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• Claudio Zeni, Ádám Fekete, Aldo Glielmo. Machine learning nonparametric

force fields (MFF) Python package. kcl-tscm/mff v1.0

http://doi.org/10.5281/zenodo.1475959, 2019.

• Claudio Zeni, Kevin Rossi, Aldo Glielmo, and Francesca Baletto. On ma-

chine learning force fields for metallic nanoparticles. Advances in Physics:

X, 4(1):1654919, 2019.

• Claudio Zeni, Kevin Rossi, Aldo Glielmo, Ádám Fekete, Nicola Gaston,
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Abstract

The recent years have seen a surge in the development of machine learning algo-

rithms in different areas of scientific research. In the field of simulation of ma-

terials, the development of machine learning force fields to carry out fast and ac-

curate molecular dynamics simulations has been attracting a lot of interest ever

since the early manuscripts of Blank et al. in 1995, Brown et al. in 1996, and the

pioneering work of Behler and Parrinello in 2007. Machine learning force fields

are trained using reference data coming from expensive ab initio simulations and

try to approximate these accurate methods without recurring to any ad hoc fitting

procedure in a computationally efficient way. In this thesis, we present the work

done on the development of algorithms that employ Gaussian process regression

to build machine learning force fields. We specifically design Gaussian process

force fields that use explicitly 2-body, 3-body, and simplified many-body descrip-

tors of local atomic environments. Furthermore, we develop an algorithm to map

such Gaussian process force fields into nonparametric classical force fields. This

rather general “mapping” procedure removes the inefficient computational scaling

of Gaussian process regression methods and yields, without meaningful accuracy

losses, force fields that are as fast as classical parametric force fields. All the algo-

rithms and numerical procedures discussed in this thesis are available as a Python

package, named “MFF”, which I have coauthored. This package is freely available

at https://github.com/kcl-tscm/mff, and fully documented. To bench-

mark the speed and accuracy of the MFF package, we test it on bulk metals (Fe, Ni)

and semiconductors (C, Si). We also address the problem of developing machine

learning force fields for metallic nanoparticles such as Ni, Au and AgAu. Nanopar-
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ticles display very complex energetic landscapes, and accurate force fields that are

not fitted on bulk properties are highly desirable to predict structural transitions and

phase changes. We build force fields for a set of five isomers of Ni19, and carry out

classical molecular dynamics simulations for a total of ∼ 200 ns, a time scale not

reachable via ab initio methods, but indeed easily accessible using our mapped ma-

chine learning force fields. Subsequently, we discuss the development of machine

learning force fields that are accurate for nanoparticles with varying numbers of

atoms and analyse small Ni nanoparticles containing 13 to 20 atoms, and larger Au

nanoparticles containing 147, 309 and 561 atoms. For the smaller Ni nanoparticles,

machine learning force fields are not transferable between particle sizes, reinforcing

the belief that “every atom counts” in small nanoparticles. For larger Au nanopar-

ticles, force fields trained on Au147 data well predict forces in the two bigger Au

nanoparticles; this result paves the way towards the development of machine learn-

ing force fields which are accurate for nanoparticles that contain too many atoms to

be effectively simulated using quantum methods.
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Chapter 1

Introduction

Numerical simulations have become an essential tool for modern sciences. In the

context of materials science, they can be used to model materials’ behaviour and

predict thermal, mechanical, diffusive, catalytic, chemo-mechanical properties and

many more, without resorting to expensive and complex experiments [1, 2]. The

temporal and spatial scale such simulations can cover varies greatly, going from

quantum simulations comprising a few atoms on the ps time scale, to finite element

simulations of structures on the meter scale across several hours [3]. Computer

simulation of matter via the explicit modelling of the dynamical behaviour of the

atoms that compose it takes the name of molecular dynamics (MD), a technique that

is nowadays widespread and sees applications in the world of biology, atmospheric

science, chemistry and materials science.

In Sec. 1.1, we discuss the two most common ways to compute atomic forces in

MD simulations: classical parametrized force fields and ab initio quantum methods.

Subsequently, in Sec. 1.2, we present the case for the use of machine learning (ML)

algorithms to fit FFs on reference quantum data, to bridge the existing speed and

accuracy gap between the two methods presented in Sec. 1.1. Finally, in Sec. 1.3,

we discuss the topic of MD simulations for metallic nanoparticles (MNPs), and

remark the importance and challenge of developing reliable and computationally

inexpensive FFs for these systems.



21 1.1. MD Simulations

1.1 MD Simulations

Since the first MD simulations, carried out using early computers by Gibson et al.

[4] and Rahman [5], the technique has grown in popularity and effectiveness, and

is without doubt one of the main tools used by researchers in materials science,

chemistry, and biology. In MD simulations, the temporal evolution of the system

is modelled via numerical integration of Newton’s second law, and relies on an

accurate model to describe the forces acting on the atoms, which are calculated “on

the fly” at every discrete time step. Ideally, forces and energies are computed from

first principles by solving the electronic structure for a certain configuration of the

nuclei. These first principles methods often rely on density functional theory (DFT)

[6, 7], and the application of ab initio MD (AIMD) has proven to be extremely

effective in predicting physical properties of complex systems, ever since the pio-

neering work carried out by Car and Parrinello in 1985 [8]. Nowadays AIMD can

be applied to systems comprised of hundreds of atoms and for timescales of several

tens/hundreds of ps [9]. Nonetheless, AIMD remains computationally intensive

and is not feasible for simulating larger systems and/or for longer timescales. For

large non-periodic systems, multi-scale techniques such as Quantum Mechanics/-

Molecular Mechanics (QM/MM) can sometimes be successfully employed [10].

This approach is only possible if the full quantum accuracy is required in a small

and well-defined zone of the system, and a simpler description employing classical

P-FFs suffices everywhere else. It is often the case, however, that problems require

very large minimal system sizes, and times so long that the simulations must em-

ploy a higher level of approximation and rely exclusively on classical P-FFs.

Generally, a force field is a set of analytical expressions describing the de-

pendence of the interatomic potential energy of a system on the coordinates of its

atoms/molecules. The production of suitably accurate and system-transferable P-

FFs is a remarkably difficult challenge. Traditionally, the task involves tuning the

parameters of analytic functions trying to ensure that extended reference data com-

ing either from experiments or from quantum calculations coincide with the P-FFs
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predictions [11, 12]. One of the main issues in developing P-FFs is the choice of a

suitable analytic function, which requires a certain level of chemical intuition and

patient effort, which is guided by trial and error and is without any certainty of suc-

cess [13]. However, in the cases where the development of a P-FF is successful, the

amount of work done is richly rewarded by the opportunity to use an extremely fast

and reliably precise force field model [14, 15, 16, 17]. The parametric analytic func-

tions employed encode valuable physical knowledge on the target system, allowing

for a certain degree of human understanding of the processes that govern the atomic

behaviour (e.g. bond strength, angular dependencies etc.). Such knowledge is, fur-

thermore, usually applicable to similar systems as an a priori working hypothesis

of their behaviour. Whenever ab initio reference data on the new system become

available, this can be directly used to adjust the parameters of the already-existing

analytic form of the P-FF to a new set of best-fit values that minimise the error on

the ab initio data.

1.2 The Reason for Machine Learning Force Fields

Machine learning has recently emerged as a novel approach to the construction

of nonparametric FFs which are directly derived from reference data and do not

comply with a fixed analytic form. This idea founds its inception in the pioneer-

ing works by Skinner and Broughton [18], who first proposed the use of ML to

reproduce potential energy surfaces predicted by quantum methods, and in the sub-

sequent manuscripts by Blank et al. [19] and Brown et al. [20]. With the growth

in computational and storage capabilities, the use of ML to develop FFs is becom-

ing an increasingly attractive option, compared with traditional P-FF development

via chemical intuition and hand-tuning of parameters. Indeed, implementations of

frameworks to build machine learning force fields (ML-FFs) have been blooming in

the last 20 years, first based on artificial neural networks (ANN) [21], then subse-

quently on linear regression (LR) [22] and Gaussian Process (GP) regression [23].

Current effort in the field is aimed towards increasing the computational efficiency

and accuracy of such algorithms [10, 24, 25, 26, 22, 27, 28, 29, 30, 31, 32, 33]. Al-
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Figure 1.1: A representation of the spatial and temporal scales available to MD simulations
carried on using ab initio quantum methods (blue), classical P-FFs (green) and
novel ML-FFs (orange). Arrows indicate increasing directions for the algo-
rithms’ increasing speed and accuracy, and for the amount of user input needed
to tune the algorithm.

though the development of ML-FFs ideally requires little user input, and the result-

ing models have been shown to be capable of high accuracies, ML-FFs have not yet

substituted classical P-FFs in many of the applications where it would be expected.

This is mainly because standard P-FFs are still orders of magnitude faster than their

ML counterparts [34]; this is schematically depicted in Fig. 1.1. Furthermore, while

P-FFs can be usually written in compact and humanly interpretable analytic forms

which are easy to visualize, ML-FFs typically involve complex mathematical ex-

pressions, which are not easily readable.

In Chapter 2, we present an ML framework based on GP regression (GPR)
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that tries to address the aforementioned problems by constructing Gaussian pro-

cess force fields (GP-FFs) which can be decomposed into explicit n-body terms and

are, therefore, easily interpretable. Such decomposition is then used to transform

these GP-FFs into tabulated nonparametric classical FFs, where the energies associ-

ated to certain arrangements of atoms are stored and then used as lookup reference

values for interpolation. The resulting FFs retain the accuracy reachable by ML

methods but display a computational speed that is on-par with classical P-FFs. This

approach is then incorporated into a Python package, named “MFF” [35]. We de-

scribe both its usage and its structure, along with the mapping technique that allows

one to transform GP-FFs into classical FFs, in Chapter 3. Speed and accuracy tests

on quantum reference data for various materials are also carried out in the same

chapter, to display the potentialities and limits of the approach.

1.3 Force Fields for Metallic Nanoparticles

Metallic nanoparticles (MNPs) are objectes with all their three dimensions in the

nanoscale regime (less than 100 nm). They can be either monometallic, i.e. con-

taining only one chemical species, or nanoalloys, i.e. made up of two or more

metals. MNPs are used in a wide array of fields, from bio-engineering to catalysis

to optoelectronics, due to their unique chemical and physical properties which are

different both from their bulk and single-atom counterparts, and depend strongly on

the MNPs’ architecture, defined as size, shape, chemical composition, and chemi-

cal ordering [36]. MNPs often display a complex and diverse configurational space

with many local minima, often very close in energy [36, 37, 38]. Given the large

dimensionality of MNPs’ configurational space (roughly exp(N), where N is the

number of atoms in the MNP), the estimate of finite-temperature population dis-

tribution, and of zero-temperature minima structure of MNPs, requires significant

computational effort.

In the past three decades, various methods have been developed to address

the task of sampling the energy landscape of MNPs [39], such as Monte Carlo
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procedures [40], basin hopping [41, 42, 43, 44, 45], hyperspatial optimization [46],

and evolutionary algorithms [47, 48, 49, 50, 51]. These methods attempt to solve

the problem of finding the (putative) global minimum (i.e. the reference thermo-

dynamically stable geometry) of a structure in a computationally efficient way.

Nonetheless, at finite temperature and as a function of the external environment,

nanoparticles might undergo various structural rearrangements on a relatively short

time scale. This thermodynamical behaviour is not trivial to model and requires a

precise estimate of the isomer-population as a function of the system’s temperature

and pressure. Computational methods like MD, path sampling [52, 53], metady-

namics [54, 55, 56, 57, 58], and finite temperature partition function evaluation

methods [59, 60, 61, 62, 63] allow for an estimate of such population distributions.

The evaluation of converged results, however, requires thousands if not millions of

energy and force calculations [57, 61, 64]. This makes the process computationally

demanding, as ab initio methods (i.e. DFT) are often required to perform the energy

and force evaluations due to the lack of, or inadequacy of, classical P-FFs. Machine

learning, therefore, emerges as an ideal candidate for the development of accurate

and fast FFs to employ in such demanding calculations. In Chapter 4, we address

the challenge of developing ML-FFs based on GPR for Ni19. We then transform

these ML-FFs into nonparametric classical FFs (called here mapped force fields,

M-FF) and employ them to run fast classical MD simulations of the system with

an almost-ab initio accuracy at temperatures ranging from 300 K to 1200 K, to

investigate the thermal behaviour of Ni19. We simulate a variety of Ni19 isomers

for a total of 180 ns, using a M-FF that incurs low errors on force predictions. The

long time scales reached in these MD simulations allow us to predict the presence

of a “slush” intermediate state between nanosolid and nanoliquid in the 700-900 K

temperature range.

Given the vast amount of energetically relevant MNPs’ sizes and composi-

tions, the creation of multiple classical P-FFs, each tuned to be accurate on a re-

stricted subset of sizes, geometries, and chemical compositions, is an extremely
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resource-intensive task, even for a small amount of chemical species. The oppo-

site approach of adjusting a single existing classical P-FF so that it is accurate for

multiple size ranges and morphologies also poses unique challenges, as the man-

ual parameter tuning typically employed in P-FF construction becomes increasingly

more complex as the number of reference data and properties to fit increases. Quan-

tum methods circumvent the above-mentioned issues by the virtue of being mostly

system-agnostic. Of course, the computational cost of ab initio methods is such that

only small nanoparticles containing up to a thousand atoms can be modelled. This

indeed poses a severe limit to the number of experimentally relevant systems that

can be accurately modelled in silico, given that NPs can contain up to millions of

atoms. In Chapter 5 we investigate the creation of ML-FFs that are accurate across

varying ranges of MNPs’ sizes and geometries. We first use a database comprised

of AIMD simulations for a set of small Ni NPs of sizes 13 to 20 presenting vary-

ing geometrical arrangements, and discover that the creation of a 3-body FF that is

suitably accurate for most of the nanoparticles’ (NPs) sizes is only possible if NPs

of different sizes are included in the training set. This result reinforces the belief

that at small sizes “every atom counts”, and that it is complex to construct FFs that

retain their accuracy while working in an extrapolative cross-size regime for small

NPs. We then scale up the problem and look at Au nanoparticles containing 147,

309, and 561 atoms. In this case, the 3-body GP-FFs are not accurate enough; we,

therefore, employ a many-body correction term to the GP-FF, based on a descriptor

of our design that is inspired by the embedded atom method (EAM) potentials. This

reduces the error incurred by the GP-FF w.r.t. reference calculations, both when the

GP-FFs are tested on nanoparticles of the same size as those they were trained on,

and when they are instead tested on bigger nanoparticles. We, therefore, show that

force predictions on MNPs of a certain size can be quite accurate when employing

ML-FFs that have been trained on significantly smaller NPs. This encouraging re-

sult shows promise for the creation of ML-FFs for MNPs which contain too many

atoms to be computed using quantum methods and, therefore, for which ab initio

reference data to train an ML-FF directly is not available.



Chapter 2

Machine Learning Force Fields

In this first chapter, we thoroughly discuss the issues at the core of the development

of machine learning force fields. Firstly, in Sec. 2.1, we show how this problem

can be formally stated as a supervised learning problem. Then, in Sec. 2.2, we

deeply discuss the properties of local atomic environment descriptors, including

n-body [65] and novel “EAM-like” ones. In Sec. 2.3 we present two supervised

ML algorithms: linear regression (LR) and artificial neural networks (ANNs), and

briefly review their uses in the field of ML-FFs creation [66]. The final and main

section, Sec. 2.4, is dedicated to Gaussian process regression, the supervised learn-

ing framework used throughout this work. The algorithm is presented in the context

of building ML-FFs; a particular focus is put on the choice of the kernel function,

and novel EAM-like kernels are here introduced.

2.1 Framing the Problem

2.1.1 Local Energy Approximation

The generation of a machine learning force field approximating quantum forces and

energies can be framed as a supervised learning problem. The objective function

that needs to be learnt is here the total energy E, working in the Born-Oppenheimer

ground state [67]. Under such assumptions, the energy of a system of N atoms

depends simultaneously on their positions ri, atomic numbers zi:

E(R) = E(r1, . . . ,rN ,z1, . . . ,zN), (2.1)
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Figure 2.1: Schematic representation of the local atomic environment ρ i, constructed by
considering all atoms less distant than rc from the central atom i. The informa-
tion about ρ i is encoded in a descriptor qi.

where R indicates the coordinates and species of all atoms in the system. The total

energy can, in theory, be approximated directly, without any further assumption,

with machine learning potentials. This approach has been tried in the past [68,

19, 69], but it is computationally inefficient. If the total energy is a function of

the atomic coordinates of the entire system, the force acting on an atom is itself

dependant on the whole system. Therefore, force evaluations in an FF built this

way have a computational cost that scales with the system size (linearly or more

than linearly), which is not desirable.

To then obtain an FF where force predictions’ computational cost is independent

of system size, one possibility is to decompose the total energy into local atomic

energy contributions [21]:

E(R) =
N

∑
i=1

ε(qi), (2.2)

where εi indicates the local energy term associated with atom i and qi is a vector

encoding information about the local atomic environment ρi: the set of atoms j

such that ri j ≤ rc; this is represented in Fig. 2.1. This “local energy approximation”
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introducted in Eq. (2.2) is justified by the near-sightedness principle of quantum

mechanics [70]. The computational cost of force predictions is reduced by the shift

from total energy prediction to local energy prediction, as the local energy of atom i

depends only on the position and species of atoms within a cutoff rc from i. There-

fore, the force acting on atom i:

f(qi) =−
∂E(R)

∂ri
, (2.3)

can be computed using the local energy of atom i and the local energies of atoms j

contained in the local atomic environment ρi:

f(qi) =−
∂ε(qi)

∂ri
− ∑

j∈ρi

∂ε(q j)

∂ri
. (2.4)

This simplification stands because the local energy of atoms outside ρi does not

depend on ri under the assumption made in Eq. (2.2). In the cases where the local

energy is further decomposed into energies associated to unordered groups of atoms

(e.g. pairs, triplets), Eq. (2.4) can be further simplified because of symmetry [65],

to obtain:

f(qi) =−n
∂ε(qi)

∂ri
(2.5)

where n is the number of atoms contained in the aforementioned unordered groups,

e.g. n = 2 for a pair potential.

2.1.2 Long-Range Effects

Due to the inherent locality of the descriptor qi, long-range effects, such as elec-

trostatic repulsion, are traditionally treated separately from ML-FFs. The incor-

poration of electrostatic effects in the total energy calculations can be achieved by

baselining the ML model with computationally inexpensive methods that include

electrostatic interactions [71, 72], by training the ML model on data where the

Ewald-like electrostatic contributions were removed [23], by employing a separate

ML model that learns the partial charges of the system [73, 74, 75, 76, 77, 78], or
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by incorporating them in the ML-FF [79]. From now onwards we, therefore, sup-

pose either that the long-range electrostatic interactions are negligible in our target

systems, or that they have been treated separately, and the forces and energies used

for learning and testing have had their electrostatic components removed.

2.1.3 Creating a Database

Bond distance [Â]
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Figure 2.2: Learning of an interatomic Lennard-Jones (LJ) pair potential for Cu via Gaus-
sian regression using 10 data points. The four panels picture the LJ potential
to be learnt in blue dashed lines, and the ML potential in orange lines. The
ML algorithm was trained on energy data only (top left), force data only (top
right), an even split of energy and force data (bottom left), and force data with
one energy data point (bottom right). For the fitting on force data only, an ad-
justed predicted energy curve is also shown in green, where the orange curve
was vertically shifted by the error incurred in the energy prediction of a sin-
gle randomly-chosen value. The training points used are highlighted as green
triangles (force data) and red circles (energy data). The mean absolute error
(MAE) on the force vector and the bond energy are represented and have been
calculated for 100 distance values.

To learn a function, a ML model requires a training database containing refer-

ence input-output pairs. In the case of ML-FFs these input-output data points would
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ideally be local atomic environment descriptor - local energy pairs. However, since

local energies are not physical quantities that can be obtained in ab initio simula-

tions, a training database for ML-FFs instead typically contains total energies and

forces. These quantities can be then used to train local energy functions as demon-

strated in Section 2.4. The training database D containing D training points consists

of two separable parts: a total energy dataset DE containing DE points and a local

force dataset D f containing DE points, with D = DE +D f . The total energy dataset

contains pairs composed of sets of local atomic environment descriptors {qi}d of

each atom i in the system d, which is denoted as Qd , and total energy values Ed:

DE = {Qd,Ed}, d = 1, . . . ,DE . (2.6)

The force dataset instead contains pairs of local atomic environment descriptors -

forces acting on the central atom of the local atomic environment:

D f = {qd, fd}, d = 1, . . . ,D f . (2.7)

In order to obtain a conservative FF, the cutoff used for the force dataset should be

equal to the one used to generate local atomic environments in the energy dataset

only if Eq. (2.5) holds validity, otherwise the cutoff for the force dataset should be

doubled, as per Eq. (2.4).

It is possible to build a force field starting from energy data only [21, 80], us-

ing gradient information to derive the forces [81, 82], or using force data directly

[10, 83, 24, 84]. Nonetheless, it could be beneficial to train the algorithm using a

number D f of force training points and a smaller number DE of total energy train-

ing points to incur overall lower errors while predicting forces and total energies.

This approach is investigated in Fig. 2.2, where four GP-FFs employing the 2-body

kernel discussed in Section 2.4.3 are trained on force and/or total energy data gen-

erated using a Lennard-Jones Cu pair potential. The mean absolute error (MAE) for

force and energy predictions is reported in Fig. 2.2; this error measure is defined
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for a scalar or vectorial quantity a as:

MAE =
1

Dtest

Dtest

∑
d=1
||ad− âd||2, (2.8)

where ad and âd are, respectively, the reference and predicted values (i.e. the total

energies E or local forces f), and || • ||2 denotes the Euclidean norm. For vector

quantities, the MAE is therefore the average norm of the difference vector between

reference and predicted vectors. It is evident from Fig. 2.2 that including mostly

force data and a small number (i.e. one) of energy reference points in the training

set yields the lowest mean absolute error (MAE) on energy, without meaningfully

affecting the force prediction error w.r.t. sole force training. In the cases where

the accurate prediction of quantum forces is most relevant (e.g. when computing

dynamical properties), training only on forces results in a more computationally

efficient choice w.r.t. training on force and energy data. In particular, we can notice

how the energy prediction for the potential trained on force data only can be almost

as accurate as the one yielded by an energy-trained potential, once the predictions

are shifted by a constant factor. This factor can be easily calculated, for example

as the error incurred by the force-fitted potential when evaluating the energy of a

single data point.

The training database can be created using any reference method that is deemed

accurate for the system, but a dataset must be consistent: all of the data contained

has to be generated using the same exact methodology (e.g. the same DFT func-

tional and cutoff energy). This consistency is required since, otherwise, the resulting

ML-FF would be trained as an average of the FFs defined by the ab initio methods

employed, weighted by their relative presence in the training database. In literature,

DFT is the most commonly used ab initio method to generate reference data, either

via AIMD simulations or via sets of single-point energy and force evaluations. In

this manuscript, all of the databases used were extracted from AIMD simulations

employing DFT, the specifics of the functional and methodology used will be given
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for each dataset.

2.2 Local Atomic Environment Descriptors
Before diving into the details of the machine learning algorithms used to learn FFs,

it is useful to discuss the design and properties of the inputs these algorithms take.

These inputs are named local atomic environment descriptors, and their design and

formulation directly affect the properties of the learnt FFs. Let us here focus on a

system of N atoms of the same chemical species. Generalization to multi-chemical

species is, in the case of GP-FFs, straightforward, and it will be formally discussed

in Sec 2.4.5.

2.2.1 Descriptor’s Properties

An appropriate representation of the local environment ρi surrounding an atom i

is encoded in a descriptor qi, which has to possess the following key properties.

First, it is best if descriptors are invariant to rigid translations, rotations, reflec-

tions, and permutations of same-species atoms. This is required to strictly impose

these fundamental physical invariances upon the learnt FF. Invariance properties

could be learned automatically by any sufficiently flexible algorithm when pro-

vided with enough data. Nonetheless, their strict imposition through an invariant

representation is found to be extremely beneficial both for the transferability and

to the learning speed of the FF [83, 25, 24, 10]. Secondly, the descriptor must be

differentiable w.r.t. the atomic coordinates of the central atom, as this is required

for an analytic computation of the atomic forces after the interpolation of an energy

function or, equivalently, to consistently fit an FF from a force and energy database.

Thirdly, a descriptor should be informative, e.g. should be able to discern differ-

ent local atomic environments, while capturing the relevant physics of the system.

For example, a smoothed function of the number of atoms present in a local atomic

environment ρi is a descriptor that respects all invariance and differentiation proper-

ties, but on its own can not provide enough information to build an accurate model.

Moreover, the descriptor should not only be informative but be so while capturing

some of the essential features of the sought energy or force function (e.g. pairwise
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atomic interaction), as this makes the learning process faster and the resulting FF

potentially more accurate. Finally, a descriptor should be computationally cheap

w.r.t. the reference method used to build the database (e.g. DFT). As an extreme

example, the ab initio force predicted on the central atom i in ρi meets all the above

conditions, while being a useless descriptor because of its computational cost.

The above requirements allow for many degrees of freedom in the choice of the

exact descriptor’s form. For this reason, many local atomic environment descriptors

have been designed and applied to build ML-FFs in the past years. Notable ex-

amples are atomic symmetry functions [21], spherical harmonics power spectrum

[85, 86], Coloumb matrix [87], many-body tensor representation [88], moment ten-

sors [89], crystal graphs [90], and fragment descriptors [91]. In some instances,

such descriptors are optimised by a ML algorithm [30], or outsourced to online

competitions [92]. In the next section, the explicit n-body descriptors and the novel

”EAM”-like descriptors, used throughout the manuscript and in the ”MFF” Python

package, are presented [65, 84, 93, 66, 35]. Such descriptors respect all of the prop-

erties listed above and offer an intuitive and fast-to-compute way to represent local

atomic environments.

2.2.2 Explicit n-body Descriptors

i

qi,2 = {      ,      ,        ,       }

2-body

i

qi,3 = {              ,              }

3-body

i

qi,EAM = √f(   ) + f(   ) + ...      

EAM-like

Figure 2.3: Visual representation of the 2-body (left), 3-body (center) and EAM-like de-
scriptors (right) for an atom i. Transcription of the visual representation is also
given.
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In P-FFs, forces and energies are often computed as parametric closed-form

functions of descriptors such as interatomic distances (e.g. Lennard-Jones potential

[94]), angles (e.g. Tersoff [12] potential), or dihedral angles. These descriptors rely

on the use of invariant degrees of freedom of groups of n atoms and are built so

to respect the descriptor’s requirements listed in Sec. 2.2.1. Since the versatility

of an FF is directly influenced by the complexity of the employed descriptor, it is

convenient to formally define a measure of such complexity.

We present a definition of a descriptor’s order, first introduced as a definition

of a kernel’s order in Ref. [65]. The descriptor order identifies the number of

simultaneously interacting particles that affect the descriptor’s value. We formally

define the order n for a descriptor q(ρi) of a local atomic environment ρi as the

smallest integer n for which the following is true:

∂ nqi

∂r1, . . . ,∂rn
= 0 ∀ r1 6= · · · 6= rn ∈ ρi, (2.9)

where r1, . . . ,rn are the positions of any choice of different atoms in the local

atomic environment ρi. Following the definition above, it is easy to observe how

descriptors based solely on pairwise distances are 2-body, descriptors which encode

angular information are 3-body, descriptors presenting a dihedral term are 4-body,

and so on. Finally, a descriptor qi(ρi) whose value depends simultaneously on any

number of atoms in ρi is called many-body.

We consider ML-FFs to be a natural extension of P-FFs, where the parametric

equations governing the force and energy evaluations are replaced by nonparamet-

ric, data-driven functional forms yielded by the ML algorithm. For this reason,

when designing the inputs to the ML algorithm, symmetry-invariant descriptors on

the relevant degrees of freedom of groups of 2-, 3-, n-atoms, emerge as perfect

candidates, given their similarity to classical P-FFs descriptors. With this notion

in mind, we can construct n-body descriptors starting from the explicit degrees of

freedom of n-plets of atoms. For a practical example, a 2-body descriptor can be
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built using the unordered set of distances of atoms j contained in the local atomic

environment ρi:

qi,2 = {ri j} j∈ρi. (2.10)

It is then rather trivial to construct a 3-body descriptor qi,3, defined as the unordered

set containing triplets of distances between atom i and other two atoms j and l

which are each in the local atomic environment of the other two:

qi,3 = {(ri j,rik,r jl)} j,k∈ρi,i,l∈ρ j,i, j∈ρl . (2.11)

The above descriptors, represented in Fig, 2.3, contain by construction the full 2-

and 3-body information about the local atomic environment. They are computa-

tionally efficient, simple to interpret, and do not require any choice of parameters

or truncation approximation. These advantages come at a cost. Indeed, the require-

ment that the above sets are unordered is strictly needed to preserve permutational

invariance, and such a condition must be imposed also to the ML algorithm that

uses these descriptors as inputs. This can be enforced rather straightforwardly

when using a Gaussian process regression model (see Section 2.4). Explicit n-body

features as the one provided above have been extensively used in this framework

[95, 65, 96], also for building force fields for nanoclusters [84].

We note that, while 2- and 3-body descriptors emerge somehow trivially from

the relevant degrees of freedom of pairs and triplets of atoms, this is not true for 4-

body descriptors. The relative positions of four atoms cannot be uniquely described

using a list of six interatomic distances [85]. Apart from this uniqueness problem,

the dimensionality of an n-body descriptor grows exponentially with n, as shown

in Tab. 2.1. It would, therefore, be convenient to restrict the descriptors used in

ML-FFs to low orders of n to reduce the overall computational burden. Indeed, the

two most used descriptors in literature, namely, atomic symmetry functions [21]

and spherical harmonics power spectrum [23], are constructed using solely 2 and/or

3-body features. Low order descriptors capture well the ionic and covalent nature
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n Dimensionality of qn

1 O(1)
2 O(M)
3 O(M2)
4 O(M3)
...

...
n O(Mn−1)

Table 2.1: The dimensionality of an n-body descriptor qn based on the invariant degrees of
freedom of n-plets of atoms, for a local atomic environment containing M atoms.

of chemical bonds and are therefore a rather natural choice for most systems where

many-body interactions do not contribute significantly to the energy of the system.

It is important to note that the absence of any angular information in a 2-body

descriptor always prevents a full characterization of higher-order interactions. This

is not true for 3-body descriptors, and a nonlinear function of a 3-body descrip-

tor can in principle capture also higher-order interactions [21, 23]. Nonetheless, it

could be desirable to use a ML approach that preserves the order n of the descrip-

tor, yielding an ML-FF that is also n-body. This is, for example, true for mapped

force fields (M-FFs) [84], where a tabulation process can be used to transform ML-

FFs into classical nonparametric FFs, to obtain a very large computational speed-up

without accuracy loss, as presented in Sec. 3.1. If such an approach is indeed

sought, higher-order interactions must be incorporated using a many-body descrip-

tor that is low-dimensional (or scalar).

2.2.3 EAM-like Descriptors

For some systems, FFs based on 2+3-body descriptors might not be accurate enough

w.r.t. the ab initio reference data, as displayed, for example, in Section 5.2. In such

systems, a many-body descriptor can help reduce the error incurred by the FFs

on the ab initio forces and energies; this approach is not uncommon for ML-FFs

[23, 95, 80, 97]. Unfortunately, as discussed later in Sec. 3.1, most many-body

FFs cannot be transformed into nonparametric tabulated FFs because of the high

dimensionality of their input space. This problem can be circumvented by using
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a force field where the energy is a function of a low-dimensional input, which is

still able to capture many-body atomic interactions. A prime example of such a

descriptor can be found in the Embedded Atom Method (EAM) FFs, where the

model’s many-body energy ε̂MB(qi) is modelled by:

ε̂MB = φ(qMB,i), (2.12)

with:

qMB,i = ∑
j∈ρi

g(ri j), (2.13)

where g and φ are scalar functions, and qMB is a many-body scalar descriptor [98].

The function φ can then be inferred by an ML algorithm, given an appropriate

descriptor choice. The mappable many-body descriptor used in this thesis, and in

the “MFF” package, qEAM is inspired by the local energy equation found in second-

moment approximation to the tight binding [98], and reads:

qEAM,i =−
√

∑
j∈ρi

e−2(ri j/r0−1), (2.14)

where r0 is a distance hyperparameter of the descriptor. Such descriptor (Eq. 2.14)

is many-body by the definition given in Eq. 2.9, and possesses all of the key proper-

ties listed in Sec. 2.2.1. Since the descriptor is a scalar, an appropriate ML method

that uses it as an input can be easily mapped into a tabulated FF. This will be dis-

cussed in Sec. 3.1.2.

2.3 Linear Regression and Artificial Neural Net-

works
Linear regression and artificial neural networks are, together with Gaussian process

regression (or, similarly, kernel ridge regression), the most widely used ML frame-

works to construct ML-FFs. While the work contained in this thesis deals only with

Gaussian process regression methods, here we present the state-of-the-art of the

other two algorithms for ML-FF generation so that the reasoning behind the use of
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Figure 2.4: Schematic representation of linear regression, 2-layer artificial neural network,
and Gaussian process regression. The figure is structured so to highlight dif-
ferences and similarities across the three algorithms. The symbols in the figure
mirror the ones used in the main text. The equivalency between a Gaussian
process and a single-layer neural network with infinite nodes was proven in
[81].

GPR in this work can be introduced more clearly. Fig. 2.4 shows a schematic com-

parison of the structure of LR, ANN and GPR algorithms for supervised learning.

2.3.1 Linear Regression

The local energy function εi can be expressed as a linear combination of functions

of the local atomic environment descriptor as:

ε̂(qi) = WT
φ(qi), (2.15)

where W indicates the weights, ε̂(qi) is the modelled energy function and φ is a

multivariate function. The choice of the exact form of φ is on the user, and its

expression directly influences the accuracy of the regression algorithm. The weights

are usually optimised so that the squared error loss L2 on the total energy Ed is

minimised:

L2 =
DE

∑
d=1
||Êd−Ed||2. (2.16)

The weights that minimise L2 can be easily found analytically via ordinary
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least squares. In the linear regression case, the solution to the learning problem is

therefore fast to compute, and the predictions the model yields are computationally

cheap [22]. Despite the simplicity of the learning model, a variation of this method

proved to yield interesting results, for example in aiding the prediction of adsorp-

tion energies of NO on RhAu nanoparticles [99, 100].

Nonetheless, in most applications, linear regression models lack the complexity

needed to construct an accurate force field. The arbitrary choice of the function φ

indeed restricts the representative power of FFs generated using linear regression,

much like the choice of a parametric functional form in P-FFs constricts their flexi-

bility.

2.3.2 Artificial Neural Networks

ANNs are a framework for supervised learning; they are composed of nodes organ-

ised in layers that connect the input qi to an output ε(qi). In ANNs, connections

have weights W which multiply the connection’s input value, and biases B which

are instead added to a node’s value. These weights and biases are optimised si-

multaneously during training and are usually initialized at random values. For a

two-hidden-layer ANN, the equation for the prediction of the local energy ε̂(qn)

reads:

ε̂(qn) = φ

{
b3 +∑

j2

w j2
23φ

[
b j2

2 +∑
j1

w j1 j2
12 φ

(
b j1

1 +∑
i

wi j1
01 (qn)i

)]}
, (2.17)

where φ is a scalar activation function (tangent, hyperbolic sigmoid, etc.), the jl

indices run over the nodes of layer l (here l = 1,2), wl,l′ are the weights connecting

layer l nodes to layer l′ nodes, and bl are the biases added to nodes of layer l. The

structure of a 2-layers ANN can perhaps be more easily understood by looking at

Fig. 2.4; it is then straightforward to imagine how Eq. 2.17 extends to networks

with more than two hidden layers.

Much like in linear regression, the training of ANNs consists in the search of

weights W and biases B which minimise a loss function L on a training set contain-
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ing Ntr points. The squared error loss (Eq. 2.16) is usually chosen for regression

problems such as energy and/or force fitting, but other loss functions can also be

used (e.g. absolute error loss). Given how the number of parameters {W,B} can

range from thousands to millions, the optimization task is not trivial and the loss

function is highly non-convex. For this reason, deterministic gradient descent on

the loss landscape induced by the loss function computed on the full training set

would be sub-optimal, as the optimization would stop at the first local minima of

the loss function. Therefore, batch training is typically used to introduce stochas-

ticity in the optimization process: a subset of training points is chosen and many

gradient descent steps are taken; this process is then iterated. The training process

is then stopped once the error on the validation set starts increasing, indicating that

the ANN is starting to over-fit on the training data.

ANNs are universal approximators as, in the limit of an infinite number

of nodes, they can approximate any continuous function to arbitrary precision

[101, 102]. This is one of the main appeals to the method since, given enough

time, computational power, and training data, one could construct a very large

ANN and in principle approximate any function, no matter how complex. ANNs

have been used to develop FFs for many systems in condensed matter physics,

such as bulk metals and semiconductors [103, 104, 105], and metallic nanoparticles

[106, 107, 108, 109, 106, 110, 111, 112, 113, 114, 115, 105]. The price to pay for

the flexibility and expressive power of ANNs is that they are very data-hungry, and

typically require orders of magnitude more training points than linear regression or

GPR methods to reach the desired accuracy [116]. In the field of ML-FFs, the need

for large training sets can impose a severe obstacle to the development of ANN-FFs,

as only widely-studied systems usually possess databases large enough to train an

ANN-FF. Moreover, given ANNs’ complex structure, formed by a large number of

layers connected via non-linear activation functions, ANN-FFs are often difficult to

interpret in a human sense.
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2.4 Gaussian Process Regression
We present the ML algorithm used to infer ML-FFs throughout this work and in

the “MFF” Python package: Gaussian process regression. GPR algorithms present

several advantages over linear regression and ANNs when it comes to the genera-

tion of ML-FFs. Namely, they require orders of magnitude less data than ANN to

converge to a certain accuracy, which is beneficial when working on systems where

a large database of consistent ab initio calculations is not already present and has,

therefore, to be generated. Moreover, GPR being a fully Bayesian approach means

that it is possible to automatically assign an uncertainty to the predictions yielded by

GP-FFs. This feature allows for on-the-fly training of the ML-FF, which is trained

on new ab initio whenever the system is deemed to be inaccurate for the task at hand

[96]. Finally, GP-FFs are straightforward to interpret, i.e. the underlying properties

of the learnt FFs, e.g. the order of atomic interaction they can describe, are directly

dictated by the chosen form of the kernel function. They have been employed for the

creation of ML-FFs for both bulk systems [95, 117, 97] and nanoparticles [84, 118].

The main drawbacks of GPR are two: the care needed in the choice of the

kernel function, as this directly enforces the properties of the learnt FF, and, most

importantly, the computational cost of predictions, which scales linearly with the

number of training points and is generally higher than the one of comparable ANNs

[116]. In the following sections, we present the formalism behind GPR for ML-FFs,

and analyse thoroughly the generation of kernel functions that respect the physical

invariances associated to force fields, and that allow for a “mapping” of the GP-FFs.

This “mapping” method, discussed in detail in Sec. 3.1, allows circumventing the

poor computational scaling of GP-FFs in prediction tasks, therefore removing the

biggest drawback associated with the use of GP-FFs.

2.4.1 Formalism

A GP regression is a Bayesian framework that learns from a database D of input-

output pairs how to predict outputs given new inputs [81]. We assume that

a database of local atomic environment descriptor - local energy pairs exists:
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Dε = {qi,ε
r
i }. Although the atomic energies are eventually not available from,

for example, ab initio calculations, it is more convenient to introduce the formalism

behind the GP regression using a scalar quantity, such as the local atomic energy

and then to extend it to local atomic forces and total energies, as explained in Sec.

2.4.2.

We assume that the reference local energies εr in the training database can be

written as [81, 23, 93]:

ε
r
i = ε(qi)+ξi, (2.18)

where the noises ξi are independent zero-mean Gaussian random variables with

standard deviation λ :

ξi ∼N (0,λ 2). (2.19)

This noise in the data can be thought of as a combination of the uncertainty asso-

ciated with the method used to generate the data, and of the uncertainty coming

from approximations and assumptions made when predicting the local energy. For

example, an important source of uncertainty is the locality error resulting from

the assumption of a finite cutoff radius, outside of which we consider atoms not to

interact. Another source of uncertainty could be given by the choice of a non-fully-

descriptive local atomic environment descriptor qi (e.g. 2-body descriptor).

The main advantage of GP regression over linear regression or parametric ap-

proaches is that ε(q) is not constrained to a given parametric functional form. It

is instead assumed that the GP predictions are distributed as a Gaussian stochastic

process, usually with zero mean:

ε(qi)∼ GP(0,k(qi,qi)), (2.20)

where k is the kernel or covariance function of the GP. The notation of Eq. 2.20

indicates that for any finite set of inputs {q1, . . . ,qDε
}, the corresponding set of

outputs ε = (ε(q1), . . . ,ε(qDε
))T is distributed according to a multivariate Gaussian
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distribution. The covariance matrix of such distribution is constructed using the

kernel function:

p(ε) = N (0,K), (2.21)

where the elements of the Gram matrix K are calculated as:

[K]i j = k(qi,q j). (2.22)

Since both ξ and ε(q) follow a Gaussian distribution, and since the sum of

two Gaussian variables is also a Gaussian variable, we can express the distribution

of the reference energies εr of Eq. (2.18) as another Gaussian distribution where the

mean and the covariance matrix are the sums of the original two:

p(εr) = N (0,C), (2.23)

with:

C=K+ Iλ 2, (2.24)

where I is the identity matrix.

We can now write the probability distribution for the local energy εi associated

to an unseen input configuration qi, given the knowledge of a training dataset Dε =

{qd,ε
r
d} [81, 119]:

p(εi | qi,Dε) = N (ε̄(qi),VAR(qi)), (2.25)

where:

ε̄(qi) = kTC−1
ε

r, (2.26)

and:

VAR(qi) = k(qi,qi)+λ
2−kTC−1k. (2.27)

In Eqs. (2.26), (2.27) we define the vector of kernel function evaluations k =

(k(qi,q1), . . . ,k(qi,qDε
))T . The variance of εi furthermore provides us with an esti-
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mate of the uncertainty associated with the prediction. This uncertainty is typically

expressed as the standard deviation
√

VAR(qi) found in Eq. (2.27). The mean ε̄(q)

of the predictive distribution is now the best guess for the prediction of the local en-

ergy function, under the assumption of a squared loss function on the local energy

prediction [81, 23, 93]. This mean function is therefore used to predict output val-

ues given inputs; we can then rewrite it as an explicit summation over the training

dataset of the kernel function:

ε̄(qi) =
Dε

∑
d=1

k(qi,qd)αd, (2.28)

where the coefficients αd are obtained as αd = (C−1εr)d . The kernel function k can

be thought of as a “similarity” function between pairs of inputs and in this sense

Eq. (2.28) helps to visualise the GPR prediction as a “weighted average” of the

similarity between a target input descriptor qi and each other input descriptor in the

training set.

2.4.2 Learning from Energy and Forces

Training a GP-FF usually requires a database of total energies and/or a database of

local forces, as these are the quantities usually available in the quantum reference

data (coming e.g. from AIMD simulations). In order to build kernel functions that

respect the energy conservation principle (Eq. (2.3)), and the local energy approxi-

mation (Eq. ( 2.2)),we start from a local energy-local energy kernel function k and
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derive [86]:

kεE(qi,Qb) = ∑ j∈b k(qi,q j),

kEE(Qa,Qb) = ∑i∈a ∑ j∈b k(qi,q j),

kε f (qi,q j) = −
∂k(qi,q j)

∂r j
,

k f E(qi,Qb) = −∑ j∈b
∂k(qi,q j)

∂ri
,

K f f (qi,q j) =
∂ 2k(qi,q j)

∂ri∂r j
,

(2.29)

where kεE is the local energy-total energy kernel function, kEE the total energy-

total energy kernel function, kε f the local energy-force kernel function, k f E the

force-total energy kernel function, and K f f the force-force kernel function. This

array of kernel functions is required when training on total energy and force data,

and when predicting forces and/or energies. The equations for the energy and force

prediction in fact read, respectively:

ε̂i(qi) =
DE

∑
dE=1

kεE(qi,QdE )α
E
dE
+

D f

∑
d f=1

kε f (qi,qd f )
T

α
f
d f
. (2.30)

and:

f̂i(qi) =
DE

∑
dE=1

k f E(qi,QdE )α
E
dE
+

D f

∑
d f=1

K f f (qi,qd f )α
f
d f
. (2.31)

In Eqs. (2.30), (2.31), αE
dE

is the total energy weight associated with the data point

dE , and α
f
d f

is the 3-D vector of force weights associated with the data point d f .

The total energy αE and force weights α f are obtained during training as:

α = [αE ,α f ] = (K+λ I)−1 · [E,F], (2.32)

where [•,•] indicates the column stacking of vectors, I is the identity matrix, and

λ the hyperparameter associated to noise in the training data, as seen in Eq. (2.19).

The Gram matrix K is a block matrix computed during training, with the following
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structure:

K=

 KEE KE f

KE f T K f f

 , (2.33)

and where each block is a matrix containing kernel functions evaluated between

each pair of inputs in each dataset. More specifically:

KEE
i j = kEE(Qi,Q j) with i, j ∈De,

KE f
il = kE f (Qi,ql) with i ∈De, l ∈D f ,

K f f
lm = K f f (ql,qm) with l,m ∈D f .

(2.34)

Now that the interactions between force, local energy, and total energy data is clar-

ified, we focus on the construction of the local energy-local energy kernel function

kε,ε , from which all other kernel functions can be derived according to Eq. (2.29).

2.4.3 n-body Kernels

Starting from the n-body descriptors defined in Sec. 2.2.2, we present a way to

systematically build n-body kernels that respect all the invariance properties of Sec.

2.2.1, and that posses the same interaction order of the descriptor they take as in-

put [65]. As already mentioned, n-body descriptors such as the ones defined in

Eqs. (2.10), (2.11) are invariant w.r.t. translation, rotation and permutation of atoms.

We build invariant n-body kernels, kn, by explicitly summing a non-symmetric ker-

nel function k̃n over the components of input n-body feature vectors qn, i.e. on the

symmetry-invariant degrees of freedom of n-plets of atoms:

kn(qi,n,q j,n) = ∑
cn∈qi,n

∑
c′n∈q j,n

k̃n(cn,c′n), (2.35)

where cn and c′n encode the information relative to each n-plet of atoms in ρi and ρ j,

respectively. The non-symmetric n-body kernel k̃n can be any differentiable kernel.

We opt for the radial basis function kernel because of its simplicity, smoothness,
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and computational efficiency:

k̃n(cn,c′n) = exp
(
−||cn− c′n||2

2σ2

)
, (2.36)

where σ is the kernel’s lengthscale hyperparameter, which has the same units of

measure as the descriptor cn, and controls the spatial variability of the learnt GP-FF.

Applying the procedure described above to the invariant descriptors of Eqs. (2.10),

(2.11), the 2-body local energy-local energy symmetric kernel reads:

k2(qi,2,q j,2) = ∑
l∈ρi

∑
m∈ρ j

exp
(
−
||ril− r jm||2

2σ2

)
, (2.37)

where ril indicates the distance between atoms i and l. Similarly, the 3-body local

energy-local energy symmetric kernel is:

k3(qi,3,q j,3) = ∑
c3∈qi,3

∑
c′3∈q j,3

∑
P∈P3

exp
(
−
||c3−Pc′3||2

2σ2

)
, (2.38)

where qi,3 and q j,3 are defined as per in Eq. (2.11), and P is an element of the set of

cyclical permutations of 3 objects P3.

Kernels such as the one in Eq. (2.35) are computationally demanding for n> 3:

the computational cost of evaluating an n-body kernel is O(M2(n−1)), where M is

the average number of atoms in the local atomic environment. This scaling can be

found by observing that, as displayed in Tab 2.1, the dimensionality of qn grows as

Mn−1, and that to compute a kernel function we must sum over the dimensions of

the descriptors of both inputs.

To obtain high order kernels which have better computational scaling than the

ones presented above, it is possible to augment the order of interaction of an already

symmetric kernel from n to n′ = (n−1)ζ +1 by raising it to a power ζ [23, 85, 65]:

k/un′(ρi,ρ j) =
(
kn(ρi,ρ j)

)ζ
. (2.39)
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This operation does not increase the computational cost of evaluating the kernel,

but the uniqueness of the underlying descriptor is lost; this is represented by the /u

superscript in Eq. (2.39). An n-body descriptor qn possesses the uniqueness prop-

erty if any n-plet of atoms is mapped uniquely to a descriptor’s value. This can

easily be understood through an example, illustrated in Fig. 2.5, where in the first

case the triplet of atoms is mapped onto a unique descriptor containing three inter-

atomic distances (ril,rlm,rim), while in the second case the non-unique descriptor

contains only two distances (ril,rim). Both descriptors in Fig. 2.5 are 3-body as

Non UniqueUnique

ρiρi

q3 q3
u

i

l

m

i

l

m

Figure 2.5: Schematic representation of a 3-body unique descriptor q3 (left, blue) and a
3-body non-unique descriptor q/u

3 (right, yellow) for a local atomic environment
ρi.

per Eq. (2.9), but the non-unique 3-body descriptor is not able to resolve angular

information, as pairs of atoms l,m with distances (ril,rim) from the central atom

i forming different angles ∠lim would be encoded onto the same descriptor (ril,rim).

A non-unique many-body kernel can be obtained by exponentiating a symmet-

ric n-body kernel:

kMB(ρi,ρ j) = exp
(

kn(ρi,ρ j)

γ2

)
, (2.40)

where γ is a hyperparameter that governs the relative importance of low-body and
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high-body interactions. This kernel is impossible to map onto a tabulated FF be-

cause it is equivalent to a sum of n body kernels with n→ ∞; this can be easily

checked by looking at the Taylor series’ expansion of Eq. (2.40) [65].

To enforce energy conservation whenever atoms leave or enter a local atomic

environment during an MD simulation, it is necessary to add a smooth cutoff func-

tion to the local energy-local energy kernel functions. This additional term to the

local energy-local energy kernel function propagates to all mixed force/energy ker-

nels as per Eq. (2.29). The choice of a smooth function of the interatomic distance

which has value and first derivative 0 at ri j = rC leaves a lot of freedom w.r.t. its

specific expression. In this work, and in the MFF package presented in the next

chapter, we adopted the following, widely employed, cutoff function on interatomic

distances:

fC(ri j) =
1
2

(
1+ cos

(
π

ri j

rC

))
. (2.41)

When the cutoff function of Eq. 2.41 is added to the 2-body local energy-local

energy kernel function, the resulting kernel reads:

k2,C(qi,2,q j,2) = ∑
k∈ρi

∑
l∈ρ j

exp

(
−
||rik− r jl||2

2σ2

)
· fC(rik) · fC(r jl). (2.42)

For notational simplicity, the cutoff function is excluded from all equations in this

manuscript.

2.4.4 EAM-like Kernels

To construct a GP-FF which is many-body and can be tabulated into a mapped force

field, it is necessary to use a many-body descriptor that is low-dimensional. More-

over, the resulting local energy-local energy kernel must be differentiable w.r.t. the

position of the central atoms in the local atomic environments, so that derivative

kernels can be obtained as per Eq. (2.29).

We here introduce a way to construct such a kernel by employing a radial basis
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function kernel on the EAM-like descriptor introduced in Eq. (2.14), to obtain:

kEAM(qEAM,i,qEAM,i) = exp
(
−
||qEAM,i−qEAM,i||2

2σ2

)
. (2.43)

This kernel is many-body, like the descriptor it originates from, and is non-unique:

its value does not depend on all the degrees of freedom of the atoms in the local

atomic environment, as the EAM-like descriptor does not resolve angular informa-

tion. Nonetheless, the addition of the EAM-kernel to GP-FFs employing 2- and

3-body kernels can reduce the error incurred w.r.t. reference data; this is showed

e.g. in Sec. 5.2. Moreover, the computational cost of evaluating an EAM kernel is,

despite it being a many-body kernel, lower than any of the n-body kernels presented

so far. In fact, given that the EAM descriptor is scalar, the calculation of the kernel

function is O(1) and, since the cost of computing each descriptor is O(M), the total

computational complexity of a kernel evaluation results to be O(M). We note that

the procedure here introduced to generate many-body kernels that are mappable can

be extended to create an array of diverse many-body, low-dimensional (e.g. scalar)

kernels.

2.4.5 Kernels for Multiple Elements

The kernels presented up to now assume that all the atoms in the system are of the

same chemical species. However, this formalism can be extended to the case of

multi-chemical species, i.e. binary and ternary alloys, via the addition of an atomic-

number discerning term to previously presented kernels. The n-body descriptors

introduced in Sec. 2.2.2 can, therefore, be expanded to account for the chemical

species of atoms; specifically, we can write the element-discerning 2-body descrip-

tor as:

qm
i,2 =

[
qi,2,{(zi,z j)} j∈ρi

]
, (2.44)

where zi is the atomic number of atom i. Similarly, the element-discerning 3-body

descriptor reads:

qm
i,3 =

[
qi,3,{(zi,z j,zl)} j,l∈ρi,i,l∈ρ j,i, j∈ρl

]
. (2.45)
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It is then trivial to write the element-discerning 2-body kernel as:

k2(ρi,ρ j) = ∑
l∈ρi

∑
m∈ρ j

exp
(
−
||ril− r jm||2

2σ2

)(
δ (zi,z j)δ (zl,zm)+δ (zi,zm)δ (zl,z j)

)
,

(2.46)

where δ (zl,zm) indicates the Kronecker delta function. The element-discerning 3-

body kernel can be derived in a similar fashion, its explicit equation is not shown

here because of the cumbersome notation required.



Chapter 3

MFF: a Python Package

In this chapter, the MFF Python package, developed by the author in collaboration

with Dr. Aldo Glielmo and Dr. Ádám Fekete, is introduced. The MFF python pack-

age offers a tool for researchers to automatically build ad hoc nonparametric classi-

cal force fields - named here mapped force fields (M-FFs) - and employs Gaussian

process regression to train the FFs starting from a database of reference calculations.

The package is publicly available at https://github.com/kcl-tscm/mff

and contains documentation and tutorials [35]. A diagram representing the trans-

formation of raw reference data into a classical nonparametric FF within the MFF

package is depicted in Figure 3.1.

After the initial submission of this thesis manuscript, a collaboration started

between the author, Aldo Glielmo, and the authors of the Fast Learning of Atomic

Rare Events (FLARE) Python package [96], which resulted in a merging of the two

packages. The majority of the functionalities included in MFF, most prominently

GP-FF mapping and EAM-like kernels, are therefore available in the FLARE pack-

age, which can be found at https://github.com/mir-group/flare.

While the algorithmic details may differ between the two codes, the underlying

theory is the same, and is discussed in detail in this chapter.

In Sec. 3.1, we introduce the method that is the core of the MFF package and

that allows transforming GP-FFs into nonparametric classical FFs: the “mapping”
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Figure 3.1: Flowchart illustrating the typical usage of the MFF package. User inputs or
choices are displayed in trapezoidal blocks, method calls in rectangles, data in
parallelepipeds and endpoints in rounded rectangles.
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methodology. This rather general procedure is used to remove the computational

burden of GP algorithms associated with having to compute the kernel function be-

tween a new input and the whole training set for every output prediction. Thanks to

the speed-up offered by mapping the GP-FF, the resulting n-body M-FF is as fast as

classical parametrized FFs of the same order n, while maintaining the accuracy w.r.t.

reference data of the original GP-FF. In Sec. 3.2 we present the modules contained

in MFF and explain the overall workflow for the production and usage of a mapped

force field. Finally, in Sec. 3.3 we showcase the accuracy and computational speed

reachable by FFs generated with the MFF package for a set of bulk materials and

metallic nanoparticles w.r.t. reference ab initio calculations.

3.1 Mapping Gaussian Process Force Fields

3.1.1 Mapping n-body GP-FFs

The computational cost of evaluating a GP-FF scales linearly with the number of

training points, as the kernel function must be evaluated between a target input qi

and every input in the training set qd (see Eq. (2.28)). We observe that once a GP is

trained, and the training set is not modified, then the underlying FF is also fixed. We,

therefore, might expect that the computational cost of an n-body FF depends only

on the complexity of the input descriptor qn (i.e. on its order n for unique n-body

kernels), and is not dependant on the amount of data used in training. To formally

prove this concept, we look at the equation for the local energy prediction in the

case of a unique 3-body force field, which we obtain by combining Eqs. (2.28) and

(2.38):

ε̂(qi,3) =
Dε

∑
d=1

∑
c3∈qi,3

∑
c′3∈qd,3

∑
P∈P3

exp
(
−
||c3−Pc′3||2

2σ2

)
. (3.1)

We can then rearrange the above sum and bring the summation over c3 ∈ qi,3 outside

to obtain:

ε̂(qi,3) = ∑
c3∈qi,3

h(c3), (3.2)
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where h(c3) can be thought of as the energy associated with the triplet of atoms

described by c3:

h(c3) =
Dε

∑
d=1

∑
c′3∈qd,3

∑
P∈P3

exp
(
−
||c3−Pc′3||2

2σ2

)
. (3.3)

Since the dimensionality of the input space for the triplet energy function h(c3) is

low (i.e. 3-dimensional, as a triplet of atoms has 3 degrees of freedom), the function

can easily be computed for a 3-D grid of c3 values and then stored as a table. This

procedure effectively transforms the 3-body GP-FF into a tabulated 3-body M-FF,

where the local energy is computed as a sum over triplets of atoms of a 3-body

energy term. This 3-body energy term can be evaluated for every triplet of atoms

via tricubic spline interpolation on the 3D stored grid of values. Its derivative, the

3-body force contribution, can be computed as the derivative of such spline w.r.t.

the atomic position of the atom the force is acting on, ri:

f̂(qi,3) =− ∑
c3∈qi,3

∂h(c3)

∂ri

=− ∑
j,k∈ρi

∂h(ri j,rik,r jk)

∂ri

=− ∑
j,k∈ρi

∂h(ri j,rik,r jk)

∂ ri j

∂ ri j

∂ri
+

∂h(ri j,rik,r jk)

∂ rik

∂ rik

∂ri
.

(3.4)

Fig. 3.2 shows the convergence of the M-FF force error for a 3-body kernel

w.r.t. the GP forces as a function of the number of grid points used to tabulate the

function h(c3). From Fig. 3.2 we can see how, once an appropriate number of grid

points is used, the error introduced by the mapping procedure (∼10−2) is one order

of magnitude smaller than the error typically incurred by GP-FFs w.r.t. reference

force data (∼10−1 eV/Å). The cost of computing h(c3) as per Eq. (3.3) is O(DM2),

while evaluating a tabulated function is O(1); this speed-up reduces the cost of a

3-body FF local energy calculation from O(DM4) for a GP-FF to O(M2) for an M-

FF. Since a local atomic environment contains typically between 10 and 40 atoms,

and the number of training points is typically 102− 103, the computational speed-
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Figure 3.2: Log-log plot showing the error incurred by the 3-body M-FF force evaluation
w.r.t. the GP-FF used to build such M-FF, as a function of the number of points
used to build the tabulation grid, for a Ni13 nanoparticle. The standard deviation
of the mean absolute error on force vector is displayed for each point.
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Figure 3.3: Plot showing the computational time needed for the force prediction on an atom
in a Ni19 nanoparticle as a function of the number of training points for a 3-body
GP-FF (red dots) and the M-FF built from the same 3-body GP-FF (blue dots).
Original figure first published in [93].

up for mapping a 3-body GP-FF is of the order of 104−105. This is represented in

Fig. 3.3, where the computational cost of a 3-body GP-FF and relative M-FF are

compared.

The mapping technique is very general, and it can be shown via the same pro-

cedure as the one displayed in Eqs. (3.1), (3.2), (3.3) that any n-body GP-FF (with n
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finite) can be transformed into a M-FF by explicitly tabulating the energy function

associated to the n-plets of atoms. Mapping is available in the MFF package for

GP-FFs of order n = 2,3, as higher-order GP-FFs are computationally costly to

tabulate. The dimensionality of the tabulation grid for n-body GP-FFs is equal to

the number of invariant degrees of freedom of an n-plet of atoms: 3n−6. For this

reason, the grid becomes too large to properly sample whenever n ≥ 4. GP-FFs

of order above 4 are therefore not easily mappable, and unique many-body kernels

are impossible to map, as their descriptor is infinite-dimensional, or very large-

dimensional whenever a truncated expansion is used as a many-body descriptor, as

is the case for the SOAP descriptor [23, 85].

3.1.2 Mapping EAM-like GP-FFs

While it is impossible to map unique many-body FFs, non-unique many-body GP-

FFs can be transformed into M-FFs provided that the descriptor they employ is

low-dimensional. This is indeed the case for the EAM-like descriptor introduced in

Eq. (2.14), which is a scalar. An EAM-like GP-FF can, therefore, be mapped into

an M-FF which can then be considered the nonparametric parallel to the parametric

EAM potentials fitted using the force-matching technique [120]. The expression for

the local energy of the mapped EAM-like FF is:

ε̂(qi,EAM) = h(qi,EAM), (3.5)

where h is the scalar mapped function, as the EAM-like descriptor qEAM is a scalar

representation of the whole local atomic environment ρ . The expression for the

force reads instead:

f̂(qi,EAM) =−
∂h(qi,EAM)

∂ri

=−
∂h(qi,EAM)

∂qi,EAM
∑
j∈ρi

e−2(ri j/r0−1)

r0qi,EAM

∂ ri j

∂ri
.

(3.6)
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Figure 3.4: Mean absolute error on the force vector as a function of training points for a
2-body GP trained on data combing from an AIMD of Ni19 at different tem-
peratures. The three lines indicate the MAE incurred by the GP when trained
on the same data where the species of the atoms are randomized so that there
is only one unique chemical species (blue line), two (orange line) and three
(green line). The error bars represent the standard deviation of the MAE after
5 measurements each on 200 test configurations.

3.1.3 Mapping GP-FFs for Many Elements

A straightforward extension of the mapping procedure to multi-element systems ex-

ists and is implemented in the MFF package. To map n-body force fields of multiple

chemical species, we map every n-body interaction between unique combinations

of the chemical species present in the system. Eq. (2.46) shows that a 2-body

GP-FF for a system containing 2 chemical species is equivalent to 3 independent

2-body FFs: one for each of the two homogeneous pair interactions, and one for

the heterogeneous pair interaction. In general, for n-body FFs of systems with s

chemical species, the number of element-specific FFs contained in a many-element

FF is
(n+s−1

n

)
, i.e. the number of combinations with replacements of n objects of s

types. These FFs can be independently tabulated into MFFs in the same way that
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Figure 3.5: The same graph as in Figure 3.4, but the x-axis is normalized so that the average
number of training points per element-specific FF is shown. This normalization
is obtained by dividing the number of training points of the data displayed in
Figure 3.4 by 1 for the one-element tests (blue line), 3 for the two-elements
tests (orange line) and 6 for the three-elements test (green line).

single-element FFs are.

The fact that a multi-species GP-FF is equivalent to many element-specific

GP-FF has repercussions on the prediction accuracy’s convergence rate. A GP-FF

is effectively trained for each of the
(n+s−1

n

)
interactions; therefore the number of

training points required to reach a certain prediction accuracy is directly propor-

tional to the number of interactions that need to be modelled. An n-body GP-FF for

a system containing s chemical species does require, on average,
(n+s−1

n

)
times the

number of training points to reach a certain accuracy w.r.t. an n-body GP-FF trained

on a similar single-element system. Figure 3.4 helps visualize this behaviour for a

2-body kernel trained on ab initio data coming from an MD simulation of a Ni19

nanoparticle. In Figure 3.4, the atomic species of atoms in the descriptors q2 were

artificially modified, so that the system would contain Ni atoms only (blue line), Ni
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and Ga atoms (orange line), and Ni, Ga and Mo atoms (green line). It can be seen

that, for the same underlying force training set, the presence of multiple elements

increases the number of FFs that have to be learnt to incur given MAE, and there-

fore shifts the learning curve by a factor
(n+s−1

n

)
w.r.t. a single-element system.

This shift can be more easily observed in Figure 3.5, where the number of training

points per element-specific FF is shown on the x-axis.

3.2 Algorithm Structure
The transformation of raw reference data into M-FFs which are then used within the

ASE Python package [121] to perform MD simulations happens in five distinctive

steps within the MFF module. These steps are represented as rectangles in Fig. 3.1

and handle, in order: preprocessing of reference data, sampling of the training set,

training of the GP, mapping of the GP-FF, and usage of the mapped FF as a force

and energy calculator in ASE MD simulations. In this section, we briefly describe

each of the five main steps together with example code calls to illustrate the practical

use of MFF. The MFF package incorporates functions from the following Python

packages: Numpy [122], Scipy [123], ASE [121], Asap, Theano [124] 1 .

3.2.1 Preprocessing

The reference data used by the MFF package must be imported as a list of snap-

shots containing the positions, species, energies, and forces acting on atoms during

an MD simulation. These snapshots are not required to be ordered, to belong to

the same simulation, or even to describe the same system. After a cutoff radius

has been chosen by the user, the first transformation applied to this raw data is the

extraction of local atomic environments ρi and associated forces fi for every atom

i in every snapshot S j contained in the input trajectory file; this data is stored in a

force dataset D f = {ρi, fi}. Also, the total energies E j relative to each snapshot S j

1The Numpy package is used in MFF to speed-up operations on vectors, while Scipy is used
for matrix inversion, ASE to handle MD simulations and atomic environments, Asap to quickly
compute atomic neighbourhoods, and Theano is employed for its automatic differentiation so to
compute derivative kernels.
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are stored, alongside the list of local atomic environments P j = {ρi} ∀ i ∈ S j, in an

energy dataset DE = {E j,P j}. Both datasets are saved into a single file containing

additional information about the chemical species present and the cutoff used to

generate the local atomic environments.

All of this is called when using the MFF Python package as:

from mff import configurations

data = configurations.generate_and_save(filename, cutoff)

elements, lae, forces, energies, gae =

configurations.unpack(data)

where filename is a path to the file containing the reference calculations,

cutoff = rc, in Å, lae = {ρi}, forces = {fi}, gae = {P j}, energies

= {E j}, and elements contains the list of which atomic species are present in

the dataset.

3.2.2 Sampling

Once the database has been saved, a training set must be sub-sampled to train a

GP-FF. This can be done at random or using a sampling technique to try to reduce

the error incurred by the GP-FF on force and energy predictions via an appropriate

choice of the data points to incorporate in the training set. In the current version of

the MFF Python package, four sampling techniques are supported: random, 2-body

descriptor sampling, 3-body descriptor sampling, and common neighbour analysis

(CNA) sampling. For details on the sampling methods available in MFF, the inter-

ested reader is referred to Appendix A.1.

The sampling of training points from a database is called in the MFF package

as:

from mff import utility

lae_tr, forces_tr = utility.get_training_set(lae, forces,

elements, ntr, method, cutoff, cna_cutoff)
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where lae tr and forces tr indicate, respectively, the local atomic environ-

ments, and the forces to be used for training, ntr = Dtr, method is a string indicat-

ing which method to use for sampling, and cna cutoff is an optional argument

specifying rCNA.

3.2.3 Training

Within the MFF package, the training, fitting and tabulation of a GP-FF are handled

by the modelsmodule, which calls the gp and kernelsmodules when appropri-

ate. The user must first choose which kernel to employ: 2-body, 3-body, 2+3-body,

EAM, 2+3-body + EAM, or many-body, and to set the appropriate hyperparame-

ters, such as kernel length scale σ and noise associated to the data λ . To fit the

model, in this example a 2-body kernel, on a force dataset, the syntax is then:

from mff import models

gp = models.TwoBodySingleSpeciesModel(elements, cutoff,

sigma, noise)

gp.fit(lae_tr, forces_tr, ncores)

where sigma = σ , noise = λ , and cores indicates the number of cores to use

for the training process. The GP-FF can also be trained using energy and force data

using the following command:

from mff import models

gp = models.TwoBodySingleSpeciesModel(elements, cutoff,

sigma, theta, noise)

gp.fit_force_and_energy(lae_tr, forces_tr, gae_tr,

energies_tr, ncores)

Predictions on unseen local and global atomic environments can then be computed

with the following commands:

from mff import models

new_forces = gp.predict(new_lae, cores)

new_energies = gp.predict_energy(new_gae, cores)
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3.2.4 Mapping

Once a GP-FF that showcases an accuracy on force and/or energy prediction that is

deemed satisfactory has been trained, the mapping procedure is applied to improve

the computational speed of predictions. The user must specify the grid density for

the FF tabulation and the smallest interatomic distance that has to be tabulated;

the upper limit to the tabulated interatomic distance is the cutoff radius of the local

atomic environment descriptor. The command used to map GP-FFs is the following:

gp.build_grid(grid_start, npoints_grid, cores)

where grid start is the minimum interatomic distance to consider, in Å, and

npoints grid indicates the number of grid points to use for each dimension

of the tabulation grid. In the case of EAM-like GP-FFs, the FF is tabulated for

descriptor values that range from three times the lowest descriptor value found in the

training set to 0, since qi,EAM ≤ 0 ∀i. This seemingly arbitrary choice of mapping

grids’ lower bound is necessary as qEAM’s values are non-trivially dependant on the

choice of r0.

3.2.5 Calculator

The calculator is necessary to run MD simulations within the ASE package using

M-FFs. This module is used to calculate the total energy and the forces acting on

a system during MD simulations, at a computational cost that is O(NM) for 2-

body and EAM-like M-FFs, and O(NM2) for 3-body M-FFs; where N is the total

number of atoms in the system and M the average number of atoms in a local atomic

environment. We use the following commands to assign a 2+3-body many-species

M-FF calculator to a system of ASE atoms:

from mff import calculator

calculator = calculators.CombinedManySpecies(cutoff,

elements, gp.grid_2b, gp.grid_3b)

atoms.set_calculator(calculator)

where grid 2b and grid 3b are, respectively, the 2- and 3-body interpolation



65 3.2. Algorithm Structure

mapped potential spline functions.
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3.3 Algorithm Performance
We now test the accuracy w.r.t. reference methods and the computational efficiency

of GP-FFs and M-FFs on a variety of single-element and multi-element systems.

In this and the following chapters, we denote as “3-body” an FF that contains both

a strictly 2-body FF trained on reference data and a strictly 3-body corrective FF

trained on the difference between the 2-body FF’s predictions and the reference

data. The final predictions yielded by such FF are then obtained as the sum of the

strictly 2-body predictions with the strictly 3-body predictions. Such a GP-FF is

denominated “combined” in the MFF package; we choose to call it 3-body in this

work for simplicity’s sake.

3.3.1 Accuracy Tests

We focus on the error incurred by GP-FFs and, therefore, M-FFs on the prediction

of atomic forces for a variety of reference systems. The analysis of the training

curves yielded by different kernels does also provide useful information regarding

the nature of interatomic interactions present in the reference dataset. The following

results on Ni bulk, Fe bulk, C and amorphous Si refer to GP-FFs trained on force

data only, we, therefore, use the mean absolute error (MAE) on the force vector as

an appropriate error metric. The inclusion of a small number of total energy data

would reduce the error on the predicted energy while affecting only minimally the

MAEs incurred on the force vectors, as showcased in Fig. 2.2. The many-body

GP-FF which performance is displayed in Figs. 3.6, 3.7, 3.8, 3.9 employs a unique

many-body kernel (and is therefore not mappable); it is here used to benchmark

the performance of other, mappable, GP-FFs. Such many-body kernel is indeed a

universal approximator, i.e. in the limit of infinite training points it can approximate

the quantum forces to arbitrary accuracy; its specific formulation can be found in

A.2.

Fig. 3.6 reports the errors incurred by 2-body, 3-body and many-body kernels

on a Ni FCC bulk system where the training data is coming from an AIMD simu-

lation carried out at 500 K. In this case, the 2-, 3- and many-body kernels all incur
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Figure 3.6: (Main) MAE incurred by GP-FFs w.r.t. reference force vectors as a function
of the number of training points used to train the GP-FF. The system is FCC
Ni coming from AIMD simulations carried out at 500 K using DFT. Different
colors indicate different kernels and descriptors used in the GP-FFs. (Inset)
comparison of the convergence MAE on forces for 2-, 3- and many-body GP-
FFs in bulk Ni and a Ni19 nanoparticle. Original figure first published in [65]

MAEs on force vectors which are below 0.10 eV/Å, a threshold value below which

we consider the GP-FF to be accurate for bulk reference data. The 2-body GP-FF

is, therefore, the best choice to model the atomic interactions in this particular sys-

tem, as it is the simplest ML-FF that satisfies our requirements (i.e. MAE on force

vectors < 0.10 eV/Å).

The 2-body GP-FF is, however, often not complex enough to well reproduce

the reference data. This can be seen in Fig. 3.7, where the 2-body kernel is not able

to capture the angular features of the interactions in BCC Fe containing a vacancy,

and therefore incurs MAE of ∼ 0.15 eV/Å at convergence. In this particular sys-

tem, the 3-body GP-FF instead incurs MAE of ∼ 0.08 eV/Å at convergence and

is our choice to model the system as it is the GP-FF of lowest order that is still

able to reach the target accuracy. The low error incurred by the 3-body GP-FF

yields chemical insight regarding the nature of atomic interactions in this particular

system: bond and angular interactions are responsible for most of the contributions
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Figure 3.7: MAE incurred by GP-FFs w.r.t. reference force vectors as a function of the
number of training points used to train the GP-FF. The system is BCC Fe con-
taining a vacancy coming from AIMD simulations carried out at 500 K using
DFT. Different colors indicate different kernels and descriptors used in the GP-
FFs. Original figure first published in [65].

to quantum forces in the ab initio reference data. Fig. 3.7 also reports the training

curves for non-unique 3- and 5-body kernels, obtained as per Eq. (2.39);. These

non-unique n′-body kernels incur higher MAEs than their unique counterparts. In

particular, the non-unique 3-body kernel in Fig. 3.7 displays a behaviour that is

half-way between the one of the corresponding unique 3-body kernel, and the 2-

body kernel that has been used to generate it following Eq. (2.39).

Fig. 3.8 displays the training curves of GP-FFs for a system containing dif-

ferent phases of C: graphite, bulk diamond structure and amorphous. In this case,

no kernel can reach MAEs below 0.10 eV/Å with the number of training points in-

vestigated, and the best-performing GP-FF is the 3-body, which incurs convergence

MAE of 0.13 eV/Å at 500 training points. Therefore, the 3-body is the kernel of

choice in this system; if more data points would be available and usable, then a

higher-order GP-FF would probably incur lower convergence error [93].

Fig. 3.9 reports the training curves for a system containing amorphous Si.
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Figure 3.8: MAE incurred by a GP-FF w.r.t. reference force vectors as a function of the
number of training points used to train the GP-FFs. The system contains amor-
phous C, graphite and bulk diamond coming from AIMD simulations carried
out using DFT at various temperatures and from single-point force evaluations.
Different colors indicate different kernels and descriptors used in the GP-FFs.
Original figure first published in [65].

Here, 2- and 3-body GP-FFs fall far from the accuracy target, with MAEs at con-

vergence of 0.35 eV/Å and 0.23 eV/Å, respectively. Only the many-body GP-FF

comes close to the target, incurring in a MAE of 0.13 eV/Å when trained on 4000

training points. Therefore, in amorphous Si, bond and angular information is not

sufficient to capture the relevant interactions, and 4- and higher-body terms are re-

quired to well capture the behaviour of quantum forces.

3.3.2 Speed-Accuracy Comparisons

As showcased in the previous paragraph, M-FFs trained on ab initio reference cal-

culations (such as DFT), incur non-zero errors on the training set, but are much

more computationally efficient than the reference method. They, therefore, offer an

alternative to classic P-FFs for the simulation of systems where explicit quantum

calculations are prohibitive. It is therefore imperative to compare the accuracy w.r.t.

reference data and the computational cost of such GP-FFs, M-FFs and P-FFs. In

Fig. 3.10 we report a scatter plot where the MAE on forces w.r.t. reference data is
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Figure 3.9: (Main) MAE incurred by a GP-FF w.r.t. reference force vectors as a function
of the number of training points used to train the GP-FFs. The system contains
amorphous Si extracted from AIMD simulations carried out at 650 K using
DFT. Different colors indicate different kernels and descriptors used in the GP-
FFs. (Inset) comparison of the convergence error for 2-, 3- and many-body
GP-FFs in amorphous and crystalline Si. Original figure first published in [65]

plotted against the computational time required to compute the forces on a system

of 566 atoms. We do so for the reference method (which obviously reports zero

error on itself), a 2+3-body+EAM GP-FF, the M-FF built from such GP-FF, and six

EAM classical potentials for Fe taken, in order, from [128, 129, 130, 131, 132, 133].

The reference data 2 comes from DFT single-point calculations, and comprises Fe

with a vacancy, bulk Fe containing a symmetric tilt grain boundary with a [111]

orientation axis and a [211] boundary plane, and bulk Fe containing a symmetric

tilt grain boundary with a [100] orientation axis and a [120] boundary plan and a

misorientation angle of 53.13◦ [134]. It is evident from Fig. 3.10 that the M-FF is

as fast as classical EAM potentials while incurring in a MAE w.r.t. reference DFT

data that is almost half of the one incurred by the best-performing EAM potential.

2We thank Dr. Henry Lambert, Physics Department, King’s College London, for providing this
reference quantum dataset.



71 3.3. Algorithm Performance

Figure 3.10: Comparison of the computational cost and MAE incurred in force predic-
tion w.r.t. DFT calculations for a Fe system of 566 atoms containing a grain
boundary. The GP-FF shown is a 2+3+EAM GP-FF, trained using 500 lo-
cal atomic environments and forces. The MFF is the mapped version of the
above mentioned GP-FF, where 106 grid points were used for the mapping
procedure. The six EAM potentials displayed were taken, in order, from
[128, 129, 130, 131, 132, 133].



Chapter 4

Machine Learning Force Fields for

Nanoparticles

ML-FFs have emerged in recent years as a way to reduce the computational re-

quirements of force and energy evaluations for MNPs. The speed-up offered by

ML algorithms enables thorough searches of the configurational space of systems

and extends the time scale accessible to accurate simulations from the order of ps

(i.e. using DFT) to possibly µs using M-FFs. The state-of-the-art for applications

of ML-FFs to MNPs is briefly reviewed in Sec. 4.1, to better introduce the topic

to the reader. Subsequently, in Sec. 4.2, we present the application of GPR to

develop FFs that are accurate for different morphologies of Ni19 NPs. The training

database contains five isomers, and we find a positive correlation between the ge-

ometrical complexity of an isomer and the amount of information its inclusion in

the training set provides. We furthermore test the accuracy of 2-, 3- and many-body

GP-FFs trained on different subsets of the available data and highlight that the best-

performing GP-FFs are 3-body ones that include a varied subset of morphologies

extracted from AIMD simulations carried out at different temperatures. Afterward,

in Sec. 4.3, we build two M-FFs using respectively data coming from low-T and

high-T ab-initio MD simulations and study the phase changes in Ni19. Employing

M-FFs allows us to efficiently run simulations for a total time of 60 ns, a timescale

not accessible to methods such as DFT, and to observe the formation of slush states

in the temperature range between ∼700 and ∼900 K.
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4.1 State-of-the-art of ML-FFs for MNPs

The applications of ML-FFs to MNPs found in the recent literature can be broadly

divided into three categories. The first comprises cases where ML-FFs are used to

supplement or substitute ab initio calculations for energy evaluations such as global

minima structure search [21, 135, 136, 111, 137, 118, 112]. It is in these cases

fundamental that the error incurred by ML-FFs on energy predictions is very low,

for obvious reasons. The same principle applies to the second class of applications

of ML-FFs to MNPs found in literature: the estimation and mapping of activation

energies for catalytic property predictions [138, 99, 100]. The third and final cate-

gory comprises cases where ML-FFs are used to carry out NVE or NVT simulations

over time scales not easily accessible to ab-initio methods. These works aimed to

estimate phase diagrams and/or thermal properties of metallic nanoparticles. For

this reason, the error incurred by the ML-FFs on reference quantum forces has to

be low, as the correct prediction of dynamical pathways and vibrational behaviour

is mandatory to study the dynamical properties of a system. ML-FFs for dynamical

applications are therefore trained using either reference force data or reference force

and energy data. Most of the studies found in recent literature regarding ML-FFs

to run fast MD simulations employed ANNs as the ML framework of choice and

used atomic symmetry functions as an input 2+3-body descriptor. These studies

trained ML-FFs to simulate Cu nanoparticles supported on zinc oxide [139, 113],

AuCu MNPs [114], Au MNPs [106], AgCu MNPs [140] and PtNiCu nanocatalysts

[115]. To the author’s knowledge, there is only one example in literature where a

descriptor of order higher than 3 was used to train ML-FFs to run MD simulations

of MNP; in this case, a many-body descriptor (SOAP) was used to train an ANN

on total energy data, which was then used to search for global minima of Au147

nanoclusters using the basin-hopping method [107].

In all of the above cases, the accuracy and speed of the ANN-FFs allowed
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the researchers to simulate the systems for timescales inaccessible to DFT methods

(i.e. several ns) and/or to thoroughly explore large configurational spaces. This is

not by chance, as the computational cost of predicting forces and energies with an

ANN-FF is independent of the training set size D and, while not being comparable

to classical P-FFs, is still much cheaper than ab initio reference methods such as

DFT. The mapping of GP-FFs, therefore, presents a new frontier of ML-FFs for

MD simulations of MNPs, thanks to the combined advantages of a low computa-

tional cost, comparable to that of classical P-FFs, and the ability to train ML-FFs

for systems where a small dataset is available.

4.2 GP-FFs for Ni19 Nanoparticles
As the first-ever application of M-FFs for MNPs, we report our original study on

Ni nanoclusters of 19 atoms. We aim to develop a single M-FF that incurs low

prediction errors w.r.t. the reference forces so that fast, classical MD simulations

can be carried out as a surrogate for ab initio MD.

4.2.1 Dataset Construction

Among the possible isomers available for a Ni19, we focus on five of them, de-

picted in Fig. 4.1. Three of them, namely the double icosahedron (DIH), the

three-layer HCP (3HCP), and the bipyramid with a square base (BIP) have been

Figure 4.1: Five Ni19 structures: 3HCP, DIH, BIP, 4HCP, and dDIH. The structures are
ordered, left to right, according to their total energy, with the leftmost structure
being the lowest in energy according to VASP PBE calculations. Original figure
first published in [84].
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chosen according to an energetic criterion. Indeed, they are energetically the pu-

tative most favourable geometries in local spin unrestricted DFT-calculations using

a PBE exchange-correlation functional. The less symmetric isomers in Fig. 4.1

labelled 4HCP (presenting four HCP layers) and dDIH (a defected double icosahe-

dron with the subsequent formation of a hexagonal ring, reminiscent of the rosette

defects found in Pt MNPs [141]) have been discovered using a metadynamics sam-

pling scheme [56, 142], and have been included due to their low symmetry. To

generate a set of reference quantum structures and forces, Born-Oppenheimer ab

initio MD simulations were performed within the VASP package, using a plane-

wave energy cutoff of 270 eV, and an energy convergence cutoff of 104 eV 1. The

exchange-correlation functional was calculated employing the PBE/GGA approx-

imation [143], and spin-orbit coupling effects are accounted for. 2 The ab initio

MD simulations employ a Nose-Hoover thermostat to control the temperature for

NVT runs at 300, 600 and 900 K; the time step is set to 3 fs and the total simulation

time is approximately 100 ps. We monitor the structural evolution of each isomer

at during these simulations using standard geometrical quantities to check whether

the initial structure is maintained and to eventually classify new isomers.

4.2.2 Validation Methodology

When considering which kernels to try for the system, we first observe that for FCC

bulk Ni systems, 2-body GP-FFs are found to be incredibly accurate (See Fig. 3.6)

[24]. We, therefore, choose to try the 2-body kernel of Eq. (2.37) and a unique

approximately symmetric, many-body kernel (See appendix A.2 to build GP-FFs

in the first place. The many-body GP-FF we here employ cannot be transformed

into an M-FF but, given that it is a universal approximator, its accuracy is not con-

strained by the simplifying assumption that the reference forces can be decomposed

into n-body contributions, with n finite. It is therefore used here as a benchmarking

tool to obtain an estimate of the error on force prediction that is introduced by

1We thank Dr. Kevin Rossi, Laboratory of Computational Science and Modelling, École Po-
litechnique Fédérale de Lausanne, for providing this reference quantum dataset

2Because the spin of the system is not fixed, the learnt GP-FF is trained on a weighted average
of the potentials encountered in the spin states visited throughout the AIMD simulations.
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the finite cutoff radius of local atomic environment descriptors, and the one that is

caused by the noise present in the training set (see Eq. (2.18)). After some initial

testing, we realise that the 2-body GP-FFs are not capable of capturing the relevant

physics of the system and do not meet our target accuracy of MAE on forces, here

set to 0.15 eV/Å. We, therefore, go to the next level of complexity and employ

the 3-body kernel of Eq. (2.38) to build GP-FFs that reach the accuracy target and

are therefore used to build M-FFs. For comparison, a state-of-the-art classical P-

FF developed for Ni [144] incurs MAE on the reference forces of 0.59± 0.39 eV/Å.

To assess the errors incurred by the kernels while used in interpolation and

(putative) extrapolation regimes, we analyse the GP-FFs force predictions on test

databases containing the five morphologies displayed in Fig. 4.1. We do so for

GP-FFs that have been trained on data sets containing one, two, three and all five

of the geometrical motifs of Fig. 4.1. We, therefore, introduce a novel way of mea-

suring the similarity between cluster geometries, based on the errors incurred by

GP-FFs which are trained on data coming from MD simulations containing a single

morphology and tested on data containing another one. We choose a test set that

contains 400 randomly-selected local atomic environments for each of our five clus-

ter morphologies, yielding a total of Dtest = 2000 test points. Every test is repeated

five times to estimate a standard deviation for the MAE on the force vector. The

tests we carry can be separated into three categories: same-isomer, cross-isomer,

and mixed-isomer, depending on which databases were used to build the training

sets and which subset of the testing pool is used; this is depicted in Fig. 4.2. In

the same-isomer tests, the data used to build the Dtr and Dtest are extracted from

the same morphology. In the cross-isomer tests, Dtr contains data coming from a

single morphology, which is different from the one used to generate Dtest . Finally,

for the mixed-isomer tests we build and test all possible heterogeneous training sets

Dtr that contain inputs from two, three, and all five motifs. When Dtr contains data

coming from all five morphologies, this will be equivalent to a same-isomer test. In

all of the above cases, no data point present in Dtr is allowed to be in Dtest , and data
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Training Set
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same-isomer

cross-isomer

mixed-isomer

Figure 4.2: Schematic representation of the three test modes used to validate M-FFs for
five Ni19 morphologies, coloured as in Fig. 4.1.

points are selected at random for each dataset.

4.2.3 Same- and Cross-Isomer Accuracy Tests

We first discuss the results for same-isomer tests; the accuracy results will provide

a benchmark for the accuracies reachable by GP-FFs trained using Dtr that do not

contain solely the structures they are tested on. Figure 4.3 reports a learning curve

(MAE on forces against Dtr) for the example case of a 3HCP structure. The 2-body

GP-FF achieves its maximum accuracy for any Dtr > 50; similarly, the 3-body MAE

on forces decreases with Dtr until Dtr > 100, where an accuracy plateau is reached.

The accuracy of the many-body GP-FF, on the other hand, always increases with

Dtr; this is expected as the many-body kernel is a universal approximator [102, 65].

The learning curves for same-isomer tests in other structures show the same trends;

this can be seen in Fig. 4.4. Figure 4.5 displays the MAE at convergence obtained

on same-isomer tests by GP-FFs when using 2-, 3-, and many-body kernels, for the
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Figure 4.3: MAE on force vectors as a function of the number of training points employed
for training and testing on a Ni19 3HCP morphology. The GP-FFs’ order is
colour coded, with 2-body represented in teal, 3-body in blue, and many-body
in orange.

five morphologies considered. For the many-body kernel, the error incurred at Dtr

= 2000 was used instead of the convergence error, as the many-body GP-FF’s accu-

racy keeps increasing with the training set size. The left-hand histogram shows that

using a 2-body potential to model the atomic interactions in Ni19 yields an MAE

larger than the target accuracy of 0.15 eV/Å for all motifs but 3HCP. Incidentally,

this is the structure that most resembles bulk FCC Ni, where 2-body GP-FFs were

found to be surprisingly accurate. The other two histograms in Fig. 4.5 reveal that

both 3- and many-body GP-FFs achieve a force prediction for all cluster structures

that satisfies the sought accuracy when Dtr ≥ 200.

The accuracy of n-body kernels reveals insightful information about the rela-

tive importance of n-body contributions to the forces in the five Ni19 cluster mor-

phologies. For instance, in the 3HCP morphology, the MAEs of 2-body and 3-body

forces are very similar; this indicates that the angular dependence of forces is not

crucial in this structure. This is indeed not true for other structures such as 4HCP

and dDIH, where the 3-body MAE is significantly lower than the 2-body one; an-
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Figure 4.4: MAE on force vectors as a function of the number of training points employed
for 2-, 3- and many-body GP-FFs. Same-isomer tests on DIH (a), BIP (b),
4HCP (c) and dDIH (d) are shown. The GP-FFs’ n-body order is colour coded,
with 2-body represented in teal, 3-body in blue, and many-body in orange.

gular interactions must be included to obtain an accurate prediction of forces in

these motifs. We note that the comparison of n-body GP-FFs’ errors could be

generally used as a tool to characterize the nature of interatomic interactions in

complex systems such as MNPs or grain boundaries, and to highlight and measure

(dis)similarities both among these systems and relative to bulk structures.

The MAEs on force vectors obtained for cross-isomer tests are reported in

Figure 4.6; the graphs include also the results for same-isomer tests. In these

cases, the 2-body GP-FFs incur MAEs consistently higher than the reference error

of 0.15 eV/Å. By comparing the 3- and many-body GP-FFs, we notice that the

accuracy achieved by the 3-body GP-FFs strongly depends on the training mor-

phology, while the many-body GP-FFs incur more consistent errors across different
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Figure 4.5: MAE on force vectors incurred by GP-FFs at convergence for same-isomer
tests for each of the 5 morphologies in Figure 4.1. The performances of the
2-body, 3-body, and many-body GP-FFs are reported. For all tests, Ntest = 400
and Ntr = 500 (2- and 3-body GP-FFs) or Ntr = 1000 (many-body GP-FFs).

structures. This non-trivial observation could be rationalised by arguing that a

many-body kernel can learn high-n interaction terms whose contributions are effec-

tively encountered in every data set, even e.g. in structures where their contribution

to the force prediction is less important. These high-n interaction terms may help to

retain a good prediction accuracy also on “partially unknown” new morphologies,

where higher-order contributions have increased importance (e.g. in low-symmetry

motifs such as 4HCP and dDIH). The 3-body kernel is instead restricted by design

to 3-body interactions; if the reference forces include e.g. a 4-body contribution,

the GP-FF will learn to “fold” this higher-dimensional interaction into the 2- and

3-body terms by over-fitting a correction to the true underlying 2+3-body contribu-

tions for the training data where a 4-body interaction is present. This incorporation

of high-order interactions may achieve some success only in same-isomer (inter-

polation) tests, where the test configurations share structural similarities to the

training structures the GP-FF was fitting on, but will not correctly extrapolate to

new structures. This suggests that the accuracy of a 3-body GP-FF on a target
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Figure 4.6: From top to bottom, the MAE on force vectors and its standard deviation for
the 2- (Ntr = 500), 3- (Ntr = 500) and the many- (Ntr = 1000) body GP-FFs
trained and tested on different Ni19 datasets at 300 K. The label color refers
to the isomer contained in the training set, the bar color indicates the isomer
present in the test set; they are consistent with the colors used in Fig. 4.1.
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input is significantly conditional to the presence of points in the training database

which are representative of that specific input. Consistently, for 3 body GP-FFs,

2-
B

3-
B

M
-B

0.12 eV/Å 0.50 eV/Å
Figure 4.7: MAE on force vectors incurred by the 2-(top), 3-(central), and many-body (bot-

tom) GP-FFs on every atom comprising dDIH when trained on (left to right):
3HCP, DIH, BIP, 4HCP, dDIH. The MAE represented via color-coding ranges
from 0.12 eV/Å (blue) to 0.5 eV/Å (red). Original figure first published in [84]

the training databases of the low-symmetry geometries (4HCP and dDIH) that have

the most varied local atomic environments are those which incur low MAEs in

cross-testing. We also observe that the cross-testing MAE incurred by training on

4HCP and testing over its higher-symmetry counterpart 3HCP is 0.18 eV/Å, while

the opposite test yields a larger MAE of 0.26 eV/Å. This behaviour is even more

evident when we look at the dDIH (low symmetry) and DIH (high symmetry) pair

of geometries, where the errors for the direct and reversed tests are 0.14 eV/Å and

0.31 eV/Å, respectively.

Further analysis of the GP-FFs’ accuracies yields some qualitative under-

standing of why the use of different training databases results in larger or smaller
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accuracies over the testing sets. We look in detail at the case of training on each of

the five morphologies and testing on dDIH for different kernels: figure 4.7 contains

a visual representation of the MAEs incurred in testing the 2-, 3- and many-body

GP-FFs on every atom of dDIH. As expected from Fig. 4.6, the 2-body GP-FFs

incur large errors for all training sets but dDIH - which is in this example in same-

isomer testing. For the 3-body GP-FF, training on a database composed of data

coming from 4HCP offers the best overall cross-isomer test result (while, not sur-

prisingly, same-isomer training on a dDIH database yields better accuracy). Such

a GP-FF incurs a low MAE on most atoms of dDIH, falling short only around the

rosette defect, a distortion present only within the dDIH structures. The accuracy

displayed by GP-FFs trained on the DIH database is also good for the lowermost

5-fold cap of the dDIH structure; this is to be expected as local atomic environments

containing 5-fold caps can be encountered in both datasets. Cross-isomer training

using local atomic environments coming from the BIP and 3HCP datasets instead

fails to accurately predict forces around the two icosahedral centres and the rosette

defect of dDIH. These results are mirrored for the many-body kernel, where the

DIH-trained GP-FF is the best performing one (excluding the GP-FF employing the

dDIH dataset).

4.2.4 Heterogeneous Training and Training Set Optimisation

We now examine the mixed-isomer tests, to analyse how a small training dataset

Dtr which still includes a sufficiently varied ensemble of 2- and 3-body local atomic

environment descriptors (i.e. bond distances and angles) can be constructed. To do

so, we test the accuracy of training on datasets that contain data from two, three,

and all five different cluster geometries. Our results indicate that the MAE on forces

incurred by the 3-body GP-FFs is rather homogeneous in all of the various mixed-

isomer tests, presenting a standard deviation across all tests of 0.03 eV/Å, contrary

to what was found for the same-isomer tests. This trend suggests that introducing

some variety in the training dataset allows achieving a reasonably complete train-

ing of a 3-body GP-FF, avoiding over-fitting caused by the misrepresentation of



84 4.2. GP-FFs for Ni19 Nanoparticles

4HCP 4HCP+dDIH BIP+4HCP
   +dDIH

All - low T All - mix T
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

Training Dataset

M
AE

F 
[e

V/
Å]

Testing Dataset
3HCP
DIH
BIP
4HCP
dDIH

Figure 4.8: Convergence MAEs on forces for four 3-body GP-FFs trained on data coming
from ab initio MD simulations carried out at 300 K and comprised of 500
data points representative of one, two, three and all five cluster geometries,
and a “all - mix T” database containing 1000 training points that include all
cluster morphologies, extracted from AIMD simulations carried out at different
temperatures (300, 600 and 900 K).

higher-order interactions pertinent to a particular morphology. Consistently, the

MAE on forces incurred by the many-body kernel, a kernel that is not restricted to

3-dimensional feature space and is therefore much harder to fully train, presents

a slightly higher standard deviation (0.05 eV/Å) in the same scenarios. For all

GP-FFs, we find in general that mixed-isomer tests yield errors comprised between

those incurred in same-isomer and cross-isomer tests. The MAEs on forces are

therefore slightly higher than those incurred in while in same-isomer tests but sig-

nificantly smaller than those associated with cross-isomer ones.

Figure 4.8 depicts the error incurred by the 3-body GP-FFs trained on the

“best” single-morphology database (4HCP), the best two- and three-morphologies

mixed databases, the full 5-morphologies database (“all - low T”) containing 500

training points, and another 5-morphologies database (“all - mix T”) that includes

1000 data points extracted from AIMD simulations carried out at 300, 600 and

900 K. The inclusion of a training set that contains high-temperature data is jus-

tified by the increased amount of internal database variability present; which has

been observed to be a positive contributor to a GP-FF’s accuracy. The accuracies
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displayed meet the target of MAE on forces < 0.15 eV/Å for all training frame-

works and notably, the 5-morphologies “all - low T” dataset showcases the same

accuracy of all the other database choices which had to be pinpointed as the best

restricted ones. The overall best accuracy is achieved when using the “all - mix

T” training dataset, which displays an average MAE on forces of 0.11 eV/Å, lower

than the one encountered by the second best-performing dataset, “all - low T”: 0.14

eV/Å.

We now analyse the influence on a GP-FF’s accuracy of the exact composi-

tion of its training set. To do so, we create 100 independent “all - low T” training

databases, each containing a total of 500 local atomic environment descriptors: 100

for every morphology, randomly selected. The average MAE on forces incurred by

3-body GP-FFs trained on these “all - low T” datasets when tested on a fixed dataset

containing all five morphologies is 0.14 ± 0.07 eV/Å. We find a very small differ-

ence of 0.004 eV/Å between the MAE on forces incurred by the best-performing

‘all - low T” 3-body GP-FF and the average value.

The above result suggests that the accuracy gain obtainable by a careful and

guided choice of the best possible training database is practically negligible in this

scenario. To further investigate this issue, we perform Metropolis Monte Carlo

simulations on the choice of points to include in the training set, to try to find a

training set which reports lower errors. The quantity we choose to sample in this

Monte Carlo procedure is a linear combination X(Dtr) of the MAE on forces and

the standard deviation (STD) of the absolute error on forces, both taken as functions

of the training set Dtr:

X(Dtr) = MAE(Dtr)+2 STD(Dtr). (4.1)

We first sample and keep fixed a test set Dtest , used to test the accuracy of all

generated GP-FFs. We then initialize a training database of Dtr randomly-chosen

data points and carry out Metropolis steps exchanging database entries with new
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ones randomly chosen from our complete dataset, and using the metric defined

in Eq. (4.1). This process typically yields a MAE on forces that is lower by just

0.001 eV/Å than the one of a randomly sampled training set, when using Dtr = 200

data points to train the many-body GP-FF; this discrepancy is further reduced with

increasing Dtr. The accuracy gain for this rather exhaustive procedure is therefore

negligible.

4.2.5 Analysing Similarity Metrics: PDF and BADF Distances

We now compare the pair-distance function (PDF) and the bond angle distribution

function (BADF) of the five morphologies as computed using trajectory data of

the AIMD simulations carried out at 300 K, reported in Fig 4.10 in color. These

distributions encode information regarding the structural differences between the

geometries. For example, the PDF peak present at 3.3 Å in the 3HCP, 4HCP, and

BIP structures disappears for the DIH and dDIH motifs. The BADF in the bottom

panel of Fig. 4.10 displays wider peaks for 4HCP and dDIH and much sharper ones

for 3HCP, DIH, and BIP.

We employ the Kullback−Leibler (KL) divergence as a quantitative measure of

how well a PDF “samples” another one. For two discrete probability distributions,

namely P and Q, this is defined as:

KL(P||Q) = ∑
i

P(i) log
P(i)
Q(i)

. (4.2)

The KL divergence can be thought of as an asymmetric measure of the information

“lost” when using a function Q to approximate another function P. This measure

returns 0 when the two functions are identical, i.e. P = Q, and a positive number

that increases as P grows dissimilar from Q. Since we want to evaluate the ability of

a GP-FF trained on a morphology to predict forces on another morphology, Q and P

are in our example the PDFs associated with the training and test set, respectively.

In Fig. 4.9 we display a scatter plot that compares the KL divergence calculated be-



87 4.2. GP-FFs for Ni19 Nanoparticles

0 0.2 0.4 0.6 0.8 1

PDF relative KL divergence

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

ze
d

 2
-b

o
d

y 
cr

o
ss

 e
rr

o
r R² = 0.962

Figure 4.9: Scatter plot highlighting the correlation between the normalized KL divergence
calculated on ordered pairs of binned PDFs from Fig. 4.10 and the cross-isomer
test MAEs on force vectors incurred for the corresponding pairs of train-test
morphologies. A linear fit (black dashed line) and the corresponding R2 coeffi-
cient are displayed. Original figure first published in [84].

tween each ordered pair of PDFs of from Fig. 4.10 (normalized so that the maximum

value is 1) with the corresponding MAE on forces incurred by the 2-body kernel for

cross-isomer tests (also normalized so that the maximum value is 1). A correlation

between the two dissimilarity measures emerges from the graph. This highlights

the importance of the presence of training database entries which contain pairs of

atoms at distances that are relevant for the local atomic environment descriptors

found in the test set. Moreover, since the PDF can be assumed to act as a unique

structural descriptor in the case of monometallic nanoparticles [145, 146, 147, 56],

the presence of a correlation in Fig. 4.9 indicates that the 2-body cross-isomer test

error is non-trivially connected to features that go beyond 2-body descriptors. For

this reason, the KL divergence between PDFs could be used as an a priori estimate

of the expected accuracy of 2-body kernels in cross-isomer tests. For completeness

sake, we carried out similar tests for the 3-body kernel, looking at the KL diver-

gence between the BADFs and the 3-body MAEs. These scatter plots also display

positive correlation, but the R2 index is too low to consider these results to be sta-

tistically significant. These results suggest that evaluating the KL divergence for
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functions other than the PDFs or BADFs could provide an array of structural dis-

similarity estimators. These could be then used to guide the creation of informed,

minimally sized training databases from a “general” database too large to be used in

toto for GP regression. Indeed, this idea has been incorporated in the MFF package

via the “descriptor sampling” algorithms, which use the presence of unique bond

distances (or angles) to guide the inclusion of local atomic environment descriptors

in the training set (See Appendix A.1 for more details). Such algorithms have been

tested for Ni19 but no significant accuracy gain w.r.t. random sampling methods was

observed for 2- and 3-body GP-FFs.

4.3 M-FFs for Ni19 Nanoparticles

To perform computationally cheap MD simulations with near-ab initio accuracy we

map the two best-performing GP-FFs from Sec. 4.2 (“all - low T” and “all - mix T”)

onto non-parametric 3-body M-FFs, following the procedure introduced in Sec. 3.1.

We first test their accuracy on data extracted from 600 K and 900 K AIMD sim-

ulations, where the starting structures were set to be 3HCP and DIH, respectively.

In both cases, the Ni19 nanoparticle undergoes several structural rearrangements

during the course of the AIMD simulation. The computed MAE on forces for

the ”all - low T” M-FF is 0.26 ± 0.24 eV/Å for 3HCP at 600 K and 0.25 ± 0.17

eV/Å for DIH at 900 K. These values indicate at the ”all - low T” M-FF retains an

acceptable accuracy level on configurations not represented in its training dataset.

We should also point out that higher MAEs should be expected for high-T sam-

ples since forces have larger moduli at higher temperatures. The MAE on forces

incurred by the “all - mix T” M-FF is instead 0.25± 0.46 eV/Å for 3HCP at 600 K,

and 0.17 ± 0.09 eV/Å for DIH at 900 K.

To check whether M-FFs trained on finite temperature data coming from dy-

namical simulations can capture information relevant to the minima structures of

the nanoparticle, we checked their accuracy on force predictions for minimized 0 K
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Figure 4.10: Pair-distance (top) and bond angle (bottom) distribution functions for the five
morphologies, averaged over 2 ps of AIMD (colour) and M-FF (black dashed)
MD simulations carried out at T=300 K. Original figure first published in [84]

structures. The two M-FFs incur MAE of 0.10 ± 0.02 eV/Å and a 0.06 ± 0.02

eV/Å for the “all - low T” and the “all - mix T”, respectively. The inclusion in the

training databases of data collected during structural relaxations reduces the MAE

on forces to 0.04 ± 0.02 eV/Å for both M-FFs.
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To further inquire about the capability of our 3-body “all - low T” M-FF to

faithfully reproduce dynamical behaviour observed in AIMD, we run three 200 ps-

long 300 K MD simulations for each of the five morphologies. We then compare

the observed PDFs and BADFs with the reference ones extracted from equally

long AIMD simulations of the same geometries, also at 300 K. The almost perfect

overlap obtained for both PDFs and BADFs, observable in Fig. 4.10, provides

further validation of the ability of the M-FF to reproduce the dynamical behaviour

of reference ab initio methods.

While the M-FFs we developed were trained with the aim of evaluating dy-

namical properties and therefore using force data only, it is still of interest to assess

their accuracy w.r.t. reference total energy differences. For the ”all - low T” M-FF,

the MAE incurred on energy predictions over the five structures at 300 K is 16± 10

meV/atom; this figure is reduced to 9± 7 meV/atom for the ”all - mix T” M-FF. The

M-FFs are therefore satisfyingly accurate when predicting total energies despite not

being trained on total energy data.

4.3.1 Assessing the Thermal Behaviour of Ni19

To assess whether M-FFs can be used to gain novel physical insights into the sys-

tem’s behaviour, we now study the kinetic evolution of Ni19, exploring the extent of

shape fluctuations occurring in the nanoparticle as T varies [58, 56, 61, 57]. To this

end, we run NVT classical MD simulations within the ASE Python environment

[121] at 50 K-spaced temperature intervals between 300 K and 1200 K using a time

step of 3 fs and a Langevin thermostat, with damping set to 0.001. For both M-FFs,

we perform four 480 ps-long simulations for each temperature starting from each

isomer presented in Fig. 4.1. We run for a total of 4 (runs) · 5 (starting geometries)

· 19 (temperature intervals) · 480 ps = 182 ns over 380 simulations. The use of

M-FFs rather than DFT allows us to gain a computational factor of ∼ 106 in these

MD simulations, bringing the total time required to simulate on 24 cores from an

estimated 2000 years to 4 days.
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Figure 4.11: RMBF value against the nominal simulation temperature for two 3-body M-
FFs; the error bars display the standard deviation over 20 simulations. Blue,
yellow, and red shadowing are used to highlight the characteristic values of
RMBF for nanosolids (< 0.1), slushes (0.1 - 0.3), and nanoliquids (> 0.3).

To detect when phase changes occur in such small systems is not trivial. Here

we opt to calculate the root mean bond fluctuation (RMBF), which describes the

average interatomic distance oscillation at a given temperature [154]. The RMBF is

defined as:

RMBF =
2

N(N−1) ∑
i< j

√
〈r2

i j〉−〈ri j〉2

〈ri j〉
, (4.3)

where N is the number of atoms in the system and the average 〈•〉 is taken over the

whole simulation trajectory. The RMBF is often used to highlight phase changes

in nanoscale systems [148, 149, 150, 151, 152, 153]; following the existing litera-

ture, the first few ps (here 5 ps) of every simulation here excluded from the RMBF

calculation to allow for thermal equilibration of the system. Figure 4.11 displays

the so-calculated RMBF values averaged over 20 (5 clusters and 4 repetitions each)

simulations for each T as a function of T for MD simulations carried using the “all -

low T” and the “all - mix T” M-FFs. The standard deviations of the average RMBF

are also indicated in Figure 4.11 as error bars. Independently on the training set, we
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observe from Fig. 4.11 that the phase change is not sharp and there is a temperature

window where the MNPs are in an intermediate state between solid and liquid;

such window refers to the formation of slush-states [154]. Both a M-FF that was

expected to operate in a largely extrapolatory regime (i.e. all - low T”) and a M-FF

that was instead built with a dataset that included high-T configurations (i.e. all -

mix T”), more directly relevant to the MD simulations that were carried out, yield

consistent RMBF trends.

In more detail, for temperatures below 650 K, all of the analysed Ni19 remain

solid independently on the starting configuration and on the choice of the training

set, as indicated by the small (< 0.1) RMBF. Within this region, the “all - mix T”

M-FF displays a significantly non-zero RMBF; this indicates that small geometrical

changes were present in the MD simulations for some of the starting geometries.

A RMBF > 0.3, characteristic of nanoliquids [154], is observed for temperatures

above 900 K in MD runs employing the “all - low T” M-FF, and in a similar manner

for temperatures greater than ∼975 K while using the“all - mix T” M-FF. In the

intermediate, ∼700-900 K temperature interval, the observed RMBF for the Ni19

nanoparticle is associated with an intermediate phase between the nanosolid and

nanoliquid regimes. The prediction of a “slush” intermediate state is also consistent

with the high probability of geometrical rearrangements that have been discussed

thoroughly for small MNPs [154, 155].
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Transferability of GP-FFs for MNPs

The large dimensionality of the effective configurational space of nanoparticles,

where the number of atoms, chemical composition, chemical arrangement and ge-

ometry all constitute degrees of freedom for the system’s structure and behaviour,

are responsible for their strong structure-property relationship. In the context of FF

development, this poses a huge challenge, as developing ad hoc classical P-FFs that

are accurate for a wide size range, different geometries and chemical compositions

of MNPs is extremely resource-intensive. Gaussian process FFs are an ideal candi-

date to address the task, as they require small training datasets which can, therefore,

be produced on demand for a large subset of system sizes and geometries, and very

little user input once the kernel functions are chosen. Nonetheless, the creation of

ML-FFs to model NPs for which quantum reference data cannot be generated (e.g.

MNPs with more than a thousand atoms) is still an open challenge. Indeed, to the

author’s knowledge, no ML-FFs have been yet used to run MD simulations of NPs

which size was larger than the ones present in the reference quantum training set.

In this chapter, we address the issue of the size transferability of GP-FFs for

MNPs. We touch upon a parallel topic in Chapter 4, where we analyse the develop-

ment of GP-FFs that are morphology-transferable, i.e. that report good accuracies

across different geometrical rearrangements of the same nanoparticle. In this chap-

ter, we take a step further and analyse the accuracy of GP-FFs across reference

quantum datasets that contain structures with varying sizes and morphologies. In
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Sec. 5.1 we consider small Ni nanoparticles containing 20 or fewer atoms; at these

small scales, every atom counts towards the geometrical stability and electronic

structure of the system. The creation of an FF that is accurate across even small

variations in the number of atoms is therefore complex, but rewarding whenever a

single FF can faithfully reproduce the physics of this set of systems. In Sec. 5.2 we

instead consider larger size differences, taking additional steps to address the gen-

eration of GP-FFs for NPs which size is so large that reference ab initio data cannot

be generated. We consider in particular Au NPs containing 147, 309 and 561 atoms

for which quantum reference data is available, and test the accuracy of 3-body and

3-body+EAM-like GP-FFs across all three systems. Of particular interest is, in this

case, the accuracy of GP-FFs which are trained on NPs of a certain size and tested

on NPs of a larger size.

In Appendix A.3, we additionally report preliminary results on the application

of GP-FFs across the phase diagram of nanoalloys for the case of AuAg with 32

atoms.

5.1 Transferable GP-FFs for Small Ni NPs
As a first case study for the transferability of GP-FFs across multiple MNPs’ sizes,

we look at a Ni system containing 13, 15, 17, 19, and 20 atoms. The data relative

to Ni19 is the same as the one employed in the analysis carried on in Chapter 4.

The remaining data is generated performing AIMD simulations within the VASP

package, using a plane-wave energy cutoff of 270 eV, and an energy convergence

cutoff of 104 eV 1. We calculate the exchange-correlation functional employing

the PBE/GGA approximation [143], and spin-orbit coupling effects are accounted

for. The ab initio MD simulations employ a Nose-Hoover thermostat to control

the temperature for NVT runs at 300 K; the time step is set to 3 fs and the total

simulation time is approximately 100 ps. Figure 5.1 displays the morphologies

present in the dataset, which includes the 5 Ni19 morphologies already discussed in

1We thank Dr. Kevin Rossi, Laboratory of Computational Science and Modelling, École Po-
litechnique Fédérale de Lausanne, for providing this reference quantum dataset
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Figure 5.1: Fourteen Ni NP structures arranged vertically according to their number of
atoms, and horizontally according to categorical morphology, left to right: 3-
layers HCP, icoshaedron or double icosahedron, FCC-like, 4-layers HCP, de-
fected icosahedron, tetrahedron. The color coding reflects the one used in Sec.
4.2.

Sec. 4.2. The geometries included are chosen according to an energetic criterion,

and NPs containing an odd number of atoms were favoured to maintain a certain

level of homogeneity w.r.t. the electronic structure and magnetic properties of NPs.

NPs of size 20 are added to the database as an outlier to the above rule.

In Sec. 4.2.4 we concluded that a simple but effective recipe to build 3-body

GP-FFs that incur low errors across different morphologies is to build a training

database that includes a certain level of variety of such morphologies. We, there-

fore, construct 5 training sets, one for each NP size, that contain data coming from

all of the available morphologies at that size. These 5 training sets are used to fit

single-size 2-, 3- and many-body GP-FFs, which we then test both in a same-size

and a cross-size regime. To do so, test sets containing 1000 data points per NP
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Figure 5.2: MAE on force vectors [eV/Å] for 2-body (a), 3-body (b) and many-body (c)
GP-FFs trained and tested on databases containing quantum reference data rel-
ative to Ni NPs with different number of atoms, and for a database containing
1000 training points randomly sampled from all available sizes (named “all”).
The diagonal entries of the matrices refer to same-size tests, off-diagonal en-
tries report errors incurred for cross-size tests, and the last column refers to a
mixed-size testing scenario. The standard deviation of the reported errors is not
displayed for better visualization of the results, as it is consistently less than
10% of the MAE. MAE values are color-coded, with teal being MAE = 0 and
orange being MAE ≥ 1.

size are built and excluded from the training sets; the training and test process is

then repeated 5 times to obtain a standard deviation of the MAE on forces. The

results of these tests are visible in Fig. 5.2, which reports the MAE on force vectors

incurred by 2-, 3- and many-body GP-FFs when built using single-size databases

containing 500 randomly-selected training points. The MAEs on forces incurred

by all GP-FFs for same-size tests are consistently lower than the ones incurred in

cross-size tests, as expected. We also observe that, in general, the larger the size

difference between NPs, the larger the cross-size test error. Furthermore, GP-FFs

trained on NPs of small size and tested on NPs on large size usually report higher

errors than the reverse. This trend is highlighted in Fig. 5.3, where we report the
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Figure 5.3: Scatter plot displaying the MAE incurred when training on a Ni NP of size Ntr

and testing on a Ni NP of size Ntst as a function of the absolute size difference
|Ntr−Ntst | for 2- (a), 3- (b) and many-body (c) GP-FFs. Cross-size tests where
Ntr < Ntst are represented as blue upwards triangles, Ntr > Ntst as orange down-
ward triangles, and same-size tests as green dots. Linear fit lines are also shown
in matching colors to highlight the trends; their intercept is set to 0.

MAEs displayed in Fig. 5.2 as a function of the difference in the number of atoms

between the structures comprising the training and test set.

With regards to kernel performance, the 3-body GP-FF is the best one in same-

size tests but falls off in favour of the simpler 2-body GP-FFs for cross-size tests.

This characteristic was observed also for the case of cross-isomer testing in Ni19

but is here more prominent. The accuracy displayed by 2-body GP-FFs does not

meet the target of MAE ≤ 0.15 eV/Å; we must, therefore, rely on 3-body GP-FFs

to reach such accuracies. To train 3-body GP-FFs that are accurate for Ni NPs

of different sizes we must therefore include a representative size and geometrical

diversity in the training set. To avoid the over-fitting of the potential caused by the

misrepresentation of size-specific many-body effects as 3-body contributions, we
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build and test GP-FFs that are trained using an even mix of configurations com-

ing from Ni NPs of different sizes, mirroring the procedure followed in 4.2. The

MAE on forces incurred by 2-, 3- and many-body GP-FFs trained on a database

named “all”, containing 1000 configurations selected at random from the 5 NP

sizes considered, are displayed in Fig. 5.2. The “all” GP-FF incurs errors that are

consistently smaller than the ones displayed by GP-FFs in a cross-size scenario,

and always slightly larger than the ones found in same-size testing scenarios; this is

true for the 2-, 3- and many-body GP-FFs. The 3-body “all” GP-FF showcases the

overall best performance, incurring in an average MAE on forces of 0.166 eV/Å

across the five structures, with a maximum value of 0.219 eV/Å for tests on Ni20

and a minimum of 0.125 for Ni19.

The above results hint at the possibility that a reliable and accurate force field

for a set of MNPs presenting different sizes and morphologies can be built using

a non-parametric machine learning approach. While errors on force prediction in-

curred by GP-FFs trained on a dataset containing MNPs of a single size on MNPs

of different size are very large, much better accuracies are obtained for mixed train-

ing datasets that include all the sizes considered, especially for 3-body GP-FFs.

The high errors incurred in cross-size test scenarios act as a confirmation that “ev-

ery atom counts” in the sub-nano regime: the dynamical behaviour (i.e. forces) of

an MNP are not accurately predicted by algorithms trained on MNPs containing a

slightly different number of atoms. To address the size transferability of GP-FFs for

NPs where the structural properties are not so strongly affected by the exact number

of atoms we, therefore, turn our attention towards bigger systems, which properties

are less sensitive to the addition of single atoms.

5.2 Transferable GP-FFs for Large Au NPs

To assess whether a GP-FF trained on data coming from an NP of a certain size can

accurately predict forces and energies on an NP of a bigger size, we consider three

Au NPs containing respectively 147, 309 and 561 atoms. The reference quantum
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Figure 5.4: Six Au NP structures, two per NP size, representative of the morphologies en-
countered in the reference quantum database. Structures are vertically ordered
according to their number of atoms, and horizontally according to categorical
morphology: amorphous and cuboctaheral. The PDF for the depicted snap-
shots is also shown to the left, to highlight the structural difference between the
NPs.

data, originally used in Ref. [156], is generated via AIMD simulations at temper-

atures ranging from 300 to 925 K using the VASP package [157], under the local

density approximation [158] 2. The AIMD simulations are carried out in an NVT

ensemble, using a timestep of 2 fs, and employ a Nose-Hoover thermostat with an

effective mass of 40 timesteps. The energy cutoff of the plane-wave basis set is

240 eV, with an energy convergence cutoff of 10−6 eV. The final dataset contains

approximately 60 snapshots extracted from longer AIMD simulations for each Au

MNP size considered, for a total of ∼ 60000 reference force data. For all three

2We thank Dr. Theodore Pavloudis, College of Engineering, Swansea University, for providing
this reference quantum dataset



100 5.2. Transferable GP-FFs for Large Au NPs

NP sizes, the initial structures in the AIMD simulations are perfectly octahedral,

and become increasingly more amorphous as simulation temperature increases. In

Fig. 5.4 we display six snapshots of the structures present in the reference quantum

datasets, two per NP size. The NPs shown in the “Cuboctahedron” column of Fig.

5.4 are the starting perfectly symmetric structures, and NPs shown in the “Amor-

phous” columns exemplify the low-symmetry geometries encountered in high-T

AIMD simulations.

We first train 3-body GP-FFs on reference force data for each of the three NP

sizes and test their accuracy both in a same-size and in a cross-size scenario. The

distribution of errors on force vectors incurred by these 3-body GP-FFs, trained us-

ing 1000 {q3, f} pairs, and tested on 2000 local atomic configurations for each NP

size (not included in the training dataset), are graphed in Fig. 5.5a. The MAEs in-

curred while same-size and cross-size testing are more homogeneous than the ones

encountered in same-size tests for smaller Ni nanoparticles in Section 5.1, and are

comprised between 0.28 and 0.48 eV/Å. Nonetheless, the 3-body GP-FFs display

an overall unsatisfactory accuracy on force prediction; we, therefore, fit EAM-like

GP-FFs, introduced in Sec. 2.2.3, on the difference between the 3-body GP-FFs

force predictions and the reference quantum forces, to increase the GP-FFs’ per-

formance. The accuracies of the resulting GP-FFs, which do contain a 2-body, a

3-body, and a many-body term, are shown in Fig. 5.5b. A comparison of the two

heat maps displayed in Fig.5.5 highlights the accuracy gain resulting from the in-

troduction of an EAM-like correction to the 3-body GP-FF. These GP-FFs display

better performance than their 3-body counterpart and incur very homogeneous er-

rors across the nine training NP size - test NP size combinations, with an average

MAE on force vectors of 0.242 ± 0.036 eV/Å. The small difference between errors

encountered in same-size and cross-size tests implies that local atomic environments

present in the reference data of a NP of a certain size are very similar to the ones

encountered in reference data of other NP sizes for this system. Of particular inter-

est is the good accuracy displayed by the 2+3+EAM GP-FF trained on the smallest
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Figure 5.5: Box plot of errors on force vectors [eV/Å] for 3-body (a) and 3-body + EAM
(b) GP-FFs trained and tested on databases containing quantum reference data
relative to Au NPs with different number of atoms. The number of atoms in
the NP used to train the GP-FF is color-coded, with blue being 147, orange
309 and green 561. On the x-axis we group error distributions according to the
number of atoms of the NP used to test the GP-FFs. On the y-axis we report the
distribution of the error on force vector incurred by the GP-FFs. Each training
dataset contained ∼1000 local atomic environment - force vector pairs, and
each test datasets contained ∼2000 local atomic environment - force vector
pairs not included in the training dataset. The training and test datasets are kept
fixed for both kernels and for all tests.

of the three NPs, Au147, which incurs MAE on force vectors of 0.252 eV/Å while

tested on Au561, an NP more than three times larger than Au147.
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Conclusions

The development of accurate force fields to run molecular dynamics simulations

for long times and on large systems is a complex and open problem, that tradi-

tionally requires a great deal of human effort and manual tuning of parameters.

In the past years, machine learning algorithms have been employed to generate

non-parametric FFs starting from existing databases, commonly obtained from ab

initio simulations. The most widespread algorithms for the creation of machine

learning FFs are Gaussian process regression and artificial neural networks. The

former can be trained using very restricted reference datasets, but their computa-

tional cost in prediction scales linearly with the training set size. The latter require

training sets that are on average much larger than the ones used by GPR algorithms,

but have the advantage that their prediction cost is independent of the number of

training points used, and therefore usually lower than GPR algorithms displaying

comparable accuracy. Traditionally, regardless of the specific machine learning

methodology used, the resulting force fields are many-body. This means that the

atomic force and energy predictions yielded by such FFs cannot be decomposed

into a finite series of n-body contributions, e.g. bond distance, angle, torsion angle,

but depend instead on the set of positions of all atoms contained in the local atomic

environment. Many-body FFs are constructed either by employing many-body de-

scriptors as inputs to the regression problem or by using low-order descriptors as

inputs and then exploiting the nonlinearities of the learning algorithm (this is e.g.

the case in artificial neural networks).
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In this work, we discussed the use of GPR to build FFs that are explicitly 2-

and 3-body. In Chapter 2 we introduced explicit 2- (3-) body descriptors and use

them as inputs to the GPR algorithm in order to obtain Gaussian process force fields

that are explicitly 2- (3-body). We then exploited the possibility to decompose such

specifically designed GP-FFs into explicit n-body contributions to “map” the GP-

FFs onto classical nonparametric tabulated FF. Using this approach, it is possible to

circumvent the linear scaling of GPR in the training database size and to obtain a

significant computational speed-up, of the order of 104-105 when compared to the

traditional Gaussian process FFs. Moreover, the “mapping” technique preserves the

accuracy of the original Gaussian process FF, and allows for an easy interpretation

and visualization of the final FF. We also presented a many-body correction term

to 2+3-body FFs, which is inspired by embedded atom method (EAM) potentials,

and is a function of a scalar many-body local atomic environment descriptor. This

EAM-like many-body term, unlike more complex many-body terms used in liter-

ature, can be also “mapped” onto a classical nonparametric FF, thanks to the low

dimensionality of the associated descriptor. The correction introduced by this term

reduces errors incurred by mapped FFs on the force prediction in metallic systems

such as bulk Fe containing grain boundaries and Au NPs, without an increase in the

computational cost associated with the M-FF.

In Chapter 3 we presented the MFF Python package, an open-source and doc-

umented code that encodes the algorithms discussed in this thesis work, including

the mapping methodology. MFF, therefore, offers a tool for researchers to automati-

cally construct nonparametric classical force fields starting from reference quantum

data. The ability to build fast FFs from small reference databases enables the study

via MD simulations of systems for which a fast, classical FF would be necessary

(e.g. because of the simulation’s length and/or the large number of atoms present),

but is not available, or not accurate enough. We also carried out speed and accuracy

tests for such package and showed that FFs trained by MFF on restricted quantum
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datasets containing molecular dynamics simulations of Fe grain boundaries were

able to achieve better accuracy on force prediction than various iron-specific EAM

potentials found in literature, while being as fast to compute. As of May 2020,

following a collaboration between the author and the authors of the Fast Learning

of Atomistic Rare Events (FLARE) package, the MFF Python package is no longer

supported and has been merged into the FLARE Python package.

In Chapter 4, we proposed a systematic way to construct machine learning

FFs for metallic nanoparticles, a traditionally challenging ensemble of systems to

accurately simulate using classical parametric FFs. Chemo-physical properties of

metallic NPs depend so strongly on their architecture that changes in their geomet-

rical arrangement and chemical ordering as a function of the nanoparticles size and

chemical composition, or simply due to variation of the environment’s conditions,

must be predicted carefully. The first system we analysed is Ni19, where we con-

sidered different training datasets containing one or more isomers obtained from

different AIMD at different T. We then built two mapped FFs that incurred aver-

age errors on the force vectors smaller than 0.15 eV/Å when tested on reference

ab initio data. We used these FFs, one trained using data coming from ab initio

simulations carried out at 300 K, the other from similar simulations carried out at

300, 600, and 900 K, to run melting MD simulations of Ni19, for a total of ∼180 ns

of simulation time for each M-FF. The speed-up obtained by “mapping” the FFs al-

lowed us to run the simulations on 24 CPU cores in 4 days; the same process would

have taken ∼2000 years had we employed the ab initio method used to generate

the reference quantum data. The melting MD simulations helped us identify the

presence of a “slush” state, intermediate between nanosolid and nanoliquid states,

in the ∼700-900 K temperature range.

In Chapter 5, we discussed the issue of the transferability of machine learning

force fields for metallic NPs across their sizes. We focused again on Ni nanoparti-

cles of 13 to 20 atoms presenting various isomers. We observed that GP-FFs trained

on a single NP size were not able to faithfully predict forces when tested on NPs of
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other sizes; this result implies that at such small particle sizes, “every atom counts”

also for a ML force field. Nonetheless, by including relevant isomers at all sizes in

the training set, we built a 3-body mapped FF that incurs an average error on forces

of 0.15 eV/Å across the various nanoparticle sizes and geometries. We subsequently

moved the first steps towards the development of mapped FFs for nanoparticles of

diameter∼1.5 - 2 nm. Due to the technological interest of predicting the dynamical

behaviour of large NPs, it would be ideal to understand whether M-FFs trained on

NPs of sizes which can be simulated at a DFT level can be accurately used for larger

NPs too. We considered Au nanoparticles containing 147, 309 and 561 atoms, and

tested whether GP-FFs trained on the smaller nanoparticles can then be accurately

employed on bigger systems. We found that 2+3+EAM GP-FFs are able to repro-

duce most of the atomic interactions predicted by the quantum reference methods,

incurring in an average error on forces of∼0.28 eV/Å. In particular, GP-FFs trained

only using data of the smallest of the available nanoparticle systems perform almost

identically when tested on bigger nanoparticles to GP-FFs which were specifically

trained using reference quantum calculations of the test system. These preliminary

results pave the way towards the construction and usage of GP-FFs to simulate the

dynamical behaviour of MNPs at larger sizes, with an accuracy reasonably close to

DFT, by employing ab initio training datasets containing smaller MNPs.

The work presented in this thesis is by no means exhaustive and many topics of

interest have not been covered here, but could be addressed by future research. The

use of mapped force fields trained on both force and energy data, for example, was

not fully explored in this work, although it is implemented in the MFF package. The

implementation of the mappable 2+3+EAM FFs, which offers promising results,

should be considered in its infancy and we forecast few possible extensions, first and

foremost an improved handling of multiple chemical species in the EAM descriptor.

With regards to applications of M-FFs to MD simulations, the study of large Au

nanoparticles is ongoing, and the simulation of non-periodic systems containing

more than 1000 atoms is a likely future direction of research. Finally, uses of the
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MFF package for applications such as speeding-up the calculations of implicit water

models are currently being investigated.



Appendix A

A.1 Sampling Methods in the MFF Package
The MFF package currently supports four sampling methods for the reference train-

ing dataset: random, 2-body descriptor, 3-body descriptor, and CNA sampling.

The 2-body descriptor sampling exploits the explicit dependency of the 2-body

GP-FF on the inter-atomic distances to sample from the database informative local

atomic environments ρi. To do so, an array that bins the distance values from 0 to

the cutoff radius rC is created; the number of bins is either automatically optimised

to approximate the desired number of training points, or specified by the user. Then

the sampling module iterates over a shuffled database and includes local atomic

environments ρi in the training set only if at least one distance ri j in ρi belongs to a

bin of inter-atomic distances that has no elements in the training set. This way the

highest number of “unique” ri j values are represented in the training set, and the

number of bins of the descriptor for which there is no training point are minimized.

The 3-body descriptor sampling is a straightforward extension of the previous

method to the case of 3-body GP-FFs. In this case, triplets of inter-atomic distances

are binned in a 3-D vector, and local atomic environments containing at least a

triplet of atoms in which the distance values (ri j,r jk,rik) are not already present in

the training set are included.

Finally, CNA sampling is based upon the CNA descriptor, which was originally

developed by Stukowski et. al. to characterize local atomic environments [159,

160]. The CNA descriptor works on the graph of atoms, where connections exist
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between nearest neighbours. Two atoms are considered nearest neighbours if their

distance is less than a cutoff radius rCNA, usually taken as the mean between the first

and second peak of the pair distribution function in the system. The CNA descriptor

for a local atomic environment is then built as an M× 3 vector of integers, where

each row is a CNA signature relative to the nearest neighbour j of atom i and reads:

CNAi j = (ai j,bi j,ci j) (A.1)

where ai j is the number of nearest neighbours i and j have in common, bi j the num-

ber of bonds between these common neighbours, and ci j the length of the largest

chain of bonds connecting common neighbours. The CNA descriptor is calculated

for every atom i, and local atomic environments ρi are sampled from the dataset so

that the distribution of CNA signatures is as uniform as possible. This way, local

atomic environments that present unique atomic arrangements are prioritized in the

training set.

A.2 Many-body Kernels

Throughout the manuscript, two different unique many-body kernels were used as

benchmarking tools. The many-body force kernel used in Chapters 2, 3, and 4 was

built starting from the following many-body energy kernel:

kMB,appr.(ρi,ρ j) = exp
(
k2(ρi,ρ j)

)
(A.2)

and then employing a covariant summation:

KMB,appr.(ρi,ρ j) =
48

∑
i=1

Ui exp
(
k2(ρi,Uiρ j)

)
(A.3)

where Ui are rotation matrices belonging to the Oh crystallographic point group.

This kernel, introduced in [65], is an approximation of the unique fully many-body

kernel and is much faster to compute.
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The many-body force kernel used in Chapter 5 instead obtained via the expo-

nentiation of an already symmetric 3-body kernel, as per Eq. (2.40). It reads:

kMB(ρi,ρ j) = exp
(

k3(ρi,ρ j)

γ2

)
, (A.4)

where k3(ρi,ρ j) is the 3-body kernel of Eq. (2.38), and γ is a parameter that governs

the relative importance of low-order and high-order interactions. The expression for

the correspondent force and force-energy kernels was then obtained via differentia-

tion following Eq. (2.29). The kernel in Eq. (A.4) is the many-body kernel included

in the “MFF” Python package [35].

A.3 Transferability of GP-FFs in AgAu(32) NPs
We consider systems of AgAu nanoparticles comprised of 32 atoms, with vary-

ing morphology, chemical composition and chemical arrangement. Our aim is to

test the accuracy of GP-FFs trained and tested on data containing heterogeneous

chemical compositions and chemical arrangements. The reference quantum data

was generated using the Quantum Espresso package [161], where the exchange-

correlation potential was calculated employing the PBE/GGA approximation. The

Rabe-Rappe-Kaxiras-Joannopoulos ultrasoft pseudo-potential has been used to

model interactions between valence electrons and nuclei. The plane-wave energy

cutoff was set to 544 eV, and the charge density cutoff to 4900 eV 1.

Fig. A.1 displays the seven AgAu(32) compositions contained in the refer-

ence quantum dataset; all the AIMD simulations that generated the reference data

shared the same starting geometry: an elongated AgAu(32) nanoparticle presenting

an HCP motif, albeit possessing different chemical compositions. We trained and

tested a 3-body and a 3-body + EAM GP-FFs on the dataset; the resulting training

curves for the MAE on force vectors for 1000 randomly-sampled test points are

1We thank Dr. Francesca Baletto, Physics Department, King’s College London, for providing
this reference quantum dataset.
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Ag1Au27Ag4Au28Ag6Au26Ag21Au11Ag21Au11Ag26Au6Ag28Au4

Figure A.1: Seven AgAu32 NP structures, representative of the chemical compositions and
chemical arrangements encountered in the reference quantum database. Ag
atoms are represented in grey, Au in yellow.

shown in Fig. A.2, together with the relative standard deviations. The 3-body and
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Figure A.2: MAE on reference force vectors as a function of the number of training points
used for 3-body (blue triangles) and 3-body+EAM (orange dots) GP-FFs on
AgAu(32) MNPs with different chemical compositions. The standard devia-
tion of the error on force vectors is shown for a test set containing 1000 points.

the 3-body+EAM GP-FFs incur very similar errors, and both reach a plateau MAE

of∼0.23 eV/Å at 2000 training points. The negligible MAE difference between the

two GP-FFs (i.e. ∼0.01 eV/Å) might be due to the way multiple atomic species are

treated within the EAM kernel, which at the moment only distinguishes between

different atomic species for the central atom of the local atomic descriptor, not for

the surrounding ones. Improvements in the way multiple atomic species are handled
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by the EAM GP-FFs are under development. Nonetheless, the accuracy reached by

the GP-FFs is encouraging, as it narrowly misses the target MAE of 0.15 eV/Å de-

spite the complexity given by the presence of multiple chemical compositions and

chemical arrangements in the dataset.
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[35] C. Zeni, F. Ádám, and A. Glielmo, “MFF a Python package for building

nonparametric force fields from machine learning.” https://github.

com/kcl-tscm/mff, 2018.

[36] F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Ener-

getic, thermodynamic, and kinetic effects,” Review Modern Physics, vol. 77,

pp. 371–423, May 2005.

[37] D. M. Foster, R. Ferrando, and R. E. Palmer, “Experimental determination of

the energy difference between competing isomers of deposited, size-selected

gold nanoclusters,” Nature Communications, vol. 9, p. 1323, dec 2018.

[38] Z. Wang and R. E. Palmer, “Experimental Evidence for Fluctuating, Chiral-

Type Au55 Clusters by Direct Atomic Imaging,” Nano Letters, vol. 12,

pp. 5510–5514, nov 2012.

[39] R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys : From Theory

to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews,

vol. 108, no. 3, pp. 846–910, 2008.

[40] J. M. Rahm and P. Erhart, “Beyond Magic Numbers: Atomic Scale Equilib-

rium Nanoparticle Shapes for Any Size,” Nano Letters, vol. 17, pp. 5775–

5781, 2017.

[41] Z. Li and H. A. Scheraga, “Monte Carlo-minimization approach to the

multiple-minima problem in protein folding,” Proceedings of the National

Academy of Sciences, vol. 84, no. October, pp. 6611–6615, 1987.

[42] J. P. K. Doye and D. J. Wales, “Global minima for transition metal clus-

ters described by suttonchen potentials,” New Journal of Chemistry, vol. 22,

pp. 733–744, 1998.

https://github.com/kcl-tscm/mff
https://github.com/kcl-tscm/mff


117 Bibliography

[43] G. Rossi and R. Ferrando, “Searching for low-energy structures of nanoparti-

cles: a comparison of different methods and algorithms,” Journal of Physics:

Condensed Matter, vol. 21, p. 084208, jan 2009.

[44] G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, and R. Ferrando, “Electronic

and Structural Shell Closure in AgCu and AuCu Nanoclusters,” Journal of

Physical Chemistry B, vol. 110, pp. 23197–23203, 2006.

[45] F. Calvo, D. Schebarchov, and D. J. Wales, “Grand and Semigrand Canoni-

cal Basin-Hopping,” Journal of Chemical Theory and Computation, vol. 12,

pp. 902–909, 2016.

[46] C. J. Pickard, “Hyperspatial optimization of structures,” Physical Review B,

vol. 054102, pp. 1–10, 2019.

[47] R. L. Johnston, “Evolving better nanoparticles: Genetic algorithms for opti-

mising cluster geometries,” Dalton Transactions, pp. 4193–4207, 2003.

[48] S. Heiles and R. L. Johnston, “Global Optimization of Clusters Using Elec-

tronic Structure Methods,” International Journal of Quantum Chemistry,

vol. 113, pp. 2091–2109, 2013.

[49] T. Lazauskas, A. A. Sokol, and S. M. Woodley, “An efficient genetic algo-

rithm for structure prediction at the nanoscale,” Nanoscale, vol. 9, pp. 3850–

3864, 2017.

[50] J. Lv, Y. Wang, L. Zhu, and Y. Ma, “Particle-swarm structure prediction on

clusters,” The Journal of Chemical Physics, vol. 137, no. 8, p. 084104, 2012.

[51] S. V. Lepeshkin, V. S. Baturin, Y. A. Uspenskii, and A. R. Oganov, “Stability

of Nanoclusters in a Wide Area of Compositions,” The Journal of Physical

Chemistry Letters, vol. 10, pp. 102–106, 2018.

[52] S. A. Trygubenko and D. J. Wales, “Kinetic analysis of discrete path

sampling stationary point databases Kinetic analysis of discrete path sam-



118 Bibliography

pling stationary point databases,” Molecular Physics ISSN:, vol. 104, no. 9,

pp. 1497–1507, 2006.

[53] E. F. Koslover and J. D. Wales, “Comparison of double-ended transition state

search methods Comparison of double-ended transition state search meth-

ods,” Journal of Chemical Physics, vol. 12, no. October 2007, 2017.

[54] A. Laio and M. Parrinello, “Escaping free-energy minima,” Proceedings of

the National Academy of Sciences, vol. 99, no. 20, pp. 12562–12566, 2002.

[55] A. Laio and F. L. Gervasio, “Metadynamics : a method to simulate rare events

and reconstruct the free energy in biophysics , chemistry and material sci-

ence,” Reports on Progress in Physics, vol. 71, 2008.

[56] L. Pavan, K. Rossi, and F. Baletto, “Metallic nanoparticles meet metadynam-

ics,” The Journal of Chemical Physics, vol. 143, p. 184304, nov 2015.

[57] A. L. Gould, K. Rossi, C. R. A. Catlow, F. Baletto, and A. J. Logsdail,

“Controlling Structural Transitions in AuAg Nanoparticles through Precise

Compositional Design,” The Journal of Physical Chemistry Letters, vol. 7,

pp. 4414–4419, nov 2016.

[58] K. Rossi and F. Baletto, “The effect of chemical ordering and lattice mis-

match on structural transitions in phase segregating nanoalloys,” Physical

Chemistry Chemical Physics, vol. 19, pp. 11057–11063, may 2017.

[59] J. Skilling, “Nested sampling for general Bayesian computation,” Bayesian

Analysis, vol. 1, pp. 833–859, dec 2006.

[60] L. B. Partay, A. P. Bartok, and G. Csanyi, “Efficient Sampling of Atomic

Configurational Spaces,” The Journal of Physical Chemistry B, vol. 114,

pp. 10502–10512, aug 2010.
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[84] C. Zeni, K. Rossi, A. Glielmo, Á. Fekete, N. Gaston, F. Baletto, and A. De

Vita, “Building machine learning force fields for nanoclusters,” Journal of

Chemical Physics, vol. 148, no. 24, 2018.
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