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Abstract 

Immune checkpoint inhibitors (ICIs) have been adopted to treat multiple 

cancer types, including colorectal cancer (CRC). Two anti-Programmed Cell 

Death 1 (PD1) antibodies, pembrolizumab and nivolumab, have proven effective 

in patients with metastatic mismatch repair-deficient CRC with microsatellite 

instability (dMMR-MSI). However, anti-PDI ICIs provide no benefit for a significant 

fraction of dMMR-MSI CRC patients. These patients resist anti-PD1 treatment 

from the beginning or develop acquired resistance, leading to disease 

progression. Inter- and intra-tumour heterogeneity (ITH) are leading causes of 

resistance through antigen escape and immunosuppression. Thus, further 

investigation of these factors in CRC and their impact on the tumour 

microenvironment (TME) is required to identify new biomarkers. 

Through three projects, I investigate the impact of ITH on response to ant-

PD1 agents in CRC. First, I developed a tool for the analysis of highly-multiplexed 

images. There is still a lack of software tools encompassing all the workflow steps 

and allowing flexible, scalable and reproducible analysis. For this reason, I 

developed the Single-cell Identification from MultiPLexed Images (SIMPLI) 

pipeline. SIMPLI includes raw image processing and spatially resolved cell- and 

pixel-level analyses. Every step of SIMPLI’s workflow is highly customisable and 

imaging technology agnostic, thus making it highly flexible. SIMPLI can run on 

both desktop computers and high-performance computing environments with 

minimum configuration and automatically manage computational resources 

allocation. These features make SIMPLI a portable, scalable and reproducible 

software for analysing highly-multiplexed images. 
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The second project is the application of SIMPLI to the analysis of ITH in 

the TME in CRC patients treated with pembrolizumab or nivolumab in a 

multiregional and multiomic study. Multiple tumour regions with different levels of 

T cell infiltration underwent DNA, RNA and T-cell receptor sequencing, imaging 

mass cytometry and multiplex immunofluorescence. These analyses showed that 

response to anti-PD1 ICI in CRCs did not correlate with tumour mutational burden. 

Instead, response was linked to the clonality of immunogenic mutations and T 

cell receptors, dysregulation of the WNT signalling, interferon-gamma and 

antigen presentation pathways. PDL1+ antigen-presenting macrophages 

enrichment segregated with response and formed high-density clusters rich in 

cytotoxic and proliferating PD1+CD8 +T cells. 

The third project analysed the inter-tumour heterogeneity of cancer drivers 

conducted through the Network of Cancer Genes. This repository of manually 

annotated genes includes 3355 drivers of cancer and non-cancer clonal 

expansion in 122 cancer types and 12 non-cancer tissues and their system-level 

properties. These include gene duplicability, essentiality, evolutionary origin, 

miRNA, and protein interactions. This investigation showed that inter-tumour 

heterogeneity in cancer drivers across cancer types is caused by the intrinsic 

features of each tumour type and not just due to differences in their detection. 

The annotations produced in this project proved valuable for interpreting the 

genomic and transcriptomic data and the design of the antibody panels for the 

imaging analysis of the TME in CRC. 

In summary, this thesis provides a new software for analysing highly-

multiplexed images, a new set of TME features linked to anti-PD1 immunotherapy 
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response in CRC, and an analysis of the heterogeneity of cancer drivers across 

multiple cancer types. 
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Chapter 1. Introduction 

1.1 Tumour heterogeneity 

Cancer is a highly heterogeneous disease, as even tumours of the same 

type and histological subtype can present a high level of phenotypic diversity 

across patients. In addition to this inter-tumour heterogeneity, there is also a large 

amount of phenotype variability within single tumours. This intra-tumour 

heterogeneity (ITH) is due to the multiple clones of cancer cells forming their 

tumour and their interactions with the surrounding tissues, which constitute their 

tumour microenvironment (TME)1. Both inter- and intra-tumour heterogeneity 

involve molecular, cellular and tissue-level features. These include genetic, 

epigenetic and transcriptional alterations, as well as variability in cell morphology, 

organisation and migration, such as different propensities to undergo epithelial-

to-mesenchymal transition. This heterogeneity has a strong impact on clinical 

outcomes by contributing to tumour growth, immune evasion, metastasis and 

therapeutic resistance2.  

Tumour heterogeneity has been extensively studied through data 

collected and analysed in several projects, including The Cancer Genome Atlas 

(TCGA)3, the International Cancer Genome Consortium (ICGC)4 Pan-Cancer 

Analysis of Whole Genomes (PCAWG)5, the Catalogue Of Somatic Mutations In 

Cancer (COSMIC)6, the Network of Cancer Genes (NCG)7 and The Cancer 

Imaging Archive (TCIA)8. However, further analysis in this field is required to 

characterise the mechanisms by which tumour heterogeneity drives cancer 

pathogenesis and to develop more effective diagnosis and treatment strategies1. 
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1.1.1 Inter-tumour heterogeneity 

Genetic and phenotypic variability across tumours of different patients are 

defined as inter-tumour heterogeneity. Even between patients with the same 

cancer type and molecular or histological subtype, there can be significant 

differences in response to therapy and clinical outcomes. This remained the case 

even after the development of precision oncology approaches and the application 

of DNA-seq and RNA-seq technologies to the analysis of tumour heterogeneity9. 

While genetic variation is the underlying cause of inter-tumour heterogeneity, 

inter-tumour heterogeneity can also manifest at the cell and tissue level, with 

different cancers having different TMEs.  

1.1.1.1 Genetic inter-tumour heterogeneity 

Genetic inter-tumour heterogeneity is a direct consequence of cancer 

evolution. Cancers acquire somatic alterations stochastically during their 

development, and these mutations are then subject to evolutionary pressures due 

to random drift and selection pressures. This combination of stochastic and 

deterministic processes shaping cancer evolution causes tumours to have 

different driver alterations. Additionally, cancer genomes are subject to various 

mutational processes, which result in specific frequencies of different types of 

alterations constituting the tumour’s mutational signatures10. Cancers have 

different mixtures of such signatures, which can vary within cancer types and 

molecular subtypes because of differences in environmental exposures or other 

intrinsic and extrinsic factors. 
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Evaluating the impact of genetic inter-tumour heterogeneity on clinical 

outcomes is challenging due to the relatively low frequency of individual 

mutations9. This issue can be partially addressed by performing analyses at the 

pathway level to identify gene sets whose inter-tumour heterogeneity is 

associated with clinical features. Additionally, this approach has been recently 

expanded through the integration of transcriptomic and epigenetic data; however, 

a lot more studies are required to fully characterise the clinical impact of inter-

tumour heterogeneity9. 

Genetic heterogeneity is directly reflected in epigenetic and transcriptional 

diversity. Thus, genetic inter-tumour heterogeneity can thus drive inter-patient 

variability at the tissue level by directly affecting the biological capabilities of the 

tumour to interact with the surrounding tissue. These interactions are part of the 

hallmarks of cancer and include the deregulation of the immune 

microenvironment to avoid immune-mediated killing and induce inflammation and 

angiogenesis11. 

1.1.1.2 Inter-tumour microenvironment heterogeneity 

Due to underlying genomic heterogeneity and the intrinsic characteristic of 

the affected tissue and organ, distinct tumours can present different TME 

statuses. These depend on the immune system’s ability to recognise the tumour 

and respond to it, a process influenced by several factors. These include somatic 

mutations, antigen expression, signal pathway activity, availability of immune cell 

populations for recruitment and T helper type 1 (Th1) skewing12. Tumour cell 

recognition by the immune system depends on the presentation of tumour self-
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antigens to the adaptive immune system. These antigens include aberrantly 

expressed differentiation, development, or lineage-specific antigens (like cancer-

testis antigens) 13, or tumour cell-specific neoantigens derived from the 

translation of genes harbouring somatic mutations14. However, the production of 

tumour self-antigens is not sufficient to initiate an antigenic T cell response, and 

the antigens also need to be presented to the tumour cells in an 

immunostimulatory context. Antigen presentation requires cleaving the 

neoantigen into peptides that can be presented via the Major histocompatibility 

complex (MCH) I molecules on the tumour cell surface. Then, the specific T cell 

receptor (TCR) recognises the antigens bound to MHCI on naïve CD8+ T cells. 

This antigen presentation generally occurs in the lymph nodes and spleen but 

can also happen in Tertiary Lymphoid Structures (TLS) at the periphery of 

tumours that have been subject to long exposures to inflammatory cytokines13. 

After activation, the resulting short-term memory T cells proliferate and 

differentiate into effector T cells, effector memory T cells, central memory T cells, 

and cytotoxic lymphocytes (CTLs) 14. The resulting anticancer immunity can then 

develop into one of three main TME phenotypes: the immune-desert, the 

immune–excluded, and the inflamed phenotype 14. 

The immune-desert TME is characterised by minimal inflammation, and 

though myeloid cells may be present, there is little or no CD8+ T cell infiltration. 

This low immune activity is probably due to immunological ignorance, the 

induction of tolerance or a lack of appropriate T cell priming or activation. All these 

factors prevent the generation of tumour-specific T cells at a rate sufficient to 

mount an effective response15. 
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The immune-excluded TME phenotype instead is characterised by 

abundant immune cells in the outlying stroma and unable to infiltrate the 

tumour14. Immune cell infiltration is inhibited or blocked through various 

mechanisms, including inhibitory chemokines, fibrotic nests, vascular factors or 

barriers, or specific stromal-based inhibition. Immune excluded TMEs can be 

found in different epithelial cancers, such as colorectal carcinoma (CRC), 

melanoma and pancreatic ductal adenocarcinoma (PDAC). Immune-excluded 

TMEs contain CTLs with low expression of the activation markers Granzyme B 

(GzB) and Interferon γ (IFNγ) compared to tumours with a more inflamed 

phenotype 15. 

 Inflamed tumours have TMEs with high levels of infiltration by active CTLs 

with high expression of Programmed cell death protein 1 (PD1), GzB, and IFNγ. 

These TMEs are also characterised by high levels of proinflammatory cytokines 

potentially driving T cell activation and expansion, such as type I and II IFNs, 

Tumour Necrosis Factor α (TNFα), Interleukin 2 (IL2), IL12, IL23, IL1β 15. 

Additionally, many other immune cell types can be present, including B cells 

regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and cancer-

associated fibroblasts (CAF). These can express inhibitory factors and 

checkpoint molecules such as Programmed death-ligand 1 (PDL1) that inhibit 

CD8+ T cell response and cause their exhaustion. Finally, a subset of inflamed 

tumours can develop TLS, lymphoid aggregates with a cell composition similar to 

lymph nodes. They are generally located in the stroma or the tumour invasive 

margin and can act as additional centres of antigen presentation and lymphocyte 

activation. TLSs often correlate with a favourable prognosis16. 



Chapter 1 Introduction 

19 

1.1.1.3 Inter-tumour heterogeneity of CRC and MSI-CRC 

CRC classification initially relied on clinicopathological characteristics. 

However, tumours with the same histologic features and tumour stage could still 

have different prognoses and responses to therapy17. More recently, the mutation 

status of genes such as Rat sarcoma virus protein (RAS), v-Raf murine sarcoma 

viral oncogene homolog B (BRAF), Phosphatidylinositol-4,5-Bisphosphate 3-

Kinase Catalytic Subunit α (PIK3CA) and other initiating molecular events have 

been employed as biomarkers for the informed clinical management of CRC, 

together with microsatellite instability (MSI). According to this last feature, CRCs 

are generally divided into MSI tumours and Microsatellite stable (MSS) tumours18. 

MSI tumours constitute about 12-15% of all CRCs and arise from deficient 

DNA mismatch repair (MMR), which can be due to germline mutations in MMR 

genes, or more commonly to MutL Homolog 1 MLH1 gene inactivation from CpG 

island methylation19. This type of sporadic CRC is also known as the CpG island 

methylator phenotype (CIMP) and often presents somatic mutations in BRAF. 

MSI tumours are generally located in the proximal and right colon and often 

present hypermutation. These tumours are commonly poorly differentiated and 

rich in tumour-infiltrating lymphocytes.  

MSS tumours that arise in 65–85% of CRC patients are instead 

characterised by chromosomal instability (CIN), which does not lead to a 

hypermutated phenotype19. The exact mechanisms underlying CIN in MSS CRC 

are not well understood as large structural variations copy number alterations, 

aneuploidy, mutations in TP53, and other tumour suppressors can play a role19. 
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Genomic instability induced by replication stress, telomere erosion, and promoter 

hypomethylation can also drive CIN in CRC. In contrast to MSI patients, CIN MSS 

patients have a relatively unfavourable prognosis, especially in the early stages18. 

MSI status is used to guide clinical management together with the 

Classification of Malignant Tumors (TNM) staging, and the status of RAS and 

BRAF help guide clinical management17. These factors inform the administration 

of adjuvant therapy, and the mutational status of Kirsten rat sarcoma virus protein 

(KRAS) and Neuroblastoma RAS Viral Oncogene Homolog (NRAS) guides the 

application of anti- Epidermal growth factor receptor (EGFR) drugs to metastatic 

CRC17. Finally, as described in section 1.2, these features are also biomarkers 

for response to anti-PD1 immunotherapy. However, these molecular markers do 

not fully explain the substantial differences in outcome and therapy response 

observed across CRC patients, even when other pathways such as 

Wingless/integrated (WNT) are considered19. Thus, several approaches relying 

on transcriptomic and epigenetic analysis and somatic mutations have been 

proposed in recent years. These efforts were harmonised into a more 

comprehensive classification system known as the consensus molecular 

subtypes (CMS) of CRC20. The CMS system relies on transcriptomic data to 

classify CRCs into four molecular subtypes: CMS1, CMS2, CMS3 and CMS4 

(Figure 1.1).  

The CMS1, also known as MSI immune subtype, represents about 14% of 

total CRCs19. CMS1 tumours have MMR defects with an MSI hypermutated 

phenotype and CIMP, often with BRAF mutations and a low level of CIN. The 

presence of abundant neoepitopes due to the hypermutated phenotype often 
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results in high CD8+ T cell infiltration and high Th1 cell activity14 (Figure 1.1a). 

However, immunosuppressive cells with pro-tumour cytokines and immune-

checkpoint protein expression often inhibit this immune response. This 

immunosuppressive environment is thought to be the reason why CMS1 tumours 

generally respond better to checkpoint-blockade treatment than CMS2–4 

tumours18. 

CMS2 or canonical subtype accounts for 37% of all CRCs and is 

characterised by an MSS phenotype with high CIN19. These tumours have high 

levels of CIN and TP53 mutations. These tumours have WNT and V-Myc Avian 

Myelocytomatosis Viral Oncogene Homolog (MYC) pathway activation and 

elevated EGFR activity (Figure 1.1b).  

CMS3, also known as metabolic CMS, constitutes 13% of all CRCs19. 

CMS3 has mixed genomic and epigenomic features with low MSI and CIMP 

status with frequent KRAS and PIK3CA mutations. The expression profile of 

CMS3 tumours is characterised by high dysregulation of multiple metabolic 

signatures, active WNT and MYC signalling (at lower levels than CMS2 tumours) 

and IGBP3 overexpression (Figure 1.1c). The TME of CMS2 and CMS3 CRCs is 

immune cold with low immune and inflammatory activity and mostly PDL1 

negative, as expected from antigenically cold tumours18.  

CMS4 tumours constitute about 23% of all CRCs and have a 

mesenchymal phenotype due to the upregulation of genes involved in epithelial-

to-mesenchymal transition, remodelling of the extracellular matrix, and 

angiogenesis5. Additionally, the TME of these tumours is skewed towards 

immunosuppression as evidenced by the high expression of pro tumour genes, 
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including the Transforming Growth Factor β (TGFβ) pathway, and gene 

signatures associated with T helper type 17 (Th17) cells and 

monocytes/macrophages (Figure 1.1d). This immunosuppression results in 

lower CTL infiltration and a worse prognosis compared to CMS1 CRCs14. 

Finally, the remaining 13% of CRCs fall into a mixed group whose expression 

signatures do not allow its classification in any of the four previous CMS19. 

The clinical applicability of the CMS system is, however, limited by intra-

tumour heterogeneity, which can result in significantly different prognoses even 

across tumours with the same phenotype21. This issue is further compounded in 

a metastatic setting, in which the metastasis could have a phenotype vastly 

different from the primary tumour21. Additionally, there can be phenotype 

variability across tumour regions and between metastatic lesions from the same 

patient both in space and time. Thus, extensive intra-tumour heterogeneity may 

significantly hinder the prediction of a tumour prognosis and therapy susceptibility 

when only bulk data from a single tumour region is available17. 
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Figure 1.1 The four CMS of CRC 

The CMS classification of CRC20. For each CMS (a-d) are reported the more 

frequent primary site, the most common microsatellite status, main driver mutations and 

altered pathways. CIMP, CpG island methylator phenotype; CIN, chromosomal 

Instability; MSI, microsatellite instability; MSS microsatellite stable; BRAF, v-Raf murine 

sarcoma viral oncogene homolog B; PD1, programmed death protein 1; CTLA4, 

cytotoxic T-lymphocyte-associated protein 4; WNT, wingless/integrated; MYC, V-Myc 

Avian Myelocytomatosis Viral Oncogene Homolog; KRAS, kirsten rat sarcoma virus 
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protein; TGFβ, transforming growth factor β; VEGF, vascular endothelial growth factor; 

CXCL2, Chemokine (C-X-C-motif) ligand 2. 

1.1.2 Intra-tumour heterogeneity 

ITH comprises all the differences in phenotypes between different regions 

of the same tumour. Multiregional DNA-seq and RNA-seq analyses first and later 

studies with single-cell technologies have shown significant phenotype variability 

across a single tumour9. While genetic variation is the main cause of ITH, this 

variability can then manifest at the epigenetic and cell phenotype levels, resulting 

in different TMEs in different regions of the same tumours. 

1.1.2.1 Genetic intra-tumour heterogeneity 

The stochastic acquisition of somatic mutations after the transformation of 

the first tumour cell is the leading cause of genetic ITH. These new somatic 

mutations can be drivers that increase the fitness of their host cells or have a 

negative or null effect on fitness. This latter case is the more common, and these 

so-called passenger mutations constitute the vast majority of mutations picked 

up by cancer sequencing screens9. During the life history of the tumour, 

malignant cells and their genomes undergo evolutions according to drift and 

selection22. Drift is the variation of allele frequencies in the population due to 

random external factors impacting the survival and reproduction of different 

lineages independently of their genotypes. Selection is non-random and depends 

on the lineage having a genotype, which confers a survival or reproductive 



Chapter 1 Introduction 

25 

advantage over other lineages22. The genotypes of the lineage with the higher 

fitness will thus have a higher frequency in the following generations22. 

As a result of these evolutionary forces, by the time that tumours present 

clinically, they consist of multiple distinct subpopulations or clones. While clonal 

mutations are shared by all cancer cells, subclonal mutations are present only in 

a subset of one or more clones. Subclonal mutations may affect fitness when the 

TME changes because of increased hypoxia, immune response, therapeutic 

agents, or after metastatisation2. Thus, genetic ITH significantly impacts the 

tumour prognosis and response to treatment. 

The origin of genetic ITH is still being investigated. While point mutations 

are well understood, they might not be the leading cause of ITH. CIN is a feature 

of most human cancers, often linked to whole-genome duplication and 

aneuploidy23. These large-scale genomic rearrangements cause much faster 

rates of genomic mutation, thus increasing ITH23. The impact on the phenotype 

of these large genomic changes is, however, difficult to interpret, as they 

generally involve several genes and thus impact whole regulatory networks24. 

The few exceptions are cases of complete allele loss or massive focal 

amplification of an individual or few genes23. 

Genetic ITH can quantify from DNA-seq data by calculating the cancer cell 

fraction of each somatic mutation from its mutation allele frequencies after 

adjusting for local copy number and sample purity9. The subsequent clustering of 

these mutations according to their cancer cell fractions allows the estimation of 

the number of distinct subclones and their relative sizes9. This approach is limited 

by the very high sequencing depth required to distinguish mutations with a low 
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allele frequency from random noise22. Additionally, single-sample analyses can 

underestimate ITH as the sample is not fully representative of the whole tumour, 

and clonal mutations in one area can be subclonal in another25. Multi-region 

sequencing explores ITH in multiple regions, but deriving a unified clonal 

landscape from multiple regions is a complex computational problem9. 

Further understanding of ITH and tumour evolution has been achieved 

through the application of single-cell sequencing technologies, including single-

cell DNA and RNA sequencing25. These new approaches allow the investigation 

of ITH at single-cell resolution but are limited by high rates of missing values due 

to allele drop-out and other technical factors9. 

ITH is hard to study with genetically engineered mouse models, as most 

available lines rely on powerful combinations of driver mutations within a single 

cell2. These models provide convenient and reproducible experimental systems 

to study molecular mechanisms, but they rarely display the degree of subclonal 

and cellular genetic heterogeneity seen in spontaneous cancers2. This problem 

has been partially overcome through the combined use of low-penetrance 

oncogenes drivers with a source of genetic diversification, such as mutagens or 

transposons2. The use of such models will enable the assessment of the 

functional relevance of subclonal interactions in tumour evolution in higher detail2. 

While most studies focus on genomic alterations, epigenetic diversity is an 

essential component of ITH. Epigenetic heterogeneity is involved in the 

acquisition of traits linked to metastatisation and drug resistance2, 26. However, 

epigenetic changes can be highly plastic: while some changes like the DNA 

hypermethylation of promoters are stable, others can last only a few cell 
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divisions2. Thus, studies on epigenetic ITH mainly focused on DNA methylation24. 

Advances in single-cell sequencing technologies have enabled the single-cell 

multiomic profiling of tumours, including both genomic and epigenomic analyses 

for DNA methylation and chromatin accessibility2. 

ITH is not limited to differences in subclones with different genetic and 

epigenetic statuses, as ITH also involves differences in the TME26. This variability 

in the TME is due to clones with specific epigenetic and genetic makeups 

interacting with the local environment in different ways, thus giving rise to TME-

related ITH24, 25. 

1.1.2.2 Intra-tumour microenvironment heterogeneity 

As tumour cells evolve and diversify during tumour evolution, so does their 

microenvironment due to the dynamic interactions between the TME and tumour 

cells27. In turn, the TME can shape tumour evolution through immune response, 

cell signalling and other cell-extrinsic factors like pH, oxygen and nutrient 

availability2. The subsequent alteration of the tissue environment can then result 

in abnormal juxtacrine and paracrine signalling, which contributes to selection 

and further diversifies cancer cell phenotypes2. Finally, the tissue organisation is 

wholly lost in invasive and metastatic tumours, resulting in highly altered and 

heterogeneous TMEs and significantly affecting tumour progression and 

treatment outcomes. These outcomes are shaped by both structural and 

immunological aspects of TME heterogeneity27. 

Structural ITH is caused by the non-uniform remodelling of several tissue 

features, including blood and lymphatic vascularisation, as well as the 
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extracellular matrix (ECM) and cell migration2. While most tumour cells are 

separated from stroma-derived ECM by more than one cell layer, some are still 

in contact with an ECM whose composition is altered compared to normal 

tissues2. Additionally, the distribution of blood and lymphatic vasculature in 

tumours is generally disorganised and together with the layout of nearby 

epithelia. These alterations cause significant spatial and temporal variability in 

oxygenation, availability of nutrients and growth factors, and pH28. The 

combination of gradients of all these factors generates a wide range of 

microenvironments and thus leads to phenotypic ITH. For example, a decrease 

in pH at the tumour periphery has been observed to drive the epithelial-to-

mesenchymal transition, mediating tissue invasion28. Finally, distinct 

microenvironments can act as evolutionary niches by causing different selective 

pressures and thus increasing spatial genetic ITH, which has been correlated 

with poor prognosis24. 

Immunological TME ITH is also strictly linked to genetic ITH. The main way 

the immune system influences the evolution of ITH is through the three stages: 

elimination, equilibrium and escape24. At the beginning of tumour development, 

distinct tumour clones produce different sets of neoepitopes from their specific 

set of somatic mutations. The clones harbouring the strongest neoepitopes are 

more immunogenic and are thus negatively selected. In turn, the T cells 

populations with TCRs targeting these strong neoepitopes expand, and the less 

tumorigenic tumour clones grow24. This process can play a significant role in 

shaping ITH as subclonal neoepitopes have been observed to have a higher 

immunogenic potential than clonal ones29. Immune elimination processes lead to 
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an equilibrium state, in which the immune system maintains net tumour growth to 

a minimum}2. Finally, in the escape phase, the tumour acquires the ability to 

escape the immune system and progresses to unrestrained growth24. 

 Immune escape can be achieved through multiple mechanisms. These 

include reduced antigen presentation either by loss of heterozygosity at the 

human leukocyte antigen (HLA) locus or epigenetic repression of neoantigen 

express, and generation of an immunosuppressive microenvironment leading to 

immune exclusion or immune exhaustion24. The impact of these processes was 

observed in a multi-region study showing that high densities of CD8+ and CD4+ 

T cells were associated with high TCR diversity, but these factors did not correlate 

with genetic heterogeneity29. The same study also observed immune-cell-

excluded and inflammatory microenvironments in multiple metastases of the 

same ovarian cancer patient29. 

Other cell populations also contribute to diversity, including antigen-

presenting cells and tumour associated fibroblasts (TAF). The latter often 

comprise multiple diverse populations, which can have different tumour 

promoting functions like driving a migratory phenotype and Epithelial-to-

Mesenchymal Transition (EMT) in tumour cells24. 

Thus, ITH is determined by a combination of genetic, epigenetic, and TME-

related factors27. The resulting phenotypic ITH then directly impacts response 

and resistance to therapies2, 26. 
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1.1.2.3 Intra-tumour heterogeneity of CRC 

CRC is a highly heterogeneous disease, and survival rates vary highly 

across patients sharing the same TNM stage30. This heterogeneity is due to 

multiple genetic and non-genetic factors31. Genetic ITH in CRC is observed in 

most patients32 as various multiregional sequencing studies have identified 

subclonal mutations for many of the main driver genes of CRC, including KRAS 

and NRAS33  as well as Adenomatous Polyposis Coli (APC), TP53, and Erb-B2 

Receptor Tyrosine Kinase 4 (ERBB4) mutations34. Finally, the variant allele 

frequency of KRAS, NRAS, PIK3CA, or BRAF mutations was observed to be 

highly variable across samples from a single patient35. 

Generally, there is a very high concordance in MSI status and clonal driver 

mutations between the primary tumour and associated metastases31. However, 

differences in KRAS and TP53 mutations and 18q loss have been reported36. 

This high similarity between primary tumours and the associated metastasis has 

also been observed at the gene expression level31. 

Histopathological examination of phenotypic ITH in CRC has shown that 

more than 50% of MSI tumours present different growth patterns with glandular, 

mucinous, or medullar morphologies37. While mixed morphologies were only 

observed in 10% of MSS tumours, differences in immune infiltration and 

inflammation status were also observed within one tumour. These variations are 

highly correlated with the morphology of the tumour, and thus higher ITH was 

observed in MSI compared to MSS tumours37. 
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ITH in CRC is directly reflected in patient survival and response to 

therapy30. CRC patients with higher ITH have shorter survival: the three years 

overall and progression-free survival are 66% and 23% for patients with low 

metastatic ITH, but only 18% and 5% and for high ITH patients38. High ITH was 

also associated with a higher incidence of liver metastasis39 and treatment 

resistance30. Interactions between subclones can also lead to stronger resistance 

to treatment. For instance, KRAS wildtype CRCs generally respond to cetuximab, 

while KRAS mutant CRCs are often resistant. However, KRAS mutant subclones 

can produce Transforming Growth Factor TGFα and amphiregulin, which can 

induce KRAS wildtype cells to grow continuously despite treatment40. 

1.2 Cancer Immunotherapy 

Several immunotherapeutic agents have been developed over the last 

decades, and many saw application in the clinic. The mechanisms targeted by 

cancer immunotherapy differ significantly from those behind chemotherapy or 

oncogene-targeted therapies. Immunotherapy leverages the patient’s immune 

system to produce a dynamic anticancer response not limited to a single 

oncogenic target or the high proliferation rates of cancer cells41.  

 Immunotherapy agents include immune checkpoint inhibitors (ICIs) and 

autologous T cells engineered to express a CD19-targeting chimeric antigen 

receptor (CAR) 42. The applications of other types of agents are also being 

investigated, including immunostimulatory monoclonal antibodies, small 

molecules immunosuppression inhibitors, as well as therapeutic vaccines42. This 
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section will focus on ICIs as they are the immunotherapy agents currently used 

in CRC43. 

1.2.1 Immune checkpoint Inhibitors 

As described in section 1.1.2.2, the tumour can escape elimination by the 

immune system through several mechanisms, including the activation of negative 

regulatory pathways to suppress the immune response. Most of these pathways 

depend on immune checkpoints cell surface receptors, which regulate the 

activation and function of T cells15. The physiological role of immune checkpoints 

is the maintenance of self-tolerance, but tumours frequently exploit them to 

suppress the immune response42. So far, ICIs against three targets have been 

approved for clinical use by the United States Food and Drug Administration 

(FDA)44. The first was ipilimumab, an antibody against Cytotoxic T-Lymphocyte 

Associated Protein 4 (CTLA4)41. CTLA4 negatively regulates T cell activation 

through competition for binding with the shared ligands CD80 and CD86. 

Ipilimumab was approved first for the treatment of advanced-stage melanomas 

and then of various other cancer types41. 

 The second ICIs are also antibodies and target the PD1 receptor. These 

drugs, named pembrolizumab and nivolumab, were approved first in melanoma 

and then also for several other cancer types44. Finally, the third target of ICI 

antibodies is PDL1. Three antibodies have been approved as anti-PDL1 agents 

by the FDA: atezolizumab, durvalumab, and avelumab, which are applied mostly 

to urothelial carcinoma, non-small-cell lung cancer, and Merkel cell carcinoma41. 
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Anti-PD1 and anti-PDL1 antibodies have become more commonly 

employed than anti-CTLA4 agents because of the lower side effects and higher 

efficacy44. The following section will focus on anti-PD1 agents. In addition to the 

currently approved therapies, many antibodies and small molecules are in active 

clinical development. These new ICIs target different checkpoints, including 

Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM 

domains (TIGIT), T cell immunoglobulin and mucin-domain containing-3 (TIM3), 

CD276, CD39, CD73, and CD4744. 

Despite the great research development efforts behind ICI therapies, most 

patients do not achieve a durable clinical benefit. For instance, 60%-70% of 

melanoma patients treated with anti-PD1 therapy do not respond45, and out of all 

responders 20–30% have a later relapse45. Cases with no response to therapy 

are classified as primary resistance, while cases where the response is not 

maintained are categorised as acquired resistance46. The understanding of the 

mechanisms of both types of resistance is still incomplete despite considerable 

research efforts in this direction, as it will be vital to unlocking the full potential of 

anti-PD1 agents and other ICIs46. 

1.2.2 Anti-PD1 immunotherapy 

Anti-PD1 and anti-PDL1 agents operate by blocking the interactions 

between PD1 and its ligand that activate this negative regulation pathway. PD1 

is expressed by activated T cells, natural killer cells, B cells, macrophages, 

monocytes, and Dendritic Cells (DCs), but its role is best known in tumour-

specific T cells where it is expressed at the highest levels47. A broader range of 
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cell types expresses its ligands PDL1 and Programmed death-ligand 2 (PDL2). 

PDL1 is expressed by several immune cell types, tumour cells, endothelial cells 

and epithelial cells. PDL2 instead is expressed mainly by activated DCs and 

macrophages47. 

The binding between PD1 and its ligand on tumour-specific T cells causes 

the phosphorylation of multiple tyrosine residues in the cytoplasmic region of 

PD148. The phosphorylation of these residues enables the recruitment of multiple 

phosphatases, including Src homology 2 domain-containing protein tyrosine 

phosphatase (SHP1) and (SHP2)49. These phosphatases inhibit the stimulatory 

signals produced by the TCR through MHCI and CD28 interactions48. For 

instance, CD28-mediated signalling is inhibited through interactions with CD80 

or CD86, while other downregulated downstream signalling pathways include the 

PI3K–AKT and the RAS signalling pathways49. This inhibition causes the 

decreased activation of several transcription factors, including Nuclear Factor 

kappa B (NF-κB) 48 and prevents the activation of pathways necessary for 

maintaining T cell activation, proliferation, and effector functions, including 

cytotoxicity and survival49. 

Another mechanism of T Cell inhibition by PD1 is the increase of 

expression of another series of transcription factors, including Basic Leucine 

Zipper ATF-Like Transcription Factor (BATF), which further suppress T cell 

function49. This downregulation causes also reduced production of TNFα, IFNγ, 

and IL2, further inhibiting the anti-tumour immune response48. Finally, PD1 is 

expressed at high levels also on Treg cells. PD1 signalling can stimulate the 
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proliferation of Tregs, which in turn contribute to the creation of an immune-

suppressed microenvironment15. 

Several tumour features have been investigated as predictors of response 

to anti-PD1 ICIs. First, tumours with an immune-inflamed phenotype generally 

have higher chances to respond48. PDL1 expression is also employed as a 

biomarker because its presence is necessary for PD1-PDL1 interactions to 

occur48. Additionally, PDL1 expression is increased in response to IFNγ signalling 

and thus reflects the activity status of the immune response, linking its expression 

to CD8+ T cell responses and antigen presentation42. Other markers of active 

immune response correlate with PDL1 expression, including granzymes and 

Chemokine (C-X-C motif) ligand  9 and 10 (CXCL9 and CXCL10)15. However, 

tumours with low levels of PDL1 can still occasionally respond to anti-PD1 

therapy, and high PDL1 expression is not sufficient to predict response to anti-

PD1 therapy15. 

TMB is also an emerging predictor of anti-PD1 response in multiple cancer 

types46. High TMB is associated with a higher response rate and longer survival 

in patients treated with ICI. This is likely due to higher neoantigen production, 

which increases the likelihood strongly immunogenic neoantigens will elicit a 

strong immune response when PD1 inhibition is released by ICI therapy48. 

Prediction of response to ICI is also hindered by the large variety of 

mechanisms, which can lead to primary or acquired resistance46. For instance, 

mutations in genes involved in antigen processing and presentation can cause 

ICI resistance. Loss or downregulation of MHCI components such as β2-

Microglobulin (B2M) can result in impaired antigen presentation to cytotoxic T 
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cells46. Alternatively, oncogenic signalling can alter TME composition and reduce 

T cell infiltration for alterations in β-catenin/WNT can reduce immune response 

through lower production of C-C Motif Chemokine Ligand 4 (CCL4) leading to 

lower levels of DC infiltration46. Additionally, higher expression of other immune 

checkpoint molecules such as CTLA4, TIM3, LAG3, and V-domain Ig suppressor 

of T cell activation (VISTA) correlates with anti-PD1 resistance46. Another cause 

of resistance is the presence of different populations of PD1+CD8+ T Cells, not all 

of which can respond to anti-PD1 treatment49. Finally, other immune cells can 

also influence the TME in ways that affect the anti-PD1 response, including 

Tregs, MDSCs, T helper type 2 (Th2) T cells, and M2 Tumour Associated 

Macrophages (TAM)41. These cell types can generate an immune-suppressive 

TME that prevents an effective anti-tumour immune response even after the 

release of PD1-mediated inhibition on effector T cells48. A more comprehensive 

understanding of all these factors is required to increase the clinical effectiveness 

of anti-PD1 ICI46. 

1.2.3 Anti-PD1 immunotherapy in CRC 

As described in section 1.1.1.3, CRCs can be divided in two phenotypes 

MSI and MSS CRC. The latter constitute the vast majority of CRC patients and 

generally do not respond to anti-PD1 immunotherapy50. This is thought to be 

likely caused by their lower mutational burden, leading to fewer neoantigens and 

lower levels of T Cell infiltration. These tumours generally belong to CMS2, 3 and 

4, MSI tumours instead typically belong to CMS1 and are rich in tumour-infiltrating 
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lymphocytes19. Thus, MSI tumours are the main targets of anti-PD1 ICI agents in 

CRC43. 

The two anti-PD1 ICI drugs, pembrolizumab and nivolumab, have been 

approved by the FDA for patients with metastatic MSI CRC. Additionally, the anti-

CTLA4 agent ipilimumab has been approved by the FDA for use in combination 

with nivolumab in metastatic MSI CRC patients previously treated with 

chemotherapy51. The effectiveness of anti-PD1 ICI has been evaluated in multiple 

clinical studies. For instance, Keynote-17752 is a phase III trial of first-line 

pembrolizumab in stage IV MSI CRC which had a 24 months progression free 

survival rate of  48.3% compared to the 18.6% achieved through 

chemotherapy52l. Additionally, the phase II trial Checkmate 142 trial53 on 

combined nivolumab and low-dose ipilimumab therapy in untreated stage 4 

dMMR–MSI CRC patients had an objective response rate and a disease control 

rate of 60% and 84% respectively, with complete response in 7% of patients53. 

The 12 months progression free and overall survival rates were 77% and 83%53. 

Despite these very positive results, there is still a large fraction of MSI CRC 

patients who do not respond to anti-PD1 therapies. Additionally, these trials 

evidenced the presence of patients who develop acquired resistances. 

Altogether, these factors suggest that factors other than the tumour mutational 

burden are determining for response to anti-PD1 therapies43. 

In addition to the mutational burden, another predictor of immunotherapy 

response could be the level of tumour-infiltrating CD3+CD8+ lymphocytes. This 

can be quantified through the assignment of an immunoscore calculated from 

density these T cells in the tumour core and invasive margin54. Other studies 
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employed gene expression signatures to quantify intra-tumoural cytotoxic T cell 

infiltration, but the predictive potential of these signatures has not been fully 

explored in CRC50. 

PDL1 expression measured by immunohistochemical staining could 

represent a predictive biomarker of anti PD1 response in some tumour types 

including non-small cell lung cancer and gastric and gastroesophageal junction 

tumours10. However, PDL1 expression was not a predictor of response or survival 

in CRC junction10. Additionally, acquired mutations in Janus Kinase 1 and 2 

(JAK1 and JAK2), which have been identified as markers of anti-PD1 resistance 

in other cancers, have a still uncertain role in CRC43. Truncating mutations in 

B2M were also observed in CRCs that developed resistance to pembrolizumab50. 

Finally, the sporadic or Lynch syndrome associated aetiology of MSI CRCs is not 

predictive of anti-PD1 therapy response43.  

Further research into the mechanisms underlying response to PD1 beyond 

the tumour mutational burden is needed. An in-depth investigation of the TME in 

metastatic MSI CRC is required to identify novel biomarkers of response and 

clinical strategies43. For this reason, tissue-level analyses of the TME in CRC and 

other cancer types are being conducted with the techniques and approaches 

described in the following sections. 
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Figure 1.2 Examples of highly-multiplexed imaging technologies 

Schematic representation of four of the highly-multiplexed imaging technologies 

reported in table 1 (a-d). For each imaging technology are reported the type of antibody 

conjugates employed in the staining process, and the detection system needed. 
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1.3 Tissue-level analysis 

Animal cells are always acting as part of the higher-order organisations 

represented by tissues, formed of cells of multiple types, extracellular matrix and 

signalling molecules. These form a microenvironment whose composition, 

structure, and interaction are responsible for the functions of the tissue within the 

organ. Tissue-level interactions underlie several disease conditions, including 

cancer, and determine the outcome of therapies acting directly on tissue 

environment, such as cancer immunotherapy14. For these reasons, investigating 

the dynamic organisation of tissues is of paramount importance for the 

understanding of most physiological and pathological functions55. In the case of 

the tumour microenvironment and its relationship with immunotherapy, there are 

still several open questions that need to be addressed at the tissue level56. For 

example, which intrinsic or extrinsic factors enable immune evasion? How do 

vascular endothelial cells and cancer cells interact to promote growth and 

metastasis? Does the spatial organisation of cell-cell interactions influence the 

intra- and inter-clonal heterogeneity in solid tumours? These and other research 

questions are being addressed with several techniques56, which will be discussed 

in the following paragraphs. 

1.3.1 Transcriptomics for tissue-level analysis 

Since different cell types have different expression profiles, tissue 

composition can be characterised at the transcriptomic level. The first 

approaches were based on the bulk RNA-seq analysis of pooled, heterogeneous 
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mixtures of cells from tissue samples. However, these measurements relied on 

an average quantification of gene expression influenced by the differences in 

state, phenotype and transcriptional profiles from cells of the same type, which 

can obscure proportional and subpopulation or state-specific differences57. 

Then, the development of several single-cell sequencing technologies 

enabled the direct quantification of tissue composition and heterogeneity at the 

single-cell resolution. These approaches, often combining other single-cell omics 

targeting genome sequences, protein expression, DNA methylation, and 

chromatin accessibility, enabled the investigation of several aspects of tissue 

heterogeneity in cancer58.  

The analysis of cancer tissue composition from expression data is 

presented in a review59 I wrote with Mohamed Reda Keddar, Francesca D. 

Ciccarelli and Lorena Benedetti. 

1.3.1.1 Identification of non-cancer cells from cancer 
transcriptomic data 
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A B S T R A C T

Interactions between cancer cells and non-cancer cells composing the tumour microenvironment play a primary
role in determining cancer progression and shaping the response to therapy. The qualitative and quantitative
characterisation of the different cell populations in the tumour microenvironment is therefore crucial to un-
derstand its role in cancer. In recent years, many experimental and computational approaches have been de-
veloped to identify the cell populations composing heterogeneous tissue samples, such as cancer. In this review,
we describe the state-of-the-art approaches for the quantification of non-cancer cells from bulk and single-cell
cancer transcriptomic data, with a focus on immune cells. We illustrate the main features of these approaches
and highlight their applications for the analysis of the tumour microenvironment in solid cancers. We also
discuss techniques that are complementary and alternative to RNA sequencing, particularly focusing on ap-
proaches that can provide spatial information on the distribution of the cells within the tumour in addition to
their qualitative and quantitative measurements.

This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by
Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.

1. Introduction

Cancers arising from epithelial cells account for 80–90% of all solid
cancers [1]. However, cancer cells do not grow in isolation. The ma-
lignant epithelium is in fact surrounded by stromal cells including fi-
broblasts, immune and endothelial cells which altogether form the tu-
mour microenvironment (TME). Stromal cells in the TME sustain and
regulate tumour growth, immune evasion and drug resistance me-
chanisms [2]. In the past decade, the interest of the cancer research
community in the TME has progressively grown because of its role in
new therapies that target the host immune system [2–4]. In particular,
T cells are able to recognise and eliminate tumour cells. However, tu-
mours develop resistance mechanisms preventing T cell activation.
Immunotherapies currently used in the clinic have two main mechan-
isms of action. They either boost the immune response by activating T
cells or they restore the immune response that has been inactivated
during tumour growth. Anticancer vaccines and chimeric antigen re-
ceptor T cells represent successful attempts to activate the anticancer
immune response [3]. Immune checkpoint inhibitors release the brakes
imposed by tumour cells on T cells, restoring the host antitumour

immune response. These drugs are already successfully applied to treat
a variety of tumours, including melanoma, lymphoma, lung, renal cell,
head and neck squamous, bladder, liver and gastro-oesophageal cancers
[3,5]. However, despite their encouraging success, still many patients
do not respond to immunotherapy or develop resistance over time.
Understanding TME complexity is therefore essential to predict which
patients would benefit from immunotherapy, in full agreement with a
personalised approach to cancer therapy.

Tumour infiltrating immune cells can be either beneficial or detri-
mental for cancer development depending on their localisation, abun-
dance and function. For instance, the presence of CD8+ T cells and T
helper cells is usually associated with good prognosis [2,6] while
myeloid derived suppressor cells are predictive of bad outcome [7].
Therefore, the detailed characterisation of immune infiltrates is being
progressively incorporated into the clinical practice [6,8]. A method
widely used in the clinic to estimate the abundance of tumour in-
filtrating immune cells is the haematoxylin and eosin (H&E) staining.
Although this staining is not specific for any particular cell type, it has
proven to be clinically relevant for several cancer types [6]. For in-
stance, high levels of lymphocyte infiltration estimated from H&E
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staining are predictive of better prognosis in non–small cell lung cancer
[9]. More cell-specific methods for the clinical quantification of im-
mune cells include the combination of up to five antibodies to detect
the presence of different immune cell populations using im-
munohistochemistry (IHC) or immunofluorescence (IF) [6]. These
chromogenic or fluorescent labelling-based approaches also provide
some spatial information on how epithelial and stromal cells are dis-
tributed within the tumour. This analysis is however restricted to the
small portion of the tumour that can be sliced from a formalin-fixed
paraffin embedded (FFPE) cancer block. It therefore may not be re-
presentative of the whole tumour mass. Moreover, the number of cell
populations that can be identified is limited due to the small number of
markers that can be tested. In this respect, serial IF constitutes a major
improvement allowing several rounds of sequential staining of the same
sections using up to 12 antibodies [10]. Similarly, high-parameter flow
cytometry can profile up to 27 markers in disaggregated cells from
several centimetres of tumour mass [11]. These approaches are still
being developed and are not yet part of the clinical practice.

Similarly, approaches based on the quantification of protein ex-
pression with mass-spectrometry can also reveal detailed profiles of the
tumour immune infiltrates. Imaging mass cytometry (IMC) [12] and
multiplex ion beam imaging (MIBI) [13] allow the simultaneous iden-
tification of up to 40 markers in about 1mm2 of tissue area. IMC and
MIBI provide spatial information on the distribution of cells within the
tissue, which adds additional layers of relevant information. Other
methods rely on mRNA quantification either using fluorescent probes,
like the NanoString nCounter [14], or next-generation sequencing
(NGS). NanoString nCounter can be applied to slices of FFPE or fresh
frozen (FF) tissues leading to the quantification of up to 800 markers.
NGS-based approaches like RNA sequencing (RNA-seq) can be applied
to bulk cancer samples or to previously isolated single cells. Despite not
providing any spatial information, RNA-seq enables a comprehensive
and unbiased characterisation of tumour infiltrating immune cells
[15,16]. Moreover, the latest advancements in the field of tran-
scriptomics are beginning to provide spatial resolution ranging from a
few cells to subcellular levels [17,18].

In this review, we describe the main methods currently used to
quantify tumour-infiltrating cell populations, with a particular focus on
those based on bulk and single cell RNA sequencing (scRNA-seq). We
also comment on alternative and complementary approaches that are
emerging for TME characterisation.

2. RNA sequencing of cancer samples

RNA-seq allows the quantification of gene expression and enables
the profiling of a number of genes far greater than other approaches
based on probes or antibodies. In the context of cancer biology, RNA-
seq is a useful tool for tumour classification, patient stratification and
for studying response to therapy, [19,20].

2.1. Bulk RNA sequencing

Bulk RNA-seq refers to the sequencing of RNA from the bulk cancer
mass and it consists of four steps (Fig. 1A).

The first step is the extraction of RNA from either FF or FFPE cancer
samples. FF samples yield higher quantity and better quality RNA and
are thus preferentially used in large scale sequencing projects such as
The Cancer Genome Atlas (TCGA). However, the vast majority of
samples archived in hospital cancer biobanks are FFPE tissue blocks
[21]. Paraffin embedding and long-term storage are known to cause the
fragmentation of nucleic acids, while crosslinking is a direct con-
sequence of formalin fixation. This usually leads to low quantity and
bad quality RNA [21]. A de-modification step in which the RNA is
heated in amine-rich or organocatalytic buffers can be performed to
revert formaldehyde linkages and improve RNA quality [21]. In-
dependently of the sample source, the quality of the extracted RNA is a

key factor for all downstream analysis and should be carefully eval-
uated. The main RNA quality metric is the 28 s:18 s rRNA ratio, gen-
erally expressed as a RNA integrity number (RIN), with a higher value
indicating more intact RNA. While there is no consensus on the RIN
value to be used as a quality threshold, generally RIN values below 5
can negatively impact the library preparation and sequencing steps
[22].

The second step is the depletion of rRNAs that usually con-
stitute> 80% of the total RNA. There are several approaches for rRNA
depletion, depending on RNA quality [23]. In one of them, mRNA is
enriched through poly-A enrichment using oligo-dT beads. This method
generates high quality expression data that strongly correlates with
measurements from independent techniques such as microarrays [24].
However, it requires high quality and intact input RNA, because the
capture is done with a poly-T primer against the 3′ end of the transcript.
Thus, it is not always suitable for FFPE samples [23]. mRNA enrichment
can also be achieved through exon capture probes after cDNA synthesis.
In a comparative study with matched FF and FFPE tissue, the best
correlation between FF and FFPE expression data was obtained with
exon capture RNA [23]. However, the coverage is mostly limited to the
captured sequences. This, is because the RNA is partially fragmented so
the exonic probes will pull down small fragments containing the target
sequences. This approach allows to recover RNA fractions of> 98% of
the exome [25]. Alternatively, rRNAs can be removed with techniques
based on hybridisation, duplex digestion, or not-so-random RT-PCR
priming [23].

In the third step the RNA is fragmented, generally by heat digestion
with divalent cations. Finally, in the fourth step the fragmented RNA is
converted into cDNA and ligated to adapters to generate the library for
sequencing. The most commonly used NGS platforms for RNA-seq are
HiSeq and MiSeq Illumina.

2.2. Single-cell RNA sequencing

The recent development of high-throughput scRNA-seq technologies
allows to profile the transcriptome of thousands of individual cells per
sample [26] (Fig. 1B). These approaches mostly differ in the techniques
used for single-cell isolation. Cells can be isolated by fluorescence-ac-
tivated cell sorting (FACS), as in the MARS-Seq method, which performs
scRNA-seq on thousands of cells previously sorted into 384-well plates
[27]. Alternatively, single cells can be separated using microfluidic
chambers. This is achieved through micron-scale well arrays (as in Seq-
Well [28]) or by separating cells in aqueous microdroplets forming an
emulsion with an oil phase (as in Chromium [29], Drop-seq [30] and
inDrop [31]). Microfluidic-based methods require lower reaction vo-
lumes and enable the screening of up to hundreds of thousand cells at
lower costs [26]. Cell shape and stickiness (for example of fibroblasts or
cancer cells) can affect the efficiency of these methods, biasing single
cell capture towards certain cell types over others [32]. Due to the high
number of cells, sequencing depth is limited to around 50,000 reads/
cell, which is sufficient for clustering and identifying different popu-
lations [33].

FFPE samples represent a major challenge for scRNA-seq because
the tissue cannot be disaggregated to obtain single cells. However,
single cells can be isolated using a computer-guided laser capture mi-
crodissection (LCM) system. Although this approach has a throughput
of hundreds of cells only, it offers the advantage that each sequenced
cell can be mapped back to its original location in the tissue [34].

In the case of FACS or microfluidic-based methods, cells are bar-
coded during the cDNA synthesis step using beads bound to primers
containing a cell-specific barcode, a poly-T capture sequence, and a
Unique Molecular Identifier (UMI). While cell-specific barcodes are
identical within each cell-containing droplet or well, UMI sequences are
different and allow the counting of individual mRNA molecules. This
reduces the effects of duplicates that can be generated during cDNA
amplification [35]. Since a poly-T capture sequence is used, only the 3′
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RNAs ends are sequenced [26]. This achieves a throughput of thousands
to hundreds of thousands of cells, despite the limitations imposed by
sequencing cost and capacity. The main drawbacks of poly-T capture
beads are that low abundance transcripts may be lost mainly due to
limited capture efficiency [36] and it is not suitable for detecting mu-
tations or splicing variants [33].

In the case of LCM, isolated cells are generally sequenced at lower
throughput using full-length scRNA-seq protocols, like Smart-seq2 [37].
These methods use Switching Mechanism at 5′End of RNA Template
(SMART) chemistry. In this respect the recently developed Smart-3SEQ
protocol is particularly suited for FFPE samples [38].

2.3. RNA-seq data analysis

Conceptually similar analytical approaches can be applied to the
quantification of gene expression from either bulk RNA-seq or scRNA-
seq data [36] (Fig. 1C). In fact, although scRNA-seq-specific methods
have started to be developed [36], bulk RNA-seq analysis tools are still
successfully applied to scRNA-seq data [39].

The input data for the quantification of gene expression are the raw
sequencing reads, which undergo pre-processing to remove adaptor
sequences, trim poor-quality bases, and discard low-quality reads,
usually derived from poor quality RNA. Libraries with a high number of
low-quality reads have lower complexity. This affects the detection of
lowly expressed genes and can negatively bias the quantification of
gene expression [22].

Pre-processed reads are then aligned to either the reference tran-
scriptome or genome. Aligned reads may undergo post-mapping quality
control to evaluate sequence overrepresentation and fragment-size
biases. Finally, reads mapping to the exons are counted using union-
exon counting methods. In the case of bulk RNA-seq, read counts are
normalised to account for gene length and library size and obtain the
sample gene expression profile. Different types of gene expression
measures can be used, including Reads Per Kilobase of transcript per

Million mapped reads (RPKM), Fragments Per Kilobase of transcript per
Million mapped reads (FPKM), or Transcripts Per Million (TPM). In the
case of scRNA-seq a direct molecule counting based on UMIs can be
performed providing an absolute measure of gene expression [35]. If
UMIs are not used, scRNA-seq specific normalisation tools can be ap-
plied [39]. Moreover, several quality control metrics are usually used to
exclude cells with too few or degraded RNA or cell doublets acciden-
tally captured in the same reaction chamber. For instance, bad quality
reads or a large percentage of unmapped reads in scRNA-seq can be an
index of RNA degradation. Also, high mitochondrial-to-nuclear gene
mapping ratio or low mRNA abundance are linked to apoptotic or da-
maged cells which have lost most of their cytoplasmic mRNAs [39].

The resulting gene expression data from either bulk or scRNA-seq
can be used as input for determining the cell-type composition in the
sample. Furthermore, scRNA-seq data can be used to define refined cell-
type specific expression profiles. These applications of bulk and scRNA-
seq are described in detail in the next sections.

3. Quantification of non-cancer cells from bulk transcriptomic
data

The bulk transcriptomic profile of a cancer sample is an admixture
of transcripts from cancer and non-cancer cells. It therefore offers a
qualitative and quantitative representation of the diverse cell types that
are present in the sample.

In recent years, many computational approaches have been de-
signed to estimate the abundance of the various cell populations of the
TME from bulk transcriptomic data [15] (Table 1). Such approaches
leverage on reference signatures consisting of either marker genes and/
or expression profile matrices that are specific for a given cell popula-
tion. Therefore, to quantify the non-cancer component of the TME from
cancer expression data, it is paramount to derive robust marker genes
or profile matrices. These are generated using a signature derivation
pipeline that consists of three main steps (Fig. 2). In the first step, gene
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Fig. 1. Workflows of bulk and scRNA-seq experiments. (A)
Bulk RNA-seq of solid tumours is based on four steps: RNA
extraction from the cancer tissue, rRNA depletion, RNA
fragmentation, and cDNA library synthesis for sequencing.
(B) scRNA-seq from solid tumour samples requires single cell
isolation either through FACS or microfluidics-based methods
or laser capture microdissection. cDNA libraries from in-
dividual cells are then synthesised and sequenced. (C)
Analytical approaches for the quantification of gene expres-
sion for bulk RNA-seq and scRNA-seq data. After pre-pro-
cessing, the reads are aligned to the reference transcriptome
or genome. Reads mapping to the exons are counted and
normalised to generate gene expression profiles.
FACS= fluorescence-activated cell sorting.
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expression data of the cell populations of interest are collected from
gene expression databases (e.g. GEO, IRIS, ArrayExpress) and/or from
the literature (Fig. 2A). In the second step, these expression data are
curated and normalised to allow their comparative analysis (Fig. 2B).
Finally, cell type-specific markers (Fig. 2C) or reference expression
profile matrices (Fig. 2D) are derived from the normalised transcrip-
tional profiles of cell populations.

3.1. Cell type-specific signatures based on marker genes

A marker gene signature consists of a set of genes that should be
expressed specifically by the cell population represented by that sig-
nature. The first approaches that were developed to build cell type-
specific marker gene signatures used microarray data of purified cell
populations (Table 1). One of the first large-scale efforts to build such
signatures used microarray-derived expression profiles of immune cells
sorted from different tissues, including peripheral blood and bone
marrow [40]. Differentially expressed marker genes across cell popu-
lations were then identified using ANOVA and further refined by ap-
plying a fold-change threshold based on their median expression.

Furthermore, as the marker genes of a cell population are expected to
be co-expressed, only those with an average correlation coefficient
between all other markers of the same population of at least 0.6 were
kept. Following this approach, a final set of 812 immune-related marker
genes was obtained. The signatures derived from these markers were
then used to estimate the abundance of 31 colorectal cancer-infiltrating
immune cell populations [40]. The same pipeline was later applied to
build signatures for 28 immune cell populations used to characterise
the TME of TCGA tumours [41].

Another approach based on signatures derived from microarray data
of purified stromal populations is MCP-counter [45]. In this case,
however, the area under the curve (AUC) and the signal-to-noise ratio
were used in addition to the expression fold-change threshold to select
the marker genes. In addition, the signatures were derived taking the
hierarchical classification of immune cells into account. This allowed
the generation of robust signatures for both parental populations (e.g.
all T cells) and subpopulations (e.g. CD8+ T cells). In total, 522 marker
genes were derived to define ten stromal cell populations. MCP-counter
was applied to estimate the abundance of these populations in a large
dataset of non-hematopoietic human tumours [45]. A recent

Table 1
Examples of approaches for the quantification of tumour-infiltrating cells from bulk transcriptomic data. For each approach, we report the underlying mathematical
method, the type of expression data used to derive the signatures, the total number of marker genes included in the signatures and the final number of non-cancer cell
populations considered. Only methods that implement their own reference signatures and that have been applied to the analysis of cancer samples are reported.
ssGSEA= single sample gene set enrichment analysis, GSVA=gene set variation analysis.

Approach Computational method Source of expression data Marker genes (n) Cell populations (n)

Angelova et al. [40] ssGSEA Microarray 812 31
Charoentong et al. [41] ssGSEA Microarray 782 28
ConsensusTME [42] ssGSEA Microarray, bulk RNA-seq Cancer type specific 18
xCell [43] ssGSEA and spillover compensation Microarray, bulk RNA-seq 10,808 64
Tamborero et al. [44] Scoring (GSVA) Microarray, bulk RNA-seq 401 16
MCP-counter [45] Log-transformed geometric mean of expression Microarray 522 10
Danaher et al. [46] Log-transformed geometric mean of expression Microarray, bulk RNA-seq 60 14
ImSig [47] Arithmetic mean of expression Microarray, bulk RNA-seq 318 7
CIBERSORT [48] Deconvolution, nu support vector regression Microarray 547 22
TIMER [49] Deconvolution, constrained least square fitting Microarray Cancer type specific 6
EPIC [50] Deconvolution, constrained least square fitting scRNA-seq 118 10
quanTIseq [51] Deconvolution, constrained least square fitting Bulk RNA-seq 153 10
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benchmark study found MCP-counter particularly reliable for the
comparison of immune infiltrates across samples due to the robustness
of its signatures [52]. It performed particularly well in the quantifica-
tion of B cells, CD8+ T cells, macrophages, natural killer (NK) cells and
cancer-associated fibroblasts (CAFs).

More recent approaches started to use cancer RNA-seq expression
data to derive marker gene signatures. For example, xCell [43] employs
signatures derived from RNA-seq, microarray and Cap Analysis of Gene
Expression datasets of tumours and normal tissues from different
sources. Unlike other methods, xCell uses more than one signature for
each considered population. Signatures were first derived from each
data source individually based on marker gene overexpression analysis
with different thresholds. Then, for each data source, the top three
signatures were kept based on the t-statistic of their enrichment scores
(ES) between the cell population they define and all the others. A total
of 489 signatures were obtained to define 64 cell populations, making
xCell the broadest and most comprehensive quantification approach to
date. xCell was applied to characterise infiltrates in TCGA and TARGET
data [43]. In the comparative study cited above [52], xCell resulted
particularly suitable to estimate the abundance of CD4+ T cells, T
regulatory cells and endothelial cells.

In addition to deriving ex novo signatures, cancer RNA-seq data has
also been used to refine pre-existing signatures to make them more
specific for the quantification of infiltrates in tumour samples. Danaher
et al. [46] were the first to derive signatures from an initial compen-
dium of 14 previously published immune cell signatures. Using bulk
RNA-seq data from 24 TCGA cancer types, the authors measured the co-
expression patterns of markers associated with a given signature using a
pairwise similarity metric. Then, they built a pairwise similarity matrix
for each cancer type and applied hierarchical clustering using the
average similarity values across the 24 cancer types. They only con-
sidered as final markers for a specific cell type the genes with the
highest co-expression patterns across tumours. By using bulk RNA-seq
data from the TME, the differences between intratumoral and purified
immune cell expression patterns are accounted for [46].

A very similar RNA-seq dataset from TCGA was used to select the
most representative signatures from an initial list of marker gene sets
obtained from three literature sources [44]. The specificity of the initial
signatures was assessed through a correlation analysis using the sig-
nature ESs instead of marker gene expression as in other approaches.
For each literature source, a pairwise correlation matrix was computed
for all the ES of the signatures across the TCGA samples. Sources were
discarded when the overall correlation picture of their signatures
poorly agreed with biological knowledge. For instance, sources with
signatures from cell populations known to be highly co-infiltrated, but
that resulted to be negatively correlated, were discarded. Compared to
Danaher et al., this approach is less susceptible to the quality of gene
expression data, since the correlations are done on the ES values. This
strategy yielded a curated set of 16 immune signatures defined by 401
marker genes that were then used to characterise the immune infiltrates
in the same TCGA cohort [44].

ConsensusTME [42] is a more inclusive approach as compared to
the others because it integrated pre-existing signatures instead of re-
fining them separately. For each cell population, a new set of markers
was obtained combining previously defined sets. Additionally, genes
whose expression showed a correlation coefficient higher than −0.2
with tumour purity scores derived from 32 TCGA cancer types were
filtered out. This step was justified because the correlation of gene
expression with tumour purity is indicative of the fact that cancer cells
may express these marker genes thus invalidating their specificity for a
particular stromal population [42].

In addition to using expression profiles from purified cell popula-
tions or refining previous signatures, gene sets can also be derived ex
novo from bulk transcriptomic data. For instance, ImSig [47] relies on a
collection of immune signatures derived from microarray datasets of
healthy and disease human samples. For each dataset, a gene

correlation network was computed and subsequent clustering was
performed to identify modules of co-expressed genes. These modules
were then manually annotated to identify those corresponding to im-
mune cell types and extract 318 associated marker genes defining seven
immune cell populations. ImSig was applied to characterise the immune
infiltrates in TCGA samples [47].

3.2. Cell type-specific signatures based on profile matrices

Instead of sets of marker genes, cell type-specific signatures can also
consist of reference expression profile matrices of marker genes in a
particular cell population. CIBERSORT [48] was the first tool to use a
curated signature matrix of reference expression profiles to estimate the
proportion of 22 immune cell populations. Marker genes were first
selected from microarray expression data of isolated immune cells using
differential expression analysis and fold-change ranking. The expres-
sion value of each marker gene and immune cell population in the re-
ference matrix was defined as the median expression of that gene across
all transcriptome profiles for that population [48]. TIMER [49] uses a
different expression profile matrix for each one of 23 TCGA cancer
types to estimate the abundance of six immune cell populations. In this
case, marker genes were collected from the Immune Response In Silico
database [53] and filtered out if positively correlated with TCGA tu-
mour purity. Expression profiles of isolated immune cells were then
obtained from the Human Primary Cell Atlas [54]. For each immune
cell type, the reference profile was taken as the median expression of
the filtered marker genes across corresponding transcriptome profiles.
Unlike the profile matrices of the above methods, EPIC [50] was the
first to use a profile matrix derived from scRNA-seq data of primary and
non-lymphoid metastatic melanoma samples. Marker genes were
identified by differential expression analysis and the resulting profile of
a cell type was taken as the average expression of corresponding mar-
kers. Out of the considered stromal populations, EPIC was re-
commended for the deconvolution of B cells, CD4+ and CD8+ T cells,
NK cells, CAFs and endothelial cells [52]. quanTIseq [51] was the first
method to derive its signature matrix entirely from bulk RNA-seq data
of purified cell populations. Marker genes were selected based on their
differential expression between cell types and filtered out if highly
expressed in tumour cells. The reference profile of each cell population
was computed as the median expression over corresponding RNA-seq
purified profiles. The approach was found to be particularly suitable for
the deconvolution of regulatory and CD8+ T cells [52]. Notably,
quanTIseq implements a whole RNA-seq data processing pipeline, from
read pre-processing to TME cell type quantification. This avoids tech-
nical differences between the bulk tumour sample and the reference
profile matrix.

3.3. Computational methods for the quantification of tumour-infiltrates

The cell type-specific signatures derived from either marker genes
or profile matrices can then be used to quantify non-cancer cells of the
TME. Computational approaches developed so far can be broadly di-
vided into gene set scoring approaches and deconvolution approaches.

Gene set scoring approaches leverage on marker gene signatures to
provide relative abundance scores indicative of how enriched a cell
population of interest is in the bulk tumour sample. Most of these ap-
proaches implement Gene Set Enrichment Analysis (GSEA) methods to
quantify cell populations defined by their corresponding marker gene
set in each individual sample. In these GSEA-based methods, genes from
bulk transcriptomic data are first ranked in decreasing order of their
expression. Cell populations are then considered to be enriched or de-
pleted if their marker genes are among the top or bottom expressed
genes, respectively. An example of GSEA-based methods is single-
sample GSEA (ssGSEA) [55] that computes an ES in each sample by
ranking the genes according to their absolute expression value. ESs are
calculated for every pair of sample and marker gene set. This is
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achieved by integrating the difference between the empirical cumula-
tive distribution of the rank-normalised gene expression inside and
outside the gene set [55]. ssGSEA was directly used for the character-
isation of the TME in several cancer types [40–42]. xCell uses ssGSEA
for the calculation of the raw enrichment score of a cell population,
which is then adjusted through a spillover technique to correct for cell
type collinearity [43]. xCell is therefore less prone to background
predictions, i.e. the artificial abundance estimation of cell types that are
actually absent. For this reason, it was recommended for use when the
main interest is to identify the presence of a particular cell population
in the sample [52]. Unlike ssGSEA, Gene Set Variation Analysis (GSVA)
[56] still applies GSEA but accounts for expression variability across
large and heterogeneous datasets. It uses a non-parametric estimation
of the cumulative density function of the expression profile of each
gene. GSVA has been used to quantify tumour-immune infiltrates and
characterise the immunophenotypes of TCGA samples [44].

Other gene set scoring methods that are not based on GSEA use the
log-transformed geometric [45,46] or arithmetic [47] mean of the
normalised marker gene expression values in the tumour sample
(Table 1). Although these methods are more dependent on the quality
of gene expression data than GSEA-based methods, they provide
abundance scores that are directly proportional to marker gene ex-
pression [46]. This facilitates their interpretation. For instance, if
marker genes associated to a particular cell population are twice as
expressed in sample A than in sample B, one can infer that this cell
population is twice as abundant in A than in B (assuming the absence of
aberrant expression of any of those markers by some tumour cells). This
fold change would not be reflected by GSEA-based approaches as they
provide scores computed from gene ranks.

Deconvolution approaches estimate the fraction of each cell popu-
lation in the sample from transcriptomic data using both marker gene
sets and expression profile matrices. These methods consider the ex-
pression profile of a heterogeneous tissue sample as the sum of the
expression profiles of the composing cell populations weighted by their
relative fractions [57]. Deconvolution can be partial to find only the
fraction of each cell population, or complete to derive also the asso-
ciated expression profiles [57]. Partial deconvolution requires a re-
ference expression profile matrix containing an aggregate of the ex-
pression profile of each marker gene. It is usually based on least square
regression to minimise the differences between the bulk expression
values and the product of the reference expression profiles with the
estimated fractions [57]. Tools implementing least square regression
include PERT [58], DeconRNASeq [59], TIMER [60], EPIC [50], and
quanTIseq [51]. Machine learning based on nu-support vector regres-
sion (nu-SVR) has also been applied in the context of partial deconvo-
lution, such as CIBERSORT [48] and Mysort [61]. Although nu-SVR was
a first step towards handling outlier gene expression values, the re-
cently proposed FARDEEP [62] was the first approach to directly ad-
dress this issue. FARDEEP uses an adaptive least trimmed square model
to detect and remove outliers prior to cell fraction estimation and
thereby increase estimation robustness. All these partial deconvolution
methods rely on a linear model of gene expression that considers the
total bulk mRNA as the sum of the mRNAs of the composing cell po-
pulations. However, solving deconvolution equations on the linear scale
is not always efficient [63]. This is because RNA-seq data generally
have a skewed asymmetric distribution with a longer right tail of highly
expressed genes. To account for this skewedness in gene expression
data, dtangle [63] implements a multivariate logistic model that solves
the linearly-modelled deconvolution problem on the logarithmic scale.

Complete deconvolution approaches, also known as unsupervised
methods, estimate both cell fractions and their expression profiles [57].
Most of these methods are based on non-negative matrix factorisation
that factorises the bulk expression profiles as the product of non-ne-
gative cell fractions and cell-specific profiles. Examples of tools im-
plementing non-negative matrix factorisation include deconf [64] and a
semi-supervised algorithm that incorporates prior knowledge of cell

type-specific markers [65]. Other approaches that also use cell type-
specific markers are based on quadratic programming [66] or on
maximum likelihood estimation [67]. Recently, DeMixT [68] has been
developed to de-convolute bulk RNA-seq cancer data into tumour and
stromal components. DeMixT considers the input data as a linear ad-
ditive model of tumour and stroma. Then, their relative proportions and
corresponding expression profiles are estimated using the iterated
conditional modes algorithm and a gene-set-based component merging
approach [68].

3.4. Limitations of TME quantification from bulk transcriptomic data

Both gene set scoring- and deconvolution-based approaches present
several limitations when characterising the TME from bulk tumour
data.

First, as mentioned above, the scores derived from gene set scoring
approaches cannot be interpreted as cell type proportions within the
sample. One of the reasons for this is that the sizes of the marker gene
sets can be highly variable, biasing the scoring towards larger sets.
Thus, gene set scoring approaches do not allow intra-sample compar-
isons of different cell populations. This is partially solved in deconvo-
lution-based approaches as they provide cellular fractions that can be
related to cell population abundances both within and across samples.

Second, most cell type-specific signatures are derived from expres-
sion data of cell populations that were isolated from non-cancer tissues,
generally peripheral blood. This is likely to affect the abundance esti-
mation in bulk tumour samples for at least two reasons. First, the im-
mune cell composition varies across cancers [15]. Second, some marker
genes can be expressed also by tumour cells [43]. Some approaches
reduce these biases by incorporating tumour-specific expression profiles
when constructing cell type-specific signatures.

Third, most partial deconvolution approaches rely on static cell
type-specific signature matrices that assume constant expression pro-
files of the cell populations across samples. This assumption neglects
sample-specific variations in time and space [57]. Moreover, given the
variability and diversity of the TME, it is likely that not all cell popu-
lations are accounted for by the existing quantification approaches. In
addition, not all cell populations considered by these approaches are
necessarily present in the cancer samples (referred to as background
predictions [52]). As a result, partial deconvolution approaches may
produce under- or over-estimated cell fractions [57]. To address this,
some methods avoid restricting the cell fraction estimation to the po-
pulations under consideration [50,51,69]. Instead, they estimate the
fraction of uncharacterised cells within the tumour bulk to provide
more accurate estimations.

Fourth, mRNA abundances across cell types are often neglected by
partial deconvolution methods when estimating TME cell fractions.
Only EPIC [50] and quanTIseq [51] correct for this by normalising each
estimated cell type abundance by a corresponding scaling factor re-
presenting the mRNA content of that cell type. Therefore, these
methods allow a more reliable comparison of cell population abun-
dances as they can be interpreted as actual cell fractions. Both methods
were recommended for immuno-oncology applications as their frac-
tions are comparable both across and within samples [52]. An alter-
native approach, ABIS [70], used a reference profile matrix normalised
for cell type-specific mRNA abundance instead of correcting estimated
abundances by a scaling factor. However, ABIS was derived from and
applied to blood-derived expression data, and has not been applied to
cancer transcriptomic data yet.

Finally, often only a small set of cell populations is used to bench-
mark quantification approaches. This is because experimental techni-
ques to derive ground-truth quantifications (such as flow cytometry)
allow the simultaneous profiling of a limited number of cell types
[43,48]. Recently, five deconvolution-based and two scoring-based
approaches were systematically compared by assessing their perfor-
mance on estimating nine stromal populations [52]. Four metrics
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assessed each quantification approach: predictive performance,
minimal detection fraction, background predictions, and spillover effect
on both real and simulated bulk RNA-seq datasets. Spillover effect
measures the over-estimation of a cell population due to the inaccurate
estimation of others. Interestingly, the performance of the tested ap-
proaches varied across cell types, with poor performances on CD4+ T
cells and dendritic cells, overall. Deconvolution-based approaches were
found to be more likely to estimate minimal immune cell fractions even
when these were absent (i.e. background predictions).

4. Quantification of non-cancer cells from single-cell
transcriptomic data

The last five years have seen an increasing number of studies ap-
plying scRNA-seq to characterise the TME across different cancer types
[19]. scRNA-seq data can be used to identify the sequenced cells di-
rectly or to generate reference expression profile matrices to de-con-
volute bulk RNA-seq data (Fig. 3).

TME cell populations can be directly quantified from scRNA-seq
data by clustering and annotating the resulting clusters according to the
expression of cell type-specific marker genes (Fig. 3A). This allows to
assign the clusters to specific stromal cell populations (Fig. 3B). This
approach has been used to profile the tumour infiltrates in melanoma
[71], hepatocellular carcinoma [72], breast [73–75], colorectal [76]
and lung cancer [77].

Cell type-specific reference expression profile matrices can also be
derived from scRNA-seq data (Fig. 3C). Deconvolution-based quantifi-
cation methods can then use these matrices to estimate the abundance
of different cell populations from bulk tumour transcriptomic data. For
example, EPIC [50] used a reference matrix derived from expression
profiles of a melanoma scRNA-seq dataset [71]. This approach was later
extended to two other scRNA-seq datasets(normal blood [29] and
ovarian cancer [78]) to build five reference expression profile matrices
[78]. Each matrix was obtained using a different strategy to average
gene expression across and within single cell datasets and cell types.
Then, CIBERSORT was applied with each reference matrix [48] and
reference marker genes from independent sources [48,71,78]. The best

deconvolution results for ten stromal and two cancer cell types, on both
simulated and real bulk RNA-seq data were obtained by averaging ex-
pression within both cell types and datasets [78]. This highlights the
strong dependence of deconvolution methods on the quality of re-
ference profile matrices. The newest version of CIBERSORT, CIBERS-
ORTx [79], accounts for this dependency by allowing the use of re-
ference signatures obtained from single cells or from bulk expression
data. CIBERSORTx also uses nu support vector regression to estimate
cell type proportions. However, before deconvolution, it performs
normalisation and batch correction of platform-specific variations be-
tween the reference signatures and the bulk RNA-seq data [79].

5. Other approaches for the quantification of tumour infiltrating
cells

Alternative approaches that are not based on tumour gene expres-
sion profiles can also be used to characterise the TME. They are usually
based on the multidimensional analysis of proteins or RNAs from
thousands of cells detected either from solid tissue sections or dis-
aggregated tissues (Table 2). These methods can be categorised in four
main groups according to the detection technology, namely chromo-
genic or fluorescent labelling, mass-spectrometry, and DNA probes
coupled with bulk- or single-cell sequencing.

5.1. Chromogenic or fluorescent labelling methods

The latest development in IHC and IF allow multiplexed assays of
tens of markers through repeated rounds of staining. They also permit
the analysis of large regions of interest at high spatial resolution. For
instance, the IHC-based approach SIMPLE [88] was used to quantify the
association between mono-myelocytic and exhausted T-cell density and
the response to GVAX vaccination in pancreatic ductal adenocarci-
nomas [89]. Similarly, the MultiOmyx IF platform [90] was applied to
investigate resistance to rituximab–CHOP in diffuse large B-Cell lym-
phoma, pointing to high PD-1 expressing CD8+ T cells and PD-L1 ex-
pressing macrophages as mediators of resistance.

Flow cytometry employs a fluidic system and fluorescent labelling
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Fig. 3. Single-cell RNA-seq for the identification of TME cell
populations. (A) Clustered scRNA-seq profiles of cancer
samples are annotated according to the expression of known
marker genes. (B) Cell populations can be directly identified
from the annotated clusters, and visualised after dimension-
ality reduction. (C) Alternatively, the annotated clusters can
also be used to derive high-resolution reference profile ma-
trices. DC=dendritic cells, tSNE= t-distributed Stochastic
Neighbour Embedding.
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to isolate and characterise cells according to the expression of 5–15
markers. Since flow cytometry is not destructive, the cells can be used
for further analyses. Due to its intrinsic robustness, flow cytometry is
often used to validate computational methods that quantify TME po-
pulations [50]. Recently developed high dimensional flow-cytometry
techniques allow the quantification of up to 28 markers in single cells
[82]. Routine flow cytometry analyses cannot be applied to this tech-
nique as it requires specialised computational tools for the unbiased
identification of cell populations from this larger number of markers
[82].

5.2. Mass spectrometry

Mass cytometry, also known as cytometry by time-of-flight (cyTOF)
[83], similarly to flow cytometry, uses a fluidic system to isolate cells.
However, cyTOF marker detection is based on time-of-flight (TOF) mass
spectrometry instead of fluorescence. Cells are first labelled with heavy
metal-tagged antibodies, which are then distinguished according to the
atomic mass of the associated metal ions. Ion counts are acquired across
the mass spectra, and combined to form events as in flow-cytometry
experiments. These events are then thresholded according to signal
intensity across all channels to discard events caused by debris. After
this filtering the event data is exported in the standard FCS format used
also for flow cytometry [91]. cyTOF was recently used to characterise
the TME of breast cancer leading to the identification of TME features
that can be used for patient stratification [92]. Because cyTOF does not
rely on fluorophores, the detection specificity is not reduced by spectral
overlap and autofluorescence. This increases the number of markers
that can be quantified in a single experiment. However, the limiting
factor is the number of pure heavy metal isotopes available (Table 2).
Despite higher specificity, cyTOF has still lower throughput than flow-
cytometry (< 1000 cells/s compared to about 10,000 cells/s). Both
cyTOF and high-throughput flow cytometry data differ from scRNA-seq
data in two main aspects: the number of analysed cells is much higher
~107, and the possibility to quantify only up to about 40 markers
(Table 2). After gating to remove doublets and select only intact single
cells, a multidimensional analysis of the single cell data can be per-
formed. First unsupervised clustering is employed to group cells into
different subpopulations. Then, differential cell population abundance
and/or differential marker expression across different conditions can be
analysed. Finally, the different cell populations and the expression of
markers of interest can be visualised using dimensionality reduction
approaches [91].

Other approaches leverage mass spectrometry with heavy metal ion-
tagged antibodies for the imaging of FF or FFPE tissues. The best-known

examples are IMC [12] and MIBI [13], which differ mainly in the way
the heavy metal ions are separated from the tissue slide. IMC uses a UV
laser to ablate pre-selected areas of the tissue slide and the resulting gas
is then ionised with inductively coupled plasma before TOF mass
spectrometry is applied [12]. MIBI instead relies on a primary ion beam
to liberate the heavy metals chelated to the antibodies as secondary
ions. These ions are then analysed with sector field [13] or TOF mass
analysers. The ion counts obtained from rasterising the slide with the
laser or the ion beam are finally used to reconstruct a multidimensional
image composed of one layer per ion/marker. The tissue areas scanned
in both IMC and MIBI are much smaller than those acquired with
multiplex IHC and IF. However, they provide greater sensitivity, with at
least five orders of magnitude of linear dynamic range, and can use a
higher number of markers. MIBI can reach a resolution higher than IMC
(of< 500 nm as compared to about 1 μm). In contrast, IMC has faster
scan sampling times which makes it suitable for the ablation of larger
areas and has been further adapted to quantify mRNAs from FFPE tis-
sues [93]. After removing background noise, IMC and MIBI images can
be used to identify single cells with image segmentation techniques.
Then, for each of these cells, the expression values of each marker can
be extracted to obtain a matrix similar to those derived from cyTOF or
high dimensional flow cytometry. This matrix, generally containing a
much lower number of cells, generally in the order of 103 per image,
can be analysed with unsupervised clustering. Finally, the spatial in-
formation contained in the images can be leveraged to identify sig-
nificant cell-cell interactions through neighbourhood analysis, or by
investigating the localisation of specific cell population in the tissue.

Both IMC and MIBI have been applied to TME characterisation. For
example, MIBI revealed a positive correlation between the expression of
immunoregulatory proteins and the tumour-immune composition and
organisation in triple negative breast cancer [94]. IMC enabled the
analysis of the relationship between CD8+ T cell infiltration, the ex-
tracellular domain of HER2, and response to trastuzumab in breast
cancer [95].

5.3. DNA probes coupled with bulk sequencing

Two recently developed techniques, spatial transcriptomics [17]
and NanoString digital spatial profiling (DSP) [84], can quantify gene
expression in specific areas of tissue samples. Both methods rely on
DNA or DNA-RNA probes coupled with fluorescent labelling to retain
spatial information of gene expression.

In spatial transcriptomics, this is achieved through an array of
100 μm-large spots of spatially barcoded oligo-dT probes. After placing
the tissue on the array, mRNAs can be reverse-transcribed directly in

Table 2
Non-transcriptomic approaches for the quantification of tumour-infiltrating cells. For each method, we report its detection technology and compatibility with FFPE
samples, the type and the maximum number of measurable markers, and its throughput per run. For techniques providing spatial information, we also report their
spatial resolution. FFPE= formalin-fixed paraffin-embedded, IHC= immunohistochemistry, IF= immunofluorescence, cyTOF= cytometry by time-of-flight,
IMC= imaging mass cytometry, MIBI=multiplexed ion beam imaging, DSP= digital spatial profiling.

Method Technology FFPE Markers Throughput per run Spatial resolution

Multiplex IHC [80] Chromogenic-antibodies Y <12 proteins ~500mm2/run <1 μm
Multiplex IF [81] Fluorescent-antibodies Y <50 proteins ~500mm2 <1 μm
Flow Cytometry [82] Fluorescent-antibodies Y <28 proteins ~107 cells N
cyTOF [83] Mass spectrometry Y <40 proteins ~107 cells N
IMC [12] Mass spectrometry Y <40 proteins ~ 1mm2 1 μm
MIBI [13] Mass spectrometry Y <50 proteins ~ 1mm2 0.2 μm
Spatial transcriptomics [17] DNA probes Bulk DNA-seq N >1500 genes 1007 spots/slide 200 μm
NanoString DSP [84] DNA probes

Bulk DNA-seq
Y <40 proteins

<90 genes
600 μm2 10 μm

REAP-seq [85] DNA probes
scDNA-seq

N ~1500 genes
82 surface markers

~4000 cells N

Abseq [86] DNA probes
scDNA-seq

N >600 genes
30 surface markers

> 10,000 cells N

CITE-seq [87] DNA probes
scDNA-seq

N ~1500 genes
>20 surface markers

~10,000 cells N
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situ and then sequenced. The spatial barcode sequences from the array
probes are retained in the RNA-seq reads and this allows to trace them
back to the original spot in the tissue. Spatial transcriptomics requires
intact RNA (therefore it cannot currently be applied to FFPE samples)
and cannot reach single cell resolution. However, it has a higher
throughput than, for example, multiplexed sequential FISH techniques
(about 1000 spots per sample able to detect> 1500 genes per spot).
Spatial transcriptomics also provides greater flexibility than other in
situ sequencing approaches, as it does not require customised instru-
ments. Spatial transcriptomic data consists of an expression matrix
where each row corresponds to a gene and each column corresponds to
a spot coordinate. An integration of scRNA-seq and spatial tran-
scriptomics was recently applied to study the spatial composition of the
TME in pancreatic ductal adenocarcinoma [96].

NanoString DSP [84] relies on the NanoString nCounter platform
[14] to quantify antibody-bound proteins or hybridised transcripts
using specific photocleavable DNA probes. The probes are then hy-
bridised with complementary fluorescent-labelled RNA probes. To ob-
tain spatial information three consecutive slides are used, one for IHC
or in situ RNA hybridisation to visualise the tissue and select the area of
interest and the other two for protein and RNA quantification. After the
tissue area is selected, the photocleavable probes are released with UV
light and collected by microcapillary aspiration for quantification with
the NanoString nCounter platform. Area selection in NanoString DSP is
flexible ranging from simple to complex shapes associated with tissue
compartments or single cells. This approach can be used in both FF and
FFPE samples, but the number of markers is limited to about 40 pro-
teins and 90 transcripts [97]. NanoString DSP read counts are nor-
malised using spike-in probes to account for capture and amplification
efficiency. Moreover, since ROIs differ in size both within and across
samples, area normalisation is also applied. Additionally, ROI back-
ground is corrected through the addition of negative RNA probes and
isotype antibodies; while transcripts and antibodies against cellular
proteins address differences in cellularity across ROIs. The output data
consists of a matrix with the normalised intensities of the protein and
mRNA markers in each ROI [97]. NanoString DSP has been recently
applied to quantify 32 proteins and 82 transcripts in tumour and
stromal regions of non-small cell lung cancer [97].

The characterisation of tissue regions from marker expression is
achieved by processing the expression matrices with dimensionality
reduction followed by hierarchical clustering. The clustered features
can then be placed back on the tissue images to relate them with tissue
architecture [98].

5.4. DNA probes coupled with single-cell sequencing

In the past three years single-cell approaches that integrate tran-
scriptomics and cell-surface protein quantification have emerged [20].
These approaches quantify protein expression in single cells through
DNA-tagged antibodies. In parallel they allow RNA expression profiling
in the same cell using microdroplet- or microwell- based scRNA-seq
[99]. The most widely used technologies implementing this approach
are REAP-seq [85], Abseq [86] and CITE-seq [87]. REAP-seq is based on
the Chromium sequencing platform [29] and, while it has a relatively
low throughput (about 4000 cells per run), it allows the quantification
of up to 82 different proteins. Abseq relies on the BD Rhapsody se-
quencing platform [100] and can quantify of up to 600 genes and 30
proteins in> 10,000 cells [86]. Finally, CITE-seq [87] uses either Drop-
seq [30] or other microdroplet-based technologies to measure about
1500 genes and 20 proteins in> 10,000 cells [101]. These high
throughput scRNA-seq methods allow to perform multimodal RNA-
protein analyses on large single-cell datasets. For example, CITE-seq has
been used to characterise rare immune cell phenotypes by splitting
scRNA-seq derived clusters into subsets with high and low expression of
specific surface markers [87].

6. Conclusion

The success of cancer immunotherapy has led to an increased in-
terest in the fine characterisation of TME composition. This is indeed
the first step to understand how the TME influences response to therapy
[2]. In addition to a better knowledge of the interactions between
cancer and non-cancer cells, TME characterisation can also be exploited
as biomarker for patient stratification and prognosis. For example, the
quantification of tumour infiltrating CD3+ and CD8+ T cells using di-
gital pathology from IHC slides has a validated prognostic value for
predicting colorectal cancer recurrence [8]. This measure, called Im-
munoscore, represents the first step towards the adoption of standar-
dised immune-based assays for colorectal cancer classification. Other
similar efforts are extending this approach to a broader set of cancer
types [6].

Despite their undoubted utility, the incorporation of technically
sophisticated methods that allow a thorough analysis of the TME in the
clinical setting is still challenging. Indeed, these techniques are usually
expensive, highly sensitive to the quality of the input material and re-
quire specialised expertise for their analysis. This is particularly the
case for the more recent approaches such as high throughput scRNA-seq
and mass spectrometry-based imaging. Moreover, the turnaround time
is often not compatible with the decision-making process of the clinical
practice. Further efforts are needed to harmonise the depth and speci-
ficity of the TME analysis achieved in the research setting to the re-
quirements of time and cost-effective clinical assays.

Future developments in the characterisation of the TME should in-
corporate spatial information and integrate different types of omic data.
Emerging approaches have already started to link the expression of
marker genes to their localisation within the tissue enabling a deeper
understanding of the tumour-TME interactions. However, these ap-
proaches are currently limited to tiny regions of the tumour that may
not be representative of the whole tumour mass. Increasing the tissue
area that can be analysed will also increase the robustness of the results.
Similarly, new technologies enabling the simultaneous multi-omic
analyses of the TME are being developed, particularly in the single cell
setting. They combine scRNA-seq, scDNA-seq, single cell T and B cell
receptor sequencing, single cell epigenomics and small and non-coding
scRNA-seq [101]. In combination with functional studies, these tech-
niques will enable a further in-depth description of all the cell popu-
lations constituting the TME and their interactions [20].

We are at the beginning of an exciting era where technological in-
novations can effectively contribute to improve not only our under-
standing of cancer biology, but also the way we treat cancer patients.
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1.3.2 Highly-multiplexed imaging for tissue-level analysis 

Several highly-multiplexed methods have been developed for imaging 

large numbers of markers from a single tissue section (Table 1). These methods 

differ mainly in the technology they rely on for marker detection, which then 

determines its sensitivity, spatial resolution, throughput and maximum imaged 

area60. The primary detection technologies are chromogens, fluorescence, DNA 

sequencing, and mass spectrometry, all relying on different probes linked to 

antibodies specific to the markers of interest. 

1.3.2.1 Multiplexed immunohistochemistry methods 

The first highly-multiplexed imaging approaches to be developed relied on 

antibodies bound to different chromogens for marker detection. These 

multiplexed immunohistochemistry (mIHC) based methods (Table 1) were 

derived from conventional immunohistochemistry through sequential staining and 

detection or by using multiple chromogens with different colours and multispectral 

imaging. The first approach is employed by sequential immunohistochemistry, 

which relies on several cycles of labelling, stripping, and imaging61. The imaging 

is performed on a regular bright-field microscope, and the single-marker images 

are then coregistered to obtain the final multi-channel image. The use of standard 

bright-field microscopes, in addition to the higher light levels in bright field 

microscopy, leads to lower costs and shorter image acquisition times relative to 

immunofluorescence (IF) microscopy62. Also, the already widespread use of 

conventional IHC approaches can leverage an extensive knowledge base in 

pathology associated with bright field techniques. More recently, the use of 
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multispectral images and different chromogenic dies allowed the imaging of the 

slide in a single step63. However, approaches relying on multispectral imaging 

are generally limited in the number of detectable markers because of the overlaps 

between the absorption spectra of the chromogens63. Finally, a limitation of both 

types of mIHC methods is the limited range where optical densities linearly 

correlate with marker levels64. 

1.3.2.2 Multiplex immunofluorescence methods 

Multiplex immunofluorescence (mIF) methods (Table 1) have the 

advantage of being quantitative in a much wider dynamic range compared to 

mIHC methods. Fluorescent emissions have a linear and additive nature and 

relatively well-defined emission spectra. Fluorescence-based platforms are 

multiplexed through spectral unmixing or sequential staining. The first approach 

is employed by the Vectra Polaris (Akoya Biosciences) to measure up to nine 

markers simultaneously in Formalin-fixed paraffin-embedded (FFPE) or fresh 

tissue sections. Higher levels of multiplexing can be achieved at the cost of more 

extended preparation and acquisition times with sequential protocols such as 

Cyclic immunofluorescence (CyCIF)65  (Figure 1.2 a). An improved version of this 

approach t-CycIF66 increases throughput by imaging up to four channels 

simultaneously in each cycle. Finally, t-CycIF allows the use of fluorophores 

conjugated to secondary antibodies in the last cycle to increase sensitivity for a 

specific subset of markers. 
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1.3.2.3 Methods based on DNA-probes 

Methods based on DNA-probes (Table 1) use antibodies conjugated to 

unique oligonucleotide sequences to reach high levels of multiplexing, 

comparable to sequential mIF methods while maintaining a high throughput. 

These high throughputs are achieved by staining with all antibodies in a single 

round and then using complementary probes or single nucleotides labelled with 

fluorophores for detection. InSituPlex employs complementary probes67 to detect 

up to 15 markers from FFPE tissue slides62. More recently, the co-detection by 

indexing (CODEX)68 method (Figure 1.2 b) enabled the imaging of up to 60 

markers using fluorophore labelled nucleotides. A fully automated fluidics system 

performs several rounds of labelling by adding single labelled nucleotides and 

imaging. The sequence of all probes is derived simultaneously by reading the 

fluorescence signal associated with each nucleotide with commonly available 

three-coloured fluorescence microscopes 69. This staining and detection 

technology enables CODEX to produce staining patterns comparable to IHC and 

IF methods. 

1.3.2.4 Mass spectrometry-based methods 

Mass spectrometry-based methods (Table 1) leverage antibodies bound 

to heavy metal cations, mostly lanthanides, to image tissues with up to 50 

markers60. The use of mass spectrometry for detection enables the use of large 

panels by completely removing the need to account for the spectral overlap 

between different chromogens or fluorophores. Additionally, these technologies 

are not affected by the natural autofluorescence of biological tissues. However, 
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these approaches can have issues with steric hindrance between labelled 

antibodies on the tissue and non-specific binding between antibodies and the 

tissue, thus requiring extensive panel optimisation. 

The two main methods relying on this technology are Multiplexed Ion 

Beam Imaging (MIBI)70  (Figure 1.2 c) and Imaging Mass Cytometry (IMC)71 

(Figure 1.2 d). MIBI employs an ionic beam, while IMC relies on a ultraviolet (UV) 

laser to ionise the sample by sequentially ablating small square spots. A magnetic 

sector mass analyser in MIBI and a time-of-flight analyser in IMC separate the 

heavy metal cations. The separated ions are quantified in each ablated spot on 

the tissue, and each ablated spot will constitute a pixel in the final image with a 

channel for each metal and intensity equal to that metal’s measured ion current. 

Image acquisition is slow and expensive because of the need to scan the slide 

and ablate every single spot separately. For this reason, both methods are 

generally not applied to image the whole slide but to regions of interest (ROIs) of 

about 1mm2. MIBI can potentially image a higher number of markers than IMC 

and reach a higher resolution of 0.25μm compared to the 1μm of IMC at the 

expense of longer acquisition times. 

The following section will examine the information content of highly-

multiplexed images, outline the main steps of their analysis to investigate tissue 

structure, composition and function, and provide an overview of the software tools 

currently available for the analysis.  
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 Table 1: highly-multiplexed imaging technologies 

 For each method, are reported its core technology, the maximum number and 

type of imaged markers, the maximum imaged area, and its spatial resolution. 

Method Technology Markers Imaged Area Resolution 

Sequential 

mIHC61 
Chromogenes < 12 proteins Whole Slide 

>0.2μm

Discovery 

ultra63 
Chromogenes 6 proteins Whole Slide 

>0.2μm

Vectra Polaris 

(Akoya 

Biosciences) 

Fluorescence < 9 proteins Whole Slide 

>0.2μm

CyCIF65 Fluorescence <60 proteins or RNA Whole Slide >0.2μm

t-CycIF66 Fluorescence <60 proteins or RNA Whole Slide >0.2μm

InSituPlex67 DNA probes 8 proteins Whole Slide >0.2μm

CODEX68 DNA probes <60 proteins Whole Slide >0.2μm

MIBI70 Mass spectrometry <100 proteins Above 1 mm2 high costs and run times >0.2μm

IMC71 Mass spectrometry <50 proteins or RNA Above 1 mm2 high costs and run times 1μm 
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Figure 1.3 Highly-multiplexed image information and analysis 

Analysis of the three levels of information in highly multiplexed images. Flowchart 

showing the five steps of the workflow for the analysis of highly multiplexed images: raw 

data processing, pixel-level analysis, cell segmentation, cell phenotyping and spatial 

analysis. Inside each step are reported the main processes, which can be performed at 

that analysis stage. 

1.4 Analysis of highly-multiplexed image data 

Highly-multiplexed images of tissues contain three levels of information: 

the marker level or pixel level, the cell level and the spatial level55. The analysis 

of information from all three levels is necessary for the comprehensive 

characterisation of the tissue. 
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1.4.1 Information obtainable from highly-multiplexed image data 

The first level of information contained in highly-multiplexed image data 

consists of the intensity values of each marker in every pixel, which is directly 

related to the expression of these markers in the tissue. While an analysis at the 

pixel level allows only an indirect quantification of the cell composition of the 

tissue, at the same time, it is not impacted by the biases or artefacts, which can 

be introduced by cell segmentation. 

The second level of information is the cell-level data acquired by 

performing cell segmentation on the images. These data consist of the 

expression values of all markers in the pixels belonging to each cell, generally 

reduced to their summary statistics and morphological features. The most 

commonly measured morphological features include area, perimeter, eccentricity 

and solidity, and the cell’s centroid coordinates in the image. This information can 

then be used to classify cells according to their lineage or functional phenotypes. 

After cells have been phenotyped, the cell composition of the tissue or its 

compartment can then be quantified, and the proportions of cells associated with 

each phenotype can be compared across samples and experimental conditions. 

Finally, the third level of information is spatial information, the distribution 

of cells within the tissue and each of its compartments. The spatial distribution of 

a single cell phenotype or lineage at a time can be investigated by analysing the 

density distribution of the cells within the image. These features can then be 

compared within and across samples to investigate the heterogeneity of cellular 

patterning in the tissue. The possibility of leveraging this third level of information 
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constitutes the main advantage of imaging-based technologies over single-cell 

sequencing technologies for performing biological analysis at the tissue level.  

1.4.2 Highly-multiplexed image analysis workflow 

The workflow for analysing highly multiplexed images can be divided into 

five main steps: raw data processing, pixel-level analysis, cell segmentation, cell 

phenotyping and spatial analysis (Figure 1.3). These steps are highly variable 

and are often skipped or adapted according to the tissue of interest, imaging 

modality, and research questions. 

1.4.2.1 Raw data processing 

The raw data processing step consists of processing the imaging data 

produced by the instrument to generate images, which can be used as input for 

the downstream steps of the analysis (Figure 1.3). In most cases, the images 

need to be converted from the file formats output by the instrument to TIFF, the 

most commonly employed by highly-multiplexed image analysis tools. TIFF 

images can be single-channel when the intensities of each marker are stored in 

a separate file or multi-channel when a single file is used for all markers. 

Other operations commonly performed at this stage are tumour microarray 

(TMA) dearraying, stitching and registration, and illumination correction. TMA 

dearraying consists of identifying each spot in the whole slide image of the TMA 

and saving it as a separate TIFF image. Illumination correction is often required 

for images from digital microscopy modalities and removes non-homogeneous 

illumination across the image field. Stitching and registration are required when 
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the imaged area is larger than the microscope field of view (FOV) to derive a 

single image by aligning and merging the acquisitions from multiple overlapping 

FOVs. 

     After the necessary operations have been completed, the resulting 

TIFF images can then undergo normalisation and further processing to remove 

background artefacts or to produce binary masks to be used as input for the 

following analysis steps. Normalisation is often performed because it allows the 

use of similar thresholds across images both for preprocessing and cell 

phenotyping. However, normalisation can also introduce artefacts when staining 

is not uniform within the same tissue or when images from samples with different 

properties issue-specific properties (tissue age, length of time in fixation solution) 

are analysed together. This latter case can be mitigated by performing the 

normalisation independently for each sample and channel. 

Binary masks can be derived from the thresholding of the images of one 

or more markers and their combination through Boolean operators. Alternatively, 

these masks can be derived from a small set of user annotations by performing 

pixel classification with random-forest classifiers or other machine-learning 

algorithms. These masks can then be applied to the raw or the normalised images 

to remove background signals or artefacts or used in the downstream analysis to 

identify specific tissue compartments or cell types. 

1.4.2.2 Pixel-level analysis 

The pixel-level analysis requires as input the intensities of all markers in 

the sample, generally as a single- or multi-channel TIFF image, and optionally 
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binary masks defining specific tissue compartments or cell types. The intensity 

values of all markers in each pixel are then analysed with a deterministic 

approach or by unsupervised clustering (Figure 1.3). The deterministic approach 

measures the pixel intensities for selected markers in the image. Alternatively, if 

binary masks were derived for the markers of interest, the positive areas of these 

masks can be measured by counting the number of non-zero pixels in the mask. 

These measurements can then be related to the presence and prevalence of 

specific cell types and biological processes in the tissue.  

The unsupervised approach consists of the unsupervised clustering of all 

pixels according to their marker intensity values. Then the median intensity 

values of all markers in each cluster can be employed to identify the cell types, 

tissue structures, or biological processes associated with each cluster.  

The pixel-level analysis relies only on the first level of information in highly-

multiplexed biological images and is fully cell-agnostic. Its independence from 

cellular features makes it a powerful approach for analysing tissues or cell types, 

in which cell segmentation is problematic. Finally, the pixel-level analysis can be 

used as further validation of the results derived from analysis performed at the 

cell-level55. 

1.4.2.3 Cell segmentation 

The cell segmentation step identifies cells in an image by determining 

which pixels constitute a cell. This step enables the extraction of the single-cell 

data from the image, which constitute the second level of information in highly 
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multiplexed images. There are two main approaches for this step: deterministic 

cell segmentation and deep-learning-based segmentation (Figure 1.3).  

Deterministic segmentation generally relies on marker-controlled 

watershed algorithms72. With these approaches, an intensity gradient 

transformation is applied to the input image, then local maxima are identified in 

the input image with an h-maxima transform or other approaches. Finally, the 

watershed algorithm is applied to the gradient image and the local maxima are 

used as seeds; only areas containing at least one seed are considered. Multiple 

variations of this basic approach were developed to improve the selection of 

seeds and avoid over-or under- segmentation72. Deterministic segmentation 

approaches do not require manual training or large labelled datasets like the 

deep-learning methods. However, to obtain an accurate segmentation, fairly 

extensive parameter tuning and empirical testing is required72. 

More recently, deep-learning methods have been successfully applied to 

cell segmentation. These approaches consist of training a model using ground 

truth datasets of cell images acquired from the same or similar issues with the 

same imaging modality and manually annotated by experts. These models can 

then be applied to the segmentation of new images. Several deep-learning 

frameworks and architectures have been applied to cell segmentation including: 

Stardist73, NucleAIzer74, CellPose75, or Mesmer76. 

Machine learning algorithms generally outperform deterministic 

segmentation approaches; however, model training and evaluation are labour 

intensive and require computational expertise, which is unavailable to all users77. 
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Nuclei are commonly used as a target for segmentation because most 

cells have one nucleus and nuclear stains, DNA intercalators, or antibodies 

targeting histones are available for most imaging modalities with high signal-to-

noise ratios. However, membrane markers are often used to increase 

segmentation accuracy and include the cytoplasm and membrane in the 

segmented objects. 

The output of the cell segmentation step is the single-cell data, which 

consists of the expression values of all markers in the pixels belonging to each 

cell and can additionally include morphological features55. The pixels belonging 

to each cell are also uniquely labelled by producing a cell mask in which the pixels 

of each cell are assigned a unique value, generally stored in 16-bit integer format. 

1.4.2.4 Cell phenotyping 

After single-cell data has been acquired, cells can be assigned to specific 

populations, compartments or functional phenotypes. The most straightforward 

approaches for single-cell phenotyping consist of classifying cells according to 

threshold on the expression of user-selected markers or to the overlap with 

masks defining specific tissue compartments or populations. The masks used in 

this step need to be produced in the raw data processing step and can effectively 

classify cells belonging to different tissue compartments (Figure 1.3). Expression 

thresholding is applied in the same way as it is performed for techniques 

measuring fewer markers and non-imaging-based techniques like flow-

cytometry. These hypotheses driven approaches can accurately identify 

previously known cell populations and phenotypes. However, these methods 
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become impractical for tissue wide phenotyping because of the need to identify 

appropriate thresholds and masks for many markers. This limitation can be 

overcome by using supervised clustering methods, which can automatically 

classify cells into pre-selected phenotypes without the need for the user to select 

a threshold for each marker.  

More recently, unsupervised clustering approaches have been applied to cell 

phenotyping. These discovery-driven methods require only the selection of the 

marker expression and morphological features to be used as input with no 

previous knowledge of the populations to be identified. Phenotyping by 

unsupervised clustering can be performed with multiple software applying 

different clustering algorithms like Phenograph78, FlowSOM79, Seurat80. 

The unsupervised clustering results then need to be annotated to enable their 

interpretation in the context of the physiology, pathology, and morphology of the 

tissue. This interpretation is generally assisted by graphical visualisations of the 

clustered cells and the marker expression that characterises them. These 

visualisations can be heatmaps showing the median expression values of each 

marker in every cluster or t-distributed stochastic neighbour embedding (tSNE)81 

and Uniform Manifold Approximation and Projection (UMAP)82 plots. 

1.4.2.5 Spatial analysis 

After cells have been assigned to different lineages or phenotypes, the 

third level of information in the image can be leveraged to study the cell 

interactions that define the organisation and function of the tissue55 (Figure 1.3). 

The spatial distribution of cells in the tissue can be compared across 
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experimental conditions or against a random distribution obtained by computing 

cell adjacency frequencies during multiple rounds of permutation of the cell 

population or phenotype annotations. This analysis enables the identification of 

cell populations or phenotypes, which interact preferentially or are separated in 

the tissue organisation. 

The spatial distribution of cells in the tissues can be calculated differently. 

The simplest approach quantifies the frequencies at which each cell population 

or phenotype is directly adjacent to every cell population or phenotype. These 

frequencies can be calculated from the cell mask produced in the cell-

segmentation step. This approach can be extended by considering, instead of 

only directly adjacent cells, all cells within a user-specified number of pixels. The 

resulting set of cell-cell interactions can then be analysed with tools like 

imcRtools83. 

An alternative way to measure the distribution of two cell populations or 

phenotypes within the tissue is to calculate all the minimum distances between 

cells of two different populations or phenotypes of interest. The cell-cell distances 

are calculated as the Euclidean distances between the centroids of the cells of 

interest.  

Finally, the distribution of a cell type or population can be measured as cell 

density (Figure 1.3). This approach identifies regions in the image or tissue where 

the density of cells of a phenotype or population is above a user-defined 

threshold. The cell densities across the tissue can be measured with a sliding 

window like in CytoMAP84 or with distance-based clustering algorithms like 

Density-based spatial clustering of applications with noise (DBSCAN)85.  



Chapter 1 Introduction 

68 

1.4.3 Software for highly-multiplexed image analysis 

Several software tools implemented the highly multiplexed image analysis 

workflow or some of its steps (Table 2). These differ in terms of the supported 

imaging technologies, the image analysis steps they cover (Figure 1.3), and the 

algorithms, tools, and libraries they employ for each step. These tools can be 

divided into two main categories: analysis pipelines and interactive tools. 

1.4.3.1 Highly-multiplexed image analysis pipelines 

Analysis pipelines are non-interactive software in which every step of the 

analysis is configured before running the analysis, which then proceeds without 

user interaction. This software generally does not have a graphical user interface 

(GUI), and the user needs to rely on other tools like cytomapper86 to visualise the 

results of the analysis and any intermediate output. Analysis pipelines are 

generally developed for imaging modalities with a high number of markers like 

IMC71 and CODEX68.  

Examples of such software are imcyto87 and ImcSegmentationPipeline88 

for IMC71 and CODEX Toolkit68 for CODEX68 (Table 2). A recently released 

analysis pipeline designed for the analysis of multiple modalities of highly 

multiplexed images is MCMICRO89. MCIMICRO89 enables the technology-

agnostic processing of highly-multiplexed images for pixel-level and cell-level 

analyses. A software with a Graphical User Interface (GUI) allowing the user to 

build analysis pipelines that are then executed non-interactively is CellProfiler490. 

This tool can operate with images from all imaging modalities, but the GUI is 

inconvenient for configuring workflows with multiple markers, as most processes 
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need to be configured independently for each marker. While plugins have been 

developed for simplifying the application of CellProfiler490 to IMC71 derived data. 

Pipeline configuration with CellProfiler490 can still be time-consuming and labour 

intensive when dealing with tens of markers. 

1.4.3.2 Interactive software for highly-multiplexed image analysis 

Interactive analysis software allows the user to actively select, configure 

and run different analysis steps interactively through a GUI. The GUI enables 

both the configuration of the analysis and the visualization of results, making this 

software generally more user friendly than analysis pipelines. This is particularly 

the case for analyses that require the manual annotation of ROIs in whole slide 

images or the manual classification of pixels and cells for the training of deep-

learning models. 

 An example of software focused on these applications (Table 2) is 

Ilastik91, which provides a user-friendly interface for the training of deep-learning 

models for pixel and cell classification and cell segmentation. These models can 

then be applied directly from the GUI or run in headless mode without the GUI. 

Another software providing the ability to run the analysis also in headless mode 

is QuPath92, which also provides an extensive scripting framework. The previous 

examples of tools were designed for the analysis of images with a lower number 

of markers and can make the processing of MIBI70, IMC71 or CODEX68 images 

cumbersome. histoCAT++93 is an interactive tool for the analysis of IMC71 data, 

but is however less flexible as it does not provide any options to extend its 

capability through plugins or scripting. 
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1.4.3.3 Main features of highly-multiplexed image analysis software 

Essential features to consider in the design or selection of software for 

highly-multiplexed image analysis are reproducibility, portability, scalability and 

flexibility94. 

 Generally, image analysis pipelines offer a higher standard of 

reproducibility than Interactive analysis software95. This higher reproducibility 

derives from the greater ease of saving and sharing the pipeline configuration 

without the need for macros or project files as those used by software like 

QuPath92 and Ilastik91. The reproducibility of analysis pipelines is further 

increased by the use of automatic workflow managers like Nextflow96 and 

Galaxy97 in the software implementation95, 98. Examples of pipelines implemented 

with this workflow manager are imcyto87 and MCMICRO89, which also has a 

Galaxy97 implementation. 

The portability of the analysis software (i.e., the ability to run it on different 

computing platforms) is strictly linked to both the reproducibility and the scalability 

analysis 98. This is particularly the case for High-Performance Computing (HPC) 

environments, which are required for experiments involving tens or hundreds of 

samples that would likely be impossible or too time-consuming on regular 

desktop hardware. Interactive tools often need to be preconfigured on a different 

system and then run in headless mode in the HPC environment, with the user 

manually managing the available cores and memory. Instead, pipelines relying 

on workflow management tools like Nextflow96 have a significant advantage of 
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being able to be seamlessly deployed on most HPC platforms and automatically 

allocate memory and cores to each process in the pipeline95. 

Finally, image analysis software needs to be flexible enough to analyse a 

large variety of tissues to answer a large variety of possible research questions. 

Interactive software tends to be highly flexible and often has extensive collections 

of publicly available plugins, like CellProfiler490. Other tools are further 

extendable by providing a scripting interface, like QuPath92, which supports 

scripting in Java. Currently available highly-multiplexed imaging analysis 

pipelines, while being scalable and reproducible, generally lack flexibility. This is 

caused by multiple factors, including the possibility to select only one tool or 

algorithm for most steps of the pipeline. Additionally, these pipelines often do not 

allow the user to skip processes or start and terminate the pipeline at any point 

of the analysis workflow. This is the case for imcyto87, and MCMICRO89 with the 

latter only allowing the user to select between alternative tools to use for some 

steps of the analysis. 
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Table 2: Software for the analysis of highly-multiplexed imaging data 

For each software, are reported the parts of the highly-multiplexed image analysis workflow it covers, if it can be parallelised, if 

it is interactive, if it has a Graphical User Interface (GUI), and the multiplexed imaging platform it can be applied to (1: Imaging 

Mass Cytometry; 2: multiplexed immunofluorescence; 3: co-detection by indexing; 4: Multiplexed Ion Beam Imaging; 5: 

multiplexed immunohistochemistry; 6: spatial transcriptomic visualisation). A method was considered compatible with a given 

imaging platform in the original publication or other studies. 

Software Raw data 
processing 

Pixel-level 
analysis 

Cell 
segmentation 

Cell 
phenotyping 

Spatial analysis Interactive GUI Parallelisation Imaging 
technologies 

CODEX Toolkit68         3 

ImcSegmentationPipeline88     Partial    1 

Imcyto87         1 

CellProfiler490     Partial    1-6

HistoCAT++93         1,2,4,5 

QuPath92         1-6

Ilastik91         1-6

MCMICRO89         1-6
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1.5 Aims 

This thesis aimed to perform a comprehensive investigation of the genetic 

and immunological factors shaping the response to ICI in CRC. In particular, this 

investigation focused on identifying the differences in the composition and spatial 

organisation of the TME of patients who had a durable benefit from anti-PD1 

treatment and those who did not. 

To achieve this result, I developed a new software tool for analysing highly 

multiplexed images: Single-cell Identification from MultiPLexed Images (SIMPLI). 

I then tested SIMPLI on data generated from different imaging technologies and 

human tissues. I described this software in a recently published article of which I 

am the first author 99 (Chapter three). 

I then applied SIMPLI to analyse IMC images from CRC patients treated 

with anti-PD1 CRC. I performed this analysis of the TME in the context of a 

multiregional and multiomic study of samples from CRC patients treated with 

pembrolizumab (KEYNOTE 177 clinical trial52) or nivolumab. This work aimed to 

characterise the cellular and molecular determinants of response to anti-PD1 ICI. 

We reported the results of this study in an article of which I have co-first 

authorship (Chapter four). 

Throughout all these studies, I have relied on the repertoire of CRC cancer 

driver genes stored in the NCG database7. NCG is a web resource maintained 

by our group, which provides annotations on cancer genes and their systems-

level properties. In this study, we employed the gene annotations in the database 
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to interpret somatic mutation and gene expression data and the design of all the 

IMC and mIF panels. 

During the 2019 update of the NCG database, we studied the 

heterogeneity of drivers across primary sites and cancer types100. A description 

of this resource, together with the results of the accompanying analysis of cancer 

drivers, was published in a 2019 paper, of which I am a co-first author100 (Chapter 

five). 

In the 2022 iteration of the database the Network of Cancer Genes and 

Healthy Drivers NCGHD 7, we expanded our analysis of inter-tumour 

heterogeneity to include both genes whose driver role depends on mutations in 

their noncoding sequences and genes identified as drivers of non-malignant 

clonal expansion in non-cancer tissues7. We also collected the systems-level 

properties of these two additional gene categories and evaluated their 

heterogeneity across cancer types and primary sites. This database expansion 

and relative analysis is the subject of a 2022 paper of which I share the co-first 

authorship (Chapter six).      
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Chapter 2. Materials and Methods 

2.1 SIMPLI’s algorithm and implementation 

SIMPLI is implemented as a Nextflow96 pipeline, which manages the 

execution of several R, Python and Bash scripts. These scripts are either custom-

coded or wrappers around different software tools. These tools and their 

dependencies are managed through three Singularity containers101 hosted at 

Sylabs.io. SIMPLI’s workflow is divided into three main steps: raw data 

processing, cell-based analysis, pixel-based analysis. Each step is composed of 

multiple independent processes. These processes produce Tagged Image File 

Format (TIFF) images and masks or tables in Comma Separate Values (CSV) 

format. 

Additionally, most SIMPLI processes in both the cell-based and pixel-

based analysis steps can optionally produce plots to visualise the analysis results. 

These plots are produced with additional custom R scripts relying on the ggplot2 

package and are saved as Portable Document Format (PDF) files. The user can 

select which processes to execute or skip and from which process to start the 

analysis. Additionally, the user can disable the plotting of results altogether or 

enable it only for specific purposes. These settings, together with the main 

parameters for most processes, can be configured through a Nextflow96 

configuration file or directly through the command line. Finally, if the user chooses 

not to execute the upstream processes of a given process or step, the paths 

required input files are specified in a user-supplied CSV metadata file, without 
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the need for a specific folder structure. The full workflow of SIMPLI is described 

in the following paragraphs. 

Figure 2.1 SIMPLI workflow diagram 
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The workflow of Single-cell Identification from MultiPLexed Images (SIMPLI) 

consists of three main steps (rectangles): raw data processing (a), cell-based analysis 

(b) and pixel-based analysis (c). Each step is formed by multiple stand-alone processes

(rounded rectangles). These processes are implemented as R, python or bash scripts, 

which rely on custom code to perform their function (blue, green and pink) or are 

wrappers for established tools and libraries (white). Each process can produce outputs, 

including images, tables or plots (parallelograms). 

a. Raw data processing. Raw acquisition data in Mass Cytometry Data (MCD) or

Text (TXT) format are converted to Tag Image File Format (TIFF) images with the 

imctools102 library. The resulting images or user-provided TIFF files can optionally be 

normalised with a custom R script. The final process of this step is the thresholding and 

masking of the raw or the normalised images with a user-provided CellProfiler490 pipeline 

to generate masks for each marker and optionally for tissue compartments as well as 

images for the following steps. 

b. Cell-based analysis. This workflow step includes cell data extraction, cell

phenotyping, and spatial analysis. First, cell segmentation is performed with 

CellProfiler490, StarDist73 or both. The resulting single-cell data can be assigned to tissue 

compartments or populations according to their overlap with masks produced in the 

previous step or provided by the user. Then, cells can be further phenotyped by 

performing unsupervised clustering with Seurat103 v2.3.0 or by applying expression 

thresholds to one or more markers with an ad hoc R script in the expression thresholding 

process. Finally, the spatial distribution of cells in the tissue can be analysed to determine 

the presence of aggregations of one cell type (homotypic analysis process). This 

analysis is performed with an R script applying the DBSCAN85 algorithm with the fpc104 

R package. Alternatively, the distribution of the minimum distances between cells of two 

user-defined cell types can be quantified with the heterotypic analysis process. 
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c. Pixel-based analysis. The areas positive for a specific marker or user-defined

combination of markers are measured from masks provided by the user or derived from 

the raw data processing step. These measures are then normalised over the area of the 

whole image or tissue compartments. This step is performed using an ad hoc R script. 

This figure was reproduced from figure S1 of Bortolomeazzi et al99. 

2.1.1 Raw image processing 

Three processes constitute the raw image processing step: data 

extraction, normalisation, thresholding, and masking. The data extraction 

process is required to extract images from the raw acquisition data in mass 

cytometry data (MCD) or text (TXT) format produced by imaging mass cytometry 

71 experiments. In this process, a python script using the imctools102 v.1.0.7 library 

is applied to extract images in uncompressed 16-bit TIFF format, which are then 

used as input for the downstream processes. The user can choose the output 

images to be single multi-channel images with one channel per marker or single-

channel images, one for each marker. Data extraction should be skipped if the 

input images are already 16-bit TIFF files. The following process is data 

normalisation. This process performs 99th percentile normalisation of the raw 

TIFF images generated in the Image extraction process or specified by the user 

if the image extraction process is skipped. Images are normalised individually by 

marker and by sample. This process also provides the option to format the output 

as uncompressed 16-bit multi- or single-channel images. Next is the thresholding 

and masking process, which employs a user-supplied CellProfiler490 pipeline in 

CellProfiler pipeline (CPPIPE) format. This process is used to perform the image 
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manipulations that will generate the processed images and masks, which can 

then be used as input for the pixel-based or cell-based analysis. The input images 

for this process can be derived from images generated in the image normalisation 

process, images generated in the Image extraction process if the normalisation 

process is skipped, or user-specified images. The CellProfiler490 pipelines 

employed by SIMPLI need to be built with CellProfiler90 versions >4.0.7 and 

configured to run in a non-interactive environment. The pipeline needs to process 

images from one sample at a time, as parallelisation is achieved by running 

multiple instances of the pipeline. Finally, the pipeline should be configured to 

output images as single-channel 16-bit TIFF files. After this project, the pipeline 

can perform one or both of the next two steps in parallel. 

2.1.2 Cell-based analysis 

The cell-based analysis consists of extracting single-cell data by cell 

segmentation and compartment/marker masking. The resulting single-cell data 

can then be employed for phenotyping user-defined cell populations. Then, the 

distribution of cells belonging to these populations or phenotypes can be 

quantified with the spatial analysis processes. 

2.1.2.1 Single-cell data extraction 

Single-cell data extraction in SIMPLI consists of single-cell segmentation 

and compartment/marker masking. Segmentation in SIMPLI can be performed 

with two processes: deterministic segmentation and deep learning segmentation. 

Both processes can take as input the images and masks produced by the 
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thresholding and masking process, or user-supplied images. These images need 

to be single-channel TIFF files. Deterministic segmentation is performed with a 

user-specified CellProfiler490 pipeline run independently on each sample. Cells 

can be identified as primary, secondary, or tertiary objects, or segmentation can 

also be performed with the watershed module. Deep learning segmentation is 

performed with StarDist73 v.0.7.3 using one of the default models bundled with 

StarDist73 or a user-provided model. These models need to operate in YXC 

format, with rows as the first dimension, columns as the second, and all other 

dimensions being marker intensity values. The probability threshold used for 

calling cells and the overlap threshold above which Non-Maximum Suppression 

(NMS) is performed can be derived from the default values included in the model 

or provided by the user. The output of both segmentation processes consists of 

cell masks and single-cell data. Cell masks are 16-bit integer TIFF files in which 

the pixels belonging to each cell are assigned a unique value. Single-cell data 

consists of a CSV file with a row for each cell, containing the unique identifier 

mapping the cell to the pixel in the cell mask, the minimum, maximum, and mean 

intensity values for each marker and the X and Y coordinates of the cell’s centroid 

in the image. Additional columns with spatial features of the cell can also be 

included. The user can choose to perform segmentation with one or both 

processes and from which process the single-cell data and cell masks should be 

taken as input for downstream analyses or provide compatible cell masks and 

single-cell data. 

After segmentation, the pipeline can include the compartment/marker 

masking process, which allows identifying cells belonging to different populations 
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or tissue compartments according to the overlap of their areas with those of 

specific masks. The masks and the overlap thresholds to apply are selected by 

the user through an ad hoc metadata file and applied in the order they were 

specified. The compartment/marker masking process output consists of the 

single-cell data annotated with the population or compartment to which each cell 

was assigned. Cells not overlapping any mask by a fraction greater than the 

threshold are marked as unassigned. The results of this process can be 

visualised as position maps showing the outlines of every cell coloured according 

to its population or compartment. Additionally, their proportions are quantified in 

barplots, and if at least two samples from two different categories were analysed, 

the proportions are compared across categories and visualised as boxplots. 

2.1.2.2 Cell Phenotyping 

Cells belonging to user-defined compartments or populations can then be 

further phenotyped with two independent processes: unsupervised clustering and 

expression thresholding. The user can run none, one, or both of these processes 

in parallel. The output of this process consists of the single-cell data with 

additional columns indicating to which phenotype or cluster the cells were 

assigned. 

The unsupervised clustering process performs unsupervised clustering on 

cells from one or more populations or compartments with a user-defined set of 

markers. The clustering is performed with the R package Seurat103 v2.3.0. The 

Euclidean distances between the cells to cluster are calculated in a principal 

component analysis space and used to derive a k-nearest neighbour graph with 
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the cells as nodes. These are then clustered by partitioning the graph with the 

Louvain algorithm at user-defined levels of resolution, thus generating a set of 

cell phenotypes for each level of resolution. The unsupervised clustering results 

can optionally be plotted for each level of resolution. Clusters of cell phenotypes 

are plotted as scatterplots in UMAP82 space, coloured by cluster, sample, and by 

the expression level of each marker employed in the clustering. The UMAP 

projection is calculated with the R package uwot105 v.0.1.1. Additionally, the 

median expression of each marker in every cluster is visualised as a heatmap. 

Finally, if the analysis includes at least two samples from two different categories, 

the distributions of the proportion of cells of each cluster in every sample are 

compared and visualised as boxplots. 

The other phenotyping process is expression thresholding, in which cells 

from user-defined compartments or populations are phenotyped by applying 

user-defined thresholds to marker expression values. These thresholds can be 

combined into the Boolean expression to allow the selection of cell phenotypes 

defined by the expression of more than one marker. The distribution of the 

expressions values of each marker employed in the thresholding across all cells 

of interest is optionally visualised as density plots. The median marker expression 

values in each phenotype identified by thresholding are reported as heatmaps, 

and the proportions of cells of each phenotype can be shown in boxplots. 

2.1.3 Spatial analysis 

After cells have been assigned to populations, compartments or 

phenotypes, two spatial analysis processes can be employed to quantify 
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distances between cells of the same (homotypic aggregations) or different 

(heterotypic aggregations) types from their centroid coordinates. The homotypic 

aggregation process is used to identify clusters of cells of the same type within a 

user-defined distance with DBSCAN85 as implemented in the fpc104 v.2.2.9 R 

package. Homotypic aggregations are optionally visualised as position maps 

reporting the location of all cells of interest and highlighting cells belonging to 

high-density clusters as well as the cluster borders. 

 The heterotypic aggregation process calculates the minimum Euclidean 

distances between cells of two user-defined cell types in each sample with a 

custom R script. The distributions of minimum distances produced with the 

heterotypic aggregations process can be visualised as density plots. The 

distributions are also plotted by category if the analysis involves at least two 

samples divided into two categories. Finally, the results of the heterotypic 

analysis can be compared to those expected from a random distribution of cells 

through a permutation test. The permutation test results are also represented in 

the output as density plots. 

2.1.4 Pixel-based analysis 

The third step in SIMPLI’s workflow is the pixel-based analysis, which can be run 

as a standalone workflow or directly downstream from the raw image processing 

step. The user can provide the input masks or they can be derived from the raw 

image processing step. The pixel-based analysis is independent of the cell-based 

analysis and can be run in alternative or parallel to it. In this step, the areas of the 
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masks for specific markers or user-defined Boolean combinations of markers are 

measured with a custom R script relying on the EBImage106 v.3.10 package.  

The images from each marker selected by the user are loaded, and if they are 

not already binary masks, pixels with an intensity > 0 are set to 1. If the user has 

selected to measure the area of a combination of masks, the Boolean expression 

is evaluated, treating the masks as binary matrices. Then the areas of the 

resulting masks are measured by counting all positive pixels by taking the sum 

of all pixels in the image. 

The areas of the masks or combinations of masks are selected by the user for 

normalisation are then measured in the same way. These values are then 

employed to calculate the ratios between the measured areas and the area used 

for normalisation. These operations are applied iteratively on all samples. 

 The output of the pixel-based analysis step consists of a CSV file with the 

normalised areas reported as percentages of the areas of the masks used for 

normalisation. If the analysis involves at least two samples divided into two 

categories, the user can choose to plot the comparisons of the normalised areas 

across the two categories as boxplots. 

2.2 Patient and sample description 

Two main groups of samples were analysed, samples used for the testing 

of SIMPLI during and after development, and samples analysed to study the 

composition of the TME in colorectal cancer patients treated with ICI. The first 

group includes normal colon mucosa and appendix samples imaged with IMC71, 
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a publicly available as well as one sample imaged with mIF from a cohort of ICI 

treated colorectal cancer patients. 

2.2.1 Samples used to test SIMPLI 

Non-cancerous colon mucosa was extracted from six individuals during 

surgery for the recision of colorectal cancers. The extracted samples were then 

preserved as FFPE blocks (CLN1-CLN6; Supplementary table 1_S), then 

reviewed by an expert pathologist. All patients provided written informed consent 

in accordance with approved institutional guidelines (University College London 

Hospital, REC Reference: 20/YH/0088; Istituto Clinico Humanitas, REC 

Reference: ICH-25-09). 

One FFPE block of normal appendix (APP1; Supplementary table 1_S) 

was obtained from a patient after surgery and reviewed by an expert pathologist. 

The study of human appendix was approved by Brighton West Research Ethics 

Committee, REC reference 10/H1111/014 Biology of T follicular helper cells. 

To test SIMPLI’s ability to process CODEX68 derived data, a subset of 

images from a published dataset of colorectal CODEX68 images was analysed 

(Supplementary table 1_S). The images were downloaded from The Cancer 

Imaging Archive (https://doi.org/10.7937/tcia.2020.fqn0-0326). The dataset 

consisted of CODEX68 images from 35 colorectal cancer samples divided into 

two groups according to their histology: CLR (Crohn’s-like reaction) and DII 

(diffuse inflammatory infiltration) according to the amount of peritumoural 

inflammation and tertiary lymphoid structures. Each sample has four images 

corresponding to four 0.6mm spots from two separate 70-core tissue microarrays, 
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stained with 58 antibodies and two DNA markers, and imaged at a 377 nm/pixel 

resolution. For each of the 35 samples, one representative image was selected 

for further analysis, manually selecting the core containing both tumour and 

peritumoural immune infiltrates and having the best focus. 
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Figure 2.2 ICI response analysis patients and samples 
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The patient cohorts and design of the study and the regions selected for the 

analysis in each CRC sample. 

a. CRC patient cohorts in the study. The clinical benefit each patient received

from treatment was assessed with RECIST 1.1. 

b. Schematic of the sequential slides derived from the FPPE blocks from

validation and discovery cohorts samples. For samples from the discovery cohort slides 

A, B, F, H and J were used for CD3 immunohistochemistry, slide C for IMC71, slide D for 

mIF, slides E1-5 for WES, slides G1-5 for RNA-seq, slides I1-5 for TCR-seq,  and slides 

K1-2 for A-FRET.  For samples UH17-UH23 and UH25-UH27 in the validation cohort, 

the following sequential slides were used: slides A, E and G for CD3 IHC, slide C  for 

IMC71  with panel II, slide D  for mIF and slides F1-5 RNA-seq. For the three biopsies 

UH24, UH28, UH29 only IHC, IMC71  and mIF were performed. 

c. Region selection for DNA and RNA extraction ins slide A. Multiple regions with

variable CD3 infiltration were identified in slide A by a certified pathologist. These were 

then projected to all other slides to enable multiregional analysis using a stereo 

microscope. The projected regions were manually dissected with a needle in slides used 

for DNA or RNA extractions. 

This figure panels were reproduced from figure 1 and figure S1 of Bortolomeazzi 

et al. 107. 

2.2.2 Colorectal cancer patient cohorts for ICI response analysis 

Two cohorts of patients were selected for this study: a discovery cohort 

and a validation cohort (Supplementary table 1_I). For both cohorts, the formal 

Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1108 were 

employed to assess response to therapy. In particular, 12 months without disease 



Chapter 2 Materials and methods 

89 

progression from the beginning of immunotherapy were required for a patient to 

be considered as having achieved a durable benefit (DB). Patients showing 

disease progression before 12 months were instead considered as having had a 

non-durable benefit (nDB) from immunotherapy. All patients were consented at 

the UCL Cancer Institute Pathology Biobank - REC reference 15/YH/0311. 

The discovery cohort consisted of 16 patients (Supplementary table 1_I): 

10 (UH1-UH10) treated with 200mg of Pembrolizumab every three weeks, and 

six (UH11-UH16) treated with 240mg of Nivolumab every two weeks (Figure 

2.2a). Patients UH1-UH10 were part of the KEYNOTE 177 clinical trial 

(ClinicalTrials.gov, NCT02563002)52. 

The validation cohort was composed of 13 patients (Supplementary table 

1_I): three patients (UH17-UH19) enrolled in the KEYNOTE 177 trial 

(ClinicalTrials.gov, NCT02563002)52 and treated with 200mg of Pembrolizumab 

every three weeks; one patient (UH26) treated with 2mg/kg of pembrolizumab 

every three weeks, seven patients (UH20-UH25 and UH29) treated with 240mg 

of Nivolumab every two weeks; one patient (UH27) treated with 1mg/kg of 

Ipilimumab in combination with 3mg/kg of Nivolumab every three weeks for four 

cycles, then by 240 mg of Nivolumab alone every two weeks; one patient (UH28) 

treated with 3mg/kg of Nivolumab for two cycles, then a combination of 1mg/kg 

of Ipilimumab with 3mg/kg of Nivolumab every three weeks for three cycles. All 

patients treated with Nivolumab (UH20-UH25 and UH27-UH29) belonged to the 

UK wide Bristol Myers Squibb Individual Patient Supply Request Programme as 

per Article 5/1 of Article Directive 2001/83/EC. 
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The tumour content in each FFPE block was assessed by a board-certified 

surgical pathologist. Each FFPE block was then cut with a microtome into serial 

sections for CD3 and HE staining, IMC71, mIF, A-FRET (4mm thick), Whole 

exome sequencing (WES) and RNA-seq (10mm thick). 

The FFPE blocks of samples UH1-UH16 underwent sectioning with a 

microtome to obtain 24 sequential sections (Figure 2.2b). These then were 

employed for CD3 staining (slides A, B, F, H and J) (Figure 2.2c), IMC (slide C), 

mIF Immunofluorescence (mIF, slide D), WES (slides E1-5), RNA-seq (slides G1-

5), TCR-seq (Slides I1-5) and A-FRET (slides K1-2) (Supplementary table 2_I). 

A total of 11 sequential sections (Figure 2.2b) were derived from samples 

UH17-UH23 and UH25-UH27 and used for CD3 staining (slides A, E and G) 

(Figure 2.2c), Hematoxylin and eosin stain (HE) staining (slide B), IMC71 (slide 

C), mIF (slide D) and RNA-seq (slides F1-5). RNA-seq could not be performed 

on the three biopsies UH24, UH28 and UH29, thus only CD3 and HE staining 

(slides A and B); IMC71  (slide C) and mIF (Slide D) were performed on these 

samples (Supplementary table 2_I). 

2.3 Imaging mass cytometry staining and ablation 

First, the dilution of each antibody in the panel was optimized by staining 

and ablating FFPE appendix sections. The resulting images were reviewed by a 

mucosal immunologist to select for each antibody the dilution producing the 

highest signal to noise ratio. 

Then the slides were incubated at 60°C for one hour, dewaxed, and 

rehydrated before heat-induced antigen retrieval (HIER) with Antigen Retrieval 
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Reagent-Basic (R&D Systems) in a pressure cooker. Slides were blocked by 

incubating them in a blocking solution of 10% BSA (Sigma), 0.1% Tween 

(Sigma), and 2% Kiovig (Shire Pharmaceuticals) Superblock Blocking Buffer 

(Thermo Fisher) for two hours at room temperature. A primary antibody mix 

containing each antibody at the selected concentration in blocking solution was 

added to the slides, which were then incubated overnight at 4°C. Then the slides 

were washed twice in PBS and PBS-0.1% Tween and treated with the DNA 

intercalator Cell-ID™ Intercalator-Ir (Fluidigm) (containing the two iridium 

isotopes 191Ir and 193Ir) 1.25 mM in a PBS solution for 30-minutes. Finally, the 

slides were washed first in PBS and then in MilliQ water before air-drying. 

ROI selection was performed by loading the stained slides in the Hyperion 

Imaging System (Fluidigm) imaging module to obtain light-contrast high-

resolution images of approximately 4mm2. These images were then examined to 

select 1mm2 ROIs in each slide. These were then ablated at a 1 µm/pixel 

resolution and 200 Hz frequency to obtain the multiplexed images in MCD and 

TXT format. 

2.3.1 Staining and ablation of the samples employed to test SIMPLI 

A 26 antibodies-panel covering the main immune populations of the 

gastrointestinal tract, as well as other stromal and epithelial tissue components, 

was assembled from 17 already metal-tagged antibodies (Fluidigm) and nine 

non-pre-tagged ones, which were tagged using the Maxpar X8 metal conjugation 

kit after testing by immunohistochemistry (Supplementary table 2_S). Samples 

CLN1-CLN6 and APP1 (Supplementary table 1_S) were cut with a microtome to 
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produce four µm-thick slides, which were stained as described above. Colon 

mucosa ROIs in CLN1-CLN6 were selected to include the entire thickness of the 

colon mucosa, with epithelial crypts in longitudinal orientation. For the APP1 ROI, 

an area containing a lymphoid follicle in its whole depth alongside a portion of 

lamina propria and epithelium was selected. 

2.3.2 Staining and ablation of samples used for the ICI response analysis 

A total of 42 antibodies were assembled in three panels targeting the main 

immune and stromal cell populations of the colonic and rectal TME (IMC panels 

I, II and III; Supplementary table 5_I). Of these antibodies, 25 were already metal-

tagged (Fluidigm), and the remaining 17 were instead tested by 

immunohistochemistry and tagged using the Maxpar X8 metal conjugation kit 

(Fluidigm). 

In each sample except for UH18, UH24, UH28 and UH29 (Supplementary 

table 2_I), regions with high and low CD3+ content were selected from CD3+ 

quantification performed on an adjacent sequential slide. Inside these regions, 

1mm2 ROIs were selected to include areas with the highest tumour content and 

representative of the median CD3+ content of the region. 

In the discovery cohort, a total of 38 regions were stained and ablated 

using IMC panel I, 22 regions of the validation cohort using IMC panel II, and an 

additional 17 regions from DB patients belonging to both cohorts were stained 

and ablated with the third panel IMC panel III (Supplementary tables 2_I, 5_I). 

For samples in the discovery cohort, ROIs were selected in the regions 

with the highest tumour content once for high CD3+ infiltration regions and once 
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for low CD3+ infiltration regions. In samples UH6, UH9 and UH12, all four regions 

were analysed, while for UH4 and ROI, spanning two high CD3+ regions and one 

spanning the two low CD3+ regions were analysed together to be consistent with 

WES and RNA-seq analyses (Supplementary table 2_I). 

The two regions with the highest difference in CD3 infiltration were 

selected in the validation cohort. In UH18, only one ROI was ablated because of 

the high levels of necrosis in the region, while only one region and thus one ROI 

was selected from the three biopsies UH24, UH28, UH29 because of the small 

size of the FFPE blocks (Supplementary table 2_I). 

2.4 MIF of samples for testing SIMPLI and ICI response analysis 

 mIF was performed on slide D from 24 FFPE blocks: 13 samples from the 

discovery cohort and 11 from the validation cohort. The slide was stained with a 

panel of eight antibodies: CD74, Transcription Factor 7 (TCF7), PDL1, Ki67, PD1, 

GzB, CD68, CD8 and 4’,6-diamidino-2-phenylindole (DAPI) (Supplementary 

Table 5_I). A Ventana Discovery Ultra automated staining platform (Roche) was 

employed to run an automated Opal-based mIF staining protocol after 

optimisation of Opal-antibody pairing and dilution, incubation and denaturation 

times according to manufacturer’s instructions. Additionally, the expected tissue 

and cellular localisation of each marker and fluorophore brightness were 

assessed to minimise the effects of fluorescence spillage when optimising 

antibody-Opal pairing. Spectral libraries containing each Opal were scanned to 

allow autofluorescence isolation and spectral unmixing. The automating staining 

protocol was applied with an autostainer to each slide after a one-hour incubation 
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at 60°C. The staining protocol consisted of deparaffinisation (EZ-Prep solution, 

Roche), heat induced epitope retrieval (DISC. CC1 solution, Roche) and seven 

sequential rounds of staining and denaturation. Each staining round required a 

one-hour incubation of the slide with the primary antibody, 12-minute incubation 

with a secondary antibody conjugated with horseradish peroxidase (HRP) (DISC. 

Omnimap anti-Ms HRP RUO or DISC. Omnimap anti-Rb HRP RUO, Roche) and 

a 16-minute incubation with the Opal reactive fluorophore (Akoya Biosciences). 

After each staining round, the slide underwent denaturation at °C for 8 minutes 

to remove the primary and secondary antibodies and the HRP from the previous 

cycle without affecting the fluorescent signal.  

 At the last staining round, the slide was incubated with Opal TSA-DIG 

reagent (Akoya Biosciences) for 12 minutes, followed by a one-hour incubation 

with Opal 780 reactive fluorophore (Akoya Biosciences). Finally, after 

counterstaining with DAPI (Akoya Biosciences), the slide was coverslipped using 

ProLong Gold antifade mounting media (Thermo Fisher Scientific). 

All slides were scanned with the Vectra Polaris automated quantitative 

pathology imaging system (Akoya Biosciences). Six fields of view within the 

regions selected by the pathologist were scanned at 20x and 40x magnification 

using appropriate exposure times. 

2.5 Image analysis to test SIMPLI 

SIMPLI was tested on three types of high-multiplexed imaging data, 

described in the following paragraphs: 

2.5.1 IMC analysis of normal colon mucosa to test SIMPLI. 
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2.5.2 Analysis of a normal appendix image to test SIMPLI. 

2.5.3 Analysis of a multiplexed immunofluorescence image. 

2.5.4 Analysis of CODEX images to test SIMPLI.   

2.5.1 IMC analysis of normal colon mucosa to test SIMPLI 

The normal colon mucosa images were analysed with two separate 

SIMPLI workflows: the first included all processes in the raw data processing 

step, the pixel-based analysis step, and the cell-based analysis step up to the cell 

masking process; the second workflow consisted of the raw data processing step 

without the data normalisation process and the pixel-based analysis step.  

2.5.1.1 Raw image processing 

The data extraction process was applied to the raw TXT files of the CLN1-

CLN6 ROIs to extract 28 images per sample: 26 channels from the antibody panel 

and two from the DNA intercalators (Supplementary Table 2_S). Then, pixel 

intensities were rescaled from 0 to 1 using the 99th intensity percentile within 

each sample and channel as the maximum. After data normalization, the images 

underwent the thresholding and masking process, which applied Otsu 

thresholding109 with a custom CellProfiler4 pipeline to generate background-free 

masks for each marker. The Immunoglobulin A (IgA) masks used for measuring 

IgA+ areas in the pixel-based analysis step were generated at this stage using a 

three-class global Otsu thresholding109 with two background classes after 

applying a Gaussian filter with a three-pixel diameter. 
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 This process was also employed to generate the masks for the lamina 

propria and the epithelium. The first was produced from the Vimentin mask by 

filling holes <75-pixel in diameter. The second was produced from the sum of the 

Pan-keratin and E-cadherin masks by dilating the images with a three-pixel disk 

and filling holes <75-pixel in diameter. The lamina propria and epithelium masks 

were then added into a sum image, which was dilated with a three-pixel disk and 

underwent the filling of all holes <25-pixel in diameter. All positive features 

outside the lamina and epithelium compartments were removed with an opening 

operation with a 150-pixel radius disk. Then, the lamina propria mask was 

subtracted from the resulting image to generate the final mask for the epithelium. 

The raw image processing step was performed again, skipping the data 

normalization process and performing the thresholding and masking process 

directly on the raw images. This process was performed with a custom 

CellProfiler490 pipeline applying manually selected sample-specific thresholds for 

the generation of the IgA, E-Cadherin, Pan-Keratin and Vimentin masks from the 

raw images. The resulting masks images were then used to generate lamina 

propria and epithelial masks for each sample as previously described. 

2.5.1.2 Cell- and pixel-based analysis 

The cell-based analysis step started with the deterministic segmentation 

with a custom CellProfiler490 pipeline. This pipeline consisted in the global Otsu 

thresholding109 of the DNA1 image to identify the cell nuclei, and then the radial 

expansion of each nucleus for up to 10 pixels over a membrane mask derived 

from the sum IgA, CD3, CD68, CD11c and E-cadherin masks. After segmentation, 
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only cells overlapping with the lamina propria mask by at least 30% were retained. 

This 30% overlap threshold was selected after inspection by an expert histologist. 

Then cells were assigned to one of four main immune cell populations with the 

cell masking process. Cells overlapping marker-specific masks by more than a 

threshold defined by an expert histologist were assigned to the corresponding 

population in this order: ≥15% of the IgA mask for IgA cells; ≥15% of the CD3 

mask for T cells; ≥25% of the CD68 mask for macrophages; ≥15% of CD11c 

mask for dendritic cells. 

The pixel-based analysis step was applied to the IgA masks derived from 

either the normalised or the raw images. The IgA+ areas in the lamina propria, 

epithelium and both compartments combined were measured and normalised 

over the areas of the three compartments. 

2.5.2 Analysis of a normal appendix image to test SIMPLI 

The analysis of a normal appendix image was performed with SIMPLI 

using a workflow, including the raw image processing step and the cell-based 

analysis step. For this step, single-cell data extraction through deterministic 

segmentation and cell masking was followed by cell phenotyping with both 

unsupervised clustering and expression thresholding. Then a homotypic spatial 

analysis was performed on the phenotyped cells.   

2.5.2.1 Raw image processing and single-cell data extraction 

Images from the 26 channels from the panel antibodies and two DNA 

intercalators were extracted from the raw TXT file of the APP1 ROI with SIMPLI’s 



Chapter 2 Materials and methods 

98 

data extraction process. The resulting images were then normalised to the 99th 

percentile through the data normalisation process and thresholded with 

CellProfiler490 in the thresholding and masking process. A background free mask 

was generated for each marker and employed as input for the cell-based analysis 

step. 

For single-cell data extraction, both deep learning and deterministic 

segmentation were applied, and the single-cell data produced with the latter 

approach was employed as input for the downstream processes. The deep 

learning segmentation process was performed with the 2D_versatile_fluo 

model73 applied to the DNA1 channel with a probability threshold of 0.0015 and 

an NMS threshold of 0.01. Deterministic segmentation was performed with a 

custom CellProfiler490 pipeline. First nuclei were segmented from the DNA1 

channel, and then cells were isolated through watershed segmentation with the 

nuclei as seeds on a membrane mask consisting of the sum of the CD45, Pan-

keratin and E-cadherin masks. 

After segmentation, cell masking was performed to assign cells to the 

epithelium or immune cell populations. Cells were assigned to a given population 

if they overlapped the mask of the corresponding marker by at least 10%. This 

threshold was identified by a mucosal immunologist and applied in this order: 

CD3 mask for T cells; CD20 and CD27 masks for B cells; CD68 mask for 

macrophages; CD11c mask for dendritic cells; E-cadherin and Pan-keratin masks 

for epithelial cells. 
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2.5.2.2 Cell phenotyping and homotypic spatial analysis 

The two cell phenotyping approaches provided by SIMPLI were then 

applied to T cells. The unsupervised clustering process was applied at resolutions 

between 0.1 and 1.0, with 0.05 intervals using the mean intensities of the 

following markers in each T cell: CD3, CD45RA, CD45RO, CD4, CD8, Ki67, and 

PD1. A manual inspection of the resulting clusters allowed the identification of 

the run, which produced the highest number of biologically meaningful clusters 

(resolution = 0.25), which was selected for downstream analyses. These clusters 

were then re-identified with the expression thresholding process using mean 

intensity thresholds defined by an expert histologist for the following markers: 

CD3 >0.06 for cluster 1; CD8a >0.125 for cluster 2; CD45RA >0.125 for cluster 

3; CD4 >0.125 and CD45RO >0.15 for cluster 4; and CD4 > 0.1 and PD1 >0.15 

for cluster 5.  

The tissue’s distribution of CD4+PD1+ T cells (cluster 5, resolution = 0.25) 

was analysed with SIMPLI’s homotypic aggregations process. Aggregations 

were quantified with the following parameters: a minimum of five points per 

cluster and reachability equivalent to a density of at least 5 cells/mm2.  

2.5.3 Analysis of a multiplexed immunofluorescence image 

After scanning, all fields of view were processed with inForm110 to perform 

spectral unmixing and autofluorescence isolation using previously acquired 

spectral libraries. The resulting raw images from each field at 20X and 40X 

magnification were stitched to generate single raw images in TIFF format. These 
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raw images were then used for visualisation or as input for image analysis with 

SIMPLI.  

To test the performance of SIMPLI of mIF derived images, six 20x fields 

of view for a total of >5mm2 patient UH1 were joined into a single ROI (CRC1, 

Supplementary Table 1_S). Single-channel images for the CD8, PD1, Ki67, PDL1, 

CD68, GzB and DAPI channels were extracted, and their intensities were 

independently rescaled from 0 to 1 with custom R scripts. The resulting single-

channel TIFF images were then employed as input for a SIMPLI workflow, 

starting at the thresholding and masking process of the raw data processing. In 

this step, the background noise was removed from each image by applying Otsu 

thresholding109 with a custom CellProfiler490 pipeline. 

For the cell-based analysis, SIMPLI’s deterministic cell segmentation 

process was used to identify cells by applying a global threshold to the 

thresholded DAPI image and selecting all objects with a diameter between four 

and 60 pixels. Then, the cell masking process was skipped, and all cells were 

employed as input for cell phenotyping with the expression thresholding process. 

In this process, PD1+CD8+ cells, CD68+ cells and PDL1+ cells identified using 

mean intensity thresholds identified by a mucosal immunologist: 0.01 for CD8, 

0.005 for PD1, 0.01 for CD68 and 0.01 for PDL1. 

SIMPLI’s heterotypic spatial analysis process was applied to calculate the 

distribution of minimum distances between PDL1+ cells and PD1+CD8+ cells and 

between CD68+ cells and PDL1+ and PDL1- cells. All PDL1+ cells and PD1+CD8+ 

cells at a distance from each other lower than double the maximum cell radius 

(24 pixels = 12µm) were considered proximal, while all other cells were classified 
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as distal. The expression levels of GzB and Ki67 in CD8+PD1+ cells CD68 and 

Ki67 in PDL1+ cells were compared across proximal and distal cells with a two-

sided Wilcoxon rank-sum test. 

2.5.4 Analysis of CODEX images to test SIMPLI 

The 35 selected images were then converted to single-channel TIFF files, 

and their pixel intensities were normalised by rescaling from 0 to 1 within each 

channel and sample with custom R scripts. The normalised images were used as 

input for cell-based analysis with SIMPLI. The deterministic cell segmentation 

process was applied to each of the 35 images using a custom CellProfiler490 

pipeline. First, a global threshold was applied to the HOECHST channel to 

identify the nuclei as all positive objects with a diameter between 5 and 40 pixels. 

Then, each nucleus was then expanded by 5 pixels in all directions to define the 

cell area. The resulting cells were assigned to ten phenotypes with SIMPLI’s 

expression thresholding process according to the following thresholds of mean 

marker expression within each cell: Caudal Type Homeobox 2 (CDX2) >0.15 or 

Mucin 1 (MUC1) >0.15 or Cytokeratin >0.15 for tumour cells; CD34 >0.15 or 

CD31 >0.15 for endothelial cells; Vimentin >0.1 for other stromal cells; CD11c 

>0.3 for DCs; CD38 >0.26 for B cells; CD4 >0.13 and CD3 >0.1 for CD4+ T cells;

CD4 >0.12 and Forkhead Box P3 (FOXP3) >0.5 and CD3 >0.1 for Tregs; CD8 

>0.16 and CD3 >0.1 for CD8+ T cells, and CD68 >0.11 for macrophages.

After cell phenotyping, the minimum distances between macrophages, 

CD8+ T cells, CD4+ T cells, Tregs, and B cells to tumour cells and endothelial 

cells were calculated using the heterotypic aggregations process. The resulting 
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distance distributions were then compared between CLR and DII colorectal 

cancer subtypes with two-sided Wilcoxon rank-sum tests, and the False 

Discovery Rate (FDR) was calculated with the Benjamini-Hochberg correction. 

Differences between distance distributions with FDR < 0.1 were considered 

biologically relevant only if the difference between the median distances of the 

two subtypes was greater than 8µm, corresponding to the diameter of B and T 

lymphocytes111. Additionally, a permutation test was performed by randomly 

shuffling the identities of all cells in each sample 10000 times to derive an 

expected distribution of differences in distances between CLR and DII cells. This 

expected distribution was compared to the observed values to estimate if the 

observed difference was compatible with a random distribution. 

2.6 IMC analysis of ICI-treated colorectal cancers 

The colorectal cancer image analysis was performed with SIMPLI, using 

Ilastick91 v. 1.3.0 for the filtering of background signals for specific markers. The 

cell-based analysis was performed with the same workflow for both the discovery 

and validation cohort for the single-cell data extraction processes. 

2.6.1 Raw image processing and pixel-based analysis 

The raw image processing step was performed on all the 77 ROIs from 

both cohorts together (Supplementary Table 2_I), with two consecutive SIMPLI 

workflows. In the first workflow, single-channel TIFF images for each antibody 

and the two DNA intercalators were produced from the raw IMC71  MCD and TXT 
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files with the raw data extraction process. Then these images were normalised 

by sample and by channel with the data normalisation process. 

 After visual inspection by a mucosal immunologist, the normalised images 

for PD1, PDL1, GzB, CD45RA, TIM3, VISTA, TCF7, CD134, CD206, and FOLR2 

underwent processing with Ilastick91 v. 1.3.0 to generate probability masks for 

each pixel to belong to the signal or background noise. For this purpose, a 

random forest classifier was trained for each marker using a closely related 

marker as a reference (CD3 for PD1; Vimentin for PDL1; CD8 and CD15 for GZB; 

CD45 and CD45RO for CD45RA; CD68 for Folate Receptor Beta (FOLR2) and 

CD206). These masks were then used as an additional input to the second 

SIMPLI workflow employed for image processing. For B2M, an additional mask 

to be used only for the pixel-based analysis was generated from the normalised 

images with an ad hoc threshold of 0.5 pixel intensity. For regions UH19_87, 

UH27_96, and UH27_97, the CD3 masking threshold was adjusted to 0.175, 

0.15, and 0.15 after manual inspection.  

The second SIMPLI workflow consisted of the thresholding and masking 

process. In this process, the normalised images generated in the first workflow 

were and the probability masks produced with Ilastick91. These images were 

thresholded to produce the masks for each marker. This process was also used 

to produce the tumour and stroma masks. The tumour masks were generated as 

the sum of the Pan-keratin and E-cadherin masks for all regions except 

UH18_103 and UH22_112, where only E-cadherin was used. The resulting 

images were smoothened with a Gaussian filter and filled all holes <30 pixels in 

diameter. The stroma masks were generated from the sum of the Vimentin, SMA 
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and DNA masks in the discovery cohort, and the Vimentin, CD68, CD11c, CD3, 

CD27 and CD45 masks in the validation cohort, the resulting images had all holes 

<20 pixels in diameter filled up. The stroma and tumour masks were then 

summed to produce a tissue mask for each region. 

The SIMPLI pixel-based analysis step was performed in two distinct 

workflows, one for the discovery cohort and one for the validation cohort. The 

measured areas were normalised over the total tissue area or the area of the five 

main immune populations (T cells, B cells, macrophages, dendritic cells and 

neutrophils) for the discovery cohort and T cell and macrophages only for the 

validation cohort. 

2.6.2 Single-cell data extraction 

Single-cell data extraction was performed as a single SIMPLI workflow for 

the discovery and the validation cohorts. Deterministic cell segmentation was 

performed with a custom CellProfiler4 pipeline. First, segmentation using local 

Otsu thresholding109 on the product of the two DNA images were used to identify 

the nuclei. Second, a membrane mask was generated from the sum of all 

membrane markers for the membrane markers: CD3, CD20, CD27, CD16, 

CD11c, CD15, SMA, CD34, Vimentin and Pan-keratin for the discovery cohort 

and CD45, Pan-keratin and E-cadherin for the validation cohort. Then the 

membrane mask was used as a base for the radial expansion of the nuclei by up 

to 10 pixels to generate the cell masks. Only cells overlapping with the tissue 

mask by at least 10% of their area were retained. Finally, the mean intensity of 

all markers was measured in each of the retained cells. 
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After cell segmentation, cell identities were identified as belonging to one 

of five main populations or as tumour cells with the cell masking process. This 

assignment was performed with the following overlap thresholds applied in order: 

≥25% of the CD3+ mask for T cells; ≥10% of CD11c+ CD68- mask for dendritic 

cells; >10% of the sum of CD68+ CD11c+ and CD68+ CD11c- masks for 

macrophages; ≥5% of IgA+, IgM+, CD20+, and CD27+ mask for B cells; and ≥25% 

of CD15+ mask for neutrophils. Cells not overlapping with any of these markers 

were defined as tumour cells if they overlapped ≥80% with the tumour mask or 

left unassigned otherwise. Subsequently, PD1+ cells were identified as a subset 

of T cells overlapping the PD1 by at least ≥1% of their area, while PDL1+ cells 

were identified as cells whose area overlapped the PDL1 mask by at least 10%. 

All these overlap thresholds were identified by the manual inspection of a 

mucosal immunologist. 

2.6.3 Cell phenotyping in the discovery and validation cohorts 

Single-cell phenotype clustering was performed for the discovery cohort 

for T cells, B cells, macrophages, dendritic cells, neutrophils, PD1+ and PDL1+ 

cells separately with SIMPLI’s unsupervised clustering process. Independent 

clustering was used to compare the relative abundance of cell subpopulations 

between hypermutated and non-hypermutated CRCs or DB- and nDB-CRCs 

using samples from Pembrolizumab and Nivolumab treated patients alone or 

combined. The clustering was based on the mean expression of a set of markers 

typical of that population for each main population (Supplementary table 5_I).  
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Unsupervised clustering was performed for each population at ten different 

resolution values from 0.1 to 1.0 with 0.1 increments. After manual inspection of 

the clustering output at different resolutions, the one with the highest number of 

biologically meaningful clusters was chosen for each cell population. 

CD74+ macrophages and CD8+GzB+ CD8+Ki67+ T cells were identified 

with SIMPLI’s expression thresholding process. Specific thresholds selected by 

a mucosal immunologist were applied to the mean marker intensities in each cell: 

0.1 for CD74; 0.1 for CD8; 0.05 for GzB; 0.15 for Ki67. CD8+ T cells positive for 

both the Ki67 and the GzB threshold were classified as either CD8+GzB+ or 

CD8+Ki67+ T cells according to which of the two markers had the highest mean 

intensity value. 

Single-cell clustering was performed on all T cells in the validation cohort 

using all 17 T cell markers included in IMC panel II (Supplementary table 5_I). 

The distribution of cells within each cluster over the total cells in the phenotyped 

population was compared between DB- and nDB-CRCs or hypermutated and 

non-hypermutated CRCs using a two-sided Wilcoxon rank-sum test, applying the 

Benjamini-Hochberg correction to obtain the FDR. 

In the ROIs from regions stained with IMC panel III, CD74+ macrophages 

were identified using a threshold of 0.35 on the mean intensity of CD74 with 

SIMPLI’s expression thresholding process. The unsupervised clustering of the 

identified CD74+ macrophages was performed using 16 macrophage markers 

(Supplementary table 5_I). 
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2.6.4 Homotypic and heterotypic spatial analyses 

The homotypic spatial analysis process of SIMPLI was applied to 

CD68+CD74+ macrophages identified by unsupervised clustering in the discovery 

cohort and by expression thresholding in the validation cohort. For this analysis, 

high-density clusters were identified as clusters with a minimum of five points and 

a reachability equivalent to a density of at least 5 cells/10,000µm2.  

SIMPLI’s heterotypic spatial analysis process was applied to measure all 

the minimum distances between the CD8+GzB+ and CD8+Ki67+ T cell phenotypes 

and the CD68+CD74+ macrophage phenotype. This process was then repeated 

for CD8+GzB+PD1+ or CD8+Ki67+PD1+ T cells, CD68+CD74+PDL1+ cells and the 

distance distributions were compared using a two-sided Wilcoxon rank-sum test. 

.
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Chapter 3. SIMPLI: Single-cell Identification from MultiPLexed 

Images 

3.1 Contributions 

In this study99, I developed the SIMPLI software with support from 

Mohamed Reda Keddar and Damjan Temelkovski. I also analysed the data 

together with Lucia Montorsi, Amelia Acha-Sagredo, Michael J. Pitcher, Jo 

Spencer., and Francesca D. Ciccarelli. Finally, I wrote the manuscript with 

Francesca D. Ciccarelli, and all authors reviewed and approved its final version. 

Francesca D. Ciccarelli acquired the funding conceived and supervised 

the study with support from Jo Spencer. Manuel Rodriguez-Justo, Gianluca 

Basso, and Luigi Laghi selected and clinically assessed the samples used in the 

study, and Manuel Rodriguez-Justo performed their pathological assessment. 

Lucia Montorsi stained the sample slides for IMC71, while Amelia Acha-Sagredo 

performed the mIF experiments. 

3.2 A SIMPLI (Single-cell Identification from MultiPLexed 

Images) approach for spatially resolved tissue phenotyping 

at single-cell resolution 
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A detailed investigation of tissue composition and function
in health and disease requires spatially resolved, single-
cell approaches that precisely quantify cell types and states

as well as their interactions in situ. Recent technological advances
have enabled to stain histological sections with multiple tagged
antibodies that are subsequently detected using fluorescence
microscopy or mass spectrometry1. High-dimensional imaging
approaches such as imaging mass cytometry (IMC)2, multiplexed
ion beam imaging (MIBI)3, co-detection by indexing (CODEX)4,
multiplexed immunofluorescence (mIF, including cycIF)5 and
multiplexed immunohistochemistry (mIHC)6,7 enable quantifi-
cation and localisation of cells in sections from formalin-fixed
paraffin-embedded (FFPE) tissues, including clinical diagnostic
samples. This is of particular value for mapping the tissue-level
characteristics of disease conditions and predicting the outcome
of therapies that depend on the tissue environment, such as
cancer immunotherapy. For example, a recent IMC phenotypic
screen of breast cancer subtypes revealed the association between
the heterogeneity of somatic mutations and that of the tumour
microenvironment8. Similarly, a CODEX-based profile of FFPE
tissue microarrays from high-risk colorectal cancer patients cor-
related PD1+CD4+ T cells with patient survival9.

The analysis of multiplexed images requires the conversion of
pixel intensity data into single-cell data, which can then be char-
acterised phenotypically, quantified comparatively and localised
spatially in the tissue. Currently available tools are technology spe-
cific and cover only some steps of the whole analytical workflow
(Table 1). For example, several computational approaches have been
developed to process raw images and extract single-cell data either
interactively (Ilastik10, CellProfiler411, CODEX Toolkit4) or via
command line (imcyto12, ImcSegmentationPipeline13). Distinct sets
of tools can then perform cell phenotyping (CellProfiler Analyst14,
Cytomapper15, Immunocluster16) or analyse cell–cell spatial inter-
actions (CytoMap17, ImaCytE18, SPIAT19, neighbouRhood20).
Similarly, a few tools enable direct pixel-based analysis through pixel
classification10 or quantification of pixel positive areas11. Despite
such a variety of tools, none of them can perform all of the required
analytical steps in a common pipeline. Two exceptions are histoCAT
++21 and QuPath22, which however have been developed specifi-
cally for interactive use and are not well suited for the analysis of
large datasets. Moreover, all of these tools rely on ad hoc config-
uration files and input formats, making the analysis challenging for
users with limited computational skills and restricting the scalability,
portability and reproducibility in different computing environments.
Here we introduce SIMPLI (Single-cell Identification from

MultiPLexed Images), a tool that combines processing of raw
images, extraction of single-cell data, and spatially resolved
quantification of cell types or functional states into a single
pipeline (Table 1). This is achieved through the integration of
well-established tools and newly developed scripts into the same
workflow, enabling ad hoc configurations of the analysis while
ensuring interoperability between its different parts. SIMPLI can
be run on desktop computers as well as on high-performance-
computing environments, where it can be easily applied to large
datasets due to automatic workflow parallelisation. To demon-
strate the flexibility of SIMPLI to work with different technologies
and experimental conditions, we analyse the phenotypes and
spatial distribution of cells in different tissues (human colon,
appendix, colorectal cancer) using multiplexed images obtained
with distinct technologies (IMC, mIF, CODEX).

Results
Overview of the SIMPLI analytical workflow. SIMPLI performs
the analysis of multiplexed imaging data in three steps (Methods,
Fig. 1) integrating well-established and newly developed T
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standalone processes (Supplementary Fig. 1). Each process can be
run independently or even skipped with the possibility of using
alternative input data at each point of the workflow.

The first step of SIMPLI consists of processing raw data from
single or multi-channel images or text files from a variety of high-
dimensional imaging technologies (Fig. 1a and Supplementary
Fig. 1a). After data extraction, pixel values for each marker can be
optionally normalised by rescaling them in each sample. This
allows the user to apply the same thresholds for background noise
reduction across samples. Alternatively, the normalisation step
can be skipped and sample-specific thresholds can be applied
directly to individual, non-normalised images to minimise the
effect of non-uniform staining. This is recommended for example
if markers have low signal-to-noise ratios and the resulting
thresholds may be too restrictive or if platform-specific normal-
isation is required. In the last step of data processing, masks for
specific tissue compartments or markers are derived using a fully
customisable pipeline based on CellProfiler411, where the user
can apply filters, thresholds and morphological operations to each
image. The resulting processed images can then be analysed at the
cell (Fig. 1b) and pixel (Fig. 1c) levels.

The cell-based analysis aims to investigate the qualitative and
quantitative cell composition of the tissue and is composed of (1)
single-cell data extraction, (2) cell phenotyping and (3) spatial
analysis of cell–cell distances (Fig. 1b).
To extract cell data, SIMPLI implements single-cell segmenta-

tion using either a deterministic11 or a deep learning23 approach
(Supplementary Fig. 1b). The former enables deterministic
filtering based on cells size and shape, as well as marker

intensities. The latter applies pre-trained models (either provided
by SIMPLI or supplied by the user) to identify cells with high
accuracy. After cell segmentation, SIMPLI produces the masks of
the individual cells and calculates the expression values for each
marker in each cell. Cells belonging to tissue compartments or
positive for certain markers can then be identified based on their
overlap with the previously derived tissue or marker masks.
To define the cell phenotypes, SIMPLI uses two alternative

approaches (Supplementary Fig. 1b). The first applies unsuper-
vised clustering to all cells or preselected subsets of cells (for
example those mapping to specific tissue compartments or
positive for certain markers) using marker expression levels. This
leads to the unbiased classification of cells into clusters with
similar expression profiles indicating similar phenotypes. The
second approach identifies cells with designated phenotypes by
applying combinations of user-defined thresholds to the expres-
sion values of the markers of interest. These thresholds can be
identified through an expert-guided examination of the original
images or using the visualisation plots produced by SIMPLI. The
two approaches can be used independently or as cross-validation
of the cell phenotypes.
To identify cell aggregations within the same (homotypic) or

across different (heterotypic) cell types, SIMPLI implements a
spatial analysis of the distance between cells within the imaged
tissue (Supplementary Fig. 1b). In the case of homotypic
aggregations, SIMPLI identifies groups of cells of the same type
within a user-defined distance and visually localises them as
clusters in the tissue image. In the case of heterotypic
aggregations, SIMPLI computes the distance distribution between

a

b c
Cell-based analysis

Single-cell data extraction Cell phenotyping Spatial analysis
Cell

masking

Expression
thresholding

Unsupervised
clustering

Homotypic
aggregations

Heterotypic
aggregations

Pixel-based analysis

Positive area
quantification

& 
normalisation 

Raw data processing

Data
normalization

Thresholding 
& masking

Data 
extractionIMC

MIBI

CODEX

mIF

mIHC

Raw images

Deep learning
segmentation

Deterministic
segmentation

Fig. 1 Schematics of the SIMPLI workflow. a Raw images are extracted from IMC or MIBI data or directly imported from other imaging technologies. After
their optional normalisation, these images are thresholded to remove the background noise and produce tissue compartments or marker masks. The
resulting images can be analysed using a cell-based or a pixel-based approach. b In the cell-based analysis, single cells are segmented with deterministic or
deep learning models and phenotyped using unsupervised or supervised approaches. The distribution of cells in the tissue can then be investigated through
a spatial analysis of homotypic or heterotypic aggregations. c In the pixel-based approach, areas positive for a user-defined combination of markers are
measured and normalised over the area of the whole image or of the masks defining compartments or areas positive for certain markers.
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distinct cell types and compares them across cell types and
experimental conditions. Observed distance distributions can also
be compared to expected distributions obtained by randomly
reshuffling the cell identities in each sample.
The pixel-based approach implemented in SIMPLI enables

quantification of areas positive for a specific marker or
combination of markers, independently of their association with
cells (Fig. 1c and Supplementary Fig. 1c). The obtained marker-
positive areas are then normalised over the area of the whole
image, or those of specific tissue compartments or positive for
certain markers using the predefined masks, to allow comparisons
across samples. The pixel-based analysis is useful for the
investigation of tissue features that are not detectable at the cell
level. For instance, extracellular or secreted proteins cannot be
quantified with approaches dependent on cell segmentation. In
addition, being completely cell agnostic, the pixel-based analysis
can provide independent validation of cell-based observations.
SIMPLI generates tables, plots and images as outputs of each

process, thus enabling the visualisation of results at every step of
the analysis.

IMC quantification of secreted and cell-associated IgA in
human colon. To test its performance and versatility, we applied
SIMPLI to four case studies of multiplexed images obtained with
different technologies and with diverse origin, size and resolution
of the tissue sections (Table 2).

As a first case study, we used SIMPLI to compare the levels of
secreted and cell-associated immunoglobulin A (IgA), the major
immunoglobulin isotype in intestinal mucosa24, from IMC-
derived multiplexed images of normal human colon. We stained
six colon sections (CLN1-CLN6, Supplementary Data 1) with 26
antibodies marking T cells, macrophages, dendritic cells and B
cells as well as stromal components (Supplementary Data 2) and
ablated one region of interest (ROI) per sample.
Using SIMPLI, we extracted and normalised the 28 single-

channel images (26 antibodies and two DNA intercalators) for
each of the six ROIs and combined them into a single image per
ROI (Fig. 2a). This normalisation enabled the selection of a single
threshold for each marker to be used across all samples, thus
reducing the complexity of the analysis configuration. By
applying these thresholds to the E-cadherin and vimentin
expression, we obtained the masks for the epithelium and the
lamina propria, respectively (Fig. 2b). We used these masks to
assign cells to the two compartments and normalise marker
values or positive areas in the downstream analyses.
We then used the pixel-based approach to quantify both the

IgA expressed by the plasma cells resident in the diffuse lymphoid
tissue of the lamina propria as well as the secreted IgA
undergoing transcytosis to traverse the epithelial compartment
(Fig. 2b). As expected, most secreted IgA was localised in the
epithelial crypts with only minimal presence of IgA+ area in the
surface epithelium (Supplementary Fig. 2a). Quantification of the
normalised IgA+ areas in the two compartments (Supplementary
Fig. 2b) confirmed higher IgA+ levels in the lamina propria than
in the epithelium (Fig. 2c). To assess the impact of image
normalisation performed in the data processing step, we repeated
the same analysis starting from the raw images and applying
sample-specific thresholds to remove the background noise. The
resulting IgA levels correlated linearly with those obtained from
normalised images (Supplementary Fig. 2c), showing that data
normalisation does not impact the results.
Next, we quantified the IgA+ plasma cells in the lamina propria

using the cell-based approach. First, we performed single-cell
segmentation with the deterministic approach and retained only
cells overlapping for at least 30% or their area with the lamina

propria mask (Fig. 2d and Supplementary Fig. 2d). We verified that
varying the threshold of the overall had a minimal impact on the
proportion of cells assigned to the lamina propria (Supplementary
Fig. 2e). We then identified IgA+ plasma cells, T cells, macrophages,
and dendritic cells resident in the lamina propria according to the
highest overlap between the cell area and the mask of each immune
cell population (Fig. 2e). Again, we verified that the relative
proportion of these cell populations changed only minimally
varying the threshold of the overlap with the lamina propria mask
(Supplementary Fig. 2f). Finally, we quantified the four immune cell
populations across the six samples and observed that IgA+ plasma
cells constitute approximately 25% of all immune cells (Fig. 2f).
This is consistent with previous quantifications of the fraction of
plasma cells over the total mononucleated cells in the lamina
propria of healthy individuals25.

The relative proportion of IgA+ plasma cells positively
correlated with the normalised IgA+ area in the lamina propria,
demonstrating that the quantification from the single-cell analysis
is supported by the cell agnostic measurements at the pixel level
(Fig. 2g).

Localisation of T follicular helper cells in IMC images of a
germinal centre. As a second case study, we used SIMPLI to
spatially localise the immune cell populations within a FFPE
section of the healthy human appendix (APP1, Supplementary
Data 1). After staining the tissue section with 28 markers (26
antibodies and two DNA intercalators, Supplementary Data 2),
we performed IMC and used SIMPLI to extract and normalise the
single-channel images from the raw IMC data. The resulting
combined image revealed a germinal centre in the B cell area and
follicle-associated epithelium forming the boundary with the
appendiceal lumen (Fig. 3a).
We performed single-cell segmentation with both approaches

implemented in SIMPLI and observed high overlap in the
identified cells (Supplementary Fig. 3a), indicating a good
concordance between the two methods. We then classified 7573
cells obtained with the deterministic segmentation approach in
immune and epithelial cells based on the highest overlap with the
corresponding masks obtained in the data processing step
(Fig. 3b, c). We obtained similar proportions of cells starting
from the raw data and applying the z-score normalisation and
k-means clustering as implemented in Histocat26 (Supplementary
Fig. 3b), again demonstrating that the normalisation implemen-
ted in SIMPLI does not impact the downstream analysis.
Next, we used both methods implemented in SIMPLI to

further phenotype the T cells identified within the ROI. First, we
applied unsupervised clustering using seven markers of T cell
function (Supplementary Data 2). After inspection of the
resulting clusters at different resolution levels, we selected 0.25
resolution that returned five distinct cell clusters (Fig. 3d). Based
on the marker expression profiles, we assigned cluster 1 to CD4+

T cells, cluster 2 to CD8+CD45RO+ T cells, cluster 3 to
CD4+CD45RA+ T cells, cluster 4 to CD4+CD45RO+ T cells and
cluster 5 to PD1+CD4+ T cells (Fig. 3e). The latter likely
represented a set of PD1+ T follicular helper cells known to be
located in the germinal centre27. Interestingly, at higher
resolution levels, cluster 5 was further divided into two smaller
clusters showing PD1 high and low expression (Supplementary
Fig. 3c). Similarly, clusters 1 and 2 were further divided into
smaller subpopulation based on CD4 and CD45RO expression
levels, respectively (Supplementary Fig. 3c). Therefore, although
higher resolution levels increase the granularity of cell phenotyp-
ing, the unsupervised clustering approach implemented in
SIMPLI is robust in identifying similar phenotyping clusters
independently of the chosen resolution.
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We re-identified the PD1+ T follicular helper cells with the
second phenotyping approach based on expression thresholding
of CD4 and PD1. Starting from all T cells, we first extracted
CD4+ T cells (≥0.1 CD4 expression, Fig. 3f) and, within those, we
further identified PD1+ cells (≥0.15 PD1 expression, Fig. 3g).
Both thresholds were chosen after manual inspection of the
histological images. The expression profile of the resulting
PD1+CD4+ T cells (Fig. 3h) closely recapitulated that of cluster
5 (Fig. 3e). We repeated the same analysis for clusters 1–4
confirming the high overlap between cells in unsupervised
clusters and those re-identified using marker expression thresh-
olds (Supplementary Fig. 3d). Moreover, these cells showed
similar expression profiles (Supplementary Fig. 3e) and spatial
localisation (Supplementary Fig. 3f), indicating that cell pheno-
types identified with unsupervised clustering can be confirmed
through user-guided thresholding of marker expression.
Finally, we investigated the spatial localisation of PD1+ T

follicular helper cells within the ROI by analysing their
homotypic aggregations. This allowed us to localise a single
high-density cluster containing 84% of PD1+CD4+ T cells within
the germinal centre (Fig. 3i). This distribution of PD1+CD4+

T cells was in accordance with the localisation of T helper cells in
the follicles of secondary lymphoid organs27 and was confirmed
by the histological inspection of the tissue image (Fig. 3j).

mIF analysis of spatially resolved cell–cell interactions in rectal
cancer. As a third case study, we applied SIMPLI to the spatial
analysis of mIF-derived images of a rectal cancer sample (CRC1,
Supplementary Data 1) stained with anti CD8, PD1, Ki67, PDL1,
CD68, GzB and 4’,6-diamidino-2-phenylindole (DAPI) anti-
bodies (Supplementary Data 2). We focused on a 5-mm2 ROI,
rich in T cells and located at the invasive margin of the tumour
(Fig. 4a). This allowed us to characterise the cell–cell interactions
between PDL1+ cells and PD1+CD8+ T cells at the tumour
boundary in a larger ROI, supporting the scalability of SIMPLI to
the analysis of large regions (Table 2).

After image normalisation and single-cell segmentation, we
identified PDL1+ and PD1+CD8+ cells by applying expert-
defined thresholds to PDL1 (≥0.01), CD8 (≥0.01), and PD1
(≥0.005) expression levels, respectively. We extracted 2026
PDL1+ cells (Fig. 4b) and 3177 CD8+ cells, 94 of which also
expressed PD1 (Fig. 4c). The two sets of PDL1+ and PD1+CD8+

cells constituted 3.7% and 0.2% of all cells in the analysed region,
respectively (Fig. 4d). We confirmed similar proportions of
PDL1+ and PD1+CD8+ cells by performing signal unmixing, cell
segmentation and cell phenotyping with the Inform tissue
analysis software28 (Akoya Biosciences, Fig. 4e).
We characterised the spatial relationship between these cells,

focusing on the ones in close proximity to each other. Using the
Euclidean distances between their centroids, we identified 35 PDL1+

cells and 21 PD1+CD8+ T cells at a distance lower than 12 μm
apart, which corresponded to twice the maximum cell radius length.
We considered these cells proximal enough to be engaging in PD1-
PDL1 mediated interactions. By comparing PD1+CD8+ T cells
proximal to PDL1+ cells and PD1+CD8+ T cells distal to PDL1+

cells, we found no difference in the expression of cytotoxicity (GzB)
or proliferation (ki67) markers (Fig. 4f). This is in line with the
broad range of cytotoxic activity in this T cell subset observed in
colorectal cancer29. On the contrary, PDL1+ cells proximal to
PD1+CD8+ T cells expressed higher levels of CD68 than PDL1+

cells distal to PD1+CD8+ T cells (Fig. 4g), suggesting spatial
proximity between PDL1+ macrophages and PD1+CD8+ T cells.
To validate this observation, we identified 1392 macrophages by
applying an expert-defined threshold to CD68 expression value
(≥0.01, Fig. 4h). We then classified these macrophages as PDL1- andT
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PDL1+ cells, respectively, using 0.1 PDL1 expression threshold.
Comparing the distance of the resulting two populations from the
nearest PD1+CD8+ T cells, we confirmed that PDL1+CD68+

macrophages were significantly closer to PD1+CD8+ T cells than
PDL1-CD68+macrophages (Fig. 4i). By inspecting the imaged tissue
at ×40 magnification, we confirmed the localisation of
PDL1+CD68+ macrophages in close proximity to PD1+CD8+

cells, as well as the presence of both PD1+CD8+GzB- T cells and
PD1+CD8+GzB+ T cells proximal to PDL1+ cells (Fig. 4j).

Comparison of cell distances in CODEX images of colorectal
cancer subtypes. As a fourth case study, we used SIMPLI to
compare the distances between immune cells and tumour or
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Fig. 2 IgA quantification in human colon mucosa. a IMC image of a representative sample (CLN6) of normal colon mucosa after extraction and
normalisation of raw data. b Masks defining the lamina propria and the epithelial compartments overlaid with IgA+ areas. Lamina propria and epithelial
masks were obtained by thresholding the vimentin and E-cadherin channels, respectively. c Comparison of normalised IgA+ areas in the lamina propria and
epithelial compartments in six independent biological samples (CLN1-CLN6). Normalised areas were measured as the proportion of IgA+ area over the
lamina propria and epithelium masks, respectively. Data are presented as a box centred around the median and extending from the first to the third
quartile. Whiskers represent the minimum and maximum values. An exact p value was calculated using a two-sided Wilcoxon test. d Outlines of the cells in
the lamina propria. After single-cell segmentation, all cells overlapping with the lamina propria mask by at least 30% of their area were considered as cells
resident in the lamina propria. e Outlines of immune cells resident in the lamina propria identified according to the highest overlap between their area and
the masks for IgA+ cells, T cells, macrophages and dendritic cells. f Relative proportions of T cells, IgA+ cells, macrophages and dendritic cells over all
immune cells in the lamina propria across CLN1-CLN6. g Correlation between normalised IgA+ area and the proportion of IgA+ cells over the total immune
cells in the lamina propria in six independent biological samples (CLN1-CLN6). Pearson correlation coefficient R and associated p value based on Fisher’s Z
transform are shown. Images in panels (a), (b), (d), (e) were derived from a representative sample (CLN6, Supplementary Data 1). CD3 and T cells,
magenta; IgA and IgA+ cells, yellow; Smooth Muscle Actin (SMA), orange; CD68 and macrophages, cyan; E-cadherin and epithelial cells, green; Lamina
propria and lamina propria cells, red; Dendritic cells, blue. Scale bar in all images = 100 μm. Source data are provided as a Source Data file.
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endothelial cells in Crohn’s-like reaction (CLR) and diffuse
inflammatory infiltration (DII) colorectal cancer subtypes9. The
high-dimensional imaging data were derived from 35 colorectal
cancer samples (17 CLRs and 18 DIIs, Supplementary Data 1)
and were obtained using CODEX with a 56 marker panel9

(Supplementary Data 2). Such a large number of antibodies
enabled the identification and spatial localisation of T cells, B
cells, plasma cells, macrophages, NK cells, granulocytes, dendritic
cells, tumour cells, neuroendocrine cells, smooth muscle, nerves,
lymphatic and blood vessels (Fig. 5a).
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We processed the raw data from the original study, including
normalisation. We then performed single-cell segmentation and
quantified the main cell types identified in the original study9 by
applying expert-defined thresholds to the expression of markers
representative of each population (CDX2, MUC1 or cytokeratin
for tumour cells; CD34 or CD31 for endothelial cells; vimentin
for stromal cells; CD11c for dendritic cells; CD38 for B cells; CD3
and CD4 for CD4+ T cells; CD3, CD4 and FOXP3 for Tregs; CD3
and CD8 for CD8+ T cells, CD68 for macrophages). The
obtained relative proportions of immune cells across all samples
were highly concordant with those reported in the original study9

(Fig. 5b).
We then measured the distances of the main immune cell types

from tumour cells and blood vessels by performing a heterotypic
spatial analysis as implemented in SIMPLI. First, we calculated
the distances of each macrophage, CD8+ T cell, CD4+ T cell,
Treg and B cell to the nearest tumour cell or endothelial cell using
the coordinates of the cell centroids. From these, we derived the
corresponding distance distributions from the nearest tumour cell
or endothelial cell in each sample. Finally, we compared the
resulting distributions between 17 CLR and 18 DII colorectal
cancer subtypes. After correcting for multiple testing, we
considered biologically relevant only differences between the
median distances of the two sample subtypes bigger than 8 µm,
corresponding to the diameter of B and T lymphocytes30. With
this approach, we found that Tregs were significantly closer to
tumour cells in DII (median distance = 22.4 µm) compared to
CLR (35.6 µm, Fig. 5c). On the contrary, B cells were more
proximal to blood vessels in CLR (33.5 µm) than in DII (43.3 µm,
Fig. 5d). We further supported these results with a permutation
test, where we re-labelled randomly the identities to all cells in
each sample for 10,000 times to derive an expected distribution of
differences in distances between CLR and DII cells. The
comparisons of observed values to the expected distributions,
confirmed that Tregs were significantly closer to tumour cells in
DII (Fig.5e) while B cells were significantly closer to blood vessels
in CLR (Fig. 5f). Since the spatial randomness used as a baseline
for the permutation test is an approximation of the highly
organised structure of biological tissues, we sought further
support this result through independent inspection of the spatial
distributions of B cells in CLRs (Fig. 5g) and DII (Fig. 5h) in the
histological images.
This result, not reported in the original study, showcases the

discovery potential of the quantitative analysis of spatial
relationships between cell populations implemented in SIMPLI.
In addition, the SIMPLI graphical representations of the tissue
composition as an overlay of cell boundaries colour-coded by cell
populations greatly facilitate the visual inspection of their spatial
interactions in their original tissue context.

Discussion
SIMPLI is an open-source, customisable and technology-
independent tool for the analysis of multiplexed imaging data.
It enables the processing of raw images, the extraction of cell data
and the spatially resolved quantification of cell types or functional
states as well as a cell-independent analysis of tissues at the pixel
level, all within a single platform (Table 1). Moreover, it gives
high flexibility to the user who can decide whether to skip pro-
cesses implemented in SIMPLI and replace them with external
tools to then re-start the pipeline at any point.
In comparison to currently available software, SIMPLI increases

the portability, scalability and reproducibility of the analysis
(Table 2). Moreover, it can easily accommodate specific analytical
requirements across a wide range of tissues and imaging technol-
ogies at different levels of resolution and multiplexing through user-
friendly configuration files. SIMPLI interoperates with multiple
software and programming languages by leveraging workflow
management and containerisation. This makes the inclusion of
additional algorithms, features and imaging data formats easy to
implement. For example, as possible future developments, SIMPLI
may include alternative methods of cell segmentation, pixel and cell
classification or a Graphical User Interface for interactive data
visualisation. For this reason, we will maintain SIMPLI and its
documentation up-to-date and will further expand it to leverage
new tools as they become adopted by the community. Similarly,
feedback from users will be collected through the dedicated GitHub
repository.
Multiplexed imaging methods have proven to be a powerful

approach for the study of tissues through the in-depth character-
isation of cell phenotypes and interactions. SIMPLI, which was
recently able to reveal differences in the composition of the micro-
environment between colorectal cancers responsive and resistant to
anti-PD1 immunotherapy31, represents an effort to make these
analyses more accessible to a wider community. This will enable the
exploitation of highly multiplexed imaging technologies for multiple
applications, ranging from basic life science and pharmaceutical
research to precision medical use in the clinics.

Methods
All patients enrolled in this study provided written informed consent in accordance
with approved institutional guidelines (University College London Hospital, REC
Reference: 20/YH/0088; Istituto Clinico Humanitas, REC Reference: ICH-25-09).

SIMPLI description and implementation. SIMPLI’s workflow is divided into three
steps (raw image processing; cell-based analysis; pixel-based analysis), which are
constituted of multiple standalone processes (Fig. 1 and Supplementary Fig. 1).
Processes can be executed sequentially or independently from the command line or
through a configuration file that can be edited with any text editor. This allows the
user to skip some of them and use alternative input data for downstream analyses.
In addition, parameters and options can be specified through the same

Fig. 3 Single-cell characterisation of T cells in a human germinal centre. a IMC image of a normal appendix (APP1) showing a central germinal centre
with the columnar epithelium delimiting the appendiceal lumen. b Outlines of T cells, B cells, macrophages, dendritic and epithelial cells identified through
the highest overlap with the respective masks. c Proportions of T cells, B cells, macrophages, dendritic and epithelial cells over all cells. d UMAP plot of
1466 T cells grouped in five clusters resulting from unsupervised clustering according to the expression of seven markers of T cell function (Supplementary
Data 2). Cluster 5 (circled) corresponds to PD1+CD4+ T cells. e Expression profiles of the five clusters identified in (d). The mean intensity value of each
marker across all cells is reported. The colour scale was normalised across all markers and cells. f Density plots of CD4 expression in T Cells. Cells with
≥0.1 CD4 expression were considered as CD4+ T cells. g Density plot of PD1 expression in CD4+ T cells. Cells with ≥0.15 PD1+ expression were
considered as PD1+CD4+ T cells. Thresholds for CD4 and PDL1 were identified through histological inspection of the PD1 channel images. h Expression
profiles of the PD1+CD4+ T cells and the rest of T cells. For both populations, the mean intensity value of each marker across all cells is shown. The colour
scale was normalised across all markers and cells. i Position map of T cells within the ROI. The area of a high-density cluster of ≥5 PD1+CD4+ T cells per
10,000 μm2 is highlighted in red. j IMC image showing the localisation of the PD1 signal within the ROI. Images in (a), (b), (i), and (j) were derived from a
single experiment (APP1, Supplementary Data 1). Panels (a), (b), (c), (i), and (j): E-cadherin and epithelial cells, green; CD11c and Dendritic cells, cyan;
CD68 and macrophages, magenta; CD20 and B cells, yellow; CD3 and T cells, blue; PD1 and PD1+CD4+ cells, red. Panels (d) and (e): cluster 1, violet;
cluster 2, orange; cluster 3, green; cluster 4, blue; cluster 5, red. Scale bar for all images = 100 μm. Source data are provided as a Source Data file.
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configuration files without the need to set up tool-specific input files in any specific
directory structure.

Raw data from IMC or MIBI experiments (.mcd or.txt files) are converted into
single or multi-channel.tiff images with imctools32. Data from other multiplexed
imaging platforms may be supplied directly as raw single or multi-channel tiff
images (Supplementary Fig. 1a). Raw images can be thresholded individually to
minimise the effect of non-uniform staining and then used directly for the cell- and

pixel-based analyses. Alternatively, they can be first normalised across samples by
rescaling pixel values of each channel up to the 99th percentile of the distribution
using the EBImage33 package and custom R scripts. Normalised images can then be
processed with CellProfiler411 to generate thresholded images and masks of tissue
compartments or markers to be used in the following steps. In this step, the user
can apply a range of filters, thresholds and morphological operations to each image,
according to the experimental plan.
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Pixel-based and cell-based analyses can be run as single workflows or in parallel
within the same run. Both of them provide multiple outputs of the various
processes, including tabular text files, visualisation plots and comparisons across
samples (Supplementary Fig. 1).

The cell-based analysis is composed of cell data extraction, cell phenotyping and
spatial analysis (Supplementary Fig. 1b). The extraction of cell data starts with
single-cell segmentation using CellProfiler411 or StarDist23 with scikit-image34

used for feature extraction. In the latter case, default models or user-provided
trained models can be used. Cell segmentation returns (1) single-cell data
consisting of the marker expression values and the coordinates of each cell in the
ROI and (2) the ROI segmentation mask marking all the pixels belonging to each
cell with its unique identifier. Cells mapping to tissue compartments or positive for
certain markers can then be identified based on their overlap with the tissue
compartments or marker masks derived in the previous step. These cells are
visualised in the ROI as outlines, while their proportions are quantified in barplots
and boxplots.

All cells or only those in specific tissue compartments or positive for certain
markers can be further phenotyped using two approaches. The first consists of
unsupervised clustering based on the marker expression values using Seurat35. Cells
are represented as nodes in a k-nearest neighbour graph based on their Euclidean
distances in a principal component analysis space. This graph is then partitioned
into clusters using the Louvain algorithm36 at user-defined levels of resolution
leading to the unsupervised identification of cell phenotypes. Clusters of cell
phenotypes are plotted as scatterplots in Uniform Manifold Approximation and
Projection (UMAP)37 space. The second phenotyping approach is based on user-
defined thresholds of marker expression values that can be combined using logical
operators for the identification of designated cell phenotypes. The distributions of
cells are represented as density plots based on the marker expression levels. In both
phenotyping approaches, the expression profiles of the cell types are plotted as
heatmaps, their proportions quantified in barplots and boxplots and their locations
in the ROI visualised as cell outlines.

Once cell populations and phenotypes have been identified, the spatial analysis
investigates the distance between cells of the same (homotypic aggregations) or
different (heterotypic aggregations) types. The homotypic and heterotypic spatial
analyses can be run in parallel or singularly on one or more sets of cells. In the
homotypic analysis, clusters of cells of the same type within a user-defined distance
are identified with DBSCAN38 as implemented in the fpc39 R package. These
homotypic cell aggregations are visualised as position maps, reporting cell location
and high-density clusters in the ROI. In the heterotypic analysis, the cell distances,
defined as the Euclidean distances between cell centroids, are computed using
custom R scripts and visualised as density plots. The resulting distribution of cell
distances can be compared between group of samples using a two-sided Wilcoxon
test with Benjamini–Hochberg FDR correction. Observed distances can also be
compared to the distribution of expected distances obtained by reshuffling cell
identities in each sample randomly for a user-defined number of times (default
value = 10,000 reshufflings, Supplementary Fig. 1b). The statistical significance of
this comparison is evaluated with a two-tailed permutation test adjusted for
multiple hypothesis testing with the Benjamini–Hochberg correction.

The pixel-based analysis quantifies areas positive for a user-defined
combination of markers using the EBImage33 package with custom R scripts
(Supplementary Fig. 1c). These measurements are performed starting from the
thresholded images produced in the raw image processing step (Supplementary
Fig. 1a). The marker-positive areas obtained in this way are then normalised over
the area of the whole image or specific tissue or marker compartments. The
resulting normalised positive areas can then be quantified in barplots and boxplots.

SIMPLI is implemented as a Nextflow40 pipeline employing Singularity
containers41 hosted on Singularity Hub42 to manage all the libraries and software
tools. This allows SIMPLI to automatically manage all dependencies, irrespective of
the running platform. Nextflow also manages automatic parallelisation of all
processes while still allowing the selection of parts of the analysis to execute.

Sample description. Six FFPE blocks of normal (non-cancerous) colon mucosa
(CLN1-CLN6), one of normal appendix (APP1) and one of rectal cancer (CRC1)
were obtained from eight individuals who underwent surgery for the removal of
colorectal cancers (Supplementary Data 1). All blocks were reviewed by an expert
pathologist (M.R.-J.).

Staining and IMC ablation of human colon mucosa and appendix. Four-µm-
thick sections were cut from each block of samples CLN1-CLN6 and APP1 with a
microtome and used for staining with a panel of 26 antibodies targeting the main
immune, stromal and epithelial cell populations of the gastrointestinal tract
(Supplementary Data 2). The optimal dilution of each antibody in the panel was
identified by staining and ablating FFPE appendix sections. The resulting images
were reviewed by a mucosal immunologist (J.S.) and the dilution giving the best
signal to background ratio was selected for each antibody (Supplementary Data 2).
To perform the staining for IMC, slides were dewaxed after a 1-h incubation at
60 °C, rehydrated and heat-induced antigen retrieval was performed with a pres-
sure cooker in Antigen Retrieval Reagent-Basic (R&D Systems). Slides were
incubated in a 10% BSA (Sigma), 0.1% Tween (Sigma), and 2% Kiovig (Shire
Pharmaceuticals) Superblock Blocking Buffer (Thermo Fisher) blocking solution at
room temperature for 2 h. Each antibody was added to a primary antibody mix at
the selected concentration in blocking solution and incubated overnight at 4 °C.
After two washes in PBS and PBS-0.1% Tween, the slides were treated with the
DNA intercalator Cell-ID™ Intercalator-Ir (Fluidigm) (containing the two iridium
isotopes 191Ir and 193Ir) 1.25 mM in a PBS solution. After a 30-min incubation,
the slides were washed once in PBS and once in MilliQ water and air-dried. The
stained slides were then loaded in the Hyperion Imaging System (Fluidigm) ima-
ging module to obtain light-contrast high-resolution images of approximately
4 mm2. These images were used to select the ROI in each slide. For CLN1-CLN6,
1 mm2 ROIs were selected to contain the full thickness of the colon mucosa, with
epithelial crypts in a longitudinal orientation. For APP1, a 1-mm2 ROI containing a
lymphoid follicle in its whole depth alongside a portion of lamina propria and of
the epithelium was selected. ROIs were ablated at a 1 µm/pixel resolution and
200 Hz frequency.

IMC data analysis of human colon mucosa. Twenty-eight images from 26
antibodies (Supplementary Data 2) and two DNA intercalators were obtained from
the raw.txt files of the ablated regions in CLN1-CLN6 using the data extraction
process. Pixel intensities for each channel were normalised to the 99th percentile in
all samples and Otsu thresholding was performed on the normalised images with a
custom CellProfiler4 pipeline, which was employed also to generate the masks for
the lamina propria (using the Vimentin channel including all <75-pixel large
negative areas) and the epithelium (starting from the Pan-keratin and E-cadherin
channels, dilatating the images with a three-pixel disk and the filling up of all <75-
pixel large negative areas). These masks were then added into a sum image, which
underwent dilatation with a three-pixel disk and filling up of all <25-pixel large
negative areas. Positive features outside of the lamina and epithelium were removed
with an opening operation using a 150-pixel radius and the lamina propria mask

Fig. 4 Characterisation of PDL1+ and PD1+ cells at the tumour invasive margin. a CD3 immunohistochemistry (main image) and sequential mIF image
(zoom-in, ×20 magnification) of a rectal cancer sample (CRC1). The mIF image corresponded to a 5mm2 tissue area at the invasive margin of the tumour
and was obtained by combining the pre-processed images of seven markers. Scale bar = 50 µm. b Density plot of PDL1 expression in CD8- cells. Cells with
≥0.01 PDL1 expression were considered as PDL1+ cells. c Density plots of CD8 and PD1 expression in T cells. Cells with ≥0.01 CD8 expression and ≥0.005
PD1 expression were considered as PD1+CD8+ T cells. Expression thresholds were identified through histological inspection of PDL1, CD8 and PD1 channel
images and are indicated as dotted lines in the corresponding plots. d Proportions of PD1+CD8+ cells and PDL1+ cells over total cells, as measured using
SIMPLI data processing, including normalisation. e Proportions of PD1+CD8+ cells and PDL1+ cells over total cells, as measured using the Inform tissue
analysis software package28. f Comparison of the mean intensity of GzB and Ki67 between PD1+CD8+ T cells proximal (n= 21) and distal (n= 73) to
PDL1+cells. Proximal PD1+CD8+ T cells were defined as those at less than 12 μm from a PDL1+ cell. g Comparison of the mean intensity of CD68 and Ki67
between PDL1+cells proximal (n= 35) and distal (n= 1991) to PD1+CD8+ T cells. Proximal PDL1+ cells were defined as those at less than 12 μm from a
PD1+CD8+ T cell. h Density plots of CD68 and PD1 expression in all cells. Cells with ≥0.01 CD68 and PDL1 expression were considered as PDL1+CD68+

cells. i Comparison of distance of PDL1+ (n= 265) and PDL1− (n= 1127) CD68+ macrophages to the nearest PD1+CD8+ T cell. Data in (f), (g) and (i) are
presented as a box centred around the median and extending from the first to the third quartile. Whiskers represent the minimum and maximum values.
An exact p value was calculated using a two-sided Wilcoxon test. j High-resolution (×40 magnification) mIF image of PD1+CD8+ T cells proximal to
PDL1+CD68+ cells. Zoom in images show each marker separately and merged. Scale bar = 20 µm. Images in (a) and (j) were derived from a single
experiment (CRC1, Supplementary Data 1). DAPI and other cells, blue; PD1 and PD1+CD8+ T cells, red; CD68 and PDL1- CD68+ cells, magenta; PDL1 and
PDL1+CD68+ cells, green; CD8, yellow; Granzyme B (GzB), orange; Ki67, white; proximal cells, pink; distal cells, violet. Source data are provided as a
Source Data file.
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was subtracted from the sum image to generate the final mask for the epithelial
compartment. These masks and the thresholded images were used as input for the
pixel-based and cell-based analysis processes. The IgA masks employed for the
pixel analysis were generated using a three-class global Otsu thresholding with two
background classes after applying a Gaussian filter with a 1.5-pixel large radius to
remove high-intensity artefacts of that size, which we noticed after manual
inspection of the images.

To evaluate the effect of normalisation on the downstream analysis, sample-
specific thresholds were manually selected for IgA, E-Cadherin, Pan-Keratin and
Vimentin and applied to the raw images. The resulting thresholded images were
used to generate lamina propria and epithelial masks for each sample individually.

Pixel-level analysis was performed on the IgA masks derived from either the
normalised or the raw images and IgA+ areas in the tissue, lamina propria and
epithelium were measured and normalised over the areas of the three compartments.
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Cell-level analysis started with CellProfiler4 segmentation first on DNA1 with
global Otsu thresholding to identify the cell nuclei. Then, cells were identified by
radially expanding each nucleus for up to 10 pixels over a membrane mask derived
from the IgA, CD3, CD68, CD11c and E-cadherin channels. After inspection by an
expert histologist (J.S.), only cells overlapping with the lamina propria mask by at
least 30% were retained.

Cell identities were assigned according to the highest overlap of the cell area
with marker-specific thresholds defined by an expert histologist (J.S.): ≥15% of the
IgA mask for IgA cells; ≥15% of the CD3 mask for T cells; ≥25% of the CD68 mask
for macrophages; ≥15% of CD11c mask for dendritic cells.

IMC data analysis of human appendix. Images from the same 26 antibodies
and two DNA intercalators used in the colon mucosa (Supplementary Data 2)
were obtained from the raw.txt files of the ablated region in APP1, normalised
to the 99th percentile and thresholded with CellProfiler4 as described above.
For the cell-based analysis, nuclei were identified using the DNA1 channel
and cells were isolated through watershed segmentation with the nuclei as
seeds on a membrane mask summing up CD45, Pan-keratin and E-cadherin
thresholded images.

Cells were assigned to the epithelium or to immune cell populations if they
overlapped for ≥10% with the following masks: CD3 mask for T cells; CD20 and
CD27 masks for B cells; CD68 mask for macrophages; CD11c mask for dendritic
cells; E-cadherin+ and Pan-keratin+ masks for epithelial cells.

T cells were further phenotyped using unsupervised clustering at resolutions
between 0.1 and 1.0, with 0.05 intervals and based on the cell marker intensity for
CD3, CD45RA, CD45RO, CD4, CD8, Ki67 and PD1. The resulting clusters were
manually inspected and the clustering with the highest number of biologically
meaningful clusters (resolution= 0.25) was chosen. Clusters were re-identified
using mean intensity thresholds defined by an expert histologist (J.S.) for the
following markers: CD3 >0.06 for cluster 1; CD8a >0.125 for cluster 2; CD45RA
>0.125 for cluster 3; CD4 >0.125 and CD45RO >0.15 for cluster 4; and CD4 >0.1
and PD1 >0.15 for cluster 5.

Homotypic aggregations of PD1+CD4+ T cells (cluster 5, resolution = 0.25)
were computed using a minimum of five points per cluster and a reachability
parameter corresponding to a density of at least 5 cells/mm2.

CD3 staining and mIF of human rectal cancer. Two 4-µm-thick serial sections
were cut from CRC1 FFPE block using a microtome. The first slide was dewaxed and
rehydrated before carrying out HIER with Antigen Retrieval Reagent-Basic (R&D
Systems). The tissue was then blocked and incubated with the anti-CD3 antibody
(Dako, Supplementary Data 2) followed by horseradish peroxidase (HRP) conjugated
anti-rabbit antibody (Dako) and stained with 3,3’ diaminobenzidine substrate (Abcam)
and haematoxylin. Areas with CD3+ infiltration in the proximity of the tumour
invasive margin were identified by a clinical pathologist (M.R.-J.)

The second slide was stained with a panel of six antibodies (CD8, PD1, Ki67,
PDL1, CD68, GzB, Supplementary Data 2), Opal fluorophores and DAPI on a
Ventana Discovery Ultra automated staining platform (Roche). Expected
expression and cellular localisation of each marker as well as fluorophore
brightness were used to minimise fluorescence spillage upon antibody-Opal
pairing. Following a 1-h incubation at 60 °C, the slide was subjected to an
automated staining protocol on an autostainer. The protocol involved
deparaffinisation (EZ-Prep solution, Roche), HIER (DISC. CC1 solution, Roche)
and seven sequential rounds of 1-h incubation with the primary antibody, 12 min
incubation with the HRP-conjugated secondary antibody (DISC. Omnimap anti-
Ms HRP RUO or DISC. Omnimap anti-Rb HRP RUO, Roche) and 16-min

incubation with the Opal reactive fluorophore (Akoya Biosciences). For the last
round of staining, the slide was incubated with Opal TSA-DIG reagent (Akoya
Biosciences) for 12 min followed by Opal 780 reactive fluorophore for 1 h (Akoya
Biosciences). A denaturation step (100 °C for 8 min) was introduced between
each staining round in order to remove the primary and secondary antibodies from
the previous cycle without disrupting the fluorescent signal. The slide was
counterstained with DAPI (Akoya Biosciences) and coverslipped using ProLong
Gold antifade mounting media (Thermo Fisher Scientific). The Vectra Polaris
automated quantitative pathology imaging system (Akoya Biosciences) was used to
scan the labelled slide. Six fields of view, within the area selected by the pathologist,
were scanned at ×20 and ×40 magnification using appropriate exposure times and
loaded into inForm28 for spectral unmixing and autofluorescence isolation using
the spectral libraries.

mIF data analysis. After spectral unmixing and merging of six ×20 fields of view
for a total of >5 mm2 ROI (Table 2), one single-tiff image was extracted for each
marker and its intensity was rescaled from 0 to 1 with custom R scripts. The
resulting single-tiff images were pre-processed to remove the background noise
with Otsu thresholding in CellProfiler4 and used for cell segmentation by applying
a global threshold to the DAPI channel and selecting all objects with a diameter
between four and 60 pixels. PD1+CD8+ cells, CD68+ cells and PDL1+ cells were
then identified using mean intensity thresholds of 0.01 for CD8, 0.005 for PD1, 0.01
for CD68 and 0.01 for PDL1. All thresholds were inspected by an expert histologist
(J.S.). To crosscheck these results, images were analysed with the Inform28 package.
After spectral unmixing, images were segmented with the Adaptive Cell Segmen-
tation option applied to the DAPI channel for nuclei identification (“relative
intensity” = 0.1, “splitting sensitivity” = 0.1, “minimum size” = 5). Then
PD1+CD8+ cells and PDL1+ cells were identified.

The distributions of minimum distances between PDL1+ cells and PD1+CD8+

cells were calculated from the coordinates of the centroids of each cell in the image.
All PDL1+ cells and PD1+CD8+ cells at a distance from each other lower than
double the maximum cell radius (24 pixels = 12 µm) were considered as proximal.
All other cells were classified as distal.

CODEX data analysis. A published dataset of colorectal CODEX images9 was
downloaded from The Cancer Imaging Archive (https://doi.org/10.7937/
tcia.2020.fqn0-0326). It consisted of processed CODEX data from 35 colorectal
cancer samples divided in two groups (CLR and DII) according to the peritumoral
inflammatory levels and the presence of tertiary lymphoid structures9. For each
sample, four.tiff images were available representing four 0.6-mm spots from two
70-core tissue microarrays. These images were hyperstacks of 58 channels
including 56 antibodies (Supplementary Data 2) and two DNA markers with a
resolution of 377 nm/pixel. After the manual review of all 140 spots, one repre-
sentative image per sample was selected, having the best focus and containing both
tumour and peritumoural immune infiltrates.

The single-channel tiff files for each selected image were extracted and the pixel
intensities were rescaled from 0 to 1 with a custom R script. Using SIMPLI, single-
cell segmentation was performed in each of the 35 images by applying a global
threshold to the HOECHST channel to identify the nuclei and retain all objects
with a diameter between 5 and 40 pixels. Each nucleus was then expanded by
5 pixels in all directions to define the cell area.

Resulting single cells were assigned to ten phenotypes according to the mean
cell expression of CDX2 >0.15 or MUC1 >0.15 or cytokeratin >0.15 for tumour
cells; CD34 >0.15 or CD31 >0.15 for endothelial cells; vimentin >0.1 for other
stromal cells; CD11c >0.3 for dendritic cells; CD38 >0.26 for B cells; CD4 >0.13 and

Fig. 5 Spatial localisation of immune cells in two colorectal cancer subtypes. a CODEX images of two representative CLR (CRC_12_24) and DII
(CRC_31_16) colorectal cancer samples. b Proportions of CD8+ T cells, CD4+ T cells, Tregs, macrophages, dendritic cells, B cells and other mixed immune
cell populations across the 35 analysed samples. Cell types were identified by applying expert-defined thresholds to the expression intensity of
representative markers and normalised over the total non-cancer cells. These thresholds were derived through histological inspection of the channel
images. The cell proportion corresponding to each population from the original study9 is reported in brackets. Distance distribution of Tregs to the nearest
tumour cell (c) and of B cells to the nearest endothelial cell (d) of CLR and DII samples. Distances between cell pairs were calculated using the cell
centroids coordinates and the resulting distributions were compared between CRC subtypes using a two-sided Wilcoxon test. Benjamini–Hochberg FDR
correction was applied for testing over ten cell type comparisons. Only differences of at least 8 µm and with FDR < 0.1 were considered significant. Dashed
lines represent the medians of the distributions. Distribution of the expected differences between the median distances of Tregs to the nearest tumour cell
(e) and of B cells to the nearest endothelial cell (f) in CLR and DII samples. Expected values were calculated with a permutation test, where cell identities
were randomly reassigned for 10,000 times within each sample. The resulting median values were compared to the observed differences with a two-tailed
permutation test adjusted for multiple hypothesis testing with the Benjamini–Hochberg correction. Single-cell outlines of B cells and blood vessels (upper
panel) and associated images (lower panel) form a representative CLR (CRC_17_34) (g) and DII (CRC_15_29) (h) sample out of 35 colorectal cancer
samples (Supplementary Data 1). CD38 and B cells, orange; CD8 and CD8+ T cells, yellow; CD4 and CD4+ T cells, cyan; CD68 and macrophages, red;
cytokeratin and tumour cells, magenta; DNA, blue; Tregs, teal; dendritic cells, violet. Crohn’s-like reaction (CLR) orange; diffuse inflammatory infiltration
(DII), teal. Scale bar = 100 μm. Source data are provided as a Source Data file.
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CD3 >0.1 for CD4+ T cells; CD4 >0.12 and FOXP3 >0.5 and CD3 >0.1 for Tregs;
CD8 >0.16 and CD3 >0.1 for CD8+ T cells, and CD68 >0.11 for macrophages. The
heterotypic spatial analysis was performed by calculating the minimum distances of
macrophages, CD8+ T cells, CD4+ T cells, Treg cells, and B cells to tumour cells
and endothelial cells using the coordinates of the cell centroids. Only comparisons
where the difference of the median cell–cell distances between the two histological
subtypes was greater than 8 µm, corresponding to the diameter of B and T cells30,
were retained, no samples or cells were excluded from the analysis. As further
support, a permutation test for each of the retained comparisons was run by re-
assigning cell identities randomly in each sample 10,000 times. The resulting
expected random distributions were compared to the observed values using a two-
tailed permutation test and corrected for multiple testing.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging mass cytometry data of human colon mucosa generated in this study have
been deposited in the Zenodo database under accession code “5545882”43. The imaging
mass cytometry data of the human appendix generated in this study have been deposited
in the Zenodo database under accession code “5545760”44. The multiplex
immunofluorescence data of human colorectal cancer generated in this study have been
deposited in the Zenodo database under accession code “5545864”45. All other relevant
data supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. Source Data are provided with this paper.

Code availability
SIMPLI’s code, documentation and an example dataset are available at “SIMPLI [https://
github.com/ciccalab/SIMPLI]”46. The software code is protected by copyright. No
permission is required from the rights-holder for non-commercial research uses.
Commercial use will require a license from the rights-holder. For further information
contact translation@crick.ac.uk who will reply within 5 business days.
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Supplementary Figures 

A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for 

spatially resolved tissue phenotyping at single-cell resolution. 

Supplementary Figure 1. SIMPLI workflow diagram  

Supplementary Figure 2. Pixel analysis and cell masking of human colon mucosa 

Supplementary Figure 3. Comparison of T cell phenotypes in human appendix 
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Supplementary Figure 1. SIMPLI workflow diagram 

SIMPLI’s workflow is divided into three main steps: raw data processing (a), cell-based 

analysis (b) and pixel-based analysis (c). Each step is divided in multiple stand-alone 
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processes (rectangles), which rely on established tools and libraries (white) or newly 

developed codes (blue, green and pink), and produces multiple outputs 

(parallelograms). 

a. Raw data processing. Raw data from  IMC or MIBI (.mcd or .txt) are extracted using

imctools1. Resulting images or original .tiff images from other imaging platforms are 

normalised using custom scripts and thresholded with a containerised headless 

instance of CellProfiler2 to produce tissue compartments or marker masks as well as 

images for the following steps. 

b. Cell-based analysis. This step is divided into cell data extraction, cell phenotyping

and spatial analysis. Single cells are identified through single-cell segmentation using 

CellProfiler2 or StarDist3 with default or user-provided trained models. Cells belonging 

to tissue compartments or positive for certain markers can be identified based on their 

overlap with the tissue compartments or marker masks derived in the previous step. 

Subsequently, cell phenotypes are refined using unsupervised clustering with Seurat4 

or applying expression thresholds to one or more markers using ad hoc scripts. Finally, 

the spatial distribution of homotypic cell aggregations is performed with DBSCAN5, 

while heterotypic cell aggregations are investigated using custom scripts. Additionally, 

a permutation test can be performed to assess whether the observed distance 

distributions differ from random distributions. 

c. Pixel-based analysis. Areas positive for a specific marker or combination of markers

are measured from the thresholded images and normalised over the area of the whole 

image or tissue compartments. These normalised values can then be compared 

across datasets. All processes in this step are performed using ad hoc scripts 

integrated in the pipeline. 
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Supplementary Figure 2. Pixel analysis and cell masking of human colon mucosa 
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a. IMC image of normal colon mucosa in CLN6 after data extraction and normalisation.

Zoom-ins illustrate examples of surface epithelium and epithelial crypts. IgA+ pixels 

are concentrated in the epithelial crypts where most of IgA transcytosis takes place.  

b. Distribution of IgA+ pixels in CLN6. Epithelium and lamina propria masks were

generated as described in the Methods and superimposed to the mask of the IgA 

channel. Only IgA+ pixels within the two compartments were retained for the pixel 

analysis, thus excluding likely artefacts (dotted circles). Scale bar in (a) and (b) = 

100μm. 

c. Correlation between IgA+ areas measured from raw and normalised images across

n = 6 biologically independent samples. Pearson correlation coefficient R and 

associated p-value based on Fisher's Z transform are shown. 

d. Cells at the boundary between epithelium and lamina propria in CLN6. These were

defined as cells with a partial overlap with both masks and their assignment to either 

compartment depends on the overlap threshold. 

Parallel plots of all cells (e) and only immune cells (f) resident in the lamina propria at 

various thresholds of overlap (1% to 99% of the total cell area) across n = 6 biologically 

independent samples. Dotted lines represent the value chosen for the downstream 

analysis in Figure 2e,f (30%). 

Images in panels (a), (b), (d) were derived from a representative sample (CLN6, 

Supplementary Data 1). IgA and IgA+ cells, yellow; E-cadherin and epithelial cells, 

green; Lamina propria and lamina propria cells, blue; cells at the boundary, white; T 

cells, magenta; macrophages, cyan; Dendritic cells, red. 
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Supplementary Figure 3. Comparison of T cell phenotypes in human appendix 
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a. Comparison of single-cell segmentations of APP1 (Supplementary Data 1) obtained

with CellProfiler42 (magenta) and StarDist3 (cyan) superimposed over the normalised 

DNA masks (blue). The two segmentations were performed as described in the 

Methods leading to the majority of cells identified by both approaches.     

b. Proportions of T cells (blue), B cells (yellow), macrophages (magenta), dendritic

cells (cyan) and epithelial cells (green) over all cells from non-normalised images. The 

expression values of each marker were normalised as a z-score value. Cell types were 

identified by K-means clustering (k = 6 on CD3, CD68, CD11c, Pan-Keratin and E-

Cadherin).  

c. Expression profiles of T cell subpopulations identified using unsupervised clustering

with resolution of 0.5 and 1.0. Clusters are numbered as in Figure 3e showing how 

increasing the resolution splits bigger clusters obtained at lower resolution.  

d. Percentage of cells shared between clustering-derived (C) and thresholding-derived

(T) phenotypes. Number of cells identified by the two classification methods in each

population are also reported in the lateral bars. 

e. Comparison of the expression profiles of T cell subpopulations identified using

unsupervised clustering (C) at 0.25 resolution and expression thresholding (T) of 

representative markers. For each population in (c) and (e), the mean intensity value 

of the markers across all cells is shown. The colour scale was normalised across all 

markers and cells, independently for each analysis. A total of n = 1,466 T cells from n 

= 1 biological sample were analysed. 

f. Position map of T cells in APP1 colour-coded according to the phenotype obtained

through unsupervised clustering or expression thresholding (cluster 1 = violet, cluster 

2 = orange, cluster 3 = green, cluster 4 = blue, cluster 5 = red). Scale bar = 100μm. 
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Images in panels (a) and (f) were derived from a single sample (APP1, Supplementary 

Data 1). 
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Chapter 4. Analysis of response to immune checkpoint 

inhibitors in colorectal cancer 

4.1 Contributions 

In this study107, I analysed the image analysis method and analysed the 

IMC71 data, with support from Mohamed Reda Keddar for the density analysis of 

CD74+ macrophages. I also supported Lucia Montorsi in the quantification of T 

cell infiltration from immunohistochemistry derived images. Francesca D. 

Ciccarelli, Mohamed Reda Keddar, Lucia Montorsi, Damjan Temelkowski, Subin 

Choi, Amelia Acha-Sagredo, Lorena Benedetti, Manuel Rodriguez-Justo, Kai-

Keen Shiu and Jo Spencer and I wrote the manuscript, and all authors read and 

approved its final version. 

Francesca D. Ciccarelli acquired the funding and conceived and directed 

the study with support from Jo Spencer. Victoria Kunene, Elisa Fontana., 

Hendrick-Tobias Arkenau and Kai-Keen Shiu selected the patients and provided 

clinical assessments, while Manuel Rodriguez-Justo performed the pathological 

assessments. Lucia Montorsi performed all immunostaining and analysed the 

resulting immunohistochemistry images. Robert Goldstone, Sophia Ward, Gareth 

A. Wilson, Maise Al Bakir and Charles Swanton provided the protocol for FFPE

WES. Lorena Benedetti and Amelia Acha-Sagredo macro-dissected the regions 

from the FFPE blocks and prepared the collected tissue for the WES, RNA-seq 

and TCR-seq. Subin Choi and Damjan Temelkowski analysed the WES data. 
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Mohamed Reda Keddar analysed the RNA-seq and TCR-seq data with support 

from Susan John. Lucia Montorsi performed the staining for IMC with support 

from Nedyalko Petrov and Katrina Todd, who also performed the acquisition. 

James Miles, Banafshe Larijani and Peter Parker performed the A-FRET 

experiments and contributed their interpretation. Amelia Acha-Sagredo 

performed the mIF experiments with support from Patty Way, Jonny Kohl, 

Tamara Denner and Emma Nye. 

4.2 Immunogenomics of Colorectal Cancer Response to 

Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial 

and Validation Cohorts 
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Non-hypermutated CRC

Non-durable Benefit

Hypermutated CRC

• High TMB
• High immunogenic clonality
• High GzB+CD8+ and Ki67+CD8+

• Low B2M tumour expression
• High CD74+CD68+

• High TMB
• Low immunogenic clonality
• High GzB+CD8+ and Ki67+CD8+

• B2M tumour expression
• Low CD74+CD68+ 

Durable Benefit

• Low TMB
• High WNT activation
• Low GzB+CD8+ and Ki67+CD8+

GzB+/Ki67+ CD8+ 

Tumour cell

CD74+CD68+

WNT targets

Immunogenic 
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B2M
Pembrolizumab
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IMC/mIF

Nivolumab

BACKGROUND & AIMS: Colorectal cancer (CRC) shows vari-
able response to immune checkpoint blockade, which can only
partially be explained by high tumor mutational burden (TMB).
We conducted an integrated study of the cancer tissue and
associated tumor microenvironment (TME) from patients

treated with pembrolizumab (KEYNOTE 177 clinical trial) or
nivolumab to dissect the cellular and molecular determinants of
response to anti- programmed cell death 1 (PD1) immuno-
therapy. METHODS: We selected multiple regions per tumor
showing variable T-cell infiltration for a total of 738 regions
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from 29 patients, divided into discovery and validation co-
horts. We performed multiregional whole-exome and RNA
sequencing of the tumor cells and integrated these with T-cell
receptor sequencing, high-dimensional imaging mass cytom-
etry, detection of programmed death-ligand 1 (PDL1) inter-
action in situ, multiplexed immunofluorescence, and
computational spatial analysis of the TME. RESULTS: In
hypermutated CRCs, response to anti-PD1 immunotherapy
was not associated with TMB but with high clonality of
immunogenic mutations, clonally expanded T cells, low acti-
vation of Wnt signaling, deregulation of the interferon gamma
pathway, and active immune escape mechanisms. Responsive
hypermutated CRCs were also rich in cytotoxic and prolifer-
ating PD1þCD8 T cells interacting with PDL1þ antigen-
presenting macrophages. CONCLUSIONS: Our study clarified
the limits of TMB as a predictor of response of CRC to anti-PD1
immunotherapy. It identified a population of antigen-
presenting macrophages interacting with CD8 T cells that
consistently segregate with response. We therefore concluded
that anti-PD1 agents release the PD1-PDL1 interaction be-
tween CD8 T cells and macrophages to promote cytotoxic
antitumor activity.

Keywords: Anti-PD1 Immunotherapy; Tumor Mutational
Burden; Wnt Signaling; Interferon Gamma; CD8 T cells.

Anticancer therapy based on immune checkpoint
blockade has driven a paradigm shift in the treat-

ment of several cancer types.1 Pembrolizumab and nivolu-
mab, 2 antibodies targeting programmed cell death 1 (PD1)
expressed on T cells, have shown efficacy in advanced
hypermutated colorectal cancers (CRCs).2 Response is
thought to depend on rich immune infiltration and high
tumor mutation burden (TMB) leading to increased pro-
duction of peptide neoantigens.3 However, despite perva-
sive tumor immunogenicity, response is highly variable, and
approximately half of patients with hypermutated CRCs
show no benefit from treatment.4

We have dissected the extent to which TMB, cancer
dysfunctional genes and pathways, as well as the qualita-
tive and quantitative immune composition of the tumor
microenvironment (TME) influence response to immune
checkpoint blockade. To reproduce the most common
clinical scenario where metastatic biopsies are not
routinely taken, we performed a high-dimensional and
multiregional profile of primary CRCs or local relapses
from 29 patients, divided into a discovery and a
validation cohort. The discovery cohort was composed of
patients with metastatic disease treated with pem-
brolizumab as first-line therapy within the KEYNOTE 177
phase III clinical trial5 or nivolumab. Most patients did not
receive previous treatment, which offered the ideal
opportunity to identify critical factors for response to
treatment in cancer genetic and transcriptional dysregu-
lation and immune microenvironment composition. We
then extended the study to a more heterogenous validation
cohort of patients who received anti-PD1 agents alone or
in combination and as first-line therapy or in a

chemorefractory setting to assess the general validity of
our findings.

Methods
Patient Populations

Formalin-fixed paraffin-embedded blocks were obtained
from surgical resections of the primary tumor or local relapse of
16 patients (UH1–UH16, discovery cohort) and 13 patients
(UH17–UH29, validation cohort). UH1 through UH10 were
treated with pembrolizumab as part of the KEYNOTE 177 clinical
trial (NCT02563002)5 and UH11 through UH16 were treated
with nivolumab as first-line therapy. UH17 through UH19 were
part of the KEYNOTE 177 trial, UH26 received pembrolizumab,
UH20 through UH25 and UH29 were treated with nivolumab,
UH27 received ipilimumab in combination with nivolumab and
then nivolumab alone, and UH28 received nivolumab and then
ipilimumab in combination with nivolumab.

WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Response of colorectal cancer to immune checkpoint
blockade is highly variable, and molecular and cellular
determinants of response remain poorly understood.

NEW FINDINGS

Tumor mutational burden is insufficient to predict
response in colorectal cancer. Additional predictors are
clonal immunogenic mutations, clonally expanded T
cells, low Wnt activation, active immune escape, and
high CD8 T cells and antigen-presenting macrophage
infiltration.

LIMITATIONS

Due to the restricted use of anti-programmed cell death 1
immunotherapy in hypermutated colorectal cancers, our
study has a limited patient cohort size. Additional data
from prospective studies are needed.

IMPACT

Colorectal cancer stratification based on tumor mutational
burden is limited and may be improved by accounting for
other predictors, including the abundance of antigen-
presenting macrophages in proximity to CD8 T cells.

* Authors share co-first authorship.

Abbreviations used in this paper: A-FRET, amplified Förster resonance
energy transfer; B2M, beta-2-microglobulin; CD, cluster of differentiation;
CRC, colorectal cancer; DB-CRC, durable benefit colorectal cancer; GzB,
granzyme B; IMC, imaging mass cytometry; mIF, multiplexed immunoflu-
orescence; nDB-CRC, no durable benefit colorectal cancer; PD1, pro-
grammed cell death 1; PDL1, programmed death-ligand 1; RNA-seq, RNA
sequencing; SNV, single-nucleotide variants; T-cell, receptor b-chain
sequencing (TCR-seq); TCGA, The Cancer Genome Atlas; TMB, tumor
mutational burden; TME, tumor microenvironment; WES, whole-exome
sequencing.
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Response to therapy was assessed using Response Evalua-
tion Criteria In Solid Tumors 1.1.6 Patients were considered to
achieve durable benefit if the disease did not progress for at
least 12 months after receiving immunotherapy, and no durable
benefit if the disease progressed within 12 months. Further
details on treatment and other clinical parameters, including
tumor staging and prior lines of treatment, are reported as
Supplementary Methods and Supplementary Table 1.

CD3 and H&E Staining
Cluster of differentiation (CD) 3 immunostaining was per-

formed on several slides across the depth of each analyzed
tumor block, for a total of 418 regions. Slides were digitally
acquired at 20� resolution and loaded into QuPath7 to quantify
the number of CD3þ cells/mm2. H&E staining was performed
on 13 additional slides of the validation cohort.

Imaging Mass Cytometry
Imaging mass cytometry (IMC) was performed in 77 re-

gions of the discovery and validation cohorts using 3 panels of
42 antibodies in total. IMC data analysis was done with SIM-
PLI.8 Positive areas for combinations of markers were quanti-
fied and normalized over the tissue area or the area of selected
immune populations. After segmentation, cell identities were
assigned according to the highest overlap with marker-specific
masks. Unsupervised cell clustering was performed with
Seurat9 and used to compare the relative abundances of cell
subpopulations between tumor groups. High-density clusters of
CD68þCD74þ cells were identified using DBSCAN.10

Multiplexed Immunofluorescence
Multiplexed Immunofluorescence (mIF) was performed in

24 whole slides of the discovery and validation cohorts using
an automated Opal-based mIF staining protocol with 8 anti-
bodies. Fluorescently labeled slides were scanned, and images
were loaded into inForm (Akoya Biosciences) for spectral
unmixing and autofluorescence isolation.

Whole-Exome Sequencing
Whole-exome sequencing (WES) was conducted on 32

macrodissected tumor regions and matched normal tissue of
the discovery cohort. Sequencing data were aligned using BWA
MEM.11 Somatic single-nucleotide variants (SNVs) and indels
were called using Strelka.12 ANNOVAR13 was used to annotate
exonic or splicing SNVs and indels, and damaging SNVs and
indels were identified as previously described.14 Copy number
analysis was done using ASCAT15 and integrated with gene
expression data. Amplified genes, deleted genes, hetero-
zygously deleted genes with a damaging mutation in the other
allele, and copy number neutral genes with at least 1 damaging
mutation were considered as damaged genes. Immunogenic
mutations were predicted using Polysolver16 and Neo-
PredPipe,17 and their clonality was assessed using PyClone.18

RNA Sequencing
We conducted 30-RNA sequencing (RNA-seq) on 88 mac-

rodissected regions of the discovery and validation cohorts.
Raw reads were processed using the Lexogen QuantSeq 30

messenger RNA-seq pipeline.19 Differential gene expression

was assessed using DESeq2.20 Pathway enrichment analysis of
differential expressed genes was done using MetaCore 20.3
build 70200 (Clarivate Analytics).

T-Cell Receptor b-Chain Sequencing
T-cell receptor b-chain sequencing (TCR-seq) was per-

formed on 28 macrodissected regions of the discovery cohort.
Genomic DNA was submitted to Adaptive Biotechnologies
(Seattle, WA) for nonlymphoid tissue (survey level) TCR-seq.21

Data were analyzed using the immunoSEQ Analyzer toolset.

PD1-PDL1 Amplified Förster Resonance Energy
Transfer

In situ interaction between PD1 and programmed death-
ligand 1 (PDL1) was measured in 58 regions of the discovery
cohort via amplified Förster resonance energy transfer (A-
FRET)22 at FASTBASE Solutions (Derio, Spain). FRET efficiency
was calculated from 793 optical fields of view to cover the
whole surface of the regions analyzed. The results were
expressed as the median fields of view values per region.
Detailed protocols and methods are provided in the
Supplementary Methods.

Results
Response of Hypermutated Colorectal Cancers
Is Associated With Clonal Immunogenic
Mutations and Clonally Expanded T Cells

To assess how immune infiltration correlates with tumor
genetic and transcriptional alterations in CRC, we per-
formed a multiomic and multiregional profile of 24
sequential slides (A–K) from formalin-fixed paraffin-
embedded tumor blocks, for a total of 562 regions from 16
patients of the discovery cohort (Figure 1A). Ten of these
patients received pembrolizumab (UH1–UH10) and 6 nivo-
lumab (UH11–UH16) as a first-line treatment in advanced
metastatic setting. According to Response Evaluation
Criteria In Solid Tumors 1.1, 9 patients achieved durable
benefit, and 7 had no durable benefit from the treatment
(Supplementary Table 1). We validated the main findings of
the study in 176 additional regions from 13 patients with
CRC (UH17–UH29, Supplementary Figure 1A) treated with
anti-PD1 agents alone or in combinations with other im-
mune checkpoint inhibitors as first-line therapy or in a
chemorefractory setting (Supplementary Table 1). Ten of
them reached a durable benefit, and 3 had no durable
benefit (Figure 1A).

Because T cells are the effector cells that mediate the
response to anti-PD1 immunotherapy, we selected multiple
regions per block with variable T-cell content in proximity
to the tumor infiltrating margins (Supplementary
Figure 1B). These regions were then projected in all
sequential slides to perform additional CD3 immunohisto-
chemistry for quantification of T-cell variability in the 3-
dimensions of the tumor as well as IMC, mIF, WES, RNA-
seq, TCR-seq, and A-FRET detection of the PD1-PDL1
interaction in situ (Figure 1B).
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As a first analysis, we compared T-cell infiltration be-
tween and within tumors (Supplementary Figure 1C). In
both the discovery (Figure 1C) and validation
(Supplementary Figure 1D) cohorts, we observed wide-
spread intertumor and intratumor heterogeneity of T-cell
infiltration, with up to a 38-fold difference in CD3þ cell
densities between patients and up to a 20-fold difference
between regions of the same patient (Supplementary
Table 2). To investigate how heterogeneity in T-cell infil-
tration correlated with TMB, we performed multiregional
WES in the discovery cohort by selecting 2 regions per pa-
tient, 1 with high and 1 with low T-cell infiltration
(Supplementary Table 2). TMB was comparable between
regions of the same patient (Figure 1D) and did not corre-
late with T-cell density across samples (Figure 1E). Similar
lack of correlation was observed in hypermutated CRCs
from The Cancer Genome Atlas (TCGA) (Supplementary
Figure 1E), indicating TMB independence of T-cell
heterogeneity.

WES also showed that the TMB in 3 patients (UH2, UH3,
and UH6) was lower than 12 mutations/megabase pair
(TCGA lower bound of CRC hypermutated phenotype23)
despite negative MLH1 and PMS2 immunostaining and
consistent with resistance to treatment (Supplementary
Table 1). All patients of the validation cohort had hyper-
mutated CRCs (Supplementary Table 1).

Given that approximately 50% of patients with hyper-
mutated CRC do not respond to immunotherapy, we
compared TMB between hypermutated CRCs with durable
benefit (DB-CRCs) and those with no durable benefit (nDB-
CRCs) to assess the role of TMB as a marker of response
within hypermutated CRC. Surprisingly, in the discovery
cohort, DB-CRCs had a significantly lower TMB than nDB-
CRCs (Figure 1F). When adding hypermutated CRCs from
the validation cohort and published studies,24–28 we
observed no significant difference between DB- and nDB-

CRCs (Figure 1G). Together with the lack of response in
non-hypermutated CRCs (Supplementary Table 1), these re-
sults indicate that a TMB below 12mutations/megabase pair
is a predictor of resistance to anti-PD1 immunotherapy in
CRC. Above this threshold, TMB is not a predictor of response.

To understand whether the proportion of cancer-
associated neoantigens differed between responders and
nonresponders, we predicted how many cancer mutations
were potentially immunogenic in each patient. In the dis-
covery cohort, the ratio between immunogenic mutations
and all mutations (neoantigenic index) was similar between
DB- and nDB-CRCs (Figure 1H). However, we observed a
high number of clonal immunogenic mutations in DB-CRCs
(Figure 1I), indicating expansion of tumor cells with the
same potential immune targets. Similar results were
observed using an external data set of hypermutated CRCs
treated with immune checkpoint inhibitors25

(Supplementary Figure 1F). Consistent with dominant
antigenic targets, the productive TCR repertoire was also
more clonal in DB-CRCs (Figure 1J).

Therefore, although hypermutated CRCs responding to
anti-PD1 agents do not have more mutations than those
failing to respond, they have significantly more clonally
expanded immunogenic mutations and T-cell clones.

Durable-Benefit Colorectal Cancers Show
Widespread Immune Dysregulation and Silencing
of the Beta-2-Microglobulin Gene

To dissect CRC molecular determinants of response to
anti-PD1 agents in CRC, we compared genetic and tran-
scriptional dysregulations between hypermutated and non-
hypermutated CRCs as well as between DB- and nDB-CRCs.

Genes of the Wnt pathway were frequently damaged
(Supplementary Figure 2A, Supplementary Table 3) and
transcriptionally deregulated (Figure 2A, Supplementary

=
Figure 1. Study design and quantification of tumor heterogeneity. (A) Description of the study cohorts. Clinical benefit from the
treatment was assessed with Response Evaluation Criteria In Solid Tumors 1.1. (B) Experimental design: 24 sequential slides
from formalin-fixed paraffin-embedded (FFPE) CRC blocks before treatment were used for multiregional CD3 immunohisto-
chemistry (slides A, B, F, H, and J), IMC (slide C), mIF (slide D), WES (slides E1–E5), RNA-seq (slides G1–G5), TCR-seq (slides
I1–I5), and A-FRET detection of PD1-PDL1 interaction in situ (slides K1–K2). Multiple regions with variable CD3 infiltration were
identified in slide A and projected to all other slides. (C) Quantification of CD3þ cells/mm2 from immunohistochemistry staining
in 60 regions of the discovery cohort using Qupath.7 Values were normalized within each patient. The gray boxes indicate
missing measures. (D) TMB of 32 sequenced regions in the discovery cohort. The dotted line corresponds to the TMB
threshold of hypermutated CRC (12 mutations/megabase pairs).23 (E) Correlation between CD3þ cells/mm2 from immuno-
histochemistry staining of slide F (discovery) and slide E (validation) and TMB across samples. Average CD3þ cell density
across multiple regions per slide is reported. For the discovery cohort, TMB was calculated as the average between the 2
sequenced regions. For the validation cohort, TMB was obtained from the FM1 test.40 Pearson correlation coefficient R and
associated P value are shown. (F) Comparison of TMB between DB- and nDB-CRCs of the discovery cohort and (G) in
hypermutated CRCs from the validation cohort (Supplementary Table 1) and published studies.24–28 For26,28 response was
unavailable and the overall survival from the start of immunotherapy was used to define DB (�12 months) and nDB (<12
months). (H) Comparison of neoantigenic index (ratio of predicted immunogenic mutations over all nonsilent mutations) and (I)
clonality of immunogenic mutations in 17 regions with >30% tumor purity (Supplementary Table 2). Regions with lower purity
were excluded because of unreliable mutation clonality assessment.41 Results hold true even when using all regions (data not
shown). (J) Comparison of productive clonality of TCR beta rearrangements between DB- and nDB-CRCs with available data
(Supplementary Table 2). The number of patients in each tumor group is reported in brackets. Distributions were compared
using the 2-sided Wilcoxon’s rank sum test. The horizontal line in the middle of each box indicates the median; the top and
bottom borders of the box mark the 75th and 25th percentiles, respectively, and the vertical lines mark points within 1.5 the
inter-quartile range.
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Table 4) in hypermutated compared with non-hypermutated
CRCs. Moreover, Wnt downstream targets were significantly
downregulated in hypermutated compared with non-
hypermutated CRCs (Figure 2B) as confirmed in TCGA
(Figure 2C). Transcriptional Wnt activation is known to

reduce T-cell infiltration,29,30 suggesting a potential impact
on the TME composition of these tumors.

Genes encoding members of the interferon gamma
pathway, antigen presentation machinery, and other immune-
related processes were damaged (Supplementary Figure 2A)

Figure 2. Cancer and immune aberrations across CRC groups. (A) Representative enriched pathways in differentially
expressed genes between hypermutated and non-hypermutated CRCs of the discovery cohort. The false discovery rate (FDR)
was calculated using Benjamini-Hochberg correction. Proportions of immune-related pathways over all enriched pathways are
reported as pie chart. Normalized enrichment scores (NES) from single sample Gene Set Enrichment Analysis (ssGSEA)42 of 68
transcriptional targets of the Wnt pathway29,43 between hypermutated and non-hypermutated CRCs from (B) the discovery
cohort and (C) TCGA. Representative pathways enriched in differentially expressed genes between DB- and nDB-CRCs from
the (D) discovery and (E) validation cohorts. (F) Representative IMC images of CRCs with mutated and wild-type (WT) B2M
protein. Scale bar ¼ 50 mm. Comparison of normalized tumor and stroma B2Mþ areas between DB- and nDB-CRCs of the (G)
discovery and (H) validation cohorts. Number of patients in each tumor group is reported in brackets. Distributions were
compared using the 2-sided Wilcoxon’s rank sum test. IFN, interferon; MHC, major histocompatibility complex. The horizontal
line in the middle of each box indicates the median; the top and bottom borders of the box mark the 75th and 25th percentiles,
respectively, and the vertical lines mark minimum and maximum of all the data.
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Figure 3. Comparison of T cells infiltrates between CRC groups. (A) IMC analysis workflow using SIMPLI.8 For each region,
images of the markers used (Supplementary Table 5) were preprocessed to extract pixel intensities. Masks for tumor and
stroma were derived and used for the pixel analysis. Each region was segmented into single cells that were assigned to tumor
or stroma, phenotypically identified through expression of representative markers, and used for single cell clustering. (B)
Comparison of normalized CD3þ areas and (C) CD3þ cells between DB and nDB-CRCs in the discovery cohort. Benjamini-
Hochberg false discovery rate (FDR) correction was applied for testing over 5 immune populations. (D) Comparison of
normalized CD3þ areas and (E) CD3þ cells between DB- and nDB-CRCs in the validation cohort. (F) Uniform Manifold
Approximation and Projection (UMAP) map of 20,890 T cells in 38 regions from 16 CRCs of the discovery cohort. Cells were
grouped in 13 clusters based on the expression of 12 phenotypic markers using Seurat9 (Supplementary Table 8) and colored
according to the mean intensities of representative markers. The circles indicate the 2 clusters enriched in hypermutated
CRCs. (G) Proportions of cluster 1 (CD8þGzBþ cells) and cluster 2 (CD8þKi67þ cells) over the total T cells in hypermutated and
non-hypermutated CRCs. Distributions were compared using the 2-sided Wilcoxon’s rank sum test. Benjamini-Hochberg FDR
correction was applied for testing over 13 clusters. (H) IMC-derived images of tumor-associated markers (E-cadherin and pan-
keratin) and CD8 and GzB or CD8 and Ki67 in 2 representative samples. Scale bar ¼ 100 mm. (I) Comparisons of normalized
CD8þGzBþ and CD8þKi67þ areas between hypermutated and non-hypermutated CRCs. Distributions were compared using
the 2-sided Wilcoxon’s rank sum test. Benjamini-Hochberg FDR correction was applied for testing over 25 combinations of T-
cell markers (Supplementary Table 6). The horizontal line in the middle of each box indicates the median; the top and bottom
borders of the box mark the 75th and 25th percentiles, respectively, and the vertical lines mark minimum and maximum of all
the data.
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Figure 4. Difference in CD74þ macrophages between DB- and nDB-CRCs. (A) Uniform Manifold Approximation and Projection
(UMAP) map of 16,748 macrophages in 30 regions from 13 hypermutated CRCs in the discovery cohort. Cells were grouped in
9 clusters based on the expression of 11 phenotypic markers using Seurat9 (Supplementary Table 8) and colored according to
the mean intensities of representative markers. The circle indicates the cluster enriched in DB-CRCs. (B) Proportions of cluster
3 (CD68þCD74þ cells) over the total macrophages in DB- and nDB-CRCs. Distributions were compared using the 2-sided
Wilcoxon’s rank sum test. Benjamini-Hochberg false discovery rate (FDR) correction was applied for testing over 9 clus-
ters. (C) IMC-derived images of CD74, CD16, and CD163 and tumor-associated markers (E-cadherin and pan-keratin) in 2
representative samples. Scale bar ¼ 100 mm. (D) Comparisons of normalized CD74þ area between DB- and nDB-CRCs in the
discovery, (E) validation, and (F) both cohorts using the 2-sided Wilcoxon’s rank sum test. For the discovery cohort, Benjamini-
Hochberg FDR correction was applied for testing over 9 combinations of macrophage markers (Supplementary Table 6). (G)
CD74þ macrophages in the validation and (H) combined cohorts were identified by applying a threshold of 0.1 CD74
expression to all macrophages after IMC image histologic inspection. Mean marker intensities in CD74þ and CD74� mac-
rophages are reported and normalized across all markers and cells. (I) Comparison of normalized of CD74þ macrophages
between DB- and nDB-CRCs in the validation and (J) combined cohorts. Distributions were compared using the 2-sided
Wilcoxon’s rank sum test. The number of patients in each tumor group is reported in brackets. The horizontal line in the
middle of each box indicates the median; the top and bottom borders of the box mark the 75th and 25th percentiles,
respectively, and the vertical lines mark minimum and maximum of all the data.
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Figure 5. Functional characterization of CD68þCD74þ cells. (A) CD68þCD74þ cells in 10 DB-CRCs from both cohorts were
identified by applying a threshold of 0.35 CD74 expression to all CD68þ cells after IMC image histologic inspection. (B) Mean
marker intensities in CD68þCD74þ and CD68þCD74 cells. Values were normalized across all markers and cells. Marker
distributions were compared with the 2-sided Wilcoxon’s rank sum test, and Benjamini-Hochberg false discovery rate (FDR)
correction was applied to account for testing over 14 markers. Fold change between the mean expression in CD68þCD74þ

and CD68þCD74 cells is reported. DC, dendritic cells. (C) Percentage of CD68þCD74þ cells expressing selected markers
associated with antigen presentation and M1 and M2 phenotypes. (D) Uniform Manifold Approximation and Projection (UMAP)
maps of 2726 CD68þCD74þ cells in 17 regions from 10 DB-CRCs. Cells were grouped in 6 clusters based on the expression of
16 phenotypic markers using Seurat9 and colored according to the mean intensities of representative markers. The circle
indicates a CPDL1-expressing cluster. (E) Single-cell segmentation (upper panel) and IMC images (lower panels) of selected
CD68þCD74þ cell-associated markers from a representative DB-CRC. The right bottom panel reports the combination of all
the selected markers. Scale bar ¼ 100 mm.
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or transcriptionally dysregulated in hypermutated DB-CRCs
compared with nDB-CRCs in the discovery (Figure 2D,
Supplementary Table 4) and validation (Figure 2E) cohorts.
Interestingly, 2 DB-CRCs showed a clonal truncating mutation
(T91fs) in the beta-2-microglobulin (B2M) gene encoding the
invariable subunit of the major histocompatibility complex
class I complex (Supplementary Figure 2B). Because a B2M
antibody was part of the IMC panel (Supplementary Table 5),
we could assess that a B2M truncating mutation led to no
protein expression in the tumor compared with a widespread
B2M expression in CRCs with wild-type B2M (Figure 2F). In
general, B2M protein expression was significantly reduced in
the tumor but not in the stroma of DB-CRCs in the discovery
(Figure 2G) and validation (Figure 2H) cohorts as well as in
both cohorts combined (Supplementary Figure 2C). In mela-
noma, B2M loss has been associated with resistance to im-
mune checkpoint inhibitors.31 Our data indicate an opposite
association in CRC, supporting similar recent observations.32

Hypermutated Colorectal Cancers Are Enriched
in Cytotoxic and Proliferating CD8 T Cells

To understand the role of TME in the response to anti-
PD1 agents, we analyzed multiple tumor regions of the
discovery cohort with IMC (Supplementary Figure 3A) using
markers for T cells, macrophages, neutrophils, dendritic
cells, and B cells as well as the tissue structure
(Supplementary Table 5). After regional ablation and image
processing, we verified that the relative proportion of
stroma and tumor cells was similar across samples
(Supplementary Figure 3B–F). We then applied 2 indepen-
dent and complementary analytical approaches. In one, we
compared the normalized pixel area of individual or com-
bined markers (pixel analysis, Figure 3A). In the other, we
applied single-cell segmentation, assigned cell identities,
and compared the relative abundance of immune cell pop-
ulations identified through unsupervised single-cell clus-
tering (single-cell analysis, Figure 3A). Outcomes of all
analyses were validated by independent histologic assess-
ment of unprocessed images.

Hypermutated DB- and nDB-CRCs showed no difference
in normalized CD3þ area (Figure 3B, Supplementary

Table 6) or proportion of CD3þ cells (Figure 3C,
Supplementary Table 7), confirming that overall T-cell
infiltration does not correlate with TMB (Figure 1E) or
response to therapy. To further investigate whether DB- and
nDB-CRCs differed in specific T-cell subpopulations, we
performed single-cell clustering using 12 T-cell markers
(Supplementary Table 5). We found no qualitative or
quantitative differences in T-cell subpopulations between
DB- and nDB-CRCs (Supplementary Table 8, Supplementary
Figure 4).

Given their relevance to immune checkpoint inhibitors,
we further profiled T cells in the validation cohort by adding
5 markers of T-cell function to the 12 used previously
(Supplementary Table 5). We confirmed no significant dif-
ference in the normalized CD3þ area or proportion of CD3þ

cells between DB- and nDB-CRCs of the validation cohort
(Figure 3D and E). Moreover, single-cell clustering with all
17 phenotypic markers of T cells confirmed no difference in
T-cell infiltrates between DB -and nDB-CRCs
(Supplementary Table 8).

We repeated the same comparison between hyper-
mutated and non-hypermutated CRCs of the discovery
cohort. In this case, we found 2 clusters of CD8 T cells
(cluster 1, expressing granzyme B [GzB], and cluster 2,
expressing Ki67) significantly higher in hypermutated CRCs
(Figure 3F–H). Pixel analysis confirmed these results
(Figure 3I, Supplementary Figure 3G).

Our analysis identified the cytotoxic and proliferating
CD8 T-cell subpopulations that are specifically enriched in
hypermutated CRCs, confirming recent reports33 and likely
due to Wnt low activation observed in these samples
(Figure 2A and B). No qualitative or quantitative differences
in any subpopulation of T cells were detected between
hypermutated DB- and nDB-CRCs, which were both rich in
CD8 T cells.

Hypermutated Durable Benefit Colorectal
Cancers Are Enriched in CD74þ Macrophages

To further investigate the association of TME with
response, we compared the relative abundance of all other
main immune populations between hypermutated and non-

=
Figure 6. Interaction between CD74þ macrophages and GzBþKi67þ CD8 T cells. (A) CD8þGzBþ and CD8þKi67þ T cells in the
validation and (B) combined cohorts were identified by applying a threshold of 0.05 GzB and 0.15 Ki67 expression to CD8 T
cells, after IMC image histologic inspection. Markers of mean intensities in CD8þGzBþ or CD8þKi67þ and CD8þGzB� or
CD8þKi67-T cells were normalized across all markers and cells. (C) Distance distributions of CD8þGzBþ or (D) CD8þKi67þ to
the nearest CD74þ macrophage in the discovery, validation, and combined cohorts. Distances between cells were divided into
1.1-mm bins, and the density curves fitting the histograms were measured. Distributions of PD1þ or PDL1þ and the rest of the
cells were compared using the 2-sided Wilcoxon’s rank sum test. The dashed lines represent medians of the distributions. (E)
High-resolution mIF image of a representative CRC with a highlighted cluster of CD74þ macrophages (main image) and their
interactions with CD8þGzBþ and CD8þKi67þ T cells (zoom-ins). The image was scanned at original magnification �40. Scale
bars ¼ 10 mm. (F) Correlation between normalized T cells and macrophages in 26 DB- and nDB-CRCs of the discovery and
validation cohorts. Pearson correlation coefficient R and associated P value are shown. (G) Ratios of normalized CD74þ

macrophages, CD8þGzBþ, and CD8þKi67þ T cells between regions with high and low T-cell infiltration. For samples with more
2 regions, the total cells in the high or low regions were normalized and used to compute the ratio. (H) Comparisons of
normalized of CD74þ macrophages between DB- and nDB-CRCs of the combined cohorts considering only high (left) and low
(right) T-cell infiltration regions. Distributions were compared using the 2-sided Wilcoxon’s rank sum test. The horizontal line in
the middle of each box indicates the median; the top and bottom borders of the box mark the 75th and 25th percentiles,
respectively, and the vertical lines mark points within 1.5 the inter-quartile range.
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hypermutated CRCs or DB- and nDB-CRCs of the discovery
cohort.

We found no difference in dendritic cells, neutrophils,
and B cells between hypermutated and non-hypermutated
CRCs (Supplementary Table 8). However, we observed
proportionally higher CD68þCD74þ cells in DB-CRCs than in
nDB-CRCs (cluster 3, Figure 4A–C), which was confirmed by
pixel analysis (Figure 4D). To validate these results, we
profiled the macrophages also in the validation cohort. Pixel
analysis confirmed a higher normalized CD68þCD74þ area
in the validation samples alone (Figure 4E) and together
with the discovery cohort (Figure 4F). To identify
CD68þCD74þ cells, we applied a threshold of 0.1 CD74
expression to all macrophages in the validation cohort
(Figure 4G) and in all hypermutated CRCs (Figure 4H). We
verified that CD68þCD74þ cells identified in this way
matched phenotypically to cells in cluster 3 of the discovery
cohort (Supplementary Figure 5A–C). Comparing the pro-
portion of CD68þCD74þ cells between DB-CRCs and nDB-
CRCs we found that it was higher in DB-CRCs of the vali-
dation cohort alone (Figure 4I) and when all hypermutated
CRCs were analyzed together (Figure 4J). Therefore, we
found that CD68þCD74þ cells are associated with response
to anti-PD1 immunotherapy in CRC.

To further characterize these cells, we profiled selected
DB-CRCs from both cohorts (Supplementary Table 2) with
16 additional markers (Supplementary Table 5) and iden-
tified CD68þCD74þ cells applying a threshold on CD74
expression (Figure 5A). All stained markers, except those
associated with dendritic cell functions, were more
expressed in CD68þCD74þ cells than in CD68þCD74� cells
(Figure 5B). HLA-ABC, HLA-DR, CD40, CD16, and CD163
were expressed in >80% of CD68þCD74þ cells, whereas
M2-associated markers, such as CD206 and FOLR2, were
specific to smaller subsets (Figure 5C). This expression
profile suggested that CD68þCD74þ macrophages may have
a T-cell–activating phenotype. Interestingly, approximately
40% of them expressed both M1 and M2 markers, consis-
tent with phenotypic plasticity (Supplementary Figure 5D).
Single-cell clustering identified 6 distinct groups of
CD68þCD74þ cells, one of which expressed high levels of
PDL1, together with CD40, CD16, and CD163, but not CD206
and FOLR2 (Figure 5D). Independent histologic inspection
confirmed coexpression of these markers in CD68þCD74þ

cells (Figure 5E).
Finally, we compared the normalized PD1 or PDL1

protein expression between DB- and nDB-CRCs and found
no significant differences in the discovery (Supplementary
Figure 6A), validation (Supplementary Figure 6B), and
combined (Supplementary Figure 6C) cohorts. This was
supported by gene expression analysis (Supplementary
Figure 6D and E) and single-cell clustering, which detected
no qualitative or quantitative differences in PD1þ or PDL1þ

cells (Supplementary Table 8). In general, the expression of
both PD1 and PDL1 genes was low (Supplementary
Figure 6F), as confirmed also in TCGA CRCs, where their
expression was significantly lower than in melanoma and
lung cancer (Supplementary Figure 6G). Consistent with
their low expression, we could detect PD1-PDL1 protein

complex formation in only a minority of regions
(Supplementary Table 2), and A-FRET intensity was lower
than in melanoma and renal cancer.22 The proportion of
regions with detectable PD1-PDL1 complex was signifi-
cantly less in hypermutated than in non-hypermutated
CRCs, whereas there was no difference between DB- and
nDB-CRCs (Supplementary Figure 6H).

Our analyses suggest that a subset of antigen-presenting
macrophages with a T-cell– activating phenotype may play a
key role in CRC response to anti-PD1 immune therapy. The
overall expression of PD1 and PDL1 is low at the gene and
protein levels and they show no association with response,
indicating that unlike other cancer types,2 they are not
biomarkers of response in CRC.

CD74þPDL1þ Macrophages Interact with PD1þ

Cytotoxic and Proliferating CD8 T Cells
Our deep investigation of immune infiltrates showed

that hypermutated DB-CRCs are immune hot tumors, with
high levels of CD74þ macrophages compared with nDB-
CRCs as well as of cytotoxic and proliferating T cells asso-
ciated with the hypermutated phenotype. Because CD74þ

macrophages also expressed PDL1 while the 2 CD8 T-cell
populations expressed PD1 (Supplementary Table 8,
Supplementary Figure 4), we asked whether these cells
were proximal in the TME and interacted through PD1-
PDL1 contact.

To interrogate this, we identified CD8þGzBþ and
CD8þKi67þ cells in the validation cohort (Figure 5A) and in
all hypermutated CRCs (Figure 6B) by applying a threshold
of 0.05 (GzB) and 0.15 (Ki67) expression to all CD8 T cells.
We verified that these cells were phenotypically similar to
clusters 1 (CD8þGzBþ cells) and 2 (CD8þKi67þ cells) of the
discovery cohort (Supplementary Figure 7). These 2 pop-
ulations did not selectively express any additional T-cell
markers used in the validation cohort, except the immune
checkpoint protein LAG3 (Figure 6A). The absence of TCF7
expression in proliferating CD8 T cells suggested that they
do not have stem-like characteristics and are not analogous
to recently described intratumoral T-cell developmental
niches.34,35

After identifying the CD8þGzBþ and CD8þKi67þ T-cell
subpopulations, we measured the centroid distance be-
tween them and CD68þCD74þ cells. We then measured the
distance between CD8þGzBþPD1þ or CD8þKi67þPD1þ and
CD68þCD74þPDL1þ cells and found that they were closer
than to other cells in the discovery, validation, and com-
bined cohorts (Figure 6C and D). Moreover, a substantial
fraction of CD74þ macrophages (52% in DB-CRCs and 32%
in nDB-CRCs) aggregated in high-density clusters composed
of �5 cells/10,000 mm234. These computationally identified
clusters of CD74þ macrophages also contained CD8þGzBþ

and CD8þKi67þ cells (Supplementary Figure 8). The exis-
tence of these clusters was confirmed through independent
histologic inspection (Supplementary Figure 9), which also
detected direct interactions between CD8þGzBþPD1þ or
CD8þKi67þPD1þ and CD68þCD74þPDL1þ cells. To confirm
these interactions at higher resolution, we performed mIF
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with 8 key markers defining CD74þCD68þ, GzBþCD8þ, and
Ki67þCD8þ cells (Supplementary Table 5). We confirmed
the presence of clusters of CD74þ macrophages in close
proximity to CD8þGzBþ and CD8þKi67þ T cells and detec-
ted their interaction via PD1-PDL1 contact (Figure 6E,
Supplementary Figure 10).

Taking advantage of the multiregional profiles, we
asked how the observed intratumor T-cell heterogeneity
(Figure 1C, Supplementary Figure 1D) affected the
distinctive infiltration pattern of DB-CRCs. First, we
observed that tumor regions rich in T cells were also rich
in macrophages (Figure 6F), indicating that intratumor
heterogeneity involves a more general pattern of coinfil-
tration. Next, we investigated how the 3 key populations of
DB-CRCs (CD8þGzBþ, CD8þKi67þ, and CD68þCD74þ cells)
were distributed across regions of the same tumor. We
observed that their relative proportions were highly vari-
able between high and low infiltrate regions and that no
clear pattern could be seen discriminating DB- and nDB-
CRCs (Figure 6G). Despite such a heterogeneous composi-
tion of the immune infiltrates, we observed consistently
higher proportion of CD74þ macrophages in DB-CRCs than
in nDB-CRCs independently of T-cell infiltration levels
(Figure 6H).

Our data consistently indicate that CD74þ macrophages
differ between DB- and nDB-CRCs across cohorts and re-
gions. We therefore propose that their interaction with
CD8þGzBþPD1þ and CD8þKi67þPD1þ cells through PDL1
is key to confer durable benefit from treatment.

Discussion
In this study, we integrated multiregional genomic,

transcriptomic, histopathologic, and immune-phenotypic
data to characterize the tumor-immune interactions deter-
mining response of CRC to immune checkpoint blockade.

After extensive unsupervised investigation of variability
in leukocyte subpopulations between hypermutated DB-
and nDB-CRCs using multiple approaches, we found CD74þ

macrophages were the only immune cell population that
consistently segregated with response in DB-CRCs. This is
remarkable, given the observed genetic and immune inter-
and intratumor heterogeneity and the diversified treatment
history and suggests that CD74þ macrophages could be
further developed as a robust predictor of response in a
broad range of patients. These macrophages express PDL1
and are in close proximity to PD1þ CD8 T cells, indicating
that the PD1/PDL1 interaction between these cells may
restrain CD8 T-cell function and may be the one that anti-
PD1 antibodies break to release cytotoxic antitumor activity.

The high cytotoxic CD8 infiltration in hypermutated
CRCs is likely enabled by the low activation of the Wnt
pathway, resulting in an immune hot environment. To evade
immune elimination, hypermutated DB-CRCs develop im-
mune escape mechanisms via genetic inactivation or tran-
scriptional repression of antigen-presenting genes.
Interestingly, unresponsive hypermutated CRCs do not
show such a pervasive disruption of the antigen

presentation machinery, despite comparably high levels of
CD8 infiltration. The molecular mechanisms by which these
tumors survive the attack of cytotoxic CD8 T cells need
further investigation, although a possible explanation could
reside in their significantly reduced proportion of CD74þ

macrophages.
Similarly, further investigations are required to explain

how tumors lacking B2M can respond to immunotherapy. In
B2M-null CRC mice, response to anti-PD1 agents relies on
CD4 T cells rather than CD8 T cells.36 Although we did not
observe any difference in CD4 T cells between DB- and nDB-
CRCs, this suggests that anti-PD1 agents may act through
several mechanisms, including antigen-independent T-cell
activation or reinduction of B2M expression.

Our study also highlights cancer-specific traits of
response to anti-PD1 immunotherapy. We show that in CRC,
high TMB is necessary but not sufficient to achieve durable
benefit and that above the critical threshold of the hyper-
mutated phenotype, even CRCs with very high TMB may not
respond to treatment. This is different from lung cancer and
melanoma, where response always positively correlates
with TMB.37,38 In CRC, a low TMB is a marker of resistance,
not because of a low neoantigenic load but because it is
associated with a higher activation of the Wnt pathway
leading to immune cold tumors.

Moreover, while the impairment of antigen presentation
in immune hot tumors is shared across cancer types,39 the
association of B2M loss with response and the overall low
PD1 and PDL1 expression are specific traits of CRC. This
suggests that universal predictors of response to immuno-
therapy may not exist and that the specific genetics of the
tumor as well as the features of the TME should be
considered. In the case of CRC, these may include clonal
immunogenic mutations and expanded T cells, low activa-
tion of the Wnt pathway, and high infiltration of CD8 T cells
coupled with CD74 macrophages.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/j.
gastro.2021.06.064.
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Supplementary Methods 

Patient cohorts, treatment and experimental design 
FFPE blocks were obtained from the resection of the primary tumour or local relapse 

of 16 patients (discovery cohort) and 13 patients (validation cohort) treated with 

immune checkpoint inhibitors in the setting of metastatic CRC until disease 

progression, unacceptable toxicity or completion of treatment (Supplementary Table 

1). In the discovery cohort, patients UH1-UH10 were treated with Pembrolizumab (200 

mg every three weeks) as part of the KEYNOTE 177 clinical trial (ClinicalTrials.gov, 

NCT02563002)1, while patients UH11-UH16 were treated with Nivolumab (240mg 

every two weeks). In the validation cohort, patients UH17-UH19 were part of the 

KEYNOTE 177 trial, UH26 received Pembrolizumab (2mg/kg every three weeks) and 

patients UH20-UH25 and UH29 were treated with Nivolumab (240 mg every two 

weeks). Patient UH27 received Ipilimumab (1mg/kg) in combination with Nivolumab 

(3mg/kg) every three weeks for four cycles followed by Nivolumab alone (240 mg every 

two weeks). Patient UH28 received Nivolumab (3mg/kg) for two cycles, then 

Ipilimumab (1mg/kg) in combination with Nivolumab every three weeks for three 

cycles. Patients treated with Nivolumab were enrolled in the UK wide Bristol Myers 

Squibb Individual Patient Supply Request Programme as per Article 5/1 of Article 

Directive 2001/83/EC. All patients were consented at the UCL Cancer Institute 

Pathology Biobank - REC reference 15/YH/0311.  

Response to therapy was assessed using the formal Response Evaluation 

Criteria in Solid Tumours (RECIST)2 version 1.1. Patients were considered to achieve 

durable benefit (DB) if the disease did not progress for at least 12 months after 

commencing immunotherapy; no durable benefit (nDB) if the disease progressed 

within 12 months. Twelve-month cut-off was considered clinically better than the 

progression-free survival from chemotherapy as first line treatment of metastatic stable 

(8.3 months3) or hypermutated (8.2 months1) CRC.  

Twenty-four sequential sections were cut from each FFPE tumour block of 

samples UH1-UH16 using a microtome. Sections were then used for CD3 staining 

(slides A, B, F, H and J); Imaging Mass Cytometry (IMC, slide C); multiplexed 

Immunofluorescence (mIF, slide D); Whole Exome Sequencing (WES, slides E1-5); 

RNA sequencing (RNA-seq, slides G1-5); T-Cell Receptor Beta sequencing (TCR-seq, 

Slides I1-5) and to detect PD1-PDL1 interaction in situ (slides K1-2). For samples 
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UH17-UH23 and UH25-UH27, 11 sequential sections were used for CD3 staining 

(slides A, E and G); Haematoxylin and Eosin (HE) staining (slide B); IMC (slide C); mIF 

(slide D) and RNAseq (slides F1-5). Since UH24, UH28 and UH29 were biopsies, 

RNAseq could not be performed and only four sequential sections were used for CD3 

and HE staining (slides A and B); IMC (slide C) and mIF (Slide D). Sections used for 

CD3 and HE staining, IMC, mIF and A-FRET were 4µm thick, while those used for 

DNA and RNA extraction were 10µm thick. Tumour content was assessed by a board-

certified surgical pathologist (M.R.J.).  

CD3 staining and quantification 
CD3 staining was performed upon slide dewaxing and heat-induced epitope 

retrieval (HIER) using Antigen Retrieval Reagent-Basic (R&D Systems). Tissues were 

blocked and incubated first with anti CD3 antibody (Dako, Supplementary Table 5) and 

subsequently with horseradish peroxidase conjugated anti rabbit antibody (Dako). 

They were then stained with 3,3' diaminobenzidine (DAB) substrate (Abcam) and 

haematoxylin. Slide A was reviewed by a certified pathologist (M.R-J) to identify two to 

four regions per slide with variable CD3+ infiltration (for a total of 90 regions, 

Supplementary Table 2) in proximity to the invasive margins of the tumour 

(Supplementary Figure 1B).  

Digital acquisition of CD3 stained slides was performed using Hamamatsu 

Nanozoomer (Hamamatsu Photonics) or Axioscan Z1 (Zeiss) at 20x resolution. The 

whole slide images were then loaded into QuPath4 v0.2.0-m4 to quantify CD3+ 

infiltration within each region. The “Estimate Stain Vector” function was run as pre-

processing step to increase the contrast between DAB and haematoxylin. The outlines 

of the regions delimited by the pathologist in slide A and projected in all other slides 

(Supplementary Figure 1C). The regions were then divided into 0.09 mm2 large tiles 

and CD3+ cells were quantified within each tile using the “positive cell detection” 

function. The median value of CD3+ cells per mm2 across all tiles was considered as 

representative of CD3+ infiltration for that region. For slides B and I, CD3+ cells were 

also quantified for the whole tumour region. 

Imaging mass Cytometry (IMC) 
Three panels of 42 antibodies in total were assembled to represent the main 

immune and stromal populations of the gut TME (IMC panels I, II and III, 
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Supplementary Table 5). Twenty-five of these antibodies were already metal-tagged 

(Fluidigm), while 17 were purchased in a carrier-free form, tested via 

immunohistochemistry and tagged using the Maxpar X8 metal conjugation kit 

(Fluidigm). To identify the optimal dilution for each antibody, concentrations ranging 

from 1/50 to 1/5,000 were tested in FFPE appendix sections. After staining and 

ablation, images were visualised using MCD Viewer (Fluidigm) and the concentration 

giving the best signal to background ratio was selected (Supplementary Table 5).  

IMC was performed in 38 regions of the discovery cohort using IMC panel I, in 

22 regions of the validation cohort using IMC panel II, and in additional 17 regions of 

selected samples from both cohorts with IMC panel III (Supplementary Table 2). In the 

discovery cohort, the two regions (one with low and one with high CD3 infiltration) with 

the highest tumour content were selected except for UH4 UH6, UH9 and UH12. For 

UH6, UH9 and UH12, all four regions were analysed, for UH4, the two high and two 

low CD3 regions were analysed together, to be consistent with WES and RNA-seq 

analyses (see below). In the validation cohort, the two regions with the highest 

difference in CD3 infiltration were selected except for the three biopsies (UH24, UH28 

and UH29) and UH18, where only one region was analysed. Slides were incubated for 

one hour at 60°C, dewaxed, rehydrated and subjected to HIER using a pressure 

cooker and Antigen Retrieval Reagent-Basic (R&D Systems). Tissues were blocked in 

a solution containing 10% BSA (Sigma), 0,1% Tween (Sigma), 1:50 Kiovig (Shire 

Pharmaceuticals) Superblock Blocking Buffer (Thermo Fisher) for two hours at room 

temperature. The primary antibody mix was prepared in blocking solution at the 

selected concentration for each antibody and incubated overnight at 4°C. Slides were 

then washed twice in PBS and PBS-0.1% Tween and incubated with 2 isotopes (191Ir 

and 193Ir) of DNA intercalator Cell-ID™ Intercalator-Ir (Fluidigm) 1.25mM diluted in PBS 

for 30 minutes at room temperature. Slides were then washed once in PBS and once 

in MilliQ water and air-dried. Stained slides were loaded in the Hyperion Imaging 

System (Fluidigm) imaging module to obtain light-contrast high resolution images of 

approximately 4 mm2. For each region, a 1 mm2 area with high tumour content and 

representative of the median CD3+ content of the region was selected for laser ablation 

(Supplementary Figure 3A) at 1 µm/pixel resolution and 200Hz frequency. 

IMC pixel analysis 
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IMC data analysis was performed with SIMPLI5 as summarised in Figure 3A. 

For each of the 77 ablated regions, TIFF images from each antibody and two DNA 

intercalators were obtained from the raw IMC .mcd and .txt files using imctools6. Pixel 

intensities for each channel were normalised to the 99th percentile of the intensity 

distribution and the obtained values scaled between 0 and 1. Background pixels were 

removed using global thresholding with CellProfiler7 3.1.8. After visual inspection, 

channels for PD1, PDL1, GzB, CD45RA, TIM3, Vista, TCF7, CD134, CD206 and 

FOLR2 were further filtered using probability masks produced with Ilastick8 1.3.0. For 

this purpose, random forest classifiers were trained using closely related markers (CD3 

for PD1; Vimentin for PDL1; CD8 and CD15 for GZB; CD45 and CD45RO for CD45RA; 

CD68 for FOLR2 and CD206). The resulting background probability masks were 

converted into binary images with CellProfiler7 3.1.8 and applied to the original 

normalised images to remove the background. Custom R scripts were used to count 

the positive pixels in all processed images for each channel. The sum of all positive 

pixels for a channel constituted the positive area for that channel. Given B2M low 

expression, an ad-hoc threshold was applied on the normalized intensity and all pixels 

higher than 0.5 were considered as positive. For regions UH19_87, UH27_96, and 

UH27_97, the CD3 masking threshold was adjusted after manual inspection to 0.175, 

0.15 and 0.15 respectively.  

Tumour masks were generated with CellProfiler7 3.1.8 summing up the Pan-

keratin and E-cadherin channels for all regions except UH18_103 and UH22_112, 

where only E-cadherin was used. The resulting images were smoothened with a 

Gaussian filter and filling up all <30 pixel negative areas. The stroma masks were 

obtained using the Vimentin, SMA and DNA channels in the discovery cohort and 

Vimentin, CD68, CD11c, CD3, CD27 and CD45 channels in the validation cohort. All 

<20 pixel negative areas were filled up. The tissue mask for each region corresponded 

to the sum of tumour and stroma masks. Pixel analysis was performed by normalising 

the positive areas for each marker or combination of markers over the total tissue area 

or the area of the five main immune populations (T cells, B cells, macrophages, 

dendritic cells and neutrophils) for the discovery cohort and for T cell and macrophages 

only for the validation cohort (Supplementary Table 6). 

IMC single cell analysis 
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Single cell analysis was based on cell segmentation, assignment of cell identity 

and phenotype clustering (Figure 3A). 

Cell segmentation was performed with CellProfiler7 3.1.8 identifying nucleus 

and membrane of each cell in each region. First, the two DNA channels were multiplied 

and used for nucleus segmentation using local Otsu thresholding. Second, all channels 

for the membrane markers (CD3, CD20, CD27, CD16, CD11c, CD15, SMA, CD34, 

Vimentin and Pan-keratin for UH1-UH16 and CD45, Pan-keratin and E-cadherin for 

UH17-UH29) were used to obtain membrane images. Cell masks were then generated 

by radially expanding each nucleus up to 10 pixels on the membrane mask and only 

cells overlapping with the tissue mask were retained. Finally, the mean intensity of all 

markers was measured in each cell in each region.  

Cell identities were assigned according to the maximum overlap of the cell area 

with marker-specific thresholds identified by the histologist (J.S.) after image manual 

inspection. These thresholds were: ≥25% of CD3+ mask for T cells; ≥10% of CD11c+ 

CD68- mask for dendritic cells; >10% of the sum of CD68+ CD11c+ and CD68+ CD11c- 

masks for macrophages; ≥5% of IgA+, IgM+, CD20+, and CD27+ mask for B cells; and 

≥25% of CD15+ mask for neutrophils. Cells that did not overlap with any of these 

markers were defined as tumour cells if they overlapped ≥80% with the tumour mask 

or were left unassigned otherwise. Within CD3+ cells, PD1+ cells were identified as 

those showing ≥1% overlap with the PD1 mask. PDL1+ cells were identified as those 

overlapping ≥10% of the PDL1 mask. 

For the discovery cohort, single cell phenotype clustering was performed for T 

cells, B cells, macrophages, dendritic cells, neutrophils, PD1+ and PDL1+ cells 

separately using Seurat9 2.4 with custom R scripts for IMC data analysis. Independent 

clustering was used to compare the relative abundance of cell subpopulations between 

hypermutated and non-hypermutated CRCs or DB- and nDB-CRCs using 

Pembrolizumab and Nivolumab samples alone or combined. The total number of cells 

used in each clustering is shown in Supplementary Table 7. For each main population, 

the clustering was based on the mean expression of a set of markers typical of that 

population (Supplementary Table 5). The mean marker intensities across all cells were 

integrated using multiple canonical correlation analysis (CCA) and aligning the CCA 

subspaces to reduce the inter-sample variability. The resulting CCA vectors were then 

used as input for unsupervised clustering with ten values of resolution, ranging from 

0.1 to 1.0. The ten resulting sets of clusters were manually inspected and the one with 
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the highest number of biologically meaningful clusters was chosen. For the validation 

cohort, T cells, macrophages, PD1+ and PDL1+ cells were identified as described 

above. CD74+ macrophages and CD8+GzB+ CD8+Ki67+ T cells were identified using 

specific expression thresholds on the mean cell intensity (0.1 for CD74; 0.1 for CD8; 

0.05 for GzB; 0.15 for Ki67). CD8+ T cells positive for both the Ki67 and the GzB 

threshold were identified as CD8+GzB+ or CD8+Ki67+ T cells according the marker with 

the highest intensity. T cells in the validation cohort underwent single cell clustering, 

using all 17 T cell markers (Supplementary Table 5). The distribution of cells within 

each cluster over the total cells was compared between DB- and nDB-CRCs or 

hypermutated and non-hypermutated CRCs using two-sided Wilcoxon rank sum test, 

correcting for FDR. All comparisons are shown in Supplementary Table 8. 

For the 17 regions stained with IMC panel III, T cells, macrophages, dendritic 

cells and tumour cells were identified as described above (Supplementary Table 7). 

CD74+ macrophages were identified using a threshold of 0.35 on the mean cell 

intensity. Single-cell clustering of the identified CD74+ macrophages was performed 

using using Seurat9 2.4 with 16 macrophage markers (Supplementary Table 5). 

IMC neighbour and cluster density analysis 
The pixel coordinates of the centroid of each cell were extracted from the cell 

masks with CellProfiler7 3.1.8 and used to measure the Euclidean distances between 

each pair of cells in each region. High-density clusters of CD68+CD74+ within each 

region were identified using DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise10) as implemented in the fpc R package version 2.2.5. Starting 

form cell pixel coordinates, highly dense clusters were defined as portions of the 

ablated regions with ≥5 CD68+CD74+per 10,000μm2, corresponding to a minimum 

number of five points (MinPts) within a radius (eps) of 56.42μm. 

Multiplexed Immunofluorescence (mIF) 
mIF was performed on slide D of 24 DB- and nDB samples (Supplementary 

Table 2). An automated Opal-based mIF staining protocol was developed using a 

Ventana Discovery Ultra automated staining platform (Roche) with eight markers 

specific for CD8+GzB+PD1+, CD8+Ki67+PD1+ and CD68+CD74+PDL1+ cells, DAPI and 

Opal fluorophores (Supplementary Table 5). Antibody dilution, incubation time and 

effect of denaturation steps as well as Opal dilution were assessed for each marker 
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following manufacturer’s instructions. The optimal antibody-Opal pairing was achieved 

considering the expected expression and cellular localisation of each marker and the 

fluorophore brightness to minimize fluorescence spillage. The final staining order was 

CD74, TCF7, PDL1, Ki67, PD1, GzB, CD68 and CD8. 

Slides were baked for 1 hr at 60°C, loaded onto the autostainer and subjected 

to a fully automated staining protocol involving deparaffinisation (EZ-Prep solution, 

Roche), HIER (DISC. CC1 solution, Roche) and seven sequential rounds of 1 hr 

incubation with the primary antibody, 12 minutes incubation with the HRP-conjugated 

secondary antibody (DISC. Omnimap anti-Ms HRP RUO or DISC. Omnimap anti-Rb 

HRP RUO, Roche) and 16 minute incubation with the Opal reactive fluorophore (Akoya 

Biosciences). For the last round of staining, tissues were incubated with Opal TSA-

DIG reagent (Akoya Biosciences) for 12 minutes and with Opal 780 reactive 

fluorophore for 1 hour (Akoya Biosciences). Before each round of staining, a 

denaturation step (100°C for 8 minutes) was introduced to remove the primary and 

secondary antibodies from the previous cycle without disrupting the fluorescent signal. 

Once the staining was completed, the slides were counterstained with 4’,6-diamidino-

2-phenylindole (DAPI, Akoya Biosciences) and coverslipped using ProLong Gold

antifade mounting media (Thermo Fisher Scientific). Fluorescently labelled slides were

scanned using a Vectra Polaris automated quantitative pathology imaging system

(Akoya Biosciences). Spectral libraries were constructed with the inForm 2.4 image

analysis software (Akoya Biosciences) following the manufacturer’s instructions.

Whole-slide scans were obtained at 20x and 40x magnification using appropriate

exposure times, and several fields of views were selected per slide and loaded into

inForm (Akoya Biosciences) for spectral unmixing and autofluorescence isolation

using the spectral libraries.

DNA sequencing 
All regions were macro-dissected with a needle under a stereo microscope 

using slide A as a guide (Supplementary Figure 1G). Genomic DNA was extracted 

from 32 tumour regions and 16 matched normal tissue of slides E1-5 of samples UH1-

UH16 (Supplementary Table 2) and the two regions corresponding to those used for 

IMC were selected. For UH4, the two high and low CD3+ regions were merged to obtain 

enough DNA for library preparation. DNA was extracted using GeneRead DNA FFPE 

kit (Qiagen) and DNA libraries were prepared using 50-200ng of genomic DNA with 
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the KAPA HyperPrep kit (Roche). Protein-coding genes were captured using 

SureSelectXT Human All Exon V5 probes (Agilent) and sequenced on Illumina HiSeq 

4000 using 100bp paired end read protocol, according to manufacturer’s instructions. 

Approximately 100 million reads were generated per sample.  

Raw reads were aligned to GRCh38 reference human genome using BWA 

MEM11 v0.7.15 after pre-alignment quality control. Regions harbouring small insertions 

and deletions (indels) were re-aligned locally using GATK12 v3.6. The resulting BAM 

files were sorted, merged, marked for duplicates and subjected to post-alignment 

quality control using Picard v2.10.1. The final mean depth of coverage was >70x for 

tumour and >30x for normal samples, considering only targeted exons as defined in 

the SureSelectXT BED file (50.5Mbp in total).  

Somatic SNVs and indels were called using Strelka13 v2.9.0 on the targeted 

exome extended 100bp in both directions. Mutations were retained if they had an 

Empirical Variant Scoring (EVS) >7 for SNVs and >6 for indels in at least one region 

of the same patient. Mean sensitivity in variant calling was >91% in all patients expect 

UH16 (33%) as assessed using 241 somatic mutations from FM114 or the patient 

pathological reports for comparison. Nineteen mutations in FM1 or pathological reports 

but missed by Strelka were added to the pool of somatic alterations after manual 

check. 

For samples UH1-UH3, UH7-UH10 and UH12, copy number analysis was done 

using ASCAT15 v2.5.2. To process WES data, AlleleCount16 v4.0.0 was run on 

germline SNPs from 1000 Genomes Phase 317 after correction for GC bias. For each 

SNP, a custom script was used to calculate the LogR and B-Allele Frequency (BAF). 

SNPs with <6 reads were filtered out in all samples except UH1 and UH10 where 5 or 

7 reads were used. Because of degraded starting DNA of samples UH4-UH6, UH11 

and UH13-UH16, the DepthOfCoverage option of GATK12 v3.6 was used to calculate 

SNP LogR and copy numbers for genomic segments were obtained using 

Copynumber R package. The gene copy number was derived from that of the genomic 

segment covering at least 25% of the gene length. 

Prediction of damaged genes and immunogenic mutations 
ANNOVAR18 (release 16/04/2018) was used to annotate exonic or splicing 

SNVs and indels. All truncating mutations (stop-gains, stop-losses and frameshift 

indels) were considered as damaging. Non-truncating mutations (non-frameshift indels 
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and missense SNVs) were considered damaging if predicted by at least five function-

based methods or two conservation-based methods19. Mutations within two bps of a 

splicing junction were considered as damaging if predicted by at least one ensemble 

algorithm in dbNSFP. Gain of function mutations were predicted using 

OncodriveClust20 for the discovery patients together, with default parameters and with 

false discovery rate (FDR) <10%. 

A gene was considered amplified if its copy number was >1.4 times the sample 

ploidy or >2 if the ploidy was not available in both regions of the same patient, or if its 

CPM was >1.5 than in the other region of the same patient. A gene was considered as 

deleted if it had copy number = 0, CPM = 0 and had no mutations. A gene was 

considered deleted in heterozygosity if it had copy number = 1.  

Amplified genes, deleted genes, heterozygously deleted genes with a 

damaging mutation in the other allele and copy number neutral genes with at least one 

damaging mutation were considered as damaged genes. 

To predict putative immunogenic mutations from all somatic SNVs and indels, 

HLA typing of each patient was predicted from the normal BAM files using Polysolver21 

v4 (Supplementary Table 9). NeoPredPipe22 was then used to predict neoantigens in 

expressed genes (CPM >0), with a strong HLA binding (rank <0.5%) and cross-

referenced with known epitopes (UniProt reference proteome). SNVs or indels 

generating at least one neoantigen were considered as potentially immunogenic. The 

neoantigenic index was calculated for each region as: 

!"#$%&'("%')	'%+", = 	%./0"1	#2	'//.%#("%')	/.&$&'#%3%./0"1	#2	%#%3'4"%&	/.&$&'#%3

PyClone23 v.0.13.1 was run to assess the clonality of predicted immunogenic 

mutations, defined as the proportion of tumour cells harbouring the mutation. PyClone 

was run independently for each region using tumour purity from the pathological 

assessment of slide A (Supplementary Table 2) and the gene copy number from 

ASCAT. 

RNA sequencing 
Total RNA was extracted from 58 macro-dissected regions of slides G1-5 in 

samples UH1-UH16 and 30 regions of slides F1-5 in samples UH17-UH23 and UH25-
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UH27 (Supplementary Table 2) using the High Pure FFPE RNA isolation kit (Roche). 

For UH4, the two high and low CD3+ regions were merged to obtain enough RNA for 

library preparation. RNA libraries were prepared starting from 5-50 ng of RNA using 

the QuantSeq 3’mRNA-seq Library Prep kit FWD for Illumina (Lexogen) and 

sequenced on Illumina HiSeq 4000 using 75 or 100 bp single end reads, according to 

manufacturer’s instructions. Approximately 5-40 million reads were generated per 

sample.  

Raw reads were processed using the Lexogen QuantSeq 3’ mRNA-seq pipeline 

with default parameters24. Reads were first trimmed to remove Illumina adapters and 

polyA tails using bbduk from BBMap25 v36.20. Trimmed reads were then aligned to 

GRCh38 reference human genome using STAR26 v2.5.2a. Between 50-98% of the 

initial reads were retained after alignment and quality check. Gene expression was 

quantified using HTSeq27 v0.6.1p1 and the GDC h38 GENCODE v22 GTF annotation 

file. To account for differences in sequencing depth across regions raw counts were 

normalised to the counts-per-million (CPM) gene expression unit calculated as: 

567!" =
85!"

∑ 85!##
× 10$

where 85!" is the raw read count of gene (=) in region ('). Since for samples UH1-UH16 

RNA-seq was performed in six batches, potential batch effect was corrected using 

removeBatchEffect function from the Limma package28 v3.36.5 on the log2-

transformed CPM matrix with default parameters. 

Differential gene expression between tumour groups was assessed using 

DESeq229 v1.20.0 from the raw read counts with default parameters with alpha set to 

5%. To account for the experimental and clinical variability across samples 

(Supplementary Table 1), uncorrelated batch and clinical co-variates were included in 

the analysis (discovery cohort: batch effect, prior lines of treatment and Lynch 

syndrome in the comparison of DB- and nDB-CRCs of the; batch effect in the 

comparison of hypermutated and non-hypermutated CRCs. Validation cohort: prior 

lines of treatment, Lynch syndrome, treatment type and TNM staging).  

A gene was considered as differentially expressed if DESEq2 Wald test FDR 

was <5% and had a fold change |>2|. Differentially expressed genes were used for 

pathway enrichment analysis in the three comparisons using MetaCore v20.3 build 

70200 (Clarivate Analytics). Pathway enrichment was assessed through over-
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representation analysis based on a hypergeometric test. A pathway was considered 

enriched if the FDR was <10%. 

TCR sequencing 
TCR-seq was performed in 28 macro-dissected regions in slides I1-5 of the 

discovery cohort, after excluding UH1, UH4 and UH5 because DNA was not sufficient 

(Supplementary Table 2). For UH12 all four regions were sequenced while for UH16 

the two high and low CD3+ regions were merged. For all remaining samples, the two 

regions corresponding to those used for IMC and WES were used. 

DNA was extracted from macro-dissected regions (Supplementary Figure 1G) 

using GeneRead DNA FFPE kit (Qiagen) and submitted to Adaptive Biotechnologies 

(Seattle, USA) for non-lymphoid tissue (survey level) TCR-seq using a two-step, 

amplification bias-controlled multiplex PCR approach30. In the first step, V and J gene 

segments encoding the TCR beta CDR3 locus were amplified using reference gene 

primers to quantify total nucleated cells and measure the fraction of T cells in each 

sample. In the second step, proprietary barcodes and Illumina adapters were added. 

Finally, CDR3 and reference gene libraries were sequenced according to the 

manufacturer’s instructions. 

Raw reads were de-multiplexed and processed to remove adapter and primer 

sequences, identify and remove primer dimer, germline and other contaminant 

sequences. Resulting reads were clustered using both the relative frequency ratio 

between similar clones and a modified nearest-neighbour algorithm, to merge closely 

related sequences to correct for technical errors introduced through PCR and 

sequencing. The resulting reads were sufficient for annotating the V(N)D(N)J genes of 

each unique CDR3 and the translation of the encoded CDR3 amino acid sequence. V, 

D and J gene definitions were based on annotation in accordance with the IMGT 

database (www.imgt.org). The set of observed biological TCR Beta CDR3 sequences 

were normalised to correct for residual multiplex PCR amplification bias and quantified 

against a set of synthetic TCR Beta CDR3 sequence analogues30. Data was analysed 

using the immunoSEQ Analyzer toolset. 

Detection of PD1-PDL1 interaction in situ 
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A total of 58 regions in slides K1-2 of the discovery cohort (Supplementary Table 

2) were submitted to FASTBASE Solutions (Derio, Spain) to measure the interaction

between PD1 and PDL1 in situ via amplified Förster Resonance Energy Transfer (A-

FRET)31. Slides K1 were incubated overnight at 4 ºC with anti PD1 primary antibody

(Supplementary Table 5) for donor only analyses. Slides K2 were stained with both

anti PD1 and anti PDL1 primary antibodies for donor and acceptor analyses. Slides K1

were subsequently incubated with anti-mouse Fab-ATTO488 and slides K2 with both

anti-mouse Fab-ATTO488 and anti-rabbit Fab-HRP. Alexa594 conjugated tyramide

was added to slides K1 and K2 at 1/100 dilution in presence of 0,15% H2O2 and

incubated at room temperature in the dark for 20 minutes. After washing in PBS and

PBST twice, slides were mounted using Prolong Diamond Antifade Mount (Thermo

Fisher), sealed and incubated at room temperature overnight before being transferred

to a 4 ºC refrigerator for storage. FASTBASE Solutions SL frequency domain FLIM

automated software programme was used to measure the excited-state lifetime of

donor fluorophore (ATTO488) in both K1 and K2 slides. FRET efficiency E.was

calculated as:

? = [1 − (&CD/&C)	,100] 

where tDA is donor lifetime in Slide K1 and tD is donor lifetime in Slide K2. tDA and tD 

values were collected for 793 optical fields of view (FOVs, with a median of 12 FOVs 

per region) in total to cover the whole surface of the regions analysed. Data were then 

collected in .csv files and imported into a macro spreadsheet programmed to calculate 

the A-FRET efficiency in each FOV. The results were finally expressed as the median 

FOV values per region. 
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Supplementary Figure 1. Experimental workflow, region selection and CD3 

quantification 
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A. Experimental workflow for the analysis of the validation cohort. Eleven sequential

sections from FFPE blocks of UH17-UH23 and UH25-UH27 were used for

multiregional CD3 IHC (slides A, E and G), IMC with panel II (Table S5, slide C), mIF

(slide D) and RNA-seq (slides F1-5). For the three biopsies (UH24, UH28, UH29) only

IHC, IMC and mIF were performed.

B. Selected regions on slide A. Starting from slide A, CD3 staining was used by a

board-certified pathologist (M.J.S.) to select multiple regions per sample with variable

CD3 infiltrates and at the invasive margins of the tumour. For UH12, UH13, UH15,

UH16 two different blocks were used. For biopsies (UH24, UH28 and UH29) shown

are the IMC-ablated regions. Scale bar = 2mm.

C. Schematic of CD3 quantification. All slides immune-stained with anti-CD3 antibody

were imported into QuPath4. Regions selected by the pathologist in slide A were

projected into all other immune-stained slides and divided into 0.09 mm2 tiles. CD3+

cells were quantified within each tile and the CD3 content of a region was defined as

the median number of CD3+ cells per mm2 across all tiles.

D. Quantification of CD3+ cells/mm2 from IHC staining in slides E and G in 30 regions

of patients from the validation cohort using Qupath4. Values were normalised within

each patient. Grey boxes indicate missing values.

E. Correlation between the T cell signature normalised enrichment scores (NES)

from32 and TMB in 56 hypermutated CRCs from TCGA. Pearson correlation coefficient

and associated p-value are shown. ssGSEA, single sample gene set enrichment

analysis.

F. Comparison of clonality of immunogenic mutations between four DB and two nDB-

CRCs with purity >30% from33. For two samples (Subjects 33 and 36) the reference

counts were randomly sampled from the rest of samples and the variant counts were

subsequently calculated. Given the lack of copy number data, PyClone23 was ran with

minor_cn=0, major_cn=2, prior=total_copy_number. Due to lack of expression data,

immunogenic mutations were considered as expressed if contained in 11,056 genes

expressed in >30% of TCGA CRCs.

G. Macro-dissection for DNA and RNA extraction. Regions selected in slide A were

used as a reference for the macro-dissection of all slides used for DNA and RNA

extraction. Each slide was aligned to slide A using a stereo microscope and regions

were manually dissected with a needle. The collected tissue was subsequently used

for DNA or RNA extraction
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Supplementary Figure 2. Genetic and TME features in DB and nDB-CRCs 

A. Predicted damaging alterations (truncating and missense damaging alterations,

double hits, gene amplifications leading to increased expression, gene homozygous

deletions) and immunogenic mutations of representative genes from a manually

curated list of 647 genes including common CRC drivers34; genes whose alterations

are immunogenic35, 36; genes that modify the TME37-41, modulate the response to

immune checkpoint inhibitors38-40, 42-45, or encode members of WNT41, 46 and IFN-

gamma pathways (MetaCore Clarivate Analytics), components of the antigen

presentation machinery via the major histocompatibility complex (MHC) class I47, 48 or

class II (MetaCore, Clarivate Analytics), and immune checkpoints49, 50.

B. Clonality of B2M truncating mutation (T91fs) in all sequenced regions from two DB

and one nDB-CRCs. Clonality was measured using Pyclone23 after correction for purity

and copy number alterations (Methods).

C. Comparison of tumour and stroma B2M+ areas between DB- and nDB-CRCs in all

analysed samples. Distributions were compared using two-sided Wilcoxon rank sum

test and the number of patients in each group is reported in brackets.
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TME, tumour microenvironment; ICB, Immune Checkpoint Blockade; IFN, Interferon; 

MHC, Major Histocompatibility Complex; IC, Immune Checkpoints. 
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Supplementary Figure 3. Proportion of tumour and stroma from IMC across samples 

A. IMC experimental workflow. Representative 1mm2 areas in slide B were projected

into slide C using the macroscopic tissue structure as a reference. Slide D stained with

the IMC antibody panel was loaded in the Hyperion Imaging System (Fluidigm) for

regional ablation.
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B. Proportions of tumour areas and cells in ablated regions of the discovery cohort.

Areas not covered by stroma or tumour are depicted in grey.

Comparison of the proportion of tumour (C) and stroma cells (D) over total cells

between DB and nDB-CRCs or hypermutated and non-hypermutated CRCs in the

discovery cohort.

E. Proportions of tumour areas and cells in ablated regions of the validation cohort.

Areas not covered by stroma or tumour are depicted in grey.

F. Comparison of the proportion of tumour and stroma cells over total cells between

DB and nDB-CRCs in the validation cohort.

All distributions were compared using two-sided Wilcoxon rank sum test and the

number of patients in each group is reported in brackets.

G. IMC-derived images of tumour-associated markers (E-cadherin and Pan-Keratin),

Ki67 and DNA staining in two representative hypermutated and non-hypermutated

CRCs. Scale bar = 100µm.
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Supplementary Figure 4. Protein expression heatmaps from single cell clustering 
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Subpopulations (clusters) of T cells, dendritic cells, macrophages, B cells, neutrophils, 

PD1+ cells, and PDL1+ cells were identified based on the expression of phenotypic 

markers using Seurat9 in the discovery cohort. For each subpopulation, the mean value 

of 30 markers of IMC Panel I (Table S5) across the cells in that cluster is reported. For 

each cluster, the number of cells is reported in brackets. Single cell clustering was 

performed separately for DB vs nDB-CRCs (A) and hypermutated vs non-

hypermutated CRCs (B). 
C. T cell subpopulations in the validation cohort. In this case, T cells were clustered

using 17 markers and the mean value of 27 markers of IMC Panel II (Table S5) across

the cells in that cluster is reported.

For each cell population the colour scale was normalized separately for each marker

across all analysed clusters.
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Supplementary Figure 5. CD74+ macrophage identification and phenotyping 

A. CD74+ macrophages in the discovery cohort identified by applying 0.1 threshold on

CD74 expression. The mean intensities of IMC markers in CD74+ and CD74-

macrophages are reported. Colour gradient was normalised across all markers and

cells.

B. Overlap between CD74+ macrophages identified with 0.1 CD74 expression and

cluster 3 in the discovery cohort.

C. Comparison of CD74+ macrophages between DB- and nDB-CRCs in the discovery

cohort. CD74+ macrophages were identified by applying a threshold of 0.1 CD74

expression to all macrophages.

D. Overlap between CD74+ macrophages expressing M1 and M2-associated markers.

Used thresholds after histological inspection of IMC images were: 0.2 for CD40; 0.1

for CD16; 0.15 for CD163 and 0.1 for CD206.

All distributions were compared using two-sided Wilcoxon rank sum test and the

number of patients in each group is reported in brackets
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Supplementary Figure 6. Comparison of PD1 and PDL1 gene and protein expression 

Comparison of normalised PD1+ and PDL1+ areas between DB and nDB-CRCs from 

the discovery (A) and validation (B) cohorts.  
C. Comparison of normalised PD1+ and PDL1+ positive areas in all samples analysed.

Comparison of PD1 and PDL1 Counts Per Million (CPMs) expression levels in the

discovery (D) and validation (E) cohorts. For the discovery samples batch correction

was applied (Methods).

F. PD1 and PDL1 gene expression in all regions from all samples analysed. CPMs

were obtained from RNAseq raw counts and corrected for batch effects.
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G. Comparison of PD1 and PDL1 gene expression in colon adenocarcinoma (COAD),

lung adenocarcinoma (LUAD), and skin cutaneous melanoma (SKCM) from TCGA.

Transcripts Per Million (TPM) were computed from raw read counts.

H. Percentage of regions with median A-FRET intensity higher than zero in DB and

nDB-CRCs and hypermutated and non-hypermutated CRCs. Proportions were

compared using Fisher’s exact test.

All distributions were compared using two-sided Wilcoxon rank sum test and the

number of patients in each group is reported in brackets.
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Supplementary Figure 7. Proliferating and cytotoxic CD8 T cell identification 

A. CD8+GzB+ and CD8+Ki67+ cells in the discovery cohort identified by applying a

threshold of 0.05 GzB and 0.15 Ki67 expression to CD8 T cells, respectively. The mean

intensities of IMC markers in CD8+GzB+ or CD8+Ki67+ and CD8+GzB- or CD8+Ki67- T

cells are reported. Colour scale was normalised across all markers and cells.

Overlap between CD8+GzB+ cells and cluster 1 (B) or CD8+Ki67+ cells and cluster 2

(C) cells in the discovery cohort. Positive cells were identified using and expression

threshold as described in (A).
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Supplementary Figure 8. High-density CD74+ macrophage clusters 

174 



27 
175 



28 

High-density cluster maps of CD68+CD74+ cells in 52 IMC regions from hypermutated 

CRCs of the discovery (A) and validation (B) cohorts. Clusters were identified from cell 

pixel coordinates as portions of the ablated region with ≥5 CD68+/CD74+ cells per 

10,000!m2 (Methods). CD8+/GzB+ and CD8+/Ki67+ cells were subsequently mapped. 

The number of CD68+/CD74+ cells and the number of high-density clusters are 

reported in brackets for each region. 

176 



29 

Supplementary Figure 9. Examples of interactions between CD74+ macrophages 

and cytotoxic or proliferating CD8 T cells by IMC 
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High-density cluster maps of CD68+/CD74+ cells in representative IMC regions from 

the discovery (A-D) and validation (E,F) cohorts. Clusters identified computationally 

(left panels) as described in Supplementary Figure 8 and in Methods. Red and green 

squares indicate areas of interest that were identified independently via histological 

inspection (middle panels). In these area CD68+/CD74+/PDL1+ cells interact with 

CD8+/Ki67+/PD1+ cells (green) and CD8+/GzB+/PD1+ cells (red). These areas are 

further detailed (right panels) to show the cellular interactions between 

CD68+/CD74+/PDL1+ cells and CD8+/Ki67+/PD1+ cells (green circles) and 

CD8+/GzB+/PD1+ cells (red circles). Images were compiled overlaying single-marker 

images obtained applying a median filter. For each region, number of cells are reported 

in brackets. Scale bar = 50µm.  
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Supplementary Figure 10. Examples of interactions between CD74+ macrophages 

and cytotoxic or proliferating CD8 T cells by mIF 

High resolution (40x) images of cellular interactions between CD68+CD74+PDL1+ cells 

and CD8+PD1+GzB+ and CD8+PD1+Ki67+GzB+ cells within high-density clusters of 

CD68+CD74+ cells in representative DB- and nDB-CRCs from the discovery (A,B) and 

validation (C,D) cohorts. Scale bar = 10 µm. 
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Chapter 5. The Network of Cancer Genes 

5.1 Contributions 

In this study100, I collected and analysed the data on miRNA-target 

interactions, the evolutionary origins and orthologs of all human genes. Joel 

Nulsen, Lisa Dressler, Aikaterini Tourna, Francesca D. Ciccarelli, and I wrote the 

manuscript with contributions from Santhilata Kuppili Venkata and Dimitra 

Repana, and all authors reviewed and approved its final version. 

Francesca D. Ciccarelli acquired the funding, conceived and supervised 

the study. Santhilata Kuppili Venkata collected and analysed gene duplicability. 

Lisa Dressler processed and analysed protein-protein interactions, protein 

complexes, and gene essentiality. Joel Nulsen processed and analysed RNA and 

protein expression and protein function. Dimitra Repana, Aikaterini Tourna, Anna 

Yakovleva, and Tommaso Palmieri curated the literature. Santhilata Kuppili 

Venkata and Joel Nulsen updated the database and website. 

5.2 The Network of Cancer Genes (NCG): a comprehensive 

catalogue of known and candidate cancer genes from 

cancer sequencing screens 
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Abstract

The Network of Cancer Genes (NCG) is a manually curated repository of 2372 genes whose somatic modifications
have known or predicted cancer driver roles. These genes were collected from 275 publications, including two
sources of known cancer genes and 273 cancer sequencing screens of more than 100 cancer types from 34,905
cancer donors and multiple primary sites. This represents a more than 1.5-fold content increase compared to the
previous version. NCG also annotates properties of cancer genes, such as duplicability, evolutionary origin, RNA and
protein expression, miRNA and protein interactions, and protein function and essentiality. NCG is accessible at
http://ncg.kcl.ac.uk/.

Keywords: Cancer genomics screens, Cancer genes, Cancer heterogeneity, Systems-level properties

Background
One of the main goals of cancer genomics is to find the
genes that, upon acquiring somatic alterations, play a
role in driving cancer (cancer genes). To this end, in the
last 10 years, hundreds of cancer sequencing screens
have generated mutational data from thousands of
cancer samples. These include large sequencing efforts
led by international consortia such as the International
Cancer Genome Consortium (ICGC) [1] and The
Cancer Genome Atlas (TCGA) [2]. Cancer genomes
usually acquire thousands of somatic alterations and
several methods have been developed to identify cancer
genes from the pool of all altered genes [3, 4]. These
methods have been applied to specific datasets from in-
dividual cancer types and to pooled datasets from several
cancer types. This is the case for the Pan-Cancer Atlas

project [5] and for the recent analysis of the whole set of
TCGA samples [6], which accompanied the conclusion
of the TCGA sequencing phase [7]. As more and more
studies contribute to our knowledge of cancer genes, it
becomes increasingly challenging for the research com-
munity to maintain an up-to-date overview of cancer
genes and of the cancer types to which they contribute.
The Network of Cancer Genes (NCG) is a project

launched in 2010 with the aim to gather a comprehen-
sive and curated collection of cancer genes from cancer
sequencing screens and to annotate their systems-level
properties [8–11]. These define distinctive properties of
cancer genes compared to other human genes [12] and
include gene duplicability, evolutionary origin, RNA and
protein expression, miRNA and protein interactions, and
protein function and essentiality. NCG is based on the
manual curation of experts who review studies describ-
ing cancer sequencing screens, extract the genes that
were annotated as cancer genes in the original publica-
tions, and collect and analyze the supporting evidence.
Various other databases have been developed to

analyze cancer data. Some of them focus on cancer alter-
ations rather than cancer genes (COSMIC [13], DoCM
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[14], DriverDB [15], the Cancer Genome Interpreter
[16], OncoKB [17], and cBIOPortal [18] among others).
Other databases collect only cancer genes with a strong
indication of involvement in cancer (the Cancer Gene
Census, CGC [19]) and annotate specifically oncogenes
or tumor suppressor genes (ONGene [20], TSGene [21])
or cancer genes in specific cancer types (CoReCG [22]).
NCG differs from all the above resources because it does
not focus on mutations, on particular groups of genes or
cancer types. It instead compiles a comprehensive re-
pository of mutated genes that have been proven or pre-
dicted to be the drivers of cancer. NCG is widely used
by the community. Recent examples of its use include
studies identifying and validating cancer genes [23–25]
and miRNA cancer biomarkers [26]. NCG has also been
used to investigate the effect of long noncoding RNAs
on cancer genes [27] and to find cancer-related tran-
scription factors [28].
Here, we describe the sixth release of NCG, which

contains 2372 cancer genes extracted from 275 publica-
tions consisting of two sources of known cancer genes
and 273 cancer sequencing screens. As well as muta-
tional screens of individual cancer types, the collected
publications now include four adult and two pediatric
pan-cancer studies. In addition to an update of the
systems-level properties of cancer genes already present
in previous releases (gene duplicability, evolutionary ori-
gin, protein function, protein-protein and miRNA-target
interactions, and mRNA expression in healthy tissues
and cancer cell lines), NCG now also annotates the es-
sentiality of cancer genes in human cell lines and their
expression at the protein level in human tissues. More-
over, broader functional annotations of cancer genes in
KEGG [29], Reactome [30], and BioCarta [31] are also
provided.
The expert curation of a large number of cancer

sequencing screens and the annotation of a wide var-
iety of systems-level properties make NCG a compre-
hensive and unique resource for the study of genes
that promote cancer.

Construction and content
The NCG database integrates information about genes
with a known or predicted driver role in cancer. To fa-
cilitate the broad use of NCG, we have developed a
user-friendly, interactive, and open-access web portal for
querying and visualizing the annotation of cancer genes.
User queries are processed interactively to produce re-
sults in a constant time. The front-end is connected to a
database, developed using relational database manage-
ment system principles [32] (Additional file 1: Figure
S1). The web application for the NCG database was de-
veloped using MySQL v.5.6.38 and PHP v.7.0. Raw data
for each of the systems-level properties were acquired

from heterogeneous data sources and processed as de-
scribed below. The entire content of NCG is freely avail-
able and can be downloaded from the database website.

Gene duplicability and evolutionary origin
Protein sequences from RefSeq v.85 [33] were aligned to
the human genome assembly hg38 with BLAT [34].
From the resulting genomic alignments, 19,549 unique
gene loci were identified and genes sharing at least 60%
of the original protein sequence were considered to be
duplicated [35] (Additional file 2: Table S1). Orthologous
genes for 18,486 human genes (including 2348 cancer
genes, Additional file 2: Table S1) in 2032 species were
collected from EggNOG v.4.5.1 [36] and used to trace
the gene evolutionary origin as previously described
[37]. Genes were considered to have a pre-metazoan ori-
gin if their orthologs could be found in prokaryotes, uni-
cellular eukaryotes, or opisthokonts [37].

Gene and protein expression
RNA-Seq data from healthy human tissues for 18,984
human genes (including all 2372 cancer genes, Add-
itional file 2: Table S1) were derived from the
non-redundant union of Protein Atlas v.18 [38] and
GTEx v.7 [39]. Protein Atlas reported the average tran-
scripts per million (TPM) values in 37 tissues, and genes
were considered to be expressed in a tissue if their ex-
pression value was ≥ 1 TPM. GTEx reported the distri-
bution of TPM values for individual genes in 11,688
samples across 30 tissue types. In this case, genes were
considered to be expressed if they had a median expres-
sion value ≥ 1 TPM.
Gene expression data for all 2372 cancer genes in

1561 cancer cell lines were taken from the Cancer Cell
Line Encyclopedia (CCLE, 02/2018) [40], the COSMIC
Cancer Cell Line Project (CLP, v.84) [19], and a Genen-
tech study (GNE, 06/2014) [41] (Additional file 2: Table
S1). Gene expression levels were derived directly from
the original sources, namely reads per kilobase million
(RPKM) values for CCLE and GNE, and microarray
z-scores for CLP. Genes were categorized as expressed if
their expression value was ≥ 1 RPKM in CCLE or GNE
and were annotated as over, under, or normally
expressed in CLP, as determined by COSMIC.
The current release of NCG also includes protein expres-

sion from immunohistochemistry assays of healthy human
tissues as derived from Protein Atlas v.18. Data were avail-
able for 13,001 human proteins including 1799 cancer pro-
teins (Additional file 2: Table S1). Proteins were categorized
as not detected or as having low, medium, or high expres-
sion in 44 tissues on the basis of staining intensity and frac-
tion of stained cells [38]. In Protein Atlas, expression levels
were reported in multiple cell types for each tissue. NCG
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retained the highest reported value as the expression level
for that tissue.

Gene essentiality
Gene essentiality was derived from two databases,
PICKLES (09/2017) [42] and OGEE v.2 [43], both of
which collected data from CRISPR-Cas9 knockout and
shRNA knockdown screens of human cell lines. In
PICKLES, data from primary publications have been
re-analyzed and genes were considered essential in a cell
line if their associated Bayes factor was > 3 [44]. We
therefore used this threshold to define essential genes. In
OGEE, genes were labelled as “essential” or “not essen-
tial” according to their annotation in the original publi-
cations. Consistently, we retained the same annotation.
From the non-redundant union of the two databases, es-
sentiality information was available for a total of 18,833
genes (including all 2372 cancer genes) in 178 cell lines
(Additional file 2: Table S1).

Protein-protein and miRNA-target interactions
Human protein-protein interactions were derived
from four databases (BioGRID v.3.4.157 [45], MIntAct
v.4.2.10 [46], DIP (02/2018) [47], and HPRD v.9 [48]).
Only interactions between human proteins supported
by at least one original publication were considered
[8]. The union of all interactions from the four
sources was used to derive a human protein-protein
interaction network of 16,322 proteins (including
2203 cancer proteins, Additional file 2: Table S1) and
289,368 binary interactions. To control for a possibly
higher number of studies on cancer proteins resulting
in an artificially higher number of interactions, a net-
work of 15,272 proteins and 224,258 interactions was
derived from high-throughput screens reporting more
than 100 interactions [11].
Data on human protein complexes for 8080 human

proteins (including 1414 cancer proteins; Additional
file 2: Table S1) were derived from the non-redundant
union of three primary sources, namely CORUM (07/
2017) [49], HPRD v.9 [48], and Reactome v.63 [30]. Only
human complexes supported by at least one original
publication were considered [11].
Experimentally validated interactions between human

genes and miRNAs were downloaded from miRTarBase
v.7.0 [50] and miRecords v.4.0 [51], resulting in a total of
14,649 genes (including 2034 cancer genes) and 1762
unique miRNAs (Additional file 2: Table S1). To control for
the higher number of single-gene studies focussing on can-
cer genes, a dataset of high-throughput screens testing ≥
250 different miRNAs was also derived (Additional file 2:
Table S1).

Functional annotation
Data on functional categories (pathways) were collected
from Reactome v.63 [30], KEGG v.85.1 [29], and Bio-
Carta (02/2018) [31]. Data for BioCarta were extracted
from the Cancer Genome Anatomy Project [52]. All
levels of Reactome were included, and level 1 and 2
pathways from KEGG were added separately. Overall,
functional annotations were available for 11,344 human
proteins, including 1750 cancer proteins assigned to
2318 pathways in total.

Utility and discussion
Catalogue of known and candidate cancer genes
To include new cancer genes in NCG, we applied a
modified version of our well-established curation pipe-
line [11] (Fig. 1a). We considered two main groups of
cancer genes: known cancer genes whose involvement in
cancer has additional experimental support and candi-
date cancer genes whose somatic alterations have a pre-
dicted cancer driver role but lack further experimental
support.
As sources of known cancer genes, we used 708 genes

from CGC v.84 [19] and 125 genes from a manually cu-
rated list [53]. Of the resulting 711 genes, we further an-
notated 239 as tumor suppressor genes (TSGs) and 239
as oncogenes (OGs). The remaining 233 genes could not
be unambiguously classified because either they had
conflicting annotations in the two original sources (CGC
and [53]) or they were defined as both OGs and TSGs.
Despite these two sources of known cancer genes have
been extensively curated, 49 known cancer genes are in
two lists of possible false positives [6, 54].
Next, we reviewed the literature to search for studies

that (1) described sequencing screens of human cancers
and (2) provided a list of genes considered to be the can-
cer drivers. This led to 273 original papers published be-
tween 2008 and March 2018, 98 of which were
published since the previous release of NCG [11] and 42
of which came from ICGC or TGCA (Additional file 2:
Table S2). Overall, these publications describe the se-
quencing screens of 119 cancer types from 31 primary
anatomical sites as well as six pan-cancer studies (Add-
itional file 2: Table S2). In total, this amounts to samples
from 34,905 cancer donors. Each publication was
reviewed independently by at least two experts and all
studies whose annotation differed between the experts
were further discussed. Additionally, 31 randomly se-
lected studies (11% of the total) were re-annotated
blindly by a third expert to assess consistency. The man-
ual revision of the 273 studies led to 2088 cancer genes,
of which 427 were known cancer genes and the
remaining 1661 were candidate cancer genes (Fig. 1b).
Compared to the previous release, this version of NCG
constitutes a significant increase in the number of
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cancer primary sites (1.3-fold), cancer genes (1.5-fold),
publications (1.6-fold), and analyzed donors (2.6-fold,
Fig. 1c).
Based on literature evidence [6, 54], gene length, and

function [10], 201 candidates were labelled as possible
false-positive predictions. We further investigated the
reasons why 284 known cancer genes were not identified
as drivers in any of the 273 cancer sequencing screens.
We found that these genes predispose to cancer rather
than acquiring somatic alterations, are the chimeric

product of gene fusions, are part of CGC Tier 2 (i.e., genes
with lower support for their involvement in cancer), or
were identified with different methods than sequencing.
Eleven of these 284 genes are possible false positives [6, 54].
The annotation of a large number of studies allowed

us to gain insights into how cancer genes have been
identified in the last 10 years. Of the overall 18 predic-
tion methods (Additional file 2: Table S2), the recur-
rence of a gene alteration within the cohort is the most
widely used across screens (Fig. 1d). In this case, no

Fig. 1 Manual curation of cancer genes in NCG. a Pipeline used for adding cancer genes to NCG. Two sources of known cancer genes [19, 53]
were integrated leading to 711 known cancer genes. In parallel, 273 publications describing cancer sequencing screens were reviewed to extract
2088 cancer genes. The non-redundant union of these two sets led to 2372 cancer genes currently annotated in NCG. b Intersection between
known and candidate cancer genes in NCG. c Comparison of NCG content with the previous version [11]. d Pie chart of the methods used to
identify cancer genes in the 273 publications. The total is greater than 273 because some studies used more than one method (Additional file 2:
Table S2). e Cancer genes as a function of the number of cancer donors per study. The grey inset shows a magnification of the left bottom
corner of the plot. f Number of methods used to identify cancer genes over time. PanSoftware used in one of the pan-cancer studies [6] was
considered as a single method but is in fact a combination of 26 prediction tools
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further threshold of statistical significance or correction
for the genome, gene, and cancer background mutation
rate was applied, thus leading to possible false-positive
predictions. Other frequently used prediction methods
are MutSig [55], MuSiC [56], and ad hoc pipelines devel-
oped in the same publication (referred to as ‘paper-spe-
cific’). Although they apply statistical methods to correct
for the background mutation rate and reduce false posi-
tives, all of these approaches estimate the tendency of a
gene to mutate more than expected within a cohort and
therefore they all depend on sample size. Indeed, we ob-
served an overall positive correlation between the num-
ber of cancer donors and the number of cancer genes
(Fig. 1e). This confirms that the sensitivity of the ap-
proaches currently used to predict cancer genes is higher
for large cohorts of samples. Finally, although the vast
majority of analyzed studies tend to apply only one pre-
diction method, more recent publications have started to
use a combination of two or three methods (Fig. 1f ).

Heterogeneity and specificity of cancer genes
The number of cancer genes and the relative proportion
of known and candidate cancer genes vary greatly across
cancer primary sites (Fig. 2a). More than 75% of cancer
genes in cancers of the prostate, soft tissues, bone, ovary,
cervix, thymus, and retina are known drivers. On the
contrary, more than 75% of driver genes in cancers of
the penis, testis, and vascular system are candidate can-
cer genes (Fig. 2a). This seems to be due to several fac-
tors including the sample size, the number of different
methods that have been applied to identify cancer genes
and the biology of each cancer type. For example, penis,
vascular system, and testis cancers show a high propor-
tion of candidate cancer genes. The corresponding co-
horts have a small sample size and have been analyzed
by one or two prediction methods. However, other can-
cer types showing equally high proportions of candidates
(pancreas, skin, blood) have large sample sizes and were
analyzed by several methods (Fig. 2b). Moreover, al-
though the number of cancer genes is overall positively
correlated with the number of sequenced samples
(Figs. 1e and 2c), there are marked differences across
primary sites. For example, ovary, bone, prostate, thy-
roid, and kidney cancers have substantially fewer cancer
genes compared to cancers with similar numbers of can-
cer donors such as uterine, stomach, skin, and hepato-
biliary cancers (Fig. 2c). This is likely due to variable
levels of genomic instability and heterogeneity across
cancer types of the same primary site. For example, in
seven of the nine mutational screens of skin melanoma,
a cancer type with high genomic instability [57], more
than 50% of cancer genes are study-specific (Fig. 3a).
Similarly, the 24 types of blood cancer are variable in
terms of number of cancer genes, with diffuse large

B-cell lymphoma having many more cancer genes than
other blood cancers with higher numbers of cancer do-
nors (Fig. 3b). In both cases, the use of the same method
(i.e., MutSig in Fig. 3a and MuSiC in Fig. 3b) identified
different cancer genes in different patient cohorts,
highlighting the biological heterogeneity even across do-
nors of the same cancer type.
Cancer genes, and in particular candidates, are highly

cancer-specific (Fig. 3c). Hemicentin 1 (HMCN1) is the
only candidate cancer gene to be significantly mutated
in six primary sites (blood, brain, esophagus, large intes-
tine, liver, and pancreas). A few known cancer genes are
recurrently mutated across several primary sites, includ-
ing TP53 (25), PIK3CA (21), and PTEN (20; Fig. 3c).
These are, however, exceptions, and the large majority of
known and candidate cancer genes (64% of the total) are
found only in one primary site, indicating high hetero-
geneity of cancer driver events. Similar specificity is also
observed in terms of supporting publications. The ma-
jority of cancer genes are publication-specific, again with
few exceptions including TP53 (173), PIK3CA (87) and
KRAS (86, Fig. 3d). Of note, the best-supported candi-
date gene is Titin (TTN, predicted in nine publications),
which is a well-known false positive of recurrence-based
approaches [55]. Interestingly, the scenario is different
when analyzing the number of prediction methods that
support cancer genes reported in at least two screens
(Fig. 3e). In this case, few candidate and known cancer
genes are identified by only one method, while the ma-
jority of them are supported by at least two (candidates)
and three (known cancer genes) approaches. However,
only six candidate cancer genes are supported by six
methods, and TP53 is the only cancer genes to be identi-
fied by 16 of the 18 methods (Fig. 3e).
Finally, the heterogeneity of the cancer driver land-

scape is reflected in the pan-cancer studies. Approxi-
mately 40% of the cancer genes from pan-cancer
analyses were not previously predicted as drivers (Fig. 3f ),
despite the large majority of cancer samples having been
already analyzed in the corresponding cancer-specific
study. This is yet a further confirmation that current
methods depend on the sample size and that a larger co-
hort leads to novel predictions. Only 35 cancer genes
were shared across four pan-cancer re-analyses of adult
tumors (Fig. 3g), suggesting that the prediction of cancer
genes is highly method- and cohort-dependent. This is
further confirmed by the poor overlap between cancer
genes from adult and pediatric pan-cancer studies
(Fig. 3h). In this case, however, it is also likely that differ-
ent biological mechanisms are responsible for adult and
childhood cancers.
Overall, our analysis of the cancer driver landscape

suggests that the high heterogeneity of cancer genes ob-
served across cancer types is due to a combination of
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sample size effect, prediction methods, and true bio-
logical differences across cancers.

Systems-level properties of cancer genes
In addition to collecting cancer genes from the litera-
ture, NCG also annotates the systems-level properties
that distinguish cancer genes from other genes that are
not implicated in cancer (Additional file 2: Table S1).
We therefore compared each of these properties

between cancer genes and the rest of human genes. We
considered seven distinct groups of cancer genes. The
first three were 711 known cancer genes, 1661 candidate
cancer genes, and 2372 total cancer genes. After remov-
ing 201 possible false-positive predictions [6, 54] from
the list of candidate cancer genes, we also identified two
sets of candidate cancer genes with a stronger support.
One was composed of 104 candidate cancer genes found
in at least two independent screens of the same primary

Fig. 2 Distribution of cancer genes across primary sites and cancer donors. a Number of total cancer genes and proportion of known and
candidate cancer genes across the 31 tumor primary sites analyzed in the 267 cancer-specific studies. The number of cancer donors followed by
the number of cancer genes is given in brackets for each primary site. b Proportion of candidate cancer genes over all cancer genes across the
31 tumor primary sites. The dot size is proportional to the donor cohort size. c Total number of cancer genes and cancer donors across the 31
tumor primary sites. The color scale in (b) and (c) indicates the number of screens for each primary site
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site. The other was formed of 711 candidate cancer
genes identified in large cohorts composed of at least
140 donors (top 25% of the sample size distribution
across screens). Finally, we compared the properties
between 239 TSGs and 239 OGs.
As previously reported [35], we confirmed that a sig-

nificantly lower fraction of cancer genes has duplicated
copies in the human genome due to a high proportion

of single-copied TSGs (Fig. 4a). The same trend was
observed in both known and candidate cancer genes and
is significant for the combination of the two gene sets.
Interestingly, candidate cancer genes found in ≥ 2
screens show a high proportion of duplicated cancer
genes (albeit not significant probably due to the small
size of the group, Fig. 3d). This could suggest that
several genes in this group may exert an oncogenic role.

Fig. 3 Recurrence of cancer across primary sites and publications. a Proportion of study-specific cancer genes reported by each of the seven
skin melanoma screens. b Total number of cancer genes and donors across 24 cancer types of the blood. The full list of blood cancer types is
reported in Additional file 2: Table S2. c Number of primary sites in which each known or candidate cancer gene was reported to be a driver.
d Number of publications in which each known or candidate cancer gene was reported to be a driver. e Number of methods used to predict
cancer genes for drivers found in more than one publication. f Intersection of cancer genes in the cancer-specific and pan-cancer studies.
g Venn diagram of cancer genes across the four pan-cancer studies of adult donors. h Intersection of cancer genes in pan-cancer screens of
adult and pediatric donors. In f, g, and h, the number of donors followed by the total number of cancer genes are given in brackets
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Fig. 4 Systems-level properties of cancer genes. a Percentage of genes with ≥ 1 gene duplicate covering ≥ 60% of the protein sequence. b
Proportion of genes originating in pre-metazoan species. c, d Number of human tissues in which genes (c) and proteins (d) are expressed. In
panel c, tissue types were matched between GTEx and Protein Atlas wherever possible, giving 43 unique tissues. In tissues represented in both
datasets, genes were defined as expressed if they had ≥ 1 TPM in both datasets. Only genes present in both sources were compared (Additional
file 2: Table S1). e Percentage of genes essential in ≥ 1 cell line and distribution of cell lines in which each gene is essential. Only genes with
concordant annotation between OGEE and PICKLES were compared (Additional file 2: Table S1). f Percentage of proteins involved in ≥ 1 protein
complex. g Median values of betweenness (centrality), clustering coefficient (clustering), and degree (connectivity) of human proteins in the
protein-protein interaction network. h Median values of betweenness and degree of the target genes in the miRNA-target interaction network.
The clustering coefficient is zero for all nodes, because interactions occur between miRNAs and target genes. Known, candidate, and all cancer
genes were compared to the rest of human genes, while TSGs were compared to OGs. Significance was calculated using a two-sided Fisher test
(a, b, e, f) or Wilcoxon test (c, d, g, h). *p < 0.05, **p < 0.01, ***p < 0.001. Enrichment and depletion of cancer genes in representative functional
categories taken from level 1 of Reactome (i) and level 2 of KEGG (j). Significance was calculated comparing each group of cancer genes to the
rest of human genes using a two-sided Fisher test. False discovery rates were calculated in each gene set separately. Only pathways showing
enrichment or depletion are shown. The full list of pathways is provided in Additional file 2: Table S3
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Cancer genes, and in particular candidate cancer
genes, originated earlier in evolution (Fig. 4b) [37, 58,
59]. Known cancer genes alone do not differ from the
rest due to the fact that OGs are significantly younger
than TSGs (Fig. 4b).
Known cancer genes tend to be ubiquitously expressed

at the mRNA (Fig. 4c) and protein (Fig. 4d) levels, and
TSGs are more widely expressed than OGs. This trend
is less clear when analyzing candidate cancer genes sep-
arately. Candidates with stronger support tend to resem-
ble known cancer genes; however, the overall set of
candidate cancer genes has a narrower tissue expression
pattern at the gene and protein level (Fig. 4c, d).
A similar scenario is observed when analyzing gene

essentiality. A higher fraction of cancer genes and, in
particular of known cancer genes, is essential in at least
one human cell line (Fig. 4e). Moreover, known cancer
genes tend to be essential in a higher fraction of cell
lines. Both measures of gene essentiality are higher in
TSGs as compared to OGs (Fig. 4e). Candidate cancer
genes with stronger support are again similar to known
cancer genes but, when considered together, all candi-
date cancer genes are not significantly enriched in essen-
tial genes (Fig. 4e).
Proteins encoded by cancer genes are more often in-

volved in protein complexes (Fig. 4f ). They are also
more connected (higher degree), central (higher be-
tweenness), and clustered (higher clustering coefficient)
in the protein-protein interaction network (Fig. 4g). We
verified that this trend holds true also when using only
data from high-throughput screens (Additional file 2:
Table S2), thus excluding the possibility that the distinct-
ive network properties of cancer proteins are due to
their better annotation. These trends remain significant
for all sets of cancer genes.
Cancer genes are regulated by a higher number of

miRNAs (higher degree) and occupy more central posi-
tions (higher betweenness) in the miRNA-target inter-
action network (Fig. 4h). As above, these results remain
valid also when only considering the miRNA-target net-
work from high-throughput screens (Additional file 2:
Table S2) and for any group of cancer genes considered.
Cancer genes are consistently enriched in functional

categories such as signal transduction, chromatin
reorganization, and cell cycle and depleted in others,
such as metabolism and transport (Fig. 4i, Additional
file 2: Table S3). Candidate cancer genes generally ex-
hibit weaker enrichment than the other groups, most
notably in DNA repair. Interestingly, however, extracel-
lular matrix reorganization displays a specific enrich-
ment for candidate cancer genes. Some functional
categories are selectively enriched for OGs (e.g. develop-
ment and immune system, Fig. 4j) or TSGs (e.g. DNA
repair and programmed cell death, Fig. 4i). While

annotations from Reactome and KEGG generally give
concordant results, they differ significantly for gene tran-
scription. In this case, Reactome shows a strong enrich-
ment for cancer genes, while it is not significant in
KEGG (Fig. 4i, j).
Overall our analyses confirm that cancer genes are a

distinctive group of human genes. Despite their hetero-
geneity across cancer types and donors, they share com-
mon properties. Candidate cancer genes only share
some of the properties of known cancer genes, such as
an early evolutionary origin (Fig. 4b) and higher central-
ity and connectivity in the protein-protein and
miRNA-target interaction networks (Fig. 4g, h). They do
not differ from the rest of genes for all other properties.
However, the two sets of candidate cancer genes with a
stronger support overall maintain the vast majority of
the distinctive properties of known cancer genes. This
suggests that the current set of candidate cancer genes
likely contains false positives and genes with weak sup-
port that do not resemble the properties of known can-
cer genes. This is further indicated when directly
comparing the properties of known and candidate can-
cer genes (Additional file 2: Table S4). In this case,
known cancer genes are significantly different for most
properties when compared to the whole set of candidate
cancer genes. However, these differences are reduced
when the two sets of candidates with stronger support
are used. Finally, TSGs and OGs constitute two distinct
classes of cancer genes even based on their systems-level
properties (Fig. 4).

Future directions
In the coming years, NCG will continue to collect new
cancer genes and annotate their properties, including
novel properties such as genetic interactions or epigen-
etic features for which large datasets are becoming avail-
able. So far, the cancer genomics community has
focussed mostly on the identification of protein-coding
genes with putative cancer driver activity. With the in-
creasing availability of whole-genome sequencing data
and a rising interest in non-coding alterations [27, 60],
NCG will expand to also collect non-coding cancer
drivers. Another direction for future development will
be the analysis of clinical data, including therapeutic
treatments, to link them to the altered drivers. This will
contribute to the expansion of our knowledge of cancer
driver genes in the context of their clinical relevance.

Conclusions
The present release of NCG describes a substantial ad-
vance in annotations of known and candidate cancer
driver genes as well as an update and expansion of their
systems-level properties. The extensive body of literature
evidence collected in NCG enabled a systematic analysis
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of the methods used to identify cancer genes, highlight-
ing their dependence on the number of cancer donors.
We also confirmed the high heterogeneity of cancer
genes within and across cancer types. The broad set of
systems-level properties collected in NCG shows that
cancer genes form a distinct group, different from the
rest of human genes. For some of these properties, the
differences observed for known cancer genes hold true
also for candidate cancer genes, and TSGs show more
pronounced cancer gene properties than OGs. Interest-
ingly, these properties are shared by all cancer genes,
independently of the cancer type or gene function.
Therefore, focussing on genes with similar character-
istics could be used for the identification and
prioritization of new cancer driver genes [61]. In con-
clusion, the large-scale annotation of the systems-level
properties of cancer genes in NCG is a valuable
source of information not only for the study of
individual genes, but also for the characterization of
cancer genes as a group.
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Additional File 1: Figure S1. Schema of the NCG database 
Entity-relationship diagram indicating one-to-many and many-to-many relationships between genes and other entities in the NCG 

database. The external source files used to generate the Genes entity are shown in grey. 
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Chapter 6. The Network of Cancer Genes and Healthy Drivers 

6.1 Contributions 

In this study7, I collected and analysed the data on the evolutionary origins 

and orthologs of all human genes, and I analysed miRNA-target interactions 

together with Hrvoje Misetic. I performed data analysis on cancer gene 

annotations with Lisa Dressler, Mohamed Reda Keddar, Hrvoje Misetic, Giulia 

Sartini, Amelia Acha-Sagredo, and Francesca D. Ciccarelli. I also developed the 

database and website with Giulia Sartini, Jacki Goldman, Karen Ambrose, 

Mohamed Reda Keddar, Hrvoje Misetic, Lisa Dressler, Marc Pollit, Patrick Davis, 

and Amy Strange. Finally, I wrote the manuscript with Francesca D. Ciccarelli, 

Amelia Acha-Sagredo, Giulia Sartini, Lisa Dressler and Hrvoje Misetic, while all 

authors reviewed and approved its final version. 

Lisa Dressler analysed data on protein-protein interactions, protein 

complex, gene essentiality, and cancer cell lines. Hrvoje Misetic analysed the 

TCGA data. Mohamed Reda Keddar analysed the gene duplicability. Giulia 

Sartini analysed the gene function, RNA and protein expression, and drug 

interactions. Amelia Acha-Sagredo, Lucia Montorsi, Neshika Wijewardhane, and 

Dimitra Repana curated the literature. Joel Nulsen analysed the germline 

variation. Francesca D. Ciccarelli conceived and supervised the study. 



Chapter 7. Discussion 

199 

6.2 Comparative assessment of genes driving cancer and 

somatic evolution in non-cancer tissues: an update of the 

Network of Cancer Genes (NCG) resource 



RESEARCH Open Access

Comparative assessment of genes driving
cancer and somatic evolution in non-
cancer tissues: an update of the Network of
Cancer Genes (NCG) resource
Lisa Dressler1,2,3†, Michele Bortolomeazzi1,2†, Mohamed Reda Keddar1,2†, Hrvoje Misetic1,2†, Giulia Sartini1,2†,
Amelia Acha-Sagredo1,2†, Lucia Montorsi1,2†, Neshika Wijewardhane1,2, Dimitra Repana1,2, Joel Nulsen1,2,
Jacki Goldman4, Marc Pollitt4, Patrick Davis4, Amy Strange4, Karen Ambrose4 and Francesca D. Ciccarelli1,2*

* Correspondence: francesca.
ciccarelli@crick.ac.uk
†Lisa Dressler, Michele
Bortolomeazzi, Mohamed Reda
Keddar, Hrvoje Misetic, Giulia Sartini,
Amelia Acha-Sagredo and Lucia
Montorsi contributed equally to this
work.
1Cancer Systems Biology Laboratory,
The Francis Crick Institute, London
NW1 1AT, UK
2School of Cancer and
Pharmaceutical Sciences, King’s
College London, London SE11UL,
UK
Full list of author information is
available at the end of the article

Abstract

Background: Genetic alterations of somatic cells can drive non-malignant clone
formation and promote cancer initiation. However, the link between these processes
remains unclear and hampers our understanding of tissue homeostasis and cancer
development.

Results: Here, we collect a literature-based repertoire of 3355 well-known or
predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types
and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-
cancer samples reveals that, despite the large size, the known compendium of
drivers is still incomplete and biased towards frequently occurring coding mutations.
High overlap exists between drivers of cancer and non-cancer somatic evolution,
although significant differences emerge in their recurrence. We confirm and expand
the unique properties of drivers and identify a core of evolutionarily conserved and
essential genes whose germline variation is strongly counter-selected. Somatic
alteration in even one of these genes is sufficient to drive clonal expansion but not
malignant transformation.

Conclusions: Our study offers a comprehensive overview of our current
understanding of the genetic events initiating clone expansion and cancer revealing
significant gaps and biases that still need to be addressed. The compendium of
cancer and non-cancer somatic drivers, their literature support, and properties are
accessible in the Network of Cancer Genes and Healthy Drivers resource at http://
www.network-cancer-genes.org/.

Keywords: Driver genes, Somatic evolution, Cancer initiation, Systems-level
properties
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Background
Genetic alterations conferring selective advantages to cancer cells are the main drivers

of cancer evolution and hunting for them has been at the core of international cancer

genomic efforts [1–3]. Given the instability of the cancer genome, distinguishing driver

alterations from the rest relies on analytical approaches that identify genes altered more

frequently than expected or quantify the positive selection acting on them [4–6]. The

results of these analyses have greatly expanded our understanding of the mechanisms

driving cancer evolution, revealing high heterogeneity across and within cancers [7–9].

Recently, deep sequencing screens of non-cancer tissues have started to map posi-

tively selected genetic mutations in somatic cells that drive in situ formation of pheno-

typically normal clones [10, 11]. Many of these mutations hit cancer drivers, sometimes

at a frequency higher than the corresponding cancer [12–16]. Yet, they do not drive

malignant transformation. This conundrum poses fundamental questions on how gen-

etic drivers of normal somatic evolution are related to and differ from those of cancer

evolution. Addressing these questions will clarify the genetic relationship between

tissue homeostasis and cancer initiation, with profound implications for cancer early

detection.

To assess the extent of the current knowledge on cancer and non-cancer drivers, we

undertook a systematic review of the literature and assembled a comprehensive reper-

toire of genes whose somatic alterations have been reported to drive cancer or non-

cancer evolution. This allowed us to compare the current driver repertoire across and

within cancer and non-cancer tissues and map their alterations in the large pancancer

collection of samples from The Cancer Genome Atlas (TCGA). This revealed signifi-

cant gaps and biases in our current knowledge of the driver landscape. We also com-

puted an array of systems-level properties across driver groups, confirming the unique

evolutionary path of driver genes and their central role in the cell.

We collected all cancer and non-cancer driver genes, together with a large set of their

properties, in the Network of Cancer Genes and Healthy Drivers (NCGHD) open-access

resource.

Results
More than 3300 genes are canonical or candidate drivers of cancer and non-cancer

somatic evolution

We conducted a census of currently known drivers through a comprehensive literature

review of 331 scientific articles published between 2008 and 2020 describing somatic-

ally altered genes with a proven or predicted role in cancer or non-cancer somatic evo-

lution (Fig. 1a). These publications included three sources of experimentally validated

(canonical) cancer drivers, 311 sequencing screens of cancer (293) and non-cancer (18)

tissues, and 17 pancancer studies (Additional file 1, Table S1). Each paper was assessed

by at least two independent experts (Additional file 2, Fig. S1A-C) returning a total of

3355 drivers, 3347 in 122 cancer types and 95 in 12 non-cancer tissues, respectively

(Fig. 1a). We further computed the systems-level properties of drivers and annotated

their function, somatic variation, and drug interactions (Fig. 1a).

We reviewed the three sources of canonical cancer drivers [17–19] to exclude false

positives (Additional file 3, Table S2) and fusion genes whose properties could not be
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mapped. Only 11% of the resulting 591 canonical drivers (Additional file 4, Table S3)

were common to all three sources (Fig. 1b), indicating poor consensus even in well-

known cancer genes. We further annotated the genetic mode of action for > 86% of ca-

nonical drivers, finding comparable proportions of oncogenes or tumor suppressors

(Fig. 1c). The rest had a dual role or could not be univocally classified.

We extracted additional cancer drivers from the curation of 310 sequencing screens

that applied a variety of statistical approaches (Additional file 2, Fig. S1 D) to identify

cancer drivers among all altered genes. After removing possible false positives (Add-

itional file 3, Table S2), the final list included 3177 cancer drivers, 2756 of which relied

only on statistical support (candidate cancer drivers) and 421 were canonical drivers

(Fig. 1d, Additional file 4, Table S3). Therefore, 170 canonical drivers have never been

detected by any method, suggesting that they may elicit their role through non-

mutational mechanisms or may fall below the detection limits of current approaches.

Given the prevalence of cancer coding screens (Fig. 1a), only coding driver alterations

have been reported for most genes (Fig. 1e) while 16% of them (531) were identified as

drivers uniquely in non-coding screens. Since the prediction of drivers with non-coding

Fig. 1 Collection of a comprehensive repertoire of cancer and healthy drivers. a Literature review and driver
annotation workflow. Expert literature curation of 331 publications led to a repertoire of cancer and healthy
drivers in a variety of cancer and non-cancer tissues. Combining multiple data sources, a set of properties and
annotations was computed for all these drivers. b Intersection of canonical drivers from three sources [17–19]
that passed our manual curation. c Classification of canonical cancer drivers in tumor suppressors and
oncogenes. Eighty-one cancer drivers had a dual role or could not be classified. d Intersection of canonical and
candidate driver genes from 310 sequencing screens. Genes whose driver role had only statistical support were
considered candidate cancer drivers. e Intersection between cancer drivers with coding and non-coding
alterations. f Level of support for the driver role of 531 cancer genes with non-coding driver alterations only.
Level 1 means that the gene was predicted as a driver only in one cancer sequencing screen; levels 2, 3, and 4
mean that it was predicted by two, three, or four screens or that it had experimental support. Experimental
support was gathered from the 19 publications reporting non-coding cancer drivers (Additional file 1, Table S1)
and from the CNCDatabase [20] and included in vitro and in vivo experiments, modification of gene
expression, and survival association. g Proportion of healthy drivers that are also canonical or candidate cancer
drivers, classified as canonical and candidate healthy drivers, respectively
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alterations remains challenging, we further investigated the type of support that these

genes had for their driver activity. The overwhelming majority of them (467 genes,

87%) have been predicted as drivers in only one screen. The remaining 64 genes are ca-

nonical drivers, have been predicted as drivers in multiple screens, or have additional

experimental support for their driver activity (Fig. 1f).

Applying a similar approach (Additional file 2, Fig. S1 A-C), we reviewed 18 sequen-

cing screens of healthy or diseased (non-cancer) tissues. They collectively reported 95

genes whose somatic alterations could drive non-malignant clone formation (healthy

drivers). Interestingly, only eight of them were not cancer drivers (Fig. 1g, Add-

itional file 4, Table S3), suggesting a high overlap between genetic drivers of cancer and

non-cancer evolution. However, since many non-cancer screens only re-sequenced can-

cer genes or applied methods developed for cancer genomics (Additional file 2, Fig.

S1E), this overlap may be overestimated.

The ability to capture cancer but not healthy driver heterogeneity increases with the

donor sample size

To compare cancer and healthy drivers across and within tissues, we grouped the 122

cancer types and 12 non-cancer tissues into 12 and seven organ systems, respectively

(the “Methods” section).

Despite the high numbers of sequenced samples (Additional file 5, Table S4) and de-

tected drivers (Fig. 1), several lines of evidence indicated that our knowledge of cancer

drivers is still incomplete. First, we detected a strong positive correlation between can-

cer drivers and donors overall (Fig. 2a) and in individual organ systems (Additional file

2, Fig. S2). This suggests that the current ability to identify new drivers depends on the

number of samples included in the analysis. Second, candidates outnumbered canonical

drivers in all organ systems except those with a small sample size or low mutation rate

such as pediatric cancers, where only the most recurrent canonical drivers could be

identified (Fig. 2b). Third, large donor cohorts enabled the detection of a broader repre-

sentation of canonical drivers than small cohorts (Fig. 2c). For example, pooling thou-

sands of samples together led to > 60% of canonical drivers being detected in adult

pancancer re-analyses. Therefore, the size of the cohort influences the level of com-

pleteness and heterogeneity of the cancer driver repertoire. This is not surprising since

all current approaches act at the cohort level, searching for positively selected genes al-

tered more frequently than expected (Additional file2, Fig. S1D).

Our analysis also showed that the contribution of non-coding driver alterations re-

mains largely unappreciated and non-coding drivers have not yet been reported in sev-

eral tumors, including all pediatric cancers (Fig. 2d). Owing to the re-analysis of large

whole-genome collections [21–26], almost 40% of adult pancancer drivers were instead

modified by non-coding alterations (Fig. 2d). Hematologic and skin tumors also had a

high proportion of non-coding driver variants thanks to screens focused on non-coding

mutations [27, 28]. Therefore, the re-analysis of already available whole-genome data

and further sequencing screens of non-coding variants are needed to fully appreciate

their driver contribution.

Compared to cancer, sequencing screens of non-cancer tissues are still in their in-

fancy, as reflected by the lower numbers of screened tissues and detected drivers
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Fig. 2 Distribution of driver annotations by organ system. a Correlation between numbers of sequenced donors
and identified cancer drivers across organ systems. Spearman correlation coefficient R and associated p-value are
shown. b Number of canonical, candidate, and healthy drivers in each organ system. Horizontal lines indicate the
median number of canonical (92), candidate (160), and healthy (17) drivers across organ systems. c Proportion of
canonical drivers detected in each organ system over canonical drivers detected in all cancer screens (421). The
horizontal line indicates the median across all organ systems (22%). d Proportion of genes with non-coding driver
alterations over all cancer drivers in each organ system. The horizontal line indicates the median across all organ
systems (4%). Number of canonical (e), candidate (f), and healthy (g) drivers across screens and organ systems.
Representative genes with different recurrence between cancer and healthy tissues are indicated. h Organ system
distribution of the top eight recurrent healthy drivers. The full list is provided as Additional file 6, Table S5. i
Correlation between numbers of sequenced donors and identified healthy drivers across organ systems. Spearman
correlation coefficient R and associated p-value are shown
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(Fig. 2b). Despite this, some similarities and differences with cancer drivers could

already be observed. Like cancer drivers (Fig. 2e, f, Additional file 6, Table S5), also

healthy drivers were mostly organ-specific (Fig. 2g) and the most recurrent healthy

drivers were also cancer drivers in the same organ system (Fig. 2h, Additional file 6,

Table S5). However, some recurrent cancer drivers (KRAS, PI3KCA, NRAS, NF1) were

reported to drive non-cancer clonal expansion only in one or two organ systems

(Fig. 2g). Therefore, differences start to emerge at the tissue level between drivers of

cancer and non-cancer evolution. Moreover, unlike cancer drivers, no correlation

existed between the numbers of drivers and donors (Fig. 2i). This is likely affected by

the lower number of non-cancer sequencing studies available so far. If additional stud-

ies will confirm the absence of correlation, this may indicate that the healthy driver rep-

ertoire is easier to saturate since fewer drivers are needed to initiate and sustain non-

cancer clonal expansion [10, 11].

Alteration pattern hints at driver mode of action and confirms the incompleteness of the

driver repertoire

To gain further insights into their mode of action, we mapped the type of alterations

acquired by cancer and healthy drivers in 34 cancer types from TCGA. After predicting

the damaging alterations in 7953 TCGA samples with matched mutation, copy number,

and gene expression data (the “Methods” section), we identified the drivers with loss-

of-function (LoF) and gain-of-function (GoF) alterations in these samples, respectively

(Fig. 3a).

The comparison between canonical cancer drivers detected and undetected in se-

quencing screens (Fig. 1d) revealed that the latter were damaged in a significantly lower

number of samples, due to fewer LoF alterations (Fig. 3b, Additional file 2, Fig. S3A).

GoF alterations were instead comparable between the two groups, suggesting that

current driver detection methods fail to identify drivers that undergo copy number

gains but are rarely mutated.

We confirmed that the driver alteration patterns reflected their mode of action, with

canonical tumor suppressors and oncogenes showing a prevalence of LoF and GoF al-

terations, respectively (Fig. 3c). Canonical drivers with a dual role resembled the alter-

ation pattern of oncogenes while those still unclassified had a prevalence of LoF

alterations, suggesting a putative tumor suppressor role (Fig. 3c). While all frequently

altered (> 500 samples) oncogenes were overwhelmingly modified by GoF alterations

(Additional file 7, Table S6), 16 of the 22 most frequently altered tumor suppressors

had a prevalence of GoF alterations (Fig. 3d). In the majority of cases, this was due to

different alteration patterns across organ systems (Additional file 2, Fig. S3B), and a

possible oncogenic role has been documented for some others [29–38].

Since candidate drivers had no annotation of their mode of action, we reasoned that

their alteration pattern could hint at their role as tumor suppressors or oncogenes. Ac-

cording to their prevalent pancancer alterations, 1318 candidates could be classified as

putative tumor suppressors and 1405 as putative oncogenes (Additional file 7, Table

S6). Interestingly, while candidates with predicted coding driver alterations showed

similar distributions of LoF and GoF alterations (Fig. 3e), those with only non-coding

driver alterations had a significantly lower occurrence of LoF alterations (Fig. 3f,
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Fig. 3 (See legend on next page.)
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Additional file 2, Fig. S3C). This may suggest an activating role for their non-coding al-

terations too. Almost all candidates damaged in ≥ 500 samples (111/115) were putative

oncogenes (Fig. 3e, Additional file 7, Table S6). Of the four putative tumor suppressors,

CSMD3 has a disputed cancer role [39–41] and a likely inflated mutation rate [42],

while CDKN2B cooperates with its paralog CDKN2A to inhibit cell cycle [43], support-

ing its tumor suppressor role.

The number of damaged cancer drivers in individual TCGA samples confirmed that,

despite all efforts, the current driver repertoire is still largely incomplete. The large ma-

jority of samples (71% and 87%, considering all drivers or only canonical drivers, re-

spectively) had less than five damaged drivers, and ~ 15% of them had no damaged

driver (Fig. 3g).

Given their high overlap with cancer drivers, most healthy drivers were recurrently

damaged in cancer samples with no prevalence of GoF or LoF alterations (Fig. 3h, Add-

itional file 7, Table S6). Interestingly, all healthy drivers, even the eight with no cancer

involvement, were damaged in significantly more cancer samples than the rest of hu-

man genes (Fig. 3i). Moreover, 57% of TCGA samples had at least two altered drivers,

one of which was a healthy driver, further supporting the hypothesis that more than

one driver may be needed to promote the transformation of non-malignant clones into

cancer [10, 11].

Properties of cancer and healthy drivers support their central role in the cell

A substantial body of work including our own [44–53] has shown that cancer drivers

differ from the rest of the genes for an array of systems-level properties (Fig. 1a) that

are a consequence of their unique evolutionary path and role in the cell. Using our

granular annotation of drivers, we set out to check for similarities and differences

across the driver groups.

We confirmed that cancer drivers, and in particular canonical drivers, were more

conserved throughout evolution and less likely to retain gene duplicates than other hu-

man genes (Fig. 4a, Additional file 8, Table S7). They also showed broader tissue ex-

pression, engaged in a larger number of protein complexes, and occupied more central

and highly connected positions in the protein-protein and miRNA-gene networks

(Fig. 4a). We reported substantial differences between tumor suppressors and

(See figure on previous page.)
Fig. 3 Damaging alteration pattern of drivers in TCGA. a Identification of damaged drivers in 7953 TCGA
samples. Mutations, gene deletions, and amplifications were annotated according to their predicted
damaging effect. This allowed to distinguish drivers acquiring loss-of-function (LoF) or gain-of-function
(GoF) alterations. b Number of TCGA samples with damaging alterations (all, LoF, GoF) in canonical drivers
that were detected (421) or undetected (170) by cancer driver detection methods. c Proportion of TCGA
samples with GoF and LoF alterations in tumor suppressors, oncogenes, and canonical drivers with a dual
or unclassified role. Proportion of TCGA samples with GoF and LoF alterations in (d) canonical drivers and
(e) candidate drivers. Genes mentioned in the text are highlighted. The two-dimensional Gaussian kernel
density estimations were calculated for each driver group using the R density function. f Number of TCGA
samples with damaging alterations (all, LoF, GoF) in drivers previously reported in coding and non-coding
sequences. g Proportion of samples with variable numbers of all damaged drivers or only canonical drivers.
h Proportion of TCGA samples with GoF and LoF alterations in healthy drivers. Canonical and candidate
healthy drivers correspond to genes with a known or predicted cancer driver role. i Number of TCGA
samples with damaged canonical, candidate, and remaining healthy drivers and the rest of human genes.
All distributions were compared using a two-sided Wilcoxon rank-sum test
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Fig. 4 (See legend on next page.)
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oncogenes, with the former enriched in old and single-copy genes showing broader tis-

sue expression (Fig. 4b, Additional file 8, Table S7).

We further expanded the systems-level properties of cancer drivers by exploring their

tolerance towards germline variation, because this may indicate their essentiality. Using

germline data from healthy individuals [54], we compared the loss-of-function ob-

served/expected upper bound fraction (LOEUF) score, which quantifies selection to-

wards LoF variation [54] as well as the number of damaging mutations and structural

variants (SVs) per coding base pairs (bp) between drivers and the rest of genes (the

“Methods” section). Cancer drivers, and in particular canonical drivers, had a signifi-

cantly lower LOEUF score and retained fewer damaging germline mutations and SVs

than the rest of the genes (Fig. 4a). This indicates that they are indispensable for cell

survival in the germline. Selection against harmful variation was stronger in tumor sup-

pressors than oncogenes (Fig. 4b). This was supported by a significantly higher propor-

tion of cell lines where cancer drivers, and in particular tumor suppressors, were

essential (Fig. 4a, b), as gathered from the integration of nine genome-wide essentiality

screens [55–63] (the “Methods” section).

Genes with non-coding driver alterations had weaker systems-level properties than

those with coding alterations (Fig. 4c, Additional file 8, Table S7) and the subset of

them with > 50% GoF alterations resembled the property profile of oncogenes when

compared to tumor suppressors (Fig. 4d, Additional file 8, Table S7). In general, all

candidate drivers with a prevalence of GoF were similar to oncogenes, showing a higher

proportion of duplicated genes, narrower tissue expression, and higher tolerance to

germline variation than tumor suppressors (Fig. 4e, Additional file 8, Table S7). Con-

versely, candidate drivers with a prevalence of LoF were older, less duplicated, and less

tolerant to germline variation than oncogenes (Fig. 4f, Additional file 8, Table S7).

Systems-level properties of healthy drivers varied according to the overlap with can-

cer drivers (Fig. 4g, Additional file 8, Table S7). Intriguingly, canonical healthy drivers

showed stronger systems-level properties than any other group of drivers. In particular,

they were enriched in evolutionarily conserved and broadly expressed genes encoding

highly inter-connected proteins are regulated by many miRNAs. Moreover, these genes

showed a strong selection against germline variation and high enrichment in essential

genes (Fig. 4g). They therefore represent a core of genes with a very central role in the

cell, whose modifications are not tolerated in the germline but are selected for in

(See figure on previous page.)
Fig. 4 Systems-level properties of cancer and healthy drivers. Comparisons of systems-level properties
between (a) canonical or candidate cancer drivers and the rest of human genes, (b) tumor suppressors and
oncogenes, and (c) cancer genes with coding driver alterations and cancer genes with non-coding driver
alterations. The normalized property score was calculated as the normalized difference between the median
(continuous properties) or proportion (categorical properties) values in each driver group and the rest of
human genes (the “Methods” section). Comparisons of systems-level properties between (d) candidate
oncogenes with non-coding driver alterations (324) and canonical tumor suppressors, (e) candidate
oncogenes (1405) and canonical tumor suppressors, and (f) candidate tumor suppressors (1318) and
canonical oncogenes. g. Comparisons of systems-level properties between canonical healthy, candidate
healthy, and remaining healthy drivers and the rest of human genes. Proportions of old (pre-metazoan),
duplicated, essential genes, and proteins involved in the complexes were compared using a two-sided
Fisher’s exact test. Distributions of gene and protein expression, protein-protein, miRNA-gene interactions,
and germline variation were compared using a two-sided Wilcoxon rank-sum test. False discovery rate
(FDR) was corrected for using Benjamini-Hochberg
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somatic cells because they confer selective growth advantages. Candidate healthy

drivers and those not involved in cancer had a substantially different property profile

(Fig. 4g). Although numbers are too low for any robust conclusion, it is tempting to

speculate that genes able to initiate non-cancer clonal expansion but not tumorigenesis

may follow a different evolutionary path.

The Network of Cancer Genes: an open-access repository of annotated drivers

We collected the whole repertoire of 3347 cancer and 95 healthy drivers, their literature

support, and properties in the seventh release of the Network of Cancer Genes and

Healthy Drivers (NCGHD) database. NCGHD is accessible through an open-access portal

that enables interactive queries of drivers (Fig. 5a) as well as the bulk download of the

database content.

In addition to the known or predicted mode of action and systems-level properties of

cancer and healthy drivers, NCGHD 7.0 also annotates their function, alteration pattern,

and gene expression profile in TCGA and cancer cell lines, reported interactions with

antineoplastic drugs, and potential role as treatment biomarkers (Fig. 5b). Altogether,

this constitutes an extensive compendium of annotation of driver genes, including in-

formation relevant for planning experiments involving them.

Functional gene set enrichment analysis showed that at least 60% of enriched path-

ways (FDR < 0.05) in any driver group converge to five broad functional processes (sig-

nal transduction, gene expression, immune system, cell cycle, and DNA repair, Fig. 5b,

Additional file 9, Table S8). Within these, tumor suppressors showed a prevalence in

cell cycle and DNA repair pathways, while oncogenes were enriched in the gene expres-

sion and immune system-related pathways (Additional file 9, Table S8). Healthy drivers

closely resembled the functional profile of cancer drivers, given the high overlap

(Fig. 5b). Because of the low number, it was not possible to assess the functional en-

richment of healthy drivers not involved in cancer.

More than 9% of canonical cancer drivers are targets of anti-cancer drugs and cancer

drivers constitute around 40% of their targets (Fig. 5c). Moreover, most of the genes

used as biomarkers of resistance or response to treatment in cell lines (Fig. 5d) or clin-

ical trials (Fig. 5e) are cancer drivers, with an overwhelming prevalence of canonical

cancer drivers.

Discussion
The wealth of cancer genomic data and the availability of increasingly sophisticated

analytical approaches for their interpretation have substantially improved the under-

standing of how cancer starts and develops. However, our in-depth analysis of the vast

repertoire of drivers that have been collected so far shows clear limits in the current

knowledge of the driver landscape.

The identification of drivers as genes under positive selection or with a higher than

expected mutation frequency within a cohort of patients has biased the current cancer

driver repertoire towards genes whose coding point mutations or small indels fre-

quently recur across patients. This strongly impairs the ability to map the full extent of

driver heterogeneity leading to an underappreciation of the driver contribution of rarely

altered genes and those modified through non-coding or gene copy number alterations,
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particularly amplifications. It also results in a sizeable fraction of samples with very few

or no cancer drivers. This gap can be solved by complementing cohort-level approaches

with methods that account for all types of alterations and predict drivers in individual

samples, for example identifying their network deregulations [64–66] or applying ma-

chine learning to identify driver alterations [67]. Alternatively, we have shown that

Fig. 5 NCGHD annotations of driver genes. a Example of the type of annotation provided in NCGHD for cancer
and healthy drivers (in this case PTEN). Annotation boxes can be expanded for further details, with the
possibility of intersecting data interactively (for example, in the case of protein-protein or miRNA-gene
interactions) and downloading data for local use. b Proportion of Reactome levels 2–8 enriched pathways
mapping to the respective level 1 in each driver group. Enrichment was measured comparing the proportion
of drivers in each pathway to that of the rest of human genes with a one-sided Fisher’s exact test. FDR was
calculated using Benjamini-Hochberg. The numbers of drivers and enriched Reactome pathways are reported
for each group. Proportion of canonical and candidate cancer divers and rest of genes that are (c) targets of
FDA-approved antineoplastic drugs or biomarkers of response or resistance to oncological drugs in (d) cancer
cell lines and (e) clinical studies. The corresponding numbers for each group are also shown
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systems-level properties capture the main features of cancer drivers, justifying their use

for patient-level driver detection [68, 69].

Our comprehensive study has also shown that cancer sequencing screens have so far

mostly focused on resequencing and analyzing the protein-coding portion of cancer ge-

nomes, leaving the contribution of non-coding drivers mostly uncovered. This bias may

be addressed by performing additional cancer whole genome sequencing screens and

improving analytical methods for the prediction of non-coding driver alterations.

Biases are starting to emerge also in the knowledge of healthy drivers. Many non-

cancer sequencing screens only targeted cancer genes and healthy driver detection

methods used so far were originally developed for cancer genomics. Both these factors

may contribute at least in part to explain the high overlap between drivers of cancer

and non-cancer evolution. An unbiased investigation of altered genes able to promote

clonal expansion but not tumorigenesis could confirm whether their properties are in-

deed different from cancer drivers as suggested by our initial analysis on the few of

them that have been identified so far. Additionally, the investigation of somatically mu-

tated clones in non-cancer tissues has just started and new screens are continuously

published. The integrated analysis of these new studies will broaden our understanding

of non-cancer clonal expansion and further clarify its relationship with cancer

transformation.

Our literature review did not cover driver genes deriving from chromosomal rear-

rangements or epigenetic changes because of their scattered annotations in the litera-

ture and difficulty in mapping their properties. Adding these genes to the repertoire

when their knowledge will be mature will help close the gaps in the knowledge of the

genetic drivers of tumorigenesis.

Conclusions
Our comprehensive analysis of cancer sequencing screens showed that the current rep-

ertoire of cancer driver genes is still incomplete and biased towards frequent mutations

altering the gene coding sequence. This calls for the need for additional screens and

methods to identify further coding and non-coding cancer drivers at single patient

resolution. We confirmed the central role of cancer drivers within the cell, which is

reflected in their evolutionary path and is shared by the majority of known healthy

drivers. Further sequencing screens of healthy tissues are needed to clarify whether this

is a feature of all genes whose mutations can driver non-cancer clonal expansion or

there is a group of healthy drivers that underwent a different evolutionary path.

Methods
Literature curation

A literature search was carried out in PubMed, TCGA (https://www.cancer.gov/tcga)

and ICGC (https://dcc.icgc.org/) to retrieve cancer screens published between 2018 and

2020 (Additional file 2, Fig. S1A). This resulted in 135 coding and 154 non-coding can-

cer screens. Of these, only 80 and 37 were retained after examining abstracts and full

text, respectively. Criteria for removal were the absence of driver genes or driver detec-

tion methods and the impossibility to map non-coding driver alterations to genes. The

37 new cancer screens were added to 273 publications previously curated by our team
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[70], totaling 310 publications (Additional file 1, Table S1). A similar literature search

retrieved 24 sequencing screens of non-cancer tissues publications, 18 of which were

retained after the abstract and full-text examination (Additional file 2, Fig. S1A; Add-

itional file 1, Table S1). Each paper was reviewed independently by two experts and fur-

ther discussed if annotations differed to extract the list of driver genes, the number of

donors, the type of screen (whole-genome, whole-exome, target gene re-sequencing),

the cancer or non-cancer tissues, and the driver detection method (Additional file

2, Fig. S1B).

Canonical cancer drivers were extracted from two publications [17, 18] and the

Cancer Gene Census [71] v.91. In the latter case, all tiers 1 and 2 genes were retained,

except those from genomic rearrangements leading to gene fusion (Additional file

2, Fig. S1B). Collected genes were further classified as tumor suppressor, oncogene, or

having a dual role according to the annotation in the majority of sources. Genes with

conflicting or unavailable annotation were left unclassified.

Drivers from cancer screens and canonical sources underwent further filtering (Add-

itional file 2, Fig. S1C). First, they were intersected with a list of 148 possible false posi-

tives [18, 42]. After a manual check of the supporting evidence, two drivers were

retained as canonical, five were considered as candidates, and 41 were removed (Add-

itional file 3, Table S2). The three resulting lists (canonical drivers, drivers from cancer

screens, and healthy drivers) were intersected to annotate canonical drivers in cancer

screens, remaining drivers in cancer screens (candidate cancer drivers), canonical

healthy drivers, candidate healthy drivers, and remaining healthy drivers (Additional file

2, Fig. S1C; Additional file 4, Table S3).

Cancer types and non-cancer tissues were mapped to organ systems using previous

classification [72]. Cancer types not included in this classification were mapped based

on their histopathology (retinoblastoma to central nervous system, vascular and periph-

eral nervous system cancers to soft tissue, penile tumors to urologic system).

Pancancer TCGA data

A dataset of 7953 TCGA samples with quality-controlled mutation (SNVs and indels),

copy number, and gene expression data in 34 cancer types was assembled from the

Genomic Data Commons portal I [73] (https://portal.gdc.cancer.gov/). Mutations were

annotated with ANNOVAR [74] (April 2018) and dbNSFP [75] v3.0 and only those

identified as exonic or splicing were retained. Damaging mutations included (1) trun-

cating (stopgain, stoploss, frameshift) mutations, (2) missense mutations predicted by

at least seven out of 10 predictors (SIFT [76], PolyPhen-2 HDIV [77], PolyPhen-2

HVAR, MutationTaster [78], MutationAssessor [79], LRT [80], FATHMM [81], PhyloP

[82], GERP++RS [83], and SiPhy [84]), (3) splicing mutations predicted by at least one

of two splicing-specific methods (ADA [75] and RF [75]), and (4) hotspot mutations

identified with OncodriveCLUST [85] v1.0.0.

Copy number variant (CNV) segments, sample ploidy, and sample purity values were

obtained from TCGA SNP arrays using ASCAT [86] v.2.5.2. Segments were intersected

with the exonic coordinates of 19,756 human genes in hg19 and genes were considered

to have CNV if at least 25% of their transcribed length was covered by a CNV segment.

RNA-Seq data were used to filter out false-positive CNVs. Putative gene gains were
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defined as copy number (CN) > 2 times sample ploidy and the levels of expression were

compared between samples with and without each gene gain using a two-sided Wil-

coxon rank-sum test and corrected for multiple testing using Benjamini-Hochberg.

Only gene gains with a false discovery rate (FDR) < 0.05 were retained. Homozygous

gene losses had CN = 0 and fragments per kilobase per million (FPKM) values < 1 over

sample purity. Heterozygous gene losses had CN = 1 or CN = 0 but FPKM values > 1

over sample purity. This resulted in 2,192,832 redundant genes damaged in 7921

TCGA samples.

In total, 518,115 genes were considered to acquire LoF alterations because they

underwent homozygous deletion or had truncating, missense damaging, splicing muta-

tions, or double hits (CN = 1 and LoF damaging mutation), while 1,674,717 genes were

considered to acquire GoF alterations because they had a hotspot mutation or under-

went gene gain with increased expression (Fig. 3a).

Systems-level properties

Protein sequences from RefSeq [87] v.99 were aligned to hg38 using BLAT [88]. Unique gen-

omic loci were identified for 19,756 genes based on gene coverage, span, score, and identity

[89]. Genes sharing at least 60% of their protein sequence were considered as duplicates [46].

Evolutionary conservation was assessed for 18,922 human genes using their orthologs

in EggNOG [90] v.5.0. Genes were considered to have a pre-metazoan origin (and

therefore conserved in evolution) if they had orthologs in prokaryotes, eukaryotes, or

opisthokonts [53].

Gene expression for 19,231 genes in 49 healthy tissues was derived from the

union of Protein Atlas [91] v.19.3 and GTEx [92] v.8. Genes were considered to be

expressed in a tissue if their expression value was ≥ 1 transcript per million

(TPM). Protein expression for 13,229 proteins in 45 healthy tissues was derived

from Protein Atlas [91] v.19.3 retaining the highest value when multiple expression

values were available.

A total of 542,397 non-redundant binary interactions between 17,883 proteins were

gathered from the integration of five sources (BioGRID [93] v.3.5.185, IntAct [94]

v.4.2.14, DIP [95] (February 2018), HPRD [96] v.9 and Bioplex [97] v.3.0). Data on 9476

protein complexes involving 8504 proteins were derived from CORUM [98] v.3.0,

HPRD [96] v.9 and Reactome [99] v.72. Experimentally supported interactions between

14,747 genes and 1758 miRNAs were acquired from miRTarBase [100] v.8.0 and miRe-

cords [101] v.4.0. Degree, betweenness, and clustering coefficient were calculated for

protein and miRNA networks using the igraph R package [102] v.1.2.6.

The loss-of-function observed/expected upper bound fraction (LOEUF) score for

18,392 genes was obtained from gnomAD [54] v.2.1.1. Germline mutations (SNVs

and indels) were obtained from the union of 2504 samples from the 1000 Genomes

Project Phase 3 [103] v.5a and 125,748 samples from gnomAD [54] v.2.1.1. Muta-

tions were annotated with ANNOVAR [74] (October 2019), and 18,812 genes were

considered as damaged using the same definitions as for TCGA samples. A total of

32,558 germline SVs for 14,158 genes were derived using 15,708 samples from gno-

mAD [54] v.2.1.1. The numbers of damaging mutations and SVs per base pairs

(bp) were calculated for each gene.
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Essentiality data for 19,013 genes in 1122 cell lines were obtained integrating three

RNAi knockdown and six CRISPR Cas9 knockout screens [55–63]. Genes with CERES

[57] or DEMETER [63] scores < − 1 or Bayes score [104] > 5 were considered as

essential.

Proportions of duplicated, pre-metazoan, essential genes, and proteins engaging in

complexes were compared between the gene groups using two-sided Fisher’s exact test.

Distributions of tissues where genes or proteins were expressed, protein and miRNA

network properties, LOEUF scores, damaging mutations, and SVs per bp were com-

pared between the gene groups using a two-sided Wilcoxon test. Multiple comparisons

within each property were corrected using Benjamini-Hochberg. For each systems-level

property in each driver group (d), a normalized property score was calculated as:

Normalised property score ¼ sgn Δdð Þ �
Δdj j− min

t
Δtj j

max
t

Δtj j− min
t

Δtj j

where t represents 11 gene groups (canonical drivers, candidate drivers, tumor sup-

pressors, oncogenes, drivers with coding alterations, drivers with non-coding alter-

ations, canonical healthy drivers, candidate healthy drivers, remaining healthy drivers,

and the rest of human genes); sgn(Δd) is the sign of the difference; and Δd indicates the

difference of medians (continuous properties) or proportions (categorical properties)

between each driver group and the rest of human genes. Minima and maxima were

taken over all 11 gene groups for each property.

Pancancer cell line data

Mutation, CNV and gene expression data for 1291 cell lines were obtained from Dep-

Map [56, 105] v. 20Q3. Mutations were functionally annotated using ANNOVAR [74]

and LoF mutations were identified as described for TCGA samples. Hotspot mutations

were detected using hotspot positions derived from TCGA. Homozygous gene deletions

were defined as CN < 0.25 times cell line ploidy and expression < 1 TPM; heterozygous

gene deletions were defined as 0.25 < CN < 0.75 times cell line ploidy; gene gains were

defined as CN > 2 times cell line ploidy and significantly higher expression relative to

cell lines with no gene gains. Genes with LoF or GoF alterations were defined as for

TCGA samples. To map cell lines to organ systems, they were first associated with the

TCGA cancer types and then the same classification as for TCGA was used [72].

Driver functional annotation

Gene functions were collected for 11,778 proteins from Reactome [99] v.72 and KEGG

[106] v.94.1 (levels 1 and 2). Driver enrichment in Reactome pathways (levels 2–8)

compared to the rest of human genes was assessed using a one-sided Fisher’s exact test

and corrected for multiple testing with Benjamini-Hochberg. Enriched pathways were

then mapped to the corresponding Reactome level 1.

Drug interactions

A total of 247 FDA-approved, antineoplastic, and immunomodulating drugs targeting

212 human genes were downloaded from DrugBank [107] v.5.1.8. Genetic biomarkers

of response and resistance to drugs in cancer cell lines were obtained from Genomics
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of Drug Sensitivity in Cancer (GDSC) [108] v.8.2. Of those, only 467 associations with

FDR ≤ 0.25 involving 129 drugs and 106 genes were retained. Genetic biomarkers of re-

sponse and resistance in clinical studies were obtained from the Variant Interpretation

for Cancer Consortium Meta-Knowledgebase [109] v.1. A total of 868 associations be-

tween drugs and genomic features involving 64 anti-cancer drugs and drug combina-

tions and 24 human genes were retained [109].

Database and website implementation

All annotations of driver genes were entered into a relational database based on

MySQL [110] v.8.0.21 connected to a web interface enabling interactive retrieval of in-

formation through gene identifiers. The frontend was developed with PHP [111]

v.7.4.15. The interactive displays of miRNA-gene and protein-protein interactions were

implemented with the R packages Shiny [112] v.1.6.0 and igraph [102] v.1.2.6 and ran

on Shiny Server v1.5.16.958.
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a. Publications reporting cancer and noncancer sequencing screens from the initial

literature search in Pubmed, TCGA and ICGC were reviewed at the abstract and full 

text levels and added to three sources of canonical cancer genes and previously 

curated papers in NCG 6.0 [1] for a total of 331 publications.  

b. Two experts reviewed each publication independently and conflicting annotations

were further discussed. Lists of canonical cancer drivers, drivers from cancer and 

noncancer screens, cancer types and noncancer tissues, and methods used to detect 

drivers were annotated. Additionally, the number of cancer and noncancer donors 

were extracted. 

c. The resulting lists of drivers were filtered out for possible false positives (Additional

File 3, Table S2) and intersected to annotate the canonical drivers in cancer screens, 

candidate cancer drivers (remaining drivers in cancer screens), canonical healthy 

drivers, candidate healthy drivers, and remaining healthy drivers. Cancer types and 

noncancer tissues were mapped to organ systems [2]. The full workflow is explained 

in the Methods. 

Usage of driver detection methods across (d) cancer and (e) noncancer screens. If a 

screen used several methods, it was counted multiple times. Multiple versions of the 

same method as well as methods used in less than 8 studies were aggregated. The 

full list is available in Additional File 1, Table S1. 
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Fig. S2. Correlation between numbers of donors and cancer drivers in individual organ 

systems 

Correlations between numbers of sequenced donors and identified cancer drivers in 

individual cancer types mapping to each organ system. Only organ systems with 

significant correlations are reported. Spearman correlation coefficient R and 
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associated p-value are shown. OAC: oesophageal adenocarcinoma. OSCC: 

oesophageal squamous cell carcinoma. COAD: colorectal adenocarcinoma. 
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 Fig. S3: Patterns of driver damaging alterations in TCGA samples. 
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a. Number of TCGA samples with damaging alterations (all, LoF, GoF) in canonical

drivers that were detected (421) or undetected (170) by cancer detection methods, 

divided by type of damaging alterations.  

b. Proportion of gain of function (GoF) alterations affecting seven frequently damaged

(>500 samples) canonical tumour suppressors. All these genes had an organ system- 

specific prevalence of GoF and loss of function (LoF) alterations. 

c. Number of TCGA samples with damaging alterations in genes previously reported

to have coding or only noncoding driver alterations, divided by type of damaging 

alterations.  

 All distributions were compared using a two-sided Wilcoxon rank-sum test. 
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Chapter 7. Discussion 

Recent scientific and clinical advances have led to the widespread 

adoption of ICI to treat several tumour types, including late-stage CRC. Despite 

the vast progress made in this field, many patients still receive no durable clinical 

benefit from these therapies. This is due to innate resistance if the treatment has 

no effect from the beginning or to acquired resistance if, after an initial benefit 

from treatment, the tumour stops responding and resumes its unchecked growth. 

The mechanisms of innate and acquired resistance are still not fully understood 

due to the complex nature of the network that regulates the physiological and 

pathological function of the immune system as well as its interactions with the 

other cell populations constituting the TME112. 

In addition to the complexity of the TME, the other factor impairing a 

complete understanding of the mechanisms underlying resistance to 

immunotherapy is cancer heterogeneity112. Both innate and acquired resistance 

are driven by heterogeneity, which provides the pre-existing genetic alterations 

enabling immune escape42. Some patients will have innate resistance because 

of the specific genetic, epigenetic and TME features of their tumour, even if they 

would be expected to respond to therapy given their histologic and tumour 

features42. Acquired resistance is also driven by heterogeneity, but within the 

tumour. Genetic alterations, either pre-existing or developed during treatment, 

can confer a fitness advantage to one or more clones under the new selective 

pressures introduced by immunotherapy2, 26. Thus, ITH constitutes the primary 

factor driving the emergence of acquired resistance. 
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The impact of inter-tumour heterogeneity in clinical practice is evidenced 

by the large percentage of patients who do not respond to ICI agents despite 

showing features associated with response, such as high TMB or PDL1 

expression in the tumour47, 48. The genetic alterations responsible for primary 

immune escape are likely to have accumulated over months or years while being 

subject to the selective pressure exerted by the endogenous host immune 

response113. For this reason, these alterations are generally present in pre-

existing tumour samples, from which they can be identified through sequencing 

the cancer genome. However, there are still significant differences in mechanism 

across primary sites and cancer types113.  

Besides inter-tumour heterogeneity, genetic ITH also shapes the TME and 

response to immunotherapy, as each clone interacts with the local environment 

according to its specific epigenetic and genetic makeup 24, 25. For this reason, 

studies have taken into account inter-tumour genetic heterogeneity when 

investigating the TME across different tumours. For instance, Ock et al. 114 have 

shown how the potential benefit of anti-CTLA4 immunotherapy is highly variable 

across cancer types and how genomic alterations can significantly affect the 

efficacy of an immunotherapy regime114. Thus, resources like the TCGA3 and 

COSMIC6 database have been instrumental in providing the scientific community 

with a vast repository of genomic and transcriptomic data as well as the functional 

annotation of mutations instrumental in quantifying and interpreting inter-tumour 

heterogeneity. Another of these resources is the NCG database7, whose most 

recent updates are described in chapters five and six. 
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NCG7, differs from TCGA3, COSMIC6 and similar resources because 

instead of reporting mutations, it provides a comprehensive repository of genes 

that have been identified as proven or predicted cancer drivers. In our update of 

the NCG database, we investigated driver heterogeneity across primary sites and 

cancer types, showing that the number of cancer genes, as well as the ratio of 

candidate to known cancer genes, varies significantly across primary sites100. 

This variability is likely due not only to differences in the number of studies and 

overall sample sizes of the analysed cohorts, but also to variable levels of 

genomic instability and other factors, such as exposure to different agents like 

tobacco smoke10.  

We updated the NCG database to its next iteration NCGHD 7 by not only 

updating the repertoire of cancer genes and their system-level properties but also 

extending the analysis to genes that drive non-malignant clone formation in non-

cancer tissues7. Additionally, we expanded our annotations to include genes 

whose driver role depends on mutations in non-coding elements, thus further 

expanding the range of genetic inter-tumour heterogeneity captured by NCG7. As 

part of the database update, we added to our annotations a collection of drug-

gene interaction data, including both genes, which are targets of FDA-approved 

oncological drugs, and genes that are biomarkers of antineoplastic drug 

resistance or response in clinical studies and cancer cell lines7. 

Our analysis did not include cancer drivers originating from chromosomal 

rearrangements or epigenetic alterations in the literature review. This was 

because of the still limited availability of their annotations in the literature and the 

inherent complexity of mapping their properties to specific genomic locations7. 
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Adding these genes to the repertoire when their knowledge is mature will help 

close the gaps in the knowledge of the genetic drivers of tumorigenesis. The 

annotations we produced for NCG have frequently employed the studies 

described in this thesis. First, a list of CRC drivers from NCG was employed for 

the analysis of somatic mutation and gene expression data in our study on the 

impact of ITH on the response to anti-PD1 immunotherapy in CRC107. Then, NCG 

was also a resource for designing all the antibody panels for IMC and mIF 

employed in this study. 

Genetic Inter-tumour heterogeneity on its own does not account for the full 

spectrum of response to ICI treatment as this can only be understood by 

considering the whole TME, including its tumoral, stromal and immune 

components14. Only such an analysis will enable the development of a set of 

biomarkers sufficient to guide the clinical application of ICI therapies. This 

challenge will need to be tackled through approaches like those described in 

section 1.3. While spatial and single-cell omics enable the investigation of ITH, 

highly-multiplexed image analysis will complement these approaches by 

providing an ensemble view of the tissue composition and structure55, 60. This is 

because only highly-multiplexed image data allows the spatially resolved 

characterisation of the cell-cell interaction network underlying all pathological 

functions of the TME56. 

Despite the significant development of highly-multiplexed imaging 

technologies, the computational analysis of their output was still challenging with 

the available software tools94. These tools have significant drawbacks, including 

low scalability and reproducibility, which are compounded by the lack of portability 
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of most tools 94, while many image analysis projects require resources available 

only in HPC environments 60, 89. imcyto87 and MCMICRO89, published at the same 

time as SIMPLI, have partially addressed these issues. However, these tools 

have fixed workflows, which offer very little control on which analysis steps are 

executed. This limits their adaptability to the many challenges posed by the 

analysis of the TME, whose many cell types and levels of organisation require 

highly flexible analysis approaches. We developed SIMPLI, a pipeline that 

provides high portability, reproducibility and scalability while still leaving the user 

in control of its workflow99. This flexibility was not obtained at the expense of ease 

of use, as in our experience, new users can learn to run their analysis after less 

than a day of training. 

The user-friendliness and flexibility will need to be maintained in future 

iterations of SIMPLI for it to remain relevant in the rapidly developing field of 

highly-multiplexed image analysis. The containerised implementation of SIMPLI 

makes the inclusion of additional tools and features easy to implement. This 

adaptability is crucial, as no software tool for pixel classification, cell 

segmentation, or phenotyping has yet reached the status of a gold standard in 

the field, and new approaches are constantly being developed. This is particularly 

the case for the cell-segmentation step, where machine learning-based 

approaches are constantly evolving, and many new open-source tools are being 

developed77. Additionally, SIMPLI would benefit from implementing a pixel 

classification tool to increase its flexibility in the pixel-level analysis step. This 

would enable users to adopt a supervised or an unsupervised approach or both, 

as is the case for the cell-level analysis. 
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These new developments should also conform to the latest standards for 

software pipelines and image data and metadata sharing. For instance, SIMPLI 

would benefit from adopting the nf-core95 framework for pipeline development. 

Implementing this framework would make SIMPLI immediately accessible to a 

broad community of users and developers. This framework would also mandate 

the adoption of scientific-computing best practices like automated continuous-

integration tests and consistent version control and Digital Object Identifier (DOI) 

linking. Apart from nf-core, SIMPLI would benefit from the implementation of an 

interface to OMERO115 to automatically manage image data and metadata and 

retrieve them from remote servers. Finally, all updates to SIMPLI will need to be 

promptly documented and shared with the user base through SIMPLI’s extensive 

wiki (https://github.com/ciccalab/SIMPLI/wiki), which already provides a detailed 

user manual for the current version of the software. 

We applied SIMPLI to the analysis of IMC data in a multiregional multiomic 

study to characterise the genetic and TME-related factors driving the tumour-

immune interactions determining anti-PD1  ICI response in CRC107. SIMPLI’s 

unique cell masking and phenotyping process allowed us to first identify cells 

belonging to the main immune cell populations in the TME and then phenotype 

these populations by unsupervised clustering and expression thresholding in a 

single run. This allowed the in-depth characterisation of the heterogeneity of 

several immune cell populations across hypermutated and non-hypermutated 

CRCs, as well as DB and nDB CRCs. We then validated all these observations 

through SIMPLI’s highly flexible pixel analysis approach, which enabled us to 

quantify the combinations of markers better describing each cell phenotype. 
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This cell– and pixel-level analysis found that hypermutated CRCs are 

enriched in proliferating and cytotoxic CD8+ T cells compared to non-

hypermutated tumours107. This enrichment was probably linked to the low levels 

of Wnt activity in these tumours, as we observed genes of the Wnt pathway to be 

more frequently downregulated and subjected to damaging mutations in 

hypermutated compared with non-hypermutated CRCs. Additionally, Wnt 

downstream targets were significantly downregulated in hypermutated CRCs 

both in our cohort and in TCGA3. Our analysis confirms previous observations of 

CD8+ cell depletion in CRCs116, 117 with high WNT pathway activity and provides 

a more detailed characterisation of these cells, phenotyping them as CD8+GzB+ 

or CD8+Ki67+ 107. 

Across hypermutated CRCs, we observed the same levels of enrichment 

in T cells and their subpopulations between DB- and nDB tumours107. Additionally, 

there was no difference in PD1 and PDL1 expression and complex formation, 

and we identified no differences in T cell composition or activation that 

segregated with response. However, we observed variability in the level of 

disruption of antigen presentation mechanisms and the distribution of activated 

subpopulations of antigen-presenting cells107. 

 We found that DB tumours presented more frequently transcriptional 

dysregulation or damaging mutations in multiple immune-related processes, 

including the interferon-gamma pathway and MHCI antigen presentation107. For 

instance, B2M protein expression derived from the analysis of IMC images with 

SIMPLI was significantly lower in the tumour but not in the stroma of DB tumours. 

Moreover, the analysis of IMC images enabled us to verify the absence of B2M 



Chapter 7. Discussion 

235 

expression from two CRCs harbouring clonal truncating mutations in B2M. These 

results, not observable through bulk RNA-seq only, highlight the importance of 

highly-multiplexed image analysis in multiomic studies107. While B2M loss has 

been previously observed in DB CRCs118, the mechanisms allowing response in 

its absence require further studies. 

We identified a single immune cell population, which differed between DB 

and nDB tumours: CD74+ macrophages107. From the spatial analysis of IMC 

images with SIMPLI, we observed that these are positive for PDL1 and in DB 

patients have a higher tendency to form clusters close to PD1+ CD8+ T cells107. 

Thus, these could be the cells whose PD1/PDL1 interaction is disrupted by anti-

PD1 ICI. Then the CD8+ T cells are freed from inhibition and can perform their 

cytotoxic antitumor function. While the molecular mechanisms employed by 

hypermutated CRCs to avoid elimination by CD8+ T cells require further 

investigation, alterations in antigen presentation mechanisms could represent a 

possible explanation. Since this observation remained valid across two cohorts 

showing genetic and immune inter- and intra- tumour heterogeneity and with 

varied clinical history, it suggests that CD74+ macrophage infiltration has the 

potential to be further researched as a predictor of anti-PD1 response in CRC. 

Our study of the inter- and intra- tumour heterogeneity of CRC in relation 

to response to anti-PD1 immunotherapy highlighted the need to identify cancer-

specific markers of response. We showed the expression of PDL1 and PD1 and 

PD1-PDL1 complex formation were not associated with response107. Additionally, 

we observed that showed that in hypermutated CRC, TMB does no longer 

positively correlate to response, and even CRCs with very high TMB can be nDB 
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tumours107. TMB was also not correlated with T cell infiltration. Thus, these 

biomarkers are not universal predictors of response, and the spectrum of 

variability in tumour genetics and immune features of the TME needs to be 

considered.  

The lack of predictive power of the TMB above the 12 

mutations/megabase pair is because the TMB t provides little information about 

the immunogenicity of the tumour. After predicting the immunogenicity of 

mutations in each patient, we observed a higher number of clonal immunogenic 

mutations in responders. Thus, DB-CRCs had a larger fraction of tumour cells 

with the same potential immune targets compared to nDB-CRCs. This difference 

was reflected in a higher clonality of the productive TCR repertoire in DB-CRCs, 

showing that while responders do not have more mutation, they have significantly 

larger clones harbouring immunogenic mutations and expanded T cell clones. 

These observations are in agreement with a recent study which showed that the 

TMB was associated with response only in cancer types whose neoantigen 

burden was positively correlated with CD8+ T cell infiltration119 and this was not 

the case for the CRCs in our analysis. These results show that the TMB is only 

weakly coupled to ICB response, and other factors, such as WNT pathway 

activation levels and availability of CD8+ T Cells and active antigen-presenting 

cells, could represent better predictors of response to ICI in CRC. 

A multiregional and multiomic approach like the one we adopted for our 

study in CRC is essential for analysing immunotherapy response when 

considering the significant impact of intra-tumour heterogeneity on acquired 

resistance. The study of acquired resistance to ICI is challenging because of the 
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limited availability of longitudinal samples from before treatment and after 

progression. Moreover, the mechanisms of acquired resistance to 

immunotherapy could be highly variable both across cancer types and within 

CRC113. Studies of adoptive T cell therapy in CRC and melanoma have identified 

loss of neoantigen-specific HLA haplotypes120 and loss of B2M121 as possible 

mechanisms of resistance. 

Additionally, because of intra-tumour heterogeneity, the number of 

sampled regions and the time of sampling in the treatment course could 

significantly impact biomarker positivity113. This would lead to an 

underrepresentation of the tumour’s immune and genetic status because of 

sampling bias from a few or single small biopsies or the dynamic nature of 

immunity in the TME. 

For these reasons, multiregional analyses, including highly-multiplexed 

imaging technologies, are necessary to progress beyond a broad categorisation 

of tumours and to identify the specific drivers, pathways and cells responsible for 

ICI resistance in a given patient. Multiplexed methodologies and image analysis 

strategies will enable the investigation of these features and drive the studies 

aiming to bring the identified biomarkers into clinical practice56, 60. These studies 

will require the concerted efforts of multidisciplinary teams, including engineers, 

bioinformaticians, pathologists, oncologists, and immunologists, to develop the 

technologies, analytical software and experimental frameworks to investigate 

intra-tumour heterogeneity in the TME and its impact on immunotherapy 

response.



References 

238 

References 

1. Hausser J, Alon U. Tumour heterogeneity and the evolutionary trade-offs
of cancer. Nature Reviews Cancer 20, 247-257 (2020).

2. Marusyk A, Janiszewska M, Polyak K. Intratumor Heterogeneity: The
Rosetta Stone of Therapy Resistance. Cancer Cell 37, 471-484 (2020).

3. Chang K, et al. The Cancer Genome Atlas Pan-Cancer analysis project.
Nature Genetics 45, 1113-1120 (2013).

4. Zhang J, et al. The International Cancer Genome Consortium Data Portal.
Nature Biotechnology 37, 367-369 (2019).

5. Campbell PJ, et al. Pan-cancer analysis of whole genomes. Nature 578,
82-93 (2020).

6. Tate JG, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer.
Nucleic Acids Research 47, D941-D947 (2019).

7. Dressler L, et al. Comparative assessment of genes driving cancer and
somatic evolution in non-cancer tissues: an update of the Network of
Cancer Genes (NCG) resource. Genome Biology 23, 35 (2022).

8. Clark K, et al. The Cancer Imaging Archive (TCIA): Maintaining and
Operating a Public Information Repository. Journal of Digital Imaging 26,
1045-1057 (2013).

9. Vandin F. Computational Methods for Characterizing Cancer Mutational
Heterogeneity. Frontiers in Genetics 8, 83 (2017).

10. Alexandrov LB, et al. The repertoire of mutational signatures in human
cancer. Nature 578, 94-101 (2020).

11. Hanahan D, Weinberg Robert A. Hallmarks of Cancer: The Next
Generation. Cell 144, 646-674 (2011).

12. Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts Collide:
Genomic, Immune, and Microbial Influences on the Tumor
Microenvironment and Response to Cancer Therapy. Frontiers in
Immunology 9, 946 (2018).

13. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary
lymphoid structures in the era of cancer immunotherapy. Nature Reviews
Cancer 19, 307-325 (2019).



References 

14. Binnewies M, et al. Understanding the tumor immune microenvironment 
(TIME) for effective therapy. Nature Medicine 24, 541-550 (2018).

15. Chen DS, Mellman I. Elements of cancer immunity and the cancer–
immune set point. Nature 541, 321-330 (2017).

16. Sautès-Fridman C, et al. Tertiary lymphoid structures in cancers: 
prognostic value, regulation, and manipulation for therapeutic intervention. 
Frontiers in immunology 7, 407 (2016).

17. Rodriguez-Salas N, et al. Clinical relevance of colorectal cancer molecular 
subtypes. Critical Reviews in Oncology/Hematology 109, 9-19 (2017).

18. Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes 
of colorectal cancer: An emerging therapeutic opportunity for personalized 
medicine. Genes & Diseases 8, 133-145 (2021).

19. Wang W, et al. Molecular subtyping of colorectal cancer: Recent progress, 
new challenges and emerging opportunities. Seminars in Cancer Biology 
55, 37-52 (2019).

20. Guinney J, et al. The consensus molecular subtypes of colorectal cancer. 
Nature Medicine 21, 1350-1356 (2015).

21. Eide PW, et al. Metastatic heterogeneity of the consensus molecular 
subtypes of colorectal cancer. npj Genomic Medicine 6, 59 (2021).

22. Sottoriva A, Barnes CP, Graham TA. Catch my drift? Making sense of 
genomic intra-tumour heterogeneity. Biochimica et Biophysica Acta (BBA)
- Reviews on Cancer 1867, 95-100 (2017).

23. Bakhoum SF, Cantley LC. The Multifaceted Role of Chromosomal 
Instability in Cancer and Its Microenvironment. Cell 174, 1347-1360 (2018).

24. Biswas A, De S. Drivers of dynamic intratumor heterogeneity and 
phenotypic plasticity. American Journal of Physiology-Cell Physiology 320, 
C750-C760 (2021).

25. Janiszewska M. The microcosmos of intratumor heterogeneity: the space-
time of cancer evolution. Oncogene 39, 2031-2039 (2020).

26. Ramón y Cajal S, et al. Clinical implications of intratumor heterogeneity: 
challenges and opportunities. Journal of Molecular Medicine 98, 161-177 
(2020).

27. Stanta G, Bonin S. Overview on Clinical Relevance of Intra-Tumor 

Heterogeneity. Frontiers in Medicine 5,  (2018).

239



References 

28. Korenchan DE, Flavell RR. Spatiotemporal pH heterogeneity as a 
promoter of cancer progression and therapeutic resistance. Cancers 11, 
1026 (2019).

29. Jiménez-Sánchez A, et al. Heterogeneous Tumor-Immune 
Microenvironments among Differentially Growing Metastases in an 
Ovarian Cancer Patient. Cell 170, 927-938.e920 (2017).

30. Zheng Z, Yu T, Zhao X, Gao X, Zhao Y, Liu G. Intratumor heterogeneity: 
A new perspective on colorectal cancer research. Cancer Medicine 9, 
7637-7645 (2020).

31. Sagaert X, Vanstapel A, Verbeek S. Tumor Heterogeneity in Colorectal 
Cancer: What Do We Know So Far? Pathobiology 85, 72-84 (2018).

32. Jones HG, et al. Genetic and epigenetic intra-tumour heterogeneity in 
colorectal cancer. World journal of surgery 41, 1375-1383 (2017).

33. Jeantet M, et al. High intra-and inter-tumoral heterogeneity of RAS 
mutations in colorectal cancer. International journal of molecular sciences 
17, 2015 (2016).

34. Kogita A, et al. Inter-and intra-tumor profiling of multi-regional colon cancer 
and metastasis. Biochemical and biophysical research communications 
458, 52-56 (2015).

35. Normanno N, et al. Heterogeneity of KRAS, NRAS, BRAF and PIK3CA 
mutations in metastatic colorectal cancer and potential effects on therapy 
in the CAPRI GOIM trial. Annals of oncology 26, 1710-1714 (2015).

36. Losi L, Baisse B, Bouzourene H, Benhattar J. Evolution of intratumoral 
genetic heterogeneity during colorectal cancer progression. 
Carcinogenesis 26, 916-922 (2005).

37. De Smedt L, et al. Microsatellite instable vs stable colon carcinomas: 
analysis of tumour heterogeneity, inflammation and angiogenesis. British 
Journal of Cancer 113, 500-509 (2015).

38. Joung J-G, et al. Tumor heterogeneity predicts metastatic potential in 
colorectal cancer. Clinical Cancer Research 23, 7209-7216 (2017).

39. Sveen A, et al. Intra-patient inter-metastatic genetic heterogeneity in 
colorectal cancer as a key determinant of survival after curative liver 
resection. PLoS genetics 12, e1006225 (2016).

40. Hobor S, Van Emburgh BO, Crowley E, Misale S, Di Nicolantonio F, 

Bardelli A. TGFα and amphiregulin paracrine network promotes 

resistance 240



References 

241 

to EGFR blockade in colorectal cancer cells. Clinical Cancer Research 20, 
6429-6438 (2014). 

41. Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune
checkpoints in cancer immunotherapy. Journal of Hematology & Oncology
11, 31 (2018).

42. Galluzzi L, Chan Timothy A, Kroemer G, Wolchok Jedd D, López-Soto A.
The hallmarks of successful anticancer immunotherapy. Science
Translational Medicine 10, eaat7807 (2018).

43. Sahin IH, et al. Immune checkpoint inhibitors for the treatment of MSI-
H/MMR-D colorectal cancer and a perspective on resistance mechanisms.
British Journal of Cancer 121, 809-818 (2019).

44. Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the
Treatment of Cancer: Clinical Impact and Mechanisms of Response and
Resistance. Annual Review of Pathology: Mechanisms of Disease 16,
223-249 (2021).

45. Ott PA, et al. T-cell–inflamed gene-expression profile, programmed death
ligand 1 expression, and tumor mutational burden predict efficacy in
patients treated with pembrolizumab across 20 cancers: KEYNOTE-028.
Journal of Clinical Oncology 37, 318-327 (2019).

46. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to
immune checkpoint inhibitors. British Journal of Cancer 118, 9-16 (2018).

47. Alsaab HO, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for
Cancer Immunotherapy: Mechanism, Combinations, and Clinical
Outcome. Frontiers in Pharmacology 8,  (2017).

48. Salmaninejad A, et al. PD-1/PD-L1 pathway: Basic biology and role in
cancer immunotherapy. Journal of Cellular Physiology 234, 16824-16837
(2019).

49. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory
pathway. Nature Reviews Immunology 18, 153-167 (2018).

50. Ganesh K, et al. Immunotherapy in colorectal cancer: rationale, challenges
and potential. Nature Reviews Gastroenterology & Hepatology 16, 361-
375 (2019).

51. Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 Inhibitors in
Metastatic dMMR/MSI-H Colorectal Cancer. Frontiers in Oncology 9,
(2019).



References 

52. André T, et al. Pembrolizumab in Microsatellite-Instability–High Advanced 
Colorectal Cancer. New England Journal of Medicine 383, 2207-2218 
(2020).

53. Lenz H-J, et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for 
Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic 
Colorectal Cancer: The Phase II CheckMate 142 Study. Journal of Clinical 
Oncology 40, 161-170 (2021).

54. Galon J, et al. MSI status plus immunoscore to select metastatic colorectal 
cancer patients for immunotherapies. Annals of Oncology 29, x4 (2018).

55. Bodenmiller B. Multiplexed Epitope-Based Tissue Imaging for Discovery 
and Healthcare Applications. Cell Systems 2, 225-238 (2016).

56. Lewis SM, et al. Spatial omics and multiplexed imaging to explore cancer 
biology. Nature Methods 18, 997-1012 (2021).

57. Fan J, Slowikowski K, Zhang F. Single-cell transcriptomics in cancer: 
computational challenges and opportunities. Experimental & Molecular 
Medicine 52, 1452-1465 (2020).

58. Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data 
analysis methods. Experimental & Molecular Medicine 52, 1428-1442 
(2020).

59. Bortolomeazzi M, Keddar MR, Ciccarelli FD, Benedetti L. Identification of 
non-cancer cells from cancer transcriptomic data. Biochimica et 
Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1863, 194445 
(2020).

60. Parra ER, Francisco-Cruz A, Wistuba II. State-of-the-Art of Profiling 
Immune Contexture in the Era of Multiplexed Staining and Digital Analysis 
to Study Paraffin Tumor Tissues. Cancers 11,  (2019).

61. Tsujikawa T, et al. Quantitative Multiplex Immunohistochemistry Reveals 
Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor 
Prognosis. Cell Reports 19, 203-217 (2017).

62. Tan WCC, et al. Overview of multiplex 
immunohistochemistry/immunofluorescence techniques in the era of 
cancer immunotherapy. Cancer Communications 40, 135-153 (2020).

63. Morrison LE, et al. Brightfield multiplex immunohistochemistry with 
multispectral imaging. Laboratory Investigation 100, 1124-1136 (2020).

64. Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed 
immunohistochemistry, imaging, and quantitation: A review, with an 
242



References 

243 

assessment of Tyramide signal amplification, multispectral imaging and 
multiplex analysis. Methods 70, 46-58 (2014). 

65. Gerdes MJ, et al. Highly multiplexed single-cell analysis of formalin-fixed,
paraffin-embedded cancer tissue. Proceedings of the National Academy
of Sciences 110, 11982 (2013).

66. Lin J-R, et al. Highly multiplexed immunofluorescence imaging of human
tissues and tumors using t-CyCIF and conventional optical microscopes.
eLife 7, e31657 (2018).

67. Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P.
Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and
Exchange-PAINT. Nature methods 11, 313-318 (2014).

68. Goltsev Y, et al. Deep Profiling of Mouse Splenic Architecture with CODEX
Multiplexed Imaging. Cell 174, 968-981.e915 (2018).

69. Black S, et al. CODEX multiplexed tissue imaging with DNA-conjugated
antibodies. Nature Protocols 16, 3802-3835 (2021).

70. Angelo M, et al. Multiplexed ion beam imaging of human breast tumors.
Nature Medicine 20, 436-442 (2014).

71. Giesen C, et al. Highly multiplexed imaging of tumor tissues with
subcellular resolution by mass cytometry. Nature Methods 11, 417-422
(2014).

72. Vicar T, et al. Cell segmentation methods for label-free contrast
microscopy: review and comprehensive comparison. BMC Bioinformatics
20, 360 (2019).

73. Schmidt U, Weigert M, Broaddus C, Myers G. Cell Detection with Star-
Convex Polygons.). Springer International Publishing (2018).

74. Hollandi R, et al. nucleAIzer: A Parameter-free Deep Learning Framework
for Nucleus Segmentation Using Image Style Transfer. Cell Systems 10,
453-458.e456 (2020).

75. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist
algorithm for cellular segmentation. Nature Methods 18, 100-106 (2021).

76. Greenwald NF, et al. Whole-cell segmentation of tissue images with
human-level performance using large-scale data annotation and deep
learning. bioRxiv, 2021.2003.2001.431313 (2021).



References 

77. Durkee MS, Abraham R, Clark MR, Giger ML. Artificial Intelligence and 
Cellular Segmentation in Tissue Microscopy Images. The American 
Journal of Pathology 191, 1693-1701 (2021).

78. Levine Jacob H, et al. Data-Driven Phenotypic Dissection of AML Reveals 
Progenitor-like Cells that Correlate with Prognosis. Cell 162, 184-197 
(2015).

79. Van Gassen S, et al. FlowSOM: Using self-organizing maps for 
visualization and interpretation of cytometry data. Cytometry Part A 87,
636-645 (2015).

80. Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell 184, 
3573-3587.e3529 (2021).

81. Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of 
machine learning research 9,  (2008).

82. Leland M, John H, Nathaniel S, Lukas G. UMAP: uniform manifold 
approximation and projection. Journal of Open Source Software 3, 861 
(2018).

83. Eling N, Hoch T, Zanotelli V, Fischer J, Schulz D. imcRtools: Methods for 
imaging mass cytometry data analysis. R package version 1.0.0. 
https://githubcom/BodenmillerGroup/imcRtools,  (2021).

84. Stoltzfus CR, et al. CytoMAP: A Spatial Analysis Toolbox Reveals 
Features of Myeloid Cell Organization in Lymphoid Tissues. Cell Reports 
31, 107523 (2020).

85. Ester M, Kriegel H-P, Sander J, Xu X. A density-based algorithm for 
discovering clusters in large spatial databases with noise. In: Kdd) (1996).

86. Eling N, Damond N, Hoch T, Bodenmiller B. cytomapper: an 
R/Bioconductor package for visualization of highly multiplexed imaging 
data. Bioinformatics 36, 5706-5708 (2020).

87. van Maldegem F, et al. Characterisation of tumour microenvironment 
remodelling following oncogene inhibition in preclinical studies with 
imaging mass cytometry. Nature Communications 12, 5906 (2021).

88. Zanotelli V, Bodenmiller B. ImcSegmentationPipeline: A pixelclassification 
based multiplexed image segmentation pipeline. 
https://githubcom/BodenmillerGroup/ImcSegmentationPipeline,  (2017).

89. Schapiro D, et al. MCMICRO: A scalable, modular image-processing 
pipeline for multiplexed tissue imaging. bioRxiv, 2021.2003.2015.435473 
(2021).
244



References 

90. McQuin C, et al. CellProfiler 3.0: Next-generation image processing for 
biology. PLOS Biology 16, e2005970 (2018).

91. Berg S, et al. ilastik: interactive machine learning for (bio)image analysis. 
Nature Methods 16, 1226-1232 (2019).

92. Bankhead P, et al. QuPath: Open source software for digital pathology 
image analysis. Scientific Reports 7, 16878 (2017).

93. Catena R, Montuenga LM, Bodenmiller B. Ruthenium counterstaining for 
imaging mass cytometry. The Journal of pathology 244, 479-484 (2018).

94. Wiesmann V, Franz D, Held C, MÜNzenmayer C, Palmisano R, 
Wittenberg T. Review of free software tools for image analysis of 
fluorescence cell micrographs. Journal of Microscopy 257, 39-53 (2015).

95. Ewels PA, et al. The nf-core framework for community-curated 
bioinformatics pipelines. Nature Biotechnology 38, 276-278 (2020).

96. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame
C. Nextflow enables reproducible computational workflows. Nature 
Biotechnology 35, 316-319 (2017).

97. Afgan E, et al. The Galaxy platform for accessible, reproducible and 
collaborative biomedical analyses: 2018 update. Nucleic Acids Research 
46, W537-W544 (2018).

98. Grüning B, et al. Practical Computational Reproducibility in the Life 
Sciences. Cell Systems 6, 631-635 (2018).

99. Bortolomeazzi M, et al. A SIMPLI (Single-cell Identification from 
MultiPLexed Images) approach for spatially-resolved tissue phenotyping 
at single-cell resolution. Nature Communications 13, 781 (2022).

100. Repana D, et al. The Network of Cancer Genes (NCG): a comprehensive 
catalogue of known and candidate cancer genes from cancer sequencing 
screens. Genome Biology 20, 1 (2019).

101. Sochat VV, Prybol CJ, Kurtzer GM. Enhancing reproducibility in scientific 
computing: Metrics and registry for Singularity containers. PLOS ONE 12, 
e0188511 (2017).

102. imctools. https://githubcom/BodenmillerGroup/imctools,  (2017).

103. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-
cell transcriptomic data across different conditions, technologies, and 
species. Nature Biotechnology 36, 411-420 (2018).
245



References 

246 

104. Henning C. fpc. https://cranr-projectorg/web/packages/fpc/indexhtml,
(2020).

105. Melville JL, Aaron, Djekidel MN, Hao Y. uwot. https://cranr-
projectorg/package=uwot,  (2018).

106. Pau G, Fuchs F, Sklyar O, Boutros M, Huber W. EBImage—an R package
for image processing with applications to cellular phenotypes.
Bioinformatics 26, 979-981 (2010).

107. Bortolomeazzi M, et al. Immunogenomics of Colorectal Cancer Response
to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial
and Validation Cohorts. Gastroenterology 161, 1179-1193 (2021).

108. Eisenhauer EA, et al. New response evaluation criteria in solid tumours:
Revised RECIST guideline (version 1.1). European Journal of Cancer 45,
228-247 (2009).

109. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE
Transactions on Systems, Man, and Cybernetics 9, 62-66 (1979).

110. Kramer AS, et al. InForm software: a semi-automated research tool to
identify presumptive human hepatic progenitor cells, and other histological
features of pathological significance. Scientific Reports 8, 3418 (2018).

111. Strokotov D, et al. Is there a difference between T- and B-lymphocyte
morphology? Journal of Biomedical Optics 14, 064036 (2009).

112. Kumar A, Swain CA, Shevde LA. Informing the new developments and
future of cancer immunotherapy. Cancer and Metastasis Reviews 40, 549-
562 (2021).

113. Hegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy.
Immunity 52, 17-35 (2020).

114. Ock C-Y, et al. Genomic landscape associated with potential response to
anti-CTLA-4 treatment in cancers. Nature Communications 8, 1050 (2017).

115. Allan C, et al. OMERO: flexible, model-driven data management for
experimental biology. Nature Methods 9, 245-253 (2012).

116. Feng M, et al. Pharmacological inhibition of β-catenin/BCL9 interaction
overcomes resistance to immune checkpoint blockades by modulating
Treg cells. Science Advances 5, eaau5240.



References 

247 

117. Xue J, Yu X, Xue L, Ge X, Zhao W, Peng W. Intrinsic β-catenin signaling
suppresses CD8+ T-cell infiltration in colorectal cancer. Biomedicine &
Pharmacotherapy 115, 108921 (2019).

118. Middha S, et al. Majority of B2M-mutant and-deficient colorectal
carcinomas achieve clinical benefit from immune checkpoint inhibitor
therapy and are microsatellite instability-high. JCO precision oncology 3,
1-14 (2019).

119. McGrail DJ, et al. High tumor mutation burden fails to predict immune
checkpoint blockade response across all cancer types. Annals of
Oncology 32, 661-672 (2021).

120. Tran E, et al. T-cell transfer therapy targeting mutant KRAS in cancer. New
England Journal of Medicine 375, 2255-2262 (2016).

121. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR,
Rosenberg SA. Loss of functional beta2-microglobulin in metastatic
melanomas from five patients receiving immunotherapy. JNCI: Journal of
the National Cancer Institute 88, 100-108 (1996).



Appendix A: Supplementary Tables 

248 

Appendix A: Supplementary Tables 

Supplementary Table1_S. Samples used in the study 

Sample ID Tissue Anatomical site Source Imaging 
approach 

T 
cells 
(%) 

Macro
phage
s (%) 

B cells 
(%) 

IgA+ 
cells 
(%) 

Epith
elial 
cells 
(%) 

Dend
ritic 
cells 
(%) 

CD8+
PD1+ 
cells 
(%) 

CD8+
PD1- 
cells 
(%) 

PLD
1+ 
cells 
(%) 

CD8+ 
T cells 
(%) 

CD4+ 
T cells 
(%) 

Treg 
(%) 

CLN1 Human colon 
mucosa 

Colon UCLH IMC 27.8
4 

29.96 NA 35.1
9 

NA 7.00 NA NA NA NA NA NA 

CLN2 Human colon 
mucosa 

Transverse 
colon 

UCLH IMC 20.1
5 

26.79 NA 13.9
0 

NA 39.16 NA NA NA NA NA NA 

CLN3 Human colon 
mucosa 

Ascending 
colon 

UCLH IMC 20.5
6 

24.69 NA 44.1
3 

NA 10.63 NA NA NA NA NA NA 

CLN4 Human colon 
mucosa 

Colon UCLH IMC 56.3
3 

27.98 NA 4.22 NA 11.46 NA NA NA NA NA NA 

CLN5 Human colon 
mucosa 

Ascending 
colon 

ICH IMC 41.7
1 

33.70 NA 18.6
5 

NA 5.94 NA NA NA NA NA NA 

CLN6 Human colon 
mucosa 

Descending 
colon 

ICH IMC 38.5
9 

23.39 NA 29.6
0 

NA 8.42 NA NA NA NA NA NA 

APP1 Human 
appendix 

Appendix UCLH IMC 27.0
4 

5.74 36.30 NA 25.6
5 

5.27 NA NA NA NA NA NA 

CRC1 Human rectal 
cancer 

Rectum UCLH mIF NA NA NA NA NA NA 0.17 5.85 3.73 NA NA NA 

CRC_01_02_
B 

Human CRC Rectum Schürch 
et al., 
2020 

CODEX NA 61.63 6.76 NA NA 0.00 NA NA NA 7.79 1.72 0.23 

CRC_02_04_
B 

Human CRC Ascending 
colon 

Schürch 
et al., 
2020 

CODEX NA 20.93 12.56 NA NA 0.18 NA NA NA 19.50 7.30 2.05 

CRC_03_05_
A 

Human CRC Descending 
colon 

Schürch 
et al., 
2020 

CODEX NA 31.44 9.83 NA NA 1.59 NA NA NA 9.74 17.54 0.97 

CRC_04_08_
B 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 27.65 24.05 NA NA 0.72 NA NA NA 10.92 7.52 1.63 

CRC_05_09_
A 

Human CRC Transversum Schürch 
et al., 

CODEX NA 24.98 3.83 NA NA 0.87 NA NA NA 17.06 11.08 2.42 
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2020 
CRC_06_11_
A 

Human CRC Ascending 
colon 

Schürch 
et al., 
2020 

CODEX NA 22.03 12.96 NA NA 0.13 NA NA NA 45.82 13.03 0.65 

CRC_07_13_
B 

Human CRC Ascending 
colon 

Schürch 
et al., 
2020 

CODEX NA 32.24 21.10 NA NA 0.68 NA NA NA 7.68 6.24 1.01 

CRC_08_16_
B 

Human CRC Rectum Schürch 
et al., 
2020 

CODEX NA 23.53 8.55 NA NA 0.07 NA NA NA 20.08 33.66 0.66 

CRC_09_17_
B 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 23.44 6.70 NA NA 0.57 NA NA NA 14.56 11.86 0.74 

CRC_10_20_
B 

Human CRC Rectum Schürch 
et al., 
2020 

CODEX NA 31.82 4.91 NA NA 0.50 NA NA NA 19.08 12.31 1.06 

CRC_11_21_
A 

Human CRC Descending 
colon 

Schürch 
et al., 
2020 

CODEX NA 27.35 4.66 NA NA 0.39 NA NA NA 49.66 12.90 1.45 

CRC_12_24_
B 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 22.99 25.58 NA NA 0.43 NA NA NA 6.48 24.11 0.35 

CRC_13_26_
B 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 35.34 6.71 NA NA 2.04 NA NA NA 14.34 10.20 2.51 

CRC_14_28_
B 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 47.74 3.88 NA NA 0.49 NA NA NA 14.90 15.75 0.28 

CRC_15_29_
A 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 25.49 16.43 NA NA 0.89 NA NA NA 23.45 14.48 1.87 

CRC_16_32_
A 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 33.62 4.79 NA NA 0.93 NA NA NA 15.15 9.89 0.77 

CRC_17_34_
B 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 54.65 6.34 NA NA 0.59 NA NA NA 17.92 15.12 0.66 

CRC_18_36_
B 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 40.84 6.25 NA NA 4.71 NA NA NA 9.59 12.16 0.17 

CRC_19_38_ Human CRC Cecum Schürch CODEX NA 18.70 16.36 NA NA 0.61 NA NA NA 27.10 8.57 1.13 
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A et al., 
2020 

CRC_20_39_
A 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 42.11 4.06 NA NA 0.25 NA NA NA 19.28 3.30 0.38 

CRC_21_41_
A 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 27.88 7.29 NA NA 1.58 NA NA NA 16.85 11.13 2.66 

CRC_22_43_
A 

Human CRC Descending 
colon 

Schürch 
et al., 
2020 

CODEX NA 39.09 11.36 NA NA 0.23 NA NA NA 14.32 20.23 1.93 

CRC_23_46_
B 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 32.84 7.99 NA NA 3.29 NA NA NA 11.29 25.55 2.66 

CRC_24_47_
A 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 63.32 7.19 NA NA 0.16 NA NA NA 14.94 4.74 0.87 

CRC_25_49_
A 

Human CRC Rectum Schürch 
et al., 
2020 

CODEX NA 29.20 26.05 NA NA 0.08 NA NA NA 10.81 24.92 2.33 

CRC_26_52_
A 

Human CRC Rectum Schürch 
et al., 
2020 

CODEX NA 43.92 6.49 NA NA 1.24 NA NA NA 21.65 17.73 4.23 

CRC_27_54_
A 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 32.36 6.43 NA NA 0.19 NA NA NA 19.30 25.45 1.14 

CRC_28_56_
B 

Human CRC Rectum Schürch 
et al., 
2020 

CODEX NA 41.91 5.62 NA NA 0.79 NA NA NA 4.44 31.76 0.20 

CRC_29_58_
A 

Human CRC Cecum Schürch 
et al., 
2020 

CODEX NA 48.56 10.50 NA NA 0.26 NA NA NA 13.65 21.52 0.00 

CRC_30_59_
A 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 33.59 15.36 NA NA 2.69 NA NA NA 22.22 15.10 2.17 

CRC_31_61_
B 

Human CRC Ascending 
colon 

Schürch 
et al., 
2020 

CODEX NA 44.17 7.00 NA NA 5.61 NA NA NA 10.71 10.71 7.07 

CRC_32_64_
B 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 36.44 14.43 NA NA 6.20 NA NA NA 7.94 23.40 0.00 
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CRC_33_65_
A 

Human CRC Sigma Schürch 
et al., 
2020 

CODEX NA 37.43 15.08 NA NA 0.43 NA NA NA 11.55 8.34 1.60 

CRC_34_68_
A 

Human CRC Descending 
colon 

Schürch 
et al., 
2020 

CODEX NA 46.34 10.99 NA NA 1.70 NA NA NA 12.96 8.64 2.09 

CRC_35_69_
A 

Human CRC Descending 
colon 

Schürch 
et al., 
2020 

CODEX NA 39.07 7.55 NA NA 0.79 NA NA NA 4.13 5.71 0.09 

For each sample reported are the ID, the tissue and anatomical site of origin, the experimental approach, and the 

percentage of cells identified by SIMPLI and used in the analysis and the corresponding figure of the original paper where these 

data are shown. In Fig. 2g, the percentages of cells were measured over the total immune cells; In Figs. 3c and 4d they were 

measured over the total cells. Data shown in Fig. 5b were obtained from a previously published CODEX dataset (1). IMC: 

Imaging Mass Cytometry, mIF: multiplexed immunofluorescence, UCLH: University College London Hospital, ICH: Istituto 

Clinico Humanitas, NA: not applicable. This table was adapted from supplementary data 1 of: 

Bortolomeazzi M, et al. A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue 
phenotyping at single-cell resolution. Nature Communications 13, 781 (2022) 

1. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer
invasive front. Cell 182, 1341–1359.e1319 (2020).
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Supplementary Table 2_S. Antibodies used in the study 

Cell 
population 

Antibody 
Specificity Vendor Catalogue 

Number 
Metal or 
Opal Tag 

Antibody 
Dilution Application 

All leukocytes CD45 Fluidigm 3152016D 152Sm 1 in 500 IMC 
B cells CD20 Fluidigm 3161029D 161Dy 1 in 250 IMC 
B cells IgA NovusBio NB500-469 142Nd 1 in 100 IMC 
B cells IgM NovusBio NBP2-34254 169Tm 1 in 200 IMC 
B cells / T cells CD27 Fluidigm 3171024D 171Yb 1 in 300 IMC 
T cells CD45RA Fluidigm 3166028D 166Er 1 in 2000 IMC 
T cells CD45RO Fluidigm 3173016D 173Yb 1 in 500 IMC 
T cells / 
macrophages CD4 Fluidigm 3156033D 156Gd 1 in 200 IMC 

T cells CD8 Fluidigm 3162035D 162Dy 1 in 800 IMC 
T cells PD1 Fluidigm 3165039D 165Ho 1 in 50 IMC 
T cells CD3 Fluidigm 3170019D 170Er 1 in 800 IMC 
T cells FOXP3 Fluidigm 3155016D 155Gd 1 in 200 IMC 
Macrophages CD68 Fluidigm 3159035D 159Tb 1 in 400 IMC 
Macrophages CD16 Fluidigm 3146020D 146Nd 1 in 200 IMC 
Macrophages 
and dendritic 
cells 

CD11c Abcam ab216655 175 Lu 1 in 400 IMC 

Macrophages, 
dendritic cells, 
tumour cells 

PDL1 RnD System MAB1561 150Nd 1 in 70 IMC 

Endothelial 
cells CD34 Abcam ab213058 164Dy 1 in 150 IMC 

Epithelial cells Pan keratin Fluidigm 3148020D 148Nd 1 in 3000 IMC 
Epithelial cells E-Cadherin Fluidigm 3158029D 158Gd 1 in 3000 IMC 
Basement 
membrane cells 

Collagen type 
IV NovusBio NBP1-97716 176Yb 1 in 30 IMC 

Proliferating 
cells Ki67 Fluidigm 3168022D 168Er 1 in 400 IMC 

Stromal cells Vimentin Fluidigm 3143029D 143Nd 1 in 8000 IMC 
Stromal cells SMA Fluidigm 3141017D 141Pr 1 in 4000 IMC 
Various CAMK4 NovusBio NBP2-37428 174Yb 1 in 250 IMC 
Various IFNA5 CloudClone MAG975Hu22 147Sm 1 in 100 IMC 
Various VEGFC Abcam ab191274 154Sm 1 in 600 IMC 
T cells CD3 Dako A0452 NA 1 in 200 IHC 

NA Anti-Rabbit-
HRP Dako P0448 NA 1 in 200 IHC 

T cells CD8 Cell Signaling 
Technologies 85336 Opal 780 

(1:75) 1 in 200 mIF 

T cells GzB Abcam ab208586 Opal 480 
(1:600) 1 in 100 mIF 

T cells PD1 Abcam ab137132 Opal 650 
(1:100) 1 in 300 mIF 

Proliferating 
cells ki67 BD 

Biosciences 550609 Opal 690 
(1:150) 1 in 200 mIF 

Macrophages CD68 BioLegend 916104 Opal 620  
(1:700) 1 in 1000 mIF 

Macrophages, 
dendritic cells, 
tumour cells 

PDL1 RnD System MAB1561 Opal 520 
(1:150) 1 in 450 mIF 

Stromal cells CD44 NA NA NA NA CODEX 
T cells FOXP3 NA NA NA NA CODEX 
Epithelial cells CDX2 NA NA NA NA CODEX 
T cells CD8 NA NA NA NA CODEX 
Various p53 NA NA NA NA CODEX 
T cells GATA3 NA NA NA NA CODEX 
All leukocytes CD45 NA NA NA NA CODEX 
T cells Tbet NA NA NA NA CODEX 
Various Beta catenin NA NA NA NA CODEX 
Macrophages 
and dendritic 
cells 

HLADR NA NA NA NA CODEX 
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Macrophages, 
dendritic cells, 
tumour cells 

PDL1 NA NA NA NA CODEX 

Proliferating 
cells Ki67 NA NA NA NA CODEX 

T cells CD45RA NA NA NA NA CODEX 
T cells CD4 NA NA NA NA CODEX 
Dendritic cells CD21 NA NA NA NA CODEX 
Epithelial cells MUC1 NA NA NA NA CODEX 
Various CD30 NA NA NA NA CODEX 
T cells CD2 NA NA NA NA CODEX 
Stromal cells Vimentin NA NA NA NA CODEX 
B cells CD20 NA NA NA NA CODEX 
Various LAG3 NA NA NA NA CODEX 
Various NaKATPase NA NA NA NA CODEX 
T cells CD5 NA NA NA NA CODEX 
Various IDO1 NA NA NA NA CODEX 
Epithelial cells Cytokeratin NA NA NA NA CODEX 
Macrophages 
and dendritic 
cells 

CD11b NA NA NA NA CODEX 

NK cells CD56 NA NA NA NA CODEX 
Stromal cells aSMA NA NA NA NA CODEX 
Various BCL2 NA NA NA NA CODEX 
Various CD25 NA NA NA NA CODEX 
Basement 
membrane cells 

Collagen type 
IV NA NA NA NA CODEX 

Macrophages 
and dendritic 
cells 

CD11c NA NA NA NA CODEX 

T cells PD1 NA NA NA NA CODEX 
T cells GzB NA NA NA NA CODEX 
Various EGFR NA NA NA NA CODEX 
Various VISTA NA NA NA NA CODEX 
Granulocytes CD15 NA NA NA NA CODEX 
Various CD194 NA NA NA NA CODEX 
Various ICOS NA NA NA NA CODEX 
Various MMP9 NA NA NA NA CODEX 
Neuroendocrine 
cells Synaptophysin NA NA NA NA CODEX 

Various CD71 NA NA NA NA CODEX 
Nervous cells GFAP NA NA NA NA CODEX 
T cells CD7 NA NA NA NA CODEX 
T cells CD3 NA NA NA NA CODEX 
Neuroendocrine 
cells ChromograninA NA NA NA NA CODEX 

Macrophages CD163 NA NA NA NA CODEX 
NK cells CD57 NA NA NA NA CODEX 
T cells CD45RO NA NA NA NA CODEX 
Macrophages CD68 NA NA NA NA CODEX 
Endothelial 
cells CD31 NA NA NA NA CODEX 

Lymphatic 
endothelial cells Podoplanin NA NA NA NA CODEX 

Endothelial 
cells CD34 NA NA NA NA CODEX 

B cells CD38 NA NA NA NA CODEX 
Plasma cells CD138 NA NA NA NA CODEX 
Various MMP12 NA NA NA NA CODEX 

For each antibody reported are the associated cell population, the 

catalogue number, the vendor, the  tag, the dilution used in the staining, the 

experimental application and the corresponding reference figure. Data shown in 
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Fig. 5b were obtained from a previously published CODEX dataset (1). IMC: 

Imaging Mass Cytometry, IHC: Immunohistochemistry, mIF: multiplexed 

immunofluorescence, CODEX: co-detection by indexing, NA: not applicable. 

This table was adapted from supplementary data 2 of: 

Bortolomeazzi M, et al. A SIMPLI (Single-cell Identification from MultiPLexed 
Images) approach for spatially-resolved tissue phenotyping at single-cell 
resolution. Nature Communications 13, 781 (2022) 

1. Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate
antitumoral immunity at the colorectal cancer invasive front. Cell 182,
1341–1359.e1319 (2020).
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Supplementary Table 1_I. Patients and samples used in the study 

Pati
ent 
ID 

Treatment Cohor
t 

Prior 
lines of 
chemoth
erapy (n) 

Treat
ment 
respo
nse 

PF
S 
(da
ys) 

Ben
efit 

Tumor 
source 

Histologica
l 
type 

Anatom
ical site 

Tumo
ur 
diam
eter 
(mm) 

Tumour 
staging 

MMR 
protei
n loss 
(IHC) 

MMR 
germli
ne 
mutati
on 

Lynch 
syndr
ome 

MSI 
status 
(Bioc
artis ) 

TM
B 
(F
M1) 

TM
B 
(WE
S) 

Hypermu
tated 
phenotyp
e 

UH1 Pembroliz
umab 

Disco
very 0 CR 122

3 DB Primary Adenocarc
inoma Rectum NA pT4b 

N2 Mx 
MLH1, 
PMS2 

Unkn
own Y Y 76 46 Y 

UH2 Pembroliz
umab 

Disco
very 0 PD 56 nDB Primary Adenocarc

inoma 
Sigmoi
d 50 pT4b 

N2 Mx 
MLH1, 
PMS2 

Unkn
own N N 2 4 N 

UH3 Pembroliz
umab 

Disco
very 0 

 SD 
then 
PD 

155 nDB Primary Adenocarc
inoma 

Caecu
m 60 pT4b 

N1 M0 
MLH1, 
PMS2 

Unkn
own N N 4 5 N 

UH4 Pembroliz
umab 

Disco
very 1 PR 719 DB Primary 

Mucinous 
adenocarci
noma 

Sigmoi
d 55 pT4 N0 

Mx 

Not 
perfor
med 

MSH
2 Y Y 56 38 Y 

UH5 Pembroliz
umab 

Disco
very 0 

 SD 
then 
PD 

113 nDB Primary Adenocarc
inoma 

Caecu
m 40 pT4b 

N0 Mx 
MLH1, 
PMS2 

Unkn
own N Y 77 56 Y 

UH6 Pembroliz
umab 

Disco
very 0 

PR 
then 
PD 

292 nDB Primary Adenocarc
inoma 

Descen
ding 
colon 

25 pT4b 
N1 M0 

MLH1, 
PMS2 

Unkn
own N N 9 4 N 

UH7 Pembroliz
umab 

Disco
very 0 CR 802 DB Primary 

Mucinous 
adenocarci
noma 

Transv
erse 
colon 

115 
pT4b 
pN2 
pM1 

MLH1, 
PMS2 

Unkn
own N Y 28 43 Y 

UH8 Pembroliz
umab 

Disco
very 0 CR 122

3 DB Primary Adenocarc
inoma 

Caecu
m 55 pT4b 

N1 MX 
MLH1, 
PMS2 

Unkn
own Y Y 33 33 Y 

UH9 Pembroliz
umab 

Disco
very 0 CR 110

3 DB Primary Adenocarc
inoma 

Caecu
m 45 pT4 

pN0 
MLH1, 
PMS2 

Unkn
own N Y 53 44 Y 

UH1
0 

Pembroliz
umab 

Disco
very 0 

 SD 
then 
PD 

194 nDB 

Anasto
motic 
recurre
nce 

Adenocarc
inoma 

Caecu
m 10 pT4 N2 

M0 

Not 
perfor
med 

MSH
2 Y Y 48 55 Y 

UH1
1 

Nivoluma
b 

Disco
very 3 

 SD 
then 
PD 

179 nDB Primary 
Mucinous 
adenocarci
noma 

Caecu
m 20 

pT30 
pN1 
pM1 

MLH1, 
PMS2 

Unkn
own Y NA NA 122 Y 

UH1
2 

Nivoluma
b 

Disco
very 0 PD 84 nDB Primary Poorly 

differentiat
Caecu
m 52 pT3 

pN0 
MLH1, 
PMS2 

Unkn
own N NA NA 65 Y 
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ed  
adenocarci
noma 

ascendi
ng 
colon 

UH1
3 

Nivoluma
b 

Disco
very 3 SD 365 DB Primary 

Mucinous 
adenocarci
noma 

Transv
erse 
colon 

75 
pT3 
pN1 
pMX 

MLH1, 
PMS2 

Unkn
own Y NA 20 27 Y 

UH1
4 

Nivoluma
b 

Disco
very 0 CR 392 DB Primary Adenocarc

inoma 
Caecu
m 60 pT4b 

N1b 
MLH1, 
PMS2 

Unkn
own N NA NA 53 Y 

UH1
5 

Nivoluma
b 

Disco
very 1 SD 533 DB Primary Adenocarc

inoma 
Append
ix 60 pT4b 

N2 Mx 

MSH2
, 
MSH6 

Unkn
own N NA NA 16 Y 

UH1
6 

Nivoluma
b 

Disco
very 0 SD 578 DB Primary 

Mucinous 
adenocarci
noma 

Splenic 
flexure 34 pT4a 

N1 Mx MLH1 Unkn
own Y NA 15 10 Y 

UH1
7 

Pembroliz
umab 

Valida
tion 1 PR 653 DB Primary 

Poorly 
differentiat
ed  
adenocarci
noma 

Ascend
ing 
colon 

40 
pT3 
pN0 
pMx 

PMS2 PSM2 Y NA 21 NA Y 

UH1
8 

Pembroliz
umab 

Valida
tion 1 PR 613 DB Primary 

Poorly 
differentiat
ed  
adenocarci
noma 

Hepatic 
flexure 55 pT4b 

N1 pMX 
MLH1, 
PMS2 

Unkn
own Y NA 32 NA Y 

UH1
9 

Pembroliz
umab 

Valida
tion 1 

SD 
then 
PD 

111 nDB Primary 

Poorly 
differentiat
ed  
adenocarci
noma 

Transv
erse 
colon 

80 
pT4a 
pN2b 
pMx 

MSH2
, 
MSH6 

MSH
2 Y NA 38 NA Y 

UH2
0 

Nivoluma
b 

Valida
tion 1 PR 508 DB Primary 

Mucinous 
adenocarci
noma 

Transv
erse 
colon 

70 
pT4b 
pN1b 
pMx 

MLH1, 
PMS2 

Unkn
own N NA NA NA Y 

UH2
1 

Nivoluma
b 

Valida
tion 2 SD 878 DB Primary Adenocarc

inoma 

Transv
erse 
colon 

30 
pT4b 
pN1 
pM1 

MLH1, 
PMS2 

Unkn
own N NA NA NA Y 

UH2
2 

Nivoluma
b 

Valida
tion 1 

PR 
then 
PD 

970 DB Primary Adenocarc
inoma 

Sigmoi
d 70 

pT3 
pN1 
pM1 

MSH2
, 
MSH6 

Unkn
own Y NA NA NA Y 

UH2
3 

Nivoluma
b 

Valida
tion 1 PD 45 nDB Primary 

Mucinous 
adenocarci
noma 

Sigmoi
d 130 pT4b 

N1 MX 

MSH2
, 
MSH6 

MSH
2 Y NA NA NA Y 
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UH2
4 

Nivoluma
b 

Valida
tion 0 PD 55 nDB 

Biopsy 
from 
primary 

Adenocarc
inoma 

Ascend
ing 
colon 

NA pT3N2
M1b 

MLH1, 
PMS2 

MSH
2 Y NA NA NA Y 

UH2
5 

Nivoluma
b 

Valida
tion 1 PR 436 DB Primary Adenocarc

inoma 

Ascend
ing 
colon 

20 pT3 N2 
Mx 

MSH2
, 
MSH6 

Unkn
own Y NA 39 NA Y 

UH2
6 

Pembroliz
umab 

Valida
tion 3 PR 158

1 DB Primary Adenocarc
inoma 

Transv
erse 
colon 

75 pT4 N2 
Mx 

MLH1, 
PMS2 

Unkn
own Y NA 29 NA Y 

UH2
7 

Nivoluma
b + 
Ipilimuma
b followed 
by 
Nivoluma
b 

Valida
tion 1 PR 583 DB Primary Adenocarc

inoma 

Ascend
ing 
colon 

30 
pT4a 
pN2a 
pM0 

MLH1, 
PMS2 

Unkn
own N NA 44 NA Y 

UH2
8 

Nivoluma
b followed 
by 
Nivoluma
b + 
Ipilimuma
b 

Valida
tion 1 PR 334 DB 

Biopsy 
from 
primary 

Adenocarc
inoma Rectum NA pT4bN2

M1b 

MSH2
, 
MSH6 

Unkn
own N NA NA NA Y 

Treatment response was assessed with RECIST 1.1 and  progression free survival (PFS) was used to divide patients into 

durable benefit (DB, PFS  >12 months; censor date: 31/12/2019 for the discovery cohort and  30/10/2020 for the validation 

cohort) or non-durable benefit (nDB, progressive disease or benefit <12 months), with the exception of UH28  (Methods). Prior 

lines of chemotherapy refer to the metastatic setting before receiving anti-PD1 treatment. Tumour histological type, anatomical 

site, maximum diameter and staging, and MMR deficiency were derived from the patient pathology report. The MSI status was 
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assessed using Idylla MSI assay (Biocartis) (1) and the tumour mutational burden (TMB) was assessed using the FoundationOne 

(FM1) test (2) and whole exome sequencing (WES). For WES, shown is the mean of TMB between the two tumour regions 

sequenced. Hypermutated status was defined as TMB higher than 12 muts/Mbps in at least one of the regions sequenced.  CR: 

complete response; PR: partial response; PD: progressive disease; SD: stable disease; MMR: mismatch repair; MSI: 

microsatellite instability; NA: not available. 

This table was adapted from supplementary table 1 of: 

Bortolomeazzi, M. et al. Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the 

KEYNOTE 177 Trial and Validation Cohorts. Gastroenterology 161, 1179-1193 (2021). 

1. Craene, B. D. et al. Detection of microsatellite instability (MSI) in colorectal cancer samples with a novel set of highly

sensitive markers by means of the Idylla MSI Test prototype. Journal of Clinical Oncology 36, e15639-e15639, 

doi:10.1200/JCO.2018.36.15_suppl.e15639 (2018).
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2. Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel

DNA sequencing. Nat Biotechnol 31, 1023-1031, doi:10.1038/nbt.2696 (2013).
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Supplementary Table 2_I. Description of tumour regions 

Patie
nt ID Treatment Cohort Sample ID 

CD3 
staini
ng 
(slide 
A; 90) 
Both 
cohort
s 

Tumo
ur 
conte
nt 
(%; 
slide 
A; 55) 
Both 
cohort
s 

CD3 
cells/m
m2 
(median
; slide 
B; 76) 
Discove
ry 
cohort 

CD3 
cells/m
m2 
(median
; slide 
F; 59) 
Discove
ry 
cohort 

CD3 
cells/m
m2 
(median
; slide 
H; 59) 
Discove
ry 
cohort 

CD3 
cells/m
m2 
(median
; slide J; 
75) 
Discove
ry 
cohort 

HE 
staining 
(slide B; 
13) 
Validati
on 
cohort  

CD3 
cells/m
m2 
(median
; slide 
E; 29) 
Validati
on 
cohort 

CD3 
cells/m
m2 
(median
; slide 
G; 30) 
Validati
on 
cohort 

IMC 
(slide C; 
77) 
Both 
cohorts 

mIF 
(slide 
D; 24) 
Both 
cohor
ts 

WES 
(slides 
E1-5; 
32) 
Discove
ry 
cohort 

RNAse
q 
(slides 
G1-5; 
58) 
Discove
ry 
cohort 

RNAse
q 
(slides 
F1-5; 
30) 
Validati
on 
cohort 

TCRseq 
(slides I1-
5; 28) 
Discovery 
cohort 

PD1-
PDL1 
A-FRET
(median  
% 
efficienc
y; slides 
K1-2; 
58) 
Discove
ry 
cohort 

UH1  Pembrolizu
mab 

Discove
ry 

UH1_TOTA
L NA NA 421.6 NA NA 299.55 NA NA NA NA Y NA NA NA NA NA 

UH1  Pembrolizu
mab 

Discove
ry UH1_34 Y NA 364.6 505.1 524.1 399.4 NA NA NA N NA N Y NA N 0.0 

UH1  Pembrolizu
mab 

Discove
ry UH1_35 Y 50.0 518.5 521.4 588.0 421.6 NA NA NA Y (2) NA Y Y NA N 0.0 

UH1  Pembrolizu
mab 

Discove
ry UH1_36 Y 60.0 247.3 288.5 255.2 222.0 NA NA NA Y (2) NA Y Y NA N 0.0 

UH1  Pembrolizu
mab 

Discove
ry UH1_37 Y NA 188.3 NA 292.21 244.08 NA NA NA N NA N Y NA N 0.0 

UH2  Pembrolizu
mab 

Discove
ry 

UH2_TOTA
L NA NA 66.6 NA NA 99.85 NA NA NA NA N NA NA NA NA NA 

UH2  Pembrolizu
mab 

Discove
ry UH2_39 Y 70.0 63.3 122.0 77.7 110.9 NA NA NA Y NA Y Y NA Y 0.0 

UH2  Pembrolizu
mab 

Discove
ry UH2_40 Y NA 46.0 55.5 199.7 94.7 NA NA NA N NA N Y NA N 0.0 

UH2  Pembrolizu
mab 

Discove
ry UH2_41 Y NA 99.9 88.8 156.5 122.0 NA NA NA N NA N Y NA N 0.0 

UH2  Pembrolizu
mab 

Discove
ry UH2_42 Y 65.0 55.5 99.9 44.4 69.9 NA NA NA Y NA Y Y NA Y 0.0 

UH3  Pembrolizu
mab 

Discove
ry 

UH3_TOTA
L NA NA 166.4 NA NA 277.36 NA NA NA NA N NA NA NA NA NA 

UH3  Pembrolizu
mab 

Discove
ry UH3_12 Y 80.0 433.8 654.6 310.6 420.8 NA NA NA Y NA Y Y NA Y 0.0 

UH3  Pembrolizu
mab 

Discove
ry UH3_13 Y NA 615.7 776.6 510.3 965.2 NA NA NA N NA N Y NA N 3.8 

UH3  Pembrolizu
mab 

Discove
ry UH3_15 Y NA 377.2 499.3 266.3 299.6 NA NA NA N NA N Y NA N 2.6 

UH3  Pembrolizu
mab 

Discove
ry UH3_14 Y 50.0 33.3 33.3 22.8 149.2 NA NA NA Y NA Y Y NA Y 0.0 

UH3  Pembrolizu
mab 

Discove
ry UH3_16 Y NA 160.9 366.1 119.4 55.5 NA NA NA N NA N Y NA N 2.0 

UH4  Pembrolizu
mab 

Discove
ry 

UH4_TOTA
L NA NA 44.4 NA NA 44.56 NA NA NA NA Y NA NA NA NA NA 

UH4  Pembrolizu
mab 

Discove
ry UH4_4 Y 20.0 116.5 

180.6 70.7 66.6 NA NA NA 

Y 
(overlappi
ng with 
UH4_5) 

NA 

Y 
(merge
d with 
UH4_5) 

Y 
(merge
d with 
UH4_5) NA 

N 

0.0 
(merge
d with 
UH4_H
5) 
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UH4  Pembrolizu
mab 

Discove
ry UH4_5 Y 20.0 110.9 

194.7 110.9 110.9 NA NA NA 

Y 
(overlappi
ng with 
UH4_4) 

NA 

Y 
(merge
d with 
UH4_4) 

Y 
(merge
d with 
UH4_4) NA 

N 

0.0 
(merge
d with 
UH4_H
4) 

UH4  Pembrolizu
mab 

Discove
ry UH4_2 Y 20.0 34.9 

99.9 33.3 11.1 NA NA NA 

Y 
(overlappi
ng with 
UH4_3) 

NA 

Y 
(merge
d with 
UH4_3) 

Y 
(merge
d with 
UH4_3) NA 

N 

0.0 
(merge
d with 
UH4_L3
) 

UH4  Pembrolizu
mab 

Discove
ry UH4_3 Y 20.0 23.0 

69.5 27.7 20.7 NA NA NA 

Y 
(overlappi
ng with 
UH4_2) 

NA 

Y 
(merge
d with 
UH4_2) 

Y 
(merge
d with 
UH4_2) NA 

N 

0.0 
(merge
d with 
UH4_L2
) 

UH5  Pembrolizu
mab 

Discove
ry 

UH5_TOTA
L NA NA 463.8 NA NA 355.02 NA NA NA NA Y NA NA NA NA NA 

UH5  Pembrolizu
mab 

Discove
ry UH5_7 Y 60.0 1048.5 870.9 704.5 733.8 NA NA NA Y NA Y Y NA N 0.0 

UH5  Pembrolizu
mab 

Discove
ry UH5_8 Y NA 823.5 1027.6 632.4 976.3 NA NA NA N NA N Y NA N 0.0 

UH5  Pembrolizu
mab 

Discove
ry UH5_10 Y 60.0 255.3 345.1 199.7 177.5 NA NA NA Y NA Y Y NA N 0.0 

UH5  Pembrolizu
mab 

Discove
ry UH5_9 Y NA 576.9 632.4 355.0 515.9 NA NA NA N NA N Y NA N 0.0 

UH6  Pembrolizu
mab 

Discove
ry 

UH6_TOTA
L NA NA 355.0 NA NA 321.74 NA NA NA NA N NA NA NA NA NA 

UH6  Pembrolizu
mab 

Discove
ry UH6_29 Y NA 521.4 360.6 466.0 288.5 NA NA NA Y NA N Y NA N 0.6 

UH6  Pembrolizu
mab 

Discove
ry UH6_30 Y NA 593.4 687.9 624.2 504.8 NA NA NA Y NA N Y NA N 8.3 

UH6  Pembrolizu
mab 

Discove
ry UH6_31 Y 40.0 588.0 515.0 NA NA NA NA NA Y NA Y Y NA Y 4.6 

UH6  Pembrolizu
mab 

Discove
ry UH6_28 Y 30.0 255.2 271.8 342.4 342.7 NA NA NA Y NA Y Y NA Y 0.7 

UH7  Pembrolizu
mab 

Discove
ry 

UH7_TOTA
L NA NA 55.5 NA NA 55.47 NA NA NA NA Y NA NA NA NA NA 

UH7  Pembrolizu
mab 

Discove
ry UH7_52 Y 50.0 177.5 161.1 210.8 168.3 NA NA NA Y NA Y Y NA Y 0.0 

UH7  Pembrolizu
mab 

Discove
ry UH7_53 Y NA 77.7 66.7 88.8 180.3 NA NA NA N NA N Y NA N 0.0 

UH7  Pembrolizu
mab 

Discove
ry UH7_54 Y NA 44.4 36.0 66.6 44.4 NA NA NA N NA N Y NA N 0.0 

UH7  Pembrolizu
mab 

Discove
ry UH7_55 Y 40.0 55.5 55.6 44.4 77.8 NA NA NA Y NA Y Y NA Y 0.0 

UH8  Pembrolizu
mab 

Discove
ry 

UH8_TOTA
L NA NA 133.1 NA NA 133.13 NA NA NA NA Y NA NA NA NA NA 

UH8  Pembrolizu
mab 

Discove
ry UH8_23 Y NA 521.4 476.0 244.1 507.9 NA NA NA N NA N Y NA N 0.1 

UH8  Pembrolizu
mab 

Discove
ry UH8_24 Y 70.0 490.4 476.0 459.9 593.6 NA NA NA Y (2) NA Y Y NA Y 0.0 

UH8  Pembrolizu
mab 

Discove
ry UH8_25 Y 75.0 110.9 79.5 155.3 77.4 NA NA NA Y NA Y Y NA Y 0.6 

UH8  Pembrolizu Discove UH8_26 Y NA 99.9 97.2 66.6 300.2 NA NA NA N NA N Y NA N 0.0 
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mab ry 

UH9  Pembrolizu
mab 

Discove
ry 

UH9_TOTA
L NA NA 122.0 NA NA 305.00 NA NA NA NA Y NA NA NA NA NA 

UH9  Pembrolizu
mab 

Discove
ry UH9_18 Y 60.0 338.4 221.9 255.2 466.0 NA NA NA Y NA Y Y NA Y 0.3 

UH9  Pembrolizu
mab 

Discove
ry UH9_20 Y NA 151.7 233.0 221.9 233.0 NA NA NA Y (2) NA N Y NA N 0.0 

UH9  Pembrolizu
mab 

Discove
ry UH9_19 Y NA 231.3 244.1 299.6 477.1 NA NA NA Y (2) NA N Y NA N 0.0 

UH9  Pembrolizu
mab 

Discove
ry UH9_21 Y 50.0 22.2 144.2 64.5 110.9 NA NA NA Y NA Y Y NA Y 0.0 

UH10  Pembrolizu
mab 

Discove
ry 

UH10_TOT
AL NA NA 931.9 NA NA 650.01 NA NA NA NA Y NA NA NA NA NA 

UH10  Pembrolizu
mab 

Discove
ry UH10_47 Y 30.0 1717.2 1852.8 1825.1 1531.0 NA NA NA Y NA Y Y NA Y 0.0 

UH10  Pembrolizu
mab 

Discove
ry UH10_48 Y NA 703.0 672.0 718.4 654.6 NA NA NA N NA N Y NA N 0.0 

UH10  Pembrolizu
mab 

Discove
ry UH10_49 Y 60.0 693.4 628.8 687.9 432.7 NA NA NA Y NA Y Y NA Y 0.0 

UH10  Pembrolizu
mab 

Discove
ry UH10_50 Y NA 699.2 604.6 964.0 809.9 NA NA NA N NA N Y NA N 0.0 

UH11  Nivolumab Discove
ry 

UH11_TOT
AL NA NA 44.4 NA NA 77.66 NA NA NA NA Y NA NA NA NA NA 

UH11  Nivolumab Discove
ry UH11_73 Y 25.0 66.6 88.8 99.9 122.0 NA NA NA Y NA Y Y NA Y 0.0 

UH11  Nivolumab Discove
ry UH11_74 Y 28.0 77.7 77.7 67.1 77.7 NA NA NA Y NA Y Y NA Y 0.0 

UH12  Nivolumab Discove
ry 

UH12_TOT
AL NA NA 209.2 NA NA 403.36 NA NA NA NA Y NA NA NA NA NA 

UH12  Nivolumab Discove
ry UH12_76 Y 80.0 865.4 931.9 887.6 931.9 NA NA NA Y NA Y Y NA Y 0.0 

UH12  Nivolumab Discove
ry UH12_78 Y 80.0 550.7 805.6 685.7 801.0 NA NA NA Y NA N Y NA Y 0.6 

UH12  Nivolumab Discove
ry UH12_77 Y 80.0 288.5 310.6 366.1 283.1 NA NA NA Y NA Y Y NA Y 0.0 

UH12  Nivolumab Discove
ry UH12_79 Y 80.0 421.6 344.0 489.7 410.5 NA NA NA Y NA N Y NA Y 8.6 

UH13  Nivolumab Discove
ry 

UH13_TOT
AL NA NA 44.4 NA NA 44.38 NA NA NA NA Y NA NA NA NA NA 

UH13  Nivolumab Discove
ry UH13_68 Y 13.0 95.3 99.9 122.0 110.9 NA NA NA Y NA Y Y NA Y 0.0 

UH13  Nivolumab Discove
ry UH13_69 Y 15.0 24.8 19.9 33.3 11.1 NA NA NA Y NA Y Y NA Y 0.0 

UH14  Nivolumab Discove
ry 

UH14_TOT
AL NA NA 321.7 NA NA 520.34 NA NA NA NA Y NA NA NA NA NA 

UH14  Nivolumab Discove
ry UH14_57 Y NA 521.4 599.1 687.9 244.1 NA NA NA N NA N Y NA N 0.0 

UH14  Nivolumab Discove
ry UH14_58 Y 80.0 1309.1 1342.4 1542.1 1331.3 NA NA NA Y (2) NA Y Y NA Y 0.0 

UH14  Nivolumab Discove
ry UH14_56 Y 60.0 471.7 599.4 699.0 456.5 NA NA NA Y (2) NA Y Y NA Y 0.0 

UH14  Nivolumab Discove
ry UH14_59 Y NA 1126.1 1458.0 1708.5 1420.1 NA NA NA N NA N Y NA N 0.0 

UH15  Nivolumab Discove UH15_TOT NA NA 1698.7 NA NA 1921.35 NA NA NA NA Y NA NA NA NA NA 
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ry AL 

UH15  Nivolumab Discove
ry UH15_60 Y NA 1076.2 1497.7 1484.2 2019.2 NA NA NA N NA N Y NA N 0.0 

UH15  Nivolumab Discove
ry UH15_61 Y 80.0 1830.6 1625.4 1739.1 1412.8 NA NA NA Y NA Y Y NA Y 0.0 

UH15  Nivolumab Discove
ry UH15_62 Y 60.0 1664.2 1669.8 1573.3 2336.1 NA NA NA Y NA Y Y NA Y 0.0 

UH16  Nivolumab Discove
ry 

UH16_TOT
AL NA NA 305.1 NA NA 310.65 NA NA NA NA N NA NA NA NA NA 

UH16  Nivolumab Discove
ry UH16_65 Y NA 386.5 

349.5 416.7 277.4 NA NA NA 

N NA N Y 

NA 

Y 
(merged 
with 
UH16_H6
6) 

0.0 

UH16  Nivolumab Discove
ry UH16_66 Y 30.0 454.9 

416.3 532.5 366.1 NA NA NA 

Y NA Y Y 

NA 

Y 
(merged 
with 
UH16_H6
5) 

0.0 

UH16  Nivolumab Discove
ry UH16_63 Y NA 133.1 

199.7 219.9 177.5 NA NA NA 

N NA N Y 

NA 

Y 
(merged 
with 
UH16_L6
2) 

0.0 

UH16  Nivolumab Discove
ry UH16_64 Y 20.0 33.3 

156.1 255.2 110.9 NA NA NA 

Y NA Y Y 

NA 

Y 
(merged 
with 
UH16_L6
3) 

0.0 

UH17 Pembrolizu
mab 

Validati
on 

UH17_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH17 Pembrolizu
mab 

Validati
on UH17_93 Y 65.0 NA NA NA NA NA 2637.5 1947.3 Y NA NA NA Y NA NA 

UH17 Pembrolizu
mab 

Validati
on UH17_94 Y 65.0 NA NA NA NA NA 2371.0 2287.7 Y NA NA NA Y NA NA 

UH18 Pembrolizu
mab 

Validati
on 

UH18_TOT
AL NA NA NA NA NA NA Y NA NA NA N NA NA NA NA NA 

UH18 Pembrolizu
mab 

Validati
on UH18_101 Y NA NA NA NA NA NA 688.5 527.5 N NA NA NA Y NA NA 

UH18 Pembrolizu
mab 

Validati
on UH18_102 Y NA NA NA NA NA NA 322.1 507.3 N NA NA NA Y NA NA 

UH18 Pembrolizu
mab 

Validati
on UH18_103 Y 90.0 NA NA NA NA NA 649.7 410.9 Y NA NA NA Y NA NA 

UH18 Pembrolizu
mab 

Validati
on UH18_104 Y NA NA NA NA NA NA 669.3 702.7 N NA NA NA Y NA NA 

UH19 Pembrolizu
mab 

Validati
on 

UH19_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH19 Pembrolizu
mab 

Validati
on UH19_85 Y NA NA NA NA NA NA 888.4 699.6 N NA NA NA Y NA NA 

UH19 Pembrolizu
mab 

Validati
on UH19_86 Y NA NA NA NA NA NA 798.0 798.8 N NA NA NA Y NA NA 

UH19 Pembrolizu
mab 

Validati
on UH19_87 Y 80.0 NA NA NA NA NA 1849.1 1317.7 Y NA NA NA Y NA NA 

UH19 Pembrolizu Validati UH19_88 Y 80.0 NA NA NA NA NA 1410.4 932.8 Y NA NA NA Y NA NA 
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mab on 

UH20 Nivolumab Validati
on 

UH20_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH20 Nivolumab Validati
on UH20_107 Y NA NA NA NA NA NA 844.0 723.7 N NA NA NA Y NA NA 

UH20 Nivolumab Validati
on UH20_108 Y 65.0 NA NA NA NA NA 932.9 844.0 Y NA NA NA Y NA NA 

UH20 Nivolumab Validati
on UH20_105 Y NA NA NA NA NA NA 721.8 789.7 N NA NA NA Y NA NA 

UH20 Nivolumab Validati
on UH20_106 Y 65.0 NA NA NA NA NA 618.5 621.9 Y NA NA NA Y NA NA 

UH21 Nivolumab Validati
on 

UH21_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH21 Nivolumab Validati
on UH21_109 Y 80.0 NA NA NA NA NA 684.6 1278.7 Y NA NA NA Y NA NA 

UH21 Nivolumab Validati
on UH21_110 Y 80.0 NA NA NA NA NA 521.9 276.3 Y NA NA NA Y NA NA 

UH22 Nivolumab Validati
on 

UH22_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH22 Nivolumab Validati
on UH22_111 Y 60.0 NA NA NA NA NA 207.8 187.8 Y (2) NA NA NA Y NA NA 

UH22 Nivolumab Validati
on UH22_112 Y 60.0 NA NA NA NA NA 255.4 333.2 Y (2) NA NA NA Y NA NA 

UH23 Nivolumab Validati
on 

UH23_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH23 Nivolumab Validati
on UH23_81 Y 40.0 NA NA NA NA NA 344.3 155.5 Y NA NA NA Y NA NA 

UH23 Nivolumab Validati
on UH23_82 Y 40.0 NA NA NA NA NA 885.9 1100.1 Y NA NA NA Y NA NA 

UH23 Nivolumab Validati
on UH23_83 Y NA NA NA NA NA NA NA 995.0 N NA NA NA Y NA NA 

UH24 Nivolumab Validati
on UH24 NA NA NA NA NA NA Y NA NA Y Y NA NA NA NA NA 

UH25 Nivolumab Validati
on 

UH25_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH25 Nivolumab Validati
on UH25_91 Y 60.0 NA NA NA NA NA 805.1 465.2 Y (2) NA NA NA Y NA NA 

UH25 Nivolumab Validati
on UH25_92 Y 60.0 NA NA NA NA NA 1365.9 1010.6 Y (2) NA NA NA Y NA NA 

UH26 Pembrolizu
mab 

Validati
on 

UH26_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH26 Pembrolizu
mab 

Validati
on UH26_115 Y 50.0 NA NA NA NA NA 488.6 510.8 Y NA NA NA Y NA NA 

UH26 Pembrolizu
mab 

Validati
on UH26_116 Y 50.0 NA NA NA NA NA 301.8 355.6 Y (2) NA NA NA Y NA NA 

UH26 Pembrolizu
mab 

Validati
on UH26_117 Y NA NA NA NA NA NA 165.5 123.3 N NA NA NA Y NA NA 

UH27 Nivolumab 
(Ipilimumab) 

Validati
on 

UH27_TOT
AL NA NA NA NA NA NA Y NA NA NA Y NA NA NA NA NA 

UH27 Nivolumab 
(Ipilimumab) 

Validati
on UH27_95 Y NA NA NA NA NA NA 621.9 566.4 N NA NA NA Y NA NA 

UH27 Nivolumab 
(Ipilimumab) 

Validati
on UH27_96 Y 80.0 NA NA NA NA NA 577.5 460.0 Y (2) NA NA NA Y NA NA 

UH27 Nivolumab Validati UH27_97 Y 80.0 NA NA NA NA NA 910.6 838.4 Y (2) NA NA NA Y NA NA 
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(Ipilimumab) on 

UH27 Nivolumab 
(Ipilimumab) 

Validati
on UH27_98 Y NA NA NA NA NA NA 299.8 266.5 N NA NA NA Y NA NA 

UH28 Nivolumab 
(Ipilimumab) 

Validati
on UH28 NA NA NA NA NA NA Y NA NA Y (3) Y NA NA NA NA NA 

UH29 Nivolumab Validati
on UH29 NA NA NA NA NA NA Y NA NA Y (2) Y NA NA NA NA NA 

For each experiment, the block slides (as reported in the Methods, Fig.1B and Extended Data Fig.1A) and the number of 

all analysed regions across samples are indicated in brackets, for a total of 738 profiled regions or samples. Tumour content 

was estimated by the pathologist in the regions of slide A that were subsequently projected in the sequential slides for IMC, 

WES and TCR-seq. QuPath (1) was used to calculate the median number of CD3 cells/mm2 in all selected regions of slides B, 

F, H and J for the discovery cohort and slides E and G for the validation cohort. For IMC, WES, and TCR-seq the two regions 

(one with low and one with high CD3 infiltration) with the highest tumour content were selected, whenever possible. This was 

possible for all samples except UH4, where DNA and RNA from the two CD3 high and low regions was merged. Where IMC 

was performed on the same region more than once, the total number of regions is reported in brackets. For TCR-seq, all four 

regions were sequenced in UH12, the two high and low CD3 regions were merged in UH16.  UH1, UH4 and UH5 were excluded 

from TCR-Seq analysis because DNA was not sufficient. HE: Haematoxylin and Eosin;  IMC: Imaging Mass Cytometry; mIF: 

Multiplexed Immunofluorescence; WES: Whole Exome Sequencing; A-FRET/; Amplified Förster Energy Transfer;  NA = Not 
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applicable. 

This table was adapted from supplementary table 2 of: 

 Bortolomeazzi, M. et al. Immunogenomics of Colorectal Cancer Response to Checkpoint Blockade: Analysis of the 

KEYNOTE 177 Trial and Validation Cohorts. Gastroenterology 161, 1179-1193 (2021). 

1. Bankhead, P. et al. QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 16878,

doi:10.1038/s41598-017-17204-5 (2017).
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Supplementary Table 5_I. Antibodies used in the study 

Cell population Antibody 
Specificity 

Cell clustering (IMC 
Panel I) 

Cell 
clustering 
(IMC Panel 
III) 

Vendor Catalogue 
Number 

Primary 
Antibod
y 
Dilution 

Metal 
or 
Opal 
Tag 

Application 

1. T cells CD3 T cells, PD1+ cells NA Fluidigm 3170019D 1:800 170Er IMC Panel I, 
II, III 

1. T cells CD45RA T cells, PD1+ cells, B 
cells NA Fluidigm 3166028D 1:2000 166Er IMC Panel I 

and II 

1. T cells CD45RO 

T cells, PD1+ cells, 
macrophages, dendritic 
cells, PDL1+ cells, B 
cells, neutrophils 

CD74+ 
macrophages Fluidigm 3173016D 1:500 173Yb IMC Panel I, 

II, III 

1. T cells CD57 T cells, PD1+ cells NA Abcam ab212405 1:300 174Yb IMC Panel I 
and II 

1. T cells CD8 T cells, PD1+ cells NA Fluidigm 3162035D 1:800 162Dy IMC Panel I, 
II, III 

1. T cells FOXP3 T cells, PD1+ cells NA Fluidigm 3155016D 1:200 155Gd IMC Panel I 
and II 

1. T cells PD1 T cells, PD1+ cells NA Fluidigm 3165039D 1:50 165Ho IMC Panel I, 
II, III 

1. T cells CD134 T cells NA Fluidigm 3151024D 1:100 151Eu IMC Panel II 
1. T cells LAG3 T cells NA Fluidigm 3153028D 1:100 153Eu IMC Panel II 
1. T cells TIM3 T cells NA Fluidigm 3154024D 1:100 154Sm IMC Panel II 
1. T cells Vista T cells NA Fluidigm 3160025D 1:100 160Gd IMC Panel II 

1. T cells TCF7 T cells NA 
Cell 
Signalling 
Technology 

2203 1:100 164Dy IMC Panel II 

1. T cells and
Macrophages CD4 

T cells, PD1+ cells, 
macrophages, dendritic 
cells, PDL1+ cells 

CD74+ 
macrophages Fluidigm 3156033D 1:200 156Gd IMC Panel I, 

II, III 

11. Tumour cells E-Cadherin NA NA Fluidigm 3158029D 1:3000 158Gd IMC Panel I, 
II, III 

11. Tumour cells Pan-keratin NA NA Fluidigm 3148020D 1:3000 148Nd IMC Panel I, 
II, III 

12. Stromal cells FAP NA NA Abcam ab207178 1:100 153Eu IMC Panel I 
12. Stromal cells SMA NA NA Fluidigm 3141017D 1:4000 141Pr IMC Panel I 

12. Stromal cells Vimentin Macrophages, dendritic 
cells, PDL1+ cells NA Fluidigm 3143029D 1:500 143Nd IMC Panel I, 

II, III 
2. B cells CD20 B Cells NA Fluidigm 3161029D 1:250 161Dy IMC Panel I 

2. B cells CD27 T cells, PD1+ Cells, B 
Cells NA Fluidigm 3171024D 1:300 171Yb IMC Panel I 

and II 

2. B cells IgA B Cells NA NovusBio NB500-
469 1:100 142Nd IMC Panel I 

2. B cells IgM B Cells CD74+ 
macrophages NovusBio NBP2-

34650 1:200 169Tm IMC Panel I 

3. Macrophages CD16 
Macrophages, dendritic 
cells, PDL1+ cells, 
neutrophils 

CD74+ 
macrophages Fluidigm 3146020D 1:200 146Nd IMC Panel I, 

II, III 

3. Macrophages CD163 
Macrophages, dendritic 
cells, PDL1+ cells, 
neutrophils 

CD74+ 
macrophages Fluidigm 3147021D 1:300 147Sm IMC Panel I, 

II, III 

3. Macrophages CD68 Macrophages, dendritic 
cells, PDL1+ cells 

CD74+ 
macrophages Fluidigm 3159035D 1:400 159Tb IMC Panel I, 

II, III 

3. Macrophages CD74 
Macrophages, dendritic 
cells, PDL1+ cells, 
neutrophils, B cells 

CD74+ 
macrophages Biolegend 326802 1:100 144Nd IMC Panel I, 

II, III 

3. Macrophages PDL1 Macrophages, dendritic 
cells, PDL1+ cells 

CD74+ 
macrophages 

RnD 
System MAB1561 1:70 150Nd IMC Panel I, 

II, III 

3. Macrophages CD40 NA CD74+ 
macrophages NovusBio NBP2-

34488 1:500 172Yb IMC Panel III 

3. Macrophages CD206 NA CD74+ 
macrophages NovusBio NBP2-

52927 1:100 163Dy IMC Panel III 

3. Macrophages FOLR2 NA CD74+ 
macrophages Origene CF808026 1:100 153Eu IMC Panel III 

3. Macrophages HLA-
DR/DP/DQ NA CD74+ 

macrophages Abcam ab7856 1:500 141Pr IMC Panel III 
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4. Dendritic cells
and Macrophages CD11b NA CD74+ 

macrophages 

Cell 
Signaling 
Technology 

D6X1N 1:1000 142Nd IMC Panel III 

4. Dendritic cells
and Macrophages CD11c Macrophages, dendritic 

cells, PDL1+ cells 
CD74+ 
macrophages Abcam ab216655 1:400 175Lu IMC Panel I, 

II, III 
4. Dendritic cells
and Macrophages CD103 NA CD74+ 

macrophages Abcam ab254201 1:100 160Gd IMC Panel III 

5. Neutrophils CD15 Neutrophils NA Fluidigm 3149026D 1:100 149Sm IMC Panel I 

6. Leukocytes CD45 

T cells, PD1+ cells, 
macrophages, dendritic 
cells, PDL1+ cells, B 
cells, neutrophils 

NA Fluidigm 3152016D 1:500 152Sm IMC Panel I, 
II, III 

7. Nucleated cells
Beta2Micro
globulin 
(B2M) 

Macrophages, dendritic 
cells, PDL1+ cells, B 
cells, neutrophils 

CD74+ 
macrophages Abcam ab212756 1:100 176Yb IMC Panel I, 

II, III 

7. Nucleated cells HLA-A/B/C NA CD74+ 
macrophages 

BD 
Bioscience
s 

565292 1:1500 161Dy IMC Panel III 

8. Proliferating
cells Ki67 T cells,  PD1+ cells,  B 

cells, neutrophils NA Fluidigm 3168022D 1:400 168Er IMC Panel I, 
II, III 

9. Endothelial
cells
Endothelium

CD31 NA NA Fluidigm 3151025D 1:300 151 
Eu IMC Panel I 

9. Endothelial
cells
Endothelium

CD34 NA NA Abcam ab213058 1:150 164Dy IMC Panel I 

10. Cytotoxic cells Granzyme 
B (GzB) 

T cells,  PD1+ cells, 
neutrophils NA Fluidigm 3167021D 1:300 167Er IMC Panel I, 

II, III 
NA CD3 NA NA Dako A0452 1:200 NA IHC 

NA 
Anti-
Rabbit-
HRP 

NA NA Dako P0448 1:200 NA IHC 

NA 
Anti-
Mouse-
ATTO488 

NA NA FASTBASE in house 
produced 1:25 NA A-FRET

NA 
Anti-
Rabbit-
HRP 

NA NA 
Jackson 
Laboratorie
s 

711-036-
152 1:200 NA A-FRET

NA PD1 NA NA Abcam ab52587 1:100 NA A-FRET
NA PDL1 NA NA Abcam ab205921 1:500 NA A-FRET

1. T cells CD8 NA NA 
Cell 
Signaling 
Technology 

85336 1:200 
Opal 
780 
(1:75) 

mIF 

1. T cells TCF7 NA NA 
Cell 
Signaling 
Technology 

2203 1:50 
Opal 
540 
(1:500) 

mIF 

1. T cells PD1 NA NA Abcam ab137132 1:300 
Opal 
650 
(1:100) 

mIF 

1. T cells GzB NA NA Abcam ab208586 1:100 
Opal 
480 
(1:600) 

mIF 

1. T cells Ki67 NA NA 
BD 
Bioscience
s 

550609 1:200 
Opal 
690 
(1:150) 

mIF 

3. Macrophages CD68 NA NA Biolegend 916104 1:1000 
Opal 
620  
(1:700) 

mIF 

3. Macrophages CD74 NA NA Biolegend 326802 1:600 
Opal 
570 
(1:700) 

mIF 

3. Macrophages PDL1 NA NA RnD 
System MAB1561 1:450 

Opal 
520 
(1:150) 

mIF 

For each antibody, the cell population, target proteins, the target cell 

population in the phenotyping clustering  with the IMC panels I or III and the 
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application in the study are reported. IMC: Imaging Mass Cytometry; IHC: 

immunohistochemistry; A-FRET: Amplified Foster Resonant Energy Transfer; 

mIF: multiplexed Immunofluorescence; NA: not applicable. 

This table was adapted from supplementary table 5 of: 

Bortolomeazzi, M. et al. Immunogenomics of Colorectal Cancer Response 

to Checkpoint Blockade: Analysis of the KEYNOTE 177 Trial and Validation 

Cohorts. Gastroenterology 161, 1179-1193 (2021). 
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