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Abstract
This thesis deals with the dynamics and thermodynamics of open quantum sys-

tems. The first part focuses on the thermodynamic aspect of open quantum sys-

tems, particularly on their stochastic entropy production. Before investigating

stochastic entropy production, we obtain the Markovian versions of the averaged

form of the stochastic Liouville-von Neumann (SLN) equation through analyti-

cal methods. The SLN equation describes a system that is interacting with its

environment thermally in a non-Markovian way, and its averaged form can be

obtained through the usage of the Furutsu-Novikov theorem, and other averaging

methods that rely on the integration of environmental contributions. We then in-

vestigate a novel form of stochastic entropy production, specifically the stochastic

entropy production associated with continuous measurements of a system coupled

to several environments. We rely on traditional methods from stochastic thermo-

dynamics, while applying them to quantum systems. We allow the coupling to one

of the environments to vary, which behaves as a measurement of a system observ-

able, and consequent selection of an eigenstate, while under thermal interactions.

The stochastic entropy production is calculated and understood through the evolu-

tion of the probability density function of system variables, not through sequences

of Kraus operators, and it can be expressed through system and environmental

contributions. With the system interacting thermally with the environment, the

rate of averaged entropy production vanishes asymptotically, indicating equilib-

rium. The positive mean production of entropy characterises the irreversibility

of quantum measurements, and with forward and reverse protocols representing

connection to and disconnection from a measuring device, it satisfies a detailed

fluctuation theorem.

The simulation of the dynamics of non-Markovian systems can often be numerically

and analytically challenging, and that is the focus of the second part of this thesis.

To tackle this problem we begin with the ESLN equations, an extension of the

SLN equation. The ESLN method relies on two stochastic differential equations,

one in imaginary time that describes the initial system preparation, and the other

its evolution in real time, i.e the physical dynamics of the system. With this, we

are able show the importance of the choice of a physically correct initial state.

Stochastic methods are often computationally challenging, and we have developed

schemes that improve on existing ones for the generation of the coloured noises that

are used in the ESLN equation. We present several schemes capable of generating

coloured noises that rely on their analytical and numerical optimisation.
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Chapter 1

Introduction

Incompatibilities between experiment and theory have always led to great advance-

ments in science, and this was also observed for quantum mechanics, born out of

the quantisation of light as a solution to the ultraviolet catastrophe of black-body

radiation by Planck [1]. The early 20th century saw the incredible development

of quantum mechanics, by Einstein, Bohr, Schrödinger, Dirac, Heisenberg, von

Neumann, and many others [2]. Such developments only dealt with the treatment

of quantum systems in isolation.

Developments in open quantum systems began to take place during the second

half of the 20th century, with Redfield [3], Nakajima [4], Zwanzig [5], and also the

derivation of the Lindblad equation [6, 7]. The research and experiments involving

any type of control over quantum systems was still at its infancy, as they were

mostly done on ensembles of quantum particles [2]. The ability to truly influence

quantum systems deliberately rests on the ability to control quantum states, which

itself depends on being able to measure and influence the state in specific ways.

This type of quantum control was realised with non-ideal measurements through

the works of Davies [8], and Kraus [9]. It was from the predictions [10], and fur-

ther experimental confirmations of quantum jumps [11, 12] that the understanding

of quantum trajectories, their physical interpretation, and their treatment with

stochastic differential equations was developed [13–15]. With the formulation of

quantum stochastic differential equations, particularly of the Langevin form [15],

links to other disciplines were strengthened [2]. These quantum stochastic differ-

ential equations were then able to describe quantum trajectories and continuous

measurements for the first time, specifically systems that are being continuously
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measured by a device while still coupled to an environment. This allowed to

describe a myriad of physical systems used in the field of quantum optics [2, 15].

Beyond the Markovian dynamics of the Lindblad equation, and others, the formal-

ism to study and understand open quantum systems reached a higher level of so-

phistication with the works by Vernon and Feynman [16], and Caldeira and Leggett

[17], based on a path integral formulation of the system and its environment. It is

through these pioneering works that many methods for non-Markovian dynamics

approaches were developed. This includes methods such as hierarchical equations

of motion [18, 19], hierarchy of pure states [20], the SLN equation [21, 22], and sev-

eral others [23, 24]. These methods consider non-Markovian dynamics explicitly,

wherein the environment contains memory leading to more complex and realistic

dynamics.

The study of open quantum systems is ever more important with the application

of quantum technologies increasing significantly [25]. The challenges posed by the

engineering of quantum systems can be eased by the thorough understanding of

the systems and their environments. The main purpose of the work undertaken

in this thesis is for this exact purpose, to better understand open quantum sys-

tems by improving on current theoretical and numerical methods. We explore

the behaviour of open quantum systems from two different perspectives, their

dynamics, and thermodynamics. Complex physical systems require careful sim-

ulation of their environments, hence our focus on non-Markovian systems, to be

able to more accurately describe system-environment interactions and their dy-

namics. The dynamics of a system does not fully describe its behaviour, as the

thermodynamics play an important role, which will be explored through stochastic

entropy production. This is especially important as it allows us to describe the

irreversibility of the dynamics of the system. This thesis focuses on this type of

holistic understanding of open quantum systems.
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1.1 Outline

The format of this thesis is divided into two distinct parts, the first part focuses on

the thermodynamics of open quantum systems, specifically the entropy production

of systems that are continuously measured by a device or environment. While the

second part focuses on the non-Markovian dynamics of open quantum systems,

particularly using the Extended Stochastic Liouville-von Neumann (ESLN) equa-

tion, including analytical and numerical optimisations. These two parts are linked

by the type of systems that are investigated, as well as their underlying equations

of motion. The concrete outline of the thesis is given by:

Chapter 2 introduces a relevant background to discuss the dynamics of open quan-

tum systems. It gives a brief background on the mathematics and methods for

open quantum systems, including Markovian equations of motions, followed by

non-Markovian ones, specifically the ESLN and SLN equations.

Chapter 3 continues the background information, but focuses on the thermody-

namic side, specifically on classical and quantum stochastic thermodynamics, and

entropy production.

Chapter 4 pivots in a slightly different direction, by dealing with the derivation

of a deterministic equation from the SLN equation, which is inherently stochastic;

importantly here we present a method that is then used in Chapter 5.

Chapter 5 is the final chapter of the first part. It explores the stochastic entropy

production of continuous measurements, the evolution of the probability density

function of the observables, and how the system thermalises while satisfying a

fluctuation theorem.

The second part of the thesis begins with Chapter 6, by exploring the effects that

arise from considering the ESLN equation and its specific initial state preparation

when applied to constant and time-dependent Hamiltonians.

Chapter 7 deals with the generalisation of coloured noises generation schemes

used in the ESLN equation, their convergence properties and how they affect the

convergence of the dynamics.

Chapter 8 is the conclusion of thesis.
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Chapter 2

Introduction to Open Quantum

Systems

2.1 Density Matrix

This section introduces the necessary content on open quantum systems to be-

gin exploring the dynamics of non-Markovian systems. The starting point into

describing open quantum systems is the density matrix, defined as:

ρ =
∑
i

pi|ψi⟩⟨ψi|, (2.1)

where pi is the probability of the system being in state i, with
∑

i pi = 1 and

pi ≥ 0. It is the generalisation of the wave function, allowing for a thermal

mixture of different states of the system. These basis states |ψi⟩ are denoted in

this context as pure states. For any density matrix, if it has more than one non-

zero eigenvalue, it becomes a mixed state. Whether a state is mixed or not, can

be quantified by its purity, Tr (ρ2). If Tr (ρ2) = 1, then this denotes a pure state; if

Tr (ρ2) < 1, then a mixed state is obtained. The minimum possible purity is given

by Tr (ρ2) = 1
N
, where N is the dimension of the Hilbert space. There exist certain

conditions that any density matrix has to satisfy: having unit trace Tr (ρ) = 1,

and being a positive semi-definite Hermitian matrix. In this thesis, we will mostly

be dealing with two-dimensional systems, where the density matrix can take on

a specific representation. A two dimensional system described by a 2× 2 density
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matrix can always be written as

ρ =
1

2
(I + r · σ) (2.2)

where r = (rx, ry, rz) is the coherence or Bloch vector with ri = Tr (σiρ), and

σ = (σx, σy, σz) is a vector made up of the Pauli matrices. This representation of

ρ is also known as the coherence vector representation, and requires that r2 ≤ 1.

We should also note that a Bloch vector is a vector that lives in the Bloch sphere,

and it is a useful geometric representation of a two level quantum system. It also

characterises the purity of the state, a Bloch vector on the surface of the Bloch

sphere denotes the state as pure, i.e. Tr (ρ2) = 1, and within the sphere it is a

mixed state, Tr (ρ2) < 1. Using the density matrix, it is quite easy to obtain the

expectation values of any observable. The expectation value of an operator A of

the system can be written as

⟨A⟩ = Tr (Aρ) . (2.3)

It is also possible to calculate such expectation values for any of the components of

the coherence vector, allowing one to understand how the dynamics of the system

explores the Hilbert space.

2.1.1 Composite and reduced density matrices

When dealing with open quantum systems, the full density matrix describes sys-

tems that are typically made up of smaller subsystems. This is the case when-

ever an open system is embedded in a larger environment. With ρAB being the

density matrix of composite systems A and B, its combined Hilbert space will

correspond to the tensor product of the Hilbert space of both individual systems,

i.e. HAB = HA⊗HB. The full density matrix can be described by a product state

ρAB = ρA ⊗ ρB. (2.4)

Whenever a state cannot be written as a sum of product states, i.e. a separable

state, the state is considered an entangled state [26]. This formulation of composite

systems is general, and applicable for any number of N systems. To be able to

describe the behaviour of an open system, it is necessary to obtain a reduced
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density matrix that includes only the degrees of freedom of the system of interest.

Continuing with the previous example, the reduced density matrix of system A is

given by taking a partial trace over the degrees of freedom of system B, and this

is exemplified in

ρA = TrB [ρAB] =
∑
j

(IA ⊗ ⟨j|B) ρAB (IA ⊗ |j⟩B) , (2.5)

where {|j⟩} is any orthonormal basis of the Hilbert space of subsystem B. Even if

the state associated with ρAB is an entangled one, ρA will be describing exclusively

the degrees of freedom of subsystem A.

2.1.2 Time propagation

The time evolution of a quantum state of a closed quantum system from time t0

to time t is described by the propagator U(t, t0)

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩, (2.6)

which enables us to write the density matrix as

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0). (2.7)

The propagator takes the general form (h̄ = 1),

U(t, t0) = T̂ e
−i

∫ t
t0

dt′Hsys(t′), (2.8)

where Hsys is the system Hamiltonian, and T̂ is the time ordering operator. With

Hsys being Hermitian, U(t, t0) is a unitary operator with U †U = I. While the

propagator for the full system is unitary, the propagator of the reduced density

matrix is not required to be, as the environmental degrees of freedom have been

traced out [27]. This results in allowing open quantum systems to display be-

haviour not found in closed systems, such as dissipation and decoherence. From

the formal definition in Eq. (2.7) it is possible to obtain the equation of motion

for the density matrix by taking its time derivative:
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dρ(t)

dt
= −i [Hsys, ρ(t)] , (2.9)

also known as the Liouville-von Neumann equation.

2.2 Quantum Master Equations

The earliest derivation of a non-Markovian equation of motion was an application

to nuclear magnetic resonance, and performed by Redfield [3, 28], subsequently

taking the Born-Markov approximation and obtaining the now known Redfield

equation [3, 28]. Another approach that led to the derivation of a non-Markovian

equation was the Nakajima-Zwanzig equation [4, 5], which belongs to a class of

methods known as projection operator techniques [24]. This relies on considering

the total system comprised by the open system and the environment, and then

using projection operators to separate the system into relevant and irrelevant parts.

The standard form of the Nakajima-Zwanzig equation is given by [4, 5, 29]

dρ(t)

dt
=

∫ t

0

dt′f(t, t′)ρ(t′) (2.10)

where f(t, t′) is the Nakajima-Zwanzig kernel that determines the memory of the

environment, which induces the non-Markovian dynamics of the system. After

the Redfield, and Nakajima-Zwanzig equations, the next major development in

open quantum systems was the Lindblad equation, a Markovian equation of mo-

tion [6, 7]. The Lindblad equation spurred developments in quantum dynamical

semigroups [30], since it is the most general form of dynamics given by a com-

pletely positive dynamical map [27]. These developments were also motivated by

technological and experimental developments, particularly in the monitoring of

microscopic quantum systems [31], and even in applications of quantum informa-

tion processing and computing [32]. A quantum stochastic differential equation

that describes quantum trajectories, is typically also built upon a Lindblad like

equation that leads to positive dynamics [27]. We can define the dynamical map

Γ(t), forming a semigroup, and having to satisfy the conditions [30]:

ρ(t) = Γ(t)ρ(0), (2.11)
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determining the evolution of the density matrix, and

Γ(t)Γ(s) = Γ(t+ s), (2.12)

which is known as the semigroup property. It satisfies a continuity condition on

the density matrix ρ:

lim
t−→+0

Γ(t)ρ(0) = ρ(0), (2.13)

and a complete positivity condition for the density matrix ρ:

Γ(t)ρ(0) ≥ 0, (2.14)

which ensures that the time evolution dynamics remain positive. Finally, it is

necessary that

Tr (Γ(t)ρ(0)) = Tr (ρ(0)) (2.15)

so that trace preservation is enforced for ρ. Any completely positive trace-preserving

map of the dynamics of ρ can be written as a dynamical equation in the form of

dρ(t)

dt
= Lρ(t), (2.16)

where L is the Liouvillian superoperator. The most general form of a Markovian

superoperator, L, is given by the Lindblad equation [7]:

dρ(t)

dt
= −i [Hsys, ρ(t)] +

∑
ij

hij

[
Fiρ(t)F

†
j − 1

2

{
F †
j Fi, ρ(t)

}]
(2.17)

where Fi are the Lindblad or jump operators, and hij are the coefficients of the

products of operators. Since h is a positive semidefinite matrix, it can be diago-

nalised with a matrix u to obtain a diagonal matrix of its eigenvalues. Specifically,

we can write

uhu† = diag (γ1, ..., γN2−1) , (2.18)

and the new Lindblad operators

Li =
∑
j

Fju
†
ji, (2.19)

allowing us to obtain a diagonal version of the Lindblad equation:
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dρ(t)

dt
= −i [H, ρ(t)] +

∑
ij

γi

[
Liρ(t)L

†
i −

1

2

{
L†
iLi, ρ(t)

}]
. (2.20)

Eq. (2.20) is divided into two components, the one driving unitary dynamics

through the Hermitian operator Hsys, and the second part being the dissipative

component through the Lindblad operator contributions. This equation remains

invariant under unitary transformation of the Lindblad operators, indicating that

the choice of Lindblad operators is not unique. The Lindblad equation depends

on the Born-Markov approximation, hence only being applicable in the Markovian

limit, and for the case where the coupling strength of interaction between the

system and the environment is small enough. The derivation of the Lindblad

equation assumes that the initial state of the system and environment is a product

state:

ρtot = ρsys ⊗ ρenv. (2.21)

This approximation is not valid for high coupling strength between the open system

and the environment, or whenever the complete system is initially in thermal

equilibrium. How a thermal initial state can be incorporated into the dynamics is

introduced in Sec. 2.3.

2.3 ESLN Equation Derivation

In Section 2.2, we briefly demonstrated the form of the Linblad equation, a Marko-

vian master equation that relies on assuming the initial state of the full system is

a product state, i.e. ρtotal = ρsys ⊗ ρenv. In this section, we will be moving on to

describe the Extended Stochastic Liouville-von Neumann (ESLN) equation [33],

a non-Markovian stochastic method to describe an open system that is initially

entangled with its environment, such that the full state cannot be presented as

a direct product of two separate states [33]. As the name suggests, the ESLN

equation is an extension of the Stochastic Liouville-von Neumann (SLN) equation

[21, 22, 33, 34]. The SLN equation is also a stochastic non-Markovian method but

relies on an initial product state. We will be reviewing the derivation of the ESLN

equation in this section, following the prescription from [33].

The ESLN equation depends on the coordinate representation of the density matrix

with respect to the environment and open system. The open system is described by
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coordinates q, and by the Hamiltonian Hsys(q, t), that remains completely general,

and can even include time dependent fields and driving. The environment depicts

a bosonic environment made up of N harmonic oscillators, each with mass mi and

described by displacement coordinates ξi. The interaction between the system is

linear in the coordinates of the environment ξi, but can be completely general in

the system coordinates. This setup can be described by the Hamiltonian [33]:

Htot(q, ξ, t) = Hsys(q, t) +
1

2

N∑
i=1

p2i
mi

+
1

2

∑
ij

Λijξiξj −
∑
i

fi(q, t)ξi, (2.22)

where pi is the momentum variable associated with ξi, Λij is the force constant

matrix and defines the interactions between the different harmonic oscillators of

the environment. The fi(q, t)ξi term is responsible for the coupling between the

open system and the environment. This combined system still follows a unitary

time evolution given by

ρtot(t) = Utot(t, 0)ρtot(0)U
†
tot(t, 0) (2.23)

where ρtot is the combined density matrix. Utot(t, t0) is the propagator of the

combined system:

Utot(t, t0) = T̂ e
−i

∫ t
t0

dt′Htot(t′), (2.24)

where T̂ is the time ordering operator. While the combined system follows a

unitary evolution, the same might not be true for the open system itself, which is

what we will be describing next. The intent is to be able to describe the system

of interest on its own, in this case the open system driven by Hsys. To do so,

the degrees of freedom of the environment need to be traced out, this is done by

applying the partial trace over ξ

ρsys(t) = Trξ [ρtot(t)] . (2.25)

Here, ρsys refers to the open system reduced density matrix, and the subscript

was made explicit to differentiate between the environment and system density

matrices. In coordinate space described by coordinates q, ξ, q̄, and ξ̄, the total

and reduced density matrices are respectively given by

ρtot(t; q, ξ, q̄, ξ̄) = ⟨q, ξ|ρtot(t)|q̄, ξ̄⟩ (2.26)
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ρsys(t; q, q̄) = ⟨q|ρsys(t)|q̄⟩. (2.27)

Also in the coordinate space, the propagators can be written as

U(q, ξ, t; q̄, ξ̄, t0) = ⟨q, ξ|U(t, t0)|q̄, ξ̄⟩, (2.28)

U(q̄, ξ̄, t0; q, ξ, t) = ⟨q̄, ξ̄|U †(t; t0)|q, ξ⟩ = ⟨q̄, ξ̄|U(t0; t)|q, ξ⟩, (2.29)

where U † is the reverse propagator. The system reduced density matrix in the

coordinate representation starting at time t0 is

ρsys(t; q, q
′) =

∫
dξ̄dξ̄′dq̄dq̄′dξdξ′δ(ξ−ξ′)U(q, ξ, t; q̄, ξ̄, t0)ρtot(t0; q̄, ξ̄, q̄′, ξ̄′)U(q̄′, ξ̄′, t0; q′, ξ′, t)

(2.30)

where the forward propagators can be given by

U(q, ξ, tf ; q̄, ξ̄, t0) =

∫ q(tf )=q

q(t0)=q̄

Dq(t)
∫ ξ(tf )=ξ

ξ(t0)=ξ̄

Dξ(t) exp {iS[q(t), ξ(t)]} , (2.31)

where Dq(t), and Dξ(t) denote the integration over all paths of the coordinates

q(t), and ξ(t), respectively; while S[q(t), ξ(t)] is the action of the combined system.

The reverse propagator is given by

U(q̄′, ξ̄′, t0; q
′, ξ′, tf ) =

∫ q′(t0)=q̄′

q′(tf )=q′
Dq′(t)

∫ ξ′(t0)=ξ̄′

ξ′(tf )=ξ′
Dξ′(t) exp {−iS[q′(t), ξ′(t)]} .

(2.32)

It is possible to obtain a set of stochastic differential equations (SDEs) starting

from Eq (2.30), which were derived in [33]. To be able to integrate out the envi-

ronmental coordinates it is necessary to specify an initial condition for ρtot. The

choice of the combined system initial density matrix is given by the thermal state

ρtot(0) =
1

Zβ

e−βHtot(0), (2.33)

where β = 1/T is the inverse temperature and Zβ = Tr(e−βHtot(0)) is the normal-

isation constant of the combined system. This represents an initial state that is

entangled, the open system and the environment density matrix cannot be fac-

torised. This thermal initial state also corresponds to the asymptotic thermal

state of the combined system whenever it is initialised in some other state. This

leads to the open system undergoing decoherence, and becoming entangled with
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the environment as it evolves towards its thermal state. It is often useful to trans-

form the variables of the system into ones that facilitate their manipulation, and

in this case the environmental coordinates and couplings will be transformed into

a normal mode representation given by the following two transformations:

xλ =
N∑
i

√
mieλiξi, (2.34)

and

gλ(q) =
N∑
i

1
√
mi

eλifi(q). (2.35)

Where eλi are the eigenvectors of the dynamical matrix Dij = Λij/
√
mimj, and

they follow orthogonality and completeness relations, i.e. eTλ eλ′ = δλλ′ and
∑

λ eλe
T
λ =

1. These transformations will modify the Hamiltonian, allowing it to be written

as

Htot(q, x) = Hsys(q) +
1

2

∑
λ

(
ẋ2λ + ω2

λx
2
λ

)
−
∑
λ

gλ(q)xλ, (2.36)

where ω2
λ are the eigenvalues associated with the dynamical matrix Dij. The

propagators from Eq. (2.31) and (2.32) will also be modified with this transfor-

mation by simply changing variables. After this transformation it is possible to

proceed with the integration of the path integral, as Eq (2.36) is now quadratic in

the integration variables, namely the environmental variables x, therefore known

expressions for quadratic path integrals can be used [35–37].

2.3.1 Influence functional

In order to integrate Eq. (2.30), it is necessary to simplify the propagators from

Eqs. (2.31) and (2.32) as they still include path integrals over the environmental

variables ξ. As the environmental contributions contributions to the Hamiltonian

in Eq. (2.36) are quadratic, identities for Gaussian path integrals can be used [33],

which will remove the ξ integration from Eqs. (2.31) and (2.32). This procedure

leads to the following expression for the system reduced density matrix
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(2.37)ρsys (tf ; q; q
′) =

1

Z

∫
dq̄dq̄′Dq(t)Dq̄(τ)Dq′(t)F (q(t), q′(t), q̄(τ))×

exp
{
iSq [q(t)]− iSq [q

′(t)]− SE
q [q̄(τ)]

}
where Sq [q(t)], and Sq [q

′(t)] are the actions of the open system that are obtained

by integrating the environmental variables from the forward propagator in Eq.

(2.31), and the backward propagator in Eq. (2.32), respectively. This distinct

treatment between the forward and backward propagation of ρtot in the derivation

of the ESLN and SLN equations is conceptually similar to the Keldysh field theory

formalism that treats the forward and backward propagation as different from

each other [38]. The choice of classical and quantum variables through a Keldysh

rotation also resembles some of the simplifications and choices made in the ESLN

derivation [38]. On the other hand, SE
q is the Wick rotated action that arises from

the initial state of the combined system from Eq. (2.33), as it can be expressed

as a path integral over the system and environmental coordinates. It is from this

Wick rotation that the imaginary time τ is defined, specifically τ = it. We should

note that Z is a partition function defined from the partition functions of the

total system Zβ, and that of the isolated environment ZB [33, 37], specifically

Z = Zβ/ZB. F (q(t), q′(t), q̄(τ)) is the influence functional [16], which arises after

integrating out the path integrals over the environmental variables, with some of

the environmental variable integrals still to be performed. The influence functional

is factorised over the normal modes λ and can be given by the expression [33]:

(2.38)F (q(t), q′(t), q̄(τ))

=
1

ZB

∏
λ

∫
dxλdx̄λdx̄

′
λFλ [qλ(t), xλ, x̄λ]F

E
λ [q̄λ(τ), x̄λ, x̄

′
λ]F

∗
λ [q

′
λ(t), x̄λ, x̄

′
λ]

Eq. (2.38) contains the product of three terms, all of which contain expressions

that depend on the environmental coordinates. These expressions are obtained

from the integration of the environmental terms in the propagators and the initial

state, with respect to their environmental variables. Fλ and F ∗
λ are obtained

from the propagators, while FE
λ comes from the Wick rotation of the initial state

propagator alluded to earlier. By performing the integral from Eq. (2.38) over the

remaining environmental variables, it is possible to obtain the reduced expression:
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(2.39)F (q, q′, q̄) = exp

(
−
∑
λ

Φλ (q, q
′, q̄)

)
,

where Φλ is the influence phase, given by

Φλ (q, q
′, q̄) = i

∫ β

0

dτ

∫ β

0

dτ ′Kλ(iτ
′ − iτ)ḡλ(τ)ḡλ(τ

′)

− i

∫ β

0

dτ

∫ tf

0

dtKλ(t− iτ)ḡλ(τ) [gλ(t)− g′λ(t)]

+

∫ tf

0

dt

∫ t

0

dt′ (Kλ(t− t′)gλ(t
′)−K∗

λ(t− t′)g′λ(t
′)) [gλ(t)− g′λ(t)] ,

(2.40)

where the gλ functions are defined in Eq. (2.35), and we should note the sim-

plification in the notations, particularly gλ(t) ≡ gλ(q(t)), g
′
λ(t) ≡ gλ(q

′(t)), and

ḡλ(τ) ≡ gλ(q̄(τ)).

The Kλ function is the kernel, and is allowed to have both real or imaginary times

as its argument. It takes on the explicit form

(2.41)Kλ(θ) =
cosh

[
ωλ

(
β
2
− iθ

)]
2ωλ sinh

(
1
2
βωλ

) .

Being able to accept imaginary or real time variables, it will take on different forms

depending on the type of the argument, and separating it into imaginary and real

time contributions is useful for the rest of the derivation. For real time, we can

write for the real and imaginary parts, respectively

(2.42)KR
λ (t) =

1

2ωλ

coth

(
1

2
βωλ

)
cos(ωλt),

and

(2.43)KI
λ(t) = − 1

2ωλ

sin(ωλt).

For a combination of real and imaginary times we obtain

(2.44)KR
λ (t− iτ) =

1

2ωλ

[
coth

(
1

2
βωλ

)
cosh(ωλτ)− sinh(ωλτ)

]
cos(ωλt),
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and

(2.45)KI
λ(t− iτ) = − 1

2ωλ

[
cosh(ωλt) + sinh(ωλt) coth

(
1

2
βωλ

)]
sin(ωλt).

While for purely imaginary times we get the expression

(2.46)Kλ(iτ) = Keven
λ (τ) +Kodd

λ (τ)

=
1

2ωλ

[
sinh(ωλt) + cosh(ωλ) coth

(
1

2
βωλ

)]
.

With these expressions it is necessary to transform the gλ functions once again,

by performing another transformation, from normal modes to site representation

[33, 39]. By defining the following functions

vi(t) = fi(t)− f ′
i(t), (2.47)

where fi is the same function defined in Eq. (2.35), and

ri(t) =
1

2
[fi(t) + f ′

i(t)], (2.48)

it is then possible to express the influence phase in site representation with i and

j indices instead of normal mode λ indices. We can write this as

Φ[q, q′, q̄] =
∑
ij

Φij[q, q
′, q̄], (2.49)

where

Φij[q, q
′, q̄] =−

∫ β

0

dτ

∫ β

0

dτ ′
1

2
f̄i(τ)

[
Le
ij(τ

′ − τ)− Lo
ij(|τ ′ − τ |)

]
f̄j(τ

′)

− i

∫ β

0

dτ

∫ tf

0

dtvi(t)Lij(t− iτ)f̄j(τ) (2.50)

+
1

2

∫ tf

0

dt

∫ tf

0

dt′vi(t)L
R
ij(t− t′)vj(t

′)

+ 2i

∫ tf

0

dt

∫ tf

0

dt′vi(t)
[
θ(t− t′)LI

ij(t− t′)
]
rj(t

′),

Eq. (2.50) contains the same type of notation simplification for the fi functions,

fi(t) ≡ fi(q(t)), f
′
i(t) ≡ fi(q

′(t)), and f̄i(τ) ≡ fi(q̄(τ)). The new site representation

kernels Lij can be related to the normal mode Kλ kernels as
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LR,I
ij (t) =

1
√
mimj

∑
λ

eλieλjK
R,I
λ (t), (2.51)

Lij(t− iτ) =
1

√
mimj

∑
λ

eλieλjKλ(t− iτ), (2.52)

Leven
ij (τ) =

1
√
mimj

∑
λ

eλieλj
2ωλ

coth

(
1

2
βωλ

)
cosh(ωλτ) (2.53)

and

Lodd
ij =

1
√
mimj

∑
λ

eλieλj
2ωλ

sinh(ωλτ). (2.54)

While Eq. (2.50) can be used as it stands to calculate the dynamics of the system,

as it depends only on the open system’s variables, it would be hard to do so, due

to difficulties with evaluating path integrals numerically. Note that this considers

all sites of the environment, which could potentially be represented by an infinite

number of sites, and this is numerically prohibitive to do, therefore simplifications

will also have to be introduced in the next section. As such, a stochastic differential

equation is going to be derived that describes the dynamics stochastically. To

do so, it is necessary to introduce the Hubbard-Stratonovich transformation and

describe how it is applied in this case.

2.3.2 Two-time Hubbard-Stratonovich transformation

The Hubbard-Stratonovich transformation is a statistical technique that can be

used to replace an exact dynamics with a Gaussian sampling of a stochastic dy-

namics, with the intent of decreasing the numerical and analytical complexity of

the dynamics. It relies on the Fourier transform of the probability distribution of

a stochastic process. For this case, we are dealing with variables that are complex

in nature, so a complex Gaussian process needs to be considered. The probability

density function of N complex noises z = (z1, zN , ..., z
∗
1 , z

∗
N) is given by

W (z) =
1

(2π)N
√
detΦ

exp

{
−1

2
zTΦz

}
(2.55)
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where z is a vector of length 2N , the concatenation of two N length compo-

nents: one for the vector of noises, and the other for its complex conjugate. More

specifically:

z =

[
z1

z2

]
(2.56)

where

z1 =



z1

z2
...

zN−1

zN


(2.57)

with z2 being the complex conjugate of z1:

z2 =



z∗1

z∗2
...

z∗N−1

z∗N


(2.58)

The covariance matrix is given by Φ:

Φ =
(
Φαβ

ij

)
=

(
Φ11

ij Φ12
ij

Φ21
ij Φ22

ij

)
, (2.59)

and is related to the correlations of the zαi noises as

⟨zαi z
β
j ⟩z =

(
Φ−1

)αβ
ij
. (2.60)

The z suffix on the angled brackets is used to refer to a stochastic average over

the z noises. With this, the Fourier transform of W (z) is denoted by W̃ (k):

W̃ (k) =

∫
dzW (z)eiz

T k = e−
1
2
kTΦ−1k. (2.61)

This expression is obtained due to W (z) being quadratic such that the whole

expression can be integrated using identities for Gaussian integrals [33]. The

integration over W (z) can be interpreted as the stochastic averaging of exp
(
izTk

)
so that Eq. (2.61) can be recast in component form
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〈
exp

{
i
∑
iα

zαi k
α
i

}〉
z

= exp

{
−1

2

∑
ijαβ

kαi ⟨zαi z
β
j ⟩zk

β
j

}
. (2.62)

By considering a small time step, i.e the continuous limit, it is possible to trans-

form the discrete sums into integrals. Since the noises and correlations we are

considering contain two different time variables, t and τ , the transformation needs

to accommodate that by considering the cross-time correlation terms. For two

time variables, t and τ , the Hubbard-Stratonovich transformation can be written

as [33]

〈
exp

{
i
∑
iα

∫ tf

0

dtzαi (t)k
α
i (t) + i

∑
iα

∫ β

0

dτ z̄αi (τ)k̄
α
i (τ)

}〉
[z(t),z̄(τ)]

=

exp

{
−1

2

∑
ijαδ

[∫ tf

0

dt

∫ tf

0

dt′kαi (t)
TAαδ

ij (t, t
′)kδj (t

′) +

∫ β

0

dτ

∫ β

0

dτ ′k̄αi (τ)
TBαδ

ij (τ, τ
′)k̄δj (τ

′) + 2

∫ tf

0

dt

∫ β

0

dτkαi (t)
TCαδ

ij (t, τ)k̄
δ
j (τ)

]}
,

(2.63)

where

Aαδ
ij (t, t

′) = ⟨zαi (t)zδj (t′)⟩z, (2.64)

Bαδ
ij (τ, τ

′) = ⟨z̄αi (τ)z̄δj (τ ′)⟩z, (2.65)

and

Cαδ
ij (t, τ) = ⟨zαi (t)zδj (τ)⟩z (2.66)

are the correlations of the z variables, which includes a cross-time term. With Eq.

(2.63) it is possible to simplify Eq. (2.50), and obtain an expression that depends

on stochastic variables. To do so, it is necessary to create a mapping between the

z and k variables such that the exponential of Eq. (2.50), and Eq. (2.63) match

exactly with one another. First we must propose the variables that make up z

[33]:

zi(t) =


ηi(t)

η∗i (t)

νi(t)

ν∗i (t)

 , (2.67)
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and for imaginary time

z̄i(τ) =

(
µ̄i(τ)

µ̄∗
i (τ)

)
. (2.68)

With these definitions, it is necessary to choose k in such a way that Eqs. (2.50)

and (2.63) match appropriately. This can be done with the following choices

ki(t) =


vi(t)

0

ri(t)

0

 , (2.69)

and for imaginary time

k̄i(τ) =

(
if̄i(τ)

0

)
. (2.70)

This matching then allows us to obtain the correlations for the stochastic variables

we have just defined, and in the site dependent representation we can write [33],

with h̄ = 1:

⟨ηi(t)ηj(t′)⟩ =
1

√
mimj

∑
λ

eλieλj
2ωλ

coth

(
1

2
βωλ

)
cos (ωλt) , (2.71)

⟨ηi(t)νj(t′)⟩ = −2iΘ(t− t′)
√
mimj

∑
λ

eλieλj
2ωλ

coth

(
1

2
βωλ

)
sin (ωλt) , (2.72)

⟨ηi(t)µj(τ)⟩ = − 1
√
mimj

∑
λ

eλieλj
2ωλ

cosh
(
1
2
βωλ − iωλ (t− iτ)

)
sinh

(
1
2
βωλ

) , (2.73)

⟨µi(τ)µj(τ
′)⟩ = 1

√
mimj

∑
λ

eλieλj
2ωλ

[
coth

(
1

2
βωλ

)
cosh (ωλτ)− sinh (ωλτ)

]
,

(2.74)

⟨νi(t)νj(t′)⟩ = ⟨νi(t)µj(τ)⟩ = 0, (2.75)

where Θ(t− t′) is the Heaviside step function, with the eigenvectors of the matrix

Dij = Λij/
√
mimj being given by eλ, and with eigenvalues w2

λ. By changing from

the sum and difference functions from Eqs. (2.48) and (2.47) into the coupling

functions fi, and inserting them into the respective equal time action, we obtain

a simplified version of Eq. (2.37):

ρsys(tf ; q; q
′) =

1

Z

∫
dq̄dq̄′Dq̄(t)Dq̄(τ)Dq′(t) exp

{
iS+[q(t)]− iS−[q′(t)]− iSE[q(τ)]

}
,

(2.76)
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where S+[q(t)], S−[q′(t)], and SE[q(τ)] are defined by

S+[q(t)] =

∫ tf

0

dtL+[q(t)], (2.77)

S−[q′(t)] =

∫ tf

0

dtL−[q′(t)], (2.78)

and

SE[q̄(τ)] =

∫ τf

0

dτLE′[q̄(τ)], (2.79)

with the following Lagrangians, respectively:

L+[q(t)] = Lq[q(t)] +
∑
i

(
ηi(t) +

1

2
νi(t)

)
fi(t), (2.80)

L−[q′(t)] = Lq[q
′(t)] +

∑
i

(
ηi(t)−

1

2
νi(t)

)
f ′
i(t), (2.81)

and

LE[q̄(τ)] = LE
q [q̄(τ)] +

∑
i

µ̄i(τ)f̄i(τ). (2.82)

From the actions S+[q(t)], and S−[q′(t)], an equation of motion can be obtained

for real time t, while the action SE[q̄(τ)] will lead to dynamics in imaginary time τ .

Imaginary time propagation corresponds to the notional thermalisation dynamics

required to establish the initial thermal state of the combined system, that is then

used to initialise the real time propagation. The real time propagation leads to the

usual real time dynamics of the system. Both these equations of motions contain

stochastic terms, but we will present the real time propagation that is described by

the evolution of the reduced stochastic density matrix of the open system ρs(t) in

terms of the propagators. We can connect the system reduced stochastic density

matrix ρs with the system reduced density matrix ρsys from Eq. (2.37) through

the stochastic average over the noises, i.e.

⟨ρs⟩z = ρsys. (2.83)

The real time evolution of the reduced stochastic density matrix of the open system

can be described by

ρs(tf ) = U+(tf , 0)ρs(0)U
−(0, tf ). (2.84)

Notation wise, ρs will be used to refer to the open system when it evolves stochas-

tically, either in the context of the real time dynamics of the ESLN equation or
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with any other Markovian equation. Eq. (2.84) describes the evolution of the

density matrix for the real time evolution of the ESLN equation, and is evolved

by two propagators that do not produce unitary dynamics. The propagators take

the form

U+(tf , 0) = T̂ exp

{
−i
∫ tf

0

H+(t)dt

}
, (2.85)

and

U−(0, tf ) = T̃ exp

{
i

∫ tf

0

H−(t)dt

}
, (2.86)

and are the propagators obtained from the Eq. (2.76), with T̂ and T̃ denoting

chronological and anti-chronological time ordering, respectively. This allows us to

obtain the effective Hamiltonian for the real time evolution of the reduced density

matrix as

H±(t) = Hsys(t)−
∑
i

[
ηi(t)±

1

2
νi(t)

]
fi. (2.87)

The dynamics of ρs(t) are then described by a Liouville-like equation, and this is

shown in

(2.88)
dρs(t)

dt
= H+(t)ρs(t)− ρs(t)H

−(t)

= −i [Hsys(t), ρs(t)] + i
∑
i

(
ηi(t) [fi, ρs(t)] +

1

2
νi(t) {fi, ρs(t)}

)

which differs from other equation previously derived in [22] and is implicitly non-

Markovian and not unitary. The non-Markovian dynamics arise from the finite-

time system-environment correlations present in the ηi(t) and νi(t) noises. Only

remaining is the evolution of the density matrix in imaginary time that is obtained

from Eqs. (2.79) and (2.82). It takes the form

ρ̃(τ) =
1

Z
T̂ exp

{
−
∫ τ

0

dτ ′H̄(τ ′)

}
. (2.89)

where ρ̃ is the density matrix in imaginary time for the ESLN equation, and Z

ensures the correct normalisation. With this simple expression, its time derivative

will yield its imaginary time evolution, given by [33, 40]
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dρ̃(τ)

dτ
= −

(
Hsys(t0) +

∑
i

µi(τ)fi

)
ρ̃(τ). (2.90)

We should note that from the site correlation in Eqs. (2.71)-(2.75), there exists a

cross-time correlation between the real and imaginary time, that helps to establish

the proper system real-time propagation after thermalisation. Eqs. (2.88) and

(2.90) are driven by three stochastic noises per lattice site, but this can be reduced

to three noises for the whole system by considering a straightforward simplification.

This is done by changing from site representation to normal mode representation,

and further assuming that the q-dependence of the system environment coupling

is the same for each normal mode of the system, i.e fλ(q) = cλf(q), differing by a

constant cλ. This reduces the number of required stochastic noises from three per

site, to just three for the entire system, that is ν(t), η(t), and µ(τ). This means

that the product of the noises with the coupling functions can be simplified:

ηλ(t)fλ −→ η(t)f, (2.91)

where η(t) =
∑

λ cληλ(t), and likewise for the other noises. The SDEs with these

choices of couplings and noises are given by

dρ̃(τ)

dτ
= − (Hsys(t0) + µ(τ)f) ρ̃(τ), (2.92)

and the real time dynamics

dρs(t)

dt
= −i [Hsys(t), ρs(t)] + iη(t) [f, ρs(t)] +

i

2
ν(t) {f, ρs(t)} . (2.93)

Eqs. (2.92) and (2.93) are correlated with each other due to the noises, and are

meant to be evolved sequentially. As the imaginary time propagation thermalises

the open system, the final state of Eq (2.92) serves as the initial condition for the

real time propagation in Eq. (2.93). Concretely, we can write ρ̃(β) = ρs(t0). With

the simplification of the noises and couplings, the correlations of the noises are

modified in the continuum limit, and given by:

⟨η(t)η(t′)⟩ = α

∫ ∞

0

dω

π
J(ω) coth

(
1

2
βω

)
cos (ω (t− t′)) ≡ Kηη(t− t′), (2.94)

⟨η(t)ν(t′)⟩ = −2αiΘ(t− t′)

∫ ∞

0

dω

π
J(ω) sin (ω (t− t′)) ≡ Kην(t− t′), (2.95)
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⟨η(t)µ(τ)⟩ = −α
∫ ∞

0

dω

π
J(ω)

cosh
(
1
2
βω − iω (t− iτ)

)
sinh

(
1
2
βω
) ≡ Kηµ(t, τ), (2.96)

⟨µ(τ)µ(τ ′)⟩ = α

∫ ∞

0

dω

π
J(ω)

[
cosh (ω (τ − τ ′)) coth

(
1

2
βω

)
− sinh (ω (τ − τ ′))

]
≡ Kµµ(τ − τ ′),

(2.97)

⟨ν(t)ν(t′)⟩ = ⟨ν(t)µ(τ)⟩ = 0, ∀t, t′, τ, (2.98)

where α is the coupling strength between the system and environment, and J(ω) is

the spectral density, which determines the dynamics of the environment, and which

frequency modes are relevant to the evolution of the combined system. Taking the

continuum limit and the normal mode simplification from Eq. (2.91), the sum of

the discrete bath modes from Eq. (2.71) becomes an integration over the bath

frequencies ω as such

∑
λ

c2λ
2ωλ

−→
∫ ∞

0

dω

π

(
π
∑
λ

c2λ
2ωλ

δ(ω − ωλ)

)
−→

∫ ∞

0

dω

π
J(ω). (2.99)

In the continuum limit, the spectral density can often be written in the following

form [41]

J(ω) = αω

(
ω

ωc

)s−1

e−
ω
ωc , (2.100)

where s describes the type of spectral density and related microscopic models and

environments, and ωc is a cut-off frequency. For the ESLN equation, the form of the

density matrix is kept general and able to describe any type of spectral density.

Different values of s will lead to different types of spectral density, specifically

Ohmic (s = 1), sub-Ohmic (s < 1), and super-Ohmic (s > 1). Examples of

Ohmic environments include non-interacting electron gases [41], and non-Ohmic

environments can be described by electron-phonon coupling and tunnelling in the

bulk [41].

Regarding the noises, and Eqs. (2.92) and (2.93) in their stochastic form, they

do not lead to a physical density matrix, as the trace is not conserved through

both imaginary and real time evolution [33, 42]. The physical limit of Eqs. (2.92)

and (2.93) is obtained when an average of the system reduced stochastic density

matrix ρs is taken over the stochastic noises. Numerically, this is done by taking

many realisations of the dynamics of the system and averaging them. While in Eq.

25



(2.83) we denoted ⟨ρs⟩ = ρsys, for simplicity we will denote the averaged reduced

density matrix of the open system as

⟨ρs⟩ = ρ̄, (2.101)

for the rest of this thesis. The density matrix for a system driven by deterministic

dynamics will also be denoted by ρ̄. We should note that the noises in the ESLN

equation are all coloured noises, containing memory through their correlations.

These types of noises can be chosen to be described by a convolution of a filtering

kernel with a white noise, taking a form similar to

y(t) =

∫
dt′G(t, t′)x(t′), (2.102)

where y(t) is the coloured noise, G(t, t′) is the filtering kernel, and x(t′) is a white

noise with autocorrelation ⟨x(t)x(t′)⟩ = δ(t− t′). This is the form of the coloured

noises that we will work with, and more details will be presented in Chapters 6

and 7.

2.3.3 SLN equation

The ESLN equation is a generalisation of a previous method, the SLN equation

[21] which follows the same type of derivation but makes a slightly different initial

assumption, that of an initial product state, i.e. the combined density matrix can

be written as a product of the system and environment density matrices, like in

Eq. (2.4). From this, we obtain the seminal work of the SLN equation [21, 22, 34].

The equations of motion for this case are very similar to the ESLN case, but they

do not consider the thermalising imaginary time propagation, so we obtain only

one equation:

dρs(t)

dt
= −i [Hsys, ρs(t)] + iη(t) [f, ρs(t)] +

i

2
ν(t) {f, ρs(t)} , (2.103)

where the noises follow the correlations given by

⟨η(t)η(t′)⟩ =
∫ ∞

0

dω

π
J(ω) coth

(
1

2
βω

)
cos (ω (t− t′)) ≡ Kηη(t− t′), (2.104)

⟨η(t)ν(t′)⟩ = −2iΘ(t− t′)

∫ ∞

0

dω

π
J(ω) sin (ω (t− t′)) ≡ Kην(t− t′). (2.105)
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with all other correlations vanishing. As seen, this equation is of the same form

as Eq. (2.93), with the main difference being the lack of µ(t) noise correlations,

and the absence of the thermalising imaginary time propagation. For several

independent environments coupled to the system the SLN equation can be written

as [34, 43]

dρs(t)

dt
= −i [Hsys, ρs(t)] + i

∑
k

(
ηk(t) [fk, ρs(t)] +

νk(t)

2
{fk, ρs(t)}

)
, (2.106)

This assumes the different environments are independent of each other, allowing

to write the following correlation functions for the set of coloured noises ηk(t) and

νk(t):

⟨ηk(t)ηk(t′)⟩ =
∫ ∞

0

dω

π
Jk(ω) coth

(
1

2
βkω

)
cos (ω (t− t′)) ≡ Kηη

k (t− t′), (2.107)

⟨ηk(t)νk(t′)⟩ = −2iΘ(t− t′)

∫ ∞

0

dω

π
Jk(ω) sin (ω (t− t′)) ≡ Kην

k (t− t′). (2.108)

The form of the equation of motion and its correlations is a simple extension

of the single environment dynamics, provided these different environments are

independent of each other. This allows us to perform the partial integration over

the degrees of freedom of each environment in an independent manner. It should

also be noted that for both the ESLN and SLN equations, the trace of ρs is not

equal to one for all times, as it will depend on ν(t). This indicates that each

realisation of these non-Markovian methods is not physical due to the difference

of the trace from unity. It will be shown in Chapter 6 how the averaging over

many realisations of the stochastic noises leads to a physical density matrix.
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2.4 Chapter Summary

In this chapter, we have reviewed the fundamentals of open quantum systems,

along with an introduction to the Lindblad equation before moving on to the

derivation of the non-Markovian stochastic method that is the ESLN equation.

We reviewed its derivation, how to integrate the environmental modes, and how

the stochasticity arises from the Hubbard-Stratonovich method. The ESLN equa-

tion leads to a couple of SDEs that are driven by coloured noises that satisfy

complicated auto and cross correlations.
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Chapter 3

Introduction to Thermodynamics

and Quantum Measurements

In this chapter, we will be introducing the thermodynamic concepts and measures

that will be used to investigate stochastic entropy production in Chapter 5. The

study of stochastic entropy production is of particular importance as it allows to

more precisely understand a microscopic system and the irreversibility associated

with its dynamics. The notion of entropy was first proposed and coined by Clau-

sius in the context of work and heat exchange for classical thermodynamics [44].

Boltzmann then formulated a different method of determining the entropy pro-

duction, based on the counting of possible microstates of a system [45]. This type

of perspective lays a foundation for the modern concepts of entropy, as it allows

for a statistical and probabilistic understanding of entropy production, which was

then explored by Gibbs. We will begin with an introduction to measuring deter-

ministic entropy production for quantum systems, moving on to different types

of measurements, and finally stochastic entropy production for both classical and

quantum systems.

3.1 Quantifying Entropy

We introduce some of the measures used for determining the entropy production

for ensemble dynamics. Many of these measures were created when the notion

of quantum trajectories was not yet defined, so they are only applicable to the
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averaged behaviour of a system, and not their quantum trajectories. For stochas-

tic systems, the probability between transitions of states becomes important in

defining measures of entropy as will be shown.

3.1.1 Gibbs entropy

Gibbs entropy was initially proposed as a formulation of the probability distribu-

tion over a set of discrete states [46], and setting the Boltzmann constant to one,

i.e. kB = 1:

SGibbs = −
∑
i

pi ln pi, (3.1)

where i is an index referring to each microstate. It can be also defined for contin-

uous system described by a continuous variable x

SGibbs = −
∫
p(x) ln p(x)dx, (3.2)

making use of the probability density function p(x) of the system instead of the

individual state probabilities. These definitions are possible to describe non-

equilibrium thermodynamics but are only applicable to statistical ensembles. It

therefore cannot be applied to individual stochastic trajectories, and is not suitable

to understand stochastic entropy production.

3.1.2 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is also known as the relative entropy [47],

and measures the overlap between two distributions:

SKL(p, q) =

∫
p(x) ln

p(x)

q(x)
dx. (3.3)

This quantity is of significant importance as it allows to measure the overlap

between two probability distributions. It can be interpreted as integrating the

logarithmic difference between the two distributions with one of them as the mea-

sure or reference. It should be noted that the KL divergence is not a symmetric
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measure, i.e. SKL(p, q) ̸= SKL(q, p). If SKL(p, q) = 0 then both distributions

contain the same amount of information.

3.1.3 von Neumann entropy

The von Neumann entropy is the generalisation of the Gibbs entropy to quantum

systems [27], utilising the density matrix instead of the probability density function

(pdf) of the system:

SvN = −Tr [ρ ln ρ] , (3.4)

and it satisfies certain properties. It is equal to zero for a pure state, i.e. for

Tr (ρ2) = 1 or r2 = 1 where r is the magnitude of the coherence vector. von

Neumann entropy reaches its maximum value of lnN for a maximally mixed state,

where N is the dimension of the Hilbert space of ρ. This means that the range of

values for the von Neumann entropy is between 0 and lnN , and depends on the

dimensionality of ρ. Using the spectral decomposition of the density matrix, it is

possible to show that Eq. (3.4) is equal to the Shannon information entropy [27].

This allows to understand the role of the von Neumann entropy in the study of the

eigenvalues of the density matrix, specifically by the amount of information that

is accessible from a quantum state [27]. With von Neumann entropy vanishing

for a pure state, r2 = 1, this poses a problem when attempting to understand

systems that are always pure, as will be shown in Chapter 5. Therefore, Eq (3.4)

is not suitable for all systems, especially ones where there are highly irreversible

processes that induce large amounts of entropy production, as it is bound between

0 and lnN , or for pure states when von Neumann entropy vanishes. For these

types of systems, measures that rely on the probabilities of forward and reverse

processes are more suitable.

3.2 Classical Stochastic Thermodynamics

The concept of entropy was developed in the 19th century, by considering the

disorder, and irreversibility of macroscopic behaviour of systems, but these ideas
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have been significantly developed since. Further developments on entropy pro-

duction were expanded by investigating the notion of thermodynamics in micro-

scopic systems. This came about through fluctuation theorems, and were first

developed by Evans et al. [48–51], and then similarly appeared in chaos theory

[52] and stochastic modelling [53, 54], also developed by Jarzynski [55] and Crooks

[56, 57]. Thermodynamics, which was seen as a classical and deterministic descrip-

tion of macroscopic phenomena, is now able to be applied to stochastic systems.

Stochastic thermodynamics began by generalising the laws of thermodynamics to

stochastic systems [58]. These ideas were further worked on by investigating the

stochastic behaviour of colloidal particles or molecular systems in heat baths [59].

With these developments, it is then possible to consider entropy production for

individual stochastic trajectories. These fluctuation theorems typically describe

the symmetries and averaged behaviour of stochastic dynamics and trajectories,

and are able to describe the behaviour of systems away from equilibrium.

In this section, we will go over a derivation of a fluctuation theorem describing

entropy production for a system with continuous variables that are transformed

under time reversal [60, 61].

3.2.1 Fluctuation theorem and entropy production

The investigation of stochastic entropy production, and associated fluctuation the-

orems requires defining forward dynamics, which is the typical dynamics of the

system, and reverse dynamics that is obtained from some transformation of the

forward ones. Before we can address entropy production, we must clarify some

of the terminology related to the path probabilities and their dynamics. In order

to describe non-equilibrium behaviour, that contains some driving forces or some

other time dependence, specific concerns need to be addressed when defining what

we mean by forward dynamics. We simply mean how the controllable aspects of

the system are allowed, or forced to change, while the system evolves. Simply put,

it characterises the time dependence of a physical parameter of the system. This

can be the Hamiltonian, the temperature of the bath, its coupling to the system,

or some other property that can be controlled and varied. This controlled time

dependence is denoted as a protocol, which we are keeping arbitrary for now, and

for the forward dynamics that would be the forward protocol λF (t). This protocol

then defines the forward path probability functional P F (x), such that the forward
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trajectories x are evolved under the forward protocol and dynamics. On the other

hand, the reverse path probability PR(x†) evolves the reverse path x† under the

reverse protocol λR(t).

It is necessary to define the form of the reverse dynamics, protocols, and paths.

Stochastic entropy production can typically be defined as a measure of the irre-

versibility of the dynamics of a system [59]. To determine the irreversibility of

the dynamics, we need to specify the properties of the paths, protocol and initial

conditions. Starting with the paths, it is necessary to produce reverse paths that

are solutions to the forward dynamics, which can be done by time reversing the

forward path, and including a sign reversal for odd variables [60], leading to the

reverse path

x†(t) = ϵx(tfinal − t), (3.5)

where ϵ = ±1 depending on if x is even or odd, respectively. Next, the reverse

protocol needs to be defined, which characterises the sequence of steps or param-

eters that determine the reverse dynamics. It can be defined from the forward

protocol in a similar manner to Eq. (3.5):

λR(t) = ϵλF (tfinal − t). (3.6)

Lastly, we need to determine the initial conditions. As mentioned earlier, we want

to investigate the irreversibility by considering reverse path probability densities

that are evolved using forward dynamics. To this effort, at the end of the forward

process, the coordinate x(tfinal) and final state distribution pF (x(tfinal)) need to

be time reversed and evolved from then onwards. So we can equate the following

pdfs to obtain

pR(x†(0)) = pF (ϵ2x(tfinal)) = pF (x(tfinal)), (3.7)

where one of the factors of ϵ comes from the reverse path in Eq. (3.5), while the

other is obtained from the reverse protocol in Eq. (3.6). With these definitions,

we can proceed to derive the fluctuation theorem for entropy production. The

intent on deriving a fluctuation theorem for entropy production is to allow us to

better understand its distribution, and the dynamics of the system. The entropy
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production is defined as the ratio between trajectories of forward and reverse path

probability functions [60]:

∆stot(x(t)) = ln

[
P F (x(t))

PR(x†(t))

]
, (3.8)

where P F (x(t)) is the path probability functional for the forward path x, with

the F superscript denoting the forward dynamics. On the other hand, PR(x†(t))

is the reverse path probability functional for the path x†(t). It is often useful to

decompose both path probability functionals into two distinct parts, one contain-

ing the initial state probability distribution, and the other being the conditional

path probability. Specifically, P F (x(t)) = pF (x(tinit))PF (x(tfinal)|x(tinit)) where
pF (x(tinit)) is the initial state distribution, while PF (x(tfinal)|x(tinit)) is the con-

ditional path probability; and similarly for the path x†(t) case. This allows to

rewrite Eq. (3.8) as

(3.9)∆stot(x(t)) = ln
pF (x(tinit))PF (x(tfinal)|x(tinit))
pR(x†(tinit))PR(x†(tfinal)|x†(tinit))

.

We can also write the functional ∆sRtot(x
†(t)) for the x†(t) path, and to understand

its relationship to the ∆stot(x(t)) functional. This takes a similar form to Eq.

(3.9):

∆sRtot(x
†(t)) = ln

PR(x†(tinit))PR(x†(tfinal)|x†(tinit))

pF (x(tinit))PF (x(tfinal)|x(tinit))
= −∆stot(x(t)). (3.10)

Despite the relation in Eq. (3.10), dealing with functionals and path probabilities

can be a bit opaque as it does not allow for the direct investigation of properties and

observables of a system. As such, it becomes important to calculate the probability

density function of observing a specific value of the functional ∆stot(x(t)), and this

can be given by the path integral

P F (∆stot(x(t)) = A) =

∫
dxP F (x(t))δ (A−∆stot(x(t))) (3.11)

In a similar manner, we can construct the probability distribution function for the

reverse path probability function, but in this case for ∆sRtot(x
†(t)) = −A. We can

write the reverse path integral as

34



PR
(
∆sRtot(x

†(t)) = −A
)
=

∫
dx†PR

(
x†(t)

)
δ
(
A+∆sRtot(x

†(t))
)

(3.12)

with this equation, we can use Eq. (3.8) to relate the two probability distributions.

Specifically by writing

PR(x†(t)) = e−∆stot(x(t))P F (x(t)) (3.13)

and inserting it into Eq. (3.12), we obtain

PR
(
∆sRtot(x

†(t)) = −A
)
=

∫
dx†e−∆stot(x(t))P F (x(t))δ

(
A+∆sRtot(x

†(t))
)
.

(3.14)

Using the relation ∆sRtot(x
†(t)) = −∆stot(x(t)) from Eq. (3.10), and requiring

that the Jacobian of the transformation of the measure dx† into dx is unity, i.e.

dx† = dx, we can write

PR
(
∆sRtot(x

†(t)) = −A
)
= e−A

∫
dxP F (x(t))δ (A−∆stot(x(t))) . (3.15)

where the delta function has forced the exponent to have set the condition

∆stot(x(t)) = A. (3.16)

There are several more assumptions made in this transformation, particularly with

respect to the relationship between x and x†. We are automatically assuming that

the path integrals for both x and x† cover the same limits and trajectory space

[60]. This assumption seems a reasonable one considering the relationship between

the forward and reverse paths from Eq. (3.5), with x† supposed to be a solution to

the forward dynamics. Specifically, that the trajectories defined by x are contained

within all the possible x† trajectories [61]. With that transformation we have

P F
(
∆sFtot(x(t)) = A

)
=

∫
dxP F (x(t))δ (A−∆stot(x(t))) , (3.17)

leading to

PR
(
∆sRtot(x

†(t)) = −A
)
= e−AP F

(
∆sFtot(x(t)) = A

)
. (3.18)
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We can then denote the final form of the fluctuation relation [60] as

eA =
P F
(
∆sFtot(x(t)) = A

)
PR (∆sRtot(x

†(t)) = −A)
. (3.19)

This fluctuation theorem is quite important [62], as it allows to relate the prob-

ability density functions of the variables of interest that can be generated from

individual trajectories and paths. We can go on to further simplify Eq. (3.19)

e∆stot =
P F (∆stot)

PR (−∆stot)
. (3.20)

Here, we have simplified the notation by dropping the explicit forward and reverse

superscripts from the total entropy production, but they are implicit from the

associated forward or reverse path probabilities. Eq. (3.20) is also called a detailed

fluctuation theorem [63]. This result states that the probability of a negative

stochastic entropy production for a reverse protocol is not zero, in spite of the

usual demands of the second law, though it is exponentially smaller than the

probability of a positive production of the same magnitude during the forward

protocol. After the derivation of Eq. (3.20), it is now necessary to obtain the

explicit form of the components of the total entropy production from Eq. (3.9):

(3.21)∆stot(x(t)) = ln
pF (x(tinit))PF (x(tfinal)|x(tinit))
pR(x†(tinit))PR(x†(tfinal)|x†(tinit))

= ln
pF (x(tinit))

pR(x†(tinit))
+ ln

PF (x(tfinal)|x(tinit))
PR(x†(tfinal)|x†(tinit))

,

With Eq. (3.7) describing the relation between initial and final pdfs, we can write

(3.22)∆stot = ln
pF (x(tinit))

pF (x(tfinal))
+ ln

PF (x(tfinal)|x(tinit))
PR(x†(tfinal)|x(tfinal))

where we can divide the total entropy into components from the system and from

the environment:

∆ssys = ln
pF (x(tinit))

pF (x(tfinal))
(3.23)

∆senv = ln
PF (x(tfinal)|x(tinit))
PR(x†(tfinal)|x(tfinal))

. (3.24)
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We have separated these two contributions from the entropy production of the

total system, one for the system and the other due to the environment. This

division is somewhat arbitrary [60], but it allows for ease of investigation.

3.2.2 Stochastic entropy production

In order to understand the stochastic entropy production as defined in Eq. (3.22),

we need to understand how the probability density function of the x(t) coordinate

behaves with time. To do so, we need to solve the Fokker-Planck equation. Keep-

ing this discussion general, let us therefore consider an Itô SDE for a general set

of dynamical variables x involving a set of Wiener increments dW , and a matrix

of noise coefficients B,

dx = A(x, t)dt+B(x, t)dW . (3.25)

The corresponding Fokker-Planck equation that describes the evolution of the pdf

p(x, t) is

∂p(x, t)

∂t
=
∑
i

∂

∂xi

[
−Ai(x, t)p(x, t) +

∑
j

∂

∂xj
(Dij(x, t)p(x, t))

]
, (3.26)

where D is the diffusion matrix D = 1
2
BBT . We will be introducing the total

entropy production using the approach of Ref. [60], where we will derive the

continuous form of Eqs. (3.23). We can start by doing that for the system entropy

production, by taking the continuous time limit with tfinal = t+ dt and tinit = t:

d∆ssys = ln
p(x, t)

p(x′, t+ dt)
= − ln

p(x′, t+ dt)

p(x, t)
= −d (ln p(x,t)) (3.27)

by expanding the last term, and according to Itô’s lemma, it can also be written

as

d∆ssys = −d (ln p(x, t)) = −∂ ln p(x, t)
∂t

dt−
∑
i

∂ ln p(x, t)

∂xi
dxi−

∑
ij

Dij
∂2 ln p(x, t)

∂xi∂xj
dt.

(3.28)

The form of these equations for the system entropy production is enough for the

purpose of this thesis, as Eq. (3.27) can be calculated numerically quite efficiently.

To calculate the environmental entropy production we begin by separating the
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deterministic part of Eq. (3.25) into two contributions based on their time reversal

properties:

dx = A(x, t)dt+B(x, t)dW = Airr(x, t)dt+Arev(x, t)dt+B(x, t)dW , (3.29)

where Airr and Arev are the irreversible and reversible contributions to A, re-

spectively. Specifically, if dxi (the i-th component of dx) is even with respect to

time reversal, then Arev
i is determined such that Arev

i dt is also even. Since dt is

odd, Arev
i has to be odd: Arev

i transforms in the opposite way to xi under the

time reversal. By similar reasoning Airr
i transforms in the same way as xi. More

concretely, we can define

Airr
i (x, t) =

1

2
(Ai(x, t) + ϵiAi(ϵx, t)) = ϵiA

irr
i (ϵx, t) (3.30)

Arev
i (x, t) =

1

2
(Ai(x, t)− ϵiAi(ϵx, t)) = −ϵiArev

i (ϵx, t) (3.31)

where we have ϵi = ±1 depending on whether the object being transformed is

even or odd with respect to time reversal. As mentioned, if xi is even, then A
rev
i

has to be odd which is confirmed as we have ϵi = 1 in this case.

We need to obtain an explicit form of the stochastic environment entropy pro-

duction. To do that, we need to use the short time propagator [61, 64] for the

evolution and form of the conditional probability density, and obtain an expres-

sion for the stochastic environmental entropy production. We can then write the

stochastic environmental entropy production as

(3.32)

d∆sienv = −∂A
rev

∂xi
dt+

∑
j

{
1

2
D−1

ij

(
Air

i dxj + Air
j dxi

)
− 1

2
D−1

ij

([∑
n

∂Djn

∂xn

]
dxi +

[∑
n

∂Din

∂xn

]
dxj

)
− 1

2
D−1

ij

(
Arev

i Air
j + Arev

j Air
i

)
dt

+
1

2
D−1

ij

(
Arev

j

(∑
n

∂Din

∂xn

)
+ Arev

i

(∑
n

∂Djn

∂xn

))
dt

+
1

2

∑
k

[
Dik

∂

∂xk

(
D−1

ij A
ir
j

)
+Djk

∂

∂xk

(
D−1

ij A
ir
i

)
−Dik

∂

∂xk

(
D−1

ij

∑
n

∂Djn

∂xn
−Djk

∂

∂xk

(
D−1

ij

∑
n

∂Din

∂xn

))]
dt

}
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which is the stochastic environmental entropy production associated with variable

xi [60]. The total environmental stochastic entropy production is simply given by

the sum of the individual contributions

d∆senv =
∑
i

d∆sienv (3.33)

Note that this expression contains Wiener increments and ∆senv is therefore ex-

plicitly a stochastic function.

3.2.3 Simplification of entropy production and averaged

expressions

Under special circumstances, it is possible to obtain simplified versions of the

stochastic environmental entropy production, and that is what we will shortly

define in this subsection. For systems with a diagonal diffusion matrix D, the

incremental environmental stochastic entropy production is simplified from Eq.

(3.32) to

d∆senv =
N∑
i=1

[
Air

i

Dii

dxi −
Arev

i Airr
i

Dii

dt+
∂Airr

i

∂xi
dt− ∂Arev

i

∂xi
dt− 1

Dii

∂Dii

∂xi
dxi (3.34)

+
Arev

i − Airr
i

Dii

∂Dii

∂xi
dt− ∂2Dii

∂x2i
dt+

1

Dii

(
∂Dii

∂xi

)2

dt

]
,

where N is the number of dynamical variables contributing to the entropy produc-

tion. The incremental system stochastic entropy production can also be simplified

to

d∆ssys = −d (ln p(x, t))

= −∂ ln p(x, t)
∂t

dt−
∑
i

∂ ln p(x, t)

∂xi
dxi −

∑
i

Dii
∂2 ln p(x, t)

∂x2i
dt.

(3.35)

It is also possible to obtain averaged expressions for the entropy production. The

total entropy production from Eq. (3.22) has an analytical form when averaged

over coordinates and the stochastic noises. For certain circumstances, specifically
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whenever the full system reaches equilibrium such that the pdf becomes time

independent, and for detailed balance to hold [60], the averaged total entropy pro-

duction can be shown to be described by the Kullback-Leibler divergence between

the initial and final pdfs [60]. To do so, we can begin with the expression for the

total entropy production from [60]:

⟨⟨∆stot⟩⟩ = −
∫ tfinal

tinit

dt

∫
dx
∂p(x, t)

∂t
ln

p(x, t)

p(x, tfinal)
, (3.36)

which can be integrated by parts to yield

(3.37)

⟨⟨∆stot⟩⟩ = −
[∫

dxp(x, t) ln
p(x, t)

p(x, tfinal)

]tfinal

tinit

+

∫ tfinal

tinit

dt

∫
dx

1

p(x, t)
p(x, t)

∂p(x, t)

∂t

=

∫
dxp(x, tinit) ln

p(x, tinit)

p(x, tfinal)
+

∫ tfinal

tinit

dt
∂

∂t

∫
dxp(x, t)

where the last term vanishes due to conservation of probability. This finally leads

to the Kullback-Leibler divergence between the initial and final pdfs [60]:

⟨⟨∆stot⟩⟩ =
∫
dx p(x, tinit) ln

p(x, tinit)

p(x, tfinal)
. (3.38)

The double angled brackets denotes averages over the stochastic noises, and over

the coordinates of the system, including time. This yields the entropy produced

throughout the whole evolution of the system. Similarly, the averaged system

entropy production also has an analytical form under the same conditions [60],

and it is given by

⟨⟨∆ssys⟩⟩ = ∆SG = −
∫
dx p(x, tfinal) ln p(x, tfinal)+

∫
dx p(x, tinit) ln p(x, tinit),

(3.39)

which is the difference of the Gibbs entropy between initial and final states of

the system. Eq. (3.39) describes the system entropy production with the Gibbs

entropy, indicating that the interpretation of ⟨⟨∆stot⟩⟩ is a configurational one, at

least at an ensemble level. The entropy production is then linked to the uncertainty
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of the configuration of the system and the environment, especially in the case where

there exists a lack of information on the state of the environment.

3.3 Quantum Measurements

In this section, we will be introducing the different types of measurements that

can act on quantum systems, beginning with projective measurements, and then

moving on to more general ones. Any type of unitary dynamics, including any

set of quantum measurements acting on a system can be fully specified by a set

of Kraus operators Mi that determine the averaged or ensemble behaviour of the

density matrix after the measurement via

ρ̄′ =
∑
i

Miρ̄M
†
i , (3.40)

where all possible Kraus operators act on ρ̄ in an additive way, denoting an aver-

aged evolution of the system. These Kraus operators also satisfy an operator sum

identity

∑
i

M †
iMi = I. (3.41)

These operators can also act on the stochastic density matrix ρs, individually, each

with the probability of measuring outcome i of

pi = Tr(MiρsM
†
i ), (3.42)

and consequently places a bound on the Kraus operators:

M †
iMi ≤ I. (3.43)

With such a stochastic outcome of the measurement, the density matrix is dis-

turbed and after the measurements it takes the form

ρ′s =
MiρsM

†
i

Tr(MiρsM ′
i)
, (3.44)
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where the denominator normalises the state such that Tr(ρ′s) = 1. Unlike Eq.

(3.40), this equation describes the stochastic behaviour of the density matrix when

acted upon by a single Kraus operator. Any type of measurement can be written

in such a way, including projective measurements.

3.3.1 Projective measurements

Projective, strong, or von Neumann measurements all describe the same type

of measurement, and they were the earliest type of measurement postulated for

quantum systems. They describe a type of measurement that allows for complete

knowledge of the observable of interest of the system, relying on projection oper-

ators to collapse the state into one of its eigenstates. We will be describing these

measurements in the context of a stochastic density matrix. Given the stochas-

tic density matrix ρs =
∑
c2i |ψi⟩⟨ψi| with

∑
c2i = 1, the projective measurement

operator

Pi = |ψi⟩⟨ψi| (3.45)

collapses ρs to the eigenstate |ψi⟩, with a specific probability associated with such a

measurement. Note that the eigenbasis of the density matrix might not be the same

as the projective measurement operator, which means that a basis transformation

needs to be performed to obtain the correct collapsed state. The probability

associated with such a measurement is the same as displayed in Eq. (3.42) with

Mi = Pi, it is simply given by the expectation value of the measurement operator,

as shown in

pi = Tr (PiρsPi) = Tr
(
P 2
i ρs
)
= ⟨Pi⟩. (3.46)

This result corresponds to the Born rule, stating that the result of a measurement,

more specifically one of the eigenvalues of the observable, is obtained with a certain

probability given by projection onto that specific eigenstate. As a result of the

measurement, the density matrix is projected onto a new normalised state, given

by

ρ′s =
PiρsPi

Tr (PiρsPi)
, (3.47)
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where the denominator ensures normalisation, i.e. Tr (ρ′s) = 1. This type of

measurement is irreversible, as it is not possible to undo the measurement after it

acts on ρs. In the next section, we will present a more general type of measurement,

that does not project the state onto an eigenstate.

3.3.2 Continuous weak measurements

As mentioned earlier, strong or von Neumann measurements represent a special

class of measurements. They provide complete knowledge of the system observ-

able being measured. That is not the case for the type of measurements being

explored in this section, specifically Positive-Operator Valued Measures (POVM)

[65]. POVMs correspond to a general type of measurement. Any possible measure-

ment on a system can be defined through a POVM, including projective measure-

ments. They are also defined through the Kraus operators following the properties

in Eqs. (3.41)-(3.44). A very natural mechanism to construct these general mea-

surements is through the usage of a secondary system, called an ancilla or probe,

that we couple to the system that we are interested in, and after these two system

entangle and interact, we perform a projective measurement on the ancilla.

We can consider the joint state |ξ⟩AB that is comprised of the state of the system

|ψ⟩A, and the state of the ancilla |ϕ⟩B. The whole system is allowed to interact at

t = 0, and then evolved using the joint unitary propagator UAB from t = 0 until t:

|ξ⟩ = UAB (|ψ⟩A ⊗ |ϕ⟩B) . (3.48)

we can then perform a projective measurement on the ancilla system B through

the following projection operator

PB
i = IA ⊗ |ϕi⟩BB⟨ϕi|. (3.49)

The outcome associated with the measurement of |ϕi⟩ is obtained with probability
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pBi =Tr
(
PB
i UAB|ψ⟩A ⊗ |ϕ⟩BB⟨ϕ|⊗A⟨ψ|U †

ABP
B
i

)
(3.50)

=Tr
(
(IA ⊗ B⟨ϕi|)UAB (IA ⊗ |ϕ⟩B) |ψ⟩AA⟨ψ|(IA ⊗ B⟨ϕ|)U †

AB (IA ⊗ |ϕi⟩B)
)

(3.51)

=Tr
(
Mi|ψ⟩AA⟨ψ|M †

i

)
(3.52)

where

Mi = (IA ⊗ B⟨ϕi|)UAB (IA ⊗ |ϕ⟩B) , (3.53)

with this operator acting only on the Hilbert space A of the open system. It can

also be shown that this operator satisfies the requirements to be a Kraus operator.

Demonstrating that a projective measurement on an ancilla of a composite system

can be shown to be a general measurement on the open system itself. From

these POVMs, it is possible to define a special class of measurements that are

performed under certain conditions, specifically that of weak coupling between

the open system and the ancilla. This induces only small disturbances to the state

of the system, which allows for applications to trajectory tracking [66], feedback

control [67, 68], quantum metrology [69, 70], and other applications.

Weak measurements, unlike strong ones, do not project a system onto an eigen-

state, and will not provide the observer with complete knowledge of the observable,

they provide partial and more uncertain information. We will present an intro-

duction to weak measurements, and how they naturally lead to continuous weak

measurements, following [65].

The history of weak measurements is vast, beginning in the 80s and 90s by Mensky

[71], Barchielli, Lanz, and Prosperi [72], Belavkin [73], Gisin [74], Caves [75], Caves

and Milburn [76], and Milburn and Wiseman [77]. Weak measurements can be

typically realised by coupling the quantum system to an ancilla or probe system.

For the measurement to be weak, the coupling between the two systems should

also be weak and the measurement outcome should not be able to discern a specific

eigenvalue of the observable being measured. More explicitly, the resolution of the

measurement should not be smaller than the difference of two eigenvalues of the

system, for discrete observables [78]. The two systems will then become correlated

and a strong quantum measurement can be performed on the auxiliary system and
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limited information can be obtained about the quantum system with which it was

coupled. Following Ref. [65], we can demonstrate a type of weak measurement,

by choosing Kraus operators that are a weighted sum of projectors |ψi⟩⟨ψi| with
eigenvalues λi peaked around a specific eigenvalue λn:

Mi =
1√
C

∑
i

e−k(λi−λn)2/4|ψi⟩⟨ψi|, (3.54)

with C being a normalisation constant to ensure the operator sum identity in Eq

(3.41), it is the sum of the probabilities for each Kraus operator. Following the

prescription above, by applying this Kraus operator on the density matrix, we

obtain:

ρ′ =
1

C

∑
i

e−k(λi−λn)2/2|ψn⟩⟨ψn|. (3.55)

According to Eq. (3.55) the larger the value of k, the more certain the measure-

ment. Large values of k correspond to strong measurements and smaller values

correspond to weak measurements. An experiment can be designed to apply only

one weak measurement, but this is not always helpful. Often it is more fruitful

to apply a sequence of weak measurements in order to continuously monitor the

system, and this is typically denoted as a continuous measurement. These mea-

surements can be chosen to be related to the duration of the measurement. The

less time taken, the lesser the information obtained from the system. This allows

us to minimally disturb the system and obtain some information about it.

In order to describe the continuous measurements we will require a stochastic

Schrödinger equation. We can do so by continuing to follow the prescription in

Ref. [65]. We can construct a continuous measurement process where we apply

a weak measurement in each time interval ∆t. In order to obtain the continuous

part of the measurement, it is necessary to tie the strength of the measurement

to the time increment ∆t and to take the small ∆t limit. Instead of using a

discrete eigenvalue spectrum like in the previous case, we will consider a continuous

spectrum with orthonormal eigenstates |x⟩. By dividing time into time intervals

∆t, we can define an operator A(α) that is the sum of projection operators peaked

around each eigenvalue x:
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A(α) =

(
4k∆t

π

)1/4 ∫ +∞

−∞
e−2k∆t(x−α)2|x⟩⟨x|dx, (3.56)

where α in this case is a continuous index that represents measurement results

or records. In order to determine the likelihood of different paths of α, meaning

different measurement records or paths, we need to calculate the mean value of α:

⟨α⟩ =
∫ +∞

−∞
αP (α)dα. (3.57)

Using the initial state |ψ⟩ =
∫
ψ(x)|x⟩dx and the probability density function

P (α) = Tr
[
A(α)|ψ⟩⟨ψ|A(α)†

]
, it can be shown that ⟨α⟩ = ⟨X⟩ =

∫ +∞
−∞ x|ψ(x)|2dx.

Due to the random nature of quantum measurements, the measurement record

cannot be deterministic which allows us to turn α stochastic in order to obtain a

random measurement record. This can be done by the following shift:

αs = ⟨X⟩+ ∆W√
8k∆t

, (3.58)

where ∆W is a Gaussian random variable, with mean zero and variance ∆t. This

alternate representation of α will still evolve with ⟨X⟩. Performing a measurement

represented by A(α) at a time step yields the state

|ψ(t+∆t)⟩ = A(α)|ψ(t)⟩ (3.59)

∝ e−2k∆t(α−X)2|ψ(t)⟩ (3.60)

∝ e−2k∆tX2+X[4k⟨X⟩∆t+
√
2k∆W ]|ψ(t)⟩. (3.61)

Since the strength of the measurements are tied to ∆t, we can take the limit

where ∆t is small by expanding the exponential in Eq (3.59) to first order in ∆t

and second order in ∆W . For the limit ∆t → 0, we have ∆W 2 → ∆t, since ∆W

is a Wiener process. By obtaining an expression for |ψ(t + dt)⟩, and normalising

it we can obtain the increment [65]:

d|ψ⟩ =
[
−k(X − ⟨X⟩)2dt+

√
2k(X − ⟨X⟩)dW

]
|ψ⟩. (3.62)
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Using the definition of the density matrix ρs = |ψ⟩⟨ψ|, with |ψ′⟩ = |ψ⟩+d|ψ⟩, and
keeping terms proportional to dt and dW 2 since dW 2 = dt, the increment of ρs is

given by:

dρs = d|ψ⟩⟨ψ|+|ψ⟩d⟨ψ|+d|ψ⟩d⟨ψ|

= −k[X, [X, ρs]]dt+
√
2k(Xρs + ρsX − 2⟨X⟩ρs)dW. (3.63)

This corresponds to a stochastic Schrödinger equation describing continuous weak

measurements. In the following section, we will describe different types of contin-

uous measurements and how they are described by different forms of stochastic

differential equations.

3.3.3 Continuous measurements and SDEs

The continuous measurement of a system observable can take several forms, but

ultimately it is described by a stochastic process that represents the record or se-

quence of these measurements. For a Markovian open quantum system described

by a Markovian master equation, there exists a direct relationship between the de-

terministic master equation and its stochastic unravelled equation. Any Markovian

master equation can be unravelled in terms of quantum trajectories undergoing

continuous measurements, such that this stochastic measurement process, when

averaged over the stochastic noises, returns the same dynamics as the original de-

terministic master equation. The unravelling of a deterministic master equation

is the process of choosing a suitable stochastic process that when averaged over

yields the same deterministic master equation. A specific deterministic equation

can be represented by several different unravellings that describe different physical

processes, as long as the ensemble average is the same. We will be considering

unravellings from the Lindblad equation, Eq. (2.20):

dρ̄(t)

dt
= −i [Hsys(t), ρ̄(t)] +

∑
i

γi

[
Liρ̄(t)L

†
i −

1

2

{
L†
iLi, ρ̄(t)

}]
. (3.64)

where we will denote a density matrix following deterministic dynamics as ρ̄, while

if it follows stochastic dynamics as ρs. The main two unravellings describing con-

tinuous measurements of a system will be reviewed, specifically quantum state
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diffusion (QSD) and quantum jumps, both of which when averaged over the mea-

surement records will yield the same Lindblad Eq. (3.64).

Quantum state diffusion does not deal with discrete jumps between states, and as

the name suggests it describes the diffusive behaviour of the continuous observables

of interest. These types of unravellings have been applied significantly in the

last few decades for feedback control [67, 68], trajectory tracking [66], and other

applications [66, 69, 70]. Physically they usually are realised through homodyne

or heterodyne detection [2], where one or more signals are allowed to interact with

the system, and then measured by a device. This type of interaction disturbs

the state slightly while allowing to extract small amounts of information from the

system. A quantum diffusion unravelling can be described by N Kraus operators

of the form:

Mk =
1

N

(
I − dt

[
iHsys(t) +

1

2

∑
i

L†
iLi

]
+
∑
i

√
dtLi

)
, (3.65)

where the 1
N

prefactor ensures normalisation of the density matrix. This type of

unravelling is known as quantum state diffusion due to its diffusive behaviour,

and when we investigate the evolution of the system through the Bloch sphere

in Chapter 5 it will be possible to see the state diffusing towards the eigenstates

of the system’s density matrix. With the Kraus operator from Eq. (3.65), it is

possible to obtain a stochastic master equation for ρs of the form [2, 79]

(3.66)dρs = −i [Hsys(t), ρs(t)] dt+
∑
i

[(
Liρs(t)L

†
i −

1

2

{
L†
iLi, ρs(t)

})
dt

+
(
ρs(t)L

†
i + Liρs(t)− Tr

[
ρs(t)

(
Li + L†

i

)]
ρs(t)

)
dWi

]
.

with this equation corresponding to the Lindblad equation when averaged over the

Wiener increments dWi. There are non-Markovian quantum diffusion unravellings

[80], but those are not the focus of this thesis.

A quantum jump unravelling can be described by a set of Kraus operators which

describe several measurement outcomes. Specifically, that of a quantum jump

[2, 81, 82], and also the no-jump scenario. The quantum jump Kraus operators

are given by
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Mi =
√
dtLi, (3.67)

where Li are the Lindblad operators, while the no-jump Kraus operators contain

the Hamiltonian contributions

M0 = I + dt

(
iHsys(t) +

1

2

∑
i

L†
iLi

)
. (3.68)

This type of unravelling has a particular physical interpretation, that of the de-

tection of an excitation between the system and the environment, which can be

measured through photon counting. In this case, the Kraus jump operators cor-

respond to creation and annihilation operators of these system excitations, the

most straightforward of which would be energy jumps between energy levels. Un-

like with QSD, the stochasticity for a quantum jump unravelling does not come

from a Wiener increment. As the applications of quantum jumps are of a discrete

nature, like photon counting, Poisson increments are better suited to describe the

quantum jump trajectories. We to denote the number of photo detections up to

time t by Ni(t) [2], such that the stochastic increment is given by dNi(t):

dNi(t)
2 = dNi(t) (3.69)

⟨dNi(t)⟩ = ⟨M †
iMi⟩ = dt⟨L†

iLi⟩ = dtTr
(
LiρsL

†
i

)
(3.70)

Eq. (3.69) displays the discrete nature of photo detection, meaning that dNi(t)

can be either 1 when a jump occurs or 0 otherwise. Either a photon is detected by

the measurement apparatus, or it is not. With this, the stochastic master equation

for this set of Kraus operators can be given by

(3.71)
dρs = −i [Hsys, ρs] dt+

∑
i

−1

2

{
L†
iLi, ρs

}
dt− Tr

(
LiρsL

†
i

)

+

 LiρsL
†
i

Tr
(
LiρsL

†
i

) − ρ

 dNi(t)

 .
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Considering the Markovian nature of the Lindblad equation, and of these unrav-

ellings, the stochastic density matrix ρs and the Poisson increment are not cor-

related. As such, averaging Eq. (3.71) over the stochastic measurement records

becomes much easier. From Eq. (3.69), we can write

⟨ρsdNi(t)⟩ = dt⟨ρsTr
(
LiρsL

†
i

)
⟩, (3.72)

which when replaced in Eq. (3.71) leads exactly to the Lindblad Eq. (3.64). This

goes to show how one single deterministic master equation can be unravelled in

different ways, each with its own physical interpretation.

3.4 Quantum Stochastic Thermodynamics

In this section, we will be giving an introduction to the methods used in the

field of quantum stochastic thermodynamics. These methods differ from those of

standard quantum thermodynamics due to the stochastic nature of the system and

dynamics being explored. One of the modern frameworks to deal with stochastic

entropy production in quantum systems is through the usage of Kraus operators

to define forward and reverse trajectories.

3.4.1 Kraus operators defined through equilibrium states

As introduced in Section 3.2, the notion of reverse trajectories are crucial in defin-

ing entropy production, as the stochastic entropy production is typically defined

using the probabilities of forward and reverse trajectories. The first exploration of

defining reverse trajectories was by Crooks [83], proposing a formalism that defines

the time reversal of quantum systems through their appropriate Kraus operators,

and with an equilibrium density matrix ρeq of the system, that is invariant under

the dynamics given by Eq (3.40). This requires that there is a fixed point in the

dynamics that occurs even for stochastic trajectories that are driven by the Kraus

operators. Furthermore, it requires that starting from ρeq, the probability of a

sequence of forward operators in forward dynamics be equal to the probability of

the reverse sequence of operators in the reverse dynamics. Since the measurement

probabilities are given by the trace of the density matrix with each Kraus operator,

this equivalency of probabilities can be shown for a consecutive pair of interactions
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Tr
(
Mi2Mi1ρeqM

†
i1
M †

i2

)
= Tr

(
M̃i1M̃i2ρeqM̃

†
i2
M̃ †

i1

)
. (3.73)

Though Eq. (3.73) displays only two interactions, it can be applied more generally

to a sequence of interactions [83]. This equation is based on allowingMi1 to act on

ρeq, followed by Mi2, which then requires that the reverse Kraus operators act on

ρeq in the reverse order, i.e. first acting with M̃ †
i2
followed by M̃ †

i1
. By exploiting

this expression it is possible to obtain the reverse Kraus operators as

M̃i = ρ
1
2
eqM

†
i ρ

− 1
2

eq . (3.74)

This formalism was further investigated and explored by using explicit time re-

versal operators in [84] applied to quantum dynamics and fluctuation theorems.

Investigations into the stochastic entropy production of continuous measurements

on open quantum systems using this approach by Crooks, was first explored in

[85]. The approach taken there relies on the equilibrium state of the system to

define reverse Kraus operators, and it has as a focus the evolution of a state under

a quantum jump unravelling. It defines forward and reverse Kraus operators, both

for the no jump and jump scenarios.

To do that in terms of Kraus operators, there is a need for a no-jump operator that

describes the Hamiltonian deterministic evolution, and jump operators that are

stochastic in nature. To define a reverse Kraus operator, an equilibrium state needs

to be specified, and in this case it can be given by ρeq = Z−1e−βHsys , where Z =

Tr
(
e−βHsys

)
. The forward and reverse no-jump Kraus operators are, respectively

M0(t) = I− idtHsys(t) (3.75)

MR
0 (t) =

√
ρeqM

†
0(t)
√
ρ−1
eq = I+ idtHsys(t) (3.76)

while for a jump Kraus operators denoted byMk, the reverse jump Kraus operator

is given by

MR
k =

√
ρeqM

†
k

√
ρ−1
eq (3.77)

= e
βQcl(k)

2 M †
k (3.78)

where Qcl is the classical heat, the energy exchange with the reservoir due to the

quantum jump [85]. Specifically the energy difference between the initial state |i⟩
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and the state after the quantum jump |k⟩, i.e. Qcl = ϵi − ϵk where ϵi is the energy

of state |i⟩.

The entropy production is related to the ratio between the probability of for-

ward and reverse trajectories of the wavefunction ψ(t) driven by forward and

reverse protocols, given by P F [ψλ(t)], and P
R[ψλ(tfinal − t)], respectively; ψλ(t),

and ψλ(tfinal − t) denote the forward and reverse trajectories under the forward

and reverse protocols, where the (tfinal − t) argument in the reverse trajectory

comes from time reversal [85]. These definitions are very similar to those intro-

duced for the stochastic thermodynamics case in Eq. (3.22), but they deal with

the wavefunction ψ instead of some arbitrary variable x. Therefore, we can write

the probability of forward and reverse trajectories in terms of the conditional

probabilities as

P F [ψλ(t)] = pF (ψ(t0))PF [ψλ(t)|ψ(t0)], (3.79)

and

PR[ψλ(tfinal − t)] = pR(ψ(tfinal))PR[ψλ(tfinal − t)|ψ(tfinal)], (3.80)

where probability of the initial state for the forward protocol and the final state for

the reverse protocol are given by pF (ψ(t0)) and p
R(ψ(tfinal)), respectively. Also,

PF [ψλ(t)|ψ(t0)], and PR[ψλ(tfinal − t)|ψ(tfinal)] are the conditional probabilities

of the trajectories under the forward and reverse protocols, respectively. We can

then write for the total entropy production

∆stot = log

(
P F [ψλ(t)]

PR[ψλ(tfinal − t)]

)
(3.81)

= log

(
pF (ψ(t0))

pR(ψ(tfinal))

)
+ log

(
PF [ψλ(t)|ψ(t0)]

PR[ψλ(tfinal − t)|ψ(tfinal)]

)
. (3.82)

It is then possible to obtain an expression for the conditional entropy production

given by [85]

PF [ψλ(t)|ψ(t0)]
PF [ψλ(tfinal − t)|ψ(tfinal)]

= e−βQcl . (3.83)
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This indicates that if Qcl is negative, at zero temperature β → +∞, then the en-

tropy production from Eq (3.83) diverges. This only occurs for zero temperature,

and is an artifact of Crooks’ approach [83], as it introduces the thermal equilibrium

state in the reverse Kraus operators through the formalism in Eq. (3.73). Without

the explicit contribution from the thermal equilibrium state to the reverse Kraus

operators, this divergence would not occur. While this approach has been suc-

cessful in understanding the entropy production associated with measurements, it

has not been without its conceptual issues. Due to the reverse trajectories being

explicitly defined through the equilibrium state, without any mention of time re-

versal, they do not lead to a complete inversion of trajectories, they only lead to

an equivalence of probabilities of processes starting from equilibrium.

3.4.2 Kraus operators defined through time reversal

The previously described approach by Crooks [83] does not allow for quantum

maps that do not possess an equilibrium state [86]. Further developments in

this area have considered defining the forward and reverse Kraus operators only

through explicit time reversal [87, 88], without reference to an equilibrium state.

The approach by Dressel et al [87], does not depend on equilibrium states to define

the reverse Kraus operators. This approach relies only on the antiunitary time-

reversal operation Θ satisfying ⟨ΘΨ′|ΘΨ⟩ = ⟨Ψ|Ψ′⟩. It is required to reverse the

time dynamics of physical observables in the correct manner, e.g. momentum as

ΘpΘ−1 = −p. In both [87, 89], a constraint is placed on the states obtained from

forward and reverse propagation.

For a forward Kraus operator Mi, the requirement on the reverse operator is that

it is able to return the time reversed |Φ⟩ state to the time reversed initial state

|Ψ⟩. More concretely, this means M̃iΘ|Φ⟩ = Θ|Ψ⟩, where M̃i is the reverse Kraus

operator associated with Mi. With this constraint the reverse Kraus operator M̃i

is given by

M̃i =
(
ΘMiΘ

−1
)−1

= ΘM−1
i Θ−1. (3.84)
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This means that each reverse Kraus operator must be proportional to the inverse

time-reversed forward Kraus operator. These time reversal operators must pre-

serve the commutation relations between position and momentum, i.e. [xi, pj] =

iδij. By imposing such conditions, Θ can be written as

Θ = UK, (3.85)

where K takes any complex number or operator to its complex conjugate, i.e.

KzK−1 = z∗. (3.86)

Also, U is a linear transformation that depends on the representation to which it

is being applied. This type of approach has been quite successful in calculating

several quantities associated with irreversibility and the length of the arrow of time

[90] with applications [87–89], a concept related to entropy production, and given

by the irreversibility associated with the conditional probabilities of trajectories,

more specifically

R =
P F (x(t)|x(t0))
PR(xR(t)|x(tf ))

(3.87)

which is the ratio between the conditional probabilities of forward and reverse

trajectories, given specific initial conditions, under forward and reverse protocols,

given by x(t) and xR(t), respectively. This approach considers the exact reversal of

the dynamics of the system through the time reversal of the both Kraus operators

and system states. The relative log-likelihood logR is essentially a measure of

whether a quantum trajectory for a given system is more likely to be forward

in time logR > 0, or backward in time, logR < 0 [87]. It is most often used to

discern and infer the arrow of time of a particular process, i.e. if a certain quantum

trajectory is forward or backward in time [87–89], so it is not explicitly linked to

entropy production.

The concept of irreversibility from conditional trajectory probabilities was re-

viewed in Section 3.2 from a statistical thermodynamics perspective, and its rela-

tion to the system and environment’s contributions to entropy production. Nev-

ertheless, these methods lead to an arrow of time measure that works well for

continuous measurements and even for zero temperature, which would lead to

divergences in previous methods [85]. Despite these applications, these methods
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rely on the existence of a set of Kraus operators for a given system. This may

not always be the case, especially when dealing with stochastic non-Markovian

systems.

3.5 Chapter Summary

In this chapter, we have briefly reviewed different ways of measuring of entropy

production for ensemble systems, both for the classical and quantum regimes. We

then introduced methods for the measuring of stochastic entropy production, once

again in the classical and quantum regimes. The quantum stochastic entropy pro-

duction was discussed in the context of quantum measurements and their inherent

stochasticity. The main difference between classical and quantum stochastic en-

tropy production relies on the classical case utilising the SDEs of the dynamics

while the quantum makes use of the Kraus operators of the system.
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Chapter 4

Averaging Stochastic Differential

Equations

In this section we will be exploring two distinct methods on how to average a

stochastic differential equation, and obtain its deterministic form.

4.1 Backward Averaging

4.1.1 Deterministic expansion for stochastic equations

Here, we will explore how to obtain a deterministic and averaged equation from

a SDE with coloured noises. This method will be applied to the SLN equation,

and it only works for SDEs with an initial state that is not correlated with the

noises in the system. To average a stochastic equation with only white noises, the

averaging procedure is quite simple, as the white noises vanish upon averaging,

due to Itô calculus [91]. Concretely, at every time step the white noises driving

the stochastic behaviour of the system are only correlated with themselves, and

only at that specific time step; they are not correlated with any other white noise

in the past. This situation becomes more complicated when dealing with coloured

noises, which can usually be constructed as a convolution of a white noise with a

memory kernel, e.g. Eq. (2.102). This introduces a dependence on previous time

steps, such that a coloured noise at time t will be correlated with itself at time
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t = 0, so that a simple stochastic average is not able to cancel or remove terms in

a straightforward manner.

We can understand this problem more concretely with the SLN equation. The

coloured noises from the SLN equation take the form of Eq. (2.102), which contains

a large sum of white noises arising from the integral, and this complicates the

averaging process. Our starting point is the SLN equation from Eq. (2.103):

dρs(t)

dt
= −i [Hsys, ρs(t)] + iη(t) [f, ρs(t)] +

i

2
ν(t) {f, ρs(t)} , (4.1)

where f is the coupling matrix between the system and the environment, and with

the correlations

⟨η(t)η(t′)⟩ = α

∫ ∞

0

dω

π
J(ω) coth

(
1

2
βω

)
cos (ω (t− t′)) ≡ Kηη(t− t′), (4.2)

⟨η(t)ν(t′)⟩ = −2αiΘ(t− t′)

∫ ∞

0

dω

π
J(ω) sin (ω (t− t′)) ≡ Kην(t− t′). (4.3)

The only way we can ensure that an average of a noise or product of noises is

independent from ρs(t) is if we use ρs(0), since the SLN equation considers a

product state, i.e. there are no correlations between the system and environment

[21, 33]. Hence, ρs(0) is not correlated with any of the noises. The main idea of the

method is to take the average only when all the products of ρs and the noises are

independent, which only occurs with ρs(0). Therefore, ρs(t− dt) will be replaced

in to the expression for ρs(t) recursively until we arrive at ρs(0) which is when the

average over the noises can be taken. We can write the evolution of ρs(t) for the

SLN equation from Eq. (4.1) as:

(4.4)
ρs(t+ dt) = ρs(t)− idt[Hsys(t), ρs(t)] + idtη(t)[f, ρs(t)] + dt

i

2
ν(t) {f, ρs(t)}

= ρs(t) + dtH(t)ρs(t) + dtC(t)ρs(t) + dtA(t)ρs(t)

where we have introduced the following operators

H(t)ρs(t) = −i [Hsys(t), ρs(t)] , (4.5)

C(t)ρs(t) = iη(t) [f, ρs(t)] , (4.6)

A(t)ρs(t) =
i

2
ν(t) {f, ρs(t)} , (4.7)
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with Hsys(t) = g(t)h with h being an operator, and with g(t) containing the

time dependence. This choice of Hamiltonian is not a general one, it was chosen

out of convenience to decrease the number of permutations required. A more

complicated Hamiltonian would lead to the same procedure, despite more effort.

Using the operator form of Eq (4.4), we can average the equation, and by denoting

the averaged density matrix as ρ̄(t), we obtain

(4.8)ρ̄(t+ dt) = ρ̄(t) + dtH(t)ρ̄(t) + dt⟨C(t)ρs(t)⟩+ dt⟨A(t)ρs(t)⟩.

For this equation, ⟨C(t)ρs(t)⟩ and ⟨A(t)ρs(t)⟩ cannot be written simply in terms

of ρ̄(t) as they depend on some of the white noise components in the η and ν

noises at previous timesteps. This is not the case for the H(t)ρ̄(t) term which

does not contain any explicit stochastic terms, and can be averaged immediately.

Therefore, ⟨C(t)ρs(t)⟩ and ⟨A(t)ρs(t)⟩ are the only terms in which ρs(t) needs to

be recursively replaced, until ρs(0) can be reached. To begin the method, we can

replace in the expression for ρs(t) in Eq (4.4), obtaining

ρs(t+ dt) = ρs(t) + dtH(t)ρ̄(t)
+ dtC(t) [1+ dtH(t− dt) + dtC(t− dt) + dtA(t− dt)] ρs(t− dt)
+ dtA(t) [1+ dtH(t− dt) + dtC(t− dt) + dtA(t− dt)] ρs(t− dt).

(4.9)

We should note that the term that starts with dtA(t) will vanish, due to the

stochastic average, which will lead to a higher order correlation of the form

⟨ν(t1)η(t2) . . . ⟩ where t1 > t2, i.e. the correlation will vanish due to the Heav-

iside function in Eq (4.3). Therefore we can work with a simpler equation

(4.10)
ρs(t+ dt) = ρs(t) + dtH(t)ρs(t)

+dtC(t) [1+dtH(t−dt)+dtC(t−dt)+dtA(t−dt)] ρs(t−dt).

We would then replace in ρs(t− dt) recursively in this expression and keep doing

that until we reach ρs(0). We should note the form of these coloured noises, they

specifically are of the form

y(t) =

∫
dt′G(t, t′)x(t′), (4.11)
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where x(t′) is a white noise. The higher order correlations of η and ν can then be

written as higher order correlations of white noises. These higher order correlations

of white noises can be written as the sum of products of all the combinations of

two-point correlations [92], as they are Gaussian processes. This means that all

odd numbered order correlations will vanish, as the white noises have zero mean,

i.e. ⟨x(t)⟩ = 0. We are then able to write the higher order correlations as the

sum of products of the two-point correlations due to the form of the noises. For

example, we can write the four-point correlation ⟨η(t1)η(t2)η(t3)η(t4)⟩ as

(4.12)⟨η(t1)η(t2)η(t3)η(t4)⟩ = ⟨η(t1)η(t2)⟩⟨η(t3)η(t4)⟩+ ⟨η(t1)η(t3)⟩⟨η(t2)η(t4)⟩
+ ⟨η(t1)η(t4)⟩⟨η(t2)η(t3)⟩.

In this recursive replacement, the only term without a power of dt is the ρs of the

previous timestep. So we if want to obtain dt2 terms, we will only pick up an extra

operator that has dt dependence, all the other recursive multiplications that we

will keep are those with ρs, until the recursion reaches ρs(0). There will only exist

three different terms of order dt2, these are C(t)H(t1)ρs(0), C(t)C(t1)ρs(t), and
C(t)A(t1)ρs(0). The C(t)H(t1)ρs(0) term will vanish since the stochastic average

contains only one noise, i.e. ⟨η(t)⟩ = 0. Moving on to the C(t)A(t1)ρs(0) term,

the matrix component would act on ρs(0) as

[f, {f, ρs(0)}] = 0, (4.13)

which vanishes if f 2 ∝ 1. We can choose for this to be the case by taking f to

be proportional to one of the Pauli matrices, which satisfies σ2
i = 1. The same

property applies when the commutator and anticommutator are in the opposite

order

{f, [f, ρs(0)]} = 0. (4.14)

This means that all terms with adjacent C and A will vanish. The only other term

left at dt2 is C(t)C(t1)ρs(t). Taking the average over the C(t)C(t1)ρs(0) leads to

⟨C(t)C(t1)ρs(0)⟩ = ⟨C(t)C(t1)⟩ρs(0) = i2⟨η(t)η(t1)⟩[f, [f, ρs(0)]] (4.15)

Since the second C can be picked up at any of the recursion steps until it gets to

ρs(0), this means that it can take all possible time values from t − dt until 0 so
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that this leads to a sum of time values over the t1 variable. For order up to dt2

the averaged equation is then given by

ρ̄(t+ dt) = ρ̄(t) + dtH(t)ρ̄(t) + i2dt2[f, [f, ρs(0)]]
t−dt∑
t1=0

⟨η(t)η(t1)⟩, (4.16)

where ⟨η(t)η(t1)⟩ = Kηη(t − t1). The summation term can be converted into an

integral of the correlation Kηη over dt1, by considering dt1 → 0, in the following

way

dt1

t−dt∑
t1=0

⟨η(t)η(t1)⟩ →
∫ t

0

dt1K
ηη(t− t1). (4.17)

This allows to write the averaged equation up to dt2 as

ρ̄(t+ dt) = ρ̄(t) + dtH(t)ρ̄(t) + i2dt[f, [f, ρs(0)]]

∫ t

0

dt1K
ηη(t− t1). (4.18)

This procedure can also be applied to higher order in dt. For terms up to order

dt3, the ones that survive are C(t)H(t1)A(t2), C(t)C(t1)H(t2) and C(t)H(t1)C(t2).
Each of these terms will have two summations, over t1 and t2. For example, for

C(t)C(t1)H(t2) we would have

i3dt3C(t)C(t1)H(t2)ρs(0) = i3dt3[f, [f, [h, ρs(0)]]]
t−dt∑
t1=0
t1>t2

t1−dt∑
0

Kηη(t− t1)g(t2)

= i3dt[f, [f, [h, ρs(0)]]]

∫ t

0

dt1

∫ t1

0

dt2K
ηη(t− t1)g(t2).

(4.19)

These integrals can be integrated analytically using tools like Sympy [93], or Math-

ematica, and can then added to the averaged equation of motion. Despite these

derivations, the first several orders of dt of these integral contributions are not

enough for accurate dynamics of the averaged density matrix, so another avenue

was taken to obtain deterministic dynamics from stochastic ones, as will be shown

in Section 4.2. Despite these numerical difficulties, this method sheds some more
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light on the structure of non-Markovian dynamics and how a hierarchical or recur-

sive type of equations of motions are always going to be obtained for these types

of dynamics, which resembles the findings in other works [19, 91, 94].

4.2 Furutsu-Novikov Theorem

In this subsection, we will derive an exact deterministic equation starting with the

SLN equation for several independent environments. This method differs from the

recursive method from Section 4.1.1, and will lay the foundation of the investiga-

tion of stochastic entropy production in Chapter 5. Our exact starting point will

be Eq. (2.106), which describes the reduced stochastic density matrix, ρs(t), with

several independent environments, given by

dρs(t)

dt
= −i [Hsys, ρs(t)] + i

∑
k

(
ηk(t) [fk, ρs(t)] +

νk(t)

2
{fk, ρs(t)}

)
, (4.20)

where fk is the coupling between the system to each environment. Each environ-

ment is connected independently to the open system with its noises satisfying the

correlations:

⟨ηk(t)ηk(t′)⟩ = α

∫ ∞

0

dω

π
Jk(ω) coth

(
1

2
βkω

)
cos (ω (t− t′)) ≡ Kηη

k (t− t′), (4.21)

⟨ηk(t)νk(t′)⟩ = −2αiΘ(t− t′)

∫ ∞

0

dω

π
Jk(ω) sin (ω (t− t′)) ≡ Kην

k (t− t′). (4.22)

Here, Jk(ω) is the spectral density of the kth environment, βk is its inverse tem-

perature, Θ(t − t′) is the Heaviside function, and the angled brackets denote the

average over realisations of the environmental noises. There exist several ways

to construct these coloured noises, with each scheme affecting the convergence of

results in different ways [95].

4.2.1 Noise-averaged SLN equation

To obtain a deterministic equation for the physical reduced density matrix, we

need to average Eq. (4.20) over the coloured noises. By taking the stochastic
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average of Eq. (4.20). and denoting the physical density matrix averaged over the

noises as ρ̄ = ⟨ρs⟩, we can write:

dρ̄(t)

dt
= −i [Hsys, ρ̄(t)] + i

∑
k

(
[fk, ⟨ηk(t)ρs(t)⟩] +

1

2
{fk, ⟨νk(t)ρs(t)⟩}

)
. (4.23)

To simplify these stochastic averages, we need to calculate the average of the

stochastic density matrix multiplied with the noises, as they are coupled to each

other due to the memory embedded into the coloured noises. To this end, the

Furutsu-Novikov theorem is used to calculate the stochastic average of the product

of a noise and a functional that depends on it, yielding an expression that depends

only the correlations themselves [96, 97]. For a noise ϕi with the correlation

⟨ϕi(t)ϕj(t
′)⟩ = Fij(t, t

′), (4.24)

the Furutsu-Novikov theorem states that

⟨ϕi(t)A[ϕ]⟩ =
∑
j

∫ t

0

dt′Fij(t, t
′)

〈
δA[ϕ]

δϕj(t′)

〉
, (4.25)

where A[ϕ] is a functional of ϕ and
δA[ϕ]

δϕj
is its functional derivative with respect

to the j component noise ϕj. The product of the coloured noises and the density

matrix can then be transformed into an integral that depends on the noise correla-

tions. We should note that the Furutsu-Novikov theorem from Eq. (4.25) is related

to Wick’s theorem from Eq. (4.12), despite Wick’s theorem being mostly used in

field theory, and the Furutsu-Novikov theorem being used in classical stochastic

dynamics. With A[ϕ] ∝ ϕ3, you can easily obtain Wick’s theorem from Eq. (4.12).

For more complicated forms of A[ϕ] the relationship is not so immediate, which

is why the Furutsu-Novikov theorem will be utilised in the following derivations

with A[ϕ] = ρs(t), as it allows to more easily calculate functional derivatives.

We should also note that there exists a quantum version of the Furutsu-Novikov

theorem that considers non-commuting variables [98], but it is not used in this

thesis.
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Specifically, we use Eqs. (4.25) in (4.23) to obtain the required explicit expressions:

dρ̄(t)

dt
= −i [H(t), ρ̄(t)]

+ i
∑
k

[
fk,

∫ t

0

dt′Kηη
k (t− t′)

〈
δρs(t)

δηk(t′)

〉
+

∫ t

0

dt′Kην
k (t− t′)

〈
δρs(t)

δνk(t′)

〉]
+
i

2

∑
k

{
fk,

∫ t

0

dt′Kην
k (t′ − t)

〈
δρs(t)

δηk(t′)

〉}
.

(4.26)

It is possible to immediately simplify this equation, by recognising that the term

with the anticommutator vanishes. From correlation Eq. (4.22), we note that the

presence of the Heaviside function Θ(t − t′) vanishes for t′ > t. In the integral

of the anticommutator term, we have an upper limit of t, and Kην
k (t′ − t) = 0

whenever t′ < t which is enforced by the upper limit on the integral. Only the

commutator terms will survive:

(4.27)
dρ̄(t)

dt
= −i [H(t), ρ̄(t)] + i

∑
k

[
fk,

∫ t

0

dt′Kηη
k (t− t′)

〈
δρs(t)

δηk(t′)

〉
+

∫ t

0

dt′Kην
k (t− t′)

〈
δρs(t)

δνk(t′)

〉]
,

and for those we can then calculate the functional derivatives. To do so, we must

consider the formal solution of the SLN equation, which is given by

ρs(t) = U+(t, 0)ρs(0)U
−(0, t), (4.28)

where U+ and U− are the appropriate forward and backward propagators [33],

respectively. They are specified by

U+(t, 0) = T̂ exp

{
−i
∫ t

0

H+(t′)dt′
}
, (4.29)

and

U−(0, t) = T̃ exp

{
i

∫ t

0

H−(t′)dt′
}
, (4.30)
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with T̂ and T̃ denoting chronological and anti-chronological time ordering, respec-

tively. The Hamiltonian is given by

H±(t) = Hsys(t)−
∑
k

(
η(t)± ν(t)

2

)
fk(t). (4.31)

We can write the density matrix functional derivative with respect to some arbi-

trary noise ϕ as

δρs(t)

δϕ(t′)
=
δU+(t, 0)

δϕ(t′)
ρs(0)U

−(0, t) + U+(t, 0)ρs(0)
δU−(0, t)

δϕ(t′)
. (4.32)

We now need to calculate the functional derivatives of the propagators with respect

to these ϕ noises. We are maintaining these derivatives general so that they can

be applied to both η and ν noises. The functional derivative of the forward and

backward propagators with respect to the noises are given by:

δU+(t, t′)

δϕ(τ ′)
= −i

∫ t

t′
U+(t, τ)

δV +(τ)

δϕ(τ ′)
U+(τ, t′)dτ (4.33)

δU−(t′, t)

δϕ(τ ′)
= i

∫ t

t′
U−(t′, τ)

δV −(τ)

δϕ(τ ′)
U−(τ, t)dτ, (4.34)

where V ±(τ) = −
(
η(τ)± ν(τ)

2

)
fk(τ). We can now calculate the functional deriva-

tive of the propagators with respect to ηk(t) and νk(t). Starting with ηk(t):

δU+(t, t′)

δηk(τ)
= −i

∫ t

t′
U+(t, τ ′) [−δ(τ − τ ′)fk(τ

′)]U+(τ ′, t′)dτ ′ (4.35)

= iU+(t, τ)fk(τ)U
+(τ, t′), (4.36)

δU−(t′, t)

δηk(τ)
= i

∫ t

t′
U−(t′, τ ′) [−δ(τ − τ ′)fk(τ

′)]U−(τ ′, t)dτ ′ (4.37)

= −iU−(t′, τ)fk(τ)U
−(τ, t). (4.38)

For νk(t) we can write:
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δU+(t, t′)

δνk(τ)
= −i

∫ t

t′
U+(t, τ ′)

[
−1

2
δ(τ − τ ′)fk(τ

′)

]
U+(τ ′, t′)dτ ′ (4.39)

=
i

2
U+(t, τ)fk(τ)U

+(τ, t′) ,

δU−(t′, t)

δνk(τ)
= i

∫ t

t′
U−(t′, τ ′)

[
1

2
δ(τ − τ ′)fk(τ

′)

]
U−(τ ′, t)dτ ′

=
i

2
U−(t′, τ)fk(τ)U

−(τ, t).

This then allows us to write down ⟨ηk(t)ρs(t)⟩ as

(4.40)

⟨ηk(t)ρs(t)⟩ =
∫ t

0

dt′Kηη
k (t− t′)

〈
δρs(t)

δηk(t′)

〉
+

∫ t

0

dt′Kην
k (t− t′)

〈
δρs(t)

δνk(t′)

〉
=

∫ t

0

dt′Kηη
k (t− t′)

〈
iU+(t, t′)fk(t

′)U+(t′, 0)ρs(0)U
−(0, t)

− U+(t, 0)ρs(0)iU
−(0, t′)fk(t

′)U−(t′, t)
〉

+

∫ t

0

dt′Kην
k (t− t′)

〈
i

2
U+(t, t′)fk(t

′)U+(t′, 0)ρs(0)U
−(0, t)

+ U+(t, 0)ρs(0)
i

2
U−(0, t′)fk(t

′)U−(t′, t)

〉

Using this expression, we obtain the averaged version of the SLN equation, still in

a general form:

dρ̄(t)

dt
= −i [Hsys, ρ̄(t)]−

∑
k

[
fk,

∫ t

0

dt′Kηη
k (t− t′)

〈
U+(t, t′)fk(t

′)U+(t′, t)ρs(t)

− ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)
〉

+
1

2

∫ t

0

dt′Kην
k (t− t′)

〈
U+(t, t′)fk(t

′)U+(t′, t)ρs(t)

+ ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)
〉]
,

(4.41)

While this equation has been derived without any approximations, there are issues

with using it in the current form. It still contains the stochastic density matrix,

so that it is not self-contained. Therefore, to use this equation, it is necessary

to make some simplifications or utilise a Hamiltonian of a particular form. If the

Hamiltonian commutes with the coupling operator fk, also known as the quantum
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non-demolition model, then this equation can be simplified significantly. The

quantum non-demolition model describes a quantum system with a Hamiltonian

that commutes with the measured observables, such that the system does not

undergo quantum measurement back-action [99, 100]. Eq. (4.41) then takes the

form [91]:

(4.42)
dρ̄(t)

dt
= −i [Hsys(t), ρ̄(t)]−

∫ t

0

dt′Kηη
k (t− t′) [fk, [fk, ρ̄(t)]]

− 1

2

∫ t

0

dt′Kην
k (t− t′) [fk, {fk, ρ̄(t)}] .

It is also possible to perform some approximations to the form of the environmental

correlations which allows for a tractable equation, which is what will be done in

Section 4.2.2.

4.2.2 Markovian limit of the SLN equation

Due to the difficulty of using Eq. (4.41) in its exact, non-Markovian form, it

needs to be simplified. The stochastic density matrix needs to be replaced in some

form with an averaged version, so that a self-contained equation can be derived and

simulated. This is most easily done by taking the Markovian limit of the equation,

by simplifying and approximating the physical properties of the environment. We

start with the choice that the system is coupled to environments that have the

same temperature, and the same spectral density. While these approximations are

not required for our investigation, they simplify the notation significantly. In order

to obtain a Markovian limit, we will be considering the high temperature limit, i.e.

βω ≪ 1, and the choice of Ohmic spectral density J(ω) ∝ ω. These choices are the

same for every environment coupled to the system. For these conditions we can

begin to simplify the correlation functions of the environment, which will allow us

to obtain a self-contained equation of motion for the physical density matrix. We

can then simplify coth
(
βω
2

)
by taking its first order expansion, coth

(
βω
2

)
≈ 2

βω

[91], and deriving the simplified, Markovian version of the correlation functions of

Eqs. (4.21) and (4.22):

Kηη(t− t′) ≈
∫ ∞

0

dω

π
αω

2

βω
cos (ω(t− t′)) =

2α

β
δ(t− t′), (4.43)
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and

(4.44)

Kην(t− t′) = 2iαΘ(t− t′)
∂

∂t

[
1

π

∫ ∞

0

dω cos (ω(t− t′))

]
= −2iαΘ(t− t′)

∂

∂t′

[
1

π

∫ ∞

0

dω cos (ω(t− t′))

]
= −2iαΘ(t− t′)

∂

∂t′
δ(t− t′),

where α is the coupling constant between the system and the environment as

mentioned previously. The environmental indices k have been dropped from the

correlation functions, as we have chosen for them to have the same temperature

and spectral density. Eqs. (4.43) and (4.44) are of the same form as those in Ref.

[17]. The path to obtaining the same equations in Ref. [17] is slightly different,

where a cutoff is introduced in the spectral density, and allowing that cutoff to be

much larger than any dynamical timescales of the system. In this limit, it allows

to obtain these same equations. Despite the different path, the correlations are

the same, which is what we will be using to derive a Markovian version of Eq.

(4.41). For these simplifications, we still need to define a couple of delta function

properties. Specifically properties that deal with bounded integration [91]:

∫ t

0

dt′δ(t′)g(t′) =
1

2
g(0)

∫ t

0

dt′
∂δ(t′)

∂t′
g(t′) = −1

2
g′(0), (4.45)

where g(t) is a general function. With these properties we can begin to simplify

Eq. (4.41), and we start with the Kηη
k (t− t′) term:

∫ t

0

dt′Kηη
k (t− t′)⟨U+(t, t′)fk(t

′)U+(t′, t)ρs(t)− ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)⟩

=

∫ t

0

dt′
2α

β
δ(t− t′)⟨U+(t, t′)fk(t

′)U+(t′, t)ρs(t)− ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)⟩

=
α

β
⟨fk(t)ρs(t)− ρs(t)fk(t)⟩

=
α

β
[fk(t), ρ̄(t)] .

(4.46)
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Moving on to the Kην
k term:

1

2

∫ t

0

dt′Kην(t− t′)⟨U+(t, t′)fk(t
′)U+(t′, t)ρs(t) + ρs(t)U

−(t, t′)fk(t
′)U−(t′, t)⟩

=
1

2

∫ t

0

dt′
(
−2iαΘ(t− t′)

∂δ(t− t′)

∂t′

)
⟨U+(t, t′)fk(t

′)U+(t′, t)ρs(t)

+ ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)⟩,
(4.47)

since the integration is only performed in a range where t ≥ t′, we can allow the

Heaviside function to be set to one. We can then use Eq (4.45) to simplify this

expression:

=
1

2

∫ t

0

dt′
(
−2iαΘ(t− t′)

∂δ(t− t′)

∂t′

)
⟨U+(t, t′)fk(t

′)U+(t′, t)ρs(t)

+ ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)⟩

=
i

2
α
∂

∂t′
⟨U+(t, t′)fk(t

′)U+(t′, t)ρs(t) + ρs(t)U
−(t, t′)fk(t

′)U−(t′, t)⟩
∣∣∣∣
t=t′

=
i

2
α⟨ ∂
∂t′
(
U+(t, t′)fk(t

′)U+(t′, t)
)
ρs(t) + ρs(t)

∂

∂t′
(
U−(t, t′)fk(t

′)U−(t′, t)
)
⟩
∣∣∣∣
t=t′

=
i

2
α⟨
(
U+(t, t′)iH+(t′)fk(t

′)U+(t′, t) + U+(t, t′)
∂fk(t

′)

∂t′
U+(t′, t)

− U+(t, t′)(t′)fk(t
′)iH+(t′)U+(t′, t)

)
ρs(t)

+ ρs(t)

(
U−(t, t′)iH−(t′)fk(t

′)U−(t′, t) + U−(t, t′)
∂fk(t

′)

∂t′
U−(t′, t)

− U−(t, t′)fk(t
′)iH−(t′)U−(t′, t)

)
⟩
∣∣∣∣
t=t′

= −α
2

([
H+(t), fk(t)

]
− i

∂fk(t)

∂t

)
ρ̄(t)− α

2
ρ̄(t)

([
H−(t), fk(t)

]
− i

∂fk(t)

∂t

)
= −α

2

(
[Hsys(t), fk(t)]− i

∂fk(t)

∂t

)
ρ̄(t)− α

2
ρ̄(t)

(
[Hsys(t), fk(t)]− i

∂fk(t)

∂t

)
= −α

2
{[Hsys, fk(t)] , ρ̄(t)}+

iα

2

{
∂fk(t)

∂t
, ρ̄(t)

}
.

(4.48)
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Using Eqs. (4.46) and (4.48) we can transform Eq. (4.41) into a self contained

Markovian limit of the averaged SLN equation:

(4.49)

dρ̄(t)

dt
= −i [Hsys, ρ̄(t)]

−
∑
k

[
fk,

α

β
[fk, ρ̄(t)]−

α

2
{[Hsys, fk] , ρ̄(t)}+

iα

2

{
∂fk
∂t

, ρ̄(t)

}]
= −i [Hsys, ρ̄(t)] +

∑
k

(
−α
β
[fk, [fk, ρ̄(t)]] +

α

2
[fk, {[Hsys, fk] , ρ̄(t)}]

− iα

2

[
fk,

{
∂fk
∂t

, ρ̄(t)

}])
.

Unlike the expression in [91], this one contains a term with the time derivative of

the coupling to the environments. If the coupling is time independent, we recover

the usual form of the equation. With a more tractable expression in Eq. (4.49),

it is then possible to simulate it. This is what we will be exploring in Chapter 5,

the stochastic entropy production of continuous measurements starting from Eq.

(4.49).

4.3 Chapter Summary

In this chapter, we have introduced two methods for obtaining deterministic aver-

aged equations from non-Markovian stochastic differential equations. One of the

methods relies on a particular point of the dynamics where the system and the

environment are decoupled from one another, and proceeds to recursively replace

terms while keeping relevant ones. The other method relies on the Furutsu-Novikov

theorem that allows to represent a product of functionals that depend on coloured

noises and write them as an integral over the memory of the same noises. This al-

lows to obtain expressions for the averaged equations, which can be made tractable

with some approximations allowing them to be used in several scenarios.
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Chapter 5

Stochastic Entropy Production

for Continuous Measurements

In this chapter, we will be exploring the stochastic entropy production that arises

during the continuous measurement of an open quantum system [101]. As delin-

eated in Chapter 3, the stochastic entropy production will be determined through

the usage of forward and backward protocols that define the dynamics the sys-

tem will undergo. In order to use the stochastic thermodynamics methods from

Chapter 3 to open quantum systems, the notion of quantum trajectories must be

exactly defined. These quantum trajectories have been established in Chapter 3

through the usage of quantum unravellings that allow us to interpret the stochastic

dynamics as measurement records for continuous measurements.

To unravel an equation of motion it is necessary to begin with a deterministic

equation, to which we add stochasticity that is capable of describing the physical

randomness in the system dynamics. This could refer to measurements, or simply

thermal interactions. To that end, we will begin with the deterministic SLN

equation from Eq. (4.40), and obtain a version of it that allows for a quantum state

diffusion (QSD) unravelling. This will be done by exploiting the Markovian limit of

the equation, particularly a high temperature limit derived in Section 4.2.2. We are

then able to unravel the equation, in a way that represents a physical interaction

with the environment, that in principle is able to be observed and measured. We

stress the physicality of such interactions, as the stochastic trajectories of the SLN

and ESLN equations are not physically relevant, due to the change of the trace of

the density matrix away from one, as mentioned in Section 2.3.
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The system we will be exploring is a two-level system where there is a coupling to a

device that continuously measures a specific observable leading to the selection of

an eigenstate of the system. These dynamics are driven by a forward measurement

protocol that depends on the time dependence of the coupling between the system

and the environment. We then decouple this device through a reverse detachment

protocol of the system-environment coupling, returning the system to its initial

thermal state.

This is done by requiring the system to couple through the Pauli matrices to three

bosonic environments comprised of harmonic oscillators, with an equal coupling

strength initially, as illustrated in Figure 5.1. This allows for the system to ran-

domly explore the Bloch sphere, with a bias induced by the system Hamiltonian,

and this still produces behaviour consistent with a thermal Gibbs state. In this

scenario, the coupling to the measuring device is encapsulated by the coupling to

one of the environments. The stochastic entropy production is then investigated

by increasing the coupling strength to this environment, serving as a proxy for

the measuring device, which forces the system to tend towards one of its eigen-

states. See Refs. [102, 103] for a similar type of continuous isotropic measurement.

This is the basis for the forward protocol, and its reverse is constructed by revers-

ing the initial strengths of the coupling to the measuring device, working as the

detachment of the measurement device.

Figure 5.1: An open quantum system made up of a two-level bosonic system,
interacting with three distinct environments, each coupled through a Pauli ma-
trix to the open system. Each environment is coupled to the system through

the coupling strength α.
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Adding stochasticity into the dynamics is essential to understanding the irre-

versibility of any process. This can be exemplified through the evolution of the

averaged reduced density matrix. For example, the evolution of the averaged den-

sity matrix under constant temperature and Hamiltonian, remains unchanged after

it comes into equilibrium asymptotically, but this is not the case for the stochas-

tic density matrix which will evolve and explore its phase space according to the

system’s Gibbs state. This is also the case for the averaged evolution under the

protocols described earlier, the averaged values of the observables of the system

stay constant as the initial Gibbs state is retained through the dynamics, as will

be shown later in this chapter. Understanding the irreversibility of a stochastic

quantum trajectory, or the average irreversibility of a set of trajectories, requires

the stochasticity in the dynamics to be linked to some type of physical interpreta-

tion or process. This is a requirement in order to be able to analyse the behaviour

of individual quantum trajectories and still ascribe some physical significance to

them.

5.1 System setup and equations of motion

The type of unravelling of the master equation will determine the different physical

interpretation of the stochasticity of the system [27]. As described in Chapter 3,

the two main ways of unravelling an equation are quantum jumps, and quantum

state diffusion. Quantum jumps are described by a discontinuous evolution of

a system, with transitions between states. On the other hand, quantum state

diffusion leads to a continuous evolution of a quantum state, and is more applicable

to describing the dynamics of continuous variables, like position. As such, while

investigating the entropy production of continuous measurements, it is necessary

to delineate the type of unravelling and system we will be exploring. In this

section, we are starting from the Markovian Eq. (4.49):

(5.1)
dρ̄(t)

dt
= −i [Hsys, ρ̄(t)] +

∑
k

(
− 1

β
[fk, [fk, ρ̄(t)]] +

1

2
[fk, {[Hsys, fk] , ρ̄(t)}]

− i

2

[
fk,

{
∂fk
∂t

, ρ̄(t)

}])
,

and we will be unravelling it by considering a quantum state diffusion evolution.

In Eq. (5.1) we incorporate the constant coupling strength α within the coupling
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matrices fk. This choice is made both for convenience and conceptual reasons, as

the stochastic noises from the SLN equation which by convention contain α, are

no longer present, so it makes sense to tie α to fk together. Conceptually, this will

aid us when we decide how to vary one of the couplings between the system and

environment.

5.1.1 Two-level system and choice of environments

In this section we will describe the unravelling procedure for Eq. (5.1) and derive

its stochastic equation by placing appropriate limits and approximations. We

consider a two level system with Hamiltonian

Hsys = ϵσz. (5.2)

where σz is a Pauli matrix, and 2ϵ is the positive energy difference between eigen-

states of the Hamiltonian. With the high temperature limit taken earlier in the

derivation of the Markovian limit, as well as a weak coupling, this allows us to

verify that Eq. (5.1) is consistent with the thermal Gibbs state ρ̄ ∝ I − βHsys,

where ρ̄ is the averaged density matrix which follows deterministic dynamics. So,

by replacing ρ̄ ∝ I − βHsys, Eq. (5.1) should be satisfied with time-independent

fk:

(5.3)

dρ̄

dt
∝ −i [Hsys, I− βHsys]

+
∑
k

(
−α
β

[
fk, [fk, I− βHsys]

]
+
α

2

[
fk, {[βHsys, fk] , I− βHsys}

])
=
∑
k

(
α

2

[
fk, {[βHsys(t), fk] ,−βHsys}

])
= O(β2)

and we can ignore second order terms in β allowing for the equation to be satisfied.

This indicates that the form of fk is unconstrained, since it does not affect the

cancellation of the linear terms in β in Eq. (5.3). It is still required for fk to be

Hermitian, such that the eigenvalues and observables associated with fk are real.

Therefore, it is natural for this case to use a minimal set of three coupling operators

corresponding to the three Pauli matrices. We will choose the initial strength of

73



the three couplings to the environments to be the same for all three, as this allows

the system to be initialised in a state that explores the Bloch sphere randomly

without a preferred direction. A preferred direction is then introduced by the

energy bias of the Hamiltonian. We can then modify one of the couplings while

keeping the others constant. This coupling scheme setup allows us to simulate a

quantum measurement of the energy of the system in a simple way, by combining

the environmental and device interactions into one single coupling operator, in

this case σz. By increasing the coupling strength to the σz operator, we will

demonstrate how this corresponds to a measurement by shifting the pdf of the

system to its eigenstates, and how this affects the stochastic entropy production.

We will be coupling the system to three independent environments through the

following operators:

fx =
√
ασx , fy =

√
ασy and fz =

√
αγ(t)σz. (5.4)

where α is the initial coupling strength between the system and the three envi-

ronments, and γ(t) describes the time evolution of the coupling strength between

the system and an environment combined with a measuring device.

Note that in defining Eqs. (5.4) we have incorporated the coupling constant α into

the coupling matrix between the system and environment, as mentioned previously.

To reiterate, this allows us to relate the protocols defined by the varying of γ(t)

and the initial coupling between the system and environment, in a concise manner.

This means that all three environments will be coupled to the system with the

same strength, but the measuring device will have its coupling strength modified

according to some protocol. This allows us to vary γ(t) according to a specific

protocol that models an energy measurement on the environment. We can then

construct a reverse protocol that models the disconnecting of the measuring device,

or the undoing of a measurement. For ease of notation, we will refer to γ(t) as γ

from here onwards.

5.1.2 Unravelled stochastic equation and choice of Lind-

blad operators

To unravel a master equation requires that it can be written in Lindblad form,

with a diagonal operator matrix with positive coefficients/eigenvalues. It is not
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possible to obtain such a form from Eq. (5.1), as the equation in its diagonal form

contains negative eigenvalues. We will show this explicitly, and then move on to

possible solutions.

We will transform Eq. (5.1) with constant couplings to each environment fk(t) =

fk into the Lindblad form, using the diagonalisation method from Section 2.2,

and then show that this does not lead to positive eigenvalues, preventing us from

unravelling Eq. (5.1) in a standard way. For fk(t) = fk, Eq (5.1) can be written

as

dρ̄(t)

dt
= −i [Hsys(t), ρ̄(t)] +

1

β

∑
k

(
− [fk, [fk, ρ̄(t)]] +

1

2
[fk, {[βHsys(t), fk] , ρ̄(t)}]

)
(5.5)

where ρ̄ is the averaged density matrix that follows deterministic dynamics. To

demonstrate that the Lindblad form of Eq. (5.5) does not allow for a stochastic

unravelling, we will utilise the Hamiltonian from Eq. (5.2), and a similar form of

the coupling matrices defined in Eq. (5.4), specifically

fx =
√
ασx , fy =

√
ασy and fz =

√
ασz. (5.6)

We can then write Eq. (5.5) explicitly

dρ̄(t)

dt
= −i [Hsys(t), ρ̄(t)] +

α

β

(
− [σz, [σz, ρ̄(t)]]− [σy, [σy, ρ̄(t)]]

+
1

2
[σy, {[βϵσz, σy] ρ̄(t)}]− [σx, [σx, ρ̄(t)]] +

1

2
[σx, {[βϵσz, σx] ρ̄(t)}]

)
.

(5.7)

The double commutator terms without the Hamiltonian can be simplified into

Lindblad-like terms as

[σk, [σk, ρ̄(t)]] = −2

(
σkρ(t)σk −

1

2

{
σ2
k, ρ(t)

})
, (5.8)
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and with the Pauli matrices satisfying the identity [σi, σj] = 2iϵijkσk, where ϵijk is

the Levi-Civita symbol, we can simplify Eq. (5.7) to

dρ̄(t)

dt
= −i [Hsys(t), ρ̄(t)]

+
α

β

(
−2

(
σzρ(t)σz −

1

2

{
σ2
z , ρ(t)

})
− 2

(
σyρ(t)σy −

1

2

{
σ2
y, ρ̄(t)

})
−2

(
σxρ̄(t)σx−

1

2

{
σ2
x, ρ̄(t)

})
− iβϵ [σy, {σx, ρ̄(t)}]+ iβϵ [σx, {σy, ρ̄(t)}]

)
.

(5.9)

The sum of the last two terms in Eq (5.9) can be simplified and given by

−iβϵ [σy, {σx, ρ̄(t)}] + iβϵ [σx, {σy, ρ̄(t)}] = 2iβϵ

[(
σxρs(t)σy −

1

2
{σyσx, ρs(t)}

)
−
(
σyρs(t)σx −

1

2
{σxσy, ρs(t)}

)]
.

(5.10)

This allows us to obtain

dρ̄(t)

dt
= −i [Hsys(t), ρ̄(t)]

+
α

β

[
−2

(
σzρ(t)σz −

1

2

{
σ2
z , ρ(t)

})
− 2

(
σyρ(t)σy −

1

2

{
σ2
y, ρ̄(t)

})
− 2

(
σxρ̄(t)σx −

1

2

{
σ2
x, ρ̄(t)

})
+ 2iβϵ

(
σxρs(t)σy −

1

2
{σyσx, ρs(t)}

)
− 2iβϵ

(
σyρs(t)σx −

1

2
{σxσy, ρs(t)}

)]
.

(5.11)

By denoting

A1 = σx A2 = σy A3 = σz (5.12)

(5.13)

we can define the coefficient matrix A:

A =
2α

β


−1 −iβϵ 0

iβϵ −1 0

0 0 −1

 = (aij), (5.14)
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The diagonal form of A can be obtained by A = UDU †, where U is the matrix

composed of the normalised eigenvectors of matrixA, whileD is a diagonal matrix

with the eigenvalues of A. The eigenvalues and normalised eigenvectors of A are

given by

λ1 = −2α

β
, λ2 = −2α

β
(1 + βϵ), λ3 = −2α

β
(1− βϵ) (5.15)

u1 =


0

0

1

 , u2 =


i

1

0

 , u3 =


−i
1

0

 , (5.16)

and the U and D matrices are then represented by

U =
(
u1 u2 u3

)
= (uij) D =


λ1 0 0

0 λ2 0

0 0 λ3

 = (dij) = (δijλj). (5.17)

We can then diagonalise the system of operators using the following operators

Fk =
∑
i

uikAi. (5.18)

The F operators take the explicit form

F1 = u11σx + u21σy + u31σz = σz (5.19)

F2 = u12σx + u22σy + u32σz =
1√
2
(−iσx + σy) (5.20)

F3 = u13σx + u23σy + u33σz =
1√
2
(iσx + σy). (5.21)

We can then obtain the final expression

dρ̄

dt
= −i [Heff (t), ρ̄(t)] + λ1

(
F1ρ̄(t)F

†
1 − 1

2

{
F †
1F1, ρ̄(t)

})
+ λ2

(
F2ρ̄(t)F

†
2 − 1

2

{
F †
2F2, ρ̄(t)

})
+ λ3

(
F3ρ̄(t)F

†
3 − 1

2

{
F †
3F3, ρ̄(t)

})
(5.22)
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but there is still a relative negative sign as all eigenvalues are negative, which does

not allow for the equation to be unravelled.

It is also possible to obtain a stochastic unravelling of an equation with nega-

tive eigenvalues, by extending its Hilbert space and then adding the stochasticity

[104, 105]. That approach will not be taken here, as we will be constructing

Lindblad operators that satisfy and match the dynamics of Eq. (5.1), taking into

consideration the high temperature limit βHsys ≪ 1. We can then display Eq.

(5.1) to lowest order in β2 by the following Lindblad equation

dρ̄ = −i [Hsys, ρ̄(t)] dt+
∑
k

(
Lk ρ̄(t)L

†
k −

1

2

{
L†
kLk, ρ̄(t)

})
dt , (5.23)

using Lindblad operators

Lk = λ

(
fk −

1

4
[βHsys, fk]

)
, (5.24)

where λ =
√

2
β
. By replacing these operators in Eq. (5.23), we obtain

(5.25)

dρ̄ = −i

[
Hsys −

iα

4

∑
k

[
Hsys, f

2
k

]
, ρ̄(t)

]
dt

+
∑
k

(
−λ

2

2
[fk, [fk, ρ̄(t)]] +

λ2

4
β [fk, {[Hsys, fk] , ρ̄(t)}]

)
dt

− λ2

16

∑
k

β2

(
[Hsys, fk] ρ̄(t) [Hsys, fk]−

1

2

{
[Hsys, fk]

2 , ρ̄(t)
})

dt.

We should note that the Hamiltonian correction [Hsys, f
2
k ] vanishes when f 2

k ∝
I, which is true whenever fk is proportional to a Pauli matrix. On the right

hand side, the final contribution is smaller than the previous term by a factor of

βHsys, and in accordance with our high temperature limit, it is a term that can be

dropped. With this, we are able to recover the Markovian averaged SLN Eq. (5.1),

demonstrating the suitability of the Lindblad operators we have proposed. Eq.

(5.24) is a high temperature modification of the jump operators used to describe

transitions between states for a system interacting with a Markovian bath and

described by a Lindblad equation [27]. From Eq. (5.25), we show that this high

temperature correction to the jump operators allows to obtain the correct thermal
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distribution in the asymptotic limit, to leading order in β (or 1/T ), without any

fine tuning of the state transition rates. These results become useful in describing

more accurate high temperature dynamics in the Markovian limit.

Eqs. (5.23) and (5.24) are the starting point to construct an unravelling. As men-

tioned earlier, there exist several types of unravellings, and we will be considering

quantum state diffusion (QSD) [106–108]. Considering the set of Kraus operators

[79]

M±k ∝
(
I− iHsysdt−

1

2
L†
kLkdt± Lk

√
dt

)
, (5.26)

and substituting Eq (5.26) into Eq. (3.44), we obtain [79]

(5.27)dρs = −i [Hsys, ρs] dt+
∑
k

((
LkρsL

†
k −

1

2

{
L†
kLk, ρs

})
dt

+
(
ρsL

†
k + Lkρs − Tr

[
ρs

(
Lk + L†

k

)]
ρs

)
dWk

)
,

where ρs is the stochastic density matrix of the system, and the independent

Wiener increments dWk describe environmental disturbances. An unravelled equa-

tion needs to correspond to its original equation when noise averaged, and we can

see that in this case that Eq. (5.27) corresponds to Eq. (5.23) when averaged

over the Wiener noises. The rest of the analysis in this chapter starts with Eq.

(5.27), which we will use to understand the entropy production associated with

the continuous measurements described by QSD.

5.1.3 Equations of motion for coherence vector compo-

nents

We have defined our model and the coupling operators to the environment in

Eq. (5.4), and for the indices (k = x, y, z), we can write the Lindblad operators

explicitly as

Lx = λ

(
σx − i

βϵ

2
σy

)
, Ly = λ

(
σy + i

βϵ

2
σx

)
, Lz = λγσz, (5.28)
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where λ =
√

2α
β
. We will be focusing on the coherence vector components instead

of simulating directly the density matrix, and these components are defined by

ri = Tr(σiρs), and can also be defined through ρs = 1
2
(I+ r · σ). We should

note that we will refer to ri as describing stochastic dynamics and ⟨ri⟩ describing
averaged or deterministic dynamics. The products of the Lindblad operators from

Eq. (5.28), ignoring O(β) terms, are given by:

L†
xLx = λ2 (I + βϵσz)

L†
yLy = λ2 (I + βϵσz) (5.29)

L†
zLz = λ2γ2I.

Substituting Eqs. (5.28) and (5.29) into Eq. (5.27), we obtain

dρs = −iϵσzρsdt+ iϵρsσzdt+ λ2σxρsσxdt+ i
βϵ

2
λ2σxρsσydt− i

βϵ

2
λ2σyρsσxdt

− λ2ρsdt−
βϵ

2
λ2σzρsdt−

βϵ

2
λ2ρsσzdt+ λρsσxdWx + i

βϵ

2
λρsσydWx

+ λσxρsdWx − i
βϵ

2
λσyρsdWx − 2λrxρsdWx + λ2σyρsσydt+ i

βϵ

2
λ2σxρsσydt

− i
βϵ

2
λ2σyρsσxdt− λ2ρsdt−

βϵ

2
λ2σzρsdt−

βϵ

2
λ2ρsσzdt+ λρsσydWy

− i
βϵ

2
λρsσxdWy + λσyρsdWy + i

βϵ

2
σxρsdWy − 2λryρsdWy

+ λ2σzρsσzdt− λ2ρsdt+ γλρsσzdWz + γλσzρsdWz − 2γλrzρsdWz ,
(5.30)

where we have neglected terms that are proportional to β, in accordance with the

approximation made in deriving the Markovian SLN equation in Section 4.2.2,

note that λ =
√

2α
β
. Also, β0 terms have been kept, and show up in the stochastic

contributions. To obtain equations of motion for the coherence vector components,

we can use the identities for the Pauli matrices σaσb = δabI + iϵabcσc for any a and

b, or more succinctly σaσb = −σbσa for a ̸= b. The equations of motion for the

three components of the coherence vector then become:

(5.31)drx = −2ϵrydt− 2λ2
(
1 + γ2

)
rxdt+ λ

(
βϵrz + 2

(
1− r2x

))
dWx

− 2λrxrydWy − 2γλrxrzdWz
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(5.32)dry = 2ϵrxdt− 2λ2
(
1 + γ2

)
rydt− 2λrxrydWx

+ λ
(
βϵrz + 2

(
1− r2y

))
dWy − 2γλryrzdWz

(5.33)drz = −4λ2 (βϵ+ rz) dt− λrx (βϵ+ 2rz) dWx

− λry (βϵ+ 2rz) dWy + 2γλ
(
1− r2z

)
dWz.

The form of these equations can already give us some insight into how a larger

γ will affect the dynamics. Particularly, the γ deterministic component of drx,

and dry determine how quickly both ⟨drx⟩, and ⟨dry⟩ go towards zero. Hence, the

value of γ does not affect their equilibrium solutions, only transient behaviour. It

will also change the form of the pdf for both components.

5.1.4 Equations of motion in modified cylindrical coordi-

nates

In Section 5.1.3, we derived the equations of motion for the coherence vector

components, (rx, ry, rz), with which we are able to describe the dynamics in the

Bloch sphere, but it might not always be the most appropriate set of coordinates.

As such, in this section we will obtain the equations of motion for a modified

version of cylindrical coordinates (r2, rz, ϕ) for general γ, where

r2 = r2x + r2y + r2z and ϕ = arctan

(
ry
rx

)
. (5.34)

and the x and y components are given by

rx = r

√
1− r2z

r2
cos(ϕ) ry = r

√
1− r2z

r2
sin(ϕ). (5.35)

In fact, Eqs. (5.34) and (5.35) represent a mix of spherical and cylindrical co-

ordinates, as we utilise the spherical radius from spherical coordinates and the

azimuth (ϕ), and height rz from cylindrical coordinates. These choices yield a

more straightforward investigation of the system, as r2 allows to understand the

purity of the system, rz can also be directly investigated as it is the observable be-

ing measured through the environmental coupling strength, and finally ϕ depends
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only on rx and ry which are both associated with a constant environmental cou-

pling from Eq. (5.4). Using Itô’s lemma we can obtain the following expressions

required for the equations of motion:

dr2 =
∂r2

∂rz
drz +

1

2

∂2r2

∂r2z
(drz)

2 +
∂r2

∂ry
dry +

1

2

∂r2

∂r2y
(dry)

2 +
∂r2

∂rx
drx +

1

2

∂2r2

∂r2x
(drx)

2

(5.36)

dϕ =
∂ϕ

∂rx
drx +

1

2

∂2ϕ

∂r2x
(drx)

2 +
∂ϕ

∂ry
dry +

1

2

∂2ϕ

∂r2y
(dry)

2 +
∂2ϕ

∂rx∂ry
drxdry. (5.37)

We can then obtain the derivatives:

∂r2

∂rx
= 2rx

∂r2

∂ry
= 2ry

∂r2

∂rz
= 2rz (5.38)

∂2r2

∂r2x
=
∂2r2

∂r2y
=
∂2r2

∂r2z
= 2 (5.39)

∂ϕ

∂rx
= − ry

r2x + r2y

∂ϕ

∂ry
=

rx
r2x + r2y

(5.40)

∂2ϕ

∂r2x
=

2rxry(
r2x + r2y

)2 ∂2ϕ

∂r2y
= − 2rxry(

r2x + r2y
)2 ∂2ϕ

∂rxry
=

r2y − r2x(
r2x + r2y

)2 (5.41)

which allows us to obtain a simpler expression for Eqs. (5.36) and (5.37):

(5.42)dr2 = 2rzdrz + (drz)
2 + 2rydry + (dry)

2 + 2rxdrx + (drx)
2

(5.43)
dϕ = − ry

r2x + r2y
drx +

rxry(
r2x + r2y

)2 (drx)2 + rx
r2x + r2y

dry

− rxry(
r2x + r2y

)2 (dry)2 + r2y − r2x(
r2x + r2y

)2drxdry.
Starting with dr2, we can calculate (drx)

2, (dry)
2, (drz)

2, and drxdry using Eqs.

(5.31)-(5.33), using the property dW 2
i = dt:

(drx)
2 = λ2

(
βϵrz + 2(1− r2x)

)2
dt+ 4λ2r2xr

2
ydt+ 4λ2γ2r2xr

2
zdt (5.44)

(dry)
2 = 4λ2r2xr

2
ydt+ λ2

(
βϵrz + 2(1− r2y)

)2
dt+ 4λ2γ2r2yr

2
zdt (5.45)

(drz)
2 = λ2r2x (βϵ+ 2rz)

2 dt+ λ2r2y (βϵ+ 2rz)
2 dt+ 4λ2γ2

(
1− r2z

)2
dt (5.46)

drxdry = −2λ2rxry
(
βϵrz + 2(1− r2x)

)
dt− 2λ2rxry

(
βϵrz + 2(1− r2y)

)
dt (5.47)

+ 4λ2γ2rxryr
2
zdt.
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After some manipulations and ignoring linear terms in β = λ2β2, we obtain

(drx)
2 = 4λ2

[
r2x
(
r2x + r2y + γr2z

)
+ βϵrz

(
1− r2x

)
+ 1− 2r2x

]
dt

(dry)
2 = 4λ2

[
r2y
(
r2x + r2y + γr2z

)
+ βϵrz

(
1− r2y

)
+ 1− 2r2y

]
dt (5.48)

(drz)
2 = 4λ2

[
βϵrz

(
r2x + r2y

)
+ r2z

(
r2x + r2y

)
− 2γ2r2z + γ2

(
1 + r4z

)]
dt

we can then write the sum of (drx)
2 + (dry)

2 + (drz)
2 very straightforwardly

(5.49)(drx)
2 + (dry)

2 + (drz)
2 = 4λ2

[
−2γ2r2z + r2z

(
r2x + r2y

)
− 2r2x − 2r2y + 2βϵrz

+ γ2
(
1+ r4z

)
+
(
r2x + r2y

) (
r2x + r2y + γr2z

)
+2
]
dt.

Proceeding to calculate the 2ridri terms:

(5.50)2rxdrx = −4ϵrxrydt− 4λ2
(
1 + γ2

)
r2xdt

+ λrx
(
βϵrz + 2

(
1− r2x

))
dWx − λ2r2xrydWy − 2γλr2xrzdWz,

(5.51)2rydry = 4ϵrxrydt− 4λ2
(
1 + γ2

)
r2ydt− 2λrxr

2
ydWx

+ λry
(
βϵrz + 2

(
1− r2y

))
dWy − 2γλr2yrzdWz,

(5.52)2rzdrz = −8λ2r2zdt− 8λ2βϵrzdt− λrxrz (βϵ+ 2rz) dWx

− λryrz (βϵ+ 2rz) dWy + 2γλrz
(
1− r2z

)
dWz.

Adding up Eqs. (5.50)-(5.52) allows us to obtain

(5.53)2rxdrx + 2rydry + 2rzdrz = −4λ2
(
2r2z + (1 + γ2)(r2x + r2y)

)
dt

− 16αϵrzdt+ 2λrx
(
1− r2

)
dWx

+ 2λry
(
1− r2

)
dWy + 2λγrz

(
1− r2

)
dWz.

Adding Eqs. (5.49) and (5.53), we can then obtain the final expression for dr2 :

dr2 = 4λ2
(
r2 − 1

) (
γ2r2z − γ2 + r2 − r2z − 2

)
dt+ 4λ

√
1− r2z

r2
r cos(ϕ)

(
1− r2

)
dWx

+ 4λ

√
1− r2z

r2
r sin(ϕ)

(
1− r2

)
dWy + 4λγrz

(
1− r2

)
dWz.

(5.54)
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We can now calculate dϕ, starting with the contributions linear in dri:

(5.55)− ry
r2x + r2y

drx +
rx

r2x + r2y
dry =

1

r2x + r2y

[
2ϵ
(
r2x + r2y

)
dt− λry (βϵrz + 2) dWx

+ λrx (βϵrz + 2) dWy

]
.

The terms quadratic in dri lead to

(5.56)
rxry(

r2x + r2y
)2 (drx)2 − rxry(

r2x + r2y
)2 (dry)2 + r2y − r2x(

r2x + r2y
)2drxdry = 0,

allowing the expression dϕ to be written as

dϕ = 2ϵdt− λ
(βϵrz + 2) sinϕ√

r2 − r2z
dWx + λ

(βϵrz + 2) cosϕ√
r2 − r2z

dWy. (5.57)

The equations of motion in the cylindrical coordinate system are given by

dr2 = 4λ2
(
r2 − 1

) (
γ2r2z − γ2 + r2 − r2z − 2

)
dt+ 4λ

√
1− r2z

r2
r cosϕ

(
1− r2

)
dWx

+ 4λ

√
1− r2z

r2
r sinϕ

(
1− r2

)
dWy + 4λγrz

(
1− r2

)
dWz ,

(5.58)

(5.59)drz = −4λ2 (βϵ+ rz) dt− λ (βϵ+ 2rz) r
√
1− r2z cosϕdWx

− λ (βϵ+ 2rz) r
√
1− r2z sinϕdWy + 2γλ

(
1− r2z

)
dWz,

dϕ = 2ϵdt− λ
(βϵrz + 2) sinϕ

r
√

1− r2z
dWx + λ

(βϵrz + 2) cosϕ

r
√
1− r2z

dWy . (5.60)

Due to the singularities present in this coordinate system, specific attention needs

to be taken to deal with initial states and the dynamics.
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5.1.5 Initial state simplification

From Eq. (5.58), it is straightforward to notice that r2 = 1 is a fixed point of

the dynamics, since its evolution is frozen for r2 = 1. The condition r2 = 1

corresponds to a pure initial state. It also allows us to simplify the computational

effort of the dynamics. So, by setting r2 = 1 we fix the state to the surface of the

Bloch sphere, allowing us to obtain

drz = −4λ2 (βϵ+ rz) dt− λ (βϵ+ 2rz)
√
1− r2z cosϕdWx (5.61)

− λ (βϵ+ 2rz)
√
1− r2z sinϕdWy + 2γλ

(
1− r2z

)
dWz

dϕ = 2ϵdt− λ
(βϵrz + 2) sinϕ√

1− r2z
dWx + λ

(βϵrz + 2) cosϕ√
1− r2z

dWy. (5.62)

Eqs. (5.61) and (5.62) correspond to the basis of the simulations that we will

undertake in this chapter. We should also note that the pdf now depends only on

two variables: rz and ϕ.

5.1.6 Fokker-Planck equation

For the stochastic system entropy production defined in Eq. (3.27), it is necessary

to solve the time-dependent Fokker-Planck equation to obtain the pdf over system

coordinates, and over time. We can write the form of the Fokker-Planck equation,

but we require the expressions for the vector A, matrices B, and D = 1
2
BBT .

These are obtained by comparing their definitions in Eq. (3.25) with the equations

of motion (5.61) and (5.62). We can then write

A =

(
Az

Aϕ

)
=

(
−4λ2βϵ− 4λ2rz

2ϵ

)
, (5.63)

B = λ

−(βϵ+ 2rz)
√

1− r2z cosϕ −(βϵ+ 2rz)
√

1− r2z sinϕ 2γ(1− r2z)

−(βϵrz + 2) sinϕ√
1−r2z

(βϵrz + 2) cosϕ√
1−r2z

0

 ,

(5.64)
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and therefore

D =

(
Dzz 0

0 Dϕϕ

)
= 2λ2

(
(1− r2z) (βϵrz + (1− γ2)r2z + γ2) 0

0 βϵrz+1
1−r2z

)
. (5.65)

Note that the expressions for A or D contain no ϕ dependence, and this would

not be the case if we had only one environment coupled to the system, instead

of the three couplings. The diffusion matrix D is diagonal, which allows for

simplifications when calculating the entropy production. By removing O(β2) terms

in D, due to the high temperature limit assumed earlier, we can write the Fokker-

Planck equation for the probability density function p(rz, ϕ, t) as

(5.66)

∂

∂t
p(rz, ϕ, t) =

∂

∂rz

[
−Azp(rz, ϕ, t) +

∂

∂rz
(Dzzp(rz, ϕ, t))

]
+

∂

∂ϕ

[
−Aϕp(rz, ϕ, t) +

∂

∂rϕ
(Dϕϕp(rz, ϕ, t))

]
=

∂

∂rz

[
λ2

2

(
12βϵ

(
1− r2z

)
+ 16(1− γ2)rz

(
1− r2z

))
p(rz, ϕ, t)

+ 2λ2
(
1− r2z

) (
βϵrz + (1− γ2)r2z + γ2

) ∂

∂rz
p(rz, ϕ, t)

]
+

∂

∂ϕ

[
−2ϵp(rz, ϕ, t) + 2λ2

βϵrz + 1

1− r2z

∂

∂ϕ
p(rz, ϕ, t)

]
.

This Fokker-Planck equation can be made simpler by considering an initial pdf

that is independent of ϕ. Without any ϕ dependence in Eq. (5.66), we note

that with an initial pdf independent of ϕ, there is no consequent change in that

due to no explicit ϕ contributions. This allows us to make the simplification

p(rz, ϕ, t) = p(rz, t), and to write a more compact equation:

∂

∂t
p(rz, t)

=
∂

∂rz

[
λ2

2

(
−2β2ϵ2rz + 12βϵ

(
1− r2z

)
+ 16(1− γ2)rz

(
1− r2z

))
p(rz, t)

+2λ2
(
1− r2z

)((βϵ
2

)2

+ βϵrz + (1− γ2)r2z + γ2

)
∂

∂rz
p(rz, t)

]
.

(5.67)

From Equation (5.67), it is possible to obtain an analytical solution at equilibrium.

Specifically, by setting ∂p(rz, t)/∂t = 0. This allows us to write two solutions, one
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for γ ̸= 1 and another for γ = 1. Using tools like Mathematica, it is possible to

obtain the following solution for γ ̸= 1:

pst(rz)γ ̸=1 =
1

Nγ

(1− rz)
a(1 + rz)

b
(
β2ϵ2 + 4βϵrz + 4γ2 + 4(1− γ2)

)c
(5.68)

× exp

8βϵ (β
2ϵ2(1 + 2γ2)− 4) arctanh

[
−βϵ−2rz(1−γ2)

γ
√

4γ2−4+β2ϵ2

]
(4− β2ϵ2)2γ

√
4γ2 − 4 + β2ϵ2

 ,
while for γ = 1 we have

pst(rz)γ=1 =
1

N1

(1− rz)
a(1 + rz)

b(β2ϵ2 + 4βϵrz + 4)d, (5.69)

where Nγ is a γ dependent normalisation factor, and the exponents are given by

a = −
(

βϵ

2 + βϵ

)2

, b = −
(

βϵ

2− βϵ

)2

, (5.70)

c = −1 +
4(−4 + 3β2ϵ2)

(−4 + β2ϵ2)2
, d = −1 +

8(−4 + 3β2ϵ2)

(−4 + β2ϵ2)2
, (5.71)

where we note that c ̸= d. We can plot Eqs. (5.68) and (5.69) with the results

displayed in Figure 5.2 for a range of values of γ

Figure 5.2: Stationary pdf solutions of the Fokker-Planck Eq. (5.67) for
different values of γ. Parameters used are β = 0.1, ϵ = 1, and α = 0.01.

The coupling strength γ has a strong effect on the stationary pdf of rz, as shown

in Figure 5.2. The probability increases around the boundaries, for increasing γ,
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with an asymmetry caused by the energy bias ϵ. It is this effect of the shifting

of the pdf to the boundaries that models a measurement of rz. The probability

shifts towards the eigenvalues of the Hamiltonian, with the evolution becoming in

essence an energy measurement. For the case of decreasing γ, the pdf changes quite

significantly. The pdf goes from being a straight line in rz to becoming centred

around rz = −βϵ = −0.10 which corresponds to its equilibrium state value.

5.1.7 Average system entropy production and boundary

contributions

In this section, we will be obtaining the noise and coordinate averaged version

of the stochastic system entropy production. Eq. (3.28) shows that the stochas-

tic system entropy production arises from the pdf solution to the Fokker-Planck

equation, and it can be found numerically and analytically. Typically, we would

obtain an averaged system entropy production by averaging the entropy over many

quantum trajectories, but this averaged entropy does not allow us to understand

the individual stochastic entropy production, or its distribution. It is still nec-

essary to obtain the averaged entropy production since it allows for insights at

an ensemble level, including the amount of entropy production when the system

has become stationary. The noise and coordinate averaged, incremental system

entropy production d⟨⟨∆ssys⟩⟩ can be written as

d⟨⟨∆ssys⟩⟩ =
∫ 1

−1

d⟨∆ssys⟩ p(rz, t)drz, (5.72)

where d⟨∆ssys⟩ is the noise averaged form of Eq. (3.28). We will also require the

noise averaged form of drz, compactly written as d⟨rz⟩ = Azdt since the stochastic

component vanishes when averaged over. With that, d⟨⟨∆ssys⟩⟩ is calculated as

follows:

d⟨⟨∆ssys⟩⟩ =
∫ 1

−1

d⟨∆ssys⟩ p(rz, t)drz

=

∫ 1

−1

(
−∂ ln p(rz, t)

∂t
dt− ∂ ln p(rz, t)

∂rz
d⟨rz⟩ −Dzz

∂2 ln p(rz, t)

∂r2z
dt

)
p(rz, t)drz

=

∫ 1

−1

(
−∂ ln p(rz, t)

∂t
dt− Az

∂ ln p(rz, t)

∂rz
dt−Dzz

∂2 ln p(rz, t)

∂r2z
dt

)
p(rz, t)drz
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Taking the last term by parts, and introducing the rz component of the probability

current,

Jz = Azp(rz, t)−
∂ (Dzzp(rz, t))

∂rz
, (5.73)

that appears in the Fokker-Plank equation (3.26) as

−∂p(rz, t)
∂t

=
∂Jz
∂rz

, (5.74)

we can write:

d⟨⟨∆ssys⟩⟩ =
∫ 1

−1

((
−∂ ln p(rz, t)

∂t
dt− Az

∂ ln p(rz, t)

∂rz
dt

)
p(rz, t)

+
∂ (Dzzp(rz, t))

∂rz

∂ ln p(rz, t)

∂rz
dt

)
drz −

[
Dzz

∂ ln p(rz, t)

∂rz
p(rz, t)

]1
−1

dt

=

∫ 1

−1

(
−∂ ln p(rz, t)

∂t
p(rz, t)dt− Jz

∂ ln p(rz, t)

∂rz
dt

)
drz

−
[
Dzz

∂p(rz, t)

∂rz

]1
−1

dt

(5.75)

We then integrate by parts the second term inside the integral and replace the rz

derivative of the probability current with the left hand side of the Fokker-Planck

Eq. (5.74):

(5.76)

d⟨⟨∆ssys⟩⟩ =
∫ 1

−1

(
−∂ ln p(rz, t)

∂t
p(rz, t)dt+ ln p(rz, t)

∂Jz
∂rz

dt

)
drz

− [Jz ln p(rz, t)]
1
−1 dt−

[
Dzz

∂p(rz, t)

∂rz

]1
−1

dt

= −
∫ 1

−1

(
∂ ln p(rz, t)

∂t
p(rz, t)dt+ ln p(rz, t)

∂p(rz, t)

∂t
dt

)
drz

− [Jz ln p(rz, t)]
1
−1 dt−

[
Dzz

∂p(rz, t)

∂rz

]1
−1

dt

= −
(
d

dt

∫ 1

−1

p(rz, t) ln p(rz, t)drz

)
dt

− [Jz ln p(rz, t)]
1
−1 dt−

[
Dzz

∂p(rz, t)

∂rz

]1
−1

dt

= dSG(t)− [Jz ln p(rz, t)]
1
−1 dt−

[
Dzz

∂p(rz, t)

∂rz

]1
−1

dt,
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where dSG is the increment of the Gibbs entropy, see Eq. (3.39). The noise

averaged system entropy production from Eq. (3.39) contains only the difference

in initial and final Gibbs entropy of the state, so that the boundary terms in

Eq. (5.76) correspond to the actual averaged system entropy. These boundary

corrections are small in nature, and typically vanish, but that does not occur in

this case. In equilibrium, the current Jz vanishes at the boundaries of rz = ±1,

and so does Dzz; but the pdf increases significantly at the boundaries, so that

their product does not vanish explicitly, and remains nonzero. This leads to the

boundary corrections being small but non-zero.

5.1.8 Average environmental entropy production

With the equations of motion having been defined, along with the coupling op-

erators and Hamiltonian, we now have all the components required to calculate

the stochastic environmental entropy production from Eq. (3.34). We will need

to calculate Airr and Arev from Eqs. (5.61) and (5.62). To do so, we will need to

understand how time reversal transforms the observables we are dealing with. As

mentioned in Section 5.1.1, we are dealing with a two-level open system, so there

are no spin degrees of freedom. As such, the time reversal operators are given by

Θ = K , where K is the complex conjugation operator [109]. It is then straight-

forward to calculate the time reversal properties of the Pauli matrices, leading to

σz and σx being even, and σy being odd:

ΘσzΘ
−1 = σz ΘσyΘ

−1 = −σy ΘσxΘ
−1 = σx. (5.77)

With these properties, we can separate the coefficients of the deterministic terms

in Eqs. (5.61) and (5.62) into their Airr and Arev components. Since ϕ is odd,

and rz is even, we have

Airr =

(
−4λ2 (βϵ+ rz)

0

)
, Arev =

(
0

2ϵ

)
. (5.78)

We can then obtain an expression for the environmental entropy production using

Eq. (3.34), since we already have the form of D from Eq. (5.65). We can

then obtain an expression for d∆senv that is explicitly stochastic, as it contains
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the same stochastic noises from Eqs. (5.61) and (5.62), allowing us to calculate

d∆senv alongside our dynamics. The explicit form of d∆senv is given by

(5.79)d∆senv =
f1

β (rz − 1) (rz + 1) (β2ϵ2 + 4βϵrz − 12r2z + 16)2

+
f2√

β (β2ϵ2 + 4βϵrz − 12r2z + 16)

where

f1 = 16αdt
(
18β3ϵ3r5z − 27β3ϵ3r3z + 5β3ϵ3rz + 36β2ϵ2r6z − 72β2ϵ2r4z + 66β2ϵ2r2z

− 48β2ϵ2 − 360βϵr7z + 816βϵr5z − 552βϵr3z + 96βϵrz + 432r8z − 864r6z − 336r4z
+ 1536r2z − 768

)
,

(5.80)

and

f2 = 24
√
2
√
α
(
−βdWxϵrz

√
1− r2z cos (ϕ)− βdWyϵrz

√
1− r2z sin (ϕ) + 2βdWzϵr

2
z

− 2βdWzϵ− 4dWxr
2
z

√
1− r2z cos (ϕ)− 4dWyr

2
z

√
1− r2z sin (ϕ)− 8dWzr

3
z

+ 8dWzrz

)
.

(5.81)

On the other hand, the stochastic system entropy production, d∆ssys, from Eq.

(3.28) is calculated by obtaining the path probabilities from the time dependent

solution of the Fokker-Planck equation, associated with each stochastic trajectory.

5.2 Simulations and Results

Here, we will be detailing the protocols that are going to be used to simulate

the dynamics of the system, and then used to calculate the stochastic entropy

production associated with it.
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5.2.1 Protocols and computational procedure

The stochastic entropy production will be investigated by considering two pro-

tocols that are the time reversal of each other. Since we are interested in the

stochastic entropy production associated with measurements, the protocols need

to be defined in a particular way, and will we need to verify if they satisfy the

detailed fluctuation theorem from Eq. (3.20). Then, we will need to simulate the

dynamics of both protocols. The values of γ(t) will be chosen in such a way that it

will allow us to model a measurement and its effect on the system, particularly on

the pdf and how it shifts towards the eigenstates of the system. The two protocols

are:

• Connection of measuring device (protocol M): Begin at t = 0 with the

system thermalised for γ = 1 with the initial state being randomly sampled

from the pdf defined in Figure 5.2; for t > 0 perform simulations of Eqs.

(5.61) and (5.62) using γ = 2.

• Disconnection of measuring device (protocol M̄): Begin at t = 0 with the

system thermalised for γ = 2 with the initial state being randomly sampled

from the pdf defined in Figure 5.2; then, for t > 0 perform simulations of

Eqs. (5.61) and (5.62) using γ = 1.

The initial pdf of the system is given by the stationary solution to the Fokker-

Planck equation, which was obtained and then displayed in Figure 5.2. The initial

state for either protocol is randomly sampled from the stationary pdf for an appro-

priate value of γ. For rz, its initial value is taken from the appropriate stationary

pdf p(rz, t = 0), while ϕ is drawn from a uniform distribution with range [0, 2π).

Whenever a value of γ is referred to, it will be the value used for the dynamics, at

t > 0, unless we explicitly refer to the initial state at t = 0.

The Fokker-Planck equation, Eq. (5.67), needs to be solved before calculating

the stochastic system entropy production. What the protocols will be doing, is

driving the system between two stationary states at different values of γ, while

producing entropy in the process. This allows to observe the entropy production

during a measurement process, and its undoing. Also to note, the shift from one

stationary pdf to the other happens very quickly, at around t = 0.2, settling on

to its asymptotic distribution, which indicates the same should happen with the

entropy production.
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The computational procedure for the stochastic dynamics and entropy production

is given by

1. Solve the Fokker-Planck equation (5.67) to obtain the solution p(rz, t), using

an appropriate initial pdf for both forward or reverse trajectories; in both

cases the boundary conditions at rz = ±1 are given by a zero probability

current Jz = 0; two solutions are then obtained, one for each protocol. Both

pdfs are solved on a discretised grid of rz values.

2. Run each protocol independently, and loop over realisations of the noises:

(a) generate the Wiener increments dWx, dWy and dWz for each time step

dt;

(b) simulate the stochastic dynamics for rz(t) and ϕ(t) for both protocols

using Eqs. (5.61) and (5.62) based on initial values randomly sampled

from the corresponding γ valued stationary distributions p(rz, t = 0) of

the Fokker-Planck equation;

(c) with trajectories of rz(t) and ϕ(t), calculate the environmental, d∆senv,

and system, d∆ssys = −d (ln p(rz, ϕ, t)), entropy productions via Eq.

(3.34) and the first line of Eq. (3.28), respectively; for the system case

the increment of the logarithm of the pdf is calculated as a difference

between its values at two consecutive times steps; the values of the

pdf p(rz, t) for both times at the required value of rz are obtained by

linearly interpolating each pdf from step 1 between two available nearest

rz values on the grid;

(d) the incremental total stochastic entropy production is given by d∆stot =

d∆senv + d∆ssys, at every time step;

(e) return to step 2 (a) and run another trajectory; the averaged values

d⟨⟨∆senv⟩⟩ and d⟨⟨∆ssys⟩⟩ are obtained by averaging over the stochastic

trajectories. Each protocol will have its own corresponding independent

total entropy production.

3. With the averaged values of the total entropy production, the boundary

correction terms from Eq. (5.76) are added to d⟨⟨∆stot⟩⟩ as

(5.82)
d⟨⟨∆stot⟩⟩= d⟨⟨∆senv⟩⟩+d⟨⟨∆ssys⟩⟩− [Jz ln p(rz, t)]

+1
−1 dt

−
[
Dzz

∂ ln p(rz, t)

∂rz

]1
−1

dt
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This yields the final form of the incremental total entropy production d⟨⟨∆stot⟩⟩,
for both the forward and reverse protocols. The total change in entropy pro-

duction is then given by the cumulative sum of the total incremental entropy

production.

5.2.2 Dynamics of rz and ϕ

The equilibrium state of an open system weakly interacting with an environment at

a specific temperature can be described by the Gibbs state, via ρ̄ ∝ e−βHsys . While

deriving the equations of motion of the system, in Eqs. (5.61) and (5.62), the high

temperature limit has been taken, βHsys ≪ 1, which allows us to take the same

limit for the form of the equilibrium density matrix, i.e. ρ̄ ≈ 1−βHsys = 1−βϵσz.

We can then obtain the stochastic averaged value of rz, by taking the trace

⟨rz⟩ = Tr (σzρ̄), leading to ⟨rz⟩eq = −βϵ ≈ −0.1 for β = 0.1, and ϵ = 1. Running

one million realisations of the dynamics of the system confirms this stochastic

averaged value of rz, as it remains constant during the whole simulation. We

should also note that the behaviour of ϕ is as expected, the pdf is constant in

ϕ, which matches the assumptions made in the derivation of Eq. (5.67), if the

initial pdf is independent of ϕ, it will always remain so on average. As the sys-

tem reaches equilibrium, the ensemble of trajectories approaches the stationary

distribution pst(rz)γ for its specific γ value from Eqs. (5.68) and (5.69), while

the asymptotic averaged value of the observables remains unchanged. With rz

remaining unchanged throughout the averaged dynamics of the system, so does

the averaged density matrix, leading to vanishing von Neumann entropy produc-

tion. It is also the case that for individual trajectories the von Neumann entropy

is equal to zero, as the system remains in a pure state throughtout the dynamics.

It is therefore crucial to obtain the average entropy production from the average

over the stochastic entropy production by explicitly using the stochastic density

matrix. We would also expect this distribution to match the one that solves the

Fokker-Planck equation from Section 5.1.6. From Figure 5.3 (right panel), we can

indeed observe this, with the numerical equilibrium pdf matching the analytical

one.
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Figure 5.3: Left panel: a set of 10 random trajectories that were initialised
at rz = 0 for the protocol M (γ = 2), displaying the diffusive behaviour of
the system towards the eigenstates driven by the measurements. Right panel:
a normalised histogram for the protocol M based on one million individual
trajectories at t = 2, and compared with pst(rz)γ=2 of Eq. (5.68) obtained by

solving the Fokker-Planck equation.

This demonstrates the stochastic behaviour of the system and the effect of the

measurement interactions that sends rz towards the eigenstates. These dynamics

maintain the same thermal averaged state, as ρ̄eq ∝ e−βHsys does not depend on

γ which is the only parameter that varies throughout the evolution of the system.

This exemplifies how important it is to understand the stochastic behaviour of

quantum measurements, and that all physical changes in the system are naturally

stochastic. The left panel of Figure 5.3 displays the stochastic behaviour of the

system being driven towards its eigenstates with probability given by the pdf in

the right panel.

95



Figure 5.4: Single stochastic trajectory for γfinal = 2, exploring the Bloch
sphere. Parameters used are ϵ = 1, tmax = 2, dt = 10−4, and α = 0.01. The
initial states for the two protocols were randomly sampled from the equilibrium

solution of the Fokker-Planck equation, for γ = 2 and γ = 1, respectively.

Figure 5.4 displays only two stochastic trajectories of the system, nevertheless it

allows to understand how it explores the Bloch sphere. The forward protocol ex-

plores the Bloch sphere in a more biased way, towards its lowest energy eigenstate,

while the reverse protocol does so in a more uniform manner. This is in accor-

dance with their equilibrium pdfs. Both protocols have their pdfs biased through

the Hamiltonian, but the strength of that depends almost only on γ.

5.2.3 Stochastic entropy production

In this subsection, we shall show the averaged total stochastic entropy production

results obtained from the forward and reverse protocol dynamics. The stochastic

total entropy production is obtained by summing up the stochastic system entropy

production in Eq. (3.28), the environmental entropy production in Eq. (3.34), and

the boundary correction terms from Eq. (5.76). We then obtain the results for

the forward total entropy production with γ = 2, shown in Figure 5.5.
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Figure 5.5: Four curves for the forward protocol γ = 2 are shown: two of
them correspond to the averaged total entropy production with and without the
boundary corrections (black), and the other corresponds to a single stochastic
realisation (red), and the other (blue) correspond to the analytical averaged
total entropy production from Eq. (3.38). The stochastic averaged results were
run for one million realisations for the parameters tmax = 2, dt = 10−5, and

α = 0.01.

From Figure 5.5, we can observe that the boundary correction terms lead to a

substantial difference between the averaged total entropy production calculated

with and without boundary correction terms. Without boundary correction terms,

the total entropy production is linearly increasing, even asymptotically, but the

addition of the boundary correction terms eliminates this linear behaviour. Instead

of increasing infinitely, the correction terms remove this and yield a total entropy

production that is constant in the asymptotic limit. This indicates that the system

has settled on its asymptotic pdf for rz corresponding to the value of γ = 2, while

being initially equilibrated for γ = 1. These boundary correction terms are general

results, and they might vanish for other cases, however in our case they do not,

due to the numerical inability to explore the boundaries of the pdf, rz = ±1. The

calculation of the total entropy production for the reverse protocol is done in the

same manner. The results for the disconnection protocol with γ = 1 are displayed

in Figure 5.6.
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Figure 5.6: The black curve corresponds to the reverse protocol (γ = 1)
averaged total entropy production with the boundary corrections, while the red
one to a single stochastic realisation, and the blue curve corresponds to the
analytical averaged total entropy production from Eq. (3.38). The results are
presented to one million realisations for tmax = 2, dt = 10−5, and α = 0.01. We
have only included the curve with a boundary correction, as the one without
the boundary correction is essentially the same. The correction for γ = 1 is

much smaller than the correction for γ = 2.

As with the forward protocol, these results also lead to a constant total entropy

production once the system equilibrates. We see that this process of reversing the

effects of the measurement also leads to a positive entropy production; in fact, the

entropy production is higher than for the forward process. An interesting result

from the stochastic trajectories of both protocols is that the total stochastic en-

tropy production stabilises around t = 1 due to the system reaching equilibrium

with the environment despite the continuous measurement process still being ac-

tive.

5.2.4 Entropy production pdf and detailed fluctuation the-

orem

To demonstrate the validity of the protocols, initial states, and subsequent entropy

production, it is necessary to verify the adherence to the detailed fluctuation the-

orem in Eq. (3.20). The detailed fluctuation relation relies upon the choosing of

the connection and disconnection protocols in a specific manner. We require that
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the initial pdf of the disconnection protocol to be the same as the final pdf of the

connection protocol, and vice-versa. If this condition is broken, the fluctuation

relation will not be satisfied completely and that would be seen in the results of

the detailed fluctuation theorem. We can show that it is indeed satisfied in Figure

5.7.

Figure 5.7: Histogram with the final values of the averaged total entropy
production for the forward (blue) and reverse (green) protocols based on one
million individual realisations. Black lines show both sides of the fluctuation
theorem expression Eq. (3.20), revealing the adherence to the detailed fluctua-

tion theorem.

Figure 5.7 shows the distribution of the stochastic total entropy production at the

end of the dynamics (tmax = 2), for both the forward and reverse protocols. It also

demonstrates a great adherence to the fluctuation relation. It should be noted,

that at the edges of the total entropy pdf, the adherence is less satisfactory due

to lack of sampling.

We have investigated the stochastic entropy production associated with continu-

ous energy measurements, with the system coupled to the environment through all

three Pauli matrices. We begin by using the averaged limit of the SLN equation,

while retaining its general form. Since the realisations of the SLN equation do

not correspond to physical ones, they are mathematical constructs to represent

the environmental interactions. The physical aspect arises when one takes the

stochastic average of the reduced density matrix. As such, we sought to obtain
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a stochastic unravelling from an averaged equation, that could represent contin-

uous measurements. In order to do that, we took the Markovian limit of the

environment, leading to a high temperature approximation. This then allowed us

to obtain a stochastic unravelling, and with it a Fokker-Planck equation, whose

solution was strongly determined by the strength of continuous measurements, γ.

It is then possible to obtain the stochastic entropy production associated with

such measurements, specifically by creating forward and reverse protocols. These

protocols require the system to dynamically evolve from an initial equilibrium

state, to a final one, doing so by the change in the γ parameter. This describes a

continuous measurement, where the measuring device is turned on in the forward

protocol, and switched off in the reverse one. The effects on the pdf, the increasing

of the probability density near the eigenvalues of the measured observable, works

similarly to a projective measurement. It should also be noted, that these results

and procedures occur with an averaged density matrix that remains constant, as

the changing of γ does not change the thermal Gibbs state of the system. We

have also shown that the average entropy production associated with a quantum

measurement is constant and reaches a plateau with the system reaching equi-

librium, while producing a distribution for the stochastic entropy production. In

conclusion, the irreversibility of a quantum measurement adheres to a detailed

fluctuation theorem. This chapter introduces stochastic entropy production, and

in our case it does not vanish even if the averaged density matrix remains constant.

For such a constant averaged density matrix evolution, entropy measures like von

Neumann entropy vanish, indicating an inability to describe such a stochastic sys-

tem. This is even more apparent for our case where the dynamics simulates a pure

system, such that the von Neumann entropy vanishes at an individual stochastic

trajectory level.
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5.3 Chapter Summary

In this chapter, we have investigated the stochastic entropy production associated

with a Markovian two-level system being continuously measured. We began with

the Markovian limit of the SLN equation, along with some approximations to

simplify the system being studied, and allowing for a simpler description of the

pdf of the system as it was undergoing measurement. We have found that the

process of attaching and detaching a continuous measurement device both increase

the total entropy. The asymptotic rate of entropy production vanishes, indicating

that the system evolves towards equilibrium. Meanwhile these processes satisfy a

detailed fluctuation theorem to a very high degree of accuracy.
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Part II

Non-Markovian Quantum

Dynamics
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Chapter 6

ESLN Equation Dynamics

This chapter will be dealing with the numerical implementation of the ESLN equa-

tion, particularly its noise generation. We will apply the ESLN equation to the

time dependent Landau-Zener (LZ) sweep [110], and also to the constant Hamil-

tonian case. The LZ sweep is of particular interest as it possesses an analytical

asymptotic solution which allows us to compare with, and stress the importance

of the correct initial state for getting meaninful asymptotic results [42].

6.1 Spin-Boson Model and Landau-Zener Sweep

We begin with the spin-boson model, a two level system interacting with an envi-

ronment made up of bosonic oscillators. The Hamiltonian of the open system is

given by

Hsys(t) =
1

2
∆σx +

1

2
ϵ(t)σz, (6.1)

where ∆ is the tunnelling strength that determines the probability with which one

state tunnels to the other, and ϵ(t) is the energy bias between the two states. For

this particular setup, we have chosen the system-environment coupling function

f to be given by f =
√
ασz, where α is the coupling strength between the open

system and the environment. While it is customary for the coupling strength to

be attached to the spectral density J(ω), we have chosen not to do it. This will

not alter the results or the understanding of the system dynamics in any way.
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This allows to write Eqs (2.92) and (2.93) as (h̄ = 1):

dρ̃(τ)

dτ
= −

(
Hsys(t0) +

√
αµ(τ)σz

)
ρ̃(τ), (6.2)

dρs(t)

dt
= −i [Hsys(t), ρs(t)] + i

√
αη(t) [σz, ρs(t)] +

i

2

√
αν(t) {σz, ρs(t)} . (6.3)

These two equations define the thermalisation and dynamics for the spin-boson

system. The total system is thermalised using Eq. (6.2) up to τ = β, where β

is the inverse temperature of the environment. The equilibrium state produced

by this thermalisation procedure is then used in Eq. (6.3) to obtain the real time

dynamics. This is the procedure for each realisation of the noises, for averaged

dynamics this must be repeated as many times as possible until a sampled solution

has converged. Eqs. (6.2) and (6.3) are driven by the coloured noises η(t), ν(t),

and µ(τ), which are defined by the following correlations

⟨η(t)η(t′)⟩ =
∫ ∞

0

dω

π
J(ω) coth

(
1

2
βω

)
cos (ω (t− t′)) ≡ Kηη(t− t′), (6.4)

⟨η(t)ν(t′)⟩ = −2iΘ(t− t′)

∫ ∞

0

dω

π
J(ω) sin (ω (t− t′)) ≡ Kην(t− t′), (6.5)

⟨η(t)µ(τ)⟩ = −
∫ ∞

0

dω

π
J(ω)

cosh
(
1
2
βω − iω (t− iτ)

)
sinh

(
1
2
βω
) ≡ Kηµ(t, τ), (6.6)

⟨µ(τ)µ(τ ′)⟩ =
∫ ∞

0

dω

π
J(ω)

[
cosh (ω (τ − τ ′)) coth

(
1

2
βω

)
− sinh (ω (τ − τ ′))

]
≡ Kµµ(τ − τ ′),

(6.7)

⟨ν(t)ν(t′)⟩ = ⟨ν(t)µ(τ)⟩ = 0, ∀t, t′, τ. (6.8)

We will be investigating the behaviour of the ESLN equation for the cases where

ϵ is either constant, or time dependent. For the time dependence of ϵ, we will

be considering the Landau-Zener sweep [110]. The Landau-Zener sweep considers

an isolated, closed quantum system described by a two level system, under the

influence of a time dependent driven Hamiltonian. The particular form of the

time dependence is that of the linear driving of ϵ. More specifically, ϵ(t) = κt
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where κ is the driving strength. Under this driving, there exists an analytical

solution to the asymptotic behaviour of the system, and it can be described by a

survival probability of remaining in the state the system is initialised in. With the

system being initialised in one of its two states in the infinite past, the probability

of remaining in that state into the infinite future is given by

PLZ = e−
π∆2

2κ . (6.9)

This then allows to calculate the asymptotic value of the coherence vector we are

interested in, rz:

⟨rz⟩LZ = 2e−
π∆2

2κ − 1. (6.10)

Eq. (6.10) will play an important role in our results and discussion sections later

on, as we will show that satisfying this asymptotic condition for a reasonable

environmental setup requires certain conditions on the initial state of the system.

We should stress that Eq. (6.10) is obtained with the system being initialised in

the infinite past, i.e. t0 = −∞, but if t0 is finite, then the result from Eq. (6.10)

might not hold exactly, and will be subjected to numerical corrections.

In certain cases, Eqs. (6.9) and (6.10) also hold for a system at zero temperature

and coupling to a harmonic environment. For the case of dephasing dynamics,

where the system is coupled to the environment diagonally, i.e. through σz, Eqs.

(6.9) and (6.10) hold exactly [111, 112]. This is true regardless of the specifics of

the environment. The same does not happen whenever the environment is coupled

off-diagonally to the system, i.e. through σx or σy, as the survival probability in

Eq. (6.9) will be modified according to the specific form of the system-environment

coupling [111, 112]. In fact, the relaxation dynamics induced by the off-diagonal

couplings, σx or σy, lead to modified dynamics that allow for energy to be trans-

ferred to the environment in a different way. The off-diagonal coupling increases

the occupation of the final ground state, by cooling the system to its instantaneous

ground state throughout the driving [111, 112]. Despite these environmental cou-

pling effects, we are only exploring the case of diagonal coupling, through σz, so

that the isolated system is equivalent to the zero temperature bath with respect

to its asymptotic behaviour. Its transient behaviour will differ due to the presence

of the environment.

With a simple introduction to the LZ sweep, we can now move on to the dynamics

themselves. From the Hamiltonian in Eq. (6.1), it is possible to obtain the SDEs
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that drive the dynamics in terms of the individual coherence vector components

ri(t) = Tr (σiρs(t)). This allows us to deal with a simpler simulation procedure

and to focus immediately on the components we are interested in. The real time

ESLN Eq. (6.3) in the coherent vector representation can be given by the following

set of equations:
drx(t)

dt
= −

[
ϵ(t)− 2

√
αη(t)

]
ry(t) (6.11)

dry(t)

dt
= −∆rz(t) +

[
ϵ(t)− 2

√
αη(t)

]
rx(t) (6.12)

drz(t)

dt
= ∆ry + i

√
αν(t)Trρ(t) (6.13)

dTrρs(t)

dt
= i

√
αν(t)rz(t). (6.14)

As it can be seen from Eq. (6.14), the growth and dynamics of the trace of the

ESLN equation depends on the ν(t) noise, and the possible range of values of the

trace will increase with time. This makes achieving converged results for long

simulation times a very difficult task, hence the need to build optimised noise

generation schemes. We will present a simple scheme in this section, and several

more detailed ones in Chapter 7. Eq. (6.14) displays a significant aspect of the

ESLN and SLN equations, that of individual trajectories not being physically

significant. As the trace moves away from Trρs = 1, the physical meaning of a

single realisation loses its meaning as the density matrix no longer has trace equal

to one, which is a requirement for a physical density matrix. Though, with enough

realisations, the average of the ESLN results will lead to a density matrix with

trace one, indicating a good convergence of results

6.1.1 Noises and choice of spectral density

The noise correlations that drive the ESLN dynamics from Eqs. (6.11)-(6.14) are

those given by the correlations in Eqs. (6.4)-(6.8). As can be seen there, the

expression that is yet to be exactly defined in this section is the spectral density

J(ω). The correlations of the noises require a decaying behaviour as the frequency

ω increases, i.e. the spectral density must be of a particular form such that it goes

to zero as ω becomes large and there are no large ultraviolet contributions to the

noise correlations. As such, we can choose a Drude spectral density [27, 42]:
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J(ω) = ω

[
1 +

(
ω

ωc

)2
]−2

, (6.15)

While ωc is a cut-off frequency that ensures that the spectral density is driven

towards zero for large ω, and is chosen such that ωc ≫ ∆. It is chosen in a way

that it is much larger than the tunnelling frequency, and much larger than the

modes that are relevant for the dynamics of the system [113].

The parameters chosen until now are bare parameters, as it only refers to param-

eters of the open system itself, and do not consider how they might change when

interacting with the environment. When the open system and the environment

are considered together, the tunnelling element will be affected by this interaction,

this is done by an adiabatic approximation where the high frequency modes adapt

instantaneously to the slow tunnelling frequency [113]. This allows to derive a

renormalised tunnelling element [113]:

∆r = ∆

(
∆

ωc

) α
1−α

. (6.16)

The bare tunnelling amplitude is decreased for higher coupling as the displacement

of the bosonic modes of the environment create a drag on the state transition [41].

Eq. (6.16) is obtained from the adiabatic renormalisation scheme that is used to

transform the double well system into a two-level system, i.e. into the spin-boson

system [41]. While this expression for the renormalised tunnelling element will

not enter our dynamics explicitly, it is useful in order to understand some of the

results that might depend on the coupling strength α.

6.2 Noise Generation Scheme

The noises that drive the ESLN equation dynamics have only the correlations as

constraints, defined in Eqs (6.4)-(6.8). This then allows for a reasonable amount

of flexibility in defining the exact form of each of the noises, that means we can

construct several noise generation schemes that all follow the correlations. In this

section, we will be demonstrating one such choice that will be utilised to calculate

the dynamics of the system. Other varied forms of noise generation schemes will

be presented in more detail in Section 7.2.
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6.2.1 Noise orthogonality

The noise generation scheme we will be using for the dynamics of the ESLN equa-

tion relies on decomposing the noises into orthogonal components [42], as such:

η(t) = ηη(t) + ην(t) + ηµ(t), (6.17)

ν(t) = νη(t), (6.18)

µ(τ) = µµ(τ) + µη(τ). (6.19)

This means that each component of the noise is only correlated with one other

component shown in its subscript. For example, ην is only correlated with νη, and

ηη is only correlated with itself, and so on. This can be achieved by writing each

component as a convolution of a function, called a filtering kernel, with a sum of

real valued white noises. The full set of white noises are given by the three sets of

autocorrelations

⟨xi(t)xj(t′)⟩ = δijδ(t− t′), (6.20)

⟨xi(τ)xj(τ ′)⟩ = δijδ(τ − τ ′), (6.21)

⟨xi(t)xj(τ)⟩ = 0 for ∀i, j. (6.22)

The xi(t) white noises are the noises associated with the real time evolution, hence

the time t argument, on the other hand the xi(τ) noises are in imaginary time.

There is no correlation between white noises for real and imaginary time, they are

only correlated with the same type of noise. We can then write the coloured noises

as convolutions of the filtering kernels with the white noises as:

ηη(t) =

∫ ∞

−∞
dt′Gηη(t− t′)x1(t

′), (6.23)
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ην(t) =

∫ ∞

−∞
dt′Gην(t− t′) [x2(t

′) + ix3(t
′)] , (6.24)

ηµ(t) =

∫ β

0

dτGηµ(t, τ) [x2(τ) + ix3(τ)] , (6.25)

νη(t) =

∫ ∞

−∞
dt′Gνη(t− t′) [x3(t

′) + ix2(t
′)] , (6.26)

µµ(τ) =

∫ β

−β

dτ ′Gµµ(τ − τ ′)x1(τ
′), (6.27)

µη(τ) =

∫ β

0

dτ ′Gµη(τ, τ ′)[x3(τ
′) + ix2(τ

′)]. (6.28)

It should be noted that the imaginary time noises are integrated over the range

of the dynamics, τ ∈ [0, β]. By multiplying the coloured noises with each other

and shifting to Fourier space, we can obtain expressions in terms of the filtering

kernels G̃(ω) in Fourier space, and make decisions on their exact form while still

reproducing the correlations. Starting with the autocorrelation of η(t):

(6.29)

⟨η(t)η(t′)⟩ = Kηη(t− t′)

=

∫ +∞

−∞

∫ +∞

−∞
dt1dt2G

ηη(t− t1)G
ηη(t′ − t2)⟨x1(t)x1(t2)⟩

=

∫ ∞

−∞
dt1G

ηη(t− t1)G
ηη(t′ − t1),

where the delta function correlation of the x1 noises was used, which gives us

Kηη(t− t′) =

∫ ∞

−∞
dt1G

ηη(t− t1)G
ηη(t′ − t1). (6.30)

To transform Eq. (6.30) into Fourier space, we need to introduce our convention

on Fourier transforms:

f(t) =

∫ ∞

−∞

dω

2π
f̃(ω)e−iωt, (6.31)

and

f̃(ω) =

∫ ∞

−∞
dtf(t)eiωt. (6.32)

Continuing with Eq. (6.30), we can write

Kηη(t− t′) =

∫ ∞

−∞
dt1

∫ ∞

−∞

∫ ∞

−∞

dω1

2π

dω2

2π
G̃ηη(ω1)G̃

ηη(ω2)e
−iω1(t−t1)e−iω2(t′−t1),

(6.33)

109



using the delta function identity∫ +∞

−∞
dte−iωt = 2πδ(ω) (6.34)

we can perform the t1 integration over both frequencies ω1 and ω2 to obtain

Kηη(t− t′) =

∫ ∞

−∞

∫ ∞

−∞

dω1

2π

dω2

2π
(2π)δ(ω1+ω2)G̃

ηη(ω1)G̃
ηη(ω2)e

−iω1te−iω2t′ , (6.35)

by performing the ω2 integration, renaming ω1 −→ ω we can write

Kηη(t− t′) =

∫ ∞

−∞

dω

2π
e−iω(t−t′)G̃ηη(ω)G̃ηη(−ω). (6.36)

By using the Fourier transform of Kηη, we can obtain the following expression

relating the filtering kernels and the correlation in Fourier space:

K̃ηη(ω) = G̃ηη(ω)G̃ηη(−ω). (6.37)

Following the same procedure, it is possible to obtain constraints on the other

filtering kernels:

K̃ην = 2iG̃ην(ω)G̃νη(−ω), (6.38)

and

Kνµ(t− iτ) = 2i

∫ β

0

dτ ′Gηµ(t, τ
′)Gµη(τ, τ

′), (6.39)

where for Kηµ it is not possible to obtain a simple expression in Fourier space due

to it not being stationary. With these constraints we are now able to decide on

the exact form of the filtering kernels as they are not exactly specified allowing

us to make choices on how to optimise the noise generation scheme. Similarly

to the construction of the noises themselves, the filtering kernels are somewhat

arbitrary as long as the previous constraints are satisfied. In this section, we will

be exploring the noise generation scheme where we allow Gην and Gνη kernels to be

equal to each other, which we will name the like scheme [42]. It is also convenient

to choose Gµη(τ, τ ′) = δ(τ − τ ′). These choices lead to the following set of filtering

kernels:

G̃ηη(ω) =

√
K̃ηη(ω), (6.40)
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Gηµ(t, τ) = − i

2
K̃ηµ(t− iτ), (6.41)

G̃ην(ω) = G̃νη (−ω) =
√

− i

2
K̃ην(ω) (6.42)

G̃µµ(ω) =

√
K̃µµ(ω). (6.43)

These filtering kernels are simply one possible choice of many. There exist other

schemes, which can diminish the divergence of the trace, and we will present them

in Section 7.2. On the numerical aspect of the implementation of these noises,

Gηµ(t, τ) is the only filter that is generated in time, while all others are generated

in Fourier space. From the filter in Fourier space, we are able to convolve it with

the white noises in Fourier space, and then perform an inverse Fourier transform

to obtain the coloured noise in real time.

6.2.2 Variance reduction technique

The choice of the number of white noises and filtering kernels in Section 6.2.1 is

completely arbitrary as long as the correlations are satisfied, and therein lies the

freedom in constructing the coloured noises for the ESLN equation. Therefore this

section focuses on some potential optimisations that are allowed when construct-

ing the noises. For the ESLN equation, the behaviour of the trace is crucial in

obtaining well converged physical results, if the trace has not converged exactly

towards one, the results might be considered non-physical. With the growth of

the trace being driven by the complex noise ν(t) noise in Eq. (6.14), optimising

the generation of the noises is crucial. Well optimised noise generation leads to

a smaller amount of realisations required to obtain converged results. Here, we

propose a simple method to reduce the growth of the trace that relies on modifying

the relative magnitudes of the correlated pairs of orthogonal noises. Simply put,

we can multiply ην(t) by some factor and divide νη(t) by that same factor, and this

will still exactly satisfy the correlations. The same can be done for Kηµ and its

orthogonal noise components. To implement such rescaling freedom we introduce

the following rescaling factors:
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aηµ =
√
rηµ

√
1
M

∑M
m=0 |µη(τm)|

argmaxn |ηµ(tn)|
, (6.44)

and

bην =
√
rην

√∑N
n=0 |νη(tn)|∑N
n=0 |ην(tn)|

. (6.45)

Here, we define M = β/dτ and N = tmax/dt as the number of imaginary and real

time steps, respectively, with τm = mdτ and tn = ndt. We can continue to comply

with the correlations if we define the rescaled noises as such:

ηnewµ = aηµηµ, (6.46)

µnew
η = µη/aηµ, (6.47)

ηnewν = bηνην , (6.48)

νnewη = νη/bην . (6.49)

If we multiply the noises together, the correlations will be maintained as expected.

This process is performed after the convolutions, and also after obtaining the initial

set of noises themselves. These rescaling factors rely mostly on the averaged value

of each realisation of the noises, for each realisation the averages of each noise

are computed and are used to rescale the noises themselves, which are then used

in the dynamics. Also, the maximum value of ηµ is used instead of the average

over a realisation unlike with the other noises, the reason for this choice is due

to the behaviour of ηµ which decays quickly with time. This quick decay would

lead to a small magnitude of the average of ηµ, hence taking the maximum value

allows for more stable dynamics. This also allows to control the variance of the

imaginary time dynamics and hence lead to less spread initial values of the real

time dynamics, allowing for the dynamics to be more predicable and more likely

to converge.

We should also note that we could choose for rην to take very large values, severely

reducing the magnitude of ν(t), and theoretically decrease the growth of the trace

according to Eq. (6.14) as its derivative would tend towards zero. Unfortunately,

this does not seem to be the case when it is implemented numerically, as the
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imaginary part of ην grows with the rescaling, leading to difficulties in obtaining

converged results as will be shown in Section 6.3.

6.3 Results

In this section, we will be exploring the noise generation and convergence results,

and then the dynamics associated with the system. We will be showing the results

associated with the thermalisation of the system, its Landau-Zener sweep results,

and the importance of the correct initial state.

6.3.1 Noise generation and convergence

Using the choice of the filtering kernels from Section 6.2.1, it is possible to calculate

the noise correlations over many realisations. As mentioned, the filtering kernels

are obtained in Fourier space initially from the correlations also in Fourier space.

After this, we can multiply them with the noises in Fourier space, and proceed

to perform the inverse Fourier transform to obtain the coloured noises. This

procedure is performed for every noise except for ηµ(t) as it is performed in real

time instead of Fourier space. To verify that this scheme indeed generates the

noises that satisfy the correct correlation relations, we compare in Fig. 6.1 the

numerically calculated correlation functions with the target analytical ones.
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Figure 6.1: Both numerical and analytical correlation functions of the noises,
where the black line corresponds to the respective analytical kernel, while the
orange corresponds to the numerical correlation. These results were obtain from
106 realisations for β = 1, tmax = 6, dt = dτ = 10−3, ωc = 20, and with the
optimal rescaling rην = 0.5 with rηµ = 1. For the cases where the orange
line is not visible, this indicates that the analytical and numerical results align
almost exactly. The correlations not shown here are equal to zero, and the
numerical results also display that. Subfigures given by (a) ηη correlation, (b)
ην correlation, (c) νν auto-correlation, (d) the real part of the ηµ correlation
when τ = 0, with the inset display the imaginary contribution, (e) ηµ correlation

when t = 0, and finally (f) the µµ auto-correlation.

Figure 6.1 shows a very close correspondence between the numerical correlations
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and the analytical ones. This type of convergence allows to confirm the well

optimised nature of the noise generation scheme chosen, and will lead to physical

results.

In Figure 6.2, we show how the trace of the density matrix varies depending on the

value of the rescaling factor rην . By minimising the standard error of the trace,

it will allow us to determine the value of rην that optimises the convergence of

the simulations. It is tempting to choose a very large rην such that the ν(t) goes

to zero, but such a choice would increase the ην(t) noise to a very large extent,

including its imaginary parts which tend to be problematic. This noise magnitude

interplay is shown here:

Figure 6.2: Displaying the standard error of the mean of the trace Trρ(tmax)
at t = tmax, for several values of the rescaling factor rην . For every value of the
rescaling factor rην , 10

4 realisations were performed for the real time dynamics,
for the parameters: β = 1, tmax = 10, dt = dτ = 10−3, ωc = 20, ϵ = ∆ = 0, and
two values of α = 0.05, 0.1. Allows us to visualise the value of rην for which the

trace is minimised, i.e. rην ≈ 1
2 .

As can be observed, very large or very small values of rην are numerically prohibited

as the standard error of the mean of the trace becomes extremely large, and

badly converged. Understanding the behaviour of the trace at larger values of the

coupling strength α allows to pinpoint the optimised value of rην , as can be seen

in this case for both values of α. We can infer that the growth of the trace can be

minimised for rην = 0.5, and that is the value that will be used from here onwards.
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6.3.2 Thermalisation: a constant Hamiltonian test

The main purpose of the ESLN equations is to ensure a correct thermalised initial

state, and from this initial state we can simulate a modified version of the SLN

equation. In theory, this will lead to more accurate dynamics, especially for sys-

tems and parameters for which initial conditions are crucial. As such, it is essential

to determine that the thermalisation procedure in imaginary time is accurate and

precise. That is what we will be demonstrating here, with Figure 6.3. Specifically,

we will demonstrate the asymptotic behaviour of the SLN equation using a time

independent Hamiltonian, Hsys =
1
2
∆+ 1

2
ϵ, for a pure initial state, and also from

the thermal state predicted by the imaginary time ESLN equation. This will be

done for a variety of initial conditions to assert the correctness of the thermal

state.

Figure 6.3: Dynamics of the SLN equation from Eq. (2.103), for different
initial conditions, and for a constant Hamiltonian with ∆ = 1 and ϵ = −1,
and parameters β = 1, dτ = dt = 10−3, α = 0.05 and ωc = 20. a) initial
state corresponds to the thermal state determined by the imaginary time ESLN
equation, b) two sets of initial conditions determined by rx(0) = ry(0) = rz(0) =
0 (dashed coloured lines), and rz(0) = 1, rx(0) = ry(0) = 0 (solid coloured lines).

107 realisations were performed for both figures.

As seen from Figure 6.3, the correct behaviour from the system was obtained as

the system is driven towards its thermal state . It also shows that with the system

being initialised in the ESLN thermal state, it remains there for the rest of its dy-

namics for the constant Hamiltonian, indicating that it is a stable thermal state.

The purpose of these simulations is to demonstrate that the ESLN equation is

able to generalise on the SLN equation while still matching its thermal dynamics.
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This generalisation comes from the ESLN method being able to generate an ap-

propriate initial mixed state in imaginary time dynamics, as well as the additional

correlations between the imaginary and real time noises.

6.3.3 Landau-Zener Sweep

In this section, we will be simulating the dynamics for the ESLN equation for the

Landau-Zener sweep, introduced in Section 6.1. We will begin by understanding

how the numerical results from a system being driven by a Landau-Zener sweep

is affected by the initial state preparation, specifically in the isolated system case,

α = 0. In Figure 6.4, we plot the difference between the numerical spin results

and the analytical Landau-Zener limit from Eq. (6.10), for a range of past initial

times, specifically for −12 ≤ t0 ≤ 0. Here, t0 is the initial time at which the system

is prepared, and as mentioned in Section 6.1, the LZ result from Eq. (6.10) is only

valid for whenever the system is prepared in the infinite past, i.e. t0 = −∞.

Figure 6.4: Deviation of rz from the analytical Landau-Zener limit for an
isolated system (α = 0), for range of time values. Initial state chosen is rz = 1.
The subfigure on the right displays the explicit deviation from the LZ limit of the
dynamics for various values of t0. Other parameters used are dt = dτ = 10−3,

∆ = 1, ϵ(t) = κt with κ = 5.

Figure 6.4 displays the intrinsic divergence from the analytical Landau-Zener limit

arising exclusively from the initialisation of the system. This effect disregards any

type of environment and focuses on an isolated system. It shows that for the

Landau-Zener sweep, the initial state and the value of t0, significantly affects the

asymptotic results. This effect is even more pronounced in the open quantum
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system case, which is what we explore next. Figure 6.4 will also serve as a sort of

calibration where we simulate the nonzero α case, to understand the asymptotic

deviations due to the initial chosen time, so that we can truly focus only on the

deviations due to the temperature or coupling of the system.

In Figures 6.6 and 6.5 we explore the dynamics of the spin-boson being driven

by a Landau-Zener sweep for a range of environmental couplings α between 0.01

and 0.05, and for a variety of inverse temperatures 0.1 < β < 5. It is crucial to

understand this behaviour for a variety of parameters, as the derivation of the

analytical limit of the Landau-Zener sweep was performed for an isolated spin and

zero temperature [110]. In the meantime, it has been shown that this also applies

for a dissipative spin as well [111, 112, 114, 115]. Nevertheless, the limit of Eq.

(6.10) is derived assuming that the system has been initialised in the infinite past

in a pure state rz = 1. The discrepancies arising from the non ideal cases have

been explored using approximate methods [112, 114, 116].

Figure 6.5: Dynamics of ⟨rz⟩ under Landau-Zener driving, i.e. ϵ(t) = κt with
κ = 5. We have indicated the exact analytical and also the modified Landau-
Zener limits (for t0 = −10). Dynamics of ⟨rz⟩ for a range of values of inverse
temperature β ∈ (0.1, 5.0). Other parameters used are dt = dτ = 10−3, ∆ = 1,

ϵ(t) = κt with κ = 5, t0 = 10 and ωc = 20.

The asymptotic behaviour of ⟨rz⟩ differs significantly with temperature as can be

seen in Figure 6.5. Also, the vertical shift from lower coupling to higher coupling

can be attributed to ∆r and is further exemplified in Figure 6.6. We observe

that the temperature dependence on the results is much more complicated and is

not exactly linear, for small β it decreases up to a certain value, then increases

monotonically. In terms of temperature, for medium to low temperatures, 2 >
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T > 0.2 (equivalent to 0.5 < β < 5), ⟨rz⟩ decreases with increasing temperature,

which could indicate a different regime to the high temperature one. For these

intermediate temperatures, it seems to be the case that they are not large enough

to dominate the dynamics of the system, so that state transitions are driven by

the tunnelling rate, which would dominate further at lower temperatures, perhaps

explaining its ⟨rz⟩ increase. For high temperatures, with T between 5 and 10

(0.2 > β > 0.1), the situation changes slightly, as ⟨rz⟩ increases going in the

opposite direction for the rest of the results. In Figure 6.5, the system is driven

from ⟨rz⟩ = 1 towards ⟨rz⟩ = −1 through the usage of the driving factor ϵ(t) = κt.

At very high temperatures, the magnitude of T is of the same order as ϵ(t) through

its whole evolution. This might indicate that the thermal fluctuations are large

enough to allow for the system to transition from the lower energy ⟨rz⟩ = −1 state

to its higher energy ⟨rz⟩ = 1, which would increase its asymptotic value of ⟨rz⟩ as
shown.

Figure 6.6: Asymptotic value of ⟨rz⟩ for several values of the coupling strength
α ∈ (0.01, 0.05) at constant temperature β = 1. We have indicated the exact
analytical and also the modified Landau-Zener limits (for t0 = −10). Other
parameters used are dt = dτ = 10−3, ∆ = 1, ϵ(t) = κt with κ = 5, t0 = 10, and

ωc = 20.

On the other hand, Figure 6.6 allows us to understand how the system when

coupled to a finite temperature bath behaves when its coupling to the bath is

changed. With a stronger coupling, the asymptotic value of ⟨rz⟩ increases. An

explanation for this behaviour can be attributed to the renormalised tunnelling
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element ∆r from Eq. (6.16), as the coupling α increases, ∆r decreases, which in

turn leads to an increasing analytical Landau-Zener limit from Eq. (6.10).

We will finally explore the explicit difference in real time dynamics starting from

two different initial states, the thermal state from ESLN imaginary time dynamics,

or with a pure state rz = 1. These results are presented in Figure 6.7, this explores

exclusively the effect of the initial state using the same SLN (real time) dynamics

for both.

Figure 6.7: Asymptotic value of ⟨rz⟩, obtained from SLN equation dynamics
initialised with rz = 1 (blue), and from dynamics initialised in a thermal state
from ESLN imaginary time thermalisation with ϵ(t0) (red). Displays two dif-
ferent values of t0 to show that a small change in initial condition will shift the
Landau-Zener limit upwards or downwards significantly, with the specific limits
shown with black lines. The average of rz for the region 9 ≤ t ≤ 10 was used
in this figure. Other parameters used include dt = dτ = 10−3, β = 1, ∆ = 1,

ϵ(t) = κt with κ = 5, ωc = 20, α = 0.01, performed over 106 realisations.

Figure 6.7 can be seen as an attempt to circumvent the issues with the initial

state when a pure state is chosen. Both initial state setups were chosen to begin

from the same initial simulation time, but the initial equilibrium state from the

ESLN imaginary time dynamics ρ(t0) = ρ̄(β) associated with ϵ(t0), leads to the

correct asymptotic state. This occurs due to the fact that the ESLN initial state

already carries information that is equivalent to the pure state that is initialised

in the infinite past. This allows to deal with the finiteness of the simulation time

120



by simply choosing a correctly initialised state, that is less prone to small changes

in the system.

6.4 Chapter Summary

In this chapter we have investigated the dynamics of the ESLN equation for both

time dependent and independent Hamiltonians. We have presented a noise gen-

eration scheme, along with a variance reduction technique that allows for better

convergence of the results. We have also shown the importance of the correct

initial state that is provided by the ESLN thermalisation, when it comes to repro-

ducing the correct asymptotic analytical results. This was applied to the Landau-

Zener asymptotic results with great accuracy, by demonstrating that to match

the Landau-Zener analytical results it is necessary to initialise the state using the

imaginary dynamics of the ESLN method.
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Chapter 7

Optimisation of Coloured Noise

Generation

This chapter is focused on the generation of coloured noise for the SLN equation

[95]. Unlike Chapter 6 that focuses on the ESLN dynamics, initial state prepara-

tion, and physical results, here we will focus exclusively on the efficient generation

of the noises that drive the system. To do so, we will be considering the SLN

equation, that is initialised by a product state between the environment and the

open system.

7.1 Setup

The system being used for this investigation is the same one from Chapter 6, the

spin-boson system given by the Hamiltonian

Hsys(t) =
1

2
∆σx +

1

2
ϵ(t)σz. (7.1)

The system-environment coupling also remains the same, it is coupled through

the σz Pauli matrix, i.e f =
√
ασz. We will keep ϵ(t) general and allowed to

depend on time. The equations being modelled here are those of the SLN equation,

specifically Eqs. (2.103), and the correlations (2.104) and (2.105), and is described

by the stochastic density matrix ρs:

dρs(t)

dt
= −i [Hsys, ρs(t)] + i

√
αη(t) [σz, ρs(t)] +

i

2

√
αν(t) {σz, ρs(t)} , (7.2)
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with the same correlations

(7.3)⟨η(t)η(t′)⟩ =
∫ ∞

0

dω

π
J(ω) coth

(
1

2
βω

)
cos (ω (t− t′))

≡ Kηη(t− t′),

(7.4)⟨η(t)ν(t′)⟩ = −2iΘ(t− t′)

∫ ∞

0

dω

π
J(ω) sin (ω (t− t′))

≡ Kην(t− t′)

= iR(t− t′).

As with Chapter 6, a Drude spectral density is also used,

J(ω) = ω

[
1 +

(
ω

ωc

)2
]−2

. (7.5)

7.2 Noise Schemes and Choice of Kernels

As shown in Section 6.2, there exists a freedom in defining the noises, as the

correlations from Eqs. (7.3) and (7.4) do not fully constrain them. Therefore,

we will be presenting different possible noise generation schemes, how they are

exactly constructed, their drawbacks, and considerations needed to implement

them in an efficient way. We will be investigating the convergence of several

coloured noise generation schemes, with the intent of minimising the number of

realisations required to obtain the trace of the averaged density matrix sufficiently

close to one, and minimising the growth of the trace of the stochastic density

matrix. These are the main factors that allow us to determine the convergence of

the different noise generation schemes. We can use the general form of the linear

filtering ansatz [117]:

η (t) =

∫ ∞

−∞
dt′
∑
j

Fjfj (t− t′)xj (t
′) (7.6)

ν (t) =

∫ ∞

−∞
dt′
∑
j

Gjgj (t− t′)xj (t
′) , (7.7)
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where the {fj} and {gj} are the filtering kernels, and are real functions of time.

Also, Fj and Gj are equal to 0 or 1, which simply determine which filters should

be included for a particular noise. Finally, xj are real valued Gaussian noises only

correlated with themselves, i.e. they are white noises.

The noise decomposition from Eqs. (7.6) and (7.7) is quite beneficial as it allows

for a wide choice in constructing the noises, including decomposing each noise into

orthogonal components that are only correlated with one other component [42].

A specific form that allows for such noise component orthogonality can be given

by

η(t) =

∫ ∞

−∞
dt′f1(t− t′)x1(t

′) +

∫ ∞

−∞
dt′f2 (t− t′) [x2 (t

′) + ix3 (t
′)] (7.8)

ν(t) =

∫ ∞

−∞
dt′g1 (t− t′) [ix1 (t

′) + x4 (t
′)]+

∫ ∞

−∞
dt′g2(t−t′) [x3(t′) + ix2(t

′)] . (7.9)

While we can add extra terms to this pair of noises, we have chosen only two

filtering kernels each as this choice allows to describe most noise construction

schemes while keeping it fairly simple. Multiplying a filtering kernel with two

white noises and with one of them having the imaginary number i as a pre-factor,

allows for that noise component to have a vanishing autocorrelation, which is very

useful for the ν(t) noise that has zero autocorrelation. This ensures that only

one of the four filtering kernels, f1 contributes to the autocorrelative part of η(t).

Furthermore, the orthogonality of this construction is such that the appropriate

filtering kernel is only correlated with at most one other kernel. For example, f2 is

only correlated to g2 through the x2 and x3 noises. By following the construction

of the correlations and filtering kernels in Fourier space from Section 6.2, it is

possible to obtain relationships between the filtering kernels here as well. Starting

with the autocorrelation of η(t), ⟨η(t)η(t′)⟩ = Kηη(t− t′), and the product of the

f1(t− t′) filtering kernel, we can write the following relation in Fourier space:

K̃ηη(ω) = f̃1(ω)f̃1(−ω) (7.10)

For any real function f(t), its Fourier transform follows the relation f̃ ∗(ω) =

f̃(−ω), since Kηη(t) is also real and even, we can choose for f1(t) to also be real,

and finally write f̃1(ω)f̃1(−ω) = f̃1(ω)
2. This allows to obtain the relation for f̃1
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f̃1(ω) =

√
K̃ηη(ω). (7.11)

Eq. (7.11) is a necessary condition for the orthogonal noise scheme, and will be

used for every scheme that relies on this orthogonal noise component. A further

constraint on K̃ηη(ω) arises from the form of Kηη(t), as Kηη(t) is an even function

in time, i.e. Kηη(t) = Kηη(−t) as can be easily deduced from Eq. (7.3) since

the time dependence is only present within the cosine term which is even in time.

This means that K̃ηη(ω) is real and devoid of an imaginary part, ensuring that

f1(ω) is real. We can also obtain a condition on the g̃1, f̃2, and g̃2 filters through

the ⟨η(t)ν(t′)⟩ correlation. The condition on the Fourier transforms of these three

filters is given by

f̃1(ω)g̃1(−ω) + 2f̃2(ω)g̃2(−ω) = R̃(ω), (7.12)

where R̃(ω) is the Fourier transform of R(t) = −iKην(t) from Eq. (7.4).

Eq. (7.12) is the remaining constraint on the noises, but it is quite a general one

which still contains a freedom in defining these filters, which is what we will be

exploring next. In order to construct some of the noise generation schemes, we

will have to obtain expressions in Fourier space for ⟨|η(t)|2⟩ and ⟨|ν(t)|2⟩. The

expressions for ⟨|η(t)|2⟩ and ⟨|ν(t)|2⟩ can be obtained in the same way as Eq.

(6.37). Nevertheless, we will derive these two correlations as they contain the

complex conjugate of the noises which adds different contributions to the final

expression. Beginning with ⟨|ν(t)|2⟩, we can write

⟨|ν(t)|2⟩ =
∫ +∞

−∞

∫ +∞

−∞
dt1dt2g1(t− t1)g

∗
1(t− t2)⟨(ix1(t1) + x4(t1)(−ix1(t2) + x4(t2))⟩

+

∫ +∞

−∞

∫ +∞

−∞
dt1dt2g2(t− t1)g

∗
2(t− t2)⟨(ix2(t1) + x3(t1)(−ix2(t2) + x3(t2))⟩,

(7.13)

by using the delta correlation of the noises, and integrating over t2 we can obtain

(7.14)⟨|ν(t)|2⟩ = 2

∫ +∞

−∞
dt1 (g1(t− t1)g

∗
1(t− t1) + g2(t− t1)g

∗
2(t− t1)) .

Using the Fourier transform of the g1(t) filtering kernel:
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g1(t) =

∫ +∞

−∞

dω

2π
e−iωtg1(ω), (7.15)

and likewise for g2(t), we can write

(7.16)⟨|ν(t)|2⟩ = 2

∫ +∞

−∞
dω

∫ +∞

−∞
dt1

(
e−iω(t−t1)eiω

′(t−t1)g1(ω)g
∗
1(ω

′)

+ e−iω(t−t1)eiω
′(t−t1)g2(ω)g

∗
2(ω

′)
)
.

By integrating over t1, we get the delta function δ(ω − ω′), so that we can finally

obtain

(7.17)⟨|ν(t)|2⟩ = 2

∫ +∞

−∞
dω
(
|g1(ω)|2 + |g2(ω)|2

)
.

Following the same procedure, we can obtain the following expression for ⟨|η(t)|2⟩:

⟨|η(t)|2⟩ =
∫
dω

2π

(
|f1(ω)|2 + 2|f2(ω)|2

)
. (7.18)

In Section 7.2.1 we will present several different noise generation schemes.

7.2.1 Delta scheme

The delta scheme takes its name by allowing one of the f2(t) or g2(t) filters to

be equal to the delta function, such that Eq. (7.12) is satisfied. In practice this

condition and the delta function choice also forces us to choose a value for g1(t),

which we will choose to be zero,

g1(t) = 0. (7.19)

We will also choose for the time dependence to fully reside in the f2(t) filter:

f2(t) = − i

2
Kην(t) (7.20)

g2(t) = δ(t). (7.21)

It would not matter if this choice was reversed. A delta function in time corre-

sponds to the identity in Fourier space, which allows for Eq. (7.12) to be satisfied.
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7.2.2 Like scheme

The like scheme is fairly similar to the delta scheme in that g1 is set to zero in

both schemes. This places a condition on f̃2 and g̃2: where we previously set one

of them to the delta function, here we will allow for them to be equal to each

other. Eq (7.12) becomes

f̃2(ω)g̃2(−ω) =
1

2
R̃(ω). (7.22)

For f̃2(ω) and g̃2(ω), we have the freedom to choose that they are equal each other,

i.e. requiring that f̃2(ω) = g̃2(−ω) to obtain

f̃2(ω) =

√
1

2
R̃(ω) =

√
− i

2
K̃ην(ω). (7.23)

To be explicit, the expression for g̃2(−ω) is straightforwardly given by the inversion

of ω:

g̃2(−ω) =
√

1

2
R̃(−ω) =

√
− i

2
K̃ην(−ω). (7.24)

7.2.3 Constrained scheme

The constrained scheme sets f̃2(ω) = g̃2(ω) = 0 and was first proposed in [118], it

uniquely constrains the choice of g̃1 to be

g̃1(ω) =
R̃(−ω)√
K̃ηη(ω)

. (7.25)

It is referred to as constrained as the f̃2 and g̃2(ω) filters are completely constrained

and set to zero, the correlations are entirely fulfilled by the f1 and g1 filters.

7.2.4 Reduced scheme

Any combination of different noise schemes is allowed as long as the correlations

of the noises are respected. An attempt to combine different noise generation

schemes is presented in [118], but we will be presenting a more general form of it

using a set of filters f̃1, f̃2, g̃1, and g̃2 via an auxiliary function A(ω) that can be
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chosen to minimise or maximise desired quantities. This scheme has filters that

take the form

f̃1(ω) =

√
K̃ηη(ω) (7.26)

f̃2(ω) =

√
1

2
Ã(ω)R̃(ω) (7.27)

g̃1(ω) =
R̃(−ω)√
K̃ηη(ω)

[
1− Ã(−ω)

]
(7.28)

g̃2(ω) =

√
1

2
Ã(−ω)R̃(−ω). (7.29)

The auxiliary function A(ω) controls the form of the noise generation scheme,

allowed to take the values between 0 and 1, i.e. A(ω) ∈ [0, 1]. The special

cases of Ã(ω) = 0 and Ã(ω) = 1 correspond to the constrained and like schemes,

respectively. And the scheme satisfies the correlations in its current form. From

Eq. (6.14) it can be noted that the growth of the trace depends on the ν(t) noise,

and as such it would make sense to try to minimise the magnitude of ν(t) and

reduce the exponential trace growth that strains the numerical simulations. The

mean square of |ν(t)| can be given by inserting Eqs. (7.26)-(7.29) into Eq. (7.17):

⟨|ν(t)|2⟩ =
∫
dω

2π

(
2
|R̃(−ω)|2

K̃ηη(ω)
|1− Ã(−ω)|2 + |R̃(−ω)||Ã(−ω)|

)
. (7.30)

From this expression, we can choose values of A(ω) that are suitable, and allow

to diminish the magnitude of ν(t). This can be easily done by requiring

Ã(ω) =

 0, when 2|R̃(−ω)|2/K̃ηη(ω) ≤ |R̃(−ω)|

1, otherwise.
(7.31)

This choice of A(ω) is done at each individual ω, in an attempt to reduce the

magnitude of ν(t) at every value of ω. Essentially, it allows to keep smallest of

the two terms at every value of ω. In practice, this can easily be accomplished as

the range of ω values is discrete in numerical simulations. This has the drawback

however of being very particular and not being a continuous function. Neverthe-

less, in theory this should reduce the impact of the growth of the trace, and its

implementation will be expanded upon in Section 7.3.
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7.2.5 ν Optimised scheme

This noise scheme is going to be built upon minimising the magnitude of the

|ν(t)| correlation from Eq. (7.18). This can be done by taking its derivative with

respect to the mixing function A(ω). The form of the filtering kernels being used

to minimise the magnitude of the ν(t) noise is that from Eqs. (7.26)-(7.29).

In order to take the derivative with respect to A(ω), it is necessary to determine

how it, and the Fourier space filtering kernels transform under inversion of ω, more

specifically if they are even or odd. Before calculating the derivatives, we need to

define some of the Fourier transform properties of real and imaginary functions. If

a general function s(t) is real, i.e. s(t) = s∗(t), it then has the Fourier transform

that follows s̃∗(ω) = s̃(−ω), and s̃(ω) = s̃1(ω)+is̃2(ω), where s̃
∗
1(ω) = s̃1(−ω) is an

even function, while s̃∗2(ω) = −s̃2(−ω) is an odd function. The properties of Ã(ω)

can be obtained from the constraint placed upon g̃1(ω) from Eq. (7.28), with R(t)

being a real function with the Fourier transform R̃∗(ω) = R̃(−ω). The constraint

on g̃1(ω) stems from g1(t) being a real function, such that g̃∗1(ω) = g̃1(−ω), so that

we can explicitly write:

R̃∗(−ω)√
K̃ηη(ω)

∗

[
1− Ã∗(−ω)

]
=

R̃(ω)√
K̃ηη(−ω)

[
1− Ã(ω)

]
(7.32)

By using the fact that K̃ηη(ω) is real, and that R̃∗(ω) = R̃(−ω), we can simplify

the equation to

R̃(ω)√
K̃ηη(ω)

[
1− Ã∗(−ω)

]
=

R̃(ω)√
K̃ηη(ω)

[
1− Ã(ω)

]
(7.33)

which leads to Ã∗(ω) = Ã(−ω). This indicates that if Ã(ω) = Ã1(ω)+iÃ2(ω) then

Ã1(ω) is an even function, while Ã2(ω) is an odd function. By determining these

properties of Ã(ω), we can now calculate the derivative of Eq. (7.30) to obtain

the expression for Ã(ω) that diminishes the magnitude of the ν(t) noise. We will

be taking the derivative of Eq. (7.30) with respect to Ã(−ω):

d⟨|ν(t)|2⟩
dÃ(−ω)

=

∫
dω

2π

(
2
|R̃(−ω)|2

K̃ηη(ω)

d

dÃ(−ω)
|1−Ã(−ω)|2+|R̃(−ω)| d

dÃ(−ω)
|Ã(−ω)|

)
.

(7.34)
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To proceed we need to note the form of the derivative of a function containing

absolute values, for a function y = |b(x)| we can write the following derivative

with respect to x:

dy

dx
=

b(x)

|b(x)|
db(x)

dx
, (7.35)

which for our case means we can write the following expressions for the two terms

with derivatives of Ã(−ω)

(7.36)

d|1− Ã(−ω)|2

dÃ(−ω)
= 2|1− Ã(−ω)|d|1− Ã(−ω)|

dÃ(−ω)

= 2|1− Ã(−ω)| Ã(−ω)− 1

|1− Ã(−ω)|
= 2

(
Ã(−ω)− 1

)
,

and

d|Ã(−ω)|
dÃ(−ω)

=
Ã(−ω)
|Ã(−ω)|

. (7.37)

Inserting these expressions into Eq. (7.34), we get

(7.38)
d⟨|ν(t)|2⟩
dÃ(−ω)

=

∫
dω

2π

(
2
|R̃(−ω)|2

K̃ηη(ω)
2
(
Ã(−ω)− 1

)
+ |R̃(−ω)| Ã(−ω)

|Ã(−ω)|

)
.

Next we require this to be equal to zero, allowing us to write

4
|R̃(−ω)|2

K̃ηη(ω)

(
Ã(−ω)− 1

)
+ |R̃(−ω)| Ã(−ω)

|Ã(−ω)|
= 0 (7.39)

denoting sign
(
Ã(−ω)

)
= Ã(−ω)

|Ã(−ω)| , we obtain an expression for Ã(−ω)

Ã(−ω) = 1− sign
(
Ã(−ω)

) K̃ηη(ω)

4|R̃(−ω)|
, (7.40)

and likewise for Ã(ω)
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Ã(ω) = 1− sign
(
Ã(ω)

) K̃ηη(ω)

4|R̃(ω)|
. (7.41)

We know that K̃ηη(ω)/|R̃(ω)| > 0, and we now need to determine the sign of

Ã(ω). From Eq. (7.41), we can observe that if we assume sign
(
Ã(ω)

)
= −1,

then Ã(ω) > 0 since K̃ηη(ω)/|R̃(ω)| > 0. This is obviously contradictory so

that the only other option is that Ã(ω) > 0, which is allowed to occur when

K̃ηη(ω)/4|R̃(ω)| < 1. Therefore Ã(ω) > 0, and

Ã(ω) = 1− K̃ηη(ω)

4|R̃(ω)|
. (7.42)

With this expression for Ã(ω) we can obtain the following filtering kernels:

f̃1(ω) =

√
K̃ηη(ω) (7.43)

f̃2(ω) =

√√√√R̃(ω)

2

(
1− ζ

K̃ηη (ω)

|R̃ (ω)|

)
(7.44)

g̃1(ω) = ζ
R̃ (−ω)
|R̃ (ω)|

√
K̃ηη(ω) (7.45)

g̃2(ω) =

√√√√R̃(−ω)
2

(
1− ζ

K̃ηη (ω)

|R̃ (ω)|

)
(7.46)

with ζ = 1/4.

7.2.6 ην Optimised scheme

For this noise generation scheme, we will follow the same procedure as for the ν

optimised noise scheme, but we will instead minimise the sum of correlations of

the magnitudes of both η(t) and ν(t) noises. The expression we will be minimising

is

(7.47)⟨|η(t)|2⟩+ ⟨|ν(t)|2⟩=
∫ +∞

−∞
dω
(
|f1(ω)|2+2|f2(ω)|2+2|g1(ω)|2+2|g2(ω)|2

)
,

or in explicit form,
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(7.48)
⟨|η(t)|2⟩+ ⟨|ν(t)|2⟩ =

∫ +∞

−∞
dω

(
K̃ηη(ω) + 2

|R̃(−ω)|2

K̃ηη(ω)
|1− Ã(−ω)|2

+ 2|R̃(−ω)||Ã(−ω)|

)
.

This finally leads to the form of Ã(ω), very similar to the ν-optimised case:

Ã(ω) = 1− K̃ηη(ω)

2|R̃(ω)|
. (7.49)

The filtering kernels are the same as with the ν case, but with ζ = 1/2:

f̃1(ω) =

√
K̃ηη(ω) (7.50)

f̃2(ω) =

√√√√R̃(ω)

2

(
1− ζ

K̃ηη (ω)

|R̃ (ω)|

)
(7.51)

g̃1(ω) = ζ
R̃ (−ω)
|R̃ (ω)|

√
K̃ηη(ω) (7.52)

g̃2(ω) =

√√√√R̃(−ω)
2

(
1− ζ

K̃ηη (ω)

|R̃ (ω)|

)
. (7.53)

It is important to note that minimising the sum of the magnitudes of the noises

does not immediately imply that the variance of the trace of the density matrix

will also be minimised. This is due it not being possible to analytically minimise

the growth of the trace. So the minimisation of the growth of the trace is done

indirectly by minimising certain properties of the noises and hoping that the trace

is actually minimised. Therefore, it is crucial to actually implement these noise

schemes, and understand their actual behaviour.

7.2.7 Convex scheme

We will be presenting the form of the last noise generation scheme that is inves-

tigated in this section. It is also possible to optimise the noise generation scheme

in a different manner using the general form of the noises in Eqs. (7.6) and (7.7),
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without an explicit mixing function, by instead minimising the imaginary parts

of η and ν via the method of convex optimisation [119]. We find that it is pos-

sible to reproduce the analytical results in [119] by utilising the following noises

decompositions:

η(t) =

∫ ∞

−∞
dt′f1 (t− t′)x1 (t

′) + i

∫ ∞

−∞
dt′f2 (t− t′)x2 (t

′) , (7.54)

and

ν (t) =

∫ ∞

−∞
dt′g1 (t− t′) [ix1 (t

′) + x2 (t
′)] , (7.55)

which varies slightly from our construction in Eqs. (7.6) and (7.7). Nevertheless,

in Fourier space we can write the filtering kernels as

f̃1(ω) =
1− C̃(ω)√
1− 2C̃(ω)

√
K̃ηη(ω) (7.56)

f̃2(ω) =
C̃(ω)√

1− 2C̃(ω)

√
K̃ηη(ω) (7.57)

g̃1(ω) =

√
1− 2C̃(ω)

R̃(−ω)√
K̃ηη (ω)

, (7.58)

where

C̃(ω) =
1

2

1−
4

∣∣∣R̃(ω)∣∣∣2
K̃ηη(ω)2

+ 1


−1/2

 . (7.59)

7.3 Noise Scheme Implementations

Despite the fairly simple form of most of these noise generation schemes, their

implementation can at times be troublesome. That will be the focus of this section,

the actual implementation of some of these noises and the issues that arise.
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7.3.1 Dynamical rescaling

Similar to Section 6.2.2, where we introduced a dynamical rescaling technique to

minimise the growth of the trace for ESLN equation, we will be doing the same

but for the SLN equation in this case. This dynamical rescaling is based on the

freedom to multiply or divide the noises by a factor while still allowing for the

correlations to be satisfied. For example, from Eqs. (7.6) and (7.7), if we divide

f2(t) by a factor, and multiply g2(t) by the same factor, or vice-versa, we are able

to satisfy the Kην(t) correlation. This technique should in theory diminish the

growth of the trace Trρs(t), and we will verify this assertion numerically. The way

this rescaling is going to be implemented is the same as the bην rescaling in Section

6.2.2, but with slightly different notation to differentiate it from the ESLN case.

This dynamical rescaling is going to be applied at the level of the filtering kernels,

particularly f2(t) and g2(t), and we will denote the original f2(t) and g2(t) without

any rescaling, as f orig
2 (t) and gorig2 (t). The new scaled filtering kernels are then

written as

fnew
2 (t) = λνηf

orig
2 (t), gnew2 (t) = gorig2 (t)/λνη, (7.60)

where we have defined

λνη =
√
λ

√∑
n|g

orig
2 (tn)|∑

n|f
orig
2 (tn)|

, (7.61)

and where λ represents the desired ratio between the two filtering kernels fnew
2 and

gnew2 . The sums within the square roots are performed over a single realisation,

and so is the rescaling.

7.3.2 Delta scheme and unphysical results

The delta noise scheme from Section 7.2.1 might seem like an intuitive way of

constructing the kernels and noises, especially if that means that the ν(t) noise

becomes purely a white noise, removing its memory and potentially easing the

growth of the trace from Eq. (6.14). Nevertheless, we will show that the ease of

constructing this scheme leads to severe downsides on the physical results of the

simulation. Heuristically, it would make sense that if a noise generation scheme
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satisfies the correlation after many realisations, it would lead to physical and

acceptable results, but we will show that is not necessarily the case. Here, for the

delta noise scheme, we will be utilising the dynamical rescaling from Eq. (7.61), as

such we will need to determine computationally the optimal value that diminishes

the growth of the trace, i.e. the value of λνη that leads to the smallest variance of

the trace. We show this in Figure 7.1.

Figure 7.1: Variance of Trρs at tfinal for several different values of
the rescaling λνη. For every rescaling value, 105 runs for real time
dynamics were simulated, for β = 0.1, tmax = 6, dt = dτ = 10−3,

ωc = 25, ϵ = ∆ = 0.

We can infer that the value of λην that minimises the variance of Trρs(tfinal) is

approximately λνη ≈ 5. It also shows that at higher coupling the rescaling factor

becomes increasingly important on the convergence of results, as for a very large

variance the results will not be well converged. Therefore, this numerical procedure

should lead to better converged results.

We must now show that the delta scheme satisfies the correlations using the dy-

namical rescaling of λνη, and we show this in Figure 7.2:
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Figure 7.2: Correlations for the ν and η noises for β = 1, dt = 103, wc =
25 and α = 0.05. a) ⟨η(t)η(t′)⟩ correlation, b) ⟨η(t)ν(t′)⟩ correlation and c)
⟨ν(t)ν(t′)⟩ correlation. The rescaling used was the optimal value, λην = 5.

These correlations were calculated for 3× 106 runs.

As seen in Figure 7.2, all three correlations are very well satisfied, which would

mean the dynamics should be well converged and correct. The optimal value of

the rescaling used in Figure 7.2 is λνη = 5.

The delta noise generation scheme, with a rescaling factor, fulfills the correlations

to a very strong accuracy, which indicates that we should be able to obtain physical

results from its simulations. The dynamics of the averaged spin component ⟨rz⟩ =
Tr(σzρ̄) is shown in Figure 7.3.
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Figure 7.3: Dynamics of ⟨rz⟩, for ∆ = 1, ϵ = −1, α = 0.01, λνη = 5
and β = 1 for 3 × 106 runs. The black straight line represents the

thermal and asymptotic state.

In Fig 7.3, we have simulated SLN dynamics starting from the ⟨rz⟩ = 1 initial

state, for ϵ = −1, and ∆ = 1. From the ESLN results in Section 6.3, we see the

⟨rz⟩ component being driven towards its equilibrium value, so we would expect

the same to happen for this case. The thermal state corresponds to a non-zero

value of ⟨rz⟩, and we should see it decay towards that value in a finite amount

of time, certainly before the end of our simulations at tfinal = 30. Unfortunately,

the system goes straight past its equilibrium state and continues decaying towards

⟨rz⟩ = 0. This leads us to believe that the delta noise generation scheme with

λνη = 5 does not lead to physical results. This shows that despite satisfying the

correlations to a high degree, the choice of noise generation scheme can still lead

to incorrect results if not properly understood.

7.3.3 Deconvolution for reduced and constrained schemes

The construction of the noises is based on convolutions that can be defined by

products in Fourier space. A product in Fourier space is all that is required for

some of the noise generation schemes, but for others, a division in Fourier space

is required. We find this to be the case for the reduced, constrained, and convex

noise schemes. The ν and ην optimised schemes only include division in Fourier

space with R̃/|R̃|, which just leads to obtaining the sign of R̃, so there is no real

division there. Also, for the convex noise scheme, we can also find that the factor
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C̃(ω) actually removes explicit divisions by single Fourier transforms, i.e. that

it only involves divisions by 4
∣∣∣R̃(ω)∣∣∣2 + K̃ηη(ω)

2. The reason this is relevant is

that division in Fourier space can introduce numerical issues due to amplifying

frequencies near which the denominator is close to zero [120, 121], in our case

division by the
√
K̃ηη (ω) filter kernel. In this section, we will show how this

affects the reduced, and the constrained noise schemes, and possible ways to deal

with it.

The main issue is the frequency amplification whenever
√
K̃ηη (ω) is close to zero,

and this can be ameliorated by using deconvolution methods. As mentioned,

deconvolution is the opposite of a convolution, and it can be understood as division

in Fourier space. Even though the filtering kernels we are using for the noise

generation schemes are deterministic functions, there are still issues arising from

numerical instabilities when we take the inverse Fourier transform to obtain the

deconvolved signal (coloured noise) [121, 122]. Two main factors that determine

the Fourier transform of a function, are the length of time of that function tmax,

and the spacing ∆t, as these affect the sensitivity and granularity of the numerical

implementation of the Fourier transform.

To deal with this, we will be using the Wiener filtering deconvolution method

[123]. This method relies on deriving an analytical expression that is obtained

by minimising the mean square error between the desired function q(t), and its

estimate q̂(t). This function q(t) is being convolved with some response function

h(t) to obtain a signal y(t), and we intend to deconvolve it to obtain the explicit

form of q(t). We can display this through the following expression:

y(t) =

∫
dt′ h (t− t′) q (t′) + ξ(t), (7.62)

where ξ(t) is some unknown noise uncorrelated with q(t). We can denote the

Fourier transforms of h(t), q(t), and ξ(t) as H(ω), Q(ω), and N(ω), respectively.

The estimate of the q(t) function in the time domain is given by

q̂(t) =

∫
dt′ w (t− t′) y (t′) , (7.63)

where we have introduced an approximate inverse w(t) to the response function

h(t), i.e. w(t) ∼ h−1(t). In Fourier space, we can write this as
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Q̃(ω) = W̃ (ω)Ỹ (ω). (7.64)

The derivation of the Wiener filter relies on minimising the mean square error for

every value of the frequency ω:

MSE = E|q(t)− q′(t)|2 (7.65)

Using Parseval’s theorem we can write Eq. (7.65) in Fourier space as

(7.66)MSE = E|Q̃(ω)− Q̃′(ω)|2.

We can insert Eq. (7.64) into Eq. (7.66), and proceed with the algebra to obtain

(7.67)MSE = E|Q̃(ω)− W̃ (ω)Ỹ (ω)|2

= E
[(
Q̃(ω)− W̃ (ω)Ỹ (ω)

)(
Q̃(ω)− W̃ (ω)Ỹ (ω)

)∗]
,

and since we want to find an expression for W (ω) that minimises the mean square

error, we can take its derivative with respect to W (ω):

(7.68)
∂

∂W (ω)
MSE = E

[
−Ỹ (ω)

(
Q̃(ω)− W̃ (ω)Ỹ (ω)

)∗]
.

Substituting Y (ω) = H(ω)Q(ω) +N(ω), and |Y (ω)|2 = |H(ω)|2|Q(ω)|2 + |N(ω)|2

into the equation, and assuming that Q(ω) and N(ω) are independent from each

other, we obtain

(7.69)∂

∂W (ω)
MSE = E

[
−H(ω)|Q(ω)|2 + W̃ ∗(ω)

(
|H(ω)|2|Q(ω)|2 + |N(ω)|2

)]
= 0,

which allows us to rearrange the equation, and obtain

W̃ (ω) =
H̃∗(ω)∣∣∣H̃(ω)
∣∣∣2 + 1

SNR

, (7.70)
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where W̃ (ω) is the Fourier transform of the inverse response function w(t), that

is commonly known as the Wiener filter. We also have the signal to noise ratio

(SNR)

SNR =
|Q(ω)|2

|N(ω)|2
(7.71)

which is the ratio between the power spectral densities of the signal and the noise.

The Wiener filter is often used as an estimate of the original inverse filter, but it

helps resolve numerical issues that arise with the inverse Fourier transform, and

this is done by adding a small contribution in the form of the signal to noise ratio.

Usually the SNR needs to be estimated and it has no exact expression, but it is

typically chosen to be constant so that the signal is assumed to be larger than the

noise in magnitude. With the expression for the Wiener filter in Eq. (7.70), we

can proceed to apply it to the Fourier space division by
√
K̃ηη in the reduced and

constrained noise generation schemes. The Wiener filter to be used in both these

cases modifies the expression with
√
K̃ηη as

1√
K̃ηη(ω)

→

√
K̃ηη(ω)

K̃ηη(ω) + γmaxω

∣∣∣∣√K̃ηη(ω)

∣∣∣∣ , (7.72)

where we have denoted the signal to noise ratio as SNR =

(
γmaxω

∣∣∣∣√K̃ηη(ω)

∣∣∣∣)−1

with γ being a small parameter. In theory, this small correction term should be

able to stabilise the Fourier space division, while still being small enough to allow

for the same correlations to be roughly satisfied. This small modification of the

correlation depends on γ, and the focus of our next section is to understand how

the magnitude of γ influences the generation of the noises.

7.3.4 Deconvolution and uncausal effects

As mentioned in Section 7.3.3, the division in Fourier space for the constrained

and reduced noise schemes can cause instabilities, and in this section we will be

investigating one of the potential causes that affects such instabilities, namely the

length of the simulation tmax. We will begin by understanding how the magnitude

of the η(t) and ν(t) noises changes when the length of the simulation is allowed to

vary. In Figure 7.4 we explore exactly this, specifically the averaged magnitude of
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ν(t) for different values of tmax, for the constrained and reduced noise generation

schemes, with and without the Wiener filter.

Figure 7.4: For every value of tmax, 500 realisations of the noise are used
to calculate the averaged magnitude of ν(t), for (a) the constrained and (b)
reduced schemes with (green) and without (blue) the Wiener filter. Parameters

used were γ = 0.01, β = 1, ∆ = 1, ϵ = −1, α = 0.05, and ωc = 25.

As can be seen from Figure 7.4 the presence of the Wiener filter dramatically

reduced the variance of the magnitude of the ν(t) noise, as well as improving

its stability, often by an order of magnitude. The main improvement is that of

removing the dependence of tmax on the magnitude of the noise, as that is not a

factor that should be affecting the noise generation. It should remain independent

of the length of the simulation. With the stabilisation of the noise generation,

we can investigate how this small contribution from a nonzero γ changes the

correlations, specifically the Kην(t − t′) correlation. We show the deviation from

the Kην(t− t′) correlation in Figure 7.5.
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Figure 7.5: The Kην(t− t′) correlation function for several values of γ for the
constrained noise generation scheme, and also for the ην optimised scheme. In
this case, since the correlation for ην optimised scheme matches exactly with
the analytical expression for the correlation, the exact analytical curve has been
omitted. Parameters used are β = 1, tmax = 12, dt = 0.01, ωc = 25, α = 0.05

for 104 realisations.

As observed from Figure 7.5, with larger γ, its correlation becomes more symmet-

ric, breaking causality, i.e. the correlation function becomes nonzero at negative

times. This is a trade-off between the improvement in the noise generation scheme

and the violation of causality. While the causality ofKην is a physical requirement,

the introduction of the Wiener filter and its γ parameters yields a deconvolution

method that we are able to control, including its deviations from the exact imple-

mentation.

In order to test the performance of the constrained noise generation scheme with

the Wiener filter, we will be simulating the dynamics of the spin-boson model

from Eq. (7.1) for a constant value of ϵ, as well as for the Landau-Zener sweep

introduced in Section 6.1, with ϵ (t) = κt. As indicated in Section 6.1, the system

has an analytic asymptotic expression for ⟨rz⟩ in the zero temperature limit, the

system is initialised in the infinite past in the ground state with ⟨rz⟩ = 1. This

limit is given by [110]

⟨rz⟩LZ = 2 exp

{
−π∆

2

2κ

}
− 1. (7.73)
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This expression assumes that the system is initialised in the infinite past, but

numerically it will have been done at a finite time for t0 < 0. Therefore the

limit needs to be modified in an appropriate manner [42]. Nevertheless, there will

still be deviations associated with a non zero temperature, as shown in Section

6.3. For the two simulation cases, we expect to obtain dynamics that approach

the thermal state for the constant Hamiltonian system, and to be driven towards

the Landau-Zener limit for the Landau-Zener Hamiltonian, both in the long time

limit. We will also be utilising the ην optimised scheme as a baseline to compare

with the constrained scheme. The results of the simulations for the constrained

scheme and several γ values are shown in Figure 7.6:

Figure 7.6: Two plots displaying the accuracy of the constrained scheme,
for different values of γ that control the effect of the deconvolution, compared
with the ην optimised scheme. (a) For every stochastic realisation, the system
is initialised in the pure state rz = 1, with a constant Hamiltonian, where
∆ = 1, and ϵ = −1. γ = 0.001 was omitted due to large instabilities. (b)
Time dependent Hamiltonian described by the Landau-Zener sweep driven by
ϵ(t) = 5t. Parameters used were β = 0.1, dt = 10−2, α = 0.05 and ωc = 25 for

106 realisations.

In Figure 7.6, the case without the Wiener filter, γ = 0 is not shown due to

immediate numerical instabilities and inaccurate results. On the other hand, for

very small γ = 0.005, the dynamics are much more stable allowing the accessible

simulation time to increase significantly. To understand the difference between

the correct dynamics from the ην optimised scheme and the dynamics from the

constrained scheme, we can define the measure: ⟨rηνz (t)⟩−⟨rz (t)⟩. This denotes the
difference between the ην optimised dynamics and the corresponding γ dependent

constrained dynamics. We can then sum this difference over every timestep of a

subset of the dynamics and display this in Figure 7.7.
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Figure 7.7: Displays the total deviation of the simulations for Figure 7.6, i.e.
for the constrained scheme and for several γ values compared to the ην optimised
scheme, by taking the sum of all magnitude of the differences in both curves.
For the constant Hamiltonian case, the averaging procedure was performed for
0 < t < 12, while for the LZ case it was for −5 < t < 3. The γ = 0 and 0.001

results were omitted due to their very large divergence.

The most appropriate and accurate value of γ is chosen by calculating the inte-

grated absolute deviation,
∫
dt′|⟨rz (t)⟩ − ⟨rηνz (t)⟩|, and shown in Figure 7.7. A

value of γ = 0.01 is chosen due to a small deviation for both Hamiltonians while

allowing attempting to minimise the uncausal behaviour shown earlier. That is

the value that will be used in Section 7.4.1. With this choice of γ we ensure that

the violation of causality is fairly well controlled while still managing to obtain

a physical solution of the dynamics, by minimising the negative effects of the

deconvolution.
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7.4 Results

7.4.1 Convergence Results

In this section we will be investigating the convergence of results for each of the

noise generation schemes presented in Section 7.2.

We will be performing simulations for all the noise generation schemes from Section

7.2, except for the delta noise scheme, specifically looking at the behaviour of the

trace of ρs(t), its variance, standard error of the mean, and its mean behaviour,

for a variety of temperatures. This relative performance of the schemes is shown

in Figures 7.8, 7.9, and 7.10. Each set of figures explores the same properties of

the noises, but for different temperatures. For every figure, we will be displaying

the following: (a) the mean value of the trace ⟨Tr (ρs(t))⟩, (b) the standard error

of the mean calculated over 100 timesteps time windows, (c) the variance of the

trace for all noise schemes, and (d) the variance of the trace for the three best

performing noise schemes (ν optimised, ην optimised, and convex).

The physical setup of these simulations is the same as in Figure 7.6 with a constant

Hamiltonian. The system is initialised at rz = 1, and is allowed to relax towards

its equilibrium thermal state. The parameters for all the simulations were ∆ = 1,

ϵ = −1, α = 0.05, ∆t = 10−2, ωc = 25, and 105 realisations. The inverse

temperature β was allowed to vary for these three figures.
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Figure 7.8: Simulations performed for β = 0.1

Figure 7.9: Simulations performed for β = 1.

146



Figure 7.10: Simulations performed for β = 10.

We can observe from Figure 7.8 that the reduced and constrained noise schemes

perform incredibly well, but only for high temperature (small β). The reason

for this can be seen in Eq. (7.30) that displays the correlation of ν(t)ν∗(t) for

both noises schemes. It contains a factor of Kηη(ω) in the denominator, and it

becomes much larger at higher temperature, low β, driving that term towards

zero. This will diminish the magnitude of the ν noise, and consequently the

growth of the trace. This behaviour breaks down as the temperature decreases,

and β increases as seen in the other two figures. The opposite occurs for the

like scheme, as it performs well for medium and low temperature but poorly at

high temperature. This occurs due to the choices of the filtering kernels and their

temperature dependence. While the reduced scheme should be able to reproduce

the constrained and like scheme for specific values of ω, that does not seem to

happen. And it is probably that factor that is causing its poor convergence, i.e.

a discontinuous A(ω) might be causing some of the issues we observe with its

results. Also, the ν optimised scheme seems to fall short at high temperature

but converges well at lower temperatures. Nevertheless, we observe two noise

schemes that are able to perform well across all temperature ranges, these are

the ην optimised, and convex noise schemes. It is fortunate to be able to obtain

noise schemes that perform well at any temperature, which prevents the need to
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study their temperature dependent results before deciding which one to use for the

simulations. We should also point out that the convex scheme edges out the ην

optimised scheme by a tiny margin, but we have not applied any rescaling factors

to the ην scheme. This is what we will be doing for the ην optimise scheme and

then comparing it with the convex scheme and understand if it will be able to

completely surpass it. This rescaling will not be applied on the convex scheme as

it is not possible to do so due to its noise construction.

7.4.2 Optimal choice of rescaling

As seen in Section 7.4.1, the ην optimised schemes produces great results, but for

certain temperatures it falls short of getting better results than the convex scheme.

The reason being the lack of a rescaling factor, as it was kept at λην = 1. In this

section, we will be choosing an optimal value of λ such that the variance of the

trace is minimised and compare that with the results from the convex scheme.

Figure 7.11: Displays the standard error of ⟨Trρ (t)⟩ at time tmax = 40 for
several values of the rescaling factor λ, the inverse temperature β, and of the
coupling strength α. 1000 realisations were run for each value of the rescaling
factor, other parameters chosen were tmax = 40, dt = 10−3, ωc = 25 and ∆ = 1,
ϵ = −1 for α = 0.05, 0.1 and β = 0.1, 1, 10.. We can observe that the value of λ

that minimises the standard error is roughly λ ≈ 0.5.

Figure 7.11 displays the behaviour of the trace for different parameters, and allows

us to obtain a value of λ that diminishes the growth and variance of the trace, λ ≈
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0.5. This method can be used for any SDE that relies on coloured noises. While

it might seem counter-intuitive to calculate the variance of the trace for several

values of the rescaling factor λ, this can be done with relatively few realisations,

sometimes 100 would be enough. It would also be fruitful to only perform such

simulations at higher coupling strength, that fully displays the optimal values of

λ, as shown in Figure 7.11, which becomes parabola-like at higher coupling.

Figure 7.12: The variance of the trace for the ην optimised scheme (solid
lines) with rescaling factor λ = 0.5 is plotted, along with the results for the
convex scheme (dashed lines), for β = 0.1, 1, 10. The trace of each of these

schemes is also displayed.

As evident in Figure 7.12, the variance results for the scaled ην optimised scheme

improve on the unscaled ones, and even surpass that of the convex scheme, fully

displaying the usefulness of the rescaling factor in improving convergence results

for the SLN and ESLN equations. The behaviour of the trace in Figure 7.12

also demonstrates that the scaled ην optimised noise behaves better, as the trace

increases to about 1.2 for β = 1, 10, while the convex varies quite significantly

around between 0.5 and 1.8.

7.4.3 Verification of dynamics

In this section, we will verify the accuracy and validity of the ην optimised scheme,

and of the SLN, by comparing its results with the analytical dynamics obtained

from the quantum non-demolition model [124]. This will serve as one final con-

firmation that the rescaling, as well as the choices of filtering kernels are allowed

and lead to exactly the correct dynamics. We will be considering the model setup
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from [91], where a zero temperature environment is used along with the Hamilto-

nian H = −1
2
σz. The system environment coupling is given by f = σz, and the

environmental correlation takes an oscillating and exponentially decreasing form:

K(t) =
1

2
e−2|t|+it. (7.74)

The quantum non-demolition model is characterised by having the Hamiltonian

and system coupling commute with each other. Heuristically, this means that the

coupling can be thought to act on the system as a projective measurement that

does not disturb its energy [125]. The quantum demolition model is described by

the following deterministic master equation [126, 127]:

(7.75)i
dρ̄(t)

dt
= [Hsys, ρ̄(t)]− iCr(t) [f, [f, ρ̄(t)]] + Ci(t)

[
f 2, ρ̄(t)

]
,

where Eq. (7.75) already refers to a physical density matrix. We also have

Cr/i(t) =

∫ t

0

Kr/i(t− τ)dτ, (7.76)

with Kr(t) = Re [K(t)], and Ki(t) = Im [K(t)].

In order to equate the SLN dynamics to this system, it is necessary to slightly

modify the correlations. Specifically, for the SLN dynamics we will use the follow-

ing correlations Kηη(t) = Re [K(t)], and Kην(t) = 2iIm [K(t)]. With the choice

of the initial condition for the SLN equation from Eq. (2.103),

⟨ρ(t0)⟩ = 0.51+ 0.2σx + 0.3σy, (7.77)

Using Eq. (7.75) we can now simulate the dynamics of the system, which we

display in Figure 7.13
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Figure 7.13: Dynamics of the quantum non-demolition model for a) Re [ρ01],
and b) Im [ρ01]. The exact solution is compared to the SLN equation using the
ην-optimised scheme (scaling λ = 0.5), for 1000, and 50000 realisations. The
ην optimised noise generation scheme was used with rescaling value of λ = 0.5

As made clear in the figure, the convergence of the SLN dynamics with the ην

optimised scheme, for 50000 realisations matches the analytical solution to a high

degree. Therefore, these results confirm how the noise generation schemes that

were introduced and optimised in this section, can be used to reproduce physical

results.

7.5 Chapter Summary

In this chapter we focused on several coloured noise generation schemes capable

of generating complex coloured noises. These schemes include the flexibility and

freedom to choose the form of certain contributions, and their parameters, allowing

us to optimise these parameters such that we obtain better converged results. We

studied and proposed several schemes, including our ην optimised scheme that was

well optimised, specifically to reduce the convergence issues that may arise in the

simulation of the SLN equation. We showed how our proposed scheme improves

on existing ones in the literature, and how well it reduces the growth of the trace

of the reduced density matrix that is inherent to this method.
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Chapter 8

Conclusions

This thesis has focused on the dynamics and thermodynamics of open quantum

systems. We began by introducing concepts from open quantum systems, and

stochastic thermodynamics, moving on to obtaining deterministic equations from

stochastic ones. With the two methods presented here, we obtained the aver-

aged form of the SLN equation, followed by its Markovian version in the high

temperature limit.

With this deterministic Markovian equation, it was then possible to obtain a quan-

tum state diffusion unravelling, which was applied to a system being continuously

measured. This system was coupled to three environments by the three Pauli ma-

trices, and this allowed for a thermalisation that was isotropic across the Bloch

sphere. For this system, we constructed attachment and detachment protocols that

could be interpreted as measuring the system, and then undoing that measure-

ment. We then found that the processes of attaching and detaching a continuous

measurement device both increase the total entropy production, while allowing to

understand the measurement effect through the evolution of the pdf of the system

from the Fokker-Planck equation. We then were able to show that the entropy

production vanishes when the system reaches equilibrium, and that it satisfies a

fluctuation theorem indicating that the system and the protocols were devised in

a physical and adequate way.

The type of entropy production investigated and applied to quantum systems in

this thesis was constructed from the reversal of trajectories and without referring

to the Kraus operators of a system, and this is one of the major contributions of

this work. This is contrasted with other methods for the investigation of stochastic
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entropy production of open quantum system that focus on the reversal of dynamics

through forward and reverse Kraus operators.

We then proceeded to investigate the dynamics of the ESLN equation, for both

time independent and dependent Hamiltonians. For the time dependent case, we

focused on the Landau-Zener sweep which allows us to compare our dynamics and

implementation with analytical results. This is especially important as we tried

to understand the effect of the thermal initial state on the performance of the

ESLN equation, versus the dynamics based on a product state. We were able to

show that the ESLN dynamics yielded more accurate results. These results were

obtained with a specific noise generation scheme along with a variance reduction

technique that allowed for better convergence of results.

We have also presented several other coloured noise generation schemes, that were

both numerically and analytically optimised in such a way as to minimise the mag-

nitudes of the noises, which then leads to minimising the growth of the trace of

the density matrix. With these proposals, we were able to demonstrate that our

scheme improved on existing ones, and led to results that were more efficiently

converged. While this work was applied to the SLN equation and open quan-

tum systems, it is not restricted to this field of study but can be applied to any

stochastic differential equation that contains coloured noises.

The outlook on the work beyond the scope of this thesis, would focus on calculating

the non-Markovian stochastic entropy production of an open quantum system,

but this can be somewhat problematic as the individual trajectories do not always

represent physical processes, indicating the need for non-Markovian unravellings

with a few stochastic noises driving the system.
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