

DGAT1 DGAT1 Diacylglycerol o-acyltransferase 1 

FABP2 FABP2 Fatty acid binding protein 2, 
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GENE PROTEIN DESCRIPTION 

FABP4 FABP4 Fatty acid binding protein 4 

FABP6 FABP6 Fatty acid binding protein 6 

FADS1 FADS1 Fatty acid desaturase 1 

FDFT1 FDFT1 Farnesyl diphosphate farnesyl transferase 1 

FTO FTO Alpha-ketoglutarate dependent dioxygenase 

IRGM IRGM Immunity related gtpase m 

KLF6 KLF6 Kruppel-like factor6 

LEPR LEPR Leptin receptor 

LIPC LIPC Hepatic lipase 

LPIN1 LPIN1 Lipin 1 

LPL LPL Lipoprotein lipase 

LYPLAL1 LYPLAL1 Lysophospholipase-like protein 1 

LTBP3 LTBP3 Latent transforming growth factor-beta-protein 3 

MBOAT7 MBOAT7 
Membrane bound o-acyltransferase domain 

containing 7 

MC4R MC4R Melanocortin 4 receptor 

MTTP MTTP Microsomal triglyceride transfer protein 

NCAN NCAN Neurocan 

PEMT PEMT Phosphatidylethanolamine n-methyltransferase 

PNPLA3 PNPLA3 Adiponutrin 

PPARA PPARA Peroxisome proliferator activated receptor alpha 

PPARGC1A PPARGC1A 
Peroxisome proliferator-activated receptor gamma 

coactivator 1 alpha 

PCSK9 PCSK9 
Proprotein convertase subtilisin/  

kexin type 9 

RETN RETN Resistin 

RBP4 RBP4 Retinol binding protein 4 

SCP2 SCP2 Sterol carrier protein 2 

SLC27A5 FATP5 Fatty acid transport protein 5) 

SLC27A2 FATP2 Fatty acid transport protein 2 

SREBF1 SREBF1 Sterol regulatory element-binding protein 1c 

TGFB1 TGFB1 Transforming growth factor beta1 

TM6SF2 TM6SF2 Transmembrane 6 superfamily member 2 

TRIB1 TRIB1 Tribbles pseudokinase1 
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REFERENCES 

(Chen et al., 2017; Dröge et al., 2015; Fall and Ingelsson, 2014; Guo et al., 2013; Hernaez, 2012; 

Kahali et al., 2015; Lin et al., 2016; Liu et al., 2018, 2016; Macaluso, 2015; Mancina et al., 2016b; Nie 

et al., 2012; Rowell and Anstee, 2015; Ruscica et al., 2016; Sharma et al., 2015; Tilg and Moschen, 

2010) 

Lipid metabolism is one of the first pathways that is altered in NAFLD. Abnormalities in genes 

belonging to this crucial pathway have been identified in patients with NAFLD and associated with 

histological features of disease. 

 

Table 6. Selected genes (n=13) involved in the oxidative stress pathway 

GENE PROTEIN DESCRIPTION 

CCL2 MCP1 Monocyte chemotactic protein 1 

CYP2E1 CYP2E1 Cytochrome p450 2e1 

GCLC GCLC Glutamate-cysteine ligase 

GSTM1 GSTM1 Glutathione s-transferase mu 1 

GSTT1 GSTT1 Glutathione s-transferase theta 1 

GSTK1 GSTK1 Glutathione s-transferase kappa 1 

GSTP1 GSTP1 Glutathione s-transferase pi 1 

MTHFR MTHFR Methylenetetrahydrofolate reductase 

SAMM50 SAMM50 Sorting and assembly machinery component 

SOD2 SOD2 Superoxide dismutase 2 

TMPRSS6 TMPRSS6 Transmembrane protease serine 6 

UCP2 UCP2 Uncoupling protein 2 

UCP3 UCP3 Uncoupling protein 3 

REFERENCES 

(Anstee et al., 2016; Haukeland et al., 2006; Macaluso, 2015; Sharma et al., 2015) 

The oxidative stress pathway is centrally involved in the pathogenesis of NAFLD, in particular in the 

progression of the disease. As a consequence of the oxidative stress there is a disruption in 

mitochondria and ER which increases the liver damage and leads to inflammation. 

 

Table 7. Selected genes (n=17) which modify the inflammation pathway 

GENE PROTEIN DESCRIPTION 

APPL1 DIP13α Dcc-interacting protein 13-alpha 

APPL2 DIP13β Dcc-interacting protein 13-beta 
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CD14 CD14 Cd14 molecule 

CDKN1A CDKN1A Cyclin-dependent kinase inhibitor 1a 

COL13A1 COL13A1 Collagen type xiii alpha1 

CRACR2A EFCAB4B Ef-hand calcium binding domain 4b 

FABP1 FABP1 Fatty acid binding protein 1 

IFNL4 IFNL4 Interferon lambda 4 

IL10 IL10 Interleukin-10 

IL-6 IL-6 Interleukin-6 

IL1B IL1B Interleukin-1 beta 

NLRP6 NLRP6 Nlr family pyrin domain containing 6 

NLRP3 NLRP3 Nlr family pyrin domain containing 3 

PON1 PON1 Paraoxonase 1 

TLR4 TLR4 Toll like receptor 4 

TNFΑ TNFα Tumor necrosis factor alpha 

TNFSF10 TRAIL Tumor necrosis factor 

REFERENCES 

(Anstee et al., 2011, 2016; Hernaez, 2012; Macaluso, 2015; Mukai et al., 2017; Oliveira and Stefano, 

2015; Rabelo et al., 2010; Sharma et al., 2015; Wang et al., 2017; Wree et al., 2014; Xiao and Tipoe, 

2016) 

Inflammation characterises a more severe form of NAFLD, identified as NASH. Inflammation may 

progress in more severe disease leading to fibrosis. Genes in this table are involved in the 

inflammation response or process and some of their variants have been associated with NAFLD in 

previous studies. 

 

Table 8. Selected genes (n=25) involved in liver injury or pathways and conditions related to 

NAFLD  

GENE PROTEIN DESCRIPTION 

AGT AGT Angiotensin ii 

AGTR1 AGTR1 Angiotensin ii type 1 receptor 

CFTR CFTR Atp-binding cassette, sub-familyc, member2 (cftr) 

CYP4A11 CYP4A11 Cytochrome p450 family 4 subfamily a member 11 

CYP4A22 CYP4A22 Cytochrome p450 family 4 subfamily a member 22 

CYP4B1 CYP4B1 Cytochrome p450 family 4 subfamily b member 1 

CYP4F2 CYP4F2 Cytochrome p450 family 4 subfamily f member 2 
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GENE PROTEIN DESCRIPTION 

CYP4F3 CYP4F3 Cytochrome p450 family 4 subfamily f member 3 

CYP4F8 CYP4F8 Cytochrome p450 family 4 subfamily f member 8 

CYP4F11 CYP4F11 Cytochrome p450 family 4 subfamily f member 11 

CYP4F12 CYP4F12 Cytochrome p450 family 4 subfamily f member 12 

CYP4F22 CYP4F22 Cytochrome p450 family 4 subfamily f member 22 

CYP4V2 CYP4V2 Cytochrome p450 family 4 subfamily v member 2 

CYP4X1 CYP4X1 Cytochrome p450 family 4 subfamily x member 1 

CYP4Z1 CYP4Z1 Cytochrome p450 family 4 subfamily z member 1 

HFE HFE Hereditary hemochromatosis protein 

HP HP Haptoglobin 

LUM LUM Lumican 

NEGR1 NEGR1 Neuronal growth regulator 1 

NEUROD1 NEUROD1 Neuronal differentiation 1 

PARVB PARVB Parvin beta 

PDGFα PDGFα Platelet-derivatived growth factore alpha) 

PZP PZP Alpha-2-macroglobulin like 

SERPINA1 SERPINA1 Serpin peptidase inhibitor, clade a, member 1 

UGT1A1 UGT1A1 Glucoronosyltransferase 1 family, polypetide a1 

REFERENCES 

(Anstee et al., 2016; Gerhard et al., 2013; Hernaez, 2012; Kim et al., 2012; Macaluso, 2015; Sharma 
et al., 2015; Tilg and Moschen, 2010) 

Genes that have been associated with conditions such as diabetes and obesity, or genes involved in 

liver injury, for example activated in presence of a fibrotic stimulus have been found to be altered in 

patients with NAFLD. Variants in these genes could lead to a more severe progression of NAFLD in a 

shorter time also even in absence of other risk factors. No References are provided for all CYP genes 

as they were chosen for their unique expression in the liver. 

 

Table 9. SNPs selected (n=42) from previous GWAS 

Intron SNPs in genes included in the panel (n = 35) 

rs780094 in GCKR 

rs1800562 and rs1799945in HFE 

rs4491934 in TNFSF10 

rs11235972 in UCP3 
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rs12979860 in IFNL4 

rs1800795 in IL6 

rs1501299 and rs3774261 in ADIPOQ 

rs2645424 in FDFT1 

rs13412852 in LPIN1 

rs12137855 in LYPLAL1 

rs1800591, rs1800804, rs1057613, and rs3805335 in MTTP 

rs2290602 in PPARGC1A 

rs3745367 in RETN 

rs10401969 in TM6SF2 

rs3772622, rs3772633, rs2276736, rs3772630, and rs3772627 in AGTR1 

rs762623 in CDKN1A 

rs1227756 in COL13A1 

rs887304 in EFCAB4B 

rs3750861 in KLF6 

rs343062 in PDGFα 

rs4240624 in PPP1R3B 

SNPs (n = 7) 

rs695366 and rs575854710 in LARGE-UCP2 

rs6591182 in EHBP1L1-LTBP3 

rs2710833 in DDX60L 

rs1421201 in SLC14A2 

rs552074314 and rs2499604 in RYR2 

REFERENCES 

(Anstee et al., 2016; Dröge et al., 2015; Fall and Ingelsson, 2014; Hernaez, 2012; Macaluso, 2015; 

Oliveira and Stefano, 2015; Sharma et al., 2015) 

The SNPs provided in this table were previously identified in patients with NAFLD via GWAS. Intron 

SNPS are difficult to link to causal genes, because of the luck of information regarding the function of 

noncoding regions in the genome. GWAS technology identifies the possible loci or region in which a 

putative gene, linked to disease, is located; this is done by using millions of SNPs. The few SNPs 

selected in genes that are not part of the panel are involved with alterations in secondary pathways, 

to the one primarily investigated in this study, which, however, could increase the risk of disease 

progression. 

 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1421201
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2.3.3 Variants identification after filtering  

Overall, after completion of the filtering process with CLCBio, 129 genes passed the quality 

checkpoints (Figure 2). The 6 genes of which data did not pass the quality checkpoints were: 

ADIPOR2, APOC3, CCL2, LUM, and FGF19, and SLC51B form the BA pathways. All synonymous 

variants were manually removed from the filtered data. A total number of 870 

non-synonymous variants were found for the study cohort, including the 33 intron SNPs and 

the 7 SNPs. In this chapter, variants in genes involved in glucose and lipid metabolism, 

inflammation and oxidative stress, and liver injury will be presented, for a total of 105 genes, 

there were 663 variants found in patients. Of the remaining 24 genes examined in the panel, 

170 variants are involved in bile acid homeostasis and they will be separately described in 

Section 3. In genes from the aforementioned pathways, 663 variants were found, in the 99 

patients included in the data set. A total of 21 unknown variants were also found Table 10.  

After variant filtering on SVS software, 475 variants in 95 genes were identified as 

benign/tolerated or damaging. The SVS software removed every variant in noncoding regions 

and all variants which were not reported in the databases used for the filtering by the 

software. From the analysis, 311 variants (65.5%) were classified as benign/tolerated, while 

164 (34.5%) were predicted as damaging, with a score from 3 to 6. Among the damaging 

variants 62 (37.8%) were common variants and 102 (62.2%) were rare variants. 

 



81 

 

 

Figure 2. Filtered genes and variants. After variant calling, 129 genes, 870 variants passed the 

quality control. Among these, 663 variants were found in genes belonging to the several pathways 

described in this chapter, while 169 variants were found in 24 genes belonging to the bile acid 

pathway. 

 

Table 10. Number and type of variants found in 99 patients 

                       Total 663 variants and 32 SNPs 

Missense  465 

Non-coding  185 

Frameshift  6 

Start lost or stop gained  6 

Inframe Del/Ins  12 

Unknown  21 

Non-coding variants include intronic variants, variants in splice region and, in 3’ UTR or 5’ UTR. 

Abbreviations: Del = deletion; Ins = insertion; SNP = Single Nucleotide Polymorphism. 

After variant calling  

Panel for NAFLD  

candidate gene study 

105 genes 

663 variants  

24 genes 

170 variants 

3 SNPs 

Genes belonging to  

several pathways 

Genes belonging to 

 bile acid pathway 

129 genes 

870 variants  

135 genes 
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2.3.4 Previously established genes associated with NAFLD: PNPLA3, TM6SF2, GCKR and 

MBOAT7  

The study cohort carried at least one of the variants of the 4 genes which have most 

commonly been described as associated with NAFLD in patients with NAFLD: PNPLA3, 

TM6SF2, GCKR and MBOAT7 (Table 11).  

2.3.4.1 PNPLA3 

In this paediatric cohort, 67 patients (67.6%) presented the PNPLA3 rs738409 risk allele, with 

a MAF 45% (25.5% homozygous) and similar to the MAF reported in studies done in paediatric 

as well as adult patients with NAFLD (Hudert et al., 2019; Kawaguchi et al., 2018; Namjou et 

al., 2019; Speliotes et al., 2011). The distributions of steatosis grade and fibrosis stages 

between patients homozygous for the wt [C] allele and patients heterozygous or homozygous 

for the minor allele [G] (I148M CG/GG) is provided in Figure 3. The rs738409 risk allele [G] is 

considered the major determinant for NAFLD susceptibility. In this study cohort, there was a 

visible difference in the distribution of steatosis, where patients with the I148M CG/GG had 

more severe steatosis compared to the patients with the wt allele, I148M CC, while fibrosis 

seemed to be similarly distributed in the two subgroups. 

In previous studies, in adult population, this SNP has been associated with steatosis, fibrosis 

and increased risk of development of HCC (Singal et al., 2014; Trépo et al., 2014). One recent 

study 49% of the paediatric patients with NAFLD had at least one risk allele [G] of the PNPLA3 

rs738409 (Hudert et al., 2019) and found the SNP to be strongly associated with steatosis and 

portal fibrosis.  



83 

 

 
Figure 3. Distribution of the risk allele of PNPLA3. The distributions of the severity of steatosis and 

fibrosis were reported by dividing the cohort in two subgroups based on the presence or the absence 

of at least one risk allele. The risk allele for the rs738409 in pnpla3 is [G].  

Abbreviations: C = Cytosine; G = Guanine. 

 

2.3.4.2 TM6SF2 

The risk allele [T] for TM6SF2 rs58542926 variant was present in 32 patients (32.3%). The 

rs58542926 MAF in this cohort was 18% (10.8% homozygous), and it was also higher than the 

MAF reported in previous studies (as showed in Table 11). As depicted in Figure 4, patients 

with E167K [T] showed a greater steatosis grade and fibrosis stage when compared with 

patients with wt allele [C]. 

In previous studies, children carrying this variant risk allele had higher levels of MRI hepatic 

fat content (Goffredo et al., 2016) and lower levels of VLDL (Grandone et al., 2016). In a recent 

study, the presence of rs58542926 [T] was not associated with any histological features of 

NAFLD in a paediatric cohort (Hudert et al., 2019). 
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Figure 4. Distribution of the risk allele of TM6SF2. The distribution of the severity of steatosis and 

fibrosis was reported by dividing the cohort in two subgroups based on the presence or the absence 

of at least one risk allele. The risk allele for tm6sf2 rs58542926 is [T]. 

Abbreviations: C = Cytosine; T = Thymine. 

 

2.3.4.3 GCKR 

The variant rs1260326 P446L T>C in GCKR was present in 72 patients (72.7%) of this study 

cohort. The MAF for the risk allele [C] was 50% (27.2% had it in homozygosity). 

The distribution of severe steatosis and fibrosis seemed to be independent from the presence 

of the risk allele; indeed, the subgroup with the wt allele [T] presented a high percentage of 

patients with severe steatosis (85%) and fibrosis (83%), to indicate that, at least in this cohort, 

the effect of this variants might be small when compared with other well-established variants.  

Furthermore, an intron variant, the rs780094 in GCKR, was also found in this study cohort 

(Table 11) which followed the same distribution observed for the rs1260326 variant, with a 

MAF of 50% (28,2% in homozygosity). 

In a previous study in children with NAFLD, the variant rs1260326 was associated with fatty 

liver, elevated TG and large VLDL (Santoro et al., 2012). A more recent study found rs1260326 

and rs780094 to be correlated and also increase the risk of fibrosis, as the presence of both has a 

biological effect on the protein, by reducing the protein levels (Hudert et al., 2019). 
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Figure 5. Distribution of the risk allele of GCKR. The distribution of the severity of steatosis and fibrosis 

was reported by dividing the cohort in two subgroups based on the presence or the absence of at least 

one risk allele. The risk allele for the rs1260326 in GCKR is [C].  

Abbreviations: C = Cytosine; T = Thymine. 

 

2.3.4.4 MBOAT7 

The MAF for the rs641738 variant on MBOAT7 was 44% (22.7% homozygous) in this cohort. 

A similar distribution was observed for the MBOAT7 rs641738 risk allele [C] (Figure 6) which 

was present in 65.3% of the study population. Recently, MBOAT7 rs641738 [T] has been linked 

to hepatic fat content and severity of fibrosis in subject of European ancestries (Mancina et 

al., 2016) and in Caucasian (Teo et al., 2021), This recent study confirmed the smaller effect 

size of the rs641738 [T] on steatosis, if compared with PNPLA3 rs738409 and TM6SF2 

rs58542926. None of these findings, however, could be replicated in children (Hudert et al., 

2019; Teo et al., 2021). Another variant in mboat7 is the variant rs626283 [C], which has been 

associated in Caucasian children with hepatic fat content (Umano et al., 2018); however this 

was not found in our cohort. 
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Figure 6 Distribution of the risk allele of MBOAT7. The distribution of the severity of steatosis 

and fibrosis was reported by dividing the cohort in two groups based on the presence or the 

absence of at least one risk allele. The risk allele for MBOAT7 rs641738 is C. 

Abbreviations: C = Cytosine; T = Thymine 
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Table 11. MAF of of PNPLA3, TM6SF2, GCKR and MBOAT7 in cohort of patients with NAFLD 

Gene and Variant 
MAF of Paediatric 

study cohort 
MAF in patients with NAFLD in previous studies 

MAF General 
population (gnomAD) 

ASSOCIATED HISTOLOGICAL 
FEATURES  

PNPLA3 rs738409 

I148M C>G 

45% 

(Hom: 25.5%) 

46.6% - (Chung et al., 2018) Korean population 

48.4% - (Kawaguchi et al., 2012) Japanese 

population 

41.0% - (Namjou et al., 2019)European/ US adult 

and paediatric population 

49.0% - (Speliotes et al., 2011) 

European/US/Iceland population 

49.0% in Children - (Hudert et al., 2019) 

35.9% in Children - (Valenti et al., 2010b) 

27% 

Steatosis 

NASH 

Fibrosis 

HCC 

TM6SF2 rs58542926 

E167K C>T 

18.5% 

(Hom: 10.8%) 

9.0% (Hom: 0%) children (Hudert et al., 2019) 

6.0% Caucasians, 3.3% African American, 8.9% 

Hispanics - (Goffredo et al., 2016) 

6.5% 
Steatosis 

Fibrosis 

GCKR rs1260326 

P446L T>C 

50.5% 

(Hom: 27.7%) 

57%(Kawaguchi et al., 2018) 

52% (Hom: 26%) Children (Hudert et al., 2019) 
63.7% 

increased HTGC 

NAFLD fibrosis 

GCKR rs780094 

intronic 

50.5% 

(Hom: 28.7%) 

57% (Kawaguchi et al., 2018) Japanese population 

52% (Hom: 26%) children (Hudert et al., 2019) 
67% 

Increased TG, severe 

Steatosis and fibrosis MBOAT7 rs641738 

G17E T>C 

44% 

(Hom 22.7%) 
44% (Hom: 23%) (Hudert et al., 2019) 40 % 

MAF between paediatric cohort of patients with NAFLD was comparable with the MAF from other populations of patients with NAFLD.  

Abbreviations: A = Adenine; C = Cytosine; G = Guanine; Hom = Homozygous; MAF = minor allele frequency; T = Thymine 
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2.3.4.5 Genetic Risk score in paediatric cohort of children with NAFLD 

Based on the fact that the effect of each variant varies, with a different effect on disease 

phenotype and pathogenesis, a risk score was calculated and provided in Figure 7. The 

majority of the study population had a risk score ≥3. 

For the simple regression analysis preformed no association was found between genetic risk 

factors of the 4 genes and the histological features. 

 

 

Figure 7. Distribution of risk scores for PNPLA3, TM6SF2, GCKR and MBOAT7 in study population. 

The majority of patients showed the presence with 3 variants among the established genes 

associated with NAFLD. 

 

2.3.5 Other potential pathogenic common variants identified through GWAS studies 

Apart from genes discussed in Section 2.3.4 and their most known variants, several other 

genes in literature have been identified in populations with NAFLD in previous studies. These 

genes were included in the panel for the sequencing and some risk alleles have been found in 

this study population (Table 12). Some of these variants have been previously associated with 

steatosis, NASH, and fibrosis. In Table 13 are provided the identified SNPs that were included 

in the panel.  
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The MAF of EPPN1 rs1044498 was 16% for this paediatric cohort of patients with NAFLD while 

IRS1 rs1801278 MAF was 6%. The MAF were comparable to the one observed in other 

population with NAFLD. In particular, 4 patients out of 11 had both variants. Both these 

variants have been found together to be related with severe fibrosis and reduced insulin 

signalling due to the activity of EPPN1 rs1044498 on IRS1 (Dongiovanni et al., 2010).  

The PNPLA3 rs2294918 [A] was found in 90 patients (90.9%) of this paediatric cohort of 

patients with NAFLD (MAF of 72%, 61.2% homozygous). The variant was found to be 

overrepresented in a study done by Donati et al. (2016). The majority of patients (n=88 

[88.9%]) with at least 1 risk allele hadlobular inflammation; 75.6% (55.9% homozygous) of the 

[A] carriers had a grade of steatosis equal or greater than 2; and 65.5% (39.0% homozygous) 

had a fibrosis stage equal or greater than 2.  

The rs4880 in SOD2 was found in 72 patients. Among the patients with the variant, 52 (52.5%) 

had steatosis ≥2 and 46 patients (46.5%) had Fibrosis ≥2. SOD2 encodes for an important 

enzyme that works toward reducing ROS in mitochondria; therefore, it has been associated 

with liver damage and fibrosis in NAFLD for its most known variant rs4880 (Al-Serri et al., 

2012; Huang et al., 2014), although there are conflicting and scarce evidence (Vespasiani-

Gentilucci et al., 2018). 
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Table 12. Genes and their common variants found in the paediatric cohort of patients with NAFLD 

GENE AND VARIANTS 
MAF (%) PAEDIATRIC 

COHORT WITH NAFLD 

MAF (%) 

NAFLD 

POPULATIONS 

MAF (%) 

GENERAL 

POPULATION 
PATIENT PHENOTYPE AND METHOD OF DIAGNOSIS 

ENPP1 

rs1044498  A>C 
16% 19% 20.8% 

NAFLD Fibrosis 

(Dongiovanni et al., 2010; Hudert et al., 2019) 

IRS1 

rs1801278  C>T 
6% 6% 5.3% 

NAFLD Fibrosis 

(Dongiovanni et al., 2010; Hudert et al., 2019) 

SOD2 

rs4880  A>G 
46% 53% 48% 

NAFLD fibrosis 

(Hudert et al., 2019; Vespasiani-Gentilucci et al., 

2018)  

PNPLA3 

rs2294918  G>A 
72% 28% 68.1% 

rs2294918 modulates PNPLA3 rs738409 

expression 

(Donati et al., 2016) 

Common variants found in the paediatric cohort of patients with NAFLD.  Data for the MAF from the general population were taken from gnomAD database. 

Abbreviations: A = Adenine; C = Cytosine; G = Guanine; MAF = minor allele frequency; T = Thymine 
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2.3.5.1 SNPs selected  

From the sequencing of the 37 SNPs selected for the study panel, 5 SNPs and 28 intron SNPs 

were found (Table 13).  

Although today little is known about DNA non-coding regions, these intron SNPs could be 

markers for other SNPs in the same sequence or closer genes that are associated with disease.  

Table 13. Results of the SNPs found in the paediatric cohort of patients with NAFLD 

GENE VARIANT ID 
COHORT WITH NAFLD 

MAF (%) 
GENERAL 

POPULATION MAF (%) 

Intron SNPs in genes included in the panel 

ADIPOQ 
rs1501299 26% 30% 

rs3774261 64.5% 56.4% 

AGTR1 

rs3772622 35% 34.9% 

rs3772633 14% 14.1% 

rs2276736 33% 39.1% 

rs3772630 33.5% 44% 

rs3772627 33.5% 44.2% 

CDKN1A rs762623 10% 12.7% 

COL13A1 rs1227756 42.5 46.8 

GCKR rs780094 50% 63.8% 

IFNL4 rs12979860 26% 37.8% 

IL6 rs1800795 7% 8% 

KLF6 rs3750861 7.5% 8% 

LIPIN1 rs13412852 29% 26%% 

LYPLAL1 rs12137855 16% 20% 

MTTP 

rs1800591 19% 24.6% 

rs1800804 22% 24.6% 

rs1057613 47.5% 57.4% 

PDGFA rs343062 0.5% 3% 

PPARGC1A rs2290602 21% 34% 

PPP1R3B rs4240624 83.5% 87.3% 

RETN rs3745367 28% 37.9% 

TM6SF2 rs10401969 18.5 9.8% 
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MAF of SNPs found in paediatric cohort of children with NAFLD. The frequencies of the risk alleles in 

the cohort with NAFLD were similar to the frequencies reported by gnomAD for general population. 

Abbreviations: MAF = minor allele frequency; SNP = single nucleotide polymorphism. 

 

2.3.6 Damaging Rare Variants 

2.3.6.1 Rare Association Analysis in SVS 

From the 164 damaging variants selected by SVS, 102 variants were classified as rare and 

damaging, having a MAF in the general population (gnomAD) below 1%. For the majority of 

these genes had 1 to 3 rare variants were identified, except for APOB, UGT1A1 and CFTR in 

which 9, 6 and 7 rare variants respectively were observed. 

The majority of individuals (62%) presented from 1 to 2 rare damaging variants for each gene, 

except for a small number of individuals (10%) which had more than 3 rare damaging variants 

(Figure 8). 

The SKAT test on rare variants in SVS gave significant p values for some genes analysed (Table 

14); however, after FDR (False Discovery Rate) correction, no statistical association between 

clinical features and any rare variant could be confirmed as statistically significant.  

The specifics of patients with damaging rare variants in two of the most interesting genes, 

FDFT1 and CRACR2A, are provided in detail in Table 15. 

 

GENE VARIANT ID 
COHORT WITH NAFLD 

MAF (%) 
GENERAL 

POPULATION MAF (%) 

UCP3 rs11235972 25% 23.6% 

SNPs 

DDX60L rs2710833 82.8% 83.2% 

LARGE-UCP2 
rs695366 29.5% 27.2% 

rs575854710 1% 0.4% 

EHBP1L1-LTBP3 rs6591182 44.5% 47.6% 

RYR2 
rs552074314 0.5% 0.7% 

rs2499604 47% 53.9% 

SLC14A2 rs1421201 6.5% 49.2% 
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Figure 8. Distribution of rare damaging variants among patients. Twenty-eight patients had no rare 

variants, 32 patients had 1 variant, 30 patients had 2 variants, 4 patients had 3 variants, 5 patients 

had 4 variants and 1 patient had 5 different variants. 

 

Table 14. Association of rare variants from genes involved in BA metabolism with NAFLD  

Genes 

Sequence 

Fibrosis 

(p value) 

Steatosis 

(p value) 

NAS 

(p value) 

UGT1A1  Chr2 

234494085 → 234681945 
0.46 0.05 0.48 

FDFT1  Chr8 

11653082 → 11696818 
0.03 0.01 0.82 

TCF7L2  Chr10 

114710009 → 114927437 
0.82 0.50 0.03 

UCP3  Crh11 

73711326 → 73720282 
0.82 0.39 0.03 

CRACR2A  Chr12 

3724494 → 3862366 
0.31 0.01 0.03 

SLC27A5  Chr15 

59009700 → 59023432 
0.03 0.39 0.31 

TMPRSS6  Chr22 

37461476 → 37505603 
0.03 0.25 0.41 

Rare variants were tested for association with steatosis, fibrosis, NAS, age and BMI z score. Without 

correction, associations were found between steatosis and UGT1A1, EFCAB4B and FDFT1; fibrosis and 

TMPRSS6, FDFT1 and SLC25A2; NAS and EFCAB4B. TCF7L2 and UCP3. 

Abbreviations: Chr = Chromosome; NAS = NAFLD activity score. 
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Table 15. Patients with FDFT1 and CRACR2A rare damaging variants 

 

FDFT1  CRACR2A SLC27A5 
Unknown rs772157622 rs769233178 rs372821272 rs144274217 

Patient 58 Patient 62 Patient 105 Patient 82 Patient 84 

Gender F F M F F 

Age (years) 14 12 11 12 12 

BMI z score 0.31 0.78 1.61 2.08 1.63 

AST (IU/L) 24 77 61 29 35 

ALT (IU/L) 25 78 28 39 46 

GGT (IU/L) 17 21 13 17 17 

HOMA IR NA NA NA 3.46 NA 

Steatosis 0 1 0 1 1 

Fibrosis 1C 1C 2 2 1C 

Inflammation 1 2 1 1 1 

NAS 1 5 1 2 2 

PNPLA3    
rs738409 C>G 

CC CG CG CC CG 

TM6SF2    
rs58542926 C>T 

CC CC CT CT CT 

GCKR    
rs1260326 T>C 

CC TC TC TC TC 

MOBAT7    
rs641738 T>C 

TT TC TT TC CC 

Table provides the demographics, histological features, liver enzyme levels, insulin resistance and the 

genotype for PNPLA3, TM6SF2, GCKR, and MOBAT7. SLC27A5 variants was unknown and located in 

splicing region of the gene. 

Abbreviations: ALT = BMI = body max index; C = Cytosine; F = female; G = Guanine; 

HOMA = homeostasis model assessment; IR = insulin resistance; M = male; NAS = NAFLD activity 

score; T = Thymine.  

 

2.3.6.1 Other rare variants with possibly damaging effects 

In addition to the previous listed rare damaging variants identified by SVS, there were other 

rare variants identified to be possibly damaging (Table 16), in splice donor sequence (2), 

frameshift del/ins (4) and stop gained types (3), in genes already known to be associated to 
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NAFLD by GWAS. The demographics and histological features of the patients presenting rare 

variants in the most interesting genes, divided by the pathways in which they are involved, 

are provided in detail in Table 17 and Table 18. 

Table 16. Damaging rare variants found in study population 

GENE POSITION 
VARIANT ID 

AND TYPE 

MAF IN PEDIATRIC 

COHORT OF PATIENTS 

WITH NAFLD 

(%) 

MAF IN GENARAL 

POPULATION 

(%) 

PCSK9 
Chr1 

55518085 

rs142824171 

G>T 

splice donor 

0.5% 0.0039730% 

LYPLAL1 
Chr1 

219347288 

rs748516284 

G> del 

frameshift 

0.5% 0.01104% 

GCKR 
Chr2 

27730169 

rs573498430 

C>CA 

frameshift 

0.5% 0.1227% 

APPL1 
Chr3 

57302457 

rs948238422 

TAGAG>T 

frameshift 

0.5% 0.03953% 

SOD2 
Chr6 

160147925 

rs1315277242 

C>T 

stop gained 

0.5% 0.0008119% 

CD36 
Chr7 

80276161 

rs1244028699 

GA>A 

frameshift 

0.5% 0.0036570% 

CD36 
Chr7 

80303460 

rs56293647 

TAAG> del 

splice donor 

1% 0.0008227% 

PON1 
Chr7 

95024007 

rs147006695 

G>A 

stop gained 

1% 0.1537% 

PNPLA3 
Chr22 

44328758 

rs144830716 

C>T 

stop gained 

0.5% 0.0007215% 

Extremely rare variants to have a possible damaging effect on the protein. The variants were found in 

genes belonging to lipid and glucose metabolism, and oxidative stress. 

Abbreviations: A = Adenine; C = Cytosine; Chr = chromosome; del = deletion; G = Guanine; 

ID = identification number; MAF = minor allele frequency; T = Thymine. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=56293647
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=147006695
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Table 17. Rare variants in genes involved in glucose and lipid pathways 

 
PCSK rs142824171 

GCKR rs573498430 
and PNPLA3 rs144830716 

CD36 rs1244028699 CD36 rs56293647 

Patient 18  Patient 30 Patient 25 Patient 75 Patient 103 

Gender F M M F F 

Age (years) 13 13 14 12 15 

BMI z score 1.18 2.56 2.86 1.97 2.12 

AST (IU/L) 40 29 70 115 52 

ALT (IU/L) 60 59 108 194 109 

GGT (IU/L) 33 38 28 38 113 

HOMA IR NA NA 6.18 3.68 4.03 

Steatosis 3 1 2 3 3 

Fibrosis 1C 4 3 3 1C 

Inflammation 1 1 0 1 1 

NAS 6 4 4 6 6 

PNPLA3   rs738409 C>G GG CG CC CG CC 

TM6SF2 rs58542926 C>T CT CT CC CC CC 

GCKR   rs1260326 T>C TT TC TC TT TC 

MOBAT7   rs641738 T>C TT TC CC CC TC 

Table provides the demographics, histological features, liver enzyme levels, insulin resistance and the genotype for PNPLA3 TM6SF2 GCKR and MOBAT7. 

Abbreviations: ALT = BMI = body max index; C = Cytosine; F = female; G = Guanine; HOMA = homeostasis model assessment; IR = insulin resistance; M = male; 

NAS = NAFLD activity score; T = Thymine.  
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Table 18. Rare variants in genes involved in oxidative stress and inflammation pathways 

 
PON1 rs147006695 SOD2 rs1315277242 

Patient 4 Patient 84 Patient 34 

Gender M F M 

Age (years) 14 12 11 

BMI z score 1.91 1.63 1.14 

AST (IU/L) 59 35 28 

ALT (IU/L) NA 46 NA 

GGT (IU/L) 33 17 26 

HOMA IR NA NA NA 

Steatosis 1 1 3 

Fibrosis 2 1C 1C 

Inflammation 1 1 1 

NAS 2 2 6 

PNPLA3    
rs738409 C>G 

CC CG GG 

TM6SF2    
rs58542926 C>T 

CC CT CC 

GCKR    
rs1260326 T>C 

CC TC TC 

MOBAT7    
rs641738 T>C 

TC CC TC 

Table provides the demographics, histological features, liver enzyme levels, insulin resistance and the 

genotype for PNPLA3, TM6SF2, GCKR, and MOBAT7. 

Abbreviations: ALT = BMI = body max index; C = Cytosine; F = female; G = Guanine; 

HOMA = homeostasis model assessment; IR = insulin resistance; M = male; NAS = NAFLD activity 

score; T = Thymine.  

 

2.3.7 Risk score and traits 

The results from linear regression are provided in Table 19. No risk score was found to be 

significantly associated with any of the traits. 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=147006695
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Table 19. Results of the linear regression and analysis of variant 

Risk scores from Fibrosis Steatosis NAS BMI z score 

Damaging common variants found in 

genes from various pathways 
0.981 0.081 0.183 0.088 

Damaging common variants in genes 

involved in BA pathway 
0.641 0.322 0.905 0.555 

Damaging common variants in all genes 0.829 0.042 0.201 0.187 

All variants in all genes 0.488 0.01 0.004 0.858 

Damaging rare variants in all genes 0.340 0.292 0.253 0.598 

Results shown from the linear regression show the p values obtained from the analysis of variance. 

After adjusting for multiple testing, no significative p value was found. 
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2.4 DISCUSSION  

From the 135 genes and 37 SNPs in the panel designed for this study, data from 129 genes 

were obtained and analysed, in the paediatric cohort of patients with biopsy-proven NAFLD. 

Although no statistically significant association was found between any single variant and 

histological feature, the analysis of the genetic variants confirmed the presence of the 

common genetic profile that has been described, in previous studies, in populations of 

patients with NAFLD. 

The MAF of the most known variants in PNPLA3, TM6SF2, GCKR and MBOAT7, in this 

paediatric cohort of patients with NAFLD were in line with what has been so far described; 

however, the MAF of TM6SF2 rs58542926 observed in this paediatric cohort was 2-fold the 

MAF observed in patients with NAFLD from previous studies. Results showed also the 

presence of both possibly and probably damaging common and rare variants in patients with 

NAFLD of this paediatric cohort. The involvement of some genes or their common variants in 

NAFLD are better described than others in literature. In the paediatric cohort of patients with 

NAFLD, variants in genes involved in the fructose and lipid metabolism were found.  

The rs1044498 in EPPN1 in previous studies was found to be linked with obesity onset and 

disruption of glucose and insulin metabolism (Böttcher et al., 2006), as EPPN1 protein activity 

is related to the modulation of the IRS1 expression (Dongiovanni et al., 2010). Moreover, 

decreased ENPP1 mRNA expression were observed in patients with fibrosis progression 

(Ryaboshapkina and Hammar, 2017). A recent study found the presence of ENPP1 rs1044498, 

PNPLA3 rs738409 and GCKR rs780094 to be associated with NAFLD in children (Hudert et al., 

2019). Although with this project the association could not be confirmed, the majority of 

patients with ENPP1 had severe steatosis (n = 9) and fibrosis (n = 7). 

The rs2294918 variant in PNPLA3 was found over-represented (n=90 [90.9%]) in this 

paediatric cohort of patients with NAFLD. This variant in a previous study was identified in 

64.1% of children with NAFLD, while PNPLA3 rs738409 was found in 37.2%. (Donati et al., 

2016). Donati found that the rs2294918 risk allele [A] reduced the protective effect of the 

rs738409 wt allele [C]. The presence of rs2294918 [A] in homozygosity reduced the levels of 

PNPLA3 protein, independently from the presence or absence of the risk allele of rs738409. 

The hypothesis is that rs2294918 [A] could reduce the negative effect of rs738409 [G] as well 

as its wt allele [C] on the TG mobilization from lipid droplets.  
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Interestingly, the variant rs2228603 in NCAN, that initially was associated with steatosis 

(Gorden et al., 2013; Hooper et al., 2011; Speliotes et al., 2011), was later rejected. The region 

in which NCAN was identified through GWAS was re-analysed and TM6SF2 rs58542926 was 

confirmed as the causal gene associated with steatosis (Kozlitina et al., 2014). 

The SNPs of genes included in the panel (Table 13) were reported by many studies in different 

population. The presence of mutations in genes such as LYPLAL1 and PPP1R3B were 

associated with steatosis. The variant rs121378558 in LYPLAL1 was found in a multi-ethnic 

cohort, together with rs4240624 in PPP1R3B, where both were associated with histological 

NAFLD (Feitosa et al., 2013; Speliotes et al., 2011). More recently the intron variant 

rs13412852 in LYPLAL1 was found in a paediatric population with NAFLD and was associated 

with inflammation, although the significance was lost after adjustment (Hudert et al., 2019).  

The rs1227756 and rs887304, respectively in COL13A1 and EFCAB4B, were linked with fibrosis 

and inflammation, alongside with steatosis and NAS (Chalasani et al., 2010). The LPIN1 

rs13412852 SNP in a paediatric population with NAFLD seemed to be protective and 

associated with low TG and a mild phenotype of NASH (Valenti et al., 2012b), while in adults 

was associated with low BMI (Fawcett et al., 2008). FDFT1 rs2645424 and several of its 

variants were found to be associated with NAS score (Chalasani et al., 2010). FDFT1 is a 

regulator of cholesterol biosynthesis and it is involved in lipid metabolism. High levels of 

FDFT1 were found in NAFLD patients and were related to liver injury, steatosis and 

inflammation (Ryaboshapkina and Hammar, 2017). A small study on a Chinese cohort could 

not find any association between NAFLD and FDFT1 as well as GCKR, and LYPLAL1 (Lee et al., 

2020).  

In the paediatric cohort of patients with NAFLD, some damaging rare missense variants were 

found, alongside with variants in the splice donor site, or frameshift and stop gained variants. 

All these types of variants could affect transcription, translation, protein folding and structure 

of the protein. Any variant that changes the structure of the protein could induce a lower or 

higher level of the hepatic functional protein, altering the interaction or the regulation of a 

pathway and increasing the risk to develop a severe phenotype for a certain disease. 

Rare variants in FDFT1, CRACR2A and SLC27A5 were identified in this paediatric cohort of 

patients with NAFLD to be associated with steatosis, fibrosis or NAS. Two facts must be taken 

into considerations when referring to these rare variants: (1) all rare variants analysed were 
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underrepresented in this paediatric cohort of patients with NAFLD, meaning that they were 

present mainly in only 1 patient; (2) there was no association after FDR correction.  

The hypothesis behind the rare analysis association is that these variants were protective 

against each of the traits for which they were found associated with. This could explain why 

the 2 variants found in the FDFT1 region were associated with fibrosis and steatosis 

notwithstanding the 2 patients presented low steatosis (Patient 58 - steatosis 0 and Patient 

62 - steatosis 1) and both fibrosis 1C. same observation could be applied to the CRACR2A 

association with steatosis and NAS and SLC27A5 with fibrosis.  

Genes, for which other rare variants possibly damaging were found (Table 17 and Table 18), 

have been described in literature. Patient 30 showed the presence of rare variants in 2 of the 

most studied genes in patients with NAFLD: the frameshift rs573498430 in GCKR and the stop 

gained rs144830716 in PNPLA3. The patient was heterozygous for rs738409 and rs1260326, 

respectively in PNPLA3 and GCKR. The peculiarity of the patient presenting these variants was 

the advanced fibrosis which could be aggravated by the possible complete loss of PNPLA3 and 

an unfunctional GCKR due to the combination of variants. 

A rare stop gained variant (rs1315277242) in SOD2 was found in Patient 34. This patient had 

PNPLA3 rs738409 in homozygosity, GCKR (rs1260326, rs780094), and MBOAT7 (rs641738) 

variants; in addition to these common variants, the presence of a rare stop gained variant in 

SOD2, leading to a possible loss of functional protein, could have driven the steatosis (grade 

3) and liver damage (fibrosis F1C) observed in the patient at this young age (11 years). 

Another gene, in which rare variants were identified, was the CD36. The three patients found 

with these variants presented severe steatosis (≥2) and presence of fibrosis. The two rare 

variants could lead to a gain of function or induce an accumulation of the mutated protein, 

given the fact that elevated mRNA levels of CD36 were associated with grade of steatosis in 

patients with NAFLD (García-Monzón et al., 2014, 2011). 

Another interesting gene is PON1 in which a rare stop gained variant (rs147006695) was 

found in 2 patients of the paediatric cohort of patients with NAFLD. A recent study found that 

patients with NAFLD had lower concentrations of serum PON1, in presence of common 

variants in the gene (Milaciu et al., 2019). It could be hypothesised that this could be also the 

case of the two patients with the rare PON1 variants, in which the stop gained variant could 

possibly lead to a reduction of the amount of functional protein.  
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Rare variants are estimated to have a substantial effect compared with common variants and 

are thought to explain the missing heritability that have been left unexplained by GWAS.  

There are a number of limitations to this study. The sample size is critical to establish any 

association of variants with low effect and rare variants with disease traits considered. In a 

small cohort, rare variants or variants with a small effect are probably under-represented and 

that could explain the absence of statistical p values after correction. The identifications of 

rare variants in larger cohorts and broad panel of genes, if not whole genome, could help to 

identify variants and genes associated with the many traits involved in this multi-factorial 

disease. A matched control group was not included, rather the control is the previously 

published population prevalence of the variants.  

Another limitation, shared by many studies, it is about the power of the tools used to analyse 

data for complex disease. The presence of tools and packages to analyse genetic data for 

complex traits has increased recently, and many are designed for the analysis of gene to gene 

and gene to environment interaction in case-control studies; however, they sometimes are 

underpowered for the analysis, especially for small cohorts. As much as computing is rapidly 

increasing, statistical genetics face still many challenges. The identification of biomarkers to 

stratify population is not only fundamental to identify individual at risk of progression, but 

also to deliver personalised therapies with certainty of achieving success. The advantage of 

this study is the inclusion of well-phenotyped children with biopsy proven disease including 

those with established fibrosis even at an early age.  
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Chapter 3 

3 The contribution of variants in genes controlling bile acid metabolism and 

transport to paediatric non-alcoholic fatty liver disease 

3.1 INTRODUCTION 

Bile acids have been found to act as mediators of metabolic pathways including lipid 

metabolism. In addition, they can influence inflammation and the response to insulin. All of 

these pathways and processes are fundamental in the development and progression of 

NAFLD. There is evidence that patients with NAFLD show an alteration of circulating BA and 

FGF19. This, amongst other findings, led to clinical trials targeting BA for therapeutic 

intervention in NAFLD. 

This project aims to give a more complete view on the contribution of BA to NAFLD and more 

specifically to the genetic regulation of bile acids in this context. This was done by evaluating 

the changes in BA as well as FGF19 plasma levels, in addition to investigate the presence of 

genetic variants present in genes influencing the metabolism and transport of BA and their 

association with the progression of disease in children with NAFLD.  

The contribution of the genetics of BA metabolism and transport to NAFLD has not yet been 

explored in adults, much less in children. A paediatric cohort of patients with NAFLD is 

advantageous for the genetic investigation of this disease as the relative contribution of other 

confounders such as alcohol or decades of exposure to obesity are limited or absent. The use 

of NGS allowed to investigate common and rare variants. This chapter will focus on the 

specific association between variants in genes involved in BA metabolism and transport and 

NAFLD. 
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3.2 MATERIAL AND METHODS 

3.2.1 Patients 

Information relative to collection of data for demographics and clinical characteristics of the 

paediatric cohort of this study can be found in Section Patients2.2.1. The project was 

approved by the Biobank Committee as part of the Genetic Investigation of NAFLD (REC 

number 09/H0808/15). 

3.2.2 Selection of candidate genes for NAFLD Panel 

Information relative to the NGS technology used, the selection of genes and design of panel 

can be found in Section 2.2.2 and Section 2.2.3. 

3.2.3 Sample preparation for NGS 

The materials and methods used to prepare the samples for the sequencing were previously 

described and can be found from Section 2.2.4 to 2.2.7. 

3.2.4 Variant calling, variant filtering and association tests 

Information on the variant calling software and settings used for data alignment and the first 

data processing after sequencing can be found in Section 2.2.8. The more elaborate data 

filtering and the tests employed for the variant association were described in Section 2.2.9 

and Section 2.2.10. 

3.2.5 BA plasma levels measured using mass spectrometry 

The measurements of the plasma levels of primary and secondary bile acids were carried out 

in collaboration with the University College London (UCL) Institute of Child Health (ICH), 

London, UK. Patients’ plasma samples were prepared in the laboratories at the Institute of 

Liver studies at KCH and transported at UCL Institute of Child Health for the final preparation, 

before the analysis.  

Plasma samples from 100 patients, collected from the KCH Paediatric Liver BioBank, were 

thawed at RT to spot 10 µL of plasma on a proteinsaver card (Whatman 903, Healthcare Life 

Science, Buckinghamshire, UK). Three spots per sample were collected for each proteinsaver 
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card. The cards were dried over-night and then stored in a sealed bag with desiccant and 

transported to the laboratories of the ICH. Bags were kept at -4°C during the transport. 

The reagents to measure primary and secondary bile acids were purchased from Steraloids 

(Newport, RI, USA). Bile acids standards purchased and used for this analysis were: Cholic acid 

(CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and their 

glycine (Gly) and taurine (Tau) conjugates (GCA, TCA, GCDCA, TCDCA, GDCA, TDCA, GLCA, 

TLCA). All internal standards used with deuterium labelled (D4-CA, D4-CDCA, D4-GCA, 

D5-TCA, D4-GCDCA and D4-TCDCA) were obtained from CDN Isotopes (Pointe-Claire, QC, 

Canada). Stock solutions (50µM) of standard bile acids were prepared in methanol -before 

being combined with deuterated internal standards- and further diluted into a series of 

working solutions, used for the calibration standards. 

One spot per sample was cut out of the card and placed in 1.5 mL microcentrifuge tube 

containing 300 µL of methanol and deuterated bile acid internal standards at 20nM. Bile acids 

were then eluted from the spots by sonicating for 15 minutes. The eluants obtained from each 

sample were then transferred in a 0.3 mL ChromacolTM vial for MS analysis.  

The UPLC-MS/MS instrument used for the measurements consisted of a Waters ACQUITY 

UPLC coupled to a Xevo TQ-S triple quadrupole mass spectrometer with an electrospray 

ionization source. The mass spectrometer was operated in negative ion mode and data were 

acquired using MASSLYNX V 4.1 software. Chromatographic separations were achieved using 

ACQUITY UPLC™ BEH (Waters UK, Herts, UK) C18 column (1.7µm, 2.1 9 50 mm) maintained at 

40°C. Binary gradient profiles were developed using water with 0.01% formic acid (solvent A) 

and methanol (solvent B) at a flow rate of 500 µL for 1 minute. Separations were conducted 

under the following chromatographic conditions: 60% solvent A for 30 seconds, decreased to 

1% over 1 minute, maintained for 1 minute at 1% before being increased to 60% over 

0.1 minute. Column equilibration time was 0.9 minute, with a total run time of 3.5 minutes. 

The injection volume was 20 µL. Mass spectrometric conditions were as follows: capillary 

voltage 2.7 kV, desolvation temperature 600°C, cone gas flow 150 L·h-1, desolvation gas flow 

1,200 L·h-1, collision gas flow 0.15 L·h-1 and nebulizer gas flow 7 bar. Dwell time was set as 

3 milliseconds for each analyte. The quantitation of the different analytes was then 

performed using the single reaction monitoring (SRM) parameters described in Table 20. 
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Table 20. Retention time, cone voltage, collision energy, precursor and product ion used in 

identification of normal and abnormal bile acids detected in patients with NAFLD 

Bile acid Conjugation 

Retention 

time 

(min) 

Cone 

voltage (V) 

Collision 

energy 

(V) 

Precursor 

ion (m/z) 

Product 

ion (m/z) 

Chenodeoxycholic 

acid (3a,7a-diOH-5b) 

Gly 

[GCDCA] 
1.76 88 31 448.4 74.0 

D4-

chenodeoxycholic 

acid 

Gly 

[D4-GCDCA] 
1.76 88 31 452.4 74.0 

Deoxycholic acid 

(3a,12a-diOH-5b) 

Gly 

[GDCA] 
1.80 88 33 448.4 74.0 

Ursodeoxycholic 

acid 

(3a,7b-diOH-5b) 

Gly 

[GUDCA] 
1.59 88 31 448.4 74.0 

Cholic acid 

(3a,7a,12a-triOH-5b) 

Gly 

[GCA] 
1.67 86 33 464.4 74.0 

D4-cholic acid 
Gly 

[D4-GCA] 
1.67 86 33 468.4 74.0 

Lithocholic acid 

(3a-OH-5b) 

Gly 

[GLCA] 
1.86 88 31 432.3 74.0 

Chenodeoxycholic 

acid (3a,7a-diOH-5b) 

Tau 

[TCDCA] 
1.64 110 59 498.4 80.0 

D4-

chenodeoxycholic 

acid 

Tau 

[D4-TCDCA] 
1.64 110 59 502.4 80.0 

Deoxycholic acid 

(3a,12a-diOH-5b) 

Tau 

[TDCA] 
1.65 116 59 498.4 80.0 

Ursodeoxycholic 

acid 

(3a,7b-diOH-5b) 

Tau 

[TUDCA] 
1.49 110 59 498.4 80.0 

Cholic acid 

(3a,7a,12a-triOH-5b) 

Tau 

[TCA] 
1.56 116 59 514.4 80.0 

D5-cholic acid 
Tau 

[D5-TCA] 
1.56 116 59 519.4 80.0 
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Lithocholic acid 

(3a-OH-5b) 

Tau 

[TLCA] 
1.72 110 59 482.3 80.0 

Chenodeoxycholic 

acid (3a,7a-diOH-5b) 

None 

[CDCA] 
1.87 86 5 391.4 391.4 

D4-

chenodeoxycholic 

acid 

None 

[D4-CDCA] 
1.87 86 5 395.4 395.4 

Deoxycholic acid 

(3a,12a-diOH-5b) 

None 

[DCA] 
1.88 86 5 391.4 391.4 

Ursodeoxycholic 

acid 

(3a,7b-diOH-5b) 

None 

[UDCA] 
1.72 86 5 391.4 391.4 

Cholic acid 

(3a,7a,12a-triOH-5b) 

None 

[CA] 
1.77 86 5 407.4 407.4 

D4-cholic acid 
None 

[D4-CA] 
1.77 86 5 411.4 411.4 

Lithocholic acid 

(3a-OH-5b) 

None 

[LCA] 
1.97 86 5 375.3 375.3 

In the bile acid column, in brackets is reported the positions of hydroxyl groups and double bonds in 

precursor bile acid.  

 

3.2.6 FGF19 plasma level analysis  

Levels of the FGF19 protein were evaluate in plasma samples of the study paediatric cohort 

of patients with NAFLD using the Quantikine ELISA Human FGF-19 Immunoassay kit (R&D 

systems, Inc., Abingdon, UK). The protocol provided with the kit was followed. The kit was 

brought to room temperature. The wash buffer was prepared by adding 20 mL of wash buffer 

concentrate to distilled water, for a volume of 500 mL. The substrate solution was prepared 

by mixing colour reagent A and B together in equal volumes. A volume of 10 mL of the 

calibrator diluent RD5P concentrate was added to 20 mL of distilled water. The Human FGF19 

standard solution was reconstituted by adding distilled water to the powder, giving a stock 

solution of 10,000 pg/mL, which was left to sit for 15 minutes before dilution. The stock 

solution was used to produce a dilution series of 7 different standards Table 21. A volume of 
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100 µL of stock solution was diluted in 900 µL of RD5P to obtain solution 1. The dilution series 

was carried out by diluting 500 µL of the previous solution in 500 µL of RD5P in a new tube, 

until obtaining a final solution of 15.6 pg/mL of Human FGF19 standard. A volume of 500 µL 

of RD5P was used as zero standard. Three kits were used to measure the levels of FGF19 in 

99 plasma sample in duplicate. 

Table 21. Preparation of human FGF19 standards.  

A volume of 100 µL of Assay diluent RD15 was added to each well of the plates provided by 

the kits. A volume of 100 µL of standard or 100 µL of plasma sample was added per well; once 

covered with adhesive strip provided, the plates were incubated at room temperature for 

2 hours. After removing the solution, each well was washed with 400 µL of wash buffer. The 

wash buffer solution was carefully removed, and 200 µL of FGF19 conjugate was added to 

each well. The plates were covered again with adhesive strips and incubated for 2 hours at 

room temperature. After repeating the wash step, 200 µL of substrate solution was added to 

each well and incubated for 30 minutes at room temperature in the dark. After the 

incubation, 50 µL of stop solution was added to each well. Within 30 minutes, the plates were 

read using a Dynex MRX microplate reader at 450 nm. 

3.2.7 Statistical analysis 

The statistical analysis for the variants in genes involved in bile acids homeostasis has been 

described in Section 2.2.12. 

Standards concentration Stock solution volume RDP5 volume 

Zero standard - 500 µL of RD5P 

Solution 1:  1,000 pg/mL 100µl of Stock solution 900µL of RD5P 

Solution 2:  500 pg/mL 500 µL of solution 1 500 µL of RD5P 

Solution 3:  250 pg/mL 500 µL of solution 2 500 µL of RD5P 

Solution 4:  125 pg/mL 500 µL of solution 3 500 µL of RD5P 

Solution 5:  62.5 pg/mL 500 µL of solution 4 500 µL of RD5P 

Solution 6:  31.3 pg/mL 500 µL of solution 5 500 µL of RD5P 

Solution 7:  15.6 pg/mL 500 µL of solution 6 500 µL of RD5P 
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To see if any differences were present between groups of patents and plasma levels of BA or 

FGF19, Kruskal Wallis and ANOVA were both performed, using Statgraphics19 centurion19. 

The association between plasma levels of BA or FGF19 and traits was tested also using 

Spearman’s correlation. Simple regression was used to investigate the association between 

BAs and FGF19 levels and genetic risk score from all variants found in patients and all variants 

found in genes belonging to the BA pathways. After analysis, results were adjusted for 

multiple testing. 
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3.3 RESULTS 

3.3.1 Bile Acid Gene panel 

The panel of genes selected for sequencing included 25 genes involved in bile acids 

metabolism and transport (Table 22), pathways that are involved in progression of NAFLD.  

The SNPs included in the panel provided in Table 23 were intron SNPs in NR1I2, NR1H4, and 

SLC10A2 which were found in previous studies. 

Table 22. Selected genes (n=26) involved in f the bile acid pathway 

GENE PROTEIN DESCRIPTION 

BAAT BAAT Bile acid-coa:amino acid n-acyltransferase 

AKR1D1 SRD5B1 Steroid-5-Beta-Reductase 

ABCB11 BSEP Bile salt export pump 

ABCB4 MDP3 Multiple drug resistance 3 

ABCC2 MRP2 Multidrug resistance-associated protein 2 

ABCC4 MRP4 Multidrug resistance-associated protein 4 

ABCA1 CERP Cholesterol efflux regulatory protein 

CYP7A1 CYP7A1 Cholesterol 7α-hydroxylase 

CYP7B1 CYP7B1 25-hydroxycholesterol 7-alpha-hydroxylase 

CYP8B1 CYP8B1 
7-alpha-hydroxy-4-cholesten-3-one 12-alpha-

hydroxylase 

ATP8B1 PFIC Probable phospholipid-transporting atpase IC 

FGF19 FGF19 Fibroblast growth factor 19 

FGFR4 FGFR4 Fibroblast growth factor receptor 4 

GLP1R GLP1R Glucagon like peptide 1 receptor 

GPBAR1 GPBAR1 G protein-coupled bile acid receptor 1 (tgr5) 

HSD3B7 HSD3B7 
Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and 

steroid delta-isomerase 7 

HNF4A HNF4α Hepatocyte nuclear factor 4 alpha 

NR0B2 SHP Small heterodimer partner 

NR1H3 LXR Liver x receptor alpha 

NR1H4 FXR Farnesoid c receptor 

NR1I2 PXR Pregnane x receptor 

NR5A2 LRH1 Liver receptor homolog 1 

SLC51A OSTa Organic solute transporter subunit alpha 
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GENE PROTEIN DESCRIPTION 

SLC51B OSTb Organic solute transporter subunit beta 

SLC10A2 ASBT Apical sodium-dependent bile acid transporter 

SLC10A1 NTCP Sodium(+)/taurocholate transport protein 

REFERENCES 

(Alisi et al., 2013; Anstee et al., 2016; Arab et al., 2017; Chiang et al., 2000; Chiang, 2013; Dröge et 

al., 2015; Haeusler et al., 2013; Kuipers et al., 2014; Lake et al., 2013; Li et al., 2013; Li and Chiang, 

2014; Tilg and Moschen, 2010) 

Genes related to BA synthesis and transport. These genes interact directly and indirectly with genes 

from other pathways, such as lipid and glucose metabolism, inflammation and fibrosis. 

 

Table 23. SNPs Selected (n=5) in genes form the bile acid metabolism from previous studies 

Intron SNPs in genes included in the panel 

rs7643645 and rs2461823 in NR1I2 

rs7304328 and rs35724 in NR1H4 

rs9514089 in SLC10A2 

The table provides intron SNPs previously found in studies on Liver diseases, not specifically in patients 

with NAFLD. References for this SNPs can be found in Table 22. 

3.3.2 Variants identification after filtering 

From the variant calling, no data were available for FGF19 and SLC51B. After removing all 

synonymous variants, a total of 170 variants and 5 SNPs were identified in 24 genes belonging 

to the BA metabolism and transport pathways in this study cohort of patients with NAFLD 

(Table 24). As shown in Figure 9, ABCC2 and ABCA1 were the genes with the highest number 

of variants, with 22 and 13 respectively. Many genes had less than 5 variants. 

Among all variants, 70% had a MAF below 10% and 47% had a MAF below 1% in the general 

population (data gathered by several project and made available on GnomAD). 

After manual annotation and variant filtering with SVS, variants were then classified as 

damaging or benign/tolerated (refer to Section 3.3.1). For the BA pathways, 61 variants 

(35.88%) were recognised as tolerated/benign, and 60 variants (35.29%) were defined as 

damaging Figure 9.  
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Table 24. Number and type of variants of genes from the BA metabolism found in 99 patients 

                    Total 170 variants and 5 SNPs 

Missense  124 

Non-coding  45 

Start gained  1 

Unknown  5 

Non-coding variants include intronic variants, variants in splice region and, in 3’ UTR or 5’ UTR. 

Abbreviations: Del = deletion; Ins = insertion; SNP = Single Nucleotide Polymorphism. 

 

 

 

Figure 9. Distribution of all variants present in genes involved in BA homeostasis. The variants were 

classified tolerate or damaging based on the scoring from the 6 prediction tools (0 to 6). In the case 

a variant scored 3 or more, for this study, it was considered as damaging. Variants with a score from 

0 to 2 were considered benign.  

 

3.3.2.1 Common damaging variants 

For this study, variants were defined as common when MAF in general population was above 

1%. Among the 60 damaging variants found in genes involved in BA metabolism and transport, 

15 (25%) were common variants Table 25. There were no significant differences between the 

MAF of the study population and the MAF of the general population from gnomAD. 
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Based on their function and interactions to regulate not only BA metabolism, as well as genes 

from other pathways, such as cholesterol synthesis and FA uptake (for a more in dept 

description, refer to Section 1.3), the NR0B2, ABCB11 and HNF4A genes and their variants 

have been looked closely (Table 26).  

For the rs6659176 variant in NR0B2, there was a similar distribution of male and female 

among patients (n=13), 53.8% and 46.2% respectively. The majority were over 12 years old 

(69.2%), with a severe phenotype of NAFLD. 

Patients (n=3) with rs11568367 in ABCB11 were all female, all over 12 years old. In this case, 

the majority (66.7%) showed a less severe phenotype of NAFLD, although the NAS score was 

greater than 4 for 66.7% of the patients. Two patients did not have any risk allele for all 4 well 

known variants in PNPLA3, TM6SF2, GCKR, and MOBAT7. 

The majority (75.0%) of patients (n=4) with the HNF4A rs1800961 variant were young male 

below 11 years old with severe phenotype. All patients showed a fibrosis stage greater than 

2. One patient did not have any risk allele for all 4 well known variants in PNPLA3, TM6SF2, 

GCKR, and MOBAT7. 

Table 25. Common damaging variants in genes belonging to the BA metabolism in the paediatric 

cohort of patients with NAFLD 

GENE VARIANT ID AND 

 AA CHANGE 

COHORT WITH NAFLD 

MAF (%) 

MAF (%) GENERAL 

POPULATION 

NR0B2 
rs6659176 

C>G 
6.5% 6.0% 

ABCB11 
rs11568367 

T>C 
1.5% 1.3% 

ABCB11 
rs2287622 

A>G 
61.5% 56.9% 

NR1I2 
rs12721607 

G>A 
3.5% 1.4% 

FGFR4 
rs351855 

G>A 
30.5% 32.1% 

ABCB4 
rs58238559 

T>C 
1% 1.2% 

ABCA1 
rs2230808 

T>C 
71.0% 70.0% 

ABCA1 
rs33918808 

C>G 
2.0% 3.8% 
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GENE VARIANT ID AND 

 AA CHANGE 

COHORT WITH NAFLD 

MAF (%) 

MAF (%) GENERAL 

POPULATION 

ABCA1 
rs2066718 

C>T 
3.5% 5.4% 

ABCC2 
rs17222617 

T>G 
3.5% 1.6% 

ABCC4 
rs2274407 

C>A 
8.5% 9.7% 

ABCC4 
rs11568658 

C>A 
5.5% 4.6% 

HSD3B7 
rs34212827 

T>C 
0.5% 3.4% 

ATP8B1 
rs12968116 

C>T 
7.5% 8.3% 

HNF4A 
rs1800961 

C>T 
2.5% 3.0% 

The table provides all 18 variants found to be common and damaging in the paediatric cohort of 

patients with NAFLD. MAF from paediatric cohort of patients with NAFLD were similar with the MAF 

observed in the general population. 

Abbreviations: MAF = minor allele frequency. 

 

Table 26. Patients with variants in NR0B2 and ABCB11 

 
Patients (n=13) with 

NR0B2 rs6659176 

Patients (n=3) with 

ABCB11 rs11568367 

Patients (n=4) with 

HNF4A rs1800961 

Gender 

M 7 (53.8%) 0 3 (75.0%) 

F 6 (46.2%) 3 (100%) 1 (25.0%) 

Age 

≤11 4 (30.8%) 0% 3 (75.0%) 

≥12 3 (69.2%) 3 (100%) 1 (25.0%) 

Steatosis 

≤1 2 (15.4%) 2 (66.7%) 3 (75.0%) 

≥2 11 (84.6%) 1 (33.3%) 1 (25.0%) 

Fibrosis 

≤1 2 (15.4%) 2 (66.7%) 0% 

≥2 11 (84.6%) 1 (33.3%) 4 (100%) 

Inflammation 

≤1 8 (61.5%) 2 (66.7%) 2 (50.0%) 
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≥2 5 (38.5%) 1 (33.3%) 2 (50.0%) 

NAS 

≤3 1 (7.7%) 1 (33.3%) 1 (25.0%) 

≥4 12 (92.3%) 2 (66.7%) 3 (75.0%) 

PNPLA3 rs738409 C>G 

CG or GG 7 (53.8%) 2 (66.7%) 3 (75.0%) 

TM6SF2 rs58542926 C>T 

CT or TT 6 (46.2%) 1 (33.3%) 2 (50.0%) 

GCKR rs1260326 T>C 

TC or CC 7 (53.8%) 2 (66.7%) 3 (75.0%) 

MOBAT7 rs641738 T>C 

TC or CC 9 (69.2%) 2 (66.7%) 1 (25.0%) 

The table provides the overall demographics and histological features of subgroups of patients with 

NAFLD having NR0B2 rs6659176, ABCB11 rs11568367, or HNF4A rs1800961.  

For each subgroup, the genotype of the 4 well-established variants found by GWAS, PNPLA3 rs738409, 

TM6SF2 rs58542926, GCKR rs1260326, MOBAT7 rs641738, are provided. 

Abbreviations: C = Cytosine; F = female; G = Guanine; M = male; NAS = NAFLD activity score; 

T = Thymine 

 

3.3.2.2 Damaging Rare Variants  

There were 45 damaging variants identified as rare in patents with NAFLD. For these variants, 

the MAF in the general population from gnomAD was below 1%, for a total of 14 of the genes 

involved in the BA homeostasis in patients with NAFLD.  

3.3.2.3 Rare Association Analysis in SVS 

The candidate damaging rare variants identified in genes involved in the BA metabolism and 

transport (Figure 10), together with the rare variants from other pathways (described in 

Section 2.3.6) underwent an association test on a specifically designed SVS tool. The p -value 

from the analysis, for each of the 14 genes having rare damaging variants, are provided in 

Table 27. Of all genes, the analysis gave significative p value for NR1H4 and HNF4A. However, 

after FDR correction no significative p value was observed for any of the traits considered.  
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Figure 10. Distribution of rare damaging variants in BA genes. A total of 40 damaging rare variants 

were found in 14 genes in this paediatric NAFLD cohort. 

 

Table 27. Results of rare variants association analysis in genes from BA metabolsim  

GENE (Chr) 

AND SEQUENCE 
FIBROSIS STEATOSIS NAS BMI Z SCORE. 

NR0B2 (Chr1) 

27237975→ 27240567 
0.85 0.71 0.85 0.58 

ABCB11 (Chr2) 

169779449 → 169887833 
0.09 0.07 0.09 0.58 

CYP8B1 (Chr3) 

42913684→ 42917633 
0.82 0.50 0.31 0.47 

SLC51A (Chr3) 

195943383 → 195960301 
0.85 0.71 0.85 0.58 

FGFR4 (Chr5) 

176513873 → 176525143 
0.82 0.20 0.14 0.12 

ABCA1 (Chr9) 

107543283 → 107690527 
0.14 0.20 0.14 0.12 

ABCC2 (Chr10) 

101542355 → 101611949 
0.85 0.59 1.00 0.20 

NR1H4 (Chr12) 

100867551→ 100957645 
0.03 0.50 0.03 0.28 
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ABCC4 (Chr13) 

95672083 → 95953700 
0.53 0.74 0.19 0.40 

SLC10A2 (Chr13) 

103696348 → 103719196 
0.57 0.15 0.09 0.89 

SLC10A1 (Chr14) 

70242552 → 70264006 
0.85 0.71 0.09 0.58 

ATP8B1 (Chr18) 

55313658 → 55470327 
0.61 1.00 0.74 0.81 

HNF4A (Chr20) 

42984441→ 43061485 
0.03 0.39 0.31 0.004 

The table provides the results of the rare variants association analysis. The SVS tool binned all variant 

from a gene in one or more regions. The p values provided are before FDR correction. From the 

analysis, NR1H4 and HNF4A gave a significative p value. However, after FDR correction no association 

was confirmed. 

Abbreviations: Chr = Chromosome; NAS = NAFLD activity score. 

3.3.2.3.1 NR1H4 

The NR1H4 sequence analysed for the association test had the rs61755050 rare variant. This 

variant was present in two patients of the paediatric cohort with NAFLD. As shown in Table 

28, both patients had similar characteristics, with some exceptions. Both patients did not have 

any risk allele for the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738; 

however, they were both homozygous for the risk allele of rs1260326 and rs780094 variants 

in GCKR. More interestingly, looking at variants in other genes of the BA pathways, the two 

patients shared the presence of rs1966265, rs351855, and rs376618 in FGFR4 and rs9865715 

in CYP8B1.  

Given the presence of insulin resistance in Patient 33 (HOMA IR 2.57), a look at the variants 

from other pathways showed that the patient had variants in GLP1R, the GLP1 receptor. 

Patient 33 was homozygous for GLP1R rs10305420, and rs1042044, and heterozygous for 

rs6923761.  
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Table 28. Patients with NR1H4 rare variant rs61755050 

 
Patient 33 with 

NR1H4 rs61755050 

Patient 81 with 

NR1H4 rs61755050 

Gender M M 

Age (years) 15 11 

BMI z score 1.48 2.13 

AST (IU/L) 33 19 

ALT (IU/L) 57 17 

GGT (IU/L) 34 20 

HOMA IR 2.57 1.04 

Steatosis 1 2 

Fibrosis 1C 1C 

Inflammation 1 1 

NAS 3 3 

PNPLA3   rs738409 C>G CC CC 

TM6SF2   rs58542926 C>T CC CC 

GCKR   rs1260326 T>C CC CC 

MOBAT7   rs641738 T>C TT TT 

For both patients here are provided the histological features and liver enzyme levels, insulin resistance 

and the presence of risk allele in the 4 well-established genes. 

Abbreviations: ALT = alanine aminotransferase; AST = aspartate aminotransferase; BMI = body mass 

index; C = Cytosine; G = Guanine; HOMA IR = homeostatic assessment for insulin resistance; 

GGT = gamma-glutamyl transferase; NAS = NAFLD active score; T = Tymine. 

3.3.2.3.2 HNF4A 

The sequence of HNF4A analysed by SVS included 2 damaging missense variants: 

rs768495780 and rs150776703. The rs768495780 variant was present in Patient 36, while the 

rs150776703 variant was found in Patient 76. The histological features were similar between 

the two patients. Moreover, patients had other variants in genes of the BA pathways. 

Patient 34 had 17 variants in 13 genes, and was homozygous for variants in ATP8B1, HSD3B7, 

ABCC2, and FGFR4. Patient 76 had 12 variants in 12 genes, having also risk allele for the 

ATP8B1, HSD3B7, ABCC2, and FGFR4 variants, in addition to the rs2287622 in ABCB11.  
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Table 29. Patients with HNF4a rs768495780 and rs150776703 rare variants 

 
Patient 34 with HNF4A 

rs768495780 

Patient 76 with HNF4A 

rs150776703 

Gender M M 

Age (years) 11 14 

BMI z score 1.14 1.44 

AST (IU/L) 28 40 

ALT (IU/L) Missing 71 

GGT (IU/L) 26 65 

HOMA IR Missing 9.11 

Steatosis 3 3 

Fibrosis 1C 1C 

Inflammation 1 1 

NAS 6 5 

PNPLA3   rs738409 C>G GG CG 

TM6SF2   rs58542926 C>T CC CC 

GCKR   rs1260326 T>C TC CC 

MOBAT7   rs641738 T>C TC TC 

Table provides histological features, liver enzyme levels, insulin resistance and the presence of risk 

allele in the 4 well-established genes.  

Abbreviations: ALT = alanine aminotransferase; AST = aspartate aminotransferase; BMI = body mass 

index; C = Cytosine; G = Guanine; HOMA IR = homeostatic assessment for insulin resistance; 

GGT = gamma-glutamyl transferase; NAS = NAFLD active score; T = Tymine. 

 

3.3.2.4 Other rare variants with possibly damaging effects 

There was a stop gained variant in SLC10A2 which could be possibly damaging and might 

affect transcription and translation of the protein (Table 30). This variant was present in 

Patient 89 (Table 31), who had other 21 variants in 15 genes belonging to the BA metabolism 

and transport, such as ABCB11, ATP8B1, CYP8B1, FGFR4.Patient 89 had also 2 variants in 

GLP1R (rs103054202 and rs1042044) which could be involved in the insulin resistance 

process, given the high HOMA IR score (8.29) of the patient. 
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Table 30. rs71640247 stop gained variant in SLC10A2 

Position Gene dbSNP 
MAF general 

population 

MAF 

paediatric 

cohort 

Type 

Chr13 

103718403 
SLC10A2 

rs71640247 

C>T 
0.0001804 0.005 stop gained 

This stop gained variant in SLC10A2 was found exclusively in patient 89.  

Abbreviations: C = cytosine; Chr = chromosome; MAF = Minor allele frequency. 

 

Table 31. Patient 89 with SLC10A2 variant 

  
Patient 89 with SLC10A2 

rs71640247 C>T 
 

 Gender M  

 Age (years) 15  

 BMI z score 1.76  

 AST (IU/L) 38  

 ALT (IU/L) 96  

 GGT (IU/L) 35  

 HOMA IR 8.29  

 Steatosis 3  

 Fibrosis 1C  

 Inflammation 1  

 NAS 4  

 PNPLA3   rs738409 C>G CG  

 TM6SF2   rs58542926 C>T CC  

 GCKR   rs1260326 T>C TC  

 MOBAT7   rs641738 T>C TT  

The table provides data on Patient 89 demographics, histological features, and the genotype for the 

PNPLA3, TM6SF2, GCKR, and MOBAT7 variants. 

Abbreviations: ALT = alanine aminotransferase; AST = aspartate aminotransferase; BMI = body mass 

index; C = Cytosine; G = Guanine; HOMA IR = homeostatic assessment for insulin resistance; 

GGT = gamma-glutamyl transferase; NAS = NAFLD active score; T = Tymine.  

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=71640247
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=71640247
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=71640247
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3.3.3 Bile Acid Plasma Levels 

The bile acids detected in 99 patients (100 patient samples analysed but full dataset available 

for 99) of the paediatric cohort with NAFLD through mass spectrometry were the primary 

CDCA, CA and the secondary DCA and their conjugated forms (Figure 11). However, during 

the analysis, it was not possible to differentiate the 2 peaks from CDCA and DCA, as well as 

their conjugated forms. Therefore, the results reported in this section as “CDCA”, and each of 

its conjugated forms, include also DCA and its conjugated quantities. Moreover, from the 

samples of the paediatric cohort of patients with NAFLD analysed, no signal was detected for 

the secondary BA LCA and its conjugated forms. 

The levels of BA detected in the plasma sample of the paediatric cohort of patients with 

NAFLD are provided in Table 32. For this analysis, no control population was analysed. 

However, a study made on bile acid plasma levels in a healthy paediatric population was used 

for standard ranges of primary and secondary BA in children from 0 to 18 years old (Jahnel et 

al., 2015c). Jahnel’s study provided ranges of individual BA levels in different age categories, 

which included 0-5 and 6-24 months, and 3-5, 6-11 and > 11 years old. There were two age 

categories that were closer to this paediatric cohort of patients with NAFLD: the 6-11 and 

>11 years old. Thus, the BA ranges from these 2 categories were chosen and reported in Table 

32. 

Overall, high levels of CA (0.63 in cohort with NAFLD versus 0.15 in healthy controls) and CDCA 

(1.08 versus 0.56) were found in the paediatric cohort of patients with NAFLD, compared to 

ranges reported for healthy controls. Compering the paediatric cohort of patients with NAFLD 

with the healthy controls, 99 (100%) and 74 (74.8%) patients had high levels of CA and CDCA 

respectively, as well as high levels of total unconjugated BA (n=97 [97.9%]). The CA to CDCA 

ratio was high in 77 (77.8%) patients, while the conjugated to unconjugated ratio was lower 

(n=78 [78.8%]) than controls. No noticeable differences were found in the levels of total 

conjugated when compared with the ranges reported for healthy controls. 
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Figure 11. Representative chromatograms for CDCA and CA. The chromatograms show the presence of other molecules in the background. A. From the 

chromatogram it is visible that other molecules were detected together with CDCA. Based on the retention time of each individual BA (Section 3.2.5, Table 

20), it was not possible to separate DCA peak from CDCA peak; the same happened for their respective conjugated. B. Representative chromatograms of CA 

and its conjugated forms. 
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Table 32. Overall BA plasma levels in paediatric cohort of patients with NAFLD  

Control ranges of BA plasma levels from healthy children (Jahnel et al., 2015b) aged from 6 to over 

11 years old are provided in this table. Data on the paediatric cohort of patients with NAFLD are 

reported as both Median and Mean. The latter is reported principally to have the same parameter of 

comparison with the healthy control ranges from Jahnel’s study. 

Values for these data are values (a posteriori) manually calculated from the table given by Jahnel’s 

study 

Abbreviations: BA = bile acids; Gly = Glycine; Tau = taurine  

 

3.3.4 FGF19 Plasma Levels  

The results on FGF19 plasma levels are provided for the 99 patients of the cohort with NAFLD. 

The dataset did not include a control cohort. However, a cut off for healthy levels of FGF19 

was decided based on a study were levels of FGF19 were investigated in children with NASH 

and healthy controls. Jiao reported a mean level of FGF19 of 40 pg/mL for children with NASH 

Bile Acid (µmol/L) 
Cohort with 

NAFLD (n=99) 

(Median, IRQ) 

Cohort with NAFLD 

(n=99) 

[Mean (± SD)] 

Control Ranges 

(n=133) 

[Means (± SD)] 

CA 0.48 (0.44, 0.60) 0.63 (±0.46) 0.08 (±0.14) - 0.15 (±0.36) 

GCA 0.52 (0.28, 1.18) 1.4 (±4.06) 0.55 (±0.44) – 1.00 (±0.75) 

TCA 0.11 (0.08, 0.15) 0.27 (±0.80) 0.06 (±0.11) – 0.19 (±0.27) 

CDCA (+DCA) 0.78 (0.51, 1.17) 1.08 (±1.12) 
CDCA 0.23 (±0.23) – 0.30 (±0.39) 

DCA 0.19 (±0.14) – 0.26 (±0.24) 

GCDCA (+GDCA) 1.87 (0.88, 3.62) 3.59 (±7.07) 
1.23 (±0.76) – 1.71 (±1.00) 

0.41(±0.44) – 0.32 (±0.29) 

TCDCA (+TDCA) 0.22 (0.15, 0.46) 0.68 (±1.98) 
0.18 (±0.30) – 0.23 (±0.35) 

0.05 (±0.10) – 0.10 (±0.14) 

TOT BA 4.64 (2.87, 7.56) 7.66 (±13.18) 3.61 (±1.89) – 4.37 (±2.67) 

TOT CAa 1.23 (0.85, 2.04) 2.31 0.98 – 0.76 

TOT CDCAa 3.17 (1.91, 5.85) 5.35 2.34 – 2.87 

CA/CDCAa 0.45 (0.34, 0.58) 0.47 0.32 – 0.34 

Total Glya 2.65 (1.18, 4.18) 5.00 2.10 – 2.96 

Total Taua 0.35 (0.24, 0.59) 0.95 0.29 – 0.39 

Gly/Taua 6.15 (4.04, 8.71) 6.79 7.24 – 7.59 

Unconjugateda 1.23 (1.03, 1.78) 1.71 0.50 – 0.71 

(Gly+Tau)/Unconjugateda 2.02 (1.03, 3.77) 4.09 3.37 – 6.70 



124 

 

and of 60 pg/mL for healthy control (Jiao et al., 2018a). There was another study that 

evaluated levels of FGF19 in a population of patients with NAFLD (Nobili et al., 2018); patients 

were divided in 2 subgroups: Not-NASH and NASH. The mean levels of FGF19 in Not-NASH 

were 100 pg/mL and 60 pg/mL for the NASH subgroup. 

For the 99 patients in the cohort of paediatric patients with NAFLD, the median plasma levels 

of FGF19 were 34.73 pg/mL (20.38, 61.89). To visually compare the data from the paediatric 

cohort of patients with NAFLD and the data in Jiao’s and Nobili’s studies, the mean levels of 

FGF19 levels were calculated, giving a mean of 51.93 (SD ± 56.04). A small fraction of patients 

(n=11, [ 11.1%]) in the cohort with NAFLD showed FGF19 plasma levels above 100 pg/mol and 

54.5% of this subgroup had levels over 200 pg/mol. Overall, 72.3% (n=72) of patients showed 

levels of FGF19 below the cut-off of 60 pg/mol.  

Table 33. FGF19 levels and data of the paediatric cohort of patients with NAFLD 

 
FGF19 <60 pg/mol  

(n=72) 

FGF19 <100 pg/mola 

(n=16) 

FGF19 >100 pg/mol 

(n=11) 

Gender 

M 44 11 7 

F 28 5 4 

Age 

≤11 23 6 7 

≥12 49 10 4 

Steatosis 

≤1 21 3 3 

≥2 51 13 8 

Fibrosis 

≤1 22 5 6 

≥2 50 11 5 

NAS 

≤3 26 4 3 

≥4 46 12 8 

Data were divided by levels of FGF19 in paediatric cohort of patients with NAFLD based on the levels 

reported by 2 previous studies (Jiao et al., 2018a; Nobili et al., 2018). 

Abbreviations: F = female; M = male; NAS = NAFLD activity score. 
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Figure 12. Levels of FGF19 in paediatric cohort of patients with NAFLD. Data from the paediatric 

cohort of patients with NAFLD and data from 2 studies (Jiao et al., 2018a; Nobili et al., 2018) are 

provided. Mean levels of FGF19 from cohort of NAFLD are close to levels of patients with NASH from 

both studies cited. 

3.3.5 BA and FGF19 level analysis 

The results from ANOVA and Kruskal-Wallis to identify any difference in BA and FGF19 levels 

between patients’ histological features are provided in Table 34; however, after adjusting for 

multiple testing, no p value was significant. 

The before multiple correction p values showed a difference in levels of CDCA for patients 

with fibrosis stage 1 and 2, and between patients with steatosis grade 0 and 2, and grade 1 

and 2. A significative difference was obtained for the ANOVA test between patients with 

steatosis grade 1 and 2 and grade 2 and 3. Other significant differences were observed for 

total unconjugated between patients with fibrosis stage 1 and 2. Difference in patients with 

steatosis grade 2 and other others with grade 0, 1 or 2 were significant for ANOVA, however, 

Kruskal Wallis showed a significant difference only between patients with steatosis grade 2 

and 0. A difference between NAS groups was reported for the glycine to taurine ratio, where 

ANOVA showed significant difference between patients with NAS score 4 vs patients with 

score 1, 2, 3, 5 and 6. 
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Table 34. Differences in levels of BA and FGF19 in patients with NAFLD, before adjustment for multivariate 

BA 

FIBROSIS PVALUE STEATOSIS PVALUE INFLAMMATION PVALUE NAS PVALUE 

One way 

Anova 
Kruskal-Wallis 

One way 

Anova 
Kruskal-Wallis 

One way 

Anova 
Kruskal-Wallis 

One way 

Anova 
Kruskal-Wallis 

CDCA 0.024* 0.045* 0.055* 0.006* 0.448 0.690 0.505 0.184 

Difference between *F1-F2 *Grade 0-2; 1-2     

CA 0.252 0.288 0.0189* 0.303 0.106 0.488 0.522 0.918 

Difference between   *Grade 1-2; 2-3     

GCDCA 0.565 0.632 0.927 0.570 0.260 0.816 0.515 0.816 

GCA 0.439 0.899 0.978 0.616 0.598 0.881 0.764 0.881 

TCDCA 0.793 0.971 0.612 0.942 0.201 0.805 0.208 0.805 

TCA 0.883 0.764 0.634 0.772 0.471 0.821 0.447 0.821 

TOT BA 0.540 0.453 0.944 0.238 0.239 0.755 0.585 0.517 

TOT CDCA 0.549 0.352 0.894 0.197 0.167 0.716 0.468 0.449 

TOT CA 0.489 0.732 0.994 0.431 0.441 0.579 0.775 0.689 

TOT Gly CONJ 0.533 0.752 0.959 0.563 0.364 0.902 0.625 0.421 

TOT Tau CONJ 0.842 0.995 0.628 0.936 0.264 0.865 0.267 0.422 

TOT UNCOJ 0.037* 0.006* 0.031* 0.009* 0.280 0.572   

Difference between *F1-F2 
*Grade 0-2; 1-2; 2-3 

*Grade 0-2 
    

CA/CDCA 0.110 0.084 0.303 0.371 0.664 0.796 0.316 0.180 

Gly/Tau 0.391 0.137 0.536 0.237 0.604 0.684 0.031* 0.049* 

Difference between       
*Score 0-4; 1-4; 2-4; 3-4; 5-4; 6-4     

*Score 3-4 

Gly+Tau/UNCONJ 0.861 0.814 0.530 0.987 0.059 0.737 0.170 0.415 

FGF19 0.720 0.984 0.990 0.970 0.567 0.458 0.882 0.918 

Patients were grouped based steatosis score (0,1,2,3,4), fibrosis (1,2,3), NAS (1,2,3,4,5, 6 and 7), inflammation (0-1-2). Data were analysed with ANOVA and 

Kruscal-Wallis to evaluate differences between subgroups. Significative differences were noticed for levels of CDCA and total unconjugated in fibrosis and 

steatosis groups. Differences in CA levels were observed in groups of patients with steatosis. And differences in inflammation scores were observed for Glycine 

to Taurine ratio. After correction for multiple testing no p value was confirmed. 
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3.3.6 BA and FGF19 levels and Genetics  

The results from the genetic analysis in combination with the levels of BA and FGF19 in 

patients with NAFLD are provided in Table 35. Among the genes considered for this analysis, 

ABCB11, FGFR4 and CYP8B1 had each an extremely common variant. The rest of the variants 

considered had a MAF below 10% in the general population (gnomAD). 

Majority of patients with at least one variant in one of the genes considered had disrupted 

levels of BA and FGF19.  

Interestingly 54% of patients with variants in CYP8B1 had altered total CDCA and 72.4% had 

a high CA to CDCA ratio. Total BA were elevated in 50% of patients with mutation inn SLC10A1 

and ABCB11, which are the two transporters for export and import of BA. Elevated BA were 

also present in the majority of patients with CYP7A1 variants. 

Table 35. Presence of variants in genes belonging to the BA metabolism and plasma levels of BA 

 

ABCB11 

(n=83) 

(%) 

NR0B2 

(n=13) 

(%) 

CYP7A1 

(n=3) 

(%) 

FRGR4 

(n=95) 

(%) 

CYP8B1 

(n=98) 

(%) 

NR1H4 

(n=4) 

(%) 

SLC10A1 

(n=2) 

(%) 

Total BA 

(>4.37µmol/L) 

42  

(50.6%) 

5   

(38.5%) 

2   

(66.7%) 

52  

(54.7%) 

53  

(54.0%) 

4   

(100%) 

1    

(50.0%) 

TOTAL CA 

(>0.98µmol/L) 

53   

(63.9%) 

8 

(61.5%) 

2    

(66.7%) 

67  

(70.5%) 

68   

(69.4%) 

4   

(100%) 

1    

(50.0%) 

TOTAL CDCA 

(>2.87µmol/L) 

43  

(51.8%) 

6   

(46.2%) 

2    

(66.7%) 

52  

(54.7%) 

53  

(54.0%) 

3  

(75%) 

1     

(50.0%) 

TOTAL UNCONJ 

(>0.71µmol/L) 

76  

(91.6%) 

12  

(92.3%) 

2    

(66.7%) 

88  

(92.6%) 

91  

(92.9%) 

4    

(100%) 

1     

(50.0%) 

CA/CDCA 

(>0.34) 

61  

(73.5%) 

8  

(61.5%) 

3    

(100%) 

69  

(72.6%) 

71  

(72.4%) 

4    

(100%) 

2  

(100.0%) 

FGF19 

(<60pg/mL) 

63  

(75.9%) 

7  

(53.8%) 

3    

(100%) 

69  

(72.6%) 

72  

(73.5%) 

3 

(75%) 

2  

(100.0%) 

(n) identifies patients with at least 1 variant of the gene. The maximum of the range of each BA level 

reported in healthy patients in Jahnel’s study was used as reference, above which levels were 

considered altered. The mean of FGF19 levels from Jiao’s study represented the value below which 

FGF19 levels were considered altered in NAFLD patient. 
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3.3.6.1 Genetic risk score 

The association between genetic risk factors of genes belonging to the BA pathways and 

NAFLD traits was evaluated with simple regression, in addition to the risk score from all 

variants identified in the genes in the panel. The p values obtained are provided in Table 36. 

Although an initial significant relationship was noticed between the risk score from all variants 

found and the levels or GCA, GCDCA, total BA, total CDCA, total CA, total glycine unconjugated 

and the ration between total conjugated (Gly+Tau) to unconjugated, after adjusting for 

multiple testing, no association could be confirmed. 

Table 36. Genetic risk score for BA and FGF19 levels  

BA Levels 

Variants Risk Score  

p values for variants from genes of 

the BA pathway panel 

(n=136) 

p values for variants from all 

genes in the panel  

(n=870) 

CDCA 0.864 0.833 

CA 0.545 0.902 

GCDCA 0.643 0.009 

GCA 0.432 0.018 

TCDCA 0.388 0.108 

TCA 0.283 0.205 

TOT BA 0.741 0.016 

TOT CDCA 0.840 0.022 

TOT CA 0.579 0.015 

TOT Gly CONJ 0.557 0.011 

TOT Tau CONJ 0.354 0.129 

TOT UNCOJ 0.757 0.903 

CA/CDCA 0.582 0.627 

Gly/Tau 0.180 0.470 

Gly+Tau/UNCONJ 0.715 0.036 

FGF19 0.491 0.560 

P value results observed before correction for multiple testing. Linear regression was performed to 

evaluate the association between risk scores and levels of BAs and FGF19. 

Abbreviations: BA = bile acids; Gly = glycine; Tau = Taurine. 
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3.4 DISCUSSION 

This study has investigated for the first time in a cohort of patients with NAFLD the 

contribution of variants in genes belonging to the BA metabolism and transport to the 

progression and severity of disease. Several variants in genes involved in BA metabolism and 

transport were identified in the paediatric cohort of patients with NAFLD. Among the rare 

variants, of particular interest were variants in NR1H4, which gave an association before FDR 

correction with fibrosis and NAS score. NR1H4 encodes the FXR nuclear receptor, one of the 

most important protein in regulating the BA synthesis and transport. One or more damaging 

variants in this gene could possibly lead to dysregulation of BA for reduced activity or early 

degradation of FXR. A recent study in adults, found the intron variant rs35724 (C>G) in NR1H4 

affects liver damage in NAFLD population (Grimaudo et al., 2021). From Grimaudo’s study, 

the wt allele [C] seemed to be protective against steatosis, lobular inflammation, and severe 

fibrosis. Interestingly, 56% of the paediatric cohort of patients with NAFLD, selected for this 

thesis, presented the minor allele [G] of rs35724 in NR1H4. The hypothesis is that the 

presence of the [G] allele could influence the progression of NAFLD by eclipsing the protective 

function of the wt [C], even in heterozygosity. FXR is not only important to regulate the 

synthesis of BA, through the activity of SHP, and transport of BA though ABCB11 (BSEP); FXR 

is also involved in the modulation of metabolic genes. It was shown that FXR regulates the 

production of VLDL via SHP by repressing HNF4A. Having either mutation in NR1H4 or HNF4A 

could have an important effect on the fatty acid metabolism, as it has been shown that FXR 

modulates the activity of PPARA and PARA itself regulates through HNF4A the activity of 

CYP7A1 (Marrapodi and Chiang, 2000; Patel et al., 2000). 

Mutation in FGFR4 could compromise the fine regulation of the synthesis of BA through the 

activity of FGF19 activated by FXR. Although no sequencing data for theFGF19 were obtained, 

low plasma levels of FGF19 have been observed in the paediatric cohort of patients with 

NAFLD. The lower levels of FGF19 in association with variants in FXR and FGFR4 might 

influence the ability of FXR to regulate BA synthesis and transport, inducing to an 

accumulation of BA, leading to toxicity and hepatic injury, especially if presence of variants in 

proteins designated to BA transport, such as BSEP and NTCP, encoded by ABCB11 and 

SLC10A1 respectively. BSEP is a transporter of BA from the hepatocytes to the bile canaliculus, 

and NTCP is needed for the uptake of BA back to the hepatocytes. A variant in one or both 
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these genes could induce, and reinforce the accumulation of BA due to reduced function of 

FXR protein  

The data on the levels of BA in paediatric cohort of patients with NAFLD are in line with the 

data observed in other studies. An alteration of the levels of BA was found in the cohort of 

patients with NAFLD, where in general high levels of BA were found, from CA and CDCA 

(+DCA) to unconjugated and conjugated levels. Plasma levels of BA in healthy adults and 

children have been evaluated and showed that in young adolescents the levels of BA decrease 

until, after few years, they reach similar concentrations to the one observed in healthy adults 

(Jahnel et al., 2015c). Several studies observed altered levels of BA in plasma samples of 

patients with NAFLD. Caussy reported high concentrations of CA and CDCA conjugates, and 

decreased levels of unconjugated (Caussy et al., 2019); however, no differences in total BA 

serum levels between NAFLD and controls. Other studies in adults, however, showed high 

total BA in patients with NAFLD and NASH (Aranha et al., 2008; Bechmann et al., 2013; Ferslew 

et al., 2015). Patients with fibrosis stage greater than 2 had increased CA conjugates (Nimer 

et al., 2021). Puri in addition to high CA to CDCA ratio in patients with NAFLD, found TCA levels 

to be associated with steatosis and ballooning, while GCA levels were associated with lobular 

inflammation (Puri et al., 2018).  

Fewer studies were done in paediatric populations with NAFLD. Jahnel et al. reported ranges 

of BA levels in healthy children, from neonates to adolescents separating them per age. In 

another study, the same author evaluated the levels of serum BA in children and adolescents 

with NAFLD observing low levels of BA in patients with NAFLD compared with healthy controls 

(Jahnel et al., 2015b). In a study done by Jaio, total BA were elevated in NASH patients. 

Moreover, the measurements of FGF19 showed decreased levels in serum, similar to the one 

observed in the paediatric cohort of patients with NAFLD and in line with the evidence from 

other studies in adults (Friedrich et al., 2018; Zhang et al., 2019), and  in paediatric populations 

(Jiao et al., 2018a; Nobili et al., 2018).  

Low levels of FGF19 and high levels of BA observed in the paediatric cohort of patients with 

NAFLD indicate an alteration of the BA homeostasis which could be exacerbated by the 

presence of liver injury (that characterises NAFLD), as well as variants in some of the genes 

belonging to the BA metabolism and transport, such as the BA transporter SLC10A2 (ASBT) on 

the enterocytes and a consequent intestinal malabsorption of BA and missed activation of 

FGFR4, as hypothesised also by Jiao.  
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Further studies are needed to understand better the interaction among proteins regulating 

the bile acids homeostasis and the contribution of variants in genes involved in the BA 

metabolism and transport, in order to identify genetic markers that could help identify 

patients who may have a better response to targeted treatment. 
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Chapter 4 

4 Expression of genes involved in bile acid transport and metabolism in 

primary human hepatocytes and hepatocyte cell lines treated with fatty 

acids 

4.1 INTRODUCTION 

The most prevalent FA in diet and serum are palmitic acid (PA) and oleic acid (OA), a saturated 

fat and a monounsaturated fat respectively (Baylin et al., 2002). For this reason, PA and OA 

are frequently used in vitro for the purpose of FA exposure, in an attempt evaluate the impact 

of FA over-exposure on several metabolic and cellular process involved in the development 

and progression of NAFLD. The use of the right in vitro cell model furthers our understanding 

of the process of FA accumulation in the liver, although no single in vitro model mimics exactly 

the disease process in any individual patient. The effects of PA and OA have been studied in 

cell models. A combination of both FA induce steatosis in cells (Feldstein et al., 2003), 

however, monounsaturated fats, such as OA, are less toxic than saturated fats, such as PA 

(Malhi et al., 2006; Pardo et al., 2015; Wei et al., 2009). 

The aim of this study was to investigate whether the expression of genes involved in BA 

homeostasis was affected by the presence and accumulation of FA, thus examining the most 

likely physiological and pathophysiological response of hepatocytes to accumulation of FA 

and possibly BA. 

For this purpose, gene expression was evaluated in the hepatocyte cells lines; HepG2 and 

Immortalised Human Hepatocytes (IHH) and in primary human hepatocytes. Although use of 

cells derived from patients with NAFLD would be an interesting approach here, cells from 

biopsy samples taken were insufficient to examine gene expression. Primary human 

hepatocytes were derived from donated livers unsuitable for transplantation and consented 

for research purposes.   
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4.2 MATERIALS AND METHODS 

4.2.1 Cultures of cell lines: HepG2 and IHH 

HepG2 cell from our lab stock. Once thawed cells were maintained in Dulbecco’s modified 

Eagle’s medium (DMEM), supplemented with 1% penicillin-streptomycin (Life Technologies, 

ThermoFisher, UK), 0.1% of L-glutamine and 10% fetal bovine serum (Life Technologies, 

ThermoFisher, UK). 

Immortalised human hepatocytes (IHH), kindly donated by Dr. Shilpa Chokshi from Institute 

of Hepatology, is a stable cell line, immortalized with lentiviral vectors, expressing the simian 

virus 40 large tumour antigen (SV40Tag). As previously described (Nguyen et al., 2005), IHH 

kept properties typical of primary hepatocytes, with the advantage to proliferate in culture, 

as opposed to the non-dividing primary hepatocytes. IHH were kept in DMEM supplemented 

with 1% penicillin-streptomycin, 0.1% of L-glutamine, 10% fetal bovine serum, 5mM 

Dexamethasone using DMSO (Sigma-Aldrich, Dorset, UK) and 1pM of insulin (Life 

Technologies, ThermoFisher, UK). 

Both cell lines were kept at 37°C with 5% CO2. For both cell lines, once thawed at 37°C for 

few seconds, the cells were immediately transferred to an empty 30 mL tube in which the 

respective media was added drop by drop up to 5 ml. Cells were then centrifuged at 1400 rpm 

at 21°C for 10 minutes, resuspended in fresh medium and transferred in a T75 flask. 

Twice a week, cells were split. At every passage, cells were washed twice with 10 mL of warm 

PBS (Life Technologies, ThermoFisher, UK) and detached from a T75 flask (Greiner Bio-One, 

Gloucestershire, UK) using 2 mL of accutase (ThermoFisher, UK). After being incubated with 

accutase at 37°C for about 10 minutes, HepG2 were then diluted in complete DMEM and 

centrifuged at 1400 rpm for 5 minutes at 21°C, while IHH were centrifuged at 500xg for 

10 minutes. After centrifugation, cells were diluted in 10 mL of fresh DMEM. For HepG2 cell 

counting, 10 µL of 1:1 dilution of trypan blue and cell suspension was added to both sides of 

the Bürker counting chamber. IHH were, instead, counted with the ADAM automatic cell 

counter. After counting, 4x106 cells were seeded in a T75 at each passage, for both HepG2 

and IHH.  
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4.2.2 Cultures of primary cells: Human hepatocytes 

Primary human hepatocytes were obtained from livers donated to the National Organ 

Transplantation programme, via National Health Service Blood Tissue (NHSBT), however, 

were unsuitable for transplantation. All donor livers had research consent, were used under 

Ethical approval (KCH REC 01-016 HTA Licence number 11062) and were processed in the 

laboratories of the Institute of Liver Studies at King’s College Hospital (Mitry, 2009). King’s 

College Hospital has a memorandum of understanding with NHSBT and the paediatric 

hepatocyte research programme is one of the programmes to which liver tissue is donated 

for research into paediatric liver disease.  

The liver was weighed before isolation to determine the amount of collagenase for digestion 

of the tissue. Blood vessels on the liver section were cut, cannulated, and sutured and 

transferred in a bag. After being placed in a water bath at 37°C, the liver was perfused with 

calcium-free plain HBSS (Lonza, Basel, Switzerland), HBSS with 1M HEPES buffer (Lonza, Basel, 

Switzerland), 0.5mM EGTA followed by calcium-free HBSS and EMEM containing 1 x Clzyme 

collagenase MA (200 Wunsch units) and 2x BP protease enzymes (1.1 million NPA units/vial) 

(VitaCyte, Indianapolis, USA) per 300 g of liver tissue. Perfusion rate varied from 50-

120 mL/minute, depending on the organ weight and the number of cannulae. After digestion, 

to inactivate the collagenase the liver was washed with 1 L of EMEM with 2% v/v human 

serum albumin and sutures and cannulae were removed. The organ was then minced using 

sterile scissors. The hepatocytes were collected by sieving the suspension of the minced tissue 

through sterile swabs and centrifuged three times (or until the supernatant is clear) at 100 x g, 

80 x g and 50 x g for 5 minutes at 4°C. The viability was assessed using trypan blue and cells 

were cryopreserved at 1x107 in Belzer University of Wisconsin solution (Bridge to Life, 

Columbia,USA) with 5% glucose and 10% DMSO and placed in 50 mL CryoMACS® Freezing 

Bags (Miltenyi Biotec Ltd, Surrey, UK), frozen in a controlled rate freezer and stored at -140°C. 

For the experiment, 3 batches from 3 donors were used. Based on reported viability at time 

of processing, a bag or few vials of cryopreserved hepatocytes were thawed at 37°C for few 

seconds and resuspended in Williams E medium (Signa Aldrich, Dorset, UK) containing 10% of 

heat-inactivated fetal calf serum, 1% of 1M HEPES buffer, 1% L-glutamine, 1% penicillin-

streptomycin, 0.1% of 10-7M dexamethasone and 1% of Insulin-transferrin-selenium and 

centrifuged at 50xg for 5 minutes at 4°C. Cells were then counted with trypan blue. Primary 
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hepatocytes were plated in 96, 24 and 6 well-plates previously coated with 0.1 mg/mL 

collagen and washed with PBS before use.  

4.2.3 Gene panel 

The gene selected to evaluate the gene expression of genes involved in the BA metabolism 

and transport are provided in Table 37. The panel included 24 of the 26 genes from the NGS 

panel. GPBAR1 and SLC10A2 were excluded as they are not expressed in hepatocytes but in 

cells of the intestine.  

Table 37. Panel for expression of genes of the BA metabolism and transport In hepatocytes 

GENE PROTEIN DESCRIPTION 

BAAT BAAT Bile acid-coa:amino acid n-acyltransferase 

AKR1D1 SRD5B1 Steroid-5-Beta-Reductase 

ABCB11 BSEP Bile salt export pump 

ABCB4 MDP3 Multiple drug resistance 3 

ABCC2 MRP2 Multidrug resistance-associated protein 2 

ABCC4 MRP4 Multidrug resistance-associated protein 4 

ABCA1 CERP Cholesterol efflux regulatory protein 

CYP7A1 CYP7A1 Cholesterol 7α-hydroxylase 

CYP7B1 CYP7B1 25-hydroxycholesterol 7-alpha-hydroxylase 

CYP8B1 CYP8B1 7-alpha-hydroxy-4-cholesten-3-one 12-alpha-hydroxylase 

ATP8B1 PFIC Probable phospholipid-transporting atpase IC 

FGF19 FGF19 Fibroblast growth factor 19 

FGFR4 FGFR4 Fibroblast growth factor receptor 4 

GLP1R GLP1R Glucagon like peptide 1 receptor 

HSD3B7 HSD3B7 
Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-

isomerase 7 

HNF4A HNF4α Hepatocyte nuclear factor 4 alpha 

NR0B2 SHP Small heterodimer partner 

NR1H3 LXR Liver x receptor alpha 

NR1H4 FXR Farnesoid c receptor 

NR1I2 PXR Pregnane x receptor 

NR5A2 LRH1 Liver receptor homolog 1 

SLC51A OST Organic solute transporter subunit alpha 
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SLC51B OST Organic solute transporter subunit beta 

SLC10A1 NTCP Sodium(+)/taurocholate transport protein 

Twenty-three genes were selected to evaluate the mRNA levels of genes involved in the BA 

metabolism and transport. GPBAR1 and SLC10A2 were excluded from the analysis as they are not 

expressed in hepatocytes. 

 

4.2.4 FFA preparation and cell plating 

Solutions of palmitic acid (PA) and oleic acid (OA) were prepared by following the protocol 

from Seahorse Bioscience (Agilent technologies, Didcot, UK). Both PA and OA were dissolved 

in a carrier, Bovine Serum Albumin (BSA) (Sigma-Aldrich, Dorset, UK), obtaining BSA 

conjugated PA and OA (FFA-conjugated). This allows the FFA to enter cells. A volume of 

150 mL of BSA was prepared: 3.4005 g of BSA was dissolved in 150 mL of 150mM NaCl 

solution at 37°C. From this solution, 50 mL was diluted with 50mL of 150mM NaCl solution, 

to make 0.17mM BSA stock solution which was filtered, aliquoted and stored at -20°C. The 

remaining BSA was used to prepared PA and OA solutions. A total of 30.6 mg of Sodium 

Palmitate were added to 44 mL of 150mM NaCl solution, while 33.4 mg of Sodium Oleate 

were added to 44 mL of 150mM NaCl solution. Each solution was then heated at 70°C on a 

stir-plate until each solution resulted clear. Next, 40 mL of PA or OA solution was transferred, 

5 mL at a time, in 50 mL of BSA solution, while stirring at 37°C for 1 hour. The final volume 

was adjusted to 100 mL with 150mM NaCl solution, to create a 1mM stock solution for each 

FFA. Each solution of FFA-conjugated was then filtered, aliquoted and stored at -20°C. 

For each treatment a fresh stock of BSA, PA or OA was thawed and prepared to obtain the 

concentrations needed.  

Cells were plated for the FFA treatment in different plate sizes, to allow good expansion for 

the collection of mRNA and the Oil Red O (ORO) staining as following: 

Plates used Medium Volume 

(mL/well) 

HepG2 

(cell/well) 

IHH 

(cell/well) 

Primary Hepatocytes 

(cell/well) 

6-well RNA isolation 2.5 5x105 8x105 2x106 

24-well ORO Staining 0.5 1x105 2x105 2.5x105 

96-well MTT and SRB 0.2 7x103 1.5x104 5x104 

Cells were treated for 24 hours in total, at 37°C, 5% CO2. Each condition was performed in 

triplicate. Twenty-four hours from seeding, cells were exposed to varying ascendant 
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concentrations of PA or OA, corresponding to 50µM, 100µM, 200µM, 300µM, and 400µM. 

Cells were also exposed to a combination of the two FA at ratio of 1:1 at a concentration of 

100µM or 200µM of OA and PA. As control, each experiment had also an untreated condition 

and 5 ascendant concentrations of BSA (carrier of FA), to evaluate any potential effect 

connected to the presence of BSA in FA solutions. The concentrations of BSA used were 

8.5µM, 17µM, 34µM, 51µM, and 68µM, which corresponded to the BSA concentration 

present in 50µM, 100µM, 200µM, 300µM, and 400µM of each FA solution. 

4.2.5 Cell viability 

Two assays were used to evaluate the cell viability after 24h treatment: the MTT assay 

(which uses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB assay 

(with Sulforhodamine B). The results on cell viability from MTT and SRB determined the 

concentrations at which the mRNA collection was feasible. 

The plate intended for the MTT was washed with warm PBS. After, 200 µL of serum-free 

medium containing 0.5 mg/ml of MTT (Sigma Aldrich, Dorset, UK) was added to each well and 

the plate was incubated at 37°C for 4 hours. Wells were then washed once with PBS and 

200 µL/well of DMSO was added to dissolve the formazan produced. After leaving the plate 

on a shaker for 10 minutes, the density for each well was measured at 630 nm on a microplate 

reader(Mitry et al., 2000). 

For the SRB assay, the supernatant was removed from each well and cells were washed with 

PBS. In each well, 50 µL of ice-cold 50% TCA (trichloroacetic acid) was added on top of 200 µL 

of medium. This passage was essential to fix the cells, and the plate was stored at 4°C for 

1 hour. Wells were then washed five times with tap water and cell were stained using 100 µL 

of 0.4% SRB at RT for 10 minutes. Once removed the SRB solution, the plate was rinsed 5 times 

with 1% acetic acid in dH2O. The plate was left to air-dry for few minutes and then 200 µL/well 

of unbuffered Tris-base was added to solubilise the dye for 1 hour. Finally, the plate was read 

at 564 nm on a microplate reader.  

After removing the background value given by the plate material density, all concentrations 

of each FA were normalised against the corresponding BSA concentration. The statistical 

analysis was performed on GraphPad Prism 8.3, using unpaired t test to compare the 

concentration of each FA against the corresponding concentration of BSA, and using paired t 



138 

 

test to evaluate any difference between the 5 different concentrations of the same FA. 

Moreover, a dose-response curve was defined for each FA. 

4.2.6 Oil Red O (ORO) staining 

A working solution of ORO was prepared based on the protocol used by the histology 

department at King’s College Hospital. 0.5 g of ORO was dissolved in 100 mL of isopropyl 

alcohol overnight on magnetic stirrer. Later, a dextrin solution was prepared dissolving 1 g of 

dextrin in 100 mL of dH2O. to prepare the ORO working solution, 60 mL of ORO solution was 

added to 40 mL of dextrin solution followed by stirring for few hours. The ORO working 

solution was allowed to stand for a day and then filtered using few layers of swab.  

After 24h treatment the 24 well/plate was washed twice with PBS. Cells were fixed using a 

solution of 4% formaldehyde (ThermoFisher, UK) in D-PBS. The cells were incubated for 

10 minutes at RT covered in foil. After discarding formaldehyde, wells were briefly washed 

twice with PBS. The plate was stored at 4°C with wells covered in PBS or stained immediately.  

A total volume of 0.5 mL of ORO working solution was added to each well and incubated for 

20 minutes. Then, each well was briefly washed with tap water. The nuclei were stained with 

instant Haematoxylin for 20 seconds. The plate was briefly washed with dH2O and 300 mL of 

PBS was added to each well. Cells were examined using an Inverted Microscope Leica DMi8 

x20 magnification (Leica Microsystems UK Ltd, Milton Keynes, UK) and images were taken 

using a Canon 1500D digital camera. 

4.2.7 Cell lysate and RNA extraction 

Cells from 6 well-plate were used for RNA extraction. Cells were collected in 1 mL of TRIzol 

(ThermoFisher, UK) and stored in an Eppendorf at -80°C until extraction. To isolate RNA, 

0.2 mL of chloroform was added, and the tube was shaken for few seconds followed by a 

3minute incubation at RT. Samples were centrifuged at 12000 x g at 4°C for 15 minutes and 

the aqueous phase was then transferred to a new tube and 0.5 mL of isopropanol was added 

to the aqueous phase for a 10-minute incubation at RT. Samples were then centrifuged for 

10 minutes and supernatant was removed. The RNA was then resuspended in 1 mL of 75% 

ethanol, briefly vortexed and then centrifuged at 7500×g at 4°C for 5 minutes. After discarding 
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the supernatant, the RNA was left to air-dry and resuspended in 20 µL of RNAse-free water. 

Quantity and quality of RNA were determined using a NanoDrop (ThermoFisher, UK).  

4.2.8 cDNA reverse transcription 

The RNA was immediately reverse transcribed to cDNA using the High-Capacity cDNA Reverse 

Transcription Kit (Life Technologies, ThermoFisher, UK), following the manufacturer’s 

protocol. Two separated wells per condition were prepared using a volume of 1.5 µL of RNA 

for each. A 96-well PCR plate allowed to contain all conditions for each experiment (n=3) per 

cell type. The reverse transcription was carried out on a Veriti Thermal Cycler (Applied 

Biosystem, ThermoFisher, UK). The layout was thought to facilitate the transfer of the cDNA 

of each condition as easily as possible in the 384-well plate for Real-Time qPCR, avoiding cross 

contaminations. At the end of the reverse transcription the PCR plate was stored at -20°C until 

use. 

4.2.9 Primer design and probes for BA genes 

To investigate the changes in the expression of genes involved in the metabolism and 

transport of BA following a FFA treatment, the Roche Universal ProbeLibrary (UPL) set (Sigma-

Aldrich, Dorset, UK) was used. The UPL system technology uses a set of short (-8-9 

nucleotides) hydrolysis probes, labelled at the 5’ end with fluorescein (FAM) and with a dark 

quencher dye at 3’. The probe sequence sees also the presence of Locked Nucleic Acids (LNA) 

that are extremely efficient nucleotides required to maintain specificity to the template. For 

our panel of genes, the UPL Assay Design Center was used to design the couple of primers; 

the design center gives the primers’ sequence which contains the sequence of one of the 

probes of the library. After selecting the organism of the target, the name of the gene was 

entered to design the primers against the right mRNA transcript, following Ensabl database. 

Four genes were selected as HouseKeeping (HK): ATCB, GAPDH, RPLP0, RSP28. Two couple of 

primers per each gene were selected based on the ranking score given on the Design Center. 

Once ordered, the primers (Sigma-Aldrich, Dorset, UK) were validated by electrophoresis, 

using a 2% agarose gel.  
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4.2.9.1 Real-Time qPCR 

The cDNA was diluted in order to have approximately 25 ng of DNA in 2 µL volume. The final 

volume of reaction/well was 10 µL, including: 2 µL of DNA, 0.4 µL of forward primer (10µM) 

and 0.4 µL of reverse primer (10µM), 0.2 µL of UPL probe, 5 µL of Taqman Fast Advanced 

Mastermix (Applied Biosystem, ThermoFisher, UK) and 2 µL of sterile water. The reaction for 

each sample was performed in triplicate, in a microamp optical 384-well reaction 

plate (Applied Biosystem, ThermoFisher, UK). The qPCR reaction was performed on the 

QuantStudio 5 Real-Time PCR system (Applied Biosystem, ThermoFisher, UK). The layout of 

the plate and the method were designed on the QuantStudio Design and Analysis Software 

v 1.5.1. The PCR program presented an initial 2-step stage of 2 minutes at 50°C followed by 

20 seconds at 95°C. The following 2-step stage, repeated 40 times, included a step at 95°C for 

3 seconds followed by 60°C for 30 seconds. The QuantStudio Design and Analysis Software 

v 1.5.1 was also used to establish manually the baseline, subtracting the background noise, 

and the threshold obtaining the Ct values in the final data file.   

The relative 2-ΔΔCt method was used to determine the change in expression of the target 

genes. The HK selected for the runs was GADH and each FA condition was normalised against 

the value at the same concentration of the carrier, BSA. At first the ΔCt was obtained by the 

difference between the HK Ct and target Ct:  

ΔCt = Ct(target gene) - Ct(HK gene) 

It was then possible to proceed by calculating the average of the BSA ΔCt, which was the 

carrier, for the 3 different concentration (50µM -100µM -200µM). This BSA ΔCt average was 

then used to calculate the ΔΔCt of each other condition; an example follows below: 

PA 50µM ΔΔCt = PA 50µM ΔCt - BSA 50µM ΔCt average 

Then 2-ΔΔCt of each ΔΔCt was calculated, and the average of the 2-ΔΔCt per condition was 

the final data imported in GraphPad Prism 8.3. One-way ANOVA was employed to compare 

PA, OA and OA+PA 2-ΔΔCt values against the BSA, and to compare the 3 different 

concentration of the same FA. A p value equal or lower than 0.05 was considered statistically 

significant.  



141 

 

4.2.10 Statistical analysis 

The differences in viability among the concentrations of PA or OA, for the 3 different batches 

of cells, were analysed with paired t-test using GraphPad Prism. 

The mRNA levels in cells treated with BSA concentrations were considered the baseline of 

each gene. The concentration of each FA was compared against the corresponding 

concentration of the carrier using one-way ANOVA.  
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4.3 RESULTS 

4.3.1 Cell viability in presence of FA treatment 

Change in viability for each concentration of FA was compared with the results from the 

corresponding concentration of the carrier. The cell viability results from the carrier were 

comparable to ones observed for the untreated. The effect of each 24h treatment of FFA on 

the viability of the selected types of cells was assessed with an MTT and SRB assay. This helped 

in deciding which doses to consider for the gene expression experiment, to ensure that 

sufficient mRNA could be collected for analysis. Both FA induced a reduction of cell viability 

in both cell lines and primary hepatocytes, although in different intensity.  

4.3.1.1 HepG2 

The changes in viability of HepG2 treated with PA, OA and the combination of the two FA are 

provided in Figure 13. Overall, cell viability was reduced in presence of PA, as well as OA. 

However, PA, showed a more toxic effect than the OA.  

The MTT results on viability of the HepG2 treated with PA, showed a significant reduction 

(p<0.0001) for all concentrations, compared to the corresponding concentration of the BSA 

carrier (Figure 13a). The reduction in cell viability went from 44.5% at 50µM up to 66.4% 

400µM of PA. The SRB confirmed the compromised viability in presence of PA treatment 

(Figure 13b), especially from 200µM to 400µM, for which the most statistically significant 

effect was observed (p = 0.009, p = 0.008, p <0.0001). OA treatment had less impact on the 

HepG2 cell viability, as shown in Figure 13. The MTT assay showed a significant drop of cell 

viability in presence of OA concentrations between 200µM to 400µM (p <0.01 and p <0.001), 

going from 23.4% to 39.1%, respectively. Similar results were obtained with the SRB, where 

statistically significant reductions of 48.3% (p = 0.0003) and 46.8% (p = 0.0002) were observed 

at OA 300µM 400µM, respectively. When FA were used in combination (1:1), the cytotoxicity 

of PA was considerably lessened by the presence of OA; nevertheless, the effect on cell 

viability was significant. In co-presence of OA and PA at 1:1 ratio, the MTT showed a reduction 

for the 100µM and 200µM concentrations of 23.4% (p value = 0.01) and 45.5% (p 

value = 0.0003). With the SRB assay, a significant reduction of 40% in cell viability was 
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observed at 200µM of co-treatment. Both types of FA induced a dose-dependent effect on 

HepG2 (Figure 13.c). 

4.3.1.2 IHH 

The changes in viability of IHH treated with PA, OA and the 2 FA in combination are provided 

in Figure 14. Overall, cell viability was reduced in presence of PA, as well as OA, with a 

noticeable toxic effect in presence of PA.  

The MTT assay results showed a significant reduction of viability (p >0.0001) at all PA 

concentrations, especially at 300µM and 400µM where it dropped by 66.8% and 81.4% 

respectively. The same results were confirmed by the SRB assay, which showed a significant 

reduction (p >0.0001) of 64.8% and 81.4% at PA 300µM and 400µM. The OA treatment 

resulted less toxic than PA on the IHH. Notwithstanding, a 25.3% decrease in cell viability was 

observed at 100µM (p = 0.04), which went up to a 54.4% (p <0.0001) at 400µM. A similar 

statistically significant effect (p <0.0001) was observed with the SRB assay, where at 400µM 

a total reduction of 41.3% was observed. Looking at the results from the co-treatment with 

both FA (1:1), a slight decline (p<0.05) was observed in cell viability, shown by both assays. 

The cell viability of IHH was reduced after both treatments with FA. However, the toxicity of 

PA gave a greater reduction in cell viability, compared with the OA treatment. Both types of 

FA induced a dose dependent drop in viability of IHH. 

4.3.1.3 Primary Hepatocytes 

The effect of the treatment on cell viability (Figure 15) in primary human hepatocytes was not 

as dose dependent as seen for the previous cell lines. However, a certain degree of toxicity 

was observed in presence of PA. 

A dose-dependent decline in viability was observed in presence of PA treatment. MTT and 

SRB results showed a significative reduction (p<0.05) of 16.1% and 20.3% in cell viability at 

200µM PA. The MTT results for the OA treatment were less linear. However, the SRB results 

showed a statistically significant (p<0.005) decline in cell viability in presence of OA at 50µM, 

200µM and 400µM concentrations. 
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Figure 13. HepG2 Viability. The graphs depict the results of cell viability in HepG2 after FA treatment.  1a). Result from the MTT showed a significant effect 

in presence of each FA and both in co-treatment. PA seemed to have a more toxic effect on cell viability than OA.  1b). SRB results were consistent with MTT 

results.  1c). The effect on cell viability for both PA and OA was dose-dependent. 

A 

B 

C 
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Figure 14. IHH viability. The graphs depict the results of cell viability in IHH after FA treatment.  2a). Result from the MTT showed a significant effect in 

presence of each FA and both in co-treatment. PA seemed to have a more toxic effect on cell viability than OA.  2b). SRB results were consistent with MTT 

results.  2c). The effect on cell viability for both PA and OA was dose-dependent. 

A 

B 

C 
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Figure 15. Primary Human Hepatocyte viability. The graphs depict the results of cell viability after FA treatment. 3a). Result from the MTT showed a 

significant effect in presence of PA 200µM and 300µM. PA seemed to have a more toxic effect than OA. 1b). SRB results showed significant decrease in cell 

viability in PA, OA and in presence of bot FA. 1c) The effect on cell viability seemed to be dose-dependent for PA.

A 

B 

C 
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4.3.2 Oil Red O (ORO) staining 

The intracellular lipid uptake was assessed using the ORO staining. Cells kept their 

conformation at every treatment condition. The slight coloration in the untreated, and in cells 

treated with BSA, is due to the presence of FA in cell culture medium, although in low 

concentrations compared to the concentrations used in treated conditions. The 

quantification of lipids was attempted by using ImageJ. However, the program was not best 

suited to quantify the lipids, as the quantification was not precise and it included parts of the 

background, giving an imprecise quantification of the lipids in the cells 

4.3.2.1 HepG2 

Lipid accumulation in HepG2 (n=3) after treatment resulted dense and intense in colour. In 

presence of OA, the colour of the lipids was brighter and more vibrant compared with cells 

treated with PA. A noticeable reduction in the number of colonies was observed in cells 

treated with PA, at every concentration, confirming the results obtained with the cell viability 

assays and in line with evidence about PA toxicity. 

4.3.2.2 IHH 

IHH cells treated with PA showed a pale coloration of lipids, in contrast with the strong 

coloration and more dense appearance of lipids accumulated in the same cells treated with 

OA. Yet, it was possible to notice a reduction in the presence of colonies at high concentration 

of PA, in compliance with the results of the MTT and SRB assays.  

4.3.2.3 Primary Hepatocytes 

In primary human hepatocytes, the untreated as well as cells cultured with BSA resulted 

slightly positive to the ORO staining, showing the prior presence of lipid in the cytosol, 

although donors did not have steatosis >5%. The presence of FA in untreated and BSA 

cultured cells was comparable in all 3 batches used. Observing the untreated primary human 

hepatocytes, it was also possible to notice the presence of big lipid droplets outside the cells, 

which appeared densely stained. Hepatocytes treated with OA showed the brighter and more 

intensely red coloration when compared with cells treated with PA. 
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Figure 16. ORO staining: HepG2. The HepG2 were stained after treatment with FA. The untreated and BSA condition showed very low presence of FA. A visible red 

colouration characterised the cell treated with PA and OA and co-treated with both FA. However, the colouration was more intense and brighter in cells treated with OA. 

The staining shows also a reduced density in cells treated with PA, due to the high toxicity of this FA.       
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Figure 17. ORO staining: IHH. The staining on the IHH was less bright and intense than ORO staining on HepG2. A red staining was visible in presence of PA at 200µM, 

300µM and 400µM. A more intense colouration was visible in cells treated with OA, especially at 200µM, 300µM and 400µM. There was a reduced density of cells treated 

with PA, noticeable especially at 400µM.       
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Figure 18.ORO staining: Primary Hepatocytes. The staining highlighted the presence of FA in the untreated as well as in cells cultured with BSA. This was due to the 

presence of fats in liver donors. A visible red colouration characterised the cell treated with PA and OA and co-treated with both FA. Cells treated with OA showed a more 

intense and brighter staining. 
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4.3.3 mRNA expression of genes involved in BA metabolism and transport after FA 

treatment  

Following the observation of a significative drop in cell viability mainly in HepG2 and IHH, 

especially at 300µM and 400 µM of both FA, it was decided to investigate the changes in 

mRNA expression of genes involved in BA homeostasis in cells treated with 50µM, 100µM and 

200µM of each FA and in presence of a combination at ratio 1:1 of OA and PA at 100µM each. 

GAPDH was selected as HK gene. The mRNA levels observed in presence of each of the BSA 

concentrations were comparable with the levels observed for the untreated controls. Having 

used BSA as a carrier of PA and OA, the results of the mRNA expressions from each BSA 

concentration were used as the basal levels of mRNA expression against which each ΔΔCt of 

PA, OA and OA:PA concentrations was calculated. Expression of NR1I2 was not detected in 

any cells, due to a faulty probe. 

4.3.3.1 mRNA expression in HepG2 cell line 

Overall, an upregulation of genes belonging to the BA metabolism and transport was 

observed in HepG2 (n=3) after treatment with different concentrations of OA, PA, or after 

co-treatment at a ratio of OA and PA at 100µM each. 

Results of mRNA expression in presence of PA showed a general upregulation at all 

3 concentrations. In particular, ABCB11 showed a significant reduction (p value = 0.01) in 

expression at OA 200µM. CYP8B1 was significantly upregulated (p value = 0.04). FGFR4 was 

significantly upregulated in both PA and OA at 100µM, respectively with a p value of 0.02 and 

0.04. HSD3B7 (p value = 0.007), NR1H3 (p value = 0.02) and NR5A2 (p value = 0.05) were all 

significantly upregulated at PA 100µM. ABCC4 was the only gene to show a significant 

upregulation in presence of FA in combination at ratio of 1:1.  

FA induced an upregulation of NR1H4, NR0B2, and CYP7A1 while a reduction in levels of 

ABCB11 and SLC10A1 were observed. 
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Table 38. mRNA expression of genes involved in BA metabolism and transport in HepG2 cells treated with FA 

GENE Baseline 
Palmitic Acid (PA) Oleic Acid (OA) 1:1 (100µM) ± 

SD 50µM ± SD 100µM ± SD 200µM ± SD 50µM ± SD 100µM ± SD 200µM ± SD 

ABCB11 1.00 0.59±0.35 0.57±0.14 0.31±0.25 1.97±0.31 0.61±0.22 *0.42±0.15 0.59±0.29 

ABCC2 1.00 1.04±0.29 0.66±0.50 0.74±0.15 1.23±0.42 0.68±0.09 0.76±0.03 1.32±0.08 

ABCA1 1.00 1.68±1.13 0.95±0.23 1.34±0.08 2.39±0.02 1.15±0.17 1.32±0.28 1.24±0.31 

ATP8B1 1.00 1.62±0.39 2.17±0.41 0.72±0.04 1.59±0.07 1.53±0.33 1.10±0.22 1.34±0.68 

BAAT 1.00 0.73±0.39 1.09±0.06 0.80±0.24 1.11±0.28 1.38±0.20 0.79±0.18 0.64±0.24 

CYP7A1 1.00 1.26±0.47 1.26±0.29 0.95±0.61 1.06±0.51 1.29±0.38 1.10±0.35 1.18±0.68 

CYP7B1 1.00 1.68±0.91 1.63±0.81 1.24±0.70 1.64±0.44 2.15±1.02 0.74±0.01 1.95±0.38 

CYP8B1 1.00 1.27±0.77 1.60±0.68 1.53±1.08 1.17±0.44 *2.11±0.25 1.43±0.66 2.32±0.93 

FGF19 1.00 1.64±0.71 0.90±0.24 0.93±0.44 2.11±0.16 1.96±0.18 1.56±0.38 1.53±0.16 

FGFR4 1.00 0.85±0.31 *2.28±0.05 1.17±0.18 1.01±0.42 *2.11±0.27 0.82±0.13 1.08±0.40 

HNF4A 1.00 1.10±0.63 1.36±0.54 1.40±0.63 1.18±0.36 1.31±0.25 1.37±0.48 1.59±0.73 

HSD3B7 1.00 1.22±0.12 **3.19±0.07 1.74±0.53 1.24±0.25 2.29±0.34 1.37±0.77 1.73±0.35 

ABCB4 1.00 1.26±0.07 1.92±0.95 1.07±0.00 1.38±0.11 1.50±0.30 2.83±0.54 2.27±0.46 

ABCC4 1.00 1.35±0.47 1.34±0.62 1.71±0.05 1.43±0.74 1.56±0.52 1.89±0.06 *2.45±0.01 

AKR1D1 1.00 1.51±0.17 1.37±0.51 1.05±0.97 1.24±0.28 1.01±0.19 2.16±1.42 1.90±1.39 

GLP1R 1.00 1.24±1.71 2.63±0.95 0.36±0.37 1.72±1.06 2.43±1.07 5.45±0.19 3.70±1.63 
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GENE Baseline 
Palmitic Acid (PA) Oleic Acid (OA) 1:1 (100µM) ± 

SD 50µM ± SD 100µM ± SD 200µM ± SD 50µM ± SD 100µM ± SD 200µM ± SD 

NR0B2 1.00 1.55±0.50 1.84±1.45 1.45±0.59 1.91±0.61 1.78±0.95 0.67±0.65 1.00±0.54 

NR1H3 1.00 1.41±0.41 1.48±0.11 1.18±0.20 0.93±0.13 *1.25±0.01 1.26±0.65 2.80±0.48 

NR1H4 1.00 1.19±0.12 1.73±0.50 1.17±0.53 1.23±0.05 1.53±0.44 1.04±0.46 2.04±1.03 

NR5A2 1.00 0.80±0.11 1.42±0.42 0.70±0.16 0.77±0.08 *1.39±0.02 1.01±0.49 1.33±0.75 

SLC51A 1.00 1.30±0.15 1.55±0.60 0.75±0.16 0.95±0.47 1.24±0.07 0.71±0.09 1.46±0.33 

SLC51B 1.00 1.53±0.04 1.88±1.13 1.41±0.11 0.83±0.09 1.78±0.79 *2.37±0.05 1.87±0.45 

SLC10A1 1.00 1.95±0.40 1.29±0.16 0.48±0.25 1.38±0.49 1.08±0.57 0.37±0.16 1.45±0.12 

HepG2 treated with ascendant concentration of PA and OA showed mainly an increased gene expression of the mRNA levels.  

 indicates a significative change (p value <0.05)  

 indicates a significative change (p value <0.01)
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Figure 19. Gene expression in HepG2. Several genes presented a statistically significant variation in 

the mRNA levels when treated with FA at various concentration. Each bar chart depicts the levels of 

expression of ABCB11 (p value <0.05), CYPB81 (p value <0.05), FGFR4 (p value <0.05), HSD3B7 (p 

value <0.01), ABCC4 (p value <0.05), NR1H3 (p value <0.05), NR5A2 (p value <0.05). In each graph the 

baseline of gene expression was represented by the carrier concentrations (BSA) against which each 

FA concentrations was compared. 

 indicates a significative change (p value <0.05)  

 indicates a significative change (p value <0.01) 

  

4.3.3.2 mRNA expression in IHH cell line 

Overall, data from the IHH (n=3) did not show an upregulation trend for genes involved in BA 

homeostasis to the same extent as was seen in HepG2, although the expression of the 

majority of genes seemed to be upregulated mainly in presence of 100µM of PA or OA, in 

presence of 100µM:100µM OA:PA the trend showed a downregulation of the majority. 
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ABCC2 and ABCA1 showed a significant downregulation when treated with 100µM:100µM 

OA:PA. HSD3B7 was the only gene to show a downregulation in presence of PA at 200µM (p 

value = 0.01) while CYP7A1 was downregulated with OA 200µM (p value = 0.02). CYP7B1 was 

significantly downregulated in presence of PA 50µM, with a p value of 0.03. NR1H4 and 

NR5A2 were upregulated in presence of PA 100µM, with a p value of 0.03 and 0.01 

respectively. AKR1D1 mRNA levels were upregulated in presence of PA at 50µM (p 

value = 0.01). ABCC4 showed a statistically significant upregulation of expression at 100µM of 

OA. 

FA induced an increased expression of NR1H4, NR0B2, CYP7A1, ABCB11 and SLC10A1 in 

presence of PA. Concentrations of OA induced decreased levels of CYP7A1, SLC10A1 and 

NR0B2 and upregulation of NR1H4 and ABCB11.  
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Table 39. mRNA expression of genes involved in BA metabolism and transport in IHH cells treated with FA 

GENE Baseline 
Palmitic Acid (PA) Oleic Acid (OA) 1:1 (100µM) ± 

SD 50µM ± SD 100µM ± SD 200µM ± SD 50µM ± SD 100µM ± SD 200µM ± SD 

ABCB11 1.00 0.80±0.10 1.97±0.55 3.04±0.93 1.04±0.45 1.46±0.99 2.58±1.56 0.40±0.03 

ABCC2 1.00 0.75±0.02 2.77±0.48 1.25±0.06 0.54±0.04 2.91±0.83 0.73±0.12 *0.16±0.03 

ABCA1 1.00 0.52±0.16 1.96±0.70 1.12±0.11 0.48±0.10 1.58±0.10 1.00±0.17 *0.38±0.10 

ATP8B1 1.00 0.75±0.31 1.86±0.72 1.13±0.03 0.76±0.33 1.60±0.36 0.89±0.15 0.35±0.11 

BAAT 1.00 2.10±1.23 1.51±0.25 2.62±0.59 1.04±0.59 1.47±0.40 0.73±0.49 0.48±0.28 

CYP7A1 1.00 1.15±1.02 1.56±0.06 1.77±1.17 0.48±0.26 0.92±0.46 *0.26±0.14 0.47±0.27 

CYP7B1 1.00 0.73±0.03 1.69±0.58 1.22±0.50 0.53±0.13 2.22±0.89 0.68±0.27 0.47±0.34 

CYP8B1 1.00 0.50±0.02 1.16±0.63 1.81±0.99 0.59±0.15 1.09±0.15 1.18±0.11 0.62±0.47 

FGF19 1.00 0.50±0.30 1.49±0.69 1.01±0.21 0.62±0.29 2.93±0.62 0.49±0.07 0.36±0.28 

FGFR4 1.00 0.39±0.16 2.72±0.20 0.86±0.36 0.58±0.30 2.29±0.16 0.61±0.27 0.34±0.22 

HNF4A 1.00 0.69±0.24 1.15±0.65 1.58±0.17 0.87±0.49 1.44±0.13 1.32±0.40 1.39±0.68 

HSD3B7 1.00 0.60±0.20 3.15±2.23 **0.85±0.02 0.56±0.20 2.67±0.84 0.68±0.37 0.23±0.06 

ABCB4 1.00 1.79±0.08 1.30±0.45 2.82±0.48 1.22±0.22 1.72±0.48 1.00±0.10 0.70±0.07 

ABCC4 1.00 0.71±0.26 0.49±0.18 1.61±0.27 0.73±0.08 1.44±0.02 1.00±0.27 0.92±0.10 

AKR1D1 1.00 *1.94±0.23 1.67±0.02 5.31±3.66 1.54±0.02 1.62±0.14 4.85±4.68 3.58±0.52 

NR0B2 1.00 1.03±0.79 2.44±0.02 1.55±0.02 0.35±0.26 1.69±0.35 0.57±0.32 0.62±0.31 
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GENE Baseline 
Palmitic Acid (PA) Oleic Acid (OA) 1:1 (100µM) ± 

SD 50µM ± SD 100µM ± SD 200µM ± SD 50µM ± SD 100µM ± SD 200µM ± SD 

NR1H3 1.00 0.64±0.29 1.93±0.81 1.88±0.63 0.85±0.63 2.37±1.52 1.68±0.34 0.83±0.17 

NR1H4 1.00 3.33±0.54 *3.10±0.47 6.13±0.85 1.04±0.84 1.01±0.29 1.21±0.27 0.77±0.04 

NR5A2 1.00 1.94±1.17 *1.32±0.05 1.40±0.44 1.03±0.23 1.54±1.02 1.13±0.55 0.91±0.49 

SLC51A 1.00 0.25±0.08 2.39±1.94 1.63±0.17 1.95±0.44 1.06±0.22 0.91±0.30 0.81±0.24 

SLC51B 1.00 0.98±0.45 2.15±0.77 2.29±1.26 0.86±0.35 1.44±0.71 5.18±4.30 1.80±1.15 

SLC10A1 1.00 1.90±1.80 1.68±0.14 0.82±0.92 0.63±0.78 0.70±0.85 0.70±0.46 0.26±0.24 

IHH treated with ascendant concentration of PA and OA showed mainly an increased gene expression of the mRNA levels in presence of 100µM of PA or OA. 

Cells cotreated with OA and PA showed a downregulation trend. 

 indicates a significative change (p value <0.05)  

 indicates a significative change (p value <0.01) 
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Figure 20 Gene expression in IHH. A Several genes presented a statistically significant variation in the mRNA levels when treated with FA at various 

concentration. Each bar chart depicts the levels of expression of ABCC2 (p value <0.05), ABCA1 (p value <0.05), AKR1D1 (p value <0.05), CYP7A1 (p value 

<0.05), HSD3B7 (p value <0.01), NR1H4 (p value <0.05), NR5A2 (p value <0.05), and CYP8B1 (p value <0.05). Baseline expression was represented by the 

carrier concentrations (BSA) against which each FA concentrations was compared. 

 indicates a significative change (p value <0.05)  

 indicates a significative change (p value <0.01) 
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4.3.3.3 mRNA expression in Primary Hepatocytes 

Results shown for the primary hepatocytes were from 2 of the 3 batches used to evaluate the 

changes in mRNA expression. It was not possible to fully analyse the data from one batch 

because of missing data of some conditions for some genes. This was likely due to the quality 

of the cells isolated. 

No statistically significant changes in the expression of genes involved in BA metabolism and 

transport were observed in primary human hepatocytes.  

In the presence of PA at 200µM and OA 50µM, gene expression in hepatocytes appeared 

largely downregulated. However, the total mRNA expression seemed mainly unchanged from 

basal levels or slightly upregulated after treatment with PA 100µM, or OA 100µM, or in 

presence of co-treatment of OA and PA at 100µM each.  

ABCC2 and SLC10A1 were downregulated when hepatocytes were exposed to all 

concentrations of PA. NR0B2 and FGF19 appeared upregulated at increased concentrations 

of PA. At all concentrations of OA, NR1H3 expression was upregulated while FGF19 expression 

was decreased. 

FA treatment induced mainly a downregulation of NR1H4, CYP7A1, ABCB11 and SLC10A1 

while levels of NR0B2 were mainly upregulated or unchanged. 



160 

 

Table 40. mRNA expression of genes involved in BA metabolism and transport in primary human hepatocytes treated with FA 

GENE Baseline 
Palmitic Acid (PA) Oleic Acid (OA) 1:1 (100µM) ± 

SD 50µM ± SD 100µM ± SD 200µM ± SD 50µM ± SD 100µM ± SD 200µM ± SD 

ABCB11 1.00 0.91±0.23 1.77±0.96 0.49±0.27 0.72±0.30 1.21±0.84 0.75±0.17 1.06±0.53 

ABCC2 1.00 0.79±0.47 0.78±0.23 0.63±0.44 0.64±0.37 0.94±0.04 0.72±0.40 1.03±0.53 

ABCA1 1.00 1.07±0.35 0.99±0.71 0.75±0.63 0.93±0.13 0.88±0.46 1.02±0.77 1.82±0.05 

ATP8B1 1.00 1.62±0.96 0.90±0.12 0.65±0.27 0.81±0.08 0.93±0.36 1.40±0.46 0.75±0.05 

BAAT 1.00 1.09±0.42 0.82±0.05 0.97±0.87 1.18±0.59 1.00±0.34 1.00±0.03 0.76±0.49 

CYP7A1 1.00 1.02±0.31 1.20±0.29 0.65±0.20 0.56±0.17 1.21±0.98 0.99±0.03 0.74±0.47 

CYP7B1 1.00 1.19±0.01 1.19±1.17 0.54±0.11 0.74±0.31 1.55±1.29 1.06±0.39 1.42±1.42 

CYP8B1 1.00 1.21±0.06 1.21±0.09 0.77±0.76 0.79±0.01 1.41±0.29 1.34±1.01 1.23±0.73 

FGF19 1.00 0.77±0.73 1.26±0.28 2.04±2.41 0.40±0.36 0.77±0.49 0.76±0.46 1.23±0.75 

FGFR4 1.00 0.99±0.32 1.02±0.12 0.89±0.18 0.77±0.03 1.22±0.51 1.01±0.36 1.68±0.38 

HNF4A 1.00 1.45±0.33 0.71±0.27 0.58±0.15 0.66±0.20 1.01±0.30 0.72±0.03 1.84±0.55 

HSD3B7 1.00 1.02±0.02 0.79±0.01 0.69±0.43 0.54±0.22 0.86±0.17 1.10±0.69 1.60±0.50 

ABCB4 1.00 0.81±0.13 1.00±0.06 0.92±0.48 0.62±0.02 1.52±0.85 1.50±0.63 1.69±0.24 

ABCC4 1.00 1.36±0.47 1.13±0.36 0.68±0.32 1.11±0.22 1.98±1.36 1.05±0.11 0.69±0.44 

AKR1D1 1.00 0.96±0.07 0.94±0.31 0.61±0.33 0.94±0.00 0.95±0.77 0.94±0.31 1.34±0.46 

NR0B2 1.00 0.86±0.06 2.75±2.83 1.26±1.02 1.13±0.35 3.51±3.78 1.04±0.21 2.52±0.34 

NR1H3 1.00 1.38±0.72 0.98±0.40 0.78±0.60 1.15±0.08 1.27±0.34 2.06±1.39 2.05±0.89 

NR1H4 1.00 0.81±0.28 1.01±0.10 0.60±0.36 0.68±0.20 1.13±0.29 0.90±0.30 1.06±0.32 
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GENE Baseline 
Palmitic Acid (PA) Oleic Acid (OA) 1:1 (100µM) ± 

SD 50µM ± SD 100µM ± SD 200µM ± SD 50µM ± SD 100µM ± SD 200µM ± SD 

NR5A2 1.00 0.78±0.09 1.01±0.28 0.61±0.28 1.01±0.46 1.22±0.50 1.09±0.16 2.15±2.36 

SLC51A 1.00 0.73±0.46 1.24±0.27 0.58±0.11 0.98±0.20 1.03±0.58 0.57±0.28 0.98±0.53 

SLC51B 1.00 0.91±0.08 0.99±0.20 0.54±0.38 0.73±0.02 1.03±0.76 0.90±0.55 2.19±0.47 

SLC10A1 1.00 0.82±0.37 0.70±0.18 0.68±0.59 0.63±0.11 1.29±1.18 0.94±0.40 1.25±0.46 

Gene expression of the mRNA levels in primary human hepatocytes treated with ascendant concentration FA showed downregulation of majority of genes 

in presence of PA at 200µM and OA 50µM. Levels were unchanged mainly, however, a slight upregulation was visible after OA100µM, PA 100µM, and when 

co-treated with both FA. No statistically significant change was observed in hepatocytes. 
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4.4 DISCUSSION 

The exposure of cell lines to FA resulted in a remarkable reduction in cell viability in presence 

of PA or OA. The decrease in viability for the two cell lines was also dose dependent. The same 

24h treatment with both FA in primary hepatocytes did not induce a substantial reduction in 

cell viability. This could be explained by an increased number of hepatocytes plated for the 

experiment, given their inability to proliferate in vitro, compared with the 2 cell lines used. 

The mean concentration of hepatocytes was 2-fold the amount the concentrations of HepG2 

and IHH used for MTT and SRB. The choice of plating hepatocytes in high concentrations was 

made because the viability of isolated primary hepatocytes is affected by the 

cryopreservation process, which may induce death in cells due to mitochondrial disruption 

(Cassim et al., 2017; Stéphenne et al., 2010). The toxicity of FA in vitro has been well described 

in literature. Although it was not the purpose of this thesis, data confirmed the higher toxicity 

of PA compared to OA. It has been proved that PA promotes apoptosis in cells in vitro, which 

may explain the low levels of cells after treatment with high concentrations of PA. However, 

it has been previously shown that cells treated with OA presented a more severe steatosis. 

The results of the ORO staining showed a more dense and brighter colouration in presence of 

different concentrations of OA, especially in HepG2 and IHH. 

Results for mRNA expression of genes belonging to BA metabolism and transport show a 

general dysregulation in BA homeostasis in HepG2, IHH, and primary hepatocytes.  

In primary human hepatocytes results from all 3 conditions (PA, OA and a combination of 

both) showed a main downregulation of NR1H4, CYP7A1 and ABCB11 and unchanged or 

slightly increased levels of NR0B2 and SLC10A1. These changes in mRNA expression induced 

by accumulation of FA could induce an altered response of NR0B2 to NR1H4 levels disrupting 

the synthesis and export and import of BA in the cell. Increased activity of SLC10A1 could 

translate into increased uptake of BA and consequent accumulation due to repression of 

ABCB11 and BA export. The synthesis and transport of BA is physiologically controlled by 

NR1H4 though another pathway, via FGF19-FGFR4. In hepatocytes FGF19 was upregulated in 

presence of PA and co-treatment of OA and PA, while it was downregulated in presence of 

OA concentrations.  
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In HepG2, an upregulation of NR1H4, NR0B2, CYP7A1 and SLC10A2 was overall observed, in 

addition to a reduction in levels of ABCB11. Levels of FGF19 were upregulated, as well as the 

levels of its receptor FGFR4, except for PA 50µM and OA 200uM. The upregulation of the 

NR1H4-NR0B2 and NR1H4-FGF19 pathways could eventually lead to an accumulation of BA 

due to inhibition of export of BA and activation of synthesis and uptake of BA. 

Results from IHH were different after treatment with OA or PA. NR1H4, NR0B2, CYP7A1 and 

SLC10A1 were increased in presence of PA and decreased in presence of OA, while ABCB11 

levels were increased for both FA. Levels of FGF19 and FGFR4 seemed to be mainly 

downregulated in presence of OA and in combination with OA and PA.  

In presence of PA, the IHH had similar expression trend seen for HepG2. After treatment with 

OA, IHH seemed to have a similar pattern of expression shown by the hepatocytes.  

Although the gene expression did not appear to have a common trend among HepG2, IHH 

and primary hepatocytes, a general disruption of mRNA levels of genes involved in BA 

metabolism and transport was observed. A dysregulation in expression of genes belonging to 

the BA pathways have also been shown in patents with NAFLD. Physiologically, in 

hepatocytes, NR1H4 activated by BA levels induces an activation of NR0B2 to reduce the 

synthesis of BA and inhibit the BA uptake by repressing the expression of CYP7A1 and 

SLC10A2; at the same time, NR1H4 increases the export of BA into the bile canaliculi by 

enhancing ABCB11 expression (Chiang, 2013). In patients with NAFLD, increased levels of 

CYP7A1, in addition to low levels of NR0B2 and decreased levels of ABCB11 (Bechmann et al., 

2013; Jiao et al., 2018a; Legry et al., 2017; Puri et al., 2018). 

The differences between cell lines and hepatocytes in mRNA expression for genes belonging 

to the BA metabolism and transport could be due to the individual characteristic of the two 

cell lines, which have their own metabolism and protein expression. Although less is known 

about the characterisation of IHH, differences between hepatocytes and HepG2 have been 

found in the energy metabolism including glucose metabolism and lipid metabolism. In a 

recent study on proteomics of HepG2 and human hepatocytes, HepG2 were missing 10-fold 

less proteins in major components of the fatty acids synthesis system, when compared to 

hepatocytes (Wiśniewski et al., 2016). It could be hypothesised that IHH, as HepG2, have a 

different genetic or epigenetic profile compared to primary hepatocytes. Furthermore, the 

gene expression in an in vitro model has its own limits compared with the gene expression in 

an in vivo model.  
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Another limitation of this study is the missing protein expression levels for the genes 

evaluated. The long-lasting debate  as yet to decide if gene expression levels alone correlate 

with protein levels (Maier et al., 2009; Schwanhäusser et al., 2011). The post-transcription 

and post-translation modification may change completely the levels of protein compared with 

the mRNA expression.  

Further studies are needed, including protein levels, to have a better understanding of the 

disruption of BA possibly in early onset of NAFLD and its progression. 
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5 General discussion and conclusion 

The contribution of different genes to NAFLD has been extensively studied, by various 

methods, in different populations of patients with NAFLD. However, due to the multifactorial 

and complex nature of NAFLD, only a few genes and variants are considered risk factors for 

NAFLD development and progression and even then, these variants account for only a small 

percentage of risk for the disease. No previous study, however, has investigated the 

contribution of genetic variants which influence bile acid homeostasis in the pathogenesis of 

NAFLD. The involvement of bile acids in glucose and lipid metabolisms and inflammation is 

increasingly recognised and has led to clinical trials of drugs targeting bile acid metabolism 

used to ameliorate NAFLD.  

This project aimed to investigate, for the first time, the potential contribution of genes 

encoding key proteins involved in bile acid metabolism and transport to the severity of NAFLD 

in a paediatric cohort with biopsy-proven disease. The investigation undertaken was 

broadened to also include genes from pathways related to NAFLD pathogenesis, liver injury, 

inflammation, and fibrosis. For this project, the candidate-gene approach through NGS was 

preferred to allow the identification of common as well as rare variants. The advantage of the 

selected cohort was that children are likely to be less exposed to environmental confounders 

such as alcohol. Many of those included had largely significant disease at an early age and 

thus were most likely to have a genetic contribution to disease.  

I found the prevalence of certain common variants in genes previously described in patients 

with NAFLD, such as PNPLA3 and TM6SF2, in line with the evidence reported for other 

populations with NAFLD. The combination of 2 or more risk alleles of these variants increased 

risk. Furthermore, compared to reported population frequencies, this paediatric cohort with 

NAFLD presented an increased prevalence of certain damaging common variants in NR1I2, 

ABCB11, ABCC2 and a decrease in the prevalence of variants in genes such as HSD3B7, and 

ABCA1. Moreover, I have identified the presence of some damaging rare variants in genes 

such as NR1H4, and HNF4A. This is the first study to report data on genetic variants of genes 

involved in the BA metabolism and plasma levels of BA.  

The results from mass spectrometry undertaken during the course of my work have shown 

increased levels of bile acids in the paediatric cohort of patients with NAFLD. 
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I also evaluated in vitro the effect of fatty acid accumulation on bile acid metabolism and 

transport in primary human hepatocytes and in two different hepatocyte cell lines (HepG2 

and IHH). I found an alteration of the expression of genes controlling bile acid synthesis and 

transport in all three models used, when the cells accumulated fatty droplets. The expression 

of these particular genes changed with lipid accumulation, which may affect upstream in 

addition to downstream pathways regulating bile acid metabolism and transport. In turn, this 

is expected to lead to an accumulation of bile acids in hepatocytes. Indeed, as a consequence 

of bile acid disruption and liver injury, increased levels of certain circulating bile acids have 

been reported in patients with NAFLD.  

The differences in the 2 cell lines and in primary human hepatocytes represent an important 

observation in considering the best in vitro model for this work and potentially to allow future 

studies in the field to identify and target bile acid transport and metabolism.  

The physiological response of bile acids to nutrients is tightly regulated as bile acids are kept 

at a safe concentration for hepatocytes. It is not surprising that I have identified mutations in 

genes belonging to the bile acid pathways in children with NAFLD. The hypothesis addressed 

by this study is that to respond to the initial liver injury, driven by fat accumulation and 

consequent lipotoxicity, high concentrations of bile acids are temporarily released by the liver 

to protect itself against further insults. It is likely that the presence of common and rare 

variants in genes controlling the bile acid pathways may influence the activity and interactions 

of proteins to their targets, in bile acids pathways as well as lipid and glucose metabolism and 

inflammation processes. The presence of variants in NR1H4, as well as downstream genes, 

could also alter the regulation by negative feedback through which bile acids finely control 

their concentrations and homeostasis. The result could be a pathological disruption of bile 

acids levels which can no longer return to physiological levels and start to accumulate in the 

liver, leading to further injury. 

 

Though this work shows differences in variant frequency and gene expression according to 

the degree of liver (or hepatocyte) injury, statistical significance for any particular variant was 

not found. This is to be expected in a complex disease as the multifactorial nature and the 

genetic pleiotropy of this disease are well accepted. The cohort of children, though large by 

biopsy-proven paediatric hepatology cohort standards, was not large enough to support any 
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genetic association, especially for the analysis of rare variants. For example, I examined 

whether those presenting at a younger age or those with a more severe phenotype were likely 

to carry certain variants. The study focused on two types of variants: common and rare 

variants. Common variants, such as PNPLA3, are expected in a high frequency in the NAFLD 

population versus population controls and their presence represents a risk as severity of 

disease progresses. These common variants, though prevalent, are only expected to 

contribute to a small part of the risk of disease in a truly multifactorial sense, as many GWAS 

results have shown. On the other hand, rare variants, particularly those that are predicted to 

be pathogenic and/or are present in homozygosity, are more likely to contribute to a greater 

degree to the phenotype. The identification of rare variants even in heterozygosity, in theory, 

may influence susceptibility to a multifactorial disease such as NAFLD.  

The paediatric population is an ideal one in which to test this hypothesis as environmental 

factors, though still significant, may be less so than in an older population.  

 

The selection of a broad panel of genes, known to be part of the pathophysiological process 

contributing to NAFLD (or hypothesised to be so), was preferred for this study against 

WES/WGS approaches, due to time and cost.  

 

The diagnosis of NAFLD is currently per exclusion, even in the presence of evidence onliver 

biopsy. This is particularly the case in paediatrics or in ‘lean’ NAFLD where many metabolic 

disorders may manifest as fatty liver. By identifying both rare and common variants in those 

with NAFLD, a certain diagnostic comfort may be given when certain variants are identified.  

 

Though I have investigated both common and rare variants in genes which orchestrate bile 

acid metabolism and transport in the pathogenesis of NAFLD, the relationship between fat in 

the liver, inflammation, fibrosis, lipids and bile acids remains elusive. With the increasing 

targeting of receptors involved in this process (FXR and TGF5) in the management of the 

condition, further understanding is important to ascertain.  

 

The lack of matched controls made difficult the analysis within this study. In particular, 

obtaining DNA from healthy children who have had the appropriate blood tests/ultrasound 

to rule out fatty liver disease is difficult, particularly in the context of GDPR and other 
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regulatory issues. To attempt to mitigate this issue, population MAF were used. The use of 

publicly available controls, sourced from gnomAD populations or biobanks datasets was not 

considered for the absence of a control cohort of children. This was an imperfect approach 

and for future work, the use Biobank datasets to obtain controls to analyse again this cohort 

of paediatric NAFLD could give newer information on the panel of genes that was selected for 

this thesis. 

 

I believe that further research should focus on the profile of genes encoding proteins involved 

in bile acid homeostasis in patients with NAFLD. The relationship is complex, given the 

multifactorial nature of the disease and the pleiotropy that characterises genes involved in 

lipid, glucose and bile acid metabolism and the relationship to disease onset and progression. 

Undoubtedly, more needs to be done to allow a deep understanding of the relationship 

between the different pathways that contribute to pathogenesis and progression of NAFLD.  
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6 Future work 

 

This study has provided data that support the contribution of genetic variants involved in BA 

metabolism and transport in paediatric NAFLD. However, there is a need to enlarge the 

paediatric cohort to increase the statistical power of the analysis. This could be achieved by 

recruiting more children with NAFLD from the KCH Paediatric Liver Centre or initiate a 

collaboration with similar paediatric liver centres to have a representation of the worldwide 

population of NAFLD. If possible, a more inclusive panel of genes for NGS or WES/WGS could 

be employed to investigate the genetic contribution of genes from the BA metabolism and 

the several pathways taken into consideration for this project. This could be further 

investigated by selecting the most interesting variants among the ones identified in genes 

from the bile acid metabolism and transport. Biological function studies are the basis on 

which to understand the effect of variants on the protein and the interaction with proteins 

from interlinked pathways. 

The evaluation of levels of mRNA and proteins belonging to the BA pathways, in biopsy 

samples of patients with NAFLD, will surely give specific direction on the nature of the changes 

in gene expression, determining how much the contribution of genetic variation weights on 

NAFLD severity and progression. The genetic and protein expression profile of patients in 

clinical trials could be fundamental to stratify cohorts and crucial to identify the reasons why 

patients are more or less responsive to treatment.  

 

Practically, the contribution of these genes to disease presence and state of severity could 

have real clinical utility in the form of a genetic diagnostic panel. This diagnostic panel, once 

established, would encode both rare and common variants which would be clinically useful in 

ruling out established ‘metabolic’ causes of NAFLD, such as Wilson disease, bile acid transport 

abnormalities and other conditions in those who present with steatosis or even cryptogenic 

cirrhosis. In addition, the use of a paediatric cohort in developing and evaluating this 

diagnostic panel is important. The development and progression of NAFLD in a young 

population may reflect the genetic influences at play and a higher susceptibility to injury 

guided by environmental triggers such as dietary intake and overweight. The finding of 
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significant disease (fibrosis greater than F2) is important. Though cirrhosis is infrequently 

reported in children, secondary to NAFLD, there is evidence that some will continue to 

progress from relatively non-fibrotic disease to more severe injury in young adulthood unless 

environmental factors are effectively targeted. Adult studies showing progression of disease 

over time suggests that fibrosis progression takes less than a decade. However, given that 

some children present with established fibrosis in the first decade of life, it may be argued 

that in certain circumstances, perhaps in the presence of specific genetic predispositions, the 

progression may be accelerated.  

If the progression of liver disease in children is not halted, the emergency of a further wave 

of end stage liver disease/hepatocellular carcinoma in adults in middle age is inevitable. We 

know that effective lifestyle changes and weight loss can reverse the condition in the vast 

majority of cases but achieving this is difficult.  

It is known that in the treatment of complex diseases, the influence of genetic susceptibilities 

can be important in treatment response. The use of a diagnostic panel at an early stage of 

NAFLD management, to differentiate out those who have genetic susceptibilities to more 

significant liver injury, would allow the targeting of resources and personalised medicine, 

according to those specific susceptibilities. For example, if in a subject the risk for progression 

was exacerbated by variants in certain bile acid metabolism genes, agents, which specifically 

target these pathways, could preferentially be used in this individual. This approach may be 

particularly useful in stratifying drug studies.  

 

A further direction of study, which I did not have sufficient time to address in this thesis, is 

the importance of lipid metabolism and its interaction with bile acid metabolism using 

lipidomics. Understanding the interplay of these complex pathways is an interesting and 

potentially particularly enlightening direction for the field. As part of future work, the genetic 

data generated in my project combined with the lipid profile of this paediatric cohort, could 

be used to investigate the influence of genetic variants on lipid metabolism in paediatric 

NAFLD, and also investigate the association of variants in genes of the bile acid metabolism 

and transport with lipid profile.  

As analytic technologies improve and grow more accessible year on year, the use of the data 

generated in this PhD project will hopefully contribute further to new studies in the field.  
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Overall, we believe that the bile acid pathway and its regulators play an important role in 

NAFLD pathogenesis. Understanding the genetic contribution of these genes and bile acid 

homeostasis is an important step in for effective treatment of the condition. 
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7 Appendices 

7.1 Primers and Probes for qPCR 

Gene Probe No Left Primer Right Primer 

ABCB11 83 cagccctctcattgggatt tccgtaaacttggacacactca 

ABCB4 64 ccaggcaaaattctggaaga tgaaacttgtatataggcagcaaca 

ABCC2 73 agtgaatgacatcttcacgtttg cttgcaaaggagatcagcaa 

ABCC4 60 ccatgtgccatatgatttatcg ttgactatctggcctgtggtt 

ABCA1 79 cctgctgttgacaggatttg ttttccagccccattaactc 

AKR1D1 42 aagacagcagctcaaattgtttt agtgagagaaaagtcaaagatctgaa 

ATP8B1 37 catcgaatgaatcctactaagcaa tgtagcaaaggcatagggttc 

BAAT 76 ttctcctgagacatccaaaggt tgccaaaaggaaagttggtc 

CYP7A1 27 catgagacctccagtctcctct tcggtagcagaaagaatacatcc 

CYP7B1 31 ccccttaaggttcatgaaaaca tggaaggggtccaggataa 

CYP8B1 14 tggaagcttctctctgagcttt ttggctgactggtcacgtag 

FGF19 69 cgtgcggtacctctgcat tctcctcctcgaaagcaca 

FGFR4 54 gccgtcaagatgctcaaag gatcagcttcatcacctccat 

GLP1R 10 cagcgctccctgactgag caggcgtattcatcgaaggt 

HNF4A 56 cagcactcgaaggtcaagcta acgggggaggtgatctgt 

HSD3B7 24 catggccgggtctatgtg agggtgatccatcgtagcag 

NR0B2 18 atcctcttcaaccccgatgt tccaggacttcacacagcac 

NR1H3 49 catcctcttctcccagcaag cattaccaaggcactgtcca 

NR1H4 34 tgcttacagcaattgttatcctg acatcaagaagtggctcctga 

NR5A2 61 ccgacaagtggtacatggaa tccggcttgtgatgctatta 

SLC51A 74 ccgatgatggtccacacag gtattggaaagggcccaac 

SLC51B 11 gacccagccggtactgtg gaatgattccagggagatgc 

SLC10A1 52 gccatgacaccactcttgatt catgctgacagtgcgtctg 

GAPDH 45 gagtccactggcgtcttcac gttcacacccatgacgaaca 

Probes were from Roche Universal ProbeLibrary (UPL) set (Sigma-Aldrich, Dorset, UK). 
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Fitzpatrick, E. ‘Genetic assessment of the role of bile acids in children affected by non-

alcoholic fatty liver disease’ 

European Association for the Study of the Liver, September 2018, Geneva, Switzerland 

 

Brunetti, T, Foskett, P, Strautnieks, S, Younes, M, Gibson, P, Dhawan, A, Thompson, RJ & 

Fitzpatrick, E. ‘Rare variants in genes that regulate bile acid homeostasis in a paediatric NAFLD 

cohort’ 

American Association of the Study of Liver Disease, November 2018, San Francisco, United States 

 

Brunetti, T, Foskett, P, Strautnieks, S, Younes, M, Gibson, P, Dhawan, A, Thompson, RJ & 

Fitzpatrick, E. ‘Genes involved in the bile acid transport and metabolism and their contribution 

to disease predisposition in a cohort of children with biopsy-proven NAFLD’ 

European Association for the Study of the Liver, September 2019, Seville, Spain 

 

Brunetti, T, Foskett, P, Strautnieks, S, Younes, M, Gibson, P, Dhawan, A, Thompson, RJ & 

Fitzpatrick, E. ‘Rare variants in genes that regulate bile acid homeostasis in a paediatric NAFLD 

cohort’ 

Emerging Topic Conference: The Genomics Revolution: Changing Our Approach to Diagnostics, 

Management and Research in Adult and Pediatric Liver Disease 

American Association of the Study of Liver Disease, November 2018, Arlington, United States 

8.2 Oral presentation 

Brunetti, T, Foskett, P, Strautnieks, S, Younes, M, Gibson, P, Dhawan, A, Thompson, RJ & 

Fitzpatrick, E. ‘The contribution of variants in genes involved in bile acid metabolism to the 

progression of Non-alcoholic fatty liver disease in a Paediatric cohort’ 

European Society for Paediatric Gastroenterology Hepatology and Nutrition, June 2019, Glasgow, 

United Kingdom 
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