
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Efficient and practical algorithms for sequence analysis
algorithm and data analysis research

Alzamel, Mai

Awarding institution:
King's College London

Download date: 06. Oct. 2023

Efficient and Practical Algorithms for

Sequence Analysis

Algorithm and Data Analysis Research

Mai Abdulaziz Alzamel

Department of Informatics

King’s College London

This dissertation is submitted for the degree of

Doctor of Philosophy

September 2021

Dedicated to

my beloved father Abdulaziz Alzamel and my precious mother Turfa Almugbel.

Declaration

I declare that this doctorate thesis and the work presented in it are my own and have been

generated by me as the result of my original research. The following publications were made

during my Ph.D. Specific topics and results from my list publications are discussed in detail

at the body of this thesis.

List of publications

[1] M. Adamczyk, M. Alzamel, P. Charalampopoulos, C. Iliopoulos, and J. Radoszewski.

Palindromic decompositions with gaps and errors. In Computer Science - Theory and

Applications - 12th International Computer Science Symposium in Russia, CSR 2017,

Kazan, Russia, June 8-12, 2017, Proceedings, pages 48–61, 2017.

[2] M. Adamczyk, M. Alzamel, P. Charalampopoulos, and J. Radoszewski. Palindromic

decompositions with gaps and errors. Int. J. Found. Comput. Sci., 29(8):1311–1329,

2018.

[3] H. Alamro, M. Alzamel, C. Iliopoulos, S. P. Pissis, S. Watts, and W. Sung. Efficient

identification of k-closed strings. In Engineering Applications of Neural Networks

- 18th International Conference, EANN 2017, Athens, Greece, August 25-27, 2017,

Proceedings, pages 583–595, 2017.

[4] H. Alamro, M. Alzamel, C. S. Iliopoulos, S. P. Pissis, and S. Watts. Iupacpal: efficient

identification of inverted repeats in iupac-encoded DNA sequences. BMC Bioinform.,

22(1):51, 2021.

[5] H. Alamro, Mai Alzamel, C. S. Iliopoulos, S. P. Pissis, W. Sung, and S. Watts. Efficient

identification of k-closed strings. Int. J. Found. Comput. Sci., 31(5):595–610, 2020.

List of publications 5

[6] C. Pockrandt, Mai Alzamel, C. S. Iliopoulos, and K. Reinert. Genmap: ultra-fast

computation of genome mappability. Bioinform., 36(12):3687–3692, 2020.

[7] M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. Iliopoulos, N. Pisanti, S. P.

Pissis, and G. Rosone. Degenerate string comparison and applications. In 18th

International Workshop on Algorithms in Bioinformatics, WABI 2018, August 20-22,

2018, Helsinki, Finland, pages 21:1–21:14, 2018.

[8] M. Alzamel, L. A. K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti,

S. P. Pissis, and G. Rosone. Comparing degenerate strings. Fundam. Informaticae,

175(1-4):41–58, 2020.

[9] M. Alzamel, P. Charalampopoulos, C. Iliopoulos, T. Kociumaka, S. P. Pissis, J. Ra-

doszewski, and J. Straszynski. Efficient computation of sequence mappability. In String

Processing and Information Retrieval - 25th International Symposium, SPIRE 2018,

Lima, Peru, October 9-11, 2018, Proceedings, pages 12–26, 2018.

[10] M. Alzamel, P. Charalampopoulos, C. Iliopoulos, and S. P. Pissis. How to answer a

small batch of rmqs or LCA queries in practice. In Combinatorial Algorithms - 28th

International Workshop, IWOCA 2017, Newcastle, NSW, Australia, July 17-21, 2017,

Revised Selected Papers, pages 343–355, 2017.

[11] M. Alzamel, P. Charalampopoulos, C. Iliopoulos, S. P. Pissis, J. Radoszewski, and

W. Sung. Faster algorithms for 1-mappability of a sequence. In Combinatorial Opti-

mization and Applications - 11th International Conference, COCOA 2017, Shanghai,

China, December 16-18, 2017, Proceedings, Part II, pages 109–121, 2017.

[12] M. Alzamel, M. Crochemore, C. S. Iliopoulos, T. Kociumaka, R. Kundu, J. Ra-

doszewski, W. Rytter, and T. Walen. How much different are two words with different

shortest periods. In Artificial Intelligence Applications and Innovations - AIAI 2018

6 List of publications

IFIP WG 12.5 International Workshops, SEDSEAL, 5G-PINE, MHDW, and HEALTH-

IOT, Rhodes, Greece, May 25-27, 2018, Proceedings, pages 168–178, 2018.

[13] M. Alzamel, J. Gao, C. Iliopoulos, C. Liu, and S. P. Pissis. Efficient computation of

palindromes in sequences with uncertainties. In Engineering Applications of Neural

Networks - 18th International Conference, EANN 2017, Athens, Greece, August 25-27,

2017, Proceedings, pages 620–629, 2017.

[14] M. Alzamel, J. Gao, C. S. Iliopoulos, and C. Liu. Efficient computation of palindromes

in sequences with uncertainties. Fundam. Inform., 163(3):253–266, 2018.

[15] M. Alzamel and C. Iliopoulos. Recent advances of palindromic factorization. In

Combinatorial Algorithms - 28th International Workshop, IWOCA 2017, Newcastle,

NSW, Australia, July 17-21, 2017, Revised Selected Papers, pages 37–46, 2017.

[16] M. Alzamel, C. S. Iliopoulos, W. F. Smyth, and W. Sung. Off-line and on-line algo-

rithms for closed string factorization. Theor. Comput. Sci., 792:12–19, 2019.

[17] Mai Alzamel, P. Charalampopoulos, C. S. Iliopoulos, S. P. Pissis, J. Radoszewski, and

W. Sung. Faster algorithms for 1-mappability of a sequence. Theor. Comput. Sci.,

812:2–12, 2020.

Mai Abdulaziz Alzamel

September 2021

Acknowledgements

First and foremost, I would like to thank my father, Abdulaziz Alzamel, for encouraging

me to pursue my higher education, and my mother, Turfa Almugbel, for her constant care

and solicitude. This journey would not have happened without their comprehensive support.

I would like to express my sincere gratitude to my supervisor, Prof. Costas Iliopoulos,

for his continuous support through the course of my Ph.D. study and related research.

During my Ph.D. I have published several papers in top-ranked computer science journals

and conferences. He gave me a high level of research guidance, including editing journal

special issues, chairing sessions in workshops, reviewing papers and chairing and organising

conferences. I would like to thank him for sending me to present my results at well-known

conferences and universities. I would also like to thank him for his support in arranging

research visits and international collaboration with prestigious universities and researchers.

Finally, I would like to thank him for giving me a wonderful four years in my academic life.

I believe my Ph.D. would not have been the same without his supervision.

I would like to thank my second supervisor, Dr. Solon Pissis, for his patient and precise

supervision. He was a great monitor for my Ph.D. results, especially the practical parts. I

would further like to thank my co-authors for their cooperation in our joint works during

8 Acknowledgements

my Ph.D study. Here I give special acknowledgement to Prof. Ken Sung from National

University of Singapore for his encouragement and support during my study. I would also

like to thank the members of the ADA group for creating a stimulating research community

and fruitful discussion on various research matters.

My Ph.D. journey would not have been the same without my siblings’ help, I would like

to thank my beloved sisters and brothers Aljohara, Mohammed, Reem, Faisal, Meshael

and Abdulellah, as well as my friends, for their support.

Last but not least, I would like to acknowledge King Saud Univerity and the Ministry

of Education of Saudi Arabia for sponsoring me through this entire journey.

Abstract

This thesis studies four computational problems derived from molecular sequence analysis,

which play a core role in many real-life applications. Its purpose is to develop efficient, fast

and practical algorithms for use in sequence analysis. The approach is motivated by bio-

informatics, but has a wide range of other applications. Firstly, we focus on the 1-mappability

problem associated with a given sequence; in this the goal is to compute a table, wherein

each entry comprises the number of repeats of specific substrings of a given length that start

at this entry, with one mismatch at most. Furthermore, we present an "expected" linear-time

algorithm (average case complexity) linked to the same problem, and we also generalise

the algorithm to k-mappability that permits up to k mismatches. Additionally, we study a

new type of uncertain string, called "degenerate strings"; here our goal is to locate maximal

palindromes. We provide a linear algorithm for string comparison, and then use this to

provide two algorithms to report maximal palindromes. Moreover, we illustrate a novel

algorithm in the presence of k errors, as a way to determine whether an input string is a

"closed string". Finally, we revisit the well-known Range Minimum Query (RMQ) problem

and consider its variant when processing a small batch of RMQs in real-world applications, as

well as the connection between the RMQ and the Lowest Common Ancestor (LCA) problem.

In the case of all the new algorithms presented here, we implemented the necessary libraries

and demonstrated the efficiency of the algorithms by testing the software across extensive

data-sets.

Table of contents

List of publications 4

List of figures 14

List of tables 17

List of algorithms 19

List of abbreviations 20

1 Introduction 23

1.1 Background . 23

1.2 Structure of This Thesis . 27

2 Basic Concepts 30

2.1 Strings . 30

2.2 Hamming Distance . 31

2.3 Patricia Trees and Suffix Tree . 31

2.4 Suffix Array . 35

Table of contents 11

2.5 Longest Common Prefix . 36

2.6 Longest Common Extension . 37

2.7 Lowest Common Ancestor . 38

2.8 Depth First Search . 39

2.9 Breadth First Search . 40

2.10 Deterministic Finite Automaton . 40

2.11 Non-deterministic Finite Automaton . 41

2.12 Range Minimum Query . 42

2.13 k-mappability . 43

2.14 Degenerate String Comparison and Applications 44

2.15 k-closed Strings . 45

3 k-Mappability 46

3.1 Background and Contributions . 46

3.1.1 Background . 46

3.1.2 Contributions . 48

3.2 Preliminaries and Definitions . 49

3.3 Efficient Average-Case Algorithm . 49

3.4 Implementation . 58

3.5 Conclusion . 65

4 Degenerate String Comparison and Applications 66

4.1 Background and Contributions . 66

12 Table of contents

4.1.1 Background . 66

4.1.2 Contributions . 70

4.2 Preliminaries and Definitions . 71

4.3 Algorithm . 74

4.3.1 GD String Comparison . 74

4.3.2 Computing Palindromes in GD Strings 82

4.4 Experimental Results . 87

5 Efficient Identification of k-closed Strings 90

5.1 Background and Contributions . 90

5.1.1 Background . 90

5.1.2 Contributions . 91

5.2 Preliminaries . 91

5.3 k-closed Strings . 93

5.4 Algorithm . 95

5.5 Implementation . 102

5.6 Experiments . 103

5.7 Final remarks . 108

6 The RMQs or LCA Queries in Practice for Small Batch 110

6.1 Background and Contributions . 110

6.1.1 Background . 110

6.1.2 Contributions . 111

Table of contents 13

6.2 Preliminaries and Definitions . 112

6.3 Algorithm . 118

6.3.1 Contracting the Input Array . 118

6.3.2 Small RMQ Batch . 122

6.3.3 Small LCA Queries Batch . 126

6.4 Applications . 129

6.5 Implementation . 133

6.6 Conclusion . 139

7 Conclusion and Future Work 140

Appendix A Efficient Worst-Case Algorithms of k-mappability 151

A.1 Efficient Worst-Case Algorithms . 151

A.1.1 O(mn)-time and O(n)-space algorithm 151

A.1.2 O(n logn log logn)-time and O(n)-space algorithm 154

Appendix B Degenerate String Comparison and Applications 160

B.1 A Conditional Lower Bound under SETH 162

Appendix C Efficient identification of k-closed strings 165

List of figures

2.1 Patricia tree for x = CAACAACC$. 33

2.2 Suffix tree for x = CAACAACC$. 35

2.3 LCA(4,6)=2, LCA(5,7)=1 . 39

2.4 The DFS for tree T . 39

2.5 The BFS of tree T is (1, 2, 3, 4, 5, 6, 7) 40

2.6 A graphical representation of the DFA based on Q, Σ, q0, F and δ 41

2.7 A graphical representation of the NFA based on Q, Σ, q0, F and ∆ 42

2.8 A GD string representing a gapless multiple sequence alignment. 44

2.9 Closed string and non-closed string with a border length of 3 45

3.1 Pigeonhole principle of x and z with one mismatch 50

3.2 Two substrings share at least one common factor length L = 3 51

3.3 The longest common prefix between LCP[18] and LCP[17]. 54

3.4 Performing two LCE queries in each direction. 55

3.5 Performing EXTi, j for x[5] and x[15] . 56

3.6 Elapsed-time comparison between k-map and Gemtool. 62

List of figures 15

3.7 Memory-usage comparison between k-map and Gemtool. 64

4.1 A set of sequences can be compacted to an ED string Ŝ 67

4.2 A GD string representing a gapless multiple sequence alignment. 68

4.3 A sequence that represents an ordinary palindrome in DNA 71

4.4 A sequence that represents a complement palindrome in DNA 71

4.5 A sequence that represents a maximal palindrome in DNA 72

4.6 A GD string Ŝ starts at Ŝ[0] and ends at Ŝ[5]. 72

4.7 A palindrome at Ŝ[0] . . . Ŝ[2] and Ŝ[4] . . . Ŝ[5] 82

4.8 Steps involved in processing the MaxPalPairs of GD string Ŝ for each pair . 84

4.9 Steps of MaxPalCentres algorithm on GD string Ŝ 86

4.10 A GD string Ŝ represents the immunoglobulin VkII region 89

5.1 Longest common extensions for k = 0 and k = 1. 92

5.2 Closed and non-closed strings for k = 1. 95

5.3 1-weakly-closed border with length 3 and not 1-weakly-closed string . . . 96

5.4 2-weakly-closed border with length 3 and 5-weakly-closed with length 5 . . 96

5.5 1-strongly-closed border with length 3 and non 1-strongly-closed string . . 97

5.6 1-pseudo-closed border with length 3 and non 1-pseudo-closed border . . . 98

5.7 2-closed border of length 10 found at j = 5 for string x. 101

5.8 n vs. run time with O(n) and O(n logn)-sized RMQs data structure. 107

5.9 k vs. run time with O(n)- and O(n logn)-sized RMQs data structures . . . 108

6.1 The Euler tour of the tree T is R A R B C D C E C B F B G B R. 113

16 List of figures

6.2 Example of reduction from LCA to RMQ 114

6.3 The Cartesian tree T of array A[9 ,2 ,8 ,10 ,1 ,5 ,6 ,7 ,2 ,10 ,3] 117

6.4 Steps involved in answering LCA queries in n+O(q) time 128

6.5 Impact of the proposed scheme on the RMQ algorithms of Table 6.12. . . . 136

6.6 Elapsed-time of ON-RMQCON vs ST-RMQCON and of OFF-LCA vs ST-LCACON.138

A.1 Illustration; the heavy path of T (x) is shown in red. 156

List of tables

2.1 The process of generating the SA and iSA data structures of x 36

2.2 The SA and LCP arrays of string x . 37

2.3 The transition function δ for each state with the input 0 or 1 41

2.4 The transition function ∆ for each state with the input 0 and 1 42

2.5 (k,m)-mappability table for m=4 and k ∈ (0,1) 43

3.1 The mappability table for x=AACAAACCCC up to 0 and 1 mismatches 48

3.2 The SA and LCP arrays of string x . 53

4.1 Coordinates of maximal palindromes identified within regions I and II. . . 88

4.2 Inverse table for the standard genetic code (compressed using IUPAC) . . . 89

4.3 The IUPAC table . 89

5.1 Guide for experimental figures. 105

6.1 Splitting array A into blocks with size 20 = 1 115

6.2 Splitting array A into blocks with size 21 = 2 115

6.3 Splitting array A into blocks with size 22 = 4 115

18 List of tables

6.4 Sparse table M of array A . 116

6.5 Scanning array A and updating A[i] with µ + k 121

6.6 Storing the original values of A[Q(i)] and A[Q(j)] in auxiliary array Z0 . . 121

6.7 Storing the corresponding position of Q in auxiliary array Z1 121

6.8 The contracted array AQ and auxiliary array AF 121

6.9 The respective new positions of queries ∈ Q mapped to Q′ according to AQ 121

6.10 A data structure B with ⌈log(|AQ|−1)⌉ buckets 124

6.11 A data structure D with size |AQ| . 124

6.12 Time and space complexities of algorithms for answering RMQs offline. . . 134

List of Algorithms

1 k-Closed Border . 103

2 GetLPMx,n,k . 104

3 GetPeaksvalues . 104

4 ST-RMQCON(A, Q) . 122

5 1−Map(x,n,m) . 152

6 Per f ormCount(T,m)) . 157

List of abbreviations

CPU Central Processing Unit

DAG Directed Acyclic Graph

ED Elastic Degenerate

EXT Extension

GHz Gigahertz

GNU General Public Licence

GRCh37 Genome Reference Consortium Human Build 37

IUPAC International Union of Pure and Applied Chemistry

kbytes Kilobytes

lcs Longest Common Suffix

LPM Longest Prefix Match

LSM Longest Suffix Match

List of abbreviations 21

MB Megabyte

mRNA Messenger RNA

MSA Multiple Sequence Alignment

Occ Occurance

PC Personal Computer

RAM Random Access Memory

Resp Respectively

A Adenine

BFS Breadth First Search

C Cytosine

DFS Deterministic finite automaton

DNA Deoxyribonucleic Acid

G Guanine

GD Generalised Degenerate

HIV Human Immune-deficiency Virus

iSA Inverse Suffix Array

LCA Lowest Common Ancestor

22 List of abbreviations

LCE Longest Common Extension

LCP Longest Common Prefix

LTRs Long Terminal Repeats

NFA Non-deterministic finite automaton

PAT Tree Patricia tree

RMQ Range Minimum Query

SA Suffix Array

SETH Strong Exponential Time Hypothesis

T Thymine

TSDs Target Site Duplications

U Uracil

Chapter 1

Introduction

1.1 Background

Two well-known sequences that have motivated computer scientists to improve algorithm

efficiency to facilitate their processing are the Deoxyribonucleic acid (DNA) and Ribonucleic

acid (RNA) sequences in molecular biology. The DNA sequence carries genetic information

for reproduction, development and growth of living organisms, and was discovered by

Francis Crick and James D. Watson in 1953 [96]. The sequence consists of two strands

of nucleotides, arranged into a double helix. Each nucleotide combines deoxyribose, a

phosphate group and one of the nucleobases: Adenine (A), Guanine (G), Cytosine (C) or

Thymine (T) [94]. The RNA sequence, meanwhile, is a polymeric molecule that plays a vital

role in biology; especially in gene function, where it describes coding, decoding, expression

and regularities. RNA has only one strand made up of the nucleotide bases: Adenine (A),

Guanine (G), Cytosine (C) and Uracil (U) [20, 46].

24 Introduction

A string is a sequence of symbols derived from a given alphabet Σ. The early stages of the

research focused on ordinary pattern matching and several associated variants. For example,

an alphabet can be fixed, variable, finite or infinite in size, and the relationship between

symbols can be either ordered or unordered. The first linear method employed to determine

whether a pattern occurs in another string was reported by Knuth–Morris–Pratt [64]. The

regularities of strings have also been studied extensively: periods, squares, cubes, repetitions,

palindromes, runs, inverted repeats and tandem repeats, etc. Thus far, a substantial amount

of research has been conducted investigating strings in the areas of pattern matching, data

compression, compressed matching, data structure, and the discovery of regularities.

Two of the criteria most extensively used for measuring the similarity between two

sequences are: (i) the Hamming distance, introduced by Richard Hamming in [50], and (ii)

the Levenshtein distance, as discovered by Vladimir Levenshtein in [67]. The Hamming

distance clarifies the minimum number of substitutions required to change one sequence

into another. The Levenshtein distance, meanwhile, describes the minimum number of edit

operations (insertions, deletions, substitutions) required to transform one string into another.

The primary aim of this thesis is to develop efficient algorithms and implementations to allow

several types of approximations, including the one mentioned above.

In the case of non-standard string matching, we have "degenerate strings", wherein a

degenerate symbol describes a collection of symbols, "weighted strings", of which each

occurs with a certain probability, "order preserving" strings, wherein "the shape of the string"

describes the matching criterion δ -strings, whereby the symbols are equal within a given

tolerance δ , etc.

1.1 Background 25

This work focuses on the string pattern matching problem, which relates to genome

mappability between species, and gene classes as revealed in [26]. Analysis of data derived

from massively parallel sequencing experiments often depends on the process of genome

assembly as associated with re-sequencing; namely, assembly with the help of a reference

sequence. In this process, a large number of reads (or short sequences) derived from a DNA

donor must be mapped back to a reference sequence, comprising a few gigabases, to establish

the section of genome from which each read has been derived. An extensive number of

short-read alignment techniques and tools have been introduced to address this challenge,

each emphasising different aspects of the process [34]. In turn, the process of re-sequencing

is heavily reliant on how mappable a genome is, given a set of reads of fixed length m.

Additionally, palindromic sequences have been studied extensively in molecular biology.

They are often distributed around promoters, introns, and untranslated regions, and play

important roles in gene regulation and other cell processes (see e.g. [5],[2] ,[80]). Identifying

palindromes in sequence has become an interesting line of research in combinatorics, and also

in computational biology, following the discovery of the importance of palindromes in the

DNA sequence of the HIV virus. In particular, these are strings of the form xx̄R, also known as

complemented palindromes, that occur in single-stranded DNA, or more commonly, in RNA,

where x is a string and x̄R is the reverse complement of x. In DNA, C-G are complements,

and A-T are complements; in RNA, C-G are complements, and A-U are complements [8, 3].

Hence, this thesis studies the task of locating palindromes in uncertain string sets. These are

referred to as degenerate strings, and identifying them required the development of a new

string comparison method, and an exploration of its potential applications.

26 Introduction

Moreover, this work investigates a recently introduced type of string called a closed

string, since the theoretical and practical relevance of palindromic strings was established

via their relationship with a particular type of sequencing, referred to as a closed string. The

number of closed factors in a string can be minimised if the factors are also palindromic, as

shown in [21]. Additionally it emerged that the upper boundary on the number of palindromic

factors of a string coincides with the lower boundary on the number of closed factors [13].

Thus, the study of closed strings creates potential in respect to the application of palindromes.

A direct motivation comes from computational biology: Target Site Duplications (TSDs)

are direct repeats found to arise at the insertion sites of transposable elements. They are

thought to occur due to the filling in of sticky ends (borders) derived from the staggered cut

by transposes. They flank transposable elements, and can be used to identify their loci in

the genome. Long Terminal Repeats (LTRs) are direct repeats, which flank the transposed

coding regions, and which are themselves flanked by TSDs [68][42].

Finally, in many textbook solutions for classical string matching problems (e.g. maximal

palindromic factors, approximate string matching with k-mismatches, approximate string

matching with k-differences, online string searching with the suffix array, etc.) we encounter

an array A of a sequence with size n, and a number of queries q to be answered, q = Ω(n)

and/or the queries have to be answered online. In other algorithms, however, q can in practice

be much smaller on average, and therefore queries can be answered offline. We describe

here a few solutions called range minimum queries. The common idea, as in many fast

average-case algorithms, requires us to minimise the number of queries by filtering out

identifying queries that can never lead to a valid solution.

1.2 Structure of This Thesis 27

1.2 Structure of This Thesis

This thesis is structured as follows:

• In Chapter 2, we present the basic concepts and definitions employed in this thesis.

• In Chapter 3, we study the k-mappability problem, and present an algorithm that

requires an average-case time and space O(n) for integer alphabets of size σ if

m = Ω(logσ n) of given a string x of length n and integers m < n of the presence

of k mismatches k < m. Notably, we demonstrate that this algorithm is generalisable

under arbitrary conditions k, requiring average-case time O(kn) and space O(n) if

m = Ω(k logσ n), assuming letters are independent and uniformly distributed according

to random variables. We also provide an experimental evaluation of our average-case

algorithm, demonstrating its competitiveness in respect of state-of-the-art implementa-

tion.

• In Chapter 4, we study a new type of uncertain sequence, called a generalised degen-

erate string (GD string), and present a linear-time algorithm for the purpose of GD

string comparison. We then provide two efficient algorithms to identify the maximal

palindrome in GD strings. In addition, we prove the concept through experimental

results that are based on real data-sets.

• In Chapter 5, we address a novel problem by extending the closed string problem to

the k-closed string problem. In this case, a level of approximation is permitted up

to several Hamming distance errors, as set out by the parameter k. We also address

28 Introduction

the problem of deciding whether or not a given string of length n across an integer

alphabet is k-closed, additionally specifying the border, and resulting in the string

being k-closed. Specifically, we present a O(kn)-time and O(n)-space algorithm to

achieve this, along with the pseudocode for an implementation and proof-of-concept

in experimental results.

• In Chapter 6, we show that answering a small batch of Range Minimum Queries

(RMQs), which is a core computational task in many real-world applications, is

associated in particular with the Lowest Common Ancestor (LCA) problem. By small

batch, we mean that the number q of queries is o(n), where, n is the size of the given

integer array A and we have them all at hand. It is therefore not relevant to build

a Ω(n)-sized data structure, or spend Ω(n) time to build a more succinct one. It is

well-known among practitioners and elsewhere, that these data structures for online

querying carry high constants in their pre-processing and querying time. Therefore,

we would like to find an efficient answer to this batch in practice. By efficiently in

practice, we mean that we (ultimately) want to spend n+O(q) time and O(q) space.

We write n to emphasise that the number of operations per entry of A should have a very

small constant. We illustrate how existing algorithms can be easily modified to satisfy

these conditions. The experimental results presented highlight the practicality of this

new scheme. The most significant improvement obtained here relates to answering

small batches of LCA queries. Finally, we produced a library detailing the process of

implementing the algorithms presented.

1.2 Structure of This Thesis 29

• In Chapter 7, we provide a conclusion and discuss potential future work.

Chapter 2

Basic Concepts

2.1 Strings

Let Σ be a finite ordered alphabet of size σ := |Σ|. A string is defined as a sequence of zero

or more symbols from Σ. An empty string is a string of length 0, denoted by ε . A string

x of length n is represented by the sequence x = x[0]x[1] . . .x[n−1]. Furthermore, we also

consider strings according to an integer alphabet Σ, where each letter is replaced by its rank

in such a way that the resulting string consists of integers in the range {0, . . . ,n−1}, where

σ = n. Additionally, we consider cases where the alphabet σ is constant, that is |Σ|= c. For

example, DNA sequences are defined according to the alphabet Σ = {A,G,C,T} and |Σ|= 4.

The string x[i . . . j], 0 ≤ i ≤ j < |x| is said to be a factor or substring of x. We say that an

occurrence of y exists in x, or, more simply, that y occurs in x, when y is a factor of x. Every

occurrence of y can be characterised by its starting position in x. Thus, we say that y occurs

at the starting position i in x, when y = x[i . . i+m− 1]. The factor x[0 . . . j] is said to be

2.2 Hamming Distance 31

a prefix of x and the factor x[j . . .n− 1] is said to be a suffix of x. The factor x[0 . . . j] and

j < n− 1 is a proper prefix of x and x[j . . .n− 1], where 1 ≤ j < n is a proper suffix of x.

The string x[n−1]x[n−2] . . .x[1]x[0] is said to be the reverse string of x, denoted by xR. The

string x̄[0] . . . x̄[n−1] is said to be the complement of x, where x̄[i] is the complement of x[i],

0≤ i≤ n−1. For example, in DNA sequences, we have Ā= T, Ḡ= C, T̄= A and C̄= G.

2.2 Hamming Distance

The Hamming distance between two equal length strings, x and y, is defined to be the number

of positions in both x and y with different symbols, denoted by δH(x,y) = |{i : x[i] ̸= y[i], i =

0,1, . . . , |x|−1}|. For the sake of completeness, if x and y are of different length, |x| ≠ |y|,

we set δH(x,y) = ∞. If two strings x and y have a Hamming distance of k or less, we say that

x and y k-match, written as x≈k y.

2.3 Patricia Trees and Suffix Trees

A Patricia tree (or PAT Tree) is a tree representing all the suffixes of a string x of length n,

which is a natural and easy way to store a string, and then search it, count occurrences, and

many other queries. We will make use of a special symbol $ that is not in the alphabet Σ, and

we will construct the tree for x$, with the following properties: (i) one node per common

prefix; (ii) each edge is labelled with a symbol of x; (iii) each path from root to leaf represents

a suffix; (iv) every suffix of x is represented by a path from root to leaf, ; (v) no two edges

32 Basic Concepts

outgoing from the same node have the same label. The cost to construct the Patricia tree is

O(n2)-time and O(n2)- space [79].

Example 1. Given a string x= CAACAACC$, the Patricia tree of string x is shown in Figure 2.1,

where every path from the root to the leaf node that is labelled with $ represents one suffix of

x.

2.3 Patricia Trees and Suffix Tree 33

A

C

C

$

A
A

C
C

$

A

C

C

$

A
A

C
C

$

C

C

$

A
A

C

C

$

A
A

C
C

$

$

$

Fig. 2.1 Patricia tree for x = CAACAACC$

.

The suffix tree (introduced by Weiner [97]) T (x) of a string x is a compact tree rep-

resenting all suffixes of x$ ($ as above), with the following properties: (i) The tree has

exactly n leaves numbered from 0 to n−1; (ii) Every internal node has at least two children

except for the root node; (iii) each edge is labelled with [i, l], where i is the starting position

34 Basic Concepts

of x[i . . . i+ l] and l is its length; (iv) any two edges outgoing from a node have different

starting string labels, and; (v) the string obtained by concatenating all the string represented

by the labels found on the path from the root to leaf i, spells out the suffix x[i . . .n−1], for

0≤ i≤ n−1. The suffix tree was a major discovery made by Weiner in 1973, followed by

many other greatly simplified constructions. The algorithms for its construction are O(n)

for constant alphabets, and O(n log |Σ|) for general alphabets. Farach [27] demonstrated an

O(n) algorithm for integer alphabets. In practice, however, all algorithms are hampered by

the space needed to represent the tree. In other words, there is a large hidden constant in the

big O notation. This led to a new, more efficient, data structure called a suffix array. Full

technical details of the suffix tree data structure can be found in [27] [97]. There are several

applications of suffix trees; for example, finding the longest repeated substring, finding the

longest common substring and finding the longest palindrome in a string.

Example 2. A compact representation of a Patricia tree (suffix tree) T (x) of x is shown in

Figure 2.2. The numbered leafs nodes represent all suffixes of string x. For example, node 1

represents the suffix, A,AC,AACC$, which starts at position 1 in x.

2.4 Suffix Array 35

1 4 2 5

8

7 0 3 6

x[1]
x[2

. .
.3
]

x[
4 .
. .

8]

x[7
. . .8]

x[3]

x[
4 .
. .

8]

x[7
. . .8]

x[8]

x[7]

x[
8]

x[
1
. .
.3
]

x[
4 .
. .

8]

x[7
. . .8]

x[7
. . .8]

i 0 1 2 3 4 5 6 7 8

x C A A C A A C C $

Fig. 2.2 Suffix tree for x = CAACAACC$.

2.4 Suffix Array and Inverse Suffix Array

Let x be a string of length n > 0. The suffix array of x, denoted by SA, was designed by

Manber and Myers [73] in order to improve on the space needed for suffix trees. A SA can

also be used as efficiently as the suffix tree for exact string matching or substring searching

problems. The SA is an integer array of size n, storing the starting positions of all non-empty

suffixes of x in a lexicographical order, i.e. , we have:

x[SA[r−1] . .n−1]< x[SA[r] . .n−1], for all 1≤ r < n.

36 Basic Concepts

Following [48, 72], the inverse suffix array, iSA, of the array SA is defined by iSA[SA[r]] =

r, for all 0 ≤ r < n. Three different set of co-authors [63, 62, 82] simultaneously but

independently demonstrated that the SA and iSA of a string of length n, defined according to

an integer alphabet, can be computed in O(n)-time for a constant and integer alphabet and in

O(n logn)-time for general alphabets.

Example 3. Given a string x = CAACAACC$ the SA and iSA of x are shown in Table 2.1.

i Suffix
8 $
7 C$
6 CC$
5 ACC$
4 AACC$
3 CAACC$
2 ACAACC$
1 AACAACC$
0 CAACAACC$

(a) The suffixes of x

i SA[i]
0 8
1 1
2 4
3 2
4 5
5 7
6 0
7 3
8 6

(b) The suffix
array of x

i iSA[i]
0 6
1 1
2 3
3 7
4 2
5 4
6 8
7 5
8 0

(c) The inverse
suffix array of x

Table 2.1 The process of generating the SA and iSA data structures of x

2.5 Longest Common Prefix

Manber & Myers [73] introduced the longest common prefix, LCP, array of a string x as a

data structure that records the longest common prefixes between two consecutive suffixes in

an SA. Formally, an LCP array is defined by: LCP[r] := lcp(r−1,r) for all 1≤ r < n, and

LCP[0] = 0, where lcp(r,s) denotes the length of the longest common prefix between the

2.6 Longest Common Extension 37

suffixes x[SA[r] . .n−1] and x[SA[s] . .n−1] for positions r and s of x. The construction cost

of an LCP array is O(n) [31].

Example 4. Given a string x = CAACAAC$ the SA and LCP arrays of string x are illustrated

as below in Table 2.2, where the LCP array is composed by comparing consecutive suffixes

in SA lexicographically.

i SA[i] Suffix
0 8 $
1 1 AACAACC$
2 4 AACC$
3 2 ACAACC$
4 5 ACC$
5 7 C$
6 0 CAACAACC$
7 3 CAACC$
8 6 CC$
(a) The SA of x

i LCP[i]
0 0
1 0
2 3
3 1
4 2
5 0
6 1
7 4
8 1

(b) The LCP array of x

Table 2.2 The SA and LCP arrays of string x

2.6 Longest Common Extension

The longest common extension (LCE) between two suffixes of a string x starting at positions

i and j is defined as the length of the longest prefix common to both suffixes. Formally, for a

given string x:

LCE(i, j) = max{ℓ : x[i . . i+ ℓ−1] = x[j . . j+ ℓ−1]}.

38 Basic Concepts

The LCE can be computed in O(1) [48]. We now generalise the concept of LCE to that of

an LCE with k errors, which costs O(k). In this case, the LCE is similarly defined, i.e. as a

common prefix between two suffixes, if they match with k or fewer than k errors in terms of

their Hamming distance [54]. Formally, for a given string x:

LCEk(i, j) = max{ℓ : x[i . . i+ ℓ−1]≈k x[j . . j+ ℓ−1]}.

A symmetric construction on xR can answer the so-called longest common suffix (lcs) queries

with the same complexity. The lcp and lcs queries are also known as longest common

extension (LCE) queries.

2.7 Lowest Common Ancestor

The lowest common ancestor (LCA) (introduced by Harel & Tarjan [37]) of two nodes, u

and v, in a tree or in a directed acyclic graph (DAG), is the lowest node that has both u and v

as descendants, where we define each node to be a descendant of itself. Thus, the LCA of u

and v is the ancestor of u and v such that it is located farthest from the root. Figure 2.2 below

shows an example of LCA (4,6) and LCA (5,7), which are 2 and 1 respectively. It is well

known that the LCA query can be processed in O(1) [15].

2.8 Depth First Search 39

1

2

4 5 6

3

7 8 9

Fig. 2.3 LCA(4,6)=2, LCA(5,7)=1

2.8 Depth First Search

The Depth First Search (DFS) is an algorithm for traversing or searching tree or graph

data structures. The algorithm starts at the root node (selecting some arbitrary node as the

root node in the case of a graph) and explores as far as possible along each branch before

backtracking. Full technical details of the depth-first search data structure can be found

in [91]. Trees can be traversed in three different ways: Preorder, Inorder and Postorder. An

example of each of these ways of conducting a DFS search for tree T in Figure 2.4: Preorder

Traversal : (1, 2, 4, 5, 3, 6, 7), Inorder Traversal: (4, 2, 5, 1, 6, 3, 7) and Postorder

Traversal: (4, 5, 2, 6, 7, 3, 1).

1

2

4 5

3

6 7

Fig. 2.4 The DFS for tree T

40 Basic Concepts

2.9 Breadth First Search

The Breadth First Search (BFS) is an algorithm invented by [78] for traversing or searching

a tree or graph structure. It starts by visiting the root node and exploring all the neighbours

in the same depth before moving to the next level. An example of a BFS search of a tree T is

shown in Figure 2.5.

1

2

4 5

3

6 7

Fig. 2.5 The BFS of tree T is (1, 2, 3, 4, 5, 6, 7)

2.10 Deterministic Finite Automaton

The Deterministic finite automaton (DFA) is a finite state machine for a given input symbol

that the machine can determine the next state and the number of the states is finite. The DFA

can be represented formally by five tuples (Q,Σ,δ ,q0,F), where Q is a finite set of states, Σ

is the alphabet, i.e. a finite set of symbols, δ is the transition function, δ : Q x Σ−→ Q is the

initial state where the machine starts and F is the set of final states. See [53] for more details.

Example 5 below shows a graphical representation of the DFA.

Example 5. Let Q = {a,b,c}, Σ = {0,1}, q0 = {a}, F = {c} and δ : Q x Σ−→ Q. The DFA

will be as shown in Figure 2.6 based on the transition table (Table 2.3):

2.11 Non-deterministic Finite Automaton 41

Current state next state with input 0 next state with input 1
a a b
b c a
c b c

Table 2.3 The transition function δ for each state with the input 0 or 1

a b c
1 0

1 0

10

Fig. 2.6 A graphical representation of the DFA based on Q, Σ, q0, F and δ

2.11 Non-deterministic Finite Automaton

The Non-deterministic finite automaton (NFA) is also a finite state machine, but the machine

can move to any state with a specified input, which means that the exact next state cannot be

determined. For this reason, it is called a non-deterministic finite automaton, see [75]. The

NFA can be represented with a tuple of five elements, (Q,Σ,∆,q0,F). Where Q is a finite set

of states, Σ is finite set of symbols of the alphabet, ∆ is the transition relationship that takes a

state in Q and an input symbol as arguments and returns a subset of Q, q0 is the initial state

where the machine starts and F is the set of final states [53]. An example of NFA is shown in

Example 6.

Example 6. Let Q = {a,b,c}, Σ = {0,1}, q0 = {a}, F = {c} and ∆ : Q x Σ−→ Q. The NFA

will be as below in Figure 2.7 based on the transition table (Table 2.4):

42 Basic Concepts

Current state next state with input 0 next state with input 1
a a,b b
b c a,c
c b,c c

Table 2.4 The transition function ∆ for each state with the input 0 and 1

a b c
0,1 0,1

1 0

0,10

Fig. 2.7 A graphical representation of the NFA based on Q, Σ, q0, F and ∆

2.12 Range Minimum Query

In the Range Minimum Query (RMQ) problem, we are given an array A of n numbers and

we are asked to answer queries of the following type: for indices i and j between 0 and n−1,

query RMQA(i, j) returns the index of the minimum element in the subarray A[i . . j].

Example 7. Assume we are given array A below, the RMQ(1,4)=3, while RMQ(6,8)=7.

A = 31 41 59 26 53 58 99 2 20 100
0 1 2 3 4 5 6 7 8 9

min(1,4) min(6,8)

It is then known that a range minimum query (RMQ) data structure based on the LCP

array, which can be constructed in O(n) time and O(n) space [15], can answer lcp-queries in

O(1) time per query [72].

2.13 k-mappability 43

2.13 k-mappability

In the k-mappability problem, we are given a string x of length n and integers m and k, and

we are asked to count, for each length-m factor y of x, the number of other factors of length

m of x that are at a Hamming distance at most k from y. We focus here on the version of the

problem where k = 1. Manzini [74] published an algorithm to solve this problem for k = 1,

requiring time O(mn logn/ log logn) using space O(n).

Example 8. In Table 2.5 below we show an example of the mappability of a factor with

length 4 up to 0 and 1 mismatches, called 0-mappability and 1-mappability, respectively.

Reviewing the factor at x[0]=A T C T, it occurs exactly two times at x[0] and x[13], hence

0-mappability[0]=1 and 0-mappability[13]=1, as shown in Table 2.5a. However, the same

factor "A T C T" occurs one time at x=[4] and x=[13] with up to one mismatch, hence

1-mappability[0]=2, 1-mappability[4]=3 and 1-mappability[13]=1. Note, we do not compare

the factor with itself.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x A T C T A G C T T C C T A A T C T

0-mappability 1 0 0 0 0 0 0 0 0 0 0 0 0 1
(a) (0,4)-mappability

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x A T C T A G C T T C C T A A T C T

1-mappability 2 1 2 1 3 1 1 1 1 2 0 0 0 1
(b) (1,4)-mappability

Table 2.5 (k,m)-mappability table for m=4 and k ∈ (0,1)

44 Basic Concepts

2.14 Degenerate String Comparison and Applications

A generalised degenerate string (GD string) Ŝ over Σ is a sequence of n sets of strings

over Σ of total size N, where the ith set contains strings of the same length ki > 0, but

where this length can vary between different sets. We denote the sum of these lengths

k0,k1, . . . ,kn−1 by W. Thus a GD string can be used to represent a gapless multiple sequence

alignment (MSA) of fixed width, that is, for example, a high-scoring local alignment of

multiple sequences, in a compact form; see Figure 2.8. This type of alignment is used for

finding functional sequence elements [36]. For instance, searching for palindromic motifs in

these types of alignments is an important problem since many transcription factors bind as

homodimers to palindromes [76]. Specifically, a set of virus species can be clustered using

high-scoring MSA to obtain subsets of viruses that have a common hairpin structure [80].

CA--AGCTCTATCTCGTA--TT

C---AGCCGAAGCTCGTATATT

CATCAAGTCAACGCAG----TT

(a) Multiple sequence alignment

AGCTCTATCTCG

AGCCGAAGCTCG

AAGTCAACGCAG

(b) Local gapless alignment

Ŝ = {A} ·

GC

AG

 ·

TCT

CGA

TCA

·
{
A

}
·

TCTC

GCTC

CGCA

·
{
G

}

(c) GD string obtained from the local gapless alignment

Fig. 2.8 A GD string representing a gapless multiple sequence alignment.

2.15 k-closed Strings 45

2.15 k-closed Strings

A closed string is a string that has u both as a prefix and as a suffix but not elsewhere in the

string. Closed strings were introduced by Fici [30] as objects of combinatorial interest.

If a string b is both a proper prefix and a proper suffix of a non-empty string x, then b

is called a border of x. A string x is said to be closed if, and only if, it is empty or if there

exists a border b of x that occurs exactly twice in x (i.e. only as a prefix and suffix). In other

words, b satisfies (1) b = x[0 . . |b|−1] = x[|x|− |b| . . |x|−1] and (2) b ̸= x[i . . i+ |b|−1], for

all 1≤ i≤ |x|−|b|−1. If x is closed, we call such a b the closed border of x. We additionally

define the special case of a single letter a ∈ Σ to be closed, with the empty string ε as the

border of a.

Example 9. In Figure 2.9 string AAACCGTAAA is closed, since the factor AAA occurs only as

a prefix and as a suffix. The string AAACAAAGTAAA, on the contrary, is not closed since AAA

occurs within the string as well as at the start and end.

Closed string
A A A A C C G T A A A A

u v

Non-Closed string
A A A C A A A G T A A A

u v

Fig. 2.9 Closed string and non-closed string with a border length of 3

Chapter 3

k-Mappability

The work presented in this chapter is published as: M. Alzamel, P. Charalampopoulos, C.

Iliopoulos, S. P. Pissis, J. Radoszewski, and W.-K. Sung. Faster algorithms for 1-mappability

of a sequence. Theoretical Computer Science. 812: 2-12 (2020)

3.1 Background and Contributions

3.1.1 Background

The focus of this work is directly motivated by the well-known and challenging application

of genome re-sequencing—the assembly of a genome directed by a reference sequence. New

developments in sequencing technologies [77] allow whole-genome sequencing to be turned

into a routine procedure, creating massive amounts of sequencing data. Short sequences,

known as reads, are produced in huge amounts (tens of gigabytes); and in order to determine

the part of the genome from which a read was derived, it must be mapped (aligned) back

3.1 Background and Contributions 47

to some reference sequence that consists of a few gigabases. A wide variety of short-read

alignment techniques and tools have been published in the past years to address the challenge

of efficiently mapping tens of millions of reads to a genome, focusing on different aspects of

the procedure: speed, sensitivity and accuracy [34]. These tools allow for a small number of

errors in the alignment. The k-mappability problem was first introduced in the context of

genome analysis in [26] (and in some sense earlier in [9]), where a heuristic algorithm was

proposed to approximate the solution. The aim from a biological perspective is to compute

the mappability of each region of a genome sequence; i.e. for every factor of a given length

of the sequence, we are asked to count how many other times it occurs in the genome with

up to a given number of errors. This is particularly useful in the application of genome

re-sequencing. By computing the mappability of the reference genome, we can then assemble

the genome of an individual with greater confidence by first mapping the segments of the

DNA that correspond to regions with low mappability. Interestingly, it has been shown that

genome mappability varies greatly between species and gene classes [26]. Formally, we are

given a string x of length n and integers m < n and k < m, and we are asked to count, for

each length-m factor y of x, the number of other length-m factors of x that are at a Hamming

distance of at most k from y.

Example 10. Consider the string x = AACAAACCCC and m = 3. Table 3.1 shows the k-

mappability counts for k = 0 and k = 1.

For instance, consider the position 0. Here, the 0-mappability is 1, since the factor AAC

occurs also at position 4. The 1-mappability at this position is 3 due to the occurrence of

48 k-Mappability

position 0 1 2 3 4 5 6 7
factor occurrence AAC ACA CAA AAA AAC ACC CCC CCC

0-mappability 1 0 0 0 1 0 1 1
1-mappability 3 2 1 4 3 5 2 2

Table 3.1 The mappability table for x=AACAAACCCC up to 0 and 1 mismatches

AAC at position 4 and occurrences of two factors at Hamming distance 1 from AAC: AAA at

position 3 and ACC at position 5.

The 0-mappability problem can be solved in O(n) time with the well-known LCP data

structure [31]. For k = 1, to the best of our knowledge, the fastest known algorithm is that

of Manzini [74]. His solution runs in O(mn logn/ log logn) time and O(n) space and works

only for strings over a constant-sized alphabet. Since the problem for k = 0 can be solved in

O(n) time, one may focus on counting, for each length-m factor y of x, the number of other

factors of x that are at Hamming distance exactly 1 — instead of at most 1 — from y.

3.1.2 Contributions

(a) We present an algorithm that, given a string x of length n over an integer alphabet of

size σ > 1 and a positive integer m = Ω(logσ n), solves the 1-mappability problem for

x in average-case time O(n) and space O(n). Notably, we show that this algorithm

is generalisable for arbitrary k requiring average-case time O(kn) and space O(n) if

m = Ω(k logσ n). Here, we assume that the letters are independently and uniformly

distributed random variables.

3.2 Preliminaries and Definitions 49

(d) We provide an open-source implementation of our average-case algorithm for arbitrary

k, and also experimental results demonstrating that it is competitive with the state-of-

the-art implementation for the same problem [26].

3.2 Preliminaries and Definitions

Let y be a string of length m with 0 < m ≤ n. We say that an occurrence of y exists in x,

or, more simply, that y occurs in x, when y is a factor of x. Every occurrence of y can be

characterised by a starting position in x. Thus, we say that y occurs at the starting position

i in x when y = x[i . . i+m− 1]. The scope of the computational problem can be formally

stated as follows.

1-MAPPABILITY

Input: A string x of length n and an integer m, where 1≤ m < n

Output: An integer array C of size n−m+1 such that C[i] stores the number of factors

of x that are at a Hamming distance of 1 from x[i . . i+m−1]

.

3.3 Efficient Average-Case Algorithm

In this section we assume that x is a string derived from an integer alphabet Σ. For clarity of

presentation, we first describe the algorithm for k = 1 and then show how it can be generalised

for arbitrary k. Recall that if two strings, y and z, are at a Hamming distance of 1, we write

y≈1 z.

50 k-Mappability

Fact 1 (Pigeonhole principle). Given two strings, y and z, of length m, we have that if y≈1 z,

then y and z share at least one factor of length ⌊m/2⌋.

Example 11. In Figure 3.1, given two strings, x and z, of length m = 8, x≈1 z and at least

they share a factor of length ⌊8/2⌋= 4. In this example there are two cases: x and z share

exactly block 1 and share block 2 with one mismatch or they share exactly block 2 and

block 1 with one mismatch.

x
BLOCK 1 BLOCK 2
ACGT CCCC

BLOCK 1 BLOCK 2
ACGT CCCC

z ACGT CCCT ACGC CCCC

Fig. 3.1 Pigeonhole principle of x and z with one mismatch

Fact 2. Given a string x, and any two positions i, j on x, we have that if x[i . . i+m−1]≈1

x[j . . j+m−1], then x[i . . i+m−1] and x[j . . j+m−1] have at least one common factor of

length L = ⌊m/3⌋ starting at positions i′ ∈ {i, . . . , i+m−L} and j′ ∈ { j, . . . , j+m−L} of x,

such that i′− i = j′− j and i′ = 0 (mod L).

Example 12. As shown in Figure 3.2, given a string x= . . . A C G T A C C C C A... A C

G T C C C C C A . . . , and given that m = 10, x[i . . . i+10−1] and x[j . . . j+10−1] share

exactly two blocks of length L = 3, which are A C G and C C C.

3.3 Efficient Average-Case Algorithm 51

i i+m−1 j j+m−1
. . . ACG TAC CCC A ACG TCC CCC A . . .

Fig. 3.2 Two substrings share at least one common factor length L = 3

Proof. It should be clear that every factor of x of length m fully contains at least two factors

of length L starting at positions equal to 0 mod L. Then, if x[i . . i+m−1] and x[j . . j+m−1]

are at a Hamming distance of 1, analogously to Fact 1, at least one of the two factors of

length L that are fully contained in x[i . . i+m− 1] occurs at a corresponding position in

x[j . . j+m−1]; otherwise we would have a Hamming distance greater than 1.

We first initialise an array C of size n−m+ 1, with 0 in all positions. For all i, C[i]

will eventually store the number of factors of x that are at a Hamming distance of 1 from

x[i . . i+m−1]. We apply Fact 2 by implicitly splitting the string x into B = ⌊ n
⌊m/3⌋⌋ blocks

of length L = ⌊m/3⌋—the suffix of length n mod ⌊m/3⌋ is not taken as a block—starting

at the positions of x that are equal to 0 mod L. In order to find all pairs of length-m factors

that are at a Hamming distance of 1 from each other, we can find all the exact matches of

every block and try to extend each of them to the left and to the right, allowing at most one

mismatch. We need to tackle some technical details if we are to update our counters correctly

and avoid double counting, however.

We start by constructing the SA and LCP arrays for x in O(n) time. We also construct

RMQ data structures over the LCP arrays in order to answer LCE queries in a constant

time per query. By exploiting the LCP array information, we can then find in O(n) time all

maximal sets of indices, such that the longest common prefix between any two of the suffixes

52 k-Mappability

starting at these indices is at least L, and at least one of them is the starting position of some

block.

Example 13. Given a string x= A C G T A C C C C A A C G T C C C C C A C C G T

A C C C C A, and given that m = 10 and k = 1, the SA and LCP will be built as shown in

Table 3.2, while L = ⌊10/3⌋ = 3. In Table 3.2 below, we exploit the LCP array and mark

the starting positions of each block, which are x[i] = 6, x[i] = 15, x[i] = 21, x[i] = 12 and

x[i] = 3, respectively. Each marked block value LCP[i], will be grouped with LCP[i-1] and

its following LCP[j] values, if LCP[j]≥ L.

3.3 Efficient Average-Case Algorithm 53

i x[i] SA[i] LCP[i]

0 29 A 0

1 9 AACGTCCCCCACCGTACCCCA 1

2 24 ACCCCA 1

3 4 ACCCCAACGTCCCCCACCGTACCCCA 6

4 19 ACCGTACCCCA 3

5 0 ACGTACCCCAACGTCCCCCACCGTACCCCA 2

6 10 ACGTCCCCCACCGTACCCCA 4

7 28 CA 0

8 8 CAACGTCCCCCACCGTACCCCA 2

9 18 CACCGTACCCCA 2

10 27 CCA 1

11 7 CCAACGTCCCCCACCGTACCCCA 3

12 17 CCACCGTACCCCA 3

13 26 CCCA 2

14 6 CCCAACGTCCCCCACCGTACCCCA 4

15 16 CCCACCGTACCCCA 4

16 25 CCCCA 3

17 5 CCCCAACGTCCCCCACCGTACCCCA 5

18 15 CCCCACCGTACCCCA 5

19 14 CCCCCACCGTACCCCA 4

Group 1

20 20 CCGTACCCCA 2

21 21 CGTACCCCA 1

22 1 CGTACCCCAACGTCCCCCACCGTACCCCA 9

23 11 CGTCCCCCACCGTACCCCA 3

Group 2

24 22 GTACCCCA 0

25 2 GTACCCCAACGTCCCCCACCGTACCCCA 8
Group 3

26 12 GTCCCCCACCGTACCCCA 2

27 23 TACCCCA 0

28 3 TACCCCAACGTCCCCCACCGTACCCCA 7
Group 4

29 13 TCCCCCACCGTACCCCA 1

Table 3.2 The SA and LCP arrays of string x

54 k-Mappability

In group 1, the starting block is at LCP[14] and this shares at least one block with LCP[15]. . . [19]

and LCP[13]. In group 2 the starting position is at LCP[21] and this shares at least one block

with LCP[20], LCP[22] and LCP[23]. This is the case also for groups 3 and 4. Figure 3.3

shows the longest common prefixes between LCP[18] and LCP[17], which is C C C C A,

and they all share shares one full size block and at least one of them is the starting position

of some block.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
x[i] A C G T A C C C C A A C G T C C C C C A

i 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
x[i] A C G T C C C C C A C C G T A C C C C A

Fig. 3.3 The longest common prefix between LCP[18] and LCP[17].

Then for each such set, denoted by P, we have to go through the following procedure for

each index i ∈ P such that i = 0 (mod L). For every other j ∈ P, we try to extend the match

by asking two LCE queries in each direction. i.e., we ask an lcs(i−1, j−1) query to find

the first mismatch positions, ℓ1 and ℓ′1, respectively, and then lcs(ℓ1−1, ℓ′1−1) to find the

second mismatch positions, ℓ2 and ℓ′2, respectively. A symmetrical procedure computes the

mismatches r1,r′1 and r2,r′2 to the right, as shown in Figure 3.4. We omit here some technical

details with regards to reaching the start or end of x.

Now we are interested in positions p such that ℓ2 < p≤ ℓ1 and i+L−1≤ p+m−1 < r1

and positions q such that ℓ1 < q≤ i and r1 ≤ q+m−1 < r2. Each such position p (resp. q)

3.3 Efficient Average-Case Algorithm 55

ℓ2 p ℓ1 q i i+L−1 r1 r2
X XX X

ℓ′2 p′ ℓ′1 q′ j j+L−1 r′1 r′2
X XX X

Fig. 3.4 Performing two LCE queries in each direction.

implies that x[p . . p+m−1]≈1 x[p′ . . p′+m−1], where p′ = j− (i− p). Henceforth, we

only consider positions of the type p, p′.

Note that, if x[p . . p+m−1] ≈1 x[p′ . . p′+m−1], we will identify the unordered pair

{p, p′} based on the described approach tp,p′ times, where tp,p′ is the total number of full

blocks contained in x[p . . p+m−1] and in x[p′ . . p′+m−1] after the mismatch position. It

is not hard to compute the number tp,p′ in O(1) time, based on the starting positions p and p′,

as well as ℓ1 and r1 each time we identify x[p . . p+m−1]≈1 x[p′ . . p′+m−1]. To avoid

double counting, we then increment the C[p] and C[p′] counters by 1/tp,p′ .

By EXTi, j we denote the time required to process a pair of elements i, j of a set P such

that at least one of them, i or j, equals 0 mod L.

Example 14. Let us consider the same positions in Example 13 (LCP[17] and LCP[18]).

In Figure 3.5, we show that ℓ1, ℓ′1 represent A and C respectively, and that r1, r′1, r2 and r′2

represent A, C, C and A consecutively.

Lemma 1. The time EXTi, j is O(m).

Proof. Given i, j ∈ P, with at least one of them being equal to 0 mod L, we can find the

pairs (p, p′) of positions that satisfy the inequalities discussed above in O(m) time. They

are a subset of {(i−m+L, j−m+L), . . . ,(i− 1, j− 1)}. For each such pair (p, p′), we

56 k-Mappability

ℓ1 r1 r2
x[i] A C G T A C C C C A A C G T C C C C C A

p q

ℓ′1 r′1 r′2
x[i] A C G T C C C C C A C C G T A C C C C A

q′

Fig. 3.5 Performing EXTi, j for x[5] and x[15]

can compute tp,p′ and increment C[p] and C[p′] accordingly in O(1) time. The total time to

process all pairs (p, p′) for a given i, j is thus O(m).

It should be clear that the aforementioned algorithm is generalisable for arbitrary k. We

now proceed to prove the following theorem.

Theorem 1. Given a string x of length n derived from an integer alphabet Σ of size σ > 1 with

the letters of x being independently and identically distributed random variables, uniformly

distributed over Σ, the k-mappability problem can be solved in average-case time O(kn) and

space O(n) if m≥ (k+2) · (logσ n+1).

Proof. The time and space required for constructing the SA and LCP array for x and rev(x)

and the RMQ data structures over the LCP arrays is O(n).

Let B denote the number of blocks over x and L be the block length. We set

L = ⌊ m
k+2⌋, B = ⌊ n

L⌋

3.3 Efficient Average-Case Algorithm 57

to apply the pigeon-hole principle: at least one block must be an exact match (generalisation

of Fact 2). Recall that by P we denote a maximal set of indices of the LCP array such that

the length of the longest common prefix between any two suffixes starting at these indices is

at least L, and at least one of them is the starting position of some block. Processing all such

sets P requires time

EXTi, j ·Occ

where EXTi, j is the time required to process a pair i, j of elements of a set P; and Occ is

the sum of the multiples of the cardinality of each set P times the number of the elements

of set P that are equal to 0 mod L. We generalise Lemma 1 for arbitrary k, showing that

EXTi, j = O(m) as follows. We perform at most 2k+2 longest common extension queries

(to the left and to the right); list all O(k) blocks that do not contain a mismatch within these

extensions; and then consider O(m) positions to be updated. Additionally, by the stated

assumption on the string x, the expected value for Occ is no more than Bn
σL . Hence, the

algorithm on average requires time

O(n+m · B ·n
σL).

Let m = (k+2)q+ r, for 0≤ r ≤ k+1, q≥ 1; note that here we assume that m≥ k+2;

further note that ⌊m/(k+2)⌋= q. If q satisfies n≤ σq we have

m · B
σL =

m · ⌊ n
⌊m/(k+2)⌋⌋

σ
⌊ m

k+2 ⌋
=

m · ⌊n
q⌋

σq ≤
m · n

q

σq ≤
m
q
=

(k+2)q+ r
q

58 k-Mappability

= k+2+
r
q
≤ 2k+3.

Consequently, in the case when

m≥ (k+2) · (logσ n+1)

we have that

m
B ·n
σL ≤ (2k+3)n

and hence the algorithm requires O(kn) time on average. The extra space usage is O(n).

We thus obtain the following corollary with respect to the 1-mappability problem; namely,

for k = 1.

Corollary 1. Given a string x of length n derived from an integer alphabet Σ of size σ > 1 with

the letters of x being independently and identically distributed random variables, uniformly

distributed over Σ, the 1-mappability problem can be solved in average-case time O(n) and

space O(n) if m≥ 3 · logσ n+3.

3.4 Implementation

We have implemented the average-case algorithm described in Section 3.3 as a program to

compute the mappability values. The program has been implemented in the C++ program-

ming language and developed under the GNU/Linux operating system. Our open-source

3.4 Implementation 59

implementation is made available at https://github.com/maialzamel/k-map under the GNU

General Public License.

Our task in this section is to evaluate the performance of our implementation with respect

to the performance of the implementation provided in [26]. We call our implementation

k-map and that of [26] Gemtool. Let us stress, however, that Gemtool is a heuristic algorithm

as opposed to k-map, which is an exact algorithm: it always returns the correct solution.

As input we used sequences extracted from a real DNA corpus ranging in length from

1MB to 512MB. This DNA corpus is available at http://pizzachili.dcc.uchile.cl/texts/dna/.

For each input sequence we used different values for m and k. All experiments were

conducted on a Desktop PC using one core of an Intel Core CPU i5-4690 at 3.50GHz. Both

implementations were compiled with g++ version 6.2.0 at optimisation level 3 (-O3).

The experimental results (recorded elapsed times and memory usage) are depicted in

Figure 3.6 and Figure 3.7:

1. For fixed values of k and m, our implementation requires time linear in n up until a

certain value of n (see Theorem 1—notice that the restriction is not exactly the one

stated as the input is not uniformly random). After that n value, the performance of

k-map starts approaching the performance of Gemtool, which eventually becomes

faster.

2. For fixed values of n, our implementation becomes considerably faster with increasing

values of m (see Theorem 1).

https://github.com/maialzamel/k-map
http://pizzachili.dcc.uchile.cl/texts/dna/

60 k-Mappability

3. The memory usage of our implementation grows linearly with n (see Theorem 1). The

memory usage of Gemtool also grows linearly with n but with a lower constant factor.

3.4 Implementation 61

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6
T

im
e

 [
s
]

Gemtool k=1

Gemtool k=2

k-map k=1

k-map k=2

(a) Elapsed time for m = 32 and k = 1,2

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

T
im

e
 [

s
]

Gemtool k=3

Gemtool k=4

k-map k=3

k-map k=4

(b) Elapsed time for m = 64 and k = 3,4

62 k-Mappability

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

T
im

e
 [

s
]

Gemtool k=5

Gemtool k=6

k-map k=5

k-map k=6

(c) Elapsed time for m = 128 and k = 5,6

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 -1

10 0

10 1

10 2

10 3

10 4

T
im

e
 [

s
]

Gemtool k=7

Gemtool k=8

k-map k=7

k-map k=8

(d) Elapsed time for m = 256 and k = 7,8

Fig. 3.6 Elapsed-time comparison between k-map and Gemtool.

3.4 Implementation 63

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 4

10 5

10 6

10 7

10 8
M

e
m

o
ry

 [
k
b

y
te

s
]

Gemtool k=1

Gemtool k=2

k-map k=1

k-map k=2

(a) Memory usage for m = 32 and k = 1,2

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 4

10 5

10 6

10 7

10 8

M
e

m
o

ry
 [

k
b

y
te

s
]

Gemtool k=3

Gemtool k=4

k-map k=3

k-map k=4

(b) Memory usage for m = 64 and k = 3,4

64 k-Mappability

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 4

10 5

10 6

10 7

10 8

M
e

m
o

ry
 [

k
b

y
te

s
]

Gemtool k=5

Gemtool k=6

k-map k=5

k-map k=6

(c) Memory usage for m = 128 and k = 5,6

1MB 2MB 4MB 8MB 16MB 32MB 64MB 128MB 256MB 512MB

n

10 4

10 5

10 6

10 7

10 8

M
e

m
o

ry
 [

k
b

y
te

s
]

Gemtool k=7

Gemtool k=8

k-map k=7

k-map k=8

(d) Memory usage for m = 256 and k = 7,8

Fig. 3.7 Memory-usage comparison between k-map and Gemtool.

3.5 Conclusion 65

3.5 Conclusion

In this chapter, we investigated the special case of k = 1. We presented an algorithm that

requires average-case time and space O(n) for integer alphabets of size σ if m = Ω(logσ n),

and showed that this algorithm is generalisable for arbitrary k, requiring average-case time

O(kn) and space O(n) if m = Ω(k logσ n). We have provided an open-source implemen-

tation of this algorithm and also experimental results demonstrating its competitiveness

with respect to the state-of-the-art implementation [26]. We also presented an algorithm

that requires O(min{nm,n logn log logn}) time and O(n) space for this special case, see

Appendix A. Later, Alzamel et al. [6] showed that the k-mappability problem can be solved

in O(min{nmk,n logk+1 n}) time and O(n) space for k = O(1) and constant-sized alphabets.

Let us note that it seems possible to apply the technique of Thankachan et al. [93] to obtain

O(min{nm,n logn}) time and O(n) space for k = 1 (for a preliminary exposition of the ideas,

see [52]). We leave as an open question whether a o(n logn)-time algorithm exists for the

1-mappability problem.

Another approach to considering the k-mappability problem is the edit distance model. In

this model, a decision needs to be made as to whether factors only of length exactly m or of

all lengths between m− k and m+ k should be counted. Later in [86] we present GenMap,

a more practical algorithm to compute the mappability of genomes up to k errors, which is

based on the C++ sequence analysis library SeqAn library [88]. This is significantly faster,

often by a magnitude, than the algorithm from the widely used GEM suite in [26] while

refraining from approximations.

Chapter 4

Degenerate String Comparison and

Applications

The work presented in this chapter is published as: M. Alzamel, L. A. K. Ayad, G. Bernardini,

R. Grossi, C. S. Iliopoulos, N. Pisanti, S. P. Pissis, G. Rosone: Comparing Degenerate Strings.

Fundam. Informaticae 175(1-4): 41-58 (2020)

4.1 Background and Contributions

4.1.1 Background

A degenerate string (or indeterminate string) over an alphabet Σ is a sequence of subsets of

Σ. A great deal of research has been conducted on degenerate strings (see [1, 24, 58, 84, 90]

and references therein). These types of uncertain sequences have been used extensively for

flexible modelling of DNA sequences known as IUPAC-encoded DNA sequences [61].

4.1 Background and Contributions 67

In [57], the authors introduced a general definition of degenerate strings: an elastic-

degenerate string (ED string) S̃ over Σ is a sequence of subsets of Σ∗ (see also network

expressions [81]) with the aim of representing multiple genomic sequences [22]. That is, any

set of S̃ does not contain, in general, only letters; it may also contain strings, including the

empty string. In a few recent papers on this notion, the authors provided several algorithms

for pattern matching; specifically, for finding all exact [47] and approximate [19] occurrences

of a standard string pattern in an ED text; see Figure 4.1.

CTCTCTAAATAATCTCG

CC--CTAAATAAGCTCG

CTC-CTAAATAACGCAG

CTC-CTAAATAA----G

Ŝ = ·
{
C
}
·

TCT
C
TC

 · {CTAAATA} ·{A} ·

TCTC
GCTC
CGCA

ε

 ·
{
G
}

Fig. 4.1 A set of sequences can be compacted to an ED string Ŝ

We introduce here another special type of uncertain sequence, called a generalised

degenerate string; this can be viewed as an extension of degenerate strings or as a restricted

variant of ED strings. Formally, in a generalised degenerate string (GD string) Ŝ derived

from Σ is a sequence of n sets of strings derived from Σ of total size N, where the ith set

contains strings of the same length ki > 0, but this length can vary between different sets.

68 Degenerate String Comparison and Applications

We denote the sum of these lengths k0,k1, . . . ,kn−1 by W . Thus a GD string can be used to

represent a gapless multiple sequence alignment (MSA) of fixed width; that is, for example,

a high-scoring local alignment of multiple sequences, in a compact form; see Figure 4.2.

AGCTCTATCTCG

AGCCGAAGCTCG

AAGTCAACGCAG

(a) Local gapless alignment

Ŝ = {A} ·

{
GC
AG

}
·

TCT
CGA
TCA

 ·{A} ·

TCTC
GCTC
CGCA

 ·{G}

(b) GD string obtained from the local gapless alignment

Fig. 4.2 A GD string representing a gapless multiple sequence alignment.

This type of alignment is used for finding functional sequence elements [36]. For instance,

searching for palindromic motifs in these type of alignments is an important problem since

many transcription factors bind as homodimers to palindromes [76]. Specifically, a set of

virus species can be clustered using high-scoring MSA to obtain subsets of viruses that have

a common hairpin structure [80].

Our motivation for this paper comes from finding palindromes in these types of uncertain

sequences. Let us start off with standard strings. A palindrome is a sequence that reads the

same from left to right and from right to left.

Detection of palindromic factors in texts is a classical and well-studied problem in

algorithms on strings and combinatorics on words, with a lot of variants arising out of different

practical scenarios. Palindromic sequences have been extensively studied in molecular

4.1 Background and Contributions 69

biology, for instance, where they are of interest because they are often distributed around

promoters, introns and untranslated regions, playing important roles in gene regulation and

other cell processes (e.g. see [5]). In particular, these are strings of the form xx̄R, also known

as complemented palindromes, occurring in single-stranded DNA or, more commonly, in

RNA, where x is a string and x̄R is the reverse complement of x. In DNA, C and G are

complements of each other (C-G are complements) and A and T are complements of each

other (A-T are complements); in RNA, C-G are complements and A-U are complements.

A string x = x[0]x[1] . . .x[n− 1] is said to have an initial palindrome of length k, if its

prefix of length k is a palindrome. Manacher first discovered an on-line algorithm that finds

all initial palindromes in a string [71]. Gusfield presented an off-line linear-time algorithm

to find all maximal palindromes in a string and also discussed the relationship between

biological sequences and gapped palindromes [49].

For uncertain sequences, we first need to have an algorithm for efficient string comparison,

where automata provide the following baseline. Let X̂ and Ŷ be two GD (or two ED) strings of

total sizes N and M, respectively. We first build the non-deterministic finite automaton (NFA)

A of X̂ and the NFA B of Ŷ in time O(N+M). We then construct the product NFA C such that

L(C) = L(A)∩L(B) in time O(NM). The non-emptiness decision problem, namely, checking

if L(C) ̸= /0, is decidable in time linear in the size of C, using breadth-first search (BFS).

Hence the comparison of X̂ and Ŷ can be done in time O(NM). It is known that if faster

methods existed for obtaining the automata intersection, then significant improvements would

be implied for many long-standing open problems [69]. Hence, an immediate reduction to

the problem of NFA intersection does not particularly help. At the beginning of Section 4.3.1,

70 Degenerate String Comparison and Applications

we show that, for GD strings, we can build an ad-hoc deterministic finite automaton (DFA)

for X̂ and Ŷ , so that the intersection can be performed efficiently, but this simple solution

cannot achieve O(N +M) time as its cost is alphabet-dependent.

4.1.2 Contributions

Our first result in this paper is an O(N + M)-time algorithm for deciding whether the

intersection of two GD strings of sizes N and M, respectively, derived from an integer

alphabet is non-empty. This result is based on a combinatorial result of independent interest:

although the intersection of two GD strings can be exponential according to the total size of

the two strings, it can only be represented in linear space. An automata model of computation

can also be employed to obtain these results but we present here an efficient implementation

in the standard word RAM model with word size w = Ω(log(N +M)) that also works for

integer alphabets. We then apply our string comparison tool to compute palindromes in GD

strings. We present an O(min{W,n2}N)-time algorithm for computing all palindromes in Ŝ.

Furthermore, we show a non-trivial Ω(n2|Σ|) lower bound under the Strong Exponential

Time Hypothesis [59, 60] for computing all maximal palindromes, see Appendix B. Note that

there is an infinite family of GD strings derived from an integer alphabet of size |Σ|= Θ(N)

in respect to which our algorithm requires time O(n2N), thus matching the conditional lower

bound. Finally, proof-of-concept experimental results are presented using real protein data-

sets; specifically, we apply our tools to find the location of palindromes in immunoglobulins

genes of the human V regions.

4.2 Preliminaries and Definitions 71

4.2 Preliminaries and Definitions

A string P is said to be a palindrome if, and only if, P=PR. If factor x[i . . . j], 0≤ i≤ j≤ n−1,

of string x of length n is a palindrome, then i+ j
2 is the centre of x[i . . . j] in x and j−i+1

2 is

the radius of x[i . . . j]. In other words, a palindrome is a string that reads the same both

forwards and backwards, i.e. a string P is a palindrome if P = YaY R where Y is a string,

Y R is the reversal of Y and a is either a single letter or the empty string; see Figure 4.3

shows an ordinary palindrome P = YaY R, for a sequence that can be read the same in either

direction , where a = x[6] =C with radius 6 and centre at x[6] and Figure 4.4 as an example

of a complement palindrome.

T G C A T T C T T A C G T
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4.3 A sequence that represents an ordinary palindrome in DNA

T G C A T T C A A T G C A
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4.4 A sequence that represents a complement palindrome in DNA

Moreover, x[i . . . j] is called a palindromic factor of x. It is said to be a maximal palin-

drome if there is no other palindrome in x with centre i+ j
2 and a larger radius. Hence, x has

exactly 2n−1 maximal palindromes. A maximal palindrome P of x can be encoded as a pair

(c,r), where c is the centre of P in x and r is the radius of P. Figure 4.5 shows a maximal

palindrome with radius 4 and centre at x[6], while x[3 . . .9] is a palindromic factor.

72 Degenerate String Comparison and Applications

G G C A T T C T T A C A A
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 4.5 A sequence that represents a maximal palindrome in DNA

Definition 1. A generalised degenerate string (GD string) Ŝ = Ŝ[0]Ŝ[1] . . . Ŝ[n−1] of length n

derived from an alphabet Σ is a finite sequence of n degenerate letters. Every degenerate letter

Ŝ[i] of width ki > 0, denoted also by w(Ŝ[i]), is a finite non-empty set of strings Ŝ[i][j] ∈ Σki ,

with 0≤ j < |Ŝ[i]|. For any GD string Ŝ, we denote by Ŝ[i] . . . Ŝ[j] the GD substring of Ŝ that

starts at position i and ends at position j. Figure 4.6 shows an example of GD string Ŝ.

Ŝ = {A} ·

{
GC
AG

}
·

TCT
CGA
TCA

 ·{A} ·

TCTC
GCTC
CGCA

 ·{G}
Fig. 4.6 A GD string Ŝ starts at Ŝ[0] and ends at Ŝ[5].

Definition 2. The total size N and total width W , denoted also by w(Ŝ), of a GD string Ŝ are

defined, respectively, as N = ∑
n−1
i=0 |Ŝ[i]|× ki and W = ∑

n−1
i=0 ki.

In this work, we generally consider GD strings derived from an integer alphabet of size

σ = NO(1).

Example 15. The GD string Ŝ of Figure 4.6 has length n = 6, size N = 28 and W = 12.

When a GD string X̂ has length n = 1, then X̂ is simply a set of strings of the same length,

which we also refer to as a degenerate letter.

Definition 3. Given two degenerate letters X̂ and Ŷ , their Cartesian concatenation is

X̂⊗ Ŷ = {xy | x ∈ X̂ ,y ∈ Ŷ}.

4.2 Preliminaries and Definitions 73

When Ŷ = /0 (resp. X̂ = /0) we set X̂⊗ Ŷ = X̂ (resp. = Ŷ). Notice that ⊗ is associative.

Example 16. Given two GD letters, X̂ and Ŷ , respectively, their X̂⊗ Ŷ is shown below:

X̂⊗ Ŷ =

GC

AG

⊗

TCT

CGA

TCA

=

GCTCT

GCCGA

GCTCA

AGTCT

AGCGA

AGTCA

Definition 4. Consider a GD string Ŝ of length n. The language of Ŝ is:

L(Ŝ) = Ŝ[0]⊗ Ŝ[1]⊗·· ·⊗ Ŝ[n−1].

Given two GD strings R̂ and Ŝ of equal total width the intersection of their languages is

defined by L(R̂)∩L(Ŝ).

Definition 5. Let X̂ = {xi ∈ Σk } and Ŷ = {y j ∈ Σh } be two degenerate letters from alphabet

Σ. Further let us assume, without loss of generality, that Ŷ is the set that contains the shorter

strings (i.e. h ≤ k). We define the chop of X̂ and Ŷ and the active suffixes of X̂ and Ŷ as

follows:

• chopX̂ ,Ŷ = {y j ∈ Ŷ | y j matches a prefix of xi ∈ X̂ }

• activeX̂ ,Ŷ = {xi[h . . .k−1] | xi[0 . . .h−1] ∈ chopX̂ ,Ŷ }

Let w(chopX̂ ,Ŷ) = min{w(X̂),w(Ŷ)}. When activeX̂ ,Ŷ = {ε}, we set activeX̂ ,Ŷ = /0. We then

have that activeX̂ ,Ŷ = /0 either if h = k, or if there is no match between any of the strings in Ŷ

and the prefix of a string in X̂ ; i.e. chopX̂ ,Ŷ = /0.

74 Degenerate String Comparison and Applications

Example 17. Consider the following degenerate letters X̂ and Ŷ where w(Ŷ)< w(X̂). The

underlined strings in letter Ŷ are prefixes of strings in letter X̂ , hence they are in chopX̂ ,Ŷ .

The suffixes of such strings in X̂ are the active suffixes in activeX̂ ,Ŷ .

X̂ =

TCC TA

ATCGA

TCCAC

CATTA

Ŷ =

GCA

CAT

TCC

chopX̂ ,Ŷ =

CAT

TCC

 activeX̂ ,Ŷ =

TA

AC

Definition 6. Let R̂ and Ŝ be two GD strings of length r and s, respectively. R̂[0] . . . R̂[i]

is the prefix of R̂ that ends at position i. It is called proper if i ̸= r− 1. We say that

R̂[0] . . . R̂[i] is synchronised with Ŝ[0] . . . Ŝ[j] if w(R̂[0] . . . R̂[i]) = w(Ŝ[0] . . . Ŝ[j]). We call

these the shortest synchronised prefixes of R̂ and Ŝ, respectively, when ∀ i′ < i, j′ < j

w(R̂[0] . . . R̂[i′]) ̸= w(Ŝ[0] . . . Ŝ[j′]). If no prefixes of R̂ and Ŝ can be synchronised, then we

say that R̂ and Ŝ are unsynchronised.

4.3 Algorithm

4.3.1 GD String Comparison

In this section, we consider the fundamental problem of GD string comparison. Let R̂ and

Ŝ be of total size N and M, respectively. We provide an O(N +M)-time algorithm in the

4.3 Algorithm 75

standard word RAM model with word size w = Ω(log(N +M)) that works also for integer

alphabets.

Before presenting our efficient implementation, we observe that there is the following

simple algorithm based on DFAs. Each degenerate letter of R̂ and Ŝ can be represented by a

tree, whose leaves are collapsed to a single one. For every two consecutive degenerate letters,

the collapsed leaves of the former tree coincide with the root of the latter tree. An acyclic

DFA is obtained in this way, as illustrated in Example 18. We can perform the comparison

of R̂ and Ŝ by intersecting their corresponding DFAs using BFS on their product DFA. The

trivial upper bound on the number of reachable states is O(NM), but this can be improved to

O(N +M) by exploiting the structure of the two input DFAs. Each state in such a DFA has a

unique level: the common length of paths from the initial state; and this structure is inherited

by the product DFA. In other words, a level-i state in the product DFA corresponds to a

pair of level-i states in the input DFAs. Observe that a level-i state in one DFA is uniquely

represented by the label of the path from the root of its tree, and for a fixed DFA and level,

these labels have uniform lengths. Considering the two states composing a reachable state in

the product DFA, it is easy to see that the shorter label must be a suffix of the longer label.

Hence, the state in the DFA with longer labels at level i uniquely determines the state in the

DFA with shorter labels at level i. Consequently, the number of reachable level-i states in the

product DFA is bounded by the number of level-i states in the input DFAs, and the size is

O(N +M).

76 Degenerate String Comparison and Applications

Example 18. We illustrate here a simple automata-based approach. Say we want to compare

the following two GD strings:

R̂ =

AC

CC

 ·

ACAAC

CACCC

 Ŝ =

ACA

CCC

 ·

ACC

CAA

 ·
{
C

}
.

We construct the DFA for R̂ and the DFA for Ŝ.

r0start

r2

r3

r5 r7 r9 r11

r12

r4 r6 r8 r10r1

A

C

C C

A

A C C

C

C A A

CC

s0start

s1 s3

s5

s6 s8

s10 s11

s2 s4 s7 s9

A

C

C

A C

A

C

C

A

C

A

C

C

Their product DFA gives their intersection: ACACAAC and CCCACCC.

r0,s0start

r2,s1

r1,s2

r3,s3

r3,s4

r4,s5

r5,s5

r6,s6

r7,s7

r8,s8

r9,s9

r10,s10

r11,s10

r12,s11

A

C

C A C A A

C

C C A C C

C

We observe that computing the product DFA is alphabet-dependent, due to branching

(transition function) on the same letter in the states of the two input DFAs.

We observe that the cost of implementing the above ideas has an extra logarithmic factor

due to state branching and, moreover, GD string comparisons require building the DFAs each

4.3 Algorithm 77

time. We show, however, that it is possible to obtain O(N +M) time for integer alphabets,

without creating DFAs. Specifically, even if the size of L(R̂)∩L(Ŝ) can be exponential in the

total sizes of R̂ and Ŝ (Fact 3), the problem of GD string comparison, i.e. deciding whether

L(R̂)∩L(Ŝ) is non-empty, can be solved in time linear with respect to the sum of the total

sizes of the two GD strings (Theorem 3) and is thus of independent interest.

Fact 3. Given two GD strings, R̂ and Ŝ, L(Ŝ)∩L(R̂) can have a size exponential in the total

sizes of R̂ and Ŝ.

We next show when it is possible to factorise L(R̂)∩L(Ŝ) into a Cartesian concatenation.

Lemma 2. Consider two GD strings, Ŝ = Ŝ′Ŝ′′ and R̂ = R̂′R̂′′, such that w(Ŝ) = w(R̂). If Ŝ′

is synchronised with R̂′, then L(R̂)∩L(Ŝ) = (L(R̂′)∩L(Ŝ′))⊗ (L(R̂′′)∩L(Ŝ′′)).

See Proof B in Appendix B.

By applying Lemma 2 wherever R̂ and Ŝ have synchronised prefixes, we are then left

with the problem of intersecting GD strings with no synchronised proper prefixes. We now

define an alternative decomposition within such strings (see also Example 19).

Definition 7. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with no synchro-

nised proper prefixes. We define

c-chain(R̂, Ŝ) = max
q
{0≤ q≤ r+ s−2 | chopq ̸= /0},

where chopi denotes the set chopÂi,B̂i
, and (Â0, B̂0),(Â1, B̂1), . . . ,(Âq, B̂q), pos(Âi),pos(B̂i)

are recursively defined as follows:

78 Degenerate String Comparison and Applications

Â0 = R̂[0], B̂0 = Ŝ[0], and pos(Â0) = pos(B̂0) = 0. For 0 < i≤ r+ s−2, if chopi−1 ̸= /0,

Âi =

R̂[pos(Âi−1)+1] and pos(Âi) = pos(Âi−1)+1 if w(chopi−1) = w(Âi−1)

activeÂi−1,B̂i−1
and pos(Âi) = pos(Âi−1) otherwise

B̂i =

Ŝ[pos(B̂i−1)+1] and pos(B̂i) = pos(B̂i−1)+1 if w(chopi−1) = w(B̂i−1)

activeÂi−1,B̂i−1
and pos(B̂i) = pos(B̂i−1) otherwise

The generation of pairs (Âi, B̂i) stops at i=q either if q=r+s−2, or when chopq+1 = /0,

in which case R̂ and Ŝ only match until (Âq, B̂q). Intuitively, Âi (respectively, B̂i) represents

suffixes of the current position of R̂ (respectively, of Ŝ), while pos(B̂i) (respectively, pos(Âi))

tells which position of R̂ (respectively, Ŝ) we are chopping.

Example 19 (Definition 7). Consider the following GD strings, R̂ and Ŝ, with no synchronised

proper prefixes: chop0 is the first red set from the left, chop1 is the first blue one, chop2 is

the second red one, etc. The c-chain(R̂, Ŝ) terminates when q = 7.

R̂=

C G C A C

A G C C G

AA GT C︸︷︷︸
Â2︸ ︷︷ ︸

Â1︸ ︷︷ ︸
Â0

·

A A T

TAG︸︷︷︸
Â5︸ ︷︷ ︸

Â4︸ ︷︷ ︸
Â3

·

C T C G

G C A G

C T CA︸︷︷︸
Â7︸ ︷︷ ︸

Â6

Ŝ =

{
A︸︷︷︸
B̂0

}
·

GC

AG︸︷︷︸
B̂1

·

T C T

C G A

T CA︸︷︷︸
B̂3︸ ︷︷ ︸

B̂2

·

{
A︸︷︷︸
B̂4

}
·

T C T C

G C T C

CG C A︸ ︷︷ ︸
B̂6︸ ︷︷ ︸

B̂5

·

{
G︸︷︷︸
B̂7

}

Definition 8. Let R̂ and Ŝ be two GD strings of length r and s, respectively, with w(R̂) = w(Ŝ)

and no synchronised proper prefixes. We define GR̂,Ŝ as a directed acyclic graph with a

4.3 Algorithm 79

structure of up to r+ s− 1 levels, each node being a set of strings, as follows, where we

assume, without loss of generality, that w(R̂[0])> w(Ŝ[0]):

Level k = 0: consists of a single node:

n0 = {x ∈ R̂[0] |x = y0 . . .yq0with y j ∈ chop j ∀ j : 0≤ j≤ q0}, where q0 is the index of

the rightmost chop containing suffixes of R̂[0].

Level k > 0: consists of ℓ = |chopqk−1
| nodes. Assuming, without loss of generality, that

level k−1 has been built with suffixes of R̂[pos(Âqk−1)], level k contains suffixes of a

position of Ŝ. Let c0, . . . ,cℓ−1 denote the elements of chopqk−1
. Then, for 0≤ i≤ℓ−1,

the i-th node of level k is:

ni={yqk−1+1 . . .yqk |ciyqk−1+1 . . .yqk∈B̂qk−1with y j∈chop j ∀ j : qk−1+1≤ j≤qk}, where

qk is the index of the rightmost chop containing suffixes of Ŝ[pos(B̂qk−1)].

Every string in level k−1 whose suffix is ci is the source of an edge having the whole

node ni as a sink.

We define paths(GR̂,Ŝ) as the set of strings spelled by a path in GR̂,Ŝ that starts at n0 and ends

at the last level.

Note that the size of GR̂,Ŝ is at most linear in the sum of the sizes of R̂ and Ŝ, since the

nodes contain strings either in R̂ or in Ŝ with no duplications, and each node has an out-degree

equal to the number of strings it contains.

Example 20 (Definition 8). GR̂,Ŝ for the GD strings R̂, Ŝ of Example 19 is:

80 Degenerate String Comparison and Applications

q0 = 2 and the strings in level 0 belong to (chop0⊗ chop1⊗ chop2)∩ R̂[0]. Level 1 contains

suffixes of strings in B̂2 (and of strings in B̂3 as chop3 = {A,T} and indeed q1 = 3). Level 2

contains suffixes of strings in Â3 (as q2 = 5). Level 3 contains suffixes of strings in B̂5

(q3 = 6). Level 4 contains suffixes of strings in Â6 (q4 = 7). The three paths from level 0

to level 4 correspond to the three strings in L(R̂)∩L(Ŝ): AGCCGAATCTCG, AAGTCAATCTCG,

AAGTCTAGCTCG.

Let Gk
R̂,Ŝ

be GR̂,Ŝ truncated at level k, and let |Gk
R̂,Ŝ
| be the length of the strings it spells.

Let Lk(Ŝ) denote the set of prefixes of length |Gk
R̂,Ŝ
| of L(Ŝ).

Lemma 3. Let R̂, Ŝ be two GD strings with w(R̂)=w(Ŝ)=W and no synchronised proper pre-

fixes. Then Lk(Ŝ)∩Lk(R̂) = paths(Gk
R̂,Ŝ

) for all levels k of GR̂,Ŝ such that Lk(Ŝ)∩Lk(R̂) ̸= /0.

See Proof B in Appendix B.

As a special case of Lemma 3, if L(Ŝ)∩L(R̂) ̸= /0, then GR̂,Ŝ is built up to the last level

and the following holds:

Theorem 2. Let R̂, Ŝ be two GD strings having lengths, respectively, r and s, with w(R̂)=w(Ŝ)

and no synchronised proper prefixes. Then GR̂,Ŝ has exactly r+ s−1 levels, and we have

that L(Ŝ)∩L(R̂) = paths(GR̂,Ŝ).

4.3 Algorithm 81

GR̂,Ŝ is thus a linear-sized representation of the possibly exponentially-sized (Fact 3) set

L(Ŝ)∩L(R̂).

We now show an O(N +M)-time algorithm for the standard word RAM model, denoted

by GDSC, that decides whether L(R̂) and L(Ŝ) share at least one string (returns 1) or not

(returns 0). GDSC starts by constructing the generalised suffix tree TR̂,Ŝ of all the strings

in R̂ and Ŝ. Then it scans R̂ and Ŝ starting with R̂[0] and Ŝ[0] storing in chopR̂,Ŝ the latest

chopi and in activeR̂,Ŝ the latest activeÂi,B̂i
using TR̂,Ŝ. For an efficient implementation, suf-

fixes in activeR̂,Ŝ are stored (e.g. for activeÂ0,B̂0
assuming that w(R̂[0])> w(Ŝ[0])) as index

positions of R̂[0] and the starting position of the suffix as activeR̂,Ŝ.suff. The next compar-

ison is made between the corresponding suffixes of R̂[0] of length w(ˆR[0])− activeR̂,Ŝ.suff

and Ŝ[1], identifying first the minimum length of the two, and proceeding with the same

process. The comparison of letters can be: (i) between R̂[i] and Ŝ[j]; or (ii) between the

corresponding strings of activeR̂,Ŝ.index and R̂[i]; or (iii) between the corresponding strings

of activeR̂,Ŝ.index and Ŝ[j]. If the two GD strings have a synchronised proper prefix, this will

result in activeR̂,Ŝ = /0 at positions i in R̂ and j in Ŝ. At this point, the comparison is restarted

with the immediately following pair of degenerate letters.

Theorem 3. Algorithm GDSC is correct. Given two GD strings, R̂ and Ŝ, of total sizes N

and M, respectively, derived from an integer alphabet, algorithm GDSC requires O(N +M)

time. See Proof in Appendix B.

82 Degenerate String Comparison and Applications

Ŝ = {A} ·

{
GC
AG

}
·

TCT
CGA
TCA

 ·{A} ·

TCTC
GCTC
CGCA

 ·{G}

Fig. 4.7 A palindrome at Ŝ[0] . . . Ŝ[2] and Ŝ[4] . . . Ŝ[5]

4.3.2 Computing Palindromes in GD Strings

Armed with the efficient GD string comparison tool, we shift our focus towards our initial

motivation, namely, computing palindromes in GD strings.

Definition 9. A GD string Ŝ is a GD palindrome if there exists a string in L(Ŝ) that is a

palindrome.

A GD palindrome Ŝ[i] . . . Ŝ[j] in Ŝ, whose total width is w(Ŝ[i] . . . Ŝ[j]), can be encoded

as a pair (c,r), where its centre is c = w(Ŝ[0]...Ŝ[i−1])+w(Ŝ[0]...Ŝ[j])−1
2 , when i > 0, otherwise,

c = w(Ŝ[0]...Ŝ[j])−1
2 , when i = 0; its radius is r = w(Ŝ[i]...Ŝ[j])

2 . Ŝ[i] . . . Ŝ[j] is called maximal if

no other GD palindrome (c,r′) exists in Ŝ with r′ > r. Note that we only consider the GD

palindromes Ŝ[i] . . . Ŝ[j] that start with the first letter of some string X ∈ Ŝ[i] and end with the

last letter of some string Y ∈ Ŝ[j], while the centre can be anywhere: in between or inside

degenerate letters. That is, in Ŝ, there are 2 ·w(Ŝ)−1 = 2W −1 possible centres.

Example 21. Consider the GD string Ŝ in Figure 4.7 where palindromes are underlined; one

starts at Ŝ[0] and ends at Ŝ[2]: it corresponds to (c,r) = (2.5,3). A second palindrome starts

at Ŝ[4] and ends at Ŝ[5]: it corresponds to (c,r) = (9,2.5).

In this section, we consider the following problem. Given a GD string Ŝ of length n, total

size N, and total width W , find all GD strings Ŝ[i] . . . Ŝ[j], with 0 ≤ i ≤ j ≤ n− 1, that are

4.3 Algorithm 83

GD palindromes. We give two alternative algorithms: one finds all GD palindromes seeking

them for all (i, j) pairs; and the other one finds them starting from all possible centres. The

two algorithms have different time complexities: which one is faster depends on W , N and n.

In fact, they compute all GD palindromes, but report only the maximal ones.

We first describe algorithm MAXPALPAIRS. For all i, j positions within Ŝ, in order to

check whether Ŝ[i] . . . Ŝ[j] is a GD palindrome, we apply the GDSC algorithm to Ŝ[i] . . . Ŝ[j]

and its reverse, denoted by rev(Ŝ[i] . . . Ŝ[j]). The reverse is defined by reversing the sequence

of degenerate letters and also reversing the strings in every degenerate letter. GD palindromes

are, finally, sorted per centre, and the maximal GD palindromes are reported. Sorting the

(i, j) pairs by their centres can be done in O(W) time using bucket sort, which is bounded by

O(N) since N ≥W .

Since there are O(n2) pairs (i, j), and since, according to Theorem 3, the GDSC algorithm

takes time proportional to the total size of Ŝ[i] . . . Ŝ[j] to check whether Ŝ[i] . . . Ŝ[j] is a GD

palindrome, algorithm MAXPALPAIRS takes O(n2N) time in total.

Example 22. Figure 4.8 shows the steps of the MAXPALPAIRS of given GD string Ŝ with

n = 3. The MAXPALPAIRS will start with i = 0 and j = 1, then with i = 1 and j = 2.

Finally, with i = 0 and j = 2. Step 1, MAXPALPAIRS applies the GDSC on Ŝ[0] . . . Ŝ[1]

and its reverses. Step 2, MAXPALPAIRS applies the GDSC on Ŝ[1] . . . Ŝ[2] and its reverses.

For Step 1 and Step 2, the GDSC reports negatively. Step 3, MAXPALPAIRS applies the

GDSC on Ŝ[0] . . . Ŝ[2] and its reverses and GDSC will report positively. Ultimately, the

algorithm will report the underline GD string AAGTCAACTGAA, in Ŝ[0][2] as the only maximal

GD palindrome pair of Ŝ while, Ŝ[0][1] and Ŝ[1][2] do not hold any palindromes.

84 Degenerate String Comparison and Applications

Ŝ =

CGCAC
AGCCG
AAGTC

 ·{AA} ·{CTGAA}

(a) GD string Ŝ to be processed by MAXPALPAIRS

Ŝ[0]Ŝ[1] =

CGCAC
AGCCG
AAGTC

 ·{AA} , rev(Ŝ[0]Ŝ[1]) =
{
AA

}
·

CACGC
GCCGA
CTGAA

(b) Step 1: Applying the GDSC on Ŝ[0]Ŝ[1] pair and rev(Ŝ[0]Ŝ[1])

Ŝ[1]Ŝ[2] =
{
AA

}
·
{
CTGAA

}
, rev(Ŝ[1]Ŝ[2]) =

{
AAGTC

}
·
{
AA

}
(c) Step 2: Applying the GDSC on Ŝ[1]Ŝ[2] pair and rev(Ŝ[1]Ŝ[2])

Ŝ[0] . . . Ŝ[3] =

CGCAC
AGCCG
AAGTC

 ·{AA} ·{CTGAA} , rev(Ŝ[0] . . . Ŝ[[2]) =
{
AAGTC

}
·
{
AA

}
CACGC
GCCGA
CTGAA

(d) Step 3: Applying the GDSC on Ŝ[0] . . . Ŝ[3] pair and rev(Ŝ[0] . . . Ŝ[2])

Fig. 4.8 Steps involved in processing the MaxPalPairs of GD string Ŝ for each pair

In algorithm MAXPALCENTRES, we consider all possible centres c of Ŝ. In the case

when c is in between two degenerate letters we simply try to extend to the left and to the

right by applying GDSC. In the case when c is inside a degenerate letter we intuitively

split the letter vertically into two letters and try to extend to the left and to the right by

applying GDSC. At each extension step of this procedure we maintain two GD strings L̂

(left of the centre) and R̂ (right of the centre) such that they are of the same total width.

We consider the reverse of L̂ (similar to algorithm MAXPALPAIRS) for the comparison. In

the case where c occurs inside a degenerate letter, in order to make sure we do not identify

4.3 Algorithm 85

palindromes which do not exist, for all j split strings of the degenerate letter, we check that

L̂R[0][j][0 . . .k−1] = R̂[0][j][0 . . .k−1] where L̂R = rev(L̂) and k = min(w(LR[0]),w(R̂[0])).

If no matches are found, we move onto the next centre. Otherwise, when a match is found, we

update rev(L̂) and R̂ with the remainder of the split degenerate letter (if its length is greater

than k), as well as the next degenerate letters. Algorithm GDSC is applied to compare rev(L̂)

and R̂. After a positive comparison, we overwrite L̂ and R̂ by adding the degenerate letters

of the current extension until w(L̂) = w(R̂) (or until the end of the string is reached). This

process is repeated as long as GDSC returns a positive comparison; that is, until the maximal

GD palindrome with centre c is found. The radius reported is then the total sum of all values

of w(L̂). If GDSC returns a negative comparison at centre c, we proceed with the next centre,

because we clearly cannot have a GD palindrome centred at c extended further if rev(L̂)∩ R̂

is empty.

Example 23. In Figure 4.9, given the same GD string Ŝ used in Example 22, the MAXPAL-

CENTRES splits Ŝ at each centre c = 0 . . .c = 11 to L̂ and R̂, and the algorithm maintains the

w(L̂) and w(R̂) to be equal. Since, they are equal at c = 5.5 and then it applies the GDSC on

R̂ and rev(L̂). The algorithm will report the palindrome AAGTCAACTGAA at c = 5.5 which is

corresponding to the reported palindrome at ˆS[0] . . . ˆS[2] in MAXPALPAIRS.

86 Degenerate String Comparison and Applications

Ŝ =

CGCAC

AGCCG

AAGTC←−−−

·
{
A←−| A−→

}
·
{
CTGAA−−−→

}

(a) Splitting GD Ŝ at c = 5.5, where w(L̂) and w(R̂)=6

rev(L̂) =
{
A

}
·

CACGC

GCCGA

CTGAA

R̂ =

{
A

}
·
{
CTGAA

}

(b) Applying GDSC on R̂ and rev(L̂)

Fig. 4.9 Steps of MaxPalCentres algorithm on GD string Ŝ

According to Theorem 3 and the fact that there are 2W −1 possible centres, we have that

algorithm MAXPALCENTRES takes O(WN) time in total. We obtain the following result.

Theorem 4. Given a GD string of length n, total size N, and total width W , derived from an

integer alphabet, all (maximal) GD palindromes can be computed in time O(min{W,n2}N).

4.4 Experimental Results 87

4.4 Experimental Results

We present here a proof-of-concept experiment, although, beyond this, we anticipate that

the algorithmic tools developed in this paper are applicable in a wide range of biological

applications.

We first obtained the amino acid sequences of five immunoglobulins within the human

V regions [39] and converted these into mRNA sequences [89]. The letters X,S,T,Y,Z,R

and H were replaced by degenerate letters according to IUPAC [61]. Each other letter,

c ∈ {A,C,G,U}, was treated as a single degenerate letter {c}. An average of 47% of the total

number of positions within the five sequences consisted of one of the following: X,S,T,Y,Z,R

and H. We then used algorithm MAXPALPAIRS to find all maximal palindromes in the

five sequences. Table 4.1 shows the coordinates of maximal palindromes identified within

hypervariable regions I and II. Our results are in accordance with Wuilmart et al. [99],

who presented a statistical (fundamentally different) method to identify the location of

palindromes within regions of immunoglobulin genes. The ranges we report are greater

than or equal to the ones of [99] due to the maximality criterion. A proof-of-concept C++

implementation of the presented algorithms, together with the datasets referred to below, is

made available at https://nms.kcl.ac.uk/mai.alzamel/softwares.html.

https://nms.kcl.ac.uk/mai.alzamel/softwares.html

88 Degenerate String Comparison and Applications

Hypervariable Region

I II

V [99] This paper [99] This paper

VkII
18-27 11-36 119-130 118-131

104-113 104-113 169-180 169-180

VkIII 18-27 11-30 132-142 131-145

Vλ II 63-74 62-81 140-152 140-152

Vλ III 51-74 50-75 132-143 131-144

Vλ V 96-104 95-104 134-141 134-141

Table 4.1 Coordinates of maximal palindromes identified within regions I and II.

Example 24. Given the immunoglobulin VkII region, that is present as follows: Thr Leu Ser

Cys Arg Ala Ser Gln Ser, we convert the amino acid to mRNA based on Table 4.2 to

TZX UGY SGX GCX TZX CAR. Later, we convert the obtained mRNA to GD string Ŝ using

IUPAC table shown in Table 4.3 which is represented by The International Union of Pure

and Applied Chemistry 1970. A complement palindrome is underlined in the three versions

of the sequence, as shown below in Figure 4.10.

4.4 Experimental Results 89

Ŝ =

UCC
GU
G
A

 ·
{
UGC
U

}
·

CGU
GC
G
A

 ·

GCU
C
A
G

 ·

UUC
GU
G
C

 ·
{
CAA
G

}

Fig. 4.10 A GD string Ŝ represents the immunoglobulin VkII region

Amino acid Compressed Amino acid Compressed
Ala GCN Leu YUR, CUN
Arg SGX Lys AAR
Asn AAY Met AUG
Asp GAY Phe UUY
Cys UGY Pro CCN
Gln CAR Ser TZX
Glu GAR Thr ACN
Gly GGN Trp UGG
His CAY Tyr UAY
Ile AUH Val GUN
Asx GLN or GLU Glx ASN or ASP

Table 4.2 Inverse table for the standard genetic code (compressed using IUPAC)

Nucleotide Base Nucleotide Base
Base Base
A A C C
G G U U
W A or (T/U) S C or G
M A or C K G or (T /U)
R A or G Y C or (T/U)
N A,C, G or (T/U) H A, C or (T/U)
Z C or G X A, C, G or (T/U)

Table 4.3 The IUPAC table

Chapter 5

Efficient Identification of k-closed Strings

The work presented in this chapter is published as: H. Alamro, M. Alzamel, C. S. Iliopoulos,

S. P. Pissis, S. Watts, W. Sung, "Efficient Identification of k-Closed Strings". Int. J. Found.

Comput. Sci.. Int. J. Found. Comput. Sci. 31(5): 595-610 (2020)

5.1 Background and Contributions

5.1.1 Background

A bordered string x is such that there exists a prefix of x which is also a suffix of x. A

closed string (or a closed word) is a bordered string that satisfies an additional property:

the border does not occur elsewhere in the string. There are a number of earlier studies

dealing with closed strings. Fici in [30] introduced the notion of closed strings in addition to

characterisations of this class.

5.2 Preliminaries 91

The more practical relevance of closed strings was established via their relationship with

palindromic strings. The number of closed factors in a string is minimised if these factors

are also palindromic. Additionally it was shown that the upper bound on the number of

palindromic factors of a string coincides with the lower bound on the number of closed

factors (see [13] and references therein). Thus the study of closed strings shows potential

applications in connection with applications of palindromes [5]. On the algorithmic side,

Badkobeh et al. in [12] presented (among others) an algorithm for the factorisation of a

given string of length n into a sequence of longest closed factors in time and space O(n), and

another algorithm for computing the longest closed factor starting at every position in the

string in O(n logn
log logn) time and O(n) space.

5.1.2 Contributions

Here we extend the definition of closed strings to k-closed strings, for which a level of

approximation is permitted up to a number of Hamming distance errors, set by the parameter

k. The main contribution is an O(kn)-time and O(n)-space algorithm for deciding whether

or not a given string of length n over an integer alphabet is k-closed. We also provide

experimental results here as a proof of concept.

5.2 Preliminaries

The algorithm described in this paper makes substantial use of the kangaroo method, a

well-established method used to perform multiple LCEk queries on a given string x [45]. This

92 Efficient Identification of k-closed Strings

is done by initially preprocessing the string x to build a suffix tree data structure in O(n) time

and space [27]. The suffix tree of x allows us to perform LCE queries in O(1) time. For a

query LCE(i, j), we first identify two distinct leaf nodes corresponding to the suffixes i and

j; then, the lowest common ancestor node in the tree for these two leaf nodes has a string

depth equal to LCE(i, j). The calculation of the lowest common ancestor and its depth may

be performed in O(1) time after O(n) preprocessing time [15], hence the LCE query can be

computed in O(1) time.

The kangaroo method extends this methodology, allowing the calculation of LCEk queries.

Precisely, we have the following lemma:

Lemma 4. Given the suffix tree of x, LCEk(i, j) can be computed in O(k) time.

Proof. LCEk(i, j) can be defined recursively as follows:

We denote lr = LCEr(i, j) for any r ≥ 0. Then, we have l0 = LCE(i, j). Also, we have

lr = lr−1 +1+LCE(i+ lr−1 +1, j+ lr−1 +1). By the above recursive formula, LCEk(i, j)

can be computed by performing LCE queries k times. Since each LCE query requires O(1)

time, the lemma follows.

Inspect Figure 5.1 for an example.

a b b a b a b a b a a b a a a a b
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LCE0(3,10) = 3 × ×

LCE1(3,10) = 5 × ×× ×

Fig. 5.1 Longest common extensions for k = 0 and k = 1.

5.3 k-closed Strings 93

5.3 k-closed Strings

The definition of closed strings can be generalised to k-closed strings, where k expresses a

Hamming distance error bound. This is useful for dealing with strings where there may be

errors or approximations in the data.

Definition 10. A string x of length n is called k-closed if, and only if, n≤ 1 or the following

properties are satisfied for some k′ where 0≤ k′ ≤ k:

1. There exists some proper prefix u of x and some proper suffix v of x of length |u|= |v|,

such that δH(u,v)≤ k′.

2. Except for u and v, there exists no factor w of x of length |w| = |u| = |v| such that

δH(u,w)≤ k′ or δH(v,w)≤ k′.

For the above definition, the pair u and v for the smallest k′ is called the k-closed border of x.

In the case where n≤ 1 we assign ε as the k-closed border.

Note that this is a generalisation of the closed string problem, which is now known as a

0-closed string problem. It is clear from the definition that a smaller value of k corresponds

to k-closed being a stronger statement on the nature of x. Lemma 5 therefore follows trivially

from Definition 10.

Lemma 5. A string x that is k-closed is also r-closed for all r > k.

It additionally follows from Definition 10 that the k-closed border of a string x is unique

by Lemma 6.

94 Efficient Identification of k-closed Strings

Lemma 6. A length-n k-closed string x, n > 1, has exactly one k-closed border; i.e. it has

exactly one prefix u and one suffix v satisfying the conditions in Definition 10 for the smallest

k′ ≤ k. See proof C in Appendix C.

Let x be a non-empty k-closed string of length n. The following properties follow easily

from Definition 10 and Lemma 6:

1. x has exactly one k-closed border.

2. If n > 1, there exists a string w with |w|< n and a natural number k′, with 0≤ k′ ≤ k,

such that w≈k′ x[i . . i+ |w|−1] for exactly two values of i and no others; specifically

i = 0 and i = n−|w|.

3. There exists a natural number k′, with 0≤ k′ ≤ k, such that the longest repeated prefix

(resp. suffix) of x within k′ errors, is equal to u (resp. v), where u and v are the prefix

and suffix, respectively, comprising the k-closed border.

4. There exists a natural number k′, with 0≤ k′ ≤ k, such that any repeated prefix (resp.

suffix) of x within k′ errors is necessarily a prefix (resp. suffix) of u (resp. v), where u

and v are the prefix and suffix, respectively, comprising the k-closed border.

We display an example in Figure 5.2. Note that, for the string GTGAGTGGTA, we illustrate

only that a border length of 3 with error 1 is not a possible 1-closed border. To verify fully

that it is non 1-closed, all combinations of border lengths and error levels 0≤ k′ ≤ 1 must

be considered. It is in fact possible to show that no borders of any length exist that satisfy

5.4 Algorithm 95

the 1-closed criteria, therefore the string is indeed non 1-closed (and by Lemma 5 also non

0-closed).

A C G A G T A A T G

u v

G T G A G T G G T A

u v

1-Closed

Non 1-Closed

w1
w2

Fig. 5.2 Closed and non-closed strings for k = 1.

We are now in a position formally to define the problem solved in this paper. For

computation purposes, we focus only on the case when k > 0.

k-CLOSED BORDER

Input: A string x of length n and a natural number k, 0 < k < n

Output: The k-closed border or -1 if x is not k-closed

5.4 Algorithm

In addition to our definition of k-closed strings, we further define some variants of Definition 10

which proved useful in obtaining the main result.

Definition 11. A string x of length n is called k-weakly-closed if, and only if, n≤ 1 or the

following properties are satisfied:

1. Some proper prefix u of x exists, and some proper suffix v of x of length |u|= |v|, such

that δH(u,v)≤ k.

96 Efficient Identification of k-closed Strings

2. Both factors u and v occur only as a prefix and suffix, respectively, within x, i.e. there

are no internal occurrences of u or v in x.

We call such a pair u and v a k-weakly-closed border of x. In the case where n≤ 1, we assign

ε as the k-weakly-closed border.

Definition 11 is satisfied in situations where the border may have errors, but internal

occurrences are considered not to have errors. Figure 5.3 shows that ACTGTAATTAGT is

1-weakly-closed with a 1-weakly-closed border (ACT, AGT) of length 3, whereas ACTGTAGTTAGT

is not 1-weakly-closed.

1-Weakly-Closed
A C T G T A A T T A G T

u v

non-1-Weakly-Closed
A C T G T A G T T A G T

u v

Fig. 5.3 1-weakly-closed border with length 3 and not 1-weakly-closed string

Note that under this definition there may be multiple k-weakly-closed borders.

For example, in Figure 5.4 TATAGAACATAT is 2-weakly-closed with two 2-weakly-closed

borders (TAT, TAT) of length 3 and (TATAG, CATAT) of length 5.

2-Weakly-Closed
T A T A G A A C A T A T

u v

5-Weakly-Closed
T A T A G A A C A T A T

u v

Fig. 5.4 2-weakly-closed border with length 3 and 5-weakly-closed with length 5

5.4 Algorithm 97

Definition 12. A string x of length n is called k-strongly-closed if, and only if, n≤ 1, or the

following properties are satisfied:

1. There exists some non-empty border b of x.

2. There exists no factor w of x of length |w| = |b| such that δH(b,w) ≤ k, except the

prefix and suffix of x.

We call b the k-strongly-closed border of x. In the case where n ≤ 1, we assign ε as the

k-strongly-closed border.

Definition 12 is satisfied in situations where the border does not have errors, but internal

occurrences may have errors. For example, in Figure 5.5, ACTGTATCAACT is 1-strongly-

closed with a 1-strongly-closed border ACT of length 3, whereas ACTGTATTAACT is not

1-strongly-closed. Note that under this definition there is only one k-strongly-closed border.

1-Strongly-Closed
A C T G T A T C A A C T

u v

Non-1-Strongly-Closed
A C T G T A T T A A C T

u v

Fig. 5.5 1-strongly-closed border with length 3 and non 1-strongly-closed string

Definition 13. A string x of length n is called k-pseudo-closed if, and only if, n≤ 1, or the

following properties are satisfied:

1. There exists some proper prefix u of x and some proper suffix v of x of length |u|= |v|,

such that δH(u,v)≤ k.

98 Efficient Identification of k-closed Strings

2. Except for u and v, there exists no factor w of x of length |w| = |u| = |v| such that

δH(u,w)≤ k or δH(v,w)≤ k.

We call such a pair u and v the k-pseudo-closed border of x. In the case where n ≤ 1, we

assign ε as the k-pseudo-closed border.

Conditions 1 and 2 of Definition 13 may be regarded as merging of Definition 11 and

Definition 12. Both the border and internal occurrences may have errors.

For example in Figure 5.6, ABTCTTACCTAGT is 1-pseudo-closed with a 1-pseudo-closed

border (ABT, AGT) of length 3, whereas ABTCTTABCTAGT is not 1-pseudo-closed.

1-Pseudo-Closed
A B T C T T A C C T A G T

u v

Non-1-Pseudo-Closed
A B T C T T A B C T A G T

u v

Fig. 5.6 1-pseudo-closed border with length 3 and non 1-pseudo-closed border

Note that Condition 1 is less selective and Condition 2 is more selective. The requirement

to satisfy both conditions therefore implies that a 0-closed string is not necessarily k-pseudo-

closed, and a k-pseudo-closed string is not necessarily 0-closed (hence the pseudo term). For

instance, abac is 1-pseudo-closed with a border (ab, ac), but not 0-closed. In a contrary

example, abba is 0-closed with a border a but not 1-pseudo-closed.

Note that there is a similarity in the construction of Definition 10 and Definition 13 that

permits us easily to conclude the following crucial lemma:

Lemma 7. x is k-closed ⇐⇒ ∃k′ where 0≤ k′ ≤ k, such that x is k′-pseudo-closed.

5.4 Algorithm 99

We begin by constructing the suffix tree of x. As has been discussed, this is constructible

in O(n) time and space. Recall that once the suffix tree is constructed it can be pre-processed

within the same complexity to answer any LCEk(i, j) query by applying the Kangaroo

method in O(k) time (see Lemma 4). For the purpose of this algorithm, we draw attention

to a specific subset of the possible LCEk queries and store their values in two related data

structures. These structures are the longest prefix k-match array and longest suffix k-match

array of string x, denoted by LPMk(x) and LSMk(x), respectively. LPMk(x)[j] (respectively

LSMk(x)[j]) is defined as the length of the longest factor of x starting (ending) at index j,

which matches the prefix (suffix) of x of the same length within k errors, with the exception of

the index 0 (n−1) corresponding to the prefix (suffix) itself, for which we set a value of -1.

Note that within the literature, the LPM array is similar to the k-prefix table [14] with the

exception of using the -1 flag.

LPMk(x)[j] =

max{l : δH(x[0 . . l−1],x[j . . j+ l−1])≤ k} j ∈ [1,n−1]

-1 j = 0

LSMk(x)[j] =

max{l : δH(x[n− l . .n−1],x[j− l +1 . . j])≤ k} j ∈ [0,n−2]

-1 j = n−1

Note that it follows from the definition that the LSM array for a string x is equal to the

reverse of the LPM array for the reverse of x, and this logic applies analogously for the prefix

array:

100 Efficient Identification of k-closed Strings

LSMk(x)[j] = LPMk(xR)[n−1− j]

LPMk(x)[j] = LSMk(xR)[n−1− j].

Using these identities, we may express the LPM and LSM in terms of the familiar LCE

queries, making it possible to apply the Kangaroo method to construct them:

LPMk(x)[j] = LCEk(0, j) of x j ∈ [1,n−1]

LSMk(x)[j] = LCEk(0,n−1− j) of xR j ∈ [0,n−2].

Using the method for answering LCEk queries, we can calculate a single value of LPM or

LSM in O(k) time, implying that a total time of O(kn) would be required to calculate both

arrays fully. In fact, the complexity of the full algorithm is bounded by this procedure.

A further set of identities allows us to compute the LPMk+1 and LSMk+1 arrays from

the LPMk and LSMk arrays in O(1) time per entry, such that the arrays are progressively

constructed, with each intermediate step yielding valuable information:

LPMk+1(x)[j] = p+1+LCE(p+1, j+ p+1) of x

LSMk+1(x)[j] = s+1+LCE(s+1,n− j+ s) of xR

where p = LPMk(x)[j] and s = LSMk(x)[n−1− j].

5.4 Algorithm 101

After computing LPMk′ and LSMk′ , for 0≤ k′ ≤ k, we may determine if a given string x

of length n≥ 2 is a k-closed string by checking against three conditions for each k′, as shown

by Lemma 8. Recall that in the case when n = 0 or n = 1, x is trivially k-closed by definition.

Lemma 8. Given a string x of length n≥ 2 and a natural number k, 0≤ k < n, x is k-closed

if, and only if, there exists some j ∈ {1, . . . ,n−1} and some k′ ∈ {0, . . . ,k} such that all the

following conditions hold:

1. j+LPMk′(x)[j] = n

2. ∀i < j, LPMk′(x)[i]< LPMk′(x)[j]

3. ∀i > n−1− j, LSMk′(x)[i]< LSMk′(x)[n−1− j].

See proof C in Appendix C.

Figure 5.7 shows an example of 2-closed border of length n− j = 10 found at j = 5 for a

given string x of length n = 15. This corresponds to strings abbabaabab and aababaabab

which are at a Hamming distance of 1.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x[j] a b b a b a a b a b a a b a b

LPM2[j] -1 3 4 7 2 10 4 4 7 2 5 4 3 2 1
LSM2[j] 1 2 3 4 5 2 7 6 2 10 2 5 7 2 -1

j+LPM2[j] = n F F F F F T F F T F T T T T T Cond.1
LPM2_peaks[j] T T T T F T F F F F F F F F F Cond.2

LSM2_peaks[n−1− j] T T T F F T F F F F F F F F F Cond.3
2-Closed Borders F F F F F T F F F F F F F F F

▲

Fig. 5.7 2-closed border of length 10 found at j = 5 for string x.

102 Efficient Identification of k-closed Strings

Theorem 1. Given a string x of length n over an integer alphabet and a natural number k,

0 < k < n, the k-closed border of x, if it exists, can be determined in O(kn) time and O(n)

space.

Proof. By Lemma 8, the time taken to determine whether a string x of length n is k-closed

(and determine the k-closed border itself) is bounded by the computation of the LPMk′(x)

and LSMk′(x) arrays, for all 0≤ k′ ≤ k. For a single k′, Condition 1 trivially requires O(n)

time to check across all possible j. Conditions 2 and 3 can be answered for each j in O(1)

time by first preprocessing the LPMk′(x) and LSMk′(x) arrays in O(n) time to determine

where the appropriate peaks lie (inspect Figure 5.7 for an example). A total of O(kn) time is

therefore required to check across all possible k′ and j, as shown in Lemma 8. The LPMk′(x)

and LSMk′(x) arrays can be updated from one k′ value to the next one and hence the space

required is only O(n).

5.5 Implementation

A full implementation of our algorithm was produced and the resulting pseudocode is

presented here. The entry point of the algorithm is GETBORDER. This accepts a string x of

length n in addition to a parameter k specifying the maximum number of errors. The length

that determines the k-closed border is returned. Note that if the string x is not k-closed, the

function returns -1. We also make use of additional functions:

5.6 Experiments 103

REVERSE(x) Standard library function. Accepts a string or array x of length n and returns

the reversed string or array, respectively.

LCE(x, i, j) Longest common extension function. Given a string x, this returns the length

of the longest common prefix between the ith and jth suffixes of x (details in Chapter

2, section 2.6). Open-source implementations of LCE are available [43].

Algorithm 1 k-Closed Border
1: function GETBORDER(x,n,k)
2: if n == 0 or n == 1 then ▷ trivial cases
3: return 0
4: end if
5: l pm = GETLPM(x,n,k) ▷ see Algorithm 2 below
6: lsm = REVERSE(GETLPM(REVERSE(x),n,k))
7: l pm_peaks = GETPEAKS(l pm) ▷ see Algorithm 3 below
8: lsm_peaks = GETPEAKS(lsm)
9: closed_border =−1

10: for j = 1 to n−1 do ▷ check 3 conditions for every j
11: if j+ l pm[j] == n and l pm_peaks[j] and lsm_peaks[n−1− j] then
12: closed_border = n− j
13: end if
14: end for
15: return closed_border
16: end function

5.6 Experiments

Our k-Closed Border algorithm was implemented as a program to decide whether a given

string is indeed a closed string within k Hamming distance errors. We then tested our

implementation over numerous input sequences taken from real DNA data.

104 Efficient Identification of k-closed Strings

Algorithm 2 GetLPMx,n,k
1: function GETLPM(x,n,k)
2: l pm = integer array of length n filled with zeroes
3: for i = 1 to n−1 do
4: for j = 0 to k do
5: l pm[i] = l pm[i]+LCE(x, l pm[i], i+ l pm[i])+1 ▷ calculate LCEk(0, i)
6: if l pm[i]> n− i then
7: break
8: end if
9: end for

10: l pm[i] = l pm[i]−1 ▷ exclude final mismatch
11: end for
12: return l pm
13: end function

Algorithm 3 GetPeaksvalues
1: function GETPEAKS(values) ▷ values is array of integers
2: peaks = boolean array with same length as values
3: max_val =−1
4: for i = 0 to n−1 do
5: if values[i]> max_val then
6: peaks[i] = True
7: max_val = values[i]
8: else
9: peaks[i] = False

10: end if
11: end for
12: return peaks
13: end function

5.6 Experiments 105

For proof-of-concept experimentation, we made use of the python programming lan-

guage under a GNU/Linux operating system. All experiments were conducted on a Desktop

PC using one core of an Intel Core CPU i5-6600K at 3.50GHz.

The task in our experiments was to establish whether the elapsed time of the implemented

algorithm does indeed grow linearly with n and linearly with k. As input data-sets for the

experiments, we used arbitrarily extracted fragments from Chromosome 1 of the human

reference genome GRCh37. The value of k and n were varied exponentially, and the total

time taken recorded (we use the standard convention of 1 DNA letter occupying 1 byte of

space).

In addition, we found during experimentation that although an O(n)-sized data struc-

ture for Range Minimum Queries (RMQs, see [7]) was being used to answer LCE queries,

it was slow in practice. We therefore experimented using an O(n logn)-sized data struc-

ture for RMQs [15], which was indeed faster in practice (see also [7] in this regard). In

Table 5.1, we provide a guide to the experiments we conducted. The presented experi-

ments (Figures 5.8–5.9) fully confirm our theoretical findings: i.e. the elapsed time of the

implemented algorithm grows linearly with n and linearly with k.

n vs. run time k vs. run time

O(n) RMQs Figure 5.8a
Figure 5.9

O(n logn) RMQs Figure 5.8b

Table 5.1 Guide for experimental figures.

106 Efficient Identification of k-closed Strings

(a) n vs. run time with O(n)-sized RMQs data structure.

5.6 Experiments 107

(b) n vs. run time with O(n logn)-sized RMQs data structure.

Fig. 5.8 n vs. run time with O(n) and O(n logn)-sized RMQs data structure.

108 Efficient Identification of k-closed Strings

Fig. 5.9 k vs. run time with O(n)- and O(n logn)-sized RMQs data structures

5.7 Final remarks

We have presented an algorithm and proof-of-concept experiments for finding the k-closed

border of a given string x of length n derived from an integer alphabet within Hamming

distance k. The proposed algorithm was dependent on building two simple data structures,

namely, LPMk(x) and LSMk(x). Given these data structures, it takes a further O(n) time to

determine the k-closed border. The required space is O(n).

The main improvement could therefore be in the construction of these two tables, currently

requiring O(kn) time. Decreasing this time complexity appears to be a reasonable, however

non-trivial, goal for any future work on this problem, since any faster computation of

5.7 Final remarks 109

LPMk(x) and LSMk(x) would imply a major breakthrough in approximate string matching

under the Hamming distance model.

Chapter 6

The RMQs or LCA Queries in Practice

for Small Batch

The work presented in this chapter is published as: M. Alzamel, P. Charalampopoulos, C.

Iliopoulos, and S. P. Pissis. How to answer a small batch of rmqs or LCA queries in practice.

In Combinatorial Algorithms - 28th International Workshop, IWOCA 2017, Newcastle, NSW,

Australia, July 17-21, 2017,Revised Selected Papers, pages 343–355, 2017.

6.1 Background and Contributions

6.1.1 Background

The RMQ problem (defined in Section: 2.12) and the linearly equivalent LCA problem

(defined in Section: 2.7) [15] have been studied extensively and there are a great number of

optimal algorithms for solving them.

6.1 Background and Contributions 111

In the Range Minimum Query (RMQ) problem, we are given an array A of n integers and

we are asked to answer queries of the following type: for indices i and j between 0 and n−1,

query RMQA(i, j) returns the index of a minimum element in the subarray A[i . . j].

It was first shown by Harel and Tarjan [51] that a tree can be pre-processed in O(n) time,

so that LCA queries can be answered in O(1) time per query. A major breakthrough for a

good practical constant-time LCA-algorthim was made by Berkman and Vishkin in [18].

In the Lowest Common Ancestor (LCA) problem, we are given a rooted tree T and a

tuple of two nodes (u,v), and we are asked to find the lowest node in T that has both u and v

as descendants. Farach and Bender [15] further simplified this problem by showing that the

RMQ problem is linearly equivalent to the LCA problem (shown also in [37]). Due to the

reduction, the constants remained quite large, however, making these algorithms impractical

in most real-life scenarios. To this end, Fischer and Heun [32] presented yet another optimal,

but also direct, algorithm for the RMQ problem. The same authors (but also others see [55])

showed that, due to large constants in the pre-processing and querying time, implementations

of this algorithm are often slower than implementations of the naive ones. Strenuous efforts

to engineer algorithms for these solutions have been made in [29].

6.1.2 Contributions

In this thesis we try to address a variation of the RMQ problem that seeks to answer a relatively

small batch of RMQs efficiently. This version of the problem is a core computational task

in many real-life applications such as in object inheritance during static compilation of

code [17] or in several string matching problems (see Section 6.4 for some). By a small

112 The RMQs or LCA Queries in Practice for Small Batch

batch, we mean that the number q of the queries is o(n) and we have them all in advance. It

is therefore not relevant to build an Ω(n)-sized data structure or spend Ω(n) time to build

a more succinct one. It is well-known, among practitioners and elsewhere, that these data

structures carry high hidden constants in both their pre-processing and querying time (note

that when, q = Ω(n) one can use these data structures for this computation). We would

thus like to answer this batch efficiently in practice. By efficiently in practice, we mean that

we (ultimately) want to spend n+O(q) time and O(q) space. We write n to stress that the

number of operations per entry of A should be a very small constant; e.g. scanning the array

just once or twice. In what follows, we show how existing algorithms can be easily modified

to satisfy these conditions. Experimental results presented here highlight the practicality of

this scheme. The most significant improvement obtained is for answering a small batch of

LCA queries.

6.2 Preliminaries and Definitions

A Euler tour (see [92]) of a connected, directed graph G = (V, E), is said to be a cycle that

traverses each edge of graph G exactly once, although it may visit a vertex more than once.

Figure 6.1 shows an example of traversing tree T in the form of a Euler tour.

6.2 Preliminaries and Definitions 113

R

A B

C

D E

F G

Fig. 6.1 The Euler tour of the tree T is R A R B C D C E C B F B G B R.

Reduction of LCA to RMQ: It is well-known that an RMQ instance A can be obtained

from an LCA instance on a tree T by writing down the depths of the nodes visited during an

Euler tour of T . That is, A is obtained by listing all node-visitations in a depth-first search

(DFS) traversal of T starting from the root. The LCA of two nodes translates to an RMQ

(where we compare nodes based on their level) between the first occurrences of these nodes

in A, (see [15] for the details). An example of a translation of a tree T to an array A using

a Euler tour to answer LCAT (4,7) and LCAT =(8,10) is shown in Figure 6.2. Given a tree

T , a Euler tour is conducted on tree T starting from the root node, leading to an array A as

[1,2,4,8,4,2,5,9,5,10,5,2,1,3,6,11,6,12,6,13,6,3,7,1].

114 The RMQs or LCA Queries in Practice for Small Batch

1

2

4

8

5

9 10

3

6

11 12 13

7

1 2 4 8 4 2 5 9 5 10 5 2 1 3 6 11 6 12 6 13 6 3 7 3 1

LCAT (4,7) = 1 and LCAT (8,10) = 2

Fig. 6.2 Example of reduction from LCA to RMQ

A Sparse table is a data structure designed by Bender and Farach-Colton [16] to answer

RMQ queries in respect to an array A of length n in O(n logn) processing time where queries

take O(1) time. This technique uses dynamic programming, whereby it splits the input array

A into 2 j blocks, where 0≤ j ≤ logn. It stores the result in a look up table denoted to sparse

table M[0- logn] [0-n−1], where M[i][j] stores the index of the minimum range starting at

position i of length 2 j.

Once sparse table M is completed, this technique uses that table to answer the RMQ(i, j).

The idea is to select two blocks that entirely cover the interval [i. . . j] and then find the

minimum between them. Let k = ⌊log(j− i+ 1)⌋. More formally, RMQ(i, j) = min =

(M[i][k],M[j−2k +1][k]).

6.2 Preliminaries and Definitions 115

Example 25. Given an array A, we split the array into blocks with size 20, as shown in Table

6.1, then we re-split array A with a 21 and 22 block size, as shown in Table 6.2 and Table 6.3

respectively. We create a two dimensional array M [0- 2] [0-5] to store the minimum index

in the sub array of size 2 j in M[i][j]. This process will be repeated for each i in every sub

array for Table 6.1, Table 6.2 and Table 6.3 to obtain the sparse table in Table 6.4. To answer

RMQ(0,5)= M[5−22 +1][2] = 2, where A[2] = 1. Ultimately, RMQ(0,5)=2.

0 1 2 3 4 5
4 6 1 5 7 3

0 1 2 3 4 5

Table 6.1 Splitting array A into blocks with size 20 = 1

0 1 2 3 4 5
4 6 1 5 7 3

0 2 2 3 5

Table 6.2 Splitting array A into blocks with size 21 = 2

0 1 2 3 4 5
4 6 1 5 7 3

2 2 2

Table 6.3 Splitting array A into blocks with size 22 = 4

116 The RMQs or LCA Queries in Practice for Small Batch

i
j

0 1 2

0 0 0 2
1 1 2 2
2 2 2 2
3 3 3
4 4 5
5 5

Table 6.4 Sparse table M of array A

Given an array A of n numbers, its Cartesian tree is defined as follows: the root of the

Cartesian tree is A[i] = min{A[0], . . . ,A[n−1]}, its left subtree is computed recursively on

A[0], . . . ,A[i−1] and its right subtree on A[i+1], . . . ,A[n−1], as introduced by Vuillemin in

[95]. An LCA instance can be obtained from an RMQ instance on an array A by letting T

be the Cartesian tree of A that can be constructed in O(n) time, as presented by Gabow and

Tarjan [37].

Example 26. Given an array A[9 ,2 ,8 ,10 ,1 ,5 ,6 ,7 ,2 ,10 ,3], the Cartesian tree T of A

is shown below in Figure 6.3:

6.2 Preliminaries and Definitions 117

1

2

9 8

10

2

5

6

7

3

10

i 0 1 2 3 4 5 6 7 8 9 10

A[i] 9 2 8 10 1 5 6 7 2 10 3

Fig. 6.3 The Cartesian tree T of array A[9 ,2 ,8 ,10 ,1 ,5 ,6 ,7 ,2 ,10 ,3]

118 The RMQs or LCA Queries in Practice for Small Batch

The RMQ Batch problem can be defined as follows.
RMQ Batch

Input: An array A of size n of numbers and a list Q of q pairs of indices (i, j),

0≤ i≤ j ≤ n−1

Output: RMQA(i, j) for each (i, j) ∈ Q

The LCA Queries Batch problem can be defined as follows.

LCA Queries Batch

Input: A rooted tree T with n labelled nodes 0,1, . . . ,n− 1 and a list Q of q pairs of

nodes (u,v)

Output: LCAT (u,v) for each (u,v) ∈ Q

6.3 Algorithm

Our computational model. We assume the word-RAM model with word size w = Ω(logn).

For the RMQ Batch problem, we assume that we are given a rewritable array A of size n, each

entry of which may be increased by n and still fit in a computer word. For the LCA Queries

Batch problem, we assume that we are given (an O(n)-sized representation of) a rewritable

tree T allowing constant-time access to (at least) the nodes of T that are in some query in Q

(see the representation in [41], for instance). All presented algorithms are deterministic.

6.3.1 Contracting the Input Array

Consider any two adjacent array entries A[i] and A[i+1]. Observe that if no query in Q starts

or ends at i or at i+1, then, if A[i] ̸= A[i+1], max(A[i],A[i+1]) will never be the answer to

any of the queries in Q. Hence, the idea is that we want to contract array A, so that each block

6.3 Algorithm 119

that does not contain the left or right endpoint of any query gets replaced by one element: its

minimum. A similar idea, based on sorting the list Q, has been considered in the External

Memory model [4] (see also [10]). In this section, we present a solution for our computational

model, which avoids using Ω(n) space or time, but also avoids using Ω(sort(Q)) time.

There are some technical details in order to update the queries for A into queries for the

new array using only O(q) time and extra space. We first scan the array A once and find

µ = maxi A[i]. We also create two auxiliary arrays Z0[0 . .2q−1] and Z1[0 . .2q−1]. For each

query (i, j) ∈ Q we mark positions i (and j) in the array A as follows. If A[i]≤ µ , then i has

not been marked before. Let this be the k-th position, k > 0, that gets marked (we just store

a counter for that). We store A[i] in Z0[µ + k mod 2q] and replace the value that is stored

in A[i] by µ + k. We also start a linked list at Z1[µ + k mod 2q], where we insert a pointer

to query (i, j), so that we can update it later. If A[i]> µ , then the position has already been

marked; we just add a pointer to the respective query in the linked list starting at Z1[A[i]

mod 2q].

We then scan array A again and create a new array AQ as follows: for each marked

position j (i.e. A[j] > µ), we copy the original value (i.e. Z0[A[j] mod 2q]) in AQ, while

each maximal block in A that does not contain a marked position is replaced by a single

entry—its minimum. When we insert the original entry of a marked position j of A (i.e.

Z0[A[j] mod 2q]) in AQ at position p, we go through the linked list that is stored in Z1[A[j]

mod 2q], where we have stored pointers to all the queries of the form (i, j) or (j,k), and in

each of them replace j with p . Thus, after we have scanned A, for each query (i, j) ∈ Q on

A, we will have stored the respective pair (i′, j′) on AQ.

120 The RMQs or LCA Queries in Practice for Small Batch

While creating AQ, we also store in an auxiliary array the function f : {0,1, . . . , |AQ|−

1}→ {0,1, . . . ,n−1} between positions of AQ and the respective original positions in A.

Now notice that AQ and the auxiliary arrays are all of size O(q), since in the worst

case we mark 2q distinct elements of A and contract 2q+ 1 blocks that do not contain a

marked position (we can actually throw away everything before the first marked position and

everything after the last marked position and get 4q−1 instead). The whole procedure takes

n+O(q) time and O(q) space. Note that if RMQAQ
(i′, j′) = ℓ then RMQA(i, j) = f (ℓ).

We can finally retrieve the original input array, if required, by replacing A[f (j)] by AQ[j]

for every j in the domain of f in O(q) time. A full example about how the above contracting

array process is shown below in example 27

Example 27. Assume we are given array A and Q = {(4,18),(0,6),(6,10)}, q = 3, and

1≤ k ≤ (2q−1), we scan array A to find µ = maxi(A[i]) = 38, and we scan for each i and j

∈ Q to update array A[i] with µ + k if it has not been marked before, as shown in Table 6.5.

We update Z0[µ + k mod 2q] with A[Q[k]] and we add a pointer in the linked list Z1[µ + k

mod 2q] to the corresponding position of Q(i, j) that consists Z0[µ + k mod 2q], Z0 and Z1

are presented in Table 6.6 and Table 6.7. Later, we create AQ and AF and also, we have

Q′ to store the respective positions of Q in AQ, as illustrated in Table 6.8 and Table 6.9,

respectively.

We denote [µ + k mod 2q] as index:

6.3 Algorithm 121

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
A[i] 17 22 38 4 5 8 2 8 9 21 0 12 8 7 13 3 6 14 1

A[i] =
µ + k

41 22 38 4 39 8 42 8 9 21 43 12 8 7 13 3 6 14 40

Table 6.5 Scanning array A and updating A[i] with µ + k

Z0
index 0 index 1 index 2 index 3 index 4 index 5

2 0 5 1 17
Table 6.6 Storing the original values of A[Q(i)] and A[Q(j)] in auxiliary array Z0

Z1
index 0 index 1 index 2 index 3 index 4 index 5
↓ ↓ ↓ ↓ ↓

1
2 0 0 1

↓
2

Table 6.7 Storing the corresponding position of Q in auxiliary array Z1

i 0 1 2 3 4 5 6 7 8
AQ[i] 17 4 5 8 2 8 0 3 1
AF [i] 0 3 4 5 6 7 10 15 18

Table 6.8 The contracted array AQ and auxiliary array AF

Q′(i′, j′) (2,8) (0,4) (4,6)

Table 6.9 The respective new positions of queries ∈ Q mapped to Q′ according to AQ

122 The RMQs or LCA Queries in Practice for Small Batch

6.3.2 Small RMQ Batch

An n+O(q logq)-time and O(q)-space algorithm

The algorithm presented in this section is a modification of the Sparse Table algorithm

by Bender and Farach-Colton [15] applied on array AQ; we denote it by ST-RMQ. The

modification is based on the fact that (i) we do not want to consume Ω(q logq) extra space to

answer the q queries; and (ii) we do not necessarily want to do all the pre-processing work of

the algorithm in [15], which is designed to answer any of the Θ(q2) possible queries online.

We denote this modified algorithm by ST-RMQCON and formalise it below.

Algorithm 4 ST-RMQCON(A, Q)

1: AQ←Contract(A,Q)
2: Store function f ; store (i′, j′) for every (i, j) ∈ Q
3: for each (i, j) ∈ Q do
4: if i=j then
5: Report((i,i),i)
6: else
7: Add (i, j) in bucket B⌊log(j′−i′)⌋
8: end if
9: end for

10: t←max{r|Br ̸= /0}+1
11: for m = 0 to |AQ|−1 do
12: D[m]← (AQ[m],m)
13: end for
14: for k = 0 to t−1 do
15: for each (i, j) ∈ Bk do
16: (a, p)←min(D[i′],D[j′−2k +1])
17: Report(i, j), f (p)
18: end for
19: for m = 0 to |AQ|−1 do
20: if m+2k ≤ |AQ|−1 then
21: D[m]←min(D[m],D[m+2k])
22: end if
23: end for
24: end for

6.3 Algorithm 123

The idea is first to put each (i, j) ∈ Q with i ̸= j in a bucket Bk based on the k for which

2k ≤ j′− i′ < 2k+1—we can have at most ⌈log(|AQ|−1)⌉ such buckets. In this process, if we

find queries of the form (i, i) ∈ Q, we answer them on the spot. We can do this in O(q) time.

We then create an array D of size |AQ|where we will store 2-tuples (a, p). In Step k, D[m] will

store the minimum value across AQ[m . .m+2k−1], as well as the position p, m≤ p < m+2k

where it occurs. We initialise it as D[m] = (AQ[m],m) and we will then update it by utilising

the doubling technique. At Step 0 we answer all (trivial) queries that are stored in B0; they are

of the form (i, i+1) and the answer can be found by looking at min(D[i′],D[i′+1])—note

that we compare elements of D lexicographically. When we are done with B0 we have to

update D by setting D[m] = min(D[m],D[m+20]) for all m < |AQ|−1.

Generally, in Step k, we answer the queries of Bk as follows. For query (i, j), we find

the answer by obtaining min(D[i′],D[j′−2k +1] = (a, p). We then return f (p). The point is

that {i′, . . . , i′+2k−1}∪{ j′−2k +1, . . . , j′}= {i′, . . . , j′}. When we are done with Bk we

set D[m] = min(D[m],D[m+2k]) if m+2k ≤ |AQ|−1.

We do this until we have gone through all t non-empty buckets (i.e. t = max{r|Br ̸=

/0}+1). Updating D takes O(q) time in each step, and we need in total O(q) time for the

queries. We thus need O(qt) time for this part of the algorithm. Since t = max{⌊log(j′−

i′)⌋|(f (i′), f (j′)) ∈ Q)}= O(logq), this time is O(q logq). The overall time complexity of

the algorithm is thus n+O(q logq). Notably, the space required is only O(q) because we

overwrite D in each step.

124 The RMQs or LCA Queries in Practice for Small Batch

Example 28. To answer RMQ for all queries in Q we will use arrays AQ, AF and Q′ in

Example 27 to build a bucket B that holds the index of each i′, j′ ∈ Q′ at Bk where k=

⌊log(j′− i′)⌋, as shown in Table 6.10 below. Then, for every 0≤ k ≤ 2 in Bk we will answer

the RMQ in Q′[Bk] using array min(D(i′, j′)) and we will retrieve the original index using

AF . Finally, in the step k we update D tuples for every m using doubling technique. Table

6.11 below, consists 2-tuples (a, p) data structure D with size |AQ| to store in each step k the

RMQ(m,m+2k−1) and reporting the RMQ(i′, j′) as well as RMQ(i, j).

B[⌊log(j′− i′)⌋] 0 1 2

↓ ↓
2 0

↓
1

Table 6.10 A data structure B with ⌈log(|AQ|−1)⌉ buckets

k m 0 1 2 3 4 5 6 7 8
0 (Da, Dp) (17,0) (4,1) (5,2) (8,3) (2,4) (8,5) (0,6) (3,7) (1,8)
0 (Da, Dp) (4,1) (4,1) (5,2) (2,4) (2,4) (0,6) (0,6) (1,8) (1,8)
1 min(i′, j′)=(4,6) 6 AF(6) min(i, j)=(6,10) 10
1 (Da, Dp) (4,1) (2,4) (2,4) (0,6) (0,6) (0,6) (0,6) (1,8) (1,8)
2 min(i′, j′)=(2,8) 6 AF(6) min(i, j)=(4,18) 10
2 min(i′, j′)=(0,4) 4 AF(4) min(i, j)=(0,6) 6

Table 6.11 A data structure D with size |AQ|

6.3 Algorithm 125

n+O(q)-time and O(q)-space algorithms

Offline-based algorithm: An LCA instance can be obtained from an RMQ instance on an

array A by letting T be the Cartesian tree of A that can be constructed in O(n) time [37]. It

is easy to see that RMQA(i, j) in A translates to LCAT (A[i],A[j]) in T . The first step of this

algorithm is to create array AQ in n+O(q) time, similarly to algorithm ST-RMQCON. The

second step is to construct the Cartesian tree TQ of AQ in O(q) time and extra space. Finally,

we apply the offline algorithm by Gabow and Tarjan [38] to answer q LCATQ queries in O(q)

time and extra space. This takes overall n+O(q) time and O(q) extra space. We denote this

algorithm by OFF-RMQCON. We denote by OFF-RMQ the same algorithm applied on array

A.

Online-based algorithm: The first step of this algorithm is to create array AQ in n+O(q)

time similarly to algorithm ST-RMQCON. We can then apply the algorithm by Fischer and

Heun [32] on array AQ to obtain overall an n+O(q)-time and O(q)-space algorithm. We

denote this algorithm by ON-RMQCON. We denote by ON-RMQ the same algorithm applied

on array A.

Note that in the case when q = Ω(n), i.e. the batch is not so small, we can choose to

apply algorithm OFF-RMQ or algorithm ON-RMQ on array A directly, thus obtaining an

algorithm that always works in n+O(q) time and O(min{n,q}) extra space. We therefore

obtain the following result asymptotically.

Theorem 2. The RMQ Batch problem can be solved in n+O(q) time and O(min{n,q})

extra space.

126 The RMQs or LCA Queries in Practice for Small Batch

6.3.3 Small LCA Queries Batch

In the LCA problem, we are given a rooted tree T having n labelled nodes and we are asked

to answer queries of the following type: for nodes u and v, query LCAT (u,v) returns the node

furthest from the root that is an ancestor of both u and v. Gabow and Tarjan [38] developed a

time-optimal algorithm to answer a batch Q of q LCA queries in O(n+q) time and O(n)

extra space. We denote this algorithm by OFF-LCA. In this section, we present a simple

but non-trivial algorithm for improving this, for q = o(n), to n+O(q) time and O(q) extra

space. It is well-known (see [15] for the details) that an RMQ instance A can be obtained

from an LCA instance on a tree T by writing down the depths of the nodes visited during a

Euler tour of T , as described in section 6.2.

We proceed largely as in Section 6.3.1. For each query (u,v) ∈ Q, we mark nodes u (and

v) in T as follows. If u< n then u has not been marked before. Let this be the k-th node, k > 0,

that gets marked (we just store a counter for that). We also create two arrays Z0[0 . .2q−1]

and Z1[0 . .2q−1]. We store u in Z0[n−1+ k mod 2q] and replace u by n−1+ k. We also

start a linked list at Z1[n−1+ k mod 2q], where we insert a pointer to query (u,v), so that

we can update it later. If u > n−1, the node has already been marked, and we just add a

pointer to the respective query in the linked list starting at Z1[u mod 2q].

We then do a single DFS traversal on T and create two new arrays EQ and LQ as follows.

When a marked node v (i.e. v > n−1) is visited for the first time, we write down in EQ its

original value (i.e. Z0[v mod 2q]), while for each maximal sequence of visited nodes that

are not marked we write down a single entry—the one with the minimum tree level. At the

same time, we store in LQ[v] the level of the node added in EQ[v]. While creating EQ, we also

6.3 Algorithm 127

store in an auxiliary array the function f : {0,1, . . . , |EQ|−1} → {0,1, . . . ,n−1} between

positions of EQ and the respective node labels in T .

When we insert the original entry of a marked node u of T (i.e. Z0[u mod 2q]) in EQ at

position p, we go through the linked list that is stored in Z1[u mod 2q], where we have stored

pointers to all the queries of the form (u,v) or (w,u), and replace u with p in each of these

queries. Thus, after we have finished the traversal on T , for each LCA query (u,v) ∈ Q on T ,

we will have stored the respective RMQ pair (u′,v′) on LQ; where u′ (resp. v′) corresponds to

the first occurrence of node u (resp. v) in the traversal. Thus we traverse T only once.

Now notice that EQ and the auxiliary arrays are all of size O(q), since in the worst case

we mark 2q distinct nodes of T and contract 2q+1 sequences of visited nodes that do not

contain a marked node (we can actually throw away everything before the first marked node

and everything after the last marked node and get 4q− 1 instead). The whole procedure

takes n+O(q) time and O(q) space. We are now in a position to apply algorithm ON-RMQ

on LQ to obtain the final bound. To answer the queries, note that if RMQLQ
(u′,v′) = ℓ then

LCAT (u,v) = EQ[ℓ]. We denote this algorithm by ON-LCACON. Alternatively, we can apply

algorithm ST-RMQ on LQ to solve this problem in n+O(q logq) and O(q) extra space; we

denote this algorithm by ST-LCACON.

We can finally retrieve the original input tree, if required, by replacing node f (v) by

EQ[v] for every v in the domain of f in O(q) time.

Note that in the case when q = Ω(n), i.e. the batch is not so small, we can choose to

apply algorithm OFF-LCA on tree T directly, thus obtaining an algorithm that always works

128 The RMQs or LCA Queries in Practice for Small Batch

in n+O(q) time and O(min{n,q}) extra space. We therefore obtain the following result

asymptotically.

Example 29. In Figure 6.4, given a rooted tree T and LCA queries Q= {(3,4),(0,2),(1,2)},

we transform tree T to array A via a DFS in-order traversal and we record the indices of

the node labels 0,1, . . . ,6 in an array invA. Also, we create auxiliary Qlca to store the

transformation of the Q according to the array A, as shown in tables below. Later, we apply,

for example, ST-RMQCON to answer the queries ∈ Qlca. Finally, we transform the RMQ

answers back to node labels using an array A.

0

1

3 4

2

5 6

i 0 1 2 3 4 5 6
A 3 1 4 0 5 2 6

invA 3 1 5 0 2 4 6

i 0 1 2
Qlca(L,R) (0,2) (3,5) (1,5)
RMQlca 1 3 3
LCA(u,v) 1 0 0

Fig. 6.4 Steps involved in answering LCA queries in n+O(q) time

Theorem 3. The LCA Queries Batch problem can be solved in n+O(q) time and O(min{n,q})

extra space.

6.4 Applications 129

6.4 Applications

We consider the well-known application of answering q LCA queries on the suffix tree of a

string. The suffix tree T (S) of a non-empty string S of length n is a compact tree representing

all suffixes of S (see [23], for details). The nodes of the tree, which become nodes of the

suffix tree, are called explicit nodes, while the other nodes are called implicit. Each edge

of the suffix tree can be viewed as an upward maximal path of implicit nodes, starting with

an explicit node. Moreover, each node belongs to a unique path of that kind. Then, each

node of the tree can be represented in the suffix tree by the edge it belongs to and an index

within the corresponding path. The path-label of a node v is the concatenation of the edge

labels along the path from the root to v. The nodes whose path-label corresponds to a suffix

of S are called terminal. Given two terminal nodes, u and v, in T (S), representing suffixes

S[i . .n−1] and S[j . .n−1], the string depth of node LCAT (S)(u,v) corresponds to the length

of their longest common prefix, also known as their longest common extension (LCE) [55].

In many textbook solutions for classical string matching problems (e.g. maximal palin-

dromic factors, approximate string matching with k-mismatches, approximate string matching

with k-differences, online string search with the suffix array, etc.) we have that q = Ω(n)

and/or the queries have to be answered online. In other algorithms, however, q can be much

smaller on average (in practice) and the queries can be answered offline. We describe a

few such solutions here. The common idea, as in many fast average-case algorithms, is to

minimise the number of queries by filtering out queries that can never lead to a valid solution.

130 The RMQs or LCA Queries in Practice for Small Batch

Text indexing. Suppose we are given the suffix tree T (S) of a text S of length n, and

we are asked to create the suffix links for the internal nodes. This may be necessary if the

construction algorithm does not compute suffix links (e.g. construction via suffix array) but

they are needed for an application of interest [70]. The suffix link of a node, v, with path-label

αy is a pointer to the node path-labelled y, where α ∈ Σ is a single letter and y is a string. The

suffix link of v exists if v is a non-root internal node of T . The suffix links can be computed

as follows. The first step is to mark each internal node, v, of the suffix tree with a pair of

leaves (i, j) such that the leaves labelled i and j are in subtrees rooted at different children of

v. This can be done by a DFS traversal of the tree. (Note that if an internal node v has only

one child then it must be terminal; assume that it represents the suffix S[t . .n−1]. We thus

create a suffix link to the node representing S[t +1 . .n−1]). Given an internal node v marked

with (i, j), note that v = LCAT (S)(i, j), and let αy be its path-label. To create the suffix link

from v, node u with path-label y can be obtained by the query LCAT (S)(i+1, j+1). We can

create a batch of LCA queries consisting of all such pairs. Note that in randomly generated

texts, the number of internal nodes of T (S) is O(n/h) on average, where h is the alphabet’s

entropy [87]; thus the standard Θ(n)-time and Θ(n)-space solution to this problem, building

the LCA data structure over T (S) [15], is not satisfactory.

Finding frequent gapped factors in texts. We are given a text S of length n, and positive

integers ℓ1, ℓ2, d, and k > 1. The problem is to find all couples (u,v), such that string uwv,

for any string w (known as a gap or spacer), |w|= d, occurs in S at least k times, |u|= ℓ1,

|v| = ℓ2 [56, 85]. The first step is to build T (S). We then locate all subtrees rooted at an

6.4 Applications 131

explicit node with a string depth of at least ℓ1, and whose parent has a string depth less

than ℓ1, corresponding to factors u repeated in S. From these subtrees, we only consider

the ones with at least k terminal nodes. Note that if k is large enough, we may have only

a few such subtrees. For each subtree with k′ ≥ k terminal nodes, representing suffixes

S[i1 . .n− 1],S[i2 . .n− 1], . . . ,S[ik′ . .n− 1], we create a batch of LCA queries between all

pairs (i j + ℓ1 + d, i j′ + ℓ1 + d) and report occurrences when LCA queries extend pairwise

matches to a length of at least ℓ2 for a set of at least k such suffixes (this algorithm can be

easily generalised for any number of gaps).

Pattern matching on weighted sequences. A weighted sequence specifies, for every

position, the probability of each letter of the alphabet occurring. A weighted sequence thus

represents many different strings, each with the probability of occurrence equal to the product

of probabilities of its letters at subsequent positions of the weighted sequence. The problem

is to find all occurrences of a (standard) pattern P of length m with probability at least 1/z

in a weighted sequence S of length n [65]. The first step is to construct the heavy string of

S, denoted by H(S), by assigning to H(S)[i] the most probable letter of S[i] (resolving ties

arbitrarily). The second step is to build T (P$H(S)), $ /∈ Σ. We can then compute the first

mismatch between P and every substring of H(S). Note that the number of positions in S

where two or more letters occur with probability at least 1/z can be small, and so we consider

only those positions that cause a legitimate mismatch between P and a factor of H(S). We

then use O(logz) batches of LCA queries per that starting position to extend a match to a

132 The RMQs or LCA Queries in Practice for Small Batch

length of at least m. This is because P cannot match a weighted sequence S with probability

1/z if more than ⌊logz⌋ mismatches occur between P and H(S) [65].

Pattern matching with don’t care letters. We are given a pattern P of length m, with

m− k letters from alphabet Σ and k occurrences of a don’t care letter (i.e. a letter matching

itself and any letter from Σ), and a text S of length n. The problem is to find all occurrences

of P in S [83]. The first step is to build T (P′$S), $ /∈ Σ, where P′ is the string obtained from

P by replacing don’t care letters with a letter # /∈ Σ. We then locate the subtree rooted at

the highest explicit node corresponding to the longest factor f of P′ without #’s. We also

locate, in the same subtree, all V terminal nodes corresponding to starting positions of f in S.

Note that if f is long enough, we may have only a few such nodes. Since we know where

the don’t care letters occur in P, we can create a batch of kV LCA queries. An occurrence is

then reported when LCA queries extend a match to a length of at least m. (This algorithm

can be easily generalised for any number of patterns).

Circular string matching. We are given a pattern P of length m and a text S of length n.

The problem is to find all occurrences of P, or any of its cyclic shifts in S [11]. The first

step is to build T (PP$PRPR#S%SR), where $,#,% /∈ Σ, and XR denotes the reverse image of

string X . We then conceptually split P in two fragments of lengths ⌈m/2⌉ and ⌊m/2⌋. Any

cyclic shift of P contains as a factor at least one of these two fragments. We thus locate the

two subtrees rooted at the highest explicit nodes corresponding to the fragments. We also

locate in the same subtrees all V terminal nodes corresponding to starting positions of the

fragments in S. Note that if m is long enough, we may have only a few such nodes. We create

6.5 Implementation 133

a batch of at most 2V LCA queries in order to extend to the left and to the right and report

occurrences when LCA queries extend a match to a length of at least m. (This algorithm can

be easily generalised for any number of patterns).

6.5 Implementation

We have implemented algorithms ST-RMQCON, OFF-RMQCON and ON-RMQCON in the

C++ programming language. We have also implemented the same algorithms applied on the

original array A, denoted by ST-RMQ, OFF-RMQ and ON-RMQ, respectively; as well as

the brute-force algorithm for answering RMQs in the two corresponding flavours, denoted

by BF-RMQCON and BF-RMQ. For the implementation of ON-RMQCON and ON-RMQ, we

used the sdsl-lite library [44]. If an algorithm requires f (n,q) time and g(n,q) extra space,

we say that the algorithm has complexity < f (n,q),g(n,q) >. Table 6.12 summarises the

implemented algorithms. The following experiments were conducted on a Desktop PC using

one core of an Intel Core i5-4690 CPU at 3.50GHz and 16GB of RAM. All programs were

compiled with g++ version 5.4.0 at optimisation level 3 (-O3).

Experiment I. We generated random (uniform distribution) input arrays of n = 1,000,000

and n = 100,000,000 entries (integers), and random (uniform distribution) lists of queries

of sizes varying from
√

n to 128
√

n, doubling each time. We compared the runtime of the

implementations of the algorithms in Table 6.12 on these inputs. In particular, for each

algorithm, we compared the standard implementation against the one with the contracted

134 The RMQs or LCA Queries in Practice for Small Batch

Non-Contracted Contracted

ST-RMQ < O(n logn+q),O(n logn)> ST-RMQCON < n+O(q logq),O(q)>

ON-RMQ < O(n+q),O(n)> ON-RMQCON < n+O(q),O(q)>

OFF-RMQ < O(n+q),O(n)> OFF-RMQCON < n+O(q),O(q)>

BF-RMQ < O(qn),O(1)> BF-RMQCON < n+O(q2),O(q)>

Table 6.12 Time and space complexities of algorithms for answering RMQs offline.

array. We used the large array, n = 100,000,000, for ST-RMQ and ON-RMQ because they

are significantly faster, and the small one, n = 1,000,000, for OFF-RMQ and BF-RMQ. The

results plotted in Figure 6.5 show that the proposed scheme of contracting the input array

substantially improves the performance for all implementations.

6.5 Implementation 135

 0

 1

 2

 3

 4

 5

 6

 7

 200000 400000 600000 800000 1x10
6

 1.2x10
6

T
im

e
 [

s
]

Number q of queries [-]

ST-RMQ
ST-RMQCON

(a) n = 100,000,000

 0

 1

 2

 3

 4

 5

 6

 7

 8

 200000 400000 600000 800000 1x10
6

 1.2x10
6

T
im

e
 [

s
]

Number q of queries [-]

ON-RMQ
ON-RMQCON

(b) n = 100,000,000

136 The RMQs or LCA Queries in Practice for Small Batch

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20000 40000 60000 80000 100000 120000

T
im

e
 [

s
]

Number q of queries [-]

OFF-RMQ
OFF-RMQCON

(c) n = 1,000,000

 0

 5

 10

 15

 20

 25

 30

 35

 20000 40000 60000 80000 100000 120000

T
im

e
 [

s
]

Number q of queries [-]

BF-RMQ
BF-RMQCON

(d) n = 1,000,000

Fig. 6.5 Impact of the proposed scheme on the RMQ algorithms of Table 6.12.

6.5 Implementation 137

Experiment II. We generated random input arrays of n = 1,000,000,000 entries, and

random lists of queries of sizes varying from
√

n to 128
√

n, doubling each time. We then

compared the runtime of ON-RMQCON and ST-RMQCON on these inputs. The results

are plotted in Figure 6.6a. We observe that ST-RMQCON becomes two times faster than

ON-RMQCON as q grows. Notably, it was not possible to run this experiment with ON-RMQ,

which implements a succinct data structure for answering RMQs, due to insufficient amount

of main memory.

Experiment III. In addition, we have implemented algorithms ST-LCACON and OFF-LCA

for answering LCA queries. We first generated a random input array of n = 1,000,000

entries and used this array to compute its Cartesian tree. Next we generated random lists of

LCA queries of sizes varying from
√

n to 128
√

n, doubling each time. We then compared

the runtime of OFF-LCA and ST-LCACON on these inputs. The results plotted in Figure 6.6b

show that the implementation of ST-LCACON is more than two orders of magnitude faster

than the implementation of OFF-LCA, highlighting the impact of the proposed scheme on

LCA queries.

138 The RMQs or LCA Queries in Practice for Small Batch

 0

 2

 4

 6

 8

 10

 12

 14

 16

 500000 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

 4x10
6

T
im

e
 [

s
]

Number q of queries [-]

ON-RMQCON
ST-RMQCON

(a) ON-RMQCON vs ST-RMQCON, n = 1,000,000,000

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20000 40000 60000 80000 100000 120000

T
im

e
 [

s
]

Number q of queries [-]

OFF-LCA
ST-LCACON

(b) OFF-LCA vs ST-LCACON, n = 1,000,000

Fig. 6.6 Elapsed-time of ON-RMQCON vs ST-RMQCON and of OFF-LCA vs ST-LCACON.

6.6 Conclusion 139

6.6 Conclusion

In this chapter, we presented a new family of algorithms for answering a small batch of

RMQs or LCA queries in practice. The main purpose was to show that if the number, q,

of queries is small with respect to n, and we have them all at hand, existing algorithms for

RMQs and LCA queries can be easily modified to perform in n+O(q) time and O(q) extra

space. The presented experimental results indeed show that with this new scheme significant

practical improvements can be obtained; in particular, for answering a small batch of LCA

queries.

Specifically, algorithms ST-RMQCON and ST-LCACON, our modifications to the Sparse

Table algorithm whose main catch is Θ(n logn) space [15], seem to be the best way to answer

in practice a small batch of RMQs and LCA queries, respectively. A library implementation

of ST-RMQCON is available at https://github.com/maialzamel/ rmqo under the GNU General

Public License.

Recently, Kowaliski and Grabowski in [66] have made further improvements in the

computation of the "small batch" RMQs problems. The authors introduced a hybrid approach,

which is a slight improvement in practice. Their algorithm does some prepossessing and it

creates a data structure, then when it receives the "batch of queries", it augments the data

structure, in order to answer them.

https://github.com/maialzamel/rmqo

Chapter 7

Conclusion and Future Work

This thesis focuses on a number of computational problems, which are linked to applications

that analyse molecular sequences and are motivated by real life problems. The aim of

this thesis is to design powerful, fast and practical string algorithms, as these are vital to

bio-informatics and have applications in other areas like security, privacy and music analysis.

Herein, we present a brief summary of the presented work in this thesis and discusses current

problems and future work.

In Chapter 3, our main contribution is the design of an O(n) space and time algorithm

for integer alphabets of size σ , if m = Ω(logσ n) is average to solve the k-mappability

problem. Experimental results are provided for our algorithm in agreement with Theorem

1. We also provide comparative results for our algorithms relative to state-of-the-art im-

plementations [26]. The experiments show that our algorithm requires predicted linear

time in n up to a certain value of n, according to Theorem 1. However, our implementa-

tion becomes considerably faster with increasing values of m and fixed n (see Theorem

141

1). Additionally, we demonstrated that the memory usage of our implementation grows

linearly with n (see Theorem 1). The k-mappability algorithm is an average-case algorithm

with a specific m and n. Additionally, we provided, in Appendix A, an algorithm requiring

O(min{nm,n logn log logn}) of time and O(n) space for the worst case. The same authors in

[6] presented an O(min{nmk,n logk+1 n}) time and O(n) space, k =O(1) and constant-sized

alphabets to solve the k-mappability problem. Furthermore, our future work is to apply the

technique of Thankachan et al. [93] to obtain O(min{nm,n logn}) time and O(n) space for

when k = 1 (for a preliminary exposition of the ideas, see [52]). Additionally, in [86] we

present GenMap, a more practical algorithm for computing the mappability of genomes up

to k errors, which is based on the C++ sequence analysis library SeqAn library [88]. This is

significantly faster, often by a magnitude, than the algorithm from the widely used GEM suite

in [26], while also refraining from approximations. An open question for the k-mappability

problem concerns whether k-mappability can be solved over an o(n logn)-time. Another

important question to investigate is the k-mappability problem under edit distance. In this

approach, all possible factors of length of exactly m, m− k and m+ k should be counted.

Chapter 4 sets out a linear algorithm for string comparison to determine whether two GD

strings have a non-empty intersection. Furthermore, a string comparison tool has been applied

to devise a simple algorithm to compute all palindromes in a GD string. In Section 4.3.1

we sketched how automata can be used to compare two ED strings. Recall that an ED

string is a more general conceptualization of a degenerate string, where a degenerate letter

generally contains strings of different lengths, as well as an empty string. For GD strings,

we demonstrated that a comparison can be done in linear time (Theorem 3). An interesting

142 Conclusion and Future Work

open problem relates to whether we can devise a more efficient (than the O(NM)-time

automata-based) approach to establish whether the two languages represented by two ED

strings of sizes N and M have a non-empty intersection; or, whether more generally, they

share a sufficiently long substring.

In Chapter 5, a special type of string, called a closed string was studied. String x is said to

be closed if it has a nonempty proper prefix that is also a suffix, and which otherwise occurs

nowhere else in x. In this chapter, there is an O(kn)-time and O(n) space algorithm to decide

whether an input string of length n over the integer alphabet describes a closed string of up

to k mismatches. The pseudocode for implementation and proof-of-concept experimental

results has also been demonstrated. Another approach to investigate is finding an efficient

algorithm under the Edit distance model for a k-closed string.

In Chapter 6, a new family of algorithms for answering a small batch of RMQs or LCA

queries has been given. The main goal of this study was to find n+O(q) time and O(q) extra

space algorithm to answer RMQs and LCA queries, when the number of q of queries is small

with respect to n, and we have them all available. The efficiency of the algorithms presented

has been demonstrated extensively in the experimental results. Especially, to answer a small

batch of LCA queries. Later, the "small batch" RMQs problems were improved further

by Kowaliski and Grabowski in [66]. The authors introduced a hybrid approach, which

represented a slight improvement in practice. Their algorithm performs some prepossessing

and creates a data structure, and when it receives the "batch of queries", it augments the data

structure to answer them.

References

[1] K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051,
1987.

[2] M. Adamczyk, M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, and J. Radoszewski.
Palindromic decompositions with gaps and errors. In CSR, volume 10304 of LNCS,
pages 48–61. Springer International Publishing, 2017.

[3] M. Adamczyk, M. Alzamel, P. Charalampopoulos, and J. Radoszewski. Palindromic
decompositions with gaps and errors. Int. J. Found. Comput. Sci., 29(8):1311–1329,
2018.

[4] P. Afshani and N. Sitchinava. I/O-efficient range minima queries. In SWAT 2014,
volume 8503 of LNCS, pages 1–12. Springer, 2014.

[5] Y. Almirantis, P. Charalampopoulos, J. Gao, C. S. Iliopoulos, M. Mohamed, S. P. Pissis,
and D. Polychronopoulos. On avoided words, absent words, and their application to
biological sequence analysis. Algorithms for Molecular Biology, 12(1):5, 2017.

[6] M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, J. Ra-
doszewski, and J. Straszynski. Efficient computation of sequence mappability. In
T. Gagie, A. Moffat, G. Navarro, and E. Cuadros-Vargas, editors, String Processing
and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Peru,
October 9-11, 2018, Proceedings, volume 11147 of Lecture Notes in Computer Science,
pages 12–26. Springer, 2018.

[7] M. Alzamel, P. Charalampopoulos, C. S. Iliopoulos, and S. P. Pissis. How to answer
a small batch of rmqs or lca queries in practice. In L. Brankovic, J. Ryan, and W. F.
Smyth, editors, Combinatorial Algorithms, volume 10765 of Lecture Notes in Computer
Science, pages 343–355, Cham, 2018. Springer International Publishing.

[8] M. Alzamel, J. Gao, C. S. Iliopoulos, and C. Liu. Efficient computation of palindromes
in sequences with uncertainties. Fundam. Inform., 163(3):253–266, 2018.

[9] P. Antoniou, J. W. Daykin, C. S. Iliopoulos, D. Kourie, L. Mouchard, and S. P. Pissis.
Mapping uniquely occurring short sequences derived from high throughput technologies
to a reference genome. In 2009 9th International Conference on Information Technology
and Applications in Biomedicine, pages 1–4. IEEE Computer Society, 2009.

[10] L. Arge, J. Fischer, P. Sanders, and N. Sitchinava. On (dynamic) range minimum
queries in external memory. In WADS 2013, volume 8037 of LNCS, pages 37–48.
Springer, 2013.

144 References

[11] T. Athar, C. Barton, W. Bland, J. Gao, C. S. Iliopoulos, C. Liu, and S. P. Pissis. Fast
circular dictionary-matching algorithm. Mathematical Structures in Computer Science,
27(2):143–156, 2017.

[12] G. Badkobeh, H. Bannai, K. Goto, T. I, C. S. Iliopoulos, S. Inenaga, S. J. Puglisi, and
S. Sugimoto. Closed factorization. Discrete Applied Mathematics, 212:23–29, 2016.
Stringology Algorithms.

[13] G. Badkobeh, G. Fici, and Z. Lipták. On the number of closed factors in a word.
In A.-H. Dediu, E. Formenti, C. Martín-Vide, and B. Truthe, editors, Language and
Automata Theory and Applications, pages 381–390, Cham, 2015. Springer International
Publishing.

[14] C. Barton, C. S. Iliopoulos, S. P. Pissis, and W. F. Smyth. Fast and simple computations
using prefix tables under hamming and edit distance. In K. Jan, M. Miller, and
D. Froncek, editors, Combinatorial Algorithms, pages 49–61, Cham, 2015. Springer
International Publishing.

[15] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In G. H. Gonnet,
D. Panario, and A. Viola, editors, LATIN 2000: Theoretical Informatics, 4th Latin
American Symposium, 2000, Proceedings, volume 1776 of Lecture Notes in Computer
Science, pages 88–94. Springer, 2000.

[16] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN, volume
1776 of LNCS, pages 88–94. Springer, 2000.

[17] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–
94, 2005.

[18] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM J.
Comput., 22(2):221–242, 1993.

[19] G. Bernardini, N. Pisanti, S. P. Pissis, and G. Rosone. Pattern matching on elastic-
degenerate text with errors. In SPIRE, volume 10508 of LNCS, pages 74–90. Springer,
2017.

[20] S. Brenner, F. Jacob, and M. Meselson. An unstable intermediate carrying information
from genes to ribosomes for protein synthesis. Nature, 190(4776):576–581, 1961.

[21] M. Bucci, A. de Luca, and A. De Luca. Rich and Periodic-Like Words, pages 145–155.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[22] T. C. P. Consortium. Computational pan-genomics: status, promises and challenges.
Briefings in Bioinformatics, 19(1):118–135, 2018.

[23] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, New York, NY, USA, 2007.

[24] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, J. Radoszewski, W. Rytter, and
T. Walen. Covering problems for partial words and for indeterminate strings. Theoretical
Computer Science, 698:25–39, 2017.

References 145

[25] M. Crochemore and G. Tischler. The gapped suffix array: A new index structure for
fast approximate matching. In E. Chávez and S. Lonardi, editors, String Processing
and Information Retrieval - 17th International Symposium, SPIRE 2010. Proceedings,
volume 6393 of Lecture Notes in Computer Science, pages 359–364. Springer, 2010.

[26] T. Derrien, J. Estellé, S. Marco Sola, D. Knowles, E. Raineri, R. Guigó, and P. Ribeca.
Fast computation and applications of genome mappability. PLoS ONE, 7(1), 2012.

[27] M. Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, pages 137–143. IEEE
Computer Society, 1997.

[28] M. Farach. Optimal suffix tree construction with large alphabets. In FOCS, pages
137–143. IEEE, 1997.

[29] H. Ferrada and G. Navarro. Improved range minimum queries. J. Discrete Algorithms,
43:72–80, 2016.

[30] G. Fici. A classification of trapezoidal words. In Proceedings 8th International Con-
ference Words 2011, Prague, volume 63 of Electronic Proceedings in Theoretical
Computer Science, pages 129–137, 2011.

[31] J. Fischer. Inducing the LCP-array. In F. Dehne, J. Iacono, and J. Sack, editors, Algo-
rithms and Data Structures - 12th International Symposium, WADS 2011. Proceedings,
volume 6844 of Lecture Notes in Computer Science, pages 374–385. Springer, 2011.

[32] J. Fischer and V. Heun. Theoretical and practical improvements on the rmq-problem,
with applications to lca and lce. In CPM 2006, volume 4009 of LNCS, pages 36–48.
Springer Berlin Heidelberg, 2006.

[33] J. Fischer, D. Köppl, and F. Kurpicz. On the benefit of merging suffix array intervals
for parallel pattern matching. In 27th Annual Symposium on Combinatorial Pattern
Matching, CPM 2016, pages 26:1–26:11, 2016.

[34] N. A. Fonseca, J. Rung, A. Brazma, and J. C. Marioni. Tools for mapping high-
throughput sequencing data. Bioinformatics, 28(24):3169–3177, 2012.

[35] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst
case access time. J. ACM, 31(3):538–544, 1984.

[36] M. C. Frith, U. Hansen, J. L. Spouge, and Z. Weng. Finding functional sequence
elements by multiple local alignment. Nucleic Acids Res., 32(1):189–200, 2004.

[37] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In STOC 1984, pages 135–143. ACM, 1984.

[38] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

[39] J. A. Gally and G. M. Edelman. The genetic control of immunoglobulin synthesis.
Annual Review of Genetics, 6(1):1–46, 1972.

146 References

[40] J. Gao and R. Impagliazzo. Orthogonal vectors is hard for first-order properties on
sparse graphs. Electronic Colloquium on Computational Complexity (ECCC), 23:53,
2016.

[41] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for
balanced parentheses. Theor. Comput. Sci., 368(3):231–246, 2006.

[42] E. A. Gladyshev and I. R. Arkhipova. Rotifer rdna-specific r9 retrotransposable elements
generate an exceptionally long target site duplication upon insertion. Gene, 448(2):145
– 150, 2009. Genomic Impact of Eukaryotic Transposable Elements.

[43] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with
succinct data structures. In 13th International Symposium on Experimental Algorithms,
(SEA 2014), pages 326–337, 2014.

[44] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug and play with
succinct data structures. In SEA, volume 8504 of LNCS, pages 326–337, 2014.

[45] G. Gourdel, T. Kociumaka, J. Radoszewski, and T. Starikovskaya. Approximating
Longest Common Substring with k mismatches: Theory and Practice. In I. L. Gørtz
and O. Weimann, editors, 31st Annual Symposium on Combinatorial Pattern Matching
(CPM 2020), volume 161 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 16:1–16:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

[46] F. Gros, H. Hiatt, W. Gilbert, C. G. Kurland, R. Risebrough, and J. D. Watson. Unstable
ribonucleic acid revealed by pulse labelling of escherichia coli. Nature, 190(4776):581,
1961.

[47] R. Grossi, C. S. Iliopoulos, C. Liu, N. Pisanti, S. P. Pissis, A. Retha, G. Rosone,
F. Vayani, and L. Versari. On-line pattern matching on a set of similar texts. In CPM,
LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[48] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge University Press
New York, New York, 1997.

[49] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

[50] R. W. Hamming. Error detecting and error correcting codes. The Bell system technical
journal, 29(2):147–160, 1950.

[51] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2):338–355, 1984.

[52] S. Hooshmand, P. Abedin, D. Gibney, S. Aluru, and S. V. Thankachan. Faster compu-
tation of genome mappability. In A. Shehu, C. H. Wu, C. Boucher, J. Li, H. Liu, and
M. Pop, editors, Proceedings of the 2018 ACM International Conference on Bioinfor-
matics, Computational Biology, and Health Informatics, BCB 2018, Washington, DC,
USA, August 29 - September 01, 2018, page 537. ACM, 2018.

References 147

[53] J. E. Hopcroft. Introduction to automata theory, languages, and computation. Pearson
Education India, 2008.

[54] L. Ilie, G. Navarro, and L. Tinta. The longest common extension problem revisited
and applications to approximate string searching. Journal of Discrete Algorithms,
8(4):418–428, 2010.

[55] L. Ilie, G. Navarro, and L. Tinta. The longest common extension problem revisited and
applications to approximate string searching. J. Discrete Algorithms, 8(4):418–428,
2010.

[56] C. Iliopoulos, J. Mchugh, P. Peterlongo, N. Pisanti, W. Rytter, and M.-F. Sagot. A first
approach to finding common motifs with gaps. International Journal of Foundations of
Computer Science, 16(6):1145–1155, 2005.

[57] C. S. Iliopoulos, R. Kundu, and S. P. Pissis. Efficient pattern matching in elastic-
degenerate texts. In LATA, volume 10168 of LNCS, pages 131–142. Springer Interna-
tional Publishing, 2017.

[58] C. S. Iliopoulos and J. Radoszewski. Truly Subquadratic-Time Extension Queries and
Periodicity Detection in Strings with Uncertainties. In CPM, volume 54 of LIPIcs,
pages 8:1–8:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[59] R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

[60] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[61] IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations and symbols
for nucleic acids, polynucleotides, and their constituents. Biochemistry, 9(20):4022–
4027, 1970.

[62] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In In-
ternational Colloquium on Automata, Languages, and Programming, pages 943–955.
Springer, 2003.

[63] D. K. Kim, J. S. Sim, H. Park, and K. Park. Constructing suffix arrays in linear time.
Journal of Discrete Algorithms, 3(2-4):126–142, 2005.

[64] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings. SIAM
journal on computing, 6(2):323–350, 1977.

[65] T. Kociumaka, S. P. Pissis, and J. Radoszewski. Pattern Matching and Consensus
Problems on Weighted Sequences and Profiles. In ISAAC 2016, volume 64 of LIPIcs,
pages 46:1–46:12. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[66] T. M. Kowalski and S. Grabowski. Faster range minimum queries. Software: Practice
and Experience, 48(11):2043–2060, 2018.

148 References

[67] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710, 1966.

[68] R. S. Linheiro and C. M. Bergman. Whole genome resequencing reveals natural target
site preferences of transposable elements in drosophila melanogaster. PLOS ONE,
7(2):1–12, 02 2012.

[69] R. J. Lipton. On The Intersection of Finite Automata, pages 145–148. Springer US,
Boston, MA, 2010.

[70] V. Mäkinen, D. Belazzougui, F. Cunial, and A. I. Tomescu. Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, 2015.

[71] G. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. Journal of the ACM, 22(3):346–351, 1975.

[72] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993.

[73] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. siam
Journal on Computing, 22(5):935–948, 1993.

[74] G. Manzini. Longest common prefix with mismatches. In C. S. Iliopoulos, S. J.
Puglisi, and E. Yilmaz, editors, String Processing and Information Retrieval - 22nd
International Symposium, SPIRE 2015, Proceedings, volume 9309 of Lecture Notes in
Computer Science, pages 299–310. Springer, 2015.

[75] J. C. Martin. Introduction to Languages and the Theory of Computation, volume 4.
McGraw-Hill NY, 1991.

[76] L. A. McCue, W. Thompson, S. Carmack, M. P. Ryan, J. S. Liu, V. Derbyshire, and
C. E. Lawrence. Phylogenetic footprinting of transcription factor binding sites in
proteobacterial genomes. Nucleic Acids Res., 29(3):774–782, 2001.

[77] M. L. Metzker. Sequencing technologies – the next generation. Nat. Rev. Genet.,
11(1):31–46, 2010.

[78] E. F. Moore. The shortest path through a maze. In Proceedings of the International
Symposium on the Theory of Switching, pages 285–292. Harvard University Press,
1959.

[79] D. R. Morrison. Patricia—practical algorithm to retrieve information coded in alphanu-
meric. Journal of the ACM (JACM), 15(4):514–534, 1968.

[80] B. M. Muhire, M. Golden, B. Murrell, P. Lefeuvre, J.-M. Lett, A. Gray, A. Y. Poon,
N. K. Ngandu, Y. Semegni, E. P. Tanov, et al. Evidence of pervasive biologically
functional secondary structures within the genomes of eukaryotic single-stranded DNA
viruses. Journal of virology, 88(4):1972–1989, 2014.

[81] E. W. Myers. Approximate matching of network expressions with spacers. Journal of
Computational Biology, 3(1):33–51, 1996.

References 149

[82] G. Nong, S. Zhang, and W. H. Chan. Linear suffix array construction by almost pure
induced-sorting. In J. A. Storer and M. W. Marcellin, editors, 2009 Data Compression
Conference (DCC 2009), pages 193–202. IEEE Computer Society, 2009.

[83] R. Y. Pinter. Efficient string matching with don’t-care patterns. In Combinatorial
Algorithms on Words, volume F12 of NATO ASI Series, pages 11–29. Springer Berlin
Heidelberg, 1985.

[84] N. Pisanti, H. Soldano, M. Carpentier, and J. Pothier. A relational extension of the notion
of motifs: Application to the common 3d protein substructures searching problem.
Journal of Computational Biology, 16(12):1635–1660, 2009.

[85] S. P. Pissis. MoTeX-II: structured motif extraction from large-scale datasets. BMC
Bioinformatics, 15:235, 2014.

[86] C. Pockrandt, M. Alzamel, C. S. Iliopoulos, and K. Reinert. Genmap: Fast and exact
computation of genome mappability. bioRxiv, page 611160, 2019.

[87] M. Régnier and P. Jacquet. New results on the size of tries. IEEE Trans. Information
Theory, 35(1):203–205, 1989.

[88] K. Reinert, T. H. Dadi, M. Ehrhardt, H. Hauswedell, S. Mehringer, R. Rahn, J. Kim,
C. Pockrandt, J. Winkler, E. Siragusa, et al. The seqan c++ template library for
efficient sequence analysis: A resource for programmers. Journal of biotechnology,
261:157–168, 2017.

[89] R. T. Schuh. Major patterns in vertebrate evolution. Systematic Biology, 27(2):172,
1978.

[90] H. Soldano, A. Viari, and M. Champesme. Searching for flexible repeated patterns
using a non-transitive similarity relation. Pattern Recognition Letters, 16(3):233–246,
1995.

[91] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

[92] R. E. Tarjan and U. Vishkin. Finding biconnected componemts and computing tree
functions in logarithmic parallel time. In 25th Annual Symposium onFoundations of
Computer Science, 1984., pages 12–20. IEEE, 1984.

[93] S. V. Thankachan, A. Apostolico, and S. Aluru. A provably efficient algorithm for the
k-mismatch average common substring problem. Journal of Computational Biology,
23(6):472–482, 2016.

[94] P. Vesely. Molecular biology of the cell. Scanning: The Journal of Scanning Micro-
scopies, 26(3):153–153, 2004.

[95] J. Vuillemin. A unifying look at data structures. Communications of the ACM, 23(4):229–
239, 1980.

[96] J. D. Watson, F. H. Crick, et al. Molecular structure of nucleic acids. Nature,
171(4356):737–738, 1953.

150 References

[97] P. Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (swat 1973), pages 1–11. IEEE, 1973.

[98] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci, 348(2-3):357–365, 2005.

[99] C. Wuilmart, J. Urbain, and D. Givol. On the location of palindromes in immunoglobulin
genes. Proceedings of the National Academy of Sciences of the United States of America,
74(6):2526–2530, 1977.

Appendix A

Efficient Worst-Case Algorithms of

k-mappability

A.1 Efficient Worst-Case Algorithms

A.1.1 O(mn)-time and O(n)-space algorithm

In this section we assume that x is a string over an integer alphabet Σ. The main idea is that

we want to first find all pairs x[i1 . . i1 +m−1]≈1 x[i2 . . i2 +m−1] that have a mismatch in

the first position, then in the second, and so on.

Let us fix 0≤ j < m. In order to identify the pairs x[i1 . . i1 +m−1]≈1 x[i2 . . i2 +m−1]

with x[i1+ j] ̸= x[i2+ j] (i.e. with the mismatch in the jth position), we do the following. For

every i = 0,1, . . . ,n−m, we find the explicit or implicit node ui, j in T (x) that represents

x[i . . i+ j−1] and the node vi, j in T (rev(x)) that represents rev(x[i+ j+1 . . i+m−1]) =

152 Efficient Worst-Case Algorithms of k-mappability

rev(x)[n− i−m . .n− i− j−2]. In each such node vi, j, we create a set V (vi, j)—if it has not

already been created—and insert the triple (ui, j,x[i+ j], i).

When we have done this for all possible starting positions of x, we group the triples

in each set V (v) by the node variable (i.e., the first component in the triples). For each

such group in V (v) we count the number of triples that have each letter of the alphabet and

increment array C accordingly. More precisely, if V (v) contains q triples that correspond

to the same node u, among which r correspond to the letter c ∈ Σ, then for each such triple

(u,c, i) ∈V (v) we increment C[i] by q− r; we subtract r to avoid counting equal factors in C.

Before we proceed with the computations for the next index j, we delete all the sets V (v).

We formalize this algorithm, denoted by 1-MAP, in the pseudocode presented below and

provide an example.

Algorithm 5 1−Map(x,n,m)

T (x)← Su f f ixTree(x)
T (x)← Su f f ixTree(rev(x))
for string-depth j = 0 to m−1 do

for i = 0 to n−m do
ui, j← (NodeT (x)(x[i . . i+ j−1])
vi, j← (NodeT (rev(x))rev(x)[n− i−m . .n− i− j−2])
Insert(ui, j,x[i+ j], i) to V (vi, j)

end for
for every node v of string-depth m− j−2 in T (rev(x)) do

Group triples in V (v) by the node variable
for a group corresponding to the node u in V (v) do

Count number of triples with each letter c ∈ Σ

Update C[i] accordingly for each triple (u,c, i)
end for
Delete V (v)

end for
end for

A.1 Efficient Worst-Case Algorithms 153

Example 30. Suppose we have V (v) = {(u,A, i1),(u,A, i2),(u,A, i3),(u,C, i4),

(u,C, i5),(u,C, i6),(u,G, i7),(u,G, i8),(u,T, i9)}, for some distinct positions i1, i2, . . . , i9. We

then increment C[i1], C[i2], C[i3], C[i4], C[i5], and C[i6] by 6; C[i7] and C[i8] by 7; and C[i9]

by 8.

We now analyze the time complexity of this algorithm. The algorithm iterates j from 0

to m−1. In the jth iteration, we need to compute {ui, j,vi, j | i = 0, . . . ,n−m}. When j = 0,

ui,0 for every i is the root of T (x) and we can find vi,0 for all i naïvely in O(mn) time. For

j > 0, vi, j can be found in O(1) time from vi, j−1 by moving one letter up in T (rev(x)) for

all i, while ui, j can be obtained from ui, j−1 by going down in T (x) based on letter x[i+ j].

We then include (ui, j,x[i+ j], i) in V (vi, j).

This requires in total O(mn) randomized time due to perfect hashing [35] which allows

to go down from a node in T (x) (or in T (rev(x))) based on a letter in O(1) randomized

time. We can actually avoid this randomization, as queries for a particular child of a node are

asked in our solution in a somewhat off-line fashion: we use them only to compute vi,0 (m

times) and ui, j (from ui, j−1).

Observation 1. For an integer alphabet Σ = {1, . . . ,n}, one can answer off-line O(n) queries

in T (x) asking for a child of an explicit or implicit node u labelled with the letter c ∈ Σ in

(deterministic) O(n) time.

Proof. A query for an implicit node u is answered in O(1) time, as there is only one outgoing

edge to check. All the remaining queries can be sorted lexicographically as pairs (u,c) using

radix sort. We can also assume that the children of every explicit node of T (x) are ordered

154 Efficient Worst-Case Algorithms of k-mappability

by the letter (otherwise we also radix sort them). Finally, all the queries related to a node u

can be answered in one go by iterating through the children list of u once.

Lastly, we use bucket sort to group the triples for each V (v) according to the node variable

(recall that the nodes are represented by the edge and the index within the edge) and update

the counters in O(n) time in total (using a global array indexed by the letters from Σ, which is

zeroed in O(|V (v)|) time after each V (v) has been processed). Overall the algorithm requires

O(mn) time. The suffix trees require O(n) space and we delete the sets V (vi, j) after the jth

iteration; the space complexity of the algorithm is thus O(n). We obtain the following result.

Theorem 4. Given a string of length n over an integer alphabet and an integer m, where

1≤ m < n, the 1-MAPPABILITY problem can be solved in O(mn) time and O(n) space.

Corollary 1 and Theorem 4 imply the following result.

Theorem 5. Given a string x of length n over an integer alphabet Σ of size σ > 1 with the

letters of x being independent and identically distributed random variables, uniformly dis-

tributed over Σ, the 1-MAPPABILITY problem can be solved in average-case time O(n logn)

and space O(n).

Proof. If m≥ 3 · logσ n+3, apply Corollary 1. Otherwise, apply Theorem 4.

Remark 1. Theorem 4 can also be obtained via utilising the gapped suffix array data structure

(see [25] for an efficient construction algorithm).

A.1.2 O(n logn log logn)-time and O(n)-space algorithm

A.1 Efficient Worst-Case Algorithms 155

In this section we assume that x is a length-n string over an ordered alphabet Σ, where

|Σ|= σ =O(1). Consider two factors of x represented by nodes u and v in T (x); we observe

that the first mismatch between the two factors is the first letter of the labels of the distinct

outgoing edges from the lowest common ancestor of u and v that lie on the paths from the

root to u and v. For 1-mappability we require that what follows this mismatch is an exact

match.

Definition 14. Let T be a rooted tree. For each non-leaf node u of T , the heavy edge (u,v)

is an edge for which the subtree rooted at v has the maximal number of leaves (in case of

several such subtrees, we fix one of them). The heavy path of a node v is a maximal path of

heavy edges that passes through v (it may contain 0 edges). The heavy path of T is the heavy

path of the root of T .

Consider the suffix tree T (x) and its node u. We say that an (explicit or implicit) node v

is a level ancestor of u at string-depth ℓ if D(v) = ℓ and L (v) is a prefix of L (u). The heavy

paths of T (x) can be used to compute level ancestors of nodes in O(logn) time. However, a

more efficient data structure is known.

Lemma 9. After O(n)-time preprocessing on T (x), level ancestor queries of nodes of T (x)

can be answered in O(log logn) time per query.

Definition 15. Given a string x and a factor y of x, we denote by range(x,y) the range in the

SA of x that represents the suffixes of x that have y as a prefix.

Every node u in T (x) corresponds to an SA range Iu = range(x,L (u)) = (umin,umax).

We can precompute Iu for all explicit nodes u in T (x) in O(n) time while performing a depth-

156 Efficient Worst-Case Algorithms of k-mappability

c
d v

u

u′ z

z′

Si

Fig. A.1 Illustration; the heavy path of T (x) is shown in red.

first traversal of the tree as follows. For a non-terminal node v with children u1, . . . ,uq, we set

vmin = mini{ui
min} and vmax = maxi{ui

max}. If v is a terminal node (with children u1, . . . ,uq),

representing the suffix x[j . .n−1], we set vmin = iSA[j] and vmax =max{iSA[j],maxi{ui
max}}.

When a considered node v is implicit, say along an edge (p,q), then Iv = Iq.

Our algorithm relies heavily on the following auxiliary lemmas.

Lemma 10. Consider a node u in T (x) with p = L (u). Let suf(u, ℓ) be the node v such

that L (v) = p[ℓ . . |p|−1]. Given the SA and the iSA of x, v can be computed in O(log logn)

time after O(n)-time preprocessing.

Proof. The SA range of the node u is Iu = (umin,umax); umin corresponds to the suffix

x[SA[umin] . .n−1]. By removing the first ℓ letters, the suffix becomes x[SA[umin]+ ℓ . .n−1].

The corresponding SA value is vmin = iSA[SA[umin]+ ℓ].

Let v1 be the node of T (x) such that L (v1) = x[SA[vmin] . .n−1]. The sought node v is

the ancestor of v1 located at string-depth |p|− ℓ. It can be computed in O(log logn) time

using the level ancestor data structure of Lemma 9.

A.1 Efficient Worst-Case Algorithms 157

Lemma 11. Let u and v be two nodes in T (x). We denote L (u) by p1 and L (v) by p2.

We further denote by concat(u,v) the node w such that L (w) = p1 p2. Given the SA and the

iSA of x, as well as range(x, p1) and range(x, p2), w can be located in O(log logn) time after

O(n log logn)-time and O(n)-space preprocessing.

Proof. We can compute range(x, p1 p2)= (wmin,wmax) in O(log logn) time after O(n log logn)-

time and O(n)-space preprocessing [33]; we can then locate w in O(log logn) time using the

level ancestor data structure of Lemma 9.

We are now ready to present an algorithm for 1-mappability that requires O(n logn log logn)

time and O(n) space. The first step is to build T (x). We then make every node u of string-

depth m explicit in T (x) and initialize a counter Count(u) for it. For each explicit node u in

T (x), the SA range Iu = range(x,L (u)) is also stored. We also identify the node vc with

path-label c for each c ∈ Σ in O(σ) = O(1) time.

Algorithm 6 Per f ormCount(T,m))

1: HP← HeavyPath(T)
2: for each side-tree Si attached to a node u on HP with D(u)< m do
3: Let (u,v) be the edge that connects Si to HP
4: c←the edge label of (u,v)
5: d←the edge label of the heavy edge (u,u′)
6: for each node z in Si with D(z) = m do
7: w←suf(z, D(u)+1)
8: for each c′ ̸= c, label of an outgoing edge from u do
9: t← concat(u,concat(vc′,w))

10: Count(z)← Count(z)+ |It |
11: end for
12: z′← concat(u,concat(vd,w))
13: Count(z′)← Count(z′)+ |Iz|
14: end for
15: Per f ormCount(Si,m−D(u))
16: end for

158 Efficient Worst-Case Algorithms of k-mappability

We then call PERFORMCOUNT(T (x),m), which does the following (inspect also the

pseudocode above and Figure A.1). At first, a heavy path HP of T (x) is computed. Initially,

we want to identify the pairs of factors of x of length m at Hamming distance 1 that have

a mismatch in the labels of the edges outgoing from a node in HP. Given a node u in HP,

with L (u) = p1, for every side tree Si attached to it (say by an edge with label c ∈ Σ), we

find all nodes of Si with string-depth m. For every such node z, with path-label p1cp2, we

use Lemma 10 to obtain the node w = suf(z, |p1|+ 1); that is, L (w) = p2. We then use

Lemma 11 to compute range(x, p1c′p2) for all c′ ̸= c such that there is an outgoing edge

from u with label c′ and increment Count(z) by |range(p1c′p2)|. Let the heavy edge from u

have label d; we also increment Count(z′), where z′ = concat(u,concat(vd,w)) is the node

with path-label p1d p2, by |Iz| while processing node z.

This procedure then recurs on each of the side trees; i.e. for side tree Si, attached to node

u, it calls PERFORMCOUNT(Si,m−D(u)). Finally, we construct array C from array Count

while performing one more depth-first traversal.

On the recursive calls of PERFORMCOUNT in each of the side trees (e.g. Si) attached to

HP, we first compute the heavy paths (in O(|Si|) time for Si) and then consider each node

of string-depth m of T (x) at most once; as above, we process each node in O(log logn)

time due to Lemmas 10 and 11. As there are at most n nodes of string-depth m, we do

O(n log logn) work in total. This is also the case as we go deeper in the tree. Since the

number of leaves of the trees we are dealing with at least halves in each iteration, there

at most O(logn) steps. Hence, each node of string-depth m will be considered O(logn)

times and every time we will do O(log logn) work for it. The overall time complexity of the

A.1 Efficient Worst-Case Algorithms 159

algorithm is thus O(n logn log logn). The space complexity is O(n). By applying Theorem 4

we obtain the following result.

Theorem 6. Given a string of length n over a constant-sized alphabet and an integer m, where

1≤m < n, the 1-MAPPABILITY problem can be solved in O(min{mn,n logn log logn}) time

and O(n) space.

Appendix B

Degenerate String Comparison and

Applications

Proof. It is clear that L(Ŝ)∩L(R̂)⊇ (L(R̂′)∩L(Ŝ′))⊗ (L(Ŝ′′)∩L(R̂′′)). Indeed, consider a

string x ∈ L(R̂′)∩L(Ŝ′) and a string y ∈ L(Ŝ′′)∩L(R̂′′): then, by the definition of Cartesian

concatenation, xy ∈ L(R̂′)⊗L(R̂′′) = L(R̂) and xy ∈ L(Ŝ′)⊗L(Ŝ′′) = L(Ŝ).

We now prove the opposite inclusion. Consider a string z ∈ L(Ŝ)∩ L(R̂). By definition,

z = x0x1 . . .xr−1 = y0y1 . . .ys−1, with xi ∈ R̂[i],y j ∈ Ŝ[j],∀ 0 ≤ i ≤ r− 1,∀ 0 ≤ j ≤ s− 1.

Let R̂′ = R̂[0] . . . R̂[i], Ŝ′ = Ŝ[0] . . . Ŝ[j]. Assume by contradiction that z /∈ (L(R̂′)∩L(Ŝ′))⊗

(L(Ŝ′′)∩L(R̂′′)): without loss of generality, x0 . . .xi /∈ L(Ŝ′). Since L(Ŝ′)⊗L(Ŝ′′) = L(Ŝ), it

follows that z = x0x1 . . .xr−1 /∈ L(Ŝ) =⇒ z /∈ L(Ŝ)∩L(R̂), that is a contradiction.

Proof. Again, let us assume without loss of generality that w(R̂[0])> w(Ŝ[0]). We prove the

result by induction on k.

[Level k = 0] By construction, n0 contains strings in R̂[0]∩ (chop0⊗·· ·⊗chopq0
), which

161

have length |G0
R̂,Ŝ
|, and are also in Ŝ[0], and hence belong to both L0(Ŝ) and L0(R̂).

[Level k > 0] By inductive hypothesis, we have that Lk−1(Ŝ)∩ Lk−1(R̂) = paths(Gk−1
R̂,Ŝ

):

suppose that Lk(Ŝ)∩Lk(R̂) ̸= /0, otherwise the graph ends at level k−1. We first show that

paths(Gk
R̂,Ŝ

)⊆ Lk(Ŝ)∩Lk(R̂): by Definition 8, any z ∈ paths(Gk
R̂,Ŝ

) can be written as z = z′z′′

with z′ in paths(Gk−1
R̂,Ŝ

) and with z′′ that belongs to some node at level k of Gk
R̂,Ŝ

reached by

an edge leaving a suffix of z′. By inductive hypothesis z′ ∈ Lk−1(Ŝ)∩Lk−1(R̂) and, again

by Definition 8, z′′ ∈ chopqk−1+1⊗·· ·⊗ chopqk
; since Lk(Ŝ)∩Lk(R̂) ̸= /0 these chops are not

empty, their concatenation contains the suffix of length |Gk
R̂,Ŝ
|− |Gk−1

R̂,Ŝ
| of strings in both

Lk(R̂) and Lk(Ŝ), and hence z ∈ Lk(Ŝ)∩Lk(R̂).

We now show that Lk(Ŝ)∩Lk(R̂)⊆ paths(Gk
R̂,Ŝ

): consider string u ∈ Lk(Ŝ)∩Lk(R̂) that can

be written as u = u′u′′ with u′ the prefix of u having length |Gk−1
R̂,Ŝ
| which then belongs to

Lk−1(Ŝ)∩Lk−1(R̂); then, by inductive hypothesis, u′ ∈ paths(Gk−1
R̂,Ŝ

) and, since u ∈ Lk(Ŝ)∩

Lk(R̂), then there is an edge linking a suffix of u′ at level k−1 with a node at level k of Gk
R̂,Ŝ

containing a |Gk
R̂,Ŝ
|− |Gk−1

R̂,Ŝ
| long suffix u′′ of u, and hence u ∈ paths(Gk

R̂,Ŝ
).

Proof. The correctness follows directly from Lemma 2, Lemma 3, and Theorem 2.

Constructing the generalized suffix tree TR̂,Ŝ can be done in time O(N +M) [28]. For

the sets pair (Âi, B̂i) as in Definition 7, such that w(Âi) = k and w(Âi) ≤ w(B̂i), we query

TR̂,Ŝ with the k-length prefixes of strings in B̂i. For integer alphabets, instead of spelling the

strings from the root of TR̂,Ŝ, we locate the corresponding terminal nodes for (Âi, B̂i). It then

suffices to find longest common prefixes between these suffixes to simulate the querying

process. Since all suffixes are lexicographically sorted during the construction of TR̂,Ŝ, we

can also have the suffixes considered by pair (Âi, B̂i) lexicographically ranked with respect

162 Degenerate String Comparison and Applications

to (Âi, B̂i). Hence we do not perform the longest common prefix operation for all possible

suffix pairs, but only for the lexicographically adjacent ones within this group. This can

be done in O(1) time per pair after O(N +M)-time pre-processing over TR̂,Ŝ [16]. chopi is

thus populated with the k-length prefixes of strings in B̂i found in Âi. The set activeÂi,B̂i
of

active suffixes can be found by chopping the suffixes of the string in B̂i from their prefixes

successfully queried in TR̂,Ŝ. This requires time O(|Âi|+ |B̂i|) for processing (Âi, B̂i).

Let R̂ and Ŝ be of length r and s, respectively. Assume that R̂ and Ŝ have no synchronized

proper prefixes. Then Theorem 2 ensures that the total number of comparisons cannot exceed

r+ s−2: this results in a time complexity of O(N +M+∑
r+s−2
i=0 (|Âi|+ |B̂i|)) = O(N +M).

If R̂ and Ŝ have synchronized proper prefixes, we perform the comparison up to the

shortest synchronized prefixes (i.e. the set of active suffixes becomes empty) and then restart

the procedure from the immediately following pair of degenerate letters. Clearly the total

number of comparisons also in this case cannot be more than r+ s−2.

B.1 A Conditional Lower Bound under SETH

In this section, we show a conditional lower bound for computing palindromes in de-

generate strings. Let us first define the 2-Orthogonal Vectors problem. Given two sets

A = {α1,α2, . . . ,αn} and B = {β1,β2, . . . ,βn} of d-bit vectors, where d = ω(logn), the 2-

Orthogonal Vectors problem asks the following question: is there any pair αi,β j of vectors

that is orthogonal? Namely, is ∑
d−1
k=0 αi[k] ·β j[k] equal to 0? For the moderate dimension of

this problem, we follow [40], assuming n2−εdO(1) ≤ n2d. The following result is known.

B.1 A Conditional Lower Bound under SETH 163

Theorem 7 ([40, 59, 60, 98]). The 2-Orthogonal Vectors problem cannot be solved in

O(n2−ε ·dO(1)) time, for any ε > 0, unless the Strong Exponential Time Hypothesis fails.

We next show that the 2-Orthogonal Vectors problem can be reduced to computing

maximal palindromes in degenerate strings thus obtaining a similar conditional lower bound

to the upper bound obtained in Theorem 4 for computing all GD palindromes.

Theorem 8. Given a degenerate string of length 4n over an alphabet of size σ = ω(logn),

all maximal GD palindromes cannot be computed in O(n2−ε ·σO(1)) time, for any ε > 0,

unless the Strong Exponential Time Hypothesis fails.

Proof. Let d = σ and consider the alphabet Σ = {0,1, . . . ,σ −1}. We say that two subsets

of Σ match if they have a common element. Given a d-bit vector α , we define µ(α) to be

the following subset of Σ: s ∈ µ(α) if and only if α[s] = 1. Thus, two vectors α and β are

orthogonal if and only if the sets µ(α) and µ(β) are disjoint. In the string comparison setting,

two degenerate letters µ(α) and µ(β) do not match if and only if α and β are orthogonal.

The reduction works as follows. Given A = {α1,α2, . . . ,αn} and B = {β1,β2, . . . ,βn}, we

construct the following simple degenerate string of length 4n in time O(nσ):

S = µ(α1)µ(β1)µ(α2)µ(β2) . . .µ(αn)µ(βn)µ(α1)µ(β1)µ(α2)µ(β2) . . .µ(αn)µ(βn).

· · ·

164 Degenerate String Comparison and Applications

Then the 2-Orthogonal Vectors problem for the sets A and B has a positive answer if and

only if at any position of S, from 0 to 2n, there does not occur a palindrome of length at least

2n. All such occurrences can be easily verified from the respective palindrome centers in

time O(n). In other words, if at any position of S there does not occur a palindrome of length

at least 2n, this is because we have a mismatch between a pair µ(αi),µ(β j) of letters, which

implies that there exists a pair αi,β j of orthogonal vectors. Also, by the construction, all

such pairs are to be (implicitly) compared, and thus, if there exists any pair that is orthogonal

the corresponding mismatch will result in a palindrome of length less than 2n.

Appendix C

Efficient identification of k-closed strings

Proof. Since x is k-closed, it has at least one k-closed border and an associated smallest k′≤ k

for which the conditions are satisfied. Let us consider the longest of these k-closed borders,

and call u and v the prefix and suffix respectively, comprising the longest k-closed border with

length |u|= |v|. Let us assume a second k-closed border exists, comprised of the prefix and

suffix, u′ and v′ respectively. We know that |u′|= |v′|< |u|= |v| and u′= u[0 . . |u′|−1]. Since

u≈k′ v it is trivially true that u[0 . . |u′|−1]≈k′ v[0 . . |u′|−1] and therefore u′≈k′ v[0 . . |u′|−1].

Thus we see that u′ k′-matches the prefix of v of the same length, and this corresponds to an

occurrence of u′ within x, i.e. u′ ≈k′ x[n−|v| . .n−|v|+ |u′|−1], where n is the length of x,

which is an internal occurrence of u′ in x. We arrive at a contradiction due to Condition 2 of

Definition 10 being violated, therefore no second k-closed border can exist.

Proof. Recall that n≥ 2. The three conditions can be seen to be necessary and sufficient for

a string to be k-closed by considering the cases individually.

166 Efficient identification of k-closed strings

(=⇒) Suppose Conditions 1-3 hold. We need to show that x is k-closed. We first prove that

the conditions imply x is k′-pseudo-closed. In other words, we need to find a prefix u

of x and a suffix v of x such that:

(I) u≈k′ v

(II) Except for u and v, there exists no length-|u| factor w of x such that w≈k′ u or

w≈k′ v.

First, Condition 1 implies that the longest prefix match within k′ errors starting at j

terminates at position n−1 in x. This implies that u = x[0 . .n−1− j]≈k′ x[j . .n−1] =

v. Hence, (I) is true.

By contrary of (II), we have either (1) a factor w starting at position i < j such that

w≈k′ u or (2) a factor w ending at position i > n−1− j such that w≈k′ v.

For (1), this means that LPMk′(x)[i]≥ LPMk′(x)[j]. However, this contradicts Condi-

tion 2.

For (2), this means that LSMk′(x)[i]≥ LSMk′(x)[n−1− j]. However, this contradicts

Condition 3.

Hence, both (I) and (II) are true. This implies that x is k′-pseudo-closed. Since

0≤ k′ ≤ k, we may further imply by Lemma 7 that x is k-closed.

(⇐=) If x is k-closed, there must exist some k′, where 0≤ k′ ≤ k, such that x is k′-pseudo-

closed, by Lemma 7. For such a k′, there is an associated k′-pseudo-closed-border

consisting of some proper prefix u and some proper suffix v with equal length, such that

167

δH(u,v)≤ k′. We denote j where v = x[j . .n−1] and consequently u = x[0 . .n−1− j].

The longest prefix match LPMk′(x)[j] starting at j must be greater than or equal to |u|

as u≈k′ v, yet it may not exceed the bounds of x and is therefore less than or equal to

|v|. Therefore LPMk′(x)[j] = |u|= |v|= n− j =⇒ LPMk′(x)[j]+ j = n which implies

Condition 1. From the definition of k-closed strings we also conclude that there exists

no factor w of x with length |w| = |u| = |v| such that δH(u,w) ≤ k′ or δH(v,w) ≤ k′.

Therefore if we choose i < j it must be the case that LPMk′(x)[i]< LPMk′(x)[j], since

otherwise we would have a w≈k′ v starting at i which cannot be the case, and therefore

we conclude Condition 2. Similarly if we choose i > n−1− j it must be the case that

LSMk′(x)[i]< LSMk′(x)[n−1− j], since otherwise we would have a w≈k′ v ending

at i which cannot be the case, and therefore we conclude Condition 3. Thus all three

conditions are satisfied.

	List of publications
	Table of contents
	List of figures
	List of tables
	List of algorithms
	List of abbreviations
	1 Introduction
	1.1 Background
	1.2 Structure of This Thesis

	2 Basic Concepts
	2.1 Strings
	2.2 Hamming Distance
	2.3 Patricia Trees and Suffix Tree
	2.4 Suffix Array
	2.5 Longest Common Prefix
	2.6 Longest Common Extension
	2.7 Lowest Common Ancestor
	2.8 Depth First Search
	2.9 Breadth First Search
	2.10 Deterministic Finite Automaton
	2.11 Non-deterministic Finite Automaton
	2.12 Range Minimum Query
	2.13 k-mappability
	2.14 Degenerate String Comparison and Applications
	2.15 k-closed Strings

	3 k-Mappability
	3.1 Background and Contributions
	3.1.1 Background
	3.1.2 Contributions

	3.2 Preliminaries and Definitions
	3.3 Efficient Average-Case Algorithm
	3.4 Implementation
	3.5 Conclusion

	4 Degenerate String Comparison and Applications
	4.1 Background and Contributions
	4.1.1 Background
	4.1.2 Contributions

	4.2 Preliminaries and Definitions
	4.3 Algorithm
	4.3.1 GD String Comparison
	4.3.2 Computing Palindromes in GD Strings

	4.4 Experimental Results

	5 Efficient Identification of k-closed Strings
	5.1 Background and Contributions
	5.1.1 Background
	5.1.2 Contributions

	5.2 Preliminaries
	5.3 k-closed Strings
	5.4 Algorithm
	5.5 Implementation
	5.6 Experiments
	5.7 Final remarks

	6 The RMQs or LCA Queries in Practice for Small Batch
	6.1 Background and Contributions
	6.1.1 Background
	6.1.2 Contributions

	6.2 Preliminaries and Definitions
	6.3 Algorithm
	6.3.1 Contracting the Input Array
	6.3.2 Small RMQ Batch
	6.3.3 Small LCA Queries Batch

	6.4 Applications
	6.5 Implementation
	6.6 Conclusion

	7 Conclusion and Future Work
	Appendix A Efficient Worst-Case Algorithms of k-mappability
	A.1 Efficient Worst-Case Algorithms
	A.1.1 O(mn)-time and O(n)-space algorithm
	A.1.2 O(n logn loglogn)-time and O(n)-space algorithm

	Appendix B Degenerate String Comparison and Applications
	B.1 A Conditional Lower Bound under SETH

	Appendix C Efficient identification of k-closed strings

