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i

Abstract. We study the Fp-points of the Kisin-Pappas integral models of abelian
type Shimura varieties with parahoric level structure. We show that if the group is
quasi-split and unramified, then the mod p isogeny classes are of the form predicted
by the Langlands-Rapoport conjecture (c.f. Conjecture 9.2 of [59]). We prove the
same results for quasi-split and tamely ramified groups when their Shimura varieties
are proper. The main innovation in this work is a global argument that allows us
to reduce the conjecture to the case of a very special parahoric, which is handled
in earlier work of Rong Zhou. This way we avoid the complicated local problem of
understanding connected components of affine Deligne-Lusztig varieties for general
parahoric subgroups. Along the way, we give a simple irreducibility criterion for
Ekedahl-Oort and Kottwitz-Rapoport strata.
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CHAPTER 1

Introduction

1. Hasse-Weil zeta functions of smooth projective varieties

Let E be a number field and let X be a smooth projective variety over E. The Hasse-
Weil zeta function of X is (see [63]), at least conjecturally, a meromorphic function
ζX(s) on the complex numbers which encodes deep global arithmetic information about
X. For example the conjecture of Birch and Swinnerton-Dyer predicts for an elliptic
curve X over Q that its zeta function knows the Mordell-Weil rank of X. The zeta
function is defined as an Euler product over all primes p of E

ζX(s) =
∏
p

ZX,p(s).

of local Zeta functions ZX,p(s). For primes p where X has good reduction, the local
zeta function ZX,p(s) encodes information about the number of points of the special
fiber Xp over finite fields. The local zeta functions at places of bad reduction are
harder to define, and it is not always clear what arithmetic information they encode,
except in special cases.

Let S be the set of places of bad reduction. The partial product

ζX,S(s) =
∏
p6∈S

ZX,p(s)

converges absolutely for Re(s) > 1 + d, where d is the dimension of X (see Section 1.2
of [63]) and defines a holomorphic function. Proving this absolute convergence relies
on the Hasse-Weil bounds for the number of points of X over finite fields. It now
makes sense to conjecture that ζX,S(s) has analytic continuation to a meromorphic
function on C, which is one half of the Hasse-Weil conjecture. It will follow that ζX(s)

has meromorphic continuation to C, because the local Euler factors ZX,p(s) for places
p of bad reduction are meromorphic functions by construction.

The other half of the Hasse-Weil conjecture is a functional equation for ζX(s). Just
as with the functional equation for the Riemann zeta function, this is best stated in

1



1. HASSE-WEIL ZETA FUNCTIONS OF SMOOTH PROJECTIVE VARIETIES 2

terms of a completed zeta function. Define

ξX(s) = As/2ζX(s) ·
∏
v∈Σ∞E

ΓX,v(s).

Here A ∈ Q>0 is the conductor of X (see Section 4.1 of [63]), the symbol Σ∞E denotes
the infinite places of E and ΓX,v(s) denotes the Gamma-factor of X at an infinite
place (see Section 3 of [63]). We can now state a formal conjecture, in which we will
implicitly assume that X is equidimensional.

Conjecture 1.0.1. The function ξX(s) has meromorphic continutation to all of C
and satisfies

ξX(s) = ±ξX(d+ 1− s),

where d is the dimension of X.

This conjecture is completely open in general, and most of the known results all fol-
low the same strategy: Show that ζ(X, s) is equal to a product of "automorphic
L-functions", and prove that these automorphic L-functions have meromorphic con-
tinuation and a functional equation. Unfortunately, it is far beyond the scope of this
thesis to define automorphic representations and automorphic L-functions, so we’ll
settle for an example:

Example 1.0.2. Let X be the elliptic curve over Q defined by the equation y2 + y =

x3 − x2, then the Hasse-Weil zeta function of X is equal to

ζX(s) =
ζ(s)ζ(s− 1)

Lf (s)
,

where ζ(s) = ζSpecQ(s) is the usual Riemann-zeta function, and Lf,s is the L-function
of the modular form

f(z) =
∞∏
n=1

(1− qn)2(1− q11)2 ∈ S2[Γ0(11)].

The Hasse-Weil conjecture for ζX(s) now follows from the functional equation and
meromorphic continuation for ζ(s) and Lf,s.

For a general variety X the approach sketched above seems hopeless, because it is not
clear ‘where’ the automorphic representations should come from. This is different for
Shimura varieties, because automorphic representations are closely related to Shimura
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varieties. For example it follows from work of Eichler [14] and Shimura [66] that the
Hasse-Weil zeta functions of modular curves are products of L-functions of modu-
lar forms. However, their approach does not easily generalise to higher-dimensional
Shimura varieties.

In [46], Langlands outlines a three-part approach to prove that the Hasse-Weil zeta
functions of Shimura varieties are related to L-functions of automorphic representa-
tions. The first and third part are ‘a matter of harmonic analysis’, we refer the reader
to [76] for an introduction. The second part is about describing the mod p points of
suitable (smooth) integral models of Shimura varieties. His original strategy is only
suitable for studying the local zeta functions at places of good reduction, but it was
generalised by Rapoport and Kottwitz to include places of parahoric1 bad reduction
[59].

Disregarding the very interesting and very complicated harmonic analysis that will no
doubt have to be used, computing the (semisimple) 2 local zeta functions of Shimura
varieties at primes of parahoric bad reduction requires two ingredients: The first is
constructing reasonable integral models and describing their singularities, or rather
computing the (semisimple) trace of Frobrenius on the sheaf of nearby cycles. The
integral models were constructed by Kisin-Pappas [37] and the recent work of Haines-
Richarz [23] solves the problem of understanding the nearby cycles. The second
ingredient is describing the mod p-points of these Kisin-Pappas integral models, which
is the central topic of this thesis. A conjectural description of the mod p points of
(conjectural) integral models of Shimura varieties was first given by Langlands in [45]
and was later refined by Langlands-Rapoport [47] and by Rapoport [59] to include
the case of parahoric bad reduction.

2. The Langlands-Rapoport conjecture

The Langlands-Rapoport conjecture gives a conjectural description of the Fp-points
of conjectural integral models of a Shimura variety associated to a Shimura datum
(G,X). Stating the conjecture is technically quite involved and we will postpone that
to Chapter 3. The goal of this section is to show that beneath all the technicalities lies
a beautiful motivic story. We will start by discussing mod p points on the modular
curve.

1This means that the level at p is a parahoric subgroup.
2The semisimple local zeta function is a variant of the local zeta function defined in [11] from which
the usual local zeta function can be recovered, if one assumes the weight-monodromy conjecture.
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2.1. The modular curve. There are great and detailed explanations of Langlands-
Rapoport for the modular curve elsewhere (e.g. [60]), here we will only give a basic
overview. Consider the tower of schemes

{YN/Z(p)}N

where N runs over positive integers coprime to p ordered by divisibility and YN is
the moduli space of elliptic curves E together with an isomorphism of group schemes
E[N ] ' (Z/NZ)2. This is most easily done by considering all N at once, or working
with the inverse limit. Define

Y (Fp) := lim←−
(N,p)=1

YN(Fp),

which has a natural action of GL2(Ẑp) that extends to an action of GL2(Ap
f ) via Hecke

correspondences. We want a ‘group theoretic’ description of Y (Fp), which takes this
action into account. We will give a description in two steps:

(1) Divide elliptic curves into isogeny classes and classify them (Honda-Tate the-
ory).

(2) Count elliptic curves inside a fixed isogeny class.
2.1.1. The structure of isogeny classes. If we fix an elliptic curve E0/Fp, then its

isogeny class Iφ ⊂ Y (Fp) has a description in terms of linear- and semi-linear algebra.
Let V pE0 be the rational prime-to-p adic Tate module of E0, in other words it is(∏

`6=p

T`E0

)
⊗Z Q,

where T`E0 = lim←−mE0[`m](Fp). Since each T`E0 is a free Z` module of rank two, we
see that V pE0 is a free module of rank two over the ring

Ap
f :=

(∏
`6=p

Z`

)
⊗Z Q.

Let VpE0 be TpE0[1/p], where TpE0 is the covariant Dieudonné module of E0. In
short, TpE0 is a free Z̆p = W (Fp)-module Λ of rank two equipped with a Frobenius
semi-linear map F : Λ→ Λ satisfying pΛ ⊂ FΛ ⊂ Λ. An isogeny f : E0 → E induces
bijections V pE0 ' VpE and VpE0 ' VpE, but the lattices inside will be different; in



2. THE LANGLANDS-RAPOPORT CONJECTURE 5

fact f will be determined by the induced lattices in V pE0 and VpE0. We define

Xp(φ) = {Ẑp-lattices Λp ⊂ V pE0 together with an isomorphism Λp ' (Ẑp)⊕2}

Xp(φ) = {Dieudonné-lattices in VpE0}.

Then Xp(φ) is a GL2(Ap
f )-torsor and there is a GL2(Ap

f )-equivariant map

Xp(φ)×Xp(φ)→ Iφ,

sending a pair of lattices (Λp,Λp) corresponding to an isogeny f : E0 → E to the
elliptic curve E together with its trivialisation. This induces an isomorphism

Iφ ' Iφ(Q)\ (Xp(φ)×Xp(φ)) ,

where Iφ(Q) is the set of self quasi-isogenies of E0.
2.1.2. Classification of isogeny classes. Classical Honda-Tate theory describes isogeny

classes of abelian varieties over Fq in terms of q-Weil numbers. Equivalently, we can
describe isogeny classes of elliptic curves E by the characteristic polynomial of Frobq

acting on the `-adic Tate module of E for some ` 6= p (this is an element of Z[X]

independent of `). This gives us a (semisimple) conjugacy class of matrices in GL2(Q)

and its stabiliser is an inner form of the group Iφ of self quasi-isogenies of E. Another
perspective is that the isogeny class of E determines a two-dimensional pure motive
(say with numerical equivalence) over Fq, or a motive with GL2-structure.

2.1.3. Conclusion. In conclusion, we see that the mod p points on the modular
curve can be described as

lim←−
(N,p)=1

YN(Fp) '
∐
φ

Iφ(Q\Xp(φ)×Xp(φ),(2.1.1)

equivariant for the action of GL2(Ap
f ), where φ ranges over the set of isogeny classes

of elliptic curves over Fp. Moreover it turns out that the action of Frobenius on
the left hand side corresponds to the action of a certain operator Φ on Xp(φ). The
Langlands-Rapoport conjecture for a general Shimura variety has the same shape as
(1.2.1.1).

2.2. The Langlands-Rapoport conjecture in general. Let (G,X) be a Shimura
datum, let p be a prime number, let Up ⊂ G(Qp) be a parahoric subgroup. Consider
the tower of Shimura varieties {ShG,UpUp}Up over the reflex field E with its action of
G(Ap

f )× ZG(Qp), where Up varies over compact open subgroups of G(Ap
f ) and where

ZG is the center of the algebraic group G. Then we conjecture that this tower has a
G(Ap

f )×ZG(Qp)-equivariant extension to a tower of flat (normal) schemes {SG,UpUp}Up
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over OE(v)
. When Up is hyperspecial, the integral model should be smooth and sat-

isfy a certain extension property, which determines it uniquely if it exists (c.f. [51]).
Recent work [53] of Pappas defines a notion of canonical integral models when Up is
an arbitrary parahoric and (G,X) is of Hodge type, and proves that they are unique
if they exist. Moreover, there should be a bijection

lim←−
Up

SUpUp(Fp) ' lim←−
Up

∐
[φ]

Iφ(Q)\Xp(φ)×Xp,Up(φ)/Up

compatible with the action of G(Ap
f ) × ZG(Qp). Here Xp(φ) is a G(Ap

f )-torsor as
before, and we are left to explain the indexing set φ, the sets Xp(φ) and the groups
Iφ(Q). The indexing set should be a generalisation of the notion of isogeny class; we’ll
explore this in the next section.

2.3. Mod p isogeny classes on general Shimura varieties. We would like to
say that the mod p isogeny classes on the special fiber of a Shimura variety associated
to a Shimura datum (G,X) are isogeny classes of "abelian varieties with G-structure"
or "motives with (G,X)-structure". There are various ways of making this precise,
the simplest one works only for Shimura varieties of Hodge type.

Suppose that (G,X) is of Hodge type and let i : (G,X) ↪−→ (GSp2g, S
±) be a Hodge

embedding. Then an abelian variety with G structure over Fp is a g-dimensional
abelian variety A together with a finite collection of tensors

{sα,`}α∈C ∈ V`(A)⊗

for all ` (including ` = p) such that the stabiliser of the tensors in GLV`(A) is given by
GQ` (note that the indexing set C is independent of `). Here V`(A)⊗ is the direct sum
of all modules obtained from the rational `-adic Tate-module (or rational Dieudonné-
module if ` = p) V`(A)⊗ using the operations of duals, tensor products, symmetric
powers and exterior powers. This is the kind of "abelian variety with G-structure"
that one actually gets from a Fp-point on the special fiber of the Kisin-Pappas integral
models of Hodge type Shimura varieties. In fact there will a finite field Fq such that
the abelian variety is defined over Fq and such that the tensors are Galois invariant.

This notion of "abelian variety with G-structure" is not well behaved because we are
not asking for any compatibility between tensors for different `. Indeed, the Tate
conjecture for motives over finite fields predicts that our tensors come from algebraic
cycles and we would obviously like to say that the sα,` are the `-adic realisations the



2. THE LANGLANDS-RAPOPORT CONJECTURE 7

same cycle sα. Another issue is that we would like to get rid of the choice of Hodge
embedding.

2.3.1. Motives. Let Cq be the category of motives with numerical equivalence over
Fq, see [62] for an introduction. A priory this is just a pseudo-abelian category with
a tensor product, but it follows from [34] that this is actually a semisimple abelian
category. Moreover it follows from [35] that it is a semisimple Tannakian category,
see Section 1 of [49]. If we assume the Tate conjecture in the form of Conjecture 1.14
of [49], then for ` 6= p there is a fully faithful tensor functor

Cq ⊗Q Q` → V`(Fq)

to the category of semisimple continuous representations of Gal(Fp/Fq) on finite di-
mensional vector spaces over Q`, given by `-adic étale cohomology. Similarly if we
assume the crystalline version of the Tate conjecture, then there are fully faithful
tensor functors

Cq ⊗Q Qp → Vp(Fq)

to the category of F -isocrystals over W (Fq)[1/p]. When we pass to the category C of
motives over Fp, we get fully faithful tensor functors

ω` : C ⊗Q Q` → V`(Fp)

ωp : C ⊗Q Qp → Vp(Fp),

where Vp(Fp) is the category of isocrystals over W (Fp)[1/p] and the category V`(Fp)
is the category of "germs of Gal(Fp/Fp)-representations". Its objects are equivalence
classes of Galois representations of Gal(Fp/Fpn) for some n, with equivalence given
by ρ ∼ ρ′ if there is some open subgroup of Gal(Fp/Fp) on which they agree. The
morphisms are given by

hom(ρ, ρ′) = lim−→
n

homGal(Fp/Fnp )(ρ, ρ
′).

2.3.2. Motives with G-structure. If G/Q is an algebraic group then a motive with
G-structure is an exact tensor-functor

α : RepQ(G)→ C
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such that for all ` the following diagram commutes

RepQ`(G) C ⊗Q Q`

VectQ` VectQ` .

α`

ω`

In other words, for each representation V of G we get a motive α(V ) such that the
`-adic étale cohomology of α(V ) is of dimension equal to DimV , and the same for the
crystalline cohomology.

Associated to a motive with G-structure is the composition

RepQp(G)→ C ⊗Q Qp → Vp(Fp).

This is an isocrystal with G-structure in the sense of Kottwitz [41], and these are
classified up to isomorphism by the set B(G). If we are also given a Shimura datum
(G,X), then it makes sense to ask that the element of B(G) we obtain is admissible
with respect to this Shimura datum, in other words, to ask that it lies in B(G,X) ⊂
B(G) (see Section 2.1.0.2). Let us call a motive with G-structure admissible (with
respect to (G,X)) if this is the case. When (G,X) is the Siegel Shimura datum,
this comes down to asking that the isocrystal (with alternating form) comes from a
p-divisible group (with a polarisation).

2.3.3. Circumventing the Tate conjecture. Assuming the Tate conjecture, Milne
[49] gives an explicit description of the category C with its tensor structure. In fact
this description is so explicit that it is possible to write down a Tannakian category C̃
together with faithful tensor functors

ω̃` : C̃ ⊗Q Q` → V`(Fp)

for all ` without assuming the Tate conjecture. If the Tate conjecture does hold,
then there is an equivalence of categories C ' C̃, compatible with all the tensor
functors. The category C̃ is exactly the category of representations of the pseudo-
motivic groupoidP introduced in Chapter 3. Let us call C̃ the category of fake motives
over Fp; the notion of fake motive with G-structure and admissible fake motive with
G-structure is now obvious.

2.3.4. Back to the Langlands-Rapoport conjecture. Let (G,X) be a Shimura da-
tum such that Z0

G satisfies the Serre condition, i.e., such that Z0
G is isogenous to a

product T1 × T2 where T1/Q is a split torus and where T2 is a torus with T2(R) com-
pact. This condition automatically holds when (G,X) is of Hodge type because then
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Z0
G/w(Gm)(R) is compact, where w : Gm → G is the weight homomorphism obtained

from X.

Under these assumptions, the indexing set of the Langlands-Rapoport conjecture is
closely related to the set of equivalence classes of admissible fake motives with G-
structure. In fact there are precisely two extra conditions we have to put on an
admissible fake motive with G-structure in order for it to give rise to an admissible
morphism (which are the objects that index the isogeny classes). To explain these, let
us furthermore assume that Gder is simply connected.

• The first condition has to do with the induced motive with Gab-structure. To
be precise, it should agree with the one coming via "reduction modulo p" of
the CM motive associated to the CM torus (Gab, Xab), see Section 4 of [49]).

• One condition at infinity, having to do with fully faithful tensor functors (the
first is constructed by Milne assuming the Tate conjecture)

ω∞ : C ⊗Q R→ V∞(Fp)

ω̃∞ : C̃ ⊗Q R→ V∞(Fp).

Here V∞(Fp) is the R-linear Tannakian category of Z-graded C-vector spaces
equipped with a τ -linear map F respecting the grading such that F 2 acts as
(−1)m on the m-th graded piece, and τ is the nontrivial element of Gal(C/R).

For a general Shimura datum (G,X), we have to replace the pseudo-motivic Galois
gerb P with the quasi-motivic Galois gerb Q, which comes equipped with a map
Q → P. In other words we are replacing the category C̃ with a category D, which
comes with a natural functor C̃ → D.

Remark 2.3.5. The perspective in Chapter 3 is in terms of Galois gerbs and mor-
phisms of Galois gerbs rather than Tannakian categories and functors between them.
The reason for this shift is that Kisin’s paper [38] is written entirely in the former
perspective. Since our proofs are merely generalisations of his to ramified groups, we
often refer to his work for certain details and arguments, and its therefore natural to
adopt his notation and perspective.

2.4. Affine Deligne-Lusztig varieties. In order to generalise the sets Xp(φ),
we recall that in the case of the modular curve the set Xp(φ) is a subset of the space
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of all "Z̆p-lattices" in VpE0, which can be identified with

GL2(Q̆p)/GL2(Z̆p).

In other words, the set of Dieudonné lattices in VPE0 ' Q̆⊕2
p sits inside the set of all

lattices in Q̆⊕2
p . The condition that a lattice Λ ⊂ Q̆⊕2

p is a Dieudonné lattice is the
condition that

pΛ ⊂ Fσ∗Λ ⊂ Λ,

here F : σ∗Q̆⊕2
p ' Q̆⊕2

p is the map coming from the fact that VpE0 is an isocrystal.
Let us write F = b ⊗ σ as a σ-linear map, with b ∈ GL2(Q̆p). Then a lattice Λ is a
Dieudonné-lattice if under the relative position map

Inv : GL2(Q̆p)/GL2(Z̆p)×GL2(Q̆p)/GL2(Z̆p)→
(

GL2(Z̆p)\GL2(Q̆p)/GL2(Z̆p)
)
' Z2/S2

the image Inv(Λ, bΛ) = (1, 0). If we think of Z2/S2 as the set of conjugacy classes
of cocharacters of GL2, then the element (1, 0) corresponds precisely to the inverse of
the Hodge cocharacter associated to the Shimura datum of the modular curve.

It is important to note that Xp(φ), unlike Xp(φ) depends on the isogeny class of E0,
or rather it depends on the isogeny class of E0[p∞] or equivalently on the σ-conjugacy
class of b. For a connected reductive group G/Qp and choice of parahoric G, we
consider

G(Q̆p)/G(Z̆p),

which we think of as the space of ‘G-lattices’ inside the standard G-isocrystal given
by b ∈ B(G,X). To define the affine Deligne-Lusztig variety we again have a relative
position map (see Section 2.5)

Rel : G(Q̆p)/G(Z̆p)×G(Q̆p)/G(Z̆p)→
(
G(Z̆p)\G(Q̆p)/G(Z̆p)

)
' WG\W̃/WG,

and Xp(φ) will be a subset of G(Q̆p)/G(Z̆p) defined by a condition on Rel(g, bg). It
remains for us to define this condition, which will take the form of a finite set, called
the admissible set

Adm(µ)G ⊂ G(Z̆p)\G(Q̆p)/G(Z̆p) ' WG\W̃/WG

When G is hyperspecial then WG\W̃/WG is just the set of conjugacy classes of cochar-
acters of G, and the admissible set will consists of a single element corresponding to
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the inverse of the Hodge cocharacter associated to the Shimura datum. When G is a
general parahoric subgroup, the admissible set will have more than one element and
we will define it in Section 2. This definition is motivated by considerations from local
harmonic analysis, see [22] for an introduction.

3. Previous results

Kottwitz describes the mod p points of Shimura varieties of PEL type A and C, at
primes p > 2 of hyperspecial good reduction in [42]. His description of the isogeny
classes is essentially the same, but his classification of the isogeny classes takes a
slightly different form than the one in the Langlands-Rapoport conjecture.

Kisin [38] proves a slightly weaker version of the Langlands-Rapoport conjecture for
abelian type Shimura varieties under the assumption that GQp is quasi-split and split
over an unramified extension, and that Up is hyperspecial. An important idea in his
proof is to show that both admissible morphisms and isogeny classes ’come from special
points’. He deduces the former from Satz 5.3 of [47] and the latter is deduced, after a
lengthy dévissage from the abelian type to the Hodge type case, from uniformisation of
isogeny classes (we’ll discuss his strategy for proving uniformisation of isogeny classes
when we discuss our own proof strategy).

In the parahoric case, uniformisation of isogeny classes was proven by Zhou in [73],
under the assumption that GQp is residually split. We remind the reader that split im-
plies residually split implies quasi-split and that residually split + unramified implies
split.

There is also important work of Reimann [61], which not only proves the Langlands-
Rapoport conjecture for certain quaternionic Shimura varieties but also corrects the
definition of the quasi-motivic Galois gerb given by Langlands-Rapoport.

4. Main results

Let (G,X) be a Shimura datum of abelian type and let p > 2 be a prime such that GQp

is quasi-split and splits over an unramified extension. Let Up ⊂ G(Qp) be a parahoric
subgroup and consider the tower of Shimura varieties {ShG,UpUp}Up over the reflex field
E with its action of G(Ap

f ), where U
p varies over compact open subgroups of G(Ap

f ).
Then by Theorem 0.1 of [37], this tower of Shimura varieties has a G(Ap

f )-equivariant
extension to a tower of flat normal schemes {SG,UpUp}Up over OE(v)

, where v | p is a
prime of the reflex field E.
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Theorem 1. Let (G,X) be as above and suppose that (Gad, Xad) has no factors of
type DH or that Up is contained in a hyperspecial subgroup.3 Then there is an G(Ap

f )-
equivariant bijection

lim←−
Up

SG,UpUp(Fp) '
∐
φ

lim←−
Up

Iφ(Q)\Xp(φ)×Xp(φ)/Up

respecting the action of Frobenius, where the action of Iφ(Q) on Xp(φ)×Xp(φ) is the
natural action conjugated by some τ(φ) ∈ Iad

φ (Af ). Here Xp(φ) is the affine Deligne-
Lustzig variety of level Up associated to φ, see Section 2.1.0.4. The indexing set runs
over conjugacy classes of admissible morphisms Q→ G, see Section 3.2.

As a byproduct of our arguments, we obtain the following result:

Theorem 2. Let (G,X) be as above and let Up denote a hyperspecial parahoric. As-
sume that Gad is Q-simple and let SU,Fp{w} be an Ekedahl-Oort stratum that is not
contained in the basic locus (the smallest Newton stratum). Then

SU,Fp{w} → SU,Fp

induces a bijection on connected components.

Our methods will also prove versions of Theorems 1 and 2 without the assumption
that GQp splits over an unramified extension, but always under the assumption that
GQp is quasi-split. Moreover we prove irreducibility of Kottwitz-Rapoport strata at
Iwahori level. The generalisations of Theorems 1 and 2 are Theorems 5.4.0.1 and
5.4.0.3, respectively, which assume that the Shimura varieties in question are proper
and not of type A. Our proof of Theorem 5.4.0.1 proceeds by reduction to the case of
an very special parahoric. This case is handled by Rong Zhou in Appendix A of [32],
by studying connected components of affine Deligne-Lusztig varieties of very special
level and applying the main results of his earlier paper [73].

Ekedahl-Oort strata contained in the basic locus are highly reducible, for example the
number of points in the supersingular locus of the modular curve goes to infinity with
p. Similarly the basic locus itself is highly reducible. This means that the theorem
is false for products of Shimura varieties with b basic in one factor and non-basic in
the other; this is where the assumption that Gad is Q-simple comes from. It can be

3See Appendix B of [50] for a classification of abelian type Shimura varieties into types A,B,C,DR

and DH
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replaced with the assumption that b is Q-non basic, which means that the image of b
in B(Gi,Qp) is basic for any Q-factor Gi of Gad (this terminology comes from [44]).

It follows from Theorem D of [65] that each Newton stratum contains a minimal EO
stratum, that is, an EO stratum that is a central leaf. Central leaves that are not
contained in the basic locus are expected to be irreducible, this is often referred to as
the ‘discrete part’ of the Hecke-orbit conjecture (c.f. [9,72]). In a previous version
of my paper [32] I claimed to prove this conjecture, however my proof contained an
error.

Instead the conjecture follows from my joint work [33] with Luciena Xiao Xiao, where
we prove irreducibility of Igusa varieties. Our proof of this irreducibility builds on
Theorem 2, and combines recent work of D’Addezio on monodromy of compatible local
systems with a generalisation of a method of Hida. Our results on the irreducibility of
Igusa varieties were independently obtained by Kret and Shin [44], using completely
different methods. Their proof uses point counting methods, automorphic forms and
harmonic analysis.

Remark 4.0.1. Theorem 2 was proven for Siegel modular varieties varieties by Ekedahl
and van der Geer [15]. There is also work of Achter [1] concerning certain GU(1, n−1)

Shimura varieties (his results are stated as irreducibility of Newton strata, but it his
case the Newton strata in question are also Ekedahl-Oort strata).

Remark 4.0.2. The assumption that (Gad, Xad) has no factors of type DH or that Up
is contained in a hyperspecial subgroup is also present in the statement of Theorem
0.4 of [37] and for the same reason: We can reduce Theorem 1 for (G,X) to the
case of Shimura varieties (H,Y ) of Hodge type with Hder simply-connected, except if
(Gad, Xad) has factors of type DH.

5. Overview of the proof

Both Kisin and Zhou employ roughly the same strategy, which we will now briefly
sketch: The integral models SG of Hodge type Shimura varieties come equipped, by
construction, with finite maps SG → SGSp to Siegel modular varieties. Given a point
x ∈ SG(Fp), classical Dieudonné theory produces a map

Xp(φ)→ SGSp(Fp)
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and it suffices to show that it factors through SG. A deformation theoretic result
shows that it suffices to prove this result for one point on each connected compo-
nent of Xp(φ), and therefore we need to understand these connected components. In
the hyperspecial case, this is done in [10], and in the parahoric case this is done in
[31], under the assumption that GQp is residually split. The main obstruction to ex-
tend Zhou’s methods beyond the residually split case, is that we do not understand
connected components of affine Deligne-Lusztig varieties for more general groups.

Our proof of Theorem 1 does not address connected components of affine Deligne-
Lusztig varieties. Instead, we prove the theorem at parahoric level by reducing to
the case of a hyperspecial parahoric, where we can use Kisin’s result. Our argument
makes crucial use of moduli spaces of mixed characteristic shtukas (see [64,71]) and
the incarnation of special fibers of local models as subvarieties of mixed characteristic
affine Grassmannians (see [30]).

We will now give a brief overview of the strategy of our proof: It turns out that it
suffices to work with Hodge type Shimura varieties such that Gad is Q-simple. Let Up
denote a hyperspecial parahoric and let U ′p denote an Iwahori subgroup contained in
Up, then by Section 7 of [73] there is a proper morphism of integral models SUpU ′p →
SUpUp and we let ShU ′p → ShUp be the induced morphism on the perfections of their
special fibers. There is a commutative diagram

(5.0.1)

ShU ′p Shtµ,U ′p

ShUp Shtµ,Up ,

where Shtµ,Up is the stack of Up-shtukas of type µ introduced by Xiao-Zhu [71] (c.f.
Section 2.3, 2.5 and Section 4 of [64]), with µ the inverse 4 of the Hodge cocharacter
induced by the Shimura datum. The horizontal morphisms in (1.5.0.1) are the Hodge
type analogues of the morphism from the moduli space of abelian varieties to the
moduli space of p-divisible groups (or the moduli spaces of Dieudonné-modules, since
we are over a perfect base). If G = GSp, then this diagram is Cartesian and in general
it follows from ‘local uniformisation’ of Shtµ,U ′p , that ShU ′p has the correct Fp points
if and only if (1.5.0.1) is Cartesian. So our main theorem, in the Hodge type case, is
equivalent to showing that this diagram is Cartesian.

4We will make our precise conventions on the Hodge cocharacter clear in Chapter 3.
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The morphism Shtµ,U ′p → Shtµ,Up is representable by perfectly proper algebraic spaces,
and we let S̃hU ′p be the fiber product of (1.5.0.1). There is a natural morphism
ι : ShU ′p → S̃hU ′p given by the universal property of the fiber product. To prove the
main theorem, it suffices to show that ι is an isomorphism, which we do in three steps:

• We first show that ι : ShU ′p → S̃hU ′p is a closed immersion.

• We then show that S̃hU ′p is equidimensional of the same dimension as ShU ′p and
that it has a Kottwitz-Rapoport stratification with the expected properties.

• We conclude by showing that S̃hU ′p has the same number of irreducible com-
ponents as ShU ′p .

It is this last step that requires by far the most work. The second bullet points tells
us that S̃hU ′p and ShU ′p are unions of closures of Kottwitz-Rapoport (KR) strata and
therefore it suffices to count irreducible components in each KR stratum separately.
A result of Zhou [73] tells us that ι is an isomorphism on basic KR strata, and so it
suffices to analyse irreducible components of nonbasic KR strata. We will show that
the nonbasic KR strata of S̃hU ′p are ‘irreducible’, by which we mean that they have
one irreducible component lying over each connected component of ShUp,Fp . It follows
from Section 8 of [73] that the KR strata of ShU ′p have at least this many irreducible
components, and we conclude that S̃hU ′p is isomorphic to ShU ′p and that KR strata of
ShU ′p are ‘irreducible’. Theorem 2 now follows because every EO stratum is the image
of a KR stratum under the forgetful map. In the introduction to Section 4, we will give
a more detailed overview of our connectedness argument. For now, we just mention
that it combines the connectedness argument of [21], the connectedness argument of
[31] and strong approximation. To deal with noncompact Shimura varieties, we make
use of results of Wedhorn-Ziegler [70] and a recent result of Andreatta [2].

6. Outline

We start with some preliminaries in the local representation theory of GQp such as
Iwahori-Weyl groups, affine Grassmannians and affine Deligne-Lusztig varieties. We
recommend the reader skip Section 2.6 on the first reading, as it is very technical.

In Chapter 3 we define Galois gerbs and state the Langlands-Rapoport conjecture.
Afterwards, we study how the Langlands-Rapoport conjecture behaves under central
isogenies of Shimura data. This latter part of the chapter is only needed to deduce
the conjecture for abelian type Shimura varieties from the conjecture for Hodge type
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Shimura varieties. Its contents can be summed in one sentence as follows: Every-
thing in Section 3 of [38] generalises to arbitrary quasi-split groups without too much
trouble. We encourage the reader skip this part of the chapter upon first reading.

Chapter 4 is, from the author’s point of view, the most interesting chapter and the
chapter where all the original mathematics happens. The main goal of this Chapter
is to show that we can deduce Theorem 1 for a general parahoric subgroup from the
case of a very special parahoric subgroup, for a Shimura variety of Hodge type. This
chapter contains the connectedness argument sketched above, and from it we deduce
irreducibility for EKOR strata.

Chapter 5 is where we state and prove all the theorems for abelian type Shimura
varieties, mostly following Section 4 of [38].
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CHAPTER 2

Local Preliminaries

In this chapter we collect definitions and results about representation theoretic objects
associated to a connected reductive group G/Qp. Some of these are of a combinato-
rial nature, such as Iwahori-Weyl groups and Frobenius conjugacy classes, and some
of these are of a geometric nature, such as affine flag varieties and affine Deligne-
Lusztig varieties. The main of the chapter is to introduce moduli "spaces" of mixed
characteristic shtukas and to prove some results about them for later use.

1. Iwahori-Weyl groups

The main reference for this section will be Section 2 of [27] and Section 2 of [73].
Let G be a connected reductive group over Qp and let {µ} be a conjugacy class of
homomorphisms Gm,Qp → GQp . Let L be the completion of the maximal unramified
extension of Qp, with Frobenius σ. Let S ⊂ GL be a maximal L-split torus and let T
be its centraliser, which is a maximal torus of G by a theorem of Steinberg. Choose a
σ-invariant alcove a in the apartment of the Bruhat-Tits building of G associated to
S over L. We define the relative Weyl group by

W0 = N(L)/T (L)

and the Iwahori-Weyl group (or extended affine Weyl group) by

W̃ = N(L)/T (OL),

where T /OL is the connected component of the identity of the Néron model of T .
There is a short exact sequence

0→ X∗(T )I → W̃ → W0 → 0,

where I = Gal(L/L) is the inertia group and X∗(T )I denotes the inertia coinvariants
of the cocharacter lattice of T . The map X∗(T )I → W̃ is denoted on elements by
λ 7→ tλ. Let S ⊂ W̃ denote the set of simple reflections in the walls of a and let
W̃a be the subgroup of W̃ generated by S, which we will call the affine Weyl group.
Parahoric subgroups K of GL that contain the Iwahori subgroup corresponding to a,

18
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correspond to subsets K ⊂ S such that the subgroup W̃K generated by K is finite.
This identification is Frobenius equivariant in the sense that σ(K) corresponds to
σ(K). In particular, a subset K ⊂ S corresponds to a parahoric subgroup of G if and
only if σ(K) = K, note that our fixed Iwahori subgroup corresponds to ∅ ⊂ S. There
are parahoric group schemes GK over OL associated to subsets K ⊂ S as above, and
we have identifications σ∗GK ' Gσ(K). In particular, if K is stable under σ then GK
is defined over Zp. The maximal reductive quotient of the special fiber of GK is a
reductive group over the residue field k of L with Dynkin diagram K.

Parahoric group schemes are the connected component of the identity of so-called
Bruhat-Tits stabiliser group schemes. We will call a parahoric subgroup connected
if it is equal to such a Bruhat-Tits stabiliser group scheme. When working with
(Hodge type) Shimura varieties of parahoric level, we will always assume that the
corresponding parahoric subgroup is connected. This is automatically true if Gder is
simply connected andX∗(Gab)I is torsion free or if GQp is unramified and our parahoric
is contained in a hyperspecial subgroup.

A Bruhat-Tits stabiliser group scheme is called special if it is the stabiliser of a special
vertex of the Bruhat-Tits building of Gad, and very special if it is the stabiliser of a
very special vertex, that is, a special vertex that remains special in the Bruhat-Tits
building of Gad

L .

There is a split short exact sequence

0→ W̃a → W̃ → π1(G)I → 0,(1.0.1)

where π1(G) is the algebraic fundamental group of G (c.f. the introduction of [4]).
The affine Weyl group W̃a has the structure of a Coxeter group, and this can be
used to define a Bruhat order and a notion of length on W̃ , by splitting (2.1.0.1) and
regarding π1(G)I ⊂ W̃ as the subset of length zero elements. We can now define the
set of µ-admissible elements as

Adm(µ) := {w ∈ W̃ : w ≤ txµ for some x ∈ W0},

where µ is the image of a dominant representative (with respect to the choice of some
Borel of G over L) of {µ} in X∗(T )I . There is a unique element τ = τµ ∈ Adm(µ) of
length zero and in fact Adm(µ) ⊂ W̃aτ . For K a σ-stable type we define Adm(µ)K as
the image of Adm(µ) under W̃ → W̃K\W̃/W̃K . We write K Adm(µ) for Adm(µ)∩KW̃ ,
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where KW̃ denotes the subset of elements that are of minimal length in their left W̃K-
coset.

1.0.1. σ-conjugacy classes. There is a Kottwitz homomorphism k̃G : G(L) →
π1(G)I , and we write kG for the composition with π1(G)I → π1(G)Γ, where Γ =

Gal(Qp/Qp). If we let B(G) denote the set of σ-conjugacy classes in G(L), then kG
induces a functorial map

kG : B(G)→ π1(G)Γ

and there is also a functorial map (the Newton map)

νG : B(G)→ N (G),

where N (G) = (X∗(T )Q/W )Γ. More canonically, we can describe N (G) as the set of
G(Qp)-conjugacy classes of morphisms ν : DQp → GQp defined over Qp, where D is the
pro-torus over Qp with character group Q. Moreover, the following diagram commutes

B(G) π1(G)Γ

N (G) (π1(G)⊗Z Q)Γ,

kG

νG

where the right vertical map is the isomorphism

(π1(G)⊗Z Q)Γ → (π1(G)⊗Z Q)Γ,

defined by averaging over Γ-orbits, see p. 162 of [57]. We also recall that the product

(kG, νG) : B(G)→ π1(G)Γ ×N (G)

is injective. There is a natural partial order on N (G) and we can use this to define a
partial order on B(G) by setting [b] ≤ [b′] if kG([b]) = kG([b′]) and ν[b] ≤ ν[b′].

1.0.2. Admissible σ-conjugacy classes. Let ψ : G→ G∗ be an inner twisting, where
G∗ is the quasi-split inner form of G. If {µ} is a G(Qp)-conjugacy class of morphisms
DQp → GQp defined over Qp, then so is {ψ ◦ µ}. This gives us a map

Nψ : N (G)→ N (G∗),

which only depends on the G(Q̆p)-conjugacy class of ψ. Our conjugacy class {ψ ◦ µ}
of cocharacters Gm,Qp → G∗Qp

has a dominant representative µ∗ ∈ X∗(T ∗), for some
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choice of maximal torus and Borel T ∗ ⊂ B∗ defined over Qp. We set

Nµ∗ =
1

[Γ : Γµ∗ ]

∑
σ∈Γ/Γµ∗

σµ∗ ∈ X∗(T ∗)Γ
Q,

where Γµ∗ is the stabiliser of µ∗ in Γ. We will write µ∗ for the image of Nµ∗ in N (G∗)

and µ] for the image of µ in π1(G)Γ.

Definition 1.0.3. We define B(G, {µ}) or just B(G, µ) as the set [b] ∈ B(G, µ) such
that kG([b]) = µ] and such that Nψ(νG([b])) ≤ µ∗.

1.0.4. Affine Deligne-Lusztig sets. Let K ⊂ S be a σ-stable type, that is, a subset
such that W̃K is finite. Then for b ∈ G(L) we define the affine Deligne-Lusztig set

Xµ(b)K = {g ∈ G(L)/GK(OL) | g−1bσ(g) ∈
⋃

w∈Adm(µ)

GK(OL)wGK(OL)}.

This set has an action of Jb(Qp), where Jb is the algebraic group over Qp whose
R-points are given by

Jb(R) = {g ∈ G(L⊗Qp R) | g−1bσ(g) = b}.

Moreover, it only depends on the class of b in B(G) as a set with Jb(Qp) action, up to
isomorphism. The following nonemptiness result for the sets Xµ(b)K was conjectured
by Kottwitz and Rapoport and proven by He.

Theorem 1.0.5 (Theorem 1.1 of [29]). The set Xµ(b)K is nonempty if and only if
b ∈ B(G, µ). Moreover, for K ′ ⊂ K another σ-stable type, the natural projection
G(L)/GK′(OL)→ G(L)/GK(OL) induces a Jb(Qp)-equivariant surjection

Xµ(b)K′ → Xµ(b)K .

We will later see that G(L)/GK(OL) can be identified with the set of Fp-points of a
perfect ind-scheme GrK over Fp, and that there is a closed subscheme of GrK with an
action of Jb(Qp) such that its Fp-points can be identified with Xµ(b)K , equivariant for
the action of Jb(Qp).

2. Some perfect algebraic geometry

We will use the language of perfect algebraic geometry from Appendix A of [75]. In
this section we will collect some important definitions and results that we will make
use of regularly. Let k be the residue field of L as above, then we call a k-algebra R
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perfect if the map σ : R→ R defined by r 7→ rp is an isomorphism. Let Affperf
k denote

the category of perfect k-algebras, this will be the ‘test category’ on which many of
our geometric objects are defined. If X is a scheme over k, considered as presheaf on
the category of k-algebras, then the restriction of X to the Affperf

k precisely remembers
the perfection

Xperf := lim←−
σ

X

of X. There is a well behaved notion of pfp (perfectly of finite presentation) algebraic
spaces as functors on Affperf

k . One can prove that every pfp (perfectly of finite presen-
tation) algebraic space is in fact the perfection of a (weakly normal) algebraic space of
finite presentation over k, and similarly that every morphism f : X → Y between pfp
algebraic spaces arises from a morphism between algebraic spaces of finite presentation
(this is called a ‘deperfection’). One way to define properness of such morphisms is
by asking that every deperfection of it is proper. The most important notion we need
is that of perfectly smooth morphism:

Definition 2.0.1 (Definition A.18 of [75]). Let f : X → Y be a morphism between
pfp algebraic spaces over k. We say that f is perfectly smooth at x ∈ X if there is
an étale morphism U → X whose image contains x and an étale morphism V → Y

whose image contains f(x) such that: The map U → Y factors as U → V → Y and
the morphism h : U → V factors as an étale morphism h′ : U → V × (An)perf followed
by the projection to V . We say that f is perfectly smooth if it is perfectly smooth at
all points x ∈ X.

Appendix A of [71] defines the notion of a perfect algebraic stack: Basically we take
fpqc stacks that have perfectly smooth covers by schemes and diagonals represented
by a perfect algebraic spaces. There is then a well defined notion of pfp (perfectly of
finitely presentation) algebraic stack.

Definition 2.0.2 (Definition A.1.13 of [71]). A morphism f : X → Y of pfp algebraic
stacks is called perfectly smooth if there is a perfectly smooth morphism U → X from
a scheme U such that the composition U → X → Y is perfectly smooth (this makes
sense because U → Y is representable).

Lemma 2.0.3. Perfectly smooth morphisms are stable under composition and base
change.
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Proof. Standard diagram chase, using the fact that étale morphisms are stable
under composition and base change. �

Remark 2.0.4. A perfectly smooth morphism f : X → Y has a relative dimension
that is locally constant on Y . This relative dimension is preserved by base change and
‘adds up’ under composition.

Lemma 2.0.5. Let f : X → Y be a perfectly proper morphism between pfp algebraic
spaces over k that induces a bijection on k-points, then f is an isomorphism.

Proof. Let f ′ : X ′ → Y ′ be a proper morphism of locally of finite type algebraic
spaces over k whose perfection gives f . Then the fact that f induces a bijection on
k-points tells us that f ′ induces a bijection on k-points and so it is surjective (since
k-points are dense) and universally injective (because our morphisms are locally of
finite type, see [69]). We now deduce that f ′ is a universal homeomorphism because
it is universally injective, universally injective and universally closed. This implies
that f is a separated universal homeomorphism between pfp algebraic spaces, and so
it is an isomorphism by Corollary A.16 of [75]. �

3. Affine flag varieties and moduli spaces of local shtukas

In this section we will quickly recall some definitions from [64,71,75] and state some
results. Let G be a connected reductive group over Qp as above and let GK ,GJ/OL be
parahoric group schemes corresponding to types K, J ⊂ S. For an object R of Affperf

k

we define

DR = SpecW (R), D∗R = SpecW (R)[1/p],

which are the mixed characteristic analogues of the disk SpecR[[t]] and the punctured
disk SpecR[[t]][1/t]. We consider the following functors on Affperf

k

LG(R) := G(D∗R)

L+GK(R) := G(DR).
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Definition 3.0.1. Let R be an object of Affperf
k , let E be a GK-torsor on DR and let

F be a GJ-torsor on DR. A modification

β : E 99K F

is an isomorphism of G-torsors

β : E
∣∣
D∗R
' F

∣∣
D∗R
.

Here we mean torsor in the usual sense, i.e., a scheme E → SpecDR with an action of
GK such that the action map

GK ×DR E → E ×DR E

(g, x) 7→ (gx, x)

is an isomorphism and such that E → SpecDR has a section fpqc locally on SpecDR.
Since GK is a smooth group scheme, this implies that E → SpecDR is smooth and
hence has a section étale locally on SpecDR. In fact, it follows from the proof of
Lemma 1.3 of [75] that E can be trivialised after an étale cover SpecDR′ → SpecDR

coming from an étale cover SpecR′ → SpecR.

Definition 3.0.2. We define the (partial) affine flag variety GrK to be the functor on
Affperf

k which sends R to the set of isomorphism classes of modifications

β : E 99K E0,

where E is an GK-torsor on DR and E0 is the trivial GK-torsor on DR.

Theorem 3.0.3 ([75], [3]). The functor GrK can be represented by an inductive limit
of perfectly proper perfect schemes, and the transition morphisms in this inductive
limit are closed embeddings. Moreover GrK is the étale sheafification of the sheaf
R 7→ LG(R)/L+GK(R)

Definition 3.0.4. We define the prestack ShtK of GK-shtukas to be the functor on
Affperf

k which sends a perfect k-algebra R to the groupoid of modifications

β : σ∗E 99K E ,

where σ : DR → DR denotes the Frobenius morphism induced from the relative Frobe-
nius on R and where E is a GK-torsor on DR. Here we consider σ∗E

∣∣
D∗R

as a G-bundle
via the isomorphism σ : σ∗G→ G, coming from the fact that G is defined over Qp.
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Lemma 3.0.5 (Lemma 4.1.4 of [64]). We have an isomorphism

ShtK '
[

LG

Adσ L+GK

]
,

where Adσ denotes L+G acting on LG via σ-conjugation. To be precise let σ : L+GK →
L+Gσ(K) be the relative Frobenius morphism, then we let L+GK(R) act on LG(R) via

h · g = (h−1gσ(h)).

Here the quotient notation means quotient stack (in the étale topology or equivalently
the fpqc topology).

4. Forgetful maps

If L+GJ ⊂ L+GK is an inclusion of parahoric subgroups corresponding to an inclusion
of types J ⊂ K, then there is a forgetful map

ShtJ → ShtK .

Our goal is to show that these forgetful maps are representable by perfectly proper
algebraic spaces. The basic idea is to show that the fibers are étale locally isomorphic
to partial flag varieties for the maximal reductive quotient of the special fiber of GK ,
c.f. Proposition 8.7 of [54]. Let HJ be the image of GJ in (GK)red, it is a parabolic
subgroup of type J ⊂ K.

Lemma 4.0.1. The forgetful map BL+GJ → BL+GK is an (GK)red/HJ-bundle, in
particular it is representable by perfectly proper algebraic spaces.

Proof. Let R be an object of Affperf
k and let X be an L+GK torsor on R repre-

sented by a map SpecR → BL+GK . Then it follows from general nonsense that the
top square in the following diagram of prestacks is Cartesian

X ∗

[X/L+GJ ] [∗/L+GJ ]

SpecR [∗/L+GK ].

Lemma 1.3 of [75] tells us that there is an étale cover T → SpecR such that XT

is isomorphic to the trivial L+GK torsor, hence [X/L+GJ ] is étale locally isomorphic
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to [(L+GK)X /L
+GJ ]. Therefore it suffices to show that the latter is representable by

perfectly proper schemes. Now consider the following commutative diagram of perfect
group schemes

L+GJ HJ

L+GK (GK)red.
ϕ

If we could show that this diagram was Cartesian, then it would follow that

[L+GK/L+GJ ] ' [(GK)red/HJ ]

and the latter is a perfectly proper scheme because it is the perfection of a partial
flag variety. Because both the fiber product of the diagram and L+GJ are closed
subschemes of L+GK , we just have to check that the underlying topological spaces are
the same. So it suffices to prove that the diagram is Cartesian on K-points for all
algebraically closed fields K of characteristic p, which is Theorem 4.6.33 of [6]. �

Corollary 4.0.2. The map ShtJ → ShtK is a (GK)red/HJ-bundle, in particular it is
representable by perfectly proper algebraic spaces.

Proof. This would be immediate if we could show that the following diagram
were Cartesian

(4.0.1)
ShtJ ShtK

BL+GJ BL+GK .

Given an GK shtuka (E , β) ∈ ShtK(R) together with an GJ -torsor E ′ and an isomor-
phism α : E ′ ×GJ GK → E , i.e. an element of the fiber product, we want to produce
an GJ shtuka. But we can just take (E ′, β), because the LG-torsor induced from E ′ is
identified with the LG-torsor induced from E via α. This gives a map from the fiber
product to ShtJ , and one can check that it is an inverse to the map coming from the
universal property. �

5. Relative position

Let E and E ′ be two GK-torsors over OL together with a modification

β : E 99K E ′.
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There is a relative position Inv(β) ∈ W̃K\W̃/W̃K attached to β as follows: Choosing
isomorphisms E ∼= E0 and E ′ ∼= E0 we see that β becomes an isomorphism of the trivial
G-torsor over L, i.e., an element of G(L). However, this element is only well defined
up to our choice of trivialisations of E and E ′, and so gives us a well defined double
coset in

Inv(β) ∈ GK(OL)\G(L)/GK(OL).

The Bruhat-Tits decomposition then tells us that

GK(OL)\G(L)/GK(OL) = W̃K\W̃/W̃K .

This works verbatim for modifications of L+GK-bundles over any algebraically closed
field of characteristic p. Now let E and E ′ be two G-torsors over DR for some R ∈
Affperf

k together with a modification

β : E 99K E ′.

Given such a modification, we get for each geometric point x of SpecR a relative
position Inv(β)x ∈ W̃K\W̃/W̃K . We write Inv(β) � w if for all geometric points x we
have Inv(β)x � w, where � denotes the Bruhat order on W̃K\W̃/W̃K induced from
the Bruhat order on W̃ . We will write Inv(β) = w if Inv(β)x = w for all geometric
points x. It follows from the discussion after Remark 3.5 of [31] (c.f. Lemma 1.2.2 of
[75] for the hyperspecial case) that the subspace

SpecR(� w) ⊂ SpecR

consisting of points x such that Inv(β)x � w is a closed subscheme, and that the
subscheme Spec(R)(w) where Inv(β)x = w is locally closed. There is a stratification

GrK =
⋃

w∈W̃K\W̃/W̃K

GrK(w),

where each GrK(w) is locally closed in GrK and it follows from loc. cit. that the
closure of GrK(w) is equal to GrK(≤w). Similarly there is a stratification

ShtK =
⋃

w∈W̃K\W̃/W̃K

ShtK(w),

defined by a relative position condition on geometric points. We would like to say that
ShtK(w) → ShtK is a "locally closed substack", except we don’t have a good notion
of topological spaces for ShtK and ShtK(w). An alternative definition is to ask that
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for every R ∈ Affperf
k and every morphism SpecR = X → ShtK , the fiber product

X(w) = X ×ShtK ShtK(w)

is a scheme and the morphism X(w) → X is a locally closed immersion. This fol-
lows from the discussion after Remark 3.5 of [31] (c.f. Lemma 1.2.2 of [75] for the
hyperspecial case) as before. Finally, we define

ShtK,µ =
⋃

w∈Adm(µ)K

ShtK(w).

Remark 5.0.1 (Remark 5.2.2.(1) of [71]). If G = GLn and µ = ωi is the ith fundamen-
tal cocharacter, then ShtG,i can be regarded as the moduli space of p-divisible groups
of height n and dimension n− i. This uses the fact that a modification of GLn bun-
dles can be thought of as a morphism of vector bundles (or projective modules). The
fact that the modification is of type µ then tells us that this is actually a Dieudonné
module corresponding to a p-divisible group of the right height and dimension (using
a result of Gabber about Dieudonné theory over perfect bases).

Since Adm(µ)K is closed in the partial order on W̃K\W̃/W̃K , the morphism ShtK,µ ⊂
ShtK is representable by closed immersions. If J ⊂ K is another σ-stable type then
the following diagram commutes by definition of Adm(µ)J and Adm(µ)K (but it is
not Cartesian!)

(5.0.1)
ShtJ,µ ShtJ

ShtK,µ ShtK .

It follows from Corollary 2.4.0.2 that the forgetful morphism ShtJ,µ → ShtK,µ is rep-
resentable by perfectly proper algebraic spaces.

6. Restricted local shtukas

In this section we will introduce restricted local shtukas which we will use to state
and prove a technical lemma that will be very important in Chapter 4. The reader is
advised to skip this section on the first read-through.

We will quickly recall some of the things we need from Section 4.2 of [64]. Let K ⊂ S
a σ-stable type and let M loc,∞

K ⊂ LG be the closed subfunctor of LG defined by the
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Cartesian diagram

M loc,∞
K LG

ShtK,µ ShtK .

It follows from (2.5.0.1) that there is an inclusion M loc,∞
J ⊂M loc,∞

K for J ⊂ K. Let

β : L+GK → (GK)red

be the natural map, let

L+G1−rdt
K := ker β

and let M loc,1−rdt
K be the image of M loc,∞ under the projection

LG→ L+G1−rdt
K \LG.

We then define

Sht
(∞,1)
K,µ :=

[
M loc,1−rdt

K

Adσ L+GK

]
.

In the discussion in subsection 4.2.2 of [64] it is shown that the twisted conjugation
action of L+GK on M loc,1−rdt

K factors through LmGK for m � 0, and for such m we
define

Sht
(m,1)
K,µ :=

[
M loc,1−rdt

K

Adσ LmGK

]
.

It is important to note that an inclusion J ⊂ K leads to an inclusion L+GJ ⊂ L+GK ,
which leads to an inclusion L+G1−rdt

K ⊂ L+G1−rdt
J (in the ‘wrong’ direction!). This

means that there is no natural forgetful map Sht
(m,1)
K,µ → Sht

(m,1)
J,µ . There is however a

correspondence between them, which we can use to prove the following lemma (here
we only deal with the case that J = ∅).

Lemma 6.0.1. There is a prestack Y such that the following diagram commutes, such
that the left square is Cartesian and such that the map Y → Sht

(n,1)
∅,µ is perfectly smooth.

Sht∅,µ Y Sht
(n,1)
∅,µ

ShtK,µ Sht
(m,1)
K,µ
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Here we need to assume that m� n� 0.

Proof of Lemma 2.6.0.1. Consider the inclusion L+G∅ ⊂ L+GK , which induces
an inclusion B ⊂ (GK)red, where B is the image of G∅. In fact the left square in the
following diagram of perfect group schemes is Cartesian (c.f. the proof of Lemma
2.4.0.1)

L+G∅ B (G∅)red

L+GK (GK)red.

α

β

This gives us an inclusion ker β ⊂ kerα and we consider the following Cartesian
diagram

Sht∅,µ

[
M loc,∞
∅

Adσ L+G∅

] [
kerβ\M loc,∞

∅
Adσ L+G∅

]

ShtK,µ

[
M loc,∞
K

Adσ L+GK

] [
kerβ\M loc,∞

K

Adσ L+GK

]
The action of Adσ L

+G∅ on ker β\M loc,∞
K factors through LnG∅ for n� 0. The action

of L+GK factors through LmGK for m � 0 and if we choose m � n � 0 we can
arrange that the action of Adσ L

+G∅ factors through the image H of L+G∅ in LmGK
and such that H surjects onto LnG∅. We then we get a Cartesian diagram[

kerβ\M loc,∞
∅

Adσ L+G∅

] [
kerβ\M loc,∞

∅
Adσ H

]

[
kerβ\M loc,∞

K

Adσ L+GK

] [
kerβ\M loc,∞

K

Adσ LmGK

]
.

Now we consider the morphism[
ker β\M loc,∞

∅
AdσH

]
→

[
kerα\M loc,∞

∅
AdσH

]
=

[
M loc,1−rdt
∅

AdσH

]
.
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This is an kerα/ ker β = ker(B → (G∅)red) = U -torsor, which is perfectly smooth
because U is the perfection of a smooth group scheme. The natural map[

M loc,1−rdt
∅

AdσH

]
→

[
M loc,1−rdt
∅

Adσ LnG∅

]
= Sht

(n,1)
∅,µ

is perfectly smooth because it is a gerbe for the smooth group scheme ker(H → LnG∅).
We can now conclude the proof by choosing

Y :=

[
ker β\M loc,∞

∅
AdσH

]
.

�

7. Newton stratification

Let E be an LG-torsor over K, with K an algebraically closed field of characteristic
p, and let β : σ∗E → E be an isomorphism where σ is the absolute Frobenius. After
choosing a basis, we see that β can be represented by an element b ∈ G(L) well defined
up to σ-conjugacy; hence b gives rise to a σ-conjugacy class [bβ] ∈ B(G). Recall that
the set B(G) of σ-conjugacy classes in LG(K) does not depend on K and moreover
that B(G) is equipped with a partial order (c.f. [57]).

Lemma 7.0.1. Let R ∈ Affperf
k , let E be an LG-torsor over R and let β : σ∗E → E be

an isomorphism. Then for b0 ∈ B(G), the subset

(SpecR)b := {x ∈ SpecR : [bβ(x)] ≤ b0}

is closed in SpecR.

Proof. This is Theorem 3.6 (ii) of [57]. �

This gives us a stratification

ShtK :=
⋃

b∈B(G)

ShtK,b,

where ShtK,b denotes the locally closed substack of ShtK consisting of modifications
β : σ∗E 99K E such that bβ(x) = b for all geometric points x. We will write ShtK,µ,b

for the intersection of ShtK,µ and ShtK,b, we will later see that this is nonempty if and
only if b ∈ B(G, µ).
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8. Affine Deligne-Lusztig varieties and uniformisation

In this section we introduce affine Deligne-Lusztig varieties and relate them to moduli
spaces of shtukas, following Section 4.3 of [64]. Let K be a σ-stable type, let b ∈ G(L)

and consider the moduli functorXµ(b)K on Affperf
k sendingR to commutative diagrams

of modifications of GK-bundles on DR

(8.0.1)
σ∗E1 E1

σ∗E0 E0.

β1

σ∗β0 β0

b

We will sometimes refer to such a diagram as a quasi-isogeny of shtukas from (E1, β1)→
(E0, b). Here b is the modification of the trivial GK-bundle σ∗E0 ' E0 given by
multiplication by b and β1 is required to have relative position ≤ Adm(µ)K . We start
with a basic result:

Lemma 8.0.1. The morphism Xµ(b)K → GrK which sends a diagram as in (2.8.0.1)
to β0 : E1 → E0 is a closed immersion.

Proof. Consider the functor X(b) sending R commutative diagrams of modifica-
tions of GK-bundles on DR

(8.0.2)
σ∗E1 E1

σ∗E0 E0.

β1

σ∗β0 β0

b

as before, but now without the condition that β1 has relative position bounded by
Adm(µ)K . It follows from the discussion after Remark 3.5 of [31] (c.f. Lemma 1.2.2
of [75] for the hyperspecial case) that Xµ(b)K is a closed subfunctor of X(b) and the
lemma would follow if we could show that the map

f : X(b)→ GrK

sending a diagram as in (2.8.0.2) to β0 : E1 → E0 is an isomorphism. The map f is an
isomorphism because the map g : GrK → X(b) sending β0 : E1 → E0 to the diagram

σ∗E1 E1

σ∗E0 E0.

β1

σ∗β0 β0

b
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with β1 = β−1
0 bσ∗β0 is an inverse to f . �

It follows that Xµ(b)K is an an inductive limit of perfectly proper perfect schemes,
because GrK is. In particular, topological notions like connected components and
irreducible components make sense for Xµ(b)K . It should be true that Xµ(b)K is
actually a perfect scheme that is locally perfectly of finite type although a precise proof
in this level of generality seems to be missing from the literature. It is shown in equal
characteristic in the case of a hyperspecial parahoric in Section 6 of [26], and according
to the proof of Lemma 1.1 of [25] this proof generalises to mixed characteristic. From
there we can deal with Iwahori level ADLV’s for unramified reductive groups using
the forgetful maps, c.f. Corollary 2.5.3 of [74].

If b′ is σ-conjugate to b, that is if b′ = gbσ(g)−1 with g ∈ G(L), then Xµ(b)K ' Xµ(b′)K

via the map

σ∗E1 E1

σ∗E0 E0.

β1

σ∗β0 β0

b

7→
σ∗E1 E1

σ∗E0 E0.

β1

σ(g)σ∗β0 g−1β0

b′

We note that this map is nothing more than the action of g ∈ LG(Fp) on Xµ(b)K ⊂
GrK via the natural action of LG on GrK . For b′ = b this induces an action of the
closed subgroup Fb ⊂ LG on Xµ(b)K , where Fb is defined as the subfunctor of LG
sending R ∈ Affperf

k to

Fb(R) = {g ∈ LG(R) | gbσ(g)−1 = b}.

The Fp-points of Fb are in bijection with Jb(Qp), where Jb/Qp is the algebraic group
over Qp introduced in Section 2.1.0.4.

Lemma 8.0.2. Consider the morphism Θb : Xµ(b)K → ShtK,µ which sends a diagram
as in (2.8.0.1) to (E1, β1). This morphism is Fb-invariant and induces an isomorphism
of groupoids

ShtK,µ,b(Fp) '
[
Jb(Qp)\Xµ(b)K(Fp)

]
.

Proof. It is clear that the morphism is Fb-invariant since the action of Fb on
Xµ(b)K doesn’t change (E1, β1) and in fact for every scheme T 7→ ShtK,µ either
Xµ(b)K(T ) is empty or the the action of Fb on Xµ(b)K(T ) is simply transitive. In
other words, for the Gk-shtuka (E1, β1) over T determined by T → ShtK,µ the set
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of quasi-isogenies from (E1, β1) to (E0, b) is either empty or has a simply transitive
action by Fb. This uses the fact that Fb can be identified with the group scheme of
self quasi-isogenies of (E0, b). If we could show that every such GK-shtuka admits a
quasi-isogeny fpqc-locally on T , then there would be an isomorphism (c.f. [68, Tag
0497]).

ShtK,µ,b ' [Fb\Xµ(b)K ] .

To get the statement on Fp-points, we need to show that every GK-shtuka over Fp in
the Newton stratum determined by b is quasi-isogenous to (E0, b), which is true by
definition of the Newton stratification. �

Remark 8.0.3. It should in fact be true that Fb(R) ' Jb(Qp) for every perfect Fp-
algebra R with SpecR connected, and that the locally profinite group π0(Fb) is iso-
morphic (as a topological group) to Jb(Qp). Moreover every GK should indeed admit,
fpqc locally, a quasi-isogeny to a constant shtuka. Both of these statements follow
from Theorem I.2.1 of [16], but we don’t need them.

https://stacks.math.columbia.edu/tag/0497
https://stacks.math.columbia.edu/tag/0497


CHAPTER 3

The Langlands-Rapoport conjecture

In this chapter we follow Section 3 of [38] and Sections 8 and 9 of [59]. We will state
the Langlands-Rapoport conjecture for an arbitrary Shimura datum (G,X), a prime
p and a parahoric subgroup Up = GK(Zp) ⊂ G(Qp). Our version of the conjecture
recovers Conjecture 3.3.7 of [38] when Up is hyperspecial and Conjecture 9.2 of [59]
when Gder is simply connected. Roughly speaking the conjecture predicts that there
should be a ‘nice’ integral model of our Shimura variety, such that the set of Fp-points
of its special fiber is a disjoint union of isogeny classes of the expected shape, with
the isogeny classes parametrized by certain admissible morphisms Q→ GG of Galois
gerbs. Here Q is the so-called quasi-motivic Galois gerb, and GG = G(Q)oGal(Q/Q).

After stating the conjecture, we prove that special points (T,XT ) ⊂ (G,X) give rise
to admissible morphisms. When G(Qp) is quasi-split, we show that every admissible
morphism is conjugate to such a special morphism. Kisin proves this by reducing to
the case where Gder is simply connected and Z0

G satisfies the Serre condition, where
it is proven by Langlands-Rapoport (Satz 5.3 of [47]). Since the result of Langlands-
Rapoport assumes that GQp splits over an unramified extension, we have to do some
work here. The nontrivial input that we need is Corollary 1.1.17 of [36], which replaces
Lemma 5.11 of [47].

The rest of the chapter is devoted to studying how the conjecture behaves under
central isogenies of Shimura data, which will be used to deduce the conjecture for
Shimura data of abelian type from the conjecture for Shimura data of Hodge type.
Following Sections 3.6 and 3.7 of [38], we formulate a refined version of the conjecture,
in the style of [55]. This refined version implies the original conjecture but makes it
easier to deduce the abelian type case from the Hodge type case. In the last section,
we show that this refined conjecture behaves well with respect to central isogenies of
Shimura data.

35
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Essentially everything that happens in this section comes from Section 3 of [38] with
minor modifications. Where possible, we refer to [38] for the proofs, or we indicate
how to modify the proofs there to work in our setting.

1. Galois gerbs

In this section we define Galois gerbs, define the Dieudonné gerb and study its con-
nections with isocrystals, and introduce the quasi-motivic Galois gerb.

Definition 1.0.1. Let k be a field of characteristic zero (usually a local or global
field) and k an algebraic closure. Let k ⊂ k′ ⊂ k, then a k′/k Galois gerb is a linear
algebraic group G/k′ together with an extension of topological groups

(1.0.1) 0 G(k′) G Gal(k′/k) 0
q

where G(k′) is equipped with the discrete topology and Gal(k′/k) with the Krull topol-
ogy, such that:

(1) For every τ ∈ Gal(k′/k) and every gτ ∈ G lifting τ , conjugation by gτ acts
on G(k′) via an automorphism of algebraic groups

τ ∗G→ G.

(2) There is a finite extension k ⊂ K ⊂ k′ and a continuous group theoretic
section

Gal(k′/K)→ G.

Example 1.0.2. Let G/k be an algebraic group, and let Gk′ be its base change to k′.
Then the semi-direct product G(k′) o Gal(k′/k) is a Galois gerb.

Remark 1.0.3. Conditions (1) and (2) together imply that G/k′ descends to an alge-
braic group G/K and that moreover q−1 Gal(k′/K) is isomorphic to the semi-direct
product G(k′) o Gal(k′/K). We can topologise G(k′) o Gal(k′/K) with the prod-
uct of the Zariski and Krull topology, and this induces a topology on G because
q−1 Gal(k′/K) ' G(k′) o Gal(k′/K) is finite index in G.

Remark 1.0.4. If G is a commutative linear algebraic group over k, then extensions as
in (3.1.0.1) are classified by the continuous Galois cohomology groupH2(Gal(k′/k), G(k′)).
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We will often refer to a Galois gerb (G,G) just by G, and write G∆ for G, which we
will call the kernel of G. If k ⊂ k′ ⊂ k′′ ⊂ k and G is an k′/k-gerb, then we can
construct a k′′/k gerb by pulling back via Gal(k′′/k) → Gal(k′/k) and pushing out
via G∆(k′) → G∆(k′′). In particular, every k′/k Galois gerb gives rise to a k/k-gerb,
which we will just call a Galois gerb over k.

A morphism of k′/k Galois gerbs is a continuous homomorphism of groups f : G→ G′

inducing the identity on Gal(k′/k) and a morphism f
∆

: G
∆ → G

′∆ such that f∆ and
f agree on G(k′). We say that two morphisms f1, f2 : G → G′ are conjugate if there
is g ∈ G′(k′) such that f1 = g−1f2g. The set of such g ∈ G(k′) is naturally the set of
k points of a k-scheme

Isom(f1, f2),

and if f1 = f = f2 then we will denote it by If . We record the following lemma for
later use:

Lemma 1.0.5 (Lemma 3.1.2 of [38]). Let G be a linear algebraic group over k, let G′

be a k′/k Galois gerb and let us consider a morphism of k′/k Galois gerbs f : G′ →
G(k′) o Gal(k′/k). Then

(1) The base change If,k′ of If to k′ is naturally isomorphic to the centraliser of
f

∆
(G
′∆) ⊂ Gk′.

(2) The set of maps f ′ : G′ → G(k′) o Gal(k′/k) with f ′∆ = f∆ is in bijection
with the set of continuous cocycles Z1(Gal(k′/k), If (k

′)) and f ′ is conjugate to
f precisely when the corresponding cocycle is trivial in H1(Gal(k′/k), If (k

′)).

We fix an algebraic closure Q of Q and consider Q/Q-Galois gerbs (see 3.1.1 of [38]).
If G/Q is an algebraic group, then we write GG for the Galois gerb G(Q)oGal(Q/Q)

and if f : G → G′ is a morphism of Galois gerbs then we denote by If the Q group
scheme of automorphisms of f . We also fix algebraic closures Qv for all places v of Q
together with embeddings Q→ Qv and we write C for Q∞.

Now fix a prime p. For every finite Galois extension Q ⊂ L ⊂ Q Kisin constructs
(3.1.3 of [38]) a torus QL equipped with cocharacters ν(∞)L and ν(p)L, defined over
R and Qp respectively, and a morphism QL → RL/QGm. Lemma 3.14 of op. cit. tells
us that (QL, ν(∞)L, ν(p)L) is an initial object in the category of triples (T, ν∞, νp)

consisting of a torus T/Q which splits over L and cocharacters ν∞, νp defined over R
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and Qp respectively, such that∑
v∈{∞,p}

1

[Lv : Qv]
trL/Q(νv) = 0.

For L ⊂ L′, these fit into a projective system and we let Q be their inverse limit,
which comes equipped with a morphism Q→ lim←−LRL/QGm, with a cocharacter ν(∞)

defined over a R and with a fractional cocharacter ν(p) : D→ QQp . Here RL/Q means
restriction of scalars and D = lim←−Dn, where Dn = Gm,Qp and the transition maps are
given by x 7→ xn.

For ` 6= p, we let G` be the trivial Galois gerb Gal(Q`/Q`) and we let G∞ be the ex-
tension of Gal(C/R) by C× coming from the fundamental class in H2(Gal(C/R),C×).
In 3.1.6 of [38], Kisin defines a pro-Galois gerb Gp over Qp with kernel D, using local
class field theory. It is induced from a Qur

p /Qp pro-Galois gerb D, which is often called
the Dieudonné gerb, this is the inverse limit of Galois gerbs Dn, see Section 3.1.6 of
loc. cit.

The quasi-motivic Galois gerb Q, constructed in [61], is a pro-Galois gerb over Q with
kernel Q. It comes equipped with morphisms

ζv : Gv → Q(v)

for all places of Q, where Q(v) is the basechange of Q to Qv, and moreover there is a
morphism ψ : Q→ GRQ/QGm .

Given a torus T/Q and a cocharacter µ defined over a finite Galois extension L, Kisin
constructs (3.1.10 of [38]) a morphism

ψµ : Q→ GRQ/QGm → GRL/QGm → GT .

Its composition with Gv → Q induces a morphism Gv → GT and on kernels a mor-
phism D → TQ, which we can explicitly describe as a fractional cocharacter by the
formula

1

[Lp : Qp]

∑
τ∈Gal(Lp/Qp)

τ(µ).

1.0.6. Isocrystals and the Dieudonné gerb. Let G/Qp be a connected reductive
group and let φ : D → Gur

G be a morphism of Qur
p /Qp Galois gerbs. Let σ ∈

Gal(Qur
p /Qp) be the Frobenius, then there is a distinguished element dσ ∈ D that

projects to σ in Gal(Qur
p /Qp) (c.f. Kisin 3.3.3). This element is characterised by the
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fact that dnσ maps to p−1 in Dn. Let φ(dσ) = bφ o σ in GG, then conjugating φ by an
element g of G(Qur

p ) gives

bg−1φg = g−1bφσ(g)

and so we get a well defined element of B(G), which is functorial in G. Given a
morphism φ : Gp → GG of Qp/Qp gerbs, we can always find a morphism φur : D→ Gur

G

such that the induced map Gp → GG is conjugate to φ (this is e.g. Lemma 2.1 of
[47]). Moreover, if g ∈ G(Qp) is an element such that g−1φg is conjugate to the map
induced by φ0, then g must lie in G(Qur

p ) (Lemma 3.3.4 of [38]). The upshot of this
is that there is a well defined map

hom(Gp → GG)/ ∼ → B(G),

which is functorial in G and where ∼ denotes conjugation. In [40], the set B(G)

is defined as the set of conjugacy classes of homomorphisms Gp → GG and it is
mentioned in its introduction that the above map is a bijection. Given φ : D → GG

as above, there is an n� 0 such that φ factors through

φn : Dn → GG.

Then

φ∆
n (1/p) = φ(dnσ)

= (bφ o σ)n

= bφσ(bφ) · · ·σn−1(bφ) o σn.

It now follows from the definition of the Newton map B(G)→ X∗(T )Γ
Q that νb = −φ∆

(see 4.3 of [41]), the minus sign comes from the fact that dn = 1/p rather than p. Now
if G = T is a torus over Q equipped with a cocharacter µ, then there is a morphism

ψµ ◦ ν(p) : Gp → GT (p)

which gives rise to an element in B(T ) as above. However, there is a tautological map

X∗(T )→ X∗(T )Γ ' B(T ),

and these two constructions are related as follows:

Lemma 1.0.7. The element of B(T ) = X∗(T )Γ defined by ψµ ◦ ν(p) is equal to −µ̃,
where µ̃ is the image of µ in X∗(T )Γ.
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Proof. This follows from Lemma 2.2.(b) of [41] which states that the functors
T 7→ X∗(T )Γ and T 7→ B(T ) are isomorphic, and moreover that a natural isomorphism
between them is determined by what is does on T = Gm. For Gm, the lemma follows
from the above result on Newton points because B(Gm)→ X∗(Gm)Γ

Q is injective. �

1.0.8. Strictly monoidal categories. Recall that a crossed module is a homomor-
phism of groups H̃ → H together with an action of H on H̃ which lifts the action of
H̃ on itself by conjugation, such that the action of H on itself via H → Aut(H̃) →
Aut(H) is also given by conjugation. The main example that we will need is Gsc → G,
where Gsc → Gder is the simply connected cover of the derived group of a connected
reductive algebraic group over Q. Kisin writes G̃ for Gsc and we might sometimes do
this as well.

Given a crossed module H̃ → H we can form a category H/H̃, whose objects are
given by the objects of H and where

hom(h1, h2) = {h̃ ∈ H̃ : h2 = h̃h1}.

This category is strictly monoidal, with H/H̃ ×H/H̃ → H/H̃ induced by multiplica-
tion on objects. We now define GG/G̃ to be the strict monoidal category corresponding
to the crossed module G̃(k)→ GG. If Gder is simply connected, then this is isomorphic
to GGab and we encourage the reader to take this as as the main example.

Lemma 1.0.9 (Lemma 3.2.6 of [38]). The natural morphisms

G(Q)→ Gad(Q)×Gad/G̃(Q) G/G̃(Q)

GG → GGad ×G
Gad/G̃

GG/G̃

are equivalences of strictly monoidal categories.

2. The Langlands-Rapoport conjecture

Let (G,X) be a Shimura datum with reflex field E, let G/Z(p) be a parahoric model of
G, and let {µ} be the associated conjugacy class of cocharacters of G. To be precise,
we consider the cocharacter µh : Gm,C → GC obtained from a choice of h ∈ X given
by

Gm
Id×1−−−→ Gm ×Gm ' SR

hC−→ GC.
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We call this the Hodge cocharacter µ = µh associated to X (changing x by a conjugate
amounts to conjugating µh). We define B(G,X) as the subset of B(GQp) defined by
B(G, {µ−1}).

Kisin defines a morphism (c.f. 3.3.1 of [38])

φµãb
: Q→ GG/G̃.

When Gder is simply connected this is the morphism Q → GGab coming from the
cocharacter µab, where µ is the Hodge cocharacter associated to the Shimura datum.
Moreover Kisin constructs morphisms ξv : Gv → Q(v) for all v 6= p (the trivial
morphism when v 6=∞).

Definition 2.0.1. A morphism φ : Q→ GG is called admissible (w.r.t X) if

A1 The composite (denoted by φãb)

Q GG GG/G̃

φ

is conjugate isomorphic to ψµãb
(see Section 3.2.1 of [38] for the definition of

conjugate isomorphic functors of strictly monoidal categories).

A2 For v 6= p, the composite

Gv Q(v) GG(v)
ζv φ(v)

is conjugate to the morphism ξv : Gv → GG(v).

A3 The image φb of φ in B(G) defined by the composition

θ : Gp Q(p) GG(p)
ν(p) φ(p)

lies in B(G,X).

Our definition is equivalent to the definition in Section 3.3.6 of [38] when GQp is quasi-
split and splits over an unramified extension by Theorem 2.1.0.5, and equivalent to
Definition 9.1 of [59] when Gder is simply connected. We now define

Xp(φ) := {(gv)v 6=p,∞ ∈ G(Ap

f ) : Int(g) ◦ ξv = φ(v) ◦ ζv},

where Ap

f is the restricted product of Q` for ` 6= p (recall that we’ve fixed these
algebraic closures). The set Xp(φ) is nonempty by axiom A2 and in fact it is a G(Ap

f )

torsor.
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Write θ = φ(p) ◦ ζp and define Xp(φ) to be the set of g ∈ G(Qp)/GK(Zur
p ) such that

gθg−1 is induced by a morphism θur
g : D→ Gur

G of Qur
p /Qp gerbs satisfying θur

g = bgoσ
with bg ∈ B(G,X). This has an action of a pr-Frobenius, where r = [E0 : Qp] with
E0 the maximal unramified extension of Ep, as follows: We define

Φ(g) = gbgσ(bg) · · ·σr−1(bg)

and note that

θur
Φ(g) = (1 o σr)θur

g (1 o σr)−1,

so that bΦ(g) = σ(bg), which is still an element of B(G,X). Lemma 2.1 of [47] tells us
that there is a g0 ∈ G(Qp) such that g−1

0 θg0 is conjugate to a map of Qur
p /Qp gerbs

θ : D → Gur
G . It follows as in Lemma 3.3.4 of [38] that the map g 7→ g0g induces a

bijection

X−µ(b)K ' Xp(φ),

where we consider both of them as subsets of G(Qp)/GK(Zur
p ), and this bijection is

compatible with the action of Φ. Define

S(φ) = lim←−
Up

Iφ(Q)\X(φ)/Up.(2.0.1)

where X(φ) = Xp(φ) × Xp(φ), where the action of Iφ(Q) ⊂ G(Q) is by left multi-
plication on Xp(φ) × Xp(φ) ⊂ G(Ap

f ) × G(Qp)/GK(Zur
p ). Note that (3.2.0.1) is not

necessarily in bijection with Iφ(Q)\X(φ) when Milne’s axiom SV5 does not hold, i.e.
when ZG(Q) is not discrete in ZG(Af ). However this is not an issue in the Hodge type
case, as this axiom will hold automatically. We are now ready to state the conjecture
of Langlands and Rapoport, in a version that generalises both Conjecture 9.2 of [59]
and Conjecture 3.3.7 of [38]:

Conjecture 2.0.2 (Langlands-Rapoport). Let (G,X) and G be as above and let
Up = G(Zp). Consider the tower of Shimura varieties {ShG,UpUp}Up over the reflex
field E with its action of G(Ap

f )×ZG(Qp), where Up varies over compact open subgroups
of G(Ap

f ). Then this tower has a G(Ap
f )×ZG(Qp)-equivariant extension to a tower of

flat schemes {SG,UpUp}Up over OE(v)
. Moreover, there is a bijection

lim←−
Up

SUpUp(Fp) '
∐
[φ]

S(φ),
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compatible with the action of G(Ap
f )× ZG(Qp) and the operator Φ, which acts on the

left hand side as the geometric pr-Frobenius. Here φ runs over conjugacy classes of
admissible morphisms Q→ GG.

3. Special morphisms

In Section 3.5 of [38], Kisin constructs for every CM extension Q ⊂ L ⊂ Q a torus
PL with character group identified with the group of Weil numbers (modulo roots of
unity) inside L×. For L ⊂ L′ there is a morphism PL′ → PL and we let P be the
inverse limit, which comes equipped with a map Q → P . Pushing out Q along this
map gives rise to the pseudo motivic groupoid P, which is also a pro-Galois gerb. An
admissible morphism Q → GG factors through P if Z0

G satisfies the Serre condition
(Lemma 3.5.7 of [38]), this is automatic if (G,X) is of Hodge type.

If we assume the Tate conjecture for smooth projective varieties over finite fields, then
the category of representations of P, i.e. the category of morphisms P → GGLn ,
is equivalent to the category of (numerical) pure motives over Fp, see [49]. This
makes sense because motives over finite fields are conjecturally determined by q-Weil
numbers, which are the characters of P .

Take a CM field L as in the previous paragraph, and let n be a sufficiently divisible
natural number. Then there is an element δn ∈ PL(Q) such for a q = pm-Weil Number
π, evaluating the character χπ of PL associated to π on δn gives

χπ(δn) = πn/m.

Moreover these elements satisfy δn′ = δ
n′/n
n if n | n′ and the are preserved by the maps

PL′ → PL for L ⊂ L′ ⊂ Q. Given a morphism

φ : P→ GGLn ,

conjecturally corresponding to a motive over Fp defined over Fq, the image of δn
in GLn(Q`) should be thought of as Frobpm/n acting on the `-adic realisation of our
motive. Lemma 5.5 of [47] tells us that the collection of elements {δn} is Zariski-dense
in PL.

Let (G,X) be a Shimura datum and let T ⊂ G be a torus of G over Q together with an
h : S→ GR in X that factors through TR; we will call such a pair (T, h) a special point
of (G,X). This gives us a cocharacter µ of T and hence a morphism ψµ : Q → GT .
It follows as in Lemma 3.5.8 of [38] that the composition of ψµ with GT → GG is an
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admissible morphism (to prove A3, use remark 5.2 of [8].) An admissible morphism
φ : Q → G is called special if it is conjugate to a morphism induced by T ⊂ G as
above.

Theorem 3.0.1. Let φ : Q → GG be an admissible morphism, and suppose that GQp

is quasi-split, then φ is special.

Proof. It follows as in the proof of Theorem 3.5.11 of [38] that we may reduce
to the case that Gder is simply connected and that Z0

G satisfies the Serre condition, so
that φ factors through PL for some CM field L. At this point Kisin invokes Satz 5.3
of [47], which proves the result under the assumption that GQp is quasi-split and split
over an unramified extension, we will indicate how the proof of loc. cit. generalises.

Let δn be the distinguished elements of PL(Q) discussed in the beginning of this
section, and recall that they are Zariski dense in PL by Lemma 5.5 of [47].

Lemma 3.0.2. After conjugating φ, there is a maximal torus T ⊂ G such that φ(δn) ∈
T (Q) and such that T ad

R is anisotropic.

Proof. This is Lemma 5.4 of [47]. �

Let b ∈ B(G) be the σ-conjugacy class defined by φ, which has Newton point

vb = −φ∆ ◦ ν(p),

where φ∆ ◦ ν(p) is the fractional cocharacter of G defined by φ ◦ ζp : Gp → GG. It
follows as in Section 4.3.9 of [38] that for sufficiently divisible n we have nνb = νδn .
Using our assumption on [b], we can invoke Corollary 1.1.17 of [36] which says that
there is a cocharacter µT ∈ X∗(T ) ∩ {µ} such that

νb = [−µT ] ∈ X∗(T )Γ
Q,

where µT is the Gal(K/Qp)-average of µ with K/Qp a Galois extension over which µ
is defined. As usual there is a morphism of Galois gerbs

ψµT : Q→ GT ,

which factors through P because T satisfies the Serre condition and which, possibly
after enlarging L, factors through PL.
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Lemma 3.0.3. We have an equality φ∆ = ψ∆
µT
.

Proof. This follows as in the proof of Lemma 5.11 of [47]. �

Lemma 3.0.4. After possibly conjugating T and φ, the cocharacter µT is equal to µhT
for some hT : S→ GR factoring through TR.

Proof. This follows exactly as in the proof of Lemma 5.12 of [47] (c.f. the proof
of Proposition 1.2.5 of [36]). �

Last we will show that we can conjugate T and φ such that φ = ψµT . Because we
already know that φ∆ = ψ∆

µT
, Lemma 3.1.2 of [38] tells us that for a continuous section

ρ of Q→ Gal(Q/Q) with values ρ(τ) = ρτ we have

φ(ρτ ) = gτ o τ

ψµhT (ρτ ) = kτ o τ,

with gτ = kτaτ and where aτ is a cocycle with values in T . We are going to show
that the class α of aτ is trivial in H1(Q, G), represented by vτ(v)−1 and then consider
φ′ = vφg−1v and T ′ = v−1φv. Indeed, that would show that

v−1φ(ρτ )v = v−1(gτ o τ)v

= v−1(kτaτ o τ)v

= (v−1kτvτ(v)−1 o τ)v

= v−1kτvτ(v)−1τ(v) o τ

= v−1kτv o τ

= ψµ′(ρτ ),

where µ′ = v−1hTv, so that v−1φv and ψµ′ are conjugate.

First of all, admissibility tells us that the compositions of φ and ψµhT with GG →
GG/G̃ = GGab are conjugate, so that the image of our cocycle in trivial in H1(Q, Gab).
Using the long exact sequence in cohomology associated to 1→ Gder → G→ Gab → 1,
we find that [aτ ] = α ∈ Im(H1(Q, Gder) → H1(Q, G). Lemma 5.13 of [47] tells us
that the Hasse principle holds for element in this image (using that Gder is simply
connected). To be precise, we mean that the composition H1(Q, Gder)→ H1(Q, G)→
H1(R, G) is injective. So it suffices to show that the image of α is zero in H1(R, G)
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and we will in fact show that the image of α is zero in H1(R, T ). Lemma 5.14 of
[47] tells us that H1(R, T ) ⊂ H1(R, G′) is injective, where G′ is the anisotropic mod
centre inner form of G, which can be realised as Iξ∞ . But the class of α in H1(R, Iξ∞)
is zero, because the compositions ζ∞ ◦ φ and ζ∞ ◦ ψµh)T

are conjugate since they are
both conjugate to ξ∞ by A2. We conclude that the class of α in G is zero, and so by
the above we have found a torus T and h : S→ TR such that φ = ψµT . �

4. Connected components and a refined conjecture

Fix a morphism φ : Q → GG/G̃. In Section 3.6 Kisin defines sets Xp(φ) and Xp(φ)

with product X(φ), analogous to our definitions for morphisms φ : Q → G. Our
definition of Xp(φ) is the same as his, but we have to slightly modify his definition of
Xp(φ) for general groups by recalling that the Kottwitz map lands in π1(G)I instead
of π1(G). Then for an admissible φ0 : Q→ GGad we define

π̃(G, φ0) :=
∐

φad=φ0

X(φãb)

π(G, φ0) := lim←−
Up

π̃(G, φ0)/UpG(Q)]+,

where φãb is the composition Q→ GG → GG̃/G and where G(Q)]+ is the inverse image
of Gad(Q)+ in G(Q) acting on π̃(G, φ0) by right multiplication. Define

π(G) := G(Q)−+\G(Af )/G(Zp),

where the bar denotes closure, then arguing as in Lemma 3.6.2 of [38] we can show
that π(G, φ0) is a π(G)-torsor, keeping in mind that for any parahoric G(Zp) ⊂ G(Qp)

we have

π1(G)σI ' G(Qp)/(G̃(Qp)G(Zp))

by Lemma 5.18.(i) of [73].
4.0.1. Let T/Q be a torus and let µT be a cocharacter of T , then there is an

induced morphism ψµT : Q → GT and in section 3.6.6 of [38] Kisin defines sets
Xp(ψµT ), Xp(ψµT ) with product X(ψµT ). He then defines

S(ψµT ) = T (Q)−\X(ψµT ),

where T (Q)− denotes the closure of T (Q) in T (Af ) and shows (Proposition 3.6.7 of
[38]) that X(φµT ) is a T (Ap

f )/T (Zp)-torsor and that there is a canonical isomorphism

S(ψµT ) ' T (Q)−\T (Af )/T (Zp).
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4.0.2. Consider the category S H p whose objects consist of pairs (G, X), where
G/Z(p) is a smooth affine group scheme with G = GQ connected reductive and GZp
parahoric, and where (G,X) is a Shimura datum. Morphisms in this category are
given by morphisms of group schemes G → G ′ over Z(p), such that (G,X)→ (G′, X ′)

is a morphism of Shimura data. Given an adjoint Shimura datum (H, Y ), we will write
S H p(H,Y ) for the subcategory of objects (G, X) such that (Gad, Xad) is isomorphic
to (H, Y ). For (G, X) an object of our category, we set Up = G(Zp) ⊂ G(Qp) and
write

π(G, X) = lim←−
Up

π0(ShUpUp(C)),

which is a π(G)-torsor. Let T/Q be a torus together with a morphism hT : S→ TR with
associated cocharacter µhT = µT . If we are given a morphism i : (T, hT ) → (G,X),
then there is an induced morphism

T (Q)−\T (Af )/T (Zp)→ π0(G,X)

and similarly there is an induced morphism

S(ψµT )→ π0(G, φ0),

where φ0 = (i ◦ ψµT )0. The proof of Proposition 3.6.10 of [38] shows that if φ0 is
special, then there is a unique isomorphism of π(G)-torsors

ϑG : π(G, φ0) ' π(G,X)(4.0.1)

that is functorial with respect to morphisms in S H p(G
ad, Xad) and is compatible

with the maps S(φµT )→ π0(G, φ0) induced by special points.

5. The refined conjecture

In this section we will compare admissible morphisms for (G,X) and admissible mor-
phisms for the adjoint Shimura datum (Gad, Xad), following Section 3.4 of [38]. We
will fix an admissible morphism φ0 : Q → GGad throughout this section. From now
on we will assume that GQp is quasi-split, which implies that every admis-
sible morphism is special.

We will write Gad(Q)+ for Gad(Q) ∩Gad(R)+, where the latter is the connected com-
ponent of the identity in the real topology. Finally, we define G(Q)]+ as the inverse
image of Gad(Q)+ in G(Q) and G(Q)+ as the inverse image of Gad(Q)+ in G(Q).
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Proposition 5.0.1 (Proposition 3.4.11 of [38]). Let φ0 : Q→ GGad be an admissible
morphism. The set of admissible morphisms φ : Q → GG lifting φ0 is naturally a
G(Q)]+/G(Q)+-torsor, and in particular nonempty. Moreover if we fix such a φ, then
the set of admissible φ′ that lift φ0 and are conjugate to φ is naturally a torsor for
Iφ0(Q)]+/Iφ(Q), where Iφ0(Q)]+ is the inverse image of Iφ0(Q) ⊂ Gad(Q) in G(Q).

Proof. The proof is essentially the same as the proof of Proposition 3.4.11 of
[38]. �

5.0.2. Fix φ0 as above. Then Iφ0(Q)]+ acts by left multiplication on the disjoint
union ∐

φad=φ0

X(φ)(5.0.1)

and we set

S(G, φ0) = lim←−
Kp

Iφ0(Q)]+\
∐

φad=φ0

X(φ)/Kp,

where Kp runs over compact open subgroups of G(Ap
f ). Given τ ∈ Iad

φ (Af ) we define

Sτ (φ) = lim←−
Kp

Iφ(Q)\X(φ)/Kp

Sτ (G, φ0) = lim←−
Kp

Iφ0(Q)]+\
∐

φad=φ0

X(φ)/Kp,

where the action of Iφ(Q) on X(φ), respectively the action of Iφ0(Q)]+ on (3.5.0.1), is
twisted by τ .

Lemma 5.0.3 (Corollary 3.4.16 of [38]). The natural map∐
[φ],[φad]=[φ0]

Sτ (φ)→ Sτ (G, φ0)

is a bijection, where on the left hand side [φ] runs over conjugacy classes of admissible
morphisms φ : Q→ GG lifting φ0.

Proof. This is essentially immediate from Proposition 3.5, since

Sτ (G, φ0) = Iφ0(Q)]+\
∐

φad=φ0

Sτ (φ) '
∐

[φ],φad

Sτ (φ)
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because the set of φ in a single conjugacy class [φ] is in bijection with Iφ0(Q)]+/Iφ(Q).
�

Our parahoric model G defines parahoric models Gder and Gad of Gder and Gad, as in
Section 4.6.1 of [37]. Let Zp be the ring of integers of Qp and write G(Z(p))

]
+ for the

preimage of Gad(Z(p))
+ in G(Q). The following lemma is proven as in [38].

Lemma 5.0.4 (Lemma 3.7.2 of [38]). There is an action of G(Z(p))
]
+ on∐

φad=φ0

X(φ),

which induces an of Gad(Z(p))
+ on Sτ (G, φ0).

5.0.5. We now have an action of Gad(Z(p))
+ and of G(Ap

f ) on the sets Sτ (G, φ0),
which are compatible with the morphisms G(Z(p))+ ⊂ G(Q)+ → G(Ap

f ) and G(Z(p))+ →
Gad(Z(p))

+, this will induce an action of

A(G) := G(Ap
f ) ∗G(Z(p))+ Gad(Z(p))

+

on Sτ (G, φ0). For the definition of ∗, see Section 3.7.3 of [38]. Intuitively, this is just
a group that captures the action of G(Ap

f ) and Gad(Z(p))
+, taking into account that

G(Z(p))+ maps to both of them. We also introduce

A(G) = G(Af ) ∗G(Q)+ G
ad(Q)+

A(G)◦ = G(Q)−+ ∗G(Q)+ G
ad(Q)+

A(G)◦ := G(Z(p))
−
+ ∗G(Z(p))+ Gad(Z(p))

+,

where the superscript − denotes closure. Let us point out that there are natural maps

A(G)� π(G,X)

A(G)→ π(G,X)

with A(G)◦ contained in the kernel of the first map and A(G)◦ equal to the kernel
of the second map. There are natural projections X(φ) → X(φãb) which induce an
A(G)-equivariant map (c.f. Lemma 3.7.4 of [38])

cG : Sτ (G, φ0)→ π(G, φ0).

This map is surjective, but the proof of loc. cit. does not generalise. Instead, it will
follow from the fact that Xp(φ)→ Xp(φãb) is surjective, which is Lemma 6.1 of [31].
We now state the refined conjecture:
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Conjecture 5.0.6. Let (G,X) be a Shimura datum and let G/Z(p) be a model of G
over Z(p) such that its base change to Zp is parahoric and let Up = G(Zp). Consider
the tower of Shimura varieties {ShG,UpUp}Up over the reflex field E with its action
of G(Ap

f ) × ZG(Qp), where Up varies over compact open subgroups of G(Ap
f ). Then

this tower has a G(Ap
f ) × ZG(Qp)-equivariant extension to a tower of flat schemes

{SG,UpUp}Up over OE(v)
. Moreover, the action of A(G) on the generic fibre extends

to the integral model. Furthermore there is an A(G) × ZG(Qp)-equivariant bijection
fitting into a commutative diagram∐

[φ0] S(G, φ0) lim←−Up SUpUp(Fp)

∐
[φ0] π(G, φ0) π(G,X).

∼

ϑG

compatible with the action of the operator Φ, which acts on the left hand side as the
geometric pr-Frobenius. Here [φ0] runs over conjugacy classes of admissible morphisms
Q→ GGad. We remind the reader that the set S(G, φ0) is the same as the set S(G, φ0)τ

for τ = 1.

Remark 5.0.7. Conjecture 3.2.0.2 follows immediately from Conjecture 3.5.0.6, using
Lemma 3.4.16 of [38]. It follows as in Remark 3.7.10 of [38] that proving an A(G)-
equivariant bijection is enough if ZG(Q) · ZG(Zp) = ZG(Qp). Indeed, in this case it
follows as in loc. cit. that ZG(Qp) acts trivially on both sides of the conjectured
isomorphism. In general, it is unclear to us how to construct an action of ZG(Qp) on
the Kisin-Pappas integral models of Shimura varieties.

6. Connected components II

In this section we will build a theory of ‘connected Shimura varieties’ for the sets
Sτ (G, φ0), following Section 3.8 of [38]. Let h : (G,X) → (G2, X) be a surjective
morphism of Shimura data that induces an isomorphism on derived groups. If G is a
parahoric model of G, then h defines a parahoric model G2 of G2 as in 1.1.3 of [37]. Let
X+ ⊂ Xad be a connected component, and consider the full subcategory S H p(X

+)

of S H p consisting of objects (H,Y ) such that X+ ⊂ Y . Then for an object (G,X)

of S H p(X
+) we can consider the map

π0(X)→ π(G,X)
ϑ−1
G−−→ π(G, φ0),
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the image of X+ under this map is a point y ∈ π(G, φ0). Here ϑ is the map (3.4.0.1).
Let h : (G, X)→ (G2, X) be a surjective morphism in S H p that induces an isomor-
phism on derived groups. Define Sτ (G, φ0)+ and Sτ (G2, φ0)+ to be the inverse image
of y respectively y2 in π(G, φ0) respectively π(G2, φ0).

Lemma 6.0.1 (c.f. Lemma 3.8.2 of [38]). The natural map Sτ (G, φ0)+ → Sτ (G2, φ0)+

is a bijection.

Proof. Consider the commutative diagram

Sτ (G, φ0) Sτ (G2, φ0)

π(G, φ0) π(G2, φ0),

h

which is equivariant for the action of A(G) via A(G)→ A(G2). The bottom horizontal
map can be identified (using our choice of y, y2) with the map π(G) → π(G2). It
suffices to show that h−1(Sτ (G2, φ0)+)→ Sτ (G2, φ0)+ is surjective, and that the fibers
map bijectively to the fibers of π(G)→ π(G2). Both of these statements can be proven
as in the proof of Lemma 3.8.2 of [38] (but the stronger statement that ker(A(G) →
A(G2)) acts transitively on the fibers does not follow, because 3.7.5 of [38] does not
hold). �

Consider the action of 〈Φ〉 ⊂ Gal(Qur
p /Qpr), where Qpr is the maximal unramified

extension contained in Ep. Then 〈Φ〉 acts on Sτ (G, φ0) for any τ , and we let

E r
p (G, φ0) ⊂ A(G)× 〈Φ〉

be the stabiliser of Sτ (G, φ0)+. In then follows as in the proof of Lemma 3.8.5 of [38]
that the group E (G, φ0) is an extension of 〈Φ〉 by A(G)◦ and depends only on Gder, X+

and the integer r. Here we have to keep in mind that we only know injectivity (rather
than bijectivity) of

A(G)◦\A(G) ' G(Z(p))
−
+\G(Ap

f )→ G(Q)−+\G(Af )/G(Zp) ' π(G),

which is enough for the conclusion.

Lemma 6.0.2 (Lemma 3.8.8 of [38]). There is a natural isomorphism

A(G) ∗A(G)◦ E r
p (G, φ0) ' A(G)× 〈Φ〉.
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Moreover, there is a natural isomorphism

Sτ (G, φ0) '
∐
s∈S

[A(G)× Sτ (G, φ0)+s]/A(G)◦,

equivariant for the action of A(G) × 〈Φ〉, where A(G) acts on the right hand via left
multiplication on itself and S ⊂ π(G) is a set of coset representatives for the inclusion

A(G)◦\A(G)→ π(G).

Proof. The action of A(G) on Sτ (G, φ0) gives us a map

[A(G)× Sτ (G, φ0)+]/A(G)◦ ↪−→ Sτ (G, φ0),

which is injective because A(G)◦ is the stabiliser of Sτ (G, φ0)+ in A(G). This map is
not necessarily surjective, because the right hand side surjects onto π(G, φ0) and the
left hand side might not. Using the point y, we can identify the image of the left hand
side in π(G, φ0) with

A(G)/A(G)◦ ⊂ π(G)

and the result follows. �

Lemma 6.0.3. Let f : (G,X) → (G2, X) be a surjective map with kernel Z ⊂ ZG

and let G → G2 be the induced map on parahoric models. Suppose that there is an
isomorphism ZQ ' RL/QGm.

(1) Then

Sτ (G2, φ0) ' Sτ (G, φ0)/Z(Ap
f ) ' [A(G2)× Sτ (G, φ0)]/A(G).(6.0.1)

(2) There is a natural isomorphism

E r
p (G2) ' A(G2)◦ ∗A(G) E r

p (G),

(3) The natural map of sets with E r
p (G2) action

Sτ (G2, φ0)+ ' [A(G2)◦ × Sτ (G, φ0)+]/A(G)◦,

is an isomorphism if L/Q is Galois.
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(4) There is an A(G2)× 〈Φ〉 equivariant isomorphism

Sτ (G2, φ0)+ '
∐
j∈J

[A(G2)× Sτ (G, φ0)+j]/A(G)◦,

where J ⊂ π(G2) runs over a set of coset representatives for the inclusion

A(G)◦\A(G2) ↪−→ π(G2).

Proof. The proof of the first part follows as in the proof of Lemma 3.8.10 of [38],
except that we need to modify the argument showing surjectivity of the map on affine
Deligne-Lusztig varieties. The map GrG → GrG2 induces an isomorphism Y ' Y2

between a connected component Y in the source and a connected component Y2 in
the target (c.f. Section 4.2 of [31]). Moreover, it induces an isomorphism

Xµ(b)G,K ∩ Y → Xµ2(b2)G2,G ∩ Y2,

and so it suffices to check that connected components of GrG2 that intersect with
Xµ2(b2)G2,G are in the image of connected components of GrK that intersect Xµ(b)G,K .
In other words, we want to show that

π1(G)σI → π1(G2)σI

is surjective, which follows by considering the following diagram:

G(Qp) G2(Qp)

π1(G)σI π1(G2)σI

Indeed, the top horizontal arrow is surjective because Z is an induced torus, and the
vertical arrrows are surjective by the result of Section 7.7 of [43]. The isomorphism

Sτ (G, φ0)/Z(Ap
f ) ' [A(G2)× Sτ (G, φ0)]/A(G)

similarly follows as in the proof of Lemma 3.8.10 of [38]. The proof (2) is the same
as the proof of (2) in loc. cit. and moreover gives us an E r

p (Gder
2 )-equivariant map

[A(G2)◦ × Sτ (G, φ0)+]/A(G)◦ → Sτ (G2, φ0)+.

To prove (3), it suffices to prove that this map is a bijection. It is injective by the
second isomorphism of (3.6.0.1) and so it suffices to prove surjectivity. From (i) we
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get that the natural map

f−1(Sτ (G2, φ0)+)→ Sτ (G2, φ0)+

is surjective, and so it suffices to show that f−1(Sτ (G2, φ0)+) surjects onto the preimage
of y2 in π(G, φ0). If we identify π(G, φ0)→ π(G2, φ0) with π(G)→ π(G2) using y and
y2, it comes down to showing that

Z(Ap
f )→ ker(π(G)→ π(G2)) ' Z(Q)−\Z(Af )/Z(Zp)(6.0.2)

is surjective, where Z is the kernel of G → G2. It follows from Proposition 2.4.12 of
[39] that Z is in fact the connected Néron model of Z, and that G → G2 is surjective
(here we use that Z is an induced torus). Moreover Remark 8.3 of [12] shows that
Z(Q)Z(Zp) = Z(Qp) (using the fact that L/Q is Galois). It follows that (3.6.0.2)
is surjective. Part (4) of the lemma follows from Lemma 3.6.0.2 and the fact that
A(G)◦ → A(G2)◦ is surjective because Z is an induced torus. �

The following analogue of Corollary 3.8.12 of [38] now follows:

Corollary 6.0.4. Suppose that Gder → Gder
2 is a central isogeny which induces an

isomorphism of adjoint Shimura data. Then there is an isomorphism of sets with
A(G2)× 〈Φ〉 action

Sτ (G2, φ0) '
∐
j∈J

[A(G2)× Sτ (G,φ0)+j]/A(G)◦,

where J ranges over a set of coset representatives for

A(G)◦\A(G2) ↪−→ π(G2)

Proof. The proof is the same as the proof of Corollary 3.8.12 of [38]. �

Remark 6.0.5. There is a bijection

π(G2) ' A(G2)◦\A(G2)G2(Zp) ' A(G)◦\A(G2)G2(Zp),

which will be useful later when we compare with Lemma 4.6.13 of [37].



CHAPTER 4

Main result for Hodge type Shimura varieties

1. Main results

The main goal of this Chapter is to show that we can deduce Theorem 1 for a general
parahoric subgroup from the case of a very special parahoric subgroup. Let (G,X) be
a Shimura datum of Hodge type with reflex field E and conjugacy class of cocharacters
µ (here we take the inverse of µh from the last section). Let p > 2 be a prime number
such that G = GQp is quasi-split and splits over a tamely ramified extension and such
that p does not divide #π1(Gder).

We will work with Shimura varieties of parahoric level at p and we will always assume
that the parahoric subgroups are equal to Bruhat-Tits stabiliser group schemes; we
will call such parahoric subgroups connected. We need this assumption because all the
results in [73] use this assumption, and it is automatically satisfied either if Gder is
simply connected andX∗(Gab)I is torsion-free or if GQp is unramified and the parahoric
is contained in a hyperspecial parahoric.1

Let Up ⊂ G(Ap
f ) be a sufficiently small compact open subgroup and let Up = GK(Zp) ⊂

G(Qp) be a connected parahoric subgroup corresponding to a σ-stable type K ⊂ S.
Then there is a smooth projective scheme ShU/ SpecE, which is the Shimura variety
associated to all the above data. Choose a place v|p of E, then Kisin and Pappas
(Theorem 0.1 of [37]) construct a flat integral model SK/OEv together with an action
of G(Ap

f ) by Hecke operators.

Write Gad
Qp ' G1 × · · · × Gn with the Gi simple over Qp, this gives a corresponding

decomposition Jad
b = Jb,1 × · · · × Jb,n, where b ∈ B(G,X) is the unique basic element

(because Jb is an inner form of GQp). Recall that we call Jb,i of compact type if Jb,i(Qp)

is compact in the metric topology.

1When we deal with abelian type Shimura varieties later, we will always reduce to one of these two
cases using Lemma 4.6.22 of [37], which is always possible unless (Gad, Xad) has factors of of type
DH.
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Theorem 1.0.1. Suppose that there is a connected very special parahoric subgroup Up
corresponding to a σ-stable type K and a 〈Φ〉 ×G(Ap

f )-equivariant bijection

SK(Fp) '
∐
[φ]

Iφ(Q) \G(Ap
f )×Xµ(b)K/U

p,(1.0.1)

where [φ] runs over conjugacy classes of admissible morphisms Q→ GG. Now let U ′p
be any connected parahoric subgroup, corresponding to a σ-stable type J . Suppose that
Gad is Q-simple, that for 1 ≤ i ≤ n the group Jb,i is not of compact type, and that
either ShU is proper or that Conjecture 4.7.0.5 holds. Then there is a 〈Φ〉 × G(Ap

f )-
equivariant bijection

SJ(Fp) '
∐
[φ]

Iφ(Q) \G(Ap
f )×Xµ(b)J/U

p,

indexed by the same set of isogeny classes as (4.1.0.1).

Remark 1.0.2. Kisin and Pappas do not construct an action of ZG(Qp) on their inte-
gral models, so we cannot say anything about ZG(Qp)-equivariance of this bijection.

Remark 1.0.3. The assumption on the groups Jb,i is automatic when G is not of type
A, because the only groups of compact type over Qp are of type A and Jb is an inner
form of G.

Along the way, we will prove the following version of Theorem 2:

Theorem 1.0.4. Let (G,X) as above and suppose that Gad is Q-simple, that for
1 ≤ i ≤ n the group Jb,i is not of compact type, and that either ShU is proper or that
Conjecture 4.7.0.5 holds. Let w ∈ K Adm(µ) and let SK,Fp{w} be the corresponding
Ekedahl-Kottwitz-Oort-Rapoport (EKOR) stratum. Suppose that it is not contained in
the basic locus, then

SK,Fp{w} → SK,Fp

induces a bijection on connected components.

Remark 1.0.5. Conjecture 4.7.0.5 predicts that irreducible components of closures
of EKOR strata in SK,Fp , with K very special, intersect the unique 0-dimensional
EKOR stratum. The conjecture follows from Proposition 6.20 of [70], combined with
Theorem 1.2 of [2], when K is hyperspecial.
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My paper [32] was written before Theorem 1.2 of [2] was available. In that paper, I
prove conjecture 4.7.0.5 for many nonproper Hodge type cases with K hyperspecial,
using a trick from [17] to make the arguments from [70] unconditional (my argument
also involves proving condition 6.4.2 of [17], strengthening the main results of that
paper).

Remark 1.0.6. Theorem 4.1.0.4 generalises Theorem 7.4 of [21], which discusses
Siegel modular varieties with Iwahori level structure. Our proof partly generalises
the proof of [21], but with one crucial difference. They use the results of [15] at
hyperspecial level to deduce their results, by studying the fibers of the forgetful map.
We will instead deduce the results at arbitrary parahoric level from the results at
Iwahori level.

Let us now sketch the arguments that prove Theorem 4.1.0.1: By the arguments in
Section 7 of [73], it suffices to handle the case that U ′p is an Iwahori subgroup. We
will study the forgetful map S∅,Fp → SK,Fp , whose perfection fits in a commutative
diagram of pre-stacks on the category of perfect k-algebras:

ShG,∅ ShtG,∅,µ

ShG,K ShtK,µ .

It will follow from Lemma 2.8.0.2 that Theorem 4.1.0.1 holds if and only if this diagram
is Cartesian. We let ŜhG,∅ be the fiber product of this diagram, which is a pfp algebraic
space by Corollary 2.4.0.2, and consider the induced map ι : ShG,∅ → ŜhG,∅. We will
show that i is a closed immersion in Section 4.3, using results of [73]. In Section 4.4,
we will construct a perfect local model diagram for ŜhG,∅, compatible with the local
model diagram of ShG,∅. The local model diagram tells us that both ShG,∅ and ŜhG,∅

are the union of closures of maximal KR strata, which we will denote by ShG,∅(≤w)

and ŜhG,∅(≤ w), and that KR strata are equidimensional of the correct dimension.
This gives us equidimensionality of ŜhG,∅ and so it suffices to prove that ŜhG,∅ and
ShG,∅ have the same number of irreducible components. The map ι : ShG,∅ ↪−→ ŜhG,∅

is compatible with KR stratifications, therefore we can count irreducible components
in the closure of each maximal KR stratum separately. We will distinguish between
KR strata that are completely contained in the basic locus and KR strata that are
not (nonbasic KR strata). If a KR stratum is completely contained in the basic locus,
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then so is its closure, because the basic locus is closed. It follows from [73] that

ι : ShG,∅ → ŜhG,∅

is an isomorphism over the basic locus, hence we can focus our efforts on nonbasic
KR strata. We know that every KR stratum surjects onto π0(ShG,K) (by Section 8 of
[73]), which gives a lower bound for the number of irreducible components of nonbasic
KR strata. If ŜhG,∅(≤w) is not contained in the basic locus, we will show that the
number of irreducible components of ŜhG,∅(≤w) is equal to the number of connected
components of ShG,K

2. This shows that ŜhG,∅ and ShG,∅ have the same number of
irreducible components.

To prove this ‘irreducibility’ of ŜhG,∅(≤w), we will argue as follows: The local model
diagram tells us that connected components of ŜhG,∅(≤ w) are irreducible, so that
it suffices to count connected components. Recall that the indexing set of the KR
stratification is Adm(µ) ⊂ W̃ , where W̃ is the Iwahori-Weyl group and Adm(µ) ⊂
W̃aτ . Write w = vτ and let v = s1 · · · sn be a reduced expression of v, then we define

Yw = ŜhG,∅(s1τ) ∪ · · · ∪ ŜhG,∅(snτ) ∪ ŜhG,∅(τ),

which is the union of all KR strata in ŜhG,∅(≤ w) of dimension at most one. A
technical argument, which requires either properness or Conjecture 4.7.0.5 and which
generalises the proof of Theorem 6.4 of [21], shows that every connected component of
ŜhG,∅(≤w) intersects Yw, which means that it is enough to understand the connected
components of Yw. Our assumption that Jad

b has no compact factors will then tell us
that Yw is contained in the basic locus (this will follow from Proposition 5.6 of [20]).
We now proceed in two steps:

• We show that the basic locus of ŜhG,∅ has the same number of connected
components as ShG,K . This uses strong approximation for Isc

φ , where φ is
the basic isogeny class, and the results of [31]. Since (Isc

φ )R is compact and
(Isc
φ )Qp = J sc

b , we have to use the assumption that (most of ) the Jb,i are not
of compact type in order to apply strong approximation.

• Now it remains to show that Yw has the same number of connected compo-
nents as the basic locus of ŜhG,∅. This is now a local problem, and we reduce
it to the connectedness of the Bruhat-Tits building of Jad

b using Proposition

2Here we work with connected components of ShG,K rather than ShG,∅ for technical reasons. It
will follow from our arguments that the natural map ShG,∅ → ShG,K induces a bijection connected
components, but this is not clear a priori.
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5.4 of [20] and results from [28] and [19]. Our arguments are essentially
equivalent to the connectedness argument given in Section 6 of He-Zhou [31],
although our perspective is different.

2. Local models and shtukas

2.1. Local models. Theorem 0.4 of [37] tells us that SK/OEv sits in a local
model diagram

S̃K

SK M loc
G,K,µ,

π

q

where π is a GK-torsor and q is smooth of relative dimension equal to dimG. We
let ShG,K denote the perfection of the geometric special fiber of SK , which is a pfp
scheme.

2.2. Shtukas. In order to construct a shtuka over ShG,K , we will need to go into
the details of the construction of SK . First we choose a Hodge-embedding (G,X) ↪−→
(GSp, S±) and a parahoric P ′ of GSp such that P ′(Z̆p)∩G = GK(Z̆p). Then we get a
finite morphism

SK → SP ′(GSp, S±),

where the latter is a moduli theoretic integral model of a Siegel modular variety with
parahoric level P ′ at p. This induces a finite morphism on the perfections of geometric
special fibers

ShG,K → ShGSp,P ′

and in particular a family of abelian varieties A over ShG,K . Given x ∈ ShG,K(Fp),
Kisin and Pappas construct tensors sα,0,x in Dieudonné-module D(Ax) of abelian va-
riety Ax such that the stabiliser of the sα,0,x in GL(D(A)x) is isomorphic to GK (see
Section 6.3 of [73]). This means that we can upgrade the Dieudonné module of Ax to
a GK-shtuka over Fp, and this gives a map (see Section 8 of [73]).

ShG,K(Fp)→ ShtK,µ(Fp).(2.2.1)

It is a result of Hamacher-Kim (Proposition 1 of [24], see Proposition 4.4.1 of [64])
that that there is actually a morphism ShG,K → ShtK,µ inducing (4.2.2.1) on Fp-points.
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It follows from the discussion after Theorem 4.4.3. of [64] that the perfection of the
special fiber of M loc

G,K,µ can be identified with a closed subscheme of the affine flag
variety for L+GK . To be precise it is isomorphic to

M loc :=
⋃

w∈Adm(µ)K

GrK(w),

and under this isomorphism the right action of L+GK on M loc, which factors through
GK , is identified with the GK action on the perfection ofM loc

G,J,µ. Furthermore, Theorem
4.4.3. of loc. cit. tells us that the perfectly smooth map ShG,K → [M loc/GK ] induced
from the local model diagram fits in a commutative diagram

ShG,K Sht
(m,1)
K,µ

[M loc/GK ],

and that the map ShG,K → Sht
(m,1)
K,µ is perfectly smooth.

3. Change of parahoric

Theorem 7.1 of [73] tells us that for J ⊂ K there is a morphism SJ → SK which
induces the obvious forgetful morphism on generic fibers. Moreover it follows from
Section 7.4 of op. cit. that the following diagram commutes

ShG,J ShtJ,µ

ShG,K ShtK,µ .

As explained in the introduction to this section, our goal is to show that this diagram
is Cartesian. Now (and in the rest of this section) let K be a type corresponding
to a very special parahoric such that the assumptions of Theorem 4.1.0.1 hold with
Up = GK(Zp). Let J = ∅ be the fixed Iwahori subgroup and define ŜhG,∅ via the
following Cartesian diagram

ŜhG,∅ Sht∅,µ

ShG,K ShtK,µ .

Corollary 2.4.0.2 tells us that ŜhG,∅ is a perfect algebraic space which is perfectly proper
over ShG,K . The universal property of ŜhG,∅ gives us a morphism ShG,∅ → ŜhG,∅, which
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is proper because it is a morphism of perfect algebraic spaces that are perfectly proper
over ShG,K .

Proposition 3.0.1. The morphism ι : ShG,∅ → ŜhG,∅ induced by the universal prop-
erty of ŜhG,∅ is a closed immersion.

Proof. It suffices to prove that it is injective on k-points by Lemma 2.2.0.5 since
ShG,∅ → ŜhG,∅ is a morphism of perfectly proper ShG,K-algebraic spaces and therefore
perfectly proper. There is a commutative diagram (c.f. 8.1.1 of [73])

S∅(G,X) SP(GSp, S±)

SK(G,X) SP ′(GSp, S±),

where SP(GSp, S±),SP ′(GSp, S±) are moduli theoretic integral models of a Siegel
modular variety with parahoric levels P and P ′ respectively at p, the right vertical map
is the canonical forgetful map and the horizontal maps are finite. Taking geometric
special fibers, perfecting and adding morphisms to moduli spaces of shtukas, we get a
commutative cube

ShG,∅ ŜhG,∅ ShtG,∅,µ

ShGSp,P ShtGSp,P,ν

ShG,K ShtG,K,µ

ShGSp,P ′ ShtGSp,P ′,ν .

Here ν is the cocharacter of GSp corresponding to the Shimura datum S±, and
ShGSp,P , ShGSp,P ′ are the perfections of the geometric special fibers of SP(GSp, S±)

and SP ′(GSp, S±) respectively. It suffices to show that the dotted arrow in the dia-
gram exists, because Corollary 6.3 of [73] tells us that a point x ∈ ShG,∅ is determined
by its image in ShGSp,P and the tensors in the Dieudonné module of its p-divisible
group, which are determined by the image of x in ShtG,∅,µ. The existence of the
dotted arrow follows from the following claim: �
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Claim 3.0.2. The front face of the cube, i.e., the square involving ShGSp,P , ShtGSp,P,ν ,
ShGSp,P ′ and ShtGSp,P ′,ν is Cartesian.

Proof. This follows from the moduli interpretation of the four objects in the
front face of the cube. Indeed the Shimura varieties of level P ′ parametrises chains
A0 → A1 → · · · → An of abelian varieties, where the maps are p-power isogenies of
fixed degree, and the Shimura variety of P similarly parametrises such chains A0 →
A1 → · · · → Am with m > n. 3 The moduli spaces of shtukas parametrises the
same kind of chains, but then of p-divisible groups. Since an isogeny A → B of
abelian varieties is uniquely determined by the abelian variety A and the isogeny of
p-divisible groups A[p∞]→ B[p∞], the diagram is indeed Cartesian. �

4. A local model diagram

Recall that we have defined a perfect algebraic space ŜhG,∅ via the Cartesian diagram

ŜhG,∅ Sht∅,µ

ShG,K ShtK,µ .

In this subsection we will show that the singularities of ŜhG,∅ are controlled by the
local model of ShG,∅. More precisely we will show that closures of KR strata are
equidimensional and locally integral, by relating ŜhG,∅ to the perfection of the local
model. The local model diagram of ShG,∅ is encoded in a perfectly smooth morphism

ShG,∅ → Sht∅,µ → Sht
(1,0)
∅,µ :=

[
M loc/G∅

]
There is an obvious analogue of this morphism for ŜhG,∅, and it suffices to show that
this is also perfectly smooth.

Proposition 4.0.1. The morphism ŜhG,∅ → Sht∅,µ →
[
M loc/G∅

]
is perfectly smooth.

3Of course the degrees of the isogenies are such that the forgetful map makes sense.
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Proof. Lemma 2.6.0.1 proves that there is a pre-stack Y such that the following
diagram commutes

ŜhG,∅ Sht∅,µ Y Sht
(n,1)
∅,µ

ShG,K ShtK,µ Sht
(m,1)
K,µ .

Moreover it says that the middle square is Cartesian and that the map Y → Sht
(n,1)
∅,µ is

perfectly smooth. It follows that the rectangle containing ŜhG,∅, ShG,K , Y, Sht
(m,1)
K,µ is

Cartesian. Theorem 4.4.3 of [64] tells us that the map ShG,K → Sht
(m,1)
K,µ is perfectly

smooth, and because perfectly smooth morphisms are preserved under base change
we deduce that the map ŜhG,∅ → Y is perfectly smooth and hence the map ŜhG,∅ →
Sht

(n,1)
∅,µ is perfectly smooth. Proposition 4.2.5 of [64] tells us that

Sht
(n,1)
∅,µ →

[
M loc/G∅

]
is perfectly smooth, concluding the proof. �

Corollary 4.0.2. The perfect scheme ŜhG,∅ is equidimensional of the same dimension
as ShG,∅, and closures ŜhG,∅(≤w) of KR strata are locally integral (complete local rings
at closed points are integral) of dimension l(w).

Proof. The morphism ŜhG,∅ →
[
M loc/G∅

]
is (by definition) the same as a dia-

gram

˜̂
ShG,∅

ŜhG,∅ M loc,

s
t

where s :
˜̂
ShG,∅ → ŜhG,∅ is a G∅-torsor. If we add the local model diagram for ShG,∅

to the diagram then we get

S̃hG,∅
˜̂
ShG,∅

ShG,∅ ŜhG,∅ M loc,

t′

s′

s
t
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where s′ is an G∅-torsor. Proposition 4.4.0.1 tells us that t is perfectly smooth and
Theorem 4.4.3. of [64] tells us that t′ is perfectly smooth. Since closed immersions
have relative dimension zero, it follows that t and t′ have the same relative dimension,
which is constant because M loc is connected. This also implies that the dimensions
of KR strata and their closures are the same for ŜhG,∅ and ShG,∅. The integrality of
complete local rings follows from the local model diagram in a standard way, because
it can be checked on a (perfectly) smooth cover. �

5. Connected components of the basic locus

In this section we will work with the basic locus of the Shimura variety at Iwahori level,
we will always assume that our chosen Iwahori subgroup is a connected parahoric. In
this section we will show, using Rapoport-Zink uniformisation, that the basic locus of
ShG,∅ has the same number of connected components as ShG,K under the assumption
that for 1 ≤ i ≤ n the group Jb,i is not of compact type.

Recall that the connected components of our Shimura variety in characteristic zero
have the following description (c.f. [13] 2.1.3):

π0(ShU,Q) = G(Q)+\G(Af )/U,

whereG(Q)+ = G(Q)∩G(R)+ withG(R)+ the inverse image of the identity component
(in the real topology) of Gad(R) under the natural map G(R) → Gad(R). Corollary
4.1.11 of [48] tells us that 4

π0(ShG,∅) = π0(ShK,Q)

and we will show that the natural map

ShG,∅,b → ShG,K

induces a bijection on connected components, where ShG,∅,b denotes the basic locus
(the smallest Newton stratum). The main ingredient in the proof will be strong
approximation and Rapoport Zink-uniformisation of the basic locus:

Theorem 5.0.1 (Zhou). Let Xµ(b)∅ be the parahoric affine Deligne-Lusztig variety
with b ∈ B(G,X) the unique basic element. Then there is an isomorphism of perfect

4The proof in loc. cit. seems to implicitly assume that SK,Fp
is geometrically normal, which is true

in this case because K is very special (c.f. the proof of Proposition 4.6.28 of [37]). We therefore
avoid using the result for the Shimura variety at Iwahori level.
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schemes

I(Q)\Xµ(b)∅ ×G(Ap
f )/U

p ' ShG,∅(b),

where I/Q is an inner form of G which acts on G(Ap
f ) via an isomorphism G(Ap

f ) '
I(Ap

f ) and acts on Xµ(b)∅ via an isomorphism IQp
∼= Jb(Qp). Moreover, the group

I(R) is compact mod centre.

Proof. Once we show that the basic locus contains a unique isogeny class, the
result follows on the level of Fp-points follows from Proposition 7.7 of [73] as in the
proof of Corollary 4.5.0.3. To get the statement on the level of perfect schemes, one
can argue as in the proof of Lemma 7.2.12 of [71]. �

Proposition 5.0.2. The basic locus ShG,∅(b) contains a unique isogeny class.

Our proof is similar to the proof of Corollary 7.2.16 of [71] and Proposition 6.11 of
[52].

Proof. Suppose that ShG,K,b contains a unique isogeny class, then we would get
an isomorphism

ShG,K,b ' I(Q)\Xµ(b)K ×G(Ap
f )

by the above reasoning. On the level of Fp-points it would follow that

ŜhG,∅,b(Fp) ' I(Q)\Xµ(b)∅(Fp)×G(Ap
f )

by the Cartesian diagram of basic loci

ŜhG,∅,b(Fp) Sht∅,µ(Fp)
[
Jb(Qp)\Xµ(b)∅(Fp)

]
ShG,K,b(Fp) ShtK,µ(Fp)

[
Jb(Qp)\Xµ(b)K(Fp)

]
.

But we already know that the Fp-points of isogeny classes in ShG,∅,b are also of this
form, and therefore ShG,∅,b cannot contain more than one isogeny class. As a corollary
we find that ŜhG,∅(Fp) = ShG,∅(Fp) and therefore ŜhG,∅ ' ShG,∅ is an isomorphism of
perfect schemes. So it remains to prove that ShG,K,b contains a unique isogeny class.

For this we are going to use results and notions from Chapter 5 about Shimura varieties
at very special level, these do not depend on any previous results in this thesis until
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now. It follows from Theorem 5.2.0.1 that isogeny classes in ShG,K are parametrised
by conjugacy classes of admissible morphisms Q → GG. Because (G,X) is of Hodge
type such morphisms factor through P and in fact through PL for some finite CM
field L ⊂ Q.

Given φ : PL → GG we obtain a Kottwitz triple t = (γ0, (γ`)`6=p, δ). Kottwitz triples
are defined precisely in Section 5.1 and the Kottwitz triple associated to an admissible
morphism φ is defined at the end of that section. For example γ0 ∈ G(Q) is, up to
G(Q)-conjugacy), given by φ∆(δn), where δn ∈ PL(Q) is the distinguished elements
discussed in Section 3.3. There are only finitely many conjugacy classes of admissible
morphisms φ with the same equivalence class of Kottwitz triple t, the fibers of this
map are in bijection with the set XG(Q, I) ⊂ H1(Q, I) where I = Iφ = It.

The Kottwitz triple t = (γ0, (γ`)`6=p, δ) associated to φ is basic precisely when the
σ-conjugacy of δ is the basic element in B(G,X). After replacing δ by a σ-conjugate,
it follows from Section 4 of [41] that there is an s ∈ Z≥0 such that

δσ(δ) · · ·σs−1(δ) = (sνb)(π),

where νb is the Newton cocharacter of b, which is central since b is basic. So it follows
that

δσ(δ) · · · σs−1(δ)

is central for some s ∈ Z≥0. Since γ0 is conjugate to δσ(δ) · · ·σs−1(δ) in G(Qp) by
definition, it follows that γ0 is central in G(Q). Therefore the group I associated to
the Kottwitz triple is an inner form of G. It follows from the definition that the group
XG(Q, I) is trivial and so that there is a unique conjugacy class of admissible φ with
equivalence class of Kottwitz triples given by (γ0, (γ`)`6=p, δ).

It remains to explain why there is only one equivalence class of Kottwitz triples coming
from such φ with δ basic. The image of γ0 in Gab(Q) is uniquely determined (up to
torsion) by the admissibility of φ, using axiom A1 in Definition 3.2.0.1, and the kernel
of

ZG(Q)→ Gab(Q)

is given by ZGder(Q), which is also torsion. It follows that if we have two Kottwitz
triples (γ0, (γ`)` 6=p, δ), (γ

′
0, (γ

′
`) 6̀=p, δ

′) coming from two admissible morphisms φ, φ′, that
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then γ−1
0 γ′0 is torsion which means that the Kottwitz triples are equivalent by defi-

nition, see Definition 5.1.0.1. We conclude that there is a unique conjugacy class of
admissible morphisms corresponding to basic isogeny classes, and hence by Theorem
5.2.0.1 that the basic locus contains a unique isogeny class. �

Corollary 5.0.3. The morphism ι : ShG,∅ → ŜhG,∅ is an isomorphism over the basic
locus.

Assume from now on that Gad is Q-simple. Let ρ : Gsc → Gder be the simply
connected cover. Then the classification of abelian type Shimura data in Appendix B
of [50] tells us that Gsc is isomorphic to

Gsc ' ResF/QH,

where F/Q is a totally real field and H/F is a connected reductive group that is
absolutely simple. This implies that

Isc ' ResF/QH
′,

with H ′ an inner form of H. This gives us product decompositions

Gsc
Qp =

∏
OF⊃p|p

Hp=
n∏
i=1

Gsc
i Gad =

n∏
i=1

Gi

Isc
Qp =

∏
OF⊃p|p

H ′p =
n∏
i=1

Isc
i Iad =

n∏
i=1

Iad
i =

n∏
i=1

Jb,i,

We are now ready to state the main result of this Section:

Proposition 5.0.4. Suppose that there exists an 1 ≤ j ≤ n such that µ is noncentral
on Gad

j and such that Isc
j (Qp) is not compact. Then the natural map

ShG,∅,b → ShG,K

induces a bijection on connected components.

Remark 5.0.5. The result is false for the modular curve because the supersingular
locus is highly reducible. In this case Isc is SL1(D), where D is the unique quaternion
algebra over Q that is ramified precisely at infinity and p. The group Isc(Qp) is a
unit ball in the unique nonsplit quaternion algebra over Qp, hence compact, so the
assumptions are also not satisfied.
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Recall that Gsc(R) is connected and so ρ(Gsc(Q)) ⊂ G(Q)+. Strong approximation
for Gsc, using the fact that Gsc

R has no compact factors, tells us that

G(Q)+\G(Af )/U = G(Q)+\G(Af )/UG
sc(Af ).

In order to compare this with the connected components of the basic locus, we need
to understand what happens at p and what happens at infinity; the former is covered
by the following lemma:

Lemma 5.0.6. There is a natural isomorphism

G(Qp)

Gsc(Qp)Up
' π1(G)σI .

Proof. Recall that we have the Kottwitz homomorphism k̃G : G(L) → π1(G)I

with kernel given by (see Lemma 17 of the appendix of [54])

Gsc(L) · T (OL) = Gsc(L)GJ(OL),

where T is the connected Néron model of a standard torus T of G. If we restrict k̃G
to G(Qp) we find that the kernel is given by (because T (Zp) ⊂ Up)

Gsc(Qp)G(Zp).

The result now follows from the fact that G(Qp) surjects onto π1(G)σI , which is Lemma
5.18 (i) of [73]. �

We are going to use this lemma, in combination with the natural map

Xµ(b)J → π1(G)σI ,

which induces a map π0(Xµ(b)J) → π1(G)σI . The main results of [31] describe the
fibers of this map: First of all, from section 6.1 of op. cit. we get a Cartesian diagram

Xµ(b)J Xµ(b)ad
J

π1(G)σI π1(Gad)σI .

The product decomposition

Gad =
n∏
i=1

Gad
i
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induces a product decomposition

Xµ(b)ad
J :=

n∏
i=1

Xµ(b)ad
J,i

and

π1(Gad)σI =
n∏
i=1

π1(Gad
i )σI

Moreover Theorem 6.3 of [31] tells us that

π0

(
Xµ(b)ad

J,i

)
→ π1(Gi)

σ
I(5.0.1)

is a bijection when µ is noncentral in Gad
i . When µ is central in Gad

i , then Xµ(b)ad
J,i is

discrete and Jb,i(Qp) = Gi(Qp)-equivariantly isomorphic to

Gi(Qp)

Gi,J(Zp)
.

Moreover, in this case, the map (4.5.0.1) is given by the natural map

Gi(Qp)

Gi,J(Zp)
→ Gi(Qp)

Gi,J(Zp)Gsc
i (Qp)

= π1(Gad
i )σI .

In particular Gsc
i (Qp) = Isc

i (Qp) acts transitively on the fibers.

Proof of Proposition 4.5.0.4. Zhou’s proof in Section 8 of [73] shows that
ShG,∅,b surjects onto π0(ShG,K), hence it suffices to show that the number of connected
components are the same. By assumption we can choose 1 ≤ j ≤ n such that µ is
noncentral on Gad

j . Strong approximation for H ′ (Theorem 7.12 of [56]), away from
the p-adic place of F corresponding to j, gives us

I(Q)\
(
π0(Xµ(b)J)×G(Ap

f )
)
/Up '(5.0.2)

I(Q)\
(
π0(Xµ(b)J)×G(Ap

f )
)
/UpGsc(Ap

f )
∏
i 6=j

Isc
i (Qp).

By the discussion above,
∏

i 6=j I
sc
i (Qp) acts transitively on the fibers of

π0(Xµ(b)J)→ π1(G)σI ,

from which we conclude that (4.5.0.2) is in bijection with

I(Q)\
(
π1(G)σI ×G(Ap

f )
)
/UpGsc(Ap

f )(5.0.3)

' I(Q)

Isc(Q)
\
(
π1(G)σI ×G(Ap

f )
)
/UpGsc(Ap

f ),
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where the last equality follows from the fact that Isc(Q) acts trivially on the left hand
side. Applying Proposition 4.5.0.7 we see that (4.5.0.3) equals

G(Q)+

Gsc(Q)
\
(
π1(G)σI ×G(Ap

f )
)
/UpGsc(Ap

f ) '
G(Q)+

Gsc(Q)
\G(Af )/UG

sc(Af ),(5.0.4)

where the second equality follows from Lemma 4.5.0.6. Now we unwind again and use
strong approximation for G to deduce that (4.5.0.4) equals

G(Q)+\G(Af )/UG
sc(Af ) ' G(Q)+\G(Af )/U,

which is exactly equal to π0(ShU) ' π0(ShG,∅). �

Proposition 5.0.7 (Borovoi). There is a canonical isomorphism of abelian groups

I(Q)

Isc(Q)
' G(Q)+

Gsc(Q)
.

Proof. The following proof has been reproduced with permission from Mikhail
Borovoi’s Mathoverflow answer [5], we would like to thank him for his excellent answer.

We denote K(G) = G(Q)+/ρG
sc(Q). We compute K(G); see the corollary below. It

is clear from the corollary that K(G) is canonically isomorphic to K(I). Corollary
1 on page 121 of [56] tells us that Iad(R) is connected and therefore I(Q) = I(Q)+

which implies the lemma. We will use Section 3 of [4].

We consider the crossed module (Gsc → G) and the hypercohomology

H0
ab(Q, G) := H0(Q, Gsc → G),

where G is in degree 0; see [4]. By definition H0
ab(Q, G) is a group. We consider

the abelian crossed module (Zsc → Z), where Z = Z(G) and Zsc = Z(Gsc). The
morphism of crossed modules

(Zsc → Z) −→ (Gsc → G)

is a quasi-isomorphism, and hence it induces a bijection on hypercohomology, permit-
ting us to identify H0

ab(Q, G) with the abelian group H0(Q, Zsc → Z). We conclude
that H0

ab(Q, G) is naturally an abelian group and that it does not change under inner
twisting of G.

The short exact sequence

1→ (1→ G)→ (Gsc → G)→ (Gsc → 1)→ 1
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(where (Gsc → 1) is not a crossed module) induces a hypercohomology exact sequence

Gsc(Q)→ G(Q)→ H0
ab(Q, G)→ H1(Q, Gsc),

where
ab0 : G(Q)→ H0

ab(Q, G)

is the abelianization map. This permits us to identify G(Q)/ρGsc(Q) with the kernel

ker[H0
ab(Q, G)→ H1(Q, Gsc)],

which is a subgroup of the abelian group H0
ab(Q, G). This kernel might change under

inner twisting of G, because H1(Q, Gsc) changes under inner twisting.

By definition, G(R)+ = Z(R) · ρGsc(R), and hence

G(R)+/ρG
sc(R) = ab0(Z(R)) ⊂ ker[H0

ab(R, G)→ H1(R, Gsc)].

We see thatK(G) := G(Q)+/ρG
sc(Q) can be identified with the preimage of ab0(Z(R)) ⊂

H0
ab(R, G) in ker[H0

ab(Q, G)→ H1(Q, Gsc)].

Lemma 5.0.8. The preimage of ab0(Z(R)) ⊂ H0
ab(R, G) in ker[H0

ab(Q, G)→ H1(Q, Gsc)]

coincides with the preimage of ab0(Z(R)) in H0
ab(Q, G).

Proof. Let ξ ∈ H0
ab(Q, G) lie in the preimage of

ab0(Z(R)) ⊂ ker[H0
ab(R, G)→ H1(R, Gsc)].

Then the image of ξ inH1(R, Gsc) is trivial, and therefore, the image of ξ inH1(Q, Gsc)

lies in the kernel of the localization map

H1(Q, Gsc)→ H1(R, Gsc).

By the Hasse principle for simply connected groups, this kernel is trivial. Thus the
image of ξ in H1(Q, Gsc) is trivial, and hence ξ lies in the preimage of ab0(Z(R)) in
ker[H0

ab(Q, G)→ H1(Q, Gsc)], as required. �

Corollary 5.0.9. The abelianization map ab0 : G(Q)→ H0
ab(Q, G) with kernel ρGsc(Q)

induces a canonical isomorphism between the abelian groups K(G) := G(Q)+/ρG
sc(Q)

and the preimage of ab0(Z(R)) ⊂ H0
ab(R, G) in H0

ab(Q, G).

We see that K(G) only depends on Z and Zsc → Z and therefore is the same for all
inner forms. �
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6. Connected components of unions of one-dimensional KR strata

In this section we will refine the results of the previous section, and show that certain
unions of one-dimensional KR strata in the basic locus have the same number of
connected components as the basic locus. It is good to point out that He and Zhou
prove the results we used in the last section by studying these kinds of unions of
one-dimensional KR strata, so in some sense these sections are in the wrong order.
However our proof takes a slightly different perspective, which I prefer.

Let us put ourselves in the same situation as before, and let

S =
n∐
i=1

Si

denote the set of simple reflections of the Iwahori-Weyl group of GQp coming from the
product decomposition

Gad
Qp =

n∏
i=1

Gi.

In the rest of this section we fix a nonempty (!) subset A ⊂ S such that A·τ ⊂ Adm(µ),
which we will later specialise to be the set of simple reflections in the support of an
element w ∈ W̃a such that wτ ∈ Adm(µ). From now we will specialise to the case
J = ∅, and define

ShAG,∅ =
⋃
s∈A

ShG,∅(sτ) ∪ ShG,∅(τ)

Lemma 6.0.1. Suppose that for all 1 ≤ i ≤ n that Jb,i := Iad
i,Qp is not of compact type.

Then ShAG,∅ is contained in the basic locus of ShG,∅.

Proof. Proposition 5.6 of [20] tells us that ShG,∅(sτ) is contained in the basic
locus if and only if W̃Suppσ(s) is finite, where

Suppσ(s) =
⋃
n∈Z

(τσ)ns.

Choose 1 ≤ i ≤ n such that s ∈ Si, then by the above sτ is basic if and only if
Suppσ(s) does not contain a connected component of Si. But since σ acts transitively
on the connected components of Si, that happens if and only if

Suppσ(s) 6= Si.
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If Suppσ(s) = Si, then (τσ) acts transitively on Si, which happens if and only if
Jb,i(Qp) is compact. Indeed, the action of σ′ = τσ on S corresponds to the action of
Frobenius on the inner form Iad

i of Gad
i and such an action can only be transitive if

Gad
i is of type A and if Iad

i (Qp) is compact. But Iad
i (Qp) = Jb,i(Qp) is not compact by

assumption. �

We now state the main result of this section:

Proposition 6.0.2. Suppose that for all 1 ≤ i ≤ n the group Jb,i is not of compact
type. Moreover assume that there is an 1 ≤ j ≤ n such that Suppσ(A ∩ Sj) = Sj.
Then ShAG,∅ → ShG,K induces a bijection on connected components.

We start by collecting some notation before we will state our main local result, to
simplify notation we will write X∅ for Xµ(b)∅. For s ∈ A we will write X∅(s) for the
locally closed subset of Xµ(b)∅ corresponding to sτ ∈ Adm(µ), their union will be
denoted by X∅(A). There are obvious analogues when we replace G by Gad, which
will be denoted by adding the superscript ad. The decomposition

S = S1

∐
· · ·
∐

Sn

induces A = A1

∐
· · ·
∐
An. This allows us to define

X∅,i(Ai)
ad

for 1 ≤ i ≤ n, using the product decomposition

Xad
∅ =

n∏
i=1

Xad
∅,i.

The following Lemma is implicit in Section 6 of [31].

Lemma 6.0.3. Choose 1 ≤ j ≤ n such that Suppσ(Aj) = Sj, then

Xad
j,∅(Aj)→ Xad

∅,j

induces a bijection on connected components.

Proof. The fact that A ∩ Sj 6= ∅ implies that µ is nontrivial on Gad
j and so (by

Theorem 6.3 of [31])

π0(Xad
∅,j) ' π1(Gad

j )σI .
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So it now suffices to prove that the natural map

π0(Xad
j,∅(A)) ' π1(Gad

j )σI

is a bijection, it is a surjection by because it is equivariance under the action of the
twisted centraliser.

Let s ∈ Aj and let Ks ⊂ Sj be the τσ-orbit of s, then the assumption that τσ does
not act transitively on Sj (because Iad

j is not of compact type) tells us that W̃Ks is
finite. It follows from Theorem 4.8 of [28] and its proof that the image of Xad

j,∅(≤sτ)

under the forgetful map Xad
j,∅ → Xad

j,Ks
is given by Xad

i,Ks
(τ). Moreover, the fibers of the

projection map

Xad
j,∅(≤sτ)→ Xad

j,Ks(τ)

are classical Deligne-Lusztig varieties

Y (≤s) ⊂ (Iad
j,Ks

)red/B,

where Iad
j,Ks

is the group scheme over Zp associated to the (τσ)-stable type Ks ⊂ Si
for the group Iad

i and B is a Borel subgroup (the image of Iad
j,∅). Since {s} ⊂ Ks is

not contained in a proper (τσ)-stable subset of Ks by construction, Theorem 1.1 of
[19] tells us that Y (s) is connected. Theorem 3.5 of [28] tells us that Iad

i (Qp) acts
transitively on Xad

j,Ks
(τ), which gives an identification

π0

(
Xad
j,∅(≤sτ)

) ∼= Iad
i (Qp)

Iad
j,Ks

(Zp)
,(6.0.1)

where Ij,Ks(Zp) is the parahoric subgroup of Iad(Qp) corresponding to Ks. Similarly,
we can identify

Xad
i (τ) '

Iad
j,∅(Qp)

Iad
j,∅(Zp)

.(6.0.2)

Moreover, the map

Xad
j,∅(τ) ' π0(Xad

j,∅(τ))→ π0

(
Xad
j,∅(≤sτ)

)
is given by the natural map

β :
Iad
j (Qp)

Iad
j,∅(Zp)

→
Iad
j (Qp)

Iad
j,Ks

(Zp)

coming from the inclusion Ij,∅ ⊂ Ij,Ks . Define a graph Γ with vertices given by
(4.6.0.2), with edges given by (4.6.0.1) and with two vertices x, y connected by the
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edge β(x) if β(x) = β(y). We are going to show that the connected components of
this graph are in bijection with π1(Gad

j )σI .

If H is any connected reductive group over Qp and H/Zp is a parahoric model, then
there is a bijection

H(Qp)

H(Zp)
' H̃(Zp)
H(Zp)

× H(Qp)

H̃(Qp)
,

where H̃ is the Bruhat-Tits stabiliser group scheme of which H is the identity compo-
nent. This means that H̃(Zp) is the stabiliser in H(Qp) of a simplex of the Bruhat-Tits
building of Had. Moreover there is a natural isomorphism

H̃(Zp)
H(Zp)

' π1(Gad
j )σI .

It follows that (4.6.0.2) is a product of π1(Gad
j )σI and the set of alcoves in the aforemen-

tioned building, and (4.6.0.1) is a product of π1(Gad
j )σI and the set of codimension one

facets of type Ks. Moreover, the vertices corresponding to two alcoves are connected
by an edge if and only if the (closures of the) alcoves intersect in a codimension one
facet.

The fact that Suppσ(Aj) = Sj tells us Aj contains an element in every (τσ)-orbit, so
that the subsets Ks for s ∈ Aj are precisely the orbits of simple reflections in S under
τσ. It is clear that these correspond to all parahoric subgroups of Isc

j that strictly
contain the Iwahori subgroup and do not contain any other parahoric subgroups. In
other words, these correspond to codimension one facets of the building. This means
that Γ is isomorphic to the product of π1(Gad

j )σI and the adjacency graph for the set
of alcoves in the building. Since the adjacency graph for alcoves in the building is
connected, it follows that π0(Γ) = π1(Gad

j )σI . �

Proof of Proposition 4.6.0.2. As before it follows from Zhou’s proof of axiom
5 in Section 8 of [73] that ShAG,∅ surjects onto π0(ShG,K), hence it suffices to show that
the number of connected components are the same. Lemma 4.6.0.1 tells us that ShAG,∅
is contained in the basic locus and so it is isomorphic to

I(Q)\X∅(A)× I(Ap
f )/U

p.
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As in the previous section there is a Cartesian diagram

π0(X∅(A)) π0(X∅(A))ad

π1(G)σI π1(Gad)σI .

Let 1 ≤ j ≤ n be such that Suppσ(A ∩ Sj) = Sj (which exists by assumption), then
Lemma 4.6.0.3 tells us that

π0(Xj,∅(A)ad)→ π1(Gad
j )σI

is a bijection. For all 1 ≤ i ≤ n with i 6= j, we will show that the fibers of

π0(Xi,∅(A)ad)→ πi(G
ad
j )σI(6.0.3)

are not too big, so that they can be dealt with using strong approximation. The
inclusion

Xi,∅(τ)ad → Xi,∅(A)ad

induces a surjection on π0, because every curve in Xi,∅(A)ad intersects Xi,∅(τ)ad by
Theorem 4.1 of [31]. Recall from the proof of Lemma 4.6.0.3 that

Xi,∅(τ)ad =
Iad
i (Qp)

Iad
i,∅(Zp)

,

which means that the fibers of (4.6.0.3) receive a surjection from the fibers of

Iad
i (Qp)

Iad
i,∅(Zp)

→ π1(Gi)
σ
I ' π1(Ii)

σ
I .

As in the previous section, these fibers are acted on transitively by Isc
i (Qp) which

implies that the fibers of

π0(X∅(A))→ π1(G)σI

are acted on transitively by
∏

i 6=j I
sc
i (Qp). The rest of the proof is the same as the

proof of Proposition 4.5.0.4, using the fact that Isc
j (Qp) is not compact. �

7. Connectedness of closures of KR strata

In this section we will show that for nonbasic w ∈ Adm(µ), the KR stratum ŜhG,∅(≤w)

is ‘connected’, by which we mean that it has the same number of connected components
as ShG,K . Recall that we have assumed that Gad is Q-simple.
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Theorem 7.0.1. Suppose that Gad is Q-simple, that for 1 ≤ i ≤ n the group Jb,i is not
of compact type, and that either ShU is proper or that Conjecture 4.7.0.5 holds. Then
for w nonbasic, the scheme ŜhG,∅(≤w) has the same number of connected components
as ShG,K.

Corollary 7.0.2. The closed immersion ŜhG,∅ ↪−→ ShG,∅ is an isomorphism.

Proof of Corollary 4.7.0.2. We know that ŜhG,∅ is a union of ŜhG,∅(≤ w)

for w ∈ Adm(µ) of maximal length, therefore it is enough to prove that ShG,∅(≤
w) → ŜhG,∅(≤ w) is an isomorphism for nonbasic w (since ŜhG,∅ ↪−→ ShG,∅ is an
isomorphism over the basic locus by Corollary 4.5.0.3 and the basic locus is closed).
Because ShG,∅(≤ w) and ŜhG,∅(≤ w) are locally integral and equidimensional of the
same dimension by the local model diagram, it suffices to prove that they have the
same number of connected components. But we know that

ShG,∅(≤w)� π0(ShG,K)

is surjective (this is true for w = τ by the arguments in Section 8 of [73], and the
general case follows from the proof of Theorem 4.1 of [27]). The closed immersion
ShG,∅(≤w)→ ŜhG,∅(≤w) implies that (the last equality follows from Theorem 4.7.0.1)

|π0(ShG,∅(≤w))| ≤ |π0(ŜhG,∅(≤w))| = |π0(ShG,K)|,

hence we are done. �

Proof of Theorem 4.7.0.1. Our proof is a generalisation of the connectedness
argument of Section 7 of [21]. Write w = vτ and let v = s1 · · · sn be a reduced
expression of v, then we define

Yw = ŜhG,∅(s1τ) ∪ · · · ∪ ŜhG,∅(snτ) ∪ ŜhG,∅(τ),

which is the union of all KR strata in ŜhG,∅(≤w) of dimension at most one. It then
suffices to prove the following two results, because of the inequalities

|π0(ŜhG,∅(≤w))| ≥ |π0(ShG,K)|

and (these follow from Proposition 4.7.0.3 and Lemma 4.7.0.4 respectively)

|π0(ŜhG,∅(≤w))| ≤ |π0(Yw)| = |π0(ShG,K)|.

�
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Proposition 7.0.3. Suppose that Conjecture 4.7.0.5 holds or that ShU is proper. Let
ŜhG,∅(≤w) be the closure of a KR stratum of ŜhG,∅ and let Z be a connected component
of ŜhG,∅(≤w), then Z intersects Yw.

Lemma 7.0.4. Under the assumptions of Theorem 4.7.0.1, the closed subscheme Yw
has the same number of connected components as ShG,K.

Conjecture 7.0.5. Let V be an irreducible component of the closure of an EKOR
stratum in ShG,K, then V intersects the unique 0-dimensional EKOR stratum ShG,K{τ}.

Remark 7.0.6. The conjecture follows from Proposition 6.20 of [70], combined with
Theorem 1.2 of [2], when K is hyperspecial.

Proof of Lemma 4.7.0.4. In order to show that Yw → ShG,K induces a bijection
on connected components, it suffices to prove that

A = Supp(w)

satisfies the assumptions of Proposition 4.6.0.2. Proposition 5.6 of [20] tells us that
w is nonbasic if and only if

W̃Suppσ(w)

is infinite, which only happens if there is an 1 ≤ j ≤ n such that Sj ⊂ Suppσ(w). The
assumptions of Theorem 4.7.0.1 tell us that Jb,i(Qp) is not compact and so we may
apply 4.6.0.2. �

8. Proof of the main technical result

In this section we prove Proposition 4.7.0.3, we start by proving a lemma:

Lemma 8.0.1. Proposition 4.7.0.3 holds for Z if there exists a KR stratum ŜhG,∅(x)

such that Z ∩ ŜhG,∅(x) is nonempty, such that ŜhG,∅(x) is proper and such that for
every x′ ≤ x the KR stratum ŜhG,∅(x

′) is quasi-affine.

Proof. Let ŜhG,∅(x) as in the statement of the lemma. Then there is an x′ ≤ x

of minimal length such that ŜhG,∅(x
′)∩Z 6= ∅, and it suffices to prove that this length

is equal to zero. The minimality tells us that

ŜhG,∅(x
′) ∩ Z = ŜhG,∅(≤x′) ∩ Z,(8.0.1)
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since ŜhG,∅(≤x′) \ ŜhG,∅(x
′) is a union of KR strata associated to x′′ of length strictly

smaller than x′. Next, we note that Z ∩ ŜhG,∅(x
′) is a union of connected components

of ŜhG,∅(x
′), because ŜhG,∅(x

′) ⊂ ŜhG,∅(≤w) and so connected components of ŜhG,∅(x
′)

are either disjoint from Z or contained in Z. Since ŜhG,∅(x
′) is quasi-affine, we find that

ŜhG,∅(x
′)∩Z is quasi-affine. Moreover (4.8.0.1) implies that ŜhG,∅(x

′)∩Z ⊂ ŜhG,∅(x)

is closed, hence proper. Therefore, ŜhG,∅(x
′) ∩ Z is zero-dimensional, and since it is a

union of connected components of ŜhG,∅(x
′), we find that x′ has length zero. �

Proof of Proposition 4.7.0.3. The proof of Proposition 6.11 of [27] tells us
that the image of ŜhG,∅(w) under the forgetful map π : ŜhG,∅ → ShG,K is a union of
EKOR strata. To elaborate, the paper [27] postulates a set of axioms for Shimura
varieties of parahoric level (now known as the He-Rapoport axioms) and deduces
various consequences from them. The scheme ŜhG,∅ together with its forgetful map
to ShG,K satisfies these axioms by construction, and therefore we can use the results
proven from them. For this particular result, we remark that KR strata and EO strata
on ŜhG,∅ and ShG,K respectively are defined as the inverse images of KR strata and
EO strata in Sht∅,µ and ShtK,µ respectively. Therefore it suffices to prove that the
forgetful map

Sht∅,µ → ShtK,µ

sends KR strata to unions of EO strata, and this is what is proven in Proposition
6.11 of [27]. To be precise, they prove the result on the level of Fp-points, but this is
enough for our purposes since locally closed subsets of ShG,K are determined by their
Fp-points.

It follows that the image of ŜhG,∅(≤ w) is a union of closures of EKOR strata (by
properness of π), and π(Z) is a union of irreducible components of closures of EKOR
strata, Conjecture 4.7.0.5 tells us that π(Z) intersects the zero-dimensional EKOR
stratum ShG,K{τ}, and therefore Z intersects π−1(ShG,K{τ}). The inverse image of
π−1(ShG,K{τ}) is proper because ShG,K{τ} is finite and π is proper. It follows from
Section 6.4 of [27] (as explained before) that this inverse image is a union of closures
of KR strata. This means that the assumptions of Lemma 4.8.0.1 would be satisfied
if we knew quasi-affineness of KR strata.

If ShU is proper, then Corollary 4.1.7 of [48] tells us that ShG,K is proper. It follows
from this that ŜhG,∅ is proper, and therefore by Lemma 4.8.0.1 it is enough to show
that KR strata in ŜhG,∅ are quasi-affine in this case.
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Theorem 3.5.9 of [64] proves that KR strata in ShG,∅ are quasi-affine, which is not
enough for our purposes. Our proof that KR strata in ŜhG,∅ are quasi-affine in fact
gives an alternative proof of their result.

Lemma 8.0.2. The morphism f : ŜhG,∅ → ShGSp,P constructed in the proof of Propo-
sition 4.3.0.1 is finite.

Proof. By the proof of Proposition 4.3.0.1. there is commutative diagram

ŜhG,∅ ShGSp,P

ShG,K ShGSp,P ′

β

f

α

f ′

with f ′ finite. It suffices to show that f is quasi-finite, since its source and target are
proper over ShGSp,P ′ . We will show that for x ∈ ShG,K(Fp) with image y = f ′(x) the
map

f : β−1(x)→ α−1(y)

is injective, which implies the quasi-finiteness. Indeed this implies that z ∈ α−1(y)

has at most one pre-image in β−1(x), and there are only finitely many possible x for
which β−1(x) can map to α−1(y) by quasi-finiteness of f ′.

To prove this injectivity on fibers we return to the commutative cube from the proof
Proposition 4.3.0.1, which we reproduce below for convenience.

ŜhG,∅ ShtG,∅,µ

ShGSp,P ShtGSp,P,ν

ShG,K ShtG,K,µ

ShGSp,P ′ ShtGSp,P ′,ν .

β
α

Since the square involving the four objects with subscript G and the square involving
the four objects with subscript GSp are Cartesian (by the moduli description, see
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Claim 4.3.0.2), the statement on fibers can instead be proven for the square

ShtG,∅,µ ShtGSp,P,ν

ShtG,K,µ ShtGSp,P ′,ν .

Moreover, since the spaces of shtukas of type µ respectively ν sit inside the spaces of
all shtukas, we can reduce to showing the statement (injectivity of the map on fibers)
for

ShtG,∅ ShtGSp,P

ShtG,K ShtGSp,P ′ .

Recall from the proof of Corollary 2.4.0.2 the Cartesian diagrams (equation (2.4.0.1)

ShtG,∅ ShtG,K

BL+G∅ BL+GK .

ShtGSp,P ShtGSp,P ′

BL+P BL+P ′

which fit into a commutative cube that we will not draw. This reduces the problem
to showing the injectivity statement for the diagram

BL+G∅ BL+P

BL+GK BL+P ′,

which comes down to showing injectivity of the map of partial flag varieties

L+GK
L+G∅

→ L+P ′

L+P
.

Finally, this is true because the intersection of L+P with LG is equal to L+G∅ by
construction (see Section 8 of [73] for the construction) and therefore the intersection
of L+P with L+GK is also equal to L+G∅. �

We can assume that P is an Iwahori subgroup, because all that is needed in Section
7 of [73] is that P(Z̆p)∩G(Qp) = G∅(Z̆p). Moreover, the image of G∅(Zp) in GSp(Qp)

is automatically contained in an Iwahori subgroup. Indeed, consider the following
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diagram of perfect group schemes over Fp

G∅ P∅ B

P (P)red

where P∅ is an Iwahori subgroup and B is a Borel subgroup of (P)red. The square is
Cartesian by (1.5.0.1) and the dotted arrow exists because the special fiber of G∅ is
solvable and therefore lands inside a Borel subgroup of (P)red.

The morphism f : ŜhG,∅ → ShGSp,P is compatible with the maps Sht∅,µ → ShtGSp,MP ,ν ,
and we claim that this implies that f is compatible with KR stratifications. If we start
with a modification β : E → E ′ of G∅ torsors over Fp of relative position λ, then there
is an f(λ) such that the induced modification of P-torsors has relative position f(λ).
Indeed, the double coset

G∅(OL)λG∅(OL) ⊂ G(L)

is mapped to a unique double coset

P(OL)f(λ)P(OL) ⊂ GSp(L).

Theorem 5.4 of [21] tells us that ShGSp,P(v) is quasi-affine, and because f is a finite
morphism, we find that f−1(ShGSp,P(v)) is quasi-affine. It follows that ŜhG,∅(w) is
quasi-affine, because it is locally closed in something quasi-affine. �

9. Proofs of the main results for Hodge type Shimura varieties

In this section we will deduce Theorem 4.1.0.1 and Theorem 4.1.0.4 from 4.7.0.2.

Proof of Theorem 4.1.0.1. We will first prove Theorem 4.1.0.1 when J = ∅,
i.e., at Iwahori level. Theorem 4.7.0.1 gives us a Cartesian diagram

(9.0.1)
ShG,∅ Sht∅,µ

ShG,K ShtK,µ
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which in turn gives us a Cartesian diagram on the level of k-points. The assumption
that the theorem holds for ShG,K tells us that

ShG,K(Fp) =
∐
φ

Iφ(Q)\Xp(φ)×Xp(φ)/Up,

where Xp(φ) = Xµ(bφ)K(Fp) is the set of Fp-points of an affine Deligne-Lusztig variety.
Moreover, Lemma 2.8.0.2 tells us that

ShtK,µ(Fp) =
∐

b∈B(G,X)

[Jb,I(Qp)\Xµ(bφ)K(Fp)]

Sht∅,µ(Fp) =
∐

b∈B(G,X)

[Jb,∅(Qp)\Xµ(bφ)∅(Fp)]

and the bottom morphism in (4.9.0.1) is given by projection to Xµ(bφ)K(Fp). We
conclude that

ShG,∅(Fp) =
∐
φ

Iφ(Q)\Xµ(b)∅ × Ŝh
p

G,∅(φ)/Up.

If J ⊂ S is an arbitrary σ-stable type, then the result for ShG,J follows from Proposition
7.6 and Proposition 7.7 of [73] (assumption 6.18 of loc. cit. is Theorem 4.1.0.1 for
ShG,∅). �

Proof of Theorem 4.1.0.4. Let J ⊂ S be a σ-stable type and consider the
forgetful map π : ShG,∅ → ShG,J . It is good to keep in mind throughout this proof that
π induces a bijection on connected components because every connected component
of ŜhG,∅ = ShG,∅ intersects ShG,∅,b and π0(ShG,∅,b) → π0(ShG,K) is a bijection. If
w ∈ J Adm(µ) is nonbasic then we know that

ShG,∅(w)→ ShG,∅

induces a bijection on connected components. It follows from the proof of Proposition
6.11 of [27] that ShG,∅(w) surjects onto the EKOR stratum ShG,J{w} (c.f. Proposition
6.11 of [27]) and it follows that

ShG,J{w} → ShG,J

induces a bijection on connected components, keeping in mind the above remark about
forgetful maps. If w ∈ Adm(µ)J and ShG,J(w) is the corresponding KR stratum, then

ShG,J(w)→ ShG,J



9. PROOFS OF THE MAIN RESULTS FOR HODGE TYPE SHIMURA VARIETIES 84

induces a bijection on connected components, because there is an dense open EKOR
stratum ShG,J{v} ⊂ ShG,J(w) for which this holds. �



CHAPTER 5

Main results for abelian type Shimura varieties

In this Chapter we will discuss Kottwitz triples, prove our main theorem in the Hodge
type case and end by deducing our main theorems in the abelian type case.

1. Kottwitz triples

Let (G,X) be a Shimura datum of Hodge type and let G/Z(p) be a parahoric model
of G of type K.

Definition 1.0.1 (See 4.3.1 of [38]). Let r ≥ 1, set K0 = FrW (k) where k = Fpr . A
Kottwitz triple t of level r is a triple (γ0, (γ`)` 6=p, δ) where

• γ0 ∈ G(Q), defined up to conjugacy in G(Q).

• (γ`) 6̀=p ∈ G(Ap
f )

• δ ∈ G(K0), defined up to σ-conjugacy by elements of G(W (k)).

These triples are required to satisfy the following conditions

(i) γ0 is conjugate to (γ`) 6̀=p in G(Ap

f ).

(ii) γ0 is conjugate to γp := δσ(δ) · · ·σr−1δ in G(Qp).

(iii) The image of γ0 in G(R) is elliptic.

There is also a condition (iv), that will take some time to explain. First of all given
such a triple t, we can define groups I`/k for finite primes `. If ` 6= p, then Il/k is the
centraliser of γ` ∈ G(Q`) and if l = p then we define

Ip/k(R) = {g ∈ G(W (K)⊗Zp R) : g−1δσ(g) = δ}.

We moreover let I0/k be the centraliser of γ0 in G, then I0/k ⊗Q` is an inner form of
Ip/k for all p. Given a Kottwitz triple (γ0, (γ`)`6=p, δ) of level r and a positive integer
m it is straightforward to see that (γm0 , (γ

m
` )`6=p, δ) is a Kottwitz triple of level rm.

Moreover it is clear that I0/k ⊂ I0/k′ and Il/k ⊂ Il/k′, where l′ = Fprm. It turns out
85
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that for m sufficiently large, the groups stabilise giving rise to groups I0 and I` for all
l. Condition (iv) is now the following:

(iv) There is an inner twisting I of I0 such that I⊗QR is anisotropic mod center,
and such that I ⊗Q Q` ' I` and such that the following diagram commutes

I0 ⊗Q Q` I` ⊗Q` Q`

I0 ⊗Q Q` I ⊗Q Q`.

∼

∼

∼

To be precise, we can choose inner twistings such that the above diagram
commutes. Finally we consider the smallest equivalence relation on the set
of Kottwitz triples of varying levels r such that (γ0, (γl)`6=p, δ) is equivalent
to (γm0 , (γ

m
l )` 6=p, δ) and we define a Kottwitz triple to be an equivalence class

under this relation.

Remark 1.1. The element γ0 is determined up to G(Q)-conjugacy by (γl)`6=p and δ.

Given a Kottwitz triple t = (γ0, (γ`)`6=p, δ), we let IApf = IApf (t) denote the centraliser
of (γn` )` 6=p for n� 0 and we set IAF = IApf × Ip. condition (iv) somehow tells us that
there is an isomorphism ι : I ⊗Q Af ' IAf . The quadruple t̃ = (γ0, (γ`)`6=p, δ, ι) is
called a refined Kottwitz triple.

1.2. Equivalences of Kottwitz triples. Let t and t′ be Kottwitz triples, then
we say that t is equivalent to t′ and write t ∼ t′ if there are representatives t =

(γ0, (γ`) 6̀=p, δ) and t′ = (γ′0, (γ
′
`) 6̀=p, δ

′) of the same level r such that: The elements
γ`) 6̀=p and γ′`) 6̀=p are conjugate in G(Ap

f ) and δ is σ-conjugate to δ
′ in G(W (Fqr)[1/p]).

If t̃ = (γ0, (γ`) 6̀=p, δ, ι) is a refined Kottwitz triple, then there is a set

S (̃t) = I(Q)\Xµ(δ)K ×G(Ap
f )

with an action of ZG(Qp) × 〈Φ〉 × G(Ap
f ). Recall from Section 4.3.2 of [38] that if

t′ ∼ t then we can transport the refinement ι to a refinement ι′ of t′ and obtain an
equivariant bijection

S (̃t) ' S(t̃′).

Let φ : Q → GG be an admissible morphism, then φ factors through φ : PL → GG

because Z0
G satisfies the Serre condition. Moreover, there is a morphism of Qur

p /Qp
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gerbs θ : D→ Gur
G such that its inflation to a map Qp/Qp-gerbs is conjugate to φ. We

then define a Kottwitz triple t(φ) by

γ0 = φ(δn) = γ`

δ = θ(dnσ).

It follows from Section 4.5 of [38] that this is indeed a Kottwitz triple with I ' Iφ.
Moreover, Lemma 4.5.2 of loc. cit. tells us that there is a 〈Φ〉 × G(Ap

f )-equivariant
isomorphism

X(φ) ' Xµ(δ)K ×G(Ap
f ).

1.3. Admissible morphisms with the same Kottwitz triple. Because we
are going to work with Kottwitz triples in the proof, we need to determine the fibers
of

{ Admissible φ : Q→ GG}/conjugacy→ {triples}/ ∼ .

Recall first of all from Lemma 3.1.0.5 that the set of conjugacy classes of (not necessar-
ily admissible) morphisms φ′ : Q→ GG with the same φ∆, and thus the same Kottwitz
triple, is in bijection with H1(Q, Iφ). We would like to express the admissibility of
such a (conjugacy class of) φ′ in terms of conditions on the associated cohomology
class. Kisin defines a certain Tate-Shafarevich group XG(Q, I) ⊂ H1(Q, I) and shows
that (Proposition 4.5.7 of [38]) that if the fiber of

{ Admissible φ : Q→ GG}/conjugacy→ {triples}/ ∼(1.3.1)

over a triple t is nonempty, then it is a XG(Q, I)-torsor. A cohomology class α ∈
H1(Q, I) lies in XG(Q, I) if it satisfies the following conditions:

• It is in the kernel of H1(Q, I)→
∏

vH
1(Qv, I), where the product runs over

all finite places of Q.

• It is in the kernel of the map H1(Q, I)→ H1(R, I).

• It is in the kernel of the map

ker
(
H1(Q, I)→ H1(R, I)

)
→ ker

(
H1(Q, G)→ H1(R, G)

)
defined in Section 4.4 of [38].

1.4. Kottwitz triples associated to special morphisms. If T is a torus over
Q together with a cocharacter µ, then there is a morphism ψµ : Q → GT . If T
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satisfies the Serre condition, then this factors through a φ : P → GT and in fact
through φ : PL → GT for some sufficiently large L and we can define a Kottwitz triple
t(T, µ) for T by

γ0 = φ(δn) = γ`

δ = θ(dnσ).

Since φ∆ : PL → T is defined over Q, it follows that γ0 ∈ T (Q) for n � 0. Now
suppose that i : T ⊂ G such that µ = µhT for some hT : S → GR factoring through
TR, then T satisfies the Serre condition by 4.3.9 of [38]. Furthermore there is an
equivalence of Kottwitz triples

i∗(t(T, µ) ∼ t(i ◦ ψµ),

where i∗(γ0, (γ`)l 6=p, δ) = (i(γ0), (i(γ`))`6=p, i(δ)). This is basically just saying that the
construction of Kottwitz triples associated to an admissible morphism is functorial
with respect to morphisms of Shimura data, in the special case that the source is a
torus.

2. Mod p-points on Shimura varieties of Hodge type

Let (G,X) be a Shimura variety of Hodge type and let p > 2 be a prime such that
GQp is quasi-split and splits over a tamely ramified extension, such that p does not
divide #π1(Gder) and such that all parahorics of G are connected. Let Up ⊂ G(Ap

f )

be a sufficiently small compact open subgroup and let U = UpUp with Up = G(Zp),
where G is a connected parahoric model of G. We let SU be the Kisin-Pappas integral
model of the Shimura variety ShUpUP . Let b ∈ B(G,X) be the unique basic element.

Theorem 2.0.1.

(i) Suppose that G is a connected very special parahoric, then there is an G(Ap
f )×

〈Φ〉-equivariant bijection

SG,UpUp(Fp) '
∐
φ

Sτ(φ0)(φ),

where φ runs over conjugacy classes of admissible morphisms Q→ GG. Here
the element τ(φ0) ∈ Iad

φ (Af ) only depends on the conjugacy class of φ0, the
composition of Q→ GG with GG → GGad.
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(ii) Suppose that Gad is Q-simple, that Jb has no compact type factors and that
ShU is proper or that Conjecture 4.7.0.5 holds. Then the same conclusion as
in (i) holds.

Remark 2.0.2. We would like to point out that the first part of the theorem (for
very special parahorics) is essentially due to Rong Zhou; it follows immediately from
Appendix A of [32] and [73] and the argument in Section 4 of [38].

3. Proof of the Langlands-Rapoport conjecture for Hodge type Shimura
varieties

In this section we will prove Theorem 5.2.0.1, following Section 4 of [38]. Because the
arguments are so similar to the arguments in loc. cit., we will not give many details.
The strategy of the proof can be summed up by the following diagram (we use the
Kisin-Pappas integral models for Shimura varieties of abelian type)

{Admissible morphisms}/conjugacy

{special points} {Kottwitz triples}/ ∼

{Isogeny classes}.

The dotted arrow will be constructed by lifting an isogeny class to a special points,
taking the associated Kottwitz triple, and then checking that the result does not
depend on the choice of lift.

Proof of Theorem 5.2.0.1. It follows from Theorem 3.3.0.1 that all admissible
morphisms are special and it follows from part (2) of Theorem A.4.5 of [32] that all
isogeny classes come from special points. To go from isogeny classes to Kottwitz triples,
we choose a special point landing in the isogeny class and then take the Kottwitz triple
associated to that special point, which will be independent of the choice of special point
up to equivalence as in 4.4.6 of [38]. Moreover, it follows as in loc. cit. that we can
twist isogeny classes by elements of X∞

G (Q, I) 1 and the fibers of the map

{Isogeny classes} → {Kottwitz triples}/ ∼

1This is the same as XG(Q, I) except that we don’t impose any conditions at the finite places.
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are either empty or XG(Q, I)-torsors (Proposition 4.4.13 of loc. cit.). We can now
conclude that there is a bijection between isogeny classes and admissible morphisms,
keeping in mind (5.1.3.1), so it suffices to deal with the uniformisation of isogeny
classes. Part (1) of Theorem A.4.5 of [32] combined with Theorem 4.1.0.1 tells us
that under our assumptions isogeny classes I ⊂ SU(Fp) have the following shape

I ' I(Q)\Xµ(b)K ×G(Ap
f )/U

p,

and moreover this identification is 〈Φ〉 × G(Ap
f )-equivariant. Recall that there is an

action of A(G) on SU(Fp). It follows as in the proof of Proposition 4.4.14 of [38] that
the stabiliser of I is given by A(G)I ⊂ A(G), where

(A(G))I = G(Ap
f ) ∗G(Zp)+ Gad(Zp)I+

and where Gad(Zp)I+ is the kernel of

Gad(Zp)+ → H1(Q, ZG)→ H1(Q, I).

Similarly, it follows as in Lemma 4.3.5 of loc. cit. that the stabiliser of Sτ (φ) ⊂
Sτ (G, φ0) under the action of A(G) is given by (A(G))I . Let (T, hT , i) be a special
point mapping to I and let φ be an admissible morphism conjugate to i ◦ ψµhT . We
we now write

I0 =
⋃

h∈Gad(Q)+

I [h],

where [h] is the class of h in X∞
G (Q, I). As in [38], the theorem can be deduced from

the following proposition: �

Proposition 3.0.1 (c.f. Proposition 4.6.2 of [38]). Let φ be as above, then there is
an 〈Φ〉 × A(G)-equivariant bijection ξ : I0 ' Sτ (G, φ0) for some τ = τ(φ0) fitting in
a commutative diagram

I0 Sτ (G, φ0)

π(G,X) π(G, φ0).

cG

ξ

ϑG

Moreover, each I [h] is taken isomorphically to Sτ (φ[h]).

Proof. The proof is the same as the proof in loc. cit., except that we need the
fact that Jb(Qp)→ π1(G)σI is surjective. In the unramified case, this is Corollary 2.5.12
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of [10] and we adapt their proof: Let T be the centraliser of a maximal split torus of
GQp , this is a maximal torus since GQp is quasi-split. The short exact sequence

0→ X∗(T
sc)→ X∗(T )→ π1(G)→ 0

defining π1(G) induces a short exact sequence

0→ X∗(T
sc)I → X∗(T )I → π1(G)I → 0,

because X∗(T sc)I is torsion-free since X∗(T sc) is an induced Galois module by 4.4.16
of [7]. Taking the long exact sequence in cohomology for the Frobenius action we see
that the surjectivity of X∗(T )σI → π1(G)σI is equivalent to the injectivity of

X∗(T
sc)Γ → X∗(T )Γ,

where Γ is now the full Galois group. This injectivity follows because X∗(T sc)Γ is
torsion free since X∗(T sc) is an induced Galois module. Finally the map X∗(T )σI →
π1(G)σI factors through π1(M)σI → π1(G)σI and since π1(M) ' π1(Jb), we are done. �

4. Main results for abelian type Shimura varieties

Let (G,X) be a Shimura datum of abelian type and let p > 2 be a prime such that
GQp is quasi-split and splits over a tamely ramified extension. Let Up ⊂ G(Qp) be
a parahoric subgroup and consider the tower of Shimura varieties {ShG,UpUp}Up over
E with its action of G(Ap

f ), where U
p varies over compact open subgroups of G(Ap

f ).
Then by Theorem 0.1 of [37], this tower of Shimura varieties has a G(Ap

f )-equivariant
extension to a tower of flat normal schemes {SG,UpUp}Up over OE(v)

, where v | p is a
prime of the reflex field E. Let µ′ be the dominant representative of the conjugacy
class {µ−1

h } where µh is the Hodge cocharacter associated to X and let µ = σ(µ′).
Let b ∈ B(G,X) be the unique basic σ-conjugacy class, and let Jb/Qp be its twisted
centraliser. Consider the following sets of hypotheses on (G,X) and Up.

(T1) The parahoric subgroup Up is very special.

(T2) The group Jad
b has no factors that are of compact type and either ShU is

proper or Conjecture 4.7.0.5 holds for an auxiliary Hodge type Shimura datum
of very special level.

(T3) The Shimura datum (G,X) admits an auxiliary Hodge type Shimura datum
that is of PEL type A with GQp unramified.
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We need one more technical assumption which has to do with being able to reduce to
the case of a Hodge type Shimura variety with a connected parahoric.

(P1) All factors of (Gad, Xad) that are of typeDH split over an unramified extension
(at p), and for those factors the parahoric subgroup Up = GJ(Zp) is contained
in an hyperspecial subgroup.

Theorem 4.0.1. Suppose that (G,X) and Up satisfy (T3) or that they satisfy (P1)
and either (T1) or (T2). Then there is an G(Ap

f )× 〈Φ〉-equivariant bijection

SG,UpUp(Fp) '
∐
φ

Sτ(φ0)(φ),(4.0.1)

where φ runs over conjugacy classes of admissible morphisms Q→ GG. The theorem
in the (T1) case is essentially due to Rong Zhou and the theorem in the (T3) case is
essentially due to Kottwitz [38].

Remark 4.0.2. As in Theorem 4.1.0.1, we do not construct an action of ZG(Qp) on
the left hand side. However if G splits over a metacyclic extension, then ZG(Qp) acts
trivially on the right hand side of (5.4.0.1) (see Remark 3.5.0.7 and Remark 3.7.10.(2)
of [38]), and so we get a ZG(Qp)-equivariant statement for free.

Theorem 4.0.3. Let (G,X) be as above, let Up denote an arbitrary parahoric and
suppose that Gad is Q-simple and that (P1) and (T2) hold. Let w ∈ K Adm(µ) and
let S U,Fp{w} be the corresponding EKOR stratum, where K is the type of Up (c.f.
Section 2). Suppose that it is not contained in the basic locus, then

S U,Fp{w} → S U,Fp

induces a bijection on connected components.

Theorem 1 is a special case of Theorem 5.4.0.1, because Conjecture 4.7.0.5 holds for
unramified groups by Proposition 6.20 of [70], combined with Theorem 1.2 of [2] and
because all type A Shimura varieties admit auxiliary Hodge type data of PEL type
(see Appendix B of [50] and Proposition 1.4 of [67]). By the same reasoning, Theorem
2 is a special case of Theorem 5.4.0.3, except that we have to prove irreducibility of
nonbasic Ekedahl-Oort strata for unramified PEL type Shimura varieties of type A.
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Proof of Theorem 2 for Shimura varieties of PEL type A. Let ShG,K{w}
denote the nonbasic EO stratum that we are trying to show is ‘connected’. By Propo-
sition 4.4 of [72], it suffices to prove that the prime-to-Σ Hecke operators coming from
Gsc act transitively on the fibers of

π0(ShG,K{w})→ π0(ShG,K),

where Σ is a finite set of primes including p. There is a Hecke-equivariant and finite
étale surjective map ShG,∅(w)→ ShG,K{w}, so it suffices to show the same statement
for π0(ShG,∅(w)) = π0(ShG,∅(≤w)). Proposition 4.7.0.3 (see Remark 4.7.0.6) tells us
that each connected component ShG,∅(≤w) intersects ShG,∅(τ). The closure relations
then give us a surjective map ShG,∅(τ) → π0(ShG,∅(≤w), hence it is enough to show
that the prime-to-Σ Hecke operators act transitively on the fibers of

ShG,∅(τ)→ π0(ShG,∅) = π0(ShG,K).

Rapoport-Zink uniformisation (Theorem 4.5.0.1) and the discussion in Section 4.5 tells
us that there is a commutative diagram

ShG,∅(τ) I(Q)\G(Ap
f )×

Jb(Qp)

Jb,∅(Zp)
/Up

π0(ShG,∅) I(Q)\ G(Apf )

Gsc(Apf )
× Jb(Qp)

Jb,∅(Zp)Jsc
b (Qp)

/Up.

∼

β

∼

Weak approximation (Theorem 7.8 of [56]) tells us that Isc(Q) is dense

J sc
b (Qp)×

∏
p 6=`∈Σ

Gsc(Q`),

which means that Gsc(AΣ
f ) acts transitively on the fibers of β. �

5. Proofs

Theorem 5.4.0.3 follows from Theorem 4.1.0.4, because it can be checked on connected
components of Shimura varieties. To be precise, EKOR strata on abelian type Shimura
varieties are constructed from the EKOR strata on a single connected component of
an auxiliary Hodge type Shimura variety, see Section 5.4 of [64].

Proof of Theorem 5.4.0.1. Theorem 5.4.0.1 in the (T1) and (T2) cases follows
by the following chain of reasoning: As in [38], it suffices to show that the τ -version of
Conjecture 3.5.0.6 holds for an auxiliary Hodge type Shimura datum, using Corollary
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3.6.0.4, Remark 3.6.0.5 and Lemma 4.6.13 of [37]. We can take this auxiliary Hodge
type datum to be a product of quasi-simple groups that all satisfy the assumptions of
Theorem 5.2.0.1 by Lemma 4.6.22 of [37]. [To see that we can choose the parahoric to
be connected in type DH-cases, use the argument in the proof of part (5) of Theorem
4.6.23 of op. cit. which relies on the assumption (P1)].

Theorem 5.2.0.1 tells us that the τ -version of Conjecture 3.5.0.6 holds for each of these
groups, and it is not hard to see that this implies that it holds for their product.

In the (T3) case, we first reduce from the abelian type to the Hodge type case as
above. In our situation, these Hodge type Shimura varieties can be chosen to be of
PEL type by Appendix B of [50] in combination with Proposition 1.4 of [67], and we
consider the Rapoport-Zink integral models. These are flat and normal by the main
theorem of [18], and they come with tautological closed embeddings (for sufficiently
small level away from p) into Siegel modular varieties of parahoric level. It follows
that they are isomorphic to the (normalisation) of the Zariski closure of their generic
fibre in the Siegel modular variety, and one can argue as in Section 7 of [73] that these
models are isomorphic to the Kisin-Pappas integral models.

It follows from Proposition 4.4 of [30] that the Fp points of Rapoport-Zink spaces of
parahoric level agree with the Fp-points of the corresponding affine Deligne-Lusztig
variety. It follows from the moduli description (c.f. Section 6 of [58]) that we can
produce maps from the set of Fp points of our Rapoport-Zink space into the set of
Fp-points of our Shimura variety. To be precise, assumption 6.18 of [73] is satisfied
and then Proposition 9.1.(i) gives us uniformisation of isogeny classes. �
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