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Abstract

Philosophers and mathematicians typically assume that arithmetic is determinate,
i.e., that all well-formed arithmetical statements have a determinate truth-value.
By contrast, many believe that set theory could be indeterminate. This thesis in-
tends to take the first steps towards grounding the determinacy of arithmetic thus
understood and establishing the contrast with the case of set theory.

The first chapter of the thesis surveys extant material on the determinacy of
arithmetic. Thus, it first introduces the notion of arithmetical determinacy and
presents a challenge in the literature that urges us to account for the determinacy
of arithmetic. Then, it outlines and assesses some of themost influential arguments
against the determinacy of arithmetic, paying special attention to Putnam’s model-
theoretic arguments [Put80, Put81], and the responses that different philosophers
have offered against these arguments.

The second chapter takes a step back, and notices that the nature of the project
requires an understanding of the broader picture regarding determinacy as a fea-
ture of formal systems. Thus, it addresses the more general phenomenon of truth-
theoretic determinacy: it aims at laying the foundations for a theory of determinate
truth that allows us to speak about determinacy fromwithin the object mathemati-
cal theories themselves. To this extent, it draws on three theories that present a de-
sirable trait for a theory of truth, namely supervaluational truth. These theories are:
the van Fraassen-Kripke fixed-point semantics [Kri75], Stern’s supervaluational-
style truth [Ste18], and McGee’s theory of definite truth [McG91]. In the chapter,
special attention is given to McGee’s theory, for it displays an attractive feature:
material adequacy for the truth predicate.

Finally, the last chapter advances a first defence of the determinacy of arith-
metic, based on what is often known as Isaacson’s thesis [Isa87, Isa92]. According
to this thesis, arithmetical truth coincides with provability in Peano Arithmetic;
thus, if the thesis holds, arithmetical determinacy is guaranteed, for all there is
to arithmetic is provability or refutability in Peano Arithmetic. The chapter ad-
vances a challenge to the thesis, according to which the latter could entail that
Peano Arithmetic proves non-arithmetical truths. It then sets out to argue that
the challenge can be withstood, since all seemingly non-arithmetical truths could,
in fact, be shown to be arithmetical.
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Introduction

Consider the following two questions:

a) Is every even natural number greater than two the sum of two primes?

b) Is every projective set of reals Lebesgue-measurable?1

In answering these questions, even the most knowledgeable of the mathemati-
cians will be cautious, albeit for different reasons. In the case of a), we are dealing
with Goldbach’s famous conjecture. The conjecture, which pertains to the math-
ematical field of arithmetic,2 has neither been proved nor disproved as of today—
almost 400 years after it was first presented. A quick Google search asserts that the
conjecture holds for the first 4×1018 integers, so it is very likely that it will hold for
any number that any of us can think of. Similarly, none of the greatest mathemati-
cians in the history of the subject doubted the truth of the conjecture. And yet, the
failure to find a proof after so many years has led some to believe that it could, after
all, be the case that the conjecture has no proof. Given that proof is the standard of
truth in mathematics, then, how are we to give a determinate answer to question
a)?

In the case of b), things are slightly different. The claim that all projective
sets of reals are Lebesgue-measurable, which belongs to the field of descriptive
set theory, is known to be independent of ZFC (Zermelo-Fraenkel with the Ax-
iom of Choice), that is, neither the claim nor its negation follow from the axioms of
ZFC. As it happens, the theory ZFC is often seen as the best description of the set-
theoretic universe, so the fact that its axioms do not settle the question of Lebesgue-
measurability for projective sets also suggests—or so some argue—that this is an

1For the notions of ‘projective set’ and ‘Lebesgue measurability’ see [Mos80, ch.1-2].
2We shall use the terms ‘arithmetic’ and ‘number theory’ interchangeably. What nowadays, outside

philosophical contexts, is known as ‘arithmetic’, we shall call ‘elementary arithmetic’.
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instance of indeterminacy in set theory, and mathematics more generally. In this
regard, the situation is similar to that of Cantor’s well-known continuum hypoth-
esis (CH), which states that there is no set of real numbers whose cardinality lies
between the size of the set of natural numbers (ℵ0) and that of the set of all reals:
CH is also independent of ZFC.

Having said that, there is a fundamental aspect that differentiates questions a)
and b). This is no other than the fact that philosophers and mathematicians have
strong intuitions to the effect that arithmetic is determinate, and hence that there
is a definite answer to question a)—whether provable or not; while many of them
have serious doubts as to the determinacy of set theory, and higher-order mathe-
matics. The precise understanding of ‘determinate’ and ‘determinacy’ will be ex-
plored in chapter 1 of this thesis; for now, let us informally say that an area of math-
ematics is determinate if there is a determinate answer to all meaningful questions
in the spirit of a) and b) that can be posed for that area. Hence, the difference be-
tween a) and b) is that most of us firmly believe that there is a determinate answer
to all meaningful arithmetical questions, and yet some of us suspend judgement (or
directly deny) the existence of a determinate answer to all meaningful set-theoretic
questions.

Why this happens is an interesting question. José Ferreirós [Fer16, ch.7] gives
one answer. He argues, quite convincingly, that our confidence in the certainty of
arithmetic is due to the fact that we recognise the principles of arithmetic as true
of our most elementary counting practices. Counting, in turn, is an essential tech-
nique for our interaction with, and understanding of, the world as human beings.
He writes:

The cognitive complexity of counting is certainly very high, incompa-
rably higher than that of subitizing, but themost noteworthy aspects of
this practice are its stability, reliability, learnability, and intersubjectiv-
ity. I dare to suggest the idea that mathematics, in its most elementary
strata, may be the best expression of that which we humans have in
common, merely in virtue of being human. [Fer16, 188]

Therefore, as a result of our deep internalization of this elementary side ofmath-
ematics, arithmetic would necessarily be seen as certain and determinate. Once
again, Ferreirós’ is just one possible answer; there might be others. In any case,
it is not that question that we are interested in, but rather: how can we show the
correctness of that conviction? That is, how can we establish that arithmetic is de-
terminate? And how does this differ, if at all, from the case of set theory, which we
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believe that could be indeterminate? This thesis is a first step towards answering
these worries.

As a first step, it is an incomplete piece of work, which assumes the continua-
tion of the project for the remaining of my doctoral studies. Hence, this MPhilStud
thesis will serve as the foundations of that bigger project. That is: the reader will
not find here a solution to the driving research question (what makes arithmetic
determinate), but they will at least find the first pieces of what I hope will become
the solution.

Now, the question of what, if anything, makes arithmetic determinate has been
posited several times in the contemporary literature. Some prominent responses
include Hartry Field [Fie94], Leon Horsten and Volker Halbach [HH05], or Sharon
Berry [Ber21]. In chapter 1, we will explore these and other accounts, in order to
set the stage for the project. This first chapter is intended as a review of the liter-
ature on the determinacy of arithmetic. Thus, the first thing we do in the chap-
ter is to explain what ‘arithmetical determinacy’ means in our context: we out-
line a semantic notion of determinacy, and introduce arithmetical determinacy
as the thesis that all arithmetical statements have a determinate truth-value. We
then present Warren andWaxman’s metasemantic challenge to arithmetical deter-
minacy [WW20a], which is of vital importance for us because it is the challenge
that we want our project to eventually meet. Right after, we introduce what seems
like the biggest threat to arithmetical determinacy, namely, Putnam’s model-
theoretic arguments [Put80, Put81]. We offer and critically assess different ways in
which the literature has tried to counter Putnam’s arguments, noting that none of
them seems entirely satisfactory.

The second chapter tries to look at the overall picture, and to provide the basis
for a thorough understanding of the notion of determinacy. In particular, we argue
that we need of a theory of determinate truth with which to explore the idea of de-
terminacy in the very object theorywhose determinacy is being investigated. More-
over, wewant that theory to display two desirable features of truth: a guarantee that
logical truths come out as determinate, that is, a supervaluational truth; and ma-
terial adequacy for truth and determinate truth, i.e., Tarski’s T-convention for the
meta-language. Thus, we trace the connections between three theories of truth:
two of them, by van Fraassen-Kripke [Kri75], and by Johannes Stern [Ste18], are
essentially supervaluational; the third one, by Van McGee [McG91], is supervalua-
tional in spirit andmaterially adequate. We also characterize the theory proposed
by McGee, a task McGee himself did not undertake.

Finally, the third chapter leaves aside the search for a theory of determinacy,
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and proposes a way to secure arithmetical determinacy that, we argue, is a partial
response to our research question. In particular, we adopt what the literature has
called ‘Isaacson’s thesis’: the thesis that Peano Arithmetic is complete and sound
with respect to arithmetical truth [Isa87, Isa92]. The proposal is based on an epis-
temological reading that Daniel Isaacsonmakes of the notion of arithmetical truth,
according to which a statement is arithmetical when it follows from our under-
standing of the natural numbers alone. We explain that, if Isaacson’s thesis is true,
then arithmetical determinacy is secured, as all there is to arithmetic is provability
and refutability in Peano Arithmetic. Then, we notice how Isaacson’s thesis may
lead to the conclusion that Peano Arithmetic is inadequate, a term we introduce to
refer to the fact that the theorymay prove truths that are not arithmetical in nature.
If this was the case, we argue, Isaacson’s thesis would lose much of its appeal. The
main goal of the chapter is thus to defend the conjecture that all those seemingly
non-arithmetical truths are, in fact, arithmetical by Isaacson’s standards.
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Chapter 1

Throughout the introduction, we have stated that the goal of this project is to find
the way to justify the claim that arithmetic is determinate. In this first chapter, we
offer an extensive but non-exhaustive review of the literature on the determinacy of
arithmetic. The aim here is to understand the magnitude of the challenge behind
the project, and to set the stage for the remaining of it.

We open with an attempt to understand what is meant by determinacy in the
context of the philosophy of mathematics. We thus provide a semantic conception
of it, and explain what it takes for arithmetic to be determinate on that basis. After
that, we present a first challenge to the determinacy of arithmetic that, we indicate,
arises mostly for formalist and conventionalist views of mathematics. The follow-
ing section presents problems for the determinacy of arithmetic that also apply to
the realist about mathematics, the so-called model-theoretic arguments. We then
explain, for two sections, some prominent responses to thesemodel-theoretic argu-
ments. Finally, we introduce two alternative ways of arguing for the determinacy
of arithmetic.

1.1 What is mathematical determinacy

Explaining what is meant by mathematical determinacy is already a difficult chal-
lenge. The notion of determinacy is ubiquitous in Philosophy, and is often better
understood by examining what is meant when we say that something is indetermi-
nate. As it happens, there is a plethora of opposing views as to what can ground
such a claim. Let us consider a classical example: a person, say John, who has too
little hair to be confident on him not being bald, but an amount of hair such that
we cannot really say if he is bald either. There are various routes one can take to ac-
count for this example, but three stand out as particularly popular in the literature.
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One could argue, for instance, that indeterminacy is epistemic in nature, and that
instances of indeterminacy are just a manifestation of some unknowability of the
subject matter in question—a deep, ineffable form of ignorance. Even if they may
be a fact of the matter about whether John is bald or not, we simply cannot know
it—something like this is what TimothyWilliamson [Wil94] proposes. This theory,
or collection of related theories, has received the name of epistemicism, for obvious
reasons. Alternatively, one can frame indeterminacy claims inmetaphysical terms:
whether John is bald or not is a primitive, metaphysical fact, not to be understood
via any reduction. An interesting account along these lines is developed by Barnes
andWilliams [BW11]. Finally, the third route to account for cases of indeterminacy
or vagueness is semantic. Indeterminacy is a problem of our language, not of our
knowledge nor of the world. Thus, one can argue that the semantical property of
bivalence fails for certain claims of natural language involving indeterminate terms
or predicates. One may then want to explain this failure further. For instance, the
early Kit Fine [Fin75] took indeterminacy to be a ‘deficiency of meaning’ of the
terms involved. Accordingly, a logic for determinacymustmodel theways inwhich
the meaning of the problematic terms can be sharpened.

What about mathematics? As before, one can believe that, even if there is a
matter of fact about all mathematical claims, some are indeterminate because there
is no human way to get to know their truth or falsity. That is: it will either be the
case that every even number greater than two is the sum of two primes, or it will
not, but such knowledge is unavailable to us. In his epistemicist line, Williamson
seems to defend this account [Wil94, 204].1 Clearly, this position seems to stand
in opposition to anyone who believes the Hilbertian dictum that, in mathematics,
there is no ignorabimus. But it is not wholly incompatible with being a die-hard
mathematical Platonist that fights back any claim to the effect that the ontology of
mathematics really is determinate.2 This being said, general consensus among die-
hard Platonists has it that mathematics is a determinate matter, and that the truth
or falsity of a seemingly indeterminate mathematical statement can eventually be
known; Kurt Gödel is perhaps the most famous example of such attitude [Gö90].3

1Although, admittedly, Williamson does not say that Goldbach’s conjecture is an example of an in-
determinatemathematical claim—only that it is an example of a necessary but unknowable truth.

2By die-hard mathematical Platonist, I mean a Platonist in the traditional sense: a supporter of the
theses that (i) there are mathematical objects, (ii) these objects are abstract, and (iii) they are inde-
pendent of intelligent beings in any possible way (see [Lin18]). I also exclude any form of pluralist or
plenitudious mathematical Platonism.

3Interestingly enough, Gödel argued that his anti-epistemicist convictions do not derive from his
belief in Platonism; rather, they are the result of the fact that we undeniably possess an intuition for
mathematics that plays in the mathematical epistemic enterprise a role similar to perception in physics.
Even if therewere nomathematical objects, ‘[t]hemere psychological fact of the existence of an intuition
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In contrast to the case of epistemicism, and as far as I can tell, the possible
indeterminacy of mathematics has never been considered in strictly metaphysical
terms, that is, it has never been explained as a brute metaphysical fact. Moreover,
it is not clear how to flesh this idea out. One might argue that, under the so-called
full-blooded or plenitudious Platonism, the mathematical claim ‘2ℵ0 = ℵ1’, which
is just the continuumhypothesis, is indeterminate due tometaphysical reasons. Af-
ter all, plenitudious Platonism—first introduced by Mark Balaguer [Bal98]—holds
that all consistent mathematical theories truly describe a part of an objective, ab-
stract, and agent-independent mathematical realm;4 and so ‘2ℵ0 = ℵ1’ holds in
the part of the realm described by ZFC + CH (or ZFC + 𝑉 = 𝐿, for that matter),
and ‘2ℵ0 ≠ ℵ1’ holds in the part of the realm described by ZFC + ¬CH. Hence,
the argument would go, truth-value of ‘2ℵ0 = ℵ1’ is indeterminate. But that is the
point: even if there is a metaphysical explanation behind, indeterminacy arises at
the sentential level. It is the claim ‘2ℵ0 = ℵ1’ that fails to have a determinate refer-
ent. The situation can be somehow analogous to what happens in uttering ‘Alice’s
dog has a black spot on the back’, while in fact Alice has two dogs, Toby and Gior-
gio, and only one of them has a black spot on the back. There is no metaphysical
indeterminacy, but an indeterminacy of reference. If we were to index the sets of
the different parts of the mathematical realm as described by the mutually incom-
patible theories—just like one specifies whether they refer to Toby or Giorgio—
indeterminacy disappears. Thus, ‘[2ℵ0 = ℵ1]𝛼’, where [⋅]𝛼 serves to single out the
mathematical realm as described by ZFC + 𝑉 = 𝐿, is not indeterminate anymore,
but true. In sum, we are dealing with a semantic conception of indeterminacy.

This is a symptom of a more general fact, namely, that, rare exceptions aside
(including Williamson), the favoured view of indeterminacy in mathematics has
been essentially semantic. In this work, we adhere to the tradition, hence consid-
ering determinacy and indeterminacy to be (possibly) tied to mathematical state-
ments themselves, and not to some supposed underlying ontology or to what we
can know about mathematics. Thus, a first, more precise approximation to math-
ematical (in)determinacy thus understood has been made explicit by Warren and
Waxman [WW20a, 478], and runs as follows:

Mathematical indeterminacy: the thesis that some mathematical
statements do not have a determinate truth-value, i.e., that somemath-

. . . suffices to give meaning to the question of the truth or falsity of proposition like Cantor’s continuum
hypothesis’, as well as Goldbach’s conjecture [Gö90, 268-9].

4The ‘consistent’ requirement can be relaxed to give rise to what J.C. Beall calls ‘really’ full blooded
Platonism [Bea99].
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ematical statements are neither determinately true nor determinately
false.5

Accordingly,mathematical determinacy is the thesis that all mathematical
statements have a determinate truth-value.

Of course, this has to be nuanced in at least the two following ways. First, a
mathematical statement can only count as such if it is a well-formedmathematical
statement. Clearly, that will depend on the particular languagewe are dealingwith,
but it seems evident that many arbitrary combinations of mathematical symbols
will not count as well-formed statements. In these cases, we shall not expect them
to have a truth-value, and this should not undermine our confidence inmathemati-
cal determinacy. Secondly, in a similar vein, if a seeminglymathematical statement
includes a predicate that may count as vague or fuzzy outside mathematical con-
texts, the indeterminacy may permeate the mathematical statement itself. A good
example, adapted from [War20, 204], is when we say: ‘10 is a small number’. That
people may rightfully disagree on the truth-value of this statement is no threat to
the determinacy of mathematics, for we shall not count it as a genuine mathemat-
ical statement—however one wants to understand ‘genuine’.6

Two further remarks are in place here: unlike the case of epistemicism, Warren
and Waxman defend thatmathematical indeterminacy implies that there is no
fact of the matter with respect to the truth or falsity of the statement or statements
that have no determinate truth-value. Furthermore, they also contrast their defi-
nition of indeterminacy with that of pluralism. For them, pluralism for a subject-
matter D is the idea that there are multiple, (seemingly) incompatible theories for
D that are equally correct. As in the case of plenitudious Platonism (which can be
used to support a form of pluralism), when a mathematical statement is uttered
without the specification of a particular theoretical framework, mathematical plu-
ralism arguably entails mathematical indeterminacy: for two incompatible but ac-
cepted theories𝑇1 and𝑇2, therewill be no determinate truth-value for the sentences
for which 𝑇1 and 𝑇2 differ. However, the reverse need not be the case.

5We use the term ‘statement’ instead of Warren and Waxman’s term ‘claim’.
6A notable exception is the predicate ‘being a set’, or the notion of set more generally. Even though

the term plays a central role in mathematics, mathematicians and philosophers alike have often found
themselves quarrelling over differing conceptions of set—see [Inc20, Ch.1]. For many, this issue lies at
the heart of the indeterminacy of set theory, and perhaps of the indeterminacy of mathematics more
generally (for an alternative view see e.g. [Mar01]).
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1.2 Thefirst challenge to arithmetical determinacy

The view that mathematical indeterminacy is true is not extremely implausi-
ble, and it has received substantial support from well-known figures.7 Those who
adhere to it often point at the independence of the Continuum Hypothesis and
other set-theoretic claims as evidence that the concept of set—or related notions,
such as that of the cumulative hierarchy—is vague or indeterminate (and, perhaps,
under-determined), with the implication that certain statements lack a determi-
nate truth-value. But consider arithmetical indeterminacy, the thesis that is
obtained by replacing ‘mathematical’ for ‘arithmetical’ all along in our definition
of mathematical indeterminacy. Now, arithmetical indeterminacy is a very
unpopular thesis, even among those who argue that set theory is indeterminate (cf.
[FFMS00, 410]). There seems to be a fact of the matter about every arithmetical
statement; the structure of the natural numbers and, by extension, the standard
model of arithmetic, seem clearly determinate in all regards.

Now, Warren and Waxman [WW20a] have produced an argument which aims
to deliver the conclusion that arithmetic is indeterminate. The argument unfolds
in various steps. First, they say, a rather intuitive argument in favour of the inde-
terminacy of CH—and, consequently, of set theory—runs as follows:

1. CH is independent of ZFC.

2. A sentence of the language of set theory is indeterminate iff it is independent
of ZFC.

∴ CH is indeterminate.

But then, if we let R be the Rosser sentence for PA,8 we can introduce the fol-
lowing argument:

1. R is independent of PA.

2. A sentence of the language of arithmetic is indeterminate iff it is independent
of PA.

∴ R is indeterminate.
7See e.g. [FFMS00, 402] and [Mos67].
8The Rosser sentence is a sentence that says of itself that, if there exists a proof of it in PA, then there

exists a smaller proof in PA of its negation. We could have equally introduced the Gödel sentence for
PA.
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What Waxman andWarren claim is that the two arguments are strikingly simi-
lar, and that we may need to take the second argument seriously: premise 1 of both
arguments is undeniable, and premise 2 captures analogous ways of understand-
ing set-theoretic truth and arithmetical truth as provability in (or, at least, exten-
sionally equivalent to provability in) some privileged mathematical theory. So, the
argument goes, if we are to resist arithmetical indeterminacy, then we need to
explain how the determinacy of arithmetic can arise—what they call the metase-
mantic challenge. Unless such a challenge is met, the argument just sketched gives
us a reason to believe that arithmetic is determinate.

But does it really? There are some problems here. Warren andWaxman already
note that there are relevant differences between R and CH. We have good reasons
to believe that R is true (e.g., that it holds in the standard model of arithmetic),
which does not happen in the case of CH. I would argue, however, that there is a
more fundamental justification to reject the force of the argument, namely that the
reasoning for the indeterminacy of CH is highly contestable. In particular, premise
2 is, for the most part, false. A clear example is the aforementioned statement ‘All
projective sets of reals are Lebesgue-measurable’. With rare exceptions (including
Feferman and, perhaps, radical proponents of set-theoretic pluralism),most set the-
orists wholeheartedly believe that the statement is determinately true: it captures a
nice, desirable, and very plausible property of sets of reals; and, while independent
of ZFC, it can be shown to follow from rather weak large cardinal assumptions. In
fact, many set theorists take it to be important evidence that at least some of these
large cardinal axioms are to be accepted too as part of our description of the set-
theoretic universe. The situation is very distant from that of CH, where it is known
that large cardinal axioms cannot settle the hypothesis, and that axioms that do
settle it are somehow much less intuitive. In sum: premise 2 can be argued to fail,
according to how many set theorists and philosophers view the subject.

Now, this criticism should not lead to the conclusion that the metasemantic
challenge has been dispelled. It is still necessary to explain why mathematics is
determinate, rather than just assume it is; determinacy is too important of a prop-
erty of our mathematical talk and practice to overlook it. In a sense, it is similar
to Benacerraf’s two challenges [Ben73]: it is now generally agreed that an accept-
able philosophy of mathematics must be able to tell us how it is possible that our
mathematical beliefs are reliable—put otherwise, how it is possible that we have
mathematical knowledge at all. Most relevantly for our topic of investigation, it is
still necessary to explain why arithmetic is determinate; we want to be able to say
that the claims ‘All numbers greater than 2 is the sum of two primes’ and ‘2+2 = 4’
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have a determinate truth-value.
In fact, and as the Introduction to this thesis made clear, the goal of this project

consists precisely in meeting the metasemantic challenge. We want to explain how
the determinacy of arithmetic arises, and how it stands in opposition to the (possi-
ble) indeterminacy of set theory. After all, arithmetic, unlike much of higher-order
mathematics, is part of our everyday understanding of, and interaction with, the
world around us. We use counting and elementary arithmetical operations all the
time. Science, engineering, and all sorts of human artifacts rely onmaths andmea-
surements, and ultimately on those basic arithmetical operations. It would clearly
seem fatal if we discovered that certain questions of such a fundamental part of our
knowledge do not have a determinate answer, that is, if certain statements did not
have a determinate truth-value.

Something to notice, though, is that the challenge is not a pressing one for
those who hold certain views on the philosophy of mathematics. For instance,
as acknowledged by Warren [War20, 204], the conventionalist about mathematics
needs to address the challenge, on pain of having to admit that our conventions are
plainly faulty. This possibly applies to the formalist about mathematics as well. On
the contrary, a fictionalist about mathematics who believes that no mathematical
statement is true would not feel compelled to meet the challenge.

Likewise, and as Warren [War20, 205] rightly points out, the die-hard Platonist
can appeal to ‘theory-transcendent’ facts in order to settle the determinacy of, for
instance, arithmetic. The idea, usingWarren’s terms, would be that the ontological
facts ‘outstrip’ our practice. Our theory just presents limitations when it comes to
accounting for certain worldly facts—but the facts are still there. Of course, this so-
lution is only available to someone who can adequately argue in favour of die-hard
Platonism—and that is no small task. Moreover, it is unclear to me whether this
proposal is not actually collapsing into a form of epistemicism. If the idea is that
the facts will always outstrip the practice, there is a gloss of unknowability in the
Platonist’s appeal. Anyway, this matters little for Warren and Waxman, for appeal-
ing to metaphysics in order to explain determinacy is ruled out by their imposition
of what they call the ‘metaphysical constraint’. The constraint, which arises out
of naturalistic concerns, basically states that abstract objects should play no role
in mathematical metasemantics. That is, we cannot point at some supposed well-
defined and determined abstract, mathematical realm to answer questions about
meaning and reference. Together with the so-called cognitive constraint (i.e., the
idea that we have no non-computational mental powers), which blocks an appeal
to non-recursive theories that do happen to be complete, we are again in dire need
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for an account of mathematical (or, at least, arithmetical) determinacy.

1.3 Putnam’s model-theoretic argument(s)

We just saw how, under the metaphysical constraint, the metasemantic challenge
raised byWarren andWaxman remains. But one may have independent reasons to
resist the metasemantic constraint. Is then the Platonist on safe grounds as regards
the determinacy of, at least, arithmetic?

There are strong reasons to doubt it. For, on the first place, the phantom of full-
blooded Platonism (FBP),whichwe alreadymentioned, awakes as soon aswe adopt
a Platonist perspective. After all, FBP seems to fare better than die-hard Platonism
in many respects. For instance, it (arguably) meets Benacerraf’s challenge, and
is able to account for the way in which mathematicians keenly study all sorts of
theories.9 But, aswe saw, the full-blooded platonist is happy to assert that ‘2+2 = 4’
has no determinate truth-value, contradicting thus the kind of determinacy we are
after.

All in all, the biggest challenge to securing determinacy by adopting a form of
traditional Platonism lies somewhere else, namely in Hilary Putnam’s well-known
model-theoretic argument against realism. Or, rather, in his model-theoretic argu-
ments, for there are three of them.10 We shall begin by briefly sketching each of
them.

1.3.1 The arguments

Thefirst argument Putnampresents in his paperModels and reality [Put80] is some-
times known as the argument fromLöwenheim-Skolem, for it uses thiswell-known
model-theoretic result. The idea of the argument is simple. Suppose that your pre-
ferred theory 𝑇 ‘says’ that it has an uncountable set 𝑆. Then, by the Löwenheim-
Skolem theorem, 𝑇 has a countablemodel—onewhere the statement ‘𝑆 is uncount-
able’ still holds. As it is well-known, the contradiction is only apparent; the way
models see themselves does not reflect how they are ‘in reality’. This is why Skolem
would say that ‘countable’ and similar notions are relative to a model. The prob-
lem for Putnam is that one cannot rule out the possibility of living in a non-standard
model of the sort just outlined, where things do not mean what they should ‘in re-
ality’. Any theoretical attempt to single out the standard model as the universe of

9These and other points are found in [Bal98, Ch.3].
10I am grateful to Tim Button for clarifying this point, as much of the literature does not distinguish

the arguments.
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our discourse must be done within a theoretical framework, formalisable within
some theory 𝑇′ an unintended model of which we cannot rule out. That is why
this attempt to neutralise Putnam’s argument has often been known as the ‘just-
more-theory’ manoeuvre. Moreover, the challenge does not end with the notion of
countability; one could argue that the same applies to all sorts of theoretical terms,
from our everyday vocabulary to the sharpest scientific jargon. What’s key here
is our incapacity to pick out the extensions of these terms correctly due to the ex-
istence of non-standard models that we cannot leave aside on the basis of theory
alone. As a result, what obtains is referential indeterminacy, which amounts to a
form of semantic indeterminacy.

What about observational constraints? Can’t our experience of the world rule
out non-standard models for these terms? Not for Putnam: we would fall prey to
a similar worry. This being said, very few people have conceded Putnam this last
point and, at least when it comes to our everyday terminology, it is generally be-
lieved that our operational constraints can and indeed do fix the referents of our
everyday language (see e.g. [Fie94, §2]; [BW16, 286-7]). But since we are here
interested inmathematical determinacy alone, it seems that our observational con-
straints will certainly not fix the referent of, say, the term ‘the class of all projective
sets of reals’.

Let’s check the second model-theoretic argument. Button and Walsh [BW16,
BW18] have baptised this argument the ‘push-through construction’, but it has also
appear in the literature under the name of ‘permutation argument’ (see [HW17,
Gas11, But11]). The argument is based on the idea that, given a model for a theory
𝑇, we can find many isomorphic copies of it for which the domain has been per-
muted. Putnam explains it in plain terms in the following way. Suppose that we
have a model over a language that contains the terms ‘cat’ and ‘cherry’, and whose
domain quantifies over cats, cherries, and possibly other things. Then

if the number of cats happens to be equal to the number of cherries,
then it follows from theorems in the theory of models ... that there
is a reinterpretation of the entire language that leaves all sentences
unchanged in truth value while permuting the extensions of ‘cat’ and
‘cherry’. By the techniques just mentioned, such reinterpretations can
be constructed so as to preserve all operational and theoretical con-
straints. [Put81, 41]

If so, how could we ever be sure that the referent of our term ‘cat’ is what we
want it to be? Well, once again, we can downplay Putnam’s conclusion: observa-
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tional constraints should suffice here. We are very much acquainted with cats and
cherries. But what happens when the discourse is mathematical? The very same
argument can be made of, say, a model of the natural numbers that permutes each
even number 𝑛 for the number 𝑛 + 1—so that 0 and 1 swap places, 2 and 3 swap
places, and so on.

Finally, the third model-theoretic argument may be known as the constructivi-
sation argument, and it is more involved than the previous two. As Button [But11,
323] explains, this is an argument directed at the realist about sets. A realist about
sets in the standard fashion would have it that there is a fact of the matter about
whether Gödel’s Axiom of Constructibility, 𝑉 = 𝐿, holds or not. The axiom ba-
sically states that all sets are constructible, in a technical sense of the word (for
more, see e.g. [Kun13, §II.6]). As Putnam [Put80, 467] notes, Gödel believed it
to be false, and so do most set-theorists. How can we establish that conclusion?
According to Putnam, it cannot be through theoretical constraints. On his view, a
model meets the theoretical constraints for a set theory as soon as our preferred ax-
ioms are satisfied in the model. Since these would be the axioms of ZF (or perhaps
ZFC), and 𝑉 = 𝐿 is consistent with these axioms (i.e., there are models of 𝑉 = 𝐿

that also satisfy ZF), the theoretical constraints will not determine that the Axiom
of Constructibility is false. As a result, it must be our operational constraints that
falsify the axiom. This would amount to something like us coming across a non-
constructible real number: since the Axiom of Constructibility asserts that the set
of all constructible sets (𝐿) is equal to the whole set-theoretic universe (𝑉), an em-
pirical encounter with—perhaps a measurement that yields—a real number (i.e.,
a set) that we knew to be non-constructible would show that 𝑉 ≠ 𝐿. But then,
Putnam proves the following result:

Theorem 1 (Putnam). For any countable set of real numbers 𝑆, there is an 𝜔-model
ℳ such thatℳ ⊨ ZF + 𝑉 = 𝐿 and 𝑆 is represented inℳ.

That 𝑆 is ‘represented inℳ’ here just means that 𝑆 can be coded up as a single
real number 𝑠 (there are standard techniques to do that), and thatℳ contains the
single real 𝑠—maybe as a Dedekind cut, or a Cauchy sequence (see e.g. [Kun12,
§I.15]). All in all, the conclusion is that, whatever non-constructible ‘in reality’
real number 𝑠 could exist, coming across this number would not settle the ques-
tion of whether 𝑉 = 𝐿 or not, for we could have encountered this real number in a
constructible universe too. But this seems the only chance we could have of, obser-
vationally, decide the truth of theAxiomof Constructibility. So the realist about sets
cannot be right, unless they posit that we are in possession of some super-natural
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ability to grasp the truth of set-theoretic statements—which is a poor epistemologi-
calmove. Thus, Putnam concludes, ‘the “relativity of set-theoretic notions" extends
to a relativity of the truth value of “𝑉 = 𝐿” ’ [Put80, 469]. That is, not only notions
as ‘countability’ or ‘set’ are relative, the truth-value of general set-theoretic state-
ments also is—another ghost of indeterminacy!11

1.3.2 Putnam’s arguments and arithmetical determinacy

In this subsection, we are going to explore the extent to which Putnam’s argument
might lead to arithmetical indeterminacy, a thesis we described previously.

According to Timothy Bays [Bay01], it is not possible that Putnam’s arguments
lead to arithmetical indeterminacy; in fact, it is not possible for them to lead
to any indeterminacy at all by themselves, for the premises on which they rest are
wrong. What Bays questions, in particular, is: (1) the mathematics behind Put-
nam’s argument, and (2) the claim that only theoretical or operational constraints
would fix the reference of our terms. We shall here examine objection (1), for it
is the one that has left a bigger imprint on the literature. After all, if the math-
ematics of the arguments are wrong, then the whole arguments, being based on
model-theoretic reasoning, undeniably are too.

The mathematical objection to Putnam’s argument (or, at least, to the third
model-theoretic argument) can be raised by asking the question: what theory are
we using to prove Theorem 1? If the answer is that we are using ZFC, then some-
thing must have gone terribly bad, for any model of ZF+𝑉 = 𝐿 satisfies the Axiom
of Choice, and so Theorem 1 has proved the existence of a model of ZFC from
within ZFC itself. But this contradicts Gödel’s second incompleteness theorem!
Bays notes exactly where the proof has gone wrong. In order to prove his theorem,
Putnamneeds a countablemodel that contains the set 𝑆 coded as a single real 𝑠. The
inner model 𝐿 will give him a model that contains 𝑠, and so he applies the down-
ward Löwenheim-Skolem Theorem to obtain a countable elementary substructure
of 𝐿 that contains 𝑠.12 But that is the problem: 𝐿, being equal to 𝑉, is a class, not a
set, and the downward Löwenheim-Skolem theorem can only be safely applied to
sets. So, as it stands, the argument breaks. In spite of this, the alternative, namely
to carry out the proof in a stronger theory, is not better. Suppose that we proved

11One could discuss whether this argument was really needed. It seems to me that the original
Löwenheim-Skolem argument also showed that the notion of constructibility is relative. But, if so, the
very truth-value of the Axiom of Constructibility is, for it just asserts that all sets are constructible.

12Let𝒜 andℬ bemodels of a languageℒ, and |𝒜| ⊆ |ℬ|. 𝒜 is an elementary substructure ofℬwhen,
for every formula 𝜑 in ℒ, 𝒜 ⊨ 𝜑[𝜎] ⇔ ℬ ⊨ 𝜑[𝜎] for every every assignment 𝜎 for 𝜑 in |𝒜| [Kun13,
§I.15].
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the theory in ZFC + ‘there is an inaccesible cardinal 𝜅’. Then, we can apply the
Löwenheim-Skolem theorem to obtain a countable model that represents 𝑆 and
satisfies ZF+𝑉 = 𝐿. But then this model will not meet out theoretical constraints
in the sense given by Putnam. For one thing, it will not satisfy ZFC+‘there is an
inaccesible cardinal 𝜅’, and we surely need to say that the large cardinal axiom is
part of our theoretical constraints if we are going to reason with it.

In sum: Theorem1—andwith it the constructivisation argument—seemsdeeply
flawed. But was the argument a problem for the determinacy of arithmetic at any
point? Possibly not. After all, it was an argument that aimed to show the relativity
of contentious set-theoretic claims (𝑉 = 𝐿, possibly CH, or the Axiom of Choice),
and so the indeterminacy of set theory, but we struggle to find a way in which it can
lead to the conclusion that arithmetic is indeterminate.

Something different occurs in the case of the first and the second arguments.
Consider the argument from Löwenheim-Skolem. Some theorists, most promi-
nently Hartry Field, have argued that the argument applies to set theory as much
as it applies to arithmetic (see e.g. [Fie94, Fie98, Fie01]). Field’s argument is as
follows. We can consider a quantifier ∃𝐹𝑖𝑛 for expressing that there is finitely many
objects that satisfy a certain formula. This quantifier can be defined in second-
order logic, or set-theoretically; or it can be taken as primitive—defined, according
to Field, by the rules that govern its usage. In either case, however, this quantifier
will also have standard and non-standard interpretations, i.e., number-theoretic
models where formulae with the quantifier are indeed satisfied by a finite num-
ber of objects of the domain, and models where formulae with the quantifier are
satisfied by an infinite number of objects—including an infinity of non-standard
numbers. Now, that these models exist is also guaranteed by the appropriate math-
ematics.13 Therefore, it seems that the notion of ‘finitely many’ is also relative. But
if this notion is indeed relative, the very concept of natural number also is, for a
natural number can be characterised as having finitely many predecessors.

Moreover, Bays’ critique does not arise in the case of the argument fromLöwen-
heim-Skolem, according to Button [But11]. This is so because, in Button’s view,
given a theory 𝑇, when no 𝑉 = 𝐿 or any other contentious statement is involved,
all Putnam’s argument establishes is the conditional claim ‘If 𝑇 has any models,
then 𝑇 has unintended models that we cannot tell apart’. Now, note that, by the
Completeness Theorem, the antecedent of this conditional is equivalent to ‘𝑇 is
consistent’. And, unless one is a fully committed fictionalist about mathematics,

13But note that here we make use of the compactness theorem, not the Löwenheim-Skolem [Fie94,
414].
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one will accept that our preferred theories, say PA, are true. However, Button con-
tinues, truth entails consistency.14 Therefore, the realist must concede Putnam the
antecedent he needs to conclude that our preferred theory has unintended models
that we cannot tell apart.

If Button is right, then it seems that the argument Field provides should also be
correct, and Putnam’s argument threatens the determinacy of arithmetic. However,
I believe that there is room to disagree with Button. We are now witnessing a ren-
ovated interest in the literature around the notion of implicit commitment, which
aims to capture the idea that there may be certain components (especially, formal
statements) implicit in the acceptance of a theory that are not available in the the-
ory, or even formalizable in its corresponding language (see [NP19]). The lively
debate shows that it is not entirely clear whether accepting a theory also implies
accepting properties of it such as soundness or consistency, especially in light of
the so-called foundational approaches to theories (e.g., Tait’s link between finitism
and PRA). Therefore, we should be wary of Button’s claim that accepting 𝑇 entails
that one is committed to Con(𝑇), and even less to the truth of it, i.e., a reflection
principle. In any case, we will not pursue this objection further, and will continue
as if indeed Putnam’s argument from Löwenheim-Skolem escaped Bays’ criticism,
and as if it indeed threatened the determinacy of arithmetic, as Field wants us to
believe.

Finally, let’s consider the extent to which the second argument leads towards
arithmetical indeterminacy. The push-through or permutation argument as
applied to arithmetic seems to naturally lead to the idea that our preferred arith-
metical theory singles out a model only up to isomorphism. There are infinitely
many isomorphic copies of the standardmodel of arithmetic, the argument will go,
and how are we to pick one? Maybe the model we live in, even if isomorphic to
the model we would like to single out, is such that the term ‘302’ takes the third
position, and the term ‘3’ takes the hundred and fifty third position. One may be
then tempted to conclude that our arithmetical terms do not refer determinately,
but that the theory as a whole does [BW16, 287]. After all, it singles out the ap-
propriate sort of structure, namely that of the natural numbers, in the form of an
isomorphism type.15 Does this bring any comfort? Maybe not to the traditional Pla-
tonist who wants each and every term to refer to the ‘right’ number of the natural

14The idea would be something like: 𝑇 is true is akin to the uniform reflection principle for 𝑇, and 𝑇
plus the uniform reflection principle already implies Con(𝑇).

15An isomorphism type is defined as the equivalence class originated by some isomorphism, so that
two structures belong to the same isomorphism type iff they are isomorphic.
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number structure, but it may initially do for a structuralist about mathematics—
especially for an non-eliminative structuralism à la Shapiro [Sha97] and, perhaps,
Parsons [Par08].16 Nonetheless, even then does the phantomof Putnam’s argument
reappear. For how are we to tell which isomorphism type does our theory selects?
After all, first-order theories such as PA are not categorical, i.e., they do not sin-
gle out a unique isomorphism type. But if we are to single out that type ourselves,
then we would be producing a structure that would be subject again to the possi-
ble permutation of isomorphism types induced by Putnam’s argument. That is, if
we think of the different isomorphism types generated by a first-order theory, say
PA, as a structure, then there will be structures isomorphic to it where the domain
(the isomorphism types) has been permuted. In a sense, it is the just-more-theory
manoeuvre again!17

In closing this section, let’s quickly recap what has been said so far. We have de-
fined arithmetical determinacy as the semantic thesis that all arithmetical state-
ments have a determinate truth-value. We have presented Warren and Waxman’s
metasemantic challenge to arithmetical determinacy, namely, the need to ex-
plain how arithmetical determinacy can arise in the first place. It then seemed
that, if we accepted their metaphysical and cognitive constraints, the challenge be-
comes a difficult one for the defender of arithmetical determinacy. Thus, one
option available to the Platonist was to reject themetaphysical constraint in the first
place and ground the determinacy of arithmetic on mathematical ontology itself.
However, we showed how at least two of Putnam’s model-theoretic arguments (the
argument from Löwenheim-Skolem and the push-through argument) put arith-
metical determinacy at risk even for the Platonist, insofar as they amount to
referential indeterminacy, and the notion of determinacy we are interested in is
semantic.

The next two sections will thus be devoted to exploring two different lines of
response to Putnam’s threat. The first such line is directed at the argument from
Löwenheim-Skolem, and the second line addresses the push-through construction.

16Structuralism is, roughly speaking, the view that mathematics is about structures. Non-eliminative
structuralism holds that these structures are indeed abstract objects in their own right.

17One could even combine the permutation and the push-through argument and claim that, if we are
to determine which isomorphism type we pick up, we need to ascend to some theory that is subject to
the relativisation of terms induced by the Löwenheim-Skolem argument. Thus, since terms like ‘iso-
morphism’ may be relative, how can we even speak of singling out an isomorphism type? To the best
of my knowledge, no one has tried to pursue this strategy, which seems to me an enhanced approach to
the model-theoretic arguments.
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1.4 Responding to the argument fromLöwenheim-
Skolem

By now, we know that Putnam’s model-theoretic argument based on the Löwen-
heim-Skolem Theorem proceeds by noticing that whatever the theory we want to
work in, we cannot rule out non-standard interpretations of the terms associated
with it. If we want to fix the standard interpretations of those terms, then wewould
have to move to a theoretical framework that is subject to the same worry. In fact,
Putnam even defends that we run into this problem as we try to fix the referents of
our terms observationally. Nonetheless, as we said, this last point has been ruled
out repeatedly in the literature. The key issue, however, is what happens with those
terms the referents of which are not the kind of thing we are acquainted with ob-
servationally. This is, precisely, the case of mathematics.

Here’s an example: it seems that the referent of the term ‘the set of all projective
sets of reals’ is not something we will encounter out there, it is not something we
will be familiar with by observational means. Accordingly, all we have to fix the
referent of the termmust be theoretical in nature—and this, by Putnam’s argument
from Löwenheim-Skolem, leads to indeterminacy.

In a series of papers, Hartry Field has explored how this affects arithmetic. As
we saw above, he focuses on the notion of ‘finitely many’, which seems essential to
understand that of natural number, and argues that the existence of non-standard
arithmeticalmodels for a quantifier that captures this notionmight render the latter
indeterminate. Now, Field’s proposed way out consists is noticing that, while set
theory is indeed the kind of mathematical field for which observational constraints
will help little in fixing reference, this need not be the case with arithmetic. He thus
writes:

Inmy view, the problem of finding facts about usage that rule out [non-
standard arithmetical] models is completely insoluble if we look only
to the uses of [the notions of finiteness, 𝜔-sequence, etc.] within pure
mathematics. However, it is also my view that the problem can be
solved by consideration of the uses of these notions in connection with
the physical world. [Fie98, 259, italics in original]

Field’s proposal is then the following: given that key arithmetical notions such
as ‘finiteness’ or ‘finitely many’ are also used in connection with the observable re-
ality, we shall try to use the physical world to rule out non-standard interpretations
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of these notions. In order to do so, of course, Field needs to assume that notions
about observables are by large determinate, so that our words ‘cat’, ‘atom’ and ‘red’
do not pick up, respectively, cherries, pebbles, and plainly green items. But, since
we no longer buy Putnam’s claim that his argument from Löwenheim-Skolem also
affects operational constraints, Field’s assumption is somehow granted.

Now, themeat of Field’s argument rests on the actual existence of an𝜔-sequence
in the physical world. As a clarification, an 𝜔-sequence is a sequence of elements
related in the order induced by 𝜔—a natural number-like sequence with the or-
der as it should be ‘in reality’. Now, suppose there is such an 𝜔-sequence in reality
generated by some physical process or phenomenon (we shall later give a couple
of examples of how it may look like), and the elements (rather, the urelements) of
this sequence form the set 𝑋. Then, one can define a predicate 𝐹(𝑌) that holds for
all and only the sets 𝑌 such that 𝑌 is a proper initial segment of 𝑋. Afterwards,
one can define ‘𝑍 is finite’ as there being a one-to-one correspondence between the
elements of 𝑍 and some set 𝑌′ such that 𝐹(𝑌′) holds, and this should suffice to es-
tablish the meaning of ‘finite’ (and ‘finitely many’, ‘natural number’, and so on). Of
course, this by itself does not rule out the existence of non-standard models where
𝐹(⋅) holds of a set 𝑋 that is actually infinite. But, Field claims, it does rule out the
possibility that we are living in such a non-standard model. For, being the set 𝑋
composed of urelements of some type 𝐴, if we indeed lived in such a model, we
would be capable of seeing that either some of the elements of 𝑋 are not in fact
urelements of type 𝐴 in reality, or that the physical relation holding between the
urelements is not the one that corresponds in reality.

Let’s give an example that Field uses. Suppose that time is infinite andArchime-
dean in nature—in other words, that there will be an infinity of instants in time,
and that any bounded time-interval is finite. Field calls these the cosmological as-
sumptions [Fie94, 416]. Then, you can start your temporal 𝜔-sequence: take the
present as your departure point, and consider a sequence of events such that each
two of them will bound a time interval. What you get is indeed an 𝜔-sequence
whose urelements are events, ordered by the ‘earlier than’ relation. Now, one de-
fines the predicate𝐹(𝑋) iff𝑋 is an initial segment of this infinite sequence of events,
and ties the notion of finiteness to that of one-to-one corresponde between a certain
set 𝑌 and a set 𝑍 such that 𝐹(𝑍). Once again, this will suffice for us to check and
be sure that we do not live in a non-standard model, since

any such model must assign a nonstandard extension to the formula
[𝐹(⋅)]; and in particular, itmust either contain things that satisfy ‘event’
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which are not events, or it must contain pairs of events which satisfy
‘earlier than’ or ‘at least one second apart’ even though the first is not
earlier than the second or the two are not one second apart. [Fie94,
417]

As a result of this, we can tell apart unintendedmodels for the notions of ‘finite’,
‘natural number’ and so on, which means that the threat to arithmetical deter-
minacy that originated in the argument from Löwenheim-Skolem is dispelled.

To be sure, Field’s response to Putnam is not without its objectors, beginning
with Field himself. For the most evident criticism is something he already notes:
that this response relies entirely on the existence of some physical or physical-like
𝜔-sequence. It need not be a temporal sequence: it may be a spatial sequence, a
sequence of entities, or something else. What’s more: we do not even need to know
that such a sequence exists (we would still be able to tell events and non-events
apart, even if we were ignorant of their forming an 𝜔-sequence!), but it has to exist.
Otherwise, the argument collapses. Hence, it is, at best, an argument contingent
on how the world could be like. And, perhaps, this makes it rather unappealing.

A second objection comes from Parsons [Par08, §49]. According to him, Field is
not really entitled to claim that wewould be able to recognise ‘non-standard events’
if we lived in a non-standard interpretation. After all, the concept of event as un-
derstood by Field (some sort of process taking place in a finite amount of time) is
deeply mathematically charged. Therefore, Parsons considers it unreasonable to
expect that, in whatever way we come to form our concept of ‘event’, this is consid-
erably sharper than our number-theoretic concepts.

Now, as per the first objection, Sharon Berry ([Ber21, Berng]), has offered a
version of Field’s response that claims to rely only on the possible existence of an 𝜔-
sequence, and not in the actual existence of such a sequence. Wemerely sketch the
solution here. She first presents a conjunction of sentences that are meant to hold
with physical necessity. In the case of [Ber21], this consists of counting and induc-
tion claims concerning a coin toss (e.g. ‘an object 𝑥 is the 0th coin flip iff it is a coin
flip and all other coin flips happen after 𝑥’, or ‘if the 0th coin-flip lands heads, and
if for every n-th coin-flip that lands heads, the n-th+1 coin-flip also lands heads;
then all coin-flips indexed by a natural number also land heads’). It also includes
the axioms of Peano Arithmetic without the induction scheme. Then, Berry’s as-
sumption has it that the existence of an infinite sequence of strictly random coin
flips is at least possible. It follows then that there is a possible world where there
is a strictly random infinite sequence of coin tosses and the first 𝜔 coin tosses land
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heads. If we lived in some non-standard interpretation of the kind adduced by the
argument from Löwenheim-Skolem, then the induction claim as applied to heads
must be false. After all, the claim—just like Field’s case—involves the use of phys-
ical vocabulary that should be rather determinate for us. But then it is clear that
the claim would not hold of physical necessity, for there is a possible world where
it does not hold. Hence, the possibility of living in a non-standard interpretation
can be ruled out.

Berry’s argument, being a tweak of Field’s argument, seems much more con-
vincing, insofar as it does not fell prey to the contingency of the latter. Moreover, it
may also be the case that it avoids Parsons’ objection, since the physical phenom-
ena involved (a coin toss) is way less mathematically laden, if at all. Nonetheless,
a further, important objection has been raised against Field’s account, and I take
it to be equally applicable to Berry’s. Thus, Otavio Bueno [Bue05] has criticised
Field because, Bueno argues, he holds two antagonical claims. On the one hand,
Field [Fie94, §2] takes second-order quantification to be indeterminate; the exact
reason why will be presented in the next section, so let’s just take it for granted
here. At the same time, he argues for the determinacy of the notion of finiteness.
But, Otavio argues, the notion of finiteness can only be properly characterised via
second-order logic. The reasoning is analogous to the one that generated the ar-
gument from Löwenheim-Skolem: first-order theories have models for which the
notion of ‘finite’ is satisfied by infinite sets. However, this issue does not arise in
the case of second-order theories. If we concede this point, then Field’s claims are
seemingly incompatible: the determinacy of the characterised notion (finiteness)
is contaminated by the indeterminacy of the characterising notion (second-order
quantification). Moreover, as mentioned, this seems a problem not only for Field,
but also for Berry. While, admittedly, she never defends that second-order quan-
tification is indeterminate, she is now urged to explain either how second-order
quantification can be determinate, or how it could be possible for the latter to be
indeterminate while our number-theoretic vocabulary remains determinate.

1.5 Responding to the push-through argument

The push-through or permutation argument leading to referential indeterminacy
had two steps. First, we apply the argument once to conclude that we would have
noway to tell whether our first-order theory of arithmetic picks the natural number
structure in which terms such as ‘3’ or ‘302’ occupy the third and the three hundred
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and second position, and that, at best, our theory will only pick the structure of the
natural numbers—an isomorphism type. Then, we apply the argument again to
realise that our theory may not single out the one isomorphism type we need, since
permutation of isomorphism types is also possible. Thus, we are left with radical
indeterminacy of terms and of structure.

Fortunately, there is a prima facie straightforward answer to this challenge. The
impossibility of singling out an isomorphism type is certainly a feature of first-order
theories, but that changes with some theories formulated in second-order logic.
That is, some second-order axiomatizations are categorical, i.e., they pick out an
isomorphism type—or, equivalently, any two models of such theory are isomor-
phic. These include: the second-order axiomatization of PeanoArithmetic (PA2)—
a classical result by Dedekind [Ded63]—and, for instance, the second-order axiom-
atization of the completely ordered field of real numbers (R2)—another classical
result by Huntington [Hun02].18 Thus, a natural response to the push-through ar-
gument is to make the move to second-order logic; after all, if our theory picks out
just one isomorphism type, then the second application of the argument leading to
radical indeterminacy is blocked.

We shall not provide an extensive treatment of the literature on categoricity, for
it is rather vast. However, we do intend to give some glosses of how the discussion
and research on categoricity touches on the quest for arithmetical determinacy.

1.5.1 Can second-order logic do the job?

As we have just mentioned, the following theorem could grant us arithmetical
determinacy, at least up to the structural level:

Theorem 2 (Dedekind). All models of PA2 are isomorphic.

Now, there is an important problem here, associated to the very use of second-
order logic: it generates suspicion. To beginwith, Quine famously said that second-
order logic is just ‘set theory in sheep’s clothing’ [Qui70]. What he was trying to get
at is that second-order quantification is not really quantification over properties or
relations, but quantification over sets; and this gets us too close to first-order set
theory. But, if we need set theory to secure arithmetical determinacy, and we lack

18Exactly which complete second-order theories are categorical is still an open question. All in all,
some results have been obtained. For instance, Solovay [Sol06] showed that any second-order, finitely
axiomatizable theory is categorical assuming the axiom𝑉 = 𝐿; and [WV21] have shown that, assuming
the axiom of projective determinacy, any finitely axiomatizable theory with a countable model is also
categorical.
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the sort of categoricity result for set theory that motivates the determinacy of the
latter, have we made any progress? As a response, Vann McGee [McG97] takes on
the challenge and proves a categoricity theorem for second-order ZFC with urele-
ments. However, as he himself notes, whoever had serious doubts about the use of
second-order logic will probably remain suspicious of his result, insofar as it still
makes use of second-order logic for his set theory with urelements.19 Note also that
the concerns with second-order logic need not be reduced to the one expressed by
Quine. The current debate seems to have moved past Quine’s ‘nominalist scruples’
for properties or relations [FI19, 761]. Nowadays, the suspicion often arises out of
the so-called ‘overgeneration argument’. The precise lesson to be drawn from this
argument is at the heart of an open philosophical debate (see e.g. [FI19, Pas14]);
however, theorists agree that it has to do with passing for logic what isn’t. In partic-
ular, for treating as validities (in the logical sense) certainmathematical statements
that are clearly not logical truths—a result, some say, that is a consequence of the
problematic degree of entanglement betweenmathematics and second-order logic.

Furthermore, the identificationwith set theory and the entanglementwithmath-
ematics are not the only aspects that generate concern for the skeptic of second-
order logic. We are here dealing with full second-order logic, that is, the second-
order semantics obtained when we allow the second-order quantification to occur
over all subsets of the domain we are considering. This is to be differentiated from
Henkin semantics, in which quantification may be restricted to a proper subset of
all subsets of the domain—often, the collection of all definable subsets. The key
point is that some crucial results of first-order logic do not carry over to full second-
order logic, including the completeness theorem, the compactness theorem and the
Löwenheim-Skolem theorem.

Now, if we were to swallow this bitter pill, and proceed with full second-order
logic despite the absence of these fundamental results, we can ask: will it then
be enough? Not really, for we would fall prey of a very Putnamian worry. As it
happens, Dedekind’s theorem only goes through when our semantics are the full
semantics for second-order logic. That is, the result does not obtainwithHenkin se-
mantics. And this is no surprise, for the Löwenheim-Skolem theorem and Gödel’s
incompleteness theorems hold for second-order logic with Henkin semantics. So

19McGee then articulates a thorough defense of arithmetical determinacy that has been rather influ-
ential and, as such, must be mentioned in a footnote at least. His argument is based on the notion of
open-endedness. As he sees it, the way in which we get to learn arithmetic is such that we know that
the induction schemamust come out as true for every predicate we encounter, and in whichever way we
extend our language. Schemes like induction are essentially open-ended. As a result, open-endedness
guarantees that we can rule out non-standard models, by introducing predicates that apply only to the
standard numbers, and confirming that induction does not hold of them.
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we must ensure that our semantics, that is, our quantifiers, are interpreted in the
full rather than in the Henkin way. Accordingly, the Putnamian worry notices that
there is no immediate way of ensuring that, and any viable option will need to in-
vokemore theory, hence being subject to the just-more-theory manoeuvre. Putnam
himself was clear on this [Put80, 481], and a very pristine exposition of what is
going on is found in Button and Walsh:20

In order for [Dedekind’s] Theorem to do the job [we want] it to, [we]
must have ruled out the Henkin semantics for second-order logic; in-
deed, ..., [we]must have shown that fullmodels are preferable toHenkin
models. But the distinction between full models and Henkin models
essentially invokes abstractmathematical concepts. And, so the worry
goes, the distinction between full and Henkin models is just more the-
ory, and hence up for reinterpretation. [BW18, 159]

In sum, we would need a nice story about how we can make full semantics the
intended one—that is, a story that is not subject again to Putnamian worries. Oth-
erwise, the move to second-order logic is wholly unfruitful: Dedekind’s theorem
applies no more.

1.5.2 Categoricity without (full) second-order logic

We have just seen how the appeal to second-order logic in the seach for categoricity
runs into new and old issues alike. We also mentioned that theories formulated in
either first-order logic or second-order logic with Henkin semantics are not cate-
gorical, at least not if they have an infinite model. But what if this was not entirely
correct? In this subsection, we explore categoricity results that do not require us to
employ full second-order logic.

We begin by presenting Meadows’ ‘first-order’ categoricity result for first-order
PA [Mea13b, §3]. Certainly, PA has non-isomorphic models but a ‘fake’ second-
order meta-theory can produce what resembles a categoricity result. The process is
as follows. One works in a multi-sorted meta-theory, that is, one that allows more
than one kind of object in the domain. Each kind of object is denoted by a differ-
ent sort of variable. In our case, we have objects of one kind, denoted by 𝑥, 𝑦, 𝑧,
and objects of a new, second kind, denoted by 𝑋,𝑌, 𝑍. Moreover, the multi-sorted
approach requires adding a predicate (in our case, the binary predicate ∈) in such

20Anon-exhaustive list of authors who have put forward similar remarks includes: Field (who located
the indeterminacy of second-order notion here) [Fie94], Parsons [Par08, §48], and Meadows [Mea13b].
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a way that we do not let two objects of the same kind be related through this new
predicate, i.e., 𝑥 ∈ 𝑦 and 𝑋 ∈ 𝑌 are not well-formed, but 𝑥 ∈ 𝑋 is. Finally, the
meta-theory forMeadows’ categoricity result is obtained by adding toPA: (1) a com-
prehension axiom in the extended language, although restricted to formulae of the
original language; and (2) an induction axiom quantifying universally over objects
of the second kind (see [Mea13b, 528] for details). This theory is often known as
ACA0, and Meadows claims it to be first-order, despite the second-order appear-
ance.21

The whole idea behind a multi-sorted theory is that the objects represented by
capital letters will stand for classes, i.e., representations of arithmetical structures.
This will allow ACA0 to speak about models of PA. We now say that a modelℳ is
well-founded iff for every class 𝑋 such that 𝑋 ∩ |ℳ| = ∅, there exists a <ℳ -least
element of𝑋∩|ℳ|. WithACA0 as ourmeta-theory, the categoricity result is finally
stated thus:

Theorem 3. Any two well-founded models of PA are isomorphic.

For all the merit that this result deserves, I am unsure of the extent to which
it is actually helpful to address either the push-through argument or the argument
from Löwenheim-Skolem. For one thing, it does not entail that our theory of arith-
metic singles out one isomorphism type—only that we can single it out ourselves
by discarding non-well-founded models. But the notion of well-foundedness itself
is a complexmathematical concept, once again subject to Putnamianworries. That
is, either we assume a prior grasp of the notion, which seems implausible; or we
need additional theoretical machinery that rules out non-standard interpretations
of well-foundedness, falling prey to Putnam’s arguments again. In any case, and
on behalf of Meadows, we must acknowledge that he never submits that his result
constitutes an appropriate response to Putnam.

A secondway to obtain something that looks like categoricitywithout appealing
to (full) second-order logic is what has been called internal categoricity. There are
different understandings and ways of fleshing it out, and here we will follow the
work done by Väänänen andWang [VW15].22 In this paper, the authors set to show
that a form of categoricity for PA2 also holds for second-order logic with Henkin
semantics. The way to proceed with second-order Henkin logic is to add to the

21For a standard exposition of ACA0, see e.g. [Sim09, ch.3].
22In a much more recent paper, Väänänen [V2̈1] proves an internal categoricity result for first-order

PA. Considerations of space, and of technical complexity of the material, as well as the difficulty in
interpreting what the theorem exactly shows, has prevented us from including it here. Nonetheless, it
looks like an interesting line of research too.
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logical axioms for second-order logic a comprehension axiom (CA) of the sort

∃𝑋∀𝑥⃗(𝑋(𝑥⃗) ↔ 𝜑(𝑥⃗)), for 𝜑 a second-order formula not containing 𝑋 free.

Henkin logic thus defined is complete with respect to Henkinmodels, that we shall
denote by pairs (ℳ, 𝒢), althoughwewill skip the details. For reference, see [VW15,
122].

The idea behind internal categoricity of this sort is to consider a language ℒ
that contains two copies of the language of arithmetic, i.e., ℒ = (0, 𝑆, 0′, 𝑆′).23 Let
𝑃𝐴2(𝑥, 𝑦) be an abbreviation of the conjunction in the language ℒ′ = (𝑥, 𝑦) of the
axioms of PA2. Then, internal categoricity amounts to the idea that aHenkinmodel
formulated in such a language can ‘see’ thePA2-structures generated by each of the
two copies as isomorphic. That is, if

(ℳ, 𝒢) ⊨ 𝑃𝐴2(𝑆, 0) ∧ 𝑃𝐴2(𝑆′, 0′)

then

(ℳ, 𝒢) ⊨ ∃𝑅 ISO (𝑅, (𝑆, 0), (𝑆′, 0′)).

In the formula above, ISO (𝑅, 𝑥, 𝑦) formalizes the claim that 𝑅 is an isomorphism
between 𝑥 and 𝑦.

The theorem is then the following:

Theorem 4 (Väänänen and Wang).

CA ⊢ (𝑃𝐴2(𝑆, 0) ∧ 𝑃𝐴2(𝑆′, 0′)) → ∃𝑅 ISO (𝑅, (𝑆, 0), (𝑆′, 0′))

How to understand this notion of internal categoricity exactly is not entirely
clear yet. In any case, this line of research prima facie promising. After all, what
led us to abandon second-order logic was the inability to decide which kind of se-
mantics we ‘live in’. But since some form of categoricity result obtains either way
(that is, whether the semantics are full or Henkin), we may be entitled to appeal to
second-order logic in order to establish arithmetical determinacy.

23Although Väänänen and Wang employ an additional predicate 𝑁 (and the corresponding 𝑁′) that
stands for ‘is a natural number’.
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1.6 Alternative ways of securing determinacy

The last part of this chapter is dedicated to introducing two arguments in favour
of arithmetical determinacy that have been less discussed in the literature than
the model-theoretic arguments and the categoricity arguments. The first, due to
Halbach andHorsten, can be seen as an alternative to arguments based on physical
constraints à la Berry and Field in order to contest the argument from Löwenheim-
Skolem.

1.6.1 Recursiveness and Tennenbaum’s theorem

Volker Halbach and Leon Horsten [HH05] have advanced a position that they call
(formalist) computational structuralism. This account is meant to give an answer
to the question of how we can single out the isomorphism type corresponding to
the standard model of arithmetic. Hence the ‘structuralist’ flavour, insofar as tra-
ditional structuralism defends that arithmetic is the study of the natural number
structure. Drawing on a proposal in [Ben65], they defend that the way to rule out
non-standard models of arithmetic has to do with the recursiveness of the relation
< and the operations of addition and multiplication. The motivation and justifica-
tion for this line of reasoning comes from the following result, due to Tennenbaum
[Ten59]:

Theorem 5 (Tennenbaum). Letℳ be a countable model of PA. If +ℳ is recursive,
thenℳ is isomorphic to the standard model of arithmetic.

With Tennebaum’s theorem in mind, they propose a thesis that describes how
to identify a standard model. Let’s write ‘recursive*’ for the practical, perhaps in-
formal way of understanding recursiveness, i.e., an operation defined on certain
symbols or notations is recursive* if there is a set of instructions that indicate how
to manipulate those symbols on the basis of that operation. Then the thesis runs as
follows [HH05, 183]:

REC: Intendedmodels are notation systems with recursive* operations
on them satisfying the Peano axioms.

Now, let us clarify what thismeans. Initially, Halbach andHorsten propose that
a model is intended or standard iff <, addition and multiplication are recursive in
the theoretical sense (i.e., as belonging to a class of functions on ℕ). The problem
with this account is that it assumes that the domain of the model will consist of
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the natural numbers. But what if the domain of the model we are assessing con-
tains sets? Or sequences of strokes? As a consequence, they appeal to coding, the
powerful machinery Gödel first came up with in order to allow formal systems to
‘talk’ about their own syntax. The idea is to do something similar with the domain
of the ostensibly standard model: the model will be standard iff one can code the
objects and appropriate relations of that model as, respectively, the natural num-
bers and the recursive* relations <,+, ×. At this point, however, they notice that
what we really want coding to show us is that the model we are assessing picks up
the appropriate structure. It is not a matter of there being a one-to-one (coding)
relation between the domain in question and some strange, static objects called
‘natural numbers’, but between the domain and a set of symbols that displays the
structure of the natural numbers ‘in reality’, together with the appropriate recur-
siveness*. Halbach and Horsten’s final move consists then in going wholly formal-
ist and structuralist: something counts as an intended model insofar as it presents
some form of notation system (this can be Roman numerals, or von Neumann sets,
or what have you) that satisfies the structure—the Peano structure—while having
recursive* operations.

Formalist computational structuralism is meant to respond to the argument
from Löwenheim-Skolem thus: should the advocate of the argument claim that
we cannot tell whether we live in a non-standard model of arithmetic or not (for
theoretical and observational constraints will not settle it down), one would just
respond by pointing out to the fact that, after all, we can. We just need to check the
recursiveness* of the operations and relations that are defined on the model.

All in all, the computational structuralist view has also received some criticism.
Thus, Button and Smith [BS12] argue that it will not convince a Putnamian skeptic
for a simple reason: a practical notion of recursiveness will not take us far enough.
Since the computational structuralist needs to cover the totality of the operations
of addition and multiplication, they would have to talk about what can be done in
principle. But if they do it, then they are actually talking about what can be done
in any arbitrary finite number of steps. So one needs to have a sharp conception of
finite number beforehand, which is precisely what the argument fromLöwenheim-
Skolem disputes. To the best of my knowledge, it is still an open question whether
the computational structuralist can adequately reply to this concern. And even if
they did, recent results question the resort to Tennenbaum’s theorem in order to se-
cure the computational structuralist’s thesis: Fedor Pakhomov [Pak22] has shown
how to construct a theory that is definitionally equivalent to PA and which has a
recursive model whose corresponding PA-model is not isomorphic to the standard
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model of arithmetic. Therefore, it may be that Tennenbaum’s theorem does not
apply with the generality that the computational structuralist needs.

1.6.2 Hyper-computers and supertasks

This kind of argument addresses the worries raised in section 1. To recap quickly,
the idea there was that the existence of PA-independent sentences implies that
these are indeterminate, and so that arithmetic is indeterminate. To this, the ar-
gument from hyper-computers replies that, should we have a hyper-computer that
can check all contentious claims for every single natural number, we are justified
in believing the truth or falsity of the statement, depending on the output of the
hyper-computer.

Let’s consider two examples: Goldbach’s conjecture and the Gödel sentence for
PA. Both are of the form ∀𝑛𝐴(𝑛), with 𝐴(𝑛) a ∆0 sentence, that is, a sentence that
contains no quantifiers other than bounded quantifiers. In sum, they are both Π0

1

sentences. In the case of Goldbach’s conjecture, we do not know it to be indepen-
dent of PA, while the Gödel sentence is certainly independent. For Goldbach’s
conjecture, 𝐴(𝑛) will be a formalization of ‘if 𝑛 is greater than 2, then 𝑛 is the sum
of two primes’; for the Gödel sentence, 𝐴(𝑛) will be a more complicated number-
theoretic statement. Now, certain solutions to the equations of general relativity
seem to show that the existence of a device that can check an infinite number of
steps in a finite amount of time (a ‘supertask’) is possible. This device, together
with the conditions that allow it to perform the supertask, are sometimes known
in the literature as aMalament-Hogarthmachine. Then, the argument proceeds by
letting the Malament-Hogarth machine check 𝐴(𝑛) on every 𝑛 ∈ ℕ. For instance,
if there exists some𝑚 for which ¬𝐴(𝑚), the program could halt; and it will finalise
running otherwise. At this point, one would offer some argument as to why we
are justified in believing the outcome of the supertask, and why it counts as evi-
dence that ∀𝑛𝐴(𝑛) (or ¬∀𝑛𝐴(𝑛)) is true. Sharon Berry [Ber14] has produced one
such argument. As a conclusion, one would be entitled to claim that we have set-
tled the determinate truth-value of Goldbach’s conjecture, or the Gödel sentence,
without appealing to any model-theoretic reasoning that might be subject to Put-
namian worries. In fact, since every PA-independent statement of arithmetic isΠ0

1
,

then one could claim that arithmetic is in fact determinate, for each problematic
statement will receive a determinate truth-value.

Due to limitations of space, wewill not assess the argument from hyper-compu-
ters here. In any case, one shall note that many things must come together for the
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argument to succeed. First, one needs to argue convincingly for the possibility of
Malament-Hogarth machines; the fact that there exist solutions to the equations
of general relativity where these can be postulated does not guarantee that these
can be actualised.24 Secondly, one also needs a sound argument to the effect that
we are justified in believing the outcome of the hyper-computer. And, finally, one
needs a strong reasoning as to why believing the outcome of the hyper-computer
is enough to attribute a determinate truth-value to the mathematical statement.25

So, after all, making an argument from hyper-computers succeed in securing the
determinacy of arithmetic is no easy task.

1.7 Final remarks

The reader will, by now, be familiar with the discussion around arithmetical de-
terminacy. The lesson I would like them to extract is twofold: that our convic-
tion to the determinacy of arithmetic urges us to meet themetasemantic challenge,
and hence to explain how the determinacy arises; and that meeting this challenge
is not straightforward, for we have arguments—most notably the model-theoretic
arguments—that threaten determinacy in the first place. Moreover, the responses
to Putnam’s argument are either unsatisfactory (like Bueno’s objection shows of
Field’s and Berry’s arguments), or under-explored (like internal categoricity argu-
ments). That is whywe still need to live up to the task imposed by themetasemantic
challenge.

24See [MR22, §2.3] for a summary of objections to the actual existence of Malament-Hogarth ma-
chines.

25Warren and Waxman [WW20b] have challenged the possibility of any such argument.
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Chapter 2

As it should be clear by now, this project is a quest for mathematical determinacy;
in particular, for arithmetical determinacy. But in this chapter, we take a step back
to look at the broader picture. To be precise, we look at the logical picture. Very
roughly, the idea is the following: in order to explore the question of mathematical
determinacy fromwithin the mathematical theories themselves, we need to imple-
ment a theory of determinate truth. This chapter is a first step towards designing
one such theory. Since we first need to understand the virtues that we desire for
our theory, and supervaluational-like truth (that is, truth that includes all logical
truths) is one of them, we study different theories that display this kind of truth.

2.1 How to be supervaluational: three recipes

The notion of mathematical—and hence arithmetical—determinacy is intimately
related to truth. As we explained in Chapter 1, determinacy for a subject matter is
understood as there being a determinate truth-value for all the statements of the
subject matter. It is a semantic notion of determinacy. It is no wonder then that
we may want to look at the treatment the notion of truth receives within mathe-
matical logic, in what is often known as formal theories of truth. These theories
constitute a logical framework with which to understand what truth is, including
(or particularly!) in the mathematical context. They are the means by which a
mathematical theory can, in the very own object language in which the theory is
formulated, speak about the truth of its statements. Hence, they stand as one of the
essential elements of our investigation.

Actually, as we just mentioned, the ultimate goal of this chapter and others that
will feature in this project is to produce a theory of truth. Or, rather, a theory of de-
terminate truth. Thiswill allowus to pose the very question on determinacy thatwe
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want to answer fromwithin the mathematical theories on behalf of which we want
to answer it. In doing so, however, we must be careful. The introduction of a truth
predicate governed by a theory of truth often brings about as many problems as the
ones the theory purported to solve. Semantic paradoxes are the nightmare as much
as the engine of research in formal theories of truth. Therefore, in coming up with
our theory, we aim for one that fares equally well in addressing the determinacy of
purely mathematical statements and in accounting for the manners in which the
notion of truth and that of determinate truth are handled. For instance, we want
to be able to predicate truth of sentences that already contain a truth predicate; we
want the notion to apply to sentences that include negations; and so on.1

The research on formal theories of truth is vast and very technical. Here, we
would like to focus on theories that build on Saul Kripke’s fixed-point semantics
[Kri75]. It is also in the context of these theories that the formal notion of determi-
nacy has been more prominently discussed. We cite just some examples. Solomon
Feferman, in discussing his well-known system KF, developed an axiomatic the-
ory of determinacy with axioms governing a rudimentary determinacy predicate
[Fef91];2 and, in a later paper [Fef08], he defended the axiomatic systemDT for de-
terminate truth. Hartry Field’s ‘Saving Truth From Paradox’ [Fie08] is a pharaonic
attempt to construct a theory of truth that escapes the revenge paradoxes associated
with the concept of truth-theoretic determinacy, paradoxes thatmanyKripke-based
theories of truth fall prey to. More recently, Volker Halbach and Kentaro Fujimoto
[HFng] have advanced an axiomatic system for determinate truth in classical logic.
Likewise, there have been attempts to work on notions similar to that of determi-
nacy, a very popular one being that of ‘groundedness’—see e.g. thework of Thomas
Schindler [Sch14] and Lucas Rosenblatt [Ros21].

Now, to understand the motivation for this chapter, we note the following ob-
servation: one of the inconveniences that many fixed-point-based theories face lies
in their inability to present as deteminatemany truths of logic. Thus, we beginwith
the assumption that, say, ‘If 𝐴, then 𝐴’ should be considered a determinate truth
for any sentence 𝐴 under a reasonable theory of truth. But this is not the case un-
der many Kripkean approaches. For instance, consider Kripke’s own theory, and
in particular the fixed point that many theorists consider most natural (even if this
is not claimed by Kripke): the minimal fixed point with truth-value gaps. Then,

1The first condition rules out theories like Tarski’s CT (for Compositional Truth) [Tar36]. Both the
first and second condition rule out theories likeUTB (for Uniform Tarski Biconditionals).

2When I say ‘rudimentary’ here, I just mean that the predicate is modelled after a very basic and
intuitive understanding of what being determinate means. I have carried out some work where I argue
that there are different and (arguably) more satisfying ways of formally understanding determinacy.
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not all sentences of the form 𝐴 → 𝐴 fall in the extension of the truth predicate;
and, consequently, no theory of determinacy formulated on top of this theory of
truth will recover these sentences either—unless, of course, they are ready to claim
that these sentences are determinately true but not true, which seems prima facie
absurd. For this reason, we fix our eyes on supervaluationism.

Supervaluational theories of truth ensure that all sentences that are theorems
of logic fall in the extension of the truth predicate. By ‘logic’, we just usually mean
first-order logic. Supervaluationism is mostly associated with the application of su-
pervaluatonist semantics to the Kripkean fixed-point construction. Thus, instead
of the usual Strong (or Weak) Kleene logic, the satisfaction relation is formulated
in supervaluationist terms. Details will follow in the next section. However, this
is not the only way to get supervaluational. Recently, Johannes Stern [Ste18] has
shown that one can obtain what he calls ‘supervaluation-style truth’ without being
committed to van Fraassian semantics. Likewise, any theory of truth 𝑆 whose truth
predicate satisfies, meta-theoretically,3 Tarski’s T-Convention (𝑆 ⊢ 𝜑 iff 𝑆 ⊢ T⌜𝜑⌝),
will also be supervaluational in spirit as long as the theorems of first-order logic are
also theorems of 𝑆. A great example of that, which we will be studying for inspira-
tion, is McGee’s theory of truth [McG91]. The lesson is then that there are different
ways to achieve supervaluational truth, and one does not necessarily need to stick
to the van Fraassen-Kripke approach. Since we would like our prospect theory to
be supervaluational too, this chapter will study the relations between these three
paths to supervaluational truth.

On top of that, the fact that we takeMcGee’s theory as part of our study has to do
with the fact that it presents a very desirable feature for a theory of truth: material
adequacy, i.e., the meta-theoretic satisfaction of Convention-T. We would like to be
able to accommodatematerial adequacy as one of the features of our theory of truth
and determinate truth, alongside supervaluationism.

Thus, this chapter will trace connections between supervaluatonist semantics à
la Kripke-van Fraassen, Stern’s proposal, and McGee’s theory. Many of the results
here are available in other papers, including Stern’s and Cantini [Can90], but we
also offer some new observations. Since we have a special interest in the virtues of
McGee’s theory, we dedicate a good deal of the chapter to its understanding; section
3 is entirely devoted to that. We must mention that, for this chapter, we have been
unable to fully understand the depths of McGee’s theory; as we will explain in due
course, we have only worked out the details of one version of the theory. We hope

3As is well-known, any minimally strong theory from the logical point of view will be unable to
satisfy Convention-T object-theoretically, due to Tarki’s undefinitability result.

41



to accomplish this task in the near future.
Prior to section 3, we examine van Fraassian supervaluationist semantics (sec-

tion 1) and Stern’s supervaluational-style truth and its connectionswithKripke-van
Fraassen semantics and Cantini’s theory VF (section 2). Section 4 traces further
connections between Stern’s theory and McGee’s theory.

2.2 Supervaluationist theories of truth

Supervaluationist semantics was introduced by van Fraassen [vF66], in an attempt
to deal with non-referring terms. Van Fraassen’s goal—and, arguably, the goal of
all supervaluationist semanticists—is to produce a semantics that respects what are
nowcalled penumbral truths, or truths that hold in virtue of (first-order) logic alone,
even for sentences that do not receive a classical truth-value. Soon after [vF68], he
considered an application of this semantics to the paradoxes of self-reference. Then,
in his [Kri75], Kripke suggested that the fixed-point construction he was defining
over a satisfaction relation based on StrongKleene logic could be equally built using
van Fraassen’s supervaluations.

Let us quickly present the notational preliminaries before we set to explaining
supervaluationist semantics. The conventions follow the line of [Hal14]. We will
always be working with languages whose logical symbols are ¬, ∨, ∧, ∀, ∃, as well as
brackets. We also write 𝜑 → 𝜓 as an abbreviation for ¬𝜑 ∨𝜓. As a default practice,
and unless otherwise stated, we work with the language of arithmetic, ℒ0 with its
standard signature: {0, 𝑆, +, ×}. The language will be appropriately extended when
needed, e.g., with a truth predicate. We will also assume that, since the theories
we will be dealing with can interpret basic arithmetic, we can code the expressions
of the language ℒ0 and its extensions in some way—see e.g. [BBJ07]. 𝑛̄ stands
for the numeral of the number 𝑛 (although we omit the bar for specific numbers).
We write ⌜𝜙⌝ for the numeral of the code of 𝜙. As regards the truth-predicate, one
would normally write the code of the sentence to which it applies in brackets, i.e.,
T(⌜𝜙⌝). However, to ease readability, we often drop the brackets when we use the
upper corners. We shall also be able to code primitive recursive operations, and we
represent them with a dot under them—e.g. ∨. , ∀. , ¬. . There are a couple of excep-
tions, though. One is the substitution function, that we write as 𝑥𝑡∕𝑠, for the result
of substituting 𝑠 with 𝑡 in 𝑥. The other is the evaluation function: we write val(𝑥)
for the valuation of 𝑥. Given a language ℒ, we write CTℒ(𝑥) to indicate that 𝑥 is a
closed term of ℒ, and Sentℒ(𝑥) to indicate that 𝑥 is a sentence of ℒ. We frequently
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omit the subscript ℒ if the language we work with is clear from the context. Finally,
𝑥̇ will be the function that takes each number 𝑛 to the numeral 𝑛̄.

So much for the notation, and back to supervaluationism. Van Fraassen’s ini-
tial idea was, in informal terms, the following: to capture the logical truths, a su-
pervaluation over a model would consider the class of possible oscillations of the
interpretation function for the truth-valueless atomic formulae, and assign the T
truth-value to those sentences that come out true in every member of the class.
When it comes to truth, the basic idea is identical: for an interpretation of the truth
predicate, one considers the class of all interpretations that extend the given one.
In his 1968 paper, van Fraassen opted for considering not the whole class of pos-
sible interpretation functions for the non-referring terms (respectively, the class of
all interpretations of the truth predicate that extend the given one), but only those
interpretations that are consistent in that they do not assign the same truth value
to 𝐴 and ¬𝐴, for 𝐴 a sentence of the language in question (respectively, interpre-
tations of the truth predicate that extend the given one in a consistent way, i.e.,
such that 𝑆 ∪ 𝑆− = ∅, for 𝑆− the antiextension of the extended interpretation 𝑆).
This is what he called an admissible valuation. In connection with the truth predi-
cate, Kripke considered a further admissibility condition, namely, that the class of
extended extensions of the truth predicate only includes extensions that are maxi-
mally consistent sets of sentences. Consider the language with the truth-predicate
ℒ+
0
= ℒ0 ∪ {T}. Let capital letters 𝑆, 𝑅, or 𝑋,𝑌, 𝑍, be sets of (codes of) sentences of

ℒ+
0
, and let Greek letters such 𝜑, 𝜓 stand for formulae of ℒ+

0
. Let’s write 𝑋 ⊨ 𝜑 as

short for (ℕ, 𝑋) ⊨ 𝜑, i.e., the classical model over the standard model of arithmetic
where we let 𝑋 be the extension of the truth predicate T.4 Then, for we can thus
distinguish three supervaluation schemes:5

𝑆 ⊨𝑠𝑣 𝜑 ⇔ ∀𝑌 ⊇ 𝑋(𝑌 ⊨ 𝜑)

𝑆 ⊨𝑣𝑐 𝜑 ⇔ ∀𝑌(𝑌 ⊇ 𝑋&𝑌 ∩ 𝑌− = ∅ ⇒ 𝑌 ⊨ 𝜑)

𝑆 ⊨𝑚𝑐 𝜑 ⇔ ∀𝑌(𝑌 ⊇ 𝑋&𝑌 ∈ MAXCONS ⇒ 𝑌 ⊨ 𝜑)

Here, if 𝑋 is the extension of T, we write 𝑋− for the antiextension (i.e., as in the
above footnote, {𝜑| 𝑋 ⊨ T⌜¬𝜑⌝}); andwewriteMAXCONS for the set of codes of all
maximally consistent sets of sentences. There is a further supervaluation scheme,

4When we deal with partial evaluations, such ⊨𝑠𝑣 , ⊨𝑚𝑐 , and so on, it is normally expected that not
only the extension but also the anti-extension of the truth predicate accompany the satisfaction rela-
tion. That is, it should be written (ℕ, (𝑋, 𝑋−) ⊢ 𝜑, for 𝜑 a sentence. But since we understand here the
anti-extension as the set {𝜑| 𝑋 ⊨ T⌜¬𝜑⌝}, we can omit reference to it every time we make use of the
satisfaction relation.

5The labels we use here are borrowed from [FHKS15].
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which Burgess [Bur86] attributes to van Fraassen—but that, as far I can tell, ap-
peared for the first time in Burgess’ paper only:

𝑆 ⊨𝑣𝑏 𝜑 ⇔ ∀𝑌(𝑌 ⊇ 𝑋&𝑌 ∩ 𝑋− = ∅ ⇒ 𝑌 ⊨ 𝜑)

Hence, note that the diference between the vb and the vc supervaluation schemes
lies in that the former requires the extended extension to be consistent with the ini-
tial antiextension, and the latter requires the extended extension to be consistent
with its corresponding antiextension. Therefore, the class of extensions considered
in vc is a subset of the class of extensions considered in vb, and so

𝑆 ⊨𝑣𝑏 𝜑 ⇒ 𝑆 ⊨𝑣𝑐 𝜑.

The Kripke jump operator based on the supervaluation schemes is then defined
in the usual way as follows:

𝒥𝑒(𝑆) ∶= {⌜𝜑⌝ ∈ Sent| 𝑆 ⊨𝑒 𝜑}, for 𝑒 one of: sv, vb, vc or mc.

As usual, 𝒥𝑒(𝑆) = 𝑆means that 𝑆 is a fixed-point of 𝒥𝑒. Moreover, the operators
are monotone (i.e. 𝑆 ⊆ 𝑆′ ⇒ 𝒥𝑒(𝑆) ⊆ 𝒥𝑒(𝑆

′)), so the usual Woodruff-Martin-Kripke
result guarantees that there will be fixed points for them. We often require that 𝑆 ∈
CONS, i.e., the set of consistent sets of sentences. In the case of the schemas vb, vc,
andmc, this is particularly salient: otherwise, one application of the jump operator
alone results in the degenerate fixed point (Sent, Sent). This is not necessarily so
in the case of the sv operator; nonetheless, starting with an inconsistent set will
certainly result in inconsistent fixed points even with this operator, and hence, in
internally inconsistent fixed-point models.

The relations between the operators are as follows:

Proposition 1. Let sv, vb, vc, mc and 𝒥𝑒(𝑆) be as before. Then:

i. For all sets 𝑋 ⊆ 𝜔,

𝒥𝑠𝑣(𝑋) ⊆ 𝒥𝑣𝑏(𝑋) ⊆ 𝒥𝑣𝑐(𝑋) ⊆ 𝒥𝑚𝑐(𝑋)

ii. For all sets 𝑋 such that 𝑋 ∈ CONS and 𝑋 ∉ MAXCONS,

𝒥𝑠𝑣(𝑋) ⊊ 𝒥𝑣𝑏(𝑋) ⊊ 𝒥𝑣𝑐(𝑋) ⊊ 𝒥𝑚𝑐(𝑋)
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Proof. i follows from the way 𝑆 ⊨𝑒 𝜑 is defined for 𝑒 each of the supervaluation
schemes: just as with vb and vc, the class of extended extensions considered in the
sv scheme is a superset of the class of extended extensions considered in the vb
scheme, and the same holds for the vc scheme with respect to the mc scheme. For
ii, one considers the following sentences, from left to right in the formula displayed:
¬T⌜0=. 1⌝; ∀𝑥¬(T(𝑥) ∧ T(¬. 𝑥)); and ∀𝑥(T(𝑥) ∨ T(¬. 𝑥)).

Supervaluationist theories are notoriously difficult to axiomatize. Thus, on the
basis of considerations of complexity, Fischer et al. [FHKS15] proved the following
result:

Theorem 6 (Fischer & Halbach & Kriener & Stern). Let 𝑒 be an evaluation scheme
such that 𝒥𝑠𝑣 ⊆ 𝒥𝑒 ⊆ 𝒥𝑚𝑐. Then there is no recursively enumerable theory Σ such that

(ℕ, 𝑆) ⊨ Σ ⇔ 𝒥𝑒(𝑆) = 𝑆

This negative result proves the failure for Kripke’s theory based on supervaluations
of what Fischer et al. call ‘ℕ-categoricity’. An axiomatic theory 𝑇 is ℕ-categorical
with respect to an evaluation scheme 𝑓 precisely when Theorem 6 fails for 𝑒, i.e.,
when (ℕ, 𝑆) ⊨ 𝑇 ⇔ 𝒥𝑓(𝑆) = 𝑆.6

It is often believed that ℕ-categoricity is key for an axiomatic theory to be an
adequate axiomatization of a semantic theory of truth. If so, the supervaluational
theories of truth we have surveyed cannot be axiomatized adequately. Yet Cantini
[Can90] produced a theory that comes close to an axiomatization of the superval-
uation scheme vc. The theory, known as VF and formulated in the language ℒ+

0
,

consists of all the axioms of PA extended to all formulae of ℒ+
0
(PAT), and the fol-

lowing axioms:

VF1 T⌜𝐴⌝ → 𝐴

VF2 CT(𝑥)∧CT(𝑦) → (T(𝑥=. 𝑦) ↔ val(𝑥) = val(𝑦)∧T(𝑥≠. 𝑦) ↔ val(𝑥) ≠ val(𝑦))

VF3 ∀𝑥(AxPAT(𝑥) → T(𝑥))

VF4 ∀𝑧T(𝑥 𝑧̇∕𝑣) → T(∀. 𝑣𝑥)

VF5 T(𝑥) → T(⌜T(𝑥̇)⌝)

VF6 Sent(𝑥) ∧ T(¬. ⌜T(𝑥̇)⌝)) → T(¬. 𝑥)

VF7 T(𝑥→. 𝑦) → (T(𝑥) → T(𝑦))

6KF is an example of one such theory, with 𝑒 being the Strong Kleene evaluation scheme.
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VF8 T(¬. ⌜T(𝑥̇) ∧ T(¬. 𝑥̇)⌝)

VF9 T(⌜T(𝑥̇) → Sent(𝑥̇)⌝)

Here, AxPAT(𝑥) stands for ‘𝑥 is an axiom of PAT’. While, once again, VF cannot
ℕ-categorically axiomatize the semantic theory based on the scheme vc, Cantini
proved that we get, at least, one of the directions behind ℕ-categoricity:

Theorem 7 (Cantini). Let 𝑋 be such that 𝑋 ∈ CONS and 𝑋 = 𝒥𝑣𝑐(𝑋). Then 𝑋 ⊨

VF.

That is why we say thatVF comes close to being an axiomatization of the superval-
uational theory of scheme vc.

Moreover, Cantini showed that VF is, proof-theoretically, a very strong theory.
For the lower bound, he showed

Theorem 8 (Cantini). ID𝑎𝑐𝑐
1 is interpretable in VF.

And for the upper bound

Theorem 9 (Cantini). VF is interpretable inKPU.

The arithmetical theorems of ID𝑎𝑐𝑐
1 and the arithmetical theorems KPU are

known to be the same, namely, those of the theory ID1. When this happens, we
say that the theories are proof-theoretically equivalent, which we write as VF ≡

ID1. As mentioned, ID1 is a rather strong theory; in fact, it is one of the sim-
plest examples of an impredicative theory (see [Poh09]). We note that ID1 is proof-
theoretically equivalent to (Π1

1
-CA)−

0
[Poh09, ch.13].7

One can equally formulate axiomatic theories VF− and VFM such that The-
orem 7 holds for them in relation to the supervaluation schemes vb and mc. In
particular, VF− contains axioms VF1-VF7 and VF9 from above (we can call them
VF−1-VF−8), andVFM contains axiomsVF2-VF9 (call themVFM1-VFM8) and the
axiom

VFM9 T⌜Sent(𝑥̇) → T(¬. 𝑥̇) ∨ T(𝑥̇)⌝

Lemma 1. Let 𝑋 be such that 𝑋 ∈ CONS.

i) If 𝑋 = 𝒥𝑣𝑏(𝑋), then 𝑋 ⊨ VF−.
7(Π1

1
-CA)−

0
is the theory that includes the basic axioms of all subsystems of second-order arithmetic

for +,×, <; the induction axiom (0 ∈ 𝑋 ∧ ∀𝑛(𝑛 ∈ 𝑋 → 𝑛 + 1 ∈ 𝑋) → ∀𝑛(𝑛 ∈ 𝑋)); and the comprehen-
sion scheme (∃𝑋∀𝑛(𝑛 ∈ 𝑋 ↔ 𝜑(𝑛))) restricted to formulae 𝜑 that are Π1

1
and that contain no free set

parameters.
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ii) If 𝑋 = 𝒥𝑚𝑐(𝑋), then 𝑋 ⊨ VFM

Proof. We just need to follow Cantini’s proof for Theorem 7. In the case of i): first
note that, since 𝑋 ⊆ 𝑋, 𝑋 ∈ CONS implies that 𝑋 ⊨𝑣𝑏 𝐴 ⇒ 𝑋 ⊨ 𝐴.

• VF−1: Assume 𝑋 ⊨ T⌜𝐴⌝. Then 𝐴 ∈ 𝑋, and so 𝑋 ⊨𝑣𝑏 𝐴, so 𝑋 ⊨ 𝐴.

• VF−2: Assume 𝑋 ⊨ CT(𝑥) ∧ CT(𝑦). Then

ℕ ⊨ val(𝑥) = val(𝑦)

⇔ 𝑋 ⊨𝑣𝑏 𝑥 = 𝑦 (since this would be satisfied in all models ofℕ)
⇔ ⌜𝑥 = 𝑦⌝ ∈ 𝒥𝑣𝑏(𝑋) = 𝑋

⇔ 𝒥𝑣𝑏(𝑋) = 𝑋 ⊨ T(𝑥=. 𝑦)

• VF−3: Let 𝑋 ⊨ AxPAT(𝑥). Then, if 𝑥 = ⌜𝐴⌝, then 𝑌 ⊨ 𝐴 for all 𝑌 ⊇ 𝑋 (for 𝐴
holds in every ℕ-model over ℒ𝑇). So 𝑋 ⊨𝑣𝑏 𝐴, hence 𝒥𝑣𝑏(𝑋) = 𝑋 ⊨ T⌜𝐴⌝.

• VF−4: Assume 𝑋 ⊨ ∀𝑧T⌜𝑥𝑧̇∕𝑣⌝. Let 𝑥 = ⌜𝐴⌝. For 𝑋′ such that 𝒥𝑣𝑏(𝑋′) = 𝑋,
we have𝑋′ ⊨𝑣𝑏 𝐴𝑛̄∕𝑣 for each 𝑛 ∈ 𝜔, and so𝑋′ ⊨𝑣𝑏 ∀𝑣𝐴. Hence,𝑋 ⊨𝑣𝑏 ∀𝑣𝐴,
so 𝒥𝑣𝑏(𝑋) = 𝑋 ⊨ T⌜∀𝑣𝐴⌝.

• VF−5: Assume 𝑋 ⊨ T(𝑥):

𝑋 ⊨ T(𝑥)

⇔ 𝑥 ∈ 𝑌 for all 𝑌 ⊇ 𝑋

⇔ 𝑋 ⊨𝑣𝑏 T(𝑥)

⇔ 𝒥𝑣𝑏(𝑋) = 𝑋 ⊨ T⌜T(𝑥̇)⌝

• VF−6: Assume 𝑋 ⊨ ¬T(¬. 𝑥). Let 𝑥 = ⌜𝐴⌝. Then, ⌜¬𝐴⌝ ∉ 𝑋. So there are
models (ℕ, 𝑌) with 𝑌 ⊇ 𝑋 and 𝑌 ∩ 𝑋− = ∅ such that 𝑌 ⊨ T⌜𝐴⌝. Therefore,
𝑋 ⊭𝑣𝑏 ¬T⌜𝐴⌝, so ⌜¬T⌜𝐴⌝⌝ ∉ 𝒥𝑣𝑏(𝑋) = 𝑋, hence 𝑋 ⊨ ¬T⌜¬T⌜𝐴⌝⌝.

• VF−7: Just as with VF−5, 𝑋 ⊨ T(𝑥→. 𝑦) and 𝑋 ⊨ T(𝑥) imply 𝑋 ⊨𝑣𝑏 𝐴 → 𝐵

and 𝑋 ⊨𝑣𝑏 𝐴, so 𝑋 ⊨𝑣𝑏 𝐵—where 𝑥 = ⌜𝐴⌝ and 𝑥 = ⌜𝐵⌝.

• VF−8: with the definition 𝒥𝑣𝑏, we can prove by transfinite induction that
𝑋 ⊆ Sent for any 𝑋 such that ∃𝑋′(𝒥𝑣𝑏(𝑋

′) = 𝑋). Then, 𝑋 being a fixed point,
𝑋 ⊨ T(𝑥) implies 𝑥 ∈ Sent. Therefore, ℕ ⊨ Sent(𝑥), and so 𝑋 ⊨ Sent(𝑥).

For ii). We can use the same arguments as above for VFM1-VFM7. The equivalent
of VF8, VFM8, follows from the fact that the supervaluation relation mc is defined
in terms of 𝑌 ⊆ 𝑋 such that 𝑌 ∈ MAXCONS ⊆ CONS (indeed, ¬(T(𝑥) ∧ T(¬. 𝑥))
for any x gets in the extension of the truth predicate after just one application of the
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operator, whatever the initial set 𝑋′). The truly different axiom is VFM9, but this
follows from the supervaluation scheme mc too. If 𝑋 ⊨ Sent(𝑥), then ℕ ⊨ Sent(𝑥),
and also𝑍 ⊨ Sent(𝑥) for all𝑍; and, just like before, T(𝑥)∨T(¬. 𝑥) for any x gets in the
extension of the truth predicate after just one application of the operator, whatever
the initial set 𝑋′.

It is no surprise that VF1 is not an axiom of VFM. Otherwise, VFM would be
inconsistent—by well-known results of Friedmand and Sheard [FS87], all theories
satisfying axioms VF1 and VFM9 are. However, VF1 cannot be proved under the
mc scheme because the latter is not ‘classically sound’, in the sense that 𝑋 ⊨𝑚𝑐 𝐴

does not imply 𝑋 ⊨ 𝐴—not even if 𝑋 is a fixed point of the scheme.
Let’s finally add some proof-theoretic considerations for VF−. Just like VF, the

latter is proof-theoretically equivalent to ID1. Following Theorem 9, and sinceVF−

is a subtheory of VF,

Proposition 2. VF− is interpretable inKPU.

The other direction follows from a result by Friedman and Sheard [FS87], also
employed by Stern:

Proposition 3. VF− proves all arithmetical theorems of Bar Induction (BI).

Proof. By a theorem in [FS87], we know that this result holds for any theory of truth
whose truth predicate satisfies the principles below. As it is clear, VF− is one such
theory.

1. T⌜𝐴⌝ → 𝐴

2. ∀𝑧T(𝑥 𝑧̇∕𝑣) → T(∀. 𝑣𝑥)

3. T(𝑥→. 𝑦) → (T(𝑥) → T(𝑦))

4. T⌜𝐴⌝ for 𝐴 an axiom of PAT.

BI is known to have the same arithmetical theorems as ID1, hence VF− ≡ VF ≡

ID1—recall the notation above. The proof-theoretic strength of VFM remains an
open problem.
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2.3 Stern’s supervaluation-style truth and IT

Johannes Stern [Ste18] has recently argued that the supervaluation schemes present
a major drawback with two undesirable consequences. The drawback in question
is that, instead of a fully compositional approach to truth, the scheme relies on
a rather intransparent process which renders equally intransparent constructions.
The first, most evident consequence is that the resulting fixed-point theories are
not compositional (e.g. they do not validate the principle T(𝑥∨. 𝑦) ↔ T(𝑥) ∨ T(𝑦)).
The second is that the intransparency extinguishes any chance of providing a neat
proof-theoretic axiomatization. As wementioned, there is noℕ-categorical axiom-
atization that will do the job.

Accordingly, Stern has proposed an evaluation scheme (actually, two) and its
accompanying axiomatic theory (theories) that (partially) remedy these concerns.
We say partially because the resulting theories are not compositional in the strict
sense of the word. For instance, they do not validate the compositional principle
for disjunction either. But they do allow us (or so does Stern claim) to locate the
failure of compositionality. Moreover, the evaluation scheme is more tractable (as
demonstrated by the lower complexity of the fixed points generated).

We sketch Stern’s idea briefly. The supervaluational evaluation ⊨𝑒, for 𝑒 ∈

{sv, vb, vc, mc} for a given extension of the truth predicate 𝑆 seems to work on two
levels: on the one hand, it gathers the set of sentences 𝑆′ that the StrongKleene (SK)
scheme satisfies in the 𝑆-model; on the other, it accounts for penumbral truths by
gathering all sentences that follow from 𝑆′ in the intersection of a class of mod-
els that meet a given condition. The problem is that, in doing so, the schemes go
well beyond first-order logic (and beyond second-order consequence as well—see
[Ste18, 824]).8 But the idea behind supervaluationismwas to respect first-order log-
ical truths (see [vF66, 484]), so Stern proposes an evaluation schema that is based
on, and does not go over, the first-order consequence relation. The scheme also op-
erates on two levels, for a given extension 𝑆 of the truth predicate: it collects the set
𝑆′ SK-satisfied by the model where 𝑆 is the extension of T; and then adds the set of
sentences that are first-order satisfied in every model that makes true 𝑆′ and PAT
(so that the set of penumbral truths also includes the theorems of number theory).
After an appropriate simplification, the schema, labelled as SSK (for Supervalua-
tion Strong Kleene) can be defined as follows. We still operate in the language ℒ+

0
,

8A result that buttresses this claim has been obtained by Kremer and Urquhart [KU08]: they show
that the set of existential validities of second-order logic (Π1

2
− SOL) is recursively encodable in the

satisfaction relation that obtains from the supervaluation scheme sv.
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of which 𝜑, 𝜓 are formulae and 𝑆 is a set of (codes of) sentences:

𝑆 ⊨𝑠𝑠𝑘 𝜑 ⇔ ∃𝜓(𝑆 ⊨𝑠𝑘 𝜓&PAT ⊢ 𝜓 → 𝜑)

Then, we can define the (monotone) jump operator just like before:9

𝒥𝑠𝑠𝑘(𝑆) ∶= {𝜑| 𝑆 ⊨𝑠𝑠𝑘 𝜑}

Because the relation involved is notably less complex than on the supervaluational
case, Stern shows that we can define an arithmetical operator Θ(𝑥) such that

Theorem 10 (Stern). 𝐹Θ = 𝐹𝑠𝑠𝑘

𝐹Θ (respectively, 𝐹𝑠𝑠𝑘) is the set of fixed points of theΘ operator (respectively, 𝒥𝑠𝑠𝑘),
i.e., the set of all 𝑋 such thatΘ(𝑋) = 𝑋 (respectively, 𝒥𝑠𝑠𝑘(𝑋) = 𝑋). This arithmeti-
cal operator closely resembles the one that yields fixed-points for T under the SK
scheme. Actually, we need to define the arithmetic formula 𝜉(𝑥, 𝑋) that forms the
basis of that operator first, in order to introduce Θ. Note that we omit writing Tℕ

everytime we write T.

𝜉(𝑥, 𝑋) ∶= 𝑥 ∈ True0 (2.1)

∨ ∃𝑦, 𝑧(𝑥 = (𝑦∨. 𝑧) ∧ (𝑦 ∈ 𝑋 ∨ 𝑧 ∈ 𝑋)) (2.2)

∨ ∃𝑦, 𝑧(𝑥 = (𝑦∧. 𝑧) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) (2.3)

∨ ∃𝑦, 𝑣(𝑥 = (∀. 𝑣𝑦) ∧ ∀𝑧(𝑦𝑧∕𝑣 ∈ 𝑋)) (2.4)

∨ ∃𝑦, 𝑣(𝑥 = (∃. 𝑣𝑦) ∧ ∃𝑧(𝑦𝑧∕𝑣 ∈ 𝑋)) (2.5)

∨ ∃𝑡(𝑥 = (T. (𝑡)) ∧ val(𝑡) ∈ 𝑋) (2.6)

∨ ∃𝑡(𝑥 = (¬. T. (𝑡)) ∧ (¬. val(𝑡)) ∈ 𝑋 ∨ ¬Sent(val(𝑡))) (2.7)

As we said, this is the formula that yields an operator whose fixed points are the
Strong-Kleene fixed points. On the basis of 𝜉(𝑥, 𝑋), we now define Stern’s operator
Θ:

Θ(𝑋) ∶= {𝑛 ∈ 𝜔 |ℕ ⊨ 𝜉(𝑛, 𝑋) (2.8)

∨∃𝑥(𝜉(𝑥, 𝑋) ∧ PrPAT(𝑥→. 𝑛))} (2.9)
9For consistency, we stick to the notation we employed before and do not follow Stern’s here.
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Moreover, Stern introduces an analogue of the supervaluatonist scheme vc. As
we saw, the latter is characterised by the fact that it only considers models where
the extension and the anti-extension of T are disjoint. The main consequence of
this is that, for any 𝑥,

⌜¬(T(𝑥̇) ∧ T(¬. 𝑥̇))⌝ ∈ 𝒥𝑣𝑐(𝑋)

for all sets 𝑋. So Stern just ‘forces’ this in the definition of this second scheme, that
he labels SSK𝑐. Write con(𝜙) if there exists 𝑡, 𝑠 such that 𝑡ℕ = 𝑠ℕ and 𝜙 is of the
form ¬(T(𝑡) ∧ T(¬. 𝑠)). Then

𝑆 ⊨𝑠𝑠𝑘𝑐 𝜑 ⇔ ∃𝜓((𝑆 ⊨𝑠𝑘 𝜓 ∨ con(𝜓))&PAT ⊢ 𝜓 → 𝜑)

An arithmetical operator Θ𝑐 can be easily provided by replacing the disjunct
(2.8) in the formula above with 𝜉𝑐(𝑥, 𝑋) ∶= 𝜉(𝑥, 𝑋)∨ con(𝑥), and replacing 𝜉(𝑥, 𝑋)
with 𝜉𝑐(𝑥, 𝑋) in disjunct (2.9). Theorem 10 will also hold for SSK𝑐 and Θ𝑐. Fur-
thermore, Stern shows that the minimal SSK-fixed point (𝐼𝑠𝑠𝑘) coincides with the
minimal vb-fixed point (𝐼𝑣𝑏), as do 𝐼𝑠𝑠𝑘𝑐 and 𝐼𝑣𝑐; but the schemes are not equivalent,
for not all fixed points coincide. More interestingly perhaps, the semantic theories
SSK and SSK𝑐 admit of an ℕ-categorical axiomatisation. These are the theories IT
and IT𝑐. IT comprises the axioms of PAT plus the following:

IT1 CT(𝑥) ∧ CT(𝑦) → (T(𝑥=. 𝑦) ↔ val(𝑥) = val(𝑦))

IT2 CT(𝑥) ∧ CT(𝑦) → (T(𝑥≠. 𝑦) ↔ val(𝑥) ≠ val(𝑦))

IT3 ∀𝑥, 𝑦(Sent(𝑥∧. 𝑦) → (T(𝑥) ∧ T(𝑦) → T(𝑥∧. 𝑦)))

IT4 ∀𝑥, 𝑦(Sent(𝑥∨. 𝑦) → (T(𝑥) ∨ T(𝑦) ∨ ∃𝑧(𝜉(𝑧, T) ∧ PrPAT(𝑧→. 𝑥∨. 𝑦) ↔ T(𝑥∨. 𝑦)))

IT5 ∀𝑣, 𝑥(Sent(∀. 𝑣𝑥) → (∀𝑧T(𝑥 𝑧̇∕𝑣) → T(∀. 𝑣𝑥)))

IT6 ∀𝑥, 𝑦(Sent(∃. 𝑣𝑥) → (∃𝑧T(𝑥 𝑧̇∕𝑣) ∨ ∃𝑤(𝜉(𝑤, T) ∧ PrPAT(𝑤→. ∃. 𝑦)) ↔ T(∃. 𝑣𝑥)))

IT7 ∀𝑥(T(𝑥) → T⌜T(𝑥̇)⌝)

IT8 ∀𝑡(T(¬. val(𝑡)) ∨ ¬Sent(val(𝑡)) ↔ T⌜¬T(𝑡)⌝)

IT9 ∀𝑥, 𝑦(T(𝑥) ∧ PrPAT(𝑥→. 𝑦) → T(𝑦))

IT10 ∀𝑥(T(¬. 𝑥) → ¬T(𝑥))

IT11 T⌜∀𝑥(T(𝑥̇) → Sent(𝑥̇))⌝
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IT12 ∀𝑡1, ..., 𝑡𝑛(T⌜𝜑(𝑡1, ..., 𝑡𝑛)⌝ → 𝜑(val(𝑡1), ..., val(𝑡𝑛))

For IT𝑐, we substitute IT4 and IT6 for

IT4* ∀𝑥, 𝑦(Sent(𝑥∨. 𝑦) → (T(𝑥) ∨ T(𝑦) ∨ ∃𝑧(𝜉(𝑧, T) ∨ con(𝑧) ∧ PrPAT(𝑧→. 𝑥∨. 𝑦) ↔
T(𝑥∨. 𝑦)))

IT6* ∀𝑥, 𝑦(Sent(∃. 𝑣𝑥) → (∃𝑧T(𝑥(𝑧̇∕𝑣)) ∨ ∃𝑧(𝜉(𝑧, T) ∨ con(𝑧) ∧ PrPAT(𝑧→. ∃. 𝑦)) ↔
T(∃. 𝑣𝑥)))

and we also add

ITC ∀𝑥(T⌜T(¬. 𝑥̇) → ¬T(𝑥̇)⌝)

As announced, IT and IT𝑐 are ℕ-categorical with respect to the semantic theo-
ries defined by the schemes SSK and SSK𝑐, that is:

Theorem 11 (Stern). For any 𝑆 ∈ CONS,

𝑆 ⊨ IT⇔ 𝒥𝑠𝑠𝑘(𝑆) = 𝑆

𝑆 ⊨ IT𝑐 ⇔ 𝒥𝑠𝑠𝑘𝑐 (𝑆) = 𝑆

Just like there are deep connections between Stern’s SSK/ SSK𝑐 and the van
Frassian supervaluational schemes, IT and Cantini’s VF present interesting points
in common as well. The first thing to notice is that VF is a subtheory of IT𝑐.10 On
top of that, the three theories (IT, IT𝑐, and VF) are proof-theoretically equivalent
in the sense of proving the same arithmetical theorems (see above):

Theorem 12 (Stern). VF ≡ IT ≡ IT𝑐 ≡ ID1 ≡ Π1
1
-CA−

0 ≡ KPU

2.3.1 Stern’s theory and dependent truth

This subsection draws attention to a further, interesting fact that connects Stern’s
theory with a theory of truth developed by Hannes Leitgeb and revised by Toby
Meadows. Thus, in his [Lei05], Leitgeb argues that the kind of sentences that we
can plausibly apply the T-schema to are those who ultimately ‘depend on’ another
sentence from the language without the truth predicate. These are, precisely, the
sentences traditionally conceived as grounded. Accordingly, he constructs a the-
ory of truth based on the introduction of a dependence operator. Some time later,

10VF7 is not listed among the axioms of IT, but it can be seen to follow from IT3 and IT9.
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Meadows [Mea13a] refined Leitgeb’s theory in order to account for the grounded-
ness of sentences like T⌜0 = 0⌝ ∨ 𝜆 or T⌜0 = 1⌝ ∧ 𝜆 (where 𝜆 is the Liar). The
version we briefly sketch is thus Meadows’. Let a set 𝑌 ⊆ Sent be a safe expansion
of a set 𝑋 (notation: 𝑌 ⊒ 𝑋) iff (i) 𝑌 ⊇ 𝑋, and (ii) 𝑋 ∩ {⌜¬𝜑⌝|⌜𝜑⌝ ∈ 𝑌} = ∅. Then,
for 𝜑 a formula of ℒ+

0
, and 𝑋,𝑌, 𝑍 sets of codes of sentences of the language:

Definition 1 (Meadows). 𝜑 is double-conditional dependent on𝑋 given𝑍 (notation:
𝜑 ⊣𝑍 𝑋) iff for all 𝑌 ⊒ 𝑍, (ℕ, 𝑌) ⊨ 𝜑 ⇔ (ℕ,𝑋 ∩ 𝑌) ⊨ 𝜑.

Now, we define two intertwined fixed-point processes:

Definition 2 (Leitgeb, Meadows).

Hierarchy of readiness: Jump operator:
Φ0 = ∅ Γ0 = ∅

Φ𝛼+1 = {𝜑|𝜑 ⊣Γ𝛼 Φ𝛼} Γ𝛼+1 = {𝜑 ∈ Φ𝛼+1|(ℕ, Γ𝛼) ⊨ 𝜑}

Φ𝜉 =
⋃

𝛼<𝜉
Φ𝛼 , for 𝜉 a limit ordinal Γ𝜉 =

⋃

𝛼<𝜉
Γ𝛼 , for 𝜉 a limit ordinal

The idea behind the two hierarchies goes back to the notion of dependence: a
formula is ‘ready’ to be evaluated by the truth operator when it essentially depends
on the extension of the truth predicate at the previous stage of the operator. All
grounded sentences will be ready eventually, so all will get evaluated at some point
in the sequence of Γ𝛼 . Moreover, since the operator is monotonic, this sequence
also generates a fixed-point in the sense of Kripke. Given that it will be theminimal
fixed point (for we started with Γ0 = ∅), we call this fixed point 𝐼Γ. Meadows then
showed the following result:

Theorem 13 (Meadows). 𝐼Γ = 𝐼𝑣𝑏 .

Recall that 𝐼𝑣𝑏 is the minimal fixed point obtained over the supervaluation scheme
vb. Meadows [Mea13a, 239] finds the identity of the minimal fixed points rather
appealing. As he sees it, the supervaluation scheme offers a simple, mathematically
elegant and well-understood way to obtain a theory of truth (perhaps contra Stern’s
claim), whereas Leitgeb’s theory of dependent truth is better motivated philosophi-
cally. Therefore, the fact that theminimal fixed points of both theories are the same
means that this set of truths unites the best of both approaches. Be that as it may,
and since, as we mentioned, Stern showed that 𝐼𝑠𝑠𝑘 = 𝐼𝑣𝑏, it is evident that we also
get the following identity:

Corollary 1. 𝐼Γ = 𝐼𝑣𝑏 = 𝐼𝑠𝑠𝑘
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While more research can be done here, it is interesting to notice that the three
minimal fixed points coincide. It is not known to us whether all fixed points of Γ
and the scheme vb coincide, but we certainly know that this is not the case with
vb and SSK. For all we know, it could also be that the fixed points of Γ and SSK
coincide. In any case, and without that information to hand, it might well be that
this equivalence is telling us something about the privileged position of theminimal
fixed point when it comes to supervaluation-like fixed points.

2.4 McGee’s theory of definite truth

In this section, we sketch McGee’s theory of definite truth as presented in [McG91,
ch. 8], and describe the theory, in the sense of writing down the principles obeyed
by its truth predicate.

Let us begin with a disclaimer. McGee’s theory is, in fact, two theories. One is
presented in [McG91, Th. 8.8], the other one in [McG91, Th. 8.13].11 This chap-
ter will only deal with the second one; unfortunately, as of today, I am still in the
process of understanding the complexities behind the first theory. The truth is that
the additionsMcGee introduces for the second theorymake it muchmore tractable
than the first. We are committed to a full grasp of that theory for the near future of
the project.

Since, asmentioned, there are two theories at stake, andwewant to focus on the
second one, we will call itMG2. But before we expound the theory, let’s mention
some preliminaries and necessary terminology.

A partial interpretation is a pair (ℳ, Γ): ℳ is some ordinary first-order model
in some language ℒ, and Γ is a set of sentences in a language ℒ+ ⊇ ℒ. The par-
tiality lies in the fact that, while ℒ is fully interpreted, ℒ+ is not—there will be
predicates whose extension is not fully determined. The motivation behind this
is to account for vague predicates and, most relevantly, for the truth predicate—a
predicate McGee considers vague too. Now, McGee’s task is to show how one can
provide a recursive set of sentences over a partial interpretation such that (i) the
resulting theory is a conservative extension of the partial interpretation and (ii) the
theory is a materially adequate theory of truth for the initial partial interpretation
together with the set of sentences of the theory.12 In the case we are interested in,

11There is a third theory, but this adds nothing to the meat of the truth predicate; it just helps to work
out a predicate for definite truth.

12In other words: the theory of truth must be materially adequate for sentences with the truth predi-
cate too.
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namely a theory of truth over the standard model of arithmetic ℕ with no partially
interpreted predicates other than the truth predicate, he shows that we can obtain
a theory (ℕ, 𝑋) such that (ℕ, 𝑋) is a conservative extension of PA𝜔 and such that
𝑋 is a materially adequate theory of truth for (ℕ, 𝑋). As we mentioned rather in-
formally above, the latter means that we can find a formula 𝜏(𝑥) such that, for all
formulae of ℒ+

0
(as defined in the previous sections):

(ℕ, 𝑋)
D
𝜑 iff (ℕ, 𝑋)

D
𝜏(⌜𝜑⌝)

and
(ℕ, 𝑋)

D
¬𝜑 iff (ℕ, 𝑋)

D
¬𝜏(⌜𝜑⌝)

When this is the case, we say that 𝜏(𝑥) is a materially adequate truth predicate
(MATP). Here,

D
is the relation of proof-theoretic definite truth, which is defined

as follows:

Definition 3. Given the standardmodel of arithmeticℕ, and a partial interpretation
(ℕ, Γ), we write (ℕ, Γ)

D
𝜑 (read: 𝜑 is definitely true in (ℕ, Γ) in the proof-theoretic

sense) iff there is a derivation sequence that ends with 𝜑 and whose only members are:

i) a member of Γ.

ii) an atomic or negated atomic sentence true in ℕ.

iii) an axiom of first-order logic.

iv) the result of applying modus ponens to previous members of the sequence.

v) the result of applying the 𝜔-rule to previous members of the sequence.

Because in this section the only notion of provability we will be dealing with
is the one just introduced, we will simply write (ℕ, Γ) ⊢ 𝜑 when we want to write
(ℕ, Γ)

D
𝜑. We will recover this more elaborate notation later on.

If this much is clear, we can now introduceMG2. Let ∆⌜𝜉⌝ be the following set
of (codes of) sentences:

• All axioms of KF, formulated with the predicate ‘Kr’.

• The formalisation of ‘T is a maximal consistent set of sentences ofℒ+
1
’, where

ℒ+
1
is the language obtained by adding the predicate T to the languageℒ1 ∶=

ℒ0 ∪ {Kr}.

• The formalisation of the sentence ‘∀ sentences 𝑥 ∈ ℒ+
1
[[Kr(⌜𝜉(𝑥)⌝)∧∀ finite,

inconsistent set 𝑅, ∃𝑟 ∈ 𝑅(Kr(⌜𝐿(𝜉(𝑥), 𝜉(𝑟))⌝))] → T(𝑥)]’
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Details of why we include these sentences as our theory of truth can be found
in [McG91, ch.8]. In any case, here’s a hint. The axioms of KF are essential to
guarantee thatMG2 includes the minimal SK-fixed point, which acts as some form
of universal set in that it ‘contains’ all inductive sets—and allows to define aMATP
on the basis of that containment. One of the ‘prices’ we pay is, however, that our
theory is formulated in a rather unnatural language, one that includes two truth
predicates: Kr and T.

The two other sentences are the way to force the theory to be based only on
models such that the extension of T is in MAXCONS. Regarding the first sentence,
McGee offers no formalisation of it (and leaves it as ‘the formalisation of...’). It
seems to us that the most intuitive such formalisation will be something like:

∀𝑥(Sentℒ+
1
(𝑥) → (¬T(𝑥) ↔ T(¬. 𝑥))).

As per the last sentence, it ensures that, under the extension of T, we get as many
sentences in a consistent way as possible; and it does so by selecting the largest
consistent set of sentences that can be obtained bymirroring the construction of the
inductive setMG2 in theminimal fixed point. The idea is not to obtain a theory that
includes a maximally consistent set of sentences;13 rather, what lies behind is some
sort of conviction that maximal consistency is a desirable feature of themodels that
make up the theory of truth, as long as they all share a core of truths.14

Now, and just for the record, I will briefly digress on the difficulties I have found
to understandMcGee’s theories, in particular the theory that we have not presented
here, and that we shall callMG1. MG1 is just likeMG2 but, instead of ∆⌜𝜉⌝, we
just have the axioms of KF, formulated with the predicate Kr. Without going into
detail, McGee exploits a trick from recursive set theory to come up with a formula
that acts as a MATP (call it 𝜏(𝑥)) for the closure of the axioms of KF under 𝜔-
logic. This formula 𝜏, however, is defined in terms of various other formulae that
capture provability, refutability, and some form of well-ordering of formulae, in the
theory. The main problem we have faced is that these other formulae present a
rather intricate behaviour across models, and dealing with them has turned out to
be a difficult challenge. While thesemechanisms at stake inMG1 are still playing a
basic role in the theoryMG2, the addition of the two other sentences that complete
∆⌜𝜉⌝ allows us to reason on the basis of the maximal consistency of T over the

13And in fact, it clearly doesn’t. It isn’t true thatMG2 ⊢ T⌜𝜑⌝ orMG2 ⊢ T⌜¬𝜑⌝ for all 𝜑 ∈ Sent. As
with the supervaluation scheme mc,MG2 proves the disjunction in the object theory (MG2 ⊢ T⌜𝜑⌝ ∨

T⌜¬𝜑⌝), not in the meta-theory.
14Thus, McGee [McG92] has defended that maximal consistency cannot be the sole or main driving

principle in the construction of a theory of truth.
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models of the theory, which hugely simplifies the task. Hence, the principles of
what at first sight may appear like a more complex theory of truth (MG2), happen
to be easier to extract than the principles of the simplerMG1.

Having finished the digression, let us now describe what the theoryMG2 looks
like. Thus, we begin by proving the principles obeyed by the truth predicate of
MG2. Theorem 8.13 of McGee shows that T is a materially adequate predicate for
(ℕ, ∆⌜𝜉⌝). We now show that it also obeys the following principles:

Theorem 14. For any closed terms 𝑠, 𝑡 ∈ ℒ0, and for any sentences 𝐴, 𝐵 ∈ ℒ+
1
,

(ℕ, ∆⌜𝜉⌝) proves the following principles:

1. T(𝑠=. 𝑡) ↔ val(𝑠) = val(𝑡))

2. T(𝑠≠. 𝑡) ↔ val(𝑠) ≠ val(𝑡)

3. ¬T(𝑠=. 𝑡) ↔ val(𝑠) ≠ val(𝑡)

4. T⌜¬𝐴⌝ ↔ ¬T⌜𝐴⌝ (COMP)

5. T⌜¬¬𝐴⌝ ↔ T⌜𝐴⌝ (DNEG)

6. T⌜𝐴 ∧ 𝐵⌝ ↔ (T⌜𝐴⌝ ∧ T⌜𝐵⌝) (CONJ)

7. T⌜𝐴 ∨ 𝐵⌝ ↔ (T⌜𝐴⌝ ∨ T⌜𝐵⌝) (DISJ)

8. T⌜∀𝑣𝐴⌝ → ∀𝑧T⌜𝐴𝑧̇∕𝑣⌝ (UNIV2)

9. ∃𝑧T⌜𝐴𝑧̇∕𝑣⌝ → T⌜∃𝑣𝐴⌝ (EXIST2)

10. ¬(T⌜𝐴⌝ ∧ T⌜¬𝐴⌝) (CONS)

While basically all proofs can be achieved by reasoning on the basis of the max-
imal consistency of the extension of T, abbreviated MAXCONS, we will proceed
slightly differently. MAXCONS will only be needed for the following lemma:15

Lemma 2. (ℕ, ∆⌜𝜉⌝) proves that, for all sentences 𝐴, 𝐵 ∈ ℒ𝑇 ,

(T⌜𝐴⌝ ∧ T⌜𝐴 → 𝐵⌝) → T⌜𝐵⌝

Proof. We fist prove, in the standard fashion, that the claim holds when the exten-
sion of T is a maximally consistent set. We show that, given a MAXCONS set ∆, if
𝜑 is derivable in propositional logic from ∆ (that we write as ∆ ⊢𝑃𝐿 𝜑), then 𝜑 ∈ ∆.
Assume not. Let Γ ∶= ∆ ∪ {𝜑}. Pick some arbitrary 𝜓 such that Γ ⊢𝑃𝐿 𝜓. Call 𝒟1

15McGee [McG91, 206] already points out that this result holds, although he offers no proof.
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the derivation from ∆ to 𝜑, and the derivation from Γ to 𝜓 𝒟2. Then, 𝒟1 ∪ 𝒟2 is a
derivation from ∆ to 𝜓. Being 𝜓 arbitrary, we note that Γ ⊢𝑃𝐿 ⊥ implies ∆ ⊢𝑃𝐿 ⊥.
Since the latter cannot be because ∆ is MAXCONS, Γ ⊬𝑃𝐿 ⊥. But then, ∆ is consis-
tent with 𝜑. So, by MAXCONS, 𝜑 ∈ ∆. Finally, given the set ∆′ ∶= {𝐴,𝐴 → 𝐵}, we
have ∆′ ⊢𝑃𝐿 𝐵.

Finally, wemake use of the fact (established by theorem 7.1 inMcGee) that, if 𝜑
holds in all models (ℕ, 𝑋) such that (ℕ, 𝑋) ⊨ ∆⌜𝜉⌝, then (ℕ, ∆⌜𝜉⌝) ⊢ 𝜑. Indeed, the
reasoning above shows that, given any such model (ℕ, 𝑆), (ℕ, 𝑆) ⊨ T⌜𝐴⌝ ∧ T⌜𝐴 →

𝐵⌝ implies (ℕ, 𝑆) ⊨ T⌜𝐵⌝—hence, all models of∆⌜𝜉⌝ satisfy (T⌜𝐴⌝∧T⌜𝐴 → 𝐵⌝) →

T⌜𝐵⌝.

We are then set to prove to theorem 14:

Proof of Theorem 14.

For principles 1-3: We know that either (ℕ, ∆⌜𝜉⌝) ⊢ 𝑠 = 𝑡 or (ℕ, ∆⌜𝜉⌝) ⊢
𝑠 ≠ 𝑡 for all closed terms 𝑠, 𝑡 of the language of arithmetic without T and Kr (i.e.,
ℒ0). Moreover, (ℕ, ∆⌜𝜉⌝) ⊢ 𝑠 = 𝑡 iff (ℕ, ∆⌜𝜉⌝) ⊢ T(𝑠=. 𝑡), and (ℕ, ∆⌜𝜉⌝) ⊢ 𝑠 ≠ 𝑡

iff (ℕ, ∆⌜𝜉⌝) ⊢ ¬T(𝑠=. 𝑡). Thus, for instance, the left to right direction of (1) just
requires us to pick any arbitrary 𝑠, 𝑡 and show (ℕ, ∆⌜𝜉⌝) ⊢ ¬T(𝑠=. 𝑡) ∨ val(𝑠) =

val(𝑡). We know that either (ℕ, ∆⌜𝜉⌝) ⊢ ¬T(𝑠=. 𝑡), in which case the disjunction
follows, or (ℕ, ∆⌜𝜉⌝) ⊬ ¬T(𝑠=. 𝑡), from which (ℕ, ∆⌜𝜉⌝) ⊬ 𝑠 ≠ 𝑡 and so (ℕ, ∆⌜𝜉⌝) ⊢
𝑠 = 𝑡 follows. The other direction, as well as principles 2 and 3, are basically the
same.

For 4: this follows from the fact that ∆⌜𝜉⌝ includes the formalisation of ‘T is
a maximal consistent set of sentences of ℒ+

1
’. As we said, while McGee is not

very clear on how this formalization looks like, it will be something equivalent to:
∀𝑥(Sentℒ+

1
(𝑥) → (T(¬. 𝑥) ↔ ¬T(𝑥))). Therefore, if ⌜𝐴⌝ ∈ Sentℒ+

1
, the claim obtains.

For the remaining cases, we make use of the fact that

(*) (ℕ, ∆⌜𝜉⌝) ⊢ T⌜𝜑⌝ for 𝜑 an axiom of first-order logic.

We reason within (ℕ, ∆⌜𝜉⌝) in every proof:
For 5: We prove one direction, the other one is symmetric.

1. T⌜𝐴 → ¬¬𝐴⌝ (*)

2. (T⌜𝐴 → ¬¬𝐴⌝ ∧ T⌜𝐴⌝) → T⌜¬¬𝐴⌝ Lemma 2

3. T⌜𝐴⌝ → T⌜¬¬𝐴⌝ 1,2; prop logic
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For 6: We prove the right-to-left direction; the left-to-right is fairly straightfor-
ward with the axioms of logic 𝐴 ∧ 𝐵 → 𝐴 and 𝐴 ∧ 𝐵 → 𝐵.

1. T⌜𝐴 → (𝐵 → 𝐴 ∧ 𝐵)⌝ (*)

2. T⌜𝐴⌝ ∧ T⌜𝐴 → (𝐵 → 𝐴 ∧ 𝐵)⌝ → T⌜𝐵 → 𝐴 ∧ 𝐵⌝ Lemma 2

3. T⌜𝐵⌝ ∧ T⌜𝐵 → 𝐴 ∧ 𝐵⌝ → T⌜𝐴 ∧ 𝐵⌝ Lemma 2

4. T⌜𝐴 → (𝐵 → 𝐴 ∧ 𝐵)⌝ ∧ T⌜𝐴⌝ ∧ T⌜𝐵⌝ → T⌜𝐴 ∧ 𝐵⌝ 2,3; prop logic

5. T⌜𝐴⌝ ∧ T⌜𝐵⌝ → T⌜𝐴 ∧ 𝐵⌝ 1,4; prop logic

For 7: The right-to-left direction is almost immediate. The left-to-right is as
follows:

1. T⌜𝐴 ∨ 𝐵 → ¬(¬𝐴 ∧ ¬𝐵)⌝ (*)

2. T⌜¬(¬𝐴 ∧ ¬𝐵)⌝ → ¬T⌜¬𝐴 ∧ ¬𝐵⌝ Principle 4

3. ¬T⌜¬𝐴 ∧ ¬𝐵⌝ → ¬(T⌜¬𝐴⌝ ∧ T⌜¬𝐵⌝) Principle 6; prop logic

4. ¬(T⌜¬𝐴⌝ ∧ T⌜¬𝐵⌝) → ¬T⌜¬𝐴⌝ ∨ ¬T⌜¬𝐵⌝ Prop logic

5. ¬T⌜¬𝐴⌝ ∨ ¬T⌜¬𝐵⌝ → T⌜𝐴⌝ ∨ T⌜𝐵⌝ Principles 4 and 5, prop logic

6. T⌜¬(¬𝐴 ∧ ¬𝐵)⌝ → T⌜𝐴⌝ ∨ T⌜𝐵⌝ 2,5; prop logic

7. T⌜𝐴 ∨ 𝐵⌝ → T⌜𝐴⌝ ∨ T⌜𝐵⌝ 1, 6; Lemma 2, prop logic

For 8: Note that there is only one direction here.

1. T⌜∀𝑣𝐴 → 𝐴(𝑛̄)⌝ For each 𝑛 ∈ 𝜔, (*)

2. T⌜∀𝑣𝐴 → 𝐴(𝑛̄)⌝ ∧ T⌜∀𝑣𝐴⌝ → T⌜𝐴(𝑛̄)) For each 𝑛 ∈ 𝜔, Lemma 2

3. T⌜∀𝑣𝐴⌝ → T⌜𝐴(𝑛̄)⌝ For each 𝑛 ∈ 𝜔, 1,2; prop logic

4. ∀𝑥(T⌜∀𝑣𝐴⌝ → T⌜𝐴(𝑥̇)⌝) 3, 𝜔-rule

5. T⌜∀𝑣𝐴⌝ → ∀𝑥T⌜𝐴(𝑥̇)⌝ 4, FOL

Principle 9 is very straightforward too, with just an application of the axiom of
FOL

𝐴(𝑛̄) → ∃𝑣𝐴.
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Principle 10 follows from principle 4 immediately.

This, together with material adequacy, completes the principles of the truth
predicate forMG2. We shall continue by noting which principles are inconsistent
with it. But first, an observation. It seems to us that one lesson that can be ex-
tracted from Theorem 14 and Lemma 2 is the following: that any model of a theory
based on principles 1-3, maximal consistency of T, and the principle (*) alone, will
already obtain principles 5-10. This is, after all, what is stake in McGee’s theory.
The material adequacy of T within the theory, together with the agreement across
models on what counts as a logical truth and as a true atomic or negated atomic
sentence is what yields principles 1-3 and (*) for each model of the theory, whereas
∆⌜𝜉⌝ (and, in particular, the second bullet point above) is what forces the extension
of T to be maximally consistent at each model. But any other route that results in
the same principles being satisfied by the models will do, since the remaining of
the proof does not depend on any specific feature of MG2.

Now, we indicate which principles are inconsistent with the truth predicate of
MG2. But first, we recall a well-known theorem by McGee [McG85]. The formu-
lation of the theorem differs slightly fromMcGee’s own, and is taken from [Ste17]:

Theorem 15 (McGee). Let Γ be a theory extending Robinson’s arithmetic𝑄 in a lan-
guage ℒ𝑇 that includes some truth predicate T, that is closed under the rule

𝜙

T⌜𝜙⌝
T-Intro

and proves

• T⌜¬𝜙⌝ → ¬T⌜𝜙⌝ (CONS)

• ∀𝑥T⌜𝜙(𝑥)⌝ → T⌜∀𝑣𝜙(𝑣)⌝ (UNIV1)

• T⌜𝜙 → 𝜓⌝ → (T⌜𝜙⌝ → T⌜𝜓⌝) (IMP)

for all 𝜙, 𝜓 ∈ ℒ𝑇 . Then, Γ is 𝜔-inconsistent, i.e. there is a formula 𝜒 such that Γ ⊢

𝜒(𝑛̄) for each 𝑛 ∈ 𝜔 but Γ ⊢ ∃𝑥¬𝜒(𝑥).

Finally, the principles that are inconsistent withMG2 are as follows:

Remark 1. (ℕ, ∆⌜𝜉⌝) is inconsistent with any of the following principles:

1. T⌜¬T⌜𝐴⌝⌝ ↔ T⌜¬𝐴⌝

2. T⌜T⌜𝐴⌝⌝ ↔ T⌜𝐴⌝
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3. T⌜𝐴⌝ → 𝐴

4. 𝐴 → T⌜𝐴⌝

5. ∀𝑧T⌜𝐴𝑧̇∕𝑣⌝ → T⌜∀𝑣𝐴⌝

6. T⌜∃𝑣𝐴⌝ → ∃𝑧T⌜𝐴𝑧̇∕𝑣⌝

Proof. Principle 1: it can be divided into the two directions of the biconditional,
that we shall treat as two principles. Both of them are inconsistent with CONS and
material adequacy:

1. T⌜¬𝐴⌝ → T⌜¬T⌜𝐴⌝⌝, which we shall call ¬REP. Note that, here as in the
following proofs, it will suffice to prove 𝜆, ¬𝜆, T⌜𝜆⌝ or ¬T⌜𝜆⌝ and a contra-
diction can be reached easily with material adequacy. Here, 𝜆 is the Liar for
T. We reason within (ℕ, ∆⌜𝜉⌝):

i. T⌜¬𝜆⌝ → T⌜¬T⌜𝜆⌝⌝ ¬REP

ii. T⌜¬T⌜𝜆⌝⌝ → T⌜𝜆⌝ def of 𝜆

iii. T⌜¬𝜆⌝ → T⌜¬𝜆⌝

iv. T⌜¬𝜆⌝ → T⌜𝜆⌝ ∧ T⌜¬𝜆⌝

vi. ¬(T⌜𝜆) ∧ T⌜¬𝜆⌝) CONS

vii. ¬T⌜¬𝜆⌝ Modus tollens

viii. ¬¬𝜆 Material adequacy

ix. 𝜆

2. We shall call this principle ¬DEL. The proof of its inconsistency runs as fol-
lows:

i. T⌜𝜆⌝ → T⌜¬T⌜𝜆⌝⌝ def of 𝜆

ii. T⌜¬T⌜𝜆⌝⌝ → T⌜¬𝜆⌝ by ¬DEL

iii. T⌜𝜆⌝ → T⌜𝜆⌝ ∧ T⌜¬𝜆⌝

iv. ¬(T⌜𝜆⌝ ∧ T⌜¬𝜆⌝) CONS

v. ¬T⌜𝜆⌝ Modus tollens

Principle 2: it can be divided into two directions:

1. T⌜𝐴⌝ → T⌜T⌜𝐴⌝, which we shall call REP, and is inconsistent with CONS
and material adequacy.
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i. T⌜𝜆⌝ → T⌜¬⌜T⌜𝜆⌝⌝ def of 𝜆

ii. T⌜𝜆⌝ → T⌜T⌜𝜆⌝⌝ by REP

iii. T⌜𝜆⌝ → T⌜T⌜𝜆⌝ ∧ T⌜¬T⌜𝜆⌝⌝

iv. ¬(T⌜T⌜𝜆⌝⌝ ∧ T⌜¬T⌜𝜆⌝⌝) by CONS

v. ¬T⌜𝜆⌝ Modus tollens

2. T⌜T⌜𝐴⌝) → T⌜𝐴⌝, which we shall call DEL, and is inconsistent with CONS,
DNEG and material adequacy.

i. T⌜T⌜𝜆⌝⌝ → T⌜¬¬T⌜𝜆⌝⌝ DNEG

ii. T⌜¬¬T⌜𝜆⌝⌝ → T⌜¬𝜆⌝ def of 𝜆

iii. T⌜T⌜𝜆⌝⌝ → T⌜¬𝜆⌝

iv. T⌜T⌜𝜆⌝⌝ → T⌜𝜆⌝ DEL

v. T⌜T⌜𝜆⌝⌝ → T⌜𝜆⌝⌝ ∧ T⌜¬𝜆⌝

vi. ¬(T⌜𝜆⌝ ∧ T⌜¬𝜆⌝) CONS

vii. ¬T⌜T⌜𝜆⌝⌝ Modus tollens

viii. ¬T⌜𝜆⌝ Material adequacy

Principle 3, sometimes knownas T-OUT, is inconsistentwithmaterial adequacy
by Montague’s paradox (see e.g. [McG91, ch.1]).

Principle 4, known as T-IN, is also inconsistentwithmaterial adequacy—in fact,
once again, it is inconsistent even with one direction of material adequacy, namely
T-ELIM or CONEC. We can reason as follows; as before, we only prove up to ¬𝜆.

i. 𝜆 → T⌜𝜆⌝ T-IN

ii. 𝜆 → ¬T⌜𝜆⌝ def of 𝜆

iii. ¬𝜆

Principle 5: its inconsistency is a direct consequence of theorem 15, by lemma
2 and principle 9 of theorem 14; if MG2 is 𝜔-inconsistent, it is inconsistent sim-
pliciter, for it counts the 𝜔-rule among its rules of inference.

Principle 6: We note how to derive principle 5 from principle 6.

1. ¬∃𝑧T⌜¬𝐴𝑧̇∕𝑣⌝ → ¬T⌜∃𝑣¬𝐴⌝ Principle 6, prop logic

2. ∀𝑧¬T⌜¬𝐴𝑧̇∕𝑣⌝ → T⌜∀𝑧¬¬𝐴𝑧̇∕𝑣⌝ 1; prin. 4 in Theorem 14, prop logic, (*)
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3. ∀𝑧T⌜¬¬𝐴𝑧̇∕𝑣⌝ → T⌜∀𝑧¬¬𝐴𝑧̇∕𝑣⌝ 2; prin. 4 in Theorem 14, prop logic

4. ∀𝑧T⌜𝐴𝑧̇∕𝑣⌝ → T⌜∀𝑧𝐴𝑧̇∕𝑣⌝ 3; prin. 5 in Theorem 14, prop logic

2.5 Relations between Stern’s theories andMG2

In this section, we establish some relations between Stern’s theory SSK𝑚𝑐 (an ex-
tension of SSK that can be seen as the counterpart of the supervaluatonist scheme
mc—we shall explain more about it later) and McGee’s theoryMG2. In doing so,
we also characterise McGee’s theory further and provide some insights into how
we can think about this theory in terms of inductive definitions. In particular, in
section 4.1 we first show thatMG2 is the minimal fixed point of two different in-
ductive definitions, and we go on to show that all fixed points of these inductive
definitions coincide. We then use this feature to establish, in section 4.2, that the
minimal fixed point of Stern’s SSK𝑚𝑐 is a subset of McGee’sMG2.

2.5.1 MG2 as theminimal fixed point of two inductive defini-
tions

In theorem [McG91, Th. 7.3], McGee shows that, given any partial interpretation
(ℕ, Γ), the following inductive definition characterises the theory {𝜑|(ℕ, Γ)

D
𝜑}

in the sense that {𝜑|(ℕ, Γ)
D
𝜑} is its minimal fixed point:16

∀𝑥[𝑅(𝑥) ↔{𝑥 ∈ 𝑆𝑒𝑛𝑡ℒ+
1
∧

[𝐺(𝑥)

∨ 𝑥 is an axiom of logic

∨ 𝑥 ∈ True0
∨ ∃𝑦, 𝑣(𝑥 = (∀. 𝑣𝑦) ∧ ∀𝑧𝑅(𝑦 𝑧̇∕𝑣))

∨ ∃𝑦(𝑅(𝑦) ∧ 𝑅(𝑦→. 𝑥))]}]

Here, True0 is the set of atomic or negated atomic formulae true in ℕ, and 𝐺(𝑥) is
a formula whose extension is the set of (codes of) sentences in Γ. As a result, if we
substitute 𝐺(𝑥) in this inductive definition for 𝐷(𝑥), a formula whose extension is

16Note that we have adopted the more cumbersome notation (ℳ, Γ)
D
𝜑 again in this section.
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the set of sentences∆⌜𝜉⌝, the resulting inductive definition characterises the theory
MG2 in the sense we mentioned, i.e.,MG2 is its minimal fixed point.

We prove the same result for a different inductive definition, based on the arith-
metical operators that are often used to characterise axiomatic theories of truth, and
in particular the one in [Ste18]. This inductive definition is the formula 𝜙𝑚𝑐(𝑥, 𝑋):

𝜙𝑚𝑐(𝑥, 𝑋) ⇔𝑥 ∈ Sentℒ+
1
∧

[[(𝐷(𝑥)

∨ ∃𝑦, 𝑧(𝑥 = (𝑦∨. 𝑧) ∧ (𝑦 ∈ 𝑋 ∨ 𝑧 ∈ 𝑋)

∨ ∃𝑦, 𝑧(𝑥 = (𝑦∧. 𝑧) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)

∨ ∃𝑦, 𝑣(𝑥 = (∀. 𝑣𝑦) ∧ ∀𝑧(𝑦𝑧̇∕𝑣 ∈ 𝑋)

∨ ∃𝑦, 𝑣(𝑥 = (∃. 𝑣𝑦) ∧ ∃𝑧(𝑦𝑧̇∕𝑣 ∈ 𝑋)

∨ ∃𝑡(𝑥 = (T. 𝑡) ∧ val(𝑡) ∈ 𝑋)

∨ ∃𝑡(𝑥 = (¬. T. 𝑡) ∧ (¬. val(𝑡)) ∈ 𝑋)]

∨ ∃𝑦(𝑦 ∈ 𝑋 ∧ PrPAKT(𝑦→. 𝑥))

∨ ∃𝑠, 𝑡(𝑥 = ⌜T(𝑠) ∨ T(¬. 𝑡)⌝ ∧ val(𝑡) = val(𝑠))

∨ ∃𝑠, 𝑡(𝑥 = ⌜¬(T(𝑠) ∧ T(¬. 𝑡))⌝ ∧ val(𝑡) = val(𝑠))]

In the formula above,𝐷 is again the predicatewhose extension is the set of codes
of the formulae in ∆⌜𝜉⌝. PrPAKT is a predicate expressing provability in PAKT, i.e.
Peano Arithmetic over the language ℒ+

1
.

We can then formulate the following operator:

Φ𝑚𝑐(𝑋) ∶= {𝑥|ℕ ⊨ 𝜙𝑚𝑐(𝑥, 𝑋)}

As a matter of fact, we could have come up with a much shorter inductive def-
inition that would also do the job. In particular, the following inductive definition
presents the same fixed points as the one we have just introduced:

64



𝜙𝑚𝑐∗(𝑥, 𝑋) ⇔𝑥 ∈ Sentℒ+
1
∧

[[(𝐷(𝑥)

∨ ∃𝑦, 𝑣(𝑥 = (∀. 𝑣𝑦) ∧ ∀𝑧(𝑦𝑧̇∕𝑣 ∈ 𝑋)

∨ ∃𝑡(𝑥 = (T. 𝑡) ∧ val(𝑡) ∈ 𝑋)

∨ ∃𝑡(𝑥 = (¬. T. 𝑡) ∧ (¬. val(𝑡)) ∈ 𝑋)]

∨ ∃𝑦(𝑦 ∈ 𝑋 ∧ PrPAKT(𝑦→. 𝑥))]

The two inductive definitions are not strictly the same—if we use this new def-
inition to formulate an operator Φ𝑚𝑐∗ in the same way we set Φ𝑚𝑐, we can see that
Φ𝑚𝑐∗(𝑋) ≠ Φ𝑚𝑐(𝑋) for some 𝑋. In other words, the stages in the construction of
the fixed points differ, even if the fixed points themselves do not. The key here is that,
for the case ofΦ𝑚𝑐∗ , it ‘takesmore stages’ for many formulae with connectives to be
included in the set that will constitute the fixed point than it would take under the
operator Φ𝑚𝑐. As an example, let’s examine the case of conjunction. Suppose that
𝑥, 𝑦 ∈ 𝑋, that𝑋 is not a fixed point ofΦ𝑚𝑐 norΦ𝑚𝑐∗ , and that (𝑥∧. 𝑦) ∉ 𝑋. The clause
for conjunction in 𝜙𝑚𝑐(𝑥, 𝑋) yields (𝑥∧. 𝑦) ∈ Φ𝑚𝑐(𝑋) immediately. However, when
it comes to the operator Φ𝑚𝑐∗ , the corresponding formula 𝜙𝑚𝑐∗(𝑥, 𝑋) lacks a clause
for conjunction, and so needs to proceed through the clause that captures prov-
ability in PAKT. Since when 𝑥, 𝑦 ∈ Sentℒ+

1
, we have ℕ ⊨ PrPAKT(𝑥→. (𝑦→. 𝑥∧. 𝑦)),

the last clause in 𝜙(𝑥, 𝑋)𝑚𝑐∗ will give us (𝑦→. 𝑥∧. 𝑦) ∈ Φ𝑚𝑐∗(𝑋). One more applica-
tion of the operator, with the same reasoning, results in (𝑥∧. 𝑦) ∈ Φ𝑚𝑐∗(Φ𝑚𝑐∗(𝑋)).
That is, the inclusion of the conjunction happens one stage later. In other words,
Φ𝑚𝑐∗(𝑋) ≠ Φ𝑚𝑐(𝑋), so the inductive definitions cannot be the same.

However, as we have stressed, the fixed points are indeed the same. A reasoning
akin to the one just given can be used to show that all sentences that are included in
the fixed point ofΦ𝑚𝑐 obtained from a given initial set𝑌 will eventually be included
in the fixed point of Φ𝑚𝑐∗ with the same initial set. This happens even for the last
two clauses in 𝜙𝑚𝑐(𝑥, 𝑋), if we take the formalization of ‘The extension of T is a
maximal consistent set of sentences of ℒ+

1
’ to be something like ∀𝑥(Sentℒ+

1
(𝑥) →

¬T(𝑥) ↔ T(¬. 𝑥)). Since the code of this formula is in the extension of 𝐷(𝑥), one
can derive ¬T(𝑥) ↔ T(¬. 𝑥) for each 𝑥 ∈ Sentℒ+

1
through the clause for provability

in PAKT. Then, one can obtain ⌜T(𝑠)∨T(¬. 𝑡)⌝ ∈ 𝑋 when val(𝑡) = val(𝑠)) (as long
as we consider PAKT to include axioms for identity), and the same with ⌜¬(T(𝑠) ∧
T(¬. 𝑡))⌝ ∈ 𝑋.
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This being said, and despite the identity of all of their fixed points, we will be
working with the first proposed inductive definition— 𝜙(𝑥, 𝑋)𝑚𝑐 — instead of the
second one, for it will make the comparison with Stern’s theory much easier. Now,
we claim:

Lemma 3. MG2, i.e. {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝜑}, is 𝐼Φ𝑚𝑐 , the minimal fixed point of the
operator Φ𝑚𝑐.

Proof. This is done in two steps: we first show thatMG2 is contained in the mini-
mal fixed point, and then we show that it is a fixed point of the operatorΦ𝑚𝑐, which
will entail thatMG2 is indeed the minimal fixed point.

Thus, we start by proving that (ℕ, ∆⌜𝜉⌝) ⊆ 𝐼Φ𝑚𝑐 by induction on the length of
proofs in ℕ-logic (i.e. provability as captured by the relation

D
). For the base case

(when the length is 1, i.e. when (ℕ, ∆⌜𝜉⌝)
D
𝜑 for 𝜑 an axiom of logic, a member

of ∆⌜𝜉⌝, or an atomic or negated atomic sentence true in ℕ), note that:

(i) the first disjunct in square brackets—i.e. the clause that includes the predi-
cate 𝐷(𝑥)—will give us all members of ∆⌜𝜉⌝;

(ii) PAKT ⊢ 𝜑 for 𝜑 an axiom of logic or a true atomic/negated atomic sentence,
and so, when 𝑥 = ⌜𝜑⌝, letting 𝑦 ∈ ∆⌜𝜉⌝, we get

ℕ ⊨ ∃𝑦(𝑦 ∈ Φ𝑚𝑐(∅) ∧ PrPAKT(𝑦→. 𝑥)),

whence 𝑥 ∈ 𝐼Φ𝑚𝑐 .

For the inductive case we check MP and the 𝜔-rule. The latter is covered by the
clause for the universal quantifier. For the former, the IH gives ⌜𝜑 → 𝜓⌝ ∈ 𝐼Φ𝑚𝑐

and ⌜𝜑⌝ ∈ 𝐼Φ𝑚𝑐 . By the clause for conjunction, we get ⌜(𝜑 → 𝜓) ∧ 𝜑⌝ ∈ 𝐼Φ𝑚𝑐 . Then
we just need to note that PAKT ⊢ ((𝜑 → 𝜓) ∧ 𝜑) → 𝜓, and the closure of 𝐼Φ𝑚𝑐
under provability in PAKT does the rest.

The second step is to check thatMG2 is indeed a fixed point of the operator Φ,
that is,

{𝜑|(ℕ, ∆⌜𝜉⌝)
D
𝜑} = Φ𝑚𝑐({𝜑|(ℕ, ∆⌜𝜉⌝) D

𝜑})

For the left-to-right direction, it is easy to see that, for any set 𝑋, Φ𝑚𝑐(𝑋) ⊇ 𝑋.
For the right-to-left: this is immediate if 𝑥 ∈ Φ𝑚𝑐({𝜑|(ℕ, ∆⌜𝜉⌝) D

𝜑}) in virtue
of the first disjunct, and almost immediate when 𝑥 ∈ Φ𝑚𝑐({𝜑|(ℕ, ∆⌜𝜉⌝) D

𝜑}) in
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virtue of the next four disjuncts. The peculiar case is that of the universal quan-
tifier: we know that we have a proof of each 𝜑𝑡∕𝑣 for all 𝑡, and we need to appeal
to Zermelo’s well-ordering theorem to pile the proofs together and be able to ap-
ply the 𝜔-rule. For the case in which 𝑥 = ⌜T(𝑡)⌝, with 𝑡 = ⌜𝜓⌝, and we have
𝜓 ∈ {𝜑|(ℕ, ∆⌜𝜉⌝)

D
𝜑}, the claim follows by material adequacy. The same goes

for 𝑥 = ⌜¬T(𝑡)⌝. For the third-to-last disjunct, we note that PAKT ⊢ 𝜑 → 𝜓 im-
plies (ℕ, ∆⌜𝜉⌝)

D
𝜑 → 𝜓. Finally, we have the cases 𝑥 = ⌜T(𝑛) ∨ T(¬.𝑚)⌝ and

𝑥 = ⌜¬(T(𝑛) ∧ T(¬.𝑚))⌝, for 𝑛 = 𝑚. Now, if val(𝑛) = val(𝑚)), then (ℕ, ∆⌜𝜉⌝)
D

𝑛 = 𝑚. The claim then follows from the observation that (ℕ, ∆⌜𝜉⌝)
D
T(𝑡) ∨ T(¬. 𝑡)

and (ℕ, ∆⌜𝜉⌝)
D
¬(T(𝑡) ∧ T(¬. 𝑡)) for any 𝑡 ∈ Sentℒ+

1
(by Theorem 14).

This means that we can think of MG2 as the minimal fixed point of the induc-
tive definition à laMcGee, but also as the minimal fixed point of the arithmetical
operator à la Stern; put otherwise, both minimal fixed points coincide.

We can refine this result: as it happens, all 𝜔-consistent fixed points of the two
inductive definitions coincide. In order to prove this, we need to introduce the
following definition, which expands on Definition 3:

Definition 4. Given the standard model of arithmetic ℕ, a partial interpretation
(ℕ, Γ), and a set of sentences 𝑋, we write (ℕ, Γ)

D

𝑋
𝜑 (read: 𝜑 is definitely true in

(ℕ, Γ) under𝑋 in the proof-theoretic sense) iff there is a derivation sequence that ends
with 𝜑 and whose only members are:

i) a member of Γ.

ii) an atomic or negated atomic sentence true in ℕ.

iii) an axiom of first-order logic.

iv) a member of the set 𝑋.

v) the result of applying modus ponens to previous members of the sequence.

vi) the result of applying the 𝜔-rule to previous members of the sequence.

Clearly, the relation (ℳ, Γ)
D
𝜑 presented in Definition 3 is just a special case of

the relation (ℳ, Γ)
D

𝑋
𝜑, namely, the case in which 𝑋 = ∅ (i.e., (ℳ, Γ)

D

∅
𝜑).

Now, consider once again the inductive definition
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∀𝑥[𝑅(𝑥) ↔{𝑥 ∈ 𝑆𝑒𝑛𝑡ℒ+
1
∧

[𝐺(𝑥)

∨ 𝑥 is an axiom of logic

∨ 𝑥 ∈ True0
∨ ∃𝑦, 𝑣(𝑥 = (∀. 𝑣𝑦) ∧ ∀𝑧𝑅(𝑦 𝑧̇∕𝑣))

∨ ∃𝑦(𝑅(𝑦) ∧ 𝑅(𝑦→. 𝑥))]}]

We will write FP𝑋𝑅,𝐺 for the fixed point of the displayed inductive definition ob-
tained when we run the fixed-point construction over𝑋—that is, when, in the con-
struction of the fixed point, we let 𝑋 be the extension of 𝑅(𝑥) at the initial stage—
and when we use the formula 𝐺(𝑥) in the definition. Accordingly, letting 𝐷(𝑥) be
the formula whose extension is the set of codes of sentences in∆⌜𝜉⌝ (as understood
above), FP𝑋𝑅,𝐷 is the corresponding fixed point over 𝑋 for the inductive definition
with 𝐺(𝑥) substituted for 𝐷(𝑥). If, analogously, we let FP𝑋Φ𝑚𝑐 be the fixed point ob-
tained from the operator Φ𝑚𝑐 that inputs 𝑋 at the initial stage, the result we are
after is the following:

Theorem16. Let𝑋∪{𝜑|⌜𝜑⌝ ∈ True0}∪∆⌜𝜉⌝ be𝜔-consistent. Then FP𝑋Φ𝑚𝑐 = FP𝑋𝑅,𝐷 .

For this theorem, we first need a couple of previous results. The strategy is
simple: we show how FP𝑋𝑅.𝐷 is equal to the equivalent of the theoryMG2 under the
relation

D

𝑋—that is, {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
𝜑}—and then show that the latter is equal to

FP𝑋Φ𝑚𝑐 .

Lemma 4. Let (ℕ, Γ) be a partial interpretation. Let 𝑋 ∪ {𝜑|⌜𝜑⌝ ∈ True0} ∪ Γ be
𝜔-consistent, and let𝐺(𝑥) be a formula whose extension is the set of codes of sentences
in Γ. Then:

FP𝑋𝑅,𝐺 = {𝜑|(ℕ, Γ)
D

𝑋
𝜑}

Proof. The right-to-left direction is a routine induction on the length of the proofs
under the

D

𝑋 relation. The only peculiar feature is when, in proving the base case,
we have a one-step proof of a member of the set𝑋. Since the stages of the construc-
tion of FP𝑋𝑅,𝐺 yield non-strictly increasing sets of sentences, and since all 𝑥 ∈ 𝑋

were in the extension of 𝑅(𝑥) at the initial stage, they will also be in the fixed point.
The left-to-right direction is also straightforward: if 𝑥 ∈ FP𝑋𝑅,𝐺 in virtue of being

a member of 𝑋, or of the extension of 𝐺, or of True0, or in virtue of being an axiom
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of logic, then there is a one-step proof of it in
D

𝑋 . The other two disjuncts of the
inductive definition are covered by the 𝜔-rule (in which case, just like in Lemma 3,
we appeal to Zermelo’s well-ordering theorem), and modus ponens.

Lemma5. Let𝑋∪{𝜑|⌜𝜑⌝ ∈ True0}∪∆⌜𝜉⌝ be𝜔-consistent. The theory {𝜑|(ℕ, ∆⌜𝜉⌝) D

𝑋

𝜑} is a conservative extension of PA𝜔 ∪𝑋 and ∆⌜𝜉⌝ is a materially adequate theory of
truth for {𝜑|(ℕ, ∆⌜𝜉⌝)

D

𝑋
𝜑}.17

We do not offer a proof of this lemma, for it is an exact reproduction of the
(rather long) proof in [McG91, Th. 8.13]. Instead, we note two things. First, that
we imposed that 𝑋 ∪ {𝜑|⌜𝜑⌝ ∈ True0} ∪ ∆⌜𝜉⌝ be 𝜔-consistent because, otherwise:
(i) clearly, the theory would not be a conservative extension of PA𝜔 ∪ 𝑋, and (ii)
we would not be able to apply McGee’s result, as this requires that {𝜑|(ℕ, ∆⌜𝜉⌝)

D

𝑋

𝜑} and {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
¬𝜑} be disjoint sets. The second thing to note is that a

fundamental requisite of Theorem 8.13 (namely, that 𝐸∞ ⊆ {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
𝜑} and

𝐴∞ ⊆ {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
¬𝜑}) is met,18 insofar as the axioms of KF are included in

∆⌜𝜉⌝. These observations are what we need in order to know that Lemma 5 can be
obtained following McGee’s proof.

The last lemma we need in order to prove Theorem 16 is the following:

Lemma 6. {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
𝜑} = FP𝑋Φ𝑚𝑐 .

Proof. Just run the proof of Lemma 3 with the new relation
D

𝑋 . Note that, for the
left-to-right direction, when proving the base case, we encounter (ℕ, ∆⌜𝜉⌝)

D

𝑋
𝜑,

for ⌜𝜑⌝ a member of 𝑋. For this, we just know that PAKT ⊢ 𝜓 → 𝜓 for any
𝜓 ∈ Sentℒ+

1
, so the fact that ⌜𝜑⌝ = 𝑥 ∈ 𝑋 yields

ℕ ⊨ ∃𝑦(𝑦 ∈ 𝑋 ∧ PrPAKT(𝑦→. 𝑥)).

Hence, ⌜𝜑⌝ ∈ Φ𝑚𝑐(𝑋) ⊆ FP𝑋Φ𝑚𝑐 .
Moreover, when tackling the right-to-left direction, Lemma 5, by proving that

we have a materially adequate truth predicate in the theory {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
𝜑},

guarantees that the clauses for the truth predicate in 𝜙𝑚𝑐(𝑥, 𝑋) can be mimicked in
the theory through material adequacy. That is: if

𝑥 = (T. 𝑡), and val(𝑡) = ⌜𝜓⌝, and 𝜓 ∈ {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
𝜑}

17PA𝜔 is the theory PA equipped with the 𝜔-rule.
18Here, 𝐸∞ and 𝐴∞ are, respectively, the extension and the antiextension of the truth predicate in

Kripke’s SK minimal fixed-point construction.
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then the material adequacy of T for the theory {𝜑|(ℕ, ∆⌜𝜉⌝)
D

𝑋
𝜑} implies

(ℕ, ∆⌜𝜉⌝)
D

𝑋
T(𝑡).

Proof of Theorem 16. Immediate by Lemma 4 and Lemma 6.

2.5.2 Relation betweenMG2 and SSK𝑚𝑐

In this subsection, we show that the minimal fixed point of one of Stern’s semantic
theories is a subset of McGee’sMG2.

Consider again the language ℒ+
0
, that is, the language of arithmetic with the

truth predicate T. Let 𝐼𝑆𝑆𝐾 , 𝐼𝑆𝑆𝐾𝑐 and 𝐼𝑆𝑆𝐾𝑚𝑐 be as in section 3, i.e., the minimal
fixed points of the SSK, SSK𝑐 and SSK𝑚𝑐 operators; they are all formulated in the
language ℒ+

0
. On the other hand, the theory MG2 is formulated in the language

ℒ+
1
∶= ℒ+

0
∪{Kr}. Therefore,ℒ+

0
is a sublanguage ofℒ+

1
. As a result of that, we need

not perform a translation between the languages when showing how the minimal
fixed point of one of Stern’s theories is included inMG2.

Now, the results we obtained in subsection 2.5.1 help us prove the main result
of this subsection:

Lemma 7. 𝐼𝑆𝑆𝐾𝑚𝑐 ⊆ {𝜑|(ℕ, ∆⌜𝜉⌝)
D
𝜑}

Proof. Thanks to theorem 3.5 in Stern, we just need to prove that ⌜𝜑⌝ ∈ 𝐼Θ𝑚𝑐 ⇒

⌜𝜑⌝ ∈ {𝜓|(ℕ, ∆⌜𝜉⌝)
D
𝜓}. Θ𝑚𝑐 is the operator Stern defines in [Ste18, 831]. It

is just like Θ𝑐, presented in section 2.3, except that, instead of 𝜉(𝑥, 𝑋) ∨ con(𝑥), we
write 𝜉(𝑥, 𝑋)∨con(𝑥)∨com(𝑥), where com(𝑥) is defined as∃𝑠, 𝑡(𝑥 = ⌜T(𝑠)∨T(¬. 𝑡)⌝∧
val(𝑠) = val(𝑡)). We can call this whole formula 𝜉𝑚𝑐(𝑥, 𝑋). We thus investigate
all possible cases in which a sentence 𝜑 can be a member of 𝐼𝑆𝑆𝐾𝑚𝑐 , based on the
operator Θ𝑚𝑐. Let 𝑎 = ⌜𝜑⌝.

• When 𝜑 is a true atomic or negated atomic sentence of the languageℒ0, then
clearly (ℕ, ∆⌜𝜉⌝)

D
𝜑.

• When 𝑎 = ⌜𝜑⌝ ∈ 𝐼Θ𝑚𝑐 in virtue of con(𝑎),

∃𝑠, 𝑡(𝑎 = ⌜¬(T(𝑠) ∧ T(¬. 𝑡))⌝ ∧ val(𝑠) = val(𝑡)),
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wecan reason in twodifferentways. Since the same applies to the case com(𝑎),
we expound one way for this case, and leave the other form of reasoning for
the other. Thus, we appeal here to the principles of T in ℕ,∆⌜𝜉⌝. Assum-
ing 𝑠 = 𝑛, 𝑡 = 𝑚, we have (ℕ, ∆⌜𝜉⌝)

D
𝑛 = 𝑚, and also (ℕ, ∆⌜𝜉⌝)

D

¬(T(𝑛)∧T(¬. 𝑛)) by CONS, so (ℕ, ∆⌜𝜉⌝) D
¬(T(𝑛)∧T(¬.𝑚)) by applying logic

inside the truth predicate (remember Lemma 2 and principle (*) in the proof
of Theorem 14).

• Suppose 𝑎 ∈ 𝐼Θ𝑚𝑐 in virtue of com(𝑥), that is,

∃𝑠, 𝑡(𝑎 = ⌜T(𝑠) ∨ T(¬. 𝑡))⌝ ∧ val(𝑠) = val(𝑡)).

As mentioned, we could have applied the same reasoning as in the case of
con(𝑎), but there is an alternative way to prove it. We just appeal to the
second-to-last clause in 𝜙𝑚𝑐(𝑥, 𝑋), so that if ⌜𝜑⌝ = 𝑎 ∈ 𝐼Θ𝑚𝑐 because com(𝑎),
then 𝜙𝑚𝑐(𝑎, 𝑆) for any set 𝑆, including the empty set. So 𝑎 ∈ {𝜓|(ℕ, ∆⌜𝜉⌝)

D

𝜓}.

• When 𝑎 ∈ 𝐼Θ𝑚𝑐 due to one of the clauses (2.2)-(2.7) in the definition of 𝜉(𝑥, 𝑋)
(that is, the clauses for the connectives and for the truth predicate—see sec-
tion 2.3 above), just note that the clauses are identical to the clauses in𝜙𝑚𝑐(𝑥, 𝑋),
which means that 𝑎 ∈ 𝐼Φ𝑚𝑐 = {𝜓|(ℕ, ∆⌜𝜉⌝) ⊢ 𝜓}.

• The final case is the case

ℕ ⊨ ∃𝑦(𝜉𝑚𝑐(𝑦, 𝑆) ∧ PrPAT(𝑦→. 𝑎)).

Then, there exists some 𝑛 ∈ 𝜔 such that ℕ ⊨ 𝜉𝑚𝑐(𝑛̄, 𝑆) ∧ PrPAT(𝑛→. 𝑎). Just
like 𝑎 = ⌜𝜑⌝, let 𝑛 = ⌜𝜒⌝. The above shows that ℕ ⊨ 𝜉𝑚𝑐(𝑛̄, 𝑆) implies

𝜒 ∈ {𝜓|(ℕ, ∆⌜𝜉⌝)
D
𝜓}.

Moreover, PAT ⊢ 𝜒 → 𝜙 implies PAKT ⊢ 𝜒 → 𝜙. WriteΦ𝛼𝑚𝑐(∅) for the 𝛼-th
stage in the construction of the minimal fixed point of Φ𝑚𝑐. Then, since

𝜒 ∈ {𝜓|(ℕ, ∆⌜𝜉⌝)
D
𝜓}

entails that there is some ordinal 𝛼 such that ⌜𝜒⌝ = 𝑛 ∈ Φ𝛼𝑚𝑐(∅), we have
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ℕ ⊨ Sentℒ+
1
(𝑎) ∧ ∃𝑥(𝑥 ∈ Φ𝛼𝑚𝑐(∅) ∧ PrPAKT(𝑥→. 𝑎)).

From this, it follows that ℕ ⊨ 𝜙𝑚𝑐(𝑎, Φ
𝛼
𝑚𝑐(∅)), and we can conclude 𝑎 ∈

Φ𝛼+1𝑚𝑐 (∅) ⊆ {𝜓|(ℕ, ∆⌜𝜉⌝)
D
𝜓}.

This gives us the inclusion of the minimal fixed point of SSK𝑚𝑐 inMG2. We
know that the reverse direction does not hold, at least not straightforwardly. This is
due to the fact that, aswementioned,ℒ+

0
is a sublanguage ofℒ+

1
, which ensures that

there will be sentences proved byMG2 that cannot be in 𝐼𝑆𝑆𝐾𝑚𝑐 for mere linguistic
reasons—in particular, all the sentences that include the auxiliary truth predicate
Kr.

However, it is still open whether the reversed inclusion can hold modulo an
appropriate translation between the two languages. That is, the question iswhether
there is a natural translation function 𝜌 ∶ ℒ+

1
↦ ℒ+

0
such that

𝜙 ∈ {𝜓|(ℕ, ∆⌜𝜉⌝)
D
𝜓} ⇒ ⌜𝜌(𝜙)⌝ ∈ 𝐼𝑆𝑆𝐾𝑚𝑐

for all ⌜𝜙⌝ ∈ Sentℒ+
1
.

In any case, we note a corollary that follows from Lemma 7. 𝐼𝑆𝑆𝐾𝑚𝑐 is equal to
𝐼𝑚𝑐, the minimal fixed point of the supervaluation scheme mc.19 As a result:

Corollary 2. 𝐼𝑚𝑐 ⊆ {𝜓|(ℕ, ∆⌜𝜉⌝)
D
𝜓}.

2.6 What comes next

In this chapter, we presented three different ways of reaching what we have called
supervaluational truth: Kripke-vanFraassianfixed-point semantics, Stern’s supervaluational-
style truth, and McGee’s materially adequate theory MG2. We have presented
and/or established some relations between them, themost novel perhaps being the
fact that McGee’s theory is a superset of the minimal fixed point of Stern’s theory
(SSK𝑚𝑐), as well of the minimal fixed point obtained with the traditional superval-
uation scheme mc. It is hoped that this results will shed light when it comes to
constructing our own theory of determinate truth.

To close the chapter, we list down some questions that either were left open dur-
ing the chapter or can be posed now on the basis of its content, and whose answer
may continue to provide insight into how supervaluational truth works:

19This is stated without proof in [Ste18, 832]

72



• What is the proof-theoretic strength of the theory VFM (cf. section 2.2)?

• Do all fixed points ofMeadow’s double-conditional dependent truth operator
coincide with the fixed points of the supervaluational scheme vb (cf. section
2.3)? And with the fixed points of Stern’s SSK?

• Can we come up with a dependent-truth fixed-point semantics that has the
same properties with respect to the supervaluation scheme vc as Meadows’
has with respect to the scheme vb (cf. section 2.3)? And a dependent-truth
fixed-point semantics that has these properties with respect to the scheme
mc?

• What are the principles of the truth predicate of McGee’sMG1 and how does
this theory relate to Stern’s theories SSK and SSK𝑐 (cf. sections 2.4 and 2.5)?

• Are the minimal fixed point of McGee’s theory and the minimal fixed point
of SSK𝑚𝑐 the same, modulo a natural translation from ℒ+

1
to ℒ+

0
? If so, are

all the fixed points of the inductive definitions defined in section 2.5 equal to
the fixed points of either the supervaluation scheme mc, or SSK𝑚𝑐?
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Chapter 3

Chapter 2 constituted a first step towards building a theory of truth and determinate
truth. The task is still very much unfinished: we have just outlined key points of
supervaluation-like treatments of truth on which, we hope, our theory of determi-
nate truth will be built. We intend to complete that part of the project in incoming
research. In the meantime, we go back to the theme of Chapter 1: arithmetical
determinacy. This chapter will explore a way of securing arithmetical determi-
nacy, that is, the thesis that every arithmetical statement has a determinate truth-
value. And we do it by drawing on the so-called Isaacson’s thesis, proposed by
Daniel Isaacson [Isa87, Isa92]. According to this thesis, being arithmetical just is
being provable or refutable in Peano Arithmetic. So, if the thesis is sound, arith-
metical determinacy is guaranteed: we need only look at whether PA proves or
refutes a statement to know its determinate truth-value. And, if PA neither proves
nor refutes the statement, then we also know that the statement is not arithmetical,
and hence irrelevant for arithmetical determinacy.

The challenge is, of course, to show that Isaacson’s thesis is an attractive and
sound one. A few steps in this line have already been taken besides the work of
Isaacson—e.g. [Smi08, TB18]. In this chapter, we work on that direction too. In
particular, we identify an important challenge for Isaacson’s thesis, and argue that
the thesis can meet it. Thus, we propose a reading of Isaacson’s work in which
the status of certain PA-provable sentences as arithmetical, at least in the sense of
the word Isaacson proposes, can be called into question. We first introduce a no-
tion of adequacy for arithmetical theories that refers back to the set of arithmetical
statements that follows from Isaacson’s conception of arithmetical truth, and note
that adequacy thus understood is a desirable feature of arithmetical theories. We
then argue that, under the aforementioned reading, PA seems to be inadequate
with respect to arithmetical truth—that is, some of the truths proven by PA are not
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arithmetical truths in the sense of Isaacson. We then try to show that the way in
which Isaacson, who had foreseen the reading that leads to the inadequacy claim,
tries to prevent the latter, is not entirely satisfactory. Finally, we explore a different
route to restore adequacy: justifying the arithmetical nature, in Isaacson’s sense, of
those claims that motivated the inadequacy concern in the first place. As a paradig-
matic case study, we try to understand how it can be that PA, the theory of finite
mathematics in Isaacson’s conception, can prove instances of transfinite induction
for ordinals well beyond 𝜔.

3.1 Isaacson’s thesis

Ever since at least Tarski, the mainstream conception of arithmetical truth has
equated the latter with satisfiability in the standardmodel for the language of arith-
metic, thatwe shall callℒ0 andwhich includes the nonlogical constants (S, 0, +, ⋅, <
).1 We refer to this model simply as the standard model of arithmetic𝒩, and to the
set of sentences true in this model as true arithmetic, or Th(𝒩)[BBJ07, 295].

Contra this widespread view on arithmetical truth, Daniel Isaacson holds that
the notion of being arithmetical is not only formal but also epistemic, since ‘[i]t
has to do with the way in which we are able to perceive [a] statement’s truth or
falsity’ [Isa92, 95]. Isaacson’s understanding of arithmetical truth, then, comes in
the form of a recursive definition. The base clause asserts that a true statement is
arithmetical when its truth can be seen to follow directly fromour understanding of
the natural number structure; he seems to think that the axioms of PA (and perhaps
those alone) are arithmetical in this sense. The recursive clause asserts that a true
statement is arithmetical if its truth can be perceived as such through first-order
logical inferences from known truths whose arithmetical nature has been granted.2

Thus:

[A] truth expressed in the language of arithmetic is arithmetical just in
case its truth is directly perceivable so expressed, or on the basis of other

1For differing views, see [Say90].
2One can question, in any case, the appropriateness of this recursive definition. The problem has

to do with the base clause: while PA undeniably captures the first-order content of second-order arith-
metic, so do the different theories that are mutually elementary reducible with standard PA, such as
⋃

𝑛
IΣ𝑛 (for a definition of elementary reducibility see, e.g., [NLeyng]). It seems hence arbitrary to es-

tablish that one set of axioms, and not the other, can be directly perceived as the set of truths about
the natural number structure. They all correspond to different axiomatizations of what we consider
first-order arithmetic with full induction to be. In sum, the base clause ought to allow for a wider range
of applicability regarding what counts as following directly from our understanding of the concept of
natural number.
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truths in the language of arithmetic which are themselves arithmetical.
The analysis of the number concept as discussed in §§ 2, 3, 4, seems to
me to render the axioms of Peano Arithmetic arithmetical, in the sense
that their truth is directly perceivable so expressed, and on this basis the
second clause renders the theorems of PA arithmetical. [Isa87, 162],

Admittedly, Isaacson’s recursive definition only accounts for arithmetical truths,
that is, ‘being arithmetical’ is a property that applies only to certain statements (at
least on paper, for Isaacson sometimes speaks of arithmetical concepts, as imply-
ing that concepts can also be arithmetical; more on this later). But one can easily
account for arithmetical falsities by stipulating that all statements the negation of
which is arithmetical can be regarded as arithmetical too.3 Non-arithmetical state-
ments, on the contrary, are those incorporatingwhat he calls ‘higher-order notions’:
syntactic concepts such as ‘consistency’ or ‘provability’, which are not implicit in
our understanding of the natural numbers; but also infinitary notions, ‘in the sense
of presupposing an infinite totality’ in the words of Isaacson [Isa87, 155], as op-
posed to finitary notions. Accordingly, non-arithmetical statements will be known
as higher-order statements. Plus, to be clear, from now on, and unless otherwise
specified, when we speak of ‘arithmetical’ we will mean ‘arithmetical in Isaacson’s
sense’; and, when we speak of ‘arithmeticality’, we will mean ‘the status of being
arithmetical in Isaacson’s sense’.

Our current understanding of the natural number structure owes much to De-
dekind’s and Frege’s studies of the principles of arithmetic, and so theirs (and per-
haps Dedekind’s to a greater extent) are seen as the best categorical conceptual
analysis of the notion of natural number. Admittedly, Dedekind’s analysis contains
higher-order concepts in the form of second-order quantification over subsets of
natural numbers. But what remains when we strip this analysis of its second-order
content—i.e., whenwe ‘first-orderize’ this second-order quantification—is justPA.
As a result, Isaacson goes, PA enjoys a privileged position among all axiomatiza-
tions of elementary number theory: not only does the analysis of the natural num-
ber structure allow us to perceive PA as true and strictly arithmetical, but it is also
the case that PA captures all there is to arithmetical—as opposed to justmathemat-
ical—truth: if a statement in the language of arithmetic is not provable in PA, then
some ‘hidden’ higher-order concept is needed either to directly perceive its truth or
the proof of it.

With this in mind, we offer a precise formulation of Isaacson’s thesis. There are
3As he made clear to me, this is Isaacson’s preferred way to account for arithmetical falsities.
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a couple of different phrasings in the literature (see e.g. [Hor01, Smi13]). Isaac-
son’s seemingly preferred way to put it is that Peano Arithmetic consists of those
truths which can be perceived as truths either directly or via a proof from the purely
arithmetical content of the categorical conceptual analysis of the notion of natural
number. However, and since we already know that ‘those truths which...’ is just
short for Isaacson’s notion of arithmetical truth, we follow Luca Incurvati’s [Inc08]
shorter wording:

Isaacson’s thesis Peano Arithmetic is sound and complete with re-
spect to arithmetical truth (in the sense of Isaacson).

As we see it, Isaacson’s thesis gains a great deal of plausibility from the fact that
it captures the long-standing mathematical intuition that our natural number sys-
tem is at the heart of all finitemathematics, and thatPA is the set of axioms that best
captures such a system (or even: that PA is the axiomatization of such a system).
Even so, the thesis must be tested, and its most pressing challenge the consists in
accommodating the kind of sentences which traditionally rendered support for the
belief that PA is incomplete: sentences expressible in ℒ0 and satisfied by 𝒩 but
independent of PA. The thesis projects that all these sentences present a common
feature, namely their not being arithmetical in nature. Two clear examples Isaac-
son examines are the Gödel sentence for PA and Goodstein’s theorem. In the first
case, the arithmeticality of the sentence is denied on the basis that seeing its truth
requires understanding the notion of provability inPA, the kind of syntactic higher-
order notion that does not follow from our grasp of the natural number structure.
As per Goodstein’s theorem, the proof of the theorem relies on the well-ordering of
ordinals (i.e. transfinite induction) up to 𝜀0 (TI(𝜀0) henceforth). The latter, how-
ever, is known to entail, over PA, the sentence Con(PA) (i.e., the sentence asserting
the consistency of PA), and hence is also higher-order in nature. As a result, we
should not expectPA to prove neither the Gödel sentence nor Goodstein’s theorem,
so Isaacson’s thesis stands.

Similar reasonings are given for two further well-known theorems independent
of PA: the Paris-Harrington theorem and Friedman’s finitization of Kruskal’s theo-
rem. Thus, although none of these arguments is conclusive enough to secure Isaac-
son’s thesis—what happens, for instance, with the Kanamori-McAloon theorem or
PA-unprovable versions of the graphminor theorem [Bov09]?—theymake it rather
convincing. In otherwords, they seem to indicate that all arithmetically-expressible
theorems that PA cannot prove aren’t, after all, arithmetical truths.
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3.2 Relevance for arithmetical determinacy

Once it has been presented, let us say a bit more on why we are interested in Isaac-
son’s thesis. As we outlined in the introduction to this chapter, it all has to do with
providing the basis for arithmetical determinacy, the assertion that all arithmeti-
cal statements have a determinate truth-value.

Following the previous section, Isaacson’s thesis amounts to the idea that PA
is complete with respect to arithmetical truth—that is, for any arithmetical state-
ment 𝜑, either PA ⊢ 𝜑 or PA ⊢ ¬𝜑. Once again, arithmetical is here understood in
Isaacson’s restricted sense. This being the case, under the reasonable assumption
that provability in PA suffices to establish the truth of a statement, and refutability
to establish its falsity,4 and on the assumption that PA is consistent, then all arith-
metical statements have but one truth-value. Of this one truth-valuewe can say that
is the determinate truth-value of the statement. Therefore, under Isaacson’s thesis
we have a straightforward, affirmative answer to the question ‘Do all arithmetical
statement have a determinate truth-value?’.

Now, Chapter 1 presented what we then called the metasemantic challenge for
mathematical determinacy, raised by Warren and Waxman [WW20a]. It could be
summed up as the idea that mathematical determinacy, if it arises, needs to be ex-
plained. We also indicated that the challenge transfers word by word to the case
of arithmetical determinacy. But now, thanks to Isaacson’s thesis, it seems that we
can meet the metasemantic challenge for arithmetical determinacy—or, at least,
partially. Indeed, Isaacson’s thesis establishes that arithmetical determinacy arises
(i.e., that arithmetical determinacy, in bold, is true). Moreover, and to a certain
extent, it explains why it arises: because the limits of what counts as arithmetic
are determined jointly by formal and epistemic constraints, and PA alone serves to
decide all claims within those limits.

This proposal may generate some reticence, though. First, one may be worried
that Isaacson’s thesis still walks on thin ice. The remaining of this chapter aims to
bring the reader closer to conviction of the opposite. Secondly, one could expect a
more fine-grained account of the arising of arithmetical determinacy. For instance,
should one believe that set theory is indeterminate, one may demand an explana-
tion of why something like Isaacson’s thesis cannot be used to secure the determi-
nacy of set theory.5 Wherein lies the difference between set theory and arithmetic

4An assumption that follows, of course, from the soundness of PA.
5Note that Leon Horsten [Hor01] has, in fact, defended an analogue of Isaacson’s thesis for set

theory—in particular, for ZFC.
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that renders one indeterminate and one determinate? An exploration along these
lines will also be the future object of study of this project.

A third point: one may advance Putnam-style worries against Isaacson’s the-
sis in the first place. After all, the thesis draws on concepts like ‘finite’, ‘natural
number’, and so on, which Putnam may have shown to be problematic. I take
these worries to be well-founded, as chapter 1 demonstrated; and I think thatmuch
could be said on whether endorsing Isaacson’s thesis resolves the Putnamian ten-
sions, but we will not do that here. Yet a brief, relevant response may run as fol-
lows: Isaacson’s thesis teaches us to shift the focus from amodel-theoretic to a first-
order axiomatic conception of truth, i.e., truth as being exclusivelywhat the axioms,
equipped with first-order logic, can capture. It seems to me that this dissolves the
strength of the model-theoretic arguments, which precisely rely on the variety of
models for the same first-order arithmetical theory. Whether this is enough, or
correct at all in the first place, will not be answered here for reasons of space.

In sum: for now, our modest goal is to provide evidence that speaks in favor
of Isaacson’s thesis, as a way to make some progress towards meeting the metase-
mantic challenge. As wementioned, the way we pursue this goal is by identifying a
problem that represents an important obstacle to the plausibility of Isaacson’s the-
sis, and showing that the thesis can respond to it appropriately. It is therefore time
to expound the problem.

3.3 The inadequacy claim

One of the key points behind Isaacson’s thesis is that it lifts PA as the first-order ax-
iomatization of arithmetic, in the sense of proving all and only arithmetical truths.
The ‘all’ part of the claim is established through completeness and it has certainly
been the main focus of the literature, possibly due to its novelty after (and its defi-
ance of) Gödel’s incompleteness theorems (see [Smi08, TB18]). But the ‘only’ side
has not been thoroughly addressed so far. This section aims to show that, under
a certain reading of Isaacson’s original 1987 paper, there is a real possibility of PA
being an inadequate theory of arithmetic, thus motivating what we have called ‘the
nuanced thesis’: the thesis thatPA is complete but inadequatewith respect to arith-
metical truth. Here, the notion of ‘adequacy’ has a precise meaning, in line with
Isaacson’s conception of arithmetical truth, that we shall now explain.
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3.3.1 The notion of adequacy

When we assert that, following Isaacson’s thesis, PA is complete with respect to
arithmetical truth, the notion of completeness differs as much from the model-
theoretic notion as Isaacson’s conception of arithmetical truth does from the Tars-
kian one. That is, we do not intend to say that PA proves all formulae true in the
standard model of arithmetic, for this is plainly not the case. Rather, we just mean
that there is no arithmetical statement in the sense of Isaacson that PA does not
prove.

We now intend to define the counterpart of this notion, which one can under-
stand as the analogue of soundness under Isaacson’s conception of arithmetical
truth. We say that an arithmetical theory 𝑇 is sound iff every theorem of 𝑇 is true.
Under the Tarskian approach, truth just is satisfiability in the standard model of
arithmetic. With our new understanding of arithmetical truth, we can define the
notion of adequacy in a similar manner:

Adequacy An arithmetical theory 𝑇 is adequate iff every theorem of
𝑇 is an arithmetical truth.

In other words, an arithmetical theory 𝑇 is adequate iff every theorem of 𝑇 is a
true statement in the language of arithmetic that follows from the recursive defini-
tion proposed by Isaacson. It must be noted that, for a theory to be inadequate, it
need not be unsound, that is, it need not prove a false statement in the language of
arithmetic. It will suffice for it to prove a true statement in the language of arith-
metic that is not true in the sense of Isaacson.

We understand that the notion of adequacy is, at the very least, desirable for an
arithmetical theory. In fact, we take it to be a desirable property of most mathe-
matical theories with a clearly defined and restricted domain (sometimes knwon
as ‘non-algebraic theories’), since it guarantees that they do not ‘overshoot’ in re-
lation to that intended matter. To give an example, it would be rather unsettling if
we were to show that, from the axioms for Euclidean geometry, one can prove the
existence of a Mahlo cardinal. In the case of arithmetical theories, these are meant
to describe the natural number structure. Thus, one expects an arithmetic theory
to prove arithmetic results.

With this notion of adequacy in mind, we can now move on to understand in
what sense we can say that PA is an inadequate theory under Isaacson’s thesis.
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3.3.2 The problem of inadequacy

We shall start by noticing, as Isaacson does, that some statements that are provable
in PA seem to belong to the class of non-arithmetical truths—either because they
are about infinitary objects, or because they are of a seemingly syntactic nature.
An example of the former is transfinite induction for any ordinal 𝛼 < 𝜀0, that we
shall denote TI(< 𝜀0);6 clearly, ordinals like 𝜔𝜔

3 are infinite—but PA shows 𝜔𝜔3 is
well-ordered! An example of the latter is Con(PRA), the sentence that formalizes
the consistency of Primitive Recursive Arithmetic.

But how can PA even speak of consistency, or of infinite ordinals? The key
point, of course, is coding (broadly understood). The arithmetization of syntax
allows PA to speak about syntactic notions, ‘coding’ such notions with strings of
arithmetical constants; an ordinal notation system does the same in relation to in-
finite ordinals. And the existence of coding, Isaacson argues, suffices to realise that
this kind of sentences are, after all, arithmetical in nature: as an auxiliary device,
coding ‘pulls the ostensibly higher-order truth into the arithmetical’ [Isa87, 165]
and allows for a proof of the statement in strictly arithmetical terms, which is all we
need for the statement to count as arithmetical. Note that this is a consequence of
Isaacson’s epistemic approach to arithmetical truth: arithmeticality is not so much
a feature of the statement in question but of the way we come to see its truth.

This cannot be taken, however, to be a conclusive answer, as Isaacson acknowl-
edges. Bearing in mind the importance of the epistemic component in the def-
inition of arithmetical truth, we could doubt whether a strictly arithmetical but
immeasurably and unfollowably long proof (in the sense of it containing too many
symbols) may even qualify as a way to perceive the truth of a statement at all. Espe-
cially, when considering that the introduction of higher-order notions renders the
proof radically shorter. As Isaacson puts it, it seems that ‘there can be cases where
the higher-order perspective is essential for actual conviction as to truth of the arith-
metically expressed sentence. Onemay know that a derivation in PAmust exist, but
if generated would be so long as to be unsurveyable.’ [Isa87, 165]. In sum, the point
is as follows: there are statements provable inPA but whose proofs, if they are to be
the means by which we perceive the truth of the statements, require higher-order
notions, as they would turn out to be too long otherwise—which means, in turn,
that there are PA-provable statements that are not arithmetical truths. Indeed, this
is, for instance, the reason why we work with infinite ordinals and not their no-

6The expression is a little sloppy here: TI(< 𝜀0) is a schema, that is, needs to be instantiated by some
formula. Let’s take that for granted in what follows.
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tations in proving, e.g., TI(𝜔𝜔) in PA. Given the correctness of our ordinal nota-
tion,7 we know that there exists a corresponding proof with formulas that strictly
belong to ℒ0. But such a proof would be too long to be carried out in practice, so
the deployment of uncoded infinite ordinals becomes indispensable for perceiving
the truth of the statement. Thus, TI(𝜔𝜔) becomes a statement provable in PA but
non-arithmetical.

This situation is, according to Isaacson, one in which the notions of provability-
in-practice and provability-in-principle make all the difference. Someone who ac-
cepts that provability in principle in PA is sufficient to define the boundaries of
arithmeticality need not worry further. Insofar as a statement is in principle prov-
able in PA in strictly arithmetical terms, the statement counts as arithmetical:

If one is prepared to countenance a notion of being ’in principle’ deriv-
able in PA, then the present problem disappears. One might consider
that this move is legitimate, as enabling one to define precisely a theo-
retical boundary, towhichmathematical practice approximates. [Isa87,
166]

However, and as we have seen, Isaacson’s thesis puts the emphasis on the epis-
temic character of arithmeticality. So the defender of the notion of provability-in-
practice has a strong point in this context. Being arithmetical is here as much a
product of our possibility to perceive the truth of the statement as it is a product of
the language in which the statement can be expressed. Hence, it looks as if followa-
bility is a reasonable condition on what counts as a proof that allows to establish
the arithmetical nature of a statement. Thus, Isaacson [Isa87, 165-66] concedes: ‘I
have inmy discussion been considering provability in terms of providing a basis for
perceiving the truth of a given statement. In these terms, a proof in PA of a given
proposition being infeasibly long has to be taken seriously.’

The problem, as we have mentioned, is that the provable-in-practice attitude
just presented has an important implication: that PA is inadequate as an arithmeti-
cal theory. Inadequacy here must be understood as above, namely, as implying that
some statements provable in the arithmetical theory are not arithmetical. Roughly,
that PA proves too much for a theory of arithmetic. The situation is depicted in fig-
ure 3.1 below: arithmetical truthwould be a proper subset of the set of PA-provable
truths, which is in turn a proper subset of truths expressible in ℒ0 (due to Gödel’s
theorem).

7See e.g. [Poh09, Th.3.3.17] for a theorem establishing such correctness.
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Figure 3.1: The relation between arithmetical truth, truths provable in PA and
truths expressible in the language of arithmetic

This is something Isaacson himself acknowledges, for he grants that, should
one privilege the notion of provability in practice,

then within the arithmetically expressible truths of mathematics, we
must think of the boundary between those which are purely arithmeti-
cal and those which are essentially higher-order as running somewhat
inside the collection of those for which derivations in PA exist. [Isa87,
166]

In recent conversation, Isaacson has made clear to me that he favours the in-
principle view. His opinion seems to be that the provability-in-practice approach
puts one on the road of strict finitism, an undesirable philosophy of mathematics
that Isaacson now, and unlike then, definitely rules out. Be that as it may, and as
we have argued, we still think that the epistemic turn on arithmetical truth fostered
by Isaacson makes a case for the in-practice reading. Thus, in the remaining of the
paper we follow that reading, trying tomake sense of it. In doing so, we can present
a new formulation of Isaacson’s thesis, to be compared with the one given before:

The nuanced thesis Peano Arithmetic is complete and sound with
respect to arithmetical truth, but inadequate as a theory of arithmetic.
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3.3.3 Isaacson’s proposed way-out

As it happens, Isaacson offers a solution to the inadequacy claim on behalf of the
provability-in-practice advocate. To follow his reasoning, let us recap the problem:
there are true statements in the language of arithmetic, e.g., (the coded version of)
TI(𝜔𝜔), that can be proved either via higher-order notions embedded in a relatively
short proof, or in purely arithmetical terms but with an unsurveyably long proof.
Now, we could appeal to the mere existence of that proof in PA (even if it is hu-
manly ungraspable) to argue that the higher-order notions are not indispensable.
But, given his epistemic approach to arithmeticality, in which a proof has to be a ve-
hicle to perceive the truth of a statement, the provability-in-practice advocate does
not buy that argument. Then, and possibly with the goal of avoiding the implica-
tions linked to the inadequacy claim in mind, Isaacson makes a move on behalf
of such hypothetical advocate. According to Isaacson, one could reject extremely
long proofs, such as the one for TI(𝜔𝜔) or the one for Con(PRA), as genuine proofs
in PA. As a result, ‘provable in PA’ would acquire a new, more limited character,
and the set of truths provable in PA would coincide with the set of arithmetical
truths. This can be visualized by considering again figure 3.1: the circle that repre-
sents truths provable in PA ‘shrinks’ to the boundaries of the circle of arithmetical
truths. The thesis, after all, stands.

Now, let me counter this move. There are at least two considerations as for
why we might not want to reject very long proofs as genuine PA-proofs. First of
all, doing so deprives PA of its privileged proof-theoretic status among first-order
axiomatizations of second-order arithmetic. For suppose we formalized Isaacson’s
proposed notion of provability, i.e., suppose the length in symbols of the shortest
PA-proof of, e.g., Con(PRA), is 𝑛, and so we only admit proofs in PA of length less
than 𝑛. In other words, and if ⊢𝑛 is the symbol we use for this restricted notion
of provability in PA and 𝜌(𝑥) is a function that gives the length in symbols of the
shortest proof in PA of the formula represented by 𝑥, we write PA ⊢𝑛 𝜑 iff PA ⊢ 𝜑

and 𝜌(𝜑) < 𝑛. The result is then that PA ⊬𝑛 Con(PRA). Therefore, it is not clear
that PA is in any better proof-theoretical position than, in this case, PRA. This, in
turn, goes against Isaacson’s thesis, which, after all, revolves around the privileged
status of PA over other first-order theories of arithmetic.

In the second place, and perhaps even more relevantly for Isaacson’s thesis,
it seems likely that the downgrading of PA could happen not only at the proof-
theoretic but also at the strictly number-theoretic level. In a paper on the length
of proofs, Gödel [G6̈5] asserts that, for each computable function Φ, there are in-
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finitelymany different formulae 𝑥 provable inPA (or in any first-order arithmetical
theory, for that matter) such that 𝜌(𝑥) > Φ(𝜌2(𝑥)), where 𝜌(𝑥) is defined as above
and 𝜌2(𝑥) is the length of the shortest proof of 𝑥 in PA2. Now, let’s suppose that,
among all instances of transfinite induction up to 𝜔𝜔, the instantiation with for-
mula 𝜑 is the one whose shortest proof involves the greatest number of symbols,
and that the proof is too long to be surveyed—so that, following Isaacson’s sugges-
tion, we do not consider it as a legitimate proof for PA. Let’s write 𝜌(⌜TI(𝜔𝜔, 𝜑)⌝)
for the shortest proof of the instantiation with formula 𝜑 of the transfinite induc-
tion schema up to 𝜔𝜔.8 And, following Isaacson’s suggestion, let’s suppose that
only proofs of length < 𝜌(⌜TI(𝜔𝜔, 𝜑)⌝) are accepted. Then, we can find a com-
putable function Ψ such that Ψ(𝜌2(⌜TI(𝜔𝜔, 𝜑)⌝)) = 𝜌(⌜TI(𝜔𝜔, 𝜑)⌝). After that, it
is not difficult to generate a countably infinite number of computable functions Ψ′

that bound Ψ from above, i.e. such that

Ψ(𝑛) ≤ Ψ′(𝑛), for all 𝑛 ∈ ℕ

But then, for each of those Ψ′, Gödel’s result tells us that there are infinitely
many different formulas of ℒ0 that are provable in PA and such that the length of
their shortest proof is greater thanΨ(𝜌2(⌜TI(𝜔𝜔, 𝜑)⌝)). However, all these formulas
need to be considered as unprovable inPA, or at least as formulas the proof ofwhich
are not genuine forPA. There are thus infinitelymany different theorems of PA that
we stop considering as such.

If any of these two considerations seems pertinent, then provability in PA can-
not be so freely adjusted tomatch the set of arithmetical truths, and we are left with
the inadequacy claim under the provability-in-practice reading of Isaacson’s thesis.
The remaining of the paper will now be devoted to show howwe can still avoid this
claim with arguments different to those of Isaacson.

3.4 Resisting the nuanced thesis I

In the previous section, we argued that, according to certain reading of Isaacson’s
work, PA could be inadequate; and this is definitely a hard pill to swallow for logi-
cians and philosophers ofmathematics alike, who often takePA to be thefirst-order
theory of arithmetic par excellence. The reading in question prioritises the notion of
provability-in-practice over that of provability-in-principle. Aswe saw and objected
to, Isaacson suggests that the provability-in-practice advocate may just do away in

8We write upper corners (⌜⌝) to indicate that what comes inside corresponds to the ‘coded’, arith-
metical version of the formula.
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PAwith all those statements the proof of which is too long to be carried out in prac-
tice. Therefore, we concluded that the provability-in-practice advocate should not
take the path delineated by Isaacson. As we pointed out, it also seems that Isaacson
himself would accept that conclusion now, having identified the problems of such
path, which are no others than the problems faced by a strict finitist.

Nevertheless, it looks to us as if Isaacson was here conflating two views that
need to be distinguished: the provability-in-practice advocate as regards arithmeti-
cal truth, and the provability-in-practice advocate as regards derivability in a theory
of arithmetic. That is: one can defend that provability in practicemust be a criterion
for actual perceivability of the truth of a statement and thus, following Isaacson, of
its arithmetical nature; and one can defend that provability in practice must be a
formal criterion for derivability over an arithmetical theory. Only the latter seems
to be equivalent to strict finitism (sometimes also known as ultrafinitism). The for-
mer, on the contrary, just concerns what we can consider arithmetical in Isaacson’s
sense. Now, in what follows, we try to show that the provability-in-practice as re-
gards arithmetical truth is on safe grounds, so that even those statements that fall
outside the scope of what is provable in practice can, by othermeans, be considered
arithmetical on Isaacson’s sense of the term. Actually, what we propose is more of
a conjecture, namely: that there is a way to justify the arithmeticality of each of
those statements—exactly the opposite of what Isaacson did with PA-independent
statements.

How can we defend this conjecture? What follows now is a case study which
has that goal in mind. We will look at two paradigmatic kinds of statements that
may lead to the inadequacy problem: transfinite induction claims and consistency
statements. Or rather: we will be looking at only one of these, transfinite induction
claims, and, we believe, this will suffice to show that we can justify the arithmeti-
cality of consistency claims as well. The reason why is that all claims of the form
Con(𝑇), where 𝑇 is a subsystem of PA—that is, claims that appeal to seemingly
higher-order concepts of syntactic nature—can be shown to be provable from a
transfinite induction claim up to a certain ordinal below 𝜀0, over a subsystem of PA
proof-theoretically weaker than 𝑇 itself.9 This follows from the fact that each of
these first-order subsystems, which are weaker than PA, has a proof-theoretic or-
dinal strictly smaller than 𝜀0. Hence, should we show that all transfinite induction

9An earlier version of this chapter suggested that the reason why had to go with the entailment being
provable in PA. But clearly this does not suffice, and I thank Giorgio Venturi for pointing this out. After
all, every PA-provable statement is entailed by any other statement over PA. And we do not want to say
that the arithmeticality of Con(PRA) is granted by the fact that 0 = 0 is arithmetical. It is the special
connection between transfinite induction and consistency that must do the job.
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statements up to 𝜀0 are, after all, arithmetical, we could equally conclude that all
syntactic statements of this sort are arithmetical: epistemically, the truth of the syn-
tactic statement would be perceivable insofar as the entailment can be established
in strictly arithmetical terms.

Thus, we will try to argue for our conjecture as follows. The problem of inad-
equacy with statements such as TI(𝜔𝜔) is that their not-so-long proofs make use
of infinite ordinals and not their notations, which seem to be higher-order (infini-
tary) notions. Nonetheless, if we are able to question the very idea that these are
higher-order notions and make the case for their finitary nature, as well as to show
that the way in which PA proves these transfinite induction statements involves
no other appeal to higher-order notions, then we take that to speak in favor of our
conjecture. Wewill take up these tasks in reverse order: in this section, we shall see
that the way in which PA deals with transfinite induction claims (in terms of prov-
ability) involves no higher-order notions besides the ordinals. Then, in the next
section, we shall argue that not even infinite ordinals ordinals are higher-order, as
they can be said to follow directly from our understanding of the natural number
sequence.

The first question we address is, then: how can it be then that PA proves trans-
finite induction claims, i.e., well-orderings, for infinite ordinals? How canwemake
sense of the fact that the theory of finite mathematics speaks about infinitary ob-
jects? It is our belief that the way to approach these questions has to do with
the nature of the supremum of all ordinals for which transfinite induction claims
are provable in PA: 𝜀0. The point is that the way PA deals with sets of size (or
lists/sequences/proof trees of length) strictly less than 𝜀0 does not go beyond the
strictly finite, as we shall now see; therefore, they are somehow reachable in a fi-
nite way.

In order to clarify what wemean here, we turn to the proof of transfinite induc-
tion up to 𝜀0 in PA. Presented for the first time by Gentzen [Gen43], we consider a
more up-to-date version by Halbach [Hal14]. The proof in question relies on two
lemmas. The first of them is the following:

Lemma 8. PA ⊢ Prog(𝜑(𝑥)) → Prog(𝒥(𝜑(𝑥)))

where Prog(𝜑(𝑥)) (that reads ‘𝜑(𝑥) is progressive’) is the universal closure of the
formula ∀𝛽 < 𝑥 𝜑(𝛽) → 𝜑(𝑥), and 𝒥(𝜑(𝑥)) is the formula ∀𝜉(∀𝜂 < 𝜉 𝜑(𝜂) → ∀𝜂 <

𝜉 + 𝜔𝑥 𝜑(𝜂)).
And, as for the second lemma:

Lemma 9. If

87



PA ⊢ Prog(𝜑(𝑥)) → ∀𝜉 < 𝛼 𝜑(𝜉)

for all formulas 𝜑 of ℒ0, then

PA ⊢ Prog(𝜑(𝑥)) → ∀𝜉 < 𝜔𝛼 𝜑(𝜉)

for all formulas 𝜑 of ℒ0.
NB: these expressions correspond to TI(𝛼) and TI(𝜔𝛼), respectively.

Transfinite induction up to any ordinal below 𝜀0 can be reached by applying
Lemma 2 finitely many times, and Lemma 2 is easily obtainable from Lemma 1.
It is thus the latter that requires careful examination. And it is in fact the crux of
the proof, for it is where the interweaving with infinite ordinals happens. The for-
mula 𝒥(𝜑(𝑥)), sometimes known asGentzen’s jump formula, lies at the heart of this
lemma. In all cases in which 𝑥 ≥ 1, Gentzen’s jump formula seems to announce
the possibility of ‘infinite jumps’. We can (very informally) understand the jump
as stating that, when a given formula 𝜑 holds for all ordinals below a given one—
finite or not—we can carry that formula along for 𝜔𝑥-many more numbers above
that ordinal. That is, it is as if we were indeed ‘jumping’ over powers of 𝜔—taking
an infinite leap the ‘safety’ of which (in the sense of well-foundedness) is guaran-
teed by Gentzen’s formula. Notwithstanding these intuitions, we will now argue
that these leaps are not infinite after all.

There is, however, a limit to these infinite leaps. This limit is given by Cantor’s
famous Normal Form Theorem, by which any ordinal below 𝜀0 can be written as
the sum of powers of 𝜔 with exponent < 𝜀0, whereas 𝜀0 itself and greater ordinals
cannot.10 Since Gentzen’s jump formula works exclusively with powers of 𝜔, 𝜀0
marks the boundary to the number of ordinals we can ‘jump over’; hence, even if
the jumps were infinite, they could not be of an arbitrarily big number of infinite
ordinals. This is also why transfinite induction for 𝜀0 cannot be proved: the inner
structure of Gentzen’s formula prevents us from reaching 𝜀0, and in this we see how
pivotal this formula is for the proof. We shall say more about this below.

Now, the other component of Lemma 1 is the notion of ‘progressiveness’, there
abbreviated as Prog. To say that a formula is progressive is to say that, when it
holds for all ordinals below a given one, it holds for that ordinal. Once we know
that a formula is progressive, a transfinite induction claim for some ordinal 𝛼 is
just the assertion that, should the formula be satisfied by 0, progressiveness will
carry the formula along the ordinal sequence all the way to 𝛼. This is all there is

10As is well-known, this becomes very relevant for the choice of an ordinal notation system within a
theory of arithmetic.
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to transfinite induction, as Gentzen held [Gen69, 291]; therefore, progressiveness
is the cornerstone of transfinite induction. Yet the apparent mystery of Lemma 1
in relation to our project is that it shows that Gentzen’s jump for a certain formula
holds whenever the formula is progressive. That is, the formula is carried along
1 ordinal, and then 𝜔 ordinals, and then 𝜔2 ... and all the way to 𝜔𝜔 and beyond.
As such, the mystery lies in asking how it is possible that a finite, indeed unitary,
increment in the satisfaction of a formula along the ordinal sequence can result in
increments of the order of powers of 𝜔.

The proof of Lemma 1 gives what we take to be a clear answer to this. If a
formula 𝜑 is progressive, 𝒥(𝜑(0)) holds trivially, for it just expresses that 𝜑 is carried
one ordinal forward. Informally, PA ‘sees’ the unitary jump as safe (in the sense
above, i.e., of well-foundedness)11. Now, for 𝒥(𝜑(𝑥)) to be progressive, 𝒥(𝜑(1)), i.e.,
∀𝜉(∀𝜂 < 𝜉 𝜑(𝜂) → ∀𝜂 < 𝜉 + 𝜔𝜑(𝜂)), must hold. The key then is that, although we
seem to face an 𝜔 jump, it is after all a finite one. PA is given a certain ordinal 𝜉 as
input and has to carry that property for a number of ordinals below 𝜔 (for whatever
𝜂 we pick, it will be strictly less than 𝜉 + 𝜔). Hence, PA only needs to reiterate
what it already ‘sees’ as a ‘safe jump’ (the unitary one) a given finite (hence, also
safe) number of times. A very similar reasoning goes for 𝒥(𝜑(2)): since PA ‘sees’
the 𝜔-jump as safe now, it can perform it once and combine it with a finite number
of steps (or perform it twice!) to leap just under 𝜔2-many ordinals.

In more formal terms, we are performing an outer or external induction on 𝑛
for 𝜔𝑛. Likewise, when we consider powers of 𝜔 of the form 𝜔𝛼, 𝜔𝜔 > 𝛼 ≥ 𝜔,
the induction is happening at the next exponential level, i.e. we are performing
an induction on 𝑛 for 𝜔𝜔𝑛 . The same can be said of any power of 𝜔 with expo-
nent < 𝜀0. Since induction is a perfectly arithmetical task, PA can carry out these
nested inductions, one after the other, to complete the transfinite induction. Even
if the ordinals themselves are infinite, their structure is such that ordinary induc-
tion need only be performed a finite amount of times, and so PA can deal with it.
As mentioned above, the reason why this happens is the fact that these ordinals,
when formulated in Cantor’s Normal Form, are written down as finite objects. You
can see each ordinal below 𝜀0 as a finite list, the members of which are also finite
lists, the members of which are also finite lists... and so on. Therefore, it always
remains finite. You can also see the ordinal as a finite tree, the nodes of which are

11The reader need not interpret ‘sees’ here in anything like a model-theoretic sense, as a model that
‘thinks’ of itself in a certain way (e.g., as containing uncountable objects despite being countable, as
given by Skolem’s paradox). It is just a very informal way to describe the operations that are going on in
PA to reach the desired results.
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finite trees, the nodes of which are finite trees, etc. In each of these finite objects,
we perform regular induction.

As we see it, this explanation seems a step forward in defence of Isaacson’s the-
sis in two different (but related) fronts. First, insofar as it gives an answer to the
problem we have raised so far: how can PA, as the theory of finite mathematics,
prove that certain infinite ordinals, i.e., seemingly higher-order objects (a charac-
terisation that we shall later question), are well-founded? Our answer is, then, that
we can do it because these ordinals present an inner structure of blended finite
strings that PA proves well-founded by applying ordinary induction finitely many
times. The second front has to do with some remarks presented by Gentzen in his
original proof of transfinite induction up to 𝜀0 in PA, for whom the situation was
exactly the opposite of the one we have presented here. According to him, for an
important segment of the countable ordinals (including ordinals well beyond 𝜀0),
‘transfinite induction is a form of inference which, in substance, belongs to elemen-
tary number theory’, [Gen69, 307, italics in original] so that ‘[t]he fact that transfi-
nite induction even up to the number 𝜀0 is no longer derivable from the remaining
number-theoretical forms of inference therefore reveals from a new angle the in-
completeness of the number-theoretical formalism’(ibid.). In other words, he seems
to suggest that transfinite induction for 𝛼 ≥ 𝜀0 is a genuine, arithmetical statement
that is nevertheless independent of PA. In Isaacson’s terms, it is not ‘higher-order’.
Recently, Saul Kripke [Kri21] has defended a very similar idea, arguing that TI(𝜀0)
is the first genuine number-theoretic (one can read arithmetical) statement that
was shown independent from PA. For both Gentzen and Kripke, the unprovabil-
ity of TI(𝜀0) is yet another example of the incompleteness of PA with respect to
arithmetical truth, constituting thus a challenge to Isaacson’s thesis. We believe,
however, that our account of what underlies transfinite induction for ordinals be-
low 𝜀0 explains why TI(𝛼 ≥ 𝜀0), unlike transfinite induction for smaller ordinals,
is not properly arithmetical, at least as seen from the way PA proves such transfi-
nite induction claims: the inner structure of those ordinals does not allow Gentzen
jumps, PA’s tool to deal with these claims.

We would like to close this section with a final remark. We have here argued
that the treatment PA gives to transfinite induction proofs of order less than 𝜀0 is
systematically finitary, and that this is somethingPA cannot carry outwith ordinals
equal or greater than 𝜀0. While this dividing line between the finitary and infini-
tary, to be located well into the infinite ordinals, may initially come as a surprise, it
becomes increasingly less so as we learn of different situations where the link be-
tween infinite ordinals below 𝜀0 and finitarymathematics ismade explicit. Andreas
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Weiermann has investigated some of these examples thoroughly; the following are
just two of them:

• The set of ordinals below 𝜀0, equipped with the usual well-ordering of ordi-
nals, is isomorphic to the set ℕ with the ordering induced by the so-called
Matula numbers (see [Wei05]).

• Weiermann [Wei02] has also shown that the behaviour regarding limit laws
(i.e., the probability that any property holds in a structure of arbitrarily large
size) for classes of structures of infinite size up to 𝜀0 is continuouswith that for
classes of structures of finite size. In particular, when considered as additive
systems, these classes of structures meet the so-called zero-one law, that is,
all properties have probability either 0 or 1 to be satisfied in structures of
arbitrarily large size, whether finite or infinite, as long as the size is less than
𝜀0. In plain terms: finite structures and infinite structures of size up to, but
not including, 𝜀0, show a certain ‘decidability’ when it comes to satisfying any
property.

3.5 Resisting the nuanced thesis II

In the previous section, we studied howPA proves transfinite induction for ordinals
below 𝜀0. The intention was to show that TI(𝜔𝜔) and similar statements does not
involve higher-order notions, as far as their PA-proof goes, and leaving the ordinals
aside. Our focus is now on the ordinals themselves. If we show that they are not
higher-order notions, then we pave the way for the conjecture we proposed.

Here, let us briefly digress on the idea of ‘higher-order notions’. We previously
mentioned that the adjective ‘arithmetical’ is only applicable, according to Isaac-
son’s work, to true mathematical statements in the language of arithmetic that
meet certain conditions. We quickly indicated how to extend that to certain false
statements in the language of arithmetic, since we take it that statements such as
‘5+2=6’ count as arithmetical. Moreover, we introduced the term ‘higher-order
concepts’, as including those notions that were part, among others, of proofs of
non-arithmetical statements expressible in the language of arithmetic. These in-
clude syntactic and infinitary concepts. As a result, we called statements contain-
ing these concepts higher-order too. In this fashion, we want to say that a certain
class of concepts (not just statements) are ‘arithmetical’. After all, we are arguing
that not all concepts involved in all proofs are higher-order, so we could say that
certain concepts involved in certain proofs are non-higher-order. And, given that
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the notion of higher-order is defined by opposition to that of arithmetical, it seems
that we may just as well label as arithmetical all those non-higher-order concepts.
In sum, the idea of a concept being arithmetical is a coherent one in Isaacson’s
framework seems coherent to us. Hence, we could say that our true enterprise in
this section is to argue that ordinals equal or greater than 𝜔 and smaller than 𝜀0 are
arithmetical concepts, i.e., are not higher-order.

How can we justify that all ordinals below 𝜀0 are arithmetical? We believe that,
according to the notion of ‘arithmetical’ that underlies Isaacson’s thesis, we just
need to show that the concept of the ordinal 𝛼, for 𝜔 ≤ 𝛼 < 𝜀0, follows directly
from our understanding of the natural number structure. And we can indeed see
that this is the case by considering how we form our conception of the successive
infinite ordinals. Beginwith𝜔: it seems tome that we get tomake sense of what the
ordinal𝜔 ultimately is by considering the successor operation as applied repeatedly
to zero, and grasping the limit of that sequence, which we ultimately identify with
𝜔. Once we get an understanding of 𝜔, we can apply the successor operation again,
and grasp 𝜔2. Now, one has learnt how to think of the sequence {𝜔1, 𝜔2, ...}, and
can—just like with 𝜔—seize the ordinal 𝜔𝜔. Hopefully, this is telling enough to
understand how we proceed from 𝜔𝜔 onward, and all the way up to 𝜀0.

This account of how we get to form the concept of each ordinal between 𝜔 and
𝜀0 is verymuch inspired on a passage byGeorgKreisel, where he explains his way of
characterising ‘visualizable’ ordinals—which, after all, is also a discussion on the
way we construct, or come to understand, certain ordinals. Thus, writing about
finitism and characterising finitist proofs as ‘visualizable’ proofs, he outlines the
kinds of operations we can visualize:

If one can visualize a structure, then also a sequence of 𝜔 copies. (...)
[I]f an iteration (of some operation) up to 𝜉 has been visualized, then it
can also be visualized to 𝜉 ⋅ 𝜔. So much is clear. (...) What one would
like to say is this: if one sees how to visualize iteration up to each 𝜉 < 𝜉0,
then 𝜉0 itself can be visualized. The problem is to put this into formal
terms. [Kre65, 170-1]

We take it that, in this passage, Kreisel makes the two remarks on which our
account is based: first of all, that if one can visualize a certain structure, obtained
through a certain operational procedure, we can visualize𝜔 copies of that structure;
secondly, that in visualizing a certain operation being applied 𝑛 times, and 𝑛 + 1,
and 𝑛 + 2, ..., all the way to 𝑛 + 𝑛 and more, we can visualize the operation being
applied𝑚 times, where𝑚 is the supremum of that sequence.
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Thus, as we suggested, playing with the successor operation and exponentia-
tion in the way Kreisel outlines, we may get to visualize 𝜔𝜔 and similar ordinals
on purely arithmetical grounds (i.e., as following from our understanding of the
natural number structure), and so present it as an arithmetical concept. Moreover,
Kreisel’s complaint that we lack a way to express this phenomenon in formal terms
is irrelevant for our purposes. What matters for us is that our understanding of 𝜔𝜔

was reached employing resources that do not go beyond those already needed in
understanding the natural number structure, and so that the given concept is not
infinitary in nature for us, but follows from our knowledge of how natural numbers
and their operations work. There would be nothing non-arithmetical (in the sense
of not following from our grasp of the natural number structure) in TI(𝜔𝜔), nor in
TI(𝛼 < 𝜀0).

Admittedly, we can cast doubt on Kreisel’s believe that this process of visualiza-
tion is what underlies to finitist mathematics (and so did, famously, Tait [Tai81]).
But none of that is of our concern either, as long as we can see that this reason-
ing always remains within the realm of ‘finite’ (and not ‘finitistic’) or ‘finitary’ (as
opposed to ‘infinitary’) mathematics.

A reasonable worry here is that the reasoning could be reiterated all along, and
we would end up claiming that ordinals of the order of 𝜀0 and beyond are of an
equally arithmetical nature—perhaps all the way up to the smallest nonrecursive
ordinal,𝜔𝐶𝐾

1
. We do not have a clear answer to this. Butwhatever the stance, we be-

lieve that it will not undermine our conjecture. Take one possibleway of proceeding
here, namely insisting that there is something especial about 𝜀0 when compared to
smaller ordinals. One can point out, for instance, that 𝜀0 is the minimal fixed-point
of the exponential map 𝛼 ↦ 𝜔𝛼. It is also the third exponentially indecomposable
ordinal, just after 2 and 𝜔, besides being multiplicatively and additively indecom-
posable. So when one takes these operations (addition, multiplication and expo-
nentiation) to be the core of the basic operations on natural numbers, 𝜀0 marks the
limit to what we can reach through 𝜔 copies attached to a natural number manip-
ulated with one of these operations.

On the other hand, the objector could argue that tetration, pentation and so on
are just as elementary a hyperoperation as their lower-level counterparts.12 And so,
the other possible way of proceeding would have it, there is no need to stop at the
level of 𝜀0. One can visualize ordinals all the way up to 𝜔𝐶𝐾1 . In other words, one
could construct, on the basis of our understanding of the natural numbers, all ordi-

12Actually, the fourth level of the Grzegorczyk hierarchy (ℰ4) already asserts the totality of tetration;
and I∆0 + ℰ4 is much weaker than PA.
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nals the notation of which belongs to what we call Kleene’s 𝒪 (after [Kle38]). This
is amore than sensiblemove, given the features of the set𝒪. But it does not weaken
our conjecture. Remember that we needed to defend that: (1) ordinals below 𝜀0 are
not higher-order concepts, and (2) the non-coded version of the proof of transfinite
induction up to 𝜀0 does not include any other higher-order notions. Insisting that
a great deal of ordinals greater than 𝜀0 are not higher-order either does not under-
mine our goal, for we explained how proofs of transfinite induction for ordinals
equal or greater than 𝜀0 can no longer rely on non-higher-order concepts alone. In
sum: either way of interpreting Kreisel’s remarks leads to the same conclusion.

3.6 In search of more evidence

As a reminder, our driving conjecture here is that there is a way to justify the arith-
meticality of each statement thatmay seemhigher-order. These include statements
about infinitary concepts and those about syntactic concepts.

The argument deployed seems to do well not only with transfinite induction
claims but with all statements involving infinitary objects and, in particular, in-
finite ordinals (for instance, results on ordinal arithmetic; see e.g., [Som95, §3]).
Likewise, it seems to us that it fares well with respect to consistency statements.
But these statements by no means exhaust the class of ‘syntactic’ statements. For
instance, we find that statements that code provability in a theory of arithmetic are
of an equally syntactic nature. If we are to defend the conjecture—and, with it,
Isaacson’s thesis—one will have to tell a convincing story on why these statements
are also arithmetical.

For instance, what will we make of Henkin sentences, that is, formulae 𝜑 such
that

𝜑 ↔ PrPA(⌜𝜑⌝)?

Some considerations come into play here. First of all, there is no one single for-
mula expressing provability in a formal system. The formula in question will de-
pend, among other things, on the choice of coding made, and on the conditions we
believe a formula expressing provability in a system should meet. The last point is
particularly relevant, and has been the object of some discussion—see e.g. [HV14].
Indeed, if some formula 𝜋(𝑥) that intends to express provability is generally be-
lieved to be unsuccessful for that aim, we are (arguably) no longer talking about
a syntactic statement, insofar as it fails to capture the relevant syntactic property.
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Hence, formulae like the ones Kreisel devised to answer Henkin’s problem (i.e.,
whether Henkin sentences are provable in their relevant systems) [Kre54] might
not be strictly relevant when it comes to testing the conjecture: since most would
argue that they do not express provability (asHenkin, andHalbach andVisser, have
done), they do not contain higher-order notions.

Thus, one could argue that it all boils down to justifying the arithmeticality
of Henkin sentences expressed with the ‘canonical’ formula capturing provability,
which we denote as Bew(𝑥). It is at this point where the defender of the conjecture
must step in and try to explain in what sense this type of sentences are arithmeti-
cal. We shall not attempt to do that there. Nonetheless, we venture that one can
accomplish this task for the formulae in question by identifying provability with
the existence of a certain finite sequence and, in turn, justifying the arithmeticality
of the notion of ‘sequence’.

3.7 Final remarks

In this chapter, we introduced the notion of adequacy for arithmetical theories, and
showed that there is a reading of Isaacson’s thesis under which PA can be consid-
ered an inadequate theory of arithmetic. As we see it, two possibilities stand out
now if such a conclusion is to be avoided. Either we take this to be significant evi-
dence in favour of retaining the Tarskian conception of arithmetical truth as truth
in𝒩, going thus back to the incompleteness of PA, or we find a way to justify the
arithmetical character of statements such as TI(𝜔𝜔), Con(PRA) and the like. Here,
we tried to pursue the second path. As we said, our argument is just conjectural,
based on a paradigmatic case study, and we do not deny that more may need to be
done. But, if the conjecture holds, we believe there is a way to preserve the claim
that PA is complete, sound and adequate with respect to Isaacson’s conception of
arithmetical truth. As a result, we submit that Isaacson’s thesis gains plausibility.
And, as we argued, this brings us a step closer to securing the determinacy of arith-
metic.
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Conclusion

Throughout the thesis, wehave repeatedlymade clear that this piece ofworkwas al-
ways conceived as the initial building bricks of an ongoing, more ambitious project.
The driving question for that project, and hence also for this thesis, was: why is
arithmetic determinate, and in what sense—if any—is the arithmetical case different
from that of set theory?

The first chapter of this work intended to clarify and expand on the aforemen-
tioned research question. We explained determinacy as a semantic notion related
to the possession of a determinate truth-value, andwe defined arithmetical deter-
minacy as the thesis that all well-formed mathematical statements have a deter-
minate truth-value. We made clear how this work is a response to a challenge that
arises from this semantic notion of determinacy, namely the challenge of explaining
how the determinacy of arithmetic thus understood arises in the first place. We in-
troduced Putnam’s model-theoretic arguments—the argument from Löwenheim-
Skolem, the permutation argument, and the constructivisation argument—, and
presented them as an important threat to arithmetical determinacy. We sur-
veyed influential responses to the Putnamian threats, including the arguments from
categoricity (that address the permutation argument), and the arguments from ob-
servational constraints (directed against the argument from Löwenheim-Skolem)
that Hartry Field popularised. We concluded that these arguments were either
somehow unsatisfactory, or under-explored.

Chapter 2 noted that we want to be able to couple the mathematical theories
whose determinacy we are exploring with a corresponding theory of determinate
truth, in order to raise the questions within the very formal background we work
with. We argued that a first step towards finding a theory of determinate truth that
can do the job demands understanding supervaluational truth, as well as material
adequacy, since we want both of these properties to feature in our theory. We thus
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assessed and compared three different ‘recipes’ for supervaluational truth: the du-
ple consisting of van Fraassian semantics and Cantini’s IT; Stern’s semantic SSK
and the axiomatic IT; andMcGee’s theory of definite truthMG2. We offered an in-
depth description of the last of these theories, and traced the connections between
the minimal fixed points of the three of them—the hope being that this will help
us build our own theory of determinate truth in subsequent work.

Finally, chapter 3 resumed the quest for arithmetical determinacy by deploying
a way in which the latter can be secured, namely endorsing Isaacson’s thesis—the
thesis that PA is complete and sound with respect to arithmetical truth. In order
to defend the thesis, we argued that it can meet an important challenge: the claim
that the thesis renders PA inadequate as a theory of arithmetic, i.e., that it proves
truths that are not arithmetical. Our conjecture, that still needs to be backed fur-
ther, was that all those truths can be shown to be arithmetical, andwe exemplified it
by justifying the arithmeticality of transfinite induction and consistency claims. We
concluded that this is incipient evidence as to the plausibility of Isaacson’s thesis,
and so to the determinacy of arithmetic. However, we acknowledged that meeting
the metasemantic challenge requires going further, among other things to under-
stand why the arithmetical case is different from the set-theoretic one. It is our
ambition to address this and similar far-reaching questions in the near future.
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