This electronic thesis or dissertation has been downloaded from the King's Research Portal at https://kclpure.kcl.ac.uk/portal/

Chemotherapy induced immune-modulation via the TXNIP/GDF15 pathway in colorectal cancer

Deng, Jinhai

Awarding institution:

King's College London

The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
licence. https://creativecommons.org/licenses/by-nc-nd/4.0/
You are free to copy, distribute and transmit the work
Under the following conditions:

- Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work).
- \quad Non Commercial: You may not use this work for commercial purposes.
- No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Chemotherapy induced immune-modulation via the TXNIP/GDF15 pathway in colorectal cancer

Jinhai Deng

A Thesis submitted for the degree of Doctor of Philosophy

Division of Cancer and Pharmaceutical Sciences
Faculty of Life Sciences and Medicine, King's College London
Guy's Campus, London, SE1 1UL

This work is dedicated to my supervisor, friends and family who have helped guide me throughout my studies. I could not have done this without their endless help and support.

Declaration of originality

I hereby confirm that I am the sole author of the enclosed thesis titled "Chemotherapy induced immune-modulation via the TXNIP/GDF15 pathway in colorectal cancer" and that I have compiled it with my own words. I confirm that I have documented all methods, processes and data and have not manipulated any of the data obtained and findings in this project.

Acknowledgements

This project has been quite challenging, but interesting. Overall, it has been a great training for me to sense science and understand the connection between basic science and potential clinical application. A research project like this is impossible to be done without the help I have obtained from many people in different aspects.

KCL-CSC has been providing the funding for this project, and I would like to thank both Kings College London and Chinese scholarship Council for offering me such a great opportunity.

I would first like to express my deepest gratitude to my supervisor, Professor Tony Ng, for his support and supervision throughout my PhD research. I would never forget the PhD interview and he gave me the opportunity to come to London, opening the gate of science for me. I appreciate Tony to allow me to pursue this project freely without much limits, which helps me build a scientific mind and organize ideas and experiments more professionally. Whenever I was stuck, he would offer unlimited help, regarding guidance and resources to push things forwards. Indeed, he is my role model who leads by example. Every day, he would work really hard to manage tons of projects. He is a warrior to push translational medicine field forwards. As far as I know, he never had a break through all those years. No wonder he could be so successful! I am inspired by his kindness, genuine enthusiasm for science and his ambition to create a better world. It is such a fortune for me to work with such an outstanding mentor and I understand from him that the most powerful weapon is brain!

I also want to express my thank you to Prof. Maddy Parsons (my thesis committee chair), Dr. Debashis Sarker (my second supervisor), Dr. Anita Grigoriadis and prof. Joy Burchell. I feel so lucky to have them to supervise the whole process and my progress as thesis committee members. They are so knowledgeable and nice and have been
supporting me regarding both research and life. Whenever I need support, Prof. Maddy Parsons would always try her best to help me. I also appreciate Dr Sabine Tejpar and her lab member Hong Yourae for the help in analysing the single cell RNA sequence, Dr. Chris Tape and Petra Vlckova for their collaboration with UCL human colorectal cancer organoids, Dr. Xingang Zhou, Dr. Nan Zhang and Dr. Gang Li for their collaboration with human samples collection and IHC staining. I also would like to thank Yue Chen and Mengyuan Li for their assistants with data analysis regarding TCGA database, Dr. Garcia Gomez, Juan Jose to provide me human colorectal cancer cell lines (DLD1, HCT15, HT29), Dr. Xiaoping Yang and the members of CEMS proteomics facility for mass spec analysis.

I wish to thank my best friends, Dr. Teng Pan, Dr. Richard Beatson, Dr. Kenrick Ng, Dr. Giovanna Alfano, Dr. Peter Gordon, Dr. Caitlin McCarthy, Dr. Moe Muhith, Dr. Jose M Vicencio, and Prof. Wenny An. They are super nice and helpful and made my time at King's really enjoyable. Without their help and support, my PhD would have been suffering. I want to express the added thanks to Richard Beatson, Giovanna Alfano, Teng Pan, Caitlin McCarthy and Moe Muhith for helping proof-reading this thesis. I wouldn't forget the times we drink and laugh! Prof. Wenny is my beloved sister. Those times that we celebrated Xmas together, we spent the whole night playing with cells and tissues together would never go out of my memory.

I offer my enduring gratitude to Dr. James Monypenny, Dr. Paul Barber, Dr. Gregory Weitsman. They are the best treasure in our lab, helping to solve any problem whenever needed. I own my gratitude to the many others who have been working through the Tony Ng lab and the division of comprehensive cancer centre to make my life easier and enjoyable at Kings. Even during this really tough time with Covid-19, they have tried everything to support us and give us the confidence to fight for any potential risks.

I also want to thank my friends outside the lab. They are my super heroes and always put up with my endless chats about my projects and my complaints, especially when I have been so stressful and negative.

Lastly, but by no means least, I must also say a huge thanks to my mum, dad and sister. Whenever I feel frustrated, whenever I find myself loss of confidence, you are the people who lift me up and make me stronger. Thank you for helping me believe in myself. Without your constant love, I couldn't achieve anything. Thanks for my whole big families for everything.

Abstract

Colorectal cancer is the fourth most lethal cancer worldwide. Conventional cytotoxic chemotherapy is the standard of care treatment for patients with advanced disease. The evasion of immune cell recognition is a hallmark of cancer, promoting tumour progression. Restoring immune homeostasis in cancer contributes to long-lasting therapeutic success. It is increasingly recognised that chemotherapies, which do not directly target the immune system, can activate immune responses to help promote favourable clinical outcomes. However, the pathways linking chemotherapy with immune modulation of the tumour microenvironment (TME) are poorly understood. Here, in colorectal cancer we identify that Thioredoxin Interacting Protein (TXNIP), a tumour suppressor gene, is induced by chemotherapy by RNA sequencing analysis. Moreover, we find that increased TXNIP, modulated by MondoA, contributes to improved prognosis by regulating the expression and secretion of Growth/ differentiation factor 15 (GDF15). Further experiments show that secreted GDF15 both promotes the differentiation of regulatory T cells (Tregs) and inhibits Natural killer (NK) cells degranulation by binding to CD48, a member of the CD2 subfamily participating in cell activation and differentiation. Accordingly, more analyses on cell lines derived from secondary sites, chemotherapy-resistant models and patient-derived tumour organoids (PDTOs) demonstrate that inactivation of TXNIP/GDF15 axis, and high GDF15 expression, is associated with advanced disease. Collectively, these findings illuminate potentially common pathway whereby chemotherapy-induced cellular stress drives immune remodelling.

Table of Contents

Catalog
List of Abbreviations 16
Chapter I. Introduction 25
1.1 Prologue 26
1.2 Colorectal cancer 27
1.2.1 Colorectal cancer subtypes 27
1.2.2 The application of 3D tumour models in CRC study 28
1.2.3 Chemotherapies used in the treatment of CRC 33
1.2.4 Chemotherapy-induced immunogenic cell death 35
1.3 Thioredoxin-interacting protein 37
1.3.1 Regulatory network of TXNIP 39
1.3.2 Biological role of TXNIP 45
1.3.3 Immune regulation of TXNIP 51
1.3.4 TXNIP-targeting therapeutics 57
1.4 Growth Differentiation Factor 15 (GDF15) 58
1.4.1 Membrane receptors of GDF15 59
1.4.2 Regulation of GDF15 63
1.4.3 The functions of GDF15 in cancer 67
1.4.4 Circulating GDF15 as a predictive marker for cancer prognosis 72
1.5 Summary 74
1.6 Overall aim of the study 75
1.6.1 Hypothesis 75
1.6.2 Aims 75
Chapter II. Materials and Methods 77
2.1 Reagents \& Materials 78
2.1.1 Cell lines 78
2.1.2 Cell culture 78
2.1.3 Organoids 79
2.1.4 Cell viability 80
2.1.5 CRISPR-CAS9 genome engineering 81
2.1.6 Generation of CRISPRa Constructs 81
2.1.7 Western blotting 81
2.1.8 RNA isolation and quantitative real-time PCR 83
2.1.9 Glucose Uptake assay 84
2.1.10 Lactate Detection Assay 84
2.1.11 ELISA 84
2.1.12 siRNA transfection 85
2.1.13 Extracellular acidification rate 85
2.1.14 Immunohistochemical staining 85
2.1.15 Immunofluorescence staining 86
2.1.16 Tube formation 86
2.1.17 Proteome profiler antibody arrays 86
2.1.18 ROS production 86
2.1.19 Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP PCR) 86
2.1.20 Mass Spectrometry 87
2.1.21 Immune cell isolation and differentiation 87
2.1.22 Flow cytometry 87
2.1.23 Proliferation assays 87
2.1.24 CD48-CD244 binding assay 87
2.2 Methods 88
2.2.1. Cell culture 88
2.2.2. Organoids 88
2.2.3 Spheroids 91
2.2.4 Cell viability (For 2D cells) 92
2.2.5 CRISPR-CAS9 genome engineering 92
2.2.6 Generation of CRISPRa Constructs 95
2.2.7 Western blotting 96
2.2.8 RNA isolation and quantitative real-time PCR 99
2.2.9 Glucose Uptake assay 101
2.2.10 Lactate Detection Assay 101
2.2.11 ELISA 102
2.2.12 siRNA transfection 102
2.2.13 Extracellular acidification rate 103
2.2.14 Human samples 103
2.2.15 Immunohistochemical staining (IHC) 104
2.2.16 Immunofluorescence staining (IF) 105
2.2.17 wound-healing migration assay 106
2.2.18 Tube formation assay 107
2.2.19 Proteome profiler antibody arrays 107
2.2.20 bulk RNA sequencing (RNA-seq) analysis 107
2.2.21 ROS production 108
2.2.22 Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) assay 109
2.2.23 Liquid chromatography-mass spectrometry (LC-MS/ MS) analysis 110
2.2.24 Immune cell isolation and differentiation 114
2.2.25 Flow cytometry 114
2.2.26 Proliferation assays for immune cells 116
2.2.27 CD48-CD244 binding assay 117
2.2.28 NK degranulation assays 117
2.2.29 Functional Treg assay 118
2.2.30 scRNA-seq analysis for colorectal cancer patients 118
2.2.31 Public dataset analysis 119
2.2.32 Establishment of oxaliplatin-resistant (OXAR) cell lines 119
2.2.33 Statistical analysis 120
Chapter III. TXNIP was induced by Chemotherapy treatment in CRC 121
3.1 Introduction 122
3.2 Aims and Objectives 125
3.3 Results 125
3.3.1 TXNIP was induced by Chemotherapy treatment in colorectal cancer 125
3.3.2 TXNIP was accumulated in cytosol post oxaliplatin treatment 135
3.3.3 TXNIP expression was decreased in colorectal cancer 138
3.3.4 TXNIP upregulation is induced by reactive oxygen species (ROS) production dependent on MondoA 142
3.3.5 ER stress signalling was involved in oxaliplatin-mediated TXNIP regulation 148
3.4 Overview 154
Chapter IV. Induction of TXNIP suppressed GDF15 expression 158
4.1 Introduction 159
4.2 Aims and objectives 162
4.3 Results 162
4.3.1 MondoA-TXNIP axis does not regulate glycolysis 162
4.3.2 TXNIP does not affect drug sensitivity, metastasis and angiogenesis 167
4.3.3 TXNIP does not affect inflammasome activation 171
4.3.4 TXNIP suppressed GDF15 expression after oxaliplatin treatment 174
4.3.5 High GDF15 expression was associated with poor prognosis 182
4.4 Discussion 184
Chapter V. The role of the TXNIP/GDF15 axis on the immune compartments 187
5.1 Introduction 188
5.2 Aims and objectives 192
5.3 Results 192
5.3.1 GDF15 has limited impacts on macrophage differentiation, phenotype and function 192
5.3.2 GDF15 induces Tregs in a CD48 dependent manner 197
5.3.3 GDF15 blocks the interaction of CD48 and CD244 impairing NK cell degranulation 201
5.3.4 GDF15 expression is associated with iCMS2, and GDF15 ${ }^{\text {high }}$ TXNIP ${ }^{\text {low }}$ phenotype is associated with poor prognosis and chemotherapeutic resistance 203
5.4 Discussion 210
Chapter VI. Summary \& Future Directions 214
6.1 Overview 215
6.2 Future direction 223
6.2.1 Establishing CRISPR-KO clones by other guide RNAs 223
6.2.2 Clinical validation in large cohorts 224
6.2.3 Expanding patients-derived organoids (PDTOs) for validation 224
6.2.4 Exploring whether oxaliplatin promotes the formation of MondoA-Mlx complexes 224
6.2.5 Exploring whether c-Myc mediated oxaliplatin-induced decreased glycolysis 224
6.2.6 Further molecular investigation in the molecular mechanism of GDF15-induced Tregs 225
6.2.7 Exploring the role of the TXNIP-Trx system in the regulation of GDF15 expression 225
6.2.8 Improving the cell model for MondoA/PERK experiment 225
6.2.9 Verifying other interesting targets from proteomic assays 226
6.2.10 Understanding the molecular mechanism of TXNIP regulating GDF15 226
6.2.11 Exploring the possible alternative regulator for GDF15 226
6.2.12 Exploring the direct impact of GDF15 on cytotoxic T cells via CD48-CD244 blockade 227
6.2.13 Exploring the feasibility of circulating GDF15 concentration as a biomarker for predicting treatment response 227
6.3 Key Findings: A Summary 227
6.4 Conclusion. 228
Chapter VII. References 229
Chapter VIII. Appendix 272

List of Figures

Figure 1-1 Timeline of PDTOS development 32
Figure 1-2 The Cancer-Immunity Cycle. 36
Figure 1-3 Unfolded protein response and its three major sensors. 42
Figure 1-4 TXNIP is closely involved in various biological processes 42
Figure 1-5 Summarization of membrane receptors of GDF15, including TGF- β receptor, GFRAL and CD48, and the downstream signalling pathways. 59
Figure 1-6 GDF15 shows both pro-tumour and anti-tumour effects. 68
Figure 3-1. Differential gene expression (assessed by RNA-seq) between oxaliplatin-treated group and control group 127
Figure 3-2. Assessment of TXNIP expression treated with oxaliplatin by quantitative polymerase chain reaction ($\mathrm{q}-\mathrm{PCR}$) analysis 130
Figure 3-3. Western blotting analysis of TXNIP expression in colorectal cancer cells treated with oxaliplatin. 131
Figure 3-4. The induction of TXNIP expression post oxaliplatin treatment in 3D spheroids models 133
Figure 3-5. The induction of TXNIP expression post oxaliplatin treatment in 3D PDTOS models 134
Figure 3-6. The induction of TXNIP expression post 5-FU treatment in colorectal cancer cell lines by Western blotting analyses 135
Figure 3-7. The accumulation of induced TXNIP in cytosol. 137
Figure 3-8. The localization of TXNIP in both mitochondria and ER after oxaliplatin treatment 137
Figure 3-9. Decreased TXNIP expression in TCGA colorectal cancer cohort. 138
Figure 3-10. TXNIP expression pattern in our clinical study cohort by immunohistochemistry (IHC) analysis 141
Figure 3-11. ROS production responsible for the activation of TXNIP induced by oxaliplatin. 143
Figure 3-12. Increased $A R R D C 4$ expression post oxaliplatin treatment in colorectal cancer. 144
Figure 3-13. MondoA translocation into nucleus responsible for the activation of TXNIP induced by oxaliplatin 147
Figure 3-14. c-Myc was not involved in oxaliplatin-induced TXNIP expression. 148
Figure 3-15. Oxaliplatin suppressed ER stress signalling in CRC. 150
Figure 3-16. Oxaliplatin decreased unfolded response signalling in CRC 150
Figure 3-17. PERK signalling was involved in TXNIP overexpression 150
Figure 3-18. Schematic illustration of molecular mechanism of oxaliplatin-induced TXNIP expression 154
Figure 4-1. TXNIP was not involved in the regulation of oxaliplatin-mediated glycolysis signature 164
Figure 4-2. TXNIP was not involved oxaliplatin-induced decreased expression and internalization of GLUT1 166
Figure 4-3. TXNIP was not involved in metabolic reprogramming colorectal cancer cells. 167
Figure 4-4. Induced TXNIP expression was not responsible for oxaliplatin cytotoxicity in colorectal cancer cells 169
Figure 4-5. Ability of cell migration associated with TXNIP expression in DLD1 cells 170
Figure 4-6. TXNIP had no effect on angiogenesis and NLRP3 inflammasome activation. 171
Figure 4-7. TXNIP had no effect on the activation of NLRP3 inflammasome 174
Figure 4-8. Proteomic analysis reveals higher GDF15 concentration in the conditional media of TXNIP-KO DLD1 cells 176
Figure 4-9. Assessment of GDF15 expression in cell lysate of DLD1 cells with oxaliplatin by western blotting. 177
Figure 4-10. GDF15 expression increased in human CRC samples 178
Figure 4-11. TXNIP negatively regulated GDF15 expression. 180
Figure 4-12. The correlation analysis in human samples 181
Figure 4-13. GDF15 was regulated by ROS/ MondoA axis 182
Figure 4-14. The impact of differential TXNIP/GDF15 expression on survival 183
Figure 5-1. The establishment of CRISPR-knockout and CRIPSRa-GDF15 DLD1 cell models. 193
Figure 5-2. GDF15 has limited impacts on macrophage differentiation, phenotype or function. 195
Figure 5-3. GDF15 has limited impacts on macrophage function 198
Figure 5-4. GDF15 inhibited the proliferation and functions of T cells 198
Figure 5-5. GDF15 induces Tregs in a CD48 dependent manner. 200
Figure 5-6. GDF15 blocks the interaction of CD48 and CD244 impairing NK cell degranulation 202
Figure 5-7. GDF15 expression is associated with iCMS2 203
Figure 5-8. Maintenance of high GDF15 level in colorectal cancer cell lines derived from secondary sites 204
Figure 5-9. High GDF15 levels were associated with metastasis and chemotherapeutic resistance 205
Figure 5-10. TXNIP-GDF15 axis responsiveness largely lost in oxaliplatin-resistant cell models 206

Figure 5-11. Loss of oxaliplatin-induced increased TXNIP and decreased GDF15 expression was associated with extramural invasion in patient-derived tumour organoids.................... 208

Figure 5-12. Schematic diagram.. 213

List of Tables

Table 1-1 Comparison of 2D and 3D cell culture methods 30
Table 2-1 Primary antibodies 82
Table 2-2 Secondary antibodies 83
Table 2-3 Primers used for qRT-PCR 84
Table 2-4 Sequence of siRNA oligonucleotides 85
Table 2-5 Digestion buffer 89
Table 2-6 Complete Medium 89
Table 2-7 CRISPR CAS9 gene editing experiment in a 6-well plate format 93
Table 2-8 Preparation of Reagents for Neon® Electroporation 94
Table 2-9 Electroporation Conditions 95
Table 2-10 Guide RNAs for CRISPRa 96
Table 2-11 $5 \times$ sample lysis buffer 97
Table 2-12 $5 \times$ Loading buffer 97
Table 2-13 $10 \times$ Running buffer 99
Table 2-14 10× Transfer buffer 99
Table 2-15 cDNA preparation reagents 1 100
Table 2-16 cDNA preparation reagents 2 100
Table 2-17 qPCR preparation reagent 101
Table 2-18 qPCR reaction condition 101
Table 2-19 ECAR measurement preparation 103
Table 2-20 Antibodies for flow cytometry 116
Table 2-21 The IC50 values for oxaliplatin in CRC cell lines 120
Table 3-1 Cell line characteristics ${ }^{428}$ 126
Table 3-2 List of top upregulated genes post oxaliplatin 128
Table 3-3 The clinical characteristics of all patient samples from Peking university Third Hospital 139Table 4-1 Pearson correlation coefficient scores of selected genes positively correlated withTXNIP gene expression from the colorectal TCGA dataset, categorized by their functions. 172
Table 5-1 The clinical characteristics of tumour tissue for organoids establishment 209

List of Abbreviations

2D Two-dimensional
3D Three-dimensional
5-FU \quad-fluorouracil
AICAR 5-Aminoimidazole-4-carboxamide ribonucleotide
AJCC American Joint Committee on Cancer
AKT Ak strain transforming
ALI Air-liquid interface
ALK-5 Activin receptor-like kinase 5
ALL Acute Lymphoblastic Leukaemia cells
AML Acute myeloid leukemia
AMPK AMP-activated protein kinase
ANG2 Angiopoietin-2
APCs Antigen presenting cells
Arg $1 \quad$ Arginase 1
ARRB1 Arrestin Beta 1
ARRDC Arrestin-Domain Containing Protein
ASK1 The apoptosis signal-regulating kinase 1
ATF4 Activating Transcription Factor 4
ATF6 Activation Transcription Factor 6
ATG4B Autophagy Related 4B Cysteine Peptidase
ATP Adenosine triphosphate
AUC Area Under the ROC Curve
AURKA Aurora-A kinase
BAX Bcl-2-associated X protein
BCL-6 B-cell lymphoma 6
$\mathrm{BiP} \quad$ Binding immunoglobulin protein
BMPs Bone morphogenetic proteins
CAFs Cancer associated fibroblasts
CAR-T Chimeric antigen receptor T cells
CD2 Cluster of Differentiation 2
CD3 Cluster of Differentiation 3
CD11B Cluster of differentiation molecule 11B

CD28 Cluster of Differentiation 28
CD48 Cluster of Differentiation 48
CD56 Cluster of Differentiation 56
CD107a Cluster of Differentiation 107a
CD122 Cluster of Differentiation 122
CD163 Cluster of Differentiation 163
CD244 Cluster of Differentiation 244
CDDP Cisplatin
CDK2 Cyclin dependent kinase 2
CHOP C/EBP-homologous protein
ChIP Chromatin immunoprecipitation
ChREBP Carbohydrate response element binding protein
CISD2 CDGSH Iron Sulfur Domain 2
CLL Chronic lymphocytic leukemia
CMSs consensus molecular subtypes
c-Myc Cellular myelocytomatosis oncogene
COAD Colon Adenocarcinoma
COX-2 Cyclooxygenase-2
CPT1a Carnitine palmitoyltransferase 1A
CRC Colorectal cancer
CRISPR Clustered regularly interspaced short palindromic repeats
CRT Calreticulin
CSR Class-switch recombination
CTLA4 Cytotoxic T-lymphocyte-associated antigen 4
CXCL9 Chemokine (C-X-C motif) ligand 9
CXCL10 C-X-C motif chemokine 10
CXCL16 C-X-C Motif Chemokine Ligand 16
CXCR4 C-X-C chemokine receptor type 4
DACH Diaminocyclohexane
DAMP Damage-associated molecular patterns
DCs Dendritic cells
DFS Disease-free survival
DPC DNA-protein cross-links

DSCR3	Down syndrome critical region protein 3
ECAR	Extracellular acidification rate
ECM	Extracellular Matrix
EGFR	Epidermal growth factor receptor
EGR-1	Early Growth Response 1
eIF2a	Eukaryotic Translation Initiation Factor 2A
EIF2AK3	Eukaryotic translation initiation factor 2 alpha kinase 3
EMT	Epithelial-mesenchymal transition
ER	Endoplasmic reticulum
ERAD	ER-associated protein degradation
ERK	Extracellular signal-regulated kinase
ERN1	Endoplasmic reticulum to nucleus signaling 1
EZH2	Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit
FACS	Fluorescence-activated single cell sorting
FBW7	F-box and WD repeat domain containing 7
FDA	The Food and Drug Administration
FFPE	Formalin-Fixed Paraffin-Embedded
Fizz1	Found in inflammatory zone protein
FoxM1	Forkhead box protein M1
FOXP3	Forkhead box P3
FoxO1	Forkhead box protein O1
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GCs	Germinal centres
GDF15	Growth/Differentiation Factor-15
GDC	The Genomic Data Commons
GFRAL	GDNF-family receptor a-like
GLUT	Glucose transporters
GO	Gene Ontology
GPCR	G-protein-coupled receptor
GSEA	Gene set enrichment analysis
GSK-3 β	Glycogen synthase kinase-3 β
HCC	Hepatocellular carcinoma
HER2	Human epidermal growth factor receptor 2

HIF-1 α	Hypoxia-inducible factor 1-alpha
HLA	Human leukocyte antigen
HMGB1	High mobility group box 1
HSCs	Hepatic stellate cells
HSP70	Heat shock protein 70
HSPA5	Heat shock protein family A member 5
HUVEC	Human Umbilical Vein Endothelial Cells
IAPP	Islet amyloid polypeptide
ICB	Immune checkpoint blockade
ICD	Immunogenic cell death
IFN- γ	Interferon-gamma
IGF1	Insulin-like growth factor 1
IL-1 β	Interleukin-1 beta
IL-4	Interleukin 4
IL-6	Interleukin 6
IL-10	Interleukin 10
IL-12	Interleukin 12
IL-17A	Interleukin 17
IL-18	Interleukin 18
ILC2	Group 2 innate lymphoid
IRE1	Inositol-Requiring Enzyme 1
ISR	Integrated stress response
ISC	Inter-strand DNA cross-links
IC50	Half-maximal inhibitory concentration
iCMS	Intrinsic-consensus molecular subtypes
IRI	Ischemia-reperfusion injury
iTreg	Inducible Treg
JAB1	Jun activating binding protein
KRAS	Kirsten rat sarcoma virus
LCN2	Lipocalin-2
LncRNA	Long noncoding RNA
LPS	lipopolysaccharide
LS	Laron syndrome

Max	MYC Associated Factor X
MCSF	Macrophage colony-stimulating factor
MDSCs	Myeloid-derived suppressor cells
MERTK	Mer Tyrosine Kinase
MHC	Major histocompatibility complex
miRNA	microRNA
mLI	Mitochondrial labile iron
MLX	Max-like protein X
MMP-26	Matrix Metallopeptidase 26
MondoA	MLX interacting protein
MRC1	Mannose Receptor C-Type 1
MSI	Microsatellite instability
MSS	Microsatellite Stable
MT1-MMP	Membrane type 1-matrix metalloproteinase
mTOR	Mammalian target of rapamycin
MUC5AC	Mucin-5AC
NAC	N-acetyl-L-cysteine
NAD/NADH	Nicotinamide adenine dinucleotide/ nicotinamide adenine dinucleotide (NAD) + hydrogen (H)
NAF-1	Sodium fluoride-1
NAPDH	Nicotinamide adenine dinucleotide phosphate
NCAM1	Neural cell adhesion molecule 1
NF-Kb	Nuclear factor kappa B
NK	Natural Killer
NRF2	Nuclear factor erythroid 2-related factor 2
NLRP3	NLR family pyrin domain containing 3
Notch4	Neurogenic locus notch homolog 4
Nos2	Nitric oxide synthase 2
NSAIDs	Non-steroidal anti-inflammatory drugs
nTreg	Natural Treg
ORF	Open reading frames
OS	Overall survival
OXA	Oxaliplatin

OXAR	Oxaliplatin resistant
OXPHOS	Oxidative phosphorylation
p27kip1	Cyclin-dependent kinase inhibitor 1B
PACE4	Paired Basic Amino Acid-cleaving Enzyme 4
PBMCs	Human peripheral blood mononuclear cells
PD1	Programmed cell death 1
PDI	Protein disulphide isomerase
PD-L1	Programmed death-ligand 1
PERK	PRKR-like endoplasmic reticulum kinase
PDC	Patient-derived cells
PDGF	Platelet-derived growth factor
PDTOS	Patient-derived tumour organoids
PDS	Patient-derived spheroids
PDTX	Patient-derived tumour xenograft
PI3K	Phosphoinositide 3-kinase
PMN-MDSC	Polymorphonuclear myeloid-derived suppressor cell
POMC	Pro-opiomelanocortin
PPAR γ	Peroxisome proliferator-activated receptor- γ
Prxs	Periaxin gene
Pt	Platinum
PTEN	Phosphatase and tensin homolog deleted on chromosome 10
qPCR	Quantitative Polymerase Chain Reaction
QRICH1	Glutamine-rich protein 1
RAGE	The receptor for advanced glycation end products
RANKL	Receptor activator of nuclear factor-kB ligand
RAS	Rat sarcoma
RCC	Renal cell carcinoma
REDD1	Regulated in development and DNA damage responses 1
REDOX	Reduction-oxidation
RET	Rearranged during transfection
rhGDF15	Recombinant human GDF15 protein
Regulated IRE1-dependent decay	
RNuencing	

ROR $\gamma \mathrm{t}$	Retineic-acid-receptor-related orphan nuclear receptor gamma
ROS	Reactive Oxygen Species
PRSS2	Protease, serine, 2 (trypsin 2)
SAM	Synergistic Activation Mediator
SEMA3F	Semaphorin-3F
SERPINA1	Serpin Family A Member 1
SHM	Somatic hypermutation
SMAD	Suppressor of Mothers against Decapentaplegic
STAB1	Stabilin-1
STAT4	Signal Transducer And Activator Of Transcription 4
STUB1	STIP1 homology and U-Box containing protein 1
SLAM	Simultaneous localization and mapping
STAT3	Signal transducer and activator of transcription 3
STING	Stimulator of interferon genes
SunTag	Tagging system SUperNova
T2D	Type 2 diabetes
TAM	Tumour-associated macrophages
TCA	Tricarboxylic acid
TCGA	The cancer genome atlas project
TGF- β	Transforming growth factor-beta
TGF- β RI	Transforming growth factor-beta receptor type I
TH1	T helper type 1
TH2	T helper type 2
TH17	T-helper 17
TLR4	Toll-like receptor 4
TME	Tumour microenvironment
TIME	Tumour immune microenvironment
TNBC	Triple negative breast cancer
TNF α	Tumour Necrosis Factor alpha
TNFRSF	Tumour necrosis factor receptor superfamily
TOPO1	Type I topoisomerase
TP53	Tumour Protein P53
Tregs	Regulatory T cells

TRX	Thioredoxin
TrxR	Thioredoxin reductase
TSG	Tumour suppressor gene
TXNIP	Thioredoxin-interacting protein
UCA1	Urothelial cancer associated 1
UHRF1	Ubiquitin Like with PHD And Ring Finger Domains 1
UPR	Unfolded protein response
VEGF	Vascular endothelial growth factor
VEGFA	Vascular Endothelial Growth Factor A
VGF	Nerve growth factor
VPS26	Vacuolar protein sorting-associated protein 26A
WNT	Wingless-related integration site
XBP1	X-box-binding protein 1
ZEB1	Zinc Finger E-Box Binding Homeobox 1

List of Publications

The following is the list of work published during the course of this doctorate.

Original Research

2022: Jinhai Deng, et al. Chemotherapy-induced tumour microenvironment remodelling via the MondoA/TXNIP/GDF15 axis. In submission to cancer discovery.

2022: Shaorong Zhao, et al. Exosomal transfer of miR-181b-5p confers senescencemediated doxorubicin resistance via modulating BCLAF1 in breast cancer. Br J Cancer. 2022; Online ahead of print.

2022: Ge X, et al. Integrative pharmacogenomics revealed three subtypes with different immune landscapes and specific therapeutic responses in lung adenocarcinoma. Comput Struct Biotechnol J. 2022; 20:3449-3460.

2022: Weng, S. et al. SCG2: A Prognostic Marker That Pinpoints Chemotherapy and Immunotherapy in Colorectal Cancer. Front. Immunol. 13, (2022).

2022: Jose Vicencio Bustamante, et al. Osimertinib and anti-HER3 combination therapy engages immune dependent Tumour toxicity via STING activation in tran. Mar 2022, In: Cell Death \& Disease. 13, 3, 274.

2020: Paul R. Barber, et al. HER2-HER3 heterodimer quantification by FRET-FLIM and patient subclass analysis of the COIN colorectal trial. Sep 2020, In: Journal of the National Cancer Institute. 112, 9, p. 944-954.

Reviews

2020: Zhengwen An, et al. Pleiotropic Role and Bidirectional Immunomodulation of Innate Lymphoid Cells in Cancer. 4 Feb 2020, In: Frontiers in Immunology. 10, 3111.

Chapter I. Introduction

1.1 Prologue

Colorectal cancer (CRC) is one of the most common malignancies worldwide, with a high prevalence and mortality ${ }^{1}$. Colorectal cancers begin as benign adenomatous polyps and might develop into advanced adenomas with high-grade dysplasia. During this process, the progressive accumulation of genetic mutations and epigenetic alterations drives malignant transformation of cells and tumour development ${ }^{2,3}$. In the clinic, the American Joint Committee on Cancer (AJCC) classification is commonly used to stage patient tumours for assessing the risk and evaluating treatment plans. The efficacy of this classification system is limited due to the high heterogeneity of CRCs. Clinical treatment of primary colorectal cancer includes surgical resection (open or laparoscopic surgery) and chemo-radiotherapy, while in the metastatic setting, palliative chemotherapy, targeted therapies such as cetuximab, an anti-epidermal growth factor receptor monoclonal antibody, and immune checkpoint inhibitors are employed ${ }^{4,5}$. Even though clinical treatments have been shown to prolong overall survival (OS) and reduce the risk of recurrence ${ }^{6}$, the selection of patients for suitable treatment regimens is currently suboptimal, giving rise to either over- or under-treatment ${ }^{7}$. For example, adjuvant chemotherapy is beneficial to only a minor population of stage III CRC patients, while the majority of patients are exposed to unnecessary toxicity ${ }^{8}$. Over the last two decades, it has been established that the ability of tumour cells to evade immune cell surveillance is a key hallmark of cancer. Importantly, the success of immunotherapies has highlighted the importance of the cross-talk between cancer cells and the immune system within the tumour microenvironment ${ }^{9,10}$. Moreover, it is becoming clear that even non-immunological therapeutic strategies, such as chemotherapies, require the activation of the immune system to improve treatment outcome ${ }^{11}$. In this study, we aim to identify the mechanisms by which chemotherapies
modulate the tumour-immune cells crosstalk. By understanding how chemotherapies modulate the tumour immune microenvironment (TIME), this will allow us to predict the response of patients to chemotherapies and guide clinical decisions.

1.2 Colorectal cancer

1.2.1 Colorectal cancer subtypes

CRC is the fourth most deadly cancer worldwide, with almost 0.93 million cases of deaths annually. CRC typically develop as a result of mutations in the tumour suppressor gene $A P C$, followed by $R A S$ activation mutation or loss of function mutations in TP53 ${ }^{12}$. CRC is characterised by strong heterogeneity, with variable molecular pathogenesis, natural history and response to treatments ${ }^{13,14}$. Colorectal cancer cells display distinctive biological behaviours compared to other types of cancers, such as rapid tumour growth, early treatment relapse, and metastasis ${ }^{15}$. Currently, the AJCC stage system evaluation has been used for the assessment of the clinical treatment and prognosis of colorectal cancer patients. However, the efficacy of this system is limited due to the heterogenicity of CRCs, even among same-staged patients.

Gene expression-based subtyping is well-accepted for cancer stratification ${ }^{16}$. To facilitate the translation of molecular subtypes into clinic, a consensus molecular subtypes (CMSs) was proposed by an international consortium in 2015 to predict various clinic outcomes independent of cancer stage. The CMS classification system defines four distinct subtypes, including CMS1, CMS2, CMS3 and CMS4. These subtypes represent microsatellite instability immune, canonical, metabolic and mesenchymal phenotypes, respectively ${ }^{14}$. CMS classification is based on bulk transcriptomics and hugely influenced by the tumour microenvironment ${ }^{14}$. For example, the CMS4 subtype presents strong mesenchymal signature in tumours and is associated
with poor prognoses ${ }^{17,18}$. In addition, the use of single-cell RNA sequencing has provided an understanding of the diversity of epithelial cells in colorectal cancer and has allowed the further refinement of CMS classification. The refined consensus molecular classification consists two epithelial groups intrinsic-consensus molecular subtypes (iCMSs), such as iCMS2 and iCMS3 ${ }^{19}$.

However, other studies reported that subtyping of rectal cancer patients according to the CMS criteria may not be able to predict disease-free survival (DFS) ${ }^{20}$. In the study conducted by Adele M. Nicolas et al, they highlighted an imperative need for more reliable and accurate predictive biomarkers for personalized prediction of prognosis and selection of suitable drug treatment regimens ${ }^{20}$.

1.2.2 The application of 3D tumour models in CRC study

For decades, two dimensional (2D) cell culture has been used as in vitro model in most research, becoming a critical tool to understand the mechanisms of drug actions in cancer studies ${ }^{21}$. The 2D model has pushed the development of research due to its simplicity, low-cost maintenance and acceptable performance in functional tests. However, many disadvantages limit this model as an ideal tool to mimic physiological conditions: 1) Firstly, 2D models fail to represent the natural structures and behaviours of cells growing in in vivo resections. Culturing cells in 2D alters the interactions of cells with each other and their surrounding environment. These changes affect cellular proliferation, differentiation, nutrient sensing and viability ${ }^{22}$. 2) Secondly, cells lose the capacity to keep diverse phenotypes in 2D cultures, resulting in the elimination of tumour cell complexity and alterations in cell signalling ${ }^{23,24}$.3) Thirdly, cells grown in monolayers have infinite access to components found in the medium like oxygen, nutrients and drugs. The distribution of nutrients and/or drugs in three dimensional (3D) cultures causes variability in responsiveness to stimuli when compared to 2D models ${ }^{22}$.
4) Fourthly, 2D cell lines are not readily established for every individual patients, which makes it a difficult tool for clinical decision-making ${ }^{25}$. 5) Lastly, due to the isolated nature of 2D cell cultures, many biological conclusions taken from them lack the complexity observed in larger organs. For instance, multiple cell types interact within the organ and with circulating factors and cells such as the lymphatic, immune, endocrine and neurological systems.

Intra-tumoral heterogeneity can be observed across cancer types, contributing to therapeutic failure and drug resistance ${ }^{26}$. To improve the mechanistic studies of cancer biology and preclinical evaluation of drug treatment, three dimensional (3D) cultures, including multicellular spheroids and patients-derived tumour organoids (PDTOs), have been developed. 2D and 3D culture systems show differences in several aspects (Table 1-1). Several studies highlight changes in protein expression and drug response in patient-derived spheroids (PDS) compared with corresponding patient-derived cells $(\mathrm{PDC})^{27}$. Spheroids have been reported to have similar features to solid tumours in comparison to 2 D culture models. These features include structural and growth-rate similarities ${ }^{28}$. There are several methods for spheroid preparation, including the hanging-drop method ${ }^{29}$, cultures on non-adherent plates ${ }^{30}$ and cultures on a scaffold ${ }^{31}$.

Table 1-1 Comparison of 2D and 3D cell culture methods. (Adapted from Marta Kapatczyńska et. al ${ }^{21}$ and amsbio organoid culture handbook ${ }^{32}$)

Type of culture	2D	3D
Time of culture formation	Within minutes to a few hours	From a few hours to a few days
Culture quality	High performance, reproducibility, long-term culture, easy to interpret, simplicity of culture	Worse performance and reproducibility, difficult to interpret, cultures more difficult to carry out
In vivo imitation	Do not mimic the natural structure of the tissue or tumour mass	In vivo tissues and organs are in 3D form
Cells interactions	Deprived of cell-cell and cellextracellular environment interactions, no in vivo-like microenvironment and no "niches"	Proper interactions of cell-cell and cell-extracellular environment, environmental "niches" are created
Migration \& Invasion	Cell motility is reduced, cell direction is Changed, very limited cell-ECM interaction	Very complex motility models taking into consideration not only stiffness but also the rheology and geometry of ECM
Angiogenesis	Only observational	Can be functional
Genetic profile	Modified	Preserved. Better representation of growth factors, pro-angiogenic and adhesion molecules genes
Multicellular studies	Better when studying immune response	Good in co-culture, but might be complicated with more than two cell types
Characteristics of cells	Changed morphology and way of divisions; low proliferation rate; loss of diverse phenotype and polarity	Preserved morphology and way of divisions; More pronounced proliferation rate; diverse phenotype and polarity
Access to essential compounds	Unlimited access to oxygen, nutrients, metabolites and signalling molecules (in contrast to in vivo)	Variable access to oxygen, nutrients, metabolites and signalling molecules (same as in vivo)

Patient-derived tumour organoids (PDTOs) are cultures of tumour cells derived from individual tumour samples. Over the last decade, 3D organoid culture models have been established and achieved a high success rate ${ }^{33}$ (Figure 1-1). PDTOs can expand indefinitely and recapitulate morphological and genetic features of the original tumour ${ }^{34}$, which has been suggested to be used to predict clinical responses of individual patients ${ }^{35}$. Both adult and embryonic stem cells can be used to develop 3D models, which reflect the tissue of origin with their ability to self-organize. The first colorectal cancer organoids was established in 2011, and identified to be capable of being cultured for long-term due to their enrichment in the stem cell population ${ }^{33}$. Importantly, colorectal organoids can be established from both surgical tumour resections and needle biopsies ${ }^{25,36}$, with success rates of $60 \%-90 \%$ and $\sim 70 \%$, respectively. High successful rate for biopsies is critical for the specific setting when biopsies is the only available source of fresh tumour tissue, like metastases ${ }^{25}$.

Figure 1-1 Timeline of PDTOS development. (Adapted from Margit Bleijs ${ }^{37}$)
2009, first organoids culture establishment ${ }^{38}$; 2011, colorectal cancer organoids ${ }^{33}$; 2014, prostate cancer organoids ${ }^{39} ; 2015$, pancreatic cancer organoids ${ }^{40} ; 2017$, liver cancer organoids ${ }^{41}$; 2018, breast cancer organoids ${ }^{42}$, gastric cancer organoids ${ }^{43}$, lung cancer organoids, bladder cancer organoids ${ }^{44}$, oesophageal cancer organoids ${ }^{45} ; 2019$, ovarian cancer organoids ${ }^{46}$, kidney cancer organoids ${ }^{47}$.

Similar to patient-derived tumour xenograft (PDTX), PDTOs are also able to accurately recapitulate tumour heterogeneity, providing great potential to study sub-clonal dynamics within individual tumours during tumour progression and therapy resistance ${ }^{37}$. Moreover, organoids can be used in the generation of complex co-culture system to understand the interaction of tumour cells with other cell types including immune cells or fibroblasts ${ }^{48}$. There are currently two widely used methods described to study the interactions of PDTOs with immune cells: namely the holistic approach and the reductionist approach. The holistic method uses endogenous immune cells preserved from the initial tumour biopsy to culture with cancer organoids. The latter method uses Human peripheral blood mononuclear cells (PBMCs) or isolated immune
cells subsets isolated from blood samples to co-culture with cancer organoids ${ }^{48,49}$. Given these advantages, PDTOs have received widespread attention due to their potentials to recapitulate the TME in vitro. However, there are several limitations to consider when PDTO models are used for cancer study, including a lack of cellular components leading to imperfect establishment of the TME, lacking of standardized protocols globally, high cost for long-term culture, the inability to extend to whole organs studies and outcomes heterogeneity owing to diversity between individuals and protocols ${ }^{50}$.

1.2.3 Chemotherapies used in the treatment of CRC

Over the past decades, new targeted agents and immunotherapies have revolutionized the treatment regimen in clinic. However, these therapies have only showed success in a selected number of patient groups. Thus, chemotherapy is still predominantly used as the standard of care in most cancer types ${ }^{51}$. Conventional chemotherapeutics are generally subdivided into several categories, comprising: 1) alkylating and platinumbased agents which cause inter- or intra-strand DNA crosslinks and destabilise DNA during replication (e.g., oxaliplatin); 2) topoisomerase inhibitors which impede the correct DNA unwinding during replication and transcription (e.g., irinotecan); 3) antimetabolites which inhibit DNA and RNA synthesis (e.g., 5-fluorouracil [5-FU]); 4) microtubular poisons which interfere with the polymerisation or depolymerisation of tubulin to inhibit the mitotic spindle (e.g., paclitaxel); and 5) cytotoxic antibiotics which exert antitumour effects by DNA intercalation and over-production of reactive oxygen species (e.g., bleomycin) ${ }^{52}$.

In colorectal cancer, 5-FU, oxaliplatin and irinotecan are predominantly used as firstline (FOLFOX) and second-line (FOLFIRI) treatments ${ }^{53}$. Oxaliplatin (OXA) is a thirdgeneration platinum analogue of cisplatin (CDDP), and shows an improved anti-tumour
safety profile ${ }^{54,55}$. It has been used in clinic as it forms both inter-/intra- strand crosslink in DNA, leading to the inhibition of DNA synthesis and DNA replication. As a conventional DNA-damaging drug, oxaliplatin is proved to be more efficient at inducing tumour regression in immunocompetent than immunocompromised mice compared to cisplatin ${ }^{56,57}$. This data suggests that the immune system is necessary to modulate the responses of OXA. In support of this, OXA has been reported to induce immunogenic cell death (ICD) of CRC cells by triggering necroptosis or apoptosis via the release of danger-associated molecular patterns (DAMPs), which requires innate and adaptive immune components ${ }^{58,59} .5-\mathrm{FU}$ is the fluorinated analog of uracil as a type of anti-metabolic chemotherapies. The mechanism of action is to block synthesis of thymidylate which is required for DNA replication ${ }^{60,61}$. $5-\mathrm{FU}$ has been applied in diverse types of cancers and shown the greatest impact in CRC^{62}. Similar to oxaliplatin, 5-FU has also been observed to modulate anti-tumour immune responses other than direct cytotoxic effects to tumour cells ${ }^{62,63}$. Anti-tumour immune response mediated by 5-FU is achieved by both deactivation of immunosuppressive cell populations and stimulation of immunogenic cell death ${ }^{63}$. For instance, $5-\mathrm{FU}$ is observed to deplete Myeloid-derived suppressor cells (MDSCs) and Regulatory T cells (Tregs) ${ }^{64,65}$. Moreover, the fact of 5-FU inducing immunogenic cell death is supported by the evidence that $5-\mathrm{FU}$ is capable of inducing the release of HMGB1 and HSP70, which belong to DAMPS, and further facilitate the activation of dendritic cells (DCs) ${ }^{66,67}$. Both OXA and 5-FU therapies have been reported to modulate ROS production and activation of associated signalling pathways ${ }^{68,69}$. Irinotecan is an analog of camptothecin to interact with topoisomerase I (Topo I), further causing S-phasespecific cytotoxicity ${ }^{70}$. Topoisomerases function to generate temporary single- or double-strand breaks in the DNA, preventing excessive twisting and supercoiling of

DNA induced during processes including DNA transcription, replication and other cellular processes ${ }^{70-72}$. Topo I introduces single-strand breaks and irinotecan-mediated Topo I-DNA complex stabilization DNA breaks ${ }^{73}$. Similarly, irinotecan has also been reported to show immunogenic effects by regulating the function of regulatory T cells and the expression of MHC-I and PD-L1 ${ }^{74}$.

As the responses of CRC patients to chemotherapies are heterogenous, the conventional AJCC classification fails to identify patients who are most likely to be responsive to specific treatment regimens ${ }^{75}$. Moreover, in contrast to targeted therapies, patient response to chemotherapy is challenging to stratify based on genomic data alone. This is in part due to an incomplete understanding of diverse mechanisms of action in cells ${ }^{76}$. Therefore, the identification of reliable biomarkers is needed for in-depth selection of subpopulation of patients who would benefit from chemotherapy.

1.2.4 Chemotherapy-induced immunogenic cell death

Immunological cell death (ICD) is an essential modulator of the immune system when exposed to cytotoxic stress, helping to maintain long-term anti-cancer effects ${ }^{77}$. ICD is associated with the secretion of DAMPs, proteins which can efficiently alert the immune system ${ }^{78}$. For instance, high mobility group box 1 (HMGB1), a non-histone nuclear protein, is a well characterised DAMP that regulates gene expression through interactions with transcription factors ${ }^{79}$. Secreted HMGB1 alarmin protein interacts with its cognate receptor TLR4 on dendritic cells (DCs), licensing host DCs to process and present tumour antigens and further cross-priming T lymphocytes in vivo ${ }^{57,67}$. Depletion of TLR4 or inhibition of HMGB1 release causes DCs to be defective in antigen-presentation ${ }^{57}$. Notably, chemotherapy-induced ICD contributes to the initial step of " Cancer-Immunity Cycle", which comprises a series of stepwise events for effective immune activation and cancer cell killing ${ }^{80}$. In summary, the Cancer-

Immunity cycle contains 7 steps (Figure 1-2): 1) Step 1, the release of neoantigens and proinflammatory cytokines and factors. (Chemotherapy-induced ICD begins with this process.) 2) Step 2, the presentation of captured antigen peptide by antigen presenting cells (APCs, mainly DCs). This is followed by cross-presentation of tumour cellderived neoantigens on DCs by MHC-I complex to drive an 'endogenous anti-viral antitumour' CTL response ${ }^{81-83}$. 3) Step 3, the priming and activation of cytotoxicity effector T cells, which is activated by recognising MHC-peptide complex. 4) Step 4, trafficking of T cells into tumour. 5) Step 5, infiltration of T cells into the tumour bed. 6) Step 6. recognition of targeted cancer cells. 7) Killing of cancer cells by effector T cells ${ }^{80}$. Notably, this cycle doesn't include the cell killing mediated by innate immune cells (like macrophages and NK cells ${ }^{84}$), which is also proved to be critical in anticancer immune activation ${ }^{85,86}$.

Figure 1-2 The Cancer-Immunity Cycle (Adapted from Daneil S. Chen ${ }^{80}$).
Neoantigen and proinflammatory cytokines are initially released in response to cytotoxic stress induced by chemotherapy. This step is the most important process for chemotherapy to initiates ICD. Subsequently, antigen presenting cells (APCs, mainly dendritic cells) capture and crosspresent antigen peptide via MHC class I. Cytotoxic effector T cells are then primed and activated by recognising peptide bound MHC-peptide complex on the antigen presenting cells. Activated effector T cells traffic to and infiltrate into the tumour bed where they selectively kill cancer cells. Abbreviation: CTL: Cytotoxic T lymphocytes.

1.3 Thioredoxin-interacting protein

In this thesis, the significantly upregulated expression of thioredoxin-interacting protein (TXNIP) was observed in colorectal cancer cells after chemotherapy treatment. Combined with other experiments, we identified TXNIP is a biological target mediating the effects of chemotherapy.

Thioredoxin-interacting protein (TXNIP), an alpha-arrestin protein, is commonly known as a master regulator of cellular oxidation by regulating the activity of Thioredoxin (TRX) via direct binding ${ }^{87}$. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ used to be regarded as the inevitable but unwanted by-product of aerobic cellular respiration. Several studies implicate an important role of "Reduction-Oxidation (redox) responses" in regulating essential physiological cellular functions, supported by evidence that low cellular ROS levels are pivotal for cellular signalling like tyrosine phosphorylationdependent pathways, responsible for cell proliferation, differentiation and migration ${ }^{88-}$ ${ }^{90}$. Within mitochondria, normal oxidative phosphorylation requires ROS during normal flux of the electron transport chain. However, chronic excessive production of ROS by mitochondria leads to oxidative stress, contributing to pathological diseases, including neurodegenerative disorder ${ }^{91}$, diabetes 92, cancer 93 and autoimmune disease ${ }^{94,95}$, suggesting that the balance of redox regulation is critical for homeostasis. Thioredoxins, together with glutathione, constitutes the two major thiol antioxidants ${ }^{96}$. The thioredoxin system is comprised of thioredoxin, thioredoxin reductase and nicotinamide adenine dinucleotide phosphate (NAPDH), playing an important role in defence against oxidative stress through the regulation of protein dithiol/disulfide balance ${ }^{97}$. Specifically, electron flux is catalysed from NAPDH to thioredoxin by thioredoxin reductase. Reduced thioredoxin are essential in reducing its target proteins through disulfide-dithiol exchange processes, leading to the maintenance of
intracellular redox state ${ }^{96,98}$. The direct biding between TXNIP and thioredoxin leads to the inhibition of the reducing activity of thioredoxin through disulfide exchange, enhancing oxidative stress ${ }^{99}$. Physiologically, TXNIP expression is induced by various stresses, including DNA damage stress, ER stress and oxidative stress ${ }^{87,100}$. TXNIP shows additional functions in regulating glucose and lipid metabolism, leading to therapeutic inhibitor development in the treatment of metabolic diseases such as diabetes mellitus ${ }^{101}$. The last two decades have also seen an accumulation of evidence implicating the pleiotropic roles of TXNIP in cancer. TXNIP is identified as a tumour suppressor gene (TSG), and is observed to be silenced by genetic or epigenetic events in a variety of primary human tumour tissues and human cancer cell lines ${ }^{102}$. Its function as a tumour suppressor is also supported by the observation that Txnip-deficient mice show a higher incidence (40% higher) of spontaneously developing hepatocellular carcinoma, which can appear as early as 8 months ${ }^{103}$. Moreover, single-cell RNA sequencing of T-cell lymphoma reveals that the downregulation of TXNIP expression is observed in malignant clones and correlates with disease progression ${ }^{104}$. Indeed, cumulative evidence suggests that low expression of TXNIP in cancers correlates with poor prognosis. Collectively, these studies suggest that TXNIP shows tumoursuppressive effects in cancer.

In contrast to this, other reports show that high TXNIP levels can also correlate with poor clinical prognosis in some cancers. For example, lung cancer patients with high levels of TXNIP exhibit decreased progression free survival compared to patients with low TXNIP levels (18.0 vs. 23.0 months $)^{105}$. In hepatocellular carcinoma and conventional renal cell carcinoma, overexpression of TXNIP has also been observed to increase angiogenesis and metastasis ${ }^{106,107}$. These observations suggest that the roles of TXNIP in cancers show specificity.

In addition to tumour specific functions, TXNIP may also exert opposite functions at different stages during cancer progression. When analysing TXNIP in early $v s$. latestage cases separately, its expression shows different associations with different clinical outcomes, namely, improved survival in early-stage disease but poor survival in latestage disease ${ }^{108}$, indicating that the roles of TXNIP may have different implications depending on different stages of cancer. The underlying mechanisms of these controversial findings need to be integrated in a comprehensive way, and the role of TXNIP acting as a TSG vs. an oncogene needs to be further elucidated in order to address the questions currently unanswered.

1.3.1 Regulatory network of TXNIP

1.3.1.1 Common regulatory pathways

It is well established that TXNIP expression is tightly regulated by diverse signals, like glucose-sensing transcriptional complexes, especially the ChREBP/MondoA: MLX complex ${ }^{109}$. MondoA (also known as MLXIP) belongs to the Mondo family of transcription factors, transcriptional biosensors of intracellular glucose concentration ${ }^{110}$. MondoA has been reported to regulate TXNIP expression and promote a decrease in glucose uptake and glycolysis ${ }^{111-113}$. Moreover, intracellular ROS is involved in regulating the MondoA-TXNIP signalling. Specifically, increases in ROS levels stimulate the formation of MondoA-mTOR complexes at the expense of transcriptionally active MondoA-MLX complexes, resulting in decreased transcriptional activation of TXNIP ${ }^{114}$

Other than these complexes, more factors are also involved in regulating TXNIP. These factors constitute a comprehensive regulatory network that can be broadly divided into four classes: 1) transcription factors (MondoA ${ }^{111}$, ChREBP ${ }^{115}$, PTEN 116, MLX ${ }^{109}$, FoxO1 ${ }^{117}$, Max ${ }^{118}$, STAT3 119), 2) MicroRNAs and circular RNAs (miR-21 ${ }^{120}$, miR-
$148 \mathrm{a}^{121}$, miR-135b-5p ${ }^{122}$, miR-152-5p ${ }^{123}$, miR-204 ${ }^{124}$, miR-211, miR-224 ${ }^{125}$, miR$373^{126}, m i R-411-5 p^{127}, m i R-177^{128}, m i R-128-3 p^{129}, m i R-27 a-3 p^{130}, m i R-424-5 p^{131}$, CircECE1 ${ }^{132}$, circDCUN1D4 $\left.4^{133}\right), 3$) epigenetic regulators (EZH2 ${ }^{134}$, UHRF1 135) and 4) regulators of mRNA and protein stability (LncRNA Gm15441 ${ }^{136}$, LncRNA SNHG15 ${ }^{137}$). To be noted, these regulatory signalling pathways are bi-directional. For instance, expression of various microRNAs (for example, miRNA-204 and miR-124a) are reported to be regulated by TXNIP and further affect insulin production ${ }^{124}$ as well as islet amyloid polypeptide (IAPP) signalling ${ }^{138}$. Insulin, in turn, can also regulate TXNIP expression by modulating glucose levels ${ }^{139}$.

1.3.1.2 Oncogenes and TSGs

TXNIP can be induced by oncogenes ${ }^{140}$. For instance, in breast cancer, c- Myc has been exhibited to antagonise TXNIP expression in MondoA-dependent pathway ${ }^{141}$. c-Myc competes with MondoA to bind TNXIP promoter, leading to decreased TXNIP expression ${ }^{111}$. When compared with iAP mice (mice harbouring conditional null alleles of Apc and Trp53), iKAP mice (engineered with a doxycycline - inducible oncogenic Kras allele and conditional null alleles of $A p c$ and Trp53) exhibit reduced TXNIP expression, suggesting that oncogenic KRAS is capable of TXNIP regulation ${ }^{142}$. The oncogenic GTPase Ras has also been shown to inhibit TXNIP expression by suppressing the translation of TXNIP mRNA ${ }^{143}$. Additionally, HER2 overexpression is observed to induce the upregulation of TXNRD1 and downregulation of TXNIP, suggesting HER2 can cause the shift of the redox balance in a prognostically unfavourable way in breast cancer ${ }^{144}$. Consistently, another study shows that oncogenic activation of HER2 is associated with decreased TXNIP expression. Treatment of HER2 inhibitor significantly induces TXNIP expression, which mediates G1 cell cycle arrest and cell proliferation inhibition ${ }^{145}$, and a concomitant increase in reactive oxygen
species (ROS) production in breast cancer ${ }^{145}$. Reciprocally, TXNIP has also been demonstrated to modulate the signalling of tumour suppressors. For example, in ARPE19 cells, TXNIP depletion promotes autophagy through increased stabilization of $\mathrm{p} 53^{146}$. Similarly, HCC tumours in TXNIP-deficient mice also have increased p53 expression ${ }^{103}$. In oxidative tissues (like skeletal and cardiac muscle), genetic silence of TXNIP leads to the accumulation of oxidized PTEN (an inactive form of PTEN) and elevated AKT signalling ${ }^{147}$. Collectively, on one hand, TXNIP expression can be modulated by oncogenic proteins; on the other hand, TXNIP mediates tumour suppressive activity by regulating the expression and activation of tumour suppressors.

1.3.1.3 ER stress signalling

TXNIP signalling is also implicated in endoplasmic reticulum (ER) stress, participating in the different branches of the unfolded protein response (UPR). ER stress signalling is regulated by three major functional sensors (Figure 1-3): activating transcription factor 6 (ATF6), inositol-requiring enzyme 1α (IRE1 α) and protein kinase R-like ER kinase (PERK). Under homeostatic conditions, the luminal ER master chaperone protein BiP is bound to these sensors, maintaining them in an inactive state. Under ER stress conditions, misfolded proteins accumulate in the ER lumen, BiP binds to these misfolded proteins with high affinity, resulting in its displacement from the ER stress sensor proteins, which leads to the activation of sensor proteins and ultimately transcriptional reprogramming to maintain ER homeostasis. The whole process is known as unfolded protein response (UPR). UPR is an evolutionarily conserved cellular stress response, triggered to cope with damage.

Figure 1-3 Unfolded protein response and its three major sensors.
BiP dissociates from UPR sensors (IRE1 α, PERK and ATF6) priming them to be activated, which results in the initiation of the UPR ${ }^{148}$.

Recent studies emphasise the requirement of ER stress for TXNIP induction, in particular through signalling pathways by IRE1a and PERK ${ }^{149,150}$. The first UPR branch, PERK, is activated by dimerization and autophosphorylation, further phosphorylating eIF2a at S51 (Figure 1-3). Phosphorylated eIF2a is proposed to initiate the integrated stress response (ISR), shutting down general translation initiation but favouring newly transcribed mRNAs for UPR adaptive functions ${ }^{151}$. Another UPR branch, IRE-1a undergoes autophosphorylation, conformational change and higher order assembly upon BIP dissociation ${ }^{152}$. IRE1 α excises a small 26-nucleotide intron from the mRNA encoding the transcription factor X-box-binding protein 1 (XBP1), resulting in the expression of an active spliced form XBP1s. XBP1s is involved in the folding, translocation and secretion of ER proteins, ER/Golgi biogenesis and ER-associated protein degradation (ERAD). In addition, IRE-1a activation can lead to another process
known as regulated IRE1-dependent decay (RIDD), with the degradation of a small set of mRNAs or precursor microRNAs (miRNAs) ${ }^{153}$, a process that contributes to stabilise ER homeostasis.

TXNIP signalling is implicated in endoplasmic reticulum (ER) stress, participating in the different branches of the unfolded protein response (UPR). The regulation of TXNIP expression following ER stress is dependent on cell type and cellular condition. Both PERK and IRE- 1 are required for TXNIP induction in ER-stress-induced β-cell death ${ }^{150}$. PERK on its own can also regulate TXNIP. After subarachnoid haemorrhage, TXNIP induced by PERK promotes apoptosis of neurons, and suppression of either PERK or TXNIP attenuates cerebral edema and early brain injury ${ }^{154}$. IRE1 α and its downstream effector XBP1 are also shown to be responsible for TXNIP-induced mitochondrial dysfunction upon RB51 (brucella abortus vaccine strain) infection, without involvement of PERK signalling ${ }^{155}$. Conversely, XBP1-independet control of TXNIP activity by IRE1 α has also been reported in estrogen receptor positive breast cancer ${ }^{149}$. Similarly, IRE1 α-microRNA signalling axis has been described to control TXNIP expression and activation of the NLRP3 ${ }^{128}$. Notably, TXNIP can also regulate ER stress by modulating other ER components, including protein disulfide isomerases (PDI) or apoptosis signal-regulating kinase 1 (ASK1) ${ }^{156,157}$.

1.3.1.4 Cytokines and Growth factors

Cytokines play a crucial part in immunity and the TME by mediating cell-to-cell communication. The signalling driven by inflammatory, regenerative, and antiinflammatory cytokines modulate the recruitment, development and behaviour of different cell types from the innate and adaptive immune repertoires. For example, in mice, TH17, TH1 or TH2 development is mastered by TGF- $\beta 1$, IFN- γ and IL-4, respectively ${ }^{158}$. TXNIP activity is also regulated by cytokines to achieve different
functions in cells. In naïve T cells, TNF α treatment triggers TXNIP downregulation, leading to increased glucose uptake and the activation and differentiation of T cells ${ }^{159}$. Insulin-like growth factor 1, a growth factor which promotes cancer development, negatively regulates TXNIP expression in order to enhance antiapoptotic effects ${ }^{160}$. In addition, IL- 1β and TGF $\beta 1$ suppress TXNIP activation in fibroblasts and mesenchymal progenitors, respectively ${ }^{161,162}$. However, TGF- $\beta 1$ can also induce TXNIP expression to achieve transcriptional repression in HL-60 cells ${ }^{163}$. Conversely, TXNIP has also been shown to regulate cytokines production. TXNIP is highly involved in the activation of NLRP3 inflammasome, promoting IL-1 β and IL-18 production ${ }^{150}$. In gastric cancer, TXNIP limits the induction of expression of TNF α and COX-2, which is demonstrated to decrease Helicobacter pylori-induced tumourigenesis ${ }^{164}$. Thus, TXNIP expression can be a consequence of combined effects of several cytokines within TME.

1.3.1.5 Other regulatory conditions

Additional endogenous and environmental factors have been reported to induce TXNIP expression. Under hypoxia conditions ${ }^{165,166}$, HIF-1 α induction has been shown to increase TXNIP expression. Reversely, TXNIP also causes the degradation and export of HIF-1 α, suggestive of a regulatory loop between TXNIP and HIF-1 α^{167}. The CISD2 (CDGSH iron sulfur domain 2) protein is reported to regulate TXNIP expression through a process that involves the perturbation of mitochondrial labile iron (mLI), mitochondrial ROS (mROS) and triggered ferroptosis in breast cancer cells ${ }^{168}$. Retinoic acid-mediated TXNIP suppression is found to de-activate hepatic stellate cells and thereby help prevent liver fibrosis and carcinogenesis ${ }^{169}$. In conclusion, TXNIP expression and function is regulated by diverse factors associated with different tissues and conditions, and a complex network of positive and negative regulatory loops.

1.3.2 Biological role of TXNIP

So far, TXNIP has been identified to be involved in multiple cellular responses, including oxidative stress, tumour suppression, angiogenesis, drug-induced effects and glycolysis (Figure 1-4).

Figure 1-4. TXNIP is closely involved in various biological processes.
(A) TXNIP and ROS; (B) TXNIP and tumour suppression; (C)TXNIP and drug effects; (D) TXNIP and glycolysis; (E) TXNIP and angiogenesis ${ }^{170}$. For example, TXNIP ${ }^{+}$macrophages tend to be M2-like phenotype and associated with angiogenic endothelial cells, suggesting TXNIP+ macrophages may facilitate angiogenesis ${ }^{170}$.

1.3.2.1 TXNIP and Oxidative stress

TXNIP was originally identified as a key regulator of cellular redox and has then been reported to be closely related with ROS levels under different conditions, leading to various cell outcomes ${ }^{97}$. The effect is mainly mediated by its antagonistic effects on Trx by an intermolecular disulphide interaction ${ }^{171}$. Consequently, the TXNIP-Trx binding increases ROS production and oxidative stress ${ }^{134}$. A study, which assessed
blood samples from chronic lymphocytic leukemia (CLL) patients, demonstrated that TXNIP levels robustly correlated with ROS production ${ }^{172}$. Moreover, silence of TXNIP has been demonstrated to decrease ROS levels due to removal of suppressive effects on Trx in macrophages ${ }^{173}$, but overexpressed TXNIP causes high oxidative stress, leading to DNA damage and cell death ${ }^{174}$ and autophagy-related apoptosis ${ }^{175}$. However, in hematopoietic cells, TXNIP acts as an antioxidant protein to prevent oxidative stress and promote cell survival ${ }^{176}$. The mechanism is that TXNIP can directly bind and stabilise p 53 , which has been proved to show antioxidant functions ${ }^{177}$. Conversely, ROS is also shown to regulate TXNIP expression. For instance, oxidative stress can protect Laron syndrome (LS) from cancer induction by increasing TXNIP expression ${ }^{160}$. Additionally, inhibition of ROS generation alleviates Dextran Sodium Sulfate-induced colitis through inhibiting TXNIP-dependent NLRP3 inflammasome ${ }^{178}$. In summary, TXNIP and ROS have a complex relationship and are involved in several feedback loops in order to exert different functions in cells.

1.3.2.2 TXNIP and tumour progression

Increased TXNIP expression leads to decreased Trx function which, in turn, leads to decreased Prx function and s-ribonucleotide-reductase function ${ }^{98}$. TXNIP can both induce cell death and inhibit proliferation, thus being regarded to play tumoursuppressing roles in various signalling pathways. TXNIP overexpression leads to G1/S phase arrest by modulating cell cycle regulatory proteins (p27kip1, JAB1, CDK2 and cyclinE) ${ }^{179}$. In contrast, loss of TXNIP facilitates rapid cell division and DNA replication activation, leading to oncogenesis and cell proliferation in breast and lung cancer ${ }^{180,181}$. After shuttling into the mitochondria, TXNIP binds to thioredoxin and abolishes its inhibitory effect on ASK1-mediated apoptosis ${ }^{157}$. In addition, TXNIP is also involved in autophagy and senescence ${ }^{182,183}$. Mechanistically, TXNIP interacts
with REDD1 to form a complex. Since both REDD1 and TXNIP are pro-oxidant protein ${ }^{184,185}$, the formation of this complex has been shown to promote mitochondrial rearrangement and ROS production, further suppressing ATG4B catalytic activity and inducing autophagy ${ }^{184}$. Moreover, TXNIP can promote the differentiation of leukemiainitiating cells and colorectal cancer cells in glycolysis-independent and glycolysisdependent manners, respectively ${ }^{186,187}$. As a result, TXNIP-dependent cell differentiation suppresses oncogenesis ${ }^{186,187}$. Additionally, in HCC, a reduction in TXNIP in cancer cells induced by M2 macrophage-derived exosomes (containing exosomal miR-27a-3p) has been observed to be critical for maintaining cancer 'stemness' and promoting tumour progression ${ }^{130}$.

TXNIP has also been observed to reduce the migratory capacity of tumour cells. Downregulation of TXNIP keeps the $\operatorname{Trx} / \operatorname{Trx}$ reductase (Trx/TrxR) system continually active for epithelial-mesenchymal transition, which increases the metastatic potential of cancer cells ${ }^{188}$. In pancreatic cancer, elevated TXNIP expression leads to repression of malignant transcripts and impairment of metastatic tumorigenesis through the epigenetic reprogramming of chromatin ${ }^{189}$. Similarly, TXNIP mediates the internalisation and degradation of EGFR, decreasing migratory capacity of breast cancer cells ${ }^{190}$. Interestingly, exosomes derived from breast cancer cells, which contains exosomal miR-146a, leads to the decrease of TXNIP expression and subsequent activation of the WNT/ β-catenin pathway, resulting in the transformation of normal fibroblasts to cancer associated fibroblasts (CAFs) ${ }^{191}$. Reciprocally, activated CAFs promote the invasion and metastasis of cancer cells ${ }^{191}$. However, another study in HCC observes that TXNIP expression is positively associated with the migratory and invasive ability of hepatocellular cancer cells ${ }^{192}$, indicating the double-edged sword roles pf TXNIP in migration of tumour cells.

Nonetheless, TXNIP may also drive tumorigenesis through its association with metabolic disorders. From epidemiological and clinical evidence, cancer patients with diabetes are associated with higher rate of morbidity and mortality in several cancer types ${ }^{193}$. The mechanisms of diabetic stress-associated tumour progression and metastasis include inhibition of anti-tumour immune responses ${ }^{194,195}$, metabolic transcriptional modulation of cancer cells ${ }^{196}$, decellularization of extracellular matrix scaffolds ${ }^{197}$, and even vascular dysfunction ${ }^{198}$. The master roles of TXNIP in fasting, insulin sensitivity and β-cell apoptosis are well known, and these functions have been linked to an increased risk of diabetes ${ }^{199-200}$. These data collectively suggest TXNIP acts as a driver of metabolic diseases, indirectly contributing to the development of cancers ${ }^{201}$.

1.3.2.3 TXNIP and Chemotherapeutic effects

Interestingly, cancer cells, displaying high baseline levels of ROS, are vulnerable to further damage caused by ROS accumulation. A number of studies have shown that increased TXNIP expression can enhance the cytotoxicity of chemotherapeutic agents by modulating the levels of ROS 202. This anti-tumour strategy is exploited by several agents, including dBET-3, vorinostat, pterostilbene and resveratrol ${ }^{203,204}$. Additionally, platinum-based drugs can also inhibit the activity of TrxR; a process that has been demonstrated to be critical to promote the anti-tumour effects ${ }^{205,206}$.

TXNIP can also enhance treatment efficacy independent of ROS. In oesophageal cancer, cisplatin treatment leads to TXNIP upregulation, mediating its cytotoxicity by an unreported mechanism ${ }^{207}$. In oral cancer, overexpression of TXNIP potentiates the effectiveness of radiotherapy via DNA damage repair pathways ${ }^{208}$. In contrast to cells sensitive to cisplatin, cisplatin-resistant cells exhibit downregulation of TXNIP mRNA mediated by UCA1, suggesting a role of UCA1/ TXNIP axis in contributing to cisplatin
resistance in lung adenocarcinoma ${ }^{209}$. In line with this, exogeneous overexpression of TXNIP in glioma cell lines decreases the IC50 of cisplatin ${ }^{210}$. Combining a TXNIP agonist, D-allose, with chemotherapy or radiotherapy results in enhanced anti-tumour effects in head and neck and lung cancers ${ }^{211,212}$. These studies collectively suggest that increased TXNIP expression mediates or enhances the cytotoxicity of chemo- and radio- therapies.

1.3.2.4 TXNIP and tumour angiogenesis

Angiogenesis, another hallmark of cancer, enables tumours to meet nutrient and oxygen needs to sustain proliferative and metabolic requirements. Recent studies reveal the involvement of TXNIP in cancer angiogenesis in both ROS-dependent and independent manners. In conventional renal cell carcinoma (cRCC), immunohistochemical staining in a cohort of 691 patients revealed patients with high TXNIP expression have a marked reduced tumour free survival and a higher occurrence of metastasis. Interestingly, this study showed a significantly positive correlation between TXNIP expression and inefficient vascularisation favouring tumour cell survival ${ }^{107}$. Mechanistically, TXNIP overexpression leads to upregulation of angiogenesis-related proteins (VEGFA, PDGF and ANG2), along with an angiogenic phenotype ${ }^{129}$. In osteosarcoma, different functional subtypes of myeloid cells have been identified by single-cell RNA sequencing analysis. Among them, TXNIP ${ }^{+}$macrophages tend to be M2-like (antiinflammatory phenotype) and express M2 signature markers, including MERTK, MRC1, STAB1 and CD163. Furthermore, ligand-receptor interaction analysis identifies an association between TXNIP ${ }^{+}$macrophages and angiogenic endothelial cells, suggesting TXNIP+ macrophages may facilitate angiogenesis ${ }^{170}$. In contrast, exogenous TXNIP expression in CRC lines (LoVo and HT29) represses angiogenesis ${ }^{122}$. Similarly, inhibition of a cyclin-dependent kinase (p21)
transcriptionally represses TXNIP expression, which consequently promotes endothelial cell invasion, migration and vascular sprouting in breast, lung and prostate cancer cell lines ${ }^{213}$. Thus, these data suggest the important role of TXNIP in angiogenesis.

1.3.2.5 TXNIP and glycolysis

Metabolic reprogramming is another hallmark of cancer development and metastasis. Elevated glycolysis is closely associated with the initiation of cancer, producing glucose-dependent ATP and glycolytic intermediates for macromolecular biosynthesis. c- Myc, a well-known modulator of metabolism, mediates metabolic and phenotypic changes in cancer ${ }^{214}$. TXNIP is reported to regulate lipid and glucose metabolism ${ }^{101,215}$ and mediate c-MYC-driven metabolic impacts ${ }^{77,132,180,181}$. For instance, a study in triple negative breast cancer (TNBC) identified that TXNIP suppression by c-Myc can reprogram the metabolic phenotype of cancer cells ${ }^{111}$. Additionally, in ER+ breast cancer, tumour cells can be categorised into different metabolic subtypes dependent on TXNIP expression ${ }^{149}$. For example, MCF7 cells exhibit a mitochondrial oxidative phosphorylation (OXPHOS) phenotype with higher expression of TXNIP. In contrast, low expression of TXNIP in T47D cells display an aerobic glycolysis phenotype ${ }^{149}$. Interestingly, estrogen is shown to repress TXNIP expression and drive the Warburg effect (aerobic glycolysis phenotype) ${ }^{149}$. TXNIP-dependent glucose metabolism is associated with prognosis. In pancreatic cancer, the tumour suppressor FBW7 exerts its anti-tumour effects by controlling glucose metabolism and oxygen consumption in a TXNIP-dependent manner ${ }^{217}$.

Further understanding reveals one of the molecular mechanisms is the association between TXNIP and GLUT family. The GLUT membrane transporter family is crucial in glucose transportation and includes class I (GLUT1-4), class II (GLUT7, GLUT11)
and class III (GLUT6, GLUT8, GLUT12) transporters ${ }^{218}$. TXNIP inhibits the influx of glucose and lactate production by decreasing the expression of class I glucose transporters such as GLUT1 and GLUT4 via both endocytosis and degradation of protein levels and reduction of messenger RNA levels ${ }^{219,220}$. Recently, a class III transporter, GLUT8, has been identified as a central regulator of metabolism, and exhibits a high degree of interaction with TXNIP to promote hexosamine homeostasis ${ }^{221}$. Extracellular matrix remodelling is another critical factor for metabolic regulation extrinsically, as defects in matrix attachment affect cellular metabolism, resulting in a reduction in glucose uptake and subsequent ATP deficiency ${ }^{222}$. Matrix digestion reportedly destabilises TXNIP and enriches GLUT1 transporter at the plasma membrane to promote glycolysis, which is fundamental for both embryogenesis and tumourigenesis ${ }^{222,223}$. All these observations emphasise the critical role of TXNIP in metabolic reprograming.

1.3.3 Immune regulation of TXNIP

The tumour-immune cell composition within the TME plays a critical role in cancer progression and the response of tumours to different drug treatments, including targeted, chemo- and immune- therapies. Immune infiltrates are heterogeneous and dynamic in cancer lesions. Cumulative studies have unveiled the important roles of TXNIP on immune regulation. A pan-cancer study recently reports a correlation between TXNIP and infiltration of immune cells, supporting TXNIP as an essential player in immune reprograming within cancer ${ }^{224}$. In addition to its regulation of immune-related signalling pathways and cytokine production, it is also closely involved in the development and maturation of innate and adaptive immune cells. The levels of TXNIP have recently been reported to be negatively associated with the expression of PD-L1, indicating the potential impacts of TXNIP on immune checkpoint molecules (immune
evasion proteins) ${ }^{225}$. However, whether other immune checkpoints are regulated by TXNIP needs to be further studied.

1.3.3.1 TXNIP and NF-KB signalling

TXNIP can exert effects on the immune system in multiple manners. As an intracellular amplifier of oxidative stress and inflammasome activation ${ }^{226}$, TXNIP is detected in different cell types (such as tumour cells, immune cells and stromal cells). In endothelial cells, nuclear translocation of TXNIP leads to NF- $\kappa \mathrm{B}$ activation, which facilitates the expression of pro-inflammatory cytokines such as IL-1 $\beta^{227,228}$. However, in tumour cells, TXNIP suppresses TNF- α-induced NF- $\kappa \mathrm{B}$ activity and subsequently inhibits hepatocarcinogenesis ${ }^{229}$.

1.3.3.2 TXNIP and NLRP3 inflammasome

Activation of NLRP3 inflammasome has been observed in diverse physiological and pathological conditions, such as caloric restriction ${ }^{136}, \mathrm{~T} 2 \mathrm{D}^{230,231}$, preeclampsia ${ }^{232}$, Alzheimer's disease ${ }^{233}$ and cancer. The NLRP3 inflammasome is known to be closely involved in the cancer-immunity cycle ${ }^{80}$ and has both anti-tumorigenic and protumorigenic roles. On one hand, NLRP3 contributes to various types of cell death, such as pyroptosis, apoptosis, necroptosis, and ferroptosis ${ }^{234}$. Accordingly, pharmacological stimulation of NLRP3 appears to control sphere formation of tumour cell lines ${ }^{235}$. In colitis and colitis-associated colorectal cancer contexts, IL-18 induced by the NLRP3 pathway helps to maintain a normal epithelial barrier and suppress tumour growth ${ }^{236}$. Mechanistically, tumour cell death leads to inflammasome activation and IL-18 secretion in Kuppfer cells, a process required for effective NK-cell-mediated tumour cytotoxity ${ }^{236}$. On the other hand, although inflammasome-inducing IL- 1β can activate dendritic cells (DCs) to facilitate adaptive anti-tumour immune activation ${ }^{237}$, it has also been reported to expand MDSCs to drive immunosuppression ${ }^{238}$.

Numerous studies have uncovered a link between TXNIP and NLRP3 inflammasome activation, mostly due to the functions of the Trx 1/ TXNIP axis in ROS regulation ${ }^{231239}$. However, this is not always the case, as Trx1 can lead to NLRP3 inflammasome activation independently of TXNIP ${ }^{240}$. Additionally, STING can also trigger the TXNIP-NLRP3 interaction, leading to NLRP3 inflammasome activation without the involvement of Trx1 ${ }^{241}$. Similarly, CXCR4 can directly bind to TXNIP and induce NLRP3 inflammasome activation without affecting the activity of $\operatorname{Trx} 1^{242}$. The UPR signalling is another player that regulates inflammasome activation via TXNIPdependent mitochondrial dysfunction regulation, rather than through direct modulation of ROS level ${ }^{155}$. Together, these data indicate both Trx1 and TXNIP can also induce the activation of NLRP3 inflammasome independently of the modulation of Trx1/ TXNIP balance and ROS regulation.

1.3.3.3 TXNIP regulates innate immune cells

In addition to its roles in NF-kB and the inflammasome-mediated inflammation, TXNIP is also closely involved in regulating the generation, development and functionality of diverse innate immune cells. A study with TXNIP-deficient mice demonstrated the requirement for TXNIP in the normal functions of DCs, including secretion of the proinflammatory cytokines including IL-12 and IL-6 and the further activation of T cells ${ }^{243}$. These findings suggest that TXNIP has a role in modulating the function of innate immune cells.

Several studies have also highlighted the importance of TXNIP in the development of NK cells. In TXNIP ${ }^{-/-}$mice, the number of NK cells is severely reduced, along with the decreased expression of the maturation marker CD122. However, the development of T and B cell populations are not impaired in mice loss of TXNIP ${ }^{244}$. TXNIP ${ }^{-/}$NK cells are also deficient in IFN- γ production and cytotoxicity, indicating an indispensable role
of TXNIP in maintaining the function of NK cells ${ }^{244}$. Another study has also demonstrated the similar role of TXNIP required for the differentiation of NK cells ${ }^{245}$. Moreover, TXNIP is essential for tumour-infiltrating NK cells. The core of tumours, where NK cells reside, is with high ROS levels. The underlying mechanism for tumourinfiltrating NK cells to confer resistance to oxidative stress is due to retaining of TXNIP in the nucleus and consequently higher activity of Trx-1 against the damage caused by ROS, which further promotes anti-tumour immune responses ${ }^{246}$.

TXNIP is also reported to regulate myeloid lineage. When comparing gene signatures between non-activated and activated polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) from murine models, TXNIP expression appears to be upregulated in the activated group. These findings indicate that TXNIP may have a role in maintaining immune-suppressive activity ${ }^{247}$. Tumour-associated macrophages (TAMs) are abundant in the TME of solid tumours and promote tumour development by suppressing immune responses. In pancreatic ductal adenocarcinoma, TXNIP expression is upregulated in TAMs, and this is driven by KRAS activity in cancer cells. The high expression of TXNIP in TAMs contributes to metabolic changes which are required for macrophage polarisation and the promotion of pro-tumour responses ${ }^{248}$. Thus, these studies suggest the pro-tumorigenic activity of TXNIP by supporting immune-suppressive immune cells.

1.3.3.4 TXNIP and Adaptive immune compartment

The role of TXNIP in adaptive immunity is more complex than in the innate compartment, affecting multiple B and T cell subtypes. TXNIP contributes to the development and secretome of adaptive immune cells. signalling In melanoma for instance, TXNIP expression is enriched in the memory T cell compartment ${ }^{249}$. CPT1a, induced by CD28 signals, is a master of fatty acid oxidation and drive mitochondrial
respiratory functions, which is essential for protective memory T cells generation and future T cell activation ${ }^{250,251}$. However, TXNIP is observed to inhibit CPT1a expression, resulting in the interference of the generation of memory T cells ${ }^{250}$. Collectively, TXNIP-dependent degradation of CPT1a leads to memory T cells metabolically compromised and reduced the formation of memory T cells ${ }^{250}$.

Dual anti-CD3/anti-CD28 stimulation on T cells suppresses TXNIP expression. TXNIP suppression has mainly been attributed to anti-CD3, as anti-CD28 co-stimulation alone has minor effects on the levels of TXNIP expression ${ }^{250,252}$. The activation of T cells is, at least to some extent, due to anti-CD3-mediated suppression of TXNIP; a process potentially abolishes inhibitory impacts of TXNIP on transcriptional activation of targeted genes, especially for genes associated with T cell activation, differentiation, cytokine signalling as well as cell death pathways signalling ${ }^{253}$. Notably, despite T cells showing higher levels of glucose uptake with anti-CD3/anti-CD28 stimulation, these metabolic changes are independent of TXNIP-mediated regulation of glycolysis ${ }^{252}$.

Co-stimulatory signals are required for robust activation of T cells after TCR-MHC complex engagement, including signals from the tumour necrosis factor receptor superfamily (TNFRSF) members. Similar co-stimulatory signals (CD3/CD28 stimulation), TLR2, 4, and 5 agonists inhibit TXNIP expression partially through TNF α production. The reasonable mechanism for induced TXNIP suppression could be that downregulating TXNIP facilitates cell cycle entry and contributes to meet the higher glucose uptake demands, optimal for T cell proliferation and activation ${ }^{159}$. TXNIP also appears to be indispensable in the restriction of T cell (more pronounced in $\mathrm{CD}^{+} \mathrm{T}$ cells) and germinal centre B cell expansion following viral infections, a process that relies on Trx1/TXNIP balance ${ }^{252}$. However, similar to a study by Yang et al ${ }^{246}$, Muri et al also
found that ablation of TXNIP does not affect the development and homeostatic maintenance of T cells, B cells and myeloid cells ${ }^{252}$.

Regulatory T cells (Tregs) are immunosuppressive cells crucial for the inhibition of effector and cytotoxic T cell responses. The roles of Tregs in tumour induction varies depending on the specific subtype of Tregs, and has been shown to predict various clinical outcomes ${ }^{254,255}$. The plasticity and stability of Tregs is regulated by cellular metabolism ${ }^{255}$. A recent study highlights the requirement of MondoA -TXNIP axis in maintaining the identity and functionality of Tregs by repressing glycolysis in colorectal cancer ${ }^{256}$. Inhibition of MondoA or TXNIP in Tregs leads to the upregulation of glycolytic genes and the increase of glycolytic activities. Elevated glycolysis compromises the immuno-suppressive function of Tregs ${ }^{256}$. Mechanistically, glycolysis reduces FOXP3 and ROR γ t expression, but promotes a switch to a Th17-like effector phenotype in Tregs producing more IL-17A, which can be reversed by TXNIP activation. Accordingly, intra-tumoral Tregs generally are presented with increased glycolytic pathway, resulting in a pro-tumour immune microenvironment ${ }^{256,257}$.

Germinal centres (GCs) are the sites of antigen-stimulated B cells proliferation and differentiation ${ }^{258}$. In GCs, antigen-activated B cells not only produce high-affinity antibodies through somatic hypermutation (SHM) on immunoglobulin genes, but also produce antibodies with specialized functions via class-switch recombination (CSR). GC B cells express high levels of BCL-6 that help modulate GC formation through several different mechanisms. These mechanisms include inducing the GC to undergo SHM and CSR, supressing premature B cell activation prior to GC formation and inhibiting B cell differentiation ${ }^{259,260}$. TXNIP is reported to promote GCs development by suppressing BCL-6 activity. In support of this, TXNIP ${ }^{-/-}$mice exhibit large secondary follicle with a GC-like structure and a higher population of $\mathrm{Ki}-67^{+} \mathrm{B}$ cells in the
spleen ${ }^{261}$. TXNIP has also been shown to be expressed at different stages of B cell development. As a central metabolic gatekeeper, TXNIP restricts glucose and energy supplies, which are essential for pre-B cell development ${ }^{215}$. Additionally, deletion of TXNIP provides strong survival advantage and rescues prednisolone-induced cell death in pre-B Acute Lymphoblastic Leukemia cells (ALL) as a result of removal of ATP production ${ }^{215}$. Collectively, TXNIP has been shown to be essential in the maintenance and activation of different adaptive immune cell types.

1.3.4 TXNIP-targeting therapeutics

As we have discussed, it is clear that TXNIP is closely associated with multiple biological functions, especially for TXNIP-mediated perturbation in thioredoxin antioxidant system, that are critical for the development of several pathological processes. Indeed, a fine regulation of ROS levels is critical for cellular life. Thus, TXNIP-mediated ROS regulation is undoubtedly regarded as an essential therapeutic target. Consequently, there are a number of therapeutic strategies currently aimed at modulating TXNIP for clinical application.

TXNIP can promote diseases by regulating oxidative and glycolytic stress, inflammation, and by inhibiting the cell cycle. These notions are supported by accumulating evidence that loss of TXNIP by pharmacological inhibition or genetic TXNIP deletion show protective roles from neurological diseases and diabetes in murine models ${ }^{262,263}$. TXNIP antagonists have been comprehensively reviewed by Qayyum et al ${ }^{264}$. Briefly, TXNIP antagonists consist of small-molecule drug, phytochemicals and peptides. Two old drugs, verapamil (NCT02372253) and Taurine (NCT01226537), that modulates TXNIP levels are currently being tested in clinical trials for the treatment of type 1 and 2 diabetes in clinical trials. Verapamil, a nondihydropyridine L-type calcium channel blocker traditionally used orally for the
treatment of hypertension, inhibits TXNIP expression ${ }^{265}$. Taurine, used for glycemic control in diabetic patients, is also reported to increase TXNIP expression ${ }^{266}$. A recent high-throughput screening has identified SRI-37330, a small molecule TXNIP inhibitor, which significantly decreased glucagon secretion, hepatic glucose output and efficiently treating diabetes ${ }^{267}$.

In the context of cancer treatment, TXNIP agonists hold great potential as anti-tumour agents. Several studies identified that the induced TXNIP expression mediates different types of cancer treatments. For example, targeted therapies in breast cancer such as trastuzumab, cetuximab and lapatinib -which block HER-1/2 pathway- highly increase TXNIP expression and cause G1 cell cycle arrest and apoptosis ${ }^{145}$. Additionally, in triple-negative breast cancer (TNBC), silibinin, used in the treatment of toxic liver damage, has been shown to upregulate TXNIP, which suppresses glycolysis and cell proliferation in cancer cells ${ }^{268}$. Importantly, TXNIP agonist 3-O-methylglucose has been shown to enhance the cytotoxicity of cisplatin in treating non-small-cell lung cancer ${ }^{269}$. Therefore, TXNIP agonists may have great potential as treatment strategies in cancer.

1.4 Growth Differentiation Factor 15 (GDF15)

In this thesis, we explored the downstream target(s) which potentially mediated the immune-regulatory effects of TXNIP after chemotherapy treatment. Since TXNIP is able to regulate the expression of cytokines ${ }^{150,164}$, it is reasonable to hypothesise that secreted factors (cytokines) could mediate its effects. Therefore, we performed proteomic analysis and found out TXNIP was a regulator of Growth Differentiation Factor 15 (GDF15) upon chemotherapy treatment. Further analyses identified the importance of GDF15 in immune regulation.

GDF15, also known as macrophage inhibitory cytokine 1, was first found in 1997 to be expressed in macrophages and required for its activation ${ }^{270}$. Human GDF15 is the product of a simple 2 exon gene, located on chromosome 19p12-13.1, with 309 bp exon I, 891 bp exon II and a single 1820 bp intron ${ }^{271}$. It is a distant member of the TGF- β superfamily, consisting of ligands including TGF- β s, activins, bone morphogenetic proteins (BMPs) and GDFs. Under quiescent, non-activated conditions, GDF15 expression is at low level in most tissues ${ }^{272}$. However, GDF15 significantly increases upon pathological stresses in various diseases, such as metabolic disease and cancer ${ }^{273,274}$. The following sections detail relevant GDF15 actions in the context of this thesis.

1.4.1 Membrane receptors of GDF15

It has been reported that GDF15 can bind to different receptors on the cell surface, including transforming growth factor-beta receptor, GDNF-family receptor a-like (GFRAL) and CD48 receptor.

Figure 1-5. Summarization of membrane receptors of GDF15, including TGF- β receptor, GFRAL and CD48, and the downstream signalling pathways.
(Left panel) GDF15 binds to TGF- β receptors, leading to the phosphorylation of SMAD2/3 and SMAD1/5/8; (Middle panel) GDF15 binds GFRAL to regulate energy homeostasis and body weight; (Right panel) The binding between GDF15 and CD48 accumulates FOXP3 in Tregs.

1.4.1.1 Transforming growth factor-beta (TGF-6) receptor

Dysfunction of TGF- β signalling promotes the progression of cancer by exerting different aspects of effects on cancer cells. In addition to its regulation on proliferation and invasion of cancer cells, cancer stem cell properties and drug resistance, TGF- β signalling can also modulate tumour microenvironment by suppressing both innate and adaptive immune system ${ }^{275,276}$. The activation of TGF- β signalling leads to the heteromeric complex consisting of type I receptors, type II serine/threonine kinase receptors and the subsequent activation of downstream targets, SMAD transcription factors ${ }^{277}$. As a family member of TGF- β, GDF15 shares the same receptors with TGFβ and has been reported to modulate several downstream targets of TGF- β signalling pathways. For example, in leukocytes, the binding of GDF15 to ALK-5 (type I receptor) results in the transphosphorylation of ALK-5 by TGF- β receptor II, which further inactivates leukocyte integrin activity and dampens neutrophil recruitment ${ }^{278}$.

Generally, the binding of GDF15 to TGF- β receptors leads to the phosphorylation of SMAD2/3 and SMAD1/5/8, which in turn form complexes with SMAD4 to mediate their transcriptional responses. GDF15-dependent SMADs signalling pathways are crucial in a variety of biological processes. For instance, GDF15-induced activation of SMAD2/3 signals is essential for the regulation of oxidative metabolism and the maintenance of M2-like phenotype in macrophages ${ }^{279}$. During systemic inflammation, GDF15 induction activates SMAD1/5 downstream of the TGF- β RI, contributing to the suppressive activity of CD56 ${ }^{\text {bright }} \mathrm{NK}$ cells ${ }^{280}$. Notably, the finding that nuclear GDF15 is also reported to blunt SMAD-DNA binding has shown GDF15 can also decrease

TGF- β signalling ${ }^{281}$. However, the effects induced by GDF15-TGF- β receptors binding can be SMAD-independent as well. In hypothalamic neurons, instead of regulating classical SMADs regulatory pathway, GDF15-mediating TGF β receptor activation subsequently reduces neuropeptide Y mRNA expression and increases proopiomelanocortin (POMC) mRNA, leading to the activation of phosphorylated signal transducer. Consequently, the whole process results in cancer-associated anorexia and weight loss ${ }^{282}$. In addition, AKT/mTOR signalling has also been shown to be activated by GDF15-TGF- β RII binding in SMAD-independent manner ${ }^{283}$.

1.4.1.2 GDNF-family receptor a-like (GFRAL)

GFRAL is another well-known cognate receptor of GDF15. GFRAL is relatively more expressed in specific brain regions, such as the substantia nigra, the hippocampus and especially hindbrain neurons ${ }^{284}$. Recent observation that ablation of MT1-MMP restored GFRAL expression indicated the negative regulatory role of MT1-MMP in GFRAL expression regulation ${ }^{285}$. Given that the GDNF family members are wellknown neurotrophic factors, supporting the survival of a range of target neurons, GDF15-GFRAL signalling are proposed to be involved in the regulation of brain cells' functions. Accordingly, GDF15-GFRAL signalling axis is reported to regulate energy homeostasis and body weight physiologically. Moreover, activation of this signalling initiates anorexia/cachexia syndrome pathologically in preclinical models ${ }^{286,287}$. Consistently, this finding was supported by the clinical evidence indicating the positive association between serum GDF15 levels with weight loss in patients with cancer ${ }^{288}$. Additionally, pharmacological blocking of GDF15/GFRAL axis alleviates cancer cachexia ${ }^{289,290}$.

GDF15 binding leads to the formation of a complex with GFRAL and a coreceptor RET. The GDNF-like cysteine-rich domain C1-C2 of GFRAL is responsible for GDF15
binding but intact GFRAL protein is required for RET association ${ }^{286}$. Commonly, GFRAL-mediated signal transduction is dependent on engagement with its coreceptors, RET. RET depletion compromises GDF15/GFRAL-mediated signalling ${ }^{286,291}$. However, some studies argued that RET might not be necessary to transmit the signals induced by GDF15-GFRAL binding ${ }^{292}$. Valine 87 or isoleucine 89 in GDF15 are critical residues for binding GFRAL are. Another residue, tryptophan 32 in GDF15, has been revealed to mediate the action of GDF15/GFRAL axis ${ }^{286,293}$. Mutation of the tryptophan at position 32 attenuates GDF15/GFRAL-mediated signalling, but without affecting the interaction between GDF15 and GFRAL ${ }^{286,293}$.

1.4.1.3 CD48 receptor (SLAMF2)

A recent study found that CD48 on Tregs is another receptor of GDF15. GDF15-CD48 binding mediates the production of peripherally derived inducible Treg (iTreg) cells and maintains the suppressive function of natural Treg (nTreg) cells ${ }^{294}$. CD48 is a type of surface receptors, belonging to the signalling lymphocyte activation marker (SLAM) family, and plays an important role in regulating immune cells functions. CD48 is reported to be expressed on almost all hematopoietic cells ${ }^{295}$. The classic ligands of CD48 include CD244 and CD2 and the ligand-receptor binding promotes the crosstalk between immune cells and immune cells or other cell types ${ }^{295}$. In hepatocellular carcinoma, GDF15 has been found to interact with CD48. The GDF15-CD48 interaction leads to the downregulation of an E3 ubiquitin ligase STUB1 and accumulation of FOXP3, a lineage specification factor critical for the development of Tregs ${ }^{296}$. Consequently, deletion of CD48 or treatment with GDF15 neutralizing mAbs in hepatocellular carcinoma increases the response of patients to anti-PD-L1 antibody treatment and markedly prolongs survival ${ }^{294}$.

1.4.2 Regulation of GDF15

GDF15 is expressed at low levels in most tissues under normal state, yet relatively abundant in liver ${ }^{297}$, intestine ${ }^{298}$, kidney ${ }^{299}$ and placenta ${ }^{271}$. The basal transcriptional regulation of GDF15 is determined by sp1 transcription factors ${ }^{300}$. As a ubiquitous cellular stress signal, endogenous GDF15 could be induced in a variety of cell types under different physiological and pathological stress conditions, including exercise, aging, diabetes, cancer and even drug consumption ${ }^{301,302}$. Molecular mechanisms responsible for modulating the levels of GDF15 in cells include transcriptional and epigenetic regulation and protein degradation ${ }^{303}$.

1.4.2.1 GDF15 regulation in Non-cancer contexts

Exercise and injury

Exercise is observed to significantly increase plasma GDF15 ($\sim 295 \mathrm{pg} / \mathrm{ml}$ vs ~ 215 $\mathrm{pg} / \mathrm{ml}$ at rest). At the end of recovery, GDF15 further increases to $\sim 350 \mathrm{pg} / \mathrm{ml}^{304}$. However, skeletal muscle is not the source of GDF15 induced by exercise although it can release GDF15 under certain conditions ${ }^{304,305}$. Therefore, the responsible organ(s) need to be further studied. Exercise-induced GDF15 observed in circulation works on neurons, contributing to energy homeostasis ${ }^{304,306}$.

Injury is another condition to induce the expression of GDF15. For example, post renal ischemia-reperfusion injury (IRI), GDF15 increases as early as 2-4 hours, and high levels can be remained for a long period (even 12 months) ${ }^{307,308}$. Cardiomyocytes is the source of GDF15 in the infarcted heart, playing cardioprotective roles via activating phosphoinositide 3-OH kinase (PI3K) /AKT signalling pathway ${ }^{309}$. However, GDF15 has been also observed to be activated after acute injury and further induce harmful effects on retinal ganglion cell ${ }^{310}$.

Diabetes

GDF15 is markedly elevated in patients with obesity ${ }^{311}$. Interestingly, there is no difference in GDF15 mRNA expression in adipose tissue between lean and obese individuals ${ }^{311}$. The activation of the integrated stress response (ISR) by hypoxia, the unfolded protein response (UPR) and inhibition of histidyl tRNA synthetase have been observed to cause the induction of GDF15 in a PERK-ATF4-CHOP signalling dependent manner, indicating the important role of ISR in regulating GDF15 expression ${ }^{312}$. Overexpression of GDF15 in adipocytes by activating ISR results in suppression of appetite and a reduction in the risk of obesity ${ }^{313}$, suggesting a protective role of GDF15 against obesity.

Mitochondrial functions

AMP-activated protein kinase (AMPK) is a master regulator of mitochondrial function, modulating multiple enzymes involved in mitochondrial homeostasis ${ }^{314}$. One study demonstrated that activation of AMPK in mice resulted in increased GDF15 expression. In contrast, GDF15 expression was blunted in AMPK $\beta 1$-isoform deficient mice, suggesting that GDF15 is a downstream target of AMPK. Importantly, although AMPK activation induces ER stress (especially ATF4/CHOP pathway) and the CHOP/ATF4 signalling is reported to regulate GDF15 expression ${ }^{298,315}$, AMPK-induced GDF15 expression is CHOP-independent ${ }^{316}$. Additionally, peroxisome proliferator-activated receptor $\gamma(\operatorname{PPAR} \gamma)$, another essential factor in maintaining oxidative metabolism and mitochondrial biogenesis, is observed to stimulate GDF15 expression in macrophages ${ }^{317}$. A low ratio of NAD/NADH is also associated with GDF15 induction, further suggesting that GDF15 is a potential mitochondrial stress-induced cytokine ${ }^{318}$. Inflammation and infection

Proinflammatory cytokines, such as TNF α, IL1 β, and IL6, are observed to induce GDF15 expression ${ }^{270}$. In addition, NF- κ B, a major regulator of pro-inflammation, can also induce GDF15 expression by binding exon 2 of GDF15 gene to promote transcription ${ }^{319}$. Collectively, these data suggest the close relationship between inflammation and GDF15. During uncontrolled systemic inflammation, elevated levels of circulating GDF15 are associated with enhanced morbidity and an increased risk of septic complications. The potential reason is that GDF15 mediates tolerance to inflammatory damage by regulating hepatic triglyceride production, supporting metabolic demands of the heart and protecting heart from damage ${ }^{320}$. In addition, increased circulating GDF15 is observed in acute inflammatory models of infection and sepsis including lipopolysaccharide (LPS). However, despite the important role of GDF15 in weight loss and anorexia, GDF15-neutralizing antibody do not reverse anorexia induced by LPS ${ }^{321}$. Upregulation of GDF15 by LPS in serum could possibly be explained by its role as an anti-inflammatory regulator, which suppresses inflammation attacks ${ }^{322}$. In support of this, the addition of recombinant human GDF15 protein (rhGDF15) decreases the generation of proinflammatory cytokines, and inhibits the activation of T cells ${ }^{323}$.

Both viral and bacterial infection have also been shown to induce the expression of GDF15, especially in liver and kidney ${ }^{320}$. For example, GDP15 expression is increased in cells infected with the human papillomavirus type 8 E7 oncoprotein (HPV8-E7) ${ }^{324}$. However, upregulation of GDF15 in the body/serum does not affect pathogen control, evidenced by the observation that blockade of GDF15 with neutralizing antibody does not change bacterial titers in peritoneal lavage fluid or viral load in the bronchoalveolar lavage fluid ${ }^{320}$, suggesting that GDF15 does not directly participate in eliminating
pathogens. Indeed, GDF15 promotes the tolerance to inflammatory damage via metabolic reprogramming ${ }^{320}$.

1.4.2.2 GDF15 regulation in tumour-relevant condition

Oncogenes and tumour suppressor genes play important roles in regulating GDF15 expression. Aurora kinase A (AURKA), a tumour oncogene, promotes the production of GDF15, while blocking AURKA compromises GDF15 production in cancer cells ${ }^{325}$. Moreover, tumour suppressors, such as p53, GSK- 3β and EGR-1, can also induce GDF15 expression ${ }^{303}$. So far, two p53 binding sites have been identified in the promoter region of GDF15 gene ${ }^{277,326}$. In support of this, experiments in HCT116 cells have identified that GDF15 expression is highly dependent on p53 expression. GDF15 expression induced by p53 has been shown to inhibit tumour cell growth ${ }^{277}$, but decreased chemotherapy-induced apoptosis ${ }^{327}$. Additionally, genetic deletion of p53 abolishes the increased serum of GDF15 and GDF15-mediated weight loss upon cisplatin challenge ${ }^{328}$.

Hypoxia is a hallmark of cancer, facilitating the formation, progression and metastasis of tumours ${ }^{329}$. GDF15 expression has also been reported to be induced under anoxia condition. Interestingly, the regulation of GDF15 is independent of on the hypoxia inducible factor 1 , a key mediator of the anoxia response ${ }^{326}$. Until now, the molecular mechanism mediating hypoxia-induced GDF15 is still elusive.

1.4.2.3 Drug consumption

GDF15 expression changes in response to exogenous drugs such as metformin, colchicine, AICAR, chemotherapy, chemo-preventive dietary compounds and nonsteroidal anti-inflammatory drugs (NSAIDs) ${ }^{281,301}$. After metformin treatment, GDF15 is increased predominately in the kidney and distal intestine, which contributes
to metformin-mediated improved lifespan in patients with diabetes ${ }^{298,330}$. The mechanism is that GDF15 is responsible for metformin-mediated energy balance and weight loss by binding GFRAL ${ }^{298}$, suggesting GDF15 levels mediate the response to metformin. Notably, increased GDF15 expression following metformin treatment is dependent on ISR signalling, especially ATF4 and CHOP proteins ${ }^{331}$. In addition to metabolic modulating drugs, chemotherapies, such as docetaxel and mitoxantrone, promote GDF15 expression in prostate cancers, which results in decreased drug sensitivity ${ }^{332}$. Additionally, NSAIDs have also been shown to increase the levels of GDF15 protein in a NRF2-dependent manner to suppress inflammation ${ }^{333}$.

1.4.3 The functions of GDF15 in cancer

Accumulating studies revealed multifunctional roles of GDF15 in controlling biological events. In the nervous system, GDF15 controls food intake and body mass via GFRAL as previously mentioned. In addition, as a neuronal survival factor, GDF15 also helps to enhance of hippocampal neural stem cell proliferation and neuronal differentiation, the repair of crushed optic nerve and regeneration of the peripheral nervous system ${ }^{334,335}$. In metabolic disorders, such as diabetes and obesity, glucose intolerance is decreased when overexpressing GDF15 or administrating recombinant GDF15 protein in a murine model ${ }^{336}$. Importantly, GDF15 has pleiotropic functions and may differ in various types of cancer ${ }^{337}$. Similar to other TGF β family members, although substantial increases in GDF15 expression are observed in cancer cells ${ }^{338,339}$. The roles of GDF15 may differ during different stages of cancer tumorigenesis.

Anti-tumour

Figure 1-6. GDF15 shows both pro-tumour and anti-tumour effects.
(Left panel) On left panel, GDF15 promotes cell survival, metastasis and chemoresistance; (Right panel) On right panel, GDF15 facilitates cell apoptosis and decreases inflammation.

1.4.3.1 Pro-tumorigenic effects of GDF15

It is well-documented that elevated GDF15 expression is related to poor prognosis in cancer, suggesting it is pro-tumorigenic. GDF15 has been identified to be involved in different oncogenic processes, including cancer initiation, proliferation, metastasis, drug sensitivity and cancer recurrence. Expectedly, GDF15 has several roles in modulating the response of tumour cells and their surrounding microenvironment.

GDF15 and tumour cell survival and proliferation

Several studies have identified a role of GDF15 in driving tumour cell proliferation. In prostate cancer, an oligonucleotide microarray screen of more than 8900 genes identified that malignant tissues show higher GDF15 expression compared to normal tissues ${ }^{340}$, indicating the role of GDF15 in malignant transformation. Additionally, GDF15 exhibits increased expression in prostatic androgen-independent cell models compared to androgen-sensitive cell models, suggesting GDF15 is involved in the progression of hormone-refractory behavior ${ }^{341,342}$. Similarly, GDF15 promotes
malignant progression of breast and gastric cancer cells by inducing the activation of AKT/ERK/mTOR signalling ${ }^{343}$. To be noted, GDF15 is found to be expressed in both tumour-associated macrophages (TAMs) and cancer cells in esophageal squamous cell carcinomas, and secreted GDF15 is associated with cancer cells growth and poor prognosis ${ }^{344}$. Moreover, to facilitate hepatocellular carcinoma progression, hepatic stellate cells (HSCs) produce GDF15 to form a pro-tumoral microenvironment ${ }^{345}$. When co-cultured with hepatoma cells, HSCs increase the secretion of GDF15 in an autophagy-dependent manner, resulting in increased proliferation of hepatoma cells by activating ERK/AKT signalling ${ }^{345}$.

GDF15 and tumour metastasis

In CRC patients, circulating GDF15 concentration has been observed to be elevated, and further increase when metastasis occurs ${ }^{346}$, suggesting GDF15 is positively associated with metastasis of CRC. Similarly, GDF15 induced by NF-кB signalling pathway facilitates metastasis of breast cancer cells to bone tissue, which can be blocked by inhibition of the receptor activator of nuclear factor- κ B ligand (RANKL) ${ }^{347}$. Additionally, activated GDF15 signalling is observed in metastatic variants, promoting the mobility of tumour cells and the migration of prostate cancer cells ${ }^{348,349}$. To be concordant, overexpression of GDF15 leads to prostate cancer bone metastasis and colonization ${ }^{350}$. Loss of GDF15 has also been shown to prevent EMT phenotype and alleviate invasion through IGF-1R-FoxM1 signalling in breast cancer ${ }^{351}$.

GDF15 and drug resistance

GDF15 has also been reported to modulate the response of cancer cells to drug treatment. For example, activation of autophagy by challenging breast cancer cell lines with divergent autophagy inducers, such as tamoxifen, trastuzumab, bortezomib or
rapamycin, promotes GDF15 upregulation and high levels of GDF15 is associated with poor prognosis, suggesting that GDF15 is part of an autophagy signature and mediates autophagy-driven chemoresistance ${ }^{352}$. Moreover, GDF15 is positively associated with stemness and chemo-radiotherapy resistant markers in cancer cells. Interestingly, knockdown of GDF15 leads to the decreased expression of these markers ${ }^{353,354}$. Together, these data suggest that GDF15 expression may help promote drug resistance by enabling tumour cells to adapt to their surrounding environment. Potential GDF15 driven adaptation mechanisms include maintenance of cell stemness, activation of oncoproteins and modulation of drug resistance markers.

GDF15 mediating cross-talk among tumour microenvironment

The tumour microenvironment, which includes an array of components such as adipocytes, immune cells, blood vessels, fibroblasts, signalling molecules, and the extracellular matrix, is indispensable to tumour as a whole ${ }^{355}$. The crosstalk between the different cell types within the TME leads to different outcomes ${ }^{356}$. GDF15 has been shown to modulate the interaction between various cell types within TME. For example, GDF15 derived from cancer cells stimulates vasculature development in melanoma ${ }^{357,358}$. Yet, several studies have also shown secreted GDF15 has potential anti-angiogenic effects in the TME^{326}.

GDF15 is involved in the regulation of different immune cells. High levels of GDF15 are associated with decreased lymphocyte infiltration in tumours, suggesting an association between GDF15 and immune cells ${ }^{359}$. GDF15 released by tumour cells blunts the killing activity of macrophages and suppresses macrophage surveillance during tumourigenesis ${ }^{319}$. The administration of recombinant GDF15 protein significantly reduces T-cell stimulatory activity of tumour-associated macrophages, promoting resistance to anti-PD1 therapy in mice model ${ }^{325}$. Expectedly, GDF15
knockdown in tumour cells deprives of the generation of $\mathrm{CD} 11 \mathrm{~b}^{+} \mathrm{PD} 1^{+}$cells and confers tumour-associated macrophages (TAMs) with enhanced phagocytic activity and T-cell stimulatory activity ${ }^{325}$. Dendritic cells (DCs) are professional antigen-presenting cells to link innate and adaptive immune responses ${ }^{360}$. During DCs maturation, GDF15 treatment leads to surface protrusion retraction, accompanied by decreased expression of maturation and costimulatory markers, suggestive of the inhibitory anti-tumour effects of GDF15 by regulating DCs function ${ }^{361}$. Additionally, GDF15 has also been found to mediate the immune-suppressive effects on NK cells and T cells in glioma ${ }^{362}$. Together, GDF15 has inhibitory effects on different immune cell types.

Cancer-associated fibroblasts (CAFs) are among cell types abundant in the tumour stroma, and have a variety of functions including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes ${ }^{363}$. In prostate and pancreatic cancers, CAFs are also found to be another source of GDF15 $5^{339,364}$. Overexpression of GDF15 in fibroblasts stimulates cancer cells to grow and migrate in paracrine signalling ${ }^{339}$. Similar effects of CAFderived GDF15 are also observed on leukemia cells. Indeed, CAFs are found to promote chemo-resistance in acute myeloid leukemia (AML) via secretion of GDF15 ${ }^{364}$. Genetic and pharmacologic deletion of GDF15 in CAFs increases drug-induced cytotoxicity in leukemic cells, suggesting an important contribution of GDF15 in establishing CAFmediated chemoprotective niches ${ }^{364}$. Additionally, GDF15 expressed by bone marrow mesenchymal stem cells facilitates the proliferation of myeloma cells by activating AKT-dependent siganling ${ }^{365}$. Therefore, GDF15 plays an important role in mediating crosstalk among different cell types within the TME.

1.4.3.2 Anti-tumorigenic effects of GDF15

Although the role of GDF15 in promoting tumorigenesis has been highlighted in numerous studies, solid evidence has documented that GDF15 also has antitumorigenic effects. GDF15 is shown to affect cancer cell proliferation, leading to high rates of cellular apoptosis and inhibition of tumours growth ${ }^{366,367}$. For example, in glioblastoma, overexpression of GDF15 inhibits tumour growth and decreases tumour volume in nude mice ${ }^{326}$. GDF15 has similar tumour-inhibiting activities in colorectal and bladder cancers ${ }^{303,368}$. In transgenic NAG-1Tg/Lox mice, a model which ubiquitously expresses human GDF15, display reduced inflammatory responses and show resistant to tumour formation ${ }^{369,370}$. Furthermore, GDF15 expression is induced by tumour suppressors and anti-cancer drugs, which helps promote apoptosis and reduce tumorigenicity ${ }^{303,366}$.

1.4.4 Circulating GDF15 as a predictive marker for cancer prognosis

Despite the existence of a nucleus-residing form, GDF15 is mostly found in the cytoplasm or the extracellular matrix $(\mathrm{ECM})^{281}$. The unprocessed translated form of GDF15 consists of 308 amino acids with a classical signal sequence (29 aa$)^{270}$. Upon cleavage by PACE4 and MMP-26, a matured form is produced at the C-terminus (112 aa $)^{270,371}$. GDF15 can be secreted both in a pro-form and mature form, levels of which can be evaluated in the circulation ${ }^{372}$. The mature protein is secreted as a $\sim 25 \mathrm{kDa}$ homodimer consisting of two 112 amino acid polypeptide chains, linked by disulfide bonds ${ }^{372}$. Similarly to tissues trends, low levels of circulating GDF15 are observed under physiological condition $(0.15-1.15 \mathrm{ng} / \mathrm{ml})^{292}$, but are markedly increased under pathological conditions ${ }^{324}$. Notably, serum GDF15 levels are predictive of all-cause mortality ${ }^{373,374}$. Collectively, circulating GDF15 is suggested to be a potential prognostic marker for diseases.

The levels of circulating GDF15 positively correlates with the expression levels of GDF15 in primary tumours, suggesting GDF15 expressed by tumour cells not restricted in resection and is secreted into the blood stream ${ }^{362}$. Elevated concentrations of GDF15 circulating in blood are associated with cancer incidence, progression, recurrence and cancer-related death ${ }^{359,375,376}$. In line with this, a prospective study has also confirmed that the levels of circulating GDF15 positively correlate with an increase in colorectal cancer incidences ${ }^{274}$. However, a recent EPIC-Heidelberg cohort study reported that GDF15 serum levels negatively correlate with the risk of prostate cancer incidences, in contrast to a positive risk in lung cancer ${ }^{377}$. These studies suggest that the association between tumour incidence and circulating GDF15 levels are dependent on tumour type. A number of clinical studies looking at metastatic disease have identified that the serum levels of GDF15 are elevated in patients with bone metastases ${ }^{378,379}$. Patients with cancerous bone metastases have a 5 -fold increase in circulating GDF15 with an AUC of 0.87 compared to cancer patients without metastatic disease ${ }^{378}$. Moreover, in colorectal cancer models, a metastatic cell line, SW620, secretes more GDF15 protein into conditional media when compared to a paired primary cell line, SW480 ${ }^{380}$. These findings are further supported by the levels of serum GDF15 measured in colorectal patients with metastatic diseases ${ }^{380}$. Higher levels of serum GDF15 are detected in colorectal cancer patients and positively correlate with the occurrence of liver metastasis ${ }^{381}$.

Circulating GDF15 levels have also been shown to correlate with cancer prognosis. A Swedish cohort study suggests that elevated GDF15 serum levels are associated with higher death rates in patients with prostate cancers ${ }^{382}$. In melanoma, a retrospective study with 761 patient samples also identified that high serum GDF15 correlates with shorter OS and recurrence in stage III and unresectable stage IV patients ${ }^{383}$. GDF15
secretion also increases following chemotherapy, suggesting a role for GDF15 in predicting drug sensitivity and efficacy in cancer patients ${ }^{384,385}$.

1.5 Summary

It is well accepted that tumours are not restricted to their tissue of origin and that the TME is crucial in modulating the induction and malignant transformation of tumour cells ${ }^{67,386}$. The clinical successes of immunotherapies (such as immune checkpoint blockade) highlight the crucial role of the immune system in controlling malignant cells and promoting long-term anti-cancer effects ${ }^{77,387,388}$.

Chemotherapy agents, such as oxaliplatin, are capable of both inducing cytotoxicity and promoting immune activation in tumours. Several mechanisms have been reported to mediate the activation of anti-tumour immune responses. For instance, chemotherapy-induced immunogenic cell death (ICD) leads to cells exposing or releasing DAMPs (HSP70, calreticulin, ATP, high-mobility group box 1, type I IFN, cancer cell-derived nucleic acids and annexin A1) ${ }^{389}$, and these signals mediate antitumour immune responses dependent on a crosstalk between innate cells (dendritic cells, macrophages and NK cells) and adaptive immune cells (T and B cells). Additionally, chemotherapies have been shown to promote upregulation of HLA expression and change the spectrum of peptides presented on MHC class I molecules (immunopeptidome), which facilitates the activation of antigen presenting cells, such as DCs, and ultimately favours T cell anti-tumour response. Other mechanisms include the manipulation of immune checkpoint molecules (like PD-L1) ${ }^{390}$ and "immune modulation" independent of classic ICD^{391}. However, despite advances in the understanding of the interaction of chemotherapy with immune responses, these mechanisms have not produced major clinical benefit in solid tumours, and an exact role of the involvement of chemotherapy in immunogenicity is still elusive. This
highlights the urgent need for understanding the mechanisms which drive changes in immune cell response by chemotherapy.

In this thesis, we aim to study the underlying molecular mechanisms involved in oxaliplatin-mediated immune activation in colorectal cancer. We, firstly, identified the induced TXNIP expression post drug treatments by RNA sequencing analysis. TXNIP is a stress-response gene, that plays an important role in inhibiting the genesis and progression of cancers. In support of this, decreased expression is observed in many types of cancers, suggesting that TXNIP has tumour-suppressive activities ${ }^{102,392-394}$. Despite studies reporting the involvement of TXNIP in different molecular processes including drug sensitivity, metastasis, angiogenesis, glycolysis and NLRP3 inflammasome activation ${ }^{107,188,207,220,231}$, we failed to recapitulate these phenotypes in our system. Further analyses revealed that TXNIP can affect the function of Tregs and NK cells by regulating the expression and secretion of GDF15, a cytokine belonging to TGF- β family. Moreover, the relevance and clinical implication of TXNIP/GDF15 axis was also investigated.

1.6 Overall aim of the study

1.6.1 Hypothesis

The null hypothesis of this thesis is that chemotherapies, such as oxaliplatin, is beneficial to cancer patients, at least to some extent, by inducing the immune activation. This effect can be achieved by modulating the expression of target proteins in cancer cells. Thus, we hypothesise that one of differentially expressed genes mediates oxaliplatin-induced immune modulation.

1.6.2 Aims

The aims of the thesis were as followed:

- To explore the differentially expressed genes upon chemotherapy treatment in colorectal cancer by RNA sequencing analysis and further verify the target by immuno-blotting and qPCR analyses;
- To explore the upstream regulator using CRISPR/Cas9 gene editing technique combined with immune-blotting assay;
- To identify the functional impact of TXNIP modulation in colorectal cancer cells by viability, wound-healing and metabolic analysis assays;
- To analyse the downstream target of TXNIP by proteomic analysis, and its effects on immune cells (such as Tregs and NK cells) by performing co-culture experiments; To explore the effects of the newly discovered signalling on chemotherapeutic drug resistance by establishing oxaliplatin-resistant cell models and analysing publicly-available datasets.

Chapter II. Materials and Methods

2.1 Reagents \& Materials

2.1.1 Cell lines

Human colon adenocarcinoma cell lines DLD1, DiFi, and SW48 were purchased from American Type Culture Collection.

LIM1215 is a generous gift from Prof. Sabine Tejpar from the Department of Oncology (University Leuven, Belgium).

HT29 and HCT15 are generous gifts from Dr. Juan Jose Garcia Gomez from the Department of Medical Physics and Biomedical Engineering (University College London).

HUVEC (Human Umbilical Vein Endothelial Cells) was purchased from PromoCell (GmbH).

2.1.2 Cell culture

"Complete media", RPMI and DMEM media (Life Technologies Ltd, US) were supplemented with 10% heat inactivated Fetal bovine serum (FBS, Sera Laboratories International Ltd), 1% Penicillin/streptomycin (Life Technologies Ltd, US) and Lglutamine (Life Technologies Ltd, US). In this study, FBS from new batches would be tested before use. The tests include whether it will affect cell morphology, cell growth and drug sensitivity. If FBS from new batches showed no variability, it was warranted to use for cell culture.

Endothelial Cell Growth Medium 2 (PromoCell GmbH, Germany) supplemented with Supplement-Mix (PromoCell GmbH, Germany)

Trypsin/EDTA (PAA Laboratories, Germany)

Oxaliplatin (Ebewe) were obtained from the hospital pharmacy at the Guys' hospital (London, UK); 5-fluorouracil (5-FU, S1209-SEL-100mg) was purchased from Selleck Chemicals, US

PBS (Gibco, US)

6, 12, 24 and 96 well cell culture plates (Costar Corning)

15 and 50ml falcon tube (SARSTEDT)

Cryovials (SARSTEDT)

Mr. Frosty ${ }^{\text {TM }}$ Freezing Container (Thermo Scientific)

Biosafety cabinet

Centrifuge (Labnet Prism)

P1000, P200 and P20 pipette filtered
$37^{\circ} \mathrm{C}$ water bath
$37^{\circ} \mathrm{C}$ incubator
$-80^{\circ} \mathrm{C}$ freezer

2.1.3 Organoids

Dulbecco's Modified Eagle Media - DMEM Advance/F12 (Life Technologies Ltd)

Pen-Strep (Thermo Fisher Scientific)

B27 (Life Technologies Ltd)

HEPES (Thermo Fisher Scientific)

N2 (Life Technologies Ltd)

N -acetylcysteine (NAC, Sigma)

Anit-Anti (Life Technologies Ltd)
nicotinamide (Sigma-Aldrich)

GLutaMAX (Thermo Fisher Scientific)

Rspondin (PeproTech)

Noggin (PeproTech)

EGF (Life Technologies Ltd)

A83-01 (Tocris)

SB20 (Sigma-Aldrich)

PGE2 (Tocris)

Gastrin (Sigma-Aldrich)

Y-27632 (RhoKi)

TrypLE ${ }^{\text {TM }}$ Express Enzyme (Gibco)

Basement Membrane Extract (BME) BME-2 (Cultrex)

GentleMACS C Tube (Miltenyi Biotec)

ACK lysis buffer (Thermo Fisher Scientific)

2.1.4 Cell viability

Deep Blue Cell Viability ${ }^{\text {TM }}$ Kit (BioLegend)

CellTiter-Glo® 3D Cell Viability Assay kit (Promega)

Low-attached U-bottom 96 well plate (Costar)

Black-sided/ White-sided, flat-bottomed plates (Corning B.V. Life Sciences)

CLARIOstar Plate Reader (BMG LABTECH)

2.1.5 CRISPR-CAS9 genome engineering

Cas9 Nuclease Expression plasmid (Horizon)

Edit-R synthetic crRNA and tracrRNA oligos (Horizon)

Edit-R crRNA Non-targeting Control (Horizon)

DharmaFECT Duo Transfection Reagent (Horizon)

Flow cytometer (BD Biosciences)

10 mM Tris buffer solution

Neon® Transfection System (Thermo Fisher Scientific)

2.1.6 Generation of CRISPRa Constructs

Edit-R CRISPRa Lentiviral dCas9-VPR particles (Horizon)

2.1.7 Western blotting

NE-PER ${ }^{\text {TM }}$ Nuclear and Cytoplasmic Extraction Reagent (Thermo Fisher Scientific)

Mitochondria Isolation Kit (Thermo Fisher Scientific)

TBS: Tris-buffered saline (25 mM Tris, $100 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.5$)

Tween-20 (Sigma-Aldrich)
Bovine Serum Albumin (BSA) (BioSera)

PVDF transfer membrane (Immobillon)

Pierce ECL Western Blotting substrate (Thermo Scientific)

Pierce ${ }^{\text {TM }}$ BCA Protein Assay Kit

Table 2-1 Primary antibodies

Antibody	Species	Company	Dilution for WB
TXNIP	Rabbit	Cell Signaling Technology	1:1000
Actin	Mouse	Protein-tech	1:5000
MondoA	Rabbit	Cell Signaling Technology	1:1000
Lamin A	Rabbit	Cell Signaling Technology	1:1000
GAPDH	Mouse	Protein-tech	1:5000
IRE-1 α	Rabbit	Cell Signaling Technology	1:1000
ATF6	Rabbit	Cell Signaling Technology	1:1000
BIP	Rabbit	Cell Signaling Technology	1:1000
PERK	Rabbit	Cell Signaling Technology	1:1000
ATF4	Rabbit	Cell Signaling Technology	1:1000
eif 2α	Rabbit	Cell Signaling Technology	1:1000
p-eif2 α	Rabbit	Cell Signaling Technology	1:1000
Tubulin	Mouse	Protein-tech	1:5000
C-MYC	Rabbit	Abcam	1:1000

IL-1 β	Rabbit	Cell Signaling Technology	$1: 1000$
GLUT1	Rabbit	Cell Signaling Technology	$1: 1000$
Caspase 1	Rabbit	Cell Signaling Technology	$1: 1000$
GDF15	Rabbit	Abcam	$1: 1000$
Cas9	Mouse	Santa Cruz	$1: 1000$
Foxp3	Rabbit	Abcam	-

Table 2-2 Secondary antibodies

Antibody	Species	Company	Dilution for WB
HRP conjugated anti mouse	Goat	Protein-tech	$1: 3000$
HRP conjugated anti rabbit	Goat	Protein-tech	$1: 3000$
AlexaFluor® 647 anti mouse	Goat	Invitrogen	-
AlexaFluor® 569 anti rabbit	Goat	Invitrogen	-

2.1.8 RNA isolation and quantitative real-time PCR

Trizol Reagent ${ }^{\mathrm{TM}}$ (Invitrogen)

Rneasy Mini Kit (Qiagen)

Rnase-free Dnase (Qiagen)

SuperScript ${ }^{\text {TM }}$ II Reverse Transcriptase kit (Thermo Fisher scientific)

QuantStudio 7 Flex Real-Time PCR System (Biosystems)

Power SYBR green PCR master mix (Biosystems)

Table 2-3 Primers used for qRT-PCR

Name	Forward	Reverse
$E I F 2 A K 3$	CACCTGGACCCCAACCATAC	TGCATGAGGTCCAGCAAAGT
$E R N 1$	TGAGGACGACGTGGACTACA	CTCCCGCTGCCAGACATAAA
$H S P A 5$	CAACGCCAAGCAACCAAAGA	ACACGCTGGTCAAAGTCTTCT
$G A P D H ~$	CTCCTGTTCGACAGTCAGCC	CCCAATACGACCAAATCCGTTG
$T X N I P ~$	GACCTGCCCCTGGTAATTGG	GGGAGGAGCTTCTGGGGTAT
$M Y C ~$	GGCTGATACGTCTTATGTCATCC	GAGGCTCCACAAGGTGTGA
$A R R D C 4$	GCCAGCCAGTTCAGTATGGA	GCATAATTTGGTGGTGCTTCAGG
$M L X I P ~$	ACGGCTCTGTGGACGTAGA	GGCTCTTCCAGTACTTCCCTTC

Primers were designed by Universal Probe Library (Roche life science, https://lifescience.roche.com/en_gb/brands/universal-probe-library.html\#assay-design-center). Primers with the top ranking were further analysed by Net Primer website (Premier Biosoft, http://www.premierbiosoft.com/netprimer/) and Umelt Quartz (https://dna-utah.org/umelt/quartz/). Selected oligonucleotides pairs were then tested by q-PCR (Melting curves for each primer were shown in Appendix Figure 1 to prove primer specificity). All the primers showed a single pick representing a single amplicon; therefore, they have been used throughout this study.

2.1.9 Glucose Uptake assay

Glucose Uptake Assay Kit (Promega)

White multi-well plates (Corning)

2.1.10 Lactate Detection Assay

Lactate-GloTM assay kit (Promega)

2.1.11 ELISA

Human GDF15/ IL-1 β / IFN $\gamma /$ TNF α Quantikine ELISA Kit (R\&D Systems)

2.1.12 siRNA transfection

OPTi-MEM-1 (Gibco)

Lipofectamine ${ }^{\text {TM }}$ RNAiMAX Transfection Reagent (Thermo Fisher Scientific)
siRNA oligonucleotides (Horizon)

Table 2-4 Sequence of siRNA oligonucleotides

Reagent or Resource	Source	Identifier
siRNAs		Dharmacon
ON-TARGETplus non-targeting pool siRNA	D-001810-10-05	
ON-TARGETplus SMARTpool siRNA Human EIF2AK3	Dharmacon	L-004883-00-0005
ON-TARGETplus SMARTpool siRNA Human MLXIP	Dharmacon	L-008976-00-0005

2.1.13 Extracellular acidification rate

XF96 Extracellular Flux Analyzer (Bioscience)

Seahorse XF Glycolysis Stress Test Kit (Agilent)

2.1.14 Immunohistochemical staining

3\% hydrogen peroxidise (Sigma-Aldrich)

EnVision Chem Detection Kit (DaKo Cytomation)
100% and 70% ethanol (Tennants)

Haematoxylin (VMR)

Eukit mounting media (Sigma-Aldrich)

Leica BOND refine polymer detection kit (DS9800).

2.1.15 Immunofluorescence staining

Pierce ${ }^{\text {TM }} 16 \%$ Formaldehyde (w/v), Methanol-free (28906, Thermo Fisher scientific, USA)

Blocking solution: 1\% BSA in PBS

Heat inactivated goat serum (Invitrogen)

Triton X-100 (Thermo Fisher scientific)

DAPI (Cell Signalling Technology)

NIS Elements software (Nikon Eclipse)

Donkey Serum (Sigma-Aldrich)

MitoTracker ${ }^{\text {TM }}$ Red CMXRos (Thermo Fisher scientific)

2.1.16 Tube formation

Matrigel ${ }^{\mathrm{TM}}$ (BD Biosciences)

2.1.17 Proteome profiler antibody arrays

Human XL Cytokine Array Kit (Cat\# ARY022B, R\&D systems, Minneapolis, MN, USA)

2.1.18 ROS production

DHE (Dihydroethidium) Assay Kit—Reactive Oxygen Species (ab236206, Abcam)

2.1.19 Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-PCR)

Chromatin Extraction Kit (Abcam)

QIAquick PCR Purification Kit (Qiagen)

ChIP Kit Magnetic One -Step (Abcam)

IgG control (Cell Signalling Technology)

2.1.20 Mass Spectrometry

NuPAGE ${ }^{\text {TM }}$ LDS Sample Buffer (Thermo Fisher scientific)

Imperial protein stain (Thermo Fisher scientific)

TMTpro reagents (Thermo Fisher scientific)

2.1.21 Immune cell isolation and differentiation

Ficoll-Paque (GE Healthcare)

2.1.22 Flow cytometry

live/dead dye (Thermo Fisher scientific)

Trustain (Biolegend)

Intracellular fixation and permeabilization kit (ebioscience)

2.1.23 Proliferation assays

eFluorTM 670 dye (ebioscience)
2.1.24 CD48-CD244 binding assay

Recombinant human CD48-Fc (R\&D Systems)
recombinant human GDF15(R\&D Systems)
recombinant human CD244-Avitag (R\&D Systems)

2.2 Methods

2.2.1. Cell culture

DLD1, HCT15, HT29 and LIM1215 were maintained in complete RPMI media at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$. DIFI, and SW48 were grown in complete DMEM media at $37{ }^{\circ} \mathrm{C}$ with 5\% CO2. HUVEC were cultured in Endothelial Cell Growth Medium 2 at $37^{\circ} \mathrm{C}$ with 5\% CO 2 . Media were changed every three days to remove dead cells and to refresh nutrients. Cells were split once the confluency reached $80-90 \%$. For experiments we conducted, cells were used from passage 4 and no longer used after passage 15. CRC cell lines have been authenticated by short tandem repeat (STR) profiling (Appendix Figure 2) and were routinely tested for mycoplasma (MycoSEQ ${ }^{\text {TM }}$ Mycoplasma Detection Kit) throughout the study.

2.2.2. Organoids

CRC tissue processing

Colonic tissues from colorectal cancer patients were provided by University College Hospital London (UCLH) and were used to isolate CRC cells as using the method described by Sato et al ${ }^{33}$. Biobank ethical approval were covered under HTA licence 12055 and REC reference 15/YH/0311. Informed consent forms were signed by all the participants in the study. Patient consent can be withdrawn at any time.

Briefly, specimens were washed with 10 ml of PBS and then cut into small pieces (1-2 mm) in digestion buffer (Table 2-5). Tissue and digestion buffer were transferred to a gentleMACS C Tube and incubated at $37^{\circ} \mathrm{C}$ for 1 h . Samples were filtered through 100 $\mu \mathrm{m}$ strainers into 50 ml falcon tubes and centrifuged at 800 g for 2 min . The supernatant was removed and cell pellets were incubated in ACK lysis buffer at room temperature (RT) for 5 min . Cells were then washed twice with PBS and resuspended in appropriate volumes of Matrigel (roughly $300 \mu \mathrm{l}$). In a 6 -well plate, $7 \times 40 \mu \mathrm{l}$ Matrigel droplets
containing cells were plated per well. After incubation at $37^{\circ} \mathrm{C}$ for $10-20 \mathrm{~min}, 2 \mathrm{ml}$ of organoids complete media (Table 2-6), supplemented with the ROCK Inhibitor Y27632, were added to each well. Media was changed twice a week until the cultures were ready for passaging.

Table 2-5 Digestion buffer

Reagent	Volume (10 ml)
Organoid Media	9.5 ml
Collagenase II $(100 \mathrm{mg} / \mathrm{mL})$	0.5 ml
Primocin $(0.1 \mathrm{mg} / \mathrm{mL})$	0.02 ml
Pen/Strep $(100 \times)$	0.1 ml
RevitaCell Supplement $(100 \times)$	0.01 ml

Table 2-6 Complete Medium

DMEM+++	
Reagent	Volume (500 ml)
DMEM Advance/F12	485 ml
Pen-Strep 1×	5 ml
HEPES 10 mM	5 ml
GLutaMAX $1 \times$	5 ml
Basel Media	
Reagent	Volume (50 ml)
DMEM+++	47 ml
B27 (50×)	1 ml
Anti-Anti (100×)	$500 \mu \mathrm{l}$
N2 (100×)	$500 \mu \mathrm{l}$
N -acetylcysteine (1.25 mM)	$125 \mu 1$
Nicotinamide (10 mM)	$500 \mu \mathrm{l}$
Complete media	
Reagent	Volume (50 ml)
Basel medium	35 ml
Rspondin ($100 \mu \mathrm{~g} / \mathrm{ml}$)	10 ml
Noggin ($100 \mu \mathrm{~g} / \mathrm{ml}$)	5 ml
EGF ($50 \mathrm{ng} / \mathrm{ml}$)	$50 \mu \mathrm{l}$

A83-01 $(500 \mathrm{nM})$	$50 \mu \mathrm{l}$
SB20 $(10 \mu \mathrm{M})$	$16.6 \mu \mathrm{l}$
PGE2 $(0.01 \mu \mathrm{M})$	$5 \mu \mathrm{l}$
Gastrin $(10 \mathrm{nM})$	$5 \mu \mathrm{l}$

Human CRC organoid culture and treatment

Organoids were routinely passaged once a week. Briefly, organoids were collected by suspending Matrigel domes in 1 ml of ice-cold DMEM+++ media (Table 2-6). After centrifugation at 300 g for 5 min , dense organoids dissociation was accomplished by resuspending organoids in 2 ml TrypLE ${ }^{\mathrm{TM}}$ Express Enzyme, incubation for 20 min at $37^{\circ} \mathrm{C}$ and mechanical dissociation by pipetting. FBS was then added to cells resuspended in TrypLE, and centrifuged at 1200 rpm for 3 min . Cell pellets were resuspended in cold Matrigel at 1:1 to 1:6 ratios and then reseeded into culture plates. Media was changed every 2-3 days. Every line of CRC organoids was cultured in separate plates and a laboratory management system was implemented to prevent misidentifications and cross-contaminations. Organoids were routinely tested for mycoplasma throughout the study.

For qPCR and immunoblotting analyses, organoids were seeded in 6 -well plates and collected after 48 h of treatment with $10 \mu \mathrm{M}$ oxaliplatin, which is clinically relevant concentrations ${ }^{395}$. Chemotherapies were pre-diluted in complete medium. After 48 hrs , organoids were collected for experiments.

Organoids freezing

Organoids were harvested as described in section Human CRC organoid culture and treatment. Cell pellets were resuspended in $500 \mu \mathrm{l}$ of Recovery Cell freezing media (12648010, Invitrogen) and aliquoted into 2 ml cryovials. Cryotubes were placed into Cool Cell freezing pots and placed into $-80^{\circ} \mathrm{C}$ freezer.

Organoid viability assays

$10 \mu \mathrm{l}$ of Matrigel was dispensed into 96 -well plates and allowed to polymerise. Organoids cells were harvested as described in section Human CRC organoid culture and treatment, and dispensed into wells containing Matrigel. After 24 hrs , organoids were treated with oxaliplatin $(10 \mu \mathrm{M})$ treatment, a clinically relevant drug concentration ${ }^{395}$. After 48 h , cell viability was assayed by using CellTiter-Glo® 3D cell viability assay kit at $1: 1$ ratio (e.g. add $100 \mu \mathrm{l}$ reagent buffer to $100 \mu \mathrm{l}$ of media containing cells). An extensive quality control process was implemented on all screening plates, and a Z-factor score was calculated to compare the negative (nontreatment group) and positive control (Etoposide-treated group) wells.

2.2.3 Spheroids

Generation and analysis of tumour spheroids

DLD1 and HCT15 cell spheroids culture were performed with a requirement of a minimum confluence of 90%. Cells were trypsinised and centrifuged before being assessed for cell viability. Cells with at least 90% viability were taken for the generation of spheroids. The spheroid formation was performed with 1,000 vital cells in $100 \mu \mathrm{l}$ per well in a low-attached 96-well plate under standard culture conditions. DLD1 spheroids formed within 24 hrs of seeding, whereas HCT15 spheroids formed after 48 hrs .

Cell viability assay (for 3D spheroids)

Spheroids were generated as described in section Generation and analysis of tumour spheroids. To measure cell viability in spheroids, CellTiter-Glo® 3D cell viability reagents were used. The three-dimensional (spheroids) cultures were treated with 10 $\mu \mathrm{M}$ oxaliplatin and incubated for 48 hrs . They were then subsequently transferred to black-sided, flat-bottomed plates after incubation with CellTiter-Glo® 3D cell viability reagents at 1:1 ratio for 30 min . A CLARIOstar Plate Reader was used to measure luminescence intensity.

2.2.4 Cell viability (For 2D cells)

Deep Blue Cell Viability ${ }^{\text {TM }}$ Kit, which is based on the resazurin reagent, was used to measure the cytotoxicity of chemotherapy. Similar to other resazurin-based reagents, Deep Blue Cell Viability ${ }^{\text {TM }}$ Kit can be used to analyse cell number of live cells by measuring the extent of resazurin reduction and resorufin production. After cells were seeded (5000 cells/well), oxaliplatin was added to the wells at several doses for the indicated time (such as 48 hrs and 72 hrs). The plate was incubated at $37^{\circ} \mathrm{C}$ for 3 hrs following the addition of $1: 10$ volume ratio of Deep Blue Cell Viability ${ }^{\text {TM }}$ reagent to each well. A CLARIOstar Plate Reader (Excitation: 530-570 nm, Emission $=590-620$ nm) was used to detect the reduction of resazurin into resorufin and the OD value was used to calculate cell viability.

2.2.5 CRISPR-CAS9 genome engineering

Cell gene editing

Experiments were conducted with the CRISPR/Cas9 system to knockout TXNIP, GDF15 and MLXIP. Targeting cells were accomplished using the Edit-R CRISPR/Cas9 gene engineering protocol (Horizon Discovery). Guide RNAs for TXNIP (Edit-R CRISPR (knockout) Human TXNIP crRNA, Catalog ID:CM-010814-01-0002); for GDF15 (Edit-R CRISPR (knockout) Human GDF15 crRNA, Catalog ID:CM-019875-01-0002), and for MondoA (Edit-R CRISPR (knockout) Human MLXIP crRNA, Catalog ID:CM-008976-01-0002) were purchased from Horizon Discovery.

In details, CRC cells were seeded at an appropriate density $\left(70 \times 10^{4}\right.$ cells/well for DLD1 cells and 30×10^{4} cells/well for HCT15 cells) in 6 -well plates after trypsinisation, washing, and resuspension with antibiotic-free complete media. $2 \mu \mathrm{l}$ of Cas 9 mRNA stock solution $(1 \mu \mathrm{~g} / \mu \mathrm{l})$ was diluted with $18 \mu \mathrm{l}$ of Tris buffer to produce a Cas 9 mRNA working solution. A transfection complex ($2 \mu \mathrm{M}$) was prepared by mixing $2 \mu \mathrm{l}$ of
crRNA $(10 \mu \mathrm{M})$ with $2 \mu \mathrm{l}$ of tracrRNA $(10 \mu \mathrm{M})$. Cas 9 mRNA and synthetic guide RNA transfection complexes were then transferred into an Eppendorf tube as described in Table 2-7 (row 2-4). DharmaFECT Duo working solution was gently mixed with 2 ml of serum-free media in a separate Eppendorf tube. Following 5 min of incubation at RT, $200 \mu \mathrm{l}$ DharmaFECT Duo working solution was added to each sample tube as shown in Table 2-7 (row 5). The mixer was incubated at RT for 20 min after pipetting gently up and down. Transfection media was prepared (row 6 and 7) and added into the 6 -well plate. Cell sorting was performed after 72 hrs of transfection by a BD Aria Fusion cell sorter. DAPI staining was performed to assess cell viability. The levels of TXNIP, GDF15 and MondoA expression in each clone were determined after 4 weeks in culture. According to previous publications ${ }^{396,397}$, the following knockout clones were chosen: Three TXNIP knockout clones, three MondoA knockout clones, and four GDF15 knockout clones. The heterogenous knockout cell lines were generated by mixing the knockout clones of each gene and they were used for subsequent functional evaluation ${ }^{396,397}$. Two gRNAs were simultaneously used for transfection to generate TXNIP ${ }^{-/ /}$GDF15 $5^{-/}$double knockout cell model. The stability of each knockout cell line/organoid was checked every five passages using PCR and western blotting analyses.

Table 2-7 CRISPR CAS9 gene editing experiment in a 6-well plate format

Sample Name	Non-targeting control (NTC) synthetic guide RNA	Gene-specific synthetic guide RNA	Untransfected
Serum-free media	$135 \mu \mathrm{l}$	$135 \mu \mathrm{l}$	$400 \mu \mathrm{l}$
Working guide RNA solution $(2 \mu \mathrm{M})$	$25 \mu \mathrm{l}$	$25 \mu \mathrm{l}$	0
Working Cas9 mRNA solution (100 ng/ l$)$	$40 \mu \mathrm{l}$	$40 \mu \mathrm{l}$	0
DharmaFECT Duo solution	$200 \mu \mathrm{l}$	$200 \mu \mathrm{l}$	0

$(60 \mu \mathrm{~g} / \mathrm{ml})$			
Growth media	$1600 \mu \mathrm{l}$	$1600 \mu \mathrm{l}$	$1600 \mu \mathrm{l}$
Total volume per 6-well	$2000 \mu \mathrm{l}$	$2000 \mu \mathrm{l}$	$2000 \mu \mathrm{l}$

Organoid Gene editing

Neon® Transfection System was used for CRISPR Editing of organoids. Briefly, the ribonucleoprotein (RNP) Complex Mix was prepared in the order listed in Table 2-8 and incubated at RT for 20 min . Culture media was carefully removed and discarded from each well without disturbing the Matrigel dome. 2 ml TrypLE ${ }^{\text {TM }}$ Express Enzyme was used to dissociate organoids into single cells.

Table 2-8 Preparation of Reagents for Neon® Electroporation

Component	(Volume per Reaction $(\mu \mathbf{l})$
Resuspension Buffer R	6
Working guide RNA solution $(100 \mu \mathrm{M})$	0.6
Working Cas9 mRNA solution $(4 \mathrm{ug} / \mu \mathrm{L})$	0.9
Total	7.5

After neutralisation and centrifugation for 3 min at 1200 rpm , supernatant was discarded and cell pellets were resuspended in 1 ml DMEM containing 1\% BSA. Cells were counted after running the suspension through a $40 \mu \mathrm{~m}$ strainer. 1×10^{5} cells were prepared for each electroporation reaction. For each electroporation condition, cells were suspended in $7.5 \mu \mathrm{l}$ of resuspension buffer and transferred to $7.5 \mu \mathrm{l}$ of RNP Complex Mix; gently pipetting up and down the mix, avoiding air bubbles.

The mixture was electroporated using the settings described in Table 2-9. Following electroporation, cells were centrifuged at 1200 rpm for 3 min and resuspended in $25 \mu \mathrm{l}$ Matrigel. Cells were then mixed and seeded. Cells were then replaced with fresh
complete media every 2 days and harvested for genome editing evaluation after 7-10 days of culture.

Table 2-9 Electroporation Conditions

Electroporation Parameter	
Electrical potential	1600 V
Pulse width	20 ms
Number of pulses	2

2.2.6 Generation of CRISPRa Constructs

Generation of stable DLD1 cell line expressing dCas9-VPR

5×10^{4} DLD1 cells were seeded and incubated overnight. The Edit-R CRISPRa Lentiviral dCas9-VPR particles was thawed on ice and the calculated volume $(\mathrm{MOI}=$ 0.3) was pipetted into 0.25 ml of the basal media (no serum) to create the transduction media. Culture media was removed and replaced with the transduction media. 6 h after transduction, 0.75 ml of growth media (containing serum) was added. After 48 h , selection media (complete media containing puromycin) was used to select stable dCas9-VPR cell lines.

Transfection of stable dCas9-VPR expressing cell lines with synthetic guide

RNAs

Stable dCas9-VPR cell lines were successfully established, they can be used for endogenously expressing genes of interest. Cells were seeded and cultured until >50\% confluency. Transfection was carried out after media was removed and replaced with 1.6 ml of fresh culture media. Transfection reagents were prepared in two separated tubes (A and B): Tube A (195 $\mu \mathrm{l}$ Serum/antibiotic-free media and $5 \mu \mathrm{l} 10 \mu \mathrm{M}$ guide RNA mix) and Tube B (195 $\mu \mathrm{l}$ Serum/antibiotic-free media and $5 \mu \mathrm{l}$ DharmaFECT
reagent). Tubes A and B were mixed thoroughly and incubated at RT for 20 min before adding to the cells. Guide RNAs were purchased from Horizon:

Table 2-10 Guide RNAs for CRISPRa

Reagent or Resource	Source	Identifier
CRISPRmod CRISPRa (activation) Human MLXIP Synthetic crRNA (SMARTpool)	Horizon	P-008976-01-0005
CRISPRmod CRISPRa (activation) Human TXNIP Synthetic crRNA (SMARTpool))	Horizon	P-010814-01-0005
CRISPRmod CRISPRa (activation) Human GDF15 Synthetic crRNA (SMARTpool)	Horizon	P-019875-01-0005
CRISPRmod CRISPRa (activation) Human MYC Synthetic crRNA (SMARTpool)	Horizon	P-003282-01-0005
CRISPRmod CRISPRa (activation) Human ERN1 Synthetic crRNA (SMARTpool)	Horizon	P-004951-01-0005
CRISPRmod CRISPRa synthetic crRNA non-targeting controls	Horizon	U-009500-10-05

2.2.7 Western blotting

Protein-lysate preparation

Cells were seeded into 6 -well plates $\left(3 \times 10^{5}-5 \times 10^{5}\right.$ cells per well). The next day, cells were replaced with fresh complete media for 1 h before the treatment as indicated in certain experiments. Following two washes with PBS, cells were lysed in 150-200 $\mu \mathrm{l}$ $1 \times$ sample lysis buffer (Table 2-11, $5 \times$ sample lysis buffer diluted in $\mathrm{ddH}_{2} \mathrm{O}$) at $75^{\circ} \mathrm{C}$ for 15 min. Protein concentrations in lysates were measured using BCA protein quantification kit. Samples were diluted to $1-2 \mu \mathrm{~g} / \mu \mathrm{l}$ in 5 X loading buffer (to a 1 X working concentration) (Table 2-12) and boiled for 10-15 min.

Table 2-11 5X sample lysis buffer

Reagent	Volume	
1 M Tris PH6.8	2.5 ml	
SDS	1 g	
Glycerol	5 ml	
Hit up to 60-70 degree		

Table 2-12 5X Loading buffer

Reagent	Volume
1 M Tris PH6.8	3 ml
10% SDS	10 ml
100% Glycerol	25 ml
$\beta-\mathrm{ME}$	2.5 ml
1% Bromophenol blue	0.025 g
ddH2O	Up to 100 ml

For the nucleus and cytoplasm fractionation, NE-PER ${ }^{\text {TM }}$ Nuclear and Cytoplasmic Extraction Reagent was used. In detail, cells were trypsinised by trypsin-EDTA and then harvested for centrifugation at 500 g for 5 min . The cell pellet was washed twice with PBS and then ice-cold CER I was added. After vigorous vortex, the tube was incubated on ice for 1 h . Ice-cold CER II was then added and the supernatant (cytoplasmic extract) was collected in a pre-chilled Eppendorf tube after vortex. The pellet was washed another twice with PBS and further suspended in ice-cold NER buffer. The volume ratio of CER I: CER II: NER reagents was maintained at 200:11:100 μ l. The supernatant fraction (nuclear extract) was collected after a 40 min vortex. Store the extracts at $-80^{\circ} \mathrm{C}$ until they are needed.

Mitochondria isolation was performed with the Mitochondria Isolation Kit. Cells were lysed in Mitochondria isolation Reagent A, thoroughly vortexing and incubation on ice for 2 min , before adding $10 \mu \mathrm{l}$ of Reagent B. After an additional 5 min incubation on ice, $800 \mu \mathrm{l}$ of Reagent C was added. The supernatant (cytosol fraction) was then collected. After washing with $500 \mu \mathrm{l}$ of Reagent C, the pellets were collected after centrifugation at $12,000 \mathrm{~g}$ for 5 min as the mitochondrial fraction.

Gel electrophoresis and immunoblotting

Immunoblotting was performed using general methods. Proteins were separated by SDS-PAGE in 1X Running buffer (Table 2-13) and electro-transferred to a PVDF transfer membrane in 1X transfer buffer (Table 2-14). The membrane was blocked for covering non-specific binding by incubating it with blocking solution for 1 h (TBS-T containing 4% BSA), followed by an overnight incubation with the primary antibody (See the dilution of primary antibodies in Reagents \& Materials chapter) at $4^{\circ} \mathrm{C}$. Following the washing with TBS-T buffer, the blots were incubated with secondary antibodies (See the dilution of primary antibodies in Reagents \& Materials chapter) for 2 h at RT, then washed 3 times with TBS-T and imaged using a chemiluminescence kit (G: BOX F3, SYNGENE). Western blotting analysis and normalization was conducted using Quantity One software (Bio-Rad Ltd) and all western blotting images shown are representative of 3 independent replicates.

Table 2-13 10× Running buffer

Reagent	Volume (1000 ml)
Glycine	144 g
Tris	30 g
SDS	10 g
ddH2O	Up to 1000 ml

Table 2-14 10× Transfer buffer

Reagent	Volume (1000 ml)
Glycine	143 g
Tris	30 g
ddH2O	Up to 1000 ml

2.2.8 RNA isolation and quantitative real-time PCR

RNA isolation

RNA was extracted from cells using the Qiagen Rneasy Mini kit following the manufacturer's guidelines. After drug treatment, treated and untreated cells were washed in PBS and lysed in 0.7 ml of QIAzol Lysis Reagent for 5-10 min at RT. 140 $\mu 1$ of chloroform then was added to tubes and lysates were vigorously shaken for 15 s and placed on the bench for 3 min at RT. After centrifugation for 15 min at 12000 rpm , the upper aqueous phase was collected and transferred to a new Eppendorf tube. $525 \mu \mathrm{l}$ of 100% ethanol was added to tubes, mixed with samples and then pipetted onto a RNeasy MinElute spin column. RNA was eluted with $14 \mu 1$ RNase-free water, following washes with RWT Buffer, RPE Buffer and 80% ethanol. RNA quantification was performed using a Nanodrop.

Quantitative real-time PCR (qRT-PCR)

cDNA was synthesized by reverse transcription using a SuperScript ${ }^{\text {TM }}$ II Reverse Transcriptase kit. The mixture listed in Table 2-15 was added to a nuclease-free microcentrifuge tube, incubated for 5 min at $65^{\circ} \mathrm{C}$ and cooled on ice. After brief centrifugation, components were added as listed in Table 2-16, mixed gently and then incubated at $25^{\circ} \mathrm{C}$ for $2 \mathrm{~min} .1 \mu \mathrm{l}$ of SuperScript ${ }^{\mathrm{TM}} \mathrm{II}$ was added and incubated at $25^{\circ} \mathrm{C}$ for 10 min . After further incubation at $42^{\circ} \mathrm{C}$ for 50 min and $70^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, 480 \mu \mathrm{l}$ of RNAase free water was used to dilute RNA samples to $2 \mathrm{ng} / \mathrm{ml}$ for qRT -PCR.

Table 2-15 cDNA preparation reagents 1

$50-250$ ng random primers	$1 \mu \mathrm{l}$
1 ng to $5 \mu \mathrm{~g}$ total RNA or $1-500 \mathrm{ng}$ of mRNA	$\mathrm{X} \mu \mathrm{l}$
$1 \mu \mathrm{ldNTP}$ Mix $(10 \mathrm{mM}$ each $)$	$1 \mu \mathrm{l}$
Sterile, distilled water	To $12 \mu \mathrm{l}$

Table 2-16 cDNA preparation reagents 2

$5 \times$ First-Strand Buffer	$4 \mu \mathrm{l}$
RNaseOUT $^{\text {TM }}(40$ units $/ \mu \mathrm{L})$ (optional)	$1 \mu \mathrm{l}$
0.1 M DTT	$2 \mu \mathrm{l}$

qRT-PCR was performed using a SYBR green PCR master mix in a $10 \mu \mathrm{l}$ volume (Table 2-17). The reaction was performed following the conditions described in Table 2-18. Data analysis was conducted with the QuantStudio 6 Flex Real-Time PCR System. Relative mRNA levels were calculated with normalization to the housekeeping gene GAPDH. (See primers used in this study in Reagents \& Materials chapter)

Table 2-17 $\mathbf{q P C R}$ preparation reagent

Volume	$10 \mu \mathrm{l}$
Master Mix	$5 \mu \mathrm{l}$
Primer	$0.5 \mu \mathrm{l}$
Sample	$4.5 \mu \mathrm{l}$

Table 2-18 qPCR reaction condition

	$95^{\circ} \mathrm{C}$	10 min
40 cycles	$95^{\circ} \mathrm{C}$	15 s
	$56^{\circ} \mathrm{C}$	20 s
	$72^{\circ} \mathrm{C}$	40 s
$0.05^{\circ} \mathrm{C} / \mathrm{s}$	$95^{\circ} \mathrm{C}$	15 s
	$60^{\circ} \mathrm{C}$	1 min
	$95^{\circ} \mathrm{C}$	15 s

2.2.9 Glucose Uptake assay

A Glucose Uptake Assay Kit was used to measure glucose uptake. Cells were seeded in white, opaque plates at a density of 5000 cells each well. After 24 hrs, cells were replaced with fresh media with or without drug. Media was removed at indicated timepoints (48h post drug treatment) and cells were washed with PBS and $50 \mu \mathrm{l}$ of 1 mM 2 DG was added per well. After incubating samples for 10 min at RT, $25 \mu \mathrm{l}$ of Stop buffer was added to stop the reaction. Neutralization Buffer and 2DG6P Detection Reagent were then added one after another following brief shaking. Luminescence was recorded using the CLARIOstar Plate Reader after 1 h of incubation.

2.2.10 Lactate Detection Assay

Lactate production was qiuantified using a Lactate-GloTM assay kit. 5000 cells were plated into 96-well plates and then replaced with fresh media with or without drug after 24 hrs . The media was collected at indicated timepoints (48hrs post drug treatment) and $50 \mu \mathrm{l}$ of sample or lactate control was transferred into the 96 -well plate. The background
of the assay was determined by a negative control (buffer only). After $50 \mu \mathrm{l}$ of Lactate Detection Reagent was added, the plate was incubated for 60 min at RT. Luminescence was recorded using the CLARIOstar Plate Reader.

2.2.11 ELISA

Supernatant GDF15/ IL-1 β / IFN $\gamma /$ TNF α levels were measured using the Human ELISA Kits. All reagents were warmed to room temperature before use. Within 15 min of use, Colour Reagents A and B were mixed in equal volumes to prepare the Substrate Solution. For Human GDF15/ IL-1 β / IFN $\gamma /$ TNF α Standard, the dilution series were produced by the stock solution. The $1500 \mathrm{pg} / \mathrm{ml}$ standard serves as the high standard and Calibrator Diluent serves as the zero standard ($0 \mathrm{pg} / \mathrm{mL}$). $50 \mu \mathrm{l}$ of standard, control, or samples were added per well. Following 2 hrs of incubation at RT, liquid was removed and washing buffer was used to wash the plate three times. Each well was incubated with $200 \mu \mathrm{l}$ of Human GDF15/ IL-1 β / IFN $\gamma /$ TNF α Conjugate for 1 h at RT. Substrate Solution was then added after 4 times washing. Plates were then kept at RT for 30 min and protected from light. A CLARIOstar Plate Reader (450 nm , being corrected against 570 nm) was used to measure the OD value within 30 min following the addition of $50 \mu \mathrm{l}$ of Stop Solution. Data was analysed using MARS software and excel.

2.2.12 siRNA transfection

For transient transfection, siRNA was transfected into cells with Lipofectamine ${ }^{\mathrm{TM}}$ RNAiMAX Transfection Reagent. Cells were plated 16-18 hrs before transfection in antibiotic-free complete media. $5 \mu \mathrm{l}$ of Lipofectamine ${ }^{\mathrm{TM}}$ RNAiMAX Transfection Reagent and 25 pM siRNA (Table 2-4) were mixed thoroughly and incubated for 20 min at RT before added to cells. Western blotting and PCR analyses were performed to assessed knockdown efficiency after 48 hrs.

2.2.13 Extracellular acidification rate

Cell bioenergy testing is to analyse the metabolic activities of the living cells by measuring oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). ECAR is an indicator of glycolysis. The assay was performed using the Seahorse XF Glycolysis Stress Test Kit and the XF96 Extracellular Flux Analyzer. Briefly, 3×10^{4} cells were seeded onto Seahorse XF Microplates and incubated overnight. Meanwhile, a sensor cartridge in Seahorse XF Calibrant was hydrated in Seahorse XF Calibrant at $37^{\circ} \mathrm{C}$ in a non- CO_{2} incubator overnight. During the assay, cells were replaced with assay media. For the preparation of assay media, Seahorse XF Base Medium was diluted with 2 mM glutamine and pH was adjusted to 7.4 with 0.1 N NaOH . Compounds were equilibrated to room temperature and each compound was resuspended in assay medium (Table 2-19). In a hydrated sensor cartridge, glucose, oligomycin, and 2-DG were added into Port A, Port B and Port C, separately. The extracellular acidification rate (ECAR) was measured following 1 h incubation in warmed assay media in a $37^{\circ} \mathrm{C}$ non- CO_{2} incubator.

Table 2-19 ECAR measurement preparation

Compound	Volume of assay medium	Resulting stock concentration
Glucose	$3000 \mu \mathrm{l}$	100 mM
Oligomycin	$720 \mu \mathrm{l}$	$100 \mu \mathrm{M}$
2-DG	$3,000 \mu \mathrm{l}$	500 mM

2.2.14 Human samples

Two sets of patient samples were used for clinical validation (mainly for immunohistochemistry experiment) in this study, namely cohort 1 and cohort 2.

Cohort 1 was a retrospective cohort collected in Peking university Third Hospital by Dr. Gang Li. This study was approved by Peking university Third Hospital Medical Science Research Ethics committee (Reference number IRB00006761-M2022237) and was performed in accordance with the principle of the Helsinki Declaration II. A total of 35 CRC tissues were retrospectively collected from patients before chemotherapy (32 CRC tissues) and after oxaliplatin-based chemotherapy (3 CRC tissues, with treatment of FOLFOX6, FOLFOX6 and Xelox6, respectively) from May 2014 to March 2021. Notably, these 3 tissue samples (after oxaliplatin-based treatment) were collected when patients were on treatment.

Cohort 2 was a human colorectal cancer tissue microarray (TMA) purchased from Shanghai Outdo Biotech Company Ltd (Shanghai, China). All tissue samples were collected before chemotherapy treatment. The TMA contained 97 colorectal cancer samples and paired adjacent normal tissues collected from patients between 2009 and 2018 and were accompanied by patient clinical data. Patient information of TMA is provided in Appendix Table 1.

2.2.15 Immunohistochemical staining (IHC)

The expression of TXNIP and GDF15 protein in patient tissue samples (including 2 cohorts detailed in 'Human samples' of Method chapter) was assessed by immunohistochemistry $(\mathrm{IHC})^{398}$. Freshly cut $4-\mu \mathrm{m}$ sections from Formalin Fixed Paraffin Embedded (FFPE) tissue samples were used for the immunohistochemical assessment. IHC staining was performed as previous publications ${ }^{399,400}$. To begin with, FFPE slides were dewaxed and rehydrated. After antigen retrieval in 0.01 M sodium citrate buffer (PH 6.0) in a microwave for 20 min , slides were treated with peroxidase block for 5 min and protein block solution for another 5 min at RT. Then Slides were incubated with primary antibody against TXNIP (Abcam, ab188865; 1:250), GDF15
(Protein-tech, 27455-1-AP; 1:500) and FOXP3 (Abcam, ab215206; 1:1000) overnight at $4^{\circ} \mathrm{C}$. The specificity of both TXNIP and GDF15 antibodies were initially confirmed by western blotting with HCT15 genomic editing cell models established in this study (Appendix Figure 3C, D). Post primary antibody incubation, tissues were incubated with secondary antibodies (EnVision Chem Detection Kit, DaKo Cytomation) for 30 min at RT, followed by incubation with horseradish enzyme-labelled streptavidin solution for 10 min and then visualised with $3,3^{\prime}$-diaminobenzidine and counterstained with haematoxylin. Slides were then dehydrated and fixed before mounting. Controls were performed: human liver and placenta tissue slides were included as positive controls, and negative controls omitted primary antibodies (Appendix Figure 3A, B, E). The stained tissues were interpreted by two pathologists (Dr. Xingang Zhou from Department of Pathology, Beijing Ditan Hospital, Capital Medical University and Dr. Nan Zhang from Department of Pathology, Beijing Children's Hospital Medical University) independently in a blinded manner. Staining intensity of samples was semiquantitatively evaluated using the H -score method, which is determined by both the staining extent and intensity. The H-score is calculated as the sum of the percentage of staining multiplied by an ordinal value corresponding to the intensity level $(0=$ none, $1=$ weak, $2=$ moderate, $3=$ strong). Thus, the H -score ranged from 0 to 300 , indicating no staining to diffuse intense staining. The intraclass correlation coefficient (ICC) analysis was used for assessing the level of agreement between independent reviewers. The ICC scores were $0.896,0.907$ and 0.887 for samples stained with anti-TXNIP, antiGDF15 and anti-FOXP3 antibodies, respectively.

2.2.16 Immunofluorescence staining (IF)

Immunofluorescence staining (IF) was performed as previously outlined ${ }^{401}$. A total of 5×10^{3} DLD1 cells were seeded. $10 \mu \mathrm{M}$ oxaliplatin was then applied to the cells the
following day. After 48 h of treatment, tissue cultures were rinsed with PBS, fixed with 4\% PFA for 20 min , and then rinsed with PBS three times, followed by permeabilization for 10 min with 0.1% Triton-X100. After PBS wash, tissue cultures were incubated for 1 h in blocking buffer (5\% BSA and 5\% Donkey Serum), and further incubated overnight at $4^{\circ} \mathrm{C}$ with the primary antibodies (TXNIP, ab188865, 1:250; Calreticulin, ab22683, 1:250) or phalloidin (Phalloidin-iFluor 488 Reagent kit, ab176753) diluted in 5\% BSA. After further washing with PBS, secondary antibodies (AlexaFluor® 647 anti-rabbit, 1:500; AlexaFluor® 488 anti-mouse, 1:500) were applied for 1 h in 5\% BSA to stain the cells. DAPI was stained with 1:1000 for 15 min and examined using a spinning disk confocal microscope. For Mitochondria staining, cells were incubated with MitoTracker ${ }^{\mathrm{TM}} \operatorname{Red} \mathrm{CMXRos}(500 \mathrm{nM})$ for 15 min at $37^{\circ} \mathrm{C}$ and rinsed with PBS before fixation.

2.2.17 wound-healing migration assay

A wound-healing migration assay was used to estimate cell migratory ability. 5×10^{4} DLD1 cells (non-targeting control and TXNIP-KO cells) were seeded and grown to 100% confluence in 6 well cell culture dish. Wounds were scraped across each cell monolayer using a sterile $200 \mu \mathrm{l}$ micropipette tip. Non-adherent cells were removed by PBS washes for three times. Cells were treated with oxaliplatin ($10 \mu \mathrm{M}$ oxaliplatin diluted in FBS-free media to reduce cell proliferation) was performed and incubated at $37^{\circ} \mathrm{C}$ for the indicated time periods. A camera-equipped inverted microscope (Leica DM IL LED microscope) was used to measure the distance of migration by cancer cells. The average width of the wound was calculated using ImageJ software. The wound healing rate $=100 \% \times([$ wound width at $0 \mathrm{~h}-$ width at other time point $] /$ width at 0 h$)$.

2.2.18 Tube formation assay

NTC or TXNIP-overexpressing (TXNIPa) DLD1 cells were seeded and replaced with fresh media after 24 hrs . After 48 hrs of treatment, the supernatant (tumour-conditioned media, TCM) was then collected after centrifugation to remove cell debris. The wells of a 96 -well cell culture plate were pre-coated with $100 \mu 1$ of Matrigel. HUVECs $\left(1 \times 10^{5}\right.$ /well) were then added to plates in $100 \mu \mathrm{TCM}$ and then imaged using a microscope equipped with a camera (Leica DM IL LED microscope) after 8 hrs . Complete tubular structures were calculated using ImageJ software.

2.2.19 Proteome profiler antibody arrays

Human cytokine array kit was used to evaluate the expression of 105 human cytokines secreted from DLD1 cells (non-targeting control and TXNIP-KO cells) and all the procedures were performed according to the manufacturer's instructions. In details, cells were plated at $4 \times 10^{5} /$ well in 6 -well plates. After 24 hrs of culture, cells were treated with oxaliplatin, and cultured for a further two days. Then the media was collected as tumour-conditioned media (TCM) after centrifugation to remove cells and debris. 1 ml of TCM was added to the Human XL Cytokine Array membranes and incubated overnight at $4^{\circ} \mathrm{C}$. Membranes were washed three times and then incubated with Detection Antibody Cocktail for 1 h at RT, followed by incubation with Streptavidin-HRP for 30 min at RT. After three times washes, Chemi Reagent Mix was added on each membrane and incubated for 1 to 10 min . Membranes were then imaged. An image and a table were provided for coordinate reference (Appendix Figure 4, Appendix Table 2).

2.2.20 bulk RNA sequencing (RNA-seq) analysis

The RNA-Sequencing experiments were used to analyse the differentially expressed genes in colorectal cancer cells (DLD1 and HCT15 cells) after oxaliplatin treatment
and performed by Novogene (Cambridge, UK). Samples were warranted for Total RNA from CRC cells was isolated using RNeasy Mini Kit, followed by quality control to check purity (by Nanodrop), quantity (by Nanodrop) and RIN (by Agilent 2100) (Appendix Figure 5). Messenger RNA was purified from total RNA using poly-T oligoattached magnetic beads. The purified messenger RNA was the fragmented by fragmentation reagents. After fragmentation, the first strand cDNA was synthesized using random hexamer primers followed by the second strand cDNA synthesis. The library was ready after end repair, A-tailing, adapter ligation, size selection, amplification, and purification. Workflow of RNA library preparation was presented in Appendix Figure 6. The library was then validated with Qubit and qPCR for quantification and bioanalyzer for size distribution detection. Quantified libraries were pooled and sequenced on Illumina platforms, according to effective library concentration and data amount. For the data analysis, base calls were performed using CASAVA. Reads were aligned to the genome using the split read aligner TopHat (v2.0.7) and Bowtie2, using default parameters. HTSeq was used to estimate abundance. To identify involved biological processes post treatment, Gene ontology (GO) analysis was performed with all the downregulated differentially expressed genes (DEGs), with 2607 genes for DLD1 cells and 1950 genes for HCT15 cells.

Gene set enrichment analysis (GSEA) was performed using GSEA software version 4.2.2 following guideline. Gene sets database was set to h.all.v2022.1.Hs.symbols.gmt and number of permutations was set to 1000 .

2.2.21 ROS production

The ROS level in the live cancer cells was measured using DHE (Dihydroethidium) Assay Kit- Reactive Oxygen Species. DHE was used as a fluorescent probe for ROS detection, specific for superoxide and hydrogen peroxide. Thus, ROS generation was
represented by total DHE fluorescence intensity. Around 5×10^{3} cells were added to a 96-well plate. Oxaliplatin treatment $(10 \mu \mathrm{M})$ was performed the next day. After 48 h , culture media was aspirated and $150 \mu 1$ cell-based assay buffer was used for wash. 130 $\mu \mathrm{l}$ of ROS staining buffer was added and incubated for 1.5 hrs protected from light for staining. Three wells of cells were designed as positive controls and another three wells of cells were designed as negative controls. N -acetyl cysteine (NAC) reagent, as a reduced glutathione (GSH) precursor, was used as a negative control and Antimycin A, an inhibitor of complex III of the mitochondrial electron transport chain, as a positive control. Following washing steps, a CLARIOstar Plate Reader (Excitation: 480-520 nm, Emission: $570-600 \mathrm{~nm}$) was used to measure the fluorescence intensity.

2.2.22 Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) assay

Chromatin immunoprecipitation (ChIP) assay, an antibody-based technology, was used to study the binding between MondoA protein and the DNA promoter sequence of the TXNIP gene. DLD1 cells were treated with Oxaliplatin $(10 \mu \mathrm{M})$ with/without NAC pretreatment. After 48 hrs of treatment, cells were harvested and cross-linked with 1% formaldehyde (10 min at RT). The fixation was stopped by adding glycine (5 min at RT) and the cells were then washed twice with cold PBS (10 min at $4^{\circ} \mathrm{C}$). Chromatin extraction was performed using the Chromatin Extraction Kit (ab117152, Abcam) followed by sonication. The sonication conditions were optimised by applying increasing number of pulses for 30 s with 30 s pauses on a Sonics Vibracell sonicator (75\% power). DNA was reverse cross-linked at $65^{\circ} \mathrm{C}$, digested with Proteinase K, purified using QIAquick PCR Purification Kit (28104, Qiagen) and loaded on 1\% agarose gel to assess DNA fragmentation. Optimal DNA shearing was achieved using two rounds of 40 cycles for 30 s with 30 s pauses (Appendix Figure 7A, B).

The sonicated samples were divided for input samples and ChIP samples. The sonicated samples were divided for input samples and ChIP samples. Input DNA was reverse cross-linked, purified as described above and quantified by Nanodrop. ChIP pull-down assays were performed using the ChIP Kit Magnetic One-Step according to the manufacturers' instructions. $1.6 \mu \mathrm{~g}$ of sonicated chromatin and $2 \mu \mathrm{~g} \operatorname{IgG}$ control (2729, Cell signalling Technology) or anti-MondoA (13614-1-AP Protein-tech) were employed. Anti H3K4me3 antibody (ab8580, Abcam) was used as ChIP positive control for open chromatin.

Recovered DNA was amplified by PCR using GoTaq Hot start master mix (Promega) and primers specific for TXNIP promoter region (forwardCACAGCGATCTCACTGATTG; reverse- GTTAGTTTCAAGCAGGAGGC). Thermocycling was performed at $95^{\circ} \mathrm{C}$ for 10 min , followed by 40 cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 30 s and $72^{\circ} \mathrm{C}$ for 10 s , with an additional extension at $72^{\circ} \mathrm{C}$ for 10 min . PCR products were loaded on 1.5\% agarose gel (Appendix Figure 7C). Specificity of the PCR product was assessed by Sanger sequencing using both forward and reverse primers. Alignment with the reference sequence was performed using Blastn (https://blast.ncbi.nlm.nih.gov/).Quantification of TXNIP promoter amplicons in all the experimental samples was performed by Syber green qPCR.

2.2.23 Liquid chromatography-mass spectrometry (LC-MS/ MS) analysis

LC-MS/MS analysis was used in this study to screen the secreted soluble factors (secretome) of the supernatants in an unsupervised manner. The procedures included several steps detailed below:

Step1: Preparing Secreted Protein Pellets for Mass Spec

DLD-1 cells were seeded with a density around $70-80 \%$ in 6 -well plates. On second day, cells were washed with PBS and replaced with 2 ml of FBS-free media (RPMI+1\%
penicillin/streptomycin $+1 \%$ Glutamin). After 48 hrs (day 4), supernatants from cell culture were collected, centrifuged ($300 \mathrm{~g} / 5 \mathrm{~min}$) to get remove debris, followed by adding cold acetone at a ratio of $1: 3$. The mix was shaken thoroughly and stored at $20^{\circ} \mathrm{C}$ overnight. Protein pellets were collected after a centrifugation at 10000 g for 15 $\mathrm{min})$. Keep the pellets in $-80^{\circ} \mathrm{C}$ freezer for storage till mass spectrometry analysis.

Step2: Purification of Protein Pellets by Running a short length ($\sim 2 \mathrm{~cm}$) of 1D SDSPage Gels

Each protein pellet was resuspended in $20 \mu \mathrm{l}$ of 8 M urea, followed by adding $2.5 \mu \mathrm{l}$ of 200 mM dithiothreitol (DTT) for 1 h at $56^{\circ} \mathrm{C} .2 .5 \mu \mathrm{l}$ of 550 mM Iodoacetamide (IAA), an alkylating agent reacting with free sulfhydryl groups, was then added for 30 min at RT in the dark. $5 \mu \mathrm{l}$ of $4 \times$ NuPAGE ${ }^{\text {TM }}$ LDS Sample Buffer was added and then vortex. The samples were then kept for at $90^{\circ} \mathrm{C}$ for 5 min . Samples were then loaded into a 10% Bis-Tris gel, resolved for about 1 cm (80 volts; $63 \mathrm{~mA} ; 8$ watts) before being stained with Imperial protein stain (Appendix Figure 8). This procedure was to remove contaminated or toxic factors from buffers.

Step 3: In-gel Enzymatic Tryptic Digestion
In-gel reduction, alkylation and digestion with trypsin was performed according to a routine digestion protocol prior to subsequent analysis by mass spectrometry. Cysteine residues were reduced with DTT and derivatised by treatment with IAA to form stable carbamidomethyl derivatives. Trypsin digestion was carried out overnight at room temperature after initial incubation at $37^{\circ} \mathrm{C}$ for 2 hrs . The peptides were exacted from gels with acetonitrile, followed by a speedVac to dry the peptides.

Step 4: TMTpro labelling

Digested peptides were labelled with TMTpro tags based on Thermo user guide protocol (https://assets.thermofisher.com/TFS-Assets/ LSG/ manuals/ MAN0018773_TMTproMassTagLabelingReagentsandKits_UG.pdf). Basically, 500 $\mu \mathrm{g}$ of TMTpro reagents in $10 \mu \mathrm{l}$ acetonitrile were added to $50 \mu \mathrm{~g}$ peptides in 100 mM TEAB (triethylammonium bicarbonate) buffer and incubated at room temperature for 1 h . TMTpro tags corresponding to samples are listed in the table below (TKO short for TXNIP-KO).

Sample ID	TMTpro_10ul
DLD1_NTC_rep1	126
DLD1_NTC_rep2	127 N
DLD1_NTC_rep3	127 C
DLD1_TKO_rep1	128 N
DLD1_TKO_rep2	128 C
DLD1_TKO_rep3	129 N

Step 5: MS Check Point_2 (TMT labelling efficiency)
5ul per sample was analysed by a 60 min-gradient collision-induced dissociation (CID)_MSMS method. The label efficiency was calculated below based on PD searching outcomes.

			PD outcome						
Sample ID	TMTpro $1 \overline{0} \mathrm{ul}$		protei n	$\begin{gathered} \text { peptid } \\ \text { e } \end{gathered}$	$\begin{gathered} \text { PSM } \\ \mathbf{S} \end{gathered}$	TMEpept	TMT label efficiency (\%)	total pept intensity	CV\%
$\begin{gathered} \text { DLD1 } \\ \text { NTC rep } 1 \end{gathered}$	126	TMT label efficienc y and total ion intensity	990	4012	4682	3995	99.576271	$6.91 \mathrm{E}+09$	$\begin{gathered} 18.1841 \\ 9 \end{gathered}$
$\begin{gathered} \text { DLD1 } \\ \text { NTC rep } 2 \\ \hline \end{gathered}$	127N		880	3616	4317	3601	99.585177	$6.74 \mathrm{E}+09$	
$\begin{gathered} \text { DLD1 } \\ \text { NTC rep } 3 \\ \hline \end{gathered}$	127C		970	3891	4491	3875	99.588795	$9.22 \mathrm{E}+09$	
$\begin{gathered} \text { DLD1 } \\ \text { TKO rep } 1 \\ \hline \end{gathered}$	128N		806	3428	4120	3418	99.708285	$8.50 \mathrm{E}+09$	$\begin{gathered} 33.2130 \\ 3 \end{gathered}$
$\begin{gathered} \text { DLD1 } \\ \text { TKO rep } 2 \\ \hline \end{gathered}$	128C		641	2376	2767	2371	99.789562	$4.77 \mathrm{E}+09$	
$\begin{gathered} \text { DLD1 } \\ \text { TKO rep } 3 \end{gathered}$	129 N		850	3529	4237	3520	99.74497	$9.61 \mathrm{E}+09$	

Step 6: Clean up by Pierce high pH C18 spin column
After the labelling efficiency was checked out, the reaction was quenched with hydroxylamine to a final concentration of $0.3 \%(\mathrm{v} / \mathrm{v})$ for 15 min and all individual tags were combined as one. The sample was vacuum centrifuged to near dryness and subjected to C18 solid-phase extraction (SPE, Sep-Pak) for a clean-up. The cleaned peptides are dried by speed vacuumed and for LCMS analysis.

Step 7: LC-MS/MS tandem mass spectrometry
The TMT set sample was resuspended in re-suspension buffer (2% acetonitrile in 0.05\% Formic acid) to be analysed by LC-MS/MS with triply injections. Chromatographic separation was performed using an Ultimate 3000 NanoLC system equipped with an Ultimate 3000 RSLC nano pump (Thermo Fisher Scientific, UK). Peptides were resolved by reversed phase chromatography on a $75 \mu \mathrm{~m} * 50 \mathrm{~cm}$ C18 column using a three-step gradient of water in 0.1% formic acid (A) and 80% acetonitrile in 0.1% formic acid (B). The gradient was delivered to elute the peptides at a flow rate of $250 \mathrm{nl} / \mathrm{min}$ over 120 min .

The eluate was ionised by electrospray ionisation using an Orbitrap Fusion Lumos (Thermo Fisher Scientific, UK) operating under Xcalibur v4.1. The instrument was programmed to acquire using a "Synchronous Precursor Selection with MultinotchMS3" method (SPS). Synchronous Precursor Selection is a process of selecting multiple MS2 precursors using a single fill and single waveform in a collision-induced dissociation (CID) or higher energy collision dissociation (HCD) cell, while MultinotchMS3 is to reduce co-isolated interference from MS2 in an ion-trap cell. This method allows for accurate and sensitive quantitation based on isobaric TMT tags.

Step 9: Database Searching
Raw mass spectrometry data were processed into peak list files within Proteome Discoverer (ThermoScientific v2.5). The workflow was presented in Appendix Figure 9. Processed data was then searched using Mascot search algorithm (www.matrixscience.com) and Sequest search engine embedded in a Proteome Discoverer software (version 2.4), against the current version of the reviewed Swissprot Homo Sapiens (Human) database downloaded from Uniprot (http://www.uniprot.org/uniprot/), plus enhanced GFP sequence.

2.2.24 Immune cell isolation and differentiation

Leucocyte cones (NC24 Leukocyte cone) were ordered from the National Health Service Blood and Transplant Service (NHSBTS) (The NHSBTS obtains informed consent from the donors and has internal ethical approval under the terms of HTA licence). Cells were mixed 1:1 with PBS and layered on Ficoll-Paque (GE Healthcare; 1714402). Cells were spun at 800 g for 30 min , with the brake off, and the Human peripheral blood mononuclear cells (PBMCs) were taken from the buffy layer above the Ficoll-Paque. CD14 ${ }^{+}$cells, naïve CD4 T cells, or NK cells were isolated from PBMCs using the MACS system as per manufacturer's instructions (Miltenyi Biotech; 130-050-201, 130-094-131, 130-092-657. LS Columns; 130-042-401). Purity was checked using anti-CD14, anti-CD4 and anti-CD45RA, or anti-CD56 antibodies (concentration as per manufacturer's instructions) and seen to be $>95 \%$. If purity was below 95%, the cells were disposed of.

2.2.25 Flow cytometry

$1-2 \times 10^{5}$ cells were stained with a live/dead dye in PBS for 10 min on ice in the dark, before being washed twice in FACS buffer (0.5% BSA in PBS +2 mM EDTA). Cells were then Fc blocked with Trustain in FACS buffer for 10 min on ice in the dark. Cells
were washed and then stained using a variety of antibodies \pm secondary reagents described in table 2-20, using concentrations recommended by the manufacturer, on ice for 30 min in the dark. Cells were washed and either read immediately or fixed using 1% PFA in FACS buffer and read within 3 days. Cells were read using a BD Accuri C6 Plus flow cytometer, with analysis carried out using BD Accuri C6 Plus software. All cells were gated as follows: (a) Forward scatter and side scatter (SSC) to exclude cellular debris (whilst also adjusting threshold), (b) live/dead (only live cells carried forward) and (c) SSC-A vs. SSC-H—only singlets carried forward. All MFIs were corrected against an appropriate isotype control. Intracellular flow cytometry was carried out using the intracellular fixation and permeabilization kit according to manufacturer's instructions.

Table 2-20 Antibodies for flow cytometry

Antibodies	Source	Identifier
LIVE/DEAD ${ }^{\text {TM }}$ Fixable Red Dead Cell Stain Kit	ThermoFisher	Cat\# L23102
Human TruStain FcX․․ (Fc Receptor Blocking Solution)	Biolegend	Cat\# 422302
PE Mouse IgG1, k Isotype Ctrl Antibody	Biolegend	Cat\# 400112
FITC Mouse IgG1, k Isotype Ctrl (FC) Antibody	Biolegend	Cat\# 400110
PerCP Mouse IgG1, k Isotype Ctrl Antibody	Biolegend	Cat\# 400148
APC Mouse IgG1, k Isotype Ctrl Antibody	Biolegend	Cat\# 400120
FITC anti-human CD56 (NCAM) Antibody	Biolegend	Cat\# 304604
PE anti-human CD107a (LAMP-1) Antibody	Biolegend	Cat\# 328608
Ultra-LEAF ${ }^{\text {TM }}$ Purified Rat IgG2a, k Isotype Ctrl Antibody	Biolegend	Cat\# 400544
Purified Rat IgG2a, k Isotype Ctrl Antibody	Biolegend	Cat\# 400502
FITC anti-human CD279 (PD-1) Antibody	Biolegend	Cat\# 329904
APC anti-human CD279 (PD-1) Antibody	Biolegend	Cat\# 329908
FITC anti-human CD48 Antibody	Biolegend	Cat\# 336706
FITC anti-human HLA-DR Antibody	Biolegend	Cat\# 327006
APC anti-human CD86 Antibody	Biolegend	Cat\# 374208
APC anti-human CD274 (B7-H1, PD-L1) Antibody	Biolegend	Cat\# 329708
PE anti-human CD40 Antibody	Biolegend	Cat\# 334308
PerCP anti-human CD4 Antibody	Biolegend	Cat\# 317432
FITC anti-human CD3 Antibody	Biolegend	Cat\# 317306
PE anti-human CD8 Antibody	Biolegend	Cat\# 344706
PerCP anti-human CD163 Antibody	Biolegend	Cat\# 333626
PerCP/Cyanine5.5 anti-human CD206 (MMR) Antibody	Biolegend	Cat\# 321122
PE anti-human CD14 Antibody	Biolegend	Cat\# 301806
PE anti-human FOXP3 Antibody	Biolegend	Cat\# 320108
PE anti-human CD45RA Antibody	Biolegend	Cat\# 304108
FOXP3 Fix/Perm Buffer Set	Biolegend	Cat\# 421403

2.2.26 Proliferation assays for immune cells

96 -well tissue culture stimulation plates were prepared the night before by adding 100
$\mu \mathrm{l} /$ well $1 \mu \mathrm{~g} / \mathrm{ml}$ anti-CD3 in PBS. PBMCs were stained using an eFluor ${ }^{\text {TM }} 670$ dye according to manufacturer's instructions and plated at 2×10^{5} cells in $100 \mu \mathrm{l} .100 \mu \mathrm{l}$ of supernatant or other factor (in certain experiments) was added and cells were cultured
for 4 days. After culture cells were harvested and analysed using flow cytometry. Stained unstimulated cells were used as a control.

2.2.27 CD48-CD244 binding assay

All products, including ELISA plates (DY990), blocking buffer (DY995), streptavidinHRP (DY998) and substrate solution (DY999), were purchased from Biotechne. Recombinant human CD48-Fc was plated at $1 \mu \mathrm{~g} / \mathrm{ml}$ in PBS overnight at $4^{\circ} \mathrm{C}$. Plates were washed 3 times with wash buffer and then blocked with blocking buffer. Plates were subsequently incubated for 2 hrs at room temperature. Plates were washed and wells treated with the following in quintuplets; PBS, recombinant human GDF15 at 1 $\mu \mathrm{g} / \mathrm{ml}$, isotype control at $10 \mu \mathrm{~g} / \mathrm{ml}$, anti-CD48 at $10 \mu \mathrm{~g} / \mathrm{ml}$ and supernatant from NTC or GDF15 (a) cell lines. Plates were incubated for 2 hrs at $4^{\circ} \mathrm{C}$. Plates were then washed 3 times and incubated for 4 hrs with $1 \mu \mathrm{~g} / \mathrm{ml}$ recombinant human CD 244 -Avitag at $4^{\circ} \mathrm{C}$. Plates were washed 3 times and Streptavidin-HRP, substrate and stop solution added as per manufacturer's instructions. Plates were read on a CLARIOstar instrument at 450 nm , being corrected against 570 nm , and analysed using MARS software and excel.

2.2.28 NK degranulation assays

Recombinant human CD48-Fc, anti-CD2 and anti-NKp46 were plated at $1 \mu \mathrm{~g} / \mathrm{ml}$ in PBS in 96-well round-bottomed plates and incubated overnight at $4^{\circ} \mathrm{C}$. Plates were washed with PBS once before being incubated with (in RPMI $+10 \% \mathrm{FBS}$ media [R10] unless otherwise stated) isotype control or anti-CD48 (both at $10 \mu \mathrm{~g} / \mathrm{ml}$), media alone or $1 \mu \mathrm{~g} / \mathrm{ml}$ rhGDF15, or NTC or GDF15 (a) supernatant for 1 h at $4^{\circ} \mathrm{C} .1 \times 10^{5} /$ well NK cells were added in R10 and incubated for 18 hrs at $37^{\circ} \mathrm{C}$. Cells were spun down, washed once in FACS buffer before being stained with anti-CD107-PE or isotype control. \% CD107a positive cells were determined by gating on the isotype control for each condition.

2.2.29 Functional Treg assay

Anti-CD3 was plated at $1 \mu \mathrm{~g} / \mathrm{ml}$ in PBS and incubated overnight at $4^{\circ} \mathrm{C}$. Supernatant was removed and 2×10^{5} /cell isolated naïve CD4 cells were added in the presence of 1 $\mu \mathrm{g} / \mathrm{ml}$ anti-CD28 in the presence of NTC or GDF15 (a) supernatant $+/$ - isotype control $(10 \mu \mathrm{~g} / \mathrm{ml})$ or anti-CD48 $(10 \mu \mathrm{~g} / \mathrm{ml})$. Cells were cultured at $37^{\circ} \mathrm{C}$ for 4 days. On day 3 , anti-CD3 was plated at $1 \mu \mathrm{~g} / \mathrm{ml}$ in PBS and incubated overnight at $4^{\circ} \mathrm{C}$. Allogeneic PBMCs were isolated, stained with eFluor ${ }^{\text {TM }} 670$ proliferation dye and plated at 1×10^{5} cells/ well. 1×10^{5} Tregs were added at a 1:1 ratio and the co-culture was run for 4 days. Cells were then harvested and stained with anti-CD3, anti-CD8 and anti-CD4 antibodies. The proliferation dye MFI in the responder population was normalized against matched cells stimulated in media alone.

2.2.30 scRNA-seq analysis for colorectal cancer patients

For comparing TXNIP and GDF15 expression in colorectal cancer tumour samples, we used log transformed-normalized single-cell RNA sequencing data derived from 63 colorectal cancer patients ${ }^{19}$ deposited at the Synapse (syn26844071) and extracted only tumour cells. Tumour cells are identified using Reference Component Analysis version $2(\mathrm{RCA})^{402}$, using Pearson correlation with reference dataset, and filtered low-quality cells for the number of expressed genes (>2,200) and Unique Molecular Identifier (UMI) count $>1,000$.

To identify intrinsic CMS (iCMS) for each tumour samples, we used 715 iCMS associated genes, followed a previously described method ${ }^{19}$. Scaled data for each cohort was used to avoid batch effect from each cohort and used iCMS metagene score to define iCMS type for each cell. iCMS metagene score were calculated using mean expression of iCMS2/3 specifically up and down genes, respectively.

2.2.31 Public dataset analysis

TCGA dataset was used to compare the differential expression of TXNIP/GDF15 between adjacent normal samples and cancer patient samples. Gene expression data from TCGA was downloaded from GDC data portal ((https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas). Both colon adenocarcinoma COAD and rectal adenocarcinoma (READ) cohorts were included as colorectal cancer cases.

Four public datasets were used in this study for prognostic analyses, including GSE29621, GSE38832, GSE6988, and GSE52735. Detailed information of these datasets was presented in Appendix Table 3-6. These datasets were generated from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo). For the survival analysis, the continuous variables were dichotomized via the survminer R package, and the Kaplan-Meier curves were performed using the survival R package.

2.2.32 Establishment of oxaliplatin-resistant (OXAR) cell lines

To test the response of the studied signalling pathway in drug resistant models, human colorectal cancer cell lines were established, named as oxaliplatin-resistant cells (OXAR) cells, by treatment with constant high oxaliplatin concentration in vitro. Oxaliplatin was diluted in RPMI complete media before treating cancer cells. Briefly, Cells were grown in T 75 flasks at a high concentration for a period of 12 months, with $50 \mu \mathrm{M}$ for DLD1 cells and $25 \mu \mathrm{M}$ for HCT15 cells. Finally, cell lines that can grow exponentially in RPMI with high concentrations of oxaliplatin were identified as drug resistant cell lines. The IC50 values of cells to oxaliplatin are shown in table 2-21. Experiments on resistant cell lines were performed after culturing in the medium without oxaliplatin for at least 2-3 weeks.

Table 2-21 The IC50 values for oxaliplatin in CRC cell lines

CRC cell lines	IC $_{\mathbf{5} \mathbf{0}}(\boldsymbol{\mu M})$	Standard deviation	$\mathbf{9 5 \%}$ CI
DLD1 parental	13.37	0.0274	$11.76-15.17$
DLD1 OXAR	105.5	0.02947	$92.06-121.7$
HCT15 parental	6.729	0.1113	$3.232-13.72$
HCT15 OXAR	36.45	0.0849	$25.66-52.23$

Abbreviations: IC50, The inhibitory concentrations of cell growth by 50\%; OXAR: Oxaliplatin resistant cells.

2.2.33 Statistical analysis

All in vitro experiments were performed in three times independently from one another. All quantitative data are presented as mean \pm standard deviation (SD). Data was analysed using GraphPad Prism 9.0 and the SPSS version 22.0. The mean values of the two groups were compared using paired t-tests. One-way ANOVA was used to evaluate multiple independent groups. Non-parametric data were analysed with the MannWhitney U test. The chi-squared, Yates' continuity corrected chi-Square or the Fisher tests were applied to compare categorical variables. Kaplan-Meier analyses were performed via the survival package and the log-rank test was used to analyse the P value. All probability values were two-sided. Spearman's rank-order correlation was used to determine the correlation calculated in this study. P-value <0.05 was considered as statistically significant.

Chapter III. TXNIP was induced by Chemotherapy treatment in CRC

3.1 Introduction

CRC is the third most diagnosed cancer and the second ranking in terms of leading cause of cancer death, with increasing incidence in younger people (https://www.cancer.net/cancer-types/colorectal-cancer/statistics). CRC is a complex disease, characterised by strong aggressiveness and heterogeneity ${ }^{1,403}$. Chemotherapy was initially developed at the early 20th century and still remains the predominant choice for treating most cancer types, even though immune checkpoint blockade therapy has revolutionised cancer therapy in some cancer types. Randomized trials have clearly established that the application of chemotherapy results in improved clinical outcomes ${ }^{404,405}$.

Platinum (Pt)-based drugs are widely used to treat different cancer types ${ }^{406}$. Cisplatin is the first anti-cancer drug, accidentally discovered in the late 1960s and approved by the US Food and Drug Administration (FDA) in 1978 to treat testicular cancer ${ }^{406}$. Oxaliplatin (OXA), a 3rd generation diaminocyclohexane (DACH) platinum analogues, is the only platinum-based anti-cancer drug approved by FDA to treat CRC^{407} and commonly used to treat patients unresponsive to $5-\mathrm{FU}^{408}$. In advanced colorectal carcinoma, oxaliplatin has been reported to produce response rates $2-24 \%$ in untreated patients and even $\sim 10 \%$ in patients with relapse ${ }^{409}$. It binds to DNA to form oxaliplatinDNA adducts and induces single strand breaks ${ }^{407}$.

Platinum-DNA adducts are formed by oxaliplatin to promote the activation of several biological processes, including DNA damage and reactive oxygen species (ROS) production, leading to cell cycle arrest and cell death ${ }^{410-412}$. It is well established that oxaliplatin-induced DNA damage, which is responsible for cytotoxicity properties of drugs ${ }^{413}$. Even though fewer Pt-DNA adducts, defined by inter-strand DNA cross-links (ISC) and DNA-protein cross-links (DPC), are formed by oxaliplatin when compared
to cisplatin, oxaliplatin is more potent in the induction of DNA damage and cellular apoptosis ${ }^{413,414}$. Clearly, increased ROS production has been observed by most chemotherapeutics, including oxaliplatin ${ }^{415-417}$. ROS is reactive oxygen-containing molecules, mediating drug-induced cell injury and death ${ }^{417}$. Consistently, inhibition of glutathione helps to increase the levels of ROS, enhancing oxaliplatin chemosensitivity ${ }^{418}$. Chemotherapy-induced ROS is involved in different types of cell death, including apoptosis, autophagy and necroptosis, by activating several signalling pathways ${ }^{419}$. For example, oxaliplatin can trigger apoptosis by activation of Bax/caspase cascade and PERK/ATF4/CHOP pathways ${ }^{68}$.

Oxaliplatin treatment has been observed to induce the activation of tumour suppressors, such as $\mathrm{p} 53^{420}$. Oxaliplatin-induced tumour suppressors mediates the activation of cell death and the remodelling of tumour microenvironment. Additionally, the view that chemotherapy regimens are an immunologically silent process is increasingly being challenged, as chemotherapies have been reported to function as immunotherapies that can rearrange the tumour microenvironment, which potentiates the enhanced efficacy for the following immunotherapies ${ }^{421}$. This concept has been supported by observations that conventional chemotherapy showed superior anti-tumour effects in syngeneic immunocompetent as opposed to immunodeficient hosts mouse models, dependent on innate and adaptive immune activation ${ }^{56,57,67}$. Clinical trials have also proved that combining neoadjuvant chemotherapy and immune checkpoint inhibitors has a superior response than chemotherapy alone in different types of cancers ${ }^{422-426}$. Immunogenicity induced by chemotherapy has been reported to involve immunogenic cell death via the release of DAMPs and cytokines, and upregulation of HLA expression changes in the spectrum of peptides presented on MHC class I molecules. Moreover, oxaliplatin has been already validated to induce immunogenicity, especially to induce HMGB1 release
and CRT exposure ${ }^{56,57,427}$. However, whether and how tumour suppressive genes are involved in chemotherapy-induced immune response need to be explored.

3.2 Aims and Objectives

The aim of the work described in this chapter was to identify tumour suppressive genes which are induced in colorectal cancer by chemotherapy treatment. As ROS plays an important role in mediating drug effects, we also aimed to identity whether ROS was involved in the regulation of target genes. These aims have been addressed by the following specific objectives:

1. To identify tumour suppressive gene(s) by an unsupervised screening method such as RNA sequencing in tumour cell lines (DLD1 and HCT15 cells) upon chemotherapy treatment;
2. To verify the target gene(s) (induced by chemotherapy treatment) by immunoblotting and qPCR in different cell models and patient samples, including 2D tumour cell lines, 3D tumour cell models, patient derived organoids and patient tissue samples;
3. To study whether ROS was involved in the regulation of target gene(s) by using antioxidant agent treatment, such as N -acetylcysteine (NAC);
4. To investigate the regulatory signalling pathway of gene of interest using CRISPR-KO cell models.

3.3 Results

3.3.1 TXNIP was induced by Chemotherapy treatment in colorectal cancer

To investigate dysregulated protein coding genes in CRC post chemotherapy, we performed RNA-seq in two human CRC cell lines (DLD1 and HCT15) after 48 hrs of oxaliplatin treatment. These two cell lines were selected for two different reasons: 1) Based on CMS classification, both DLD1 and HCT15 belong to CMS1 subtype ${ }^{428}$, which is defined as an "immune" subtype with high prevalence of MSI (Detailed characteristics in Table 3-1). Specifically, CMS1 subtype is well characterised by
increased immune infiltrate phenotype, mainly comprising of cytotoxic T and TH1 cells.
2) In CMS1 samples, genes copy number counts were consistently lower in oncogenes and higher in tumour suppressors ${ }^{14}$. These models were therefore thought to potentially induce the expression of tumour suppressive genes to mediate immune activation.

Table 3-1 Cell line characteristics ${ }^{428}$

Cell Lines	CMS status	Molecular phenotype	SNV/Indel	Morphology
DLD1	CMS1	MSI	APC/TP53/KRAS/PI3KCA	undifferentiated
HCT15	CMS1	MSI	APC/TP53/KRAS/PI3KCA	undifferentiated

After oxaliplatin treatment with a clinical relevant concentration $(10 \mu \mathrm{M})^{395}$, cells underwent robust changes, with 2500-3000 genes significantly altered (Appendix Table 7, 8). Aiming at exploring potential tumour suppressive genes, we focused more on increased genes induced by chemotherapy. Among these upregulated differentiated genes (DEGs), we observed that the expression of a commonly known tumour suppressive gene, TXNIP, was markedly increased after oxaliplatin treatment in both DLD1 and HCT15 cell lines (Figure 3-1A-B). We then compared the upregulated genes in both cell lines (Figure 3-1C). The analysis employed the adjusted $\mathrm{P}<0.05$ and $\mid \log (2)$ (fold change) $\mid>2$ as the cut-off criteria, and showed that 23 protein-coding targets (7.3%) shared by both cell lines were found to be upregulated by oxaliplatin (Figure 3-1C). Specifically, TXNIP showed the most significant difference with highest abundance among the upregulated genes (Table 3-2). TXNIP has been reported to exert antitumour effects in various cancer types (including colorectal cancer) and low TXNIP expression correlates with poor prognosis ${ }^{102,429-431}$.

A

B

HCT15
C
HCT15
Upregulated DEGs post Oxa

Figure 3-1. Differential gene expression (assessed by RNA-seq) between oxaliplatintreated group and control group.

After 48 hrs treatment with $10 \mu \mathrm{M}$ oxaliplatin, cells were collected for RNA-seq analysis. A volcano plot ($\log 2 \mathrm{FC}$ versus negative \log of P value) was used to visualize statistically
significant gene expression changes (fold change ≥ 1.5 and adjusted P value <0.05). TXNIP gene is labelled. $\mathrm{n}=3$ biological replicates per group (A) DLD1 cells; (B) HCT15 cells. (C) 23 overlapped upregulated genes (7.3\%) induced > 4-fold (Padj<0.05) after oxaliplatin treatment between DLD1 and HCT15 cells were determined by RNA sequencing analysis. Abbreviation: Ctrl: Control; Oxa: Oxaliplatin; DF: Different; FC: Fold Change; p-adj: p-adjust; NS: no significant.

Table 3-2 List of top upregulated genes post oxaliplatin

Gene symbols (Protein coding)	Ctrl (FPKM)	Oxaliplatin (FPKM)	Log2 Fold change	P-Adgj
PRR35	0	28.54605	7.266649	$4.05 \mathrm{E}-07$
$L C N 10$	0.348552	19.8151	5.777981	0.000165
KCNB2	0	9.706757	5.710984	0.000944
MSLNL	1.404126	67.71865	5.648547	$1.39 \mathrm{E}-10$
ARHGDIG	0	8.572541	5.535994	0.002144
LCN6	0	7.722649	5.382577	0.003533
DIRAS1	0.358471	14.16814	5.291237	0.001478
AZU1	0.348552	13.53987	5.224396	0.001382
CCDC27	0.606003	20.50235	4.952012	0.00037
TXNIP	$\mathbf{2 6 9 . 1 3 1 5}$	5656.84	4.393907	$3.23 \mathrm{E}-05$
TBXA2R	2.287421	39.23884	4.07954	$4.03 \mathrm{E}-07$
KRTAP3-1	1.736888	26.77862	3.986304	$8.66 \mathrm{E}-05$
$C 16 o r f 90$	1.404126	20.14336	3.886849	0.000405
LYPD1	0.697103	9.959529	3.878697	0.02032
ATAD3C	0.651553	9.393553	3.819505	0.020046
FCGRT	0.707023	9.525459	3.815109	0.018535
PAX5	0.606003	8.417741	3.690189	0.032801
RGS22	4.4838	52.87831	3.584577	$2.38 \mathrm{E}-08$
LYPD5	0.716943	8.107734	3.567269	0.040775
IGF2	1.010025	11.52926	3.521304	0.009887

Data was retrieved from RNA-seq analysis from DLD1 cells, summarizing the top 20 upregulated genes post oxaliplatin treatment. TXNIP was labelled in red as the most significant altered gene with highest abundance.

Gene symbols (Protein coding)	Ctrl (FPKM)	Oxaliplatin (FPKM)	log2 FoldChange	P-Adj
KRTAP2-3	0	125.2869734	9.346411215	0.000822836
CYP24A1	0.645985892	73.91566603	6.735820341	$2.60 \mathrm{E}-08$
VSTM1	0.322992946	38.76174837	6.697601482	$3.47 \mathrm{E}-05$
RFPLAA	0	13.31136649	6.101070502	0.00062468
NPPB	1.982261228	122.4772137	5.923907619	0.000154238
LCK	0.345144722	22.4735449	5.901918684	0.0001421
BIRC7	0	11.39585598	5.880086644	0.001313292
PRR35	0.345144722	21.92623207	5.86539495	0.000187016
KRT9	0	10.86855432	5.814285504	0.001184268
HS3ST6	0	9.642396919	5.640915916	0.002780822
SSTR3	1.013282389	45.82666816	5.456949584	$7.27 \mathrm{E}-07$
$T M P R S S 7$	0	7.836157053	5.353880062	0.006101127
ADAMTS2	0.38081625	15.21411853	5.33938626	0.001615086
SRRM4	0	7.34284595	5.257292063	0.012565035
EIF4E1B	0	7.230008502	5.22289714	0.017273012
LCN10	0.322992946	12.19816562	5.027935484	0.004747616
HSPB8	0.725960971	21.13577096	4.908199231	0.000947597
FLT4	0.345144722	9.85969415	4.711884638	0.009902761
CHRNA6	0.322992946	9.405088523	4.634463318	0.018943818
XAF1	0.690289443	16.50837613	4.568367934	0.010104646
MATK	2.040084531	46.98371948	4.496302136	$2.01 \mathrm{E}-08$
PHF21B	0.322992946	8.392757488	4.476010289	0.020318371
NXPH3	0.322992946	8.072125448	4.420445965	0.025793578

ATP1A4	0.38081625	8.029853169	4.413252593	0.023099204
RTP4	0.38081625	7.798576551	4.387449964	0.027914431
HCAR3	0.345144722	7.740984883	4.369117289	0.02452052
FAM92B	0.322992946	7.754964271	4.355803974	0.04006894
C4orf54	0.690289443	14.08672325	4.343227528	0.009454433
PRSS42	0.38081625	7.582404294	4.334104743	0.028220147
DRGX	0.322992946	7.452116596	4.322380286	0.034623455
APOL3	10.50305893	208.2544095	4.314170911	$6.98 \mathrm{E}-22$
DYDC2	0.645985892	13.04497435	4.256247912	0.007933229
SLC15A3	2.514395612	46.94254903	4.254588477	$1.82 \mathrm{E}-07$
CACNG8	1.832738192	33.40182175	4.231699872	$5.38 \mathrm{E}-05$
IGFL1	2.155731138	38.27056813	4.185045954	$1.39 \mathrm{E}-05$
KRT17	3.850670948	68.95377886	4.172827901	$3.03 \mathrm{E}-11$
EBI3	14.83487788	266.0035139	4.15521294	$4.57 \mathrm{E}-37$
C16orf90	0.703809196	11.90929734	4.101257861	0.017437336
IGF2	0.703809196	11.95379642	4.09722856	0.014115672
COL24A1	0.725960971	11.99965864	4.096047544	0.011797236
EDN2	6.955024248	113.4347255	4.072292564	$2.95 \mathrm{E}-13$
NYAP2	1.084625445	17.74741109	4.066588654	0.001891278
GCNT4	1.523264998	23.60117836	4.050536826	0.000364396
REN	4.231487197	68.31979062	4.030919015	$2.42 \mathrm{E}-09$
ITGAM	1.048953917	16.93258115	4.027097243	0.002851174
HBA1	0.645985892	11.00846375	4.020184502	0.021304122
IL2RG	1.832738192	28.61641862	4.019125292	0.000344523
LRRC36	0.703809196	10.80983768	3.94970852	0.026958678
FAM71E2	0.690289443	10.38587083	3.900474734	0.037724297
WFDC1	2.169250891	31.24933696	3.891210709	$1.48 \mathrm{E}-05$
MYL9	29.9329762	436.3212348	3.86698279	$3.81 \mathrm{E}-27$
ELF5	0.725960971	10.26139989	3.866506692	0.02582918
ZFR2	0.690289443	9.980694236	3.844324484	0.035209322
HOXD1	0.761632499	9.872667651	3.795635882	0.026157866
TMEM40	10.85683567	147.2144137	3.764734464	$9.07 \mathrm{E}-15$
AZU1	1.465441695	19.09803945	3.748475391	0.001746411
ZFP28	0.725960971	9.157486628	3.710785603	0.041477085
CREB3L3	1.336275335	17.89904996	3.701912394	0.001550174
GNAO1	0.703809196	9.099775873	3.695245462	0.039404822
LRRC15	1.013282389	12.81001184	3.626272077	0.009022534
ANO2	1.810586416	20.1612586	3.518297597	0.004383479
RNF113B	1.013282389	11.87272272	3.511094279	0.014796324
SCN2B	1.071105693	11.91387003	3.498138024	0.024626459
TXNIP	$\mathbf{8 9 9 . 8 8 3 0 4 3 6}$	10036.04559	3.479143186	4.63E-06
PTPN7	17.09648016	188.901704	3.467242815	$1.52 \mathrm{E}-19$
TPSD1	1.048953917	11.02478902	3.395584352	0.017021385
GZMM	4.182295917	43.14589896	3.372146633	$5.79 \mathrm{E}-05$
HRC	1.659268282	16.78685498	3.296420599	0.003711629
SCUBE1	4.36928558	41.52237034	3.287034387	4.63E-06

Data was retrieved from RNA-seq analysis from HCT15 cells, summarizing the top 70 upregulated genes post oxaliplatin treatment. TXNIP was labelled in red as the most significant altered gene with highest abundance.

To validate the expression pattern of TXNIP, we treated colorectal cancer cells with oxaliplatin for 48 hrs at various concentrations. Correspondingly, the result showed 5 $\mu \mathrm{M}$ oxaliplatin was already capable of significantly upregulating TXNIP mRNA levels and the increased expression was more pronounced at increased drug dosage (Figure 3-

2A, B). Moreover, $10 \mu \mathrm{M}$ oxaliplatin was the minimum drug concentration to trigger
optimum TXNIP expression. Further, cells were collected at different time points post $10 \mu \mathrm{M}$ oxaliplatin. Induction of TXNIP expression was observed at later time points (Figure 3-2C, D). 48 hrs of treatment induced the highest increase. After 48 hrs of treatment with 10uM oxaliplatin, the induction of TXNIP reached to approximately 1015 times fold at mRNA level (Figure 3-2A-D).

Figure 3-2. Assessment of TXNIP expression treated with oxaliplatin by quantitative polymerase chain reaction ($q-P C R$) analysis.
(A-B) q-PCR analysis of TXNIP mRNA in DLD1 cells (A) or HCT15 cells (B) treated with oxaliplatin for 48 h at various concentrations. (C-D) q-PCR analysis of TXNIP gene expression in DLD1 (C) or HCT15 cells (D) treated with $10 \mu \mathrm{M}$ oxaliplatin at different time points. Results shown are representative of three independent experiments. All values were expressed as mean \pm SD. ${ }^{*} \mathrm{p}$ value $(\mathrm{p})<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001, * * * * p<0.0001$, vs. Control (PBS). Abbreviation: 2D: Two-dimensional.

Immunoblotting was used to assess TXNIP expression at the protein level. The results were consistent with the qPCR data (Figure 3-3A-H). The TXNIP protein expression levels were upregulated significantly compared with control group, in both dose and time dependent manners (Figure 3-3A-H). Taken together, these results demonstrate that oxaliplatin can promote the transcriptional upregulation of TXNIP in the colorectal cancer models, DLD1 and HCT15 cells.

Figure 3-3. Western blotting analysis of TXNIP expression in colorectal cancer cells treated with oxaliplatin.
(A-B) Assessment of TXNIP in DLD1 cells post oxaliplatin treatment at different time points (A); or with different dosages (B); (E-F) Assessment of TXNIP in HCT15 cells post oxaliplatin treatment at different time points (E); or with different dosages (F); (C, D, G, H) The mean and standard errors were then calculated for each group and statistical analysis was performed. β ACTIN was used as an internal reference. Each experiment is run in triplicate. Bars represent mean \pm SD. ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$, vs. Control (PBS). (E, F) Western blotting analyses of TXNIP with oxaliplatin of different dosages or at different time points.

Compared to 2D (two-dimensional) monolayers, 3D (three-dimensional) cell models are more accurate at mimicking in vivo features such as cell-to-cell interactions, tumour growth and drug responses ${ }^{30,432}$. Spheroids are one of the most commonly used 3D cell models, in which the cells are closely packed with high density. Previous reports showed DLD1 and HCT15 cells have been widely used to establish spheroids model for cancer studies, including drug combinations efficacy ${ }^{433}$, tumour-immune interaction ${ }^{434-435}$, cell-cell adhesion properties ${ }^{436}$ and cancer metastasis and growth ${ }^{437}$. To generate uniformly sized spheroids, ultra-low attachment culture plates were used, and multicellular spheroids were generated (Figure 3-4A). As shown, optimal spheroids
development was observed at 24 and 48 hrs in DLD1 and HCT15, respectively. Oxaliplatin treatment decreased the viability and volume of CRC spheroids (Figure 34A).

Given that 3D structures have been reported to show better performance for drug testing and cellular signalling than 2D cultures, we measured the expression of TXNIP after treating CRC spheroids using the same conditions tested in 2D cultures. Similar results were observed. Specifically, higher expression of TXNIP was seen after longer treatment condition at both mRNA and protein levels in DLD1 as well as HCT15 spheroids (Figure 3-4B-G). For DLD1 spheroids, increased TXNIP was observed from 24 hrs of drug treatment. But 24 h of treatment was not able to induce significant increase of TXNIP at protein level in the HCT15 spheroids model even though the mRNA level was already significantly upregulated (Figure 3-4B-G).

Figure 3-4. The induction of TXNIP expression post oxaliplatin treatment in 3D spheroids models.
(A) Representative images of the morphology of CRC cell lines cultured as 3D tumour spheroids in non-adherent 96 -well plates. Cells were seeded on day 0 . Spheroids were formed after 24 h for DLD1 and 48 h for HCT15 cells. On day $3,10 \mu \mathrm{M}$ of oxaliplatin was added. Photographs were taken on day $0,1,2,3,4,5$ and 6 after plating. (B-C) qPCR analysis of TXNIP mRNA in (B) DLD1 and (C) HCT15 spheroids treated with oxaliplatin at 0, 24 and 48 h ; (D-G) Western blotting analyses of TXNIP at different time points post oxaliplatin treatment in DLD1 and HCT15 cells. (D-E) Western blotting of TXNIP after treatment of oxaliplatin at 0,24 and 48 h in (D) DLD1, (E) HCT15 spheroids; Results shown are representative of three independent experiments. (F-G) The statistical analyses were performed in (F) DLD1 spheroids,
(G) HCT15 spheroids. All values were expressed as mean \pm SD. ${ }^{*} \mathrm{p}<0.05,{ }^{* *} \mathrm{p}<0.01$, $* * * \mathrm{p}<0.001$, vs. Control (PBS). Abbreviation: 3D: Three-dimensional.

Patients-derived organoids (PDTOs) have been reported to be a very useful tool in biomedical research ${ }^{50}$. Other than research, PDTOs provide the potential for translational medicine to present an individualized platform for treatment prognosis prediction ${ }^{25}$. Several methods are available for the culture of organoids, including the submerged method ${ }^{33}$ and the air-liquid interface(ALI) method ${ }^{438}$. Here, we generated colorectal cancer organoids from patient's resected tumour tissue and used a general submerged method to maintain organoids in culture (Figure3-5A). Two PDTOs were challenged with $10 \mu \mathrm{M}$ oxaliplatin and showed similar trends of increased TXNIP expression at the mRNA level (Figure 3-5B-C), but very marginal at the protein level (Figure 3-5D-E). Collectively, these data demonstrate that oxaliplatin induces the expression of TXNIP and the drug response shows difference between 2 D and 3D cultures.

Figure 3-5. The induction of TXNIP expression post oxaliplatin treatment in 3D PDTOS models.
(A) Schematic of generation and maintenance of patient-derived colorectal cancer organoids; (B-C) qPCR analyses of TXNIP post oxaliplatin treatment in two different PDTOs, (B) CRC001,
(C) CRC002. (D-E) Western blotting analyses of TXNIP post oxaliplatin treatment in two different PDTOs, (D) CRC001, (E) CRC002; All values were expressed as mean \pm SD.
$* \mathrm{p}<0.05, \quad * * \mathrm{p}<0.01, \quad * * * \mathrm{p}<0.001, \quad * * * * \mathrm{p}<0.0001$, vs. Control. Abbreviation: CRC: Colorectal cancer.

5-FU is another chemotherapeutic agent for colorectal cancer treatment. To test whether TXNIP induction was specific to oxaliplatin or whether other chemotherapies could also induce TXNIP expression, we treated DLD1 and HCT15 cells with $10 \mu \mathrm{M}$ of 5FU and observed the significantly increased expression of TXNIP in HCT15 cells, but marginal increase in DLD1 cells (Figure 3-6). These data suggested that TXNIP induction could be a general response to chemotherapies.

Figure 3-6. The induction of TXNIP expression post 5-FU treatment in colorectal cancer cell lines by Western blotting analyses.
(A) DLD1 cells; (B) HCT15 cells. Abbreviation: 5-FU: Fluorouracil.

3.3.2 TXNIP was accumulated in cytosol post oxaliplatin treatment

TXNIP is an alpha-arrestin protein (also named as ARRDC6), which is a member of the arrestin-clan family proteins. In humans, this family is comprised of true arrestins (visual and β-arrestins), the arrestin domain-containing proteins (ARRDCs), isoforms of the retromer subunit VPS26 and DSCR3 ${ }^{439}$.

True arrestin proteins are scaffolding proteins regulating G-protein-coupled receptor (GPCR)-dependent signalling ${ }^{440}$. GPCRs transduce signals through a conformational change in response to agonist binding ${ }^{441}$. Arrestins can bind to activated receptors to promote their internalisation, destabilisation and degradation.

Novel arrestin-related proteins have been found and include six proteins: ARRDC1ARRDC6 ${ }^{439}$. To date, only a few studies have been conducted to understand the molecular function of ARRDCs. These studies report that ARRDCs may modulate
extracellular vesicle biogenesis and protein trafficking ${ }^{442-444}$, cancer metastasis ${ }^{445}$, insulin resistance ${ }^{446}$ and glucose metabolism ${ }^{201}$.

TXNIP is predominately found in the cytoplasm ${ }^{100,447}$. However, accumulating evidence have shown that TXNIP also localises to plasma membranes ${ }^{448}$ and/or diverse intracellular organelles, including mitochondria and the nucleus ${ }^{499}$. The localisation of TXNIP is critical for its roles in biological processes ${ }^{107,246}$. Specifically, TXNIP translocation from the nucleus into mitochondria under oxidative stress leads to the activation ASK1 and mitochondrial pathway of apoptosis ${ }^{449}$.

Thus, we decided to assess the distribution of TXNIP under oxaliplatin treatment condition. Firstly, we treated DLD1 cells with $10 \mu \mathrm{M}$ of oxaliplatin and, consistent with previous results, observed increased TXNIP expression by confocal imaging (Figure 37A). Consistent with other reports ${ }^{100}$, cell fractionation into nuclear and cytoplasmic fractions confirmed that induced TXNIP following drug treatment mostly accumulated in the cytoplasm in both DLD1 and HCT15 cells (Figure 3-7B-C). Mitochondria isolation also revealed that oxaliplatin caused TXNIP enrichment in mitochondria (Figure 3-8A), which was confirmed by confocal imaging (Figure 3-8B). However, confocal images showed that oxaliplatin induced TXNIP expression was not fully overlapped with a mitochondria stain, MitoTracker, suggesting TXNIP may localise to other organelles (Figure 3-8B). TXNIP has previously reported to localise to the ER and interact with protein disulfide isomerase (PDI) to regulate the activity of PDI^{156}. In our study, TXNIP was also observed to partially overlap with calreticulin, an ER chaperone (Figure 3-8C). Altogether, these data suggest that TXNIP primarily accumulates in the cytosol organelles, including the mitochondria and ER, following oxaliplatin treatment.

Figure 3-7. The accumulation of induced TXNIP in cytosol.
(A) Immunofluorescent detection of TXNIP by confocal microscopy in DLD1 cells. DAPI (blue), Phalloidin (green), TXNIP (deep red); (B-C) effects of oxaliplatin on subcellular localization of TXNIP assessed by cell fractionation and immunoblotting in both (B) DLD1 and (C) HCT15 cells. LAMIN A - a nucleus marker, GAPDH - a cytoplasm marker.
A

Ctrl
C

Figure 3-8. The localization of TXNIP in both mitochondria and ER after oxaliplatin treatment.
(A) Effects of oxaliplatin on mitochondria localization of TXNIP assessed by mitochondria fractionation and immunoblotting. Tom20 - a mitochondria marker; (B-C) confocal imaging of subcellular localization of TXNIP in response to oxaliplatin in DLD1 cells. (B) After 48 hrs
treatment, merged images were taken: DAPI (blue), Phalloidin (green), TXNIP (deep red) and MitoTracker Red (red); overlap between red and deep red was showed as white. (C) Colocalization between TXNIP (red) and Calreticulin (green) in DLD1 cells.

3.3.3 TXNIP expression was decreased in colorectal cancer

The previous results strongly suggested that oxaliplatin induces TXNIP upregulation in CRC models. Therefore, to further investigate the role of TXNIP as a tumour suppressive gene, we analysed TCGA-COAD dataset. Consistent with other studies ${ }^{103,107,135,394,450}$, the expression of TXNIP was downregulated in tumour samples (Figure 3-9A); moreover, its expression positively correlates with the colon tumour suppressor APC expression and negatively correlates with oncogene MYC expression analysed in TCGA database (Figure 3-9B), indicating its potential anti-tumour function in colorectal cancer. Notably, these correlations were relatively weak.

Figure 3-9. Decreased TXNIP expression in TCGA colorectal cancer cohort.
The Cancer Genomic Atlas (TCGA: COAD and READ) database analysis: (A) Comparative analysis of substantial expression of TXNIP between adjacent normal tissue and cancer tissues, $\mathrm{P}<2.2 \mathrm{e}-16$; (B) Co-expression analysis for TXNIP in colorectal cancer versus MYC and APC. Plotted data are $\log 2 \mathrm{mRNA}$ expression from RNA-seq RPKM.

In addition, the levels of TXNIP expression were also quantified in archived tissues from a retrospective cohort of 32 patients with colorectal cancer. Samples included tissues isolated from tumour resection and biopsies. All the samples in the cohort were collected before chemoradiotherapy except for 3 patient samples. For these 3 patients, samples were collected from biopsies before treatment and resection after oxaliplatin-
based neo-adjuvant chemotherapy treatment. The clinical characteristics of all patients are listed in Table 3-3. An immunohistochemical assay was conducted to compare the expression of TXNIP between tumour lesion and adjacent normal tissue (ANT). TXNIP expression was mainly observed in the cytoplasm across all samples, and the staining intensity varied from weak to median in patient samples without treatment. The staining showed tumour lesions presented lower expression of TXNIP compared with normal tissues (Figure 3-10A-B). We then measured the expression of TXNIP in the biopsy samples collected before and after oxaliplatin-based neo-adjuvant chemotherapy treatment. Consistent with previous results in cell line models, TXNIP expression in all 3 patient tissues was increased in tumour resection samples post-chemotherapy compared with pre-chemotherapy tumour biopsies (Figure 3-10C-E). Therefore, clinical samples supported our in vitro data, which showed oxaliplatin-based chemotherapy can induce the expression of TXNIP.

Table 3-3 The clinical characteristics of all patient samples from Peking university
Third Hospital

| Patient No. | Sex | Collect |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| procedure | | |

B0042815	Female	resection	right hemicolon	adenocarcinoma	66	T3N1M0	No
B0045868	Female	resection	left hemicolon	adenocarcinoma	55	T3N0M0	No
B0046985	Male	resection	left hemicolon	adenocarcinoma	57	T3N1M0	No
B0055650	Male	resection	transverse colon	adenocarcinoma	54	T4aN0M0	No
B0056913	Male	resection	transverse colon	adenocarcinoma	47	T3N1M1	No
B0058974	Female	resection	ileocecum	adenocarcinoma	64	T4N2M0	No
B0060127	Male	resection	right hemicolon	adenocarcinoma	49	T2N0M0	No
B0060644	Female	resection	sigmoid colon	adenocarcinoma	65	T3N1cM0	No
B0062970	Male	resection	right hemicolon	adenocarcinoma	53	T4bN2bM1a	No
B0063214	Female	resection	ileocecum	adenocarcinoma	65	T2N2M1	No
B0063782	Female	resection	rectosigmoid	adenocarcinoma	51	T3N2M1	No
B0063918	Male	resection	sigmoid colon	adenocarcinoma	71	T4NOMO	No
B0066989	Female	resection	colon	adenocarcinoma	40	T3N0M0	No
B0027766	Female	resection	right hemicolon	adenocarcinoma	50	T4N1cM0	No
B0033322	Male	biopsy	sigmoid colon	adenocarcinoma	57	T2N2aM1a	No
B0044089		resection	sigmoid colon	adenocarcinoma		T2N2aM1a	Yes
B0050898	Male	biopsy	rectum	adenocarcinoma	50	T4N1M1	No
B0053926		resection	rectum	adenocarcinoma		T4N1M1	Yes
B0058435	Male	resection	sigmoid colon	adenocarcinoma	56	T4N2M0	No
B0060820		resection	sigmoid colon	adenocarcinoma		T4N2M0	Yes

Figure 3-10. TXNIP expression pattern in our clinical study cohort by immunohistochemistry (IHC) analysis.
TXNIP expression was decreased in colorectal cancer tissue, but upregulated after neo-adjuvant chemotherapy treatment. (A) Detection of TXNIP protein levels in both Tumour and adjacent
normal tissue (ANT) samples from 32 patients with primary colorectal cancer. HE, EnVision, serial sections, original magnification $\times 200$; (B) Statistical analysis of TXNIP IHC score between adjacent normal tissue and Tumour tissue specimen. The semi-quantitative scoring of each specimen was calculated by "expression intensity \times expression area", all values were expressed as mean \pm SD. ${ }^{* * * *} \mathrm{p}<0.0001$; (C-E) Detection of TXNIP protein levels of adjacent normal tissue (ANT), treatment-naïve Tumour samples and oxaliplatin-based neo-adjuvant chemotherapy (FOLFOX6, FOLFOX6 and Xelox6, respectively). HE, EnVision, serial sections, original magnification $\times 400$. Abbreviation: Hematoxylin and eosin stain.

3.3.4 TXNIP upregulation is induced by reactive oxygen species (ROS) production dependent on MondoA

A fine cellular redox balance is maintained by ROS and a companion antioxidant system, which can scavenge and therefore control ROS^{451}. One of the key antioxidant systems is the thioredoxin (Trx) system, which is composed of NAPDH, Trx and thioredoxin reductase (TrxR). The antioxidant function of Trx relies on its disulfide reductase activity (providing the electrons to Prxs, methionine sulfoxide reductases, and some redox-sensitive transcription factors) ${ }^{97}$. TXNIP is essential for redox homeostasis due to its ability to bind to thioredoxin (Trx) and inhibit Trx function and expression ${ }^{97,99}$. Oxaliplatin has been reported to induce ROS generation in CRC models ${ }^{68,412,452}$. In CRC, synergistical anti-cancer effects were observed when of oxaliplatin treatment was combined with piperlongumine (PL), a molecule promoting ROS production, via a manner dependent on induction of an ROS-mediated mitochondrial dysfunction and ER stress apoptotic pathways ${ }^{68}$.

Given that oxaliplatin anti-tumour activity is associated with ROS induction ${ }^{453}$ and oxidative stress is also associated with TXNIP expression ${ }^{454}$, the increase in TXNIP expression after oxaliplatin treatment were hypothesised to be mediated by ROS generation. Thus, we tested ROS production using DHE assay.

Consistent with previous studies ${ }^{455,456}$, oxaliplatin increased ROS generation in DLD1 and HCT15 cells (Figure 3-11A-B). Next, when combining NAC, a ROS inhibitor, and oxaliplatin, TXNIP induction was supressed (Figure 3-11C-F). Specifically, the
increase in TXNIP mRNA by oxaliplatin was abolished by the addition of NAC (Figure 3-11C-D), suggesting that ROS generation is required for oxaliplatin-induced TXNIP by transcriptional regulation.

Figure 3-11. ROS production responsible for the activation of TXNIP induced by oxaliplatin.
(A-B) Oxaliplatin induced the overproduction of ROS in both (A) DLD1 cells; (B) HCT15 cells. Cells were treated for 48 h with oxaliplatin ($10 \mu \mathrm{M}$) followed by Dihydroethidium (DHE) staining and fluorescence detection. Results are presented as fold-increase in mean fluorescence intensity normalized to untreated and mean $\pm \mathrm{SD}(\mathrm{n}=3)$. (C-D) qPCR analysis of TXNIP
mRNA in DLD1 cells (C) or HCT15 cells (D) treated with N-acetyl Cysteine or oxaliplatin or the combinational treatment. Two-tailed Student's t test. All values were expressed as mean \pm SD. ${ }^{*} \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$. (E-F) Immunoblot analysis of TXNIP in DLD1 cells (E) or HCT15 cells (F) treated with N-acetyl Cysteine or oxaliplatin or the combinational treatment.

Then we further analyse RNA-seq dataset of both DLD1 and HCT15 cells. The result showed 23 upregulated differentially expressed genes (DEGs) shared in both cell lines, including TXNIP (Figure 3-1C, Figure 3-12A). We also observed that another arrestin family member, arrestin domain-containing protein $4(A R R D C 4)$, was increased as well (Figure 3-12A). It was interesting for several reasons: 1) ARRDC4 and TXNIP are members of the same family group (arrestin family) ${ }^{457}$. Importantly, they are paralogs showing 63% similarity over their entire ORFs ${ }^{458}$. 2) They have always been shown to be regulated under same conditions, even by the same regulator ${ }^{457-459}$. Thus, we selected ARRDC4 for further analysis. Consistently, qPCR analysis showed the increased mRNA level of ARRDC4 (Figure 3-12B). Notably, the induction of ARRDC4 was also blunted by the combined treatment with NAC (Figure 3-12B).

Figure 3-12. Increased $A R R D C 4$ expression post oxaliplatin treatment in colorectal cancer.
(A) heatmap showing overlapped 23 regulated genes induced by oxaliplatin in (Left panel) DLD1 cells, (Right panel) HCT15 cells. The order of DEGs was placed up to fold change of upregulation. Higher differentially expressed genes were put on the top and lower ones on the bottom. (B) qPCR analysis of $A R R D C 4$ mRNA in (left panel) DLD1 cells and (right panel) HCT15 cells treated with N-acetyl Cysteine (NAC) or oxaliplatin or the combinational treatment. All values were expressed as mean \pm SD. ${ }^{* * *} \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$.
Both TXNIP and ARRDC4 are the most highly MondoA-dependent genes ${ }^{109,458}$. To identify whether MondoA is responsible for the induction of TXNIP, MondoA expression was assessed after treatment and showed no change at transcript and protein levels (Figure 3-13A-C). MondoA has been shown to induce the expression of target genes when it is shuttled into the nucleus ${ }^{109,458}$. After oxaliplatin treatment, the translocation of MondoA into the nucleus was observed (Figure 3-13D). Next, the transient knockdown of MLXIP (gene name of MondoA) in cells led to the compromised effects on induced TXNIP and ARRDC4 expression upon oxaliplatin treatment (Figure 3-13E-F), which was further confirmed by permanent MondoA gene knock-out using a CRISPR-Cas9 system (Figure 3-13G-H). Notably, previous study showed that c-Myc is reported to be regulate TXNIP expression in breast cancer. The molecular mechanism is competing with MondoA to bind TXNIP promoter ${ }^{111}$. Then we analysed c-Myc expression in RNA-seq dataset and, interestingly, observed to be downregulated post oxaliplatin treatment (Figure 3-14A). Thus, we hypothesised that c-Myc expression could be required to supress TXNIP expression.

CRISPR/Cas9-based transcriptional activation (CRISPRa) system has recently emerged as a powerful and scalable technique for genetic overexpression ${ }^{460-464}$. In this system, the dead Cas9 (dCas9), a CRISPR protein variant lacking its endonuclease ability, has been fused with various gene activation domain, such as dCas9-VP64, Synergistic Activation Mediator (SAM), SunTag and VPR (VP64-p65-Rta) ${ }^{465-467}$. Here, we generated dCas9-VPR DLD1 cells. To identify the involvement of c-Myc in TXNIP regulation, we endogenously overexpressed c-Myc using the CRISPR-cas9 activation
system. Then we treated non-targeting control and c-Myc overexpressing cells with oxaliplatin and then analysed TXNIP expression. The results showed that overexpressing c-Myc did not abolish oxaliplatin-induced TXNIP expression (Figure 3-14B), suggesting that in our system, the decrease of c-Myc is not required to drive the increased TXNIP expression after chemotherapy treatment. Taken together, these results suggested MondoA activation is required for chemotherapy-induced TXNIP upregulation, independently of decreased c-Myc levels.

We further used ChIP-PCR to verify the dependence of MondoA on TXNIP regulation. Relative to control, the amount of MondoA on the TXNIP promoter was significantly increased after oxaliplatin treatment, which was compromised after combined treatment with NAC (Figure 3-14C). The specificity of the PCR product was assessed by Sanger sequencing. Altogether, these findings demonstrate that ROS production is responsible for oxaliplatin-induced TXNIP overexpression, possibly by activating transcriptional activity of MondoA.

Figure 3-13. MondoA translocation into nucleus responsible for the activation of TXNIP induced by oxaliplatin.
(A-B) qPCR analysis of MLXIP mRNA in (A) DLD1 cells and (B) HCT15 cells treated with oxaliplatin at indicated time points; (C) Immunoblot analysis of MondoA expression in DLD1 cells after oxaliplatin treatment; (D) effects of oxaliplatin on subcellular localization of MondoA assessed by cell fractionation and immunoblotting in DLD1 cells. LAMIN A -a nucleus marker, GAPDH - a cytoplasm marker; (E-F) Assessment of MLXIP, TXNIP and ARRDC4 mRNA in (E) DLD1 cells and (F) HCT15 cells upon knockdown of MondoA with oxaliplatin treatment by q-PCR analysis. (G-H) Immunoblot analysis of TXNIP expression in both (G) MondoA-knockout DLD1 cells and (H) MondoA-knockout HCT15 cells after oxaliplatin treatment. All values were expressed as mean \pm SD. ${ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$, $* * * * \mathrm{p}<0.0001$. Abbreviation: MKO: MondoA knockout.

Figure 3-14. c-Myc was not involved in oxaliplatin-induced TXNIP expression.
(A) MYC mRNA level was analysed in our RNA sequencing data; (B) Immunoblot analysis of TXNIP expression in c-Myc-overexpressing DLD1 cells after oxaliplatin treatment; (C) ChIPPCR was used to validate MondoA occupancy on the promoters of TXNIP gene in DLD1 cells treated with oxaliplatin or the combinational treatment with NAC. Results shown are representative of three independent experiments. All values were expressed as mean $\pm \mathrm{SD}$. Two-tailed Student's t test; ${ }^{* *} \mathrm{p}<0.01,{ }^{* * *} \mathrm{p}<0.001$. Abbreviation: NTCa: Non-targeting control CRISPR activation. C-MYCa: C-MYC CRISPR activation.

3.3.5 ER stress signalling was involved in oxaliplatin-mediated TXNIP regulation

One of the most studied organelles is the ER, the largest intracellular organelle in cells which spans from the nuclear envelope to the cell membrane ${ }^{468}$. Alterations in the function of ER can lead to the accumulation of unfolded or misfolded proteins. The ER activates different signals to restore ER homeostasis in response to the burden of unfolded or misfolded proteins, a process collectively termed the unfolded protein response (UPR) ${ }^{469,470}$.

Chemotherapy has been reported to modulate ER stress ${ }^{471,472}$. To identify whether oxaliplatin modulates ER stress in CRC, we analysed RNA sequencing dataset. Gene ontology (GO) is a well-acknowledged gene functional enrichment database and is a tool for the unification of biology ${ }^{473}$. Interestingly, GO analysis biological processes (BP) terms of RNA-seq data manifested that oxaliplatin-suppressed genes are enriched at ER stress-responsive genes as well as translation-related genes. DEGs were highly clustered in related signalling pathways, such as "tRNA aminoacylation for protein translation", "translation initiation", "SRP-dependent co-translational protein targeting
to membrane", "response to endoplasmic reticulum stress", "protein targeting to membrane", "protein targeting to ER", "protein targeting", "protein localization to endoplasmic reticulum" and "co-translational protein targeting to membrane" (Fugure3-15A-B), suggesting the involvement of ER stress. The UPR-dependent PERK-eIF2a axis is reported to be involved in the synthesis of the secreted proteome ${ }^{474}$, suggesting this axis might be, to a greater extend, modulated by oxaliplatin. Correspondingly, Gene set enrichment analysis (GSEA) further showed the downregulation of unfolded protein responses in the post-treatment group (Figure 3-15C-D). Based on the details in introduction section (1.3.1.3 ER stress signalling), we tested UPR-related markers and observed the downregulated expression of UPR markers, including BiP, IRE-1a, PERK and its downstream targets ATF4, but not ATF6 at RNA level (Figure 3-16A). The immunoblotting assay also showed the decreased expression of BiP and p-eIF2a, but no obvious change for IRE-1a, PERK and ATF4 at protein level (Figure 3-16B). Collectively, oxaliplatin decreased unfolded response signalling in our CRC models.

Figure 3-15. Oxaliplatin suppressed ER stress signalling in CRC.
(A-B) Functional enrichment analysis of RNA sequencing dataset shows the top enriched downregulated gene ontologies after 48h of oxaliplatin treatment in (A) DLD1 cells, (B) HCT15 cells. ER stress-responsive genes signalling and translation-related genes signalling were highlighted. adjusted p-value $(\mathrm{padj})=p$-value $*($ total number of hypotheses tested $) /($ rank of the p-value), gene ratio $=$ the number of differentially expressed genes in each GO term/ all differentially expressed genes available in GO database. (C-D) Gene set enrichment analysis (GSEA) for unfolded protein response signature using downregulated transcriptomic data after oxaliplatin treatment. NES ≥ 1 and false discovery rate $(\mathrm{FDR}) \mathrm{q}$ value <0.05.

Figure 3-16. Oxaliplatin decreased unfolded response signalling in CRC.
(A) qPCR analysis of UPR-related genes (HSPA5, ERN1, EIF2AK3, ATF4, ATF6) in DLD1 cells post oxaliplatin; (B) Immunoblot analysis of the expression of UPR-related proteins (IRE1a, ATF6, BiP, PERK, ATF4, t- eIF2a and p-eIF2a) in DLD1 cells after oxaliplatin treatment. All values were expressed as mean $\pm \mathrm{SD}$. NS=non-significant, $* * \mathrm{p}<0.01$, $* * * \mathrm{p}<0.001$, vs. Control. Abbreviation: NES: Normalized enrichment score. HSPA5: Heat shock protein family A member 5. ERN1: endoplasmic reticulum to nucleus signalling 1. EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3.

Recent studies emphasise the requirement of ER stress for TXNIP activation, and in particular the major sensors IRE1a and PERK ${ }^{150,154,155}$. For instance, knockout of either PERK or IRE-1a supresses the upregulation of TXNIP expression upon ER stress in β cells ${ }^{150}$. Given the observed decrease in IRE-1a and PERK signalling genes following oxaliplatin treatment, the role of ER stress in modulating TXNIP expression was further investigated. To this end, different genetically modified cell models were established to identify if these pathways are required for TXNIP induction by oxaliplatin. We found that knock-down of EIF2AK3, encoding PERK, enhanced TXNIP expression (Figure 3-17C-D). In contrast, overexpression of EIF $2 A K 3$ inhibited TXNIP expression after oxaliplatin treatment (Figure 3-17A-B). Together, this suggests that PERK signalling
could negatively regulate TXNIP expression under oxaliplatin treatment (Figure 3-17A-D). No changes in TXNIP expression were observed in the ERN1 (encoding IRE-1a)-overexpressing condition, suggesting IRE-1a does not regulate TXNIP expression (Figure 3-17E-F). To verify whether PERK-eIF2a signalling was also modulated by ROS, cells were subjected to combinational treatment with NAC. The results showed that treating cells with NAC reversed the decreased expression of p-eIF2a (a downstream target of PERK) following oxaliplatin treatment (Figure 3-17G). To further identify whether MondoA is the major regulator of TXNIP expression, we knocked-down PERK expression in MondoA-KO cell model and observed that reduced PERK signalling was not able to induce TXNIP expression after chemotherapy treatment when depleting MondoA (Figure 3-17H). These results suggested that TXNIP upregulation in response to chemotherapy treatment was indirectly by PERK mediated ER stress signalling, however this could be a secondary consequence of excessive ROS damage of the ER, resulting on PERK/eIF2a general translation, a possibility that would require further investigation. These results therefore highlight a major role for MondoA in mediating TXNIP overexpression.

Figure 3-17. PERK signalling was involved in TXNIP overexpression.
(A, C, E) Immunoblot analysis of TXNIP after oxaliplatin treatment in (A) PERKoverexpressing DLD1 cells, (C) PERK-knockdown DLD1 cells, (E) IRE1a-overexpressing DLD1 cells; (B, D, F) The statistical analysis was performed, respectively. (G) Immunoblot analysis of p-eIF2a and t-eIF2a in the presence and absence of oxaliplatin or NAC. (H) Immunoblot analysis of MondoA, PERK and TXNIP after oxaliplatin in MondoA-knockout or EIF2AK3-knockdown DLD1 cells. All values were expressed as mean \pm SD. NS $=$ nonsignificant, $* \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$, vs. Control. Abbreviation: NTCa: Non-targeting control CRISPR activation. C-MYCa: C-MYC CRISPR activation. EIF2AK3a: EIF2AK3 CRISPR activation. ERN1a: ERN1 CRISPR activation.

3.4 Overview

Recently, chemotherapy has been reported to induce immune activation in cancer, which is critical for the maintenance of long-term anti-tumour effects. Except for already identified theories including the induction of ICD and adjuvanticity, we hypothesised the involvement of tumour suppressive genes in promoting tumour immunogenicity. The experiments in this chapter aimed to identify a potential tumour suppressive gene which may mediate chemotherapy-induced anti-cancer immune effects. Moreover, as oxidative stress and ROS are main contributors for chemotherapyinduced effects, we aimed to understand the role of ROS in the regulation of target protein. The results are summarized here in Figure 3-18. This chapter is the foundation for the subsequent functional studies.

Figure 3-18. Schematic illustration of molecular mechanism of oxaliplatin-induced TXNIP expression.
Consistent with previous study, ROS was increased after oxaliplatin treatment in colorectal cancer cells. The increased ROS induced TXNIP expression via two different pathways: MondoA activation and ER stress signalling. Abbreviation: ER: Endoplasmic reticulum.

In this chapter, to start with, we used RNA-seq analysis to find out the potential candidate, TXNIP, upon oxaliplatin treatment. The upregulation of TXNIP by oxaliplatin in CRC is time- and dose-dependent. These results were further verified in 3D models (cell line-derived spheroids and patients-derived organoids), which have been proposed as more suitable in-vitro models for cancer studies ${ }^{432}$. Increased TXNIP expression following oxaliplatin treatment was observed at both the protein and mRNA levels, suggesting its expression is transcriptionally induced. Next, due to the close relationship between its function and cellular localisation, we analysed its expression pattern by multiple assays. TXNIP can translocate to different intracellular positions, such as cytosol, nucleus, mitochondria and even cell surface ${ }^{475}$, leading to various biological effects ${ }^{449}$. For example, in pancreatic beta cells, TXNIP resides primarily in the nucleus and shuttles to mitochondria upon oxidative stress, whereby TXNIP promotes the phosphorylation and activation of ASK1 by binding to Trx^{449}. In endoplasmic reticulum, TXNIP is reported to bind to protein disulfide isomerases and promotes their enzymatic activity to fold proteins ${ }^{156}$. Therefore, we explored the cellular localisation of TXNIP after drug treatment. Consistent with other studies ${ }^{447}$, TXNIP expression induced by oxaliplatin primarily accumulates in the cytoplasm. Further studies pointed out upregulated TXNIP was especially enriched in mitochondria and endoplasmic reticulum. However, whether TXNIP was enriched in other organelles is unknown. Collectively, these data suggest that TXNIP may play a role in redox balance or unfold protein response relevant effects.

Secondly, the mechanism of oxaliplatin-induced TXNIP induction was explored. From previous publications, ROS is reported to regulate the expression of TXNIP ${ }^{476}$. Moreover, we observed the increased ROS levels after oxaliplatin treatment, leading us to investigate whether ROS is a regulator of TXNIP expression. Using antioxidant
compounds, NAC, we observed oxaliplatin-induced TXNIP expression dramatically diminished, suggesting that the generation of ROS was responsible for the increased TXNIP by oxaliplatin. Several factors have been reported to regulate TXNIP mRNA expression and can be broadly divided into four classes: transcription factors ${ }^{111}$, microRNAs and circular RNAs ${ }^{127,133}$, epigenetic regulators ${ }^{134}$ and regulators of mRNA and protein stability ${ }^{136}$ (like LncRNAs). Among them, MondoA is the most studied one ${ }^{109,256}$. Especially, another arrestin family member ARRDC4 was also observed to be upregulated by oxaliplatin from our RNA seq data analysis. As they are both highly MondoA-dependent genes, this result emphasises that MondoA could be the possible regulator for the ROS-mediated TXNIP and ARRDC4 upregulation. MondoA knockout was shown to abrogate TXNIP expression induced by oxaliplatin. Correspondingly, we observed more MondoA enriched on TXNIP promoter after oxaliplatin, which was reversed by the addition of NAC, confirming that MondoA was required for oxaliplatininduced TXNIP expression. Whereas, c-Myc, a metabolic regulator of the MondoATXNIP axis ${ }^{111}$, was proved not to be involved in TXNIP regulation by applying CRISPR-activation endogenous overexpression system.

Given the recent studies pointing out the close relationship between TXNIP and ER stress, in addition to the localization of TXNIP in ER, we tested whether TXNIP and ER stress is linked in our system. Thus, we analysed RNA-seq dataset and observed the downregulated ER signalling, especially IRE-1a and PERK-eIF2a pathways. Further studies provided the evidence that PERK-eIF2a axis was more important for TXNIP expression upregulation, which was also modulated by ROS production ${ }^{150,477}$. In our study, we observed the PERK-eIF2a axis was able to regulate TXNIP expression. However, when we knocked down PERK in MondoA-KO cells, oxaliplatin was unable to induce TXNIP expression, highlighting the importance of the MondoA signalling of

TXNIP regulation post chemotherapy. Notably, in our experiment (Figure 3-17H), the levels of PERK knock-down achieved were not substantial. This may raise concerns that there wasn't sufficient PERK knockdown to overcome the impact of MondoA-KO. Thus, PERK knockouts could be established in the future to confirm this finding.

Chapter IV. Induction of TXNIP suppressed GDF15 expression

4.1 Introduction

In chapter III, we identified the upregulation of TXNIP after oxaliplatin treatment. Therefore, we aimed to understand the biological functions of TXNIP in this chapter. The hallmarks of cancer according to Bob Weinberg and Douglas Hanahan summarise the shared features of all cancer types. These hallmarks include common phenotypic, molecular and inter-cellular mechanisms, and are grouped into eight acquired capabilities, two enabling characteristics and four prospective new hallmarks and enabling characteristics. These four features are unlocking phenotypic plasticity, nonmutational epigenetic reprogramming, polymorphic microbiomes and senescent cells ${ }^{478-480}$.

One of the acquired capabilities of cancer cells is metabolic reprogramming, which increases the ability of cancer cells to acquire nutrients, in particular glucose and glutamine ${ }^{479}$. One of the reasons that activated oncogenes (e.g., RAS, MYC) and mutant tumour suppressors (e.g., TP53) drive malignant transformation is to increase glucose metabolism ${ }^{481}$. Under aerobic conditions, to support cell division and many biological functions, intracellular glucose is metabolised to pyruvate which enters the mitochondrial tricarboxylic acid (TCA) cycle to produce the majority of ATP ${ }^{482}$. In solid tumours, poorly formed vasculature causes hypoxia and acidosis microenvironment, with low levels of O_{2} and nutrients. Consequently, tumour cells shift the metabolic pattern to aerobic glycolysis identified by Otto Warburg ${ }^{483}$. In this manner, glucose is catabolised anaerobically to lactate contributing to tumour growth and the immunosuppression in the $\mathrm{TME}^{484-486}$. Importantly, this metabolic alteration relies on the alterations of a series of enzymatic reactions ${ }^{487}$.

Cancer cells prefer aerobic glycolysis, even though aerobic glycolysis is 18 -fold less efficient at producing ATP compared to mitochondrial oxidative phosphorylation.

Interestingly, cancer cells can partially compensate the increasing need by upregulating GLUTs, especially GLUT1 ${ }^{488}$. Glucose transporters (GLUTs), encoded by the $\operatorname{SLC} 2$ genes, play an important role in regulating glycolysis by mastering cellular uptake of various hexoses and derivatives ${ }^{489}$. GLUT1 is a key rate-limiting factor responsible for glucose transport in cancer cells. Accordingly, GLUT1 expression is low in normal epithelial tissues and benign epithelial tumours, yet highly expressed in human carcinomas ${ }^{490}$. Notably, GLUT1 can also transport galactose, mannose, glucosamine and DHA ${ }^{489}$. Increased GLUT1 expression has been demonstrated as a useful biomarker for monitoring colorectal adenoma-to-carcinoma progression ${ }^{491}$ and is also associated with enhanced proliferation, metastasis and drug resistance in CRC and other cancer types ${ }^{482,492-494}$. Therefore, several studies have proposed GLUT1 as a potential prognostic biomarker in colorectal cancer ${ }^{495,496}$. The regulation of GLUT1 expression relies on key proliferation and pro-survival pathways, including hypoxia (HIF-1a) ${ }^{497}$, c-Myc ${ }^{498}$, tumour suppressors (APC) ${ }^{499}$ and p53 pathways. Regulation of GLUT1 expression has been observed at both the transcriptional and translational level. Specifically, GLUT1 expression is transcriptionally regulated by several factors including activated oncogenes (e.g., $R A S^{500}, M Y C^{501}$), suppression of tumour suppressors (e.g., P53 ${ }^{502}$, TXNIP ${ }^{219}$) and microRNAs (miR-144 ${ }^{503}$, miR-132 ${ }^{504}$ and miR- 150^{505}). In addition, TXNIP ${ }^{220}$ and Derlin- 3^{506} have been demonstrated to mediate GLUT1 degradation.

As a major part of redox process, TXNIP regulates ROS levels by inhibiting the activity of thioredoxin ${ }^{96}$. Consequently, TXNIP exerts tumour-suppressive abilities in a range of tumour types ${ }^{450}$. In Chronic Lymphocytic Leukemia (CLL), TXNIP is reported to induce the production of ROS and apoptosis by inactivating $\operatorname{Trx}{ }^{172}$. Similarly, TXNIP reverses doxorubicin-induced chemotherapy resistance by increasing ROS synthesis
and DNA damage accumulation in triple-negative breast cancer ${ }^{507}$. Moreover, the continue activation of Trx/TrxR system due to the decreased expression of TXNIP plays an important role in the increased metastatic potential of cancer cells ${ }^{188}$. For example, TXNIP can also inhibit cell metastasis by regulating EMT signatures (e.g., E-cadherin, ZEB1, Slug and Vimentin) in renal cell carcinoma and melanoma ${ }^{508,509}$. In addition, TXNIP has also been observed to decrease metastasis by downregulating glycolysis in lung cancer ${ }^{133}$, emphasising the important role of TXNIP in modulating the proliferative and metastatic capabilities of tumour cells in ROS-dependent or independent pathways.

Additionally, TXNIP is involved in modulating TME by regulating secreted factors. A study with clinical samples identified the close relationship between TXNIP expression and angiogenesis ${ }^{107}$. Knockdown of TXNIP promotes the secretion of VEGF, resulting in increased angiogenesis ${ }^{146,510}$. Furthermore, TXNIP has been reported to regulate the production of inflammatory cytokines, especially NLRP3 inflammasome-associated secreted proteins (such as IL-1 β and IL-18). The association of TXNIP with NLRP3 induced by elevated ROS levels leads to inflammasome activation and IL-1 β secretion ${ }^{239}$. In Dextran Sodium Sulfate-induced colitis model, inhibition of ROSTXNIP axis alleviates inflammation by deactivating the NLRP3 inflammasome ${ }^{178}$, confirming the role of TXNIP in the regulation of immune responses.

Based on previous publications concerning the biological functions of TXNIP, we investigated the role that TXNIP may exert in this chapter. Especially, we performed assays to explore a possible downstream target of TXNIP.

4.2 Aims and objectives

TXNIP has been demonstrated to regulate various physiological and pathological processes. In this chapter, we aimed to investigate the functional roles and the possible downstream targets of chemotherapy-induced TXNIP.

This aim has been addressed with the following specific objectives:

1. To explore the effects of TXNIP on glycolysis by performing glucose uptake, lactate secretion and seahorse metabolic assays;
2. To explore the involvement of TXNIP in chemotherapy-induced cell death and drug resistance using cell viability assay;
3. To explore whether TXNIP regulates metastatic potential of cancer cells by performing wound healing assay;
4. To study whether TXNIP affect angiogenesis using tube formation assay;
5. To explore the effects of TXNIP on the activation of NLRP3 inflammasome by performing western-blot and ELISA assays;
6. To explore the possible secreted factors regulated by TXNIP by mass spectrometry, western blot and ELISA assays.

4.3 Results

4.3.1 MondoA-TXNIP axis does not regulate glycolysis

Glucose metabolism in cancer cells requires a series of enzymatic reactions ${ }^{487}$. Accordingly, upregulation of glycolytic enzymes and glucose transporters promotes cancer cells to proliferate and metastasise. In one study investigating the role of glycolysis in regulating the immune infiltrates, a panel of glycolysis-related genes were used for analysis ${ }^{487}$. To understand the effects of chemotherapy on glucose metabolism, we treated cells with oxaliplatin and performed the analysis on the same set of
glycolysis-related genes from previous RNA-seq dataset (Figure 3-1, Figure 4-1). The results showed that drug-treated group generally presented decreased expression of these genes, suggesting oxaliplatin can promote reduced glycolysis (Figure 4-1A-B). Multiple testing was also performed, and the data showed that these glycolysis-related genes were still significantly expressed (FDR <0.05) (Appendix Table 9). Increased TXNIP expression has been reported to decrease glycolysis ${ }^{111}$. To find out a possible link between TXNIP and oxaliplatin-induced decreased glycolysis, we then determined the impact of TXNIP activation on oxaliplatin-decreased cellular metabolism by comparing glycolysis gene signatures between control and TXNIP-KO cells with or without oxaliplatin treatment. Changes in the expression of glycolysis genes were not observed between control and TXNIP-KO cells (Figure 4-1C-F). This result was consistent with previous result that ectopically expressing c-Myc, a master protein of glycolysis ${ }^{216,511}$, does not change expression of TXNIP after drug treatment (Figure 314B). Together, these data suggests that TXNIP is not involved in oxaliplatin-mediated metabolic change.

Figure 4-1. TXNIP was not involved in the regulation of oxaliplatin-mediated glycolysis signature.
(A-B) Analysis of the indicated glycolysis-regulated genes in RNA-seq datasets from DLD1 cells (A), HCT15 cells (B) with/ without oxaliplatin treatment; (C-D) Analysis of the indicated glycolysis-regulated genes in RNA-seq datasets comparing TXNIP-KO with control DLD1 cells (C) or HCT15 cells; (E-F) Analysis of the indicated glycolysis-associated genes in RNAseq datasets comparing TXNIP-KO with control DLD1 cells (C) or HCT15 cells that were treated with oxaliplatin for 48 h . Data are mean $\pm \mathrm{SD}$. NS $=$ non-significant, $* \mathrm{p}<0.05$, $* * \mathrm{P}<0.01,{ }^{* * *} \mathrm{P}<0.001, * * * * \mathrm{P}<0.0001$. Abbreviation: NTC: Non-targeting control. TKO: TXNIP knockout. FPKM: Fragments per kilobase of exon model per million reads mapped. PFKP: phosphofructokinase, platelet. PFKL: phosphofructokinase, liver type. PGAM1:
phosphoglycerate mutase 1. ENO3: enolase 3. SLC2A1: solute carrier family 2 member 1. HK2: hexokinase 2. ENO2: enolase 2. ALDOA: aldolase, fructose-bisphosphate A. PGK1: phosphoglycerate kinase 1. SLC16A1: solute carrier family 16 member 1. LDHA: lactate dehydrogenase A. PFKM: phosphofructokinase, muscle. LDHB: lactate dehydrogenase B. ENO1: enolase 1. GAPDH: glyceraldehyde-3-phosphate dehydrogenase. GPI: glucose-6phosphate isomerase.

Glucose transporter 1 (GLUT1) is highly expressed in several cancer types and functionally promotes tumorigenicity ${ }^{512,513}$. TXNIP is reported to mediate the influx of glucose and lactate production by decreasing the expression of GLUT1 via both promotion of internalization and endocytosis of protein levels and deduction at messenger RNA levels ${ }^{219-222}$. We therefore analysed the involvement of TXNIP in GLUT1 protein expression in our system. Consistent with the transcriptomic data in Figure 4-1A-B, oxaliplatin treatment decreased GLUT1 expression at the protein level in DLD1 cells (Figure 4-2A). However, knocking-out TXNIP did not reverse decreased GLUT1 expression induced by oxaliplatin (Figure 4-2A).

As a master of glucose transportation, GLUT1 exerts effects as a cellular membrane protein. Therefore, it is important to understand both the expression and the distribution of GLUT1 in cells. To determine the impact of TXNIP expression on GLUT1 localisation, confocal imaging was used to visualise GLUT1 in TXNIP wild-type and knockout cell lines following oxaliplatin treatment. Under non-treatment condition, GLUT1 was present on the cell membrane of both DLD1-TKO and control cells (Figure 4-2B). GLUT1 internalisation was observed after drug treatment in both TXNIP wildtype and knockout cell lines (Figure 4-2B), indicating TXNIP exerted no impact on GLUT1 internalisation. Together, these results demonstrated that TXNIP had no impact on the expression and localisation of GLUT1 after oxaliplatin treatment.

Figure 4-2. TXNIP was not involved oxaliplatin-induced decreased expression and internalization of GLUT1.
(A) Immunoblot analysis of GLUT1 in control and TXNIP-KO DLD1 cells with/ without oxaliplatin treatment; (B) immunofluorescent detection of GLUT1 in control and TXNIP-KO DLD1 cells with/ without oxaliplatin treatment by confocal microscopy. DAPI (blue), Epcam (green), TXNIP (deep red). Abbreviation: GLUT1: Glucose transporter 1. DAPI: 4',6-diamidino-2-phenylindole.

Further, we measured glucose uptake and lactate production, two primary indicators of the Warburg effect. Expectedly, oxaliplatin decreased glucose uptake, indicating its inhibitory role in glycolysis (Fig 4-3A-B). But lactate secretion was not altered with oxaliplatin treatment (Fig 4-3C-D). Consistently, the results showed no difference between TXNIP-KO and control cells (Figure 4-3A-D). The ECAR is another measurement of glucose metabolism and reflects the lactic acid - induced acidification of the medium surrounding cancer cells ${ }^{217}$. To further verify the effect of TXNIP on the bioenergetic profiling of CRC, we analysed the ECAR of TXNIP-KO DLD1 cells. Correspondingly, the result showed no difference in the absence of TXNIP (Figure 4-3E-F). Altogether, these results suggested TXNIP was not responsible for the oxaliplatin-mediated suppression of the glycolysis phenotype.

Figure 4-3. TXNIP was not involved in metabolic reprogramming colorectal cancer cells. (A-B) The effect of TXNIP knockout on Glucose uptake in the DLD1 cells (A) and HCT15 cells(B) with/without oxaliplatin treatment; (C-D) The effect of TXNIP knockout on lactate secretion in the DLD1 cells (C) and HCT15 cells(D) with/without oxaliplatin treatment; (E) Seahorse metabolic analysis of ECARs in the TXNIP-KO and control cells; (F) Statistic analysis of glycolysis, glycolytic capacity and glycolytic reserve between non-targeting control and TXNIP-KO DLD1 cells. Data are mean $\pm \mathrm{SD}$. NS $=$ non-significant, **P <0.01, ***P $<0.001, * * * * \mathrm{P}<0.0001$. Abbreviation: ECAR: Extracellular acidification rate. 2-DG: 2-Deoxy-D-glucose.

4.3.2 TXNIP does not affect drug sensitivity, metastasis and angiogenesis

Our previous results showed that oxaliplatin-induced TXNIP expression is dependent on ROS generation. ROS induced by oxaliplatin has been reported to mediate apoptosis and autophagy, promoting cell death ${ }^{68,452}$. Compared to other chemotherapy regimen such as irinotecan, oxaliplatin-mediated cytotoxicity, to a higher extend, relies on ROS production ${ }^{455}$. In line with other studies, we observed that the addition of NAC $(10 \mathrm{mM})$ significantly reduced the cytotoxicity of oxaliplatin and increased the cell viability in both DLD1 and HCT15 cells ${ }^{412,514}$ (Figure 4-4A-B), suggestive of the important role of ROS production in driving oxaliplatin-induced cytotoxicity.

It is reported that oxidative stress facilitates the translocation of TXNIP into mitochondria, which activates downstream death signalling pathways ${ }^{499}$. Moreover, TXNIP overexpression has been shown to render cells more susceptible to oxidative stress and increase chemotherapy sensitivity by regulating ASK1 signalling ${ }^{515,516}$. Therefore, we wondered whether TXNIP is responsible for oxaliplatin-induced cytotoxicity for several reasons: 1) It was previous identified that ROS regulates TXNIP expression (Chapter III). The role of ROS in regulating TXNIP expression suggests TXNIP may be important in mediating oxaliplatin-induced cytotoxicity; 2) ER stress signalling (mainly PERK/eIF2a axis) was also observed to regulate TXNIP expression. The maintenance of ER proteostasis is one of the key determinants for cell fate ${ }^{474}$, which suggested TXNIP may regulated cell fate determined by ER stress; 3) TXNIP has also been known to exert tumour-suppressive effects ${ }^{450}$.

Viability assays showed the deletion of TXNIP had no impact on drug sensitivity to oxaliplatin in both 2D and 3D cell models (Figure 4-4C-D). The volume of spheroids was also assessed after oxaliplatin treatment. In 3D spheroid models derived from DLD1 cell lines, spheroid volume showed a similar level of reduction after oxaliplatin treatment between control and TXNIP-KO spheroids (Figure 4-4E). Moreover, TXNIPKO organoids were generated and showed similar drug sensitivity to control organoids (Figure 4-4F-G). Together, these data indicate that oxaliplatin-induced cytotoxicity is not dependent on TXNIP expression.

Figure 4-4. Induced TXNIP expression was not responsible for oxaliplatin cytotoxicity in colorectal cancer cells.
(A-B) Assessment of cell viability following 48 h of $10 \mu \mathrm{M}$ oxaliplatin $10 \mu \mathrm{M}$ or combined treatment with NAC in DLD1 cells (A) and HCT15 cells (B); (C) Assessment of cell viability in TXNIP-KO and control DLD1 cells following 48 h of $10 \mu \mathrm{M}$ oxaliplatin. (A-C) Cell viability was measured by the Deep Blue Cell Viability ${ }^{\text {TM }}$ Kit. (D) Assessment of cell viability in TXNIP-KO and control DLD1 3D spheroids following 48 h of $10 \mu \mathrm{M}$ oxaliplatin; (E) Calculated spheroid volume of control and TXNIP-KO DLD1 cells 48 hrs post oxaliplatin treatment; (F) Immunoblotting of TXNIP for identification of TXNIP knockout in CRC001
organoids; (G) Assessment of cell viability in TXNIP-KO and control CRC001 PDTO following 48 h of $10 \mu \mathrm{M}$ oxaliplatin. (D, G) Cell viability was assessed by the Cell Titer-Glo ${ }^{\text {R }}$ Kit. Data are mean $\pm \mathrm{SD}$. NS $=$ non-significant, $* * * * \mathrm{P}<0.0001$.

Next, we assessed the role of TXNIP in migratory capacity and performed a wound healing assay. The result showed that there was no difference in the rate of cell migration between TXNIP wild-type and KO cell lines with or without oxaliplatin treatment (Figure 4-5A-B).

Figure 4-5. Ability of cell migration associated with TXNIP expression in DLD1 cells.
The migration of DLD1 cells was measured with wound-healing assay. After 48h of oxaliplatin treatment, cells were reseeded overnight and then wound closure percentage was analysed at
different timepoint. (A) Phase contrast micrographs showing the representative result of wound healing assay in control and TXNIP-KO cells with/ without oxaliplatin treatment; (B) The statistical analysis of wound closure percentage measured by Image J software. Results are expressed as mean $\pm \mathrm{SD}$ of three experiments.

In order to further assess the impact of TXNIP induction by oxaliplatin on the TME, the angiogenic potential of cells was measured in TXNIP-overexpressing DLD1 cells. Following TXNIP overexpression (Figure 4-6A), the supernatant was collected from both non-targeting control and TXNIPa cell model to treat HUVEC seeded on Matrigel. These results showed no difference in the capacity of HUVEC to align and form meshlike structures (Figure 4-6B-C), indicating that TXNIP has no impact on angiogenesis.

Figure 4-6. TXNIP had no effect on angiogenesis and NLRP3 inflammasome activation. (A) Immunoblot analyses showing TXNIP-overexpression in DLD1 CRISPR-Cas9a cells; (BC) assessment of TXNIP on angiogenesis by tube formation assay. HUVECs were seeded on Matrigel-precoated 96-well plates in conditional media from control and TXNIPoverexpressing DLD1 cells for 48 h . Phase contrast micrographs showing the effects of TXNIP on differentiation of HUVECs (B), Graphical depiction of statistical analysis of the effect of TXNIP on the length of capillary like structures of HUVECs (C). Data are mean \pm SD. NS= non-significant.

4.3.3 TXNIP does not affect inflammasome activation

Previous studies provided evidence that TXNIP can regulate both innate and adaptive immune system ${ }^{243,246,252,256}$. According to previous publications, in order to investigate the potential correlation between gene of interest and immune system processes, several immune relevant factors were selected for analysis ${ }^{517}$. For the same purpose, we used TCGA_COADREAD dataset (including RNA sequencing data from 379 patient
samples) to analyse the correlation between TXNIP and the same set of immune related genes (Table 4-1). The result showed that TXNIP expression was potentially associated with the expression of T cell markers, antigen presentation and cytokine transcripts from TCGA analysis (Table 4-1). However, the correlations were low for 10 factors (CD247, CD4, CD8A, B2M, CD86, CXCL9, IL15, CCL2, CCL4 and CCL5), negligible or non-significant for others (CD8B, CD80, BATF3, IFNG, TNF, CXCL10, IL2 and CCL3).

Table 4-1 Pearson correlation coefficient scores of selected genes positively correlated with TXNIP gene expression from the colorectal TCGA dataset, categorized by their functions.

Gene symbols	Pearson Score	p-value
T cell		
CD247	0.2584	$3.374 \mathrm{e}-07$
CD4	0.3585	$6.210 \mathrm{e}-13$
CD8A	0.2658	$1.501 \mathrm{e}-07$
CD8B	0.4466	0.3859
Antigen Presentation		
B2M	0.2381	$2.766 \mathrm{e}-06$
CD80	0.1975	$1.085 \mathrm{e}-04$
CD86	0.3651	$2.146 \mathrm{e}-13$
BATF3	0.1691	$9.485 \mathrm{e}-04$
Cytokine		
IFNG	0.0015	0.0484
TNF	0.1974	$1.098 \mathrm{e}-04$
CXCL9	0.2375	$2.933 \mathrm{e}-06$
CXCL10	0.1492	$3.605 \mathrm{e}-03$
IL2	0.1725	$7.467 \mathrm{e}-04$
IL15	0.2586	$3.312 \mathrm{e}-07$
CCL2	0.2679	$1.192 \mathrm{e}-07$
CCL3	0.1463	$4.317 \mathrm{e}-03$
CCL4	0.2122	$3.110 \mathrm{e}-05$
CCL5	0.2617	$2.355 \mathrm{e}-07$

Pearson correlation coefficient scores between TXNIP mRNA expression and different immune markers, including T cells markers (CD247, CD4, CD8A), antigen presentation markers ($B 2 M$, CD80, CD86, BATF3) and cytokines (IFNG, TNF, CXCL9, CXCL10, IL2, IL-15, CCL2, CCL3, CCL4, CCL5). The analysis was done using LinkedOmics (http://linkedomics.org/login.php). Pearson score: low correlation (0.2-0.4), negligible correlation (0-0.2).

It is well-known that TXNIP can activate NLRP3 inflammasome ${ }^{231}$. The formation and activation of NLRP3 inflammasome leads to self-cleavage and activation of caspase 1, which in turn promotes the release of the pro-inflammatory cytokines IL-1 β^{518}. We tested whether oxaliplatin-induced TXNIP causes inflammasome activation by measuring caspase 1 and IL- 1β levels. However, knockout of TXNIP did not alter caspase 1 activation or IL-1 β production following oxaliplatin treatment (Figure 4-7AD), with no detectable IL-1 β in the supernatants (Data not shown). These findings are surprising as NLRP3 inflammasome is the most studied mediator linking TXNIP and immune regulation ${ }^{231,519}$. As our data suggest TXNIP does not promote the activation of NLRP3 inflammasome, we wondered whether TXNIP may be involved in mediating immune activation via a different pathway.

Figure 4-7. TXNIP had no effect on the activation of NLRP3 inflammasome.
(A-D) Immunoblot analysis of IL-1 (A, B) and cleaved caspase 1(P20) (C, D) in control and TXNIP-KO DLD1 cells with/ without oxaliplatin treatment.

4.3.4 TXNIP suppressed GDF15 expression after oxaliplatin treatment

From previous data, TXNIP was suggested to be involved in immune activation (Table 4-1), but not associated with inflammasome activation (Figure 4-7). We hypothesised that TXNIP may be capable of regulating the expression and secretion of soluble factors, which may in turn regulate the TME. To thoroughly assess this, we performed massspec analysis of supernatants collected from non-targeting control (NTC) and TXNIPKO (TKO) cell models and identified a total of 832 proteins from the conditional media and 157 differentially expressed soluble proteins ($\mathrm{p}<0.05$). Protein quantification data can be found from Appendix Table 10 (Top 20 targets). Among them, seven proteins were upregulated in conditional media from TXNIP-KO DLD1 cells with median ratio
(fold change) >2, including PRSS2 (3.7 FC), GDF15 (2.37 FC), SERPINA1(2.23 FC), LCN2 (2.2 FC), VGF (2.11 FC), SEMA3F (2.08 FC) and MUC5AC (2.02 FC) (Figure 4-7A). PRSS2 (trypsin) was excluded since it was used in the preparation of samples, therefore, Growth Differentiation Factor 15 (GDF15) was the most highly differentiated secreted protein associated with TXNIP loss (Figure 4-7A-B). This result was confirmed using a cytokine array assay, which showed that knocking out TXNIP increased the concentration of GDF15 in the supernatant. Moreover, GDF15 was secreted at lower levels in response to oxaliplatin, in line with the upregulation of TXNIP, with this being rescued by the knockout of TXNIP (Figure 4-7C-D). These results showed that oxaliplatin decreases GDF15 secretion in a TXNIP dependent manner, and that the knockout of TXNIP alone could drive the secretion of GDF15.

Figure 4-8. Proteomic analysis reveals higher GDF15 concentration in the conditional media of TXNIP-KO DLD1 cells.
(A) (Left) Heatmap demonstrating differentially expressed proteins between conditional media from TXNIP-KO and control DLD1 cells, (Right) the table showing 7 upregulated proteins in conditional media from TXNIP-KO DLD1 cells with median ratio (fold change) >2. (B) Volcano plot showing GDF15 (Q99988, labelled as red) was significantly upregulated. (C) Cytokine arrays incubated with conditional media from TXNIP-KO and control DLD1 cells
with or without oxaliplatin treatment. The respective GDF15 spot was highlighted (red box). (D) Statistical quantification of GDF15 cytokine from cytokine arrays experiment. Cytokine array assay was done one time $(\mathrm{n}=1)$. Abbreviation: PRSS2: Serine protease 2. GDF15: Growth differentiation factor 15. SERPINA1: Serpin family A member 1. LCN2: Lipocalin 2. VGF: VGF nerve growth factor inducible. SEMA3F: Semaphorin 3F. MUC5AC: Mucin 5AC, oligomeric mucus/gel-forming.

We next assessed the kinetics and dose-responsiveness of GDF15 in DLD1 cells to oxaliplatin. The downregulation of GDF15 was more pronounced at later time points and higher drug dosages, which showed the opposite trend to TXNIP (Figure 4-8A-B).

Figure 4-9. Assessment of GDF15 expression in cell lysate of DLD1 cells with oxaliplatin by western blotting.
(A) Immunoblotting analyses of GDF15 after treatment of different dosages of oxaliplatin in DLD1 cells; (B) Immunoblotting analyses of GDF15 at different time points post oxaliplatin treatment in DLD1 cells.

GDF15 is also named as MIC-1 as it was firstly reported in macrophages with an inhibitory effect ${ }^{270}$. GDF15 is a stress-induced factor with significant overexpression in cancer ${ }^{338}$. We compared the transcript of GDF15 between normal tissue and tumour tissue from the TCGA colorectal cancer dataset (COAD) and observed an increase in GDF15 transcripts in tumour samples (Figure 4-10A). Correspondingly, immunohistochemistry staining showed tumour lesions presenting higher protein expression of GDF15 compared with adjacent normal tissues in our study cohort samples (Figure 4-10B-C).

Figure 4-10. GDF15 expression increased in human CRC samples.
(A) Comparative analysis of substantial expression of GDF15 transcript between adjacent normal tissue and cancer tissues from TCGA colorectal cancer cohorts, $\mathrm{P}<2.2$ e-16; (B) Detection of GDF15 protein levels of both tumour and adjacent normal tissue (ANT) samples from 32 patients with primary colorectal cancer. HE, EnVision, serial sections, original magnification $\times 200$; (C) Statistical analysis of GDF15 IHC score between adjacent normal tissue and tumour tissue specimen. The semi-quantitative scoring of each specimen was calculated by "expression intensity \times expression area", all values are mean \pm SD. ****p <0.0001.

To better examine the regulatory effects of TXNIP on GDF15 expression, we treated
TXNIP-KO DLD1 cells with oxaliplatin and collected cell lysate to measure cellular GDF15 by western blotting. In agreement with the previous results, we observed that TXNIP knockout rescued the inhibitory effects of oxaliplatin on GDF15 expression in

DLD1 cells (Figure 4-11A-B). Moreover, the similar pattern was observed in TXNIPKO HCT15 cells (Figure 4-11C-D). In contrast, TXNIP-overexpressing DLD1 cells showed lower GDF15 expression compared to control cells. Expectedly, the decreased GDF15 expression was more pronounced in TXNIP-overexpressing DLD1 cells after oxaliplatin, accompanied with higher expression of TXNIP (Figure 4-11E-F).

Using confocal imaging, we observed GDF15 was enriched in the cytoplasm in both untreated and treated conditions, which indicates it is a secreted protein (Figure 4$11 G)^{281}$. In line with immunoblot analysis, confocal imaging showed TXNIP-KO cells expressed more GDF15, which, unlike the control, was retained after oxaliplatin treatment (Figure 4-11G). We also quantified soluble GDF15 concentrations by ELISA in cell lines, with the highest level measured as $5976 \mathrm{pg} / \mathrm{ml}$ in the supernatant of TXNIPKO cells (Figure 4-11H).

To verify these findings in patient samples, we knock-out TXNIP in two patient-derived organoids (Figure 4-11I). As observed in 2D cell lines, a higher expression of GDF15 was also detected in TXNIP-KO PDTOs (Figure 4-11I).

Figure 4-11. TXNIP negatively regulated GDF15 expression.
(A-B) Immunoblotting analyses of TXNIP and GDF15(A) and the corresponding statistical analysis for the mean of GDF15 expression and standard errors (B) in control and TXNIP-KO DLD1 cells with/ without oxaliplatin treatment. (C-D) Immunoblotting analyses of TXNIP and GDF15 (C) and the corresponding statistical analysis for the mean of GDF15 expression and standard errors (D) in control and TXNIP-KO HCT15 cells with/ without oxaliplatin treatment. (E-F) Immunoblotting analyses of TXNIP and GDF15(E) and the corresponding statistical analysis for the mean of GDF15 expression and standard errors (F) in control and TXNIPoverexpressing DLD1 cells with/ without oxaliplatin treatment. (B, D, F) All values were expressed as mean \pm SD. NS $=$ non-significant, $\quad * p<0.05, \quad * * p<0.01, \quad * * * p<0.001$, ${ }^{* * * *} \mathrm{p}<0.0001$, vs. Control. (G) immunofluorescent detection of GDF15 in control and TXNIP-KO DLD1 cells with/ without oxaliplatin treatment by confocal microscopy. DAPI (blue), Phalloidin (green), GDF15 (red). (H) GDF15 concentration in different media were determined by ELISA ($\mathrm{n}=3$). (I) Immunoblot analyses of TXNIP and GDF15 in control and TXNIP-KO PDTOSs (left, CRC001; right, CRC002).

Next, we assessed for the presence of the TXNIP/GDF15 regulatory axis in human samples. We analysed the correlation between TXNIP and GDF15 transcripts and protein, in the TCGA-COAD dataset and patient tissue respectively, finding negative correlations in both (Figure 4-12A-B). Further, we stained the sequential sections of patient samples to characterise the expression of both TXNIP and GDF15 before and
after oxaliplatin-based neo-adjuvant chemotherapy. Encouragingly we also observed an inverse negative correlation in matched cases after oxaliplatin-based neo-adjuvant chemotherapy, compared to pre-treatment (Figure 4-12C).

Figure 4-12. The correlation analysis in human samples.
(A) Correlation analysis between TXNIP and GDF15 based on IHC staining score in our study cohort ($\mathrm{n}=32$). (B) The correlation analysis between TXNIP and GDF15 expression across colorectal cancer epithelial enriched samples from TCGA COAD RNA-seq data. TCGA COAD GDC gene expression data for GDF15, TXNIP, EPCAM and MUC1 were downloaded from xenabrowser.net. Samples were sorted on the product of EPCAM and MUC1, with the highest 50% being taken forward for analysis as a form of 'epithelial enrichment'. Correlation between expression of GDF15 and TXNIP in the epithelial enriched population was displayed. $\mathrm{n}=255$. (C) Sequential sections from colorectal tumour samples collected pre- and post neo-adjuvant chemotherapy ($\mathrm{n}=3$). Detection of TXNIP and GDF15 protein levels by IHC.

As ROS mediated the activation of the MondoA-TXNIP axis, we aimed to assess the effect of these factors on GDF15 expression. In line with our previous findings, knocking down MondoA decreased the expression of TXNIP, but increased GDF15 expression (Figure 4-13A), indicating the involvement of MondoA in the regulation of GDF15 expression as well. Further, pre-incubation of the target cells with NAC abolished the suppression of GDF15 by oxaliplatin, which was partially rescued by
overexpressing TXNIP (Figure 4-13B), suggestive of the important role of ROS in GDF15 regulation. Collectively, these data demonstrated the activation of MondoA induced by ROS modulated TXNIP and GDF15 expression.

Figure 4-13. GDF15 was regulated by ROS/ MondoA axis.
(A) Immunoblotting analyses of MondoA, TXNIP and GDF15 in MondoA-knockdown and control DLD1 cells. (B) Immunoblotting analyses of TXNIP and GDF15 in TXNIPoverexpressing DLD1 cells treated with oxaliplatin or combined treatment with oxaliplatin and NAC.

4.3.5 High GDF15 expression was associated with poor prognosis

Then we sought to understand the clinical relevance of GDF15. We investigated whether TXNIP and GDF15 expression levels had prognostic value by using tumour tissues from tumour microarray and public datasets (Figure 4-14). The data indicated that CRC patients with high levels of TXNIP in tumour tissues has improved clinical outcomes, with hazard ratio (high/low expression) 0.2763 (95% CI: $0.1374-0.5559$) (Figure 4-14A). We also found associations between low GDF15 and favourable outcome (Figure 4-14B), with hazard ratio (high/low expression) 3.0685 ($95 \% \mathrm{CI}$: 1.5545-6.0570). Consistently, analysis from public datasets showed the similar trend (Figure 4-14C-D). Multivariable analyses were further performed with other known clinical prognostic factors. However, the result showed neither TXNIP or GDF15 was independent prognostic factor, even though there was a trend for TXNIP (Appendix Table 11).

Figure 4-14. The impact of differential TXNIP/GDF15 expression on survival.
(A-B) Kaplan-Meier analysis of OS in CRC patients with different TXNIP expression levels. Median values as cut-offs. (A) or GDF15 expression levels (B) based on IHC staining score from tumour microarray. (C-D) Gene Expression Omnibus (GEO) databases analysis. KaplanMeier analysis of the OS (Upper panel) and DFS (bottom panel) in CRC patients with different TXNIP mRNA expression levels (C) or GDF15 mRNA expression levels (D).

4.4 Discussion

In chapter 4, the aims were to explore the possible function and the downstream targets of TXNIP. Since TXNIP has already been well studied and shown to be involved in different aspects of cancer biology, we explored the possible function of TXNIP in oxaliplatin-treated condition using TXNIP-KO cell models. Firstly, as MondoATXNIP axis has been mainly reported to affect cellular metabolism, we analysed the glycolytic signature of TXNIP-KO cells. The result showed that the expression of glycolysis-associated genes was unaltered in the absence and presence of oxaliplatin compared to control cells, even though oxaliplatin was able to decrease glycolytic phenotype. Secondly, we measured a well-studied TXNIP target, GLUT1. However, the depletion of TXNIP didn't change GLUT1 expression, even though oxaliplatin induced endocytosis and downregulation of GLUT1. Further, the functional assays confirmed the loss of TXNIP didn't affect the state of glycolysis.

ROS is reported to be responsible for chemotherapy-induced cytotoxicity ${ }^{417}$. Moreover, TXNIP has shown tumour suppressive effects, leading to cell death ${ }^{450}$. We then tested whether ROS-induced TXNIP contributed to oxaliplatin-mediated cell damage. Even though the addition of NAC compromised the cytotoxicity of oxaliplatin, no significant change was observed in the drug sensitivity of cells with silencing of TXNIP compared to non-target control cells, suggesting the upregulation of TXNIP was not a contributor for cytotoxicity caused by oxaliplatin. Further, a recent study showed the important role of ROS/TXNIP axis in inhibiting cancer cell migration and invasion ${ }^{520}$. We performed scratch assay and observed no change regarding migratory potential between TXNIPKO and control cells.

As our data demonstrated that TXNIP-KO cells showed no change concerning potentially involved biological properties mentioned above, we then speculated
whether TXNIP was able to modulate tumour microenvironment as it was reported to regulate the expression and secretion of several cytokines (such as VEGF, IL-1 β and $\mathrm{IL}-18)^{231,521}$. Cytokines are messengers enabling the crosstalk among different cells ${ }^{522}$. However, we observed TXNIP-KO cells showed similar capacity for tube formation compared with control cells. Further, we analysed the correlation between TXNIP expression and immune-related markers from TCGA-COAD dataset and observed TXNIP expression was positively correlated with immune-associated factors (but weak), indicating the potential role of TXNIP in immune regulation. Based on previous studies, TXNIP plays an important role in regulating NLRP3 inflammasome signalling ${ }^{523-525}$. NLRP3 inflammasome activation leads to the release of IL-1 β and IL18 and these cytokines play essential roles in tumour suppression and progression ${ }^{526-}$ ${ }^{529}$. However, our data showed that the expression of $\operatorname{IL}-1 \beta$ and cleaved caspase 1 showed no difference between TXNIP-KO and control cells. Especially, the concentration of IL-1 β in the culture media from both control cells and TXNIP-KO cells with or without oxaliplatin treatment was undetectable, which confirmed that oxaliplatin-induced TXNIP didn't regulate the activation of NLRP3 inflammasome in our system.

To investigate whether there are other unreported secreted proteins regulated by TXNIP, we then performed unsupervised proteomic assay (Mass spectrometry analysis) combined with protein array experiment. Both assays showed that, GDF15, a distant TGF β family member, was negatively regulated by TXNIP. It was interesting as GDF15 has been reported to promote tumour progression ${ }^{530}$. Consistently, our result showed high GDF15 expression was associated with poor prognosis from TMA and publica datasets analyses. Notably, there were other cytokines tested by either mass spectrometry analysis or cytokine array. But GDF15 was the only proteins identified
by both assays. This finding was further verified by TXNIP-overexpressing cell model and TXNIP-KO patient-derived organoid models. Moreover, GDF15 was observed to be upregulated when knocking down MondoA, highlighting MondoA-TXNIP-GDF15 axis.

Oxidative stress has been reported to induce GDF15 expression ${ }^{531,532}$. However, in our system, ROS generation supressed the expression of GDF15, which can be reversed by the addition of an antioxidant agent (NAC), suggestive of the stimulatory and inhibitory effects of ROS on GDF15 regulation. The overexpression of TXNIP can partially suppress the abolishment of GDF15 by combined treatment of oxaliplatin and NAC, confirming the negative regulation of TXNIP on GDF15 expression, and further indicating other regulators may also mediate oxaliplatin-induced decreased GDF15 expression.

How TXNIP regulates the expression of GDF15 remains to be investigated. The possible explanation could be TXNIP is a transcriptional repressor, which interacts with other corepressors to form a complex and in turn to supress the expression of GDF15 ${ }^{163}$. Moreover, another assumption could be TXNIP mediates GDF15 protein degradation due to its ability to bind other proteins.

Chapter V. The role of the TXNIP/GDF15 axis on the immune compartments

5.1 Introduction

We identified GDF15 as a downstream target of TXNIP in chapter IV. Thus, we aimed to understand the role of GDF15 and TXNIP/GDF15 axis in manipulating the TME in this chapter. GDF15, also designated as MIC-1, is a distant member of the TGF- β superfamily and can be found on chromosome 19 p13.11. It shows low to absent constitutive expression in most tissue except for reproductive organs under quiescent conditions ${ }^{533}$. However, GDF15 expression is activated under different stress conditions, such as exercise, aging, diabetes, cancer and even drug consumption, in a variety of different cell types (eg. epithelial and immune cells). As such the top transcription factors which are predicted to bind the promoter region of GDF15 are broadly associated with inflammation: AP-1, ATF-2, c-Jun, C/EBPbeta, PPARgamma1, PPAR-gamma2 and STAT3 (Genecards, Qiagen analysis). Hence, cytokines, such as IL-1, TNF α, and TGF- $\beta 1{ }^{534}$, can stimulate GDF15 expression. Collectively, these data suggest that GDF15 is an important regulator of inflammation and cancer.

GDF15 has been shown to contribute to multi-faceted biological events, including bone formation, cardiovascular diseases and cancer development in animal models ${ }^{535}$. GDF15 is hypothesised to affect pathology by acting on neighbouring cells (especially immune cells) as an "extracellular" messenger after being secreted ${ }^{536}$. Through this paracrine functionality, GDF15 has been shown to play an important role in remodelling the local, and even systemic, immune compartment. For example, its ubiquitous overexpression drives decreased systemic inflammatory responses ${ }^{369}$. In macrophages, the addition of exogenous GDF15 protein suppresses the LPS- and IFN-γ-induced production of Il6, Nos2, and Tnf, but enhances IL-4-mediated expression of Arg1, Fizz1, and Ym1 in macrophages ${ }^{279}$, suggesting that it supports M2 differentiation. GDF15 has also been shown to inhibit NK cell function. During systemic inflammation,

GDF15 suppressed phosphorylation of STAT4 and IFN- γ production in NK cells, resulting in an exhaustion phenotype (defined by suppressed IFN- γ production) ${ }^{280}$. Similarly, GDF15 also contributes to the decreased lytic activity of NK cells in glioma models ${ }^{362}$. Moreover, GDF15 is observed to be negatively associated with DC infiltration, maturation and function (such as IL-12 and TNF- α secretion) in ovarian cancer ${ }^{537}$. Regarding Tregs, GDF15 has been shown to stabilise FOXP3 expression, maintaining regulatory phenotype and function by binding to CD48 ${ }^{294}$. Thus, GDF15 is believed to promote a shift to an immune-suppressive phenotype. However, some studies have also demonstrated GDF15 has pro-inflammation properties. For instance, in an asthma model, GDF15, induced via Notch4/WNT pathway in Tregs, directly activates group 2 innate lymphoid (ILC2) cells to promote tissue inflammation ${ }^{538}$.

As a soluble protein, GDF15 exerts effects by binding to its cognate receptor. So far, there are three types of receptors reported, including TGF- β receptor, GDNF-family receptor a-like (GFRAL) and CD48 receptor (SLAMF2). Through TGF- β receptors, GDF15 has been reported to activate SMAD family members. In cultured neonatal cardiomyocytes and pancreatic cancer cells, recombinant GDF15 promotes the phosphorylation of SMAD $2 / 3^{539,540}$. However, in NK cells, it is the phosphorylation of SMAD1/5 that plays a role in recombinant GDF15-mediated NK cells suppression ${ }^{280}$. GFRAL, an orphan receptor for GDF15 mainly expressed on neurons in the brain, signals through the coreceptor RET 293. The binding of GDF15 to GFRAL is critical in body weight regulation and cachexia driven by cancer and chronic disease ${ }^{290,541}$. CD48 is a newly identified receptor for GDF15, mediating the generation of peripherally derived induced Tregs (iTreg), and the maintenance of suppressive function of natural Tregs (nTreg) cells by inhibiting the degradation of FOXP3 protein in hepatocellular carcinoma ${ }^{294}$.

Regulatory T cells (Treg) are commonly considered a subtype of CD4 T cells, expressing high levels of CD25 and FOXP3 and accounting for 5-10\% of CD4 ${ }^{+} \mathrm{T}$ cells in the periphery. Due to their immune suppressive roles, they are closely involved in the development of several diseases, including autoimmune disorders, allergic reactions and cancers ${ }^{542}$. Tregs are mainly divided into two types, namely nTregs and iTregs. nTregs are generated in the thymus, where they undergo the lineage commitment and maturation ${ }^{543,544}$; and iTregs are generated in the periphery in the presence of antigenic stimulation from conventional CD4 ${ }^{+}$T cells ${ }^{544,545}$. Importantly, MHC- II dependent T cell receptor (TCR) interactions are required for the generation of nTregs ${ }^{546}$. Notably, the production of both n Tregs and iTregs are affected by TGF- $\beta 1$ and IL- 2^{547}. Moreover, both nTregs and iTregs are critical in immunological tolerance, but they have different mechanisms of suppressing T-cell function. nTregs show inhibitory effects on Teffector cell trafficking to the target organ, while iTregs are known to act on antigenpresenting dendritic cells, such as DCs, for further prevention of T-cell priming ${ }^{545}$. In cancers, Tregs function to establish a tumour-promoting microenvironment, primarily by inhibiting adaptive anti-tumour immune responses, leading to tumour survival and ultimately tumour progression, metastasis and poor prognosis ${ }^{548,549}$. The mechanisms by which Tregs contribute to tumour progression include the expression of immune checkpoint molecules (such as PD-L1, CTLA-4) and secretion of immunosuppressive cytokines (such as IL-10, TGF- $\beta 1$) ${ }^{549}$. Immune checkpoint molecules are inhibitory immunoreceptors, which function as gatekeepers of immune responses ${ }^{550}$. Immunosuppressive cytokines are secreted factors to inhibit the maturation of DCs and the activation of anti-tumour T cells ${ }^{551}$. Thus, Tregs facilitate tumour progression by building an immune-suppressive microenvironment. Notably, Tregs are capable of proliferating in acidic and nutrient-lacking tumour microenvironments ${ }^{552}$.

Natural killer (NK) cells are a unique population of innate lymphoid cells, who, along with NKT cells, $\gamma \delta$ T cells and ILCs, contribute to tumour immunosurveillance ${ }^{553}$. The main role for NK cells is to discern 'self' from 'non-self' via engagement with the major histocompatibility complex-I ${ }^{554}$. The functions of NK cells are tightly regulated by activating and inhibitory signals ${ }^{84}$. CD244, an immunoregulatory receptor belonging to the SLAM family of receptors, is expressed in many immune cell types, especially NK cells. CD244 mainly binds to a ligand of another SLAM family member, CD2 and CD48 ${ }^{555}$. CD48 is a GPI-linked protein and found on most hematopoietic cells and upregulated under inflammatory conditions ${ }^{295}$. CD244-CD48 interactions have been reported to be essential for cell proliferation and anti-tumour activity in NK cells ${ }^{556}$. For instance, knocking-out CD48 in tumour cells blunts NK-cell-mediated cytotoxicity. Similarly, the anti-CD48 monoclonal antibody also inhibits the lysis of target cells ${ }^{557,558}$.

GDF15 is strongly over-expressed in cancers, including hepatocellular carcinoma, prostate and colorectal cancers ${ }^{559,560}$. Initially, GDF15 was identified as an antitumorigenic protein with pro-apoptotic capability as it was observed to promote proliferation of tumour cells ${ }^{366}$. However, a number of studies have shown that GDF15 expression can also drive tumour development rather than inhibition. This paradigm is supported by the evidence that increased GDF15 serum concentrations are associated with cancer incidence, progression, recurrence and cancer-related death ${ }^{561,376}$. In colorectal cancer tissue samples, high GDF15 expression is associated with poor prognosis ${ }^{562,563}$. GDF15 is also found to be a reliable marker to discriminate between prostate cancer and benign hyperplasia ${ }^{564}$, as well as between pancreatic adenocarcinoma and chronic pancreatitis ${ }^{565}$. Since our previous results showed that oxaliplatin led to TXNIP-mediated decrease of GDF15 expression, we, here, tried to
understand the role of GDF15 in regulating the function of potential target immune cells, including myeloid cells, Tregs and NK cells.

5.2 Aims and objectives

GDF15 is a secreted protein with immunomodulatory properties. We aimed to gain understanding in the immune functions of GDF15 on target immune cell types. Further, we aimed to understand the potential clinical application of GDF15 based on these findings. In detail, we aimed:

1) To explore whether myeloid cells, Tregs and NK cells were regulated by TXNIP/ GDF15 axis by performing in vitro co-culture assays;
2) To identify the receptor for GDF15 signalling by using blocking antibodies (anti-CD48 antibody);
3) To identify the association between GDF15 and iCMS classification by performing scRNA analysis;
4) To analyse the clinical outcome of TXNIP/GDF15 axis in publicly available clinical datasets and in-house patient-derived organoids.

5.3 Results

5.3.1 GDF15 has limited impacts on macrophage differentiation, phenotype and function

In this chapter, we sought to achieve a better understanding of the effects of TXNIPGDF15 signalling pathways on immune cells. Given the discovery of contaminating TGF- $\beta 1$ in recombinant GDF15 preparations ${ }^{566}$, we opted to predominantly use CRISPR knockout and overexpression systems to produce conditioned GDF15enriched supernatant for in vitro immunological assays. Specifically, we established TXNIP $^{-/-}$(hereafter TKO), GDF15 $5^{-/-}$(hereafter GKO), TXNIP ${ }^{-1 /} / \mathrm{GDF}^{-/-}$double KO
(hereafter GTKO) and GDF15 overexpressing (hereafter GDF15a) cell models, and suitable non-targeting controls (NTC) using the DLD1 cell line (Figure 5-1).

Figure 5-1. The establishment of CRISPR-knockout and CRIPSRa-GDF15 DLD1 cell models.
(A) Immunoblot analysis of TXNIP and GDF15 expression in NTC, GKO, TKO, GTKO DLD1 cell lines after oxaliplatin treatment; (B) Immunoblot analysis of GDF15 expression in GDF15CRISPRa cells in the presence of oxaliplatin. Abbreviation: NTC: Non-targeting control. TKO: TXNIP knockout. GKO: GDF15 knockout. TGKO: TXNIP and GDF15 double knockout. NTCa: NTC CRISPR activation. GDF15a: GDF15 CRISPR activation.
GDF15 is important in modulating myeloid cells ${ }^{533}$. For example, GDF15 was observed to suppress anti-tumour activities of macrophages and promote tumour development ${ }^{319,533}$. Thus, we first sought to assess if we could replicate and build on these observations using our methodologies and tools. Aware of the literature concerning the importance of monocyte to macrophage differentiation in the establishment and maintenance of the TME^{567}, we first assessed if GDF15 could act as a differentiating factor by culturing primary monocytes for 7 days in GDF15 rich supernatant (from TXNIP ${ }^{-/}$DLD1 cells) $+/-$MCSF (as a positive control) in serum-free (AIM-V, commonly used for immune cells culture ${ }^{568}$) or RPMI media plus serum (R10). We saw no evidence of GDF15 being able to drive differentiation, nor enhance or limit MCSF dependent differentiation when assessing live cell number (Figure 5-2A).

Although there was no difference in cell number, we could not rule out if there was a difference in phenotype. Macrophages are famously 'plastic' cells owing to their ability to be conditioned by their environments to adopt diverse and functionally-appropriate phenotypes ${ }^{569}$. Until recently, these phenotypes were commonly considered to sit on a
gradient between 'M1' and 'M2' subtypes. M1 cells were broadly thought of as inflammatory, supporting Th1/CD8 cytotoxic responses, and M2 cells were broadly thought of as anti-inflammatory/humoral, supporting Th2/B cell humoral responses ${ }^{570}$. This paradigm has recently been challenged by single cell sequencing technology which clearly shows multiple tissue and disease specific subtypes; often $>20^{571}$. We therefore assessed cell surface expression of 7 markers, including HLA-DR, CD14, PD-L1, CD163, MMR, CD86 and PD-1. All these selected markers are associated with macrophage phenotype and function ${ }^{572,573}$. The results showed no significant difference between cells differentiated with MCSF in the presence of the different conditioned supernatants (Figure 5-2B; DLD1 knockouts as defined at the beginning of this chapter). Having assessed the impact of GDF15 on monocyte to macrophage differentiation, reflecting its effects on monocytes recruited to the TME, we next wished to model the impact of GDF15 on tissue resident macrophages. Monocytes differentiated with MCSF are commonly considered to be 'M0', ie naïve mature macrophages, akin to naïve tissue resident macrophages; cells which can be matured towards different functional phenotypes with different factors (e.g. IFN +/- LPS will drive 'M0' cells to an 'M1' phenotype) to reflect specific conditions. Culturing M0 macrophages in the presence of the different conditioned supernatants yielded no difference in phenotype when measuring the cell surface expression of 6 appropriate markers (Figure 5-2 C). In the knowledge that a 'danger signal' (e.g. a pathogen associated molecular pattern [PAMP] such as LPS, a TLR4 agonist) is often required to drive the adoption of M1 and M2 phenotypes ${ }^{574}$, we repeated the above experiments (referring to Figure 5-2 BC) with the addition of LPS (Figure 5-2 D-E). Again, no change in macrophage differentiation and phenotype were observed.

Figure 5-2. GDF15 has limited impacts on macrophage differentiation, phenotype or function.
(A) Primary monocytes were cultured in different media (AIMV or R10; RPMI + $10 \% \mathrm{FBS}$) +/- MCSF, with conditioned supernatant from NTC or TKO cell lines at a $1: 1$ ratio as indicated. After 7 days the number of live cells were counted. $n=5$. (B) Primary monocytes were cultured in R10 media + MCSF, with conditioned supernatant from NTC, GKO, TKO, GTKO cell lines at a 1:1 ratio as indicated. After 7 days, surface expression of indicated proteins were measured by flow cytometry. MFIs were corrected against isotype controls and normalized against NTC MFI. n=3-16 (C) Primary monocytes were cultured in R10 media + MCSF for 7 days, before being cultured with conditioned supernatant from NTC, GKO, TKO, GTKO cell lines at a $1: 1$ ratio for a further 2 days. Surface expression of indicated proteins were measured by flow cytometry. MFIs were corrected against isotype controls and normalized against NTC MFI. $n=3-15$. (D) As (B) with the addition of LPS at day 7 and analysis performed on day 9.n=3 (E) As (C) with the addition of LPS on day 9 and analysis performed on day 11. $n=3$.

Having seen no GDF15 dependent difference in differentiation or phenotype, we next investigated whether GDF15 affected the functions of macrophages. Macrophages have diverse functions linked to their critical role in maintaining immune and tissue homeostasis ${ }^{575}$. One of the ways in which macrophages perform this role is by acting as sentinel cells in vulnerable tissues, with their cell surface carrying multiple pattern recognition receptors (PRRs) which, when activated by a PAMP, will activate the cell to adopt an inflammatory phenotype, enabling the direct or indirect destruction or inhibition of the pathogen that carries the triggering PAMP ${ }^{576}$. A key protein in these immune responses is $\mathrm{TNF} \alpha$, and $\mathrm{TNF} \alpha$ release has been previously reported to be regulated by GDF 15^{319}. Thus, we measured TNF α secretion from macrophages after
treatment with conditional media. As can be seen in Figure 5-3A, we were unable to see the reported differences in both monocytes and MCSF macrophages using our systems. In cancer immunology, macrophages are frequently considered as negative prognosticators ${ }^{570}$. One of the reasons for pro-tumour effects of macrophages is their ability to 'shut down' antigen specific cytotoxic adaptive responses directly through the expression of inhibitory molecules such as PD-L1 or the release of inhibitory factors such as IL-10 0^{577}. To test GDF15's ability to modify the ability of macrophages to stimulate T cell proliferation, we treated labelled PBMCs with anti-CD3 and anti-CD28 antibodies in the presence of supernatant from either macrophage treated with the indicated cell line supernatant or monocytes differentiated in the presence of the indicated cell line supernatant. As can be seen in Figure 5-3B, there were no significant differences regarding T cell proliferation. Next, macrophages are potent cells with powerful phagocytosis, being able to engulf pathogens and/or apoptotic/necrotic cells amongst others ${ }^{578}$. We therefore wished to assess whether GDF15 affected the ability of macrophages to phagocytose. Using dextran FITC uptake as a readout, we saw no difference in both monocytes and MCSF macrophages when treated with the supernatant from the indicated cell lines (Figure 5-3C). Finally, we wished to understand whether GDF15 may educate macrophages to recruit other cell types that may impact on the TME. To assess this, we used the supernatant from monocytes differentiated in MCSF in the presence of GDF15a supernatant or recombinant human GDF15 or controls +/- LPS (Figure 5-3D is without LPS, Figure 5-3E is with LPS) in the bottom well of a transwell system. In the top well we placed freshly isolated PBMCs, and after several timepoints we measured the number of cells that had migrated (NB. Only 48h is shown). Although a trend for increased migration towards monocytes
differentiated with MCSF and GDF15 could be seen, this change was not significant
(Figure 5-3D-E).

Figure 5-3. GDF15 has limited impacts on macrophage function.
(A) TNFa concentrations in the supernatant from cells in (Figure 5-2D) and (Figure 5-2E). $\mathrm{n}=5$. (B) PBMCs were stimulated with aCD 3 and aCD 28 in the presence of supernatant (3 parts sup to 1 part media) from cells from (Figure 5-2B) ('Monocytes') and (Figure 5-2C) ('MCSF macrophages'). Proliferation (dye MFI) was normalised to cells treated with NTC supernatant generated macrophages. $\mathrm{n}=5$ (C) Cells from (Figure 5-2B) ('Monocytes') and (Figure 5-2C) ('MCSF macrophages') were cultured with dextran-FITC at $37^{\circ} \mathrm{C}$ with MFI corrected against cells cultured with dextran-FITC at $4^{\circ} \mathrm{C}$. Corrected values were then normalized against NTC supernatant treated macrophages. $\mathrm{n}=5$ (D) Primary monocytes were cultured for 7 days in the presence of R10 + MCSF + controls (1:1 ratio of NTC media or R10 media) or GDF15(a) or rhGDF15. Day 7 supernatant was taken and placed in the bottom well of a Thin Cert transwell. Graph shows migration of PBMCs at 18 hrs normalized to controls. $\mathrm{n}=6$. (E) as (D) with monocyte-derived macrophages treated with LPS for 48 hrs from day 7 to day 9 before commencing the trans-well assay. $\mathrm{n}=6$.

5.3.2 GDF15 induces Tregs in a CD48 dependent manner

Interestingly, during the course of these functional assays it was observed that PBMC numbers were reduced in GDF15-enriched conditioned media when stimulated with anti-CD3 and anti-CD28 (Figure 5-4A-B). Further analysis showed that supernatant
from GDF15 enriched supernatant (including from GDF15a and TXNIP-KO cells) inhibited the proliferation of both CD8 (Figure 5-4C-D) and CD4 T cells (Figure 5-4EF). Moreover, the similar observation was seen regarding IFN γ release as well (Figure

5-4G-H).

Figure 5-4. GDF15 inhibited the proliferation and functions of T cells.
(A-B) PBMCs were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of fresh supernatant from indicated cell lines (NTC; non-targeted control. GKO; GDF15*-. TKO; TXNIP ${ }^{-/-}$. GTKO; GDF15 ${ }^{-/-}$and TXNIP ${ }^{-/-}$. GDF15(a); GDF15 over-expressing). Live cells were counted using trypan blue and a haemocytometer. $\mathrm{n}=10$ (A) and $\mathrm{n}=5$ (B). (C-F) Labelled PBMCs were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of fresh supernatant from indicated cell lines, before being stained with anti-CD3 and anti-CD8 (C-D) or anti-CD4 (E-F) antibodies and measured by flow. Normalised proliferation on gated CD3+CD8+ or CD3+CD4+ cells is shown. $\mathrm{n}=6$. (G-H) Normalised IFN γ concentrations in the supernatant of cells from C-F. All values were expressed as mean \pm SD. ns= non-significant. $* \mathrm{p}<0.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001, * * * * \mathrm{p}<0.0001$.

A recent paper has shown that GDF15 is able to drive the differentiation of regulatory
T cells (Tregs) from naïve CD4 cells via CD48 ligation ${ }^{294}$. Then we hypothesised that Tregs are the mediators to inhibit T cell proliferation and IFN γ release within the mixed

PBMC population in our experiments. To start with, we measured whether GDF15 affect the Tregs generation by treating PBMCs with either recombinant GDF15 protein or GDF15 enriched media. The result showed a GDF15-dependent increase of FOXP3 within the CD4 pool (Figure 5-5A), however to a much lesser extent than when using recombinant TGF $\beta 1$ protein, a potent driver for Tregs generation ${ }^{579}$ (Figure 5-5B). Further, we tested clinical relevance by staining GDF15 and FOXP3 on serial colorectal sections. Correspondingly, we observed enrichment of FOXP3 in the GDF15 high cases (Figure 5-5C-D). Finally, in light of the recent publication previously mentioned ${ }^{294}$, where Tregs were seen to be induced from naïve CD4 cells stimulated in the presence of recombinant GDF15, we sought to see if we could observed the similar phenotype using our tools and methodology. We negatively isolated naïve CD4 T cells from healthy donor PBMCs using magnetic beads before treating them with anti-CD48 antibody or isotype control. These cells were then stimulated with anti-CD3 and antiCD28 in the presence of conditioned media from DLD1 cells over-expressing GDF15 (GDF15a) or control (NTC) for 4 days. On day 4 these 'Tregs' were co-cultured with proliferation-dye-labelled allogeneic PBMCs (responder cells; responders) in the presence of anti-CD3 antibodies for 3 days. Responder cells were stained with antiCD4 and anti-CD8 antibodies and proliferation for each T cell subset was measured (proliferation dye MFI) and displayed in Figure 5-5E-F. Only naïve CD4 T cells treated with isotype control and stimulated in the presence of GDF15 were able to inhibit the proliferation of responders. These data further support the concept that GDF15 can induce Tregs from naïve CD4 T cells through engagement with CD48 ${ }^{294}$.

Figure 5-5. GDF15 induces Tregs in a CD48 dependent manner.
(A-B) PBMCs were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of fresh supernatant from NTC or GDF15 (a) cell lines or media alone or $200 \mathrm{ng} / \mathrm{ml}$ recombinant human

GDF15 (A) or $5 \mathrm{ng} / \mathrm{ml}$ recombinant human TGF $\beta 1$ (B). Cells were stained with anti-CD3, antiCD4 antibodies extracellularly before intranuclear staining of FOXP3 was performed. \% of $\mathrm{CD} 4{ }^{+} \mathrm{FOXP}^{+}$cells are shown. $\mathrm{n}=10$ (A) and $\mathrm{n}=5$ (B). (C-D) Immunohistochemistry using anti-GDF15 and anti- FOXP3 antibodies on serial sections from colorectal cancer cases. Pooled data showing FOXP^{+}cell counts in GDF15 ${ }^{\text {low }}$ and GDF15 ${ }^{\text {high }}$ populations; median split. $\mathrm{n}=32$. (E-F) Isolated naïve CD4 cells were stimulated with anti-CD3 and anti-CD28 for 4 days in the presence of indicated cell line supernatant + either isotype control $(10 \mu \mathrm{~g} / \mathrm{ml})$ or anti-CD48 $(10 \mu \mathrm{~g} / \mathrm{ml})$ as indicated. These cells were then co-cultured with anti-CD3 stimulated labelled responder PBMCs for 4 days, before being stained with anti-CD3, anti-CD8 and anti-CD4 antibodies. Normalised proliferation dye (MFI) of the indicated responder population is shown. $\mathrm{n}=9$. All values were expressed as mean $\pm \mathrm{SD}$. $\mathrm{NS}=$ non-significant. $* \mathrm{p}<0.05, * * * \mathrm{p}<0.001$.

5.3.3 GDF15 blocks the interaction of CD48 and CD244 impairing NK cell

degranulation

Previous result showed GDF15 was able to affect the generation of Tregs, and further the proliferation and functions of CD8 T cells. Then we were interested in seeing whether other immune cell types correlated with the levels of GDF15 and TXNIP expression. We therefore performed the correlation between TXNIP/GDF15 expression and immune subsets by transcriptomic analysis. The data showed that other cell types correlated more strongly with GDF15 and TXNIP than FOXP3 expressing cells in the opposite direction (Figure 5-6A-B). NK cells, as defined by NCAM1 (CD56), showed the strongest negative correlation with GDF15 (Figure 5-6A) and positive correlation with TXNIP (Figure 5-6B) compared with other immune subsets. In accordance, GDF15 has previously been reported to inhibit NK cell function in glioma ${ }^{362}$. As mentioned, a recent paper has reported the binding of GDF15 to CD48 ${ }^{294}$, we therefore considered whether this binding may inhibit the binding of CD48 to CD244, an important costimulatory molecule for NK cell functionality ${ }^{556}$. We first used a platebased system assay and found the ability of GDF15 to inhibit the binding of recombinant CD48 to recombinant CD244 (Figure 5-6C). Next, we assessed the impact of CD48 blockade on NK cell degranulation when targeting plate bound recombinant CD48, using anti-CD48 (Figure 5-6D), recombinant GDF15 (Figure 5-6E) and GDF15 enriched supernatant (Figure 5-6F). The results showed that both anti-CD48 antibody
and GDF15 enriched media decreased the production of CD107a ${ }^{+}$NK cells (Figure 5-
6D-F). Finally, we assessed NK cell degranulation when targeting NTC and GDF15
KO cell lines and identified the increased generation of CD107a ${ }^{+}$NK cells when cocultured with GDF15 KO cells, suggesting GDF15 suppressed NK cell degranulation (Figure 5-6G). Taken together, these data suggested that GDF15 can both drive Treg generation and inhibit NK cell functionality by binding to CD48.

Figure 5-6. GDF15 blocks the interaction of CD48 and CD244 impairing NK cell degranulation.
(A-B) Linear regression analysis of transcript expression (TCGA COAD dataset) of GDF15 (A) or TXNIP (B) against indicated immune associated transcript expression levels. n=512. TCGA COAD GDC gene expression data for GDF15, TXNIP, ACTA2 (Fibroblasts), CD4 (T cells), CD8A (T cells), CD68 (Macrophages), CD19 (B cells), FOXP3 and NCAM1 (NK cells) were downloaded from xenabrowser.net. Correlations between expression of GDF15 (A)/TXNIP (B) were made against the other markers and are illustrated in A and B. (C) Plate bound recombinant CD48 was treated with indicated factor before recombinant avidin CD244 was added and binding measured, $\mathrm{n}=5$. (D-F) Plate bound anti-CD2, anti-NKp46 and recombinant CD48 were treated with anti-CD48 (D), recombinant GDF15 (E) or supernatant from indicated cell line (F) before isolated primary NK cells were added and cultured for 18h. Cells were harvested and stained for CD107a and analysed by flow cytometry, to measure degranulation. $\mathrm{n}=10$. (G) Target cells (wild type or GDF15KO, as indicated) were plated out and co-cultured with primary NK cells for 18h, cells were harvested and stained for CD107a, with \% of CD107a positivity shown. $\mathrm{n}=10$. All values were expressed as mean \pm SD. ${ }^{* *} \mathrm{p}<0.01$, ${ }^{* * * *} \mathrm{p}<0.0001$.

5.3.4 GDF15 expression is associated with iCMS2, and GDF15 high TXNIP ${ }^{\text {low }}$

 phenotype is associated with poor prognosis and chemotherapeutic resistance The Consensus Molecular Subtypes (CMS) of Colorectal Cancer is a genomic classification system determined by an international consortia in 2015^{14}, which is based on bulk transcriptomics. Recently, in order to better identify the cell types and their expression profile, the intrinsic-consensus molecular subtypes (iCMS) classification system was established by analysing single-cell transcriptomes of epithelial cells ${ }^{19}$, leading to the discovery of two intrinsic subtypes, iCMS2 and iCMS3. When assessing the association between GDF15 expression and iCMS subtype, we observed GDF15 to be significantly enriched in iCMS2 (Figure 5-7A-B). Additionally, low expression of TXNIP was also observed to be enriched in iCMS2 (Figure 5-7C-D). iCMS2 is a subtype that can be associated with low immune cell infiltrate ${ }^{19}$, including low NK cells, CD8 T cells, with a slight increase of Tregs. This finding was consistent with our previous results that GDF15 promoted the generation of Tregs and inhibited NK cells. Therefore, this association broadly supports the GDF15-dependent immunological impacts we have observed in vitro and in situ.

Figure 5-7. GDF15 expression is associated with iCMS2.
(A-D) GDF15 and TXNIP expression levels in tumour cells for each patient and each iCMS subtype, coloured by iCMS classification (iCMS2; purple, iCMS3; orange). (A-B) Boxplots show cellular GDF15 expression levels of tumour cells in patients classified to be enriched in iCMS2 subtype (A) or pooled as expression means per donor (B) or individual cells; (C-D). Boxplots show cellular TXNIP expression levels of tumour cells in patients classified to be enriched in iCMS2 subtype (C) or pooled as expression means per donor (D) or individual cells. Previous results suggested that the TXNIP-GDF15 axis was associated with patient prognosis and regulated the functions of immune cells. With high GDF15, a lack of NK cells, CD8 T cell dysfunction and Treg infiltration all being shown to be associated with poor prognosis in $\operatorname{CRC}^{562,580,581}$, and with the vast majority of patients being treated with oxaliplatin, we next considered whether the TXNIP-GDF15 axis remained functional in metastatic disease. We, firstly, tested the levels of TXNIP and GDF15 expression following oxaliplatin treatment in different CRC cell lines derived from primary and metastatic sites. Interestingly, we observed loss of significant change in TXNIP and GDF15 expression and the maintenance of a high level of GDF15 in cell lines derived from secondary sites (DiFi and LIM1215) (Figure 5-8A-B).

Figure 5-8. Maintenance of high GDF15 level in colorectal cancer cell lines derived from secondary sites.
(A-B) Immunoblot analysis of TXNIP and GDF15 expression after oxaliplatin treatment in colorectal cancer cell lines, including DLD1, HCT15, HT29, SW48(A, primary site), and DiFi, LIM1215 (B, secondary site).

We further analysed human samples data from publicly available datasets. Data analysis confirmed the higher expression of GDF15 in metastasis tissue (Figure 5-9A). Indeed, high levels of GDF15 were seen in matched primary and secondary tissue using an array and single cell sequencing analysis ${ }^{582}$ (in the single cell sequencing dataset, GDF15 was highly upregulated in liver metastases) (Figure 5-9B). These data
suggested that the cells had become refractory to oxaliplatin and continued to secrete large amounts of GDF15. To support this hypothesis, GDF15 is enriched in patients who do not respond to chemotherapy (Figure 5-9C).
A

B

C

Figure 5-9. High GDF15 levels were associated with metastasis and chemotherapeutic resistance.
(A) The comparison of GDF15 between primary tumour and lymph metastasis in GSE6988. (B) A volcano plot used to visualize single cell analysis of GDF15 in matched primary and secondary tissue (Liver metastasis), data collected from previous publication (Appendix Table 12). (C) Fractions of responder or non-responder cases that express high or low GDF15 in GSE52735.

Furthermore, we developed oxaliplatin resistant cell lines by constantly treating cells with high oxaliplatin concentration for 12 months (Figure 5-10A-C). Then we treated resistant cells with $10 \mu \mathrm{M}$ of oxaliplatin. The results showed that oxaliplatin-mediated TXNIP and GDF15 expression changes were compromised in both DLD1 and HCT15 resistant models (Figure 5-10D-E).

A

B

C

D

E

Figure 5-10. TXNIP-GDF15 axis responsiveness largely lost in oxaliplatin-resistant cell models.
(A) A schematic model presenting the process to acquire oxaliplatin-resistant CRC cells. (B-C) IC50 values of oxaliplatin in oxaliplatin-resistant cells (OXAR) and their parental cells. DLD1 and DLD1-OXAR (B); HCT15 and HCT15-OXAR (C). (D-E) Immunoblot analysis of TXNIP and GDF15 expression after oxaliplatin treatment in oxaliplatin-resistant (OXAR) cells: DLD1OXAR (D) and HCT15-OXAR (E).

Finally, we generated nine patients-derived colorectal cancer organoids (Figure 5-11A,
Table 5-1). Then TXNIP and GDF15 mRNA levels were tested after oxaliplatin treatment. Further, a ratio of GDF15 to TXNIP expression post treatment from each organoids line was measured. The result showed that there was a clear trend between high ratio of GDF15/TXNIP and extramural invasion, although the ratio of GDF15/TXNIP was variable in different organoids (Figure 5-11B). Collectively, these
data suggested that there is an association between GDF15/TXNIP expression and metastatic disease and drug resistance.

Figure 5-11. Loss of oxaliplatin-induced increased TXNIP and decreased GDF15 expression was associated with extramural invasion in patient-derived tumour organoids. (A) Brightfield images of 9 PDTO cultures, shown in 3 magnifications (4X, 10X, 20X). (B) Assessment of expression change of TXNIP and GDF15 of organoids post oxaliplatin. All values were expressed as mean \pm SD. ${ }^{* * *} \mathrm{p}<0.001$.

Table 5-1 The clinical characteristics of tumour tissue for organoids establishment

Organoi ds name	Sex	Collect procedure	Origin of tissue	Age at diagnosis	TNM stage	Presence of invasive disease
CRC001	M	Resection	Rectum	69	pT3 N1a	1/17 nodes contain metastatic ADC Intramural lymphovascular invasion present. No venour or perineural invasion
CRC002	M	Resection	Proximal transverse colon	72	pT3 N0	No
CRC003	M	Resection	Rectum	72	pT3 N0	No
CRC004	M	Resection	Right colon	64	T4a N1b $\mathrm{Mx}, \mathrm{R} 0$	Invades into the subserosa and 12 mm beyond the muscularis propria
CRC005	M	Residual tumour	Rectosigm oid colon	57	$\begin{gathered} \text { ypT3 } \\ \text { N2b Mx } \end{gathered}$	Extramural venous invasion Liver metastasis detected on MRI
CRC006	M	Resection	Rectum	69	$\begin{gathered} \text { pT2N0M } \\ 0 \\ \hline \end{gathered}$	Local invasion: muscularis propria
CRC007	M	Resection	Upper rectum	81	$\begin{gathered} \text { pT3 N0 } \\ \text { Mx } \\ \hline \end{gathered}$	Extramural venous invasion
CRC008	F	Resection	Rectum	42	pT3 N0	Local invasion: Beyond muscularis propria. No large vessel invasion
CRC009	F	Resection	Hepatic flexure	71	$\mathrm{pT3} \mathrm{pN0}$	Extramural venous invasion present

5.4 Discussion

In chapter V, we identified high GDF15 expression was associated with poor prognosis in CRC, which is consistent with other studies ${ }^{562}$. Similar to TGF- β, GDF15 can be released by several cellular sources ${ }^{275}$. GDF15 secreted from different cell types, including macrophages, has been reported to create a tumour-promoting microenvironment, directly or indirectly facilitating the proliferation and metastasis of tumour cells ${ }^{344,583}$. However, we observed GDF15 is mainly expressed in malignant cells from single cell analysis in colorectal cancer ${ }^{584}$, which further suggests that the immune-tumour cells crosstalk.

According to various studies, GDF15 has been reported to act as either a protumorigenic or anti-tumorigenic protein in different models. This could be possibly explained by several reasons: 1) it could exert the effects as a cellular protein or autocrine factor, which in turn can activate SMAD signalling ${ }^{281}$. This would result in the promotion or inhibition of cancer progression and metastasis ${ }^{277,370}, 2$) it is an antiinflammatory factor and shows impacts on other immune cells as a secreted cytokine, and be closely associated with tumorigenesis through inflammation ${ }^{585,586}$. At the early stage of oncogenesis, anti-inflammatory role of GDF15 abrogates the initiation and development of tumours. However, for the late-stage established tumours, effective anti-tumour inflammation is required to eliminate cancer cells, including the activation of DCs, M1 macrophages, NK cells and T cells. The switch of cold tumours (noninflamed) into hot tumours (inflamed) is indispensable for cancer immunology due to the recruitment and activation of immune cells in tumours ${ }^{533,587}$. Therefore, the inhibition of the activation of anti-tumour immune cells restricts the efficiency.

As GDF15 is an important cytokine and involved in immune regulation, including the modulation of both innate and adaptive immune cells. Thus, we explored the function
of TXNIP/ GDF15 axis in the remodelling of tumour immune microenvironment in this chapter. To establish whether TXNIP-dependent GDF15 modulates immune cell responses in the TME, several cell line models with genetic perturbations in TXNIP and GDF15 were established. These models included GDF15-KO, GDF15-activation and $\mathrm{TXNIP}^{-1 /} / \mathrm{GDF}^{-/-}$double knockout cell models. The establishment of these models were used to avoid TGF- $\beta 1$ contamination in GDF15 preparation.

GDF15 was firstly reported in macrophages with inhibitory effects, promoting their differentiation towards M2 phenotype, followed by cumulative studies emphasising the importance of GDF15 in the regulation of macrophages ${ }^{270}$. Thus, we initially tested the potential function of TXNIP/GDF15 axis in myeloid cells/macrophages. However, we observed no involvement of GDF15 in the differentiation of monocytes by analysing expression of specific markers and TNF α production for macrophage phenotype and function. Moreover, further analysis revealed GDF15-educated monocytes didn't effectively affect the recruitment of immune cells.

Tregs are a subset of $\mathrm{CD} 4^{+} \mathrm{T}$ cells with immunosuppressive functions. In cancer, Tregs help to promote tumour development and progression by inhibiting effective antitumour immune responses ${ }^{588}$. A recent publication showed that GDF15 was capable of inducing the generation of iTregs (induced Tregs) in HCC ${ }^{294}$. Then we speculated whether Tregs generation and function is modulated by TXNIP-induced GDF15 in our system. Firstly, we tested the impact of TXNIP/GDF15 axis on the proliferation and function of CD8 and CD4 T cells. The results demonstrated that GDF15-enriched conditioned media, collected from both GDF15a and TXNIP-KO cells, had suppressive effects on both cell types. Based on this observation, we speculated that the inhibitory effects of GDF15 on CD8 and CD4 T cells were dependent on its role on Tregs. Indeed, GDF15 was observed to promote the induction of FOXP^{+}CD4 T cells, which showed
potent suppressive effects on responder cells (allogeneic PBMCs). This finding was further verified in patient samples, with more FOXP3 staining in patient tumour samples of high GDF15 expression. Moreover, previous study demonstrated that CD48 is required to transmit signals induced by GDF15 ${ }^{294}$. Accordingly, we observed a similar phenotype using CD48 antibody. The immune-suppressive effects of GDF15induced Tregs were compromised by treating cells with CD48 antibody.

CD48-CD244 binding has been well studied and is critical for NK functionality ${ }^{556}$. Therefore, we speculated whether GDF15 affected the interaction between CD48 and CD244. After analysing TCGA-COAD dataset, we found NCAM1 expression (a marker for NK cells) negatively correlated with GDF15 expression, but positively correlated with TXNIP expression, indicating that TXNIP and GDF15 expression was associated with the levels of NK cell in the TME. Consistently, further analyses showed that GDF15 inhibited NK cell degranulation by binding to CD48, confirming the suppressive effects of GDF15-CD48 interaction on the function of NK cells. Collectively, the immune modulation mediated by GDF15 was shown to be dependent on both Treg and NK cells via the binding to CD48 in this study.

Previous publications suggest increased NK cells and decreased Tregs are associated with favourable prognosis in colorectal cancer ${ }^{588,589}$. We analysed public datasets, as well as tested patient-derived organoids and oxaliplatin-resistant cell models, to identify whether the levels of GDF15 are indicative of clinical outcomes. The results showed that high GDF15 expression was associated with metastatic potential, chemotherapy responses and drug resistance.

Taken together, our data have revealed a previously unreported broad epithelialimmune axis - (ROS/MondoA)/TXNIP/GDF15 induced by chemotherapy in CRC that
is associated with NK cell and Treg regulation (Figure 5-12), and GDF15 expression levels are associated with extramural invasion.

Figure 5-12. Schematic diagram
Diagram of the underlying mechanism of oxaliplatin-induced immunogenicity by regulating MondoA/TXNIP/GDF15 signalling pathway in CRC.

Chapter VI. Summary \& Future Directions

6.1 Overview

Cancer has been widely considered the results of the accumulated genetic mutations. Even though the gain-of-function of oncogenes and loss-of-function of tumour suppressor genes are the key driving force for tumorigenesis ${ }^{590}$, the involvement of the immune system in cancer development cannot be ignored due to the cancerimmunoediting theory, which consists of three major phases: elimination (protection), equilibrium (persistence) and escape (progression) ${ }^{591,592}$. The progression or suppression of tumours relies on a threshold balanced by tumour cells, immune cells and other relevant factors in the TME, named as "cancer-immune set point" ${ }^{593}$. The immune-oncology field has started to attract more attention since the first clear indication that the administration of interleukin-2 (IL-2) mediates the regression of unresectable metastatic cancers by boosting the expansion of anti-tumour lymphocytes ${ }^{594,595}$. The success of immunotherapies, such as IL-2 and interferon- α (IFN α), have suggested that manipulating immune system to kill tumour cells is an effective strategy for cancer therapy ${ }^{596}$. Accordingly, immune cell infiltration and immune contexture have been observed to exert tremendous effects on clinical outcome ${ }^{597,598}$. Further, the discovery and success of immune checkpoint blockades (ICB), such as PD-1 and CTLA4, have established immunotherapies as a new pillar of cancer treatment ${ }^{599}$. Since ipilimumab (anti-CTLA4 antibody) was first approved in 2011 by the FDA, more ICB drugs have been developed and approved ${ }^{600}$. In addition, CAR-T therapy has also been shown to be effective in treating hematologic malignancies and shown promise in some solid tumours ${ }^{601-603}$.

Despite the success of immunotherapies in certain settings, it remains unclear which patient population will benefit the most from these drugs. Chemotherapies, which have been used for several decades, therefore remains the most effective means of treating
different types of cancers. Interestingly, over the past decade, chemotherapy has shown to trigger anti-tumour immune activation in addition to its cytotoxic effect on tumour cells ${ }^{604}$. These studies provided the potential of chemotherapies to switch cold tumours into hot tumours and promote the infiltration and activation of cytotoxic immune cells in the TME ${ }^{605-607}$. These findings lay the foundations for the combined chemotherapy treatment with other immunotherapies including ICB and CAR-T therapies ${ }^{608,609}$. The underlying molecular mechanisms of chemotherapy to induce the immunogenicity have been widely studied. The discovered mechanisms comprise of the promotion of cytokine production, the triggering of ICD and the increase of MHC-I molecules on cancer cells ${ }^{386}$. It has been well studied that chemotherapies are able to induce the expression of tumour suppressors ${ }^{610,611}$. Importantly, tumour suppressors have been identified to be involved in the regulation of immune responses in cancer ${ }^{612,613}$. However, the role of tumour suppressors invoked by chemotherapy to facilitate immune activation remains poorly understood.

CRC is one of the most advanced tumours worldwide, with oxaliplatin as one of the first-line drugs for CRC treatment. Previous studies have identified that oxaliplatin is an inducer of immunogenic cell death, which facilitates HMGB1 release, CRT exposure and ATP secretion ${ }^{56,614-616}$. Furthermore, oxaliplatin can also create a pro-inflammatory tumour microenvironment and trigger macrophages to secret T-cell-recruiting chemokines, like CXCL9, CXCL10 and CXCL16 ${ }^{609}$. In this study, we aimed to explore the activation of yet unreported tumour suppressor molecules after chemotherapy treatment and identify their roles in the tumour-immune interplay of colorectal cancer. Specifically, we were interested in altered genes induced by oxaliplatin in CRC that promote immune cells activation to the TME. In doing so, we hope to potentially illuminate, based on the scientifically explored evidence provided here, biomarkers for
prognosis prediction and the proof-of concept that chemotherapy could utilise the activation of tumour suppressors to reshape the tumour immune microenvironment.

To start with, as we aimed to perform immune-relevant studies, two colorectal cancer cell lines categorised as an "immune" subtype (CMS1 subtype) from previous publication were selected ${ }^{428}$. RNA sequencing analysis identified the upregulation of TXNIP, a tumour suppressive molecule, following oxaliplatin treatment in both cell lines. TXNIP was also characterised in a CRC study cohort as well as the TCGA COAD dataset and showed that TXNIP expression was decreased in tumour samples compared to normal samples. Consistently, the upregulation of TXNIP after oxaliplatin treatment was also observed in different 3D structure cell models and our own study patient samples, confirming oxaliplatin-mediated TXNIP upregulation in a clinical setting. It is of interest to observe that TXNIP is induced by other treatments (including 5-GU from our own result) and potentiates the effectiveness of radio-chemotherapies ${ }^{617}$, suggesting that the upregulation of TXNIP expression may be due to cytotoxic stress or DNA damage. Moreover, TXNIP has been identified to modulate the immune system. Therefore, we hypothesised that oxaliplatin-induced TXNIP may mediate the crosstalk between tumour and immune cells and decided to focus on the mechanistic study for the rest of the thesis.

The distribution of TXNIP is associated with its function. In the cytoplasm, TXNIP accumulation interferes with Trx-ASK1 (mitogen-activated protein kinase kinase kinase) binding, activates ASK1 and causes cell apoptosis ${ }^{618}$. Similarly, in beta cells, the shuttling of TXNIP from nucleus to mitochondria upon oxidative stress leads to ASK1-dependent apoptosis ${ }^{449}$. Moreover, the translocation of TXNIP to mitochondria leads to NLRP3 inflammasome activation ${ }^{619}$. Importantly, cytoplasmic TXNIP is a powerful inducer of ROS as it binds and inhibits Trx, an antioxidant enzyme ${ }^{620}$. Thus,
we performed experiments to identify the distribution of TXNIP and observed its enrichment in the cytosol, especially in endoplasmic reticulum and mitochondria, suggestive of the potential involvement of ROS generation in this process ${ }^{621,622}$. Since we did not isolate other organelles, whether TXNIP was enriched in other places is unknown and could possibly provide further links to expanded mechanistic insight. Furthermore, previous studies reported that oxaliplatin treatment promotes the production of ROS, possibly due to DNA damage response ${ }^{68,623,624}$. Consistently, we also observed an increase of ROS upon oxaliplatin treatment. Further analysis revealed that oxaliplatin-induced TXNIP levels were reduced when administrating NAC (a ROS inhibitor). Collectively, these observations suggested that ROS generation contributes to the increased TXNIP expression.

Next, we explored the possible mechanisms of TXNIP induction by chemotherapy agents. Among all the transcriptional factors that have been reported to modulate TXNIP expression, MondoA is the most studied one and has been shown to be involved in ROS-mediated TXNIP regulation ${ }^{114}$. It is reported that ROS interferes with the formation of MondoA-Mlx complexes and the subsequent transcription of TXNIP expression ${ }^{114}$. In addition, from RNA-seq analysis, we identified that both TXNIP and ARRDC4 were upregulated with oxaliplatin treatment. Both these genes have MondoA binding domains in their promoters and are the most highly MondoA-dependent genes ${ }^{458}$, suggesting that MondoA is required for induced TXNIP following oxaliplatin treatment. This hypothesis was verified by MondoA knocking-out models. Loss of MondoA blunted oxaliplatin-induced TXNIP expression. Further, ChIP-qPCR analysis confirmed the enriched MondoA on the promoter of TXNIP gene after oxaliplatin treatment. Importantly, the addition of NAC reversed this phenotype, demonstrating the key role of MondoA activation in ROS-mediated TXNIP upregulation (Figure 3-14C).

To be noted, our finding is opposite to previous studies. ROS was shown to promote the binding between MondoA and mTOR, thus inhibiting the interaction between MondoA and Mlx and the expression of TXNIP ${ }^{109,114}$. However, in our study, we found that oxidative stress (ROS generation) promotes TXNIP expression by facilitating the enrichment of MondoA on the promoter of TXNIP.

We then aimed to explore the function of TXNIP in oxaliplatin-treatment setting. Metabolic remodelling is one of the cancer hallmarks, with contributing to tumour initiation and progression, immune suppression and drug resistance ${ }^{625}$. MondoA is a glucose sensor and mediates glucose-induced transcriptional regulation ${ }^{458,626}$. The activation of MondoA/TXNIP signalling has been shown to reduce glycolysis ${ }^{113}$. Thus, we wondered whether TXNIP affected cellular glycolysis in our model. However, the results showed that TXNIP upregulation upon oxaliplatin treatment showed no impact on the regulation of glycolysis, even though oxaliplatin itself could decrease glycolysis in our system. Tumour cells are sensitive to oxidative stress ${ }^{419}$. ROS generation was shown to mediate oxaliplatin-induced cytotoxicity (Figure 4-4A-B). However, this process was, yet, in a TXNIP-independent manner. Intriguingly, we observed that ROS generation was involved in oxaliplatin-induced cytotoxicity, yet, in a TXNIPindependent manner. Collectively, these data suggested that showed no contribution to metabolic remodelling and drug cytotoxicity.

Further analysis on TCGA dataset indicated that there is a relationship between TXNIP and immune activation. Cytokines are important in immune regulation, stimulating immune effector cells and enhancing cell recognition ${ }^{627}$. As TXNIP is a cytoplasmic protein, we speculated that cytokines may mediate TXNIP-induced immune activation in our system. Thus, we performed mass spectrometric and proteomic array analyses and revealed that GDF15, a family member of TGF- β, was a downstream target of

TXNIP. ROS/MondoA/TXNIP/GDF15 axis was further confirmed by using genetic modification models (CRISPR-KO and CRISPR-activation).

Next, we aimed to understand the role of GDF15 in oxaliplatin-mediated immune regulation. To date, the mechanisms of GDF15-mediating anti-inflammatory effects are not fully understood. GDF15 has been shown to promote 'M2' macrophage differentiation, inhibit NK cell function and dendritic cell maturation ${ }^{280,361}$. Moreover, GDF15 was observed to induce and maintain Tregs ${ }^{294}$. However, as discussed, recombinant tools have previously been shown to be contaminated with TGF- $\beta 1$, raising concerns within the scientific community ${ }^{291,566}$. TGF- $\beta 1$ is a potent pleotropic cytokine which can also promote M2 macrophage differentiation, inhibit NK activation and DC maturation and induce Tregs. In this study, to avoid this issue, we prioritised the use of endogenously-overexpressing cell systems and knockouts for our immunological assays, before using commercially available recombinant proteins as additional controls.

Monocytes and macrophages are known to be key in establishing and maintaining the TME is many tumour types, including CRC^{628}. We therefore wished to explore whether GDF15 was able to modulate viability, differentiation, phenotype and function of monocytes and macrophages. However, the results showed no significant changes in these experiments (Figure 5-2, 5-3). When assessing the impact of the supernatant from 'GDF15 educated' macrophages on PBMC proliferation, we observed significant changes in the number of cells as compared to the controls ('GDF15 enriched' supernatant from our cell line models). With T cells being inhibited and the report of Tregs being induced by CD48-GDF15 ligation in the literature, we observed evidence of these functions in our systems, and furthermore we were able to block the functional impact of GDF15 using an antibody to CD48.

To support the idea that GDF15 may drive Treg induction, we assessed for correlations between relevant immunological transcripts and GDF15 in the TCGA COAD dataset. Here we observed that NCAM1 was the most negatively correlated transcript, but the most positively correlated transcript when assessed against GDF15 and TXNIP expression, respectively. Given the importance of the CD48-CD244 axis (cis or trans) in NK cell biology, we assessed the impact of GDF15 on the function of this axis. Using a recombinant protein plate-based system, NK stimulation assay and targeting assay, we showed that GDF15 can inhibit CD48-CD244 axis, resulting in defective NK cell degranulation.

These data have shown that GDF15 can inhibit multiple arms of the immune system, through Treg induction and NK dysregulation, by binding to CD48. Although we were unable to demonstrate the direct impact of GDF15 on the CD48-CD244 axis in T cells in our systems (data not shown), we believe this is still a possibility, however our current data suggests that CD4 and CD8 T cells are primarily inhibited indirectly by GDF15-induced Tregs. Data from colorectal cancer patient tissues suggest that the GDF15 (high) samples are associated with an increase in Treg infiltration making GDF15 a potential immunomodulatory target. Oxaliplatin-induced immune recruitment in the TME has been proved to improve anti-tumour efficacy and patient prognosis ${ }^{609,629}$. Therefore, the understanding of the role of GDF15-mediating oxaliplatin-induced immune modulation facilitates the development of anti-cancer treatment.

The high mortality of CRC is associated with chemoresistance and subsequent treatment failure ${ }^{630}$. The molecular mechanisms of platinum-based chemotherapy resistance include molecules determining cellular influx/ efflux of drugs, DNA repair machinery and cell death-related genes ${ }^{631}$. Solute carrier superfamily of membrane
transporters, Copper transporters and ATP-binding cassette (ABC) transporters mediate the absorption and/or excretion of drugs in the intestine, the accumulation of drugs in cancer cells and the pumping-out of drugs, respectively. DNA repair pathways, such as the mismatch repair, nucleotide excision repair (NER) and base excision repair (BER) systems, help to remove corrupt DNA bases and repair DNA breaks, affecting drug efficacy. Moreover, the alterations in regulating cell death signalling enhance the capacity of cancer cells to survive and proliferate, including apoptosis, necrosis, autophagy and senescence ${ }^{631}$. Importantly, recent studies have also identified the important role of tumour microenvironment in establishment of oxaliplatin-resistant phenotypes ${ }^{632,633}$. However, the understanding of TME in drug resistance is still elusive. In this study, we analysed resistant cell models and public datasets, and observed high GDF15 was associated with poor drug responses (Figure 5-9C, Figure 5-10D-E), suggesting that GDF15 could be a predictive biomarker of drug sensitivity.

When assessing for evidence of TXNIP/GDF15 pathway, and its impact in patient datasets, we were confounded by the lack of matched pre- and post-treatment resources, however there is evidence to support the impact of both the post-chemotherapeutic change (TXNIP ${ }^{\text {low }}$ GDF15 $5^{\text {high }}$ to TXNIP ${ }^{\text {high }} \mathrm{GDF} 15^{\text {low }}$) and the lack of change on outcome. Firstly, TXNIP is a known tumour suppressive gene and is downregulated in cancerous epithelial cells whilst GDF15 is increased in cancerous epithelial cells, with greater increases in metastatic disease leading to the development of targeting drugs ${ }^{562}$. Second, high expression of TXNIP is associated with positive prognosis with the inverse being true for GDF15. Third, a GDF15 high phenotype is associated with resistance to chemotherapy. Fourthly, the unchanged expression of TXNIP and GDF15 upon oxaliplatin treatment seen in cell lines derived from secondary sites and resistant models suggests that advanced and refractory disease cannot benefit from drug
treatment due to the lack of the activation of TXNIP/GDF15 expression post-treatment. Fifthly, PDTOs showed variability in oxaliplatin-induced gene expression changes. However, those with advanced disease showed minor change in the expression of TXNIP and GDF15 upon treatment, suggesting there may be a subgroup of patients who display an intrinsic lack of responsiveness to drug. This last point raises the possibility of using organoids as a stratification tool for the use of anti-GDF15 therapeutics in early disease. By assessing an organoid's TXNIP/GDF15 ratio pre and post treatment, we may be able to administer the appropriate medication to modulate the TME in an informed and patient-specific manner.

6.2 Future direction

6.2.1 Establishing CRISPR-KO clones by other guide RNAs

In this study, we just used one guide RNA to build knock-out cell models for TXNIPKO/ GDF15-KO/ MondoA-KO models (see 'CRISPR-CAS9 genome engineering' in method section). However, this process may raise the concern of off-target effects. To reduce this concern, we plan to establish other knock-out cell models by using different guide RNAs to repeat the performed functional assays in the future work.

In addition, in our study, we used SMARTpools to overexpress target genes (see ‘Generation of CRISPRa Constructs’ in method section). Multiple CRISPRa guide RNA designs are pooled together in SMARTpools to increase CRIPSRa efficiency. However, the limitations include that we have no idea which design is the successful one. Thus, in the future, every single gRNA design should be tested to understand the successful one.

6.2.2 Clinical validation in large cohorts

In this study, clinical patient samples were used to validate our findings. Patient data (for IHC staining) included 32 patient samples from our own cohort and 96 patient sample from tumour microarray. However, the sample sizes of these cohorts were relatively small, and this could be a possible reason that neither TXNIP or GDF15 was shown to be an independent prognostic factor. Thus, a larger patient cohort could be used in the future to for better validation.

6.2.3 Expanding patients-derived organoids (PDTOs) for validation

In our study, we established PDTOs and performed in-vitro experiments (westernblotting and qPCR) to link the altered expression of TXNIP/GDF15 after chemotherapy with clinical outcome. However, there is a limit regarding the number of organoids as we had only 9 PDTOs available during the study. More organoid lines with clinical information could be established to verify our hypothesis.

6.2.4 Exploring whether oxaliplatin promotes the formation of MondoA-MIx complexes

In our study, we identified that oxaliplatin-induced ROS production drives TXNIP expression by enriching MondoA on the TXNIP promoter. The expression of TXNIP is mainly dependent on MondoA-Mlx complexes and this complex was reported to be negatively regulated by ROS^{114}. Further analysis (Co-IP experiment) could be done regarding whether ROS promotes the formation of MondoA-Mlx complexes.

6.2.5 Exploring whether c-Myc mediated oxaliplatin-induced decreased

 glycolysisOur result demonstrated that oxaliplatin decreased the expression of c-Myc and cellular glycolysis (Figure 3-14A, Figure 4-1A and Figure 4-3A-B). Whether c-Myc mediated
oxaliplatin-induced decreased glycolysis needs to be further studied (using c-Myc KO cell models).
6.2.6 Further molecular investigation in the molecular mechanism of GDF15induced Tregs

In chapter V, consistent with previous study, we observed GDF15 was able to induce Tregs. Previous study reported GDF15-CD48 binding downregulated the expression of STUB1, an E3 ligase mediating the degradation of FOXP3. Consequently, GDF15 increased FOXP3 expression ${ }^{294}$. However, in our study, the underlying mechanism of GDF15-induced FOXP3 ${ }^{+}$Tregs is still unknown. More assays (such as Co-IP, qPCR and western-blot experiments) need to be performed to study whether STUB1 is involved in our work.

6.2.7 Exploring the role of the TXNIP-Trx system in the regulation of GDF15 expression

In our study, we found out that TXNIP was a regulator of GDF15 expression and secretion. The observation the combined treatment with NAC abolished the decreased GDF15 induced by oxaliplatin suggested the important role of ROS in the regulation of GDF15 (Figure 4-13B). However, overexpression of TXNIP didn't completely reverse the effect of NAC, yet partially, indicating other factors, especially in TXNIP-Trx system, may also contribute to ROS-mediated GDF15 alteration. Therefore, TXNIPTrx system components need to be tested as well for future work.

6.2.8 Improving the cell model for MondoA/PERK experiment

In Figure 3-17H, we tried to identify the essential role of MondoA in regulating TXNIP expression compared to PERK/ATF4 signalling. In this assay, we knocked down PERK expression in Mondo-KO cells, and tested TXNIP expression after oxaliplatin treatment.

However, even though the efficiency of knockdown was acceptable, this assay can still be improved by building double Mondo $\mathrm{A}^{-/} / \mathrm{PERK}^{-/-}$cell model for further verification.

6.2.9 Verifying other interesting targets from proteomic assays

In the proteomic assays, there are still other interesting factors, in addition to GDF15, differentially expressed between control cells and TXNIP-KO cells. It is worthy to mention that most of them are associated with wound-healing signature. Whether these factors are actually regulated by TXNIP and involved in TXNIP-mediated functions is still unknown. Therefore, more genetically-manipulated cell models could be established for further analysis.

6.2.10 Understanding the molecular mechanism of TXNIP regulating GDF15

A limitation of this study is that we did not elucidate how TXNIP regulates GDF15 expression. We speculate that this could be explained by several possible mechanisms, including: 1) TXNIP might interact with GDF15 and regulate its degradation based on the evidence that another arrestin protein (β-Arrestin1, ARRB1) was reported to directly interact with GDF15 ${ }^{634}$ (possible assays include ubiquitylation assay, half-time measurement and protein stabilisation assay); 2) TXNIP is a transcriptional repressor, which interacts with other corepressors to form a complex and in turn to supress the expression of GDF15 ${ }^{163}$ (Co-IP and ChIP assays could be performed).

6.2.11 Exploring the possible alternative regulator for GDF15

Given that organoids showed heterogeneous responses upon oxaliplatin treatment regarding TXNIP/ GDF15 regulatory axis, it is reasonable to hypothesise that there are other upstream regulators for GDF15 expression. It has been reported that oncogenes and tumour suppressors, ATF4-CHOP and transcriptional factors like PPAR γ can modulate GDF15 expression in certain conditions. Therefore, one of future directions is the exploration of other regulators for GDF15 under oxaliplatin treatment.

6.2.12 Exploring the direct impact of GDF15 on cytotoxic T cells via CD48-CD244 blockade

The observation that the downregulation of GDF15 leads to increased infiltration of T cells indicates the negative impacts of GDF15 on T cells ${ }^{362}$. Given signals secreted by innate immune cells can modulate the functions and differentiation of adaptive immune cells ${ }^{635}$, a potential explanation is due to the indirect effects of myeloid cells driven by GDF15 ${ }^{279,319}$. However, whether GDF15 could have direct impact on cytotoxic T cells, especially via CD48-CD244 blockade ${ }^{556}$, is still elusive and needs to be explored further. To answer this question, adoptive syngeneic GDF15-KO MC38 mouse model can be used and immune cells (T cells, NK cells and Tregs) can be measured.
6.2.13 Exploring the feasibility of circulating GDF15 concentration as a biomarker for predicting treatment response

GDF15 is a secreted protein and can be evaluated in the circulation ${ }^{362}$. Our results demonstrate that high GDF15 expression is positively associated with poor chemotherapy responses and clinical outcomes, indicating GDF15 is a potential biomarker for clinical application. Thus, patient liquid samples (such as serum or plasma) could be collected for analysis regarding drug responses in the future.

6.3 Key Findings: A Summary

1. The induction of the tumour suppressive protein TXNIP is induced after chemotherapy treatment in colorectal cancer cell lines. This response showed heterogeneity across different colorectal cancer cell lines.
2. The upregulation of TXNIP is mainly due to the enrichment of MondoA on the promoter of TXNIP gene sequence. ER stress (especially PERK-eIF2a pathway) could partially contribute to the alteration of TXNIP expression post chemotherapy, but its underlying mechanism is still unclear.
3. The important role of ROS for TXNIP upregulation is verified. Specifically, the generation of ROS is responsible for both MondoA nuclear translocation and decreased UPR.
4. GDF15 has been shown to inhibit multiple arms of the immune system, through Treg induction and NK dysregulation, by binding to CD48 (using CRISPR-knockout and CRIPSR-overexpressing cell models).
5. Patient-derived organoids have been demonstrated to be useful tools to guide the clinical application of the appropriate medication.

6.4 Conclusion

In this study, we demonstrated that oxaliplatin-induced ROS can modulate the TXNIP/GDF15 axis via activation of MondoA. High GDF15 expression (Low TXNIP expression) was associated with poor prognosis. Mechanistically, GDF15 led to Treg induction and defective NK functions by binding to CD48. Finally, PDTOs with advanced disease were less responsive to oxaliplatin regarding TXNIP/GDF15 axis, indicating its potential to predict the clinical prognosis.

Chapter VII. References

1. Siegel, Rebecca L., Kimberly D. Miller, Hannah E. Fuchs, and Ahmedin Jemal. 2022. "Cancer statistics, 2022". CA: A Cancer Journal for Clinicians 72(1):733.
2. Lao, Victoria Valinluck, and William M. Grady. 2011. "Epigenetics and colorectal cancer". Nature Reviews. Gastroenterology \& Hepatology 8(12):686.
3. Kuipers, Ernst J., William M. Grady, David Lieberman, Thomas Seufferlein, et al. 2015. "Colorectal cancer". Nature Reviews Disease Primers 2015 1:1 1(1):1-25.
4. Hurwitz, Herbert, Louis Fehrenbacher, William Novotny, Thomas Cartwright, et al. 2004. "Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer". The New England Journal of Medicine 350(23):2335-42.
5. Papamichael, Demetris, R. A. Audisio, B. Glimelius, A. de Gramont, et al. 2015. "Treatment of colorectal cancer in older patients: international society of geriatric oncology (SIOG) consensus recommendations 2013". Annals of Oncology: Official Journal of the European Society for Medical Oncology 26(3):463-76.
6. Koncina, Eric, Serge Haan, Stefan Rauh, and Elisabeth Letellier. 2020. "Prognostic and predictive molecular biomarkers for colorectal cancer: updates and challenges". Cancers 2020, Vol. 12, Page 319 12(2):319.
7. Punt, Cornelis J. A., Miriam Koopman, and Louis Vermeulen. 2016. "From tumour heterogeneity to advances in precision treatment of colorectal cancer". Nature Reviews Clinical Oncology 2016 14:4 14(4):235-46.
8. Auclin, E., A. Zaanan, D. Vernerey, R. Douard, C. Gallois, P. Laurent-Puig, et al. 2017. "Subgroups and prognostication in stage iii colon cancer: future perspectives for adjuvant therapy". Annals of Oncology 28(5):958-68.
9. Rooney, Michael S., Sachet A. Shukla, Catherine J. Wu, Gad Getz, et al. 2015. "Molecular and genetic properties of tumors associated with local immune cytolytic activity". Cell 160(1-2):48-61.
10. Mellman, Ira, George Coukos, and Glenn Dranoff. 2011. "Cancer immunotherapy comes of age". Nature 480(7378):480-89.
11. Galluzzi, Lorenzo, Aitziber Buqué, Oliver Kepp, Laurence Zitvogel, et al. 2016. "Immunogenic cell death in cancer and infectious disease" doi: 10.1038/nri.2016.107. Nature Reviews Immunology 2016 17:2 17(2):97-111.
12. Dekker, Evelien, Pieter J. Tanis, Jasper L. A. Vleugels, Pashtoon M. Kasi, et al. 2019. "Colorectal cancer". The Lancet 394(10207):1467-80.
13. Cunningham, David, Yves Humblet, Salvatore Siena, David Khayat, et al. 2009. "Cetuximab monotherapy and cetuximab plus irinotecan in irinotecanrefractory metastatic colorectal cancer". The New England Journal of Medicine 2009 351(4):337-45.
14. Guinney, Justin, Rodrigo Dienstmann, Xin Wang, Aurélien De Reyniès, et al. 2015. "The consensus molecular subtypes of colorectal cancer". Nature Medicine 21(11):1350-56.
15. Shao, Yanfei, Hongtao Jia, Ling Huang, Shuchun Li, Chenxing Wang, et al. 2021. "An original ferroptosis-related gene signature effectively predicts the prognosis and clinical status for colorectal cancer patients". Frontiers in Oncology 11:2430.
16. Hoadley, Katherine A., Christina Yau, Denise M. Wolf, Andrew D. Cherniack, et al. 2014. "Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin". Cell 158(4):929-44.
17. Isella, Claudio, Andrea Terrasi, Sara Erika Bellomo, Consalvo Petti, et al. 2015. "Stromal contribution to the colorectal cancer transcriptome". Nature Genetics 2015 47:4 47(4):312-19.
18. Calon, Alexandre, Enza Lonardo, Antonio Berenguer-Llergo, Elisa Espinet, et al. 2015. "Stromal gene expression defines poor-prognosis subtypes in colorectal cancer". Nature Genetics 2015 47:4 47(4):320-29.
19. Joanito, Ignasius, Pratyaksha Wirapati, Nancy Zhao, Zahid Nawaz, Grace Yeo, et al. 2022. "Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer". Nature Genetics 2022 18:1-13.
20. Nicolas, Adele M., Marina Pesic, Esther Engel, Paul K. Ziegler, et al. 2022. "Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer". Cancer Cell 40(2):168-184.e13.
21. Kapałczyńska, Marta, Tomasz Kolenda, Weronika Przybyła, Maria Zajączkowska, et al. 2018. "2D and 3d cell cultures - a comparison of different types of cancer cell cultures". Archives of Medical Science : AMS 14(4):910.
22. Pampaloni, Francesco, Emmanuel G. Reynaud, and Ernst H. K. Stelzer. 2007. "The third dimension bridges the gap between cell culture and live tissue". Nature Reviews Molecular Cell Biology 2007 8:10 8(10):839-45.
23. Debnath, Jayanta, and Joan S. Brugge. 2005. "Modelling glandular epithelial cancers in three-dimensional cultures". Nature Reviews Cancer 2005 5:9 5(9):675-88.
24. Von Der Mark, Klaus, Verena Gauss, Helga Von Der Mark, and Peter Müller. 1977. "Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture". Nature 1977 267:5611 267(5611):531-32.
25. Weeber, Fleur, Marc Van De Wetering, Marlous Hoogstraat, Krijn K. Dijkstra, et al. 2015. "Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases". Proceedings of the National Academy of Sciences of the United States of America 112(43):13308-11.
26. McGranahan, Nicholas, and Charles Swanton. 2017. "Clonal heterogeneity and tumor evolution: past, present, and the future". Cell 168(4):613-28.
27. Ma, Ruichen, Jonathan Mandell, Feiqi Lu, Tanya Heim, Karen Schoedel, et al. 2021. "Do patient-derived spheroid culture models have relevance in chondrosarcoma research?". Clinical Orthopaedics and Related Research 479(3):477-90.
28. Sutherland, Robert M., John A. McCredie, and W. Rodger Inch. 1971. "Growth of multicell spheroids in tissue culture as a model of nodular carcinomas". JNCI: Journal of the National Cancer Institute 46(1):113-20.
29. Ware, Matthew J., Kevin Colbert, Vazrik Keshishian, Jason Ho, et al. 2016. "Generation of homogenous three-dimensional pancreatic cancer cell spheroids using an improved hanging drop technique". Tissue Engineering - Part C: Methods 22(4):312-21.
30. Han, Kyuho, Sarah E. Pierce, Amy Li, Kaitlyn Spees, Grace R. Anderson, et al. 2020. "CRISPR screens in cancer spheroids identify 3d growth-specific vulnerabilities". Nature 2020 580:7801 580(7801):136-41.
31. Lee, Jungwoo, Meghan J. Cuddihy, and Nicholas A. Kotov. 2008. "Threedimensional cell culture matrices: state of the art". Tissue Engineering Part B Reviews 14(1):61-86
32. de Souza, N. Organoid culture handbook. amsbio14, 35-35 (2016).
33. Sato, Toshiro, Daniel E. Stange, Marc Ferrante, Robert G. J. Vries, et al. 2011. "Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett's epithelium". Gastroenterology 141(5):1762-72.
34. Driehuis, Else, Arne Van Hoeck, Kat Moore, Sigrid Kolders, Hayley E. Francies, et al. 2019. "Pancreatic cancer organoids recapitulate disease and allow personalized drug screening". Proceedings of the National Academy of Sciences of the United States of America 116(52):26580-90.
35. Crystal, Adam S., Alice T. Shaw, Lecia V. Sequist, Luc Friboulet, et al. 2014. "Patient-derived models of acquired resistance can identify effective drug combinations for cancer". Science 346(6216):1480-86.
36. Van De Wetering, Marc, Hayley E. Francies, Joshua M. Francis, et al. 2015. "Prospective derivation of a living organoid biobank of colorectal cancer patients". Cell 161(4):933-45.
37. Bleijs, Margit, Marc van de Wetering, Hans Clevers, and Jarno Drost. 2019. "Xenograft and organoid model systems in cancer research". The EMBO Journal 38(15): 101654.
38. Sato, Toshiro, Robert G. Vries, Hugo J. Snippert, Marc Van De Wetering, et al. 2009. "Single lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche". Nature 2009 459:7244 459(7244):262-65.
39. Gao, Dong, Ian Vela, Andrea Sboner, Phillip J. Iaquinta, Wouter R. Karthaus, et al. 2014. "Organoid cultures derived from patients with advanced prostate cancer". Cell 159(1):176-87.
40. Boj, Sylvia F., Chang Il Hwang, Lindsey A. Baker, Iok In Christine Chio, et al. 2015. "Organoid models of human and mouse ductal pancreatic cancer". Cell 160(1-2):324-38.
41. Li, Ling, Hildur Knutsdottir, Ken Hui, Matthew J. Weiss, et al. 2019. "Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity".121490. JCI Insight 4(2).
42. Sachs, Norman, Joep de Ligt, Oded Kopper, Ewa Gogola, Gergana Bounova, et al. 2018. "A living biobank of breast cancer organoids captures disease heterogeneity". Cell 172(1-2):373-386.e10.
43. Yan, Helen H. N., Hoi Cheong Siu, Simon Law, Siu Lun Ho, et al. 2018. "A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening". Cell Stem Cell 23(6):882897.e11.
44. Lee, Suk Hyung, Wenhuo Hu, Justin T. Matulay, Mark V. Silva, et al. 2018. "Tumor evolution and drug response in patient-derived organoid models of bladder cancer". Cell 173(2):515-528.e17.
45. Li, Xiaodun, Hayley E. Francies, Maria Secrier, Juliane Perner, et al. 2018. "Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics". Nature Communications 2018 9:1 9(1):1-13.
46. Kopper, Oded, Chris J. de Witte, Kadi Lõhmussaar, Jose Espejo Valle-Inclan, et al. 2019. "An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity". Nature Medicine 2019 25:5 25(5):838-49.
47. Schutgens, Frans, Maarten B. Rookmaaker, Thanasis Margaritis, Anne Rios, et al. 2019. "Tubuloids derived from human adult kidney and urine for personalized disease modeling". Nature Biotechnology 2019 37:3 37(3):30313.
48. Bar-Ephraim, Yotam E., Kai Kretzschmar, and Hans Clevers. 2019. "Organoids in immunological research". Nature Reviews Immunology 2019 20:5 20(5):27993.
49. Dijkstra, Krijn K., Chiara M. Cattaneo, Fleur Weeber, Myriam Chalabi, et al. 2018. "Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids". Cell 174(6):1586-1598.e12.
50. Kim, Jihoon, Bon Kyoung Koo, and Juergen A. Knoblich. 2020. "Human organoids: model systems for human biology and medicine". Nature Reviews Molecular Cell Biology 2020 21:10 21(10):571-84.
51. Miller, Kimberly D., Rebecca L. Siegel, Chun Chieh Lin, Angela B. Mariotto, et al. 2016. "Cancer treatment and survivorship statistics, 2016". CA: A Cancer Journal for Clinicians 66(4):271-89.
52. Galluzzi, Lorenzo, Aitziber Buqué, Oliver Kepp, Laurence Zitvogel, and Guido Kroemer. 2015. "Immunological effects of conventional chemotherapy and targeted anticancer agents". Cancer Cell 28(6):690-714.
53. Hess, Gregory P., Peter Feng Wang, David Quach, Beth Barber, and Zhongyun Zhao. 2010. "Systemic therapy for metastatic colorectal cancer: patterns of chemotherapy and biologic therapy use in us medical oncology practice". Journal of Oncology Practice 6(6):301-7.
54. Graham, Joanne, Mohamed Muhsin, Peter Kirkpatrick, and A. N. A. Ly. 2004. "Oxaliplatin". Nature Reviews Drug Discovery 2004 3:1 3(1):11-12.
55. Di Francesco, A. M., A. Ruggiero, and R. Riccardi. 2002. "Cellular and molecular aspects of drugs of the future: oxaliplatin". Cellular and Molecular Life Sciences CMLS 2002 59:11 59(11):1914-27.
56. Tesniere, A., F. Schlemmer, V. Boige, O. Kepp, I. Martins, F. Ghiringhelli, L. Aymeric, et al. 2009. "Immunogenic death of colon cancer cells treated with oxaliplatin". Oncogene 2010 29:4 29(4):482-91.
57. Apetoh, Lionel, François Ghiringhelli, Antoine Tesniere, Michel Obeid, et al. 2007. "Toll-like receptor 4 -dependent contribution of the immune system to anticancer chemotherapy and radiotherapy". Nature Medicine 2007 13:9 13(9):1050-59.
58. Kaczmarek, Agnieszka, Peter Vandenabeele, and Dmitri V. Krysko. 2013. "Necroptosis: the release of damage-associated molecular patterns and its physiological relevance". Immunity 38(2):209-23.
59. Panaretakis, Theocharis, Oliver Kepp, Ulf Brockmeier, Antoine Tesniere, et al. 2009. "Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death". The EMBO Journal 28(5):578-90.
60. Pullarkat, S. T., and H. J. Lenz. 2001. "Thymidylate synthase gene polymorphism determines response and toxicity of 5 -fu chemotherapy". Pharmacogenomics Journal 1(1).
61. Cho, Yong Hee, Eun Ji Ro, Jeong Su Yoon, Tomohiro Mizutani, et al. 2020. " 5 -fu promotes stemness of colorectal cancer via p53-mediated wnt/ β-catenin pathway activation". Nature Communications 2020 11:1 11(1):1-13.
62. Longley, Daniel B., D. Paul Harkin, and Patrick G. Johnston. 2003. "5fluorouracil: mechanisms of action and clinical strategies.". Nature Reviews. Cancer 3(5):330-38.
63. Gmeiner, William H. 2020. "Fluoropyrimidine modulation of the anti-tumor immune response-prospects for improved colorectal cancer treatment". Cancers 12(6).
64. Vincent, Julie, Grégoire Mignot, Fanny Chalmin, Sylvain Ladoire, et al. 2010. " 5 -fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced t cell-dependent antitumor immunity". Cancer Research 70(8).
65. Tian, Jingru, Dingyao Zhang, Vadim Kurbatov, Qinrong Wang, Yadong Wang, et al. 2021. "5-Fluorouracil efficacy requires anti-tumor immunity triggered by cancer-cell-intrinsic sting". The EMBO Journal 40(7).
66. Fang, Hongliang, Bing Ang, Xinyun Xu, Xiaohui Huang, Yanfeng Wu, et al. 2014. "TLR4 is essential for dendritic cell activation and anti-tumor t-cell response enhancement by damps released from chemically stressed cancer cells". Cellular and Molecular Immunology 11(2).
67. Apetoh, Lionel, François Ghiringhelli, Antoine Tesniere, Alfredo Criollo, et al. 2007. "The interaction between hmgb1 and tlr4 dictates the outcome of anticancer chemotherapy and radiotherapy". Immunological Reviews 220(1):47-59.
68. Chen, Weiqian, Wei Shuailian, Yi Fengyuan, and Mao Quanli. 2019. "The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress". Cell Death and Disease 10(8):1-12.
69. Focaccetti, Chiara, Antonino Bruno, Elena Magnani, Desirée Bartolini, Elisa Principi, et al. 2015. "Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ros production in endothelial cells and cardiomyocytes". PLoS ONE 10(2).
70. Xu, Y., and M. A. Villalona-Calero. 2002. "Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity". Annals of Oncology 13(12).
71. Wang, James C. 2002. "Cellular roles of dna topoisomerases: a molecular perspective". Nature Reviews Molecular Cell Biology 3(6).
72. Champoux, J. J. 2001. "DNA topoisomerases: structure, function, and mechanism". Annual Review of Biochemistry 70.
73. Gilbert, D. C., A. J. Chalmers, and S. F. El-Khamisy. 2012. "Topoisomerase i inhibition in colorectal cancer: biomarkers and therapeutic targets". British Journal of Cancer 106(1):18-24.
74. Koyama, Shohei, Izumi Nagatomo, Takashi Kijima, and Atsushi Kumanogoh. 2018. "Selecting suitable chemotherapies for $\mathrm{pd}-1 / \mathrm{pd}-11$ blockade to optimize the tumour immune microenvironment". Oncotarget 9(66).
75. Liu, Zaoqu, Long Liu, Siyuan Weng, Chunguang Guo, Qin Dang, et al. 2022. "Machine learning-based integration develops an immune-derived lncrna signature for improving outcomes in colorectal cancer". Nature Communications 2022 13:1 13(1):1-14.
76. Holohan, Caitriona, Sandra Van Schaeybroeck, Daniel B. Longley, and Patrick G. Johnston. 2013. "Cancer drug resistance: an evolving paradigm". Nature Reviews Cancer 2013 13:10 13(10):714-26.
77. G, Kroemer, Galluzzi L, Kepp O, and Zitvogel L. 2013. "Immunogenic cell death in cancer therapy". Annual Review of Immunology 31:51-72.
78. Krysko, Dmitri V., Abhishek D. Garg, Agnieszka Kaczmarek, et al. 2012. "Immunogenic cell death and damps in cancer therapy". Nature Reviews Cancer 2012 12:12 12(12):860-75.
79. Štros, Michal. 2010. "HMGB proteins: interactions with dna and chromatin". Biochimica et Biophysica Acta 1799(1-2):101-13.
80. Chen, Daniel S., and Ira Mellman. 2013. "Oncology meets immunology: the cancer-immunity cycle". Immunity 39(1):1-10.
81. Blum, Janice S., Pamela A. Wearsch, and Peter Cresswell. 2013. "Pathways of antigen processing". Annual Review of Immunology 31:443.
82. Heath, William R., Gabrielle T. Belz, Georg M. N. Behrens, et al. 2004. "Crosspresentation, dendritic cell subsets, and the generation of immunity to cellular antigens". Immunological Reviews 199(1):9-26.
83. Fessenden, Tim B., Lauren E. Stopfer, Fiona Chatterjee, Julian Zulueta, et al. 2022. "Dendritic cell-mediated cross presentation of tumor-derived peptides is biased against plasma membrane proteins". Journal for ImmunoTherapy of Cancer 10(7): e 004159.
84. Huntington, Nicholas D., Joseph Cursons, and Jai Rautela. 2020. "The cancernatural killer cell immunity cycle". Nature Reviews Cancer 2020 20:8 20(8):437-54.
85. Cheng, Min, Yongyan Chen, Weihua Xiao, Rui Sun, and Zhigang Tian. 2013. "NK cell-based immunotherapy for malignant diseases". Cellular \& Molecular Immunology 2013 10:3 10(3):230-52.
86. Bruns, Heiko, Maike Büttner, Mario Fabri, Dimitrios Mougiakakos, et al. 2015. "Vitamin d-dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade b cell lymphoma". Science Translational Medicine 7(282).
87. Junn, Eunsung, Seung Hyun Han, Joo Young Im, Young Yang, Eun Wie Cho, et al.. 2000. "Vitamin d3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function". Journal of Immunology (Baltimore, Md.: 1950) 164(12):6287-95.
88. Loh, Kim, Haiyang Deng, Atsushi Fukushima, Xiaochu Cai, et al. 2009. "Reactive oxygen species enhance insulin sensitivity". Cell Metabolism 10(4):260-72.
89. Tonks, Nicholas K. 2006. "Protein tyrosine phosphatases: from genes, to function, to disease". Nature Reviews Molecular Cell Biology 2006 7:11 7(11):833-46.
90. Rhee, Sue Goo. 2006. "H2O2, a necessary evil for cell signaling". Science 312(5782):1882-83.
91. Tönnies, Eric, and Eugenia Trushina. 2017. "Oxidative stress, synaptic dysfunction, and\ alzheimer's disease". Journal of Alzheimer's Disease 57(4):1105-21.
92. Forrester, Steven J., Daniel S. Kikuchi, Marina S. Hernandes, Qian Xu, and Kathy K. Griendling. 2018. "Reactive oxygen species in metabolic and inflammatory signaling". Circulation Research 122(6):877-902.
93. Prasad, Sahdeo, Subash C. Gupta, and Amit K. Tyagi. 2017. "Reactive oxygen species (ros) and cancer: role of antioxidative nutraceuticals". Cancer Letters 387:95-105.
94. Smallwood, Miranda J., Ahuva Nissim, Annie R. Knight, Matthew Whiteman, et al. 2018. "Oxidative stress in autoimmune rheumatic diseases". Free Radical Biology \& Medicine 125:3-14.
95. Barrera, María José, Sergio Aguilera, Isabel Castro, Patricia Carvajal, et al. 2021. "Dysfunctional mitochondria as critical players in the inflammation of
autoimmune diseases: potential role in sjögren's syndrome". Autoimmunity Reviews 20(8):102867.
96. Ren, Xiaoyuan, Lili Zou, Xu Zhang, Vasco Branco, Jun Wang, et al. 2017. "Redox signaling mediated by thioredoxin and glutathione systems in the central nervous system". Antioxidants and Redox Signaling 27(13).
97. Lu, Jun, and Arne Holmgren. 2014. "The thioredoxin antioxidant system". Free Radical Biology and Medicine 66:75-87.
98. Lee, Samuel, Soo Min Kim, and Richard T. Lee. 2013. "Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance". Antioxidants and Redox Signaling 18(10).
99. Yoshihara, Eiji, So Masaki, Yoshiyuki Matsuo, Zhe Chen, Hai Tian, et al. 2013. "Thioredoxin/txnip: redoxisome, as a redox switch for the pathogenesis of diseases". Frontiers in Immunology 4(DEC):514.
100.Schulze, P. Christian, Jun Yoshioka, Tomosaburo Takahashi, Zhiheng He, et al. 2004. "Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein". Journal of Biological Chemistry 279(29):30369-74.
101.Alhawiti, Naif Mohammad, Saeed Al Mahri, Mohammad Azhar Aziz, Shuja Shafi Malik, et al. 2017. "TXNIP in metabolic regulation: physiological role and therapeutic outlook". Current Drug Targets 18(9).
102.Nishizawa, Koji, Hiroyuki Nishiyama, Yoshiyuki Matsui, Takashi Kobayashi, Ryoichi Saito, et al. 2011. "Thioredoxin-interacting protein suppresses bladder carcinogenesis". Carcinogenesis 32(10):1459-66.
103.Sheth, S. S., J. S. Bodnar, A. Ghazalpour, C. K. Thipphavong, et al. 2006. "Hepatocellular carcinoma in txnip-deficient mice". Oncogene 2006 25:25 25(25):3528-36.
104.Rindler, Katharina, Constanze Jonak, Natalia Alkon, Felix M. Thaler, et al. 2021. "Single-cell rna sequencing reveals markers of disease progression in primary cutaneous t-cell lymphoma". Molecular Cancer 2021 20:1 20(1):1-23.
105.Li, Yan, Li Yun Miao, Yong Long Xiao, Mei Huang, Min Yu, et al. 2015. "Hypoxia induced high expression of thioredoxin interacting protein (txnip) in non-small cell lung cancer and its prognostic effect". Asian Pacific Journal of Cancer Prevention 16(7):2953-58.
106.Gunes, Aysim, Ezgi Bagirsakci, Evin Iscan, Gulcin Cakan-Akdogan, et al. 2018. "Thioredoxin interacting protein promotes invasion in hepatocellular carcinoma". Oncotarget 9(96):36849.
107.Meszaros, Mate, Maria Yusenko, Lilla Domonkos, Lehel Peterfi, et al. 2021. "Expression of txnip is associated with angiogenesis and postoperative relapse of conventional renal cell carcinoma". Scientific Reports 2021 11:1 11(1):1-8.
108.Spaeth-Cook, Douglas, Mark Burch, Robin Belton, Bryce Demoret, et al. 2018. "Loss of txnip enhances peritoneal metastasis and can be abrogated by dual torc 1/2 inhibition". Oncotarget 9(86):35676-86.
109.Stoltzman, Carrie A., Christopher W. Peterson, Kevin T. Breen, Deborah M. Muoio, et al. 2008. "Glucose sensing by mondoa:mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression". Proceedings of the National Academy of Sciences 105(19):6912-17.
110.Ke, Huiyi, Yu Luan, Siming Wu, Yemin Zhu, and Xuemei Tong. 2021. "The role of mondo family transcription factors in nutrient-sensing and obesity". Frontiers in Endocrinology 12:315.
111.Shen, Liangliang, John M. O'Shea, Mohan R. Kaadige, Stéphanie Cunha, et al. 2015. "Metabolic reprogramming in triple-negative breast cancer through myc suppression of txnip". Proceedings of the National Academy of Sciences of the United States of America 112(17):5425-30.
112.Qu, Xuan, Jing Sun, Yami Zhang, Jun Li, Junbi Hu, et al. 2018. "C-myc-driven glycolysis via txnip suppression is dependent on glutaminase-mondoa axis in prostate cancer". Biochemical and Biophysical Research Communications 504(2):415-21.
113.Stoltzman, Carrie A., Mohan R. Kaadige, Christopher W. Peterson, and Donald E. Ayer. 2011. "MondoA senses non-glucose sugars: regulation of thioredoxininteracting protein (txnip) and the hexose transport curb". The Journal of Biological Chemistry 286(44):38027-34.
114.Kaadige, Mohan R., Jingye Yang, Blake R. Wilde, and Donald E. Ayer. 2015. "MondoA-mlx transcriptional activity is limited by mtor-mondoa interaction". Molecular and Cellular Biology 35(1):101-10.
115.Noblet, Benedicte, Fadila Benhamed, In Sug O-Sullivan, Wenwei Zhang, et al. 2021. "Dual regulation of txnip by chrebp and foxol in liver". IScience 24(3).
116.Tang, Jia-Yi, Dong-Yu Li, Ling He, Xue-Shan Qiu, En-Hua Wang, et al. 2020. "HPV 16 e6/e7 promote the glucose uptake of glutl in lung cancer through downregulation of txnip due to inhibition of pten phosphorylation". Frontiers in Oncology 0:2470.
117.Zhang, Jitai, Hui An, Kaidi Ni, Bin Chen, Hui Li, Yanqin Li, et al. 2019. "Glutathione prevents chronic oscillating glucose intake-induced β-cell dedifferentiation and failure". Cell Death \& Disease 2019 10:4 10(4):1-13.
100. Yu, Fa Xing, Tin Fan Chai, Hongpeng He, Thilo Hagen, and Yan Luo. 2010. "Thioredoxin-interacting protein (txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate". The Journal of Biological Chemistry 285(33):25822-30.
119.D, Ganguly, Sims M, Cai C, Fan M, and Pfeffer LM. 2018. "Chromatin remodeling factor brg1 regulates stemness and chemosensitivity of glioma initiating cells". Stem Cells (Dayton, Ohio) 36(12):1804-15.
120.Dai, Qingchun, Na Li, and Xiaohong Zhou. 2017. "Increased mir-21a provides metabolic advantages through suppression of fbp1 expression in non-small cell lung cancer cells." American Journal of Cancer Research 7(11):2121.
121.S, Okumura, Hirano Y, and Komatsu Y. 2021. "Stable duplex-linked antisense targeting mir-148a inhibits breast cancer cell proliferation". Scientific Reports 11(1).
101. Yin, Hua, Shanshan Yu, Yangyang Xie, Xiaoyu Dai, Mingjun Dong, et al. 2021. "Cancer-associated fibroblasts-derived exosomes upregulate microrna-135b-5p to promote colorectal cancer cell growth and angiogenesis by inhibiting thioredoxin-interacting protein". Cellular Signalling 84:110029.
123.Li, Kezhu, Mingrui Tang, Shuang Tong, Chenchao Wang, et al. 2020. "BRAFi induced demethylation of mir-152-5p regulates phenotype switching by targeting txnip in cutaneous melanoma". Apoptosis 2020 25:3 25(3):179-91.
124.Xu, Guanlan, Junqin Chen, Gu Jing, and Anath Shalev. 2013. "Thioredoxininteracting protein regulates insulin transcription through microrna-204". Nature Medicine 2013 19:9 19(9):1141-46.
125.G, Zhu, Zhou L, Liu H, Shan Y, and Zhang X. 2018. "MicroRNA-224 promotes pancreatic cancer cell proliferation and migration by targeting the txnip-
mediated hif1 α pathway". Cellular Physiology and Biochemistry 48(4):173546.
126.D, Chen, Dang BL, Huang JZ, Chen M, et al. 2015. "MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the mir-373-txniphif1 α-twist signaling axis in breast cancer". Oncotarget 6(32):32701-12.
127.Zhang, Caiyan, Huimin Wang, Xiaomin Liu, Yanping Hu, Lei Ding, et al. 2018. "Oncogenic microrna-411 promotes lung carcinogenesis by directly targeting suppressor genes spry4 and txnip". Oncogene 2018 38:11 38(11):1892-1904.
128.Lerner, Alana G., John Paul Upton, P. V. K. Praveen, Rajarshi Ghosh, Yoshimi Nakagawa, et al. 2012. "IRE1 α induces thioredoxin-interacting protein to activate the nlrp3 inflammasome and promote programmed cell death under irremediable er stress". Cell Metabolism 16(2):250-64.
129.Guo, Jianjin, Feng Xiao, Wei Ren, Yikun Zhu, Qiujing Du, et al. 2021. "Circular ribonucleic acid circfto promotes angiogenesis and impairs bloodretinal barrier via targeting the mir-128-3p/thioredoxin interacting protein axis in diabetic retinopathy". Frontiers in Molecular Biosciences 0:701.
130.Li, Wenxiao, Xiaowen Xin, Xiujun Li, Jianli Geng, and Yunfu Sun. 2021. "Exosomes secreted by m 2 macrophages promote cancer stemness of hepatocellular carcinoma via the mir-27a-3p/txnip pathways". International Immunopharmacology 101(Pt A).
131.HP, Fan, Zhu ZX, Xu JJ, Li YT, Guo CW, et al. 2021. "The lncrna casc9 alleviates lipopolysaccharide-induced acute kidney injury by regulating the mir-424-5p/txnip pathway". The Journal of International Medical Research 49(8).
132.Shen, Shuying, Teng Yao, Yining Xu, Deguang Zhang, Shunwu Fan, et al. 2020. "CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-myc". Molecular Cancer 2020 19:1 19(1):1-17.
133.Liang, Yingkuan, Hui Wang, Bing Chen, Qixing Mao, Wenjie Xia, et al. 2021. "CircDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing txnip expression". Molecular Therapy - Nucleic Acids 23:355-68.
134.Yi, Shengguo, Jingru Sun, Lei Qiu, Wenjing Fu, Anqi Wang, et al. 2018. "Dual role of ezh2 in cutaneous anaplastic large cell lymphoma: promoting tumor cell survival and regulating tumor microenvironment". Journal of Investigative Dermatology 138(5):1126-36.
135.Jiao, Dian, Yi Huan, Jia Zheng, Ming Wei, Guoxu Zheng, et al. 2019. "UHRF1 promotes renal cell carcinoma progression through epigenetic regulation of txnip". Oncogene 2019 38:28 38(28):5686-99.
136.Brocker, Chad N., Donghwan Kim, Tisha Melia, Kritika Karri, Thomas J. Velenosi, et al. 2020. "Long non-coding rna gm15441 attenuates hepatic inflammasome activation in response to ppara agonism and fasting". Nature Communications 2020 11:1 11(1):1-16.
137.Zhu, Qianqian, Mingchun Lai, Tianchi Chen, Yilang Xiang, and Hongkun Zhang. 2021. "LncRNA snhg 15 relieves hyperglycemia-induced endothelial dysfunction via increasing ubiquitination of thioredoxin-interacting protein". Life Sciences 119255.
138.Jing, Gu, Clara Westwell-Roper, Junqin Chen, Guanlan Xu, C. Bruce Verchere, and Anath Shalev. 2014. "Thioredoxin-interacting protein promotes islet amyloid polypeptide expression through mir-124a and foxa2". The Journal of Biological Chemistry 289(17):11807-15.
139.Parikh, Hemang, Emma Carlsson, William A. Chutkow, Lovisa E. Johansson, Heidi Storgaard, et al. et al. 2007. "TXNIP regulates peripheral glucose metabolism in humans". PLoS Medicine 4(5):0868-79.
140.Elgort, Marc G., John M. O’Shea, Yike Jiang, and Donald E. Ayer. 2010. "Transcriptional and translational downregulation of thioredoxin interacting protein is required for metabolic reprogramming during G1". Genes \& Cancer 1(9):893.
141.BR, Wilde, and Ayer DE. 2015. "Interactions between myc and mondoa transcription factors in metabolism and tumourigenesis". British Journal of Cancer 113(11):1529-33.
142.Liao, Wenting, Michael J. Overman, Adam T. Boutin, Xiaoying Shang, et al. 2019. "KRAS-irf2 axis drives immune suppression and immune therapy resistance in colorectal cancer". Cancer Cell 35(4):559-572.e7.
143.Ye, Zhizhou, and Donald E. Ayer. 2018. "Ras suppresses txnip expression by restricting ribosome translocation". Molecular and Cellular Biology 38(20).
144.Cadenas, Cristina, Dennis Franckenstein, Marcus Schmidt, Mathias Gehrmann, et al. 2010. "Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer". Breast Cancer Research : BCR 12(3).
145.Nie, Weiwei, Weisun Huang, Wenwen Zhang, Jing Xu, Wei Song, et al. 2015. "TXNIP interaction with the her-1/2 pathway contributes to overall survival in breast cancer". Oncotarget 6(5):3003.
146.Ji Cho, Min, Sung Jin Yoon, Wooil Kim, Jongjin Park, Jangwook Lee, et al. 2019. "Oxidative stress-mediated txnip loss causes rpe dysfunction". Experimental \& Molecular Medicine 2019 51:10 51(10):1-13.
147.Hui, Simon T. Y., Allen M. Andres, Amber K. Miller, Nathanael J. Spann, et al. 2008. "Txnip balances metabolic and growth signaling via pten disulfide reduction". Proceedings of the National Academy of Sciences of the United States of America 105(10):3921.
148.Avril, T., E. Vauleon, and E. Chevet. 2017. "Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers.". Oncogenesis 6(8): e373.
149.Wang, Yuanzhong, and Shiuan Chen. 2022. "TXNIP links anticipatory unfolded protein response to estrogen reprogramming glucose metabolism in breast cancer cells". Endocrinology 163(1).
150.Oslowski, Christine M., Takashi Hara, Bryan O'Sullivan-Murphy, Kohsuke Kanekura, et al. 2012. "Thioredoxin-interacting protein mediates er stressinduced β cell death through initiation of the inflammasome". Cell Metabolism 16(2):265.
151.Wang, Miao, and Randal J. Kaufman. 2014. "The impact of the endoplasmic reticulum protein-folding environment on cancer development". Nature Reviews Cancer 2014 14:9 14(9):581-97.
152.Chen, Yani, and Federica Brandizzi. 2013. "IRE1 : er stress sensor and cell fate executor". Trends in Cell Biology 23(11):547-55.
153.Hetz, Claudio, Kezhong Zhang, and Randal J. Kaufman. 2020. "Mechanisms, regulation and functions of the unfolded protein response". Nature Reviews Molecular Cell Biology 2020 21:8 21(8):421-38.
154.Zhao, Qing, Xudong Che, Hongxia Zhang, Guanping Tan, et al. 2017. "Thioredoxin-interacting protein mediates apoptosis in early brain injury after subarachnoid haemorrhage". International Journal of Molecular Sciences 2017, Vol. 18, Page 854 18(4):854.
155.Bronner, Denise N., Basel H. Abuaita, Xiaoyun Chen, Katherine A. Fitzgerald, et al. 2015. "Endoplasmic reticulum stress activates the inflammasome via nlrp3- and caspase-2-driven mitochondrial damage". Immunity 43(3):451-62.
156.Lee, Samuel, Soo Min Kim, James Dotimas, Letitia Li, Edward P. Feener, et al. 2014. "Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress". EMBO Molecular Medicine 6(6):732-43.
157.Chen, Chia Ling, Chiou Feng Lin, Wen Tsan Chang, Wei Ching Huang, et al. 2008. "Ceramide induces p38 mapk and jnk activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway". Blood 111(8):4365-74.
158.Mangan, Paul R., Laurie E. Harrington, Darrell B. O’Quinn, Whitney S. Helms, Daniel C. Bullard, et al. 2006. "Transforming growth factor- β induces development of the th17 lineage". Nature 2006 441:7090 441(7090):231-34.
159.Levring, Trine B., Martin Kongsbak-Wismann, Anna K. O. Rode, Fatima A. H. Al-Jaberi, et al. 2019. "Tumor necrosis factor induces rapid down-regulation of txnip in human t cells". Scientific Reports 2019 9:1 9(1):1-13.
160.Nagaraj, Karthik, Lena Lapkina-Gendler, Rive Sarfstein, David Gurwitz, et al.2018. "Identification of thioredoxin-interacting protein (txnip) as a downstream target for igf1 action". Proceedings of the National Academy of Sciences of the United States of America 115(5):1045-50.
161.Kanari, Yasuyoshi, Yuki Sato, Satoru Aoyama, and Tatsushi Muta. 2013. "Thioredoxin-interacting protein gene expression via mondoa is rapidly and transiently suppressed during inflammatory responses". PLOS ONE 8(3):e59026.
162.Contreras, Osvaldo, Meilyn Cruz-Soca, Marine Theret, Hesham Soliman, et al. 2019. "Cross-talk between tgf- β and pdgfr α signaling pathways regulates the fate of stromal fibro-adipogenic progenitors". Journal of Cell Science 132(19).
163.Han, Seung Hyun, Jun Ho Jeon, Hyang Ran Ju, Uhee Jung, et al. 2003. "VDUP1 upregulated by tgf- $\beta 1$ and 1,25 -dihydorxyvitamin d3 inhibits tumor cell growth by blocking cell-cycle progression". Oncogene 22(26):4035-46.
164.Kwon, Hyo Jung, Young Suk Won, Ki Taek Nam, Yeo Dae Yoon, et al. 2012. "Vitamin d3 upregulated protein 1 deficiency promotes n-methyl-n-nitrosourea and helicobacter pylori-induced gastric carcinogenesis in mice". Gut 61(1):5363.
165.AF, Baker, Koh MY, Williams RR, James B, Wang H, et al.2008. "Identification of thioredoxin-interacting protein 1 as a hypoxia-inducible factor 1alpha-induced gene in pancreatic cancer". Pancreas 36(2):178-86.
166.S, Le Jan, Le Meur N, Cazes A, Philippe J, Le Cunff M, et al. 2006. "Characterization of the expression of the hypoxia-induced genes neuritin, txnip and igfbp3 in cancer". FEBS Letters 580(14):3395-3400.
167.Wang, Pengli, Dan Zheng, Hongyang Qi, and Qi Gao. 2021. "Thioredoxininteracting protein is a favored target of mir-125b, promoting metastasis and progression of pancreatic cancer via the hifla pathway". Journal of Biochemical and Molecular Toxicology 35(7).
168.Karmi, Ola, Yang Sung Sohn, Sara I. Zandalinas, Linda Rowland, et al. 2021. "Disrupting cisd2 function in cancer cells primarily impacts mitochondrial labile iron levels and triggers txnip expression". Free Radical Biology and Medicine 176:92-104.
169.Shimizu, Hiroki, Toshiaki Tsubota, Keita Kanki, and Goshi Shiota. 2018. "Alltrans retinoic acid ameliorates hepatic stellate cell activation via suppression of thioredoxin interacting protein expression". Journal of Cellular Physiology 233(1):607-16.
170.Liu, Yun, Wenyu Feng, Yan Dai, Mengying Bao, Zhenchao Yuan, et al. 2021. "Single-cell transcriptomics reveals the complexity of the tumor microenvironment of treatment-naive osteosarcoma". Frontiers in Oncology 0:2818.
171.Hwang, Jungwon, Hyun Woo Suh, Young H. o. Jeon, Eunha Hwang, et al. 2014. "The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein". Nature Communications 5.
172.Koshy, Nebu V., Ellen Friday, and Francesco Turturro. 2009. "Thioredoxin interacting protein (txnip) correlates with production of reactive oxygen species (ros) and underlines differences in stress response gene profile in patients with chronic lymphocytic leukemia (cll).". Blood 114(22):4375-4375.
173.Hu, Hai, Mingxing Tian, Peng Li, Xiang Guan, Zhengmin Lian, et al. 2020. "Brucella infection regulates thioredoxin-interacting protein expression to facilitate intracellular survival by reducing the production of nitric oxide and reactive oxygen species ". The Journal of Immunology 204(3):632-43.
174.T, Oberacker, Bajorat J, Ziola S, Schroeder A, Röth D, Kastl L, et al. 2018. "Enhanced expression of thioredoxin-interacting-protein regulates oxidative dna damage and aging". FEBS Letters 592(13):2297-2307.
175.Gao, Chao, Rutao Wang, Bing Li, Yongzhen Guo, et al. 2020. "TXNIP/redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice". Cardiovascular Research 116(3):64557.
176.Jung, Haiyoung, Mi Jeong Kim, Dong Oh Kim, Won Sam Kim, et al. 2013. "TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress". Cell Metabolism 18(1):75-85.
177.Sablina, Anna A., Andrei V. Budanov, Galina V. Ilyinskaya, et al. 2005. "The antioxidant function of the p53 tumor suppressor". Nature Medicine 11(12):1306-13.
178.Zhao, Yue, Qinglong Guo, Qin Zhu, Renxiang Tan, Dongsheng Bai, et al. 2019. "Flavonoid vi-16 protects against dss-induced colitis by inhibiting txnipdependent nlrp3 inflammasome activation in macrophages via reducing oxidative stress". Mucosal Immunology 12(5):1150-63.
179.Kamitori, Kazuyo, Fuminori Yamaguchi, Youyi Dong, Akram Hossain, et al. 2018. "Both ser361 phosphorylation and the c-arrestin domain of thioredoxin interacting protein are important for cell cycle blockade at the G1/S checkpoint". FEBS Open Bio 8(11):1804.
180.Jeon, Jun-Ho, Kee-Nyung Lee, Chae Young Hwang, Ki-Sun Kwon, et al. 2005. "Tumor suppressor vdup1 increases p27kip1 stability by inhibiting jabl". Cancer Research 65(11):4485-89.
181.Kim, Mi Jeong, Won Sam Kim, Dong Oh Kim, Jae Eun Byun, et al. 2017. "Macrophage migration inhibitory factor interacts with thioredoxin-interacting protein and induces nf-кb activity". Cellular Signalling 34:110-20.
182.Riahi, Yael, Nurit Kaiser, Guy Cohen, Ihab Abd-Elrahman, Galia Blum, et al. 2015. "Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a txnip-dependent manner". Journal of Cellular and Molecular Medicine 19(8):1887-99.
183.Chunling, Huang, Zhang Yuan, Kelly Darren J, Sue Carolyn M, et al. 2016. "Thioredoxin interacting protein (txnip) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mtor signaling pathway". Scientific Reports 6.
184.Qiao, Shuxi, Michael Dennis, Xiufeng Song, Douangsone D. Vadysirisack, et al. 2015. "A redd1/txnip pro-oxidant complex regulates atg4b activity to control stress-induced autophagy and sustain exercise capacity". Nature Communications 2015 6:1 6(1):1-13.
185.Ellisen, Leif W., Kate D. Ramsayer, Cory M. Johannessen, Annie Yang, et al. 2002. "REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species". Molecular Cell 10(5).
186.Zeng, Hongxiang, Hao Gu, Chiqi Chen, Minle Li, Fangzhen Xia, et al. 2016. "ChREBP promotes the differentiation of leukemia-initiating cells to inhibit leukemogenesis through the txnip/runx1 pathways". Oncotarget 7(25):3834758.
187.Hu, Junbi, Lin Feng, Mudan Ren, Yan Zhao, Guifang Lu, et al. 2021. "Colorectal cancer cell differentiation is dependent on the repression of aerobic glycolysis by ndrg2-txnip axis". Digestive Diseases and Sciences 2021 1:1-10.
188.Ogata, Fernando Toshio, Alex Yuri Simões Sato, Lucia Coppo, et al. 2022. "Thiol-based antioxidants and the epithelial/mesenchymal transition in cancer". Antioxidants \& Redox Signaling.
189.ME, Bechard, Smalling R, Hayashi A, Zhong Y, Word AE, et al. 2020. "Pancreatic cancers suppress negative feedback of glucose transport to reprogram chromatin for metastasis". Nature Communications 11(1).
102. Yang, Kwang Hoon, Guen Tae Kim, Solji Choi, Sun Young Yoon, et al. 2020. "1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol ameliorates egf-induced mmp-9 expression by promoting receptor desensitization in mda-mb-231 cells". Oncology Reports 44(1):241.
191.Yang, Shan Shan, Shuang Ma, He Dou, Feng Liu, Shi Yuan Zhang, et al. 2020. "Breast cancer-derived exosomes regulate cell invasion and metastasis in breast cancer via mir-146a to activate cancer associated fibroblasts in tumor microenvironment". Experimental Cell Research 391(2):111983.
192.Gunes, Aysim, Evin Iscan, Hande Topel, Sanem Tercan Avci, et al. 2015. "Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells". The International Journal of Biochemistry \& Cell Biology 65:169-81.
193.Song, Mingyang. 2021. "Cancer overtakes vascular disease as leading cause of excess death associated with diabetes". The Lancet Diabetes \& Endocrinology 9(3):131-33.
194.Shang, Shuang, Yu-Wei Yang, Fei Chen, Liang Yu, et al. 2022. "TRIB3 reduces cd8 +t cell infiltration and induces immune evasion by repressing the stat1-cxcl10 axis in colorectal cancer". Science Translational Medicine 14(626):eabf0992.
195.Ringel, Alison E., Jefte M. Drijvers, Gregory J. Baker, Alessia Catozzi, Juan C. García-Cañaveras, et al. 2020. "Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity". Cell 183(7):18481866.e26.
196.Maguire, Olivia A., Sarah E. Ackerman, Sarah K. Szwed, et al. 2021. "Creatine-mediated crosstalk between adipocytes and cancer cells regulates obesity-driven breast cancer". Cell Metabolism 33(3):499-512.e6.
197.Wishart, Andrew L., Sydney J. Conner, Justinne R. Guarin, et al. 2020. "Decellularized extracellular matrix scaffolds identify full-length collagen vi as a driver of breast cancer cell invasion in obesity and metastasis". Science Advances 6(43).
198.McDowell, Sheri A. C., Robin B. E. Luo, Azadeh Arabzadeh, Samuel Doré, et al. 2021. "Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration". Nature Cancer 2021 2:5 2(5):54562.
199.Chen, Junqin, Geetu Saxena, Imran N. Mungrue, Aldons J. Lusis, and Anath Shalev. 2008. "Thioredoxin-interacting protein: a critical link between glucose toxicity and beta-cell apoptosis". Diabetes 57(4):938-44.
200.Sheth, Sonal S., Lawrence W. Castellani, Soumya Chari, Cory Wagg, et al. 2005. "Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition". Journal of Lipid Research 46(1):123-34.
201.Masutani, Hiroshi. 2022. "Thioredoxin-interacting protein in cancer and diabetes". Antioxidants \& Redox Signaling 36(13-15).
202.Indo, Kanako, Hiroshi Hoshikawa, Kazuyo Kamitori, Fuminori Yamaguchi, Terusige Mori, et al. 2014. "Effects of d-allose in combination with docetaxel in human head and neck cancer cells". International Journal of Oncology 45(5).
203.Kregel, Steven, Rohit Malik, Irfan A. Asangani, Kari Wilder-Romans, Thekkelnaycke Rajendiran, et al. 2019. "Functional and mechanistic interrogation of bet bromodomain degraders for the treatment of metastatic castration-resistant prostate cancer". Clinical Cancer Research 25(13):4038-48.
204.Schmidt, Linnéa, Sathishkumar Baskaran, Patrik Johansson, Narendra Padhan, et al. 2016. "Case-specific potentiation of glioblastoma drugs by pterostilbene". Oncotarget 7(45):73200-215.
205.Cai, Wenqing, Liangwei Zhang, Yanlin Song, Baolin Wang, Baoxin Zhang, et al. 2012. "Small molecule inhibitors of mammalian thioredoxin reductase". Free Radical Biology \& Medicine 52(2):257-65.
206.Jinjing, Jia, Geng Wenshuo, Wang Zhanqi, Chen Lei, and Zeng Xiansi. 2019. "The role of thioredoxin system in cancer: strategy for cancer therapy". Cancer Chemotherapy and Pharmacology 84(3):453-70.
207.Di, Yuzhu, Yanan Jiang, Xiuyun Shen, Jing Liu, Yang Gao, et al. 2021. "Downregulation of mir-135b-5p suppresses progression of esophageal cancer and contributes to the effect of cisplatin". Frontiers in Oncology 11:2363.
208.Lin, Che-Hsuan, Hsun-Hua Lee, Wei-Min Chang, Fei-Peng Lee, Lung-Che Chen, et al. 2020. "FOXD1 repression potentiates radiation effectiveness by downregulating g3bp2 expression and promoting the activation of txnip-related pathways in oral cancer". Cancers 2020, Vol. 12, Page 2690 12(9):2690.
209.Zhou, Huixin, Qiang Shen, Jiali Fu, Feng Jiang, Liangxing Wang, et al. 2020. "Analysis of lncrna uca1-related downstream pathways and molecules of cisplatin resistance in lung adenocarcinoma". Journal of Clinical Laboratory Analysis 34(8):e23312.
210.Haas, Bodo, Lena Schütte, Maria Wos-Maganga, Sandra Weickhardt, Marco Timmer, et al. 2018. "Thioredoxin confers intrinsic resistance to cytostatic drugs in human glioma cells". International Journal of Molecular Sciences 2018, Vol. 19, Page 2874 19(10):2874.
211.N, Kanaji, Kamitori K, Hossain A, Noguchi C, Katagi A, et al. 2018. "Additive antitumour effect of d-allose in combination with cisplatin in non-small cell lung cancer cells". Oncology Reports 39(3):1292-98.
212.H, Hoshikawa, Kamitori K, Indo K, Mori T, Kamata M, et al. 2018. "Combined treatment with d-allose, docetaxel and radiation inhibits the tumor growth in an in vivo model of head and neck cancer". Oncology Letters 15(3):3422-28.
213.Kuljaca, Selena, Tao Liu, Tanya Dwarte, Maria Kavallaris, et al. 2009. "The cyclin-dependent kinase inhibitor, p21 waf1 , promotes angiogenesis by repressing gene transcription of thioredoxin-binding protein 2 in cancer cells". Carcinogenesis 30(11):1865-71.
214.Dang, Chi V. 2016. "A time for myc: metabolism and therapy". Cold Spring Harbor Symposia on Quantitative Biology 81(1):79-83.
215.Chan, Lai N., Zhengshan Chen, Daniel Braas, Jae-Woong Lee, Gang Xiao, et al. 2017. "Metabolic gatekeeper function of b-lymphoid transcription factors". Nature 542(7642):479-83.
216.Miller, Donald M., Shelia D. Thomas, Ashraful Islam, David Muench, et al.2012. "C-myc and cancer metabolism". Clinical Cancer Research 18(20):5546-53.
217.Ji, Shunrong, Yi Qin, Chen Liang, Run Huang, Si Shi, et al. 2016. "FBW7 (fbox and wd repeat domain-containing 7) negatively regulates glucose metabolism by targeting the c-myc/txnip (thioredoxin-binding protein) axis in pancreatic cancer". Clinical Cancer Research 22(15):3950-60.
218.Navale, Archana M., and Archana N. Paranjape. 2016. "Glucose transporters: physiological and pathological roles". Biophysical Reviews 8(1):5.
219.Waldhart, Althea N., Holly Dykstra, Anderson S. Peck, Elissa A. Boguslawski, et al. 2017. "Phosphorylation of txnip by akt mediates acute influx of glucose in response to insulin". Cell Reports 19(10):2005-13.
220.Wu, Ning, Bin Zheng, Adam Shaywitz, Yossi Dagon, Christine Tower, et al. 2013. "AMPK-dependent degradation of txnip upon energy stress leads to enhanced glucose uptake via glut1". Molecular Cell 49(6):1167-75.
221.Alexander, Caroline M., Joshua A. Martin, Elias Oxman, Ildiko Kasza, et al. 2020. "Alternative splicing and cleavage of glut8". Molecular and Cellular Biology 41(1).
222.Sullivan, William J., Peter J. Mullen, Ernst W. Schmid, Aimee Flores, et al. 2018. "Extracellular matrix remodeling regulates glucose metabolism through txnip destabilization". Cell 175(1):117-132.e21.
223.Schafer, Zachary T., Alexandra R. Grassian, Loling Song, Zhenyang Jiang, et al. 2009. "Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment". Nature 2009 461:7260 461(7260):109-13
224.Guo, Xuxue, Mei Huang, Haonan Zhang, Qianhui Chen, Ying Hu, Yan Meng, et al. 2022. "A pan-cancer analysis of thioredoxin-interacting protein as an immunological and prognostic biomarker". Cancer Cell International 22(1):116.
225.Jandova, Jana, and Georg T. Wondrak. 2021. "Genomic glol deletion modulates txnip expression, glucose metabolism, and redox homeostasis while accelerating human a375 malignant melanoma tumor growth". Redox Biology 39:101838.
226.S, Nasoohi, Parveen K, and Ishrat T. 2018. "Metabolic syndrome, brain insulin resistance, and alzheimer's disease: thioredoxin interacting protein (txnip) and inflammasome as core amplifiers". Journal of Alzheimer's Disease: JAD 66(3):857-85.
227.Mohamed, Islam N., Tauheed Ishrat, Susan C. Fagan, and Azza B. El-Remessy. 2015. "Role of inflammasome activation in the pathophysiology of vascular
diseases of the neurovascular unit". Antioxidants \& Redox Signaling 22(13):1188-1206.
228.Perrone, Lorena, Takhellambam S. Devi, Ken Ichi Hosoya, Tetsuya Terasaki, et al. 2009. "Thioredoxin interacting protein (txnip) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions". Journal of Cellular Physiology 221(1):262-72.
229.Kwon, Hyo-Jung, Young-Suk Won, Hyun-Woo Suh, Jun-Ho Jeon, Yan Shao, et al. 2010b. "Vitamin d3 upregulated protein 1 suppresses tnf- α-induced nf-кb activation in hepatocarcinogenesis". The Journal of Immunology 185(7):398089.
230.Schroder, Kate, Rongbin Zhou, and Jurg Tschopp. 2010. "The nlrp3 inflammasome: a sensor for metabolic danger?". Science 327(5963):296-300.
231.Zhou, Rongbin, Aubry Tardivel, Bernard Thorens, Inpyo Choi, and Jürg Tschopp. 2010. "Thioredoxin-interacting protein links oxidative stress to inflammasome activation". Nature Immunology 11(2):136-40.
232.Cheng, Shi Bin, Akitoshi Nakashima, Warren J. Huber, Sarah Davis, et al. 2019. "Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors". Cell Death \& Disease 2019 10:12 10(12):1-15.
233.Li, Lexiao, Saifudeen Ismael, Sanaz Nasoohi, Kazuko Sakata, Francesca Fang Liao, et al. 2019. "Thioredoxin-interacting protein (txnip) associated nlrp3 inflammasome activation in human alzheimer's disease brain". Journal of Alzheimer's Disease: JAD 68(1):255-65.
234.Huang, Yi, Wen Xu, and Rongbin Zhou. 2021. "NLRP3 inflammasome activation and cell death". Cellular \& Molecular Immunology 2021 18:9 18(9):2114-27.
235.Tezcan, Gulcin, Ekaterina E. Garanina, Mohammad Alsaadi, Zarema E. Gilazieva, et al. 2021. "Therapeutic potential of pharmacological targeting nlrp3 inflammasome complex in cancer". Frontiers in Immunology 11:3734.
236.Dupaul-Chicoine, Jeremy, Azadeh Arabzadeh, Maryse Dagenais, Todd Douglas, et al. 2015. "The nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity". Immunity 43(4):751-63.
237.Han, Chuanhui, Victoria Godfrey, Zhida Liu, Yanfei Han, et al. 2021. "The aim2 and nlrp3 inflammasomes trigger il-1-mediated antitumor effects during radiation". Science Immunology 6(59).
238.Tengesdal, Isak W., Dinoop R. Menon, Douglas G. Osborne, Charles P. Neff, et al. 2021. "Targeting tumor-derived nlrp3 reduces melanoma progression by limiting mdscs expansion". Proceedings of the National Academy of Sciences of the United States of America 118(10):2022.
239.Lane, Troy, Brenda Flam, Richard Lockey, and Narasaiah Kolliputi. 2013. "TXNIP shuttling: missing link between oxidative stress and inflammasome activation". Frontiers in Physiology 4 MAR:50.
240.Muri, Jonathan, Helen Thut, Qian Feng, and Manfred Kopf. 2020. "Thioredoxin-1 distinctly promotes nf-kb target dna binding and nlrp3 inflammasome activation independently of txnip". ELife 9.
241.Li, Ning, Heng Zhou, Haiming Wu, Qingqing Wu, Mingxia Duan, et al. 2019. "STING-irf3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating nlrp3". Redox Biology 24:101215.
242.Pan, Zhiqiang, Qun Shan, Pan Gu, Xiao Min Wang, Lydia Wai Tai, et al. 2018. "MiRNA-23a/cxcr4 regulates neuropathic pain via directly targeting txnip/nlrp3 inflammasome axis". Journal of Neuroinflammation 15(1).
243.Son, Aoi, Hajime Nakamura, Hiroaki Okuyama, Shin-ichi Oka, Eiji Yoshihara, et al. 2008. "Dendritic cells derived from tbp-2-deficient mice are defective in inducing t cell responses". European Journal of Immunology 38(5):1358-67.
244.Lee, Kee Nyung, Hyung Sik Kang, Jun Ho Jeon, Eun Mi Kim, Suk Ran Yoon, et al. 2005. "VDUP1 is required for the development of natural killer cells". Immunity 22(2):195-208.
245.Taveirne, Sylvie, Sigrid Wahlen, Wouter Van Loocke, Laura Kiekens, et al. 2020. "The transcription factor ets 1 is an important regulator of human nk cell development and terminal differentiation". Blood 136(3):288-98.
103. Yang, Ying, Shi Yong Neo, Ziqing Chen, Weiyingqi Cui, Yi Chen, Min Guo, et al. 2020. "Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating nk cells". The Journal of Clinical Investigation 130(10):5508-22.
247.Veglia, Filippo, Ayumi Hashimoto, Harsh Dweep, Emilio Sanseviero, et al. 2021. "Analysis of classical neutrophils and polymorphonuclear myeloidderived suppressor cells in cancer patients and tumor-bearing mice". Journal of Experimental Medicine 218(4).
248.Boyer, Seth, Ho-Joon Lee, Nina Steele, Li Zhang, Peter Sajjakulnukit, et al. 2022. "Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the gm-csf-pi3k pathway". ELife 11.
249.Li, Hanjie, Anne M. van der Leun, Ido Yofe, Yaniv Lubling, Dikla GelbardSolodkin, et al. 2019. "Dysfunctional cd8 t cells form a proliferative, dynamically regulated compartment within human melanoma". Cell 176(4):775-789.e18.
250.Klein Geltink, Ramon I., David O’Sullivan, Mauro Corrado, Anna Bremser, et al. 2017. "Mitochondrial priming by cd28". Cell 171(2):385-397.e11.
251.Raud, Brenda, Dominic G. Roy, Ajit S. Divakaruni, Tatyana N. Tarasenko, et al. 2018. "Etomoxir actions on regulatory and memory t cells are independent of cpt1a-mediated fatty acid oxidation". Cell Metabolism 28(3).
252.Muri, Jonathan, Helen Thut, and Manfred Kopf. 2021. "The thioredoxin-1 inhibitor txnip restrains effector t-cell and germinal center b-cell expansion". European Journal of Immunology 51(1):115-24.
253.Dünnbier, M. Sc Stefanie. 2019. "The role of thioredoxin-interacting protein in t cell receptor signalling." Dissertation.
254.Saito, Takuro, Hiroyoshi Nishikawa, Hisashi Wada, Yuji Nagano, Daisuke Sugiyama, et al. 2016. "Two foxp3(+)cd4(+) t cell subpopulations distinctly control the prognosis of colorectal cancers". Nature Medicine 22(6):679-84.
255.Shi, Hao, and Hongbo Chi. 2019. "Metabolic control of treg cell stability, plasticity, and tissue-specific heterogeneity". Frontiers in Immunology 10:2716.
256.Lu, Ying, Yangyang Li, Qi Liu, Na Tian, Peng Du, Fangming Zhu, Yichao Han, et al. 2021. "MondoA-thioredoxin-interacting protein axis maintains regulatory t-cell identity and function in colorectal cancer microenvironment". Gastroenterology 161(2):575-591.e16.
257.Gerriets, Valerie A., Rigel J. Kishton, Marc O. Johnson, Sivan Cohen, Peter J. Siska, et al. 2016. "Foxp3 and toll-like receptor signaling balance treg cell
anabolic metabolism for suppression". Nature Immunology 2016 17:12 17(12):1459-66.
258.Mesin, Luka, Jonatan Ersching, and Gabriel D. Victora. 2016. "Germinal center b cell dynamics". Immunity 45(3).
259.Klein, Ulf, and Riccardo Dalla-Favera. 2008. "Germinal centres: role in b-cell physiology and malignancy". Nature Reviews Immunology 2008 8:1 8(1):2233.
260.Basso, Katia, and Riccardo Dalla-Favera. 2010. "BCL6: master regulator of the germinal center reaction and key oncogene in b cell lymphomagenesis". Advances in Immunology 105(C):193-210.
261.Shao, Yan, Sang Yong Kim, Daesung Shin, Mi Sun Kim, Hyun Woo Suh, et al. 2010. "TXNIP regulates germinal center generation by suppressing bcl-6 expression". Immunology Letters 129(2):78-84.
262.Nasoohi, Sanaz, Saifudeen Ismael, and Tauheed Ishrat. 2018. "Thioredoxininteracting protein (txnip) in cerebrovascular and neurodegenerative diseases: regulation and implication". Molecular Neurobiology 55(10):7900-7920.
263.Chen, Junqin, Simon T. Hui, Francesca M. Couto, Imran N. Mungrue, Dawn B. Davis, et al. 2008. "Thioredoxin-interacting protein deficiency induces akt/bcl-xl signaling and pancreatic beta-cell mass and protects against diabetes". The FASEB Journal 22(10):3581-94.
264.Qayyum, Naila, Muhammad Haseeb, Moon Suk Kim, and Sangdun Choi. 2021. "Role of thioredoxin-interacting protein in diseases and its therapeutic outlook". International Journal of Molecular Sciences 22(5):1-21.
265.Malayeri, Alireza, Mehrnoosh Zakerkish, Farrokh Ramesh, Hamid Galehdari, et al. 2021. "The effect of verapamil on txnip gene expression, glp1r mrna, fbs, hba1c, and lipid profile in t 2 dm patients receiving metformin and sitagliptin". Diabetes Therapy 12(10):2701-13.
266.Gondo, Yusuke, Hideo Satsu, Yoko Ishimoto, Taku Iwamoto, and Makoto Shimizu. 2012. "Effect of taurine on mrna expression of thioredoxin interacting protein in caco-2 cells". Biochemical and Biophysical Research Communications 426(3):433-37.
267.Thielen, Lance A., Junqin Chen, Gu Jing, Omar Moukha-Chafiq, Guanlan Xu, et al. 2020. "Identification of an anti-diabetic, orally available small molecule that regulates txnip expression and glucagon action". Cell Metabolism 32(3):353-365.e8.
268.Iqbal, Mohammad Askandar, Shilpi Chattopadhyay, Farid Ahmad Siddiqui, et al. 2021. "Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating egfr-myc-txnip axis: potential therapeutic implications". The FEBS Journal 288(2):471-85.
269.Cao, Wenjie, Qin Yang, Zhijun Yuan, Hui Li, Weiwei Wang, Xiaojuan Xiao, et al. 2020. "Gemcitabine inhibits cisplatin resistance in cisplatin-resistant a549 cells by upregulating trx-interacting protein and inducing cell cycle arrest". Biochemical and Biophysical Research Communications 524(3).
270.Bootcov, Michelle R., Asne R. Bauskin, Stella M. Valenzuela, Anthony G. Moore, et al. 1997. "MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the tgf- β superfamily." National Acad Sciences 94:1151419.
271.Lawton, Lee N., Maria De Fatima Bonaldo, Pierre C. Jelenc, Ling Qiu, et al. 1997. "Identification of a novel member of the tgf-beta superfamily highly expressed in human placenta". Gene 203(1):17-26.
272.Wang, Dongdong, Emily A. Day, Logan K. Townsend, Djordje Djordjevic, et al. 2021. "GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease". Nature Reviews Endocrinology 2021 17:10 17(10):592-607.
273.Kempf, Tibor, Jan Malte Sinning, Anja Quint, Christoph Bickel, Christoph Sinning, et al. 2009. "Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease". Circulation: Cardiovascular Genetics 2(3):286-92.
274.Jovani, Manol, Elizabeth E. Liu, Samantha M. Paniagua, Emily S. Lau, Shawn X. Li, et al. 2021. "Cardiovascular disease related circulating biomarkers and cancer incidence and mortality: is there an association?". Cardiovascular Research.
275.Derynck, Rik, Shannon J. Turley, and Rosemary J. Akhurst. 2020. "TGF β biology in cancer progression and immunotherapy". Nature Reviews Clinical Oncology 2020 18:1 18(1):9-34.
276.Tauriello, Daniele V. F., Elena Sancho, and Eduard Batlle. 2021. "Overcoming $\operatorname{tgf} \beta$-mediated immune evasion in cancer". Nature Reviews Cancer 2021 22:1 22(1):25-44.
277.Tan, Mingjia, Yixin Wang, Kunliang Guan, and Yi Sun. 2000. "PTGF- β, a type β transforming growth factor (tgf- β) superfamily member, is a p53 target gene that inhibits tumor cell growth via tgf- β signaling pathway". Proceedings of the National Academy of Sciences of the United States of America 97(1):109-14.
278.Artz, Annette, Stefan Butz, and Dietmar Vestweber. 2016. "GDF-15 inhibits integrin activation and mouse neutrophil recruitment through the alk- $5 /$ tgf- β rii heterodimer". Blood 128(4):529-41.
279.Jung, Saet Byel, Min Jeong Choi, Dongryeol Ryu, Hyon Seung Yi, Seong Eun Lee, et al. 2018. "Reduced oxidative capacity in macrophages results in systemic insulin resistance". Nature Communications 2018 9:1 9(1):1-15.
280.Kleinertz, Holger, Monika Hepner-Schefczyk, Sabrina Ehnert, Maren Claus, et al. 2019. "Circulating growth/differentiation factor 15 is associated with human cd56bright natural killer cell dysfunction and nosocomial infection in severe systemic inflammation". EBioMedicine 43:380-91.
281.Min, K. W., J. L. Liggett, G. Silva, W. W. Wu, et al. 2015. "NAG-1/gdf15 accumulates in the nucleus and modulates transcriptional regulation of the smad pathway". Oncogene 2016 35:3 35(3):377-88.
282.Johnen, Heiko, Shu Lin, Tamara Kuffner, David A. Brown, Vicky Wang Wei Tsai, et al. 2007. "Tumor-induced anorexia and weight loss are mediated by the tgf- β superfamily cytokine mic-1". Nature Medicine 2007 13:11 13(11):133340.
283.Wang, Chang Ying, An Qi Huang, Meng Hua Zhou, and Yan Ai Mei. 2014. "GDF15 regulates kv2.1-mediated outward $\mathrm{k}+$ current through the akt/mtor signalling pathway in rat cerebellar granule cells". Biochemical Journal 460(1):35-47.
284.Li, Zhihua, Bingwei Wang, Xuefei Wu, Shi Yuan Cheng, Luminita Paraoan, and Jiawei Zhou. 2005. "Identification, expression and functional characterization of the gfral gene". Journal of Neurochemistry 95(2):361-76.
285.Chow, Chi Fung Willis, Xuanming Guo, Pallavi Asthana, Shuo Zhang, Sheung Kin Ken Wong, et al. 2022. "Body weight regulation via mt1-mmp-mediated cleavage of gfral". Nature Metabolism.
104. Yang, Linda, Chih Chuan Chang, Zhe Sun, Dennis Madsen, Haisun Zhu, et al. 2017. "GFRAL is the receptor for gdf15 and is required for the anti-obesity effects of the ligand". Nature Medicine 2017 23:10 23(10):1158-66.
287.Hsu, Jer Yuan, Suzanne Crawley, Michael Chen, Dina A. Ayupova, et al. 2017. "Non-homeostatic body weight regulation through a brainstem-restricted receptor for gdf15". Nature 2017 550:7675 550(7675):255-59.
288.Lerner, Lorena, Teresa G. Hayes, Nianjun Tao, Brian Krieger, Bin Feng, et al. 2015. "Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients". Journal of Cachexia, Sarcopenia and Muscle 6(4):317-24.
289.Breen, Danna M., Hanna Kim, Donald Bennett, Roberto A. Calle, Susie Collins, et al. 2020. "GDF-15 neutralization alleviates platinum-based chemotherapyinduced emesis, anorexia, and weight loss in mice and nonhuman primates". Cell Metabolism 32(6):938-950.e6.
290.Suriben, Rowena, Michael Chen, Jared Higbee, Julie Oeffinger, Richard Ventura, et al. 2020. "Antibody-mediated inhibition of gdf15-gfral activity reverses cancer cachexia in mice". Nature Medicine 2020 26:8 26(8):1264-70.
291.Rochette, Luc, Marianne Zeller, Yves Cottin, and Catherine Vergely. 2020. "Insights into mechanisms of gdf15 and receptor gfral: therapeutic targets". Trends in Endocrinology \& Metabolism 31(12):939-51.
292.Rochette, Luc, Marianne Zeller, Yves Cottin, and Catherine Vergely. 2021. "GDF15: an emerging modulator of immunity and a strategy in covid-19 in association with iron metabolism". Trends in Endocrinology and Metabolism 32(11):875.
293.Mullican, Shannon E., Xiefan Lin-Schmidt, Chen Ni Chin, Jose A. Chavez, et al. 2017. "GFRAL is the receptor for gdfl5 and the ligand promotes weight loss in mice and nonhuman primates". Nature Medicine 2017 23:10 23(10):115057.
294.Wang, Zhaowei, Lei He, Weina Li, Chuanyang Xu, Jieyu Zhang, et al. 2021. "GDF15 induces immunosuppression via cd48 on regulatory t cells in hepatocellular carcinoma". Journal for Immunotherapy of Cancer 9(9).
295.Shannon L. McArdel; Cox Terhorst; Arlene H. Sharpe. 2016. "Roles of cd48 in regulating immunity and tolerance". Clinical Immunology 164:10-20.
296.Rudensky, Alexander Y. 2011. "Regulatory t cells and foxp3". Immunological Reviews 241(1).
297.Hsiao, Edward C., Leonidas G. Koniaris, Teresa Zimmers-Koniaris, Suzanne M. Sebald, et al. 2000. "Characterization of growth-differentiation factor 15, a transforming growth factor β superfamily member induced following liver injury". Molecular and Cellular Biology 20(10):3742-51.
298.Coll, Anthony P., Michael Chen, Pranali Taskar, Debra Rimmington, Satish Patel, et al. 2019. "GDF15 mediates the effects of metformin on body weight and energy balance". Nature 2019 578:7795 578(7795):444-48.
299.Guenancia, Charles, Abdelkader Kahli, Gabriel Laurent, Olivier Hachet, et al. 2015. "Pre-operative growth differentiation factor 15 as a novel biomarker of acute kidney injury after cardiac bypass surgery". International Journal of Cardiology 197.
300.Baek, Seung Joon, Jonathan M. Horowitz, and Thomas E. Eling. 2001. "Molecular cloning and characterization of human nonsteroidal antiinflammatory drug-activated gene promoter". Journal of Biological Chemistry 276(36):33384-92.
301.Klein, Anders B., Maximilian Kleinert, Erik A. Richter, and Christoffer Clemmensen. 2022. "GDF15 in appetite and exercise: essential player or coincidental bystander?". Endocrinology 163(1):1-10.
302.Conte, Maria, Cristina Giuliani, Antonio Chiariello, Vincenzo Iannuzzi, Claudio Franceschi, et al. 2022. "GDF15, an emerging key player in human aging". Ageing Research Reviews 75:101569.
303.Wang, Xingya, Seung Joon Baek, and Thomas E. Eling. 2013. "The diverse roles of nonsteroidal anti-inflammatory drug activated gene (nag-1/gdf15) in cancer". Biochemical Pharmacology 85(5):597-606.
304.Kleinert, Maximilian, Christoffer Clemmensen, Kim A. Sjøberg, Christian Strini Carl, et al. 2018. "Exercise increases circulating gdf15 in humans". Molecular Metabolism 9:187-91.
305.Laurens, Claire, Anisha Parmar, Enda Murphy, Deborah Carper, Benjamin Lair, et al. 2020. "Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans". JCI Insight 5(6).
306.Johann, Kornelia, Maximilian Kleinert, and Susanne Klaus. 2021. "The role of gdf15 as a myomitokine". Cells 10(11).
307.Liu, Jing, Sanjeev Kumar, Andreas Heinzel, Michael Gao, Jinjin Guo, Gregory F. Alvarado, et al. 2020. "Renoprotective and immunomodulatory effects of gdf15 following aki invoked by ischemia-reperfusion injury". Journal of the American Society of Nephrology 31(4):701-15.
308.Liu, Jing, Sanjeev Kumar, Egor Dolzhenko, Gregory F. Alvarado, Jinjin Guo, et al. 2017. "Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion". JCI Insight 2(18).
309.Kempf, Tibor, Matthias Eden, Jens Strelau, Marian Naguib, Christian Willenbockel, et al. 2006. "The transforming growth factor- β superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury". Circulation Research 98(3):351-60.
310.Ban, Norimitsu, Carla J. Siegfried, Jonathan B. Lin, Ying Bo Shui, Julia Sein, et al. 2017. "GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients". JCI Insight 2(9).
311.Roubicek, Tomas, Miloš Mráz, Petra Kaválková, and Martin Matoulek. 2009. "Increased serum concentrations of macrophage inhibitory cytokine-1 in patients with obesity and type 2 diabetes mellitus: the influence of very low calorie diet endothel view project left ventricular lead electrical delay view project". European Journal of Endocrinology 161(3):397-404.
312.Patel, Satish, Anna Alvarez-Guaita, Audrey Melvin, Debra Rimmington, et al. 2019. "GDF15 provides an endocrine signal of nutritional stress in mice and humans". Cell Metabolism 29(3):707-718.e8.
313.Miyake, Masato, Jun Zhang, Akihiro Yasue, Satoshi Hisanaga, Kazue Tsugawa, et al. 2021. "Integrated stress response regulates gdf15 secretion from adipocytes, preferentially suppresses appetite for a high-fat diet and improves obesity". IScience 24(12).
314.Herzig, Sébastien, and Reuben J. Shaw. 2018. "AMPK: guardian of metabolism and mitochondrial homeostasis". Nature Reviews. Molecular Cell Biology 19(2):121.
315.Sujobert, Pierre, Laury Poulain, Etienne Paubelle, Florence Zylbersztejn, et al. 2015. "Co-activation of ampk and mtorc1 induces cytotoxicity in acute myeloid leukemia". Cell Reports 11(9).
316.Townsend, Logan K., Alyssa J. Weber, Emily A. Day, Hesham Shamshoum, et al. 2021. "AMPK mediates energetic stress-induced liver gdf15". The FASEB Journal 35(1): 21218.
317.Aguilar-Recarte, David, Emma Barroso, Anna Gumà, Javier Pizarro-Delgado, et al. 2021. "GDF15 mediates the metabolic effects of ppar β / δ by activating ampk". Cell Reports 36(6):109501.
318.Sharma, Rohit, Bryn Reinstadler, Kristin Engelstad, Owen S. Skinner, et al. 2021. "Circulating markers of nadh-reductive stress correlate with mitochondrial disease severity". The Journal of Clinical Investigation 131(2).
319.Ratnam, Nivedita M., Jennifer M. Peterson, Erin E. Talbert, Katherine J. Ladner, et al. 2017. "NF-кb regulates gdf-15 to suppress macrophage surveillance during early tumor development". The Journal of Clinical Investigation 127(10):3796-3809.
320.Luan, Harding H., Andrew Wang, Brandon K. Hilliard, Fernando Carvalho, et al. 2019. "GDF15 is an inflammation-induced central mediator of tissue tolerance". Cell 178(5):1231-1244.e11.
321.Breen, Danna M., Srinath Jagarlapudi, Anita Patel, Chang Zou, Stephanie Joaquim, et al. 2021. "Growth differentiation factor 15 neutralization does not impact anorexia or survival in lipopolysaccharide-induced inflammation". IScience 24(6):102554.
322.Patel, Anita R., Henriette Frikke-Schmidt, Olivier Bezy, Paul V. Sabatini, et al. 2022. "LPS induces rapid increase in gdf 15 levels in mice, rats, and humans but is not required for anorexia in mice". American Journal of Physiology Gastrointestinal and Liver Physiology 322(2):1.
323.Chung, Hyo Kyun, Jung Tae Kim, Hyeon Woo Kim, Minjoo Kwon, So Yeon Kim, et al. 2017. "GDF15 deficiency exacerbates chronic alcohol- and carbon tetrachloride-induced liver injury". Scientific Reports 2017 7:1 7(1):1-13.
324.Kirschberg, Matthias, Adnan Shahzad Syed, Hanife Güler Dönmez, Sandra Heuser, et al. 2021. "Novel insights into cellular changes in hpv8-e7 positive keratinocytes: a transcriptomic and proteomic analysis". Frontiers in Microbiology 12:2399.
325.Ozawa, Hiroki, Hiroshi Imazeki, Yamato Ogiwara, Hirofumi Kawakubo, et al. 2022. "Targeting aurka in treatment of peritoneal tumor dissemination in gastrointestinal cancer". Translational Oncology 16:101307.
326.Albertoni, Michele, Phillip H. Shaw, Michimasa Nozaki, Godard Sophie, et al. 2002. "Anoxia induces macrophage inhibitory cytokine-1 (mic-1) in glioblastoma cells independently of p53 and hif-1". Oncogene 2002 21:27 21(27):4212-19.
327.Proutski, Irina, Leanne Stevenson, Wendy L. Allen, Andrea McCulla, John Boyer, et al. 2009. "Prostate-derived factor - a novel inhibitor of drug-induced cell death in colon cancer cells". Molecular Cancer Therapeutics 8(9):2566-74.
328.Mulderrig, Lee, Juan I. Garaycoechea, Zewen K. Tuong, Christopher L. Millington, et al. 2021. "Aldehyde-driven transcriptional stress triggers an anorexic dna damage response". Nature 2021 600:7887 600(7887):158-63.
329.Jing, Xinming, Fengming Yang, Chuchu Shao, Ke Wei, Mengyan Xie, Hua Shen, et al. 2019. "Role of hypoxia in cancer therapy by regulating the tumor microenvironment". Molecular Cancer 18(1).
330.Martin-Montalvo, Alejandro, Evi M. Mercken, Sarah J. Mitchell, Hector H. Palacios, et al. 2013. "Metformin improves healthspan and lifespan in mice". Nature Communications.
331.Day, Emily A., Rebecca J. Ford, Brennan K. Smith, Pedrum MohammadiShemirani, et al. 2019. "Metformin-induced increases in gdf15 are important for suppressing appetite and promoting weight loss". Nature Metabolism 2019 1:12 1(12):1202-8.
332.Huang, Chung Ying, Tomasz M. Beer, Celestia S. Higano, Lawrence D. True, et al. 2007. "Molecular alterations in prostate carcinomas that associate with in vivo exposure to chemotherapy: identification of a cytoprotective mechanism involving growth differentiation factor 15". Clinical Cancer Research 13(19):5825-33.
333.Eisenstein, Anna, Brandon K. Hilliard, Scott D. Pope, Cuiling Zhang, Pranali Taskar, et al. 2022. "Activation of the transcription factor nrf2 mediates the antiinflammatory properties of a subset of over-the-counter and prescription nsaids". Immunity 55(6):1082-1095.e5.
334.Wang, Xiaolong, Julia Krebbers, Petar Charalambous, Venissa Machado, Andreas Schober, et al. 2015. "Growth/differentiation factor-15 and its role in peripheral nervous system lesion and regeneration". Cell and Tissue Research 362(2):317-30.
335.Kim, Dong Hyun, Dahm Lee, Eun Hyuk Chang, Ji Hyun Kim, Jung Won Hwang, et al. 2015. "GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an alzheimer's disease model". Stem Cells and Development 24(20):2378-90.
336.Ouyang, Jing, Stéphane Isnard, John Lin, Brandon Fombuena, Xiaorong Peng, et al. 2020. "GDF-15 as a weight watcher for diabetic and non-diabetic people treated with metformin". Frontiers in Endocrinology 11:911.
337.Modi, Anupama, Shailender Dwivedi, Dipayan Roy, Manoj Khokhar, Purvi Purohit, et al. 2019. "Growth differentiation factor 15 and its role in carcinogenesis: an update". Growth Factors 37(3-4):190-207.
338.Bauskin, Asne R., David A. Brown, Tamara Kuffner, Heiko Johnen, X. Wei Lou, et al. 2006. "Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer". Cancer Research 66(10):4983-86.
339.Bruzzese, Francesca, Christina Hägglöf, Alessandra Leone, Elin Sjöberg, et al. 2014. "Local and systemic protumorigenic effects of cancer-associatedfibroblast- derived gdf15". Cancer Research 74(13):3408-17.
340.Welsh, John B., Lisa M. Sapinoso, Andrew I. Su, Suzanne G. Kern, Jessica Wang-Rodriguez, et al. 2001. "Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer." Cancer Research 61(16):5974-78.
341.Karan, Dev, Siu Ju Chen, Sonny L. Johansson, Ajay P. Singh, Vishwas M. Paralkar, et al. 2003. "Dysregulated expression of mic-1/pdf in human prostate tumor cells". Biochemical and Biophysical Research Communications 305(3):598-604.
342.Karan, Dev, David L. Kelly, Angie Rizzino, Ming Fong Lin, and Surinder K. Batra. 2002. "Expression profile of differentially-regulated genes during progression of androgen-independent growth in human prostate cancer cells". Carcinogenesis 23(6):967-76.
343.Kim, Kwang Kyu, Jung Joon Lee, Young Yang, Kwan Hee You, and Jeong Hyung Lee. 2008. "Macrophage inhibitory cytokine-1 activates akt and erk-1/2 via the transactivation of erbb2 in human breast and gastric cancer cells". Carcinogenesis 29(4):704-12.
344.Urakawa, Naoki, Soken Utsunomiya, Mari Nishio, Manabu Shigeoka, et al. 2015. "GDF15 derived from both tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression via akt and erk pathways". Laboratory Investigation 2015 95:5 95(5):491-503.
345.Myojin, Yuta, Hayato Hikita, Masaya Sugiyama, Yoichi Sasaki, Kenji Fukumoto, et al. 2021. "Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production". Gastroenterology 160(5):1741-1754.e16.
346.Tsai, Vicky W. W., Yasmin Husaini, Amanda Sainsbury, David A. Brown, and Samuel N. Breit. 2018. "The mic-1/gdf15-gfral pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases". Cell Metabolism 28(3):353-68.
347.Kim, Bora, Yong Jin Cho, Mineon Park, and Wonbong Lim. 2022. "Immunization with rankl inhibits osteolytic bone metastasis in breast cancer". Journal of Immunotherapy 45(1):1-12.
348.Senapati, S., S. Rachagani, K. Chaudhary, S. L. Johansson, R. K. Singh, and S. K. Batra. 2009. "Overexpression of macrophage inhibitory cytokine-1 induces metastasis of human prostate cancer cells through the fak-rhoa signaling pathway". Oncogene 2010 29:9 29(9):1293-1302.
349.Siddiqui, Jawed Akhtar, Parthasarathy Seshacharyulu, Sakthivel Muniyan, Ramesh Pothuraju, et al. 2022. "GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic ccl2 and rankl activation". Bone Research 2022 10:1 10(1):1-15.
350.Fournier, Pierrick G. J., Patricia Juárez, Guanglong Jiang, Gregory A. Clines, et al. 2015. "The tgf- β signaling regulator pmepal suppresses prostate cancer metastases to bone". Cancer Cell 27(6):809-21.
351.Peake, Bridgette F., Siobhan M. Eze, Lily Yang, Robert C. Castellino, and Rita Nahta. 2017. "Growth differentiation factor 15 mediates epithelial mesenchymal transition and invasion of breast cancers through igf-1r-foxm1 signaling". Oncotarget 8(55):94393.
352.Mascia, Francesca, Ilya Mazo, Wei Lun Alterovitz, Konstantinos Karagiannis, Wells W. Wu, et al. 2022. "In search of autophagy biomarkers in breast cancer: receptor status and drug agnostic transcriptional changes during autophagy flux in cell lines". PLOS ONE 17(1):e0262134.
353.Modi, Anupama, Purvi Purohit, Dipayan Roy, Jeewan Ram Vishnoi, Puneet Pareek, et al. 2022. "FOXM1 mediates gdf-15 dependent stemness and intrinsic drug resistance in breast cancer". Molecular Biology Reports 1:1-12.
354.Li, Yan Liang, Joseph T. Chang, Li Yu Lee, Kang Hsing Fan, Ya Ching Lu, Yi Chen Li, et al. 2017. "GDF15 contributes to radioresistance and cancer stemness of head and neck cancer by regulating cellular reactive oxygen species via a smad-associated signaling pathway". Oncotarget 8(1):1508.
355.Zhong, Shangwei, Ji Hak Jeong, Zhikang Chen, Zihua Chen, and Jun Li Luo. 2020. "Targeting tumor microenvironment by small-molecule inhibitors". Translational Oncology 13(1).
356.Jin, Ming Zhu, and Wei Lin Jin. 2020. "The updated landscape of tumor microenvironment and drug repurposing". Signal Transduction and Targeted Therapy 5(1).
357.Boyle, Glen M., Julie Pedley, Adam C. Martyn, Kelly J. Banducci, Geoffrey M. Strutton, et al. 2009. "Macrophage inhibitory cytokine-1 is overexpressed in
malignant melanoma and is associated with tumorigenicity". Journal of Investigative Dermatology 129(2):383-91.
358.Huh, Sung Jin, Chin Ying Chung, Arati Sharma, and Gavin P. Robertson. 2010. "Macrophage inhibitory cytokine-1 regulates melanoma vascular development". The American Journal of Pathology 176(6):2948-57.
359.Brown, David A., Robyn L. Ward, Philip Buckhaults, Tao Liu, Katharine E. Romans, et al. 2003. "MIC-1 serum level and genotype: associations with progress and prognosis of colorectal carcinoma." Clinical Cancer Research 9(7):2642-2650.
360.Waisman, Ari, Dominika Lukas, Björn E. Clausen, and Nir Yogev. 2016. "Dendritic cells as gatekeepers of tolerance". Seminars in Immunopathology 2016 39:2 39(2):153-63.
361.Zhou, Zhizhong, Weina Li, Yang Song, Lili Wang, Kuo Zhang, Jing Yang, et al. 2013. "Growth differentiation factor- 15 suppresses maturation and function of dendritic cells and inhibits tumor-specific immune response". PloS One 8(11).
362.Roth, Patrick, Markus Junker, Isabel Tritschler, Michel Mittelbronn, Yvonne Dombrowski, et al. 2010. "GDF-15 contributes to proliferation and immune escape of malignant gliomas". Clinical Cancer Research 16(15):3851-59.
363.Sahai, Erik, Igor Astsaturov, Edna Cukierman, David G. DeNardo, Mikala Egeblad, et al. 2020. "A framework for advancing our understanding of cancerassociated fibroblasts". Nature Reviews Cancer 2020 20:3 20(3):174-86.
364.Zhai, Yuanmei, Jing Zhang, Hui Wang, Wei Lu, Sihong Liu, Yehua Yu, et al. 2016. "Growth differentiation factor 15 contributes to cancer-associated fibroblasts-mediated chemo-protection of aml cells". Journal of Experimental and Clinical Cancer Research 35(1):1-12.
365.Corre, Jill, Elodie Labat, Nicolas Espagnolle, Benjamin Hébraud, Hervé AvetLoiseau, et al. 2012. "Bioactivity and prognostic significance of growth differentiation factor gdf15 secreted by bone marrow mesenchymal stem cells in multiple myeloma". Cancer Research 72(6):1395-1406.
366.Baek, Seung Joon, Kyung Su Kim, Jennifer B. Nixon, Leigh C. Wilson, et al. 2001a. "Cyclooxygenase inhibitors regulate the expression of a tgf- β superfamily member that has proapoptotic and antitumorigenic activities". Molecular Pharmacology 59(4):901-8.
367.Eling, Thomas E., Seung Joon Baek, Minsub Shim, and Chang Ho Lee. 2006. "NSAID activated gene (nag-1), a modulator of tumorigenesis". BMB Reports 39(6):649-55.
368.Hou, Chen-Pang, Ke-Hung Tsui, Kang-Shuo Chang, Hsin-Ching Sung, ShuYuan Hsu, et al. 2021. "Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15 ". Biomedical Journal.
369.Kim, J. M., J. P. Kosak, J. K. Kim, G. Kissling, D. R. Germolec, D. C. Zeldin, et al. 2013. "NAG-1/gdf15 transgenic mouse has less white adipose tissue and a reduced inflammatory response". Mediators of Inflammation 2013.
370.Baek, Seung Joon, Ryuji Okazaki, Seong Ho Lee, Jeanelle Martinez, Jong Sik Kim, et al. 2006. "Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia". Gastroenterology 131(5):1553-60.
371.Couture, Frederic E., Robert Sabbagh, Anna Kwiatkowska, Roxane Desjardins, et al. 2017. "PACE4 undergoes an oncogenic alternative splicing switch in cancer". Cancer Research 77(24):6863-79.
372.Lockhart, Samuel M., Vladimir Saudek, and Stephen O'Rahilly. 2020. "GDF15: a hormone conveying somatic distress to the brain". Endocrine Reviews 41(4):610-42.
373.Wiklund, Fredrik E., Anna M. Bennet, Patrik K. E. Magnusson, Ulrika K. Eriksson, et al. 2010. "Macrophage inhibitory cytokine-1 (mic-1/gdf15): a new marker of all-cause mortality". Aging Cell 9(6):1057-64.
374.Breit, Samuel N., Heiko Johnen, Andrew D. Cook, Vicky W. W. Tsai, Mohammad G. Mohammad, et al. 2011. "The tgf- β superfamily cytokine, mic1/gdf15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism". Growth Factors 29(5):187-95.
375.Shnaper, Sophie, Isabelle Desbaillets, David A. Brown, Anastasia Murat, et al. 2009. "Elevated levels of mic- $1 / \mathrm{gdf} 15$ in the cerebrospinal fluid of patients are associated with glioblastoma and worse outcome". International Journal of Cancer 125(11):2624-30.
376.Welsh, John B., Lisa M. Sapinoso, Suzanne G. Kern, David A. Brown, et al. 2003. "Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum". Proceedings of the National Academy of Sciences of the United States of America 100(6):3410-15.
377.Srour, Bernard, Rudolf Kaaks, Theron Johnson, Lucas Cory Hynes, et al. 2022. "Ageing-related markers and risks of cancer and cardiovascular disease: a prospective study in the epic-heidelberg cohort". European Journal of Epidemiology 37(1):49-65.
105. Windrichova, Jindra, Radka Fuchsova, Radek Kucera, Ondrej Topolcan, et al. 2017. "MIC1/gdf15 as a bone metastatic disease biomarker". Anticancer Research 37(3):1501-5.
379.Eccles, Suzanne A., and Danny R. Welch. 2007. "Metastasis: recent discoveries and novel treatment strategies". Lancet 369(9574):1742-57.
380.Xue, Hua, Bingjian Lü, Jun Zhang, Minliang Wu, Qiong Huang, Qiang Wu, et al. 2010. "Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach". Journal of Proteome Research 9(1):545-55.
381.Vocka, Michal, Daniel Langer, Vladimir Fryba, Jaromir Petrtyl, Tomas Hanus, et al. 2018. "Growth/differentiation factor 15 (gdf-15) as new potential serum marker in patients with metastatic colorectal cancer". Cancer Biomarkers 21(4):869-74.
382.Brown, David A., Fredrik Lindmark, Pär Stattin, Katarina Bälter, Hans Olov Adami, et al. 2009. "Macrophage inhibitory cytokine 1: a new prognostic marker in prostate cancer". Clinical Cancer Research 15(21):6658-64.
383.Weide, Benjamin, Tina Schäfer, Alexander Martens, Anastasia Kuzkina, Laura Uder, et al. 2016. "High gdf-15 serum levels independently correlate with poorer overall survival of patients with tumor-free stage iii and unresectable stage iv melanoma". Journal of Investigative Dermatology 136(12):2444-52.
384.Zhao, Dan, Xiaobing Wang, and Wei Zhang. 2018. "GDF15 predict platinum response during first-line chemotherapy and can act as a complementary diagnostic serum biomarker with ca 125 in epithelial ovarian cancer". BMC Cancer 18(1).
385.Izaguirre, Daisy I., Chun Wai Ng, Suet Yan Kwan, Eucharist H. Kun, et al. 2020. "The role of gdf15 in regulating the canonical pathways of the tumor microenvironment in wild-type p53 ovarian tumor and its response to chemotherapy". Cancers 12(10).
386.Galluzzi, Lorenzo, Laura Senovilla, Laurence Zitvogel, and Guido Kroemer. 2012. "The secret ally: immunostimulation by anticancer drugs". Nature Reviews Drug Discovery 2012 11:3 11(3):215-33.
387.Olson, Brian, Yadi Li, Yu Lin, Edison T. Liu, and Akash Patnaik. 2018. "Mouse models for cancer immunotherapy research". Cancer Discovery 8(11):1358-65.
388.Yang, Yiping. 2015. "Cancer immunotherapy: harnessing the immune system to battle cancer". The Journal of Clinical Investigation 125(9):3335-37.
389.Galluzzi, Lorenzo, Ilio Vitale, Stuart A. Aaronson, John M. Abrams, Dieter Adam, et al. 2018. "Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018". Cell Death \& Differentiation 2018 25:3 25(3):486-541.
390.Parra, Edwin R., Pamela Villalobos, Carmen Behrens, Mei Jiang, Apar Pataer, et al. 2018. "Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches". Journal for Immunotherapy of Cancer 6(1).
391.Hodge, James W., Charlie T. Garnett, Benedetto Farsaci, Claudia Palena, et al. 2013. "Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic t lymphocytes and is distinct from immunogenic cell death". International Journal of Cancer. 133(3):624.
392.Stolearenco, Veronica, Trine B. Levring, Helene Myrtue Nielsen, Lise Lindahl, et al. 2021. "The thioredoxin-interacting protein txnip is a putative tumour suppressor in cutaneous t-cell lymphoma". Dermatology 237(2):283-90.
393.Kwon, Hyo-Jung, Young-Suk Won, Hyun-Woo Suh, Jun-Ho Jeon, Yan Shao, et al. 2010a. "Vitamin d3 upregulated protein 1 suppresses tnf- α-induced nf-кb activation in hepatocarcinogenesis". Journal of Immunology 185(7):3980-89.
394.Morrison, Jennifer A., Laura A. Pike, Sharon B. Sams, Vibha Sharma, et al. 2014. "Thioredoxin interacting protein (txnip) is a novel tumor suppressor in thyroid cancer". Molecular Cancer 13(1):1-13.
395.Schmidt, H. Broder, Zane A. Jaafar, B. Erik Wulff, Jason J. Rodencal, Kibeom Hong, et al. 2022. "Oxaliplatin disrupts nucleolar function through biophysical disintegration". Cell Reports 41(6):111629.
396.Lin, Shengchen, Chongbiao Huang, Venugopal Gunda, Jianwei Sun, Srikumar P. Chellappan, et al. 2019. "Fascin controls metastatic colonization and mitochondrial oxidative phosphorylation by remodeling mitochondrial actin filaments". Cell Reports 28(11).
397.Wu, Kerui, Jiamei Feng, Feng Lyu, Fei Xing, Sambad Sharma, et al. 2021. "Exosomal mir-19a and ibsp cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer". Nature Communications 12(1).
398.Zhou, Xingang, Tingyu Liang, Jinhai Deng, Kenrick Ng, Man Li, et al. 2021. "Differential and prognostic significance of hoxb7 in gliomas". Frontiers in Cell and Developmental Biology.
106. Yao, Anqi, Sarah J. Storr, Khaled Al-hadyan, Ruman Rahman, Stuart Smith, et al. 2020. "Thioredoxin system protein expression is associated with poor clinical outcome in adult and paediatric gliomas and medulloblastomas". Molecular Neurobiology 57(7).
400.Zhang, Siwei, Suha Deen, Sarah J. Storr, Anqi Yao, and Stewart G. Martin. 2019. "Expression of syk and map4 proteins in ovarian cancer". Journal of Cancer Research and Clinical Oncology 145(4).
401.Vicencio, J. M., R. Evans, R. Green, Z. Quezada, Y. Yarden, G. Sala, and T. Ng. 2022. "Osimertinib and anti-her3 combination therapy engages immune dependent tumor toxicity via sting activation in trans". Cell Death \& Disease 13(3).
402.Li, Huipeng, Elise T. Courtois, Debarka Sengupta, Yuliana Tan, Kok Hao Chen, et al. 2017. "Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors". Nature Genetics 49(5).
403.Sung, Hyuna, Jacques Ferlay, Rebecca L. Siegel, Mathieu Laversanne, Isabelle Soerjomataram, et al. 2021. "Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries". CA: A Cancer Journal for Clinicians 71(3):209-49.
404.André, Thierry, and Romain Cohen. 2022. "Immune checkpoint inhibitors in colorectal cancer: dream and reality". The Lancet Gastroenterology \& Hepatology 7(1):4-6.
405.Schilsky, Richard L. 2018. "A new idea in adjuvant chemotherapy for colon cancer". New England Journal of Medicine 378(13):1242-44.
406.Dilruba, Shahana, and Ganna V. Kalayda. 2016. "Platinum-based drugs: past, present and future". Cancer Chemotherapy and Pharmacology 77(6).
407.Frezza, Michael, Sarmad Hindo, Di Chen, Andrew Davenport, Sara Schmitt, et al. 2010. "Novel metals and metal complexes as platforms for cancer therapy". Current Pharmaceutical Design 16(16):1813.
408.Arango, D., A. J. Wilson, Q. Shi, G. A. Corner, M. J. Arañes, C. Nicholas, et al. 2004. "Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells". British Journal of Cancer 2004 91:11 91(11):1931-46.
409.Sumpter, K., and D. Cunningham. 2000. "Combination chemotherapy and colorectal cancer." Seminars in Oncology 27:105-11.
410.Wang, Dong, and Stephen J. Lippard. 2005. "Cellular processing of platinum anticancer drugs". Nature Reviews Drug Discovery 2005 4:4 4(4):307-20.
411.Alcindor, T., and N. Beauger. 2011. "Oxaliplatin: a review in the era of molecularly targeted therapy". Current Oncology 18(1).
412.Laurent, Alexis, Carole Nicco, Christiane Chéreau, Claire Goulvestre, Jérôme Alexandre, et al. 2005. "Controlling tumor growth by modulating endogenous production of reactive oxygen species". Cancer Research 65(3):948-56.
413.Woynarowski, Jan M., Sandrine Faivre, Maryanne C. S. Herzig, Brenda Arnett, et al. 2000. "Oxaliplatin-induced damage of cellular dna". Molecular Pharmacology 58(5).
414.Faivre, Sandrine, Denise Chan, Richard Salinas, Barbara Woynarowska, and Jan M. Woynarowski. 2003. "DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells". Biochemical Pharmacology 66(2).
415.Brenneisen, Peter, and Andreas S. Reichert. 2018. "Nanotherapy and reactive oxygen species (ros) in cancer: a novel perspective". Antioxidants 7(2).
416.Conklin, Kenneth A. 2004. "Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness". Integrative Cancer Therapies 3(4).
417.Yang, Haotian, Rehan M. Villani, Haolu Wang, Matthew J. Simpson, Michael S. Roberts, et al. 2018. "The role of cellular reactive oxygen species in cancer chemotherapy". Journal of Experimental and Clinical Cancer Research 37(1).
418.Wu, Feng, Yaqian Du, Jiani Yang, Boyang Shao, Zhensheng Mi, Yuanfei Yao, et al. 2022. "Peroxidase-like active nanomedicine with dual glutathione
depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death". ACS Nano 16(3).
419.Perillo, Bruno, Marzia Di Donato, Antonio Pezone, Erika Di Zazzo, Pia Giovannelli, et al. 2020. "ROS in cancer therapy: the bright side of the moon". Experimental \& Molecular Medicine 2020 52:2 52(2):192-203.
420.Tomicic, Maja T., Franziska Krämer, Alexandra Nguyen, Christian Schwarzenbach, and Markus Christmann. 2021. "Oxaliplatin-induced senescence in colorectal cancer cells depends on p14arf-mediated sustained p53 activation". Cancers 13(9).
421.Murciano-Goroff, Yonina R., Allison Betof Warner, and Jedd D. Wolchok. 2020. "The future of cancer immunotherapy: microenvironment-targeting combinations". Cell Research 2020 30:6 30(6):507-19.
422.Salas-Benito, Diego, José L. Pérez-Gracia, Mariano Ponz-Sarvisé, María E. Rodriguez-Ruiz, Iván Martínez-Forero, et al. 2021. "Paradigms on immunotherapy combinations with chemotherap". Cancer Discovery 11(6):1353-67.
423.Kelly, Ronan J., Jaffer A. Ajani, Jaroslaw Kuzdzal, Thomas Zander, Eric Van Cutsem, et al. 2021. "Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer". New England Journal of Medicine 384(13):1191-1203.
424.Doki, Yuichiro, Jaffer A. Ajani, Ken Kato, Jianming Xu, Lucjan Wyrwicz, et al. 2022. "Nivolumab combination therapy in advanced esophageal squamouscell carcinoma". New England Journal of Medicine 386(5):449-62.
425.Forde, Patrick M., Jonathan Spicer, Shun Lu, Mariano Provencio, Tetsuya Mitsudomi, et al. 2022. "Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer". New England Journal of Medicine.
426.Janjigian, Yelena Y., Kohei Shitara, Markus Moehler, Marcelo Garrido, et al. 2021. "First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (checkmate 649): a randomised, open-label, phase 3 trial". Lancet 398(10294):27-40.
427.Gonzalez-Aparicio, Manuela, Pilar Alzuguren, Itsaso Mauleon, Jose MedinaEcheverz, et al. 2011. "Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice". Gut 60(3):34149.
428.Berg, Kaja C. G., Peter W. Eide, Ina A. Eilertsen, Bjarne Johannessen, et al. 2017. "Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies". Molecular Cancer 16(1):1-16.
429.Tome, Margaret E., David B. F. Johnson, Lisa M. Rimsza, Robin A. Roberts, et al. 2005. "A redox signature score identifies diffuse large b-cell lymphoma patients with a poor prognosis". Blood 106(10):3594-3601.
430.Lin, Feiyan, Peili Zhang, Zhigui Zuo, Fule Wang, Ruichun Bi, Wenjing Shang, et al. 2017. "Thioredoxin-1 promotes colorectal cancer invasion and metastasis through crosstalk with s100p" Cancer Letters 401:1-10.
431.Gao, Yuan, Jin Chun Qi, Xiaoyu Li, Jian Ping Sun, Hong Ji, and Qing Huai Li. 2020. "Decreased expression of txnip predicts poor prognosis in patients with clear cell renal cell carcinoma". Oncology Letters 19(1):763-70.
432.Jensen, Caleb, and Yong Teng. 2020. "Is it time to start transitioning from 2d to 3d cell culture?". Frontiers in Molecular Biosciences 7:33.
433.Zoetemelk, Marloes, Magdalena Rausch, Didier J. Colin, Olivier Dormond, and Patrycja Nowak-Sliwinska. 2019. "Short-term 3d culture systems of various complexity for treatment optimization of colorectal carcinoma". Scientific Reports 9(1).
434.Sargenti, Azzurra, Francesco Musmeci, Francesco Bacchi, Cecilia Delprete, et al. 2020. "Physical characterization of colorectal cancer spheroids and evaluation of nk cell infiltration through a flow-based analysis". Frontiers in Immunology 11:564887.
435.Varesano, Serena, Maria Raffaella Zocchi, and Alessandro Poggi. 2018. "Zoledronate triggers v $\delta 2 \mathrm{t}$ cells to destroy and kill spheroids of colon carcinoma: quantitative image analysis of three-dimensional cultures". Frontiers in Immunology 9(MAY):998.
436.Stadler, Mira, Martin Scherzer, Stefanie Walter, Silvio Holzner, Karoline Pudelko, et al. 2018. "Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells". Scientific Reports 2018 8:1 8(1):1-16.
437.Schell, John C., Kristofor A. Olson, Lei Jiang, Amy J. Hawkins, Jonathan G. Van Vranken, et al. 2014. "A role for the mitochondrial pyruvate carrier as a repressor of the warburg effect and colon cancer cell growth". Molecular Cell 6;56(3):400-413.
438.Li, Xingnan, Lincoln Nadauld, Akifumi Ootani, David C. Corney, Reetesh K. Pai, et al. 2014. "Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture". Nature Medicine 2014 20:7 20(7):769-77.
439.Aubry, Laurence, and Gérard Klein. 2013. "True arrestins and arrestin-fold proteins: a structure-based appraisal". Progress in Molecular Biology and Translational Science 118:21-56.
440.Hirsch, Joel A., Carsten Schubert, Vsevolod V. Gurevich, and Paul B. Sigler. 1999. "The 2.8 a crystal structure of visual arrestin: a model for arrestin's regulation". Cell 97(2):257-69.
441.Daaka, Yehia, Louis M. Luttrell, Seungkirl Ahn, Gregory J. Della Rocca, et al. 1998. "Essential role for g protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase". The Journal of Biological Chemistry 273(2):685-88.
442.Farooq, Ammara Usman, Kelly Gembus, Jarrod J. Sandow, Andrew Webb, et al. 2022. "K-29 linked ubiquitination of arrdc4 regulates its function in extracellular vesicle biogenesis". Journal of Extracellular Vesicles 11(2).
443.Foot, Natalie J., Macarena B. Gonzalez, Kelly Gembus, Pamali Fonseka, Jarrod J. Sandow, et al. 2021. "Arrdc4-dependent extracellular vesicle biogenesis is required for sperm maturation". Journal of Extracellular Vesicles 10(8).
444.Wang, Qiyu, Jiujiu Yu, Tatenda Kadungure, Joseph Beyene, Hong Zhang, and Quan Lu. 2018. "ARMMs as a versatile platform for intracellular delivery of macromolecules". Nature Communications 9(1).
445.Wang, Hao, Wei Wei, Zhong Yuan Zhang, Yao Liu, Bin Shi, Wen Zhong, et al. 2021. "TCF4 and hur mediated-mettl14 suppresses dissemination of colorectal cancer via n6-methyladenosine-dependent silencing of arrdc4". Cell Death \& Disease 13(1).
446.Ahn, Byungyong, Shibiao Wan, Natasha Jaiswal, Rick B. Vega, Donald E. Ayer, et al.2019. "MondoA drives muscle lipid accumulation and insulin resistance". JCI Insight 5(15).
447.Schulze, P. Christian, Gilles W. De Keulenaer, Jun Yoshioka, Kimberly A. Kassik, et al. 2002. "Vitamin d3-upregulated protein-1 (vdup-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin". Circulation Research 91(8):689-95.
448.Spindel, Oded N., Chen Yan, and Bradford C. Berk. 2012. "Thioredoxininteracting protein mediates nuclear-to-plasma membrane communication: role in vascular endothelial growth factor 2 signaling". Arteriosclerosis, Thrombosis, and Vascular Biology 32(5):1264-70.
449.Saxena, Geetu, Junqin Chen, and Anath Shalev. 2010. "Intracellular shuttling and mitochondrial function of thioredoxin- interacting protein". Journal of Biological Chemistry 285(6):3997-4005.
450.Chen, Yiting, Jieling Ning, Wenjie Cao, Shuanglian Wang, Tao Du, Jiahui Jiang, et al. 2020. "Research progress of txnip as a tumor suppressor gene participating in the metabolic reprogramming and oxidative stress of cancer cells in various cancers". Frontiers in Oncology 10:1861.
451.Kondo, Norihiko, Hajime Nakamura, Hiroshi Masutani, and Junji Yodoi. 2006. "Redox regulation of human thioredoxin network". Antioxidants \& Redox Signaling 8(9-10):1881-90.
452.Shi, Yan, Bin Tang, Pei Wu Yu, Bo Tang, Ying Xue Hao, et al. 2012. "Autophagy protects against oxaliplatin-induced cell death via er stress and ros in caco-2 cells". PLOS ONE 7(11):e51076.
453.Rottenberg, Sven, Carmen Disler, and Paola Perego. 2020. "The rediscovery of platinum-based cancer therapy". Nature Reviews Cancer 2020 21:1 21(1):3750.
454.Ogata, Fernando Toshio, Wagner Luiz Batista, Adriano Sartori, Tarsis Ferreira Gesteira, et al. 2013. "Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (txnip) expression and thioredoxin-1 (trx-1) nuclear localization". PloS One 8(12).
455.Santoro, Valeria, Ruochen Jia, Hannah Thompson, Anke Nijhuis, Rosemary Jeffery, et al. 2016. "Role of reactive oxygen species in the abrogation of oxaliplatin activity by cetuximab in colorectal cancer". JNCI Journal of the National Cancer Institute 108(6):394.
456.Jeong, Soyeon, Bu Gyeom Kim, Dae Yeong Kim, Bo Ram Kim, Jung Lim Kim, et al. 2019. "Cannabidiol overcomes oxaliplatin resistance by enhancing nos3and sod2-induced autophagy in human colorectal cancer cells". Cancers 2019, Vol. 11, Page 781 11(6):781.
457.Wilde, Blake R., Zhizhou Ye, Tian Yeh Lim, and Donald E. Ayer. 2019. "Cellular acidosis triggers human mondoa transcriptional activity by driving mitochondrial atp production". ELife 8:e40199.
458.Richards, Paul, Latif Rachdi, Masaya Oshima, Piero Marchetti, Marco Bugliani, et al. 2018. "MondoA is an essential glucose-responsive transcription factor in human pancreatic β-cells". Diabetes 67(3):461-72.
459.Meng, Jun, Zhenyu Yao, Yaqing He, Renli Zhang, Yanwei Zhang, et al. 2017. "Arrdc4 regulates enterovirus 71 -induced innate immune response by promoting k63 polyubiquitination of mda5 through trim65". Cell Death and Disease 8(6).
460.Xu, Xinhui, Jinliang Gao, Wei Dai, Danyang Wang, Jian Wu, and Jinke Wang. 2019. "Gene activation by a crispr-assisted trans enhancer". ELife 8.
461.Colasante, Gaia, Gabriele Lignani, Simone Brusco, Claudia Di Berardino, Jenna Carpenter, et al. 2019. "DCas9-based scn1a gene activation restores
inhibitory interneuron excitability and attenuates seizures in dravet syndrome mice". Molecular Therapy 28(1):235-53.
462.Böhm, Sybille, Victoria Splith, Lisa Maria Riedmayr, René Dominik Rötzer, et al. 2020. "A gene therapy for inherited blindness using dcas9-vpr-mediated transcriptional activation". Science Advances 6(34).
463.Kiani, Samira, Alejandro Chavez, Marcelle Tuttle, Richard N. Hall, Raj Chari, et al. 2015. "Cas9 grna engineering for genome editing, activation and repression". Nature Methods 2015 12:11 12(11):1051-54.
464.Dominguez, Antonia A., Wendell A. Lim, and Lei S. Qi. 2015. "Beyond editing: repurposing crispr-cas9 for precision genome regulation and interrogation". Nature Reviews Molecular Cell Biology 2015 17:1 17(1):5-15.
465.Maeder, Morgan L., Samantha J. Linder, Vincent M. Cascio, Yanfang Fu, et al. 2013. "CRISPR rna-guided activation of endogenous human genes". Nature Methods 2013 10:10 10(10):977-79.
466.Chavez, Alejandro, Marcelle Tuttle, Benjamin W. Pruitt, Ben Ewen-Campen, et al. 2016. "Comparison of cas9 activators in multiple species". Nature Methods 2016 13:7 13(7):563-67.
467.Chavez, Alejandro, Jonathan Scheiman, Suhani Vora, Benjamin W. Pruitt, et al. 2015. "Highly efficient cas9-mediated transcriptional programming". Nature Methods 2015 12:4 12(4):326-28.
468.Corazzari, Marco, Mara Gagliardi, Gian M. Fimia, and Mauro Piacentini. 2017. "Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate". Frontiers in Oncology 7(APR):78.
469.Hetz, Claudio. 2012. "The unfolded protein response: controlling cell fate decisions under er stress and beyond". Nature Reviews Molecular Cell Biology 2012 13:2 13(2):89-102.
470.Walter, Peter, and David Ron. 2011. "The unfolded protein response: from stress pathway to homeostatic regulation". Science 334(6059):1081-86.
471.Salaroglio, Iris C., Elisa Panada, Enrico Moiso, Ilaria Buondonno, Paolo Provero, et al. 2017. "PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy". Molecular Cancer 16(1):113.
472.Xu, Duo, Shun Qing Liang, Haitang Yang, Ursina Lüthi, Carsten Riether, et al. 2018. "Increased sensitivity to apoptosis upon endoplasmic reticulum stressinduced activation of the unfolded protein response in chemotherapy-resistant malignant pleural mesothelioma". British Journal of Cancer 2018 119:1 119(1):65-75.
473.Ashburner, Michael, Catherine A. Ball, Judith A. Blake, David Botstein, et al. 2000. "Gene ontology: tool for the unification of biology". Nature Genetics 2000 25:1 25(1):25-29.
107. You, Kwontae, Lingfei Wang, Chih Hung Chou, Kai Liu, Toru Nakata, et al. 2021. "QRICH1 dictates the outcome of er stress through transcriptional control of proteostasis". Science 371(6524).
475.Pan, Min, Fengping Zhang, Kai Qu, Chang Liu, and Jingyao Zhang. 2022. "TXNIP: a double-edged sword in disease and therapeutic outlook". Oxidative Medicine and Cellular Longevity 2022:1-14.
476.Zhang, Xian, Jian Hua Zhang, Xu Yang Chen, Qing Hua Hu, Ming Xing Wang, et al. 2015. "Reactive oxygen species-induced txnip drives fructose-mediated hepatic inflammation and lipid accumulation through nlrp3 inflammasome activation". Antioxidants and Redox Signaling 22(10).
477.Zhao, Qing, Xudong Che, Hongxia Zhang, Pianpian Fan, Guanping Tan, Liu Liu, et al. 2017. "Thioredoxin-interacting protein links endoplasmic reticulum stress to inflammatory brain injury and apoptosis after subarachnoid haemorrhage". Journal of Neuroinflammation 14(1).
478.Hanahan, Douglas, and Robert A. Weinberg. 2000. "The hallmarks of cancer". Cell 100(1):57-70.
479.Hanahan, Douglas, and Robert A. Weinberg. 2011. "Hallmarks of cancer: the next generation". Cell 144(5):646-74.
480.Hanahan, Douglas. 2022. "Hallmarks of cancer: new dimensions". Cancer Discovery 12(1):31-46.
481.Hay, Nissim. 2016. "Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?". Nature Reviews Cancer 2016 16:10 16(10):63549.
482.Huang, Chung Yen, Ching Ying Huang, Yu Chen Pai, Been Ren Lin, et al. 2019. "Glucose metabolites exert opposing roles in tumor chemoresistance". Frontiers in Oncology 9:1282.
483.O. Warburg. 1956. "On respiratory impairment in cancer cells" Science 124(3215):269-70.
484.Wang, Zi Hao, Wen Bei Peng, Pei Zhang, Xiang Ping Yang, and Qiong Zhou. 2021. "Lactate in the tumour microenvironment: from immune modulation to therapy". EBioMedicine 73.
485.Parks, Scott K., Wolfgang Mueller-Klieser, and Jacques Pouysségur. 2020. "Lactate and acidity in the cancer microenvironment". Annual Review Cancer Biology.
486.Hirschhaeuser, Franziska, Ulrike G. A. Sattler, and Wolfgang Mueller-Klieser. 2011. "Lactate: a metabolic key player in cancer". Cancer Research 71(22):6921-25.
487.Zappasodi, Roberta, Inna Serganova, Ivan J. Cohen, Masatomo Maeda, Masahiro Shindo, et al. 2021. "CTLA-4 blockade drives loss of treg stability in glycolysis-low tumours". Nature 2021 591:7851 591(7851):652-58.
488.Jones, Russell G., and Craig B. Thompson. n.d. "Tumor suppressors and cell metabolism: a recipe for cancer growth". Genes Development.
489.Barron, Carly C., Philip J. Bilan, Theodoros Tsakiridis, and Evangelia Tsiani. 2016. "Facilitative glucose transporters: implications for cancer detection, prognosis and treatment". Metabolism 65(2):124-39.
490.Sakashita, M., N. Aoyama, R. Minami, S. Maekawa, K. Kuroda, D. Shirasaka, 2001. "Glut1 expression in t 1 and t 2 stage colorectal carcinomas: its relationship to clinicopathological features". European Journal of Cancer 37(2):204-9.
491.De Wit, Meike, Connie R. Jimenez, Beatriz Carvalho, Jeroen A. M. Belien, et al. 2012. "Cell surface proteomics identifies glucose transporter type 1 and prion protein as candidate biomarkers for colorectal adenoma-to-carcinoma progression". Gut 61(6):855-64.
492.Oh, Sunhwa, Hyungjoo Kim, Kee Soo Nam, and Incheol Shin. 2017. "Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells". BMB Reports 50(3):132-37.
493.Wu, Qin, Wail ba-alawi, Genevieve Deblois, Jennifer Cruickshank, Shili Duan, et al. 2020. "GLUT1 inhibition blocks growth of rb1-positive triple negative breast cancer". Nature Communications 2020 11:1 11(1):1-12.
494.Shin, Eunah, and Ja Seung Koo. 2021. "Glucose metabolism and glucose transporters in breast cancer". Frontiers in Cell and Developmental Biology 9:2404.
495.Cooper, R., S. Sarioğlu, S. Sökmen, M. Füzün, A. Küpelioğlu, H. Valentine, et al. 2003. "Glucose transporter-1 (glut-1): a potential marker of prognosis in rectal carcinoma?". British Journal of Cancer 2003 89:5 89(5):870-76.
496.Haber, Richard S., Allison Rathan, Kenneth R. Weiser, Alla Pritsker, Steven H. Itzkowitz, et al. n.d. "GLUT1 glucose transporter expression in colorectal carcinoma a marker for poor prognosis background. malignant cells exhibit increased glycolytic metabolism". Cancer 2-e.
497.Masoud, Georgina N., and Wei Li. 2015. "HIF-1 α pathway: role, regulation and intervention for cancer therapy". Acta Pharmaceutica Sinica B 5(5):37889.
498.Li, Ling, Yingchun Liang, Lei Kang, Yang Liu, Shan Gao, et al. 2018. "Transcriptional regulation of the warburg effect in cancer by six1". Cancer Cell 33(3):368-385.e7.
499.Cha, Pu Hyeon, Jeong Ha Hwang, Dong Kyu Kwak, Eunjin Koh, Kyung Sup Kim, et al. 2020. "APC loss induces warburg effect via increased pkm2 transcription in colorectal cancer". British Journal of Cancer 2020 124:3 124(3):634-44.
500.Sasaki, Hidefumi, Masayuki Shitara, Keisuke Yokota, Yu Hikosaka, Satoru Moriyama, et al. 2012. "Overexpression of glut1 correlates with kras mutations in lung carcinomas". Molecular Medicine Reports 5(3):599-602.
501.Osthus, Rebecca C., Hyunsuk Shim, Sunkyu Kim, Qing Li, Rahul Reddy, et al. 2000. "Deregulation of glucose transporter 1 and glycolytic gene expression by c-myc". Journal of Biological Chemistry 275(29):21797-800.
502.Schwartzenberg-Bar-Yoseph, Fabiana, Michai Armoni, and Eddy Karnieli. 2004. "The tumor suppressor p53 down-regulates glucose transporters glut 1 and glut4 gene expression". Cancer Research 64(7):2627-33.
503.Liu, Min, Jun Gao, Qin Huang, Yanfeng Jin, and Zhonghua Wei. 2016. "Downregulating microrna-144 mediates a metabolic shift in lung cancer cells by regulating glut 1 expression". Oncology Letters 11(6):3772-76.
504.Qu, Wei, Shi mei Ding, Gang Cao, She jiao Wang, Xiang hong Zheng, et al. 2016. "MiR-132 mediates a metabolic shift in prostate cancer cells by targeting glut1". FEBS Open Bio 6(7):735-41.
505.King, Ben C., Jonathan L. S. Esguerra, Ewelina Golec, Lena Eliasson, et al. 2016. "CD46 activation regulates mir-150-mediated control of glut1 expression and cytokine secretion in human cd4+ t cells". The Journal of Immunology 196(4):1636-45.
506.Lopez-Serra, Paula, Miguel Marcilla, Alberto Villanueva, Antonio RamosFernandez, et al. 2014. "A derl3-associated defect in the degradation of slc2a1 mediates the warburg effect". Nature Communications 2014 5:1 5(1):1-14.
507.Chen, Yiting, Xueping Feng, Yuhao Yuan, Jiahui Jiang, Peihe Zhang, et al. 2022. "Identification of a novel mechanism for reversal of doxorubicin-induced chemotherapy resistance by txnip in triple-negative breast cancer via promoting reactive oxygen-mediated dna damage". Cell Death \& Disease 2022 13:4 13(4):1-13.
508.Knoll, Susanne, Katharina Fürst, Bhavani Kowtharapu, Ulf Schmitz, Stephan Marquardt, et al. 2014. "E2F1 induces mir-224/452 expression to drive emt through txnip downregulation". EMBO Reports 15(12):1315-29.
509.Chen, Qiong, Tao Liu, Yi Bao, Tangliang Zhao, Jie Wang, Hui Wang, et al. 2020. "CircRNA crapgef5 inhibits the growth and metastasis of renal cell carcinoma via the mir-27a-3p/txnip pathway". Cancer Letters 469:68-77.
510.Park, Shin Young, Xi Shi, Jinjiang Pang, Chen Yan, and Bradford C. Berk. 2013. "Thioredoxin-interacting protein mediates sustained vegfr2 signaling in endothelial cells required for angiogenesis". Arteriosclerosis, Thrombosis, and Vascular Biology 33(4).
511.Dong, Yang, Rongfu Tu, Hudan Liu, and Guoliang Qing. 2020. "Regulation of cancer cell metabolism: oncogenic myc in the driver's seat". Signal Transduction and Targeted Therapy 2020 5:1 5(1):1-11.
108. Younes, Mamoun, Lia V. Lechago, Jacqueline R. Somoano, Moni Mosharaf, and Juan Lechago. 1996. "Wide expression of the human erythrocyte glucose transporter glut1 in human cancers." Cancer Research 56(5):1164-67.
513.Wang, Nan, Shuo Zhang, Yafei Yuan, Hanwen Xu, Elisabeth Defossa, et al. 2022. "Molecular basis for inhibiting human glucose transporters by exofacial inhibitors". Nature Communications 2022 13:1 13(1):1-10.
514.Zaidieh, Tarek, James R. Smith, Karen E. Ball, and Qian An. 2019. "ROS as a novel indicator to predict anticancer drug efficacy". BMC Cancer 19(1):1-14.
515.Yoshioka, Jun, P. Christian Schulze, Mihaela Cupesi, Jeremy D. Sylvan, Catherine MacGillivray, et al. 2004. "Thioredoxin-interacting protein controls cardiac hypertrophy through regulation of thioredoxin activity". Circulation 109(21):2581-86.
516.Wang, Yanlin, Gilles W. De Keulenaer, and Richard T. Lee. 2002. "Vitamin d3-up-regulated protein-1 is a stress-responsive gene that regulates cardiomyocyte viability through interaction with thioredoxin". Journal of Biological Chemistry 277(29):26496-500.
517.Zhang, Shang Min, Wesley L. Cai, Xiaoni Liu, Durga Thakral, Jiesi Luo, et al. 2021. "KDM5B promotes immune evasion by recruiting setdb1 to silence retroelements". Nature 598(7882).
518.Swanson, Karen V., Meng Deng, and Jenny P. Y. Ting. 2019. "The nlrp3 inflammasome: molecular activation and regulation to therapeutics". Nature Reviews Immunology 2019 19:8 19(8):477-89.
519.Kelley, Nathan, Devon Jeltema, Yanhui Duan, and Yuan He. 2019. "The nlrp3 inflammasome: an overview of mechanisms of activation and regulation". International Journal of Molecular Sciences 20(13).
520.Zhou, Junyi, Tuoyang Li, Hao Chen, Yingming Jiang, Yandong Zhao, et al. 2022. "ADAMTS10 inhibits aggressiveness via jak/stat/c-myc pathway and reprograms macrophage to create an anti-malignant microenvironment in gastric cancer". Gastric Cancer 25(6):1002-16.
521.Abdelsaid, Mohammed A., Suraporn Matragoon, and Azza B. El-Remessy. 2013. "Thioredoxin-interacting protein expression is required for vegf-mediated angiogenic signal in endothelial cells". Antioxidants and Redox Signaling 19(18).
522.Crusz, Shanthini M., and Frances R. Balkwill. 2015. "Inflammation and cancer: advances and new agents". Nature Reviews Clinical Oncology 12(10).
523.Liu, Wei, Jun Gu, Jun Qi, Xiao Ning Zeng, Juan Ji, et al.2015. "Lentinan exerts synergistic apoptotic effects with paclitaxel in a549 cells via activating ros-txnip-nlrp3 inflammasome". Journal of Cellular and Molecular Medicine 19(8):1949-55.
524.Davis, Beckley K., and Jenny Pan Yun Ting. 2010. "NLRP3 has a sweet tooth". Nature Immunology 2010 11:2 11(2):105-6.
525.Burton, Eric M., Raphaela Goldbach-Mansky, and Sumita Bhaduri-McIntosh. 2020. "A promiscuous inflammasome sparks replication of a common tumor virus". Proceedings of the National Academy of Sciences of the United States of America 117(3):1722-30.
526.Sharma, Bhesh Raj, and Thirumala Devi Kanneganti. 2021. "NLRP3 inflammasome in cancer and metabolic diseases". Nature Immunology 2021 22:5 22(5):550-59.
527.Kaplanov, Irena, Yaron Carmi, Rachel Kornetsky, Avishai Shemesh, Galina V. Shurin, et al. 2019. "Blocking il-1 β reverses the immunosuppression in mouse breast cancer and synergizes with anti-pd-1 for tumor abrogation". Proceedings of the National Academy of Sciences of the United States of America 116(4):1361-69.
528.Allen, Irving C., Erin Mc Elvania Tekippe, Rita Marie T. Woodford, Joshua M. Uronis, et al. 2010. "The nlrp3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer". Journal of Experimental Medicine 207(5):1045-56.
529.Dixon, Karen O., Marcin Tabaka, Markus A. Schramm, Sheng Xiao, Ruihan Tang, et al. 2021. "TIM-3 restrains anti-tumour immunity by regulating inflammasome activation". Nature 2021 595:7865 595(7865):101-6.
530.Baek, Seung Joon, Kyung Su Kim, Jennifer B. Nixon, Leigh C. Wilson, et al. 2001a. "Cyclooxygenase inhibitors regulate the expression of a tgf- β superfamily member that has proapoptotic and antitumorigenic activities". Molecular Pharmacology 59(4):901-8.
531.Tiwari, Kirti Kumar, Bhagavatula Moorthy, and Krithika Lingappan. 2015. "Role of gdf15 (growth and differentiation factor 15) in pulmonary oxygen toxicity". Toxicology in Vitro 29(7):1369-76.
532.Han, Eun Soo, Florian L. Muller, Viviana I. Pérez, Wenbo Qi, Huiyun Liang, et al. 2008. "The in vivo gene expression signature of oxidative stress". Physiological Genomics 34(1):112-26.
533.Wischhusen, Jörg, Ignacio Melero, and Wolf Herman Fridman. 2020. "Growth/differentiation factor-15 (gdf-15): from biomarker to novel targetable immune checkpoint". Frontiers in Immunology 11:951.
534.Adela, Ramu, and Sanjay K. Banerjee. 2015. "GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective". Journal of Diabetes Research 2015.
535.Murielle, Mimeault, and Surinder K. Batra. 2010. "Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer". Journal of Cellular Physiology 224(3):626-35.
536.Ago, Tetsuro, and Junichi Sadoshima. 2006. "GDF15, a cardioprotective tgf- β superfamily protein". Circulation Research 98(3):294-97.
537.Gao, Yunge, Ying Xu, Shuhui Zhao, Luomeng Qian, Tingting Song, et al. 2021. "Growth differentiation factor-15 promotes immune escape of ovarian cancer via targeting cd44 in dendritic cells". Experimental Cell Research 402(1):112522.
538.Harb, Hani, Emmanuel Stephen-Victor, Elena Crestani, Mehdi Benamar, Amir Massoud, et al. 2020. "A regulatory t cell notch4-gdf15 axis licenses tissue inflammation in asthma". Nature Immunology 2020 21:11 21(11):1359-70.
539.Xu, Jian, Thomas R. Kimball, John N. Lorenz, David A. Brown, Asne R. Bauskin, 2006. "GDF15/mic-1 functions as a protective and antihypertrophic factor released from the myocardium in association with smad protein activation". Circulation Research 98(3):342-50.
540.He, Ruizhe, Juanjuan Shi, Dapeng Xu, Jian Yang, Yang Shen, Yong-Sheng Jiang, et al. 2022. "SULF2 enhances gdf15-smad axis to facilitate the initiation and progression of pancreatic cancer". Cancer Letters 538:215693.
541.Crunkhorn, Sarah. 2020. "Blocking gdf15 signalling reverses cachexia". Nature Reviews. Drug Discovery 19(9):588.
542.Nizar, S., J. Copier, B. Meyer, M. Bodman-Smith, C. Galustian, D. Kumar, and A. Dalgleish. 2009. "T-regulatory cell modulation: the future of cancer immunotherapy?". British Journal of Cancer 2009 100:11 100(11):1697-1703.
543.Schmitt, Erica G., and Calvin B. Williams. 2013. "Generation and function of induced regulatory t cells". Frontiers in Immunology.
544.Workman, Creg J., Andrea L. Szymczak-Workman, Lauren W. Collison, et al. 2009. "The development and function of regulatory t cells". Cellular and Molecular Life Sciences 66(16).
545.Shevach, Ethan M., and Angela M. Thornton. 2014. "TTregs, ptregs, and itregs: similarities and differences". Immunological Reviews 259(1).
546.Curotto de Lafaille, Maria A., and Juan J. Lafaille. 2009. "Natural and adaptive foxp3+ regulatory t cells: more of the same or a division of labor?". Immunity 30(5).
547.Li, Ming O., and Richard A. Flavell. 2008. "TGF- β : a master of all t cell trades". Cell 134(3).
548.Dwivedi, M., Tiwari, S., Kemp, E. H., Begum, R. \& Bhakta, C. G. 2022. "Implications of regulatory t cells in anti-cancer immunity: from pathogenesis to therapeutics". Heliyon 8(8):e10450.
549.Huppert, Laura A., Michael D. Green, Luke Kim, Christine Chow, Yan Leyfman, et al. 2022. "Tissue-specific tregs in cancer metastasis: opportunities for precision immunotherapy". Cellular and Molecular Immunology 19(1):33.
$550 . \mathrm{He}$, Xing, and Chenqi Xu. 2020. "Immune checkpoint signaling and cancer immunotherapy". Cell Research 30(8).
551.Kim, Ryungsa, Manabu Emi, Kazuaki Tanabe, and Koji Arihiro. 2006. "Tumor-driven evolution of immunosuppressive networks during malignant progression". Cancer Research 66(11).
552.Nishikawa, Hiroyoshi, and Shohei Koyama. 2021. "Mechanisms of regulatory t cell infiltration in tumors: implications for innovative immune precision therapies". Journal for Immunotherapy of Cancer 9(7):2591.
553.Bruni, Daniela, Helen K. Angell, and Jérôme Galon. 2020. "The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy". Nature Reviews Cancer 2020 20:11 20(11):662-80.
554.Abel, Alex M., Chao Yang, Monica S. Thakar, and Subramaniam Malarkannan. 2018. "Natural killer cells: development, maturation, and clinical utilization". Frontiers in Immunology 9(AUG).
555.Sun, Lin, Xiaokun Gang, Zhuo Li, Xue Zhao, Tong Zhou, Siwen Zhang, and Guixia Wang. 2021. "Advances in understanding the roles of cd244 (slamf4) in immune regulation and associated diseases". Frontiers in Immunology 12:648182.
556.Agresta, Laura, Kasper H. N. Hoebe, and Edith M. Janssen. 2018. "The emerging role of cd244 signaling in immune cells of the tumor microenvironment". Frontiers in Immunology 9(NOV):2809.
557.Lee, Kyung Mi, John P. Forman, Megan E. McNerney, Susan Stepp, Sumalatha Kuppireddi, et al. 2006. "Requirement of homotypic nk-cell interactions through 2b4(cd244)/cd48 in the generation of nk effector functions". Blood 107(8):3181-88.
558.Nakajima, Hideo, Marina Cella, Hanno Langen, Arno Friedlein, and Marco Colonna. 2006. "Activating interactions in human nk cell recognition: the role of 2b4-cd48". European Journal of Immunology 29(5):1676-83.
559.Cerami, Ethan, Jianjiong Gao, Ugur Dogrusoz, Benjamin E. Gross, Selcuk Onur Sumer, et al. 2012. "The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data". Cancer Discovery 2(5):401-4.
560.Gao, Jianjiong, Bülent Arman Aksoy, Ugur Dogrusoz, Gideon Dresdner, et al. 2013. "Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal". Science Signaling 6(269):1-1.
561.Brown, David A., Carsten Stephan, Robyn L. Ward, Mathew Law, Mark Hunter, et al. 2006. "Measurement of serum levels of macrophage inhibitory cytokine 1 combined with prostate-specific antigen improves prostate cancer diagnosis". Clinical Cancer Research 12(1):89-96.
562.Wallin, U., B. Glimelius, K. Jirström, S. Darmanis, R. Y. Nong, F. Pontén, C. Johansson, et al. 2011. "Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer", British Journal of Cancer 2011 104:10 104(10):1619-27.
563.Li, Chen, Jingyu Wang, Jianlu Kong, Jinlong Tang, Yihua Wu, Enping Xu, et al. 2016. "GDF15 promotes emt and metastasis in colorectal cancer". Oncotarget 7(1):860-72.
564.Grönberg, Henrik, Jan Adolfsson, Markus Aly, Tobias Nordström, Peter Wiklund, et al. 2015. "Prostate cancer screening in men aged 50-69 years (sthlm3): a prospective population-based diagnostic study". The Lancet Oncology 16(16):1667-76.
565.Hogendorf, Piotr, Adam Durczynski, Aleksander Skulimowski, Anna Kumor, Grayna Poznanska, et al. 2018. "Growth differentiation factor (gdf-15) concentration combined with cal 25 levels in serum is superior to commonly used cancer biomarkers in differentiation of pancreatic mass". Cancer Biomarkers 21(3):505-11.
566.Olsen, Oddrun Elise, Anette Skjærvik, Berit Fladvad Størdal, Anders Sundan, and Toril Holien. 2017. "TGF- β contamination of purified recombinant gdf15". PLOS ONE 12(11):e0187349.
567.Devalaraja, Samir, Tsun Ki Jerrick To, Ian W. Folkert, Ramakrishnan Natesan, et al. 2020. "Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression". Cell 180(6).
568.Calmeiro, João, Luís Mendes, Iola F. Duarte, Catarina Leitão, Adriana R. Tavares, et al. 2021. "In-depth analysis of the impact of different serum-free media on the production of clinical grade dendritic cells for cancer immunotherapy". Frontiers in Immunology 11.
569.Biswas, Subhra K., and Alberto Mantovani. 2010. "Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm". Nature Immunology 11(10).
570.Pan, Yueyun, Yinda Yu, Xiaojian Wang, and Ting Zhang. 2020. "Tumorassociated macrophages in tumor immunity". Frontiers in Immunology 11.
571.Azizi, Elham, Ambrose J. Carr, George Plitas, Andrew E. Cornish, Catherine Konopacki, et al. 2018. "Single-cell map of diverse immune phenotypes in the breast tumor microenvironment". Cell 174(5).
572.Chávez-Galán, Leslie, Maria L. Olleros, Dominique Vesin, and Irene Garcia. 2015. "Much more than m 1 and m 2 macrophages, there are also cd169+ and tcr+ macrophages". Frontiers in Immunology 6(MAY).
573.Yao, Yongli, Xiang Hong Xu, and Liping Jin. 2019. "Macrophage polarization in physiological and pathological pregnancy". Frontiers in Immunology 10(MAR).
574.Wang, Nan, Hongwei Liang, and Ke Zen. 2014. "Molecular mechanisms that influence the macrophage m1-m2 polarization balance". Frontiers in Immunology $5(\mathrm{NOV})$.
575.Wynn, Thomas a., Ajay Chawla, and Jeffrey W. Pollard. 2013. "Origins and hallmarks of macrophages: development, homeostasis, and disease." Nature 496(7446).
576.Li, Danyang, and Minghua Wu. 2021. "Pattern recognition receptors in health and diseases". Signal Transduction and Targeted Therapy 6(1).
577.Xu, Yijia, Han Zeng, Kaifeng Jin, Zhaopei Liu, Yu Zhu, et al. 2022. "Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscleinvasive bladder cancer". Journal for Immunotherapy of Cancer 10(3).
578.Aderem, Alan, and David M. Underhill. 1999. "Mechanisms of phagocytosis in macrophages". Annual Review of Immunology 17.
579.Wan, Yisong Y., and Richard A. Flavell. 2007. "'Yin-yang' functions of tgf- β and tregs in immune regulation." Immunological Reviews 220.
580.Jobin, Gilles, Roberto Rodriguez-Suarez, and Katia Betito. 2017. "Association between natural killer cell activity and colorectal cancer in high-risk subjects undergoing colonoscopy". Gastroenterology 153(4):980-87.
581.Betts, Gareth, Emma Jones, Syed Junaid, Tariq El-Shanawany, Martin Scurr, et al. 2012. "Suppression of tumour-specific cd $4+\mathrm{t}$ cells by regulatory t cells is associated with progression of human colorectal cancer". Gut 61(8):1163-71.
109. Che, Li Heng, Jing Wen Liu, Jian Ping Huo, Rong Luo, et al. 2021. "A singlecell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy". Cell Discovery 2021 7:1 7(1):1-21.
583.Lv, Chunxu, Shutong Li, Jingjing Zhao, Pishan Yang, and Chengzhe Yang. 2022. "M1 macrophages enhance survival and invasion of oral squamous cell carcinoma by inducing gdf15-mediated erbb2 phosphorylation". ACS Omega 7(13).
584.Lee, Hae-Ock, Yourae Hong, Hakki Emre Etlioglu, Yong Beom Cho, et al. 2020. "Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer". Nature Genetics 2020 52:6 52(6):594-603.
585.Coussens, Lisa M., and Zena Werb. 2002. "Inflammation and cancer". Nature 420(6917):860.
586.Mantovani, Alberto, Paola Allavena, Antonio Sica, and Frances Balkwill. 2008. "Cancer-related inflammation". Nature 454(7203):436-44.
587.Husaini, Yasmin, Min Ru Qiu, Glen P. Lockwood, Xu Wei Luo, Ping Shang, et al. 2012. "Macrophage inhibitory cytokine-1 (mic-1/gdf15) slows cancer
development but increases metastases in tramp prostate cancer prone mice". PLOS ONE 7(8): 43833.
588.Togashi, Yosuke, Kohei Shitara, and Hiroyoshi Nishikawa. 2019. "Regulatory t cells in cancer immunosuppression - implications for anticancer therapy". Nature Reviews Clinical Oncology 16(6).
589.Wolf, Natalie K., Djem U. Kissiov, and David H. Raulet. 2022. "Roles of natural killer cells in immunity to cancer, and applications to immunotherapy" doi: 10.1038/s41577-022-00732-1. Nature Reviews Immunology 23(February).
590.Lengauer, Christoph, Kenneth W. Kinzler, and Bert Vogelstein. 1998. "Genetic instabilities in human cancers". Nature 396:6712 396(6712):643-49.
591.Dunn, Gavin P., Catherine M. Koebel, and Robert D. Schreiber. 2006. "Interferons, immunity and cancer immunoediting". Nature Reviews Immunology 6:11 6(11):836-48.
592.Dunn, Gavin P., Allen T. Bruce, Hiroaki Ikeda, Lloyd J. Old, and Robert D. Schreiber. 2002. "Cancer immunoediting: from immunosurveillance to tumor escape". Nature Immunology 3(11):991-98.
593.Chen, Daniel S., and Ira Mellman. 2017. "Elements of cancer immunity and the cancer-immune set point". Nature 2017 541:7637 541(7637):321-30.
594.Rosenberg, Steven A., Michael T. Lotze, Linda M. Muul, Susan Leitman, et al. 2010. "Observations on the systemic administration of autologous lymphokineactivated killer cells and recombinant interleukin-2 to patients with metastatic cancer". New England Journal of Medicine 313(23):1485-92.
595.Rosenberg, Steven A. 2001. "Progress in human tumour immunology and immunotherapy". Nature 2001 411:6835 411(6835):380-84.
596.Quesada, Jorge R., Evan M. Hersh, John Manning, James Reuben, Michael Keating, et al. 1986. "Treatment of hairy cell leukemia with recombinant alphainterferon". Blood 68(2):493-97.
597.Fridman, Wolf Herman, Franck Pagès, Catherine Sauts-Fridman, and J̀rôme Galon. 2012. "The immune contexture in human tumours: impact on clinical outcome". Nature Reviews Cancer 2012 12:4 12(4):298-306.
598.Pagès, F., J. Galon, M. C. Dieu-Nosjean, E. Tartour, C. Sautès-Fridman, and W. H. Fridman. 2009. "Immune infiltration in human tumors: a prognostic factor that should not be ignored". Oncogene 29:8 29(8):1093-1102.
599.Korman, Alan J., Sarah C. Garrett-Thomson, and Nils Lonberg. 2021. "The foundations of immune checkpoint blockade and the ipilimumab approval decennial". Nature Reviews Drug Discovery 1-20.
600.Marin-Acevedo, Julian A., Erin Marie O. Kimbrough, and Yanyan Lou. 2021. "Next generation of immune checkpoint inhibitors and beyond". Journal of Hematology \& Oncology 14:1 14(1):1-29.
601.Porter, David L., Bruce L. Levine, Michael Kalos, Adam Bagg, and Carl H. June. 2011. "Chimeric antigen receptor-modified t cells in chronic lymphoid leukemia". New England Journal of Medicine 365(8):725-33.
602.Brown, Christine E., Darya Alizadeh, Renate Starr, Lihong Weng, Jamie R. Wagner, et al. 2016. "Regression of glioblastoma after chimeric antigen receptor t-cell therapy". New England Journal of Medicine 375(26):2561-69.
603.Chan, Jack D., Junyun Lai, Clare Y. Slaney, Axel Kallies, Paul A. Beavis, and Phillip K. Darcy. 2021. "Cellular networks controlling t cell persistence in adoptive cell therapy". Nature Reviews Immunology 2021 21:12 21(12):769-84.
604.Zitvogel, Laurence, Lionel Apetoh, François Ghiringhelli, and Guido Kroemer. 2008. "Immunological aspects of cancer chemotherapy". Nature Reviews Immunology 8(1):59-73.
605.Gaudreau, Pierre Olivier, Marcelo V. Negrao, Kyle G. Mitchell, Alexandre Reuben, et al. 2021. "Neoadjuvant chemotherapy increases cytotoxic t cell, tissue resident memory t cell, and b cell infiltration in resectable nsclc". Journal of Thoracic Oncology 16(1):127-39.
606.Garofalo, Cinzia, Carmela De Marco, and Costanza Maria Cristiani. 2021. "NK cells in the tumor microenvironment as new potential players mediating chemotherapy effects in metastatic melanoma". Frontiers in Oncology 11:4223.
607.Hong Menarini Biomarkers, Michelle A., Caleb Huang, Laure Loumagne, et al. 2011. "Chemotherapy induces intratumoral expression of chemokines in cutaneous melanoma, favoring t-cell infiltration and tumor control". Cancer Research 15;71(22):6997-7009
608.Heinhuis, K. M., W. Ros, M. Kok, N. Steeghs, J. H. Beijnen, and J. H. M. Schellens. 2019. "Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors". Annals of Oncology 30(2):219-35.
609.Srivastava, Shivani, Scott N. Furlan, Carla A. Jaeger-Ruckstuhl, Megha Sarvothama, et al. 2021. "Immunogenic chemotherapy enhances recruitment of car-t cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade". Cancer Cell 39(2):193-208.e10.
610.Chen, Ling, Shuang Liu, and Yongguang Tao. 2020. "Regulating tumor suppressor genes: post-translational modifications". Signal Transduction and Targeted Therapy 5(1).
611.Lai, Dulcie, Stacy Visser-Grieve, and Xiaolong Yang. 2012. "Tumour suppressor genes in chemotherapeutic drug response". Bioscience Reports 32(4).
612.Vidotto, Thiago, Camila Morais Melo, Erick Castelli, Madhuri Koti, et al. 2020. "Emerging role of pten loss in evasion of the immune response to tumours". British Journal of Cancer 122(12).
613.Shi, Di, and Peng Jiang. 2021. "A different facet of p53 function: regulation of immunity and inflammation during tumor development". Frontiers in Cell and Developmental Biology 9.
614.Miao, Xiaofei, Ye Zhang, Zengyao Li, Longchang Huang, Taojian Xin, et al. 2021. "Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy". Molecular Therapy 20:442-50.
615.Sun, Fengfei, Lijuan Cui, Tingting Li, Silin Chen, Junmei Song, et al. 2019. "Oxaliplatin induces immunogenic cells death and enhances therapeutic efficacy of checkpoint inhibitor in a model of murine lung carcinoma". Journal of Receptor and Signal Transduction Research 39(3):208-14.
616.Arai, Hiroyuki, Yi Xiao, Fotios Loupakis, Natsuko Kawanishi, Jingyuan Wang, et al. 2020. "Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer". Journal for ImmunoTherapy of Cancer 8(2): 0001714.
617.Woolston, Caroline M., Srinivasan Madhusudan, Irshad N. Soomro, Dileep N. Lobo, et al. 2013. "Thioredoxin interacting protein and its association with clinical outcome in gastro-oesophageal adenocarcinoma". Redox Biology 1(1):285-91.
618.Lu, Jun, and Arne Holmgren. 2012. "Thioredoxin system in cell death progression". Antioxidants and Redox Signaling 17(12).
619.Zhou, Rongbin, Amir S. Yazdi, Philippe Menu, and Jürg Tschopp. 2011. "A role for mitochondria in nlrp3 inflammasome activation". Nature 469(7329):221-26.
620.Shah, Anu, Ling Xia, Howard Goldberg, Ken W. Lee, Susan E. Quaggin, et al. 2013. "Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the nadph oxidase, nox 4 , in mesangial cells". Journal of Biological Chemistry 288(10).
621.Zorov, Dmitry B., Magdalena Juhaszova, and Steven J. Sollott. 2014. "Mitochondrial reactive oxygen species (ros) and ros-induced ros release". Physiological Reviews 94(3):909.
622.Kritsiligkou, Paraskevi, Jonathan D. Rand, Alan J. Weids, Ximeng Wang, et al. 2018. "Endoplasmic reticulum (er) stress-induced reactive oxygen species (ros) are detrimental for the fitness of a thioredoxin reductase mutant". Journal of Biological Chemistry 293(31):11984-95.
623.Kang, M. A., E. Y. So, A. L. Simons, D. R. Spitz, and T. Ouchi. 2012. "DNA damage induces reactive oxygen species generation through the h2ax-nox $1 / \mathrm{rac} 1$ pathway". Cell Death and Disease 3(1).
624.Chen, Huei Yu, Atikul Islam, Tien Ming Yuan, Shi Wen Chen, et al. 2018. "Regulation of tnox expression through the ros-p53-pou3f2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells". Journal of Experimental and Clinical Cancer Research 37(1).
625.Chen, Xun, Shangwu Chen, and Dongsheng Yu. 2020. "Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance". Metabolites 10(7).
626.Havula, Essi, and Ville Hietakangas. 2012. "Glucose sensing by chrebp/mondoa-mlx transcription factors". Seminars in Cell and Developmental Biology 23(6).
627.Berraondo, Pedro, Miguel F. Sanmamed, María C. Ochoa, Iñaki Etxeberria, et al. 2019. "Cytokines in clinical cancer immunotherapy". British Journal of Cancer 120(1).
628.Pinto, Marta L., Elisabete Rios, Cecília Durães, Ricardo Ribeiro, José C. Machado, et al. 2019. "The two faces of tumor-associated macrophages and their clinical significance in colorectal cancer". Frontiers in Immunology 10(AUG).
629.Xin, Min, Dan Lin, Nahan Yan, Huiling Li, Jieping Li, and Zongming Huang. 2022. "Oxaliplatin facilitates tumor-infiltration of t cells and natural-killer cells for enhanced tumor immunotherapy in lung cancer model". Anti-Cancer Drugs 33(2).
630.Greenlee, Joshua D., Maria Lopez-Cavestany, Nerymar Ortiz-Otero, Kevin Liu, et al. 2021. "Oxaliplatin resistance in colorectal cancer enhances trail sensitivity via death receptor 4 upregulation and lipid raft localization". ELife 10.
631.Martinez-Balibrea, Eva, Anna Martínez-Cardus, Alba Gines, Vicenç Ruiz De Porras, et al. 2015. "Tumor-related molecular mechanisms of oxaliplatin resistance". Molecular Cancer Therapeutics 14(8).
632.Combes, Eve, Augusto F. Andrade, Diego Tosi, Henri Alexandre Michaud, et al. 2019. "Inhibition of ataxia-telangiectasia mutated and rad3-related (atr) overcomes oxaliplatin resistance and promotes antitumor immunity in colorectal cancer". Cancer Research 79(11):2933-46.
633.Zhang, Feng, Keshu Hu, Wenfeng Liu, Bing Quan, Miao Li, Shenxin Lu, et al. 2023. "Oxaliplatin-resistant hepatocellular carcinoma drives immune evasion through pd-11 up-regulation and pmn-singular recruitment". Cellular And Molecular Gastroenterology and Hepatology 15(3):573-91.
634.Zhang, Zechuan, Xiaoliang Xu, Wenfang Tian, Runqiu Jiang, Yijun Lu, et al. 2020. "ARRB1 inhibits non-alcoholic steatohepatitis progression by promoting gdf15 maturation". Journal of Hepatology 72(5):976-89.
635.Hundeyin, Mautin, Emma Kurz, Ankita Mishra, Juan Andres Kochen Rossi, et al. 2019. "Innate $\alpha \beta \mathrm{t}$ cells mediate antitumor immunity by orchestrating immunogenic macrophage programming". Cancer Discovery 9(9):1288-1305.

Chapter VIII. Appendix
Figure 1. Melt curves for each primer

Figure 2. STR profiling of colorectal cancer cell lines

DLD1

Eurofins Cenomics Eurcope Applied Genomics ambH. Anzinger St. 7a. D-85560 Ebersberd
Dr. Jinhai Deng
Kings Coulege London, Room 2.32 2. 2nd flocr, comprehensive cancer centre
New Hunts House Guys Campus, Great Maze pond
SE1 1 UL L Land
Great Bitain

> Certificate Cell Line Authentication Test Order ID: 11108066589
※2 eurofins
Genomics
SOP_APG_Zellirienauthentizitat_A04_1.0

Report dat
05.09 .2022

Method:
DNA isolation was carried out from cell pellet (cell layer).
Genelic charactersisics were delemmined by PCR-single-c
G enenicic charactersticics were detemined by PCR-single-- o cus-technolo
16 independent PCR-systems D8S1179, D21S11. D7S822, CSFIPO, D3S1358, TH01, D135317, D16S539, D2S1338, AMEL, D5S818, FGA, D19S433, wWA, TPOX and D18551 were investigated ASN-O002 core markers are colved grey, Therma F isher. AmpFiITRe Identiliere Plus PCR Amplification Kit)
In paralalel, positive and negative controls were carried out yielding correct results.


```
weak signal
    This report was created automatically and is
```


HCT15

Eurofins Genomics Eurcope Apslied Genomics 6 mbH. Anzinger St. 7 a. D.-85560 Ebersbers
Or. Jinhal Deng Lings. College London, Room 2.32, 2nd floor, comprehensive cancer centro
New Hunts House Guys Campus, Great Maze pond
SE1 1 UL Londo
Great Britain
: eurofins
Genomics
SOP_APG_Zellinienauthentizata_A04_1

Certificate Cell Line Authentication Tes
Order ID: 11108066589

Method:
ONA isolation was caried out from cell pellet (cell layer).
Genelic characteristics were determineod by PCR-single-1

(ASN-OOD2 coro markers sere colored grey. Theremo Fisher. AmpIISTRe Identifiere Plus PCR Amplification Kit)

This roport was created automatically and is
therefore valid widthout a signature.

DiFi

Eurofins Genomics Europe Apolied Genomics GmbH. Anzinger St. 7a. D.-85560 Ebersberg
Or. Jihnai Deng
Kings College London, Room 232, 2nd floor, comprehensive cancor centre
New Hunt's House Guys Campus, Great Maze pond
SE1 1ULL London
SE1 ULL Lond
\% eurofins

Method:
ONA isolation was carried out from cell pellet (cell layer)
Genetic charactersisics were determined by PCR-single-locus-technology.
16 independent PCR-sytems D8S1179, D211511, D7S822, CSF1PO, D3S1358, TH01, D13S317, D165539, D2S1338, AMEL, D5S818, FGA, D195433, wWA, TPOX and D185551 were investigated (ASN-OOO2 core markers are colcred grey, Thermo Fisher, AmpFISTRe Identitiliere Plus PCR Amplification Kit)
in parallel, positive and negative controls were carried out yielding correct results.
Result:

This report was croatod automatically and is
therefore valid without a signature.

HT29

Eurofins Genomics Eurcese Apslied Genomics GmbH. Anzinger St. 7a. D-95560 Ebersber
Kr. Jinhai Deng College London, Room 2.32, 2nd floor, comprehensive cancer centro
New Hunt's House Guys Campus,Great Maze pond
SE1 1 UL London
Great Britain

\therefore eurofins

Genomics

NA isolation was carried out from cell pellet (cell layer)
16 independent PCR-systerns D8S1179, D21S11, D7S8202, CSF1PO, D3S1356, TH01, D13S317, D16S539, D2S1338, AMEL, D5S818, FGA, D19S433, WWA, TPOX and D18S51 were investigated
ASN-oco2 core markers are colored grey, Thermo Fisher, AmpFISTR® Identifilere Plus PCR Amplification Kit
in parallel, positive and negative controls were carried out yielding correct results:

Result

The table shows the result of the cell line analysis and the comparison with the online database of the DSMZ (hthp:I/www.dsmz.delddefserice/services-human-and-animal-cell) and the Cellosaurus database (https//web..expasy. org/cellosaurus). Please note
hat only the PCR-systems according to ANSVATCC standard ASN-0002 were aligned (CSS818, D13S317, DTSS20, D16S539, WWA, THO1, TPOX, CSF1PO, AMEL - -ollored grey).

\% eurofins

Dr. Jilhai Deng
Kings College London, Room 2.32, 2nd floor, comprehensive cancer centro
New Hunts House Guys Carpus, Great Maze pond
GETrat Bitlan

> Certificate ell Line Authentication Test Order ID: 11108066589

Genomics

SOP APG Zellinienauthentizitat AO4 10
05.09 .2022

Method:

ASN-OOO2 oore markers are colored grey, Thermo Fisher, AmpFISTRe ldentifiere Pus PCR Amplification Kit)

Result:


```
\begin{array} { l } { \text { This report wasc creatod automatically and is therofore} } \\ { \text { valid withouta a signature.} } \end{array}
```

Eumbesomeme	Tack	

SW48

Eurofins Genomics Europe Apdied Genomics GmbH. Anzinger St. 7 a, D.-95560 Ebersbers
Dr. Jinhai Deng
Kings College London, Room 2.32, 2nd floor, comprehensive cancer centre
$\%$ eurofins
New Hunts House Guys Campus, Great Maze pond
SE1 ULL London
Great Britian
 Cell Line Authentication Test Order ID: 11108066589

Method:
ONA isolation was carried out from cell pellet (cell layer)
Genetic characteristics were determined by PCR-single-locus-technology.
16 independent PCR-systems D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1333, AMEL, D5S818, FGA, D19S433, wWA, TPOX and D18S51 were investigated.
(ASN-OOO2 core markers are coloced grey. Thermo Fisher, AmpFISTR® Identifilere Pus PCR Amplifation Kit)

Result:

 .

Nolel

Table 1. The clinical characteristics of Tumour Microarray samples.

Patient No.	Sex	Collect procedure	origin of tissue	Sample pathology diagnosis	Age at diagnosis	T stage	N stage	$\begin{gathered} \text { M } \\ \text { stage } \end{gathered}$	clinical stage
D15A3053	Male	Resection	sigmoid colon	mucinous adenocarcinoma	40	T4a	N2b	M0	3C
D15A3054	Female	Resection	colon	mucinous adenocarcinoma	59	T4a	N0	M0	2B
D15A3055	Male	Resection	right hemicolon	adenocarcinoma	71	T4a	N0	M0	2B
D15A3003	Male	Resection	right hemicolon	adenocarcinoma	82	T4b	N2b	M0	3C
D15A3030	Male	Resection	sigmoid colon	adenocarcinoma	59	T4a	N1	M0	3B
D15A3066	Male	Resection	colon	adenocarcinoma	62	T3	N0	M0	2 A
D15A3067	Male	Resection	right hemicolon	adenocarcinoma	61	T4a	N2b	M0	3C
D15A3068	Male	Resection	sigmoid colon	adenocarcinoma	75	T4a	N1	M0	3B
D15A3069	Female	Resection	left hemicolon	adenocarcinoma	41	T3	N0	M0	2 A
D15A3070	Male	Resection	colon	adenocarcinoma	77	T4a	N1	M0	3B
D15A3072	Female	Resection	sigmoid colon	adenocarcinoma	82	T4a	N0	M0	2B
D15A3083	Female	Resection	ileocecum	adenocarcinoma	80	T3	N1	M0	3B
D15A3086	Male	Resection	right hemicolon	adenocarcinoma	78	T4a	N0	M0	2B
D15A3092	Female	Resection	transverse colon	adenocarcinoma	66	T3	N0	M0	2 A
D15A3015	Female	Resection	left hemicolon	mucinous adenocarcinoma	76	T3	N1	M0	3B
D15A3096	Male	Resection	sigmoid colon	adenocarcinoma	79	T4a	N1c	M0	3B
D15A3097	Female	Resection	right hemicolon	adenocarcinoma	59	T4a	N1	M1	4
D15A3098	Male	Resection	ascending colon	adenocarcinoma	52	T4a	N1	M0	3B
D15A3104	Female	Resection	right hemicolon	adenocarcinoma	64	T4a	N1	M0	3B
D15A3122	Female	Resection	right hemicolon	adenocarcinoma	43	T2	N0	M0	1
D15A3129	Female	Resection	right hemicolon	adenocarcinoma	78	T4a	N0	M0	2B
D15A3169	Male	Resection	sigmoid colon	mucinous adenocarcinoma	75	T3	N2b	M0	3C
D15A3170	Female	Resection	ascending colon	adenocarcinoma	63	T3	N0	M0	2 A
D15A3171	Male	Resection	rectosigmoid	adenocarcinoma	54	T3	N1	M0	3B
D15A3172	Female	Resection	colon	adenocarcinoma	61	T4a	N0	M0	2B
D15A3173	Male	Resection	sigmoid colon	adenocarcinoma	57	T4a	N0	M0	2B
D15A3167	Male	Resection	rectosigmoid	adenocarcinoma	64	T3	N0	M0	2 A
D15A3168	Male	Resection	ascending colon	adenocarcinoma	84	T3	N0	M0	2 A
D15A3177	Male	Resection	sigmoid colon	adenocarcinoma	49	T4a	N1	M0	3B
D15A3179	Male	Resection	sigmoid colon	adenocarcinoma	45	T3	N0	M0	2 A
D15A3181	Male	Resection	sigmoid colon	adenocarcinoma	57	T3	N0	M0	2A
D15A3182	Male	Resection	splenic region of the colon	adenocarcinoma	77	T3	N1	M0	3B
D15A3191	Female	Resection	Hepatic region of colon	adenocarcinoma	80	T3	N1	M0	3B
D15A3193	Male	Resection	sigmoid colon	adenocarcinoma	76	T4a	N0	M0	2B
D15A3132	Male	Resection	colon	adenocarcinoma	54		N0	M0	
D15A3195	Male	Resection	right hemicolon	adenocarcinoma	79	T3	N1	M0	3B
D15A3196	Female	Resection	sigmoid colon	adenocarcinoma	87	T4a	N1	M0	3B

D15A3197	Male	Resection	Hepatic region of colon	mucinous adenocarcinoma	34	T3	N1	M0	3B
D15A3198	Female	Resection	transverse colon	adenocarcinoma	68	T3	N0	M0	2A
D15A3200	Female	Resection	rectosigmoid	adenocarcinoma	57	T3	N0	M0	2A
D15A3203	Female	Resection	sigmoid colon	adenocarcinoma	73	T3	N0	M0	2A
D15A3209	Female	Resection	descending colon	adenocarcinoma	83	T4a		M0	
D15A3210	Male	Resection	sigmoid colon	adenocarcinoma	84	T3	N0	M0	2A
D15A3212	Female	Resection	right hemicolon	adenocarcinoma	75	T4a	N2b	M1	4
D15A3223	Male	Resection	sigmoid colon	adenocarcinoma	76	T3	N1	M0	3B
D15A3134	Female	Resection	right hemicolon	mucinous adenocarcinoma	80	T3	N0	M0	2A
D15A3225	Female	Resection	splenic region of the colon	adenocarcinoma	81	T3	N1	M0	3B
D15A3227	Female	Resection	sigmoid colon	adenocarcinoma	74	T4b	N0	M0	2C
D15A3228	Male	Resection	Hepatic region of colon	adenocarcinoma	78	T3	N0	M0	2A
D15A3135	Male	Resection	splenic region of the colon	adenocarcinoma	71	T4a	N0	M0	2B
D15A3230	Male	Resection	sigmoid colon	adenocarcinoma	55	T3	N0	M0	2A
D15A3231	Male	Resection	transverse colon	adenocarcinoma	54		N1	M0	3
D15A3138	Male	Resection	right hemicolon	adenocarcinoma	57	T4a	N1	M0	3B
D15A3139	Female	Resection	right hemicolon	adenocarcinoma	76	T4a	N2b	M0	3C
D15A3221	Female	Resection	ascending colon	adenocarcinoma	71	T3	N1	M0	3B
D15A3222	Male	Resection	sigmoid colon	adenocarcinoma	80	T3	N0	M0	2A
D15A3233	Female	Resection	transverse colon	adenocarcinoma	53	T3	N2a	M0	3B
D15A3141	Male	Resection	sigmoid colon	adenocarcinoma	70		N1	M0	3
D15A3234	Female	Resection	right hemicolon	adenocarcinoma	84	T3	N0	M0	2A
D15A3236	Female	Resection	ascending colon	adenocarcinoma	67	T2	N0	M0	1
D15A3237	Female	Resection	descending colon	adenocarcinoma	87	T3	N1	M0	3B
D15A3238	Female	Resection	sigmoid colon	adenocarcinoma	67	T3	N0	M0	2A
D15A3283	Male	Resection	sigmoid colon	adenocarcinoma	56	T4a	N0	M0	2B
D15A3284	Male	Resection	ascending colon	adenocarcinoma	54	T3	N0	M0	2A
D15A3285	Female	Resection	ascending colon	mucinous adenocarcinoma	56	T4b	N1	M0	3C
D15A3286	Male	Resection	sigmoid colon	adenocarcinoma	74	T3	N1	M0	3B
D15A3287	Female	Resection	Hepatic region of colon	adenocarcinoma	76	T4a	N1	M0	3B
D15A3289	Female	Resection	descending colon	adenocarcinoma	54	T4a	N2a	M0	3C
D15A3290	Male	Resection	rectosigmoid	adenocarcinoma	67	T3	N0	M0	2 A
D15A3291	Male	Resection	sigmoid colon	adenocarcinoma	62	T3	N0	M0	2 A
D15A3292	Female	Resection	sigmoid colon	adenocarcinoma	61	T3	N1	M0	3B
D15A3293	Female	Resection	sigmoid colon	adenocarcinoma	55	T3	N1	M0	3B
D15A3296	Male	Resection	descending colon	adenocarcinoma	73	T3	N0	M0	2A
D15A3281	Male	Resection	ascending colon	adenocarcinoma	63	T3	N0	M0	2A
D15A3297	Female	Resection	splenic region of the colon	adenocarcinoma	72	T2	N0	M0	1

D15A3298	Male	Resection	ascending colon	adenocarcinoma	70	T3	N0	M0	2 A
D15A3299	Male	Resection	sigmoid colon	adenocarcinoma	58	T3	N0	M0	2 A
D15A3312	Male	Resection	ascending colon	adenocarcinoma	70	T3	N0	M0	2 A
D15A3313	Female	Resection	ascending colon	adenocarcinoma	72	T3	N0	M0	2 A
D15A3319	Female	Resection	sigmoid colon	adenocarcinoma	77	T3	N0	M0	2 A
D15A3320	Male	Resection	Hepatic region of colon	adenocarcinoma	67	T3	N0	M0	2 A
D15A3321	Male	Resection	Hepatic region of colon	adenocarcinoma	49	T3	N0	M0	2 A
D15A3322	Male	Resection	ascending colon	adenocarcinoma	61	T4b	N0	M0	2C
D15A3323	Male	Resection	left hemicolon	adenocarcinoma	81	T4a	N0	M0	2B
D15A3059	Male	Resection	colon	mucinous adenocarcinoma	60	T4a	N0	M0	2B
D15A3075	Female	Resection	sigmoid colon	adenocarcinoma	37	T4a	N2b	M1	4
D15A3077	Male	Resection	sigmoid colon	adenocarcinoma	65	T3	N0	M0	2 A
D15A3091	Female	Resection	sigmoid colon	adenocarcinoma	75	T3	N2a	M0	3B
D15A3095	Female	Resection	right hemicolon	adenocarcinoma	55	T4a	N0	M0	2B
D15A3131	Male	Resection	right hemicolon	adenocarcinoma	19	T4b	N0	M0	2 C
D15A3192	Female	Resection	right hemicolon	adenocarcinoma	49	T4b	N2a	M0	3C
D15A3194	Male	Resection	right hemicolon	adenocarcinoma	47	T3	N0	M0	2 A
D15A3205	Male	Resection	right hemicolon	adenocarcinoma	69	T4a	N0	M0	2B
D15A3136	Female	Resection	transverse colon	adenocarcinoma	53	T4a	N1	M0	3B
D15A3140	Female	Resection	right hemicolon	adenocarcinoma	61	T3	N0	M0	2 A
D15A3314	Female	Resection	Hepatic region of colon	adenocarcinoma	82	T4a	N0	M0	2B

Figure 3. Validation of antibodies for immunohistochemistry staining. (A, B, E) Representative photomicrographs of TXNIP (A), GDF15 (B) and FOXP3 (E) expression in paraffin-embedded human liver tissue, paraffin-embedded human placenta tissue and paraffin-embedded human tonsil tissue slides, respectively. The staining included representative positive control of TXNIP (A)/GDF15 (B)/FOXP3 (E) (left panel) and representative negative control with omission of the primary antibodies (right panel). (C, D) Western blotting of both TXNIP (C) and GDF15 (D) expression in HCT15 with/ without gene editing (TXNIP-KO or GDF15-KO).

Figure 4. This image is for coordinate reference of cytokine array assay.
Table 2. Refer to the table below for the Human XL Cytokine Array coordinates.

Coordinate	Analyte/Control	Entrez Gene ID	Alternate Nomenclature
A1, A2	Reference Spots	N/A	RS
A3, A4	Adiponectin	9370	Acrp30
A5, A6	Apolipoprotein A-I	335	ApoA1
A7, A8	Angiogenin	283	-
A9, A10	Angiopoietin-1	284	Ang-1, ANGPT1
A11, A12	Angiopoietin-2	285	Ang-2, ANGPT2
A13, A14	BAFF	10673	BlyS, TNFSF13B
A15, A16	BDNF	627	Brain-derived Neurotrophic Factor
A17, A18	Complement Component C5/C5a	727	C5/C5a
A19, A20	CD14	929	-
A21, A22	CD30	943	TNFRSF8
A23, A24	Reference Spots	N/A	RS
B3, B4	CD40 ligand	959	CD40L, TNFSF5, CD154, TRAP
B5, B6	Chitinase 3-like 1	1116	CHI3L1, YKL-40
B7, B8	Complement Factor D	1675	Adipsin, CFD
B9, B10	C-Reactive Protein	1401	CRP
B11, B12	Cripto-1	6997	Teratocarcinoma-derived Growth Factor
B13, B14	Cystatin C	1471	CST3, ARMD11
B15, B16	Dkk-1	22943	Dickkopf-1
B17, B18	DPPIV	1803	CD26, DPP4, Dipeptidyl-peptidase IV
B19, B20	EGF	1950	Epidermal Growth Factor
B21, B22	EMMPRIN	682	CD147, Basigin
C3, ${ }^{\text {c }}$	ENA-78	6374	CXCL5
C5, 6	Endoglin	2022	CD105, ENG
C7, 88	Fas Ligand	356	TNFSF6, CD178, CD95L
C9, 10	FGF basic	2247	FGF-2
C11, 112	FGF-7	2252	KGF
C13, 14	FGF-19	9965	-
C15, 116	Flt-3 Ligand	2323	FLT3LG
C17, 18	G-CSF	1440	CSF3
C19, ${ }^{\text {c }}$ (20	GDF-15	9518	MIC-1
C21, 22	GM-CSF	1437	CSF2
D1, D2	GROa	2919	CXCL1, MSGA-a
D3, D4	Growth Hormone	2688	GH, Somatotropin
D5, D6	HGF	3082	Scatter Factor, SF
D7, 88	ICAM-1	3383	CD54
D9, D10	IFN- γ	3458	IFNG
D11, D12	IGFBP-2	3485	-

Coordinate	Analyte/Control	Entrez Gene ID	Alternate Nomenclature
D13, D14	IGFBP-3	3486	-
D15, D16	IL-1a	3552	IL-1F1
D17, D18	IL-13	3553	IL-1F2
D19, D20	Il-1ra	3557	IL-1F3
D21, D22	$\mathrm{ll}-2$	3558	-
D23, 224	$\mathrm{ll}-3$	3562	-
E1, E2	IL-4	3565	-
E3, E4	IL-5	3567	-
E5, E6	IL-6	3569	-
E7, 88	IL-8	3576	CXCl8
E9, E10	IL-10	3586	-
E11, E12	ll-11	3589	\square
E13, E14	IL-12 p70	3593	\square
E15, E16	ll-13	3596	\square
E17, E18	IL-15	3600	-
E19, E20	IL-16	3603	-
E21, E22	IL-17A	3605	IL-17, CTLA8
E23, E24	$\mathrm{ll}-18 \mathrm{Bpa}$	10068	-
F1, F2	IL-19	29949	-
F3, F4	1L-22	50616	IL-TIF
F5,F6	1l-23	51561	IL-23A, SGRF
F7, F8	IL-24	11009	C49A, FISP, MDA-7, MOB-5, ST16
F9, F10	1L-27	246778	-
F11, F12	IL-31	386653	\square
F13, F14	IL-32	9235	-
F15, F16	1L-33	90865	C9orf26, DVS27,NF-HEV
F17, F18	IL-34	146433	C16orf77
F19, F20	\|P-10	3627	CXCL10
F21, F22	I-TAC	6373	CXCL11, SCYB9B
F23, F24	Kallikrein 3	354	PSA, KLK3
61, 62	Leptin	3952	OB
63,64	LIF	3976	-
65, 66	Lipocalin-2	3934	NGAL, LCN2, Siderocalin
67,68	MCP-1	6347	CCL2, MCAF
G9, G10	MCP-3	6354	CCL7, MARC
611, G12	M-CSF	1435	CSF1
613,614	MIF	4282	-
615,G16	MIG	4283	CXC19

Coordinate	Analyte/Control	Entrez Gene ID	Alternate Nomenclature
G17, G18	MIP-1a/MIP-1 β	6348/6351	CCl3/CCl4
G19, G20	MIP-3a	6364	CCL20, Exodus-1, LARC
G21,G22	MPP-38	6363	CLL19, ELC
G23, G24	MMP-9	4318	CL64B, Gelatinase B
H1, H2	Myeloperoxidase	4353	MPO, Lactoperoxidase
H3, H4	Osteopontin	6696	OPN
H5, H6	PDGF-AA	5154	-
H7, H8	PDGF-AB/BB	5154/5155	-
H9, H10	Pentraxin 3	5806	PTX3, TSG-14
H11, H12	PF4	5196	CXCL4
H13, H14	RAGE	177	-
H15, H16	RANTES	6352	CCL5
H17, H18	RBP-4	5950	-
H19, H20	Relaxin-2	6019	RLN2, RLXH2
H21, H22	Resistin	56729	ADSF, FIZZ3, RETN
H23, H24	SDF-1a	6387	CXCL12, PBSF
11,12	Serpin E1	5054	PAI-I, PAI-1, Nexin
13,14	SHBG	6462	ABP
15,16	ST2	9173	IL-1 R4, IL1RL1, ST2L
17,18	TARC	6361	CCL17
19,110	TFF3	7033	ITF, TFI
111, 112	TfR	7037	CD71, TFR1, TFRC, TRFR
113,114	TGF-a	7039	TGFA
I15, 116	Thrombospondin-1	7057	THBS1, TSP-1
117, 118	TNF-a	7124	TNFSF1A
119, 120	uPAR	5329	PLAUR
121,122	VEGF	7422	BEGFA
J1, 12	Reference Spots	N/A	RS
J5, J6	Vitamin DBP	2638	VDB, DBP, VDBP
J7, 18	CD31	5175	PECAM-1
J9, 110	TIM-3	84868	HAVCR2
J11, J12	VCAM-1	7412	CD106
J23,124	Negative Controls	N/A	Control (-)

Figure 5. The results of quality control for RNA sequencing experiments
A.

 $\forall X O+3 \perp N$

OX-dINXI

$O X-d I N X \perp$
B.

Figure 6. Work flow of library construction for RNA sequencing analysis

Figure 7. Optimization of Chromatin immunoprecipitation assay. A. $10 \mu \mathrm{l}$ of purified DLD1 DNA following sonication and Proteinase K digestion: lane 1. 30 cycles $/ 30 \mathrm{sec}$; lane 2. 40cycles $/ 30 \mathrm{sec}$. B. lane $1.10 \mu \mathrm{l}$ of purified DLD1 DNA following sonication and Proteinase K digestion two rounds of 40 cycles $/ 30$ sec; lane 2. $10 \mu \mathrm{l}$ of purified DLD1 DNA following sonication and Proteinase K digestion two rounds of 40 cycles $/ 30 \mathrm{sec}$; lane $2 . \mathrm{L}=$ Gene ruler mix DNA ladder. C. ChIP-PCR showing TXNIP promoter amplicon on Oxaliplatin treated DLD-1 cells (40cycles PCR). Anti H3K4me3 antibody was used as ChIP positive control for open chromatin.

Figure 8. Mass Spectrometry gel

Figure 9. Proteome discoverer nodal workflow for raw data processing. Spectrum Selector: Min. Precursor mass (350 Da), Max. Precursor mass (10000 Da), S/N Threshold (FT-only) (1.5); Mascot/Sequest: Database (Uniprot), Enzyme (Trypsin), Missed cleavage (2), Precursor mass tol (10 ppm), Fragment mass tol (0.6 Da), Dynamic modifications (TMT6plex K), TMT6plex (N-Term), Carbamidomethyl (C), Oxidation (M); Peptide validator: Target FDR (strict) (0.01), Target FDR (relaxed) (0.05); Reporter ion quantifier: Integration window tol. (20 ppm), Integration method (Most confident centroid); Reporter Quantification: Co-Isolation Threshold. (50), SPS Mass Matches [\%] Threshold (65), Average Reporter S/N Threshold (10).

Table 3. Information of patient samples from GSE29621

ID	OS	OS.time	RFS	RFS.time	Gender	T	N	M	Stage	TXNIP	GDF15
GSM734111	0	4.405	0	4.405	Male	T3	N 1	M 0	III	0.312783	-0.14056
GSM734112	1	4.575	0	4.575	Female	T3	N 1	M0	III	0.151283	1.099897
GSM734113	0	6.1725	1	2.070833	Male	T3	N 1	M0	III	1.093902	-1.21064

GSM734114	0	4.945	0	4.945	Male	T3	N1	M0	III	0.32225	-0.66181
GSM734115	0	2.7225	1	1.443333	Female	T3	N2	M1	IV	0.824354	-0.99008
GSM734116	1	3.226667	0	3.226667	Female	T3	N1	M0	III	0.210682	0.432979
GSM734117	0	3.5225	1	1.09	Male	T4	N0	M1	IV	0.463912	-0.99439
GSM734118	1	0.745	0	0.745	Male	T3	N1	M1	IV	-0.75031	-0.02026
GSM734119	1	0.426667	NA	NA	Female	T3	N2	M1	IV	-1.11088	-0.19856
GSM734120	0	3.988333	0	3.988333	Male	T3	N0	M0	II	0.789498	1.509899
GSM734121	0	6.5725	0	5.360833	Male	T3	N1	M0	III	-0.45228	-0.06515
GSM734122	0	8.764167	0	8.764167	Male	T3	N1	M0	III	0.051037	-1.01894
GSM734123	1	3.983333	0	3.983333	Male	T3	N1	M0	III	-1.79796	0.107784
GSM734124	1	0.509167	1	0.445833	Male	T3	N1	M0	III	0.344915	-0.10296
GSM734125	1	1.703333	0	1.703333	Male	T2	N2	M0	III	0.489811	-1.91032
GSM734126	0	7.134167	0	7.134167	Female	T3	N1	M0	III	-0.50446	0.687436
GSM734127	1	4.9225	0	4.9225	Male	T3	N2	M0	III	0.921205	1.70005
GSM734128	1	7.160833	1	6.621667	Male	T3	N1	M0	III	0.807814	0.961305
GSM734129	1	1.585833	1	0.715	Female	T3	N1	M0	III	0.027118	-0.05489
GSM734130	1	0.413333	NA	NA	Male	T3	N1	M1	IV	0.853788	-0.38418
GSM734131	1	0.476667	NA	NA	Male	T3	N1	M1	IV	-1.05661	0.004581
GSM734132	0	7.9225	0	6.884167	Male	T3	N1	M1	IV	-0.43585	-1.53053
GSM734133	1	2.4075	NA	NA	Male	T3	N2	M1	IV	-1.38847	-0.87828
GSM734134	1	1.545	NA	NA	Male	T3	N1	M1	IV	0.851479	1.174237
GSM734135	1	2.835	NA	NA	Female	T3	N2	M1	IV	1.069809	-1.9893
GSM734136	1	0.12	NA	NA	Male	T3	N1	M1	IV	-0.74531	0.141854
GSM734137	0	2.654167	NA	NA	Male	T3	N1	M1	IV	-0.35317	0.435311
GSM734138	0	5.0625	0	4.599167	Female	T3	N1	M1	IV	1.316195	-1.23847
GSM734139	1	1.270833	NA	NA	Male	T3	N1	M1	IV	-0.05212	0.471317
GSM734140	1	1.213333	NA	NA	Male	T3	N1	M1	IV	0.82092	1.865304
GSM734141	1	0.83	0	0.83	Female	T4	N0	M1	IV	-0.22422	1.516205
GSM734142	0	1.8625	NA	NA	Male	T3	N0	M1	IV	0.54646	0.787041
GSM734143	1	4.375	0	4.375	Female	T3	N0	M0	II	-1.61394	-0.33853
GSM734144	0	7.415833	0	7.415833	Male	T3	N0	M0	II	0.034791	0.553182
GSM734145	0	4.610833	0	4.610833	Female	T3	N0	M0	II	-0.56455	-0.74766
GSM734146	1	3.109167	0	3.109167	Male	T3	N0	M0	II	0.054999	-0.79995
GSM734147	0	5.270833	0	5.270833	Male	T3	N0	M0	II	-0.60611	-1.46353
GSM734148	0	5.130833	0	5.130833	Female	T4	NA	NA	II	-1.00533	0.817282
GSM734149	0	2.840833	0	2.015833	Female	T3	N0	M0	II	-1.84176	1.096917
GSM734150	0	4.996667	0	4.996667	Male	T3	N0	M0	II	-0.54442	0.545595
GSM734151	0	4.870833	0	3.8925	Female	T3	N0	M0	II	-0.12856	-2.81641
GSM734152	0	3.139167	0	1.495833	Female	T3	N0	M0	II	0.450252	-1.09909
GSM734153	0	10.05167	1	2.303333	Female	T4	N0	M0	II	-0.31588	0.359226
GSM734154	0	2.103333	0	2.103333	Male	T3	N0	M0	II	0.737175	0.603849
GSM734155	0	3.7475	0	3.7475	Male	T3	N0	M0	II	-2.67039	0.493944
GSM734156	0	2.991667	0	2.991667	Male	T3	N0	M0	II	0.720277	-0.12855
GSM734157	0	2.221667	0	2.221667	Male	T3	N0	M0	II	0.707411	0.54882
GSM734158	0	6.999167	1	1.865	Female	T3	N0	M0	II	1.421195	0.530929
GSM734159	0	1.254167	0	1.254167	Male	T3	N0	M0	II	-0.1422	0.694252
GSM734160	1	2.2625	0	2.2625	Female	T3	N0	M0	11	0.486333	-0.8906
GSM734161	0	4.353333	0	4.353333	Male	T2	N0	M0	I	0.584612	-0.92646
GSM734162	0	5.651667	0	5.651667	Female	T2	N0	M0	I	-0.62029	-1.38728
GSM734163	0	4.594167	0	4.594167	Female	T2	N0	M0	1	1.44503	-1.02212
GSM734164	0	3.049167	0	1.996667	Male	T2	N0	M0	1	0.584612	0.389153
GSM734165	1	5.49	0	5.49	Male	T2	N0	M0	I	-2.54118	1.002166
GSM734166	0	4.960833	0	4.960833	Male	T2	N0	M0	I	0.730398	1.146522
GSM734167	0	0.303333	0	0.303333	Male	T2	N0	M0	1	-1.23541	0.909908
GSM734168	0	8.2925	0	8.2925	Female	T3	N1	M0	III	0.879437	-0.25072
GSM734169	0	4.870833	0	4.870833	Female	T3	N1	M0	III	0.660373	2.045737
GSM734170	0	4.345	0	4.345	Female	T3	N0	M0	II	-1.58084	-0.44107

GSM734171	0	8.536667	0	5.405	Male	T4	N0	M0	II	-1.20354	0.998171
GSM734172	0	4.155833	0	3.0625	Female	T3	N0	M0	II	1.221077	0.059992
GSM734173	1	1.273333	NA	NA	Male	T3	N0	M1	IV	0.224988	0.343584
GSM734174	0	4.545	0	2.243333	Female	T3	N1	M0	III	-0.30395	-0.14181
GSM734175	1	0.98	1	0.684167	Male	T3	N2	M0	III	2.577809	-0.19132

Table 4. Information of patient samples from GSE38832

ID	DFS	DFS.time	DSS	DSS.time	Stage	TXNIP	GDF15
GSM950411	NA	NA	1	0.130833333	IV	0.228936499	1.583136447
GSM950412	NA	NA	1	1.466666667	IV	0.177766916	-0.520849181
GSM950413	NA	NA	1	1.055833333	IV	0.045104297	1.275806193
GSM950414	NA	NA	1	0.569166667	IV	0.282642004	-0.750102844
GSM950415	NA	NA	1	2.710833333	IV	0.373194554	1.316795384
GSM950416	NA	NA	1	1.341666667	IV	0.135575225	1.571889282
GSM950417	0	0.035833333	0	0.035833333	II	0.127046161	0.644385211
GSM950418	0	7.035833333	0	7.035833333	II	0.395881947	1.034811432
GSM950419	0	3.6525	0	3.6525	III	0.365583287	1.341932706
GSM950420	0	6.758333333	0	6.758333333	II	0.480669722	0.092105309
GSM950421	1	0.3225	1	1.1525	III	0.436809936	0.554216099
GSM950422	0	9.0475	0	9.0475	III	1.256641199	-0.693377173
GSM950423	0	2.3	0	2.3	II	0.591657994	1.141293245
GSM950424	0	3.455833333	0	3.455833333	III	0.166308956	-0.333781833
GSM950425	0	3.416666667	0	3.416666667	III	0.445220696	-1.549557739
GSM950426	0	4.5	0	4.5	III	0.824894908	-0.018204972
GSM950427	NA	NA	1	1.069166667	IV	0.071062069	-1.820657463
GSM950428	0	0.2975	0	0.2975	I	2.022652372	0.060116991
GSM950429	0	9.060833333	0	9.060833333	III	0.440542002	-1.310041006
GSM950430	0	3.85	0	3.85	II	1.12922372	-0.134005278
GSM950431	0	5.883333333	0	5.883333333	III	-0.84667235	-1.01817447
GSM950432	0	8.8	0	8.8	III	1.909002192	0.366223042
GSM950433	1	5	1	5.764166667	III	0.558683413	-0.164293513
GSM950434	0	7.135833333	0	7.135833333	III	0.933209875	-0.488227085
GSM950435	0	7.919166667	0	7.919166667	11	-0.43312882	0.389173615
GSM950436	0	4.558333333	0	4.558333333	III	0.383708347	-0.701500675
GSM950437	0	7.6975	0	7.6975	11	0.913439888	-0.678906115
GSM950438	1	3.460833333	1	4.019166667	III	0.166308956	-1.417224483
GSM950439	0	4.766666667	0	4.766666667	III	0.489279046	-0.84538344
GSM950440	0	8.441666667	0	8.441666667	1	0.558683413	0.009256557
GSM950441	0	8.1275	0	8.1275	I	2.234815172	-2.212528192

GSM950442	0	8.925	0	8.925	1	0.722883417	0.50173558
GSM950443	0	4.539166667	0	4.539166667	1	0.506889431	-0.220377053
GSM950444	0	6.980833333	0	6.980833333	II	1.408938841	-0.232753833
GSM950445	0	2.916666667	0	2.916666667	1	1.397309359	1.022981391
GSM950446	0	2.5775	0	2.5775	III	0.370987339	0.433781366
GSM950447	0	1.219166667	0	1.219166667	1	0.087764739	0.270151851
GSM950448	0	1.014166667	0	1.014166667	II	2.597948541	1.239903605
GSM950449	0	0.025	0	0.025	III	0.080085375	-0.633779373
GSM950450	0	2.5275	0	2.5275	III	-0.32328667	0.886870392
GSM950451	NA	NA	1	0.710833333	IV	0.612042274	1.380600101
GSM950452	1	1.505833333	0	1.591666667	III	0.772647433	0.750741546
GSM950453	0	2.614166667	0	2.614166667	II	0.510572793	-0.447139265
GSM950454	0	0.9525	0	0.9525	II	0.322023581	1.060245815
GSM950455	0	1.9025	0	1.9025	III	0.189756194	0.761597221
GSM950456	NA	NA	1	0.080833333	IV	1.179928319	-0.295394235
GSM950457	1	0.810833333	0	2.233333333	III	0.968520534	-1.992866635
GSM950458	NA	NA	0	2.258333333	IV	0.422845571	0.178831541
GSM950459	0	1.730833333	0	1.730833333	III	0.324702083	-0.720061874
GSM950460	0	5.294166667	0	5.294166667	II	1.053100873	1.011237776
GSM950461	0	3.0975	0	3.0975	II	2.210940136	0.284189229
GSM950462	0	3.3725	0	3.3725	II	1.260757757	-0.718970508
GSM950463	0	0.614166667	0	0.614166667	III	0.037471704	0.928655978
GSM950464	NA	NA	1	0.789166667	IV	-0.29559334	-1.225738335
GSM950465	0	2.069166667	0	2.069166667	II	0.158774948	0.972505658
GSM950466	NA	NA	1	3	IV	0.166308956	0.980688364
GSM950467	0	3.083333333	0	3.083333333	I	0.116663454	-0.10827794
GSM950468	0	0.319166667	0	0.319166667	II	0.453045413	0.206396998
GSM950469	0	1.155833333	0	1.155833333	1	0.545465775	-0.596646063
GSM950470	0	2.091666667	0	2.091666667	III	0.534913178	0.794653476
GSM950471	0	9.208333333	0	9.208333333	III	1.27061564	0.805417807
GSM950472	0	2.610833333	0	2.610833333	1	1.472497042	-0.048299829
GSM950473	NA	NA	0	3.010833333	IV	0.320257466	1.304270389
GSM950474	0	3.5725	0	3.5725	II	0.413456573	0.983948708
GSM950475	0	4.591666667	0	4.591666667	I	0.896799514	0.247536336
GSM950476	0	4.919166667	0	4.919166667	1	0.435511174	-1.089449886
GSM950477	0	1.8025	0	1.8025	1	-0.15298936	1.728054626
GSM950478	1	1.910833333	0	3.0025	III	1.595202554	0.34305088
GSM950479	0	1.735833333	0	1.735833333	II	0.720653755	-0.456144756
GSM950480	0	1.080833333	0	1.080833333	III	0.489279046	0.658726869
GSM950481	0	4.7	0	4.7	II	0.431270116	-0.94614713

GSM950482	NA	NA	1	1.35	IV	0.322023581	-0.240746346
GSM950483	0	2.566666667	0	2.566666667	1	0.642063706	-0.027235816
GSM950484	0	1.7025	0	1.7025	III	0.846982288	0.800997582
GSM950485	0	1.6475	0	1.6475	II	0.732876811	0.596398063
GSM950486	1	0.975	0	1.505833333	III	0.408963314	-0.663277932
GSM950487	1	1.216666667	0	1.764166667	II	0.124585455	-0.705313562
GSM950488	NA	NA	0	1.614166667	IV	0.763439389	-0.82601364
GSM950489	0	3.339166667	0	3.339166667	I	2.70198355	-1.955320106
GSM950490	0	4.419166667	0	4.419166667	II	0.226499576	0.223603499
GSM950491	NA	NA	1	0.091666667	IV	0.761335632	-0.741002686
GSM950492	0	3.725	0	3.725	III	2.234815172	-1.608041335
GSM950493	NA	NA	1	1.5	IV	1.631642852	-1.684232215
GSM950494	NA	NA	1	1.064166667	IV	2.306114689	-2.64063546
GSM950495	0	0.766666667	0	0.766666667	II	1.441040656	-0.854155466
GSM950496	0	2.0275	0	2.0275	1	0.257086946	-0.866013406
GSM950497	0	0.360833333	0	0.360833333	II	1.648375221	1.614923135
GSM950498	NA	NA	0	4.7025	IV	-1.00013932	0.971621554
GSM950499	0	2.008333333	0	2.008333333	1	1.170036885	0.114760627
GSM950500	0	1.694166667	0	1.694166667	II	0.373194554	-1.380826918
GSM950501	NA	NA	0	0.0975	IV	1.408683598	0.317101837
GSM950502	NA	NA	1	0.169166667	IV	1.269091051	0.731683417
GSM950503	0	4.125	0	4.125	1	1.101954935	-1.392785845
GSM950504	1	0.8775	0	2.9475	II	2.140664002	-0.033677693
GSM950505	0	0.9525	0	0.9525	III	1.472497042	-0.303543938
GSM950506	0	0.7025	0	0.7025	II	0.645722158	1.070308999
GSM950507	0	0.8	0	0.8	II	1.231799066	0.980688364
GSM950508	NA	NA	1	3.414166667	IV	0.536833316	1.912617684
GSM950509	0	4.514166667	0	4.514166667	III	1.627845351	-1.337772415
GSM950510	NA	NA	1	0.683333333	IV	0.888660471	-2.443080056
GSM950511	NA	NA	1	0.2975	IV	1.861229889	-2.580712744
GSM950512	0	6.6975	0	6.6975	II	0.995770608	0.871075263
GSM950513	0	7.919166667	0	7.919166667	II	0.668525979	-0.712495789
GSM950514	0	4.180833333	0	4.180833333	III	1.779192944	0.237988031
GSM950515	NA	NA	1	2.566666667	IV	0.801343676	1.70281209
GSM950516	0	7.430833333	0	7.430833333	II	-0.33190818	-0.654902815
GSM950517	0	4.339166667	0	4.339166667	III	0.330466748	0.638151544
GSM950518	NA	NA	1	0.433333333	IV	0.90779298	-0.315150267
GSM950519	0	7.016666667	0	7.016666667	II	0.245568303	0.521075091
GSM950520	0	9.283333333	0	9.283333333	III	1.340650717	0.583986918

GSM950521	0	0.6525	0	0.6525	III	0.045104297	-0.393558834
GSM950522	0	7.955833333	0	7.955833333	III	1.008985377	0.066773464
GSM950523	0	8.8725	0	8.8725	II	0.202184265	0.498769511
GSM950524	NA	NA	1	0.533333333	IV	0.743101699	1.08597556
GSM950525	0	7.705833333	0	7.705833333	III	0.030330618	0.561325111
GSM950526	NA	NA	1	7.730833333	IV	-0.33190818	0.250463744
GSM950527	NA	NA	1	4.083333333	IV	-0.30502323	0.304399299
GSM950528	0	7.683333333	0	7.683333333	III	0.359957161	-0.234690234
GSM950529	0	7.65	0	7.65	III	1.479728489	0.927804761
GSM950530	NA	NA	1	1.95	IV	0.846982288	0.706260614
GSM950531	0	1.7975	0	1.7975	III	1.334208643	-0.74690238
GSM950532	0	2.755833333	0	2.755833333	II	0.422845571	0.321469297

Table 5. Information of patient samples from GSE52735

ID	ACT response	TXNIP	GDF15
GSM1275067	NR	-0.453588	1.911558
GSM1275068	NR	0.741675	0.272435
GSM1275069	R	-1.527873	-0.834293
GSM1275070	R	0.503087	1.779891
GSM1275071	NR	-0.15211	0.986188
GSM1275072	NR	-1.68777	0.631303
GSM1275073	NR	0.299146	0.182579
GSM1275074	NR	1.874411	0.075166
GSM1275075	R	-0.271545	-0.906072
GSM1275076	NR	-2.813699	1.35069
GSM1275077	R	0.558166	0.49383
GSM1275078	R	-0.293038	-0.462063
GSM1275079	R	1.347586	-1.118223
GSM1275080	R	-1.657522	-0.575103
GSM1275081	R	0.458082	0.946724
GSM1275082	R	-0.687145	0.212632
GSM1275083	R	-0.665227	-1.117578
GSM1275084	R	0.172792	-2.379292
GSM1275085	NR	-0.655423	0.697212
GSM1275086	R	0.102255	0.921207
GSM1275087	NR	-0.640448	-1.1809
GSM1275088	R	0.320025	1.061141
GSM1275089	NR	0.929067	-0.163991
GSM1275090	R	0.651024	-0.768571
GSM1275091	R	0.938855	-1.016959
GSM1275092	NR	0.153157	1.11456
GSM1275093	R	0.799161	-0.273163
GSM1275094	R	1.071156	-0.578287

GSM1275095	R	0.713962	-1.360835
GSM1275096	NR	-0.687145	0.463133
GSM1275097	R	-0.384918	1.19474
GSM1275098	NR	-1.659706	0.894535
GSM1275099	R	1.197858	-0.322389
GSM1275100	R	1.054219	-0.019074
GSM1275101	R	-0.054504	-0.537994
GSM1275102	NR	-0.35798	-1.616903
GSM1275103	R	0.763957	0.042167

Table 6. Information of patient samples from GSE6988

ID	Type	GDF15
AD15889L	human colorectal liver metastasis tumour (adenocarcinoma)	1.437729
AD15889N	human normal colorectal mucosa	1.297665
AD15889T	human colorectal primary tumour (adenocarcinoma)	1.929246
AD15889T2	human colorectal primary tumour (adenocarcinoma)	1.763517
AD15889Y	human normal liver tissue	3.574398
AX11903L	human colorectal liver metastasis tumour (adenocarcinoma)	1.573805
AX11903T	human colorectal primary tumour (adenocarcinoma)	1.523402
BF95674L	human colorectal liver metastasis tumour (adenocarcinoma)	2.807717
BF95674N	human normal colorectal mucosa	2.272595
BF95674T	human colorectal primary tumour (adenocarcinoma)	2.393257
BH27060L	human colorectal liver metastasis tumour (adenocarcinoma)	3.451118
BH27060N	human normal colorectal mucosa	1.666417
BH27060T	human colorectal primary tumour (adenocarcinoma)	2.129928
CA75662L	human colorectal liver metastasis tumour (adenocarcinoma)	3.40047
CA75662N	human normal colorectal mucosa	1.570837
CA75662T	human colorectal primary tumour (adenocarcinoma)	3.195132
CA75662Y	human normal liver tissue	3.944034
CH76639L	human colorectal liver metastasis tumour (adenocarcinoma)	1.234958
CH76639N	human normal colorectal mucosa	1.185903
CH76639T	human colorectal primary tumour (adenocarcinoma)	2.062743
CH76639Y	human normal liver tissue	3.972991
DA09647L	human colorectal liver metastasis tumour (invasive squamous cell carcinoma)	1.61401
DA09647N	human normal colorectal mucosa	1.644748
DA09647T	human colorectal primary tumour (invasive squamous cell carcinoma)	2.412006
DA09647T2	human colorectal primary tumour (invasive squamous cell carcinoma)	2.857492
DA09647Y	human normal liver tissue	4.584387
DA85401L	human colorectal liver metastasis tumour (adenocarcinoma)	3.185002
DA85401N	human normal colorectal mucosa	1.690391
DA85401T	human colorectal primary tumour (adenocarcinoma)	2.335573
DA85401Y	human normal liver tissue	5.994388
DA86595L	human colorectal liver metastasis tumour (adenocarcinoma)	2.944078
DA86595N	human normal colorectal mucosa	1.675662
DA86595N2	human normal colorectal mucosa	1.789686

DA86595T	human colorectal primary tumour (adenocarcinoma)	1.367762
DA86595T2	human colorectal primary tumour (adenocarcinoma)	1.639317
DA86595Y	human normal liver tissue	3.491193
DB14731L	human colorectal liver metastasis tumour (adenocarcinoma)	3.477558
DB14731N	human normal colorectal mucosa	1.704383
DB14731T	human colorectal primary tumour (adenocarcinoma)	2.64972
DB14731Y	human normal liver tissue	3.185925
DB33368L	human colorectal liver metastasis tumour (adenocarcinoma)	2.798984
DB33368N	human normal colorectal mucosa	2.430789
DB33368T	human colorectal primary tumour (adenocarcinoma)	3.189344
DB33368Y	human normal liver tissue	4.379159
DC10136L	human colorectal liver metastasis tumour (adenocarcinoma)	1.972484
DC10136N	human normal colorectal mucosa	1.756299
DC10136T	human colorectal primary tumour (adenocarcinoma)	1.892931
DC54343L	human colorectal liver metastasis tumour (adenocarcinoma)	0.18005
DC54343N	human normal colorectal mucosa	1.984971
DC54343T	human colorectal primary tumour (adenocarcinoma)	1.520653
DD13676L	human colorectal liver metastasis tumour (adenocarcinoma after chemoradiation therapy)	1.919197
DD13676N	human normal colorectal mucosa	2.070493
DD13676T	human colorectal primary tumour (adenocarcinoma after chemoradiation therapy)	5.796173
DD13676Y	human normal liver tissue	5.235613
DX14048T	human colorectal primary tumour (adenocarcinoma)	2.509886
DX16165T	human colorectal primary tumour (adenocarcinoma)	1.504442
DX18306T	human colorectal primary tumour (adenocarcinoma)	-0.351
DX18618T	human colorectal primary tumour (adenocarcinoma)	0.261456
DX18679T	human colorectal primary tumour (adenocarcinoma)	2.670293
DX22237T	human colorectal primary tumour (adenocarcinoma)	3.172609
DX24121T	human colorectal primary tumour (adenocarcinoma)	1.075656
DX25011T	human colorectal primary tumour (adenocarcinoma)	1.719013
DX26025T	human colorectal primary tumour (adenocarcinoma)	3.068779
DX27754L	human colorectal liver metastasis tumour (gastrointestinal stromal tumour)	1.364322
DX27754N	human normal colorectal mucosa	1.574519
DX27754T	human colorectal primary tumour (gastrointestinal stromal tumour)	1.904249
DX28973T	human colorectal primary tumour (adenocarcinoma)	2.5637
DX31056T	human colorectal primary tumour (adenocarcinoma)	1.748598
DX31470T	human colorectal primary tumour (adenocarcinoma)	3.416421
DX33570T	human colorectal primary tumour (adenocarcinoma)	1.294134
DX33882T	human colorectal primary tumour (adenocarcinoma)	1.628017
DX33896T	human colorectal primary tumour (adenocarcinoma)	2.289097
DX36208T	human colorectal primary tumour (adenocarcinoma)	3.174302
DX45134T	human colorectal primary tumour (adenocarcinoma)	2.12642
DX46644L	human colorectal liver metastasis tumour (adenocarcinoma)	2.282871
DX46644L2	human colorectal liver metastasis tumour (adenocarcinoma)	2.180125
DX46644N	human normal colorectal mucosa	2.776432
DX46644N2	human normal colorectal mucosa	2.612871
DX46644T	human colorectal primary tumour (adenocarcinoma)	2.679253

DX46644T2	human colorectal primary tumour (adenocarcinoma)	2.630854
DX52497T	human colorectal primary tumour (adenocarcinoma)	0.620962
DX57828L	human colorectal liver metastasis tumour (adenocarcinoma)	2.110447
DX57828L2	human colorectal liver metastasis tumour (adenocarcinoma)	2.82083
DX57828N	human normal colorectal mucosa	2.332805
DX57828N2	human normal colorectal mucosa	2.559739
DX57828T	human colorectal primary tumour (adenocarcinoma)	4.138434
DX57828T2	human colorectal primary tumour (adenocarcinoma)	3.97004
DX62184T	human colorectal primary tumour (adenocarcinoma)	2.170682
DX63421L	human colorectal liver metastasis tumour (adenocarcinoma)	1.256163
DX63421N	human normal colorectal mucosa	2.611123
DX63421T	human colorectal primary tumour (adenocarcinoma)	3.368063
DX64153L	human colorectal liver metastasis tumour (adenocarcinoma)	3.257078
DX64153N	human normal colorectal mucosa	2.486665
DX64153T	human colorectal primary tumour (adenocarcinoma)	2.14822
DX67096L	human colorectal liver metastasis tumour (adenocarcinoma)	1.563062
DX67096N	human normal colorectal mucosa	3.001181
DX67096T	human colorectal primary tumour (adenocarcinoma)	2.127045
DX68531T	human colorectal primary tumour (adenocarcinoma)	0.733839
DX70008L	human colorectal liver metastasis tumour (adenocarcinoma)	2.003639
DX70008N	human normal colorectal mucosa	1.830151
DX70008T	human colorectal primary tumour (adenocarcinoma)	3.174756
DX70008Y	human normal liver tissue	2.352135
DX72875L	human colorectal liver metastasis tumour (adenocarcinoma)	2.933767
DX72875N	human normal colorectal mucosa	1.33371
DX72875T	human colorectal primary tumour (adenocarcinoma)	1.547777
DX72875T2	human colorectal primary tumour (adenocarcinoma)	1.536613
DX73169L	human colorectal liver metastasis tumour (adenocarcinoma)	2.977251
DX73169N	human normal colorectal mucosa	2.907815
DX73169T	human colorectal primary tumour (adenocarcinoma)	2.718055
DX73339L	human colorectal liver metastasis tumour (adenocarcinoma)	1.90262
DX73339N	human normal colorectal mucosa	1.496952
DX73339T	human colorectal primary tumour (adenocarcinoma)	3.164846
DX73339Y	human normal liver tissue	2.361714
DX86797L	human colorectal liver metastasis tumour (adenocarcinoma)	3.68982
DX86797N	human normal colorectal mucosa	1.854225
DX86797T	human colorectal primary tumour (adenocarcinoma)	2.557598
DX86797Y	human normal liver tissue	3.126623
EA71820L	human colorectal liver metastasis tumour (adenocarcinoma)	2.537432
EA71820T	human colorectal primary tumour (adenocarcinoma)	0.758211
EX36605L	human colorectal liver metastasis tumour (adenocarcinoma)	1.239077
EX36605N	human normal colorectal mucosa	2.164224
EX36605T	human colorectal primary tumour (adenocarcinoma)	1.354372
EX36605Y	human normal liver tissue	2.370023

Table 7. DLD1 RNA-seq data

Gene symbols (Protein coding)	Ctrl (FPKM)	Oxaliplatin (FPKM)	log2 FoldChange	P-adj
PRR35	0	28.54604642	7.266648694	4.05E-07
LCN10	0.348551657	19.81510099	5.77798115	0.000165013
KCNB2	0	9.706757472	5.710984401	0.000944421
MSLNL	1.404126458	67.71865034	5.648547106	$1.39 \mathrm{E}-10$
ARHGDIG	0	8.572541077	5.535993911	0.002144401
LCN6	0	7.722649387	5.382576736	0.003533255
DIRAS1	0.358471485	14.16813813	5.291236529	0.001478102
AZU1	0.348551657	13.53987207	5.22439553	0.001381992
CCDC27	0.606003494	20.50235029	4.952011819	0.000369608
TXNIP	269.1314923	5656.84046	4.393907246	3.23E-05
TBXA2R	2.287421445	39.23883874	4.079540413	4.03E-07
KRTAP3-1	1.736887689	26.77862079	3.986304302	$8.66 \mathrm{E}-05$
C16orf90	1.404126458	20.143357	3.886848878	0.000404855
LYPD1	0.697103315	9.959528556	3.878697138	0.02031963
ATAD3C	0.651553405	9.393553402	3.819505399	0.020045939
FCGRT	0.707023143	9.525458512	3.815109141	0.018535348
PAX5	0.606003494	8.417741357	3.690189167	0.032800515
RGS22	4.483800267	52.87831485	3.584576576	$2.38 \mathrm{E}-08$
LYPD5	0.716942971	8.107733749	3.56726866	0.040775101
IGF2	1.01002489	11.52926475	3.521303794	0.00988745
CPA4	15.4650591	176.1615753	3.495720114	$1.17 \mathrm{E}-16$
RASD2	1.368496375	14.72266598	3.446066645	0.00318405
ANK1	1.782437599	18.66984546	3.444763727	0.001488446
PTX4	1.378416203	14.40864557	3.420790593	0.00581604
SNAI2	0.909005242	9.918793717	3.354114189	0.026429436
PDE6G	4.095569298	40.67562823	3.33126446	$2.98 \mathrm{E}-07$
RGS11	2.424071176	22.24152997	3.226885568	0.000327353
PKDREJ	4.202459545	37.95424359	3.209201115	2.52E-05
ANO2	5.828407757	53.14717945	3.207502448	4.64E-08
DACT3	3.287526507	28.42075948	3.104053822	0.000150843
CHRD	1.792357427	14.03861315	3.027956708	0.014782567
C11orf94	1.414046286	10.5277698	2.938353804	0.033496993
CHGA	1.762597943	12.01272864	2.803494298	0.024200189
ARRDC4	172.9196795	1160.017472	2.747058788	9.63E-10
PDCL2	4.584819916	29.59693522	2.727474801	0.000558821
INHA	2.06559969	13.16222222	2.702016776	0.021122924
PDE10A	33.72891497	219.3575194	2.698430287	4.67E-19
PNMA2	34.13487213	212.2371324	2.648639507	$1.36 \mathrm{E}-15$
GPR137C	53.21070562	327.5893119	2.625864776	1.23E-28
KCNG2	2.727072923	16.54052704	2.608860065	0.008565108
AP3B2	4.121279552	24.60793412	2.59037783	0.001500428
RPP25	4.646103054	27.91417573	2.581616636	0.000282438
HCAR3	2.782542661	16.16328535	2.569844393	0.008287204
PLPPR3	32.04344779	184.3770951	2.519142127	$1.80 \mathrm{E}-17$
03-Sep	46.08095523	259.0874552	2.492684351	$1.69 \mathrm{E}-16$
RASGRP3	17.57849375	97.74761476	2.482790473	8.06E-11
COL1A1	4.701572792	25.75155698	2.46304087	0.001463559
ADRB2	2.212112051	12.34161806	2.441564692	0.039888572
UCN2	7.852506767	42.20998093	2.438021162	$2.71 \mathrm{E}-05$
WNT16	21.07210879	111.6133627	2.412413619	$1.72 \mathrm{E}-09$
COL20A1	2.974604932	15.87256772	2.410925128	0.014015023
FGF2	20.98687957	110.6226099	2.404684243	$1.76 \mathrm{E}-10$
HTR1D	16.32675026	86.00456706	2.39451671	$2.69 \mathrm{E}-10$
ENHO	3.737097813	19.3498855	2.385035867	0.004632392
LYG2	6.44433108	33.07425299	2.365799283	0.000225897
PTGER2	49.36096136	252.6579753	2.36338399	$6.61 \mathrm{E}-15$
B3GAT1	5.737307937	29.20504976	2.355497201	0.000916199

VWA5B2	71.94579383	363.3904149	2.341373811	$4.40 \mathrm{E}-26$
APLP1	31.76427773	160.5659135	2.334114287	1.50E-12
DMC1	3.645997992	18.37407345	2.326246992	0.007022647
RNF152	2.671603185	12.87830568	2.275684362	0.035165482
C1QTNF2	10.90647032	52.48962585	2.274847592	0.000442427
PTGES3L	5.085754532	23.88552657	2.245402325	0.002812597
CALHM4	3.469726148	16.14399537	2.238344759	0.022181972
TMEM210	8.197009195	38.14018876	2.232089349	0.000205831
BAIAP3	95.55803419	449.3300405	2.227374929	8.13E-29
FOXD4	25.24891528	115.4144015	2.206209116	$9.08 \mathrm{E}-08$
C5AR1	36.72341675	167.3002168	2.189493266	$2.49 \mathrm{E}-10$
TMEM217	14.195761	64.67923249	2.17759175	4.62E-07
PEAR1	9.474348551	43.05626799	2.166610104	0.000112887
ZNF345	4.505461292	19.73496986	2.152066644	0.020399001
AKAP12	161.3512784	710.9110899	2.140314549	8.15E-21
CYR61	1387.786154	5945.598838	2.09882266	2.32E-30
GNG13	20.64824774	88.15655484	2.098670663	$2.66 \mathrm{E}-07$
MSLN	29.64514406	126.016474	2.094460483	$1.86 \mathrm{E}-10$
TMEM249	7.923709733	33.90392433	2.082351912	0.002093715
NHLRC4	3.368706499	14.24681952	2.0716486	0.049706111
TTLL6	8.206871824	34.41968929	2.055674805	0.000701974
S1PR5	9.286392708	37.91228424	2.0513492	0.001149187
NLRP3	9.67051725	39.62299273	2.035369389	0.000701974
SDR42E1	3.99454965	16.25765209	2.025376411	0.023999986
MEIS3	5.267896975	21.34142809	2.014893529	0.020466476
MDK	153.3590238	619.3048721	2.014090386	8.06E-33
HUNK	76.78407355	306.7319811	2.00450603	$3.99 \mathrm{E}-16$
EDN1	37.0381025	148.0219175	1.996296943	8.15E-12
FAM131B	12.51839228	49.52045562	1.98291888	0.001513213
RAET1G	6.418620825	25.11853067	1.968452596	0.006578295
TMEM191B	30.92664705	119.8950032	1.966111755	1.11E-09
PRSS51	4.075729642	15.62618957	1.953151378	0.034506787
TTLL10	28.17562804	107.9926925	1.937098146	4.65E-09
JSRP1	11.55990229	43.79558539	1.936210823	0.005122722
SLC25A42	129.0556141	493.1417646	1.931233215	3.73E-20
CLDN1	61.60781835	234.1572764	1.927424103	4.63E-11
NRIP3	4.57079366	17.52377359	1.925881049	0.03274181
USH1G	4.939184973	18.97160223	1.925754698	0.018268125
TMEM200B	11.34788597	43.19043918	1.924822638	0.000192967
CYP1A1	22.31346877	84.36250008	1.918444943	0.000115162
CALD1	198.9113473	751.8590677	1.915608314	$3.76 \mathrm{E}-13$
MDGA1	11.05480405	41.36897349	1.906702483	0.000486714
LOXL3	163.2145467	611.1277337	1.906242878	$6.06 \mathrm{E}-26$
B3GALT5	260.4299322	974.6133288	1.905323052	$1.48 \mathrm{E}-38$
INAFM2	60.93830386	227.4034844	1.90167873	$1.06 \mathrm{E}-15$
PLAT	25.83496472	95.34326406	1.887519419	5.24E-07
TEX14	43.56008523	160.133776	1.885510482	$2.64 \mathrm{E}-07$
ADAMTS15	33.13699493	121.6255928	1.884467063	$1.31 \mathrm{E}-07$
HIST1H2BJ	25.70424278	94.09208045	1.877554323	1.69E-07
TCHH	38.2839754	140.7522917	1.877286477	7.32E-10
EFCAB5	3.984629822	14.52672325	1.860925313	0.049255327
FGF22	27.33429742	98.40720919	1.855436317	$3.48 \mathrm{E}-06$
BDNF	87.41655193	316.3280954	1.852677967	2.87E-18
TLX2	6.125538906	22.01804642	1.852031724	0.014247921
MYL9	5.010445138	17.78799198	1.830685975	0.048032622
ADGRF1	30.41339315	108.2559805	1.822480176	$4.66 \mathrm{E}-07$
PHACTR3	24.26214399	86.38128654	1.819532219	$1.28 \mathrm{E}-05$
CD37	18.76661186	65.96278605	1.815446766	8.57E-06
CILP2	24.16928	84.98645638	1.805077479	3.09E-06
HSD17B6	25.22491199	87.01873381	1.788298574	3.37E-07
SYNE1	148.5065463	514.8940288	1.787871159	4.79E-19

DMBX1	79.52448025	272.1625916	1.776480795	$2.05 \mathrm{E}-15$
IFITM5	13.28270653	45.5742754	1.771402425	0.000598628
ZMYND15	32.04162642	109.4008279	1.768335722	$1.56 \mathrm{E}-07$
PRICKLE1	20.56888911	69.84756059	1.765677018	$1.77 \mathrm{E}-05$
DQX1	24.94585633	82.28570026	1.730356319	$2.88 \mathrm{E}-05$
NR2E3	30.67101658	100.8429306	1.723896018	4.76E-06
APBB1	18.0893482	59.59504832	1.719965589	$4.06 \mathrm{E}-05$
FAM69B	135.1867887	443.8235012	1.715737884	1.11E-22
C1orf105	53.15112946	174.6585244	1.715579022	$6.83 \mathrm{E}-11$
P2RX2	12.83142825	41.43301111	1.709348197	0.004496059
HAP1	10.96781066	35.38684233	1.706438642	0.007187446
CHST3	35.69936561	116.4161217	1.703205579	1.85E-08
CCNI2	17.92293898	58.47187106	1.702258094	6.73E-05
NDRG2	21.40252776	69.86097985	1.697615465	2.16E-05
DPF1	69.64440333	224.863738	1.69650418	7.41E-13
ADGRB2	311.5585553	1008.750798	1.695840738	2.53E-31
KCNJ8	73.99132507	239.012064	1.687450358	$4.99 \mathrm{E}-11$
CCDC102A	82.58396511	265.7553013	1.686574224	$4.38 \mathrm{E}-12$
PLK2	762.9028719	2445.10974	1.679753363	4.19E-33
IGF2BP1	7.464218599	24.01824802	1.665378021	0.022185345
AC010325.1	6.06014934	19.18363847	1.664487178	0.034590839
PCDH7	140.3398174	444.8782199	1.660791906	$1.22 \mathrm{E}-15$
VASH1	10.52410995	33.24131635	1.659995005	0.007289915
CLDN5	77.64518662	244.6872728	1.656911908	8.82E-15
KIF17	44.70618177	140.987559	1.655307621	2.21E-07
C1QTNF9B	15.1304765	48.10373012	1.654171642	0.000713547
SPIB	9.735964014	30.15610928	1.654025118	0.015804225
PALLD	349.83206	1100.109196	1.653907679	$1.62 \mathrm{E}-22$
RNF151	8.119878431	25.34521068	1.643777031	0.02417374
SLC19A3	10.39333082	32.24283494	1.638337184	0.005257939
STAB1	8.85255463	27.82341363	1.636271238	0.017540724
TCEA2	30.39583855	94.49604662	1.635871821	1.72E-06
SYNGR3	11.48858493	35.22802981	1.629131442	0.007752867
PPP1R27	7.216743788	22.14716323	1.627089692	0.034927542
DACT1	20.50344235	63.251102	1.620091932	0.000157986
FOXA3	31.17412186	95.35523074	1.616312051	8.19E-06
GPRIN3	12.78587834	38.23652745	1.601148889	0.016880868
PLPPR2	258.9872553	783.67346	1.597796051	$1.26 \mathrm{E}-21$
NBPF1	971.1307141	2936.141555	1.596245141	$2.70 \mathrm{E}-31$
MYBL1	239.2678859	720.762793	1.591413483	$5.26 \mathrm{E}-15$
RAB3D	24.13541408	72.90381941	1.582922696	0.000209785
SLC1A3	72.75042267	215.4198181	1.571817072	$3.67 \mathrm{E}-05$
GVQW2	32.0831271	95.48668536	1.568613219	5.76E-06
CDH7	12.22531036	36.35388132	1.565969523	0.024068896
CTGF	268.9479165	790.6073811	1.555329385	0.00803267
GGT7	52.86551072	156.1532933	1.554239481	$1.84 \mathrm{E}-06$
ZSCAN12	136.2996546	398.6652727	1.550091871	$8.21 \mathrm{E}-16$
BRSK1	12.59552304	36.92584123	1.547525489	0.004779943
TMEM99	275.3249672	804.1366206	1.547092901	8.56E-27
TMEM191C	51.85794248	151.0641237	1.540711042	$6.78 \mathrm{E}-08$
C1R	40.76516609	118.771529	1.538656372	$2.66 \mathrm{E}-05$
PLEKHD1	25.04276955	72.21512036	1.536359499	7.97E-05
RDH5	48.74674501	140.8158494	1.532960141	$1.71 \mathrm{E}-07$
HPCAL4	20.84025281	59.88413327	1.520649371	0.002627942
CLGN	19.70132735	55.90086517	1.509183172	0.001534354
MORN2	105.5082996	298.164876	1.502148625	$1.46 \mathrm{E}-08$
NOTCH4	14.67503459	41.84883276	1.499519579	0.0084431
KBTBD8	43.58226714	122.1600143	1.494759045	0.001818953
HIST1H4H	18.77071829	52.51891339	1.492835735	0.001381992
CCDC148	24.60898867	69.02428218	1.491212339	0.000154648
ACTA2	42.85476906	120.648331	1.490220685	5.69E-07

HPX	27.73004877	78.42969105	1.490017167	6.32E-05
ATF5	380.9388232	1062.717948	1.479861021	7.07E-14
PAX6	13.72640724	38.16772958	1.477824208	0.009925088
REEP2	49.54668935	136.8619829	1.472098729	3.73E-07
CYP2W1	11.19550301	30.80767812	1.467284662	0.021854318
SOWAHA	10.76172213	29.55538404	1.4659163	0.017852404
MOSPD1	720.2241398	1982.438024	1.460137459	$2.70 \mathrm{E}-27$
KISS1R	11.95394666	32.46591032	1.458959191	0.022472711
NPTX2	11.84118582	32.34586069	1.457540221	0.033545655
NKX3-1	431.1222601	1182.763338	1.456708899	$2.68 \mathrm{E}-28$
CSPG5	39.88826259	109.0522827	1.454433949	0.000103385
KRT5	15.06508693	41.58955754	1.451765359	0.009038804
LPAR6	16.19602832	44.2402864	1.447929827	0.004584182
ZNF488	111.8737929	304.0888697	1.44547129	$2.46 \mathrm{E}-08$
KIAA0319	116.6857271	317.1802137	1.442500138	$5.76 \mathrm{E}-13$
KATNAL1	192.893093	522.9167334	1.440848807	$2.34 \mathrm{E}-18$
CRABP2	82.5960556	223.705853	1.440376088	3.86E-08
DAB2	102.5534771	278.3022233	1.439347055	7.95E-08
FAM126A	151.6329834	410.3408639	1.437249124	2.47E-11
ZNF132	10.4983997	28.32256287	1.436376866	0.030643379
PBX3	28.94211295	78.26047281	1.433957669	$8.47 \mathrm{E}-05$
SLFNL1	63.40803934	170.7959688	1.433132745	3.89E-06
SEMA3G	67.08955302	180.0559127	1.427916056	$1.25 \mathrm{E}-08$
FAM13B	546.7388225	1467.242252	1.423171578	7.37E-20
MSANTD1	41.13190763	110.0344453	1.41996731	$1.16 \mathrm{E}-05$
PPP1R14C	185.7339896	495.5843266	1.41704785	$2.36 \mathrm{E}-14$
IFRD1	2569.86777	6861.626155	1.417021631	$1.61 \mathrm{E}-26$
FAM71F2	53.0971318	141.3522695	1.41002112	0.00071383
MRC2	12.64107295	33.41016875	1.407655801	0.032771739
INKA1	11.71046388	30.62916745	1.405872017	0.033058979
MYLK2	17.63390629	46.60609946	1.402556538	0.006346161
OBSL1	11.76182719	30.87409586	1.396361846	0.017494963
REEP1	44.24321949	115.4345501	1.392552395	$5.88 \mathrm{E}-05$
ZNF467	55.41425553	145.3365526	1.391891547	$6.24 \mathrm{E}-05$
NRP1	675.5141138	1771.659131	1.39088456	$1.94 \mathrm{E}-16$
NKX6-1	23.42679837	60.89685028	1.390230314	0.00483803
FAM57B	17.14647705	44.78864657	1.380162693	0.010518107
COL28A1	23.19083596	60.6412909	1.37815479	0.00102821
TPH1	65.67961316	170.5425643	1.376559625	$1.91 \mathrm{E}-05$
LRRN4	81.06566292	210.2558392	1.374736053	$4.98 \mathrm{E}-07$
ALPP	224.5874049	581.8585645	1.374294021	$2.89 \mathrm{E}-10$
EPPK1	427.9867733	1108.184846	1.373090547	5.82E-26
GJC2	12.75788303	33.01021537	1.372495351	0.026895285
RNF227	284.3973506	734.0357961	1.366399118	5.65E-17
RRM2	3911.385706	10083.73489	1.366328089	0.000163207
WNT8B	17.04369323	44.01279005	1.365098169	0.006626952
ACBD7	30.03143927	77.24370068	1.354519131	0.001029508
CDC14A	482.7671778	1230.413822	1.349974419	3.83E-18
LRRC8C	159.3292295	404.9787028	1.347976734	$1.79 \mathrm{E}-09$
MYLPF	16.52474032	41.86667299	1.346607543	0.007568888
BTNL9	137.565602	349.1266827	1.343174481	$3.33 \mathrm{E}-10$
SLC51B	27.31217271	68.76244391	1.336935581	0.001617407
SAMHD1	632.8583194	1596.63732	1.335352533	3.16E-11
RARRES2	297.2527822	748.4086601	1.332821137	$2.24 \mathrm{E}-13$
TUBB2B	20.86784163	52.52571448	1.329975397	0.003931575
WDFY4	66.3409148	166.7559146	1.32804275	$6.90 \mathrm{E}-07$
E2F2	370.355056	925.0101948	1.321495395	$1.65 \mathrm{E}-14$
ZNF491	19.13500317	47.46104554	1.316874492	0.005448941
ZNF559	23.17322416	57.77213287	1.313429031	0.007457759
DZIP1L	140.2850402	348.6186492	1.313264107	2.93E-08
GLIPR2	37.50175726	92.38839831	1.312227773	0.000292926

NANOS1	220.106239	545.8199015	1.312072181	$9.64 \mathrm{E}-12$
EEF1A2	218.4332415	542.193347	1.311685216	5.12E-07
CLSPN	1551.785259	3850.932325	1.31140341	0.001439321
CCDC151	15.9840692	39.70167411	1.310112008	0.012379544
IKBIP	227.9098513	564.0945611	1.307480679	$1.39 \mathrm{E}-07$
ANKRD2	44.22497241	109.6654545	1.301091499	8.62E-05
ADAMTSL2	17.19601899	42.40800682	1.291113356	0.024814033
CCDC15	124.4569967	304.5232367	1.290026196	$1.67 \mathrm{E}-10$
OAS2	25.95588122	63.02018394	1.287992929	0.004743197
ZNF540	17.89728593	43.49178778	1.287339404	0.007752867
TMEM240	27.54215012	66.67077508	1.285816441	0.002036535
HDAC9	32.87708644	80.25056565	1.28157314	0.001010591
SLC35G6	41.56528202	100.8794274	1.279358671	0.000695783
SHOX2	37.05207156	89.94669215	1.27881977	0.000120206
KRT71	12.48464076	30.14466197	1.278637439	0.038090051
TPM2	73.14906707	177.9311293	1.277645623	$4.84 \mathrm{E}-06$
PPARA	632.2246542	1531.882706	1.276753377	$1.36 \mathrm{E}-24$
DDIAS	574.518766	1383.758162	1.268382214	5.73E-09
FRMPD3	18.54296873	44.47265421	1.266679041	0.018813592
ZNF695	85.50749882	205.6341963	1.264485258	2.09E-08
RYR3	63.35479746	151.5200467	1.261791111	0.000170731
GPR179	14.89292151	35.55431386	1.258824917	0.020775519
PIGW	541.0232302	1289.368733	1.253573831	1.23E-10
SLC12A4	680.2427723	1620.198759	1.252744811	5.88E-24
MATN2	188.5510694	450.385435	1.251919916	8.43E-09
FAM111B	1602.119935	3811.122313	1.250319516	0.002679659
RASGRF1	27.85854284	66.62940682	1.248055305	0.008583637
ARHGDIB	60.21286204	143.8183623	1.246472271	0.000959727
DENND2C	101.9080231	240.3254696	1.244353371	3.83E-06
AC093512.2	39.97537038	93.95772633	1.242187438	0.000582571
TUBB2A	141.5665432	334.5298259	1.241436014	1.13E-06
DCLK2	103.4982268	243.8292414	1.238097246	5.12E-07
PMEPA1	253.644943	597.8770973	1.236636511	6.44E-06
TAS1R3	58.02269701	136.760884	1.233374712	$2.46 \mathrm{E}-05$
RGS9	93.34615093	218.6154588	1.233155386	$1.76 \mathrm{E}-07$
CYTIP	14.24131091	33.52040375	1.233066865	0.030238544
FRMPD2	14.90284134	34.83272265	1.232489879	0.026176393
ZNF620	334.3563314	785.2674107	1.232195565	$3.37 \mathrm{E}-15$
IRF8	76.36539061	179.415383	1.229505463	$1.56 \mathrm{E}-06$
ITPKA	141.9931196	332.97124	1.229412697	$1.20 \mathrm{E}-09$
KITLG	1411.770007	3304.364903	1.22683276	$1.60 \mathrm{E}-14$
TMEM38A	55.05390548	128.6320446	1.223305427	0.000177901
GNB3	19.41628669	45.56788248	1.221718308	0.02916432
ARAP3	176.9032676	411.2191551	1.221574733	9.18E-10
ESR2	20.45207904	47.73503623	1.219300456	0.032599992
CXCR6	217.6778387	508.0128374	1.219204866	8.19E-12
FOXD1	449.0938708	1044.446333	1.218626378	1.94E-18
C18orf54	423.324007	983.9286836	1.21827735	$7.00 \mathrm{E}-08$
SPTBN5	276.9871808	643.4660486	1.217560777	$1.50 \mathrm{E}-12$
CRIP2	18.80224194	43.45384124	1.213970869	0.014034223
DBN1	36.71925313	85.25967307	1.21291947	0.00074486
FBXO5	1010.814858	2340.369369	1.211107674	$2.60 \mathrm{E}-12$
DYRK3	21.40076359	49.54434949	1.208605891	0.017806858
ENPEP	125.7059342	291.0652425	1.207847131	$9.50 \mathrm{E}-09$
DLK2	59.64471039	137.5758003	1.20539901	8.52E-05
GFI1	46.19605833	105.7616152	1.203163625	0.000654213
CD101	28.62748441	65.44899304	1.202172305	0.005440602
MFSD2A	250.2520018	574.290542	1.201277827	4.13E-07
SPTB	1269.314765	2918.530204	1.201031173	$2.61 \mathrm{E}-24$
CARD9	167.2344001	384.153742	1.19986916	6.76E-10
REN	17.07926611	39.246048	1.191848915	0.030482606

COPZ2	44.62893661	102.4489807	1.190140017	0.000633365
KRTAP2-3	30.60956185	69.95070037	1.18984798	0.001778992
NOTUM	64.09664381	146.9261699	1.189227493	4.13E-05
STXBP5L	29.59777279	67.48011485	1.18756576	0.002930181
CDKL2	27.30624491	62.18731615	1.185507765	0.002654467
CAVIN1	2067.449859	4677.257517	1.178264239	6.57E-17
LSMEM2	17.49332173	39.31874463	1.176658647	0.034846083
CLDN18	20.96709711	47.07469434	1.17182607	0.041711985
TCF19	940.9514538	2117.082201	1.17031645	1.72E-09
E2F8	732.0153023	1647.710292	1.169964658	$1.41 \mathrm{E}-11$
FOXL2NB	17.61001741	39.71951434	1.169479088	0.020387717
WDR53	252.7720077	566.7138798	1.165000943	7.47E-12
SPATA33	181.9836724	407.1155698	1.16490102	$2.58 \mathrm{E}-07$
NCAPH2	1313.780376	2944.440947	1.164593783	$9.16 \mathrm{E}-15$
RAD9B	38.68389037	86.70831804	1.162096938	0.000417464
SLC35E4	105.5078359	235.6740141	1.161441144	$6.27 \mathrm{E}-06$
KLHL4	420.3059172	940.1202829	1.159790677	$1.50 \mathrm{E}-13$
ZNF462	134.2444956	299.2486836	1.158606294	$1.74 \mathrm{E}-07$
HEG1	570.3116696	1269.675754	1.154321797	9.82E-18
TP73	422.4984396	939.160819	1.153974074	4.47E-13
RTKN2	857.0107123	1904.951219	1.152319786	$1.69 \mathrm{E}-09$
CENPO	782.7153077	1737.743592	1.151250113	2.91E-09
AC131097.2	19.19640071	42.26041636	1.14807555	0.037131475
SYNJ1	583.101796	1291.325232	1.14737447	$2.16 \mathrm{E}-15$
CBR3	17.51891759	38.8459117	1.146935111	0.032049789
C9orf43	20.90746374	46.57658668	1.146114734	0.016002107
FHDC1	532.4936313	1174.929163	1.143169202	3.68E-09
SLC35D3	20.34695296	45.28076948	1.141612216	0.023209018
AC020915.1	38.37689659	84.07449903	1.135401895	0.0011619
CCP110	727.8480875	1595.519883	1.132426735	9.37E-10
ULBP2	162.3503989	356.2182778	1.132358442	1.51E-09
ZNF584	200.761333	437.3196655	1.125764955	$2.04 \mathrm{E}-11$
IL11	29.35206215	63.78633987	1.125072073	0.004450211
EXO1	1212.051205	2642.715556	1.124683424	0.005113326
ERFE	69.47576625	151.1558161	1.124659037	$1.46 \mathrm{E}-05$
FAM189A2	77.62711114	169.2063487	1.121463196	$9.44 \mathrm{E}-05$
TSACC	21.2560726	46.13066117	1.120607631	0.015804225
CENPL	577.8254063	1256.30197	1.120100865	$1.98 \mathrm{E}-15$
TLE2	58.01847618	126.3348465	1.119776562	0.004225832
UNC79	16.36238034	35.68662713	1.119201641	0.038462567
MID1	572.5135221	1243.280158	1.118785096	$9.41 \mathrm{E}-10$
TMCC2	52.8778872	114.635913	1.118680746	0.000527994
CCDC142	383.4317823	830.9238609	1.117315457	8.85E-13
S100A5	38.87418847	84.00604045	1.11696118	0.005336755
RAB9B	57.56543373	124.9588558	1.115704365	0.000167688
HELLS	2247.850903	4869.472297	1.115457996	$2.00 \mathrm{E}-09$
TMOD2	130.2586524	282.6435995	1.114541904	5.41E-06
TCF7L1	54.50571398	117.815895	1.114245186	0.000107412
RAB30	662.3784582	1430.936153	1.111779409	7.18E-20
CIP2A	1457.075254	3147.123117	1.111206452	5.82E-08
CENPU	1468.825252	3172.53312	1.111098421	1.49E-16
UTP4	2356.55574	5073.391803	1.106514365	$7.76 \mathrm{E}-13$
ZNF180	341.5327034	735.1401762	1.105142518	1.09E-14
AIF1L	520.248659	1118.03416	1.104784891	$1.18 \mathrm{E}-07$
MITF	687.6147805	1478.820791	1.104030501	$2.80 \mathrm{E}-12$
SCNM1	414.4305957	891.3514801	1.103488618	4.89E-15
NOCT	205.4098355	440.3069012	1.103226822	1.72E-09
ELFN2	34.16046799	73.2091808	1.100528172	0.003507821
PLCE1	547.1811145	1173.809609	1.099601529	$2.58 \mathrm{E}-11$
CSRP2	295.6670913	632.335624	1.097904209	$2.58 \mathrm{E}-08$
TAS2R5	40.7297076	87.13216528	1.095886428	0.001439321

NR2F1	322.2682788	689.1071895	1.09537268	4.08E-12
CHRM5	30.39002515	64.81916319	1.092155916	0.012190786
CHRNB1	592.3873607	1262.779754	1.090940896	$1.32 \mathrm{E}-10$
CCND3	795.9934714	1694.228796	1.090477628	$7.35 \mathrm{E}-07$
06-Sep	347.1249833	740.4577303	1.090221994	6.62E-09
AK1	47.64978393	100.8527452	1.088893772	0.003607441
CPA5	26.35756036	56.23941286	1.08836314	0.015415243
CNTNAP3	22.12357716	46.8643331	1.086067523	0.025632262
MCM8	1796.304276	3811.597985	1.085605399	$2.43 \mathrm{E}-10$
CEP19	70.77523032	149.4813075	1.082149384	5.72E-05
STX11	68.52908077	145.2590957	1.081218271	0.000132229
IGFBP3	36.68778667	77.56876022	1.079307269	0.003961959
ADCY9	171.8285617	362.4971113	1.07735193	9.57E-09
MRPL53	74.77160134	157.2908891	1.075564697	$1.50 \mathrm{E}-05$
SLC25A19	226.7759535	476.9580071	1.074828865	3.83E-05
CSRNP1	370.7976006	780.7647493	1.074145546	$1.01 \mathrm{E}-13$
TMEM255B	47.77422877	100.3040881	1.074130529	0.002776961
B2M	1628.964839	3428.595046	1.073695964	8.36E-19
TXNDC16	520.5807638	1095.897967	1.073569732	1.13E-11
DIRAS2	44.51634735	93.88219908	1.072844589	0.001095752
LRRN1	140.616874	295.9081	1.070770026	$1.08 \mathrm{E}-06$
FADS1	172.6327902	362.774749	1.070490782	$4.56 \mathrm{E}-09$
PXMP2	128.8280361	270.1819742	1.06971578	$2.30 \mathrm{E}-05$
XRCC2	1077.593467	2260.623249	1.069346394	$1.62 \mathrm{E}-07$
TMPRSS9	119.8539236	251.1719326	1.067015464	$1.01 \mathrm{E}-05$
GJA3	203.4495967	425.551343	1.066545065	1.52E-06
MFHAS1	2697.639395	5647.721506	1.065779913	$3.04 \mathrm{E}-25$
CCNE2	379.5461792	793.6920672	1.065755585	2.22E-12
DENND5B	83.22418381	174.0156146	1.065219998	$1.95 \mathrm{E}-05$
TMPRSS6	39.36121122	82.03419601	1.065150656	0.005336755
ZNF718	206.348543	431.2910242	1.063602958	$1.57 \mathrm{E}-07$
PKMYT1	1569.596539	3278.163	1.06287064	4.01E-08
TRABD2A	107.4198093	223.6209193	1.061436216	0.000158899
MOB3B	277.4257606	577.7401626	1.060325974	1.03E-05
ENO2	399.511804	831.5520259	1.058037106	1.23E-05
CPNE7	31.79015958	65.94152412	1.057967575	0.014178359
SKIDA1	50.21039044	104.3857357	1.055903796	0.004957649
OGDHL	51.45996328	106.3860514	1.055557	0.001374234
CMTM1	39.86049607	82.3178873	1.055344677	0.013554949
ANKDD1B	36.12328386	75.14128967	1.055124316	0.006670907
SECTM1	160.1819581	332.4528008	1.052024419	$1.27 \mathrm{E}-07$
SAC3D1	319.1277556	660.7719548	1.051550772	7.53E-07
PTAFR	21.23441157	43.96060791	1.051121014	0.041289357
CHRNA1	123.9064057	256.1806052	1.049549689	$9.81 \mathrm{E}-06$
TIMM8A	273.9717104	565.6294654	1.047894622	1.89E-06
POPDC2	41.80324349	86.63580433	1.047838476	0.003803614
SCNN1D	101.7742664	210.3087688	1.045864464	3.32E-05
KRT10	368.397033	758.8291718	1.045053625	2.59E-08
AC011043.1	196.5845265	405.3286289	1.043736971	7.61E-10
AFAP1L2	107.0143458	221.1168505	1.041785285	0.000360299
CAMK1	144.1427052	296.3070118	1.04098186	1.19E-06
TUFT1	875.5552008	1801.741581	1.040747698	2.31E-15
MCM10	1186.321475	2439.978694	1.040539557	0.009499875
ATAD5	775.5055573	1594.100871	1.040210432	$2.89 \mathrm{E}-10$
PLCD4	112.3329348	230.2760641	1.039857836	$1.51 \mathrm{E}-05$
HHIP	23.11552657	47.57592675	1.036913635	0.048941507
SNPH	21.89770618	44.88423781	1.03683145	0.035398971
ICAM2	20.5291526	42.35519126	1.036699487	0.04183557
LMF2	1742.772718	3572.950393	1.036084721	3.50E-16
CDH24	1175.865243	2409.872761	1.035850011	$1.35 \mathrm{E}-11$
P2RY2	72.1728509	148.5031153	1.035242216	0.000136246

CDIP1	44.8194635	91.43246733	1.033328732	0.002651022
ACSS1	82.09341401	167.1710311	1.0312598	0.000212414
PLIN4	54.14313606	110.8096684	1.028373017	0.000817096
APC2	88.53306057	180.9047628	1.028125842	0.000155703
NAGS	28.85107033	58.49673762	1.026935264	0.024255362
ZNF850	183.8055605	373.8199881	1.025656081	6.87E-06
F3	2209.566192	4495.874606	1.024614359	$1.20 \mathrm{E}-12$
BRIP1	841.9794219	1711.755997	1.024322576	$3.68 \mathrm{E}-09$
AC240274.1	697.8359214	1419.077085	1.024212698	$3.41 \mathrm{E}-11$
FIGNL1	715.6248634	1455.342427	1.023849139	$2.20 \mathrm{E}-11$
ZNF420	195.0890714	396.9864837	1.022376737	8.09E-08
PCLAF	584.3914308	1186.050936	1.022220704	$1.03 \mathrm{E}-06$
MAB21L4	1381.086707	2803.004108	1.020887333	1.49E-13
BLOC1S1-RDH5	39.08039139	78.67443654	1.020313492	0.021480345
LIPC	27.35766542	55.50410825	1.019374833	0.018820716
RAD51AP1	979.0239759	1984.094939	1.019111659	$6.72 \mathrm{E}-07$
ESCO2	825.6946993	1672.258394	1.018486131	$4.71 \mathrm{E}-07$
NLRC5	215.4137219	435.4373852	1.013409243	3.67E-08
ACP7	65.78986015	133.0227695	1.011899794	0.001342804
OVOL2	379.1352515	764.6559387	1.010774533	$1.20 \mathrm{E}-12$
NXF1	1844.480758	3708.093649	1.007492266	$9.94 \mathrm{E}-12$
PACSIN3	190.9643207	383.2723813	1.005879676	3.52E-06
ACP4	33.24382798	66.33043835	1.002922256	0.012073234
CRY1	625.5284771	1251.742663	1.002421305	$6.27 \mathrm{E}-13$
HCFC2	235.4978162	471.9121776	1.002201493	$2.36 \mathrm{E}-10$
TUBB6	1955.29615	3910.337683	1.000101189	$1.56 \mathrm{E}-07$
FAM122C	147.9562985	295.5887311	0.997660354	2.27E-07
UPF3B	1000.383771	1996.448214	0.997206449	7.20E-12
ITGA10	109.3184789	218.0566506	0.996851401	$6.41 \mathrm{E}-06$
RAB36	89.46419053	178.3227177	0.994002647	$1.98 \mathrm{E}-05$
EEPD1	169.4013687	336.7700127	0.993113432	1.71E-06
MYH15	135.6640121	269.8988051	0.992277344	$6.60 \mathrm{E}-05$
DOK3	353.4571467	702.2869843	0.991871161	$8.46 \mathrm{E}-06$
DLC1	192.5508756	381.6867345	0.989638315	6.32E-07
STRIP2	336.0802346	666.1461119	0.987927817	1.29E-06
AGFG2	227.5645359	450.9649434	0.986587466	$2.11 \mathrm{E}-08$
SPAG1	664.8419227	1317.089738	0.986427136	$2.64 \mathrm{E}-13$
ARHGAP24	33.66523237	67.1395952	0.986120529	0.02412871
UBA7	29.5620855	58.77990671	0.985803813	0.03594426
LIMK2	817.1805205	1618.408171	0.985787473	1.08E-09
ZNF433	36.57285516	72.04248041	0.985527272	0.008833062
KCNC4	132.5292117	261.2352766	0.982782842	$2.41 \mathrm{E}-06$
STON2	159.3063551	314.8656947	0.980874953	$9.29 \mathrm{E}-08$
AEN	996.6992986	1966.284468	0.980464526	0.015858008
POLD3	1149.415518	2266.254004	0.979505818	$4.94 \mathrm{E}-09$
DTL	1284.180923	2529.018141	0.978198998	9.03E-08
TNFRSF11A	65.9486346	129.6032105	0.975415066	0.000731885
CCNE1	527.478038	1034.678878	0.973501948	1.98E-09
C12orf4	646.5697097	1268.587788	0.972319086	1.02E-09
AKAP5	82.47166795	161.7123513	0.972203151	0.000256509
KSR1	162.9897474	320.2217147	0.971010729	$3.30 \mathrm{E}-07$
MFSD6L	42.852484	84.23650801	0.970940166	0.008276517
CCDC18	716.0357399	1402.765265	0.969937186	$1.97 \mathrm{E}-08$
UBXN11	376.2820268	737.203782	0.969583467	$6.91 \mathrm{E}-10$
LRFN1	43.45490196	84.97337641	0.968300538	0.005321492
TNNT1	96.34360297	188.3298246	0.967083095	0.006240577
GPR161	384.3831883	749.7803015	0.964680757	$6.77 \mathrm{E}-10$
TNIK	674.2375901	1317.236205	0.964509366	3.04E-10
CGAS	41.9988341	82.3293346	0.963315009	0.024860138
DYRK1B	123.9481924	241.4136981	0.962373066	0.000148251
ZNF107	768.7864547	1497.537078	0.962166669	4.91E-07

ZDHHC14	346.6788982	674.304464	0.961055916	7.26E-09
CLCN2	515.0592171	1001.04935	0.96003642	$1.56 \mathrm{E}-11$
LGR5	1210.250758	2353.510341	0.959618577	0.043632828
GDPD5	681.8733205	1325.919846	0.95885925	$1.62 \mathrm{E}-11$
DCLRE1B	532.3938611	1033.716819	0.958201141	$1.66 \mathrm{E}-07$
ZNF780B	283.2578471	550.6581129	0.956362345	3.54E-09
RUBCNL	82.26535063	159.8691466	0.955243535	0.000577237
DONSON	1120.654213	2170.116174	0.95375108	$1.57 \mathrm{E}-11$
MYBL2	2050.646952	3971.189934	0.953638336	3.56E-07
GP1BA	123.905942	240.4448407	0.953507454	$8.09 \mathrm{E}-06$
ARL13B	615.0841445	1190.655402	0.952982385	$1.09 \mathrm{E}-09$
DIAPH3	1571.929001	3040.770625	0.951622793	$2.39 \mathrm{E}-07$
SCML1	513.8749467	992.3881059	0.95145106	4.52E-07
BARX2	178.162131	344.7517121	0.950173327	3.32E-06
HECTD2	97.59980219	188.8326473	0.949983702	4.75E-05
GAMT	163.2558758	314.6935504	0.949260205	0.000157649
LAMB2	6297.044907	12156.39953	0.948875543	$2.20 \mathrm{E}-11$
BRICD5	383.8104428	739.5899295	0.948198479	$1.36 \mathrm{E}-08$
TYRO3	803.0276962	1548.32969	0.947892841	$2.54 \mathrm{E}-08$
WDR76	911.6550629	1757.885497	0.947724127	2.72E-08
FAM71E1	71.60036402	138.3506152	0.947662435	0.004422798
TSNAXIP1	22.33142986	43.14784643	0.946620923	0.049969428
CCDC74A	57.6248955	111.1937535	0.945584783	0.004299021
CENPK	1027.613991	1974.454841	0.942231338	4.57E-08
CXCL16	530.0735609	1017.783139	0.939758997	8.62E-10
CGRRF1	194.9939795	373.8854038	0.938231809	$3.48 \mathrm{E}-07$
SOX15	48.26929279	92.58760638	0.93814102	0.0089672
TMA7	300.2087608	573.8073751	0.936414843	5.57E-05
CLDN9	94.90031809	181.1549708	0.932741263	0.000227804
ORC6	1115.100454	2127.467813	0.932679185	$9.39 \mathrm{E}-07$
PLEKHB1	249.2573968	476.1248423	0.932456429	1.12E-07
PSMB9	95.11661854	181.2936053	0.931131732	0.001904922
NEIL3	449.1907724	856.3914748	0.930532819	4.87E-05
NUP210L	89.55598283	170.4946202	0.930259683	0.003721975
UHRF1	2892.923787	5506.866077	0.928896075	$2.08 \mathrm{E}-07$
C19orf47	545.7677246	1037.750411	0.92810138	$1.19 \mathrm{E}-07$
RELL2	137.987464	261.5964248	0.926822753	$1.45 \mathrm{E}-05$
ZWINT	2738.169615	5197.552655	0.924723593	6.18E-06
MTCL1	580.8506971	1101.180093	0.924123352	9.18E-09
TOP3A	1410.617507	2675.258568	0.923601959	1.13E-10
LRRC8E	27.13003027	51.28352917	0.923559874	0.049457105
RUSC2	97.22559748	184.5107892	0.922486657	4.87E-05
LAMP3	127.1458624	240.5929533	0.921462314	2.72E-05
UPK3B	86.39831418	164.103325	0.92102914	0.002638499
MPP2	147.2617723	278.4352575	0.920269917	0.000482975
KCNJ14	114.057732	215.2166661	0.919886791	0.000491143
TRIM36	291.2222718	550.0130905	0.919519356	$2.38 \mathrm{E}-08$
CCDC150	463.2053361	875.5413359	0.919054214	3.11E-09
CD8A	78.78769762	148.8508865	0.918300544	0.000348295
RCBTB2	231.5984728	437.3603552	0.916290683	$1.14 \mathrm{E}-07$
CCDC138	605.638306	1142.329148	0.916070636	1.85E-08
POLA1	1411.697571	2660.624803	0.914369402	0.022019711
ERP27	45.5004332	86.22165768	0.913666724	0.038209288
ZNF10	345.724951	651.1160042	0.913106573	1.43E-09
KIRREL1	552.0587515	1039.003071	0.912295517	$1.10 \mathrm{E}-08$
CCDC74B	33.81003776	63.77994695	0.912226377	0.025970701
KIFC2	2762.876343	5196.18692	0.911330033	$1.90 \mathrm{E}-19$
USP11	1687.066404	3172.683597	0.910896193	4.27E-16
GPC4	203.177369	381.7652753	0.91059617	3.28E-05
MAP7D1	1297.553076	2432.265777	0.907369965	$1.39 \mathrm{E}-10$
SLC23A3	34.14866959	64.28310899	0.906822739	0.027007799

KLHL23	740.9255301	1387.613146	0.906515548	2.02E-10
ZNF552	253.6625881	474.9051011	0.905275101	$4.86 \mathrm{E}-09$
GDF11	403.1186592	754.5364843	0.904902079	7.33E-05
FAM161B	79.70251626	149.4670719	0.903376843	0.000555687
LAMB1	5427.394756	10151.32141	0.903188253	$2.18 \mathrm{E}-13$
WDR62	1224.966092	2289.902673	0.902677313	0.031103856
CITED2	2749.251337	5140.489982	0.902606643	1.03E-12
HIST1H2AC	101.0710004	188.9712395	0.901835616	0.00853218
FANCI	4102.282616	7660.304338	0.9010162	7.17E-09
CATSPERG	46.44711868	86.56013649	0.900974253	0.009669509
P2RX5	93.42374538	173.9677422	0.899186093	0.001106238
ZNF26	555.3103796	1035.19367	0.898277165	$1.23 \mathrm{E}-11$
RAB15	497.5450834	927.6135706	0.898217978	4.89E-09
HAS3	122.522983	227.6262657	0.897945346	0.004862299
GPR143	33.47152033	62.08295186	0.897694402	0.032599992
CX3CL1	81.84987403	151.8815765	0.897392598	0.004510763
GPR3	143.3095874	265.7348291	0.895416358	0.001750428
RAD51C	1028.347651	1911.980001	0.894838344	4.28E-06
JUN	1104.433113	2053.416898	0.894512225	0.000120344
SPHK1	41.31410727	76.36288878	0.894014923	0.01732921
YAE1	231.7372931	430.7355394	0.893803031	$1.50 \mathrm{E}-07$
ATAD2	5456.203878	10134.51516	0.893359476	$9.45 \mathrm{E}-07$
CD83	106.2332266	197.2651465	0.893210312	0.003041436
SIX4	204.7871775	380.210774	0.892935697	$1.08 \mathrm{E}-06$
TNFAIP3	122.9908946	228.9334161	0.890899703	0.000130095
GPR75	176.0654653	326.0166339	0.889715071	2.32E-05
GIPR	161.8895439	298.7282063	0.887878643	7.09E-05
RP9	195.3511444	360.6179586	0.886782478	$1.77 \mathrm{E}-05$
IQCC	145.4021407	268.1818443	0.885985051	$1.41 \mathrm{E}-05$
SURF2	358.6046779	662.2600678	0.885402236	$1.74 \mathrm{E}-08$
ISG15	1075.296306	1983.739733	0.883852711	1.27E-08
CALCA	46.48850497	86.17709297	0.883297752	0.027129665
ZNF503	559.7103928	1030.991043	0.882425165	$3.32 \mathrm{E}-10$
MTSS1L	427.9469796	789.2000576	0.882207047	$1.16 \mathrm{E}-08$
COTL1	1579.145227	2905.536184	0.87960875	$1.30 \mathrm{E}-07$
PSMC3IP	320.0944585	588.2017455	0.879037408	0.000150244
ZNF324	508.0479899	933.7329876	0.87790286	4.47E-11
ADAMTS16	62.99968272	116.0077345	0.87768708	0.003819129
MAGI3	1423.960124	2616.120034	0.877243937	6.76E-10
RFC2	1024.58596	1880.842362	0.87681494	5.91E-08
MYL6B	877.6290345	1608.634222	0.875304745	$9.66 \mathrm{E}-11$
ZWILCH	1426.367864	2614.901627	0.874571893	0.000103385
ITGA1	99.01026293	181.2873981	0.874270498	0.000580855
SDR16C5	111.9281065	205.3399881	0.873909849	0.000241237
KIF26A	173.7980612	318.3399273	0.873762692	0.000152011
AMH	735.3987725	1347.256675	0.873274909	3.32E-07
AC004233.2	68.03366746	124.6342045	0.872120524	0.006394133
FOXM1	3087.969314	5649.507749	0.871456211	5.75E-08
PPP1R18	938.1483334	1714.543304	0.870948088	$4.77 \mathrm{E}-10$
LTK	36.87767828	67.37708911	0.870573241	0.039274709
SLC39A1	36.24989936	66.37901587	0.870558565	0.023313238
FLRT1	138.6174708	253.0165181	0.870289042	0.000298642
MAP3K14	928.2230286	1695.811668	0.869671523	$1.42 \mathrm{E}-11$
SKA3	888.6508945	1623.655207	0.869467648	$9.44 \mathrm{E}-05$
PROZ	44.60761877	80.94368566	0.868573862	0.03387231
C4orf46	939.8252268	1712.24574	0.865874845	1.13E-06
KLHDC7A	98.08248973	179.1910803	0.865650777	0.019771781
IL3RA	143.3255222	261.545719	0.864685148	0.002514103
FAM222A	181.4745821	329.2537118	0.86273787	0.000208756
DSCC1	921.166547	1674.351911	0.862341455	$1.96 \mathrm{E}-05$
FAM227A	81.30873921	148.0976994	0.862225698	0.001196644

ZDHHC11	232.2088687	421.242859	0.860750238	5.84E-06
ICAM1	418.0412735	758.5976598	0.859653046	5.41E-06
RAD18	1273.134145	2307.686829	0.858084797	2.07E-06
TMEM79	314.4520374	569.6855865	0.857922287	4.94E-09
EVA1A	94.85118264	171.9585846	0.857841562	0.000289408
ARL3	549.7968054	995.7725304	0.857396239	4.19E-09
AP1S2	412.63471	747.1271954	0.856733645	2.06E-08
WDFY2	247.4420718	447.2990751	0.855718176	$1.18 \mathrm{E}-07$
RAD1	1011.898816	1829.104317	0.854486032	4.15E-08
TTLL11	43.96182157	79.30433527	0.8542259	0.018600371
SLC39A5	31.25524465	56.65296841	0.854137903	0.044189175
KIF1A	49.95053915	90.59826099	0.853277308	0.011387174
ACOT4	44.54200041	80.36689662	0.851368715	0.023416361
FSD1L	128.2556636	230.7009558	0.849906426	0.000629831
BTN2A2	358.7863628	646.1043044	0.84876814	$2.26 \mathrm{E}-07$
CTXN1	326.6176845	587.4252262	0.848679719	$4.98 \mathrm{E}-05$
RPP30	956.6338517	1722.342657	0.848484302	$3.22 \mathrm{E}-08$
ATP6V0E2	609.3161197	1096.073873	0.847714958	2.33E-06
SMIM4	188.5164117	338.0446103	0.846809964	0.000179891
ZNF714	622.8826808	1118.826508	0.845336129	$6.68 \mathrm{E}-06$
TIMM9	500.5670596	899.5203914	0.844363775	$1.51 \mathrm{E}-08$
AASS	339.0828648	609.113747	0.844307092	8.83E-08
ANKRD36C	187.7104824	336.4532757	0.844203377	$1.24 \mathrm{E}-05$
KIF18A	903.3422942	1621.710766	0.843659906	$1.97 \mathrm{E}-08$
ARHGEF40	100.855805	180.6081055	0.843219729	0.003054485
ZBTB46	176.685209	316.7085336	0.843150537	$1.66 \mathrm{E}-05$
CYBRD1	50.05555083	89.81925034	0.843007749	0.046579296
ADAL	324.0771763	580.9996874	0.842750682	$1.79 \mathrm{E}-08$
CHML	4580.056684	8208.298496	0.841610293	4.83E-12
EED	833.2648747	1492.128998	0.841126313	$2.75 \mathrm{E}-07$
TMEM201	845.4670398	1512.81442	0.840131466	$1.95 \mathrm{E}-06$
CHST7	69.13343449	123.55362	0.84005873	0.006081622
SPRN	157.3383611	281.3475571	0.839207198	4.94E-05
INCA1	96.49890627	172.4443146	0.838465434	0.001615264
RFC3	1003.608576	1792.226505	0.836858116	6.62E-05
CASC10	151.1507261	270.0029707	0.836468639	0.000432815
TNC	311.1193736	555.7166242	0.836370974	0.000206605
AAMDC	70.22411848	125.3436432	0.835089792	0.004741405
SERHL2	130.5827072	232.8542793	0.834954023	0.000492231
PARD6A	200.0856619	357.2581991	0.834216809	$2.31 \mathrm{E}-06$
CDC6	2595.282931	4626.229014	0.834181322	2.64E-06
EMC6	55.28217591	98.13054424	0.833511939	0.011221897
VAMP1	269.9502372	479.8274592	0.830886658	$4.91 \mathrm{E}-07$
LRR1	556.5929006	988.2162393	0.828804553	$1.09 \mathrm{E}-05$
ARHGEF3	1072.601817	1903.935586	0.828705139	$3.51 \mathrm{E}-09$
ZSCAN22	210.2336252	373.3487455	0.828703925	$4.08 \mathrm{E}-05$
ISX	177.9420163	316.1915864	0.828687665	0.000357031
PPP1R3F	114.2869025	203.2309589	0.828566651	0.000340729
POLD1	2268.71337	4028.067203	0.828383829	1.63E-08
CEND1	40.99895783	72.47149608	0.82754567	0.047941443
EN2	72.34576599	127.9234222	0.82723521	0.005473883
LRRC61	303.490561	538.4583257	0.826467224	6.42E-08
MSH2	4870.380358	8628.136188	0.82510478	$1.71 \mathrm{E}-06$
IRX5	160.2431208	283.6555002	0.82481016	$2.44 \mathrm{E}-05$
RNF207	607.830626	1076.499311	0.824692854	$1.42 \mathrm{E}-06$
TCF7	915.223954	1620.412794	0.824690765	5.51E-10
SLC22A4	50.23792206	88.90022432	0.824446085	0.013993454
NXPH4	121.4229872	214.5100579	0.824269539	0.000279532
C12orf45	1039.186937	1839.490707	0.824261914	$3.16 \mathrm{E}-05$
TRIM15	941.2242562	1665.73534	0.824236321	3.02E-08
KIAA0895	180.6163621	319.0238	0.824129935	$3.06 \mathrm{E}-05$

CDCA5	1636.840336	2895.656292	0.823073149	0.044170767
LY6G5B	97.03587746	171.1999773	0.822526626	0.001038399
SLC43A2	145.938591	257.8670383	0.821983001	5.79E-05
ZNF527	126.2489476	223.5444617	0.821398839	0.00033361
CFAP44	573.0396399	1011.94201	0.820350499	$6.59 \mathrm{E}-07$
CIT	3582.114877	6321.667774	0.819334662	$3.01 \mathrm{E}-10$
MROH8	38.57295089	68.26782685	0.819164086	0.046684765
HCCS	627.559323	1104.955422	0.817141691	2.87E-07
NXT1	423.5345179	745.2369612	0.817062981	1.23E-05
RFWD3	2978.0224	5245.123577	0.816745604	$1.94 \mathrm{E}-06$
SLC45A2	68.0307172	119.3786049	0.815669937	0.034987015
NNAT	104.0269219	182.3068022	0.81414004	0.004106646
SLC2A3	324.0882822	569.4146065	0.813842634	$1.19 \mathrm{E}-05$
IL1R2	258.5124375	454.2669441	0.813757782	$2.14 \mathrm{E}-06$
TMEM56	645.7926424	1135.852556	0.813686539	$1.88 \mathrm{E}-10$
SHANK3	106.5086906	186.4528239	0.812607517	0.008206168
DYNLL1	4951.748314	8686.152764	0.810907221	3.19E-09
C12orf75	1511.524688	2650.342221	0.810428479	5.67E-08
SLC25A45	82.4173843	144.8555377	0.810373472	0.011604838
POLR3K	420.307501	736.6332719	0.810363233	0.000811053
TNNI2	124.6585723	218.8036278	0.810227475	0.000154709
KIF24	559.0634278	979.8590449	0.809093257	2.21E-05
IQCJ-SCHIP1	84.33704971	147.3956234	0.808619834	0.001593336
CMC2	652.410786	1141.784336	0.8082775	8.95E-06
KHK	320.2108048	559.6570348	0.806861302	$5.90 \mathrm{E}-05$
GPR37	142.0451182	247.6761146	0.806139329	0.000154722
ITGB8	217.1915595	379.4392538	0.80533698	0.000250966
HRH1	281.7611998	491.3938542	0.803366297	2.13E-07
TRAM2	1626.905621	2838.47694	0.802917036	$4.79 \mathrm{E}-12$
NEMP1	3011.456622	5247.603377	0.801274659	8.90E-09
THAP10	224.7679098	392.1443707	0.800941695	$1.57 \mathrm{E}-05$
CYB5RL	498.9942089	869.762407	0.800924449	$1.55 \mathrm{E}-07$
ASIC3	177.3438763	309.0465001	0.799095555	5.00E-05
UACA	2061.042103	3583.080725	0.797574378	$1.83 \mathrm{E}-10$
SUV39H2	697.3293273	1211.25602	0.797462345	$3.26 \mathrm{E}-06$
ING3	378.8022615	659.0638811	0.79683653	3.47E-07
CDKN2C	255.9664414	444.759734	0.796835814	0.000163591
TRIM35	651.3929214	1131.750306	0.796656216	6.66E-09
ZNF79	121.2088002	210.3543328	0.796331279	0.000201231
03-Mar	47.66141073	82.95365958	0.795757857	0.045093993
DNAH12	82.01182752	141.8865504	0.795657556	0.006275953
IRF1	295.6618226	512.2358389	0.795115149	$1.34 \mathrm{E}-06$
ZNRF2	116.905321	202.5453846	0.794843375	0.000384078
COL18A1	160.8184374	278.7038545	0.793256131	0.009458476
CREB3	1392.495985	2411.199257	0.791785896	$1.67 \mathrm{E}-08$
STYK1	334.174189	577.5143892	0.791032522	6.87E-06
LAT2	200.9415968	347.3627505	0.790835302	$1.27 \mathrm{E}-05$
MYRIP	416.3293225	720.5879925	0.79043917	$3.70 \mathrm{E}-06$
GTF2A2	845.5485812	1461.292936	0.789845856	$6.00 \mathrm{E}-05$
ZNF260	837.2493567	1446.780093	0.789288591	$6.54 \mathrm{E}-10$
HHEX	55.55353961	95.88262593	0.78874573	0.028954962
RHOD	939.9690715	1622.715889	0.787794261	2.59E-09
C1orf35	714.3241711	1231.26149	0.786469921	$2.04 \mathrm{E}-05$
POLE	4411.763273	7603.842553	0.785555432	$1.60 \mathrm{E}-07$
ASB16	157.362536	270.078612	0.783698471	0.001485521
TMEM67	230.7163067	397.1693493	0.781709752	0.000116022
TMEM200A	2749.490581	4726.870242	0.781467447	4.58E-09
RASL10A	80.34472792	138.0535047	0.780260164	0.00939954
ABHD8	124.7754968	213.8719772	0.779017674	0.000416896
PGBD1	220.546589	377.7573953	0.778593321	0.000170544
PRKACA	1661.201475	2847.020086	0.777453376	5.12E-07

TAP2	571.7414886	980.0303012	0.776568058	$1.38 \mathrm{E}-05$
HSPA14	721.3671868	1234.417056	0.776144487	$3.18 \mathrm{E}-07$
TOP2A	16059.99918	27503.70204	0.77614036	$6.60 \mathrm{E}-07$
CENPN	874.4522582	1495.72659	0.774748065	$9.75 \mathrm{E}-06$
RABIF	422.52135	722.599236	0.774259109	7.05E-07
SEMA3C	573.2967486	980.3945374	0.77380694	4.29E-07
CEP128	404.2305467	691.4962658	0.773796285	0.000169817
SOAT1	594.8890475	1015.516475	0.772949971	8.21E-08
ANKRD1	196.0287362	335.6252766	0.772424336	0.006432642
LRRC45	900.9364279	1538.7221	0.772152413	6.24E-06
MAMLD1	155.1918675	264.3270596	0.771790048	0.001205525
TRPV3	620.4448148	1058.560503	0.770211162	4.40E-09
SLC10A3	554.3995864	944.650785	0.769050314	7.06E-07
SIVA1	1483.506142	2526.444159	0.768525598	$1.70 \mathrm{E}-05$
FAM50A	1474.692044	2509.64062	0.767783931	1.32E-10
EZH2	1955.491815	3328.557088	0.767641713	2.95E-06
STARD9	141.956189	241.2771202	0.767229466	0.00080056
ZHX1	698.7276703	1188.787795	0.766448801	$1.48 \mathrm{E}-07$
ZNF827	509.4574088	866.8398846	0.766311509	$1.64 \mathrm{E}-08$
IDH3A	953.5740448	1620.094785	0.765040646	7.23E-05
PHLDB2	1139.354652	1936.051443	0.7649476	$1.19 \mathrm{E}-10$
BCAM	2073.822573	3523.517792	0.764507995	$1.46 \mathrm{E}-06$
GINS3	454.9702674	772.1846173	0.763505004	0.000168881
CRCP	648.2389167	1098.91901	0.761907012	8.23E-07
FN3KRP	833.9578655	1413.12128	0.761459355	$1.91 \mathrm{E}-06$
GFOD1	611.6147554	1036.670288	0.761415642	$1.01 \mathrm{E}-05$
SYT12	602.1398587	1019.705609	0.760861879	$1.58 \mathrm{E}-07$
CNKSR3	590.5335275	1000.20958	0.760663578	0.000405338
CDKN2AIP	1058.071765	1791.874082	0.76043896	$6.41 \mathrm{E}-07$
IRX3	246.7098593	417.5841311	0.760415455	2.87E-05
NUTM2G	52.71164958	88.87877946	0.759247428	0.038303533
PRKAR1B	430.5098352	728.1691796	0.759136753	0.000118225
XRCC1	582.3308043	985.5328729	0.759001969	1.97E-08
KRBOX4	298.4969208	505.4966162	0.758121388	$1.69 \mathrm{E}-05$
UAP1L1	99.71870096	168.4817891	0.756830948	0.004695574
CCDC3	374.6895081	632.2887243	0.756390382	0.000903256
HES7	122.0309836	205.1672792	0.75600414	0.009217337
USP1	3250.376859	5488.051593	0.755878267	$1.41 \mathrm{E}-07$
CERS6	1151.936646	1944.231341	0.754997501	9.96E-08
ARHGAP23	466.3386249	786.9762375	0.754657186	2.16E-06
FLNA	9945.032919	16776.6612	0.754474844	$1.60 \mathrm{E}-11$
TRMT6	1448.617727	2444.052971	0.754393788	$2.10 \mathrm{E}-08$
CCDC58	620.0897274	1045.573073	0.753732458	$1.01 \mathrm{E}-08$
SLC41A2	357.7465151	602.6446613	0.753509653	2.87E-07
ACD	1008.758124	1699.181693	0.752143876	$7.00 \mathrm{E}-08$
TNS1	93.74366644	157.9075249	0.752100615	0.008230914
E2F1	1084.655103	1825.176584	0.751601697	4.42E-06
ARSK	302.3199975	508.7999583	0.751121848	6.80E-07
BLOC1S1	160.0280398	269.0412113	0.750735566	0.000824861
SPINDOC	679.2598188	1142.086191	0.750418147	$1.67 \mathrm{E}-05$
SLC30A4	98.87708435	166.4923296	0.748824913	0.005316257
TGFB1I1	85.61985318	143.8870461	0.748619872	0.027457442
ESAM	67.64818523	113.2654272	0.748279976	0.027792805
SPICE1	141.1518462	237.1467387	0.747639953	0.000504354
NDUFAF8	494.0660938	828.7087631	0.747462079	3.10E-05
ARR3	61.76806487	103.3092781	0.74631309	0.02233996
SEMA6C	139.5060583	233.8820906	0.746184709	0.000432272
MAST2	2947.693503	4941.825386	0.745409184	$2.08 \mathrm{E}-12$
SERTAD1	382.6795586	640.5603938	0.744605968	1.95E-05
DGKH	1510.173932	2529.43917	0.744426547	5.72E-05
TIPIN	481.0907304	805.1830884	0.744196627	0.000204697

ZNF141	141.8849288	237.5175186	0.744144235	0.000911178
PRXL2B	582.5438563	974.5892125	0.743853638	$2.36 \mathrm{E}-06$
ZGRF1	609.5520882	1020.621272	0.743771365	0.000234174
NIFK	1199.78927	2008.636718	0.743602308	$2.60 \mathrm{E}-06$
ZNF44	279.3023987	468.2833255	0.742681842	$4.78 \mathrm{E}-05$
TNFRSF12A	2534.072991	4238.650902	0.742565918	$1.74 \mathrm{E}-07$
EDRF1	1207.566754	2019.758799	0.742563744	$6.14 \mathrm{E}-07$
CHAC2	458.12675	766.0192124	0.742526082	0.005388616
C4BPB	1214.809005	2032.724893	0.742474821	8.39E-09
SFXN5	614.8308562	1028.430145	0.742287859	3.14E-06
FAM89A	158.8972128	265.0912858	0.742093952	0.001276062
CENPT	789.6047271	1320.517286	0.74191222	2.21E-07
MOK	67.93487567	113.7332058	0.741247187	0.012870079
NDUFAF6	444.0644051	742.3321227	0.740517669	$2.18 \mathrm{E}-06$
PEA15	1336.454625	2232.264226	0.740427267	$1.45 \mathrm{E}-07$
MECOM	166.3022617	277.4451675	0.740100123	0.004006519
LY6G5C	113.0192542	189.1024423	0.739858239	0.003144849
ALOXE3	210.0544392	351.4095369	0.739518905	0.000610947
TOMM40L	277.5817924	462.9360068	0.739439549	0.001218047
CDK2	1453.564177	2426.139236	0.739291556	0.000283553
FAM216A	188.8271115	315.5065186	0.739279819	0.000444736
PLAGL1	1448.128317	2418.033941	0.739256434	1.13E-08
TONSL	2649.915402	4419.870381	0.738242477	0.000115153
CORO2A	267.0824952	445.7737207	0.738079881	0.0014633
STAMBPL1	787.2896658	1313.307542	0.737992863	1.03E-05
BLCAP	1973.641398	3289.088847	0.736752167	$2.58 \mathrm{E}-11$
PDX1	335.9811446	558.7300255	0.736434433	0.000443796
WDHD1	1529.642799	2545.360884	0.734705576	9.87E-05
CCDC69	277.0733101	460.3991599	0.73346822	5.17E-05
FKBPL	190.5723837	316.2649459	0.732967421	0.000414666
ZBTB2	907.8814015	1507.464385	0.731910384	1.23E-06
C2orf72	254.4457276	421.8115508	0.731749744	0.00069963
PHLDB3	97.65362215	161.9427499	0.731656449	0.003450562
ALDOC	49.1285845	81.63156837	0.730692144	0.040711232
SLC16A2	170.0463018	282.2552498	0.730641576	0.000842616
FAM161A	639.663774	1059.045533	0.728253705	3.13E-06
RAB5IF	587.3196157	971.6125756	0.727561207	0.000218154
AUNIP	430.4144001	711.7335096	0.726912355	$4.66 \mathrm{E}-05$
PCM1	4706.721843	7781.93652	0.725242747	7.99E-12
LNPK	1010.563677	1670.250451	0.724759925	3.73E-05
IRAK1	3576.731349	5910.561045	0.72472979	4.85E-07
RASSF5	315.4827721	521.0250596	0.724629747	0.000109342
TRPC1	162.6687845	269.0413253	0.724421902	0.001117652
AP4E1	679.4773352	1122.732587	0.724212377	$3.65 \mathrm{E}-08$
ZNF778	394.3966216	651.8217932	0.72341428	$2.31 \mathrm{E}-06$
IL17RB	263.217045	433.6039234	0.723112556	0.000249155
DOCK11	131.0048613	215.6669437	0.722705449	0.008018126
GALNT18	85.14897014	140.6290879	0.722629189	0.00785126
SERTAD4	442.2941152	729.4591362	0.721722963	0.000180718
TMSB4Y	368.7090966	607.8000178	0.721526974	0.000435567
CCDC136	281.3193777	463.2219642	0.720590068	$2.43 \mathrm{E}-05$
DUSP7	489.7022528	806.0430466	0.720401308	0.001505868
ZGLP1	70.94175393	116.5656418	0.720319871	0.040849374
ACAP3	2504.952728	4121.092232	0.718480216	$3.49 \mathrm{E}-08$
CEP152	986.7842717	1623.657773	0.718448481	5.63E-06
GRK4	131.8018281	216.5419272	0.718094154	0.003576352
NEO1	513.7952809	844.2737456	0.716226766	5.32E-07
GPR153	247.2885088	405.7529001	0.716176524	0.003689157
SNAP29	851.6600332	1397.107894	0.713634062	$1.25 \mathrm{E}-08$
CSPP1	862.0592047	1412.668076	0.712768997	$2.90 \mathrm{E}-07$
C1orf122	569.6587858	932.7669902	0.712122406	$1.89 \mathrm{E}-06$

RASSF1	548.9185442	898.5060869	0.712043461	0.000116122
ITGB1BP1	1257.442643	2058.67459	0.711895896	6.81E-08
GPRASP1	99.25186715	162.8909071	0.710833954	0.012526907
SGCB	727.040505	1189.981392	0.710628249	$4.40 \mathrm{E}-08$
DNMT1	8006.089942	13099.40366	0.710374836	0.00018458
BAD	297.9351667	487.5038395	0.709916969	4.64E-05
ZNF35	394.9348061	645.9625717	0.709700697	0.000489319
SLF1	703.3263211	1149.696634	0.709279514	0.000192475
LYSMD2	233.4130693	381.0406282	0.708810269	0.00014179
PDSS1	410.0049268	669.9339172	0.708629642	0.004227779
SLC41A1	982.4923859	1605.374319	0.708316652	$1.77 \mathrm{E}-08$
SOCS4	1800.130699	2938.723814	0.707312032	$1.68 \mathrm{E}-07$
C21orf58	477.4471107	778.8805394	0.706042726	$1.94 \mathrm{E}-05$
LONRF3	376.8782187	614.4181759	0.706038183	2.93E-05
PDGFRL	115.7982685	188.6520958	0.70594291	0.004362289
CDR2L	760.6774473	1239.463222	0.705111538	$2.42 \mathrm{E}-05$
NCAPG	3180.249525	5184.25147	0.704982806	3.16E-05
PRKD3	1301.753413	2120.920356	0.704466443	2.93E-07
DUSP2	122.7838488	199.6152714	0.704433312	0.014336996
STK39	551.0108747	897.4989013	0.703650016	0.000170544
STIL	1608.61167	2619.14736	0.703432856	3.16E-05
TTYH1	118.7289672	193.273063	0.702738348	0.014037936
LPAR1	238.35419	387.3893701	0.702349582	0.000278726
ZNF431	387.5712007	630.3521787	0.701832045	8.99E-05
ZNF655	851.707079	1385.202617	0.701230535	$2.90 \mathrm{E}-06$
C15orf41	354.9858112	577.9757562	0.701105046	8.69E-05
TRAIP	606.236452	984.1922391	0.699160786	0.000374307
PITX1	850.626577	1380.483703	0.698530444	7.18E-09
DOCK4	293.6013201	475.9960225	0.698046295	0.001589832
RBL1	774.1130638	1255.147833	0.697459644	0.000126196
CADM4	179.9740932	291.4078876	0.696807071	0.000605221
IGFBP4	448.9414034	727.4067948	0.696059204	0.003217077
IQCB1	1139.129131	1845.538628	0.696000159	1.37E-09
CEP57L1	414.2488598	671.0098261	0.695357381	$1.39 \mathrm{E}-05$
NYAP2	290.7019339	470.9576964	0.694818783	5.77E-05
ZDHHC11B	147.7683999	239.0203148	0.694188624	0.001380291
PCNX2	909.1192358	1470.913294	0.693394184	$9.49 \mathrm{E}-08$
CSNK2B	257.9669947	416.6709492	0.693117028	0.000467439
C2CD3	1483.217904	2398.112525	0.692879091	7.51E-08
RFC1	3695.152671	5971.18121	0.692451982	3.37E-07
MELTF	57.04653803	92.17799474	0.692068099	0.031308104
ANKRD42	266.6402428	430.8490132	0.691919978	0.000107412
C17orf53	337.1981643	544.8280354	0.691770637	$8.48 \mathrm{E}-05$
DPH3	420.5436077	678.3841132	0.691309287	4.75E-05
RNF167	2228.929929	3597.675826	0.690591067	8.98E-08
SLC25A20	232.7314704	376.1267756	0.690573244	0.000175021
XPA	471.400897	761.1284079	0.690106229	$2.18 \mathrm{E}-05$
STIM2	1340.425707	2163.091301	0.689567031	8.58E-08
AMDHD1	110.5736364	178.2396154	0.689260737	0.005519075
GGNBP2	2863.071142	4615.976573	0.688833359	2.48E-09
SPC25	403.7214564	650.7253139	0.688605046	0.000979607
SYNPO	257.8749402	415.8431358	0.687852621	0.016601282
STK17A	1229.180894	1978.87534	0.687135689	$1.68 \mathrm{E}-08$
SLC30A6	1816.745146	2925.456151	0.687012046	$1.57 \mathrm{E}-07$
BLM	885.3548842	1424.588975	0.686621043	0.003135347
GPATCH4	1492.785301	2400.569272	0.685692958	0.000544607
MED27	602.0254814	967.8317442	0.685432073	1.33E-05
ZNF346	447.3279794	718.8628711	0.685308232	$1.10 \mathrm{E}-06$
TXNL4B	252.7757709	406.6357077	0.684587184	0.003254169
TEAD2	223.1225856	358.2257338	0.683473375	0.003018414
KREMEN2	233.0054624	373.2896668	0.682917695	0.003082285

KCNC3	279.8729437	450.0355806	0.682865018	0.000141909
ARL16	493.9672748	792.2097854	0.6817712	4.75E-07
TCOF1	6162.143607	9881.554117	0.681371136	0.000306162
LYAR	1054.053851	1689.672805	0.681115498	0.002718062
FANCM	663.822183	1064.117732	0.680797853	0.000384863
GLRX2	635.5641555	1018.316405	0.680262123	5.11E-05
ASF1B	1640.554673	2627.966671	0.680115554	0.002568204
URB2	1182.372119	1891.194126	0.678023618	0.003244385
CHAF1A	1811.430059	2895.862741	0.677279346	0.001599306
FGD3	645.664979	1032.341125	0.676595005	8.21E-06
ABCB1	876.3422486	1399.343705	0.67579641	0.003540471
ATL1	208.0454654	332.282838	0.675582793	0.000458875
DCLRE1C	460.0428897	734.5620515	0.675369092	$7.78 \mathrm{E}-06$
COQ10A	133.3825756	212.726764	0.675142209	0.005464516
URB1	2961.990576	4728.506526	0.67495784	6.70E-06
SPNS3	128.5713639	205.4316777	0.674809094	0.02142996
WNT7B	232.1424945	370.1085953	0.674017777	0.00318405
RUSC1	1374.521325	2192.393633	0.673916545	$6.78 \mathrm{E}-05$
GINS4	880.5367302	1404.097847	0.673644149	0.004149028
RNF25	655.7063204	1045.799305	0.673549696	3.35E-07
ZNF789	498.1384395	793.6601054	0.673197603	2.83E-06
ZNF250	328.7714064	523.6668353	0.672960595	0.000100663
MICB	488.0591054	776.4499175	0.671187715	0.008702649
ZNF34	104.7692891	166.5316147	0.67104791	0.005978654
SCIN	314.2458917	500.2562966	0.670447881	$1.27 \mathrm{E}-05$
SAP30	280.780212	446.3460436	0.670304276	0.002555333
TGM1	224.9975951	358.2783478	0.669024974	0.001573067
WDR90	2652.959385	4217.09595	0.668858793	3.61E-05
FLVCR2	213.0768791	339.6657417	0.668817402	0.000782323
MYO7A	261.5867915	416.1849251	0.668703888	0.006143669
C5	281.9749864	447.9493477	0.667846256	0.000375021
CHCHD3	1764.652268	2802.014075	0.667292577	$2.74 \mathrm{E}-05$
ASAH2	64.74238381	103.1898618	0.667059861	0.045721744
MPC1	590.6289237	937.1617013	0.666920296	0.000517406
SPRED3	89.75498739	142.6466075	0.666643535	0.040711359
RTTN	666.6419483	1057.177123	0.665617134	0.000257092
HILPDA	364.8491915	577.4135155	0.665162777	0.000188845
LYSMD3	1196.41693	1896.817916	0.664437358	2.26E-08
CHN1	479.083614	759.4963385	0.664424874	0.000484278
TRIAP1	495.6706159	785.0606541	0.664381634	0.000925922
CCDC134	272.707184	431.8196173	0.664320759	0.000257844
PHKG2	724.0541228	1146.890883	0.664004638	4.55E-06
TIMM29	424.6841489	672.4205245	0.663843225	$1.26 \mathrm{E}-05$
MIB2	1278.927111	2026.609433	0.663516755	4.83E-05
NT5C3A	836.6631357	1324.140461	0.663254176	$9.04 \mathrm{E}-07$
SWI5	248.630196	394.0492752	0.66276575	0.000594437
ATAD3A	1844.666962	2919.363827	0.662722613	0.000836933
MAP3K3	667.6298935	1055.87539	0.662545934	3.41E-05
SLC39A8	541.7627976	857.2606508	0.662495983	0.000693026
DNAJC1	933.3719931	1478.194458	0.662481444	$7.00 \mathrm{E}-07$
ZNF48	534.960648	845.7602654	0.662297561	2.67E-05
PRDM11	227.6750056	359.5148188	0.661375549	0.000722835
LUZP1	2672.539633	4221.833928	0.659785487	$1.87 \mathrm{E}-06$
CAMSAP2	2672.856356	4221.830894	0.659298915	$5.78 \mathrm{E}-10$
CSGALNACT1	242.8899044	383.7244773	0.659188875	0.002493554
CPSF7	3673.779212	5798.814228	0.658451341	$2.69 \mathrm{E}-10$
MRM2	1121.831454	1770.015736	0.658246865	0.000108778
RPP40	178.2026172	280.9189496	0.65753238	0.006762672
KPTN	483.1615953	762.5759029	0.657501358	2.01E-06
HAUS5	1204.78046	1899.638383	0.657200922	4.59E-05
SKA2	1417.571726	2232.544565	0.655415238	$1.66 \mathrm{E}-05$

ZMAT5	124.609494	196.1333791	0.65449682	0.004947129
ST7L	420.802917	662.6295091	0.653274523	7.25E-05
CCDC84	1541.333898	2422.41725	0.653000319	9.79E-07
NOP56	6937.223638	10907.53051	0.652948346	$9.58 \mathrm{E}-05$
TNK1	711.8743923	1119.03253	0.652387756	8.16E-07
FHL3	609.663253	958.1575103	0.651750603	$9.08 \mathrm{E}-06$
RGS12	381.3946144	598.8825655	0.6510777	$5.00 \mathrm{E}-05$
DFFA	1734.326521	2721.925975	0.65069199	$2.19 \mathrm{E}-06$
LRRFIP2	1204.890938	1891.684041	0.650467209	$1.87 \mathrm{E}-08$
LIN52	323.329059	506.927649	0.649920184	7.23E-05
VEGFB	378.9212361	594.7530455	0.649789676	1.97E-05
TMEM131L	1284.416431	2014.65862	0.649210402	6.05E-06
NLGN2	415.6943664	650.8877339	0.647988728	$2.84 \mathrm{E}-05$
CENPI	776.1732055	1215.969655	0.647648059	0.003700549
PLXND1	268.1865403	419.6428095	0.647570484	0.002461046
CDC42EP3	5060.143428	7927.529752	0.647506856	$2.08 \mathrm{E}-08$
PCNT	5462.697652	8556.564118	0.647328344	$6.25 \mathrm{E}-07$
PLXNA3	3381.718905	5294.539625	0.646715154	5.95E-08
GLUL	757.8350962	1186.093502	0.646597714	$7.28 \mathrm{E}-05$
TYMS	1308.12305	2047.665985	0.646593957	0.005363655
PRTFDC1	1087.657237	1702.749968	0.64646603	0.000259032
NRM	723.2163838	1131.681413	0.646379031	2.05E-05
KCNH2	122.9590217	192.2857771	0.646376805	0.029807895
ZNF519	140.3939234	219.6024506	0.646192915	0.010687473
ICA1L	122.5730757	192.2663307	0.646127887	0.00559497
MFSD12	1578.798415	2469.945106	0.645795007	$2.08 \mathrm{E}-05$
USP37	747.0768365	1167.67046	0.645251246	$1.19 \mathrm{E}-05$
NR4A3	133.4568134	208.4103261	0.644928019	0.035074324
SERPINH1	2458.559056	3844.228409	0.6447024	$3.41 \mathrm{E}-06$
ZNF367	910.0601448	1422.191899	0.644533398	0.00167436
NEDD9	568.1535552	887.8956229	0.644329268	8.48E-06
CCDC86	819.1181559	1279.640838	0.644278687	0.002217769
GNAI1	431.2082512	674.1026506	0.644165665	0.001286083
PCGF6	309.7074857	483.2911748	0.643774934	0.000135461
MRPS11	625.2651369	976.5263335	0.643414628	0.001161827
ZNF256	103.1532035	161.0256242	0.642711839	0.008083518
ERI1	1398.078965	2182.287079	0.642701124	0.000269262
EFR3B	122.803574	191.526083	0.642254164	0.016847037
KANK2	2074.980271	3237.144567	0.641765633	$2.29 \mathrm{E}-06$
GEMIN6	547.798772	854.940137	0.64148778	0.000544607
LRRC37A2	345.4709976	538.3330388	0.641487639	0.000478154
USP36	2300.659187	3588.51462	0.641324416	$1.00 \mathrm{E}-07$
MMP24	396.806832	618.4184679	0.640925467	7.62E-05
COL11A2	271.1771705	422.844194	0.6398044	0.000259031
RASAL2	746.7601999	1164.24587	0.639388317	1.17E-05
ZNF724	127.4280733	198.395419	0.638821116	0.027772502
BRCC3	1449.866794	2257.030567	0.638803165	$3.42 \mathrm{E}-06$
SMCHD1	5284.50719	8228.328592	0.638675351	$1.24 \mathrm{E}-08$
PEAK1	491.552401	764.9794373	0.638580368	0.000136962
SLC35D1	797.5013927	1240.972327	0.637540403	$2.59 \mathrm{E}-06$
ATP6V1D	1014.214528	1577.669067	0.637486171	3.48E-06
CENPM	803.7204405	1249.826717	0.637372548	0.006890721
FANCB	300.4959721	466.701368	0.636950466	0.011277553
PRDM1	89.94123626	139.7887856	0.635344026	0.03201247
C22orf46	1064.589873	1654.020225	0.635204259	5.69E-07
FAM204A	1154.497499	1792.229916	0.634741096	2.54E-08
CEP85L	153.1157126	237.6551803	0.634676692	0.003638127
CPTP	929.5894748	1442.612303	0.634617421	6.82E-07
RAD54L	1056.470959	1639.665461	0.634582437	0.003359342
LAMB3	5059.467607	7852.709485	0.634159251	0.00064127
ZNF385A	367.5140661	570.3677097	0.634108372	0.000114606

RELT	432.3359441	669.9979283	0.633798375	0.001854424
ABCG2	108.9006029	168.6382215	0.633363783	0.013924765
NDC80	1061.992875	1647.756982	0.633287228	3.29E-05
CYP26B1	667.4108742	1034.526426	0.633248188	0.000134034
POLA2	294.5187669	456.0484224	0.633029963	0.009785142
C1orf112	554.2985429	859.2339744	0.63268183	0.010512729
LHX4	421.9158041	653.6501023	0.632599717	0.000117806
MCM2	3686.971763	5713.875682	0.632130596	0.002807718
ING2	417.4274398	646.9264989	0.632002716	2.85E-05
WDR4	690.102772	1068.552908	0.631506542	0.000801387
DZANK1	75.70232481	117.014989	0.631347814	0.037370579
GPSM1	301.6571904	466.9025186	0.630981522	0.007164059
GKAP1	159.3719163	246.688516	0.630837731	0.002011002
SOGA1	390.4300277	604.2001619	0.630481085	0.004391866
NDP	207.9746988	322.2334031	0.62961211	0.027415592
ARHGEF26	626.3250197	969.0227438	0.629478461	8.12E-05
BMP1	1430.955265	2214.134594	0.629284091	$4.92 \mathrm{E}-08$
SSX2IP	1153.213408	1783.552682	0.629162355	1.91E-05
KCND1	155.0784141	239.8939174	0.629022908	0.004284769
CLTB	1646.787216	2546.184141	0.62871256	$6.51 \mathrm{E}-06$
NUPL2	891.609594	1376.963948	0.628064552	$1.20 \mathrm{E}-05$
ZRANB3	432.8107408	669.3875685	0.62769863	$3.07 \mathrm{E}-05$
NVL	996.394171	1539.804153	0.627606223	1.12E-05
PA2G4	5119.790042	7909.079162	0.627508772	0.00125557
SH3GL2	789.4652381	1220.01963	0.62740382	5.87E-06
ALKBH1	380.384996	587.4301242	0.62686986	$3.01 \mathrm{E}-05$
SUPT6H	5117.779958	7902.257743	0.626713696	$4.88 \mathrm{E}-08$
SLC35E3	514.2842333	792.9028789	0.625952451	$1.71 \mathrm{E}-05$
CDC7	1283.531441	1980.600052	0.625538551	0.000108792
ZMPSTE24	2316.703162	3573.100933	0.625148548	0.000105299
QKI	246.8921733	380.0343759	0.624768142	0.001521827
ATAD3B	1710.233671	2636.26436	0.62467434	0.000410636
CHSY3	114.7608836	176.4848616	0.624104063	0.025632262
NTAN1	374.2838096	576.3762289	0.624041085	0.000108778
POLQ	1724.868241	2657.05428	0.623527776	0.004999879
IL11RA	175.3120282	270.337365	0.623106234	0.003807251
BAZ1A	2421.782603	3725.657008	0.621657478	0.000257092
TFPT	235.0903808	361.3514476	0.6215136	0.001044037
UBR1	1559.669665	2399.930129	0.621266621	2.33E-05
GSTT2B	83.40045565	128.3523238	0.620761946	0.033138209
CDH3	2598.86249	3995.387755	0.620222336	$2.34 \mathrm{E}-07$
VRK1	875.7605492	1345.808881	0.619965343	0.000703919
AMOT	549.7311298	844.9449968	0.619215728	0.000274481
TRIM3	480.1189998	736.987073	0.619186572	0.000163886
CAV1	828.8661048	1272.261473	0.6181523	$2.48 \mathrm{E}-06$
MCM3	5941.855798	9117.025372	0.617738941	0.001446131
RUNDC1	771.4967764	1183.292634	0.617412304	3.16E-06
MASP2	148.4393353	228.557399	0.617249799	0.018462781
THBS1	4285.836432	6571.674069	0.616741141	3.02E-05
ENO3	347.211272	532.8653341	0.616702836	0.000827294
SAMD9	417.3768683	640.3973404	0.615429664	0.005530719
NRIP1	256.3609733	393.1975256	0.615232372	0.002405579
KIF4A	1737.980798	2661.888115	0.61476791	0.000134682
E2F7	882.5728802	1350.88584	0.614702107	0.000796804
LIG1	2315.380727	3543.625347	0.614134071	0.001460126
PRR36	178.2925609	273.1566098	0.613913731	0.002508492
TMEM251	178.693918	272.5647688	0.613630778	0.014733983
CCDC88A	439.251628	671.2168108	0.612907398	0.003558165
SORBS3	866.4596843	1324.361522	0.612117076	$1.52 \mathrm{E}-06$
ZFAND2A	313.416245	479.497006	0.61204051	0.000182211
TMEM39B	557.6940613	852.7940622	0.611801632	0.000198631

ARHGAP25	110.7101145	169.3910005	0.611792612	0.031308104
ZNF296	154.3854172	235.8340116	0.611305249	0.005007701
ITPRIP	361.0584514	550.9167253	0.610594329	0.000263612
MRPL33	718.4825888	1096.407297	0.610434045	$1.53 \mathrm{E}-05$
ELL2	804.1979975	1227.176424	0.610062809	$3.57 \mathrm{E}-06$
HAUS2	1305.693056	1991.581687	0.609771245	0.000377548
GRK5	100.9609311	153.6370326	0.609297643	0.026874609
TUBG1	1052.46197	1604.28515	0.608672443	0.001446131
HAUS8	588.688639	896.8927853	0.608024516	0.005352449
TMEM140	262.1502798	399.9723837	0.607430159	0.000573957
STOM	285.1995228	434.4470829	0.607185854	0.002411752
ELOVL7	674.2423196	1026.811652	0.60679615	1.33E-06
ATP5IF1	2396.271006	3647.808272	0.606778145	0.000212021
JPT1	2688.252113	4092.872307	0.606629904	0.000302702
DDX11	3199.959598	4871.713135	0.606469204	0.000479419
PPP1R13B	631.0850064	960.2906191	0.606355226	5.12E-06
SMAD3	1936.701242	2948.99484	0.606164852	$1.08 \mathrm{E}-07$
PINX1	213.1400108	324.170344	0.606164019	0.016808566
MCOLN3	354.0812283	538.9235118	0.605508752	0.003506183
GPATCH11	833.5341099	1268.294115	0.605250914	0.000153794
PSMC5	2800.927587	4260.193983	0.605079437	8.03E-05
IQGAP3	3162.418077	4809.073626	0.604646717	0.000759112
BARD1	1219.47447	1854.269483	0.604510307	0.000128142
RECQL4	2583.463738	3926.683699	0.604174404	0.003678802
RFC4	1514.528351	2301.477406	0.604059029	0.001333197
FKBP5	1589.413903	2415.093298	0.604004816	0.009192435
RPF2	1234.452494	1875.780156	0.603629173	7.69E-05
BX255925.3	782.7475776	1188.722251	0.603317104	8.39E-06
IRS2	518.6518887	788.3349633	0.603225817	0.000257244
MEA1	1168.077919	1773.204578	0.602843567	0.000886704
RAB27A	387.6400614	588.095971	0.602424754	0.000440252
LTB4R2	214.0756203	324.8055223	0.602078523	0.003984282
POLR3C	990.8357025	1504.500338	0.601745986	$1.30 \mathrm{E}-05$
CLCN4	380.8419732	578.5230059	0.601366043	0.00010741
ITGAE	287.024554	434.5157696	0.601090233	0.00753634
DPF2	1822.790124	2763.875143	0.600155329	$1.54 \mathrm{E}-07$
NIP7	1273.304501	1929.302546	0.599730522	$6.09 \mathrm{E}-05$
ATP6V1A	3209.477096	4859.852505	0.598736933	$1.54 \mathrm{E}-06$
RPUSD1	1034.158281	1565.054514	0.598307381	$8.00 \mathrm{E}-05$
PXMP4	143.2311861	216.6217614	0.598177635	0.015415243
NSL1	834.6077601	1263.560674	0.598059866	0.000244726
IFFO2	626.0855228	946.959401	0.597990939	0.00022422
RNFT1	323.5541803	489.9441676	0.597677052	0.000217214
CKAP2	3668.819601	5552.329801	0.597659009	0.000383934
RINT1	952.5175153	1441.394674	0.597528759	$1.68 \mathrm{E}-05$
KLC3	104.8399712	158.5861152	0.597349172	0.046897457
CABP4	244.4530974	369.8865643	0.596960755	0.001106301
BMPR1B	327.5843028	495.9049228	0.596343898	0.000816539
RPRD1B	1578.198658	2385.604591	0.596046939	4.51E-07
ARPC5L	1512.232184	2283.810911	0.595323315	0.000522507
NOSIP	1004.371415	1517.016724	0.594786054	$6.47 \mathrm{E}-05$
RMI1	1040.19953	1569.094708	0.59363682	0.001488448
ZSWIM9	246.5828945	371.1753552	0.593047252	0.002535155
SERPINE2	448.3756062	676.3221106	0.592598247	0.004569132
KIF23	2678.066039	4038.343492	0.592480694	0.000760627
UTP23	545.500675	822.5932081	0.592424333	$5.64 \mathrm{E}-05$
ACYP1	260.6918398	392.2986934	0.592357608	0.003062212
GEN1	1471.921866	2218.429502	0.591848627	$9.78 \mathrm{E}-05$
TOE1	717.2016639	1080.591653	0.591319997	0.000299376
MRPL37	3254.695656	4903.464432	0.59129514	$4.31 \mathrm{E}-05$
PHF19	2868.628192	4321.362266	0.591036554	$5.69 \mathrm{E}-06$

INAVA	2958.957781	4456.323524	0.590366282	7.23E-05
PAX9	267.4215036	402.6360124	0.590327848	0.00446551
COX19	770.7531958	1160.404025	0.590106315	$1.38 \mathrm{E}-05$
NCAPD3	4441.940491	6686.093066	0.590068847	0.002454193
TMEM14A	926.2390276	1393.184708	0.589441002	0.000238075
HSPA4L	793.8498197	1193.816165	0.588913765	0.011483871
TMEM205	159.3299519	239.4720421	0.588647777	0.007234511
CCDC137	1021.259498	1535.084241	0.588578051	0.000921793
C19orf25	1098.196225	1650.87995	0.588555534	0.000282325
RRP36	1247.821129	1876.0015	0.588502792	0.000176641
DMXL2	2500.408101	3758.782742	0.588057507	0.000498395
LMCD1	901.9428127	1355.709762	0.58805411	8.50E-06
KLF10	2092.001854	3143.991041	0.587642719	$1.20 \mathrm{E}-06$
FAM200B	479.4011295	719.6891603	0.586875017	0.000130649
POLR2I	123.7419323	185.8112526	0.586332452	0.011496498
ZNF678	637.9669449	958.8469732	0.586326785	0.000218497
ETFRF1	229.1939552	344.6042357	0.586119164	0.002598609
WDR92	268.5778693	403.3459706	0.585900474	0.003886928
FAM122B	2272.767457	3410.781059	0.585705177	0.000491305
KIFC3	1970.960405	2958.078666	0.585644918	6.99E-06
NAT1	387.8683045	581.9662917	0.585475401	0.000583394
ECI2	261.7685608	392.8457839	0.585099262	0.004695011
ITGA7	128.7978129	193.6326897	0.585065973	0.012309137
NDOR1	1342.828216	2013.572588	0.584894428	$2.47 \mathrm{E}-05$
SCN8A	452.8658191	679.1838958	0.584870509	0.000969577
YJEFN3	386.0829739	579.4657006	0.584663949	0.000330616
AUP1	2681.511511	4021.598207	0.58440711	8.18E-08
QTRT1	1263.544964	1893.718614	0.583841007	7.53E-07
ST3GAL2	250.4267109	374.8013739	0.583081008	0.002657169
DISC1	431.8882302	647.5374018	0.583016481	0.000259257
KIF1C	5474.74989	8200.356006	0.582945675	$6.31 \mathrm{E}-07$
11-Sep	6735.89645	10087.43243	0.582670199	$4.61 \mathrm{E}-05$
ZBTB40	1257.841179	1883.96405	0.58254877	$4.38 \mathrm{E}-06$
WNT10A	212.0780684	317.5423317	0.582406461	0.034646332
TEX30	281.4696234	421.0692915	0.582180858	0.018906398
ANKRD44	135.1750475	202.3207454	0.581853978	0.01454484
TAOK2	2661.481788	3982.685093	0.581659644	5.55E-06
COL7A1	505.5031976	756.1911119	0.581105889	0.003170187
CEP78	1952.059776	2919.550144	0.581005839	0.00075876
WDR31	211.1632558	316.4310788	0.580453296	0.01957503
MEIS2	178.783925	267.755911	0.579583395	0.008359071
MSH6	847.2205907	1266.231382	0.579415099	$1.68 \mathrm{E}-05$
HRAS	1593.144593	2379.287259	0.579140586	0.000405243
PDLIM2	395.6657419	590.7970241	0.579137724	0.000151817
RRS1	924.8343021	1380.645438	0.57864951	0.007128476
ZC3H8	637.2684206	950.941177	0.57742373	7.24E-05
POP7	751.8461173	1121.183405	0.5772791	0.006653714
GON7	196.1814896	292.3638451	0.576171767	0.041234294
BTC	437.4446689	652.8565168	0.575955651	0.016246798
SLF2	1531.049698	2281.397552	0.575577591	1.92E-06
FBXO9	1853.886239	2762.765409	0.575566993	1.55E-06
FANCD2	2187.409707	3258.879416	0.57536447	0.000486608
MICALL2	1549.955476	2309.411074	0.575163025	$6.97 \mathrm{E}-07$
FGFR4	176.0646012	262.1868584	0.574925116	0.015639067
PRIM2	755.6034973	1125.238037	0.574741172	0.001152992
MKRN3	162.897055	242.7078109	0.574714854	0.005176117
MRPS6	625.8997437	932.1413533	0.574446258	0.002051284
CAP2	419.6172494	625.1911711	0.574376473	0.000167688
MPP1	520.6617362	774.7123705	0.57434812	0.00431695
C1orf109	920.5114557	1369.821944	0.573620611	$1.49 \mathrm{E}-05$
TYW1B	177.0797171	263.4163267	0.57308663	0.023505634

ADSSL1	209.9156188	312.2027446	0.57267451	0.027055726
BRPF3	1796.420121	2670.051765	0.571356125	0.000665567
RFC5	1667.268742	2475.799689	0.570682501	0.005109598
TELO2	2233.482795	3316.102078	0.570527075	0.000508835
ASB9	189.4501488	281.6448929	0.570342014	0.007711359
PLEKHA4	237.5269789	352.6839939	0.570245733	0.025847166
CASP8AP2	1109.418468	1646.49899	0.570211281	0.000674654
TLN2	713.3263	1058.977416	0.570094449	0.014819727
TAF3	608.3233635	903.4569722	0.570054526	0.00209285
LIN9	580.020313	861.2000622	0.570013643	0.000969799
TEFM	234.5713135	348.2269467	0.569248599	0.002326366
MED26	166.563007	246.7042013	0.568934279	0.007846706
UNC119B	2059.208528	3052.112726	0.568158878	$3.30 \mathrm{E}-06$
ATP6V0B	2002.056484	2966.121021	0.567592108	8.87E-05
APOPT1	235.5494655	349.10642	0.567028798	0.005910148
SEC61A2	462.4544639	684.9465985	0.566450796	0.000198092
CTPS1	2828.549406	4182.729557	0.564685975	0.001374126
LTO1	792.1541943	1171.680224	0.564443188	$1.32 \mathrm{E}-05$
PQBP1	1346.84645	1990.745167	0.564209515	$1.64 \mathrm{E}-05$
SMAP2	400.9888561	592.6890343	0.564053492	0.006690987
ZNF142	1340.372477	1981.053857	0.563996952	0.001072118
NSRP1	1103.906938	1632.448258	0.56390739	0.000176641
NCOA5	949.379337	1403.34151	0.562958891	0.000551049
DHRS7B	387.4099696	572.5122207	0.562911115	0.000371653
LCMT2	650.9093971	961.0991397	0.562716086	0.002463389
POLR3F	435.1013686	642.0052936	0.56264225	0.000777328
ODF2L	854.8227656	1262.453325	0.562223852	3.89E-06
OIP5	379.9502067	560.5456205	0.561456017	0.002132956
MAP3K13	892.6421078	1317.591159	0.561054868	2.43E-05
BCORL1	484.1969573	714.0217603	0.561025305	0.004592291
ZNF17	138.2206838	204.5542029	0.560880354	0.025632262
TRIM26	2213.936422	3265.778751	0.560838281	9.44E-05
CARNS1	92.28470553	135.7930286	0.560442625	0.047020246
UBXN2A	855.4286187	1260.681404	0.560310041	0.000121623
NUFIP1	390.5258515	575.3370815	0.559910925	0.001874263
MRPS18C	528.2650972	778.7591512	0.559553788	0.001731062
ZNF174	391.588483	577.3285818	0.559500354	0.00025637
LRRC37A	144.8794306	213.0291119	0.558548866	0.017929111
SYF2	1286.480094	874.0291541	-0.558312725	0.001868987
YPEL5	1246.10261	845.9292375	-0.55879112	0.017629062
PARM1	7002.293712	4753.047056	-0.558994617	0.000347631
FBXW4	1146.532641	778.5383024	-0.559315599	0.000160496
RGL2	2360.521494	1601.973716	-0.559474923	0.002679373
RNF141	1504.706774	1020.63124	-0.559777985	$4.07 \mathrm{E}-05$
TMEM214	3470.929757	2354.959553	-0.559961187	7.53E-07
ALDH2	4258.973343	2888.492609	-0.560024274	0.00055532
CHMP4C	787.7996404	534.6272943	-0.560069575	0.002851003
TMEM183A	1637.901082	1110.432088	-0.560278992	3.35E-05
SIDT1	211.387477	143.2410539	-0.560377302	0.020252517
DERA	1231.531146	835.2010137	-0.560579622	2.73E-05
ZBTB7C	1260.084064	854.5381134	-0.560648012	0.017491055
RBM12	3307.295068	2241.222058	-0.561054919	9.35E-05
PIM1	1835.95624	1244.097807	-0.561473094	0.000105953
ZCRB1	1388.025979	940.0713424	-0.561780764	0.000101789
DARS	3927.539423	2660.088656	-0.562347233	8.13E-07
TRDMT1	294.6105892	199.269769	-0.562757517	0.004355645
TMEM41B	4396.802354	2975.233932	-0.563191217	0.000491305
PLEKHB2	6693.006817	4529.085443	-0.563307451	$1.41 \mathrm{E}-07$
RNF13	1234.94639	836.1573134	-0.563384452	0.000530074
HAX1	2546.612355	1721.891285	-0.564542265	4.01E-05
AGA	292.8643896	197.6588181	-0.564809739	0.022667935

VILL	1970.930087	1332.139075	-0.565135348	0.00720866
RACK1	38693.03874	26149.30962	-0.56532106	3.61E-08
MAPK3	2819.704439	1905.377963	-0.565337745	0.000443445
WDSUB1	400.5386161	270.5412644	-0.565825685	0.003755874
PRDX1	11421.72633	7715.734622	-0.565854241	0.000285664
NIPSNAP3A	795.6354329	537.9207077	-0.565941274	8.61E-05
DDOST	8847.224705	5975.104928	-0.566246347	$2.48 \mathrm{E}-08$
BRD3	1587.631289	1072.104208	-0.566292474	3.32E-06
BCLAF3	1004.434046	678.2563377	-0.566459777	0.000963175
PGK1	15184.68877	10250.17138	-0.566894679	$6.65 \mathrm{E}-08$
TCF25	3989.202332	2692.752937	-0.566932405	1.19E-06
BRI3	1784.1815	1204.448681	-0.566967643	0.002378139
TXNDC15	653.904594	441.8747371	-0.567122298	0.000151933
ADAM10	8574.272992	5787.059642	-0.567212971	$1.80 \mathrm{E}-05$
DOCK6	3358.758221	2266.035308	-0.567702565	0.000188352
TWF2	1214.462279	818.0014568	-0.568653184	$9.78 \mathrm{E}-05$
ZNF407	533.6803372	360.5794503	-0.568662	0.001427255
MED28	2696.687968	1817.680843	-0.568886834	4.82E-07
CTTNBP2	323.1290188	217.6069375	-0.568937027	0.007621695
PTPN3	2384.911128	1607.408361	-0.569003716	0.000163631
ATP9A	3074.594325	2071.883847	-0.569275808	0.000232549
FAHD2A	893.9607974	602.3465781	-0.56990415	5.41E-05
KBTBD3	136.5772954	91.81777694	-0.56992807	0.049729097
GLI4	650.9260542	438.4045597	-0.570435221	0.000214398
RABGGTA	875.2401024	589.4017434	-0.570949866	$6.24 \mathrm{E}-05$
DCPS	761.4301313	512.3429887	-0.571018113	0.000133193
RTEL1	131.7327958	88.44987784	-0.571120929	0.042230339
PRSS22	4001.017975	2690.19917	-0.572341675	0.000111691
PEX12	256.1451426	172.630782	-0.572850538	0.01719239
ABCA2	3445.200568	2315.842179	-0.572883255	$1.76 \mathrm{E}-05$
CDC42EP1	1198.814525	804.7340991	-0.574162653	0.00447448
TTYH3	3798.599439	2550.421959	-0.574304835	0.000134862
ENTPD5	755.1881377	506.873129	-0.57434504	0.000171875
C16orf58	1243.039188	835.1430297	-0.574430579	0.000110234
NPHP3	306.371489	205.9582142	-0.574726479	0.003798379
KHNYN	2793.741511	1875.429477	-0.575159616	8.62E-06
GRK2	5970.332825	4005.025538	-0.575843418	2.13E-08
HDAC5	1883.449553	1262.945281	-0.576344027	0.000172438
FAM69A	307.2343424	205.9259583	-0.576359594	0.025243224
RNF149	1731.349001	1160.692201	-0.576674569	6.35E-05
GRB7	1223.900861	820.4904313	-0.57668044	7.41E-06
GCC2	9284.626185	6225.233791	-0.576815532	$1.85 \mathrm{E}-06$
FARS2	154.2228285	103.7144687	-0.576983854	0.035955507
RPH3AL	896.5919109	600.9281933	-0.577199219	0.004879959
RFX3	342.7241722	230.3214029	-0.57720192	0.008242778
ANKEF1	594.0962803	398.0825734	-0.577518983	0.000190817
PDSS2	1011.195553	678.0157823	-0.577656007	$4.06 \mathrm{E}-05$
RNF139	1013.222316	678.8993559	-0.57777676	6.58E-05
FKBP7	201.7080245	134.6193442	-0.578182481	0.043198568
QARS	7119.548321	4767.873753	-0.578505156	$3.84 \mathrm{E}-08$
CCDC78	790.4714936	529.3624023	-0.57894648	0.000318683
ENTPD6	3148.404505	2107.240678	-0.579125684	$7.44 \mathrm{E}-08$
UNC13B	1954.830074	1308.727113	-0.579358159	5.02E-06
FGFR3	590.3739611	394.7712509	-0.579718553	0.014858911
ANXA9	1059.715626	708.258323	-0.580635092	0.00031732
SLC50A1	1767.741622	1181.848834	-0.580683321	0.00046256
MCRIP1	489.2175177	327.4618995	-0.58103359	0.000859723
HMGCL	1376.268167	920.29986	-0.581297445	0.000170544
NRBP1	2887.255236	1929.674667	-0.58152864	$1.03 \mathrm{E}-07$
LGMN	2088.461887	1395.207447	-0.581622439	0.005388616
NIT2	1783.278487	1190.77899	-0.581952756	$6.01 \mathrm{E}-07$

ZSCAN2	204.2569409	135.9904211	-0.58309308	0.016543195
ZNF32	439.0741727	293.1636407	-0.583417047	0.001008621
CMYA5	180.6796382	120.6021336	-0.583449326	0.029522861
TGIF1	4189.485773	2795.119356	-0.583990446	$3.29 \mathrm{E}-07$
TNFRSF10B	6037.278191	4026.365018	-0.584271975	5.57E-05
CHP1	4568.353909	3046.487142	-0.584630367	$3.70 \mathrm{E}-06$
MPIG6B	170.8203643	113.9297819	-0.584802925	0.039758079
VPS39	2906.895645	1938.403275	-0.584880186	$2.40 \mathrm{E}-06$
TMCO4	1064.506158	710.1982983	-0.584900468	0.000440706
XYLT2	1160.90832	773.4690324	-0.585282848	$1.16 \mathrm{E}-05$
GSR	8135.487951	5421.635865	-0.585466601	$2.38 \mathrm{E}-07$
ERG28	2605.928128	1735.825693	-0.585828949	$1.92 \mathrm{E}-05$
HELZ2	2151.776648	1433.235816	-0.586167258	$7.88 \mathrm{E}-06$
DENND4C	5802.868863	3864.931898	-0.58649437	$3.48 \mathrm{E}-06$
KIAA1147	2233.596097	1487.462835	-0.586515696	4.57E-07
ESRRA	2151.067048	1431.613264	-0.586718544	3.67E-06
GNPTAB	1850.167891	1232.465573	-0.586768707	6.82E-07
ITFG1	1537.600837	1023.499173	-0.587011327	6.27E-05
RPL31	15448.92349	10282.9524	-0.587176227	$1.20 \mathrm{E}-06$
SLC2A1	13888.63776	9244.480595	-0.587237214	0.000362382
RPS8	33192.29914	22078.38757	-0.588209817	1.23E-07
ABO	1684.970038	1120.424617	-0.588659554	0.000197233
COQ8B	1240.832287	825.0953473	-0.589089888	$1.09 \mathrm{E}-05$
FOXK1	4389.908522	2917.62526	-0.589179109	$2.14 \mathrm{E}-07$
KLF11	629.9910765	418.4643942	-0.589436293	0.005807397
NUDT4	6586.878238	4376.78623	-0.589763616	3.60E-06
NSDHL	1054.294789	699.5071996	-0.59018136	0.00026137
RPS3A	20918.95344	13892.99351	-0.590397635	1.13E-06
KLF7	1245.01348	827.3114021	-0.590868925	$3.26 \mathrm{E}-05$
GPR157	2420.041315	1606.299923	-0.591247391	$1.00 \mathrm{E}-05$
GPCPD1	867.1724874	575.5782941	-0.591453102	0.000164833
USO1	5371.126633	3562.67326	-0.592412382	3.33E-07
TRIM31	200.5228506	132.7251396	-0.592581072	0.024400043
SCNN1A	11971.95282	7938.238088	-0.592741472	0.000196701
VSIG10L	365.3011411	241.8538375	-0.592871739	0.002682796
CC2D1B	1465.681787	971.3776826	-0.59294069	$4.12 \mathrm{E}-05$
ANXA3	7345.460452	4869.833524	-0.593109937	3.42E-05
ARRDC1	2867.937961	1900.751512	-0.593149976	2.81E-06
CCPG1	235.0909827	155.7280652	-0.593952653	0.037210323
KLHL12	1768.574584	1171.94646	-0.594091986	$4.99 \mathrm{E}-06$
SEL1L	3508.437233	2323.921134	-0.594253095	$1.57 \mathrm{E}-05$
CD81	8422.730714	5578.418293	-0.594297311	5.76E-07
RRAGB	430.18289	284.9099915	-0.59436399	0.010037952
PROCR	770.0845065	509.2191327	-0.595590873	0.000589952
FAM171B	6881.790071	4552.476538	-0.596027017	$7.00 \mathrm{E}-06$
EDF1	4016.228646	2654.866905	-0.596749677	$1.99 \mathrm{E}-05$
PCMTD1	744.1905975	492.0827813	-0.59711205	0.001756306
DENND6A	948.2806057	626.5376941	-0.597197892	8.83E-06
LAGE3	184.2522687	121.3329484	-0.597655267	0.03198985
TRAF1	604.8692977	399.463282	-0.598014849	0.004927608
SLC25A15	579.2662557	382.0528682	-0.598275606	0.001000464
SBSPON	1581.019284	1043.836805	-0.598541055	0.000257092
IRF6	1926.44108	1271.575832	-0.599215479	3.06E-05
TRUB2	1612.193289	1064.124909	-0.599784961	$1.05 \mathrm{E}-05$
HARS2	924.169282	608.9071072	-0.600845065	$1.30 \mathrm{E}-05$
C1orf115	579.5898555	382.1264952	-0.600866274	0.000639292
SERINC3	5843.870063	3852.975199	-0.600996815	$5.69 \mathrm{E}-06$
BNIP3L	4071.560888	2684.055621	-0.601104499	0.0016715
RAB11FIP4	3311.593729	2183.174848	-0.601184154	2.85E-07
CTNND1	17168.4045	11314.52305	-0.601603752	3.32E-07
MAP3K8	198.8479446	130.9437753	-0.602097566	0.007439889

ZFP36L1	6856.289364	4513.784157	-0.603223423	2.95E-05
SULT1C3	215.3147586	141.6927626	-0.60405054	0.01229108
C12orf66	782.6311168	514.8784998	-0.604155289	5.77E-05
OVOL1	521.5660296	342.4363107	-0.604649971	0.002135175
NFE2L1	6297.637171	4141.551626	-0.604717943	1.82E-06
KLF3	3061.819242	2013.131031	-0.604819643	2.97E-05
MAP4	13123.87136	8623.834603	-0.605821479	9.64E-09
TMEM179B	479.7333187	315.2802919	-0.605854404	0.000484278
TRIM27	3671.364124	2411.951978	-0.606169355	$1.97 \mathrm{E}-08$
ALG6	411.7369822	271.0123083	-0.606482848	0.000629831
RPS18	37352.16706	24516.42195	-0.607430219	8.90E-09
APEX1	6243.288376	4097.079085	-0.607649538	$1.42 \mathrm{E}-08$
UBE2E2	1797.717637	1179.721516	-0.60802107	$9.51 \mathrm{E}-06$
KLHL9	2348.91701	1540.378845	-0.608507477	5.55E-07
SLPI	496.5785309	325.5151175	-0.608975198	0.022985867
VPS51	2953.295934	1935.8265	-0.609631081	$2.26 \mathrm{E}-07$
CAMKK2	2193.765713	1436.80018	-0.609897967	2.04E-07
ZNF581	586.355974	383.9137302	-0.610363711	0.004398795
IRS1	12198.2241	7989.41507	-0.610555112	3.52E-06
DENND4A	679.1939382	444.5977996	-0.610882538	0.000139702
EGFL7	225.5757177	147.8359723	-0.610911876	0.006346161
GPR137B	440.4033963	288.6169605	-0.611018556	0.000340729
BDH2	257.8586051	168.4968833	-0.611394909	0.021713251
GTF2E2	1386.23926	907.3111392	-0.611455724	6.13E-06
SLC9A3R2	1269.442337	830.6074338	-0.611576384	0.000108022
RPS24	19864.15508	12999.35268	-0.611767819	$1.24 \mathrm{E}-06$
HSPA9	20388.33162	13335.34486	-0.612493955	$3.28 \mathrm{E}-10$
CEP250	1747.886522	1142.674176	-0.612904366	7.24E-08
OAS1	1144.858933	748.5839083	-0.61304077	0.000288598
SRC	2044.934021	1336.642004	-0.613330513	$3.73 \mathrm{E}-05$
FBXL8	577.5612076	377.3355889	-0.613671308	5.73E-05
08-Mar	350.4002416	229.0765856	-0.613790307	0.002076514
CEBPG	2780.970345	1817.344431	-0.613953622	1.53E-06
SLC1A1	2641.513374	1725.661057	-0.614357474	$1.52 \mathrm{E}-08$
SLC27A1	608.3038002	396.896403	-0.615000421	0.004294362
MTMR4	3389.011194	2212.632224	-0.615181891	$1.15 \mathrm{E}-08$
PTPN6	1415.52935	924.3995731	-0.615537354	$1.68 \mathrm{E}-05$
RPL12	43695.38068	28513.47776	-0.6158247	2.75E-09
LYPD6	430.6290296	280.6339649	-0.615857532	0.005945397
GMDS	710.5886386	463.4156409	-0.616158707	$4.24 \mathrm{E}-05$
HAGHL	902.9537528	588.9415851	-0.616489653	7.48E-06
CIAO3	845.9567506	551.6173515	-0.616853328	$2.54 \mathrm{E}-05$
NBL1	3664.49572	2388.944904	-0.616955706	2.89E-06
PLD2	1008.431167	657.0525025	-0.617645885	0.000101738
ENOX2	568.3233545	370.4631281	-0.618147099	0.000477593
SECISBP2	2387.788503	1556.446961	-0.618159288	3.03E-06
EIF3F	7195.001595	4688.019349	-0.618260082	$1.69 \mathrm{E}-07$
ACPP	470.445535	306.490252	-0.618755677	0.002215951
POF1B	924.0610251	601.713117	-0.619008504	0.000554814
ITGA6	12347.51682	8039.408039	-0.619090144	$1.57 \mathrm{E}-05$
ZNF449	339.6958045	220.7482707	-0.619907924	0.005641894
GALNT6	3674.142027	2390.649451	-0.620382441	6.21E-09
TMEM30B	918.4807451	597.6107985	-0.620504375	0.000524026
DNPH1	1205.328771	783.1199314	-0.620543399	8.76E-05
NBR1	4430.128185	2881.906358	-0.620560976	9.32E-05
KDM5B	870.0395395	565.5595333	-0.621004551	0.010369875
RNF170	1240.935203	807.0161872	-0.621381218	8.14E-05
EMP1	1230.732764	799.8691632	-0.621381593	0.010518107
HTATIP2	2438.68966	1584.448937	-0.622110053	$1.10 \mathrm{E}-07$
RTN4R	583.7118786	379.1089993	-0.622658757	$4.38 \mathrm{E}-05$
ZNF524	551.7387697	358.4683509	-0.622775453	0.000353256

NCSTN	4230.639513	2747.549907	-0.622852674	7.36E-06
HMGA1	27370.35121	17767.5679	-0.623334777	$1.07 \mathrm{E}-08$
LRRC75A	965.6115068	626.6292008	-0.623388391	0.000212959
CDPF1	289.8219086	187.9709002	-0.623643312	0.002274093
PHYH	495.7909271	321.2719407	-0.623781348	0.000549909
RTEL1-TNFRSF6B	250.7830751	162.4342817	-0.624411222	0.002348973
ARHGAP32	22189.35195	14391.33687	-0.624700286	0.000163591
MINK1	5852.732884	3795.316797	-0.62476556	$1.33 \mathrm{E}-08$
TPP1	1918.816278	1244.656671	-0.625024955	$1.24 \mathrm{E}-05$
PTPN18	1562.336674	1013.321311	-0.625319984	2.52E-07
PFKL	8188.519862	5307.504723	-0.625482132	1.03E-08
SSH1	2180.578612	1412.950289	-0.626237837	5.87E-06
MBTPS1	4573.564334	2961.609017	-0.627057478	$1.90 \mathrm{E}-08$
PTPRF	21345.3223	13817.74299	-0.627372494	7.51E-06
PALD1	4350.125766	2813.467121	-0.628213961	$6.74 \mathrm{E}-07$
SH3GLB2	6515.102514	4214.232238	-0.628428279	$1.51 \mathrm{E}-05$
STK17B	3180.539368	2057.069377	-0.628668611	4.22E-06
NAV2	203.5886186	131.443558	-0.62873395	0.010988748
CETN3	929.4339549	600.9468499	-0.628793718	4.16E-05
LTBP4	1119.179735	723.3814194	-0.62905338	0.000573772
IDI1	3585.044161	2316.378015	-0.629425723	0.000215309
ITGA9	447.9435412	289.1116916	-0.629762056	0.01757602
HECA	919.4543481	593.9898342	-0.629772016	$4.10 \mathrm{E}-05$
PGAP3	1354.939344	875.8482425	-0.629895924	$2.89 \mathrm{E}-05$
ALCAM	3616.209445	2336.474057	-0.630001531	$1.79 \mathrm{E}-05$
BRWD3	1751.364105	1131.073259	-0.630166411	7.54E-07
ZNF160	797.8156447	516.0158704	-0.630445545	0.000259474
LRP5	6164.964725	3981.227267	-0.630951821	6.97E-06
CDK2AP2	1762.437286	1138.469351	-0.631083488	$6.78 \mathrm{E}-06$
TOMM20	7087.714037	4574.731211	-0.631473032	$8.30 \mathrm{E}-08$
ACOT11	836.4090433	539.528592	-0.632076472	0.001569855
DDX60L	521.8335967	336.8563115	-0.63233214	0.00211461
HIBADH	2286.202313	1474.501058	-0.632663713	6.06E-06
MAP1LC3A	255.2774604	164.6390851	-0.63306416	0.008953571
KRT18	66763.92136	43043.82415	-0.633268363	$2.21 \mathrm{E}-09$
FRK	1200.616135	773.490138	-0.633953878	5.79E-07
SRPK3	247.5693226	159.5958187	-0.63416852	0.004924233
MT-ND3	20720.11552	13348.3014	-0.634285747	5.19E-08
ARHGAP27	6314.596909	4067.905602	-0.634370532	4.67E-08
SSR2	2996.442515	1930.092023	-0.634578436	$1.14 \mathrm{E}-07$
DPH5	763.2046542	491.8430874	-0.6346311	$2.30 \mathrm{E}-05$
LMTK3	505.1506089	325.1271364	-0.634709716	0.003588756
TRIQK	418.3727464	269.4574834	-0.634791539	0.002061517
SUPT3H	260.504784	167.8548587	-0.635829175	0.003345251
EFNB1	330.770632	212.4266399	-0.636862063	0.000808401
KRCC1	406.619448	262.1127357	-0.636866347	0.016048039
AGR2	14166.29978	9110.381287	-0.636873967	5.59E-05
PDIA3	14038.73902	9028.333758	-0.636936458	2.25E-09
FGGY	273.6023134	175.9719989	-0.637072614	0.011736968
MTHFR	1163.967795	748.3035569	-0.63728878	8.52E-05
FAM114A2	553.2254101	355.6005314	-0.637596562	3.42E-05
NR1D1	1797.408515	1155.317929	-0.637765408	0.000136279
PROM2	352.8286268	226.659155	-0.638460048	0.037549307
RHOQ	1038.082308	666.9898388	-0.638549362	$1.51 \mathrm{E}-05$
ZFP36	2617.691177	1680.862039	-0.638724636	$4.30 \mathrm{E}-05$
PDIA5	707.2875855	453.6695294	-0.639838313	$5.38 \mathrm{E}-05$
RPL5	30400.58798	19507.86297	-0.640048008	3.81E-09
SNUPN	347.4096746	222.8505676	-0.64027849	0.003635139
CETN2	682.8587164	437.9391585	-0.640519275	0.000440706
NKD2	462.6316236	296.0069752	-0.641015848	0.004349896
MBNL2	2439.437488	1564.512493	-0.641056984	0.000728556

HOXB13	323.0445058	206.6131359	-0.641712043	0.003180242
GATD3B	352.8792256	225.5211087	-0.641886724	0.00123582
NT5M	119.6996621	76.77209226	-0.641925727	0.033759629
VDAC1	12795.54239	8195.408178	-0.642721402	$1.10 \mathrm{E}-08$
CMTR2	1560.201819	999.2636784	-0.643056235	$9.50 \mathrm{E}-08$
PTGR2	205.4879235	131.7605496	-0.643548391	0.004898875
PIGU	867.1308819	555.1094271	-0.643944549	7.67E-05
RNF44	2369.413133	1516.557595	-0.644225625	4.62E-07
VGLL4	1125.426224	720.1502811	-0.644615223	3.72E-06
LRP8	2841.047528	1815.694745	-0.645248786	$1.87 \mathrm{E}-05$
HNRNPA1	48025.80432	30695.24385	-0.645802744	$1.74 \mathrm{E}-08$
VIPAS39	628.0934037	401.4408832	-0.646076279	$1.34 \mathrm{E}-05$
G6PD	9319.103793	5954.593371	-0.646139266	$1.85 \mathrm{E}-09$
EIF4E2	1757.112426	1122.529888	-0.646257681	4.13E-06
POLM	521.9366938	333.4333308	-0.646361678	$8.74 \mathrm{E}-05$
GCAT	1006.635841	642.6034558	-0.646829169	$1.86 \mathrm{E}-05$
GMEB1	641.4998661	409.458491	-0.647091071	0.002130086
MBTD1	1077.179778	688.220311	-0.647468091	5.86E-05
LANCL3	111.3759802	70.7100552	-0.64782674	0.045803745
ICK	2792.878004	1782.489498	-0.647913047	$1.19 \mathrm{E}-06$
TMEM101	810.8548685	517.6220711	-0.6480465	0.000184414
KLC4	1072.370457	683.5832237	-0.649209778	0.000133567
TLCD1	329.2920663	209.9609976	-0.649404689	0.000728556
CRAT	3881.340202	2473.782449	-0.649501836	$1.76 \mathrm{E}-05$
WDR59	1981.415609	1263.083155	-0.649933776	$2.98 \mathrm{E}-07$
PTPRG	1982.022564	1263.217239	-0.65034242	$1.87 \mathrm{E}-06$
SSB	5470.35981	3483.887529	-0.650900783	$3.47 \mathrm{E}-07$
RIMS3	949.6548011	604.0049006	-0.651018859	0.000166129
ARFRP1	1361.873495	866.2133416	-0.651606309	8.02E-06
ANKH	693.0556613	441.1331536	-0.651834983	5.23E-05
FBXL2	296.4749291	188.7313683	-0.652330603	0.001480037
GLUD1	7263.80345	4621.378413	-0.652375245	$6.74 \mathrm{E}-07$
COMMD8	881.2248042	560.3009862	-0.65314816	2.03E-06
SH2B3	489.0419384	310.8863282	-0.653202618	0.000163207
WDR19	423.452853	269.2287203	-0.653333218	0.0001144
SNX18	506.48399	321.7204293	-0.654173036	0.000302702
PLPP6	488.4196296	310.0477009	-0.654878376	$3.21 \mathrm{E}-05$
RASSF3	5849.672262	3712.368892	-0.655990982	$1.20 \mathrm{E}-09$
C17orf113	135.0099959	85.59019516	-0.656035494	0.030264072
FAR2	253.9716954	160.9690211	-0.656211116	0.002493719
CCDC191	236.7844973	150.248802	-0.656347655	0.011052602
GABARAPL1	2071.315194	1313.478901	-0.656433261	$1.65 \mathrm{E}-06$
TPD52L1	1738.56654	1102.478939	-0.656528034	$3.98 \mathrm{E}-06$
RPS4X	24657.89346	15642.75971	-0.656545436	$6.57 \mathrm{E}-09$
OGFRL1	3047.181206	1932.35943	-0.656854822	4.69E-07
MROH1	4624.471661	2932.232711	-0.657232167	2.13E-07
JMJD8	448.641292	284.2906786	-0.657518355	0.00041801
RPL15	37624.8423	23843.18974	-0.65811201	$1.06 \mathrm{E}-10$
TCEAL8	555.0548758	351.4907491	-0.658374712	0.000593458
RPL7	36758.77668	23288.81837	-0.658463233	9.43E-09
AZIN2	95.06079951	60.18031345	-0.658482904	0.046446117
ORAI3	362.5221839	229.2390451	-0.658783505	0.003159975
TBC1D17	1301.132275	824.3167025	-0.658975618	$2.44 \mathrm{E}-05$
PSD3	836.2826899	529.6639789	-0.659568851	5.52E-06
CDK7	1243.056147	787.1489435	-0.659705972	6.55E-06
NLRX1	876.9025297	555.0832643	-0.660089722	$1.55 \mathrm{E}-05$
TBC1D14	2274.80867	1439.492121	-0.660338455	3.93E-08
HK2	5259.202025	3327.780081	-0.660342781	$3.92 \mathrm{E}-10$
ARHGEF2	2401.951126	1517.483819	-0.662291936	5.02E-05
TOM1L1	2025.407569	1279.87534	-0.662515578	$1.47 \mathrm{E}-06$
SHC1	2696.766847	1702.526533	-0.663460345	1.49E-07

HSD17B8	606.795102	382.6146053	-0.663463386	$1.46 \mathrm{E}-05$
ZBTB5	1175.101561	741.4133671	-0.66407162	7.47E-08
IPP	863.4075421	544.4902352	-0.664126285	6.47E-06
NPM3	1412.381945	891.0409237	-0.664332236	0.000135552
FDPS	4352.923612	2745.493205	-0.664439221	$3.40 \mathrm{E}-07$
01-Mar	270.5296091	171.0267039	-0.664556766	0.001427255
KATNBL1	992.732006	626.3618577	-0.664580236	$6.35 \mathrm{E}-07$
ATF6B	2382.495366	1503.039024	-0.665172465	1.89E-07
NMRK1	1001.825523	631.2077316	-0.666010529	9.95E-07
RPS25	12885.00104	8118.240637	-0.666385416	1.59E-09
KIFAP3	216.4135982	136.3558073	-0.66725787	0.008066221
CANT1	5093.228359	3207.136708	-0.667289113	$1.64 \mathrm{E}-07$
C15orf61	178.6594168	112.1860672	-0.667441606	0.006890721
TXNDC12	416.6179188	261.9989384	-0.66747042	0.000525232
TIAF1	285.3867168	179.3741287	-0.667771455	0.005242748
SOCS7	2988.530521	1880.811039	-0.667851777	$1.02 \mathrm{E}-06$
NUCB1	2734.229994	1720.68086	-0.667874518	7.59E-05
RABL2B	505.7067424	318.1634603	-0.668423622	6.19E-05
FERMT1	2827.654182	1779.867463	-0.668435161	3.48E-06
FAM160B2	2240.444437	1409.358122	-0.66903225	6.61E-09
ZNF775	113.2096095	71.10101028	-0.670297042	0.024270672
MICAL2	6988.526596	4390.897608	-0.67044009	0.000377418
ACTR1B	1667.237034	1046.912797	-0.670504282	6.85E-08
RPS3	36211.35746	22749.42173	-0.670579444	1.12E-08
SNX33	559.9495764	351.8556848	-0.671177999	0.000197043
OPN3	210.1404753	132.1483082	-0.672406455	0.002938282
METRN	740.9754452	464.2487367	-0.673071653	1.05E-05
PIK3C2B	4644.072631	2912.92603	-0.673104513	5.46E-07
KLK1	978.5040315	613.6440819	-0.673154175	0.001616395
IGSF3	2106.937871	1320.258321	-0.674151351	$2.90 \mathrm{E}-06$
HOXB5	914.6126783	573.0415189	-0.674460309	0.000331895
LMBRD1	1242.121627	778.1812545	-0.674511884	$1.98 \mathrm{E}-05$
EIF3L	5850.151761	3665.082214	-0.674802663	4.25E-09
TDGF1	136.8224279	85.51935645	-0.675002619	0.036788513
NFE2L3	3706.839471	2321.379041	-0.675159249	$2.90 \mathrm{E}-07$
ELK3	432.1436891	270.508261	-0.675331959	0.000378546
FBXO4	330.3270518	206.4610104	-0.67697313	0.00067803
POLRMT	3252.108191	2032.953169	-0.678098326	$8.98 \mathrm{E}-11$
BPHL	277.6193881	173.1582195	-0.678197395	0.001401565
AJM1	985.5681725	615.7807501	-0.678857912	4.57E-05
CLIC1	12610.73277	7876.399401	-0.679000745	5.01E-10
SPTLC2	3507.331922	2190.69398	-0.679045948	1.09E-07
BBS2	1219.559114	761.6117341	-0.679220678	0.0001653
ICA1	1464.67097	914.2229697	-0.679494417	$1.90 \mathrm{E}-05$
EPM2A	296.2592068	185.2116407	-0.679523513	0.002950391
EPHX2	526.00888	328.508929	-0.679628761	0.000755655
PPP1R12B	1856.932974	1159.697645	-0.679742788	9.21E-05
RAB43	172.9123668	107.8675168	-0.679771509	0.020078356
PRKCQ	88.52349004	55.38045399	-0.680287041	0.04873704
VCP	15161.49427	9461.001368	-0.680336747	$2.41 \mathrm{E}-07$
AXIN2	16879.37989	10531.44436	-0.680636401	$1.90 \mathrm{E}-07$
MCTP2	976.7888893	608.7643459	-0.682758048	3.42E-05
NAIF1	350.4847722	218.7425614	-0.682942273	0.001787897
GLT8D1	1492.192528	929.2084309	-0.683380037	7.49E-09
PUDP	602.1826421	375.2406841	-0.684142539	4.92E-05
RXRB	2209.600461	1374.081074	-0.685507969	$1.67 \mathrm{E}-08$
RIMKLA	534.9178134	332.2893421	-0.685553635	0.000163631
AKAP7	163.7002989	101.586009	-0.686505845	0.023351896
HAUS4	567.5106211	353.2342679	-0.686736686	$4.33 \mathrm{E}-05$
TRAPPC9	999.7278281	620.5281333	-0.6884008	1.85E-06
DRAM2	1410.791132	875.8602092	-0.688552688	$3.34 \mathrm{E}-07$

ADAP1	790.0416415	489.3366836	-0.689201569	0.000108107
RHOV	684.4732631	424.0821836	-0.689927221	8.62E-05
KREMEN1	3427.767107	2124.307818	-0.68993138	$2.20 \mathrm{E}-06$
MACROD1	806.6295496	499.8001482	-0.690273588	8.03E-06
SHANK2	360.1386051	223.3813422	-0.690493613	0.000180667
ARHGEF10L	1307.152339	809.5515284	-0.69080199	$5.64 \mathrm{E}-05$
VMP1	7215.991464	4470.253688	-0.690815137	$1.07 \mathrm{E}-05$
ATXN3	1100.964052	681.9846799	-0.690880701	1.72E-06
PNPLA7	310.5112743	192.4389707	-0.691055338	0.014406427
SLC35B2	2637.268833	1633.195689	-0.691133905	$6.65 \mathrm{E}-09$
HMGCR	8315.639418	5148.434949	-0.691415904	$3.51 \mathrm{E}-06$
KLHL36	2302.885545	1425.363424	-0.691705324	3.54E-09
ARL2	957.8427606	592.3560209	-0.692922402	$3.49 \mathrm{E}-06$
ALDH9A1	2256.288139	1395.607589	-0.693216216	$1.05 \mathrm{E}-09$
PTPRB	418.7725981	258.9945676	-0.693420572	0.000186496
CCDC7	104.7472216	64.90167445	-0.693599014	0.028387621
ARSE	136.8621644	84.43947708	-0.695087903	0.011717727
GALE	3829.130253	2363.36353	-0.69602562	$3.77 \mathrm{E}-10$
ANKZF1	1915.722514	1182.802257	-0.696200972	1.33E-06
KDELR1	8140.946953	5023.811127	-0.696309203	$4.42 \mathrm{E}-10$
USPL1	472.8621702	291.6872296	-0.696683639	$5.90 \mathrm{E}-05$
P4HB	15724.82125	9701.628188	-0.696802504	9.22E-12
PHPT1	1823.105641	1124.731861	-0.697252271	$3.49 \mathrm{E}-08$
SP100	1487.872397	917.7993987	-0.697573063	2.33E-05
ASMTL	1524.138364	939.2783536	-0.697766853	$2.26 \mathrm{E}-07$
SCRN2	920.156663	566.5747417	-0.698142668	$1.68 \mathrm{E}-05$
DYNC2LI1	606.2680233	373.8041198	-0.698162192	$4.90 \mathrm{E}-05$
WHRN	387.4412882	238.5706046	-0.69848746	0.004504049
ATF3	611.2861877	375.8870579	-0.699442982	$5.00 \mathrm{E}-06$
CD99L2	1143.545051	704.0586214	-0.699730176	1.92E-07
IKZF2	319.2080442	196.2369694	-0.700266197	0.003338488
MISP	7357.246655	4527.833504	-0.700421046	8.45E-10
EIF3E	13429.86334	8262.420954	-0.70090789	$6.71 \mathrm{E}-09$
ACSL4	1482.148062	911.1798626	-0.701212109	$1.35 \mathrm{E}-08$
CEBPA	239.4361403	146.8600914	-0.701418496	0.009535079
EEF2	118619.2331	72928.25806	-0.701800977	$7.20 \mathrm{E}-10$
ANO7	174.4190421	107.0660914	-0.70233663	0.003558165
EFCAB14	8436.122764	5184.207037	-0.70255421	$1.16 \mathrm{E}-08$
SIL1	835.6187539	513.2228013	-0.702606806	3.04E-06
IGF1R	1178.094771	723.7381438	-0.70270791	3.84E-06
EZH1	738.1364543	453.3247294	-0.703039531	7.12E-07
TMEM164	806.1923037	495.1108602	-0.703057136	4.31E-06
B3GALT6	607.8609758	373.240636	-0.703517536	6.06E-06
NUAK1	864.6813496	530.9094002	-0.703850489	0.000346485
FAM219B	810.8197532	496.7669404	-0.705829551	5.00E-06
BCAT2	2043.753798	1253.130313	-0.705913064	$1.56 \mathrm{E}-07$
CEP120	1148.302329	704.0693269	-0.705983028	$1.30 \mathrm{E}-06$
KRT19	37851.23351	23191.63539	-0.70675522	6.61E-07
G2E3	1730.504558	1060.202077	-0.70720432	$6.40 \mathrm{E}-09$
C6orf120	1119.404294	684.8956115	-0.708752156	5.39E-08
PPM1L	518.6912821	317.5974851	-0.708836028	$6.19 \mathrm{E}-05$
GATAD1	2538.505152	1552.620591	-0.70926221	0.000133425
CLK2	2585.657773	1581.296012	-0.70960481	2.26E-09
TRAF3IP2	1169.367504	715.0266713	-0.709916628	3.97E-05
SIRT5	598.6856036	366.1263293	-0.710080638	0.001238027
RNF187	4084.764107	2494.998931	-0.711161623	$5.38 \mathrm{E}-06$
STAT5A	226.1547975	138.0542521	-0.712806436	0.014170726
ZNF862	711.3149259	434.3757542	-0.713515759	0.000508477
SLC38A1	12463.16503	7600.300827	-0.713584178	$5.64 \mathrm{E}-11$
ERLEC1	2377.96989	1450.306622	-0.713905964	6.45E-06
TMX4	3095.481787	1885.971153	-0.71472013	1.27E-08

PACS2	1763.93355	1073.961687	-0.71579839	4.61E-06
PDIA6	8397.497988	5112.530902	-0.715802545	$3.14 \mathrm{E}-11$
ZDHHC24	736.2180595	448.3002308	-0.716268106	5.40E-07
ZNF784	229.1936632	139.4627957	-0.716269663	0.001787563
NEIL2	551.0051336	334.8102518	-0.716679093	0.002404867
CARF	482.808675	293.6378545	-0.716833908	0.002364879
SERGEF	272.9858965	166.2506694	-0.717295036	0.000982322
HNRNPA1P48	241.9664998	147.287318	-0.717380975	0.001667208
THEM4	669.6535648	406.835189	-0.71786036	$1.08 \mathrm{E}-06$
C2orf68	1169.522765	711.0025865	-0.718756535	$1.26 \mathrm{E}-07$
PEPD	1066.765018	647.6469373	-0.719694703	$2.40 \mathrm{E}-07$
PAN2	2273.459227	1380.361315	-0.720218157	$1.96 \mathrm{E}-05$
MANSC1	1087.590194	660.062813	-0.721417038	4.32E-07
CRYZ	4220.982144	2558.502009	-0.722024699	3.59E-10
GNPAT	1363.9471	826.6927383	-0.722412859	$1.43 \mathrm{E}-07$
TMEM17	166.8117251	101.0107414	-0.722618297	0.007919428
APOBEC3F	951.2548762	576.4469536	-0.72341019	$2.55 \mathrm{E}-05$
TMC4	2416.065264	1463.285693	-0.723647694	0.001059265
CTIF	1448.21105	876.2978364	-0.723679502	4.49E-05
ATPAF1	3525.614628	2133.888984	-0.724567495	$1.96 \mathrm{E}-09$
CCDC159	122.794491	74.14344167	-0.725023699	0.032496897
TIGD6	120.1985465	72.85565006	-0.725128806	0.014452457
MLYCD	551.8968218	333.9915745	-0.725510517	3.04E-06
NLN	2695.502337	1630.046137	-0.725697797	1.92E-09
SBF2	3479.093119	2103.825251	-0.725839923	$4.54 \mathrm{E}-06$
WARS	3918.013545	2368.368251	-0.726669212	$1.15 \mathrm{E}-08$
ANP32B	8998.207676	5436.423166	-0.727036517	$5.80 \mathrm{E}-12$
CRELD1	1099.966885	664.4575958	-0.727143868	$6.49 \mathrm{E}-07$
FOXQ1	8134.745408	4914.364606	-0.727189319	2.89E-05
RPL7A	36709.14764	22140.827	-0.72942722	$4.84 \mathrm{E}-11$
LZTS2	2344.353588	1413.357022	-0.729564706	2.79E-07
PLA2G4F	213.2490445	128.6629648	-0.730284725	0.002929892
CTSC	348.9562343	210.1067301	-0.731370312	0.001059337
SNAI1	95.8337331	57.55329554	-0.731532623	0.026874609
CRELD2	1631.210329	981.7708674	-0.731816273	4.43E-09
PRKX	444.5214335	268.0820839	-0.732646563	$2.04 \mathrm{E}-05$
PDK1	1173.846108	706.1587692	-0.732799758	$9.35 \mathrm{E}-06$
MPI	1289.469129	775.8943057	-0.732957826	$1.85 \mathrm{E}-09$
RPL29	26353.36743	15853.99179	-0.733135124	$1.45 \mathrm{E}-11$
CALCOCO2	3235.787407	1945.97382	-0.733692299	5.87E-06
SEC23A	3480.136854	2093.009867	-0.733845804	2.43E-11
CFAP97	4544.069209	2732.137948	-0.733941583	$1.33 \mathrm{E}-08$
GPX8	988.7354573	593.684881	-0.735206913	$9.20 \mathrm{E}-08$
ME2	4694.004649	2818.588622	-0.735845607	$6.68 \mathrm{E}-10$
GTPBP2	4173.60124	2504.430661	-0.736846652	$4.68 \mathrm{E}-05$
ZNF165	484.3294795	290.7967143	-0.737281424	0.000102763
MED18	734.1961073	440.0760943	-0.737748175	7.83E-06
FUCA1	3590.220033	2152.248477	-0.738032376	$8.41 \mathrm{E}-10$
PITPNM2	820.8443434	492.2178377	-0.738533114	$4.10 \mathrm{E}-06$
CHMP6	366.9316022	220.0211718	-0.739663226	3.06E-05
EBLN2	101.6498216	61.12300809	-0.73970441	0.024101375
G6PC3	1851.880608	1108.701594	-0.740413875	$1.41 \mathrm{E}-07$
CPLANE2	146.4651214	87.45942203	-0.740713278	0.005282371
TMEM231	257.6665367	153.8984627	-0.740817157	0.000578419
CADPS2	110.2844893	66.12345649	-0.741915047	0.018813592
NIPSNAP1	3627.005885	2168.356501	-0.741997794	1.92E-08
TMEM102	485.3037178	289.7197345	-0.742984363	$1.97 \mathrm{E}-05$
GLB1	3227.735989	1928.03656	-0.743394913	4.65E-09
TMPRSS13	1574.051162	940.5421187	-0.743505818	$2.77 \mathrm{E}-06$
ATP6V1E2	414.1152114	247.2294416	-0.743625306	$1.78 \mathrm{E}-05$
DNASE1L1	468.651585	279.5882022	-0.744642484	$9.58 \mathrm{E}-05$

ACER2	290.3218586	173.3168068	-0.744726445	0.00016508
TSPAN31	484.6270348	288.730209	-0.747644615	0.000332468
MFSD14A	79.68695463	47.28375937	-0.747713975	0.039888572
HYOU1	9516.511357	5664.28797	-0.748542852	$1.88 \mathrm{E}-11$
EDEM1	2925.285508	1740.159126	-0.749431592	$1.78 \mathrm{E}-10$
EIF2S2	8153.624069	4844.1191	-0.751183379	$1.30 \mathrm{E}-12$
PCP4	516.3772114	306.5348562	-0.751227245	0.00187934
FASN	37422.29083	22213.26099	-0.752431149	$1.47 \mathrm{E}-09$
MTMR10	971.4125606	577.046412	-0.752435267	6.82E-07
ZNF517	212.321786	126.2130078	-0.752529081	0.005007701
CLIC4	8831.274487	5239.468999	-0.753210994	6.39E-07
TMEM42	494.9678734	293.4141457	-0.754258964	$3.16 \mathrm{E}-05$
TJP3	2903.445369	1719.57979	-0.755394318	1.51E-07
ERCC5	219.0064781	129.66301	-0.755840227	0.000430382
ALDH3A2	6604.873648	3909.127084	-0.756577524	5.04E-11
MAFF	756.57259	446.8825218	-0.756875204	$2.52 \mathrm{E}-05$
NT5E	5031.812637	2977.293081	-0.75716296	0.000111368
VMAC	147.7560234	87.59615627	-0.757178013	0.006354695
SMIM19	554.0790899	327.7978576	-0.757196987	0.000102927
STEAP4	453.6395111	268.3455282	-0.757789919	0.000158089
TNFSF9	173.9675923	102.3879566	-0.758088509	0.008069004
IGSF8	1490.294728	880.0905074	-0.758734782	$9.08 \mathrm{E}-08$
MYDGF	2058.917092	1215.052566	-0.76052272	$1.76 \mathrm{E}-09$
CD9	12650.66999	7460.230108	-0.761903203	7.47E-08
ERN2	3815.969853	2249.795222	-0.762122666	$2.52 \mathrm{E}-05$
GMPPA	1492.651092	879.7445518	-0.762251299	1.17E-09
MT-ATP8	1931.993482	1137.795089	-0.763056883	6.96E-09
CPLX1	236.6764148	139.4428723	-0.763482692	0.000468764
PLEKHH1	954.8741433	562.5318807	-0.764085849	4.86E-07
VSNL1	464.4447031	273.2480053	-0.764189324	$1.14 \mathrm{E}-05$
SLC38A10	4622.207961	2719.719229	-0.765265112	3.06E-12
UHRF1BP1	3751.103787	2207.027467	-0.765363005	$4.42 \mathrm{E}-11$
PIKFYVE	2734.343478	1607.556034	-0.766868139	1.25E-11
CFTR	1102.855897	647.6043941	-0.767741096	0.001734412
PTPRU	3066.670872	1800.323234	-0.767783399	$2.80 \mathrm{E}-07$
SUMF1	475.8424469	280.2078358	-0.767847846	0.00015345
FECH	1817.664485	1067.028272	-0.768512963	7.49E-09
BDKRB2	560.4310656	328.6637344	-0.768636635	0.000722835
TBC1D22A	965.0135207	565.6658244	-0.769708979	7.37E-08
ALKBH7	1225.445961	717.9502804	-0.770411879	1.72E-09
MED20	631.3955407	370.1552037	-0.770648937	1.16E-06
PHB2	8337.655672	4886.701957	-0.770755178	8.39E-11
DCBLD1	5359.38658	3138.522441	-0.772083779	$6.81 \mathrm{E}-08$
ERVW-1	160.1142202	93.51837666	-0.773599564	0.004484519
WBP2	2792.639733	1631.895576	-0.774930763	5.07E-09
CLIP2	426.0249325	248.7167117	-0.775060358	0.013936939
SNX9	3852.506339	2249.935392	-0.7758438	$1.90 \mathrm{E}-10$
MMAB	911.8800303	531.851729	-0.776051165	1.07E-07
CCNG1	4566.033524	2665.389888	-0.776355105	5.89E-09
ALDH3A1	3452.432571	2014.889269	-0.776873413	$1.75 \mathrm{E}-06$
TKT	21833.40015	12741.78145	-0.77696453	$3.45 \mathrm{E}-14$
NARS	10098.43498	5892.042178	-0.777428021	$1.73 \mathrm{E}-11$
PPA2	3154.046938	1839.476376	-0.777504031	$1.70 \mathrm{E}-11$
MTIF3	967.8974172	565.2970431	-0.777825883	4.39E-06
FAM189B	1372.393397	800.2092561	-0.777905753	$1.39 \mathrm{E}-10$
KDM7A	4188.633357	2441.359186	-0.778454225	$1.71 \mathrm{E}-07$
MDM4	1654.456183	963.8948198	-0.779933328	$1.27 \mathrm{E}-08$
B4GALT5	3997.921799	2327.111291	-0.780744488	$1.39 \mathrm{E}-13$
TRPM4	2485.035524	1445.969988	-0.781014381	$2.46 \mathrm{E}-09$
DNAL4	325.9831375	189.978608	-0.781536446	0.000175698
ADPRM	138.9074036	80.73228283	-0.781567117	0.008798664

AKR1A1	2606.390178	1515.48291	-0.781727495	$1.14 \mathrm{E}-10$
SLC30A10	826.8906625	480.0970447	-0.783165028	0.000106015
ADGRF4	758.4217026	440.2288532	-0.784928735	$4.60 \mathrm{E}-05$
SPR	1459.404687	846.5648478	-0.785326173	$2.14 \mathrm{E}-06$
HDHD5	1988.759116	1153.760033	-0.785436071	2.76E-09
KAZALD1	527.2890764	305.2820004	-0.787092711	1.32E-06
MUC20	626.4557048	363.1181286	-0.787571255	0.00486127
ITGB5	5973.41266	3456.313544	-0.789231247	$3.68 \mathrm{E}-10$
ST6GALNAC4	122.5533505	70.4583257	-0.789977981	0.019150763
SLC6A8	246.1393953	142.0899276	-0.790456494	0.010347152
MVK	1022.229662	590.1033186	-0.791062825	$1.10 \mathrm{E}-05$
STAT6	7101.926256	4099.844871	-0.792622247	$1.38 \mathrm{E}-09$
PRSS23	20628.88608	11906.25356	-0.792977121	$1.69 \mathrm{E}-10$
NECTIN4	818.9935114	472.4403626	-0.793171113	0.001462287
DGKG	159.9599076	92.37457088	-0.793196333	0.005388616
PRR15	1000.562349	576.9847968	-0.793851405	$4.80 \mathrm{E}-07$
KCTD17	758.2874735	437.163005	-0.794176344	1.26E-07
RPL4	57388.65573	33085.8873	-0.794558971	5.32E-12
ALDH5A1	1702.858567	980.4838204	-0.796368077	7.17E-09
ZNF277	1192.918949	685.8822797	-0.798548898	8.76E-05
SMPD2	328.0603341	188.1633523	-0.799165722	$6.32 \mathrm{E}-05$
RPL10A	18005.26187	10346.07036	-0.79938965	$1.95 \mathrm{E}-13$
TYSND1	1934.518431	1111.166826	-0.800205765	3.58E-09
TPRG1	118.3663954	68.04352696	-0.801252553	0.013302563
TARS	10978.91961	6298.419239	-0.801725061	$1.71 \mathrm{E}-14$
NTHL1	616.3329615	353.3161881	-0.803160569	$1.18 \mathrm{E}-07$
SNX22	76.96387374	44.23348531	-0.804203025	0.026875743
FAM234B	185.7949234	106.28808	-0.804203556	0.000391045
KDM1B	1659.614312	950.6617266	-0.804248099	$2.04 \mathrm{E}-11$
NT5DC1	2073.89698	1187.419326	-0.805306598	$2.21 \mathrm{E}-11$
P2RX4	1368.492069	782.7621654	-0.805582299	$3.80 \mathrm{E}-08$
MRPL24	1453.275617	831.7352839	-0.805601339	$2.47 \mathrm{E}-10$
BET1	679.7552408	388.9527162	-0.806354533	$1.55 \mathrm{E}-07$
TAZ	974.6435968	556.8221075	-0.807841002	$1.40 \mathrm{E}-08$
EXD3	252.1417387	143.886752	-0.808812422	0.008309114
SMAD6	186.8197031	106.428053	-0.809476761	0.011444228
CBWD6	262.9175716	149.8210108	-0.810234122	$6.45 \mathrm{E}-05$
DYRK2	1181.696219	672.7078628	-0.812200723	$3.85 \mathrm{E}-11$
HNRNPH2	2484.630658	1414.525193	-0.812614765	1.18E-07
TESC	282.1766764	160.2730015	-0.813784453	0.000280065
BBS4	353.0260028	200.5398345	-0.814231059	0.000405135
COG7	669.3026137	380.6314965	-0.814784382	7.49E-09
C6orf141	101.9471243	57.5707276	-0.818236936	0.013389617
SLC41A3	1485.568712	841.9156669	-0.819404088	1.13E-10
IL1R1	173.3348428	98.06795637	-0.82083912	0.019322937
H1F0	5973.692479	3379.879438	-0.821522418	3.52E-10
ARMC2	94.70227082	53.53464393	-0.823885365	0.013994921
CTSB	7158.850728	4039.803218	-0.825486884	2.47E-10
RASSF9	586.5456429	330.6194136	-0.825737053	0.000801387
ISG20	149.9780553	84.36997691	-0.825995475	0.007366182
PACRGL	431.9183329	243.3215472	-0.827216096	$4.50 \mathrm{E}-07$
UFSP1	95.39008959	53.65736783	-0.827695176	0.013692146
CNNM4	979.6609903	551.1928443	-0.828924474	2.01E-07
AIG1	2756.144303	1550.589617	-0.829799056	8.93E-08
CCDC107	117.8715602	66.31713313	-0.830728243	0.008757187
PRR5	680.8521325	382.9497313	-0.831395331	$1.37 \mathrm{E}-08$
PANX2	199.7858392	111.9270173	-0.832139046	0.002595477
TACC2	3817.643829	2144.1937	-0.832274843	8.35E-08
TMEM187	208.0728254	116.8955728	-0.832561907	0.000267939
GOLPH3L	1299.650169	730.1394337	-0.832640517	6.61E-09
GCNA	146.5798181	82.16041332	-0.833154979	0.002564599

ZNF575	97.44114214	54.88171291	-0.833332862	0.016925893
GALNT11	1057.113748	592.8915952	-0.834017158	7.32E-10
CEBPB	2376.338802	1330.129398	-0.836929582	3.05E-06
LIG3	1734.068006	970.9585053	-0.837006345	$2.88 \mathrm{E}-12$
ECHDC2	709.39881	396.7514179	-0.837146141	7.13E-05
EML2	2246.894687	1256.545555	-0.837724883	4.57E-07
TNFRSF11B	70.0440895	39.17922209	-0.838603645	0.036479448
ENTPD2	368.8056271	206.0232246	-0.838785656	0.000260241
NIPAL2	833.0937441	464.9028235	-0.842843421	2.37E-05
EFNA1	1524.605636	849.4870523	-0.843680989	0.000428502
HS1BP3	1031.241298	574.0146962	-0.84451374	$1.52 \mathrm{E}-07$
LGALS3BP	4430.602248	2467.266299	-0.844599417	2.19E-06
GALNT3	2777.52496	1546.07337	-0.845476182	$2.20 \mathrm{E}-11$
ATP8A1	1649.760652	917.8622835	-0.846304408	4.65E-07
TFF1	215.4142666	119.5864454	-0.847659166	0.039866712
C7orf50	1582.113452	877.823254	-0.848843624	$5.27 \mathrm{E}-11$
WFS1	6920.210219	3842.326897	-0.848872108	$4.32 \mathrm{E}-11$
ACAP1	231.8767154	128.5970693	-0.849022439	0.000829955
USF3	1995.843069	1107.964729	-0.849655073	4.45E-12
C1GALT1C1	440.6002064	244.5694203	-0.849741835	8.27E-06
UGDH	9598.179309	5324.57266	-0.849991359	$1.06 \mathrm{E}-15$
LSM2	1101.680471	610.3885726	-0.850704697	4.75E-09
LDLR	5825.793483	3228.196086	-0.851240436	$8.50 \mathrm{E}-06$
CALR	26861.14338	14867.17924	-0.853334097	8.82E-15
ENOSF1	1962.582484	1086.302519	-0.853523689	3.97E-10
LARS	4072.247585	2253.65517	-0.85377117	$1.15 \mathrm{E}-11$
MID1IP1	4570.914793	2527.849067	-0.854535719	2.32E-18
MT-CO3	97680.30786	53932.06872	-0.856932738	5.31E-07
MIA2	1793.121879	989.3287884	-0.858171936	$1.48 \mathrm{E}-05$
RHOF	599.288919	329.778475	-0.858814698	8.60E-08
DHRS12	85.45749319	46.99118383	-0.858947613	0.028255195
TTC21A	162.7831952	90.02938634	-0.858956615	0.007075643
STK40	2846.705049	1568.834021	-0.859033165	$3.36 \mathrm{E}-12$
CLDN12	1654.717013	910.3950501	-0.862133386	3.28E-10
DPYSL2	8396.60988	4615.331718	-0.863438679	8.21E-14
PHF11	431.806788	237.0634534	-0.865373308	$9.80 \mathrm{E}-05$
SRD5A3	472.9891017	259.4318341	-0.86589381	4.37E-07
SLC22A18	4583.790744	2514.530131	-0.866192575	0.029388863
KYAT3	1349.719358	739.2479335	-0.867765059	3.43E-08
RORA	6000.290965	3285.213134	-0.868976026	$1.49 \mathrm{E}-13$
CLDN3	828.1452235	452.8087815	-0.871095836	$5.20 \mathrm{E}-07$
RNF145	4594.384528	2511.025026	-0.871720849	$4.58 \mathrm{E}-16$
ZNF18	420.1237747	229.4511531	-0.872663251	$5.28 \mathrm{E}-06$
HID1	2406.13321	1313.840646	-0.872726029	2.03E-06
HOXB6	4710.396527	2566.490168	-0.876318274	$5.08 \mathrm{E}-10$
RCN1	3659.753812	1993.39601	-0.876572562	$1.36 \mathrm{E}-12$
NOA1	2003.379719	1091.384659	-0.876656289	$3.99 \mathrm{E}-11$
IER3	3864.945864	2104.054555	-0.876682233	5.07E-07
CLDN4	10455.02061	5692.578132	-0.876895603	1.47E-13
ARHGEF4	126.9832736	69.3149998	-0.878136678	0.006266967
ADAM21	84.14880788	45.98225437	-0.878481829	0.018150803
GAS6	3021.651067	1643.225879	-0.878509102	6.96E-17
POLD4	249.538617	135.6611235	-0.879030449	5.77E-05
GPT	292.4861868	159.0290272	-0.87929863	0.000275166
SDF2L1	1032.87372	561.1211851	-0.879507204	8.66E-08
PLPP5	892.7183262	485.2388578	-0.879815345	$7.71 \mathrm{E}-11$
MTHFD1L	3099.832385	1684.102485	-0.880606136	1.14E-14
COX18	1028.365919	558.4323956	-0.88069586	3.10E-12
ANKRD37	177.0607142	96.29781417	-0.880938833	0.000240141
OSGEPL1	360.1365488	195.2032874	-0.881212382	$1.21 \mathrm{E}-05$
MPST	3121.955218	1694.598903	-0.881505871	$4.89 \mathrm{E}-15$

THSD1	120.33314	65.63512114	-0.88216744	0.006095852
SEMA4B	1894.359088	1027.567147	-0.882278301	$5.26 \mathrm{E}-09$
KIF27	263.1686319	142.6267982	-0.883178811	$1.38 \mathrm{E}-05$
NFS1	1131.676509	613.4777502	-0.883561168	$2.89 \mathrm{E}-10$
IZUMO1	291.6537914	158.2878067	-0.884616748	0.003881863
CRYL1	617.7879092	334.1544873	-0.885101327	$1.26 \mathrm{E}-05$
GXYLT2	643.8823399	348.1816108	-0.885242993	5.94E-09
MVD	1975.22531	1067.913385	-0.885807338	$7.38 \mathrm{E}-08$
SREBF2	11872.80422	6423.414843	-0.88605631	$2.60 \mathrm{E}-10$
MAGED1	160.4111287	86.6338747	-0.888247008	0.005672854
PPP1R32	84.31897423	45.36287257	-0.888480673	0.011272528
DLX3	130.1952619	70.12861995	-0.889151179	0.020371337
TKFC	2550.195974	1375.963951	-0.889843691	$1.39 \mathrm{E}-13$
CHMP2A	2402.485049	1295.450593	-0.890489704	$2.44 \mathrm{E}-10$
PTPRJ	1559.041966	840.095057	-0.891537426	8.57E-11
SLC4A8	841.2888509	453.4281661	-0.891760675	9.91E-09
MMP15	3938.302362	2121.140858	-0.892365992	$4.86 \mathrm{E}-17$
IL1RAP	292.6474301	157.8901646	-0.892916651	1.32E-05
EEF1A1	314345.8993	169253.2765	-0.893173168	1.93E-15
DTD1	548.892629	295.1470436	-0.893258493	7.41E-09
RPL13A	44562.42212	23991.30415	-0.893312184	$1.50 \mathrm{E}-14$
PHLDA1	11244.51789	6051.701934	-0.893806274	4.53E-16
LYPD6B	580.0602177	311.9487066	-0.894406289	$6.01 \mathrm{E}-06$
ETFDH	599.3475167	322.0178368	-0.896348125	$4.30 \mathrm{E}-09$
KLHL31	126.3811416	68.11012762	-0.897519099	0.01061446
HIC1	84.40966756	45.22591308	-0.897618731	0.047282792
FAM72D	198.5200456	106.3517095	-0.900541892	0.002123784
ACOT13	765.4211076	410.1670683	-0.901315735	$6.30 \mathrm{E}-10$
FBXL4	562.4075135	300.974672	-0.902410034	5.37E-08
ERP29	5461.521265	2916.216483	-0.90510877	$1.78 \mathrm{E}-17$
SLC33A1	614.1713426	327.4846535	-0.905401767	3.43E-09
NUDT12	976.4336363	521.2394788	-0.905469605	$2.30 \mathrm{E}-08$
FZD4	429.0471136	228.8796013	-0.905824684	$1.96 \mathrm{E}-06$
FAM160B1	1502.513695	801.0000929	-0.907217691	8.03E-11
LIPH	2433.067533	1296.183629	-0.908463888	3.03E-06
KAZN	145.8038198	77.91032145	-0.909708554	0.001867659
DIAPH2	308.5179316	164.3867222	-0.910024728	2.52E-05
FTL	30613.04621	16281.60239	-0.910898622	4.27E-10
PRSS27	309.5823211	164.6577417	-0.912263561	0.000403402
TMEM268	746.4795694	396.0511547	-0.912886193	$5.26 \mathrm{E}-09$
EGLN3	359.7829061	191.3116666	-0.912921457	1.53E-05
NATD1	321.6555917	170.5033638	-0.912953322	0.000246387
CCDC171	157.7119878	83.50770754	-0.913636949	0.000712496
CD55	3544.354196	1880.182614	-0.914836815	$2.75 \mathrm{E}-09$
ERO1B	816.4808937	432.6188613	-0.914985931	6.16E-07
KLHL35	207.0855271	109.7846878	-0.915791488	0.000712216
LITAF	2526.971233	1338.752003	-0.916286809	2.15E-09
PLCB1	230.669107	122.0805166	-0.91701213	2.34E-05
ERN1	1314.588486	695.7350244	-0.917921994	4.23E-07
PEX7	406.8636171	215.1396625	-0.918585364	3.07E-05
SND1	9044.438165	4784.629057	-0.918792369	3.12E-14
COX20	115.1703119	60.63646177	-0.918916748	0.003290095
VAMP4	377.9912984	199.7362514	-0.91910855	2.02E-05
ALS2CL	4365.952968	2306.329715	-0.920694715	0.020266848
AGO4	845.5635912	446.1313754	-0.922017571	3.09E-08
RMDN2	160.6012491	84.67935111	-0.923778131	0.001687046
RBM43	287.9549703	152.1629566	-0.925892199	7.65E-05
IKBKB	2113.34967	1112.662559	-0.9262407	5.93E-12
AUH	722.2108623	380.0303631	-0.926306563	$4.26 \mathrm{E}-09$
HSD17B7	1071.192858	562.8268815	-0.92696558	6.59E-12
GNPDA1	1661.055585	873.1681572	-0.92748725	5.03E-15

IARS	14872.2973	7815.61334	-0.92825782	$3.76 \mathrm{E}-20$
DHCR7	5603.56759	2941.550419	-0.929206125	$6.54 \mathrm{E}-11$
CASP4	1352.809894	710.5320592	-0.929575136	9.05E-07
MAGED2	2376.533939	1246.62097	-0.931300111	$1.70 \mathrm{E}-14$
FER1L6	251.2184723	131.6426971	-0.93148655	0.008529819
KLF9	1319.042344	689.4889847	-0.934634172	$1.27 \mathrm{E}-08$
PRSS8	1868.361958	977.3317214	-0.934643905	$6.85 \mathrm{E}-08$
BCL2L14	308.89008	161.9042812	-0.934862494	1.19E-05
RPIA	857.6918353	448.4697883	-0.935032119	8.03E-08
MMP24OS	887.61101	463.8408718	-0.935843984	7.19E-09
SNHG28	98.82137971	51.55053585	-0.938037536	0.009458476
DDIT3	559.3499699	291.1996389	-0.941335006	0.00074486
SLC35D2	229.9079146	119.8777541	-0.942705926	0.000461541
GABARAP	60.37192248	31.2230916	-0.943672831	0.038302634
BICRAL	963.1726719	500.9449956	-0.943888221	$7.44 \mathrm{E}-08$
VPS28	1377.697854	715.450776	-0.945914152	$5.63 \mathrm{E}-11$
ANK3	1269.151423	658.7369636	-0.947072858	$1.57 \mathrm{E}-08$
HDDC3	290.5653986	150.626563	-0.947115248	$1.97 \mathrm{E}-06$
CUTC	514.2393248	266.7297776	-0.947134293	2.25E-09
LCP1	54.48581712	28.14910658	-0.947196922	0.025804949
PLCH1	135.7470135	70.10293704	-0.947545411	0.002212226
NR4A2	221.2820439	114.7795596	-0.948271544	2.33E-05
TSKU	2981.291795	1543.803344	-0.94947411	7.76E-13
KLK3	119.3898623	61.58257811	-0.950167888	0.023512053
ZNF337	109.1796585	56.33935618	-0.950379395	0.00165759
SRI	1107.882969	572.5461996	-0.951568813	$4.86 \mathrm{E}-11$
TSEN15	2235.673393	1156.087077	-0.951868979	$9.94 \mathrm{E}-12$
CTSD	7333.974734	3784.927969	-0.954139411	$1.85 \mathrm{E}-17$
ITGA2	3519.579983	1816.575082	-0.954544244	$6.38 \mathrm{E}-14$
PBX1	488.8479885	252.2308204	-0.95533754	8.57E-06
ST3GAL5	306.3918855	157.5335937	-0.957649819	0.000948774
SH3RF3	522.4984206	269.0634008	-0.957766541	4.05E-05
ING4	431.2968671	222.0293301	-0.958825814	$1.82 \mathrm{E}-06$
RAPGEFL1	2181.870483	1121.75101	-0.959233363	$2.08 \mathrm{E}-07$
ADAMTS19	185.0228028	94.97683626	-0.960362643	0.000122941
ATP6AP1L	300.7653905	154.1231708	-0.964150658	0.000688352
ZBTB41	991.7910012	508.5233199	-0.965012129	$3.72 \mathrm{E}-12$
BCO2	62.27293432	31.81876245	-0.965525927	0.01666487
TIMP4	271.3045656	138.891358	-0.96617261	0.000456402
PYGB	5455.314802	2792.219644	-0.966270457	2.59E-08
HELB	263.2722859	134.7955465	-0.966811006	6.93E-06
FAAH2	353.2408489	180.5762098	-0.967964187	0.000549806
LBHD1	395.0796353	201.6339043	-0.970599973	$3.79 \mathrm{E}-07$
UVSSA	3417.08617	1742.633984	-0.971526365	7.22E-08
STX8	424.0377164	215.5062015	-0.973180281	4.39E-08
LRRC27	192.9434206	98.42992088	-0.973210062	0.000263478
SCG5	196.8682394	99.77413268	-0.977453839	0.002184616
MKNK2	7741.997361	3930.382949	-0.97778648	1.49E-09
B4GALNT3	662.1339874	335.8266158	-0.978459423	5.73E-05
PRKAG1	1247.282203	632.9411095	-0.978995766	5.69E-13
FRAT2	300.6719246	152.3716134	-0.980856099	$4.34 \mathrm{E}-07$
S100A14	7585.347838	3841.475934	-0.981461103	$1.45 \mathrm{E}-15$
MT-ATP6	62621.81546	31699.03349	-0.982223289	$4.59 \mathrm{E}-15$
GSS	3539.35299	1790.449403	-0.982743066	$5.38 \mathrm{E}-13$
ULK2	443.834617	224.3677852	-0.983531341	$4.44 \mathrm{E}-06$
FAM117B	887.9226999	448.5711125	-0.984069645	$2.41 \mathrm{E}-07$
C14orf28	146.9362394	74.14384984	-0.985115598	0.000294651
IMMP2L	135.1073157	68.14469478	-0.98778223	0.00018458
PSD	130.3752848	65.630292	-0.990124693	0.012271971
PCCA	2072.275277	1042.948477	-0.990331037	4.53E-16
RBL2	3383.497453	1702.898204	-0.990442916	3.23E-13

ENDOD1	3281.68398	1648.642371	-0.993205025	1.21E-10
IMPACT	1683.630473	845.3910522	-0.993988349	$3.98 \mathrm{E}-08$
NOS2	50.88120541	25.56003522	-0.997509514	0.030130333
TPT1	22514.32256	11264.15446	-0.999131114	$7.24 \mathrm{E}-15$
MCF2L	230.5175608	115.0469744	-1.003331855	0.000824861
LEPR	302.4316083	151.0967217	-1.003410363	3.37E-05
CCDC115	948.9581042	473.0598133	-1.00347781	5.22E-13
MB	274.2957679	136.4275047	-1.003833543	$3.28 \mathrm{E}-05$
ELMO3	1554.470074	772.520467	-1.00824314	6.54E-11
NOP53	4939.647861	2455.078708	-1.008743599	1.15E-14
PPIB	4270.595267	2118.217357	-1.011190823	2.07E-19
MXI1	1320.070221	654.3416771	-1.011702937	8.66E-08
SDHAF4	486.9730812	240.356798	-1.017714503	6.62E-09
R3HDM2	968.5075687	478.3334332	-1.018203493	8.09E-06
DBP	1567.811055	773.8224677	-1.018510602	0.037131475
MANF	2530.252976	1246.181186	-1.021258586	$7.12 \mathrm{E}-21$
MT-CYB	67861.51102	33422.23196	-1.021804099	3.29E-11
PLCG2	203.7031437	100.1704391	-1.024082262	8.12E-05
EPHB2	2089.314945	1024.84853	-1.026489627	2.39E-10
NQO1	21497.35386	10546.51926	-1.027300288	$1.68 \mathrm{E}-13$
GRID2IP	65.46719035	32.143822	-1.027620839	0.013936939
POLR3GL	194.5106567	95.00861513	-1.028307611	$2.40 \mathrm{E}-05$
MT-CO2	121565.0023	59577.37216	-1.028894431	5.67E-14
SMPDL3A	526.1274543	257.3417291	-1.03069032	1.42E-07
TNKS1BP1	4454.08012	2178.599623	-1.03113161	$3.48 \mathrm{E}-15$
PTPN22	42.59326799	20.69892643	-1.031704769	0.036436885
RHBDD1	1711.691442	837.4041026	-1.03245105	3.17E-16
SLIT1	124.0101979	60.52466297	-1.034156564	0.006209484
PARPBP	499.1319065	243.2734202	-1.03483131	7.10E-06
CLMN	197.9816262	96.23957838	-1.035358218	0.000478793
PAM	2520.933903	1228.945047	-1.036593475	1.87E-14
MVP	3524.049858	1714.544433	-1.039380245	$1.69 \mathrm{E}-09$
DUSP5	2292.010034	1114.139455	-1.039985154	5.86E-08
ERRFI1	16694.59323	8113.52595	-1.040975036	$2.51 \mathrm{E}-12$
TARBP1	1834.022347	891.5928784	-1.041346428	7.29E-13
PTCHD1	50.5822529	24.67580161	-1.041460378	0.022365792
FAM114A1	880.3234003	427.855528	-1.041569332	2.32E-12
HLA-DMA	354.6273397	171.896519	-1.043360116	5.89E-09
ZBTB22	786.8288585	381.3004285	-1.043923961	$4.86 \mathrm{E}-11$
ASS1	4581.176511	2221.695128	-1.043943391	5.81E-08
SLC1A4	7162.77291	3470.714596	-1.045202417	$5.06 \mathrm{E}-25$
FPGT	675.1928827	326.5848486	-1.045882023	7.86E-13
IL20RB	41.51779634	20.20018535	-1.046131399	0.0355947
TNFRSF1B	176.5812691	85.20150617	-1.049285888	0.000151817
BNIPL	74.69383529	36.02469777	-1.049415126	0.022115616
PDCD4	2596.285458	1254.072992	-1.049641954	2.19E-09
CLCN5	1110.851143	535.3185327	-1.051551544	1.89E-12
ZSCAN32	54.79486106	26.43322969	-1.051656531	0.021995505
HOXB4	3426.915719	1651.113281	-1.053365186	3.43E-08
TNS4	16654.00608	8021.763569	-1.053755781	$1.53 \mathrm{E}-09$
PGLYRP1	65.8794246	31.76234226	-1.054868374	0.01279505
SLC7A1	9221.670892	4433.484797	-1.056699404	1.17E-16
NIPSNAP2	2128.998648	1022.867486	-1.057501053	$2.34 \mathrm{E}-16$
HGSNAT	1361.650149	653.8796158	-1.058148911	3.02E-08
ARTN	127.6093455	61.0151532	-1.058481722	0.000257092
PIP5KL1	158.8241612	76.05845776	-1.059615409	0.002149178
ZC3H6	1046.604112	502.0378466	-1.060165955	1.85E-08
SMIM29	394.2462949	188.6321724	-1.062569056	$1.98 \mathrm{E}-08$
BCAS1	247.5630182	118.4250963	-1.062892979	0.000453372
ABHD14B	1334.930473	639.2807418	-1.06344515	$4.30 \mathrm{E}-14$
ARHGAP30	121.4633889	57.86887973	-1.066038539	0.007626959

TSPAN1	3914.249589	1867.540514	-1.067300407	$1.18 \mathrm{E}-07$
PDE3A	149.6748247	71.27788828	-1.067369725	0.000899693
FBXL20	1089.223966	519.4978078	-1.067981817	$8.45 \mathrm{E}-11$
IARS2	6663.070924	3176.259096	-1.068759691	$1.96 \mathrm{E}-22$
MT1X	153.9785899	72.94477949	-1.06987546	0.000782363
VIL1	578.5337177	275.2342711	-1.070302569	$1.21 \mathrm{E}-06$
CPPED1	1063.091296	505.4539122	-1.073052539	$5.51 \mathrm{E}-18$
MMAA	121.4165385	57.79439407	-1.078832304	0.00053378
KIAA1257	80.26444192	38.04901849	-1.079619602	0.028015891
BCAS3	451.2236528	213.3332488	-1.079972766	$4.40 \mathrm{E}-08$
TMEM143	341.088539	161.035847	-1.080897542	4.60E-09
MANEA	713.463416	336.7181275	-1.083355739	$1.22 \mathrm{E}-13$
IL33	611.8516449	288.619314	-1.083559827	0.029435447
MKX	60.03476272	28.08826543	-1.083966843	0.027861459
KCTD18	585.3405544	275.4092855	-1.087729182	3.58E-09
TLR5	65.16225283	30.68175776	-1.088096351	0.004695011
SLC9B2	161.2576586	75.73584723	-1.091180002	$2.35 \mathrm{E}-05$
FHIT	117.0734372	54.95783125	-1.091661715	0.000275302
ZBTB45	1603.078986	751.4083932	-1.092244795	$4.60 \mathrm{E}-19$
FURIN	4936.098319	2314.522251	-1.092379061	$1.97 \mathrm{E}-14$
IDH2	3277.397881	1536.063676	-1.092639633	$1.31 \mathrm{E}-09$
DUSP18	242.0127149	113.4017533	-1.093855968	1.79E-06
HECW2	104.4441054	48.9678574	-1.095134382	0.000954561
ACSM3	157.9470861	73.636675	-1.096017917	0.001155062
MAPT	136.4479883	63.92720095	-1.09648062	0.003317108
PRPF40B	443.0897481	207.1734204	-1.096837942	$9.56 \mathrm{E}-08$
C8orf82	1452.497089	678.3631482	-1.098436247	$1.69 \mathrm{E}-16$
SLC16A5	2083.686913	971.4315233	-1.100696032	0.005779232
RNF135	729.5109628	340.2172983	-1.101710924	$1.36 \mathrm{E}-13$
SWT1	222.4264907	103.4024203	-1.103336748	$2.10 \mathrm{E}-06$
TTC39B	1216.227113	565.6512919	-1.103567471	1.12E-15
MPND	223.6926036	103.6322968	-1.105671261	3.98E-06
NT5C	651.1721652	301.857273	-1.106796577	8.72E-14
DNAJB9	493.1558718	229.1147151	-1.107141252	$1.48 \mathrm{E}-05$
RASIP1	347.5535404	161.4735905	-1.108782209	$1.71 \mathrm{E}-05$
FAM107B	398.0373508	183.9483498	-1.111104268	5.22E-08
METTL26	1491.875605	689.3606391	-1.112424308	$9.65 \mathrm{E}-16$
FDFT1	11595.74482	5354.901976	-1.114380096	1.13E-12
FDXACB1	82.61002465	37.93878348	-1.115172142	0.001369636
LRRC23	282.624312	130.0308876	-1.116897642	9.43E-08
DUOX1	99.83556823	45.74795693	-1.120088499	0.001446131
BTBD8	513.8432602	236.0467236	-1.12013294	4.49E-09
HSP90B1	39653.33816	18238.05198	-1.12046744	9.33E-30
MAPRE3	1573.373305	723.4478372	-1.120697936	8.89E-07
D2HGDH	1899.411397	872.097048	-1.122770442	8.77E-12
SARS	7739.332147	3552.02335	-1.123550206	$2.44 \mathrm{E}-13$
AL117339.5	147.8889671	67.62822752	-1.124467968	0.000721504
CCDC28A	377.2420188	172.8104483	-1.126904846	5.43E-07
CCDC167	256.790389	117.7315258	-1.126986904	$7.20 \mathrm{E}-06$
LONP1	6511.553859	2980.416013	-1.127458361	$1.84 \mathrm{E}-16$
HFE	1074.100071	491.2619914	-1.128429804	$3.29 \mathrm{E}-12$
SULT1C2	1411.125976	645.2683835	-1.128903055	0.010571347
HBP1	912.6336777	416.7326519	-1.130387432	5.80E-09
ENPP5	314.8094732	143.4976549	-1.130760215	1.33E-06
MT-CO1	367081.6105	167473.8829	-1.13216663	$2.31 \mathrm{E}-15$
N6AMT1	437.7529904	199.5947146	-1.135708039	$1.48 \mathrm{E}-09$
ADGRL2	149.2211409	67.78848979	-1.13673358	0.000861951
NTRK2	82.70740156	37.76551012	-1.138085263	0.002780387
TBC1D5	2945.405514	1338.018321	-1.138395373	$3.30 \mathrm{E}-17$
MYC	4589.592358	2083.983847	-1.139772774	$1.28 \mathrm{E}-15$
GNA14	163.1700684	73.96295905	-1.140514315	9.96E-06

NEK3	369.3077812	166.6884976	-1.143898511	9.26E-09
PHYKPL	2704.670502	1222.533156	-1.145581272	8.62E-10
ZNF516	534.5366964	240.9036395	-1.146212641	7.18E-06
DEPDC7	171.7541225	77.54464111	-1.146372727	$1.51 \mathrm{E}-05$
ZFP14	318.2801778	143.9967618	-1.146674206	3.61E-10
FTCDNL1	82.00002913	37.08145729	-1.146984382	0.000807331
ATF4	24697.5708	11152.44997	-1.147006488	2.52E-17
ZNF169	740.8594507	334.843621	-1.147052137	$3.14 \mathrm{E}-10$
RHOBTB1	220.4485197	99.29085171	-1.147716642	8.66E-08
BEST1	104.780681	46.97375177	-1.153796199	0.001106164
CCDC149	318.9981353	143.6235329	-1.15519589	3.23E-08
FAM78A	55.67575659	24.87917885	-1.156486428	0.014102819
TGFB2	2522.575545	1128.897923	-1.160293059	3.43E-09
TMEM141	1786.48736	797.6902229	-1.161727136	$4.41 \mathrm{E}-16$
PSPH	2758.272812	1231.359576	-1.163511977	3.57E-29
TXNRD3	713.5375904	317.7881188	-1.164074868	$4.88 \mathrm{E}-13$
RNF125	369.5790816	164.4899732	-1.164691308	$3.11 \mathrm{E}-09$
RAP1GAP	267.0865444	119.1160615	-1.164753885	$1.16 \mathrm{E}-05$
FRAT1	224.6842098	100.1462059	-1.164759192	1.52E-07
KBTBD7	439.691767	195.688087	-1.16555428	$7.78 \mathrm{E}-12$
SUMF2	2936.553647	1307.94898	-1.166179392	$1.48 \mathrm{E}-17$
ACVR2B	722.0167438	321.1901374	-1.167397714	3.22E-10
BTD	495.0001529	219.9335372	-1.169194572	$5.71 \mathrm{E}-12$
ACCS	807.056975	358.7706299	-1.169621249	7.08E-10
APBB3	1314.941449	584.2458353	-1.170099912	$2.28 \mathrm{E}-13$
SREBF1	10359.30497	4599.715328	-1.171027327	3.52E-15
PLA2G4A	302.6850954	133.8920652	-1.17217167	5.73E-07
PTPRD	111.3614963	49.16907976	-1.176142694	0.001755774
ASB13	807.9511172	356.9948817	-1.176857197	$4.65 \mathrm{E}-11$
PITPNM3	333.228313	146.4980846	-1.186170362	$1.51 \mathrm{E}-05$
CTBS	278.7415386	122.145821	-1.186485504	6.97E-06
SHMT2	7774.215632	3414.948955	-1.186748619	$3.84 \mathrm{E}-29$
RSL24D1	5208.401334	2282.008793	-1.190293901	8.35E-20
GCLC	5952.662531	2607.701553	-1.190657443	7.99E-16
TTC34	104.2238763	45.82065356	-1.190847635	0.000983748
AC099489.1	79.83465307	35.11054322	-1.190867163	0.029911565
ETV5	2555.320859	1118.446696	-1.191259359	2.42E-17
NUDT3	184.475969	80.5728369	-1.192710464	$1.98 \mathrm{E}-07$
PQLC3	475.4080069	207.9105858	-1.193494334	$1.76 \mathrm{E}-10$
SUCLG2	2238.75825	977.7247173	-1.194901086	2.69E-20
ZNF397	1423.274827	621.501637	-1.1958471	4.42E-17
CYP2J2	2234.174416	974.0639852	-1.197137745	5.45E-17
BHLHE40	1462.202037	637.0803092	-1.198330108	0.008268901
IGBP1	1670.208206	726.8965274	-1.20071666	$2.09 \mathrm{E}-17$
BTN3A1	676.7391079	293.7346013	-1.203066195	3.33E-09
NDUFV2	200.9968889	87.31305607	-1.205850907	$8.98 \mathrm{E}-07$
PNRC1	1030.602786	446.203892	-1.206649543	$3.41 \mathrm{E}-11$
ULK1	2834.460554	1225.376085	-1.209518545	1.95E-13
GGACT	85.02976061	36.6648193	-1.215638185	0.00159632
ZNF333	387.8622562	166.9696976	-1.21647747	$3.71 \mathrm{E}-11$
EPRS	16348.02907	7034.922814	-1.216677079	$1.05 \mathrm{E}-26$
FRMD3	559.4010083	239.8821043	-1.220912714	$1.81 \mathrm{E}-06$
GRAMD4	733.5307318	313.9692398	-1.223240933	2.69E-08
SLC24A1	681.7421709	291.9576552	-1.22363551	7.21E-08
PCSK9	587.4786549	250.4915001	-1.225393929	7.12E-08
VGF	963.63278	412.1493213	-1.225542802	$8.03 \mathrm{E}-11$
DDR2	74.32619366	31.72759218	-1.225744773	0.003703594
MT-ND2	84985.41522	36210.55445	-1.230801037	$2.10 \mathrm{E}-17$
SLC39A11	491.2795952	208.6797129	-1.235638526	5.52E-13
EDEM2	797.8614295	338.4530003	-1.236020775	$1.36 \mathrm{E}-14$
ACSS2	3983.106757	1689.353102	-1.236941237	4.51E-18

HSD17B4	4728.004035	2004.561771	-1.237509997	$4.40 \mathrm{E}-26$
SLC38A2	11929.55717	5052.577752	-1.239295234	$3.06 \mathrm{E}-22$
PLA2R1	173.5886458	73.43586082	-1.24122354	5.87E-06
FUT1	1306.259765	551.8544796	-1.242960283	$4.84 \mathrm{E}-10$
RBCK1	13260.40056	5593.265647	-1.245332974	2.92E-13
BEND6	143.761296	60.27148372	-1.250365022	0.000204808
CTH	483.5952679	202.7099989	-1.251284669	$9.66 \mathrm{E}-11$
BTN3A2	549.3809072	230.4651369	-1.251813297	7.91E-12
GALC	1509.921237	634.0592323	-1.252124407	4.86E-17
LZTFL1	531.8370018	223.2053229	-1.252554544	$1.26 \mathrm{E}-10$
RPL3	53278.13659	22351.03646	-1.253226684	$5.34 \mathrm{E}-27$
SPINK4	120.8088913	50.75602276	-1.253463934	0.000583394
EDAR	171.6769073	71.79725787	-1.253758271	0.001837519
CPQ	106.6837491	44.6027014	-1.255501858	0.000224546
MYO15A	39.4895909	16.46463395	-1.256657818	0.048390857
NOL4	42.9219228	17.87131958	-1.258110851	0.011052602
ACY1	47.26103207	19.57615734	-1.258290778	0.012049483
GDF15	9188.052631	3836.971081	-1.259530685	2.87E-17
PDIA4	12035.39333	5013.202781	-1.263353251	3.02E-37
RSAD1	801.4587496	332.5115588	-1.270537769	8.25E-20
GDPD1	95.08075356	38.98885595	-1.272851081	0.000797193
EIF4EBP1	2948.884191	1218.972067	-1.274001168	$1.26 \mathrm{E}-24$
CLDN7	8526.905266	3521.251827	-1.275698983	3.32E-19
FOXO4	192.6326125	79.37458289	-1.278317041	7.33E-06
HOXD8	53.20225787	21.99195534	-1.278693877	0.014481134
SELENON	1974.036345	812.7002243	-1.279280756	1.12E-15
ATP2C2	1496.148782	616.0276928	-1.279955463	7.20E-12
IDH1	10067.26958	4143.289256	-1.280507594	7.17E-23
TDRD3	706.5195379	290.640873	-1.28294903	3.05E-15
SYTL1	719.2175942	295.3830878	-1.283901294	0.028483957
GABRR2	236.0074212	96.69486804	-1.284786384	4.02E-06
MT-ND4L	58260.67298	23846.71704	-1.288721801	3.67E-23
MFSD3	1280.935995	522.6497691	-1.29186894	$1.84 \mathrm{E}-25$
H1FX	2776.680369	1131.54491	-1.294540755	1.13E-26
EIF4B	20787.84777	8472.229495	-1.295023091	6.03E-27
SGSM1	32.22553303	13.12003763	-1.295609987	0.030946333
CXCL8	52.96294482	21.37216537	-1.296897823	0.044930381
ST6GALNAC2	59.3673045	24.10116745	-1.298100621	0.003461218
HBEGF	381.7817464	154.8574761	-1.298235849	4.01E-09
CCDC146	91.99321619	37.21574252	-1.299695379	0.000479667
NAGLU	1812.155608	735.8326391	-1.299873156	$1.90 \mathrm{E}-25$
PEMT	485.2939994	196.3139758	-1.304834241	$1.30 \mathrm{E}-11$
LHPP	245.9357695	99.61486967	-1.305916564	3.05E-07
AMN1	115.8434691	46.53700747	-1.306524437	0.000163886
C9orf50	61.24277768	24.71333999	-1.30956856	0.007062551
LRRC75B	527.5734246	212.530596	-1.310153311	5.57E-13
S1PR4	42.16130848	16.91520568	-1.310704585	0.016246798
TMEM8B	639.5454611	257.4874616	-1.311090185	$1.24 \mathrm{E}-08$
GRB10	3056.056841	1228.141647	-1.31508703	$1.76 \mathrm{E}-21$
PPP1R14D	162.3788245	64.9378054	-1.315767305	0.001512978
AP1S1	8298.416482	3329.137436	-1.317310402	$1.96 \mathrm{E}-28$
ACADS	562.097741	224.4848636	-1.320660864	8.80E-16
MT-ND4	214875.7271	86003.97901	-1.321024529	$1.32 \mathrm{E}-24$
PLA2G6	659.4866108	263.9684744	-1.323371209	8.95E-14
AOAH	135.9936753	54.21468397	-1.325895957	0.000363681
BEAN1	61.94962923	24.54308017	-1.330326279	0.006370028
FGD2	484.5326354	192.3972366	-1.330357105	3.91E-12
THBS3	411.1819594	163.3768652	-1.332563317	1.82E-06
TMCC3	212.4540373	83.99994449	-1.335827931	5.86E-05
ARSD	1354.639238	536.4239386	-1.336541433	$1.26 \mathrm{E}-09$
PDK4	70.21801909	27.5543661	-1.341544348	0.008276876

DDX60	199.4651112	78.62492865	-1.342703054	7.06E-07
CNTD2	32.34063613	12.59119268	-1.343029412	0.026916577
PPARG	1455.750135	573.1038521	-1.344483135	$7.20 \mathrm{E}-13$
HSPA13	2341.327228	920.4585347	-1.346777774	$7.38 \mathrm{E}-18$
ITGA5	1334.546666	523.0130004	-1.351053312	$1.65 \mathrm{E}-10$
C11orf71	89.37878971	34.89739368	-1.351064655	0.000814569
C17orf49	24.2148871	9.540510447	-1.353140765	0.046897457
TBL1X	2304.809777	897.9131677	-1.35973771	$4.17 \mathrm{E}-22$
ISL2	277.2595529	107.5758716	-1.360189758	$2.49 \mathrm{E}-10$
CAMK4	45.38590208	17.46653707	-1.363364426	0.017303412
ADA	225.5479573	87.50881588	-1.365137867	$1.76 \mathrm{E}-09$
BDKRB1	58.06830412	22.27784384	-1.367056109	0.00514776
GCNT3	94.75357694	36.71700145	-1.368936551	0.000436763
PBXIP1	1230.299715	475.8829275	-1.369611762	$9.99 \mathrm{E}-15$
ABCC3	6879.50576	2659.650605	-1.37104611	0.001488446
GPRC5C	364.1642385	140.4100677	-1.372334581	$1.37 \mathrm{E}-05$
LENG9	345.2408785	132.9150975	-1.376865874	$1.22 \mathrm{E}-11$
FAM151B	37.93313868	14.65398215	-1.37744526	0.025983048
DAPK2	168.4787103	64.51733754	-1.379302983	0.000244849
ZSWIM4	317.0891966	121.178782	-1.381427145	$2.48 \mathrm{E}-08$
TMEM63C	58.19457033	22.13129496	-1.38716885	0.023488667
FBXO6	90.64649523	34.30666599	-1.391902032	6.43E-05
LMBR1L	854.695572	324.9526385	-1.392422453	2.99E-18
STAC3	100.1226652	38.04861032	-1.395104734	3.26E-05
ALPK1	428.0545772	162.3343808	-1.398288659	0.012430796
C6orf222	59.08197785	22.20235891	-1.401612256	0.030024115
PYROXD1	1325.779528	501.5142361	-1.403795153	$1.37 \mathrm{E}-22$
ZNF25	254.1608373	95.88861069	-1.40462479	$1.27 \mathrm{E}-09$
CEMIP	18352.94957	6920.392522	-1.407009992	$1.23 \mathrm{E}-14$
ZNF624	120.4044634	45.4909478	-1.409932311	$1.21 \mathrm{E}-05$
CREBRF	492.7048284	185.1660767	-1.412664063	6.64E-10
ABCC2	116.7208935	43.73311156	-1.413435386	$2.95 \mathrm{E}-06$
HOXD9	109.3197794	41.06112076	-1.417048722	2.16E-05
EREG	33056.62868	12344.01725	-1.421138282	$2.40 \mathrm{E}-42$
FADS2	388.4695936	144.5713271	-1.422239543	2.12E-11
AREG	8866.488329	3294.963284	-1.427941048	3.37E-28
AARS	9955.368319	3692.283962	-1.430941839	8.80E-29
KCNAB2	196.0486209	72.6925995	-1.431912844	2.52E-06
SNTB1	5642.978412	2090.387191	-1.432363604	$6.96 \mathrm{E}-30$
TBC1D16	2267.397027	834.3916502	-1.441599318	1.32E-16
CTSO	115.3143104	42.25094101	-1.443474915	$9.40 \mathrm{E}-05$
CCNG2	1350.316016	494.5263188	-1.447814506	8.53E-12
CCDC114	56.89768341	20.89208086	-1.452119081	0.001605096
ABTB1	564.0414124	205.7776627	-1.454578244	$6.21 \mathrm{E}-10$
FBXO36	198.3983161	72.36753996	-1.455312457	$2.74 \mathrm{E}-10$
ZFP2	24.69598207	8.954428977	-1.45756473	0.032918086
LDLRAD1	170.3578323	61.95837005	-1.458860193	0.000213698
MAPK10	44.89818684	16.29519046	-1.459134894	0.006762672
ERMARD	965.6008944	349.7991082	-1.463747171	5.07E-16
FGFBP1	1030.907185	372.369978	-1.466749783	2.59E-16
SCART1	74.97546201	27.04778235	-1.46736982	0.000776691
OR2A7	45.11841602	16.3102424	-1.469550165	0.003173078
BTBD3	582.4904155	209.493516	-1.474391343	$1.73 \mathrm{E}-21$
MAP7D2	354.1019558	126.5740871	-1.48222825	6.17E-06
PF4	55.70363751	19.8407839	-1.485529371	0.000672366
DCHS1	55.33160346	19.67773333	-1.492700198	0.002439252
UNC5B	341.3976129	121.2384676	-1.493097138	3.93E-08
MAML3	54.48171069	19.569131	-1.493957865	0.001148612
RBM44	34.92524593	12.31088077	-1.502027958	0.010610834
FREM1	23.69992623	8.31151915	-1.505889767	0.042230339
KLK10	2260.498819	795.0077547	-1.50692634	$9.94 \mathrm{E}-12$

DHFR2	251.1292845	88.45790344	-1.508993849	$4.98 \mathrm{E}-13$
CFAP69	101.3684237	35.64362621	-1.510748023	2.12E-05
SLC7A5	28862.63414	10121.80616	-1.511832671	9.67E-52
MSMO1	6431.8114	2236.579724	-1.523306429	9.95E-16
SGK2	91.95347968	31.99686495	-1.525797895	1.13E-05
LGALS4	81.09021701	28.07722629	-1.528555513	0.001870239
PLEKHM1	7257.177464	2505.001629	-1.534389849	1.83E-31
MARS	10822.32628	3735.914941	-1.534691808	$1.59 \mathrm{E}-48$
FBN1	107.1681137	36.96698424	-1.535589362	2.52E-05
YARS	10366.65619	3572.33587	-1.537050194	$1.10 \mathrm{E}-60$
SSPO	79.81093578	27.37388348	-1.537952908	0.002907064
C1S	34.06766119	11.66477449	-1.542477821	0.008104935
SQLE	4771.27484	1636.510603	-1.54279546	$5.46 \mathrm{E}-22$
GTDC1	227.69051	78.20260287	-1.543863268	$1.73 \mathrm{E}-11$
CD177	39.21241381	13.55131938	-1.5443166	0.009842132
LFNG	738.7113705	251.9969311	-1.549813962	$9.52 \mathrm{E}-20$
SYCP2	45.73833137	15.50892822	-1.55829477	0.001070083
NUDT18	460.6728631	156.2363957	-1.559308455	$7.10 \mathrm{E}-19$
SAMD13	24.31584955	8.104129118	-1.563188893	0.030437264
NOXA1	1141.306699	382.8142373	-1.574094355	3.09E-11
HIST3H2A	110.7499082	37.21522032	-1.5746707	7.01E-06
ST3GAL1	303.7843081	101.6524267	-1.574674849	$3.91 \mathrm{E}-11$
TSC22D3	1631.724081	547.3311473	-1.575408952	7.88E-13
APOBEC3H	26.55555043	8.784577322	-1.577095069	0.029016851
METTL27	221.9687637	73.79507935	-1.581334222	5.94E-09
C19orf73	40.15927699	13.53987207	-1.582292122	0.00239131
SLC25A6	17067.29874	5688.475232	-1.585089749	1.11E-57
AC073111.5	344.5700064	114.3678648	-1.591219864	6.33E-16
CARS	5835.289125	1927.832778	-1.597619039	$1.61 \mathrm{E}-45$
CACNG4	276.239346	90.68489909	-1.605375977	5.22E-06
FAM129A	137.4491079	44.84948773	-1.616877978	4.54E-05
NDUFA4L2	87.24163776	28.30710277	-1.618117469	0.000197043
BANK1	81.01126488	26.55409566	-1.620505021	0.000176711
ADGRD1	43.64884279	14.09904613	-1.623199154	0.000946796
BBC3	1051.449861	340.796144	-1.623313134	$2.46 \mathrm{E}-15$
PRSS12	129.6410793	42.06261571	-1.624752234	7.32E-08
MTHFD2	11165.26564	3609.16586	-1.629299347	$3.26 \mathrm{E}-45$
APOL6	1808.129425	582.8585481	-1.633257147	$1.84 \mathrm{E}-16$
AGXT	151.360343	48.57916841	-1.636739255	$1.41 \mathrm{E}-07$
TG	66.83328727	21.31533702	-1.637212547	0.002129093
SEC24D	2253.95362	723.4206594	-1.639877307	1.02E-34
SLC1A5	12522.91824	4012.440981	-1.641848911	4.99E-53
HMGCS1	12732.92282	4073.551819	-1.643824097	7.12E-21
CXCL3	122.6167471	39.12198556	-1.644860195	$3.88 \mathrm{E}-08$
AKR1B10	43.74347096	14.0161267	-1.647781869	0.007723968
PHGR1	23.78292759	7.48091744	-1.648099939	0.04827286
VAV3	54.89154549	17.3685657	-1.649114195	0.000579371
HLF	47.26695987	14.92284675	-1.650735915	0.001728352
PLB1	75.5120839	24.01319364	-1.652476034	$7.91 \mathrm{E}-05$
GPT2	3505.654679	1112.507841	-1.656051214	1.26E-36
POU2F2	35.29123778	11.1276787	-1.658731548	0.005444229
LGR6	148.5339063	46.59104753	-1.667695195	3.05E-06
DNASE2	1593.188215	500.720738	-1.668819921	$1.63 \mathrm{E}-25$
BBS9	205.7414977	64.70026918	-1.669054494	5.13E-12
TCEANC	79.68906809	25.07552974	-1.672409564	1.15E-05
MMP11	107.2342257	33.66776897	-1.673735553	$1.64 \mathrm{E}-06$
TMTC4	962.9019347	299.7404434	-1.680816052	4.44E-33
TSNARE1	281.4351521	87.85160161	-1.684970324	3.72E-12
SLC2A12	544.2728468	167.3319297	-1.701078453	0.005652079
OAF	913.3499555	280.2648628	-1.701620531	8.54E-22
FAM84B	1617.300833	493.4365373	-1.712959346	2.11E-32

TRIB3	9849.587466	2999.60443	-1.71507671	3.67E-35
CYP4F12	511.491081	153.0539647	-1.73981859	0.006929524
CDK18	247.8517016	74.01833766	-1.74281154	7.18E-07
PDE2A	125.1466034	37.20150692	-1.747838474	0.000231713
ADAMTS14	114.2683061	33.83081953	-1.755974759	2.73E-05
NAT16	131.4334367	38.8105282	-1.760327258	$7.00 \mathrm{E}-07$
PAQR8	118.3975125	34.72248764	-1.762753543	3.86E-05
CAPN5	1598.165245	467.3341425	-1.773618616	0.00064924
XYLT1	68.38186982	20.03393833	-1.777194415	0.001589832
CLDN2	1174.68237	341.3875316	-1.782242124	$2.76 \mathrm{E}-16$
LMF1	211.7237605	61.28896098	-1.7840011	7.48E-08
H6PD	2910.395646	843.0296363	-1.78727513	$3.14 \mathrm{E}-18$
SESN2	1706.298509	492.5397883	-1.790982568	$2.10 \mathrm{E}-26$
OPLAH	381.6166315	109.9099058	-1.791934734	$2.61 \mathrm{E}-10$
APOBR	23.09568691	6.588432991	-1.793886928	0.022115616
LONRF1	779.6454475	223.3665155	-1.801261644	$2.62 \mathrm{E}-23$
SPRYD3	1101.532288	315.7889165	-1.802581068	6.68E-40
MAP2K6	22.18086827	6.244083468	-1.804378485	0.020167985
LVRN	27.30225288	7.748740458	-1.814043977	0.006398583
PDE9A	110.4896504	31.17648604	-1.814434609	0.00016796
TMEM154	340.8054068	96.51669383	-1.814830386	7.49E-09
CCDC121	96.70277304	27.42327733	-1.819898213	5.51E-07
KNDC1	107.7194271	30.03762343	-1.829374836	$1.66 \mathrm{E}-05$
CUBN	16.02961911	4.464168953	-1.834494504	0.038156399
XBP1	5285.333367	1478.909062	-1.837476424	3.58E-39
FOXN1	310.5213446	86.40050763	-1.844482369	0.02622395
SYTL5	252.7856002	69.82756831	-1.854327768	6.27E-09
KCNN4	81.88047031	22.51957578	-1.855791806	0.000462633
FBXO32	312.8353403	85.79688289	-1.864987642	0.004812996
LTF	55.58049315	15.176026	-1.875489523	0.00057328
NR3C2	28.85688373	7.941486724	-1.880196942	0.004004872
SLC43A1	517.2666807	140.6087564	-1.880647889	$1.51 \mathrm{E}-20$
SLC16A13	550.1374029	146.244089	-1.906948529	$1.08 \mathrm{E}-27$
LRMDA	87.56676423	23.24302491	-1.913698873	$1.48 \mathrm{E}-07$
FSBP	53.48331261	14.02675767	-1.915159111	0.000710973
DPEP1	395.290586	104.0551448	-1.917893657	1.03E-16
GEMIN8	203.6757264	53.88218992	-1.917999854	$1.44 \mathrm{E}-14$
MLXIPL	895.0961216	235.1982156	-1.926691843	9.33E-06
DUSP13	17.20599601	4.524601939	-1.930057362	0.023313238
HSPA5	38865.13706	10174.1928	-1.933574252	$6.18 \mathrm{E}-57$
PYCR1	4790.188943	1250.962229	-1.936989057	$4.98 \mathrm{E}-81$
B3GALT4	199.4765031	52.11372271	-1.937702301	$1.44 \mathrm{E}-10$
KPNA7	20.20226197	5.325916116	-1.944981023	0.024273919
GARS	12655.04982	3255.621945	-1.958825975	2.15E-67
KRT81	49.67859737	12.73495326	-1.960450487	0.007949679
SLC22A11	72.44615036	18.241352	-1.974071349	$5.90 \mathrm{E}-06$
DPH6	217.0157813	54.83707931	-1.976177461	$2.29 \mathrm{E}-11$
PTPRM	202.8147577	51.22268801	-1.985224864	2.26E-07
NAALADL2	481.8269675	121.4225548	-1.987810964	$3.04 \mathrm{E}-12$
HOPX	37.38243333	9.215042735	-1.998331428	0.005440602
VEGFA	5803.708198	1431.187604	-2.019703709	8.27E-07
NFASC	14.23144828	3.424727459	-2.023013468	0.043298868
NLRP6	276.8887621	68.34784677	-2.023964786	5.27E-18
LDHD	57.71547444	14.18876665	-2.026362273	0.000777328
INSIG1	5938.861885	1452.897178	-2.031046987	0.000203829
RGS6	206.2495462	50.74579996	-2.031582287	$1.64 \mathrm{E}-10$
HERPUD1	3812.581364	931.4538973	-2.033085228	1.83E-31
PIR	428.0514704	104.6444916	-2.037389546	$4.54 \mathrm{E}-29$
SEMA5A	662.5670642	160.5893992	-2.044190849	$1.29 \mathrm{E}-23$
MYO16	18.3486786	4.346499441	-2.049174477	0.034646332
CXCL5	12799.39775	3082.233407	-2.053831191	2.20E-36

CYP4F11	241.8152185	57.51133619	-2.067056318	5.87E-08
ST6GALNAC3	13.49871488	3.175152837	-2.070823116	0.037344709
CPS1	21.58461301	5.147813618	-2.072982645	0.025774451
XPOT	8837.819327	2096.725228	-2.075814309	5.04E-50
ULBP1	511.330633	119.2378578	-2.09926615	2.69E-20
LURAP1L	425.5355674	99.17021098	-2.099497021	$8.30 \mathrm{E}-05$
JDP2	970.2771301	225.3005246	-2.104359623	$3.18 \mathrm{E}-22$
LYRM9	61.73755571	14.07934798	-2.130597497	0.00036782
ANG	21.41244759	4.895042534	-2.14061083	0.005793463
TEX19	15.56425737	3.424727459	-2.157530096	0.02451933
HMCN2	66.19141879	14.65822019	-2.160771023	0.001254242
PPIL6	22.93344132	5.075933326	-2.161815131	0.009821944
PSAT1	17663.65792	3923.437487	-2.170572291	3.11E-64
CYP4F3	586.3689823	127.406772	-2.201357968	0.00053378
SCD	49466.1121	10746.60344	-2.202432548	$2.11 \mathrm{E}-32$
CDX1	16.58015286	3.628921029	-2.209669026	0.015964885
YPEL2	317.2289743	67.94566963	-2.217458304	1.02E-14
TUBE1	1308.057839	281.4888263	-2.218126705	2.32E-32
NDRG1	2672.336385	571.2571992	-2.225693219	0.000533506
OMA1	567.3415503	120.0887911	-2.236326192	$1.57 \mathrm{E}-24$
TCAF2	19.63998702	4.093728358	-2.242165921	0.006370028
PHGDH	11590.08204	2438.880407	-2.248437859	4.23E-36
HES2	235.9696504	48.78295381	-2.271296357	$3.74 \mathrm{E}-12$
TACSTD2	5839.612363	1197.685223	-2.28549153	3.63E-08
SLC16A4	1229.905874	247.4088855	-2.313548963	0.00017263
GRIP1	19.144923	3.809811821	-2.314812201	0.00907921
PCED1B	358.8244733	71.45012006	-2.319119855	7.17E-19
C1orf127	16.14055858	3.031392254	-2.361214063	0.017360691
GRIK1	10.11016873	1.958017014	-2.373966282	0.049519303
FANK1	35.83766511	6.709298965	-2.414354817	0.000420176
RAB44	13.44911574	2.411377037	-2.424323883	0.032121451
RPL22L1	3897.675561	724.9326368	-2.426614891	$1.01 \mathrm{E}-52$
KLHL24	860.3341358	158.2647743	-2.439071873	3.33E-25
CLYBL	184.9169781	33.92054005	-2.445915359	$1.54 \mathrm{E}-17$
ESPN	463.0152572	82.56315499	-2.485179677	2.75E-06
KIAA1024	46.77189585	8.236442397	-2.487220715	$1.28 \mathrm{E}-05$
GLDN	167.4170361	29.32283331	-2.500495854	$1.01 \mathrm{E}-08$
AKR1C2	16.46339999	2.902683606	-2.501530354	0.012588522
KCTD16	23.87214885	4.119819429	-2.520911424	0.001391827
KIF21B	1167.75718	202.7449054	-2.524580642	7.12E-07
C6orf223	412.2607939	70.49527299	-2.545842815	0.009458476
AKAP6	121.9509386	20.94426301	-2.552995782	$1.63 \mathrm{E}-11$
DEPTOR	126.5354665	21.39082194	-2.5579294	$1.46 \mathrm{E}-12$
PRR9	80.60935084	13.34671764	-2.582604312	4.86E-09
ADRA2C	402.9748799	67.13454082	-2.583804029	$3.42 \mathrm{E}-29$
CADPS	1796.313224	297.6854249	-2.592510033	1.89E-09
CKMT1B	22.76697491	3.639960166	-2.598447567	0.003013252
SLCO2B1	32.36400413	5.201445513	-2.603989763	0.001785529
PHOSPHO1	125.4068673	20.09314681	-2.624398698	5.96E-12
PADI1	927.1805124	149.3424635	-2.633264503	0.001668567
CKMT1A	22.17494047	3.485160446	-2.654333759	0.0010587
ANK2	182.0704669	28.579572	-2.662462494	4.43E-15
KCNQ1	1125.274015	177.0942487	-2.666261773	$1.02 \mathrm{E}-38$
UPK1A	12.40340357	1.81425643	-2.722315126	0.02409664
SLC7A11	4467.889244	668.056755	-2.740925664	3.12E-50
DMGDH	92.88373335	13.69786825	-2.764781478	$1.38 \mathrm{E}-06$
CPNE5	23.75721734	3.103272546	-2.899745699	0.000542906
CST1	26.78130702	3.606026419	-2.91065423	0.000213698
SLC6A9	984.1540594	130.4151556	-2.914530482	$8.48 \mathrm{E}-11$
DNAH5	19.35688212	2.494704634	-2.918250681	0.001477857
GPR182	10.09032907	1.289016115	-2.963485105	0.024101492

FPGT-TNNI3K	27.5835936	3.473713141	-2.96525466	7.29E-05
VLDLR	551.723238	70.7477765	-2.967316655	2.53E-31
PRSS2	895.9723925	113.3098779	-2.98245513	2.97E-08
HRASLS	9.918049259	1.194241214	-2.987321063	0.042003463
PRDM16	17.81376368	2.233682707	-2.991824119	0.01898791
ASNS	544.2433013	66.15233585	-3.038407742	$1.94 \mathrm{E}-42$
PDE7B	16.01969928	1.958017014	-3.041887871	0.003022435
TCP11L2	298.7745221	34.74114421	-3.102106776	$3.76 \mathrm{E}-20$
SERPINE1	1072.142722	122.0957249	-3.132930917	3.06E-06
TGM3	14.06503907	1.504248822	-3.156210565	0.006938409
PCK2	6301.428949	693.4835144	-3.183509434	1.23E-14
GSTA4	149.1572867	16.28734779	-3.20096729	5.96E-13
SLC8A1	67.21975407	7.177302755	-3.201050488	$2.54 \mathrm{E}-08$
ADM2	81.88634091	9.015270132	-3.20517307	$2.09 \mathrm{E}-08$
TTLL1	128.2782247	13.56235851	-3.242479139	5.22E-17
FGD5	113.7379041	11.46098908	-3.324012017	$1.89 \mathrm{E}-15$
SPARC	9.803060553	0.967561202	-3.344364823	0.027637989
PDGFRB	63.07863486	5.874051041	-3.435261803	$2.00 \mathrm{E}-10$
PTP4A3	38.81426301	3.329952557	-3.486893679	$1.54 \mathrm{E}-05$
FUT3	112.3331996	9.960978307	-3.487654674	0.002557411
ZNF114	15.59983026	1.48176238	-3.525709199	0.005007701
KRT16	37.94664405	3.296018811	-3.541482484	8.53E-05
ST6GALNAC1	123.4539713	10.16836834	-3.587843564	$1.37 \mathrm{E}-17$
CHAC1	1900.79547	150.8598189	-3.65797242	3.99E-90
CDK14	8.539633055	0.597120607	-3.757218514	0.029646694
CFAP47	8.222662251	0.298560303	-4.561137613	0.019991057
S100P	2692.618194	110.3648296	-4.60784584	$2.16 \mathrm{E}-07$
RORC	15.98589057	0.597120607	-4.654482228	0.003096858
PRSS1	147.4540872	5.84795997	-4.659939868	$1.10 \mathrm{E}-16$
MEGF10	9.03076224	0.298560303	-4.686471828	0.014557183
AC009119.2	9.702098103	0.370440595	-4.796628456	0.006841227
IL2RB	10.27834211	0.370440595	-4.881572049	0.007424211
DDIT4	5147.138653	155.6840679	-5.045999148	5.24E-23
FGF21	43.54553809	1.30046342	-5.07229892	$1.64 \mathrm{E}-07$
NUPR1	537.2601925	15.69847803	-5.100942832	$3.79 \mathrm{E}-17$
PSD2	8.652451099	0	-5.588083263	0.004607638
ENOX1	10.84290212	0	-5.915918393	0.000459791

Table 8. HCT15 RNA-seq data

Gene symbols (Protein coding)	Ctrl (FPKM)	Oxaliplatin (FPKM)	log2 FoldChange	p-adj
KRTAP2-3	0	125.2869734	9.346411215	0.000822836
CYP24A1	0.645985892	73.91566603	6.735820341	$2.60 \mathrm{E}-08$
VSTM1	0.322992946	38.76174837	6.697601482	$3.47 \mathrm{E}-05$
RFPL4A	0	13.31136649	6.101070502	0.00062468
NPPB	1.982261228	122.4772137	5.923907619	0.000154238
LCK	0.345144722	22.4735449	5.901918684	0.0001421
BIRC7	0	11.39585598	5.880086644	0.001313292
PRR35	0.345144722	21.92623207	5.86539495	0.000187016
KRT9	0	10.86855432	5.814285504	0.001184268
HS3ST6	0	9.642396919	5.640915916	0.002780822
SSTR3	1.013282389	45.82666816	5.456949584	$7.27 \mathrm{E}-07$
TMPRSS7	0	7.836157053	5.353880062	0.006101127
ADAMTS2	0.38081625	15.21411853	5.33938626	0.001615086
SRRM4	0	7.34284595	5.257292063	0.012565035
EIF4E1B	0	7.230008502	5.22289714	0.017273012
LCN10	0.322992946	12.19816562	5.027935484	0.004747616
HSPB8	0.725960971	21.13577096	4.908199231	0.000947597
FLT4	0.345144722	9.85969415	4.711884638	0.009902761

CHRNA6	0.322992946	9.405088523	4.634463318	0.018943818
XAF1	0.690289443	16.50837613	4.568367934	0.010104646
MATK	2.040084531	46.98371948	4.496302136	$2.01 \mathrm{E}-08$
PHF21B	0.322992946	8.392757488	4.476010289	0.020318371
NXPH3	0.322992946	8.072125448	4.420445965	0.025793578
ATP1A4	0.38081625	8.029853169	4.413252593	0.023099204
RTP4	0.38081625	7.798576551	4.387449964	0.027914431
HCAR3	0.345144722	7.740984883	4.369117289	0.02452052
FAM92B	0.322992946	7.754964271	4.355803974	0.04006894
C4orf54	0.690289443	14.08672325	4.343227528	0.009454433
PRSS42	0.38081625	7.582404294	4.334104743	0.028220147
DRGX	0.322992946	7.452116596	4.322380286	0.034623455
APOL3	10.50305893	208.2544095	4.314170911	$6.98 \mathrm{E}-22$
DYDC2	0.645985892	13.04497435	4.256247912	0.007933229
SLC15A3	2.514395612	46.94254903	4.254588477	$1.82 \mathrm{E}-07$
CACNG8	1.832738192	33.40182175	4.231699872	$5.38 \mathrm{E}-05$
IGFL1	2.155731138	38.27056813	4.185045954	$1.39 \mathrm{E}-05$
KRT17	3.850670948	68.95377886	4.172827901	$3.03 \mathrm{E}-11$
EBI3	14.83487788	266.0035139	4.15521294	4.57E-37
C16orf90	0.703809196	11.90929734	4.101257861	0.017437336
IGF2	0.703809196	11.95379642	4.09722856	0.014115672
COL24A1	0.725960971	11.99965864	4.096047544	0.011797236
EDN2	6.955024248	113.4347255	4.072292564	$2.95 \mathrm{E}-13$
NYAP2	1.084625445	17.74741109	4.066588654	0.001891278
GCNT4	1.523264998	23.60117836	4.050536826	0.000364396
REN	4.231487197	68.31979062	4.030919015	2.42E-09
ITGAM	1.048953917	16.93258115	4.027097243	0.002851174
HBA1	0.645985892	11.00846375	4.020184502	0.021304122
IL2RG	1.832738192	28.61641862	4.019125292	0.000344523
LRRC36	0.703809196	10.80983768	3.94970852	0.026958678
FAM71E2	0.690289443	10.38587083	3.900474734	0.037724297
WFDC1	2.169250891	31.24933696	3.891210709	$1.48 \mathrm{E}-05$
MYL9	29.9329762	436.3212348	3.86698279	3.81E-27
ELF5	0.725960971	10.26139989	3.866506692	0.02582918
ZFR2	0.690289443	9.980694236	3.844324484	0.035209322
HOXD1	0.761632499	9.872667651	3.795635882	0.026157866
TMEM40	10.85683567	147.2144137	3.764734464	$9.07 \mathrm{E}-15$
AZU1	1.465441695	19.09803945	3.748475391	0.001746411
ZFP28	0.725960971	9.157486628	3.710785603	0.041477085
CREB3L3	1.336275335	17.89904996	3.701912394	0.001550174
GNAO1	0.703809196	9.099775873	3.695245462	0.039404822
LRRC15	1.013282389	12.81001184	3.626272077	0.009022534
ANO2	1.810586416	20.1612586	3.518297597	0.004383479
RNF113B	1.013282389	11.87272272	3.511094279	0.014796324
SCN2B	1.071105693	11.91387003	3.498138024	0.024626459
TXNIP	899.8830436	10036.04559	3.479143186	4.63E-06
PTPN7	17.09648016	188.901704	3.467242815	$1.52 \mathrm{E}-19$
TPSD1	1.048953917	11.02478902	3.395584352	0.017021385
GZMM	4.182295917	43.14589896	3.372146633	$5.79 \mathrm{E}-05$
HRC	1.659268282	16.78685498	3.296420599	0.003711629
SCUBE1	4.36928558	41.52237034	3.287034387	$4.63 \mathrm{E}-06$
C13orf46	2.097907835	19.82406311	3.250468261	0.001187576
LHX2	2.964759819	28.86277645	3.239629366	0.000644174
VGLL1	26.8051736	246.1089317	3.207428689	$1.18 \mathrm{E}-16$
CEACAM6	5.855083951	54.1772493	3.199711511	2.97E-06
CDHR4	8.930602647	82.10587339	3.190183791	$4.05 \mathrm{E}-06$
S100A3	4.643087245	41.78071894	3.188558103	$6.59 \mathrm{E}-06$
MMP19	5.222617811	47.54513078	3.185793212	$1.21 \mathrm{E}-07$
GPR17	4.24500695	38.08814825	3.176743059	$1.50 \mathrm{E}-05$
ANKRD1	64.25265034	580.2346946	3.173307719	0.000160831
IL1R2	1.752763113	15.63238772	3.172450673	0.006490111

LBX1	1.106777221	9.618914892	3.16860988	0.040110054
DCLK1	5.079931699	45.7135162	3.159245943	0.000697116
GBP1	7.738808522	66.6366817	3.143431289	9.04E-06
DIRAS1	3.075518696	26.90535092	3.12587463	0.0143173
MILR1	2.385229253	21.05235137	3.112814563	0.001615086
DDO	1.371946863	11.94328789	3.112391452	0.016382018
PDE4C	1.394098639	11.91734089	3.089205739	0.026461864
ANXA8L1	10.10872292	85.89033726	3.08655477	$1.00 \mathrm{E}-05$
THEG	7.975143561	68.02767004	3.085037208	$9.35 \mathrm{E}-08$
OTOF	4.792610281	40.19632584	3.055734913	0.000558872
CPA4	20.3177776	168.9733429	3.054153821	$9.58 \mathrm{E}-08$
UNC13A	21.8120539	180.1873513	3.052635168	$1.27 \mathrm{E}-08$
CRYAB	7.815193403	65.62724924	3.047183088	$1.54 \mathrm{E}-08$
ATP6V0A4	20.97044632	171.0269002	3.033721222	$1.62 \mathrm{E}-15$
RBP4	10.28039773	83.82321103	3.014208343	5.02E-08
KCND3	5.026996125	40.95806047	3.012894703	0.002270591
CRLF2	4.576631919	36.47325861	3.000539642	$1.25 \mathrm{E}-05$
FBLL1	1.407618391	10.9896735	2.986068246	0.040737209
ACVRL1	9.134856355	71.78700092	2.974877945	$6.94 \mathrm{E}-06$
IL12RB1	2.004413003	16.12311476	2.964920427	0.011891189
TBXA2R	11.6523446	91.50494974	2.964081034	$8.86 \mathrm{E}-11$
MUC2	1.672788034	13.40888455	2.961997246	0.031449498
FST	9.714386921	74.89424469	2.94625714	2.92E-08
IL12B	4.347133804	32.35348839	2.933203479	0.000289491
CLDN1	12.82183285	97.65521838	2.931360437	$6.66 \mathrm{E}-06$
CNGB1	3.806367397	28.84968386	2.915803968	0.005137731
IL36RN	31.5484385	232.3447563	2.893649086	$3.43 \mathrm{E}-12$
JPH2	20.28015688	149.2585805	2.88491473	$4.81 \mathrm{E}-17$
GFAP	2.420900781	17.87556793	2.881487896	0.003159536
TTLL6	20.81049617	152.0661897	2.864814607	$5.10 \mathrm{E}-16$
RUBCNL	31.55966559	230.2962481	2.863960489	$2.32 \mathrm{E}-11$
GPR20	5.68340914	40.72240659	2.850811658	0.000280015
ZYG11A	1.99578098	14.70795301	2.845434803	0.025461129
PLET1	1.394098639	10.01592885	2.844311279	0.037296555
ATP2A3	20.50102297	145.7013997	2.827196303	$4.38 \mathrm{E}-08$
MX2	12.09652354	85.16086589	2.823026953	$2.22 \mathrm{E}-05$
OMP	2.398749005	17.0592789	2.818782402	0.009363973
IGF2BP1	6.61182872	46.30980485	2.811627054	$1.51 \mathrm{E}-05$
LIMS2	26.33754535	183.5888374	2.810763803	$5.88 \mathrm{E}-12$
RHBDL3	60.00894671	422.2563067	2.807333175	$1.71 \mathrm{E}-17$
KCNQ5	1.982261228	13.90353566	2.774169407	0.030634705
ATAD3C	10.90602695	73.36500143	2.761209154	$3.31 \mathrm{E}-09$
DMKN	17.46801273	119.0021889	2.758818682	$1.02 \mathrm{E}-07$
CALHM3	6.797023284	46.27780292	2.748140992	$4.40 \mathrm{E}-05$
CLDN6	19.9542254	134.5270495	2.746478416	$1.34 \mathrm{E}-10$
HTR3A	2.062236307	13.88697221	2.738555674	0.028946978
ANXA8	22.81361164	151.1064741	2.73524126	$4.88 \mathrm{E}-07$
ADRA2B	6.208860695	41.03722187	2.714956592	0.000301962
MDGA1	101.3978459	663.1472065	2.709220887	$5.47 \mathrm{E}-33$
UPK2	21.91418076	138.7580096	2.66714404	$1.40 \mathrm{E}-06$
CIB2	10.0422676	63.93808539	2.664230971	7.61E-05
MRGPRG	2.434420533	15.38914348	2.658423838	0.016579453
SFTA2	8.024334841	49.83292916	2.633873185	$2.20 \mathrm{E}-06$
MCAM	88.63887814	547.1473611	2.625449642	$1.39 \mathrm{E}-17$
ALPL	4.833169539	29.84358191	2.625117521	0.001808261
MT3	6.208860695	38.14684174	2.61218483	0.004606724
GIMAP2	4.231487197	25.3969097	2.598755102	0.000748433
ITGAX	117.9623515	706.8325541	2.583046465	$3.43 \mathrm{E}-12$
SBK2	2.572218916	15.01326566	2.582278646	0.027137881
ARRDC4	261.8367972	1549.862991	2.565112606	$2.18 \mathrm{E}-12$
ALPP	96.92921787	570.055246	2.559326459	$5.00 \mathrm{E}-20$

ERP27	4.993119696	29.00134588	2.558792635	0.000440686
HLA-DPA1	11.16142113	64.9941478	2.54003726	$1.61 \mathrm{E}-05$
ANK1	7.386980972	42.48919641	2.535252698	8.89E-05
ADGRB2	208.937943	1201.812548	2.524295853	5.43E-21
RARRES3	24.39779257	137.3959859	2.500645553	$3.42 \mathrm{E}-08$
PSG4	4.222855174	23.75729397	2.500222646	0.006648295
ANKRD2	21.58759761	122.8549415	2.497368366	$6.40 \mathrm{E}-12$
LAPTM5	3.952797802	22.08234769	2.496210297	0.009585571
IFI44	19.39310231	109.3174966	2.491687586	$4.70 \mathrm{E}-05$
RSAD2	42.9276331	238.4719569	2.480117863	$1.31 \mathrm{E}-07$
FAM3B	4.814762056	26.83083854	2.469763897	0.015850422
GNAT1	2.443052556	13.56511925	2.465260509	0.029048695
ETS1	57.97554501	317.6918564	2.45379726	0.023011409
ECM1	65.48761037	358.5621837	2.446202861	$7.49 \mathrm{E}-16$
APOBEC3A	4.093688815	22.31149345	2.428721335	0.005004955
HOXC10	15.02186754	80.40229656	2.423013134	9.05E-08
CST6	308.581178	1645.621996	2.414066153	$2.20 \mathrm{E}-09$
GPR55	3.571981552	18.79038091	2.409474354	0.01206045
TGM2	39.45907593	208.5924653	2.407045409	1.13E-14
RNF151	3.456334945	18.34293203	2.397620204	0.012477706
KRT74	3.102558201	16.48836496	2.396786405	0.038012663
SPINK2	6.61182872	34.72805813	2.391912833	0.002023582
NES	226.7150797	1178.400063	2.376241298	1.11E-14
SLC19A3	4.993119696	25.09741379	2.3510939	0.002315531
ITGB3	5.311224913	26.89068016	2.345834781	0.00771852
APOE	80.5202485	407.5220726	2.342287044	$1.27 \mathrm{E}-12$
NGFR	13.44077924	68.06175653	2.334189923	0.000973775
IFI44L	7.759165199	38.99252549	2.333647687	0.029332254
IL1A	7.409132747	37.10746188	2.329804178	0.000883533
KLK5	5.821207522	28.61024461	2.322288392	0.013013735
CACNG6	8.015702819	39.80177686	2.312572898	0.002464713
SYNPO2L	5.253401609	26.05215316	2.309246838	0.003094289
C22orf31	6.966748901	34.46145095	2.30656431	0.001315539
OBSL1	5.12423525	25.2442418	2.291078473	0.01708731
VWF	10.56397486	52.12889018	2.289531267	0.001124412
AXL	52.60650259	256.5849686	2.289285209	$3.21 \mathrm{E}-10$
HIST1H2BJ	28.87733946	141.1375983	2.286751458	5.03E-08
GAL3ST3	5.576394556	27.17497576	2.281567514	0.002249745
ABCG4	16.99060902	82.89197684	2.280606818	7.87E-08
S100A2	56.78944437	276.5635032	2.278057803	8.11E-12
OR4C6	3.340688339	16.47551055	2.267187248	0.032342054
SCN4B	37.60403187	179.7164077	2.262627186	$2.40 \mathrm{E}-05$
APLP1	305.0846446	1464.824855	2.262448229	$6.84 \mathrm{E}-29$
LY6G6C	35.64098388	169.7459075	2.261987761	6.05E-09
SUN3	60.28015331	288.5349117	2.259605058	$4.30 \mathrm{E}-20$
UCN2	3.779327892	18.35691142	2.25859046	0.025002076
CX3CL1	92.01164781	441.5470596	2.257408959	$2.81 \mathrm{E}-16$
LYPD3	39.15090027	187.5420562	2.257014706	$6.38 \mathrm{E}-08$
PLA2G4D	7.67430239	36.64826041	2.254699228	0.003184047
RASGRP3	27.46174071	130.0397791	2.245717063	2.17E-08
CARD6	37.85778505	179.2002332	2.240042244	$3.64 \mathrm{E}-14$
C1QTNF2	90.19082365	423.9483656	2.235901504	1.15E-17
MDK	684.3124147	3205.818858	2.227791908	5.61E-16
PLA2G4C	15.17009305	70.08490633	2.224006969	0.001358529
DMBX1	120.441751	561.4390208	2.223552064	$3.14 \mathrm{E}-16$
SHD	4.204447692	19.66761338	2.218832359	0.026303863
APOD	4.195815669	19.54905512	2.218465366	0.049378211
CRYM	12.99041503	60.44291986	2.217962211	0.000105085
KRT13	8.427302866	38.90678317	2.209586826	0.000188746
CALD1	77.13036309	356.0343331	2.208113315	5.74E-06
LTB	11.38717496	52.53600221	2.207538656	0.002796859

COL9A2	31.31046246	144.2518174	2.204715398	$9.64 \mathrm{E}-06$
TNFRSF9	13.97291362	64.08897969	2.202149082	$7.84 \mathrm{E}-06$
PINLYP	19.53578843	89.86253492	2.200321778	2.05E-08
SLC26A8	9.08860361	41.09021771	2.195149605	0.014414037
TNFSF10	9.139744085	41.46353461	2.183504703	0.002545121
CRIP2	62.53915474	283.6978864	2.180642003	$1.89 \mathrm{E}-08$
SERPINE1	68.34878591	310.350695	2.179844021	7.29E-08
PI16	3.930646027	17.38819267	2.17145219	0.021718341
VANGL2	56.04442426	253.4918498	2.170275541	$4.01 \mathrm{E}-11$
KIF25	7.068875756	31.54871377	2.166401242	0.002229283
ATG9B	20.15164218	90.05352789	2.161553134	0.001452312
RPP25	24.30918547	107.8096508	2.153214798	8.75E-06
C2CD4C	65.20811522	289.0068786	2.144529104	$5.08 \mathrm{E}-08$
ASTL	7.307005893	32.45883497	2.142983474	0.001586565
ARHGDIB	18.95251357	83.23755	2.141740758	5.44E-08
UBA7	181.5724932	798.2774735	2.138053439	2.03E-06
LY6D	18.88980253	83.09730646	2.13505072	$7.66 \mathrm{E}-06$
SPTSSB	31.38489815	137.6553404	2.132578882	$1.01 \mathrm{E}-06$
APOL1	188.9459133	828.3981411	2.132370838	$4.98 \mathrm{E}-15$
RIPPLY3	12.88649308	56.63169497	2.120712615	0.00316497
EPSTI1	30.39816349	131.7429756	2.119593353	8.65E-06
TENT5C	24.66670651	106.2009351	2.115044952	4.59E-09
CIDEC	15.72078901	67.96313665	2.110180413	$6.84 \mathrm{E}-05$
AVPR1B	4.634455222	19.69131044	2.107278997	0.024703789
FBXO17	17.78791304	76.37264947	2.103509693	7.83E-05
RAB3B	247.9875164	1065.116174	2.102714038	$3.72 \mathrm{E}-13$
ZNF512B	5.754752196	24.2986941	2.098249261	0.009438695
SELL	8.466067025	36.48264216	2.090991925	0.008742058
IL15	18.16384156	77.29342143	2.090520255	$2.49 \mathrm{E}-07$
TRIML2	6.130680715	25.64707251	2.086207225	0.023828971
GPRC5B	60.90154067	258.8424692	2.082711647	$1.32 \mathrm{E}-10$
GPR137C	158.0426549	669.1066972	2.081515143	$7.88 \mathrm{E}-28$
PDE6G	24.2741656	101.4668769	2.07580343	3.02E-05
CYP1A2	6.846214565	28.97908476	2.072331941	0.003124132
RASGEF1B	11.29547522	47.08358343	2.069545413	8.40E-05
PTH1R	10.3787803	43.73031594	2.069479761	0.002588761
COL5A3	24.35543821	101.9553308	2.067914353	5.75E-08
SPHK1	130.7944458	547.1965092	2.063102836	1.97E-15
HSPA2	40.52464223	168.720292	2.058190451	$4.72 \mathrm{E}-11$
LINGO1	14.51677266	60.56044908	2.054450037	0.000768749
DISP2	26.08604955	107.5212588	2.045914896	$1.31 \mathrm{E}-08$
SPIB	7.12490396	29.62975554	2.041979643	0.009141265
THPO	7.184522362	29.15265063	2.030809493	0.028663936
ADGRB1	4.527440638	18.32301681	2.017965623	0.025583001
FGF22	15.77177539	63.04488491	2.017760202	0.000146168
SCNN1B	17.04045196	68.40376289	2.012767461	0.0006329
MSANTD1	24.59356835	99.34323765	2.01227228	$2.30 \mathrm{E}-07$
CLCN1	16.93587834	68.94403805	2.010861886	0.000200027
ZNF488	136.0673984	548.8536549	2.01056387	$2.50 \mathrm{E}-11$
APOBEC3G	16.71012452	67.75993789	2.005076171	0.00022229
RELB	277.0425381	1111.002425	2.003771871	$2.26 \mathrm{E}-06$
C3	8.513960774	33.42822195	2.001378708	0.04776639
PSMB9	264.1448417	1055.398833	1.998205094	2.47E-19
COL1A1	171.0099525	683.4444077	1.997962519	3.63E-08
TTLL10	21.97884098	87.83296605	1.996003555	$7.16 \mathrm{E}-07$
RUNX3	8.598977678	34.3652729	1.994621544	0.001826782
ZNF541	5.093451452	20.46867896	1.984234989	0.0321252
MYH15	14.26577443	55.76803144	1.978515117	0.009856342
BEST3	12.00612134	47.30245883	1.977636288	0.006162473
DES	6.745882809	26.350405	1.971616005	0.027073613
OAS2	22.60821449	88.35452375	1.97110769	0.000345485

PTAFR	52.68532844	207.0713615	1.966302053	$1.07 \mathrm{E}-08$
DPF1	101.3323446	397.3209144	1.966044208	1.93E-09
PGF	21.02956716	82.88850598	1.964768286	7.54E-05
NRIP3	7.254070319	28.52079325	1.962697337	0.014108772
OLFML2A	286.3893441	1114.174116	1.959433125	8.09E-11
LHX1	49.88166221	194.6065887	1.957036727	8.68E-09
SH2D3C	7.155687758	28.12265431	1.955702324	0.021941862
ADAMTS15	50.97980741	198.0287437	1.953846273	$7.04 \mathrm{E}-11$
OPRL1	25.12570273	97.17438483	1.949013774	0.000771704
DMC1	69.94778992	269.7219125	1.942018901	$6.44 \mathrm{E}-14$
ART5	16.28679982	62.65579541	1.937563531	5.87E-05
GFY	5.855083951	22.54164509	1.934487152	0.031442323
OLFML3	9.892744561	37.57023014	1.931579204	0.005542442
INAFM2	79.64376936	303.2709622	1.927756989	$1.16 \mathrm{E}-09$
CFAP74	33.04791072	125.7926961	1.92520302	0.000140842
DLG4	172.6423528	655.1002476	1.924896935	$2.71 \mathrm{E}-06$
TNNT1	295.3053009	1114.164838	1.915993233	$1.38 \mathrm{E}-06$
CCNE2	516.2977097	1942.583379	1.912080372	$4.70 \mathrm{E}-30$
VSIG2	16.92106106	63.18096621	1.908875711	$7.80 \mathrm{E}-05$
PDZD4	14.62753154	54.66486274	1.903345877	5.85E-05
TMPRSS6	106.4707923	397.3301129	1.902981562	$5.48 \mathrm{E}-07$
CALY	41.34589313	154.2374416	1.902131698	$1.12 \mathrm{E}-05$
CDKN1A	1606.133744	6004.065309	1.901981588	$3.00 \mathrm{E}-25$
C15orf48	43.57556818	162.3697196	1.901543324	$2.40 \mathrm{E}-05$
HTR1D	167.5425093	626.7486985	1.900155786	$2.47 \mathrm{E}-11$
IRF8	31.33734787	116.1003175	1.899285734	0.000375767
SCN3B	7.883443828	28.90282193	1.897196007	0.013020014
DACT3	18.22345997	67.27277765	1.896535671	0.000418239
USH1G	61.37195916	226.2225655	1.886839203	$4.06 \mathrm{E}-05$
IL10RA	22.96263711	85.62657547	1.886673297	0.000140584
FXYD6	21.05840176	77.55385459	1.876420855	0.004747616
C1QL1	119.4351514	437.6698224	1.875001219	5.06E-05
HOXC8	43.50062914	159.9407377	1.871741307	0.000199574
SLC25A45	102.5341151	374.1455955	1.871051064	8.64E-07
CTSS	10.72392502	39.51147263	1.870828704	0.005974837
PNCK	5.186946283	18.99827144	1.865171089	0.049872685
GCNT2	7.873016707	28.8439862	1.863593002	0.008839209
CGB7	50.36884718	182.9382394	1.862562962	0.000114258
VSIR	159.9400534	580.0573413	1.85723526	$2.71 \mathrm{E}-22$
CALHM1	11.95677597	42.77548063	1.856708258	0.005927393
KLF1	12.4735955	44.61247837	1.853662197	0.000924296
RPGRIP1	9.316306626	33.70165176	1.851253763	0.002941102
RIMKLB	104.0085265	373.3229671	1.847601682	2.25E-06
STX11	93.28684732	335.3011154	1.842827142	2.82E-07
SOWAHA	87.95966169	316.0094331	1.841025324	$6.23 \mathrm{E}-11$
CEACAM1	32.7063562	116.6581157	1.840017626	0.000615557
ARAP3	158.0734387	566.2374206	1.839350927	8.90E-16
DEPP1	16.50946101	58.85629996	1.835221258	0.008591571
CIART	4.92177664	17.45507195	1.833509414	0.037021542
RASGRF1	66.05346709	234.9254628	1.829971	2.82E-07
GABRD	6.307243256	22.44412703	1.829583059	0.046174435
SLC4A9	23.45780243	83.24657629	1.827474945	0.001980462
TUBB2A	316.0049386	1116.492323	1.820472854	0.015347675
NPTX1	16.47558458	57.69927179	1.814073394	0.011749272
FBLN5	108.3031813	378.4558094	1.80353624	2.87E-08
PRDM1	10.56397486	37.0817299	1.802996955	0.027423082
YPEL4	19.0749971	66.6675159	1.801440858	0.024217546
KCNG2	11.50282156	39.86420254	1.79834175	0.001513147
RAB9B	36.88865211	127.2945529	1.797103	$4.16 \mathrm{E}-07$
HCAR2	12.08918905	42.5559566	1.79538533	0.006112757
IGFN1	22.03162246	76.06913356	1.793265858	0.034799208

MYBL1	494.2304041	1707.424776	1.788441855	$3.06 \mathrm{E}-12$
MDFI	119.1225503	412.0016532	1.78722436	1.74E-15
ACP7	170.2021977	586.6094579	1.783413545	5.40E-15
TAS1R1	8.825383162	30.17237659	1.783357777	0.019725965
CYTH4	7.444804275	25.42855436	1.782316014	0.018032472
GPR3	135.3979337	466.1127077	1.78178468	$1.54 \mathrm{E}-07$
FOXL2NB	17.891835	60.81444002	1.781475052	0.000432922
ANKRD63	10.43351097	35.54300716	1.780269148	0.017375724
HPN	36.6917329	125.5052638	1.780250273	0.003278366
CYGB	5.289073137	18.0880543	1.777379393	0.047594327
CCDC151	37.42208403	128.1292749	1.776344711	$2.39 \mathrm{E}-07$
IL11	61.20548026	209.1354204	1.774029775	$1.74 \mathrm{E}-09$
CRYBA2	19.27730161	64.90043471	1.766308648	0.000281281
FCMR	27.41189776	93.14928039	1.761236424	0.000682955
PPP1R14C	237.2444969	803.9040792	1.758972528	$7.71 \mathrm{E}-08$
ITPKA	233.4993889	790.5928583	1.758192861	$1.06 \mathrm{E}-10$
CSPG5	220.6353853	746.0249693	1.755717458	$3.36 \mathrm{E}-08$
TRIM72	7.378348949	24.60668675	1.753638512	0.044020577
TMEM92	21.27991952	71.81663381	1.75215068	0.000158456
TMEM217	19.65143503	65.85318546	1.75092852	0.002529365
ZG16	34.13807556	114.8044817	1.750264747	0.000279951
TMEM191B	46.74018576	156.0407829	1.742886019	$1.69 \mathrm{E}-07$
NOCT	197.0148483	656.5797623	1.736447377	0.03178158
RFPL2	7.019684475	23.15248542	1.729722295	0.037115355
CAV1	462.2110496	1531.453691	1.72719695	$1.26 \mathrm{E}-10$
SLC12A4	1769.976953	5854.080311	1.725794628	$3.10 \mathrm{E}-23$
KCNN4	29.14300667	95.31112558	1.720586003	$1.64 \mathrm{E}-05$
GFI1	302.2579856	996.7006264	1.719820983	$2.24 \mathrm{E}-15$
ADPRH	50.59589853	167.0209769	1.719402653	$2.08 \mathrm{E}-09$
KCNG3	14.15322046	46.35911479	1.712068545	0.001474081
CHRD	75.21016703	245.585538	1.708676317	0.000204105
KCNA7	10.74298416	34.79493741	1.706623323	0.027354523
CABP1	40.66927754	132.9041695	1.704549074	0.000154823
PROC	30.89217958	101.0304661	1.704445336	$1.74 \mathrm{E}-05$
EGR2	34.57621755	112.9203014	1.701520802	6.19E-06
GNG13	19.29765829	62.58300344	1.698592164	0.000151979
HOXA1	33.71914102	109.6798945	1.697858408	$2.84 \mathrm{E}-06$
EGR3	75.18603078	244.1818075	1.696346302	0.000134011
SRL	9.032729501	29.15758058	1.69015671	0.012325865
C2orf50	25.07830655	80.64755256	1.689268718	0.000571992
CFAP73	12.26934179	39.35064209	1.680621771	0.022494222
INHBB	208.6110164	668.6698564	1.678235277	$1.69 \mathrm{E}-14$
APOC1	143.2478445	458.5719907	1.677861905	$2.44 \mathrm{E}-10$
ECHDC2	207.3081668	661.595352	1.674628574	$2.00 \mathrm{E}-05$
TMEM229B	56.30145944	178.6751352	1.664282772	4.25E-07
EXTL1	15.57989799	48.97223699	1.662995809	0.006116719
UPK3B	146.9874484	464.7339425	1.662526423	8.45E-09
CAMK2B	27.03467171	85.11624772	1.654515858	0.001354226
CCRL2	8.135093719	25.40507233	1.651118406	0.026573927
TMEM130	13.82648322	43.55306419	1.650636862	0.005457847
RDH5	64.14484158	200.0555135	1.646958632	$5.76 \mathrm{E}-07$
PLPPR3	31.31844282	97.84388861	1.646405072	0.004919505
INKA1	15.1221993	47.56626692	1.643487124	0.001090007
BRSK1	244.7571067	764.2132448	1.643096956	3.97E-09
CYR61	1434.756686	4478.695597	1.642168863	2.37E-05
SYT13	6.975380924	21.79235443	1.641583778	0.04866098
ACHE	58.55378384	181.2251103	1.63495329	3.22E-05
PRAME	24.2415867	75.19314515	1.633056721	0.001982472
FAM122C	228.5409925	706.5920718	1.629135036	4.43E-20
PRRT4	72.75374881	224.6170098	1.626713298	$1.21 \mathrm{E}-08$
VGLL3	136.9003797	422.0485445	1.626303259	$1.71 \mathrm{E}-05$

FOS	253.2775257	781.1933093	1.623210585	$3.36 \mathrm{E}-08$
LYL1	57.59522633	177.0146215	1.620673826	$4.79 \mathrm{E}-08$
RGCC	18.88117051	57.7668193	1.620606187	0.001090007
GJB4	10.30743724	31.95266945	1.617783942	0.016041767
BLOC1S1-RDH5	47.78310851	146.4744569	1.617461911	$1.80 \mathrm{E}-06$
PLK2	323.1649093	991.0090712	1.616619988	0.035515998
LZTS1	19.56592056	60.31162627	1.615095633	0.001209261
ADAMTSL4	169.897304	519.9063871	1.613044869	$1.46 \mathrm{E}-06$
ZMYND15	177.843927	543.9698736	1.611772899	$6.82 \mathrm{E}-12$
KLHL30	24.72078552	75.04665126	1.609495047	0.000189568
S1PR5	81.09488555	247.8723768	1.609253755	$6.25 \mathrm{E}-06$
SCIN	71.80692175	219.036626	1.608895264	0.000371248
C7orf61	13.13310114	39.73949341	1.605553241	0.013013735
P2RY2	54.88341393	167.0483598	1.603260136	$6.21 \mathrm{E}-08$
ZNF878	39.75437771	120.2590278	1.602043022	0.000672444
CDKN2A	25.85834653	78.05444153	1.601649273	0.000344875
DAND5	15.82600849	48.36833838	1.601277238	0.002582088
LRRN4	84.66132771	257.0389325	1.600143163	$5.34 \mathrm{E}-08$
TNFAIP8L3	49.54205688	150.0899508	1.597167593	$3.35 \mathrm{E}-08$
PDE4A	43.0416387	130.0987872	1.595876689	$6.04 \mathrm{E}-05$
RTBDN	23.48484194	70.95338073	1.594727163	0.000904446
CATSPER1	76.95395465	232.9233532	1.5937864	$9.51 \mathrm{E}-10$
TPH1	20.92320424	63.03559729	1.588091178	0.002687049
KCND1	67.96488283	204.2467357	1.587635087	$2.44 \mathrm{E}-06$
CCM2L	12.73697004	38.49813571	1.586942536	0.0043254
FOXJ1	11.72059502	35.03571667	1.586935486	0.037649489
OASL	34.5915324	104.219098	1.584767905	0.0001499
ESCO2	872.3207325	2616.14803	1.584202667	2.67E-09
CLSPN	1321.136883	3958.068331	1.582741468	8.26E-08
CCDC173	11.24937657	33.91191133	1.58251414	0.022609541
CSPG4	31.55527543	94.32874195	1.582163644	0.010077388
KIF1A	67.70051315	202.6496963	1.579111605	0.000154823
SEMA7A	93.53540458	279.2102714	1.575569968	$3.24 \mathrm{E}-05$
ATP12A	7.320525646	21.86986132	1.574642079	0.040908663
OAS3	2835.342574	8445.928214	1.574515458	$2.94 \mathrm{E}-11$
ARC	23.36121497	68.97146728	1.5724755	0.004003844
AMIGO2	12.01100907	35.85324976	1.568473457	0.010279557
WNT9A	44.60840149	131.9732232	1.568171905	0.002353645
TCEA2	28.78644548	85.46507671	1.561321734	0.005551179
RRAD	16.16626548	47.94202565	1.558238196	0.003961994
ACTA2	99.9608953	294.6286974	1.556087145	$8.44 \mathrm{E}-06$
TMEM191C	62.64013816	183.3031023	1.552686759	$5.08 \mathrm{E}-08$
APOBEC3B	1458.827921	4278.456853	1.551939445	$2.96 \mathrm{E}-05$
SYT11	14.01721717	40.84958068	1.55124628	0.005375882
COPZ2	137.8142902	399.3642245	1.533654064	8.60E-14
STMND1	23.73649183	68.69375615	1.531325	0.000997242
CPA5	19.73629784	56.96889046	1.529951442	0.003020994
LYNX1	41.10108017	118.5525132	1.529905004	0.000145986
E2F2	970.0495528	2790.433629	1.52405994	$6.40 \mathrm{E}-12$
STYK1	246.5487765	709.4319939	1.523149139	3.54E-15
LPAR6	13.90336567	39.53394877	1.517552671	0.012304068
KIF17	45.30747705	129.2353618	1.515795135	0.000396325
FOXL1	39.89656625	114.0942307	1.507796674	0.001336468
CXCR6	35.93758319	102.1774621	1.50769923	0.000245151
CYP26A1	19.45760845	54.87981409	1.506940479	0.001586423
AQP2	14.95720731	42.30565156	1.506311716	0.042996152
KCP	126.2865677	358.2347822	1.504868092	8.42E-05
RGS14	21.91727339	62.42418468	1.50465324	0.013733836
PLEKHD1	59.41135214	167.9231273	1.503691006	3.49E-07
PDCD1	58.78213272	167.0925248	1.502960938	$1.28 \mathrm{E}-06$
MAFA	16.91747086	48.37908508	1.502472726	0.010642271

FFAR4	15.06617109	42.63456532	1.501207552	0.007279345
DHRS3	68.80064282	193.7202605	1.49857556	0.000418239
FAM57B	141.4597534	399.3322757	1.498185003	3.24E-05
E2F8	1035.176739	2923.53296	1.497730568	1.23E-12
TP53INP2	702.5896044	1982.647062	1.496141559	$6.49 \mathrm{E}-18$
HIVEP3	51.47821946	145.4288267	1.495486271	0.000219811
HPDL	12.68468613	35.56313741	1.493247958	0.026503118
KIAA1324	24.46799219	68.72058995	1.492114222	0.020033811
STRIP2	373.8670225	1049.802689	1.488595243	$3.12 \mathrm{E}-12$
PTX4	10.91286387	30.82302422	1.488213113	0.025312357
TM4SF5	20.22607787	56.84317545	1.486708958	0.015265672
GAB3	12.66253436	35.18637279	1.486531078	0.039069411
ADAMTSL2	56.56109549	157.4999142	1.483675499	$6.94 \mathrm{E}-05$
ZNF648	10.34001614	28.6582377	1.475795894	0.049731706
EFCAB5	14.35747417	39.91564334	1.473955508	0.011751978
COL6A1	301.6903807	837.1088577	1.472138896	$8.76 \mathrm{E}-05$
AC007906.2	11.14415709	30.83934949	1.46561152	0.020425553
NOTCH4	28.04127127	77.37707919	1.464698453	0.000450217
NKX3-1	243.3632989	671.4913777	1.463744926	$2.10 \mathrm{E}-05$
CYP46A1	25.75816887	71.01590235	1.463111968	0.000269051
TRIM46	23.63990436	65.10911611	1.462357734	0.007906549
KLK14	26.75907495	73.8952976	1.461395488	0.015253168
PRADC1	188.6900158	518.3182711	1.456216827	$3.44 \mathrm{E}-08$
CCND3	1026.941841	2815.070372	1.454466177	3.35E-08
SLC35G6	36.52998764	99.53087884	1.453195672	0.00022787
ETNK2	77.45595689	212.2043229	1.45318824	$2.70 \mathrm{E}-06$
LMCD1	197.8099007	541.9321652	1.452724923	$1.70 \mathrm{E}-10$
SHBG	31.39418183	85.24734588	1.450161536	0.001367386
PDIA2	19.96270333	54.21482981	1.447759001	0.026580564
ALOX15	73.51717641	200.3178162	1.446551647	0.005974837
SCUBE3	81.43254748	220.962496	1.445074101	$1.60 \mathrm{E}-07$
PEA15	1041.262032	2834.902454	1.444858844	3.65E-06
SIX1	28.21099689	76.58896396	1.444684686	0.000393199
RAET1G	15.40952071	42.32568587	1.443989207	0.009026068
SLC2A14	40.32707135	109.411686	1.441540777	0.00276388
SERTAD4	286.8962045	775.4951636	1.434937012	$6.90 \mathrm{E}-07$
CD37	154.9340656	419.3557789	1.43461958	$1.48 \mathrm{E}-06$
PADI1	25.40993152	68.36977233	1.434067294	0.002693699
SAMD9L	55.68072375	150.1083374	1.433120358	0.020972626
DUSP5	274.353506	740.4653863	1.431067401	0.000774851
VILL	240.530158	648.3451208	1.429431616	0.000317521
C1R	221.0048262	593.6944258	1.425490028	0.000212796
CKLF-CMTM1	11.72059502	31.26913309	1.420523368	0.04346043
EFNA2	30.76610586	82.67154286	1.419893773	0.001147057
LETM2	66.84897602	179.4188704	1.419391137	$5.00 \mathrm{E}-07$
SBK3	40.00847436	106.4626124	1.41753533	0.000564009
UCP2	249.0957452	665.9006682	1.41685242	3.22E-08
EGR4	37.55629222	100.4367615	1.41669264	0.000435631
PTGER2	21.24554552	57.11595664	1.412587878	0.013130859
PPP1R18	775.0373103	2063.42477	1.412404356	1.17E-19
LOXL4	17.01944362	45.0258176	1.411040628	0.015183982
HPCAL4	45.6034247	121.849314	1.409234725	0.006385577
MSLN	175.6726081	465.412387	1.406603516	0.004248524
MMEL1	53.62891457	141.7196498	1.403729399	0.044382587
HLA-DQB1	14.67003999	39.09600253	1.403582298	0.017026874
SLC22A4	68.79720672	181.6174556	1.401166356	1.63E-06
GBP3	543.3193592	1432.806668	1.399786868	$4.76 \mathrm{E}-11$
ZNF491	39.98941522	104.9795886	1.39874613	$4.86 \mathrm{E}-05$
CHST6	26.4108376	69.47244153	1.397583493	0.025562031
RAET1L	79.2795655	209.1536812	1.39729655	0.000343972
TNFRSF10C	49.90431155	131.0115884	1.396249821	$3.48 \mathrm{E}-05$

NID2	9.404913728	24.64996492	1.394136267	0.04722232
MYBL2	4042.672068	10608.30146	1.391675032	8.30E-06
CDKN2C	909.6440301	2386.792005	1.391592045	$1.61 \mathrm{E}-10$
DLK2	133.9978391	350.468174	1.390155499	5.15E-07
TUBB6	4170.57777	10911.33542	1.387362784	8.33E-07
FAM19A3	13.36080416	35.1227262	1.387029331	0.037133137
PTN	17.43788059	45.59773742	1.384119563	0.01723941
MOGAT3	42.9548267	111.9742542	1.383779092	0.009738525
ARHGEF19	435.825509	1135.962116	1.38160171	$6.95 \mathrm{E}-06$
TNNI2	38.8246606	100.8462263	1.381279871	0.041250849
ADGRF4	138.3594526	360.6628935	1.38063551	$1.56 \mathrm{E}-06$
PRSS35	68.83810945	178.403694	1.378282192	0.006837455
KREMEN2	451.5981974	1174.421466	1.377222946	$1.88 \mathrm{E}-06$
ISG15	1705.298046	4428.612548	1.376511529	$1.77 \mathrm{E}-13$
KISS1R	383.6311156	994.7564159	1.376186486	$2.50 \mathrm{E}-11$
NR113	14.17716733	36.47459861	1.376070518	0.021616938
PALM3	133.55007	347.0070094	1.375950644	$6.89 \mathrm{E}-05$
C5AR1	91.76245047	237.4936095	1.374358724	0.000376594
TNFRSF1B	104.0754442	269.4766102	1.374288574	$2.37 \mathrm{E}-05$
AKAP5	372.3444034	965.2110062	1.373768648	8.89E-07
RGS9	301.1854578	780.4372455	1.373580261	8.17E-09
REEP1	293.2329283	760.427768	1.373506656	$6.84 \mathrm{E}-10$
FAM83A	38.99274521	101.0505963	1.371981016	0.000317521
C17orf107	15.42857986	39.71019464	1.366841576	0.02574311
TENT5B	321.6453828	830.2913039	1.366759564	$1.14 \mathrm{E}-05$
ESAM	483.0051343	1244.588726	1.365021672	$1.18 \mathrm{E}-13$
DNAJC5G	32.38890264	83.0046952	1.364497316	0.031059186
FNDC5	92.30534387	237.2164048	1.361296674	0.000503695
CCDC88B	224.5888464	576.9523347	1.360591071	0.001713027
SYNC	32.96907908	84.63961915	1.357062879	0.004012098
GJB3	541.8863969	1388.501477	1.35698503	0.000419634
OTULINL	67.28680981	172.1381657	1.353661362	0.000110438
TP53INP1	113.5393246	289.7809913	1.3516229	0.000858304
SUSD2	129.3060582	329.7302679	1.351010224	0.006921175
GALNT5	297.9624956	759.9884484	1.350515531	$3.42 \mathrm{E}-07$
MICB	546.3951571	1389.258994	1.345741367	2.58E-06
C16orf89	15.02561183	38.31942487	1.344756976	0.039921116
COL16A1	296.4445087	751.177336	1.343072052	$6.80 \mathrm{E}-05$
GPR153	219.488558	554.2494879	1.337720051	7.83E-10
AC106886.5	19.5579402	49.28573542	1.334527878	0.010052803
PADI2	76.46287709	192.4764378	1.331971442	7.87E-05
HAP1	69.03583442	173.3405069	1.331156945	0.00059248
DLX2	65.08074396	163.2210478	1.327437315	$2.30 \mathrm{E}-05$
CPNE9	16.59252872	41.81482858	1.327386899	0.021715519
RUFY4	15.5761537	38.85163333	1.32588129	0.046025887
LCAT	310.5574723	777.1917201	1.324476563	$1.27 \mathrm{E}-06$
WDR62	1063.910629	2663.051325	1.323268883	1.53E-06
DRAXIN	21.73207882	54.38269801	1.321696167	0.027907797
SSTR2	26.98368533	67.29314608	1.321590914	0.005303698
TMEM121	97.85974074	244.9878366	1.320963276	4.82E-05
GPRIN1	393.7117865	982.4202801	1.318066293	$3.28 \mathrm{E}-08$
MUC1	124.1796844	309.8114789	1.318006825	2.52E-09
AP3B2	61.22518528	152.8429096	1.317237179	$4.26 \mathrm{E}-05$
CALML6	86.40432115	214.7969079	1.313977744	0.000153575
03-Mar	39.36133924	98.07837477	1.312374667	0.001956453
AC093512.2	107.0887436	266.0290077	1.311930643	$3.66 \mathrm{E}-07$
LYPD5	295.532003	733.7500806	1.31149314	$4.96 \mathrm{E}-10$
CD274	66.56833743	164.9355864	1.309450786	4.83E-06
HMSD	92.73256696	230.2813427	1.308067568	5.17E-06
RELT	299.0461554	740.4231743	1.30642826	1.16E-09
DENND2C	228.2572202	565.0821093	1.305470351	1.93E-07

PLXNB3	165.7140304	408.6565056	1.302719841	0.001900898
BEST4	54.76207963	134.7988549	1.302374989	0.013752181
MYBPC2	59.01995467	144.749959	1.302129172	0.000366092
IFIT3	161.8260648	398.9251069	1.301912899	9.95E-07
CLCF1	266.7842864	657.4461662	1.300121833	$1.33 \mathrm{E}-05$
NFKB2	1264.186249	3110.265328	1.298854819	0.000935267
ASGR1	100.7179835	247.8654582	1.298583058	2.02E-05
MGLL	30.4178685	74.60693143	1.298505799	0.028625497
TMSB15B	20.58474234	50.51545963	1.298183757	0.005733091
CCDC153	62.53296948	153.3388579	1.294720187	0.003124132
SOCS1	52.5682302	128.4821008	1.294445189	0.00024266
SERTAD1	584.4159729	1433.401392	1.294223944	6.95E-06
SLC6A16	70.1199623	171.9722133	1.292679781	0.000108833
HYAL1	122.5147226	300.3977318	1.292492365	0.000928913
KIF24	807.0338088	1976.598579	1.291916151	$2.62 \mathrm{E}-12$
DIAPH3	1784.226018	4369.007105	1.291858504	0.000263866
CTSV	691.9487534	1693.577203	1.290732299	2.57E-05
FAM167B	37.28982504	91.00524959	1.289029678	0.002563907
USP11	2494.260264	6088.621179	1.287407147	2.23E-13
IRAK2	104.0299914	254.0269499	1.287274436	$2.68 \mathrm{E}-05$
HIST1H2AG	72.12192854	176.3500176	1.28650993	$1.62 \mathrm{E}-05$
LPAR5	100.1381095	244.6644979	1.285543018	3.53E-05
WNT4	40.52464223	98.50332436	1.283226241	0.000961824
LOXL3	437.7805414	1065.606263	1.283022825	2.89E-08
KRT71	49.25164283	119.866686	1.281662248	0.001111677
NACAD	26.98353124	65.18336716	1.279458138	0.020180508
KLHDC7A	276.2444636	665.2023812	1.269539953	$1.56 \mathrm{E}-08$
TUBA1A	1738.470865	4190.775665	1.268971432	$1.00 \mathrm{E}-07$
ZNF540	32.56855782	77.97865505	1.268404303	0.030494913
TRPV3	344.4246731	829.1874507	1.267629058	$4.05 \mathrm{E}-08$
COCH	327.9700969	789.503898	1.26710832	$1.53 \mathrm{E}-08$
RNF227	569.3334198	1368.44747	1.265900064	0.000282294
ERFE	351.9267974	846.3626773	1.265016204	$1.29 \mathrm{E}-08$
MMRN2	74.2936262	178.7509679	1.26441045	0.001131855
GPR37L1	38.86911824	92.91898651	1.263967211	0.000838594
ZNF718	373.6857379	897.3863766	1.263858049	$3.36 \mathrm{E}-13$
ADSSL1	257.9967191	619.9098711	1.263524196	$2.74 \mathrm{E}-06$
C1QL4	58.38699096	140.2409837	1.260729738	0.012013483
OAS1	370.5247163	887.7495061	1.260469069	0.000984338
COL17A1	60.50167107	144.9955526	1.258709586	0.000828577
FANCI	4212.554557	10074.33158	1.257778609	$1.26 \mathrm{E}-08$
SYNE3	328.7986707	785.5865519	1.256307008	$6.11 \mathrm{E}-09$
CD24	432.9903001	1032.97787	1.256111537	7.50E-08
NECTIN1	364.7645909	870.8970414	1.25546916	$1.21 \mathrm{E}-07$
ROPN1B	27.25244517	64.83678812	1.254327575	0.026313625
ILDR2	367.407821	876.0181578	1.253735096	8.80E-13
SLPI	217.0714015	517.3166545	1.252438088	0.001936059
ZNF799	212.4351396	504.1768744	1.246176344	4.42E-06
APBB1	286.722924	677.5897201	1.241371874	$3.71 \mathrm{E}-10$
IGFBP6	287.9511717	681.2013005	1.240971804	0.000129092
WNK4	78.76389519	185.6647217	1.239066461	$1.12 \mathrm{E}-05$
FAM171A2	429.8989163	1015.39843	1.239016937	$3.36 \mathrm{E}-07$
EMP3	102.3153465	241.643089	1.23755586	$5.61 \mathrm{E}-05$
MCM8	1713.903312	4039.813477	1.236815889	$6.98 \mathrm{E}-05$
GVQW2	29.52218191	69.92472442	1.23617882	0.0082619
SLC44A4	47.20178284	111.3738496	1.235648997	0.006411402
SOX15	68.45271366	160.9266685	1.235286106	0.000157155
CCDC15	173.2609441	408.0157606	1.233492338	4.42E-07
MPIG6B	108.775703	255.9079277	1.2333278	0.001338738
AFAP1L2	139.5175538	327.0013565	1.231453518	$1.21 \mathrm{E}-07$
GOLGA8K	38.82301959	91.05470177	1.225419655	0.000616994

TMPRSS4	564.1595542	1318.566135	1.224984724	0.006041986
EGR1	2244.373775	5247.018816	1.224955539	0.000904446
C21orf58	625.0621562	1460.542944	1.22399679	7.35E-07
EFHD1	467.7999026	1091.489434	1.222885258	$1.10 \mathrm{E}-10$
TMEM38A	561.8604268	1311.221798	1.22275884	3.64E-14
CD6	63.95849779	149.5046042	1.221965096	0.000208088
TUFT1	979.3510359	2280.670384	1.219762799	$1.43 \mathrm{E}-05$
HUNK	593.8625	1382.58291	1.219650304	$5.88 \mathrm{E}-09$
CDC25A	1066.13185	2481.238946	1.218346435	$6.89 \mathrm{E}-05$
AOC1	54.62428125	126.8017713	1.216687825	0.027819891
HIST1H4H	36.7749547	85.08852712	1.214106023	0.001511717
STXBP5L	17.91039657	41.44510162	1.210560968	0.038991483
CCDC80	77.17336911	177.96857	1.209349595	7.89E-05
TCHH	180.9528656	416.8890476	1.206707314	0.00014237
CCDC150	426.7058134	982.651471	1.203089142	$3.32 \mathrm{E}-08$
GSDMA	113.2257695	260.185964	1.200047671	0.000313719
RIMBP3	53.48297593	122.4435909	1.199025097	0.002605121
RASGRP4	43.2007831	98.73469692	1.198207806	0.013147395
SHOX2	345.5467299	793.5203265	1.198015371	$1.11 \mathrm{E}-10$
GPR162	82.91540152	190.6827183	1.197737565	0.004485035
BRIP1	1127.431364	2586.090841	1.197557708	$1.19 \mathrm{E}-06$
SAMD9	313.6978232	718.7954853	1.196541762	4.95E-06
MPP2	546.9753452	1253.669199	1.195934494	3.03E-05
FAM111B	1914.868254	4384.142848	1.195082495	$3.20 \mathrm{E}-07$
VDR	679.7947379	1555.765543	1.194594568	7.02E-09
CEP295NL	36.78358673	84.31530122	1.194551822	0.01065666
CBLN3	55.25120799	126.0424253	1.194014872	0.00092986
RAD51AP1	1370.147568	3132.951657	1.192935653	3.52E-08
IFI6	1253.652926	2862.709139	1.191292678	0.004216422
GINS4	763.0825618	1741.82767	1.189971547	0.000160775
SCARF1	28.64849301	65.17879448	1.188814876	0.006168795
SEMA3G	116.4056961	265.329242	1.185758588	$2.10 \mathrm{E}-05$
ZNF443	350.0295588	795.1227547	1.184616861	$1.97 \mathrm{E}-05$
ATAD5	1180.463306	2682.293165	1.183829112	$1.20 \mathrm{E}-05$
PLEKHO2	247.1900698	560.7409028	1.183566887	3.62E-08
CYP26B1	78.47397292	177.2053462	1.178761968	0.000230775
ITGA7	473.1297007	1069.793609	1.176944019	7.95E-05
PIDD1	1401.963207	3169.499898	1.176716358	0.000261727
RBPMS2	104.5388248	236.9868717	1.175546843	0.000353895
NAT1	84.96037957	191.5594443	1.174456762	7.87E-06
CLU	3970.47347	8956.803715	1.173544604	0.00017054
ZCCHC12	29.26124834	66.47764791	1.173330789	0.021715519
CDC6	3661.180441	8240.42873	1.170300976	$2.15 \mathrm{E}-06$
PLAT	589.41904	1326.009883	1.168803594	$6.68 \mathrm{E}-05$
CCDC9B	280.9282758	629.0463371	1.164111335	$1.90 \mathrm{E}-05$
CENPU	1914.112523	4285.957479	1.162816032	2.95E-07
MSX1	882.0024859	1973.718824	1.162531635	0.003482174
COX6B2	30.06963115	67.28330933	1.161570328	0.005508276
PRRT2	175.7841727	392.5600824	1.159978133	0.017026874
TCF19	2181.226555	4871.789156	1.15921766	3.91E-12
PALM	248.5631601	554.7187019	1.158294574	0.000447865
AK1	138.3058653	308.7464862	1.158033721	5.67E-07
C2CD3	1185.404953	2645.077345	1.157935838	$4.70 \mathrm{E}-07$
CELF5	33.25395953	73.59996394	1.156717481	0.010928101
MAP7D1	1906.676719	4251.238036	1.156631776	0.000175989
RRM2	7313.34302	16286.70784	1.155050295	$3.75 \mathrm{E}-08$
FOXF1	30.01360295	66.40617279	1.154345792	0.014753513
CSRP2	375.6057683	835.5840703	1.152463484	1.35E-06
IQGAP3	3177.387857	7060.364706	1.1517951	4.07E-08
MELTF	1232.596568	2737.984338	1.151320207	$3.58 \mathrm{E}-05$
CDK2	1746.100573	3878.247975	1.151043941	$1.38 \mathrm{E}-06$

C17orf53	371.0809227	824.745172	1.151042255	$2.66 \mathrm{E}-05$
SDCBP2	63.68893798	140.9921867	1.151012121	0.001092137
NTN1	561.6339803	1247.834934	1.150799265	6.63E-09
LY6G5C	82.88527518	183.6049904	1.150472671	0.001144708
KIAA0513	416.6860174	924.284743	1.149901554	$1.67 \mathrm{E}-10$
EVL	81.82394494	181.7021956	1.14958219	0.005437043
NOTCH2NLA	39.03216103	86.63866834	1.149022444	0.001791044
CD74	160.8904706	356.4735373	1.147774586	$6.19 \mathrm{E}-08$
MYEOV	199.8011022	442.243248	1.145585051	0.000451296
RCBTB2	141.1271391	311.7718458	1.145530885	1.85E-05
POLA2	387.8962725	858.9729577	1.145406977	$1.06 \mathrm{E}-06$
SH3TC2	112.6581471	248.2334612	1.141454789	0.001966944
CLGN	55.85777807	122.986116	1.139015365	0.00162418
CDCA5	2607.773788	5741.407144	1.138419947	1.05E-09
CLDN5	234.3724378	514.4417324	1.132696857	0.000159957
RASGRP2	136.8200669	299.7966092	1.13000511	0.003642374
CAVIN1	5100.640559	11148.34567	1.128071388	$2.08 \mathrm{E}-05$
BICDL1	523.804212	1144.452662	1.127071253	$1.60 \mathrm{E}-09$
VTN	33.96949338	74.19031675	1.127066997	0.025383708
DDB2	822.4938183	1795.460754	1.125559154	$1.54 \mathrm{E}-08$
TUBB3	56.15438317	122.2557347	1.125470138	0.002958624
ATL1	100.2387847	217.9548248	1.122460863	$1.65 \mathrm{E}-05$
TAGLN	300.3037648	652.356995	1.120076374	0.014753513
CFAP44	361.186299	784.460699	1.119884868	0.001178784
CORO2B	34.97609294	76.00756464	1.118998974	0.028019696
GRK4	214.4284854	465.0913341	1.118434764	$2.10 \mathrm{E}-07$
HRH1	198.6801593	430.9619995	1.117734285	0.00065964
PBX3	290.3106885	629.6422581	1.117713622	$1.74 \mathrm{E}-08$
RAB15	1026.884017	2226.534823	1.116852405	$1.80 \mathrm{E}-12$
DIO3	26.15055568	56.23982599	1.112427263	0.03700619
GDPD5	427.0014998	922.8714613	1.112350023	0.000645922
KATNAL1	781.7329836	1689.598475	1.111690259	$3.58 \mathrm{E}-05$
DTL	1474.556321	3185.658496	1.110920024	$6.24 \mathrm{E}-06$
OVOL2	425.5917075	918.1941402	1.110137273	$3.34 \mathrm{E}-09$
UHRF1	4537.273545	9783.245042	1.108393952	$6.84 \mathrm{E}-07$
CBR3	67.04753624	144.5534638	1.108044376	0.000153575
ZNF45	245.1910421	527.5482156	1.107920954	$1.42 \mathrm{E}-05$
DGKA	600.7205638	1295.076566	1.107608527	0.000562163
C2orf92	137.6385687	295.4869674	1.106439579	0.001042171
ASF1B	2483.501924	5342.429545	1.104902247	$1.40 \mathrm{E}-07$
DCLK2	77.39015323	166.0538131	1.104708993	0.000379051
KALRN	206.4775911	443.9962076	1.102965915	$3.16 \mathrm{E}-05$
NRGN	721.4357261	1549.966828	1.102383979	5.02E-06
NPTXR	321.6338297	690.3149596	1.100549432	0.000635594
CDH24	2380.837349	5104.626996	1.1003758	3.57E-14
CMTM1	99.27958135	212.3174448	1.09953849	3.48E-05
CEP126	56.33208915	120.5772944	1.099367218	0.004511003
MFNG	64.91445444	138.9646296	1.098514047	0.005160046
EXO1	1213.540188	2598.029255	1.097821744	2.93E-06
SPATA33	334.4784954	715.4760327	1.097109169	$3.29 \mathrm{E}-09$
FZD9	28.74328537	61.77633614	1.096280088	0.019330139
TFCP2L1	528.1780423	1129.680714	1.096230149	0.000234541
NCAPH2	1825.610294	3899.788777	1.094776253	4.66E-09
ORC6	1236.560092	2638.113683	1.092873288	0.000992745
DLL4	154.7434857	330.2830033	1.092247056	0.000112654
MAP3K14	725.4889083	1545.945017	1.091856401	0.000364357
PLEKHH2	129.522025	276.3230118	1.091482951	0.013864463
PLPPR2	749.1749171	1595.663244	1.090994876	$1.93 \mathrm{E}-11$
PMEL	144.6758196	308.1463035	1.089174208	0.001743815
GPR68	65.16381167	138.88298	1.087441828	0.000579194
MYO1A	86.71883617	184.5867589	1.086508717	0.006073258

HLA-B	2736.387687	5803.493874	1.084882237	5.71E-09
ZNF385A	504.8735188	1070.604904	1.083122949	1.33E-06
STIL	2329.254683	4935.027244	1.083005681	$1.04 \mathrm{E}-06$
GSTT2B	144.5075751	305.9021602	1.082991234	$3.38 \mathrm{E}-05$
RBP7	37.42712586	79.59541423	1.082347924	0.011539359
AGFG2	577.3301649	1222.867556	1.082158863	$9.20 \mathrm{E}-06$
TMEM200B	301.6590935	638.1248011	1.081285262	$1.31 \mathrm{E}-07$
TPM1	2563.42671	5420.126142	1.080391419	0.000176211
E2F7	1395.435182	2949.796105	1.07968498	$3.94 \mathrm{E}-08$
AC233723.1	24.38801711	51.31865607	1.077929603	0.039534706
TFEB	123.2292671	260.441414	1.077797152	8.82E-06
SPC25	552.9553183	1167.92963	1.077769004	0.000185343
CCNE1	550.1777549	1160.500079	1.076769223	5.47E-08
MRC2	1091.85726	2303.022248	1.076582671	0.001265348
ARID5A	148.7807355	314.2514476	1.07641442	4.29E-05
FKBP5	1589.286226	3351.744958	1.07625726	0.000967697
TNFAIP3	118.0972351	248.3671134	1.075646155	0.02067205
HOXC9	22.82533629	47.88577398	1.074688994	0.028753951
TRAIP	574.3101827	1208.639179	1.072582757	8.50E-07
RBM24	133.1400699	280.3939415	1.071869389	0.023490473
ANKRD33B	175.3021721	367.9479026	1.068844813	0.000206877
MCM10	1476.590232	3097.761025	1.068700539	0.000214616
CCDC62	55.22172173	115.8856043	1.068527206	0.00106608
PRSS36	54.62557878	114.57926	1.067793185	0.002861728
DONSON	1328.570193	2785.020683	1.067551728	$1.29 \mathrm{E}-05$
RHBDL2	60.71699777	127.4153148	1.067082687	0.00149835
CMPK2	101.9055358	214.1194033	1.066901305	0.002115085
IL27RA	747.1360774	1564.721936	1.066183249	$4.49 \mathrm{E}-05$
SCEL	225.0213359	470.4014813	1.066091778	0.004524509
HPSE	935.1888818	1958.60883	1.066022288	2.73E-05
HEG1	756.4404102	1582.544587	1.065118622	$2.36 \mathrm{E}-05$
HIST1H3H	62.38604151	130.7659982	1.064440558	0.0020571
TGM1	289.6819961	604.7097872	1.063924957	0.000167136
LHFPL6	32.11265422	66.66586139	1.063851428	0.031201014
ZMYND10	50.04390504	104.4058524	1.063406019	0.038479893
HIST1H2BD	173.5940676	362.0004985	1.062732491	0.000700375
CARMIL2	61.6011138	128.9762027	1.062443622	0.000979114
ZGLP1	46.87798414	97.30560208	1.0609525	0.008910647
HIST1H4I	101.0274567	210.7325026	1.060793782	$6.88 \mathrm{E}-05$
C18orf54	416.9200366	870.2881863	1.060766533	0.000264509
PRRT1	58.27753541	121.306908	1.060641112	0.001167692
RHOD	1018.283967	2122.185095	1.059465257	0.000307833
TNFRSF11A	278.1902123	579.0720591	1.056286642	$2.32 \mathrm{E}-07$
CENPO	966.8902911	2010.19637	1.055468752	$1.89 \mathrm{E}-07$
APOL2	826.6036746	1717.458937	1.055302914	$2.10 \mathrm{E}-10$
IER5	1035.123797	2150.27597	1.05463392	7.64E-12
CLIC5	79.97363451	165.3724804	1.054248578	0.024206083
SYNJ1	461.8278392	958.5197906	1.053923386	$2.30 \mathrm{E}-06$
AKAP12	1238.708134	2571.231807	1.05334151	0.007320222
WDR53	294.2955618	610.4367608	1.053187103	0.0002447
LMF2	2768.92493	5738.040364	1.05112144	8.90E-13
TMEM270	65.46774547	136.1062282	1.049361943	0.007932635
COL11A2	297.6376004	614.9456912	1.047116854	0.016137556
GLIPR2	248.1845955	513.3794891	1.04680717	$6.18 \mathrm{E}-07$
SOCS3	71.44306136	146.4846046	1.043520831	0.020176598
RUSC1	1567.816234	3226.677791	1.041003804	$5.00 \mathrm{E}-10$
RAD51C	1150.586352	2367.235279	1.040565181	8.04E-06
MALL	77.94019753	160.9264304	1.040000066	0.000874987
IL22RA1	252.6718203	519.5957075	1.039660381	2.47E-06
TMEM79	308.2241777	633.1346708	1.038428972	8.37E-07
SGK1	62.80382682	128.7422657	1.036332229	0.03288868

TMCC2	153.4468098	314.0086566	1.03422633	0.000133931
BIRC3	209.5351999	428.9843478	1.034199335	0.007001157
FGD2	72.09863333	148.2546307	1.033888283	0.009411109
SRRM3	207.1039073	422.5583867	1.029411599	7.97E-05
TAP2	636.604181	1299.29587	1.029018276	0.000429742
CCDC69	690.7582626	1409.275314	1.028637184	$3.97 \mathrm{E}-05$
B2M	3118.917372	6358.647512	1.027659466	$1.38 \mathrm{E}-12$
HERC5	548.2220356	1117.972445	1.027641004	2.07E-07
VWA5B2	365.1144514	743.7355627	1.02539601	$1.44 \mathrm{E}-06$
C16orf86	110.1222514	224.084325	1.025117013	0.021807283
RFWD3	3711.523131	7551.465422	1.02465488	4.63E-05
MAP3K6	930.4583778	1891.138903	1.0227826	$6.38 \mathrm{E}-06$
GAL3ST4	204.6815196	416.2530083	1.022609716	0.001331487
DSCC1	780.4122902	1582.816448	1.019797407	0.002604334
WDR76	1522.651871	3087.748551	1.019718393	$3.58 \mathrm{E}-05$
BRICD5	289.1007893	586.8229802	1.019456841	$2.78 \mathrm{E}-06$
SMTNL1	44.14467163	89.49838654	1.01921236	0.020095199
TK1	4233.282715	8573.847279	1.018008559	$1.66 \mathrm{E}-05$
ULBP2	396.8356729	803.0049429	1.016908021	0.00063137
LIMK2	1651.52084	3341.858488	1.016802348	$1.27 \mathrm{E}-11$
TMPRSS3	640.26125	1295.533034	1.016479755	0.001187704
BTG2	397.4202747	804.2283646	1.016411877	8.34E-06
CSRNP1	809.7348506	1637.73417	1.01622942	0.001068441
ICA1L	310.0753234	626.7384709	1.016177216	$4.00 \mathrm{E}-06$
FHDC1	425.6210044	860.9100344	1.01575675	$7.70 \mathrm{E}-09$
CIP2A	1320.367506	2668.053121	1.014721098	0.0025651
ADM	123.7931746	249.6505816	1.014077367	$2.61 \mathrm{E}-05$
KIF3C	541.3889916	1094.130756	1.01377057	$2.40 \mathrm{E}-05$
KLK7	1057.783473	2136.72831	1.013663008	0.002232396
UBXN11	897.9390402	1812.038686	1.012626277	$1.66 \mathrm{E}-10$
C12orf75	1674.451511	3375.742277	1.011306176	0.002787929
TNS1	246.0375259	495.6237269	1.010407552	0.001064814
CHAD	47.75721244	96.04976549	1.010362906	0.035788879
ITPRIP	295.7104736	595.8824088	1.010159289	0.00723688
PTGES3L	28.99119097	58.59005005	1.00857182	0.048610825
DDIAS	463.4748268	931.968764	1.007309396	0.020457846
TCAP	31.6064159	63.14350479	1.005900931	0.028911984
CTXN1	514.0500599	1031.978486	1.004595482	$2.15 \mathrm{E}-05$
IL17RB	650.2906553	1304.876312	1.004409923	$2.01 \mathrm{E}-05$
RND1	72.4032188	145.5259875	1.004101432	0.001374907
SIPA1	594.7149617	1193.471698	1.004012119	9.67E-07
TICRR	1450.415113	2907.770332	1.003019704	0.000286638
C19orf57	411.731857	823.5246001	1.001040389	0.000188726
SMPD1	803.6542138	1607.117234	0.999975424	$6.25 \mathrm{E}-07$
FSTL3	504.4846618	1006.702146	0.998128943	0.000178517
IRF1	447.9401377	892.4742559	0.995776336	$1.02 \mathrm{E}-06$
XRCC2	1292.799711	2578.223952	0.995625892	$3.16 \mathrm{E}-05$
IQCC	302.2423741	601.9398616	0.994777594	8.33E-07
TUBG1	1102.171353	2196.072681	0.994165124	0.004769398
IFI27L2	299.1841137	596.5257714	0.993962332	$2.00 \mathrm{E}-05$
SERPINB5	142.0928654	282.749632	0.992200079	0.00298979
INTS7	1165.926022	2317.724519	0.991307052	0.000409491
FAM69B	93.22788638	185.2114064	0.988795278	0.009602194
CHST13	35.8649426	70.94186631	0.988333233	0.018110803
STAT1	4670.750949	9266.358554	0.988256371	7.89E-09
GRHL3	820.6087667	1628.646128	0.988087811	$1.10 \mathrm{E}-06$
KLF10	1432.169394	2840.442326	0.98797531	0.000361261
AUNIP	536.4427705	1063.287919	0.986521062	0.002072214
RAET1E	55.94149744	110.4970703	0.986335698	0.003756375
SLC25A42	580.1382445	1149.734056	0.986025318	$3.94 \mathrm{E}-08$
SLC35E4	234.7886232	464.5594864	0.985772601	$2.24 \mathrm{E}-05$

PIGZ	278.1167833	550.1556255	0.984376573	0.01065666
TBX6	77.01471648	152.6226479	0.984077485	0.029953981
ENKD1	247.1812895	487.3989602	0.980205425	0.013935977
FOXM1	3327.951812	6565.597001	0.980167283	0.000334278
FEN1	2749.238976	5423.517511	0.979995955	$1.52 \mathrm{E}-05$
NEURL1	41.30842651	81.33242892	0.979145358	0.025593791
RFC2	1216.47398	2396.352529	0.977790544	8.26E-05
LAMB2	10920.9474	21505.24289	0.977614612	$4.69 \mathrm{E}-05$
NFKBIE	359.5070779	707.5224978	0.976864396	0.012565035
SKA3	1374.43653	2704.756764	0.97648363	0.000129905
CENPL	650.478244	1279.392672	0.97583295	0.001059884
CRY1	929.5118179	1827.166315	0.975113006	0.022725462
C2orf72	363.6891067	714.7895851	0.974863356	0.000265308
DUSP1	236.7952878	465.1689069	0.97468755	0.003675068
PRR29	39.18901856	76.77650921	0.972791818	0.036978834
MYORG	1528.329829	2997.916596	0.971790252	0.00011702
CAPG	678.15271	1330.413876	0.971432586	$9.28 \mathrm{E}-05$
HIST1H2BK	295.3771241	578.5319989	0.970343531	3.17E-05
IL32	1151.896506	2253.673506	0.968249022	0.016223488
SCML1	786.5901	1539.184217	0.96805392	8.32E-05
ACOT4	138.4721901	269.9350671	0.967450523	0.000565114
HAS3	177.0979412	346.2957721	0.966415805	0.000127531
CENPI	779.8197727	1522.566915	0.964454477	0.0001654
SCHIP1	31.53327775	61.59192763	0.963771561	0.032690227
HCN2	66.47728936	129.4367673	0.963214033	0.005943576
AC011043.1	314.2327126	612.105517	0.962438184	$3.44 \mathrm{E}-07$
FSD1	92.81059284	181.1119155	0.961720504	0.005596292
MFGE8	2765.202962	5384.012652	0.961270507	5.35E-06
LIG1	2816.305126	5470.693435	0.957705057	3.29E-06
RNASEH2A	64.06746157	124.2938962	0.95648413	0.004012098
EN1	38.27232363	73.92282278	0.956196937	0.018821119
RBMS1	130.0758193	252.0930596	0.953114351	0.000216526
MESP1	108.6558088	210.9536048	0.953047109	0.0077764
SSC5D	43.51400059	84.06054258	0.95229136	0.03488204
SPOCD1	334.6453352	646.9665764	0.951850121	0.020227233
SDC4	2530.87682	4889.228449	0.950156826	$3.21 \mathrm{E}-05$
FBXO5	1372.036981	2651.115915	0.950141044	0.000108007
BTNL9	387.9153785	748.5943994	0.948990144	$2.95 \mathrm{E}-06$
SFXN5	604.0399061	1166.296143	0.948521058	6.83E-08
TP73	1170.635303	2259.435446	0.94851697	1.03E-07
GAREM2	198.5145157	383.3486599	0.947535229	$9.80 \mathrm{E}-05$
ZWILCH	1206.910545	2327.143325	0.947046534	0.007560744
TMOD1	51.45477015	99.1364258	0.946390934	0.008130848
USP49	605.2395323	1165.77609	0.945777001	$4.66 \mathrm{E}-08$
ZNF433	49.01286103	94.29410277	0.944684297	0.013593566
MELK	3478.715626	6696.031323	0.944615575	0.000642736
FUZ	103.9462778	200.0422059	0.94388387	0.00621851
FAM111A	6606.143211	12705.04723	0.943567825	$1.89 \mathrm{E}-05$
ZNF850	231.7996025	445.2792421	0.943261244	8.93E-06
SLC2A6	348.4604976	670.1137341	0.942516552	0.000129996
EVA1A	56.66516574	108.9894395	0.942261458	0.025394295
BLM	1466.622162	2814.641952	0.940335488	7.72E-06
HELLS	3293.885629	6316.875541	0.939244137	1.25E-05
ELL2	404.0839014	774.3887357	0.939241937	0.003312365
IFRD1	2078.193623	3982.728201	0.93861641	0.004959691
TLE2	1323.73474	2533.407093	0.936518672	$3.04 \mathrm{E}-05$
KCNAB3	119.2764693	228.3865578	0.935592569	0.000758852
UACA	1282.029106	2451.605925	0.935086626	$2.91 \mathrm{E}-05$
ITGA10	53.59014461	102.1935723	0.933731935	0.010801744
ZWINT	4052.947205	7736.556742	0.932597621	$3.96 \mathrm{E}-08$
FAM126A	439.5774539	838.8030197	0.932278372	0.000748001

ZNF280A	56.26269528	107.3470247	0.931763972	0.005300486
PHLDA3	514.3409953	981.4329894	0.931584895	$1.39 \mathrm{E}-06$
CENPN	857.2793256	1634.66327	0.931026523	0.000511678
ZSCAN12	136.3130229	259.2997248	0.930524912	0.004790564
EEPD1	169.386978	323.3198933	0.928820492	0.000604291
GIPR	664.991354	1265.321211	0.928140701	0.006920916
NPL	108.0964866	205.8257652	0.927891793	0.000204105
PSMC3IP	408.545349	777.3494106	0.92703621	$4.78 \mathrm{E}-06$
HOXA4	32.58402676	61.88189775	0.926292799	0.048553992
PLAU	488.6975793	928.7626566	0.924975008	0.01933562
HES4	1436.200151	2726.017563	0.924564779	3.49E-07
CDR2L	1471.425159	2793.033466	0.924426677	0.000110735
ITGA1	102.2516757	193.7166209	0.922944048	0.001724157
SLC29A4	237.3163671	450.4186724	0.922851235	0.008910647
EME1	637.490424	1209.109267	0.922475013	0.004639464
RASD2	135.9387354	257.3800324	0.921482174	0.002516359
SPTB	1580.16961	2992.574582	0.921154546	$4.26 \mathrm{E}-05$
CIT	4044.365369	7657.101565	0.920751108	0.000281281
MASTL	1771.257481	3353.587946	0.92062326	0.0004953
NCAPH	1759.018219	3328.473733	0.919821556	0.003886243
POLD3	1407.84615	2663.062582	0.919316661	$6.38 \mathrm{E}-05$
TGFB1I1	507.4371526	958.9411006	0.919078288	$3.50 \mathrm{E}-05$
SERINC2	2173.358207	4108.159533	0.918533168	0.000116759
GPRASP2	115.6968451	218.6475297	0.91714139	0.000678371
ACBD7	241.6538737	456.3058707	0.915823273	0.010896555
DUSP14	1038.049248	1957.882683	0.915479174	0.003312365
RNFT1	350.2790759	659.56471	0.913135932	$5.56 \mathrm{E}-05$
SLFNL1	108.7590907	204.2900566	0.913012321	0.004988845
NMI	556.9371691	1047.234724	0.911753592	0.000213386
SKOR1	36.46792248	68.71982224	0.909746414	0.049292642
NEIL3	575.4324583	1079.568307	0.907322198	6.89E-05
FAM13B	966.8373241	1811.831409	0.906825925	0.004868129
NTF4	162.4578909	304.4840375	0.90659326	0.045952785
IL23A	65.83993549	123.0981626	0.906103703	0.009355363
PPFIA3	396.8124071	743.6397152	0.90571862	$4.18 \mathrm{E}-07$
MORN3	101.3063002	190.0991881	0.90503805	0.003116227
ZNF132	61.604704	114.9779713	0.904399965	0.014114741
PRKACA	2760.132887	5162.651438	0.903208465	0.000151886
DBNDD2	63.78128358	119.0699977	0.902607002	0.02215841
PLXNC1	136.4931756	254.8085339	0.902205578	0.000200662
CD83	245.4397477	458.0285256	0.901986482	$1.79 \mathrm{E}-05$
MATN2	1633.424875	3050.939281	0.901319392	0.001571788
SH3D21	486.52226	908.6708982	0.901186171	0.019496649
UFD1	1771.178323	3308.674894	0.901175936	$1.34 \mathrm{E}-05$
GPR161	608.2800311	1136.252644	0.901004633	$2.48 \mathrm{E}-07$
SAMHD1	1460.539038	2727.433488	0.900907243	$1.20 \mathrm{E}-05$
COTL1	2817.115856	5259.749171	0.900784076	0.021941862
ATAD2	6938.122152	12953.73112	0.900710756	0.000969849
SLC4A11	271.1348563	506.5679452	0.899667338	0.000979959
HRCT1	211.5687852	394.8122357	0.898847294	0.009113473
TINAGL1	1723.042929	3211.390513	0.898429318	0.020485998
TAP1	1220.774576	2270.101138	0.894740561	$1.40 \mathrm{E}-05$
INPP1	566.3469295	1052.909112	0.89454062	0.000281281
RASSF1	647.9492262	1204.116833	0.894329055	0.000266859
NGEF	400.904609	745.9680922	0.894200529	0.000212066
DLC1	1048.484988	1946.610501	0.892300367	0.003806029
FOXO6	177.6934441	329.4431165	0.892076937	0.001327305
MITF	244.4155348	453.3276138	0.891964233	0.008910647
C19orf47	639.5121126	1186.529081	0.891416011	0.000461992
IQCD	119.3551411	222.0461599	0.891169209	0.004080291
HAT1	2110.500345	3909.748145	0.889322247	0.00367597

COL9A3	462.3397826	855.4092793	0.887228584	0.033474018
HOXD11	70.55665266	130.2411616	0.887117409	0.010036374
CENPM	1289.84507	2385.173028	0.886455948	5.37E-05
TEDC2	745.6432586	1378.989208	0.886026336	$5.10 \mathrm{E}-05$
SLF2	1247.797919	2302.406018	0.884073539	3.01E-08
SHCBP1	1324.584431	2440.653339	0.881262523	0.001546888
ZNF431	846.590319	1558.262178	0.880698596	0.001646198
HAUS5	1397.45616	2571.489894	0.879285526	$1.30 \mathrm{E}-05$
SLC10A3	594.9746093	1093.190151	0.877906573	$4.55 \mathrm{E}-05$
HSD17B6	267.5801388	492.2383546	0.877810951	$4.30 \mathrm{E}-05$
STEAP4	269.1079891	494.0421792	0.877091951	0.000372322
RASSF5	222.339117	408.3386426	0.875347009	0.000184504
EED	876.1635593	1606.599462	0.874296292	0.000327748
RIBC1	47.83539242	87.74851743	0.874151843	0.020258786
CCNI2	145.3081316	266.1152495	0.87412251	0.0001499
RAD18	1044.140976	1913.994296	0.874102105	0.012528075
PRICKLE2	47.59531309	86.90182779	0.872899863	0.037556258
IL4R	1329.236144	2434.995316	0.872894327	0.000774851
STON2	140.6735165	257.6484328	0.87273241	0.004041471
C1orf112	571.8972565	1047.265604	0.87236357	0.003357441
RGS19	302.9205839	554.8098136	0.872286674	0.004664491
DZIP1L	255.1290385	466.6537574	0.871145491	3.92E-05
AURKB	2299.831535	4207.406152	0.87113136	0.000996498
ARHGEF37	422.9256503	773.6675866	0.870648537	$1.55 \mathrm{E}-06$
UBE2T	1123.220826	2053.801616	0.870204582	0.00546914
IGFL2	614.4510759	1123.398672	0.870067674	0.000385427
PLEK2	607.8819392	1111.470975	0.869981476	$1.30 \mathrm{E}-05$
ACYP1	407.3646221	745.2834273	0.869914616	0.000127418
NEURL1B	1314.674876	2401.808394	0.869511672	0.003473372
BATF	95.23263706	173.8929879	0.868312761	0.005265431
HIST1H2BN	45.18499352	82.33312646	0.868176137	0.041514379
TMEM198	83.03968594	150.9863307	0.866456366	0.0120037
C4BPB	1678.879196	3059.683447	0.866303839	0.008806666
POLA1	1285.155185	2342.259437	0.865663981	0.003178606
MTMR11	405.8718385	740.0357266	0.865635123	0.037731965
PCLAF	1185.954215	2159.2483	0.864483771	0.000263866
CLIC3	1135.448487	2065.437495	0.863115533	0.003415022
WDHD1	1982.868384	3605.891699	0.862465109	0.003237671
TMEM107	546.106058	993.3065331	0.862247743	0.000250279
RUSC2	487.1946106	885.3523203	0.862201556	1.59E-05
TEX14	143.74205	260.7592469	0.861491983	0.005902654
ARL4D	116.9102934	213.0344954	0.861450246	0.013147395
DNAJA1	2759.457704	5012.987624	0.86121513	3.95E-05
HAUS8	543.9832024	988.244242	0.860827811	0.002381711
RTKN2	944.1826211	1714.226044	0.860689422	0.000102979
ARHGAP29	1642.884794	2983.561667	0.860648956	0.000589406
OIP5	456.5659423	829.2370578	0.860369056	0.006206849
LRRC8C	534.9553722	971.1535566	0.860188537	0.000518914
PHKG2	1014.107121	1839.741565	0.859338973	$3.51 \mathrm{E}-06$
NUSAP1	647.1810534	1174.830613	0.859277957	0.001123392
FAM189A2	134.9472671	244.2084031	0.858638051	0.010801744
DSN1	1088.827391	1974.470834	0.85804793	0.000260575
CRISPLD2	191.1620628	346.8426317	0.857787649	0.000511678
CMC2	649.8724797	1177.983947	0.85752858	0.000579194
E2F1	1969.625429	3568.9891	0.857342664	0.000219811
EEF1A2	3041.774523	5510.399195	0.857269002	0.000383955
CCP110	1632.80321	2957.044353	0.856976953	$2.66 \mathrm{E}-05$
GINS3	433.1692273	784.5617433	0.856953597	0.001079196
CLTB	2109.769352	3819.19497	0.856309077	0.000915023
SDR42E1	229.3705672	414.0193203	0.854858958	0.00313915
PXDN	235.6703219	426.221424	0.854582925	0.02558872

ZNF519	349.574461	631.5504233	0.853312791	$6.75 \mathrm{E}-06$
TBX1	143.4226473	258.7575905	0.85304783	0.041477085
RRM1	6370.092653	11504.8383	0.852805023	0.000856484
PLEKHA4	1360.634953	2457.634496	0.852489925	$6.29 \mathrm{E}-06$
BARD1	1432.064678	2585.24657	0.852110919	0.000639545
ERCC6L	615.1141544	1110.960767	0.851943368	0.001285418
LRR1	553.8971094	999.1920699	0.85074646	0.006042486
SAC3D1	801.0738135	1444.297815	0.850375218	0.000563262
RFC3	1387.681303	2501.682065	0.850001713	0.004678441
FN3KRP	1009.882395	1820.502604	0.84963047	5.62E-05
CYB5R2	226.5727428	408.1318539	0.849586753	7.77E-05
GPS2	142.3866802	257.0213135	0.849412387	0.002340581
CDK1	4147.393951	7469.598123	0.848725827	0.0012061
CAMK2N2	159.6043406	287.7213524	0.848641675	0.010659122
CKAP2L	1288.486352	2319.244757	0.847852484	0.001799013
DUSP4	205.4936409	369.5121353	0.847412438	0.038918944
GFPT2	126.9794522	228.635887	0.847284195	0.01436992
IQCJ-SCHIP1	162.7370367	292.4834816	0.846554371	0.013905421
KIF23	3377.604503	6071.289459	0.845915983	0.002791857
MAST2	4147.004956	7451.977822	0.845408974	7.46E-08
PRR19	49.30701937	88.57811408	0.845334177	0.045232142
TLR3	331.9323678	594.882635	0.842993441	0.002014686
PDXP	199.5753426	358.109629	0.842540449	0.025991179
ZDHHC14	285.9616055	512.1147418	0.842039516	3.95E-05
MAPK8IP2	268.7537206	481.6340883	0.841211276	0.000442606
PSORS1C1	83.15029072	148.4738171	0.841162455	0.026159964
PDLIM7	1350.626183	2417.536525	0.839645467	0.001663378
C12orf4	779.5110096	1394.059541	0.83905997	0.0004953
CDKN2D	341.2031805	610.1063487	0.837064033	$9.73 \mathrm{E}-05$
ZNF107	799.6980036	1428.417145	0.836873471	$1.34 \mathrm{E}-05$
CHST3	1103.297496	1970.377337	0.836844781	0.001615086
ASB16	173.8574421	310.1258179	0.836244163	0.008572565
SYT17	355.7587758	634.4095959	0.835270195	0.01472204
GPR137	1018.926238	1817.527136	0.835182405	0.000185736
SPDYE2	111.571229	199.3585736	0.83397016	0.005343869
FANCA	2118.6815	3775.99999	0.833393717	0.000501764
WAS	71.02493258	126.2478741	0.832326771	0.021289125
RAB27A	406.7603331	724.5804009	0.832165952	0.001663378
POLE	5062.83585	9005.898872	0.83080836	1.42E-05
FGFR3	994.1031528	1768.025561	0.830777931	0.019003787
EMP1	633.9168193	1127.467925	0.829853018	0.017413898
SLC25A35	334.5484999	595.3937571	0.829684051	0.003743498
THAP10	201.967758	358.6554827	0.829272423	0.002024064
BAIAP3	272.5026197	483.0774203	0.827625107	0.040683628
NCMAP	80.99211282	143.6358517	0.82690364	0.010868153
CEP19	163.1072718	289.1204964	0.826340197	0.006147982
ZNF789	1013.580864	1796.114458	0.825854505	1.95E-06
CCL26	118.277696	209.8514883	0.824672998	0.003675068
PCDH1	2153.797719	3813.898884	0.824223092	1.22E-07
CILP2	339.6945787	601.7413119	0.823369474	0.000458863
TRPV1	641.4480313	1134.329431	0.822575537	0.000719274
PIK3IP1	165.8651828	293.214922	0.82182076	0.001090007
GAL3ST1	64.97178018	115.1511799	0.821557279	0.034568454
S100A13	544.457412	961.7484357	0.820760759	0.000130864
CENPK	1129.506942	1995.449205	0.820758225	0.000352412
PTPRS	137.8418215	243.6696171	0.820423239	0.009604952
RAD54L	961.843389	1698.889732	0.820080386	0.007235464
OSR2	132.7260641	233.9539714	0.819942624	0.014839319
PRSS51	124.324509	219.0616366	0.819155157	0.022098963
PKMYT1	3006.562474	5298.804809	0.817368129	0.000507151
RAD9A	1157.059161	2038.080484	0.816432816	0.007128176

WNT7B	394.21758	693.7433383	0.815660194	0.007868595
AGBL3	59.44702366	104.3521848	0.815478954	0.025747358
SBDS	1559.748733	2740.794423	0.813406441	0.031908096
ARHGAP23	1926.642074	3384.190942	0.812886782	4.03E-05
PRIMPOL	535.1298372	939.3610991	0.812058873	0.000120409
LTB4R	479.6468558	841.7260539	0.811692572	0.001061443
C4orf46	1116.001011	1958.832794	0.811611345	0.001445721
TGFA	1252.409187	2197.76182	0.811553805	0.007905553
PDZD7	186.0586876	326.4659685	0.810951316	0.020161666
TMSB4Y	304.9052919	535.0316624	0.810733293	0.002732512
RAB36	381.6354593	668.8809195	0.809991234	0.005443601
CKB	415.7528937	728.9304327	0.809768667	0.010784462
YPEL3	1710.056451	2996.964665	0.809536912	0.030132885
DNA2	1600.973548	2804.560679	0.808547215	0.003312365
ACSF2	855.9377471	1498.766863	0.807890525	0.005049599
DMRT2	117.0042858	204.4885404	0.805955284	0.004917308
PCNA	6991.571376	12211.66462	0.804490044	0.000656158
A4GALT	152.8219863	267.1253306	0.804363748	0.00069219
MAD2L2	1443.190861	2519.422975	0.80353991	0.000904473
DNAH12	173.0312977	302.0079493	0.802848557	0.001315539
CDA	142.7859098	249.3403194	0.80234873	0.04206216
PREX1	85.16234061	148.8975689	0.800982871	0.014103777
BTBD19	361.1295838	628.9130816	0.800454312	0.006070156
TRIM29	201.4548721	350.1819661	0.799846097	0.002029683
LRRC8E	67.53242853	117.7436423	0.799736234	0.015183982
SCARA3	3203.788203	5577.050293	0.799701129	0.000106873
RELL2	390.9941087	681.0567616	0.798882624	0.000273416
PARP2	1112.491894	1935.942076	0.798642993	0.000261727
ALPK3	356.3529227	619.4989506	0.796767815	0.008881072
CCDC102A	539.279761	935.8447974	0.796643961	0.000600631
COQ10A	318.6220171	553.5914685	0.796637729	0.000139499
PARD6A	344.6152177	598.581426	0.795951327	$2.42 \mathrm{E}-05$
PIK3R3	605.6278313	1052.056193	0.795885183	0.000141334
WNT5B	271.846	471.5966821	0.795143624	0.000511678
PAK6	300.983959	522.0067951	0.794960466	0.002315099
TIAM1	658.2058138	1141.754903	0.79384483	0.005443289
TCTEX1D2	73.00849133	126.4571277	0.792742812	0.009430471
POU2F2	196.1186699	340.4664199	0.792546832	0.017776665
RAD1	948.8606224	1641.246766	0.79047844	0.011349444
SPAG1	855.9451593	1479.624547	0.789631948	0.007235464
SH3BP1	337.4816702	583.726764	0.789213243	0.002938177
TDRD1	83.13856028	143.6066489	0.789108489	0.028416348
POLD1	2939.860752	5079.404321	0.788681176	0.0012136
FLVCR2	106.5269688	183.7270691	0.787763254	0.004218179
SWI5	380.3869795	656.5989076	0.787727529	0.000125292
DCLRE1B	566.6239547	978.3044304	0.787187197	0.022448807
SP110	342.6696174	590.9905514	0.786246538	0.001349083
TOP2A	22037.95482	37997.91459	0.78591942	0.001020959
MTSS1L	868.7111355	1497.643156	0.785481175	$1.32 \mathrm{E}-05$
BCL2L15	569.4330589	981.0810954	0.785274759	0.04975029
UPP1	416.8815922	718.4664121	0.784878113	0.015868152
MXD3	1250.820662	2155.114212	0.784699702	0.01065666
KIAA1841	456.9949779	787.8441948	0.784607697	0.000103481
HOXC6	465.6177657	801.4151076	0.783756565	0.000749656
MLLT11	238.6332514	411.1590599	0.783290107	0.002240182
SPC24	1080.305331	1857.644857	0.781475603	0.000934024
EHD4	1962.328489	3372.111457	0.781035441	0.010687781
EIF1AD	684.2304615	1175.900158	0.78103131	0.003131007
DENND2A	125.9759453	216.4640488	0.780737458	0.002535341
USP1	4380.683451	7520.014719	0.779557508	0.002276175
DDX58	711.4172802	1220.820259	0.779013793	4.55E-06

BX255925.3	679.0123932	1165.236894	0.778862024	0.000352086
SEMA4A	243.0939401	416.7470605	0.778515606	0.034782552
TOP3A	1839.347073	3153.232433	0.777667322	0.000272091
WNT3	334.9615984	573.9711956	0.777169379	$6.05 \mathrm{E}-05$
KIAA0319	160.7051277	275.1050633	0.776479483	0.03434088
POLR2J2	69.11351684	118.5515073	0.776405333	0.035027053
STXBP6	801.0179747	1371.512145	0.776295038	0.011743256
IL1RN	127.4641904	218.2255514	0.775627484	0.005731182
KIF18B	3061.229643	5240.55863	0.775405371	0.001764143
CLEC2D	170.5888968	292.1537146	0.775388714	0.017369756
LRP11	170.1227202	291.0203072	0.77468131	0.000848889
KRT7	231.5370042	395.9178393	0.774394236	0.006203544
VRK1	1050.235304	1796.177016	0.773832663	0.013790582
KLHL25	426.2249678	728.962616	0.773542253	0.000399491
TEAD3	1708.709823	2920.589317	0.773073075	$4.69 \mathrm{E}-06$
FRMD8	985.9296925	1683.738736	0.772639555	$3.21 \mathrm{E}-05$
FAS	708.4814744	1210.283464	0.771864645	0.003695131
NCAPD3	5520.47676	9424.005603	0.771458279	0.009507613
PXMP4	513.2365165	875.8781061	0.771367588	$1.98 \mathrm{E}-05$
NDC80	1386.018343	2364.795491	0.770484732	0.001103888
GINS2	1031.204011	1759.427135	0.770253442	0.000934024
KRT10	435.5902642	742.5850056	0.769716761	0.014642471
CPNE2	1046.073482	1783.413056	0.769432381	$1.97 \mathrm{E}-05$
LUZP1	2536.529428	4322.382774	0.769033752	0.000798383
ZNF367	1620.764772	2761.731335	0.768770592	0.003893305
CRABP2	2286.992408	3897.477311	0.768718534	0.002663331
HJURP	3477.70185	5922.078993	0.76781578	0.00057685
CHST14	996.9359927	1697.310701	0.767641932	$1.56 \mathrm{E}-05$
GINS1	1929.198928	3284.593443	0.767435817	0.007559909
ZNF620	525.034835	892.9560724	0.767395643	0.000687561
MYLK	73.3111276	124.5380736	0.765785545	0.047504815
ISYNA1	926.8185477	1575.224272	0.764956511	0.006027639
RTTN	970.309255	1649.322294	0.764667426	0.014867696
03-Sep	862.6981917	1463.777531	0.763054216	0.00694816
RABIF	416.852947	706.9714101	0.762469411	0.007950174
UBR7	1738.652877	2948.946202	0.762102106	1.83E-05
CDC42BPG	3463.950683	5874.852625	0.762022986	0.003167164
TYMS	1598.923202	2711.814024	0.76193672	0.00472561
ZGRF1	1002.99744	1700.99644	0.761559147	0.002604668
MGME1	1393.988633	2361.566675	0.760302523	5.25E-06
SLC25A19	352.3968371	596.7252471	0.759754912	0.009938091
DUSP2	221.463633	375.5737076	0.759531926	0.001820946
ENO2	2513.07034	4252.24459	0.758630244	$2.42 \mathrm{E}-05$
SNRNP25	984.9343398	1665.307409	0.757040375	0.019263187
ING2	421.423382	712.2546507	0.756772741	0.005346731
ZNF584	420.0903592	709.8165766	0.756508227	0.005632617
ATRIP	643.7670376	1087.652155	0.756152244	0.012477706
ROR2	64.79326844	109.1816534	0.755029786	0.048442286
ZNF567	273.9216077	461.1370862	0.753672926	0.001815046
POLQ	1926.132284	3247.170108	0.753208784	0.010865872
CLDN9	465.3943944	785.1486092	0.752929215	0.006064185
CTHRC1	183.6578	309.8998817	0.752659449	0.037408577
JUNB	2427.080593	4087.209103	0.751667755	9.32E-06
FANCD2	2353.530419	3961.245375	0.750883172	0.006295777
CDC45	1067.066419	1794.770964	0.749521589	0.023554916
IL6ST	2983.942396	5015.053774	0.749161237	0.021941862
ATP6V1D	1432.211493	2405.8034	0.748559297	0.00041977
PLEKHA6	1513.922037	2540.399408	0.74661166	7.89E-06
KCTD11	824.7473562	1382.421573	0.746086486	0.001737474
NPR1	327.1316892	549.3649193	0.745633943	0.033354359
CEP295	1168.606275	1959.509313	0.745539373	0.000545634

SPTAN1	22683.25578	38006.53448	0.744620161	0.000385427
NANOS1	548.2687975	917.8766518	0.743327325	0.000127433
SLC25A18	53.56440264	89.79230387	0.742799945	0.044422134
MOSPD1	773.9417718	1294.53248	0.742641943	0.041382458
GPSM1	458.2008009	766.7732717	0.742334291	0.001187704
GRHL1	478.1042061	800.0184911	0.742073274	0.000909004
CSRNP2	1083.919655	1810.619476	0.740352205	0.005153651
PARP9	1443.391932	2411.700967	0.7403177	0.001372614
C1orf216	1034.707428	1728.501983	0.740194343	0.000612764
PLCL2	126.503346	211.3130151	0.740055397	0.00942071
HES6	611.7998771	1021.693054	0.739419737	0.000119056
TAF5	417.2153326	696.7100402	0.738899618	0.040908663
NCAPG	4057.073765	6768.513366	0.738314657	0.004301189
MTHFS	79.01684261	131.9360462	0.738031709	0.025923497
PYGL	394.7301108	659.0939122	0.737747374	0.02245428
RARRES2	313.1396092	522.2791567	0.736978947	0.004823348
DNAJC22	1178.542783	1964.615018	0.736950905	0.000344841
PCBP4	1477.942585	2462.962722	0.73677111	$1.28 \mathrm{E}-05$
PXMP2	231.6472892	386.0834967	0.73640565	0.000890964
C9orf40	1136.246645	1890.061468	0.734030491	0.000883533
MSH2	3825.549504	6362.54486	0.733901047	0.004395746
TRNP1	556.0492382	924.8788639	0.733753327	0.019973142
ASIC3	183.08449	303.881783	0.733321611	0.00562512
IFI35	608.2803978	1011.039733	0.733163085	0.047150767
MLPH	433.3577154	719.869531	0.731811694	0.034590636
ZNF266	950.1201148	1577.917137	0.73169827	5.37E-05
CORO2A	439.4523696	730.4502855	0.731513482	0.001397856
EFR3B	393.6805405	653.656779	0.731504274	0.00915154
TICAM1	790.1548774	1312.146461	0.731316347	0.011352754
SERPINH1	5458.778615	9061.749609	0.731135553	$4.40 \mathrm{E}-05$
MAST3	1069.113967	1773.334017	0.729635774	0.002715511
NOSTRIN	232.128443	384.7327262	0.729446417	0.001063596
ZNF180	317.6781344	525.934067	0.729387706	0.003094289
PEAR1	268.5348095	445.0105804	0.729101125	0.021212033
HECTD2	539.7776992	893.9351343	0.729020212	0.000659542
TMEM106C	3914.827617	6487.683897	0.728754613	5.17E-06
RILP	133.0593006	220.7251644	0.728322442	0.007032425
SHROOM1	1280.847607	2121.192111	0.728100063	$3.35 \mathrm{E}-05$
TMEM255B	106.3233668	175.800693	0.72789908	0.01723941
HAUS2	1397.478478	2313.62294	0.727359287	0.021715519
LRRC8A	2276.53928	3768.271666	0.726829903	$1.29 \mathrm{E}-05$
NCAPG2	4615.288375	7633.448807	0.72579087	0.01428913
EHBP1L1	1450.078985	2398.568163	0.72550525	0.000838799
SPINDOC	1236.604471	2043.950485	0.724656414	0.001850717
ZNF684	124.4839558	205.5183217	0.723994639	0.019551591
CHTF18	2486.668272	4107.096573	0.723590918	0.008498748
RFC5	1820.647958	3006.327026	0.723224723	0.002469545
CCDC18	742.1868048	1225.198539	0.722919066	0.000235344
C5orf34	376.6926569	621.9003401	0.722475751	0.003944132
NXF1	2920.780412	4816.980294	0.722005799	0.001135524
SPICE1	142.0436741	234.1246654	0.721699131	0.005131731
GOLT1A	123.0012559	202.2897865	0.721419844	0.023128272
CCR10	77.6621598	128.3313719	0.721320671	0.034210129
WDR97	147.7901083	243.4277591	0.720913423	0.014985088
PLEKHG2	1688.122591	2781.728794	0.720575648	8.42E-05
PALLD	815.7532797	1344.48239	0.720372194	0.004042301
SFXN3	1565.650253	2579.153237	0.719689128	0.000973775
HAUS3	814.4929386	1340.814112	0.718789241	0.000453939
TEX30	533.8474515	878.2226024	0.718013233	0.003788201
FGF2	491.1727658	807.8077197	0.717903198	0.046703966
NRP1	434.7130557	714.3854502	0.717901608	0.002851174

SPATS2L	1872.162127	3078.514477	0.717452546	0.004853929
SKA1	1176.46685	1932.990725	0.7164045	0.01764542
SMIM4	307.0492984	504.4544896	0.716240038	0.023953907
CCDC142	721.4463715	1184.760167	0.716189301	$4.72 \mathrm{E}-05$
PLXND1	1065.085058	1749.306339	0.715254797	0.001043938
TONSL	2389.290206	3921.337988	0.714468178	0.000545634
DRP2	70.14520671	115.2630114	0.714426337	0.042051168
DHRS7B	551.2235809	904.6478575	0.714230685	0.004553128
CENPQ	411.186642	673.8347433	0.712382273	0.002528891
MEA1	1334.928558	2185.49637	0.710900076	0.005930116
SDC3	1928.712593	3157.412918	0.710815023	0.00313915
SLC27A3	1008.988314	1651.871949	0.710500273	0.014070408
ZNF527	146.1270899	238.961744	0.710486599	0.005724798
MICALL2	2037.834637	3333.698622	0.709947458	0.041514379
CCDC74A	285.5539391	466.9599141	0.709688458	0.045169883
N4BP3	446.4598903	729.5031826	0.709272222	0.012011653
POLE2	458.5073066	749.3793975	0.707993899	0.016816221
DNAJC9	1456.764728	2379.901391	0.707862573	0.000541907
KANK2	3425.570142	5593.988564	0.707488327	$7.77 \mathrm{E}-05$
CCDC134	320.121827	522.6263543	0.70615519	0.000455135
PEAK1	1413.606097	2305.556789	0.705755545	4.83E-05
ZNF250	316.1716301	515.0636235	0.704266572	0.000385293
SLC41A2	608.059165	990.2958801	0.704078834	0.00088113
PPME1	1733.006288	2821.750625	0.703465754	0.003358693
08-Sep	4054.672822	6602.470525	0.70334338	0.000124008
PSMB8	984.2894544	1602.793081	0.703328652	$4.22 \mathrm{E}-05$
CNFN	131.2275518	214.0664075	0.703271744	0.033495404
SLC51A	115.0280615	187.1408268	0.702998953	0.021212033
TAOK2	3347.350811	5449.607689	0.702981635	$7.48 \mathrm{E}-06$
TRIM47	530.7261366	863.5275005	0.701793491	0.039433669
FGFR4	161.2450473	262.8052602	0.701411241	0.016220356
CKS1B	2713.70445	4411.656234	0.700899696	0.012304068
MPC2	1130.035297	1836.099654	0.699846355	0.005843136
POLH	687.4148072	1117.050149	0.699758574	0.000481412
AGAP2	215.6673675	350.5111712	0.699613177	0.00714626
RMI1	1166.398302	1894.294076	0.699261715	0.012505056
MRPL53	133.3013586	215.9806936	0.698695121	0.011292585
INO80C	311.9819997	506.2670989	0.69840873	0.006414203
EID2	885.2696221	1435.514618	0.69760685	0.023255346
STOM	107.3574976	174.2746824	0.69738442	0.028249186
CXCL16	2385.153072	3865.08627	0.696502542	0.006844383
SEC14L2	213.8281006	346.2741295	0.696455218	0.009938091
EPPK1	3002.929194	4866.366559	0.696372255	0.010202823
CEP78	3074.330977	4981.175903	0.69613453	0.007859919
TEAD1	6920.917369	11205.87013	0.695237041	0.024913127
MMS22L	1505.928765	2434.59645	0.692726832	0.002276175
PRRG4	1039.55705	1680.155393	0.692313788	0.000541907
ZNF821	134.0861028	216.9245671	0.69223102	0.011899544
CYLD	1031.593222	1663.042661	0.689473366	0.016583912
SHH	151.6922574	244.0211492	0.68854353	0.007501743
DDX11	3612.068016	5822.007985	0.688494234	0.000443364
CCNYL1	525.4930974	846.9751281	0.688427754	0.034530964
LRP4	328.6815372	530.1641901	0.688306157	0.008208966
CAMK1	337.1071933	543.1666702	0.687069601	0.039536897
RB1	2563.27781	4126.477507	0.686931659	0.004664638
KLHL22	1274.103211	2050.369635	0.686420126	0.000507151
NEMP1	6651.211416	10699.10996	0.685733954	0.0001709
C1orf210	468.4486081	753.3853938	0.685274726	0.001704531
LTB4R2	112.1243717	180.031193	0.684846836	0.043564962
CEP85	1270.58713	2043.060954	0.684832073	0.007220593
ZNF695	124.0578467	199.3724535	0.684040465	0.025302941

ABCA7	2925.76724	4700.80208	0.683984645	0.015562238
SYNJ2	1910.840795	3069.046982	0.683681226	0.006005785
DNAH17	102.3176334	164.1179574	0.682731631	0.015668715
RECQL4	3252.032863	5220.55744	0.682653928	0.011130246
HYAL3	239.4346489	383.774109	0.681984855	0.00634989
ZNF100	284.6955124	456.7666999	0.681503693	0.037731965
NAV2	206.4740362	330.7532161	0.681384421	0.009536785
NFATC2	93.24923239	149.34784	0.680900846	0.040840935
PTCH2	110.903743	178.0818873	0.680741606	0.02718149
RCAN1	350.9721382	562.5289674	0.680735377	0.031635784
CDC7	1277.532361	2046.538013	0.679586083	0.029026284
CLDN23	388.6877405	622.0401536	0.679049904	0.00121145
BLCAP	1539.82247	2464.178943	0.678769067	0.000281281
DYRK1B	190.2970059	304.1755117	0.676754576	0.008483632
RNF168	1162.551943	1857.887922	0.676061238	0.003336638
SERPINF1	246.3908166	393.0762696	0.675942521	0.010573318
OPTN	2546.496791	4063.435151	0.674390886	8.59E-05
EPAS1	1462.235979	2332.452088	0.673533651	$3.70 \mathrm{E}-05$
TBC1D1	2228.007669	3552.173687	0.672719304	0.003513883
BRI3BP	2543.036401	4053.199615	0.672350511	0.025959906
NR4A1	762.7876562	1216.043207	0.672337366	0.003711629
PLAUR	2278.392305	3631.266073	0.672182877	0.003753137
NUP62CL	368.5170039	588.0332459	0.672153222	0.02215841
FAM53C	2200.382997	3505.708876	0.671830273	$3.10 \mathrm{E}-05$
AHDC1	1711.639421	2726.736377	0.671543914	0.00061335
ZNF846	316.9635899	504.3210524	0.671128196	0.011704825
ELF4	1329.29787	2114.303815	0.669677958	0.00109339
MYL6B	1387.972017	2207.469779	0.669242842	0.0001302
RHOV	419.2337803	666.997471	0.668634303	0.003891262
HACD1	709.0213992	1127.157666	0.66851583	0.017541526
EZH2	3500.666459	5562.599494	0.668016129	0.000346532
SEMA6C	337.6002727	536.2414321	0.666936535	0.00475018
CCDC84	1759.838376	2791.32155	0.665287633	0.000289491
HCFC2	416.3985303	659.8014426	0.664865013	0.007806664
PHTF2	1992.962388	3159.527863	0.664793488	0.001755316
KLHL23	2307.69086	3655.4741	0.663528878	0.006662175
CASP7	1110.611623	1758.347944	0.662664452	0.000351287
NDOR1	1104.538926	1747.193754	0.661185022	0.000316414
DHRS1	1103.219795	1744.317318	0.660511044	0.000487027
SLC16A3	1081.243815	1709.016709	0.660384088	0.031440237
RFC4	1896.888939	2998.59516	0.660335875	0.010083963
SIVA1	2033.20984	3211.807919	0.659530971	0.00048893
HOXD10	361.2357869	569.8315829	0.658964796	0.002888234
FOXD2	183.0786013	289.2303694	0.658501559	0.02584353
FAM222A	297.0967929	468.2475768	0.657770384	0.018339206
NTAN1	545.0095185	858.9655826	0.65510588	0.011479604
ZC2HC1C	125.2594221	197.1852868	0.654807936	0.014528242
CAP2	797.8217618	1255.714712	0.654325971	0.010869632
AVPI1	330.6519197	520.3467382	0.654070605	0.011224595
OPA3	863.6456776	1357.863825	0.652915747	0.034570179
ADPRHL2	772.1288932	1214.004125	0.652784489	0.035064192
BRCA1	2860.873477	4497.330768	0.652393373	0.000909004
PPP1R12B	598.1527703	939.8639695	0.651808056	0.001633237
MAPK7	502.0252466	788.6423353	0.651104647	0.002563504
VAMP1	540.4362271	848.0973726	0.650446473	0.027684819
BAZ1A	2781.943269	4366.08208	0.650236216	0.021850566
PI4K2A	1002.492025	1572.997743	0.649913256	0.003574319
KNL1	2781.977235	4362.979902	0.649173652	0.026898079
ARTN	243.7485111	382.6786694	0.64880209	0.01993611
CADM4	464.2791803	727.1585694	0.647723985	0.025731691
KIF4A	2096.905397	3284.255731	0.647148099	0.019097022

STMN1	10011.6362	15678.61217	0.647066635	0.010692763
MOK	245.2465728	383.7012211	0.646744811	0.009765334
C3orf62	396.3330716	619.8633995	0.646601378	0.020095199
CDC42EP3	743.3739122	1162.601599	0.645933488	0.002556233
NOTCH1	1794.039762	2805.934697	0.645042383	$7.86 \mathrm{E}-05$
KIFC1	3484.790585	5449.855792	0.644968234	0.021061853
DAGLB	1060.443404	1658.0338	0.644582034	0.009141265
LBX2	311.5500545	486.9875333	0.644359664	0.037240542
TCF7	898.9695867	1404.59718	0.644179252	0.00041576
GGT7	868.2778209	1356.833245	0.644031753	0.049228726
GMNN	703.6022062	1099.775666	0.643913934	0.027217524
C3orf52	417.7826641	652.8503465	0.643726008	0.00885351
BCL2L12	1404.491913	2194.229774	0.643319296	0.037650107
CEP192	2482.40177	3877.394679	0.64322233	0.00110679
SYTL2	534.6519475	835.4753559	0.643162375	0.001724157
TLR2	280.5835818	437.8311883	0.642897249	0.032020346
FANCG	1890.538582	2952.10052	0.642597687	0.005700152
TBC1D2B	1300.1666	2029.807884	0.642526608	$9.20 \mathrm{E}-05$
DNMT1	9858.195854	15388.19672	0.642387695	0.039178111
RFX5	2031.413201	3170.318501	0.641822733	0.00466515
MAPK11	324.3635636	506.3871035	0.641618375	0.031757254
PPM1D	607.0152824	946.1090462	0.640719619	0.002257295
C1orf35	867.8173923	1352.989464	0.640454843	0.003313074
CHAMP1	1837.098074	2861.479302	0.639217716	0.030365789
ADAL	380.3892606	592.2767817	0.638889443	0.008526127
ZNF230	185.9679772	288.7639384	0.637599273	0.025472645
NUDT8	458.927728	714.4604725	0.637372971	0.016760576
KLK10	1332.032551	2070.969874	0.63698714	0.001115133
BORCS8	231.1156524	359.6114466	0.636841154	0.009457452
AAMDC	158.0395623	245.3258194	0.634346849	0.009222017
CSGALNACT2	938.6257243	1456.186618	0.633858198	0.022682105
RINT1	819.5267716	1271.326724	0.633620637	0.025221904
RNASEH2C	1647.19209	2555.889068	0.633431995	0.000371424
PHTF1	791.4297803	1228.05982	0.632893497	0.003780787
MRPS6	668.2666604	1036.327759	0.632742322	0.00584105
CHAF1B	1584.345621	2457.087895	0.632691498	0.038388794
PLAGL1	1808.15135	2802.321535	0.632264021	0.000381938
CENPP	174.0686753	270.1622046	0.631428893	0.025463081
SMC1A	7932.710794	12288.47394	0.63135985	0.029905941
LRG1	399.3048109	618.1824479	0.630866532	0.002554112
PAX6	167.342995	259.2941035	0.630864065	0.024155068
TNK1	978.2757115	1514.557949	0.630862741	0.001114636
GTF2A2	1040.975404	1611.826003	0.630822686	0.032910612
HLA-F	545.5317702	844.8139293	0.630469909	0.022325703
GRK5	162.3073669	251.3579634	0.629617781	0.024236355
PHLDB1	2051.273882	3172.978654	0.629292128	0.006061195
KNTC1	3312.231608	5121.227018	0.628507677	0.017383799
INAFM1	380.8578839	589.0322889	0.628277784	0.001950054
FAM122B	2673.738256	4131.770473	0.627857332	0.003756375
TRIM26	2403.220367	3713.214622	0.627738742	0.000561536
ZNF69	275.6896799	425.8185597	0.627687119	0.007610464
MIB2	2065.743885	3191.560483	0.627626767	0.036397142
ZUP1	854.8539936	1320.542243	0.626732705	0.022738471
DIABLO	139.8866454	215.5950981	0.626573395	0.029882094
CHAF1A	3050.167767	4709.110787	0.626317312	0.037494382
SMAP2	687.3911569	1060.938969	0.625769373	0.013073539
RAB30	192.3162362	296.5785257	0.625584418	0.043302973
LRRFIP2	1323.213698	2040.871344	0.62521791	0.037833309
TEFM	296.6345383	457.3140591	0.624965567	0.022094247
ATP6V0E2	1150.012894	1772.710387	0.62422406	0.007164733
KIF2C	3168.319329	4880.298215	0.623093093	0.024307167

CGN	3964.892395	6105.462586	0.622701682	0.000219811
TMEM237	1070.90104	1649.185491	0.622469846	0.004682025
RAB23	635.773344	979.0368003	0.622449447	0.011906411
RBM38	1214.98087	1870.298249	0.622166862	0.00900918
BRMS1L	201.9537407	310.7004604	0.621789482	0.042784623
FIGNL1	1389.918915	2138.286982	0.621561374	0.001472192
MST1R	3940.676371	6062.506448	0.6213604	0.000672416
HR	676.6963086	1040.979133	0.62120404	0.033633049
UBE2A	1718.123249	2642.235568	0.621077732	0.001624991
SLC41A1	1790.050333	2752.681504	0.620984555	0.002660823
REXO5	595.3591409	915.9834487	0.62063735	0.026671116
ESPL1	3397.283532	5223.583116	0.620522423	0.018150321
TGFB1	2085.817884	3207.307305	0.620428177	0.002475011
CREB3	1600.4529	2460.013094	0.620362309	0.025472645
RAB5IF	827.952718	1272.321893	0.619704325	0.045362246
BTN2A2	900.7208924	1382.753484	0.618612136	0.000382857
LIN52	491.1991595	754.102057	0.617917644	0.025250026
GPX3	282.3221735	433.6561099	0.617269496	0.013013735
RAP1GAP	299.1639111	459.3809542	0.616399351	0.024767951
MCM4	9973.596787	15287.82071	0.616161188	0.046223293
CEP135	698.3174102	1070.134462	0.615958775	0.043482378
KRT15	216.2594343	331.144751	0.615558191	0.017692645
PXDC1	396.3639863	607.4549743	0.615450841	0.005135312
MIEF2	813.7999116	1245.797353	0.614882379	0.007007097
MTBP	559.9875685	857.9580391	0.614768403	0.032337146
OSCAR	276.4708749	422.7650795	0.613502475	0.030338743
SEC14L1	2981.58724	4561.114763	0.613337953	0.017021385
LNPK	1226.367607	1875.515021	0.612697791	0.004605514
ABTB2	849.0413635	1296.26477	0.611101352	0.011949003
ACOT7	2258.406752	3448.894009	0.610595403	0.035984658
TNFAIP1	2164.795903	3302.169123	0.609228178	0.030473117
PLA2G15	548.3346012	836.2793824	0.609018447	0.001427761
DTYMK	1998.814345	3046.731884	0.607793006	0.014243325
BAX	1679.400208	2558.777326	0.607217007	0.023996176
NBPF14	541.6929369	825.9196344	0.606981594	0.011320554
CHRNA3	122.0306361	185.659024	0.606879529	0.025601553
STMN3	528.460505	805.1594267	0.606782819	0.001564011
PPP1R13B	1402.150191	2134.294247	0.606359007	0.000348986
FANCM	691.19003	1052.525105	0.605973601	0.017507623
SSH3	1805.303203	2747.421622	0.605625776	0.002194977
TRIM7	262.8606724	400.1833658	0.60538114	0.026893868
RELL1	301.5701429	459.0572778	0.60487683	0.012753318
ZFYVE19	1934.698365	2941.209695	0.60415938	0.00280912
FOXD1	940.5439649	1427.842661	0.602583211	0.002923174
UPF3B	1407.257435	2135.993836	0.602301642	0.004890632
PDGFA	211.5765936	321.1874428	0.602192236	0.049562543
ST3GAL4	337.0310151	511.3151885	0.602161259	0.021212033
SUSD6	688.1650585	1043.941209	0.602005439	0.002605121
RHEBL1	237.9222618	361.3533681	0.600385926	0.028249186
SWAP70	2158.607594	3272.431494	0.60034474	0.015646666
SLC9A5	365.2278464	553.3607677	0.599835555	0.024322767
SLC39A8	289.0527414	438.2373512	0.599271395	0.0089634
DMXL2	3864.379888	5853.271243	0.59905152	0.00984663
CCDC14	4122.160825	6238.31037	0.59777756	0.001827993
NAGK	1221.638234	1848.73571	0.597753617	0.008449158
SEZ6L2	1136.15011	1719.409491	0.597559588	0.030003385
NFATC2IP	2798.576006	4234.533299	0.597518078	0.000841966
CCDC120	1313.526948	1986.481613	0.596985039	0.000582159
XRCC1	950.4054402	1437.187266	0.596256603	0.001147273
ABLIM2	245.0183722	370.2451112	0.595941244	0.01230447
MAP3K12	637.7347979	963.8158767	0.594851895	0.022098963

RPP30	973.2126772	1468.929774	0.594141168	0.04236052
MCM3	7534.489967	11370.25725	0.593613691	0.024953157
MORN2	182.2221823	274.763242	0.5935796	0.028224073
RRAS	826.7481205	1247.568525	0.592873786	0.014564717
ITGB1BP1	1320.91156	1991.551966	0.592296084	0.022269138
USP35	553.343184	834.9690944	0.592281986	0.005503859
SGK494	376.4402186	567.6059061	0.591964695	0.036749662
USP37	1000.108733	1507.406761	0.591771311	0.013921095
FSCN1	4283.020813	6454.513755	0.591573012	0.012887925
EFNB2	280.7884872	423.2627714	0.589951907	0.020434881
SELENOW	1387.323371	2085.265015	0.587403824	0.009224856
LIPH	1269.502053	1908.049776	0.587297625	0.004345352
MXD1	634.2303914	952.2253047	0.586353683	0.005568786
RNF19B	1155.551271	1735.222957	0.586242753	0.009943142
EPHB3	715.6905112	1072.225376	0.583386564	0.011121453
BCAN	409.6777083	613.8927216	0.583337791	0.031428152
GTSE1	2747.801474	4116.453165	0.583019168	0.046812629
PSMB10	248.2843167	371.1174565	0.582447018	0.049872685
NLRC5	753.1421476	1128.009087	0.581728001	0.012553048
H2AFX	6301.879819	9430.627833	0.581539958	0.005840302
CEP72	851.2447348	1273.936767	0.581301441	0.035699184
CNP	3907.350733	5845.803389	0.581064328	0.001536229
ATP10D	214.7744359	321.431908	0.581054955	0.01778198
DHFR	5670.054475	8482.13368	0.581038795	0.013140118
LACC1	188.357099	281.5411098	0.580590644	0.037076435
JOSD1	3565.325916	5330.57882	0.580226287	0.005482029
PARP3	681.8617252	1019.134851	0.579945544	0.005437792
SH3TC1	583.2542094	871.3924245	0.578911513	0.027016174
ZNF497	214.0993072	143.6629237	-0.577512647	0.03727044
RPL36A	319.4486181	214.1798404	-0.578131338	0.027999065
SIDT2	1441.682192	966.2307728	-0.578132408	0.003096465
C19orf70	824.4480623	552.2580222	-0.578208204	0.005123958
CCDC28A	651.6880123	436.7097624	-0.578233256	0.0082581
IGSF9B	704.0286525	471.7565831	-0.578319538	0.003347407
PIKFYVE	2910.038733	1948.391906	-0.578710163	0.000660131
DPYD	322.1291728	215.6469689	-0.578808883	0.037408577
RNF170	1437.214518	962.4512618	-0.578881988	0.00097318
EIF1AY	1165.816372	779.8364963	-0.579934794	0.044225289
HNF1B	656.0680453	438.5749767	-0.580153271	0.018856868
SF3B5	2363.000359	1580.654329	-0.580157833	0.014255666
MORC4	5678.550372	3793.585599	-0.582067228	0.005550071
COPS2	4092.817051	2733.042412	-0.582346318	0.022613804
SERP1	6125.451677	4090.684778	-0.582400502	0.009343012
TBCA	4147.467745	2769.744331	-0.582403033	0.006242862
KLHL28	748.0709185	499.0351051	-0.582456964	0.011644023
MTA1	7877.869639	5258.866442	-0.583165889	0.010642271
PHF3	5616.752036	3747.168185	-0.583977523	0.0023203
RAB40C	1639.612502	1093.432675	-0.584848416	0.03727044
DENND4C	4460.491443	2973.412017	-0.585127447	0.001755732
DNAJC19	1283.333951	855.2341075	-0.58513618	0.013096715
08-Mar	1464.218874	975.747428	-0.586007266	0.000926745
HEXIM1	8296.758896	5525.128767	-0.586638715	0.001894737
SLC44A1	5278.577265	3514.896856	-0.586656668	0.004664638
RPL28	16579.06957	11034.92039	-0.587256344	0.000604291
C8orf59	565.4370951	376.1550538	-0.587539448	0.033354359
PPFIBP2	1262.587629	840.4391854	-0.588002744	0.022444496
WDR19	1041.778294	693.4237782	-0.58845828	0.003780787
THEM4	563.0526832	374.4901397	-0.58869273	0.003116227
UQCRC2	7387.979395	4911.865867	-0.588882247	0.006307944
SLC25A23	3064.759888	2036.507534	-0.58990288	0.002555035
ZNF18	385.595266	256.7399165	-0.590058147	0.024913127

AKAP7	275.4678187	182.9929788	-0.590146193	0.041326708
NIPAL2	669.7276221	444.252475	-0.590447971	0.034294919
TJP3	5341.153112	3547.098654	-0.590757061	0.017163001
VDAC1	10833.32654	7193.155468	-0.590803569	0.005511118
SYNGR2	6321.649969	4197.452324	-0.59090484	0.000675672
LRP5	8081.616857	5364.777724	-0.591225396	0.013609849
MAGED2	3544.757145	2353.222319	-0.591333895	0.008772908
TSPO	3629.159816	2408.796491	-0.591568456	0.001948011
FBXL4	1139.954848	756.7626301	-0.591674339	0.001375772
COMMD6	1289.867812	855.875597	-0.5919329	0.002863673
ATP8B1	4052.117779	2687.928839	-0.592048431	0.009918336
TRMT10C	1204.935504	799.0336354	-0.592216244	0.02264014
ARHGEF10L	1807.850176	1199.226944	-0.592286343	0.034879514
STBD1	193.194167	127.937157	-0.59231671	0.039993827
GSTO2	2186.177041	1449.843028	-0.592531783	0.001073191
KIAA1328	192.4709904	127.7370718	-0.59305726	0.048827418
ESRP1	1936.253889	1283.212038	-0.593549085	0.008670917
RNF141	1602.57328	1062.040543	-0.593764422	0.00213068
LARP1B	2274.998632	1506.658327	-0.594115621	0.011204583
LPCAT1	5261.288387	3485.269828	-0.594331892	0.024245841
QARS	7422.203728	4916.448666	-0.594344737	0.000195488
MUT	1918.050081	1270.130939	-0.594958568	0.000552008
HIBADH	2421.679232	1601.940446	-0.596630417	0.008585088
DNAAF5	1533.709998	1014.278542	-0.59687974	0.026446572
PRKAB2	1446.466804	956.5549841	-0.596988472	0.003167164
SDHD	1791.466228	1183.819427	-0.597343344	0.00507921
GLS	4278.986518	2825.497638	-0.598448357	0.009043174
SORD	1177.533382	777.3043056	-0.598975243	0.023451765
DCBLD1	2497.338459	1647.19926	-0.600011254	0.004092733
RABL2B	827.1407141	545.7926041	-0.600292094	0.005382319
NMD3	2943.405941	1941.042147	-0.600431884	0.030794037
MRPL23	1033.718922	681.891672	-0.600673338	0.002048445
CREB3L2	4444.385294	2929.701571	-0.601369042	0.001155473
LRRC41	5247.872437	3458.741826	-0.601611874	0.000135521
FAM114A2	659.7308971	434.8452823	-0.601726889	0.002315099
HAX1	3922.020457	2582.544718	-0.602751883	0.004034681
SFPQ	22598.53173	14876.06567	-0.603187143	0.000642864
PLD2	1605.302781	1056.676888	-0.603653545	0.009541478
PHF14	1156.188085	760.1926991	-0.6040311	0.019500745
DHX35	684.4389275	450.2760494	-0.604248247	0.015665766
ME2	4249.585878	2794.689116	-0.604609286	0.029288712
LGALS3BP	22493.81737	14790.71094	-0.604870762	0.017152915
RASA1	1346.060782	884.0923181	-0.60620699	0.000299302
SFXN4	1580.485101	1038.015748	-0.606310615	0.009141265
SLC38A7	892.7075952	586.1627767	-0.607067071	0.003327065
SSR4	4056.606808	2662.500717	-0.607402195	0.001351764
STK40	2745.226872	1802.035743	-0.607422346	0.008036752
PLPP5	1725.099566	1132.285784	-0.607596255	0.017383799
WDR78	220.5342652	144.351605	-0.60773008	0.048662965
LTBR	4663.08203	3059.774221	-0.607834708	0.000376419
SLC3A2	22087.72669	14481.02579	-0.609048067	0.018986922
CTDSP1	6355.087127	4166.286129	-0.609143068	0.001277586
CNIH1	4847.471076	3176.930507	-0.609424336	0.004000203
RPS21	9835.688027	6444.120272	-0.610120027	0.001600262
VPS41	2280.778295	1493.159168	-0.610945637	0.000507151
NUDT3	350.5678432	229.9444085	-0.6117891	0.03727044
ARL1	2729.409026	1785.75513	-0.611973118	0.000176211
GNPDA2	755.5705486	494.2449178	-0.612106245	0.004241283
PRDX1	12156.37713	7953.112031	-0.61216817	0.04236052
SIAE	2283.556221	1494.338008	-0.612226636	0.000410486
TTC5	677.2664675	443.161681	-0.612819854	0.015482534

NDUFA10	5053.986413	3304.437369	-0.613000183	0.000858471
POLR1C	1029.368055	672.7347508	-0.613052819	0.025747358
FAM189B	2280.863724	1491.675744	-0.61306501	0.005806229
ZNF608	1545.704748	1010.664583	-0.613096454	0.001691762
SDHAF4	547.9335766	358.4709852	-0.613225352	0.014247048
C8orf37	204.6279324	133.6438581	-0.613263284	0.028834686
CEP120	1355.220984	885.9256763	-0.613467961	0.002486081
FANCF	751.382251	490.8872199	-0.613640026	0.006646808
TNKS1BP1	5380.105945	3515.556819	-0.614144295	0.002512657
ZNF182	373.6263031	243.9471132	-0.614321297	0.006603881
THOC6	1548.83927	1010.86982	-0.616254077	0.004301189
C2CD5	3906.095596	2547.87269	-0.616265125	0.000635594
GATB	1051.330758	685.613945	-0.617002753	0.008730545
TMEM256	279.4018713	182.4910981	-0.617767647	0.026157866
ZNF407	730.2424167	475.5470291	-0.618591617	0.001251752
KLF3	2295.087989	1494.416087	-0.618765215	0.000363657
ICE1	3089.093573	2011.032464	-0.618977083	0.006662266
CUL7	3082.016652	2007.290188	-0.619030495	0.004046559
CDK2AP2	2967.492706	1931.667434	-0.619394878	0.002490361
MT-ND3	35663.19058	23184.39945	-0.621323823	0.012565035
AJUBA	11264.7963	7321.092103	-0.621589543	0.006401584
PEBP1	14301.45185	9294.314029	-0.621783871	9.89E-05
ZNF280D	545.5299751	354.2175755	-0.622242458	0.005265431
ERP29	7235.824858	4699.452254	-0.622823763	0.000977803
SEPSECS	1191.822723	773.5369612	-0.622929895	0.00086075
TYW3	1358.757952	881.5902493	-0.623435792	0.044111129
YIPF2	1580.535346	1025.965404	-0.623642559	0.002562729
FAM173A	803.0656724	521.5279006	-0.624290722	0.005774284
TMEM241	675.8407498	438.5557796	-0.624424111	0.026731937
CASK	2916.990772	1891.730059	-0.624960029	0.000153737
ESRRA	2797.479075	1813.056969	-0.625680925	0.000346532
KLF5	7734.274126	5010.904767	-0.626003642	0.002678917
RSBN1	948.3943912	614.0508986	-0.626499909	0.000635618
EIF3K	3893.278976	2521.41798	-0.626656545	0.042453164
GABPB2	1327.879706	859.7617643	-0.626695552	0.002229283
FAM160B1	1357.493742	878.8798646	-0.626955185	0.000414195
PDIA6	13992.1905	9059.400446	-0.627180761	0.000246459
C17orf75	1042.843677	674.8808962	-0.62739038	0.001467319
SMIM19	795.4873585	515.235158	-0.627435479	0.002331038
CBR4	1045.90865	676.6765084	-0.6275925	0.000602277
CANX	65961.93393	42679.11106	-0.628095953	8.12E-05
ARL2	906.5066955	586.4369939	-0.628106465	0.006159801
MT-CO1	476182.3521	308065.116	-0.628278862	0.010788809
RPS15	25699.98819	16622.231	-0.628652391	0.000352412
LIPA	2889.802217	1868.09135	-0.62960236	0.000132766
B4GALT2	1906.777228	1231.919358	-0.63014875	0.024796561
SSR1	9268.610077	5987.219376	-0.630427723	0.001133248
NSMCE1	1380.456125	891.9346759	-0.63073373	0.001209163
ZNF703	4061.57495	2622.903854	-0.630808509	$7.86 \mathrm{E}-05$
PSD3	1047.153557	676.4419864	-0.631091137	0.015092025
AMPD2	1635.456459	1056.12473	-0.631197295	0.000748308
EIF3A	29980.4294	19353.2906	-0.63140335	0.006291888
TRUB2	2244.543972	1448.483086	-0.631751245	0.000272035
SPCS3	6127.162756	3953.769805	-0.631876838	0.0023339
TRAF7	3304.330411	2132.013593	-0.632272472	7.77E-05
DUSP16	3299.239346	2126.727438	-0.633432131	0.001109585
PRRC1	3585.47828	2311.207883	-0.633613657	0.00011404
MAF1	2948.487875	1899.901715	-0.634347303	0.000270167
PSRC1	1470.338608	947.6543374	-0.63446287	0.015493553
ZNF783	908.9770117	585.1003449	-0.634733799	0.01050065
ZNF449	434.0781312	279.9403487	-0.634751999	0.039287954

ATXN1	1882.461173	1212.219158	-0.63480204	0.0025651
FAM107B	1466.72109	944.2600081	-0.635523111	0.01421468
SLC27A1	1260.882137	811.3340284	-0.636621041	0.047353282
FAM174A	488.3790702	313.7387936	-0.636894411	0.019159792
TMEM39A	1678.724408	1079.146398	-0.637164539	0.000474798
MRPL16	2411.406586	1550.5603	-0.637266944	0.019690959
FAHD2A	1384.596285	890.3808753	-0.637375795	0.000239081
GCFC2	877.2800047	563.7436868	-0.637549075	0.003004983
TEF	1716.14821	1103.200903	-0.637704177	0.004470299
ZFP64	907.1362057	583.2429787	-0.637737768	0.013836062
RABL2A	627.8264592	403.4837334	-0.637879792	0.047309627
CFAP69	228.6183667	147.2014865	-0.638147185	0.026899304
PFAS	3160.720339	2030.531458	-0.638311653	0.048561411
SEC61B	2562.21104	1644.674947	-0.639594156	0.003080067
FUBP1	6787.229835	4356.440314	-0.639664913	0.000134773
SH3RF3	204.1076825	131.099746	-0.640044322	0.024767565
TMEM50B	2086.618235	1338.91102	-0.64021276	0.03933786
ZNF16	476.6451269	305.1037977	-0.641675645	0.009448307
CGREF1	1413.802756	906.737497	-0.641794717	0.006466085
PTPN4	1398.723432	896.4908371	-0.641905616	0.000252983
NDUFS4	1149.908462	736.9138108	-0.642226126	0.001615086
LRRC27	412.9303282	264.8366258	-0.642253881	0.032917991
SP4	767.6524563	491.5990028	-0.642267912	0.002545121
PIGA	634.2217478	406.0185278	-0.642683382	0.006931373
ZDHHC17	1648.286443	1055.073694	-0.643367134	0.000279951
SMYD5	1298.229994	830.8885684	-0.643747117	0.024987289
PLEC	33725.98779	21583.37701	-0.643979772	0.000521614
AVL9	4008.241337	2563.96951	-0.644390793	$8.80 \mathrm{E}-05$
MAP3K4	1374.440196	878.6708954	-0.645308997	0.000177102
ZBTB24	829.6319043	530.0369328	-0.64578013	0.031259427
GPRIN2	989.664711	632.5747752	-0.645863051	0.007583826
DNAJB11	3616.554966	2311.250079	-0.645899682	0.001215488
CDADC1	333.1843967	212.5592299	-0.647541056	0.006252022
TMED10	9869.876625	6299.842876	-0.647764229	0.000291414
NDUFS2	3210.230775	2049.227743	-0.647814494	0.002782037
SLC18B1	857.8132725	547.4762853	-0.648505548	0.00063564
TXN	8383.15766	5345.614147	-0.649122249	0.041576733
TPP1	2222.147783	1417.180704	-0.649227857	0.023255346
NTPCR	922.6897627	588.6633528	-0.649601761	0.001371604
MYB	617.2425083	393.2753721	-0.650271474	0.028658155
KLHL9	2758.209098	1757.452574	-0.650284233	0.000147792
ALKBH2	534.4309684	340.3065721	-0.650971461	0.012682976
PATJ	5457.861801	3474.985749	-0.651224453	0.000835233
RPS5	23441.22323	14919.64626	-0.651807469	$5.35 \mathrm{E}-05$
PIGO	2930.262181	1865.195411	-0.651866658	0.000106178
MT-CO3	177444.0005	112928.2899	-0.651957683	0.022813421
PAM	4058.867075	2582.069695	-0.652427586	0.002433236
EXOSC7	963.5738752	613.1368765	-0.652440066	0.000645922
H6PD	7178.478743	4564.907437	-0.653225716	0.003856838
ARL14EP	843.1282727	535.5563036	-0.653297857	0.024956662
KIAA1109	4334.824638	2755.560825	-0.653474931	0.000322199
ZNF330	1121.309486	712.4100449	-0.653945003	0.021228882
SNX13	2271.730211	1442.835773	-0.654462435	0.000489942
DMAC1	947.0233278	601.3495551	-0.655021254	0.020510467
MMS19	4225.755809	2683.081195	-0.655395613	$2.62 \mathrm{E}-05$
SMIM8	317.9524278	201.506244	-0.656185383	0.005137801
FXR1	8597.879419	5453.818302	-0.656667006	$7.94 \mathrm{E}-05$
LARP1	24082.413	15275.9238	-0.656729787	0.001092137
DYNC2LI1	608.3088657	386.1051624	-0.656913309	0.003116227
ADCY7	2784.27099	1764.907699	-0.657757027	0.035045769
DNAJC3	5212.580079	3303.357159	-0.657972864	0.005859852

LRRC34	335.0293513	211.8527838	-0.65830803	0.026886725
CLDN12	1927.744604	1221.644234	-0.658339489	0.000347888
HDHD5	2836.267556	1796.820295	-0.658594485	0.003320713
PECR	511.3973921	324.2475144	-0.659270141	0.037408577
TRMT1L	1456.668868	921.7985764	-0.659694246	0.00042629
MGAT5	5009.263887	3170.418695	-0.659915326	0.00015687
FZD4	352.1087099	223.0530083	-0.660078645	0.01428913
SLC25A26	706.271699	446.7759539	-0.660218064	0.001010854
CCDC163	357.8027061	226.5083665	-0.660535737	0.005338624
TTC8	986.8074049	623.9441532	-0.661816832	0.00055148
FRMD4B	1653.907715	1045.356983	-0.661845942	0.012329975
MAP2K5	805.2612097	508.8688558	-0.66213526	0.000396325
STXBP4	418.5946782	264.1892304	-0.66250555	0.004299746
TSFM	889.7900659	561.6179398	-0.663659587	0.006168795
WDYHV1	431.7849099	272.7298681	-0.663729809	0.006933496
SPRY2	506.9665505	319.581695	-0.66416013	0.005126358
ESD	2924.677646	1844.899672	-0.664639392	$5.37 \mathrm{E}-05$
UST	1359.994973	857.8396266	-0.664805994	0.000222653
CHPF	7244.091355	4568.899436	-0.665005387	0.000739558
HBP1	1466.842464	925.2690263	-0.665062642	0.00228514
P4HB	28834.30642	18181.54211	-0.66533413	0.000814148
ZNF239	492.9204987	310.6777924	-0.665462374	0.020025525
RPLP0	81578.37098	51381.36248	-0.666942736	6.52E-06
EFNA3	181.943333	114.655857	-0.667179134	0.040685551
TBC1D8B	737.7202975	464.7621625	-0.667214099	0.003325815
LRRC23	411.6598154	259.4556786	-0.667417889	0.007227531
RAPGEFL1	1204.749775	758.7826304	-0.667536852	0.017755717
MCCC2	5587.324222	3515.534942	-0.668417634	0.005550186
PDK1	1110.212494	697.9445718	-0.668433278	0.012572585
MBNL3	1443.737248	907.9862657	-0.668680848	8.12E-05
GAPDH	82691.04149	52017.33298	-0.668732236	0.001172689
TXNRD1	23271.02787	14635.60245	-0.669073896	0.022365114
SPATA7	322.2806566	202.9033832	-0.669200347	0.011083884
ANKRD16	405.6038786	254.6694349	-0.670616377	0.027715166
SLC12A2	6359.094658	3993.792368	-0.670846849	0.027926948
TANGO6	796.4046645	500.0142828	-0.671450981	0.021297038
ALDH5A1	2491.431737	1564.308498	-0.671488999	$7.29 \mathrm{E}-05$
STK17B	2875.081553	1804.691836	-0.672001198	0.000363669
CALR	37860.1713	23756.9995	-0.672354414	0.008130848
ADGRA3	2662.254286	1670.256553	-0.67245667	0.000273416
USO1	5947.447825	3731.42866	-0.672529112	0.000156931
ALCAM	1911.547182	1199.034247	-0.67288261	0.000272091
ALDH3A2	5225.577133	3277.874145	-0.673025922	0.006528018
SLC39A6	4205.674701	2637.441284	-0.673100051	0.001132918
PRPF40B	544.9800849	342.2246471	-0.673232085	0.031431335
FOXA1	1833.755506	1149.260296	-0.673957776	0.000127078
MGMT	825.3190373	517.5299941	-0.674144307	0.001577077
ARFGEF3	1492.548753	934.8950147	-0.674674556	0.00046547
MPST	3787.501232	2371.539379	-0.675566336	$4.95 \mathrm{E}-05$
DNPH1	3083.07226	1929.786239	-0.676463996	0.003282591
CHMP6	570.0205756	356.9171581	-0.676539918	0.00398256
ST6GALNAC4	1273.444211	796.4797861	-0.677283502	0.001809059
RPL17	760.1370795	475.0370782	-0.677491863	0.010371632
LRPPRC	17144.97636	10719.35198	-0.677525139	0.022770125
FGFRL1	13052.4355	8161.175917	-0.677543977	0.000383955
ZXDA	347.5058853	216.7173448	-0.677744236	0.007868595
CRYL1	1082.353318	676.9820501	-0.677818294	0.03678778
PWP1	1502.643939	938.6876076	-0.678180201	0.022072888
CBX4	3647.723647	2279.416167	-0.678263293	0.005844145
OSGEPL1	388.6171917	243.0977435	-0.678471071	0.011505366
PLGRKT	323.0732154	201.8644797	-0.679093155	0.018630514

RNF41	2594.937902	1620.34294	-0.679114933	0.027267334
FRA10AC1	1377.025721	859.8842004	-0.679174437	7.49E-05
DFFB	648.6754954	405.1721526	-0.679559104	0.001745234
FECH	3080.702748	1923.127319	-0.67993443	0.000326986
TGDS	845.9141246	527.9865191	-0.68015114	0.005503335
APOOL	1379.944714	860.6701616	-0.680837737	0.000205914
GATD3B	1254.774711	783.0890999	-0.681199339	0.000862978
TXNRD3	887.3022475	553.650976	-0.681506912	0.003566926
TMCO4	1210.842788	754.8578431	-0.682134812	0.000184988
SINHCAF	5462.496938	3404.017686	-0.682213871	0.001379267
CFAP97	5243.636171	3262.389942	-0.6844734	0.008772908
MFSD9	870.7701366	541.2182479	-0.685460548	0.000980545
GMPPA	2068.181489	1285.729747	-0.686193751	0.001201052
KANK1	2923.466698	1816.22019	-0.6869158	$3.74 \mathrm{E}-05$
PACRGL	508.6896675	315.6448014	-0.687669654	0.010624088
KYAT3	2728.77922	1693.573294	-0.687972348	$4.66 \mathrm{E}-05$
PTEN	5604.254571	3477.05486	-0.688617731	0.000127078
MOSPD2	1179.687068	731.7250312	-0.688812664	5.46E-05
ATF2	2322.353669	1440.539488	-0.688891867	0.000979114
JMJD8	685.342452	425.6258267	-0.689197682	0.003097715
ALG2	1678.349498	1040.183172	-0.689820143	0.002105682
DBP	1683.782288	1043.447131	-0.69078165	0.046812629
PEX5	1384.934671	857.4636424	-0.691432813	0.007174059
COG5	1979.719309	1225.740492	-0.69155246	$1.22 \mathrm{E}-05$
ARL15	456.2747457	282.2059287	-0.691554203	0.000997242
BTBD8	534.466925	331.1067901	-0.69181739	0.01289821
ZFP69B	142.6977944	88.32302132	-0.692217815	0.021592578
C1orf43	6102.434819	3774.534467	-0.693019652	$2.64 \mathrm{E}-05$
ALG3	1543.745446	954.7701081	-0.6931029	0.005322926
DISC1	159.4891974	99.05379707	-0.693167464	0.046307937
NAT8L	1301.154562	804.6865268	-0.693171864	0.001546888
MBD5	746.1511495	461.7341461	-0.693845079	0.002111279
DECR1	1621.485594	1002.554116	-0.694087482	0.000451059
MCF2L	1514.173868	935.769174	-0.694440917	0.01890543
WDR82	10390.08374	6419.052272	-0.694754294	4.22E-05
HSDL1	1123.410457	694.3819617	-0.694845104	0.00147899
OGFRL1	2113.807356	1305.303229	-0.695201625	0.000399798
QTRT1	1727.323548	1066.268164	-0.695808232	0.002645577
MTIF3	1027.345584	634.5981667	-0.695885852	0.000257711
GALNT7	3147.527304	1942.966506	-0.695973182	0.00053248
DDOST	11151.11639	6882.779544	-0.696105517	3.45E-05
TMEM105	227.3977438	140.1995947	-0.696156891	0.03507121
EIF2S2	8455.537022	5216.127212	-0.696825985	0.005252591
APBB2	11826.7526	7295.606987	-0.69695629	8.92E-05
CDCA7	2358.358031	1453.701137	-0.698112002	0.015493553
COPG2	2207.783972	1360.705078	-0.698222898	0.000445902
TAZ	931.1118986	574.1800296	-0.698541596	0.048790035
PIM3	3956.068495	2436.687117	-0.699146843	0.001591042
CNKSR3	810.9130588	498.7564344	-0.69965687	0.001051303
SERGEF	314.0320196	193.4021166	-0.700243741	0.005375258
ACACA	9352.37828	5755.478371	-0.700527071	0.000862978
PHLDB2	2999.850965	1845.138218	-0.700842891	0.010036374
RBCK1	8038.155092	4945.304129	-0.700929175	0.003635844
MDM4	2384.292848	1466.655579	-0.701183788	0.000774851
ZBTB45	1715.993925	1055.841279	-0.701357184	0.001538355
PTER	2357.988214	1448.532408	-0.702507278	0.002315099
STAT6	6274.913444	3855.496116	-0.702817881	0.00298601
RPS19	25876.27022	15888.64057	-0.703644301	$6.71 \mathrm{E}-06$
RPL35	18346.94533	11258.9628	-0.704469803	0.000106648
JMY	3410.255922	2091.58341	-0.705444923	4.33E-05
TPRG1L	1012.622277	620.9537901	-0.705696963	0.000121034

HID1	2931.92957	1797.972229	-0.705709141	0.017317234
GALNT6	2115.566831	1296.527867	-0.705847063	8.72E-05
NMRK1	989.5518546	606.9810096	-0.705918964	0.00234085
H1FX	3877.055668	2376.69212	-0.70617568	0.000604291
IFT43	619.7289688	379.8807086	-0.706278202	0.000511678
DUSP18	228.2046692	139.9256157	-0.706489021	0.040797762
GOLPH3L	1697.835414	1039.221428	-0.7087262	$7.77 \mathrm{E}-05$
CTSD	3737.166585	2287.027349	-0.708753362	0.01014965
PODXL	7510.809103	4594.713901	-0.709051979	0.000262961
MRPS17	242.5969738	147.719186	-0.711376648	0.027224852
C3orf58	367.9661949	224.3064295	-0.712350383	0.005972728
TBCK	665.7157034	406.3036443	-0.712369404	0.015519509
FAM86B1	253.7318178	154.6038595	-0.713015089	0.038483653
PMM2	887.0901086	540.8035882	-0.713300164	0.015115362
HSP90AB1	70241.14784	42810.10121	-0.714362919	0.015476315
BTN3A1	665.9382825	406.1644794	-0.714447941	0.034221818
GNL3	5113.001164	3115.562764	-0.71458522	0.046007386
IMPDH2	8763.67124	5338.553661	-0.714995304	0.003312365
SMPDL3B	1320.118841	803.8475963	-0.715424679	$3.84 \mathrm{E}-05$
CAMKK1	915.0907255	557.4572941	-0.716347057	0.001374907
PTPRK	2279.206243	1386.306476	-0.716749604	0.000106648
ASIC1	1986.458829	1209.121807	-0.716759246	0.003159276
AP1AR	1975.990661	1201.928157	-0.716943288	0.003715764
HDAC4	1259.01794	764.8999999	-0.718332653	0.000121473
WDR36	3033.718271	1842.72696	-0.718941468	0.017021454
CCNB1IP1	1934.617058	1174.270134	-0.719740386	0.009860959
SH3BGRL	1300.091292	789.3550651	-0.720155971	0.041529433
TCF25	4811.179204	2919.662376	-0.7207876	0.009352914
ZSCAN2	277.0412406	168.3575068	-0.721261368	0.004138726
TMEM268	873.3879508	529.5200009	-0.722079997	0.000351287
TRIM59	850.625	515.8078652	-0.722091907	0.000416486
CRAT	4714.783286	2858.584359	-0.722173281	0.003737687
H1F0	6063.270837	3674.522037	-0.7224546	6.23E-06
VPS35L	3232.640084	1958.843489	-0.722849263	3.45E-06
SYF2	2116.847546	1282.0751	-0.722882241	0.00035398
SRPRA	6852.364944	4151.066064	-0.723140274	0.000604291
TBC1D16	3715.008943	2250.228984	-0.723623444	$3.04 \mathrm{E}-05$
LYPD6B	129.9191217	78.82017656	-0.723928458	0.037408577
GRB14	195.4668423	118.4694509	-0.724146944	0.010077388
RPLP2	22111.25228	13383.39663	-0.724346048	0.000122649
RIDA	532.1288967	321.962151	-0.724844596	0.025528176
MYO5B	8980.852069	5433.699359	-0.72497666	0.000179709
MRPL45	2308.252165	1394.730484	-0.726328324	0.005139367
AKR1A1	4683.616226	2831.419561	-0.726407658	0.00571189
TRMT10A	453.0587982	273.4496414	-0.726567757	0.017496413
RPL11	24525.09894	14794.91255	-0.729149555	$1.27 \mathrm{E}-06$
CHID1	2044.360976	1233.623366	-0.729370213	0.004878931
ZNF460	615.2244505	371.4462315	-0.729893397	0.001357687
SNX29	766.6982711	462.578513	-0.730583989	0.000716677
WNT16	226.1054638	135.9317987	-0.730814408	0.049367104
SRP72	7198.955308	4337.206188	-0.730928746	0.00313915
COX7C	7422.120654	4471.865532	-0.730929274	8.16E-07
ARID3A	1041.645844	627.0266442	-0.731202924	0.043436118
RPS28	13351.75314	8042.959275	-0.731301868	$2.50 \mathrm{E}-06$
PGLS	2214.303998	1332.977548	-0.73201974	0.000345485
ELP2	3091.44608	1859.920131	-0.732710381	0.000565114
ZBTB37	1483.153993	892.0548353	-0.732855956	$2.60 \mathrm{E}-05$
TBC1D22A	1386.521695	834.4031601	-0.733454619	0.000218997
INVS	1171.255032	704.3514294	-0.733566293	2.86E-05
PCCB	2897.921851	1742.551268	-0.733874036	0.012418645
MRPL15	1307.190735	785.7962288	-0.733978267	0.016907215

ZIC2	2225.945459	1338.14049	-0.734124237	0.00098755
KDM1B	1624.812402	976.5314701	-0.734722149	$2.46 \mathrm{E}-05$
RABL3	924.7842408	555.5410354	-0.735237408	0.006636636
RPS27A	22514.64423	13518.87561	-0.735867262	0.000375514
PELI1	3064.567318	1839.297008	-0.736515135	1.83E-06
ULK4	241.254164	144.652345	-0.73722101	0.021193758
WDR5B	450.0132692	270.2101977	-0.737288643	0.001530377
DUS4L	479.9791209	287.5724629	-0.737568068	0.003384847
TSEN2	521.1202685	312.27413	-0.737716845	0.012505056
RPL37A	21745.6068	13036.56922	-0.738207338	$6.52 \mathrm{E}-06$
TMEM250	2526.124514	1514.620845	-0.738368301	7.29E-05
TCEAL8	1360.34577	815.2196395	-0.738486445	$7.96 \mathrm{E}-05$
GOLGA7B	176.3902452	105.6287771	-0.738939324	0.038388794
ENC1	23681.12629	14172.96543	-0.740581887	0.000119969
ATPAF1	3675.521956	2199.413415	-0.740677273	$1.96 \mathrm{E}-06$
MT-CYB	88182.23425	52772.51561	-0.74071085	7.82E-06
AKNA	1033.226174	618.2380013	-0.740938793	0.000354758
NR2F2	10576.23413	6328.030724	-0.741038308	$7.10 \mathrm{E}-05$
NIPSNAP1	5267.918797	3150.530265	-0.741866564	0.000234018
WDR18	2806.256637	1677.949542	-0.7419724	0.001550174
ABAT	818.2205386	488.6142182	-0.742885232	0.000273416
G2E3	1790.176686	1069.495697	-0.743258705	0.003630268
TXNL1	2595.665455	1549.730647	-0.74377511	0.000631528
SATB1	947.5146229	565.3829058	-0.744737124	0.026984067
HNRNPH2	3344.804075	1996.045428	-0.744943771	$5.38 \mathrm{E}-05$
MBTD1	1000.009603	596.7065864	-0.745123309	0.000115973
MPND	498.16592	297.6440284	-0.745446966	0.025824337
CMAS	2792.762003	1665.60293	-0.745570931	0.000605905
ZNF775	257.0769315	153.5084003	-0.746897879	0.009113473
DHODH	522.7000419	311.6168551	-0.74707199	0.005820792
FRK	505.1024179	300.8754818	-0.748579932	0.011054536
IRS1	3337.333245	1986.390481	-0.74871792	0.0023306
VIL1	4239.117339	2522.018165	-0.749171125	0.001019156
COQ3	419.2666558	249.4846524	-0.750321729	0.020318371
CASP4	1354.331505	803.7775836	-0.751825643	0.001876022
NAT10	3456.956109	2052.033485	-0.752299306	0.006968142
GRPEL2	2189.919146	1299.463097	-0.752492983	0.000858304
MRPL30	1369.601469	812.1923838	-0.75343923	$1.44 \mathrm{E}-05$
LPCAT2	1518.054465	899.3148905	-0.754803288	0.001907386
RPL39	9481.567996	5617.353645	-0.755311666	$1.27 \mathrm{E}-06$
GXYLT2	854.8451176	506.7452698	-0.755431082	0.009457452
CCDC167	320.4193804	190.0382446	-0.756484422	0.012356627
POLR1D	5255.667989	3110.251994	-0.756606511	$2.99 \mathrm{E}-05$
POLL	1627.367942	962.7951377	-0.757313455	0.000142568
AP1S1	4637.32189	2742.951061	-0.757881689	0.00022618
CAMK2D	3038.171056	1795.129447	-0.759174786	8.76E-05
TAF1	3503.264375	2069.402032	-0.759323801	$1.81 \mathrm{E}-05$
RNF144B	168.4997751	99.77153901	-0.75960821	0.023451765
UTP25	1114.115698	657.3393569	-0.760418908	0.013876871
MECR	812.4487542	479.7006708	-0.76099032	0.000204204
ICK	1148.425341	677.9213405	-0.761022313	$1.52 \mathrm{E}-05$
EMC2	1339.941774	790.6168734	-0.761272494	6.89E-05
SOCS7	3768.606463	2223.03027	-0.761326004	$3.74 \mathrm{E}-06$
ZNF717	714.5874841	421.6093913	-0.761675138	0.001436337
POLI	1016.622026	599.6611658	-0.761686747	0.001897921
BTF3	18580.17485	10957.53584	-0.761811964	$3.11 \mathrm{E}-05$
SCLY	285.0204719	168.028808	-0.762264465	0.002368003
CHMP2A	3821.532927	2253.483404	-0.762385884	0.000404341
NPDC1	4145.334001	2443.293357	-0.762826304	0.015907484
EFNA1	2588.81595	1525.535864	-0.762976726	0.005458123
CLOCK	4520.636716	2662.679209	-0.763469482	0.000104056

TFPI	594.1864933	350.0435689	-0.763659326	0.046951444
FTH1	35772.93771	21051.60081	-0.764956114	$2.56 \mathrm{E}-06$
KDELR1	16769.39161	9866.803749	-0.765223145	$2.76 \mathrm{E}-05$
01-Mar	1792.668438	1054.110239	-0.766025433	0.000141515
BTBD11	123.1670478	72.8325548	-0.76637819	0.041125317
MFSD14A	172.4392014	101.4384417	-0.766446661	0.016211213
ARMC10	1927.999412	1133.32058	-0.766504179	0.000153575
FKTN	1479.82462	869.4865286	-0.76664242	$3.58 \mathrm{E}-05$
CCDC171	169.9411158	99.73307171	-0.767216235	0.006195453
RABGGTB	2873.760575	1686.973842	-0.768438636	0.001303082
TRIM31	171.9152426	101.0916477	-0.76853182	0.016382018
BBC3	1784.343747	1047.733138	-0.768694582	0.010406023
G6PC3	1898.921351	1114.763177	-0.768697421	0.00423353
KCTD15	2408.274519	1413.26938	-0.768710614	0.000323519
ZNF33B	1946.33178	1141.409342	-0.769378744	0.000604391
BTBD9	904.4113223	530.6606611	-0.769687564	0.000227596
DYNC2H1	512.3692138	300.5973834	-0.769757899	0.002946171
L3MBTL3	296.9990857	174.3823749	-0.770466054	0.004072437
ALDH1L1	2812.485408	1648.588232	-0.771016904	0.028484885
DNAJC10	4808.832392	2817.166171	-0.771309522	0.004036166
USP6NL	3911.368302	2289.075359	-0.772798725	1.19E-06
NUDT12	644.9111742	377.2223693	-0.772971481	0.000372322
MMP15	6113.426768	3577.177858	-0.773349625	0.004502776
GDI2	11789.71524	6895.295002	-0.77376488	4.11E-06
DCAF4	765.033647	447.0485201	-0.774821049	0.000460786
TTC14	2376.15036	1388.236771	-0.775484127	0.000101311
CBWD6	236.5534075	138.1445551	-0.775651336	0.015850422
UFM1	2158.965119	1260.379442	-0.77594342	0.004944239
SRSF8	2338.736471	1365.244258	-0.776033746	0.000332052
LYRM9	359.2018876	209.8855516	-0.776369864	0.010206715
CLCN3	6225.099212	3634.820512	-0.77639979	3.45E-05
RSL1D1	7420.231387	4328.076085	-0.777582643	0.024832029
TATDN1	682.5027823	397.6704543	-0.777779199	0.035664212
HSD17B8	318.4804745	186.2110321	-0.777965018	0.044164039
ATF6B	3515.431088	2049.410945	-0.778796003	4.05E-06
HDDC3	286.6292456	167.1572963	-0.779321042	0.000531435
TTPA	163.0414623	95.11261861	-0.77997479	0.022067989
METRN	1567.89394	913.1849526	-0.780454905	0.025238749
PYGB	7070.689744	4115.722441	-0.780694379	0.000392023
SCG5	790.5819561	459.9368366	-0.781588705	0.039891455
TNS3	8368.920212	4864.727815	-0.782636038	0.00060373
UBXN6	4112.606116	2390.957978	-0.782644611	0.001187704
RPS12	18824.61576	10936.56818	-0.783484508	$2.62 \mathrm{E}-06$
SMPD2	362.7143991	210.5298761	-0.783606995	0.000404603
METRNL	2366.317461	1374.808209	-0.783730205	9.53E-05
DPYSL3	752.2586543	437.3821683	-0.784015233	0.017949482
TFRC	7498.126089	4353.745413	-0.784312886	0.000645922
SLC35D2	351.3944852	204.2892693	-0.785497732	0.000728708
MCRIP2	1873.089171	1086.634674	-0.786340535	0.000411538
ACOT1	177.4986282	102.6553115	-0.78634543	0.01039623
FAR2	1020.33317	591.3758257	-0.786816468	0.012354782
TCEANC	99.10611144	57.44362634	-0.786844471	0.024903101
NARS2	957.3887193	554.629306	-0.787343402	0.015032919
DVL1	5356.547572	3102.994369	-0.78783445	$7.40 \mathrm{E}-06$
RHBDL1	887.8657212	514.2628066	-0.788272894	0.037649489
TXNDC12	571.686189	330.5475755	-0.789453433	0.000442358
WIPI1	806.3539459	466.1409115	-0.789775911	0.000163193
TMEM101	1513.647956	875.9759389	-0.789813714	$3.24 \mathrm{E}-05$
CPNE3	4624.940389	2671.313934	-0.791670891	0.000205256
SQSTM1	12149.66818	7016.513257	-0.792086025	5.13E-05
DYRK2	1953.244789	1127.960396	-0.79212127	6.27E-06

TIGD6	192.5620443	111.3401931	-0.792158312	0.004657136
ERLEC1	2457.734659	1418.868154	-0.792699457	5.35E-05
GPR135	212.2310516	122.9015714	-0.792939406	0.006183852
MARCKS	3207.797822	1850.951378	-0.793172689	$4.29 \mathrm{E}-07$
MT-ATP8	2810.144074	1621.453876	-0.793690357	$6.50 \mathrm{E}-06$
RPS26	11612.36491	6698.19159	-0.793769444	4.33E-05
ATP5F1A	22203.69688	12805.49543	-0.79403293	0.000103481
TMEM120A	1364.19432	786.9351489	-0.794076619	$8.25 \mathrm{E}-06$
CTSC	1027.249846	592.5883447	-0.794162969	0.005135312
LMBR1L	966.1655552	557.1013846	-0.795229305	0.013017161
PLXDC2	169.3707091	97.79831775	-0.7960208	0.04185087
UBE2J1	4148.131792	2388.193004	-0.796359497	0.000378784
RPS27	20610.22071	11858.69363	-0.79744738	$1.91 \mathrm{E}-05$
COX18	738.6670366	424.6925772	-0.798541279	0.003675068
CTIF	1684.889841	968.9613316	-0.798551614	0.00041766
ECSIT	1086.303397	624.1217287	-0.798805229	0.015292282
SMIM26	524.6082225	301.2959709	-0.79925223	0.002891554
TRIQK	385.9741388	221.6320066	-0.799768406	0.001754053
ZNF254	705.2442746	404.7895481	-0.800001728	$1.14 \mathrm{E}-05$
SHROOM3	10826.43003	6216.490604	-0.800277709	0.000809041
TMED7	4306.183784	2472.09441	-0.800485779	3.99E-06
VPS51	3684.678212	2114.337531	-0.80138782	7.27E-07
BTBD3	989.5152483	567.9312462	-0.801481959	0.000400139
BET1	878.9602929	503.7304314	-0.802122154	0.000148422
COMMD8	694.2756439	398.0037789	-0.802381785	0.000997653
PRR22	221.9549116	126.8837977	-0.80241301	0.028438175
NUDT16	2029.995657	1163.688546	-0.80255037	$3.51 \mathrm{E}-06$
PUS1	1756.03922	1006.034484	-0.803202107	0.033153739
SIL1	1816.535108	1040.489048	-0.804621107	7.89E-05
TOM1L1	2870.799078	1642.751159	-0.805132642	4.49E-07
PPA2	2816.066931	1611.300459	-0.805363164	0.001067853
CYP4V2	1093.428448	625.4316769	-0.805913291	0.00173054
TWF2	1553.917946	888.9493155	-0.806171049	$4.51 \mathrm{E}-06$
NT5DC1	1432.995922	819.0657348	-0.806256202	$1.51 \mathrm{E}-05$
NHP2	1925.915108	1101.357806	-0.806277137	0.003812453
FAM206A	847.2856324	484.2313811	-0.806658076	0.000334312
TMEM126A	558.4882383	319.2662578	-0.8075163	0.002072214
SECISBP2	3087.466533	1763.69138	-0.807673418	$3.31 \mathrm{E}-07$
USP25	3184.152113	1819.015298	-0.807900991	4.95E-06
FBXO32	282.4942034	161.671916	-0.807941428	0.020434881
TXNDC15	1929.150289	1101.887805	-0.808174614	0.000463021
ELMO3	1934.901286	1105.515707	-0.808234989	0.00191109
ZNF333	544.3937232	310.9490255	-0.80906334	0.00187987
ARL4C	2633.103322	1502.102881	-0.809670155	3.36E-05
CCDC191	355.7714545	203.0711091	-0.809899861	0.033241479
TMEM164	1141.794791	651.3765249	-0.810605056	$3.07 \mathrm{E}-05$
COBLL1	2076.515978	1182.810259	-0.811345124	$2.00 \mathrm{E}-05$
MLST8	3006.317505	1713.282184	-0.811493079	$4.30 \mathrm{E}-07$
OAF	1166.257647	664.857791	-0.811512262	$7.17 \mathrm{E}-06$
SP5	2355.846015	1342.508481	-0.811569468	$1.31 \mathrm{E}-05$
C7orf50	2753.060325	1568.457389	-0.812187861	0.003327779
MIPEP	830.6438423	472.5675248	-0.813410284	0.042809269
NR1D2	4603.546915	2618.724082	-0.813675515	7.99E-06
TNS4	2015.251837	1146.760399	-0.813844853	0.009978128
SLC25A15	660.5476757	375.4469336	-0.814909677	0.008797395
CLNS1A	2830.803354	1608.785215	-0.815091043	$7.60 \mathrm{E}-05$
SLC19A2	1207.896069	686.2346718	-0.815330035	$2.74 \mathrm{E}-05$
C8orf82	1679.862242	955.0736449	-0.815361805	0.0022916
FASN	36439.41164	20706.11667	-0.815476286	0.005774284
SEC23A	4671.943636	2654.373925	-0.815638096	8.39E-07
MRPL12	500.120775	284.2036842	-0.815999663	0.028076247

C1orf116	3189.894712	1808.88291	-0.818820896	0.00026736
MT-ATP6	115504.9851	65472.7513	-0.818996391	0.000240901
RPL27	17280.56426	9794.346005	-0.819103331	$5.84 \mathrm{E}-06$
TMCC3	660.5878548	374.1692463	-0.82010032	0.00024703
LDHB	1732.026516	980.2582127	-0.820947686	0.002700576
CLDN7	14438.52648	8169.950846	-0.821622753	$7.56 \mathrm{E}-05$
B3GALT6	1367.313597	773.751923	-0.822057854	0.000875879
THNSL1	1004.445457	567.7807056	-0.822208361	0.000133879
NIPSNAP2	2483.890008	1403.063375	-0.824179307	7.07E-07
LARGE1	920.0846625	519.6735717	-0.825343374	$6.27 \mathrm{E}-06$
BCAT2	3415.762291	1927.90988	-0.825355709	8.33E-07
HELB	543.554859	307.058186	-0.825548087	0.000159585
CLDN4	18864.84593	10643.39937	-0.82581985	0.000144835
KCNAB2	1459.142449	823.0418438	-0.826306464	$1.46 \mathrm{E}-05$
ANP32B	11332.67366	6384.805225	-0.827711221	5.59E-06
PPFIBP1	7157.066812	4024.452834	-0.830399372	7.01E-07
R3HDM2	1967.816991	1105.612665	-0.8317978	$2.64 \mathrm{E}-05$
FAM129A	892.3113506	501.0786569	-0.83217668	0.00069105
FBXO30	1456.952161	817.7983075	-0.832240405	0.000134067
RPL6	40119.47128	22523.03103	-0.832879976	$2.23 \mathrm{E}-05$
ZBED3	1593.216573	893.6370247	-0.833701028	$1.48 \mathrm{E}-05$
GTPBP6	4164.844229	2335.69124	-0.834454908	$1.06 \mathrm{E}-05$
TMA16	1163.550344	652.0366843	-0.834969133	0.010503722
TPO	172.9099634	96.77212641	-0.835724546	0.013755925
PDE4D	276.9199005	154.7705796	-0.836344142	0.001359253
DNAJC24	573.1851931	320.6995149	-0.837070337	0.000228184
TSPAN31	1011.431952	565.6823024	-0.838807791	0.000259566
LTA4H	3445.129991	1925.821058	-0.839120521	5.02E-06
ACVR2B	1798.865377	1005.412422	-0.839335215	$2.23 \mathrm{E}-05$
TMEM42	930.0496027	520.0691034	-0.839346861	$6.56 \mathrm{E}-05$
RCN1	5658.141998	3162.008249	-0.839471162	2.24E-07
MYDGF	3116.517622	1741.350377	-0.839906086	$1.20 \mathrm{E}-05$
THADA	1093.892718	610.8289906	-0.839943928	0.00036016
ABRAXAS1	447.4684158	249.838365	-0.840245693	0.000116158
C16orf58	1959.381489	1094.391408	-0.840771992	0.000133902
VPS13B	1748.295398	975.5468133	-0.841724527	$4.86 \mathrm{E}-07$
ZC3H6	1201.838781	670.4938343	-0.842276969	0.000275921
DBT	1818.29607	1013.247566	-0.843136273	$2.49 \mathrm{E}-07$
MMP24OS	1747.513368	974.4023818	-0.843461057	$2.99 \mathrm{E}-05$
CA12	153.3533149	85.46193996	-0.84396141	0.006633538
CARM1	6212.727989	3460.708442	-0.844083768	$1.50 \mathrm{E}-06$
KCTD18	975.3288853	543.201144	-0.84452107	7.13E-07
FZD7	2544.478986	1416.304226	-0.84504134	0.00083184
GNPDA1	2201.613697	1225.30751	-0.845957672	$3.68 \mathrm{E}-06$
C12orf60	77.04615195	42.78857322	-0.846071503	0.031694247
PODXL2	2071.999635	1153.073421	-0.846265631	$1.05 \mathrm{E}-05$
BOP1	3915.421936	2177.989085	-0.846547633	$2.10 \mathrm{E}-05$
SLC10A7	415.8142424	231.4339172	-0.846924026	0.000358495
GAS7	210.3820445	116.8474773	-0.846928477	0.010686701
RPS15A	3100.053684	1722.906264	-0.847304379	$1.60 \mathrm{E}-08$
TEX52	104.5103394	58.03086556	-0.847371147	0.028886188
SLC7A7	3589.824037	1994.92563	-0.847462866	$4.01 \mathrm{E}-05$
NUAK2	1913.457038	1062.52305	-0.847935384	$3.48 \mathrm{E}-05$
ENOX2	579.6088888	321.446721	-0.849776202	0.004140623
FSIP2	243.6089998	134.9063519	-0.84980481	0.035767377
FAM13A	836.446695	464.3196436	-0.849887701	4.22E-05
CCDC113	824.1070169	456.9586492	-0.850331787	$3.48 \mathrm{E}-05$
NADK2	1708.914925	947.7069192	-0.850797862	0.000797262
IKBKB	2100.336657	1163.426337	-0.852761137	0.000352412
SUMF2	5339.91087	2955.190083	-0.853781929	0.000511678
KRT18	45649.87941	25258.40893	-0.853823111	0.001095242

HS1BP3	1467.297864	812.395977	-0.853884686	0.000184265
MRPL3	4764.823371	2634.739701	-0.854601405	0.020106022
OXSM	620.5363391	343.0237437	-0.855123365	3.72E-05
SLC1A4	4197.740634	2319.889813	-0.855457788	0.000234344
LIMS1	6780.326791	3746.016515	-0.855739598	0.00011009
JDP2	1707.702026	943.2670035	-0.856222594	0.000184504
SSR3	7632.886319	4215.275168	-0.856484404	0.001908054
TMEM168	908.4036727	501.5439133	-0.856718746	$4.71 \mathrm{E}-07$
TKFC	3394.293361	1874.692069	-0.856898603	$4.00 \mathrm{E}-06$
CAT	2780.11641	1534.003541	-0.857858688	$5.11 \mathrm{E}-05$
01-Mar	234.6762175	129.2795036	-0.858675077	0.000577904
FOXO4	601.7380996	332.0729248	-0.858927595	0.003025644
ZBTB12	456.1665992	251.5526885	-0.859063292	0.000301478
RPL21	18981.21671	10460.62536	-0.859541072	$5.75 \mathrm{E}-08$
TRIM27	4025.662403	2218.451348	-0.859553087	$1.48 \mathrm{E}-06$
TSPAN1	1678.573035	925.352913	-0.859572395	0.031442323
TFB2M	924.0203209	508.8214281	-0.859830679	0.003507069
MRPS27	5966.835532	3283.214829	-0.861736002	0.000278672
RPS29	7045.67806	3876.810758	-0.861884708	$1.21 \mathrm{E}-08$
RIN2	352.3354705	194.0419216	-0.862103288	0.001558947
APEX1	8513.418747	4683.060157	-0.862189275	$1.54 \mathrm{E}-06$
GAL3ST2	708.5581187	389.8235379	-0.862308616	0.000503228
ALG14	358.1933036	196.618416	-0.863173371	0.000876323
RNF44	3719.805977	2043.894495	-0.864039701	$1.03 \mathrm{E}-05$
SH3BP4	11656.65445	6401.227383	-0.864688361	$1.53 \mathrm{E}-08$
LARS	6618.187824	3633.308976	-0.865105027	$1.28 \mathrm{E}-08$
PRKAG1	1424.967459	782.3867201	-0.865372291	$6.18 \mathrm{E}-07$
THBS3	764.4850056	419.6908932	-0.865400003	0.030698722
FUK	2069.911442	1136.085985	-0.86607925	0.001315539
TRIB2	169.8839384	93.64881869	-0.866768837	0.011514262
WDR12	2078.774951	1139.483862	-0.867140596	0.005304853
MAMDC4	1086.563636	595.8842727	-0.867575487	0.012743751
ADPRM	231.3477514	126.2698207	-0.868297534	0.014674856
KCNIP4	80.45134642	43.87850709	-0.869204779	0.024518463
DUOX1	222.761991	121.8670752	-0.869575228	0.010605642
MAN2A1	4027.384372	2201.545184	-0.871042801	$2.74 \mathrm{E}-06$
TRAPPC9	1444.59086	790.0938867	-0.871515853	$2.69 \mathrm{E}-05$
PPARA	3266.000813	1785.188614	-0.871584914	$6.25 \mathrm{E}-05$
ARSJ	429.4560934	234.5393215	-0.871937891	0.001309652
EIF2S3	12917.3934	7056.282432	-0.872238387	$2.01 \mathrm{E}-06$
ACP6	974.8803104	532.7028925	-0.873180638	$4.48 \mathrm{E}-06$
ICA1	2162.365249	1180.310461	-0.873725685	$1.44 \mathrm{E}-06$
ZFP36L1	4274.500608	2331.13442	-0.874426305	0.000337382
CHCHD10	3172.325264	1729.195928	-0.875389498	0.001057948
RNF125	752.7787495	410.060672	-0.876461224	7.04E-05
ARMC2	108.6193373	59.20536713	-0.87648083	0.01051131
PEX12	332.9845331	181.1444898	-0.876606034	0.000163807
TRAP1	5392.361077	2935.440199	-0.877273923	0.002108166
NKD1	5145.018752	2800.046577	-0.877901211	3.93E-06
PTMA	69509.65371	37813.00713	-0.878337283	$7.45 \mathrm{E}-05$
MIA2	2394.178193	1300.268696	-0.880810126	$1.77 \mathrm{E}-05$
LGALS3	12941.8607	7020.210292	-0.882516353	4.96E-05
INSIG1	10062.49543	5458.085009	-0.882645708	0.010208821
SLC38A10	7054.210842	3825.725718	-0.8828648	0.007872807
HSPA9	23796.02015	12900.88657	-0.883228421	0.000248415
LDAH	1487.063145	804.9350189	-0.885109085	5.63E-08
RBMX	13065.26084	7070.285196	-0.885793192	$1.44 \mathrm{E}-07$
NARS	12166.93475	6581.014152	-0.886530456	$6.89 \mathrm{E}-05$
PDSS2	697.3067107	377.1962304	-0.886823317	$1.31 \mathrm{E}-05$
HINT3	1786.010207	964.7061911	-0.888446202	$6.10 \mathrm{E}-08$
IARS2	7374.85029	3983.177966	-0.888729837	4.33E-05

ZNF397	1691.652011	913.8080646	-0.888934402	6.43E-05
SBSPON	1293.962778	698.4791897	-0.889217216	0.032719032
TGFBR3	2198.964044	1187.214769	-0.889462697	$3.98 \mathrm{E}-05$
TMEM135	1576.936084	851.6045984	-0.889765198	$1.38 \mathrm{E}-05$
DTD2	500.498516	270.4148555	-0.889896441	0.000229993
HOXA9	1685.223593	908.4686416	-0.890997371	$1.44 \mathrm{E}-06$
CPEB2	294.2587527	158.2810877	-0.891549696	0.00076599
ZNF524	803.6578214	432.7151314	-0.892013093	$1.15 \mathrm{E}-05$
MEX3A	519.2004043	279.7179261	-0.892977816	$1.79 \mathrm{E}-05$
AIMP2	1233.826084	663.9866457	-0.893102601	0.015122458
EXOC4	3836.537984	2064.795327	-0.893976259	$9.95 \mathrm{E}-07$
SMPDL3A	533.8457091	287.0630948	-0.894722649	0.000394059
FAAH2	345.7265745	186.2597894	-0.894775358	0.000760558
RPL9	21517.66272	11569.45861	-0.895206788	5.93E-10
TWNK	1257.374728	675.2392405	-0.896293494	0.015335718
PDK4	77.15251487	41.33930184	-0.896444662	0.03110619
PEX7	392.4841373	211.1765037	-0.896831489	0.00060373
MT-ND2	98046.51633	52657.16016	-0.896850101	7.53E-06
GNPAT	2171.662657	1166.160349	-0.897057624	$1.07 \mathrm{E}-08$
UVSSA	2758.249609	1481.302143	-0.897297737	0.000317425
SOX4	2425.398537	1302.108457	-0.897379299	$5.66 \mathrm{E}-06$
RPL30	10636.98473	5705.359239	-0.898734144	$1.90 \mathrm{E}-08$
TBX3	4153.889114	2227.324306	-0.89932186	0.000133866
ZBTB22	988.3865377	529.4168616	-0.90173053	4.19E-06
LIG3	2227.420265	1192.229036	-0.901784767	0.000442019
EIF4A2	20764.37551	11109.4329	-0.90229605	1.13E-09
RPS13	15223.92257	8144.229547	-0.902446244	2.02E-07
GPAM	1107.556645	592.1261256	-0.902914152	5.02E-06
ZNF485	166.214066	88.76477253	-0.90323944	0.005884054
TOP1MT	1137.523805	607.6868232	-0.9038124	$6.20 \mathrm{E}-06$
ATP6AP1L	581.965182	310.91032	-0.905022343	0.001311704
CDKN1B	4731.526222	2526.69748	-0.905055551	$2.81 \mathrm{E}-07$
NUS1	4017.962563	2144.982859	-0.905355684	4.72E-06
TFAP4	1619.81718	864.2378544	-0.90635491	9.17E-07
FBXL17	1279.624715	681.6995309	-0.907974823	8.90E-05
KLHL24	1708.493813	910.3243707	-0.908679785	0.003639426
NR1D1	726.2931565	386.7230104	-0.908963276	0.000785658
RPSA	53926.93676	28707.23853	-0.909579394	$1.00 \mathrm{E}-04$
CLDN3	4379.026323	2330.966577	-0.909839285	0.000154513
EIF1	17537.95821	9333.043887	-0.910001052	0.000406583
ZFAND1	2422.140485	1286.962778	-0.911791139	1.89E-05
RPL19	39156.12699	20788.5065	-0.913443481	8.35E-09
TXNDC5	848.8061965	450.7385067	-0.913537409	0.000392672
MAN1A1	1684.117362	894.0112851	-0.914490535	$1.07 \mathrm{E}-06$
SLC39A10	1523.943031	808.7711156	-0.914562795	0.000451977
LAMA5	17069.42391	9048.86348	-0.915638483	0.022444496
ZNF165	840.9434649	445.6833632	-0.916711251	0.000363559
ATP5MC2	4646.548982	2460.896155	-0.916944308	2.25E-09
FUT2	2382.850762	1262.464719	-0.917090118	9.46E-05
SCNN1A	11358.54064	6014.157592	-0.917439235	0.003306689
ZNF624	147.4860088	78.29399988	-0.917552966	0.006110545
RPS11	27426.63215	14515.47648	-0.917993928	$2.57 \mathrm{E}-10$
EIF3L	7824.957548	4140.811063	-0.918041234	$6.89 \mathrm{E}-08$
SSR2	3988.256516	2109.937505	-0.918343481	$9.31 \mathrm{E}-06$
ADAP1	1228.96488	650.6740792	-0.918628149	$7.90 \mathrm{E}-06$
RPL24	19565.58595	10349.81375	-0.918661937	$4.99 \mathrm{E}-07$
SUSD4	726.4923022	384.4296207	-0.919244651	0.002919081
PRF1	436.8940737	231.3079144	-0.919819047	0.01803607
NUDT18	560.4931841	296.5395625	-0.920206878	$1.98 \mathrm{E}-05$
RPL41	19108.52941	10086.77532	-0.921784031	6.13E-09
ATP5F1D	4709.37198	2484.487234	-0.9225508	0.00013186

BCKDHB	1122.938983	592.3547291	-0.923371848	$2.76 \mathrm{E}-05$
CRYZ	1957.177143	1032.402367	-0.923388039	5.83E-06
CADPS2	620.2394137	327.2931234	-0.923558725	8.63E-05
MAPT	624.0627312	329.1929109	-0.923757415	0.015850422
AMER1	500.9384826	263.5066236	-0.925063144	0.003467993
TOMM7	2059.766627	1084.762507	-0.925730792	$1.07 \mathrm{E}-06$
IER5L	2361.670504	1243.310497	-0.926043799	$3.16 \mathrm{E}-05$
C10orf95	70.65518932	37.17098938	-0.927710466	0.022795253
MT-ND4	282840.873	148538.8389	-0.929155315	$2.15 \mathrm{E}-05$
ASS1	13308.88241	6988.962989	-0.929269713	3.09E-06
RPS16	28330.13517	14871.2887	-0.929821969	$1.66 \mathrm{E}-10$
NFS1	1037.303204	544.7907353	-0.930145925	0.000345639
NACA	14227.21761	7463.602708	-0.93063645	$2.88 \mathrm{E}-07$
SEL1L	3867.359288	2028.664518	-0.930735808	$4.55 \mathrm{E}-06$
EIF3F	7319.711434	3839.352173	-0.930781447	$4.94 \mathrm{E}-09$
ALDH1B1	3118.396227	1634.893024	-0.931468076	0.021708284
ZBTB41	1258.558464	658.7914147	-0.933508917	$2.48 \mathrm{E}-08$
BZW2	2926.541124	1531.87592	-0.933726313	0.002483712
METTL15	1071.190262	560.175683	-0.934381715	$4.79 \mathrm{E}-06$
SLC4A8	675.6363111	353.6938673	-0.934606594	0.000589803
RASL11A	422.3211058	220.7378534	-0.935678745	0.020025525
RPL23A	12315.37052	6434.966755	-0.936443961	$2.67 \mathrm{E}-10$
MXI1	1811.702838	946.9031874	-0.936448776	0.000288876
WARS2	852.7840132	444.8477277	-0.937427109	0.00108141
TMEM150A	407.076364	212.6140457	-0.937803318	0.001021085
ARID5B	3186.352754	1663.030705	-0.93791289	0.000160561
KBTBD7	678.2793345	353.9632042	-0.938637234	0.003537679
KIZ	745.9452721	389.5797676	-0.938910158	0.000263866
RGL1	130.556819	68.03382091	-0.940015204	0.007868595
EPHX2	777.7070104	405.3454572	-0.940041566	0.000175649
APBB3	1507.299429	785.8469759	-0.940123884	0.011528893
PPM1H	2132.781233	1111.485388	-0.940414452	1.95E-09
MT1A	129.7187606	67.63469923	-0.9405488	0.026725551
ZNF202	681.8465529	354.9051285	-0.941271763	0.000268912
CCNG1	4965.617894	2583.815838	-0.942335169	$9.45 \mathrm{E}-09$
TPT1	28886.9842	15014.71075	-0.944053481	$1.70 \mathrm{E}-06$
SLC7A1	12329.5199	6403.411654	-0.94511729	0.000715233
CXADR	8003.268773	4155.756563	-0.945426752	8.89E-09
RIOX2	1307.593199	678.6681026	-0.945618363	0.007032425
VWA2	932.2449802	484.1646082	-0.945865511	0.002582088
LCN2	531.8206428	275.8682604	-0.945918247	0.018714813
SLC6A6	5278.663773	2738.864834	-0.946398288	$2.81 \mathrm{E}-07$
C6orf120	1425.428451	738.9759804	-0.947006405	1.25E-07
CEBPB	3493.283705	1811.214392	-0.947399753	$4.26 \mathrm{E}-05$
FTL	58295.58275	30225.68554	-0.947640286	$1.13 \mathrm{E}-05$
MANEA	822.1897657	425.8305538	-0.948300416	$3.46 \mathrm{E}-05$
ALDH2	2774.069048	1437.821837	-0.948741899	$3.09 \mathrm{E}-07$
MAGI2	82.65267864	42.94109889	-0.949085592	0.046930719
ENDOD1	2492.47552	1291.454404	-0.949129686	$1.09 \mathrm{E}-05$
RPS4X	23893.44302	12374.13519	-0.949306701	$7.94 \mathrm{E}-11$
RPL38	8901.35039	4607.352563	-0.950148626	$1.09 \mathrm{E}-08$
RPS7	20892.10143	10797.69635	-0.952181301	$1.01 \mathrm{E}-09$
RPS3	42784.99151	22105.9383	-0.952691979	$3.23 \mathrm{E}-10$
PABPC1	57808.54928	29855.75449	-0.953246309	$3.95 \mathrm{E}-05$
TACC2	4103.640009	2119.023745	-0.953666252	$1.43 \mathrm{E}-09$
AUH	1129.037399	583.0116594	-0.954622829	$3.20 \mathrm{E}-07$
TBC1D5	3595.510642	1855.247524	-0.95496975	$7.33 \mathrm{E}-08$
MVP	3684.723864	1901.172796	-0.954986326	$4.74 \mathrm{E}-05$
DMD	343.5237906	176.6290224	-0.95509571	0.001200785
GULP1	349.7260873	180.1285919	-0.956189281	0.000155935
CD55	2914.831419	1501.302377	-0.956602306	3.35E-07

EIF4EBP1	4020.10865	2071.773918	-0.95666335	$1.96 \mathrm{E}-06$
RPL36	13108.02907	6754.086775	-0.95669263	3.88E-09
RPS9	26488.95278	13644.7618	-0.957031889	$4.40 \mathrm{E}-10$
SREBF1	10684.56141	5502.493107	-0.957518532	0.001387558
HOXB7	2382.980992	1226.404915	-0.958267146	0.00042268
VPS28	1942.99633	999.6665157	-0.959334339	$6.15 \mathrm{E}-06$
TMEM192	1756.135991	902.4445042	-0.959973558	8.37E-05
FAM151B	60.41730003	31.15998153	-0.961128547	0.028250243
CDH17	2626.084611	1348.840403	-0.961222386	0.017523473
HOXA11	354.9795005	181.8693885	-0.961573724	0.000569924
TARBP1	2876.145795	1475.238327	-0.963419562	$4.03 \mathrm{E}-05$
ACAT1	3335.890631	1710.371614	-0.963847963	$2.63 \mathrm{E}-05$
NOTUM	3015.081469	1544.038956	-0.965668458	0.037237105
FGFBP1	838.9691005	429.8331857	-0.965942002	0.010053856
ATP6V1E2	398.1889041	203.7810689	-0.966872911	$3.91 \mathrm{E}-06$
NUDT4	4679.503024	2393.665964	-0.967140688	$2.63 \mathrm{E}-10$
NPM3	1548.68293	791.7098376	-0.967899713	0.00584105
ARSD	2713.896042	1386.922102	-0.968469639	0.001047323
PRSS23	3478.481837	1777.015999	-0.969183907	0.000206877
RPS2	103692.6667	52926.97661	-0.970234349	$2.33 \mathrm{E}-05$
CDH12	103.0642945	52.76780837	-0.970424088	0.039274028
FURIN	15570.45129	7946.067673	-0.970534698	0.000309206
PCDHB2	68.15805775	34.88072603	-0.971107374	0.016230154
AK8	64.738046	33.07436707	-0.97222584	0.030826418
ACOT13	793.2205545	404.0838501	-0.974319925	$2.09 \mathrm{E}-06$
SESN2	2409.843107	1224.359778	-0.976892388	0.000151361
SGPP2	1070.213931	543.127078	-0.97772018	7.85E-06
TRPS1	557.0492434	282.6274074	-0.978313991	$2.63 \mathrm{E}-05$
LTBP1	713.5118051	362.2757516	-0.978431841	0.012325865
PYCR3	1075.823925	546.3286211	-0.979157914	0.000208016
MT-ND4L	66863.86645	33912.85336	-0.979423072	$3.58 \mathrm{E}-05$
IRF2BP2	4737.515333	2401.590947	-0.979954177	$3.15 \mathrm{E}-05$
RPS3A	27064.50671	13714.57647	-0.980692834	$1.80 \mathrm{E}-12$
OVGP1	76.32817713	38.76933872	-0.981019174	0.04920273
ASMTL	1826.25593	925.0198925	-0.98204055	$1.42 \mathrm{E}-05$
EDEM2	852.2511739	431.3479663	-0.984193293	$1.22 \mathrm{E}-05$
NEK11	102.9512488	52.03977293	-0.986024124	0.012015142
ALKBH7	1500.873146	757.6242091	-0.987143017	$9.40 \mathrm{E}-08$
USF3	1950.748606	983.8186435	-0.98791223	$8.45 \mathrm{E}-09$
UGDH	4862.880393	2448.634203	-0.989833904	$2.54 \mathrm{E}-05$
CNTD2	365.1297483	184.1490277	-0.989893235	0.005123958
HK2	5329.545014	2681.17321	-0.990992455	0.000102491
ACADSB	1620.797598	814.8971842	-0.991516336	7.71E-10
FAM117B	967.6721609	486.78	-0.992012904	$4.61 \mathrm{E}-07$
ERMARD	1493.93477	750.0708226	-0.99493939	0.000262961
ISL2	237.6292469	119.4019292	-0.995450958	0.000385427
IBTK	5205.437703	2605.346293	-0.998528372	$2.75 \mathrm{E}-07$
EIF3M	7720.394153	3862.066333	-0.999140937	0.000177196
FARS2	604.6976166	302.4055818	-0.999925974	$1.46 \mathrm{E}-05$
PSD	101.9391098	50.86304456	-1.000451661	0.007169572
TMEM144	502.1959379	251.3822363	-1.000724035	$1.20 \mathrm{E}-06$
CREBRF	1077.657994	538.5668838	-1.001036771	0.000177023
SLC2A13	361.2681648	180.4582503	-1.002902145	$1.84 \mathrm{E}-05$
ME1	5334.611501	2659.583053	-1.004121166	$5.29 \mathrm{E}-10$
KIAA1147	3683.800511	1835.59159	-1.005033676	$1.04 \mathrm{E}-08$
AC007240.1	52.01883177	25.90307521	-1.00589961	0.035954662
RPL22	2828.47469	1406.785376	-1.007152434	$4.64 \mathrm{E}-08$
ID2	14350.35961	7138.005928	-1.007569032	$2.43 \mathrm{E}-05$
GSTA4	260.6313056	129.8118116	-1.009274105	0.030571705
SNCAIP	250.4574717	124.3920861	-1.010023586	0.004664638
AARS	14465.03253	7173.176712	-1.011970781	5.43E-10

SRI	1208.235544	597.8665294	-1.015012543	$1.59 \mathrm{E}-06$
VLDLR	800.6399482	396.1331548	-1.015020707	$2.40 \mathrm{E}-05$
PHPT1	2465.862719	1219.619586	-1.016024833	0.000455135
NSA2	3875.74697	1915.967905	-1.016092383	$1.91 \mathrm{E}-05$
CYBB	51.88787031	25.59776256	-1.016115473	0.035064192
ERICH2	483.9793206	239.5445331	-1.017719644	$3.77 \mathrm{E}-06$
SBF2	2428.842117	1199.45705	-1.018278397	2.22E-07
EXOSC5	989.9970301	488.4578044	-1.018361	0.007460619
CCT6B	104.4714212	51.38575038	-1.018530739	0.021828045
PKDCC	203.0799263	100.3493947	-1.019008756	0.001051303
PPM1L	346.5869035	171.1046257	-1.01991852	$2.12 \mathrm{E}-06$
ERRFI1	7559.313587	3720.186295	-1.02288217	$2.64 \mathrm{E}-05$
RPL8	59565.22021	29223.35587	-1.027348902	$1.26 \mathrm{E}-09$
TSC22D3	1266.899487	621.4794408	-1.02764982	0.000284361
IRAK1BP1	413.2573736	202.591271	-1.028380638	$2.42 \mathrm{E}-06$
EIF3H	7184.163136	3519.953613	-1.029153928	2.53E-09
SLC33A1	1048.911562	513.4062003	-1.030119725	4.01E-05
RPL18	27834.96022	13627.17073	-1.030393718	$8.01 \mathrm{E}-11$
SAMD12	959.3031731	469.4239283	-1.031572443	1.42E-09
UTP14A	2028.234784	990.7059993	-1.033099902	0.000948487
TLR5	109.0141709	53.37271286	-1.033636391	0.038483653
MMAA	169.0169323	82.2441283	-1.033725082	0.000559626
SLC38A1	17842.40567	8714.572041	-1.033731547	4.35E-07
FAM172A	968.0544699	472.2929306	-1.03399888	$1.01 \mathrm{E}-07$
KSR2	729.0145004	355.6481989	-1.034272152	$1.10 \mathrm{E}-07$
RPL32	20717.13286	10111.48882	-1.034788122	1.73E-08
MTMR4	4867.148701	2373.735737	-1.03602051	$8.50 \mathrm{E}-10$
EARS2	2400.253392	1169.671423	-1.036892729	2.29E-06
TMED3	2366.580982	1152.922751	-1.03709387	$1.70 \mathrm{E}-09$
TSEN15	1610.985985	784.1413861	-1.038109622	0.000541907
MCTP2	787.4320563	383.7571883	-1.038183765	4.32E-06
LONRF1	2139.773091	1042.217228	-1.038502288	1.92E-07
HNRNPA1	55345.78327	26934.3431	-1.039017473	1.87E-12
SUMF1	1248.471466	607.0761818	-1.040983649	3.05E-06
LARGE2	1235.032583	600.1595491	-1.041601575	$2.19 \mathrm{E}-10$
SLC19A1	1824.656719	886.4215356	-1.042339324	1.87E-05
STX3	7584.930475	3676.797485	-1.044711375	$6.11 \mathrm{E}-07$
KCNAB1	80.31485136	38.87279261	-1.047137827	0.030047724
EEF1B2	10531.53595	5095.952566	-1.047182762	5.25E-05
BHLHA15	293.3687301	141.9027611	-1.047818507	0.001973608
RPL15	46315.52756	22398.24846	-1.04811342	$1.55 \mathrm{E}-13$
ADAT2	725.148616	350.288315	-1.048743056	$1.40 \mathrm{E}-06$
PSPH	3044.103829	1471.258615	-1.048930811	$1.29 \mathrm{E}-08$
PLA2G4A	78.29691281	37.90383568	-1.049278177	0.020948996
BICRAL	1309.08597	630.8970229	-1.053228014	$3.40 \mathrm{E}-11$
CPS1	190.2199752	91.99747352	-1.054460596	0.002080517
DTD1	617.4630541	297.0068734	-1.055411465	$9.39 \mathrm{E}-05$
E2F5	798.4135025	383.3544003	-1.05726291	$1.26 \mathrm{E}-08$
BDKRB2	700.0343824	336.3444298	-1.058358555	0.001230954
NBAS	2642.127723	1268.344623	-1.058364345	$2.89 \mathrm{E}-07$
SLC7A2	2296.763817	1100.827199	-1.060327777	$1.46 \mathrm{E}-06$
COX7A2L	3706.555139	1776.670455	-1.060616818	$1.01 \mathrm{E}-09$
PPP1R9A	2190.60425	1049.629679	-1.061713736	4.66E-09
DIRAS2	86.04485092	41.09727852	-1.062699369	0.019089529
PKP1	334.1813749	160.2493362	-1.063241505	0.02060621
SLC16A13	1038.892284	497.5421094	-1.063842156	$2.84 \mathrm{E}-05$
RPL13	52778.09713	25224.60247	-1.065108724	1.13E-14
L3HYPDH	409.1453068	195.0372556	-1.06668702	$1.20 \mathrm{E}-05$
PIP5K1B	663.8606536	316.5758239	-1.066979227	0.000503725
EDEM1	4153.507144	1982.179658	-1.067126134	$1.90 \mathrm{E}-08$
HSP90B1	67743.7673	32323.50393	-1.067524619	$1.30 \mathrm{E}-07$

TECTA	149.5739986	71.37981255	-1.068106007	0.012477706
OSTC	3075.090123	1466.186216	-1.068538252	$3.21 \mathrm{E}-09$
KIAA1614	67.20244457	32.04202487	-1.069406128	0.01497375
DNASE2	3115.627053	1484.383098	-1.070106076	$4.30 \mathrm{E}-09$
CPVL	642.2544238	306.1689859	-1.07025749	$2.84 \mathrm{E}-06$
FAM189A1	220.7422279	105.4629439	-1.071495116	0.000397729
ARHGEF4	756.6895949	360.2053466	-1.072778141	0.001318292
TGIF1	4223.989024	2007.919037	-1.072838122	$2.45 \mathrm{E}-11$
IDH1	7733.46907	3675.570935	-1.073392607	$5.27 \mathrm{E}-08$
WDR3	1978.563704	939.8701494	-1.073514957	0.000680883
TSNARE1	766.8371057	364.0902235	-1.075701936	0.000155316
ZNRF3	6939.660982	3289.519209	-1.076944158	$1.66 \mathrm{E}-10$
KLLN	78.09690096	36.77296954	-1.077019436	0.006920916
VAMP4	492.7073401	233.3298466	-1.077204205	$1.35 \mathrm{E}-07$
DNAH1	2643.800487	1252.928317	-1.07734956	0.006614834
DIAPH2	1314.281661	622.9096074	-1.077419495	$2.32 \mathrm{E}-08$
BAMBI	2638.509492	1250.02261	-1.078063389	$3.21 \mathrm{E}-07$
RPUSD4	2030.608277	960.45246	-1.079505898	$1.09 \mathrm{E}-05$
SLIT1	136.2273306	64.52790867	-1.081157276	0.020827984
GCLC	1918.727358	906.9791063	-1.081338403	0.000463193
D2HGDH	2155.091466	1016.872633	-1.084057341	0.00161811
CTSO	170.6858335	80.30599941	-1.085496388	0.025791977
KBTBD3	174.9708964	82.47985852	-1.08554804	0.000578821
APRT	3961.645886	1865.923685	-1.086411851	$3.16 \mathrm{E}-06$
TAF1D	4325.775923	2034.186759	-1.088267286	$1.79 \mathrm{E}-05$
PEPD	2166.746272	1019.10632	-1.088765418	9.17E-10
PTPRB	179.7965831	84.37423289	-1.091990427	0.001586423
RPS6	42040.96092	19717.36107	-1.092322431	3.67E-14
SLC16A9	696.4364579	325.8820475	-1.093508311	$2.04 \mathrm{E}-05$
PTPRG	3469.837048	1625.805696	-1.093608061	$1.74 \mathrm{E}-10$
TMEM106B	3280.068389	1535.711554	-1.094280961	1.03E-08
GALC	2051.221384	960.4430014	-1.095168206	$4.21 \mathrm{E}-08$
NPM1	46076.56079	21545.56333	-1.096612019	$6.38 \mathrm{E}-05$
MYADML2	109.9868998	51.42668266	-1.09712785	0.023574286
DISP1	337.373446	157.5676802	-1.097180654	0.001659539
COX20	320.2120809	149.7689615	-1.097301208	0.0003721
MTHFD1L	3693.4724	1724.81355	-1.098339467	0.002978575
NUBPL	560.3299756	261.604282	-1.098510575	$4.88 \mathrm{E}-08$
RPL18A	29054.23586	13559.41391	-1.099445227	1.10E-13
C14orf28	199.3276321	92.61355477	-1.100722117	$6.24 \mathrm{E}-05$
GFPT1	11542.10836	5378.915567	-1.101462573	2.33E-07
TMEM231	494.0751992	229.5001888	-1.104016475	$2.08 \mathrm{E}-07$
RBM43	643.2219689	299.1706378	-1.104373107	0.000208016
ATP2C2	2711.636658	1261.357711	-1.104479746	$9.35 \mathrm{E}-08$
SPRY1	518.6829331	241.2795857	-1.104628397	5.64E-05
TPD52L1	2174.65975	1010.090099	-1.105552565	4.23E-08
ITPR2	3470.580617	1611.918784	-1.106366119	$1.83 \mathrm{E}-11$
SMYD3	685.1002694	318.4907588	-1.106492931	2.72E-09
FKBP7	118.5405788	55.28365068	-1.106851671	0.000746449
DNAJB9	1617.761002	750.2737033	-1.108604637	8.82E-06
RGMB	499.1187898	230.7252212	-1.110759745	5.62E-07
WARS	6186.809506	2863.161349	-1.11149201	0.000143618
MRPL24	1617.749577	748.1870354	-1.112621814	$2.27 \mathrm{E}-05$
EPM2A	196.6091369	90.71908446	-1.112823474	$3.51 \mathrm{E}-05$
S100A14	8387.944683	3877.415955	-1.113385513	$1.79 \mathrm{E}-08$
SND1	10148.31369	4689.807185	-1.113581312	5.57E-12
TOMM20	10366.57642	4788.176465	-1.114276876	1.10E-09
COLQ	108.1792519	49.80956622	-1.115518355	0.014839319
ADAMTS17	110.8115515	51.19183924	-1.115652705	0.00437645
HNRNPA1P48	194.2905171	89.5784775	-1.119003955	1.49E-05
RPS24	23507.87947	10819.96994	-1.119440786	$9.24 \mathrm{E}-16$

IQCK	138.1949523	63.3843072	-1.119849576	0.000985126
PHB2	9248.853666	4255.226166	-1.119978201	$1.00 \mathrm{E}-07$
PTPN13	2505.533532	1152.787781	-1.120193435	3.17E-11
C12orf66	519.2726662	238.2811721	-1.122469958	0.001560636
CACNB2	160.3661683	73.7005956	-1.122739884	0.002835117
BMP4	13879.83077	6371.238614	-1.123292957	$8.40 \mathrm{E}-08$
FAT1	116472.6818	53377.60624	-1.125689274	5.23E-09
RSAD1	1012.224339	464.2217187	-1.12613524	5.97E-10
ZNF169	551.7999585	252.4889255	-1.127060287	$8.18 \mathrm{E}-05$
RPL35A	17828.80425	8162.443867	-1.127116033	5.33E-14
ALDH6A1	2637.847202	1207.078044	-1.128307686	1.05E-06
COL5A2	374.4681174	171.1513516	-1.130032596	0.001558965
WDR35	507.9848805	231.5860556	-1.132208592	$9.85 \mathrm{E}-06$
FRAS1	6876.755516	3133.510896	-1.133734298	$4.30 \mathrm{E}-06$
AGA	320.6761485	146.0001511	-1.135793266	$1.82 \mathrm{E}-05$
RPS8	45861.81958	20854.49658	-1.136934275	$2.89 \mathrm{E}-15$
HNF4G	573.8836286	260.497017	-1.137727014	5.04E-08
GALK2	963.806934	437.9987259	-1.138398565	$1.46 \mathrm{E}-08$
ID1	7353.6339	3336.074823	-1.140413159	0.001248402
FAM84B	2807.435805	1271.728649	-1.14203114	$1.34 \mathrm{E}-07$
RPL23	22181.42052	10027.23286	-1.14538699	6.12E-13
LMF1	662.5427562	299.7284627	-1.145398262	0.010416382
RFX3	880.7463629	397.2948979	-1.147853788	$2.52 \mathrm{E}-07$
SPRYD3	1415.505077	638.6494262	-1.148649531	$1.66 \mathrm{E}-10$
FPGT	610.8913519	275.6729596	-1.148662929	$4.58 \mathrm{E}-08$
DDX25	47.03125147	21.31079591	-1.149139263	0.036749662
GDPD1	200.3861721	90.49317139	-1.153176192	0.000140578
BCL2L14	219.8201888	98.80964289	-1.154913169	0.001633237
NPW	39.03770042	17.43628169	-1.15922365	0.037576487
ZFP2	118.3578252	53.17197908	-1.15959721	0.000742976
EBPL	1961.194422	877.6608374	-1.160045996	$9.68 \mathrm{E}-12$
HSPD1	32861.36573	14702.54618	-1.160313757	$6.15 \mathrm{E}-05$
TBC1D4	13274.99548	5929.005669	-1.162878503	7.59E-09
SLC38A2	12470.60323	5566.851668	-1.163652163	4.27E-11
IMPACT	2090.175106	931.9900101	-1.165060252	$3.91 \mathrm{E}-12$
MBLAC2	545.0870642	242.5596188	-1.165843276	$1.51 \mathrm{E}-05$
RPL37	17731.5419	7890.624348	-1.168182687	$1.44 \mathrm{E}-11$
CTTNBP2	125.3993532	56.00464846	-1.170188514	0.002919081
AJM1	1269.52143	563.7152389	-1.171577057	0.001966944
GCC2	5591.077843	2477.378276	-1.174208672	2.52E-06
VWA8	2269.786637	1005.530804	-1.174553294	$1.82 \mathrm{E}-13$
CCDC149	601.582557	265.6783091	-1.178634083	$5.78 \mathrm{E}-07$
IFT140	1719.270591	759.6695806	-1.178973797	1.09E-06
RPL27A	37545.19279	16529.73534	-1.18359422	$9.57 \mathrm{E}-16$
FBXO36	256.3856412	113.0350547	-1.184664944	5.02E-05
NLE1	1283.359492	563.0134673	-1.187716108	$4.19 \mathrm{E}-05$
LEPR	96.82186561	42.53939315	-1.192561003	0.003558449
HFE	1161.639881	508.1627543	-1.19367913	$7.71 \mathrm{E}-05$
GCNT1	840.4940355	366.6006295	-1.197650645	1.03E-08
SEMA6A	125.5638477	54.86796556	-1.198693566	0.000263866
ITGA2	4975.305765	2164.935303	-1.200131489	0.000300506
RPS25	16682.16685	7260.257149	-1.200226889	$3.70 \mathrm{E}-17$
RPS18	48634.8717	21164.61526	-1.200356161	$9.97 \mathrm{E}-16$
ARSG	326.7918046	142.1103175	-1.202067288	$6.98 \mathrm{E}-05$
EDF1	6821.603017	2963.1636	-1.203210348	$1.34 \mathrm{E}-05$
PLCH2	536.4668227	233.1688046	-1.204130908	0.000854879
ABHD14B	2309.927637	1002.193144	-1.204576263	9.65E-15
RPS14	26923.52262	11671.74512	-1.205849478	$2.64 \mathrm{E}-12$
DCHS1	34.05630538	14.8253863	-1.207906806	0.038694335
SYBU	770.2815561	332.7223942	-1.20987142	$3.09 \mathrm{E}-11$
KCNH8	88.78370282	38.41816384	-1.210422645	0.025374895

SERPINB1	9641.594767	4164.101291	-1.211212464	$4.39 \mathrm{E}-10$
TMTC4	1338.653362	578.5866991	-1.211736464	$3.81 \mathrm{E}-08$
PDIA4	27719.82962	11918.45913	-1.217768483	4.35E-07
PELI2	131.1759195	56.65888604	-1.218472143	0.000353895
FXYD4	117.4872405	50.59385332	-1.218785507	0.034787107
RFTN2	50.89040034	21.61163181	-1.220790076	0.036676033
PHYKPL	4421.181787	1896.390067	-1.221393417	0.000345094
RPL31	20929.26561	8970.801004	-1.222271097	$2.55 \mathrm{E}-15$
PBX1	948.5752778	406.492341	-1.222827244	0.000746449
N6AMT1	710.7749256	304.6329663	-1.223180951	$6.61 \mathrm{E}-09$
CRELD2	4366.833062	1869.261577	-1.224244713	$6.29 \mathrm{E}-05$
NAGLU	1668.780915	712.9464792	-1.227617218	$3.30 \mathrm{E}-09$
DDIT3	973.4576964	415.1371402	-1.22871616	2.82E-05
TARS	10862.60526	4632.41805	-1.229412168	$3.46 \mathrm{E}-06$
NOP53	8720.965125	3713.95415	-1.231518783	$4.64 \mathrm{E}-14$
TCF4	89.62741369	38.32064578	-1.231558496	0.012926486
ANK3	2443.37155	1040.209067	-1.232312915	$6.48 \mathrm{E}-06$
RPL5	34967.63624	14857.64993	-1.234774234	$2.20 \mathrm{E}-13$
ETFDH	615.3876768	261.6808594	-1.23597309	$6.45 \mathrm{E}-07$
NQO1	41927.21478	17795.35558	-1.236429141	$1.51 \mathrm{E}-06$
ANTXR2	167.4751057	71.14966091	-1.238399463	$1.29 \mathrm{E}-05$
IARS	19775.3997	8379.676528	-1.23869827	$4.06 \mathrm{E}-10$
GALNT4	50.44507796	21.19113583	-1.239971466	0.013935977
SERINC5	11868.32619	5017.770228	-1.242020535	$1.35 \mathrm{E}-07$
RPL34	13680.21938	5778.870115	-1.243214527	7.27E-18
RPL7	40682.94313	17165.57208	-1.244889103	$1.46 \mathrm{E}-17$
RPL10	44998.81475	18981.07348	-1.245323704	$2.10 \mathrm{E}-16$
SWT1	183.6148293	77.37090517	-1.246881916	0.000109828
DDN	189.5946426	79.82101633	-1.249547295	0.001363325
RGS5	66.28151357	27.73291619	-1.25365377	0.003974173
LZTFL1	1428.273434	597.6745838	-1.256613296	3.67E-10
CHRM3	205.0693269	85.74388967	-1.258450913	3.03E-06
BABAM2	734.0494358	307.039538	-1.259157714	$3.52 \mathrm{E}-12$
RPIA	912.8693037	379.7888119	-1.264880515	7.95E-07
AREG	1062.153647	441.2416637	-1.266673492	$5.10 \mathrm{E}-05$
SLC9B2	617.4681196	256.3840926	-1.267246088	2.15E-06
GMDS	1393.755777	578.2815875	-1.268362292	$1.11 \mathrm{E}-05$
BDKRB1	45.49950854	19.12386736	-1.268672376	0.042996152
DPH5	572.4374002	237.0400098	-1.272005041	5.58E-09
RBM3	8978.534944	3716.330336	-1.272409027	0.000267479
TDRD3	1192.709097	493.3582555	-1.27255301	$1.08 \mathrm{E}-13$
RPS6KA2	1353.44044	560.0737182	-1.272815524	$8.09 \mathrm{E}-11$
IZUMO1	2260.082061	931.5332254	-1.27968546	0.000217065
SDF2L1	2423.370883	997.7671085	-1.2806042	$1.15 \mathrm{E}-07$
STX8	550.2795794	226.4858904	-1.28170981	$3.26 \mathrm{E}-11$
TTC39B	2078.464813	853.1995692	-1.284572303	$2.81 \mathrm{E}-16$
RPL14	25117.77314	10253.11399	-1.292587037	6.23E-10
SORBS2	501.1977443	204.427412	-1.294394527	0.007161276
RNF43	2444.296385	993.8905004	-1.298738966	$2.01 \mathrm{E}-06$
HSPA13	4124.025475	1674.58209	-1.300234757	$1.45 \mathrm{E}-15$
HYOU1	19378.33064	7843.538347	-1.304870719	$2.48 \mathrm{E}-08$
FUT3	507.2739436	205.1115438	-1.306432229	$1.20 \mathrm{E}-05$
RASIP1	3411.461523	1379.062309	-1.307349852	$6.72 \mathrm{E}-05$
HAGHL	1558.859918	629.5060254	-1.309116234	$5.76 \mathrm{E}-05$
CCNB3	62.28162778	24.9917331	-1.31458152	0.005417459
CTH	626.5910973	252.0238576	-1.314950083	5.14E-10
CARS	4392.354413	1763.589882	-1.316377543	$2.77 \mathrm{E}-11$
RACK1	55717.01239	22269.57165	-1.323025353	$1.51 \mathrm{E}-18$
SLC6A20	784.4272039	313.4051221	-1.323448652	0.000132266
CCDC78	1198.361448	479.0404118	-1.323633992	0.002385335
HAPLN2	38.95283762	15.69445613	-1.323899904	0.026671116

RPL4	79294.51093	31660.80798	-1.324513122	$6.31 \mathrm{E}-21$
DDR2	97.03230458	38.37746974	-1.324981266	0.003094289
NOA1	3019.752133	1204.546167	-1.325495348	$5.90 \mathrm{E}-14$
HSD17B4	4820.548857	1922.326017	-1.326657422	$1.76 \mathrm{E}-09$
PARD3B	1051.776844	418.6170128	-1.327574883	$2.30 \mathrm{E}-09$
CCDC121	190.8359714	76.08368524	-1.329198477	0.000115633
HOXB6	7719.114976	3053.639135	-1.337898945	0.000693179
STEAP3	1269.591009	502.1742157	-1.338762601	$1.74 \mathrm{E}-15$
PPIB	7773.325537	3072.99441	-1.339098155	$4.48 \mathrm{E}-14$
TRDMT1	267.5479091	105.5479416	-1.340179015	$3.32 \mathrm{E}-08$
SEMA3A	1073.983863	423.8288015	-1.341104755	$2.24 \mathrm{E}-07$
PITX2	4550.760337	1792.443609	-1.344049465	5.47E-08
AMN1	181.9615569	71.6864652	-1.347539543	$1.57 \mathrm{E}-06$
RPL13A	74664.25682	29331.85124	-1.347967873	$9.24 \mathrm{E}-16$
SARS	13043.96796	5123.370898	-1.348144639	$1.67 \mathrm{E}-11$
MID1IP1	4207.73164	1653.146662	-1.348233127	$3.45 \mathrm{E}-15$
HOXB9	17572.28197	6883.460982	-1.352109932	$1.70 \mathrm{E}-09$
GRIK4	52.9353726	20.70364147	-1.352411954	0.024676669
MFSD3	1922.107062	752.193271	-1.354326058	$9.98 \mathrm{E}-05$
ITPR1	207.2506401	81.06471992	-1.355778606	$1.06 \mathrm{E}-06$
IGBP1	2120.762313	826.6952986	-1.358922494	$3.36 \mathrm{E}-13$
SLC1A1	2185.483758	851.2006229	-1.360413503	$1.56 \mathrm{E}-06$
COLGALT2	100.1226464	38.78130633	-1.362305235	0.000503164
PRSS12	196.4931879	76.54712528	-1.364281308	0.014707421
PHLDA1	5390.467966	2090.56896	-1.366272942	$3.53 \mathrm{E}-08$
NT5C	994.7711025	386.146356	-1.366683825	$1.10 \mathrm{E}-12$
TMEM141	1394.7163	540.9478889	-1.367328365	$9.69 \mathrm{E}-14$
RPS23	10423.76843	4034.52951	-1.369277071	$9.00 \mathrm{E}-12$
ERO1B	3323.377726	1285.481069	-1.37035564	$1.59 \mathrm{E}-08$
RPL29	39724.67734	15342.44265	-1.372516026	$9.18 \mathrm{E}-21$
HOXA13	1222.232545	471.3082543	-1.375089144	2.43E-06
UFSP1	99.17906022	38.19988387	-1.378722904	0.002965787
GGACT	235.9714771	90.84669215	-1.3806018	$3.28 \mathrm{E}-06$
HS3ST1	172.0781313	65.89756545	-1.381980316	$5.17 \mathrm{E}-06$
COMMD10	563.2986454	215.9968038	-1.383152754	$4.68 \mathrm{E}-14$
EIF2A	5509.995323	2108.904497	-1.38524046	$1.77 \mathrm{E}-09$
EEF2	154519.666	59040.41697	-1.388002953	$1.99 \mathrm{E}-12$
NBEA	210.3844796	80.27437789	-1.388085576	6.53E-08
TCP11L2	342.4202422	130.6777446	-1.391346356	0.000250992
HOXB5	2644.340045	1006.743026	-1.393179298	0.000562979
PRKG2	31.16093942	11.8222878	-1.393281729	0.041059731
MANF	4822.816009	1830.948757	-1.39751584	$5.30 \mathrm{E}-11$
SLC9B1	34.59707179	13.30320385	-1.399546226	0.029978258
SEMA3C	169.6500912	64.03495483	-1.400948317	0.003519107
ALDH1L2	572.2326721	215.5296351	-1.410644627	$6.49 \mathrm{E}-05$
MT1E	5852.663137	2192.031281	-1.416766992	$2.44 \mathrm{E}-11$
FAM84A	105.8160145	39.4436834	-1.418012224	0.005277898
PCCA	1077.323561	403.1067074	-1.418831527	2.69E-09
KCNJ5	787.2459308	294.2430292	-1.420951955	6.23E-06
TKT	29880.20176	11136.63035	-1.423851462	$9.44 \mathrm{E}-13$
RPL7A	53292.08039	19825.40028	-1.426560603	$3.10 \mathrm{E}-23$
BDNF	141.4034112	52.57423134	-1.426575846	0.000279487
MUC5B	29.16156825	10.79932916	-1.427621753	0.025000102
FNBP1	73.42597425	27.19029515	-1.430088688	0.010751111
NRXN3	216.6060896	80.12999172	-1.430318679	$7.80 \mathrm{E}-05$
SEC24D	3291.109793	1220.132491	-1.431928676	$3.01 \mathrm{E}-11$
NOB1	3683.017178	1363.438925	-1.4333229	$3.97 \mathrm{E}-09$
RNF187	9801.468844	3628.57515	-1.433596474	$1.57 \mathrm{E}-10$
LENG9	444.0969553	164.0886586	-1.433813964	4.02E-12
ABCB1	10176.79999	3762.95121	-1.435142202	$1.39 \mathrm{E}-08$
HOXB3	8407.266885	3107.105055	-1.436134569	$1.28 \mathrm{E}-05$

KCNN2	93.57890817	34.49086882	-1.437631877	7.09E-05
EEF1A1	417855.477	153695.2675	-1.442931014	$1.63 \mathrm{E}-23$
HSPA5	65003.43807	23893.24568	-1.443937019	$1.04 \mathrm{E}-11$
GPT2	5792.843333	2125.720724	-1.446306083	$1.68 \mathrm{E}-19$
CEMIP	1025.050146	375.0471274	-1.451034754	$1.86 \mathrm{E}-06$
NTHL1	562.235479	205.7609937	-1.452412032	2.83E-10
SLC22A11	191.7246491	69.93030299	-1.459276465	0.004222129
FTCDNL1	133.2081778	48.49292842	-1.459494589	7.99E-06
KLF9	2431.805438	884.5936832	-1.459605985	$3.72 \mathrm{E}-11$
ADAM23	85.28501352	31.00374683	-1.462988764	0.000692402
ULBP1	1302.524493	469.7650779	-1.471728696	7.05E-08
PIF1	1065.480875	384.1920441	-1.472775496	$2.78 \mathrm{E}-11$
KIAA0825	37.48430329	13.36560639	-1.473041024	0.033425194
RHBDD1	1404.437098	504.8764019	-1.475466426	5.59E-15
MYRIP	134.9765934	48.16411059	-1.484533564	0.001038987
EPRS	15694.0893	5600.075572	-1.486616813	$8.49 \mathrm{E}-11$
TBL1X	2276.093981	811.0253107	-1.489550517	1.13E-15
SHANK2	730.4844748	260.3031822	-1.491526983	$2.50 \mathrm{E}-11$
SCART1	339.3659097	120.4432976	-1.497199166	$2.25 \mathrm{E}-05$
CACNG4	647.4287093	229.3614112	-1.497964216	0.001745234
SLC38A8	45.90297413	16.06339223	-1.498592858	0.014683263
PRRX1	53.5650543	18.90087247	-1.500288201	0.00156676
CCDC146	62.27154413	21.95093502	-1.503424253	0.006566588
XBP1	8864.965968	3120.191704	-1.506460124	5.61E-14
IMMP2L	204.1233408	71.89313482	-1.507204149	4.76E-08
LONP1	11109.03642	3901.859274	-1.509694128	7.73E-15
OMA1	792.74965	278.5451022	-1.511115202	$4.85 \mathrm{E}-10$
KLF15	1123.960833	394.1507154	-1.512513812	$3.20 \mathrm{E}-16$
INHBE	96.23695554	33.89759783	-1.512681557	0.003337945
ARHGAP22	50.34409454	17.49387336	-1.514422005	0.006147982
TGFB3	1036.121295	361.6381238	-1.518786988	$1.07 \mathrm{E}-05$
ZMAT1	368.3848445	128.5001037	-1.52050969	0.002682149
RPL12	34357.74468	11929.92992	-1.52601629	$1.26 \mathrm{E}-18$
SPEF2	214.5915693	74.44296769	-1.526149427	$2.00 \mathrm{E}-05$
SRGAP3	100.7896701	34.91706247	-1.531377132	0.004305636
KDM7A	3596.668828	1242.132348	-1.533643746	$1.45 \mathrm{E}-12$
AXIN2	13008.40369	4466.05331	-1.542324001	$3.10 \mathrm{E}-23$
BCAS3	787.5363217	270.584021	-1.543490998	$1.24 \mathrm{E}-06$
SCFD2	472.7343284	160.4825679	-1.554699262	$2.01 \mathrm{E}-06$
THBS4	71.85107121	24.2118996	-1.558309322	0.001506994
OPN3	71.5546202	24.25998862	-1.55835423	0.000454552
MTHFD2	14739.14548	5000.716065	-1.559369831	$4.26 \mathrm{E}-22$
METTL26	2246.685094	760.4028409	-1.563773218	5.12E-06
ZNF277	1112.797207	376.1510338	-1.56431248	$1.93 \mathrm{E}-16$
HIST2H2AC	46.80988781	15.80729358	-1.566328871	0.002118774
PRR15L	4253.732468	1430.77509	-1.571992759	0.034724831
YARS	11713.44312	3933.319281	-1.574268667	$6.40 \mathrm{E}-14$
ZC3H12B	364.5087224	122.3204368	-1.575223517	$1.10 \mathrm{E}-06$
KLHL31	114.9067272	38.28217848	-1.577020183	0.000491962
MGAM	69.68980647	23.40602315	-1.578059307	0.027454607
BEST1	133.9585832	44.67119501	-1.583439247	$3.42 \mathrm{E}-05$
SLC43A1	2061.742029	687.4560646	-1.584057332	8.95E-19
RASGRF2	319.8536058	106.154067	-1.587115691	2.89E-08
URAD	76.75948219	25.61877961	-1.587176235	0.002196755
SCD	54291.30491	18037.98151	-1.589729652	$6.50 \mathrm{E}-08$
SOX9	13216.05808	4376.879313	-1.594413041	$4.27 \mathrm{E}-11$
FUT1	10306.46681	3411.041869	-1.595489278	$1.30 \mathrm{E}-09$
MARS	7542.479413	2491.511149	-1.598002552	$1.48 \mathrm{E}-13$
HHAT	41.22616455	13.63915528	-1.605031204	0.007647632
RSL24D1	5647.031245	1853.739911	-1.606701364	1.35E-14
EHF	2486.496178	814.4210192	-1.610394046	$3.16 \mathrm{E}-13$

ZNF581	1336.914207	436.665187	-1.613218235	5.50E-14
DHFR2	397.3960255	129.855877	-1.614275863	$1.01 \mathrm{E}-09$
GNA14	31.64877026	10.44571245	-1.618169641	0.02909543
VSNL1	1552.662558	505.6626545	-1.618854337	$1.12 \mathrm{E}-16$
ATP8A1	1874.893901	609.8756778	-1.620119449	$6.48 \mathrm{E}-07$
PPIL6	47.51434867	15.3598447	-1.621980612	0.001432343
GTDC1	277.5398362	90.0328681	-1.628970727	$1.21 \mathrm{E}-11$
EIF3E	15785.32584	5086.390526	-1.633706804	$9.85 \mathrm{E}-17$
RPL10A	18968.83938	6110.688876	-1.63416799	2.97E-25
SHMT2	12675.1253	4065.038603	-1.640662064	$1.68 \mathrm{E}-19$
OTUD7A	21.58450498	6.981066605	-1.641058708	0.032976651
RPL3	87503.03285	28049.25885	-1.641377712	$9.50 \mathrm{E}-32$
MT1X	234.2703225	74.84335657	-1.649469862	2.93E-06
SLC1A5	17019.89548	5416.100743	-1.651915441	$3.82 \mathrm{E}-23$
GRB10	3394.551403	1078.425212	-1.654524649	$6.38 \mathrm{E}-22$
FRMD3	169.2171393	53.37874464	-1.662907819	0.000408931
AC004687.2	54.09573706	17.17190132	-1.664517199	0.018755555
HKDC1	34.08334489	10.80514591	-1.670591	0.004916559
FDXACB1	57.45204265	17.86271352	-1.677028249	0.004738885
SUCLG2	2785.94973	865.300455	-1.686902401	$6.84 \mathrm{E}-29$
PIP5KL1	2250.888313	696.1470683	-1.693859593	$2.47 \mathrm{E}-06$
MYO7B	81.6744277	25.07034182	-1.702551427	0.021247779
ISPD	81.49296584	25.05626649	-1.705672705	$4.81 \mathrm{E}-05$
CAB39L	3616.818817	1105.476611	-1.709964453	8.71E-13
ST8SIA1	76.01465145	23.03505213	-1.715384735	0.022670909
SULT1C3	62.43622792	19.14265761	-1.715559601	0.007543092
CR2	618.3124706	187.9572777	-1.715565016	$4.48 \mathrm{E}-06$
RGS16	321.8662426	97.74376334	-1.715771206	7.63E-09
PRICKLE1	503.0780154	152.6844018	-1.718507131	7.93E-12
CBLB	335.4057716	101.6416405	-1.72019404	3.64E-14
SEMA5A	198.5880268	59.36660457	-1.735129911	0.00083184
SNTB1	3254.865514	976.8662734	-1.736347943	$1.58 \mathrm{E}-23$
VEGFA	7730.22258	2300.547333	-1.748623839	$4.48 \mathrm{E}-14$
PHGDH	17649.71583	5246.278174	-1.750376953	3.19E-19
TTN	28.30514338	8.365804598	-1.750515679	0.013364875
SLC25A6	29001.53274	8611.309727	-1.751879842	2.53E-27
KCNJ8	2085.262019	618.1070487	-1.754036296	$1.70 \mathrm{E}-16$
ATF4	33188.06856	9820.423908	-1.756786168	$5.01 \mathrm{E}-25$
DPH6	369.9635759	109.6686946	-1.75914094	5.96E-09
PEMT	655.1056845	193.3118975	-1.761113188	$1.64 \mathrm{E}-15$
NR3C2	27.7114414	8.20722401	-1.762341441	0.007857779
DEPTOR	140.5384731	41.49307156	-1.762494012	1.53E-08
TMTC2	432.3499429	127.5338962	-1.763851805	$4.21 \mathrm{E}-13$
MACROD1	1550.736229	455.6168853	-1.768485792	3.16E-14
ITGA9	129.0143466	37.83327051	-1.77274611	0.000381938
TMEM232	17.33754884	5.111299234	-1.773921624	0.048827418
PYCR1	14990.14625	4321.447526	-1.794608361	$2.96 \mathrm{E}-26$
SLC6A13	19.39489741	5.529449332	-1.797067729	0.036353685
EIF4B	30528.9146	8778.455149	-1.798086073	$7.72 \mathrm{E}-29$
KNDC1	930.3665993	263.6851067	-1.819992345	$6.09 \mathrm{E}-05$
NTRK2	294.981307	83.54508945	-1.823131346	8.54E-14
CHST11	27.80868053	7.841973803	-1.828498924	0.014262221
GEMIN8	456.1465449	127.6349579	-1.838461418	$2.64 \mathrm{E}-15$
ETS2	16914.43487	4727.378933	-1.839174465	$4.26 \mathrm{E}-15$
PYROXD1	780.9604964	217.3088458	-1.844315612	3.02E-26
LHPP	1152.838581	320.7777467	-1.84794546	$1.83 \mathrm{E}-14$
SETDB2	4311.358659	1192.982238	-1.853265192	4.89E-20
HERPUD1	7305.537824	2021.505565	-1.853669562	$4.26 \mathrm{E}-15$
GARS	11788.0766	3260.44461	-1.854091978	8.43E-15
SPATA17	31.93494824	8.619557358	-1.860505585	0.015628571
PRDM16	217.7222693	60.14811573	-1.862426088	2.29E-05

DOCK4	132.6900549	36.3980976	-1.874581369	2.19E-08
MYO1H	94.90136135	25.8794741	-1.878903561	0.000858304
MKX	789.271329	213.9288867	-1.881773417	$1.99 \mathrm{E}-17$
CCDC170	276.7124001	74.71091486	-1.885099973	2.16E-13
PRDM12	19.74867416	5.330942353	-1.889927361	0.035624803
ADRA2C	1572.37524	424.6370309	-1.88999625	8.39E-09
TRIB3	9896.435899	2667.921114	-1.891168727	$9.18 \mathrm{E}-21$
SUPT3H	289.2729675	77.85248684	-1.895224741	8.43E-15
FGGY	353.2650393	94.46283463	-1.905427702	$2.16 \mathrm{E}-07$
HOXB8	4823.657466	1277.628508	-1.916684725	0.005767794
MYO1G	19.03248865	5.069026955	-1.917276001	0.023412113
KIF21B	701.3503904	185.6554376	-1.921392421	8.92E-09
MRVI1	19.96400086	5.251089572	-1.922884463	0.034101257
ASNS	596.885385	157.2929104	-1.924125991	1.17E-19
GDF15	5543.048875	1459.478002	-1.925686099	$3.35 \mathrm{E}-11$
PMFBP1	53.82583378	14.25334739	-1.929855708	0.004701074
SLC6A9	1841.622698	482.9156105	-1.932259516	2.43E-19
FOXQ1	5515.017171	1435.209274	-1.942481007	$3.49 \mathrm{E}-18$
HIST3H2A	181.8312882	47.04959287	-1.946249903	6.83E-08
NLRP6	182.7464962	47.58493808	-1.946951788	$4.64 \mathrm{E}-08$
SLC7A5	34527.49705	8945.907643	-1.948391178	$1.95 \mathrm{E}-20$
DLGAP1	25.93832161	6.530146868	-1.95503962	0.0156424
GLYCTK	2236.491582	561.7551797	-1.993879261	$2.85 \mathrm{E}-13$
SLC1A3	672.8947396	167.1797493	-2.007635424	$2.75 \mathrm{E}-13$
DNAH7	33.16909672	8.331694958	-2.007730371	0.002841148
FBN1	21.80292431	5.471857664	-2.018897302	0.049034508
HOXB4	1893.969538	461.4364734	-2.037602309	$1.43 \mathrm{E}-09$
XPOT	10128.23275	2451.909564	-2.046306142	1.02E-32
SPTLC3	268.9301996	64.93093126	-2.049459167	0.032636887
BBS9	364.5614628	88.13009291	-2.054406004	$1.35 \mathrm{E}-14$
CLYBL	360.0465583	83.31570552	-2.116857345	1.82E-07
TUBE1	2064.140848	473.0421485	-2.124639328	3.59E-31
LRRN2	41.24327451	9.521396833	-2.137654101	0.003886243
ODAM	37.09893699	8.370496374	-2.140510089	0.008695314
PIR	241.2701305	54.70936182	-2.143927826	5.82E-10
PDGFRB	67.959841	15.33858948	-2.155658424	0.000311181
RHOBTB1	68.08426793	15.22474614	-2.161904138	$2.44 \mathrm{E}-06$
SUGCT	53.05377416	11.99719367	-2.16506698	0.000260195
ADAMTS19	26.38509562	5.789018842	-2.176628702	0.003116227
C1QTNF3	38.55784995	8.492621434	-2.188209445	0.000828577
MYC	4954.158709	1079.518235	-2.197784725	$1.87 \mathrm{E}-12$
ASCL2	7629.396342	1595.178223	-2.258047181	$1.66 \mathrm{E}-12$
SLC30A10	33.34092563	7.082055526	-2.25854718	0.002578072
ADM2	2263.446108	471.010095	-2.265362436	$1.68 \mathrm{E}-19$
PRR4	14.99108374	3.117060915	-2.2658568	0.02657364
APCDD1	2906.255262	600.4363908	-2.275746179	$1.69 \mathrm{E}-09$
TCP10L	22.69796503	4.647405995	-2.278346172	0.008057694
CDH4	49.02962751	10.22259847	-2.281341302	0.000160561
TTLL1	307.5329342	63.31235573	-2.281527023	$1.16 \mathrm{E}-07$
SLC39A11	943.1548349	193.1868543	-2.290402965	$1.77 \mathrm{E}-27$
PSAT1	14231.41171	2839.740463	-2.325064507	$2.50 \mathrm{E}-25$
LIX1	12.55177548	2.494587087	-2.330640719	0.03373682
CDX2	10357.58477	2045.026114	-2.340600577	$3.71 \mathrm{E}-09$
KIF26B	145.5005066	28.57268725	-2.344813164	$1.67 \mathrm{E}-11$
GRIP1	227.6163172	44.70765054	-2.345239881	2.43E-19
ZNF521	15.53005505	2.952663576	-2.355679922	0.022520266
BEND6	55.20282247	10.65137618	-2.35936442	$4.38 \mathrm{E}-05$
DUOXA1	17.8900399	3.522237512	-2.363861728	0.009735185
CPO	21.5351596	3.919251471	-2.42713523	0.008375866
DOCK10	57.17305086	10.5585499	-2.430559758	0.000189209
CYP2E1	65.46564797	11.890388	-2.459123623	8.69E-06

KLHDC7B	48.72195521	8.911896507	-2.462520126	5.27E-05
PTP4A3	309.2408962	53.96363796	-2.518157273	1.03E-10
FGF21	163.0903275	28.50099711	-2.519052125	$9.27 \mathrm{E}-12$
RBMS3	81.99679847	13.8623652	-2.556967567	0.001177026
HGD	43.44769936	7.491923899	-2.557345559	0.001478039
SETBP1	18.48668041	3.077134524	-2.568754159	0.016016551
AKAP6	95.69896778	16.21828693	-2.574378828	$2.88 \mathrm{E}-10$
PCK2	12725.73495	2126.584299	-2.581449636	6.49E-59
CHAC1	2645.435285	441.6040685	-2.581996608	$4.26 \mathrm{E}-22$
CPQ	161.4336896	26.7945021	-2.58883825	$8.09 \mathrm{E}-11$
BHMT	28.5924648	4.769531055	-2.595611155	0.000724927
DMGDH	180.6577179	28.48689863	-2.665298676	$1.34 \mathrm{E}-10$
RP1L1	13.06485072	2.09522724	-2.724731467	0.04401903
MAML3	86.00803596	12.91334665	-2.741395735	$6.52 \mathrm{E}-10$
XYLT1	125.308311	18.92536038	-2.742936561	$6.47 \mathrm{E}-07$
FPGT-TNNI3K	27.48862612	4.104784949	-2.747587343	0.00076667
MROH7	33.88512814	4.970383923	-2.761972143	0.003923004
RPL22L1	2711.866225	393.2421423	-2.784838933	$7.78 \mathrm{E}-19$
SMOC2	32.310071	4.628615744	-2.791669598	0.003365433
UGT1A6	15.14060678	2.110546629	-2.816972803	0.010779533
EIF2S3B	11.17119659	1.567925583	-2.839416201	0.03013797
ZBTB20	117.1097005	16.27700357	-2.857258483	$2.71 \mathrm{E}-09$
CMA1	11.3736552	1.589061722	-2.861700781	0.022775183
HMCN1	27.48064576	3.723090379	-2.874615565	0.006293414
NDP	152.5321404	20.12243404	-2.916600534	0.007583826
KIAA1024	45.2687129	5.955762069	-2.928689447	$2.94 \mathrm{E}-06$
SLC8A1	34.16691016	4.488825406	-2.945464773	0.000118058
GIF	22.68509694	3.000752605	-2.950230503	0.025221904
KCNQ1	1465.998937	187.1510741	-2.971264131	$2.26 \mathrm{E}-21$
AC009119.2	17.26929841	2.152818908	-2.992777764	0.004442468
FAIM2	32.64055253	4.083648809	-2.999463776	0.000318108
CLDN2	5585.357067	697.0683164	-3.002962334	$1.73 \mathrm{E}-28$
FREM1	22.55512482	2.735366345	-3.017164935	0.005302599
TMEM178A	23.8202112	3.082951274	-3.022147175	0.001712097
CUBN	17.71527246	2.152818908	-3.023391289	0.014867696
NUPR1	222.0892854	26.19876614	-3.090342611	0.001153159
EREG	7823.943253	889.7602572	-3.136167996	$4.57 \mathrm{E}-37$
GLDN	128.7418425	14.69263362	-3.143266049	$3.68 \mathrm{E}-11$
FHIT	145.1199985	16.31939494	-3.146634402	$1.87 \mathrm{E}-12$
FSTL1	14.09035533	1.567925583	-3.167135957	0.015717831
DDIT4	4132.167268	451.0983043	-3.195907272	$1.00 \mathrm{E}-43$
CAPN14	15.17498077	1.692396531	-3.225660575	0.012215627
C1QTNF7	8.935490376	0.966587895	-3.243059675	0.04051874
MGAM2	12.89382757	1.329492213	-3.326202452	0.022795155
FAM78B	39.43578072	3.821733412	-3.385749965	$2.84 \mathrm{E}-06$
SLC7A11	6360.127558	602.5183358	-3.399255402	8.22E-58
CDH7	681.0633765	63.33705867	-3.4266072	0.002162283
CADPS	436.7426599	38.97588925	-3.497828545	$3.77 \mathrm{E}-16$
LURAP1L	35.03391624	2.910391297	-3.528849083	$1.48 \mathrm{E}-05$
EPHA3	7.825620525	0.664746106	-3.618140887	0.047609907
ALX4	7.886536459	0.664746106	-3.639704418	0.043947051
GABRA2	11.76294938	0.905525365	-3.660758255	0.03482768
ZNF610	8.371274662	0.643609967	-3.725062022	0.047067057
NAALADL2	167.1042659	12.19335476	-3.789051099	$1.34 \mathrm{E}-10$
KLF8	18.45475318	1.247293544	-3.880399124	0.002349458
LAMA4	16.17669261	1.088712955	-4.044282898	0.003656345
RGS6	116.336995	7.004548633	-4.065076332	$1.50 \mathrm{E}-10$
BHMT2	18.16938096	0.884389225	-4.297946563	0.002056388
ACTL8	12.3813982	0.643609967	-4.310442531	0.010211899
SULT1C4	6.848009664	0.301841788	-4.33772438	0.037356329
GABRA3	7.444804275	0.362904318	-4.462076509	0.025012955

PSD2	52.47488947	2.479267698	-4.540426166	$1.43 \mathrm{E}-08$
ANK2	268.0090145	7.644687738	-5.112749143	$7.72 \mathrm{E}-29$
PDE7B	11.96361289	0.280705649	-5.148255746	0.00298979
EHD3	12.17095923	0.301841788	-5.176027952	0.002567679
SLC4A4	7.439916546	0	-5.424800183	0.012477706
SNX20	7.631793938	0	-5.456104097	0.008244402
SYCP2L	7.888331558	0	-5.505448358	0.005227054
DCT	14.56172788	0	-6.393115603	0.00026736
PRKN	20.77841484	0	-6.903645583	$1.32 \mathrm{E}-05$

Table 9. Multiple testing for glycolysis-related genes

DLD1			HCT15		
Gene name	P value	FDR	Gene name	P value	FDR
HK2	0.0004	0.0064	LDHB	0.0007	0.0112
PGK1	0.0005	0.004	ENO3	0.0009	0.0072
PFKL	0.0011	0.005867	ENO2	0.0017	0.009067
ENO3	0.0076	0.0304	PFKM	0.0033	0.0132
PFKP	0.0138	0.04416	GPI	0.0048	0.01536
ENO2	0.0171	0.0456	PFKL	0.0052	0.013867
ALDOA	0.0243	0.055543	PGK1	0.0074	0.016914
SLC16A1	0.036	0.072	HK2	0.008	0.016
PFKM	0.0378	0.0672	GAPDH	0.0082	0.014578
SLC2A1	0.0536	0.08576	ENO1	0.0228	0.03648
LDHA	0.0673	0.097891	LDHA	0.1053	0.153164
GAPDH	0.0711	0.0948	PGAM1	0.2052	0.2736
GPI	0.1337	0.164554	ALDOA	0.249	0.306462
LDHB	0.1953	0.2232	SLC16A1	0.4192	0.479086
PGAM1	0.2169	0.23136	SLC2A1	0.4787	0.510613
ENO1	0.477	0.477	PFKP	0.6251	0.6251

The total number of rejections of the null include both the number of false positives (FP) and true positives (TP). Simply put, FDR = FP / (FP + TP).

Table 10. Protein quantification of Mass Spectrometry analysis (Top 20)

	NTC abundance			TKO abundance				
Gene name	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3	Fold change	Student's T-test p- value
PRSS2	83.9	96.1	64.8	275.7	316.1	316	3.708333	0.000442
GDF15	74.43333	72.5	63.3	147.9333	190.9333	160.2	2.37387	0.000682
SERPINA1	74.46667	73.5	69.3	157.0333	151.6667	176.0667	2.231206	$9.02 \mathrm{E}-05$
LCN2	89.2	140.5	121.2	237.7	291.9	244.4	2.205757	0.005628
VGF	79.13333	98.63333	86.43333	174.1	201.5	182.9333	2.114055	0.000621
SEMA3F	58.6	47.7	40.8	72.5	98.9	135.1	2.083617	0.026585
MUC5AC	120.5333	116.8333	113.0333	218.5333	218.4667	273.0667	2.026446	0.000791
CTSD	106.8667	115.7667	93	206.9333	205.8	217.1333	1.995564	0.000466
CTSL	69.76667	77.56667	52.13333	112.9333	137.4	135.0667	1.932152	0.007616
LGMN	56.5	75.36667	59.43333	120.5	119.1	129.8333	1.931173	0.002005
PRSS22	74.8	68.6	107.1	185.3	142.9	153.1	1.921357	0.013224
PVR	90.2	60.4	55.65	126.2	115.45	152.45	1.910788	0.017554
PSAP	59.9	72.96667	51.13333	106.4333	114.2333	125.1333	1.879348	0.004812
PPIC	108.2	109.2333	86.16667	186.8667	187.9333	194.0333	1.873628	0.001275
NUCB1	78.4	86.03333	79.5	134.3333	152.5333	142.9	1.76182	0.000267
SLC39A10	129.9	112.25	119.2	203.95	222.95	201.6	1.739311	0.000472
ADAM9	97.5	63.3	76.76667	121.4667	147.0667	134.3333	1.695805	0.016694
SUMF1	73.9	59.8	62.7	97.3	122.2	112.5	1.690428	0.004756
LGALS3BP	66.63333	59.33333	48.76667	91.13333	98.6	103.7667	1.679702	0.005974

Table 11. Univariate and multivariate analysis of clinicopathological factors for overall survival (OS)

Univariate Analysis		Variables	Multivariate Analysis	
OR (95\% CI)	p		OR (95\% CI)	p
0.1374 to 0.5559	0.0003	TXNIP	0.1610 to 1.0010	0.0502
1.5545 to 6.0570	0.0012	GDF15	0.6098 to 4.0023	0.3526
0.8804 to 3.0622	0.1189	Gender		
0.8970 to 3.2307	0.1036	Age		
-1 to -1	0.9588	T stage		
1.0166 to 3.5853	0.0443	N stage	0.4946 to 2.1334	0.9426
1.0497 to 11.1098	0.0413	M stage	0.5533 to 6.4868	0.309
0.9938 to 3.5046	0.0523	Clinical stage		

Table 12. Single cell analysis for altered gene expression between primary colorectal cancer tissues and liver metastases ${ }^{582}$

gene	avg_logFC	p_val_adj
TAC1	5.087790741	$2.6 \mathrm{E}-182$
GAPLINC	4.295450138	0
APCDD1	4.259525078	$1.6 \mathrm{E}-137$
LINC00176	4.076166748	$4.9 \mathrm{E}-293$
NR0B2	4.041507643	$9 \mathrm{E}-131$
CES1	3.945832044	0
CEL	3.339273393	$6.4 \mathrm{E}-220$
PTK7	3.236556587	$1.6 \mathrm{E}-253$
RP4-781K5.4	3.180150822	$4.2 \mathrm{E}-137$
PCSK1N	3.156354474	$1.6 \mathrm{E}-120$
PLCB1	3.150034087	$1.8 \mathrm{E}-106$
EPDR1	3.144508853	$4.5 \mathrm{E}-111$
NOTUM	2.947505656	$9 \mathrm{E}-149$
VAV3	2.843852695	$4.1 \mathrm{E}-115$
TEAD2	2.735146664	$3 \mathrm{E}-106$
LGR5	2.706176321	$2.34 \mathrm{E}-92$
AXIN2	2.674946216	$1.5 \mathrm{E}-147$
NKD1	2.573936247	$6.4 \mathrm{E}-200$
C8orf4	2.454778798	$1.34 \mathrm{E}-74$
RGMB	2.421575647	$2.76 \mathrm{E}-78$
DAB2	2.396711512	$4.3 \mathrm{E}-120$
PROX1	2.30678142	$6.74 \mathrm{E}-90$
SESN1	2.288272094	$8.66 \mathrm{E}-83$
GDF15	2.282187723	$1.5 \mathrm{E}-242$
XXbac-BPG32J3.19	2.258926404	$1.2 \mathrm{E}-122$
QPRT	2.182598235	$4.5 \mathrm{E}-180$

DPEP1	2.176475687	$5.9 \mathrm{E}-237$
ALDH1A1	2.17513563	$7.64 \mathrm{E}-90$
WDR72	2.174030306	$1.69 \mathrm{E}-66$
RARRES2	2.162834133	$1.6 \mathrm{E}-116$
ZNF503	2.131736857	$9.2 \mathrm{E}-121$
FN1	2.116309965	$5.9 \mathrm{E}-101$
CAPS	2.094614275	$1.1 \mathrm{E}-141$
PTP4A3	2.092213853	$1.33 \mathrm{E}-95$
TSPAN12	2.091161983	$4.87 \mathrm{E}-81$
CLU	2.022991552	$1.7 \mathrm{E}-100$
ASCL2	2.005777287	$1.4 \mathrm{E}-256$

