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Abstract 

Parkinson’s disease (PD) is a common neurodegenerative disorder diagnosed by the presence of 

bradykinesia, in combination with either rest tremor, rigidity, or both. Additionally, many non-motor 

symptoms (NMS) such as dementia, constipation, anosmia, depression, and sleep disorders are 

common. The clinical presentation of PD is heterogeneous, and increasing evidence suggests PD is 

rather a syndrome of parkinsonism with varying aetiologies. One of the most debilitating features of 

PD is the high prevalence of cognitive impairment, which has been linked to pathology spreading to 

limbic and cortical regions. A definite PD diagnosis can only be established post-mortem, where the 

loss of dopaminergic neurons and detection of protein aggregates containing α-synuclein called Lewy 

Bodies (LB) confirm the diagnosis. There is moreover evidence that the periphery is affected in PD. 

Clinically, many NMS often involve peripheral systems, including sensory and autonomic dysfunction, 

and systemic organelle and immune dysfunction are implicated in PD. Biomarkers are lacking in PD, 

both for early accurate diagnosis, and to differentiate PD endophenotypes, such as which patients will 

develop dementia. Previous plasma biomarker discovery studies in Alzheimer’s disease (AD) have 

shown promising result using mass spectrometry.  

 

The aim of this thesis was to attempt to develop a pipeline approach for biomarker discovery and 

verification, in order to find novel plasma biomarkers for PD with and without cognitive impairment. 

A large-scale untargeted mass spectrometry experiment was performed using plasma from PD 

patients with varying degrees of cognitive impairment and healthy control (HC). The data was analysed 

for diagnosis, disease severity, cognitive impairment, and cognitive decline, and a list of candidate 

biomarkers was generated. The most robust peptides were selected for a targeted mass spectrometric 

experiment to verify the candidate biomarkers. Neurofilament light chain (NfL), arguably the most 

well studied PD biomarker today, was quantified in plasma as a benchmark. Finally, a validation study 

was performed for complement factors using immunoassays, as they are the most implicated 

differentially expressed protein group in PD plasma.  

 

2260 proteins were quantified in at least half the study participants. Over 50 plasma proteins were 

differentially expressed in PD, and the most implicated pathway was the complement and coagulation 

pathway. 17 proteins had an absolute Cohen’s d effect size larger than 0.6. A single protein could 

differentiate PD from HC with a 76% accuracy, whereas a panel of 10 protein increased the diagnostic 

accuracy to 90%. Additionally, many candidate biomarkers were found for severity of cognitive 

impairment and longitudinal conversion to cognitive impairment and dementia. 20 proteins were 



18 
 

significant both for level of cognitive impairment and cognitive decline. The most robust and 

reproducible peptides were selected for a targeted proteomic verification study. In total 22 peptides 

from 12 proteins were quantified, and 6 proteins correlated well with the discovery study. APOC3, C9, 

and TGFBI were successfully verified for PD diagnosis, and SAA1 correlated with motor and cognitive 

severity. Additionally high plasma LUM and APOA4 were both associated with dementia conversion 

for PD patients. NfL levels were elevated in PD plasma, and were pronounced in the cognitively 

impaired patients, and heavily affected by older age. Comparatively, some of the novel PD biomarkers 

identified by mass spectrometry are arguably better candidate biomarkers for PD diagnosis and PD 

cognition. An attempt was made to validate complement system biomarkers, but no differences were 

found between PD and HC, however, a decrease in C1q and C3 was found in atypical parkinsonian 

disorders.  

 

In conclusion, the discovery study generated many novel plasma biomarker candidates for both PD 

diagnosis and cognition. The pipeline was successful in verifying several plasma proteins discovered in 

the untargeted PD biomarker study. Many novel biomarkers from the discovery study, and some from 

the verification study, showed superior biomarker performance to NfL. However, a limited number of 

proteins had robust enough peptides to be verified with the targeted mass spectrometric method 

used, and future studies should attempt using other techniques to verify the remaining candidate 

biomarkers.  
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1. General Introduction 

1.1 Parkinson’s Disease 

1.1.1 Clinical presentation and diagnosis 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s 

disease (AD) [1]. PD is diagnosed clinically based on motor symptoms, commonly using the Movement 

Disorder Society’s (MDS) guidelines [2] where the main criteria are bradykinesia, in combination with 

either rest tremor, rigidity, or both. Other criteria are often considered for the correct differential 

diagnosis, including response to dopaminergic medication, and absence of symptoms that would 

suggest Atypical Parkinsonian Disorders (APD). Symptoms that would exclude a PD diagnosis are for 

example cerebellar abnormalities, supranuclear gaze palsy, frontotemporal symptoms, treatment 

with dopamine antagonists. A definite pathological PD diagnosis can however only be established 

post-mortem, where the loss of dopaminergic neurons and detection of protein aggregates called 

Lewy Bodies (LB) confirm the diagnosis [3]. Clinical diagnosis has been shown to be sometimes be 

inaccurate, and a study from Mayo clinic found that only 77% of patients clinically diagnosed with PD 

(without dementia) had Lewy body pathology [4], whereas the majority of the remaining 23% 

comprised atypical parkinsonian disorders. 

The motor symptoms are classically what characterise PD and are as mentioned still used today as the 

diagnostic criteria [2]. Bradykinesia, the mandatory motor symptom according to the MDS, is defined 

as slowness of movement with a decrease in speed or amplitude of movement and is primarily 

evaluated in the limbs of the patient. Rigidity is characterised by notable resistance or slowness of 

passive movements in major joints during physical examination. Resting tremor is defined as a low 

frequency (4-6Hz) tremor in a resting limb. Another common, although not diagnostic, motor 

symptom in PD is postural instability, which often occurs in later disease stages.  

Despite the diagnosis being set based on motor symptoms, non-motor symptoms (NMS) are just as 

prevalent among PD patients and are responsible for much of the patients’ disease burden [5]. The 

list of NMS associated with PD is long and could roughly be split into sensory dysfunction, 

neuropsychiatric symptoms, sleep disorders, and autonomic dysfunction [6]. Sensory dysfunctions 

include pain, visual and olfactory impairments, and sometimes appear before motor symptoms. 

Neuropsychiatric features are common in PD, and often co-exist with each other. These include 

depression, anxiety, fatigue, and cognitive impairment, and can appear at several different stages of 

the disease. Sleep disorders affect most PD patients in some form, and rapid eye movement (REM) 

sleep behaviour disorder (RBD) is one of the most accurate clinical predictors for developing PD. 
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Finally, autonomic dysfunction includes constipation, bladder dysfunction, and orthostatic 

hypertension, all of which suggest an involvement of the peripheral nervous system in PD [6].  

 

1.1.2 Heterogeneity of Parkinson’s Disease 

The clinical presentation of PD is heterogeneous, and increasing evidence suggest PD is perhaps not 

just one disease, but rather a syndrome of parkinsonism with varying aetiologies [7]. There have been 

a few suggestions of how to categorise PD patients based on their clinical presentation [8].  One 

common approach is to classify patients by motor symptoms. PD patients are said to be either tremor 

dominant, postural instability and gait disorder dominant, or akinetic-rigid dominant [9]. This way of 

subtyping has however been criticised, as it assumes the main pathological difference between PD 

phenotypes lies the their motor presentation and does not account for NMS [10]. Moreover, both 

prospective and retrospective studies have shown that the motor subtype PD patients were classified 

as initially rarely remained the same a few years later. Additionally, unsupervised cluster analyses of 

PD patients based on their clinical symptoms do not tend to split the patients into these motor 

phenotypes [10].  

Data driven cluster analyses have since tried to de novo subtype PD based on clinical presentation [8, 

11]. Several of these studies have suggested NMS are stronger predictors of more severe disease 

outcome, such as faster progression and cognitive decline, whereas motor dominant phenotypes were 

associated with more benign outcomes. One data driven cluster study identified three new clusters 

that they defined as mainly motor/slow progression, diffuse/malignant, and one intermediate cluster.  

The mainly motor/slow progression group presented as the name suggests mainly with motor 

symptoms and had less rapid disease progression [11]. The diffuse malignant group on the other hand 

had a higher level of cognitive impairment, orthostatic hypotension and RBD at baseline. This has led 

to hypothesis on body-first and brain-first subtypes of PD [12] which refers to where the pathological 

changes with  α-synuclein aggregation and propagation originates. The bottom-up type would 

theoretically start with pathology in the periphery that enters the central nervous system (CNS) for 

example via the vagal nerve, and affect pontine structures first followed by the basal ganglia. These 

would be the patients that first present with degeneration of cardiac sympathetic and gut 

parasympathetic nerves, reflected both by pathological evidence, and development of constipation, 

orthostatic hypotension and RBD before onset of motor symptoms [8]. The brain-first subtype would 

conversely be patients with initial limbic predominant pathology that present with early motor 

symptoms. Based on this, Berg et al. [8] propose a model of PD subtypes (Figure 1) based on prodromal 

clinical presentation, how the patients progress, and the relationship with known genetic causes for 

PD.  
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FIGURE 1 – OVERVIEW SUBTYPES OF PD (FIGURE ADAPTED FROM PRODROMAL PARKINSON DISEASE SUBTYPES, BERG 

ET AL., 2021 [8]) 

1.1.3 Aetiology end epidemiology 

The incidence of PD diagnosis is higher in the elderly population, and older age is the largest 

demographic risk factor for developing PD. Approximately 1% of the population over 60 years, and 3% 

of those over 80 years of age are diagnosed with PD, and the number is increasing with a higher life 

expectancy [13, 14]. PD is however not uncommon in younger individuals, with 5-10% of patients 

receiving their diagnosis before the age of 50. Sex differences have been demonstrated in PD with 

approximately 1.5 times greater disease incidence in males [15], and presentation of symptom is 

slightly different between sexes. Men present more often with cognitive impairment and earlier motor 

symptoms than in women. Women present more often with tremor first, and develop dyskinesias, 

anxiety and depression more frequently [15]. Environmental risk factors have been difficult to pin 

down, but there is some evidence certain toxins, pesticides, infections, and head trauma possibly 

increase the risk of future PD. Documented protective factors on the other hand include smoking, 

coffee consumption, and anti-inflammatory drug use [16].  

1.1.3.1 Genetics 

Majority of PD cases are considered idiopathic, but at least 10-15% have been linked to risk genes [17], 

the most common being SNCA (Synuclein Alpha), LRRK2 (Leucine Rich Repeat Kinase 2), PRKN (Parkin 

RBR E3 Ubiquitin Protein Ligase), PINK1 (PTEN Induced Kinase 1), and GBA (Glucosylceramidase Beta). 

Although these are some of the most established risk genes for PD, Modern genome wide association 
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studies (GWAS) have identified mutations in over 20 genes associated with the disease and 90 

independent risk-associated variants [18-20]. Mutations in SNCA [21], the gene coding for α-syn, was 

the first mutation reported to cause autosomal dominant PD [22].  SNCA mutations are associated 

with earlier disease onset, faster progression and higher prevalence of dementia and psychotic 

symptoms. LRRK2 is strongly linked with PD, particularly the autosomal dominant Gly2019Ser 

mutation, and is clinically indistinguishable from idiopathic PD [23]. It is also the most common cause 

of familial PD globally. Interestingly LRRK2 has also been associated with nigral neurodegeneration 

without concomitant Lewy body pathology. Mutations in PRKN, encoding parkin protein that is 

involved in the ubiquitin-proteasome pathway, have been linked with juvenile and early onset PD and 

slower disease progression [7].  It was the second PD gene to be identified, and spreads in an 

autosomal recessive manner. An associated gene, PINK1, encoding a mitochondrial serine/threonine 

protein kinase, binds parkin and is associated with mitochondrial dysfunction and mitophagy [24]. 

Finally, GBA gene variants pose an increased risk for PD and are present in 8.5% of patients, and linked 

with more rapid cognitive decline in PD. GBA carriers have a well characterised clinical phenotype, and 

commonly have an earlier disease onset, present with asymmetric resting tremor, and have severe 

motor impairment [22].  

 

1.1.4 Treatment 

The treatment of PD consists of replacing dopamine extrinsically, is mainly symptomatic, and aimed 

at improving motor function. Although new medications and means to improve dopamine function 

have come about, the treatment principle has not changed much over the past 50 years [25], as there 

is still a lack of disease modifying medication. A cornerstone treatment for many PD patients is 

levodopa that is converted into dopamine in the body. Levodopa tablets are normally combined with 

a dopamine decarboxylase inhibitor, such as benserazide, that does not cross the blood brain barrier 

and prevents levodopa to dopamine conversion outside the CNS [26]. Although initially effective, 

many patients develop motor fluctuations and dyskinesias (involuntary movements) over time. One 

can often mitigate these symptoms with Monoamine Oxidase B (MAO-B) or catechol-O-

methyltransferase (COMT) inhibitors that slow down the breakdown of dopamine.  An alternative 

treatment option is dopamine agonists, that mainly act on the D2/D3 system. Although it works well 

for some patients and reduce dyskinesias, there is an increased risk of psychiatric side effects, such as 

impulse control disorders, psychosis, and confusion [26]. Non-dopaminergic medication is mainly 

given to PD patients to alleviate NMS, such as serotonin/norepinephrine reuptake inhibitors for 

depressive symptoms, and acetylcholinesterase inhibitors for apathy and dementia [27]. There are 

currently no disease modifying treatments available for PD, but several are being investigated [28, 29]. 
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Many current drug trials aim at reversing pathology associated with PD, for example through α-syn 

reducing therapies, restoration of mitochondrial dysfunction, immunomodulation, targeting genetic 

causes of PD, iron chelating medication, as well as many existing drugs that are being repurposed for 

PD.    

 

1.1.5 Pathology 

1.1.5.1 Central Nervous System 

Numerous pathological mechanisms have been implicated in PD, including organelle dysfunctions, 

inflammation, protein aggregation and vesicle transport disruption. Most likely a combination of some 

of these mechanisms give rise to the PD phenotype [7]. A main pathological attribute in PD is the loss 

of dopaminergic neurons, particularly in substantia nigra pars compacta (SNpc), which disrupts 

dopaminergic signalling in the nigrostriatal pathway. The dopamine disruption affects both the direct 

and indirect pathways of the basal ganglia, and is believed to cause the motor symptoms, particularly 

bradykinesia [30]. Neuronal loss can also be found in other dopaminergic pathways [31], and even 

affect other neurotransmitter systems. Noradrenergic, serotonergic, and cholinergic pathways are 

also impaired in PD brains. The neurodegeneration is accompanied by intracellular aggregates called 

Lewy bodies (LB), which mainly consist of the protein α-synuclein (α-syn) which has been misfolded. 

PD pathological hallmarks of LB and neurodegeneration as outlined by the Braak stages [32] commonly 

start in the peripheral nerves and the medulla and propagate in a caudal-to-rostral direction to the 

pons, midbrain, limbic system, and eventually to cortical structures [33] (Figure 2).  
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FIGURE 2 - BRAAK STAGING OF LEWY BODY PATHOLOGY IN PARKINSON'S DISEASE (FIGURE FROM OLFACTORY 

DYSFUNCTION IN PARKINSON’S DISEASE, DOTY, 2012 [33]) 

1.1.5.2 α-synuclein 

Lewy bodies are seen in nearly all individuals with PD, and their main constituent is misfolded α-syn. 

α-syn is a 140 amino acid long protein physiologically highly expressed in neurons, but also in other 

tissues such as bone marrow, erythrocytes, kidney, and skin [34]. It is mainly localised in the 

presynaptic terminals, but when forming LB under pathological conditions it is also found in the cell 

soma [34]. Its function is not clear, and studies are trying to elucidate what makes the protein 

aggregate and spread in neurons according to the Braak stages in the first place. α-syn left long enough 

on its own in high concentrations will form fibrils, which propagate LB like inclusions in different in 

vitro and in vivo experiments [35, 36]. α-syn in the body exists in an equilibrium between soluble 

monomeric form and multimeric membrane bound state [37]. α-syn is constituently phosphorylated 

and dephosphorylated in vivo, which changes the kinetics of the protein, and phosphorylated α-syn 

appear to inhibit aggregation of α-syn [37]. Moreover, it has been seen that α-syn can spread between 

neurons via several mechanisms, including transmitted in vesicles, taken up from other dead neurons, 

as well as through axons. Given the in vitro propensity of α-syn to self-aggregate together with 

evidence of its transmissibility, some studies even suggest α-syn has prion like properties [38].  

 

1.1.5.3 Periphery 

There is ample evidence that the periphery (outside the CNS) is affected in PD. Clinically, many NMS 

often involve peripheral systems, including sensory and autonomic dysfunction [6]. Many of these 

symptoms have been attributed to PD pathology spreading through peripheral nerves, particularly 

through cranial nerves. α-syn pathology is seen in the skin [39], enteric nervous system, vagal nerve 
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[40], and the olfactory bulb [41] of PD patients. Additionally, more widespread systemic changes not 

limited to the nervous system are seen in PD, and include mitochondrial [42], lysosomal [43], and 

inflammatory dysfunction [44].   

A central role of the immune system has been linked to PD in many studies [45]. Epidemiologically, 

individuals with autoimmune disorders have a 33% higher risk of developing PD, according to a large-

scale Swedish study [46], and some diseases with a strong inflammatory component such as 

inflammatory bowel disease have increased risk of developing PD [45].  The blood brain barrier (BBB) 

has long been considered to render the CNS immune privileged, but this view has since been revised. 

The brain is conversely an immune-specialised organ that interacts with the peripheral immune 

system across the blood brain barrier directly or through the lymphatic and glymphatic systems [44]. 

There are several lines of evidence for increased microglial activity in PD brain, such as PET studies 

with higher binding of radioligands to activated microglia in PD [47] and evidence of increased number 

of activated microglia in post-mortem brain [48] . Some studies suggest misfolded α-syn activate 

microglia via the Toll-like receptors (TLR) TLR4 or TLR2 and cause aberrant inflammation that damage 

vulnerable cells such as dopaminergic neurons [44]. Moreover, T-cells have been shown to infiltrate 

PD brain, and express proinflammatory phenotype peripherally [49]. Some aspects of the immune 

defence, such as the complement system, are less studied in PD but have indirect evidence for their 

role. For example, several proteomic studies claim complement components in plasma are some of 

the most differentially expressed peripheral proteins in PD [50-53]. Moreover, several 

immunohistochemical studies have found deposit of complement factors in LB [54].  

Mitochondrial dysfunction has also been strongly associated with PD pathology [42], although the 

exact mechanisms are still unknown. The hypothesis originally emerged when toxins inhibiting 

complex I in the mitochondrial electron transport chain were associated with dopaminergic loss and 

parkinsonism, and mitochondrial dysfunction was subsequently noticed in cells of PD patients. Later, 

several common genetic causes of PD have been linked with mitochondrial function. PINK1 and PRKN 

are both necessary for normal mitophagy, and code for key proteins that bind the mitochondrial outer 

membrane and are involved in ubiquitination of depolarised mitochondria [42]. Other genetic causes 

of PD have also been connected to mitochondria. LRRK2 is for example involved in transport of 

damaged mitochondria, and LRRK2 mutations have been associated with hampered mitophagy [55]. 

Moreover, α-syn appears to disrupt normal mitochondrial function on its own though several 

mechanisms [56].   

Autophagic breakdown of intracellular components via lysosomes is crucial for normal cellular 

function, and postmitotic cells such as the majority of CNS neurons are particularly sensitive to 

disruptions of the autophagic system [57]. α-syn is degraded though this system, and studies suggest 
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both alterations in α-syn protein as well as inhibition of the autophagy system led to accumulating α-

syn. Furthermore, several genetic risk factors have been connected to lysosomal function, including 

mutations in the GBA gene that code for GCase [58]. Additionally, decreased GCase activity was also 

found in PD without GBA mutation. Several other genetic mutations for lysosomal proteins have also 

been linked with PD, and individuals with lysosomal storage disorders generally have a higher 

incidence of neurodegenerative disorders.  

The gut is a peripheral organ system that has been associated with PD that has been extensively 

studied the past years. Up to a third of PD patients have gastrointestinal symptoms [59]. Constipation 

is the most common gastrointestinal symptom in PD patients, and interestingly often present many 

years before diagnosis. This together with evidence of α-syn propagation through neurons, and PD 

related pathology in the vagus nerve, has led to the hypothesis of PD originating in the periphery [40].  

This theory has been backed up with studies showing individuals who had undergone vagotomy had 

significantly lower risk of developing PD [60]. This was further demonstrated in mice that were 

injected with α-syn fibrils in the gut that spread to the brain and caused PD like pathology and 

behaviour [36]. Moreover, vagotomy or α-syn knock-out prevented the spread of the pathology to the 

brain.  
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1.2 Parkinson's Disease Dementia 

1.2.1 Clinical presentation  

Cognitive decline is one of the most common NMS in PD and major cause of lower quality of life [61], 

and PD patients decline more frequently and at a higher rate than the normal population. The point 

prevalence of dementia in PD is reported to about 25-30 %, and up to 80% of PD patients are expected 

to decline cognitively at some point during their life [62]. Although cross-sectionally about a quarter 

of all PD patients have dementia at any one time [63], the rate of decline is highly variable on an 

individual level. While many patients progress rapidly and will be in need of full care, others do not 

seem to decline cognitively at all. Subjective cognitive decline (SCD) is the earliest phase and is a self-

perceived decline in cognition with a normal cognitive test [64]. Mild cognitive impairment (MCI) is an 

early phase of PD dementia (PDD) with a mild decline in cognition. 10-20% of PD patients have MCI at 

diagnosis and often present with a faster cognitive decline, although this varies greatly. Multiple 

cognitive domains are affected in PDD, but two of the four executive abilities, attention, visuospatial 

abilities, and memory should be severely affected for a diagnosis. The PDD diagnosis is set when motor 

symptoms develop at least one year before onset of dementia [65], whereas an earlier onset of 

dementia would results in a Dementia with Lewy Bodies (DLB) diagnosis. 

 

1.2.2 Pathology  

Pathologically PDD is associated with Lewy bodies and a disrupted dopaminergic system not only in 

the basal ganglia, but also cortical and limbic areas of the brain. Moreover, concomitant amyloid 

pathology is often found, and the cholinergic system is affected [61]. PDD is considered a Lewy body 

dementia (LBD) and is diagnosed in a patient with an already established PD diagnosis with 

parkinsonism for at least a year prior to developing dementia [66]. The dopaminergic deficit is seen in 

the caudate nucleus in PDMCI cases, and in the limbic and neocortical regions in PDD. Similarly, 

noradrenergic, and cholinergic deficits are more widespread in the brains of PDD compared with PD 

with normal cognition. 

 

1.2.3 Compared with other dementias (DLB) 

It is often debated whether PDD and DLB are distinct disorders as their symptoms are overlapping and 

are only separated by the time point dementia appears in relation to parkinsonism [67]. On group 

level PDD cases have more advances motor symptoms and more affected dopaminergic pathways in 

the basal ganglia, whereas DLB patients have more cortical pathology and cognitive symptoms [67]. 

This makes sense as PDD patients develop motor symptoms earlier than DLB patients, whereas DLB 
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patients develop cognitive symptoms first. Moreover, classical AD fluid biomarkers are altered more 

in DLB compared with PDD, but this might be attributed to higher level of overlapping AD pathology 

[68, 69]. It is still debated whether cortical and limbic AD like pathology or Lewy pathology contributes 

more to cognitive symptoms seen in DLB. Recently there has been some mechanistic evidence 

suggesting the α-syn strain in DLB and PD/PDD are different and lead to different aggregates [70] and 

could explain the differences in the disorders.  
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1.3 Biomarkers 

1.3.1 Role of biomarkers in PD 

Accurate, specific, and reproducible biomarkers are valuable for all diseases, and are currently lacking 

for PD. Early diagnosis of PD is crucial for implementation of disease modifying drugs to salvage the 

progressively degenerating neurons before patients start to develop symptoms [71].  Biomarkers are 

also necessary for correct differential diagnosis, as many APD patients are incorrectly diagnosed 

initially [4], and there are few early predictors of which patients will develop PDD [61]. Moreover, 

prognostic biomarkers are essential to differentiate disease phenotypes [8], to use as endpoints in 

drug trials, as well as gaining insight in the heterogeneous disease pathophysiology. Ideally biomarkers 

should also reflect specific pathological processes that can be targeted with novel treatments.  

PD biomarkers can roughly be subdivided into four main domains: clinical, imaging, genetic and 

biochemical biomarkers [71]. Clinical symptoms are the most convenient to assess and pose a useful 

initial approach to stratify patients. Besides using symptoms for diagnosis and endophenotypic 

classification, they can also serve a predictive purpose. Loss of smell, constipation, and sleep disorders 

(particularly RBD) are all associated with increased risk of developing PD [6]. Although many of these 

prodromal PD NMS are prevalent, they are either too unspecific or are not sensitive enough, hence 

cannot be used on their own as predictive biomarkers [72]. RBD has a high rate of PD conversion 

(>80%) [73], but only a minority of PD patients (around 25%) have RBD at time of diagnosis. Moreover, 

many individuals with RBD also develop DLB, and in some cases even MSA, which makes it non-

specific. Hyposmia, which is a common prodromal symptom in PD was shown in one study to have a 

positive predictive value (PPV) of 12.5% to convert to PD in an elderly population [74]. Although this 

PPV is many times higher than that for the average population, it also means 87.5% of individuals with 

only hyposmia did not develop PD at all in the study. However, when paired with imaging, the PPV 

increased to 67%, which suggests that a panel or stage wise screening would potentially be the most 

useful. Many studies are being conducted on imaging biomarkers, both structurally with magnetic 

resonance imaging (MRI) and transcranial sonography (TCS), as well as functionally with radiotracers, 

mainly targeting the dopaminergic system. Dopamine transporter single-photon emission computed 

tomography (DAT-SPECT) for example shows reduced striatal binding in PD [75], and many MRI studies 

look at morphological changes as a proxy for neurodegeneration [76]. Some promising advances have 

been made in the MRI field where iron sensitive, neuromelanin sensitive, diffusion sensitive, and 

resting state functional magnetic imaging measures can capture changes in the nigrostriatal system of 

the PD brain [77]. Although most PD cases are idiopathic, several attempts have been made to identify 

genetic markers [20, 78]. These include both familial and genome wide association studies identifying 

mutations in GBA, LRRK2, SNCA among other genes. The genetic mutations found are primarily seen 
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as PD associated risk factors rather than biomarkers on their own. Finally, plenty of research has been 

conducted on biofluid markers in PD, where most of the studies have been targeted and hypothesis 

driven. Most have been conducted on either cerebrospinal fluid (CSF) or plasma [79], although other 

samples types (urine, peripheral blood mononuclear cells (PBMC), tissue biopsies, saliva etc.) have 

also been tested.  

 

1.3.2 Biofluid biomarkers 

Biofluids, or biological fluids, refer to a wide range of fluids produced by the body, that are either 

secreted, excreted, or surround and perfuse cells and organs [80]. Examples of the latter are blood, 

CSF, and lymphatic fluid. All of these comprise extracellular spaces of the organs, regulate the 

biological environment, and transport waste and nutrients to and from cells [81]. This means biofluids 

often reflect ongoing healthy and pathological processes in the body. The circulatory system 

approximates all cells of the body, as cellular respiration is dependent on exchange of oxygen and 

carbon dioxide as well as energy nutrients [82]. Fluids escaping the vasculature of the circulatory 

system, end up in the extracellular space and is absorbed by the lymphatic system, which eventually 

re-enters large veins of the circulatory system [83]. This means that blood is an excellent source for 

detecting ongoing pathology, particularly as it is easily and routinely taken in clinics.  

 

1.3.3 Biofluid markers in other neurodegenerative diseases 

1.3.3.1 Alzheimer’s disease 

Major progress has been made in biofluid biomarker discovery and validation in neurodegenerative 

disorders, particularly in the past few years when ultra-sensitive technologies have enabled accurate 

quantification of CNS derived biomarkers in blood. The AD field has experienced some of the greatest 

advancements, with Neurofilament light chain (NfL) [84], phosphorylated tau (p-Tau) [85], and beta 

amyloid (Aβ) [86] now successfully reflecting AD in both CSF and plasma. Aβ in CSF is already 

established in clinics. Modern mass spectrometers as well as immunoassays are able to detect the 

similar changes in plasma [87], and commonly the ratio Aβ42/40 is decreased in AD and correlates 

with amyloid pathology seen in PET. Tau is another already established clinical CSF biomarker, both 

total Tau (t-Tau) and phosphorylated Tau (p-Tau) are increased in AD CSF [88]. p-Tau has recently 

proven to be a powerful plasma marker for AD. More than 40 phosphorylation sites have been 

identified for Tau, and some of these species (pTau181, pTau217, or pTau231) are significantly 

increased in AD [87]. pTau181 is the most extensively studied phosphorylated tau isotype, as it 

appears to discriminate AD from both healthy individuals as well as other dementias and other 
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tauopathies with high accuracy [89]. Moreover, pTau181 appears to be elevated early, and reflect AD 

brain pathology. More recently pTau217 gained attention as it appears to have an even higher 

accuracy than pTau181 [85]. Neurofilament light chain (NfL) is another biomarker that is elevated in 

both plasma and CSF, but it appears to reflect neurodegeneration in general rather than reflecting AD 

specific pathology [84]. Other altered promising biomarkers are synaptic proteins. Synaptic loss in AD 

is associated with cognitive decline and seen as a downstream effect of pathological AD mechanisms. 

The most studied one is neurogranin which is increased in AD CSF and correlated with cognitive decline 

and brain atrophy and seems to predict with future cognitive decline in individuals with MCI [90]. 

1.3.3.2 non-Alzheimer’s disease 

Plasma p-Tau species have been found to be moderately elevated in non-AD dementias but much less 

elevated than in AD patients and appear to reflect the amyloid pathology. A recent study comparing 

PD, DLB, AD, and control plasma pTau181 and pTau231 found a slight increase in PD patients, followed 

by DLB and the highest levels seen in AD, which did not overlap with the other disorders [68]. 

Moreover, a strong association was seen between plasma pTau181 and pTau231 levels with both CSF 

Aβ42 levels and cognitive scores. Apart from a moderate decrease in CSF Aβ42 for Lewy body 

dementias, core AD CSF biomarkers (Aβ42, t-Tau, p-Tau) appear to be like cognitively healthy controls 

for non-AD dementias [91]. NfL is a subunit of neurofilaments, a structural protein of neurons, 

particularly highly expressed in axons. NfL has gained popularity in many neurodegenerative 

disorders, owing to its strong correlation with axonal degeneration or injury [92]. The CSF levels are 

about 40 times higher than in plasma, and plasma levels can only be quantified accurately using ultra-

sensitive methods such as the Simoa. The elevated levels of NfL have been studied in several disorders 

including HIV-associated dementia, Amyotrophic Lateral Sclerosis (ALS), Creutzfeldt-Jakob disease 

(CJD), Multiple Sclerosis (MS), APD, Traumatic Brain Injury (TBI), Frontotemporal Dementia (FTD), and 

Normal Pressure Hydrocephalus (NPH) in descending order. A more moderate elevation, however 

significant, is seen in AD and Lewy body dementias. Only a mild and not always significant increase 

can be seen in PD, but it seems to be associated with PD progression [93]. However, NfL is possibly 

useful to differentiate PD from APDs.  

 

1.3.4 CSF biomarkers in PD 

1.3.4.1 α-synuclein 

Much of the CSF biomarker research in PD has been hypothesis driven, and many studies have 

therefore focused on measuring α-syn in CSF. α-syn is quantifiable using immunoassays, with decent 

inter assay correlation [94]. Multiple meta-analyses have assessed the use of total α-syn in CSF as a 
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PD biomarker, with similar conclusions that total α-syn is slightly lower in PD CSF compared with 

healthy controls [95-98]. However, the results between studies have been varied, with some studies 

showing insignificant changes, and high inter study variation in α-syn concentrations. Hence, although 

there is a concordance that α-syn is decreased in PD CSF on group level, it might not serve as a good 

biomarker for an individual patient. There appears to be a large individual variation in levels of CSF α-

syn levels, and a pooled diagnostic specificity of around 50% [95]. Specific α-syn variants associated 

with PD and Lewy bodies have also been attempted as potential biomarkers [94]. Oligomeric α-syn, 

an intermediate pre-fibril form, has been found at higher concentrations in PD CSF.  However, it is a 

transient α-syn form that rapidly regresses to monomers, or aggregate to form fibrils, and its 

diagnostic performance has been unsatisfactory to be used as a biomarker [99].  Around 90% of Lewy 

Body α-syn is phosphorylated [100], and phosphorylated α-syn has been measured to be elevated in 

PD CSF. The diagnostic accuracy of phosphorylated α-syn is generally moderate, similar to that of the 

oligomeric species [99].  

Recently there have been additional advancements in using CSF α-syn as a PD biomarker. Real-time 

quaking-induced conversion (RT-QuIC), an in vitro seeding aggregation assay, has generated promising 

results with around 90% sensitivity and 100% biomarker specificity in some studies [101-103]. In the 

RT-QuIC assay, CSF samples are added to a buffer with recombinant monomeric α-syn, and samples 

containing aggregated or seeding forms of α-syn, such as fibrils, will generate more aggregates over 

time [101]. Besides having a good diagnostic performance against PD, it appears to be able to 

differentiate between different synucleinopathies such a DLB, PD and MSA [70, 104]. Studies have 

even reproduced findings in CSF using skin and mucosal tissue with good results [35].  

1.3.4.2 Other targeted PD biomarker studies 

A few other biomarkers related to known PD pathology have been measured with mixed results. 

Lysosomal dysfunction is implicated in PD, and mutations in the GBA gene are the most common 

genetic risk factors for developing PD, resulting in impaired lysosomal degradation glucoceramide. 

Glucocerebrosidase activity has been found to be lower in PD CSF, and a number of lysosomal markers 

appear to be associated with cognitive decline in PD [105]. Several lines of evidence have suggested 

the immune system plays a key role in development of PD [44]. Many studies have measured various 

inflammatory markers in the CSF, out of which Monocyte chemoattractant protein-1 (MCP-1) and 

Chitinase 3-like 1 (YLK-40) have come up as the most promising candidates, although results have been 

varying.  
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1.3.4.3 Classic AD markers in PD 

Validated CSF biomarkers for other neurodegenerative diseases such as AD have been studied in PD. 

Lower levels of Aβ42 have been observed in PD in some studies, analogous to AD, however the 

reduction is more pronounced in PDD and DLB and appears to reflect amyloid pathology in patients 

[105]. Tau species (t-Tau and p-Tau) have also been investigated in PD, but with varying results [94]. 

NfL has been extensively studied in PD, as it has shown to be a good general neurodegenerative 

biomarker that is increased in many disorders. NfL in CSF appears to be elevated in APD and be useful 

as a differential biomarker to PD [104], but unchanged in PD versus controls. Some recent longitudinal 

studies however have observed higher NfL at baseline correlating with faster decline in motor 

symptoms and cognitive function [106, 107]. Moreover higher NfL levels were associated with greater 

overall PD symptom severity [93].  

 

1.3.5 Blood/plasma in PD 

1.3.5.1 Target PD blood biomarkers  

To date, no blood biomarkers are established for PD, although numerous attempts have been made. 

Among targeted studies, α-syn has been the most extensively studied. A meta-analysis [108] found a 

general increase in total plasma α-syn, although there was a great heterogeneity in the cohorts and 

assays used. The effect size was also variable, where some studies found no difference, and others a 

100-fold increase in PD [109]. Biomarkers that reflect other pathological PD mechanisms have also 

been studied. Inflammation has been implicated in PD with increased microgliosis in the CNS, and 

aberrant T-cell as well as monocyte activity peripherally [44]. This has resulted in many studies 

measuring plasma cytokines in PD. Generally, an increase is seen in many pro-inflammatory cytokines 

(such as Interleukin-6 (IL-6), Tumour Necrosis Factor α (TNF-α), and C-reactive protein (CRP)) [110], 

however these are not very specific, nor show a great discriminatory power to potentially be used as 

biomarkers. Another studied biomarker candidate is plasma urate, where large epidemiological 

studies have suggested higher urate levels have a protective effect against developing PD [111, 112]. 

Randomised controlled trials with urate elevating drugs have however not shown any disease 

modifying effects on PD progression [113].  

1.3.5.2 Use of mass spectrometry to find biomarkers  

A few studies have attempted discovering biofluid biomarkers for PD in an untargeted manner. A 

recent systematic review of 12 PD blood proteomic studies identified 23 candidate biomarkers [114]. 

Almost all these studies were based on 2D gel electrophoresis separation followed by mass 

spectrometry. Several of the biomarkers were consistent across studies, with Apolipoprotein A-I and 
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haptoglobin emerging as the most reproduced findings. Moreover, most differentiated proteins across 

studies were either apolipoproteins or complement proteins [114]. Despite this, there is limited 

literature on validation studies on candidate markers, nor studies that explore their function in 

relation to PD. There were however some technical limitations in the studies included in the review. 

Nearly for all studies the plasma or serum samples were depleted of the most abundant proteins 

(usually albumin and immunoglobulins), separated on a 2D gel, extracted, and digested, before 

analysing on a mass spectrometer. This is a labour-intensive protocol, and not sensitive to low 

abundant proteins that might not be visible on the gel. Hence, on average, less than 100 individuals 

were included per study, and half of them included less than 30 PD patients. Moreover, most proteins 

detected were highly abundant in blood, and the most sensitive studies managed to identify a few 

hundred proteins in the analysis. Given that a large portion of the proteins in the higher ug/ml - mg/ml 

concentration range are complement factors and apolipoproteins, it is not surprising many of the 

candidate markers belong to these groups. Furthermore, it is extremely difficult to detect CNS derived 

proteins with the techniques used, many of which are in the pg/ml range in plasma. NfL for example 

is about seven orders of magnitude less abundant in plasma compared with complement factor C3 

[115, 116].  

In recent years methods and equipment for mass spectrometric discovery studies have improved 

detection and quantitation of the plasma proteome. In a study from 2019 Ashton et al. [117] used 

plasma from 284 individuals from two independent cohorts to discover novel biomarkers to predict 

amyloid burden in preclinical AD cases. They TMT labelled the samples to minimise inter-run variation, 

and pre-fractionated the samples with an orthogonal method to the HPLC. They detected a total of 

2356 proteins, some present even in the pg/ml range. Furthermore, their top hits were neuronal 

proteins including NfL, Amyloid precursor protein (APP) and Neurogranin 2 (NGN2). This study showed 

that it indeed is possible to discover plasma biomarkers for neurodegenerative disorders using mass 

spectrometry, but it has not yet been done in PD.  

 

1.3.6 PD Dementia markers 

Just as for diagnosing PD, biomarker studies have been performed trying to predict which PD patients 

develop cognitive decline. Clinical, genetic, imaging, and biofluid markers have been studied. Older 

age at diagnosis is one of the greatest predictors of rapid cognitive decline in PD patients [64]. Clinically 

non-tremor dominant variants of PD are more likely to decline cognitively, compared with tremor 

dominant forms [118]. A few other predictors, such as male sex, hallucinations, early severe anosmia, 

and RBD are all associated with cognitive decline in PD [119].  Voxel based MRI studies have 

demonstrated volume loss and increased rate in atrophy in mainly cortical and limbic/paralimbic areas 
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in PDD and PD-MCI [120]. This is in line with histological findings in the same regions. Some PET studies 

have furthermore found hypometabolism in certain cortical regions in PD is associated with future 

development of PDD [119, 121].  

There are a few biomarkers which have altered levels in PDD compared with PD with normal cognition. 

Most of the well-studied biofluid markers in PDD have been derived from Alzheimer’s disease (AD), 

with the most consistent finding being decreased amyloid beta 42 (Aβ42) in cerebrospinal fluid (CSF). 

A systematic review by Lin et al. [119] found that nearly all included studies had found a decrease of 

Ab42 in PDD CSF. the results on pTau and tTau were conflicting, where some studies showed moderate 

elevation, and others normal levels. However, other potential biomarkers have appeared in both CSF 

and plasma, such as increased proinflammatory markers as well as the free radical scavenger Uric acid 

[122]. The issue with all the PDD candidates so far is that although they are significantly changed in 

PDD, they have a low discriminatory power.  

The role of alpha-synuclein (α-syn) in development of PDD has been studied. A meta-analysis on CSF 

levels of α-syn found comparable levels in DLB and PD, but were lower in both compared to AD [123]. 

They further found a correlation between level of cognitive impairment in DLB and α-syn levels, but 

this has not been demonstrated in PD/PDD. Recently a few groups have found correlations between 

NfL and cognitive decline in PD. One study found correlations between NfL levels and more rapid 

progression in both cognitive impairment and motor symptoms [107]. Survival analysis further 

showed high levels of NfL predicted conversion of PD to PD-MCI and PDD.  

Few large-scale shotgun discovery studies have been conducted on PDD. One relatively large study 

from 2019 performed a discovery and validation study in plasma from 458 individuals using an 

aptamer method (SomaScan) [124]. They quantified 1129 proteins in plasma from individuals with PD 

and healthy controls in a discovery cohort, and successfully validated four out of the top ten most 

robust biomarker candidates in a validation cohort. Bone sialoprotein, osteomodulin, aminocyclase-

1, and growth hormone receptor were all successfully validates, and growth hormone receptor was 

further associated with future cognitive decline. One high-throughput suspension bead array study 

quantified 216 proteins in PD CSF [125]. After verification of initial candidate proteins, kininogen1 was 

found to be associated cognitive performance in PD.  

 

1.3.7 Strategies on finding neurodegenerative biomarkers 

As seen from the studies described above, there have been many approaches for discovering new 

biomarkers in neurodegenerative diseases, some have been hypothesis driven and others untargeted. 

The hypothesis driven markers have mostly been based on known pathology, such as Aβ42 from 
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amyloid plaques, Tau from tau tangles, and NfL from axonal damage. Most of these proteins were 

originally only detectable in CSF, but after narrowing down candidates and protein isoforms from CSF 

studies, highly sensitive assays have been developed for blood where with similar results to CSF. 

Plasma has about 100 times the amount of protein compared with CSF [126], and generally lower 

concentrations for CNS proteins (around 50-fold lower for NfL and GFAP in plasma versus CSF). Hence 

ultra-sensitive methods such as the SIMOA are needed to accurately quantify these low abundant 

proteins in the complex plasma protein matrix. 

Targeted approaches similar to AD have been attempted for PD, but with limited success. Proteins 

that generally correlate with neuronal and axonal death, like NfL, are barely elevated in PD. This is 

likely because there is not a rapid large-scale axonal degeneration in PD as is seen in other disorders. 

Much of the degeneration is limited to the dopaminergic neurons that comprise less than 1% of the 

brain’s neurons. However, the degeneration is more widespread in more advanced disease where 

limbic and cortical areas are affected, and indeed NfL level do correlate with disease severity and 

cognitive decline [127].  

The main histopathological hallmark of PD is Lewy bodies containing misfolded α-syn. Unfortunately, 

the findings for monomeric α-syn in PD CSF have not been as successful as CSF levels of tau and Aβ in 

AD. Studying other α-syn isoforms, such as phosphorylated α-syn or oligomeric α-syn, has yielded 

more promising results, although levels between PD and controls still overlap too much for clinical 

application. Moreover, translating it to a plasma assay is problematic, as α-syn is highly expressed in 

erythrocytes. α-syn levels are higher in plasma than CSF, which further complicates quantification of 

pathological α-syn derived from dying neurons in the CNS.  

1.3.7.1 Using a discovery approach 

An alternative way of finding new biomarkers is with an untargeted approach. Recent advancements 

in proteomic techniques have made it possible to detect low abundant proteins in biofluids even in 

untargeted studies. There are generally two approaches to untargeted proteomics, biased and 

unbiased methods. Biased approaches include proteomic techniques where a large number of 

proteins are quantified, but the proteins are preselected. These techniques include proximity 

extension assays (eg Olink [128]), bead assays (eg Luminex [129]), aptamer assays (eg SomaScan 

[130]), and well as some targeted mass spectrometric approaches such as parallel reaction monitoring 

(PRM) [131]. An advantage of these techniques includes being able to accurately quantify many 

proteins in one sample with a high sensitivity. As multiplexing technologies have improved, they pose 

a good alternative to classic mass spectrometric methods for discovering biomarkers. The Olink 

platform offers a 3000-plex in 2022, with assay sensitivities rivalling the most highly sensitive uniplex 

immunoassays available at the time. As stated, a disadvantage is that these methods are not 
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completely unbiased, and important proteins might be missed, however multiplexing methods that 

screen thousands of proteins still cover a significant portion of the quantifiable proteome.  

Truly unbiased studies include gel separation and mass spectrometric approaches, but these also have 

their advantages and disadvantages. When properly pre-processed, thousands of proteins can be 

detected and quantified in human biological samples using mass spectrometry [117]. However, these 

studies are often very costly, and require highly specialised equipment. In highly sensitive mass 

spectrometry studies, the samples are processed much more than they would be for an immunoassay, 

which complicates back translation to original protein level [132]. For example, studies on plasma may 

begin with abundant protein depletion, followed by sample digestion, mass tag labelling, 

fractionation, and desalting. The peptides detected and quantified are then probability matched with 

a proteome database. This workflow introduces many potential confounders, and requires rigorous 

standardisation of the protocol, and ideally internal and external controls. Therefore, traditionally, 

many proteomic findings have been difficult to validate using orthogonal methods.  

1.3.7.2 Building a pipeline to narrow down candidates 

Using a shotgun proteomic approach for biomarker discovery is in many ways the ideal initial step for 

an unbiased biomarker screening. With sufficient sample number and pre-processing, one can detect 

and quantify thousands of proteins in an unbiased manner [117]. However, given the methodical 

caveats, it warrants subsequent verification and validation of candidate markers. Not all studies 

incorporate a verification step of proteomic biomarker candidates, but move straight to validating in 

an external cohort or using a uniplex immunoassay [133]. This has led to a high attrition rate of 

biomarker candidates [134], and the biomarker discovery pipeline in neurodegenerative disorders 

could be improved. One technique for verification of candidate biomarkers is to run the discovery 

experiment in two separate cohorts and see which candidate biomarkers overlap [135]. This would 

account for batch and cohort effects and reduce false discovery rates. An alternative strategy would 

be to run a large well phenotyped cohort in one single experiment, and cross validate biomarkers in 

silico. Modern statistical and bioinformatic methods allows for testing robustness of biomarkers with 

regularisation methods [124], biomarker performance through assessing accuracy and predictive 

value, and the effect of covariates (both biological and experimental). Moreover, machine learning 

methods can build prediction models on training data to test on another subset of data. These 

methods should be utilised, as a more stringent selection of consistent, specific, and significant 

biomarkers would be selected for experimental verification and validation [136].  

The abovementioned verification techniques do however not eliminate the technical discrepancy 

between a mass spectrometry discovery study and immunoassay validation. Since high level of sample 

manipulation is necessary to reach the resolution for quantifying low abundant proteins, particularly 
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in plasma, using additional verification steps to narrow down candidate markers would be helpful. 

One common recommended approach is using selective reaction monitoring (SRM) or multiple 

reaction monitoring (MRM) [137], a mass spectrometric method that detects and quantifies individual 

peptides from a sample based on preselected mass spectra. As SRM is a targeted method, and the 

mass spectrometric setting can be optimised to the peptides quantified, the sample does not have to 

be processed as heavily to be quantified. Moreover, as the peptides monitored are preselected, and 

the entire proteome does not have to be probability matched with a database, the accuracy is 

generally much higher than an untargeted approach. Recently, parallel reaction monitoring 

(PRM)[138] has allowed for detection of multiple proteins at once in a targeted manner with more 

complete product ion coverage than with SRM. This is potentially a powerful multiplexing method, 

that also quantifies the same peptides that are detected in a discovery study, but with higher 

quantification accuracy [133]. SRM and PRM further allows for addition of standards, to gain absolute 

quantities of the peptides. A few studies in other disease areas have utilised this approach, and 

successfully validated candidate markers using mass spectrometry in biofluids [139-142].  

1.3.7.3 Accounting for cohort heterogeneity 

As mentioned, PD is a heterogeneous disorder with various clinical presentations. Several PD 

endophenotypes have been proposed and linked to genotypes and most likely have differing 

underlying pathologies [8, 11]. It is however not yet established which the main endophenotypes of 

PD are, which complicates the construction of an ideal study cohort. For now, one could therefore 

attempt to build a cohort with a wide range of clinical and demographic phenotypes for a discovery 

study, which would then enable endophenotypic analysis and correction for covariates. Certain 

demographic variables are better studied than others, and appear to affect biomarker levels. Motor 

symptom severity in PD is often used in studies as an indirect measure for disease severity [143]. After 

all, the diagnosis and start of the disease is often set based on motor symptoms. Although there is 

evidence that PD pathology often occurs years before onset of motor symptoms [144] and many 

patients mainly progress in their NMS, motor symptoms still pose a tangible and well-studied clinical 

measure and should be included in a PD biomarker study. 

Dementia is one of the most well studied NMS in PD, and several biomarkers have been correlated 

with cognitive decline in PD [145].  Currently, several dementia biomarkers from AD are tested for PD 

dementia with varying results [146]. 

Demographically, age and sex are almost always included as covariates in biomarker studies, and for 

a good reason. Age is the major risk factor for morbidity in general, and the plasma proteome changes 
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with age [147]. The incidence of PD and PD dementia increases with age, and matching or correcting 

for age is imperative for any biomarker study. 

Sex is another covariate almost always accounted for in biomarker studies. Many diseases are more 

prevalent in either males or females, or present differently between sexes. The reason for this is likely 

due to a combination of differences in developmental physiology, immunology, metabolism, 

behaviour, and body structure to name a few [148]. Some diseases are clearly linked to sex-specific 

organ development, such as the higher incidence of breast and ovarian cancers in females, and more 

prostate cancer in males [149]. Other, less obvious differences in morbidity include higher prevalence 

of autoimmune diseases in females [150], and aortic aneurysms in males [151]. Among psychiatric 

disorders depression is more often diagnosed in women, and schizophrenia in males [152]. For 

neurodegenerative diseases AD is more prevalent in females and PD in males [153]. Biomarkers in AD, 

particularly pTau, appear to be associated with sex specific genetic risk, brain pathology, and rate of 

cognitive decline [154, 155]. Female DLB patients seem to present with more hallucinations, less sleep 

disorders,  and have more mixed AD and LBD pathology compared with male DLB patients [156]. 

Within the PD population men present more often with cognitive impairment and earlier motor 

symptoms than in women, whereas women present more often with tremor first, and develop 

dyskinesias, anxiety and depression more frequently [15]. Biological differences are also seen between 

male and female PD patients. A transcriptomic meta-analysis of PD brain tissue found major sex 

differences in several key PD mechanisms such as inflammation, mitochondrial dysfunction, and 

oxidative stress [157]. Some studies even suggest a link between time of menopause in women and 

risk of developing PD [158]. Moreover, several biomarkers studies have revealed sex differences in PD 

[159]. The suggested protective effect of high urate levels seems to only be consistent for males. A 

meta-analysis on homocysteine found elevated levels in blood to be associated with increased risk of 

developing both PD and AD, with higher levels in males, and phenotypic differences between male 

and female PD [160]. Moreover several studies have reported on sex-specific microRNA differences in 

PD patients [161]. This highlights the importance of correcting for sex, or analysing males and females 

separately, when performing proteomic studies.  
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1.4 Summary and aims 

Discovery of PD biomarkers has been difficult, as most hypothesis driven studies have generally 

yielded insufficient diagnostic and prognostic biomarker performances, and proteomic studies have 

either lacked sensitivity or been difficult to validate [94]. Biomarker research in AD has in the past few 

years shown that most proteins in the CSF also can be accurately quantified in plasma [162]. Technical 

advancements in proteomics research have rendered mass spectrometry a promising method for 

discovery and validation of neurodegenerative plasma biomarkers [133]. Ideally a biomarker needs to 

be specific, reproducible, have a good diagnostic performance, implementable in clinics, and 

preferably reflect ongoing pathology. 

PD is a heterogeneous neurodegenerative disease that presents with several motor and non-motor 

symptoms [7]. As outlined, the clinical heterogeneity is coupled with a wide array of biochemical, 

cellular, and genetic processes implied in PD pathophysiology. It is not unlikely that different biological 

processes and risk factors gives rise to the different disease phenotypes. It is hence imperative to have 

a well characterised disease cohort when studying biomarkers. Some biomarkers, such as proteins 

related to α-syn or dopaminergic neurons, could in theory reflect general PD processes and be used 

as diagnostic or progression markers. Indeed, the recently developed α-syn RT-QuIC is a biomarker 

that belongs to this category [101]. Other biomarkers might on the other hand reflect processes seen 

in PD subtypes, such as mitochondrial or lysosome dysfunction as seen in some genetic forms of PD, 

or gut dysfunction which is more common in cases where the disease is believed to start in the 

periphery. This latter category of biomarkers could potentially aid in detecting early disease processes 

before nigral neurodegeneration, and aid in development of precision medicine.    

One strategy for finding new neurodegenerative biomarkers reflecting CNS disease processes is to 

perform a discovery study in CSF and subsequently validate candidates in plasma using highly sensitive 

targeted methods [137]. The advantages of this strategy are that proteomic quantification of low 

abundant proteins is easier is CSF owing to its less complex matrix, and CNS derived proteins would 

be present in much higher concentrations. A disadvantage with this strategy would be that one might 

miss important peripheral proteins. Additionally, CSF is generally less available than plasma, and 

discovery studies run the risk of being underpowered. Having sufficient sample size is particularly 

important when using sensitive shotgun proteomic methods in order to avoid overfitting and false 

positive and negative results. Given this issue with cohort size, and the many pre-diagnostic peripheral 

and systemic changes implied in PD including gut dysfunction, anosmia, immune system aberrations, 

mitochondrial dysfunction, lysosomal dysfunction etc., it might even be preferential to use plasma 

rather than CSF to discover new PD biomarkers.  
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One of the most debilitating PD endophenotypes is the development of cognitive impairment and 

dementia. PD patients develop dementia 2.5-6 times more frequently compared to the general 

population [64]. About half the patients have developed dementia 10 years after diagnosis, but the 

rate of cognitive decline varies significantly. Several clinical and genetic risk factors have been 

identified for PD cognitive decline, and more limbic and cortical pathology is seen in these patients.  

 

The aims of this project were to discover and verify plasma protein biomarkers for PD diagnosis and 

PD cognitive function with mass spectrometry. The Swedish Biopark cohort was used [163], from 

which individuals with a clinical PD diagnosis selected with varying levels of cognitive function, both 

cross sectionally and longitudinally. Additionally, age and sex matched healthy individuals were 

included. A pipeline strategy for biomarker discovery and verification was developed as outlined in 

Figure 3. A shotgun proteomic experiment was done to start with, which was optimised for detection 

of quantifiable proteins in plasma, based on a protocol from a previous study by the group [117] with 

a few modifications. Subsequently the data was processed, and the most robust and promising 

candidates selected for verification, based on how well they reflected PD diagnosis and PD cognitive 

decline. Finally, a targeted proteomic method was set up where the most robust peptides from the 

candidate biomarker proteins were quantified in digested plasma, to verify findings from the shotgun 

study. In parallel with this, a group of proteins (complement factors) were quantified in PD plasma 

that have previously appeared as candidate biomarkers in blood proteomic studies, in an attempt to 

verify the findings with immunoassays. 
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FIGURE 3 – SCHEMATIC OVERVIEW OF SUGGESTED WORKFLOW PROTEOMIC DISCOVERY AND VERIFICATION 

Suggested workflow to narrow down proteomic candidate biomarkers. An untargeted large 

scale proteomic experiment is conducted on a large cohort. This generates a large number of 

protein IDs which need to be narrowed down in silico. A methodological verification step such 

as with parallel reaction monitoring (PRM) would confirm quantities of some of the peptides. 

The verifiable markers would then be validated using orthogonal methods, and ultimately 

tested in other cohorts.  
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1.5 Objectives 

To find novel plasma protein biomarkers for Parkinson’s disease 

 

A) Discover new plasma biomarkers for PD and PD cognition 

Conduct an untargeted experiment for novel plasma biomarkers discovery in PD with and 

without cognitive impairment using mass spectrometry 

 

1. Optimise a protocol for analysing plasma on the mass spectrometer 

a. Investigate different protein fractionation methods 

b. Investigate different protein depletion methods 

2. Discover biomarkers for Parkinson’s disease (PD)  

a. Identify diagnostic biomarker candidates for PD 

b. Identify (motor) severity biomarkers for PD 

3. Discover biomarkers associated with PD cognition 

a. Identify biomarkers associated with cognitive severity in PD 

b. Identify biomarkers associated with cognitive decline in PD 

4. Select most promising biomarker candidates from the untargeted study to verify 

 

B) Verify plasma biomarker candidates for PD and PD cognition 

Conduct a targeted experiment for verification of plasma biomarker candidates 

 

1. Use targeted mass spectrometry for more accurate relative quantification of candidate 

markers 

a. Compare results in untargeted with targeted study 

b. Assess biomarker performance of verified proteins/peptides 

2. Evaluate the usefulness of the Discovery – Verification workflow 

 

C) Quantify a current gold standard biomarker for neurodegeneration (NfL) 

 

1. Assess the usefulness of NfL as a PD diagnostic and PD cognitive biomarker in plasma 

2. Compare NfL with novel findings from the mass spectrometry study 

 

D) Validate a category of candidate markers from earlier PD biomarker studies  
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1. Identify a category of biomarker candidates from previous PD plasma proteomic studies from 

the literature 

2. Explore this groups of proteins (complement factors) as potential PD plasma biomarkers 

a. Use an orthogonal method (immunoassays) to validate a few complement factors as 

PD biomarkers 

b. Explore the general change in complement proteins in PD blood 

i. Explore functional changes in PD serum complement system 

ii. Explore relation of PD plasma complement factors with clinical PD symptoms 
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2. Methods 

2.1 Cohort 

2.1.1 Overview Biopark 

The study participants used in all studies in the thesis were from the Swedish Biopark cohort managed 

by Stockholm Regional Council and led by Prof. Per Svenningsson. Biopark is primarily a Parkinson’s 

disease cohort and has included over 700 PD patients by 2022, and patients are primarily seen in clinics 

within Stockholm. The cohort furthermore recruits healthy control individuals, as well as atypical 

parkinsonian disorders to a lesser extent. All participants in the study have given verbal and written 

consent.  The study was approved by the Swedish Ethical Review Authority (Dnr 2016/19-31/12 and 

2019-04967) and conducted under the Declaration of Helsinki.  

Subjects are assessed at baseline, and at follow up time points 2, 5, 8, 11 years after baseline. Baseline 

is set at the time of inclusion in the cohort. For many patients that was around the time of diagnosis, 

whereas for patients that were diagnosed elsewhere before included in Biopark, baseline was set at 

date of inclusion.  

At each time point the patients were assessed clinically by a neurologist as well as receiving self-

assessment questionnaires.  

PD patients were assessed with the Movement Disorder Society’s Unified Parkinson’s Disease Rating 

Scale[164] (MDS-UPDRS) parts I-IV, Hoehn & Yahr, and Montreal Cognitive Assessment[165] scales 

(MoCA). Where Furthermore, patients in both cohorts were self-assessed using a battery of scales 

including Beck’s Depression Inventory II[166] (BDI-II), Montgomery-Åsberg Disease Rating Scale [167] 

(MADRS), Hospital Anxiety and Depression Scale[168] (HADS), Mental Fatigue Scale [169] (MFS), 

Pittsburgh Sleep Quality Index [170] (PSQI), Parkinson’s Disease Questionnaire 39 [171] (PDQ-39), and 

Non-Motor Symptoms Questionnaire[172] (NMSQ). Disease duration was calculated from the date of 

diagnosis, and the Levodopa Equivalent Daily Dose (LEDD) was calculated according to a formula[173].  

 

Short description on the clinical scales assessed that were included in the thesis: 

 

• MDS-UPDRS is the most frequently used scale for assessment of PD and seen as the gold 

standard. It comprises of four parts, Part I: Non-Motor Aspects of Experiences of Daily Living; 

Part II: Motor Aspects of Experiences of Daily Living; Part III: Motor Examination; Part IV: Motor 

Complications. Some of the patients were assessed using an older version of the UPDRS scale, 
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and part III was used after converting the score using a conversion formula [174]. Generally, 

all patients were assessed ON medication, unless otherwise specified.  

• The Hoehn & Yahr disease staging scale is part of MDS-UPDRS Part III, and a common way of 

assessing symptom severity.  Patients can be classified on a scale from 0-5, 0 being 

asymptomatic, and 5 either wheelchair bound or bedridden.   

• MoCA is a commonly used formula for cognitive decline assessing Visuospatial/Executive, 

Naming, Memory, Attention, Language, Abstraction, Delayed Recall and Orientation. It is often 

preferred in PD as it is more sensitive for mild cognitive impairment compared to for example 

the mini mental state exam.  

• MADRS is a well-established scale for assessment of depression. It measures severity of 

depression related symptoms such as sadness, sleep, concentration difficulties, lassitude, 

pessimistic and suicidal thoughts. Although MADRS is good for assessing major depressive 

disorder as it incorporates many different domains, it might not be ideal for Parkinson’s 

disease depression, as it overlaps with some PD symptoms (sleep disorders) that are not 

necessarily depression related.  

• BDI-II is a psychometric test well suited for screening of depression but also measuring 

depression severity. It focuses more on the psychological symptoms than MADRS and may be 

better suited for PD depression.    

• HADS is a self-rating scale for both anxiety and depression. It is a relatively short scale that is 

often used as a screening tool and focuses on mood and emotions. It does not include all 

criteria for depression and focuses on non-physical symptoms.  

• NMSQ is a relatively new scale, used to cover many different NMS in one single questionnaire. 

It consists of 30 yes or no questions on sleep, cognition, perception, memory, sexual function, 

urological and gastrointestinal symptoms etc.  

• PDQ39 is a PD specific scale that covers eight domains, including difficulties in daily living, as 

well as the impact of PD on specific functioning and wellbeing. It is well studies and validated, 

but not all encompassing as it does not cover sleep difficulties and sexual dysfunction.   

• PSQI is a frequently used scale for assessment of sleep quality the past month. It is a reliable 

and valid scale, and includes sleep quality, sleep latency, sleep duration, and habitual sleep 

efficiency.   
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• MFS is a scale assessing mental fatigue and fatiguability. Beside mental exhaustion, it covers 

emotional, sensory, and cognitive symptoms. The scale has a high reliability for different 

patient categories.  

 

2.1.2 Sample collection and preparation 

Blood samples were collected with venepuncture within Region Stockholm by healthcare personnel. 

Plasma was prepared from blood collected in Ethylenediaminetetraacetic acid (EDTA) tubes and 

centrifuged through a density gradient medium (LymphoPrep™, cat#1114547) at 800 x g for 20min to 

separate peripheral blood mononuclear cells (PBMC) and plasma according to manufacturer’s 

instructions. In short, EDTA blood was diluted 1:1 with phosphate buffer saline (PBS). 20ml diluted 

blood was layered on top of 15ml Lymphoprep in a 50ml tube and centrifuged at 800 x g for 20 minutes 

at room temperature. The top cell free plasma layer was collected.  

Serum was prepared from whole blood collected that was centrifuged at 2000 x g for 15 min at 4°C. 

Both plasma and serum were aliquoted and stored at -80°C until further use.  

 

2.1.3 Cohort for mass spectrometric studies 

2.1.3.1 Cohort size 

It is difficult to determine an optimal cohort size for a discovery study, as many factors affect how 

many study participants to include. Large variation in the quantified variables, large number of 

variables, smaller expected effect sizes, and higher cohort heterogeneity all warrant a larger cohort 

size. On the other hand, factors such as cost, labour, time, and sample availability often restrict the 

number of samples analysed. This makes traditional power calculations quite difficult, and the best 

way to determine sample size is often to look at similar studies. Ashton et al. published in 2019 a 

similar plasma proteomic study in AD, where they managed to identify verifiable candidate markers 

with a cohort size of 144 in the discovery study [117]. Our discovery study in PD has a similar study 

design, only with a few differences to the AD study. The mass spectrometer is more sensitive, and a 

higher number of protein identifications are expected, hence a larger cohort size is needed to 

minimise risk of false positives. Secondly, the cohort used is well phenotyped, which comes with 

advantages and disadvantages. An advantage is that it allows for exploration and discovery of PD 

endophenotype biomarkers, such as dementia specific markers. It also allows for better matched 

group comparisons and facilitates accounting for covariates. The disadvantage is risk of over-

exploration and overfitting of data to disease endophenotypes. Taking into account the 

abovementioned factors, and considering sample availability, 198 study individuals (130 PD and 68 



48 
 

healthy controls (HC)) were included in the study. The controls were age and sex matched with the PD 

patients as closely as possible. Demographics are summarised in Table 1.   

 

2.1.3.2 PD cohort construction 

PD patients were selected from the Swedish Biopark cohort [163] based on a few criteria.  

 

Definite inclusion criteria included: 

- Clinical diagnosis of Parkinson’s Disease by a movement disorder specialist  

- MoCA score as close as possible to sample collection date, maximum 1 year apart 

Selection criteria based on sample availability: 

- Availability of multiple MoCA scores, at least 1 year apart from the first MoCA score 

- As broad range of cross sectional MoCA scores as possible 

- As broad range of rates of cognitive declines as possible 

- Sex and age match cognitively impaired and unimpaired patients where possible 

- Most complete clinical assessment available 

- Most complete self-assessment available 

- Sample date as close to date of diagnosis as possible 

Patients were generally not selected if 

- Severe comorbidity present that would significantly affect cognition/PD symptoms to a great 

degree 

- Patient history/data that would suggest cognitive impairment prior to PD diagnosis 

- DLB/dementia diagnosis at time of PD diagnosis or within a year after PD diagnosis 

 

Healthy controls were generally selected if 

- Closely matched age and sex of PD cohort 

Healthy controls were generally not selected if 

- Clinical data or patient history suggested dementia or cognitive impairment 

- Severe somatic disease burden was present 

- Neurological disease was present 
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TABLE 1 – DEMOGRAPHICS FOR MASS SPECTROMETRY STUDY 

Demographics of Parkinson’s disease patients and healthy controls. Clinical scales and other 

parameters include Hoehn & Yahr, Unified Parkinson's Disease Rating Scale (UPDRS) III, Levodopa 

Equivalent Daily Dose (LEDD), Montreal Cognitive Assessment (MoCA), Beck’s Depression Inventory 

(BDI) II, Pittsburgh Sleep Quality Index (PSQI), Montgomery Åsberg Depression Rating Scale (MADRS), 

Mental Fatigue Scale (MFS), Parkinson’s Disease Questionnaire (PDQ) 39, Hospital Anxiety and 

Depression Scale (HADS), and Non-Motor Symptom Questionnaire (NMSQ). Age presented as mean 

(standard deviation), all other data as median (range).  

 
Parkinson's disease Healthy Controls 

Age 68.3 (9.5) 65.5 (9.0) 

Sex (Female : Male) 58 : 72 33 : 55 

Disease duration 3.4 (0-22) - 

Hoehn & Yahr 2 (1-4) - 

UPDRS III 25.5 (3-80) - 

LEDD 500 (0-2235) - 

MoCA 25 (9-30) - 

BDI II 10 (0-43) - 

PSQI 7 (2-18) - 

MADRS 7 (0-36) - 

MFS 10.5 (0-32) - 

PDQ 39 25.8 (0-76.6) - 

HADS Anxiety 5 (0-19) - 

HADS Depression 3 (0-17) - 

NMSQ 8 (0-20) - 

 

2.1.3.3 Assessment of cognition and cognitive decline in PD 

The PD group was primarily built to allow assessment of cognitive impairment and cognitive decline 

in PD. Several models of cognitive decline were considered for the available data. Ultimately, the main 

aim was to identify which patients declined cognitively more rapidly from the date of PD diagnosis, 

more specifically how early PD patients developed MCI and dementia after PD diagnosis. Therefore, 

survival models were constructed with the longitudinal cognition data available, where plasma protein 

levels could be used as predictors. MoCA < 26 and MoCA < 21 were used as thresholds for PDMCI and 

PDD, respectively. Not all PDD patients had received a formal PDD diagnosis, but the literature 

supports these cut-offs as an estimation of cognitive levels at PDD and PDMCI [175], especially in the 

absence of other factors that could explain the cognitive score.  

According to the patient history available, there was no data on the patients having severe cognitive 

impairment at the time of inclusion. PD patients’ MoCA scores at the time of diagnosis were not 
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available for all patients and it was assumed that they all had similar cognitive function to the general 

population at baseline. Hence, using a formula for estimating MoCA based on age and sex in a healthy 

Swedish population [176], a baseline population estimated MoCA score was set at time of diagnosis. 

A study by Borland et al. suggests that for an estimation of cognitive function, one could use the 

formula MoCA = 31.104 + 0.565S − 0.090A + 0.713E, where S = sex(0=men,1=women), A = age (years), 

E = level of education (1 = primary, 2 = secondary, 3 = higher). All time points with available MoCA 

scores were used to fit a linear regression model for each patient. MoCA score was a function of 

disease duration and the slope was used as the rate of decline. The formula MoCA(years) = rate * 

years + MoCABaseline was used to calculate when the patients would reach MoCA score <26 and <21 

respectively. The model was not extrapolated beyond the last available MoCA score, as it was not 

known how the patients were progressing after that, and the patients were considered lost to follow-

up beyond that point. This data was used to fit a cox proportional hazards model for each quantified 

protein against the PD population. This linear model fit is an estimation of PDMCI and PDD conversion, 

and real-life cognitive decline can fluctuate as seen in Figure 4.   

 

 

FIGURE 4 – TYPICAL PROGRESSION OF COGNITIVE DECLINE IN PARKINSON’S DISEASE (FIGURE ADAPTED FROM 

PARKINSON DISEASE-ASSOCIATED COGNITIVE IMPAIRMENT, AARSLAND, 2021 [64]) 
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2.1.4 Cohort for complement study 

 

Samples for the complement study were selected from the Biopark cohort. An effect size was 

estimated off the literature as a rough guide to the sample size. From the difference in mean in 

complement levels in plasma between controls and neurological disease and their SD (Cohen’s d of 

0.68) [177, 178], two groups of 40 individuals in each gave a p-value = 0.03 for power = 0.8. As the aim 

was also to explore clinical PD phenotype with levels of complement factors, the selected PD group 

was larger than the comparison groups, hence used 81 PD patients and 48 age and sex matched 

controls (chi squared p>0.05 for sex, t-test p>0.05 for age). A further 23 individuals were included in 

the study, clinically diagnosed with 4R- Tauopathies, either Progressive Supranuclear Palsy (PSP) or 

Corticobasal Syndrome (CBS). This APD group was used to assess the specificity of any findings in PD, 

but owing to sample availability, this group was smaller and not age and sex matched. PD patients 

were included if they had a clinical diagnosis of PD set by a neurologist [2]. PSP and CBS diagnoses 

were set clinically by at least two neurologists, and patients were included if PSP or CBS was the most 

probable diagnosis[179, 180]. As differential diagnosis between PSP and CBS was sometimes difficult, 

and due to their pathological proximity and to increase power, they were combined into one APD 

group (4R-Tauopathies). Subjects from all groups were not selected for the study cohort if they had 

autoimmune disorders, inflammatory disorders, infections, were taking antibiotics or any form or 

regular immune-modulating medication. 

 

A further 78 participants (58 PD and 20 HC) where serum was collected were further recruited from 

the Aetionomy cohort [125] for the CH50 complement activity assay. The inclusion and exclusion 

criteria were the same as for the Biopark samples. 
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2.2 Material - kits and chemicals 

 

CH50 test kit (K002, HaemoScan) 

Cytiva Immobiline™ DryStrip Gels (IPG strips), 24cm (10697465, Fisher Scientific Ltd) 

Dithiothreitol (DTT) (D5545, Merck Sigma-Aldrich) 

Glycerol solution (49781, Sigma-Aldrich) 

High Select™ Depletion Spin Columns (A36369, Thermo Scientific™) 

Human C9 (Complement component C9) ELISA Kit (EH0673, FineTest) 

Iodoacetamide (IAA) (I1149, Merck, Sigma-Aldrich) 

MILLIPLEX Human Complement Panel 1 (HCMP1MAG-19K, Merck Millipore) 

MILLIPLEX Human Complement Panel 2 (HCMP2MAG-19K, Merck Millipore) 

OFFGEL IPG-Buffer, pH 3-10 (GE17-6000-87, Merck) 

Pierce™ Acetonitrile (ACN), LC-MS Grade (51101, Thermo Scientific™) 

Pierce™ High pH Reversed-Phase Peptide Fractionation Kit (84868, Thermo Scientific™) 

Pierce™ Peptide Desalting Spin Columns (89852, Thermo Scientific™) 

Pierce™ Water, LC-MS Grade (85189, Thermo Scientific™) 

ProteoPrep® Immunoaffinity Albumin and IgG Depletion Kit (PROTIA, Sigma-Aldrich) 

Sequencing Grade Modified Trypsin (V5117, Promega) 

Simoa® NF-light™ Advantage Kit (103186, Quanterix) 

Sodium dodecyl sulfate (SDS) 10% (40121008, Bio-world) 

SOLA HRP SPE Cartridges (60109-002, Thermo Scientific™) 

Thiourea (Part Number: 5188-6436, Agilent) 

TMT10plex™ Isobaric Label Reagent Set (90406, Thermo Scientific™) 

triethylammonium bicarbonate (TEAB) (T7408, Merck Sigma-Aldrich) 

Trifluoroacetic acid (TFA), hypergrade for LC-MS (1.08262.0100, Merk Millipore) 

tris(2-carboxyethyl) phosphine (TCEP) (C4706, Merck Sigma-Aldrich) 

Urea (U5378, Sigma-Aldrich) 
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2.3 Methods for mass spectrometry – Discovery 

2.3.1 Overview 

The plasma samples needed to be optimally processed before analysing on the mass spectrometer to 

maximise sample resolution and accuracy. The high abundant proteins were depleted to facilitate 

detection of lower abundant proteins. The samples were then digested to break down proteins to 

peptides. Samples were labelled with isobaric mass tags and pooled to minimise inter run variation. 

The samples were finally fractionated to maximise resolution on the mass spectrometer. Finally, the 

study samples were run on the instrument. A schematic protocol overview is shown in Figure 5. 

 

FIGURE 5 - SAMPLE PREPARATION PROTOCOL FOR UNTARGETED MASS SPECTROMETRY 

2.3.2 Sample preparation 

The protocol had previously been set up and optimised by the group. However, a few additional 

protein depletion and fractionation methods were tested to further optimise the setup. Two different 

protein depletion techniques were compared, one which depleted the top 2 most abundant proteins, 

and one which depleted the top 14 most abundant proteins. The top 2 depletion (ProteoPrep) had 



54 
 

previously been used, but we wanted to compare its depletion efficacy with available top 14 depletion 

columns. Similarly, two fractionation methods were compared, one using spin columns separating 

peptides by hydrophobicity, and one using gel strips separating samples by isoelectric point.  

2.3.2.1 Protein depletion – ProteoPrep 

The ProteoPrep® Immunoaffinity Albumin and IgG Depletion Kit (PROTIA, Sigma-Aldrich) was used for 

protein depletion in the discovery study. The ProteoPrep Immunoaffinity medium in the prepacked 

spin columns is a mixture of two beaded mediums containing recombinantly expressed, small single-

chain antibody ligands, resulting in low non-specific binding and high capacity. This kit is targeted 

toward human albumin and IgG, which comprise about 70% of the total proteins in plasma. The 

protocol was performed according to the manufacturer’s instructions, as summarised below.  

30ml of Liquid Chromatography Mass Spectrometry (LCMS) grade water was added to a bottle of 

ProteoPrep Immunoaffinity Equilibration Buffer.  

The bottom tip of the spin columns was broken off, and the cap loosened approximately 1 full turn.  

The spin columns were centrifuged in a 2ml collection tube at 5,000 g for 5–10 seconds to remove the 

storage solution. 

400μl of the kit Equilibration Buffer was added to the medium in the spin column and centrifuged at 

5,000 g for 5–10 seconds. The Equilibration Buffer was discarded, and the spin column was replaced 

into the same collection tube. 

The above equilibration step was repeated twice. 

After the final equilibration, each spin column was centrifuged for 30 seconds, the buffer was 

discarded, and the spin column was placed into a fresh 2ml collection tube.  

Each plasma sample was diluted by adding 35μl of plasma to 70 µl Equilibration Buffer.  

The diluted plasma sample was added to the 100μl of the 1:2 diluted plasma to the top of the packed 

medium bed and incubated at room temperature for 10 minutes.  

The spin column was centrifuged at 8,000g for 60 seconds.  

The eluate in the collection tube was reapplied to the top of the medium bed and incubated for 10 

minutes at room temperature.  

The spin column was centrifuged in the same collection tube as before at 8,000g for 60 seconds. 
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The remaining unbound proteins from the spin column were washed by adding 125μl of the 

Equilibration Buffer to the top of the medium bed and centrifuged at 8,000g for 60 seconds, and the 

eluate was collected in the same tube.  

The protein concentration of each sample was measured on the Thermo Scientific™ NanoDrop™ One 

spectrophotometer (Protein A280), with equilibration buffer used as blank.  

40μg of each sample was transferred to an Eppendorf tube. 

10μg of each sample to a Quality Control Mix tube Eppendorf tube. 

The samples were then frozen and lyophilised.  

 

2.3.2.2 Protein depletion – Top 14 

The High Select Top 14 Abundant Protein Depletion Resin (A36369, Thermo Scientific™) was used as 

a comparative depletion method to the ProteoPrep in the optimisation experiment. The resin uses 

highly specific immobilised antibodies for protein removal, providing minimal nonspecific interactions 

with other proteins. The columns are intended to remove the top 14 most abundant proteins from 

plasma, which comprise about 95% of the total amount of proteins in plasma. The 14 proteins listed 

are Albumin, IgG, IgD, IgE, IgG, IgG (light chains), IgM, Alpha-1-acid glycoprotein, Alpha-1-antitrypsin, 

Alpha-2-macroglobulin, Apolipoprotein A1, Fibrinogen, Haptoglobin, and Transferrin.  

The protocol was performed according to the manufacturer’s instructions, as summarised below. 

Up to 600μg protein was added to each column resin slurry.  

The column was capped and inverted several times until homogeneous.  

The column was incubated at room temperature with gentle end-over-end mixing for 10 minutes. 

The bottom closure was snapped off, and the cap loosened.  

The column was placed in a 2ml tube and centrifuged at 1000 g for 2 minutes.  

 

2.3.2.3 Sample digestion 

The plasma samples were reduced, alkylated, and digested to obtain peptides.  

To each 40µg lyophilised sample 40µL of 100mM triethylammonium bicarbonate (TEAB) with 0.1% 

Sodium dodecyl sulphate (SDS) was added.  
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Reduction 

2µL of 200mM tris(2-carboxyethyl)phosphine (TCEP) was added to the sample and incubated at 55°C, 

shaking at 400rpm for 1 hour for reduction.  

Alkylation 

Immediately before use, iodoacetamide (IAA) was prepared with 100mM TEAB to make 375mM IAA 

solution. Solution was protected from light.  

2µL of the 375mM iodoacetamide to the sample and incubate for 30 minutes protected from light at 

room temperature to alkylate the samples.  

Samples were then immediately frozen and lyophilised.  

Digestion 

40µg of protein pellets were resuspended with 40µL of 100mM TEAB 0.1% SDS. 

1 µg /µl trypsin solution was prepared by adding 100μl of trypsin solution was added to 100μg 

lyophilised trypsin.  

1.6µl (1.6ug) trypsin was added per 40µg of protein and digested overnight at 37°C 400rpm.  

 

2.3.2.4 TMT-labelling 

In order to minimise inter run technical variation, the peptide samples were labelled with tandem 

mass tags (TMT10plex, cat#90110, Thermo Scientific™). TMTs are isobaric mass tags, which are 

molecules with the same mass tags but result in different reporter ions post fragmentation. Their 

structural formulas are shown in Figure 6. This allowed for pooling of samples in batches of 10, which 

reduced overall technical variation, reduced total run time, and allowed for intra run controls. For 

each 10-plex, the same proportion of PD to HC samples were run (normally 6:3), and the TMT131 was 

reserved to the quality control (QC) mix that was used as an intra run control. The QC was composed 

of equal amounts of each of the 198 study samples.  
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FIGURE 6 – STRUCTURAL FORMULAS OF THE 10-PLEX TANDEM MASS TAGS USED IN THE DISCOVERY STUDY 

 

Immediately before use, TMT Label Reagents were equilibrated to room temperature. For the 5mg 

vials, 256μl  of anhydrous acetonitrile (ACN) was added and let dissolve for 5 minutes.   

Carefully 20.5µL of the TMT Label Reagent was added to each 40µL sample (40μg protein digest).  

The TMT10-131 was added to the Quality Control Mix.  

Mass tags and samples were incubated together for 1 hour at room temperature.  

4µL of 5% hydroxylamine was added to the sample and incubated for 15 minutes to quench the 

reaction.  

Equal amounts (approximately 60µl) of each sample were combined in a new microcentrifuge tube 

(2ml), frozen and lyophilize to dry labelled peptide sample (400µg). 

Samples were randomised, and it was ensured a similar proportion of Healthy Controls (HC) and 

Parkinson’s Disease (PD) samples were in each TMT-10-plex, and the TMT-131 was used for the master 

mix. The sample layout is shown in Figure 7.  
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TMT 126 127N 127C 128N 128C 129N 129C 130N 130C 131 

10 plex 1 HC PD PD PD PD PD PD HC HC QC 

10 plex 2 PD PD HC PD HC PD HC 21 PD QC 

10 plex 3 HC HC PD PD 78 PD PD PD HC QC 

10 plex 4 PD PD HC HC PD HC PD PD PD QC 

10 plex 5 PD PD PD HC HC PD HC PD PD QC 

10 plex 6 HC PD HC HC PD PD PD PD PD QC 

10 plex 7 PD PD PD HC HC PD HC PD PD QC 

10 plex 8 HC PD PD PD PD PD PD HC HC QC 

10 plex 9 HC PD PD HC PD PD HC PD PD QC 

10 plex 10 PD PD PD PD PD HC HC PD HC QC 

10 plex 11 PD PD PD PD PD PD HC HC HC QC 

10 plex 12 PD PD PD HC HC PD PD HC PD QC 

10 plex 13 PD PD PD HC HC PD HC PD PD QC 

10 plex 14 HC PD PD HC HC PD PD PD PD QC 

10 plex 15 PD PD HC PD HC PD HC PD PD QC 

10 plex 16 HC PD PD PD PD HC PD HC PD QC 

10 plex 17 PD PD HC PD HC PD HC PD PD QC 

10 plex 18 PD PD HC HC PD PD PD PD HC QC 

10 plex 19 PD HC PD PD PD HC PD HC PD QC 

10 plex 20 PD PD HC HC PD PD PD HC PD QC 

10 plex 21 HC PD PD HC HC PD 237 HC PD QC 

10 plex 22 HC HC PD PD PD PD 23 HC HC QC 

FIGURE 7 - LAYOUT OF STUDY SAMPLES 

Layout of the 198 study samples including Parkinson’s Disease (PD), and Healthy Control (HC). The 

Quality control sample was always labelled with TMT131. This resulted in 22 10-plex sample sets.  

 

2.3.2.5 Peptide fractionation – High pH Spin Columns 

Pierce™ High pH Reversed-Phase Peptide Fractionation Kit (cat 84868, Thermo Scientific™) increases 

protein identification from LC/MS analysis through orthogonal peptide fractionation and was used for 

the discovery proteomic study.  

An equilibration solution was prepared by adding 0.1% Trifluoroacetic acid (TFA) to LCMS grade water.  

400µg labelled peptide sample was dissolved in 1.5ml 0.1% TFA solution.  

The following fractions of Acetonitrile (ACN) to 0.1% Triethylamine (TEA) solutions were made up for 

the 10 fractions.  
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Fraction % Acetonitrile % Triethylamine (0.1%) 

1 5 100 

2 10 90 

3 12.5 87.5 

4 15 85 

5 17.5 82.5 

6 20 80 

7 22.5 77.5 

8 25 75 

9 50 50 

10 100 0 

 

The protective tip from the bottom of the spin column was discarded and placed into a 2.0ml tube. 

The column was centrifuged at 5000 × g for 2 minutes to remove the solution and pack the resin 

material, and the liquid was discarded.  

300µL of ACN was loaded into the column, placed back into the 2.0ml sample tube and centrifuged at 

5000 × g for 2 minutes. The ACN was discarded, and the wash step repeated. 

The spin column was washed twice with 300μl 0.1% TFA solution at 5000 x g for 2 minutes. 

The spin column was placed into a new 2.0ml sample tube and loaded with 300µl of the sample 

solution onto each column and centrifuged at 3000 × g for 2 minutes.  

The column was placed into a new 2.0ml sample tube, loaded with 300µL of water onto the column 

and centrifuged at 3000 × g for 2 minutes to collect the wash fraction.  

The column was placed into a new 2.0ml sample tube. 300µl of the appropriate elution solution (e.g., 

5% ACN, 0.1% TEA) and centrifuge at 3000 × g for 2 minutes to collect the fraction. It was repeated for 

the remaining step gradient fractions using the appropriate elution solutions in new 2.0ml sample 

tubes.  

The samples were subsequently frozen and lyophilised.  

2.3.2.6 Peptide fractionation – Gel Strips 

OFFGEL (Agilent) Isoelectric Focusing (IEF) separates peptides by their isoelectric point (pI) and is used 

as a fractionation method prior to mass spectrometry. 

OFFGEL stock solution (1.25x) was made up by combining 25.2g urea, 9.1g thiourea, 600mg 

Dithiothreitol (DTT), 6mL Glycerol, and 0.6mL OFFGEL buffer. The solution was mixed well, and the 

contents brought to a total volume of 50mL with dH2O. 
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The fully lyophilised peptide sample was dissolved in 3.6mL of 1x OFFGEL stock solution (0.72mL dH2O 

+ 2.88mL 1.25x OFFGEL stock solution).  

The immobilized pH gradient (IPG) strip rehydration solution was prepared. 2.5mL were made up with 

0.5mL dH2O + 2.0ml OFFGEL Stock Solution. 

The tray was placed in the Agilent 3100 OFFGEL Fractionator with the fixed electrode side to on the 

left and handle on the right.  

The protective backing from the 24cm IPG strip gel, and the strip was placed in the tray with gel side 

up (side with protective strip that is convex) and the anode/low pH side (+) to the left. 

The 24 well frame was attached and secured on top of the gel.  

40µL of IPG strip rehydration solution was pipetted into each of the wells.  

4 electrode pads were removed for each strip. Using tweezers, one pad was wet in the IPG rehydration 

solution and placed on the protruding end of the IPG strip, with a second wetted pad placed on top of 

the first one. The same was repeated on the other end of the strip.  

The strip was left to swell for 15 minutes.  

150µL of sample was pipetted into each well, and the cover seal was placed on the frame. 

10µL of H2O was reapplied onto each electrode pad.  

The tray was placed in the instrument platform.  

200µL of cover fluid (mineral oil) was applied to the anode end and 700µL to the cathode end. After 1 

min additional 200µL was applied to each end of the strip. After 3 min another 100µL was applied to 

the anode end. The cover fluid should not extend further than ½ the height of the tray grooves.  

The fixed anode was placed into the slots on the left side of the tray on top of the electrode pads. The 

tray was slid into the anode connector.   

The movable cathode was inserted on the electrode pads on the right side.  

The lid was closed to start the fractionation. The fractionation was done after approximately 48h. After 

24h the upper electrode pads were replaced.  
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FIGURE 8 – OFFGEL PEPTIDE SEPARATION PRINCIPLE  

Overview of OFFGEL isoelectric focusing peptide fractionation. The peptide sample is added in all wells 

and a voltage is applied across the gel. Peptides move over time to their isoelectric point on the gel.   

 

Once the fractionation was completed, the sample was removed from each well and desalted with 

solid phase extraction (SPE) SOLA cartridges.  

The columns were conditioned with 500μl methanol and equilibrated with 500μl dH2O. the 

fractionated peptide sample was added to the column, washed with 500μl 5% methanol in dH2O, and 

eluted with 500μl methanol.  

Samples were lyophilised to completion.  

2.3.3 Mass spectrometric run 

The lyophilised peptide samples were run on the mass spectrometer according to the following 

protocol by the Centre of Excellence for Mass Spectrometry (CEMS)-Denmark Hill Proteomics Facility. 

2.3.3.1 Liquid Chromatography Tandem Mass Spectrometry acquisition 

Prior to LC-MS/MS analysis, peptide fractions were reconstituted in 0.05% trifluoroacetic acid (TFA), 

2% ACN and de-ionised water then shaken at 37oC, vortexed and centrifuged thoroughly. 

Each peptide extract was reconstituted to a calculated concentration of 0.5µg/µL with retrospective 

protein concentration of peptide extracts estimated by spectrophotometry (NanoDrop™ One, Thermo 

Scientific™) of the plasma samples. 
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No Time Flow %B Curve 
1 0.000 Run 

2 0.000 0.250 5.0 5 

3 5.000 0.250 10.0 5 

4 80.000 0.250 35.0 5 

5 95.000 0.250 90.0 5 

6 95.100 0.250 90.0 5 

7 100.000 0.250 90.0 5 

8 100.100 0.250 5.0 5 

9 120.000 0.250 5.0 5 

10 New Row       

11 70.000 Stop Run  

 

FIGURE 9 – METHOD OF CHROMATOGRAPHIC SEPARATION FOR TMT10PLEX 

A linear increase of 5% solvent B (0.1% formic acid in 80% acetonitrile) was run for 120 minutes before 

a 5-minute wash at 95% solvent B. 

Chromatographic separation was achieved by a two-column configuration; 4µL of sample (~2µg) was 

injected first onto a nano-trap column (Acclaim PepMap100 C18 Trap, 5 mm x 300 µm, Thermo 

Scientific) packed with octadecyl carbon chain C18-bonded silica (C18) using the Thermo Scientific 

nanoflow LC system UltiMate 3000 RSLC nanosystem. Peptides were then resolved using a linear 

gradient of 0.1% FA in 80% ACN (10% to 65% over 120 minutes) through a nanocolumn (EASY-Spray 

PepMap® RSLC C18, 2μm 100 Å, 75µm x 50cm), set at 40°C and connected to an EASY-Spray ion source 

(Thermo Scientific) at a flow rate of 250nL/min (Figure 9). Mass spectra were acquired on a Thermo 

Scientific Orbitrap Fusion Lumos instrument throughout the chromatographic run which operated in 

data-dependent mode to automatically switch between full scan MS and MS/MS acquisition. 

Instrument control was through Tune 3.4.0 and Xcalibur 4.2 (Thermo Scientific).  

The instrument was programmed to using a Synchronous Precursor Selection with Multinotch MS3 

method (SPS). Synchronous Precursor Selection is a process of selecting multiple MS2 precursors using 

a single fill and single waveform in a collision-induced dissociation (CID) or Higher collision-induced 

dissociation (HCD) cell, while Multinotch MS3 is to reduce co-isolated interference from MS2 in an 
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ion-trap cell. This method allows for accurate and sensitive quantitation based on isobaric TMT tags 

(Figure 10).  

The method was set to a 3 second cycle time between a full Orbitrap MS scan, Ion Trap MS/MS 

fragmentation and finally HCD Orbitrap scan for MS3 fragments. Orbitrap spectra (FTMS1) were 

collected at a resolution of 120,000 over a scan range of m/z 375-1500 with an automatic gain control 

(AGC) setting of 4.0e5 and maximum injection time of 35 ms. Monoisotopic precursor ions were 

filtered using charge state (+2 to +7) with an intensity threshold set between 5.0e3 to 1.0e20 and a 

dynamic exclusion window of 35 secs ± 10 ppm. MS2 precursor ions were isolated in the quadrupole 

set to a mass width filter of 0.7 m/z. Ion trap fragmentation spectra (ITMS2) were collected with an 

AGC target setting of 1.0e4 with a maximum injection time of 35 ms with CID collision energy set at 

35%. Ions detected with isobaric tags are further fragmented under HCD at 65% collision energy at a 

resolution of 60,000 over a scan range m/z 100-500. The AGC target was set at 5.0e4. The Top 5 SPS 

precursors were selected for fragmentation for each detected ion. 

 

 

FIGURE 10 – SYNCHRONOUS PRECURSOR SELECTION MS3 METHOD 

 

2.3.3.2 Pre-processing of raw LC-MS/MS data 

Raw data files produced in Xcalibur software 4.2 were processed using Proteome Discoverer, (ver. 2.3; 

Thermo Scientific) to determine peptide identification (Figure 11); the subsequent Mascot (ver. 2.6; 

available at: http://www.matrixscience.com) and Sequest (Eng et al. [181]) output file was used for 

additional pre-processing and analysis. 

Prior to database searching a spectrum selector threshold was applied; minimum 700 Da and 

maximum 10000 Da. Within Mascot and Sequest, mass spectra were searched against the 
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uniprot/Swiss-prot database (ver. 2021, 50,830 entries), taxonomy was set to human with precursor 

and fragment mass tolerances were set to ±10ppm and 0.6 Da, respectively. Dynamic modifications 

included TMT6plex modification of the lysine residue (TMT (K)), TMT6plex modification of the peptide 

N-Terminus (TMT (N-Term)), and oxidation of the methionines. Additionally, carbamidomethylation 

of cysteine residues was set as a fixed modification and two miss cleavages were allowed. Validation 

of merged Mascot and Sequest database results were conducted by Percolator at FDR of 0.05. 

 

 

FIGURE 11 – PROTEOME DISCOVERER NODAL WORKFLOW FOR RAW DATA PROCESSING FOR DATABASE SEARCHING AND 

CONSENSUS QUANTIFIER ANNOTATION METHOD. 

Proteome Discoverer workflow for database searching of MS/MS spectra in Chapter 3. Spectrum 

selector thresholds were set as 700Da-10000 Da. In Mascot and Sequest, precursor and fragment 

tolerances were set to ±10ppm and 0.6 Da. Modifications included TMT (K), TMT (N-Term), oxidation 

(M) and carbamidomethylation (C) of cysteine residues. Two miss cleavages were allowed. 

 

2.3.4 Data processing 

2.3.4.1 Preprocessing 

Total protein distributions per sample were visualised in Proteome Discoverer, (ver. 2.3; Thermo 

Scientific). Normalisation to total protein abundance was also performed in Proteome Discoverer, and 

batch effects due to group, sample, and mass tag were inspected. The normalised data was exported 

and analysed in RStudio (R version 4.2.1).  

An expression set was constructed in R using the limma package with protein features as feature data, 

clinical characteristics as phenotype data, and protein abundances as matrix data. Plots were made 
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using the ggplot2 package. Density plots for arithmetic and log10 transformed data was visualised for 

each sample and each protein. Shapiro-wilk p-value was calculated for each protein distribution to 

assess if most proteins are normally distributed. Coefficients of Variation for proteins across all 

samples and across QCs were calculated, and distributions visualised. QCs were corrected for by 

subtracting the QC quantity from the study sample quantity for each protein in each 10-plex and 

added to the average protein abundance for each protein. The limma modified PCA plot was used to 

find technical batch effects and corrected for using the “removeBatchEffect” function.  

Proteins that were quantified in less than half the subjects were removed. Correlation scatterplots 

and boxplots were visualised in ggplot2 with parametric statistics for proteins known to vary with 

demographic parameters.   

2.3.4.2 Statistical analysis 

For dimensionality reduced analysis (Principal component analysis (PCA) and t-distributed stochastic 

neighbour embedding (t-SNE)), the residual matrix was used after correcting for age and sex with a 

linear model. Missing values were imputed with the missMDA package. The factoextra package with 

the fviz_pca function was used to create PCA plots, and the data was centred and scaled. T-SNE plots 

were constructed with the Rtsne package with the data reduced to two dimensions.  

Linear models for the proteomic data were analysed using the limma package which was originally 

designed for microarray data. An interception-free model matrix with variable of interest (i.e. disease 

group), and covariates (i.e. age and sex) were fit in a model matrix against the proteome. The variable 

contrast of interest (i.e. PD versus HC) was defines, and a robust linear model was fit to the data. The 

fitted model object was processed by a contrast matrix before being passed to eBayes to obtain the 

statistical output. P-values were adjusted by the Benjamini-Hochberg method. The EnhancedVolcano 

package was used to generate volcano plots.  

The machine learning models for diagnostic accuracy were constructed for the most significant 

proteins using the caret package. Data was partitioned 5 times into train and test sets using a 90/10 

split. The training data was used to train an effective model using leave one out cross validation 

(LOOCV), both with and without covariates as “train(Group~., data=Training_data, method="glm", 

trControl=trainControl(method = "LOOCV"))”. Importance of variables in the model were calculated. 

The model was used to predict the test data. Both accuracy and area under curve (AUC) were used as 

outcome measures.  

Support vector machines (SVM) were used to build biomarker panels. The e1071 was used for SVMs, 

and custom codes for multiple recursive feature elimination SVM were implemented(“mSVM-RFE“ by 
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johncolby GitHub, based on algorithm by Duan et al. [182]). For each loop, 4 iterations of a 5-fold cross 

validation of the SVM-RFE algorithm were run, and the outcome model was used to predict diagnosis 

accuracy, and area under curve for a receiver operating characteristic (ROC) curve was calculated. For 

the next loop, the lowest ranked protein was eliminated, and the SVM reconstructed. This loop was 

reiterated until one protein was left.   

For pathway analysis, the enrichR package was used, and the top protein hits were searched in the 

KEGG 2019 Human database [183], and p-values for probability of pathway involvement were 

calculated.  

STRING functional protein-protein interactions were investigated using the STRINGdb package. 

STRING v.11.5 [184] was used, with species 9606 (Homo Sapiens) selected and score threshold of 200.  

Correlations with MoCA score were calculated with robust linear models with the limma package 

similar to the group comparisons. Age, sex and disease duration were used as covariates. 

 Survival analysis was performed with Cox proportional hazard regressions. Statistics were calculated 

with the survival package and plotted with the survminer package. Survival probability and hazard 

ratio for conversion to mild cognitive impairment and dementia were calculated.  

For everything else, parametric tests (t-test and ANOVA) used for group comparisons, and Pearson r 

for correlations. For all linear models, covariates including age, sex, and disease duration were used 

where appropriate and without accounting for interactions. For plotted age and sex adjusted data, 

residuals from a linear model were used. 
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2.4 Methods for mass spectrometry – Verification 

2.4.1 Overview 

Plasma samples were processed before analysing on the mass spectrometer. Neat plasma from the 

study participants was reduced, alkylated, trypsinated, and desalted. A parallel reaction monitoring 

(PRM) method was optimised using a sample mix, and transitions for quality peptides were 

preselected. Finally, the study samples were run on the instrument. The methods summary is shown 

in Figure 12.  

 

 

FIGURE 12 - SUMMARY OF METHOD FOR VERIFICATION STUDY  

2.4.2 Sample preparation 

Plasma concentration was determined on the NanoDrop. 800μg of plasma was aliquoted per sample.  

Urea was added to the samples to improve solubility and denaturation of proteins. 8M urea solution 

was prepared by adding 4.8g of urea powder (MW 60.06) to 7mL of water, dissolve and adjust volume 

to 10mL, to make 8M urea. 80μl of 8M urea was added to the plasma (which was on average 20μl).  

Reduction 

100mM DTT (MW 154.25) was used for reduction.  5μl DTT was added to the plasma and incubated 

at 56C for 1h.  

Alkylation 

Immediately before use, iodoacetamide (MW 184.96) was dissolved in water to make 300mM 

iodoacetamide. 5μl IAA was added to the plasma, and incubated in the dark, at room temperature, 

for 1 hour. The reaction was quenched by adding 10μl 100mM DTT solution.  

Digestion  

100mM 0.1% SDS TEAB was made up by mixing 1M TEAB with water 10% SDS solution.  
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720μl 100mM TEAB was added to plasma samples to dilute samples to around 1μg/μl, and to dilute 

the urea to about 1M.  

1μg/μl trypsin solution was prepared.  

20µl (20ug) of trypsin was added to the sample, and let digest overnight at 37°C 400rpm. 

Samples were then lyophilised. Freeze and lyophilise 

Desalting  

0.1% TFA solution in water was made up as the wash solution. 0.1% TFA in 50% water and 50% ACN 

was made up as the elution solution 

Peptides samples were dissolved in 300μl 0.1%TFA in water. 

The tip was removed from the Pierce™ Peptide Desalting Spin Columns, placed in 2ml tube, 

centrifuged at 5000 g for 1 min.  

300μl ACN was loaded in the column and centrifuged at 3000 g for 1 min. This conditioning step was 

repeated once.  

The column was washed by adding 300μl 0.1% TFA in water and centrifuged at 3000g for 1min. This 

washing step was repeated once.  

300μl of sample was added to the column and centrifuged at 3000g for 1min.  

The column was washed 0.1%TFA in water by adding 300μl and centrifuged at 3000g for 1min. This 

step was repeat 2 times.  

The samples were eluted with 300μl 0.1% TFA in 50% water 50% ACN. The columns were centrifuged 

at 3000g for 1min in a new 2ml collection tube.  

Additional 300μl 0.1% TFA in 50% water 50% ACN was added to the column and centrifuged at 3000 

g for 1 min. The solution was collected int the same tube.  

75μl (100ug) of the sample was aliquoted, frozen, and lyophilised. 

2.4.3 Mass spectrometric analysis 

The mass spectrometric analysis was performed by facility managers at the Centre of Excellence for 

Mass Spectrometry (CEMS)-Denmark Hill Proteomics Facility.  

The top 70 candidate proteins for PD diagnosis and PD cognition were assessed to determine whether 

they had high quality peptides for the PRM analysis. Peptides were selected if they were unique to the 
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protein, within the mass range of the instrument, fully tryptic, not susceptible to amino acid 

modifications, and had doubly or triply charged precursor ions [138]. A plasma mix of 8 PD and 8 HC 

samples was analysed on the mass spectrometer and the high-quality peptides were analysed. The 

signal intensity, reproducibility, and chromatographic peak shapes were assessed.  In the end 22 

peptides from 12 proteins were of high enough quality (Table 2). 

TABLE 2 – SHORTLIST OF QUALITY PEPTIDES THAT WERE VERIFIED BY PARALLEL REACTION MONITORING  

 

Two sample injections for all 198 samples were run on the mass spectrometer. Quality controls 

samples (made up of equal amounts of all 198 samples) and blanks were run after every 10 samples.  

Desalted peptides were resuspended in 0.1% formic acid and 2% acetonitrile (ACN). All MS analyses 

were carried out using Orbitrap Lumos mass spectrometer (Thermo Fisher Scientific) coupled with an 

UltiMate 3000 RSLC nano ultra-high-performance liquid chromatography (HPLC) system (Thermo 

Fisher Scientific). Briefly, peptides were loaded and separated on an Easy-spray C18 nano column (15 

cm length, 75 mm internal diameter; ThermoFisherScientific) within a nanoflow HPLC (RSLC Ultimate 

3000) coupled on-line to a nano-electrospray ionization Orbitrap Fusion Lumos mass spectrometer 

(ThermoFisherScientific). Peptides were eluted with a linear gradient of 4%–60% buffer B (80% ACN, 

0.1% formic acid) at a flow rate of 750 nl/min over 70 min at 45°C. HPLC elution gradient shown in 

Figure 13.  

 

 

 

Peptide Protein Peptide Retention Time Precursor Charge Precursor Mz

DALSSVQESQVAQQAR sp|P02656|APOC3_HUMAN 28.08 2 858.929196

TEHYEEQIEAFK sp|P02748|CO9_HUMAN 34.03 3 508.571939

DVVLTTTFVDDIK sp|P02748|CO9_HUMAN 32.86 2 733.392864

AIEDYINEFSVR sp|P02748|CO9_HUMAN 33.22 2 728.359356

EAVEHLQK sp|P06727|APOA4_HUMAN 32.86 2 477.256174

LEPYADQLR sp|P06727|APOA4_HUMAN 31.39 2 552.787838

IDQNVEELK sp|P06727|APOA4_HUMAN 30.33 2 544.285128

IDQTVEELR sp|P06727|APOA4_HUMAN 30.7 2 551.790578

ISASAEELR sp|P06727|APOA4_HUMAN 30.7 2 488.258913

SQDILLSVENTVIYR sp|P07225|PROS_HUMAN 34.99 2 875.472708

NNLELSTPLK sp|P07225|PROS_HUMAN 31.36 2 564.816595

GTLLALER sp|P07996|TSP1_HUMAN 32.43 2 436.763634

GPGGVWAAEAISDAR sp|P0DJI8|SAA1_HUMAN 32.76 2 728.862597

FFGHGAEDSLADQAANEWGR sp|P0DJI8|SAA1_HUMAN 37.64 3 726.659358

AVYEAVLR sp|P12955|PEPD_HUMAN 34.12 2 460.763634

VYALPEDLVEVNPK sp|P13796|PLSL_HUMAN 41.17 3 529.287251

AEIEYLEK sp|P14151|LYAM1_HUMAN 30.89 2 497.758215

SLEDLQLTHNK sp|P51884|LUM_HUMAN 34.56 3 433.229736

ILGPLSYSK sp|P51884|LUM_HUMAN 32.8 2 489.286942

QHGPNVCAVQK sp|Q15582|BGH3_HUMAN 32.18 3 432.215544

VLTDELK sp|Q15582|BGH3_HUMAN 26.97 2 409.236918

GAIENLLAK sp|Q9UPN9|TRI33_HUMAN 30.83 2 464.776742
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No Time Flow %B Curve 
1 0.000 Run 

2 0.000 0.750 4.0 5 

3 5.000 0.750 5.0 5 

4 40.000 0.750 40.0 5 

5 50.000 0.750 60.0 5 

6 50.100 1.000 90.0 5 

7 55.000 1.000 90.0 5 

8 55.100 1.000 4.0 5 

9 70.000 1.000 4.0 5 

10 New Row       

11 70.000 Stop Run  

 

FIGURE 13 - HPLC ELUTION GRADIENT FOR USED FOR PARALLEL REACTION MONITORING  

A linear increase of 5% solvent B (0.1% formic acid in 80% acetonitrile) was run for 120 minutes before 

a 5-minute wash at 95% solvent B. 

The instrument was programmed within Xcalibur 4.3 to acquire MS data using “Parallel Reaction 

Monitoring” method (PRM). PRM is a process of selecting predefined MS1 precursors (m/z and rt) 

using a single fill and single waveform in a HCD cell, followed by fragmenting them into product ions 

at MS2 level. All setting parameters were listed in Figure 14. 

 

FIGURE 14- SETTINGS USED ON XCALIBUR FOR MASS SPECTROMETRY DATA ACQUISITION 

 



71 
 

2.4.4 Data processing 

2.4.4.1 Data pre-processing 

LCMS .raw files processed within Skyline software. After LCMS acquisition, .raw files for 198 samples 

(double injections each) plus quality controls and blanks are generated and used for the following 

analysis. All .raw files were loaded into Skyline for data processing, including peak picking and peak 

integration.  

 

2.4.4.2 Statistical analysis 

Peak areas for all peptides for all samples were exported from Skyline and processed in RStudio (R 

version 4.2.1). Data frames were cleaned up using the tidyr package. The corrplot package was used 

for correlation plots, ggplot2 was used for all the other plots.  

Protein distributions were visually inspected with density plots, and log10 transformed when heavily 

right skewed. Technical variation and batch effects were visually assessed with scatter plots. Run 

order, study group, blanks, quality controls (QC), retention times, technical batches, and total ion 

count were all assessed.  

Total ion count was corrected for by dividing the arithmetic protein abundance with the total ion 

count. QC was adjusted for by fitting a local polynomial regression (loess) function with a span of 0.2 

as “stat_smooth(method = "loess", span=0.2)”. A theoretical QC was subsequently predicted for each 

data point through “predict(loess(y~x, data = data, span = 0.2)”. The predicted QC value was then 

subtracted from each data point.  

Peptide levels were compared with proteins levels from the discovery with correlation plots. Pearson 

correlation coefficient with significance (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001) were 

calculated and displayed. Discovery study expression set was read with the limma package.  

Average peptide level was defined as the average peptide quantity of replicates 1 and 2. Average 

protein level was defined as the average of all peptides level averages for each protein.  

Parametric tests (t-test and ANOVA) used for group comparisons, and Pearson r for correlations, to 

make results comparable with the discovery analysis.  

Survival analysis was performed with Cox proportional hazard regressions. Statistics were calculated 

with the survival package and plotted with the survminer package. Survival probability and hazard 

ratio for conversion to mild cognitive impairment and dementia were calculated.  

For all linear models, covariates including age, sex, and disease duration were used where appropriate 

and without accounting for interactions. For plotted age and sex adjusted data, residuals from a linear 

model were used.  
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2.5 Neurofilament light chain assay 

2.5.1 Assay protocol  

The neurofilament light chain assay (Simoa® NF-light™ Advantage Kit, cat#103186) was run on the 

Single molecule array (SIMOA). The SIMOA is a bead based ultra-sensitive immunoassay capable of 

accurately quantifying proteins below femtomolar levels in biofluids [185].  The assay was analysed 

on the fully automated HD-1 instrument according to manufacturer’s instructions. The same set of 

samples were used as in the mass spectrometry experiments.  

Calibrators and samples and reagents were equilibrated to room temperature. 

The NF-light assay definition for the HD-1 instrument was downloaded (http://portal.quanterix.com) 

and imported into the Simoa software. 

Eight calibrators ranging from 0-450 pg/ml were provided in the kit. Calibrators were run in duplicates 

by pipetting 200μl in the first 2 columns of a 96-well SIMOA plate.  

Plasma samples were diluted 4x using the Sample Diluent provided. 200μl was pipetted in each well, 

samples were run in single replicates.  

The HD-1 instrument was initialised.  

Bead Reagent, Detector Reagent, and SBG (streptavidin-β-galactosidase) Reagent were put into a 

reagent rack with the barcodes visible and scanned in. The beads were vortexed for 30 seconds 

immediately prior loading on the instrument.  

RGP (Resorufin-D-galactopyranoside) bottle was loaded into the RGP rack and load into the selected 

lane in the sample bay. 

A plate layout was setup on the instrument, calibrators and samples were selected and all run using 

the “Neat” protocol.  

After the run a 4-parameter logistic curve fit, 1/y2 weighted was generated, example of a NfL standard 

curve is shown in Figure 15. 

http://portal.quanterix.com/
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FIGURE 15 – 4-PARAMETER LOGISTIC STANDARD CURVE FIT, EXAMPLE FROM NEUROFILAMENT LIGHT CHAIN ASSAY 

2.5.2 Statistical analysis 

As samples were diluted offline, the plasma concentrations were calculated by multiplying the results 

with the dilution factor.  

Neurofilament light chain (NfL) concentrations were log10 transformed to achieve normal 

distribution, which was assessed with density plots and histograms. The data was subsequently 

corrected for inter-plate variation using a linear model before analysis.  

Group level analyses were performed using linear models with Diagnosis as the explanatory variable, 

both with and without age and sex as additional explanatory variables. The PD diagnosis was further 

divided into PDND (PD with no dementia) where MoCA scores were ≥ 26, and PDCI (PD with cognitive 

impairment) where MoCA <26. Spearman’s rank was used for correlations. Figures with age and sex 

adjusted data used residual values from a linear model with age and sex as explanatory variables.  

Cox regressions and survival plots were constructed like for the discovery study.  

All analysis was performed in RStudio (R version 4.2.1). Plots were made using the ggplot2, ggpubr, 

and ggbeeswarm packages. 

  



74 
 

2.6 Complement study 

2.6.1 Complement factor quantification 

Plasma was chosen for quantification of complement proteins, as the added EDTA prevents further 

complement activity in vitro after blood draw [186]. Complement factors were measured with 3 

different assays, two on the Luminex platform, and one sandwich ELISA. Complement factors, 

products and regulators of the complement system were measured using MILLIPLEX Human 

Complement Panel 1 (complement C2, C4b, C5, C5a, Factors I and D, and Mannose Binding Lectin; cat# 

HCMP1MAG-19K), Human Complement Panel 2 (complement C1q, C3, C3b, C4, Factors B and H; cat# 

HCMP2MAG-19K), and Human C9 (Complement component C9) ELISA Kit, by Fine Test cat# EH0673. 

Samples and standards were run in duplicates for all assays.  

 

2.6.1.2 Milliplex Complement Panels 1 and 2 

PREPARATION OF SAMPLES AND REAGENTS 

TABLE 3 – COMPLEMENT PANEL 1 (TOP) AND PANEL 2 (BOTTOM) ANTIBODY-IMMOBILIZED MAGNETIC BEADS  

Complement 
Panel 

Bead/Analyte 
Luminex® 
Magnetic 

Bead Region 
Cat. # 

1 Anti-Complement C2 Bead 19 HCC2-MAG 

1 Anti-Complement C4b Bead 43 HCC4B-MAG 

1 Anti-Complement C5 Bead 44 HCC5-MAG 

1 Anti-Complement C5a Bead 45 HCC5A-MAG 

1 Anti-Complement Factor D (Adipsin) Bead 73 HADPSN-MAG 

1 Anti-Mannose-Binding Lectin (MBL) Bead 74 HMLB-MAG 

1 Anti-Complement Factor I Bead 76 HCFI-MAG 

2 Anti-Complement C1q Bead 14 HCC1Q-MAG 

2 Anti-Complement C3 Bead 34 HCC3-MAG 

2 Anti-Complement C3b/iC3b Bead 37 HCC3B-MAG 

2 Anti-Complement C4 Bead 39 HCMPC4-MAG 

2 Anti-Complement Factor B Bead 51 HCFB-MAG 

2 Anti-Complement Factor H Bead 75 HCMPCFH-MAG 

 

 

Samples were thawed and all assay reagents reached room temperature before use. 

Samples were diluted to a final plasma dilution of 1:200 for panel 1, and 1:40 000 for panel 2 using the 

provided Assay Buffer.  
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Each antibody-bead vial was sonicated for 30 seconds, followed by 1 minute vortex. 150 µL from each 

antibody-bead vial was added to the Mixing Bottle and brought to a final volume of 3.0ml with 

provided Bead Diluent. 

Quality Control 1 and 2 were reconstituted with 250µl deionized water and vortexed. 

Prior to use, the Complement Panel Standard were reconstituted with 250 µL deionized water and 

vortexed. This was labelled as Standard 7 and used as the highest concentration on the standard curve. 

Rest of the standards down to standard 1 were serially diluted 1:2 by adding 150µl of a higher standard 

to 150 µL Assay buffer. Pure Assay Buffer was used as a blank.  

 

ASSAY PROCEDURE 

200 µL of Wash Buffer was added into each well of the plate. The plate was sealed and put on a plate 

shaker for 10 minutes at room temperature (20-25°C), before decanting the wash buffer.  

25 µL of each Standard or Control was added into the appropriate wells. Assay Buffer was used for 

blank (background).  

25 µL of Assay Buffer was added to all wells. 

25 µL of plasma Sample (1:100 diluted plasma) or quality control sample was added into the 

appropriate wells.  

The mixing bottle containing bead was thoroughly vortexed, and 25μl of the Mixed Beads added to 

each well. The bead bottle was vortexed intermittently to avoid settling. This step was performed with 

lights switched off.  

The plates were sealed with a plate sealer, wrapped in aluminium foil, and incubated with agitation 

on a plate shaker (500-800 rpm) overnight at 2-8°C. 

Well contents were gently removed, and the plate washed 3 times as follows. The plate was rested on 

a plate magnet for 60 seconds to allow complete settling of magnetic beads. The well contents were 

emptied by gently decanting the plate in an appropriate waste receptacle and gently tapping on 

absorbent pads to remove residual liquid. The plate was washed with 200 µL of Wash Buffer by 

removing plate from magnet, adding Wash Buffer, shaking for 30 seconds on a plate shaker, 

reattaching plate to magnet, letting beads settle for 60 seconds and removing well contents as 

previously described after each wash.  

50 µL of Detection Antibodies were added into each well.  
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The plates were sealed and covered with aluminium foil and incubated with agitation on a plate shaker 

for 1 hr at room temperature. 

50 µL of Streptavidin-Phycoerythrin was added to each well containing the 50µl of Detection 

Antibodies.  

The plates were sealed, covered with aluminium foil, and incubated with agitation on a plate shaker 

for 30 minutes at room temperature. 

Contents of the wells were then gently removed and washed 3 times as previously described.  

170 µL of Sheath Fluid was added to all wells. The beads were resuspended on a plate shaker for 5 

minutes.  

Samples were assayed and quantified on the Bio-Rad Bio-Plex 200 system. Default gate and bead 

count settings were used for magnetic beads.  
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FIGURE 16 – PLATE LAYOUT EXAMPLE ELISA  
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2.6.1.3 C9 ELISA 

C9 was quantified using the Human C9 Elisa Kit (cat #EH0673).  

Samples were thawed and all assay reagents reached room temperature before use. 

Samples were diluted to a final plasma dilution of 1:2000 using the provided Sample Dilution Buffer.  

Prior to use, the Complement Panel Standard were reconstituted with 1000 µL Sample Dilution Buffer 

and vortexed. This was labelled as Standard 1 and used as the highest concentration on the standard 

curve. Rest of the standards down to standard 7 were serially diluted 1:2 by adding 300 µL of a higher 

standard to 300 µL Sample Dilution Buffer. Pure Sample Dilution Buffer was used as a blank.  

10ml Biotin-labelled detection antibody per plate was made up, by diluting 100μl antibody stock 

solution with Antibody Dilution Buffer at 1:100 and mixed. 

10ml HRP-Streptavidin Conjugate (SABC) per plate was made up, by diluting 100μl SABC stock solution 

with SABC Dilution Buffer at 1:100 and mixed. 

Plates were washed twice with wash buffer.  

100μl of standards and samples were pipetted into the wells, plates were incubated at 37°C for 90 

minutes. 

Plates were washed twice with wash buffer. 

100μl of Biotin-labelled detection antibody solution was added to each plate and were incubated at 

37°C for 60 minutes. 

Plates were washed twice with wash buffer. 

90μl 3,3′,5,5′-Tetramethylbenzidine (TMB) solution was added to the wells and incubated at 37°C for 

15 minutes. 

50μl Stop Solution was added to the wells and read at 450nm immediately on the BMG Pherastar FS.  
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2.6.2 CH50 assay 

Serum was used for the CH50 assay to avoid interference of the ion chelating effect of EDTA in 

complement function [139]. Complement classical pathway activity was measured using a CH50 assay 

(HaemoScan, cat# K002) using the manufacturer’s instructions.  

1ml antibody coated sheep erythrocyte concentrate was added to 5ml Dilution Buffer and mixed. 

The tube was centrifuged for 5 minutes at 400 x g and the supernatant was decanted. 

The pellet was resuspended with 35ml Dilution buffer.  

Human serum was used in dilutions of 4, 8, 16, 32, 64 and 128 times. A serial dilution was prepared in 

a round bottom microplate, resulting in 50µl per well. The positive control was lysis fluid instead of 

plasma, the negative control was dilution buffer instead of plasma. 

50 µL of test sample, reference sample and controls were pipetted in a round bottom microplate. 

50 µL of the erythrocyte suspension was pipetted to each well. 

The plate was covered with a sticker and incubate for 30 minutes in an incubator at 37 °C. 

100 µL stop solution was pipetted to all wells. 

The plate was centrifuged at 400xg for 10 minutes to pellet the unlysed cells. 

100 µL of supernatant was transferred to a well of a flat bottom microplate.  

Absorbance was measured at OD 415 nm. 

2.6.3 Data processing 

2.6.3.1 Raw data processing 

All raw data was processed in RStudio (R version 4.2.1). Samples were run in duplicates and 

concentrations were obtained by fitting a 5PL standard curve for the Luminex assayed samples. 

Complement C9 was fit with a 4PL curve. For all analytes, samples were excluded where coefficients 

of variation (CV) were >25% between replicates. Data was log-transformed to achieve normal 

distribution; outliers were removed if they were 1.5 x interquartile ranges outside Q1 and Q3, 

respectively. Inter-plate variation was adjusted for using a linear regression model. Two of the 

measured analytes, C2 and C3b/iC3b, were not included in downstream analysis as <25% of samples 
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were quantified. For the CH50 assay a 4PL curve was fitted to the data to determine the concentration 

of serum at 50% haemolysis. Inter-plate variation was adjusted using sample values and an inter-plate 

positive control in a linear regression model. 

 

2.6.3.2 Statistical analysis 

All data processing and analyses were performed in RStudio (R version 4.0.2), scatterplots and 

boxplots were made using the ggplot2 package, principal component analysis (PCA) plots using the 

factoextra package, and the correlation matrix using the corrplot package. Normality of data was 

controlled using QQ-plots, density plots, histograms, Shapiro-Wilk scores, and plotted residuals. For 

group comparisons in the complement protein quantifications, ANOVA with subsequent Tukey’s post 

hoc test was used. For the CH50 assay a Student’s T-test was used. For correlations, Spearman’s ρ was 

used to assess with clinical parameters. Sex-specific analyses and correction for age were performed 

where appropriate. Group level analyses were all age and sex adjusted using linear regression models. 
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3. Results 

3.1 Discovery study 

3.1.1 Study overview 

The aim of the discovery study was to identify novel plasma biomarker candidates for Parkinson’s 

Disease (PD) and PD related cognitive decline using untargeted mass spectrometry. The overview of 

the discovery study is outlined in figure 17.  

Firstly, the experimental method was optimised by testing different sample processing methods. Two 

different plasma sample fractionation methods and two different sample depletion methods were 

compared to determine the method that would yield the largest number of proteins. Once the method 

was optimised, all the plasma samples were processed according to the new protocol and were 

analysed on the mass spectrometer. The data output quality was assessed and pre-processed to 

account for technical/methodological variables. The pre-processed data was then analysed for both 

PD diagnostic biomarkers, and PD cognition biomarkers. Analyses were performed to find accurate 

diagnostic biomarkers for PD, various covariates were assessed, and PD progression markers were 

investigated. Furthermore, a panel of multiple markers for PD diagnosis was constructed, and 

pathways implicated in PD were explored. The analyses for cognitive PD biomarkers were made both 

cross sectionally as well as longitudinally with survival analyses. Additionally, the analyses were 

performed for males and females separately, and for individual peptides from the significantly 

changed proteins.  
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FIGURE 17 – SCHEMATIC OVERVIEW OF THE DISOVERY STUDY 
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3.1.2 Cohort and demographics 

130 PD patients and 68 healthy controls were included in the study, demographics for the study 

participants are summarised in Table 4. The control subjects were sex matched, but not age matched 

(t-test p = 0.046. The PD cohort was clinically assessed by a movement disorder specialist for disease 

stage (Hoehn & Yahr), Motor score (UPDRS part III), and cognitive score (MoCA). The median Hoehn 

& Yahr score was 2, which means bilateral or midline involvement without impairment of balance. The 

median MoCA score was 25.5, which means approximately half the patients were cognitively 

unimpaired at time of plasma sampling, and half the patients had some level of cognitive impairment. 

The distribution of MoCA scores is plotted as a histogram in Figure 18. The median rate of cognitive 

decline was 0.5 MoCA points per year from date of diagnosis, and the median cognitive follow up after 

PD diagnosis was 7.9 years and is illustrated in a spaghetti plot in Figure 19.  

 

TABLE 4 – DEMOGRAPHICS TABLE - MASS SPECTROMETRY 

Demographics of Parkinson’s disease patients and healthy controls. Clinical scales and other 

parameters include Hoehn & Yahr, Unified Parkinson's Disease Rating Scale (UPDRS) III, Levodopa 

Equivalent Daily Dose (LEDD), Montreal Cognitive Assessment (MoCA), Beck’s Depression Inventory 

(BDI) II, Pittsburgh Sleep Quality Index (PSQI), Montgomery Åsberg Depression Rating Scale (MADRS), 

Mental Fatigue Scale (MFS), Parkinson’s Disease Questionnaire (PDQ) 39, Hospital Anxiety and 

Depression Scale (HADS), and Non-Motor Symptom Questionnaire (NMSQ). Data presented as mean 

(standard deviation) or median (min – max). P-value form t-test for Age and Chi-squared for Sex.  

 
Parkinson's disease Healthy Controls p-value 

Age 68.3 (9.5) 65.5 (9.0) 0.0464 

Sex (F : M) 58 : 72 33 : 35 0.600 

Disease duration 3.4 (0-22) -  

Hoehn & Yahr 2 (1-4) -  

UPDRS III 25.5 (3-80) -  

LEDD 500 (0-2235) -  

MoCA 25 (9-30) -  

BDI II 10 (0-43) -  

PSQI 7 (2-18) -  

MADRS 7 (0-36) -  

MFS 10.5 (0-32) -  

PDQ 39 25.8 (0-76.6) -  

HADS Anxiety 5 (0-19) -  

HADS Depression 3 (0-17) -  

NMSQ 8 (0-20) -  
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FIGURE 18 – CROSS SECTIONAL MONTREAL COGNITIVE ASSESSMENT (MOCA) SCORES FOR PARKINSON'S DISEASE 

(PD) PATIENTS 

 

 

FIGURE 19 – SPAGHETTI PLOT OF LONGITUDINAL MONTREAL COGNITIVE ASSESSMENT (MOCA) SCORES FOR 

PARKINSON'S DISEASE (PD) PATIENTS 
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A PCA plot was made for the PD cohort with the clinical scores and demographic parameters (Figure 

20). 41% of the variation of the data was explained by PC1, and 18% by PC2. All parameters (age, 

motor symptom, disease duration, non-motor symptoms) explained the variation in the same 

direction on PC1, which suggests some collinearity for all disease progression and severity parameters. 

This makes sense as PD that worsen over time, generally worsen in multiple domains.  Interestingly, 

there was a separation in PC2 explained by motor and cognitive severity in the opposite direction from 

the non-motor (mainly psychometric) self-assessments.  Motor symptoms, disease duration, age, 

LEDD, were all highly colinear. Psychometric measurements and NMS were all highly colinear.  
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FIGURE 20 – PRINCIPAL COMPONENT ANALYSIS (PCA) OF CLINICAL AND DEMOGRAPHIC VARIABLES FOR PARKINSON’S 

DISEASE (PD) PATIENTS. 

PCA plot with scaled and centred demographic and clinical parameters, axes show principal component 

1 and principal component 2. Clinical scales and other parameters include Age, disease duration, 

Hoehn & Yahr, Unified Parkinson's Disease Rating Scale (UPDRS) III, Levodopa Equivalent Daily Dose 

(LEDD), Montreal Cognitive Assessment (MoCA), Beck’s Depression Inventory (BDI) II, Pittsburgh Sleep 

Quality Index (PSQI), Montgomery Åsberg Depression Rating Scale (MADRS), Mental Fatigue Scale 

(MFS), Parkinson’s Disease Questionnaire (PDQ) 39, Hospital Anxiety and Depression Scale (HADS), and 

Non-Motor Symptom Questionnaire (NMSQ). 
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3.1.3. Method optimisation 

The aim of the method optimisation step was to further optimise the protocol designed by Ashton et 

al. [117]. Although Ashton et al. had thoroughly tested several variables in the sample preparation 

process, some alternative sample depletion and fractionation methods were available that had not 

yet been tested. Two different fractionation methods, one using reverse phase, high pH fractionation, 

and an isoelectric focusing (IEF) gel strip method were compared. Additionally, Top 14 depletion 

columns were compared with the previously used ProteoPrep (Top 2) columns for depleting the most 

abundant proteins and maximise detection of low abundant proteins. Finally, the effect of number of 

defrost cycles a sample had undergone was investigated. The protocol was setup so that all 

methodological variables could be tested while other variables are kept constant. 3 different plasma 

samples with anonymised IDs A, B, and C were used, where one aliquot of sample A had undergone 3 

freeze thaw cycles, and the other aliquot 1 cycle. The variables tested for each sample are outlined in 

the Table 5.  

TABLE 5 – EXPERIMENTAL SETUP FOR SAMPLE PROCESSING METHODS OPTIMISATION 

Overview of variable comparison for method optimisation. Anonymised samples with ID A, B, and C 

were used. Sample A had two aliquots with differing defrost cycles. Top14 and Top2 protein depletion 

columns were compared. Isoelectric focusing (IEF) gel strips and spin columns (Spin) were compared 

as fractionation methods. The samples were labelled with 8 mass tags and run as two pooled samples.  

Sample 
ID 

Sample 
name 

Defrost 
cycles 

Depletion 
method 

TMT Label IEF or Spin Mass spec 
run 

14A1 A 1 Top 14 127 N 1 Spin 1 

14A1 A 1 Top 14 127 C 1 IEF 1 

2A1 A 1 Top 2 128 N 1 Spin 1 

2A1 A 1 Top 2 128 C 1 IEF 1 

2B B 2 Top 2 129 N 1 Spin 1 

2B B 2 Top 2 129 C 1 IEF 1 

2C C 2 Top 2 130 N 1 Spin 1 

2C C 2 Top 2 126 1 IEF 1 

14A2 A 3 Top 14 127 N 1 Spin 2 

14A2 A 3 Top 14 127 C 1 IEF 2 

2A2 A 3 Top 2 128 N 1 Spin 2 

2A2 A 3 Top 2 128 C 1 IEF 2 

14B B 2 Top 14 129 N 1 Spin 2 

14B B 2 Top 14 129 C 1 IEF 2 

14C C 2 Top 14 130 N 1 Spin 2 

14C C 2 Top 14 126 1 IEF 2 
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The first variable investigated was the fractionation method. 302 and 329 protein IDs were identified 

with the IEF method at 1%FDR in the two mass spectrometry runs. The spin columns on the other 

hand yielded 374 and 348 protein IDs in the two runs, which is about 15% more proteins groups 

detected with the spin columns (Figure 21). However, the IEF method generated more than twice as 

many PSMs per protein on average than with the spin columns. Finally, the average protein coverage 

and number of unique peptides per proteins was calculated. The results were comparable between 

IEF and spin column fractionation, with a slightly higher coverage of the protein for the spin column 

method. This suggests that despite more than twice the number of mass spectra were matched with 

protein IDs in the IEF fractionated samples, these mass spectra were likely from a narrower set of 

peptides compared with the spin column fractionated samples. Taken together spin column 

fractionation resulted in a higher level of protein IDs and higher level of protein unique peptides, which 

suggests it is a superior method to IEF fractionation of plasma samples. Moreover, spin column 

fractionation is a far less labour-intensive method and where less sample manipulation is involved, 

which introduces less confounders. Hence the spin columns were ultimately selected for the discovery 

study.  
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FIGURE 21 – PROTEIN DETECTION AND COVERAGE – METHODS COMPARISON 

Fractionation method comparison between Isoelectric Focusing (IEF) gel strips and high pH spin 

columns. Number of Protein IDs, average Peptide Spectral Matches (PSMs) per protein, % protein 

coverage, and average number of protein unique peptides were compared.  

 

Next, the depletion columns were compared to identify which one best depleted the high abundant 

plasma proteins. The two options were the Top 2 column that depleted albumin and IgG, and the Top 

14 column that also deplete the 12 next most prevalent plasma proteins (IgD, IgE, IgG, IgG (light 

chains), IgM, Alpha-1-acid glycoprotein, Alpha-1-antitrypsin, Alpha-2-macroglobulin, Apolipoprotein 

A1, Fibrinogen, Haptoglobin, and Transferrin). The total TMT counts were summed for all spin column 
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fractions for the 4 samples A1, A2, B and C. Ratios between Top 2 and Top 14 TMT counts for all 

proteins was calculated by dividing the TMT value for the Top 2 depleted sample with the Top 14 

depleted sample. The ratios were plotted for each protein that was listed as targets for the Top 14 

columns in Figure 22. The immunoglobulin subunits were all summed up. TMT values were also 

summed for any other protein that had multiple subunits quantified. As seen in Figure 22 the protein 

levels based on TMT scores were approximately half for most proteins using the Top 14 spin columns. 

If the assumption is made that TMT levels are linearly associated with protein abundance, this suggests 

approximately half the targeted proteins were depleted with the Top 14 spin columns. Interestingly, 

the average albumin concentration was around 9-fold higher in the Top 14 depleted samples, which 

suggests they had much poorer albumin depletion compared with the Top 2 columns. Given that 

depletion of albumin, the by far most prevalent plasma protein, was inefficiently depleted with the 

Top 14 columns, and the TMT counts suggest only about half the abundance of the remaining proteins 

was depleted, suggests Top 2 columns are the better choice for the discovery study.  

Finally, it was investigated whether freeze thaw cycles had any major effect on the proteins quantified. 

The median coefficient of variation (CV) for the quantified proteins in the spin column fractionated 

samples was 15%, which suggests that the there is only minor alterations in protein levels between 1 

and 3 freeze thaw cycles. Interestingly, it was found that for the same IEF fractionated samples (i.e. 

sample A with 1 versus 3 freeze thaw cycles) the median CV was 34% which suggests larger 

methodological variation using IEF fractionation, which further speaks in favour of the spin column 

fractionation method.  
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FIGURE 22 – DEPLETION COLUMN COMPARISON 

Figure showing comparison between Top 14 and Top 2 (ProteoPrep) depletion columns as the protein 

abundance ratio between sample for High pH Reversed-phase Peptide Fractionation column samples. 

Bars represent mean and standard deviation for the two replicates.   

 

In conclusion the Top 2 depletion method (ProteoPrep) was chosen owing to more efficient albumin 

depletion, and the spin columns were chosen for the fractionation owing to higher number of protein 

IDs and more protein unique peptides detected. The final sample processing protocol for the discovery 

study is summarised in Figure 23. 
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FIGURE 23 – SAMPLE PREPARATION WORKFLOW – FINAL PROTOCOL  

Schematic overview of the final workflow used for processing samples in the discovery study. In brief, 

plasma samples were depleted from albumin and IgG with antibody-based columns. They were then 

chemically reduced and alkylated, and digested with trypsin. Samples were finally labelled with TMT 

mass tags and fractionated with spin columns by hydrophobicity.  
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3.1.4 Discovery study – untargeted proteomic on the study cohort 

3.1.4.1 Raw data Pre-processing  

The 198 plasma samples from 130 PD patients, and 68 healthy controls were processed according to 

the optimised sample preparation protocol (Figure 23). The samples were analysed on the mass 

spectrometer, and the raw data output was processed for peptide identification and quantification. 

The mass spectra were matched against Mascot and Sequest proteome databases, and the TMT 

reporter ions were quantified. 

20,072 protein groups were identified at a 5% FDR. Their abundances were determined with the TMT 

counts. Prior to using protein quantifications in the analysis with the clinical data, the data quality 

needed to be assessed and pre-processed appropriately.  

First, the distribution of total protein abundances for each sample was visualised. As seen in in Figure 

24, the distributions of the protein abundances were heavily positively skewed. This meant the 

number of proteins at lower abundances were much higher than the proteins at higher abundances. 

This was expected and in line with what is known about protein distribution in plasma.   

 

FIGURE 24 – TOTAL PROTEIN ABUNDANCE DISTRIBUTION ACROSS ALL MASS SPECTROMETRY SAMPLES 

Boxplots showing total (arithmetic) protein abundance (y-axis) for each sample (x-axis).  

Abundances were subsequently log10 transformed to obtain closer to a normal distribution of protein 

abundances. It was observed that the total protein abundance was relatively even across samples, 

with the extremes approximately having medians one order of magnitude apart. The quality control 

samples (blue) showed little variation across replicates. This suggests that there was relatively little 

variation in total proteins between sample runs owing to technical variation, and the inter sample 

total abundance variation in Figure 25 is mostly due to intrinsic sample properties.  
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FIGURE 25 – TOTAL PROTEIN ABUNDANCE DISTRIBUTION ACROSS ALL MASS SPECTROMETRY SAMPLES - LOG Y-AXIS 

Boxplots showing total (logarithmic) protein abundance (y-axis) for each sample (x-axis). Orange = 

healthy controls, Green = Parkinson’s disease, blue = Quality control sample 

As the relative abundance of an individual protein is dependent on the total amount of protein 

quantified, the total protein abundance was subsequently normalised across all samples in Proteome 

Discoverer (ver. 2.3; Thermo Scientific).  

 

FIGURE 26 – TOTAL PROTEIN ABUNDANCE DISTRIBUTION ACROSS ALL MASS SPECTROMETRY SAMPLES - LOG Y-AXIS AND 

NORMALISED ABUNDANCES 

Boxplots showing normalised (logarithmic) protein abundance (y-axis) for each sample (x-axis). Orange 

= healthy controls, Green = Parkinson’s disease, blue = Quality control sample 
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Except for few outliers, this normalisation step generated even total abundances across all 220 sample 

IDs (Figure 26). It was finally investigated that there were no apparent discrepancies post 

normalisation between the different mass tags or between 10-plex runs. As seen in Figure 27 there 

did not seem to be any noticeable technical batch difference with regards to TMT tag nor 10-plex 

sample run that affected the abundance distribution.  

 

 

FIGURE 27 – TOTAL PROTEIN ABUNDANCE DISTRIBUTION ACROSS ALL MASS SPECTROMETRY SAMPLES - LOG Y-AXIS AND 

NORMALISED ABUNDANCES.  

Top – coloured by sample group. Bottom – coloured by TMT tag 
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FIGURE 28 – TOTAL PROTEIN ABUNDANCE DISTRIBUTION ACROSS ALL MASS SPECTROMETRY SAMPLES – AS DENSITY 

PLOTS.  

Left – arithmetic density plot. Right – log10 transformed density plots.  

 

Similarly, plotting the sample abundances as density plots (Figure 28) revealed most samples had 

approximately normal distribution when log10 transformed. Again, one outlier appeared, whereas the 

rest of the samples displayed a normal distribution.  

Finally, the distributions of each of the individual proteins were visualised where the protein was 

quantified in at least 50% of study individuals (n=2263) as density plots. It was observed that nearly 

all proteins displayed a normal distribution. Figure 29A shows protein distributions across 

approximately 4 orders of magnitude as quantified by the mass spectrometer, and an increase in 

number of proteins toward the lower detection level.  
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FIGURE 29 – DENSITY PLOTS FOR EACH PROTEIN THAT WAS QUANTIFIED IN >50% OF SAMPLES 

A) Density plots of protein distributions for all quantified protein IDs in >50% of samples. B) Density 

plots of protein distributions, scaled and centred for all proteins.  

The distributions for each protein were scaled and centred, and again appeared comparable, 

irrespective of their abundance levels (Figure 29B). However, as the plot displays 2263 proteins, many 

of which were overlapping, visual inspection of each protein was not ideal. A Shapiro wilk analysis of 

each protein distribution was performed to get an approximate overview of which proteins were 

A 

B 
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normally distributed. A histogram (Figure 30) revealed approximately 15% of samples had a p-value < 

0.05, and 85% of proteins would be considered not deviating significantly from normally distributed 

across all samples.  

 

FIGURE 30 – P-VALUE HISTOGRAM FOR SHAPIRO WILK P-VALUES – DISTRIBUTION OF EACH PROTEIN  

Next, the distributions of protein levels were centred and plotted as horizontal boxplots for all study 

samples and quality controls (QC) separately (Figure 31A). This was done in order to assess the 

variation in the data relative to the QC sample variation, and if further correction was needed. The 

198 individual plasma samples were run in as 22 10-plex samples, where plasma samples were from 

9 individuals was combined with one inter-sample quality control (QC). The QC sample was a plasma 

mix made of equal amount of each of the 198 samples and used as an inter-run control. It was 

observed that although variation of all plasma samples was greater than that of QC samples, the QC 

samples still displayed a large variation and needed to be corrected for. The coefficient of variation 

(CV) for all QC samples were therefore plotted as a histogram in Figure 31B, and it was noted the 

average coefficient of variation for a protein in the control sample was 15%, which is relatively large. 

Moreover, the median range of a protein quantity across all QCs span 2 orders of magnitude. This 

warranted additional correction for QC protein levels which was performed.  
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FIGURE 31 – PROTEIN DISTRIBUTIONS OF SAMPLES 

A) Boxplots of all proteins quantified, ranked by range on y-axis and centred log10 abundance on x-

axis. Left – protein distributions in all samples. Right – protein distributions in quality control samples. 

B) Histogram of percentage coefficient of variation of quality control samples.   

A 

B 
CV of Quality Control samples 
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FIGURE 32 – MODIFIED PRINCIPAL COMPONENT ANALYSIS (PCA) PLOTS OF DIAGNOSIS AND TECHNICAL COVARIATES 

A) PCA of PD and healthy controls. B) PCA of 10-plex sample run (1-22). C) PCA of TMT tags used.  

 

Subsequently, it was explored whether any batch effects or group effects were present in the dataset. 

Modified PCA plots using the limma multidimensional scaling plots were used to explore group effects 

by 10-plex sample and TMT-label. A technical group effect was observed in the samples (Figure 32B), 

and this was corrected for using the limma “removeBatchEffect” formula.  

Finally, a quartile normalisation was attempted to further normalise distributions. However, this 

altered the quantifications and results too much, and would not reflect the real-life protein 

distribution variations seen in human plasma and was not implemented in the pre-processing.   

At this stage, the data was considered sufficiently pre-processed to be analysed with the clinical data. 

Hence is it was investigated whether any of these proteins would be associated with PD diagnosis and 

cognitive decline.  

For all the analysis, all proteins were eliminated where they were quantified in less than 50% of the 

samples. This was done as the proteins under this threshold were more likely to have too low 

confidence in the proteome database match. These proteins were generally lower abundant and had 

fewer unique peptides matched with a lower confidence. This reduced the total number of proteins 

to 2260, which was about 11% of all proteins identified, or about 19% of all quantified proteins (Figure 

33).  

A B C 
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FIGURE 33 – HISTOGRAM OF NUMBER OF PROTEIN IDS THAT WERE QUANTIFIED IN DIFFERENT NUMBER OF STUDY 

INDIVIDUALS.  

Histogram showing the number individuals where a certain number of Protein IDs were quantified in 

the discovery study. Total 20,072 proteins were detected, out of which 5,835 were not quantified 

(blue), 11,977 were quantified in <50% of individuals (red), and 2260 were quantified in more than half 

the individuals (green).  

 

To further quality control our dataset, quantifications of known established blood biomarkers were 

used as positive controls. As there are no established blood biomarkers for PD that are relatively high 

abundant in plasma, proteins that were well known to alter with demographic variables were analysed 

instead. Von Willebrand Factor (VWF) [187], Cystatin C (CST3) [188] and Fibrinogen (FGA) [189] are all 

well documented to increase with age. This was in accordance with our findings, as all three of VWF 

(r = 0.27, p = 0.00011), CST3 (r = 0.28, p = 0.00011), and FGA (r = 0.29, p = 0.000039) were some of the 

most age associated proteins (Figure 34).   

Next, it was investigated which proteins were most strongly associated with sex. Again 3 of the top 

sex associated proteins from our dataset were well documented to be sex-dependent in the literature. 

These were Pregnancy Zone Protein (t = 10, p < 1.6 x10-20) [190], Ceruloplasmin (t = 6.1, p = 6.0x10-9) 

[191], and Apolipoprotein E (t = 4.8, p = 3.1x10-6) [192], all of which are known to be elevated in female 

plasma (Figure 35).  
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FIGURE 34 – CORRELATION BETWEEN AGE AND COMMONLY AGE ASSOCIATED PROTEIN LEVELS 

Plasma levels of Von Willebrand Factor (VWF), Cystatin C (CST3), and Fibrinogen Alpha Chain (FGA), 

and their correlation with Age in study individuals. Pearson r and p-value shown.   

 

 

FIGURE 35 – PLASMA PROTEOMIC SEX DIFFERENCES 

Plasma levels of Pregnancy Zone Protein (PZP), Ceruloplasmin (CP), and Apolipoprotein E (APOE), and 

their Sex differences in study individuals. M = Male, F = Female, p-value for t-test shown.   

 

To summarise, the raw data generated from the untargeted proteomic experiment was pre-processed 

and quality controlled, before continuing with the analysis. The raw data was log transformed and 

adjusted for total protein abundance. Distributions across all samples, technical replicates, TMT-tags, 

and study groups were assessed. Protein distributions were visualised, and quantities corrected for 

using an inter-run QC sample. Minor remaining technical group effects were corrected for, and protein 

IDs that were quantified in less than half the study participants were eliminated. As positive controls 

for our study population it was inspected whether well documented plasma proteins were affected 

with age and sex as described in the literature.  
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3.1.4.2 PD diagnostic biomarkers 

3.1.4.2.1 DIMENSIONALITY REDUCTION 

Once the data was pre-processed, it was first explored whether the human plasma proteome could 

differentiate PD from healthy control individuals. To get an overview of the whole proteome, the data 

was transformed onto two dimensions both with a PCA (linear dimensionality reduction) (Figure 36) 

as well as t-SNE (non-linear dimensionality reduction) (Figure 37). No apparent separation of the data 

was visualised with either of the methods. A slight shift of the data along PC1 (which accounted for 

16.7% of the data) was observed, but the confidence intervals were largely overlapping, and no 

apparent clustering was observed in the t-SNE plot. This was not surprising as the human plasma 

reflect all processes in the body and would not necessarily be shifted by a neurological disorder. 

 

FIGURE 36 – PRINCIPAL COMPONENT ANALYSIS (PCA) PLOT OF PROTEOMIC DATA 

PCA plot of mass spectrometric data, coloured by diagnosis Parkinson’s disease (PD) or healthy 

controls. Centre point enlarged; ellipse shows 95% confidence interval. Principal components 1 and 2 

shown. Variables are centred and scaled.  
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FIGURE 37 – T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (TSNE) OF PROTEOMIC DATA.  

t-SNE plot of mass spectrometric data, coloured by diagnosis Parkinson’s disease (PD) or healthy 

controls. Variables are centred and scaled.   

3.1.4.2.2 PD VERSUS CONTROLS 

Next, differential protein expression was analysed  using the limma package in R. A robust linear model 

was fitted without an intercept, using Diagnosis (PD or healthy controls), age and sex as explanatory 

variables, was fitted against all protein expression levels. The contrast matrix of interest (PD versus 

healthy control) was applied to the data, and statistical output were calculated with empirical Bayes 

moderation.  

A p-value histogram was plotted to visualise whether there were true differentially expressed proteins 

in the dataset (Figure 38). The higher-than-average bar representing p-values between 0-0.05 on the 

x-axis suggest that there is a true difference in protein levels for several (approximately 50-100) 

proteins between PD and controls, and that the null hypothesis should be rejected for this number of 

protein IDs.  
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FIGURE 38 – P-VALUE HISTOGRAM FOR GROUPWISE COMPARISON OF PROTEINS BETWEEN PARKINSON’S DISEASE AND 

HEALTHY CONTROLS.  

Results from the limma robust linear models were visualised with a volcano plots and statistics were 

summarised in tables. The first a model was fitted with only PD and controls, without accounting for 

any covariates. The results are shown in Figure 39 and Table 6. Secondly, a model was fit with age and 

sex as covariates, and results are displayed in Figure 40 and Table 7. It was observed that the top hits 

were similar between the two models. This was likely due to that the PD and Control groups were not 

deviating too much in terms of Age and Sex distribution. The results tables suggest very few proteins 

remain statistically significant after correction for age, sex and multiple comparisons using Benjamini-

Hochberg. However, this correction is arguably too stringent when identifying candidate biomarkers. 

Since the candidate markers will be verified either way, it is not necessary to eliminate all false 

positives at this stage. The correction eliminates false positives to find the statistically true positive 

differences, but results at the same time in many false negatives. Moreover, the p-value histogram 

suggests that at least 50 proteins are likely differentially expressed in the dataset between PD and 

controls. Therefore, when implementing a discovery-verification-validation pipeline one should rather 

select the most significantly differentially expressed proteins as biomarker candidates that need to be 

validated.   
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FIGURE 39 – VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE 

Volcano plot of differentially expressed plasma proteins in Parkinson’s disease versus Healthy Controls. 

Robust linear model generated -Log10 p-values on the y-axis, and log2 fold change on the x-axis. 

Proteins with p-value < 0.001 highlighted with their gene names.  
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TABLE 6 – TOP 30 DIFFERENTIALLY EXPRESSED PROTEINS FOR PARKINSON’S DISEASE VS HEALTHY CONTROLS 

Top results from robust linear model of differentially expressed proteins in Parkinson’s Disease versus 

Healthy Controls, ranked by p-value. Columns show Protein name, Gene name, Log2 Fold Change 

(logFC), average expression level of protein (AveExpr), t-statistic, p-value, Benjamini-Hochberg (BH) 

adjusted p-value, log odds B-statistic, and percentage of samples where the protein was quantified.  

 

Protein name Gene Log FC 
Ave 
Expr 

t-
statistic 

p-value 
BH-adj. 
p-value 

B- 
statistic 

% 
Quantified 

Proline-rich protein 36 PRR36 0.070 2.621 4.275 0.000030 0.033 2.208 99 

Myosin light chain kinase, smooth 
muscle 

MYLK 0.160 2.193 4.239 0.000036 0.033 2.055 89 

Xaa-Pro dipeptidase PEPD -0.058 2.687 -4.194 0.000044 0.033 1.875 86 

Platelet basic protein PPBP -0.190 2.184 -4.083 0.000073 0.041 1.438 72 

Gamma-glutamyl hydrolase GGH -0.089 2.062 -4.005 0.000104 0.047 1.132 64 

P antigen family member 4 PAGE4 0.069 2.956 3.873 0.000154 0.058 0.738 82 

Apolipoprotein C-III APOC3 -0.067 3.143 -3.683 0.000296 0.086 0.098 100 

Integrator complex subunit 1 INTS1 -0.112 1.945 -3.713 0.000321 0.086 0.147 55 

Enhancer of polycomb homolog 2 EPC2 0.103 2.520 3.694 0.000343 0.086 0.089 55 

Cytospin-B SPECC1 0.152 1.719 3.639 0.000398 0.090 -0.052 61 

Plastin-2 LCP1 -0.043 2.495 -3.441 0.000712 0.146 -0.682 95 

Indoleamine 2,3-dioxygenase 2 IDO2 -0.101 2.280 -3.422 0.000870 0.161 -0.726 55 

Complement component C9 C9 0.047 3.719 3.362 0.000924 0.161 -0.929 100 

Terminal uridylyltransferase 7 TUT7 0.079 2.066 3.348 0.001049 0.166 -0.938 68 

Proteoglycan 4 PRG4 -0.047 3.518 -3.302 0.001135 0.166 -1.118 100 
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1-phosphatidylinositol 3-
phosphate 5-kinase 

PIKFYVE -0.119 2.818 -3.295 0.001178 0.166 -1.086 92 

Basic helix-loop-helix domain-
containing protein USF3 

USF3 -0.055 2.130 -3.260 0.001402 0.180 -1.183 68 

Fez family zinc finger protein 2 FEZF2 0.100 1.762 3.249 0.001483 0.180 -1.213 62 

TLC domain-containing protein 4 TLCD4 -0.110 2.493 -3.253 0.001512 0.180 -1.213 55 

Astrotactin-2 ASTN2 -0.080 2.196 -3.200 0.001754 0.194 -1.349 59 

Prenylcysteine oxidase 1 PCYOX1 -0.049 2.853 -3.164 0.001798 0.194 -1.526 100 

Epiplakin EPPK1 0.050 2.442 3.095 0.002313 0.238 -1.681 82 

Nucleoplasmin-2 NPM2 0.094 2.148 3.056 0.002561 0.241 -1.828 95 

Eukaryotic translation initiation 
factor 3 subunit L 

EIF3L -0.067 2.208 -3.068 0.002656 0.241 -1.713 59 

Immunoglobulin lambda variable 
5-39 

IGLV5-39 0.090 2.364 3.046 0.002663 0.241 -1.845 90 

Thrombospondin-1 THBS1 -0.112 1.981 -3.035 0.002816 0.245 -1.825 77 

L-selectin SELL -0.043 2.697 -2.994 0.003117 0.261 -1.998 95 

Alpha-1,3-mannosyl-glycoprotein 
4-beta-N-

acetylglucosaminyltransferase A 
MGAT4A 0.103 2.430 2.994 0.003349 0.270 -1.908 59 

Putative alpha-1-antitrypsin-
related protein 

SERPINA2 0.036 3.742 2.954 0.003509 0.273 -2.113 99 

Integrin alpha-6 ITGA6 0.118 2.492 2.967 0.003627 0.273 -1.982 59 
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FIGURE 40 – VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE – AGE AND SEX 

ADJUSTED 

Volcano plot of differentially expressed plasma proteins in Parkinson’s disease versus Healthy Controls, 

with age and sex as added covariates. Robust linear model generated -Log10 p-values on the y-axis, 

and log2 fold change on the x-axis. Proteins with p-value < 0.001 highlighted with their gene names.  
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TABLE 7 – TOP 30 DIFFERENTIALLY EXPRESSED PROTEINS FOR PARKINSON’S DISEASE VS HEALTHY CONTROLS 

Top results from robust linear model of differentially expressed proteins in Parkinson’s Disease versus 

Healthy Controls, with age and sex as covariates, ranked by p-value. Columns show Protein name, Gene 

name, Log2 Fold Change (logFC), average expression level of protein (AveExpr), t-statistic, p-value, 

Benjamini-Hochberg (BH) adjusted p-value, log odds B-statistic, and percentage of samples where the 

protein was quantified.  

Protein name Gene logFC AveExpr 
t-

statistic 
p-value 

BH-adj. 
p-value 

B- 
statistic 

%  
quantified 

Myosin light chain kinase, smooth 
muscle 

MYLK 0.152 2.193 4.185 0.000045 0.063 1.846 89 

Xaa-Pro dipeptidase PEPD -0.055 2.687 -4.012 0.000090 0.063 1.237 86 

Proline-rich protein 36 PRR36 0.066 2.621 3.967 0.000101 0.063 1.073 99 

P antigen family member 4 PAGE4 0.069 2.956 3.931 0.000124 0.063 0.940 82 

Platelet basic protein PPBP -0.188 2.184 -3.844 0.000180 0.063 0.627 72 

Gamma-glutamyl hydrolase GGH -0.092 2.062 -3.850 0.000186 0.063 0.620 64 

Cytospin-B SPECC1 0.157 1.719 3.841 0.000195 0.063 0.575 61 

Indoleamine 2,3-dioxygenase 2 IDO2 -0.103 2.280 -3.792 0.000245 0.069 0.379 55 

Apolipoprotein C-III APOC3 -0.064 3.143 -3.515 0.000544 0.128 -0.454 100 

Enhancer of polycomb homolog 2 EPC2 0.121 2.520 3.552 0.000565 0.128 -0.342 55 

Integrator complex subunit 1 INTS1 -0.108 1.945 -3.508 0.000656 0.135 -0.492 55 

Proteoglycan 4 PRG4 -0.048 3.518 -3.372 0.000895 0.169 -0.906 100 

Plastin-2 LCP1 -0.042 2.495 -3.329 0.001046 0.174 -1.029 95 

Fez family zinc finger protein 2 FEZF2 0.102 1.762 3.344 0.001090 0.174 -0.962 62 

Basic helix-loop-helix domain-
containing protein USF3 

USF3 -0.055 2.130 -3.319 0.001157 0.174 -1.028 68 

Alpha-1,3-mannosyl-glycoprotein 
4-beta-N-

acetylglucosaminyltransferase A 
MGAT4A 0.097 2.430 3.291 0.001317 0.186 -1.144 59 
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Transmembrane protease serine 6 TMPRSS6 0.096 2.960 3.251 0.001472 0.196 -1.255 64 

Astrotactin-2 ASTN2 -0.080 2.196 -3.223 0.001640 0.206 -1.313 59 

L-selectin SELL -0.039 2.697 -3.178 0.001730 0.206 -1.462 95 

Immunoglobulin lambda variable 
5-39 

IGLV5-39 0.090 2.364 3.116 0.002131 0.234 -1.656 90 

Rho guanine nucleotide exchange 
factor 17 

ARHGEF17 0.097 2.690 3.112 0.002176 0.234 -1.612 86 

Complement component C9 C9 0.042 3.719 3.084 0.002333 0.240 -1.750 100 

Terminal uridylyltransferase 7 TUT7 0.080 2.066 3.027 0.002952 0.283 -1.821 68 

AP-1 complex subunit gamma-1 AP1G1 0.092 2.852 3.012 0.003005 0.283 -1.921 82 

Prenylcysteine oxidase 1 PCYOX1 -0.047 2.853 -2.984 0.003199 0.289 -2.041 100 

Epiplakin EPPK1 0.050 2.442 2.968 0.003448 0.298 -2.004 82 

Uveal autoantigen with coiled-coil 
domains and ankyrin repeats 

UACA 0.042 2.459 2.945 0.003657 0.298 -2.115 90 

Zinc finger homeobox protein 4 ZFHX4 0.072 2.425 2.931 0.003856 0.298 -2.133 82 

G patch domain-containing 
protein 8 

GPATCH8 -0.070 2.204 -2.947 0.003930 0.298 -2.051 54 

Complement decay-accelerating 
factor 

CD55 0.101 1.681 2.921 0.004049 0.298 -2.123 72 

 

The 10 most significantly differentially expressed proteins from the age and sex corrected analysis are 

shown in Figure 41. These include Myosin Light Chain Kinase, smooth muscle (MYLK), Xaa-Pro 

dipeptidase (PEPD), Proline-rich protein 36 (PRR36), P antigen family member 4 (PAGE4), Platelet basic 

protein (PPBP), Gamma-glutamyl hydrolase (GGH), Cytospin-B (SPECC1), Indoleamine 2,3-dioxygenase 

2 (IDO2), Apolipoprotein C-III (APOC3), and Enhancer of polycomb homolog 2 (EPC2). It was seen that 

there indeed was a highly significant group difference, however there was still a large group overlap 

present.  
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FIGURE 41 – BOXPLOTS OF TOP 10 HITS – PARKINSON’S DISEASE VERSUS HEALTHY CONTROLS 

Boxplots of the top 10 most significant differentially expressed proteins between Parkinson’s Disease 

(PD) and healthy controls, adjusted for age and sex. Y-axis represents log transformed relative protein 

abundance. Gene names presented; Myosin Light Chain Kinase, smooth muscle (MYLK), Xaa-Pro 

dipeptidase (PEPD), Proline-rich protein 36 (PRR36), P antigen family member 4 (PAGE4), Platelet basic 

protein (PPBP), Gamma-glutamyl hydrolase (GGH), Cytospin-B (SPECC1), Indoleamine 2,3-dioxygenase 

2 (IDO2), Apolipoprotein C-III (APOC3), and Enhancer of polycomb homolog 2 (EPC2). 

 

Although ranking the proteins by p-value as the primary outcome statistic is useful to determine the 

confidence of the protein truly being differentially expressed, it does not necessarily reflect which 

protein is most differentially expressed. Ranking the proteins by effect size, which is independent from 

sample size, may prove to be a more useful strategy to identify the best candidate markers. Given that 

the sample distribution around the mean, and therefore standard deviation, varies between proteins, 

log fold change is not an ideal measurement of effect size. A protein with a large standard deviation 

would show a greater group overlap than a protein with a smaller standard deviation but with the 

same fold change. Therefore, Cohen’s d effect size was calculated, which is dependent on distribution 

of each sample as well as the fold change, but not on the sample size. The top hits are displayed in 
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figure 42 and Table 8. It was noted that some of the most significant proteins where generally lower 

percentage of samples were quantified had a higher effect size. This makes sense as the confidence in 

rejecting the null hypothesis decreases with sample size, irrespective of the effect size. When the 

absolute value of Cohen’s d was set to >0.6, 17 candidates were detected. These hits were largely the 

same as when filtering by p-value but ranked in a different order.  

 

FIGURE 42 – VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE – AGE AND SEX 

ADJUSTED WITH EFFECT SIZE CUTOFF 

Volcano plot of differentially expressed plasma proteins in Parkinson’s Disease versus Healthy Controls, 

with age and sex as added covariates. Robust linear model generated -Log10 p-values on the y-axis, 

and Cohen’s d effect size on the x-axis. Proteins with p-value < 0.05, and |Cohen’s d|>0.6 highlighted 

with their gene names.  
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TABLE 8 –TOP DIFFERENTIALLY EXPRESSED PROTEINS FOR PARKINSON’S DISEASE VS HEALTHY CONTROLS – BY EFFECT 

SIZE 

Top results from robust linear model of differentially expressed proteins in Parkinson’s Disease versus 

Healthy Controls, with age and sex as covariates. Columns show Protein name, Gene name, Log2 Fold 

Change (logFC), average expression level of protein (AveExpr), t-statistic, p-value, and percentage of 

samples where the protein was quantified, and Cohen’s d effect size. Significantly differentiated 

proteins with |Cohen’s d|>0.6 displayed.   

Protein name Gene logFC AveExpr 
t-

statistic 
p-value 

% 
quantified 

Cohen's 
d 

Enhancer of polycomb homolog 2 EPC2 0.121 2.520 3.552 0.00057 55 0.881 

Gamma-glutamyl hydrolase GGH -0.092 2.062 -3.850 0.00019 64 -0.789 

Cytospin-B SPECC1 0.157 1.719 3.841 0.00019 61 0.767 

Indoleamine 2,3-dioxygenase 2 IDO2 -0.103 2.280 -3.792 0.00024 55 -0.754 

Platelet basic protein PPBP -0.188 2.184 -3.844 0.00018 72 -0.733 

Xaa-Pro dipeptidase PEPD -0.055 2.687 -4.012 0.00009 86 -0.726 

Integrator complex subunit 1 INTS1 -0.108 1.945 -3.508 0.00066 55 -0.709 

P antigen family member 4 PAGE4 0.069 2.956 3.931 0.00012 82 0.701 

Myosin light chain kinase, smooth 
muscle 

MYLK 0.152 2.193 4.185 0.00004 89 0.692 

Fez family zinc finger protein 2 FEZF2 0.102 1.762 3.344 0.00109 62 0.642 

TLC domain-containing protein 4 TLCD4 -0.101 2.493 -2.894 0.00459 55 -0.639 

Astrotactin-2 ASTN2 -0.080 2.196 -3.223 0.00164 59 -0.628 

Proline-rich protein 36 PRR36 0.066 2.621 3.967 0.00010 99 0.623 

Basic helix-loop-helix domain-
containing protein USF3 

USF3 -0.055 2.130 -3.319 0.00116 68 -0.622 

Eukaryotic translation initiation 
factor 3 subunit L 

EIF3L -0.068 2.208 -2.812 0.00575 59 -0.611 

Alpha-1,3-mannosyl-glycoprotein 4-
beta-N-

acetylglucosaminyltransferase A 
MGAT4A 0.097 2.430 3.291 0.00132 59 0.605 

Terminal uridylyltransferase 7 TUT7 0.080 2.066 3.027 0.00295 68 0.604 
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3.1.4.2.3 PEPTIDE ANALYSIS 

As an additional exploratory step, individual peptides were analysed separately in order to 

investigate whether certain peptides were more differentially expressed and would perform better 

as biomarkers than others. The peptides were pre-processed in the same way as the proteins by 

normalising the data, correcting for intra-run quality controls, and corrected for other technical 

variation. Each protein is composed of many different peptides, and often different sets of peptides 

are detected in the different samples that are summed up to protein abundances. Therefore, setting 

the threshold for each peptide to be quantified in at least 50% of samples, as was done with the 

protein analysis, eliminated most peptides that did not belong to highly abundant plasma proteins. 

Therefore, it was only required that the peptides were detected in at least 25% of the samples. The 

peptides were analysed using a linear model with age and sex as covariates (Figure 43).  

 

FIGURE 43 - VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PEPTIDES IN PARKINSON’S DISEASE – AGE AND SEX 

ADJUSTED WITH P-VALUE CUTOFF 

Volcano plot of differentially expressed plasma peptides in Parkinson’s Disease versus Healthy 

Controls, with age and sex as added covariates. Linear model generated -Log10 p-values on the y-axis, 

and Cohen’s d effect size on the x-axis. Proteins with -log10 BH adj. p-value > 30, and |Cohen’s d| > 1.0 

highlighted with their gene names.  
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Several peptides were significantly differentially expressed in PD versus HC. Most of the peptides 

belonged to the most abundant protein groups in plasma, such as apolipoproteins, coagulation 

factors, or complement proteins. Hence, the p-value cut-off was set to 0.05 instead, with a more 

stringent cut-off for effect size (|Cohen’s d| > 1.5) to identify the lower abundant differentially 

expressed plasma proteins in PD (Figure 44).  

 

FIGURE 44- VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PEPTIDES IN PARKINSON’S DISEASE – AGE AND SEX 

ADJUSTED WITH EFFECT SIZE CUTOFF 

Volcano plot of differentially expressed plasma peptides in Parkinson’s Disease versus Healthy 

Controls, with age and sex as added covariates. Linear model generated -Log10 p-values on the y-axis, 

and Cohen’s d effect size on the x-axis. Proteins with BH adj. p-value < 0.05, and |Cohen’s d| > 1.5 

highlighted with their gene names.  

 

When sorting by effect size, peptides from several lower abundant proteins were found. For 

example, the KLPAENGSSSAETLNAK peptide of MYLK, which one of the most significantly changed 

proteins in PD, seemed to be one of the most consistently elevated peptides in PD. However, the 

peptide was still only quantified in 35% of the samples. A total of 233 protein unique peptides were 
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used for the protein quantification of MYLK, most peptides were only quantified in a few samples, 

and only 2 peptides were individually quantified in >25% of the samples.  

Finally, only peptides from the proteins that were significantly changed in PD (p < 0.05), and 

quantified in at least 10% of the samples were analysed. 427 peptides from 138 protein groups were 

analysed (Figure 45), and the top results are displayed in Table 9, sorted by effect size. The peptide 

with the largest effect size belonged to Eukaryotic Translation Initiation Factor 3 Subunit L (EIF3L) 

with Cohen’s d = 2.50. Again, most peptides were detected in a minority of the samples, with the 

exception of high abundant proteins such as complement factors C7 and C9.  

 

FIGURE 45 – VOLCANO PLOT OF PEPTIDES FROM DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE VS 

HEALTHY CONTROLS  

Volcano plot of differentially expressed plasma peptides in Parkinson’s Disease versus Healthy 

Controls, with age and sex as added covariates. Only peptides from significantly changed proteins in 

PD plasma were analysed. Linear model generated -Log10 p-values on the y-axis, and Cohen’s d effect 

size on the x-axis. Proteins with BH adj. p-value < 0.05, and |Cohen’s d| > 1.0 highlighted with their 

gene names. 
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TABLE 9 –PEPTIDES FROM DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE VS HEALTHY CONTROLS – 

BY EFFECT SIZE 

Analysis of individual peptides from significantly changed proteins in PD plasma. Top results from 

robust linear model of differentially expressed peptides  in Parkinson’s Disease versus Healthy Controls, 

with age and sex as covariates. Columns show Gene name, Peptide sequence, Benjamini-Hochberg 

corrected p-value, percentage of samples where the peptides were quantified, and Cohen’s d effect 

size. Top 30 Significantly differentiated peptides ordered by effect size.   

 

Gene Peptide sequence Adj. p-value % Quantified Cohen's d 

EIF3L VFSDEVQQQAQLSTIRSFLKLYTTMPVAK 0.000220847 11.61616162 2.496198199 

C7 CDAESSK 7.77217E-29 99.49494949 -2.123050339 

COL11A2 GAKGATGPGGPKGEK 0.026137504 10.1010101 1.924917658 

F13B LSFFCLAGYTTESGRQEEQTTCTTEGWSPEPR 6.07447E-08 29.29292929 1.868489907 

C7 ECNNPPPSGGGR 2.45904E-19 90.4040404 -1.75544827 

MYLK KLPAENGSSSAETLNAK 4.35767E-08 35.35353535 1.747391055 

CHD9 KVGGAFAPPLK 8.27709E-05 26.76767677 1.709918771 

C7 GQSISVTSIRPCAAETQ 0.002406416 15.15151515 -1.638640948 

ICE2 ASDGKVTRTAYNLYK 0.03428823 12.12121212 -1.602609935 

CP TYSDHPEKVNKDDEEFIESNK 2.08132E-17 90.90909091 -1.596863647 

C9 VVEESELAR 2.08132E-17 99.49494949 -1.520640714 

PRG4 CGEGYSR 0.005733871 15.65656566 -1.475531827 

CFB LEDSVTYHCSR 1.67992E-16 100 -1.46540719 

NKTR LDTPDINIVLK 0.009580989 15.65656566 1.397097296 

PRG4 EPAPTTPKEPAPTTTKKPAPTTPK 5.19434E-06 32.82828283 1.391347482 

SELL WNDDACHK 0.000169712 29.29292929 -1.386146693 

ZNF407 HLGMREYK 0.001860845 19.6969697 1.365116735 

CFB LPPTTTCQQQK 8.67319E-09 68.18181818 -1.352850094 

CP MYYSAVDPTK 6.70056E-05 38.38383838 -1.335203227 

IGLL5 TVAPTECS 2.06955E-13 99.49494949 -1.298089865 

CFB VSEADSSNADWVTK 2.67817E-13 100 -1.285875575 

CP GPEEEHLGILGPVIWAEVGDTIR 1.94471E-10 81.81818182 1.282625918 

SH3BP1 SRLSQATK 1.56897E-05 34.34343434 1.253965958 

C7 MPYECGPSLDVCAQDER 1.30158E-10 82.82828283 -1.242324409 

C9 CTDAVGDR 2.28012E-12 99.49494949 -1.23310262 

CFHR2 NGQWSEPPK 9.789E-08 68.18181818 -1.19817159 

CCDC93 TVVDLSEVYKPR 5.87958E-07 59.5959596 -1.172050595 

CFB DAQYAPGYDK 2.57138E-10 99.49494949 -1.106378919 

IGHV1-2 SDDTAVYYCAR 7.45427E-06 63.63636364 -1.08966516 

IGLL5 VTVLGQPK 0.016626075 17.67676768 -1.085645607 
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3.1.4.2.4 SEX-SPECIFIC ANALYSIS 

The dataset was sex matched between PD and controls, however there were more males (n = 107) 

than females (n = 91) in the cohort. Indeed the incidence of PD in males is higher than in females, and 

sex-specific phenotypes and biomarkers have previously been described in PD [15, 193]. Hence, the 

proteomic data was additionally separately analysed for males and females to investigate whether 

there were any sex related differences. Similar to the analysis of the full data set, the male and female 

only datasets were adjusted for technical group effects, and proteins that were quantified in at least 

50% of the samples were selected for the analysis. The differential protein expression was more 

pronounced in the sex-specific analysis, particularly in regards to the effect size. A higher effect size 

cut-off (Cohen’s d > 0.75) was set for volcano plots for the sex-specific analyses. The results are 

presented in the volcano plots for PD versus HC in females (Figure 46) and males (Figure 47) 

respectively, and the statistics are summarised in Table 10.  
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FIGURE 46 - VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE – FEMALES ONLY WITH 

EFFECT SIZE CUT-OFF 

Volcano plot of differentially expressed plasma proteins in female Parkinson’s Disease patients versus 

female Healthy Controls, with age as a covariate. Robust linear model generated -Log10 p-values on 

the y-axis, and Cohen’s d effect size on the x-axis. Proteins with p-value < 0.05, and |Cohen’s d| > 0.75 

highlighted with their gene names.  
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FIGURE 47  - VOLCANO PLOT OF DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE – MALES ONLY WITH 

EFFECT SIZE CUT-OFF 

Volcano plot of differentially expressed plasma proteins in male Parkinson’s Disease patients versus 

male Healthy Controls, with age as a covariate. Robust linear model generated -Log10 p-values on the 

y-axis, and Cohen’s d effect size on the x-axis. Proteins with p-value < 0.05, and |Cohen’s d| > 0.75 

highlighted with their gene names.  
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TABLE 10 –TOP DIFFERENTIALLY EXPRESSED PROTEINS FOR PARKINSON’S DISEASE VS HEALTHY CONTROLS – BY EFFECT 

SIZE – SEPARATED IN MALES AND FEMALES 

Top results from robust linear model of differentially expressed proteins in Parkinson’s Disease versus 

Healthy Controls, with age as covariate, males and females analysed separately. Columns Gene name, 

p-value, number of samples where the protein was quantified, and Cohen’s d effect size. Top 30 

proteins ordered by effect size for females and males respectively.   

Females Males 

Gene p-value n quantified Cohen's d Gene p-value n quantified Cohen's d 

FAM149A 0.00035 48 1.262 SPECC1 0.00006 65 1.131 

SGO2 0.00003 67 1.228 TSPAN15 0.00146 58 -1.092 

AKAP3 0.00119 47 -1.206 EPC2 0.00096 57 1.074 

TIGD7 0.00273 46 -1.152 ADGRB1 0.00233 56 -1.013 

CLCA1 0.00053 55 -1.117 DMD 0.00120 68 0.942 

NDC1 0.00100 49 1.096 ENTR1 0.01112 57 -0.930 

BTAF1 0.00016 69 1.077 PKN2 0.00319 63 -0.915 

FAM71B 0.00116 51 1.073 VNN1 0.00747 58 -0.900 

EDRF1 0.00008 70 1.072 TUT4 0.00411 57 -0.875 

INTS1 0.00045 47 -1.060 MYLK 0.00042 97 0.855 

PPP1R9B 0.00521 46 -1.046 ZNF518B 0.00258 54 0.850 

LRRC9 0.00118 52 1.025 OVOS2 0.00214 63 0.848 

F2RL1 0.00125 51 1.020 EQTN 0.00243 74 -0.825 

TSBP1 0.00017 64 1.004 BTD 0.00346 69 -0.810 

ITGA6 0.00444 52 1.000 AASS 0.00723 58 -0.795 

EPB41L2 0.00228 46 0.998 CC2D1B 0.00353 78 0.792 

PRR36 0.00003 91 0.998 EEF2 0.00210 85 0.785 

SLX4 0.00057 60 0.997 ZAR1L 0.01398 54 -0.783 

PSMD5 0.01704 48 0.995 EXT1 0.02810 54 0.773 

RPL5 0.00096 51 -0.993 PCDHGB5 0.01542 70 -0.769 

SLMAP 0.00162 46 -0.983 BCAM 0.00599 71 -0.759 

FEZF2 0.00064 59 0.983 FASLG 0.00412 67 -0.755 

PLXNB1 0.00205 47 0.981 COL11A1 0.01377 55 0.753 

MROH2B 0.00121 57 -0.964 OPTN 0.00819 66 0.752 

BAHCC1 0.00200 55 0.962 ATP2B2 0.00549 68 -0.750 

FCN2 0.00159 62 -0.951 COL1A1 0.01033 57 -0.748 

PEX3 0.00303 54 0.950 SPECC1L 0.03173 60 -0.747 

CRYBG2 0.00106 68 0.945 ZNF750 0.01546 67 -0.740 

HBA1 0.00006 91 -0.943 PIP5K1C 0.01137 59 -0.735 

ZC3H14 0.00836 57 0.942 IGKV2-29 0.01153 69 0.730 
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Interestingly, female patients had more differentially expressed proteins than male patients. P-value 

histograms from the analyses confirmed significantly more changed proteins in the female cohort 

compared with the male cohort (Figure 48). Interestingly, most of the significantly changed proteins 

in the two analyses did not overlap, which suggest many of the differentially expressed proteins are 

sex-specific. It was theorised that the lower number of altered proteins in the male cohort was due 

to a more heterogeneous PD population. Therefore, a few demographic variables were compared 

using density plots between the male and female PD cohort (Figure 49). No apparent major 

demographic differences were observed between the sexes. Statistical analysis with Wilcoxon rank 

test revealed significantly higher Hoehn & Yahr disease stage for females (p=0.042), and higher LEDD 

scores for males (p=0.038). 

 

FIGURE 48 – P-VALUE HISTOGRAM FROM THE GROUPWISE COMPARISON OF PROTEINS BETWEEN PARKINSON’S 

DISEASE AND HEALTHY CONTROLS – SPLIT INTO MALES AND FEMALES 
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FIGURE 49 – DENSITY PLOTS OF DEMOGRAPHIC AND CLINICAL VARIABLES IN MALE (BLUE) AND FEMALE (RED) PATIENTS 

WITH PARKINSON’S DISEASE  

Distributions of Montreal Cognitive Assessment (MoCA), Disease Duration in years, Unified Parkinson's 

Disease Rating Scale (UPDRS) part III, Hoehn & Yahr, Beck Depression Inventory II (BDI II), and Levodopa 

Equivalent Daily Dose (LEDD) are displayed.  

 

Following these results, the effect of cohort heterogeneity was further explored. When more severe 

PD cases were excluded from the analysis, generally the proportion of significantly altered proteins 

between PD and HC increased. This was assessed though the proportion of proteins with a p-value < 

0.05 in the p-value histogram. Excluding patients with more severe motor symptoms, high levodopa 

treatment, long disease duration or low cognitive score all yielded similar results with an increased 

proportion of significantly changed proteins. It was not surprising eliminating severely affected PD 

patients using any of these variables had a similar effect on the results, given that these variables are 

collinearly explaining the variation in the cohort as seen in the PCA plot in Figure 20. Furthermore, this 

resulted in an increase in significantly differential proteins for both the male and female cohort. As an 

example, the p-value histograms in Figure 50 shows a larger number of true positive hits after selecting 

PD patients without any cognitive impairment. The trade-off from these analyses is the much smaller 

cohort size, and the increased risk of false positive results.  
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FIGURE 50 – P-VALUE HISTOGRAM FROM THE GROUPWISE COMPARISON OF PROTEINS BETWEEN COGNITIVELY 

UNIMPAIRED PARKINSON’S DISEASE AND HEALTHY CONTROLS – SPLIT INTO FEMALES AND MALES 

 

3.1.4.2.5 BIOMARKER PANELS AND MACHINE LEARNING 

Calculating the confidence of a differentially expressed protein with a p-value, or how large the effect 

size is giving a good idea of whether the protein is a candidate biomarker.  

However, the best diagnostic biomarker for a disease is not necessarily determined with single 

parametric group comparisons. Ideally from a performance perspective, a biomarker should be 

resistant to demographic variables and show consistent discriminatory performance when the model 

is applied to new data. In brief, a good biomarker can perform predictions consistently. Therefore, a 

machine learning algorithm was trained for diagnosis prediction, and applied on a subset of data.   

Proteins with unadjusted p-values <0.05 from the robust linear model above were used in the analysis. 

90% of the data was selected at random as training data a total of 5 times using bootstrapping. A glm 

logistic regression model was constructed with diagnosis as the outcome variable, and protein 

quantification, age, and sex as explanatory variables. The glm model was in turn trained on itself using 

a leave one out cross validation method. The final model was subsequently applied on the test data. 

The average accuracy and AUC were recorded, as well as the importance of age, sex, and protein 

quantification, respectively. A separate analysis was made on a covariate free model, where accuracy 

and AUC was also recorded. A threshold was set on minimum 65% AUC and a relative importance of 

the protein of >50%. Results are presented in Table 11.  
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TABLE 11 – TOP DIFFERENTIALLY EXPRESSED PROTEINS FOR PARKINSON’S DISEASE VS HEALTHY CONTROLS – BY CROSS 

VALIDATED PREDICTIVE PERFORMANCE 

Top results from robust linear model of differentially expressed proteins in Parkinson’s Disease versus 

Healthy Controls, with age and sex as covariates with. Cohen’s d, p-value, and % of samples where the 

protein was quantified are listed. In addition, proteins with unadjusted p-values <0.05 were used to 

build glm logistic regression model with and protein levels, age, and sex as explanatory variables. The 

glm model was trained on itself and tested on a subset of data. The average accuracy and area under 

curve (AUC) are presented, as well as the importance of age, sex, and protein as variables. A separate 

analysis was made on a covariate free model, where accuracy and AUC was also recorded, represented 

in the rightmost two columns. Proteins displayed had a minimum 65% AUC and a relative importance 

of the protein of >50%. 

Gene 
Cohen’s 

d 
p-value % quant 

imp_ 
Age 

imp_ 
Sex 

imp_ 
Prot 

ACC 
all var 

AUC 
all var 

ACC 
prot 

AUC 
prot 

F2RL1 0.56 0.00556 58 0.39 0.23 2.43 0.76 0.69 0.71 0.71 

INTS1 -0.71 0.00066 55 1.07 0.24 3.03 0.74 0.72 0.65 0.64 

CP -0.43 0.00699 100 1.82 0.28 2.35 0.74 0.76 0.66 0.62 

PRR36 0.62 0.00010 99 0.76 0.46 3.44 0.74 0.69 0.65 0.64 

GGH -0.79 0.00019 64 2.13 0.85 3.15 0.73 0.78 0.64 0.59 

ITPR2 0.49 0.00794 68 1.55 0.51 2.08 0.73 0.64 0.69 0.64 

SELL -0.52 0.00173 95 1.55 0.39 2.70 0.72 0.66 0.65 0.64 

PAGE4 0.70 0.00012 82 1.82 0.66 2.55 0.72 0.74 0.64 0.55 

CFAP97 0.54 0.00599 68 1.45 0.65 2.33 0.72 0.73 0.76 0.77 

APOC3 -0.55 0.00054 100 1.72 0.27 3.00 0.72 0.63 0.71 0.62 

TSBP1 0.46 0.00875 72 1.13 0.47 2.26 0.71 0.72 0.63 0.76 

ASTN2 -0.63 0.00164 59 0.59 0.44 2.59 0.70 0.75 0.65 0.59 

CCDC93 -0.42 0.00927 99 1.57 0.29 2.08 0.69 0.68 0.71 0.61 

NYAP2 0.57 0.00706 59 1.57 0.08 1.82 0.69 0.84 0.71 0.65 

APOC2 -0.40 0.00991 99 1.40 0.41 2.84 0.68 0.71 0.68 0.77 

MYLK 0.69 0.00004 89 1.17 0.57 3.33 0.68 0.70 0.64 0.64 

MGAT4A 0.61 0.00132 59 1.24 0.47 2.46 0.68 0.65 0.68 0.76 

PEPD -0.73 0.00009 86 1.40 1.07 3.55 0.68 0.63 0.65 0.63 

EIF3L -0.61 0.00575 59 1.74 0.57 2.58 0.67 0.70 0.64 0.63 

SPECC1 0.77 0.00019 61 0.75 0.83 1.98 0.67 0.64 0.72 0.76 

SLX4 0.54 0.00523 68 1.80 0.23 2.80 0.67 0.79 0.70 0.69 

LCP1 -0.53 0.00105 95 1.94 0.62 2.68 0.67 0.67 0.58 0.63 

PRG4 -0.53 0.00090 100 1.99 0.64 3.26 0.66 0.67 0.63 0.56 

UACA 0.49 0.00366 90 1.47 0.79 2.69 0.66 0.61 0.68 0.65 

NPM2 0.44 0.00898 95 1.35 0.42 2.68 0.66 0.67 0.63 0.65 

C9 0.49 0.00233 100 0.81 1.02 2.99 0.65 0.66 0.65 0.57 

PPBP -0.73 0.00018 72 1.38 0.25 3.01 0.65 0.61 0.61 0.61 
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When ranking by cross validated predictive accuracy, F2R Like Trypsin Receptor 1 (F2RL1), Integrator 

Complex Subunit 1 (INTS1), and Ceruloplasmin (CP) were the top 3 candidate markers. This shows that 

the proteins that are the top hits in a cross-sectional single cohort analysis does not necessarily yield 

the same top hits as when assessing diagnostic accuracy on new data in silico. Additionally, when 

looking at AUC for a cross validated diagnostic ROC curve, Neuronal Tyrosine-Phosphorylated 

Phosphoinositide-3-Kinase Adaptor (NYAP2) displayed the highest AUC of 84%.   

From the cross validated analyses, it was discovered that a single marker would not produce an AUC 

above 0.82. It was therefore explored whether a panel of biomarkers would potentially be useful in 

predicting PD diagnosis with a higher accuracy than a single biomarker. To build an optimal panel a 

(multiple) Support Vector Machine Recursive Feature Elimination (mSVM-RFE) approach was used 

with AUC and accuracy as outcome measures. 4 iterations of a 5-fold cross validation of the SVM-RFE 

algorithm were run, and the output model was used on the data to generate an ROC, and AUC was 

calculated. The proteins were then ranked in order of average importance, and the bottom 10 % of 

protein features were then eliminated, and the algorithm reapplied to the remaining proteins. For the 

last 150 proteins, one protein was eliminated at a time. Figure 51 shows the cumulative area under 

curve (AUC) scores as well as prediction accuracy (ACC) for addition of more features in the SVM to 

discriminate PD patients from healthy controls. Approximately 10 proteins were required to 

discriminate PD with and AUC or ACC of 90%. About 23 proteins were needed for a 100% AUC for our 

dataset, although including too many variables will likely overfit the model. 
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FIGURE 51 – CUMULATIVE AREA UNDER CURVE FROM A (MULTIPLE) SUPPORT VECTOR MACHINE RECURSIVE FEATURE 

ELIMINATION MODEL (MRFE-SVM) 

A) mRFE-SVM model with increased area under curve (AUC) with increased number of proteins for 

differentiation of PD from healthy controls. B) mRFE-SVM model with increased diagnostic accuracy 

(ACC) with increased number of proteins for differentiation of PD from healthy controls. 

 

A 

B 
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3.1.4.2.6 BIOMARKERS FOR DISEASE SEVERTIY 

Many diagnostic biomarkers that reflect disease pathology, are altered with disease severity. 

Therefore, identifying biomarkers that both reflect PD diagnosis as well as disease stage or disease 

severity, would arguably give confidence in that the protein is reflecting pathological mechanisms. 

Determining the best outcome for disease stage or disease severity in PD is not straight forwards. 

Often, UPDRS or Hoehn & Yahr (H&Y) staging is used. Particularly UPDRS part III is used to assess motor 

severity, and H&Y is used for symptom severity/disease staging which is also largely related to motor 

symptoms. Although these assessments give a crude idea of disease severity, they do not reflect all 

aspects of the disease progression, particularly the NMS. 

Cross sectional analyses were used using robust linear models of H&Y and UPDRS III in the PD cohort 

versus protein quantifications. Additionally, disease duration and levodopa equivalent daily dose were 

separately assessed as they are often colinear with disease severity, as seen in PCA plot in figure 20. 

Age and sex were used as covariates. The results are presented in Table 12. The results represent the 

proteins that were both significantly associated with H&Y and UPDRS III and ordered by ascending 

H&Y p-value.   

Interestingly, none of the top 30 proteins that correlated with Disease duration and LEDD correlated 

with H&Y and UPDRS III. This suggest that at least the top significant proteins that correlate with H&Y 

and UPDRS III are probably not heavily affected by disease duration and levodopa medication.  

To gain confidence in which proteins were associated with disease progression/severity, at least in 

terms of motor progression, it was investigated which of the proteins were significantly associated 

with both H&Y as well as UPDRS III. The results are shown in Table 13. Serum amyloid A1 (SAA1) was 

the protein most significantly associated with both H&Y and UPDRS III.   

Analysis of individual peptides from the proteins that correlated with both H&Y and UPDRS III was 

performed. Two peptides from Insulin-like growth factor-binding protein complex acid labile subunit 

(IGFALS), DLHFLEELQLGHNR and NLPEQVFR were associated with both H&Y (p = 0.037 and p = 0.020 

respectively) and UPDRS III (p = 0.045 and p = 0.021 respectively).  
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TABLE 12 – CORRELATIONS WITH DISEASE SEVERITY AND MOTOR FUNCTION IN PARKINSON’S DISEASE PATIENTS 

Linear model of between plasma protein levels and Hoehn & Yahr disease stage, Unified Parkinson's 

Disease Rating Scale (UPDRS) III motor severity, Disease Duration and Levodopa Equivalent Daily Dose 

(LEDD). Age and sex were used as covariates. Top 30 hits for each variable listed as Gene name of the 

protein, t-values and p-values listed. ordered by unadjusted p-values.    

Hoehn & Yahr UPDRS III Disease duration LEDD 

Gene t-
value 

p-
value 

Gene t-
value 

p-
value 

Gene t-
value 

p-
value 

Gene t-
value 

p-
value 

SAA1 4.0 0.0001 PRR9 4.1 0.0001 IL16 -4.1 0.0001 C9 4.1 0.0001 

TRIM33 3.6 0.0006 ZNFX1 -3.6 0.0005 KMT2D -3.9 0.0002 DOK6 -4.0 0.0001 

ARMCX5 -3.5 0.0008 INPP5F -3.6 0.0005 CEP120 -3.9 0.0002 DOCK11 4.0 0.0001 

SAA2 3.2 0.0022 CD163 -3.3 0.0014 KIF26B 3.6 0.0006 CEP120 -3.8 0.0003 

PCDHB5 3.2 0.0023 SAA1 3.1 0.0021 ALOXE3 -3.5 0.0007 FSIP1 3.7 0.0003 

TERF2 -3.1 0.0026 COL6A6 3.0 0.0031 DOK6 -3.5 0.0008 TRIM42 3.7 0.0003 

H2AW -3.1 0.0030 ALAS2 -3.0 0.0032 KLHL31 -3.3 0.0012 ATP11A 3.6 0.0005 

RFX7 -3.0 0.0030 GPR158 -3.0 0.0032 AMY1A -3.3 0.0014 PLK2 -3.5 0.0007 

FAM81B 3.0 0.0035 ZC3H14 -3.0 0.0033 ARMC6 -3.3 0.0016 PALB2 -3.4 0.0013 

AHCYL1 -3.0 0.0035 SPECC1 -3.0 0.0036 MYH1 3.2 0.0018 ADGRB3 -3.2 0.0017 

GAS2L3 -2.9 0.0043 TIAM2 -2.9 0.0039 POLR2A 3.2 0.0019 DDX5 -3.2 0.0017 

PPP1R12A -2.9 0.0055 APOF 2.8 0.0057 ATG16L1 3.2 0.0019 LPA 3.2 0.0019 

COL25A1 2.8 0.0056 CD101 2.8 0.0058 ADGRB3 -3.2 0.0021 HERC5 -3.1 0.0027 

ATP10A 2.8 0.0064 SMARCAD1 -2.8 0.0062 ZNF512 3.1 0.0025 NDST1 -3.0 0.0030 

SNAP47 2.8 0.0065 DENND2A -2.8 0.0066 ANKRD20A8P -3.1 0.0027 COMP 3.0 0.0034 

TCEA1 2.8 0.0069 TCF20 -2.7 0.0073 SAMSN1 3.1 0.0030 SVIL 3.0 0.0035 

TSHZ3 2.8 0.0070 SAA2 2.7 0.0073 ADGB 3.0 0.0037 CABIN1 -3.0 0.0036 

JPH3 -2.7 0.0077 GPR179 -2.8 0.0075 MYO15A -2.9 0.0039 IGHV4-28 -3.0 0.0037 

PLCL2 -2.7 0.0077 RFX7 -2.7 0.0075 FAN1 2.9 0.0041 FBLN5 2.9 0.0043 

NAV1 2.7 0.0082 SECISBP2L -2.7 0.0084 CCDC66 2.9 0.0049 ADGB 2.9 0.0044 

CFAP65 -2.7 0.0085 PRELID3B 2.7 0.0085 ARF3 -2.9 0.0051 CDC42BPB 2.9 0.0047 

FCN2 -2.7 0.0086 ACBD5 -2.7 0.0087 MSH6 2.9 0.0053 COL17A1 -2.9 0.0049 

PRR9 2.7 0.0086 VPS13D -2.7 0.0088 FSIP1 2.8 0.0056 SERPINA2 2.8 0.0058 

EIF4ENIF1 -2.7 0.0086 CASZ1 -2.7 0.0090 DDX18 2.8 0.0059 PDS5A 2.8 0.0062 

RAD50 -2.7 0.0087 ZSCAN32 -2.7 0.0091 ESYT1 2.8 0.0060 IGHV3-49 -2.8 0.0066 

DHX16 2.7 0.0088 GPRASP1 -2.7 0.0092 COMP 2.8 0.0065 ADAMTS20 -2.8 0.0068 

KMT2B -2.7 0.0091 ARMCX5 -2.7 0.0093 COL4A2 2.7 0.0072 NLRP14 2.7 0.0074 

RIPK1 -2.7 0.0095 GUF1 -2.6 0.0107 SVIL 2.7 0.0073 ZNF512 2.7 0.0076 

RP1L1 2.6 0.0098 SYNM -2.6 0.0112 WDR11 -2.8 0.0073 THUMPD2 2.7 0.0085 

SACS 2.6 0.0104 HBB -2.6 0.0114 ESF1 2.7 0.0078 LRRFIP2 2.7 0.0085 

 

 

Interestingly, there was sparse overlap between PD diagnostic and severity markers. Pleckstrin 

Homology Like Domain Family B Member 2 (PHLDB2) was the only significant PD diagnostic protein 
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that was also associated with H&Y and UPDRS III, and the significance levels for all analyses were 

moderate. It was hypothesised this was partly due to large collinearity between age and disease 

severity, and proteins levels corrected for age would be overcorrected for disease severity. When age 

was removed as a covariate, a few more proteins were significantly associated with UPDRS III and 

H&Y. Fibronectin 1 (FN1), RRN3 Homolog, RNA Polymerase I Transcription Factor (RRN3), Izumo 

Sperm-Egg Fusion 1 (IZUMO1), CD5 Molecule Like (CD5L), Dynein Axonemal Heavy Chain 8 (DNAH8), 

Phosphodiesterase 6A (PDE6A) were all significant (p<0.05), however the significance level for all 

these proteins were modest for both PD diagnosis and disease severity. This suggests PD motor 

severity candidates are generally not overlapping with diagnostic candidates.  

The analysis for proteins correlating with of H&Y and UPDRS III was also performed for males and 

females separately. Again a robust linear model was analysed with age and disease duration as 

covariates, with the most significant results for both H&Y and UPDRS III presented in Table 14. Males 

and females had different proteins correlating with motor severity. This could be attributed to 

statistical reasons such as more severe motor symptoms in the female cohort, the larger male cohort, 

or false positives due to small a sample size relative to number of proteins analysed.  The difference 

could however also be attributed to biological differences. As was seen in the sex-specific analysis for 

PD diagnostic biomarkers, proteomic changes in PD seem to differ between males and females.  
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TABLE 13 – OVERLAPPING CORRELATIONS WITH DISEASE SEVERITY AND MOTOR FUNCTION IN PARKINSON’S DISEASE 

PATIENTS 

Linear model of between plasma protein levels and Hoehn & Yahr disease stage, UPDRS III motor 

severity, Disease Duration and Levodopa Equivalent Daily Dose. Age and sex were used as covariates. 

Overlapping significant hits for H&Y and UPDRS III listed as Gene name of the protein, t-values and p-

values listed. ordered by unadjusted p-values.    

  Hoehn & Yahr UPDRS III Disease duration LEDD 

Gene 
Ave 

Exprs 
% 

quant 
t-value p-value t-value p-value t-value p-value t-value p-value 

SAA1 2.58 95 4.01 0.00010 3.14 0.00214 0.30 0.76179 1.26 0.21162 

ARMCX5 2.62 77 -3.45 0.00081 -2.65 0.00933 -0.31 0.75894 0.54 0.59200 

SAA2 2.82 73 3.15 0.00218 2.74 0.00735 0.25 0.80393 0.61 0.54411 

TERF2 2.88 96 -3.08 0.00255 -2.40 0.01810 0.20 0.84429 0.00 0.99814 

H2AW 2.40 56 -3.08 0.00296 -2.45 0.01681 0.12 0.90668 -0.78 0.43621 

RFX7 2.52 100 -3.02 0.00305 -2.72 0.00752 -0.50 0.61626 -1.45 0.14844 

TSHZ3 2.02 76 2.76 0.00696 2.27 0.02539 0.81 0.41728 0.73 0.46769 

CFAP65 2.03 53 -2.71 0.00845 -2.46 0.01665 1.83 0.07099 1.56 0.12409 

PRR9 2.99 82 2.68 0.00864 4.08 0.00009 0.84 0.40190 0.95 0.34557 

RAD50 1.87 81 -2.67 0.00871 -2.42 0.01706 2.02 0.04606 -0.05 0.96101 

ARMCX1 1.91 54 -2.49 0.01529 -2.12 0.03776 0.04 0.96847 -0.54 0.59175 

RACGAP1 2.83 60 -2.46 0.01620 -2.48 0.01545 -1.15 0.25222 -1.16 0.24840 

KANSL1 2.31 65 2.45 0.01643 2.07 0.04163 0.76 0.45052 1.92 0.05849 

ZNF419 2.00 63 -2.36 0.02051 -2.15 0.03430 1.09 0.27710 0.37 0.71524 

EXOC4 2.52 69 -2.35 0.02119 -2.18 0.03203 -0.39 0.69678 -1.10 0.27415 

PHLDB2 2.16 81 -2.31 0.02293 -2.05 0.04256 -0.44 0.65962 -2.17 0.03197 

MAP3K13 2.39 54 2.30 0.02453 2.01 0.04885 0.11 0.91446 0.01 0.99061 

IGFALS 2.87 100 -2.24 0.02698 -1.99 0.04912 0.51 0.60917 0.47 0.63881 

AFF2 2.52 73 -2.23 0.02805 -2.54 0.01259 -0.55 0.58497 -1.80 0.07468 

NACA 2.48 100 -2.21 0.02921 -2.39 0.01837 -0.75 0.45168 -1.50 0.13608 

SHISA7 2.48 59 -2.21 0.03007 -2.25 0.02707 -2.35 0.02108 -2.61 0.01097 

COL6A6 2.24 73 2.20 0.03052 3.03 0.00312 -0.02 0.98426 0.85 0.39830 

INPP5F 2.16 69 -2.17 0.03269 -3.60 0.00053 2.36 0.02027 1.18 0.24100 

IBTK 2.34 53 2.16 0.03450 2.44 0.01729 -1.44 0.15306 -0.45 0.65067 

CCDC33 2.77 64 2.12 0.03738 2.21 0.02966 0.38 0.70732 -0.06 0.95260 

ALAS2 2.23 81 -2.11 0.03753 -3.02 0.00318 -0.72 0.47170 -2.20 0.02979 

FRMPD3 2.12 66 -2.11 0.03759 -2.49 0.01491 -0.22 0.82728 -0.29 0.77005 

GPR158 2.26 72 -2.05 0.04277 -3.03 0.00322 0.35 0.73028 -0.84 0.40238 

SHPRH 2.43 70 2.04 0.04389 2.33 0.02183 0.57 0.56845 2.26 0.02633 

PROS1 3.58 100 -1.99 0.04845 -2.24 0.02690 0.30 0.76389 -0.35 0.72757 
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TABLE 14 – OVERLAPPING CORRELATIONS WITH DISEASE SEVERITY AND MOTOR FUNCTION IN PARKINSON’S DISEASE 

PATIENTS – SEX-SPECIFIC ANALYSIS 

Linear model of between plasma protein levels and Hoehn & Yahr disease stage, UPDRS III motor 

severity. Age and disease duration were used as covariates. Overlapping significant hits for H&Y and 

UPDRS III listed as Gene name of the protein and p-values listed, separately analysed for male and 

female PD, ordered by unadjusted p-values for Hoehn & Yahr.    

 

Female PD Hoehn & Yahr UPDRS III Male PD Hoehn & Yahr UPDRS III 

Gene p-value p-value Gene p-value p-value 

DNAI4 0.000008 0.000830 TRIM33 0.000133 0.009805 

ARAP2 0.000393 0.007648 GPR158 0.000717 0.000014 

COL25A1 0.000620 0.007913 SEMA4C 0.001439 0.017153 

RUFY2 0.001013 0.010155 SAA2 0.001638 0.014037 

ARMCX1 0.001023 0.030247 SAA1 0.002112 0.001837 

DYNC2H1 0.001349 0.000048 AHCYL1 0.003383 0.015338 

RIPK1 0.002361 0.010904 BAZ2B 0.003646 0.025402 

EIF2A 0.003114 0.011615 TSPAN14 0.003752 0.022444 

ISOC1 0.003122 0.003677 ITGA6 0.004611 0.001273 

CELF5 0.003357 0.001734 SNCAIP 0.005011 0.031194 

MAGEB6 0.004017 0.009575 MACO1 0.005167 0.002553 

MAP7D3 0.005271 0.000106 EPHA2 0.005326 0.028322 

TUT4 0.005788 0.012292 APOC2 0.005349 0.004705 

IQCC 0.006672 0.011406 ATXN7L3 0.005559 0.025156 

ABCG2 0.007520 0.026701 PRELID3B 0.006315 0.003341 

VASN 0.009005 0.004551 ARMCX5 0.006691 0.025530 

EFCAB5 0.010092 0.029518 LONP2 0.008223 0.020386 

ZNF419 0.011884 0.002252 TERF2 0.008319 0.029605 

RAB11FIP5 0.012502 0.032045 PRR9 0.00857 0.002181 

ABL2 0.013820 0.027389 KANSL1 0.008752 0.002707 

FRY 0.014813 0.010676 IHO1 0.009827 0.006013 

DSCAML1 0.015610 0.024192 SLC15A1 0.013177 0.027934 

ACACA 0.016680 0.022934 EVC 0.013542 0.018258 

NLRP10 0.021504 0.001680 MAP3K13 0.016794 0.011118 

CHMP1A 0.021885 0.018143 CDK9 0.019543 0.001618 

AMY1A 0.022483 0.011698 PROS1 0.019709 0.006760 

ZNFX1 0.023171 0.003084 COL6A5 0.022837 0.022634 

GCKR 0.025084 0.000565 MCF2L2 0.022987 0.022574 

SLC22A11 0.027154 0.021080 TCF20 0.029486 0.000490 

C2CD6 0.030620 0.033237 MROH2A 0.029953 0.001709 
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3.1.4.2.7 PATHWAY ANALYSIS 

Finally, macrolevel analysis of the significantly differentially expressed proteins for PD diagnosis were 

performed. A protein-protein interaction plot was constructed using all significantly differentially 

expressed proteins with a Cohen’s d effect size >0.5 (Figure 52). Furthermore, all 187 significant 

proteins were used in a pathway analysis (Table 15). After adjusting for multiple comparison, the KEGG 

pathway “Complement and coagulation cascades” was still highly significantly implicated in PD 

(p<0.00001). These findings warrant further exploration of the role of the peripheral complement and 

coagulation systems in PD.  

 

FIGURE 52 – PROTEIN-PROTEIN INTERACTIONS OF MOST SIGNIFICANT PROTEINS FOR PARKINSON’S DISEASE 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) protein-protein interaction 

network of significantly changed proteins in Parkinson’s disease versus healthy controls (unadjusted 

p<0.05), adjusted for age and sex, with a Cohen’s d effect size >0.5.     
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TABLE 15 – PATHWAY ANALYSIS OF ALL SIGNIFICANTLY DIFFERENTIALLY EXPRESSED PROTEINS IN PARKINSON’S DISEASE 

(PD) 

Implicated pathways of all proteins that were significantly (p<0.05) differentially expressed in 

Parkinson’s disease versus Healthy controls when adjusted for Age and Sex (n=187), based on KEGG 

(Kyoto Encyclopaedia of Genes and Genomes). Columns represent KEGG pathway, number of 

differentially expressed proteins overlapping with the pathway, p-values that the pathway is 

implicated in PD, adjusted p-values, and gene names of the differentially expressed proteins in the 

pathway.  

KEGG pathway Overlap p-value Adj. p-value Gene name of proteins 

Complement and coagulation 
cascades 

9/79 0.00000005 0.00000707 
CFD; C7; SERPIND1; C9; F13A1; F13B; 

MASP1; CFB; CD55 

ECM-receptor interaction 5/82 0.00103266 0.06918835 COMP; COL6A3; ITGA6; THBS1; CD44 

Homologous recombination 3/41 0.00660522 0.29503321 EME1; POLD2; TOPBP1 

Focal adhesion 6/199 0.01118130 0.37457342 
COMP; COL6A3; ITGA6; PIP5K1C; THBS1; 

MYLK 

Phosphatidylinositol signaling 
system 

4/99 0.01399301 0.37501274 PIKFYVE; MTMR8; ITPR2; PIP5K1C 

RNA transport 5/165 0.01957726 0.43722544 NDC1; NUP210L; NUP133; TPR; THOC2 

Staphylococcus aureus 
infection 

3/68 0.02586736 0.45370637 CFD; MASP1; CFB 

Calcium signaling pathway 5/188 0.03199559 0.45370637 ITPR2; ATP2A1; RYR3; MYLK; GRIN2D 

Inositol phosphate metabolism 3/74 0.03213788 0.45370637 PIKFYVE; MTMR8; PIP5K1C 

Mucin type O-glycan 
biosynthesis 

2/31 0.03385868 0.45370637 GALNT5; GCNT3 

Prion diseases 2/35 0.04228978 0.51516646 C7; C9 

African trypanosomiasis 2/37 0.04676876 0.52225117 F2RL1; IDO2 

Hematopoietic cell lineage 3/97 0.06270793 0.62724637 ITGA6; CD44; CD55 

Malaria 2/49 0.07684995 0.62724637 COMP; THBS1 

Alzheimer disease 4/171 0.07691541 0.62724637 ITPR2; ATP2A1; RYR3; GRIN2D 

Cholesterol metabolism 2/50 0.07957603 0.62724637 APOC2; APOC3 

N-Glycan biosynthesis 2/50 0.07957603 0.62724637 MGAT4A; MAN1A1 

Fanconi anemia pathway 2/54 0.09077091 0.67573902 SLX4; EME1 
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To summarise, statistical analysis of the proteomic data revealed several candidate markers for PD 

with moderate predictive performance. Firstly, it was explored whether the entire plasma proteome 

would generate any separation or clustering of the data according to diagnosis. There was no apparent 

separation in the data on proteome level, hence individual differentially expressed plasma proteins 

were analysed. A p-value histogram revealed at least 50 proteins were truly altered in PD. The data 

was analysed with and without age and sex as covariates, and with and without an effect size cut-off. 

It was observed age and sex had little impact on top significant candidates for PD. Sorting by effect 

size reordered the rank of the most differentially expressed candidates, as it was independent of 

sample size. The proteins ranked by effect size are arguably better biomarker candidates as they would 

be the most resistant to within-group variation. Moreover, sex-specific analysis revealed different sets 

of altered plasma proteins in male and female PD patients.  

Next, the predictive diagnostic performance of the candidate biomarkers was assessed, as that would 

reflect the potential clinical utility of the biomarkers. Hence, the dataset was split multiple times to 

train a predictive model to test on a subset of data. The highest diagnostic accuracy achieved was 76%, 

and it was noticed the proteins with the highest predictive performance, were not necessarily the 

most significant ones, nor the ones with biggest effect size. Furthermore, it provided insight in how 

well the candidate markers would perform on new data. It was also attempted to build a predictive 

biomarker panel using several proteins, and it was found approximately 10 proteins were necessary 

to reach a 90% diagnostic accuracy.   

It was hypothesised that diagnostic biomarkers that reflect disease pathology, would also be 

associated with disease progression and severity. Several proteins were found that correlated with 

motor severity, that were not affected by covariates such as age, medication, and disease duration. 

However, very few of these overlapped with the diagnostic markers. There are a few possible 

explanations for this. It is possible the diagnostic biomarkers reflect function defects and risk factors 

that lead to PD, whereas progression markers are responsive and reflect cell death and plaques.  

Finally, pathways and protein interactions implicated with the top biomarker candidates were 

analysed. The complement and coagulation pathways were the most significant ones, and several of 

the biomarkers had known protein-protein interactions, particularly several structural and adhesion 

molecules.  

The top candidate biomarkers for both diagnosis and disease severity were selected for the 

verification study.  
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3.1.4.3 PD cognition biomarkers 

3.1.4.3.1 DIMENTIONALITY REDUCTION 

Besides identifying diagnostic PD markers, one of the most important aims related to PD 

endophenotype biomarkers was which plasma proteins would reflect cognitive impairment and 

cognitive decline in PD. Just as with the diagnostic markers, initially data dimensionality reduction 

methods were applied to get an overview of the cognitive data. Few patients in the cohort had an 

actual PDD diagnosis set by a physician, but all of them had MoCA scores available. PDND, PDMCI and 

PDD thresholds were set at MoCA ≥26, 21-25, and ≤20 respectively, as these were recommended 

thresholds from the literature for PD patients that develop MCI and dementia [175]. It was also made 

sure there was no other documented comorbidity (infection, Alzheimer’s disease, stroke etc) that 

could explain the cognitive score.  

PCA and t-SNE plots showed little discrimination between groups on proteome level (Figure 53 and 

Figure 54).  
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FIGURE 53 –  PRINCIPAL COMPONENT ANALYSIS (PCA) PLOT OF PROTEOMIC DATA 

PCA plot of mass spectrometric data of Parkinson’s disease (PD) patients. Patients classified as PD with 

no dementia (PDND), PD with mild cognitive impairment (PDMCI), and PD with dementia (PDD) based 

on conventional reference levels of Montreal Cognitive Assessment (MoCA). Centre point enlarged; 

ellipse shows 95% confidence interval. Principal components 1 and 2 shown. Variables are centred and 

scaled.  
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FIGURE 54 – T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (TSNE) OF PROTEOMIC DATA 

t-SNE plot of mass spectrometric data of Parkinson’s disease (PD) patients. Patients classified as PD 

with no dementia (PDND), PD with mild cognitive impairment (PDMCI), and PD with dementia (PDD) 

based on conventional reference levels of Montreal Cognitive Assessment (MoCA). 
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3.1.4.3.2 CORRELATION WITH COGNITIVE PERFORMANCE 

 

 

FIGURE 55 – P-VALUE HISTOGRAM FROM LINEAR MODEL CORRELATION BETWEEN MOCA SCORES AND PROTEIN LEVELS 

 

Next a robust linear model was fit with MoCA as the outcome variable, and protein quantification, 

age, sex, and disease duration as explanatory variables in the limma package. The top significant 

proteins are listed in Table 16.  

A p-value histogram was plotted to visualise whether there were true correlations between protein 

levels and MoCA score (Figure 55). The higher-than-average bar representing p-values between 0-0.05 

on the x-axis suggest that there is a true correlation with MoCA for up to 50 proteins in the PD patients, 

and that the null hypothesis should be rejected for up to 50 protein IDs.  

Unlike in the group analysis of PD vs healthy controls, the PD patients across all cognitive scores were 

not well age and sex matched across all cognitive levels. People with worse cognitive scores tended 

to be older and more often of male sex, which is generally the case in PD patients. Moreover, cognitive 

performance is well documented to decline over time with the disease. Hence the statistics for age, 

sex and disease duration were evaluated, and proteins that had strong correlation with any of these 

covariates were highlighted in Table 17. These were considered not robust biomarker candidates as 

they demographic variables could affect the protein levels too much relative to the cognitive 

performance.   
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TABLE 16 – TOP 30 PROTEINS FOR ASSOCIATED WITH LEVEL OF COGNITIVE FUNCTION IN PARKINSON’S DISEASE 

Top results from robust linear model of proteins in Parkinson’s Disease versus Montreal Cognitive 

Assessment (MoCA) score, with age, sex, and disease duration as covariates, ranked by p-value. 

Columns show Protein name, Gene name, average expression level of protein (AveExpr), t-statistic, p-

value, Benjamini-Hochberg (BH) adjusted p-value, and percentage of samples where the protein was 

quantified.  

Protein Gene AveExprs t-value p-value 
adj p-
value 

% 
quantified 

Serum amyloid A-1 protein SAA1 2.58 -3.93 0.00014 0.254 95 

IQ domain-containing protein C IQCC 1.97 3.85 0.00023 0.254 68 

Microtubule-associated protein 10 MAP10 2.50 -3.61 0.00050 0.379 68 

GAS2-like protein 3 GAS2L3 2.68 3.45 0.00093 0.479 55 

Protein PHTF2 PHTF2 2.31 -3.26 0.00171 0.479 54 

Protein BCAP ODF2L 2.56 3.21 0.00178 0.479 82 

Huntingtin HTT 2.23 -3.23 0.00186 0.479 55 

Tumor protein 63 TP63 3.25 3.16 0.00195 0.479 95 

Slit homolog 3 protein SLIT3 1.89 -3.17 0.00204 0.479 73 

HLA class II histocompatibility antigen 
gamma chain 

CD74 2.70 -3.16 0.00233 0.479 55 

Golgi resident protein GCP60 ACBD3 2.25 3.10 0.00251 0.479 82 

Transthyretin TTR 3.58 3.08 0.00254 0.479 100 

Vitamin K-dependent protein S PROS1 3.58 3.05 0.00279 0.485 100 

Biotinidase BTD 2.56 3.03 0.00329 0.505 58 

Collagen alpha-1(XII) chain COL12A1 2.33 -3.00 0.00353 0.505 68 

Ras GTPase-activating protein-binding 
protein 2 

G3BP2 2.51 2.97 0.00369 0.505 82 

Nebulette NEBL 2.36 2.93 0.00411 0.505 82 

Glutathione peroxidase 3 GPX3 2.48 2.94 0.00419 0.505 68 

Immunoglobulin heavy variable 1-3 IGHV1-3 2.25 -2.90 0.00451 0.505 91 

Acetyl-CoA carboxylase 2 ACACB 2.24 2.90 0.00475 0.505 64 

AP2-interacting clathrin-endocytosis 
protein 

KIAA1107 2.27 2.89 0.00478 0.505 72 

Zinc finger protein 419 ZNF419 2.00 2.89 0.00491 0.505 63 

Pecanex-like protein 1 PCNX1 2.33 -2.85 0.00565 0.517 54 

Alcohol dehydrogenase 6 ADH6 2.88 2.80 0.00615 0.517 78 

FRAS1-related extracellular matrix 
protein 1 

FREM1 2.34 -2.81 0.00624 0.517 59 

Zinc finger and SCAN domain-containing 
protein 32 

ZSCAN32 2.22 2.78 0.00665 0.517 63 

Nascent polypeptide-associated complex 
subunit alpha, muscle-specific form 

NACA 2.48 2.76 0.00667 0.517 100 

Zinc finger protein castor homolog 1 CASZ1 2.36 2.77 0.00693 0.517 64 

Junctophilin-3 JPH3 2.75 2.75 0.00703 0.517 77 

SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin 

subfamily A containing DEAD/H box 1 
SMARCAD1 2.31 2.77 0.00721 0.517 55 
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TABLE 17 – TOP 30 PROTEINS FOR ASSOCIATED WITH LEVEL OF COGNITIVE FUNCTION IN PARKINSON’S DISEASE – 

INTERFERING COVARIATES 

Top results from robust linear model of proteins in Parkinson’s Disease versus Montreal Cognitive 

Assessment (MoCA) score, with age and sex as covariates, ranked by p-value. Columns show, Gene 

name, t-statistic, and p-value. T-values and p-values are also displayed for Age, Sex and Disease 

duration. Proteins where covariates are associated (p<0.05) with the protein are highlighted.   

 

 MoCA Age Sex Disease duration 

Gene t-value p-value t-value p-value t-value p-value t-value p-value 

SAA1 -3.926 0.00014 0.305 0.76113 0.350 0.72662 0.623 0.53458 

IQCC 3.847 0.00023 0.147 0.88351 -0.463 0.64435 1.675 0.09750 

MAP10 -3.612 0.00050 -1.370 0.17399 0.497 0.62066 -0.444 0.65809 

GAS2L3 3.453 0.00093 0.669 0.50566 -0.408 0.68447 -0.249 0.80418 

PHTF2 -3.262 0.00171 -0.482 0.63152 2.118 0.03766 -0.738 0.46273 

ODF2L 3.206 0.00178 0.988 0.32535 -0.448 0.65502 -1.477 0.14255 

HTT -3.232 0.00186 -4.543 0.00002 -0.341 0.73436 0.739 0.46252 

TP63 3.164 0.00195 -0.624 0.53372 -2.527 0.01274 -0.455 0.65002 

SLIT3 -3.170 0.00204 0.047 0.96287 1.120 0.26532 -1.742 0.08466 

CD74 -3.156 0.00233 -3.319 0.00141 -1.866 0.06611 0.134 0.89372 

ACBD3 3.096 0.00251 1.578 0.11749 -0.258 0.79686 0.010 0.99219 

TTR 3.077 0.00254 0.180 0.85761 -2.102 0.03746 -0.891 0.37439 

PROS1 3.048 0.00279 0.728 0.46779 -0.072 0.94288 0.106 0.91572 

BTD 3.034 0.00329 -0.574 0.56773 -0.343 0.73252 1.673 0.09838 

COL12A1 -2.998 0.00353 -0.394 0.69489 1.090 0.27857 -0.502 0.61664 

G3BP2 2.968 0.00369 0.613 0.54120 0.653 0.51517 1.350 0.17985 

NEBL 2.933 0.00411 -0.529 0.59815 -0.652 0.51570 -0.935 0.35185 

GPX3 2.940 0.00419 -2.879 0.00499 -1.976 0.05129 0.273 0.78525 

IGHV1-3 -2.896 0.00451 1.120 0.26486 -0.766 0.44524 -0.313 0.75510 

ACACB 2.901 0.00475 2.073 0.04124 0.950 0.34476 -1.474 0.14434 

KIAA1107 2.889 0.00478 1.908 0.05936 -0.575 0.56688 -0.520 0.60425 

ZNF419 2.890 0.00491 0.472 0.63789 -0.571 0.56975 0.963 0.33815 

PCNX1 -2.855 0.00565 -2.153 0.03469 1.462 0.14831 -1.887 0.06332 

ADH6 2.798 0.00615 1.657 0.10051 1.299 0.19677 0.709 0.47983 

FREM1 -2.811 0.00624 -1.335 0.18589 -0.388 0.69885 0.677 0.50026 

ZSCAN32 2.784 0.00665 -1.690 0.09483 0.639 0.52478 0.024 0.98075 

NACA 2.757 0.00667 0.854 0.39444 -0.907 0.36585 -0.789 0.43151 

CASZ1 2.769 0.00693 0.457 0.64913 2.331 0.02215 1.362 0.17674 

JPH3 2.752 0.00703 -1.102 0.27316 -0.978 0.33058 0.534 0.59478 
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The top 4 significant proteins, Serum amyloid A-1 protein, IQ domain-containing protein C, 

Microtubule-associated protein 10, and GAS2-like protein 3 were plotted as scatter plots in Figure 

56. As can be seen from the plot, the correlations appear strong, but the cognitive data is skewed 

with fewer individuals with lower MoCA scores.  

  

 

FIGURE 56 – SCATTERPLOTS OF THE TOP 4 PROTEINS CORRELATING WITH MONTREAL COGNITIVE ASSESSMENT 

(MOCA) SCORE IN PATIENTS WITH PARKINSON’S DISEASE 

A) Plasma Serum amyloid A-1 protein (SAA1) levels versus MoCA score. B) Plasma IQ domain protein C 

(IQCC) levels versus MoCA score. C) Plasma Microtubule-associated protein 10 (MAP10) levels versus 

MoCA score. D) Plasma and GAS2-like protein 3 (GAS2L3) levels versus MoCA score.  

 

Owing to the large covariance between motor symptom severity and cognitive impairment, several of 

the proteins associated with cognitive performance were also associated with motor severity. These 

included Nascent polypeptide associated complex subunit alpha (NACA), Protein S (PROS1), Proline 

A B 

C D 
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rich 9 (PRR9), Serum Amyloid A1 (SAA1), and Zinc Finger Protein 419 (ZNF419). Interestingly, the most 

significant protein for both disease severity and cognitive severity was SAA1.  

3.1.4.3.3 PEPTIDE ANALYSIS 

Next, individual peptides from the proteins that were significantly correlated with MoCA were 

analysed. Again, age, sex and disease duration were added as covariates, and the statistically 

significant peptides are presented in Table 18. 33 peptides were correlating with MoCA scores in PD 

patients. The strongest correlating peptides were the EDRVIFKEMK peptide from Spectrin Repeat 

Containing Nuclear Envelope Protein 1 (SYNE1), the SPSQADINK peptide from Apolipoprotein B 

(APOB), and the ENLLDILTEPERKPDPK peptide from Cytoskeleton associated protein 2 like (CKAP2L). 

Similar to the analysis of diagnostic PD biomarkers, many of the peptides were only quantified in a 

minority of the samples. Furthermore, similar to the peptide analysis of diagnostic biomarkers, 

analysis of peptides from all detected proteins led to a heavy bias towards the most abundant plasma 

protein peptides.  
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TABLE 18 –PEPTIDES FROM PROTEINS IN PARKINSON’S DISEASE ASSOCIATED WITH COGNITIVE IMPAIRMENT 

Analysis of individual peptides from PD plasma proteins associated with cognitive impairment. 

Significant results from robust linear model of peptide levels associated with Montreal Cognitive 

Assessment (MoCA) score in Parkinson’s Disease with age, sex and disease duration as covariates. 

Columns show Gene name, Peptide sequence, uncorrected  p-value, and percentage of samples where 

the peptides were quantified.  

 

Gene Peptide sequence p-value % Quantified 

SYNE1 EDRVIFKEMK 0.001 20.0 

APOB SPSQADINK 0.003 16.9 

CKAP2L ENLLDILTEPERKPDPK 0.004 21.5 

RARS2 TTKELK 0.005 40.0 

APOA4 LGEVNTYAGDLQK 0.005 26.9 

C4BPA KPELVNGR 0.005 11.5 

C4BPA CEWETPEGCEQVLTGK 0.007 84.6 

C2CD5 VIRLSSLNLTNQALNK 0.007 10.8 

C4BPA QSTLDKEL 0.008 70.8 

TTN TISGEIDVNVIARPSAPK 0.010 11.5 

VPS13A DGSASPAVTK 0.013 40.0 

C5 DSLDQLVGGVPVTLNAQTIDVNQETSDLDPSK 0.014 14.6 

APOB SEYQADYESLR 0.016 33.1 

APOB LQDFSDQLSDYYEK 0.016 10.8 

NACA KTPAIPTPK 0.017 10.0 

IGFALS TFTPQPPGLER 0.017 27.7 

APOB IGVELTGR 0.018 100.0 

APOA4 LGPHAGDVEGHLSFLEK 0.019 16.2 

APOB VAWHYDEEK 0.022 16.2 

TTN AKSVDVTEKDPMTLECVVAGTPELK 0.025 23.1 

SOX30 LTKVPLTPVPTK 0.027 13.8 

IGFALS NLPEQVFR 0.028 14.6 

CMYA5 ESELSKGGSVDITKETVK 0.028 6.9 

MAP3K13 VKTQMSLGKLCVEER 0.032 25.4 

IGFALS SFEGLGQLEVLTLDHNQLQEVK 0.037 20.0 

APOB FSHVEK 0.042 30.0 

APOB QGFFPDSVNK 0.043 55.4 

APOA4 EAVEHLQK 0.044 75.4 

CFAP44 WELMMKTK 0.046 51.5 

APOA4 IDQNVEELKGR 0.047 17.7 

IGFALS DLHFLEELQLGHNR 0.047 13.8 

APOB EVYGFNPEGK 0.048 85.4 

APOB NYQLYK 0.049 85.4 
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3.1.4.3.4 SEX-SPECIFIC ANALYSIS 

As with the analysis of the diagnostic biomarkers, sex-specific analysis was conducted for the 

association between MoCA and protein levels (Table 19). Generally, a larger number of proteins 

significantly correlating with cognitive score was seen in the male PD cohort. This was not surprising 

given the larger number of male PD patients in the cohort, together with a greater spread in MoCA 

scores in the male patient cohort. The top three most significant proteins for females and males 

respectively are shown in Figure 57.  It was noted that some of the proteins associated MoCA in the 

full PD cohort were more pronounces in the female cohort (such as IQCC), whereas others (such as 

MAP10 and SAA1) were more pronounced in the male cohort.  
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TABLE 19 – TOP 30 PROTEINS ASSOCIATED WITH LEVEL OF COGNITIVE FUNCTION IN PARKINSON’S DISEASE – SEX-
SPECIFIC ANALYSIS 

Top results from robust linear model of proteins in Parkinson’s Disease versus Montreal Cognitive 

Assessment (MoCA) score, with age and disease duration as covariates, ranked by p-value. Females 

and males analysed separately. Columns show Gene name, p-value, and number of samples quantified.   

Females  Males  

Gene p-value n quantified Gene p-value n quantified 

IQCC 0.00028 38 COL6A5 0.00009 59 

CLIP4 0.00029 40 TP63 0.00017 69 

DPP3 0.00037 32 CCT4 0.00019 46 

ARHGAP45 0.00055 50 ODF2L 0.00027 60 

ZRANB3 0.00075 31 FAM111B 0.00031 40 

PDZD2 0.00088 36 IFT81 0.00033 61 

DNAJC13 0.00104 37 ACOT12 0.00041 56 

MROH2B 0.00108 38 MAP10 0.00051 50 

INPP4B 0.00126 56 BTD 0.00064 45 

SLU7 0.00128 30 PHTF2 0.00068 39 

ATG16L1 0.00148 44 GLCCI1 0.00091 69 

MED1 0.00207 48 TEX9 0.00093 43 

NEK7 0.00207 40 RYBP 0.00100 54 

PRPF31 0.00218 32 BRIP1 0.00100 39 

ARAP2 0.00276 32 SOX30 0.00115 67 

RAP1GDS1 0.00288 37 CD74 0.00115 39 

PICALM 0.00313 44 ADH6 0.00127 57 

FLT4 0.00338 35 COL12A1 0.00130 51 

RUFY2 0.00340 31 SMC3 0.00155 46 

NIPA1 0.00352 40 SEMA4C 0.00166 41 

F8 0.00525 41 TTR 0.00170 72 

SUSD1 0.00535 46 TAS1R3 0.00191 72 

ANKRD45 0.00592 41 FREM3 0.00191 45 

EML4 0.00655 36 COLEC12 0.00196 49 

NRCAM 0.00725 39 SAA1 0.00199 69 

XRRA1 0.00739 56 GPX3 0.00208 49 

AHR 0.00742 45 IGHV1-3 0.00233 66 

YEATS2 0.00777 33 ACBD3 0.00238 59 

RGS22 0.00785 33 NRIP1 0.00238 48 

MGME1 0.00807 30 MYH1 0.00253 40 
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FIGURE 57 - SCATTERPLOTS OF THE TOP 3 PROTEINS FOR MALES (BLUE) AND FEMALES (RED) RESPECTIVELY 

CORRELATING WITH MONTREAL COGNITIVE ASSESSMENT (MOCA) SCORE IN PATIENTS WITH PARKINSON’S DISEASE 

Top) The 3 most significant proteins for female PD patients that correlate with MoCA.  IQ Domain-

Containing Protein C (IQCC),  CAP-Gly domain containing linker protein family member 4 (CLIP4), 

Dipeptidyl peptidase 3 (DPP3). Bottom) The 3 most significant proteins for male PD patients that 

correlate with MoCA. Collagen type VI alpha 5 chain (COL6A5), Tumor protein p63 (TP63), Chaperonin 

containing TCP1 subunit 4 (CCT4).  Blue data points represent male patients, red data points represent 

female patients.  

 

3.1.4.3.5 SURVIVAL ANALYSIS 

Longitudinal MoCA scores were available for nearly all PD patients, but the time points were highly 

variable, and the plasma samples used were from different time points for each patient. Therefore, 

linear models were fit for cognitive decline of each patient between time of diagnosis and their last 

available MoCA score. MoCA<26 and MoCA<21 were set as thresholds for when they would convert 

to PDMCI and PDD respectively. Subsequently survival analyses with cox regression were performed 

for each protein to determine the hazard ratio of cognitively unimpaired PD patients converting to 
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MCI and dementia over time (Figure 58 and Figure 59). Details on how the model was constructed are 

outlined in the methods chapter (section 2.1.4.3). The survival curves and the most significant proteins 

for conversion to PDMCI and PDD respectively are listed in Table 20 and Table 21.  

 

 

FIGURE 58 – SURVIVAL CURVE OF PARKINSON’S DISEASE (PD) PATIENTS OVER TIME THAT DEVELOP MILD COGNITIVE 

IMPAIRMENT (PDMCI) 

Survival plot for all PD patients from the discovery study and their survival probability of declining to a 

Montreal Cognitive Assessment (MoCA) score of <26 over time. Time scale shows years from PD 

diagnosis. Trendline shows mean survival probability and 95% confidence interval.  
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Table 20 – Cox regression of Parkinson’s Disease developing mild cognitive impairment 

Cox regression of plasma protein levels in Parkinson’s Disease patients versus risk of declining 

cognitively to Montreal Cognitive Assessment <26, with age and sex as covariates. Columns show 

protein gene name, Cox coefficient, Hazard ratio, standard error, z-statistic, and p-value.   

Conversion to MoCA <26 (equivalent to PD-MCI) 

Gene coef Hazard ratio exp(coef) se(coef) z p-value 

PROS1 -5.521 0.004 1.546 -3.571 0.00036 

TERF2 -2.593 0.075 0.736 -3.523 0.00043 

OBSCN -2.813 0.060 0.810 -3.475 0.00051 

PROC -4.469 0.011 1.299 -3.441 0.00058 

C2CD5 3.966 52.798 1.171 3.387 0.00071 

EMILIN2 6.158 472.304 1.902 3.237 0.00121 

INVS -5.101 0.006 1.586 -3.217 0.00130 

TFAP2D -1.302 0.272 0.413 -3.155 0.00161 

NWD2 2.657 14.249 0.853 3.114 0.00184 

UFL1 -2.501 0.082 0.813 -3.076 0.00210 

LUM -3.918 0.020 1.285 -3.049 0.00230 

SNRPD2 -2.907 0.055 0.959 -3.031 0.00244 

HEATR1 2.420 11.246 0.810 2.987 0.00282 

COL11A2 -3.460 0.031 1.164 -2.973 0.00295 

CHD4 1.742 5.707 0.604 2.886 0.00390 

LRG1 -3.186 0.041 1.107 -2.878 0.00401 

ACACA 2.401 11.033 0.844 2.845 0.00444 

KRT9 -0.989 0.372 0.348 -2.841 0.00450 

RNF213 -2.731 0.065 0.962 -2.838 0.00454 

CNN2 -2.282 0.102 0.805 -2.833 0.00461 

PRKG2 -2.741 0.065 0.969 -2.827 0.00470 

SLIT3 3.802 44.782 1.349 2.818 0.00484 

ZNF407 -2.047 0.129 0.731 -2.802 0.00508 

PDAP1 6.634 760.580 2.373 2.796 0.00518 

IHO1 3.309 27.355 1.195 2.768 0.00564 

DNAH1 -1.779 0.169 0.643 -2.765 0.00569 

UBN2 4.554 95.000 1.654 2.754 0.00589 

ARMCX1 -3.289 0.037 1.211 -2.716 0.00660 

XRCC6 3.305 27.241 1.217 2.715 0.00663 

ENTPD7 1.994 7.344 0.737 2.707 0.00680 
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FIGURE 59 – SURVIVAL CURVE OF PARKINSON’S DISEASE PATIENTS OVER TIME THAT DEVELOP MILD COGNITIVE 

IMPAIRMENT (PDMCI) 

Survival plot for all PD patients from the discovery study and their survival probability of declining to a 

Montreal Cognitive Assessment (MoCA) score of <21 over time. Time scale shows years from PD 

diagnosis. Trendline shows mean survival probability and 95% confidence interval.  
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TABLE 21 – COX REGRESSION OF PARKINSON’S DISEASE DEVELOPING DEMENTIA LEVEL COGNITIVE IMPAIRMENT 

Cox regression of plasma protein levels in Parkinson’s Disease patients versus risk of declining 

cognitively to Montreal Cognitive Assessment <21, with age and sex as covariates. Columns show 

protein gene name, Cox coefficient, Hazard ratio, standard error, z-statistic, and p-value.   

 

Conversion to MoCA <21 (equivalent to PD-D) 

Gene coef Hazard ratio exp(coef) se(coef) z p-value 

OBSCN -3.645 0.026 0.982 -3.711 0.00021 

TERF2 -3.201 0.041 0.930 -3.442 0.00058 

UFL1 -3.942 0.019 1.151 -3.426 0.00061 

GFPT2 -2.406 0.090 0.707 -3.402 0.00067 

PROS1 -6.410 0.002 1.924 -3.332 0.00086 

PREX2 -6.021 0.002 1.818 -3.312 0.00093 

G3BP2 -2.875 0.056 0.876 -3.284 0.00102 

RYR3 -3.502 0.030 1.086 -3.225 0.00126 

H2AW -6.594 0.001 2.060 -3.201 0.00137 

FASLG -4.786 0.008 1.501 -3.189 0.00143 

MYO18A 2.385 10.862 0.751 3.175 0.00150 

KMT2D 3.135 22.987 0.991 3.163 0.00156 

CCDC150 -2.838 0.059 0.918 -3.091 0.00199 

LAMA3 5.318 203.991 1.725 3.084 0.00204 

PDE6B 3.631 37.764 1.203 3.018 0.00255 

RNF213 -3.683 0.025 1.224 -3.010 0.00262 

COL11A2 -4.447 0.012 1.479 -3.007 0.00263 

TAOK2 -3.285 0.037 1.094 -3.003 0.00267 

JPH3 -2.576 0.076 0.861 -2.991 0.00278 

C5 -6.903 0.001 2.344 -2.945 0.00323 

UBR1 -3.424 0.033 1.171 -2.923 0.00347 

DSCAM -3.907 0.020 1.343 -2.909 0.00363 

CBX3 8.604 5455.766 2.961 2.906 0.00366 

PRR14L -4.872 0.008 1.685 -2.891 0.00384 

MGAT5 -2.194 0.111 0.759 -2.890 0.00386 

CASZ1 -5.225 0.005 1.815 -2.879 0.00399 

IBTK 2.224 9.248 0.777 2.861 0.00422 

SYT13 -3.688 0.025 1.289 -2.860 0.00423 

ERICH3 -2.339 0.096 0.821 -2.848 0.00440 

CPN2 6.099 445.291 2.152 2.834 0.00460 
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Cognitive decline in PD is believed to begin with subjective cognitive decline, followed by mild 

cognitive decline, and finally dementia. PD-MCI is seen as a prodromal stage of PDD, and a major risk 

factor. Hence, individuals that develop MCI rapidly also tend to decline further and develop dementia. 

It therefore stands to reason the proteins which reflect conversion to PDMCI, also reflect PDD 

conversion.  Therefore, the proteins that were significant for both models in Table 22 were 

summarised, and many of the top proteins did indeed overlap.  

Optimal cut-off points were established for the top 3 proteins from the cox regressions, Vitamin K-

dependent protein S, Telomeric repeat-binding factor 2, and Obscurin, and survival curves were 

plotted for each of them as a visual representation of how well they predicted development of PDMCI 

and PDD respectively (Figure 60).  

Visually, all three of these proteins appear to discriminate well between PD patients that decline fast 

and slow cognitively, both when the threshold is set to when they develop dementia and when they 

develop MCI. Moreover their hazard ratio is quite large (Table 22), which makes them promising 

biomarker candidates differentiate between fast and slow cognitively declining patients. 

If a protein level reflects cognitive decline in an individual with PD, it is likely that it also reflects 

cognitive ability at a cross sectional level at the same time. Therefore, it was investigated which 

proteins would reflect both cognitive performance as well as cognitive decline (Table 23).  
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TABLE 22 – COX REGRESSION OF PARKINSON’S DISEASE DEVELOPING MILD COGNITICE IMPAIRMENT OR DEMENTIA – 

OVERLAPPING PROTEINS 

Cox regression of plasma protein levels in Parkinson’s Disease patients versus risk of declining 

cognitively to Montreal Cognitive Assessment <26 and <21, with age and sex as covariates. Columns 

show protein gene name, Cox coefficient (coef), Hazard ratio (exp(coef)), standard error (se(coef)), and 

p-value. Proteins with p-value <0.01 for both conversion to PDMCI and PDD are shown.  

  Conversion to MoCA <26 
(equivalent to PD-MCI) 

Conversion to MoCA <21 
(equivalent to PD-D) 

Protein Gene coef exp(coef) se(coef) p-value coef exp(coef) se(coef) p-value 

Vitamin K-dependent 
protein S 

PROS1 -5.52 0.004 1.55 0.00036 -6.41 0.002 1.92 0.00086 

Telomeric repeat-
binding factor 2 

TERF2 -2.59 0.075 0.74 0.00043 -3.20 0.041 0.93 0.00058 

Obscurin OBSCN -2.81 0.060 0.81 0.00051 -3.64 0.026 0.98 0.00021 

E3 UFM1-protein ligase 
1 

UFL1 -2.50 0.082 0.81 0.00210 -3.94 0.019 1.15 0.00061 

Lumican LUM -3.92 0.020 1.29 0.00230 -5.02 0.007 1.78 0.00470 

Collagen alpha-2(XI) 
chain 

COL11A2 -3.46 0.031 1.16 0.00295 -4.45 0.012 1.48 0.00263 

Acetyl-CoA carboxylase 
1 

ACACA 2.40 11.033 0.84 0.00444 3.30 27.004 1.24 0.00764 

E3 ubiquitin-protein 
ligase RNF213 

RNF213 -2.73 0.065 0.96 0.00454 -3.68 0.025 1.22 0.00262 

Ectonucleoside 
triphosphate 

diphosphohydrolase 7 
ENTPD7 1.99 7.344 0.74 0.00680 2.34 10.394 0.86 0.00670 

Down syndrome cell 
adhesion molecule 

DSCAM -2.97 0.051 1.12 0.00796 -3.91 0.020 1.34 0.00363 

Serine/threonine-
protein kinase TAO2 

TAOK2 -2.33 0.098 0.88 0.00836 -3.28 0.037 1.09 0.00267 

Biotinidase BTD -3.38 0.034 1.28 0.00843 -4.18 0.015 1.57 0.00794 

PH and SEC7 domain-
containing protein 3 

PSD3 2.52 12.407 0.96 0.00850 3.45 31.557 1.32 0.00884 

Chromobox protein 
homolog 3 

CBX3 5.21 183.841 1.99 0.00876 8.60 5455.766 2.96 0.00366 
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FIGURE 60 – SURVIVAL CURVES OF TOP 3 CANDIDATES THAT PREDICT COGNITIVE DECLINE IN PARKINSON’S DISEASE 

Cox regression survival curves for (A,B) Vitamin K-dependent protein S (PROS1), (C,D) Telomeric repeat-

binding factor 2 (TERF2), (E,F) and Obscurin (OBSCN), with risk for Parkinson’s Disease (PD) patients to  

develop Mild Cognitive Impairment (MCI) equivalent Montreal Cognitive Assessment (MoCA) <26 or 

Dementia equivalent MoCA <21 over time. High and Low protein levels set by optimal cut-off. Trendline 

shows mean survival probability and 95% confidence interval. 

A B 

C D 

E F 
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TABLE 23 – COMBINED TOP CANDIDATE MARKERS FOR PARKINSON’S DISEASE (PD) COGNITIVE DECLINE AND CROSS 

SECTIONAL COGNITIVE IMPAIRMENT 

Plasma protein levels that both reflect risk of Parkinson’s Disease to develop mild cognitive impairment 

(MCI)  and dementia (D) from a cox regression model, as well as cross sectional cognitive performance 

level in PD patients using Montreal Cognitive Assessment (MoCA). Age and sex were used as covariates, 

p<0.05 considered significant.   

 
MoCA correlation PD-MCI survival PD-D survival 

Gene t-value p-value coef p-value coef p-value 

CD74 -3.16 0.0023 3.89 0.0084 4.47 0.0186 

PROS1 3.05 0.0028 -5.52 0.0004 -6.41 0.0009 

BTD 3.03 0.0033 -3.38 0.0084 -4.18 0.0079 

JPH3 2.75 0.007 -1.66 0.0178 -2.58 0.0028 

SMARCAD1 2.77 0.0072 -2.68 0.0234 -3.71 0.028 

C2CD5 -2.73 0.0075 3.97 0.0007 3.57 0.0275 

APOA4 2.63 0.0095 -2.40 0.0149 -3.32 0.0063 

BOD1L1 -2.6 0.0103 1.60 0.0180 1.83 0.0365 

ERICH3 2.5 0.0142 -1.55 0.0301 -2.34 0.0044 

PRR14L 2.24 0.0279 -2.82 0.0363 -4.87 0.0038 

XRCC6 -2.21 0.0300 3.31 0.0066 3.97 0.0113 

UBR4 2.17 0.0318 -1.92 0.0259 -3.04 0.0059 

TERF2 2.16 0.0324 -2.59 0.0004 -3.20 0.0006 

CCDC136 2.14 0.0354 -1.96 0.0153 -2.29 0.0101 

KMT2D -2.12 0.0364 1.96 0.0179 3.14 0.0016 

KMT2B 2.12 0.0365 -1.57 0.0407 -2.91 0.0092 

ARMCX1 2.05 0.0441 -3.29 0.0066 -3.03 0.0231 

C5 2.03 0.0448 -4.28 0.0119 -6.90 0.0032 

UFL1 2.02 0.0455 -2.50 0.0021 -3.94 0.0006 

MYO15A -1.99 0.0492 2.59 0.0271 3.30 0.0242 

 

It was noticed that many of the proteins that correlated with MoCA score, also reflected cognitive 

decline over time. As these overlapping proteins reflect cognitive impairment both at the time of blood 

draw as well as over time, they are likely to reflect underlying pathology associated with cognitive 

function in PD patients.  

The sex-specific analysis was also performed for the cox regressions for cognitive decline. Again, a 

larger number of proteins significantly correlating with cognitive score was seen in the male PD cohort. 

This could be attributed to the nature of the male PD cohort, which has a larger number of patients, 

and a greater distribution of MoCA scores. Many of the proteins that were associated with cognitive 
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decline in the whole PD cohort, such as LUM, PROS1, and TERF2, were predominantly associated with 

cognitive decline in male PD patients. The results are summarised in Table 24.  

Individual peptides were analysed from the proteins that were significantly associated with conversion 

to both PDMCI and PDD. The ceruloplasmin (CP) peptide IYHSHIDAPK and the hemopexin (HPX) 

peptide GEVPPR were associated with lower risk of developing cognitive impairment and dementia (p 

< 0.05), and the Glycogen Phosphorylase L (PYGL) peptide ISLSNESNK was associated with higher risk 

of developing cognitive impairment and dementia (p < 0.05).  
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TABLE 24 – COX REGRESSION OF PARKINSON’S DISEASE DEVELOPING MILD COGNITICE IMPAIRMENT OR DEMENTIA – 

SEX-SPECIFIC ANALYSIS 

Cox regression of plasma protein levels in Parkinson’s Disease patients, females and males separately, 

versus risk of declining cognitively to Montreal Cognitive Assessment <26 and <21, with age and sex as 

covariates. Columns show protein gene name, Hazard ratio (exp(coef)), and p-value. Top results for 

females and males separately, for both conversion to PDMCI and PDD are shown.  

 

                                  Females PDMCI conv Females PDD conv  Males PDMCI conv Males PDD conv 

Gene HR p-value HR p-value Gene HR p-value HR p-value 

PCNX1 3160.121 0.00014 1122.055 0.05412 MYO18A 200.2177 0.00001 590.6372 0.00002 

PHF21A 0.000305 0.00015 0.002178 0.26949 LUM 0.000101 0.00001 2.45E-05 0.00004 

ROCK2 0.005107 0.00059 0.002197 0.00273 PROS1 0.000417 0.00007 0.00052 0.00100 

B4GALNT4 62.22995 0.00091 53.95796 0.08873 TERF2 0.026322 0.00008 0.013219 0.00007 

KDM3B 279.4508 0.00102 4104.23 0.10471 DSCAM 0.000572 0.00011 0.000368 0.00054 

PRRC2C 162.0425 0.00118 386.6055 0.03879 ANK2 36.64035 0.00026 192.1883 0.00008 

ARHGAP23 1337.425 0.00124 203.1372 0.08725 UFL1 0.015625 0.00030 0.001025 0.00017 

ZNF407 0.02297 0.00147 0.048524 0.05700 COL11A2 0.005711 0.00036 0.005282 0.00241 

ODF2 0.002177 0.00240 0.436468 0.86242 OBSCN 0.018573 0.00039 0.00842 0.00065 

IQCC 0.018659 0.00391 0.000583 0.03211 SERPING1 0.000721 0.00046 0.000274 0.00163 

RIC1 1416.898 0.00437 19542.6 0.01312 NEK3 0.016137 0.00053 0.007317 0.00077 

IGKV2-28 15.17409 0.00449 9.172528 0.08190 EMILIN2 173864 0.00059 7260141 0.00137 

STYXL2 0.012078 0.00492 0.325606 0.69442 INVS 7.99E-05 0.00069 0.000422 0.01484 

UBN2 4645.712 0.00504 40.90032 0.25928 PREX2 0.001984 0.00070 0.000269 0.00068 

V162 21.62524 0.00578 8.78359 0.17520 LRG1 0.004893 0.00071 0.013069 0.03259 

ACSBG2 394.0366 0.00638 27.79217 0.29089 DZIP1 25.84563 0.00073 8.293835 0.08252 

SIPA1L1 60.06817 0.00645 0.993944 0.99793 PTPRN 0.000923 0.00073 0.000146 0.00242 

AGAP2 0.005035 0.00672 0.007086 0.08431 IDS 0.011989 0.00077 0.003677 0.00070 

CCNT2 0.041591 0.00699 0.037453 0.22852 ADGRB3 485.46 0.00090 1340.573 0.00110 

SBNO1 27.87462 0.00718 2.672091 0.53533 AHNAK2 60.26208 0.00093 90.16858 0.00364 

FAT4 0.044613 0.00773 0.136077 0.22207 SYT13 0.00953 0.00104 0.005761 0.00365 

GAD1 153.2922 0.00787 43.93959 0.15609 PROC 0.005779 0.00106 0.027302 0.07585 

PRKG2 0.030978 0.00834 0.101807 0.38207 TCF20 0.036194 0.00128 0.044048 0.01302 

CUX2 0.032675 0.00873 0.058919 0.07063 BTD 0.000809 0.00178 1.11E-05 0.00148 

DSCAML1 0.079254 0.00882 0.065803 0.08045 ARMCX1 0.007314 0.00184 0.005366 0.00491 

COL5A2 1192.963 0.00908 0.051329 0.54800 CACNA1D 298.502 0.00189 36.01278 0.11141 

EFCAB5 876.8873 0.01045 165564.1 0.00690 ACACA 25.00983 0.00196 89.64027 0.00364 

XRCC6 227.6774 0.01054 9.287929 0.27912 MMP1 0.069282 0.00198 0.033476 0.00411 

IQGAP3 0.04874 0.01097 0.093837 0.17807 SNRPD2 0.02461 0.00199 0.015585 0.01373 

V2242 0.0344 0.01132 0.108416 0.29899 HPX 0.000453 0.00208 0.000277 0.00700 
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To summarise, several plasma proteins were associated with cognition in PD patients. The proteomic 

data was analysed with cognitive decline both cross sectionally and longitudinally. The PD patients 

were subdivided into those without dementia, those with mild cognitive impairment, and those with 

dementia, based on conventional cut-off. There was no apparent separation in the proteome data 

using PCA, and t-SNE plots, and individual plasma proteins that were be associated with cognition 

were analysed. Following cross-sectional analysis using age, sex, and disease duration as covariates, 

the top hits were ranked by p-value, and highlighted the ones that were significantly influenced by 

demographic covariates.  

Next, proteins associated with earlier conversion to cognitive impairment and dementia after PD 

diagnosis were studied.  Many proteins were significantly associated with both faster decline to 

cognitive impairment and dementia after correcting for age and sex. Interestingly, these candidate 

markers also displayed high hazard ratio. These proteins could therefore potentially be good 

predictors for cognitive decline if validated in a newly diagnosed PD cohort. Moreover, 20 candidate 

markers were significant for both cross sectional cognitive score, as well as longitudinal cognitive 

decline.    

Sex specific analysis revealed several differences in proteins associated with PD cognitive impairment 

and decline, with a larger number of significant results for the male patients.  

The top candidate biomarkers for both cognitive performance and cognitive decline were selected for 

the verification study. 
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3.2 Verification study 

The discovery study yielded many candidate markers that either reflected PD diagnosis, PD motor 

severity, cognitive impairment, or reflected cognitive decline. The protein IDs used in the analysis were 

found at a 5% FDR proteome database matching, which warrants verification and validation 

experiments to gain more confidence in the results. Moreover, the samples were heavily manipulated 

prior to analysis (depletion, fractionation, and labelling), which introduced many technical covariates. 

Although many of these variables were controlled for, the final peptide sample analysed on the mass 

spectrometer was several processing steps away from whole blood plasma. However, proceeding 

straight to an antibody-based validation method, such as an immunoassay, would introduce a large 

technical discrepancy, where new technical variables such as antibody binding, antibody specificity, 

matrix effects etc. would be introduced. Rather than a validation study, a technical verification step 

on the mass spectrometer is used here, where only high confidence peptides are quantified with a 

targeted approach. Once the peptides levels are verified and are deemed reliably differentially 

expressed in PD plasma samples, one can proceed with validating the candidate markers with an 

immunoassay. Hence, Parallel Reaction Monitoring (PRM) was used, a targeted mass spectrometric 

technique where several specific peptides from several proteins can be simultaneously monitored and 

quantified in samples. Moreover, to avoid technical covariates as wherever possible, it was decided 

to run peptide sample as neat as possible, without any protein depletion, labelling, or fractionation of 

the samples as was done for the discovery study.  

The verification study overview is shown in Figure 61. In brief, a mixed plasma sample was used to set 

up the method and identify which peptides were good candidates and could be repeatedly quantified. 

Once these peptides were selected, the study samples, along with Quality Control samples every 10 

injections were analysed on the mass spectrometer. Similar to in the discovery study, several pre-

processing steps were implemented on the raw data before ending up with the final dataset that was 

used for analysis. Finally, it was investigated how well the verified proteins correlated with the results 

from the discovery study as well as their performance as biomarkers.  
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3.2.1 Study overview 

 

FIGURE 61 – WORKFLOW SCHEMATIC OF VERIFICATION STUDY 
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3.2.2 Method optimisation 

Once the candidate biomarkers were identified in the discovery study, they needed to be narrowed 

down to a smaller set to be validated on the mass spectrometer using PRM. The top 70 candidates 

from the discovery study were selected, half of which were from the PD diagnosis and motor severity 

analyses, and half were selected from the cognition performance and cognitive decline analyses. A 

plasma mix sample composed of 8 PD samples and 8 healthy controls were used for the PRM setup 

and testing. One neat sample and one sample depleted from Albumin and IgG were used for the 

testing.  

 

FIGURE 62 – SCHEMATIC OVERVIEW OF SAMPLE PREPARATION FOR THE VERIFICATION STUDY 
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The method optimisation on the mass spectrometer was performed by the Centre of Excellence for 

Mass Spectrometry (CEMS)-Denmark Hill Proteomics Facility. Peptides were selected if they were 

unique to the protein, within the mass range of the instrument, fully tryptic, not susceptible to amino 

acid modifications, and had doubly or triply charged precursor ions [138]. 12 of the candidate proteins 

had at least 1 high confidence peptide that was repeatedly and reliably quantified. These were 

Apolipoprotein A-IV, Apolipoprotein C-III, Complement component C9, Plastin-2, Lumican, Xaa-Pro 

dipeptidase, Vitamin K-dependent protein S, Serum amyloid A-1 protein, L-selectin, Transforming 

growth factor-beta-induced protein ig-h3, Thrombospondin-1, and E3 ubiquitin-protein ligase 

TRIM33. The details on these proteins from the discovery study are summarised in Table 25. The list 

of peptides is shown in Table 26. It was noticed that most detected proteins, except for TRIM33, had 

a high confidence in the database matching in the discovery study. There was no difference in which 

peptides could be quantified with PRM between the albumin and IgG depleted sample and the 

undepleted sample. Therefore, it was decided not to deplete samples from albumin and IgG, for the 

quantified protein levels in the sample best reflect the relative protein composition of whole plasma.  

 

  



163 
 

TABLE 25 – THE 12 QUANTIFIABLE CANDIDATE BIOMARKER PROTEINS USING PARALLEL REACTION MONITORING ON 

PLASMA, PROTEIN DATA FROM DISCOVERY STUDY 

Table showing the 12 biomarker candidates from the discovery study that could reliably be quantified 

using parallel reaction monitoring. Columns show protein information from the discovery study, 

including Gene name, False Discovery Rate (FDR) confidence estimation, Accession number, q-value, 

Protein coverage %, number of peptides identified, number of peptide spectral matches (PSMs), 

number of protein unique peptides, and results from the biomarker analysis.  

Protein name Gene 
FDR 

Conf. 
Access-

ion 
max q-
value 

Coverage 
% 

n 
Peptides 

n 
PSM

s 

n 
Protein 
Unique 

Peptides 

Biomarker 
purpose 

Apolipoprotein A-IV APOA4 High P06727 0 100 82 4297 81 

Cognitive 
Decline and 

Cognitive 
Impairment 

Apolipoprotein C-III APOC3 High P02656 0 81 18 641 18 PD diagnostic 

Complement 
component C9 

C9 High P02748 0 98 86 1828 83 PD diagnostic 

Plastin-2 LCP1 High P13796 0.007 79 67 314 62 PD diagnostic 

Lumican LUM High P51884 0 74 28 571 28 
Cognitive 
Decline 

Xaa-Pro dipeptidase PEPD High P12955 0.005 72 40 317 40 PD diagnostic 

Vitamin K-dependent 
protein S 

PROS1 High P07225 0 81 73 1125 71 

Cognitive 
Decline and 

Cognitive 
Impairment 

Serum amyloid A-1 
protein 

SAA1 High P0DJI8 0 82 17 338 8 
Motor and 
Cognitive 

Impairment 

L-selectin SELL High P14151 0.005 55 29 232 29 PD diagnostic 

Transforming growth 
factor-beta-induced 

protein ig-h3 
TGFBI High Q15582 0.005 81 70 319 70 

PD diagnostic 
and Motor 
Impairment 

Thrombospondin-1 THBS1 High P07996 0 87 139 438 135 PD diagnostic 

E3 ubiquitin-protein 
ligase TRIM33 

TRIM33 Low Q9UPN9 0.299 61 81 284 81 
Motor 

Impairment 
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TABLE 26 – THE 12 QUANTIFIABLE CANDIDATE BIOMARKER PROTEINS USING PARALLEL REACTION MONITORING ON 

PLASMA, LIST OF PEPTIDES 

Table showing the 12 biomarker candidates from the discovery study that could reliably be quantified 

using targeted mass spectrometry, with the peptides for each protein that could be reliably quantified.   

 

Protein Gene name Peptide 

Apolipoprotein A-IV APOA4 

EAVEHLQK 

IDQNVEELK 

IDQTVEELR 

ISASAEELR 

LEPYADQLR 

Apolipoprotein C-III APOC3 DALSSVQESQVAQQAR 

Complement component C9 C9 

AIEDYINEFSVR 

DVVLTTTFVDDIK 

TEHYEEQIEAFK 

Plastin-2 LCP1 VYALPEDLVEVNPK 

Lumican LUM 
ILGPLSYSK 

SLEDLQLTHNK 

Xaa-Pro dipeptidase PEPD AVYEAVLR 

Vitamin K-dependent protein S PROS1 
NNLELSTPLK 

SQDILLSVENTVIYR 

Serum amyloid A-1 protein SAA1 
FFGHGAEDSLADQAANEWGR 

GPGGVWAAEAISDAR 

L-selectin SELL AEIEYLEK 

Transforming growth factor-beta-induced 
protein ig-h3 

TGFBI 
QHGPNVCAVQK 

VLTDELK 

Thrombospondin-1 THBS1 GTLLALER 

E3 ubiquitin-protein ligase TRIM33 TRIM33 GAIENLLAK 
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3.2.3 PRM data pre-processing 

Once the peptides were selected, all the study samples were processed and run on the mass 

spectrometer. A QC sample along with a blank sample was injected after each 10 study samples. All 

samples were run in duplicate. Peptide and fragment ion peaks were identified in the Skyline software 

automatically (and double checked manually), and peak areas were exported.  

The pre-processing stages of the raw output data were similar to the discovery study. Firstly, the 

protein distributions (mean peptide peak area) of each of the 12 targeted proteins were visualised 

(Figure 63). A right skew of the quantification data was observed for all proteins, which looked more 

normally distributed after log10 transforming the data. This is in line with what was observed in the 

discovery data.  

 

 

FIGURE 63 – PROTEIN LEVEL DISTRIBUTIONS OF THE 12 QUANTIFIED PROTEINS USING PARALLEL REACTION 

MONITORING 

A) Density plots representing distribution of protein levels across all samples for each of the 12 

proteins quantified using parallel reaction monitoring (PRM). B) Log-transformed protein levels across 

all samples for each of the 12 proteins quantified using parallel reaction monitoring (PRM). 
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When performing the data quality assessment, a change in signal intensity was observed over time 

when the samples were run on the mass spectrometer. Figure 64A shows the variation in quantified 

values against the run order over time, and the change was observed in all samples, including quality 

controls. This was closer examined in the Skyline software (Figure 64B), where 5 technical batches 

were identified based on minor shifts in retention time and peak areas. This shift generally did not 

appear to alter which fragment ion peaks that were quantified, nor their relative abundance to each 

other. It was however noticed that the peak area decreased with run order both for replicate 1 (first 

half of samples) and replicate 2 (second half of samples). Around 80 of the samples for the second 

replicate, labelled as Batch 3/Replicate 2b were analysed again for replicate 2 owing to their exceeding 

low peak areas compared with the rest of the samples.  

To further investigate this shift over time for the two replicates, the log transformed peak areas were 

plotted against run order, both for all samples and quality controls separately, with the observed 

technical batches were highlighted (figure 65). It was noticed that there indeed was a general drop in 

quantified peak area over time for both replicate 1 (batch 1 and 2) and replicate 2 (batch 4 and 5), 

with a marked difference with lower quantified peak areas for batch 3. This was further confirmed 

when only plotting QC samples versus run order, as these samples should theoretically have identical 

peptide levels (figure 65B). 

It was investigated whether the change in peptide abundances was due to total peptide abundance, 

as this was a technical variable responsible for variation in peptide quantities in the discovery study. 

The total ion count was plotted versus run order, which showed a similar trend to the sample 

quantifications (figure 66). Hence, all peak areas were corrected to the total ion count for each sample. 

This would additionally result in a similar correction to what was performed in the discovery study, 

where the total protein abundance across all samples was normalised and make the two data sets 

more comparable. 
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FIGURE 64 – TECHNICAL BATCH EFFECTS AND DIMINISHING PEAK AREAS OVER TIME IN PARALLEL REACTION 

MONITORING 

A) Scatterplots of log transformed peptide abundances versus run order. All samples, Parkinson’s 

Disease (PD), Healthy Controls (HC), and quality controls (QC) plotted. B) Batch effects and replicates 

in Skyline software. A representative protein (Apolipoprotein A-IV) displayed. Lower graph showing 

retention time versus run order, upper graph shows peak areas vs run order. Replicates 1 and 2 

indicated. Replicate 2b were poor quality samples that were rerun.   

 

A 
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FIGURE 65 – LOG10 TRANSFORMED PEPTIDE PEAK AREAS AGAINST RUN ORDER IN PARALLEL REACTION MONITORING 

STUDY, TECHNICAL BATCHES INDICATED 

A) Scatterplots of log transformed peptide abundances versus run order. All samples, Parkinson’s 

Disease (PD), Healthy Controls (HC), and quality controls (QC), plotted. Observed technical batches 

highlighted. B) Scatterplots of log transformed peptide abundances versus run order. Quality controls 

(QC) only plotted. Observed technical batches highlighted.  

A 

B 
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FIGURE 66 – TOTAL ION COUNT AGAINST RUN ORDER 

Log10 total ion count for each sample versus run order in the parallel reaction monitoring experiment.  

Once all the peak areas were normalised to total ion counts, they were plotted again, and a reduced 

variation was observed against sample run order, and the dynamic range of each peptide was 

generally decreased (Figure 67A). Although reduced, there was still a variation in sample abundance 

against run order and technical batches that needed to be corrected for further. It was noticed the 

quality control (QC) sample, which was the same sample run every time, displayed variation over time 

similar to what was observed in all study samples. Therefore, the total ion normalised peak 

abundances were additionally corrected to the QCs. Unlike the discovery study, an internal QC was 

not available that was run simultaneously with the study samples. Instead, a QC sample as well as a 

blank sample was run approximately every 10 samples. A relatively tight-fitting local polynomial 

regression fitting (loess) curve was fit for all QC samples over time (Figure 67B). The tightness of the 

loess curve was selected so that the trendline would follow the datapoints closely, without overfitting 

the curve to outliers. This curve was used to calculate a theoretical QC value for each PD and HC 

sample as a function of the run order, and all samples were corrected to this estimated intra-QC value. 

Once the peptides were QC adjusted, they were plotted again with sample run order, which displayed 

a more even distribution in peptide quantities over time. Both the mean peptide level and sample 

distribution were more consistent for most of the peptides (Figure 68). A few of the peptides still 

displayed smaller degree of variation in peak abundance with run order, particularly a variation in the 

dynamic range was noticed. However, this variation was not consistent across all peptides, and not 

corrected for further.  
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FIGURE 67 – LOG10 TRANSFORMED AND TOTAL ION COUNT ADJUSTED PEPTIDE PEAK AREAS AGAINST RUN ORDER IN 

THE PARALLEL REACTION MONITORING STUDY 

A) Scatterplots of log transformed, and total ion count adjusted peptide abundances versus run order. 

All samples, Parkinson’s Disease (PD), Healthy Controls (HC), and quality controls (QC), plotted. 

Observed technical batches highlighted. B) Scatterplots of log transformed, and total ion count 

adjusted peptide abundances versus run order. Quality controls (QC) only plotted. Protein groups 

indicated. Trendline represents local polynomial regression (loess) curve.  

A 

B 
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FIGURE 68 – LOG10 TRANSFORMED, TOTAL ION COUNT ADJUSTED, AND QUALITY CONTROL ADJUSTED PEPTIDE PEAK 

AREAS AGAINST RUN ORDER IN PARALLEL REACTION MONITORING STUDY 

Scatterplots of log transformed, total ion count adjusted, and quality control adjusted peptide 

abundances versus run order. All samples, Parkinson’s Disease (PD), Healthy Controls (HC), and quality 

controls (QC), plotted. Protein groups indicated.  

 

To summarise the PRM raw data pre-processing, the data was log transformed, corrected for total 

ion count, and adjusted for QC before being used for analysis. One of the technical batches, batch 3, 

was ultimately eliminated from the dataset. The average from replicate 1 (technical batch 1 and 2), 

and replicate 2 (batch 4 and 5) was used as the peptide quantity. The two replicates are plotted 

against each other in Figure 69, to get an overview of how well the peptides in replicates 1 and 2 

correlated with each other. It was observed that most peptides correlated well between the two 

replicates (Spearman ρ > 0.5).  
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FIGURE 69 – CORRELATION PLOTS BETWEEN PEPTIDE LEVELS BETWEEN THE REPLICATES IN THE VERIFICATION STUDY 

Correlation plot with peptide levels from the two replicates from the verification study. Labelled as 

“gene-name_peptide_replicate”.  Pearson correlation (r) as colour scale.  
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3.2.4 PRM data biomarker performance 

22 peptides from 12 proteins were successfully detected and quantified using PRM. The peptides were 

analysed separately as well as averaged for each protein, and analysed against the same clinical 

parameters as in the discovery study. All peptides were corrected for age and sex in the analyses.  

APOC3, C9, LCP1, PEPD, SELL, TGFBI, and THBS1 were all able to differentiate PD from healthy controls 

with the discovery data. In the PRM data the APOC3 protein (t = -1.99, p = 0.049), the TEHYEEQIEAFK 

peptide from C9 (t = 0.038, p = 0.017), and the TGFBI protein (t = 2.65, p = 0.0088) were significantly 

changed in PD compared with HC (Figure 70).  

 

FIGURE 70 BOXPLOTS FOR PLASMA LEVELS OF APOLIPOPROTEIN C3, COMPLEMENT PROTEIN C9 PEPTIDE, AND 

TRANSFORMING GROWTH FACTOR BETA INDUCED TGFBI BETWEEN PARKINSON’S DISEASE PATIENTS AND HEALTHY 

CONTROLS 

Plasma levels of APOC3, TEHYEEQIEAFK peptide of C9, TGFBI between Parkinson’s Disease patients and 

Healthy Controls. Data from parallel reaction monitoring experiment. Uncorrected t-test with p-value 

displayed.  

SAA1, TGFBI, and TRIM33 all correlated with motor disease severity in the discovery study. Only the 

FFGHGAEDSLADQAANEWGR peptide of SAA1 was significantly correlated with Hoehn & Yahr (p = 

0.016) after correcting for age and sex. APOA4 and SAA1 correlated with cognitive score (MoCA) in 

the discovery study. Again, only the FFGHGAEDSLADQAANEWGR peptide of SAA1 was significantly 

correlated with Hoehn & Yahr (p = 0.025) after correcting for age and sex (Figure 71). 
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FIGURE 71 – SCATTERPLOT OF SERUM AMYLOID A1 PROTEIN PLASMA LEVELS VERSUS HOEHN & YAHR AND MOCA IN 

PARKINSON’S DISEASE 

Scatterplots of plasma levels of Serum Amyloid A1 (SAA1) FFGHGAEDSLADQAANEWGR peptide in 

Parkinson’s Disease patients versus Hoehn & Yahr and MoCA. Linear trendline with standard error 

shown. Pearson correlation coefficient and uncorrected p-value shown.  

 

LUM, APOA4, and PROS1 were all associated with cognitive decline and early conversion to 

PDMCI/PDD in the discovery study. When adding age and sex to the cox regression as covariates, the 

EAVEHLQK peptide of APOA4 (HR = 0.34, p = 0.016) as well as the protein level of APOA4 (HR = 0.31, 

p = 0.041) were associated with the conversion to PDD, but not to PDMCI. Both peptides of LUM, 

ILGPLSYSK (HR = 0.091, p = 0.028) and SLEDLQLTHNK (HR = 0.17, p = 0.028), as well as LUM protein 

level (HR = 0.085, p = 0.016) were associated with the conversion to PDD but not PDMCI (Figure 72). 

PROS1 was not associated with cognitive decline in the PRM cohort.  
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FIGURE 72 – SURVIVAL CURVES OF LUMICAN AND APOLIPOPROTEIN A-IV LEVELS AS RISK FOR DEMENTIA CONVERSION 

IN PARKINSON’S DISEASE 

Cox regression survival curves for Lumican and Apolipoprotein A-IV, with risk for Parkinson’s Disease 

(PD) patients to develop PD dementia equivalent Montreal Cognitive Assessment (MoCA) <21 or over 

time. Graphs show survival curves for both peptides and protein. High and Low protein levels set by 

optimal cut-off. Trendline shows mean survival probability and 95% confidence interval.  
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As it was noticed from the discovery study that sex had a major impact on several biomarker 

candidates, the PRM data was also analysed separately for males and females. For male PD patients 

the SAA1 peptide FFGHGAEDSLADQAANEWGR correlated with UPDRS III (p = 0.028), Hoehn & Yahr 

(p = 0.020), and MoCA (p = 0.015), and SAA1 protein levels correlated with MoCA (p = 0.030). This is 

in accordance with the discovery analysis, where SAA1 was a strong motor and cognition severity 

marker in male PD patients. Moreover, TGFBI protein levels were increased in male PD compared 

with controls (t = 2.17, p  = 0.033). The APOA4 peptide EAVEHLQK was associated with conversion to 

PDD (HR = 0.27, p = 0.045), the LUM ILGPLSYSK peptide was associated with conversion to PDMCI 

(HR = 0.030, p = 0.0021). Both the LUM peptides ILGPLSYSK (HR = 0.0058, p = 0.00017), and 

SLEDLQLTHNK (HR = 0.15, p = 0.036) as well as protein level (HR = 0.030, p = 0.0029) were associated 

with PDD conversion in male PD. This is again similar to the discovery study where LUM predicted 

cognitive decline in male PD patients. For the female PD patients only the APOA4 peptide IDQTVEELR 

correlated with MoCA score (p = 0.050).  
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3.2.5 PRM correlation with the discovery data  

Since the data was log transformed, corrected for total ion count, and adjusted for QC, the pre-

processing for the PRM samples was analogous to the pre-processing of the samples in the discovery 

study. Therefore, the transformed PRM quantifications should hypothetically correlate well with the 

discovery study data. Next, it was explored how well the quantifications correlated between the PRM 

peptides and the protein levels from the discovery study in a correlation matrix (Figure 73). 6 of the 

12 proteins from the discovery study showed a moderate correlation (Pearson ρ > 0.25, p < 0.001) 

with Replicates 1 and 2 in the PRM study (Figure 73). Replicate 2b (technical batch 3) showed greater 

variation in the correlations and was therefore excluded from downstream analysis. Replicates 1 and 

2 appeared to show similar levels of correlation with the discovery data for the same peptides. The 6 

proteins with the best correlations were Apolipoprotein A-IV, Apolipoprotein C-III, Complement 

component C9, Lumican, Vitamin K-dependent protein S, and Serum amyloid A-1 protein.  
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FIGURE 73 – CORRELATION PLOTS BETWEEN PROTEIN LEVELS IN THE DISCOVERY STUDY VERSUS THE VERIFICATION 

STUDY 

Correlation plot with peptide levels from each replicate from the verification study, versus protein 

levels from the discovery study. Labels as “gene_peptide_replicate”.  Replicates shown are replicate 1 

(R1), replicate 2 (R2), and low-quality samples (R2b). Pearson correlation as colour scale, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001.  
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For each sample, the average of each peptide value for the two replicates was used as the average 

peptide quantity. The average value for all peptides quantified for a protein was used as the average 

protein concentration. These average peptide and protein concentrations are shown in Figure 74, 

along with how well they correlate with the discovery data.  

 

FIGURE 74 – CORRELATION PLOTS BETWEEN PROTEIN/PEPTIDE LEVELS IN THE DISCOVERY STUDY VERSUS THE 

VERIFICATION STUDY 

A) Correlation plot with average peptide levels from the verification study (left) versus protein levels 

from the discovery study (top). B) Correlation plot with average protein levels (average of peptides for 

each protein) from the verification study (left) versus protein levels from the discovery study (top). 

Pearson correlation as colour scale, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Again, it was observed that the six proteins Apolipoprotein A-IV, Apolipoprotein C-III, Complement 

component C9, Lumican, Vitamin K-dependent protein S, and Serum amyloid A-1 protein correlated 

well between the discovery data and the PRM data. Particularly 4 of the proteins, Apolipoprotein A-

IV, Apolipoprotein C-III, Complement component C9, and Serum amyloid A-1 protein, displayed more 

pronounced correlations (Spearman ρ > 0.4). For most of these proteins, all their quantified peptides 

correlated similarly well with the PRM data, except for Serum amyloid A-1 (SAA1). Interestingly, for 

SAA1, the peptide FFGHGAEDSLADQAANEWGR correlated well with the discovery data whereas the 

peptide GPGGVWAAEAISDAR did not. Hence, as seen in the PRM analysis, the 

FFGHGAEDSLADQAANEWGR peptide correlated with MoCA and Hoehn & Yahr similar to the discovery 

study. Correlation statistics from the PRM protein versus discovery protein correlations are 

summarised in Table 27.   

 

TABLE 27 – CORRELATIONS BETWEEN PROTEIN QUANTITIES FROM THE DISCOVERY STUDY VERSUS THE VERIFICATION 

STUDY 

Pearson r and p-values for correlations between protein quantities from the discovery study versus the 

parallel reaction monitoring verification study.  

 

  

Protein name Gene name Pearson r p-value 

Apolipoprotein A-IV APOA4 0.49 4.17E-13 

Apolipoprotein C-III APOC3 0.46 1.08E-11 

Complement component C9 C9 0.56 6.62E-18 

Plastin-2 LCP1 0.07 0.329351 

Lumican LUM 0.31 1.09E-05 

Xaa-Pro dipeptidase PEPD 0.01 0.850986 

Vitamin K-dependent protein S PROS1 0.30 2.39E-05 

Serum amyloid A-1 protein SAA1 0.56 5.57E-17 

L-selectin SELL 0.18 0.013897 

Transforming growth factor-beta-induced protein ig-h3 TGFBI -0.04 0.60908 

Thrombospondin-1 THBS1 0.11 0.185316 

E3 ubiquitin-protein ligase TRIM33 TRIM33 0.01 0.950151 
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To summarise, 22 peptides from 12 candidate biomarker proteins were analysed on the mass 

spectrometer using parallel reaction monitoring (PRM). The data was adjusted for total ion cound and 

corrected to inter run QC samples. Peptides and proteins were analysed separately. APOC3, TGFBI and 

one peptide (TEHYEEQIEAFK) of C9 were changed in PD versus healthy controls. One peptide of SAA1 

(FFGHGAEDSLADQAANEWGR) was associated with motor and cognitive function. LUM and APOA4 

were associated with cognitive decline in PD. Several of the peptides were more significantly changed 

in male PD patients. Comparing the protein and peptide levels with the discovery study revealed  4 

proteins (APOA4, APOC3, C9, and SAA1) correlated well.  

  



182 
 

3.3 Neurofilament light chain 

Neurofilament light chain (NfL) has particularly in recent years been one the most well studied 

biomarkers for neurodegeneration. Although its increase in PD is generally modest [194], it has been 

a consistent marker for cognitive impairment and dementia in PD and appear to be linked with future 

decline in both disease severity [195] as well as cognition[196-198]. NfL is also elevated in DLB and 

atypical Parkinsonian disorders (APDs) such as MSA, PSP, and CBD. Hence it was decided to also 

measure plasma NfL in the cohort that was used for the mass spectrometry study. This would be used 

as a benchmark for a well-studied PD candidate biomarker, with has shown reproducible results for 

accurate diagnosis against APDs, and promising results in correlations with cognitive and motor 

severity.    

Plasma NfL levels were quantified on the Simoa, and the data analysed and correlated with disease 

severity and cognitive scores. A first round of analysis found plasma NfL was elevated in PD plasma 

compared to healthy controls (HC), and this difference was driven by the PD with cognitive impairment 

(PDCI) which was defined as MoCA score <26. NfL levels in HC were comparable with PD with no 

dementia (PDND). Moreover, NfL levels correlated with both H&Y and MoCA scores. Plots are shown 

in Figure 75.       
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FIGURE 75 – PLASMA NEUROFILAMENT LIGHT CHAIN (NFL) IN PARKINSON’S DISEASE (PD) 

A) Group level difference in plasma NfL between PD and Healthy Controls (HC) (t-test and p-value 

displayed). B) PD group split into PD with cognitive impairment (PDCI) where MoCA ≥26, and PD with 

no dementia (PDND) where MoCA >26. P-values for Anova and Tukey post hoc test shown. C) 

Correlation between NfL levels and MoCA score, D) correlation between.     

 

It is known NfL levels vary greatly with age [199], hence NfL scores were adjusted for age and sex with 

a linear model and repeated the analysis (Figure 76). There was still a significant elevation of plasma 

NfL in PD patients, pronounced in the PDCI group. Moreover, the NfL levels correlated with Hoehn & 

Yahr, however, the correlation with MoCA score was no longer significant.   

A B 
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FIGURE 76 – PLASMA NEUROFILAMENT LIGHT CHAIN (NFL) IN PARKINSON’S DISEASE (PD) – AGE AND SEX ADJUSTED 

A) Group level difference in plasma NfL between PD and Healthy Controls (HC) (t-test and p-value 

displayed). B) PD group split into PD with cognitive impairment (PDCI) where MoCA ≥26, and PD with 

no dementia (PDND) where MoCA >26. P-values for Anova and Tukey post hoc test shown. C) 

Correlation between NfL levels and MoCA score, D) correlation between.     

 

As the association between plasma NfL levels and cognitive score in PD patients was heavily 

attenuated after correcting for age and sex, it was explored how NfL varied with these demographic 

covariates in our cohort (Figure 77), both for the entire cohort, and for HC on their own. It was 

observed sex had little effect on NfL levels, but NfL levels were significantly increased with age. This 

was true for HC as well, suggesting the increase is not only due to PD related disease progression or 

cognitive decline.  
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FIGURE 77 - PLASMA NEUROFILAMENT LIGHT CHAIN (NFL) ASSOCIATION WITH AGE AND SEX 

A, B) Group level differences between in plasma NfL between males (M) and females (F) for healthy 

control subjects and whole cohort, respectively. T-test with p-value shown. C, D) Correlation between 

plasma NfL levels and age for healthy control subjects and whole cohort, respectively. Pearson r with 

p-value shown. 

Next, it was investigated how well NfL would reflect cognitive decline in PD patients. A cox 

proportional hazard regression models was constructed for PD patients converting to PDMCI or PDD 

(Figure 78). Higher concentrations of NfL were associated with earlier cognitive decline. However, 

when the data was adjusted for age and sex, NfL was no longer associated with faster cognitive 

decline. The statistics are summarised in Table 28, and show age was the major predictor for cognitive 

decline.  
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FIGURE 78 – SURVIVAL CURVES OF NEUROFILAMENT LIGHT CHAIN (NFL)  LEVELS AS RISK FOR MILD COGNITIVE 

IMPAIRMENT AND DEMENTIA CONVERSION IN PARKINSON’S DISEASE.  

Cox regression survival curves for NfL, with risk for Parkinson’s Disease (PD) patients to develop A) PD 

mild cognitive impairment equivalent (MCI) Montreal Cognitive Assessment (MoCA) <26, and B) 

dementia (PDD) equivalent MoCA<21 over time. C, D Survival curves for developing PDMCI and PDD 

following age and sex adjusted NfL levels.  High and Low protein levels set by optimal cut-off. Trendline 

shows mean survival probability and 95% confidence interval.  
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C D 



187 
 

TABLE 28 – COX REGRESSION OF PARKINSON’S DISEASE DEVELOPING MILD COGNITIVE IMPAIRMENT OR DEMENTIA - 

NEUROFILAMENT LIGHT CHAIN (NFL)   

Cox regression of NfL levels in Parkinson’s Disease patients versus risk of declining cognitively to 

Montreal Cognitive Assessment <26 and <21, with age and sex as covariates. Columns show protein 

gene name, Cox coefficient, Hazard ratio, standard error, and p-value.  

 

Following this, the NfL biomarker performance in PD was compared against our new candidate 

biomarkers from the mass spectrometry study. After accounting for age and sex, NfL was a better 

diagnostic PD biomarker than most verified peptides, and comparable to TGFBI and the  

TEHYEEQIEAFK peptide of C9. The SAA1 peptide FFGHGAEDSLADQAANEWGR correlated better with 

MoCA than NfL, but NfL correlated better with Hoehn & Yahr. Both LUM and APOA4 were better 

predictors of cognitive decline in PD than NfL. However, many candidate biomarkers from the 

discovery study that were not verified using the PRM technique have the potential to outperform NfL 

if validated in a different way, and many of those candidate proteins do not seem to covary with age.   

NfL is often described as a sensitive but unspecific biomarker that reflects axonal damage and level of 

neurodegeneration [92]. NfL levels were therefore correlated with the protein levels from the mass 

spectrometry study, as that could give some insight in which proteins reflect the axonal 

damage/neurodegenerative component of PD. Most of these proteins (Table 29) also correlated with 

age, and it was difficult to determine whether both proteins correlated with age, or if they correlated 

with each other. A few of these proteins did however correlate with NfL without correlating with age 

and are highlighted in Table 29. 

 

  

 PDMCI (MoCA < 26) Conversion PDD (MoCA < 21) Conversion 

Variables coef 
HR 

exp(coef) 
se(coef) p-value coef 

HR 

exp(coef) 
se(coef) p-value 

log NFL conc. 0.122 1.130 0.605 0.84 0.101 1.106 0.819 0.902 

Age 0.126 1.134 0.020 7.92E-10 0.099 1.105 0.024 4.86E-05 

Sex Male -0.003 0.997 0.240 0.991 0.205 1.227 0.340 0.547 
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TABLE 29 – CORRELATIONS BETWEEN PLASMA NFL LEVELS AND PROTEINS FROM THE DISCOVERY STUDY 

Correlations between plasma levels of proteins from the mass spectrometry discovery study, and their 

correlations with plasma Neurofilament Light Chain (NfL) levels and age. Columns show protein and 

gene name, Pearson r and p-value for NfL and Age. Proteins not correlating with age are highlighted.  

Protein Gene r NfL p NfL r Age p Age 

EGF-containing fibulin-like extracellular matrix protein 1 EFEMP1 0.42 4.59E-10 0.39 1.16E-08 

Fibulin-5 FBLN5 0.42 6.52E-06 0.30 1.66E-03 

m-AAA protease-interacting protein 1, mitochondrial MAIP1 0.35 2.75E-06 0.20 7.35E-03 

Complement component C9 C9 0.35 4.94E-07 0.33 2.66E-06 

V-type proton ATPase 116 kDa subunit a isoform 4 ATP6V0A4 0.34 3.69E-04 0.20 4.29E-02 

Cystatin-C CST3 0.33 4.31E-06 0.28 1.07E-04 

Proline-rich protein 36 PRR36 0.33 2.94E-06 0.19 7.37E-03 

Fibrinogen-like protein 1 FGL1 0.31 1.57E-04 0.11 1.78E-01 

Inter-alpha-trypsin inhibitor heavy chain H3 ITIH3 0.31 8.87E-06 0.36 1.91E-07 

Serine/threonine-protein kinase N2 PKN2 0.31 8.69E-04 0.20 3.02E-02 

SRC kinase signaling inhibitor 1 SRCIN1 0.30 1.73E-03 0.05 6.33E-01 

Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit beta PIK3C2B 0.30 1.64E-03 0.16 1.10E-01 

Pyruvate dehydrogenase protein X component, mitochondrial PDHX 0.30 1.66E-03 0.31 1.10E-03 

Complement factor D CFD 0.29 3.51E-04 0.35 8.48E-06 

Coiled-coil domain-containing protein 18 CCDC18 0.28 1.19E-03 0.21 1.70E-02 

Contactin-6 CNTN6 0.26 6.47E-03 0.06 5.21E-01 

Peptidase inhibitor 16 PI16 0.26 2.36E-04 0.16 2.21E-02 

N-acetyl-B-glucosaminyl-glycoprotein 4-B-N-acetylgalactosaminyltransferase 1 B4GALNT4 0.26 2.56E-03 0.24 5.09E-03 

Prostaglandin-H2 D-isomerase PTGDS 0.26 3.60E-04 0.22 2.32E-03 

Fibulin-1 FBLN1 0.25 3.43E-04 0.16 2.36E-02 

PDZ domain-containing protein 4 PDZD4 0.25 3.88E-03 0.14 9.57E-02 

Beta-2-microglobulin B2M 0.25 1.08E-03 0.24 1.41E-03 

Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adapter 2 NYAP2 0.24 9.23E-03 0.07 4.60E-01 

Protein mono-ADP-ribosyltransferase PARP15 PARP15 0.24 2.88E-03 0.24 2.64E-03 

Integral membrane protein GPR180 GPR180 0.23 4.77E-03 0.17 4.39E-02 

 

To summarize, the plasma NfL levels in our cohort showed a strong positive correlation with age, both 

for PD patients and healthy controls. After correcting for age and sex, NfL was still elevated in PD, and 

was pronounced in the cognitively impaired patients. Moreover, NfL correlated with H&Y disease 

severity. Overall, NfL showed modest biomarker performance in our cohort. Many of the generated 

biomarker candidates from the discovery study, and some of the verified proteins, would potentially 

be better biomarkers for PD and associated cognitive and motor changes.  
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3.5 Complement study 

3.5.1 Study overview 

Proteins related to the complement system have emerged as candidate plasma biomarkers in several 

studies, in fact about 20% of the reproduced biomarker candidates in PD plasma proteomic studies 

are involved in the complement system [114]. Additionally, the complement and coagulation cascade 

was the most implicated pathway in PD, and C9 was one of the top biomarker candidates. This was 

enough evidence to warrant a validation study of complement factors in PD plasma. Two commercially 

available Luminex® multiplex complement panels and a separate C9 ELISA were run. PD patients were 

compared with healthy controls (HC), and the atypical parkinsonian disorders Corticobasal Syndrome 

(CBS) and Progressive Supranuclear Palsy (PSP). PSP and CBS share both some symptomatology and 

pathology [200] and were pooled into one 4-repeat (4R)-Tauopathy group as a neurological control. 

Finally, a CH50 assay was performed to assess overall classical pathway complement activity in PD 

serum. An overview of the complement system and its different activity pathways are shown in Figure 

79.  
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FIGURE 79 – SCHEMATIC OF THE COMPLEMENT SYSTEM 

Overview of the complement system including all the complement proteins measured. Abbreviations: 

MBL Mannose Binding Lectin, MASPs MBL Associated Serine Proteases, MAC Membrane Attack 

Complex, FB Factor B, FD Factor D, FH Factor H.  

 

3.5.2 Plasma levels of complement factors in PD and APD 

Plasma concentrations were quantified for 12 complement proteins in HC, PD and 4R-Tauopathies 

using immunoassays (summarised in Table 30). The concentrations of complement proteins were log-

transformed and corrected for age and sex before analysis. Plasma levels of C1q and C3 were 

significantly different between investigated groups (ANOVA p=0.0041 and p=0.0057 respectively; 



191 
 

Figure 80). Tukey’s post hoc tests revealed lower concentrations in 4R-Tauopathies compared to both 

PD and HC, for both C1q (p=0.0029, p=0.025 respectively; Figure 80) and C3 (p=0.0095, p=0.0068 

respectively; Figure 80). Receiver operating characteristic (ROC) curves were carried out and area 

under curve (AUC) was calculated to assess how well C1q and C3 would perform as biomarkers. The 

AUCs for C1q were 0.73 and 0.70 for 4R-Tauopathies versus PD and HC respectively, and for C3 AUCs 

were 0.67 and 0.69 for 4R-Tauopathies versus PD and HC, respectively.  

There were no significant differences between groups for any of the other analytes. No differences 

were found between PD patients and HC, for any of the factors. Sex-specific analysis, comparing PD 

versus HC for males and females separately did not show any differences either (data not shown).  

Next, ratios between two of the complement factors (C4 and C5) and their respective cleavage 

products (C4b and C5a) were calculated, as a proxy to measure increased complement cleavage and 

activity. No differences were found between the groups (data not shown). 

PCA plots were constructed for all the complement proteins to visualise the variation in the data 

(Figure 81). The plot revealed 38.5% of the variation was explained on PC1, with covariance between 

most of the complement factors, and large overlap between the groups when plotting PC1 and PC2.  

Taken together this shows that C1q and C3 levels were decreased in 4R-Tauopathies plasma compared 

to both PD and HC, and that there were no differences in complement factor concentrations between 

PD and HC. 
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TABLE 30 – DEMOGRAPHICS OF THE BIOPARK AND AETIONOMY COHORTS, CLINICAL ASSESSMENTS, COMPLEMENT 

PROTEIN QUANTIFICATIONS AND CH50. 

All clinical data presented as median (range), complement concentrations and CH50% as mean 

(standard deviation). Age and disease duration in years, Movement Disorder Society Unified 

Parkinson’s Disease Rating Scale part 1-4 (MDS UPDRS I,II,III,IV), Hoehn & Yahr, Montreal Cognitive 

Assessment (MoCA), Beck Depression Inventory-2 (BDI II), Montgomery-Åsberg Depression Rating 

Scale (MADRS), Mental Fatigue Scale (MFS), Hospital Anxiety and Depression Scale (HADS) depression 

and anxiety sub scores, Non-Motor Symptom Questionnaire (NMSQ), The Parkinson’s Disease 

Questionnaire (PDQ 39), Pittsburgh Sleep Quality Index (PSQI), Levodopa Equivalent Daily Dose (LEDD). 

Plasma levels for complement factors C3, C4, C4b, C5, C5a, C9, factors B (FB), D (FD), H (FH), I (FI), and 

Mannose Binding Lectin (MBL) presented as log10 concentrations corrected for age and sex. CH50 % 

serum as percentage serum for 50% haemolysis. P-values represent chi-square for male to female 

comparisons, Wilcoxon for age, ANOVA for complement concentrations, 2-tailed t-test for CH50. 

 BIOPARK AETIONOMY 
 

Parkinson's  
Disease 

Healthy  
Controls 

4R- 
Tauopathies 

 
p-value 

Parkinson's  
Disease 

Healthy  
Controls 

 
p-

value 

n (Female : Male) 81 (31 : 50) 48 (28 : 20) 23 (14 : 9) 0.035 58 (16 : 42) 20 (13 : 7) 0.0028 
Age 69 (49 - 84) 67 (50 - 83) 73 (66 - 96) 0.0046 64 (41 - 75) 65 (52 - 97) 0.99 

Disease Duration 3.31 (0 - 23.46) - 1.52 (0- 8.13) - 2.98 (0 - 10.82) - - 
MDS UPDRS I - - - - 9 (2 - 26) - - 
MDS UPDRS II - - - - 11 (1 - 23) - - 
MDS UPDRS III 31 (3 - 64) - - - 24 (3 - 51) - - 
MDS UPDRS IV - - - - 1 (0 - 10) - - 
Hoehn & Yahr 2 (0 - 4) - - - 2 (1 - 3) - - 

MoCA 25 (12 - 30) - - - 26 (18 - 35) - - 
BDI II 10 (0 - 43) - - - 10 (0 - 38) - - 

MADRS 6 (0 - 32) - - - 8 (1 - 36) - - 
MFS 10 (0 - 24) - - - 9 (1 - 32) - - 

HADS Anxiety 5 (0 - 13) - - - 5 (0 - 19) - - 
HADS Depression 3 (0 - 14) - - - 2.5 (0 - 17) - - 

NMSQ 9 (0 - 20) - - - 9 (2 - 20) - - 
PDQ 39 21.6 (0 - 60.4) - - - 19.7 (3.4- 71.8) - - 

PSQI 7 (0 - 18) - - - 7 (3 - 18) - - 
LEDD 500 (0 - 2235) - - - 445 (0 - 1606) - - 

C1q (μg/ml) 1.90 (0.15) 1.88 (0.18) 1.77 (0.17) 0.0041 - - - 
C3 (μg/ml) 1.76 (0.29) 1.79 (0.32) 1.54 (0.33) 0.0057 - - - 
C4 (μg/ml) 2.14 (0.18) 2.15 (0.23) 2.10 (0.22) 0.73 - - - 
FB (μg/ml) 2.14 (0.15) 2.14 (0.18) 2.12 (0.20) 0.84 - - - 
FH (μg/ml) 2.34 (0.13) 2.34 (0.16) 2.30 (0.15) 0.45 - - - 

C4b (μg/ml) 1.07 (0.12) 1.08 (0.13) 1.05 (0.09) 0.71 - - - 
C5 (μg/ml) 1.12 (0.09) 1.11 (0.10) 1.13 (0.11) 0.78 - - - 

C5a (μg/ml) -3.15 (0.11) -3.15 (0.09) -3.14 (0.09) 0.90 - - - 
FD (μg/ml) 0.49 (0.15) 0.54 (0.17) 0.49 (0.12) 0.26 - - - 

MBL (μg/ml) 0.05 (0.53) 0.10 (0.50) 0.07 (0.50) 0.82 - - - 
FI (μg/ml) 1.33 (0.12) 1.37 (0.13) 1.36 (0.10) 0.32 - - - 
C9 (μg/ml) 1.36 (0.12) 1.37 (0.13) 1.32 (0.12) 0.24 - - - 

CH50 - - - - 79.4 (13) 79.2 (14) 0.95 
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FIGURE 80 – PLASMA CONCENTRATION OF COMPLEMENT PROTEINS IN HEALTHY CONTROLS (HC), PARKINSON’S 

DISEASE (PD), AND FOUR-REPEAT TAUOPATHIES (4R-TAUOPATHIES). 

Plasma levels for complement factors C3, C4, C4b, C5, C5a, C9, factors B (FB), D (FD), H (FH), I (FI), and 

Mannose Binding Lectin (MBL) in three cohort groups (HC, PD, 4R Tauopathies) plotted in order of 

significance (ANOVA with Tukey’s post hoc test for multiple comparisons, *p < 0.05, **p < 0.01). Plots 

showing individual data points, mean and standard deviation.  
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FIGURE 81 – PCA FOR COMPLEMENT FACTORS AND DIAGNOSES 

Principle component analysis (PCA) of plasma concentrations for 12 complement factors C3, C4, C4b, 

C5, C5a, factors B (FB), D (FD), H (FH), I (FI), and Mannose Binding Lectin (MBL) in Parkinson’s disease 

(PD) adjusted for age and sex. Ellipses represent 95% confidence interval for Parkinson’s disease (PD), 

Four repeat tauopathies (4R Tauopathies) and Healthy controls (HC). 

 

3.5.3 Association between complement factors and clinical assessments 

Next, correlations were performed between complement factors and the clinical scores within the PD 

group. Scales for disease stage, motor symptoms and several non-motor symptoms were selected. 

The levels of complement proteins were log-transformed and corrected for age, sex, and disease 

duration for all PD patients, and for age and disease duration only in sex-specific analysis, before 

correlating with several clinical parameters using Spearman’s ρ.  

Plasma C1q correlated negatively with cognitive performance (MoCA) (p=0.041; Figure 82), FD 

correlated negatively with the mental fatigue (MFS) (p=0.043; Figure 82), and FI correlated negatively 

with motor severity (MDS UPDRS III) (p=0.024; Figure 82). Sex-specific correlations were performed to 

explore complement differences between male and female PD patients. For female patients, several 

of the complement factors correlated positively with NMS. Multiple clinical parameters correlated 
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positively with C3, including HADS Anxiety (p=0.0073), Depression (p=0.012), NMSQ (p=0.0015), and 

BDI-II (p=0.038). Additionally, HADS Anxiety correlated with positively with several other complement 

factors, including C1q (p=0.0056), FH (p=0.035), and C5 (p=0.017). Moreover, non-motor symptom 

severity (NMSQ) correlated positively with C5 (p=0.044), PDQ 39 with C5a (p=0.020), and Hoehn & 

Yahr disease stage correlated negatively with C4b (p=0.041). As for the male patients, C3 was 

negatively correlated with PDQ 39 (p=0.016), FD was negatively correlated with MFS (0.040), MBL 

positively correlated with MoCA (p=0.023), and FI positively correlated with MDS UPDRS III (p=0.023). 

Interestingly, NMS severity in PD patients were generally negatively correlated with plasma 

complement levels, which is the opposite of what was observed in female patients.  

 

 

FIGURE 82 – CORRELATION MATRIX BETWEEN CLINICAL SCORES AND COMPLEMENT FACTORS 

Plasma levels for complement factors C3, C4, C4b, C5, C5a, factors B (FB), D (FD), H (FH), I (FI), and 

Mannose Binding Lectin (MBL) in Parkinson’s disease (PD) adjusted for age and disease duration 

correlated with clinical scales, both using all PD patients combined, and split into male and female 

patients (Spearman’s ρ, *p<0.05, **p<0.01). Clinical scales include Movement Disorder Society Unified 

Parkinson’s Disease Rating Scale part 3 (MDS UPDRS III), Hoehn & Yahr, Montreal Cognitive 

Assessment (MoCA), Beck Depression Inventory-2 (BDI II), Montgomery-Åsberg Depression Rating 

Scale (MADRS), Mental Fatigue Scale (MFS), Hospital Anxiety and Depression Scale (HADS) depression 

and anxiety sub scores, Non-Motor Symptom Questionnaire (NMSQ), The Parkinson’s Disease 

Questionnaire (PDQ 39), Pittsburgh Sleep Quality Index (PSQI), Levodopa Equivalent Daily Dose (LEDD).  
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3.5.4 Classical pathway activity in PD sera 

Although no differences were observed in the assayed plasma complement proteins between PD and 

HC, it was further investigated whether overall complement activity, and indirectly complement 

function, was altered peripherally in PD. Hence, using serum from a smaller separate cohort of PD and 

HC where classical pathway activity was measured. There was no significant difference in CH50 

between PD and HC (2-tailed T-test p=0.95, Figure 83A). Positive correlations between CH50 and 

mental fatigue (MFS) was observed for PD patients p<0.05; Figure 83B). Again, sex-specific analyses 

were performed, and it was observed the correlation between MFS and CH50 was particularly driven 

by male PD patients.  

 

FIGURE 83 – CH50 ASSAY IN PARKINSON’S DISEASE (PD) AND HEALTHY CONTROLS (HC), AND FOR CLINICAL SCORES 

IN PD 

A) Dilution factor of serum for 50% haemolysis in the CH50 assay for PD versus HC show no difference 

in complement activity (2-tailed T-test). B) the CH50 score is correlated with both using all PD patients 

combined and split into male and female patients (Spearman’s ρ, *p<0.05, **p<0.01). Clinical scales 

include disease duration,  Movement Disorder Society Unified Parkinson’s Disease Rating Scale part 1-

4 (MDS UPDRS I,II,III,IV), Hoehn & Yahr, Montreal Cognitive Assessment (MoCA), Beck Depression 

Inventory-2 (BDI II), Montgomery-Åsberg Depression Rating Scale (MADRS), Mental Fatigue Scale 

(MFS), Hospital Anxiety and Depression Scale (HADS) depression and anxiety sub scores, Non-Motor 

Symptom Questionnaire (NMSQ), The Parkinson’s Disease Questionnaire (PDQ 39), Pittsburgh Sleep 

Quality Index (PSQI), Levodopa Equivalent Daily Dose (LEDD).   

A   B 
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To summarise, as both our study, as well as most other proteomic studies on PD plasma, discovered 

alterations in complement proteins, we decided to attempt to validate them. 12 complement proteins 

were quantified in PD, HC, and 4R-Taupathy plasma.  

Both plasma C1q and C3 were decreased in 4R-Taupathies compared to both HC and PD. However no 

group level differences were observed between PD and HC for any of the complement factors. A few 

of the complement factors correlated with fatigue, cognition, and motor symptoms in PD patients. 

Interestingly, C1q that has been implicated in neurodegeneration [201], was increased in PD patients 

of both sexes with lower MoCA scores. Additionally, C3 correlated with several non-motor scores in 

female PD patients. We further used the CH50 assay to quantify complement activity in PD and HC 

sera. Again, no group difference was found between PD and HC, but increased CH50 was found male 

patients with mental fatigue, suggesting they had higher level of complement activity.  
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4. Discussion  

4.1 Summary of findings 

It was demonstrated in this thesis that untargeted mass spectrometry is a viable approach for 

discovering novel PD plasma biomarker candidates. Several biomarker candidates were discovered, 

some of which were successfully verified with PRM. Additionally, some candidate biomarkers showed 

potential for superior biomarker performance to NfL. Although some of these results are encouraging 

for the future of PD biomarkers, there are still many limitations with the methodologies, and future 

validation studies of the candidate biomarkers are essential.  

4.2 Recap of the approach 

The main aim of this thesis was to discover and verify novel plasma biomarkers for Parkinson’s disease 

diagnosis and associated cognitive impairment, using a pipeline with stepwise reduction of candidate 

proteins (Figure 3). Biomarkers are lacking in PD, and many promising biomarkers identified in other 

neurological diseases have failed to be replicated in PD [94]. A hypothesis driven approach has yielded 

some promising findings in α-syn markers in CSF [70, 202] but has otherwise not resulted in any major 

breakthroughs. A few attempts have been made with an unbiased approach in plasma, usually through 

mass spectrometry, but the findings have been hard to replicate [114]. Reasons include underpowered 

studies, and processing methods that yield only high abundant plasma proteins, several orders of 

magnitude above the kind of markers that would reflect neurodegeneration in for example AD. 

Moreover, the gap between a discovery study and a validation study in a separate cohort using an 

antibody-based approach is often very large, which can lead to high attrition of candidate markers, 

which can be discouraging [133]. To tackle this, a large-scale proteomic discovery and verification 

study using plasma from 130 PD patients and 68 neurologically healthy individuals was attempted. 

Plasma samples from these individuals were processed to maximise resolution and quantification of 

low abundant plasma proteins accurately, while still providing a feasible protocol. Moreover, the data 

was matched at a 5% FDR to achieve much higher number of candidate markers (albeit with the risk 

of more false positives). Peptides from candidate biomarkers that could be confidently quantified in 

neat plasma were then validated on the mass spectrometer with PRM. This would give confidence 

that our results were indeed true and should be further validated in other cohorts or with other 

approaches. Finally, as both our results as well as previous studies had found consistent alteration in 

complement proteins, an independent immunoassay-based study of complement proteins was 

performed to validate these findings.  
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4.3 Top candidate biomarkers 

The discovery study generated many candidate biomarkers for PD diagnosis, disease severity, 

cognitive severity, and cognitive decline. Although most of these proteins still need validation, many 

the most significant candidates form the analyses are likely to be involved in the disease pathology.  

The top three most significant differentially expressed proteins for PD diagnosis were Myosin light 

chain kinase, smooth muscle (MYLK), Xaa-Pro dipeptidase (PEPD), and Proline-rich protein 36 (PRR36). 

MYLK plays a central role in smooth muscle contraction and is necessary for gut motility [203]. This is 

interesting as one of the earliest symptoms of some PD patients is gut dysmotility [204], and if MYLK 

is validated, and potentially linked with PD gut dysfunction, it could possibly be used as an early 

diagnostic biomarker. PEPD, a cytosolic dipeptidase also known as prolidase, was decreased in PD 

plasma in our study. One study found decreased plasma prolidase activity in PD patients with a 

concomitant increase in oxidative stress [205]. The function of PRR36 is unknown, but it is highly 

expressed in the cortex and pituitary gland according to the Human Protein Atlas [206]. Levels of 

Enhancer of polycomb homolog 2 (EPC2), Gamma-glutamyl  hydrolase (GGH), and Cytospin-B (SPECC1) 

showed the largest effect sizes in PD compared with controls. EPC2 is not well studied, and believed 

to play a role in DNA repair [207]. GGH, a metabolic enzyme highly expressed in liver, gut, and kidneys 

[207], was found to be a promising candidate marker for PD in a proteomic study of the substantia 

nigra, and found to be expressed in dopaminergic neurons [208]. Interestingly, the same article also 

verified Nebulette as a top candidate marker that was expressed in dopaminergic neurons. Nebulette 

was incidentally one of the most significant proteins in our study correlating with PD cognition. SPECC1 

is highly expressed in testis and brain, particularly in oligodendrocytes [206], but its function in the 

CNS is poorly studied. 

Serum Amyloid A1 (SAA1), IQ motif containing C (IQCC), and MAP10 were all correlating strongly with 

MoCA score. SAA1 is an acute phase protein, and is associated with amyloidosis [209]. One recent 

biomarker study found elevated Serum Amyloid A in PD CSF predicted cognitive decline in PD [210]. 

An animal model of AD showed that overexpressed SAA1 aggravated amyloid plaque aggregation and 

cognitive impairment [211]. IQCC is expressed mostly in testis and neurons, and its function is not 

clear [206]. MAP10 has not specifically been studied in cognition, but plays a role in cell division and 

microtubule stability like other Microtubule Associated Proteins (MAPs) including MAP tau (MAPT) 

[212].  

Vitamin K-dependent protein S (PROS1), Telomeric repeat-binding factor 2 (TERF2), and Obscurin 

(OBSCN) were the proteins that were most associated with earlier cognitive decline in PD. PROS1 

primarily acts as an anti-coagulation cofactor produced by the liver but is also reported to play a key 



200 
 

regulatory function in hippocampal neural stem cell proliferation [213]. TERF2 plays a central role in 

telomere maintenance but is not well studied in neurodegeneration. However, telomeres have been 

linked to neurodegeneration and dementia, and a meta-analysis showed patients with AD had overall 

shorter telomeres [214]. OBSCN is highly expressed in skeletal muscle and involved in 

myofibrillogenesis but has not been studied in relation to neurodegeneration [215].  

A recent review from Chelliah et al. [114] summarised the results from all plasma proteomic PD studies 

to date (n = 12) and identified 23 proteins that were differentially expressed in at least 2 studies [114]. 

Two of the proteins, APOC3 and CP were also differentially expressed in our study. Interestingly, many 

of the 23 proteins correlated with MoCA in our study, including SAA1, TTR, APOA4, and APOA1. This 

shows there is some level of concordance between our results, and previous proteomic studies in 

plasma. 

4.4 Utility of verified biomarkers 

Most of the candidate biomarker top hits mentioned above, except SAA1 and PROS1, did not have 

specific and reproducible peptides available to verify with PRM in plasma. Out of the top 70 proteins 

reflecting PD diagnosis and cognition, 12 had high quality unique peptides for a PRM verification, 6 of 

which (Apolipoprotein A-IV (APOA4), Apolipoprotein C-III (APOC3), Complement component C9 (C9), 

Lumican (LUM), Vitamin K-dependent protein S (PROS1), and Serum amyloid A-1 protein (SAA1) 

correlated with the quantifications from the discovery study. It was not surprising relatively few 

proteins had peptides that could be consistently quantified in unfractionated plasma, as few of the 

proteins in the discovery had peptides that were detected in most samples, despite several pre-

processing steps and a 5%FDR database matching. APOC3, TGFBI, and one of the peptides from C9 

were successfully verified and significantly altered in PD after correcting for age and sex, although the 

statistical differences were modest. Although APOC3 specifically has not been extensively studied in 

PD, other apolipoproteins are implicated in PD. Plasma APOA1 is generally downregulated in PD, high 

APOD neurons are more resistant to PD pathology, and APOE and APOJ genes are both linked to PD 

dementia [216]. Moreover, APOE is shown to be enriched in PD dopaminergic neurons, elevated in PD 

CSF, and interact with α-syn [217]. SAA1, particularly the FFGHGAEDSLADQAANEWGR peptide, was 

the only candidate marker that was verified and correlated significantly with both cognition and motor 

severity after correcting for covariates. It is a bit unclear whether it mainly reflects processes 

associated with motor or cognitive symptoms primarily, but it does seem to increase with disease 

progression independently of age. LUM and APOA4 reflected conversion to PDD in the verification 

study. LUM was particularly associated with cognitive decline in male PD patients. Limited number of 

studies are available for the role of APOA4 in PD cognition, but as discussed above, apolipoproteins 
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are in general implicated in PD. Lumican is a structural protein, and has previously appeared as a 

proteomic biomarker candidate in cognitive impairment [218], but studies on its role in PD are lacking.   

Robust peptides from APOC3, C9, TGFBI, SAA1, APOA4, and LUM, were all technically verified as 

biomarker candidates. These proteins are likely truly differentially expressed in our cohort and need 

to be validated in external cohorts to assess their generalisability. However, verifying their differential 

expression does not necessarily make them good biomarkers. The effect sizes for the verified proteins 

were generally small and would probably not be clinically useful for diagnostic purposes. However, 

these proteins are probably involved in PD related mechanisms that could be further mechanistically 

explored and could result in novel drug targets. If other candidate biomarkers from the discovery study 

are validated with other methods, for example with immunoassays, they would potentially be useful 

as biomarkers. The highest accuracy in the cross validated machine learning analysis was found for 

F2R Like Trypsin Receptor 1 (F2RL1) at 76%. Ideally, for clinical diagnostic utility the accuracy needs to 

be higher than 76%. It was however demonstrated in this thesis that with 10 proteins, an accuracy 

>90% could be achieved, which is on par with clinical diagnostic accuracy [219], and therefore perhaps 

a panel of several proteins would be useful as a diagnostic tool.  

Sex differences in PD have been described in the literature, particularly in terms of incidence and 

clinical presentation, although biological differences are much less studied [159]. Sex-specific analyses 

of the proteomic data generated interesting results, where the top biomarker candidates were quite 

different for male and female PD patients. This could be partly attributed to statistics, such as a high 

false discovery rate which is commonly seen in large scale proteomic studies. However, looking at the 

p-value histogram for female PD diagnostic biomarkers, one would expect approximately half of the 

statistically significant results to be true, yet few candidate biomarkers overlapped between male and 

female PD patients. Moreover, a greater number of significantly changed proteins were seen in female 

PD patients with regards to diagnostic biomarkers, whereas more candidate biomarkers were found 

for male patients that were associated with cognitive decline. It was hypothesised that part of this 

difference was due to cohort heterogeneity, however after a closer look at several clinical and 

demographic variables, only smaller differences were found between the male and female cohort.  

Likely some of these differences are due to biological differences. There is sparse literature on 

biological differences between male and female PD, however there are some studies that for example 

found an association between early menopause and increased risk of developing PD in females [158], 

which suggests there is a hormonal component to the pathology.   

One of the most well studied neurodegenerative biomarkers today is neurofilament light chain (NfL). 

Plasma NfL levels were quantified in our cohort, in order to compare our proteomic findings with a 
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frequently bench marked plasma protein in PD, and to get an idea of how our cohort samples compare 

with the literature. NfL was indeed elevated in PD, and the increase was pronounced in the cognitively 

impaired patients. The effect size was attenuated after correcting for age, and only showed a modest 

elevation in PD and PDCI plasma. Moreover, NfL correlated with motor disease severity, even after 

age correction. The findings are in line with the current literature [220-222]. From our verified 

candidate proteins, APOA4 and LUM reflected conversion to PDD better than NfL, and the SAA1 

peptide FFGHGAEDSLADQAANEWGR correlated better with MoCA scores than NfL. This suggests there 

most likely exists better biomarkers for PD diagnosis and cognition than NfL.  

4.5 Assessment of the method 

The protocol for the discovery study was heavily based on the protocol used by Ashton et al. [117] 

with a few minor modifications. The fractionation method was changed from OFFGEL strips separating 

samples by isoelectric point to spin columns where the bound sample was eluted using increasing 

concentrations of acetonitrile to fractionate the samples by hydrophobicity. This proved to be a less 

labour-intensive method that also yielded higher number of protein IDs and less technical variation 

compared with the OFFGEL method. Moreover, the Thermo Scientific Orbitrap Fusion Lumos 

instrument was used for the analysis, which in theory has improved sensitivity compared to the LTQ 

Orbitrap Velos used by Ashton et al. [117].  

Over 20,000 protein IDs were identified in the discovery study at a 5% FDR, which is significantly more 

than the 500 proteins that were identified at a 1% FDR. Both approaches have their advantages and 

disadvantages. The convention is often to use 1% FDR [223, 224] in order to maximise true positive 

hits, while still detecting an adequate number of proteins. Although this approach gives higher 

confidence in the targets, one may miss out on many relevant targets by excluding false negatives. 

Plasma is a particularly complex sample matrix where protein abundances span a huge dynamic range. 

Plasma is considered to span at least 12 orders of magnitude, and the 12 most abundant proteins 

comprise 95% of the total protein abundance [225]. Therefore, plasma analysis often uses high 

abundant protein depletion steps, and prefractionation with gels or spin columns to maximise 

resolution. Albumin makes up more than half of the plasma proteins, followed by immunoglobulins, 

complement factors, iron binding proteins, apolipoproteins, and coagulation related proteins [225]. 

Comparatively, CNS derived proteins are of much lower concentration in plasma. The concentration 

of NfL for example is 10 orders of magnitude lower concentrations than albumin in plasma [84]. This 

is compared with for example CSF where the difference is 5 orders of magnitude [226, 227]. If the aim 

of the study is to generate biomarker candidates which need to be further verified and validated, it is  

preferential to generate a larger number of less robust candidates at the cost of increasing the number 
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of false positives. This strategy would reduce the risk of eliminating many potentially true positive hits, 

particularly among lower abundant proteins which more commonly have less confident peptide 

spectrum matches.  Therefore a 5% FDR approach was selected, with a subsequent verification stage. 

However, a threshold was set where the protein needed to be quantified in at least 50% of the samples 

to be used in the downstream analysis, to mitigate the risk of too many false positives. This eliminated 

approximately 90% of all the hits.  

When building our biomarker pipeline, a lack of verification experiments following proteomic 

biomarker candidates was noticed in the literature. There is a significant technical discrepancy 

between a proteomic approach where mass spectra from peptides in a fractionated sample are used 

as quantification, compared with immunoassays that utilise antibodies targeted to specific epitopes 

in native diluted sample biofluid. Parallel reaction monitoring (PRM) was used to verify the most 

promising biomarker candidate from the discovery study [138]. The results were relatively consistent 

with the discovery data for about half the proteins. A pronounced signal intensity variation was noted 

across samples, which was corrected for with total ion count and the QC samples that were run every 

10 samples. The QC correction in this study was performed with external controls, and not internal 

controls, in order to keep the protocol more simple, and the samples as neat as possible. Ideally, to 

correct for the signal variation observed one would spike the samples with stable isotope standards 

to have an internal reference peptides to correct against [137, 228]. The PRM method used was 

effective for quantification of reproducible quality peptides. This meant that many of the less 

stringently identified biomarker candidates from the discovery study were not possible to verify with 

PRM, and other methods, such as immunoassays, need to be considered to verify the remaining 

candidates.  

4.6 Comparison with CSF discovery studies. 

What approach is taken for biomarker discovery is often dependent on the pathological hypothesis 

and clinical application. For example, if it believed a disease is isolated to one organ system, tissue or 

local biofluid, those tissues/fluids would be appropriate for biomarker discovery, as pathologically 

altered molecules would have a higher relative abundance near the source. There is a case to be made 

for discovery of neurological biomarkers in CSF, to then be replicated in plasma to improve its clinical 

utility. This may be a reasonable approach if a disease is believed to originate in the CNS, and some 

disease associated molecules leak or are transported into plasma from the CSF. For example, s100b, 

a common marker for TBI, is 500-fold higher in CSF than plasma following TBI [229]. It is an intracellular 

glial protein believed to be elevated following structural brain damage and is leaked into the plasma. 

Similarly, plasma proteins that directly reflect amyloid plaques and tau tangles in AD, such as p-Tau-
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181, would be better to first establish in CSF, and later validate in plasma [230]. The aetiology of PD is 

poorly understood, and despite the core pathological hallmarks are in the brain, evidence suggests a 

key role of the periphery in early PD. Plasma was selected as the medium of choice in this study, not 

to miss any relevant peripheral proteins.  

Nonetheless, to best identify candidate CNS derived PD biomarker candidates, large-scale studies on 

PD CSF should be performed. A few attempts have recently been made to both discover and validate 

CSF PD biomarkers. Naskar et al. [231] performed a label-free CSF proteomic study on PD, PDCI (PD 

with cognitive impairment) and control subjects, with approximately 10 participants per group. They 

identified 281 proteins, out of which 28 and 21 were differentially expressed in PDCI and PD, 

respectively, and managed to validate complement factor H in PDCI and Gelsolin in PD. Zhu et al. [137] 

performed an untargeted mass spectrometry experiment on PD, APD and controls, and identified 

peptides from 313 proteins. They validated their top hits with Multiple Reaction Monitoring (MRM) 

(n = approximately 30 per group) and found Leucine-rich α-2 glycoprotein 1 (LRG1) was elevated in 

both the profiling (discovery) study and the MRM study. Similar to our results, they too found elevated 

levels of complement factor C9 in PD patients in the discovery study, but noticed it varied greatly with 

sex. Marques et al. [232]performed an untargeted study using CSF from PD, MSA and controls (n = 

approximately 10 per group) and validated their findings using Selective Reaction Monitoring (SRM). 

However, the primary focus of their study was differentiating MSA from PD and controls. Rotunno et 

al. [233] used two cohorts of PD and controls (n = approximately 50 per group), and quantified CSF 

proteins using data independent acquisition (DIA) and validated 13 differentially expressed proteins 

in the two cohorts. Most recently Karayel et al. [234] quantified a total of over 1700 proteins from 2 

cohorts PD and controls using a rectangular approach, and additionally included LRRK2 carriers with 

and without PD (n = approximately 50 per group) using DIA. They validated osteomodulin and CD44 

as differentially expressed in PD, as well as several HLA proteins in LRRK2 PD patients. 

An increasing number of groups are turning to data independent acquisition DIA for discovery studies. 

DIA allows for more complete MS2 spectra, and protein identification is done with a pre-constructed 

spectral library. This generally results in better scalability, and more accurate and reproducible results, 

and more accurate label free quantification [235]. Data dependent acquisition (DDA) sensitivity and 

quantification accuracy can however be improved with sample pre-fractionation and isobaric labelling 

respectively [236], although this results in more labour intensive studies. A general limitation of mass 

spectrometric discovery studies, is the poor quantification of lower abundant proteins in complex 

media. This is however a technical hurdle that might be overcome in the future with improved 

instruments, software, and spectral libraries [235, 237]. The most recent PD CSF study by Karayel et 
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al. [234] did for example not manage to quantify NfL or interleukins, which highlights the limitations 

of mass spectrometric techniques of today  

Few biomarker candidates from the abovementioned CSF discovery studies, except for C9, overlapped 

with the plasma results in this thesis. This is possibly a reflection of most brain derived proteins that 

leak into plasma are low abundant, and difficult to quantify in with mass spectrometry. To some 

degree it could also reflect challenges in reproducing mass spectrometric data, and the stochastic 

nature of DDA generated data.  

4.7 Limitations and future directions of discovery studies 

One of the main objectives of this thesis was to identify plasma biomarkers that would reflect cognitive 

function and cognitive decline. One general limitation with the data analysis on disease severity and 

progression was that the plasma samples were not always taken from the time of diagnosis. The 

biomarker candidates associated with cognitive decline in Parkinson’s Disease therefore do not 

necessarily reflect early changes that predict cognitive decline, but rather reflect what is seen in 

plasma in a patient that do decline more rapidly. 

Not using baseline samples also introduced covariates such as dopaminergic medication and disease 

duration in the analyses. Given that disease duration, age, symptom severity, and medication were 

usually collinear, correcting for several of these would mean that interaction terms would need to be 

considered. This would generate overly complex linear models, and increase the risk of overfitting. 

Therefore, the data was generally only corrected for age and sex where appropriate, and covariates 

were often analysed separately to assess whether they had a significant effect on the biomarkers. The 

fact that most patients were on levodopa medication did mask some of the symptom severity, 

particularly UPDRS part III. Some studies assess the UPDRS score off medication, which results in more 

accurate motor assessments, but it is more difficult to implement in routine clinical practise [238]. 

Similar issues are true for non-levodopa medications. Patients with NMS, particularly depression and 

anxiety, are often on treatment which would mask some of the NMS severity. Moreover, many elderly 

individuals have several comorbidities, such as hypertension, cardiovascular disease, cancers, and 

diabetes, which both on their own and via their associated medications, likely affect the plasma 

proteome of the study individuals. It was attempted to select PD patients and controls with as few 

medications and comorbidities as possible, but it is often difficult to achieve owing to age of the study 

population and limited sample availability. Although baseline samples are ideal to analyse disease 

progression, they are less useful for cross sectional analyses. Many PD patients experience an 

exacerbation of symptom severity over time, and samples from a few years after diagnosis are 

generally better for assessing symptom severity and symptom phenotypes.  
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Another limitation of the study was a lack of an independent validation cohort. Instead, a large 

discovery cohort was used to increase the confidence of the biomarker candidates, particularly the 

low abundant ones. The proteins were then validated in silico through cross validation machine 

learning models. A subset of data was trained on itself, and then tested on another subset of data to 

assess its biomarker performance on new data. Just like a validation cohort, this tests the results on a 

new data, but does not account for other confounders such as cohort variation and technical 

variations. Some studies are opting for a “rectangular” biomarker discovery and validation approach 

which has some statistical benefits [135, 239]. With this approach a discovery study is performed in 

two separate cohorts, either with two real cohorts or with two artificially in silico constructed cohorts 

from one larger cohort. Overlapping significantly differentially expressed proteins are then considered 

validated biomarkers. This is an effective method as two large cohorts each generate high confidence 

biomarker candidates that are instantly validated in the same experiment. The trade-off is higher cost, 

more labour intensive setup, and the need of large cohort [135].  

4.8  Complement study 

Proteins related to the complement system have emerged as candidate plasma biomarkers in several 

proteomic studies [114] and the complement and coagulation cascade was the most implicated 

pathway in PD in the discovery study. As a validation study, proteins from the complement system 

were quantified in plasma from PD, HC, and 4R-Tauopathies (PSP or CBS). It was found that individuals 

with 4R-Tauopathies (PSP or CBS) had lower circulating C1q and C3 in plasma compared to both HC 

and PD. To our knowledge, these are novel findings and suggest plasma complement biomarkers may 

be able to differentiate APD from PD. Very few other targeted studies have looked at plasma 

complement factors in APD. Yamada et al. measured C4d and circulating immune complexes (CIC) to 

C1q in both plasma and CSF in PSP and PD, and found that C4d was increased in PSP plasma [240], and 

did not observe any changes in CIC to C1q in PSP. However, their cohort was quite small (6 PSP vs 14 

PD), and they measured CIC bound C1q and not total C1q. Wang et al. measured CSF C3 and FH in PD, 

AD and Multiple System Atrophy (MSA) using a Luminex assay, and found that the C3 to FH ratio was 

decreased in individuals with MSA and could discriminate MSA from PD, AD and HC with high 

sensitivity and specificity [241]. They did not observe any changes in CSF C3 and FH between PD and 

HC. Other targeted biomarker studies in PSP and CBS have focused on core pathological changes. 

Being tauopathies, both total Tau and phosphorylated-Tau have been measured in 4R-Tauopathies 

CSF, but without consistent findings [242, 243]. Why peripheral Tau levels are altered in other Tau-

related disorders like Alzheimer’s disease (AD) but not in 4R-Tauopathies is unclear and hypothesised 

to be due to different protein isoforms or the involvement of beta-amyloid. Neurofilament light has 

probably been the most successful biomarker in differentiating PD from APD, both in plasma and CSF, 
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although it is less accurate in differentiating between different APDs [92]. For differentiation between 

APDs, perhaps a panel of proteins with C3 or C1q included may be useful. Magdanilou et al. showed 

that a panel of 9 different neurodegenerative markers in CSF could differentiate not only PD from 

APDs, but also different APDs from each other[244]. It is particularly interesting C1q was most 

significantly changed in the 4R-Tauopathies in this study, since both Tau and C1q have been 

considered two of the major contributors in AD neurodegeneration in some studies, and 

immunotherapies with bispecific antibodies against Tau and C1q are currently being developed[245]. 

 

Interestingly, no differences in any of the measured complement factors in plasma were observed 

between PD and HC using immunoassays. This was surprising, given the number of untargeted 

proteomic studies in PD plasma or serum finding changes in complement proteins. These studies 

report for example changes in levels of C5a[246], C3[53, 247, 248],  C5, C4b and C1 inhibitor[52]. 

Furthermore, Alberio et al. performed an automated proteomic literature analysis on PD plasma with 

a subsequent experimental validation and concluded that both C3 and FH were viable PD plasma 

biomarkers [248], and Goldknopf et al. found nine protein spots related to the complement system 

on 2D-gels differentiating PD from other neurodegenerative diseases [247].  However, a major caveat 

is again the technical gap between proteomic discovery studies and immunoassay validation methods. 

As was seen in the PRM study, only one of the C9 peptides was elevated in PD plasma, which would 

for example not be detected with a Luminex assay if the antibody epitope binds to a different part of 

the C9 protein.  

 

Only a few studies have measured complement factors in PD plasma in a targeted manner. Sun et al. 

used a scatter immune turbidity method to measure serum C3 and C4 in PD and HC [249], where they 

found no group differences. However, they noticed that female PD patients had higher C3 and C4 than 

male PD patients and female HC, and that male PD patients had lower C3 and C4 compared to male 

HC, and moreover, they saw both C3 and C4 were decreased with certain NMS. In our study, we did 

not find these sex-specific differences on a group level, increases in C3 with NMS severity for female 

PD patients were observed. Veselý et al. performed a longitudinal study in PD patients, where higher 

levels of serum C3 and C4 measured with nephelometry led to worsening in NMS and quality of life at 

a 2 year follow up [115]. Several of these patients also had increased levels of C3 and C4 at the follow 

up. Dufek et al. measured C1q, C1 inhibitor, C3, C4 and MBL in PD serum, and noticed lower MBL in a 

few of the PD patients [250]. Most of the proteins quantified in our study, have not been quantified 

in PD (or APD) plasma previously using immunoassays, including C4b, C5, C5a, C9, FB, FD, FH, and FI.  
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One inherent advantage of studying the complement system in blood is that all components are 

present, and activity can be studied in vitro. The 50% complement haemolytic assay (CH50) takes 

advantage of this. By adding serum to antibody-coated erythrocytes, the classical pathway is activated 

by the binding of C1q to the antibodies and ends with MAC pores forming on the erythrocytes causing 

haemolysis which is measured with absorbance. There was no difference in serum CH50 in PD versus 

controls. However, male patients higher levels of mental fatigue with higher classical complement 

activity, which suggests an inflammatory component might be involved in fatigue. CH50 assays have 

been performed for a few neuroinflammatory diseases, most notably for neuromyelitis optica, where 

lower CH50 was observed[251].  

 

There were a few limitations to the complement study. Sera was not available for the BIOPARK study 

participants, and the CH50 assay was performed in a separate cohort (AETIONOMY), which meant 

complement levels and activity was not measured in the same individuals. However, the study still 

provides insight into how complement levels and activity are altered in the blood of individuals with 

PD, but not necessarily their relation. The 4R-Tauopathies group was small, heterogeneous, and could 

not be age and sex matched to the PD and HC groups. However, PSP and CBS are rare disorders where 

these complement proteins had not been measured previously, hence including an APD group still 

added value to the study. The diagnoses of PD, CBS and PSP were all probable, and not definitive as 

there was no post-mortem histopathological data. Future studies using pathologically confirmed APD 

cases could perhaps explain some of the heterogeneity of the 4R-Tauopathies group. Furthermore, 

the dynamic range for all complement proteins was quite large and overlapping between groups, 

which makes it difficult to set useful thresholds to use these proteins as biomarkers. Although the PD 

and HC groups were age matched, there were more male PD patients and female HC in our cohorts. 

However, this was corrected for in the regression models, and sex-specific analyses were also 

performed. Finally, we did not correct for multiple comparisons to avoid type 2 errors, as there were 

significant interactions between multiple complement proteins and clinical parameters respectively. 

However, further studies are needed to validate these findings.  

 

To summarise, 4R-Tauopathies appear to have lower plasma C1q and C3 compared to PD and HC, and 

C3 correlates positively with several NMS in female PD patients. However, a group level difference in 

complement concentrations and complement activity was not found in PD patients.  
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4.9  Overall conclusion 

In conclusion, the discovery study generated many novel plasma biomarker candidates for both PD 

diagnosis and cognition, and showed unbiased identification of new plasma biomarker candidates 

with mass spectrometry is indeed possible. The pipeline was successful in verifying several plasma 

proteins using PRM from the discovery study. Several novel biomarkers from the discovery study, and 

some from the verification study, showed superior biomarker performance to NfL. Generally, the 

pipeline approach worked well for robust verifiable peptides, and the discovery study did generate 

many new promising biomarker candidates for future studies to validate.  
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