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Abstract

Background

Process evaluation (pe) focuses on assessing the causal relationships between interventions,

outcomes of interests and the processes that bring about changes to the outcomes of interest.

Since causal relationships are of interest in such a study, methods of causal inference should

generally be applied to pe. This thesis focuses on the development of methods of causal

inference to overcome existing barriers to the application of these methods in a pe with a

focus on pe in mental health related trials. The focus on mental health related trials is because

many of the interventions used in mental health related services affect the outcome via a series

of processes and so require the use of pe to investigate the causal relationships between the

intervention, processes and outcome of interest. The methodological gaps addressed in this

thesis were chosen following a systematic review on methods of causal inference used within

pe in mental health related trials. The gaps in methods of causal inference centre around the

estimation of sequentially mediated causal effects and the estimation of the causal odds ratio

(or) for binary outcomes.

Overview and main findings

This thesis is broadly divided into four main parts. The first part describes a systematic review

of existing methods of causal inference in use for pe and identified existing methodology

gaps in the use of causal inference within pe . The review confirmed the existence of two

methodological gaps: estimation of sequentially mediated causal effects with two or more

i



ii

mediators, and estimation of causal or under scenarios where a continuous mediator is nested

within a binary outcome.

The second part of this thesis reviewed the existing methods used to address these problems.

From this review the potential outcome (po) framework was adopted to define causal effects

of interest within this thesis. This definition would subsequently guide the direction for the

development of the methods. Additionally from this review, the estimation method developed

by Imai et al. (2010) was chosen to propose novel methodological solutions in this thesis.

The third part of the thesis focused on the development of the methods, focusing on how the

foundation of the methods were formed from prior work in causal inference and adaptations

to existing methods. A set of procedures was simultaneously developed to validate the new

methods. This was done to provide confirmation that the novel methods, as implemented in this

thesis, provided results in line with what was expected. The procedures largely verified that

these were within expectations. Additionally, sensitivity analyses approaches were proposed for

the newly developed methods. To estimate the causal effects using the novel methods, certain

assumptions were made and the sensitivity analyses served to assess the impact on the causal

effect estimates should the assumptions be violated. A new R programme was developed as an

implementation of the novel estimation methods as well as the sensitivity analyses and allows

these methods to be easily accessible.

The fourth and last part of the thesis consisted of an application of the methods using data from a

real randomised controlled trial (rct), the Carers’ Assessment, Skills and Information Sharing

(casis) trial. The application demonstrated that the novel methods had real world utility and

enabled the testing of hypotheses which previously could not be tested.

Conclusions

This thesis uniquely enables the estimation of sequentially mediated causal effects and the

estimation of causalor under scenarios that previously had no existing solutions. Additionally,

sensitivity analyses were developed for the newly developed estimators to enable an assessment

of assumptions used in the estimation of the causal effects. An important limitation in the current
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implementation of the estimators is the inability to include any interaction terms. This can be

rectified in a future modification of the developed estimators. An important strength of this

thesis lies in the rigorous procedures used to demonstrate the correctness of the implementation

of the estimators. Also, a demonstration of the newly developed estimators on a real trial

demonstrated their capabilities in testing hypotheses relating to sequentially mediated causal

effects and causal or within the conduct of pe in an rct.
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Notations

This section serves as a reference to the notations used throughout in thesis.

Equations

1. ‘,’ stands for ‘is defined as’.

2. ‘B’ stands for ‘is assigned to’. This is used in the context of assigning a variable to the

results of a computation.

Variables

Variables used in this thesis belong to one of the following three groups: named variables, latent

variables any other variables. The named variables are variables which are given fixed names as

follows:

3. ‘# ’ refers to the population size.

4. ‘=’ refers to the sample size.

5. ‘8’ refers to a specific individual within the sample (8th person).

6. ‘?’ refers to the number of independent variables within a model.

• There are instances where multiple models are being discussed for which the use ?

is ambiguous.

• In such instances, the context of ? will be clarified at the point of use (e.g. ? of the .

model and ? of the " model).

7. ‘^ ’ refers to the matrix of sample data.

• When referring to the subset of sample data used for a model, a subscript indicating

the model is used (e.g. ^_ refers to the matrix of sample data used for the model . ).

• The matrices with a subscript also includes as its first column, a vector of 1s to

xvii
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represent the intercept. This matrix is also more commonly known as the model

matrix.

• Each row of the matrix represents a single subject and each column represents an

independent variable so the dimension of the matrix is given by = × ? .

8. ‘ 9 ’ refers to a specific independent variable within the model (e.g. the 9th variable).

9. ‘<’ refers to the total number of simulations conducted.

10. ‘:’ refers to a single, non-specific run of the simulation (e.g. :th run of the simulation).

If a specific run required referring to, it will be mentioned as ‘for the simulation where

: = 1’ to refer to the first run of the simulation.

Latent variables are used in two contexts within this thesis.

11. The first is in the discussion of binary outcomes modelled using the logistic regression.

For a binary outcome . , the latent variable . ∗ is used to represent the logit transformation

of the latent quantity Pr(. = 1). An asterix is used with the original variable to indicate

the logit transformation of the probability of the variable being 1.

12. The second context is in sensitivity analysis where latent variables are used to represent un-

measured confounders. * is used to notate these variables with subscripts to differentiate

between multiple* .

The rest of the variables used in this thesis are either vectors or matrices. There are named using

the following rules.

13. Vectors and matrices are notated in bold, italic, letters.

• Vectors use small letters with an arrow on top (e.g. ®a).

• Matrices use capital letters (e.g. G).

Functions

Functions refers to mathematical functions and are written with a name or letter followed by

round brackets. Enclosed within the brackets are the argument or input of the function. The only

exception to this is the expectation function which uses square brackets following established

conventions. Functions will be defined on first use.

Another function with established use is the I function which is the indicator function. It
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evaluates the argument supplied and returns 1 if the evaluation returns true and 0 if it returns

false (e.g. I(2 > 0) will return 1).

Short hand

Some terms are given a shortened form as follows:

14. ‘lhs’ and ‘rhs’ stands for ‘left-hand side’ and ‘right-hand side’ respectively. They are

used to refer the left and right hand side of a mathematical expression.

15. ‘Pr’ is used to represent probability. The probability of . = 1 is written as Pr(. = 1).

Subscripts and reference

16. Numeric subscript of vectors and matrices refer to a specific location within the vector

and matrices.

17. Non-numeric subscript refer to a non-specific element within the vectors and matrices.

18. Numeric indexes start from 1.

• ®a i refers to the 8th element of ®a.

• Gi,j refers to the 8th and 9th element of a two-dimensional matrix.

19. Vectors and matrices surrounded by round brackets refer to versions of them for example

in a simulation.

• (®a): refers to the ®a simulated in the :th run of the simulation.

Distributions

20. A normal distribution with mean, `, and variance, f2, is written as N(`, f2).

21. A multivariate normal distribution (mvn) is written similarly with an ‘mv’ subscript,

Nmv(`, f2). An important difference between the two is that the mean for themvn is a

vector and the variance is a variance-covariance matrix.

22. A logistic distribution with mean, `, and variance f2 is written as L(`, f2).

23. A standard logistic distribution is written as LBC3 without the mean and variance paramet-

ers. The mean and variance of a standard logistic distribution is 0 and c2

3 respectively.



Chapter 1

Introduction

Process evaluation (pe) is a form of evaluation commonly used in the biomedical domain which

examines the relationships between a treatment under study with the outcome of interest. The

primary focus as the name suggests is on the processes initiated by the treatment that led to

the outcome of interest. The influence of the context within which the treatment was carried

out is also of interest in pe (Moore et al., 2015a, 2015b). The purpose of such an evaluation is

to improve the understanding of the processes that brought about the change in the outcome

of interest. This improved understanding can in turn aid in identifying ways to modify the

treatment for better outcomes.

Another way to consider pe is to contrast it with its better known counterpart, the outcome

evaluation (oe). oe is a form of evaluation that focuses on an outcome or several outcomes of

interest. One of the most well-known applications of theoe is within the randomised controlled

trial (rct). rcts are a type of trial that aim to compare the outcomes between two treatments

or more. These treatments being compared typically consist of an experimental treatment and

a control treatment. The control treatment often used is the treatment that is currently in

practice or treatment as usual (tau). Alternatively, no treatment can be used instead as a

control treatment depending on the aim of the trial. The two treatments being compared are

randomly offered to the subjects recruited for the study. The aim of such a trial is to be able to

assess the relative effectiveness of the novel treatment when compared to the control treatment.

More specifically, the question posed by an rct is whether or not an experimental treatment

produces better outcome than the control treatment. The outcome in such a trial is one that bears

1
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relevance to the condition that the treatment aims to improve. The randomisation of treatment

offered makes it more likely than not that the characteristics of subjects within each treatment

group are equally distributed at baseline. The only difference between the treatment groups

that remains should then be the treatment offered. This single point of difference allows the

researcher to attribute differences in the outcomes between the treatment groups solely to the

treatment offered. Through randomisation, the rct avoids the situation where the differences

in outcomes can be attributed to differences in the characteristics between the subjects offered

the experimental and control treatment. This attribution of differences is an assertion of causality

since the presence of a difference in outcome due to a single difference, i.e. the offer of treatment,

means that the difference in treatment is what caused the difference in outcome. Subsequent

mentions of rct refer to a trial comparing the outcome between a control and an experimental

treatment where half the subjects are randomised to each of the treatments. The oe is thus a

powerful tool to answer a very specific question: which of the two treatments is more effective?

The difference between the oe and pe lies in the question that each seeks to answer. The

oe focuses on whether or not the treatment caused a change in the outcome while the pe
focuses on the processes that the treatment took to change the outcome. Of note is that the

oe here refers primarily to non-pharmacological treatments where the treatments may be

more heavily influenced by factors in the subject’s environment. The processes considered in

pe include how the treatment was implemented as well as the mechanisms of impact. The

environment or context under which these processes takes place also play an important role in

influencing how the treatment affects the outcome. Under different contexts, the same processes

may exhibit different characteristics or different processes may emerge (Moore et al., 2015a,

2015b). Crucially, while the oe provides an assessment of whether or not an experimental

treatment has better outcomes than the control treatment, it does not provide an indication

of how or why the treatment works. An oe is typically informed by a theoretical model and

the assessment of an experimental treatment being superior than the control treatment can

be seen as a validation of the theoretical model. This however may not be well justified in all

cases because the theorised mechanisms through which the theoretical model works are not

directly assessed. Conversely, should an oe demonstrate that the experimental treatment does

not produce better outcomes than the control treatment, this again does not indicate that the

theorised mechanisms does not exist. The theorised mechanisms may not have produced the

expected effects due to the context under which the treatment was conducted. Each of the two
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scenarios where the theorised mechanisms of impact are not directly assessed represents a gap

in our knowledge of the treatment which the pe can fill. The use of pe to study the processes

and the contexts within which they occur can aid in directly assessing mechanisms of impact

hypothesised by the theoretical model. This allows us to gain a better understanding of the

treatment beyond whether it produced better outcomes than the control treatment or not. This

use of pe and its methods to refine our understanding of how and why a treatment works is

the focus of this thesis.

The concept of pe may be new to some and its relative obscurity compared to the oe may

lead one to conclude that it is a recently developed form of evaluation. This is not the case as

evidenced by mentions of pe dating back at least thirty years (Judd, 1987). It was however

known then as process analysis but it refers to identical concepts as pe that we know today.

One of the foci of discussion back then was how process analysis could be used in tandem with

oe for the purposes of causal inferences (Judd, 1987). This thesis continues this discussion with

the exploration of current uses of pe, the gaps in methods enabling these uses and development

of suitable methods to bridge these gaps. The next section focuses on one of these uses: causal

inference.

1.1 Conduct of causal inference in pe

This section focuses on the use of pe in scientific studies to conduct causal inference. Many of

these studies, in their use of pe, refer directly to causal relationships between the treatment

under study, the outcomes of interest and the processes that bring about those outcomes. The

strongest indication that pe is of keen interest within the scientific community is from the

development of a set of guidelines for the conduct of pe in complex interventions by the Medical

Research Council (mrc) (Moore et al., 2014, 2015a, 2015b) which was subsequently updated

(Skivington et al., 2021a, 2021b). The guidelines indicated the use of pe in three main areas

(Moore et al., 2015a, 2015b). The first being the processes of implementation, the second is the

mechanisms of impact and the third is the contextual influences on the implementation and

outcomes. While themrc guidelines refer specifically to the use ofpe in complex interventions,

many of the aspects of pe are also relevant for other forms of interventions. Its use in complex

interventions are especially notable because in complex interventions, there is a pressing need
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to understand the interplay between the multiple components of the intervention and how they

affect the outcome of interest. pe offers a systematic way to understand this interplay and

ensures that critical areas of interplay are not overlooked. The use of pe in implementation

processes investigates whether variations in implementation affect the outcomes of interest.

This is especially important when the intervention is complex where large variations of how

the intervention is administered could exist in a study. The mechanisms of impact refer to

how the intervention changes the outcome of interest. These mechanisms refer to the chain of

events initiated by the intervention which eventually ends up modifying the outcome of interest.

The intervention could act on the outcome of interest either directly or indirectly through the

mechanisms. The pathways through which the intervention affects the outcome are known as

causal pathways. The third use of pe discussed in the mrc guidelines focused on how the

context or the environment within which the intervention was administered. In this manner of

usage, pe can be used to quantify characteristics of the environment and assess whether the

context affects the outcome of interest in any meaningful way.

Of the three main uses of pe highlighted by themrc guidelines, we can see that each addresses

a question of causal inference. The first asks the question ‘How does variation of implementation

cause a change in the outcome?’ while the second asks ‘What pathways does the intervention

take to cause a change in the outcome?’ and the third asks ‘What contextual factors causes a

change in the outcome?’. Within a causal framework, assessing the changes of measures of

implementation in relation to the outcome can be considered as a form of post-randomisation

treatment effect modification (Dunn et al., 2015). In the context of an rct, this form of causal

inference belongs to a class of scenario where a variable measured after randomisation has

an effect on the outcome. Data collected on this variable is also notably missing in half of

the subjects. Using the subject’s adherence to the treatment as an example, if data related to

adherence was collected in both arms of the trial, it might, at first glance suggest that we can

compare the adherence between the two groups directly. The is however not the case because

adherence is specific to the treatment, i.e. adherence to the control treatment is a different

variable from adherence to the experimental treatment. Therefore, for the subjects who were

offered the control treatment, adherence can only be observed for the control treatment for

this group of subjects. Vice versa is also true for subjects who were offered the experimental

treatment. Hence, if we were interested in the effect of adherence to the experimental treatment

on the outcome, we would be missing data for adherence to the experimental treatment for
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the subjects offered the control treatment (Dunn et al., 2015). The missing data in this scenario

is important because without information on the adherence to the experimental treatment

for subjects offered the control treatment, the outcomes observed for the subjects offered the

experimental treatment would be confounded by the adherence and the treatment offered, i.e.

we would not be able to separate out how much of the change in the outcome was due to

the treatment and how much was due to the better or poorer adherence. The third question

addresses a question quite similar to post-randomisation treatment effect modification. In the

third question, the researcher is interested in which contextual factors affect the outcomes and to

what degree. In this scenario, if the contextual factors of interest are treatment independent and

are present before randomisation, then the estimation of the effects of the contextual factors on

the outcomes belong to a class of scenarios known asmoderation (Baron & Kenny, 1986; Edwards

& Lambert, 2007). Should the contextual factors be present only after randomisation, then it

has a similar missing data problem for the post-randomisation treatment effect modification

scenarios and should be addressed similarly. The second question on mechanisms of action

focuses on the pathways through which the causal effects occur. This class of scenario is known

as mediation (Baron & Kenny, 1986; Dunn et al., 2015; MacKinnon, 2008) and forms the primary

focus of this thesis.

Much like pe, mediation or mediational analysis dates back at least for decades and one of

the better known pieces of work on mediational analysis comes from Baron and Kenny (1986).

The work by Baron and Kenny (1986) sought to clarify the distinction between mediators and

moderators as well as highlighting considerations in estimating mediated and moderated causal

effects. More importantly the assessment of mediated and moderated effects always takes place

in the context of assessing causality. This emphasis on causality, when considered together with

the envisioned use of pe in understanding mechanisms of action indicates that mediational

analysis can be a tool to conduct such a study into the mechanisms. However, the study of causal

mechanisms additionally requires the question to be better defined and the same can be said

of the other causal inference questions that pe seeks to address. A question such as ‘Through

which pathways does the intervention work to affect the outcome?’ is far too general and there

needs to be a process of refinement of this question. This refinement could rely on existing

theoretical knowledge, a point heavily emphasised in themrc guidelines on the conduct of

pe. Theoretical knowledge could indicate the pathways an intervention is likely to take to

affect the outcome of interest and pe could be used to test such a hypothesis. There could also
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be pathways that have not been formally theorised but may already have been considered as

possible candidates of intermediaries that an intervention goes through to act on the outcome.

Notably, themrc guidelines highlighted the use of qualitative methods as a means to gather

such information. Qualitative methods are a set of methods that use non-quantitative data

such as interviews, focus groups and observations by the researcher of various aspects of the

intervention to answer specific questions. In this instance, qualitative methods can be used to

gather varied as well as in-depth perspectives of the various processes of the intervention from

different people involved in the intervention including the patients receiving, and the people

administering the intervention. The information gathered can be used to uncover previously

unknown processes within each of the three questions posed by pe. This provides a systematic

way to generate hypotheses which in turn aids to refine questions that can then be answered

using methods of causal inference through an appropriately designed pe.

The use of causal inference within pe, as discussed in themrc guidelines, has the potential to

provide valuable insight into how interventions work. These insights can be used to modify the

interventions for specific aims such as better outcomes, lower costs or easier implementation.

Knowing precisely the relationship of the processes within an intervention with its outcome

allows similarly precise ways to modify the intervention. These insights, however, depend on

the ability to conduct causal inference within pe and there are two notable barriers.

The first concerns the definition of causal effects, specifically mediated causal effects. Mediated

causal effects are effects that go through an intermediary to act on the outcome. More formally, a

mediator is a variable that lies on the causal pathway between the intervention and the outcome.

Changes in the independent variable changes the mediator and the mediator in turn accounts

for variations in the outcome of interest (Baron & Kenny, 1986). An effect that goes through a

mediator is said to be an indirect effect (ie) and an effect that does not is said to be a direct effect

(de). The effect of the treatment on the outcome of interest regardless of the path it takes is

known as the total effects (te). The definition for te is well defined. Consider a typical rct
comparing an outcome of interest between a control and an experimental treatment. The te
is defined as the difference between the outcomes of the groups offered the experimental and

control treatment, which is also the main effect of interest in a typical rct.

ies however were less well-defined. This was the case until the introduction of potential
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outcome (po) to aid in defining ie (Pearl, 2001). po are simply outcomes that could happen.

This possibility of an outcome occurring gives rise to the use of the word ‘potential’. Consider

a binary outcome of interest in an rct with values of 0 and 1. For a given treatment, the

outcome for any subject in the rct could be 0 or 1. The outcome would only be known after it

had been observed but before this observation had been made, both of the outcomes had the

potential of being realised.

Prior to the use of po to define ie, the definition of ie had been tightly coupled with the

methods used to estimate it (e.g. see MacKinnon (2008)). Two of the commonly used methods

to estimate the ie are known as product of coefficients and difference in coefficients methods

(MacKinnon, 2008). Each of these methods convey a different interpretation of what an ie is

and these methods were initially only applied to estimate mediate causal effects when both the

outcome and mediator are both continuous. The product of coefficients method defines the ie
as the amount of change in the dependent variable due to a unit change in the independent

variable indirectly through a mediator. The difference in coefficients method defines ie as

effects that are not direct. The two definitions refer to the same quantity under many but not all

scenarios. Specifically, when the regression model used to estimate the ie is not linear such

as the case in a logistic regression, the two methods of estimation produced different causal

ie estimates. This creates a situation where estimates of the ie can be different depending

on how it is estimated and it is not clear when each method is appropriate for use. This lack

of a causal effect definition independent from the estimation methods made adaptation of the

estimation of mediated causal effects beyond the simplest scenarios difficult (Pearl, 2009). This

changed with the use of the po framework to define causal effects and notably the use of this

definition to create a general way in which mediated causal effects can be defined known as the

mediation formula (Pearl, 2001). The use of po allows for hypothetical constructs that aid in the

definition of ies including constructs that would not be directly observed within the trial and

constructs that could not exist in reality. Despite the fact that some of these constructs would not

be observed within a trial and some of these constructs could not possibly exist in reality, they

provide an essential crutch in defining ies. The po framework, in its simplest form, considers

what would have happened had a preceding event been different? Consider an observation that

after taking a pill, a person recovers from his illness. We can use the po framework to consider

the outcomes that could have happened had the pill been taken and had the pill not been taken.

A comparison of these outcomes under certain circumstances, such as in the case of an rct,
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allow us to make causal inferences about the effect of the pill on the illness. This breakthrough in

the definition of causal effects subsequently led to the development of a set of formulae known

as the mediation formulae which uses the aforementioned hypothetical constructs. While they

are called formulae, these formulae are actually formal definitions of mediated causal effects

that are independent of any estimation methods. They express the mediated causal effects

using po and from the expressed po, map them onto statistical concepts such as expectations

and probabilities. They do not however state how the expectations and probabilities are to be

estimated and allow the researcher to use any method deemed suitable and fit for their specific

purpose. The development of the mediation formula also paved the way for many new methods

used to estimate mediated causal effects of which the work in this thesis is one of them.

The success of the mediation formula rested on two main pillars. Firstly, the rct, an accepted

experimental design for assessing causal relationships, can be framed as a comparison of po
(Hernan & Robins, 2020; T. J. VanderWeele & Vansteelandt, 2009) and such a framing of a well-

understood experimental design lends credence to the po framework. The second important

development was the long history of the discourse of po, notably the work by Lewis (2001)

where the logic of po was discussed extensively. This provided the foundation for some of the

assumptions of defining causal effects using po. This foundation was critical because causality

had been studied since ancient times and any definition of causal effects cannot ignore the

large amount of prior work. The work by Lewis (2001) ensured that the use of po in defining

causal effects takes into account and is consistent with prior work. These two pillars thus

provided the foundation upon which the mediation formula was built on. An area which the

original mediation formula had not addressed was the issue of defining causal effects for multiple

mediators. Daniel et al. (2015) notably enumerated all the possible sets of definitions of direct

and indirect effects in the presence of multiple mediators and noted the high level of complexity

as the number of mediators grew. Daniel et al. (2015) further proposed ways by which this

complexity be reduced by focusing only on paths that are of interest, i.e. paths that are present

within a theoretical model.

Having a definition for causal effects, the attention next turned to how the causal effects could be

estimated. With the use of the mediation formula, the estimation became more straightforward

since one simply has to estimate the quantities found within the mediation formula. However,

in the definitions of mediated causal effects are po nested within another po and this made
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estimation of some mediated causal effects difficult. This is the case when the outcome is binary

and modelled using a logistic generalised linear model (glm) while the mediator is continuous

and modelled using a normal glm. Both the logistic and normal glm belong to a family of

linearmodels that seek to generalise different linearmodels under a single framework (McCullagh

& Nelder, 1989). The problem with the nested po was noted by Valeri and VanderWeele (2013)

who also devised a solution. This solution however is an approximation of the causal effect

and this approximation is valid only when the event rate of the outcome is rare. This limited

the utility of the solution and more importantly, despite having well-defined mediated causal

effects, a general method of estimation was still out of reach. This was also true of the case with

multiple mediators.

1.2 Aims and objectives

From the previous sections, I had laid out the potential of pe in aiding our understanding of

the inner workings of an intervention. This understanding requires the use of causal inference

methods which at present have certain limitations. The two limitations highlighted are the lack

of methods for estimation of causal odds ratio (or) when a continuous mediator is nested within

a binary outcome and the estimation of sequentially mediated causal effects in the presence of

multiple mediators. These limitations imply that should questions of mediation be of interest in

a pe, they would be absent from current literature or addressed in ways that avoids the use of

methods of causal inference because the estimation methods do not exist. This thesis sets out to

overcome these two limitations.

The first aim (chapter 2) is to confirm that questions of causality are of interest in pe. This is

done by conducting a systematic review of studies usingpewith a focus onmental health related

trials. The focus on mental health related trials is due to the nature of the interventions involved

which often include indirect mechanisms of action between the intervention and outcome. Such

indirect mechanisms make the practice of pe highly relevant and hence the focus on mental

health related trials. Given the barriers highlighted, it is predicted that studies with an aim of

assessing causality within pe may address them in ways that avoids the barriers. By examining

the stated aims of conducting pe as well as the methods used to achieve those aims, we can

assess whether the inference of causality is one of the aims and whether or not a gap in methods
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exist.

The second aim (chapter 3) is to lay out how the po can be used to address the two gaps

identified. This aim is achieved by examining how the po framework had been used to define

causal effects and mediated causal effects. A review of existing methods for estimation is also

done to determine how each of the existing methods have addressed various issues in the

estimation of mediated causal effects.

The third aim (chapter 4) is to first develop a definition for the causal or and sequentially

mediated causal effects and then develop estimating methods for each of them. The development

of the definitions is done by examining the structure of the mediation formula and using the

method used to construct the mediation formula, to extend it to derive definitions for the

causalor and for sequentially mediated causal effects. Estimation methods are then developed,

drawing upon existing methods.

The fourth aim (chapter 5) is to verify that the novel estimators developed in chapter 4 were

‘within expectation’. This first required a definition of ‘within expectation’. The choice adopted

differs from that used in traditional methods of validation of estimators and the rationale for

this deviation is explained in the chapter. An application of novel estimators on a real rct was

also conducted to demonstrate the utility of the methods.

The fifth aim (chapter 6) is to address the assumptions inherent in the estimation of the causal

estimands. Given that it is not possible to determine if these assumptions were violated, methods

were instead developed to determine the degree to which the outcomes would change should

the assumptions be violated. This is known as the sensitivity analysis. An application of the

sensitivity analysis is also conducted to demonstrate its utility in a real world trial.

The last chapter (chapter 7) in this thesis reviews the scope of the work that had been done and

highlights the unique contributions of this thesis. These unique contributions go beyond their

use in this thesis and have wider applicability in methods of causal inference. The strengths and

weaknesses of this thesis are also discussed.



Chapter 2

Review of methods used for process

evaluation in mental health related trials

2.1 Introduction

This chapter provides a review of the methods traditionally used to conduct pe. The aim is to

provide an overview of current methodological practice in pe and to identify methodological

areas in need of better application of existing methods or further methodological development.

A systematic review of recent published studies of pe was conducted for this purpose. Areas of

pe where new methods are needed will be discussed at the end of the chapter. The development

of the said methods would be addressed in subsequent chapters.

The central task of this systematic review is to identify the research questions posed by pe
and the corresponding methods used to answer those questions. The systematic review was

limited tope conducted alongside a randomised controlled trial (rct) within the mental-health

domain. The focus on mental-health related trials was motivated by the prevalent use of pe
in such studies. In addition, randomisation in trials simplifies the outcome evaluation (oe)
and thus such study designs are a good starting point to understand the type of methods used

in pe. Specifically, randomisation should avoid any confounding of the effect by treatment

assignment on the outcome of interest and so enable the estimation of the causal effect of the

treatment under investigation using simple methods. Process evaluation can then be used to try

11
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and understand the processes that lead to these causal treatment effects.

The review of studies reporting process evaluations in trials focused on four aspects of pe:
stated aims, research design, analytical methods and stated conclusions. These four aspects

provide information on the motivation, the main problem and the approach to the problem posed

by the pe. First, the stated aims convey the processes that are being evaluated and the research

questions that these aims address. Second, the research design and analytical methods lays out

the data were collected and analysed to generate evidence in support of the stated aims. Third

and final, the stated conclusions show how the generated evidence had been used in support of

the stated aims. More pertinent to our purpose, these four aspects of a pe study provide insight

into methodological needs of the researchers driven by the problems to be answered by the

pe. From these methodological needs, gaps can then be identified and addressed in subsequent

chapters.

Prior to moving on to the methods used to conduct the systematic review, it is important

to highlight the differences between pe and oe. Outcome evaluation is the main form of

evaluation conducted in rcts. The primary aim of such an evaluation is to compare the

therapeutic effectiveness or efficacy of an experimental treatment with that of a control treatment.

The control treatment is usually a placebo or treatment as usual (tau). The therapeutic effects

are measured by predetermined outcome measures that are relevant to the condition for which

the treatments are being used for.

pe on the other hand, as the name suggests, is an evaluation of processes. The Oxford dictionary

of English defines processes as ‘a series of actions or steps taken in order to achieve a particular

end’ (Soanes & Stevenson, 2005). pe can thus be understood as an evaluation of the series of

actions carried out to achieve an intended end. In the context of a pe of an rct, this intended

end is to measure the outcomes of interest on the subjects after the treatments, both experimental

and control, have been delivered. The series of actions are thus those that are related to the

conduct of the rct such as recruitment of subjects, offer of treatments, delivery of treatments,

subjects’ adherence and response towards treatment etc. These actions constitute the ‘processes’

being evaluated within a pe.

In a recent Medical Research Council (mrc) guideline on pe for complex health interventions

(Moore et al., 2014, 2015a, 2015b), the value of such an evaluation was highlighted focusing on
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three groups of people: policy-makers, practitioners, and researchers. For a policy maker, pe
aids in identifying contextual factors that makes a treatment more effective. This allows the

policy maker to consider what support needs to be in place to create a conducive environment for

the treatment to be effective. For a practitioner/clinician, it informs them on potential ways to

modify the treatment for better therapeutic benefits which they can adopt in their daily practice.

Lastly, for the researcher, results from pe allows for a deeper understanding of the interplay

of factors that influence the desired outcomes, paving the way to a better understanding of

precisely how and why a treatment works.

The examples stated highlights the role pe plays in understanding and improving the treatment.

Thus, pe can be thought of as an evaluation to answer the questions of ‘how, why, and for whom

does the intervention work?’. This complements the aim of oe well, which is to answer the

question: ‘is the experimental treatment more effective/efficacious than the control treatment?’.

Two questions remain however and that is: ‘how and why is pe being used in practice?’ and

‘what methodological gaps there are, if any, in meeting the aims of pe?’. The first question

addresses the motivations behind the use of pe in practice and the kind of questions that

researchers seek to answer through the use of pe. Some of the question that can be answered by

pe are well placed to tap on advances from the causal inference domain to answer the questions

in a principled and rigorous manner. Being able to identify the questions of interest in pe that

can benefit from the use of causal inference methods is the focus of the second question. The

second question focuses on questions that are of a causal nature and whether methodological

improvements can be made in the conduct of pe. With this, we will move on to the methods

used in this review.

2.2 Methods

This section discusses the methods used in the systematic review. It is important to note prior to

introducing the methods that this systematic review differs from traditional systematic reviews

in important ways. In traditional systematic reviews within the biomedical domain, the focus is

on summarising the effects of a treatment of interest within a specific diagnostic group.

These reviews aim to provide an assessment of whether the evidence found in existing literature
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supports a specific hypothesis about the treatment, which is typically that the treatment is

beneficial to a specific diagnostic group of patients. In order to obtain a trustworthy assessment of

the evidence of the hypothesis, the evidence this assessment draws upon needs to be trustworthy

in the first place. This is why in traditional systematic reviews, there is a strong focus on

assessing the trustworthiness of each study and how well each of them had adhered to best

practices in the research that they are conducting. However, in the current review, the aim is

not to assess the support for a specific hypothesis. Rather, the aim is to identify the aims and

corresponding methods currently used in pe. Since the primary motivation for conducting an

assessment of trustworthiness is absent and that trustworthiness of a study was deemed to have

little bearing on the validity of the stated aims and methods of pe, a detailed assessment of

trustworthiness was not conducted. A brief assessment using only whether or not the trial was

registered with a trial registry and the absence or presence of blinding was used. The purpose of

this is to provide a crude gauge of the quality of the studies that the review draws its conclusion

upon. Given the unique nature of this review, researchers have taken to calling such reviews a

‘scoping review’ (Munn et al., 2018) but since the term is relatively new at the time of writing, I

shall refer to this review as a ‘systematic review’.

The steps taken for the systematic review are listed in table 2.1. Each of the steps are covered in

greater detail in the following subsections.

Table 2.1: Steps of systematic review

1. Develop and execute a search strategy.

2. Retrieve and screen the results from the search for inclusion into the review.

3. Extract, analyse and summarise relevant information from the identified

studies.

4. Verification with second reviewer that the screening and extraction steps

are reproducible.
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2.2.1 Conducting the search

A search strategy was required to conduct the search. There were four main parts to the strategy.

First, the inclusion criteria for identifying relevant studies needed to be developed. The criteria

can be found in table 2.2. Studies not fulfilling these criteria were excluded. Second, databases

Table 2.2: Inclusion criteria for systematic review

1. Study attributes:

(a) The study must report on the result of a pe and must explicitly state

so.

(b) The study must be conducted alongside or after an oe aimed at

evaluating a treatment for the target population below.

(c) The study must be from a peer-reviewed journal.

2. Study design:

(a) The oe must adopt an rct design.

(b) There is no restriction on the study design of the pe.
(c) The primary outcome of the oe must be a measure of symptoms

associated with a condition that had been defined in the Diagnostic

and Statistical Manual of Mental Disorders V (dsm-v) (e.g. Patient

Health Questionnaire (phq-9) scores as a measure of symptoms

associated with depression which had been defined in the dsm-v).

A secondary outcome of such a measure does not fulfil the inclusion

criteria.

3. Target population:

(a) No restrictions on the target population of the oe and pe. It must

be noted however that a target population of people with mental

health disorders but no mental health related primary outcome (see

study design) does not fulfil the study design inclusion criteria (e.g.

Vocational rehabilitation for persons with schizophrenia).

and search engines to be used in the search had to be identified. A database holds the metadata

of the studies it indexes while a search engine provides the interface to conduct searches of the
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metadata within the database. The decision of which databases and search engines were to be

used to identify relevant studies was made based upon the coverage and characteristics of each

database. The identified databases, search engines and their justifications are listed in table 2.3.

Some databases can be searched using multiple search engines and in those circumstances,

the search was repeated for each search engine to improve the chances of identifying relevant

studies.

Thirdly, suitable keywords had to be identified to be used to execute the search. A close

examination of the inclusion criteria and the capabilities of identified search engines indicated

that the only portion of the inclusion criteria that can be translated into a search terms for input

into the search engines is the requirement for the study to report on the results of a pe and for

the pe to be associated with an rct.

In order to identify studies that report on the results of a pe, suitable search terms need to be

identified. The words ‘process’ and ‘evaluation’ and the various permutations of the two words

and their variations were used as search terms but it was unclear if the two words alone were

sufficient in identifying all the relevant studies. An indication that it was not sufficient came

from a study which made reference to the term ‘process analysis’ (Judd, 1987; Judd & Kenny,

1981), a concept similar to pe. This led to a keyword study where the aim is to identify the

different ways of referring to pe in recent literature. The details of the keyword study can be

found in Appendix A and in order not to detract from the focus of this chapter, the details of

the keyword study will not be discussed. The keyword study yielded some alternative ways of

referring to pe but these were quite similar to the concepts expressed by the words ‘process’

and ‘evaluation’.

The other set of search terms that was needed were the keywords identifying studies conducted

with an rct design. This task was made easier by the Cochrane Collaboration and Scottish

Intercollegiate Guidelines Network (sign) as both organisations had previously published

specific search strategies to identify studies that make use of the rct design (Higgins et al.,

2008; Scottish Intercollegiate Guidelines Network, 2015; Scottish Intercollegiate Guidelines

Network (SIGN), 2015). These search strategies were however outdated by the time the search

was conducted as there have been major changes to the databases and search engines. The most

significant change was the migration of existing Medical Subject Headings (MeSH) terms to a
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new iteration of MeSH. While the published search strategies could not be used as they were,

they provided important guidance on how to develop a search strategy for studies that use the

rct design.

The published search strategy was then modified to adapt to the changes of search engines and

databases and in the process of adaptation, decisions needed to be taken. These decisions were

typically a choice between potentially excluding relevant studies or potentially including irrel-

evant studies. The choice taken was always in favour of potentially including irrelevant studies

because each study was eventually checked manually to confirm its eligibility for inclusion. This

process ensured that the widest net was cast to identify relevant studies although this was at

the expense of creating a larger workload to remove ineligible studies. The full search strategy

is documented in Appendix B. Lastly, the period to search for studies was limited to the past

five years at the time of conducting the search (2012 - 2016). This ensured that the identified

studies were an accurate reflection of current practices of pe. The publication date was used to

identify the date for each study. In all the databases searched, this was a stable field that was

not subjected to future retrospective changes. This provided some safeguards that the results

presented in this thesis can be reproduced should there be a need to verify or update them.

The search was conducted using the keywords identified and the date ranges specified. The

metadata of the studies identified from this search was extracted and each study was screened

manually to identify studies that met the inclusion criteria. In most of the cases, the metadata

alone (including the abstract) had insufficient information as to whether the inclusion criteria

were met. This meant that the fulltext of the study had to be retrieved to assess whether or not

to include the study into the review. In about a quarter of the cases, the oe associated with

the pe had also to be retrieved to make the assessment. Given the large numbers of papers

that had to be retrieved, an automated system was built to facilitate this task. At the end of this

screening process, a set of studies that met the inclusion criteria were identified.

2.2.2 Data extraction and analysis

The first step to data extraction was to retrieve the paper associated with the identified studies.

The paper of theoe associated with the pewas also retrieved. The retrieval used the automated
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Table 2.3: Databases searched

1. cinahl
• Search engine: EBSCOhost

• Justification: Indexed nursing related literature that were not covered

by MEDLINE.

2. Cochrane Central

• Search engine: Wiley

• Justification: Had a unique feature where studies using the rct
design were identified as they were being indexed by the database,

allowing for searches to operate only on the subset of rct studies.

3. Embase

• Search engine: Embase.com, Ovid

• Justification: Had a distinct set of journals not covered by the other

databases.

4. PsycINFO

• Search engine: Ovid

• Justification: Indexed studies related to mental health.

5. PubMed / MEDLINE

• Search engine: ncbi, Embase.com, EBSCOHost, Ovid

• Justification: One of the widest coverage of biomedical journals.
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system discussed in the previous sub-section. For the review, specific pieces of information were

extracted from each study and entered into a spreadsheet. Each field within the spreadsheet had

a precise definition of the type of information that was required. This is documented in Appendix

C, which provides the manual intended for a second reviewer to reproduce the screening and

data extraction process. The role of the second reviewer will be discussed in section 2.2.3. A

list of the information extracted from the oe and pe studies are in table 2.4 and 2.5. The

Table 2.4: Information extracted from oe studies

1. Trial registration and blinding

• Provides an assessment of the quality of the trials.

2. rct design, number of trial arms and type of randomisation

• Describes the rct designs used by the studies.

3. Aim of trial and trial outcome

• Used to determine the context under which pe was conducted.

• ‘Aim of trial’ could either be ‘efficacy’ or ‘effectiveness’.

– The aim stated in the spreadsheet was what the author stated the

aim to be. There were no further assessments made on the appropri-

ateness of the stated aim.

• ‘Trial outcome’ could either be ‘positive’ or ‘negative’.

– A positive trial outcome refers to a trial with a conclusion that the

experimental treatment had better outcomes than the control treat-

ment and a negative trial outcome refers to a conclusion that the

experimental treatment is no better or worse than the control treat-

ment.

information extracted from both theoe and pe studies was summarised using frequencies and

percentages to provide an understanding of the context under which pe was conducted, the

processes that were of interests and the methods used to accomplish the stated aims.
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Table 2.5: Information extracted from pe studies

1. Methods of inquiry

• Used to identify methodological preferences in pe.
• This field could either be ‘qualitative’, ‘quantitative’ or ‘mixed methods’.

2. Causal inference as aim

• Provides an assessment of whether or not methods of causal inference

were needed within pe.
• This field could either be ‘no’, ‘yes, stated’ or ‘yes, implied’.

• The classification of stated or implied depends on whether or not the

authors were explicit in stating causal inference as their aim. If the authors

stated that the aim of the pe was to establish causality either among

processes or between processes and outcomes, this was classified as a

stated aim. When there was no explicit stated aim of causal inference

but the analysis conducted and discussions indicated otherwise, it was

classified as an implied aim of causal inference.

3. Processes investigated

• Provides an understanding of what types of processes were of interest to

the community of mental health researchers.

4. Linkage of pe results to oe
• Provides an indication of how researchers were making use of the two

forms of evaluation, whether in isolation or in tandem.

• This field can either be ‘yes’ or ‘no’.

• Any discussion of the results of the pe in the context of the oe is

considered to be a ‘yes’. Otherwise, this is a ‘no’.
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2.2.3 Secondary review by independent researcher

An independent second reviewer was brought in to repeat the conduct of parts of the system-

atic review. The aim is to ensure that the conduct of the systematic review was documented

unambiguously and if one followed this documentation, he or she will be able to reproduce

the results presented. This documentation was written as a manual for the second reviewer

(Appendix C). The secondary review did not repeat all parts of the systematic review. Only

the parts that required some element of judgement was repeated. These were parts that where

biases can be introduced and the secondary reviewer serves as a safeguard against this. These

parts were the screening of the studies and the extraction of the information into the database.

The reviewer was not asked to repeat the entire process because that would have been overly

laborious. A random subset of studies (details below) was used for these reproductions and these

were considered to be a sufficient gauge of the unambiguity of the conduct of the systematic

review. The part that was not repeated was the searching of the databases as there was little

chance that this process was ambiguous or had biases introduced since the full search parameters

were documented. This secondary review serves as another safeguard to ensure reproducibility

and a check to ensure that biases had not been introduced in the conduct of the review.

For the screening of studies, a random selection of ten studies that were included in the review

and ten studies that were excluded were given without classification to the reviewer. He was then

tasked to follow the manual in which the inclusion criteria were stated to identify studies that

were to be included. If any of the studies were classified differently by the second reviewer, this

was investigated to determine the cause of it. In any case, any studies that were classified wrongly

indicated that there was ambiguity either because the reviewer understood the instructions

differently from what was intended or that the instructions were not detailed enough and left

room for interpretations.

For the extraction of information into the database, a similar process was used where the reviewer

was tasked to extract information from ten studies into the database. Any discrepancies between

what was entered by the review and myself was investigated. Specifically, the reviewer and

myself discussed the discrepancies and identified the source of the discrepancy. Discrepancies

can point either to an ambiguity in the documentation or a mistake in applying the protocol. The

former was rectified by modifying the documentation with clearer instructions. This process
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reduced the chance that the protocol for the review was interpreted differently from what was

intended.

2.3 Results

This section discusses the results from the review by the independent researcher and the sys-

tematic review. The screening process repeated by the independent researcher yielded a single

discrepancy between what I had included for the review and what the independent researcher

had identified as fitting the inclusion criteria. This was found to be due to an ambiguous wording

of what constitutes a mental health related trial in the reviewer’s manual. This had since been

rectified. The data extraction process did not yield any discrepancies. Given the lack of major

discrepancies between the results produced by the independent researcher and myself, this

indicated that the parts of this systematic review most prone to errors have been mitigated well.

Moving on to the results from the review, the full list of identified pe studies can be found in

Appendix E. The list of associated oe studies can be found Appendix F. Information from the

studies had been summarised in table 2.7, table 2.9 and table 2.10. After the initial search and

prior to any processing, 3010 results were returned. The number of results by database and

search engine can be found in table 2.6. As mentioned previously, some databases were searched

using multiple search engines and this meant that a large number of duplicated results was to

be expected. After removing duplicated results, 930 articles remained which underwent further

screening as discussed at the end of section 2.2.1. After going through a manual screening

procedure for each of the 930 articles, 30 articles remained. This large drop in the number

of articles was also expected as the search strategy prioritised having larger numbers of false

positives over missing relevant articles altogether. The 30 articles remaining reported on the

results of 25 unique studies. Some studies reported different aspects of the pe in separate

articles.

The 25 studies came from 7 different countries with the United Kingdom comprising the largest

share of 48% and the Netherlands coming in second with 20% of the studies. Table 2.7 lists the

breakdown by each country. It is unclear why the United Kingdom has such a large number of

studies using pe compared to the other countries. A plausible reason could be that the use of
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Table 2.6: Database, search engines and search results count

Database Search engine Results count

Pubmed ncbi 578

MEDLINE Ovid 569

Embase & MEDLINE Embase.com 426

Embase Ovid 168

cinahl & MEDLINE EBSCOhost 577

PsycINFO Ovid 404

Central Wiley 288

Total 3010

Deduplicated 930

Accepted 30

Rejected 900

pe was driven by requirements or preferences of the different funding agencies within each

country and the presence of themrc guidelines on pe is an indication that this might be the

case. Information on the trial registration, outcome and type of trial can be found intable 2.8.

Table 2.7: Countries of origin of identified studies

Countries Count %

United Kingdom 12 48%

Netherlands 6 24%

Australia 2 8%

China 2 8%

Singapore 1 4%

South Africa 1 4%

United States of America 1 4%

Detailed information regarding the trial can be found in Appendix D.
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Table 2.8: Accepted studies trial information

No. Study Main trial Process evaluation Trial registration Trial outcome Type of trial

01. 01. Chan et al., 2011 Chan et al., 2012 none positive efficacy

02. 02. Roy-Byrne et al., 2010 Curran et al., 2012 none positive effectiveness

03. 03. Gao et al., 2010 Gao et al., 2012 none positive efficacy

04. 04. Leontjevas et al., 2013 Leontjevas et al., 2012 NTR1477 positive effectiveness

05. 05. Gärtner et al., 2013 Ketelaar et al., 2013 NTR2786 positive effectiveness

06. 06. Crawford et al., 2012 Patterson et al., 2013 ISRCTN46150447 negative efficacy

07. 07. Stallard et al., 2013 Stallard et al., 2013 ISRCTN19083628 negative effectiveness

07. 08. Taylor et al., 2014 ISRCTN19083628 negative effectiveness

08. 09. Thomas, Walker et al., 2013 Thomas, Russell et al., 2013 ISRCTN56078830 positive efficacy

09. 10. van der Krieke et al., 2013 van der Krieke et al., 2013 NTR3105 negative efficacy

10. 11. Arends, Klink et al., 2014 Arends, Bültmann et al., 2014 NTR1963 positive effectiveness

11. 12. Underwood et al., 2013 Ellard et al., 2014 ISRCTN43769277 negative effectiveness

12. 13. Parry et al., 2016 Finch et al., 2014 ISRCTN78396615 positive effectiveness

13. 14. Geraedts, Kleiboer et al., 2014 Geraedts, Kleiboer et al., 2014 NTR2993 negative effectiveness

14. 15. Hind et al., 2014 Hind et al., 2014 ISRCTN28645428 negative effectiveness

15. 16. Slade et al., 2015 Leamy et al., 2014 ISRCTN02507940 negative effectiveness

15. 17. Wallace et al., 2016 ISRCTN02507940 negative effectiveness
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Table 2.8: Accepted studies trial information (cont’d)

No. Study Main trial Process evaluation Trial registration Trial outcome Type of trial

16. 18. Schmidt et al., 2015 Lose et al., 2014 ISRCTN67720902 negative efficacy

16. 19. Waterman-Collins et al., 2014 ISRCTN67720902 negative efficacy

16. 20. Zainal et al., 2016 ISRCTN67720902 negative efficacy

17. 21. McCann et al., 2013 McCann and Lubman, 2014 ACTRN12609000064202 positive effectiveness

18. 22. Petersen et al., 2014 Petersen et al., 2014 none positive effectiveness

19. 23. Prick et al., 2016 Prick et al., 2014 NTR1802 negative effectiveness

20. 24. Woolhouse et al., 2014 Woolhouse et al., 2014 ACTRN12613000742774 positive effectiveness

21. 25. Foster et al., 2016 Myall et al., 2015 ISRCTN67521059 negative effectiveness

21. 26. Foster et al., 2016 ISRCTN67521059 negative effectiveness

22. 27. Shorey, Chan et al., 2015 Shorey, Chan et al., 2015 ISRCTN15886353 positive effectiveness

23. 28. Stallard et al., 2015 Stallard et al., 2015 ISRCTN23563048 positive effectiveness

24. 29. Sayal et al., 2016 Taylor et al., 2015 ISRCTN87634685 negative effectiveness

25. 30. Priebe et al., 2015 Omer et al., 2016 ISRCTN34757603 positive effectiveness
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Table 2.9 lists some of the characteristics of the oe associated with the identified pe. Most

of the studies were registered with a trial registry (87%) and had some form of blinding (63%).

This indicated that the studies largely adhered to good trial practices. The studies mainly used

the parallel rct design (97%), had two trial arms (80%), adopted simple randomisation (50%)

and were focused on effectiveness (73%). This indicated that the oes study designs were fairly

homogeneous. Lastly, about half of the studies reported a positive outcome (47%) suggesting

that the researchers’ motivation for conducting pe is irrespective of the main trial outcome.

Table 2.10 summarises the information extracted from the pe studies. Most of the pe studies

employed mixed methods (43%) or qualitative methods (43%) to conduct their evaluation. This

suggests a strong methodological preference towards qualitative approaches in the conduct of

pe. However, about a third (30%) of the studies had causal inference either as a stated or an

implied aim. If we breakdown the methods used by whether or not causal inference was an aim

(table 2.11), we could see that studies that employ solely qualitative methods do not consider

causal inference as their aim and for studies that employ some form of quantitative methods,

almost half of them do not have causal inference as an aim (8 yes vs. 9 no). We will revisit this

in the discussion section.

Several kinds of processes were identified in this review. The names of the processes given

in table 2.10 were either verbatim from the studies or matched with a closely named process.

As such, some of the processes express related and overlapping concepts and I would briefly

explain what each refers to. Ranking the processes by the number of studies evaluating it,

‘subjective response to treatment (patients)’ is the most commonly studied process (63%). This

is an assessment of the patient’s perception towards the treatment and whether or not there

were particular aspects of the treatment that was pleasant or unpleasant. This is followed

by ‘adherence’ (30%) and ‘fidelity’ (27%). Adherence refers to the patient’s adherence to the

treatment protocol while fidelity refers to the degree to which the treatment was implemented

as planned. ‘Subjective responses to treatment (Staff)’ refers to the impression of the treatment

by the personnel involved with delivering the treatment. ‘Dose received’ refers to the dosage

of the treatment that the patient received and this is in contrast to ‘dose delivered’ which

refers to the dosage that was delivered to the patient. There is a distinction because not all the

dosage that was delivered would be received by the patients and this can happen for various

reasons including non-adherence to the treatment protocol. Reach refers to the degree to which

a treatment had been delivered to a target population. This is most commonly expressed as
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Table 2.9: Characteristics of outcome evaluation

Characteristic Count %

Trial registration

Yes 26 87%

No 4 13%

Presence of blinding

Present 19 63%

Unstated / none 11 37%

rct design

Parallel 29 97%

Step-wedged 1 3%

Number of trial arms

2 arms 24 80%

3 arms 6 20%

Type of randomisation

Simple 15 50%

Cluster 12 40%

Stratified 3 10%

Aim of trial

Efficacy 8 27%

Effectiveness 22 73%

Trial outcome

Positive 14 47%

Negative 16 53%
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Table 2.10: Characteristics of process evaluation

Characteristic Count %

Methods used in inquiry

Quantitative 4 13%

Qualitative 13 43%

Mixed methods 13 43%

Causal inference as stated aim

Yes 7 23%

No 23 77%

Causal inference as stated or implied aim

Yes 9 30%

No 21 70%

Processes investigated

Subjective responses to treatment (Patient) 19 63%

Adherence 9 30%

Fidelity 8 27%

Subjective responses to treatment (Staff) 7 23%

Dose received 4 13%

Reach 4 13%

Satisfaction 3 10%

Context 2 7%

Dose delivered 2 7%

Implementation 1 3%

Mechanisms of treatment 1 3%

Recruitment 1 3%

Results from pe linked to results from oe
Yes 3 10%

No 27 90%
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Table 2.11: Cross tabulation: Methods used x Causal inference as aim

Causal inference as aim

Methods used Yes No

Mixed methods 8 5

Qualitative 0 13

Quantitative 1 3

Total 9 21

a percentage of the target population who had received the treatment. Satisfaction refers to

how well the treatment has met a patient’s goal from their own perspective. Context refers

to the environmental influences that dictates the conditions under which the treatment was

provided. This is commonly studied to compare the effect of the same treatment under different

conditions. An example would be the effect of a treatment when it is provided by a nurse

versus a psychiatrist or when a treatment is delivered in a hospital setting versus a clinic in

the community. Implementation refers to the processes involved in setting up the delivery

of the treatment. Mechanisms of treatment refer to the processes that form a causal chain of

events leading up to the production of the intended treatment effects. Recruitment refers to the

processes related to the recruitment of patients during the trial.

Each of these processes occur during distinct stages of the rct. Using these stages, a grouping

of these processes was proposed:

1. Processes of trial conduct (recruitment, reach),

2. processes relating to context (context),

3. processes related to delivery of treatment (subject/staff responses to treatment, adherence,

fidelity, dose received/delivered, satisfaction, context, implementation) and

4. mechanisms of action of the treatment (mechanisms of treatment).

This grouping serves to provide a structure to consider how processes from different parts of

the rct can affect the outcomes of interest and grouping helps to ensure that entire groups of

processes would not be overlooked. This grouping is by no means a definitive way to group

processes and it exists solely to aid and encourage consideration of the role of different kinds of
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processes in an rct. Lastly, 90% of the pe studies did not make any reference to the outcomes

measured in the oe. This suggested that in the majority of the pe studies, the processes were

evaluated independently from the outcomes.

2.4 Discussion

The primary aim was to understand what mental health researchers were using pe for and the

methods associated with this use. From this review, we identified a broad range of processes

that mental health researchers consider relevant. The methods associated with evaluating these

processes were largely qualitative in nature even though in about a third of them, causal inference

was an aim. These findings indicated that the interest in pe amongst mental health researchers

could be driven by the unique nature of mental health treatments where processes such as the

patient’s ‘perception of the treatment’ can play a critical role in achieving beneficial outcomes

as compared to evaluations of the pharmaceutical treatments where such perceptions of the

treatment likely play a far lesser role. A grouping of these processes was also proposed to aid in

thinking about the different kinds of processes that are present within a trial. The aim of this

grouping was to encourage the consideration of the role of processes within each facet of the

trial and its relation with the outcomes of interest. This role would in turn dictate the types of

causal questions that could be posed in relation to the effect of the process on the outcome. The

type of causal inference questions that could be posed falls into one of the three following types:

1. Mediation: Did the process mediate the effect of the treatment on the outcome?

• Such research questions stipulate a pathway by which outcome improvements come

about.

• They seek to establish whether changes in outcomes are brought about by the

treatment through an intermediate variable.

• The aim of such questions is to ascertain how the observed changes in outcomes

came about: directly or indirectly via intermediate variables.

2. Effect modification: Did the post-intervention process modify the effect of the treatment

on the outcome?

• Effect modification is similar to mediation in that it also seeks to determine if the

changes observed in the outcome is due directly or indirectly to the treatment.
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• Such research questions aim to establish whether the intervention is more beneficial

for patients who experience the treatment in a certain way, e.g. taking part in a

sufficient number of session (adherence) or having a better rapport with the therapist.

• Importantly such therapy experience variables are only observed by those who are

offered the respective therapy. Such questions are again about establishing who can

benefit from the intervention, and typically inform further complex intervention

development.

3. Moderation: Did the process moderate the effect of the treatment on the outcome?

• Moderation focused questions seek to establish whether the causal effect of the

intervention varies amongst groups within the population (contextual variables).

• These questions help to determine who is likely to benefit from the intervention and

amongst those who benefit, which group of the population have the largest benefit.

Processes of trial conduct and context could pose either questions related to mediation or

moderation. Processes related to delivery of treatment could pose questions related to effect

modification and processes related to mechanisms of action of the treatment could pose questions

related to mediation. In essence, this grouping of processes not only maps out the different

processes conceptually, but also provides guidance on the type of causal questions that could

be asked and by extension the methods that could be deployed to study these processes. All of

these would come into play if causal inference was an aim of conducting pe but the findings of

the review seem to suggest that causal inference was of little interest.

This was most evident in the heavy use of qualitative methods among the studies reviewed.

Qualitative and quantitative methods differ starkly in their perspectives of reality where the

former considers reality to be a social construct, shared by many individuals and the latter

considers the existence of a single reality (Guba & Lincoln, 1981). This is an oversimplified

characterisation of the perspective of reality of the two sets of methods. However, this was

done to highlight how different each set of methods considers to be reality and by extension the

means that each deploy to understand and find out about this reality.

Qualitative studies typically following along one of the five approaches (narrative, phenomeno-

logical, grounded theory, ethnographic and case study research) and each approach considers

reality in different ways and holds different assumptions (Creswell, 2007). The findings from
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qualitative studies can be considered as detailed accounts of this reality. For example, in the

phenomenological approach, it considers reality to be informed by the collective experiences of

many individuals as they go through certain phenomena or events. The aim of a study employing

a phenomenological approach would then be to give a detailed account of this collective experi-

ence that is unique to this phenomenon. Such an account is a subjective evaluation of reality, a

reality experienced by the individuals involved. These subjective assessments, in the context

of pe, inform the various stakeholders of what it is like to going through specific processes

and allows for a richer understanding of what happens at each part of the trial from different

perspectives.

An important consequence from this richer understanding is that it aids in forming new hy-

potheses about causal relationships amongst processes and between processes and outcomes.

These new hypotheses could indicate potential ways in which the treatment could be modified to

bring about stronger treatment benefits. The shortcoming of a purely qualitative approach is that

there is no objective measure of the degree in which the new hypotheses are to be trusted. The

is where quantitative methods and specifically, methods of causal inference can aid in providing

an objective assessment of this hypothesised causal relationship.

Using a drug trial as an example, a qualitative finding could indicate that some patients did not

adhere to the medication regime because of the bitter taste of the drug. A hypothesis could be

that the bitter taste caused some patients to miss their doses and the lapse in dosing caused a

drop in the treatment effectiveness. If such a drop in effectiveness was deemed important to

remediate and a change in the composition of the drug was trivial, the drug could be changed to

taste less bitter without any further action. However, if this change was not trivial, then the

prudent thing to do would be to generate evidence in support of this hypothesis before any

changes were made. Such would also be the case if there was a complex web of causation where

the change in a single variable could have unexpected or unpredictable effects as in the case of

complex interventions. The testing of this hypothesis could either be done using existing data if

the necessary data was available or in a new trial designed specifically to evaluate the impact of

the taste of the drug on its effectiveness.

Having stated the role of qualitative and quantitative methods in the context of anrct, I would

address the sparing use of quantitative methods in pe next. This sparing use could be explained
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either by a lack of need for questions of causality in pe or that there is such a need but barriers

exist in conducting such an analysis. Addressing the former, it seems unlikely since the aim of

an rct was to identify better options for treatment than existing ones. Furthermore, focusing

on the processes that were of interest in the studies reviewed, many of them such as ‘adherence’

and ‘subject’s perception towards treatment’, had an unambiguous potential causal relationship

with the outcome. We can therefore rule out a lack of need for causal inference in pe.

Having ruled out the lack of motivation for the use of quantitative methods, the existence of

barriers becomes the more likely explanation for the lack of use of quantitative methods for

causal inference in pe. This is supported by the finding that only 10% of the studies reviewed

sought to infer some relationship between the processes studied and the outcomes of interest.

Given that many of the processes had potential causal relationships with the outcomes as

indicated previously, the lack of studies seeking to test this hypothetical relationship suggests

that this was a task with significant difficulties.

If we also consider the type of causal questions that could be posed in a pe and the methods

that could be employed to test the hypotheses posed by those questions, it becomes clear that

for a subset of these questions, such as some questions of mediated causality, accessible tools

are not available for use. Accessible in this context refers to tools that do not have prerequisite

training or in-depth knowledge about statistical methods and programming in order to use. This

lack of accessible tools is another indication supporting the notion that the observed sparing use

of quantitative methods is secondary to the barriers encountered. The lack of accessible tools

apply to a subset of questions posed in pe and the next chapter would focus on questions of

mediated causality in pe.

Having reasoned about the existence of barriers in the conduct causal inference within pe,the
next few chapters would focus on elaborating and overcoming some of these barriers.

2.5 Strengths and limitations

A limitation of this study was the choice to focus only on studies related to mental health. The

main motivation behind this choice was to be able to identify and develop methods for pe
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within the mental health domain. By doing so however, it also implied that the conclusions

drawn from this review had limited generalisability beyond mental health studies. This brings up

the question of whether significant changes to the findings of this review would be expected if

we expanded the scope of this review to include all studies that utilise pe and more specifically

whether the methodological gaps uncovered would have already been plugged.

There are two indications that this is not the case. The first, as mentioned previously, is a lack of

easily accessible tools to conduct causal inference for common scenarios found within pe. The

second indication comes from the manual screening process where each study was assessed to

determine if it fulfilled the inclusion criteria. Since there were no keywords within the search

strategy to identify mental health related studies, this meant that the studies that were retrieved

from the initial search had to be screened to confirm that it was a mental health related study.

From the 930 studies that passed through screening, less than 10 studies fulfilled all the inclusion

criteria except for being a mental health related study. Amongst these studies, there was no

indication that the methodological gap in causal inference had been filled. Therefore, in a bid to

maintain the focus of this thesis and to allow the review to contextualise pe as it applied to a

mental health researcher, these studies were not included in this review. Lastly, given the small

number of studies that were not mental health related, there is high degree of confidence that

the conclusions drawn from this review will remain largely unchanged with the inclusion of

these studies.

The strength of this study lies in its transparency. It is possible to reproduce in entirety the results

of this review using the reviewer’s manual found in the appendix where detailed documentation

of each step of the search was documented and parts of the search was additionally verified

by a second reviewer. Another strength of this study lies in its novelty. This study taps on

many of the same steps as a traditional systematic review but for the purpose of identifying a

methodological gap in the literature. Using evidence from existing literature to identify and

motivate methodological developments ensures that methods arising from these efforts are

better positioned to fulfil a genuine need within the research community.
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2.6 Conclusion

In conclusion, this review achieved its two aims of identifying the purposes of pe as well as the

methods used to accomplish the purpose. The results from the review indicated that processes

were studies with the aim of improving treatment outcomes. The sparing use of causal inference

methods in pe is a sign that there are methodological barriers. A consideration of the questions

posed in pe provided hints that these methodological barriers exist since the tools required to

answer the questions are not easily accessible. The rest of this thesis would focus on overcoming

some of these barriers in a bid to encourage greater scrutiny of processes as a means to a deeper

understanding of why, how and for whom does a treatment work. Lastly, the review also propose

a grouping of processes with the aim of ensuring that processes from different parts of the rct
were given due consideration as to their role in affecting treatment outcomes.



Chapter 3

A framework for causal mediation

analysis

3.1 Introduction

The previous chapter concluded that many research questions posed in process evaluation

(pe) are of a causal nature. These questions arise from a need to understand the context and

pathways through which interventions cause improvements in outcomes. They can be broadly

categorised into three types of causal questions discussed previously: mediation, moderation

and effect modification questions. Out of the three types of questions, mediation questions are

perhaps most pertinent to pe since processes commonly serve as intermediaries between the

interventions and outcomes. This idea of thinking of processes as mediators is not new and

had been highlighted by Judd and Kenny (1981), Judd (1987), and also in the seminal paper on

mediation by Baron and Kenny (1986). The first two papers also referred to the use of mediation

as a way to conduct process analysis, the name used to refer to pe in an earlier time.

Given these beginnings of pe, it comes as an unexpected finding that qualitative methods were

heavily used in the evaluation of processes and not quantitative methods since quantitative

methods are well positioned to answer questions posed by pe. Consequently this also implied

that when qualitative methods were used, researchers were able to only generate new hypo-

theses from the results of the studies but were unable to confirm them. Confirmation of these

36
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hypothesises required the use of quantitative methods and the challenges of doing so were briefly

discussed in the previous chapter. What appeared to be most likely is that causal inference was

of interest but owing to methodological difficulties of causal inference, qualitative methods were

used instead. This however limited the use of pe to provide insight into how the processes

work to cause an effect of interest. This is particularly important for complex interventions.

Complex interventions, by their nature, consist of each multiple components, each with different

effects and the interplay of these effects sometimes have unexpected or unknown effects on

the outcomes of interest (Moore et al., 2015b). This interplay makes it difficult to discern how

exactly the outcome of interest came about and to which component of the intervention can

one attribute the outcome of interest to. This applies regardless of whether or not the trial

shows a desirable outcome or not. Should the trial show that the treatment is ineffective, its

also of interest to understand why this came about. In this respect, pe can play an important

role to understand with precision the factors contributing to the success or failure of complex

interventions.

Given the promise of pe in aiding an understanding of causal relationships in complex interven-

tions coupled with the potential of conducting such analyses using existing data, this thesis aims

to develop methods to bridge this methodological gap with a focus on the assessment of causal

mediation. Trials of mental health interventions will be used to guide the methods development

to ensure that methods developed had real world applicability in an existing, active domain.

Up till this point, mediation has been discussed in the context of causal inference as this is the

emphasis of this thesis. There is another concept of mediation termed statistical mediation

(MacKinnon, 2008). Both statistical and causal mediation are aimed at establishing causality. The

difference however is that for causal mediation, the aim is explicit and the mediational analysis

would be conducted within a causal framework such as the potential outcome (po) framework.

Statistical mediation on the other hand have an implied causal interpretation of mediation and

focuses on associations and correlations. These would be considered to be weak evidence for

causality using the ladders of causation developed by Pearl (2019). Causal mediation would be

higher up the ladder of causation and represents stronger evidence of causality which would be

discussed in greater detail in this chapter. Both statistical and causal mediation however share

similar statistical methods in estimating the degree to which an effect of interest is mediated and

these include the generalised linear model (glm) family of models to estimate the association
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between the treatment under study ' and the target intermediate outcome/putative mediator

variable, " , as well as between " and the distal outcome variable, . (fig. 3.1). However, in

order to infer any causality, a quantification of the causal effect, the causal estimand, needs to

first be defined. The causal estimand adopted in this thesis is a population parameter which

we wish to estimate from a sample of subjects that we can observe. Estimation of the causal

estimand then requires the selection of a statistical approach and the different approaches may

hold different assumptions about the underlying attributes of the population. Focusing on the

Figure 3.1: Simple mediation diagram

' " .

difference between statistical and causal mediation, causal mediation has substantially more

considerations since it goes beyond making associations to making causal inferences. These

additional considerations required to conduct causal inference would be approached using

principled methods by clearly defining the causal estimands and any assumptions made in the

process of estimating the causal estimands (Daniel & De Stavola, 2019; De Stavola & Daniel, 2012;

Pearl, 1995). Causal mediation analysis refers to such principled approaches that can produce

valid (unbiased) estimates of mediation estimands (T. J. VanderWeele, 2015).

This chapter is broken up into several sections. The next section (section 3.2) introduces the

framework for causal mediation analysis used to define mediated effects that might be of interest

in the context of pe. Following on, the next section (section 3.3) makes a detour to provide

some background information on a randomised controlled trial (rct), the Carers’ Assessment,

Skills and Information Sharing (casis) trial, which serves as a motivating use case to illustrate

how the various concepts apply to an rct. casis is also used in the next chapter in the

development of the estimators. Discussions are limited to the case of two-arm rcts as this is

the primary focus of the thesis.

The following section (section 3.4) formally defines total, mediated and non-mediated causal

effects of interest in a target population. The definitions are discussed alongside issues related

to identification of the effects. Identification here refers to a specific concept in statistics where

a population quantity is identified if it can be expressed as a function of moments (means and

covariances) of observable variables. The quantities of interest in the context of pe are the
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total or mediated causal effects in the population. Identifiability thus refers to the conditions

under which the variables need to be observed under in order to be able to compose the function

relating the population quantity of interest with the observed variables. These conditions and

the observed variables depend upon the study design. If the causal effect cannot be observed

under any conditions, it implies that the causal effect cannot be estimated at all and such a

population quantity is referred to as a non-identified causal effect. Having an identified causal

effect thus implies that under appropriate conditions, the causal effect can be estimated.

After defining the causal effects of interest and addressing identification issues, I will next discuss

how the defined causal effects can be estimated from sample data using fully parametric methods.

Parametric models refer to statistical models which parametrise or quantify all distributions

of random variables and relationships between variables. Only inferential methods relying on

fully parametric models are considered because the parametric assumptions inherent in such

models aid in identifying causal effects and provide for more efficient estimation approaches as

compared to non-parametric approaches. The validity of the results from parametric approaches

however rests upon how likely the parametric assumptions are violated in a given study.

This chapter ends with a summary of how mediated causal effects are defined, identified and

estimated. This lays the groundwork for developing methods that address unmet methodological

needs which is the focus of the following chapter.

3.2 Potential outcomes framework

The framework that is adopted to define, identify and estimate causal effects is thepo framework.

In this section, I briefly introduce main elements of the po framework. The po framework has

been used in recent times to define what constitutes a causal effect (Pearl, 2009; Rothman et al.,

2008) and different names have been used to refer to it: the counterfactual framework (Lewis,

2001), the Neyman-Rubin causal model, the Rubin Causal Model (rcm) (Holland, 1986) and the

structural causal model (scm) (Pearl, 2009). These different names all refer to the same concept

of using potential outcomes to define what a causal effect is. It should be noted however the

conception of using pos behind each of these frameworks are not exactly the same and the

definition adopted in this thesis closely aligns with the framework by Pearl (2009).
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The word ‘potential’ in ‘potential outcome’ indicates an outcome that can occur but has yet to

occur. In the context of a two-armed rct, the po refer to outcomes attributed to each of the

treatment arms. Such a trial typically has an experimental and a treatment as usual (tau) arm

where the latter is used as a control. For simplicity, for this definition, I am assuming that the

treatment offered or assigned to the subject is the one that he or she receives. This may not be

true under certain circumstances, for instance, if the subject refuses the treatment. The reason

this is important is because in a typical trial, there is a distinction between the causal effect

on treatment offered (or more commonly known as intention-to-treat (itt) analyses) and the

causal effect on treatment received (or more commonly known as the complier average causal

effect (cace)). The investigator may be interested in one or the other and therefore defines

the causal effect accordingly. For now, I will assume that the causal effect of interest is the itt
effect and the causal effect can be defined for everyone in the trial regardless of what arm they

are in. The pos are defined as follows:

1. the outcome had the subject been offered the experimental treatment and

2. the outcome had the subject been offered the control treatment.

Using these two pos, we can then construct a causal effect. As an example, let the outcome be

a measure of severity of a disease with a higher score indicating increased severity. The pos

in this case mean what the severity of disease would have been should the subject be offered

the different forms of treatment. For a continuous measure such as severity, a useful way to

define an individual’s causal effect of treatment is to compare the potential outcomes under

experimental and control treatments. This can be done by simply taking the difference between

the po for the experimental and control treatment. If this difference is positive, it indicates

that the experimental treatment causes the disease to be more severe and if it is negative, it

indicates that the experimental treatment is reducing the severity of the disease. If there are no

differences in the two pos, it indicates that the experimental and control treatments are on par

in terms of the pos.

More formally, . refers to the outcome and ' refers to the offered treatment where,

' =


1, if offered experimental treatment

0, if offered control treatment

When an individual is being referred to, a subscript would follow like .8 referring to the outcome
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. of subject 8 . Using these notations, the two pos for subject 8 can then be notated as .8 (' = 1)

and .8 (' = 0) representing the po of being offered the experimental and control treatment

respectively. These two notations are abbreviated to .8 (1) and .8 (0) in this thesis. These two

pos are mapped onto the observed outcome .8 as follows:

.8 =


.8 (1) , if ' = 1

.8 (0) , if ' = 0

The causal effect for subject 8 on treatment offer, also known as the total effects (te)8 , is thus,

te8 , .8 (' = 1) − .8 (' = 0)

, .8 (1) − .8 (0)

Having presented a brief overview of the po framework, I will next provide some background

information on the casis trial which will serve to motivate the concepts presented in this

thesis.

3.3 The casis trial

This section presents the background to the casis trial (Goddard et al., 2013; Hibbs et al., 2015;

Magill et al., 2016), which is used to illustrate the applicability of various concepts discussed

throughout the thesis to an rct. casis was a trial of an intervention, Experienced Carers

Helping Others (echo), for carers of patients with anorexia nervosa (an) which is a form

of eating disorder characterised by a persistent restriction of energy intake, fear of gaining

weight and an altered self-perception of one’s own weight. an, in severe cases, can become

life threatening (American Psychiatric Association, 2013). The echo is a programme aimed to

improve a carer’s ability to care for a person withan and to reduce the severity of the symptoms

of an exhibited by the patient. For the casis trial, patients who have been diagnosed with

moderate to severe an were recruited.

The echo is a theory driven self-help intervention designed to reduce adverse interactions

between carer and patient as well as to support the well-being of the carer. The theory postulates

that by achieving these two goals, the carer will have decreased levels of distress, leading to

decreased occurrences of relapse and fewer an symptoms in the patient. A simplified diagram
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of the theoretical causal relationships is shown in fig. 3.2. The echo programme consisted of

Figure 3.2: Simplified causal diagram of casis (Goddard et al., 2013)
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a book and five DVDs providing communication skills training targeted at supporting persons

withan. The programme was supplemented with telephone coaching provided by experienced

caregivers or coaches who received prior training in the same communication strategies taught

in the book and DVDs. These caregivers and coaches were assessed by the researchers to have

reached a pre-requisite level of competency before they started providing coaching sessions. The

treatment took place over a period between three to six months and the carer-patient dyad/triad

were followed up for a year.

All outcome measures were assessed on admission, discharge to and from the hospital, 6, 12, and

24 months post-discharge with the exception of body mass index (bmi) of the patient which

was measured monthly. The trial had separate aims for the carer and the patient. For the carer,

the primary aim was to decrease the level of distress and this was measured using the Depression,

Anxiety and Stress Scale Short Form (dass-21) (Henry & Crawford, 2005; Lovibond et al.,

1995) with the primary dass-21 outcome defined at 12 months post-discharge. The primary

aim for the patient was to increase the time to relapse (second co-primary trial outcome) and

this was monitored by bmi. If the patient was at normal weight at the time of discharge, a

relapse was defined as dropping below 17.5kg/m2. If the patient was discharged at below normal

weight, a drop of 1kg/m2 indicates a relapse.

The secondary outcomes for the caregiver were as follows:

1. the Accommodating and Enabling Scale for Eating Disorders (aesed) (Sepulveda et al.,

2009) as a measure of accommodating behaviours which refer to the accommodation of

behaviours associated with an exhibited by the patients,

2. the Eating Disorders Symptom Impact Scale (edsis) (Sepulveda et al., 2008) as a measure

of caregiving burden,
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3. the FamilyQuestionnaire (fq) (Wiedemann et al., 2002) as ameasure of expressed emotion

which refers to certain attitude and behavioural patterns shown towards the patients,

4. the World Health Organization Quality of Life (whoqol) (World Health Organisation,

1996) as a measure of quality of life (qol) and
5. the Client Service Receipt Inventory (csri) (Beecham & Knapp, 2001) as a measure of

resource use.

The secondary outcomes for the patient were as follows:

1. the dass-21 (Henry & Crawford, 2005; Lovibond et al., 1995) as a measure of distress,

2. the Eating Disorder Questionnaire (ede-q) (Bryant-Waugh et al., 1996; Watkins et al.,

2005) as a measure of symptoms related to an,

3. thewhoqol (World Health Organisation, 1996) as a measure of qol and

4. the csri (Beecham & Knapp, 2001) as a measure of resource use.

A detailed timeline of the assessments will be presented in the following chapter where the

developed methods are applied to the data from the casis trial. The trial adopted an rct
study design. A total of 178 patients and 268 carers were recruited into the study. The recruitment

took place upon the patient being admitted to the hospital for an an related event and the

randomisation of the subjects took place right after recruitment. The randomisation of the

treatment was at the level of the patient-carer(s) dyad or triad. 92 patients and 134 carers were

randomly offered to receive tau only and 86 patients and 134 carers were offered to receive

both tau and echo.

The original analysis in the study catered for more than one caregiver but for the purposes of

illustrating the concepts presented in this thesis, I will simplify this and limit the analysis to

only the primary caregiver. The primary caregiver is a distinction made within the study to

identify the main person that was in charge of the care of the patient. The study also conducted

a qualitative study focused on the experience of caregivers and patients undergoing echo
closely aligned with the process ‘subjective perspective of treatment (patients)’ identified in

the previous chapter (Macdonald et al., 2014). The main trial indicated that the outcomes for

both the carers and patients were marginally and non-significantly better in the echo arm of

the trial. The qualitative study indicated that both the carers and patients found the support

afforded by echo helpful and both also had better insights into their communication with
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each other. With this introduction to the casis trial, I now proceed with formally defining

causal treatment effects.

3.4 Definition of mediated causal effects

Prior to the introduction of casis, we left off from a discussion of the po framework and how

it is used to define causal effects. In this section, I pick up from where we left off and first expand

on the use of the po to introduce two different total causal effect size measures for continuous

and binary outcome variables respectively: the causal mean difference and the causal odds ratio

(or). Following on from this, I will introduce a formal definition of the mediated causal effect

with a single mediator, first with continuous causal effects defined using differences and then

causal or for binary outcomes. Finally, I will expand the definition of a mediated causal effect

to allow for two sequential mediators. Identification issues with the causal effects are presented

alongside their definitions.

3.4.1 Total causal mean differences and or

In the section on thepo framework, thete for a single individual was introduced. A brief recap,

consider a two-armrctwith. being the outcome of interest and ' being the treatment offered

where A = 0 when the control treatment had been offered and A = 1 when the experimental

treatment had been offered. The te for an individual, te8 is thus defined as:

te8 , .8 (1) − .8 (0)

From this definition, we can see that in order to estimate an individual causal effect, we will need

the outcomes of the same individual after being offered the experimental and control treatments

of the trial concurrently. This is not possible since there is only one individual and he or she

can only be offered a single treatment at any given time. A scenario that comes close to being

able to measure the outcomes of both arms of the trial for each individual concurrently is the

cross-over trial where each subject receives both the treatments one after another. In most cases,

this serves as a good approximation of concurrently measuring both pos. The key difference

is that the individual would not be physiologically or psychologically identical at the start of
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both treatments in the cross-over trial. The cross-over trial will not be discussed further as it is a

trial design used only in select circumstances. The focus will be placed on a standard two-arm

parallel group rct. In such a typical rct setup, the inability to measure both pos at once

indicates that the individual causal effect cannot be estimated and is therefore unidentified.

A way around this inability to estimate an individual treatment effect in a standard rct is

to consider causal treatment effects treatment effects at the population level. We define the

population total causal effect of treatment offerte using the population causal effect as follows:

te , E[te8] (3.4.1)

= E[.8 (1) − .8 (0)] (3.4.2)

It should be noted that due to the linearity of expectation, eq. (3.4.2) is equivalent to the difference

between the means of po.

te , E[.8 (1)] − E[.8 (0)] (3.4.3)

Therefore, taking the expectation of differences between po of each individual eq. (3.4.2) and

taking the differences between the expectations of each po eq. (3.4.3) are equally valid and

equivalent expressions of the te. The next question of interest would be whether the te is

identified? When considering identification, we have to take into account the study design

and in this case, a parallel group rct. In such a design, subjects are randomly offered either

the control or the experimental treatment. The randomisation of the treatment offered ensures

that the characteristics of both groups are similar at baseline and because their characteristics

are similar at baseline, the outcomes associated with the control and experimental treatment

will stay the same if the two groups of subjects exchanged the treatment they were offered,

i.e. the control treatment group receiving the experimental treatment and the experimental

treatment group receiving the control treatment. This unique property of being able to exchange

the offered treatment and still have consistent observed outcome is known as exchangeability or

ignorable treatment assignment condition (Hernan & Robins, 2020). This property is ensured in

trials due to randomisation. What exchangeability allows us to do is to be able to use simple

means and differences in accordance with eq. (3.4.2) or eq. (3.4.3) to obtain valid estimates of

te.

However, being able to estimate the pos alone does not make the te an identified causal

effect under the standard rct design. Exchangeability is the first of the three conditions of
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identification that must be fulfilled before the te can be considered identified. I will take a

short detour to discuss the other two conditions before continuing with the definitions of causal

effects.

The second identification condition, known as positivity (Hernan & Robins, 2020), requires that

for each individual, there is a non-zero chance of being offered each of the treatment under

investigation within the trial. In the context of an rct, positivity holds by design as each of

the treatment that is randomly offered has a predefined non-zero probability of being assigned

to each individual.

The last condition for identification is consistency (Hernan & Robins, 2020). Consistency requires

that the observed outcome for each individual to be equivalent to the outcome had the individual

received the offered treatment and is implied by equation eq. (3.4.1). On the surface, this condition

appears to be a given but it can be violated if the offered treatment is ill defined, allowing for

wide variations in administration of the treatment. In the case of casis, if the carers each

received a different version of the self-help guide or if the coaches provided support to each of

them in very different manners, it then becomes unclear what causal treatment effect is targeted.

This is more likely to be violated when the interventions are complex or consist of multiple

parts and less likely when the intervention is straightforward for example in a typical drug

trial. In summary, what consistency requires is for different treatments within the trial to be

well-defined and adhered to.

Moving back to the definition of te, we have so far defined te using differences between two

pos. Such a definition is meaningful when the outcome is continuous. When the outcome

is binary, the group level pos becomes a proportion of the subjects who had an outcome of

1 within the group. A direct consequence of this is that the te becomes the difference in

probability of having an outcome of 1 between the experimental and control treatment.

te , E[. (1) − . (0)]

, E[. (1)] − E[. (0)]

, Pr(. (1) = 1) − Pr(. (0) = 1)

Since each of the pos is a probability, an alternative way of defining a te is by using an

alternative effect size measure, the causal or. The or is a popular way of expressing the odds

that one would recover when given an experimental as compared to a control treatment. Its



CHAPTER 3. FRAMEWORK FOR CAUSAL MEDIATION 47

popularity likely stems from the widespread use of logistic regression to analyse case control

studies. In order to define the causal or, let’s begin by first defining what odds are. Odds is

a ratio between the probability of having an outcome of 1 under a specific treatment and the

probability of having an outcome of 0 under the same treatment. Therefore, the odds of E[. (1)]

are:
Pr(. (1) = 1)
Pr(. (1) = 0)

The same applies for the second po in the definition, Pr(. (0) = 1):

Pr(. (0) = 1)
Pr(. (0) = 0)

With the two odds defined, we can now define the total causalor. Theor, as the name implies,

is a ratio of odds. Using the two population odds that had just been defined, the or, known as

the average treatment odds ratio (tor) is:

tor , Pr(. (1) = 1)
Pr(. (1) = 0)

/
Pr(. (0) = 1)
Pr(. (0) = 0)

The tor is the equivalent to the te but for binary outcomes and serves to be a measure of the

total causal effect of the treatment on the outcome in terms of or. The tor, given that it is

a ratio of odds, indicates that if it is 1, the two odds in the ratio are the same. If it is below 1,

the odds from the denominator which represents the odds for the control treatment is smaller

than that of the numerator which represents the odds for the experimental treatment. The vice

versa is true as well. In a standard rct, the tor is identified provided all of exchangeability,

positivity and consistency hold for the same reasons as explained above for the te effect size

for continuous outcomes.

Collapsibility of an effect size measure refers to whether or not the constant conditional effect

across subpopulation is the same as the marginal (whole population) effect. One important

difference between the te and the tor is the property of collapsibility. Importantly, while the

te is collapsible, the tor is not (Berzuini et al., 2012). In what follows, I will discuss relevant

aspects of collapsibility as it applies to identifying a strategy for its estimation.

Consider thetewhere the causal effect is defined in terms of differences between two expected

pos. Thete is the treatment effect of the population, formally known as themarginal treatment

effect. We can also define a total causal effect in a subpopulation indexed by - = G as follows,

teG , E[.8 (1) |- = G] − E[.8 (0) |- = G]
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This is referred to as the conditional causal treatment effect as it is conditional on variable -

taking the value G where - is an indicator of the subpopulation. Using gender as an example,

a conditional treatment effect can refer to the te of males when - = males. Likewise, we

can also have a conditional treatment effect that refers to the te of females. If we know the

proportion of males and females in the population as well as their respective te, we would be

able to work out the marginal treatment effect from these two pieces of information alone as

shown in eq. (3.4.4).

te = (Proportion of males · temales)+

(Proportion of females · tefemales) (3.4.4)

In the special case where temale is the same as tefemale, gender is thus not an effect modifier

and eq. (3.4.4) indicates that te is equal to both temale and tefemale.

An important difference between the te and the tor is that or as effect size measures are

in general, not collapsible. Even if the conditional tor was constant across all subpopulation

defined by - = G , it is still possible that torG ≠ tor. It suffices for now to highlight that this

is an important difference that will later pose a problem in estimation of thetor and more will

be elaborated in the next chapter. Collapsability is an important concept within causal inference

with serious implications on interpretability of causal effects and a detailed discussion is well

beyond the scope of this thesis. Such a discussion however can be found in Greenland and Pearl

(2011) and Pearl (2009) and Hernán et al. (2011). Having defined the te and tor, we shall

next define mediated causal effects for a single mediator.

3.4.2 Mediated causal effects for a single mediator

A mediated causal effect can be thought of as the effect due to a chain of events, and intuitively,

this is akin to the dominoes effect where each domino falls as a result of the preceding domino

falling on it. Using casis as an example, a mediated causal effect could be defined as the effect

of the echo treatment in reducing symptoms of an in the patient as a result of a reduction

in distress of the caregiver by 12 months after discharge. The relationships of the three variables

are shown in fig. 3.3. Each of the arrows represent a causal effect and in this case, since there are

multiple arrows pointing towards the outcome ‘Patient: an Symptoms’, it implies that there are



CHAPTER 3. FRAMEWORK FOR CAUSAL MEDIATION 49

Figure 3.3: Mediated causal effects in casis, single mediator

Treatment

Carer:

Distress

Patient:

an symptoms

multiple causes of this outcome. Tracing where these causes come from starting from the top

lead us to ‘Carer: Distress’. The ‘Carer: Distress → Patient: an symptoms’ arrow represents

the causal effect of carer’s distress on the patient’s an symptoms. Since there is also an arrow

pointing at ‘Carer: Distress’, this implies that there is a cause of the carer’s level of distress.

Tracing the arrows backwards, we see that this cause is the treatment. The ‘Treatment → Carer:

Distress’ arrow represents the effect of the treatment on the levels of distress of the carer. We

next turn to the bottom arrow pointing at the outcome ‘Patient: an Symptoms’. Tracing the

origin of this arrow leads us again back to the treatment indicating that the treatment is a cause

of the observed symptoms of the patient. The ‘Treatment → Patient: an Symptoms’ arrow

therefore represents the effect of the treatment on the symptoms ofan exhibited by the patient.

Put together, we can see that the treatment can affect the outcome through different pathways.

In the diagram, there is one direct and one indirect pathway from the treatment to the outcome.

The indirect pathway is what is known as a mediated effect as it is mediated by an intermediary

(Pearl, 2009). Since the te of the treatment on the outcome remains the same regardless of how

many mediators there are, a mediation model can be seen as a model that partitions or attributes

this te to each of the direct and indirect pathways. While it is self-evident, it is still worthy to

highlight that a distinction between direct and indirect pathways is only relevant when both are

present. In the absence of indirect pathways, there will be no such distinction and only the te
as defined earlier exists.

Next, to more easily refer to the each of the variables in a mediation model, I will use a mediation

model as shown in fig. 3.4. ' refers to the treatment," refers to the mediator and . refers to the

outcome of interest. Figure 3.4 is simply a general version of fig. 3.3. For fig. 3.4, ' represents the

treatment, " represents the mediator and . represents the outcome of interest. The arrows, as

before, represent causal effects. The direct effect (de) is represented by the ' → . path while

the indirect effect (ie) is represented by the ' → " → . path. The next issue to be addressed
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Figure 3.4: Mediation diagram with 1 mediator

'

"

.

is how the de and ie are to be defined using pos. From fig. 3.4, we can see that there are two

arrows pointing away from ' indicating a causal effect of ' on " and . respectively. We also

know that ' can assume two values, 0 and 1. Starting with " , the two values of ' indicates that

there would be two " pos, " (0) and " (1). In words, these are the values " would have had

if ' took the value of A = 0 and A = 1 respectively. Moving on to . , we can see that there are

two arrows pointing towards . from " and '. Since there are two pos of " and two possible

values of ', the total combinations of " pos with values of ' would be 4, indicating that there

would be 4 . pos. They are,

. (' = 0, " = " (0)) = . (0, " (0)) = . (0)

. (' = 1, " = " (1)) = . (1, " (1)) = . (1)

. (' = 0, " = " (1)) = . (0, " (1))

. (' = 1, " = " (0)) = . (1, " (0))

In words, . (0, " (0)) would be the value that . would have had if ' took the value of A = 0 and

the value of " is set at the value of " if ' took the value of A = 0. Since both the A values in

this nested po are the same, this is a po that can be observed in an rct and it is the same as

. (0). The nested po . (1, " (1)) is interpreted similarly and is the same as the po . (1). Also,

since . (0, " (0)) = . (0) and . (1, " (1)) = . (1), this also implies that the te could be defined

using these two pos.

te , E[. (1)] − E[. (0)] (3.4.5)

= E[. (1, " (1)) − . (0, " (0))] (3.4.6)

. (0, " (1)) is the value that . would have had if ' took the value of A = 0 and the value of "

is set at the value of " if ' took the value of A = 1. In this case, the two r-values are different

and this nested po is a po that is not possible to observe since we cannot subject " and

. to different levels of ' at the same time. Such a po is known as a cross-world po and is
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hypothetical in nature. Both . (1, " (0)) and . (0, " (1)) are cross-world pos except for different

combinations of r-values (Lewis, 2001; T. VanderWeele & Vansteelandt, 2014).

With the 4 pos defined, we can now move on to define ie and de. Previously, when defining

te, there were only 2 pos, one each for the experimental and control treatment, therefore a

choice need not be made over which po to use to define the te. However, in the case of the

de and ie, there are 4 pos and only 2 are needed for each definition of a causal effect.

Starting from the de, the first consideration is how should a de be interpreted? A de is an

effect that does not pass through a mediator. Using this intuition, it follows that the effect should

be defined using pos where the value of the mediator if held at the same level of ' in the two

nested pos contrasted. This leaves us with two possible ways to define the de. These two

ways were given special names, the pure natural direct effect (pnde) and the total natural direct

effect (tnde) (T. VanderWeele & Vansteelandt, 2014).

pnde , E[. (1, " (0))] − E[. (0, " (0))]

tnde , E[. (1, " (1))] − E[. (0, " (1))]

The ‘natural’ in pnde and tnde refer to the effect of exposure to naturally occurring levels

of the treatment on the mediator. In other words, it refers to the effects under the context of

the value " set to the value it would have been under A = 1 or A = 0. This is contrasted with

another form of effects known as the controlled effects where the level of " is held at a fixed,

predetermined value for all subjects. The controlled de has been widely used in policy analysis

where the effect of an intervention in a hypothetical population with " set to a fixed value (i.e.

the value expected due to a policy) is of interest (Pearl, 2009; Pearl et al., 2016). For example, if

we had an intervention that improved the symptoms of an eating disorder via a reduction in

anxiety, controlled de could be used if we are interested in the direct effect of the intervention

on the symptoms irrespective of the level of the mediated pathways. More examples specific to

policy analysis can be found in Pearl (2009). The concept of a controlled ie does not generally

exist except in very specific situations (T. J. VanderWeele, 2010) and even under these specific

situations, the interpretation of a controlled ie has yet to be widely adopted. The focus of this

thesis would be on natural de and ie effects.

Going back to the definition of de, the words ‘pure’ and ‘total’ in the names refer to the

predetermined level of A" in . (A. , " (A" )) when defining the des. ‘Pure’ refers to setting '"
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to A" = 0, i.e. the value of " under the control condition A" = 0. ‘total’ refers to setting the

value of '" to A" = 1, i.e. the value of" under the experimental condition. The same applies to

ies where there are pure natural indirect effect (pnie) and total natural indirect effect (tnie)
defined as follows:

pnie , E[. (0, " (1))] − E[. (0, " (0))]

tnie , E[. (1, " (1))] − E[. (1, " (0))]

Here, however, the ‘pure’ and ‘total’ refer to the level of A. in . (A, " (")) rather than A" as in

the case of the de. In each of the de and ie definitions, two pos are used and each po has

two values of '. For each definition, one of the ' is the same in both po while the other is

different. For the de, since the effect of interest does not pass through the mediator, therefore,

the mediator in both of the po used in each of the definition is held at the same value of '

had " been exposed to the said level. For the ie, the effect of interest must pass through the

mediator and thus the ' value that is held the same is the ' under which . would have been

had it been exposed to the said level and the ' under " is different for the two po. The ‘pure’

and ‘total’ terms then refer to the ' that is held at the same value in both po.

Having stated the possible ways to define the de and ie, the question remains as to which

one to adopt for the current thesis. Various researchers have adopted different approaches over

whichde and ie to use. Pearl (2012) used only pnde and pnie as it was deemed to be easier

to interpret the causal effects since the causal effects were assessed under the control condition.

Imai et al. (2010) on the other hand defined the de as the mean between the pnde and the

tnde and the ie as the mean between the pnie and tnie. Under conditions where there

are no interactions between the treatment and the mediator, the pnde is the same as tnde.
The same is true for the ie. However, when there are interactions, the pnde would not equal

to thetnde and likewise for the ie. This difference motivated the adoption of using the mean

between the ‘pure’ and ‘total’ effects for both the de and ie by Imai et al. (2010).

The next approach, which is also the approach adopted for this thesis was adopted by several

researchers including but not limited to Valeri and VanderWeele (2013), Daniel et al. (2015) and

Muthén et al. (2016). This approach uses either the pnde with the tnie or the tnde with
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the pnie which give rise to the following relationships.

te , pnde +tnie
, tnde + pnie

This approach was adopted because of the intuitive interpretation of the te as the sum of the

de and ie. Its weakness is that different estimates for the de and ie will be obtained if there

are any interactions between the treatment and mediator. However, this thesis will only consider

scenarios without interactions and the pair of effects that are used are the pnde and tnie.
They will henceforth be referred as the de and ie, dropping the ‘pure’ and ‘total’ labels. As a

summary, the definitions of the de and ie and their relationship with the te is a follows,

pnde , E[. (1, " (0))] − E[. (0, " (0))]

tnie , E[. (1, " (1))] − E[. (1, " (0))]

te , pnde +tnie

With the de and ie defined, we will next consider this issue for binary outcomes where causal

ors are used.

Mediated causalor

We have so far defined mediated causal effects for continuous outcome measures. The same

principles apply to effect size measures used for binary outcomes. Using nested pos the tor
can be written as

tor , Pr(. (1, " (1)) = 1)
Pr(. (1, " (1)) = 0)

/
Pr(. (0, " (0)) = 1)
Pr(. (0, " (0)) = 0)

Just like the te where the causal effect is defined as a difference and can be decomposed into

a de and an ie, the tor also possess a similar decomposition. Following the use of ‘pure’

effects for de and ‘total’ effects for ie previously, we would use ‘pure’ and ‘total’ effects to

define the direct odds ratio (dor) and indirect odds ratio (ior) respectively. The dor and

ior and their relationship with the tor are defined as follows.

dor , Pr(. (1, " (0)) = 1)
Pr(. (1, " (0)) = 0)

/
Pr(. (0, " (0)) = 1)
Pr(. (0, " (0)) = 0)

ior , Pr(. (1, " (1)) = 1)
Pr(. (1, " (1)) = 0)

/
Pr(. (1, " (0)) = 1)
Pr(. (1, " (0)) = 0)

tor , dor · ior
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The difference between the relationship of te and its direct and indirect effects with tor and

its direct and indirect or is that in the former, the relationship is additive while in the latter,

the relationship is multiplicative. Now that the causal effects for continuous (te, de, ie) and
binary (tor, dor, ior) outcomes for the single mediator case have been defined, I will next

move on to the definitions of the same for the two mediators case.

3.4.3 Mediated causal effects for two sequential mediators

In the previous subsection, I defined the different causal effects for a single mediator for both

continuous and binary outcomes. In this subsection, I will define the causal effects for two

mediators and discuss some of the problems encountered when extending the definitions to

accommodate two mediators. The work presented here focused on the two mediator scenario

but could be adapted to more generally apply to any number of mediators. It should be noted

though that as the number of mediators increase, so does the complexity of the definitions and

the estimation of the causal effects which will be discussed in the next section. The increased

complexity may make it difficult to interpret what each of the effects precisely mean. A detailed

treatment of this and other issues related to multiple mediators can be found in Daniel et al.

(2015).

Before going into the definitions, I would like to highlight two different ways of accommodating

two mediators, parallel and sequential mediation. Figure 3.5 will be used as a reference to

highlight the similarities and differences between the two mediation models. ', as before

represents the treatment variable, "1 represents the first mediator, "2 represents the second

mediator and . represents the outcome of interest. Arrows within the figure indicate causal

relationships. Both models are similar in that ', as the only independent variable in the model,

causes changes in "1, "2 and . . The difference between them is the single arrow from "1 to

"2 and the implication of this is that "2 is dependent on both ' and "1. This extra dependency

of "2 creates extra paths by which the effect of the treatment ' can traverse and also implies

that there will be more pos of"2 than if it was only dependent on '. This complexity is carried

forward when assessing the paths through which ' can have an effect on . . This thesis will

focus on the definition and estimation of sequential mediation.
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Figure 3.5: Mediation diagram with 2 mediators
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"2

.

Sequential mediation

Exploring this complexity a little further and using fig. 3.5 as a reference, we can enumerate the

possible paths from ' to . . These paths are named de, indirect effect through "1 only (ie1),
indirect effect through "2 only (ie2) and indirect effect through "1 and "2 (ie3).

de :' → .

ie1 :' → "1 → .

ie2 :' → "2 → .

ie3 :' → "1 → "2 → .

These four different paths represent the direct and indirect effects of interest. After identifying

the effects of interest, they need to be defined using pos. Let us first consider the number of

po of "1, "2 and then . . "1 is dependent on only ', therefore it has only 2 pos.

"1(0), "1(1)

"2 is dependent on both ' and "1 resulting in a total of 4 pos:

"2(0, "1(0)), "2(0, "1(1)),

"2(1, "1(0)), "2(1, "1(1))
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Lastly, . depends on ', "1 and "2 resulting in a total of 16 pos.

. (0, "1(0), "2(0, "1(0))), . (0, "1(0), "2(0, "1(1))),

. (0, "1(0), "2(1, "1(0))), . (0, "1(0), "2(1, "1(1))),

. (0, "1(1), "2(0, "1(0))), . (0, "1(1), "2(0, "1(1))),

. (0, "1(1), "2(1, "1(0))), . (0, "1(1), "2(1, "1(1))),

. (1, "1(0), "2(0, "1(0))), . (1, "1(0), "2(0, "1(1))),

. (1, "1(0), "2(1, "1(0))), . (1, "1(0), "2(1, "1(1))),

. (1, "1(1), "2(0, "1(0))), . (1, "1(1), "2(0, "1(1))),

. (1, "1(1), "2(1, "1(0))), . (1, "1(1), "2(1, "1(1)))

As in the one mediator scenario, out of the 16 pos, only two are observable with the rest being

cross-world pos. These two observable pos can also be alternatively expressed as . (0) and

. (1) respectively.

. (0) = . (0, "1(0), "2(0, "1(0)))

. (1) = . (1, "1(1), "2(1, "1(1)))

The causal effects were defined using these 16 . pos. Also similar to the single mediator

scenario where there are ‘pure’ and ‘total’ effects, in the two mediators scenario, there are

multiple ways to define each of the direct and indirect effects. However, unlike the single

mediator case, instead of having only two ways to define each effect, there are now eight ways

to define each effect. Using de as an example, a list of all the valid definitions can be found in

table 3.1. As in the single mediator case, the direct effect is the effect represented by ‘' → . ’

and therefore the causal effect should reflect the difference between the A = 1 and A = 0 of the .

po while holding the rest of the A at a natural level. Since there are three other As within each

po and each A can assume either 0 or 1, there are therefore 23 or 8 different ways to hold the

rest of the po at a natural level. The same applies for each of the indirect effects making it a

total of 32 direct and indirect effects. If as before, we were to define the te as a sum of the

direct and indirect effects, then out of these 32 effects, there would be 24 combinations of direct

and indirect effects that fulfil this condition (Daniel et al., 2015).

Assuming that there were no treatment-mediator and mediator-outcome interaction effects as

we had done in the single mediator case, each of the 8 direct effects definitions would produce
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Table 3.1: List of valid direct effect definitions

E[. (1, "1(0), "2(0, "1(0)))] − E[. (0, "1(0), "2(0, "1(0)))]

E[. (1, "1(0), "2(0, "1(1)))] − E[. (0, "1(0), "2(0, "1(1)))]

E[. (1, "1(0), "2(1, "1(0)))] − E[. (0, "1(0), "2(1, "1(0)))]

E[. (1, "1(0), "2(1, "1(1)))] − E[. (0, "1(0), "2(1, "1(1)))]

E[. (1, "1(1), "2(0, "1(0)))] − E[. (0, "1(1), "2(0, "1(0)))]

E[. (1, "1(1), "2(0, "1(1)))] − E[. (0, "1(1), "2(0, "1(1)))]

E[. (1, "1(1), "2(1, "1(0)))] − E[. (0, "1(1), "2(1, "1(0)))]

E[. (1, "1(1), "2(1, "1(1)))] − E[. (0, "1(1), "2(1, "1(1)))]

the same estimates. The same holds true for the indirect effects. However, if there are interaction

effects, then the different effect definition for each of the direct and indirect effect would produce

different results. A possible solution to this is to adopt Imai et al. (2010)’s definition of direct

and indirect effects to average across the different possible definitions. This however makes the

estimation of the causal effects much more complex so for this thesis, I will focus on the scenario

where there are no interaction effects and for that, I have adopted 1 of the 24 combinations of

direct and indirect effects shown in eq. (3.4.7). For reference, the combination of causal effects

adopted corresponds to decomposition one from Daniel et al. (2015).

de , E[. (1, "1(0), "2(0, "1(0)))] − E[. (0, "1(0), "2(0, "1(0)))]

ie1 , E[. (1, "1(1), "2(0, "1(0)))] − E[. (1, "1(0), "2(0, "1(0)))]

ie2 , E[. (1, "1(1), "2(1, "1(0)))] − E[. (1, "1(1), "2(0, "1(0)))]

ie3 , E[. (1, "1(1), "2(1, "1(1)))] − E[. (1, "1(1), "2(1, "1(0)))]

te , de + ie1 + ie2 + ie3 (3.4.7)
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Causal or can also be defined for binary . in the two mediator case as follows.

dor , Pr(. (1, "1(0), "2(0, "1(0))) = 1)
Pr(. (1, "1(0), "2(0, "1(0))) = 0) /

Pr(. (0, "1(0), "2(0, "1(0))) = 1)
Pr(. (0, "1(0), "2(0, "1(0))) = 0)

ior1 , Pr(. (1, "1(1), "2(0, "1(0))) = 1)
Pr(. (1, "1(1), "2(0, "1(0))) = 0) /

Pr(. (1, "1(0), "2(0, "1(0))) = 1)
Pr(. (1, "1(0), "2(0, "1(0))) = 0)

ior2 , Pr(. (1, "1(1), "2(1, "1(0))) = 1)
Pr(. (1, "1(1), "2(1, "1(0))) = 0) /

Pr(. (1, "1(1), "2(0, "1(0))) = 1)
Pr(. (1, "1(1), "2(0, "1(0))) = 0)

ior3 , Pr(. (1, "1(1), "2(1, "1(1))) = 1)
Pr(. (1, "1(1), "2(1, "1(1))) = 0) /

Pr(. (1, "1(1), "2(1, "1(0))) = 1)
Pr(. (1, "1(1), "2(1, "1(0))) = 0)

tor , dor · ior1 · ior2 · ior3

This section ends with the definition of causal effects. In the next section, we turn our focus to

estimating these effects.

3.5 Parametric estimation of mediated causal effects

In the previous section, the direct and indirect causal effects for continuous and binary . have

been defined for both the one mediator and two mediators scenario. In this section, we shall

discuss how these effects can be estimated using fully parametric models. Broadly, there are two

main ways of estimation: parametric and non-parametric estimation. Parametric estimation

refers to the use of parametric models where assumptions are made about the distribution

of the dependent variable as well as about the functional form of the relationships between

variables. Non-parametric estimation does not have such assumptions. Before proceeding, it

should be noted that assumptions refer to certain properties that cannot always be verified from

empirical data. These assumptions can arise from many sources including the study design used,

constraints imposed by the parametric model or associated with a framework such as the causal

inference framework adopted in this thesis. Some of these assumptions can be checked using

empirical data although in most instances, these checks are only indicative of whether gross

violations of the assumptions had taken place. An approach for considering the impact of a

violation of some these assumptions will be covered in chapter 6.

We will first turn our attention to non-parametric formulations of estimating mediated causal

effects. Although this thesis focuses on parametric estimation of mediated causal effects, under-
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standing how non-parametric estimation of mediated causal effects work can provide valuable

insight into how the gaps in estimating mediated causal effects can be bridged. Let us first

re-examine a mediated causal effect. The definition of ie is reproduced here.

ie , E[. (1, " (1))] − E[. (1, " (0))]

From this definition, we can see that the building blocks for estimating causal effects are the

ability to estimate the expectations of nested pos such as E[. (1, " (1))].

Using an rct as an example, we first consider how a non-nested po can be estimated. In a

typical 2-arm rct, we have an intervention of interest, a control intervention and an outcome

of interest. Since there are two interventions, there would also be only two po. The expectation

of these two po are E[. (1)] and E[. (0)], one for each intervention. These two expectations

represent the average outcome had everyone been offered the intervention of interest (' = 1) or

the control intervention (' = 0). As discussed earlier, the expectations E[. (1)] and E[. (0)] can

be estimated by taking the mean of all those offered ' = 1 and ' = 0 respectively.

Moving on to the estimation of the expectation of a nested po such as . (1, " (0)). The nested

po . (1, " (0)) refers to the outcome . had ' been set to the value of 1 and the value of " set

to the value of" (0). " (0) refers to the mediator" had ' been set to the value of 0. Estimating

the expectation such a nested po therefore requires one to first be able to estimate" (0) so that

the value of " (0) can be used to set the value of " when estimating E[. (1, " (0))]. However,

unlike the case of a non-nested po, the value of " (0) has a distribution of its own and when

nested within the expectation of . , an estimation of the expectation of . needs to accommodate

this distribution of " .

The solution to this nested expectation derives from a result in statistics known as the law of

iterated expectation (Billingsley, 1995). An application of the result specifically for the estimation

of nested po had been developed and simplified and was named the mediation formula (Pearl,

2001, 2012).

Mediation formula

The mediation formula is a series of formulae that uses the law of iterated expectations to obtain

an expression that aids in the estimation of the expectation of a nested po. The law of iterated

expectations, also known as the tower rule states that for two random variables . and - , E[. ],
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the marginal expectation of . can be expressed as follows (Billingsley, 1995):

E[. ] = E[[E[. |- ]]

The equation is an application of the law of iterated expectations and it indicates how the marginal

expectation(E[. ]) is related to the conditional expectation (E[. |- ]). The right-hand side (rhs)
of the equation contains a nested expectation and this nesting is a similar scenario as the nesting

of a po within another po. What this equation indicates is a way by which we can obtain an

estimate for a marginal expectation of a random variable from the its conditional expectation.

This in turn suggests that the nested po can be estimated using the same methods as those

used to estimate nested expectations using the law of iterated expectations. I would use a special

case of this law to demonstrate how it can be used. This special case arises when - is finite and

the possible outcomes of - are G1, G2, . . . , G8 . If we want to estimate the marginal expectation of

. from the conditional expectation of . on - , we can apply the law and obtain the following

expression:

E[. ] =
G1,G2,...,G8∑

8=1

E[. |G8] · Pr(G8)

This expression, when evaluated, provides us with an estimate of the marginal expectation

of . . This is a special case because - is discrete and the probability associated with each -

can be estimated. These estimated probabilities of the discrete - s is then used to weight each

conditional expectation of . . These weighted conditional expectations of . can then be summed

to obtain an estimate of the marginal expectation of . . This ability to estimate the marginal

expectation using the conditional expectations together with their corresponding probabilities is

what allows us to use the result from the law of iterated expectations to estimate the expectations

of nested po. Applying this to a nested powith a finite mediator, we will replace the - with"

and use the possible values of " in place of possible values of - . This is applicable to mediation

but instead of - , we have a random variable " , the mediator, which is conditioned on a fixed

value of '. For example, if we want to estimate the nested po E[. (1, " (0))], we can apply the

result and express the po as follows.

E[. (1, " (0))] =
∑
<

E[. |' = 1, " =<] · Pr(" =< |' = 0)

For each unique " , we will obtain a value for E[. |' = 1, " = <] which is weighted by the

probability of " =< conditional on ' = 0 occurring. The sum of these values will provide an
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estimate for the expectation of the nested po . (1, " (0)). In the case of a continuous " , the

same idea applies but instead of a summation, it will be an integration term with respect to "

and the probability of " =< conditional on ' = 0 will be replaced by the probability density

function (pdf) of " .

E[. (1, " (0))] =
∫
<

E[. |' = 1, " =<] · Pr(" =< |' = 0)3<

Crucially, in both formulations of estimates of the expectation of a nested po, there are no

assumed distributions for either . or " . This non-parametric formulation therefore lends itself

for adaptation to a parametric formulation which we will discuss in the next section. The

mediation formula essentially applies the law of iterated expectation onto the two pos within

each definition of the de and ie. Doing so yields the following results,

de , E[. (1, " (0))] − E[. (0, " (0))]

=
∑
<

[E[. |' = 1, " =<] − E[. |' = 0, " =<]] · Pr(" =< |' = 0)] (3.5.1)

ie , E[. (1, " (1))] − E[. (1, " (0))]

=
∑
<

E[. |' = 1, " =<] · [Pr(" =< |' = 1) − Pr(" =< |' = 0)] (3.5.2)

This provides a way forward to estimate each of these effects and from these results, we have

identified the key components necessary to estimate each of the effects, i.e. namely the probability

of " and the expectation of . conditional on a set of predetermined parameters. In the next

section, I will discuss how these results can be used together in parametric models to estimate

each of these causal effects of interest.

3.5.1 Parametric models

Parametric model in the context of this thesis refers to models primarily from the glm family.

For continuous and binary dependent variables, the normal glm with identity link and the

logistic glm with logit link will be used respectively. In the case of a mediation model, the

parametric model is used to model the outcome of interest, . , and the mediator, " . The use of

parametric models mean that each of the components required to estimate the expectation of

a nested po can now be easily estimated since there are underlying assumed distributions of

components of the . and " models. Furthermore, parametric models also allow covariates to
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be part of the model for . and " , providing a way by which adjustments to the causal effect

could be made if it was deemed necessary.

Normalglm

The normal glm with identify link for modelling continuous dependent variables is of the

form,

. = 5 (G) = V0 + V1-1 + V2-2 + · · · + V=-= + Y, Y ∼ N(0, f2)

. represents the outcome of interest and is the dependent variable. - represents the set of

explanatory variables and Y represents the error term which is assumed to follow a normal

distribution with mean, `, of 0 and an unknown variance, f2. V0 is also known as the intercept

of the model and represents the conditional mean of . . The unknown Vs including V0 and f2

will be estimated using sample data.

Logisticglm

The logistic glm with logit link for modelling binary dependent variables has a more complex

form than its linear counterpart. Before going into how the binary dependent variables are

modelled using the logistic regression, it needs to be emphasised that the formulation of the

logistic regression used in this thesis is the latent variable formulation. In some representations,

the error term of the logistic model, Y, is absent but in the latent variable formulation it is present.

The latent variable formulation was chosen for this work because of the explicit representation

of Y which enables subsequent development of a sensitivity analysis procedure.

The logistic model is more complex because rather than modelling the binary variable, the

probability of each response being a 1 is modelled instead. Since a probability of an event is a

bounded number between 0 and 1, it is necessary to transform it to a form that is unbounded to

facilitate modelling the probability. The transformation adopted in the logistic glm is the logit

transformation. The logit and its inverse, the expit, are given as follows,

logit(G) = log
( G

1 − G

)
expit(G) = 1

1 + 4−G
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Using the logit, the logistic glm is of the form,

. = I((. ∗ + Y) > 0), Y ∼ Lstd (3.5.3)

. ∗ = logit(Pr(. = 1)) (3.5.4)

= V0 + V1-1 + V2-2 + · · · + V=-=

The model . is modelled using a latent variable . ∗ which is conceptualised as a logit trans-

formation of the underlying probability of . = 1, Pr(. = 1). . ∗ is evaluated using an indicator

function ‘I’ where if. ∗ is greater than or equal to zero, it evaluates to 1 and to 0 otherwise. - , like

before represents the explanatory variables and Y is the error term and follows a standard logistic

distribution, L(` = 0, f2 = c2

3 ). A prediction of . (otherwise also known as realisation of . ) is

done by first making a draw of Y and the passing it through the indicator function. Note that Y

does not appear unless it is necessary to make a prediction of . and this is due primarily because

for a binary outcome, we are modelling the underlying distribution of Pr(. = 1) and not .

directly. The model allows us to estimate Pr(. = 1) but in order to make a prediction of . which

is a binary variable, we have to make a draw of . using its estimated probability. The process of

adding Y to . ∗ and assigning one of the two binary values depending on if its above or below

zero is the same as making a single draw of 0, 1 with the probabilities {1− expit(. ∗), expit(. ∗)}.

There is however one advantage however of using the method of adding the Y and passing it

through the indicator function. This advantage will be elaborated in the next chapter in the

discussion of using simulations to estimate mediated causal effects.

Applying theglms to the mediation models

For a single mediator continuous . and " would be modelled using the following models.

. = W0 + W1' + W2" + W3� + Y. , Y. ∼ N(0, f2) (3.5.5)

" = V0 + V1' + V2� + Y" , Y" ∼ N(0, f2) (3.5.6)

where ' = intervention offered

. = outcome

" = mediator

� = covariate

Y. , Y" = error terms
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For simplicity, � is presumed to be a single covariate and is the same for both the mediator

and outcome models but it could be multiple covariates and be different for the mediator and

outcome models. Binary . and " would be modelled using logistic regression as follows.

. = I(logit(Pr(. = 1)))

= I(W0 + W1' + W2" + W3� + Y. ) (3.5.7)

" = I(logit(Pr(" = 1)))

= I(V0 + V1' + V2� + Y" ) (3.5.8)

where ' = intervention offered

. = outcome

" = mediator

� = covariate

Y. ∼ Lstd

For two sequential mediators, it would simply be an extension of what was done for the single

mediator. For continuous . , "1 and "2, they would be modelled using the following models.

. = W0 + W1' + W2� + W3"1 + W4"2 + Y. (3.5.9)

"1 = V0 + V1' + V2� + Y"1 (3.5.10)

"2 = U0 + U1' + U2� + U3"1 + Y"2 (3.5.11)

where ' = intervention offered

. = outcome

" = mediator

� = covariate

Y. ∼ N(0, f2)
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For binary . , "1 and "2, they would be modelled using the following models.

. = I(logit(Pr(. = 1)))

= I(W0 + W1' + W2� + W3"1 + W4"2Y. ) (3.5.12)

"1 = I(logit(Pr("1 = 1)))

= I(V0 + V1' + V2� + Y"1) (3.5.13)

"2 = I(logit(Pr("2 = 1)))

= I(U0 + U1' + U2� + U3"1 + Y"2) (3.5.14)

where ' = intervention offered

. = outcome

" = mediator

� = covariate

Y. ∼ Lstd

Relationship between parametric models and causal effects.

After fitting an appropriate parametric model for . , "2 and "1, we can then proceed with the

estimation of the causal effects. maximum likelihood estimation (mle) is used to fit the models

from which we then extract the maximum likelihood estimators for each of the unknown model

parameters. The next section will discuss the various forms of estimation methods for the causal

estimand using these extracted maximum likelihood estimators.

With each of the possible dependent variables stated, we now move to how a causal effect can

be estimated. Recall that to estimate any of the causal effect, we need to be able to estimate two

nested po and then use the po to compute the causal effect either by taking a difference in the

case of continuous outcomes or taking the or in the case of binary outcomes.

Sticking to the case of the continuous outcomes first, recall that we can estimate thede and ie
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by using the mediation formula as follows,

de , E[. (1, " (0))] − E[. (0, " (0))]

=
∑
<

[E[. |' = 1, " =<] − E[. |' = 0, " =<]] · Pr(" =< |' = 0)]

ie , E[. (1, " (1))] − E[. (1, " (0))]

=
∑
<

E[. |' = 1, " =<] · [Pr(" =< |' = 1) − Pr(" =< |' = 0)]

Since we now have a model for each of . and " , the general approach to estimating the causal

effect is to use the models to provide estimates for the cross-world po. This is vital since

these cross-world po can not be observed in reality. These parametric models are a set of

equations that summarises what reality is from sample data. This summary is a best guess of

the relationships between the explanatory variables and the dependent variables under certain

assumptions. Ideally, what we want to use the model for is to be able to ask it questions such as

‘if the value of ' was set to 1, what will the value of " be?’. Now that we are able to ‘ask’ the

set of models questions for ‘what-if’ scenarios and obtain estimates that address the question,

the last task that needs to be done is how to put together these answers and obtain an estimate

of the causal effect of interest and the uncertainty associated with this estimate.

The methods discussed mainly differ by:

1. How to ‘ask’ the model questions?

2. How do I combine the responses?

3. How do I obtain uncertainty bounds on the estimate?

Starting with the first, I will discuss the problems associated with each.

Obtaining estimates for a nested po

Given that the parametric models explicitly model the joint conditional distribution of . on

the independent variables, it appears straightforward to obtain estimates for a given set of

independent variables as defined in a nested po. Intuitively, it appears to be as simple as

substituting the required - s into the model and obtaining estimates for . . However, because of

the nested nature of the po, doing so will only yield the correct estimate for the case where

both the . and " are continuous. In order to illustrate this, we first consider a continuous .
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and " . Applying the mediation formula to the po . (A. , " (A" )), we would have the following:

E[. (A. , " (A" ))] =
∫
<

E[. |' = A. , " =<] · Pr(" |' = A" )3<

=

∫
<

(W0 + W1A. + W2" + W3�) · Pr(" |' = A" )3<

= W0 + W1A. + W3� + W2
∫
<

" · Pr(" |' = A" )3<

= W0 + W1A. + W3� + W2 E[" |' = A" ]

= W0 + W1A. + W3� + W2(V0 + V1A" + V2�) (3.5.15)

The subscript of A differentiates the value A for the outcomes (. ) and mediators (") under

different po. Next, consider a binary . and a continuous " , we have the following.

E[. ((A. , " (A" ))] =
∫
<

E[. |' = A. , " =<] · Pr(" |' = A" )3<

=

∫
<

Pr(. = 1|' = A. , ") · Pr(" |' = A" )3<

=

∫
<

Pr(W0 + W1A. + W2" + W3�) · Pr(" |' = A" )3<

=

∫
<

1

1 + 4−[W0+W1A.+W2"+W3�]
· Pr(" |' = A" )3< (3.5.16)

The integral does not yet have a closed form solution and this means that we cannot simply use

a formula to obtain an estimate of the expectation of the nested po. It is for this reason that

some researchers (e.g. Muthén et al. (2016)) have advocated the use of probit rather than logit as

the link functions in the glm. With a probit link function, the error term of the regression is

fixed and assumed to follow a normal distribution. Since the outcome and the mediator now

share the same error distribution, there is a closed form solution to this integral and hence a

formula can be derived to estimating each po. The situation highlighted occurs when a binary

dependent variable has a continuous dependent variable as one of its predictor. Specifically, this

happens for the following combinations of outcomes and mediators.

1. 1 mediator

• binary . , continuous "

2. 2 mediators

• binary . , continuous "1, continuous "2

• binary . , continuous "1, binary "2

• binary . , binary "1, continuous "2

• binary . , binary "1, binary "2



CHAPTER 3. FRAMEWORK FOR CAUSAL MEDIATION 68

• continuous . , continuous "1, binary "2

Since the or estimated from a logistic regression is still in widespread use particularly by

epidemiologists, researchers have sought different ways to evaluate the integral in eq. (3.5.16).

There are two main ways in which the integral can be evaluated. The first is to apply modern

computer assisted integration techniques to evaluate the integral. This requires both a high

degree of familiarity of the characteristics of the functions to be integrated and the different

forms of computer assisted integration to identify suitable techniques to evaluate the integral.

The second method is be able to make draws of the outcome under different po from its

underlying distribution. These draws can then be used to simulate the po and this simulated

po can then be used to conduct the estimation of the causal effects. This second approach

is what I have adopted and it follows closely with the methods adopted by Imai et al. (2010)

with some important modifications to allow for the estimation of causal or and sequentially

mediated causal effects. Both the computer-assisted integration and the simulation methods

are evaluating the same quantity but the simulation method is more adaptable because it can

be easily applied to different parametric models which we will look into in greater details in

section 3.5.1.

The second problem relates to causal effects for linear and non-linear models. In the case of

linear models, the causal effect defined using differences between po does not depend on

the covariates. This is not true of non-linear models. This can be illustrated using eq. (3.5.15).

Consider the de for continuous . and " modelled using normal glm as presented in the

previous sub-section.

de , E[. (1, " (0))] − E[. (0, " (0))]

= (W0 + W1 + W3� + W2(V0 + V2�)) − (W0 + W3� + W2(V0 + V2�))

= W0 + W1 + W3� + W2(V0 + V2�) − W0 − W3� − W2(V0 + V2�))

= W1

In the normal glm case, it can be seen that the because the link function does not do any

non-linear transformations, terms that are the same in both po within a causal effect definition

get cancelled out. This applies mainly to any covariates present. What this indicates is that

the causal effects depend solely on changes in the value of ' both when it is in the outcome



CHAPTER 3. FRAMEWORK FOR CAUSAL MEDIATION 69

model as well as the mediator model. In the case of non-linear regressions such as the logistic

regression, the link function links the outcome with the independent variables in a non-linear

manner. There is no cancellation of the covariate terms in this case and thus the causal effect

estimates depend on both the level of ' and the covariates.

In the next section, I will briefly review existing methods for estimating mediated causal effects,

focusing on the motivations behind each new method and the general approach taken.

3.5.2 Parametric estimation of mediated causal effects

Mediated causal effects can be estimated in a few ways. The focus in this thesis is on the use of

parametric models from the glm family to conduct the estimation. The adoption of glm for

the estimation also implies that assumptions associated with the use of parametric glm also

applies to the estimation of causal effects. Namely, the independent variables are uncorrelated,

each data point is independent and the assumed residuals distribution is correctly specified

Additionally, since there are multiple models in use for any given mediation problem, it is further

assumed that the error terms of each model are uncorrelated. This additional assumption is

related to the idea of a hidden confounder which will be discussed at greater length in chapter 6.

On the methods used to estimate mediated causal effects, two such methods, the product of

coefficients and difference in coefficientsmethods were used by Baron and Kenny (1986) to estimate

statistical mediation. Using the case of a single mediator as an example and assuming that the

outcome of interest, . , and mediator, " , have both been modelled using a normal glm, the

product of coefficients method can be used to estimate the ie. The ie in this case is a product

of the regression coefficient of ' in the " model with the regression coefficient of " in the .

model. The de is the regression coefficient of ' in the . model. The te is the sum of the de
and ie, consistent with how te had been defined earlier. The te can alternatively be obtained

by re-fitting a . model without the " . Since the te and de can both be obtained directly

by fitting different models, and the sum of the de and ie is the te, we can obtain the ie by

subtracting the de from the te. This is known as the difference in coefficients method.

We have so far discussed the product of coefficients and difference in coefficients methods in

the context of a continuous . and " . The two methods, while applicable to continuous .
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and " , are not applicable when either or both are binary. Extensions to the two methods

have been developed to allow . to be binary (and modelled using logistic glm) and " to

be continuous (MacKinnon, 2008). These extensions however require additional assumptions

such as uncorrelated error terms for all models and no interactions between all variables. More

importantly however is that the estimates arising from these extensions are not consistent

between the two methods i.e. the ie estimate using the product of coefficients method can be

different from that estimated using the difference in coefficients method (Pearl, 2012). Additional

qualifications to the use of each method makes it difficult to generalise the methods for a wide

range of scenarios.

A different approach at obtaining causal effect estimates from a binary . and a continuous

" was proposed by Valeri and VanderWeele (2013). This approach, framed within the po
framework and based upon the mediation formula sets out to provide a general method to

estimate mediated causal effects for a binary . and continuous" . As discussed previously, if we

apply the mediation formula for a binary . and a continuous " , we will end up with a formula

for an estimate of the causal effect that includes an integral term. There is currently no known

way to solve for this integral in an exact manner and therefore, no causal effect estimate can

be made without some way to solve for this integral. An approximation developed by Valeri

and VanderWeele (2013) overcomes the limitations posed by this integral but the proposed

approximation requires that the event rate for . to be low, generally taken to mean below 5%.

Gaps therefore still exists for scenarios for higher event rates for instances where a continuous

mediator is nested within the outcome or another mediator.

Towards a general method of estimation

Since one of the main challenges of estimation of mediated causal effects was the evaluation of

an integral, this challenge became more tractable with improvements in computing power of

personal computers as well as advances in the use of software aided integration. There were

two main ways in which this challenge could be overcome. The first was the use of numerical

integration or otherwise also known as numerical quadrature (Monahan, 2011). These methods

were able to approximate the integrals to a high level of precision but they require knowledge

of the functional form of the integral. Different functional forms can have different optimum

strategies in evaluating the integral and just as different strategies are used to solve integrals,

the same applies to computer-aided integration with each method having a trade-off between
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precision and computational resources and time required. The complexity introduced by this

method of integration namely the requirement of the knowledge of the functional form of the

integral as well as the optimum integration methods to apply makes this method of integration

difficult to generalise to a wide class of problems.

The second method of estimating an integral is through the use of simulations. This method

evaluates the integral by sampling from the underlying distribution of the integral. This addi-

tionally allows estimations of integrals with nested distributions as encountered in nested po.

Several variations of this simulation method exists and the method adopted by this thesis is a

quasi-Bayesian simulation developed by King et al. (2000). This simulation approach uniquely

addresses two different forms of uncertainty inherent in a glm which King et al. (2000) termed

estimation and fundamental uncertainty. Estimation as its name suggests is associated with the

uncertainty associated with the estimation of the model. This form of uncertainty is often

represented as confidence interval bounds on estimates of parameters in a model. Fundamental

uncertainty is the uncertainty due to chance or unknown events and is often represented as

the unaccounted variance of the dependent variable in a model. This simulation method makes

draws from an assumed distribution of the regression coefficient as a means of simulating the es-

timation uncertainty. The sum-product of a single draw with the dataset represents a single draw

from the prior distribution. Using the case of a normal glm as an example, the fundamental

uncertainty can be simulated by generating a vector of normally distributed random numbers

with a mean of zero and an estimated variance corresponding to the residual variance of the

glm. This vector is added to the sum-product to simulate the fundamental uncertainty. This

simulation method is a quasi-Bayesian method because the prior distribution is derived from the

initial estimation of the glm rather than obtained using previously known distributional prop-

erties of the dependent variable. This simulation method allows one to build up a distribution of

. which takes into account the different forms of uncertainty associated with its estimation.

Furthermore, by setting values of the independent variables, we can obtain distributions of .

under different po and it is this unique capability that makes this simulation method well-suited

for simulating pos that we can use to compute the causal effect estimates. This thus indicates

that this simulation method can be used to develop a general approach towards estimation of

mediated causal effects.

Before discussing how this simulation can be adapted to be a general estimation method, the
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following section discusses some of the currently available methods and implementations to

estimate mediated causal effects.

3.6 Estimation implementations

In the previous section, various existing estimating methods of mediated causal effects were

discussed. This section discusses some of the notable implementations of the estimation methods

used. It should be noted that the assumptions of causal inference apply no matter which

estimation method is adopted. Namely, they are the exchangeability, positivity and consistency

assumptions. Crucially, in each of these implementations, there are no straightforward ways to

conduct estimation for sequentially mediated causal effects in the presence of more than one

mediator.

Structural equation models

Structural equation model are fully parametric models for evaluating causal relations between

variables. Structural equation model shares many similarities with generalised linear model and

some important differences. The structural equation model uses glm to conduct estimation

of the regression models specified in the model but while a single glm is interested in the

relationship between the dependent variable with a set of independent variables within a rigid

set of assumptions. One of the important differences between the glm model and an sem
model is that while the sem usesglm to conduct much of its modelling, the sem additionally

allows one to specify relationships between dependent variables in multiple generalised linear

model.

An sem is typically theory driven and often used in the context of a comparison between

a highly specified model with one that has less specifications. These comparisons provide

insight into whether or not the additional specifications are supported by the data. sem is

also commonly used to address questions of causal inference and this is not surprising given

its beginnings as a method used by Wright (1934) (Pearl & Mackenzie, 2018) to graphically

represent causal relationships. Given its flexibility in specifying models, it is a natural fit for

translating beliefs about the causal nature of variables into a form that can be tested statistically.

The estimates of the pathways in an sem needs further computation in order to obtain the
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causal estimands. Some implementations of sem do it automatically when requested such as

Mplus, a popular software for fitting sem (Muthén et al., 2019).

In terms of estimation of causal estimands, the sem faces similar problems as highlighted

previously, namely, the inability to evaluate the integral encountered when applying the medi-

ation formula. Notably implementations of estimation using sem include Mplus (Muthén et al.,

2019) and lavaan (Rosseel, 2012) with the latter being an R package (R Core Team, 2018) and

is open-sourced. Mplus resolves the issue of evaluating the integral by conducting numerical

integration using 104 points across a fixed limit of −5 to +5 (Muthén et al., 2016). Although

Mplus appears to be adequate for the purposes of estimating the causal effects of interests,

the approach of fixing the integration parameters with no way to change them introduces the

uncertainty of whether a given set of limits or the number of points used for estimating the

integral are adequate.

Furthermore, while Mplus is a piece of highly competent software package for a wide variety

of uses, it is not open source. This makes it difficult to ascertain the precise manner in which

the parameters were estimated. The authors however attempt to plug this gap by providing a

highly responsive forum and providing technical documentations on the implementations of

the various estimation methods implemented within. An independent attempt to determine

the precise manner in which the parameters are estimated had been made by the author of

the lavaan where he implements similar functions within lavaan. The source code of lavaan

also extensively documents how Mplus conducts the estimation of parameters and explains the

rationale when the approach of lavaan deviates from Mplus and from the documentation made

available by the author of lavaan, it can be seen that some default parameters change over time

and unless there is a consistent, concerted effort to document them, each new version of the

software does require a round of vetting of the software to ensure that it conducts the estimation

according to what was previously specified.

This thesis makes used ofMplus in the sensitivity analysis of mediated causal estimands because

Mplus was the only software package that has the capability to conduct logistic glm using

sem and setting up constraints to the parameter estimates.

The same feature within lavaan was not available and it is hoped that as lavaan improves in

capability, a next iteration of the methods developed within this thesis can use this to conduct
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the estimation.

Paramed

paramed is an implementation of the approach developed by Valeri and VanderWeele (2013)

where an approximation was used when . is binary and " is continuous. In all other combina-

tions of outcomes, i.e. when both . and " are continuous or binary, and when . is continuous

and " is binary, paramed uses the application of the mediation formula outlined by Valeri and

VanderWeele (2013). paramed is currently available as a Stata package (Emsley & Liu, 2013), a

SAS macro and an R package.

gformula

gformula is a fully parametric method developed by Daniel et al. (2011) with the intended applic-

ation in observational studies with time varying exposures or treatments and time-dependent

confounders. At its core are two main components: the g-computation (Robins, 1986) proced-

ure and marginal structural models. The g-computation procedure is a procedure much like

quasi-Bayesian approach discussed earlier with one key difference: it does not consider the

uncertainties associated with the estimated parameters of the models. Like the quasi-Bayesian

approach, the g-computation starts with fitted models for each of the dependent variables. It

then proceeds by using predictions of these models, substituting the exposure or treatment level

to the one corresponding to the pos simulated. These predictions are then used in place of the

unobserved or unobservable pos. In other words, the fitted models are used as data generating

models for the missing pos.

Thepos are then placedwithin amarginal structural model for the estimation of the causal effects.

gformula is primarily concerned with the estimation of causal effects within longitudinal models.

Similar to other estimation methods, gformula needs a way to evaluate the aforementioned

integral. It does so by using assumed distributions between multiple, repeated observations of

the same subject to conduct simulations to evaluate the integral. There are implementations of

gformula in R and Stata in the form of user contributed packages.

Medflex

medflex is an R package developed by Steen et al. (2017) to address the problem of using non-

linear models for mediation. The issue at hand as stated by Steen et al. (2017) is that the causal
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effects for non-linear models would give rise to causal effects that are dependent on not just the

treatment offered but the covariates, as was discussed previously. This dependency also means

that the marginal causal effect estimated from such models depend heavily on the make up of

the sample. These causal effect estimates would then only be valid for a population that closely

resembles the make up of the sample. Once there are deviations to the make up of the population,

it is unclear how the deviations would affect the causal estimates due to the non-linear manner

by which the outcome is related to the predictor. One of the goals of medflex is therefore to

estimate the causal effects with an estimator that has a straightforward relationship between

covariates and causal effects to make it easier to understand how the causal effect would change

for some change in the covariates. In order to achieve this, the authors developed a class of

models that they term natural effects models. Natural effect models are a class of structural mean

models that conditions the mean on the covariates and the causal effects estimated from these

models are still stratum specific (Dunn et al., 2015).

The key difference in estimation strategy between medflex and other packages is that it has two

ways by which to simulate the po (weighting vs. imputation based). Each of which have a

different set of assumptions and capability. The last thing of note is that medflex approached

sequential mediators by modelling them jointly. This makes it difficult to tease out mediator

specific contributions to the mediated pathways which is often the goal of pe.

mediation

mediation is an R package developed by Tingley et al. (2014) based upon the methods outlined

in Imai et al. (2010). Mediation allows the estimation of mediated causal effects of parametric

models and allows a broad range of models to be used for both the outcome and the mediator. It

estimates mediated causal effects using a quasi-Bayesian simulation method which also uses the

fitted models as data generating models.

The mediation package introduced several novel methods in the estimation of mediated causal

effects and I will point out four notable ones, namely, defining causal effects using the average

causal direct effects (acde) and average causal mediated effect (acme), the use of a quasi-

Bayesian simulation method which uses fitted parametric models as data-generating constructs,

allowing the estimation of mediated effects in multiple mediators and the introduction of a

robust framework for sensitivity analysis of mediated causal effects to determine the extent in



CHAPTER 3. FRAMEWORK FOR CAUSAL MEDIATION 76

which unmeasured confounding exerts its effects on the estimated causal effect.

The first novel aspect of mediation lies in its use of average direct and indirect effects. Both of

the direct and indirect effects are defined as the mean between the total and pure versions of

these effects. The motivation of such a definition is to overcome the necessity to choose between

using the pure or total effects in the scenario where there are interactions.

The second novel aspect relates to the use of a quasi-Bayesian simulation method developed

by King et al. (2000). This was discussed previously and will be discussed in greater detail in

chapter 4.

The third novel aspect of mediation is that it allows one to estimate causal effects for more than

a single mediator. However, this analysis is restricted to consideration of the mediators jointly

and limits one’s ability to test path-specific hypothesis using the package. In the context of

pe, the ability to test path-specific hypotheses is an important tool in confirming theory. This

forms one of the main areas of development in this thesis, to allow the testing of path-specific

hypotheses.

The fourth and final novel aspect of mediation which is being discussed is the implementation

of a robust framework to conduct sensitivity analysis. This includes defining the aims of the

sensitivity analysis, what the analysis shows, and laying down the conceptual andmethodological

methods to conduct sensitivity analysis. This provides the tools for one to consider the implication

of unmeasured confounding on the causal estimates.

Lastly, while mediation provides for many use cases, there are two important things that the

mediation does not cater for. Firstly, it does not allow the testing of specific hypothesis in

sequential mediation for multiple mediators and secondly, it does not have facilities to estimate

the causalor. The lack of an estimator for the causalor also implies that there are no facilities

to conduct sensitivity analysis when the or is used as the causal effect.
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Confidence intervals

After discussing various methods for estimating mediated causal effects, I will next address how

the confidence intervals are to be derived. This discussion on confidence intervals is separate

from the discussion on the estimation of mediated causal effects because various methods for

deriving confidence intervals can generally be adapted for use with each of the methods for

estimating mediated causal effects.

Three different forms of confidence intervals would be discussed. The first is the delta method.

The delta method is the method most commonly used for deriving the confidence intervals and

it does so by using the standard errors. One of its most prominent uses is in the derivation of

confidence intervals in linear regressions. An important characteristic of confidence intervals

derived using the delta method is that it is symmetrical. The symmetry of confidence intervals

derived using the delta method arises from the assumption that the estimated quantity, in

our case it is the estimated causal effect, has a normal distribution (MacKinnon, 2008). This

assumption is valid for direct effects but when applied to indirect effects as proposed by Sobel

(1982) causes an inflation of type II errors because indirect causal effects were found not to be

normally distributed (MacKinnon, 2008).

The second confidence interval of interest is the bootstrap (Efron, 1987). Notably, the use of

non-parametric bootstrap to generate confidence intervals does not make any assumptions

of normality and for confidence intervals for indirect causal effects, bootstrap can be used to

generate asymmetrical confidence intervals (Efron & Tibshirani, 1994). Very broadly speaking,

one would obtain the confidence intervals using non-parametric bootstrap by estimating the

causal effect of interest multiple times, each time with a new sample. Each new sample is

obtained by resampling the original sample with replacement. Over many runs, we would form

a distribution of the causal effect estimates and the causal estimates can then ranked. If we are

interested in the 95% confidence interval, we would simply use the 97.5Cℎ percentile value of

the ranked estimates as the upper bound and the 2.5Cℎ percentile value as the lower bound for

the confidence intervals.

The third confidence of interest is similar to the idea of the bootstrap but instead of conducting

resampling, we can use simulates of the causal effects. This is the approach adopted by Imai et al.
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(2010) in deriving the confidence intervals for the causal estimates. The simulated causal effects

similarly form a distribution of the causal effect of interest and we can obtain the confidence

intervals by ranking the causal effects and obtaining the required percentile values from the

ranked causal effects. This third method is an adaptation of the bootstrap confidence intervals

and has the advantage of not requiring to conduct a bootstrap solely for the purpose of obtaining

confidence intervals. This thesis follows the implementation of confidence intervals using

simulated outcomes.

3.6.1 Gap in methods for the estimation of or

This section ends off with highlighting gaps in existing methods. Firstly, there is widespread

adoption of the or as a causal estimand even though there are several scenarios that currently

do not have existing methods to conduct the causal or. Secondly, there appears to be a lack of

methods for the analysis of sequential mediation particularly when the question of interest is

related to the specific effect of each mediator in the causal chain. Thirdly, sensitivity analysis for

binary outcome models is also lacking. The next chapter focuses on addressing these gaps.

3.7 Summary

This chapter started with a discussion of the po framework and how it is used to define causal

effects. The definitions of causal effects were then formally stated for differences andor as well

as for the single mediator and two mediator case. Examples from the casis trial were used

to motivate the definitions. The chapter ended with a discussion on how parametric methods

are used to estimate mediated causal effects, highlighting the main challenges that must be

overcome, the existing solutions to these challenges and finally gaps in methods that would be

useful for the analysis of pe. The next chapter would detail the proposed method for estimation

of mediated causal effects.

From the discussion of the various methods of estimation, there are two main methodological

gaps that are not fulfilled by existing methods. The first is the use of the causal or as a causal

estimand. The reason for not being more widely used as a causal estimand can be traced to
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two reasons. Namely, the difficulty in estimation of causal or and the difficulty in interpreting

it. The difficulty in estimation as discussed can be overcome with simulation methods. The

problems with interpreting or have been well documented and they are not restricted when

conducting mediation. In this sense, if the causal or is deemed to be the most suitable causal

estimand either by choice or by convention, then researcher will have to consider the issues

of interpreting the causal or carefully when using it. This can only take place only when the

causal or can be readily estimated and this is what this thesis sets out to do.

The other gap in methods lies in the estimation of sequential mediation when there is more

than one mediator. This can be done with an expansion of the mediation formula to consider an

additional mediator and this thesis will set out exactly how this can be done.



Chapter 4

Development of a novel estimator for

causal odds ratio and sequentially

mediated causal effects

4.1 Introduction

The last chapter ended with a discussion of the existing methods for the estimation of mediated

causal effects, and highlighted the gaps present in the current methods of estimations. There are

two gaps present in existing literature which I aim to bridge in this thesis. The first gap concerns

methods for estimating causal estimands in sequential mediation where there are two or more

mediators. While methods currently exist to estimate up to two mediators, for example in the

mediation package by Imai et al. (2010), the analysis is restricted to a conceptual framework

where a single mediator of interest is chosen. All other mediators are then considered ‘nuisance’

mediators and their impact on the causal effect is assessed collectively. This restricts one’s ability

to test hypothesis relating to the pathways specific to each of the mediator. There is thus a gap

for methods for the estimation of mediated causal effects where the effects due to each mediator

can be assessed independently. A novel extension of the mediation formula was developed and

used to bridge this gap. The work relating to this extension is discussed in the following section.

After extending the mediation formula to accommodate more than a single sequential mediator,

80
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a second gap still exists. This concerns the lack of an estimator for causal odds ratio (or) that

does not rely on restrictive assumptions such as that developed by Valeri and VanderWeele (2013).

The focus on causal or is due primarily to its widespread use in clinical and epidemiological

research. For this reason, bridging this gap will open up its use in these fields and is one of the

aims of this thesis. Achieving this aim again starts with the mediation formula. The mediation

formula allowed for a general way to define and express mediated causal effects using the

potential outcome (po) framework by first expressing the causal effect of interest using pos

(Pearl, 2001). In the context of this thesis, this expression is a difference between pos for

continuous outcomes, and odds ratio of pos for binary outcomes. Each of the pos in this

expression is then expanded using known properties of nested expectations by applying the law

of iterated expectations (Billingsley, 1995). After expansion, the expression is then simplified

and for many of these expressions, the simplified form can be used like a formula where you can

substitute estimated model parameters of the mediator(s) and outcomes to obtain an estimate of

the mediated causal effects. This formula simplified from the mediation formula gave identical

estimates as the product of coefficients method in instances where the product of coefficients can

be used, suggesting that they are using similar ways to conduct the estimation.

The simplification of the mediation formula and the similarity of estimates between using the

simplified mediation formula and the product of coefficients method appear to suggest that a

formula can be derived for the causal or using the same approach. This is not the case and

the problem lies with the lack of a closed form solution to an integral term from expanding the

pos. Since there are no closed form solutions, the integral remains in the final expression of

the mediated causal effect as discussed in eq. (3.5.16). Given that the expression for estimating

the causal effect contains an integral term, this integral term have to be evaluated in order

to obtain an estimate. Notably, Valeri and VanderWeele (2013) developed a formula which

approximated this integral and hence allowing a way for the pos to be evaluated, thus providing

a way to estimate the mediated causal effect. Due to the way this approximation formula was

constructed, it produced valid estimates only when the outcome was rare. This limitation left a

gap remaining in the estimation of causal or where the outcome is not rare. An alternative to

using this approximation formula was to turn towards computer assisted integration methods.

One of these methods, which can be used generally to evaluate integrals, is through simulation.

Integration through simulation had been used successfully in methods of Bayesian statistics

to ‘mix’ distributions and the same method can and had been applied to evaluate the integral
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discussed previously. This was first used by Imai et al. (2010) in the mediation R package to

estimate mediated causal effects. The simulation method used in mediation was based upon

prior work by King et al. (2000) who developed the simulation methods as a means to conduct

policy analysis. The problem which King et al. (2000) set out to solve was that after a model had

been developed using observed data, the researcher might be interested in how the outcome

would change if the independent variables assumed some other values. If one were to simply

use the values of the independent variable of interest to predict the outcome, we would obtain

an estimate of the outcome. This however, ignores the various kinds of variability represented in

the model. The method developed by King et al. (2000) provided a quasi-Bayesian way by which

these variability could be accounted for using simulations. Since the estimation of mediated

causal effects using pos also involves setting the independent variable to a certain value of

interest, Imai et al. (2010) was able to adapt the simulation technique to estimate mediated causal

effects and the result of these efforts were implemented in mediation.

As discussed in the previous chapter, while mediation broke grounds on several fronts, there

remain gaps relating to the estimation of mediated causal effects. This thesis thus aims to extend

the work started in the mediation to bridge the gaps identified. The extension proceeded in

two steps. The first was to adapt mediation such that it could estimate mediated causal effects

for more than a single mediator and the second step was to adapt to allow for the estimation

of causal or. This extension faced several challenges primarily due to the non-collapsible

nature of the or and this necessitates careful consideration of how causal estimates were to be

combined within and between simulations in order to obtain a valid causalor estimator. These

considerations also tie in strongly with the need to distinguish between marginal and conditional

causal or where the marginal causal or is the focus of this thesis. The work surrounding the

development of this estimator and its considerations are discussed later in this chapter.

This chapter lays out the conceptual background to the novel extensions of the mediation

formula, the adaptation of the extension for a simulation-based estimator and the construction

of a causal or from the simulation-based estimator. Each of these will be discussed in detail in

the subsequent sections.
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4.2 Estimation methods: A tale of two types of estimators

There are two classes of methods for estimating mediated causal effects which I focused on in

this thesis which are referred to as the model- and simulation-based methods. The model-based

methods are characterised by the use of estimated model parameters and putting them within a

formula to obtain an estimate of the mediated causal effects. The formulae are derived through

an application of the mediation formula as discussed previously. These formulae allow one to

easily obtain estimates of the mediated causal effects and will be discussed first.

The use of formulae for the estimation of the mediated causal effects dates back to when Baron

and Kenny (1986) proposed the product of coefficients and difference in coefficients methods to

estimate mediated causal effects. The mediation formula had not been developed then and Baron

and Kenny (1986) relied on a different set of reasoning to support the formulae proposed for the

estimation. The reasoning used had a significant problem in that there were no clear distinctions

between the definition of the causal effect and the methods of estimation. In the absence of this

distinction, the definition is thus intertwined with how the effect is estimated and it becomes

difficult to discern what a causal effect actually mean. This posed a problem subsequently when

extensions were developed to adapt these formulae for binary outcomes modelled using the

logistic regression. An example of a problem arising from this lack of distinction was that

it was unclear if the product of coefficients should take place before or after transformation

by the logit link function of the logistic regression (MacKinnon, 2008). Subsequent work on

estimatingmediated causal effects relied upon themediation formula (Pearl, 2001) which crucially

distinguishes between definitions of causal effects and they are estimated. The definitions of

causal effects in the mediation formula uses the po framework and provides a way to express

the causal effects. The estimation of causal effects then begin by evaluating each term within

the expression of a causal effect defined using the mediation formula. This evaluation can take

place using any valid chosen method of estimation. The mediation formula thus establishes a

direct link between the definitions of mediated causal effects and the method by which they

can be estimated. The method of estimation is not restricted to parametric methods although

parametric methods are the focus of this thesis. Another important aspect of the mediation

formula is that estimates derived from it using parametric methods are the same as the product of

coefficient formulae for scenarios where the application of the product of coefficients is valid and
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the same parametric models are used. The product of coefficients method can thus be thought of

as drawing upon the mediation formula as it theoretical background although acknowledgedly

the product of coefficients method precedes the mediation formula by decades. In a similar

vein, the mediation formula also provided a way to express mediated causal effects for multiple

sequential mediators, causal or and, causal or for multiple sequential mediators using the

pos framework. Importantly, these expressions derived from the mediation formula are not

tied to any specific form of estimation. The following sub-section discusses this novel extension

of the mediation formula.

The other class of estimation methods is the simulation-based methods. These are methods that

rely on simulations as a primary mean to obtain estimates of the mediated causal effects. These

methods are useful particularly when the expressions obtained from the mediation formula

cannot be estimated simply. One such instance is when a continuous mediator is nested within

a binary outcome and they are each modelled using the normal and logistic generalised linear

model (glm) respectively. In such a scenario, the estimate for each po, when expanded and

simplified, contains an integral which does not have a closed form solution. This was discussed in

the previous chapter (eq. (3.5.16)). The lack of a closed form solution meant that the integral had

to be estimated using other means and one such way is through simulation. An application of

simulation to estimate mediated causal effects was developed and implemented in the mediation

R package (Imai et al., 2010). mediation was built on quasi-Bayesian simulation methods first

conceptualised by King et al. (2000). The simulation estimators in mediation are parametric

estimators which makes use of the presumed distributions of the outcomes, mediators and/or

parameter estimates to simulate the various pos required to estimate each of the causal effect

of interest. In later sections, I will discuss the novel extensions of methods of estimation in

mediation for estimating mediated causal effects where a binary mediator is nested within a

second continuous mediator or outcome. Challenges relating to the unique nature of the or
and important modifications to mediation were also discussed. These modifications focused on

correcting the errors and improving the efficiency of the programme of mediation.

Put together, the model-based estimators allows the estimation of some combinations of me-

diators and outcomes but cannot at the moment estimate mediated causal effects for specific

scenarios. The simulation-based estimators on the other hand has no limitation in what mediated

causal effects it can estimate. Both forms of estimation methods rely upon the mediation formula.
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This thesis extends the model-based estimation to obtain expressions for multiple sequential

mediation and expressions for the estimation of causal or. Building on the extensions of the

model-based estimators, the simulation-based estimator was extended to estimate causal effects

particularly for the scenarios for which there were no previous model-based solutions. The

cumulation of the work in this thesis is in an R programme named seq-med which implements

all the extensions discussed. The source code of this programme can be found in chapter G.

The programme provides for the estimation of any combinations of mediators and outcomes, ,

including those with no previous closed-form solutions. The programme also has the ability to

estimate and investigate specific hypothesis in multiple sequential mediation. Heuristics had also

been built into the programme that allows it to estimate mediated causal effects for any number

of sequential mediators although the correctness of the programme had only been verified for up

to the two mediator case. Lastly, the programme also allows the conduct of sensitivity analyses

of the estimates to test their robustness against violation of certain assumptions. This latter

part on sensitivity analyses and the novel contributions of this thesis is discussed at length in

chapter 6. Next I shall discuss the different model combinations and which do not have an

existing solution to conduct estimation of mediated causal effects.

Table 4.1 presents the differentmodel combinations possiblewith a single aswell as twomediators

and an outcome. Combinations here refer to the type of dependent variables, either continuous

or binary. Model- and simulation based estimators were defined previously. This table assumes

that binary and continuous dependent variables are modelled using the logistic and normal

glm respectively. Had the binary dependent variables been modelled using a probit glm,

there is indeed a closed form solution. This closed form solution can estimate a causal or but

this causal ratio has a very different interpretation from the causal or obtained from a logistic

regression. Given the focus on the or derived from the logistic regression, solutions using the

probit regression will not be considered in this thesis. Also note that some of the combinations

presented had solutions using both model and simulation-based estimators. These were used

to validate the newly developed estimators which is discussed later in the chapter. I will next

discuss in detail how the model-estimator can be extended to accommodate two mediators.
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Table 4.1: Combinations of models and availability of causal effect estimator

. "2 "1 Estimators available

continuous nil continuous model and simulation-based

continuous nil binary model and simulation-based

binary nil continuous simulation-based only

binary nil binary model and simulation-based

continuous continuous continuous model and simulation-based

continuous continuous binary model and simulation-based

continuous binary continuous simulation-based only

continuous binary binary model and simulation-based

binary continuous continuous simulation-based only

binary continuous binary simulation-based only

binary binary continuous simulation-based only

binary binary binary model and simulation-based

4.3 Model-based estimators

Modern iterations of the model-based estimators mainly rests upon the mediation formula for

its conceptual underpinnings. The difference between the methods based upon the mediation

formula and earlier efforts such as the product of coefficients methods is that the earlier methods

do not have a definition of the causal effects that is independent of its estimation methods.

This lack of an independent definition made it ambiguous how mediated causal effects can be

estimated in different scenarios and most notably for the case of the logistic glm. This clear

relationship established by the mediation formula between the all the variables, independent

and dependent, with the causal effect, aids not just in formulating a model-based estimator. It

also informs how a simulation-based estimator can be constructed. This is due largely to the

non-parametric conception of the mediation formula from which one can apply it to parametric

models in a number of ways where the model-based and the simulation-based estimators are

two examples.
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4.3.1 Applying the mediation formula for a single mediator

I will next use the case of a single binary mediator, " , with a continuous outcome, . , to

illustrate how the mediation formula can be applied to derive an expression for the estimate for

any causal effect, both mediated and direct. The use of a binary mediator with a continuous

outcome as an example is because this form of nesting of po, a binary mediator within another

continuous or binary outcome has a tractable solution because of the discrete nature of the nested

term. Since the nested mediator is discrete, it is thus possible to first enumerate all possible

values of " and then use those values to simulate the . po and lastly to weight each of the .

po corresponding to a discrete value of " by the probability of the value of " occurring. For

reference, the direct effect (de) and indirect effect (ie) are defined as E[. (1, " (0))−. (0, " (0))]

and E[. (1, " (1)) − . (1, " (0))] respectively.

Focusing on the two causal effect definitions, it is apparent that in order to estimate the causal

effects, one will first need an estimate of the pos . (1, " (0)), . (0, " (0)) and . (1, " (1)) and

then their expectations. For the purposes of illustrating how the estimation will proceed, I will

use the po . (1, " (0)). The steps for estimating the rest of the po are exactly the same.

The po . (1, " (0)) is a nested po and by that I mean that there is a dependent variable, "

with its own level of ' nested within it. The solution to an estimate of this . po comes from

the law of iterated expectations from which the mediation formula is based upon. The law states

that in order to evaluate such a nested expression, we have to take the weighted sum of . under

' = 1 for all the possible values of" (0). In this case, since" is binary, the possible values are 0

and 1. The weights to weigh each possible value of " (0) comes from the respective probability

of the " (0) occurring for each possible value. This will be P(" (0) = 1) and P(" (0) = 0). An

expression to estimate this causal effect is:

. (' = 1, " (0) = 1) · Pr(" (0) = 1)+

. (' = 1, " (0) = 0) · Pr(" (0) = 0)

So the steps in order of estimating this nested po will be as follows:

1. Estimate the glm model for . and " .

2. The next three steps have to be repeated for each unique subject in the dataset and at the



CHAPTER 4. DEVELOPMENT OF A NOVEL CAUSAL EFFECTS ESTIMATOR 88

end of which we will have a vector of estimates corresponding to each subject for this

po.

(a) Estimate Pr(" (0) = 1) from the model estimated in the first step.

(b) Estimate the following po of " :

Pr(" (0) = 0) · (Pr(" (0) = 0) = 1 − Pr(" (0) = 1))

(c) Estimate the po of interest using the expression:

. (' = 1, " (0) = 1) · Pr(" (0) = 1) + . (' = 1, " (0) = 0) · Pr(" (0) = 0)

3. Take the expectation over this vector for an estimate of the expectation of the po, i.e.

E(. (1, " (0))).

It should be noted that although the steps were repeated for each subject within the dataset,

this should not be interpreted as an individual causal effect. This effect is the inferred effect

of an individual who possessed the same observed characteristics as the subject in the dataset.

By repeating the steps for each subject in the dataset, we are using the distribution of the

characteristics of the subjects to weight each of the individually estimated po such that the

expectation of the po is really a weighted sum of the po using the probability of someone

possessing the same characteristic as the subject. If all the subjects were unique (as in the case

where there are continuous covariates), then the weights will simply be 1
=
where = is the sample

size.

Next, we need to repeat these steps for each po that is required. This is informed by the causal

effects definition. The final step once the expectations of the po had been estimated is to plug

in the value of each po into the causal effect definition and compute the causal effect estimate

according to the definition. In the context of this thesis, if the outcome was continuous, we

would take the difference between the expectations of the two po. If it was binary, we would

use the mean predicted probabilities of each po and compute a causal or.

4.3.2 Applying the mediation formula for two mediators

In order to extend the model-based estimator to accommodate two sequential mediators, we

will follow the same steps as the single mediator scenario with a few exceptions. First, there
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are more mediators and since we are interested in all possible mediated pathways, the second

mediator, "2, will have the first mediator, "1, nested within it. The outcome, . , will have both

the "1 and "2 nested within it. This results in the po of . having two levels of nesting as "2

is also nested compared with a single level of nesting when there was only a single mediator.

The causal effects of interest are as follows:

de = E[. (1, "1(0), "2(0, "1(0)))] − E[. (0, "1(0), "2(0, "1(0)))]

ie1 = E[. (1, "1(1), "2(0, "1(0)))] − E[. (1, "1(0), "2(0, "1(0)))]

ie2 = E[. (1, "1(1), "2(1, "1(0)))] − E[. (1, "1(1), "2(0, "1(0)))]

ie3 = E[. (1, "1(1), "2(1, "1(1)))] − E[. (1, "1(1), "2(1, "1(0)))]

Similar to the single mediator scenario, each causal effect had been defined as a difference

between two pos since . is continuous. Similarly, since the methods used for estimating a

single po can be applied to any po, I will use E[. (1, "1(1), "2(0, "1(0)))] to illustrate how

the estimation proceeds.

There are two important implications of having another level of nesting. First, since"1 is nested

within "2, evaluating "2 will require the use of the same methods we used for evaluating the

outcome in the single mediator scenario. In this case, instead of the outcome, we have "2

and similarly we have a single mediator. We can adopt the expression derived from the single

mediator scenario to estimate the pos of"2. Consider the scenario where we have only a single

mediator and an outcome. This scenario was discussed previously and the same methods used

to estimate such a po can be used to estimate the po when a mediator is nested within another

mediator. Secondly, since there are two mediators, summing across all ‘possible values of the

mediator’ previously now becomes summing across all ‘possible combination of values of the

mediators’. I will use the scenario of two binary sequential mediators and a continuous outcome

to illustrate how the mediation formula can be extended. For two binary mediators, we will

have four possible combinations, i.e. "1 = 0 with "2 = 0, "1 = 0 with "2 = 1, "1 = 1 with

"2 = 0, and "1 = 1 with "2 = 1. Each of these combinations have their respective probability

of occurring which will need to be estimated and used as weights when summing the po of .

under each of these combinations, similarly to what we did for a single mediator. Also as before,
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once all the po had been estimated, we can then take their expectations and compute the causal

effect according to the causal effect definition.

The simulation of each pair of pos for the estimation of a causal effect follows closely the way

the mediation formula is structured. This coupling of the estimation method with a theoretical

base provides a strong intuition on how and why the estimation procedure works. It further

provides clues as to how this estimation procedure can be modified to address similar problems.

I will next discuss how this procedure for estimating po with a single mediator is modified to

estimate po with two mediators.

Returning to the estimation of the po, E[. (1, "1(1), "2(0, "1(0)))]. The first task is to work

out the order in which the pos of . had to be estimated. . pos can not be estimated without

first estimating"1 and"2 pos. "2 pos can not first be estimated without estimating"1 pos.

Therefore, "1 pos had to be estimated first because it does not have a dependency on other

pos. Once "1 pos had been estimated, we can then estimate "2 pos but not . pos. Only

when "1 and "2 pos had been estimated can we estimate . pos. The steps to conduct the

estimation are as follows:

1. Estimate the glm models for . , "1 and "2.

2. Determine the order in which the pos have to be estimated and as discussed, this will be

"1, "2 then . for the two mediators scenario.

3. Start by estimating the "1 po required. This will be "1(0) and "1(1) for the example of

. po which we are using as an example. This estimation uses the model of "1 estimated

in (1) and estimate "1 for each subject present in the dataset while setting the level of '

to 0 and 1 for the respective "1 pos.

4. The next step is to estimate po of"2,"2(0, "1(0)). Since the po contains"1 po nested

within it, we will need to apply the mediation formula to estimate this po. Following the

steps outlined in the single mediator scenario when evaluating thepo of. , we will end up

with the expression,"2(0, "1(0) = 1) · Pr("1(0) = 1) +"2(0, "1(0) = 0) · Pr("1(0) = 0).

This expression allow us to estimate the "2 po, "2(0, "1(0)).

5. Having obtained an expression to estimate "2, we will next need to consider the possible

combinations of "1 and "2. Since each of them are binary, we will have the following

combinations:
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• "1(0) = 0, "2(0, "1(0)) = 0

• "1(0) = 0, "2(0, "1(0)) = 1

• "1(0) = 1, "2(0, "1(0)) = 0

• "1(0) = 1, "2(0, "1(0)) = 1

6. We will next need to obtain the probability of each of these combinations occurring. This

can be obtained by taking the product of probability of "1 and "2 occurring. This is a

valid estimation of the probability of the combination occurring because the probability

of "2 occurring is a conditional probability, conditional on both "1 and ' and any other

covariates that might be present.

7. Once the probabilities of each combination had been obtained, we then use it to weight

each of the . po under each combination which will yield the following expressions.

• Pr("1(0) = 0) · Pr("2(0, "1(0)) = 0) · . (1, "1(0) = 0, "2(0, "1(0)) = 0)

• Pr("1(0) = 0) · Pr("2(0, "1(0)) = 1) · . (1, "1(0) = 0, "2(0, "1(0)) = 1)

• Pr("1(0) = 1) · Pr("2(0, "1(0)) = 0) · . (1, "1(0) = 1, "2(0, "1(0)) = 0)

• Pr("1(0) = 1) · Pr("2(0, "1(0)) = 1) · . (1, "1(0) = 1, "2(0, "1(0)) = 1)

8. The last step to obtain an estimate of the. po of interest is simply to sum up the estimates

from the previous step.

9. To obtain an expectation of the . po of interest, we average across all the estimated .

po for each subject.

10. We will repeat steps (1) - (9) for each po of interest.

11. Once the expectation of all the pos required had been estimated, we will then use the

estimated expectations according to the causal effect definition to produce an estimate of

the causal effect.

The steps presented illustrate how the mediation formula had been extended for two mediators.

Conceptually, the samemethod can be used to extended to estimate the mediated causal effects of

any number of mediators. This can be done by iteratively applying the steps presented, starting

with the mediator with no nested po to the mediator with the most number of nested pos. The

programme for estimating the mediated causal effects has this iterative method implemented

and can theoretically be used to estimate causal effects of any number of mediators but the

performance of the programme had only been validated up to the two mediators case. Also, it

needs to be clarified that while the mediated causal effects of any number of mediators can be

estimated, the necessity and motivation of which will need to be justified appropriately.
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So far we have focused the discussion to binary mediators and continuous outcomes. If the

mediators are continuous, instead of using the probability of the mediator occurring, which

is derived from the probability mass function (pmf) of the mediator, we will use the integral

of the probability density function (pdf) of the mediator instead. If the outcome is binary,

our causal effect will be defined as or instead of differences. A problem arises however when

the mediators are continuous and the outcome is binary. Since the integral of the pdf of the

mediator is used instead of the pmf, this will give rise to the integral that does not have a

closed form solution (eq. (3.5.16)) discussed in the previous chapter. These scenarios also occur

when the first mediator is continuous and the second mediator is binary since the evaluation of

the po of the second mediator will also require the evaluation of the integral. The next section

discusses the development of a novel estimator to estimate the causal effects in such scenarios.

This novel estimator builds upon the model-based estimator and provides a way to estimate the

causal effects using simulation to estimate the causal effects where the model-based estimator

does not have a closed form solution. This novel estimator is referred to as the simulation-based

estimator.

In summary, this section first discussed how the model-based estimator, built upon the mediation

formula, is applied to estimatemediated causal effects for a singlemediator and then subsequently

extended for two mediators. The next section builds upon the model-based formula and its

extensions to create a novel simulation-based estimator which allows for the estimation of any

combination of mediator and outcomes, including the ones where the model-based estimator

does not have a closed form for.

4.4 Simulation-based estimators

The simulation method used in this thesis is a quasi-Bayesian method developed by King et al.

(2000) originally for the purpose of policy analysis. The authors were interested in answering

questions such as ‘what will the outcome be if we altered the policy in a certain manner?’ by

being able to simulate outcomes had the policy been changed in various way. Such questions

are in fact questions about comparing different pos with each outcome being the result had

we altered the policy one way or another. These methods were thus well suited for simulation

of pos as a means to estimate mediated causal effects. Notably, Imai et al. (2010) used these
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methods for an estimator of mediated causal effects in the R package mediation. The work

presented in this thesis follows closely the implementation used by Imai et al. (2010).

The main idea behind this quasi-Bayesian simulation is the idea that there are uncertainties

associated with estimation of a parametric model such as the fitting of a glm. The authors

identified two main forms of uncertainties and named them estimation and the fundamental

uncertainty. Since the parameters are each estimated with uncertainty, it necessarily implies

that there is a range of values which the estimated parameter can lie within. This range of

values and the associated probabilities of each value occurring thus forms a distribution of the

estimated parameter and put in another way, the point estimate of the parameter is drawn from

this distribution of values. The idea behind the simulation is that if we repeatedly make draws of

the parameters from this distribution and using these draws to make an estimate of the outcome,

we will be able to form a distribution of the outcome which factors in the uncertainties. Going

one step further, if we make these repeated draws while keeping an independent variable fixed

at a value of our choosing such as the treatment level in an randomised controlled trial (rct),

we will then be able to simulate pos.

The ‘Bayesian’ part of this simulation procedure comes from the use of the prior distribution(s)

of the parameters and the observed data from the sample to form a posterior distribution of the

outcome. The prior distribution is not a true prior distribution in the Bayesian sense since it

is a distribution formed from the initial estimation of the model and hence dependent on the

sample data. This is the reason this simulation method is termed a quasi-Bayesian rather than a

Bayesian method. I will next discuss the two forms of uncertainty, how they are quantified and

how they can be used to form the prior distribution of parameters from which to draw from.

4.4.1 Estimation uncertainty

Estimation uncertainty, as the name suggest is the uncertainty that arise from the estimation

process. This can be due to various reasons including but not restricted to a small sample set and

the choice of estimationmethods. In the context of using aglm tomodel the outcome of interest,

the regression coefficients are parameters that are estimated to quantify the relationship between

the outcome and the independent variables. These coefficients, being estimated quantities, are
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measured with a level of uncertainty that is quantified by the variance-covariance matrix of the

coefficients. This matrix is a symmetrical matrix with the number of rows being the number of

independent variables. The diagonal is the variance of the corresponding regression coefficient

while the rest of the matrix contains the pairwise covariance between the regression coefficients.

The confidence interval of the regression coefficients commonly presented in studies is derived

from this matrix.

One way to simulate the regression coefficient is to make use of this matrix. What the variance-

covariance matrix conveys is not just the variance of each individual coefficient but also their

relationship in the form of a covariance with the other coefficients. If we make the assumption

that the underlying distribution of the regression coefficients is a multivariate normal distribution

(mvn) distribution, we can parametrise amvn distribution using the regression coefficients

as means and the matrix as the variance-covariance matrix. We can then treat this distribution

as the underlying distribution of the regression coefficient from which we can then make draws

from to simulate the regression coefficients. An alternative was if we do not wish to make the

mvn distribution assumption will be to use a non-parametric bootstrap. Generally, this is done

by first sampling the sample with replacement and then fit the model again. The regression

coefficient from this second fitting is then treated as a draw from the underlying distribution

of the regression coefficients. The assumption ofmvn is justified for large sample sizes since

maximum likelihood was used to fit the model. This provides for a statistically more powerful

approach and is also computationally less intensive then the bootstrap approach. The bootstrap

approach should be used when the sample size is small. Both methods had been proposed by

King et al. (2000) as valid ways to simulate the coefficients and have been implemented in the

mediation package by Imai et al. (2010) as well as in the implementation used in this thesis.

4.4.2 Fundamental uncertainty

The other form of uncertainty is the fundamental uncertainty. This is the uncertainty associated

with random events or unknown causes that have the ability to influence the outcome. An

example of such uncertainty can be illustrated using a coin toss. For a perfectly balanced coin,

the chance of the coin landing on heads or tails is each 50%. Knowing this probability only tells

us that for a large number or infinite number of coin tosses, the coin will land on heads 50% of
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the time but it does not allow us to say with certainty which side the coin will land for the next

toss.

In the context of a normal glm, this is quantified by the residual variance. This variance is the

variance that is not explained by all the other independent variables and hence represent the

variance of the outcome for which we do not know the causes of. The normalglm parametrises

the residuals to have a mean of 0 and together with the estimate of the residual variance, we can

parametrise a normal distribution with a mean of 0 and variance using the estimated variance.

This distribution can then be used to make draws from to simulate the residual variance. For

logistic regressions, the process is a little different which will be discussed in section 4.5.1.

4.4.3 Simulating outcomes

Having discussed the two forms of uncertainties and the general way in which they can be

used to simulate the regression coefficients and residuals, I will next describe the steps that are

used to conduct the simulation of a simple po where we are interested in the outcome had the

binary treatment indicator ' been held at level 1. This outcome is written as . (1). The following

discussion will use many of the notations set out at the beginning of the thesis and should be

used as a reference.

For this example, I will be using a simple normal glm with the identify link function 5 where:

. = 5 (',�) = V0 + V1' + V2� + Y, Y ∼ N(0, f2)

where . is the outcome of interest (continuous).

' is the treatment level (binary).

� is the covariate (can be either binary or continuous).

Y is the residual.

The simulation will proceed as follows:

1. Fit model . as specified.

2. Extract the vector of estimated regression coefficients, ®# .

3. Extract the variance-covariance matrix of ®# , 2>E (®#).

4. Extract themse of the model.
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5. Set the value of ' to 1.

6. Simulation steps:

(a) Simulate the regression coefficients of model . by making a draw from the distri-

bution Nmv(®#, 2>E (®#)). The draw, (®a): , is a vector of length ? and the : subscript

represents a single run of the simulation. It represents a single draw of the regression

coefficients from their assumed underlying distribution.

(®a): = ({01, 02, . . . , 0?} ∼ Nmv(®#, 2>E (®#))):

(b) Simulate the estimated, expected outcomes for each subject, (®b): by making a

‘prediction’ of . using (®a): and the model matrix ^_ (sample data used in the

estimation of the . model) by taking the dot product of the matrix with the vector

of simulated regression coefficients. The resulting vector is assigned to (®b): . (®b): is

a vector of simulated . taking into account the estimation uncertainty.

(®b): = (^_ × (®a):):

(c) Simulate the fundamental uncertainty, (®d): by making = draws from the distribution

N(0,mse).
(®d): = ({31, 32, . . . , 3=} ∼ N (0,mse)):

(d) Add the fundamental uncertainty to (®b): (The resulting vector (®g): is the simulated.

for the :th run of the simulation which takes into account both forms of uncertainty).

(®g): = (®b): + (®d):

(e) Summarise the results of the :th simulation by taking the expectation of (®g): ,

E[(®g):]

7. Repeat step 6 for< times. At the end of the simulations, we will get a vector, ®h, of length<.
®h is the vector containing the expectations of simulated . from each individual simulation

run.
®h = {E[(®h)1], E[(®h)2], . . . , E[(®h)<]}

8. A point estimate for the po, . (1) can then be obtained by taking the expectation of ®h to

get E[®h].

I will discuss how this can be applied to estimate mediated causal effects in the next section.
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4.5 Estimating mediated causal effects by simulation

I will use an example of a single mediator to illustrate how this simulation procedure can be

used to estimate a mediated causal effect. For this example, I will use the case of a continuous

mediator and outcome. Although this combination of mediator and outcome have existing

model-based solutions, this illustration is meant to provide a reference method by which the

mediated causal effect can be estimated by simulation. Subsequent discussion will touch on the

modifications to this method to allow for the estimation of mediated causal effects involving a

mixture of binary and continuous variables.

Assuming a continuous mediator and outcome, we have the following models:

. = 5 ('. ,�,") = V0 + V1'. + V2� + V3" + Y. , Y. ∼ N(0, f2
. )

" = 5 ('" ,�) = U0 + U1'" + U2� + Y" , Y" ∼ N(0, f2
" )

where . is the outcome of interest (continuous)

" is the mediator (continuous)

' is the treatment level (binary)

� is the covariate (can be either binary or continuous)

Y. and Y" are residuals of the respective models.

For this example, I will be simulating the expectation of thepo. (1, " (0)). The steps to simulate

the mediated causal effects are as follows:

1. Fit the models, . and " as specified.

2. Extract parameters from the . model.

(a) Extract the vector of estimated regression coefficients of . , ®# .

(b) Extract the variance-covariance matrix of ®# , 2>E (®#).

(c) Extract themse of . ,mse. .

3. Extract parameters from the " model.

(a) Extract the vector of estimated regression coefficients of " , ®" .

(b) Extract the variance-covariance matrix of ®" , 2>E ( ®" ).

(c) Extract themse of " ,mse" .

4. Set the values of ' to the required levels for the po . (1, " (0)).
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(a) Set the value of '. to 1.

(b) Set the value of '" to 0.

5. Simulation steps:

(a) Simulate " .

i. Simulate the regression coefficients of model " , (®a): by making a draw from

the distribution Nmv( ®" , 2>E ( ®" )) and assign the resulting vector to (®a): .

ii. Simulate the estimated, expected " for each subject, (®b): by making a ‘predic-

tion’ of " using (®a): and the sample data ^S to get (®b): .

iii. Simulate the fundamental uncertainty of " , (®d): by making a draw from the

distribution N(0,mse" ).

iv. Add the fundamental uncertainty to the estimated expected " for each subject

to get (®d + ®b): ((®d + ®b): is the simulated " for the " po" (0) for the :th run

of the simulation).

(b) With " simulated, we will next use it to simulate . .

i. Simulate the regression coefficients of model . , (®g): by making a draw from

the distribution Nmv(®#, 2>E (®#)) and assign the vector to (®g): .

ii. Set the value of " to (®d + ®b): in the model matrix ^_ .

iii. Simulate the estimated, expected . for each subject by making a ‘prediction’ of

. using (®g): and the modified model matrix ^_ to get (®h): .

iv. Simulate the fundamental uncertainty of . , (®q): by making a draw from the

distribution N(0,mse" ) and assign it to (®q): .

v. Add the fundamental uncertainty ((®q): ) to the estimated expected . ((®h): ) and

assign the result to (®t): .

vi. Take the expectation of (®s): , E[(®s):] (E[(®s):] represents a single draw of. from

its underlying distribution accounting for both the estimation and fundamental

uncertainties).

6. Repeat step 6 for< times, the total number of simulations required. Once the number of

simulations is reached, we will have a set of E[(®s):], one each from each simulation. We

assign this vector ®t .

7. The point estimate of the po . (1, " (0)) can be obtained from ®t by taking its expectation,

E[®t].

The steps outlined allow us to simulate and obtain estimates for each po. These then have to be
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used according to our causal effect definitions in order to obtain an estimate of the causal effect.

If we are interested in the direct effect, defined as E[. (1, " (0))] - E[. (0, " (0))], then we will

do the following:

1. For the :th run of the simulation, do the following.

(a) Simulate the po" (0).

(b) Simulate the po . (1, " (0)) using the " (0) simulated in the first step.

(c) Simulate the po . (0, " (0)) using the " (0) simulated in the first step.

2. At the end of the simulations, we will take the expectation of each of the simulated po
before taking the difference between the expectation of the pos. This provides us with a

point estimate of the direct causal effect.

3. The confidence interval can be constructed by using the two vectors of simulated po,

taking their differences and using the 97.5th and 2.5th percentile values from the resulting

vector as the upper and lower bounds respectively. This is known as the percentile method.

Note the two po in question share a common, simulated term, " (0). The same " (0) needs to

be used when simulating the . po. This is a reflection of the definition of po which states that

all conditions are to remain the same except for a single '. The ' that is different indicates the

effect that we are interested in and in this example, the ' that is different is '. .

Next I will discuss some variations to this simulation starting with the extension to accommodate

logistic regression. The method of simulation just outlined will be referred to as the standard

method of simulation. Other methods will bear reference to this method.

4.5.1 Variation I: Logistic regression, fundamental uncertainty

Logistic glm is used to model binary outcomes and mediators in this thesis. While the normal

glm has a residual of mean 0 and unknown variance which is to be estimated, the logistic

glm has a residual with a fixed mean and variance to that of a standard logistic distribution.

The residual of a logistic regression is fixed in order to identify the model which then allows

the estimation of the parameters of interest to move forward. This requirement exist because

the logistic regression is modelling a latent attribute of the outcome, its underlying continuous

distribution, rather than the outcome itself.
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The implication of this to the study is that the use of the estimated variance of the residual to

simulate the fundamental uncertainty in the normal glm, is no longer usable in the logistic

instance. Here I will discuss an alternative way to simulate this fundamental uncertainty and

the considerations of such an alternative. Imai et al. (2010) in the mediation package, simulated

the fundamental uncertainty as follows:

1. For a given run of the simulation, after computing the predicted probability for each

subject present in the sample, the probability is then used to simulate the fundamental

uncertainty.

2. For an outcome . , assuming that the predicted probability for outcome . is 0.8, I will then

make a ‘coin toss’ of a loaded coin with a probability of landing on head 80% of the time

and record the result. The coin toss is actually implemented as a simulation procedure in

the programme.

3. The result is then used as the simulated outcome. This result incorporates both the

fundamental and estimation uncertainty in its simulation because the regression coeffi-

cients were drawn from a distribution of the coefficients parametrised by the estimation

uncertainty and the fundamental uncertainty is embedded in the predicted probability

itself.

While this procedure does simulate the fundamental uncertainty, the uncertainty itself is not

reproducible for use in the simulation of other pos. If each po that needs to be simulated

were to be simulated in this manner, they will all have a different magnitude and direction of

the fundamental uncertainty. Recall that in the standard method, the fundamental uncertainty

is simulated once and shared across pos for a given subject within a given simulation run.

This sharing of the fundamental uncertainty arises from the definition of our causal effects.

The causal effects are defined by comparing two pos either using differences for continuous

outcomes or or for binary outcome. The two pos are measured under identical conditions

but for the level of a single '. The level of ' chosen depends on which effect is of interest and

since two pos are measured under the same conditions, changes in the outcome can thus be

attributable to the change in the level of '. If the two pos had different fundamental uncertainty

components, the difference between outcomes can also be due to differences in the fundamental

uncertainty and is not solely attributable to '.
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In order to use the same fundamental uncertainty component for both pos, we need to develop

a mechanism to quantify and simulate the fundamental uncertainty and use this simulated

quantity for both pos, similar to how the fundamental uncertainty is simulated in the standard

approach. For this purpose, I turn to the latent variable formulation of the logistic regression

discussed earlier (eqs. (3.5.3) and (3.5.4)). For reference, the equations are reproduced here:

. = I((. ∗ + Y) > 0)

. ∗ = logit(Pr(. = 1))

= V0 + V1-1 + V2-2 + · · · + V=-=

As a recap, . ∗ is a latent variable which is conceptualised as the logit transform of Pr(. = 1). ‘I’

is the indicator function that returns 0 if its argument evaluates to false and 1 otherwise. . is

predicted by adding a random number drawn from Lstd(represented by Y) to the estimated

. ∗ and passing the result through the I function.

As we can see here, the latent variable formulation of the logistic regression has an explicit term,

the Y, which represents the fundamental uncertainty. Using this formulation, we can then ensure

that the pos within a subject for a given simulation shares a common fundamental uncertainty

component. Therefore, to simulate the fundamental uncertainty for a given subject, we will

replace steps 5(a)iii, 5(a)iv, 5(b)iv and 5(b)v in the simulation of mediated outcomes depending

on which of " and . is/are binary. For each subject in a given simulation,

1. Simulate the fundamental uncertainty by making a draw from Lstd.

2. Add the draw to the predicted probability of the outcome.

3. If the resulting sum is greater than 0, assign 1 for the simulated outcome and 0 otherwise.

We can then proceed using the simulated . or " as in the standard method. This method

therefore allow us to simulate binary outcomes while ensuring that the fundamental uncertainty

component is kept constant for a subject within a simulation and thus adhere to the definition

of po.

For clarity, the steps to simulate a binary . is reproduced below, using the po . (1) as an

example.

1. Fit model . ∗ as specified.
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2. Extract the vector of estimated regression coefficients, ®# .

3. Extract the variance-covariance matrix of ®# , 2>E (®#).

4. Set the value of ' to 1 in the model matrix ^_

5. Simulation steps:

(a) Simulate the regression coefficients of model . ∗, (®a): .

Make a draw from the distribution Nmv(®#, 2>E (®#)).

(b) Simulate the estimated logit(Pr(. = 1)) for each subject, (®b): .

Make a prediction of . ∗ using (®a): and the model matrix ^_

(c) Make a draw from Lstdfor each subject and add this to (®b): to obtain (®d): .

(d) Summarise the results of the :th simulation by taking the expectation of (®d): ,

E[(®d):]

6. Summarise the results of the :th simulation by taking the expectation of I(E[(®d): > 0])

to obtain a simulated . .

7. Repeat step 5 for< times.

At the end of the simulations, we will get a vector, ®g, of length<.

®g is a vector containing the expectations of simulated . from each individual simulation

run.

8. A point estimate of the po Pr(. (1) = 1) can be computed by taking the expectation of ®g,

E[®g].

Using the simulation of a binary " as an example, if we were to simulate " using the above

modified procedure an infinite number of times and take the expectation of the resulting

simulated" , we will recover the estimated Pr(" = 1). This is to be expected since the estimated

Pr(" = 1) is summary of " if we were able to somehow sample " repeatedly and infinitely

from the population. This is a more efficient method of simulating binary mediators and in the

next variation, I will discuss how this can be done.

4.5.2 Variation II: Logistic regression, application of the mediation

formula

When working with binary outcomes and mediators, I have shown in the previous section how

these binary variables can be simulated while adhering to the definition of po. Here I will
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present and alternative that can be used in the case of binary mediators by making use of the

mediation formula.

Recall that in the model-based approach, binary mediators are used by taking a probability

weighted sum of the possible values of " . In the case of simulation of binary mediators, we can

apply the same concept. To illustrate this, consider a binary " and a continuous . and the po
. (1, " (0)).

In the model-based approach, we will estimate the . (1, " (0)) using the following expression:

. (1, " (0)) = . (1, " (0) = 1) · Pr(" (0) = 1) + . (1, " (0) = 0) · Pr(" (0) = 0)

Similarly, we can apply the samemediation formula within a simulation run to obtain an estimate

of . (1, " (0)) This allow us to make the simulation more efficient because captured within the

estimate of . (1, " (0)) is not just a single draw of " but incorporates the long run expectation

of " . The alternative is to simulate " and realise it as a binary variable for each simulation.

Doing so over a large number of simulations should yield the same results as not realising

" , i.e. by applying the mediation formula and using the predicted Pr(" = 1). Both of these

methods, realising and not realising a binary dependent variable, will yield the same results

given a large number of simulations. The same estimate could be obtained using smaller number

of simulations by not realising the dependent binary variable and therefore, binary dependent

variables are not realised in the estimation of causal effects involving binary dependent variable.

The example given was for a continuous. . What happens then if. is binary? Since we have now

established methods for simulating binary variables while maintaining the same fundamental

uncertainty, there is now the option as to which method should be use when estimating the

causal or of a binary . . The next section will discuss this.

4.5.3 Variation III: Logistic regression, estimating causal or

For a binary outcome . , there are two levels at which we have the option of realising . . The

first is within a single simulation. For each po within a simulation, each subject will have a

Pr(. = 1) and at the subject level within each simulation, we can choose to either realise . or let

it remain as a probability. Regardless of whether we choose to realise . within a simulation, at
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the end of a single run of the simulation, the expectation of each po is a probability of .drawn

from the underlying distribution of . . The second level is whether or not this probability is to

be realised.

Before considering the options presented, we first need to consider the causal or. or differs

from differences as causal effects in one important way. Differences as causal effect are collapsible

while theor is not as discussed previously. This means that for a continuous outcome the order

in which we compute the differences and taking the expectations does not matter.

E[. (1)] − E[. (0)] = E[. (1) − . (0)]

This relationship between expectations of differences and differences of expectations means

that for a continuous outcome, it does not matter whether we take the differences at the subject

level within a simulation and then the expectation of the differences or the differences between

expectations of each po within a simulation. This also suggests that there are certain terms that

can be skipped in the simulation such as covariates since they cancel out each other as discussed

previously.

The or however is different and because of the lack of collapsability, the results if we were to

compute theor at the individual level with a simulation and taking the expectation is different

from the result if we take the expectation of the simulated outcomes and using these expectations

(which will be probabilities) or each po to compute the or. Since we also have two levels at

which we can choose to realise the binary variable or not, it also implies that there are two levels

where we can compute the or, one at the subject level within a simulation and the second

across all the simulations.

The choice for how to proceed rests upon the definition adopted for causal or. Specifically, in

this thesis, I am defining the causal or to be the marginal or. Therefore stemming from this

definition of the causal effect, the marginal or will thus need to be computed from marginal

predicted probabilities of each po. So therefore, instead of summarising each simulation at the

end of it, we will hold the two pos from each simulation and at the end of all the simulations,

we will have two vectors of simulated po. These two vectors consist of simulated probabilities

of the binary outcome. We can then take the expectation for each of these vectors and obtain

the simulated probability of each of the two po. This simulated probability can then be used to

construct a causalor. Since thisor is constructed from estimates of the marginal probabilities
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of each po, this is then the marginal or.

Having discussed how we can obtain a causal or despite the non-collapsibility of or, we

revisit the question of whether or not the outcome should be realised. For both the within

simulations and the across simulations level, I have opted not to realise binary outcomes for the

same reason that I have chosen not to realise binary mediator, i.e the predicted probabilities is a

sufficient estimate of the simulated outcome. Realising the binary outcome over a large number

of simulations will yield the same estimates as not realising but will incur a large computational

cost. I should note that in the programme written to carry out the simulation, the option is

present whether or not to realise binary " and . .

Now that we can estimate causal effects for all combinations of binary and continuous " and . ,

we can then consider how this can be extended to cover the two mediators case.

4.5.4 Variation IV: Two mediators

The extension of the simulation estimator to accommodate two mediators follows closely

what was laid out in the model-based approach as follows using the example of estimating

E[. (1, "1(1), "2(0, "1(0)))]. For this example, assume that "1, "2 and . are all binary. The

use of all binary dependent variables is for simplicity because the extension of the model with

all binary dependent variables requires only the predicted probability of each of the dependent

variable and does not require the use of any integrals of probability distribution functions as is

the case with continuous dependent variables. The extension proceeds as follows:

1. Estimate models for . , "1 and "2.

2. Determine the order in which the pos need to be estimated and the order is "1, "2 and

. .

3. Identify the pos required. These are

"1(1), "1(0),

"2(0, "1(0)), and

. (1, "1(1), "2(0, "1(0)))

4. Estimate "1(1).
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(a) Simulate "1(1) and "1(0) using the simulation methods previously discussed.

(b) At the end of each simulation, we will have a vector of simulated predicted probabil-

ities of "1, one for each subject and pos required.

5. Estimate "2(0, "1(0)).

(a) Identify the different combinations of "1(0). This will be "1(0) = 1 and "1(0) = 0.

(b) Simulate the regression coefficients of "2 by making a draw from a mvn distri-

bution parametrised by regression coefficients of "2 and the variance-covariance

matrix of those coefficients.

(c) Use the mediation formula to determine which predicted probabilities to compute

based on the combinations of "1. This will be:

"2(0, "1(0) = 1)

"2(0, "1(0) = 0)

(d) Simulate the necessary "2 and use these in the mediation formula:

"2(0, "1(0)) = Pr("1(0) = 1) ·"2(0, "1(0) = 1) +

Pr("1(0) = 0) ·"2(0, "1(0) = 0)

(e) At the end of each simulation, we will have a vector of simulated predicted probabil-

ities of "2, one for each subject.

6. Estimate . (1, "1(1), "2(0, "1(0))).

(a) Identify the combinations of "1(1) and "2(0, "1(0)). This will be:

"1(1) = 0, "2(0, "1(0)) = 0

"1(1) = 0, "2(0, "1(0)) = 1

"1(1) = 1, "2(0, "1(0)) = 0

"1(1) = 1, "2(0, "1(0)) = 1

(b) Simulate the regression coefficients of. by making a draw from amvn distribution

parametrised by regression coefficients of . and the variance-covariance matrix of

those coefficients.

(c) Use the mediation formula to determine which predicted probabilities to compute
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based on the combinations of "1 and "2. This will be:

. (1, "1(1) = 0, "2(0, "1(0)) = 0)

. (1, "1(1) = 0, "2(0, "1(0)) = 1)

. (1, "1(1) = 1, "2(0, "1(0)) = 0)

. (1, "1(1) = 1, "2(0, "1(0)) = 1)

(d) Simulate . (1, "1(1), "2(0, "1(0))) by applying the mediation formula:

. (1, "1(1), "2(0, "1(0))) =

. (1, "1(1) = 0, "2(0, "1(0)) = 0) · Pr("1(1) = 0) · Pr("2(0, "1(0)) = 0) +

. (1, "1(1) = 0, "2(0, "1(0)) = 1) · Pr("1(1) = 0) · Pr("2(0, "1(0)) = 1) +

. (1, "1(1) = 1, "2(0, "1(0)) = 0) · Pr("1(1) = 1) · Pr("2(0, "1(0)) = 0) +

. (1, "1(1) = 1, "2(0, "1(0)) = 1) · Pr("1(1) = 1) · Pr("2(0, "1(0)) = 1)

(e) At the end of each simulation, we will have a vector of predicted probabilities of .

po and in this case . (1, "1(1), "2(0, "1(0))).

(f) We then take the expectation of the simulated expected probabilities for each simu-

lation.

The procedure outlined is used to simulate a single . po. We will then need to repeat this for

the pos required to compute the causal effect. Once we have simulated both pos, we can then

obtain an estimate of the or by using the expectation of the . pos across all simulations. This

thus concludes the extension of the simulation method for two mediators.

4.5.5 Variation V: Simulate regression coefficients with bootstrap.

The last variation is the use of bootstrap for the simulation for the regression coefficients. In

lieu of making a draw from amvn distribution, one can instead use a bootstrap to simulate

the regression coefficients. This applies regardless of which po one is simulating. Using the

po . (1) as an example, the process of simulating the regression coefficients using bootstrap

are as follows:

1. Sample = subjects from the model matrix ^_ with replacement to form a new model

matrix.
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2. Use the new, re-sampled, model matrix to estimate the model . .

3. Use the regression coefficients of this newly estimated model as a single simulate of the

regression coefficient of the model . .

The bootstrap is ideal if one does not wish to make the assumption ofmvn of the estimated

regression coefficients. This is applicable particularly when the sample size is small. The

drawbacks of the bootstrap is that it is much more computationally intensive than themvn
approach and themvn approach is also statistically more powerful i.e. for a given sample size,

using themvn approach allows one to detect smaller causal effects compared to the bootstrap

approach. It is important to note that the aim of the simulation is to reproduce the sampling

distribution of the outcome and both the bootstrap and themvn method are valid ways to do

this.

Another drawback of the bootstrap approach come when one is estimating logistic regressions.

If we were to refit a logistic model at each run of the simulation, we can run into convergence

problems during the refits particularly when the probability of the outcome is low to begin

with. With a low probability, there is increased likelihood that the proportion of re-sampled

outcome being 1 may be too low to make estimation of the parameters possible. One might

choose to discard the model matrix and sample a new one. Doing so however implies that only

certain combinations of the resampling will be used and thus the probability of selecting each

combination of subjects is not uniform. This violates a basic assumption of the non-parametric

bootstrap and while there are discussions of such a phenomenon (E.g. Gomes and Oliveira

(2001)) there is currently no consensus on how such a situation is to be resolved.

4.6 Precision of estimates from simulation-based estimator

The simulation-based estimator differs in one important respect from the model-based estimator.

The precision of the simulation-based estimator is highly dependent on the number of simulations

used. Precision in this context refers to the discrepancies between the model- and simulation-

based estimators. The model-based estimate in this context is being used as a gold standard, a

deviation from traditional methods of assessing estimators. This deviation is borne from the idea

that both estimators were constructed using the same theoretical background and since they
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both draw upon the same theoretical background and are built using the same set of models

for outcomes and mediators, at best, the simulation-based estimator is expected to reproduce

the estimates from the model-based estimator should it be possible to use the model-based

estimator to conduct the estimation. Further discussion on comparisons between the model-

and simulation based estimators can be found in the next chapter.

The precision of the estimates is closely linked to the number of simulations used to obtain the

estimates. Generally, the larger the number of simulations, the more reliable the estimates will

be at the cost of lengthier computation times. This increase can stretch to hours or even days for

larger, more complex models. This increase in computational times greatly increases if the results

for the sensitivity analyses are required because the same set of simulations will be conducted

for each level of confounding tested in the sensitivity analysis. At some point however, further

increases in the number of simulations will only yield negligible improvements in precision, a

case of diminishing returns. The number of simulations at this point strikes an optimum balance

between precision and computation times. Unfortunately, the only way to identify this point is

through an iterative trial and error procedure which begins by first obtaining an estimate using

a predetermined number of simulations G . With this initial estimate, we then iterate over the

following steps:

1. Increase the number of simulations by ~ amount.

2. Obtain an estimate using G + ~ simulations.

3. If the estimates obtained with G simulations and G + ~ simulations differ by I amount, go

to step 1 and repeat the steps.

The values of G , ~ and I need to be predetermined. Lastly, this procedure needs a breaking

condition to guard against excessively long computation times which can be triggered by having

a very small I. This procedure outlines the optimal way to set the number of simulations but

is not currently implemented. Instead, a default value of 100000 is used and in practice, this

number of simulations had been found to be sufficiently precise. This value can be overridden

should there be a need to do so.
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4.7 Summary

In summary, this chapter presented a solution to three methodological gaps for the estimation

of mediated causal effects. Firstly, there was a lack of expressions for estimators in multiple

sequential mediation that allowed the testing of path specific hypotheses. Secondly, there was

also a lack of expressions for causal or estimators for both the single and multiple mediator

scenarios which does not rely on restrictive assumptions. Thirdly, a solution is needed for

evaluating these expressions in order to obtain causal effect estimates. The lack of expressions

for the estimators in the first two methodological gaps was bridged by building upon and

extending the mediation formula. The efforts yielded solutions for expressions for estimators for

single and multiple sequential mediation for both causal differences and causal or. Besides

providing solutions to scenarios where there were none previously, these solutions provided

also differed from previous efforts in that they allowed the testing of path specific hypotheses.

These expressions then need to be evaluated in order to obtain an estimate of the causal effect.

While many of the expressions after simplifying have closed form solutions whereby one can

substitute in estimated model parameters to obtain an estimate of the causal effect, many do

not. This is primarily due to an integral that has no closed form solution. The second part

of this chapter discussed how a quasi-Bayesian simulation method had been used to evaluate

these expressions. This allowed one to estimate mediated causal effects for any combination

of mediators and outcomes for both causal differences and causal or. Using the simulation

method to estimate the causal or represented a significant challenge due primarily to the

non-collapsability of or and special attention had to be paid to how the simulations were

summarised. The relationship between the number of simulations and the precision of the

estimates was also discussed with a proposed algorithm to determine the optimal number of

simulations. This algorithm however is not currently implemented and a default value of 10000

is adopted as the default. This number of simulations had been found to be sufficiently precise

in practice.

Lastly, these were implemented in an R programme, seq-med chapter G and in the next chapter,

several checks will be presented to ensure that the estimates are consistent with causal estimates

obtained using other methods for the scenarios where there were prior methods that could be
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used. An application of this package to an rct will also be presented.



Chapter 5

Validation and application of the novel

causal effects estimator

5.1 Introduction

In the last chapter, I discussed the theoretical foundation and implementation details of a

novel causal effects estimator. This novel causal effects estimator enables the estimation of

causal effects under two scenarios. Firstly, it allows the estimation of causal odds ratio when a

continuous mediator is nested within a binary outcome or another mediator. Secondly, it enables

the estimation of sequentially mediated causal effects in the presence of more than a single

mediator. A mix of the two scenarios is also addressed with this novel estimator, i.e. sequentially

mediated causal effects with continuous potential outcome (po) nested within a binary outcome

or another mediator. While the theoretical foundation provides strong justification for the

existence of the causal effect estimator, it does not cover an implementation of the causal effect

estimator. Therefore, in order to validate that the implemented estimator performs within

expectation, a validation study needs to be conducted. This validation study seeks to answer two

questions. Firstly, are the estimated causal effects in line with expected causal effect estimates

according to the theoretical foundation? Secondly, if there are discrepancies, should these be of

concern and are these discrepancies likely to change the estimates in a meaningful manner?

Focusing on the first question that the validation check seeks to answer, what is ‘in line with

112
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expected causal effect estimates’ needs defining. The theoretical foundation upon which the

novel estimator depends on is derived from an extension of the mediation formula developed

within this thesis. The model-based estimator similarly draws upon the mediation formula for

its theoretical foundation. The extension of the mediation formula additionally allowed the

model-based estimator to estimate sequentially mediated causal effects. This shared theoretical

foundation implies that given the same inputs, they should produce the same causal estimates.

Any discrepancies are highly likely to be attributed to implementation differences and this is

further explored in this chapter. Implementation differences here refer to how the estimation

method was implemented in software. The validation check uses the similarity between the

model- and simulation-based estimators to determine whether or not the novel simulation-

based estimator produces the same estimates as the model-based estimator for the same set of

inputs. For the scenarios where both the model- and simulation-based estimator could be used

to estimate the mediated causal effects, the estimates from both estimators would be compared

with each other. This forms the primary way that the simulation-based estimator is validated

for the scenarios where the model-based estimator could also be used to conduct the estimation.

While the model- and simulation-based estimators share similarities and both could be used to

estimate mediated causal effects in a number of scenarios, there are scenarios where only the

simulation-based estimator could be used. This was one of the reasons the simulation-based

estimator was developed in the first place. For the scenarios where only the simulation-based

estimator could be used to estimate the mediated causal effects, I relied on a unique property of

the total effects (te) to conduct the validation. Recall in eqs. (3.4.5) and (3.4.6) that thete can be

estimated either using the model for the outcome without any mediators, or it can be estimated

using the outcome model that contains mediators along with the models for the mediators. The

two methods of estimation the te would subsequently be referred to as the method using the

outcome model only and the method using the outcome with mediators model. Theoretically,

both methods of estimating the te should yield the same causal estimate. However, in practice,

there is a larger number of mathematical operations used in the latter method of estimation

and depending on the type of mathematical operations incurred, there could be appreciable

precision loss. This precision loss, if present, would then make the two methods of estimation

produce estimates that differ by the precision loss. Generally, logarithmic and exponentiating

operations incur a larger loss of precision compared to sums and products and this precision loss

can be quantified by making a comparison of the te estimated using the above two methods of
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estimating the te. This will be explored in greater detail in the next section.

As discussed previously, there are two ways to estimate the te. The method of estimation

using the outcome model only can utilise both the model- and simulation-based estimator.

For the method of estimation using the outcome with mediators model, the simulation-based

estimator can be used for all scenarios but this is not so for the model-based estimator. This

is because this second method of estimating the te uses the same mechanism as that used

for estimating the mediated causal effect. Therefore if under certain scenarios mediated causal

effects cannot be estimated using the model-based estimator, likewise under these scenarios

the method of estimating te using the outcome model with mediators method cannot be

used. The ability to estimate te with the model-based estimator for all scenarios using the

outcome model only however offers us a way to validate the simulation-based estimator for

the scenarios where the model-based estimator cannot be used to estimate the mediated causal

effects. For these scenarios, we can use the model-based estimator to estimate the tes and

compare these estimates to the estimates of te from the simulation-based estimator using the

outcome model with mediators to conduct the estimation. The method of estimating the te
using the outcome model with mediators for the simulation-based estimator follows the same

procedure as estimating mediated causal effects. The only difference between estimating thete
and mediated causal effects is different po definitions, i.e. different values of A in the definition

of the causal effect. Given this similarity, a validation of the te estimate using the outcome

model with mediators method would thus be a validation of the simulation-based method of

estimating mediated causal effects.

Another important thing to note about the validation study is its deviation from traditional ways

in which new estimators are assessed. Typically, new estimators are assessed for their bias and

variance with respect to a true value. This true value is used to generate data for a population.

From this population, a sample is drawn and the novel estimator is applied to determine the bias

and variance of the estimator with respect to the true value and the sample size. In such a study,

the manner in which the data is generated is of prime importance because if the data generated

deviates from the predetermined true value, then any assessment of bias and variance can and

will be erroneous.

This validation study deviates from this established practice for two reasons. Firstly, the
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simulation-based estimator shares a theoretical base with an established estimator, the model-

based estimator. This similarity between the two estimators imply that they should produce very

similar estimates. Any deviations that cannot be appropriately explained implies an error in

the implementation of the simulation-based estimator. Secondly, if the established practice had

been used, the results would quantify the bias and variance of the novel estimator. This bias and

variance would be the same between the model- and simulation-based estimator since they both

share the same theory base provided that the simulation-based estimator had been implemented

correctly. The quantification of the bias and variance alone without any reference to the model-

based estimator does not provide adequate information about whether the simulation-based

estimator has been implemented correctly. If the bias and variance of both estimators were

quantified and compared, there is still a lack of direct comparison between the two estimators

which would provide the strongest indication of whether or not implementation errors exist in

the simulation-based estimator. It is for these two reasons that this validation study deviates

from established practice in order to more robustly identify any implementation errors present

in the simulation-based estimator. Also arising from this deviation is that the manner in which

the data is generated is of less importance because regardless of how the data is generated, both

estimation methods use the same set of data with the resulting estimates being compared. This

same comparison guided the development of the simulation-based estimator along the way, and

revealed mistakes in the programming of the estimator which were rectified when the mistakes

were found.

Once the implementation has been validated, the second part of this chapter will demonstrate

the use of the novel causal effect estimator on a real trial, the Carers’ Assessment, Skills and

Information Sharing (casis) trial (Goddard et al., 2013). The demonstration highlights the use

of the novel estimator and the information about the estimates that it provides.

5.2 Validation study: Methods

In the introduction, a general outline of the validation of the novel estimator was presented.

In this section, I will go into the detailed setup of the study. The validation study is split into

two parts. The first part investigates the impact of precision loss associated with an increase in

the number of mathematical operations used to estimate the causal effects. This quantification
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of the precision loss allows us to consider if discrepancies between model- and simulation

based estimates fall within the range of precision loss. If it falls within the range of precision

loss and there are known increase in number of mathematical operations, the discrepancy is

likely attributable to the increased number of mathematical operations. This quantification of

precision loss thus forms the context within which to consider the second part of the study

which compares the estimates obtained from the model- and simulation-based estimators.

For the first part of the study, the precision loss is investigated by using themodel-based estimator

in scenarios where it can be used to estimate the causal effects. This allows one to estimate the

te using the model-based estimator in two ways. The first way uses the outcome model without

mediators and the second way uses the outcome model with mediators included. These are

discussed in chapter 3 and the relevant equations are eqs. (3.4.5) and (3.4.6). The te estimated

from both approaches should yield the same estimates theoretically. In practice however, due

to the difference in the number of mathematical operations, the causal effect estimates differ.

By using both approaches to estimate the total effects, we can have some quantification of the

degree to which the precision loss occurs.

The second part of the study is split into two further parts. The first compares the model- and

the simulation-based estimates for which there are solutions for estimating the mediated causal

effects using the model-based estimator. The second part compares the te between the two

estimators for scenarios where a model-based estimate for the mediated causal effect does not

exist. I have named the scenarios to reflect the combination of type of outcomes, second mediator

and first mediator in that order. The first mediator is nested within the second mediator and

both the first and second mediators are nested within the outcome. � indicates a binary variable

modelled using logistic regression while� indicates a continuous variable modelled using linear

regression. Therefore��� represents the combination of a continuous outcome, a binary second

mediator, and a continuous first mediator. The combination ��� represents a binary outcome, a

binary second mediator and a continuous first mediator. The scenarios for which a model-based

estimate for mediated causal effects exists are ���, ���, ���, and ��� . The scenarios where

the model-based estimator cannot be used to estimate mediated causal effects are ��� , ���,

��� , and ��� .

For the first set of model combinations, the mediated causal effects from both the model- and
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simulation-based estimators are compared with each other and for the second set, only the tes
are compared due to a lack of mediated causal effects from the model-based estimators. The te
estimated by the model-based estimators uses the outcome model without any of the mediators

and theoretically, this is a like for like comparison since both the model- and simulation-based

estimators are both estimating the same defined quantity. In practice however, due to a large

increase in number of mathematical operations that the simulation-based estimator incurs, it

is expected to differ from the model-based estimator owing to precision loss. This precision

loss was investigated as part of the validation study and the results from this second part of the

validation study should be considered in the context of the expected precision loss from the first

part.

For each set of model combinations, the causal effects are estimated across a variety of scenarios

aimed at representing commonly encountered situations found randomised controlled trials

(rcts) of mental health interventions. These scenarios varied sample and effect sizes. The

sample sizes used were 124, 250, 500, and 1000. Each subsequent sample size is double of the

previous one except for 250. The previous sample size used is 124 instead of 125 to ensure

equal numbers of subjects offered each of the treatment and control arm. The effect sizes are

defined using the Cohen’s D (Cohen, 1988) and the sizes used were small, medium, and large

corresponding to effect sizes of 0.8, 0.5 and 0.2. This effect size relates only to the tes. For
continuous outcomes, the control treatment is set to have a mean effect of 0. For binary outcomes,

the Cohen’s D is undefined for causal odds ratio (or) so in order to maintain the same validation

parameters across models, an adaptation to the Cohen’s D was used. This adaptation treats the

predicted probability of the binary outcome as a continuous variable and by setting the control

treatment to have a mean predicted probability of the outcome of 0.5, the predicted probability

for the experimental treatment corresponding to a Cohen’s D for small, medium, and large effect

sizes can then be computed. The computed mean predicted probabilities are 0.599 for small,

0.736 for medium, and 0.848 for a large effect. These correspond to ors of 1.49, 2.79, and 5.58

respectively.

So in total, for eight different model combinations, across four sample sizes and three effect

sizes, I explored a total of 96 combinations. For each combination, 100 datasets were generated

for a total of 9600 datasets each consisting of an outcome, two mediators, a treatment variable

and a covariate. Each dataset was seeded with a different seed to ensure that no two datasets
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were alike. The respective models, linear regressions for continuous dependent variables and

logistic regression for binary dependent variables, were fitted for the outcome and mediators

for each dataset. The model- and simulation-based estimators were then applied to each of

models. For 9600 sets of models with two estimators, a total of 19200 estimation procedures

were conducted. A modest 10000 bootstraps were used for the model-based estimator and the

same number of simulations were used for the simulation-based estimator. This is a magnitude

short of the default value of 100000 but is used to keep the validation study manageable in terms

of time to run the simulations.. This default value was derived through a process of trial and

error and represents the number of simulations that strikes a balance between computation

times and the precision of the estimates. If the default value of 100000 simulations was used, the

time required to complete the simulations would be about one and a half months compared to

about a week by reducing the number of simulations to 10000. More importantly, the increased

number of bootstraps and simulations are unlikely to provide us with additional insight into the

behaviours of the estimators since the additional simulations are expected to improve accuracy

at the third decimal place and beyond. An improvement in precision at such magnitudes does

not change the conclusions of the validation study. Lastly, the mean of the results for each of the

96 combinations across 100 datasets are taken and presented as graphs in the following section.

5.3 Validation study: Results

The results of the validation checks are presented in two parts. The first being the investigation

of the precision loss and the second being the comparison of the estimates obtained from the

model- and simulation-based estimators.

5.3.1 Precision loss

This part of the validation study forms the context from which to interpret the results of the

comparisons between the model- and simulation-based estimates. It informs us of the precision

loss due to an increased number of mathematical operations and does so primarily by comparing

the te estimates from the model-based estimator computed in two different ways.
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The results are presented in fig. 5.1 for the continuous outcomes and fig. 5.2 for the binary

outcomes. In both sets of graphs, the estimate of te estimated using the outcome with the

mediators together with the mediator models are on the left represented by a circle and the te
obtained using only the outcome model without the mediators is on the right represented by a

triangle. The bars of each estimate represent the confidence intervals. A dotted line on each of

the graphs represents the null causal effect value. This dotted line is at . = 0 for continuous

outcomes where the causal effects estimated are differences and is at . = 1 for binary outcomes

where the causal effects estimated are or. The results are split into continuous and binary

outcomes because the computation of each uses different mathematical operations, thereby

allowing us to determine if the type of mathematical operations play a role in the precision loss.

For the continuous outcomes, the main mathematical operations involved are sums and products

of numbers. Focusing on the differences between the two ways that the te were estimated,

we can see that the estimates and confidence intervals line up almost exactly fig. 5.1. Any

differences are negligible. Next, we move on to the binary outcomes. In the estimation of causal

or, mathematical operations involved include sums, products, and taking of natural logs and

exponents. Only a single combination with binary outcomes, ���, has a model-based solution

using the method involving the outcome model with mediators. Focusing on the differences in

estimates, it is largest for the largest effect size with the smallest sample size. This difference

however is not concerning since the confidence interval is much larger. This difference reduces

with a smaller effect size and larger sample size. This suggests that the discrepancy scales

with the size of the effect where a larger effect size has a larger difference. A larger effect size

indicates a higher mean predicted probability of the outcome being 1 for the experimental group

with the mean predicted probability for the control group being held at 0.5. In order to obtain

the mean predicted probabilities, the inverse link function of the logistic regression needs to

be applied to the sum-product of the estimated regression coefficients with the dataset. In the

process of conducting the estimation, logarithmic and exponent operations incurred in the link

function and inverse link function of the logistic regression is simpler for the estimation of te
using the outcome model without mediators since the sum-product of fewer terms needed to be

computed before applying the inverse link function of the logistic regression. This reduction

in computation means that any precision loss is reduced owing to a reduction of the terms

represented in the computer. This relates to how a computer represents numbers with decimals

internally and it does so not by storing it precisely but as an approximation with a high degree of
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Figure 5.1: Comparison of total effect causal estimates using models with and without mediators

for continuous outcomes
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Figure 5.2: Comparison of total effect causal estimates using models with and without mediators

for binary outcomes
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accuracy. This accuracy however degrades with increased number of computations. This meant

that for a larger effect size, operations incurred in the computation, particularly computations

such as logs and exponents, incur a larger precision loss. This accounts for the observation of

differences in larger effect sizes. This difference however reduces with a larger sample size even

if the effect size remains large likely due to cancellation of precision losses. A larger sample size

makes it more likely for a precision loss to be offset by another precision loss in the opposite

direction.

Furthermore, the causal effect used for binary outcomes, the causalor, uses the predicted mean

probability of each of the control and experimental group twice in the computation of the causal

or (each odds within the ratio uses the predicted probability twice). This repeated use of an

estimate with some lack of precision likely also made precision issues more perceptible for the

causal or as compared to a continuous outcome. Lastly, it should be noted that a small change

in the mean predicted probability will result in a seemingly large change in or. The largest

precision loss in this part of the study for causal effects defined as a difference is on the third

decimal place whereas for the causal or is on the second decimal place. This is an order of

magnitude in difference and is most likely due to the way the causal or is constructed, as a

ratio between two odds. As an example, consider a predicted mean probability of 0.5 and 0.8 for

the control and experimental groups respectively. Theor computed from both the probabilities
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is 4. If the mean predicted probability for the experimental group was 0.81 instead, the or is

4.26. A difference of 0.01 probability in the experimental group results in a difference of 0.26 in

or. Whether or not this is an important difference has to be decided by the researcher, but it is

important to note that in a study with large effects and small sample sizes, a small difference

in predicted probability is more likely to lead to precision loss of concern. As shown in this

sub-study, this precision loss is not a unique problem for simulation based estimators since this

sub-study uses model-based estimators only. The magnitude of this precision loss provides the

context within which to consider the discrepancies between model-based and simulation-based

estimators with the latter expected to have a higher level of precision loss owing to the much

larger number of operations incurred.

5.3.2 Comparison of model- and simulation-based estimators

This second part of the validation study is split into two parts. The first part addresses combina-

tions of models with both model- and simulation-based solutions available and the second part

addresses the models where only simulation-based estimators are available for mediated causal

effects. The first part of the study compares the te, and direct and mediated causal effects

between the model- and simulation-based estimators. The second part, because of the lack of

estimated mediated causal effects for model-based estimators, only compares the te between

the two estimators as mentioned in section 5.2.

The results for the first part are presented in figs. 5.3 to 5.6 for the model combinations ���,

���,���, and��� respectively and each figure is a 3×5 array of graphs. The rows of the array

represent different effect sizes from the smallest on the left and largest on the right. The columns

of the array represents the causal effects, total, direct, indirect through "1, indirect through

"2, and indirect through both "1 and "2 from top to bottom. Within each cell of the array

is a graph comparing the causal effect estimates for different sample sizes. The model-based

estimates are represented as circles and the simulation-based estimates as triangles. The y-axis

for the tes and direct effects (des) share the same scale while the indirect effects share a

different scale. The reason for this is because the effects are different in magnitudes and if

they were to all share the same scale, the confidence interval of the indirect effects (ies) will

not be perceptible. Of the four model combinations, only a single model combination, ���,
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Figure 5.3: Validation checks for ��� models
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Figure 5.4: Validation checks for ��� models
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Figure 5.5: Validation checks for ��� models

Sample size

Ca
us
al
 e
ff
ec
ts
 (
Di
ff
er
en
ce
s)

Estimate type

Model−based

Simulation−based

Indirect (through M1)−0.2

−0.1

0.0

0.1

0.2

Indirect (through M2)−0.2

−0.1

0.0

0.1

0.2

Indirect (through M1 & M2)

0
124

250
500

1000 0
124

250
500

1000 0
124

250
500

1000

−0.2

−0.1

0.0

0.1

0.2

0.2 0.5 0.8

Total

0.0

0.3

0.6

0.9

Direct

0.0

0.3

0.6

0.9



CHAPTER 5. VALIDATION AND APPLICATION OF CAUSAL EFFECTS ESTIMATOR 126

Figure 5.6: Validation checks for ��� models
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has a binary outcome. The rest of the model combinations use continuous outcomes. For the

continuous outcomes, all the causal effect estimates and confidence intervals for the model- and

simulation based estimators are almost identical in magnitude. The confidence intervals of all

the estimates (both continuous and binary outcomes) line up with expectations with the largest

confidence intervals for the smallest sample size and the smallest confidence intervals for the

largest sample sizes. The indirect effects also exhibit asymmetrical confidence intervals which is

to be expected given the way the confidence intervals are generated by ranking all the simulated

estimates and then reading off the required percentiles, similar to what Imai et al. (2010) did in

the mediation package.

For the binary outcome combination, ���, the estimates demonstrate the same patterns as

that observed in the sub-study on precision loss, i.e. larger differences for smaller sample sizes

and larger effect sizes. This suggests that the differences observed between the model- and

simulation-based estimate fall within the differences expected when there is precision loss. This

similarly occurs for causal or and this difference is largest for large effect sizes and smallest

for large sample sizes. Given that the simulation-based estimators incur more mathematical

operations, and in particular operations involving taking the log and exponentiating numbers,

the most likely explanation is that this difference is due to precision loss as was investigated

previously. When considered within the width of the confidence intervals, the difference is

small and unlikely to alter the interpretation of the results.

Lastly, it should be noted that for the smaller sample sizes, the confidence intervals for the

model-based estimates are larger than the simulation-based estimates. This is due to the use of

10000 rather than the default value of 100000 bootstraps used for the model-based estimators.

This difference is minimal once the default value is used.

Next, I will discuss the results for when there are no model-based estimates for mediated causal

effects. These results for the model combinations ��� , ���, ��� , and ��� are shown in

figs. 5.7 to 5.10. Here, similar patterns are observed with the causal or estimates exhibiting a

bigger difference than the causal difference estimates between the model- and simulator-based

estimates. The causal or differences is again larger for larger effect sizes and small sample

sizes. This is likely due to precision loss as explained previously. Overall, the validation checks

provide strong indications that the simulation-based estimator was implemented correctly. Any
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Figure 5.7: Validation checks for ��� models
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Figure 5.8: Validation checks for ��� models
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Figure 5.9: Validation checks for ��� models
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Figure 5.10: Validation checks for ��� models
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observed differences were likely due to precision loss and when considered with the width of

their respective confidence intervals, appear unlikely to alter the interpretation of the findings

of a study. The next section focuses on an application of this novel estimator to a real rct to

demonstrate its real world utility.
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5.4 Application of estimator to casis

The casis trial was introduced previously (section 3.3). As a recap, the casis trial was

an rct that primarily aimed to assess the efficacy of a set of education curriculum for the

caregivers of patients with eating disorders (ed) (Goddard et al., 2013). The curriculum focused

on managing one’s anxiety and stress as well as effective ways to communicate with the patient.

It was hypothesised that the curriculum, if efficacious, would directly lead to a reduction of

anxiety and stress level of the caregiver. This reduction was hypothesised to produce additional

benefits which would eventually leads to an improvement in ed related outcomes of the patient.

These additional benefits formed the secondary focus of the rct and two of the hypotheses

were investigated in the following demonstration of the use of the new estimator.

The patients were recruited from a clinical unit specialising in ed in the Maudsley Hospital.

The two routes by which the patients were admitted to the unit were via a visit to the emergency

department following an acute medical event or on advice of the psychiatrist following an office

visit. In order to be recruited for the study, the patient must have a formal diagnosis of ed,

have a primary caregiver, and he or she as well as their caregiver must consent to taking part in

the study.

5.4.1 The mediation hypotheses tested

Two mediation hypotheses are being tested. The first hypothesis (fig. 5.11) considers whether

a reduction in caregiving stress as measured by the Family Questionnaire (fq) led to an im-

provement in symptoms of eating disorders and consequently a reduction in the probability

of relapse. The second hypothesis (fig. 5.12) similarly considers if a reduction of caregiving

stress, also measured by the fq, improves the anxiety levels of the caregiver, measured by the

Accommodating and Enabling Scale for Eating Disorders (aesed), thus enabling the caregiver

to better manage the symptoms of ed, resulting in a reduction in overall symptoms measured

by the Eating DisorderQuestionnaire (ede-q). The outcomes of interest in the two hypotheses

also corresponds to a binary (relapse) and continuous (symptoms of ed) variable respectively.

Both of these hypotheses had been suggested (Goddard et al., 2013; Magill et al., 2016) but not
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formally tested. The hypotheses proposed, given that they had been suggested in the literat-

ure, are questions with genuine clinical implications and importance. However, the analyses

presented here should not be interpreted for clinical significance since what is presented here

deviates from the original analysis in some important ways to simplify the analysis in order to

focus on the ability of the novel estimator to conduct sequential mediation for both continuous

and binary outcomes of interest. Crucially, these hypotheses could not be tested by currently

available estimators. The main deviation is in the handling of missing data where in the original

analysis, multiple imputation was used but in this demonstration, only subjects with complete

data were analysed. Next, I briefly introduce the demographics of the caregivers and patients.

Figure 5.11: CASIS example: Hypothesis one

echo
treatment

Caregiving

stress

(caregiver)

Symptoms

of ed
(patient)

Relapse

Figure 5.12: CASIS example: Hypothesis two
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5.4.2 Descriptives of patients and their caregivers

The demographics of the patients and caregivers are summarised in table 5.1. Tables 5.2 and 5.3

summarises the variables used in the first and second hypotheses respectively. The caregivers and
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patients were predominantly females who were white with an educational level of ‘below degree’.

Their mean ages were 51.73 and 26.99 respectively. Most of the caregivers are married while

most of the patients are single. Most patients are on prescribed medication. The treatment and

control group were generally similar in demographics and baseline measurements of mediators

and outcomes with some differences in carers’ gender, patients’ education and patients’ marital

status.

Table 5.1: CASIS example: Sample characteristics (n=152)

Caregivers Patients

echo Control Total echo Control Total

Gender, Frequency (%)

female 65 (85.53) 60 (78.95) 125 (82.24) 74 (97.37) 70 (92.11) 144 (94.74)

male 11 (14.47) 16 (21.05) 27 (17.76) 2 (2.63) 6 (7.89) 8 (5.26)

Age, Mean (SD) 50.92 (10.08) 52.55 (9.23) 51.73 (9.67) 26.26 (9.55) 27.73 (9.35) 26.99 (9.45)

Ethnicity, Frequency (%)

white 71 (93.42) 72 (94.74) 143 (94.08) 71 (93.42) 72 (94.74) 143 (94.08)

asian 4 (5.26) 2 (2.63) 6 (3.95) 4 (5.26) 1 (1.32) 5 (3.29)

mixed 0 (0.00) 2 (2.63) 2 (1.32) 0 (0.00) 2 (2.63) 2 (1.32)

others 1 (1.32) 0 (0.00) 1 (0.66) 1 (1.32) 1 (1.32) 2 (1.32)

Education level, Frequency(%)

above degree 4 (5.26) 11 (14.47) 15 (9.87) 3 (3.95) 6 (7.89) 9 (5.92)

degree 19 (25.00) 19 (25.00) 38 (25.00) 27 (35.53) 14 (18.42) 41 (26.97)

below degree 46 (60.53) 37 (48.68) 83 (54.61) 45 (59.21) 55 (72.37) 100 (65.79)

others 7 (9.21) 9 (11.84) 16 (10.53) 1 (1.32) 1 (1.32) 2 (1.32)

Marital status, Frequency(%)

single 4 (5.26) 3 (3.95) 7 (4.61) 65 (85.53) 54 (71.05) 119 (78.29)

partnered 59 (77.63) 56 (73.68) 115 (75.66) 10 (13.16) 18 (23.68) 28 (18.42)

ex-partnered 13 (17.11) 17 (22.37) 30 (19.74) 1 (1.32) 4 (5.26) 5 (3.29)

On medication, Frequency(%)

yes NA NA NA NA NA NA 57 (75.00) 54 (71.05) 111 (73.03)

no NA NA NA NA NA NA 19 (25.00) 22 (28.95) 41 (26.97)
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Table 5.2: Mediators and outcomes for hypothesis one

Role Variable echo Control Total

mediator 1, baseline fq, caregiver 2.46 (0.42) 2.41 (0.50) 2.44 (0.46)

mediator 1, 3 months fq, caregiver 2.39 (0.45) 2.44 (0.50) 2.41 (0.47)

mediator 2, baseline ede-q, patient 4.32 (1.28) 4.15 (1.16) 4.23 (1.22)

mediator 2, 6 months ede-q, patient 3.48 (1.60) 3.50 (1.47) 3.49 (1.53)

outcome, 12 months Relapse, patient 45 (0.59) 45 (0.59) 45 (0.59)

* Numbers reported are mean (SD) except for relapse. Relapse is frequency (%).

Table 5.3: Mediators and outcomes for hypothesis two

Role Variable echo Control Total

mediator 1, baseline fq, caregiver 2.46 (0.42) 2.41 (0.50) 2.44 (0.46)

mediator 2, baseline aesed, caregiver 1.59 (0.72) 1.60 (0.78) 1.59 (0.75)

mediator 1, 3 months fq, caregiver 2.39 (0.45) 2.44 (0.50) 2.41 (0.47)

mediator 2, 6 months aesed, caregiver 1.30 (0.75) 1.50 (0.80) 1.40 (0.78)

outcome, 12 months ede-q, patient 3.16 (1.67) 3.46 (1.57) 3.31 (1.62)

* Numbers reported are mean (SD).
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5.4.3 Results

The results of the first hypothesis are presented in table 5.4 and fig. 5.13. The te, representing
the overall effect of the Experienced Carers Helping Others (echo) treatment on the probability

of relapse, was insignificant. The de and all ies were also insignificant.

The lack of significance of the te indicates that the data do not support the theory that the

echo treatment reduces the chance of relapse. The lack of significance of the de and ies
indicates that the data also does not support the theory that the echo treatment may act

on the chance of relapse in direct and indirect pathways (reduction of caregiving stress of

caregiver, reduction of ed symptoms of patient, or both). Notably, the indirect effect through

"2 (symptoms of ed of patient) borders on significance with the upper bound confidence

interval at 1. This effect however is very small, at 0.99 suggesting that even if the effect had

been significant, its magnitude is likely to be very small. The results for the second hypothesis

Table 5.4: Total and mediated effect estimates for hypothesis one

est. (odds ratio) 95% CI

Total 0.98 (0.53, 1.84)

Direct 1.05 (0.57, 1.98)

Indirect (M1) 0.98 (0.84, 1.11)

Indirect (M2) 0.99 (0.95, 1.00)

Indirect (M1 & M2) 0.97 (0.85, 1.07)

are presented in table 5.5 and fig. 5.14. As was the case with the first hypothesis, the te,
representing the effect of the echo treatment on the symptoms of ed of the patient, was not

significant. Thede and ies were also not significant. The results of the te indicates that there

is a lack of support in the data for the theory that the echo treatment has an effect on the

symptoms of ed of the patient. The results of thede and ies indicates that there is also a lack

of support in the data for the theory that the echo treatment has an effect on the symptoms

of ed of the patient via direct and indirect pathways (caregiving stress of caregiver, anxiety

levels of caregiver, or both). Notably the ies all border on significance with each of their upper

bound confidence intervals very close to 0. The magnitude of each of the ies, −0.07, −0.03,
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Figure 5.13: Graph of total and mediated effect estimates for hypothesis one
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and −0.04 are also very small when compared to the mean of the outcome (ede-q, mean =

3.31) at baseline indicating that even if the ies were significant, the effect are likely to be small.

Whether or not these small effects are clinically important is a judgement that the clinician has

to make.

Table 5.5: Total and mediated effect estimates for hypothesis two

est. 95% CI

Total -0.32 (-0.85, 0.20)

Direct -0.19 (-0.71, 0.32)

Indirect (M1) -0.07 (-0.21, 0.02)

Indirect (M2) -0.03 (-0.08, 0.01)

Indirect (M1 & M2) -0.04 (-0.15, 0.04)
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Figure 5.14: Graph of total and mediated effect estimates for hypothesis two
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5.4.4 Discussion of the results

The results provided a test of whether or not the hypothesised theories were supported by the

data collected. Crucially, we were able to test path-specific hypothesises and to consider whether

or not the evidence supported each pathway of interest. While the current results suggest that

the proposed theories are not supported by evidence, it is worthy to note that some of the

indirect pathways border on significance even though the te is clearly not. This suggest that

such mediational analysis can provide unique insight into possible intermediary pathways when

the te is not significant especially when the focus had been on the te in previous analyses

of similar treatments. Intermediary pathways that are significant may represent previously

pathways of mechanism that were not within theoretical consideration and provides a strong

indication for these pathways to be further investigated. Beyond that, mediational analysis can

also aid in identifying which pathways are supported and which are not, leading to a revision of

the theoretical model.

Contextualising the role of mediated analyses to the results from casis where all the effects
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were not significant, we can use the results to update the theoretical model by ruling out the

mediated pathways as mechanisms of change. While this does not seem to be a noteworthy

result, the importance of the results lie in challenging our preconceived notions of how change

occurs in the treatment of patients with ed. The lack of significance for the mediated effects

does not mean that mediated effects do not exist. They could still exist via other pathways and

any consideration of alternative mechanisms will need to be informed by both existing literature

and expert knowledge of the clinician. To be clear, these additional considerations do not change

the fact that there was a lack of overall efficacy of the treatment on the outcomes of interest.

Should mediated pathways be found and substantiated with evidence from a mediation analysis,

this information will improve our understanding the processes that underpin changes in the

patient with ed or their caregiver. This improved understanding can potentially translate into

revisions to the treatment protocol to make it efficacious.

Notably, this application of mediation analysis on casis is novel in two ways. Firstly, unlike

existing methods, this application of mediation analysis tests a hypothesis which defines the

causal effect as anor (hypothesis one). Secondly, the hypotheses tested involved two mediators,

one after another sequentially. Both analyses presented showed no significant results, but one

main value of such analyses is to allow the testing of theoretical mechanisms of action. In this

case, the treatment is unlikely to have acted through the pathways tested. This enables one to

revise and consider alternative mechanisms of actions and eventually update the theoretical

model once a mechanism of action has been identified. The analysis shown in this chapter

however has some limitations since it was conducted under the assumption that there was

no unmeasured confounding between mediators and outcomes. This assumed there were no

hidden variables that drove both the mediators and the outcome. In the two mediators case, this

is recasted as an assumption that there was no confounding between mediators and between

mediators and outcome. This is an assumption because there is no way to provide evidence that

there is no unmeasured confounding, i.e. to prove a negative. What is possible however is to

assume that there was indeed confounding and assess the effect that this confounding might

have on the estimated mediated causal effects. If this effect was deemed to be small, then the

results are trustworthy. If the effect was deemed to be large, then a judgement needs to be made

on how likely this confounding took place and if it took place, how large is the magnitude of

confounding and in which direction. These additional analyses are known as the sensitivity

analysis and are discussed in the next chapter.
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5.5 Discussion

The chapter first laid out a series of methods used to validate the simulation-based estimator and

aimed to answer the question of ‘Can we trust this novel estimator?’. The validation procedures

were conducted across different samples and effect sizes as defined by the Cohen’s D. An

adaption of the Cohen’s D to cater to binary outcomes was developed to allow a consistent

definition of effect size across the validation checks. This adaptation built on the idea of using

a difference of probabilities as the causal estimand to construct a Cohen’s D. This adaptation

enabled comparability between the checks across the different model combinations.

The two parts of the study investigated the magnitude of precision loss due to a larger number

of mathematical operations and the discrepancies between the model- and simulation based

estimates. For the model combinations with a model-based estimate for mediated causal effects,

the two sets of estimates between the model- and simulation-based estimates were compared and

found to be nearly identical with the exception of the model combination ���. The differences

were small particularly when considered within the width of the respective confidence intervals

and are most likely due to precision loss in line with the observations in the sub-study on

precision loss. For the model combinations without a model-based estimate for mediated causal

effects, only the te estimates were compared. This uses a property of the te which can be

estimated using two different methods. This part of the study rests upon the idea that the

simulation-based estimator uses the same procedures for conducting the estimation, regardless

of which effect it is being used to estimate. The only difference between the parameters used for

the estimation between different effects are the values of the treatment indicator. These values

of the treatment indicator represent the different po and are derived from the definition of the

mediated causal effects discussed at length in chapter 4. The idea is that since the procedures

are the same, validating the procedures by using them to estimate te and comparing that

with the model-based estimate, we can validate the model combinations for which model-based

estimators cannot estimate the mediated causal effects.

The results provide a clear indication that the estimates between the model- and simulation-based

estimates are nearly identical for continuous outcomes. The differences observed for binary

outcomes are small when considered in their respective confidence intervals and are also what
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was to be expected as a result of precision loss due to larger number of mathematical operations.

The same precision loss is observed for model-based estimates as discussed in the sub-study for

precision loss.

The later part of the chapter focused on how this novel estimator is able to estimate causal

effects in an rct. The aim of this application is to demonstrate the real world applicability of

this estimator. The results of the application indicate that previously considered hypotheses

are not supported by the data from this trial. The analysis done in this chapter with a binary

outcome may have been possible with existing methods but these methods each have significant

limitations (e.g. methods by Valeri and VanderWeele (2013)) or uncertainty about the impact

of choice of parameters used in the estimation (e.g. the choice of integration points in Mplus).

These limitations and uncertainties were previously discussed. The work conducted in this thesis

overcame these limitations and also provided a set of procedures to verify the results from the

novel estimators. Furthermore, the analyses could accommodate two mediators in sequential

order, allowing investigation of specific part of a theoretical model. Both the ability to conduct

causal mediation with binary outcome and causal mediation with two mediators represent the

improvements over current methods that this estimator brings about.

More importantly, the methods developed in this thesis removed a significant limitation in

applying mediational analyses. This removes the need on the part of the researcher to consider

whether or not a hypothesis can be analysed for mediated causal effects and shifts the focus

towards considering what potential mediated causal relationships to test for. This is useful for

informing a theoretical model since these analyses allow testing of hypotheses that coincide with

proposed pathways of change indicated by the theoretical model. These analyses also provide

insight into mechanisms of change by considering mediated causal pathways, which can exist

even if the te is not significant. These mediated causal pathways can also be examined in and

of themselves to start to disentangle why a treatment worked or did not work.

In summary, this chapter provided the evidence that the simulation-based estimator is similar

in terms of characteristics to the model-based estimator and demonstrated what the novel

improvements in this estimator allows one to do in an rct.



Chapter 6

Sensitivity analysis for novel causal

effect estimator

6.1 Introduction

The last chapter ended with a discussion of the procedures used for validating the causal effect

estimates as well as how the causal effect estimator can be used in a real life scenario. In this

chapter, I will discuss one remaining issue in the use of the causal effect estimator, namely, the

effect of violation of assumptions on the causal effect estimates. As discussed in chapter 4, the

causal effects were estimated with three important assumptions:

1. No treatment-mediator confounding

2. No treatment-outcome confounding

3. No mediator-outcome confounding

The three assumptions are each represented by an absence of *1, *2 and *3 in fig. 6.1 where

', " and . represents the treatment, mediator and outcome respectively. The direction of

the arrows represent the direction of causation. The aforementioned assumptions remain as

assumptions because as stated, they are statements about the non-existence of a relationship. To

fully prove non-existence would require that all possible confounders be enumerated, quantified

and the respective data collected on them. They could then be tested and shown not to be

140
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Figure 6.1: Mediated effects with confounding

' .

"

*1

*2

*3

a confounder. This is impractical since possible confounders will include both known and

unknown confounders. For known confounders, they should ideally be addressed by collecting

information on them as part of the trial. For unknown confounders, quantifying them would

then imply that data on all possible variables be collected since any variable could potentially be

an unknown confounder. This is impractical since any such attempts will unlikely be exhaustive.

An alternative strategy therefore needs to be used to assess the impact of unknown confounders

on the causal effect estimates. The sensitivity analysis is one such strategy that can be used to

assess the effect of different levels of confounding on these estimates.

The first and second assumptions are violated when there is a common cause of the treatment

with the mediator or outcome respectively. This is unlikely to occur in an randomised controlled

trial (rct) since the treatment offered is randomised and thus cannot be predicted. Since these

two assumptions are unlikely to be violated, the assumptions are considered to be justified in an

rct and focus will be placed on the third assumption of no mediator-outcome confounding.

If the treatment was not randomised for example in observational studies, then the first two

assumptions will need to be justified either through the use of a sensitivity analysis or by other

means.

The sensitivity analysis, as the name suggests, assess how sensitive the causal estimates are to a

violation of assumptions. The analysis seeks to answer the question: What would the causal

estimates be if a confounder of " and . is present? Breaking this question down, we have the

following:

1. At what level of confounding will the causal effect estimate of interest be rendered null or
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insignificant?

2. In what direction does increasing levels of confounding change the causal effect estimate

of interest?

Level in this context refers to a measure of the strength of the confounding, i.e. the extent of

violation of the assumptions. The stronger the relationship, the more severe is the violation of

the assumptions. Quantifying this strength is addressed in more detail later in this section. The

analysis entails simulating scenarios where the assumptions are violated and the corresponding

causal effects are estimated. This simulation is repeated for varying degrees of violations. If

the causal effect estimates change in a meaningful way under even minor violations of the

assumptions, a greater scrutiny of the likelihood in which the assumptions are violated in reality

is then warranted. On the other hand, if the causal effect estimates do not change meaningfully

under severe violations of the assumptions, the conclusions reached in the unconfounded analysis

then warrant a higher level of confidence than if the estimates were changed meaningfully. The

implemented sensitivity analysis follows closely to that implemented in the R packagemediation

(Imai et al., 2010) with some important novel additions I have made.

The mediation package uses seemingly unrelated regressions while the sensitivity analysis I

implemented uses latent variable models. The use of the seemingly unrelated regression is not

stated in the documentation of the package but is found in the comments in the source code of

the software. A study of the code involved also confirmed that the implemented method for

sensitivity analysis in mediation is seemingly unrelated regressions. The use of latent variable

models instead, as in this thesis, enable the implementation of sensitivity analysis for logistic

regressions. This is a novel development not currently implemented in any existing software

for the estimation of mediated causal effects. The use of a latent variable model for sensitivity

analysis additionally has the advantage of using the same conceptual framework for both normal

and logistic generalised linear model (glm).

This sensitivity analysis introduces a number of concepts that need to be defined and quantified,

namely, the degree of violation of assumptions, the meaningfulness of change, and the likelihood

in which the violations are present in the context of the trial. The degree of violation will be

addressed in the next section, while I will address the latter two here. The meaningfulness

of change refers to a change in the causal estimate under different degrees of violation of the
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assumptions. The concept of what is a meaningful change cannot be ascertained by statistical

means and needs to be addressed with subject matter knowledge of the trial in question. This

is the same for the likelihood in which the violations are present. This requires consideration

of potential variables that could act as confounders and determine how likely they are to be

acting as confounders in the context of the trial. A failure to consider the likelihood of these

confounders directly threatens both the internal and external validity of the results of the trial.

One strategy to address both the meaningfulness of change and the likelihood of violation is to

refer to prior literature to quantify both aspects. This however needs to be done carefully to

ensure similarity in context between the literature and the trial in question.

This chapter will next discuss how confounding is quantified and simulated first for a single

mediator and subsequently for two mediators for normal glm in order to conduct sensitivity

analysis for the models discussed in the thesis. The discussion next focuses on the case of the

logistic regression and how the confounding is conceptualised. Special attention will be placed on

the differences between the logistic regression where the probability of an outcome occurring is

not directly observable and the case of the normalglmwhere the outcome is directly observable.

Finally, going back to the example Carers’ Assessment, Skills and Information Sharing (casis)
trial, the sensitivity analysis was applied to determine the effects of confounding on the resulting

causal estimates as a demonstration of the utility of the sensitivity analysis procedure.

6.2 Assessing effects of confounding

The first step to assessing the effects of confounding is to first quantify the relationship between

the confounder with the mediator and outcome. I will focus first on the single mediator case

before discussing the two mediator case. The discussion here will be restricted to the normal

glm. The case of the logistic regression will be discussed in a later section.

Referring to fig. 6.2, the violation of the assumption of interest is represented by the presence

of* . Conceptually, the assumption states that there is no confounding between the mediator

and the outcome. This conceptualisation of confounding makes use of a latent variable,* with

a causal relationship between the error terms of both the mediator and outcome. The same

form of confounding can alternatively be conceptualised as a correlation between the two error
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terms as shown in fig. 6.3. In both figures, ', " and . represent the treatment, mediator and

outcome respectively. n represents error terms, single-headed arrows represent the direction of

causality and double-headed arrows represent correlation. Both forms of conceptualisation of

confounding are equivalent in what they represent and their differences lie in how they are each

parametrised. Given the equivalency, the parameters from one model can be converted to the

parameters of the other model and vice versa. This thesis focuses on the use of the latent variable

conceptualisation and parametrisation, the reasons for which are discussed in a subsequent

section on the logistic model. One difference between the * of fig. 6.2 and *3 of fig. 6.1 are

the arrows that point away from * and *3 as well as the presence of n3 and n2. The latent

variable in fig. 6.2 points at the error terms of the mediator and outcome variables rather than

the variables themselves. This difference in parametrisation of the model used for sensitivity

analysis first considers the shared variance between the outcome and the independent variables

and covariates. The unaccounted-for variance, represented by the variance of the error term

can then be conceptualised as having a shared correlation with the error term of another model.

In the case of a single mediator, this would be a shared correlation between the error terms of

the mediator and outcome model. This shared correlation can then be alternative parametrised

as the error terms sharing a correlation with a third latent variable that is randomly generated

to be correlated with both the error terms. This second parametrisation is the latent variable

parametrisation used in this thesis. The latent variable is parametrised to be drawn from a

standard normal distribution and with this parametrisation, the model for sensitivity analysis

becomes over identified rather than under-identified. This way in which the confounding

variables have been conceptualised is similar to how factor analysis using structural equation

model (sem) is parametrised, thus software used to estimate sem models are used to conduct

the sensitivity analysis. The conversion between the latent variable conceptualisation and the

Figure 6.2: Mediation with .," confounding: latent variable formulation
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Figure 6.3: Mediation with .," confounding: correlated error terms formulation

' .

" Y2

Y3

V1

W1

W2 d
.,"

correlation conceptualisation, is as follows:

�>E (Y3, Y2) = \"\.

d.," =
�>E (Y3, Y2)

+0A (Y3)+0A (Y2)

=
\
"
\
.

+0A (Y3)+0A (Y2)

By setting different values of \" and \. , we can simulate different degrees of confounding. The

choice of what values to use for setting the \s rests upon the idea that the \s can be converted

to a correlation parameter and vice versa. Since a correlation is bounded between 0 and 1, we

can then select equally spaced level of confounding using correlation and then converting this

back to the \s. For a given set of " and . models for which we want to conduct sensitivity

analysis on, it needs to be noted that there is a maximum degree correlation between the error

terms of " and . and hence implying that there are limitations in the values that the \s can

assume. Think of this as having three variables, �, � and � . If the correlation between � and

�, and � and � are known, then the correlation between � and � has to fall within a certain

range because it is now constrained by the other pairwise correlations. Likewise in the case of

setting the values of \s, they are constrained by the maximum correlation that can be induced

between the ns. This value of a maximum correlation was determined in this thesis through a

set of optimisation procedures which quickly tests out the use of different values of correlation

to determine the point at which the software fails to estimate. Mplus was used to test out these

different values of correlation and when the maximum possible correlation is exceeded, Mplus

produces error messages to the effect that the model cannot be estimated. The optimisation

procedure and the procedure to identify the maximum correlation has been implemented in

R which then interfaces with Mplus. The optimisation procedure additionally allows one to

specify the level of precision required for the maximum correlation and is set at a default of three

decimal places. At the end of deriving the maximum correlation, equally spaced correlations
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are then selected to form the degrees of violations to be tested. These correlations are finally

converted back to \s for use in simulating the effect of confounding.

Lastly, the parametrisation using correlation and latent variables differ in one additional way.

In the latent variable formulation, we can change the path coefficient of * on the mediator

and outcome independently while in the correlation parametrisation, it assumes that the path

coefficients are proportional to the variance of each of the Y for " and . . This proportional

relation is used in the conversion between the correlation to the path coefficients and it also

implies that the degree of confounding is proportional to the variance of the error terms. This is

justifiable because if the variance of the error terms are large, it implies that a large proportion of

variance of the dependent variable is unaccounted which makes it more likely that a confounder

is present to account for this variance.

Once the set of different degrees of confounding is obtained, the estimation of the causal estimates

under confounded conditions proceed using the same estimating procedures as the mediated

causal effects discussed in chapter 4. This is repeated for each level of confounding and for

all the effects of interests. The next section expands upon the use of sensitivity analysis to

accommodate more than a single mediator.

6.3 Sensitivity analysis for twomediators with normal glm

The sensitivity analysis for two mediators compared to a single mediator has an extra complica-

tion. Since there are two mediators, the assumption of no mediator-outcome confounding means

that there is the added consideration of the extra mediator. Instead of two ns, there are now three.

The first step is to identify and choose a method to parametrise the sensitivity analysis for two

mediators. Firstly, with two mediators, the assumption of no mediator-outcome confounding

will be modified to no mediator-mediator and no mediator-outcome confounding. This is because

the second mediator acts as an outcome of the first mediator and thus the assumption of no

mediator-outcome confounding also implies no mediator-mediator confounding when there

is more than a single mediator. The first mediator will be referred to as "1 and the second

mediator as "2. With the added no mediator-mediator confounding, for a causal model with

two mediators, we thus have three pairwise confounding relationships to consider: "1 with "2,
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"1 with . , and "2 with . . Continuing to work with latent variables, there are two ways in

which the confounding can be parametrised. The first is to assume that all three variable are

confounded by the same variable and the second way is for each pairwise confounder to be

independent. These two parametrisations are represented by fig. 6.4 and fig. 6.5 respectively.

Figure 6.4: Mediation with .,"2, "1 confounding: single latent variable formulation
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Figure 6.5: Mediation with .,"2, "1 confounding: latent variable formulation

' "1 "2 .

Y2 Y4 Y3

*1 *2 *3

The first parametrisation where there is only a single confounder is unlikely since there is no

requirement or restriction for the mediators and outcomes to be related in any specific way.

The second parametrisation is thus more likely and in the event that the first parametrisation

is the correct model of confounding, the second parametrisation will simply reproduce what

happens in the first parametrisation with very closely correlated latent* s. The corresponding

model for the second parametrisation using correlation is represented by fig. 6.6. The correlation
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parametrisation is shown mainly to demonstrate that in the case of normal glm models, both

parametrisations exist and are equivalent. Similar to the one mediator case, a similar relation-

Figure 6.6: Mediation with .,"1, "2 confounding: correlated error terms formulation
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ship exists between the ds and the* s. Using d1 and*1 as an example we have the following

relationship.

�>E (Y2, Y4) = \*1,"1\*1,"2

d1 =
�>E (Y2, Y4)

+0A (Y2)+0A (Y4)

=
\*1,"1\*1,"2

+0A (Y2)+0A (Y4)

The path*1−"1 will be notated as \*1,"1 and the path*1−"2 will be notated as \*1,"2 . As with

the onemediator case, the conversion between correlation with the path coefficients assumes that

the strength of confounding is proportional to the variance of the error terms of the respective

pairs of dependent variables.

I have thus far discussed how the sensitivity analysis proceeds with continuous dependent

variables modelled using the normal glm. In the next section, I will discuss sensitivity analysis

with binary dependent variables modelled using logistic regression.

6.4 Sensitivity analysis for one mediator with logistic glm

Binary dependent variables in this thesis are modelled using logistic regressions and one import-

ant difference between the logisticglm and the normalglm is the difference in interpretation

of the error term in the logistic glm. Note that in some literature, it is stated that there are
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no error terms in a logistic glm. This is due to the idea that in a logistic glm, there are

no residuals because rather than model the observed dependent variable which is binary, the

probability of the dependent variable is modelled instead. Since the observed dependent variable

is not modelled directly as in the normal glm, there are no estimands of any error terms.

Additionally, the distribution of a binary variable is parametrised using only a single parameter,

its mean. The variance is derived from the mean. This also meant that the mean and variance

cannot be modelled independently thus the concept of the error term as a representation of

unaccounted variance as in the normal glm case is not possible.

An error term in the logistic regression however can exist for two purposes. The first is as a

representation of the unaccounted variance but this use of the error term is different from that

of the normal glm. The error term is always drawn from a standard logistic distribution and

the values of the regression coefficients of a logistic regression is sized according to the error

term. This meant that the ratio of variances between the untransformed by the inverse link

function of a predicted value of a logistic regression with the error term provides an indication

of the amount of variance that had been accounted for. This is because the distribution of the

error term never changes and if the ratio is large, it means that the variance of the predicted

value is much larger than that of the error term and vice versa. The function of the error term is

thus to provide scale to the predicted values. The second use of the error term is to realise the

dependent variable. Without the error term, we can realise the dependent variable by using the

predicted probability of the dependent variable. Alternatively, we can make a draw from the

logistic distribution and add this value to the untransformed predicted value of the dependent

variable. If this value exceeds one, the realised binary variable is one and if below one, it would

be zero. This is equivalent to realising the dependent variable using predicted probabilities. The

drawing of the error term from a standard logistic distribution is thus simulating the fundamental

uncertainty discussed in chapter 4.

The sensitivity analysis of a binary outcome will make use of both purposes of the error term.

The conceptualisation of confounding using the formulation of a latent* as a cause for the error

terms thus takes on a slightly different meaning as seen in fig. 6.7. Since the variance of the

error terms is now relative to the predicted values of the logistic regression, a* that can predict

this error term implies a * that can predict the fundamental uncertainty of the model. This

indicates that a least part of the fundamental uncertainty is not uncertain at all since it can be
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predicted by* . Furthermore, since the variance of the error term is proportional to the variance

of the predicted value of the logistic regression, the maximum amount of confounding that can

occur is the variance of the error term. For a dependent variable with very little unexplained

variance, the variance of the predicted values will be much larger than that of the error term

and thus very little confounding in the form of * predicting the error terms can take place.

One complication of this formulation is that since the error term exists to provide scale and its

variance does not change, there is no limit on the maximum amount of correlation between

error terms which exists in the normal glm. Thus when the mediator and outcome models

consist solely of binary dependent variables, there is no need to test for the maximum possible

amount of correlation. A maximum amount of correlation can exist when there is a mixture

Figure 6.7: Logistic regression: latent variable formulation
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of logistic and normal glm models and the same procedure for determining this maximum

amount is conducted as what was done for the normal glm case.

6.5 Implementation details

The aforementioned methods for conducting sensitivity analysis were implemented in R and

Mplus. Mplus was used specifically for its ability to conduct latent variable modelling with

logistic regression.

1. Identify the maximum amount of correlation possible. This step is skipped if all the

mediators and outcome are binary.

2. Generate the different degrees of confounding to test for between 0 and the maximum

amount of confounding.

3. Estimate the model with the constraints on the path coefficients from the latent con-

founders on the mediators and outcomes.

4. Use the newly estimated path coefficients and variance-covariance matrix of the path
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coefficients to estimate the resulting causal effects following the procedures laid out in

chapter 4.

5. Present the results graphically for comparisons with the original causal effect estimate.

One important note on the implementation of the sensitivity analysis is that the model used

for 0 confounding is not the same as the original causal estimate with the assumption of no

confounding. This is because in the sensitivity analysis, 0 confounding is modelled by constraints

on the path coefficients from * to the mediators and outcomes (set to 0). These constraints

meant that there was more certainty in the parameters of the model which is reflected in the

much smaller confidence intervals of a model with 0 confounding in the sensitivity analysis and

the original causal effect estimate. This is demonstrated in the subsequent section demonstrating

the use of the sensitivity analysis on casis.

6.6 Application with casis

The casis trial, used previously to demonstrate the estimation of mediated causal effect is

used again to demonstrate the conduct of a sensitivity analysis. For each hypothesis, a separate

sensitivity analysis needs to be conducted. figs. 6.8 and 6.9 illustrate the results of each analysis.

From the results, we first note that as indicated previously, the confidence intervals of the model

with 0 confounding are smaller than the original causal effect estimates for all the effects of

interest. Next we note that the confidence interval of each effect gets wider with increasing

confounding and this is to be expected since a larger amount of confounding meant that the

independent variables had a smaller amount of shared variance with the dependent variable. In

the case of the casis, all the estimates across different levels of potential confounding remain

non-significant suggesting that with or without confounding, the causal effects are unlikely to

exist. Should some of the original causal effect estimates be statistically significant, this analysis

could then be used to identify the degree of confounding that would render such an estimate

statistically non-significant. In this situation the idea would then be to make a judgement about

how likely the stated amount of confounding exists and therefore how likely the confounding

was to have the effect found using this sensitivity analysis.
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Figure 6.8: Graph of sensitivity analysis for hypothesis one
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Figure 6.9: Graph of sensitivity analysis for hypothesis two
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6.7 Discussion

This chapter discusses the need and purpose of sensitivity analysis in the estimation of mediated

causal effects. The need for the sensitivity analysis arose from assumptions that were made,

specifically in the case of an rct, the absence of mediator-outcome confounding. Sensitivity

analyses were required to ascertain how the causal effect estimates would change should

the assumptions be violated since ruling out the presence of confounders is unlikely to be

practical. This set of analyses provide an estimate of the direction and magnitude of potential

bias under varying degrees of violation of the assumption. With this set of analyses, should

the results suggest that the causal effect estimates are likely to go from being significant with

the assumptions to insignificant with a violation of assumptions, it is then up to the researcher

to justify the assumptions and to consider how likely the said degree of violation exists. This

can be done through a review of prior literature and cannot be determined using any statistical

methods.

In the next chapter, I discuss some of the significant contributions from this thesis and broader

implications of the work done.



Chapter 7

Discussion: Revisiting aims, significant

contributions and concluding remarks

In this concluding chapter of the thesis, I will be briefly revisiting how the aims of this thesis

came about and the steps taken to achieve them, highlighting the important developments that

this piece of work is built upon. Next, I will discuss the extent to which the aims had been met,

focusing on the strengths and weaknesses of the methods developed. I will also highlight how

some of the methodological developments have wider applicability than the methods presented

in this thesis. These developments are significant because they can serve as building blocks for

the development of a general method for the estimation of mediated causal effects parametrically.

Lastly, I would end this chapter with avenues of further developments of the methods in this

thesis.

7.1 Retracing motivations and methods development

The primary question that this thesis sets out to answer is ‘how can we use methods of causal

inference in process evaluation (pe) to answer questions of how or why an intervention works?’.

The question had within it an assumption that methods of causal inference are not widely used

in the conduct of pe so the first task was to gather evidence to determine if the assumption is

warranted. A systematic review was conducted to this end (chapter 2) with two main findings.
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Firstly, there was interest in questions pertaining to how and why an intervention work and

secondly, these questions were often addressed using qualitative methods. The use of qualitative

methods precludes a formal testing of the hypotheses about how and why an intervention works.

The absence of formal testing of hypotheses also meant that there is a lack of evidence to back

up any claims of the hows and whys.

Given the lack of use of causal inference methods and the clear interest in questions of how and

why, it is likely that methodological barriers exist in the application of causal inference methods.

A review of existing methods for estimating mediated causal effects, a common way in which

questions of how and why manifest themselves, indicate that existing methods cater to a small

subset of scenarios commonly encountered by researchers. Most notably, two of such gaps, the

lack of estimation methods for causal odds ratio (or) and for multiple mediators in sequence,

were singled out for further development in this thesis.

The first step to addressing these gaps was to adopt a framework for causal inference to work in.

This was addressed in chapter 3. Briefly, the potential outcome (po) framework was adopted

because the experimental design of the randomised controlled trial (rct), long used to address

questions of causality can be conceptualised as a comparison of po. This provided a firm

foundation to define the causal effects of interests and for this thesis: the mediated causal or
and the sequentially mediated causal effects. The framework was also used by other researchers

as to consider questions of causality. Notably, Pearl (2001) used it to develop the mediation

formula where mediated causal effects can be defined using expectations and probabilities. This

was notable because it separates out the definition of the mediated causal effect from its methods

of estimation. With the mediation formula, one can then use a model most suitable for the

problem at hand to estimate the expectations and probabilities that exist in the definition of the

mediated causal effect. Once these had been estimated, they can then be put together using the

formula to obtain an estimate of the mediated causal effect. The way in which this was done

was discussed in chapter 4. In chapter 5, methods and results of a validation procedure used to

confirm that the causal effects were estimated as defined was discussed.

With the causal effects estimated, one last question remains. This relates to the assumption of no

confounding between the mediator and the outcome. Had there been confounding between the

mediator and the outcome, i.e. there is a common cause for both the mediator and the outcome,
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then the effects of the mediator on the outcome may not be due solely to the mediator. This

assumption is required because it is not possible to distinguish between the presence or absence

of confounding since we do not know all possible common causes. Chapter 6 considers the

scenarios where there are different amounts of confounding. A set of tests were developed to

determine the extent to which the outcome would change had there been different amounts of

confounding. Additionally, data from the Carers’ Assessment, Skills and Information Sharing

(casis) trial was used to demonstrate the use of the methods developed.

7.2 Strengths and limitations of methods developed.

The previous section briefly provided an overview of the thesis. This section discusses some of

its strengths and weaknesses. There are three strengths and a weakness of this thesis that I will

discuss.

Firstly, the thesis includes a chapter on validation of its results (chapter 5). This validation

goes beyond theoretical correctness of the methods presented in chapter 4 to show empirically

that the results are congruent with the estimates that would have been obtained using the

well-established model-based approaches. While a valid criticism of such an approach towards

validation is that it was done by using another estimator (the model-based estimator) to check the

correctness of the novel simulation-based estimator, this was done because the manner in which

the mediated causal effects were estimated using the simulation-based estimator builds upon the

same building blocks as the model-based estimators. Furthermore, this validation is building on

the model-based estimator, an estimator that had been in use for the better part of the past forty

years. It also meant that whatever we know about the model-based estimator, can similarly be

used when considering the novel estimator. Examples of these include the appropriate confidence

interval to use. The Wald’s confidence interval applied for the model-based estimator is known

to be biased for the indirect effects. The same is true for this novel estimator and building on

this prior knowledge, more appropriate confidence intervals constructed using the simulated

causal effects were used.

Secondly, this thesis uniquely allows one to conduct sensitivity analysis for causal or. This

was made possible because Mplus provided the functionality to estimate logistic regression
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models which includes latent variables. While it is regrettable that freely available software

was not available to conduct such estimations, the ability to conduct sensitivity analysis for

causal or represents an improvement over existing methods. Other packages commonly used

in the estimation of latent variable models such as laavan and OpenMx do not currently have

the capability but through personal communication with the author of lavvaan, this is work in

progress.

Thirdly, this thesis made use of a quasi-Bayesian simulation method originally developed by

King et al. (2000) to conduct the causal effect estimation. This thesis is not the first to utilise

such simulations but the development of the causal or serves as a proof of concept that the

simulation method is flexible and can be used to conduct estimations of causal effects for other

parametric models. This is the case as long as we have a valid mechanism to use the estimated

regression model as a data generating mechanism which covers models in the generalised linear

model (glm) family. Furthermore, should it be non-trivial to use the estimated model as a

data generating mechanism, one can turn to bootstrap as a general way of conducting the data

generation. This had been implemented in the algorithm and while it had not been scrutinised

at the same level as the parametric based solution, the theoretical concept of using bootstrap as

a data generating mechanism is a valid one as suggested both by Imai et al. (2010) and King et al.

(2000).

Moving on to the weakness of this thesis, the estimation of causal effects assumes that there

are no interaction effects between any of the variables. This limitation is due to a lack of time

rather than a limitation of the method. Imai et al. (2010) in the mediation package allowed for

interaction effects which also indicates that it is possible to do so. The difficulty in incorporating

interaction effects comes mainly from a modification of the relationship between the total effects

(te), direct effect (de) and indirect effect (ie). Should interaction effects be incorporated into

the novel estimator, one would also need to consider how the relationship between the effects

would change in the case of the causal or. This could be addressed in a next revision of the

simulation-based estimator.
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7.3 Significant contributions

This section highlights significant contributions to the estimation of causal effects in the course

of developing the estimators. These contributions differ from what was discussed previously

and focuses on uses of the applicability of the methods developed in this thesis in other areas.

There are three contributions that are notable.

7.3.1 Review of use of analytic methodology in current literature

The first significant contribution is in the methods used for the review of the use of analytic

methods in current literature. Most systematic reviews concern with the assessment of the

evidence supporting an observation and the methods developed for reviewing literature had

mostly focused on this use case. The novel contribution in this thesis is to use and adapt the

methods developed for systematic reviews of efficacies or effectiveness of therapeutics for the

purposes of reviewing the current use of analytic methods for a class of problem in a specific

domain. This builds upon the same principles used by systematic reviews and shares procedures

used to ensure rigour of the review. This includes having a second reviewer and ensuring

reproducibility of the review. Additionally, methods were also developed to study how a concept

is phrased in current literature to ensure that important studies are not left out due to a lack of

awareness of different ways in which a concept is expressed. Put together, the contributions

provides methods to review the use of methods for analysis and a set of procedures that can be

used to identify the varied ways in which a concept can be expressed.

7.3.2 Extension of the mediation formula

The second significant contribution is the development of an extension of the mediation formula.

The mediation formula, conceptualised by Pearl (1995), is a formula that enabled one to obtain

an expression representing a mediated causal effect. The mediation formula is notably a non-

parametric formula that allows one to obtain an expression for a mediated causal effect of interest

using only the definition of the causal effect as its input. The mediation formula expressed
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the mediated causal effects using expectations and probability but does not specify how the

expectations or probabilities are to be estimated. With the causal effects expression, one then

need to estimate the quantities represented by the expression to obtain a causal effect estimate.

For both the problems tackled in this thesis, namely, the estimation of sequentially mediated

causal effects and the estimation of causal or, I needed to use the mediation formula to obtain

an expression for the mediated causal effect. In the former, the application of the mediation

formula is straightforward but in the latter, the mediation formula cannot be applied directly

because the mediation formula only catered to the scenario of a single mediator. In order to

obtain an expression for causal effects for sequentially mediated causal effects with more than a

single mediator, the mediation formula needs to be extended.

The mediation formula exists in various forms depending on what needs to be estimated. If the

outcome is binary, there is a binary version of the mediation formula. However, regardless of

what form the mediation formula takes, it rests upon the same underlying concept. The different

versions of the formulae are simplifications of the original formulae and this simplification is

different depending on whether outcome is estimated as a probability or as a measure of the

outcome itself.

Consider a mediated causal effect estimated as a difference between two continuous po. The

expression of each of the po is an application of the mediation formula and in the case of a

single mediator, there will be a nested mediator po within the expression of the outcome model.

In order to estimate the expectation of the outcome model, one would need to consider what

to do with the nested mediator. This is where the ‘Tower’s Law’ or more formally known as

the ‘law of iterated expectations’, can be applied to obtain an estimate of the expectation of the

po. The law works by computing a weighted sum of all possible values of the mediator nested

within the outcome expression. In practice, this means to first obtain all possible values of the

mediator, substitute them into the expression for the outcome. Each of the outcome expression

containing a different value of the mediator is then weighted according to the probability by

which they occur and then all the outcome expressions are then summed up. This procedure

allows one to obtain the expression for estimating a single po. A complication arises with

more than a single mediator. Consider the scenario for two sequentially ordered mediators. The

first mediator contains no nested terms while the second mediator has the first mediator nested

within it and the outcome has both the first and second mediator nested within. In order to
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obtain the expression to estimate a given po, the expression has to be built up in a specific order.

For the two scenario case, the expression for the first mediator has to be derived because it is

the only dependent variable with no nested terms. Once the expression for the first mediator

is obtained, we can then use this expression to obtain the expression for the second mediator

using the law of iterated expectation. With the expression for the first and second mediator, we

can then use them to obtain the expression for the outcome. The complication arises because

the weighted sum of all possible values of the mediator in the single mediator scenario will now

mean all possible combinations of values of all mediators. This has to be generated together with

the corresponding probability of the combination occurring before the weighted sum could be

obtained. The scenario for more than two mediators get much more complex with both the

order in which the expressions for the mediators and the combinations for the nested terms

in each of the dependent variables needing to be derived in the manner stated before. The

contribution of this thesis is developing a general algorithm to obtain the expression for any

number of sequentially ordered mediators. This done by recursively applying the law of iterated

expectation until expressions for all the mediators and outcomes can be obtained. This also

highlights a general way by which the mediation formula can be extended through a recursive

application of the law of iterated expectation. This points towards a way by which mediation

estimators for more complex scenarios might be obtained.

This extension of the mediation formula also gave rise to an insight. Since the law states that

the expectation of the po is a weighted sum of all possible values of the nested po, in the

case of a binary nested po, the weighted sum of the po is the expectation if we made infinite

draws of the nested po and summing up the weighted sum of the binary outcomes. In the

context of a simulation, this also meant that if I were to conduct the simulation infinite number

of times, each time realising the nested po, I would obtain the weighted sum of the nested po.

The weighted sum of the po fully took into account the fundamental error of the nested po.

Given that we can fully account for the fundamental error of the nested po, in the context of

a simulation, we can therefore not simulate and realise the binary nested po and instead use

the weighted sum. This is a deviation from prior work by Imai et al. (2010) in the ‘mediation’ R

package and allows for the simulation to be completed more quickly.
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7.3.3 Adaptation of quasi-Bayesian simulation method

The third significant contribution is the adaptation of the quasi-Bayesian simulation method for

estimation of causal effects. As suggested previously, this adaptation is a proof of concept for

how the simulation method can be used to simulate po as long as we can use the estimated

models as data-generating mechanisms. This simulation method can also be more widely used in

comparisons of po in other areas such as policy analysis. Questions such as ‘given the known

relationship between tobacco taxation and health outcomes, what is the reduction of harms

associated with a given increase in taxation?’. Such questions can be framed as a comparison of

pos, much like how the estimation of causal effects requires the comparison of two po. This

implies that the method used to estimate causal effects framed as a comparison of pos can

similarly be used to evaluate such ‘what-ifs’ questions. The work done in this thesis furthered

methods for use in such comparisons by adapting it for the logistic regression case. What is

important is the general applicability of such an adaptation where a data generating mechanism

is identified and used to simulate the po. The mechanism used in this thesis taps on the

paramteric nature of the models used but the data generating mechanism is not restricted to

this mechanism only. The mechanism used in this thesis considers the roles of the two forms

of uncertainty, the estimation and the fundamental uncertainty to simulate possible values of

the po under different conditions. Other mechanisms could be developed to address different

sources of uncertainty thus allowing the simulated po to reflect the uncertainties that is relevant

to the question on hand.

Another use of the quasi-Bayesian simulation as demonstrated in this thesis is to evaluate

integrals that have no known closed form solutions. This meant that the evaluation of the po is

now no longer constrained or dependent upon having a closed form solution of the expression

derived from the application of the mediation formula. The use of the quasi-Bayesian simulation

in evaluating integrals is an added advantage over the use of more traditional ways of conducting

computer assisted integration by not requiring one to write out the expression of the integral

one wishes to estimate. This advantage thus lowers the bar for researchers to apply methods

that evaluates integrals without having to state the precise form of the integral because this

evaluation of the integral is conceptualised as a mixing of two distributions.
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7.4 Future developments and concluding remarks

This thesis focused on two main problems. The estimation of mediated causal or and the

sequentially mediated causal effects. While these two problems cover a wide range of scenarios

often encountered in research, there is room for further development. One area is to allow the

estimation to take into account interaction effects. This requires a redefinition of the relationships

between thete and the direct and indirect effects. The sensitivity analysis for such an estimation

is also required.

Another area of further development is the estimation of a mediated complier average causal

effect (cace). cace is an estimator that is used to estimate causal effects for the treatment

received rather than the treatment offered as was done for this thesis. This involves a considera-

tion of how best to conceptualise the cace for it to fit into the existing estimation concepts.

The utility of this is similar to the need for cace, i.e. to understand the causal relationships

between treatment received and the outcomes of interest.

Other areas that can be further developed includes applying the estimation methods for other

glm models. As was demonstrated in this thesis in the development of the causal or, ap-

plication of the estimation methods while possible, likely involves careful consideration of the

appropriate data generating mechanism as well as ways by which the simulated po is to be

combined.

Lastly, the work conducted in this thesis aimed to assist researchers in the application of

causal inference methods and to that end, the methods developed have bridged some gaps

in methodology. More work will need to be done to address the different scenarios that are

encountered by researchers.
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Appendix A

Keyword study

The keyword study starts off with the phrase ‘process evaluation’. The root of the words, ‘process’

and ‘evaluation’ combined with keyword truncation (‘process*’ and ‘evaluat*’) (U.S. National

Library of Medicine, 2018) were used as search terms using the search engine for Pubmed hosted

at the National Center for Biotechnology Information (ncbi). This was done programatically

through R (R Core Team, 2018) package, RISmed (Kovalchik, 2017).

The results from the search engine not only returned the studies that matched the search terms, it

also conducted a ‘query translation’ that enumerated all the variations of the words ‘process’ and

‘evaluation’ (Appendix A.3 and Appendix A.2). The variations of the two words were permutated

and the resulting list of phrases was searched programatically.

A total of 57462 possible phrase permutations were searched of which only 16 of the permutations

returned any search results. The number of results for each permutation is shown in Appendix

A.1. The top 4 permutations are plural forms of ‘process evaluation’ while the rest of the phrases

with hits were not referring to pe in the same context as the current review. Therefore, only

the first four permutations were used for subsequent searches. The abstracts of permutations

with more than one result were reviewed to identify any alternative expression of the concept

of pe. This did not yield any additional relevant keywords. The relevant identified variations of

the keywords were then formulated as search terms for use in the subsequent searches. This

thus conclude the keyword study.
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Table A.1: Permutation of variations and their respective hits. Permutations with no hits are not

shown.

Word variation Hits

process evaluation 1662

evaluation process 1621

evaluation processes 288

process evaluations 159

evaluative processes 82

evaluative process 61

evaluative processing 51

evaluating process 24

process evaluated 22

processing evaluation 20

evaluating processes 17

evaluated processes 13

process evaluating 11

evaluation processing 9

process evaluator 8

processing evaluations 3

processual evaluation 1
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Table A.2: Variations of ‘process’

process process’ process”

process’in process’resembling process’s

process1 process7 processa

processabilities processability processable

processable’ processablity processacceptability

processadas processado processadora

processadoras processados processalso

processamento processand processappeared

processare processbased processbearing

processblack processcd processclassical

processcompatible processconsist processd

processdb processdiagnostics processdiffraction

processe processeable processed

processed’ processedby processeddata

processedfor processeffect processen

processequals processer processers

processes processes’ processes1

processes3 processes3,4 processes4

processesacting processesand processesd

processesed processeses processesin

processesing processesinvolved processesnecessary

processesof processess processeswas

processesx processeta processew

processfrom processg processgenelists
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Table A.2: Variations of ‘process’ (cont’d)

processguide processhas processi

processiable processibility processible

processiblity processid processidae

processig processiing processin

processincidenceprognosispredictive processincidenceprognostic processindicators

processing processing’ processing”

processing’s processing1 processing439

processingand processingby processingdependent

processingenzymes processingg processingocellar

processingperspectives processings processings’

processingt processingtrade processins

processinvolving procession processiona

processionae processional processionalis

processionals processionals’ processionary

processione processionea processions

processis processisng processitivity

processive processive’ processively

processivelyalong processiveness processivities

processivity processlike processmediated

processment processness processo

processoccurs processodi processof

processome processomes processomics

processone processor processor’

processor’s processore processori
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Table A.2: Variations of ‘process’ (cont’d)

processors processors’ processors’s

processos processosome processou

processov processparameters processphantasies

processpsycinfo processretained processs

processsed processses processsgp

processsignificant processsing processsus

processthe processthis processtivity

processtrade processtreatment processu

processual processualised processualism

processualist processuality processually

processural processus processuses

processuusing processvia processwas

processwater processwere processwith
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Table A.3: Variations of ‘evaluation’

evaluat evaluatability evaluatable

evaluataion evaluatation evaluatble

evaluatc evaluatd evaluate

evaluate’ evaluatea evaluateclinical

evaluated evaluated’ evaluated4

evaluatedafter evaluatedand evaluatedbased

evaluatedble evaluatedby evaluateded

evaluatedfor evaluatedfurther evaluatedi

evaluatedin evaluatedpatients evaluatedsignificantly

evaluatedsix evaluatedthe evaluatedthrough

evaluatedusing evaluatedwith evaluatedwiththe

evaluatee evaluatees evaluatees’

evaluategenetic evaluatein evaluateing

evaluatematernal evaluatenatural evaluatepharma’s

evaluatepost evaluater evaluatereplacement

evaluaters evaluates evaluatesthe

evaluatestheir evaluatet evaluatethe

evaluatetm evaluateur evaluateurs

evaluatezseverity evaluati evaluatie

evaluatieperiode evaluaties evaluatif

evaluatiing evaluatiion evaluatijon

evaluatin evaluating evaluating’

evaluatinginflammation evaluatingoutcomes evaluatingprimary

evaluatingrhizophagus evaluatingthe evaluatins
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Table A.3: Variations of ‘evaluation’ (cont’d)

evaluatio evaluatioin evaluatiom

evaluation evaluation’ evaluation”

evaluation’s evaluation1 evaluational

evaluationand evaluationappropriate evaluationary

evaluationdagger evaluatione evaluationed

evaluationelective evaluationen evaluationfor

evaluationg evaluationicuintensive evaluationii

evaluationiii evaluationin evaluationism

evaluationism’ evaluationl evaluationof

evaluationproblem evaluations evaluations’

evaluationsbogen evaluationsdesigns evaluationsergebnisse

evaluationsergebnissen evaluationsfragebogen evaluationsincluded

evaluationsinstrumente evaluationsinterviews evaluationskonzeptes

evaluationsmedium evaluationsmethoden evaluationsnoten

evaluationspraxis evaluationsprogrammen evaluationsprojekt

evaluationsprozess evaluationsrevealed evaluationss

evaluationsscore evaluationssoftware evaluationsstudie

evaluationsystems evaluationszirkel evaluationt

evaluationtions evaluationtool evaluationwas

evaluatioon evaluatior evaluative

evaluative’ evaluativejudgments evaluatively

evaluativeness evaluatives evaluativism

evaluativism’ evaluativist evaluativistic

evaluativo evaluativofueron evaluativos
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Table A.3: Variations of ‘evaluation’ (cont’d)

evaluatlion evaluatng evaluaton

evaluator evaluator’ evaluator’s

evaluators evaluators’ evaluatortrade

evaluatory evaluats evaluatuon

evaluatyed
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Search terms and specifications

B.1 Search engine: Wiley

B.1.1 Database: CENTRAL

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

"process* evaluat*":ti,ab

## EXCLUDED

"protocol":ti

## LIMITS

Publication Year from 2007 to 2016, in Trials

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

"process* evaluat*":ti,ab NOT "protocol":ti

Publication Year from 2012 to 2016, in Trials

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

328 hits

+------------------------------------------------------------------+
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B.2 Search engine: EBSCOhost

B.2.1 Database: cinahl

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

(PT "clinical trial")

(PT "clinical trial, phase i")

(PT "clinical trial, phase ii")

(PT "clinical trial, phase iii")

(PT "clinical trial, phase iv")

(PT "controlled clinical trial")

(PT "randomized controlled trial")

(PT "pragmatic clinical trial")

(MH "clinical trials as topic+")

((TI "clinical trial*") OR (AB "clinical trial*"))

((TI "trial*") OR (AB "trial*"))

(MW "DT")

(MH "random allocation+")

(TI (("allocat*" OR "assign*") N2 "random*") OR AB (("allocat*" OR "assign*")

N2 "random*"))

((TI "randomi?ed") OR (AB "randomi?ed"))

((TI "randomly") OR (AB "randomly"))

(TI "rct") OR (AB "rct")

(MH "placebos+")

((TI "placebo*") OR (AB "placebo*"))

(MH "prospective studies+")

(PT "multicenter study")

(MH "multicenter studies as topic+")

((TI "groups") OR (AB "groups"))

(MH "cross-over studies+")

(TI ("crossover*" OR "cross over*" OR "cross-over*") OR AB ("crossover*" OR

"cross over*" OR "cross-over*"))

(MH "double blind method+")
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(MH "single blind method+")

((TI (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*" OR "mask*")))

OR "(AB (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*" OR

"mask*"))))

## EXCLUDED

((MH "animals+") NOT (MH "humans+"))

(TI "case report*")

(PT "case reports")

(PT "letter")

(PT "historical article")

(MH "correspondence as topic")

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

((TI "process* evaluat*") OR (AB "process* evaluat*"))

## EXCLUDED

(TI "protocol")

## LIMITS

(LA "English")

((PT "journal article") OR (PT "article"))

(DT "2012*" OR DT "2013*" OR DT "2014*" OR DT "2015*" OR DT "2016*")

(EM "2011*" OR EM "2012*" OR EM "2013*" OR EM "2014*" OR EM "2015*" OR EM

"2016*")

* Dates [CCYYMMDD]

DT - Date of publication

EM - Date created

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

((((PT "clinical trial") OR (PT "clinical trial, phase i") OR (PT "clinical

trial, phase ii") OR (PT "clinical trial, phase iii") OR (PT "clinical trial,

phase iv") OR (PT "controlled clinical trial") OR (PT "randomized controlled

trial") OR (PT "pragmatic clinical trial") OR (MH "clinical trials as topic+")

OR ((TI "clinical trial*") OR (AB "clinical trial*")) OR ((TI "trial*") OR (AB

"trial*")) OR (MW "DT") OR (MH "random allocation+") OR (TI (("allocat*" OR

"assign*") N2 "random*") OR AB (("allocat*" OR "assign*") N2 "random*")) OR

((TI "randomi?ed") OR (AB "randomi?ed")) OR ((TI "randomly") OR (AB

"randomly")) OR (TI "rct") OR (AB "rct") OR (MH "placebos+") OR ((TI

"placebo*") OR (AB "placebo*")) OR (MH "prospective studies+") OR (PT

"multicenter study") OR (MH "multicenter studies as topic+") OR ((TI "groups")

OR (AB "groups")) OR (MH "cross-over studies+") OR (TI ("crossover*" OR "cross
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over*" OR "cross-over*") OR AB ("crossover*" OR "cross over*" OR

"cross-over*")) OR (MH "double blind method+") OR (MH "single blind method+")

OR ((TI (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*" OR

"mask*")))" OR "(AB (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*"

OR "mask*"))))) NOT (((MH "animals+") NOT (MH "humans+")) OR (TI "case

report*") OR (PT "case reports") OR (PT "letter") OR (PT "historical article")

OR (MH "correspondence as topic") OR (PT "meeting abstracts") OR (PT

"abstracts"))) AND ((((TI "process* evaluat*") OR (AB "process* evaluat*")) NOT

(TI "protocol")) AND ((LA "English") AND ((PT "journal article") OR (PT

"article")) AND (DT "2012*" OR DT "2013*" OR DT "2014*" OR DT "2015*" OR DT

"2016*") AND (EM "2011*" OR EM "2012*" OR EM "2013*" OR EM "2014*" OR EM

"2015*" OR EM "2016*"))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

103 hits

+------------------------------------------------------------------+

B.2.2 Database: MEDLINE

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

(PT "clinical trial")

(PT "clinical trial, phase i")

(PT "clinical trial, phase ii")

(PT "clinical trial, phase iii")

(PT "clinical trial, phase iv")

(PT "controlled clinical trial")

(PT "randomized controlled trial")

(PT "pragmatic clinical trial")

(MH "clinical trials as topic+")

((TI "clinical trial*") OR (AB "clinical trial*"))

((TI "trial*") OR (AB "trial*"))

(MW "DT")

(MH "random allocation+")

(TI (("allocat*" OR "assign*") N2 "random*") OR AB (("allocat*" OR "assign*")

N2 "random*"))

((TI "randomi?ed") OR (AB "randomi?ed"))

((TI "randomly") OR (AB "randomly"))
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(TI "rct") OR (AB "rct")

(MH "placebos+")

((TI "placebo*") OR (AB "placebo*"))

(MH "prospective studies+")

(PT "multicenter study")

(MH "multicenter studies as topic+")

((TI "groups") OR (AB "groups"))

(MH "cross-over studies+")

(TI ("crossover*" OR "cross over*" OR "cross-over*") OR AB ("crossover*" OR

"cross over*" OR "cross-over*"))

(MH "double blind method+")

(MH "single blind method+")

((TI (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*" OR "mask*")))"

OR "(AB (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*" OR

"mask*"))))

## EXCLUDED

((MH "animals+") NOT (MH "humans+"))

(TI "case report*")

(PT "case reports")

(PT "letter")

(PT "historical article")

(MH "correspondence as topic")

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

((TI "process* evaluat*") OR (AB "process* evaluat*"))

## EXCLUDED

(TI "protocol")

## LIMITS

(LA "English")

((PT "journal article") OR (PT "article"))

(DT "2012*" OR DT "2013*" OR DT "2014*" OR DT "2015*" OR DT "2016*")

(EM "2011*" OR EM "2012*" OR EM "2013*" OR EM "2014*" OR EM "2015*" OR EM

"2016*")

* Dates [CCYYMMDD]

DT - Date of publication
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EM - Date created

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

((((PT "clinical trial") OR (PT "clinical trial, phase i") OR (PT "clinical

trial, phase ii") OR (PT "clinical trial, phase iii") OR (PT "clinical trial,

phase iv") OR (PT "controlled clinical trial") OR (PT "randomized controlled

trial") OR (PT "pragmatic clinical trial") OR (MH "clinical trials as topic+")

OR ((TI "clinical trial*") OR (AB "clinical trial*")) OR ((TI "trial*") OR (AB

"trial*")) OR (MW "DT") OR (MH "random allocation+") OR (TI (("allocat*" OR

"assign*") N2 "random*") OR AB (("allocat*" OR "assign*") N2 "random*")) OR

((TI "randomi?ed") OR (AB "randomi?ed")) OR ((TI "randomly") OR (AB

"randomly")) OR (TI "rct") OR (AB "rct") OR (MH "placebos+") OR ((TI

"placebo*") OR (AB "placebo*")) OR (MH "prospective studies+") OR (PT

"multicenter study") OR (MH "multicenter studies as topic+") OR ((TI "groups")

OR (AB "groups")) OR (MH "cross-over studies+") OR (TI ("crossover*" OR "cross

over*" OR "cross-over*") OR AB ("crossover*" OR "cross over*" OR

"cross-over*")) OR (MH "double blind method+") OR (MH "single blind method+")

OR ((TI (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*" OR

"mask*")))" OR "(AB (("singl*" OR "doubl*" OR "treb*" OR "tripl*") N1 ("blind*"

OR "mask*"))))) NOT (((MH "animals+") NOT (MH "humans+")) OR (TI "case

report*") OR (PT "case reports") OR (PT "letter") OR (PT "historical article")

OR (MH "correspondence as topic") OR (PT "meeting abstracts") OR (PT

"abstracts"))) AND ((((TI "process* evaluat*") OR (AB "process* evaluat*")) NOT

(TI "protocol")) AND ((LA "English") AND ((PT "journal article") OR (PT

"article")) AND (DT "2012*" OR DT "2013*" OR DT "2014*" OR DT "2015*" OR DT

"2016*") AND (EM "2011*" OR EM "2012*" OR EM "2013*" OR EM "2014*" OR EM

"2015*" OR EM "2016*"))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

564 hits

+------------------------------------------------------------------+

B.3 Search engine: Embase.com

B.3.1 Database: Embase

+------------------------------------------------------------------+

# RCT filters
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+------------------------------------------------------------------+

## INCLUDED

('clinical trial'/exp)

('clinical trial (topic)'/exp)

('clinical trial*':ti,ab)

(('trial*':ti,ab))

('drug therapy':lnk)

('randomization'/exp)

((('allocat*' OR 'assign*') NEAR/2 'random*'):ti,ab)

('randomi*ed':ti,ab)

('randomly':ti,ab)

(('rct'):ti,ab)

('crossover procedure'/exp)

(('crossover*' OR 'cross over*' OR 'cross-over*'):ti,ab)

('placebos'/exp)

('placebo*':ti,ab)

('prospective study'/exp)

('groups':ti,ab)

('double blind procedure'/exp)

('single blind procedure'/exp)

((('singl*' OR 'doubl*' OR 'tripl*' OR 'trebl*') NEAR/1 ('blind*' OR

'mask*')):ti,ab)

## EXCLUDED

('animals'/exp) NOT ('humans'/exp)

('case report*':ti)

('case study'/exp)

('letter'/exp)

('historical research'/exp)

('history of medicine'/exp)

('abstract report'/exp)

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

(('process* evaluat*'):ti,ab)

## EXCLUDED

(('protocol'):ti)

## LIMITS

([article]/lim OR [article in press]/lim OR [review]/lim)
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NOT ([afrikaans]/lim OR [albanian]/lim OR [arabic]/lim OR [armenian]/lim OR

[azerbaijani]/lim OR [basque]/lim OR [belarusian]/lim OR [bengali]/lim OR

[bosnian]/lim OR [bulgarian]/lim OR [burmese]/lim OR [catalan]/lim OR

[chinese]/lim OR [croatian]/lim OR [czech]/lim OR [danish]/lim OR [dutch]/lim

OR [esperanto]/lim OR [estonian]/lim OR [finnish]/lim OR [french]/lim OR

[georgian]/lim OR [german]/lim OR [greek]/lim OR [hebrew]/lim OR [hindi]/lim OR

[hungarian]/lim OR [icelandic]/lim OR [indonesian]/lim OR [irish gaelic]/lim OR

[italian]/lim OR [japanese]/lim OR [korean]/lim OR [latvian]/lim OR

[lithuanian]/lim OR [macedonian]/lim OR [malay]/lim OR [mongolian]/lim OR

[norwegian]/lim OR [persian]/lim OR [polish]/lim OR [polyglot]/lim OR

[portuguese]/lim OR [pushto]/lim OR [romanian]/lim OR [russian]/lim OR

[scottish gaelic]/lim OR [serbian]/lim OR [sinhalese]/lim OR [slovak]/lim OR

[slovenian]/lim OR [spanish]/lim OR [swedish]/lim OR [tagalog]/lim OR

[thai]/lim OR [turkish]/lim OR [ukrainian]/lim OR [urdu]/lim OR [uzbek]/lim OR

[vietnamese]/lim)

([2012-2016]/py)

([1-1-2011]/sd NOT [31-12-2016]/sd)

([embase]/lim)

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

(((('clinical trial'/exp) OR ('clinical trial (topic)'/exp) OR ('clinical

trial*':ti,ab) OR (('trial*':ti,ab)) OR ('drug therapy':lnk) OR

('randomization'/exp) OR ((('allocat*' OR 'assign*') NEAR/2 'random*'):ti,ab)

OR ('randomi*ed':ti,ab) OR ('randomly':ti,ab) OR (('rct'):ti,ab) OR ('crossover

procedure'/exp) OR (('crossover*' OR 'cross over*' OR 'cross-over*'):ti,ab) OR

('placebos'/exp) OR ('placebo*':ti,ab) OR ('prospective study'/exp) OR

('groups':ti,ab) OR ('double blind procedure'/exp) OR ('single blind

procedure'/exp) OR ((('singl*' OR 'doubl*' OR 'tripl*' OR 'trebl*') NEAR/1

('blind*' OR 'mask*')):ti,ab)) NOT (('animals'/exp) NOT ('humans'/exp) OR

('case report*':ti) OR ('case study'/exp) OR ('letter'/exp) OR ('historical

research'/exp) OR ('history of medicine'/exp) OR ('abstract report'/exp))) AND

(((('process* evaluat*'):ti,ab) NOT (('protocol'):ti)) AND (([article]/lim OR

[article in press]/lim OR [review]/lim) NOT ([afrikaans]/lim OR [albanian]/lim

OR [arabic]/lim OR [armenian]/lim OR [azerbaijani]/lim OR [basque]/lim OR

[belarusian]/lim OR [bengali]/lim OR [bosnian]/lim OR [bulgarian]/lim OR

[burmese]/lim OR [catalan]/lim OR [chinese]/lim OR [croatian]/lim OR

[czech]/lim OR [danish]/lim OR [dutch]/lim OR [esperanto]/lim OR [estonian]/lim

OR [finnish]/lim OR [french]/lim OR [georgian]/lim OR [german]/lim OR

[greek]/lim OR [hebrew]/lim OR [hindi]/lim OR [hungarian]/lim OR

[icelandic]/lim OR [indonesian]/lim OR [irish gaelic]/lim OR [italian]/lim OR

[japanese]/lim OR [korean]/lim OR [latvian]/lim OR [lithuanian]/lim OR

[macedonian]/lim OR [malay]/lim OR [mongolian]/lim OR [norwegian]/lim OR

[persian]/lim OR [polish]/lim OR [polyglot]/lim OR [portuguese]/lim OR

[pushto]/lim OR [romanian]/lim OR [russian]/lim OR [scottish gaelic]/lim OR
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[serbian]/lim OR [sinhalese]/lim OR [slovak]/lim OR [slovenian]/lim OR

[spanish]/lim OR [swedish]/lim OR [tagalog]/lim OR [thai]/lim OR [turkish]/lim

OR [ukrainian]/lim OR [urdu]/lim OR [uzbek]/lim OR [vietnamese]/lim) AND

([2012-2016]/py) AND ([1-1-2011]/sd NOT [31-12-2016]/sd) AND ([medline]/lim))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

227 hits

+------------------------------------------------------------------+

B.3.2 Database: MEDLINE

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

('clinical trial'/exp)

('clinical trial (topic)'/exp)

('clinical trial*':ti,ab)

(('trial*':ti,ab))

('drug therapy':lnk)

('randomization'/exp)

((('allocat*' OR 'assign*') NEAR/2 'random*'):ti,ab)

('randomi*ed':ti,ab)

('randomly':ti,ab)

(('rct'):ti,ab)

('crossover procedure'/exp)

(('crossover*' OR 'cross over*' OR 'cross-over*'):ti,ab)

('placebos'/exp)

('placebo*':ti,ab)

('prospective study'/exp)

('groups':ti,ab)

('double blind procedure'/exp)

('single blind procedure'/exp)

((('singl*' OR 'doubl*' OR 'tripl*' OR 'trebl*') NEAR/1 ('blind*' OR

'mask*')):ti,ab)
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## EXCLUDED

('animals'/exp) NOT ('humans'/exp)

('case report*':ti)

('case study'/exp)

('letter'/exp)

('historical research'/exp)

('history of medicine'/exp)

('abstract report'/exp)

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

(('process* evaluat*'):ti,ab)

## EXCLUDED

(('protocol'):ti)

## LIMITS

([article]/lim OR [article in press]/lim OR [review]/lim)

NOT ([afrikaans]/lim OR [albanian]/lim OR [arabic]/lim OR [armenian]/lim OR

[azerbaijani]/lim OR [basque]/lim OR [belarusian]/lim OR [bengali]/lim OR

[bosnian]/lim OR [bulgarian]/lim OR [burmese]/lim OR [catalan]/lim OR

[chinese]/lim OR [croatian]/lim OR [czech]/lim OR [danish]/lim OR [dutch]/lim

OR [esperanto]/lim OR [estonian]/lim OR [finnish]/lim OR [french]/lim OR

[georgian]/lim OR [german]/lim OR [greek]/lim OR [hebrew]/lim OR [hindi]/lim OR

[hungarian]/lim OR [icelandic]/lim OR [indonesian]/lim OR [irish gaelic]/lim OR

[italian]/lim OR [japanese]/lim OR [korean]/lim OR [latvian]/lim OR

[lithuanian]/lim OR [macedonian]/lim OR [malay]/lim OR [mongolian]/lim OR

[norwegian]/lim OR [persian]/lim OR [polish]/lim OR [polyglot]/lim OR

[portuguese]/lim OR [pushto]/lim OR [romanian]/lim OR [russian]/lim OR

[scottish gaelic]/lim OR [serbian]/lim OR [sinhalese]/lim OR [slovak]/lim OR

[slovenian]/lim OR [spanish]/lim OR [swedish]/lim OR [tagalog]/lim OR

[thai]/lim OR [turkish]/lim OR [ukrainian]/lim OR [urdu]/lim OR [uzbek]/lim OR

[vietnamese]/lim)

([2012-2016]/py)

([1-1-2011]/sd NOT [31-12-2016]/sd)

([medline]/lim)

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

(((('clinical trial'/exp) OR ('clinical trial (topic)'/exp) OR ('clinical

trial*':ti,ab) OR (('trial*':ti,ab)) OR ('drug therapy':lnk) OR

('randomization'/exp) OR ((('allocat*' OR 'assign*') NEAR/2 'random*'):ti,ab) OR

('randomi*ed':ti,ab) OR ('randomly':ti,ab) OR (('rct'):ti,ab) OR ('crossover

procedure'/exp) OR (('crossover*' OR 'cross over*' OR 'cross-over*'):ti,ab) OR

('placebos'/exp) OR ('placebo*':ti,ab) OR ('prospective study'/exp) OR

('groups':ti,ab) OR ('double blind procedure'/exp) OR ('single blind
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procedure'/exp) OR ((('singl*' OR 'doubl*' OR 'tripl*' OR 'trebl*') NEAR/1

('blind*' OR 'mask*')):ti,ab)) NOT (('animals'/exp) NOT ('humans'/exp) OR ('case

report*':ti) OR ('case study'/exp) OR ('letter'/exp) OR ('historical

research'/exp) OR ('history of medicine'/exp) OR ('abstract report'/exp))) AND

(((('process* evaluat*'):ti,ab) NOT (('protocol'):ti)) AND (([article]/lim OR

[article in press]/lim OR [review]/lim) NOT ([afrikaans]/lim OR [albanian]/lim

OR [arabic]/lim OR [armenian]/lim OR [azerbaijani]/lim OR [basque]/lim OR

[belarusian]/lim OR [bengali]/lim OR [bosnian]/lim OR [bulgarian]/lim OR

[burmese]/lim OR [catalan]/lim OR [chinese]/lim OR [croatian]/lim OR [czech]/lim

OR [danish]/lim OR [dutch]/lim OR [esperanto]/lim OR [estonian]/lim OR

[finnish]/lim OR [french]/lim OR [georgian]/lim OR [german]/lim OR [greek]/lim

OR [hebrew]/lim OR [hindi]/lim OR [hungarian]/lim OR [icelandic]/lim OR

[indonesian]/lim OR [irish gaelic]/lim OR [italian]/lim OR [japanese]/lim OR

[korean]/lim OR [latvian]/lim OR [lithuanian]/lim OR [macedonian]/lim OR

[malay]/lim OR [mongolian]/lim OR [norwegian]/lim OR [persian]/lim OR

[polish]/lim OR [polyglot]/lim OR [portuguese]/lim OR [pushto]/lim OR

[romanian]/lim OR [russian]/lim OR [scottish gaelic]/lim OR [serbian]/lim OR

[sinhalese]/lim OR [slovak]/lim OR [slovenian]/lim OR [spanish]/lim OR

[swedish]/lim OR [tagalog]/lim OR [thai]/lim OR [turkish]/lim OR [ukrainian]/lim

OR [urdu]/lim OR [uzbek]/lim OR [vietnamese]/lim) AND ([2012-2016]/py) AND

([1-1-2011]/sd NOT [31-12-2016]/sd) AND ([medline]/lim))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

335 hits

+------------------------------------------------------------------+

B.4 Search engine: Ovid

B.4.1 Database: Embase

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

((exp "clinical trial").sh.)

((exp "clinical trial (topic)").sh.)

(("clinical trial$").ti,ab.)

(("trial$").ti,ab.)

(("drug therapy").fs.)
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((exp "randomization").sh.)

((("allocat$" OR "assign$") ADJ2 "random$").ti,ab.)

(("randomi#ed").ti,ab.)

(("randomly").ti,ab.)

(("rct").ti,ab.)

((exp "crossover procedure").sh.)

(("crossover$" OR "cross over$" OR "cross-over$").ti,ab.)

((exp "placebos").sh.)

(("placebo$").ti,ab.)

((exp "prospective study").sh.)

(("groups").ti,ab.)

((exp "double blind procedure").sh.)

((exp "single blind procedure").sh.)

(((("singl$" OR "doubl$" OR "treb$" OR "tripl$") ADJ1 ("blind$" OR

"mask$"))).ti,ab.)

## EXCLUDED

((exp "animals").sh. NOT (exp "humans").sh.)

(("case report$").ti.)

((exp "case study").sh.)

((exp "letter").sh.)

((exp "historical research").sh.)

((exp "history of medicine").sh.)

((exp "abstract report").sh.)

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

(("process$" ADJ "evaluat$").ti,ab.)

## EXCLUDED

(("protocol").ti.)

## LIMITS

NOT (("afrikaans" OR "albanian" OR "arabic" OR "armenian" OR

"azerbaidzhani" OR "belorussian" OR "bosnian" OR "bulgarian" OR "catalan"

OR "chinese" OR "croatian" OR "czech" OR "danish" OR "dutch" OR "esperanto"

OR "estonian" OR "finnish" OR "french" OR "gallegan" OR "georgian" OR

"german" OR "greek" OR "hebrew" OR "hindi" OR "hungarian" OR "icelandic" OR

"indonesian" OR "irish gaelic" OR "italian" OR "japanese" OR "korean" OR

"latvian" OR "lithuanian" OR "macedonian" OR "malay" OR "norwegian" OR

"persian" OR "polish" OR "polyglot" OR "portuguese" OR "pushto" OR
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"romanian" OR "russian" OR "scottish gaelic" OR "serbian" OR "sinhalese" OR

"slovak" OR "slovene" OR "spanish" OR "swedish" OR "thai" OR "turkish" OR

"ukrainian" OR "urdu" OR "uzbek" OR "vietnamese").lg.)

((2012$ OR 2013$ OR 2014$ OR 2015$ OR 2016$).dp.)

((2011$ OR 2012$ OR 2013$ OR 2014$ OR 2015$ OR 2016$).dc.)

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

(((((exp "clinical trial").sh.) OR ((exp "clinical trial (topic)").sh.) OR

(("clinical trial$").ti,ab.) OR (("trial$").ti,ab.) OR (("drug

therapy").fs.) OR ((exp "randomization").sh.) OR ((("allocat$" OR

"assign$") ADJ2 "random$").ti,ab.) OR (("randomi#ed").ti,ab.) OR

(("randomly").ti,ab.) OR (("rct").ti,ab.) OR ((exp "crossover

procedure").sh.) OR (("crossover$" OR "cross over$" OR

"cross-over$").ti,ab.) OR ((exp "placebos").sh.) OR (("placebo$").ti,ab.)

OR ((exp "prospective study").sh.) OR (("groups").ti,ab.) OR ((exp "double

blind procedure").sh.) OR ((exp "single blind procedure").sh.) OR

(((("singl$" OR "doubl$" OR "treb$" OR "tripl$") ADJ1 ("blind$" OR

"mask$"))).ti,ab.)) NOT (((exp "animals").sh. NOT (exp "humans").sh.) OR

(("case report$").ti.) OR ((exp "case study").sh.) OR ((exp "letter").sh.)

OR ((exp "historical research").sh.) OR ((exp "history of medicine").sh.)

OR ((exp "abstract report").sh.))) AND (((("process$" ADJ

"evaluat$").ti,ab.) NOT (("protocol").ti.)) AND (((2012$ OR 2013$ OR 2014$

OR 2015$ OR 2016$).dp.) AND ((2011$ OR 2012$ OR 2013$ OR 2014$ OR 2015$ OR

2016$).dc.) NOT (("afrikaans" OR "albanian" OR "arabic" OR "armenian" OR

"azerbaidzhani" OR "belorussian" OR "bosnian" OR "bulgarian" OR "catalan"

OR "chinese" OR "croatian" OR "czech" OR "danish" OR "dutch" OR "esperanto"

OR "estonian" OR "finnish" OR "french" OR "gallegan" OR "georgian" OR

"german" OR "greek" OR "hebrew" OR "hindi" OR "hungarian" OR "icelandic" OR

"indonesian" OR "irish gaelic" OR "italian" OR "japanese" OR "korean" OR

"latvian" OR "lithuanian" OR "macedonian" OR "malay" OR "norwegian" OR

"persian" OR "polish" OR "polyglot" OR "portuguese" OR "pushto" OR

"romanian" OR "russian" OR "scottish gaelic" OR "serbian" OR "sinhalese" OR

"slovak" OR "slovene" OR "spanish" OR "swedish" OR "thai" OR "turkish" OR

'a"ukrainian" OR "urdu" OR "uzbek" OR "vietnamese").lg.))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

169 hits

+------------------------------------------------------------------+
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B.4.2 Database: PsycINFO

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

((exp "clinical trials").sh.)

(("clinical trial").md.)

(("clinical trial$").ti,ab.)

(("trial$").ti,ab.)

((exp "drug therapy").sh.)

((exp "random sampling").sh.)

((("allocat$" OR "assign$") ADJ2 "random$").ti,ab.)

(("randomi#ed").ti,ab.)

(("randomly").ti,ab.)

(("rct").ti,ab.)

((exp "placebo").sh.)

(("placebo$").ti,ab.)

((exp "prospective studies").sh.)

(("prospective study").md.)

(("groups").ti,ab.)

(("crossover$" OR "cross over$" OR "cross-over$").ti,ab.)

(((("singl$" OR "doubl$" OR "treb$" OR "tripl$") ADJ1 ("blind$" OR

"mask$"))).ti,ab.)

(("empirical study").md.)

## LIMITS

(("human").po.)

## EXCLUDED

(("case report$").ti.)

(("book").pt.)

(("encyclopedia").pt.)

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

(("process$" ADJ "evaluat$").ti,ab.)

## EXCLUDED
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(("protocol").ti.)

## LIMITS

NOT (("afrikaans" OR "albanian" OR "arabic" OR "bulgarian" OR "catalan" OR

"chinese" OR "croatian" OR "czech" OR "danish" OR "dutch" OR "estonian" OR

"farsi iranian" OR "finnish" OR "french" OR "georgian" OR "german" OR "greek"

OR "hebrew" OR "hindi" OR "hungarian" OR "italian" OR "japanese" OR "korean" OR

"lithuanian" OR "malaysian" OR "nonenglish" OR "norwegian" OR "polish" OR

"portuguese" OR "romanian" OR "russian" OR "serbian" OR "serbo croatian" OR

"slovak" OR "slovene" OR "spanish" OR "swedish" OR "turkish" OR "ukrainian" OR

"urdu").lg.)

((2012$ OR 2013$ OR 2014$ OR 2015$ OR 2016$).dp.)

((2011$ OR 2012$ OR 2013$ OR 2014$ OR 2015$ OR 2016$).up.)

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

((((((exp "clinical trials").sh.) OR (("clinical trial").md.) OR (("clinical

trial$").ti,ab.) OR (("trial$").ti,ab.) OR ((exp "drug therapy").sh.) OR ((exp

"random sampling").sh.) OR ((("allocat$" OR "assign$") ADJ2 "random$").ti,ab.)

OR (("randomi#ed").ti,ab.) OR (("randomly").ti,ab.) OR (("rct").ti,ab.) OR

((exp "placebo").sh.) OR (("placebo$").ti,ab.) OR ((exp "prospective

studies").sh.) OR (("prospective study").md.) OR (("groups").ti,ab.) OR

(("crossover$" OR "cross over$" OR "cross-over$").ti,ab.) OR (((("singl$" OR

"doubl$" OR "treb$" OR "tripl$") ADJ1 ("blind$" OR "mask$"))).ti,ab.) OR

(("empirical study").md.)) AND (("human").po.)) NOT ((("case report$").ti.) OR

(("book").pt.) OR (("encyclopedia").pt.))) AND (((("process$" ADJ

"evaluat$").ti,ab.) NOT (("protocol").ti.)) AND (((2012$ OR 2013$ OR 2014$ OR

2015$ OR 2016$).dp.) AND ((2011$ OR 2012$ OR 2013$ OR 2014$ OR 2015$ OR

2016$).up.) NOT (("afrikaans" OR "albanian" OR "arabic" OR "bulgarian" OR

"catalan" OR "chinese" OR "croatian" OR "czech" OR "danish" OR "dutch" OR

"estonian" OR "farsi iranian" OR "finnish" OR "french" OR "georgian" OR

"german" OR "greek" OR "hebrew" OR "hindi" OR "hungarian" OR "italian" OR

"japanese" OR "korean" OR "lithuanian" OR "malaysian" OR "nonenglish" OR

"norwegian" OR "polish" OR "portuguese" OR "romanian" OR "russian" OR "serbian"

OR "serbo croatian" OR "slovak" OR "slovene" OR "spanish" OR "swedish" OR

"turkish" OR "ukrainian" OR "urdu").lg.))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

404 hits

+------------------------------------------------------------------+
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B.4.3 Database: MEDLINE

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

((exp "clinical trial").pt.)

((exp "clinical trials as topic").sh.)

(("clinical trial$").ti,ab.)

(("trial$").ti,ab.)

(("drug therapy").fs.)

((exp "random allocation").sh.)

((("allocat$" OR "assign$") ADJ2 "random$").ti,ab.)

(("randomi#ed").ti,ab.)

(("randomly").ti,ab.)

(("rct").ti,ab.)

((exp "placebos").sh.)

(("placebo$").ti,ab.)

((exp "prospective studies").pt.)

((exp "multicenter study").pt.)

((exp "multicenter studies as topic").sh.)

(("groups").ti,ab.)

((exp "cross-over studies").sh.)

(("crossover$" OR "cross over$" OR "cross-over$").ti,ab.)

((exp "double blind method").sh.)

((exp "single blind method").sh.)

(((("singl$" OR "doubl$" OR "treb$" OR "tripl$") ADJ1 ("blind$" OR

"mask$"))).ti,ab.)

## EXCLUDED

((exp "animals").sh. NOT (exp "humans").sh.)

(("case report$").ti.)

(("case reports").pt.)

(("letter").sh.)

(("historical article").pt.)

(("correspondence as topic").sh.)

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+
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## INCLUDED

(("process$" ADJ "evaluat$").ti,ab.)

## EXCLUDED

(("protocol").ti.)

## LIMITS

(("english" OR "eng" OR "und" OR "undetermined").lg.)

((2012$ OR 2013$ OR 2014$ OR 2015$ OR 2016$).dp.)

((2011$ OR 2012$ OR 2013$ OR 2014$ OR 2015$ OR 2016$).dc.)

* .dp. Date - Publication

* .dc. Date - Create

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

(((((exp "clinical trial").pt.) OR ((exp "clinical trials as topic").sh.) OR

(("clinical trial$").ti,ab.) OR (("trial$").ti,ab.) OR (("drug therapy").fs.)

OR ((exp "random allocation").sh.) OR ((("allocat$" OR "assign$") ADJ2

"random$").ti,ab.) OR (("randomi#ed").ti,ab.) OR (("randomly").ti,ab.) OR

(("rct").ti,ab.) OR ((exp "placebos").sh.) OR (("placebo$").ti,ab.) OR ((exp

"prospective studies").pt.) OR ((exp "multicenter study").pt.) OR ((exp

"multicenter studies as topic").sh.) OR (("groups").ti,ab.) OR ((exp

"cross-over studies").sh.) OR (("crossover$" OR "cross over$" OR

"cross-over$").ti,ab.) OR ((exp "double blind method").sh.) OR ((exp "single

blind method").sh.) OR (((("singl$" OR "doubl$" OR "treb$" OR "tripl$") ADJ1

("blind$" OR "mask$"))).ti,ab.)) NOT (((exp "animals").sh. NOT (exp

"humans").sh.) OR (("case report$").ti.) OR (("case reports").pt.) OR

(("letter").sh.) OR (("historical article").pt.) OR (("correspondence as

topic").sh.) OR (("meeting abstracts").pt.) OR (("abstracts").pt))) AND

(((("process$" ADJ "evaluat$").ti,ab.) NOT (("protocol").ti.)) AND ((("english"

OR "eng" OR "und" OR "undetermined").lg.) AND ((2012$ OR 2013$ OR 2014$ OR

2015$ OR 2016$).dp.) AND ((2011$ OR 2012$ OR 2013$ OR 2014$ OR 2015$ OR

2016$).dc.))))

+------------------------------------------------------------------+

# Results

+------------------------------------------------------------------+

Retrieved on 2017-02-27

571 hits

+------------------------------------------------------------------+
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B.5 Search engine: National Center for Biotechnology In-

formation

B.5.1 Database: Pubmed

+------------------------------------------------------------------+

# RCT filters

+------------------------------------------------------------------+

## INCLUDED

("clinical trial"[pt])

("clinical trials as topic"[mh])

("clinical trial"[tiab] OR "clinical trials"[tiab])

(trial*[tiab])

(drug therapy[sh])

("random allocation"[mh])

(allocat*[tiab] AND random*[tiab])

(randomized[tiab] OR randomised[tiab])

(randomly[tiab])

(rct[tiab])

("placebos"[mh])

(placebo*[tiab])

("prospective studies"[mh])

("cross-over studies"[mh])

("crossover"[tiab] OR "cross over"[tiab] OR "cross-over"[tiab])

("multicenter study"[pt])

("multicenter studies as topic"[mh])

(groups[tiab])

("double blind method"[mh])

("single blind method"[mh])

((singl*[tiab] OR doubl*[tiab] OR tripl*[tiab] OR trebl*[tiab]) AND

(blind*[tiab] OR mask*[tiab]))

## EXCLUDED

("animals"[mh] NOT "humans"[mh])

("case report"[ti])

("case reports"[ti])
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("case reports"[pt])

("letter"[pt])

("historical article"[pt])

("correspondence as topic"[mh])

+------------------------------------------------------------------+

# Subject filters

+------------------------------------------------------------------+

## INCLUDED

("process evaluation"[tiab])

("process evaluations"[tiab])

("process evaluator"[tiab])

("process evaluators"[tiab])

## EXCLUDED

("protocol"[ti])

## LIMITS (Combined with AND)

(eng[la] OR und[la])

("2012/01/01"[pdat] : "2016/12/31"[pdat])

("2011/01/01"[crdat] : "2016/12/31"[crdat])

* Reference for dates: https://www.ncbi.nlm.nih.gov/books/NBK179288/

[PDAT] Date - Publication

[CRDT] Date - Create

+------------------------------------------------------------------+

# Combined

+------------------------------------------------------------------+

(((("clinical trial"[pt]) OR ("clinical trials as topic"[mh]) OR ("clinical

trial"[tiab] OR "clinical trials"[tiab]) OR (trial*[tiab]) OR (drug

therapy[sh]) OR ("random allocation"[mh]) OR (allocat*[tiab] AND random*[tiab])

OR (randomized[tiab] OR randomised[tiab]) OR (randomly[tiab]) OR (rct[tiab]) OR

("placebos"[mh]) OR (placebo*[tiab]) OR ("prospective studies"[mh]) OR

("cross-over studies"[mh]) OR ("crossover"[tiab] OR "cross over"[tiab] OR

"cross-over"[tiab]) OR ("multicenter study"[pt]) OR ("multicenter studies as

topic"[mh]) OR (groups[tiab]) OR ("double blind method"[mh]) OR ("single blind

method"[mh]) OR ((singl*[tiab] OR doubl*[tiab] OR tripl*[tiab] OR trebl*[tiab])

AND (blind*[tiab] OR mask*[tiab]))) NOT (("animals"[mh] NOT "humans"[mh]) OR

("case report"[ti]) OR ("case reports"[ti]) OR ("case reports"[pt]) OR

("letter"[pt]) OR ("historical article"[pt]) OR ("correspondence as

topic"[mh]))) AND (((("process evaluation"[tiab]) OR ("process

evaluations"[tiab]) OR ("process evaluator"[tiab]) OR ("process

evaluators"[tiab])) NOT ("protocol"[ti])) AND ((eng[la] OR und[la]) AND

("2012/01/01"[pdat] : "2016/12/31"[pdat]) AND ("2011/01/01"[crdat] :

"2016/12/31"[crdat]))))

+------------------------------------------------------------------+

# Results
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+------------------------------------------------------------------+

Retrieved on 2017-02-27

580 hits

+------------------------------------------------------------------+
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1 Aims of systematic review

The aim of the systematic review is to understand the aims, meaning and methods of process evaluation
in mental health studies. This is to facilitate the identification of gaps in the application of current
statistical methods for the purpose of conducting causal inferences. This systematic review is part of a
PhD project titled “Statistical Methods for Process Evaluation in Randomised Clinical Trials”.

Briefly, process evaluation (PE) is a form of evaluation often conducted alongside outcomes evaluation
(OE). While OE seeks to establish the efficacy or effectiveness of an intervention, PE seeks to understand
the variability in the processes that go into the conduct of the intervention. These processes can be
characteristics of the person providing the intervention, the intervention itself, the patient or the context
in which the intervention is conducted in. Understanding the variability in these processes can provide
an understanding of the potential causal mechanisms of the intervention.

1.1 Methods for systematic review

The following are the steps taken to derive the final set of articles for review.

1. Identify the database and search engines to use based on scope of review.

2. Identify keywords from the literature.

(a) Two sets of keywords for the identification of randomised controlled trials (RCTs) and PE
studies respectively.

(b) RCT keywords were derived from Cochrane and Scottish Intercollegiate Guidelines Network
(SIGN) and modified for use in the different search engines and databases.

(c) PE keywords were initially identified from literature and its variants were identified from a
keyword study to ensure adequate coverage of the concept of PE.

3. Screen the articles according to the inclusion and exclusion criteria

(a) The screening was split into two steps. The first step was to identify papers that had a primary
trial conducted using the RCT design and a PE.

(b) The second step was to further differentiate between papers that had a mental health focus
and those that do not.

4. Enter the information from the identified papers into the database.

2 Aims of secondary review

The systematic review was conducted in such a way to enable reproducibility. However, there exist parts
that have an element of subjectivity and the aim of the secondary review is to ensure that these steps
are reproducible with the use of a set of guidelines. Therefore, the aim of the secondary review is to
reproduce parts steps 3 and 4 of the methodology.

1
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2.1 Methods for secondary review

For reproducing the screening step of the systematic review, the two screening steps will be merged. The
inclusion and exclusion criteria can be found in Appendix B. The secondary reviewer will screen from
a set of 30 articles to identify those that meet the criteria. The identified articles will then be entered
in to the database using the guide found in Appendix C. After entering the data into the database, the
second reviewer will be provided with the data entered by the first reviewer. The second reviewer will
then highlight any significant discrepancies.

3 Tasks for secondary review

1. Screen from a set of 30 articles to identify suitable articles.

2. From the identified articles, enter the information into the database.

2
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Glossary

causal inference
The process by which causality is inferred. In the context of this document, causal inference refers
to any attempts to infer causality.

efficacy and effectiveness
There are multiple definitions for efficacy and effectiveness in the literature. They mostly refer to the
same underlying concept with different orientations. Both efficacy and effectiveness concerns with
whether an intervention produces the anticipated results. One definition considers the efficacy
to be whether the results are produced under ideal conditions and effectiveness to be whether it
produces the results under real world conditions (Gartlehner, Hansen, Nissman, Lohr & Carey,
2006). Another definition considers efficacy to be the results assessed when the intervention is
offered and effectiveness to be the results assessed when the intervention is received (Dunn et al.,
2015). The two definitions are similar with the latter being more precise about the intervention
effects being measured.

mediation
The process by which the cause and effect are related indirectly, via an alternate mechanism.

moderation
The process by which the intervention effects differ amongst people by their baseline characteristics
(Kraemer, Wilson, Fairburn & Agras, 2002).

outcomes evaluation (OE)
OE is a form of evaluation used to assess the efficacy or effectiveness of an intervention. This is
commonly employed in clinical trials and programme evaluations. The RCT design is commonly
used as it provides a rigorous framework to infer causality through the use of counterfactuals.

post-randomisation treatment effect modification (PREM)
Similar to and often confused with moderation. While moderation refers to the difference in
treatment effects according to baseline characteristics, PREM refers to the difference in treatment
effects in characteristics that are not measured at baseline. The analysis of PREM differs from
a moderation analysis and a common way to conduct such an analysis involve the use of an
instrumental variable (Dunn et al., 2015).

process evaluation (PE)
PE is a form of evaluation commonly used to assess the processes involved in delivering an inter-
vention. This form of evaluation makes a comparison between the intent or theory underlying the
intervention with what is borne out in reality. A common purpose for conducting such an evalu-
ation is to understand the effects of the processes on the outcomes of interest. More information
on PE can be found in a recent Medical Research Council (MRC) guideline on the use of PE for
complex interventions (Moore et al., 2015)

3
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A Materials for secondary review

A set of bibliographic data together with the full text of the papers will be provided to the second
reviewer. These will be in the form of a Zotero database that comes with several searching and tagging
functions to facilitate the screening of the papers. A Microsoft Excel database will be provided for the
entering of the data. The definitions of the fields for the database is included in the subsequent appendix.

B Inclusion and exclusion criteria

Inclusion criteria:

1. peer-reviewed journal article

2. has an intervention that is assessed in an OE using an RCT design.

3. the PE can be conducted using any design.

4. the primary outcome has relevance to mental health (e.g. Patient Health Questionnaire (PHQ-9)
scores for depression, mental health scores from quality of life instruments.).

5. the target population need not necessarily be for people with mental health disorders.

6. studies that assess interventions and have a primary mental health outcome

Exclusion criteria:

1. non-peer reviewed publications (e.g. dissertation, protocol, poster, conference paper)

2. studies assessing interventions for people with mental health disorders without a primary mental
health outcome (e.g. physical activity intervention for elderly with dementia with the 6 minute
walk test as a primary outcome).

3. studies that do not have a primary mental health related outcome or have mental health related
outcomes as secondary outcomes only.

4
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C Field definitions for database

Table 1: Field definitions

Field Definition

Study metadata:
Publication publication the paper was published in
Year year paper was published
Author authors of the paper
Title title of the paper
Status accept/reject: status after screening

Outcomes evaluation:
Main trial outcome positive/negative
Design:

type parallel/others: RCT design
arms number of arms
blinding presence and type of blinding

Randomisation:
type simple/cluster/stratified
level subject/cluster

Subjects:
who (condition) target population characteristic
who (age) average age of subjects
where (country) country study was conducted in
where (facility) type of facility where subjects come from
how (recruited) mechanism by which subjects were recruited
number (total) total number of subjects
number (arms) number of subjects in each arm

Outcomes:
(aim) efficacy/effectiveness: for studies that state their

aim in terms of efficacy or effectiveness, the stated
aim will be entered unless contrary information
exists in the paper strongly suggesting the oppos-
ite (e.g. a study with the stated aim of assess-
ing efficacy of an intervention in a unique context
when prior studies have already shown it to be
efficacious. For a detailed discussion on the dif-
ferences, refer to Gartlehner et al. (2006).

what (primary) the primary outcome construct (e.g. depression,
anxiety)

what (measures) the primary outcome measure
when at what time points were the primary outcomes

measured
what (analysis) what analysis was conducted

Intervention:

5

APPENDIX C. SECOND REVIEWER’S MANUAL 200



Table 1: (continued)

Field Definition

treatment the intervention under evaluation
control the control intervention

Process evaluation:
Design:

type selected arms of trial only (which arm?)/all arms
of trial

paradigm quantitative/qualitative/mixed
framework PE framework/not stated
aim (hypothesis) hypothesis generating/confirming
aim (what to evaluate) what is the aim of the PE
when (relative to trial) before/alongside/after: when was the evaluation

conducted in relation to the main trial
when (assessment time points) e.g. baseline, 1 month, 2 months: at what time

points was the evaluation conducted
link with OE yes/no: were the results of the PE analysed in the

context of the OE results?
Subjects:

who e.g. intervention group, staff: Who were included
in the study? If different for the quantitative and
qualitative component, state who were involved
in each.

how (recruited) e.g. patients at the clinic were invited: how were
the subjects recruited to the study

Quantitative:
Subjects

number (total) total number of subjects
sampling e.g. same as OE, convenience sample: how were

the subjects sampled?
Process

what (construct) e.g. dose, adherence: what is the process that is
being evaluated?

what (analysis) e.g. descriptive statistics, ANOVA: what methods
were used for the analysis?

causal inference aim yes/no: was casual inference a stated aim?
causal inference implied yes/no: was causal inference implied as an aim?
causal inference type e.g. mediation, moderation: what form of casual

inference was stated/implied?
conclusion justified? yes/no: were the conclusions justified?
conclusion justified (why) e.g. the analytic methods provided support for

the claims made in the conclusion: explain why
the conclusion are justified/not justified.

6
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Table 1: (continued)

Field Definition

measurement error yes/no: was measurement error accounted for in
the analyses?

mediation yes/no: was any form of mediation analyses con-
ducted?

PREM yes/no: was any form of post randomisation ef-
fect modification analysis conducted?

Qualitative:
Subjects

number (total) the total number of subjects
sampling e.g. convenience/purposive for maximum vari-

ability: Can be a combination of several ways of
sampling. If purposive, include any stated pur-
pose of sampling.

Process
what e.g. patient satisfaction: what is the process that

is being evaluated?
what e.g. content analysis: what methods/qualitative

framework is being used to analyse the data?
Remarks Any other remarks

7
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Table D.1: Accepted studies trial population and treatment

No. Study Target population Intervention

01. 01. people with advanced lung cancer who require radiother-

apy

psycho-educational intervention for symptom management

02. 02. people with post-traumatic stress disorder, generalized

anxiety disorder, panic disorder or social anxiety disorder

calm (anxiety management and cognitive behavioural ther-

apy components) and medication optimisation

03. 03. women with post-partum depression psycho-education derived from interpersonal psychotherapy

principles

04. 04. people residing in nursing homes with depression multidisciplinary, evidence based care program to improve the

management of depression in nursing home residents

05. 05. nurses and allied health professionals with mental health

issues

online screening formental health issues and appointmentwith

occupational physician; online screening for mental health

issues with digital content to improve

06. 06. people with schizophrenia activity group; art therapy

07. 07. students attention control; classroom-based cbt
07. 08. students attention control; classroom-based cbt
08. 09. people with stroke and aphasia behavioural therapy

09. 10. people with psychosis web-based tool to help patients decide what treatment modal-

ities they would like



A
PPEN

D
IX

D
.SYSTEM

ATIC
REV

IEW
RESU

LTS:PO
PU

LATIO
N

A
N
D

TREATM
EN

T
206

Table D.1: Accepted studies trial population and treatment (cont’d)

No. Study Target population Intervention

10. 11. workers with common mental disorders common mental disorders management training for occupa-

tional physicians

11. 12. people residing in care homes exercise

12. 13. people with fear of falling cognitive behavioural therapy

13. 14. workers with depressive symptoms web-based problem-solving treatment and cognitive therapy

14. 15. older adults residing in the community who are at risk of

social isolation

telephone calls from volunteers to befriend subjects

15. 16. people with psychosis support patients in recovery after psychosis

15. 17. people with psychosis support patients in recovery after psychosis

16. 18. people with eating disorders cognitive interpersonal treatment

16. 19. people with eating disorders cognitive interpersonal treatment

16. 20. people with eating disorders cognitive interpersonal treatment

17. 21. carers of young people with a first episode psychosis bibliotherapy

18. 22. people with HIV/AIDS who are depressed group based interpersonal therapy

19. 23. people with dementia and their caregivers home-based physical exercise training, psycho-education, com-

munication skills training, and pleasant activities training

20. 24. women at risk of stress, anxiety, depression mindfulness based group therapy

21. 25. people with cancer-related fatigue web-based resource
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Table D.1: Accepted studies trial population and treatment (cont’d)

No. Study Target population Intervention

21. 26. people with cancer-related fatigue web-based resource

22. 27. women who are first time mothers with an uncomplicated

pregnancy

postnatal psycho-education

23. 28. primary school children manualised cbt programme

24. 29. school children with hyperactivity/inattention management strategies of children with adhd provided for

the parents and/or teachers

25. 30. people with schizophrenia and associated disorders assessments based on structured patient-clinician dialogue and

solution focused therapy
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Appendix G

Computer programme: Model- and

simulation-based estimators

G.1 Auxiliary functions

The gen.utilities function generates the various auxiliary functions used in the main programme.

Use the command list2env(gen.utilities()) to insert these functions into the present global envir-

onment.

gen.utilities <- function() {

# functions

## utilities

ut.box <- function(v.contents, chr.head = "┼", chr.sep = "─",

chr.tail = "┼", chr.wall = "│", s.align = "l") {

v.box <- c(lh = "─",

ctl = "┌", ctr = "┐", cbl = "└", cbr = "┘",

lvhl = "├", lvhr = "┤", lhvt = "┬", lhvb = "┴",

lc = "┼")

if(class(v.contents) |>

match(c("integer", "numeric", "character"),

nomatch = 0) |>

(any |> Negate())())

stop("Incorrect contents format.")

s.contents.lenmax <- nchar(v.contents) |> max()
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s.box.lenmax <- length(c(chr.head, chr.sep, chr.tail)) |> sum()

if(s.contents.lenmax < s.box.lenmax)

s.contents.lenmax <- s.box.lenmax

s.contents.lenpadded <- s.contents.lenmax + 2

s.contents.lenpadded <- (4 - (s.contents.lenpadded %% 4)) + s.contents.lenpadded

s.contents.lenpadded.use <-

switch(s.align,

l = -s.contents.lenpadded,

r = s.contents.lenpadded,

c = s.contents.lenpadded/2)

v.messages <-

switch((s.align == "c") + 1,

sprintf(paste0(chr.wall, " %*s ", chr.wall),

s.contents.lenpadded.use, v.contents),

{

l.contents <-

Map(function(x)

{

s.len <- length(x) %/% 2

Map(function(v) paste0(v, collapse = ""),

list(head(x, s.len), tail(x, -s.len)))

}, strsplit(v.contents, ""))

mapply(function(x)

{

paste0(sprintf(paste0(chr.wall, " %*s"),

s.contents.lenpadded.use, x[[1]]),

sprintf(paste0("%*s ", chr.wall),

-s.contents.lenpadded.use, x[[2]]),

collapse = "")

}, l.contents)

})

v.sep <- paste0(c(chr.head,

rep(chr.sep,

s.contents.lenpadded +

((nchar(c(" ", chr.wall)) * 2) |> sum()) -

(nchar(c(chr.head, chr.tail)) |> sum())),

chr.tail),

collapse = "")

mapply(message, c(v.sep, v.messages, v.sep)) |> invisible()

}

ut.clear.disp <- function() {

if(!is.null(dev.list())) {

invisible(mapply(dev.off, dev.list()))
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}

switch(commandArgs()[1],

RStudio = cat("\014"),

system("clear"))

}

ut.clear.dispdev <- function() {

if(!is.null(dev.list()))

ut.silent(mapply(dev.off, dev.list()))

}

ut.clear.globalwspc <- function() {

local(rm(list = ls()), envir = .GlobalEnv)

}

ut.get.all <- function() {

env <- parent.frame(1)

mget(ls(envir = env), envir = env)

}

ut.suppress <- function(...) {

suppressMessages(...) |> suppressWarnings()

}

ut.silent <- function(...) {

sink(nullfile())

try(..., silent = TRUE, outFile = nullfile()) |> ut.suppress()

sink()

}

sup.wm <- function(..., mode = "wm") {

switch(mode,

w = suppressWarnings(...),

m = suppressMessages(...),

wm = suppressWarnings(suppressMessages(...)))

}

ut.permargs <- function(...) {

l.args <- list(...) |> rev()

Map(function(l, v.ind) l[v.ind],

l.args,

mapply(function(v)

seq_along(v),

l.args,

SIMPLIFY = FALSE) |>

expand.grid()) |>

rev()

}

ut.save.all <- function() {

Map(function(n)

save(list = n,

file = paste0(n, ".RData"),
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envir = .GlobalEnv),

grep("^df|^list",

ls(".GlobalEnv"), value = TRUE))

}

ut.time <- function() {

mapply(function(x)

format(Sys.time(), x),

c("Date: %Y%m%d %z", "Time: %H%M%S")) |>

ut.box()

}

ut.pad.dl0 <- function(int, width) {

sprintf(paste0("%0", width, "d"), int)

}

## parallel +---------------------------------------------+

make.cl <- function(int.cores = parallel::detectCores(),

env = environment()) {

parallel::clusterExport(cl <- parallel::makeCluster(int.cores),

ls(envir = env), envir = env)

cl

}

max.cores <- function() {

parallel::detectCores()

}

set.env.name <- function() {

env.parent <- parent.frame(1)

if(!identical(env.parent, .GlobalEnv)) {

func.name <- as.character(sys.call(-1))[1]

if(is(get(func.name, envir = env.parent), "function")) {

invisible(structure(env.parent,

env.name = func.name))

}

}

}

## random number generation

gen.rand.int <- function(n) {

s.int.max <- .Machine[["integer.max"]]

sample(-s.int.max:s.int.max, n, replace = FALSE)

}

## functional constructs

Compose <- function(...) {

func.list <- list(...)

if(!all(unlist(lappy(func.list, is.function))))

stop("Argument is not a function")

function(...) {

Reduce(function(x, f) f(x), func.list, ...)
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}

}

ComposeM <- function(...) {

fs <- list(...)

if(!all(unlist(lappy(fs, is.function))))

stop("Argument is not a function")

fs.tail <- fs[-1]

fs.head <- fs[[1]]

function(...) {

Reduce(function(x, f) f(x), fs.tail, fs.head(...))

}

}

Curry <- function(f, ...) {

.orig <- list(...)

function(...) {

do.call(f, c(.orig, list(...)))

}

}

CurryL <- function(f, ...) {

.curried <- as.list(match.call())[c(-1, -2)]

function(...) {

.args <- as.list(match.call())[-1]

eval(substitute(do.call(f, c(.curried, .args))))

}

}

Filter <- function(f, x, nomatch = NA_integer_) {

`if`(any((ind <- (unlist(lapply(x, f))) > 0)),

x[ind], nomatch)

}

Find <- function(f, x, right = FALSE, nomatch = NULL) {

`if`(any((pos <- Position(f, x, right, nomatch = 0L))),

x[[pos]], nomatch)

}

Map.TT <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = TRUE,

USE.NAMES = TRUE)

}

Map.TF <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = TRUE,

USE.NAMES = FALSE)

}

Map.FT <- function(f, ...) {

mapply(FUN = match.fun(f), ...,
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SIMPLIFY = FALSE,

USE.NAMES = TRUE)

}

Map.FF <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = FALSE,

USE.NAMES = FALSE)

}

Map <- Map.FT

Negate.v <- function(...) {

# Negate a vector.

!(...)

}

Position <- function(f, x, right = FALSE,

nomatch = NA_integer_) {

f <- match.fun(f)

ind <- seq_along(x)

if(right) ind <- rev(ind)

`for`(i, ind, if(f(x[[i]])) return(i))

nomatch

}

Swap <- function(f, pos = 2L) {

f <- match.fun(f)

pos.coerce <- as.integer(pos) |> suppressWarnings()

s <- `if`(is.na(pos.coerce),

{

paste0("function(arg1, ...) f(", pos, " = arg1, ...)", collapse = "")

},

{

if(!all.equal(pos, pos.coerce))

stop("pos needs to be either an integer or character string.")

paste0("function(",

paste0("arg", c(pos, seq(pos.coerce - 1)), collapse = ", "),

", ...)", " f(",

paste0("arg", seq(pos), collapse = ", "),

", ...)", collapse = "")

})

structure(parse(text = s,

keep.source = FALSE)[[1]] |>

eval(),

func.name = all.names(sys.call())[-1],

func = substitute(f))

}

## names

nms <- function(v, v.nm) {
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# - functional version of assigning names

# - the main use of this is to facilitate piping in results.

# v : object to be renamed

# v.nm : character vector of new names

`names<-`(v, v.nm)

}

cnms <- function(v, v.nm) {

# - functional version of assigning names

# - the main use of this is to facilitate piping in results.

# v : object to be renamed

# v.nm : character vector of new names

`colnames<-`(v, v.nm)

}

rnms <- function(v, v.nm) {

# functional version of assigning row names

# - the main use of this is to facilitate piping in results.

# v : object to be renamed

# v.nm : character vector of new names

`rownames<-`(v, v.nm)

}

nms.sort <- function(obj, ...) {

# sort an object by its name

# obj : object to be sorted

# ... : any arguments to pass to `sort`

v.nm <- names(obj)

`if`(is.null(v.nm), obj,

obj[sort(v.nm, ...)])

}

cnms.sort <- function(obj, ...) {

# sort an object by its col names

# obj : object to be sorted

# ... : any arguments to pass to `sort`

v.nm <- colnames(obj)

`if`(is.null(v.nm), obj,

obj[,sort(v.nm, ...)])

}

rnms.sort <- function(obj, ...) {

# sort an object by its row names

# obj : object to be sorted

# ... : any arguments to pass to `sort`

v.nm <- rownames(obj)

`if`(is.null(v.nm), obj,

obj[sort(v.nm, ...),])

}

## class/type checks
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is.0 <- function(v) {

# check if object is `0`

# to return true:

# 1. the object must not be null

# 2. have length of 0

!is.null(v) & (length(v) == 0)

}

is.v <- function(obj, v.class, simplify = any) {

# multivariate version of is

# obj:

# object to be tested for its class

# v.class:

# character vector of classes

# simplify:

# what function to apply to simplify the result.

# default is `any`

f <- match.fun(simplify)

f(unlist(mapply(function(s.class)

is(obj, s.class),

v.class,

SIMPLIFY = FALSE,

USE.NAMES = TRUE)))

}

class.a <- `class<-`

## comparisons

identical.v <- function(v) {

if(length(v) == 1)

return(TRUE)

bv.na <- is.na(v)

if(all(bv.na)) {

warning("Input contains NA.")

return(TRUE)

}

if(any(bv.na)) {

warning("Input contains NA.")

return(FALSE)

}

all(v[1] == v)

}

all.T <- all

all.F <- function(...) {

all(!(...))

}

any.T <- any

any.F <- function(...) {
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any(!(...))

}

ee <- `==`

ne <- `!=`

gt <- `>`

lt <- `<`

gte <- `>=`

lte <- `<=`

## flow control

if.t <- function(b.test, v.true, v.false) {

# `if` that switches to binary or ternary version.

# - if `v.false` is missing, switches to binary version.

# - ternary version if like ifelse but accepts only singular boolean.

# notes:

# - the primary intended use of this function is to facilitate the use of if in pipes.

# - together with the `Swap` function, allows flexible piping of arguments.

if(missing(v.false)) {

if(b.test) {

v.true

}

} else {

if(b.test) {

v.true

} else {

v.false

}

}

}

sw.b <- function(...) {

b <- c(...)

s.len <- length(b)

if(any(!is.logical(b), (s.len == 0), (sum(b) > 1)))

stop("Error")

switch(which(c((s.len == 1),

(s.len > 1))),

ifelse(b, 1, 2),

which(b))

}

## subsetting

ss.b <- function(v, i) {

`[`(v, i)

}

ss.bb <- function(v, i) {
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`[[`(v, i)

}

ss.e.nm <- function(obj, v.exclude.names) {

# subset, excluding by names

v.obj.names <- names(obj)

if(is.null(v.obj.names)) {

stop("Input object has no names.")

} else {

b.include <- match(v.obj.names,

v.exclude.names,

nomatch = 0) == 0

b.exclude <- !b.include

if(all(b.exclude))

stop("All items excluded.")

if(any(b.include))

obj[b.include]

}

}

ssa.b <- function(v, i, v.rep) {

`[<-`(v, i, v.rep)

}

ssa.bb <- function(v, i, v.rep) {

`[[<-`(v, i, v.rep)

}

## attributes

attr.exa <- function(obj) {

attributes(obj)

}

attr.ex1 <- function(obj, attr.nm) {

attr.exa(obj)[[attr.nm]]

}

attr.set <- function(obj, l.attr) {

do.call(structure, c(obj, l.attr))

}

attr2env <- function(obj, env = parent.frame()) {

l <- attributes(obj)

b.include <- match(names(l), c("dim", "names"), nomatch = 0) == 0

if(any(b.include))

list2env(l[b.include], envir = env)

}

set.list.index <- function(l) {

# create index

l.index <- list(i = seq_along(l))

v.names <- names(l)

if(!is.null(v.names))
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l.index <- c(l.index, list(names = v.names))

# index is now a list of lists of the indexes.

# - this is a linked list and will need to be restructured

# - restructure to be 1 list for each item present in l containing the attributes.

l.index.rstruc <- do.call(Map,

c(list(list),

Map(as.list, l.index)))

# attach the attributes

mapply(function(i, l.attr)

structure(i, index = l.attr),

l, l.index.rstruc,

SIMPLIFY = FALSE,

USE.NAMES = TRUE)

}

## glm

get.glm.dfres <- function(mo) {

summary(mo)[["df"]][2]

}

get.glm.np <- function(mo) {

v.df <- summary(mo)[["df"]]

list(n = sum(v.df[2:3]), p = v.df[3])

}

get.glm.var <- function(mo) {

v <- formula(mo) |> all.vars()

list(dv = v[1], iv = v[-1])

}

# packages

library(compiler)

# options

enableJIT(3)

set.seed(8)

options(list(stringsAsFactors = FALSE,

save.defaults = list(compress = "xz",

compression_level = 9),

contrasts = c(unordered = "contr.treatment",

ordered = "contr.treatment"),

max.print = 40))

# save functions

list.ut <- ut.get.all()

# clear workspace

ut.clear.globalwspc()

# turn off display devices
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ut.clear.dispdev()

# import functions

list2env(list.ut, envir = .GlobalEnv)

# clear environment and show time

ut.clear.disp()

ut.time()

# return functions

list.ut

}

G.2 Model- and simulation-based estimator

The gen.funcs.seqmed function generates the functions for the main programme. Use the com-

mand list2env(gen.funcs.seqmed()) to insert these functions into the present global environment.

The main workhorse of the programme consists of two functions: mo.med and sim.med for

model- and simulation- based estimators respectively. Sensitivity analysis is done using the

sim.med.sa function.

The data needs to be prepared with the following column order: outcome of interest, treatment

indicator, any covariates, second mediator, first mediator. The models for the outcome, second

mediator and first mediator then need to be fitted and the resulting models then need to be

put into a list with the aforementioned order. This list can then be used in the functions for

estimation.

The arguments for each of the function for estimation are as follows:

Using the notation of:

- y for outcomes

- r for treatment indicator

- cv for covariates

- m1 for first mediator

- m2 for second mediator

Before using the functions, the y, m2 and m1 models need to be first fitted with the glm command.

The data used to fit the models must have the following variable order:
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y, r, cv, m2, m1

The fitted models should then be put into a list of models with the following order:

y, m2, m1

The list of models are referred to as l.mo.

The values shown below beside the functions are the default values.

# mo.med

mo.med(l.mo,

s.ci = 0.95,

int.boot = 1e4L,

s.seed = gen.seeds(1),

b.parallel = "auto",

int.cores = "max")

l.mo is the list of fitted models.

int.boot is the number of bootstraps to use for the confidence interval.

s.seed is the starting seed for the simulation.

b.parallel is the switch to enable or disable parallel processing.

- "auto" will check the number of simulations requested and

if it is above 10000, turn on parallel processing.

int.cores is the number of cores to use if parallel processing is turned on.

# sim.med and sim.med.sa

sim.med(l.mo,

s.cof.mth = "mvn",

s.ci = 0.95,

int.sims = 1e4L,

s.seed = gen.seeds(1),

b.parallel = "auto",

int.cores = "max",

b.raw = TRUE)

sim.med.sa(l.mo,

s.cof.mth = "mvn",

s.ci = 0.95,

int.sims = 1e1L,

s.seed = gen.seeds(1),

b.parallel = "auto",

int.cores = "max")

l.mo is the list of fitted models.

s.cof.mth can have the values:

- "mvn" to use the multivariate normal method for simulation.

- "bootstrap" to use the bootstrap method for simulation.

int.sims is the number of simulations.

s.seed is the starting seed for the simulation.
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b.parallel is the switch to enable or disable parallel processing.

- "auto" will check the number of simulations requested and

if it is above 10000, turn on parallel processing.

int.cores is the number of cores to use if parallel processing is turned on.

b.raw allows the raw data of the simulations to be exported.

gen.funcs.seqmed <- function() {

## utilities

ut.box <- function(v.contents, chr.head = "+", chr.sep = "-",

chr.tail = "+", chr.wall = "|", s.align = "l") {

if(class(v.contents) |>

match(c("integer", "numeric", "character"),

nomatch = 0) |>

(any |> Negate())())

stop("Incorrect contents format.")

s.contents.lenmax <- nchar(v.contents) |> max()

s.box.lenmax <- length(c(chr.head, chr.sep, chr.tail)) |> sum()

if(s.contents.lenmax < s.box.lenmax)

s.contents.lenmax <- s.box.lenmax

s.contents.lenpadded <- s.contents.lenmax + 2

s.contents.lenpadded <- (4 - (s.contents.lenpadded %% 4)) + s.contents.lenpadded

s.contents.lenpadded.use <-

switch(s.align,

l = -s.contents.lenpadded,

r = s.contents.lenpadded,

c = s.contents.lenpadded/2)

v.messages <-

switch((s.align == "c") + 1,

sprintf(paste0(chr.wall, " %*s ", chr.wall),

s.contents.lenpadded.use, v.contents),

{

l.contents <-

Map(function(x)

{

s.len <- length(x) %/% 2

Map(function(v) paste0(v, collapse = ""),

list(head(x, s.len), tail(x, -s.len)))

}, strsplit(v.contents, ""))

mapply(function(x)

{

paste0(sprintf(paste0(chr.wall, " %*s"),

s.contents.lenpadded.use, x[[1]]),



APPENDIX G. MODEL- AND SIMULATION-BASED ESTIMATORS 231

sprintf(paste0("%*s ", chr.wall),

-s.contents.lenpadded.use, x[[2]]),

collapse = "")

}, l.contents)

})

v.sep <- paste0(c(chr.head,

rep(chr.sep,

s.contents.lenpadded +

((nchar(c(" ", chr.wall)) * 2) |> sum()) -

(nchar(c(chr.head, chr.tail)) |> sum())),

chr.tail),

collapse = "")

mapply(message, c(v.sep, v.messages, v.sep)) |> invisible()

}

ut.clear.disp <- function() {

if(!is.null(dev.list())) {

invisible(mapply(dev.off, dev.list()))

}

switch(commandArgs()[1],

RStudio = cat("\014"),

system("clear"))

}

ut.clear.dispdev <- function() {

if(!is.null(dev.list()))

ut.silent(mapply(dev.off, dev.list()))

}

ut.clear.globalwspc <- function() {

local(rm(list = ls()), envir = .GlobalEnv)

}

ut.get.all <- function() {

env <- parent.frame(1)

mget(ls(envir = env), envir = env)

}

ut.suppress <- function(...) {

suppressMessages(...) |> suppressWarnings()

}

ut.silent <- function(...) {

sink(nullfile())

try(..., silent = TRUE, outFile = nullfile()) |> ut.suppress()

sink()

}

sup.wm <- function(..., mode = "wm") {

switch(mode,

w = suppressWarnings(...),

m = suppressMessages(...),
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wm = suppressWarnings(suppressMessages(...)))

}

ut.permargs <- function(...) {

l.args <- list(...) |> rev()

Map(function(l, v.ind) l[v.ind],

l.args,

mapply(function(v)

seq_along(v),

l.args,

SIMPLIFY = FALSE) |>

expand.grid()) |>

rev()

}

ut.save.all <- function() {

Map(function(n)

save(list = n,

file = paste0(n, ".RData"),

envir = .GlobalEnv),

grep("^df|^list",

ls(".GlobalEnv"), value = TRUE))

}

ut.time <- function() {

mapply(function(x)

format(Sys.time(), x),

c("Date: %Y%m%d %z", "Time: %H%M%S")) |>

ut.box()

}

ut.pad.dl0 <- function(int, width) {

sprintf(paste0("%0", width, "d"), int)

}

## parallel +---------------------------------------------+

make.cl <- function(int.cores = parallel::detectCores(),

env = environment()) {

parallel::clusterExport(cl <- parallel::makeCluster(int.cores),

ls(envir = env), envir = env)

cl

}

max.cores <- function() {

parallel::detectCores()

}

set.env.name <- function() {

env.parent <- parent.frame(1)

if(!identical(env.parent, .GlobalEnv)) {

func.name <- as.character(sys.call(-1))[1]

if(is(get(func.name, envir = env.parent), "function")) {
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invisible(structure(env.parent,

env.name = func.name))

}

}

}

## random number generation

gen.rand.int <- function(n) {

s.int.max <- .Machine[["integer.max"]]

sample(-s.int.max:s.int.max, n, replace = FALSE)

}

## functional constructs

Compose <- function(...) {

func.list <- list(...)

if(!all(unlist(lappy(func.list, is.function))))

stop("Argument is not a function")

function(...) {

Reduce(function(x, f) f(x), func.list, ...)

}

}

ComposeM <- function(...) {

fs <- list(...)

if(!all(unlist(lappy(fs, is.function))))

stop("Argument is not a function")

fs.tail <- fs[-1]

fs.head <- fs[[1]]

function(...) {

Reduce(function(x, f) f(x), fs.tail, fs.head(...))

}

}

Curry <- function(f, ...) {

.orig <- list(...)

function(...) {

do.call(f, c(.orig, list(...)))

}

}

CurryL <- function(f, ...) {

.curried <- as.list(match.call())[c(-1, -2)]

function(...) {

.args <- as.list(match.call())[-1]

eval(substitute(do.call(f, c(.curried, .args))))

}

}

Filter <- function(f, x, nomatch = NA_integer_) {

`if`(any((ind <- (unlist(lapply(x, f))) > 0)),

x[ind], nomatch)



APPENDIX G. MODEL- AND SIMULATION-BASED ESTIMATORS 234

}

Find <- function(f, x, right = FALSE, nomatch = NULL) {

`if`(any((pos <- Position(f, x, right, nomatch = 0L))),

x[[pos]], nomatch)

}

Map.TT <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = TRUE,

USE.NAMES = TRUE)

}

Map.TF <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = TRUE,

USE.NAMES = FALSE)

}

Map.FT <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = FALSE,

USE.NAMES = TRUE)

}

Map.FF <- function(f, ...) {

mapply(FUN = match.fun(f), ...,

SIMPLIFY = FALSE,

USE.NAMES = FALSE)

}

Map <- Map.FT

Negate.v <- function(...) {

# Negate a vector.

!(...)

}

Position <- function(f, x, right = FALSE,

nomatch = NA_integer_) {

f <- match.fun(f)

ind <- seq_along(x)

if(right) ind <- rev(ind)

`for`(i, ind, if(f(x[[i]])) return(i))

nomatch

}

Swap <- function(f, pos = 2L) {

f <- match.fun(f)

pos.coerce <- as.integer(pos) |> suppressWarnings()

s <- `if`(is.na(pos.coerce),

{

paste0("function(arg1, ...) f(", pos, " = arg1, ...)", collapse = "")

},



APPENDIX G. MODEL- AND SIMULATION-BASED ESTIMATORS 235

{

if(!all.equal(pos, pos.coerce))

stop("pos needs to be either an integer or character string.")

paste0("function(",

paste0("arg", c(pos, seq(pos.coerce - 1)), collapse = ", "),

", ...)", " f(",

paste0("arg", seq(pos), collapse = ", "),

", ...)", collapse = "")

})

structure(parse(text = s,

keep.source = FALSE)[[1]] |>

eval(),

func.name = all.names(sys.call())[-1],

func = substitute(f))

}

## names

nms <- function(v, v.nm) {

# - functional version of assigning names

# - the main use of this is to facilitate piping in results.

# v : object to be renamed

# v.nm : character vector of new names

`names<-`(v, v.nm)

}

cnms <- function(v, v.nm) {

# - functional version of assigning names

# - the main use of this is to facilitate piping in results.

# v : object to be renamed

# v.nm : character vector of new names

`colnames<-`(v, v.nm)

}

rnms <- function(v, v.nm) {

# functional version of assigning row names

# - the main use of this is to facilitate piping in results.

# v : object to be renamed

# v.nm : character vector of new names

`rownames<-`(v, v.nm)

}

nms.sort <- function(obj, ...) {

# sort an object by its name

# obj : object to be sorted

# ... : any arguments to pass to `sort`

v.nm <- names(obj)

`if`(is.null(v.nm), obj,

obj[sort(v.nm, ...)])

}
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cnms.sort <- function(obj, ...) {

# sort an object by its col names

# obj : object to be sorted

# ... : any arguments to pass to `sort`

v.nm <- colnames(obj)

`if`(is.null(v.nm), obj,

obj[,sort(v.nm, ...)])

}

rnms.sort <- function(obj, ...) {

# sort an object by its row names

# obj : object to be sorted

# ... : any arguments to pass to `sort`

v.nm <- rownames(obj)

`if`(is.null(v.nm), obj,

obj[sort(v.nm, ...),])

}

## class/type checks

is.0 <- function(v) {

# check if object is `0`

# to return true:

# 1. the object must not be null

# 2. have length of 0

!is.null(v) & (length(v) == 0)

}

is.v <- function(obj, v.class, simplify = any) {

# multivariate version of is

# obj:

# object to be tested for its class

# v.class:

# character vector of classes

# simplify:

# what function to apply to simplify the result.

# default is `any`

f <- match.fun(simplify)

f(unlist(mapply(function(s.class)

is(obj, s.class),

v.class,

SIMPLIFY = FALSE,

USE.NAMES = TRUE)))

}

class.a <- `class<-`

## comparisons

identical.v <- function(v) {

if(length(v) == 1)

return(TRUE)
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bv.na <- is.na(v)

if(all(bv.na)) {

warning("Input contains NA.")

return(TRUE)

}

if(any(bv.na)) {

warning("Input contains NA.")

return(FALSE)

}

all(v[1] == v)

}

all.T <- all

all.F <- function(...) {

all(!(...))

}

any.T <- any

any.F <- function(...) {

any(!(...))

}

ee <- `==`

ne <- `!=`

gt <- `>`

lt <- `<`

gte <- `>=`

lte <- `<=`

## flow control

if.t <- function(b.test, v.true, v.false) {

# `if` that switches to binary or ternary version.

# - if `v.false` is missing, switches to binary version.

# - ternary version if like ifelse but accepts only singular boolean.

# notes:

# - the primary intended use of this function is to facilitate the use of if in pipes.

# - together with the `Swap` function, allows flexible piping of arguments.

if(missing(v.false)) {

if(b.test) {

v.true

}

} else {

if(b.test) {

v.true

} else {

v.false

}
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}

}

sw.b <- function(...) {

b <- c(...)

s.len <- length(b)

if(any(!is.logical(b), (s.len == 0), (sum(b) > 1)))

stop("Error")

switch(which(c((s.len == 1),

(s.len > 1))),

ifelse(b, 1, 2),

which(b))

}

## subsetting

ss.b <- function(v, i) {

`[`(v, i)

}

ss.bb <- function(v, i) {

`[[`(v, i)

}

ss.e.nm <- function(obj, v.exclude.names) {

# subset, excluding by names

v.obj.names <- names(obj)

if(is.null(v.obj.names)) {

stop("Input object has no names.")

} else {

b.include <- match(v.obj.names,

v.exclude.names,

nomatch = 0) == 0

b.exclude <- !b.include

if(all(b.exclude))

stop("All items excluded.")

if(any(b.include))

obj[b.include]

}

}

ssa.b <- function(v, i, v.rep) {

`[<-`(v, i, v.rep)

}

ssa.bb <- function(v, i, v.rep) {

`[[<-`(v, i, v.rep)

}

## attributes

attr.exa <- function(obj) {

attributes(obj)

}
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attr.ex1 <- function(obj, attr.nm) {

attr.exa(obj)[[attr.nm]]

}

attr.set <- function(obj, l.attr) {

do.call(structure, c(obj, l.attr))

}

attr2env <- function(obj, env = parent.frame()) {

l <- attributes(obj)

b.include <- match(names(l), c("dim", "names"), nomatch = 0) == 0

if(any(b.include))

list2env(l[b.include], envir = env)

}

set.list.index <- function(l) {

# create index

l.index <- list(i = seq_along(l))

v.names <- names(l)

if(!is.null(v.names))

l.index <- c(l.index, list(names = v.names))

# index is now a list of lists of the indexes.

# - this is a linked list and will need to be restructured

# - restructure to be 1 list for each item present in l containing the attributes.

l.index.rstruc <- do.call(Map,

c(list(list),

Map(as.list, l.index)))

# attach the attributes

mapply(function(i, l.attr)

structure(i, index = l.attr),

l, l.index.rstruc,

SIMPLIFY = FALSE,

USE.NAMES = TRUE)

}

## glm

get.glm.dfres <- function(mo) {

summary(mo)[["df"]][2]

}

get.glm.np <- function(mo) {

v.df <- summary(mo)[["df"]]

list(n = sum(v.df[2:3]), p = v.df[3])

}

get.glm.var <- function(mo) {

v <- formula(mo) |> all.vars()

list(dv = v[1], iv = v[-1])

}
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# helper +----------------------------------------------------------+

## environment and variables management +-----------------+

rm.attr <- function(o) {

attributes(o) <- attributes(o)[c("dim", "dimnames")]

o

}

add.attr <- function(o, l) {

`attributes<-`(o, c(l, attributes(o)))

}

add.nm <- function(v, v.nm) {

if.t(any(!is.vector(v),

!is.character(v.nm),

!identical(length(v), length(v.nm))),

stop("Error"),

nms(v, v.nm))

}

add.cnm <- function(d, v.nm) {

if(any(!any(class(d) %in% c("matrix", "data.frame")), !is.character(v.nm)))

stop("Error")

if(!identical(ncol(d), length(v.nm)))

stop("Error")

cnms(d, v.nm)

}

add.rnm <- function(d, v.nm) {

if(any(!any(class(d) %in% c("matrix", "data.frame")), !is.character(v.nm)))

stop("Error")

if(!identical(nrow(d), length(v.nm)))

stop("Error")

rnms(d, v.nm)

}

list.var <- function(l) {

if.t(class(l) != "list",

as.list(l), l) |>

list2env(envir = parent.frame(1)) |>

ut.silent()

}

class.check <- function(obj, v.valid.classes, invert = FALSE) {

v.checks <- match(obj, v.valid.classes, nomatch = 0)

if(invert) {

all(v.checks == 0)

} else {

any(v.checks > 0)

}

}
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setup.env <- function(list.models,

int.iter,

b.parallel = "auto",

int.cores = "max",

canonical = FALSE)

{

# hardcoded values

int.parallel.threshold <- 1e4L

# function to setup consistent environment across functions

# argumemts:

# list.models : list of fitted models

# each fitted model must have as its first term the treatment variable.

# get all the terms used in all the models

l.nm.av <- Map(function(mo) formula(mo) |> all.vars(), list.models)

# get dependent variables

v.nm.dv <- Map(ss.b, l.nm.av, 1) |> unlist()

# extract degrees of freedom

m.df <- do.call(rbind, Map(ss.bb, Map(summary, list.models), "df"))

# get the number of coefficients

# - order them from most tp least number

# - this order should correspond to:

# + y model

# + m2 model

# + m1 model

p <- m.df[,3] |> nms(v.nm.dv) |> sort(decreasing = TRUE)

# get the sample size from degrees of freedom and

# check that the sample size is the same across models.

v.n <- (m.df[,2] + m.df[,3]) |> unique()

n <- if.t(length(v.n) > 1,

stop("Unequal sample sizes across models."),

v.n)

# get the residual degrees of freedom

df.res <- (m.df[,2] |> nms(v.nm.dv))[names(p)]

l.np <- list(n = n, p = p, df.res = df.res)

# name the models and arrange them in descending order of number of coefficients

list.models <- nms(list.models, v.nm.dv)[names(p)]



APPENDIX G. MODEL- AND SIMULATION-BASED ESTIMATORS 242

# dataset

d <- model.frame(list.models[[1]])

# replace dv with the names of p as the right order of dv

v.nm.dv <- names(p)

v.nm.m <- v.nm.dv[-1]

# extract iv and identify common terms

l.nm.iv <- Map(ss.b, l.nm.av, -1)

v.nm.common <- Reduce(intersect, l.nm.iv)

# extract treatment variable

## the first term should be the treatment variable.

v.nm.r <- Map(ss.b, l.nm.iv, 1) |> unlist()

## making sure that the first term of each model is the same.

if(!identical.v(v.nm.r))

stop("Error with treatment variable in models.")

s.nm.r <- v.nm.r[1] |> unname()

## get unique values of treatment

v.r <- d[[s.nm.r]] |>

unique() |>

sort(decreasing = TRUE)

# get covariates

b.cv <- match(v.nm.common, s.nm.r, nomatch = 0) == 0

v.nm.cv <- if.t(any(b.cv), v.nm.common[b.cv], NA)

if(canonical) {

# giving canonical names to dv, r, iv

names(v.nm.dv) <- c("y", sprintf("m%02d", seq_along(v.nm.dv[-1])))

names(s.nm.r) <- "r"

names(v.nm.cv) <- sprintf("cv%02d", seq_along(v.nm.cv))

} else {

names(v.nm.dv) <- v.nm.dv

names(s.nm.r) <- s.nm.r

names(v.nm.cv) <- v.nm.cv

}

# setup new iv and allv names

v.nm.iv <- c(s.nm.r, v.nm.cv)

v.nm.av <- c(v.nm.dv, v.nm.iv)

# identify family of each model

v.fam <- Map(ss.bb,

Map(family, list.models),
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"family") |>

unlist() |>

Swap(gsub, 3)("^(.).*", "\\1")

s.fam <- paste0(v.fam, collapse = "")

## use abbreviations to identify models:

## g for gaussian

## b for binary

l.fam <- local({

v.abv <- c("g", "b")

Map(function(x)

structure(v.abv == x,

names = v.abv),

v.fam)})

# number of mediators and models

n.mo <- length(list.models)

n.med <- n.mo - 1

# process parallel parameters

if(!is.logical(b.parallel)) {

if(!(b.parallel == "auto"))

stop("Invalid parallel option")

b.parallel <- int.iter >= int.parallel.threshold

}

int.cores <-

if.t(b.parallel,

if.t(int.cores == "max",

parallel::detectCores(),

{

cores <- as.integer(int.cores)

if.t(is.na(cores),

{

warning("Invalid cores option, setting it to maximum number of cores.")

parallel::detectCores()

}, cores)

}), 1L)

# gather results

l.base <- list(list.models,

d = d,

n.mo = n.mo,

n.med = n.med,

s.n = n,

p = p,

df.res = df.res,

s.fam = s.fam,



APPENDIX G. MODEL- AND SIMULATION-BASED ESTIMATORS 244

l.fam = l.fam,

v.nm.dv = v.nm.dv,

v.nm.m = v.nm.m,

v.nm.iv = v.nm.iv,

s.nm.r = s.nm.r,

v.r = v.r,

v.nm.cv = v.nm.cv,

v.nm.av = v.nm.av,

l.nm.av = l.nm.av,

int.iter = int.iter,

b.parallel = b.parallel,

int.cores = int.cores)

l.base[[1]] <- do.call(structure, l.base)

names(l.base)[1] <- "l.mo"

list2env(c(list(l.base = l.base), l.base),

envir = parent.frame(1)) |>

ut.silent()

}

## objects manipulation +---------------------------------+

mat.dupe <- function(m, fill = NA) {

m[] <- fill

class(m) <- class(fill)

m

}

mat.mirr <- function(m, s.orient) {

m <- cbind(m)

v.dim <- dim(m)

cbind(switch(s.orient,

lr = m[,v.dim[2]:1],

ud = m[v.dim[1]:1,]))

}

mat.t.list <- function(m, by, ret) {

if(!any(by %in% c(1, 2))) stop("Error")

l <- unlist(apply(m, by, list), recursive = FALSE)

switch(ret, v = l, m = Map(rbind, l))

}

vec.t.list <- function(v, v.len) {

if(length(v) != sum(v.len)) stop("Error")

env <- environment()

Map(function(s)

{

v.ind <- seq(s)

v.ret <- v[v.ind]
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assign("v", v[-v.ind], envir = env)

v.ret

}, v.len)

}

vec.t.matc <- function(v) {

v |> as.matrix()

}

vec.t.matr <- function(v) {

v |> as.matrix() |> t()

}

combi <- function(vm1, vm2) {

m1 <- cbind(vm1)

m2 <- cbind(vm2)

n.m1 <- nrow(m1)

n.m2 <- nrow(m2)

m <- cbind(m1[sort(rep(1:n.m1, n.m2)),],

m2[rep(1:n.m2, n.m1),])

m[order(apply(m, 1, paste, collapse = "")),]

}

combi.bin <- function(v.nm, s.ret) {

l.bin.resp <- rep(list(0:1), length(v.nm))

m.combi <- add.cnm(cbind(Reduce(combi, l.bin.resp)), v.nm)

l.combi <- mat.t.list(m.combi, 1, s.ret)

}

str.half <- function(v, s.type = "v", b.clp = TRUE) {

s.len <- length(v)

if((s.len %% 2) != 0) stop("Error")

s.lenh <- s.len/2

l <- Map(function(v.ind) v[v.ind], list(1:s.lenh, (s.lenh + 1):s.len))

if(b.clp) {

l <- Map(paste0, l, collapse = "")

}

if(s.type == "v") {

l <- do.call(c, l)

}

l

}

str.pad0 <- function(v, s.len = max(nchar(v))) {

sprintf(paste0("%0", s.len, "d"), v)

}

mo.upd <- function(mo, fml) {

update(mo,

formula = fml,

family = family(mo),

data = model.frame(mo))
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}

## comparisons and flow control +-------------------------+

pblapply.sw <- function(b.parallel, int.cores, env, ...) {

f <- pbapply::pblapply

args <- list(...)

if(b.parallel) {

cl <- make.cl(int.cores = int.cores, env = environment())

args <- c(args, list(cl = cl))

}

obj <- do.call(f, args)

if(b.parallel) parallel::stopCluster(cl)

obj

}

pbMap <- local({

f <- pbapply::pbmapply

formals(f)[["SIMPLIFY"]] <- FALSE

f

})

# set up environment +----------------------------------------------+

## glm families +-----------------------------------------+

get.fam.raw <- function(mo) {

with(family(mo), c(family, link))

}

get.fam.bool <- function(mo) {

b <- get.fam.raw(mo)[1] == "gaussian"

structure(c(b, !b), .Names = c("g", "b"))

}

get.fam.l <- function(l.mo) {

attr2env(l.mo)

add.nm(Map(get.fam.bool, l.mo), v.nm.dv)

}

get.fam.v <- function(l.mo) {

b <- unlist(unname(get.fam.l(l.mo)))

paste0(names(b)[b], collapse = "")

}

get.mo.dep <- function(l.mo) {

attr2env(l.mo)

l.dep <- Map(function(v.nm, v.var)

{

v <- intersect(v.nm.dv, v.var[-(1:2)])

if(is.0(v)) {

NULL

} else {

v

}
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}, v.nm.dv, l.nm.av)

l.dep.n <- mapply(function(v) length(v), l.dep)

list(dep = l.dep, n = l.dep.n, n.sorted = sort(l.dep.n))

}

set.exv <- function(v.nm.dv, v.ev, l.fam) {

mapply(function(s.nm, s.ev, vb.fam)

{

b <- if(s.ev == "auto") {

if(s.nm == "y") {

TRUE

} else {

vb.fam[2]

}

} else {

s.ev

}

structure(b, .Names = "")

}, v.nm.dv, v.ev, l.fam)

}

## get n (sample size) & p (variables) +------------------+

get.np <- function(l.mo, s.type) {

m.np <- mapply(function(mo) dim(model.matrix(mo)), l.mo)

if(!identical.v(m.np[1,]))

stop("Error: Unequal sample sizes across models.")

switch(s.type,

n = m.np[1,1],

np =

{

v.nm <- mapply(function(mo)

as.character(formula(mo))[2], l.mo)

switch(s.type,

p = structure(m.np[2,], .Names = v.nm),

np = list(n = m.np[1,1],

p = structure(m.np[2,], .Names = v.nm)))

})

}

## confidence intervals +---------------------------------+

gen.ci <- function(s.ci) {

if(any(!is.numeric(s.ci),

length(s.ci) > 1,

s.ci < 0,

s.ci > 1)) stop("Error")

s.lb <- (1 - s.ci)/2

s.ub <- s.ci + s.lb

c(lb = s.lb, ub = s.ub)
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}

ci.perc <- function(v, s.ci) {

quantile(v, probs = gen.ci(s.ci), type = 7)

}

# mathematical +----------------------------------------------------+

dif <- function(...) Reduce(`-`, ...)

div <- function(...) Reduce(`/`, ...)

cumdif <- function(...) Reduce(`-`, ..., accumulate <- TRUE)

cumdiv <- function(...) Reduce(`/`, ..., accumulate <- TRUE)

gmean <- function(v) v |> log() |> mean() |> exp()

logit <- qlogis

expit <- plogis

gen.seeds <- function(int.sims, s.seed = NULL) {

# generate seeds

s.int.max <- .Machine[["integer.max"]]

set.seed(s.seed)

sample((-s.int.max):s.int.max, int.sims,

replace = FALSE)

}

# model fitting and parmeters extraction +--------------------------+

chr.ap.nm <- function(s.nm, v) {

paste0(s.nm, "~", v)

}

chr.clp <- function(v, type = "") {

# string utility: collapse

paste0(v, collapse = type)

}

chr.pad <- function(v, s.chr = " ") {

# string utility: pad

v.nchar <- nchar(v)

v.padwd <- max(v.nchar) - v.nchar

mapply(function(s, s.wd) paste0(c(s, rep(s.chr, s.wd)), collapse = "") , v, v.padwd)

}

chr.rp.i <- function(v) {

# Replace "(Intercept)" with 1

gsub("^\\(Intercept\\)$", "1", v)

}

chr.sur <- function(s, s.chr = "\"") {

# string utility: surround

chr.clp(c(s.chr, s, s.chr))

}

ind <- function(v.char) {

v.uniq <- unique(v.char)
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structure(1:length(v.uniq), .Names = v.uniq)

}

m.flat <- function(m, na.rm = FALSE) {

v <- dim(m)

v.r <- rep(1:v[1], v[2])

v.c <- sort(rep(1:v[2], v[1]))

m.mask <- cbind(v.r, v.c)

v.nm.r <- rownames(m)

v.nm.c <- colnames(m)

if(!is.null(v.nm.r)) v.r <- v.nm.r[v.r]

if(!is.null(v.nm.c)) v.c <- v.nm.c[v.c]

d <- data.frame(row = v.r, col = v.c, val = m[m.mask])

if(na.rm) {

d <- na.omit(d)

}

d[with(d, order(col, row)),]

}

m.rcon <- function(d) {

v.nm.r <- ind(d[,"row"])

v.nm.c <- ind(d[,"col"])

m <- matrix(0,

nrow = length(v.nm.r),

ncol = length(v.nm.c),

dimnames = list(names(v.nm.r),

names(v.nm.c)))

m.mask <- cbind(row = v.nm.r[d[,"row"]], col = v.nm.c[d[,"col"]])

m[m.mask] <- d[,"val"]

b.nm.r.int <- !suppressWarnings(any(is.na(as.integer(names(v.nm.r)))))

b.nm.c.int <- !suppressWarnings(any(is.na(as.integer(names(v.nm.c)))))

if(b.nm.r.int) {

rownames(m) <- NULL

} else {

m <- m[sort(rownames(m)),]

}

if(b.nm.c.int) {

colnames(m) <- NULL

} else {

m <- m[,sort(colnames(m))]

}

m
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}

m.symm <- function(m) {

m[upper.tri(m)] <- t(m)[upper.tri(m)]

m

}

rm.null.1 <- function(i) {

i[!mapply(function(l1) is.null(l1), i)]

}

rm.null <- function(l) {

# list utility: remove null elements

Map(function(l1)

{

if(is.list(l1)) {

rm.null.1(l1)

} else {

l1

}

}, rm.null.1(l))

}

catf <- function(v, lineend, file) {

writeBin(paste0(c(v, ""), collapse = lineend) |>

charToRaw(), file)

}

## extract parameters +-----------------------------------+

mp.ext.t0.cf <- function(mp.out, var.est = "mplus") {

mp.varindex <- attributes(mp.out)[["varindex"]]

l.mo <- mp.out[["models"]]

attr2env(l.mo)

v.nm.u <- mp.out[["raw"]][["nm.u"]]

v.nm.n <- mp.out[["raw"]][["nm.n"]]

v.nm.o <- c(names(v.nm.n), v.nm.u, 1)

names(v.nm.o) <- toupper(c(v.nm.n, v.nm.u, 1))

d <- within(mp.out[["est"]][["parameters"]][["unstandardized"]],

est[paramHeader == "Thresholds"] <-

est[paramHeader == "Thresholds"] * (-1))

v.parmheaders <-

c("Means",

"Intercepts",

"Thresholds",

"Variances",

"Residual\\.Variances")

v.swap.reg <- paste0(c("\\.BY$",

paste0("^",

c("", v.parmheaders),

"$")),
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collapse = "|")

v.headers <-

mapply(function(d.i)

{

d.new <- d.i

if(grepl(v.swap.reg,

d.i[,"paramHeader"])) {

d.new[,"paramHeader"] <- d.i[,"param"]

d.new[,"param"] <- d.i[,"paramHeader"]

}

d.new <- within(d.new,

{

paramHeader <- gsub("\\$1$", "", paramHeader)

paramHeader <- gsub("\\.ON$", "", paramHeader)

paramHeader <- gsub("\\.WITH$", "", paramHeader)

param <- gsub("\\.BY$", "", param)

param <- gsub("^Means$|^Intercepts$|^Thresholds$", "1", param)

b.var <- grepl("Variances$", param)

param[b.var] <- paramHeader[b.var]

paramHeader <- v.nm.o[paramHeader]

param <- v.nm.o[param]

rm(b.var)

})

paste0(d.new, collapse = "~")

}, split(d[,c("paramHeader", "param")], 1:nrow(d)))

d <- data.frame(param = v.headers,

d[,c("est", "se", "est_se", "pval")])

d <- d[!grepl("^u\\d+?~|~u\\d+?$",

v.headers),]

v.headers <- d[,"param"]

b.var <- mapply(function(v) v[1] == v[2],

strsplit(v.headers, "~"))

l.coefvar <- mp.ext.sav(mp.out)

v.coef <- l.coefvar[["coef"]][,"est"]

v.res.var <- NULL

v.rss <- NULL

if(any(b.var)) {

n <- with(mp.out[["raw"]][["np"]], n)

p <- with(mp.out[["raw"]][["np"]], p)

v.df.res <- n - p

switch(var.est,

mplus =

{

v.rss <- local({
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v <- d[b.var, "est"]

v.nm <- mapply(function(v) v[1], strsplit(v.headers[b.var], "~"))

names(v) <- v.nm

v[v.nm.dv] * n

})

v.res.var <- v.rss/v.df.res

},

manual =

{

l.coef <- local({

l <- do.call(rbind, names(v.coef) |>

strsplit("~")) |>

data.frame(v.coef) |>

cnms(c("dv", "iv", "coef")) |>

with({

iv[iv == "1"] <- "(Intercept)"

split(data.frame(iv, coef), dv)

})

l <- Map(function(d) with(d, structure(coef, .Names = iv)), l)

l[v.nm.dv]

})

l.fitted <- Map(function(v.coef, mo)

{

m <- model.matrix(mo)

v <- v.coef[colnames(m)]

v.fitted <- tcrossprod(v, m) |> as.vector()

}, l.coef, l.mo)

l.obs <- Map(function(v.dv, mo) model.frame(mo)[,v.dv],

v.nm.dv, l.mo)

v.rss <- Map(function(v.obs, v.fitted)

{

v <- v.obs - v.fitted

crossprod(v) |> as.vector()

}, l.obs, l.fitted) |> unlist()

v.res.var <- v.rss/v.df.res

})

list(coef = v.coef,

res.var = v.res.var,

rss = v.rss, np = mp.out[["raw"]][["np"]])

}

}

mp.ext.t1.vi <- function(mp.out) {

# extract names

v.nm.n <- mp.out[["raw"]][["nm.n"]]
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v.nm.o <- names(v.nm.n)

names(v.nm.o) <- v.nm.n

names(v.nm.o) <- toupper(names(v.nm.o))

# extract variable index

mp.vind <- do.call(rbind,

Map(m.flat,

mp.out[["est"]][["tech1"]][["parameterSpecification"]],

na.rm = TRUE))

# remove those that are non-existent

mp.vind <- mp.vind[mp.vind[,"val"] > 0,]

# replace the dollar signs used for threshold in dependent binary variables

mp.vind[,"col"] <- gsub("\\$1$", "", mp.vind[,"col"])

# replace new names with original ones

mp.vind <- data.frame(mapply(function(v)

{

v[v != "1"] <- v.nm.o[v[v != "1"]]

v

}, mp.vind[,c("row", "col")]),

mp.vind["val"])

# output extracted indexes with their respective names

sort(mapply(function(s.r, s.c, s.v)

{

v <- c(s.r, s.c)

if(s.r == 1) {

v <- rev(v)

}

names(s.v) <- paste0(v, collapse = "~")

s.v

}, mp.vind[,"row"], mp.vind[,"col"], mp.vind[,"val"],

USE.NAMES = FALSE))

}

mp.ext.t3.vc <- function(mp.out) {

mp.varindex <- attributes(mp.out)[["varindex"]]

mp.t3.vc <- m.symm(mp.out[["est"]][["tech3"]][["paramCov"]])

v.nm <- names(mp.varindex)

v.var.ind <- which(mapply(function(i)

{

v <- unlist(strsplit(i, "~"))

v[1] == v[2]

}, v.nm))

rownames(mp.t3.vc) <- colnames(mp.t3.vc) <- v.nm

# m.est.vcov[abs(m.est.vcov) < .machine[["double.eps"]]] <- 0

if(length(v.var.ind) > 0) {

mp.t3.vc <- mp.t3.vc[-v.var.ind, -v.var.ind]

}
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list(vcov = mp.t3.vc[sort(rownames(mp.t3.vc)), sort(colnames(mp.t3.vc))])

}

mp.ext.sav <- function(mp.out) {

mp.varindex <- attributes(mp.out)[["varindex"]]

v.sav <- local({

v <- mp.out[["raw"]][["s"]] |>

paste0(collapse = " ") |>

strsplit("\\s+") |>

unlist()

grep("^$", v, invert = TRUE,

value = TRUE) |>

as.numeric()

})

mp.ind <- names(mp.varindex)

mp.sav <- local({

mp.ind.len <- length(mp.ind)

l.ind <- list(est = 1:mp.ind.len,

se = (mp.ind.len + 1):(mp.ind.len * 2))

l <- Map(function(v) structure(v.sav[v], .Names = mp.ind), l.ind)

do.call(cbind, Map(function(v) v[names(v) |> sort()], l))

})

b.coef <- do.call(rbind, strsplit(rownames(mp.sav), "~")) |>

apply(1, function(x) Reduce(`!=`, x))

list(coef = mp.sav[b.coef,], var = mp.sav[!b.coef,])

}

get.mo.par.ce <- function(l.args) {

list.var(l.args)

get.glm.par(l.mo, v.nm.dv)

}

get.mo.par.sa <- function(l.args) {

list.var(l.args)

get.mp.par(fit.mp(l.mo, m.b, v.nm.dv, v.nm.iv, int.cores))

}

get.glm.par <- function(l.mo, v.nm.dv) {

# extract coefficients +----------------------------------+

v.coef <- do.call(c,

unname(Map(function(s.nm.mo, mo)

{

v.coef <- coef(mo)

names(v.coef) <- chr.ap.nm(s.nm.mo, chr.rp.i(names(v.coef)))

v.coef
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}, v.nm.dv, l.mo)))

v.coef <- v.coef[sort(names(v.coef))]

# extract residual variance (n - 1) +---------------------+

v.res.var <- mapply(function(s.nm.mo, mo)

{

v.var <- NULL

if(all(get.fam.raw(mo) == c("gaussian", "identity"))) {

v.var <- var(residuals(mo))

}

v.var

}, v.nm.dv, l.mo)

# extract residual sum of squares +-----------------------+

v.rss <- structure(mapply(function(mo) crossprod(residuals(mo)), l.mo),

.Names = v.nm.dv)

# extract np +--------------------------------------------+

l.np <- get.np(l.mo, "np")

# Extract vcov +------------------------------------------+

m.vcov <- m.rcon(do.call(rbind,

Map(function(s.nm.mo, mo)

{

m.vcov <- vcov(mo)

dimnames(m.vcov) <- Map(function(v.nm) chr.ap.nm(s.nm.mo, chr.rp.i(v.nm)),

dimnames(m.vcov))

m.flat(m.vcov)

}, v.nm.dv, l.mo)))

list(coef = v.coef, res.var = v.res.var,

rss = v.rss, np = l.np, vcov = m.vcov)

}

get.mp.par <- function(mp.out) {

v.nm.n <- mp.out[["raw"]][["nm.n"]]

mp.out <- add.attr(mp.out, list(varindex = mp.ext.t1.vi(mp.out)))

mp.t0.coef <- mp.ext.t0.cf(mp.out)

mp.t3.vcov <- mp.ext.t3.vc(mp.out)

s.nrow.vc <- nrow(mp.t3.vcov[["vcov"]])

if(s.nrow.vc != ncol(mp.t3.vcov[["vcov"]])) stop("Error")

if(s.nrow.vc != length(mp.t0.coef[["coef"]])) stop("Error")

c(mp.t0.coef, mp.t3.vcov)

}

get.mo.par <- function(l.mo, s.mode, v.nm.dv, v.nm.iv, m.b, int.cores) {

l.args <- list(l.mo = l.mo,

v.nm.dv = v.nm.dv,

v.nm.iv = v.nm.iv,

m.b = m.b, int.cores = int.cores)
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switch(s.mode,

ce = get.mo.par.ce,

sa = get.mo.par.sa)(l.args)

}

gen.mo.par <- function(l.mo, v.nm.dv, v.nm.iv, b.exv) {

l.call <- list(nm = list(dv = v.nm.dv, iv = v.nm.iv), ev = b.exv)

add.attr(Map(function(mo, b.ev)

{

m <- model.matrix(mo)

v.coef <- coefficients(mo)

v.cnm <- c(1, names(v.coef)[-1])

m.coef <- matrix(v.coef, nrow = 1, dimnames = list(NULL, v.cnm))

colnames(m) <- v.cnm

list(coef = m.coef, data = m, ev = b.ev, fam = family(mo))

}, l.mo, b.exv),

l.call)

}

gen.coef <- function(l.mo.par, s.meth, s.mode, v.nm.dv, v.nm.iv, m.b, int.cores) {

m.coef <- switch(s.meth,

mvn = {

require(mvtnorm)

with(l.mo.par, rmvnorm(1, mean = coef, sigma = vcov))

},

boot = {

l.mo.boot <- upd.mo.boot1(l.mo)

switch(s.mode,

ce = get.glm.par(Map(function(mo)

update(mo,

data = model.frame(mo)),

l.mo.boot),

v.nm.dv),

#v.nm.dv[1], v.nm.dv[-1]),

sa = get.mp.par(fit.mp(l.mo.boot,

m.b,

v.nm.dv,

v.nm.iv,

int.cores)))[["coef"]] |>

as.matrix() |> t()

})

v.nm.coef <- colnames(m.coef)

Map(function(s.nm)

{

m.coef[,grep(paste0("^", s.nm),

v.nm.coef, value = TRUE)] |>

as.matrix() |>
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t() |>

cbind(err = 1)

}, v.nm.dv)

}

gen.err.1 <- function(mo, s.nm, s.mode, l.mo.par, b.ev) {

v.err <- rep(0, l.mo.par[["np"]][["n"]])

if(!b.ev) {

s.err.type <- switch(sw.b(get.fam.bool(mo)),

switch(s.mode,

ce = 1,

sa = 2), 3)

v.err <- with(l.mo.par,

switch(s.err.type,

rnorm(with(np, n),

mean = 0,

sd = sqrt(rss[s.nm]/with(np, n - p[s.nm]))),

rnorm(with(np, n),

mean = 0,

sd = sqrt(rss[s.nm]/with(np, n - p[s.nm]))),

rlogis(with(np, n), location = 0, scale = 1)))

}

matrix(v.err, ncol = 1, dimnames = list(NULL, "err"))

}

gen.err <- function(l.mo,

v.nm.dv,

s.mode,

l.mo.par,

b.ev) {

Map(function(mo, s.nm, b.ev.i)

gen.err.1(mo,

s.nm,

s.mode,

l.mo.par,

b.ev.i),

l.mo,

v.nm.dv,

b.ev)

}

gen.sim.par <- function(s.seed,

l.mo,

l.mo.par,

b.ev,

m.b,

s.meth,

s.mode,
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int.cores) {

attr2env(l.mo)

l.call <- list(nm = list(dv = v.nm.dv, iv = v.nm.iv),

ev = b.ev,

beta.constr = m.b,

coef.meth = s.meth,

mode = s.mode,

seed = s.seed)

set.seed(s.seed)

# Random draw of path estimates

l.coef <- gen.coef(l.mo.par, s.meth, s.mode, v.nm.dv, v.nm.iv, m.b, int.cores)

# Random draw of error terms

l.err <- gen.err(l.mo, v.nm.dv, s.mode, l.mo.par, b.ev)

l.data <- Map(function(mo) model.matrix(mo), l.mo)

l.fam <- Map(family, l.mo)

add.attr(Map(function(m.coef, m.data, m.err, fam, b.exp)

{

colnames(m.coef) <- gsub("^.*~", "", colnames(m.coef))

colnames(m.data)[1] <- 1

m.data <- cbind(m.data, m.err)[,colnames(m.coef)]

list(fam = fam, ev = b.exp, coef = m.coef, data = m.data)

}, l.coef, l.data, l.err, l.fam, b.ev), l.call)

}

## fitting: mplus +---------------------------------------+

gen.u.vmn <- function(m) {

# mplus modelling: generate latent u mean statements

v <- apply(combi(colnames(m), c("@0]", "@1")), 1,

function(x) paste0(x, collapse = "", sep = ""))

gsub("^(.*@0])$", "[\\1", v)

}

gen.u.by <- function(m.u, m.b) {

# mplus modelling: generate latent u by statements

paste(colnames(m.u), "BY",

apply(structure(paste0(m.u, "@", m.b),

.Dim = dim(m.u)), 2,

function(v) paste0(v, collapse = " ", sep = "")),

sep = " ")

}

gen.u.with <- function(v.nm.u) {

# mplus modelling: generate latent u with statements

apply(gen.u.cmbn(v.nm.u), 2,

function(x) paste0(paste(x, collapse = " WITH "), "@0"))

}

gen.mp.warn <- function(mp.output) {
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# mplus modelling: parse warnings from mplus

s.ln.warn <- grepl("^\\s+WARNING: |(AVOID SINGULARITY)", mp.output)

list(b.warn = any(s.ln.warn), n.warn = sum(s.ln.warn))

}

gen.mplus.run <- function(fn) {

c("@ECHO OFF",

"SET DIR=%~dp1",

"SET FNM=%~nx1",

"FOR /F \"USEBACKQ tokens=*\" %%F IN (`where mplus`) DO (SET MPLUS=%%F)",

"PUSHD \"%DIR%\"",

"\"%MPLUS%\" \"%FNM%\"",

"POPD",

"SET MPLUS=",

"SET DIR=",

"SET FNM=",

"GOTO :EOF") |>

catf("\r\n", file = fn)

}

mp.nm <- function(v.nm.dv, v.nm.iv) {

# mplus modelling: generate mplus variable names

v.nm.o <- c(v.nm.dv[1], v.nm.iv, v.nm.dv[-1])

v.nm.n.iv <- if.t(length(v.nm.iv) == 1, "r",

c("r", paste0("cv", sprintf("%02d", seq_along(v.nm.iv[-1])))))

v.nm.n.m <- paste0("m", sprintf("%02d", rev(seq_along(v.nm.dv[-1]))))

v.nm.n <- c("y", v.nm.n.iv, v.nm.n.m)

nms(v.nm.n, v.nm.o)

}

mp.d <- function(l.mo, v.mp.nm, s.fn) {

# mplus modelling: generate mplus data

# l.mo : fitted models

# v.mp.nm: mplus converted names

# s.fn : data output filename

d <- model.frame(l.mo[[1]])[names(v.mp.nm)]

con.f <- file(s.fn, open = "wb")

write.table(d, file = con.f,

sep = ",", na = ".", dec = ".",

quote = FALSE, row.names = FALSE, col.names = FALSE,

fileEncoding = "utf8", eol = "\n")

close(con.f)

list(d = readLines(s.fn))

}

mp.i.l2v <- function(mp.inp) {

mp.inp <- rm.null(mp.inp)

v.inp <- Map(function(i.nm, i)

{
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m <- switch(is.list(i) + 1,

matrix(i, ncol = 1),

matrix(c(names(i),

rep("=", length(i)),

unlist(i)),

ncol = 3))

if(ncol(m) > 1)

m[,1] <- chr.pad(m[,1])

c(paste0(i.nm, ":", collpase = ""),

apply(m, 1, function(n) chr.clp(c(rep(" ", 4), chr.clp(n, " "), ";"))),

"")

}, names(mp.inp), mp.inp) |> unlist() |> unname()

if(tail(v.inp, 1) == "")

v.inp <- v.inp[-length(v.inp)]

v.inp

}

mp.an.mo.lu <- function(m.b, v.nm.dv.n) {

m.u.cmb <- gen.u.cmbn(v.nm.dv.n)

n.u.cmb <- ncol(m.u.cmb)

if(!all(dim(m.u.cmb) == dim(m.b))) stop("Error")

v <- c(gen.u.vmn(m.u.cmb),

gen.u.by(m.u.cmb, m.b))

if(n.u.cmb > 1) v <- c(v, gen.u.with(colnames(m.u.cmb)))

list(v, v.nm.u = colnames(m.u.cmb))

}

mp.an.mo <- function(l.mo, m.b, v.nm.dv.n, v.nm.n) {

# v.nm.n are the new names used in mplus.

# +------------------------------------------------------+ #

# Recreate regressions statements.

# In mplus, these are ON statements.

# Go through each of the models and recreate the statements.

v.model.on <-

Map(function(mo)

{

# model formula for a single model.

# Extract formula and get corresponding new names

# first element is the dependent variable

# second element contai

v.nm.n <- v.nm.n[formula(mo) |> all.vars()]

# Create statement

paste0(c(v.nm.n[1], "ON", v.nm.n[-1]), collapse = " ")

}, l.mo) |> unlist()

# +------------------------------------------------------+ #
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# Create latent u statements

m.u.cmb <- gen.u.cmbn(v.nm.dv.n)

n.u.cmb <- ncol(m.u.cmb)

# Names of latent u variables

v.nm.u = colnames(m.u.cmb)

if(!do.call(all.equal, Map(dim, list(m.u.cmb, m.b))))

stop("Error: Constrain matrix m.b is incorrectly specified.")

# Latent u constrain mean and variances

v.latu.meanvar <- gen.u.vmn(m.u.cmb)

v.latu.by <- gen.u.by(m.u.cmb, m.b)

v.latu <- c(v.latu.meanvar, v.latu.by)

if(n.u.cmb > 1)

v.latu <- c(v.latu, gen.u.with(v.nm.u))

# +------------------------------------------------------+ #

# Force independent variables to be uncorrelated to each other

v.vars.force <- c(setdiff(v.nm.n, v.nm.dv.n), v.nm.u)

l.combn.force <- combn(v.vars.force, 2, simplify = FALSE)

mp.gen.nocor <- function(v.var, lat.u.prefix = "u") {

l.combn <- combn(v.var, 2, simplify = FALSE)

regex.grep <- paste0(lat.u.prefix, "\\d+")

Map(function(v)

grepl(regex.grep, v) |>

sum() |>

ne(2), l.combn) |>

unlist() |>

Swap(ss.b, 2)(l.combn) |>

Swap(do.call, 2)(rbind) |>

apply(1, paste0, collapse = " WITH ") |>

paste0("@0")

}

# +------------------------------------------------------+ #

# Combine statements for MODEL section.

add.attr(c(v.model.on, v.latu),

list(s.nm.u = v.nm.u))

}

mp.i <- function(l.mo, m.b, v.nm.n, v.nm.dv, int.cores, s.iter) {

# function to create mplus input file

# +----------------------------------+ #
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v.nm.dv.n <- v.nm.n[v.nm.dv]

v.nm.f.type <- c("dat", "inp", "out", "sav", "cmd")

v.nm.f <- tempfile(pattern = "mplus-") |>

paste(v.nm.f.type, sep = ".") |>

structure(.Names = v.nm.f.type)

s.n.mo <- length(l.mo)

l.np <- get.np(l.mo, "np")

mp.inp <- list(DATA = list(FILE = NULL,

TYPE = "INDIVIDUAL"),

VARIABLE = list(NAMES = NULL,

USEVARIABLE = NULL,

CATEGORICAL = NULL,

MISSING = "."),

MODEL = NULL,

ANALYSIS = list(TYPE = "GENERAL",

ESTIMATOR = "ML",

LINK = NULL,

PROCESSORS = NULL,

ITERATIONS = NULL),

OUTPUT = c("TECH1", "TECH3"),

SAVEDATA = list(RESULTS = NULL))

v.an.mo <- mp.an.mo(l.mo, m.b, v.nm.dv.n, v.nm.n)

mp.inp[["DATA"]][["FILE"]] <- chr.sur(v.nm.f["dat"])

mp.inp[["VARIABLE"]][["NAMES"]] <- chr.clp(v.nm.n, " ")

mp.inp[["VARIABLE"]][["USEVARIABLE"]] <- mp.inp[["VARIABLE"]][["NAMES"]]

bv.mo.cat <- mapply(function(mo) all(get.fam.raw(mo) == c("binomial", "logit")), l.mo)

if(any(bv.mo.cat)) {

mp.inp[["VARIABLE"]][["CATEGORICAL"]] <- chr.clp(v.nm.dv.n[which(bv.mo.cat)], " ")

mp.inp[["ANALYSIS"]][["LINK"]] <- "LOGIT"

}

mp.inp[["MODEL"]] <- v.an.mo

mp.inp[["ANALYSIS"]][["PROCESSORS"]] <- int.cores

mp.inp[["ANALYSIS"]][["ITERATIONS"]] <- s.iter

mp.inp[["SAVEDATA"]][["RESULTS"]] <- chr.sur(v.nm.f["sav"])

mp.inp <- mp.i.l2v(mp.inp)

catf(mp.inp, "\r\n", file = v.nm.f["inp"])

gen.mplus.run(v.nm.f["cmd"])

list(nm = list(f = v.nm.f, n = v.nm.n, u = attr(v.an.mo, "s.nm.u")),

np = l.np, i = mp.inp)

}

mp.o <- function(l.mo,

m.b,

v.nm.n,

v.nm.dv,

int.cores,
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s.iter) {

# Function to run mplus models and read in output.

## Load mplusautomation

if(!tryCatch(require(MplusAutomation) |> suppressWarnings() |> suppressMessages(),

error = function(e) e))

stop("Error: library MplusAutomation is not installed.")

## Generate input file and command batch to run mplus

mp.inp <- mp.i(l.mo, m.b, v.nm.n, v.nm.dv, int.cores, s.iter)

v.nm.f <- mp.inp[["nm"]][["f"]]

mp.inp <- list(nm.n = mp.inp[["nm"]][["n"]],

nm.u = mp.inp[["nm"]][["u"]],

np = mp.inp[["np"]],

i = mp.inp[["i"]])

mp.dat <- mp.d(l.mo, v.nm.n, v.nm.f["dat"])

## Run mplus via the batch file

system(paste(v.nm.f["cmd"], v.nm.f["inp"]),

intern = TRUE) |>

ut.silent()

# Read in output and results files.

mp.out <- list(o = readLines(v.nm.f["out"]),

s = readLines(v.nm.f["sav"]))

s.warning <- gen.mp.warn(mp.out[[1]])

mp.results <- readModels(target = v.nm.f["out"],

quiet = TRUE)

unlink(v.nm.f)

mp.raw <- add.attr(c(mp.inp, mp.dat, mp.out), list(warn = s.warning))

list(est = mp.results, models = l.mo, raw = mp.raw)

}

fit.mp <- function(l.mo,

m.b = "no_confound",

v.nm.dv = v.nm.dv,

v.nm.iv = v.nm.iv,

int.cores = max.cores(),

s.iter = 1e4L) {

# Process input arguments +--------------------------------+

# v.nm.n: vector of names normalised for mplus

v.nm.n <- mp.nm(v.nm.dv, v.nm.iv)

if(is(m.b, "character")) {

if(m.b == "no_confound") {

m.b <- local({

m.u.cmb <- v.nm.n[v.nm.dv] |> gen.u.cmbn()

structure(rep(0, length(m.u.cmb)), .Dim = dim(m.u.cmb))
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})

} else {

stop("m.b incorrectly specified")

}

}

# Fit mplus model +----------------------------------------+

mp.o(l.mo, m.b, v.nm.n, v.nm.dv, int.cores, s.iter)

# +--------------------------------------------------------+

}

## fitting: glm +------------------------------------------+

upd.mo.d <- function(mo, d) {

update(mo, formula(mo), family = family(mo), data = d)

}

## bootstrap +--------------------------------------------+

upd.mo.boot1 <- function(l.mo) {

d <- model.frame(l.mo[[1]])

n <- nrow(d)

d.new <- d[sample(1:n, n, replace = TRUE),]

Map(function(mo) upd.mo.d(mo, d.new), l.mo)

}

# causal effects: definition +--------------------------------------+

## definitions +------------------------------------------+

# Generate causal effect definitions for a given number of mediators

po.def <- function(n.med) {

s.len <- sum(2^(0:(n.med - 1))) + 1

v0 <- rep(0L, s.len)

Map(function(s) `[<-`(v0, 0:s, 1),

0:s.len)

}

ce.def <- function(n.med, te = TRUE) {

l.po <- po.def(n.med)

s.po.len <- length(l.po)

l <- Map(function(s) c(l.po[[s]], l.po[[s - 1]]),

2:s.po.len)

names(l) <- c("de", paste0("ie", 1:(s.po.len - 2)))

if(te) {

l <- c(list(c(l.po[[s.po.len]], l.po[[1]])), l)

names(l)[1] <- "te"

}

structure(l, n.med = n.med)

}

ce.cft <- function(l.eff, v.nm) {

n.med <- attr(l.eff, "n.med")

m.eff <- do.call(rbind, l.eff)
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nc.m.eff <- ncol(m.eff)

nc.m.eff.half <- nc.m.eff/2

m.unq <- unname(unique(rbind(m.eff[,1:nc.m.eff.half],

m.eff[,(nc.m.eff.half + 1):nc.m.eff])))

v.pos <- 2^(n.med:0)

# Sanity check to make sure that there are no errors

if(ncol(m.unq) != v.pos[1]) stop("Error")

v.colnm <- c(v.nm[1],

rev(unlist(Map(function(s, s.nm)

rep(s.nm, s),

v.pos[-1], v.nm[-1]))))

l.pos <- Map(function(s.nm) which(v.colnm == s.nm), v.nm)

l.pos[[1]] <- 1:v.pos[1]

Map(function(v)

{

l <- mat.t.list(unique(as.matrix(m.unq[,v])), 1, "v")

names(l) <- Map(paste, l, collapse = "")

l[sort(names(l))]

}, l.pos)

}

ce.pos <- function(n.med, v.nm) {

v.pos <- 2^(n.med:0)

c(v.nm[1],

rev(unlist(Map(function(s, s.nm)

rep(s.nm, s),

v.pos[-1], v.nm[-1]))))

}

ce.cfg <- function(n.med, v.nm) {

s.len.nm <- length(v.nm)

if((n.med + 1) != s.len.nm)

stop("Error: Length of vector of v.nm is incorrect.")

list(len = structure(2^(n.med:0), .Names = v.nm),

cfg = Map(function(s.nm, s.med)

{

if.t(s.med > 0,

ce.pos(s.med, v.nm[which(s.nm == v.nm):s.len.nm]),

v.nm[s.len.nm])

}, v.nm, n.med:0))

}

## do and set "x" +---------------------------------------+
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set.x <- function(d, ...) {

l.len <- ...length()

l <- list(...)

if(l.len == 1 & is(l[[1]], "list")) {

l <- l[[1]]

l.len <- length(l)

}

if((l.len %% 2) != 0) stop("Error")

s.n <- nrow(d)

Reduce(function(d.rarg, l)

{

s.nm <- l[[1]]

v <- l[[2]]

class(v) <- class(d.rarg[,s.nm])

v.len <- length(v)

b.br.org <- v.len == s.n

b.br.rep <- v.len == 1

if(!any(b.br.org, b.br.rep)) stop("Error")

d.rarg[,s.nm] <- v

d.rarg

}, c(list(d), Map(function(s.nm, v) list(s.nm, v),

l[seq(1, l.len, 2)],

l[seq(2, l.len, 2)])),

accumulate = FALSE)

}

set.x.par.1 <- function(l.par, l.eff, s.nm.r) {

Map(function(s.nm, l, s.nm.set, s.eff)

within(l, data <- set.x(data, s.nm.set, head(s.eff, 1))),

names(l.eff), list(l.par), s.nm.r, l.eff)

}

set.x.par <- function(l.sim.par, l.caus.eff, s.nm.r) {

# Set "x" and return object with simulation parameters

Map(function(l.par, l.eff, s.nm.r) set.x.par.1(l.par, l.eff, s.nm.r),

l.sim.par, l.caus.eff, s.nm.r)

}

do.x <- function(l.par) {

c(with(l.par,

{

m <- tcrossprod(coef, data)

if(all(fam[["family"]] == "binomial", !ev)) {
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(m > 0) + 0

} else {

fam[["linkinv"]](m)

}

}))

}

## compute causal effects +-------------------------------+

### difference, odds ratio and odds +-----------+

odr <- function(p1, p2) {

exp(log(p1) - log(1 - p1) -

log(p2) + log(1 - p2))

}

ce.dif <- function(...) {

s.arg.len <- ...length()

if(s.arg.len == 1) {

obj.arg <- (...)

cl.args <- class(obj.arg)

if(class.check(cl.args, c("integer", "numeric", "matrix"), TRUE))

stop("Error")

if(class.check(cl.args, c("integer", "numeric")))

m <- matrix(obj.arg, nrow = 1)

if(class.check(cl.args, c("matrix")))

m <- obj.arg

}

if(s.arg.len > 1) {

l <- list(...)

m <- do.call(cbind, l)

}

apply(m, 1, dif)

}

ce.odr <- function(...) {

s.arg.len <- ...length()

if(!any(s.arg.len == 1:2)) stop("Error")

if(s.arg.len == 1) {

obj.arg <- (...)

cl.args <- class(obj.arg)

if(class.check(cl.args, c("integer", "numeric", "matrix"), TRUE))

stop("Error")

if(class.check(cl.args, c("integer", "numeric"))) {

if(length(obj.arg) != 2) stop("Error")

m <- matrix(obj.arg, nrow = 1)

}

if(class.check(cl.args, c("matrix"))) {

if(ncol(obj.arg) != 2) stop("Error")

m <- obj.arg
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}

}

if(s.arg.len == 2) {

l <- list(...)

m <- do.call(cbind, l)

}

odr(m[,1], m[,2])

}

odds.f <- function(p) {

b.NA <- is.na(p)

p.proc <- p[!b.NA]

if(any(p.proc < 0 | p.proc > 1)) stop("Error")

p[!b.NA] <- exp(log(p.proc) - log(1 - p.proc))

p

}

odds.i <- function(v.odds) {

exp(log(v.odds) - log(1 + v.odds))

}

odds <- function(..., inv = FALSE) {

s.arg.len <- ...length()

if(s.arg.len == 1) {

obj.arg <- (...)

cl.arg <- class(obj.arg)

if(!any(cl.arg %in% c("integer", "numeric", "matrix"))) stop("Error")

if(cl.arg %in% c("matrix")) {

if(!any(dim(obj.arg) == 1)) stop("Error")

}

}

if(s.arg.len > 1) {

obj.arg <- c(...)

}

v <- as.vector(obj.arg)

if(inv) {

v.ret <- odds.i(v)

}

if(!inv) {

v.ret <- odds.f(v)

}

v.ret

}

### compute causal effects from counterfactuals +---------+

cf.t.ce <- function(m.cft) {

l.def <- attr(m.cft, "def")

v.fam <- attr(m.cft, "fam")

l.cft.m <- Map(function(v.nm) m.cft[,v.nm], l.def)
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l.cft.m.raw <- Map(function(v.nm) attributes(m.cft)[["raw"]][,v.nm], l.def)

f <- switch(sw.b(v.fam), ce.dif, ce.odr)

add.attr(do.call(cbind, Map(f, l.cft.m)),

list(raw = l.cft.m.raw))

}

# causal effects: estimate +----------------------------------------+

## model based causal effects +---------------------------+

mo.upd.te <- function(mo, v.nm.m) {

mo.upd(mo, paste0(c(". ~ .", paste0("-", v.nm.m)),

collapse = " "))

}

mo.ci <- function(mo, ...) {

b.pkg <- suppressWarnings(require(MASS))

if(!b.pkg) stop("Error: MASS package is not installed.")

m <- confint(mo, ...)

switch(family(mo)[["link"]],

logit = exp(m), m)

}

mo.ci.l <- function(l.mo, ...) {

Map(function(s.nm, mo) mo.ci(mo, ...),

mapply(function(mo) as.character(formula(mo)[[2]]), l.mo),

l.mo)

}

combi.mo <- function(v.nm, s.ret) {

l.bin.resp <- rep(list(c("g", "b")), length(v.nm))

m.combi <- add.cnm(cbind(Reduce(combi, l.bin.resp)), v.nm)

mat.t.list(m.combi, 1, s.ret)

}

id.soln <- function(v) {

s.len <- length(v)

v.g <- which(v == "g")

v.b <- which(v == "b")

if(any(length(v.g) == s.len,

length(v.b) == s.len)) {

TRUE

} else {

!any(mapply(function(s) any(v.g > s), v.b))

}

}

gen.mo.soln <- function(v.nm.dv, flatten = TRUE) {

# Identify which model have a model based solution.

# Note:

# 1. All models have a model based total effect.

# 2. All models have a model based direct effect.
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# The general idea behind this is that any binomial model that has a

# gaussian dependency does not have a model based solution. This is due

# primarily to the inability to have a closed form solution for the

# integration.

l.combi <- combi.mo(v.nm.dv, "v")

v.soln <- mapply(id.soln, l.combi)

if(flatten) {

add.attr(structure(v.soln, .Names = mapply(paste0, l.combi, collapse = "")),

list(order = v.nm.dv))

} else {

data.frame(do.call(rbind, l.combi), soln = v.soln)

}

}

boot.gen.d <- function(d, s.seed) {

set.seed(s.seed)

n <- nrow(d)

d[sample(1:n, n, replace = TRUE),]

}

boot.upd.mo <- function(d, l.mo, s.seed) {

d.sample <- boot.gen.d(d, s.seed)

Map(function(mo) update(mo, formula(mo),

family = family(mo),

data = d.sample), l.mo)

}

mo.0dep <- function(l.set.x, l.mo.cf, s.nm.mo) {

l.mo.cf[[s.nm.mo]] <- Map(do.x, l.set.x[[s.nm.mo]])

l.mo.cf

}

mo.1dep <- function(l.set.x, l.mo.cf, s.nm.mo,

l.eff.cft, l.eff.cfg,

l.dep, l.fam, b.exv) {

# Extract counterfactuals needed for current dependent variable.

l.cf.def <- l.eff.cft[[s.nm.mo]]

# Identify the dependencies and dependencies properties

v.nm.dep <- l.dep[["dep"]][[s.nm.mo]]

l.dep.len <- list(l.eff.cfg[["len"]][v.nm.dep])

# Extract satisfied dependencies

l.dep.cf <- Map(function(v.eff, v.len)

{

l.dep.cf.id <- vec.t.list(v.eff[-1], v.len)

l.dep.cf <- Map(function(s.nm, v)

l.mo.cf[[s.nm]][[paste0(v,

collapse = "")]],

names(l.dep.cf.id), l.dep.cf.id)

m.dep.cf <- add.cnm(unname(do.call(cbind, l.dep.cf)), names(l.dep.cf))
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m.dep.p <- m.dep.cf

m.dep.p[] <- 1

list(add.attr(m.dep.cf, list(prob = m.dep.p)))

}, l.cf.def, l.dep.len)

# Attach the data to the do(x) parametrs

l.dox.mo <- Map(function(l.d, l.x) within(l.x, dep <- l.d),

l.dep.cf, l.set.x[[s.nm.mo]])

rm(l.cf.def, l.dep.len, l.dep.cf)

# Test for the need to marginalise over binary variable.

# Only apply the marginalise procedure when:

# 1. The IV in the current model is a DV in another model.

# 2. This IV is binary.

# 3. The expected value is requested in the simulation for this IV.

# {

b.dep.fam <- add.nm(do.call(rbind, l.fam)[v.nm.dep,"b"], v.nm.dep)

b.dep.exv <- b.exv[v.nm.dep]

b.test <- mapply(all, b.dep.fam, b.dep.exv)

v.mar <- v.nm.dep[b.test]

rm(b.dep.fam, b.dep.exv, b.test)

# }

l.mo.cf[[s.nm.mo]] <- Map(function(l.cf)

{

l <- Map(function(m)

{

l.cf[["data"]][,colnames(m)] <- m

do.x(l.cf) * apply(attr(m, "prob"),

1, prod)

}, l.cf[["dep"]])

m <- do.call(cbind, l)

apply(m, 1, sum)

}, l.dox.mo)

l.mo.cf

}

mo.cf.est <- function(l.mo, l.fam, v.nm.dv, v.nm.iv, b.exv,

l.dep, l.eff.cfg, l.eff.cft, b.mn = TRUE) {

# Generate model parameters +------------------------------+

l.mo.par <- gen.mo.par(l.mo, v.nm.dv, v.nm.iv, b.exv)

# Set "x" for all counterfactuals +------------------------+

l.set.x <- set.x.par(l.mo.par, l.eff.cft, v.nm.iv[1])

# Empty list to hold counterfactuals +---------------------+

l.mo.cf <- Map(function(v) list(), v.nm.dv)

# Get current environment +--------------------------------+

env <- environment()
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# START computing model based causal effects +-------------+

v <- l.dep[["n.sorted"]]

invisible(Map(function(s.nm.mo, s.n.dep)

{

if(s.n.dep == 0) {

l.cf.i <- mo.0dep(l.set.x, l.mo.cf, s.nm.mo)

}

if(s.n.dep > 0) {

l.cf.i <- mo.1dep(l.set.x, l.mo.cf, s.nm.mo,

l.eff.cft, l.eff.cfg,

l.dep, l.fam, b.exv)

}

assign("l.mo.cf", l.cf.i, envir = env)

}, names(v), v))

m <- do.call(cbind, l.mo.cf[[1]])

# END computing model based causal effects +---------------+

m.mn <- t(as.matrix(apply(m, 2, mean)))

if.t(b.mn,

add.attr(m.mn, list(raw = m)),

add.attr(m, list(raw = m.mn)))

}

mo.ce.est <- function(l.mo, l.fam, v.nm.dv, v.nm.iv, b.exv,

l.dep, l.eff.cfg, l.eff.cft,l.eff.def.split) {

m.cf <- mo.cf.est(l.mo, l.fam, v.nm.dv, v.nm.iv, b.exv,

l.dep, l.eff.cfg, l.eff.cft, b.mn = TRUE)

cf.t.ce(add.attr(m.cf, list(def = l.eff.def.split,

fam = l.fam[[1]])))

}

mo.te.upd <- function(mo, v.nm.m) {

mo.upd(mo, paste0(c(". ~ .", paste0("-", v.nm.m)),

collapse = " "))

}

mo.te.est <- function(mo, d, s.nm.r, v.r, b.fam, b.raw = FALSE) {

m.raw <- mapply(function(s) predict(mo, newdata = set.x(d, s.nm.r, s),

type = "response"), v.r)

m.mn <- apply(m.raw, 2, mean)

s.eff <- switch(sw.b(b.fam), ce.dif, ce.odr)(m.mn)

m.eff <- matrix(s.eff, dimnames = list("est", "te.y"))

if(b.raw) {

add.attr(m.eff, list(raw = list(te.y = add.cnm(m.raw,

as.character(v.r))),

fam = b.fam))

} else {

m.eff
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}

}

## sensitivity analysis +---------------------------------+

gen.u.args <- function(l.mo) {

attr2env(l.mo)

m.u.cmbn <- gen.u.cmbn(v.nm.dv)

v.u.dir <- get.u.dir(l.mo, m.u.cmbn, v.nm.dv)

m.u.b <- mat.dupe(m.u.cmbn, 0)

v.res.var <- get.var.res(l.mo)

m.res.var <- apply(m.u.cmbn, 2, function(x) v.res.var[x])

v.res.sdp <- apply(m.res.var, 2, function(x) prod(sqrt(x)))

as.list(environment())

}

gen.u.beta <- function(v.var, s.cov) {

s.ratio <- v.var[1]/v.var[2]

s.var <- sqrt(s.cov/s.ratio)

structure(c(s.var * s.ratio, s.var), .Names = names(v.var))

}

gen.u.beta.m <- function(s.cor, m.u.b,

m.res.var, v.res.sdp, v.u.dir) {

n.u <- ncol(m.u.b)

m.u.b[] <- mapply(function(n) gen.u.beta(m.res.var[,n],

s.cor * v.res.sdp[n]), 1:n.u)

m.u.b[1,] <- m.u.b[1,] * v.u.dir

m.u.b

}

gen.u.cmbn <- function(v.nm, type = "m", lat.u.prefix = "u") {

# Generate combinations of u.

m <- combn(v.nm, 2)

s.n.col <- ncol(m)

if(s.n.col > 1) {

v.col.ord <- order(m[1,], m[2,],

decreasing = c(TRUE, FALSE),

method = "radix")

m <- m[,v.col.ord]

}

v.col.i <- 1:s.n.col

v.nm.u <- paste0(lat.u.prefix, v.col.i)

switch(type, m =

{

colnames(m) <- v.nm.u

m

},

l =

{
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l <- Map(function(i) m[,i], v.col.i)

names(l) <- v.nm.u

l

})

}

get.u.dir <- function(l.mo, m.cmbn, v.nm.dv) {

v <- apply(m.cmbn, 2, function(x)

{

v.coef <- coef(l.mo[[min(which(v.nm.dv %in% x))]])

na.omit(v.coef[x]) > 0

})

(v - 0.5)/0.5

}

get.var.res <- function(l.mo) {

attr2env(l.mo)

s.var.lgd <- (pi^2)/3

mapply(function(s.nm, mo, v)

switch(sw.b(v), var(residuals(mo)), s.var.lgd),

v.nm.dv, l.mo, get.fam.l(l.mo))

}

get.sa.maxcor.step <- function(v.step.int, s.cor.start,

m.u.b, m.res.var, v.res.sdp, v.u.dir,

l.mo, v.nm.dv, v.nm.iv) {

v.step.cur <- ((0:10) * v.step.int) + s.cor.start

s.step.cur.len <- length(v.step.cur)

ind.step.cur <- 1

b.cont <- TRUE

while(b.cont) {

s.cor <- v.step.cur[ind.step.cur]

m.u.test <- gen.u.beta.m(s.cor, m.u.b, m.res.var, v.res.sdp, v.u.dir)

mp.out <- fit.mp(l.mo, m.u.test, v.nm.dv, v.nm.iv,

int.cores = max.cores(), s.iter = 1e4L)

b.err <- attr(mp.out[["raw"]], "warn")[["b.warn"]]

b.ind <- ind.step.cur == s.step.cur.len

b.cont <- !any(b.err, b.ind)

if(b.err) {

s.cor <- v.step.cur[ind.step.cur - 1]

}

ind.step.cur <- ind.step.cur + 1

}

s.cor

}

get.sa.maxcor.allsteps <- function(s.dec, m.u.b,

m.res.var, v.res.sdp, v.u.dir,

l.mo, v.nm.dv, v.nm.iv) {
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v.step <- 10^-(1:s.dec)

s.cor.start <- 0

for(s.step in v.step) {

if(s.cor.start >= 1) break()

s.cor.start <- get.sa.maxcor.step(s.step, s.cor.start,

m.u.b, m.res.var, v.res.sdp, v.u.dir,

l.mo, v.nm.dv, v.nm.iv)

}

if(s.cor.start == 1) {

s.cor.start <- 0.95

}

s.cor.start

}

get.sa.mcor <- function(s.dec, l.mo, v.nm.dv, v.nm.iv) {

list2env(gen.u.args(l.mo), environment())

get.sa.maxcor.allsteps(s.dec, m.u.b,

m.res.var, v.res.sdp, v.u.dir,

l.mo, v.nm.dv, v.nm.iv)

}

gen.sa.testseq <- function(s.mcor, s.dec) {

v.test <- c(5, 10)

s.fac <- 10^s.dec

v.div <- (abs(s.mcor) * s.fac) %/% v.test

v.div.use <- switch(sw.b(v.div[1] < 10), c(5, v.div[1]), c(10, v.div[2]))

v.seq <- seq(from = 0, by = v.div.use[1], length.out = v.div.use[2] + 1) / s.fac

if(s.mcor < 0) v.seq <- -v.seq

v.seq

}

## simulation +-------------------------------------------+

b.class.v <- function(obj, class, func = all) {

class.obj <- sort(class(obj))

class.tgt <- sort(class)

func(class.obj == class.tgt)

}

b.class.l <- function(obj, class, func = all, listfunc = all) {

listfunc(mapply(function(obj.1) b.class.v(obj.1, class, func), obj))

}

chk.typ <- function(l) {

list2env(l, environment())

if(!is(l.mo, "list"))

stop("Error: Wrong object type for models argument (list).")

if(!all( Map(is.v, l.mo, list(c("lm", "glm"))) |> unlist()))

stop("Error: Wrong object type for elements of model list (glm, lm).")

if(!is(v.nm.dv, "character"))

stop("Error: Wrong object type for DV names.")
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if(!is(s.nm.r, "character"))

stop("Error: Wrong object type for treatment indicator name.")

if(!is(v.nm.cv, "character"))

stop("Error: Wrong object type for covariate names.")

if(!is(s.cof.mth, "character"))

stop("Error: Wrong object type for method to use to draw regression coefficients.")

if(!is(s.mode, "character"))

stop("Error: Wrong object type for analysis mode.")

if(!is(s.seed, "integer"))

stop("Error: Wrong object type for seed.")

if(!is(int.sims, "integer"))

stop("Error: Wrong object type for number of simulations.")

if(!is.v(b.parallel, c("logical", "character")))

stop("Error: Wrong object type for parallel threshold.")

if(!is(int.cores, "integer"))

stop("Error: Wrong object type for number of cores to use.")

}

chk.len <- function(l) {

list2env(l, environment())

if(!identical.v(mapply(length, list(l.mo, v.nm.dv))))

stop("Error: Lengths of input arguments incorrect.")

}

chk <- function(obj, env, v.match) {

v <- get0(obj, envir = env)

!if.t(length(v) == 0,

FALSE,

(match(v, v.match, nomatch = 0) > 0) |> any())

}

chk.val <- function(l) {

list2env(l, environment())

# Check for valid coefficient method

if(!any(match(s.cof.mth, c("mvn", "boot"), nomatch = 0) > 0)) {

warning("Invalid path coefficient simulation method specified. Replacing with defaults.")

assign("s.cof.mth", "mvn", envir = parent.frame())

}

# Check for valid mode

if(!any(match(s.mode, c("ce", "sa"), nomatch = 0) > 0)) {

warning("Invalid path coefficient simulation method specified. Replacing with defaults.")

assign("s.mode", "ce", envir = parent.frame())

}

# Check arguments that are suppose to be integers

b.na <- Map(as.integer,

c(s.seed, int.sims, int.cores)) |>

unlist() |>

is.na() |>
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suppressWarnings()

if(b.na[1]) {

warning("Invalid seed specified. Replacing with defaults.")

assign("s.seed", 8L, envir = parent.frame())

}

if(b.na[2]) {

warning("Invalid number of simulations specified. Replacing with defaults.")

assign("int.sims", 1e4L, envir = parent.frame())

}

if(b.na[3]) {

warning("Invalid number of cores specified. Replacing with defaults.")

assign("int.cores",

parallel::detectCores(),

envir = parent.frame())

}

}

set.x.par.b <- function(l.sim, l.combi) {

within(l.sim,

{

dep <- Map(function(v, m.dep)

{

v.nm <- names(v)

m.prob <- attr(m.dep, "prob")

m.prob[,v.nm] <-

do.call(cbind,

Map(function(s.nm, s)

{

v.prob <- m.dep[,s.nm]

if(s == 0) {

v.prob <- 1 - v.prob

}

v.prob

}, v.nm, v))

attr(m.dep, "prob") <- m.prob

m.dep[,v.nm] <- matrix(v,

ncol = length(v),

nrow = nrow(m.dep),

byrow = TRUE)

m.dep

}, l.combi, dep)

})

}

sim.0dep <- function(l.set.x, l.sim.cf, s.nm.mo) {

l.sim.cf[[s.nm.mo]] <- Map(do.x, l.set.x[[s.nm.mo]])

l.sim.cf
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}

sim.1dep <- function(l.set.x, l.sim.cf, s.nm.mo,

l.eff.cf, l.eff.cfg,

l.dep, l.fam, b.exv) {

# Extract counterfactuals needed for current dependent variable.

l.cf.def <- l.eff.cf[[s.nm.mo]]

# Identify the dependencies and dependencies properties

v.nm.dep <- l.dep[["dep"]][[s.nm.mo]]

l.dep.len <- list(l.eff.cfg[["len"]][v.nm.dep])

# Extract simulated dependencies

l.dep.cf <- Map(function(v.eff, v.len)

{

l.dep.cf.id <- vec.t.list(v.eff[-1], v.len)

l.dep.cf <-

Map(function(s.nm, v)

l.sim.cf[[s.nm]][[paste0(v,

collapse = "")]],

names(l.dep.cf.id), l.dep.cf.id)

# ERROR LOCATION

m.dep.cf <- add.cnm(unname(do.call(cbind,

l.dep.cf)),

names(l.dep.cf))

m.dep.p <- m.dep.cf

m.dep.p[] <- 1

list(add.attr(m.dep.cf, list(prob = m.dep.p)))

}, l.cf.def, l.dep.len)

# Attach the data to the simulation parametrs

l.sim.mo <- Map(function(l.d, l.x) within(l.x, dep <- l.d),

l.dep.cf, l.set.x[[s.nm.mo]])

rm(l.cf.def, l.dep.len, l.dep.cf)

# Test for the need to marginalise over binary variable.

# Only apply the marginalise procedure when:

# 1. The IV in the current model is a DV is another model.

# 2. This IV is binary.

# 3. The expected value is requested in the simulation for this IV.

# {

b.dep.fam <- add.nm(do.call(rbind, l.fam)[v.nm.dep,"b"], v.nm.dep)

b.dep.exv <- b.exv[v.nm.dep]

b.test <- mapply(all, b.dep.fam, b.dep.exv)

v.mar <- v.nm.dep[b.test]

rm(b.dep.fam, b.dep.exv, b.test)

# }

if(length(v.mar) > 0) {
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l.combi.bin <- combi.bin(v.mar, "v")

l.sim.mo <- Map(function(l) set.x.par.b(l, l.combi.bin),

l.sim.mo)

rm(l.combi.bin)

}

l.sim.cf[[s.nm.mo]] <-

Map(function(l.cf)

{

m <- do.call(cbind,

Map(function(m)

{

l.cf[["data"]][,colnames(m)] <- m

do.x(l.cf) * apply(attr(m, "prob"),

1,

prod)

}, l.cf[["dep"]]))

apply(m, 1, sum)

}, l.sim.mo)

l.sim.cf

}

sim.med.1 <- function(s.seed,

l.mo,

l.mo.par,

l.eff.cf,

l.eff.cfg,

l.dep,

b.exv,

m.b,

s.cof.mth,

s.mode) {

attr2env(l.mo)

# Generate simulation parameters +-------------------------+

l.sim.par <- gen.sim.par(s.seed = s.seed,

l.mo = l.mo,

l.mo.par = l.mo.par,

b.ev = b.exv,

m.b = m.b,

s.meth = s.cof.mth,

s.mode = s.mode,

int.cores = int.cores)

# Set "x" for all counterfactuals +------------------------+

l.set.x <- set.x.par(l.sim.par,

l.eff.cf,

v.nm.iv[1])
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# Empty list to hold counterfactuals +---------------------+

l.sim.cf <- Map(function(v)

list(),

v.nm.dv)

# Get current environment +--------------------------------+

env <- environment()

# START simulation: Single run +---------------------------+

v <- l.dep[["n.sorted"]]

invisible(Map(function(s.nm, s.n.dep)

{

if(s.n.dep == 0) {

l.cf.i <- sim.0dep(l.set.x,

l.sim.cf,

s.nm)

}

if(s.n.dep > 0) {

l.cf.i <- sim.1dep(l.set.x,

l.sim.cf,

s.nm,

l.eff.cf,

l.eff.cfg,

l.dep,

l.fam,

b.exv)

}

assign("l.sim.cf", l.cf.i, envir = env)

}, names(v), v))

m <- do.call(cbind, l.sim.cf[[1]])

# END simulation: Single run +-----------------------------+

apply(m, 2, mean)

}

sim.med.1l <- function(l.mo1) {

attr2env(l.mo1)

i <- index[["i"]]

sim.med.1(v.seeds[i],

l.mo1,

l.mo.par,

l.eff.cft,

l.eff.cfg,

l.dep,

b.exv,

m.b,

s.cof.mth,

s.mode)

}
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sim.cf <- function(l.mo, s.mode, m.b, s.cof.mth,

int.sims, s.seed, b.parallel, int.cores)

{

# Setup +------------------------------------------------------------+

attr2env(l.mo)

## Error checking +----------------------------------------+

chk.val(list(s.cof.mth = s.cof.mth,

int.cores = int.cores,

s.mode = s.mode,

b.parallel = b.parallel,

s.seed = s.seed,

int.sims = int.sims))

chk.typ(list(l.mo = l.mo,

v.nm.dv = v.nm.dv,

s.nm.r = s.nm.r,

v.nm.cv = v.nm.cv,

s.cof.mth = s.cof.mth,

s.mode = s.mode,

s.seed = s.seed,

int.sims = int.sims,

b.parallel = b.parallel,

int.cores = int.cores))

chk.len(list(l.mo = l.mo,

v.nm.dv = v.nm.dv))

## Environment +-------------------------------------------+

list2env(gen.funcs.seqmed(), envir = environment())

# Not exposing the setting of expected/predicted values

v.ev <- structure(rep("auto", length(l.mo)),

.Names = v.nm.dv)

# Set expected values flag

b.exv <- set.exv(v.nm.dv, v.ev, l.fam)

if(!isClass(class(m.b), "matrix")) {

m.b <- switch(m.b,

no_confound = mat.dupe(combn(v.nm.dv, 2), 0),

stop("Error"))

}

## Call +--------------------------------------------------+

l.call <- list(mo = l.mo,

nm = list(dv = v.nm.dv,

r = s.nm.r,

cv = v.nm.cv),

ev = list(v.ev,

b.exv),

coef = s.cof.mth,

mode = s.mode,
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seed = s.seed,

sims = int.sims,

parallel = list(parallel = b.parallel,

cores = int.cores))

## Set up counterfactuals +--------------------------------+

l.eff.def <- ce.def(n.med)

l.eff.def.split <- Map(str.half, l.eff.def)

l.eff.cft <- ce.cft(l.eff.def, v.nm.dv)

l.eff.cfg <- ce.cfg(n.med, v.nm.dv)

# Identify dependencies +----------------------------------+

l.dep <- get.mo.dep(l.mo)

if(!any(l.dep[["n"]] == 0))

stop("Error: No solution when all models have dependencies.")

## Set seeds +---------------------------------------------+

v.seeds <- gen.seeds(int.sims, s.seed)

# +------------------------------------------------------------------+

l.mo.par <- get.mo.par(l.mo,

s.mode,

v.nm.dv,

v.nm.iv,

m.b,

int.cores)

l.mo <- do.call(structure,

list(l.mo,

l.mo.par = l.mo.par,

l.eff.cft = l.eff.cft,

l.eff.cfg = l.eff.cfg,

l.dep = l.dep,

b.exv = b.exv,

m.b = m.b,

s.cof.mth = s.cof.mth,

s.mode = s.mode,

v.seeds = v.seeds))

# Simulation START +---------------------------------------+

l.sim <- rep(list(l.mo), int.sims) |> set.list.index()

m.cf.raw <- do.call(rbind,

pblapply.sw(b.parallel,

int.cores,

environment(),

l.sim,

sim.med.1l))

m.cf.mn <- t(as.matrix(apply(m.cf.raw, 2, mean)))

add.attr(Map(function(m) add.attr(m,

list(def = l.eff.def.split,
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fam = l.fam[[1]])),

list(mn = m.cf.mn,

raw = m.cf.raw)),

list(seeds = v.seeds))

}

int.max <- .Machine[["integer.max"]]

# user facing +-----------------------------------------------------+

mo.med <- function(l.mo,

s.ci = 0.95,

int.boot = 1e4L,

s.seed = sample(-int.max:int.max, 1),

b.parallel = "auto",

int.cores = "max")

{

# Setup +------------------------------------------------------------+

## Environment +-------------------------------------------+

# Names

setup.env(list.models = l.mo,

int.iter = int.boot,

b.parallel = b.parallel,

int.cores = int.cores)

# Set up when to use expected versus predicted values

# - Currently not exposing this function to end users.

# - Precise rules on when to use expected vs predicted values can be

# found in the function "set.exv".

b.exv <- set.exv(v.nm.dv, rep("auto", n.mo), l.fam)

## Set up counterfactuals +--------------------------------+

l.eff.def <- ce.def(n.med, TRUE)

l.eff.def.split <- Map(str.half, l.eff.def)

l.eff.cft <- ce.cft(l.eff.def, v.nm.dv)

l.eff.cfg <- ce.cfg(n.med, v.nm.dv)

## Identify dependencies +---------------------------------+

l.dep <- get.mo.dep(l.mo)

if(!any(l.dep[["n"]] == 0)) {

stop("Error: No solution when all models have dependencies.")

}

## Set seeds and indexes +---------------------------------+

v.seeds <- gen.seeds(int.boot, s.seed)

# ++++ # ++++ # ++++ # ++++ # ++++ # ++++ # ++++ # ++++ # +----------+

# Get total effects formula and causal effects estimate +------------+

mo.te <- mo.te.upd(l.mo[[1]], v.nm.m)

m.te <- mo.te.est(mo.te, d, s.nm.r, v.r, l.fam[[1]], TRUE)

# Identify whether or not model based solution exist +---------------+

b.soln <- gen.mo.soln(v.nm.dv)[s.fam]
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## Branch off according to whether a solutuon exist +------+

if(b.soln) { # Compute the model based solution when there is one.

m.ce <- mo.ce.est(l.mo, l.fam, v.nm.dv, v.nm.iv, b.exv,

l.dep, l.eff.cfg, l.eff.cft,l.eff.def.split)

l.mo.boot <- c(list(mo.te), l.mo)

l.ci <- pblapply.sw(b.parallel, int.cores, environment(), v.seeds,

function(s.seed.i)

{

l.mo.boot.upd <- boot.upd.mo(d,

l.mo.boot,

s.seed.i)

l.mo.upd <- l.mo.boot.upd[-1]

mo.te.upd <- l.mo.boot.upd[[1]]

m.te.upd <- mo.te.est(mo.te.upd,

d,

s.nm.r,

v.r,

l.fam[[1]])

m.ce.upd <- mo.ce.est(l.mo.upd,

l.fam,

v.nm.dv,

v.nm.iv,

b.exv,

l.dep,

l.eff.cfg,

l.eff.cft,

l.eff.def.split)

cbind(m.te.upd, m.ce.upd)

})

} else {

# Compute only the total effects when there is no model based solution.

m.ce <- matrix(NA, ncol = length(l.eff.def), nrow = 1,

dimnames = list(NULL, names(l.eff.def)))

l.mo.boot <- list(mo.te)

l.ci <- pblapply.sw(b.parallel, int.cores, environment(),

v.seeds, function(s.seed.i)

{

l.mo.boot.upd <- boot.upd.mo(d,

l.mo.boot,

s.seed.i)

mo.te.upd <- l.mo.boot.upd[[1]];

mo.te.est(mo.te.upd,

d,

s.nm.r,

v.r,
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l.fam[[1]])

})

}

# Gather estimates and confidence intervals +------------------------+

m.est <- cbind(m.te, m.ce)

m.ci <- add.rnm(apply(do.call(rbind, l.ci),

2, ci.perc, s.ci),

paste0("ci.", gsub("\\.", "", gen.ci(s.ci))))

if(ncol(m.ci) == 1) {

# Check if there is only "te.y".

# If so, fill up the rest of the matrix with NA.

m.ci <- cbind(m.ci,

matrix(NA,

ncol = length(l.eff.def),

nrow = 2,

dimnames = list(NULL,

names(l.eff.def))))

}

# ++++ # ++++ # ++++ # ++++ # ++++ # ++++ # ++++ # ++++ # +----------+

l.attr <- list(seed = v.seeds)

l.attr.raw <- attributes(m.te)[["raw"]]

l.attr.m.ce <- attributes(m.ce)

if(any("raw" == names(l.attr.m.ce))) {

l.attr.raw <- c(l.attr.raw, l.attr.m.ce[["raw"]])

}

add.attr(rbind(m.est, m.ci), c(l.attr, list(raw = l.attr.raw)))

# +------------------------------------------------------------------+

}

sim.med <- function(l.mo,

s.mode = "ce",

m.b = "no_confound",

s.cof.mth = "mvn",

s.ci = 0.95,

int.sims = 1e4L,

s.seed = gen.seeds(1),

b.parallel = "auto",

int.cores = "max",

b.raw = TRUE)

{

# setup environment +------------------------------------------------+

list2env(gen.funcs.seqmed(), environment())

setup.env(l.mo,

int.sims,

b.parallel,
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int.cores)

# Setup names for confidence intervals +-----------------------------+

s.nm.ci <- paste0("ci.", gsub("\\.", "", gen.ci(s.ci)))

# Run simulations +--------------------------------------------------+

l.cf <- sim.cf(l.mo,

s.mode,

m.b,

s.cof.mth,

int.sims,

s.seed,

b.parallel,

int.cores)

l.ce <- Map(function(s.nm, m) cf.t.ce(m),

c("est", "ci"), l.cf)

v.fam <- local({

v <- attributes(l.cf[["mn"]])[["fam"]]

switch(names(v)[v],

g = "difference",

b = "oddsratio")

})

m.ce <- do.call(rbind,

within(l.ce,

{

est <- add.rnm(est, "est")

ci <- add.rnm(apply(ci, 2, ci.perc, s.ci), s.nm.ci)

})) |> add.attr(list(efftype = v.fam))

if.t(b.raw,

add.attr(m.ce, list(raw = l.cf)),

m.ce)

}

sim.med.sa <- function(l.mo,

s.cof.mth = "mvn",

s.ci = 0.95,

int.sims = 1e1L,

s.seed = gen.seeds(1),

b.parallel = "auto",

int.cores = "max")

{

# setup environment +------------------------------------------------+

list2env(gen.funcs.seqmed(), environment())

setup.env(l.mo,

int.sims,

b.parallel,
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int.cores)

list2env(gen.u.args(l.mo),

envir = environment())

s.dec <- 2

message("Working out maximum correlation between residuals...")

s.mcor <- get.sa.mcor(s.dec,

l.mo,

v.nm.dv,

v.nm.iv)

message(paste0(" Maximum correlation : ", s.mcor))

v.seq <- gen.sa.testseq(s.mcor, s.dec)

l.m.u <- Map(function(s.cor)

gen.u.beta.m(s.cor,

m.u.b,

m.res.var,

v.res.sdp,

v.u.dir),

v.seq)

`attributes<-`(Map(function(m, s, s.len)

{

v.msg <- paste0("Run ", s, " of ", s.len, " runs.")

message(v.msg)

sim.med(l.mo,

s.mode = "sa",

m.b = m,

s.cof.mth,

s.ci,

int.sims,

s.seed,

b.parallel,

int.cores,

b.raw = FALSE)

},

l.m.u,

seq_along(l.m.u),

length(l.m.u)),

list(cor = v.seq,

max.cor = s.mcor))

}

environment() |> as.list.environment()

}
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