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Abstract:

Clinical imaging including as PET, CT and MRI have revolutionised the detection and
management of diseases such as cancer. When imaging agents are coupled onto
nanosized carriers they provide information on the tumour location as well as
provide an insight into their biodistribution. Therefore, these nanocarriers can be
involved in integration of diagnosis and therapy in a single platform, which is called
theranostics. Image Guided Focused Ultrasound drug delivery is a promising strategy
for enabling both cancer diagnosis and treatment using the same nanocarrier
delivery/diagnostic system. The aim of this project is to develop near infrared
fluorescence (NIRF) and magnetic resonance imaging (MRI) labelled liposomes for
targeted image guided drug delivery when combined with focused ultrasound (FUS).
FUS can be applied for regional increase in temperature (hyperthermia) whereas MR
guided FUS (MRgFUS) is a clinically used instrument that can provide this controlled

hyperthermia.

Previous studies have shown that incorporation of chelated Gd** lipids into liposomal
formulations empowered these nanoparticles with MRI contrast enhancement.
Here, various spacers between the chelating ligand (head group) and the lipid tail
were introduced, to investigate their effects on liposomes’ Ti relaxivities, a
parameter used for measuring the contrast efficiency. Image guided thermosensitive
PEGylated liposomes (iTSLs) were prepared with various Gd3* chelated lipids that
were made for the purpose of this study. In addition, a second, near infrared

fluorescence (NIRF) label was also included in the liposomes for optical imaging. The



prepared iTSLs were characterised by T relaxivities using a 400 MHz NMR and 9.4 T
MRI. Gd3* concentrations of liposome formulation were determined by Inductively
Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Total Reflection X-Ray
Fluorescence (TXRF). In addition, these two analytical methods were compared for
reproducibility and accuracy for assessment of Gd3* concentrations in liposomes.
Moreover, the liposomal formulations incorporating with MRI and NIRF lipids were
loaded with a chemotherapeutic agent (doxorubicin). In vivo, the tumours were
monitored with doxorubicin when released via heat activation by FUS, which showed
intrinsic drug fluorescence change. iTSLs accumulation in tumours at defined time
points (post injection) in vivo were investigated with both imaging techniques (NIRF

and MRI).

Both NMR and MRI relaxometries studies showed potential for MR contrast
enhancement. Ti-weighted images showed positive enhancement for all iTSLs, with
longer spacers apparently having a stronger effect. In mice, administration of iTSLs
have shown a time-dependent tumour contrast enhancement and the change in Ty
was quantified over time. The studies on xenograft mice models provided evidence
that mild FUS-induced hyperthermia greatly improves the iTSLs uptake in tumours

and trigger rapid drug release which improves the overall therapeutic index.
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at 37 °C for 10 min intervals up to 60 min in HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid) buffer (50 mM with 5 w% glucose; pH 7.4) and
compared with buffer containing 50 v% fetal bovine serum (FBS) as a blood analogue.
Release was monitored by the increase of intrinsic doxorubicin fluorescence (Exaso /
Emesoo NM) as it leaves the self-quenched encapsulated state. (N=3 + SD). ............ 164

Figure 4.7: Storage stability of iTSL-DOX (a) At room temperature; samples taken
from stored liposomes, then either assayed immediately after warming up or after
being left at room temperature for 3 and/or 24 h; (b) In cold storage (~4 °C); stacked
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taken at 1-48 h time points. These were analysed by TXRF to determine the
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Figure 4.11: Representative images of iTSL-DOX uptake and effects from a single
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Figure 4.14: Double-tumour mouse studies, in which each mouse carried two haunch
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temperature plotted against time under pulsed FUS and constant iTSL flow. ....... 227

Figure 7.2: Double-tumour mouse studies: (a) average body weights and; (b) survival
curves, + iTSL-DOX at 6 mg/kg doxorubicin equivalent; FUS at day 0. Weights are
given as mean + 1 SEM. For these double-tumour studies, mouse survival is limited
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the two tumours of the same animal but reduces overall survival improvements
compared to the single-tumour StUIES. ......eeeeieiieiiiiiiiieeeec e 230
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1. Introduction
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1.1 Magnetic Resonance Imaging

1.1.1 Principles of MRI

Magnetic Resonance Imaging (MRI) uses magnetic properties of the body to obtain
detailed images from any part of the body. The hydrogen nucleus which has a single
proton is used for imaging purposes due to its abundance in water and fat [1]. With
sufficient computational support, the aggregates of these MRI signals can become a
three-dimensional molecular image that displays tissues, and organs. MRI requires
magnetic field and radiofrequency rather than ionizing radiation, unlike X-ray or CT
(computed tomography) imaging, thus it has a great clinical safety profile with high

spatial resolution [2,3].

MRI has four main components: the primary magnet, gradient coils, radiofrequency
(RF) system and the supporting computer system. Magnetic field strength (By) of MRI
is measured in Tesla (T) [4]. Currently, most of the clinically available MRI scanners
are with magnetic field strengths of 1.5 T or 3 T. Although recently, human sized MRI
systems with 7 T field strength have become available for clinical applications [5].
The strength of the magnetic field (Bo) can be manipulated along x, y and z directions
by using gradient coils, which allows the localisation of image slices (does not change

the direction of the magnetic field) [1,4].
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Figure 1.1:The electromagnetic spectrum showing the frequencies and energies of
the imaging modalities and their potential hazards. The image was adopted from

Westbrook et al. [6]

MRI is based on the principles of Nuclear Magnetic Resonance (NMR). It can measure
the interaction between the external magnetic field (Bo) and the magnetic atomic
nuclei. The nuclei with non-zero quantum spin such as *H (/: £ 1/2), 3C (I: + 1/2), *°F
(I: £ 1/2), 2Na (I: + 3/2), and Y0 (I: £ 5/2) can absorb and emit electromagnetic
radiation at a characteristic radio frequency (RF) under a strong external magnetic
field [7]. In general, nuclei with an odd mass number or atomic weight, are

observable under MRI [6,8].
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'H is the most abundant isotope of hydrogen in nature, which is commonly present
in the human body (water and fat tissues) [9]. Positively charged protons of the
hydrogen spins (angular momentum) induce a local magnetic field and act as a small
magnet with a magnetic moment (p). In the absence of a strong external magnetic
field (Bo), the individual magnetic moments of hydrogen nuclei are disoriented.
However, under the external magnetic field (Bo), the magnetic moments of hydrogen
nuclei align parallel (spin-up) or antiparallel (spin-down) to the magnetic field.
Quantum theory explains this alignment of the magnetic moments with the energy
states (number of energy states: 2/ + 1), whereas hydrogen protons will have two
possible; lower (spin-up) and higher (spin-down) energy states (Zeeman effect) [6].
The alignment number of the spin in the low or high energy populations can be
predicted by the Boltzmann equation (Equation 1.1) which depends on the
temperature and the energy difference. Energy difference between states depends
on the magnetic field (Bo). Another outcome of the magnetic field on a hydrogen
nucleus is that the magnetic moments of hydrogen start to wobble around the By
which is called precession [3,8,9] (Figure 1.2). The frequency of the precession is
directly proportional to the applied magnetic field strength and gyromagnetic ratio

constant of the nuclei which is expressed by Larmor’s equation (Equation 1.2).
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N+
= e 2E/KT with AE = hw,

Equation 1.1: Boltzmann distribution of spins in the lower and higher energy states
where the number of spins in the lower state (N) and in the higher state (N*) are
shown accordingly. The energy difference between the states (AE) measured in
Joules (J), Boltzmann constant (k) is 1.381x10723 J/K. Temperature (T) is in Kelvin and

h is Planck’s constant (6.629 x 1034 J/s).

Equation 1.2: Larmor’s equation. Larmor frequency is w, gyromagnetic ratio is y and

large magnetic field of the MRI scanner is Bo.

The gyromagnetic ratio is a nuclei specific constant and it shows the relationship
between the spin angular momentum and the magnetic moment of the nuclei. In
particular, the gyromagnetic ratio of hydrogen nuclei is 42.58 MHz/T, whereas other
MR visible nuclei will possess different gyromagnetic constants. Hence, under the
same magnetic field strength, magnetic moments of each nuclei will precess at

different frequencies. [6].
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At thermal equilibrium, a large proportion of the magnetic moments of the spins
align with By since it corresponds to a lower energy state, which results in the net
magnetization (Mo) which is referred to as longitudinal magnetization (Figure 1.2).
Moreover, as the strength of the magnetic field increases, the energy differential
between low and high energy states increases. Hence, the number of low energy
spins also increases (higher energy is required for the high energy spin), thus, the net

magnetization increases [6,8].

Figure 1.2: Precession of the magnetic moment (p) of spinning *H nucleus at the
Larmor frequency (wg). At thermal equilibrium under the magnetic field (Bo) a static
net magnetization (Mo) is produced oriented in the longitudinal direction (z-

oriented).

The radiofrequency (RF) coils produce pulses that generates an oscillating magnetic
field, Bi. This field Bj, is applied perpendicular to the By magnetic field, causing
disturbance of the net magnetization. When applied at the frequency equal to the

Larmor frequency, hydrogen nuclei in a “low energy state” gain energy and enter an
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“excited state”. On the other hand, hydrogen nuclei with “high energy state” release
energy and return to the low energy state. Since there is a greater number of low
energy spins, the net impact of the RF pulse is energy absorption. This effect of the
RF pulse is known as the ‘resonance effect’ [6,9]. The application of RF pulse at the
Larmor frequency for a defined time (sufficient that energy will be absorbed) tilts the
net magnetization vector 90° (depends on the magnitude of the B; field and the
duration) from where it lies in the x-y plane (transverse plane). The resulting
magnetisation induces an electrical signal, which when emitted is detectable by a

conductive receiver coil placed in close proximity [6,9,10].
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Figure 1.3: Longitudinal (T1) and transverse (T;) relaxation process. A 90° RF pulse
along the x-axis, moves the net magnetization vector on the zy-plane towards the y-
axis. Once the RF pulse is off, magnetic moments lose their coherence (out-phase;
multiple vectors on the transverse plane), transverse magnetisation decreases (T2

relaxation) and longitudinal magnetisation starts to recover (T1 relaxation).
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When the RF pulse is turned off, the net magnetization begins to relax back to the
thermal equilibrium state and the magnetic moments of hydrogen nuclei start to
precess out-phase, which is known as relaxation [4]. As a result, two forms of
relaxation occur. The decay of the transverse component of magnetization is called
transverse or spin-spin relaxation (T, relaxation). Secondly, the recovery of the
longitudinal component of magnetization is known as longitudinal relaxation (T1

relaxation) (Figure 1.3) [4,10,11].

1.1.2 Longitudinal (T;1) and Transverse (T,) Relaxation Mechanism

The Ti relaxation is a process of energy exchange between the spins and their
surroundings, whereas spins return to their low energy state with a loss of energy to
the surroundings. As a result, the net magnetization (after a RF pulse) returns to the
thermal equilibrium as an exponential function with a time constant T1 (Figure 1.4).
Ty, is the time taken for the recovery of the net magnetisation to 63% of its
equilibrium. This relaxation time is dependent on the tumbling rate of the molecule
that contains the hydrogen nuclei. Tumbling of the molecules produces a fluctuating
magnetic field where proton of nearby molecules are exposed to this field. If the
tumbling rate is close to the Larmor frequency, energy exchange is more favourable.
For example, a free water molecule has a fast tumbling rate, therefore, it has a long

Ty relaxation time [4,8,10,11].

In contrast to Ti relaxation, T, relaxation depends on the energy transfer between

the spins. Worthy of note, with the absence of the B; field, the magnetic moments
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of hydrogen nuclei precess out-phase (incoherent), however, following a RF
excitation pulse, the spins gain coherence, in other words, they precess in-phase in
the transverse plane. Over time, they lose their coherence and precess out-phase
due to the interaction of the neighbouring magnetic moments (T2 relaxation) and the
inhomogeneities in the Bp magnetic field (T, relaxation involves both causes). As a
result, the transverse component of the net magnetisation decreases exponentially
and eventually disappears (Figure 1.4). The time constant, T,, describes the time
taken for the decay of the transverse component of the magnetisation to reach 37%
of its initial value [4,10]. Given that spin-spin interactions affect the T, relaxation
time, in the presence of the free water molecules spins move rapidly and far away
from each other, thus there is less interaction between spins, which leads to long T,
relaxation. On the other hand, water-based tissues that have solid and large
molecular content (e.g.: muscle, grey matter) have shorter T, relaxation times,
because movement of bound water molecules are slower thus spins tend to interact

with each other [4,10,12].
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Figure 1.4: Exponential processes of longitudinal (M) and transverse (Myy)
magnetization with time constants T1 and T, respectively. Indicated T," relaxation is
combining the effects of the T, relaxation and the de-phasing that occurs due the
inhomogeneities (local variations) in the magnetic field. TR is repetition time, time
between two RF pulses; TE is echo time, time interval from RF pulse to the reached
maximum signal amplitude; T: is longitudinal relaxation time, T, is transverse
relaxation time; Mo is net magnetization at thermal equilibrium. Adopted from

Ridgway et al. [10]
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1.2 MRI Contrast Agents

One issue with MRI is lack of sensitivity, therefore a wide variety of contrast agents
(CA) have been developed in order to enhance the signal to provide a substantial
diagnostic sensitivity for various neoplastic, inflammatory and functional
abnormalities [13]. These contrast agents can improve both the sensitivity and

specificity of MRl signals, and consequently expand non-invasive diagnosis [14,15].

The MRI contrast agents are not directly visible in MRI per se, but they change the
MRI signal of tissues by altering their intrinsic parameters such as T1 and Tz relaxation
times. Moreover, some extrinsic parameters such as strength of the magnetic field,
choice of pulse sequence and length of the parameters like TR (repetition time) and

TE (echo time) are also important to consider during the MR imaging [13,16].

Contrast agents that contain paramagnetic metal ions such as Gd3*, reduce the
longitudinal relaxation time (T1) of surrounding water protons. As a result, short Ty
relaxation time appears to show bright contrast in Ti-weighted images [7]. On the
contrary, transverse contrast agents are providing negative contrast in To-weighted
images and commonly superparamagnetic materials such as large iron oxide particles
are used. Pertinently, the vast majority of clinical MRI studies use gadolinium (Gd)

based contrast agents (GBCAs) [7,14,16,17].
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1.2.1 Relaxivity

The efficiency of the T1 or T, CAs are quantified by their longitudinal (r1) and/or
transverse (r) molar relaxivities. Relaxivity measures the change in relaxation rate
(R1 and Ry; equivalent to 1/T1 and 1/T,) in the presence of the CA. This relaxivity is
expressed in units of mM-1s [16—19]. Therefore, relaxivity, r1or r, is a constant that
shows the ability of a CA to shorten the T1 and/or T, relaxation times of the water
protons. Additionally, r1 and rz values of CAs are dependent on the external magnetic
field, temperature, size and chemical structure of the CA and the water accessibility

into the magnetic centre [16,20-22]

In the human body, water generally demonstrates 5-20 times longer T; relaxation
than T, [14]. Accordingly, contrast agents can affect both T1 and T, relaxation times
of the surrounding water protons, thus, the ry/r; ratio is used to define whether the
contrast agent is a potential longitudinal (T1) or transverse (T2) contrast agent [23].
For instance, low molecular weight paramagnetic complexes have low ry/r1 ratio
which is close to 1 and are classified as longitudinal contrast agents. On the other
hand, iron oxide nanoparticles have very high ry/r1 ratio and therefore they are

referred to as transverse or T, contrast agents [14,23].

1.2.2 Paramagnetic Contrast Agents

The gadolinium ion (Gd3*) is the most commonly selected lanthanide ion used in MRI
as a paramagnetic contrast agent. This is because Gd** has 7 unpaired electrons in its

fsubshell and hence a high spin quantum number (S=7/2). It possesses high magnetic
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moments and a long electronic relaxation time [24]. Gadolinium (Gd) is not the only
element that can serve as a paramagnetic contrast agent. For example, transition
metals such as manganese ion (Mn?*) are important paramagnetic agents. Mn?* has
5 unpaired electrons in its d subshell and exhibits a high magnetic moment. To date,
there are only two Mn*? based contrast agents that have been previously approved
for clinical use: a liver-specific [Mn]DPDP (Teslascan®) and MnCl, based oral contrast
agent (LumenHance®). However, both of these contrast agents have been withdrawn
[25]. In general, Mn complexes have demonstrated poor stability and kinetic
inertness compared to Gd complexes [14,26]. This is one of the key reasons that the

development of Mn-based contrast agents has been unable to substitute GBCAs.

The ionic radii of the trivalent Gd* is 1.05 A which is close to the ionic radii of the
divalent Ca?* (1.12 A) [27]. Consequently, free Gd*3 ions can outcompete Ca2*ions in
biological systems that use Ca?* such as voltage gated calcium channels [28].
Moreover, free forms of Gd** can replace endogenous metals like zinc and
accumulate Gd3** in the liver, lymph nodes and bones [13,29]. Hence, free Gd*3 ions
are toxic in the body and in order to reduce this toxicity it is important to strongly
chelate Gd3* ions with biocompatible ligands. Typically, ligands that are used for
chelation are composed of multidentate ligands that have eight donor atoms such as

amines or carboxylates [14,28,30-32].
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Figure 1.5: Structures of commercial gadolinium-based contrast agents including
linear, macrocyclic and pro