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Abstract
Time-Dependent Stochastic Approaches for Strong-Field Spectroscopy of

Correlated Models

The work in this thesis aims to extend our simulation capabilities and understanding
of the optical response of two-dimensional Mott insulators subject to strong-field laser
pulses. These correlated systems are modelled using the Fermi-Hubbard Hamiltonian,
and their real-time evolution is performed using a combination of stochastic, exact
and mean-field methods. This enables their high harmonic emission to be calculated,
from which we can resolve the attosecond charge dynamics of electrons in both the
frequency and time domains.

The research is split into two overlapping threads, the first of which seeks to char-
acterise the emission and understand its microscopic origins. High harmonic gener-
ation (HHG) in one-dimensional and infinite-dimensional Mott insulators has previ-
ously been investigated using a variety of techniques, but their two-dimensional ana-
logues are almost entirely absent from the literature due to a scarcity of appropriate
numerical methods. This problem is approached using the versatile time-dependent
variational Monte Carlo (tVMC) algorithm, supplemented by exact diagonalisation
(ED), along with mean-field methods in the metallic limit. These are combined to
describe and explain the effects of correlation, dimensionality and simulation param-
eters on the high harmonic emission. The analysis is performed across correlation
regimes, from non-interacting conductors to heavily Mott-insulating systems, with a
focus on transitions between these two limits via the photo-induced breakdown of the
insulating ground state.

The second research thread moves away from analysing the optical response in-
duced by laser fields, and instead explores ways that the fields can be designed to
control the response. This is achieved using so-called current tracking, for which a
protocol is derived that provides a prescription for the driving pulse required to gen-
erate any predetermined current in any Fermi-Hubbard system. This is implemented
using the same combination of tVMC, ED and mean-field methods, along with fur-
ther techniques that simplify the pulses to within existing experimental capabilities.
These are then used to demonstrate near-arbitrary control over the HHG, including
directional resolution of Mott transitions along perpendicular directions of the lattice.
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1

Introduction

The work presented in this thesis exists at the intersection of two research fields

that have typically been pursued independently of each other. The first is strongly-

correlated systems, which concerns materials whose properties are critically and qual-

itatively dependent upon the details of the interactions between their constituent

electrons. They have long been the topic of intense research due to their potential

to unlock a deeper understanding of various elusive and important phenomena, in-

cluding superconducting and Mott insulating materials. The latter are materials that

are incorrectly predicted to be conductors by conventional band theory descriptions

that do not account for the effects of electron correlation. The second field is high

harmonic generation (HHG) in solids. This is a highly non-equilibrium effect that

occurs when a solid-state system is exposed to an intense laser field, resulting in

a strong nonlinear electronic response that induces the emission of large multiples

(harmonics) of the incident frequency. Most investigations to date have focused on

systems that can be well-approximated by single-particle models in which considera-

tion of electron correlation is either excluded entirely or relegated to the inclusion of

phenomenological dephasing terms.

Combining them both to study HHG in strongly-correlated solid-state systems is a

challenging problem because it requires calculating the full dynamics of exponentially-

scaling systems, and as a result there is a relative scarcity of appropriate numerical

methods. The methods that are available have meant that research has been focused

on one-dimensional (1D) and infinite-dimensional (infinite-D) lattices, with an almost

complete absence of two-dimensional (2D) studies in the literature. The work in

this thesis applies a combination of exact, mean-field and stochastic methods to the

analysis of HHG in 2D Mott insulating systems, as described by the Fermi-Hubbard

12



CHAPTER 1. INTRODUCTION

model. This was split into two overlapping research threads that are presented here

in Chapters 4 and 5, the first of which uses this full array of methods to study the

effects of dimensionality and correlation on the frequency and time-resolved emission,

from the metallic through to heavily-insulating limits, but with a focus on the regime

in which photo-induced breakdown of the Mott insulating states can occur. The

core of these results was recently published in Ref. [1]. Chapter 5 then introduces a

protocol for current tracking within these same correlated systems, as first described

in Refs. [2, 3]. This provides essentially arbitrary control over their optical response by

enabling us to dynamically calculate the so-called control field required to induce any

predetermined current in any system. Conclusions and the developed/benchmarked

methods from the previous chapter are used to inform understanding of these control

fields, which are ultimately used to generate ‘directional’ phase transitions across the

two axes of a square lattice.

1.1 Outline of this Thesis

In Chapter 2, the background and overarching themes of the thesis are discussed.

This starts with strongly-correlated systems, where the difficulty of their simulation

is explained and the Hubbard model is introduced as a simple but effective way of

approximating some aspects of their underlying physics. This is followed by a general

discussion of HHG, starting with its origin in atomic gas-phase systems, and moving

to its fairly recent demonstration in solids. In both cases, the three-step model (3SM)

is defined and explored as a model for the origin of the HHG. A summary is given of

the most common numerical methods used to simulate solid-state HHG. This leads on

to a discussion of HHG in correlated systems, and a modified Fermi-Hubbard model

and current operator are introduced, where the effects of the electric field are ac-

counted for by the Peierls phase. A literature review is then given, which summarises

previous approaches to HHG in correlated systems and the main conclusions of their

investigations. Finally, some important results concerning photo-induced dielectric

breakdown in Mott insulators are summarised.

Chapter 3 details the numerical methods that were developed and applied in this

work. This starts with parameterised correlated wavefunctions, where the general
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form of the chosen trial wavefunction is stated and its component parts are defined

and explained. The stochastic reconfiguration (SR) and variational Monte Carlo

(VMC) algorithms are subsequently introduced as ways of optimising a trial wave-

function and using the result to estimate expectation values. This is followed by a

discussion of the two methods that were implemented for real-time evolution: time-

dependent Variational Monte Carlo (tVMC) and exact diagonalisation (ED), along

with the fourth order Runge-Kutta (RK4) method that was used in both cases to

perform the time integration. The correlated bandstructure model (CBM) is then

introduced and the ideas behind it are explained in detail, followed by a description

of its implementation. This includes an analysis of the model’s bandstructure, which

attempts to mimic that of the full correlated ground state and will be important in

future chapters. Finally, it is explained how the expectation of the current operator

is used to calculate HHG, including the use of wavelet analysis to time-resolve the

emission.

In Chapter 4, the theory and methods discussed so far are applied to the cal-

culation and analysis of HHG in strongly-correlated systems. Firstly, ED is used to

generate the evolution of various system observables, which demonstrate the existence

of photo-induced Mott transitions. This is followed by an analysis of results that were

calculated using a combination of ED, tVMC and mean-field methods, with the gen-

eral aim of describing and explaining the effects of dimensionality and correlation

on the emission in 1D and 2D. The HHG spectra are investigated first, followed by

their time resolution in the form of spectrograms. In each case, the discussion is split

between the metallic, transition and insulating regimes, i.e. the respective regimes in

which Mott breakdowns cannot occur due to an absence of interactions (the systems

are already conducting); in which breakdowns can and do occur; and in which they

cannot occur because the interactions are too strong to be overcome by the laser field.

HHG in the CBM is then presented and analysed, and its comparison with correlated

systems is used to draw conclusions about the insulating limit. The final section looks

at how the HHG changes as pulse and lattice parameters are varied, starting with the

laser’s peak field amplitude and frequency, and followed by the hopping and lattice

constants. Finally, the chapter is summarised, limitations of the numerical methods

are considered and possible improvements are proposed, along with several potential
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avenues for future research.

Chapter 5 introduces the concept of current tracking, starting with separate ex-

planations and derivations of the tracking protocols in 1D and 2D, and followed by

a discussion of the constraints under which tracking must be done in order to ensure

the results are physically reasonable. An ED implementation of tracking is used to

demonstrate spectral mimicry using linearly-polarised control fields, where the HHG

spectra of two systems are ‘swapped’ such that a conducting system is made to gener-

ate the emission of an insulator and vice versa. This is followed by a general discussion

of the control fields that are required in different cases. The experimental feasibility

of these driving pulses is then addressed, and fitting models are defined in order to

simplify them, which is demonstrated with two examples that show how control fields

can be constructed that are experimentally viable while still able to reproduce the

main HHG features we are trying to mimic. tVMC is then reintroduced, and the

protocol is generalised to include arbitrarily-polarised control fields that are allowed

to vary freely in either dimension, thereby enabling the simultaneous tracking of a

different current in each direction. This is used to demonstrate so-called directional

Mott transitions, which is reproduced with a simpler fitted pulse that is within ex-

perimental capabilities. The stability of these results is shown, justifying the use of

tVMC for tracking. Finally, tracking is used to demonstrate harmonic enhancement,

where the emission intensity of selected harmonics is boosted. The chapter is con-

cluded by an outlook section, where a few of the many potential directions for future

research are considered.

The thesis finishes with two appendices. Appendix A is used to benchmark tVMC:

firstly, some important aspects of the simulation setup are discussed; this is followed

by comparisons between ED and tVMC for 12-site systems, and a discussion of the

limitations and applicability of the method; and lastly, convergence of the results

with respect to lattice size is checked and discussed. Finally, Appendix B introduces

a simple ‘harmonic selection’ method that is used to recreate a complex case of direc-

tional Mott breakdown by easing the restrictions imposed by existing experimental

capabilities.
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2

Background

2.1 Strongly-Correlated Systems

In general, our aim is to describe, explain and predict the properties of condensed

matter systems. Ideally, we would work directly with the full molecular Hamiltonian,

which can be written in the form [4]

Ĥ = −1

2

∑
i

∇2
i −

∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|

−
∑
I

1

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

(2.1)

where atomic units are used and lowercase denotes electrons and uppercase the nu-

clei. We could then add terms for e.g. electric and magnetic fields, and evolve the

wavefunction in time using the Schrödinger equation1, thereby generating all know-

able information about the system. However, this is infeasible for realistic cases due

to reasons that are intrinsic to the formulation of quantum mechanics. The calcu-

lation requires accounting for the simultaneous interactions of each part with every

other, resulting in a Hilbert space of configurations that scales exponentially with the

system size.

This notorious ‘curse of dimensionality’ necessitates the introduction of approxi-

mations. A common and extremely successful method is to consider an independent-

particle picture in which the full Ne-electron problem is replaced with Ne separate

one-electron problems, where each electron experiences an effective potential that at-

1Because this is a non-relativistic setting. The leading order relativistic contribution to the
Hamiltonian is the spin-orbit coupling correction.
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tempts to mimic the Coulomb interactions of all the other particles. This framework

has made significant contributions to our understanding of materials, including the

conventional band theory that classifies solids into metals, semiconductors and insu-

lators. However, materials in which electron correlations are strong can give rise to

interesting and exotic properties that cannot be explained by a single-particle picture

and instead require working in a many-body basis. A famous case is high-temperature

superconductivity [5–9], but other examples include colossal magneto-resistance [5]

and, most importantly for this thesis, Mott insulators (MIs) [10].

MIs are materials that are predicted to be conductors according to band theory

but actually exhibit insulating behaviour as a result of electron-electron interactions.

Within the standard single-particle bandstructure picture, status as a conductor or

insulator is determined by the occupation of energy levels, i.e. by whether or not there

is a gap between the largest occupied and smallest unoccupied states. This description

neglects quantum many-body effects and thus fails to accurately model materials such

as the transition-metal compounds, which are insulators not due to their mean-field

band filling but because of the localisation caused by Coulomb repulsion. Localisation

in real space occurs because strong interactions have a large associated energy cost,

which makes electron hopping energetically unfavourable. This occurs in conflict

with the tendency of electrons to minimise their kinetic energy by delocalising over

the lattice, and in fact this competition between kinetic and Coulombic contributions

will be an important guiding principle in our description of MIs, as we will see very

shortly.

It is clear that we require models that go beyond independent-particle approxima-

tions and attempt to include many-body effects. In fact, this need is encapsulated in

the historical definition of correlation in which it is described as the difference between

the expectation values of the Hartree-Fock and exact wavefunctions [4]. However,

any such model will encounter the same problems of dimensionality, and so will in-

evitably require (often aggressive) approximations and simplifications. The intention

is to capture important aspects of the underlying physics that contribute significantly

to the quantities of interest. To that end, the famous Fermi-Hubbard model is used

throughout this thesis.
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2.1.1 The Hubbard Model

The Hubbard model [11–17] has become a paradigmatic framework for correlated

systems. Its physical basis is the tussle between competing tendencies that exists in

some solids. On the one hand, there is a delocalisation effect due to electron hopping,

described in the model by a term K̂, that pushes the system towards a metallic state.

On the other hand, repulsive Coulomb interactions, encoded via a term Û , act as a

driver towards localisation, forcing electrons onto different sites and encouraging the

formation of an insulating state. The single-band Hubbard model is given by

Ĥ = K̂ + Û

= −t0
∑
〈ij〉σ

ĉ†iσ ĉjσ + U
∑
j

n̂j↑n̂j↓,
(2.2)

This describes itinerant electrons of spin σ that can tunnel between nearest-neighbour

sites, denoted 〈ij〉, thereby gaining an energy given by the hopping constant t0. They

can also interact on a given site with another electron of opposite spin, costing an

energy U . These processes are controlled by the creation (annihilation) operators

ĉ†jσ (ĉjσ), which obey the canonical commutation relations {ĉiσ, ĉ†jσ′} = δijδσσ′ and

{ĉiσ, ĉjσ′} = {ĉ†iσ, ĉ
†
jσ′} = 0. The operators are defined on a basis of Wannier orbitals,

such that applying ĉ†jσ to the vacuum state creates an electron in a Wannier state

centered around site j. The number operator n̂jσ = ĉ†jσ ĉjσ counts the spin-σ electrons

on j, and since the model assumes there is only one orbital per site it follows that

〈n̂jσ〉 ∈ [0, 2], corresponding to an empty, singly or doubly-occupied site.

The full many-body basis is composed of configurations |x〉 that specify the oc-

cupation of the lattice. Given that each site can be in one of 4 states, an L-site

system has 4L possible configurations. However, in this thesis half filling is always

used, where 〈n̂j↑〉 + 〈n̂j↓〉 = 1, and we restrict to the Sz = 0 subspace. A general

configuration is then constructed as follows

|x〉 =

L/2∏
n,m=1

c†xn↑c
†
xm↓ |0〉 (2.3)

This reduces the dimension of the Hilbert space to
(
L
L/2

)2
, which is still exponentially
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scaling and clearly an impending issue.

Throughout this work, e = ~ = me = 4πε0 = 1 and so factors of these constants

are excluded. The energy unit is normalised to the hopping constant, such that t0 = 1

and U therefore represents the ratio U/t0. The unit of time is then [t−1
0 ], although it

will be presented in plots as cycles of the input pulse. The ratio U/t0 is an important

factor in determining the physics of a system, and there are two clear limiting cases.

The first is the non-interacting U = 0 regime, which is just the tight-binding model

K̂ and represents a metallic state of free electrons given by the Fermi sea of single-

particle states. The second is the U → ∞ so-called atomic limit, where the system

is an insulator of singly-occupied sites with no charge fluctuations. The existence of

these two regimes implies a transition between them for some Uc, and this critical

value depends on the spin frustration, dimension and filling. In 1D the system is a

metal for all U , with the exception of half filling where it is an insulator for all U > 0

[4, 18]. In the infinite-D limit, the critical value at half filling has been shown to exist

at Uc ≈ 5.8 [19].

The model owes its simplicity to a number of approximations [20]. Firstly, it is

assumed that on-site interactions are large compared to those between sites, so that

Uiiii → U and all other terms are set to zero. This is believed to be true for transition

and rare earth metals [18]. Furthermore, hopping is restricted to nearest-neighbour

sites and is taken as isotropic, t〈ij〉 → t0. Finally, the Hamiltonian is limited to a

single band, which is justified under the assumption that the Fermi surface lies inside

a single conduction band (CB). Even with these simplifications, the model can only

be solved analytically in the 1D thermodynamic limit using the Bethe ansatz [18,

21–24], and is exactly solvable with DMFT in the limit of infinite-D [25]. No known

exact solution exists in any other dimension.

Despite being essentially the simplest possible correlated model, it can still make

contact with real physical systems. Depending on geometry and filling, the Hubbard

model has been shown to exhibit qualitative trends and phase transitions in strongly

correlated materials, including the existence of spin liquids [26] and topological phases,

a variety of magnetic orders, phase separation and charge ordering [27]. Simple

sp-band systems can be approximately mapped to the Hubbard Hamiltonian, for

example graphene with weak effective on-site interaction in the region of U ≈ 1.3
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[28] to U ≈ 1.6 [29], while the experimentally obtained energy gaps of benzene were

found to be well-reproduced by U ≈ 1.2 [28]. It can also model the 2D planes of

layered materials such as cuprates and organic charge-transfer salts, materials that

can give rise to exotic correlated phases [30, 31], with strongly-correlated cuprate

parent materials of high-temperature superconductivity being modelled with U ∼ 8

[32, 33]. Finally, MIs and their metal-insulator transitions are an important physical

realisation of the Hubbard model, for example the transition-metal oxides such as

NiO and V2O3. These materials have an odd number of electrons per unit cell and

therefore a partially filled CB, which causes band theory to incorrectly predict that

they are conductors.

2.2 High Harmonic Generation

2.2.1 HHG in Atomic Systems

When an atomic gas is subjected to radiation of sufficiently large laser intensities

it can have a nonlinear polarisation response, giving rise to optical effects such as

second harmonic generation [34]. This can be described by treating the laser field as

a perturbation of the atomic Hamiltonian. Valence electrons are excited to higher-

energy states through the stimulated absorption of (often multiple) photons, and

ultimately return to the ground state (GS) via emission. The transition rate of an

n-photon process for field intensity I is proportional to In, so that the probability of

an excitation decreases rapidly with the number of required photons, thereby limiting

the harmonic orders that can be produced [35, 36].

However, if the electric field strength approaches the order of the atomic bonding

strength then perturbation theory becomes inapplicable and new highly nonlinear

phenomena can emerge. One such example is HHG, in which an intense incident field

of frequency ωL causes the emission of large odd harmonics of the input frequency.

This process was first observed in gases in the 1980s [37], and can produce radiation

spanning from the optical into the extreme ultraviolet (XUV).

Gas-phase high harmonic spectra have some general characteristics. The emission

intensity can be divided into three regimes, starting with a perturbative region at
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low harmonics where the yield decreases exponentially with increasing frequency of

the emitted light. There is then a broad plateau of approximately-uniform intensity

where the spectrum extends far past the ionisation potential Ip of the parent atom,

before dropping suddenly at the cutoff frequency. This cutoff energy is given by

Ip + 3.17UP [38, 39], where UP =
E2

0

4ω2
L

is the cycle-averaged kinetic energy of the

accelerated electron, known as the ponderomotive energy. The cutoff therefore scales

quadratically with the laser’s peak field strength, E0.

These features can be understood through the 3SM [40, 41], in terms of either a

semiclassical description [38] or the fully quantum Lewenstein model [42]. This offers

an intuitive explanation of the process leading to emission through the following steps

1. Tunneling: the laser field distorts the atomic Coulomb potential enough that

an electron can tunnel-ionise through the barrier into the continuum.

2. Acceleration: the electron is accelerated away from its parent atom and then

back towards it as the field direction reverses. The strong-field approximation is

used, where it is assumed that the laser field dominates over the ionic potential.

3. Recombination: the returning electron recombines with its parent atom and

emits radiation with energy given by its kinetic energy plus the ionisation po-

tential. The electron’s kinetic energy depends on the ionisation time and it is

predicted that the maximum possible value is 3.17UP , hence the stated cutoff

energy.

Ionisation can be caused by tunneling or multi-photon absorption. The pulse and

material parameters in which each of these processes dominate are determined by the

dimensionless Keldysh parameter [43]

γ =

√
Ip

2UP
(2.4)

When γ � 1 the system is in the tunneling regime, whereas when γ � 1 multi-photon

ionisation is dominant.

HHG in gas-phase systems is a fundamental tool of attosecond science [44–46].

The high harmonics produced from a laser’s interaction with an atom or molecule
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carry information about their electronic structure that can be used to image atomic

and molecular orbitals, both tomographically [47–50] and with laser-induced electron

diffraction [51, 52]. A further development has been the use of HHG to generate

attosecond pulses, as either isolated pulses or trains of them, with a wide range of

applications relating to the control and time-resolution of attosecond processes [53–

57].

2.2.2 HHG in Solids

HHG in bulk periodic solids is a new field, having only been demonstrated for the

first time in 2011 in experiments that generated high harmonics by irradiating a ZnO

crystal with a mid-infrared (mid-IR) laser [58]. Since then there have been a wealth of

interesting results, with HHG studied in a diverse range of systems such as semicon-

ductors [59–64], wide-gap dielectrics [65, 66], graphene [67–71], metamaterials [72],

topological materials [73, 74], spin systems [75], thin films [76–78], amorphous ma-

terials [79] and rare-gas solids [80]. Furthermore, there is a great deal of interest in

the use of HHG as a spectroscopic tool [46, 55, 56, 81, 82], including in the recon-

struction of bandstructures [76, 83–85], the probing of crystal lattices and potentials

[66, 86–89], and the real-time observation of quantum dynamics [61, 90, 91]. Finally,

there are potential technological applications, with hope that solid-state HHG could

lead to the development of highly compact XUV sources [46, 81, 92–94] and petahertz

electronics [60, 90, 95–99].

2.2.2.1 Origins of HHG in Solids

The experimental studies of solid-state HHG conducted so far have focused on mate-

rials whose main properties are not determined by strong electron interactions, which

has led to mean-field descriptions in which many-body effects are not considered.

The starting point is the single-particle bandstructure, in which a valence band (VB)

is separated from an empty CB by a gap, Eg. Only two bands are included here

for simplicity, although of course real materials have more complicated structures.

Furthermore, this general picture applies to both semiconductors and insulators, as

both have their Fermi energy lying between the bands. Intense efforts have been
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made to understand how such a system can produce HHG following irradiation by a

high-strength laser, and the result is a picture with clear similarities to the atomic

3SM. The process can be summarised as follows [100–107]

1. Tunneling: an electron tunnels from the VB to the CB, creating a positively-

charged hole in the VB.

2. Acceleration: the field accelerates the electron and hole in opposite directions

in their respective bands.

3. Recombination: the electron returns to the VB by recombining with a hole,

emitting a photon with energy given by the instantaneous band separation.

This is depicted in fig.2.1, which shows that there are two mechanisms responsible for

emission: interband polarisation and intraband current. The former develops when

electron-hole pairs are created and culminates during the recombination step, and is

directly analogous to the recollision mechanism that causes HHG in atomic systems.

Excitation happens preferentially at the minimum band gap point, as the tunneling

probability between states in different bands decays with increasing separation. Elec-

trons are delocalised, so recombination can happen with holes at nearby sites and can

take place at any time, as opposed to the atomic case where it only happens if the

electron’s return trajectory coincides with its parent ion. The interband polarisation

has been experimentally observed using attosecond pulses [108–111].

The second source process is the intraband current. It occurs during the accel-

eration phase, where electrons and holes exhibit highly nonlinear oscillations within

their bands, causing emission. Furthermore, if an accelerating electron is driven past

the edge of the first Brillouin zone then its quasi-momentum will suddenly reverse

sign, causing charge oscillations and therefore emission. These have no equivalent in

atomic HHG and are known as Bloch oscillations (BOs), or Bragg scattering in real

space, and can happen multiple times per cycle if the field strength is sufficiently

large. BOs have been the subject of much theoretical and numerical research [58, 61,

92, 100, 103, 113–115], and have now been directly observed in the lab [65, 76, 116,

117].
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Figure 2.1: The origin of HHG in solid-state systems. In periodic solids there are
two main emission mechanisms: interband polarisation and intraband current, shown here
in real and momentum space. a) In real space, an excited electron can recombine with its
source hole or a hole in an adjacent site, or can undergo Bragg scattering, which causes
rapid oscillation between sites. b) In momentum space, polarisation builds between CB
electrons and VB holes, leading to recombination. They can also be accelerated within
their respective bands, or can wrap back around it through BOs due to the non-parabolic
bandstructure. This image was adapted from Ref. [112].

These emission mechanisms are not independent, but are in fact intricately in-

terdependent. After all, intraband currents can only form if interband polarisation

exists, as in order for an electron to oscillate in the CB it must have first tunneled

there from the VB, leaving behind a hole with which it forms a dipole. Similarly,

intraband motion is an important determiner of the recombination energy by shift-

ing the electron to a higher or lower energy state than the one it initially tunneled

to. This complex interplay is sometimes explicitly encoded into the models. For

example, in the semiconductor Bloch equations, which will be discussed more later,

the equations of motion for the intra and interband processes are coupled differential

equations which intimately depend upon each other.

The relative contribution and importance of inter and intraband processes is an

unresolved problem, and there is research claiming the dominance of each. However,

it is important to remember that the emission mechanisms will depend greatly on the

pulse parameters and material being studied. In Ref. [118], ZnO was studied in the

mid-IR regime and interband polarisation was found to be the dominant process. On
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the other hand, intraband currents were the main contribution in the far-IR regime

in GaSe [65], and in the near-IR regime in SiO2 [76] and GaAs [119]. Numerical

results in Refs. [101, 102] reproduced this wavelength dependency, finding that inter-

band HHG is dominant in the mid-IR regime and intraband HHG in the far-IR. This

could provide a method of experimentally distinguishing and comparing the two con-

tributions. Similarly, Ref. [103] found that the time-frequency signatures of the two

mechanisms were extremely different, which again could be used to experimentally

distinguish between them to determine their relative importance.

The periodic structure and high density of solids make the microscopic origins

of HHG intrinsically different than in gases. The periodic potential challenges the

validity of the strong-field approximation, and the system now demonstrates a collec-

tive response in which excited electrons can migrate to nearby sites for recombination

and scatter off of the potential through BOs. A detailed discussion of the differences

between the HHG of solids and gases can be found in Refs. [80, 112, 118, 120], but

two particularly important ones are worth mentioning here.

The harmonic spectra of condensed matter systems exhibit a similar plateau struc-

ture as found in gases. However, a vital difference is the cutoff energy, which in solids

has been found to scale linearly with peak field strength [58, 65, 76, 80], as opposed

to the quadratic dependence found in gases and discussed earlier, which immediately

suggests differences in the generation mechanisms. Its origin is a matter of debate, but

both inter and intraband processes are consistent with a linear dependency in certain

cases. The cutoffs observed in Refs. [58, 76] were explained by BOs and were found

to be proportional to the Bloch frequency, which is linear in field strength. The same

scaling was observed due to interband processes in e.g. Refs. [83, 102, 103], where the

cutoff is determined by the band separation induced at the peak field strength. The

cutoff is then found to increase linearly with the peak field until the band separation

reaches its maximum possible value, given by the distance between the VB and the

Brillouin zone edge of the CB. At this point the cutoff does not increase further with

field strength [101, 102, 118], unless the model includes multiple bands, in which

case a larger peak field generates additional plateaus [80]. This can be understood

as the electrons being excited to higher-lying CBs, with each extra plateau having a

maximum cutoff determined by the gap between the VB and the edge of the higher
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CB [103, 121, 122]. However, it has also been predicted that a higher plateau can

arise from BOs, for example Ref. [115] where they used a two-band model in which

the primary plateau emerged from interband recollisions but the second plateau from

BOs.

2.2.2.2 Modelling HHG in Solids

The following briefly summarises some of the main models that have been developed

so far to describe HHG in solids, and is partly based on the more thorough accounts

in Refs. [35, 123, 124], where details of the derivations and applications can be found.

Semiclassical Model: In the first observation of solid-state HHG [58] and in later

work [76, 125], a simple semiclassical two-step model was proposed in which interband

contributions are ignored and emission originates solely from the intraband current

within the lowest CB. An electron wavepacket centered at k = 0 is driven by a field

with peak strength E0 in a simple 1D band

ε(k) =
∑
n

cncos(nka) (2.5)

where n is the spatial harmonic, k the quasi-momentum and a the lattice constant.

The group velocity is vg(k) = dε(k)/dk, resulting in oscillatory movement with am-

plitude α = naE0/ωL = nωB/ωL, where ωB is the Bloch frequency. This anharmonic

motion within the bands produces HHG, but if α > π then BOs also occur, increas-

ing the harmonic output and demonstrating how the non-parabolic shape of solids’

bandstructure causes BOs. The nonlinear current J generates an emission spectrum

given by S(ω) = |FT {dJ/dt}|2. This has a cutoff proportional to α, which is the

correct linear scaling. Despite the simplicity of the model, it showed good agreement

with the experimentally-measured cutoff and spectrum of thin-film SiO2 [76].

Time-Dependent Schrödinger Equation: The Schrödinger equation has been

used extensively to study solid-state HHG by neglecting interactions between elec-

trons and treating the solid as a single electron in an effective periodic potential

[80, 103, 105, 121, 126]. The one-electron 1D time-dependent Schrödinger equation
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(TDSE) describing a laser-solid interaction in the velocity gauge is given by

i∂t |ψ(t)〉 =
[
Ĥ0 + ĤI(t)

]
|ψ(t)〉 (2.6)

=

[
p̂2

2m
+ Û(x) +

1

m
A(t)p̂

]
|ψ(t)〉 (2.7)

where Û(x) is the periodic potential and the dipole approximation has been assumed,

A(x, t) ≈ A(t), as the wavelengths being considered are much larger than the lattice

constant. This can be solved using the Bloch basis, which is composed of states |φλk〉,
where λ is a band index and Ĥ0 |φλk〉 = εn(k) |φλk〉. The wavefunction for some quasi-

momentum, |ψk(t)〉, can then be written in terms of these Bloch states, ultimately

permitting the calculation of the laser-induced current for each k channel [103]

Jk(t) = − 1

m
[Re{〈ψk(t)| p̂ |ψk(t)〉}+ A(t)] (2.8)

A common alternative basis is the Houston basis, related to the Bloch basis by

|φ̃λk0(t)〉 = e−iA(t)x̂ |φλk(t)(t)〉, where k0 is the quasi-momentum in the field-free sys-

tem [124]. The advantage of this formulation is that the current can be separated

into explicit intra and interband terms, allowing their individual contributions to be

compared (see Refs. [35, 124] for the details).

Semiconductor Bloch Equations: The semiconductor Bloch equations (SBE)

[127] are another common approach, and have found widespread application to the

description of HHG in solids [61, 100, 115, 127]. The starting point is actually the full

many-body Hamiltonian within the second quantisation formalism, including terms

for electron Couloumb interactions and the coupling of the system to lattice vibra-

tions [124]. However, these are considered to have only minor effects and are often

neglected. In particular, the electron-electron interactions are typically on the or-

der of the exciton binding energy, which makes them very small compared to the

light-matter interaction. The SBE are then derived from the Heisenberg equation of

motion, and are a system of coupled time-dependent differential equations for the in-

terband polarisation pk(t) and band occupations n
e(h)
k (t) of electrons (holes) in the CB

(VB), where we consider here only the 1D two-band version of the model. Electrons

are initially filled in the VB, and can then undergo inter and intraband excitations,
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producing a macroscopic intraband current J(t) and interband polarisation P (t)

J(t) =
∑
λ,k

vλkn
λ
k(t) (2.9)

P (t) =
∑
k

(dkpk(t) + c.c.) (2.10)

where vλk is the group velocity and dk is the interband dipole matrix element. This is

then used to calculate the high harmonic spectrum

S(ω) ∝ |ω2P (ω) + iωJ(ω)|2 (2.11)

This has two distinct contributions from the interband |ω2P (ω)|2 and intraband

|ωJ(ω)|2 terms, but also includes interference between these terms, reenforcing the

fact that they are intrinsically coupled and also somewhat complicating the debate

over which process contributes more to the HHG.

A related technique is the two-band density matrix equations [101, 102, 113, 118].

This is the same as the SBE in the single-electron limit and differs from it mostly by

a frame transformation. In this model the HHG is calculated from the intraband Jra

and interband Jer current contributions [101]

Jra(t) =
∑
λ

∫
BZ

vλ[K + A(t)]nλ(K, t)d3K (2.12)

Jer(t) =
d

dt

∫
BZ

p(K, t)d3K (2.13)

where the quasi-momentum has been transformed to a frame moving with the vector

potential K = k −A(t), which also shifts the Brillouin zone BZ = BZ −A(t). This

model was used in a widely-cited paper analysing HHG in ZnO [101], where it was

concluded that the minimum band gap divides the spectrum into perturbative and

non-perturbative sectors, with the former dominated by the interband current.

Time-Dependent Density Functional Theory: Ab initio methods based on

density functional theory [128] have made important contributions to the study of

HHG [107, 122, 129, 130]. These methods include an empirical exchange-correlation

functional which approximates the effects of Pauli exchange and electron correlations.
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By solving the time-dependent Kohn-Sham equation it is possible to calculate the

microscopic current density [124]

j(r, t) =
∑
i

1

2
[ψ∗i (r, t)(−i∇+ A(t))ψi(r, t) + c.c.] (2.14)

This is then averaged over the unit cell with volume Ω to calculate the macroscopic

current density J(t) along polarisation direction E0

J(t) =
1

Ω

∫
Ω

drj(r, t) · E0/|E0| (2.15)

An interesting application of these methods is Ref. [107], where they studied the

microscopic origins of HHG in bulk silicon using first-principles simulations. Most

relevant to this thesis was the result that the emission spectrum is not affected

by the full evolution of Hartree and exchange-correlation terms. This means that

electron-electron interactions are insignificant in this system and justifies the use of

the independent-particle approximation, used in the above methods and much of the

literature on solid-state HHG. The same conclusion was arrived at in Ref. [122]. This

underlies the distinction between the solids and models discussed so far and those

that we want to investigate.

2.2.3 HHG in Strongly-Correlated Systems

These models often attempt to account for electron-electron interactions and other

many-body effects by including a phenomenological dephasing term T2, which deter-

mines the timescale over which electron-hole coherences are lost. A T2 that is compa-

rable or smaller than a single pulse cycle suppresses interband recollisions, increasing

the contribution from the intraband current, whereas a large T2 permits multiple rec-

ollisions to happen. Although there is debate about the choice of T2, it is often the

case that very small values are chosen. For example, Ref. [61] used T2 = 1.1fs and

Ref. [101] found that in order to get agreement with experiments it was necessary

to use a value on the order of an optical half cycle, T2 ≈ 5fs. This suggests that

many-body effects can be important even in weakly-correlated systems. However, we

are interested in solids in which electron correlations are the dominant determiner of
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the microscopic dynamics, requiring us to go beyond empirical dephasing terms.

2.2.3.1 Modelling HHG in Correlated Systems

We are approximating the interaction of electrons using the one-band Hubbard model,

eq.(2.2), but to describe HHG it is also necessary to subject the system to a time-

dependent laser field, E(t). This is introduced via a Peierls substitution of the hopping

constant [18, 131]

t0 → t0exp

[
−i
∫ rj

ri

dr ·A(r, t)

]
(2.16)

where A(r, t) is the vector potential. Only spatially homogeneous fields will be con-

sidered, A(r, t) → A(t), and as a result the magnetic field can be neglected. The

Peierls phase is defined as Φ(t) =
∫ rj
ri
dr · A(r, t), but electrons in this model are

restricted to discrete lattice sites that are separated by the lattice constant a, and

can only hop between adjacent sites. All combined, this means that the Peierls phase

simplifies to

Φ(t) = aA(t) (2.17)

The electric scalar potential can be conveniently removed by choosing the Landau

gauge, φ(r, t) = 0. As a result, the electric field, vector potential and Peierls phase

are related to each other as follows2

E(t) = −dA(t)

dt
(2.18)

aE(t) = −dΦ(t)

dt
(2.19)

The result is a modified Hubbard Hamiltonian given by

Ĥ(t) = K̂(t) + Û (2.20)

= −t0
∑
〈ij〉σ

{
e−iΦ(t)ĉ†iσ ĉjσ + eiΦ(t)ĉ†jσ ĉiσ

}
+ U

∑
j

n̂j↑n̂j↓ (2.21)

In this model, an electron can hop between nearest-neighbour lattice sites and pick up

a complex hopping amplitude scaled by the field at that moment, as well as potentially

2Note, it follows directly from their relationship that zeroes in E(t) occur at maxima in A(t).
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interact with another electron via the on-site repulsion U . The phase contribution

for a hop between sites i→ j along dimension k is the scaled component Φ = aA · êk.
Starting from a state |Ψ(0)〉, it is a far-from-trivial problem to actually use this

Hamiltonian to generate the system’s dynamics. This will be done using ED and

tVMC, both of which will be discussed in detail in the next chapter.

The high harmonic emission originates from the current that is induced by the

laser field. In many of the models discussed previously, it was common for the cur-

rent to be explicitly separated into inter and intraband contributions, with the former

expressing dipole polarisation and the latter the nonlinear velocity of electrons and

holes; for example, eq.(2.10) and eq.(2.9) from the SBE. The excitation of an electron

to the CB does not intrinsically involve motion in real space, and so it makes sense

that the two mechanisms can often be written separately. However, in the correlated

model eq.(2.21), excitations only form when electrons hop to adjacent sites and in-

teract with other electrons, forming doublon-hole pairs (DHPs). It therefore seems

reasonable that the inter and intraband contributions to the current in this model

can be subsumed together. With that in mind, the paramagnetic current is given by

Ĵ (t) = −iat0
∑
〈ij〉σ

{
e−iΦ(t)ĉ†iσ ĉjσ − eiΦ(t)ĉ†jσ ĉiσ

}
(2.22)

This does not explicitly depend on the interaction U but only on the kinetic energy

K̂(t), and can also be defined as Ĵ (t) = −∂K̂(t)/∂A(t). A formal derivation starts

by evolving the number density operator n̂jσ using the Heisenberg equation

dn̂jσ(t)

dt
= i
[
Ĥ(t), n̂jσ(t)

]
(2.23)

The result can be written as a continuity equation, which in 1D takes the form [18]

dn̂jσ(t)

dt
+ Ĵjσ(t)− Ĵj−1σ(t) = 0 (2.24)

where Ĵjσ is the current per site, given by

Ĵjσ = −it0
{
e−iΦ(t)ĉ†jσ ĉj+1σ − eiΦ(t)ĉ†j+1σ ĉjσ

}
(2.25)

Eq.(2.22) is then the total current, Ĵ (t) = −a
∑

jσ Ĵjσ(t). The emission spectrum is
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calculated as

S(ω) =

∣∣∣∣∣FT
{
d〈Ĵ (t)〉
dt

}∣∣∣∣∣
2

(2.26)

This HHG is averaged over the whole time domain, so information about the instan-

taneous emission is lost. However, it is still possible to resolve the spectrum in time,

and this is discussed in the next chapter.

There is an alternative way of expressing eq.(2.22) that will be extremely useful.

In 1D the current operator is

Ĵ (t) = −iat0
∑
jσ

{
e−iΦ(t)ĉ†jσ ĉj+1σ − eiΦ(t)ĉ†j+1σ ĉjσ

}
(2.27)

We can write the nearest-neighbour hopping expectation in polar form〈
Ψ(t)

∣∣∣∣∣∑
jσ

ĉ†jσ ĉj+1σ

∣∣∣∣∣Ψ(t)

〉
= R (Ψ) eiθ(Ψ) (2.28)

Substituting this into the current expectation gives

J (t) = −iat0R(Ψ)
(
e−i[Φ(t)−θ(Ψ)] − ei[Φ(t)−θ(Ψ)]

)
(2.29)

= −2at0R(Ψ)sin [Φ(t)− θ(Ψ)] (2.30)

This can be generalised to 2D, as will be discussed later. This is the form that was

used for nearly all current calculations to come, partly because it has the advan-

tage that it requires evaluating the correlation functions for one direction only, i.e.

eq.(2.28) but not the forward hopping expectations. Similarly, the expectation value

of the Hamiltonian in eq.(2.21) can be written in terms of eq.(2.28) and the double

occupancy, D = 1
L

∑
j〈n̂j↑n̂j↓〉. In 1D this gives

H(t) = −t0R(Ψ)
(
e−i[Φ(t)−θ(Ψ)] + ei[Φ(t)−θ(Ψ)]

)
+ U

∑
j

〈n̂j↑n̂j↓〉 (2.31)

= −2t0R(Ψ)cos [Φ(t)− θ(Ψ)] + ULD(t) (2.32)

with an identical equivalent in 2D.
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2.2.3.2 Previous Approaches to Correlated Electron HHG

HHG in strongly-correlated systems is an emerging and challenging field, with many

unanswered questions. In this regime a single-particle picture is no longer applicable,

and the notion of well-defined band energies becomes blurred because the correlations

induce an exponential complexity of splittings in the bands, as well as changing

intensities and band positions. The emission mechanisms change in fundamental

ways, and the interplay of strong interactions with these intra and interband processes

can lead to the emergence of photo-induced collective phenomena and HHG spectra

that dramatically diverge from those in atomic and weakly-correlated systems. The

total literature so far is fairly sparse compared to the large output of work on HHG

in other solids. For numerical studies this is almost certainly due to the difficulty of

the simulations, which quickly run up against exponentially-scaling Hilbert spaces.

Most research has focused on either 1D systems [132–135], where the matrix product

states (MPS) formalism is efficient, or effective infinite-D systems [136–138], where

dynamical mean-field theory (DMFT) approaches can be applied [139].

An exception to this is Ref. [140], where they used the time-dependent density-

functional theory + U method to investigate HHG in the charge-transfer insulator

NiO. They found that the strong laser pulse caused a dramatic decrease in the Hub-

bard interaction U resulting from increased screening by excited electrons, and that

this had a clear impact on the HHG spectrum. This suggests that electronic param-

eters of correlated materials can be modified by laser driving, which has potential

technological applications.

In Ref. [132], ED was used to propagate the TDSE for 1D 12-site MIs, using the

Hamiltonian eq.(2.21). They found that the laser field melts the Mott state and that

HHG can be used to resolve the many-body dynamics in the frequency and time

domains. A major aim of this thesis is to extend these results to 2D, and many of

its findings will also be reproduced as part of that analysis. HHG in MIs was further

investigated in several other papers. In Ref. [137], DMFT was used to evolve eq.(2.21)

with U = 8 (mostly) and the addition of a thermal bath of non-interacting electrons.

Under an AC field this system reaches a time-periodic non-equilibrium steady state,

and several interesting features of the emission spectra emerged. They found that
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interband recombination was the dominant process and caused a single plateau to

form in the weak-field regime, followed by new plateaus as the field strength was

increased, with the m’th plateau originating from the recombination of m’th nearest-

neighbour DHPs. In both field regimes the cutoff scaled linearly, as in semiconductors,

and there were clear similarities between their analysis and the 3SM. They then

introduced a semiconductor model with the same dispersion as the MI, which was

found to reproduce some of the MI’s HHG characteristics but also persistently showed

weaker emission intensity than it. These same methods and models were then used in

Ref. [136] to do an in-depth analysis of the non-equilibrium steady states reached in

MIs under these conditions. In Ref. [138], DMFT was applied to an electron-plasmon

model and a multi-orbital Hubbard model, both of which have dynamics that are

influenced by bosonic excitations.

In 1D, MPS-based approaches have been applied to go beyond small system sizes,

either in the form of time-dependent density-matrix renormalization group algorithm

(td-DMRG) [141] or the infinite time-evolving block decimation (iTEBD) method

[142]. The latter was used in Ref. [135] to simulate eq.(2.21) with an extra term

describing the effects of a staggered magnetic field, and with the system fixed in the

strong correlation regime (U = 10). The interband current was again found to be the

dominant contribution to the HHG spectra, and was responsible for the frequency

range of the plateau, producing a cutoff that scaled linearly with field strength. They

then performed a subcycle analysis and showed that important aspects of the DHP

dynamics could be reproduced by a semiclassical analysis based on the 3SM. They

concluded that the 3SM can be extended to MIs3, and that there is a strong rela-

tionship between the HHG of MIs and the dispersion of DHPs with respect to their

relative momentum. Furthermore, they found that the excitation dynamics are not

necessarily fully captured by the single-particle spectrum due to the many-body na-

ture of DHPs, and that the relationship between the HHG emission spectrum and the

single-particle spectrum can be very different than in semiconductors. In Ref. [134],

iTEBD was applied to an interacting spinless-fermion model and the transverse Ising

model, both in a 1D dimer lattice. The HHG spectra exhibited threshold behaviour

3However, their analysis was limited to the strong-interaction regime, so these conclusions cannot
be assumed to be true generally.
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arising from the many-body dynamics, which was again explained in terms of a 3SM-

like picture involving kink-antikink excitations.

Finally, HHG in Kondo lattice models was investigated in 1D [133] using td-

DMRG, and in 2D [143] using tVMC. They simulated a Hamiltonian given by the

tight-binding term of eq.(2.21) combined with a Kondo coupling term, and demon-

strated that the charge-ordered GS underwent a dynamical phase transition, resulting

in a metallic state. They found that the melting of the charge gap resulted in an en-

hancement of the HHG, and suggested that this could be used to experimentally

identify the transition.

HHG in 2D systems is an active area of research with many interesting numerical

[69, 144–146] and experimental [68, 77, 147] results. However, HHG in 2D correlated

systems remains largely unexplored, especially numerically where there is an almost

complete absence of appropriate methods. As far as I am aware, Ref. [143] is the

only numerical study, and even in this case the system exhibited only very weak

correlations, as evidenced by the tight-binding-esque HHG spectrum. The work in

this thesis hopes to make a contribution to the field by extending our understanding

of these models and methods to 2D.

2.3 Dielectric Breakdown in Mott Insulators

The quantum phase transition between a Mott insulating state and a conducting

metallic state is one of the most widely studied phenomena related to strongly-

correlated systems. One method of inducing these transitions is to introduce charge

carriers through doping [5]. Another is to decrease the relative importance of Coulomb

interactions compared to the electrons’ kinetic energy, as described by the ratio U/t0

in the Hubbard model. This can be achieved by the manipulation of external stimuli,

for example temperature and pressure [148], or as will be the focus in this thesis,

through photo-irradiation. The use of laser pulses and strong electric fields to melt

Mott states is well established and has been demonstrated experimentally, including

in Sr2CuO2 [149], cuprates [150], VO2 [151], and ET-F2TCNQ [152]. In the last sec-

tion we saw how there is increasing interest in the idea of using HHG to resolve these

phase transitions, which will be a recurring theme in this thesis. However, interpret-
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ing this information requires an understanding of the physics taking place during the

transition.

Dielectric breakdown in band insulators is understood in terms of Zener tunneling,

where the electric field excites electrons across the band gap from the VB to the CB,

triggering a breakdown [153, 154]. However, in MIs the gap is a many-body effect

arising from electron interactions, so we would expect that this Zener breakdown

description needs to be modified. The state of research into Mott breakdown is quite

similar to that described in the literature review for correlated HHG, in that most

studies have used the Hubbard or Hubbard-like models, and have often focused on

1D by using ED [155–157] and/or td-DMRG [158–162], or infinite-D using DMFT

[136, 163, 164].

The following is a summary of important results derived in Refs. [161, 165] that

will be used extensively in later chapters. These papers investigated dielectric break-

down in 1D MIs using the half-filled Hubbard Hamiltonian eq.(2.21), with analytical

calculations performed by a combination of the Landau-Dykhne method and Bethe

ansatz, and then compared against td-DMRG simulations. In 1D, the GS is Mott in-

sulating for all U > 0 and has short-range antiferromagnetic (AFM) order that grows

with increasing U , such that adjacent sites tend to have opposite spins. It is to this

system that a subgap laser pulse of frequency ωL is applied. The strong field excites

electrons to overcome the Mott gap ∆(U) and form DHPs, i.e. doubly-occupied sites

and corresponding empty sites, which replace the electron-hole excitations of semi-

conductors. If ωL > ∆ then the system is in the linear response regime. However, we

are interested in ωL < ∆, where excitations require highly nonlinear processes. The

mechanism responsible for these excitations depends on pulse and lattice parameters,

as encoded in the Keldysh adiabaticity parameter

γ =
ωL
ξE0

(2.33)

where E0 is the peak field strength and ξ is the correlation length, given by

1

ξ(U)
=

4

U

∫ ∞
1

ln(y +
√
y2 − 1)

cosh(2πy/U)
dy (2.34)

in the thermodynamic limit. This describes the typical size of a DHP that has formed
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in the GS through a virtual process.

The parameter eq.(2.33) delineates two clear regimes and a crossover region con-

necting them. Firstly, if γ � 1 then the system is in the tunneling regime, where

ωL � ∆ and the small photon energy means that the DC limit is approached. In

this region the field distorts the Hubbard band energies, allowing electrons to tunnel

over the gap and create charge carriers in the form of DHPs. The excitation density

increases with the field amplitude E(t) until a threshold field value Eth is reached, at

which point there is a critical density of DHPs, resulting in the dielectric breakdown

or ‘melting’ of the Mott state. This destroys the short-range AFM order and produces

a conducting state. The threshold field (i.e. Schwinger limit) can be estimated by

Eth ≈
∆

2ξ
(2.35)

where the Mott gap has the analytic form [166]

∆(U) =
16

U

∫ ∞
1

√
y2 − 1

sinh[2πy/U ]
dy (2.36)

and ∆ ∝ U when correlations are large. This analysis builds on older work that

attempted to tackle the problem by applying the Landau-Zener formalism to the

many-body problem [155], despite it having been originally designed for one-body

systems. This predicts a quadratic dependence Eth ∝ ∆2, which is reproduced by

eq.(2.35) in the small-U limit. The correlation length, Mott gap and threshold field

are plotted in fig.2.2.

Secondly, when γ � 1 the system is in the multi-photon absorption regime, where

the photon energy is large and ωL is comparable to the gap (although still less than

it). There is a Keldysh crossover between these regimes when ωL = ξE0.

Lastly, a particularly important characteristic is that the DHP distribution changes

with ωL. In the tunneling regime, the excitation probability can be approximated by

P ≈ exp

[
−π

2

∆

ξE0

]
= exp

[
−πEth

E0

]
(2.37)

This is momentum independent, which leads to uniform occupation of states through-

out the ‘upper Hubbard band’ and has important consequences for high harmonic
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Figure 2.2: Mott insulators in the 1D Hubbard model. Threshold field strength
(left) for the dielectric breakdown, as predicted by the Landau-Dykhne and Landau-Zener
methods using analytical results for the Mott gap (middle) and correlation length (right).
The dashed line in the ∆(U) plot shows ωL = 32.9THz, demonstrating how small it is
compared to the gap (this frequency will be used extensively in Chapter 4).

emission in these systems, as will be discussed later. This is very different than the

multi-photon regime, where DHPs are not evenly spread out in momentum space but

are instead localised around the gap. We can see this in the tunneling probability,

which at k = 0 is given by

Pk=0 ≈
(
E0ξ

ωL

)2 ∆
ωL

(2.38)

The exponent, 2 ∆
ωL

, is twice the number of absorbed photons, and has the consequence

that excitations become clustered near the gap because that is the region that requires

the fewest photons to be absorbed.
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Numerical Methods

3.1 Correlated Wavefunctions

Despite being a simple model of correlation, the Hubbard Hamiltonian has exact

solutions with an exponentially-scaling number of basis states, and it is therefore

impractical or impossible in most cases of interest to calculate the full correlated

wavefunction. Instead, it can be approximated with a parameterised trial wavefunc-

tion, |Ψ〉 = |Ψ(α1, ..., αP )〉, which depends on P variational parameters, {αk}, that

can be real or complex-valued.

The aim of the trial wavefunction is to capture as much of the system’s physics

as possible while using a polynomially-scaling number of parameters. The simplest

choice would be a mean-field Slater determinant |ΨMF 〉, with parameters that can

be calculated for polynomial cost by the diagonalisation of a one-body Hamiltonian.

This is the U = 0 solution, and of course contains no information about electron

correlations, making it unsuitable for approximating all but the lowest U . We instead

adopt a more sophisticated trial wavefunction of general form

|Ψ(t)〉 = L̂P̂(t) |φ(t)〉 (3.1)

where L̂ are quantum number projectors, P̂(t) are correlation factors and |φ(t)〉 is a

Pfaffian wavefunction.
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3.1.1 Pfaffian Wavefunctions

A Pfaffian wavefunction1 (PWF) offers dramatic improvements over the Slater deter-

minant (SD) description. For our case, where Sz = 0 is always true, the anti-parallel

PWF is used [168]

|φ(t)〉 =

(
L∑
i,j

fij(t)ĉ
†
i↑ĉ
†
j↓

)Ne/2

|0〉 (3.2)

where L is the number of sites and Ne the number of electrons. No symmetry con-

straints are imposed on the variational parameters, {fij}, resulting in L2 parameters

that contribute a significant computational burden.

The SD can be expressed within this formulation. By definition it is given by

|ΨMF 〉 =

Ne/2∏
n=1

ψ̂†n↑

Ne/2∏
m=1

ψ̂†m↓

 |0〉 (3.3)

where

ψ̂†nσ =
L∑
i=1

Φinσ ĉ
†
iσ (3.4)

and the orbital coefficients, {Φinσ}, form an orthonormal basis:
∑L

i=1 ΦinσΦimσ = δnm.

It can then be shown that the SD is reproduced when [168]

fij =

Ne/2∑
n=1

Φin↑Φjn↓ (3.5)

The PWF is a generalisation of the SD and is capable of describing states that are

inaccessible to the SD description, such as superconducting phases and quantum spin

liquid states.

3.1.2 Correlation Factors

We would like to go beyond the SD or PWF and include explicit many-body correla-

tion in the wavefunction. This can be done using correlation factors, which normally

take the form of exponentiated two-body operators. The simplest extension is the

1In quantum chemistry this is often called the antisymmetrised geminal wavefunction [167].
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Gutzwiller factor P̂G [169], with a single variational parameter g

P̂G = exp

(
−g

L∑
i=1

n̂i↑n̂i↓

)
(3.6)

All correlation factors used in this thesis are diagonal in the basis of real-space con-

figurations: P̂ |x〉 = P(x) |x〉, for configuration |x〉. This is vital to ensuring that the

overlap can be calculated for polynomial cost. For P̂G it follows that

〈x|P̂G|φ〉 = exp (−gD) 〈x|φ〉 (3.7)

where D is the number of doubly-occupied sites in |x〉. This shows that P̂G penalises

double occupancy by assigning configurations with weights that decay exponentially

with the value of D, with the intention of accounting for the effect of the Hubbard

interaction term. However, this only includes on-site correlation and not correlation

between doublons and holons. Once these charge fluctuations form they are free to

move unimpeded, producing a conducting state. As a consequence, the Gutzwiller

factor alone cannot describe the GS Mott transition in finite dimensions [170, 171],

and an insulating state is only obtained in the limit U → ∞, where g diverges and

all doublons are excluded, freezing all charge fluctuations. In this limit it is known

as the fully-projected Gutzwiller factor and takes the form [170]

P̂∞ =
∏
i

(n̂i↑ − n̂i↓)2 (3.8)

To undergo a Mott transition at finite U the wavefunction must include long-range

correlations [170, 172], which can be achieved using the Jastrow factor [173]

P̂J = exp

(
−

L∑
i 6=j

vijn̂in̂j

)
(3.9)

where n̂i = n̂i↑ + n̂i↓. The total correlation factor is then

P̂ = P̂JP̂G = exp

(
−

L∑
i,j

vijn̂in̂j

)
(3.10)
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where vii = g, or alternatively it could be chosen that the on-site parameters are al-

lowed to vary by lattice site. In its most general form with no translational symmetry

imposed, P̂ requires (L2 + L)/2 parameters.

We can get a better understanding of how P̂J works by rewriting it in terms of

doublon D̂i = n̂i↑n̂i↓ and holon Ĥi = (1 − n̂i↑)(1 − n̂i↓) number operators, such that

n̂i = 1 + D̂i − Ĥi [174]

P̂J ∝ exp

(
−

L∑
i 6=j

vij

(
D̂iD̂j + ĤiĤj − D̂iĤj − ĤiD̂j

))
(3.11)

The first two terms encode repulsive doublon-doublon and holon-holon correlations,

and the latter two are attractive doublon-holon correlations. It is the attractive terms

in particular that enable P̂J to successfully describe the GS Mott transition [172].

3.1.3 Quantum Number Projectors

For any symmetry of the Hamiltonian there is an associated conserved quantum

number. Their conservation must be respected by any exact eigenstate, but this isn’t

guaranteed by the PWF. The idea behind quantum number projectors (QNPs), L̂,

is to enforce conservation and thereby make the variational wavefunction closer to

the exact state. As well as conserving known symmetries in the state, it affords the

variational wavefunction more flexibility by allowing it to break symmetries in the

knowledge that the overall state restores them before minimising the resulting energy.

There are no parameters associated with QNPs because they are exact projectors into

symmetry sectors of the space. Furthermore, it is important to note that L̂ and P̂
commute (i.e. L̂P̂ = P̂L̂) so long as P̂ preserves the symmetries of L̂ |φ〉.

In this thesis, two QNPs will be used: the momentum projector L̂K , and the point-

group symmetry projector L̂P . More details about their definition and function can

be found in Refs. [168, 174]. L̂K projects the wavefunction onto a state with total

momentum K

L̂K =
1

L

∑
R

eiK·RT̂R (3.12)
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where T̂R is the translational operator for vector R. L̂P is given by

L̂P =
1

Ng

∑
p

gα(p)−1T̂p (3.13)

where T̂R is the translational operator for vector p, gα(p) is the character for point-

group operations and Ng is the number of elements in the point group.

L̂K requires that translational invariance be enforced in P̂ such that its param-

eters only depend on the distance between sites, i.e. vij → vk. The advantageous

consequence of this is that the number of parameters to be optimised is significantly

reduced, from (L2 + L)/2 to L/2 + 2. Despite this, the application of the QNP is

extremely costly and is one of the largest contributions to the overall calculation

time. The total number of parameters in the trial wavefunction is then L2 +L/2 + 2,

compared with the dimension of the Hilbert space at half filling,
(
L
L/2

)2
.

3.2 Variational Monte Carlo

VMC was first applied to fermionic systems in the 1970s [175] and has since be-

come a widely used way of rapidly calculating expectation values using parameterised

trial wavefunctions. VMC is unaffected by the notorious fermion sign problem that

plagues other comparable methods such as diffusion Monte Carlo. Furthermore, that

the method is based on variational wavefunctions confers both significant advantages

and disadvantages. On the one hand, this makes it extremely flexible and widely

applicable in ways that are not true with other methods, but it also makes the ac-

curacy of results hostage to the quality of the chosen ansatz. In this thesis, VMC

is indispensable as a way of calculating observables both for direct analysis and as

important steps in other stochastic methods.

3.2.1 The Metropolis Algorithm

To calculate expectation values with Monte Carlo methods it is necessary to sample

from probability distributions P (x) that depend on lattice configurations |x〉. The

Metropolis algorithm [176] is an efficient way of doing this.
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In the context considered here, a Markov Chain is a sequence of configurations

{|xn〉}, for n = 1, .., NS, in which each is related to the last by the stochastic hop-

ping of one electron to another site. It is possible to construct a Markov chain

whose elements are distributed according to P (x), regardless of the choice of ini-

tial configuration |x0〉. If the chain is in configuration |xn−1〉 at step n − 1, then a

new configuration |x′〉 is proposed according to the transition probability T (x′|xn−1),

where we consider symmetric probabilities T (x′|xn−1) = T (xn−1|x′). The single hop

that separates |xn−1〉 and |x′〉 is then retained or rejected according to an acceptance

condition that is chosen so as to ensure that the configurations are sampled with

probability P (x). More precisely, the algorithm works as follows:

Algorithm 1: Metropolis algorithm

Initialise |x0〉;
for (n = 1; n = Ns; n += 1):

Propose new configuration |x′〉;
η ∼ U(0, 1);

if (min
{

1, P (x′)
P (xn−1)

}
> η):

|xn〉 = |x′〉;
else:

|xn〉 = |xn−1〉;

Some initial samples are discarded in order to equilibrate the chain. If the proposed

configuration |x′〉 is more probable than the current one |xn−1〉 then it is automatically

accepted, otherwise it is accepted with probability P (x′)
P (xn−1)

. This means that the ran-

dom walk will tend towards and linger in high-probability regions of the configuration

space, while still allowing for the possibility of escape.

The detailed balance condition is given by P (x → x′) = P (x′ → x), i.e. that

transitions between |x〉 and |x′〉 happen with equal probability in both directions. In

the Metropolis algorithm, the correct convergence to P (x) is guaranteed if detailed

balance is satisfied, and it can be shown that it is [170]. In fact, the acceptance

condition in alg. (1) is designed specifically to enforce detailed balance.
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3.2.2 Monte Carlo Calculation of Expectation Values

We can approximate the expectation value of an operator Ô by sampling only a tiny

subset of the exponentially large configuration space. In fact, in the results to come

there are 14 orders of magnitude difference between the number of possible lattice

configurations and the number of samples taken, and done using a trial wavefunction

with only O(103) parameters. This is possible because the central limit theorem

dictates the variance of the expected value, and does not explicitly depend on the

dimensionality of the space being sampled.

This is achieved by rewriting the expectation as a sum of probabilities multiplied

by matrix elements of Ô

〈Ô〉 =
〈Ψ| Ô |Ψ〉
〈Ψ|Ψ〉

=

∑
x 〈Ψ|x〉 〈x|Ô|Ψ〉∑
x 〈Ψ|x〉 〈x|Ψ〉

(3.14)

=
∑
x

P (x)OL(x) (3.15)

where the resolution of the identity,
∑

x |x〉 〈x| = 1, was used and

P (x) =
|Ψ(x)|2∑
x |Ψ(x)|2

, OL(x) =
〈x|Ô|Ψ〉
〈x|Ψ〉

(3.16)

=
∑
x′

〈x|Ô|x′〉 〈x
′|Ψ〉
〈x|Ψ〉

(3.17)

where P (x) is a probability distribution as it has only positive values and is nor-

malised,
∑

x P (x) = 1. OL(x) is known as the local estimator of Ô, and in the case

Ô = Ĥ it is known as the local energy, eL(x). Finally, the expectation is approximated

by the average of the local estimator over NS configurations

〈Ô〉 ≈ 1

NS

NS∑
n=1

OL(xn) (3.18)

A path through the configuration space, {|xn〉}, is taken by sampling P (x) with the

Metropolis algorithm, and for each configuration OL(xn) is calculated. The average

is then taken over all {OL(xn)}.
There are two components to the computation of eq.(3.15). The first is sampling
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using the Metropolis algorithm, involving terms P (x′)
P (x)

, and the second is the calculation

of the local operator, eq.(3.17). Both require finding ratios of the form

〈x′|Ψ〉
〈x|Ψ〉

=
〈x′|P|φ〉
〈x|P|φ〉

=
P(x′) 〈x′|φ〉
P(x) 〈x|φ〉

(3.19)

where the PWF overlaps are expressed as Pfaffians: 〈x|φ〉 = (Ne/2)!Pf(X), where X

is a 2Ne × 2Ne skew-symmetric matrix. Calculating these ratios for each individual

configuration would be extremely costly, but luckily this cost can be considerably

reduced for both the Pfaffians and correlation factors by using fast-update schemes

that use the fact that |x〉 and |x′〉 differ by only one electron hop. Furthermore, the

sampling probabilities P (x′)
P (x)

have the advantage that their potentially costly normal-

isation factors exactly cancel. And finally, the Hamiltonian and other operators of

interest are highly local so that there are few non-zero matrix elements in eq.(3.17)

and the sum need only extend over a small number of configurations instead of the

whole Hilbert space.

The variance of eq.(3.18) is approximately

σ2 ≈ 1

NS − 1

NS∑
n=1

(
OL(xn)− 〈Ô〉

)2

(3.20)

and the error is estimated by σ̃ ≈ σ/
√
Ns. However, this is an underestimation of

the true error because it does not account for the correlation that exists between

configurations as a result of their origin in a Markov chain, where each sample is

generated from the last and nearby samples are therefore not independent. The

problem can be resolved using a technique called block analysis [170]. This divides

the full set of local estimators {OL(xn)} into bins, each of which is averaged over. The

resulting data set is approximately independent, and the variance can be calculated

in the typical way. The squared error is then given by this variance divided by the

number of bins.
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3.3 Stochastic Reconfiguration

For a trial wavefunction |Ψ〉 = |Ψ(α)〉 and the parameters set at some specific values,

the GS energy is approximated by

ε′ =
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

(3.21)

The Hamiltonian has eigenvalues and eigenvectors Ĥ |εn〉 = εn |εn〉, with true GS

ε0. By subtracting this from the approximate value ε′ it is possible to arrive at an

extremely useful conclusion [170]

ε = ε′ − ε0 (3.22)

=
〈Ψ| Ĥ |Ψ〉
〈Ψ|Ψ〉

− 〈ε0| Ĥ |ε0〉
〈ε0|ε0〉

(3.23)

=
∑
n

|ωn|2(εn − ε0) > 0 (3.24)

where the expansion |Ψ〉 =
∑

n ωn |εn〉 has been used, with
∑

n |ωn|2 = 1. This means

that ε′ is an upper bound of the exact energy, and therefore that the parameters can be

optimised by minimising ε′. Of course, ε = 0 only when the variational wavefunction

is equal to the exact state.

Only a particular class of wavefunctions are accessible via a given parameterisa-

tion, which is a subset of the full class of valid wavefunctions accessible from the

underlying Hilbert space. This subset is spanned by |Ψ(α1, ..., αP )〉, for all possible

choices of the parameters α = (α1, ..., αP ). The variational principle dictates that

the optimal parameter values for the GS are those that minimise the energy. Car-

rying out this minimisation is difficult for all but the simplest wavefunctions, e.g.

|Ψ〉 = PG |ΨMF 〉, where there is only one parameter, g. In this case, it is just a

matter of tracing through values of g, calculating the energy for each and taking

whichever gives the smallest answer. However, the wavefunctions used in this thesis

require thousands of parameters, making trial-and-error methods completely impos-

sible. This problem was solved using the SR method [177, 178], which can simultane-

ously optimise tens or even hundreds of thousands of parameters. SR optimisations

were carried out using the mVMC package [168, 179], which required extending it to
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include complex-valued correlation factor parameters.

3.3.1 Derivation

The time-dependent variational principle (TDVP) [180, 181] can be applied in both

real and imaginary time, which are related by τ = it. SR requires working in the

latter, where the Schrödinger equation is given by

d |Ψ(α(τ))〉
dτ

= −Ĥ |Ψ(α(τ))〉 (3.25)

The TDVP can then be used to derive the SR update equations [168, 182]. The aim is

to calculate the parameters such that the difference between the two sides of eq.(3.25)

is minimised

min
α

∥∥∥∥d |Ψ(α(τ))〉
dτ

+ Ĥ |Ψ(α(τ))〉
∥∥∥∥ > 0 (3.26)

where the equality holds only for the exact solution. The normalised wavefunction is

|Ψ̄(α(τ))〉 =
|Ψ(α(τ))〉√

〈Ψ(α(τ))|Ψ(α(τ))〉
(3.27)

and has imaginary-time evolution given by

d |Ψ̄(α(τ))〉
dτ

=
∑
k

α̇k |∂αk
Ψ̄(α(τ))〉 (3.28)

= −
(
Ĥ − 〈Ĥ〉

)
|Ψ̄(α(τ))〉 (3.29)

The TDVP then becomes

min
α

∥∥∥∥∥∑
k

α̇k |∂αk
Ψ̄(α(τ))〉+ (Ĥ − 〈Ĥ〉) |Ψ̄(α(τ))〉

∥∥∥∥∥ > 0 (3.30)

Minimising this ‘distance’ gives∑
k

α̇kRe
{
〈∂αk

Ψ̄|∂αmΨ̄〉
}

= −Re
{
〈Ψ̄|(Ĥ − 〈H〉)|∂αmΨ̄〉

}
(3.31)

The parameters are written as real because their real and imaginary parts are treated

separately during calculations with no loss of generality. To write this in a useful
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form it is necessary to define the derivative operators

Ôk =
∑
x

(
1

〈x|Ψ〉
∂ 〈x|Ψ〉
∂αk

)
|x〉 〈x| (3.32)

=
∑
x

Ok(x) |x〉 〈x| (3.33)

Finally, eq.(3.31) gives

α̇k = −
∑
m

S−1
kmgm (3.34)

and by discretising time we obtain a linear system of equations for the parameter

updates

∆αk = −∆τ
∑
m

S−1
kmgm (3.35)

where

Skm = Re
{
〈∂αk

Ψ̄|∂αmΨ̄〉
}

(3.36)

= Re 〈Ô∗kÔm〉 − Re 〈Ôk〉Re 〈Ôm〉 (3.37)

gm = Re
{
〈Ψ̄|(Ĥ − 〈Ĥ〉)|∂αmΨ̄〉

}
(3.38)

= Re 〈ĤÔm〉 − 〈Ĥ〉Re 〈Ôm〉 (3.39)

The elements of the matrix S and vector g are calculated using the Markov chain

Monte Carlo method.

3.3.2 Implementation

Calculating the Ok(x) terms in eq.(3.33) requires taking the derivatives ∂αk
〈x|Ψ〉

with respect to variational parameters αk. If αk ∈ fij from eq.(3.2) then derivatives

of Pfaffians must be taken, which requires a fairly complicated calculation, the details

of which can be found in Ref. [168]. However, terms involving the correlation factor

are just derivatives of the expectation of the exponential eq.(3.10), and therefore only

require evaluating simple correlation functions that are diagonal in the configuration

basis.
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The stochastic reconfiguration algorithm can be summarised as follows:

Algorithm 2: Stochastic reconfiguration

Initialise α(0);

for (τ = 0; τ = ∆τ ∗Nopt; τ += ∆τ):

Sample configurations: {|xn〉}, n = 1, ..., NS ;

VMC:
{
〈Ô∗kÔm〉 , 〈Ôk〉 , 〈ĤÔk〉 , 〈Ĥ〉

}
;

Solve system: ∆α = −∆τS−1g ;

Update parameters: α(τ + ∆τ) = α(τ) + ∆α ;

Nopt > 2000 optimisation steps were used, which is enough for the system to com-

fortably converge for the cases studied here. At each step, there is a warm-up period

of 10 samples that are discarded in order to equilibrate the chain, and the number of

samples (i.e. the chain length) was chosen depending upon the number of parameters

in the trial wavefunction, which is determined by the size of the system. More details

are discussed in Appendix A for the specific cases in this thesis. Finally, the param-

eter values for the last 10% of the optimisation steps were averaged over to give the

optimised GS wavefunction.

3.4 Time-Dependent Variational Monte Carlo

In SR, the system is propagated in imaginary time and therefore approaches the GS,

whereas evolution in tVMC allows us to calculate the full dynamics of systems whose

size makes them inaccessible to exact diagonalisation methods. A major advantage

of the method is that there is no inherent restriction on dimensionality, unlike other

prominent methods such as td-DMRG (which is mostly limited to 1D) and DMFT

approaches (which works in infinite dimensions). tVMC was originally applied to

bosonic systems [183, 184], before being extended to interacting fermionic systems

[185], and is now being combined with and improved upon using machine learning

techniques [186–189].

When used with a sufficiently sophisticated parameterised wavefunction, tVMC

is able to accurately describe a variety of time-dependent phenomena [143, 183–
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191]. However, the ansatz is very much the limiting factor, and failure to include

appropriate correlations or symmetries will restrict the accuracy of results and the

applicability of the method. Of course, it is computationally costly to introduce more

parameters or number projectors, as well as the fact that redundant parameters can

deteriorate statistics, and so there is a balancing act which depends on the quantities

and systems that are being studied. All calculations in this thesis involving SR and

tVMC were performed using the following ansatz

|Ψ(t)〉 = L̂KL̂P P̂(t) |φ(t)〉 (3.40)

This was chosen because it combines high accuracy with computational cost which,

while still significant, does not preclude simulating system sizes well beyond what is

possible with exact methods.

tVMC was implemented by the author by extending the mVMC package [168, 179].

The ultimate goal of this was to calculate the real-time evolution of the expectation of

the current operator, given by eq.(2.22), which was done using the VMC functionality

of the mVMC package. More details of this process are described shortly.

3.4.1 Derivation

The dynamics of the system is contained within the trajectories of the parameters

α(t). To derive their equation of motion, we start from the Schrödinger equation

with a time-dependent Hamiltonian and apply the TDVP

min
α

∥∥∥∥d |Ψ(α(t))〉
dt

+ iĤ(t) |Ψ(α(t))〉
∥∥∥∥ > 0 (3.41)

We can then proceed as was done for SR by normalising the wavefunction. Equiv-

alently, the norm-independent TDVP can be used [180, 185], which enforces the

conservation of the norm

min
α

∥∥∥∥(1− |Ψ(α(t))〉 〈Ψ(α(t))|
〈Ψ(α(t))|Ψ(α(t))〉

)[
d |Ψ(α(t))〉

dt
+ iĤ(t) |Ψ(α(t))〉

]∥∥∥∥ > 0 (3.42)
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Carrying out this minimisation leads to

α̇k = −i
∑
m

S−1
kmgm (3.43)

This is very similar to eq.(3.34), with the crucial difference that the parameters are

now necessarily complex, unlike in SR where it is optional (if the Hamiltonian is real).

Deriving the update equations using the TDVP is the preferred method here because

it underlines the connection between the tVMC and SR methods. A closely related,

and more common, derivation is done by minimising the Euclidean distance in Hilbert

space between the exact and variational wavefunctions [170, 183]. Alternatively, it

can also be derived using the principle of stationary action [170].

3.4.2 Implementation

It would be preferable to implement tVMC in a similar way as alg. (2) on page 50,

using the simple Euler method. This is an intuitive and easy-to-implement integra-

tion scheme, but suffers from aggressive error accumulation: the local truncation

error, which is the error per timestep, is O(∆t2), and the global truncation error is

O(∆t). This is sufficiently accurate for GS optimisation in SR because the final state

does not depend on the specific optimisation path in imaginary time. It can also

provide sufficient accuracy for real-time evolution in tVMC for some cases, but not

for the simulation of HHG in the required parameter regimes, where the Hamilto-

nian and wavefunction change exceptionally rapidly. Instead, eq.(3.43) was evolved

using RK4, which requires four recursive integration steps instead of just one like

in the Euler method, but has a local truncation error of O(∆t5) and a global er-

ror of O(∆t4). While the extra steps are obviously computationally expensive, its

significant improvements in accuracy and stability mean that a larger timestep can

be used. tVMC has other sources of error besides the choice of trial wavefunction

and the integration method, most significant of which are stochastic errors from the

Monte Carlo calculation of S and g, and errors due to the discretisation of time into

increments ∆t. The required timestep and number of Monte Carlo samples depended

on the system’s correlation strength and size, and are discussed in Appendix A.

The combination of tVMC and RK4 was implemented as follows:
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Algorithm 3: Time-dependent variational Monte Carlo

Definition: f(α, t) = −iS−1g;

Propagate in imaginary time to optimise GS, α(0);

for (t = 0; t = T ; t += ∆t):

Sample configurations: {|xn〉}, n = 1, ..., NS ;

VMC: correlation functions, {〈ĉ†iσ ĉjσ〉};
//First RK4 step;

VMC:
{
〈Ô∗kÔm〉 , 〈Ôk〉 , 〈Ĥ(t)Ôk〉 , 〈Ĥ(t)〉

}
;

κ1 = ∆tf(α, t);

//Second RK4 step;

VMC:
{
〈Ô∗kÔm〉 , 〈Ôk〉 , 〈Ĥ(t+ ∆t/2)Ôk〉 , 〈Ĥ(t+ ∆t/2)〉

}
;

κ2 = ∆tf(α+ κ1/2, t+ ∆t/2);

//Third RK4 step;

VMC:
{
〈Ô∗kÔm〉 , 〈Ôk〉 , 〈Ĥ(t+ ∆t/2)Ôk〉 , 〈Ĥ(t+ ∆t/2)〉

}
;

κ3 = ∆tf(α+ κ2/2, t+ ∆t/2);

//Fourth RK4 step;

VMC:
{
〈Ô∗kÔm〉 , 〈Ôk〉 , 〈Ĥ(t+ ∆t)Ôk〉 , 〈Ĥ(t+ ∆t)〉

}
;

κ4 = ∆tf(α+ κ3, t+ ∆t);

Update parameters: α(t+ ∆t) = α(t) + 1
6

(κ1 + 2κ2 + 2κ3 + κ4);

The one-body correlation functions, {〈ĉ†iσ ĉjσ〉}, are required to calculate the current

eq.(2.22), and are evaluated by taking Ô = ĉ†iσ ĉjσ in eq.(3.14). Furthermore, in

order to speed up calculations, configurations are sampled once at the beginning of

each timestep instead of at each individual RK4 step. However, this does not cause

significant loss of accuracy, despite a small degree of statistical correlation between

the evaluations of the functions required in the RK4 steps.
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3.5 Exact Diagonalisation

It is a fundamental principle of quantum mechanics that quantum states evolve in

time according to the Schrödinger equation, and so by integrating this forward we can

calculate our model’s dynamics in full. Of course, if this were achievable in general

then entire branches of computational condensed matter physics would not need to

exist. The reality is that classical computers struggle to simulate quantum systems,

and ED is limited to a small number of sites. This is a consequence of the Hilbert

space, whose dimension scales as dim(L) =
(
L
L/2

)2
. This is still exponential despite

the symmetry imposed by the Sz = 0 requirement and the constraints of half filling

and conserved electron number. For L = 6, dim = 400 and so the evaluation and

propagation of the exact GS can be carried out very rapidly, but doubling the system

to L = 12 requires handling complex-valued arrays with over 850,000 elements. This

is made more challenging by the long timescales that are required, and this combined

with rapidly-changing quantities of interest necessitates the use of small timesteps.

It was found that L = 14 is the largest that is practically possible to simulate, which

makes a 4 × 3 lattice the largest possible in 2D. As a result, all ED simulations in

this thesis were with 12-site systems.

Despite these strict limitations on system size, ED is still an extremely useful

method. Firstly, it provides a means of benchmarking tVMC to judge its accuracy

before it is applied to larger systems. Secondly, ED can be used in situations where

tVMC cannot, e.g. in regimes where stochastic noise limits its usefulness.

The aim is to ‘exactly’ solve the Schrödinger equation

d |Ψ(t)〉
dt

= −iĤ(t) |Ψ(t)〉 (3.44)

for the Hamiltonian Ĥ(t) with explicit time dependence. The initial state |Ψ(0)〉
is always taken as the GS, and is calculated using the full configuration interaction

method [192].
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One possible method would be to expand the general solution as follows:

|Ψ(t+ ∆t)〉 = e−iĤ∆t |Ψ(t)〉 (3.45)

=
∑
n

(
−iĤ∆t

n!

)n

|Ψ(t)〉 (3.46)

and then select a cutoff order N beyond which the expansion is truncated. This does

not require the full diagonalisation of the Hamiltonian, but instead only the repeated

application of Ĥ(t) to |Ψ(t)〉.
Instead of this, eq.(3.44) was solved by once again making use of RK4 integration,

where each timestep requires four applications of Ĥ(t) to |Ψ(t)〉, as follows:

Algorithm 4: Exact evolution

Calculate GS, |Ψ(0)〉;
for (t = 0; t = T ; t += ∆t):

Expectation values: 〈Ĵ 〉, 〈Ĥ〉, etc;

|κ1〉 = −i∆tĤ(t) |Ψ(t)〉;
|κ2〉 = −i∆tĤ(t+ ∆t/2){|Ψ(t)〉+ |κ1〉 /2};
|κ3〉 = −i∆tĤ(t+ ∆t/2){|Ψ(t)〉+ |κ2〉 /2};
|κ4〉 = −i∆tĤ(t+ ∆t){|Ψ(t)〉+ |κ3〉};
|Ψ(t+ ∆t)〉 = |Ψ(t)〉+ 1

6
(|κ1〉+ 2 |κ2〉+ 2 |κ3〉+ |κ4〉);

No terms are truncated, but instead errors of order O(∆t5) accumulate at each

timestep due to the RK4 scheme. A timestep ∆t = 0.01 was normally taken, as

it was found that decreasing it further did not change the results. This step size is

also sufficient to ensure that the norm is conserved, as the propagator is not strictly

symplectic. Finally, expectation values are calculated by simply contracting the op-

erator with the full wavefunction, e.g. 〈Ĥ(t)〉 = 〈Ψ(t)|Ĥ(t)|Ψ(t)〉.

3.6 Correlated Bandstructure Model

The HHG produced by an irradiated correlated material originates ultimately from

the interacting many-body dynamics of the system. However, the GS single-particle
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bandstructure, and in particular the Mott gap, often plays a central role in investiga-

tions of the mechanisms responsible for emission. With that in mind, we introduce a

novel effective single-particle model to explore the extent to which the opening of a

gap changes the HHG beyond the simple tight-binding spectrum, and to what extent

it can account for the observed features of the HHG as correlation and dimensionality

are changed, but also the limitations of such a model and what that teaches us.

3.6.1 Bandstructure Engineering

The idea behind the CBM is to map the full driven Hubbard Hamiltonian onto a

simple non-interacting model. Specifically, we aim to map features of the correlated

GS bandstructure onto the spectrum of a non-interacting single-particle model, whose

mean-field dynamics and HHG emission spectrum can then be calculated exactly.

This is done by starting with the tight-binding model and introducing fictitious

auxiliary degrees of freedom. For an incident laser pulse with Peierls phase Φ(t), the

Hamiltonian is given by

Ĥ(t) =− t0
∑
〈ij〉σ

{
e−iΦ(t)ĉ†iσ ĉjσ + eiΦ(t)ĉ†jσ ĉiσ

}
+ V (U)

∑
iσ

{
ĉ†iσf̂iσ + f̂ †iσ ĉiσ

}
− U

2

∑
iσ

{
ĉ†iσ ĉiσ + f̂ †iσf̂iσ

} (3.47)

where the fermionic operators f̂ (†) couple each physical site to a corresponding aux-

iliary one with a strength determined by the parameter V (U). The fictitious system

hybridises with the physical lattice, mimicking the band splitting caused by true

correlations. A second band is then formed by tracing out the auxiliary degrees of

freedom, which opens an effective Mott gap, ∆̃(U).

We require a systematic way of uniquely mapping U → V (U), i.e. of fixing the

non-interacting model for a given correlated system. This was done using the first

spectral moment of the GS particle and hole density of states (DOS). This is the

mean of the particle and hole distributions, and can be thought of as the centre of

the Hubbard band. It is first calculated for the correlated system and then V (U) is
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optimised to reproduce it in the CBM.

We only need to consider the mean of the hole DOS, as symmetry then constrains

the particle one. In the correlated system, the spectral moment can be written as an

expectation of the GS wavefunction [193–195]

T =
1

L
Tr
[
〈Ψ0|ĉ†β[ĉα, Ĥ]|Ψ0〉

]
(3.48)

= −t0
L

∑
〈αβ〉

ραβ + U

(
2D − 1

2

)
(3.49)

where ραβ is the one-body density matrix (DM), with {α, β} labelling spin orbitals,

and D is the GS double occupancy. This is calculated by VMC using the GS wave-

function, itself optimised with SR. For small systems it can also be calculated exactly

by diagonalising the full Hamiltonian, and it was found that doing this for 12 and

16-site systems gives moments that closely match those from VMC for much larger

systems, with the exception of the 4× 3 lattice which had some (fairly minor) differ-

ences.

The mean-field moment in the CBM is given by

TMF =
2

L

∑
α

∑
εj<µ

CαjCαj(εj − µ) (3.50)

where µ is the chemical potential and (C; ε) are the eigenvectors and eigenvalues

of eq.(3.47), i.e. the Hamiltonian of the combined physical ⊕ auxiliary system. The

scalar-valued parameter V (U) is optimised by simply tracing through possible values,

calculating TMF for each and matching it to the moment of the correlated system. At

U = 0, the Hubbard Hamiltonian reduces to the tight-binding model, so it must be

that V (0) = 0 and eq.(3.47) is exact. V (U) then steadily increases with increasing

U , as larger correlations cause the Mott gap to grow and the Hubbard bands to move

further apart, increasing T .

It is possible to write the dispersion in a compact form by Fourier transforming

eq.(3.47) at t = 0

Ĥ(k) =
∑
kσ

(
ĉ†kσ f̂ †kσ

)(e(k)− U
2

V (U)

V (U) −U
2

)(
ĉkσ

f̂kσ

)
(3.51)
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where e(k) is the dispersion of the tight-binding model for dimension d

e(k) = −2t0

d∑
n=1

cos[kna] (3.52)

The dispersion ε(k) satisfies det(H − ε1) = 0, where

H =

(
e(k)− U

2
V (U)

V (U) −U
2

)
(3.53)

Solving this leads to

ε(k) =
1

2

(
α(k)±

√
α2(k) + 4β(k)

)
(3.54)

where

α(k) = e(k)− U (3.55)

β(k) = V 2(U) +

(
e(k)− U

2

)
U

2
(3.56)

The plus and minus terms of eq.(3.54) are the CB and VB, respectively. The disper-

sion is shown in fig.3.1 for 1D and 2D at U = 0, 3, 7, corresponding in 1D to V ≈ 0,

1.3, 3.3 and in 2D to V ≈ 0, 1.1, 3.1.

Furthermore, the spectral function can be used to estimate the GS bandstructure

A(ω) = − 1

πL
Tr [Im {G(ω + iλ)}] (3.57)

where λ is the broadening parameter and G(ω) = P̂ (ω1 − Ĥ)−1P̂ is the one-body

Green’s function, with P̂ a projection operator into the physical lattice. Examples of

the resulting DOS are plotted in fig.3.2, again for effective U = 0, 3, 7 in both 1D

and 2D.

Fig.3.1 and fig.3.2 mimic features of the correlated GS spectrum. They show that

the introduction of the parameter V (U) causes the formation of an effective Mott

gap, ∆̃(U), separating the occupied (ω < µ) and unoccupied (ω > µ) states. In

1D, the Hubbard GS is described by the Bethe ansatz, resulting in Mott gaps given

by eq.(2.36) and a dispersion that can also be written in closed form [18, 165]. In

2D, the Hubbard GS cannot be described analytically, but there have been numerous
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Figure 3.1: Effects of correlation and dimensionality on the dispersion in the
CBM. Energy as a function of quasi-momentum in 1D (top) and 2D (bottom) estimated
using eq.(3.54) for U = 0, 3, 7, corresponding in 1D to V ≈ 0, 1.3, 3.3 and in 2D to V ≈ 0,
1.1, 3.1.

investigations into its proprieties, including for small systems using ED [196, 197] and

in the thermodynamic limit using cluster perturbation theory [198, 199].

Despite the CBM’s many approximations, fig.3.1 and fig.3.2 reproduce important

qualitative features of the correlated bandstructure. In particular, they predict that

the gap is larger in 1D for all U , which agrees with results from cluster perturbation

theory and the Bethe ansatz [198, 199], and that the bandwidth is twice as large in

2D. Furthermore, the 2D DOS in fig.3.2 correctly replicate the distinctive Van Hove

singularities near the gap, which are far more pronounced than in 1D [196, 197].

These GS characteristics have key implications for any subsequent HHG, and will

appear frequently in the coming analysis. However, the CBM’s 1D gap predictions

were compared against the equivalent analytical values from eq.(2.36) and were found

to be overestimates for all correlation strengths, i.e. ∆̃(U) > ∆(U), which implies

that the 2D predictions are also overestimates. The CBM is therefore not suitable

for making precise predictions at a given U , but is instead useful for analysing broad

qualitative trends and the relationships between GS properties and the HHG.
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Figure 3.2: Effects of correlation and dimensionality on the bandstructure in the
CBM. The DOS in 1D (top) and 2D (bottom) estimated using eq.(3.57) with λ = 0.1t0
for U = 0, 3, 7, corresponding in 1D to V ≈ 0, 1.3, 3.3 and in 2D to V ≈ 0, 1.1, 3.1.

3.6.2 Time Evolution

Once V (U) has been optimised for a given U , Hartree-Fock methods from the PySCF

package [192] are used to calculate the GS one-body DM of the physical ⊕ auxiliary

system, ρ̂P+A. The dynamics of the GS are then given by the Von Neumann equation

∂ρ̂P+A(t)

∂t
= −i

[
ĤP+A(t), ρ̂P+A(t)

]
(3.58)

where ĤP+A(t) is eq.(3.47). The propagation was carried out using RK4, where at

each timestep the reduced DM of the physical system, ρ̂P (t), is calculated by tracing

out the auxiliary degrees of freedom, which is then used to calculate the current and

any other observables of interest. This can be summarised as follows:
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Algorithm 5: Evolution in the correlated bandstructure model

Mean-field DM, ρ̂P+A(0);

for (t = 0; t = T ; t += ∆t):

ρ̂P (t) = TrA [ρ̂P+A(t)];

Expectation values: 〈Ĵ 〉, 〈ĤP 〉, etc;

κ1 = −i
[
ĤP+A(t), ρ̂P+A(t)

]
;

κ2 = −i
[
ĤP+A(t+ ∆t/2), ρ̂P+A(t) + κ1/2

]
;

κ3 = −i
[
ĤP+A(t+ ∆t/2), ρ̂P+A(t) + κ2/2

]
;

κ4 = −i
[
ĤP+A(t+ ∆t), ρ̂P+A(t) + κ3

]
;

ρ̂P+A(t+ ∆t) = ρ̂P+A(t) + 1
6

(κ1 + 2κ2 + 2κ3 + κ4)

It is instructive to decompose eq.(3.47) into four distinct quadrants, representing

the connections between the physical and auxiliary degrees of freedom

ĤP+A(t) =

(
ĤP (t) V (U)1

V (U)1 −U
2
1

)
(3.59)

ĤP (t) is the Hamiltonian of the physical lattice, and is given by the tight-binding

term of eq.(3.47) shifted down the diagonal by the single particle chemical potential,

−U
2

∑
iσ ĉ
†
iσ ĉiσ. Furthermore, the chemical potential term for the auxiliary degrees of

freedom ensure the conservation of particle number, but also have the consequence

that the number of electrons in the auxiliary space equals that of the physical space,

which therefore requires doubling the total number of electrons to be propagated.

However, the computational cost of evolution is still small, and the main limiting

factor is the memory involved in the mean-field calculation of the GS.

Many of the required expectation values can be calculated by taking the trace, e.g.

〈Ĵ 〉 = Tr[ρ̂P Ĵ ]. For other observables, we can make use of the mean-field nature of

the method to write two-body expectation values in terms of the elements of the one-

body reduced DM. Doing this for the double occupancy gives D = 1
L

∑
j〈n̂j↑n̂j↓〉 =

1
L

∑
i〈n̂i↑〉〈n̂i↓〉. These number operators are the diagonal elements of ρ̂P and are

constant, giving D = 1
L

∑
i(

1
2
)2 = 0.25 and ensuring that D is constant for all V (U),
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and therefore also in the Hubbard model at U = 0. This shows that while the CBM

can attempt to mimic the one-body properties of the system (e.g. the Mott gap), it is

not designed to correctly describe two-particle properties such as D(t). Furthermore,

the nearest-neighbour spin-spin correlation is defined as

η =
1

dL

∑
〈ij〉

〈Ŝi · Ŝj〉 (3.60)

for dimension d. This can be simplified to the form

η =
3

2dL

∑
〈ij〉

(〈n̂i↑n̂j↑〉 − 〈n̂i↑n̂j↓〉) (3.61)

which can then be decomposed as follows

η =
3

2dL

∑
〈ij〉

(
〈n̂i↑〉〈n̂j↑〉 − 〈ĉ†i↑ĉj↑〉〈ĉ

†
j↑ĉi↑〉 − 〈n̂i↑〉〈n̂j↓〉

)
(3.62)

3.7 Emission Resolution

Irradiation causes the creation and acceleration of charge excitations, which subse-

quently emit light. In both of our models, eq.(2.21) and eq.(3.47), information about

this HHG is encoded in the current, eq.(2.22). The dipole acceleration is given by

a(t) =
d 〈Ĵ (t)〉

dt
(3.63)

The Fourier transform is then used to extract the frequency content of the signal,

from which the HHG spectrum is calculated as follows

S(ω) = |FT {a(t)}|2 (3.64)

These spectra can suffer from spectral leakage, which is a numerical artifact of the

discrete Fourier transform and has the effect of introducing spurious frequency com-

ponents that obscure structure, particularly at low intensities. Welch’s method can

be used to deal with this problem by dividing the time series into blocks, calculating

the spectrum of each block and then averaging. In general this method was not used,

but will be explicitly stated in cases where it is.
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Spectra of this type tell us no information about how the emission changes in

time. This is particularly important for photo-induced Mott transitions, as eq.(3.64)

is completely blind to them but they could be directly observed with an appropriate

time resolution. The Gabor transform [200] is the most commonly used method of

time-dependent analysis for HHG, e.g. in Refs. [132, 201]. It is a Fourier transform

but on a signal that has been acted upon by a Gaussian window g(t − τ), thereby

introducing a dependence on not just frequency but also time. It takes the form

a(ω, τn) = FT {a(t)g(t− τn)} (3.65)

g(t− τn) = exp

(
−(t− τn)2

σ2

)
(3.66)

where time and therefore frequency have been discretised, and FT {...} represents the

discrete Fourier transform. The window function at a given τn localises the signal in

time around that point, with the variance σ2 determining the degree of localisation.

Decreasing σ2 narrows the window and improves time resolution, but at the expense

of frequency resolution. This trade-off is dictated by the generalised uncertainty prin-

ciple, which puts a limit on how much information can be simultaneously extracted in

the frequency and time domains. Conversely, increasing the variance widens g(t− τ)

and therefore improves the frequency resolution while also leaking temporal informa-

tion, such that in the limit σ2 →∞ the window widens to encompass the entire signal

and the Fourier transform is recovered. By tracing through τn the window slides over

the signal, localising it at each point and then transforming it to extract frequency

information.

A significant improvement on this can be achieved with the discrete wavelet trans-

form, which takes the convolution of a wavelet ψ(η) with the acceleration [202]

a(sk, tn) =
N−1∑
tn′=0

a(tn′)ψ
∗
[

(tn′ − tn)∆t

sk

]
(3.67)

where sk = ω0/ωk are the wavelet scales, with non-dimensional constant ω0 that is

used to control the relative time-frequency resolution. These scales are a generalisa-

tion of the width σ2 in the Gabor transform. Their important feature is that they

are not constant but instead vary depending on the frequency, such that the width is
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wide for low ωk, where the time resolution does not need to be high, and is conversely

narrow for high ωk, where time resolution does need to be good. This allows it to

capture information for frequencies that might have fallen out of the range of the

Gabor transform.

The Gabor and wavelet transforms were implemented2 and compared. The latter

was found to give superior time and frequency resolution, and captured features of the

HHG that were lost or obscured by the Gabor transform, e.g. peaks that are narrow

in the frequency domain and emission at very low harmonics. These are structures

that will play an important part of the coming discussion, and so wavelet analysis

was chosen to generate all spectrograms in this thesis. Throughout, the wavelet ψ(η)

was taken as a Morlet wavelet, which is a plane wave modulated by a Gaussian. A

common alternative is the Ricker wavelet, which was also tried but was found to

be less effective for the required cases. Regardless of the method used, once the

acceleration has been time-resolved the spectrum is calculated as follows

S(ω, t) = |a(w, t)|2 (3.68)

This allows us to build a heatmap of the emission, at each timestep providing the

generated harmonics and their intensity of emission.

2Wavelet analysis was done by adapting and extending [203].

64



4

High Harmonic Generation in Correlated

Systems

In this chapter, HHG in correlated 1D and 2D systems is investigated using the

Fermi-Hubbard model, given by eq.(2.21), combined with the effective single-particle

model in eq.(3.47), with the aim of understanding in detail how correlation and di-

mensionality impact the high harmonic emission. The backbone of the analysis is

based on the results in Ref. [1]. The effects of varying pulse and lattice parameters

are also explored, and the chapter is concluded by a discussion of potential directions

for future research.

We consider a monochromatic driving pulse of frequency ωL and peak field strength

E0, acting on a system with lattice constant a. The vector potential has peak value

A0 = E0/ωL, and is composed of a sinusoidal carrier wave and sin-squared envelope

function f(t), together giving a pulse of the form

A(t) = A0f(t) sin[ωLt] (4.1)

=
E0

ωL
sin2

[
ωLt

2Nc

]
sin[ωLt] (4.2)

where Nc = 10 is the number of cycles. The Peierls phase is Φ(t) = Φ(t)ê = aA(t)ê,

where ê controls the polarisation. In 2D, we take the pulse to be applied along the

diagonal, ê = (1, 1), such that both directions are subject to the same field at all

times. Unless otherwise stated, the following system and pulse setup is used. The

lattice parameters are chosen as a = 4�A and hopping constant t0 = 0.52eV, which

means that the non-interacting single-particle bandwidth of the material in 1D and 2D

is ∼ 2eV and ∼ 4eV respectively, where the bandwidth is W = 4dt0 for dimension d.

Atomic units are used (e = ~ = 1), and the energy unit is set as the hopping constant,
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such that t0 = 1. The mid-IR frequency and peak field strength are ωL = 32.9THz

and E0 = 10MVcm−1, which in our t0-normalised atomic units are ωL = 0.262 and

E0 = 5.325, along with lattice constant a = 1.444. This corresponds to a total pulse

duration of T = 2πNc

ωL
≈ 300fs. These are all experimentally realistic values that

have been used in past studies [61, 204]. Finally, periodic boundary conditions are

maintained throughout for 1D chain and 2D square lattice systems.

Simulations were carried out using tVMC with 36-site lattices, which is com-

parable to or larger than was used in the related literature that was discussed in

Sec. 2.2.3.2. Appendix A gives more details about the simulation setup, as well as

benchmarking results and demonstrations of the convergence of the HHG with system

size. However, throughout this chapter the tVMC simulations are supplemented by

ED calculations performed on 12-site systems. This was done in regimes where tVMC

is not accurate, or on occasions where a very large data set was required that made

using tVMC impractical. These limitations and regimes of applicability are discussed

further in Appendix A. Despite their small size, the 12-site systems used in ED have

emission spectra that reproduce the important qualitative and quantitative features

observed in the larger systems, and so are considered a useful and valid part of the

analysis. In the one case where the small system size does cause an issue, it will be

accounted for and does not change the conclusions of the analysis.

4.1 Photo-Induced Mott Transitions

As discussed in Sec. 2.3, quantum tunneling is the dominant excitation process when

γ � 1, where γ is the Keldysh adiabaticity parameter, defined by eq.(2.33). In 1D,

our choice of parameters puts the system deep in the tunneling regime. For example,

at U = 5 and 7 the Keldysh parameter is γ ≈ 0.125 and 0.2 respectively, and the

crossover point at γ = 1 isn’t reached until U ≈ 85! As would be expected in this

regime, the frequency is small compared to the Mott gap1, with ωL > ∆(U) only for

weak correlation strengths, when approximately U < 2. It is reasonable to suspect

that 2D systems are also in the tunneling regime, although this cannot be confirmed

1This is shown in fig.2.2.

66



CHAPTER 4. HIGH HARMONIC GENERATION IN CORRELATED SYSTEMS

analytically as there are no equivalent expressions for the gap and correlation length.

As long as the 2D gaps are not radically different than 1D’s then we would expect

it to remain in the same regime, because the probability of excitation by multi-

photon absorption decreases exponentially with the number of absorbed photons,

Nγ ∼ ∆/ωL, and this number must be large if ωL � ∆. However, we can check that

it is true in 2D by observing dielectric breakdowns with threshold behaviour, which

are present in the tunneling regime and have been observed in numerical studies in

not only 1D [165] but also infinite-D systems [136, 137, 163].

The THz pulse is in the DC limit and can be considered quasi-static because the

timescale of electron hoppings is small compared to a laser cycle. Recall that the

correlation length ξ describes the approximate effective separation of a virtual DHP

in the GS such that it becomes on-shell. We can think of Eth as the minimum field

strength that separates the charge carriers by the distance ξ ∼ ∆/Eth required to

distinguish them. Another way of understanding it is that the static component of

the field distorts the Hubbard bands and Eth can then induce tunneling by providing

an energy ξEth ∼ ∆ that is comparable to the gap. In 1D this threshold field can be

estimated by eq.(2.35) and occurs at a time tc, which is related to the vector potential

by Eth(tc) = −dA(tc)/dt. This leads to

∆

2ξ
= −E0

[
sin2

(
ωLtc
2Nc

)
cos(ωLtc) +

1

2Nc

sin

(
ωLtc
Nc

)
sin(ωLtc)

]
(4.3)

which can be solved for tc numerically. For the stated parameters, eq.(4.3) predicts

that transitions can happen up to U ≈ 6, beyond which the correlations are too

strong for the breakdown to occur.

As will be discussed later, it is possible to clearly observe these transitions in

the frequency-time domain. However, insight can also be gained by propagating

observables that are not experimentally accessible. Firstly, the double occupancy

calculates the average number of DHPs per site

D(t) =
1

L

L∑
j=1

〈
ĉ†j↑ĉj↑ĉ

†
j↓ĉj↓

〉
=

1

L

L∑
j=1

nj↑nj↓ (4.4)

67



CHAPTER 4. HIGH HARMONIC GENERATION IN CORRELATED SYSTEMS

And the energy is simply

ε(t) = 〈Ψ(t)|Ĥ(t)|Ψ(t)〉 (4.5)

Changes in the magnetic order can be observed using the nearest-neighbour spin-spin

correlation per bond

η(t) =
1

dL

∑
〈ij〉

〈
Ŝi · Ŝj

〉
(4.6)

for dimension d. In 1D this is

η(t) =
1

L

∑
j

〈
Ŝj · Ŝj+1

〉
(4.7)

Finally, the overlap probability allows us to track the persistence of the GS

W (t) = | 〈Ψ(0)|Ψ(t)〉 |2 (4.8)

These observables are plotted in fig.4.1 and fig.4.2 for 1D and 2D. In the 4 × 3

square lattice there is an artificial phase transition in the GS at U ≈ 6. This arises

from frustration in the y-direction that prohibits the formation of AFM order. It

can be seen most clearly in the spin correlation in fig.4.2, where there is a sharp

decrease in the GS value for U > 6, followed by evolution that in some cases is

quite erratic. This transition is due to the small system size in the y-direction, which

is confirmed by GS ED calculations with the 4 × 4 lattice and VMC calculations

with various larger lattices, which all show that the transition is not present in the

thermodynamic limit. To compensate for this, the equivalent tilted lattice system

with unit cell (4,0) (3,3) is also included. Frustration does not develop in this system

and it can therefore support perfect antiferromagnetism, resulting in no artificial GS

phase transition. This means that for some of these observables the tilted lattice is

potentially a better representation of the square system in the thermodynamic limit.

However, it is important to note that even with the GS transition the conclusions of

the analysis are not fundamentally changed.

Fig.4.1 shows the time-dependence of D(t) and ε(t) and their variation with cor-

relation and dimensionality, and fig.4.2 similarly shows η(t) and W (t). The system

begins in its GS, which at U > 0 is a MI with AFM order that increases with U ,

corresponding to decreasing double occupancy. This means that interactions force the
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Figure 4.1: Time-resolved photo-induced Mott transitions, demonstrated using
D(t) and ε(t). Time evolution, under the driving field shown in red, of the doublon density
and energy, for varying correlation strength. Shown for 1D chain (left), 2D square (middle)
and 2D tilted (right) geometries, all calculated using ED on 12-site lattices. The white lines
in 1D show the time that Eth is reached, calculated using eq.(2.35).

electrons away from each other and onto different sites, with neighbouring sites tend-

ing to have opposite spins. A pulse is then applied, destroying the Mott insulating

state and inducing an insulator-to-metal transition.

When U = 0 the system is already metallic, so no transition occurs and in both

dimensions the double occupancy simply remains constant at D = 0.25, because

there is equal probability of a site being in any one of its four possible states. But

with non-zero interactions D(t) starts to depend on the field strength. In 1D, the

doublon density does not change greatly until the threshold field is reached, after
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which it increases rapidly and ultimately converges to a metallic state with large and

constant carrier density, at a value that is often larger than the D = 0.25 of the

U = 0 system. Eq.(2.35) predicts that Eth > E0 when approximately U > 6, and this

is clearly reflected in a sharp decline in DHP production beyond this point, until at

very large U the repulsion becomes too strong for any noticeable increase in double

occupancy. In this limit, the tunneling probability remains small, so the excitation

density is insufficient to cause melting and the system retains its insulating nature.

The 2D heatmap shares many of the same qualitative features and it is clear that Mott

breakdowns also occur and do so with threshold behaviour, but with the important

difference that the phase transitions continue to happen up to higher correlation

strengths than in 1D.

The system’s energy ε(t) reflects the underlying competition between kinetic and

Coulombic processes. At U = 0 it is entirely kinetic in origin, as without interactions

it is simply due to independent electrons being accelerated by the field, resulting in

large oscillations that return to the GS energy every half cycle. When U > 0 the

repulsive interactions block electron motion, and instead energy is added to the sys-

tem when DHPs are formed, which can subsequently be accelerated and contribute

kinetic energy. The final energy that the system converges to depends on the com-

petition between these contributions, with kinetic energy dominating at low U such

that the energy remains negative, and Coulomb interactions dominating as U in-

creases, resulting in positive energies with behaviour that mirrors D(t). In 2D these

converged energies are much larger than 1D for strong to intermediate U , reflecting

larger doublon densities in this region. Finally, in 1D when Eth > E0 the energy does

not deviate much from its GS value because insulating states inhibit DHP formation.

This signature of insulating behaviour does not happen in 2D until much larger cor-

relation strengths, again implying that Mott transitions can occur beyond the point

where they are possible in 1D.

The spin correlation η(t) allows us to directly observe the destruction of magnetic

order. In 1D, the MI melts into a paramagnetic state within approximately 2 cycles

of the threshold field being reached, and converges to a value that is close to zero (and

would be zero in the thermodynamic limit). There are a number of interesting differ-

ences in 2D. Firstly, the transitions appear to begin sooner such that the saturated
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Figure 4.2: Time-resolved photo-induced Mott transitions, demonstrated using
η(t) and W (t). Time evolution, under the driving field shown in red, of the spin-spin
correlation function and overlap probability, for varying correlation strength. Shown for 1D
chain (left), 2D square (middle) and 2D tilted (right) geometries, all calculated using ED
on 12-site lattices. The white lines in 1D show the time that Eth is reached.

state is arrived at more quickly, particularly in the region below U = 6. Furthermore,

Mott breakdown occurs up to larger interaction strengths, as is the case with all the

observables in fig.4.1 and fig.4.2. These two things together suggest that the threshold

field for a given U is smaller in 2D, which could arise from differences in bandstructure

(i.e. Mott gap) and/or correlation length. This will be returned to later as it has

important consequences. Lastly, there is interesting behaviour in the region U > 7.

The double occupancy and energy suggest that this is the insulating limit where Mott

transitions cannot occur, and in 1D this regime is also clearly insulating as large AFM
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order is maintained throughout. However, in 2D there is a persistently high density

of charge carriers, and the magnetic order appears to partially melt at all correlation

strengths.

Finally, the overlap probability is sensitive to small changes in electronic configura-

tion and therefore allows us to precisely track the depletion and eventual destruction

of the GS. In 1D, as the threshold field is approached the wavefunction oscillates

between the GS and a heavily-depleted state, with the GS returned to at peaks in

E(t). These oscillations correspond to fluctuations in the double occupancy which

are too small to clearly see in the heatmap but still cause large changes in W (t).

Once the threshold field is reached, W (t) shows that the rapid rise in D(t) leads to

the destruction of the Mott state in less than a single cycle, often before D(t) and

η(t) have even converged. When Eth > E0 no transition can occur, so the overlap

continues to oscillate with the field and ultimately returns to W (t) = 1, which shows

that the GS survives. This is qualitatively similar to the 2D square lattice results,

because W (t) is not greatly affected by the artificial GS frustration and so the square

lattice is the more reliable of the two in this case when estimating the thermodynamic

limit. As with the other observables, the 2D overlap supports the observations that

transitions occur sooner and up to larger interaction strengths.

4.2 Emission Mechanisms

The laser pulse induces a highly complex optical response that can act as a win-

dow into the underlying physics. This response originates in the dynamics of the

many-body charge excitations, i.e. the photo-induced DHPs. Electron correlations

fundamentally alter the single-particle bandstructure picture used to model the HHG

in semiconductors that results from excited electrons and holes. However, impor-

tant lessons can be learnt from this description, and the single-particle language of

renormalised excitations remains vital to the analysis of MIs. Excitations are now

considered, especially at large U , to occur between the ‘lower Hubbard band’ (LHB)

and the ‘upper Hubbard band’ (UHB), instead of between the VB and CB as in

semiconductors. The analytical description available in 1D, and discussed in Sec. 2.3,

offers important insights into the origins of the system’s HHG. In particular, it is im-
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portant to consider the GS dispersion relating the energy of DHPs to their momenta,

which predicts that the available energies of a single excitation are between ∆ and

∆ + 8t0 [132, 165].

To analyse the emission we must build some understanding of the mechanisms that

cause the charge carriers to generate high harmonics. As was discussed in Sec. 2.2.1

and Sec. 2.2.2, in atomic systems HHG has long been analysed using the 3SM, which

was then extended to solid state systems. The natural question is to what extent a

similar picture can be developed for MIs, given that their properties differ in impor-

tant ways. In semiconductors, an electron promoted to the CB is delocalised and free

to undergo acceleration, whereas in MIs this is not true because the excitations are

restrained by Pauli blocking (due to the exclusion principle) and the localising effects

of Coulomb interactions. The consensus of the literature, as discussed in Sec. 2.2.3.2,

is that HHG in the (single-band) Hubbard model originates from two main mecha-

nisms that are both directly analogous to those in semiconductors. Firstly, there is

an intraband current arising from the hopping of doublons and holes in the upper

and lower Hubbard bands, respectively. The emission is due to their acceleration

either through momentum space or around it via BOs, in which the field drives the

quasiparticles to the edge of the Brillouin zone, causing them to rapidly change their

momenta and emerge from the other side, accompanied by oscillations in real space.

Secondly, interband polarisation builds up between doublons and holes, followed by

their recombination and the emission of light. This leads to a phenomenological 3SM

similar to those discussed previously: the field induces the tunneling of an electron

over the Mott gap to form a DHP, which is then accelerated by the laser, until the

doublon and hole oscillate back towards each other and recombine. Clearly these pro-

cesses are heavily influenced by the correlated bandstructure, whose properties are

mimicked in fig.3.1 and fig.3.2. These figures will be useful for gaining an intuition

into the mechanisms at work and the differences between them in 1D and 2D.

It is not a priori clear which of the inter and intraband processes will contribute

more to the emission. Interband was found to be dominant for MIs in 1D [135] and

infinite-D [137] when U is large, and the HHG from semiconductors under mid-IR

pulses has also been found to be dominated by interband processes [118]. This will

be an important property to look at for general U , and especially in 2D.
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4.3 HHG Spectra

The charge dynamics produce a current, given by eq.(2.22), and therefore a dipole

acceleration, which gives rise to high harmonic emission. We will use HHG to resolve

the many-body dynamics in the frequency and time domains, allowing us to directly

observe metallic and insulating behaviour, as well as transitions between them. The

HHG will first be analysed using eq.(3.64), in which the emission during the whole

pulse is summed over. The variation of this emission with correlation and dimension-

ality is shown from fig.4.3 to fig.4.6, which were calculated using a combination of

mean-field methods, tVMC and ED. They plot the log of the HHG spectrum against

the emitted harmonics, where the harmonics are multiples of the input frequency, ωL.

All 1D spectra are shown in the left-hand columns, and 2D in the right-hand ones,

with rows given in order of increasing correlation (when applicable).

4.3.1 Metallic Regime

When U = 0 the system is in the Fermi liquid regime and the Hamiltonian eq.(2.21)

becomes the tight-binding model

Ĥ(t) = −t0
∑
〈ij〉σ

{
e−iΦ(t)ĉ†iσ ĉjσ + eiΦ(t)ĉ†jσ ĉiσ

}
(4.9)

In the conducting limit there are no interactions and therefore no Mott gaps, so

HHG arises entirely from the intraband current. We can therefore revert to a one-

electron description and consider individual independent electrons and holes that are

accelerated beyond the Fermi energy by the laser field. This produces the spectrum

shown in fig.4.3. It is composed of narrow and distinct peaks at the odd harmonics2

ω = 1, 3, 5..., with the first two at intensities that are at least an order of magnitude

larger than the peaks in any U > 0 spectrum. These properties are typical of tight-

binding spectra [58], as well as of experimentally-observed HHG that is thought to

originate from intraband acceleration, such as in Dirac semimetals [205, 206]. Fig.4.3

2This spectrum extends up to ω = 11 at S(11) ≈ −10, but at intensities below this the spectrum is
obscured by spectral leakage. The Welch method can be applied, and doing so extends the spectrum
up the 17th harmonic where S(17) ≈ −22.
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Figure 4.3: HHG spectrum in the ab-
sence of correlation. Harmonic emission
at U = 0 in 2D, and the spectrum is the
same in 1D up to a constant factor. Calcu-
lated on a 6 × 6 lattice using eq.(4.10) and
mean-field methods. The simulations were
repeated using tVMC and the CBM, and
both reproduced the same result.

only shows the 2D case, but the spectrum is the same in 1D up to a constant factor,

which can be understood using the 1D current expectation in the form eq.(2.30).

When U = 0 it is true throughout the pulse duration that θ = 0 and R(Ψ) = R(ΨMF )

is constant. This results in a current with time dependence that only enters through

the Peierls phase

J (t) = −2at0R(ΨMF )sin [Φ(t)] (4.10)

In 2D, the current can be resolved into its x and y components

J (t) = Jx(t) + Jy(t) (4.11)

= −2at0 {Rx(ΨMF )sin [Φ(t)] +Ry(ΨMF )sin [Φ(t)]} (4.12)

= −2at0R(ΨMF )sin [Φ(t)] (4.13)

where R(ΨMF ) = Rx(ΨMF ) +Ry(ΨMF ). The ratio of emission in both dimensions at

any frequency is constant in time and given by

S2D(ω)

S1D(ω)
=
|R2D(ΨMF )|2

|R1D(ΨMF )|2
≈ 1.5 (4.14)

because all other terms cancel, resulting in spectra that are proportional to each other

and with 2D having a larger intensity.

The same mean-field methods that were applied to the CBM can also be used

to calculate the current of the U = 0 system, as this is just the V (0) = 0 case.

However, it is not necessary to do a full evolution of eq.(3.58), and instead once the
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GS one-body DM has been found it can be used to calculate R(ΨMF ), at which point

eq.(4.10) gives the current. This means that the non-interacting system only requires

knowledge of the GS and the pulse in order to calculate the full time-evolution of the

HHG.

4.3.2 Interacting Regime

When U > 0 a Mott gap ∆(U) is opened, leading to dramatically different HHG

spectra. The intraband current typically causes the emission of low harmonics with

regular structure, but an UHB introduces much larger excitation energies, which

can broaden the emission to include high harmonics with highly irregular structure.

Furthermore, intra and interband processes become coupled in interesting ways that

depend on the correlation strength, further adding to the complexity of the HHG.

4.3.2.1 1D Systems

We first analyse the 1D spectra, shown in fig.4.4 for U = 1 and fig.4.5 for U = 3, 5,

7 (in the left-hand column). At U = 1 the gap is very small, ∆(1) ≈ 0.005, but it is

enough to cause significant changes to the HHG as compared to the tight-binding case.

The emission intensity is comparatively suppressed, but the spectrum extends beyond

the 30th harmonic, far higher than is possible with only an intraband current (at this

field strength). Because ∆(U) is so small it is not possible to separate the spectrum

into discrete sections above and below the gap, which makes it difficult to match

emission mechanisms with spectral features. The HHG peak is near the 1st harmonic

and retains a narrow and regular structure, implying that it originates mostly from the

intraband current. However, at larger harmonics the structure becomes increasingly

irregular and originates from the interband current. This is clear from the fact that

the emitted harmonics sit neatly within the available excitation energies ∆ to ∆+8t0,

which are the set of single charge-conserving optical excitations from the correlated

GS, and can be calculated using eq.(2.36) from the Bethe ansatz [18, 165, 166]. The

peak excitation, ∆+8t0, is the Mott gap plus twice the 1D single-particle bandwidth,

W1D = 4t0, and therefore represents the interaction energy plus the maximum kinetic

energy of the DHP. This is similar to the atomic cutoff energy that was discussed
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Figure 4.4: HHG spectra in weakly-correlated systems. Harmonic emission at U = 1
in 1D and 2D. The dashed line in the 1D plot shows the excitation energies ∆ to ∆ + 8t0,
although the former is so small that it is obscured by the y-axis. Calculated using tVMC
on 36-site lattices.

earlier, Ip + 3.17UP , where Ip is the ionisation potential and 3.17UP the maximum

possible kinetic energy.

When U > 1 a substantial Mott gap forms, and fig.4.5 shows that this results in a

shifting of the spectra to larger harmonics. Interband recombination is unambiguously

the dominant process as the majority of emission falls within the DHP excitation

energies, which form a moving interval of just over 30 harmonics that peak over a

region centered around N ∼ U/ωL. This agrees with previous research that also

found the interband current to dominate in 1D far from the metallic limit [132, 135].

The relative contribution of intra and interband processes changes greatly as elec-

tron correlation increases. At U = 3 the intraband current is still a significant con-

tribution, as there is a large peak below the gap. However, even this peak is an order

of magnitude less than its U = 1 equivalent, and at larger U the low harmonics are

increasingly suppressed. This occurs due to the intricate coupling that exists between

the emission mechanisms. DHPs are the charge carriers, which means that the intra-

band current is inherently tied to the existence of interband polarisation, and in fact

the intraband current’s emission intensity is heavily dependent upon the occupation

of the UHB. This is because in the tunneling regime, when γ � 1, the tunneling

probability is nearly momentum-independent, which can cause the UHB to become
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Figure 4.5: HHG spectra in the interacting regime. Harmonic emission at U = 3,
5, 7 in 1D and 2D. The dashed lines in 1D show the excitation energies ∆ to ∆ + 8t0.
Calculated using tVMC on 36-site lattices.
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saturated by photocarriers [165]. As a result, quasi-momenta states become unavail-

able for charge oscillations and so low harmonics are suppressed [132]. This effect

is most pronounced in the Mott breakdown regime, where Eth < E0 and there is a

high rate of carrier creation. However, it can also occur in cases where the correlation

is too strong to permit Mott transitions, e.g. U = 7 in fig.4.5 shows suppression

of low harmonics despite the fact that we know a transition cannot occur because

E0 = 10MVcm−1, but Eth(7) ≈ 14.8MVcm−1. It must be that the small fluctuations

in double occupancy that can be observed in fig.4.1 can populate the UHB enough to

block the intraband current, even if it is not enough to initiate breakdown. Another

factor reducing the emission of low harmonics is the physical lattice itself, as in 1D a

DHP only has two adjacent sites to hop to, which could be blocked by other electrons,

particularly at large U where the interactions have a strong localising effect.

4.3.2.2 2D Systems

The 1D and 2D spectra start the same (up to a constant factor) in the conducting

U = 0 limit, but fig.4.5 shows that they rapidly diverge as correlation is increased.

Many of the characteristic features of the 1D HHG stop being true in 2D, and so

dimensionality appears to have an important impact on the emission of these MIs.

In 2D, an interesting feature is the persistent presence of low harmonics, as op-

posed to the suppression of them observed in 1D for all but small interaction strengths.

There is no analytic expression available for ∆2D(U), nor is there a simple way to

calculate them numerically, so it is sometimes not possible to definitively assign re-

sponsibility to either intra or interband processes for the continued low harmonic

emission. In the U = 3 case, there is not significant broadening of the HHG com-

pared to the U = 1 spectrum, implying that its Mott gap remains small. This again

makes the origin of its low-harmonic peak somewhat ambiguous, and it is probably

composed of contributions from both emission mechanisms. However, low harmon-

ics persist at all correlation strengths shown in fig.4.5, beyond the point where a

considerable gap has certainly formed and at intensities approximately an order of

magnitude larger than their 1D equivalents. This leads to a clear separation between

the initial peaks around the 1st harmonic, whose origin is in intraband processes, and
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the broad spectrum of emission extending up to tens of harmonics, which is due to

recombination.

These low harmonics are necessarily driven by a retention of significant levels of

intraband current, indicating a persistence of mobile collective charge carriers that

avoid recombination over substantial timescales. This is supported by fig.4.2, which

shows the melting or partial melting of AFM order at all U , including values where in

fig.4.1 D(t) indicates that Mott breakdowns are not occurring, and where in 1D there

is an absence of charge-carrying quasiparticles because Eth < E0. This might be a

direct result of the higher dimensionality in 2D, as the excitations are better able to

avoid each other and to continue undergoing driven dynamical oscillations without

recombination. Furthermore, the 2D single-particle bandwidth is W2D = 8t0 = 2W1D,

as shown in fig.3.2. This increased bandwidth is an important contributing factor as

it means there are more quasi-momenta states available, ensuring that the UHB does

not become as saturated as in 1D systems and can continue to support intraband

currents in the presence of strong electron interactions.

An interesting question is whether the longer excitation lifetimes of DHPs in 2D

reduce the intensity of the HHG at larger harmonics, as it might decrease the total

number of recombination events compared to 1D, where the lattice and bandstructure

inhibit extended oscillations. This could perhaps have a noticeable effect on the U = 3

spectrum, where the intraband current is the most important emission mechanism and

the intensity of higher harmonics, whose origin is in recombination, is considerably

lower than its 1D equivalent. In three-dimensional (3D) systems, the additional

dimension would be expected to even more effectively support intraband currents,

and therefore to further enhance low harmonics, as well as to potentially cause a

larger reduction in the intensity of higher harmonics. Together this means that in

3D MIs it is expected that low harmonics dominate the spectrum for low-to-medium

interaction strengths.

Another noteworthy feature of the 2D spectra is the nature of the peak HHG. At

U = 5, where correlation is moderately strong, there is a single well-defined peak at

ωmax ≈ 9.5, which is large enough that it must originate from recombination. This

can be said with confidence because it is above the 1D gap, ∆1D(5) ≈ 8ωL, and we

know that ∆1D(U) > ∆2D(U), as was discussed in Sec. 3.6.1 and is visible in fig.3.2.
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These characteristics are distinct from 1D, where the maximal emission occurs over

an extended region instead of a single narrow peak. They also occur at much larger

harmonics in 1D, in this case centered around N ∼ 5/ωL ≈ 19, which is approximately

double the 2D peak’s location, ωmax ≈ 9.5.

Some of these differences in the U = 5 emission can be explained by the DOS,

because in 2D there are strong quasiparticle peaks (Van Hove singularities) either side

of the gap, which are far more pronounced than in 1D [196, 197]. These can be seen

clearly in fig.3.2. In 2D, we would therefore expect a high density of excitations to

occur near ∆(U), which could explain the location of the peak at comparatively small

harmonics, given that ∆2D(5) < 8ωL. Furthermore, the peak’s narrow shape directly

follows from the structure of the DOS, which is concentrated in these quasiparticle

peaks and then tapers off. Conversely, in 1D the DOS is more uniformly distributed

across the available excitation energies, resulting in the broader spread of peak HHG

in fig.4.5.

In the strongly-correlated regime, shown here at U = 7, a high density of localised

magnetic moments begin to form and we see dramatic changes in the structure of

the spectrum. The bulk of emission is not linearly dependent on U as in 1D, but

instead the spectrum broadens over more than 40 harmonics. This is caused by a

combination of large gap; the increased bandwidth compared to 1D, which makes

more high-energy excitations available; and the retention of the intraband current,

which extends the spectrum to also include lower harmonics.

4.3.3 Large-U Regime

Here we consider the region given by approximately U ≥ 8, where the correlation is

extremely strong (the gap is similar to or larger than the non-interacting bandwidth)

but the system is still in the tunneling regime. In 1D, the boundary of this regime

can be estimated using eq.(2.33), which states that quantum tunneling remains the

primary excitation process up until the Keldysh crossover at U ≈ 85. As we will see,

HHG in this large-U limit has interesting and unusual properties. As U grows, the

field strength increasingly struggles to overcome ∆(U), such that Eth � E0 and the

system remains firmly in the insulating regime. We will look at the specific case of
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U = 10, where in 1D the threshold field is Eth(10) ≈ 38 MVcm−1, nearly four times

larger than E0.

Because ∆(U) becomes so large, it might be expected that DHP recombination

is the dominant emission mechanism, as it is in fig.4.5 for all but weak correlations.

However, this is actually not the case, and as U increases there is an inversion of the

relative contributions of the intra and interband currents that also depends heavily

on dimensionality. This is demonstrated in fig.4.6 for U = 10. In 1D, when the

field is at its peak strength E(t) = E0, the probability for an electron in the GS to

tunnel over the gap and form a DHP can be approximated by eq.(2.37), which gives

P ≈ 0.21, 9.7× 10−3, 6.3× 10−6 for U = 5, 7 and 10, respectively. This exponential

decay of the tunneling probability when Eth > E0 helps to explain the threshold

behaviour observed in the Schwinger limit, defined by eq.(2.35). This has the effect

of severely reducing the occupation of the UHB as U → ∞, making many quasi-

momenta states available for intraband oscillations and thereby causing the emergence

of low harmonics. This diminished doublon density also leads to an accompanying

reduction in the intensity of higher harmonics that originate from recombination, such

that they become orders of magnitude less than their equivalents in fig.4.5.

An enhancement of the intraband current can in fact be predicted from the dis-

persion, because as U → ∞ we would expect the bands to become flatter, i.e. less

dispersive. This increases mobility in k-space because the energy change between

states becomes smaller, which promotes intraband motion. The flattening of the

bands can be observed in the CBM’s dispersions, fig.3.1, and this tendency continues

as effective U is increased further until the bands are almost parallel.

Fig.4.6 shows that in 1D the main consequence of this is a peak at the 1st har-

monic, along with lower-intensity emission below the gap. In 2D, the lobe-like struc-

ture below the 20th harmonic is approximately two orders of magnitude more intense

than the rest of the spectrum, and will later be shown by a time-dependent analysis

to be intraband in origin. We can see therefore that charge oscillations become by far

the largest source of HHG when correlations are extremely large, despite the presence

of a substantial gap.

The relative effects of this intraband enhancement in 1D and 2D can again be

understood in terms of differences in the bandstructure and lattice. In 1D, with the
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Figure 4.6: HHG spectra in the large-U limit. Harmonic emission and corresponding
currents at U = 10 in 1D (left) and 2D (right). The dashed lines in 1D are the excitations
∆ to ∆ + 8t0, and the red lines are the electric field E(t). Welch’s method was applied to
access the low-intensity emission. Calculated using ED on 12-site lattices.

exception of the 1st harmonic, frequencies below the gap are in fact even more ag-

gressively suppressed than in fig.4.5. This is likely caused by the competing effects of

lower UHB occupation, which encourages DHPs to delocalise, versus the localisation

caused by very strong Coulomb repulsion combined with Pauli blocking due to the

1D lattice’s low coordination number, which together inhibit the mobility of charge

carriers. Conversely, in 2D the existing effects of a larger bandwidth and coordination

number are reinforced by the desaturation of the UHB, resulting in mobile DHPs and

therefore intense low harmonics.

The currents in fig.4.6 give a window into the differences in both system’s intra-
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band currents. The 2D current indicates extremely strong BOs, particularly near the

centre of the pulse where the field strength is strongest. The relationship between

BOs and the current will be discussed more in later sections, but it suffices here to say

that they are very strong in this case. This is not true in 1D, where the BOs are less

clear and instead the current is simply aligned with the electric field (hence the 1st

harmonic peak in the spectrum), with later fluctuations due to recombination. This

indicates that BOs are weak, and instead the 1D intraband current is mostly caused

by anharmonic oscillations within the UHB, instead of around it in BOs. This would

limit the intensity of the resulting harmonics, and so would explain the spectrum.

4.4 Time-Resolved Emission

Valuable information is destroyed when the dipole acceleration is Fourier transformed

and its magnitude is taken. As a result, the wavelet analysis of eq.(3.67) was used to

capture the time-dependence of the charge dynamics, with the HHG then calculated

using eq.(3.68). This allows us to directly observe insulator-to-metal transitions in

real time and to learn more about the underlying emission mechanisms.

4.4.1 Metallic Regime

Fig.4.7 shows spectrograms of the 2D U = 0 system, along with its current and dipole

acceleration. The HHG is displayed for two different intensity ranges, one with only

large intensity emission and another where much weaker intensities are also included.

The 1D equivalent has the exact same structure but shifted to smaller intensities.

This HHG is caused by purely intraband processes as there is only a single band, and

is therefore very useful as it shows the characteristic features of intraband emission,

which can then be looked for in U > 0 systems.

The two spectrograms reveal different structures. The first, with only the strongest

emission included, shows distinct bands around the 1st, 3rd and 5th harmonics, with

intensities that depend on the field strength and therefore peak at the pulse centre,

where E(t) = E0. Emission at the 1st harmonic starts at t = 0 and occurs contin-

uously thereafter, whereas the other bands begin later in the pulse once the laser
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Figure 4.7: Time-resolved HHG in the absence of correlation. Spectrograms with
the corresponding current and acceleration at U = 0. The spectrograms are for the same
system but with different intensity ranges: the left one includes only the largest few orders
of magnitude, whereas the right image has a much wider range that includes weak HHG.
The spectrum is the same in 1D up to a constant factor. Colourscale denotes the log of the
spectral emission intensity. Red lines show the incident electric field E(t), and the black
line in the current is the corresponding vector potential A(t), where they are related to each
other by E(t) = −dA(t)/dt. Calculated using eq.(4.10) on a 6 × 6 lattice, and the same
results were also found using tVMC and the CBM.
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amplitude has increased sufficiently. Just below the 10th harmonic there is a hint

of field alignment, but it is not very distinct. However, including weaker intensities

reveals that the HHG has a rich sub-cycle structure. Larger harmonics are generated

and show clear alignment with the electric field, producing two emission peaks per

cycle that are maximal at the pulse centre.

The current can help us understand the origin of this emergent structure. Initially

there is a linear response, but as the field strength increases the current develops kinks

that align with peaks in the vector potential A(t) and therefore also with the phase,

Φ(t). This system has no electron correlation so we can use an independent-electron

description and consider the dynamics of individual electrons and holes. With this in

mind, the kinks can be identified as BOs in which electrons are accelerated beyond the

maximum quasi-momentum at the Brillouin zone boundary, |k| = π
a
, causing them

to Bragg scatter and reemerge at the other side of the Brillouin zone. In this case,

E(t) is only strong enough to cause a maximum of one Bloch cycle per half-cycle of

the pulse, which is still enough to generate rapid oscillations in real space and the

emission of high frequencies. The development of these kinks near the 3rd pulse cycle

coincides with the onset of the larger field-aligned harmonic peaks in the spectrogram,

with the highest harmonics produced around the pulse centre where the field strength

and therefore BOs are strongest, as indicated by the depth of the kinks.

An intuitive semi-classical description of the electron dynamics is given by the

Bloch acceleration theorem, which relates the quasi-momentum k(t) with the electric

field as follows [65, 100, 125]

dk(t)

dt
= −E(t) =⇒ k(t) = −

∫ t

−∞
dτE(τ) (4.15)

= k(0) + A(t) (4.16)

This shows that the k-space dynamics are directly dictated by the vector potential.

For a given k(0), the trajectory in k-space can be easily calculated and folded into

the Brillouin zone so as to enforce |k| ≤ π
a
.

We can also express the dipole acceleration, eq.(3.63), in an interesting form that

explicitly depends on the field. The tight-binding Hamiltonian in eq.(4.9) can be

written in an alternative form using eq.(2.32) with U = 0, and recalling that in the
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non-interacting system θ = 0 and R(Ψ) = R(ΨMF ) is constant

H(t) = −2t0R(ΨMF )cos[Φ(t)] (4.17)

This is the U = 0 energy in fig.4.1. Combining it with the electric field, aE(t) =

−dΦ(t)
dt

, gives

a(t) =
dJ (t)

dt
= 2a2t0R(ΨMF )E(t)cos[Φ(t)] (4.18)

= −a2E(t)H(t) (4.19)

We get a hint of this in fig.4.7, as the acceleration’s peaks align with those of E(t).

4.4.2 Transition Regime

The HHG spectra of Sec. 4.3 are largely blind to Mott transitions and give little

indication of whether breakdown has occurred and when it happened, or if the system

is in the regime Eth > E0 where they are not possible. In the U = 0 case there is no

insulating state to undergo melting, but when U > 0 the spectra often do not provide

enough information to confidently determine if the system’s AFM order has survived

irradiation or has been destroyed. The observables in fig.4.1 and fig.4.2 do provide

a way of analysing transitions, but they are not experimentally obtainable. This all

makes the time resolution of the emission particularly interesting and important, as it

provides a window into the transition dynamics on electronic timescales in a way that

is potentially experimentally achievable, e.g. in Ref. [61] where the pulse parameters

were very similar to those used here.

For both 1D and 2D, fig.4.8 shows the spectrograms of the U = 1 systems, and

fig.4.9 of the U = 3, 5 systems. They demonstrate that in the above-threshold regime,

where Eth ≤ E0, the optical signature of Mott transitions is a brief period of intense

HHG, which is closely synchronised with the sudden rise of DHPs and destruction

of spin magnetic order that is observed in fig.4.1 and fig.4.2. The emission then

exponentially decays and is followed by weak flaring at intensities 2 or 3 orders of

magnitude lower than the peak, and that continues fairly uniformly for the rest of the

pulse. In 2D, breakdown is initiated roughly 1 cycle sooner after irradiation and also
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Figure 4.8: Time-resolved HHG in weakly-correlated systems. Spectrograms at
U = 0 in 1D and 2D. Colourscale denotes the log of the spectral emission intensity. Red
lines show the incident electric field, E(t). In 1D, the horizontal dashed lines show the
excitation energies ∆ to ∆ + 8t0, and there is a vertical dashed line showing the time when
E(t) = Eth, but it is obscured by the y-axis. Calculated using tVMC on 36-site lattices.

finishes more quickly once it has started, within approximately just 1 cycle compared

to about 2 cycles in 1D. The first of these observations agrees with the spin-spin

correlation function and GS overlap in fig.4.2, which both show a more rapid onset

of breakdown in 2D when U � 1.

For any pulse setup, it is the gap ∆(U) that determines if and when a transition

will occur. This is clear from the 1D spectrograms, where the emission is controlled

by Eth = ∆/2ξ and peaks soon after E(tc) = Eth. Recall that the Mott gap for

a given U is smaller in 2D according to cluster perturbation theory [198, 199] and

the CBM, as shown in fig.3.2. This can explain many of the observed differences

between dimensionalities, as it means that the threshold field is lowered in 2D and

so the breakdowns occur sooner. It also accounts for why fig.4.1 and fig.4.2 found

transitions to continue happening beyond the correlation strengths that are possible

in 1D, as smaller ∆(U) means that a given E0 will cause melting to persist up to larger

U . Finally, it could contribute to why at low-to-intermediate interaction strengths

in fig.4.5 the peak emission is shifted to lower harmonics compared to 1D. This all

points to the importance of the GS bandstructure in determining the properties of

these insulator-to-metal transitions and their resulting HHG, as well as on the effects
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Figure 4.9: Time-resolved HHG demonstrating the photo-induced breakdown of
Mott insulators. Spectrograms at U = 3, 5 in 1D and 2D. Colourscale denotes the log of
the spectral emission intensity, and a separate scale is used for each U . Red lines show the
incident electric field, E(t). In 1D, the horizontal dashed lines show the excitation energies
∆ to ∆ + 8t0, and the vertical dashed lines show the times when E(t) = Eth. Calculated
using tVMC on 36-site lattices.

of dimensionality and correlation. The CBM is therefore very useful, despite its

many approximations, because it helps us to understand the general properties of

the systems’ bandstructures, which we can then use to identify the origin of specific

spectral features.

In Sec. 4.3, it was sometimes not possible to determine the primary mechanisms

responsible for different sections of the spectra. This is mostly a problem in 2D

because no analytical gaps are available, so it is not possible to clearly define the

boundary between intra and interband-induced emission. This was an issue for 2D

U = 1 in fig.4.4 and 2D U = 3 in fig.4.5, where the origins of their low-harmonic peaks

were uncertain. However, time-frequency profiles can help to clear up this ambiguity,
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as we can compare the uncertain cases with ones that we know for certain come from

intraband processes. Specifically, we can use the U = 0 spectrogram in fig.4.7, but

also the 1D U = 3 spectrogram in fig.4.9 because its gap is available. In both these

cases, their low harmonics start immediately upon irradiation at high intensity, and

have a distinctive narrow band-like structure. These properties clearly resemble the

2D U = 1, 3 cases, and show that their low harmonics originate in intraband motion.

This same reasoning also applies to the ambiguous 1D U = 1 case, where a gap is

available but is too small to define separate regions.

Fig.4.9 shows that in the U � 1 regime there is a visible separation between the

low harmonics originating from intraband oscillations, and the recombination-induced

bulk of emission that constitutes the Mott transition. In 1D this can be seen explicitly

because of the plotted excitation energies, but in 2D the distinction is even clearer

and suggests that the U = 5 gap is near the 4th or 5th harmonic, as that separates

the two regions of HHG and can also be seen in fig.4.5. The interband emission is

only triggered near E(t) ≈ Eth, where the tunneling probability increases greatly.

This is in contrast to the intraband emission, which starts immediately or soon after

the initial irradiation. It then peaks during the transition, where there are a high

density of itinerant excitations available for acceleration, before dying off within 2

cycles of its completion, matching the convergence of the observables in fig.4.1 and

fig.4.2. At all U , this band of low-harmonic HHG is far stronger in 2D, because the

charge carriers are better able to undergo dynamical oscillations due to the lattice

and bandstructure, as previously discussed.

The U = 1 spectrograms in fig.4.8 show significant differences due to their tiny

gaps. Eq.(2.36) predicts that ∆1D(1) ≈ 0.005, which means that the threshold field is

reached almost instantly. Given this, it initially seems strange that higher frequencies

are emitted comparatively late, after approximately the 2nd cycle. But this can be

understood by looking at the HHG as ∆(U)→ 0, which shows that these features are

actually intraband in origin and not part of the Mott breakdown. By comparing them

with the profiles of the U = 0 and U = 0.5 systems, in fig.4.7 and fig.4.10 respectively,

we can see that the ‘late’ U = 1 high harmonics continuously morph into the bands

of the U = 0 system. They are therefore intraband emission that persists due to the

small gap, whereas the HHG associated with the phase transitions occurs earlier and
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Figure 4.10: Convergence of the emis-
sion in the U → 0 limit. Time-resolved
emission in the U = 0.5 system, showing
how the HHG continuously morphs from
fig.4.8 into the non-interacting limit, fig.4.7.
The red lines show the incident electric field,
E(t). Calculated using tVMC on a 6×6 lat-
tice.

is mostly at lower intensities than shown here, which is hinted at by the curved shape

of the spectra.

The emission in fig.4.9 is highly irregular and there is no obvious alignment with

the pulse, other than through Eth. However, these spectrograms were presented in a

way that maximises the clarity of the Mott transitions, and other substructures within

the HHG can be resolved by looking at different frequency and intensity scales. This

is done in fig.4.11 at U = 5, which includes emission intensities up to 10 orders of

magnitude smaller than in fig.4.9 and frequencies up to the 100th harmonic. The

Mott transitions become mostly obscured, but new weak-intensity shadow-structures

start to emerge that show interesting variation with dimensionality. Its analysis is

facilitated by comparison with the GS overlap probability W (t), given by eq.(4.8),

which is also plotted.

In 1D, there is a period of highly regular HHG in which field and emission peaks

align closely. This starts during the phase transition and peaks soon after it, with

emission reaching up to approximately the 80th harmonic, several times larger than

∼ U/ωL where the lower harmonics are maximal. The emission ultimately loses its

structure as the field strength reduces towards the end of the pulse. This is mirrored

by the overlap, which crests (troughs) at electric field peaks (zeroes), and converges

to nearly zero in-sync with the destruction of the emission form.

This behaviour in 1D can be understood in terms of an extended 3SM. If we

start at a E(t) trough (say, at the 2nd cycle), where the system has a large overlap
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Figure 4.11: Time-resolution of the low-intensity structure of the HHG. Spec-
trograms at U = 5 in 1D (left column) and 2D (right column). Below each is plotted the
overlap probability with the GS, eq.(4.8). Colourscale denotes the log of the spectral emis-
sion intensity. The scale is chosen to highlight the high-frequency, low-intensity emission
required to observe sub-cycle structure that cannot be seen in fig.4.9. Red lines show the
incident electric field, E(t). Calculated using ED on 12-site lattices.

with the GS, then as the field increases there is continuous generation of double-hole

excitations, causing W (t) to plummet. These DHPs are subsequently accelerated and

undergo intraband oscillations. They start to recombine once the field has changed

direction, with recombination peaking as the field approaches its next minimum at

the 3rd cycle, causing a peak in the emission spectrum and a corresponding one in

W (t) as excitations return to the GS. In 1D, the above-gap HHG in fig.4.11 during

a given half-cycle is caused by the recombination of excitations that were created in

the previous half-cycle, with the sum effect that there are 2 emission peaks per cycle.

In 2D there is a more complicated and irregular sub-cycle structure to the HHG,
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composed of flaring that often occurs multiple times per half-cycle and not exclusively

at the field peaks. This persists fairly uniformly near the 80th harmonic from its onset

until the end of the pulse. The overlap shows that the insulating state is destroyed

before low-intensity features have fully developed, and instead the emergence of visible

structure coincides with the completion of the breakdown and onset of weak flaring

observed in fig.4.9. These features are therefore not directly related to the melting

of Mott order, and in fact they will be shown to emerge generally once the field

strength is sufficiently strong. Its irregular form is likely caused by the larger number

of trajectories that DHPs can take in 2D, which results in complicated combinations

of constructive and destructive interference patterns. A promising area of future

research would involve calculating the complex phase of the dipole acceleration and

using it to resolve the dynamical trajectories of the excitations.

Fig.4.11 was calculated using ED because the stochastic noise inherent to tVMC

obscures emission at low intensities, and the method is instead better suited to study-

ing only the largest few orders of magnitude of the HHG spectrum. This means that

we have to consider the impact of finite-size effects on the low-intensity features of

the 2D spectrogram, as there might be contributions from long-time charge dynamics

whose subsequent HHG is affected by the small lattice size. The potential influence

of these effects is a limitation of the results, however, the emission features are pre-

dominantly caused by sub-cycle dynamics that occur on very short timescales and

therefore will not in general be able to travel large enough distances for it to become

a major problem. The convergence of the HHG with respect to lattice size was tested

insofar as is possible, and is discussed in Appendix A.

4.4.3 Below Threshold Regime

Finally, we turn to the case where the peak field strength is below the threshold for

DC breakdown of the Mott gap. In the absence of an analytical expression for ∆(U),

calculating the time-dependence of the HHG provides a direct method of qualitatively

determining if an insulator-to-metal transition has occurred. In addition to this,

spectrograms in the U → ∞ limit allow us to understand the origins of the unusual

spectral properties discussed in Sec. 4.3.3 and shown in fig.4.6.
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Figure 4.12: Time-resolved HHG in the Eth � E0 regime. Spectrograms at U = 10
in 1D and 2D. As U → ∞, the HHG splits into two sectors with different origins, which
are indicated here with labels. Red lines show the incident electric field, E(t). In 1D, the
horizontal dashed lines show the excitation energies ∆ to ∆ + 8t0. Calculated using ED on
12-site lattices.

Given that in the U → 0 limit the system becomes conducting and has HHG

entirely from charge oscillations, we might expect that in the opposite regime the

emission is caused entirely by recombination. However, fig.4.12 demonstrates that this

is not the case, again using the example of U = 10. In both dimensionalities there is a

partitioning of the spectrum into overlapping regions of intra and interband-induced

emission. The former dominates below approximately the 30th harmonic, where the

HHG resembles the metallic system in fig.4.7, with the characteristic field-aligned

structure caused by BOs combined with intense low harmonics (especially the 1st

harmonic) that start immediately at t = 0. This confirms the intraband origin of

the various low-frequency features observed in fig.4.6, in particular the prominent

lobe-like structure in 2D below the 30th harmonic.

At larger harmonics, the considerable Mott gaps leads to field-synchronised HHG

that begins when E(t) is sufficient to cause excitations and then simply continues

for the rest of the pulse, peaking near the pulse centre where the field is strongest

but always maintaining high intensity. This field dependence is the characteristic

feature of spectrograms in the Eth > E0 regime, because there is an absence of the

threshold behaviour observed in fig.4.9, where there is a sudden onset of intense
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emission that peaks soon after Eth and then rapidly decays, signifying a transition

to a metallic-like state with high charge mobility. Instead, in fig.4.12 the insulating

GS survives irradiation and there is continuous emission at fairly uniform intensities.

This is also true of the intraband low harmonics, which in fig.4.9 rapidly decay once

the breakdown has converged and are limited to very small harmonics only, but in

fig.4.12 occur throughout and have a wide range of emitted harmonics that depends

on field strength only; all properties shared by the U = 0 system.

In 1D, the HHG caused by BOs actually extends beyond the gap and blends

with interband harmonics, which might be responsible for the bump in fig.4.6 at

approximately the 33rd harmonic. However, their intensity is comparatively weak

and is many orders of magnitude lower than in 2D, where BOs are the main source

of HHG. Given the strong electron interactions in the 2D system and the fact it

is in a heavily-insulating state, it initially seems surprising that charge oscillations

are so prominent. However, this can be explained by the formation of localised

magnetic moments as U increases, resulting in intraband currents that do not form

from the oscillation of itinerant doublons and holes, but instead develop during the

recombination of localised excitations in a background of local moments.

Some of the properties of the highest harmonics’ low-intensity structure mirror

those of the U = 5 case in fig.4.11. In particular, in 1D the 3SM again leaves its

fingerprints through highly-ordered field-aligned HHG near the 80th harmonic that

is most pronounced when the emission intensity is maximal, i.e. around the pulse

centre at U = 10 and during the transition at U = 5. Furthermore, the 2D HHG

again has a more irregular and featured sub-cycle structure, reflecting the larger

dimensionality. The finite-size effects at such a large correlation strength are likely

small because of the localising effects of the interactions. Therefore, the persistence

of the HHG’s irregularity is evidence that these are also genuine structures in fig.4.11

and not numerical figments.

4.5 The Correlated Bandstructure Model

The HHG of MIs emerges from the full correlated dynamics of the many-body sys-

tem. However, the past sections have made frequent use of one-body language and
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have made the GS bandstructure a vital part of the analysis. Using an effective

single-particle model - the correlated bandstructure model (CBM) of Sec. 3.6 - we

will investigate the extent to which a simple single-electron characterisation of the

bandstructure can reproduce the qualitative features of the HHG in the Hubbard

model. We will look at the regimes in which the model succeeds or fails and what

that can teach us, and will use it as a way of substantiating past suggestions about

the origins of features in the interacting systems’ emission.

4.5.1 Summary and Limitations of the CBM

In the CBM for a given U , the non-interacting (tight-binding) bandstructure is mod-

ified by the introduction of a parameter V (U), which couples each ‘physical’ site

to a fictitious one, as described by the Hamiltonian eq.(3.47). Once these auxiliary

degrees of freedom are traced out the resulting GS bandstructure resembles the cor-

related one, with a second band and an effective Mott gap ∆̃(U). The GS one-body

DM, ρ(0), is then calculated and propagated using RK4 to simulate pulse irradiation.

This is a non-interacting dynamical mean-field theory, which means it can be sim-

ulated rapidly in the true bulk limit 3. It only requires the optimisation of a single

parameter, which aids in interpretability and enables us to consider the gap-driven

emission in isolation.

However, the model has some significant limitations that are worth considering

before it is used for analysis. Firstly, the effective minimal self-energy does not change

with time, unlike non-equilibrium DMFT for example, but instead is fixed by the GS

correlations. Secondly, the fictitious sites are only coupled locally, so there can be no

long-range, momentum-dependent modifications to the effective interactions. Lastly,

no spin-dependent parameters are optimised, precluding the formation of GS AFM

order, and therefore of Mott melting.

3All CBM calculations were done for 36-site systems in order to make them directly comparable
to the tVMC results. This does not affect the analysis because the HHG has converged by this size,
and increasing it does not change the qualitative features of the results.
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4.5.2 HHG in the CBM

An understanding of the CBM’s GS bandstructure is required to analyse its HHG, and

so it is worth briefly recapitulating its most important properties. The dispersion and

DOS were discussed in Sec. 3.6.1, and are shown in fig.3.1 and fig.3.2, respectively, for

effective U = 0, 3, 7 in 1D and 2D. It was found that for a given U the Mott gap in 1D

is always larger than 2D, but also that both are overestimates of the true correlated

gaps, ∆̃(U) > ∆(U). Furthermore, there are distinctive differences between the DOS

in 1D and 2D, with the latter showing strong quasiparticle peaks near the gap. The

available one-body excitations lie between ∆̃(U) and ∆̃(U) + W = ∆̃(U) + 4dt0,

resulting in a bandwidth that is twice as large in 2D. In 1D, this restricts most higher

harmonic emission to a narrow corridor of 4t0 ≈ 15 harmonics, and means that the

2D spectra will always be considerably wider for any U .

The model is exact in the uncorrelated limit, where U = V (0) = 0 and eq.(3.47)

reduces to the tight-binding model. When V > 0, interband recombination begins

and leads to the emission of a broad spectrum of high harmonics. This is shown in

fig.4.13 for 2D U = 5 (left) and U = 7 (right), corresponding to V ≈ 2.1 and 3.1,

respectively. The HHG has many familiar properties, especially compared to those

observed in 1D. In particular, most emission falls between the available excitation

energies, and the peak emission goes as ∼ U/ωL. Furthermore, at U = 7 we see

the broadening of the spectrum due to the addition of intraband-induced sub-gap

harmonics, as was observed in fig.4.5 in 2D.

However, the effective gaps ∆̃(U) are a primary source of error due to their over-

estimated sizes. They cause the HHG at a given U to be shifted to higher harmonics

than they should be, and also cause the premature exponential decay of emission

intensity as correlation increases. Finally, the distinctive Van Hove singularities in

the 2D DOS in fig.3.2 have visible consequences for the spectra. These structures

were suggested to be the origin of the sharp peak in fig.4.5 in the 2D U = 5 system,

and this is supported by the appearance of a similar peak in fig.4.13, although it is

at approximately U/ωL ≈ 19 instead of ≈ 10 due to its overestimated Mott gap.

The effectiveness of the CBM is divided by correlation strength between those

U for which a Mott transition occurs in the Hubbard model, and those in which
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Figure 4.13: HHG in the effective single-particle model. Emission spectra and spec-
trograms in 2D for effective correlation strengths U = 5 (left) and U = 7 (right, multiplied
by 103), corresponding to optimised parameters V ≈ 2.1 and V ≈ 3.1, respectively. The
dashed lines show the single-particle excitations ∆̃(U) and ∆̃(U) + 8t0. Welch’s method
was applied to the HHG spectra to remove spectral leakage. Red lines show the incident
electric field, E(t). Calculated using mean-field methods on a 6× 6 lattice.

Eth > E0. This is caused by the absence of AFM order in the GS, as can be confirmed

by calculating the spin-spin correlation η(t) using eq.(3.62). Doing this shows that

the system maintains a paramagnetic phase throughout, with a rapidly oscillating

η(t) that always remains near to zero. This is interesting because it allows us to

directly observe the effects on the HHG of removing GS spin order in a system that

otherwise has a similar bandstructure.

The consequences of this can be seen in fig.4.13 at U = 5, where the spectro-

gram does not exhibit threshold behaviour like in fig.4.9, but instead recombination

is triggered once the field strength is sufficiently strong and then simply continues
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thereafter; i.e. the characteristic behaviour of below-threshold spectrograms.

Related to this is the low-harmonic emission, which at U = 5 is mostly limited

to the 1st harmonic and is emitted continuously at fairly uniform intensity that is

roughly two orders of magnitude smaller than the recombination peak. In fact, the

strong low harmonics observed in fig.4.5 are mostly absent and harmonics below the

gap are suppressed, with most emission instead falling between the excitations. This

indicates, as previously suggested, that in the transition regime of the 2D Hubbard

model there is a strong relationship between the formation of intraband currents

and the Mott melting process itself, as during this time there is an extremely high

density of DHP excitations being created and made available for oscillation. This

coupling can be seen in fig.4.9, where the intraband-induced low-harmonic emission

strongly peaks during the Mott transition and then rapidly decays after it. The lack

of a breakdown means that the CBM cannot capture this, and instead has intraband

emission that simply varies directly with the strength of E(t) and therefore peaks at

the pulse centre, where E(t) = E0.

Finally, we once again see the emergence of highly pulse-synchronised emission at

large harmonics, however, compared to fig.4.11 and fig.4.12 it more closely resembles

the structure found in 1D, and does not reproduce the complexity caused by inter-

fering trajectories in 2D. This interesting difference shows the impact of an absence

of explicitly correlated many-body dynamics in 2D lattices.

We have seen the limitations of a semiconductor-like model of MIs for describing

transition-regime interaction strengths, and it showed clearly that correlated systems

are fundamentally different and require a many-body description. However, their

defining distinction is the photo-induced Mott transition, and we can in fact use our

simple mean-field model to recover the qualitative features of the dynamics and HHG

of systems in the limit U → ∞, where dielectric breakdown is not possible because

Eth � E0. An example is fig.4.14, which shows the HHG produced in the Hubbard

model by the 1D U = 12 system, and demonstrates properties that clearly match

those of effective U = 7 in fig.4.13.

This regime was discussed in Sec. 4.3.3 and Sec. 4.4.3, and has very distinctive

characteristics. The extremely strong Coulomb repulsion reduces the probability of

DHP formation, leading to a sparsely populated UHB that can readily support in-
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Figure 4.14: Convergence of the Hubbard model and CBM as correlation
strength increases. Emission spectrum and spectrogram at U = 12 in the 1D Hubbard
model. Compared to effective U = 7 in fig.4.13, this shows the convergence of the qualita-
tive properties of the HHG in the Hubbard model and the CBM in the limit U →∞. Red
line shows the incident electric field E(t), and the dashed lines show the excitation energies
∆ to ∆ + 8t0. Calculated using ED on 12-site lattices.

traband currents. As a result, emission due to BOs becomes significant and extends

beyond the low harmonics seen in e.g. fig.4.9, instead going into the tens of harmonics

and leading to a visible division between these and even larger recombination-induced

harmonics. This was seen in both dimensionalities at U = 10 in fig.4.6 and fig.4.12,

but is clearer still in fig.4.14 at U = 12, where the massive gap has pushed up the

above-gap harmonics and reduced overlap between the regions. These properties are

perfectly reproduced by the CBM, as shown in fig.4.13 for the example of effective

U = 7. This demonstrates that the static properties of the GS bandstructure become

the dominant determiner of HHG as correlation increases in the Hubbard model, and

that the sub-cycle dynamics can be well-approximated by considering single-particle

excitations within this bandstructure. This is a somewhat ironic convergence, as it

is the most strongly-correlated systems that start to resemble uncorrelated semicon-

ductor systems, whereas even e.g. U = 1 in fig.4.8 has radically different properties

due to its GS spin order and subsequent breakdown.

Finally, while the maximum emission intensities are converging to very similar

orders in both models, the actual harmonics emitted remain different, with the CBM
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mostly limited to below the 50th harmonic, whereas the Hubbard model at large U

causes significant emission up to approximately the 100th harmonic. This is due to

the available energies of the CBM’s single-particle electron-hole excitations compared

to the many-body DHP excitations of the Hubbard model. The differences between

these two cases are a demonstration of the general possibility that the many-body

interactions of strongly-correlated materials can cause HHG at much higher harmonics

than is possible in semiconductors.

4.6 Varying the Simulation Setup

The following sections show the effects of varying individual simulation parameters

while keeping all others constant at the same values used previously. The aim is to

compare the HHG between different examples to understand the physics behind the

observed changes, and to learn more about how each parameter impacts the Mott

breakdown process.

4.6.1 Pulse Parameters

So far the pulse setup has been kept constant so that the effects of correlation and

dimensionality could be identified and analysed. The peak field strength has been

fixed at E0 = 10MVcm−1 and the frequency at ωL = 32.9THz, but in this section

these two parameters will be varied and the HHG compared, using the 2D U = 5

system as a representative case. In particular, we are interested in the impact that

E0 and ωL have on the Mott transition, and how the breakdown can be controlled by

changing them. Eq.(4.2) will still be used as the pulse, with its sin-squared envelope

and sinusoidal carrier wave.

4.6.1.1 Peak Field Strength, E0

Before investigating the correlated case it is informative to first look at the non-

interacting U = 0 system, as this allows us to observe the effects of E0 on BOs

unimpeded by the complications that interactions introduce. Fig.4.15 plots the cur-

rents and resulting HHG spectra for E0 = 5MVcm−1 (left) and 20MVcm−1 (right)
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in the 2D U = 0 system, to be compared to E0 = 10MVcm−1 in fig.4.3 and fig.4.7.

When U > 0, the current becomes so complicated that it is often difficult to learn

much from, but these tight-binding systems provide a useful window into the electron

dynamics.

At E0 = 5MVcm−1, the current has no visible signs of BOs (i.e. no kinks), and

is simply synchronised with A(t) without any further structure. This means that

the field strength is not enough to drive electrons up to the Brillouin zone boundary,

and instead they oscillate with the field and produce a mostly linear response. As

a result, the emission spectrum shows few high harmonics and is dominated by the

1st harmonic, which is unsurprising because the current’s main frequency component

is visibly the same as the pulse’s. Doubling the peak strength to E0 = 10MVcm−1

causes kinks to emerge in fig.4.7, representing 1 Bloch cycle per pulse half-cycle, with

a corresponding production of high harmonics in the spectrum of fig.4.3, although

the 1st harmonic is still the largest contribution. Doubling again to E0 = 20MVcm−1

causes more dramatic effects as it permits multiple Bragg scatterings to occur per

half cycle, as can be seen in the current, resulting in a shift in the spectrum to higher

harmonics beyond the 1st.

We can get a better understanding of what is happening using the solution to

Bloch’s acceleration theorem, eq.(4.16). The quasi-momentum in either direction is

k(t) = k(0) + A(t), which means for BOs to occur it is a minimum requirement that

|k(0) + max {A(t)}| > π

a
(4.20)

This can be approximated by k(0) + A0 = k(0) + E0

ωL
> π

a
, which corresponds to the

quasi-momentum of an electron at the pulse centre where the field is strongest. In

units of π
a
, we have E0

ωL
≈ 1.9 at E0 = 20MVcm−1, meaning that during the central

part of the pulse all electrons will undergo BOs, regardless of their initial momenta.

Conversely, E0

ωL
≈ 0.47 at E0 = 5MVcm−1, so for a system starting in the GS with

electrons stacked up to the Fermi level, there will be no k(0) large enough to permit

BOs, and the intraband current is composed only of oscillations within the conduction

band that are never able to reach its edge. The effects of changing frequency at U = 0

can be analysed in the same way, and doing this shows that decreasing ωL encourages

BOs and therefore shifts the spectrum to higher frequencies, and conversely increasing
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Figure 4.15: The effects of varying peak field strength in the uncorrelated system.
HHG spectra with the corresponding currents in 2D at U = 0 and E0 = 5, 20MVcm−1,
compared to E0 = 10MVcm−1 in fig.4.3 and fig.4.7. Red lines show the incident electric
field E(t), and the black lines are the corresponding vector potential A(t). Calculated using
eq.(4.10) and mean-field methods on a 6× 6 lattice.

it causes BOs to recede and ultimately stop.

Fig.4.16 shows the equivalent plots in the 2D transition regime at U = 5, again

for E0 = 5, 20MVcm−1, compared to E0 = 10MVcm−1 in fig.4.5 and fig.4.9. Unlike

the non-interacting regime, varying the peak field strength does not cause dramatic

changes in the HHG. This includes the cutoff frequency, which is unaffected. The

same was found in small 1D systems in Ref. [132], and is in contrast to the linear

E0-dependence observed in semiconductor systems. This interesting difference arises

because of the GS bandstructure of these correlated systems, as the cutoff is confined
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Figure 4.16: The effects of varying peak field strength in the transition regime.
Emission spectra and spectrograms in 2D at U = 5 and E0 = 5, 20MVcm−1, compared
to E0 = 10MVcm−1 in fig.4.5 and fig.4.9. Red lines show the incident electric field E(t).
Calculated using tVMC on a 6× 6 lattice.

to be within the available energies of the UHB4, and in the transition regime all of

these energies are readily accessible, which leads to a saturated UHB and therefore no

change in the maximum possible excitation energy as E0 is increased. This is distinct

from single-particle bandstructure systems, where the maximum kinetic energy can

be increased by raising the field strength, thereby increasing the cutoff. A multi-

band Hubbard model would have a more complicated E0-dependence in the transition

regime, and so could be a potential avenue for future research. However, even within

our single-band model there are significant changes to the cutoff as U → ∞, where

4I.e. in 1D, the energies ∆ to ∆ + 8t0.
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Eth � E0 and the UHB is no longer saturated. This regime was found to have a

linear dependence on E0 in 1D [135] and infinite-D [137], and confirming this in 2D is

a natural next step, although it is complicated by the fact that, as seen in fig.4.6 and

fig.4.12, the highest-intensity structure in 2D becomes intraband in origin due to the

depopulation of the UHB. Furthermore, Ref. [137] found distinct cutoff relationships

to arise in the strong and weak-field regimes, with the former developing multiple

plateaus at increasing harmonics that also have a linear field dependence. An initial

analysis using ED found that these plateaus also form in 2D (and in the CBM), and

a more in-depth study would be very interesting.

One significant property that does change in fig.4.16 is the maximum-intensity

harmonic, which appears to migrate to slightly higher frequencies with increasing

field strength, with small accompanying rises in the emission intensity. Fig.4.5 showed

that at E0 = 10MVcm−1 the peak is highly localised at ωmax ≈ 9.5, whereas at E0 =

5 and 20MVcm−1 it is ωmax ≈ 7.5 and 12.5, respectively. Its structure is similar

in each case, with a distinctive shape that is likely a consequence of the Van Hove

singularities in the DOS. The smallest harmonics at which this structure can form are

due to DHPs being excited from one Van Hove singularity to the other, which upon

recombination produces emission peaks very near to the gap. However, increasing

E0 might cause a higher density of excitations to (from) energies beyond (below) the

Van Hove singularity, resulting in peaks forming at larger harmonics. This could also

explain the peaks’ thickening as E0 grows, because a broader range of energies become

significant contributors. This is likely aided by the large bandwidths in 2D, which

increase the availability of states and therefore the number of potential excitation

pathways.

Its spectrogram shows that decreasing the field strength to E0 = 5MVcm−1 is

clearly not enough to remove the system from the tunneling regime, and in fact

it remains sufficient to pass the threshold field required to initiate melting. The

overall time-frequency characteristics of the Mott transition are largely unaffected

by varying E0 within the range of values such that E0 ≥ Eth. One exception is the

transition duration, which reduces as E0 is ramped up, as suggested by the E0 =

20MVcm−1 spectrogram where the entire breakdown appears to finish in less than a

single cycle after its onset. However, the main consequence of the field strength is to
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determine how rapidly the threshold is achieved, thereby changing the onset of the

dynamical phase transition. In 2D, where no analytical description is available, the

time of maximum intensity emission can be used to estimate when the breakdown

is occurring because it closely follows Eth being reached5. This predicts that the

transitions in our three cases are separated by half a cycle, with peak intensities

occurring at approximately 1.5, 2 and 2.5 cycles, at E0 = 20, 10 and 5MVcm−1,

respectively. In other words, by increasing E0 the onset of the transition is brought

forward, and vice versa6. This also agrees with a simple qualitative comparison of

the spectrograms, because E0 = 20MVcm−1 is visibly shifted towards the beginning

of the pulse compared to E0 = 5MVcm−1.

4.6.1.2 Frequency, ωL

Fig.4.17 shows the effects of varying the pulse frequency in the 2D U = 5 system,

with representative examples ωL = 50THz (left) and 25THz (right), compared to

ωL = 32.9THz in fig.4.5 and fig.4.9. The number of cycles is maintained at Nc = 10,

resulting in a fairly large variation in total pulse duration between the three cases:

T ≈ 200, 300, 400fs, in order of decreasing frequency, where T = Nc

fL
= 2πNc

ωL
.

Decreasing (increasing) ωL produces a generalised shifting of the spectrum to

larger (smaller) harmonics, causing the cutoff to develop a strong frequency depen-

dence. This includes corresponding changes to the peak harmonics7, which have mi-

grated approximately 1-2 harmonics in either direction compared to ωL = 32.9THz.

The effects are particularly noticeable in the ωL = 25THz case where there is a broad

region of peak emission, somewhat similar to its 1D equivalent in fig.4.5 and unlike the

localised peaks at higher frequencies. This means that ωL controls the relative contri-

bution of the intra and interband currents, with the latter becoming more dominant

as the frequency decreases. These properties can be explained by the GS bandstruc-

5In 1D this was confirmed by comparing ED and tVMC peak intensity times against the threshold
time tc, calculated using eq.(4.3), and it was found that the maximum emission occurs roughly a
half cycle after tc (although this varies with U). The transitions occur more rapidly in 2D so we
would expect it to be even less than a half cycle.

6The latest a transition can be triggered is if E(t) = Eth = E0 at the pulse’s centre.
7In 1D it is immediately clear that the same pattern will be observed because the region of peak

HHG is centered at ∼ U/ωL.
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Figure 4.17: The effects of varying pulse frequency in the transition regime.
Emission spectra and spectrograms in 2D at U = 5 and ωL = 25, 50THz, compared to
ωL = 32.9THz in fig.4.5 and fig.4.9. In order to fully bring out the structure, separate
colorscales are used for each case and with a slightly larger intensity range than in fig.4.9.
Red lines show the incident electric field E(t). Calculated using tVMC on a 6× 6 lattice.

ture because the harmonics due to a single DHP recombination range from ∆(U)/ωL

to the maximum excitation εmax(U, t0)/ωL, and therefore have an inverse dependence

that will cause the emitted frequencies to increase (decrease) as ωL is made smaller

(larger). This will therefore shift the cutoff and all above-gap HHG to higher harmon-

ics. It also suggests an explanation for why the overall emission intensity rises with

the frequency (in fig.4.17, by an order of magnitude when ωL is doubled), because

the possible DHP energies are made more tightly packed in frequency space, so we

might expect emission over that smaller range of harmonics to increase in intensity.

The Schwinger limit, given by eq.(2.35), depends on the static field strength and
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not on ωL. As a result, the onset of the Mott transition is independent of frequency8,

provided it is not increased so much as to approach the Keldysh crossover, at which

point the excitation mechanism tends towards multi-photon absorption and so thresh-

old behaviour is lost. One deceiving difference between the spectrograms in fig.4.17 is

the duration of the breakdowns, which appears to occur more rapidly at ωL = 25THz.

This is true relative to the pulse cycles in each case, but not when measured in fem-

toseconds because the total pulse length is half as long at ωL = 50THz 9.

The conclusions reached here, concerning both E0 and ωL, appear to be broadly

true in 1D as well. So far this analysis has only been done for small systems using ED,

but it showed very similar patterns of change. However, a noticeable difference was

found in the peak emission as E0 is varied, because in 1D it is not strongly affected

like in fig.4.16 - although this seems to break down somewhat at E0 > 30MVcm−1,

and is definitely worth investigating further.

4.6.2 Lattice Parameters

So far the lattice parameters have been kept constant so that the effects of varying

correlation and dimensionality could be identified and analysed. They have been

fixed at the hopping constant t0 = 0.52eV and lattice constant a = 4�A, values that

were originally designed to mimic the material Sr2CuO3 [165, 207]. Fig.4.18 gives

examples of the impact of changing these parameters in 2D systems. In each case,

t0 is again used as the energy unit (within a system of atomic units), resulting in

adjusted values of the other parameters. Firstly, the top row shows U = 5, 7 for

a = 5�A and t0 = 0.22eV, which in the model’s units are a = 0.0764, ωL = 0.618,

E0 = 29.751. Secondly, the bottom row plots U = 5, 12 for a = 10�A and t0 = 0.1eV,

resulting in a = 0.0694, ωL = 1.361, E0 = 143.996. These two lattice parameter

sets mimic the materials [Ni(cnxn)2Br]Br2 [165, 207] and ET-F2TCNQ [152, 165],

respectively.

The effects of the lattice constant are predicable from the vector potential eq.(4.2),

because it appears at the same location as E0. Its only other contribution to the

8At each of the 3 frequencies discussed here, the peak emission (used to approximate when the
transition is happening) occurred at the same time, just after the 2nd pulse cycle.

9As previously stated, T ≈ 200fs compared to 400fs at ωL = 25THz.
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Figure 4.18: The effects of varying lattice parameters. Emission spectra and spec-
trograms for two examples of systems with different lattice and hopping constants, both
in 2D. The top row shows U = 5, 7 with a = 5�A and t0 = 0.22eV; and the bottom row
shows U = 5, 12 with a = 10�A and t0 = 0.1eV. Colourscale denotes the log of the spectral
emission intensity, and in the top row plot a slightly smaller intensity range is used in order
to improve clarity. The red lines in the spectrograms show the electric field, E(t). The top
plots were calculated using tVMC on a 6× 6 lattice, and the bottom using ED on a 4× 3
lattice.
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emission spectrum is via the current eq.(2.30), where it is a multiplicative constant,

resulting in an a2 scaling of the spectrum. The overall effect of the lattice constant is

therefore the same as discussed in Sec. 4.6.1.1, but with an additional upward spectral

shift.

The gap is a function of U/t0, and recall that the single-particle bandwidth is

W = 4dt0 and that the 1D maximum excitation energy is ∆ + 8t0, with some t0-

dependent equivalent in 2D. As a result, t0 strongly influences the range of emit-

ted harmonics resulting from recombination, and therefore also the cutoff frequency.

Fig.4.18 demonstrates the effects of these parameters for two cases where a is in-

creased and t0 decreased. They show that a smaller hopping constant means both

∆(U)/ωL and εmax(U, t0)/ωL are reduced, and causes aggressive narrowing of the

spectra. At U = 5, the intraband current is retained and becomes the dominant

contribution, whereas above-gap emission is suppressed, resulting in spectra that re-

semble previous low-U systems (e.g. fig.4.4 or U = 3 in fig.4.5). These parameters

also have significant influence over the Mott transition. From eq.(2.35) we see that

Eth is inversely proportional to a, and t0 impacts Eth via the gap. In fig.4.18, both

the large lattice constants and small hoppings cause Eth to be small compared to E0,

causing rapid breakdowns and the ability to reach the threshold field at extremely

large correlation strengths. For example, in the t0 = 0.1eV case breakdowns can

continue in 1D up to approximately U = 18, according to the analytical expressions.

Fig.4.18 shows one at U = 12, demonstrating radically different behaviour than the

highly insulating state in fig.4.14.

4.7 Summary and Outlook

In this chapter, a combination of ED, tVMC and mean-field methods were used to

investigate the ultrafast high harmonic spectroscopy of correlated lattice systems.

Mott insulating materials were modelled using the Fermi-Hubbard Hamiltonian and

an effective single-particle model, and were propagated in real time to simulate their

irradiation by a strong-field laser pulse. The resulting HHG was analysed in detail

across dimensionality and correlation regimes and under varying simulation parame-

ters, enabling the resolution of the attosecond charge dynamics in both the frequency
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and time domains.

The logical next step in this research would be to make closer connections with real

materials. This would likely require exploring more general doping, and going beyond

chain and square lattice systems. This could be approached using the Fermi-Hubbard

model, either by retaining it in the form that was used here, or by extending it to

include some combination of beyond-nearest-neighbour hopping, off-site interactions

and multiple bands. This could then be used to simulate HHG in specific materials,

for example in graphene with a honeycomb lattice and U ≈ 1.6 [29]. Alternatively,

we could go beyond the Hubbard model entirely and use more realistic models, as the

flexibility of ED and tVMC would enable new models to be implemented relatively

easily. However, any extensions of course come with the caveat that computational

cost will increase, which risks limiting the investigation to small system sizes.

Computational cost was a severe limiting factor with both ED and tVMC. In

particular, it restricted the former to 12-site systems, which in 2D led to the problem

of artificial frustration in the GS. It might be possible to carry out at least some

4 × 4 simulations using a faster and highly-parallelised implementation of an exact

propagation method. For example, the HΦ package [208] includes limited functionality

for real-time evolution using eq.(3.45), and could be extended and applied to any

desired case.

The results in this chapter highlight the advantages and disadvantages of using

tVMC. A significant advantage is that it is not limited by dimensionality in the

same way that DMRG is to 1D, and DMFT to infinite-D. However, stochastic noise

imposes strict limitations and essentially restricts accurate calculations of HHG to

approximately the largest four orders of magnitude of the spectral intensity, and

to within the first 50 or so harmonics. For the systems that were studied here,

these limitations are sufficiently broad to capture the most important regions of the

spectra, and to do so precisely enough that the emission can be time-resolved with

great clarity. However, as we have seen, this becomes a problem in cases where we

would like to study the low-intensity and/or very high harmonic structure of the HHG,

which requires reverting to ED. Unsurprisingly, tVMC also becomes less accurate as

U increases, and it was found to be most effective for U ≤ 6. For the pulse and lattice

parameters chosen in this thesis, these correlation strengths constitute most or all of
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the transition regime, which includes the physics that we are most interested in. As

a result, despite its limitations tVMC can still be an extremely effective method that

can probe regimes and dimensionalities that are completely inaccessible to most other

comparable numerical methods.

Improving the trial wavefunction would reduce stochastic noise and increase accu-

racy over a wide range of correlation strengths, harmonics and intensities. This could

be done by adding an additional QNP to the current combination of momentum and

point-group symmetry projectors, eq.(3.12) and eq.(3.13). For example, a total-spin

projector, L̂S [168, 174], could be used. Alternatively, a doublon-holon correlation

factor, P̂dh [168, 174], could be introduced in order to account for more many-body

effects. Lastly, the PWF could be improved by introducing backflow correlations or

by using the power-Lanczos method. However, in each of these cases the increased

accuracy causes significant additional computational costs that are potentially pro-

hibitive. To get around this it might be necessary to use different numerical methods,

such as one of the neural networks approaches to quantum dynamics that are cur-

rently being developed [186, 188]. Another possibility is the Feynman’s clock method

[209], where quantum many-body dynamics is mapped to a GS eigenvalue problem,

and so could be implemented using SR and VMC. It should be a less costly method,

and so could potentially allow a more accurate wavefunction to be chosen. Another

option is to keep the current trial wavefunction but use it to probe systems larger

than the 36 sites that we have been limited to, such as the 8 × 8 lattice or perhaps

even 3D systems, although this would likely be limited to the 4× 4× 4 lattice.

There are many ways of extending the CBM in order to address or alleviate

the limitations that were discussed in Sec. 4.5.1. For example, the model could be

improved by introducing time dependence, V (U) → V (U, t), and/or by optimising

parameters to match both charge and spin gaps. The latter would help the model

mimic GS AFM order, which would enable it to simulate Mott melting. Of course, any

of these additions would increase the computational cost of the model and complicate

the interpretability of the results. On the other hand, it would allow us to hone in

on the origin of the HHG’s features by varying the inclusion of time-dependence

and charge/spin-matching, and observing the resulting changes. A major source

of inaccuracy in its HHG spectra originates in the model’s overestimation of Mott

112



CHAPTER 4. HIGH HARMONIC GENERATION IN CORRELATED SYSTEMS

gaps, ∆̃(U) > ∆(U). This could be addressed in future work by e.g. imposing an

additional constraint during the optimisation of V (U) to boost the accuracy of the

gap estimation.

The pulse was kept fixed to eq.(4.2) throughout, but an interesting area for future

research would be to study the effects of varying either or both of the envelope

and carrier wave, with e.g. Gaussian or cosine choices, possibly including a carrier-

envelope phase of the form sin[ωLt + ϕ]. We could go further still by allowing the

pulse to vary in each direction, for example by introducing an ellipticity parameter10,

ε ∈ [−1, 1]. The vector potential then has the general form

A(t) = A0f(t)

(
1√

1 + ε2
cos[ωLt]êx +

ε√
1 + ε2

sin[ωLt]êy

)
(4.21)

where f(t) is the envelope function. The ellipticity-dependence of HHG in solids has

been studied in e.g. [129], but no work has yet been done investigating this in MIs.

The results in fig.4.16 and fig.4.17 hint at what is possible by varying the pulse

parameters at a given U . Going further, this could enable us to manipulate many

aspects of the Mott melting process and essentially ‘design’ a transition with the

desired properties. Firstly, E0 can be used to modulate both the breakdown’s onset

time and duration. The former can be controlled precisely and made to start as

quickly as required by increasing E0, or turned off entirely by reducing it below the

threshold field11. The frequency then offers a further control knob, allowing us to

adjust both the intensity and spread of the emission. For example, by ramping up ωL

it is possible to generate HHG that is highly concentrated into a narrow band of high-

intensity harmonics, whose position can then be shifted in the time and frequency

domains by altering E0. It could be possible to achieve even more control by changing

some combination of the envelope function, carrier wave and other pulse properties;

for example, by designing the pulse shape to reach Eth at a particular time. Once

again, the flexibility of tVMC means that these avenues could be investigated with

minimal additional alterations to the existing implementation.

10ε = −1 generates left-handed circular polarisation, ε = 1 is right-handed circular polarisation
and ε = 0 is linear polarisation.

11This is of course more true in 1D because the Bethe ansatz results permit the necessary pulse
parameters to be explicitly calculated.
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Current Tracking

In this chapter, a protocol for current tracking is derived and demonstrated, with

the aim of controlling and manipulating the optical response of many-body strongly-

correlated materials. Starting in a given system, the approach takes as its input a

predetermined current and then dynamically calculates the driving or ‘control’ field

required to induce this current within our system, with it then described as having

been ‘tracked’. This enables the optical properties of one system to be imitated by

another, regardless of how different they may be. The method is completely general

in the sense that it can be applied to generate the desired evolution for an expecta-

tion value of any observable, and without being constrained to a specific Hamiltonian.

However, in this thesis only the electric current will be considered and calculations

will be limited to the 2D Fermi-Hubbard Hamiltonian. Arbitrary polarisations will be

introduced in order to maximise flexibility and enable direction-dependent tracking

over the full range of correlation strengths between the non-interacting and heavily

Mott-insulating limits, but always with a focus on the transition regime and on ob-

taining experimental viability. This extends the work of the previous chapter, and

explores the limits to which we can control and design the desired response of an

interacting system, and the ways in which these control fields can be constructed.

5.1 Tracking Protocol

The current has a highly nonlinear dependence on the incident laser field, making its

control a challenging and interesting problem. Various techniques have been devel-

oped to try and tackle the general question of quantum control [210, 211], including

so-called optimal [212–214] and local [215] control methods. The strategy used here
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falls under a third class called tracking control [216, 217], in which the system is

evolved such that its expectation value for a chosen observable matches a predefined

trajectory. The model discussed in this section was first derived in Refs. [2, 3], and

was done in collaboration with Gerard McCaul and others at Tulane university, with

my contribution being to the development of the code. Those papers used ED to

analyse small 1D systems, and here this will be further extended to 2D, along with

new results and analysis that go beyond the published data and combine tVMC in

the construction of the tracking protocol.

5.1.1 Tracking in 1D

Our system is propagated under the 1D Fermi-Hubbard model

Ĥ(t) = −t0
∑
jσ

{
e−iΦ(t)ĉ†jσ ĉj+1σ + eiΦ(t)ĉ†j+1σ ĉjσ

}
+ U

∑
i

n̂i↑n̂i↓ (5.1)

The current operator in 1D is given by eq.(2.27). As previously discussed, by using

the nearest-neighbour hopping expectation in polar form〈
Ψ

∣∣∣∣∣∑
jσ

ĉ†jσ ĉj+1σ

∣∣∣∣∣Ψ
〉

= R (Ψ) eiθ(Ψ) (5.2)

it is possible to write the current expectation as

J (1D)(t) = −2at0R(Ψ)sin [Φ(t)− θ(Ψ)] (5.3)

We consider a system with correlation strength UI , whose irradiation by the pulse

Φ(t) induces a current1, J (UI)(t). The aim is to reproduce this current in a second

system that has a different correlation strength, UT , and that produces the current

J (UT )
T (t) when under a control field Φ

(1D)
T (t). In other words, we want the Φ

(1D)
T (t)

required to propagate the UT system such that J (UT )
T (t) = J (UI)(t). This control field

1We are not limited to currents of this nature, and we could choose an arbitrary function instead
of the expectation of the current operator under some laser field.
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can be calculated by inverting eq.(5.3)

Φ
(1D)
T (t) = arcsin

(
−J (UT )

T (t)

2at0R(Ψ)

)
+ θ(Ψ) (5.4)

This field is evaluated dynamically by calculating the correlation functions in eq.(5.2)

at each timestep, and then using eq.(5.4) to find Φ
(1D)
T (t). This field then evolves the

system forward by one step, with RK4 again used to carry out the propagation in all

cases.

5.1.2 Tracking in 2D

There are (at least) two ways of implementing the tracking scheme in 2D, with equiv-

alent derivations in higher dimensions as well. The first is a straightforward general-

isation of the 1D case, using the hopping expectation〈
Ψ

∣∣∣∣∣∣
∑
〈ij〉σ

ĉ†jσ ĉiσ

∣∣∣∣∣∣Ψ
〉

= R (Ψ) eiθ(Ψ) (5.5)

Just as in 1D, the current is then given by

J (2D)(t) = −2at0R(Ψ)sin [Φ(t)− θ(Ψ)] (5.6)

which leads to a control field of the form

Φ
(2D)
T (t) = arcsin

(
−J (UT )

T (t)

2at0R(Ψ)

)
+ θ(Ψ) (5.7)

It is applied along the diagonal of the square lattice in order to track the system’s

total current and without any consideration of its spatial variation, thereby enforcing

that the laser field is identical in each direction, Φx(t) = Φy(t).

However, the second tracking scheme considers the general case of arbitrary po-

larisation, Φx(t) 6= Φy(t), which opens up the possibility of directional tracking. To

do this, the total current operator is written in terms of its contributions in both
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directions

Ĵ (t) = −iat0
∑
〈ij〉σ

{
e−iΦij(t)ĉ†iσ ĉjσ − eiΦji(t)ĉ†jσ ĉiσ

}
(5.8)

= −iat0

∑
〈ij〉xσ

{
e−iΦx(t)ĉ†iσ ĉjσ − h.c.

}
+
∑
〈ij〉yσ

{
e−iΦy(t)ĉ†iσ ĉjσ − h.c.

} (5.9)

= Ĵx(t) + Ĵy(t) (5.10)

where
∑
〈ij〉kσ refers to hops from site i to an adjacent site j in the k direction. By

defining hopping expectations in each direction the current can be partitioned as

follows〈
Ψ

∣∣∣∣∣∣
∑
〈ij〉xσ

ĉ†iσ ĉjσ

∣∣∣∣∣∣Ψ
〉

= Rx(Ψ)eiθx(Ψ) =⇒ Jx(t) = −2at0Rx(Ψ)sin [Φx(t)− θx(Ψ)]

〈
Ψ

∣∣∣∣∣∣
∑
〈ij〉yσ

ĉ†iσ ĉjσ

∣∣∣∣∣∣Ψ
〉

= Ry(Ψ)eiθy(Ψ) =⇒ Jy(t) = −2at0Ry(Ψ)sin [Φy(t)− θy(Ψ)]

(5.11)

This produces two separate control fields, in principle allowing the simultaneous track-

ing of two entirely distinct currents, J (x)
T (t) and J (y)

T (t)

Φ
(x)
T (t) = arcsin

(
−J (x)

T (t)

2at0Rx(Ψ)

)
+ θx(Ψ) (5.12)

Φ
(y)
T (t) = arcsin

(
−J (y)

T (t)

2at0Ry(Ψ)

)
+ θy(Ψ) (5.13)

It is important to note that a system’s total current, Ĵ (t) = Ĵx(t)+Ĵy(t), produces

a harmonic spectrum that is not the simple sum of the spectra of its x and y directions,

because

S(ω) =

∣∣∣∣FT {dJ (t)

dt

}∣∣∣∣2 =

∣∣∣∣FT { d

dt

(
Jx(t) + Jy(t)

)}∣∣∣∣2 (5.14)

= |ax(ω)|2 + |ay(ω)|2 + 2ax(ω)ay(ω) (5.15)
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In the future discussion, the spectrum due to the current in the x (y) direction refers

to the first (second) of these terms, whereas the total current’s spectrum has the

additional cross-term. The nonlinear dependence between the terms is induced by

the correlated dynamics and so cannot be solved for independently, even though Sy(ω)

only depends on Jy(t) instantaneously.

Finally, it is worth reiterating that this general tracking protocol can be applied to

an extremely broad range of models for irradiated N -electron systems, including con-

tinuous systems, and can do so for any finite dimension. Furthermore, its application

is not limited to the electric current, but can be used to track an arbitrary function of

any observable. A detailed discussion of these points can be found in Ref. [3]. While

this thesis is interested specifically in HHG in correlated lattice models, these other

avenues offer rich possibilities for future research.

5.1.3 Tracking in the Metallic Limit

Introducing correlation into our tracking systems enormously increases the computa-

tional cost and complexity of the calculations, but in the UT → 0 limit the evolution

equations simplify and become very rapid to evaluate.

As previously discussed, when U = 0 it is always true that θ(Ψ) = 0 and R(Ψ) =

R(ΨMF ) is constant. The 1D current becomes

J (1D)(t) = −2at0R(ΨMF )sin [Φ(t)] (5.16)

The control field is therefore

Φ
(1D)
T (t) = arcsin

(
−J (0)

T (t)

2at0R(ΨMF )

)
(5.17)

In 2D, the general form of the total current is

J (2D)(t) = −2at0

(
Rx(ΨMF )sin [Φx(t)] +Ry(ΨMF )sin [Φy(t)]

)
(5.18)

which if split by direction leads to the driving pulses

Φ
(x)
T (t) = arcsin

(
−J (x,0)

T (t)

2at0Rx(ΨMF )

)
(5.19)
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Φ
(y)
T (t) = arcsin

(
−J (y,0)

T (t)

2at0Ry(ΨMF )

)
(5.20)

If Φx(t) = Φy(t) = Φ(t), then eq.(5.18) becomes

J (2D)(t) = −2at0
(
Rx(ΨMF ) +Ry(ΨMF )

)
sin [Φ(t)] (5.21)

= −2at0R(ΨMF )sin [Φ(t)] (5.22)

where R(ΨMF ) = Rx(ΨMF ) + Ry(ΨMF ). This leads to a control field that resembles

eq.(5.17).

These control fields derive their time dependence solely from the currents they

are tracking, and can be evaluated entirely from the initial state without the need

to use RK4. This underlines that it is the interactions that couple these currents

together and in general lead to intractable problems. The fields are calculated by

finding the non-interacting GS using the Hartree-Fock method, which is then used to

find R(ΨMF ), from which the phases can be generated in full. To test this mean-field

formulation, UT = 0 tracking simulations were repeated with ED and tVMC and were

found to give identical results.

5.1.4 Tracking Constraints

Using functional analysis, it can be shown that a solution |Ψ(t)〉 needs to satisfy two

simple constraints in order to guarantee that it is unique and solves the tracking

problem via unitary evolution. If we define

X(Ψ, t) =
JT (t)

2at0R(Ψ)
(5.23)

then the two constraints are [3]

|X(Ψ, t)| < 1− ε1 (5.24)

R(Ψ) > ε2 (5.25)

where ε1/2 are small positive constants. These ensure that the control field ΦT (t)

uniquely tracks the inputted current. Violations in eq.(5.24) cause a loss of Her-
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miticity in the Hamiltonian, and so this constraint is required to maintain unitary

evolution. The physical meaning of eq.(5.25) is not immediately clear, but can be

shown to correspond to the condition that the electrons are not frozen and have

non-zero kinetic energy [3], which of course has to be true for a current to form.

Together, these constraints impose limits on the currents that can be tracked by a

system with some UT while also maintaining a physically meaningful and singularity-

free control field. Simulations show that eq.(5.25) tends to be satisfied without issue,

and instead it is eq.(5.24) that needs to be carefully monitored. Regardless of the size

of max {JT}, it is always possible to satisfy eq.(5.24) using a heuristic scaling of the

control field’s argument. This could be done by considering the lattice constant to be

a tunable parameter and then scaling by some factor cS, such that a
(UT )
T = cSa

(UI).

This was the chosen method in Refs. [2, 3], where cS = 60 was required for the case

UI = 0 and UT = 7. However, in this thesis only current scale factors αS will be

used, such that the target current JT → αSJT . The shape and spectral properties

are all unchanged, and the resulting tracked current can be easily unscaled once

the simulation is complete. In general, these scalings become increasingly necessary

when UT > UI , which can be understood by comparing the spectra peaks of small and

large-correlation systems, which makes it clear that the maximum current amplitude

increases as U → 0. An appropriate choice of cS or αS guarantees that the control

field does not have singularities, and is a major advantage of the method compared

to other quantum control schemes.

Because this algorithm enforces the tracking by construction, we would like a

way of checking if a solution represents a physical evolution free of any numerical

irregularities. We can do this by writing the tracked current in terms of independent

expectations, and then checking that both sides identically match over the course

of the tracking evolution. One possibility is to take the derivative of the current as

defined in eq.(5.6) (or eq.(5.3) in 1D)

dJ (t)

dt
= −2at0

(
Φ̇T (t)R(Ψ)cos [ΦT (t)− θ(Ψ)]−

θ̇(Ψ)R(Ψ)cos [ΦT (t)− θ(Ψ)] + (5.26)

Ṙ(t)sin [ΦT (t)− θ(Ψ)]
)
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This is an analytic expression for the acceleration in terms of the expectations in

eq.(5.5) (or eq.(5.2)), however, it is not clear if these expectations are truly indepen-

dent of the tracked current. A better check can be found by starting with the original

definition of the current, and then taking the derivative and expectation of its split

form in eq.(5.9)

dJ (t)

dt
= −iat0

[ ∑
〈ij〉xσ

{
− iΦ̇(x)

T (t)e−iΦ
(x)
T (t) 〈ĉ†iσ ĉjσ〉 − ie−iΦ

(x)
T (t)

〈[
Ĥx(t), ĉ

†
iσ ĉjσ

]〉
− h.c.

}
+

∑
〈ij〉yσ

{
− iΦ̇(y)

T (t)e−iΦ
(y)
T (t) 〈ĉ†iσ ĉjσ〉 − ie−iΦ

(y)
T (t)

〈[
Ĥy(t), ĉ

†
iσ ĉjσ

]〉
− h.c.

}]
(5.27)

This is an example of an Ehrenfest theorem, and must be respected for the evolution

to be physical. Its commutator terms come from the derivatives of the hopping

operators

d
〈
ĉ†iσ ĉjσ

〉
dt

= i
〈 [
Ĥ(t), ĉ†iσ ĉjσ

] 〉
(5.28)

and it is these expectations that are unambiguously independent of the tracked cur-

rent. We can write eq.(5.27) in a form more amenable to numerical evaluation by

defining the expectations Ck(Ψ) and κk(Ψ) as follows

1

U

∑
〈ij〉kσ

〈[
Ĥk(t), ĉ

†
iσ ĉjσ

]〉
= Ck(Ψ)eiκk(Ψ) (5.29)

for dimension k. Eventually this leads to eq.(5.6)

dJ (t)

dt
= −2at0

(
Φ̇

(x)
T (t)Rx(Ψ)cos

[
Φ

(x)
T (t)− θx(Ψ)

]
+ UCx(Ψ)cos

[
Φ

(x)
T (t)− κx(Ψ)

]
+

Φ̇
(y)
T (t)Ry(Ψ)cos

[
Φ

(y)
T (t)− θy(Ψ)

]
+ UCy(Ψ)cos

[
Φ

(y)
T (t)− κy(Ψ)

] )
(5.30)

Doing the equivalent in 1D gives

dJ (t)

dt
= −2at0

(
Φ̇T (t)R(Ψ)cos [ΦT (t)− θ(Ψ)] + UC(Ψ)cos [ΦT (t)− κ(Ψ)]

)
(5.31)

By checking for violations of the Ehrenfest theorem we can ensure that there are no
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unphysical numerical aberrations in the tracking trajectory. This is done by calcu-

lating the right-hand side of eq.(5.30) during the tracking evolution and comparing

it against the tracked dipole acceleration.

When calculated numerically, the complex phase θ(Ψ) is automatically restricted

or ‘wrapped’ to within [−π, π]. As a consequence, if θ(Ψ) evolves over this threshold

during a timestep update by an amount δ, then a numerical discontinuity is intro-

duced, θ(Ψ) = ±π ± δ → ∓π ± δ. In some cases, θ(Ψ) undergoes large oscillations

that result in |θ(Ψ)| > π and therefore in wrapping, which then cause these artificial

discontinuities to emerge in the control fields. One possibility is to choose a smaller

αS, as this stops the discontinuities forming in the first place by reducing the size

of θ(Ψ) oscillations. However, the preference is always to keep αS as close to 1 as

possible. Instead, the problem can be resolved by appeal to the Ehrenfest theorem, as

it is sensitive to the discontinuities and eq.(5.30) is not obeyed if Φ
(k)
T (t) and θk(Ψ) in-

clude any. We must therefore remove them by ‘unwrapping’ Φ
(k)
T (t) (or θk(Ψ)), which

can be done straightforwardly by searching for sudden jumps and undoing them by

adding or subtracting factors of 2π as appropriate.

5.2 Spectral Mimicry

This method allows the reproduction of one system’s optical properties by an entirely

different system. There are various potential technological applications of this, for

example, in materials science and chemistry it could be used to mimic the proper-

ties of an expensive and hard-to-produce material in a cheaper and readily-available

alternative. In principle, we can make any system generate any optical spectrum at

all, including flipping dimensionality by making something look like a lower or higher

dimensional equivalent, or not looking at physical currents at all and instead tracking

an arbitrary function.

Throughout this chapter, all tracked currents originate from simulations of an

8-cycle pulse with ωL = 50 THz, such that the total pulse duration is approximately

160fs. Unless otherwise stated, the setup of these tracked systems is identical to the

default used in the last chapter, with a = 4�A, E0 = 10MVcm−1, etc. We will concen-

trate entirely on 2D systems because they introduce new and interesting possibilities
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that are not available in 1D and enable us to go beyond the results in Refs. [2, 3].

This first section exclusively uses linearly polarised control fields, and all simulations

were done using ED on the 4 × 3 lattice in order to generate a large data set and

allow analysis of the results in a general way without having to consider the effects

of stochastic noise. Building on that, the section after will then use tVMC to look at

arbitrarily-polarised pulses in extended systems.

5.2.1 Proof of Concept

To demonstrate the capabilities of this technique we consider the metallic UI = 0 and

strongly correlated UI = 8 systems. The driving pulse eq.(4.2) is applied along the

diagonal at these two interaction strengths, producing currents J (0)(t) and J (8)(t)

with radically different properties. The first is a conducting system with a simple

spectrum originating entirely from intraband oscillations and composed of distinct

sharp peaks, whereas the latter is deep in the insulating regime and has a broad spec-

trum that emerges from the complex dynamics of its many-body charge excitations,

both within and between its bands. The aim is then to swap their spectral character-

istics, causing the UT = 0 (UT = 8) system to generate J (8)(t) (J (0)(t)) via a control

field Φ
(0)
T (t) (Φ

(8)
T (t)). This laser pulse is also applied along the lattice diagonal, such

that Φ
(x)
T (t) = Φ

(y)
T (t) at all times. The plotted control fields refer to the pulse in one

direction, instead of being shown as 3D plots.

This photo-mimicry is demonstrated in fig.5.1, which shows the HHG spectrum

of each system being perfectly reproduced by the other. Further details of these

simulations are given in fig.5.2, showing that the control fields required in each case

differ greatly. For J (8)
T (t) = J (0)(t), the pulse Φ

(8)
T (t) needs to have considerable

strength because it is trying to induce a large current in a heavily-insulating system,

and conversely to generate J (0)
T (t) = J (8)(t) requires only a very weak laser field. How

large the pulse amplitude needs to be relative to the original driving pulse, Φ(t), can

be roughly gauged by the ratio max{J (0)(t)}/max{J (8)(t)} ≈ 28, which indicates

that to reproduce J (8)(t) requires a pulse much weaker than Φ(t) and vice versa.

However, this is complicated by the constraint eq.(5.24) and the subsequent choice of

αS, as will be discussed shortly.
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Figure 5.1: Spectral mimicry of a con-
ductor by an insulator and vice versa.
The emission spectrum at UI = 0 (UI = 8)
reproduced perfectly by the UT = 8 (UT =
0) system. The control fields required to do
this are shown in fig.5.2. In the legend, e.g.

S(J (0)
T ) refers to the spectrum generated by

the current J (0)
T . Calculated using ED on a

4× 3 lattice.

For both simulations, fig.5.2 also compares the dipole accelerations calculated

numerically (i.e. by taking the numerical derivative of the tracked current) with

those found from the two physicality tests: the analytic check given by eq.(5.26), and

the Ehrenfest theorem in eq.(5.30). These three values of a(t) align exactly2 in both

simulations and at all times. The results show that the control fields are valid and

the product of physical evolutions.

In fig.5.2, the J (8)
T (t) simulation used a scale factor αS = 0.01 on the target cur-

rent, such that J (8)
T (t) = 0.01J (0)(t). This was required to ensure that the constraint

eq.(5.24) was abided by at all times. Weakly correlated systems typically have large

currents and nearest-neighbour magnitudes, R(Ψ), and vice versa for strongly corre-

lated systems. As a result, in general the constraint is automatically obeyed when

tracking in conductors, but becomes a critical issue when doing it in insulators. In

the latter case, the choice of αS strongly impacts the internal state of the tracking

system, although the resulting current is the same (up to its overall scaling). Fig.5.3

shows the effects of increasing αS on the doublon density and required control field

for J (8)
T (t) = J (0)(t), and demonstrates that tracking not only controls the optical

response of the material but can also change its electronic properties.

The driving field Φ(t) is unable to cause a Mott transition at U = 8, i.e. Eth > E0
3.

The same must also be true for tracking when UT = 8 and αS = 0.01, as fig.5.3 shows

2This is also true of all other ED simulations in this section.
3We cannot analytically determine this as we can in 1D, but it is clearly indicated by its spec-

trogram and the observables in fig.4.1 and fig.4.2.
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Figure 5.2: Mimicry of a conductor by an insulator and vice versa. Left (right)
column shows the UT = 8 (UT = 0) system tracking the current (and therefore spectrum) of
the UI = 0 (UI = 8) system. The rows from top to bottom show: the required control fields
and original Φ(t); the original and tracked currents; the acceleration compared against the

physicality checks, eq.(5.30) and eq.(5.26). A scale factor αS = 0.01 was used for J (8)
T (t),

whereas J (0)
T (t) did not require scaling, i.e. αS = 1. Calculated using ED on a 4×3 lattice.
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Figure 5.3: Photo-induced transition of the insulating tracking system. For the

J (8)
T (t) = J (0)(t) case, this shows the control fields and resulting doublon densities when

the tracked current is scaled by αS = 0.01, 0.015, 0.02, 0.03. D(t) in the U = 0 system under
the original driving field is also shown. Calculated using ED on a 4× 3 lattice.

that the resulting control field has a weaker peak amplitude than Φ(t), which is

given by Φ0 = aA0 = aE0/ωL ≈ 1.9. This is confirmed by its doublon density,

which remains largely unchanged throughout the pulse. If we gauge the degree of

conductivity by the double occupancy, then this shows that an insulating tracking

system does not have to become a conductor in order to mimic the spectrum of one.

However, as αS rises there is an accompanying increase in the number of DHPs.

The control field has to grow in strength in order to ensure there are enough charge

carriers to generate the required current, until eventually E0 > Eth and a dielectric

breakdown occurs. This can be seen in fig.5.3, where the peaks of the control fields

become larger than Φ0, and in fact oscillations in θ(Ψ) are so aggressive that Φ
(8)
T (t)

required unwrapping. However, if the scaling is increased too much then the tracking

constraint is violated and the simulation becomes unphysical. This is shown in fig.5.3

by the example αS = 0.03.

In the reverse situation, J (0)
T (t) = J (8)(t), no scaling is needed (i.e. αS = 1) as the

mimicry only requires inducing a small current in an already-conducting system. This

has no effect on its conductive properties, and the doublon density simply remains

the same at D(t) = 0.25 throughout the pulse.
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5.2.2 Control Fields

Using this protocol it is possible to induce an arbitrary optical response in any chosen

system. However, it is not at all obvious what the general properties of the required

control fields are, and how they change with dimensionality or the correlation strength

of the tracked and tracking systems, i.e. UI and UT , respectively.

Tracking in the UT → 0 limit was discussed in Sec. 5.1.3. The necessary control

field is given by

ΦT (t) = arcsin

(
−J (0)

T (t)

2at0R(ΨMF )

)
(5.32)

where R(ΨMF ) is constant. When ΦT (t) is small it is possible to simplify further

sin [ΦT (t)] ≈ ΦT (t) = −γJ (0)
T (t) (5.33)

where γ = 1/(2at0R(ΨMF )) is a small constant. In other words, the control field

is simply the scaled inverse of the current being tracked, as is visible in fig.5.2 for

J (0)
T (t) = J (8)(t), where ΦT (t) is clearly just the current flipped and multiplied by a

small number. This simple relationship tends to be especially true when UI is large,

as in this limit the current is often weak and so ΦT (t) is too, ensuring that the small-

angle approximation in eq.(5.32) holds. This is essentially a linear-response regime,

however, when UT > 0 the phase instead evolves according to eq.(5.7), resulting in

a highly nonlinear evolution of the wavefunction and compensatory oscillations in

ΦT (t). An example is shown in fig.5.4 for J (4)
T (t) = J (8)(t), which is more oscillatory

than the UT = 0 equivalent in fig.5.24

As well as its time dependence, we are also interested in the harmonic content

of ΦT (t) and how a given frequency component relates to the tracked current and

spectrum. When UT = 0, eq.(5.33) shows that there is an entirely linear relationship

between the two, whereas the opposite is true when on-site repulsion is large. This

can be demonstrated by imposing a low-pass filter on ΦT (t), such that harmonics

above a cutoff ωc are removed: FT {ΦT (t)} (ω > ωc) = 0. When this is done and the

resulting driving field is reapplied to the UT GS, the spectrum becomes exponentially

4Although this example still benefits from the small magnitude of the UI = 8 current, which
greatly simplifies the required driving field.
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Figure 5.4: Mimicry of a conductor and insulator by an intermediate-strength
system. The control fields required to track UI = 0, 8 in the UT = 4 system, where the
former has αS = 0.05, 0.1, and the latter αS = 1. Calculated using ED on a 4× 3 lattice.

suppressed for ω > ωc if UT = 0, whereas when UT � 0 a highly nonlinear relationship

exists between ωc and the frequency at which the spectrum is suppressed. Cutoffs

will be implemented and discussed more in later sections, and will be found to be

useful tools to simplify tracking simulations.

The ΦT (t) necessary to track a given current is of course dependent upon the

properties of that current, and therefore varies considerably with UI . For the specified

pulse parameters and some fixed UT , as UI increases the control field requires a smaller

maximum amplitude but a wider bandwidth, and conversely, as UI decreases ΦT (t)

needs a narrower frequency range but a larger maximum strength, potentially much

larger than Φ0. This distinction is clear in fig.5.2 when comparing UI = 0 and UI = 8,

as the latter has a weak amplitude but broad frequency content and vice versa. More

specifically, if UI > UT then no scaling is required and the simulation can be done

without issue. Eq.(5.33) is the limiting case, but if UT > 0 is weak then it will tend

to be true that θ(Ψ) is small and R(Ψ) large, with the consequence that

ΦT (t) ≈ −γ(t)J (UI)(t) (5.34)

such that the control field is simply the inverse target current modulated by an

oscillatory and small γ(t), resulting in a low-amplitude driving field. An example is

the tracking of J (8)(t) in fig.5.4. On the other hand, the reverse case where UI < UT
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normally requires αS < 1 and is far more challenging to track because the ratio

J (UT )
T /R(Ψ) tends to hover near one. These trends are amplified by the distance

in the phase diagram, |UI − UT |, as can be seen in the difference between the fields

required to track J (0)(t) with UT = 4 compared to UT = 8, plotted in fig.5.4 and

fig.5.3, respectively. The latter example is attempting to generate a significant current

in a heavily-insulating system, and so requires considerable field strength that results

in the transformation of the system’s conductive properties, often inducing Mott

breakdown. This is not true in the UT = 4 case, where only a weak driving pulse is

sufficient with peak amplitude far below Eth.

We can then apply this knowledge and ask about the general properties of control

fields needed to track the currents of conductors, insulators and systems undergoing

phase transitions. Of course, this also depends on UT , but in broad terms it is true

that mimicking a conductor’s optical response can be achieved with narrow-band and

high-amplitude driving pulses, whereas those of insulators require a much broader

range of input frequencies but with amplitudes often far below E0. However, to re-

produce transition-regime currents requires driving lasers intermediate in bandwidth

and strength, but with more complex time-variation that reflects the existence of the

transition in the original system5. These have not been discussed so far, but will be

at length in later sections.

This analysis has assumed fixed pulse parameters, but of course changing the ωL

and/or E0 of the original pulse Φ(t) produces currents with a wide variety of properties

that then require very different control fields to track. For example, decreasing ωL

will simultaneously broaden the spectrum and increase its intensity, e.g. fig.4.17, with

corresponding changes to the necessary control field. Similarly, the dimensionality

of the tracked system is important because 2D spectra are often shifted to lower

harmonics compared to 1D, which makes them reproducible with a narrower range

of frequencies than their 1D equivalents. Lastly, the dimensionality of the tracking

system itself also has to be considered. In 2D, an electron at a given site has twice

the number of possibilities for hopping than it does in 1D, and as a result R(Ψ) at

some UT will be larger, making it easier to conform to the constraint eq.(5.24), and

5Unlike tracking conductors, where the control fields can sometimes have a semi-periodic structure
originating from the original current, such as the J (0)(t) case in fig.5.4.
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in general reducing the field strength required and increasing the maximum αS that

can be used6. This hints at added possibilities in 3D, although simulating this in the

short term would be very difficult for all but the smallest systems.

5.2.3 Experimental Feasibility

The tracking simulations carried out so far have produced control fields that exactly

reproduce their target currents. However, in all or most of these cases the driving

pulses are experimentally unrealistic because no constraints were imposed on their

bandwidth or amplitude. Recent experiments have demonstrated seven-colour laser

sources [218, 219], which although impressive is insufficient to reproduce tracking

fields, some of which have more than a hundred significant frequency contributions

spanning tens of harmonics. On the other hand, field amplitude is not an issue because

the maximum required in fig.5.2 is approximately 30MVcm−1, but experiments have

achieved beyond 100MVcm−1 [220]. It is therefore the bandwidth and frequency

requirements of the tracking pulses that pose a problem and need to be addressed.

In order to make the tracking scheme experimentally feasible it is necessary to find

a way of approximating the control fields with a small number of frequencies and more

limited range. The simplest method would be to impose a cutoff of the type previously

discussed, where all frequencies above some ωc are suppressed. However, this still

requires an impractically large number of frequencies, and independent control over

each one. Instead, the exact control fields, ΦT (t), were fitted to models with D

distinct frequencies to produce approximations, Φ̄T (t), that are experimentally viable

while potentially still able to reproduce the most important spectral features. The

following fitting model was used

Φ̄T (t) = E(t)
D∑
j=1

(
aTEj
ωj

+ ∆jt

)
sin [ωjt− φj] (5.35)

where ωj are the frequency components, Ej are field amplitudes, φj are phases, ∆j are

chirps7 and E(t) is the envelope function. The latter was calculated using the Hilbert

6Although these systems still only have 12 sites, meaning R(Ψ) tends to be quite small and so
αS � 1 is often required.

7In general, a chirped laser pulse is one that has a time-dependent instantaneous frequency.
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transform H [ΦT (t)], whose magnitude provides a parameterless means of estimating

the envelope

E(t) = |H [ΦT (t)]| (5.36)

Depending on the pulse’s precise form, the following two-parameter Gaussian model

can also be effective

E(t) = e−α(t−µ)2

sin2

[
πt

T

]
(5.37)

and both sin-squared and Gaussian envelopes are commonly used experimentally.

Furthermore, when UI < 0.5 it was often found that including the original driving

pulse helps to capture the tracking field’s shape

Φ̄T (t) = Φ(t) + E(t)
D∑
j=1

(
aTEj
ωj

+ ∆jt

)
sin [ωjt− φj] (5.38)

The chirp parameters are included because doing so was found to provide the

best fit, but in general both models can be simplified by setting ∆j = 0 without a

significant impact on the results. Finally, in this section D = 3 was always chosen

as there was found to be little or no benefit to increasing it. Overall then, this form

is experimentally achievable with current technology and is composed of a shaped

chirped pulse of three frequencies ωj, with amplitudes Ej and phases φj.

Fig.5.5 demonstrates this method with the examples UI = 5, UT = 1 (left-hand

column) and UI = 1, UT = 4 (right-hand column), which are compared against

the exact tracking simulations. To generate these results, the following steps were

performed:

1. The driving pulse Φ(t) was applied to the 2D UI = 5 and UI = 1 systems,

producing currents J (5)(t) and J (1)(t) via ED propagation.

2. These currents were tracked by the 2D UT = 1 and UT = 4 systems, respectively,

producing currents J (1)
T (t) and J (4)

T (t) via the control fields Φ
(1)
T (t) and Φ

(4)
T (t).

3. These driving pulses were fitted to the model eq.(5.35) with envelope eq.(5.36),

producing control fields Φ̄
(1)
T (t) and Φ̄

(4)
T (t) that are shown in the top row of

fig.5.5.
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4. The new driving pulses were reapplied to the UT = 1 and UT = 4 systems,

generating new currents J̄ (1)
T (t) and J̄ (4)

T (t), again via ED. These are plotted in

the middle row of fig.5.5, with corresponding spectra shown in the bottom row.

The fitting model’s optimised parameters are in tab.5.1 and tab.5.2, and both cases

require specifications that are experimentally achievable.

1 2 3
Ej

E0
0.13 0.28 0.24

ωj

ωL
1.07 3.10 5.85

∆j

ωL
0.01 -0.019 5.8× 10−3

φj 0.02π 0.4π 3.52π

Table 5.1: Fit parameters for Φ̄
(1)
T (t), optimised for the model eq.(5.35) and envelope

eq.(5.36), for UI = 5 and UT = 1.

1 2 3
Ej

E0
0.19 0.017 8.5× 10−3

ωj

ωL
1.00 2.95 5.02

∆j

ωL
2.08× 10−3 5.35× 10−3 −3.41× 10−4

φj −0.06π −0.26π 0.44π

Table 5.2: Fit parameters for Φ̄
(4)
T (t), optimised for the model eq.(5.35) and envelope

eq.(5.36), for UI = 1 and UT = 4.

These two examples are reverses of each other in the sense that one tracks a

(fairly) large correlation strength in a weakly-correlated system, and the other does

the opposite. In both cases, somewhat surprisingly our simple fitted model with only

three frequencies is sufficient to reproduce the most important spectral characteristics,

and to maintain a good match down to small emission intensities and over a wide range

of harmonics. It does particularly well at low harmonics where it successfully tracks

the peaks, including the two prominent ones that dominate the UI = 1 spectrum.
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Figure 5.5: Reproduction of spectra using fitted control fields. For tracking simu-
lations UI = 5 UT = 1 (αS = 1) and UI = 1 UT = 4 (αS = 0.1), the tracking control fields
(top row) were fitted and then reapplied to the respective UT GSs, generating currents and
spectra that are plotted in the middle and bottom rows, respectively. Calculated using ED
on a 4× 3 lattice.
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Unsurprisingly, the match is less precise at larger harmonics, and in the UI = 5

case it does not exactly reproduce the main peaks. Fig.5.5 shows that the control

fields do not need to be a perfect fit in order to produce good results, as both cases

have significant deviations from their tracking fields, particularly Φ̄
(1)
T (t).

Although these examples were successful, in general the method has many limi-

tations and is often inapplicable. UI is the main determiner because, as previously

discussed, the control fields inherit properties from the currents they are tracking.

Broadband target currents necessitate broadband driving fields and are therefore dif-

ficult to fit with so few frequencies, with the result that UI ≥ 6 is essentially impossible

for all UT > 0. Conversely, weakly-correlated systems have spectra dominated by low

harmonics, which lead to control fields that are more amenable to fitting. However, as

we have seen these fields can vary hugely in complexity depending on UT , e.g. fig.5.4

compared to fig.5.3, both of which track UI = 0. The latter cannot be fitted for any

of the plotted αS, and in particular it is their behaviour early in the pulse that causes

issues. This is clearer in fig.5.2, where Φ
(8)
T (t) rapidly ascends during the first half a

cycle, forming a ‘stem’ that the fitting models cannot capture. It is always possible

to reduce αS further until the stem is removed from the control field, but this is not

preferable as we would like to keep αS as close to one as possible.

Finally, 1D spectra peak in the region U/ωL, which limits fitting to approximately

UI ≤ 2 and means that 2D spectra can generally be fitted up to much larger interac-

tion strengths than 1D. For example, compare U = 3 in fig.4.5 between 1D and 2D;

the former cannot be fitted, whereas the latter can because it is dominated by its first

harmonic.

5.3 Tracking Control Using Arbitrary Polarisation

So far only linearly polarised control fields have been used, in which Φ
(x)
T = Φ

(y)
T is

imposed at all times. This limits the information that can be tracked, and as a result

only the total current has been targeted, with no consideration of its spatial variation.

By allowing Φ
(x)
T 6= Φ

(y)
T it is possible to acquire much finer control over the system’s

optical properties, including tracking the current in each direction as explained in

Sec. 5.1.2 and Sec. 5.1.3.
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There are still limitations to what can be achieved with this because we are using

homogeneous fields, so there is no control of how the current varies over each indi-

vidual row and column of the lattice, only over the total current in each direction.

However, this still offers many interesting possibilities that are not achievable in 1D.

The total current is JT (t) = J (x)
T (t) + J (y)

T (t). If the aim is to track JT (t),

then there are now infinite possible ways of doing this because we can choose to

track any combination of J (x)
T (t) and J (y)

T (t) so long as they sum to JT (t). This

means that with arbitrary polarisation, there is an infinite degeneracy of control fields

that will generate a given current over the whole system. However, from this point

the total will not be tracked, and instead each direction’s current will be controlled

independently without consideration of their sum. Of course, the control fields that

track these separate currents are not independent because they are calculated using

expectations over the system’s total state |Ψ(t)〉, and so are coupled through the

nonlinear evolution of the electronic structure to an extent that increases with UT . In

the limit UT = 0, the system’s state does not deviate from its single Slater determinant

GS, |ΨMF 〉, resulting in control fields given by eq.(5.19) and eq.(5.20), which are truly

independent.

Using ED to separately track J (x)
T (t) and J (y)

T (t) is far from optimal because it

is limited to the 4 × 3 lattice, meaning that Φ
(y)
T (t) will be applied over fewer sites

than Φ
(x)
T (t), which will affect its magnitude and ability to satisfy eq.(5.24). Instead,

to do tracking simulations with a larger lattice in which Lx = Ly required using a

modified version of tVMC. It was found that tVMC is a stable and reliable method

of doing tracking control8, and allows us to go beyond the limitations of ED. As a

result, all simulations in the remainder of this chapter were calculated using tVMC

with a 6 × 6 lattice, and the currents being tracked again originated from 8-cycle

pulses with ωL = 50THz and all other pulse and lattice parameters the same as used

previously, unless otherwise stated. These results are currently unpublished but are

in the process of being written into a paper.

8This is discussed more later.
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5.3.1 Direction-Dependent Mott Transitions

Directional control of the current introduces many interesting possibilities. A natural

extension of the last section would be to start with a strongly-correlated system and

then ‘turn off’ the insulating behaviour in one direction and replace it with that of a

conductor, while retaining its normal behaviour in the other direction, and vice versa

if UT = 0. Using the example from Sec. 5.2.1, this could be achieved by mimicking

e.g. UI = 0 in the x-direction and UI = 8 in the y-direction, while starting in either

GS. Instead, the spectral characteristics of a system will be manipulated to generate

directional Mott transitions, which will be demonstrated by time-resolving the HHG.

Following on from this, the aim will be to reproduce the behaviour in ways that are

potentially experimentally feasible using either current or future technology.

5.3.1.1 Directional Tracking

Fig.5.6 demonstrates this capability for the example J (x,3)
T (t) = J (x,0)(t) along with

J (y,3)
T (t) = J (y,3)(t). In other words, the UT = 3 system is subjected to the control

fields necessary to mimic the x-component of the U = 0 current in the x-direction,

while in the y-direction it is made to retain the same optical response it would have

under the original pulse Φ(t). The following steps were taken:

1. The pulse eq.(4.2) was applied to the UI = 0 system using the default pulse

parameters, with the exception that E0 = 25MVcm−1. This generated a current

J (0)(t), from which the x-component J (x,0)(t) was taken.

2. The pulse eq.(4.2) was applied to the UI = 3 system using the default pulse

parameters. This generated a current J (3)(t), from which the y-component

J (y,3)(t) was taken.

3. These two currents, J (x,0)(t) and J (y,3)(t), were simultaneously tracked in the

UT = 3 system along its x and y directions, respectively, with scale factors

α
(x)
S = 0.4 and α

(y)
S = 1.

The peak amplitudes used for the initial irradiations are labelled E
(x)
0 = 25MVcm−1

and E
(y)
0 = 10MVcm−1 in order to clearly distinguish between them.
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Figure 5.6: Tracking control used to simultaneously resolve a Mott transition

and Bloch oscillations in perpendicular directions. The U
(x)
I = 0 and U

(y)
I = 3

currents tracked in the x and y directions, respectively, of the UT = 3 system. Image
shows the resulting control fields (top left), for comparison plotted with the pulse Φ(t),

E
(y)
0 = 10MVcm−1. The HHG spectra (top right) and spectrograms (bottom) are shown

for each direction. In the former’s legend, e.g. S(J (x,0)) refers to the spectrum generated
by the current J (x,0), and the red lines in the latter show the form of the electric field,

aE(t) = −dΦ(t)/dt, of the original pulse. The scale factors α
(x)
S = 0.4 and α

(y)
S = 1 were

applied, as well as the cutoff frequencies ω
(x)
c = 13 and ω

(y)
c = 24. Calculated using tVMC

on a 6× 6 lattice.
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Fig.5.6 shows the resulting directionally-resolved control fields (top left) and emis-

sion spectra (top right), and we can see that the y-spectrum has the expected prop-

erties of an intermediate-strength system - similar to e.g. fig.4.5 - while in the x-

direction these have been replaced with a tight-binding spectrum. In general, HHG

spectra are not a definitive indicator of dielectric breakdown, as it is a process more

clearly understood and defined by the system’s behaviour over time. As a result,

fig.5.6 also includes spectrograms, but resolved separately for each direction instead

of for the overall current. This demonstrates simultaneous tracking in both the time

and frequency domains, as well as a degree of spatial tracking. Optically, this is a

directional Mott transition, where the y-direction generates the signature emission

of a rapid breakdown, while in the x-direction the Mott insulating nature of the GS

has been transformed into that of a conductor, with its distinctive BOs and bands

of continuous emission. E
(x)
0 = 25MVcm−1 was chosen specifically to enhance the

clarity of the BOs, as the default combination of E0 and ωL produce weak ones that

are hard to discern.

Both control fields reflect the properties of their parent systems via the tracked

currents. Firstly, Φ
(x)
T (t) has a complex structure that is aligned with Φ(t) and directly

encodes the BOs of the U = 0 system. This can be seen in its kinks that coincide

with peaks in Φ(t) and become more aggressive near the pulse centre, corresponding

to the increasing strength of the BOs that are being tracked. Secondly, Φ
(y)
T (t) is

dominated by the structure between the 1st and 3rd cycles that coincides with and

reproduces the Mott transition. Specifically, the pulse’s two rapid oscillations either

side of the 2nd cycle correspond to concurrent emission bursts in the spectrogram.

One might expect that Φ
(y)
T (t) would look similar to Φ(t) given that it is the

response to Φ(t) that is being tracked, but that is not how the tracking scheme works

when UT > 0. First we consider the field needed for J (k,0)
T (t) = J (k,0)(t), i.e. tracking

the k’th component of the U = 0 current in the k-direction of the UT = 0 system.
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This requires the control field

Φ
(k)
T (t) = arcsin

(
−J (k,0)(t)

2at0Rk(ΨMF )

)
(5.39)

= arcsin (sin [Φk(t)]) (5.40)

= Φ(t) (5.41)

because

J (k,0)(t) = −2at0Rk(ΨMF )sin [Φk(t)] (5.42)

and Φk(t) = Φ(t). In other words, when U
(k)
I = UT = 0 the control field simply

reduces to the original pulse that induced the response we’re tracking. It is worth

noting that this solution only remains unique if |Φ(t)| < π/2, which is not always

true in this case; in fact, in the UI = 0 system it is the times when |Φ(t)| > π/2 that

electrons are driven over the Brillouin zone edge and undergo BOs, which ultimately

manifests in Φ
(x)
T (t) as kinks and oscillations.

However, this simplification of the control field does not hold if U
(k)
I = UT > 0,

where the field is given by

Φ
(k)
T (t) = arcsin

(
−J (k,UT )(t)

2at0Rk(Ψ)

)
+ θk(Ψ) (5.43)

Rk(Ψ) and θk(Ψ) are now time dependent and immediately begin to deviate from the

values they have under Φ(t) due to coupling between the k = x, y directions. This

has the consequence that Φ
(k)
T (t) 6= Φ(t) for all t > 0. The opposite happens in the

directionally-uncoupled UT = 0 case, where k = x, y are independent of each other

because the total state |Ψ(t)〉 = |ΨMF 〉 remains constant and does not change in

response to the control fields.

Fig.5.6 shows that tVMC is able to perfectly track currents with no visible stochas-

tic fluctuations9. An important part of this is the imposition of cutoff frequencies ωc,

where if J̃ (ω) = FT {J (t)}, then

J̃ (ω > ωc) = 0 (5.44)

This removes the contributions of all harmonics above the cutoff, and in doing so

9Fluctuations become visible under sufficient zooming, but are not visible in these images.
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removes the noise present at larger harmonics10 that would otherwise cause aggres-

sive stochastic oscillations in the control fields. In fig.5.6, ω
(x)
c = 13 and ω

(y)
c = 24

were chosen because harmonics above these values do not significantly contribute to

the spectra in the intensity ranges shown in these images. An approximately linear

relationship can be assumed between ωc and its cutoff effect on the spectra because

UT = 3 is still quite weakly correlated.

5.3.1.2 Double-Pulse Fitting

This removal of stochastic noise from the control fields is important if they are to

be used as the basis of real-world experiments. Unfortunately, they are still not

experimentally accessible with existing technology, particularly Φ
(y)
T (t). We can see

in fig.5.6 that its field strength is not an issue, as max
{∣∣∣Φ(y)

T (t)
∣∣∣} is approximately

half of max {|Φ(t)|}. The difficulty instead comes from its main structure following

the 1st cycle, which is complex and clearly composed of many frequency components,

and therefore needs to be fitted to a simpler approximate form. During the 1st cycle

it forms a ‘stem’ shape whose height is equal to the zeroth Fourier coefficient, also

known as the signal’s DC component, which is given by the average magnitude of the

signal. However, this stem cannot be fitted using the methods discussed so far, and

so it is necessary to extend them slightly.

This was achieved using ‘double-pulse’ fitting, where the control field is split into

two sections that are then fit separately, with the intention being that experimentally

the field could be generated using two successive pulses. The first section is used to

fit the stem, and is roughly given by the pulse’s opening half-cycle. It is essentially

just an exponential ramping up of the field in order to reach the required amplitude,

and so a simple two-parameter exponential model was chosen

Φ̄
(y,stem)
T (t) = αeβt (5.45)

The rest of the control field was then fitted to eq.(5.35) with D = 5 frequencies and

the DC component added as well, which simply amounts to a constant phase term.

This was used with the envelope function eq.(5.36), which was found to produce more

10At approximately ω > 50.
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Figure 5.7: The fitting of directionally-resolved control fields. The tracking pulses
in both directions and attempts at fitting them, for simulations with UT = 0 and 3. For

both UT , Φ̄
(x)
T (t) was constructed using eq.(5.38) with envelope eq.(5.36). At UT = 0,

Φ̄
(y)
T (t) used eq.(5.35) with eq.(5.36), whereas UT = 3 required an additional initial stem fit,

eq.(5.45). All fitted control fields are formed from D = 5 distinct frequencies.

accurate HHG than the Gaussian envelope, eq.(5.37).

When both fits are combined, the opening exponential section followed by the

remaining bulk of the pulse together form an approximation to the entire control field.

This is shown in fig.5.7 (left-hand plot), with parameters in tab.5.4. It was necessary

to also apply a Savitzky–Golay filter to the stem and its connection point with the

rest of the pulse in order to smooth over the join section and avoid a discontinuity.

Although precise details are not reproduced, overall the fit does a reasonably good

job of capturing the pulse’s shape, especially during the vital opening 3 cycles, where

most of the interesting physics is generated.

The double-pulse method is not required for Φ
(x)
T (t) because it has no stem, and

so eq.(5.38) with eq.(5.36) were sufficient to fit the whole pulse. The parameters are

given in tab.5.3. If UT were increased then a greater amplitude field would be required

and would likely lead to a stem forming.

The same simulation was repeated but with UT = 0, and both the tracked11 and

fitted control fields are shown in fig.5.7 (right-hand plot). Rather than mimicking a

11The same scale factors were used in the tracking simulation in order to make the results directly
comparable with UT = 3.
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conductor while retaining a correlated response, this instead generates the optical re-

sponse of a Mott breakdown along one dimension despite the system being completely

uncorrelated, while simultaneously preserving its native tight-binding emission along

the other. In terms of real-world applications, this type of tracking is potentially

more useful than UT = 3 because it allows a mundane conductor to generate the

complex properties of an interacting system. These tracking simulations are very

rapid to do because tVMC is not necessary, and fitting also becomes much easier

because no stems form, in this case allowing Φ
(y)
T (t) to be fitted using a single pulse

and the combination of eq.(5.35) with envelope eq.(5.36), while Φ
(x)
T (t) again required

eq.(5.38) and eq.(5.36). The control fields’ parameters are in tab.5.5 and tab.5.6.

1 2 3 4 5
Ej

E0
0.17 0.08 0.05 0.02 7.2× 10−3

ωj

ωL
1.00 3.00 5.01 7.00 9.00

∆j

ωL
2.17× 10−4 −3.63× 10−5 −1.68× 10−4 −1.47× 10−5 −2.26× 10−7

φj −0.01π 0.02π 0.05π 0.01π −0.02π

Table 5.3: Fit parameters for Φ̄
(x)
T (t), optimised for the model eq.(5.38) and envelope

eq.(5.36), for U
(x)
I = 0 and UT = 3.

Stem 1 2 3 4 5

α 3.4× 10−3

β 0.80
Ej

E0
0.20 0.098 0.096 0.11 0.05

ωj

ωL
0.87 3.34 5.05 6.92 8.91

∆j

ωL
−0.019 −6.1× 10−3 −8.9× 10−3 −8.1× 10−3 3.4× 10−3

φj −0.58π 1.28π −0.21π −1.61π 0.14π

Table 5.4: Fit parameters for Φ̄
(y)
T (t), optimised for the stem model eq.(5.45) combined

with eq.(5.35) and envelope eq.(5.36), for U
(y)
I = 3 and UT = 3.

142



CHAPTER 5. CURRENT TRACKING

1 2 3 4 5
Ej

E0
0.17 0.082 0.056 0.022 7.5× 10−3

ωj

ωL
1.0 3.0 5.0 7.0 9.0

∆j

ωL
−1.82× 10−12 −1.04× 10−12 4.66× 10−12 1.66× 10−11 3.53× 10−11

φj 0.0 0.0 0.0 0.0 0.0

Table 5.5: Fit parameters for Φ̄
(x)
T (t), optimised for the model eq.(5.38) and envelope

eq.(5.36), for U
(x)
I = 0 and UT = 0.

1 2 3 4 5
Ej

E0
0.13 0.13 0.26 0.21 0.20

ωj

ωL
0.87 3.41 4.57 6.58 9.06

∆j

ωL
0.019 −8.37× 10−3 −0.024 0.016 −0.011

φj −0.61π 1.55π −1.47π −2.59π 1.71π

Table 5.6: Fit parameters for Φ̄
(y)
T (t), optimised for the model eq.(5.35) and envelope

eq.(5.36), for U
(y)
I = 3 and UT = 0.

These approximated control fields were then reapplied to the GS at their respective

UT , with the aim of reproducing the same general properties observed in fig.5.6. The

resulting spectrograms are shown in fig.5.8 for UT = 3 (top row) and UT = 0 (bottom

row), and in both cases the desired behaviour is unambiguously reproduced, creating

a clear directional split in the emission.

At UT = 3, the stochastic nature of the method and the tracking system’s corre-

lation combine to make the simulation quite challenging. However, in the x-direction

both the BOs and the bands of continuous emission are clearly visible, and so the two

most prominent characteristics of a conducting system’s HHG have been successfully

recreated, despite noise obscuring the BOs at lower intensities and causing emission

above the cutoff frequency used in the original tracking simulation. In the y-direction,

the double-pulse fitting accurately reproduces the breakdown with little additional

noise above or below the cutoff.
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Figure 5.8: Spectrograms resulting from evolution under fitted control fields.
The UT = 3 (top row) and UT = 0 (bottom row) systems were propagated using the pulses
in fig.5.7. These spectrograms show the resulting time-resolved emission that is attempting
to reproduce the characteristics in fig.5.6. The red lines show the form of the electric field,
aE(t) = −dΦ(t)/dt, of the original pulse. Calculated using tVMC on a 6× 6 lattice.
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Similarly, the UT = 0 spectrograms duplicate the tracked HHG in both directions.

We would expect them to be far superior than any UT > 0 equivalent because the

simulation is done using an exact mean-field method, and therefore does not suffer

from stochastic noise or errors due to an approximate trial wavefunction, but instead

has a non-interacting wavefunction |ΨMF 〉 that remains exactly correct throughout.

Furthermore, when UT > 0 any errors are likely to compound and combine across the

dimensions because of the coupling that exists between them. Lastly, the absence of

correlation has significant effects on the required control fields, especially on Φ
(y)
T (t)

which does not develop a stem and can therefore be fitted to greater precision. In

fact, inaccuracies in the fitted versions of the control fields are the only source of error

when UT = 0.

Fig.5.8 shows that these factors combine to produce a close match in the x-

direction, without any noise and with the lower-intensity BOs also included. However,

in the y-direction there is actually more noise than at UT = 3, which originates en-

tirely from fitting errors and shows that the absence of a stem does not necessarily

lead to improvements. Both simulations in fig.5.8 show that, perhaps unsurprisingly,

the best reproduction happens in the direction where U
(k)
I = UT , i.e. where the

system is regenerating its native spectrum.

Finally, these results demonstrate that with only a small number of frequencies

it is possible to transform the emission of a system in both the frequency and time

domains by inducing directional transition/conduction behaviour. This perhaps sug-

gests that the complexity of the control fields does not necessarily preclude an ex-

perimental demonstration of the technique, especially given that the specifics of the

tracking fields do not seem to be vitally important, as both cases in fig.5.7 have visi-

ble errors and yet still faithfully mimic the emission. Furthermore, for both UT = 0

and 3, fitting with D = 5 distinct frequencies was chosen because it led to the best

results, but the calculations were repeated with D = 3 and were found to produce

similar spectrograms. In fact, even D = 2 gives reasonably good fits12, which shows

that the first frequency component is the dominant contribution, and demonstrates

the importance of the envelope function. Several other fitting models were also tried

12Although the fitted evolution under D = 2 has not been done yet, so it could be that the decent
fits do not translate into close spectral reproduction.
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and were again found to produce similar spectrograms. This means that if it were

experimentally necessary, then D = 3 or fewer frequencies could be used, and perhaps

with different fitting models, depending on which is easiest to construct experimen-

tally. In terms of its actual implementation, these experiments might be approached

using two entirely separate pulses that are arranged at right-angles to each other, one

facing each axis. This is of course speculative, but is an interesting possibility.

5.3.1.3 Stability Check

Evolution under these tracking control fields introduces an additional layer of stochas-

tic error compared to the results in Chapter 4, because not only is the evolution

stochastic, but the field itself is stochastically-derived. It is therefore important to

check for reliability and stability by taking the pulses calculated by the tracking pro-

tocol and shown in fig.5.6, and reapplying them to the UT = 3 GS. For us to have

confidence in the control fields, this propagation should produce spectrograms that

look similar to fig.5.6, i.e. to those that the fields were calculated to track! The results

of this check are plotted in fig.5.9, which shows that the spectrograms are accurately

reproduced, with the addition of some stochastic noise at larger harmonics. They are

similar to those generated under fitted fields in fig.5.8, but the fine-structure of the

emission is more closely recreated in fig.5.9, for example, in the x-direction’s BOs.

It is not obvious how the stability of the implementation’s results would be affected

by the complexity of the tracked currents or subsequent control fields. This was in-

vestigated by carrying out the same simulation as fig.5.6 but with E
(x)
0 = 50MVcm−1,

as the strong pulse amplitude produces a current with intense BOs, which in turn

leads to a complex tracking field. The results are plotted in fig.5.10, and shows the

tracking control fields (left) and x-direction spectrogram (right), while the y-direction

emission is identical to fig.5.6 and so is not shown. The stability check was then done

for this case, and is plotted in fig.5.11. Once again, the spectrograms look very similar

to the originals, with the only significant aberration being some stochastic noise that

is mostly confined to higher harmonics, particularly ones ω > ωc. In fact, the check

was repeated for several different tracking simulations, and in each case the correct

HHG was reproduced with similar precision. This suggests that the method remains
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Figure 5.9: Stability test for E
(x)
0 = 25MVcm−1. Spectrograms calculated by propa-

gating under the tracking control pulses in fig.5.6, in order to check that similar HHG is
produced. Calculated using tVMC on a 6× 6 lattice.

stable and accurate for all J (k)
T (t), without much variation due to its specific form.

It is not possible to fit the fields in fig.5.10 with existing methods, and so approx-

imating them with fewer frequencies requires specifications that go beyond current

experimental capabilities. This is investigated in Appendix B using a harmonic selec-

tion method, where the most significant contributing frequencies are identified and

combined to produce simplified versions of the fields.

Fig.5.9 and fig.5.11 also demonstrate the maximum possible accuracy that fitted

fields could give for these cases, i.e. any approximate form of the control fields

could never produce more accurate spectrograms than these results. They show

that the approximate nature of tVMC is not a fundamental barrier to generating the

original spectral features to very high precision, and that a sufficiently well-fitted pulse

could reproduce them to better accuracy than fig.5.8. However, they also show that

stochastic noise limits how well the low-intensity structure can be recreated, which

mirrors the limitations found in Chapter 4. Developing strategies to mitigate this

noise is therefore an important way that the accuracy of results could be improved.
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Figure 5.10: Tracking control used to simultaneously resolve a Mott transition
and aggressive Bloch oscillations in perpendicular directions. The same simulation

as fig.5.6 but with E
(x)
0 = 50MVcm−1. Image shows the resulting control fields, for compar-

ison plotted with the default pulse Φ(t), E
(y)
0 = 10MVcm−1. The time-resolved emission is

shown for the x-direction, along with the electric field, aE(t) = −dΦ(t)/dt. The y-direction

spectrogram is the same as fig.5.6. The scale factors α
(x)
S = 0.4 and α

(y)
S = 1 were applied,

as well as the cutoff frequencies ω
(x)
c = 16 and ω

(y)
c = 24. Calculated using tVMC on a 6×6

lattice.

Figure 5.11: Stability test for E
(x)
0 = 50MVcm−1. Spectrograms calculated by propa-

gating under the tracking control pulses in fig.5.10, in order to check that similar HHG is
produced. Calculated using tVMC on a 6× 6 lattice.
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5.3.2 Harmonic Enhancement

A major advantage of the presented tracking control protocol is its adaptability and

wide applicability. An interesting example is to the longstanding question of how

to enhance the yield of selected harmonics [221–225]. This is important, as HHG

is increasingly used as a way to generate ultra-intense, ultra-short high frequency

light pulses, so having a way to tailor them to specific needs would be advantageous.

Current tracking can be applied to this problem, and is able to calculate the control

fields necessary to boost any harmonic, potentially to any desired intensity.

This is achieved by creating a new artificial current, which is then tracked to give

the requisite driving field. Starting in a system with interaction strength UI that

generates a current J (t) under some pulse Φ(t), if we would like to boost the HHG

spectrum at the harmonic ωE then we can simply add that component to its current

J (t)→ J (t) + βsin [ω′Et] (5.46)

where ω′E = ωEωL and β is a boost factor that determines the degree of enhancement.

This is then tracked in a system with UT , producing the control field ΦT (t) required to

reproduce the enhanced spectrum. It was found that this process sometimes produces

yield boosts that are too narrow in the frequency domain, so in order to widen them

W additional adjacent harmonic terms were introduced

J (t)→ J (t) +
W∑
n=0

βnsin [(ω′E + n∆ω) t] = J ′(t) (5.47)

J ′(t)→ J ′(t) +
W∑
n=0

βnsin [(ω′E − n∆ω) t] (5.48)

where ∆ω = 2π
N∆t

. This was chosen because 1
N∆t

is the interval between adjacent

frequency components of a discrete Fourier transform for some timestep ∆t and total

number of steps N , which means that 2π
ωL

1
N∆t

is the harmonic interval. If W = 0

then only eq.(5.47) is kept and eq.(5.46) is recovered, but if W > 0 then terms are

both added and subtracted in order to symmetrise the boost. Lastly, βn = β was

always selected, although {βn} could potentially be specified more precisely in order

to control the shape of the boost, perhaps in combination with narrower and more
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numerous choices of ∆ω.

There is no restriction on UT or the choice of J (t), so we can of course choose

UI 6= UT and boost the spectrum of any system in any other system. Additionally,

in 2D the polarisation of the pulse can be used to induce directional enhancements,

such that different harmonics are amplified in each dimension. An example of this

is fig.5.12, which shows the enhancement of the y-component of the UI = 1 = UT

current13, J (y,1)(t), with simultaneous boosting of the harmonics ω
(x)
E = 4.5 and

ω
(y)
E = 10.5, both with width W = 1. The enhancement factors were

β(x) =
1

20
max

{
J (y,1)(t)

}
and β(y) =

1

50
max

{
J (y,1)(t)

}
(5.49)

These were chosen in a somewhat ad hoc way to amplify the harmonics above the

peak of the U = 1 spectrum.

Fig.5.12 shows how these enhancements introduce additional oscillations into the

currents which then manifest in the spectra as new peaks. ΦT (t) also picks up compen-

satory oscillations, in this case at approximately the same frequencies as the boosts.

This simple relationship between ω
(k)
E and the tracking fields is due to the system’s

weak correlation, but as UT is increased there is an increasingly nonlinear relation-

ship between them. Finally, the spectrogram shows that the boosts are continuous

and time-independent14, and that they bleed into adjacent harmonics15. Note, these

extra oscillations in the control fields do not greatly affect their ability to be fitted,

and tests have demonstrated that it is often possible to accurately reproduce the new

peaks, although this is a topic that needs further work.

The boosts in eq.(5.49) were picked by a degree of trial and error, but in some

cases it should be possible to determine in advance the required values for a given

spectrum intensity. We want to find the factor βE needed to boost the harmonic ωE

to the spectrum intensity SE(ω). The relationship between these quantities is

SE(ω′E) =

∣∣∣∣FT {a(t) + βE
d

dt
sin[ω′Et]

}∣∣∣∣2 (5.50)

13The y-component was tracked in both directions because it improves the clarity of the results
and makes analysis easier.

14Oddly, the intensity of the boost appears to reduce slightly towards the end of the pulse, but
this is likely just a numerical artifact.

15This can also be seen in the HHG spectra by the boosts’ thick bases.
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Figure 5.12: Tracking currents with enhanced harmonics. U
(y)
I = 1 current simul-

taneously tracked along both components of the UT = 1 system, with harmonics ω
(x)
E = 4.5

and ω
(y)
E = 10.5 boosted to produce emission above the normal peak. Image shows the nec-

essary control fields (top left) plotted with the pulse Φ(t), E
(y)
0 = 10MVcm−1, that induced

the original current. Also shown are the pre- and post-enhanced currents (bottom left), and
their HHG spectra (top right). In the latter’s legend, e.g. S(J (y,1)) refers to the spectrum
generated by the current J (y,1). The time-evolution of this enhanced emission is shown for

the component J (y,1)
T (t) (bottom right), with the electric field, aE(t) = −dΦ(t)/dt, in red.

Scale factors were not used, α
(x)
S = α

(y)
S = 1, and the cutoff ω

(y)
c = 20.5 was applied before

tracking. Calculated using tVMC on a 6× 6 lattice.
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and it can be inverted to find βE. However, the problem becomes more complicated

for any W > 0, and is probably inapplicable if the Welch method is used. This topic

needs to be researched further, but it is likely within the capabilities of the method

to specify the enhancement of both the harmonic and its intensity.

5.4 Summary and Outlook

In this chapter, a technique for tracking control was derived and subsequently demon-

strated using a combination of ED, tVMC and mean-field methods. The protocol was

implemented using the Fermi-Hubbard Hamiltonian as an example, and enabled the

arbitrary manipulation of the optical response of interacting systems across regimes,

from conductors to insulators. This included the resolution of ‘directional Mott tran-

sitions’ and the enhancement of specific harmonics. Significantly, it was shown that

these capabilities can be well-approximated by comparatively simple laser fields that

are potentially within existing experimental limitations.

This tracking protocol is extremely flexible and has a broad potential for interest-

ing applications and future research, although it also has limitations imposed on it by

tVMC and the available fitting methods. Given the success of the directional transi-

tion simulations in fig.5.8, it might be possible to go further and apply the protocol

to more challenging cases. That could mean changing either UI , UT or both, for ex-

ample by trying to mimic the HHG of more strongly-correlated systems. A tempting

alternative simulation would be to again retain the y-direction but now change the

x to be a high-U system, which would produce a directional transition by replacing

the emission signature of a conductor with that of a typical insulator. This would

have the advantage that Φ
(x)
T (t) would only require a weak amplitude, owing to the

comparatively small currents at large U . However, it would probably not be possible

due to the extremely broadband nature of the currents, and UI < 6 is the realistic

range using the available fitting methods, as to go beyond this would likely require

more accurate techniques. In the short term, a simpler and potentially viable alter-

native would be to repeat fig.5.8 but with e.g. U
(y)
I = UT = 5, as this would create

a more distinctive Mott transition in the spectrogram, along with a more interesting

Φ
(y)
T (t) that has a highly nonlinear relationship between its frequency components and
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those in the resulting spectrum. In the long term, moving beyond the single-band

Hubbard model is an important next step because this would enable real materials to

be simulated, with the aim ultimately to collaborate with experimentalists in order

to demonstrate some aspect of tracking control in the lab.

The harmonic enhancement discussed in Sec. 5.3.2 was a simple example of a

concept that has many possible extensions. This capability could be expanded upon

by introducing a chirped enhancement instead of a single constant frequency, and the

boost factor could be made arbitrarily complicated, βn → βn(t). These extensions

combined with different choices of eq.(5.47) and eq.(5.48) might allow for a great

deal of control over the nature of the spectral enhancements, potentially enabling

the construction of ‘designer spectra’. This leads naturally to the idea of spectrum

tracking, where we start from the spectrum that we would like to track instead of

the current. However, it is a difficult problem ripe for future research because the

derivation used for currents cannot be straightforwardly extrapolated to HHG spectra.

This is because of the absolute square in the spectrum’s definition, eq.(3.64), which

destroys phase information and thereby creates a redundancy whose resolution is not

at all obvious.
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Conclusions

In this thesis, a range of numerical methods were applied to the ultrafast high har-

monic spectroscopy of correlated lattice systems subject to strong-field laser pulses.

This provided an attosecond-scale window into the many-body charge dynamics of

Mott insulating systems across dimensions and correlation regimes, as well as enabling

the near-arbitrary control and manipulation of the optical response in the time, fre-

quency and even spatial domains via tracking control. The focus throughout was on

2D lattices, which have previously been almost completely absent in the literature and

exist at the frontier of the non-equilibrium physics of correlated materials. To pursue

these challenging problems, a fusion of exact, mean-field and stochastic approaches

were implemented, with the Fermi-Hubbard model providing the foundation, and sup-

plemented by a novel effective single-particle model. These were combined with the

ubiquitous use of wavelet analysis in order to time-resolve the emission and provide

a highly accurate means of characterising and comparing the sub-cycle dynamics.

The aim of Chapter 4 was to describe, explain and compare the frequency and

time-resolved emission in these correlated models in both 1D and 2D, and to repeat

this across all interaction regimes. This was primarily done using tVMC in order to

access extended system sizes, but was replaced with ED in cases where its use was

impractical or impossible. This was accompanied by the frequent use of mean-field

methods for the U = 0 limit, but also as part of the CBM. The analysis began by using

ED to calculate the evolution of several system observables across a wide range of U

values. The results demonstrated that in both dimensionalities there are three clear

regimes: a non-interacting limit where the system begins and remains conducting; a

transition regime in which the photo-induced breakdown of the Mott insulating state

and magnetic order can be seen to occur with threshold behaviour; an insulating
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regime where the field strength is not strong enough to induce breakdown. While

this is true in both 1D and 2D, there were also important distinctions between them

that reappeared frequently in later sections, including that in 2D the transitions were

initiated earlier and finished more quickly, but also persisted up to larger correlation

strengths. These results were repeated for tilted lattice systems in order to account

for the effects of artificial frustration in the y-direction of the 4 × 3 square lattice,

which illustrates the limitations of using ED for 2D systems.

This was followed by an investigation into the optical response associated with

these complex charge dynamics, starting with the HHG spectra across the three

regimes. In the U = 0 limit, the spectra exhibited typical properties of tight-binding

systems, including distinct narrow peaks at odd harmonics. In this metallic regime, it

was found that up to a constant factor the emission does not vary between dimensions.

However, when interactions are introduced Mott gaps develop and transform the

spectra, creating clear distinctions between 1D and 2D. In 1D, increasing correlation is

accompanied by a transfer from spectra that are dominated by intraband-induced low

harmonics, to broader and more irregular spectra composed mostly of high harmonics

that originate from DHP recombination, and that have regions of peak emission

proportional to U . In 2D however, low harmonics exist at all interaction strengths,

signalling the persistent presence of intraband currents, including regimes in which

they are suppressed in 1D. These and other properties and differences were explained

by considering the lattice, bandwidth, gap size and DOS, among other things, and

together showed that dimensionality has a clear impact on the HHG. Finally, the

large-U regime was considered, and it was shown that the UHB becomes depopulated

as the Mott gap widens, which in turn causes the emergence of strong intraband

currents and therefore intense low-harmonic emission.

Having analysed the HHG purely in the frequency domain, its time dependence

was then resolved and investigated using wavelet analysis, enabling direct observation

of the charge dynamics and Mott transitions. In the metallic regime, field-aligned

BOs are clearly identifiable, allowing us to characterise the appearance of intraband

currents, which is useful when analysing interacting systems as it helps to identify the

origin of different parts of the emission. In the transition regime, the signature of the

photo-induced breakdown was determined to be a brief period of intense HHG that
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subsides within one or two laser cycles. Differences found in the double occupancy and

other observables were also found to arise in the spectrograms; for example, that the

transitions begin earlier in 2D and occur more rapidly. Many of these properties were

explained by the Mott gaps, which are smaller in 2D for a given U . This was followed

by the resolution of the low-intensity structure of the HHG, which found that regular

field-aligned emission emerges in 1D, whereas in 2D the increased dimensionality

leads to interference between trajectories that causes the emission to develop a more

irregular form. Finally, in the heavily-insulating regime in which no breakdowns can

occur, the spectrograms showed two overlapping but distinct sectors at low and high

harmonics, corresponding to intraband and interband-induced emission, respectively.

This was followed by an analysis of the CBM’s HHG, where it was shown that this

simple mean-field model converges with the Hubbard model as U → ∞, thereby

demonstrating that in this limit the sub-cycle dynamics can be well-described by a

single-particle picture.

The final section of Chapter 4 investigated how the 2D transition-regime emission

changes with varying simulation parameters. Raising the maximum laser amplitude

E0 was found to slightly shift the peak HHG to higher harmonics, but did not affect

the cutoff or overall structure of the spectrum because a saturated UHB limits the set

of excitation energies that can be accessed. On the other hand, the frequency ωL had

dramatic effects on the spectrum peak and cutoff, increasing (decreasing) them as ωL

is decreased (increased). These two parameters also had significantly different effects

on the Mott breakdown process, which was shown to be largely independent of the

frequency, whereas E0 controls its onset time by determining when the threshold field

Eth is reached. Finally, the hopping constant t0 was found to have powerful effects

on a system’s emission by controlling the width of possible excitation energies, and

on the Mott transition via its influence on the gap.

Chapter 5 moved away from analysing the electronic and optical responses of a

system subject to a given driving field, and instead investigated how the laser pulse

can be designed to manipulate the response to produce any predetermined outcome.

The protocol required to do this was demonstrated using ED examples of spectral

mimicry, in which the HHG of an insulator was generated by a conductor and vice

versa. The doublon density was used to show that the electronic response depends on
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the choice of scale factor αS. This has the consequence that a given HHG spectrum,

up to a constant factor, can be generated by both an insulating system and a system

undergoing Mott breakdown. The general properties of the control fields that are

needed in different cases were then discussed, and it was found that they often require

unrealistically large bandwidths that cannot be reproduced experimentally. To tackle

this problem, fitting models were introduced that enable extremely complex control

fields to be approximated using only a small number of frequencies, making them

potentially viable.

The tVMC method was reintroduced, and was found to be a stable and accurate

way of carrying out tracking control simulations. By easing restrictions on the polar-

isation of the tracking pulse, it was possible to simultaneously track entirely separate

currents along each direction. The main result was the demonstration of a directional

phase transition, where a Mott breakdown’s HHG was generated in one direction and

characteristically-conducting emission along the other. The control fields were then

approximated in an experimentally-achievable form and were shown to correctly re-

produce the same behaviour. This was followed by benchmarking of the accuracy of

tVMC for tracking to show that it was an appropriate method to use. The chapter

finished with an example of the application of tracking to the problem of harmonic

enhancement, where selected frequencies are boosted.

The research in this thesis only scratches the surface of an extremely broad and

complex topic. There are many directions that future work could take simply using the

methods and models discussed here, let alone the enormous variety of more realistic

models that could be investigated. Ultimately, future progress in simulating these

realistic models in 2D and 3D depends on the availability of appropriate numerical

methods, and it is this that is currently the main limiting factor.
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Benchmarking

In this appendix, the suitability of tVMC and the chosen ansatz are justified and

discussed. Firstly, more details are given into the simulation setup that was used

throughout, such as the choice of timestep and number of Monte Carlo samples.

Then the accuracy of tVMC is checked by comparing 12-site simulations against

their ED equivalents. Finally, the convergence of the results with respect to lattice

size is confirmed insofar as is possible given the limitations imposed by the method’s

heavy computational costs.

A.1 Simulation Setup

The same general simulation setup was used for all results in this thesis. The minimum

required timestep ∆t was found to depend upon the correlation strength of the system:

for all U ≤ 3, ∆t = 10−2 was chosen, whereas ∆t = 5× 10−3 was selected for U > 3.

A similar dependence on U was also found to be necessary in Ref. [185], where they

used ∆t = 10−2/U for U > 1, which often leads to smaller timesteps than were used

here.

The number of Monte Carlo samples S was chosen depending upon the number

of parameters P in the ansatz, which depends upon the system size. The general rule

was that the minimum number of required samples is S ≥ 10P [170]. The ansatz for

12-site systems has P ≈ 150, and for 36 sites has P ≈ 1500. As a result, the former

used S ≥ 2500 for optimising the GS and S ≥ 5000 for the real-time evolution;

whereas the latter always used S = 15000 and S = 25000 for the imaginary and

real-time evolutions, respectively.

Finally, it was typically found that the best results were produced by averaging
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over two or occasionally three simulation runs. Each run produces similar results that

have the same qualitative features, but by averaging it is possible to reduce stochastic

noise, especially at larger harmonics, and to sharpen and reinforce spectral features.

A.2 Comparison with Small Systems

Following the example of Ref. [185], linear ramp quenches were initially used to test

the tVMC implementation and to analyse the main error sources: stochastic errors

from the Monte Carlo sampling; the discretisation of time into steps of size ∆t; the

integration method1; and the form of the trial wavefunction. It was also used to

provisionally choose an ansatz that balances accuracy with costliness, which led to

eq.(3.40) being selected.

Following on from this, to check the suitability and accuracy of tVMC and the

trial wavefunction, ED and tVMC results were compared against each other for 12-site

systems, examples of which are given in fig.A.1 and fig.A.2 for 2D U = 3 and U = 5,

respectively. These show that the important qualitative features of the frequency and

time-resolved emission are reproduced, demonstrating the suitability of the ansatz

for the qualitative physics of HHG in MIs. Furthermore, this was done for both 1D

and 2D at all U values that were calculated for 36-site systems in Chapter 4, and in

each case the most important qualitative features were duplicated in the time and

frequency domains. The only exceptions to this were the spectrograms at U = 7 in

both dimensionalities, because the large correlation strength causes the development

of noise early in the pulse, which somewhat obscures the boundary between the noise

and the genuine onset of emission. As a result, the equivalent spectrograms were not

used for 36-site systems, and instead ED was used for all cases where the time-domain

HHG of large-U systems was required. However, other than this noise, the U = 7

spectrograms still reproduced the most important features, namely that the Mott

transitions are replaced by continuous emission at roughly uniform intensities. It is

likely that by decreasing the timestep this noise could be reduced, however, this is

not realistic due to the increased computational cost.

1The Euler method was compared against RK4.
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Figure A.1: Comparison between tVMC and ED for 2D U = 3. Emission spectra
and spectrograms in the 4 × 3 system at U = 3 for ED (left column) and tVMC (right
column). The red lines in the spectrograms show the incident electric field, E(t).

In general, across both dimensionalities and at all U , it was found that tVMC can

be used to accurately calculate the emission within the spectra’s first 50 or so harmon-

ics, corresponding to the largest 3 to 5 orders of magnitude of the emission intensity,

depending on U . Beyond this region, stochastic noises renders tVMC ineffective and

inapplicable. As a consequence of this, the results in Chapter 4 were calculated with

ED in cases where the low-intensity structure and ultra-high frequency domains were

required. This then leads to the question of convergence of the HHG with system

size, which must be true (or at least true to a good approximation) for the results to

be useful.
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Figure A.2: Comparison between tVMC and ED for 2D U = 5. Emission spectra
and spectrograms in the 4 × 3 system at U = 5 for ED (left column) and tVMC (right
column). The red lines in the spectrograms show the incident electric field, E(t).

A.3 Convergence of the HHG

We would like to check that the results include minimal or no contributions from

finite-size effects. In 2D we are restricted to lattices that have relatively few sites in

each direction, and the concern is that the charge carriers might traverse a very large

number of sites before recombination occurs, such that the limited lattice dimensions

start to influence the HHG in ways that are not present in the thermodynamic limit.

In particular, this is a concern for ED calculations due to the small 4× 3 lattice. We

would expect that these effects are more pronounced when the correlation U is low

because interactions have a localising effect that reduces charge mobility, so that weak

correlation results in carriers that can travel over larger distances and are therefore
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more susceptible to finite-size effects. Having said that, in the U = 0 limiting case,

the correlation length becomes infinite and the electrons can roam unimpeded, and

yet the emission is not affected by system size at all2. This means that the concern lies

with the full coupled correlated dynamics and not purely with intraband oscillations,

despite these being responsible for the motion of the charge carriers.

We can test that the HHG results have converged by repeating calculations for big-

ger lattice sizes and confirming that the results are qualitatively the same. However,

the number of variational parameters in the trial wavefunction increases as O(L2),

which results in a rapid escalation of the computational costs as the number of sites

increases. As a result, the 8 × 6 lattice was found to be the largest 2D system that

can realistically be simulated with the available resources. Fig.A.3 shows compar-

isons between simulations using 6 × 6 and 8 × 6 lattices for U = 1 and U = 3, and

in both cases the qualitative features of the HHG remain unchanged. These are both

weakly-correlated systems, and so a lack of finite-size effects is encouraging, and also

means we can expect that systems with U > 3 have similarly converged. Note, the

number of samples was not increased for the 8× 6 simulations in order to limit cost,

and this results in a somewhat block-like appearance that would likely disappear with

larger S, as this effect has been observed in other simulations where too few samples

were used.

Fig.A.3 plots the high-intensity region of the HHG, but this does not necessarily

mean that the low-intensity structure shown in fig.4.11 and fig.4.12 has also con-

verged. Stochastic noise makes this inaccessible to tVMC, so it is not possible to do

convergence tests with the 8 × 6 lattice. However, the low-intensity analysis using

ED was repeated for various U ≥ 1, and they were all found to reproduce the same

basic properties discussed in Sec. 4.4.2 and Sec. 4.4.3: 1D has ordered field-aligned

emission and 2D has more complex sub-cycle structure. This also continues to per-

sist at U > 10, where the correlations are so strong that multi-site charge dynamics

are severely restricted, and so finite-size effects are likely insignificant. The fact that

these features exist over all U , including those that we are confident have converged

due to their strong interactions, suggests that these are genuine properties and not

2Increasing L has the effect of shifting the emission upwards by a constant factor, but the structure
of the emission does not change in the frequency or time domains.
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numerical figments. This is likely because the carrier dynamics occur on sub-cycle

timescales during which multiple sites cannot be easily traversed, thereby limiting

finite-size effects.
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Figure A.3: Convergence of the HHG profile with system size. Comparisons be-
tween the emission for simulations using 6 × 6 and 8 × 6 lattices. The top two rows show
the spectra and spectrograms of the 2D U = 3 system, and the bottom row shows the
spectrograms for 2D U = 1. The 6× 6 cases are those previously plotted in Sec. 4.3.2 and
Sec. 4.4.2. Calculated using tVMC.
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Harmonic Selection

This appendix introduces a simple method for constructing approximate control fields.

The tracking pulses in fig.5.6 are at the limit of what can be fit with the available

methods. However, noise somewhat obscures the BOs at lower intensities in fig.5.8 at

UT = 3, and we would like the BOs to be as distinct as possible to aid identification

in any potential experiments and enable unambiguous demonstrations of directional

phase transitions. They could be made more resilient to noise by amplifying the

conducting behaviour, and this can be achieved by raising the field strength, E
(x)
0 ,

that is applied to the UI = 0 system before tracking. An example of this was shown

in fig.5.10, which plots the control fields required to track the same situation as fig.5.6

but with E
(x)
0 = 50MVcm−1. This produces identical emission in the y-direction but

considerably stronger BOs in the x, as was discussed in Sec. 5.3.1.3.

This additional structure comes at the cost of a significantly more complex and

broadband control field that cannot be fitted using the methods discussed so far -

even when UT = 0. Instead, alternative methods must be developed that require

a much larger number of frequencies than is currently experimentally obtainable.

As a first attempt at this, harmonic selection was used, where each control field is

resolved into its component frequencies via a Fourier transform, and then the Nω

maximum-contributing frequencies are chosen and combined into a new approximate

pulse. More precisely, a control field ΦT (t) is first Fourier transformed and then has

a cutoff frequency ωc imposed in order to remove noise and any harmonics that are

larger than required for our analysis

FT {ΦT (t)} = Φ̃T (ω)→ Φ̃T (ω ≤ ωc) (B.1)

The magnitude of the resulting field is then calculated,
∣∣∣Φ̃T (ω)

∣∣∣, and theNω maximally-
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Figure B.1: Control fields reconstructed using harmonic selection. The images
show the UT = 3 pulses being approximated by Nω = 35 and 50 frequencies. The har-
monics were selected based on the magnitudes of their Fourier components, and under the
constraints that a fraction fω = 0.1 and 0.2 of them, respectively, must be ω > 5.

contributing frequencies are selected to form ¯̃ΦT (ω). This is then inverse transformed

to give a new approximation of ΦT (t)

Φ̄T (t) = FT −1
{

¯̃ΦT (ω)
}

(B.2)

The exact tracking field is recovered as Nω increases, Φ̄T (t)→ ΦT (t). However, when

calculating Φ̄
(y)
T (t) it was found that the selected harmonics had a tendency to cluster

below approximately ω < 5, unless Nω is taken to be very large. This is a problem

because it means that the spectrogram’s structure at ω > 5 is poorly reconstructed.

In an attempt to account for this, the condition was enforced that a minimum fraction

fω of the selected harmonics must be ω > 5.

Fig.B.1 shows the pulses that result from this process for the two examples Nω =

35 with fω = 0.1, and Nω = 50 with fω = 0.2. Both of these appear to reproduce the

pulses’ qualitative features, and Φ
(y)
T look to be closer approximations than their fitted

equivalents in fig.5.7. Increasing from Nω = 0 (and without using fω, i.e. fω = 0), the

fields’ basic shapes are crudely recovered by Nω ≈ 20, but Φ
(x)
T (t) and Φ̄

(x)
T (t) do not

become (approximately) visually indistinguishable until at least Nω > 80, so there

are clearly a significant number of contributing frequencies, which makes it clear why

fitting was difficult. Φ
(y)
T (t) is actually even more difficult to perfectly match because
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of the transition-encoding structure between the 1st and 3rd cycles, which requires

an extremely large number of harmonics to be completely reproduced.

Several examples of these composite control fields were then applied to the GS

of UT = 3 in order to see how features of the emission emerge with increasing Nω.

Fig.B.2 shows the resulting spectrograms for both fields in fig.B.1 as well as Nω = 110,

with the intention of the latter being to show a near ‘exact’ case where the control

fields appear very closely matched.

In most of these cases, the approximate fields struggle to accurately reproduce the

conducting and transition features of the spectrograms. This is surprisingly consid-

ering that Φ̄
(k)
T (t) appear qualitatively close to Φ

(k)
T (t) in fig.B.1, and underscores the

complexity involved in producing good approximations of these control fields. These

spectrograms are significantly less accurate than those produced using fitted fields

and shown in fig.5.8. This discrepancy might partially originate in the different cur-

rents being tracked in the x-direction of each case, which also affects the y-direction

via coupling. This could be tested by reproducing fig.5.6 for various Nω and com-

paring them to the results under fitted evolution, and to fig.B.2. This might lead to

improved fitting methods by helping to identify which specific features of the control

fields are required to successfully mimic the HHG, which can then be selected for in

new fitting models or by explicitly introducing those frequencies.
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Figure B.2: Spectrograms resulting from harmonic selection. Time-resolved emis-
sion for the UT = 3 system propagated under control fields composed of Nω = 35, 50 and
110 frequencies, with imposed fractions fω = 0.1, 0.2, 0, respectively. These are attempting
to reproduce the characteristics of fig.5.10 and the y-direction of fig.5.6. The red lines show
the form of the original electric field. Calculated using tVMC on a 6× 6 lattice.
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