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Abstract 

Sulforaphane (SFN) is an electrophilic isothiocyanate which can adduct cysteine 

thiols within proteins. Protein targets of SFN were immunoprecipitated from 

cardiac tissue of wildtype (WT) mice following in vivo treatment with the 

electrophile using a validated polyclonal antibody developed in-house to pan-

specifically detect SFN adducted to cysteines. Combined with quantitative 

proteomics, this confirmed the non-receptor protein-tyrosine phosphatase, 

SHP2, as a target of SFN. SFN is intrinsically unstable at room temperature, 

therefore, a chemically stabilised variant developed by Evgen Pharmaceuticals 

(UK) known as Sulforadex (SFX-01), was used in subsequent experiments. 

Using a commercially available phosphatase activity assay, SFX-01 was shown 

to inhibit recombinant SHP2 in vitro, as well as that in cardiac tissue of mice 

administered SFX-01 in their drinking water for 4 days. We speculated that SFX-

01 may be therapeutic in diseases where SHP2 is hyperactive, such as Noonan 

syndrome (NS). Indeed, using an NS mouse model, Ptpn11D61G/+, a mutation 

resulting in hyperactivity of the phosphatase, SFX-01 time-dependently inhibited 

cardiac SHP2 activity. 

100 % of homozygous and ~50 % of heterozygous Ptpn11D61G/+ mice die mid-

gestation due to severe skeletal or cardiac defects, with the remaining ~50 % 

surviving to adulthood where they show non-cardiac features of NS. To assess if 

SFN-induced inhibition of SHP2 in the homozygous or heterozygous foetus could 

improve embryonic development, breeding pairs consisting of WT only or NS 

only parents were administered SFX-01 before conception and continued during 

pregnancy. SFX-01 treatment induced SFN-protein labelling of foetal tissue but 

also reduced litter sizes born from NS breeding pairs and genotyping showed 

only WT mice were born. This adverse effect may be due to SFN increasing the 

phospho-activation of ERK, which is deleterious in embryonic development of NS 

foeti. However, SFX-01 had no adverse impact on the pregnancies of WT mice. 

Adult NS mice develop splenomegaly and myeloproliferative disease which can 

further develop into leukaemia. With this in mind, adult WT or NS mice were 

administered SFX-01 for 10 weeks to assess if prolonged treatment with the drug 
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would inhibit SHP2 activity and reduce the incidence of myeloproliferative 

disease in the NS mouse model. Using whole blood cell staining, ultrasound and 

flow cytometry, lower total white blood cell count, spleen size and myeloid cell 

count in the blood, bone marrow and spleen of NS mice by SFX-01 was seen 

compared to water only controls. SHP2 activity was also attenuated in the spleen 

of both WT and NS mice, strongly suggesting this therapeutic action of SFX-01 

was mediated by inhibition of SHP2 phosphatase activity. 

Unexpectedly, even though phosphatase activity was inhibited following 4-day or 

10-week treatment with SFX-01, this occurred without evidence of an SHP2-SFN 

adduct in the tissue of WT or NS mice. Data from biochemical analyses involving 

biotinylated iodoacetamide (BIAM) labelling, the polyethylene glycol (PEG)-

switch method or phenylarsinic acid (PAA)-binding, showed that SFN induced an 

inhibitory modification within SHP2 between two vicinal thiols within the active 

domain of the phosphatase, which to reiterate was not stable SFN adducts. Data 

from complementary studies using site-directed mutagenesis of cysteines 

supported the concept that SFN adducts to SHP2 and inhibits it, which is followed 

by a proximal cysteine thiol mediating its removal or truncation, with the resulting 

modification maintaining inhibition of the phosphatase. This SFN-induced 

inhibitory modification may be the formation of an intramolecular disulfide bond 

or perhaps the chemical modification of the SFN adduct to a dithiolethione. 

Additional data has also shown that an SFN adduct can transfer from one thiol to 

another, so-called ‘trans-thiolation’. Using bovine serum albumin with an SFN 

adduct, which had been purified by large-format gel filtration on a protein 

chromatograph, transfer of the adduct to other cysteine-containing molecules 

such as haemoglobin or glutathione was observed. 

SFX-01, a stabilised SFN variant in phase 2 clinical trials, inhibits WT SHP2 as 

well as a hyperactive Ptpn11D61G/+ mutant form expressed in many patients with 

NS. Consistent with this, SFX-01 significantly corrects the myeloproliferative 

disease found in Ptpn11D61G/+ NS mice. Thus, in conclusion, SFX-01 has 

potential as a new therapy for the treatment of NS.   
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ROCK   Rho-associated protein kinase 

ROS   Reactive oxygen species 

Rpm   Rotations per minute 

RTK   Receptor tyrosine kinase 

S   Sulfur  

-S-   Thiolate  

S6K1   Ribosomal s6 kinase 1  

SCF   Stem cell factor  

SDS-PAGE  Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Ser   Serine  

SFK   Src family kinase 
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1 General introduction   

1.1 Overview 

The following introduction provides background information to the studies 

conducted in this research project, which explored the potential for the 

electrophilic isothiocyanate (ITC) sulforaphane (SFN) to adduct and inhibit src 

homology 2 (SH2)-domain containing tyrosine phosphatase 2 (SHP2). First, an 

overview of how changes in the oxidation-reduction (redox) state of cells can 

induce a variety of oxidative post-translational modifications of protein cysteine 

thiols. How such modifications, as well as adduction of the protein by SFN, may 

impact on the structure and function of SHP2, which is also known as protein-

tyrosine phosphatase (PTP) non-receptor type 11 (Ptpn11), is then considered 

in detail. SHP2 is hyperactivated in humans with Noonan syndrome (NS), a 

disorder that presents with an array of debilitating symptoms for which there is 

an unmet therapeutic need. A transgenic mouse model of NS that was 

engineered to express a single gain-of-function mutation in SHP2, Ptpn11D61G/+, 

was studied in the context that SFN may be therapeutic by attenuating the activity 

of this phosphatase.  

1.2 Biochemistry of cysteine thiol oxidation 

Post-translational modifications, such as phosphorylation and methylation, can 

alter protein structure and function and are fundamental processes in regulating 

cellular homeostasis or in response to internal or external stimuli. More recently, 

oxidation and reduction of proteins by cellular oxidants and reductants 

respectively has been recognised as a mediator of cellular communications. 

Amino acids most susceptible to oxidation are those containing sulfur or aromatic 
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side chain groups 1. Their oxidation by reactive oxygen species (ROS), reactive 

nitrogen species (RNS) or hydrogen sulphide (H2S) allows changes in cellular 

oxidant status to be relayed into regulatory responses, which has led to these 

species being classified as signalling mediators in their own right. ROS form 

following the addition of electrons to O2. This can occur either spontaneously or 

be mediated by enzymes such as myeloperoxidase, xanthine oxidase, 

nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase, cytochrome 

p450, uncoupled nitric oxide (NO) synthase, as well as electrons formed by the 

mitochondria 2 3. The addition of a single electron to O2 generates a superoxide 

anion (O2˙-). Following the addition of a second electron, the functionally efficient 

secondary messenger H2O2 is produced. If a third electron is accepted, a highly 

reactive hydroxyl radical is formed (OH˙). The production of NO leads to the 

subsequent formation of RNS, including nitroxyl (HNO), nitrite (NO2
-), dinitrogen 

trioxide (N2O3) and peroxynitrite (OONO-).  

Thiol groups (-SH) within cysteines are considered the amino acid side chain 

most vulnerable to oxidative modification. However, reaction with oxidants 

predominantly occurs when this thiol group resides in a deprotonated (loss of H+) 

thiolate state (-S-). The ability for a thiol to reside as a thiolate depends on its acid 

disassociation constant (pKa), which is defined as the pH at which the thiolate 

and thiol form of a certain cysteine is equal 4. A lower pKa value corresponds to 

increased susceptibility for the thiol to become deprotonated at cellular pH and 

therefore is considered more reactive towards oxidants. Most cellular thiols hold 

a pKa of ~8.3 and are therefore mainly in their protonated, unreactive state at a 

typical cellular pH of 7.0-7.4. The microenvironment of proteins can, however, 

alter the pKa of a thiol 5. For example, if the cysteine resides near positively 
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charged side chains of an arginine residue then electrostatic interactions 

between these amino acids will stabilise the negatively charged thiolate and help 

maintain a low pKa. Negatively charged side chains of aspartate and glutamate, 

on the other hand, will increase the pKa by destabilising the negatively-charged 

cysteine side chain 6.  

Thiolates can undergo a range of oxidative modifications as shown in figure 1.1. 

Whilst RNS can induce protein nitrosylation or nitrothiol formation, H2O2 can 

modify a thiolate to form a sulfenic acid intermediate (-SOH). If this sulfenic acid 

intermediate is not rapidly reduced, hyperoxidation can occur to generate a 

sulfinic (-SO2H) and then a sulfonic acid (-SO3H), each with increasing 

irreversibility. The modifications induced by oxidants can either evoke a signalling 

event on their own or act as an intermediate step leading to further, perhaps more 

stable alterations that mediate any associated functional alteration. For example, 

the generation of a sulfenic acid intermediate in close proximity to a vicinal thiol 

may facilitate intramolecular disulfide bond formation with the generation of H2O 

as a condensation product as shown in figure 1.2. All these considerations 

contribute to the intricate and selective signalling that can be orchestrated by 

alterations in the abundance of cellular oxidants. Oxidation of protein thiolates 

may also induce homo- or heterodimers via intermolecular disulfide bond 

formation between proteins of the same or different species respectively (figure 

1.2). Disulfide bonds can then be reduced by cellular antioxidants such as 

disulfide reductases including thioredoxin (Trx) and glutaredoxin 1 (GRX1), 

whose mechanisms of action are outlined in chapter 4 7. Dysregulation of cellular 

oxidant and antioxidant levels can result in altered protein oxidation states, which 

has been identified in a range of pathological scenarios 8–15. Understanding more 
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about these mechanisms of protein oxidation and why their alterations lead to 

pathology may offer therapeutic opportunities.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 1.1 Summary of common oxidative modifications of cysteine thiols. 
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1.3 Sulforaphane   

As well as oxidants, negatively charged moieties such as cysteine thiolates can 

also react and so adduct with electrophilic compounds such as SFN, as shown 

in figure 1.3. SFN is an ITC, which are characterised by an N=C=S functional 

group. Donation of electrons by the carbon atom across the double bonds results 

in a delta positive charge of the atom, which underlies its electrophilic properties.  

 

 

 

 

 

Figure 1.2. Summary of possible disulfide bond formation following thiol oxidation. 
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1.3.1 SFN from naturally derived sources  

Whilst this research project used chemically synthesised derivatives of SFN, 

SFX-01 or L-SFN, naturally, ITCs are derived from cruciferous vegetables, such 

as broccoli, cabbage, kale and Brussels sprouts 16. ITCs themselves are not 

present within these plants but form following enzymatic cleavage of parent 

phytochemicals named glucosinolates. Chewing releases β-thioglucosidase 

myrosinase enzymes from extracellular vesicles, which are then free to hydrolyse 

the thioglucosidic bond of glucosinolates yielding glucose and thiohydroxamate-

O-sulfonate, an unstable aglycone 17. The latter then undergoes spontaneous 

rearrangement into different bioactive molecules including ITCs, thiocyanates 

and nitriles (figure 1.4) 17.  

Figure 1.3. SFN can adduct protein cysteine thiolates. 

Following electrophilic attack of the positively charged carbon within its ITC functional 

group, SFN can adduct nucleophilic protein thiolates. 
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Hydrolysis of glucosinolate not only occurs in the mouth cavity but also by β-

thioglucosidase found in gut microflora 18. The abundance and occurrence of 

different glucosinolates vary between members of the cruciferous vegetable 

family and their hydrolysis products therefore also differ 19. The predominant 

glucosinolate within broccoli is glucoraphanin whose hydrolysis produces SFN 

(figure 1.5) 20. Naive broccoli sprouts are a particularly good source of 

glucoraphanin, found at concentrations 20-50-fold higher than the mature form 

of the plant 21.  

 

 

Figure 1.4. A diagram showing hydrolysis of glucosinolate and subsequent 

formation of bioactive compounds. 
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1.3.2 SFN metabolism   

The antioxidant tripeptide glutathione (GSH) can conjugate with free 

electrophiles such as SFN, with this adduction often the first stage of metabolism 

for such xenobiotic compounds 22. Most ingested SFN passively enters small 

intestine epithelial cells where it is adducted by GSH, which is shown in figure 

1.6. GSH-SFN then effluxes back into the lumen through the unidirectional efflux 

transporters multidrug resistance-associated protein 1 (MRP1) or P glycoprotein 

1 (Pgp1). Both function as multispecific organic anion transporters and are 

expressed and distributed ubiquitously or in the intestinal epithelium respectively 

23. A proportion of unconjugated SFN bypasses the tripeptide and passes into 

Figure 1.5. Generation of SFN by enzymatic hydrolysis of glucoraphanin. 
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the systemic circulation, where it may become conjugated to GSH or alternatively 

passively enter tissue cells 23. Once inside the cell, SFN can adduct nucleophilic 

moieties and regulate protein function, or again is liable to encounter and adduct 

with GSH that is abundant in the cytosol 23. Conjugation of SFN to GSH may 

even occur following trans-thiolation from a cysteine-containing protein, a 

concept discussed in greater detail in chapter 4. GSH-SFN is transported from 

the cell into the systemic circulation where it is metabolised sequentially by ƴ-

glutamyl-transpeptidase (GTP), cysteinyl-glycinease (CGase) and N-

acetyltransferase (NAT) to form SFN-cysteine-glycine and SFN-N-acetylcysteine 

respectively (SFN-NAC) as shown in figure 1.6, which undergo urinary excretion 

24.    
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Figure 1.6. Pathway for SFN metabolism.   

Following absorption from the small intestines into enterocytes, SFN may rapidly conjugate 

GSH which passes back to the small intestinal lumen through Pgp1 or MRP1 transporters. 

Alternatively, passive movement of free SFN into the blood may conjugate free GSH or 

continue into tissue cells. This simplified schematic shows conjugation to cellular GSH, 

which is discussed in greater detail in chapter 4, which is transported back to the blood 

through Pgp1 or MRP1 transporters. Sequential metabolism of GSH-SFN to SFN-cysteine-

glycine and SFN-NAC occurs enzymatically by GTP and CGase NAT respectively with 

SFN-NAC undergoing urinary excretion.  
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1.3.3 Modulation of signalling pathways by SFN  

This introduction has outlined that SFN can adduct nucleophilic cysteine thiols. 

This interaction may alter the biological function of a protein and potentially 

regulate downstream signalling pathways. The two most studied and 

characterised cellular events which can be altered by protein adduction of SFN 

are nuclear factor-кB (NF-кB) and KEAP1/nuclear factor erythroid 2-related factor 

2 (Nrf2) signalling pathways which are detailed below.  

1.3.3.1 Modulation of the NF-кB signalling pathway by SFN 

NF-кB is a transcription factor whose adduction by lipopolysaccharides during 

chronic inflammation causes translocation into the nucleus and upregulation of 

proinflammatory enzymes including inducible NO synthase (iNOS) and 

cyclooxygenase 2 (COX2). Subsequent elevation of cellular levels of NO and 

prostaglandins respectively can lead to DNA damage through nitrosative 

deamination of DNA bases, facilitating cancer initiation and progression 25 and 

enhance proliferation and invasiveness of cancer cells as well as inhibit apoptosis 

26.  

SFN is a negative regulator of this signalling event by adducting cysteine thiols 

within NF-кB which impairs DNA binding of the transcription factor 27. Further to 

this, SFN adducts Trx and GSH which are also required for NF-кB function 27. 

Such anti-inflammatory effects of SFN can, therefore, prevent an inflammatory 

response from occurring which may prevent the progression of certain cancers.  

1.3.3.2 Modulation of the KEAP1/Nrf2 signalling pathway by SFN 

Under homeostatic conditions, KEAP1 forms a homo-dimer within the cytosol and 

is part of a protein complex with the E3 ubiquitin ligase RING-box protein 1 
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(RBX1) as well as the RBX1 scaffold protein Cullin 3 (CUL3), as shown in figure 

1.7. The function of this complex is to retain the transcription factor Nrf2 in the 

cytosol and target it for degradation, so acting as a negative regulator to prevent 

its translocation into the nucleus. Nrf2 initially interacts with KEAP1 at the 

proteins N-terminal ETGE motifs 28. Secondary interactions with a KEAP1 DLG 

motif position the transcription factor for ubiquitination by RBX1, targeting Nrf2 

for proteasomal degradation. The reaction of an oxidant at one or multiple 

cysteines within KEAP1 induces structural changes with the resultant release of 

Nrf2 from the complex 29 30. The transcription factor then stabilises and 

accumulates within the cytosol with subsequent translocation to the nucleus. Nrf2 

then binds the antioxidant response element (ARE) DNA-promoter binding region 

found in the 5’-flanking region of phase 2 and antioxidant genes, upregulating 

multiple antioxidant enzymes which act to attenuate pathological damage caused 

by ROS, RNS and electrophiles as outlined in figure 1.7. Examples of these 

enzymes include the ubiquitous disulfide reductases Trx and GRX1 whose 

mechanisms of action are outlined in chapter 4. Gamma-glutamylcysteine 

synthetase (GCS) expression is also increased, an enzyme which catalyzes the 

rate-limiting step in GSH synthesis 31. This results in increased production of 

GSH, a key player in GRX1-mediated disulfide reduction. 

It is now well established SFN adducts KEAP1 at Cys151, and modification of this 

cysteine by oxidants is shown to induce the structural change which leads to the 

release of Nrf2 from the cytosolic KEAP1/RBX1/CUL3 complex 32. Adduction of 

SFN at this cysteine induces the same structural modification (figure 1.7) and the 

electrophile is the most potent naturally occurring inducer of phase 2 enzymes 33 

34 35. 
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Figure 1.7. Modulation of antioxidant and xenobiotic detoxification enzymes by the 

KEAP1/Nrf2 signalling pathway.  

Nrf2 is sequestered in the cytosol via interaction with a KEAP1/RBX1/CUL3 complex. 

Upon ubiquitination by RBX1, Nrf2 is degraded following targeting to proteasomes. 

Adduction of ROS or SFN to essential cysteines upon KEAP1 drive a conformational 

change allowing release of Nrf2. Following its translocation into the nucleus, the 

transcription factor adducts ARE along with small musculoaponeurotic 

fibrosarcoma (sMAF) and CREB-binding protein/p300 (CBP/p300). This drives 

upregulation of antioxidant and xenobiotic detoxification enzymes. GST = glutathione S-

transferase. Trx1 = thioredoxin 1. UGT = UDP glucuronosyltransferase Family 1 Member 

A1. HO1 = heme oxygenase 1. GR = glucocorticoid receptor. GCS = glutamate-cysteine 

ligase. NQO1 = NAD(P)H quinone dehydrogenase 1. 
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1.3.4 Protein targets of SFN 

As outlined above, the most studied protein-SFN interactions are its adduction to 

KEAP1 or NF-кB. However, a wide range of proteomic studies have identified 

hundreds of protein targets of SFN in a variety of cell lines exposed to this 

electrophile 36–41. The reactive nature of SFN, together with is relatively simple 

structure, underlies a lack of selectively in the targets it interacts with and 

potentially covalently adducts to. Whilst Angeloni et al have documented cardiac 

protein targets of SFN following treatment of isolated neonatal Wistar rat 

cardiomyocytes in vitro 42, in vivo targets after oral consumption of SFN are 

largely unknown.  

This issue was addressed using quantitative mass spectrometry (MS) conducted 

by Dr Ewald Schroder from our research group. This proteomic analysis was 

carried out following immunoprecipitation of SFN-adducted proteins from cardiac 

tissue of mice using a polyclonal rabbit antibody developed in our laboratory 

which detects SFN adducted to protein cysteines. This methodology, therefore, 

allowed identification of proteins containing a reactive cysteine which may be 

altered or functionally important in adaptive mechanisms that occur during 

pathological conditions, whereby adduction by SFN regulates their activity. The 

analysis of biological replicates of wildtype (WT) mice orally gavaged with SFN, 

which were statistically compared to untreated controls, showed 40 significant 

cardiac protein targets of the electrophile under the conditions tested, which are 

shown in table 1.1. Notably, a high proportion of the targets identified were 

mitochondrial proteins. If SFN were to adduct and inhibit these proteins, perhaps 

the transport of pyruvate into the mitochondria or its subsequent conversion 

inside the organelle may be altered. Investigated changes in metabolites and 
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ROS production following treatment with SFN may therefore warrant further 

investigation.   

Nevertheless, another significant protein target of SFN in cardiac tissue was 

Ptpn11, commonly named SHP2, which is highlighted in red in table 1.1. The 

interaction between SFN and SHP2 has been the main focus of this research 

project.  
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Protein name Abbreviation 
2-oxoglutarate dehydrogenase, mitochondrial ODO1_MOUSE 

3-ketoacyl-CoA thiolase, mitochondrial THIM_MOUSE 

Acetyl-CoA acetyltransferase, mitochondrial   THIL_MOUSE 

ADP/ ATP translocase 2 ADT2_MOUSE 

ATP synthase subunit alpha, mitochondrial ATPA_MOUSE 

ATP synthase subunit gamma, mitochondrial ATPG_MOUSE 

Carnitine O-palmitoyltransferase 1, muscle isoform CPT1B_MOUSE 

Cytochrome b-c1 complex subunit 1, mitochondrial QCR1_MOUSE 

Cytochrome b-c1 complex subunit 2, mitochondrial QCR2_MOUSE 

Dihydrolipoyl dehydrogenase, mitochondrial DLDH_MOUSE 

E3 ubiquitin-protein ligase  NEDD4_MOUSE 

Electron transfer flavoprotein oxidoreductase, mitochondrial ETFD_MOUSE 

Electron transfer flavoprotein subunit alpha, mitochondrial ETFA_MOUSE 

Elongation factor TU, mitochondrial EFTU_MOUSE 

Enoyl-CoA delta isomerase 1, mitochondrial  ECI1_MOUSE 

Fructose-bisphosphate aldolase A  ALDOA_MOUSE 

Fumarate hydratase, mitochondrial FUMH_MOUSE 

Isocitrate dehydrogenase (NADP), mitochondrial IDHP_MOUSE 

Isovaleryl CoA dehydrogenase, mitochondrial IVD_MOUSE 

LIM domain-binding protein 3 LDB3_MOUSE 

L-lactate dehydrogenase B chain LDHB_MOUSE 

Malate dehydrogenase, mitochondrial MDHM_MOUSE 

Medium-chain specific acyl-CoA dehydrogenase, mitochondrial   ACADM_MOUSE 

Myosin-6 MYH6_MOUSE 

Myosin-7 MYH7_MOUSE 

Myosin-8 MYH8_MOUSE 

Myosin-binding protein C, cardiac-type MYPC3_MOUSE 

NADH-ubiquinone oxidoreductase 75 kDa subunit, 
mitochondrial 

NDUS1_MOUSE 

Perilipin-4 PLIN4_MOUSE 

Phosphate carrier protein, mitochondrial MPCP_MOUSE 

Phosphoglycerate kinase 1 PGK1_MOUSE 

Protein-tyrosine phosphatase non-receptor type 11 PTPN11_MOUSE 

Pyruvate dehydrogenase E1 component subunit alpha, somatic 
form, mitochondrial  

ODPA_MOUSE 

Pyruvate kinase PKM KPYM_MOUSE 

Sarcoplasmic/endoplasmic reticulum calcium ATPase 2  AT2A2_MOUSE 

Short-chain specific acyl-CoA dehydrogenase, mitochondrial  ACADS_MOUSE 

Succinate dehydrogenase flavoprotein subunit, mitochondrial  DHSA_MOUSE 

Trifunctional enzyme subunit alpha, mitochondrial ECHA_MOUSE 

Trifunctional enzyme subunit beta, mitochondrial ECHB_MOUSE 

Voltage-dependent anion-selective channel protein 2 VDAC2_MOUSE 

 

Table 1.1. Protein targets of SFN in cardiac tissue of WT mice identified by 

quantitative mass spectrometry following oral gavage with SFN.  

These studies were conducted by Dr Ewald Schroder at King’s College London.  
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1.4 An introduction to SHP2 

SHP2 is a ubiquitously expressed non-receptor protein-tyrosine phosphatase. 

Like oxidative modifications, phosphorylation of proteins can influence their 

activity, complex association and/or localisation and protein phosphorylation 

status is orchestrated by the balanced actions of kinases and phosphatases. To 

analyse the chemical adduction of SFN to SHP2 and understand the biological 

consequences of this interaction it is important to consider how the phosphatase 

is regulated as well as the signalling events that this protein controls.  

1.4.1 SHP2 structure and regulation 

SHP2 is a 68 kDa protein with two tandem SH2 domains, a central PTP catalytic 

domain and a C-terminal domain containing two tyrosine phosphorylation sites 

at residues 542 and 580, as well as a proline-rich motif. Biochemical analysis and 

crystallographic studies showed when SHP2 is in an inactive state the backside 

loops of the N-terminal SH2 domains of SHP2 fold across its PTP catalytic site 

where it is maintained by H bonding as shown in figure 1.8 43. The phosphatase 

domain is therefore physically inaccessible and SHP2 is biologically inactive due 

to phosphorylated substrates having limited access to the catalytic site. Binding 

of these N-terminal SH2 domains to phospho-tyrosine residues upon receptor 

tyrosine kinases (RTKs) (e.g. growth factor receptor (GFR) and ephrin receptors 

(EphR)), cytokine receptors or scaffold proteins (e.g. insulin receptor substrate 1 

(IRS1), focal adhesion kinase (FAK), GFR-bound protein 2-associated–binding 

protein 1 (GAB1)) induces a conformational change that relieves auto-inhibition 

of the catalytic domain as depicted in figure 1.8 44 45. The same can be achieved 

following docking of the N-terminal SH2 domains to phospho-tyrosine residues 

542 and 580 in its own C-terminal domain following phosphorylation by cytosolic 
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kinases protein kinase C (PKC) or zeta chain of T-cell receptor-associated 

protein kinase 70 (ZAP70), or by membrane-bound RTKs such as EphA2, for 

example 46 47 48. This unfolding relieves autoinhibition and allows access of 

phosphorylated substrates to the active domain containing a catalytic cysteine, 

Cys459, which is fundamental to the phosphatase activity of SHP2. Incorporated 

within Cys459 is a low pKa thiol which means that at physiological pH it 

predominantly exists as an ionised thiolate, which enables nucleophilic attack of 

the sulfur towards a phosphate group, which is crucial for dephosphorylation of 

target proteins. As well as structural inhibition by N-terminal SH2 domains, further 

modulation of the phosphatase’s activity can occur via oxidative modification of 

Cys459. The catalytic domain of the phosphatase and mechanism of substrate 

dephosphorylation by SHP2 are reviewed in detail in chapter 6.  
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1.4.2 Cell signalling pathways regulated by SHP2   

The dephosphorylation of RTKs, cytokine receptors, associated scaffold proteins 

and other cytosolic substrates by SHP2 regulates a wide variety of downstream 

signalling events which control cell proliferation, differentiation, migration, cell 

GFR 
EphA2 

PKC  
ZAP70 

GAB1 
IRS1 
FAK 

 

Figure 1.8. SHP2 structure and mechanism of activation by docking phospho-

tyrosine residues.  

In the inactive state, N-terminal SH2 domains of SHP2 sterically hinder access of 

phospho-tyrosine substrates to the catalytic domain and blocks phosphatase activity (1). 

Binding of N-terminal SH2 domains by specific phospho-tyrosine-containing motifs 

releases this inhibition. These phospho-tyrosine residues may be an activated receptor 

(2), a protein which forms part of a scaffold complex (3) or tyrosine-phosphorylated C-

terminal tail of SHP2 (4). 

1) 

2) 

3) 

4) 
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cycle progression and apoptosis. Regulation of such signalling pathways often 

has significant biological consequences including in embryonic development and 

white blood cell production, which have been a focus of these studies. Ras/ERK 

and janus kinase (JAK)/signal transducer and activator of transcription (STAT) 

are the most studied signalling pathways regulated by SHP2 and are outlined in 

detail in chapter 3. Nevertheless, a simple overview of SHP2’s involvement in 

other key signalling events illustrates its importance in multiple biological 

functions.  

1.4.2.1 Regulation of integrin signalling by SHP2 

Heterodimerization of α and β integrin receptor subunits occurs following binding 

of their extracellular domains to extracellular-matrix proteins. This dimerization 

increases the affinity of the receptors intracellular domains towards ligands 

including protein-tyrosine kinases focal adhesion kinase (FAK) and Src family 

kinase (SFK) 49. FAK firstly docks to the cytoplasmic tail of the integrin β subunit 

along with focal adhesion proteins talin and paxillin. Upon activation, FAK auto-

phosphorylates itself, creating a docking site for SFK, which in turn becomes 

phosphorylated by FAK. Phospho-tyrosines within SFK provide docking sites for 

the N-terminal SH2 domains of SHP2, as shown in figure 1.9. Upon binding, 

SHP2 positively regulates integrin signalling by dephosphorylating inhibitory 

phospho-tyrosines within FAK, stimulating downstream events which are 

essential to embryonic development, tissue maintenance and repair, host 

defence and haemostasis 50. Downstream, SHP2 also dephosphorylates p190 

Ras homolog gene family member A (RhoA) guanine triphosphate (GTP)ase-

activating protein (p190RhoAGAP). This facilitates the exchange of RhoA 
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guanine diphosphate (GDP) for GTP, activating Rho-associated protein kinase 

(ROCK) to further stimulate cell proliferation and migration 51.  

1.4.2.2 Regulation of insulin signalling by SHP2 

Binding of insulin to extracellular α subunits of insulin homodimer receptors 

induces a conformational change which facilitates transphosphorylation of 

tyrosine residues within intracellular β subunits 52. Pleckstrin homology (PH) 

domains of insulin receptor substrate 1 (IRS1) subsequently dock these 

phospho-tyrosine residues and the substrate itself becomes phosphorylated by 

the activated receptor. This allows association of IRS1 with the regulatory subunit 

of phosphoinositide 3-kinase (PI3K), p85, through the substrates SH2 domains 

which brings the kinase in proximity to the cell membrane as shown in figure 1.9. 

The catalytic subunit of PI3K, p110, then phosphorylates phosphatidylinositol-

4,5-bisphosphate (PIP2) leading to the formation of PIP3. A key downstream 

effector, Akt (otherwise known as protein kinase B) is recruited and 

phosphorylated by PI3K-dependent protein kinase 1 (PDK1), which stimulates 

downstream glycogen synthesis, promoting cell survival and growth 53. As well 

as binding p85, phospho-tyrosine residues of IRS1 also bind N-terminal SH2 

domains of SHP2, and the phosphatase is a negative regulator of insulin 

signalling by dephosphorylating this substrate 54 55.  
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1.5 Dysregulation of SHP2 in pathologies 

As SHP2 is a regulator of multiple signalling events which modulate a number of 

cellular processes, it is unsurprising that dysregulation of its phosphatase activity 

due to somatic or germline mutations can initiate and/or maintain a variety of 

pathogenic outcomes.  

SHP2 acts upstream as well as downstream of different proto-oncogenes. A 

detailed review of how the phosphatase functions in certain cancer cell lines is 

not in the scope of this thesis, but an essential and relevant message in the 

Figure 1.9. Regulation of integrin and insulin signalling by SHP2.  

Following activation of integrin receptors, SHP2 dephosphorylates inhibitory phospho-

tyrosines of FAK and p190RhoAGAP, leading to activation of RhoA/ROCK signalling 

and promoting cell proliferation and migration (left pathway). Dephosphorylation of IRS 

by SHP2 negatively regulates insulin signalling following insulin receptor activation, 

providing a negative feedback mechanism for PI3K/Akt signalling and controlling cell 

survival and growth (right pathway). 
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context of this project is that somatic mutations of Ptpn11, the gene encoding 

SHP2, drive initiation and progression of hematologic malignancies. These 

include juvenile myelomonocytic leukaemia (JMML) and solid tumours 

associated with breast, colon, lung, brain and thyroid cancer, among others 56 57 

58 59. Germline mutations in Ptpn11 have also been identified in two 

multisymptomatic developmental disorders named NS, which is the main focus 

of this thesis, and NS with multiple lentigines (formerly termed LEOPARD 

syndrome). Both are characterised by multiple, almost identical, congenital 

defects. However, remarkably 50 % of NS patients are genetically characterised 

by gain-of-function mutations of SHP2 60 61, whilst NS with multiple lentigines is 

commonly driven by loss-of-function 62 63, highlighting the complexity that results 

from dysregulation of this phosphatase.  

1.5.1 Noonan syndrome  

NS is an autosomal dominant and genetically heterogeneous condition with an 

estimated prevalence of 1 in 1000-2500 live births. The clinical diagnosis of NS 

is established on the basis of distinctive features, including facial dysmorphism 

(high forehead, hypertelorism, down-slanting palpebral fissures, epicanthal folds, 

ptosis, low-set ears), reduced growth, spinal abnormalities, intellectual 

impairment, feeding difficulties in infancy, bleeding tendencies and hearing loss 

64 65. Other common phenotypic characteristics include a broad or webbed neck, 

unusual chest shape with increased coagulation defects, lymphatic dysplasia, 

cryptorchidism and ocular abnormalities. With the exception of Down’s 

syndrome, NS is the most common syndromic cause of congenital heart defects, 

occurring in around 50-80 % of patients 66 67. Pulmonary valve stenosis, often 

with dysplasia, is the most common cardiac manifestation, resulting from 
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dysplastic valve leaflets. Other cardiac structural deformities include atrial and 

ventricular septal defects, mitral valve stenosis, branch pulmonary artery stenosis 

and hypertrophic cardiomyopathy. Infants with NS are also predisposed to 

developing myeloproliferative disease, which may regress without the need for 

treatment, but has been shown to escalate to JMML in a cohort of these patients 

68 69. 

In ~50 % of NS patients, these manifestations occur due to gain-of-function 

heterozygous germline mutations in Ptpn11 60 61. The remaining 50 % of patients 

have mutations in one of the 6 following genes; Son of Sevenless 1 (SOS1), 

Rapidly accelerated fibrosarcoma 1 (Raf1), BRaf, KRas, NRas or mitogen-

activated protein kinase kinase 1 (MAP2K1) 70 71. All 7 genes encode 

components or regulators of the Ras/mitogen-activated protein kinase (MAPK) 

pathway and therefore places NS in a group of developmental disorders termed 

RASopathies.  

1.5.1.1 Ptpn11 mutations associated with NS 

Currently, 12 germline, missense mutations in Ptpn11 have been identified in NS 

patients. Energetic-based structural and biochemical analysis has identified that 

all of these are gain-of-function alterations, causing hyperactivation of SHP2. As 

shown in figure 1.10 the majority of these mutations occur in or around regions 

of SHP2 that form interactions between the proteins N-SH2 and PTP domains 72 

73 74. As discussed previously, interactions between these two domains form an 

autoinhibitory mechanism, preventing access of phosphorylated proteins to the 

catalytic cysteine of the phosphatase. Mutations in these areas, therefore, disrupt 

the intermolecular interactions, relieving the autoinhibited conformation which 

results in constitutive SHP2 activation and enhanced downstream signalling. In 



25 
 

rare cases, mutations occur within the C-SH2 domain or within the peptide linking 

the N-SH2 and C-SH2 domains, although with the same effect of relieving the 

autoinhibited structure conformation of the protein 75. In contrast, SHP2 

mutations identified in NS with multiple lentigines typically only effect residues 

within the PTP domain of the protein, resulting in decreased catalytic activity, 

highlighting that positioning of the mutation within the Ptpn11 gene drives the 

subsequent effect on SHP2 activity 76.  

SHP2 is a regulator of multiple stages of white blood cell production as well as 

embryonic development, including of the heart, which I outline in detail in the 

introduction of chapter 5. With this in mind, it is perhaps unsurprising that 10 of 

the 12 missense, gain-of-function mutations in Ptpn11 identified in NS patients 

are correlated with one or multiple congenital heart and skeletal defects as well 

as a myeloproliferative phenotype.  

 

 

 

Figure 1.10. Location of 12 known NS-associated SHP2 mutations.  

The majority of germline, missense mutations identified in NS patients occur in or around 

the N- or C-SH2 domains of SHP2, preventing autoinhibitory interactions with the PTP 

domain of the phosphatase. The mutation highlighted in red, D61G, causes the most 

hyperactive form of SHP2.  
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1.5.1.2 NS mouse model with a Ptpn11D61G/+ mutation 

The D61 residue within the N-SH2 domain of SHP2, which is highlighted in red 

in figure 1.10, participates in an H bond network between the N-SH2 domain and 

water molecules within the PTP domain of the phosphatase, forming a major 

component in maintaining the proteins autoinhibited conformation. Replacement 

of this negatively charged aspartic acid for an uncharged glycine residue (D61G) 

is a commonly occurring NS-associated mutation. This charge change prevents 

the formation of the inhibitory N-SH2/PTP domain interface. This opens up the 

structure of the protein, allowing access of phosphorylated substrates to the 

catalytic cysteine of SHP2 and increases the basal activity of the phosphatase 

77. Using a gene-targeting vector, the Neel group generated a heterozygous 

knock-in Ptpn11D61G/+ mouse model with a C57BL/6J/129S4/SvEv hybrid genetic 

background 78. To do so a D61G mutation was introduced into J1 embryonic stem 

cells of 129S4/SvEv background. Correctly mutated embryonic stem cells were 

transfected with a plasmid expressing Cre recombinase to excise the neo 

cassette and two properly excised clones were injected into C57BL/6J 

blastocysts. Characterisation showed these mice exhibit many of the phenotypes 

that characterise NS patients such as short stature, facial dysmorphia, severe 

cardiac defects, myeloproliferative disease and splenomegaly.  

As with human NS patients who have a Ptpn11 mutation, not all offspring of the 

D61G/+ mouse model exhibit the same phenotypes. Phenotypes associated with 

NS are therefore defined as variably penetrant i.e. they may be present in some 

patients and not others. Further to this, two mice who have the same phenotype 

may present them with different severity. Whilst haematopoietic, craniofacial and 

growth defects are completely penetrant, occurring in all heterozygous mice, the 
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severity of these phenotypes differ between mice. On the other hand, cardiac 

defects are incompletely penetrant, with 50 % of heterozygous embryos dying 

prematurely with a spectrum of cardiac defects, whilst the rest exhibit mild 

valvular hyperplasia during embryogenesis which resolves before birth. As 

homozygous Ptpn11D61G+/+ is embryonic lethal it is evident gene dosage and 

expressivity of the mutant correlate with the severity of the defects. Cell- and 

pathway-specific differences in sensitivity to D61G also likely account for 

exacerbation of some phenotypes over others. The Neel group conclude 

incomplete penetrance is reflected by the amount of strain-specific genetic 

modifiers present within each mouse which is reflected by their 129S4/SvEv 

and/or C57BL/6J background, and therefore the degree to which they affect 

certain modifier genes 73. However genomic scans using single nucleotide 

polymorphism panels have failed to identify strong modifier loci 73.  

Regardless of severity and penetrance, this single gain-of-function mutation of 

D61 to G61 results in the greatest activation of SHP2 associated with NS and 

evokes all major phenotypes seen in human patients. The Ptpn11D61G/+ mouse 

is, therefore, an optimal animal model for delineating the potential therapeutic 

benefit of SHP2 inhibitors.  

1.6 SHP2 inhibitors 

As hyperactivation of SHP2 is causative of clinical manifestations present in 50 

% of NS patients 60 61 as well as the initiation and progression of many cancers 

56 57 58 59, it is rational to assume that inhibition of the phosphatase’s activity would 

be beneficial in these pathologies. The identification of inhibitors of its 

phosphatase activity has therefore been a major research goal. However, 

structural homology between many PTPs, as well as the charged active site of 
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the phosphatase have made the development of an inhibitor selective of SHP2 

challenging.  

Studies have identified compounds which are potent inhibitors of SHP2 

phosphatase activity in cultured cell lines as well as recombinant protein. For 

example, the commercially available phenylhydrazonopyrazolone sulfonate 

(PHPS1) is a phospho-tyrosine mimetic with a half maximal inhibitory 

concentration (IC50) value for SHP2 of 2.1 µM. At these low concentrations, 

PHPS1 is selective for SHP2 in cultured epithelial cells, however, adducts other 

PTPs at higher concentrations including SHP1 and PTP1B 79. The compound 

has low cell-membrane permeability which reduces the bioavailability of the drug 

in vivo. The Zhang group demonstrated naphthyl and polyaromatic salicylic acid-

based compounds exhibit enhanced affinity for PTPs 80 81. Using a library of 

salicylic acid-based compounds, they identified II-BO8 as an inhibitor of SHP2  

which has an IC50 towards the phosphatase that is at least 3 times lower than for 

11 other PTPs that were tested 82. Even so, multiple other protein targets of the 

compound have been identified and the biological consequences of these 

interactions are currently unknown. Through virtual screening and experimental 

assays Zhang et al identified the natural compound cryptotanshinone as an 

inhibitor of SHP2; an active ingredient of the herbal plant Salvia miltiorrhiza, 

commonly used in Asian countries to treat coronary heart disease, acute 

ischemic stroke and cancer 83. However, again, lack of selectivity of 

cryptotanshinone for SHP2 was a concern and further studies utilising it as a 

treatment are yet to emerge.   

Structural studies showed all three inhibitors dock at the periphery of the protein’s 

catalytic domain via polar and non-polar interactions. Such interactions either 
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facilitate the closed autoinhibitory conformation of SHP2 or prevent electrostatic 

interactions otherwise essential to the catalytic activity of the phosphatase. 

Notably, they do not cause inhibition of SHP2 by adduction to the protein’s 

catalytic cysteine.  

1.6.1 Sulforaphane as an inhibitor of SHP2 

The catalytic cysteine of SHP2, Cys459, facilitates successful dephosphorylation 

of target substrates by nucleophilic attack towards the phosphorus ion. The 

phosphatase activity of SHP2 can be inhibited by oxidative modification of the 

negatively charged thiolate group of this cysteine. As SFN adducts nucleophilic 

moieties such as thiolates, it was anticipated this catalytic cysteine was where 

the electrophile was adducting SHP2. If so, adduction of SFN may inhibit the 

phosphatases activity. Indeed, preliminary in vitro studies carried out by Lewis et 

al demonstrated dietary ITCs such as SFN inhibit the phosphatase activity of 

recombinant SHP2.  

Due to the covalent nature of the interaction between SFN and target proteins, 

adduction of the electrophile is often perceived as permanent 84. The permanent 

adduction of chemical compounds has been shown to induce haptenization and 

drive an immune response towards proteins which are now rendered as foreign 

85. Drugs which form noncovalent electrostatic interactions such as H bonds, ionic 

bonds, van der Waals forces or hydrophobic bonds can overcome haptenization 

as they allow for transient association and disassociation with target proteins, 

which generates an equilibrium between a protein-bound and -unbound state. 

However, this also leads to reduced potency of the drug due to the discontinuous 

effect on protein function. Continual disassociation of the drug also increases the 
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time in which is it vulnerable to metabolism and excretion 86 87. Typically, higher 

drug amount and more frequent dosage are therefore needed. 

The high electrophilicity of SFN together with is relatively simple structure 

underlies a lack of selectively in the targets it interacts with and potentially 

covalently adducts to. Such electrophilic compounds are therefore typically 

unfavoured due to unknown and perhaps undesired biological effects that occur 

as a result of adduction to off-target proteins. However, off-target effects are not 

always a concern. For example, the thiol-reactive reagent ethacrynic acid inhibits 

protein phosphatase 2a and lymphoid tyrosine phosphatase achieved through 

chemical modification of their catalytic cysteines, with its adduction to additional 

off-target proteins having no undesired biological consequences 88 89 90. Indeed, 

published study results from human clinal trials using SFN have shown no severe 

side effects and minimal non-severe effects following chronic long-term use 91 92 

93 94 95. 

The increased biochemical efficiency of compounds which form covalent 

interactions is beneficial in terms of therapeutic margins, as low amounts of the 

drug are required along with fewer doses, and engineering drugs which 

encompass covalent properties, as well as reversibility, are now considered by 

some to be highly desirable. Such drugs are currently being achieved through 

incorporation of a nitrile group into electron-deficient alkenes 96 97. This allows for 

initial covalent interaction but also increases the acidity of the adduct, favouring 

the reverse reaction. Incorporation of this electrophile into a noncovalent protein-

recognition scaffold further aids the dissociation of the drug 96. The covalent 

interaction of SFN with protein thiols is historically perceived as permanent 98, 

however, recently published observations show thiol-SFN adducts are in fact 
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reversible, with transfer between thiol groups being possible 99. Although such 

trans-thiolation of SFN may lower protein selectivity, therapeutic desirability is 

increased by the covalent but reversible nature of the interaction. 

The development of SFN as a drug has been perturbed by its unstable nature, 

requiring the electrophile to be stored in a frozen buffer containing dimethyl 

sulfoxide (DMSO) 100 101 102. To overcome this, Evgen Pharmaceuticals 

developed Sulforadex (SFX-01), a chemically stabilised powder whereby SFN is 

encapsulated in an α-cyclodextrin complex 103. This encapsulation prevents 

thermal degradation of SFN above -20 ˚C, allowing storage of the drug at room 

temperature. Therapeutic potential of SFX-01 is currently being trialled in patients 

with prostate and breast cancer which to our knowledge also has little if any, 

toxicity concerns at the therapeutic concentrations used 104 105. The drug has 

been kindly donated for use throughout this research project.  

1.7 Research aims 

The data presented herein has overall furthered our understanding of SFN-

mediated inhibition of SHP2 and the benefits this may have in a scenario where 

hyperactivation of the phosphatase is pathological, such as NS. This thesis has 

four chapters of results from experiments carried out with the following research 

aims: 

• Chapter 3: determine if SFN inhibits SHP2 phosphatase activity in vitro as 

well as in WT mice and the Ptpn11D61G/+ NS mouse model.   

• Chapter 4: identify protein targets of SFN in cardiac tissue of mice following 

chronic treatment with SFX-01 and secondly explore if the electrophile can 

trans-thiolate between two thiol-containing proteins.  
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• Chapter 5: determine the effects of SFN on embryonic development and the 

progression of myeloproliferative disease in the Ptpn11D61G/+ NS mouse 

model.  

• Chapter 6: analyse the mechanism by which SFN inhibits SHP2 phosphatase 

activity.  
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2 General methods 

All chemicals were purchased from Merck, formerly Sigma-Aldrich, unless stated 

otherwise. 

2.1 Animals 

Male and female WT C57BL/6J and heterozygous Ptpn11D61G/+ mice (strain 

B6;129S4-Ptpn11tm1Bgn/Mmjax), referred to from here on as NS mice, were 

purchased from the Mutant Mouse Regional Research Centre and maintained in 

the animal facilities at King’s College London. Mice aged between 12 and 15 

weeks were used for experiments unless otherwise stated and treatment 

protocols are outlined in corresponding specific methods sections. Breeding and 

storerooms were maintained at 25 ˚C with a 12-hour light/dark cycle. Studies 

were performed in accordance with the Home Office guidance in the Operation 

of the Animals Scientific Procedures Act 1986, published by Her Majesty’s 

Stationary Office.  

2.2 Tissue isolation and preparation for western immunoblotting 

or protein immunoprecipitation 

At the end of in vivo experiments, mice were sacrificed using a single 

intraperitoneal injection comprised of 70 % sodium pentobarbitone and 30 % 

sodium heparin. Once the mouse had lost consciousness, tested by ensuring the 

mouse’s foot pain reflex was absent, tissue was rapidly isolated, flushed with 

saline (unless stated otherwise), placed immediately into liquid nitrogen and 

stored at -80 ˚C. When required, tissue was weighed and added to 10 % wt/vol 

ice-cold homogenisation buffer (100 mM Tris-HCl, 150 mM NaCl, 1 mM egtazic 

acid (EGTA), 1% triton, pH 7.4) supplemented with metal-chelator-free protease 
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inhibitor (Roche). On ice, tissue was homogenised using a mechanical tissue 

homogeniser. If sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) was desired, equal volumes of homogenate and 2X SDS-PAGE 

sample buffer (100 mM Tris-HCl pH 6.8, 4 % SDS, 20 % glycerol, 0.01 % 

bromophenol blue) were mixed together and stored at -20 ˚C until required. If 

protein immunoprecipitation was desired, samples were maintained on ice and 

immunoprecipitation protocol was carried out immediately following 

homogenisation. 

2.3 Protein immunoprecipitation  

1 ml of control group tissue lysate or 500 µl of drug-treated group tissue lysate 

was transferred into separate microcentrifuge tubes and centrifuged at 15000 x 

g for 10 minutes at 4 ˚C. 50 µl of supernatant from each sample was added to 50 

µl 2X SDS-PAGE sample buffer in separate tubes to be used as ‘input’, whilst 

the remaining supernatant was transferred into fresh microcentrifuge tubes and 

placed on ice. Primary antibodies were bought either unconjugated or pre-

conjugated to agarose beads which were prepared using the following protocols: 

Primary antibody pre-conjugated to an agarose bead: 100 µl of the agarose bead-

conjugated primary antibody and 50 µl of unconjugated agarose bead alone (if 

phosphatase activity assay was required) were washed 3X via centrifugation at 

15000 x g at 4 ˚C for 3 minutes in 1 ml phosphate buffered saline (PBS). After 

the final wash, beads were re-suspended in either 100 µl or 50 µl PBS 

supplemented with metal chelator free protease inhibitor (1 tablet per 50 ml, 

Roche), depending on starting volume. 50 µl of agarose bead-conjugated primary 

antibody was added to 400 µl of tissue lysate supernatant from control or drug-

treated mice. The remaining 50 µl of agarose bead-conjugated primary antibody 
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was added to 400 µl PBS to be used as a negative control. 50 µl of unconjugated 

agarose bead was added to 400 µl of tissue lysate supernatant from the control 

group, which was also to be used as negative controls. Samples were rotated at 

20 rotations per minute (rpm) for 3 hours at 4 ˚C.  

Primary antibody not conjugated to an agarose bead: 10 µl of primary antibody 

was added to 400 µl tissue lysate supernatant and rotated at 20 rpm overnight at 

4 ˚C. The following morning, 20 µl protein A/G plus agarose beads (Santa Cruz 

#sc-2003) were added and rotated at 20 rpm for a further 3 hours at 4 ˚C.  

Following incubation of tissue homogenate supernatants with pre-conjugated or 

unconjugated primary antibodies, samples were centrifuged at 15000 x g at 4 ˚C 

for 5 minutes and the supernatant was collected as ‘output’. Samples were again 

washed 3X via centrifugation at 15000 x g at 4 ˚C for 3 minutes in PBS and re-

suspended in 125 µl PBS following the final wash.  For western immunoblotting, 

proteins were eluted from the beads by boiling for 5 minutes at 95 ˚C followed by 

centrifugation at 15000 x g at 4 ˚C for 3 minutes. The supernatant was added to 

an equal volume of 2X SDS-PAGE sample buffer, labelled as ‘capture’ and stored 

at -20 ˚C until required. For phosphatase activity assay, the protein was left 

conjugated to the bead and the activity assay protocol was performed 

immediately after immunoprecipitation.     

2.4 Phosphatase activity assay   

SHP2 phosphatase activity was measured using an EnzChek Phosphatase Kit 

(Thermo Fisher). This kit contained a fluorogenic substrate named 6,8-difluoro-

4-methylumbelliferyl phosphate (DiFMUP). Cleavage of its phosphate group 

generates the fluorescent reaction product 6,8-difluoro-4-methylumbelliferone. 
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Therefore, a higher fluorescent readout correlated to higher phosphatase activity. 

Continuous assessment of activity could be achieved using this assay, which 

allowed for endpoint experiments as well as the determination of the initial rate 

of reaction. Immunoprecipitation of protein from tissue lysate was carried out as 

described above and preparation of recombinant protein is outlined in the 

corresponding specific methods section of chapter 3. All reagents were brought 

to room temperature before use. In an area of reduced lighting, a 10 mM stock 

solution of DiFMUP was prepared by dissolving one vial of DiFMUP in 200 µl of 

N,N-dimethylformamide and a working 200 µM solution was subsequently 

prepared by diluting 1 µl of the stock in 49 µl PBS. 50 µl of protein-containing 

sample was loaded into a black 96-well flat-bottomed plate (Thermo Fisher). All 

samples were run in triplicate. The reaction was initiated by rapidly adding 50 µl 

of the DiFMUP working solution into each protein-containing well. DiFMUP alone 

and SFX-01 alone were used as negative controls for in vitro studies. Tissue 

lysate incubated with unconjugated agarose bead and antibody/bead or antibody 

alone, as described previously, were used as a negative control for in vivo 

studies. Fluorescence was measured with a microplate reader (Gemini XPS) at 

an excitation of 360 nm and an emission of 460 nm at room temperature. 

Readings were taken every 1-minute over a 10-minute time period and analysed 

using SoftMax Pro software. Unless otherwise stated, the 10-minute time point 

was taken for analysis. Values were calculated by using the average of the 

triplicate samples and subtracting the average negative control value from each 

sample. 0-100 µM DiFMU standards were also used in each experiment and a 

line of best fit was generated. The amount of product formed from experimental 
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samples was calculated by extrapolating the corresponding Y value from the line 

of best fit.  

2.5 SDS-PAGE 

Protein-containing samples were subjected to SDS-PAGE using a Bio-Rad mini-

protean tetra cell system. Precast polyacrylamide protein gels were purchased 

from Bio-Rad and consisted of a stacking gel and a 4-20 % gradient resolving 

gel.  Gels were held in place using gel chambers which were then inserted into a 

buffer tank and submerged in reservoir buffer. A 1X working solution of reservoir 

buffer (25 mM Tris, 192 mM glycine, 0.1 % SDS, pH 8.3) was made by diluting 

100 ml of a 10X stock in 900 ml of deionised water. 50 µl of the protein sample 

was mixed via vortex with 50 µl 2X SDS-PAGE sample buffer before being loaded 

into the gel. When using a fifteen-well gel, 10 µl of the sample was loaded into 

each well and 15 µl was loaded if a ten-well gel was used. 3 µl of a molecular 

marker (Precision Plus protein dual colour standards, Bio-Rad) was loaded in a 

neighbouring lane, which contained proteins of various molecular weights, 

providing a visual aid to determine transfer efficiency as well as identifying the 

molecular weight of proteins. Electrophoresis was performed at 50 V for ~15 

minutes to allow proteins to migrate through the stacking gel followed by 180 V 

until the dye front had reached the bottom of the resolving gel.   

2.6 Western immunoblotting 

Immunoblot polyvinylidene fluoride (PVDF) transfer membranes (Bio-Rad), were 

soaked in 100 % methanol for 2 minutes followed by submersion in transfer buffer 

(25 mM Tris, 192 mM glycine, 20 % vol/vol ethanol, pH 8.3). Once electrophoresis 

was complete, the polyacrylamide gel was removed from the plastic cassette 



38 
 

using a metal opening lever and carefully placed on top of the PVDF membrane. 

The gel and membrane were then sandwiched between two stacks of electrode 

paper which had been wetted with transfer buffer. The sandwich was placed 

inside the bottom half of a Trans-Blot semi-dry rapid transfer system cassette 

(Bio-Rad). Air bubbles and excess transfer buffer were removed by rolling a long 

plastic tube over the top of the sandwich. The top of the transfer system cassette 

was then added and the whole cassette placed inside the semi-dry transfer 

machine. If one membrane was transferred at a time, 1.3 amps and a voltage of 

25 were applied for 7 minutes and if two membranes were transferred, 2.5 amps 

and a voltage of 25 was applied for the same amount of time. Once complete, 

the stacks of electrode paper and gel were discarded, and the membrane was 

then ready for immunostaining. 

2.7 Immunostaining western blots  

Membranes were blocked on a shaker for 1-hour at room temperature in a 

solution containing either of the following buffers: PBS containing 0.1 % Tween 

20 (PBS-T) plus 10 % wt/vol non-fat milk powder (Marvel) for non-phosphorylated 

proteins of interest or Tris buffer solution containing 0.1 % Tween (TBS-T) plus 

10 % wt/vol bovine serum albumin (BSA) for phosphorylated protein targets. The 

blocking solution was then discarded and desired primary antibody, diluted in 

either PBS-T plus 5 % wt/vol milk or TBS-T plus 5 % wt/vol BSA, was added to 

the membrane and incubated at room temperature for 2 hours on a shaker. 

Primary antibody dilution was determined either from the manufacturer’s 

recommendations or from previous studies. The membrane was then washed for 

1-hour at room temperature in either PBS-T or TBS-T, with the wash solution 

changed every 20 minutes. A solution containing horseradish peroxidase (HRP) 
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linked secondary antibodies (Cell Signalling) diluted 1:1000 in either PBS-T plus 

5 % wt/vol milk or TBT-T plus 5 % wt/vol BSA were then added to the membrane 

and incubated at room temperature for 1-hour on a shaker. The membrane was 

again washed for 1-hour at room temperature in either PBS-T or TBS-T, with the 

wash solution changed every 20 minutes and were then ready for enhanced 

chemiluminescence (ECL) and quantification to be performed.  

2.8 Enhanced chemiluminescence and quantification 

ECL was performed using Pierce ECL western immunoblotting substrate 

(Thermo Fischer). 500 µl of solution A was mixed with 500 µl solution B and then 

pipetted onto the membrane ensuring even and total coverage. After 1-minute 

membranes were placed inside a clear plastic wallet and air bubbles were 

removed. The plastic wallet was fixed in place inside a film cassette and 

chemiluminescence was detected using photographic film (GE Healthcare) which 

was subsequently developed using an automated machine (Fuji RG II). After 

development was complete, membranes were stained using Coomassie Blue 

(0.2 % Coomassie Blue R, 7.5 % acetic acid, 50 % ethanol) for 30 minutes 

followed by 3X 10-minute washes in destaining solution (5 % acetic acid, 50 % 

methanol). This was carried out to identify the efficiency of the transfer process 

and to aid in quantification of protein loading. For cellular experiments the 

analysis of GAPDH protein was used as quantification of protein loading.  

Developed film and Coomassie Blue stained membranes were digitally scanned 

and quantified by densitometry using Image Studio Lite (LI-COR Biosciences).     
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2.9 Colloidal Coomassie staining  

Following protein separation by SDS-PAGE, it was sometimes desirable to 

visualise total protein within samples. Once electrophoresis was complete, gels 

were stained overnight at 4 ˚C with Colloidal Coomassie Blue, which was made 

of two solutions: solution A (85 % orthophosphoric acid; 0.6 M ammonium 

sulphate) and solution B (5 % Coomassie G 250). 20 % methanol is added to the 

solution directly before use. The following morning, Colloidal Coomassie stain 

was removed and the gel was destained in deionised water at room temperature, 

on a shaker, until desired background staining was achieved.  

2.10 Statistical analysis  

All data sets with an n≥3 are displayed as mean values ± the standard error of 

the mean. Data sets containing only two groups were analysed for statistically 

significant differences using independent samples t-test. Data sets of three or 

more were first analysed using one-way analysis of variance (ANOVA) to identify 

the presence of statistically significant differences between any of the groups. If 

a statistical difference were identified, a follow-up Tukey’s honest significant 

difference (HSD) test was performed to identify which groups within the data set 

held the significant difference. Statistical analysis was carried out using Microsoft 

Excel. Differences were considered significant at the 95 % confidence level 

(p<0.05). 

2.11 Affinity purification of SFN antibody  

The anti-SFN primary antibody was purified from rabbit serum which had been 

stored at -80 ˚C since harvesting. To do this, an affinity column using N-

hydroxysuccinimide) NHS-activated Sepharose was used (GE Healthcare) which 
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was made via the batch method. 5 ml of activated Sepharose was added to a 10 

ml plastic column and washed in 10-15 column volumes of cold 1 mM HCl to 

remove the storage solvent. NHS-activated Sepharose was then incubated with 

50 mM L-cysteine in 8 ml coupling solution (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3). 

The matrix mixture was left rotating overnight at 4 ˚C to allow coupling of cysteine 

to the NHS-activated Sepharose via its amino terminus. The following morning 

the column was centrifuged at 1000 x g for 1-minute to pellet the Sepharose 

beads and the supernatant was discarded. To minimise hyperoxidation and block 

any free NHS groups that had not been coupled to cysteine, beads were 

resuspended in 8 ml 0.1 M Tris-HCl pH 7.5 and incubated for 2 hours at room 

temperature. Rapid alternate washes were then carried out; firstly, using 0.1 M 

Tris-HCl pH 8.5 followed by 0.1 M acetate buffer pH 4.0 plus 0.5 M NaCl and this 

process was repeated three times. The column was then washed in 5 column 

volumes 10 mM dithiothreitol (DTT) in PBS pH 8.0, to reduce any disulfide bonds 

that may have formed, which was followed by 10 column volumes PBS. After the 

final wash, 5 ml 50 mM L-SFN was added to the beads and incubated overnight 

at 4 ˚C to enable coupling of SFN to the free-thiol group of cysteine to occur. The 

following morning, the column was washed with 20 column volumes PBS 

supplemented with 20 % DMSO followed by 5 column volumes PBS to remove 

any unbound SFN. 10 ml of rabbit antiserum was added to the column and 

rotated overnight at 4 ˚C. The following morning, beads were poured into a 

disposable PD10 column (GE Healthcare), the antiserum was allowed to drip 

through the column and the eluate was repassed through the beads to optimise 

binding. The column was then washed 3X with 10 ml PBS plus 500 mM NaCl 

followed by 10 ml PBS. 17 ml of acid-elution buffer (100 mM glycine, pH 2.5) was 
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added to the column to elute acid-labile antibodies which were collected in a 15 

ml falcon tube containing 3 ml 1 M Tris, pH 8.0. The column was then neutralised 

by washing with 9 ml PBS. 17 ml of basic-elution buffer (100 mM triethylamine, 

pH 11.5) was added to the column to elute alkali-labile antibodies which were 

collected in a 15 ml falcon tube containing 3 ml 1 M acetate pH 5.0. The column 

was subsequently washed with 9 ml PBS and stored in PBS plus 0.05 % azide 

at 4 ˚C. The two pools of antibody were then concentrated using spin columns 

with a 50 K cut-off (Milipore) via centrifugation at 3000 x g at 4 ˚C into storage 

buffer (PBS, 0.1 % Tween-20, 1 % trehalose, 0.01 % azide). Pools were 

concentrated until optical density at 280 nm exceeded 1 (where 1 OD at 280 nm 

= 0.7 mg/ml IgG). The purified antibody was finally aliquoted into 25 µl aliquots 

and stored at -20 ˚C until required for western immunoblotting or 

immunoprecipitation.  

2.12 High-performance liquid chromatography (HPLC) 

The HPLC system (LC-10 AD liquid chromatograph, Shimadzu) consisted of a 

gradient pump used at a flow rate of 1 ml/minute, an injection valve programmed 

to inject 20 µl of sample, a UV detector set to 205 nm and a Supelco reverse 

phase Titan C-18 column (Sigma-Aldrich) held in a column oven set to 37 ˚C. 

The mobile phase consisted of buffer A (100 % deionised water) and buffer B (90 

% acetonitrile:10 % deionised water) and the binary gradient programme is 

outlined in table 2.1. 
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Time point, minutes Function Percentage 

0  Buffer A 
 

Buffer B 

100 
 

0  

5 Buffer A 
 

Buffer B 

100 
 

0 

15 Buffer A 
 

Buffer B 

0 
 

100 

20 Buffer A 
 

Buffer B 

0 
100 

25 Buffer A 
 

Buffer B 

100 
 

0 

25 Stop  
 

Table 2.1. HPLC protocol for analysing the stability of SFX-01 in water 

 

2.13 Cell culture 

HEK293 cells (a cell line derived from human embryonic kidney) were maintained 

in Dulbecco’s modified Eagles media (DMEM) plus GlutaMAX-I (Thermo 

Fischer), supplemented with 10 % foetal bovine serum (FBS) and 

penicillin/streptomycin (1 unit/ml;1 µg/ml) in a 95 % O2/5 % CO2 incubator at 37 

˚C. Once cells reached 70-80 % confluency, media was removed and cells were 

washed in 10 ml of warmed Dulbecco’s PBS. Cells were detached from the flask 

by incubating with 1.5 ml warmed trypsin- EDTA (Invitrogen Life Technologies) 

for 5 minutes. The detachment of cells was confirmed using light microscopy. 

Warmed media was added to reach the desired dilution and cells were seeded 

into either a fresh T75 flask (10 ml total volume) for maintaining the cell line or 

into 6-well plates (2 ml/well) for experiments (Thermo Fisher). Transfection and 

treatment protocols are outlined in the corresponding specific methods sections.  
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3 Sulforaphane inhibits SHP2 activity in vitro and 

in vivo with effects on downstream signalling  

3.1 Introduction 

3.1.1 SHP2 regulation of the Ras/ERK signalling pathway 

SHP2 is a positive regulator of the Ras/ERK signalling pathway. The Ras/ERK 

cascade is the most extensively studied MAPK signalling pathway and couples 

signals from tyrosine kinase GFRs to a broad complement of effector proteins, 

including transcription factors. Binding of growth factors (GF) such as platelet-

derived GF, epidermal GF and fibroblast GF drives dimerization and trans-

phosphorylation of the receptors. Stimulation causes recruitment of SHP2 to 

phosphorylated receptors whereby it likely positively regulates GF signalling via 

both phosphatase-dependent and -independent mechanisms by acting as a 

scaffold protein (figure 3.1) 59. SHP2 then becomes phosphorylated at its C-

terminal domain, firstly on Tyr542 followed by Tyr580, with the former being the 

major docking site for GFR-bound protein 2 (GRB2) 106. This interaction forms 

the basis of a larger complex comprising GAB1, the PH domains of which likely 

bind the SH2 domains of SHP2 107 108. SOS, a guanine nucleotide exchange 

factor is then recruited to this complex, catalysing the exchange of GDP from the 

small GTPase Ras for GTP, a key step in Ras reactivation 109. The proto-

oncogene serine/threonine kinase RAF is next recruited, where it is activated 

by a complex multistage process likely involving the kinase suppressor of Ras 

(KSR), although this remains unconfirmed 110 111 112. RAF drives 

phosphorylation and activation of the dual-specificity mitogen-activated 

protein/extracellular signal-related kinase kinases (MEK) 1 and 2 which 
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subsequently phosphorylate a tyrosine and then a threonine residue in the 

threonine-glutamic acid-tyrosine motif within the activation loop of ERK 1 (p44) 

and 2 (p42), resulting in their activation 113 114. ERK then directly 

phosphorylates multiple proteins and transcription factors, including c-Myc, Ets 

1, the oncogene proteins c-Jun and c-Fos which form activator protein (AP) 1, 

as well as activating NF-кB and cAMP response element binding protein 

(CREB) via phosphorylation of their upstream kinases, IкB kinase and 

ribosomal s6 kinase 1 (S6K1) respectively 115 116 117. The expression of proteins 

involved in cell cycle progression and apoptosis prevention, including cyclins 

and cyclin-dependent kinases, GFs, cytokines and B-cell lymphoma 2 are 

subsequently upregulated. Non-transcriptional events are also triggered, 

including S6K1 regulation of autocrine signalling in pancreatic β cells as well 

as interleukin 2 driven T-cell proliferation 118 119.  

Phospho-tyrosines on both Ras and GFRs provide docking sites for the 

GTPase-activating protein RasGAP, which negatively regulates the ERK 

pathway by hydrolysing RasGTP to GDP 120. SHP2, on the other hand, 

stimulates signalling and is strongly suggested to act upstream of Ras, as 

dominant SHP2 negative fibroblasts show defective Ras activation 121. SHP2 

preferentially dephosphorylates tyrosine residues upon both GFRs and Ras, 

hindering RasGAP binding and promoting Ras activation 76 122. SHP2 also 

dephosphorylates Sprouty, a Ras/ERK pathway inhibitor. Sprouty becomes 

tyrosine phosphorylated in response to GFR activation and binds to SH2 domains 

of GRB2, which prevents docking of SOS (figure 3.1) 123 124.  
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ERK signalling, which can be stimulated independently of GFRs, is also initiated 

at the intracellular membrane of the endoplasmic reticulum in an SFK-dependent 

manner, which is negatively regulated by C-terminal Src kinase (Csk). Following 

Figure 3.1. Diagram of the Ras/ERK signalling pathway.  

GF binding drives receptor dimerization and trans-phosphorylation, providing docking 

sites for a protein complex involving SHP2 and SOS. Downstream ERK 1/2 activation 

occurs via RasGTP formation by SOS and subsequent RAF and MEK 1/2 

phosphorylation. ERK phosphorylates a range of transcription factors, some via 

upstream kinases, resulting in upregulation of proteins required for proliferation, 

migration and apoptosis. SHP2 is a positive regulator of Ras/ERK signalling by 

dephosphorylating phospho-tyrosines on the negative regulator Sprouty, as well as Ras 

which prevents RasGAP binding and GTP hydrolysis.   
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GF stimulation Csk is recruited to areas where SFKs localise via interaction of its 

SH2 domains with phospho-tyrosines on phosphoprotein associated with 

glycosphingolipid-enriched microdomains 1 (PAG1) 125 126 (figure 3.2). Csk 

phosphorylates tyrosine residues within the C terminal of SFKs which inhibits 

their activity. SHP2, on the other hand, can positively regulate SFK by docking 

GAB1 where it dephosphorylates PAG1 and blocks Csk recruitment 126. Once 

activated, SFK phosphorylates downstream targets including phospholipase C ƴ 

1 (Plcƴ1), which catalyses phospholipid hydrolysis and the generation of second 

messengers such as diacylglycerol (DAG) or inositol triphosphate (IP3) that can 

activate the Ras/ERK signalling pathway 126 (figure 3.2).   
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3.1.2 SHP2 regulation of the JAK/STAT GH signalling pathway  

The JAK/STAT GH signalling pathway promotes cell cycle progression and 

proliferation as well as apoptosis following binding of GH to GH receptors (GHR), 

Figure 3.2. SHP2 positively regulates Ras/ERK signalling at the intracellular 

membrane of the endoplasmic reticulum.  

Following GFR activation, Csk docks phospho-tyrosines on PAG1, bringing it into 

proximity with SFK, which it inactivates by phosphorylation. SHP2 docking to phospho-

tyrosines on the receptor allows localisation to Csk/PAG1 where it dephosphorylates 

PAG1 and prevents Csk binding, allowing stimulation of the Ras/ERK pathway by 

phosphorylation of Plcƴ1 by SFK. 
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and SHP2 is a negative regulator of this pathway 127. GHs are secreted from the 

lateral wing of the anterior pituitary gland following synthesis by somatotropic 

cells. Binding of GH to GHRs initiates homodimerization of two monomeric 

receptor subunits 128. The cytoplasmic domain of each receptor monomer is 

associated with JAK2, bound via an amino-terminal FERM (Band-4.1, ezrin, 

radixin, moesin) domain 129. JAK2 belongs to a family of non-RTKs and is the 

only member involved in hormone-like cytokine signalling 130. Dimerization of the 

receptor allows trans-phosphorylation and subsequent activation of the kinase 

domain of each JAK2 131. Activated JAK2 then auto-phosphorylates itself on 

additional tyrosine residues as well as others in the cytoplasmic domain of the 

GHR 132. These phospho-tyrosine residues provide docking sites for a family of 

transcription factors named STAT, including STAT5 133. JAK2 subsequently 

phosphorylates conserved carboxy-terminal tyrosine residues within STAT5 

proteins, which facilitates their dimerization and translocation into the nucleus 

where they bind regulatory sequences to activate or repress the transcription of 

target genes 127 134. Phospho-tyrosine residues within the kinase domain of JAK2 

also provide docking sites for PTPs including SHP2 135. Through western blotting 

and knock-out models, the Carter-Su group demonstrate C-terminal SH2 

domains of SHP2 directly dock phospho-Tyr595 within GHRs, activating the 

phosphatase 135. SHP2 then acts as a negative regulator of GH signalling by 

dephosphorylating phospho-tyrosine residues on GHRs and/or JAK2 which 

removes binding sites for downstream signalling proteins including STAT5 (figure 

3.3) 135 136. 
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3.1.3 GH treatment of NS patients 

As mentioned previously, a distinctive feature of NS is short stature, occurring in 

almost 80 % of patients 137. Currently, treatment of attenuated growth in NS 

patients is limited to recombinant human (rh) GH therapy. Initial clinical trials in 

children showed promising results - increasing growth by roughly 5 cm. However, 

ongoing improvements in adult height are still inconclusive 138. Safety reports on 

the use of rhGH in children raise concerns about potential off-target effects on 

bone development due to intracranial pressure, scoliosis, and muscle and joint 

Figure 3.3. Diagram of the JAK/STAT signalling pathway.  

GH binding to GHRs causes dimerization of these RTKs. JAK2 proteins subsequently 

become trans-phosphorylated providing docking sites for STAT5 followed by their 

dimerization and translocation to the nucleus. STAT5 binding to DNA drives upregulation 

of proteins involved in proliferation, cell cycle progression and apoptosis. SHP2 is a 

negative regulator of this pathway by dephosphorylating JAK2 proteins. 
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discomfort in some patients 139. Further to this, information about the potential 

impact of GH therapy on ventricular development in patients with cardiac defects 

and/or abnormal cardiac function is also unavailable. As well as GHs regulating 

JAK/STAT signalling, there is also cross talk with the ERK pathway. 

Hyperactivation of ERK or upregulation of the kinase is seen in multiple cancers 

and its activation aids the growth and proliferation of these cells. Therefore, the 

prospect of a potentiated incidence of cancer following GH therapy warrants 

consideration. Although GH therapy may provide short term benefits to children 

with NS, the concerns highlighted above make it evident that further studies into 

utilising GH as novel therapies are needed. 

Short stature is most prevalent in NS patients with mutations in Ptpn11, the gene 

which encodes SHP2 140. In vivo studies identified reduced sensitivity to GHs in 

NS mice which are genetically engineered with a gain-of-function SHP2 mutation, 

although exactly how hyperactivation of the phosphatase induces growth 

retardation is still under investigation. The Yart group showed an association 

between early postnatal growth delay and low levels of insulin-like growth factor 

1 (IGF1) in a mouse model expressing a gain-of-function SHP2 mutation, 

Ptpn11D61G/+ 141. They subsequently found inhibition of SHP2 in GH responsive 

cell lines resulted in increased IGF1 levels following GH stimulation 141. Inhibitors 

of SHP2, or combined treatment with GH, may offer benefits over current 

therapies. 

Within the phosphatase domain of SHP2 lays a catalytic cysteine, Cys459, which 

must be in its negatively charged thiolate state to successfully carry out 

nucleophilic attack towards the phosphorus ion of phosphorylated substrates and 

dephosphorylate them, and the structure of the protein’s active domain and its 



52 
 

catalytic mechanism are outlined in chapter 6. Due to the electrophilic nature of 

SFN, it was logical to assume it would adduct at this nucleophilic catalytic 

cysteine and here I sought to determine if treatment of SHP2 with SFX-01 would 

inhibit the proteins phosphatase activity both in vitro and in vivo. Complementary 

experiments investigating alterations to downstream signalling pathways were 

also performed.  
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3.2 Materials and methods 

3.2.1 SDS-PAGE and western immunoblotting  

SDS-PAGE and western immunoblotting were performed as outlined in the 

general methods. For this chapter the following primary antibodies were used: 

 

 

Primary antibody  

 

Company 

 

Species 

 

Sulforaphane 

 

In-house 

 

Rabbit 

 

SHP2 (for immunocapture) 

 

Santa Cruz #sc-280 

 

Rabbit 

 

Total ERK 1/2 

 

Cell signalling #9102 

 

Rabbit 

 

Phosphorylated ERK 1/2  

 

Cell signalling #9101 

 

Rabbit 

 

SHP2 (for immunodetection) 

 

R&D Systems #AF1894 

 

Goat 

 

Phospho-tyrosine PY20 

 

Santa Cruz #sc-508 

 

Mouse 

 

Phosphorylated STAT5  

 

Cell signalling #9351 

 

Rabbit 

 

Table 3.1. List of primary antibodies used for western blotting in chapter 3.  

 

3.2.2 Immunoprecipitation  

Immunoprecipitation of proteins from tissue was performed as outlined in the 

general methods. For this chapter, the capture antibody was agarose-conjugated 

anti-SHP2 (Rabbit, Santa Cruz, #sc-7384 AC). Subsequent immunoblotting was 

carried out using an anti-SHP2 primary antibody (Goat, R&D Systems #AF1894) 

and an anti-goat secondary antibody.  
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3.2.3 Preparation of recombinant SHP2 for in vitro experiments   

Recombinant human SHP2 protein (Abcam) bought at 0.73 mg/ml in storage 

buffer (50 % glycerol, 0.05 % Tween 20, 75 mM NaCl, 25 mM Tris HCl, 2 mM 

EDTA, 10 mM GSH, 1 mM DTT, pH 8.0) was stored at -80 ˚C. When required, 

SHP2 was placed onto ice where it was held until experiments commenced. Prior 

to use in experiments, varying amounts of SHP2 were added to PBS, on ice, to 

make a total volume of 40 µl, which was routinely desalted to remove undesirable 

components of the storage solution, and in doing so swap for a suitable buffer. 

Desalting was carried out using a 7 kDa cut-off 0.5 ml Zeba Spin desalting column 

(Thermo Fisher) which was first centrifuged at 1500 x g at 4 ˚C for 1-minute to 

remove the storage buffer. The spin column was then washed three times to 

remove any remaining sodium azide from the resin by adding 100 µl of 

experimental buffer (25 mM Tris HCl, 75 mM NaCl, 0.05 % Tween 20, 2 mM 

EDTA, varying DTT concentration as described below, pH 7.2) to the top of the 

resin and centrifuging as before. Following the final wash step, the spin column 

was moved to a microcentrifuge tube containing 10 µl of the experimental buffer 

at reagent concentrations which generated a final concentration of 25 mM Tris 

HCl, 75 mM NaCl, 0.05 % Tween 20, 2 mM EDTA with varying DTT 

concentrations, pH 7.2. 40 µl of SHP2 in PBS was then added to the top of the 

resin and centrifuged at 1500 x g at 4 ˚C for 2 minutes. SHP2 was then placed 

back on ice until the experiment began. 

3.2.4 Optimisation of the SHP2 phosphatase activity assay    

A 50 µl sample of varying amounts of recombinant SHP2, prepared as described 

above, containing varying concentrations of DTT, was incubated at room 

temperature for 6 hours prior to loaded into a 96-well flat-bottomed plate and 
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phosphatase activity was measured using the fluorescence-based assay as 

described in detail in the general methods.  

3.2.5 Preparation of SFN stock for use in in vitro experiments 

A 50 mM SFN stock was prepared by dissolving 58 mg SFX-01 in 1 ml of 

deionised water. The sample was mixed by vortexing until all SFX-01 was 

dissolved. Working solutions were made by diluting the stock in deionised water. 

SFN stock was freeze-thawed no more than 4 times before being replaced with 

a new batch.  

3.2.6 Treatment of SHP2 with SFX-01 and determination of IC50 of inhibition 

by SFN 

Nine concentrations of SFX-01 from 0.007-1.75 µM were incubated with 0.011 

µg/ml recombinant SHP2 for varying lengths of time in PBS containing 0.016 mM 

DTT. Each experiment was performed in triplicate and the activity of the protein 

was assessed using the fluorescence-based phosphatase activity assay as 

outlined in the general methods. The IC50 for SFN-dependent inhibition of 

recombinant SHP2 phosphatase activity in vitro was determined using the curve-

fitting programme GraphPad Prism (GraphPad Software Inc.).  

3.2.7 Determining the stability of SFN in water over time 

12.5 mg SFX-01 was dissolved by vortexing it in 5 ml deionised water to make a 

final solution of 2.5 mg/ml SFX-01 (0.385 mg/ml SFN). Dissolved SFX-01 was 

stored in the dark at room temperature. Each morning the solutions were 

analysed by HPLC using the protocol outlined in the general methods. A 

deionised water only sample was used as a negative control followed by a 0.385 

mg/ml SFN standard to determine its retention time.  
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3.2.8 Acute or chronic treatment with SFN in vivo 

For acute SFN treatment, SFX-01 (0-10 mg/kg, which is equivalent to 0-1.54 

mg/kg SFN) was dissolved in 175 µl deionised water and vortexed thoroughly. 

WT or NS mice then received a single intraperitoneal injection of a specified 

concentration and were sacrificed after 30 minutes. For chronic SFN treatment, 

the requisite amount of SFX-01 was dissolved in deionised water to make a final 

amount of 2.5 mg/ml SFX-01. WT or NS mice then received this as a substitute 

for their drinking water over a 10-day period and were sacrificed at varying time 

points. The water containing the SFX-01 was replaced every 4 days. Following 

acute and chronic treatment, cardiac and liver tissue was harvested for further 

analyses.    

3.2.9 Growth hormone treatment in vivo 

WT mice were treated with either SFX-01 alone, recombinant mouse GH (rmGH) 

alone or a combination of both. 40 or 70 µg rmGH, purchased from the Harbour-

UCLA Research and Education Institute, was prepared by diluting 40 or 70 µg in 

175 µl saline supplemented with 10 mM NaOH and injected subcutaneously. 2.5 

mg SFX-01 was prepared by diluting 2.5 mg in 175 µl deionised water and 

injected intraperitoneally. Vehicle-treated control mice received an equivalent 

volume of saline by intraperitoneal injection. When combined treatment was 

required, rmGH was first injected subcutaneously followed immediately by an 

intraperitoneal injection of SFX-01. Mice were sacrificed at time points 0, 30, 60 

or 120 minutes after treatment and cardiac tissue was harvested.    
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3.3 Results 

3.3.1 Optimisation of the fluorescence-based SHP2 phosphatase activity 

assay  

A commercial fluorescence-based phosphatase activity assay kit, which required 

optimisation prior to use in the in vitro experiments, was used to assess the 

catalytic activity of recombinant SHP2 as well as that found in tissues in vivo. As 

expected, increasing amounts of recombinant SHP2 (0.011 - 0.73 µg/ml) 

prepared as described previously, showed proportionately greater phosphatase 

activity (figure 3.4 A). For this first experiment, an experimental buffer containing 

1 mM DTT was used. Fluorescence of sufficient intensity above baseline was 

generated with 0.011 µg/ml SHP2 and was the concentration used in subsequent 

experiments. Desalting 0.011 µg/ml recombinant SHP2 into an experimental 

buffer containing increasing concentrations of DTT, from 0 – 1 mM, was found to 

increase phosphatase activity in a concentration-dependent manner (figure 3.4 

B). As minimal DTT was desired, as it would likely also react with SFN, the lowest 

concentration of 0.016 mM was chosen for subsequent experiments.  
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Figure 3.4. Optimisation of protein and DTT concentrations for a fluorescence-

based phosphatase activity assay.  

A) A fluorescence-based phosphatase activity assay showing an increase in SHP2 

activity when increasing amounts of recombinant protein were used in the assay. The 

experimental buffer used in this experiment contained 1 mM DTT. B) A fluorescence-

based phosphatase activity assay showing an increase in SHP2 phosphatase activity 

when the protein was incubated in an experimental buffer which contained increasing 

concentrations of DTT.    
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3.3.2 SFN inhibits SHP2 phosphatase activity in vitro  

Concentration- and time-dependent inhibition of SHP2 phosphatase activity was 

seen using the fluorescence-based activity assay following incubation of 0.011 

µg/ml SHP2 in the presence of 0.016 mM DTT with 0-1.75 µM SFX-01 for 0-6 

hours (figure 3.5 A). Using the initial rate of reaction, calculated between the first 

and third minute of the assay, the IC50 for SFN-dependent inhibition of SHP2 was 

calculated for each time point. These values were time-dependent, varying from 

47.28-0.49 µM respectively (figure 3.5 B).  
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Figure 3.5. SFX-01 inhibits SHP2 phosphatase activity in vitro.  

A) A fluorescence-based phosphatase activity assay carried out using 0.011 mg/ml 

recombinant SHP2 in a buffer containing 0.016 mM DTT incubated with varying 

concentrations of SFX-01 for varying lengths of time. SFX-01 inhibits SHP2 

phosphatase activity in a concentration- and time-dependent manner. B) IC50 values of 

SFN inhibition of SHP2 in different conditions. (n = 5, *p<0.05 versus 0 µM SFN control). 
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3.3.3 SFN adducts recombinant SHP2 

Western immunoblotting showed SFN adduction to recombinant SHP2 following 

incubation with 1.75 µM SFX-01 for 30 minutes which was stable for a further 6 

hours (figure 3.6 A). SHP2-SFN was also detected following incubation of the 

protein with 0.109 µM SFX-01 for 0.5-6 hours although a loss of the adduct was 

detected at the 2-6-hour time points compared to 0.5-1 hours (figure 3.6 B). 

Adduction of the protein by the electrophile was only detected following 2 hours 

of incubation with 0.007 µM SFX-01 which again decreased at later time points 

(figure 3.6 C).  
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Figure 3.6. SFN adducts SHP2 in vitro.  

A) A representative immunoblot showing SFN adduction upon SHP2 following 30-minute 

incubation with 1.75 µM SFX-01 which was stable for 6 hours. B) A representative 

immunoblot showing SHP2-SFN following 30-minute incubation with 1.09 µM SFX-01. 

Reduction of the adduct was seen following 2 hours of incubation. C) A representative  

immunoblot showing SFN adduction upon SHP2 following 2 hours incubation with 0.007 

µM SFX-01. Almost complete loss of the adduct was seen 4 hours post-incubation. 
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3.3.4 Characterisation of the NS mouse model 

Daily weighing from 3-22 weeks of age showed both male and female NS mice 

weigh less than their WT counterparts (figure 3.7 A). Visual inspection showed 

that NS mice were shorter in height and length, had a flatter skull and a webbed 

neck compared to their WT littermates (figure 3.7 B). Immunoblotting of SHP2 

protein immunoprecipitated from cardiac tissue of WT or NS mice revealed 

comparable protein expression. However, a subsequent activity assay identified 

~3.5-fold hyperactivity of SHP2 in the mutants compared to WT (figure 3.7 C). 

Immunoblotting also revealed elevated ERK phosphorylation in the cardiac tissue 

of NS mice, with total ERK protein remaining comparable to WT littermates 

(figure 3.7 D).  
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A)                                                                     B)    
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Figure 3.7. Characterisation of the NS mouse model.  

A, B) NS mice present with a webbed neck, shorter skull and weigh less than their WT 

littermates. C, D) An immunoblot and fluorescence-based phosphatase activity assay 

showing comparable protein levels but increased phosphatase activity in NS mice using 

SHP2 immunoprecipitated from WT or NS cardiac tissue. E) An immunoblot showing 

increased ERK phosphorylation in cardiac tissue of NS mice. (n = 10, *p<0.05 versus 

WT). 
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3.3.5 SFN adducts protein targets in a concentration-dependent manner in 

vivo  

To establish if SFN could adduct protein targets following in vivo treatment with 

SFX-01 instead of L-SFN, which was used in preliminary experiments to identify 

protein targets of the electrophile in cardiac tissue, WT or NS littermate mice were 

intraperitoneally injected with varying concentrations of SFX-01 acutely for 30 

minutes. An increase in SFX-01 concentration (0-10 mg/kg) correlated with the 

increased abundance of protein-SFN adducts in cardiac and liver tissue of WT 

mice (figure 3.8 A, B). SFX-01 treatment of NS mice also resulted in protein-SFN 

adducts in both cardiac and liver tissue, however, only one concentration (10 

mg/kg) was examined in these mice (figure 3.8 C, D). 
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Figure 3.8. SFN adducts proteins in vivo in a concentration-dependent manner.  

A-D) Immunoblots showing concentration-dependent increase in protein-SFN adducts 

in the cardiac and liver tissue of WT or NS mice 30 minutes after intraperitoneal injection 

of varying concentrations of SFX-01. Note: only one concentration of SFX-01 was 

assessed in NS mice as the number of these mice was limited. (n = 6, *p<0.05 versus 

water only control). 
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3.3.6 Acute treatment with SFX-01 does not inhibit SHP2 phosphatase 

activity in vivo  

To assess inhibition of SHP2 phosphatase activity following acute treatment with 

SFX-01, SHP2 was immunoprecipitated from the cardiac tissue of WT or NS mice 

following intraperitoneal injection with 10 mg/kg SFX-01. Immunoblotting of the 

input and immunocaptured SHP2 identified comparable protein expression 

between WT and NS mice (figure 3.9 A). SHP2 phosphatase activity was basally 

higher in the NS mice compared to WT, consistent with their activating mutation 

(figure 3.9 B). However, no inhibition in activity was observed following the 30-

minute treatment of SFX-01 in either WT or NS mice (figure 3.9 B).   
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Figure 3.9. Acute exposure to SFX-01 does not inhibit cardiac SHP2 phosphatase 

activity.  

A) An immunoblot of input and capture samples following immunoprecipitation of SHP2 

from cardiac tissue of WT or NS mice 30 minutes after intraperitoneal injection of 10 

mg/kg SFX-01. B) A fluorescence-based phosphatase activity assay using 

immunoprecipitated SHP2 shows no inhibition of SHP2 phosphatase activity following 

30-minute treatment with 10 mg/kg SFX-01. (n = 6). 
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3.3.7 SFX-01 is stable in water for 6 days  

SFX-01 was dissolved in drinking water as a method of administration in some in 

vivo experiments. To establish the stability of SFX-01 in water over time, the drug 

was dissolved in water and analysed by HPLC at varying time points. A 

chromatogram of L-SFN, which was used as a positive control, revealed its 

retention time as ~9.56 minutes under the analytical conditions used (figure 3.10 

B). The peak intensity of SFN following the addition of SFX-01 to water did not 

change over 0-6 days and it was therefore assumed the drug was stable for this 

duration (figure 3.10 C-E). A small peak with a retention time of ~8.70 minutes 

appears after 4 days, which may correspond to a degraded form of SFN, 

however, this has not been confirmed and was a very minimal component. 
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Figure 3.10. HPLC chromatograms showing SFX-01 is stable in water for 6 days.  

A) A water only negative control. B) 0.385 mg/ml L-SFN in water positive control. C-E) 

2.5 mg/ml SFX-01 dissolved in water, stored at room temperature and analysed at time 

points of 0, 4 and 6 days respectively. A small peak with a retention time of ~8.70 

minutes, which likely represents a minimal amount of degradation, became apparent 

after 4 days. mAU represents absorbance using a UV detector set at a wavelength of 

205 nm.  
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3.3.8 SFN adducts protein targets in a time-dependent manner in vivo  

As 30-minute treatment with 10 mg/kg SFX-01 was not successful in inhibiting 

SHP2 phosphatase activity, WT or NS mice were subsequently treated with 2.5 

mg/ml SFX-01 in their drinking water for up to 10 days. Protein-SFN adducts were 

observed following 4 days of treatment in the cardiac tissue of WT or NS mice, 

which increased in a time-dependent manner (figure 3.11 A, B). 
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Figure 3.11. Protein-SFN adducts accumulate in vivo in a time-dependent manner. 

 A, B) Immunoblots showing time-dependent increase in protein-SFN adducts in the 

cardiac tissue of WT or NS mice after receiving 2.5 mg/ml SFX-01 chronically for up to 10 

days in their drinking water. (n = 10, *p<0.05 versus water only control). 
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3.3.9 Chronic SFX-01 treatment inhibits SHP2 phosphatase activity in vivo  

SHP2 was immunoprecipitated from the cardiac tissue of WT or NS mice 

following 4 days treatment with 2.5 mg/ml SFX-01 in their drinking water. As with 

the previous study in which the drug was administered for 30 minutes, 

immunoblotting of the input and immunocaptured SHP2 identified comparable 

protein expression between WT and NS mice (figure 3.12 A) with SHP2 

phosphatase activity basally greater in NS mice compared to WT (figure 3.12 B). 

However, unlike the 30-minute treatment, inhibition of SHP2 phosphatase activity 

was observed following treatment with 2.5 mg/ml SFX-01 for 4 days in WT or NS 

mice (figure 3.12 B). Indeed, 4 days of SFX-01 treatment nearly normalised the 

hyperactive SHP2 in the NS mice to WT levels. 
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Figure 3.12. 4-day treatment with SFX-01 inhibits cardiac SHP2 phosphatase 

activity.  

A) An immunoblot of input and capture samples following immunoprecipitation of SHP2 

from cardiac tissue of WT or NS mice after receiving 2.5 mg/ml SFX-01 for 4 days in 

their drinking water. B) A fluorescence-based phosphatase activity assay using 

immunoprecipitated SHP2 from cardiac tissue shows inhibition of SHP2 phosphatase 

activity following treatment with 2.5 mg/ml SFX-01 for 4 days in WT or NS mice. (n = 10, 

* and # p<0.05 versus water only control of the same genotype). 
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3.3.10 Treatment with clinically-relevant amounts of SFX-01 inhibits SHP2 

phosphatase activity  

The amount of SFX-01 used in previously described in vivo experiments where 

mice received the drug for 4-10 days was higher than those currently used by 

Evgen Pharmaceuticals in their clinical trials in humans. Thus, WT mice were 

orally gavaged with varying concentrations (0-500 mg/kg) of SFX-01 and 3 hours 

later cardiac tissue was harvested for analysis. SFX-01 caused inhibition of SHP2 

activity only at 500 mg/kg (figure 3.13 A). Subsequent studies in which varying 

amounts of the drug, which was approximately 0-500 mg/kg, was provided for 7 

days in the drinking water resulted in inhibition of the phosphatase as low as 

approximately 5 mg/kg (figure 3.13 B). SHP2 immunoprecipitated from mice 

administered 2.5 mg/ml SFX-01 for 7 days in their drinking water served as a 

positive control.  
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Figure 3.13. Treatment with SFX-01 at clinically-relevant concentrations inhibits 

SHP2 activity.  

A, B) Fluorescence-based phosphatase activity assays using SHP2 immunoprecipitated 

from cardiac tissue of WT mice showing inhibition in activity either 3 hours post-oral 

gavage with 500 mg/kg SFX-01 (A) or approximately 5-500 mg/kg SFX-01 when 

received in their drinking water for 7 days (B). Positive control was derived from mice 

administered 2.5 mg/ml SFX-01 for 7 days. (n = 5, *p<0.05 versus water only control). 
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3.3.11 Chronic SFX-01 treatment increases global tyrosine phosphorylation  

Immunoblotting with a pan-specific anti-phospho-tyrosine antibody revealed an 

increase in tyrosine phosphorylation of multiple proteins in cardiac tissue of WT 

mice following 4, 7 or 10 days SFX-01 treatment at 2.5 mg/ml in their drinking 

water (figure 3.14).  

 

 

 

 

 

 

 

 

 

3.3.12 Chronic SFX-01 treatment increases ERK phosphorylation  

Immunoblotting showed ERK phosphorylation was increased in the cardiac 

tissue of WT mice that received 2.5 mg/ml SFX-01 in their drinking water, but 

only at the 10-day time point. A trend towards an increase was also notable after 

7 days of treatment, however, this did not reach statistical significance. Over the 

Figure 3.14. SFX-01 treatment increases global tyrosine phosphorylation.  

An immunoblot showing an increase in global tyrosine phosphorylation in cardiac tissue 

of WT mice administered 2.5 mg/ml SFX-01 in their drinking water for up to 10 days. (n 

= 6, *p<0.05 versus water only control). 
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duration of the chronic treatment, ERK protein expression did not change (figure 

3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.13 SFX-01 or rmGH treatment increases STAT5 phosphorylation  

As expected, phosphorylation of STAT5 was increased in the cardiac tissue of 

WT mice 30 minutes after subcutaneous injection of 70 µg rmGH. STAT5 

phosphorylation was also increased 30 minutes after an intraperitoneal injection 

Figure 3.15. SFX-01 treatment increases ERK phosphorylation over time.  

An Immunoblot showing increased ERK phosphorylation in cardiac tissue of WT mice 

following treatment with 2.5 mg/ml SFX-01 for 10 days in their drinking water. (n = 5, 

*p<0.05 versus water only control). 
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of 2.5 mg/ml SFX-01, although to a lesser extent than rhGH. Combination 

treatment with 70 µg rmGH and 2.5 mg/ml SFX-01 did not potentiate STAT5 

phosphorylation compared to rmGH alone at any time point examined. 

Phosphorylation decreased over time in all treatment groups, although it 

remained elevated compared to control 120 minutes after treatment with rmGH 

with or without SFX-01 (figure 3.16).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. SFX-01 and rmGH increase STAT5 phosphorylation.  

An immunoblot showing increased cardiac STAT5 phosphorylation 30 minutes following 

a single intraperitoneal injection of 2.5 mg SFX-01 or a single subcutaneous injection of 

70 µg rmGH to WT mice. STAT5 phosphorylation was not potentiated when SFX-01 was 

co-administered with 70 µg rmGH. In all treatment groups, STAT5 phosphorylation 

decreased over time. (n = 3, *p<0.05 versus water control). 
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3.3.14 STAT5 phosphorylation by 40 µg rmGH is potentiated by SFX-01 

Previous in vivo studies showed SFX-01 did not potentiate STAT5 

phosphorylation induced by 70 µg rmGH. This experiment was repeated, but a 

lower 40 µg dose of subcutaneously injected rmGH was used, as the 70 µg may 

have been maximally stimulating STAT5 phosphorylation. As with the previous 

study, immunoblotting revealed an increase in STAT5 phosphorylation in cardiac 

tissue of WT mice 30 minutes following intraperitoneal injection of 2.5 mg SFX-

01. 40 µg rmGH alone increased STAT5 phosphorylation, and this was 

potentiated when SFX-01 was concomitantly administered (figure 3.17).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. SFX-01 potentiates phosphorylation of STAT5 by 40 µg rmGH.  

An immunoblot showing increased cardiac STAT5 phosphorylation 30 minutes after a 

single intraperitoneal injection of 2.5 mg SFX-01 or a single subcutaneous injection of 

40 µg rmGH to WT mice. STAT5 phosphorylation was potentiated when a combined 

treatment of SFX-01 and rmGH was used at these amounts. (n = 3, *p<0.05 versus 

water control). 
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3.4 Discussion  

Studies are underway by multiple research groups to identify efficacious 

inhibitors of SHP2. Here, I investigated whether SHP2 was inhibited by SFN, 

which was rationally anticipated for the reasons outlined in the introduction of this 

chapter. Such inhibition could offer the prospect of a therapy for NS by 

normalising hyperactive SHP2 to WT levels. 

Assessing the effect of SFN on SHP2 phosphatase activity required utilisation of 

a commercial, fluorescence-based phosphatase activity assay. Although the 

assay was established by the company, optimisation was required to determine 

the minimum amount of recombinant SHP2 protein to generate a consistently 

detectable signal from the fluorometer without the assay substrate becoming 

saturated. The experimental buffer for these experiments contained DTT, a 

reducing agent which resolves disulfide bonds via a disulfide-exchange 

mechanism (figure 3.18). DTT is essential within the storage and experimental 

buffer of recombinant SHP2 to maintain the catalytic and surrounding cysteines 

in a reduced state 142, and as expected, desalting SHP2 into a solution with no 

DTT caused the protein to become air oxidised and inactive. As discussed in 

greater detail in chapter 4, SFN can ‘trans-thiolate’ and so move between thiol-

containing compounds and/or proteins 99. As DTT is a dithiol-containing 

compound, I next optimised a minimal concentration in order to keep the protein 

reduced and active prior to the experiment, but also minimise the amount of 

excess thiol that SFN could potentially react directly with or trans-thiolate to or 

from.  
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In line with the rationale presented in the introduction of this chapter, I observed 

the inhibition of SHP2 phosphatase activity by SFX-01 in vitro. At shorter time 

points inhibition was achieved in a concentration-dependent manner, likely due 

to more SFN being readily available to adduct the catalytic cysteine of SHP2 as 

the abundance of the electrophile increased. Indeed, I observed no adduction of 

SHP2 by SFN after a 30-minute incubation with the lowest concentration of the 

electrophile, whereas a high abundance of SHP2-SFN was detected at the two 

higher concentrations investigated. This correlates with previous observations 

from Lewis et al, who demonstrated that dietary ITCs, including allyl ITC and 

SFN, are concentration-dependent inhibitors of SHP2 phosphatase activity 143. 

As well as this, they observed reduced inhibition of SHP2 in the presence of 

 

 

 

 

 

 

 SH SH 

Figure 3.18. Protein-disulfide reduction by DTT.  

DTT reduces disulfides via two sequential thiol-disulfide exchange reactions. 
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phosphate containing compounds. This is likely due to these phosphate groups 

being cleaved at the active site, occupying the catalytic cysteine and preventing 

inhibitory adduction by SFN. They therefore also hypothesised that ITC inhibition 

of SHP2 is active site-directed.  

SFN also inhibited SHP2 in a time-dependent manner in vitro. I anticipate this 

was due to the covalent nature of the SHP2-SFN interaction. Covalent versus 

non-covalent drug-protein interactions are considered in detail in the general 

introduction. Non-covalent drug-protein interactions are reversible, and this 

generates an equilibrium between a protein-bound and -unbound state. 

Therefore, this class of drug typically results in an eventual plateau in protein 

inhibition. Compounds with high electrophilicity such as SFN, on the other hand, 

form covalent interactions with proteins which are typically stable and permanent, 

or only slowly reversed. Extended periods of time increase the opportunity for 

SFN to adduct the catalytic cysteine of SHP2, and if this interaction is indeed 

permanent this may explain the time-dependent accumulation in inhibition of the 

phosphatase. Indeed, incubation with low amounts of SFX-01 for longer 

durations resulted in the same level of inhibition of SHP2 phosphatase activity as 

when incubated with higher amounts for a shorter time period. This was also 

visualised by immunoblotting as adduction of SHP2 by SFN required 2-hour 

incubation with the lowest concentrations of the electrophile. This cumulative 

effect also results in differences in IC50 values, which range from 47.28 to 0.49 

µM depending on the duration that the phosphatase was exposed to SFN. Similar 

observations are also documented by the Darley-Usmar group, whereby 

prolonged treatment (days) with the electrophile 15-deoxy-Δ12,14-prostaglandin J2 

resulted in accumulative adduction of the signalling protein KEAP1 144. However, 
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if accumulative adduction of a stable SFN adduct upon SHP2 were the sole 

mechanism for the time-dependent increase in inhibition of the phosphatase then 

I would have expected to see cumulative protein-adduct formation as measured 

using immunoblotting. In fact, the formation of SHP2-SFN was followed by a time-

dependent loss of the adduct even though the proteins phosphatase activity 

remained inhibited. A detailed hypothesis and proposed mechanism for SFN-

induced inhibition of SHP2 are outlined in chapter 6.  

I next wanted to establish if inhibition of the phosphatase by SFN could be 

achieved in vivo using a mouse model for NS with hyperactive SHP2 activity. 

Since clinical drugs are typically administered in a single, daily bolus dose I used 

this delivery approach of SFX-01 for initial experiments. However, even though 

multiple protein-SFN adducts were identified, adduction or inhibition of SHP2 by 

SFN was not observed. Due to the findings of the preceding in vitro experiments 

I speculated that a lower amount of SFX-01 administrated continually over a 

longer duration may provide the time needed for SFN to adduct and inhibit low 

abundance proteins such as SHP2; consequently, my experimental design was 

altered accordingly. The method of continual drug administration was by addition 

to the drinking water, which unlike repeated oral gavage offered a stress-free and 

non-invasive delivery approach. SFX-01 is orally bioavailable, and it was not 

rational to administer using osmotic minipumps, as this was considered a 

backward step in terms of developing the compound for clinical use. Also, the 

amount of SFX-01 that we delivered over a sustained period cannot be 

accommodated in a single minipump. Cardiac SHP2 phosphatase activity was 

inhibited in WT or NS mice following administration of lower amounts of SFX-01 

in this chronic manner. Again, this provides evidence that prolonged treatment 
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with low doses of SFN allows time for the electrophile to adduct and inhibit SHP2. 

This inhibition was maintained up to 10 days of treatment, which was perhaps 

due to the covalent nature of the interaction. Although, this mechanism of 

inhibition is challenged and reviewed in detail in chapter 6. As drug metabolism 

is notably higher in mice than in humans 145 146 the amount of SFX-01 given 

throughout the chronic in vivo study was ~5-fold that used in clinical trials; ~250 

mg/kg compared to 50 mg/kg. However, importantly, I also established that SHP2 

phosphatase activity was significantly inhibited in cardiac tissue of WT mice 

following 7 days treatment of SFX-01 in drinking water at a concentration as low 

as ~5 mg/kg. Again, these data provide evidence for electrophiles achieving 

biological effects when administered at low amounts over prolonged treatment 

times. Importantly, due to its requirement in essential signalling pathways, levels 

of SHP2 phosphatase activity were not completely reduced under any of these 

experimental conditions and in fact, the activity of the phosphatase in NS mice 

was reduced to levels comparable to their untreated WT littermates.  

After establishing SFN induced inhibition of SHP2 activity I next assessed 

changes in signalling events downstream of the phosphatase. As SHP2 is a 

tyrosine phosphatase, it is logical to assume that increased global tyrosine 

phosphorylation following SFX-01 treatment was due, at least in part, to its 

inhibition. The adduction of SFN to proteins other than SHP2 also likely 

contributes to this biological effect and perhaps the electrophile could adduct and 

inhibit other PTPs with essential catalytic cysteines.   

Oxidative modification of the catalytic cysteines of PTPs by ROS can also inhibit 

their activity, as outlined in chapter 6. Several studies have identified SFN can 

increase cellular ROS 147 148 149, which I speculate may involve the antioxidant 
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GSH. Due to its high cytoplasmic abundance, GSH is readily available to adduct 

free-SFN before the electrophile can interact with other target proteins. GSH 

plays a major role in the removal of ROS. Therefore, although SFN induces 

production of this antioxidant via activation of the KEAP1/Nrf2 signalling pathway, 

the pool of reactive GSH is overall reduced due to adduction by the electrophile. 

This resulting SFN-induced increase in cellular ROS may be contributing to 

increased global tyrosine phosphorylation by inhibiting an array of PTPs.  

SFN-induced upregulation in gene expression of many kinases via the 

KEAP1/Nrf2 signalling pathway, such as phosphatidylinositol 3 and 4, protein 

kinase C and MAP kinase kinase kinase 4 and 5 has also been documented and 

may be another explanation for the increase in protein phosphorylation 150.  

SHP2 is a positive regulator of the Ras/ERK signalling pathway through 

mechanisms outlined in the introduction of this chapter and I rationally anticipated 

that SFN-induced inhibition of the phosphatase’s activity would result in 

decreased phosphorylation and activation of ERK. The reverse effect was 

observed, with SFX-01 treatment inducing an increase in ERK phosphorylation 

in cardiac tissue. These data correlate to an accumulating body of evidence 

showing SFN-induced increase in ERK phosphorylation in multiple cell lines, 

including liver carcinoma, cortical neuronal, intestinal epithelial and glioblastoma 

151 152 153 154. Perhaps SFN-induced inhibition of SHP2 does result in a decrease 

in SHP2-stimulated ERK phosphorylation due to a resulting increase in RasGAP, 

Sprouty and Csk activity, but these effects may be outweighed by regulation of 

other SHP2-dependent and -independent mechanisms which induce 

phosphorylation of the kinase, as described below. 
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SHP2 positively regulates IGF1-induced activation of Akt 155 72 156. It has been 

shown that following its activation, Akt can phosphorylate RAF at Ser259 in its 

amino-terminal regulatory domain, which inhibits the protein 157 and prevents 

RAF from subsequently phosphorylating ERK. Perhaps SFN-induced inhibition 

of SHP2 reduces Akt activation and prevents its negative regulation of ERK 

phosphorylation.  

SFN may also increase ERK phosphorylation independent of SHP2 by increasing 

levels of cellular ROS. I have outlined a proposed mechanism for SFN-induced 

increase in ROS in detail above. ROS produced in an IGF1 dependent manner 

activate GFRs resulting in downstream stimulation of ERK signalling as well as 

other MAPKs 158 159. A common feature of GFRs is cysteine-rich motifs that are 

susceptible to modification by ROS, which may be responsible for driving 

receptor activation. Perhaps another mechanism by which oxidative stress 

increases ERK phosphorylation is altering the activity of MAPK phosphatases. 

MAPK phosphatase 1 is inhibited by H2O2-induced sulfenic acid intermediates 

upon its catalytic cysteine which results in increased phosphorylation of ERK, its 

primary substrate 160. As well as this, activation of protein kinase Cδ by 

glutamate-induced ROS stimulates degradation of MAPK phosphatase 1 via a 

ubiquitin-proteasome pathway 161. Finally, although the mechanism remains 

unclear, ROS can also induce phosphorylation of MEK 1/2 and increase 

downstream ERK phosphorylation 162. SFN itself also carries oxidant-like 

properties as it can directly adduct thiolates and inhibit protein function, much like 

H2O2. Therefore, perhaps the ROS-induced mechanism of ERK phospho-

activation considered above can also be achieved through direct adduction of 

mentioned protein cysteines by SFN.  
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SHP2 is a negative regulator of the JAK2/STAT5 signalling pathway and finally, 

I assessed the impact of SFX-01 treatment on this cascade. As GHs directly bind 

GHRs and stimulate signalling, it was as expected that rmGH treatment alone 

increased STAT5 phosphorylation in cardiac tissue. One observation is a peak 

in STAT5 phosphorylation 30 minutes post-rmGH treatment followed by a 

relatively rapid decline. Studies in both rats and primary hepatocytes have also 

shown that high levels of circulating GH result in a peak in signalling followed by 

fast induction of down-regulation 163 164. Including dephosphorylation of JAK2 by 

SHP2, GH signalling has multiple negative feedback mechanisms, such as 

ligand-induced endocytosis of the GHR 165, and upregulation of a family of 

cytokine-inducible suppressors of cytokine signalling (SOCS) 166. SOCS proteins 

dock phospho-tyrosine residues on both JAK2 and GHRs which interferes with 

STAT5 binding and induces degradation of the receptor complex. Either of these 

negative feedback mechanism may explain the rapid decline in STAT5 

phosphorylation 167.  

An increase in STAT5 phosphorylation followed by a time-dependent decline was 

also observed following treatment with SFX-01. I speculate that SFN-induced 

inhibition of SHP2 activity may be responsible for this increase in STAT5 

phosphorylation, as the phosphatase could no longer dephosphorylate JAK2.  

As explained in the results section of this chapter, two in vivo experiments were 

conducted using different amounts of rmGH. At higher amounts, no potentiation 

in STAT5 phosphorylation induced by rmGH was observed following combined 

treatment with SFX-01. I speculated that when mice were given high amounts of 

hormone, even though SFX-01 may be inhibiting SHP2 activity, JAK2 

phosphorylation cannot be increased as it is already saturated by high levels of 
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GH stimulation. Indeed, combined treatment with SFX-01 using less rmGH 

resulted in potentiated STAT5 phosphorylation compared to rmGH alone.  

Interestingly, studies in rats showed that low levels of circulating GH result in 

maximal activation of the JAK/STAT signalling pathway 168. This low level of 

stimulation may avoid a rapid increase in negative regulation by the mechanisms 

explained above. Perhaps the lower levels of GH utilised in my latter experiment 

prevented induction of such negative feedback loops and heightened potentiation 

of the combined treatment. With this in mind, it may have been beneficial to 

examine longer time points to determine whether sustained activation of the 

pathway can be detected.  

These findings are, however, contradictory to previous studies which found 

decreased STAT3 or STAT5 phosphorylation in human nasopharyngeal, 

prostate and lymphocyte cancer cell lines following treatment with SFN 169 170 171. 

Although notably, these studies were all conducted using human cancer cell 

lines, which may have basally altered signalling mechanisms and activity and are 

not comparable to the murine cardiac tissue analysed in my experiments which 

predominantly consists of non-proliferative cardiomyocytes. For example, mRNA 

expression of GHR is elevated in human prostate cancer cell lines where rapid 

induction of JAK2/STAT5 phosphorylation by GH is detected 172. Secondly, in 

proliferating cells, including a range of cancer cell lines, GHs induce a high level 

of nuclear localisation of GHRs where they can bind to transcriptional regulators 

themselves and upregulate target genes without driving STAT5 phosphorylation 

173 174.  
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4 Sulforaphane can trans-thiolate between 

proteins 

4.1 Introduction 

4.1.1 SFN adducts are reversible 

Adduction of ITCs to intracellular GSH is the first step in their metabolism 175. In 

most cases, this adduction is permanent and results in urinary excretion of 

subsequent metabolites. However, the resultant dithiocarbamate can also 

sporadically reverse i.e. the resolution of the adduct to regenerate reactive forms 

of the thiol and SFN, with no catalysis by another protein or chemical 176 177. 

Bruggeman et al found that treatment of rat liver cells with certain ITCs was 

cytotoxic and these same detrimental effects were seen when treated with GSH-

ITC, where there was the apparent release of the ITC at the plasma membrane 

178. They also showed that 2 hours post addition of L-cysteine to GSH-ITC, 80 % 

of total conjugates were L-cysteine-ITC and vice versa. This process is widely 

regarded as non-enzymatic, although increased catalysis has been observed 

with the presence of GSH transferases 179 180. It is therefore recognised that 

adduction to GSH does not always result in detoxification of the ITC. This is not 

to say that reversal of the adduct occurs only intracellularly. GSH-ITC can be 

rapidly excreted from the cell via MRP1 and/or Pgp1, as shown in the general 

introduction and reversal may, therefore, occur within the bloodstream or 

following transportation across cellular membranes into other tissues. 

Irrespective of location, regenerated electrophile is again available to react with 

free thiols 181. The Uchida group have also shown using MS analysis that as well 

as the spontaneous reversal of a GSH-SFN interaction, the electrophile can 
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actively transfer directly from a thiol-containing protein to GSH without the 

generation of free-SFN 182. This mechanism, termed ‘trans-thiolation’ in this 

document, involves direct nucleophilic attack of the reactive thiolate of GSH to 

the protein-SFN interaction. These data, therefore, suggest the transient 

movement of an SFN adduct between protein thiols, which may or may not 

require the flow of the electrophile to and from GSH to aid transport.  

In chapter 3 I reported a time-dependent increase in protein-SFN adducts in the 

cardiac tissue of WT or NS mice following treatment with SFX-01 for 4-10 days. 

Here liquid chromatography (LC) with tandem (MS/MS) analysis was utilised to 

identify SFN-adducted proteins of interest following treatment with SFX-01 or 

broccoli sprouts, a rich source of naturally occurring SFN. Subsequent 

biochemical analysis was used to investigate if the transient movement of the 

SFN adduct was responsible for such accumulation upon these proteins, which 

serve as a sink for the electrophile.  
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4.2 Materials and methods 

4.2.1 SDS-PAGE and western immunoblotting  

SDS-PAGE and western immunoblotting were performed as outlined in the 

general methods. For this chapter the following primary antibodies were used: 

 

 

Primary antibody  

 

Company 

 

Species 

 

Sulforaphane 

 

In-house 

 

Rabbit 

 

Thioredoxin 

 

Abcam #ab26320 

 

Rabbit 

 

Glutaredoxin 1 

 

Abcam #ab45953 

 

Rabbit 

 

Haemoglobin 

 

Abcam #ab77125 

 

Mouse 

 

Haemoglobin subunit β 

 

Santa Cruz #sc-31116 

 

Mouse 

 

Table 4.1. List of primary antibodies used for western immunoblotting in chapter 

4.  

 

4.2.2 Immunoprecipitation  

Immunoprecipitation of proteins from tissue was performed as outlined in the 

general methods. For this chapter the following antibodies were used: 
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Antibody 

 

Company 

 

Species 

 

Capture beads 

 

Sulforaphane 

 

In-house 

 

Rabbit 

 

Protein A/G PLUS-Agarose 

Santa Cruz #sc-2003 

 

Thioredoxin 

 

Abcam  

#ab26320 

 

Rabbit 

 

Protein A/G PLUS-Agarose 

Santa Cruz #sc-2003 

 

Glutaredoxin 1 

 

Abcam  

#ab45953 

 

Rabbit 

 

Protein A/G PLUS-Agarose 

Santa Cruz #sc-2003 

 

Haemoglobin 

 

Abcam  

#ab77125 

 

Mouse 

 

Protein A/G PLUS-Agarose 

Santa Cruz #sc-2003 

 

Haemoglobin 

subunit β 

 

Santa Cruz 

#sc-31116 

 

Mouse 

 

Protein A/G PLUS-Agarose 

Santa Cruz #sc-2003 

 

Table 4.2. List of antibodies used for immunoprecipitation in chapter 4.  

 

4.2.3 Preparation and administration of broccoli sprouts  

Individually housed male or female WT or NS mice were used in this study. 

Control group mice continued their regular diet of pelleted food. 15 mg of 

pesticide-free broccoli sprouts (Planet Organic) were weighed and placed in a 

glass jar. 1 g of their regular pelleted food was crushed and distributed over the 

sprouts to encourage eating. A plastic screw lid was placed on top which had a 

3 cm diameter access hole cut out from the middle. Each morning broccoli 

sprouts were replenished. Remaining broccoli sprouts were weighed to monitor 

consumption. Mice were sacrificed after 7 days and cardiac and liver tissue was 

harvested.  
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4.2.4 Proteomic analysis following SFX-01 treatment 

LC-MS/MS was carried out by Dr Xiaoke Yin and Professor Manuel Mayr (The 

James Black Centre, King’s College London). Proteins from heart homogenates 

of WT mice which had received 2.5 mg/ml SFX-01 in their drinking water for 7 

days were separated by SDS-PAGE. Following electrophoresis, a yellow band 

appeared on the polyacrylamide gel which corresponded to a ~15 kDa protein in 

lanes containing SFX-01-treated samples. This gel band and equivalent controls 

were carefully excised under sterile conditions and subjected to in-gel tryptic 

digestion using a ProGest (DigiLab Inc.) robotic digestion system. Peptides were 

subsequently separated by nanoflow LC using a reverse-phase column (PepMap 

C18, 3 µM, 100 Å, 25 cm x 75 µm inner diameter, Thermo Fisher). Separated 

peptides were then applied to an interfacing linear ion trap mass spectrometer 

(LTQ Orbitrap XL, Thermo Fisher) and collected from the analyser using full ion 

scan mode over an m/z range of 300-2000. MS/MS was performed to analyse 

the top six ions using dynamic exclusion. Generated spectra were analysed 

against the mouse protein database using the Mascot search engine (Matrix 

Science). Two missed cleavages per peptide were allowed. Protein 

identifications were verified using the proteomics computer program Scaffold 

(Version 4, Proteome Software Inc.). Peptides with above 95 % probability of 

identification were accepted as specified by the Scaffold software. A modification 

of 177.03 Da was searched for using the proteomic software PEAKS 

(Bioinformatics Solutions Inc.).  

4.2.5 Protein separation by size-exclusion chromatography 

In order to explore the transfer of the electrophile between proteins, a thiol-

containing protein with SFN adducted was required and for these experiments 
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BSA was used. A 200 mM BSA stock was made by dissolving 13.30 mg BSA in 

1 ml of either 10 mM Tris pH 7.4 or PBS pH 7.4. A 50 mM SFN solution was then 

made by dissolving 115.23 mg SFX-01 in 2 ml of either 10 mM Tris buffer or PBS. 

5 µl of the 200 mM BSA stock and 100 µl of the 50 mM SFN stock were added 

to 895 µl Tris or PBS, making a working solution containing 1 mM BSA and 5 mM 

SFN. The solution was then incubated at 37 ˚C for 30 minutes. 

BSA-SFN was separated from free-SFN by size-exclusion LC (Bio-Rad BioLogic 

Duoflow liquid chromatograph), which comprised a pump operated at a flow rate 

of 1 ml/minute, an injection valve fitted with a 500 µl sample loop, a UV detector 

set to 280 nm and a Hi-Load 16/600 Superdex 200 prep grade column (Bio-Rad). 

The mobile phase consisted of either 10 mM Tris pH 7.4 or PBS pH 7.4. The 

programme is outlined in table 4.3. A 10 mM Tris or PBS buffer sample was used 

as a negative control followed by a 1 mM BSA standard to determine its retention 

time. 

 

 

 

 

 

 

 

Table 4.3. Chromatography protocol for purifying BSA-SFN from unbound 

electrophile. 

 

When absorption at 280 nm was detected by visual inspection of the real-time 

chromatogram, the eluate was continuously collected in serial 5 ml fractions. 

Volume, 
ml 

Function Buffer, % Volume, 
ml 

Flow, 
ml/min 

 

0 
 

Isocratic Flow 

 

100 
 

1.60 

 

1.60  

 

1.60 
 

Load/Inject 
 

 

100 
 

1.60 

 

1.60 

 

3.20 
 

Isocratic Flow 
 

 

100 
 

420 

 

420 

 

423 
 

Stop 
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Following analysis of all samples, the pumps and column were flushed with 70 % 

methanol for 10 minutes and left stored in 70 % methanol until next required. 

Following the chromatography procedure, 50 µl of each eluted fraction was 

added to 50 µl of 2X SDS-PAGE sample buffer and the remaining eluate divided 

into 100 µl aliquots and stored frozen at - 20 ̊ C until required. Samples were then 

subjected to SDS-PAGE followed by either Colloidal Coomassie staining or 

western immunoblotting as described in the general methods.  

As the methods name suggests, separation is achieved by differences in protein 

or compound size, more specifically their Stokes radius, which considers not only 

size of the solute but also its mobility within a solution 183. Separation of the 

analytes greatly depends on the size of the pores within gel beads that form the 

stationary phase of the apparatus as visualised in figure 4.1.  
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4.2.6 Treatment of purified BSA-SFN with cysteine containing compounds 

To investigate the ability of SFN to trans-thiolate, BSA-SFN purified using the gel 

filtration outlined above was incubated with other cysteine-containing 

compounds, including; haemoglobin subunit β (Hgb β), haemoglobin (Hgb), 

GSH, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), L-cysteine or 

tissue homogenate from WT mice. 100 µl of 25 µM Hgb β, Hgb, GSH, GAPDH 

Figure 4.1. A diagram illustrating the size-exclusion chromatography system. 
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or L-cysteine in PBS pH 7.4 or 9.0 were incubated with 50 mM Bond-Breaker Tris 

(2-carboxyethyl) phosphine (TCEP) solution (Thermo Fisher) for 30 minutes to 

reduce any oxidative modifications. Following reduction with TCEP, solutions 

were desalted using 0.5 ml Zeba Spin desalting columns with a 7 kDa molecular 

weight cut-off (Thermo Fisher). 100 µl of cardiac, liver, kidney or blood 

homogenates from untreated WT mice were also prepared, using the protocol 

described in the general methods. 100 µl of 25 µM BSA-SFN, purified by size-

exclusion chromatography, was added to each solution, generating a final BSA-

SFN concentration of 12.5 µM. Samples were then incubated at 37 ˚C for 0-60 

minutes followed by addition of an equal volume of 2X SDS-PAGE sample buffer. 

Negative controls were used containing either BSA, Hgb, GSH, GAPDH, L-

cysteine or tissue homogenate alone. A time-matched control was also made by 

incubating 12.5 µM BSA-SFN alone for 1-hour at 37 ˚C. Western immunoblotting 

was carried out following the protocol described previously in the general 

methods.  

4.2.7 Using HPLC to assess transfer of an SFN adduct from SHP2 to GSH  

Incubation of 65 µM SFX-01 with 10 µM SHP2 for 30 minutes at room 

temperature was followed by desalting to remove any unbound electrophile using 

a 7 kDa cut-off 0.5 ml Zeba Spin desalting column (Thermo Fisher). The solution 

was then analysed by HPLC using the protocol outlined in the general methods 

and the UV detector set at a wavelength of 205 nm. The solution was 

subsequently incubated with 10 mM GSH for 30 minutes at room temperature 

and again analysed using the HPLC method. Finally, the sample was incubated 

with 10 mM TCEP and incubated at room temperature for 30 minutes and again 

analysed using the HPLC method.  
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A deionised water-only sample was used as a negative control followed by a 

GSH-SFN standard to determine its retention time.  

4.2.8 Isolation of adult mouse ventricular myocytes 

Adult mouse ventricular myocytes were isolated from WT C57BL/6 mice using a 

collagenase-based enzymatic digestion procedure. Isolation was carried out by 

Dr Shiney Reji (The Rayne Institute, King’s College London) using the following 

protocol. Hearts were excised, cannulated and sequentially perfused in 

Langendorff mode at 37 ˚C with solutions outlined in table 4.4. Perfusion was 

conducted using modified Tyrode’s solution 1 for 2 minutes followed by calcium-

free modified Tyrode’s solution for 5 minutes. This was followed by subsequent 

perfusion with modified Tyrode’s solution containing collagenase (250 mg/L) for 

~12 minutes. The ventricles were then removed from the apparatus and excised 

into smaller pieces to allow extra surface area for the collagenase digestion to 

occur. The homogenate was then bubbled with O2 for 4 minutes at 37 ˚C. 

Following incubation, the tissue was gently triturated until a uniform suspension 

was obtained and the cell suspension was subsequently filtrated through a nylon 

mesh. The cells were allowed to settle for 5 minutes which was followed by 

washing in modified Tyrode’s solution 2. The cells were again allowed to settle 

for 5 minutes which was followed by resuspension in modified Tyrode’s solution 

2. After a 2-hour recovery period, the supernatant was removed, and the cells 

washed in PBS prior to lysis and addition to an equal volume of 2X SDS-PAGE 

sample buffer.  
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 Modified 

Tyrode’s 

solution 1, 

nmol/L 

Calcium 

Free, nmol/L 

Enzyme 

solution, 

nmol/L 

Modified 

Tyrode’s 

solution, 

nmol/L 

NaCl 130 130 130 130 

KCl 5.4 5.4 5.4 5.4 

MgCl2 1.4 1.4 1.4 1.4 

NaH2PO4 0.4 0.4 0.4 0.4 

HEPES 4.2 4.2 4.2 4.2 

Glucose 10 10 10 10 

Taurine 20 20 20 20 

Creatine 10 10 10 10 

EGTA - 0.1 - - 

CaCl2 0.75 - 0.5 - 

Type-1 - - 342 U/mg - 

Collagenase 

pH at 37 ˚C 

7.3 7.3 7.3 7.3 

 

Table 4.4. Solutions used for the isolation of adult mouse ventricular myocytes. 

 

4.2.9 Treatment of HEK293 cells  

Just prior to treatment, growth media was removed from HEK293 cells and 

replaced with fresh media containing no FBS. Cells were then treated for 0-60 

minutes with 10 µM of either GSH-SFN (Santa Cruz #sc-207496) or GSH.  

Following treatment, 200 µl of 2X SDS-PAGE sample buffer was added to each 

well. Cells were then detached from the well using a cell scraper, moved into a 

microcentrifuge tube and lysed via sonication for 7 seconds at 30 kHz and 40 % 

amplitude. Western immunoblotting was then carried out using the protocol 

outlined in the general methods.  
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4.3 Results 

4.3.1 SFN adducts a ~15 kDa protein in cardiac tissue 

As detailed in chapter 3, treatment of WT mice with 2.5 mg/ml SFX-01 for 4-10 

days in their drinking water identified a time-dependent increase in protein-SFN 

adducts in cardiac tissue. These samples were reanalysed by immunoblotting 

which included collecting shorter detection film exposure times, which illustrated 

that SFN predominantly adducts a protein with a mass of ~15 kDa. This SFN 

adduct accumulated in a time-dependent manner (figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. SFN adducts a ~15 kDa protein in cardiac tissue of WT mice.  

An immunoblot showing a time-dependent increase in SFN adduction to a ~15 kDa 

protein in cardiac tissue of WT mice following treatment with 2.5 mg/ml SFX-01 in their 

drinking water for 4-10 days. (n = 10, *p<0.05 versus water-only control). 
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4.3.2 Protein-SFN adducts are detected after consumption of broccoli 

sprouts 

I next wanted to assess if protein-SFN adducts could be detected in vivo following 

ingestion of a naturally occurring source of the electrophile. WT or NS mice were 

therefore given broccoli sprouts for 7 days. SFN adduction of a ~15 kDa protein 

was seen in cardiac tissue of WT or NS mice after consumption of the sprouts 

(figure 4.3).  

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Ingestion of a naturally-derived source of SFN results in protein adduct 

formation.  

An immunoblot showing SFN adduction of a ~15 kDa protein in cardiac tissue of WT or 

NS mice after eating broccoli sprouts for 7 days. (n = 4, *p<0.05 versus pelleted food 

only control). 
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4.3.3 SFX-01 treatment increases Trx and GRX1 protein expression 

I next began to investigate if the ~15 kDa protein adducted by SFN following 

treatment with SFX-01 for 4-10 days in their drinking water was Trx or GRX1, 

which were considered rational because they are thiol-dependent enzymes of 

approximately this molecular weight. Immunoblotting under reducing conditions 

identified an increase in protein expression of Trx or GRX1 in cardiac tissue of 

WT mice following 10-day treatment with 2.5 mg/ml SFX-01 (figure 4.4 A, B). 

 

A)                                                                 B) 

 

 

 

 

 

 

 

 

 

Figure 4.4. SFN treatment increases protein expression of Trx and GRX1.  

A, B) Representative immunoblots showing an increase in protein expression of Trx and 

GRX1 in cardiac tissue of WT mice following treatment with 2.5 mg/ml SFX-01 in their 

drinking water for 10 days.  
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4.3.4 Trx or GRX1 do not comigrate with the ~15 kDa protein adducted by 

SFN 

Proteins from cardiac tissue of WT mice who received 2.5 mg/ml SFX-01 in their 

drinking water were resolved in triplicate by SDS-PAGE. Immunoblotting 

revealed Trx nor GRX1 resolved at the same molecular weight as the ~15 kDa 

protein adducted by SFN (figure 4.5). 

 

 

 

 

 

 

 

4.3.5 Immunoprecipitation of the ~15 kDa protein adducted by SFN was 

unsuccessful  

I next attempted to immunoprecipitate the ~15 kDa protein adducted by SFN from 

cardiac tissue of WT or NS mice following 10-day treatment with 2.5 mg/ml SFX-

01 in their drinking water. Immunoprecipitation was conducted using our in-house 

anti-SFN primary antibody, however, the protein of interest was not present in 

the immunocaptured sample (figure 4.6). 

 

Figure 4.5. Neither Trx nor GRX1 comigrate with a ~15 kDa protein target of SFN.  

A representative immunoblot showing the ~15 kDa protein adducted by SFN from the 

cardiac tissue of WT mice following 10-day treatment with 2.5 mg/ml SFX-01 in their 

drinking water did not comigrate on a polyacrylamide gel with either Trx or GRX1.  
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4.3.6 The ~15 kDa protein adducted by SFN was identified by mass 

spectrometry 

Unexpectedly, the ~15 kDa protein adducted by SFN following 10-day treatment 

with SFX-01 could be visualised on a polyacrylamide gel following 

electrophoresis by a yellow colouring (figure 4.7). Table 4.5 documents the 

proteins identified by LC-MS/MS within gel pieces excised from both SFX-01 

treated and untreated samples, which was conducted using biological repreats. 

Hgb subunits α and β1 (Hgb α and Hgb β1 respectively) were the most abundant. 

Subsequent analysis using the computer program Mascot identified an addition 

Figure 4.6. A ~15 kDa protein adducted by SFN was not successfully 

immunoprecipitated from cardiac tissue.  

A representative immunoblot of input and immunocaptured cardiac tissue of WT or NS 

mice treated with 2.5 mg/ml SFX-01 for 10 days in their drinking water. Precipitation was 

conducted using the anti-SFN primary antobody although no enrichment of the ~15 kDa 

protein adducted by SFN was achieved.  
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of +177.03 Da, the mass of SFN, upon cysteine within the peptide sequence 

‘GTFASLSELHCDK’, which corresponds to Cys93 of Hgb β1 (figure 4.8). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. The ~15 kDa protein adducted by SFN can be visualised following 

electrophoresis.  

A representative polyacrylamide gel showing the yellow appearance of the ~15 kDa 

protein adducted by SFN in cardiac tissue of WT mice who received 2.5 mg/ml SFX-01 

in their drinking water for 10 days.  
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Protein name Abbreviation Mol. Wt 

Hgb subunit α Hgb α 15 kDa 

Hgb subunit β1 Hgb β1 16 kDa 

Histone H4 H4 11 kDa 

Cytochrome c oxidase subunit 6c COX6C 8 kDa 

ATP synthase subunit e, mitochondrial ATP51 8 kDa 

Fatty acid-binding protein, heart FABPH 15 kDa 

Cytochrome c, somatic CYC 12 kDa 

Cytochrome c oxidase subunit 5A COX5A 16 kDa 

Fatty acid-binding protein, adipocyte FABP4 15 kDa 

Cytochrome c oxidase subunit NDUFA4 NDUA4 9 kDa 

Cytochrome b-c 1 complex subunit 8 QCR8 10 kDa 

ATP synthase subunit g, mitochondrial ATP5L 11 kDa 

Cytochrome c oxidase subunit 4 isoform 1 COX41 20 kDa 

Cardiac phospholamban PPLA 6 kDa 

NADH dehydrogenase subunit 1 beta 
subunit 3 

NDUB3 12 kDa 

NADH dehydrogenase subunit 1 alpha 
subunit 6 

NDUA6 15 kDa 

Cytochrome b-c1 subunit 7 QCR7 14 kDa 

Cytochrome c oxidase subunit 5b C0X5B 14 kDa 

ATP synthase subunit f, mitochondrial ATPK 10 kDa 

Mitochondrial pyruvate carrier 2 MPC2 14 kDa 

ADP/ATP translocase 1 ADT1 33 kDa 

NADH dehydrogenase 1 subunit C2 NDUC2 14 kDa 

NADH dehydrogenase 1 β subunit 4 NDUβ4 15 kDa 

Cytochrome c oxidase subunit 6B1 CX6B1 10 kDa 

ATP synthase protein 8 ATP8 8 kDa 

Ubiquitin-60S ribosomal protein L40 RL40 15 kDa 

Histone H2A type 2 H2A2C 14 kDa 

Myoglobin MYG 17 kDa 

CDGSH iron-sulphur domain-containing 
protein 1 

CISD1 12 kDa 

NADH dehydrogenase 1 alpha subunit 7 NDUA7 13 kDa 
 

Table 4.5. Proteins identified by LC-MS/MS from cardiac tissue of WT mice. 
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4.3.7 SFN can adduct Hgb β 

Immunoblotting revealed SFN can adduct recombinant Hgb β following 30-

minute treatment with SFX-01 (figure 4.9). Hgb β has a monomeric weight of 16 

kDa. SFN adducts are identified at a molecular weight of both 16 and 32 kDa, 

likely corresponding to both monomeric and dimerized forms of Hgb β.  

  

 

 

 

Figure 4.8. Mass spectra of the Hgb β1 peptide sequence GTFASLSELHCDK 

which contained a +177.03 mass adduct upon Cys93. 

Figure 4.9. SFN can adduct Hgb β.  

An immunoblot showing SFN adducted to monomeric and dimeric Hgb β following 

incubation of recombinant protein with SFX-01 for 30 minutes. (n = 5, *p<0.05 versus 

untreated control). 
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4.3.8 The ~15 kDa protein adducted by SFN comigrates with Hgb β 

Immunoblotting revealed the ~15 kDa protein adducted by SFN in cardiac tissue 

of WT mice following treatment with 2.5 mg/ml SFX-01 in their drinking water for 

4-10 days resolved at the same molecular weight as recombinant Hgb β following 

electrophoresis (figure 4.10). 

 

 

 

 

 

 

 

4.3.9 Immunoprecipitation of Hgb β-SFN was unsuccessful 

I attempted to immunoprecipitate Hgb β-SFN from cardiac tissue of WT mice 

following 10-day treatment with 2.5 mg/ml SFX-01 in their drinking water. 

Immunoprecipitation was conducted using an anti-Hgb β primary antibody 

however no presence of Hgb β-SFN was detected in the immunocaptured sample 

(figure 4.11).  

 

 

 

 

 

Figure 4.10. Hgb β comigrates with the SFN adducted ~15 kDa protein.  

A representative immunoblot showing comigration of Hgb β with the ~15 kDa protein 

adducted by SFN in cardiac tissue of WT mice following 4-10-day treatment with SFX-

01 in their drinking water. 
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4.3.10 SFX-01 treatment did not increase Hgb β expression 

As the ~15 kDa protein accumulatively adducted by SFN following continuous 

SFX-01 treatment was identified as Hgb β by LC-MS/MS, I assessed if the 

expression of the protein was increased. Spectral counts for Hgb β revealed there 

was no change in the abundance of the protein in cardiac tissue from WT mice 

after receiving 2.5 mg/ml SFX-01 for 10 days in their drinking water compared to 

control (figure 4.12). 

 

 

Figure 4.11. Hgb β-SFN was not successfully immunoprecipitated from cardiac 

tissue.  

A representative immunoblot of input and immunocaptured cardiac tissue of WT mice 

treated with 2.5 mg/ml SFX-01 for 10 days in their drinking water. No enrichment of Hgb 

β-SFN was achieved.  



111 
 

 

 

 

 

 

 

 

 

 

 

4.3.11 Hgb β was not detected in isolated cardiomyocytes  

I next investigated if Hgb β-SFN present in cardiac tissue was a result of this 

protein being present in cardiomyocytes, as it is found in tissues other than red 

blood cells which is discussed in detail in the discussion of this chapter. 

Immunoblotting analysis, with a blood sample as a positive control, did not find 

Hgb to be present in isolated adult mouse ventricular cardiomyocytes (figure 

4.13). 

 

 

 

 

 

Figure 4.12. Spectral counts of Hgb β in cardiac tissue of WT mice following 

treatment with SFX-01 for 10 days in their drinking water.  



112 
 

 

 

 

 

 

 

 

 

4.3.12 Detection of cardiac Hgb-SFN is attenuated by coronary perfusion  

Hearts were isolated from WT mice treated with SFX-01 for 10 days and 

subjected to different stringencies of coronary vascular perfusion to ascertain 

whether the adduct observed was due to residual blood. Immunoblotting showed 

that flushing blood from the heart reduced the Hgb-SFN signal, consistent with 

the adduct being the result of modified red blood cell Hgb (figure 4.14). 

 

 

 

 

Figure 4.13. A representative immunoblot showing Hgb was not detected in 

isolated adult mouse ventricular myocytes.   
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4.3.13 BSA-SFN was purified using size-exclusion chromatography 

Following incubation of 1 mM BSA with 5 mM SFN for 30 minutes in either 10 

mM Tris pH 7.4 or PBS pH 7.4, free-SFN was removed from either solution using 

Figure 4.14. Hgb β-SFN present in cardiac tissue was perhaps from residual blood. 

Representative immunoblots showing a decrease in cardiac Hgb-SFN and Hgb following 

perfusion of coronary vessels of hearts isolated from mice treated with SFX-01 for 10 

days. 
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gel filtration chromatography. Regardless of the buffer used, the chromatogram 

showed similar profiles with two broad peaks appeared during the 120-minute 

run time (figure 4.15 A, B). To determine if these peaks contained BSA-SFN and 

assess the purity of the samples, fractions were collected and subjected to SDS-

PAGE followed by Colloidal Coomassie staining or western immunoblotting. 

Immunoblotting identified which samples contained SFN adducted to monomeric 

BSA and the fractions to be used in subsequent experiments are indicated by an 

arrow in figure 4.16 A, B. Colloidal Coomassie staining of the fractions after 

separation on a polyacrylamide gel together with BSA standards (1.25-5 nmol) 

allowed the concentration of BSA present in the samples following 

chromatography to be measured. This was ~50 µM for the Tris-containing sample 

and ~25 µM for the PBS-containing sample (figure 4.16 C). 
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A) 

 

 

B) 

 

 

  

 

 

 

 

 

 

 

A) 

Figure 4.15. Chromatograms showing retention times for BSA treated with SFN.  

A) 1 mM BSA incubated with 5 mM SFN in 10 mM Tris pH 7.4 B) 1 mM BSA incubated 

with 5 mM SFN in PBS pH 7.4. AU represents absorbance using a UV detector set at a 

wavelength of 280 nm.  
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B)                                                                               C) 

 

 

 

 

 

 

 

 

 

Figure 4.16. BSA-SFN is present in eluates following size-exclusion 

chromatography.  

A, B) Immunoblots and Colloidal Coomassie stained polyacrylamide gels of fractions 

collected following gel filtration of BSA treated with SFN in either a 10 mM Tris or PBS 

buffer respectively. Immunoblotting revealed SFN had adducted BSA and indicated 

which fractions contained predominantly monomeric BSA which was desirable for 

subsequent experiments. C) A Colloidal Coomassie stained polyacrylamide gel following 

electrophoresis using varying amounts of BSA to use as standards. Colloidal Coomassie 

stained polyacrylamide gels of gel filtrated BSA-SFN samples were compared to these 

standards to estimate the amount of protein present. 
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4.3.14 The interaction between BSA and SFN is stable in a PBS buffer  

To assess the stability of the SFN adduct over time, chromatographically-purified 

BSA-SFN was incubated at room temperature for 0-60 minutes and resolved 

using SDS-PAGE. Immunoblotting identified a time-dependent loss of the SFN 

adduct from BSA when in a Tris-containing buffer. When using a PBS buffer, the 

SFN adduct was stable upon BSA over time (figure 4.17 A, B). 

 

A)                                                               B) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. The SFN adduct is stable upon BSA within a PBS buffer.  

A) An immunoblot showing removal of the SFN adduct from BSA when BSA-SFN in a 

10 mM Tris buffer purified by size-exclusion chromatography was incubated at room 

temperature for 0-60 minutes. B) An immunoblot showing stable adduction of SFN to 

BSA following incubation of chromatographically-purified BSA-SFN in a PBS buffer at 

room temperature for 0-60 minutes. (n = 3, *p<0.05 versus 0-minute control). 
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4.3.15 SFN can transfer from GSH to cellular proteins 

To investigate if SFN could transfer from GSH to cellular proteins, HEK293 cells 

were incubated for 30 or 60 minutes with commercially available GSH-SFN. 

Immunoblotting identified multiple proteins adducted by SFN following incubation 

for 30 or 60 minutes. Immunoblotting also revealed there was no increase in 

protein glutathionylation at either time point, suggesting SFN had directly 

transferred (trans-thiolated) from the tripeptide to cellular proteins (figure 4.18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. SFN can transfer from GSH to cellular proteins.  

A representative immunoblot showing an increase in protein-SFN adducts following 

incubation of HEK293 cells with GSH-SFN for 30 or 60 minutes. No increase in 

glutathionylation of proteins was detected.  
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4.3.16 L-cysteine can remove the SFN adduct from BSA  

Immunoblot analysis showed there was a loss of the SFN adduct over time when 

BSA-SFN was incubated with L-cysteine for 5-40 minutes (figure 4.19). A time-

matched untreated BSA-SFN control showed no loss of the adduct over time in 

the absence of L-cysteine.  

 

 

 

 

 

 

 

 

 

 

 

 

4.3.17 SFN can transfer from BSA to Hgb β  

To investigate if the SFN adduct could move between thiol-containing 

biomolecules, BSA-SFN purified by size-exclusion chromatography was 

incubated with either Hgb β or GSH for 1-60 minutes at either pH 7.4 or pH 9.0. 

Following 1-minute incubation at pH 7.4 Hgb β-SFN was identified by 

immunoblotting, consistent with rapid trans-thiolation of the electrophile from 

BSA. Although the amount of Hgb β-SFN did not increase, adduction of the 

electrophile to BSA significantly decreased over time and to a greater extent 

Figure 4.19. L-cysteine can remove the SFN adduct from BSA.  

A representative immunoblot showing loss of the SFN adduct from BSA following 

incubation of BSA-SFN with L-cysteine for 5-40 minutes.  
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when incubated with GSH (figure 4.20 A). These observations were replicated at 

pH 9.0, although a greater amount of Hgb β-SFN was observed at all incubation 

times examined (figure 4.20 B). SFN adduction upon GSH was not detectable by 

the immunoblotting analysis due to the small size of this tripeptide.  
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A)               

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

Figure 4.20. SFN can transfer from BSA to Hgb β.  

A, B) Immunoblots showing time-dependent loss of SFN from BSA following incubation 

of BSA-SFN with either Hgb β or GSH for 1-60 minutes at pH 7.4 (A) or pH 9.0 (B). Hgb 

β-SFN is detected following 1-minute incubation and to a greater extent at pH 9.0 (B) than 

pH 7.4 (A). GSH-SFN was not detected due to the small size of this tripeptide. (n = 3, 

*p<0.05 versus 0-minute control. #p<0.05 versus treatment with Hgb β). 
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4.3.18 SFN can transfer from SHP2 to GSH  

HPLC analysis following incubation of SFX-01 with SHP2 identified a doublet 

peak upon the chromatogram at 14.89 and 15.19 minutes (figure 4.21 B). I 

hypothesised that the latter peak corresponded to SHP2 alone, whilst the peak 

with a shorter retention time was perhaps the protein adducted with SFN. 

Following incubation of the solution with GSH, HPLC analysis identified a peak 

at 15.19 minutes not associated with a doublet, likely unbound SHP2 and a broad 

peak at 9.12 minutes which correspond to a GSH-SFN standard (figure 4.21 C). 

The GSH-containing solution was then incubated with TCEP, to resolve any 

disulphide bonds. HPLC analysis identified two new peaks upon the 

chromatogram at 1.27 and 9.35 minutes. These two products were likely GSH 

and SFN respectively (figure 4.21 D), as the retention time is similar to that 

produced from an SFN standard shown in chapter 3 figure 3.10, and GSH is not 

retained on this HPLC column and will therefore pass through the column and be 

detected quickly.  
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A) 

 

 

 

 

B) 

 

 

 
 

C) 

 

 

 

 

D) 

 

 

 

 

 

Figure 4.21. HPLC chromatograms showing SFN moving from SHP2 to GSH.  

A) A GSH-SFN standard. B) 65 µM SFN incubated with 10 µM SHP2 for 30 minutes. C) 

SHP2-SFN incubated with 10 mM GSH for 30 minutes. D) SHP2-SFN incubated with 10 

mM GSH for 30 minutes and subsequent incubation with 10 mM TCEP for 30 minutes. 

mAU represents absorbance using a UV detector set at a wavelength of 205 nm. 
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4.3.19 SFN can transfer from BSA to a protein present in the blood 

To determine whether an SFN adduct could transfer from BSA to proteins within 

a biological sample, BSA-SFN was incubated with blood from WT mice for 1-60 

minutes. Immunoblotting revealed SFN adducted with a ~15 kDa protein 

following 40 or 60 minutes of incubation (figure 4.22). A loss in SFN adduction of 

BSA was also noted over time. A time-matched untreated BSA-SFN control 

showed no loss of the adduct over time in the absence of blood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. SFN can transfer from BSA to blood proteins.  

A representative immunoblot showing a loss of an SFN adduct from BSA in conjunction 

with adduction of the electrophile to a ~15 kDa protein present in blood from WT mice 

following a 40- or 60-minute incubation. 
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4.4 Discussion 

The studies outlined here along with those in chapter 3 showed there is a 

prominent protein target of SFN, with adduction increasing in a time-dependent 

manner, following chronic treatment with SFX-01 or ingestion of broccoli sprouts. 

As well as identifying this protein I analysed the mechanism by which the SFN 

adduct accumulated on the prominent target protein.  

Naturally derived sources of SFN in the form of cruciferous vegetables are 

frequently consumed by the general public. In this chapter, I first sought to 

determine if ingestion of the electrophile in this manner would result in its 

adduction to proteins, as occurred when synthetic SFN or SFX-01 was orally 

consumed. Increasing levels of chemophobia among the general population also 

support the need for such studies to identify if biological effects can also be 

achieved using these natural sources 184. This aversion to chemical compounds 

including therapeutics gained momentum with the introduction of 

dichlorodiphenyltrichloroethane as a routinely-used pesticide as well as the 

production of genetically-modified organisms. This has led to a sustained 

increase in sales of both organic foods and natural health supplements. The use 

of natural therapies either alone or in combination with prescribed drugs is also 

surprisingly prevalent among patients not only with minor illnesses but also 

chronic and life-threatening diseases, driven largely by chemophobia 185 186 187.  

There has consequently been extensive research into the efficiency of naturally 

derived compounds as therapeutics, including ITC 188 189. For example, 1-Methyl-

1,2,3,4-tetrahydroisoquinoline, which is present in several plant sources as well 

as the human brain, exhibits neuroprotective and antidepressant effects by 

inducing the production of brain-derived neurotropic factor and nerve GF as well 
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as scavenging free radicals 190 191. Resveratrol, present in the seeds of many 

plants has shown multiple biological activities, including cardioprotection, in part 

due to its induction of antioxidant enzymes including glutathione peroxidase, 

superoxide dismutase and HO1 via an Nrf2-mediated pathway 32 33.  The efficient 

antioxidant properties of vitamin C, a prominent component in many fruit and 

vegetables, is also well characterised 34 35. Biological effects following ingestion 

of plant/fruit/vegetable sources of the vitamin have been studied with promising 

outcomes 196 197 198. For example, drinking beetroot juice protected against post-

ischemic reperfusion injury, myocardial infarction and ventricular dysfunction in 

mice by a mechanism in which cyclic guanosine monophosphate and 

subsequently hydrogen sulfide were increased 199. I detected SFN adducting to 

proteins following voluntary ingestion of broccoli sprouts, providing evidence that 

the ITC is bioactive and that any therapeutic effects of this electrophile may 

potentially be achievable following administration in this manner. This is 

consistent with previous studies identifying an increase in antioxidant protein 

expression in cardiovascular and kidney tissue of stroke-prone hypertensive rats 

following ingestion of broccoli sprouts 200 201. These studies also observed a 

correlation to attenuated oxidative stress, increased endothelial-dependent 

relaxation of the aorta, lowered blood pressure and increased response to NO in 

vascular smooth muscle cells 200 201. Cardioprotective effects were also seen 

following ingestion of broccoli sprouts for 30 days in rats whereby increased 

ventricular function, reduced myocardial infarct size and reduced cardiomyocyte 

cell death were observed following ischemia and reperfusion 202. A reduced 

incidence of prostate cancer in mice via SFN-mediated reduction of histone 
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deacetylase enzyme expression and subsequent loss in interaction with their 

corepressors has also been documented 203.  

Consistent with previous in vivo studies where SFX-01 was administered to mice 

in the drinking water, SFN adduction of a ~15 kDa protein was detected following 

ingestion of broccoli sprouts. The amount of SFN adducted to this protein 

following treatment with 2.5 mg/ml SFX-01 for 10 days was much greater than 

after the ingestion of broccoli sprouts. This is somewhat unsurprising as these in 

vivo studies vary largely in the amount of SFN received. Broccoli sprouts contain 

~255 mg glucoraphanin per 100 g 204. Throughout this study, the mice ate 

between 5–10 mg sprouts a day and therefore had a maximum intake of 0.025 

mg glucoraphanin. It has previously been calculated that ~75 % of glucoraphanin 

is cleaved to form active SFN 204. If I, therefore, assume that the mice received 

0.00625 mg SFN/day this is a considerably lower amount than those who 

received SFX-01 treatment (0.115 mg SFN/day) for an equivalent time period.  

Upregulation of antioxidant proteins by SFN via the Nrf2 pathway is well 

characterised and outlined in detail in the general introduction. This includes the 

low molecular weight ubiquitous disulfide reductases Trx and GRX1, which have 

molecular weights of 11.7 and 12 kDa respectively 205. Figures 4.23 and 4.24 

below show the enzymatic reactions of the Trx or GRX1 disulfide reduction 

systems respectively. These dithiol proteins each contain reactive cysteines 

within their active site motifs, Cys-Gly-Pro-Cys and Cys-Pro-Tyr-Cys 

respectively, and I therefore rationally investigated if the ~15 kDa protein on 

which SFN accumulated was either of these 206 207.  
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Figure 4.23. A diagram showing the enzymatic reactions involved in a two-step 

dithiol mechanism for catalytic reduction of protein disulfides by Trx. 

Figure 4.24. A diagram showing enzymatic reactions of GRX1.  

A) A two-step dithiol mechanism for catalytic reduction of protein disulfides by GRX1 B) 

A one-step monothiol mechanism for catalytic reduction of protein-SG disulfides by 

GRX1. 
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As anticipated and consistent with stimulation of an Nrf2-mediated cellular 

antioxidant gene response upon exposure to electrophiles 208 209, treatment with 

SFX-01 for several days increased Trx and GRX1 protein expression. These 

observations are in alignment with previous studies whereby Trx protein 

expression was increased in the neural retina of mice following 3 days of oral 

treatment with SFN 210. Treatment of a human breast epithelial cell line with SFN 

for 48 hours was also shown to upregulate GRX1 expression levels 211. As 

depicted in figure 4.24 B a GSH adduct can trans-thiolate to GRX1. Therefore, 

as well as accumulation of Trx- or GRX1-SFN as a result of increased protein 

expression i.e. there is more reactive protein available for the electrophile to 

adduct to, perhaps trans-thiolation of the adduct from proteins onto the 

antioxidant is also occurring (figures 4.25 and 4.26). This concept of trans-

thiolation of an SFN adduct between proteins is discussed in greater detail on 

page 133. If GSH and the TrxR/glutaredoxin reductase (GRXR) systems were 

unable to remove the SFN adduct from Trx or GRX1, then it may be anticipated 

this continual exposure to SFX-01 may cause accumulation of the adduct on 

either or both of the proteins and so explain the observations made. 
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Western immunoblotting concluded the ~15 kDa protein was not Trx or GRX1 as 

neither resolved at the same molecular weight as the protein containing the SFN 

adduct following gel electrophoresis. Consequently, LC-MS/MS analysis was 

Figure 4.25. Proposed mechanism for transfer of the SFN adduct to Trx. 

Figure 4.26. Proposed mechanism for transfer of the SFN adduct to GRX1. 
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undertaken as a method of identifying proteins present in a gel piece taken from 

where the modified protein migrated on an SDS-PAGE gel. No silver or Colloidal 

Coomassie staining was required to locate the ~15 kDa modified protein on the 

gel as it could be visualised by a yellow colouring, likely due to the high presence 

of sulphur within the adducted SFN. In addition to identifying proteins present in 

the gel sample, a mass equivalent to that of SFN was detected covalently 

adducted to Cys93 of the β1 subunit of Hgb.  

Mammalian Hgb is a tetrameric structure consisting of two sets of dimeric 

polypeptide chains; α-globin subunits 1 and 2 and β-globin subunits 1 and 2 212. 

Bound by non-covalent forces within each globin subunit is an iron-

protoporphyrin IX molecule, which is primarily in the physiological ferrous (FeII) 

chemical valance state 213. Two highly conserved amino acids, a proximal 

histidine and a distal phenylalanine, coordinate the iron moiety and without them, 

Hgb cannot perform its primary function as a two-way respiratory carrier 214. 

Reversible binding of O2 at the four ferrous iron atoms allows transport of the gas 

from pulmonary vessels to tissues throughout the body 215. The return of CO2 is 

then subsequently facilitated not by the ferrous iron but instead via weak 

interactions at the amino-terminal of the globins 213.   

Although the mechanism is still under investigation, circulating NO plays a role in 

the regulation of hypoxic vasodilation with both proposed hypotheses being 

dependent on red blood cells and deoxy-Hgb. The first involves the highly 

reactive Cys93 within the β subunit of Hgb which is conserved between all 

vertebrate species possessing advanced cardiovascular systems 216. Extensive 

research from many laboratories, predominantly led by the Stamler group, have 

demonstrated NO can bind at this highly reactive residue, either directly or via 
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trans-nitrosylation (the transfer of NO) from the heme group to the thiol, 

generating Hgb-SNO 217 218 219. They report significant levels of Hgb-SNO within 

red blood cells isolated from arterial blood of anesthetised rats and almost 

undetectable amounts in venous blood 220. It is proposed the increased rate of S-

nitrosylation in areas of high O2 concentration is due to an allosteric change 

induced by O2 binding, which exposes Cys93 which would otherwise be blocked 

by the C-terminal His146 220. It is well characterised that physiological O2 gradients 

regulate vascular tone and blood flow, whereby lower concentrations of the gas 

result in hypoxic vasodilation 221 222. It is now suggested that this endocrine-like 

transportation of NO upon Hgb may have a role in this coupling of metabolic 

demand with increased delivery of O2. Not only via the induction of allosteric 

changes which enhance the release of O2 but also the disassociation of NO itself 

from the macromolecule in areas of low O2 where it regulates vascular tone. 

Whereby, this offloading of bioactive NO from Cys93, via trans-nitrosylation to 

GSH or the cytoplasmic domain of the anion exchanger AE1 facilitates its 

excretion from red blood cells, where it subsequently enters the vascular 

endothelium and elicits its role as a potent vasodilator 223 224 225 226 227.  If Cys93 

does indeed play a key role in transportation and bioactivity of NO, it’s adduction 

by SFN may have detrimental effects on the NO-mediated regulation of vascular 

tone. Perhaps if Cys93 is occupied by SFN, it can no longer scavenge NO at high 

O2 concentrations and subsequently cannot deliver it to areas of low saturation. 

Consequently, this may cause vasoconstriction and reduced blood flow in areas 

where metabolic demand for O2 is high. 

This being said, the relevance of Hgb-SNO formation in erythrocytes to the 

overall regulation of hypoxic vasodilation is still debated, with some researchers 
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in favour of a second ideology named the nitrite-reductase hypothesis 228 229 230. 

Studies have observed a clear arterial to venous plasma nitrate gradient with 

arterial levels reduced during exercise 231 232. A significant increase in red blood 

cell NO metabolite accumulation is also detected in veins compared to arteries, 

with the most dominant species being iron-nitrosylated Hgb 231 232. This theory, 

therefore, proposes the endocrine reservoir is in fact nitrite which is converted to 

NO by deoxy-Hgb which can then either diffuse through the vessel wall and elicit 

local effects on vasodilation or adduct vicinal deoxy-heme groups. NO adducted 

to deoxy-heme produces the six-coordinate species nitrosyl-Hgb, involving iron 

bound to four nitrogens, a proximal histidine and NO 233 234 which may act as a 

transport mechanism for NO. In areas of low O2 tension, the proximal histidine 

bond can break producing a five-coordinate species resulting in lowered affinity 

for and release of O2 from the neighbouring heme groups 233 234. These studies 

do detect non-significant formation of Hgb-SNO in arterial plasma although to a 

much lower extent than NO-heme and suggest it’s likely not a primary transport 

mechanism for NO although may facilitate its release from heme. As well as this, 

a mouse model with a Cys93 to Ala93 mutation generated by the Townes group 

identified no deficit in systemic or pulmonary haemodynamics and concluded it 

is not essential for the physiological coupling of erythrocyte deoxygenation to NO 

bioactivity 235. Nevertheless, the effects of prolonged SFN treatment on blood 

pressure warrant further investigation.   

Regulation of NO bioavailability by Hgb, in particular, Hgb α, has also been 

demonstrated in endothelial cells at myoendothelium junctions within the blood 

vessel wall 236. The expression of Hgb α increases as the diameter of the vascular 

wall decreases, correlating with an increase in microvascular junctions in these 
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smaller resistance arteries 237. Again, Hgb appears to play a role in regulating 

NO-dependent vasodilation of these arterioles 238 239. When O2 concentrations 

are high, NO produced by endothelial NO synthase is scavenged by oxy-Hgb to 

produce nitrate ions and methaemoglobin with a ferric iron, which prevents 

diffusion into and vasodilation of vascular smooth muscle cells 236 240. As 

endothelial cells predominantly express Hgb α and only minimal Hgb β, it is 

unlikely that adduction of SFN at Cys93 of the β subunit is occurring within this 

cell type. Hgb α and/or β expression have been reported in multiple somatic cell 

types such as alveolar epithelial cells 241, renal mesangial cells 242, hepatocytes 

243, macrophages 244 and neurons 245. However, I did not detect Hgb in isolated 

mouse ventricular cardiomyocytes. Further to this, flushing coronary arteries from 

isolated hearts of mice who had received SFX-01 with increasing amounts of 

buffer correlated with a loss of Hgb as well as Hgb-SFN. This is consistent with 

Hgb-SFN originating from the blood and likely red blood cells. Immunostaining of 

blood cells from mice who had received SFX-01 treatment with an anti-SFN 

antibody and subsequent analysis by flow cytometry or fluorescent microscopy 

should be conducted to confirm this.  

As outlined in the introduction to this chapter, it has been shown a protein-SFN 

adduct can either spontaneously resolve, or trans-thiolate to another thiol 

containing protein. Following treatment of HEK293 cells with GSH-SFN, the 

accumulation of SFN adducts was seen upon multiple proteins with no detectable 

increase in glutathionylation. This corroborates findings that the interaction 

between the electrophile and GSH is reversible and perhaps the accumulation of 

SFN upon cellular proteins occurred following its direct trans-thiolation from the 

tripeptide.  
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I next sought to assess if SFN adducts could also be reversed from proteins other 

than GSH and if so, whether trans-thiolation of the electrophile may account for 

its time-dependent accumulation on Hgb β Cys93 following chronic in vivo 

treatment with SFX-01. 

It is established that amine groups have nucleophilic properties and so can 

adduct ITCs including SFN 246 247 248 249, albeit with reduced affinity compared to 

thiols as they are a weak base with high pKa 250 251. Transfer of allyl-ITC from Nα-

acetyl-L-cysteine to either Nα-benzoyl-glycyl-L-lysine or lysine residues on BSA 

has been reported 252. Similar transfer reactions of fluorescein-ITC were also 

shown between thiol and amine groups upon sarcoplasmic vesicles in vitro 253. 

Indeed, in the studies reported here in which I purified BSA-SFN in an amine-

containing Tris buffer, this resulted in the loss of the SFN adduct over time which 

was not observed using a PBS buffer. A loss of the electrophile was also seen 

following incubation of BSA-SFN with L-cysteine or GSH. In addition, HPLC 

analysis suggested that SFN can transfer from SHP2 to GSH. Together these 

data provide evidence that SFN-modification of protein thiols can be reversed, 

which may be mediated by nucleophilic attack towards the protein-SFN 

interaction by another thiol or amine group, which results in the transfer of the 

electrophile to this second nucleophilic moiety. Importantly, I also observed SFN 

can indeed trans-thiolate from BSA to Hgb β, supporting the ideology Cys93 may 

serve as a sink for the electrophile as a result of trans-thiolation from other thiol-

containing proteins.  

Whilst published MS data from the Uchida group suggests that trans-thiolation of 

an SFN adduct occurs by direct transfer to a second thiol without the generation 

of a free-electrophile 182, other published studies suggest the transfer of ITCs 
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occurs via a two-step process whereby the dithiocarbamate resolves to 

regenerate the free-electrophile, which can subsequently adduct other thiol or 

amine groups 176 179 252 253. Should sporadic reversal be solely responsible for the 

transfer of the electrophile, we would expect an equal loss of the adduct when 

BSA-SFN was incubated with either GSH or Hgb β. However, a greater loss of 

the adduct was detected following incubation with GSH. This increased loss of 

the adduct following incubation with GSH was unexpected, as Hgb β was 

predicted as the stronger nucleophile due to Cys93 being recognised as highly 

reactive with a much lower pKa than the tripeptide. Nevertheless, this data 

suggests a second and perhaps dominant mechanism for trans-thiolation 

involving direct nucleophilic attack of the unbound thiol towards the 

dithiocarbamate, which is outlined in figure 4.27. This paradigm is further 

supported by a detectable increase in both removal of the SFN adduct from BSA 

and trans-thiolation to Hgb β at pH 9.0 compared with 7.4. A salt bridge between 

Asp94 and His146 which is responsible for structural auto-inhibition of Cys93 of Hgb 

β is loosened in alkaline conditions. The higher pH of 9.0, therefore, induces a 

conformational change in Hgb β which would increase access of the thiolate of 

Cys93 to conduct nucleophilic attack towards the SFN adduct upon BSA 220. A 

lowered H+ content will also create an equilibrium in favour of the thiol being 

reduced, lowering its pKa and therefore increasing its reactivity.  
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Notably, SFN adduction to Hgb β following incubation of the protein with BSA-

SFN occurs rapidly but does not accumulate over time. Perhaps Cys93 of Hgb β 

becomes saturated with SFN within 1-minute of exposure, with the availability of 

the cysteine increasing at pH 9.0 than 7.4 for reasons explained above. 

Repeating these studies with a higher concentration of Hgb β may result in time-

dependent accumulation of the adduct. Indeed, time-dependent accumulation of 

SFN upon an ~15 kDa protein, presumably Cys93 of Hgb β, was observed when 

BSA-SFN was incubated with blood. Also, time-dependent loss of the SFN 

adduct from BSA did not correlate with the level of accumulation upon Hgb β. 

Transfer of the adduct to amines may also be occurring, either via direct 

nucleophilic attack or subsequently to sporadic reversal, which could not be 

detected using the SFN antibody.  

Figure 4.27. Proposed mechanism for trans-thiolation of SFN from BSA to Hgb β 

involving directed nucleophilic attack of the unbound thiol towards to adduct. 
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Of course, SFN accumulation upon Hgb β following chronic in vivo treatment with 

SFX-01 could be due to direct adduction of the protein by a free-form of the 

electrophile. However, together, these studies suggest Cys93 of Hgb β may serve 

as a sink for SFN as a result of the transfer of the electrophile from other protein 

thiol or even amine groups. The efficiency of trans-thiolation of SFN from BSA to 

GSH compared with Hgb β highlights this tripeptide may facilitate this transient 

movement of the electrophile. Perhaps the adduct first trans-thiolates from a 

protein thiol to GSH, with a subsequent nucleophilic attack by Cys93 of Hgb β. As 

the pKa of the thiol of GSH is notably higher than that of the reactive thiol of BSA, 

this highlights that transfer of the adduct may not depend on the thiol pKa of the 

receiving protein, although what does control the direction of trans-thiolation is 

still undetermined. Perhaps thiol accessibility plays a role. The simple structure 

of GSH may allow the tripeptide to easily access protein-SFN adducts to perform 

a nucleophilic attack, and also, GSH-SFN would subsequently be easily 

accessible by other free protein thiols. Why Cys93 upon Hgb β is more efficient in 

this process than other abundant reactive-thiol containing blood proteins such as 

Cys34 upon BSA is unclear 254. Perhaps it is simply due to Hgb being 3X more 

abundant 255 256. The progressive build-up of Hgb β-SFN could elude the adduct 

is relatively stable. However, these studies suggest it is likely GSH will 

subsequently remove SFN and perhaps due to the large amount of SFX-01 

administered to mice the rate of adduct formation is simply greater than the rate 

by which GSH or other proteins can remove the adduct. Further investigation into 

trans-thiolation of SFN from Hgb β to other proteins warrants investigation as this 

may provide a method for transportation of the electrophile between tissues.   
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5 Therapeutic potential of sulforaphane in a NS 

mouse model 

5.1 Introduction 

5.1.1 The role of SHP2 in cardiac development 

SHP2 protein expression is distributed throughout the embryo suggesting it holds 

various functions in embryonic development 126. Indeed, homozygous N-terminal 

deletion of SHP2 results in embryonic lethality mid-gestation due to several 

defects in cell differentiation, mesodermal patterning and body organisation 

including node, notochord and posterior elongation 257. These developmental 

processes are all dependent upon SHP2 for full and sustained activation of the 

SFK/Ras/ERK signalling pathway following stimulation by fibroblast GF, which 

stabilises the pro-apoptotic protein Bcl-2-like-protein-22 (BIM) 257 258. Studies 

using amphibian and avian embryos showed cardiac cell specification and 

differentiation occur at the onset of gastrulation 259 260. The fibroblast GF 

signalling pathway induces expression of key progenitors which regulate cardiac 

cell differentiation, including homeobox protein NK-2 homolog B, T-box 5 and 

GATA-binding protein 4 261. A lack of cardiac cell differentiation was seen in 

Xenopus embryos with knockdown of SHP2 following cardiac explant assays, 

revealing an essential role of the phosphatase in the specification and 

maintenance of such cardiac progenitors 262. Following gastrulation, cardiac 

development and morphogenesis occur 263. As homozygous deletion of the 

phosphatase in mice results in embryonic lethality mid-gestation, elucidation of 

the role of SHP2 in cardiac development has been challenging 257. Progress has 

since been made using Xenopus and zebrafish whereby embryonic lethality pre- 
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or mid-gastrulation were overcome. Morpholino-mediated knockdown in 

zebrafish showed SHP2 regulates convergence and extension of myocardial and 

endocardial precursor cells during gastrulation via RhoA and SFK signalling 264 

61. The same conclusion was made by expressing mRNA encoding gain-of-

function or loss-of-function SHP2 mutations associated with NS or NS with 

multiple lentigines respectively in zebrafish embryos 61. Interestingly, they 

suggest both an activating and an inhibitory role of SHP2 in SFK signalling during 

gastrulation, as the injection of either a hyperactivating or deactivating mutation 

had the same physiological outcome 61. Parallel studies injecting mRNA 

encoding a loss-of-function mutation found in patients with NS with multiple 

lentigines into SHP2-deficient Zebrafish embryos further identified a role of the 

phosphatase in neural crest development and migration post-gastrulation in an 

ERK-dependent manner 265.  

Rightward looping of the linear heart tube initiated by fusion of bilateral heart 

primordia is the first morphological manifestation of embryonic laterality 264. This 

mainly occurs due to left/right asymmetric localisation of transcription factors and 

signalling molecules such as the transcription GF β cytokine, nodal 266. The 

leftward movement of nodal occurs by transport within Kupffer’s vesicles which 

are mechanistically transported by motile cilia 267 268 269. SHP2 plays multiple 

roles in this process with randomisation of such left/right markers and impaired 

leftward heart displacement in zebrafish embryos was seen when expressing 

SHP2 mutations which altered the phosphatases activity 270. Expression of 

Kupffer’s vesicles is stimulated by fibroblast GF 8, and this signalling event is 

regulated by SHP2 261 271. Vesicle development is dependent upon the 

distribution of receptor-mediated calcium release from the endoplasmic reticulum 
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272. Calcium signalling via the calcium-permeable cation channel polycystin 2 is 

also important in both the formation and sensing of cilia 273. It is suggested SHP2 

functions in calcium signalling either indirectly via ERK-mediated phosphorylation 

of the cav(1.2) subunit or direct association with inositol triphosphate 3 receptors 

274 275. As well as asymmetrical localisation of nodal, actin polymerisation and 

non-muscle myosin 2 activity are also required for left/right patterning 276. Gain-

of-function SHP2 mutations cause reduced formation and polarity of cardiac actin 

fibres likely via hyperactivation of Rho-associated protein kinase, resulting in 

smaller hearts with impaired cardiac looping 277.  

Segmentation into the atrium, ventricles, atrioventricular canal and outflow tract, 

as well as the aorta and pulmonary tract, is the next stage of cardiac development 

278. Endocardial cushions subsequently form between the atrioventricular canal 

and outflow tract which later evolve into semilunar and atrioventricular valves. 

The localisation of multiple signalling molecules and pathways regulate this 

process, including vascular endothelial GF, ERK, nuclear factor of activating T-

cells cytoplasmic 1, notch, β-catenin and bone morphogenetic protein 279 280 281, 

all of which involve SHP2 and indeed, heterozygous deletion of the phosphatase 

results in valve enlargement 282.  

Finally, aortic and pulmonary circulation are separated by the development of 

ventricles, atria and the outflow tract whilst the septum forms due to the 

expansion of the left and right ventricle 278 283 284. Hyperactivation of SHP2 in the 

myocardium of mouse embryos results in thinner ventricular walls and septal 

defects 285. Although, the same is also seen following reduced activation of the 

phosphatase 286. Perhaps SHP2 regulates cardiac chamber maturation via a 

phosphatase-independent mechanism, a hypothesis proposed by Paardekooper 
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Overman et al. They propose increased association of kinase c-Src with SHP2 

due to the phosphatase being in an open conformation, acting as a scaffold to 

bring the proteins into proximity 287 288.  

5.1.2 White blood cell production  

Blood cells, including leukocytes, are short-lived and require continual production 

via differentiation from haematopoietic stem cells (HSCs), a process termed 

haematopoiesis 289 290 291 292. A detailed overview of this process is shown in 

figure 5.1. The main site of haematopoiesis in adult mammals under normal 

circumstances is the bone marrow, however, can also occur extramedullary in 

the liver and spleen in response to severe haematopoietic stresses 293. This 

process is hierarchical, with a progressive commitment to a certain cell-type 

coupled with a loss of self-renewal 45 47 295. Initially, HSCs are defined as long-

term, which self-renew indefinitely and are distinguished by cell surface markers 

296 297 298 299. Molecular regulation of self-renewal and inhibition of differentiation 

of long-term HSCs is coupled with notch and wingless signalling 300. The progress 

of long-term HSCs to multipotent progenitor (MPP) cells is marked by RTK foetal 

liver kinase-2 (Flk-2)+ and cluster of differentiation 90 (Thy-1.1)- with an 

intermediate HSC formed named short-term HSC (Flk-2+ Thy-1.1+), which has 

limited self-renewal capacity 296. MPP cells can no longer self-renew but are 

heterogeneous in their cellular content and retain the potential to differentiate into 

any white blood cell lineage 301. Long- and short-term HSCs and MPP cells differ 

in expression of transcription factors as shown in figure 5.1 302 303 304 305, which 

is regulated by discrete changes in the niche microenvironment in which HSCs 

reside. Long- and short-term HSCs and MPP cells reside in perivascular niches 

associated with sinusoidal blood vessels in adult bone marrow 306 307 308. 
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Certain GFs maintain HSCs in these niches, including stem cell factor (SCF), 

CXC-chemokine ligand 12 and thrombopoietin (TPO), synthesised by 

endothelial and reticular perivascular stromal cells 309 310 311 312 313 314. The 

niche microenvironment is also manipulated by other cell types including 

megakaryocytes, monocytes and macrophages, which directly or indirectly 

alter the fate of residing HSCs 315 316 317 318. Akashi et al identified MPP cells 

differentiate to common lymphoid or common myeloid MPP cells, distinguished 

by different cell surface markers, IL-7Rα+Thy-1.1−Lin−Sca-1loc-Kitlo and 

CD34+FcγRIII−/loThy-1.1−IL-7Rα−Lin−Sca-1−c-Kit+ respectively 71 72. This cellular 

differentiation occurs in part due to stimulation by circulating cytokines, which is 

also true for subsequent differentiation and commitment steps, as depicted in 

figure 5.1 321 322 323. As well as differentiation commitment, these cytokines 

promote cell survival, induction of maturation and functional activation 321. 

Common lymphoid cells differentiate into mature B-, T-, or natural killer (NK)-cells 

where the lymphoid lineage ends 324. Common myeloid cells on the other hand 

further differentiate into megakaryocyte-erythroid or granulocyte-myeloid 

progenitor cells 325. The megakaryocyte-erythroid lineage ends with 

differentiation to either platelets or erythrocytes 291 325. Granulocyte-myeloid cells, 

however, require an additional differentiation step forming either myeloblasts or 

monoblasts, with final maturation into basophils, eosinophils and neutrophils or 

monocytes respectively 319 326.  

Although most lymphocytes then enter the circulation, a large pool of neutrophils 

reside in the bone marrow until mobilised in response to chemoattractant cues  

81 82 327. Whilst a proportion of monocytes circulate freely in the blood awaiting 

recruitment and differentiation into macrophages, these are outnumbered by 



144 
 

monocytes residing in the subcapsular red pulp of the spleen 330 331 332 333. 

Genetic and cell-fate mapping identified spleen-resident macrophage 

populations represent a separate and distinct phagocyte lineage established 

prior to birth, either from elements present in the yolk-sac or foetal liver 

precursors 334 335 336 337. How and why monocyte clusters are recruited and 

maintained within the spleen remains unclear. Although inflammatory signals 

mobilize these cells en masse to distant tissues, so it likely serves as a reservoir 

until required to differentiate to macrophages and fight infection 338. Perhaps they 

also contribute to the replenishment of spleen-residing macrophages, although 

this remains undetermined. It is also suggested the spleen can act as a reservoir 

for neutrophils within the perifollicular zone, which aid antibody production by 

marginal zone residing B-cells 339 340 341. An immature population of spleen 

residing neutrophils have also been discovered, although whether they arise via 

bone marrow-dependent or -independent haematopoiesis could not be 

established 342 343.  
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Figure 5.1. White blood cell production in the bone marrow by haematopoiesis.  

Blue = cell surface receptors. Lin (Linear), Kit (Mast/stem cell GF receptor), Sca (Stem 

cell antigen), CD (Cluster of differentiation), Slam (Signalling lymphocyte activation 

molecule), FcgR (Fragment crystallizable gamma receptor, IL7-R (Interleukin 7 

receptor). Green = cellular transcription factors. SCL (Stem cell leukaemia), GATA 

(Formerly termed Erythroid transcription factor), C/EBP (CCAAT-enhancer binding 

protein), PU (PU-box binding). Red = cytokines and chemokines which aid each 

differentiation step. IL (Interleukin), GM-CSF (Granulocyte-macrophage colony 

stimulating factor), M-CSF (Macrophage colony stimulating factor), G-CSF (Granulocyte 

colony stimulating factor), TPO, SCF.  
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A detailed overview of haematopoiesis was provided above to highlight the 

important roles of SHP2 in the proliferation and survival of HSCs and progenitors. 

As indicated in figure 5.1, the cell-surface receptor Kit is highly expressed in 

HSCs 344. Following binding of SCF to Kit, SHP2 creates a positive feedback 

loop, an important process in maintaining adult HSC quiescence and survival 345 

346 347. The Eder group showed SHP2 acts downstream of the RTK breakpoint 

cluster region-abelson murine leukaemia (Bcr/Abl), promoting HSC proliferation 

and survival through activating STAT5 signalling 348. SHP2 also acts upstream of 

the cell-proliferation pathways Ras, ERK and Akt, with inducible SHP2-deficient 

HSC and progenitors undergoing apoptosis in response to SCF and TPO 349. 

Through overexpressing gain-of-function SHP2 mutants in progenitor cells the 

Chan group demonstrate a higher number of these cells residing in the synthesis 

and gap 2 phase of the cell cycle along with increased markers of progression, 

including cyclin D1, B-cell lymphoma-2 and B-cell lymphoma extra-large 350, as 

well as reduced expression of apoptotic markers p27, p21 and B-cell lymphoma-

like-protein 11 350. Using shRNA-mediated inhibition of SHP2 expression, Li et al 

identified reduced myeloid differentiation following GF stimulation 351. This was 

driven by an initial increase in STAT5 phosphorylation, correlating with my own 

observations in cardiac tissue as outlined in chapter 3, with a subsequent 

decrease that reduced expression of anti-apoptotic genes including myeloid 

leukaemia cell differentiation protein and B-cell lymphoma extra-large 351. 

Through the use of a lymphocyte cell line, Ba/F3, the Friedman group further 

suggest stimulation with G-CSF leads to SHP2 phosphorylation with subsequent 

activation of STAT3 signalling and granulocyte lineage determination 352. Finally, 

Xu et al show hyperproliferation of lineage-committed myeloid, T-cell and B-cell 
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progenitors following transfection with SHP2 which has a gain-of-function 

mutation, E76K/+ 353. They speculate activated SHP2 distributes into 

centrosomes driving the amplification and genomic instability of these transfected 

cells 353.  

As highlighted above, SHP2 plays key roles in cardiac development and white 

blood cell production. It is perhaps unsurprising that NS patients with gain-of-

function SHP2 mutations often present with cardiac structural defects and a 

myeloproliferative phenotype as detailed in the general introduction  78 354. 100 

% of homozygous Ptpn11D61G+/+ NS mice and approximately 50 % of 

heterozygous Ptpn11D61G/+ NS mice, which I will refer to as HOM and HET 

respectively in this chapter when referencing foetal experiments, die in utero due 

to several cardiovascular structural defects 78. Here, I first sought to establish if 

foetal treatment with SFX-01, by administering the drug to pregnant dams, 

inhibits SHP2 phosphatase activity to perhaps enhance the birth rate of HET 

offspring and allow HOM offspring to survive through to birth. Of course, if SFX-

01 did enhance viability, a rational next question was whether their cardiac 

function and bone and skeletal muscle defects were also improved. The second 

aim of this chapter was to establish if prolonged treatment with SFX-01 could 

reduce white blood cell production in these mice, in particular, the myeloid 

lineage. As the increase white blood cell production in this mouse model likely 

contributes to the splenomegaly they present with, the effect of prolonged SFX-

01 treatment on spleen growth was also assessed.  
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5.2 Materials and methods 

5.2.1 SDS-PAGE and western blotting  

SDS-PAGE and western immunoblotting were performed as outlined in the 

general methods. For this chapter the following primary antibodies were used: 

 

 

Table 5.1. List of primary antibodies used for western immunoblotting in chapter 

5. 

 

5.2.2 Immunoprecipitation  

Immunoprecipitation of proteins from tissue was performed as outlined in the 

general methods. For this chapter the following antibodies were used: 

 

Table 5.2. List of antibodies used for immunoprecipitation in chapter 5. 

 

 

Primary antibody  

 

Company 

 

Species 

 

Sulforaphane 

 

In-house 

 

Rabbit 

 

SHP2 (for immunocapture) 

 

Santa Cruz #sc-280 

 

Rabbit 

 

Total ERK 1/2 

 

Cell signalling #9102 

 

Rabbit 

 

Phosphorylated ERK 1/2  

 

Cell signalling #9101 

 

Rabbit 

 

SHP2 (for immunodetection) 

 

R&D Systems #AF1894 

 

Goat 

 

Antibody 

 

Company 

 

Species 

 

Capture beads 

 

SHP2 

 

Santa Cruz #sc-7384 

 

Rabbit  

 

Agarose conjugated 

 

GRB2 

 

Santa Cruz #sc-8034 

 

Rabbit 

 

Agarose conjugated 
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5.2.3 Foetal treatment with SFN 

Three genotype breeding pairings were used for foetal studies: WT/WT, 

WT/HET, with the male mouse being HET, and HET/HET. In preliminary studies, 

male and females were housed separately and received 2.5 mg/ml or 0.8 mg/ml 

SFX-01, which is equivalent to 0.385 mg/ml or 0.123 mg/ml SFN respectively, for 

3 days in their drinking water prior to breeding. Males were then added to the 

females’ cages, where they remained until pregnancy was confirmed by visual 

inspection of the female. Dams continued receiving SFX-01 throughout their 

pregnancy. Neonates were sacrificed and snap frozen by liquid nitrogen within 

24 hours of birth.  

In additional studies, males and females were mated, and the date of conception 

was calculated by identification of a vaginal plug and at this point, the males were 

removed. Treatment with 2.5 mg/ml SFX-01 in the dams drinking water began 11 

days post-conception, the time point determined as the completion of 

gastrulation. Neonates were sacrificed and snap frozen by liquid nitrogen within 

24 hours of birth.  

5.2.4 Blood sampling via the tail vein 

10 minutes prior to sampling, mice were placed in a warming chamber set to 37 

˚C to induce dilation of the blood vessels. Mice were then placed into an induction 

chamber and anaesthesia was induced for 1-minute using 3 % isoflurane mixed 

with 97 % O2 at a flow rate or 1 l/min. Mice were put into a face-down position 

and held in place using surgical tape. Anaesthesia was maintained using a nose 

mask with 1.5-2 % isoflurane and 98-98.5 % O2 at a flow rate of 1 l/min. Body 

temperature was measured using a rectal probe and maintained at 37 ˚C ± 1.5 

˚C via a heat lamp when required. Tails were washed with an antimicrobial 
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solution prior to sample collection, and a heparinised 0.3 ml U-100 insulin syringe 

(BD Benelux) inserted into the lateral vein. 50 µl of blood was immediately 

collected into the syringe and pressure was carefully applied to terminate 

bleeding at the sampling site. After sampling, animals recovered in a 

temperature-controlled incubator. 

5.2.5 Wright-Giemsa stain  

1 µl of blood was spread thinly onto a glass slide and allowed to air dry. Once 

fully dried, blood films were submerged in Wright-Giemsa stain for 30 seconds, 

after which they were placed directly into deionised water for 10 minutes. Slides 

were then washed in running deionised water and left to fully air dry before being 

analysed by light microscopy. The nucleus and cytoplasm of white blood cells 

were stained dark purple, whilst red blood cells were stained light pink. White 

blood cells were counted from five fields of view at a 10X magnification for all 

samples and white blood cell count was represented as an average of these five 

values.   

5.2.6 Tissue preparation for flow cytometry  

Following the sacrifice of mice, the spleen, femur and tibia were harvested and 

placed into separate falcon tubes containing 30 ml of PBS supplemented with 5 

µl heparin. Blood was also collected via the abdominal aorta into a 1 ml syringe 

lined with heparin. All samples were placed on ice until needed and prepared as 

subsequently described. All centrifugation steps were carried out for 10 minutes 

at 1800 x g at 4 ˚C and all incubation steps were carried out at room temperature. 

Blood: 50 µl of blood was transferred to a 15 ml falcon tube with the remaining 

blood used to analyse MIP1α and MIP2 levels as described below. For lysis of 

red blood cells, 1 ml 10X PBS and 9 ml deionised water was added to the 15 ml 
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falcon tube followed by inverting 5 times. 5 ml of 1X PBS was then added, and 

samples were centrifuged. Spleen: Spleen tissue was transferred into a petri dish 

containing 20 ml PBS, any attached fat tissue was removed, and the spleen was 

dissected into two halves along the long axis. Half of the tissue was snap frozen 

at -80 ̊ C to be used in future experiments, whilst the remaining tissue was placed 

into a 40 µm nylon mesh cell strainer (Thermo Fischer), which was placed into a 

fresh petri dish containing 5 ml PBS. Using the flat end of a syringe plunger the 

tissue was forced through the cell strainer. PBS containing the strained spleen 

cells was transferred into a 50 ml falcon tube containing 25 ml PBS and 

centrifuged. Cells were resuspended in 10 ml red blood cell lysis buffer 

(BioLegend), incubated for 10 minutes on a rolling shaker and then centrifuged. 

Bone marrow: Femur and tibia bones were transferred into a petri dish containing 

20 ml PBS. The knee joint and either side of each bone were cut using scissors. 

A needle attached to a 1 ml syringe filled with PBS was inserted into the cavity 

of each bone and the marrow was flushed out into a 50 ml falcon tube containing 

25 ml PBS and samples were centrifuged. Cells were resuspended in 10 ml red 

blood cell lysis buffer, incubated for 10 minutes on a rolling shaker and then 

centrifuged. After centrifugation of all tissue samples, supernatants were 

removed, and pellets were resuspended in 1 ml PBS. Myeloid cell staining was 

then carried out.  

5.2.7 Cell staining for flow cytometry  

Tissue samples prepared as described above were passed through a 35 µm 

nylon mesh cell strainer upon a 5 ml round-bottomed glass test tube (Thermo 

Fisher). 50 µl from each tissue type were combined in a separate 5 ml round-

bottomed glass test tube to be used for staining with a dead cell marker. 200 µl 
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of each sample was also transferred into a fresh 5 ml round-bottomed glass test 

tube to be used as unstained sample controls, with the remaining sample to be 

used for myeloid cell staining. 5 ml PBS was added to all tubes and centrifuged, 

after which 4.8 ml of the supernatant was discarded, and the pellet was 

resuspended thoroughly by vortexing in the remaining 200 µl. The remaining 

protocol was carried out in reduced lighting. 1 µl of cell viability dye, Zombie Aqua 

(BioLegend), was added to each ‘staining’ sample as well as the dead cell marker 

only control. Zombie Aqua is an amine-reactive dye which is non-permeant to live 

cells but permeant to cells with compromised membranes. Samples were 

incubated in the dark for 20 minutes. During this time, flow cytometry buffer was 

prepared (2 % FBS, 2 mM EDTA in PBS) and passed through a filter unit (Thermo 

Fisher). 5 ml of buffer was then added to each sample tube and centrifuged. 4.8 

ml of supernatant was discarded, and the pellet was resuspended thoroughly by 

vortexing in the remaining 200 µl. 1 µl of each antibody; cluster of differentiation 

molecule 11b (CD11b)- allophycocyanin Cy7 (ApcCy7), lymphocyte antigen 6C 

(Ly6C)-peridinin-Chlorophyll-Protein (PerCP) lymphocyte antigen 6C (Ly6G)-

fluorescein Isothiocyanate (FITC), all purchased from BD Biosciences, were 

added to each ‘staining’ tube and were incubated for 1-hour. During this time, 

single staining control samples were prepared as follows: 100 µl of compensation 

beads (BioLegend) were added to 400 µl buffer and split equally between three 

5 ml round-bottomed glass test tubes which were to be used as single staining 

control. 30 minutes later, 1 µl of either antibody was added to one of the single 

staining control tubes and incubated for 30 minutes. Following incubation, 5 ml 

of buffer was added to all tubes and centrifuged. 4.8 ml of supernatant was 

removed, and the pellets were resuspended thoroughly by vortexing in the 
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remaining 200 µl. Caps were then placed on all tubes and stored in the dark at 4 

˚C until flow cytometry analysis was carried out.  

5.2.8 Flow cytometry analysis 

Flow cytometry was conducted using a FACSCanto II cell analyser system (BD 

Biosciences) using a 633 nm excitation red laser to detect CD11b-ApcCy7, a 488 

nm excitation red laser to detect Ly6C-PerCP and a 488 nm excitation green 

laser to detect Ly6G-FITC. 50,000 cells per sample were analysed. Firstly, using 

an ‘unstained’ sample, the cell population of interest was gated and the 

photomultiplier tubes (PMT) voltages for forward scatter (FCS) and side scatter 

(SSC) as well as fluorescent channels were optimised. Compensation % values 

were calculated using each single staining antibody control and values were 

applied to all experiments conducted on the same day. ‘Staining’ tubes for each 

tissue sample were then analysed by the cytometer and the following analysis 

was conducted for each sample using FlowJo software (BD Biosciences): 

Elimination of cell debris: SSC-area (SSC-A) (y-axis) was plotted against FSC-

height (FSC-H) (x-axis) and a fluorescence intensity threshold of 5,000 was 

generated to eliminate any cell debris from the analysis. Elimination of cell 

doublets: FSC-H (y-axis) was plotted against FSC-A (x-axis) and the main cell 

population was gated for. Elimination of dead cells: Cell count (y-axis) was plotted 

against 405 nm excitation using a violet laser. Two peaks were generated; 

correlating to live cells (lower fluorescence intensity) and dead cells (higher 

fluorescence intensity). Dead cells were eliminated by gating only for the lower 

intensity peak. Identification of inflammatory monocyte population: Ly6C (y-axis) 

was plotted against CD11b (x-axis) and inflammatory monocytes were analysed 

by gating only the CD11b+Ly6CHi cell population. Identification of neutrophil 
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population: Ly6G (y-axis) was plotted against CD11b (x-axis) and neutrophils 

were analysed by gating only the CD11b+Ly6GHi cell population. 

5.2.9 Ultrasound 

Ultrasound was performed using the VisualSonics Vevo 770 imagine system 

fitted with an RMV707B scan head at 15-45 MHz. Mice were placed into an 

induction chamber and anaesthesia was induced for 1-minute using 3 % 

isoflurane mixed with 97 % O2 at a flow rate or 1 l/min. Mice were then placed in 

a supine position on top of a heated pad embedded with electrocardiogram 

electrodes and fixed in place using surgical tape. Anaesthesia was maintained 

using a nose mask with 1.5-2 % isoflurane and 98-98.5 % O2 at a flow rate of 1 

l/min. The electrocardiogram was monitored throughout the procedure, as was 

the body temperature, which was measured using a rectal probe and maintained 

at 37 ˚C ± 1.5 ˚C via the heated pad as well as a heat lamp when required. Hair 

was removed from the abdominal area using a razor followed by hair removal 

cream. A generous layer of preheated ultrasound gel was then added to the 

abdominal area. The probe was lowered onto the gel and moved into position 

until the largest area of the long axis of the spleen was identified, which was 

measured in mm2. After the ultrasound was completed, treatment animals 

recovered in a temperature-controlled incubator.  

5.2.10 Macrophage inflammatory protein 1 alpha (MIP1α) measurement  

Levels of MIP1α were measured in blood samples using an enzyme-linked 

immunosorbent assay (ELISA) kit (Abcam #ab200017). Wash buffers and an 

antibody cocktail were prepared as advised by the manufacturer’s protocol. All 

incubation steps were carried out at room temperature, with shaking at 400 rpm. 

Plasma samples were then prepared. Firstly, ~1 ml of blood was collected in a 
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heparin-coated syringe and transferred to a microcentrifuge tube. Blood was 

centrifuged at 2000 x g for 10 minutes with separated plasma placed into a fresh 

microcentrifuge tube. 50 µl of plasma sample or standard were added to wells of 

the provided 96-well plate, which were pre-lined with an immobilized anti-tag 

MIP1α antibody. All samples were run in triplicates. 50 µl of an antibody cocktail 

containing an affinity-tag labelled capture antibody and a reporter conjugated 

detector antibody was added and incubated for 2 hours followed by 3X washing 

with 350 µl wash buffer. After the final wash, 100 µl of 1:1 H2O2 and the 

chromogenic substrate 3,3',5,5'-tetramethylbenzidine were added, which is 

catalysed by the addition of HRP which generates a blue colour during incubation 

in the dark for 10 minutes. The reaction was terminated by adding 100 µl of 

sulfuric acid-containing stop solution, generating a yellow colour during 

incubation for 1-minute. An endpoint reading of optical density was then 

measured at 450 nm using a microplate reader. Values were calculated by using 

the average of triplicate samples and subtracting the average zero standard from 

each sample.  

5.2.11 Macrophage inflammatory protein 2 (MIP2) measurement  

Levels of MIP2 were measured in blood samples using an ELISA kit (R&D 

Systems #DY435). Plasma was prepared as described previously. All incubation 

steps were carried out at room temperature and all washes conducted 3X with 

400 µl wash buffer (0.05 % Tween 20 in PBS, pH 7.4). The assay plate was 

prepared by first coating required wells of a 96-well plate with 100 µl of MIP2 

capture antibody, incubated overnight and the following morning the plate was 

washed. Wells were blocked using 300 µl of 1 % BSA in PBS, pH 7.2-7.4 for 1-

hour followed by washing. 100 µl of sample or standard was added to the wells 
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and the plate was incubated for 2 hours and then the wells were washed. 100 µl 

of detection antibody was then added to each well and again incubated for 2 

hours and washed. 100 µl of Streptavidin-HRP was then added in the dark and 

incubated for 20 minutes followed by washing. 100 µl of 1:1 H2O2 and 3,3',5,5'-

tetramethylbenzidine were then added in the dark and incubated for 20 minutes 

followed by washing. Finally, 50 µl of 2 M H2SO4 was added. An endpoint reading 

of optical density was then immediately measured at 450 nm using a microplate 

reader. Values were calculated by using the average of triplicate samples and 

subtracting the average zero standard from each sample. Average values from 

positive control standards were plotted against their concentration and a standard 

curve was generated. Unknown MIP2 concentrations were then interpolated from 

this curve.  
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5.3 Results 

5.3.1 High amounts of SFX-01 is embryonic lethal in pregnancies carrying 

NS foeti  

I first sought to investigate if foetal treatment with SFX-01 would result in HOM 

offspring being born from HET/HET NS breeding pairs or increase the number of 

HET offspring born from WT/HET breeding pairs. Treatment with 2.5 mg/ml SFX-

01 had no detrimental effects on conception, pregnancy or litter size for WT/WT 

breeding pairs (figure 5.2 A). All females from WT/HET breeding pairs who 

received SFX-01 conceived and gave birth to litters. However, all females from 

HET/HET breeding pairs that received SFX-01 before pregnancy, and in which 

pregnancy had been confirmed, did not deliver litters, with termination estimated 

by visual inspection within 10 days of conception (figure 5.2 A). Treatment of 

WT/HET breeding pairs with SFX-01 significantly reduced litter size (figure 5.2 

B) with genotyping identifying a trend towards fewer HET offspring born 

compared to untreated controls (figure 5.2 C). All females from HET/HET 

breeding pairs that received SFX-01 post-gastrulation, and in which pregnancy 

had been confirmed, also did not deliver litters (figure 5.3). 
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Figure 5.2. Foetal treatment with high amounts of SFX-01 pre-gastrulation is 

embryonic lethal in pregnancies carrying NS foeti.  

A) Treatment of HET/HET breeding pairs with 2.5 mg/ml SFX-01 in their drinking water 

before and during pregnancy resulted in no litters being born. B, C) Treatment of 

WT/HET breeding pairs with 2.5 mg/ml SFX-01 in their drinking water before and during 

pregnancy significantly reduced litter size with a trend for a lower percentage of HET 

offspring. (n = 6, *p<0.05 versus untreated control). 
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5.3.2 Only WT neonates are born following foetal treatment with low 

amounts of SFX-01 

As treatment of HET/HET breeding pairs with 2.5 mg/ml SFX-01 resulted in the 

termination of pregnancies, foetal studies were repeated using 0.8 mg/ml SFX-

01. As above, SFX-01 treatment had no detrimental effects on conception, 

pregnancy or litter size for WT/WT breeding pairs (figure 5.4 A). All females from 

HET/HET breeding pairs who received SFX-01 conceived and gave birth to litters 

(figure 5.4 A). However, SFX-01 treatment significantly reduced the litter size of 

HET/HET breeding pairs and genotyping confirmed all offspring were WT (figure 

5.4 B, C). 

Figure 5.3. Foetal treatment with high amounts of SFX-01 post-gastrulation under 

these conditions is embryonic lethal in pregnancies carrying NS foeti.  

A) Treatment of HET/HET breeding pairs with 2.5 mg/ml SFX-01 in their drinking water 

11 days post-conception resulted in no litters being born. (n = 3, *p<0.05 versus 

untreated control). 
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Figure 5.4. Foetal treatment with low amounts of SFX-01 results in the birth of only 

WT neonates in pregnancies carrying NS foeti.  

A) Percentage of pregnancies resulting in the birth of litters was not altered following 

treatment of WT/WT or HET/HET breeding pairs with 0.8 mg/ml SFX-01 before and 

during pregnancy. B, C) Treatment of HET/HET breeding pairs with 0.8 mg/ml SFX-01 

significantly reduced litter size with only WT offspring born. (n = 6, *p<0.05 versus 

untreated control). 
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5.3.3 Foetal treatment with SFX-01 only partially reduces neonatal SHP2 

phosphatase activity  

A fluorescence-based activity assay identified no inhibition in global SHP2 

phosphatase activity in WT neonates from WT/HET or HET/HET breeding pairs 

following foetal treatment with 2.5 or 0.8 mg/ml SFX-01 respectively (figure 5.5 

A, B). Partial inhibition of SHP2 phosphatase activity by ~17 % was detected in 

HET offspring from WT/HET breeding pairs following foetal treatment with 2.5 

mg/ml SFX-01 (figure 5.5 A). 
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Figure 5.5. Foetal treatment with SFX-01 partially reduces SHP2 phosphatase 

activity in HET neonates. 

 A) A fluorescence-based phosphatase activity assay which shows no inhibition of global 

SHP2 activity in WT neonates and partial inhibition in HET neonates from WT/HET 

breeding pairs who received 2.5 mg/ml SFX-01 in their drinking water before and 

throughout pregnancy. B) A fluorescence-based phosphatase activity assay identified 

no inhibition of global SHP2 activity in WT neonates from HET/HET breeding pairs who 

received 0.8 mg/ml SFX-01 in their drinking water before and throughout pregnancy. (n 

= 2-6). 
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5.3.4 Protein-SFN adducts are detected in neonates following foetal 

treatment with SFX-01 

Western immunoblotting was conducted to determine whether SFN crosses the 

placenta and labels foetal tissue. Protein-SFN adducts were detected in both WT 

and HET neonates from WT/HET breeding pairs who had received 2.5 mg/ml 

SFX-01 in their drinking water before and during pregnancy as outlined above 

(figure 5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. SFN adducts proteins in WT or HET neonates following foetal treatment 

with SFX-01.  

An immunoblot showing SFN adduction of a ~15 kDa protein in WT and HET neonates 

from WT/HET breeding pairs who had received 2.5 mg/ml SFX-01 in their drinking water 

before and during pregnancy. (n = 5). 
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5.3.5 Foetal treatment with SFX-01 increases neonatal ERK 

phosphorylation  

Western immunoblotting identified increased ERK phosphorylation in WT 

neonates from WT/WT breeding pairs who had received 0.8 mg/ml SFX-01 in 

their drinking water before and during pregnancy as outlined above (figure 5.7). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Foetal treatment with SFX-01 increases ERK phosphorylation in WT 

neonates.  

An immunoblot showing increased ERK phosphorylation in WT neonates from WT/WT 

breeding pairs who had received 0.8 mg/ml SFX-01 in their drinking water before and 

during pregnancy. (n = 3, *p<0.05 versus untreated control). 
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5.3.6 SFX-01 treatment lowers total white blood cell count in WT and NS 

mice  

Blood sampling followed by Wright-Giemsa staining, as represented in figure 5.8 

A, showed total white blood cell count was elevated in 17- and 22-week-old NS 

mice compared to their WT littermates (figure 5.8 B) which was in line with 

previous studies. 5- and 10-week treatment with SFX-01 reduced total white 

blood cell count in NS mice compared to untreated controls, which was also 

reduced in WT mice at the later time point (figure 5.8 B). 
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Figure 5.8. SFX-01 treatment reduces white blood cell count in WT and NS mice.  

A) A representative light microscopy image of Wright-Giemsa stained blood samples 

from a 22-week-old WT mouse. B) Total white blood cell count was lowered in NS mice 

following 5- and 10-weeks treatment with SFX-01. Cell count was also lowered in WT 

mice at the later time point. (n = 13-16, *p<0.05 versus untreated control). 



167 
 

5.3.7 SFX-01 treatment lowers myeloid cell count in the blood and spleen 

of NS mice  

Inflammatory monocyte and neutrophil cell counts were calculated using flow 

cytometry as outlined in figure 5.9. Analysis from 17- or 22-week-old NS mice 

revealed an increase in inflammatory monocytes and neutrophils in the blood 

compared to their WT littermates (figure 5.10). No difference in myeloid cell count 

was detected in bone marrow of 22-week-old NS mice compared to their WT 

littermates (figure 5.11), however, the number of neutrophils was significantly 

greater in the spleen (figure 5.12). 10-week treatment with 2.5 mg/ml SFX-01 in 

drinking water had no effect on total myeloid cell count in the blood of WT mice 

(figure 5.10), however, caused a significant decrease in the number of 

neutrophils and therefore total myeloid count in the blood of NS mice (figure 

5.10). No elevation of total myeloid cell count was detected in bone marrow of 

22-week-old NS mice compared to WT littermates, although 10-week treatment 

with SFX-01 caused a small reduction in neutrophil count in this tissue in either 

genotype (figure 5.11). A significant increase in total myeloid cell count 

comprising of an increase in neutrophils was detected in the spleen of 22-week-

old NS mice compared to their WT littermates (figure 5.12). Treatment with SFX-

01 for 10 weeks significantly reduced neutrophil and inflammatory monocyte 

counts in the spleen of NS mice with the latter also decreased in WT littermates 

(figure 5.12). 
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Figure 5.9. Representative flow cytometry analyses of blood from 22-week-old NS 

mice. 

Representative FLOW-JO plots and histograms showing gates used to calculate 

percentages of each cell population within the blood. Leukocytes (SSC-A vs FSC-H), 

single cells (FSC-H vs FSC-A), live cells (Cell count vs Pacific Blue), inflammatory 

monocytes (CD11b+Ly6CHi) and neutrophils (CD11b+Ly6CHi). Values represent 

percentage of the previous gate. For example, 5.69 % of live, single-cell leukocytes are 

inflammatory monocytes. 
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Figure 5.10. SFX-01 treatment reduces neutrophil count in the blood of NS mice.  

A-C) Flow cytometry analysis showing reduced myeloid cell count in the blood from 22-

week-old NS mice following 10-week treatment of 2.5 mg/ml SFX-01 in their drinking 

water, which was attributed to a reduction in neutrophils. No effect on total myeloid cell 

count from the blood of WT mice was detected. (n = 13-16, *p<0.05 versus WT or 

untreated control as stated). 
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Figure 5.11. SFX-01 treatment causes a small reduction in neutrophil cell count in 

the bone marrow of NS mice.  

A-C) Flow cytometry analysis showing a small reduction in myeloid cell count in the 

bone marrow of 22-week-old WT or NS mice following 10-week treatment of 2.5 mg/ml 

SFX-01 in their drinking water due a reduction in the number of neutrophils. (n = 14-16). 
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Figure 5.12. SFX-01 treatment reduces total myeloid cell count in the spleen of NS 

mice.  

A-C) Flow cytometry analysis showing reduced myeloid cell count in the spleen of 22-

week-old NS mice following 10-week treatment of 2.5 mg/ml SFX-01 in their drinking 

water, which was attributed to a reduction in both inflammatory monocytes and 

neutrophils. A reduction in inflammatory monocyte cell count was detected in the spleen 

of 22-week-old WT mice following treatment with the drug. (n = 14-16, *p<0.05 versus 

WT or untreated control as stated). 
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5.3.8 SFX-01 treatment reduces the plasma concentration of MIP2 but not 

MIP1α in NS mice 

MIP1α was not elevated in the plasma of untreated 22-week-old NS mice 

compared to their WT littermates and no reduction of the chemokine was seen 

following 10-week treatment with 2.5 mg/ml SFX-01 in their drinking water (figure 

5.13 A). However, a trend towards an increase in levels of MIP2 was seen in the 

plasma of 22-week-old NS mice compared to WT, with a trend for a decrease in 

levels of MIP2 following 10-week treatment with 2.5 mg/ml SFX-01 treatment in 

NS compared to untreated controls (figure 5.13 B). 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

A) 

 

 

 
 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

5.3.9 SFX-01 treatment reduces the spleen growth of NS mice  

Ultrasound analysis of the size of the spleen and weighing of this tissue showed 

22-week-old NS mice had larger and heavier spleens compared to their WT 

littermates (figures 5.14 and 5.15). The ultrasound analysis also identified a trend 

Figure 5.13. The concentration of MIP2 but not MIP1α is reduced in the plasma of 

NS mice following SFX-01 treatment.  

A, B) Analyses of MIP1α and MIP2 levels in plasma from 22-week-old WT or NS mice 

following 10-week treatment with 2.5 mg/ml SFX-01 in their drinking water. SFX-01 

treatment reduced MIP2 levels in NS mice. Neither chemokine was reduced in WT mice. 

(n = 13-15). 
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for a decrease in the spleen size of NS mice following 10-week treatment with 

2.5 mg/ml SFX-01 in their drinking water compared to untreated controls (figure 

5.15 B). A significant reduction in spleen growth was apparent in NS mice when 

data was analysed as a delta change in the spleen size for each mouse over the 

duration of the10-week treatment period with 2.5 mg/ml SFX-01 (figure 5.15 C). 

Weighing of the spleens at the end of the experiment corroborated the trend for 

a reduction in the spleen weight of NS mice following 10-week treatment with 

SFX-01 (figure 5.15 A). Spleen weight and size were unaffected in WT mice 

following SFX-01 treatment. 

 

 

 

 

 

 



175 
 

A) 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Adult NS mice have splenomegaly.  

A, B) Representative ultrasound and photographic images of spleens from 22-week-old 

WT or NS mice. 
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Figure 5.15. The growth of the spleen of NS mice is reduced when they receive a 

10-week treatment of SFX-01.  

A, B) Weighing of the spleen tissue and analysis by ultrasound identified a trend for a 

reduction in spleen weight and size from 22-week-old NS mice following treatment with 

2.5 mg/ml SFX-01 in their drinking water for 10 weeks compared to untreated controls. 

C) Representation of ultrasound data as Δ change in the spleen size for each mouse 

over the duration of the treatment period identified a significant reduction in NS mice 

who received the drug. (n = 14-16, *p<0.05 versus WT or untreated control as stated). 
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5.3.10 SFN adducts proteins in the spleen  

Western immunoblotting revealed SFN-adducted proteins in spleen tissue from 

22-week-old WT or NS mice following 10-week treatment with 2.5 mg/ml SFX-

01 in their drinking water (figure 5.16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.11 SFX-01 treatment reduces SHP2 phosphatase activity in the spleen 

of NS mice  

SHP2 was immunoprecipitated from spleen tissue of 22-week-old WT or NS mice 

following 10-week treatment with 2.5 mg/ml SFX-01 in their drinking water (figure 

5.17 A). The activity of the phosphatase was subsequently analysed using the 

Figure 5.16. Protein-SFN adducts are detected in the spleen following SFX-01 

treatment.  

A representative immunoblot showing SFN-adducted proteins in spleen tissue from 22-

week-old WT or NS mice following 10-week SFX-01 treatment with 2.5 mg/ml SFX-01 in 

their drinking water. 
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fluorescence-based assay, which was reduced in NS mice following 10-week 

SFX-01 treatment compared to untreated controls. The activity of the 

phosphatase was unaffected following treatment in WT mice (figure 5.17 B).  

  

A) 
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Figure 5.17. SFX-01 treatment reduces the phosphatase activity of SHP2 in the 

spleen of NS mice.  

A) An immunoblot of input and capture samples following immunoprecipitation of SHP2 

from spleen tissue of22-week-old WT or NS mice following 10-week treatment with 2.5 

mg/ml SFX-01 in their drinking water. B) A fluorescence-based phosphatase activity 

assay using immunoprecipitated SHP2 shows inhibition of SHP2 activity in NS mice 

following 10-week treatment with 2.5 mg/ml SFX-01. (n = 6 *p<0.05 versus WT or 

untreated control as stated). 
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5.4 Discussion 

In chapter 3 I demonstrated and characterised the inhibition of SHP2 by SFN 

both in vitro and in vivo. In this chapter, I sought to determine if this inhibition 

would prove therapeutic in the NS mouse model, which was considered a rational 

prospect as it expresses hyperactive SHP2. Thus, perhaps by supplying SFN to 

pregnant dams carrying NS foeti, their aberrant cardiac and skeletal development 

during embryogenesis would be corrected. Alternatively, perhaps administering 

SFN to NS mice after they are born might reduce the incidence of 

myeloproliferative disease that develops during adulthood. 

NS patients with gain-of-function SHP2 mutations often have several congenital 

defects in cardiac structure 354 355. The NS mouse model also develop congenital 

cardiac defects in a gene-dosage dependent manner 78 137 356 357 358 and the 

variable penetrance and severity of phenotypes of this mouse model are 

discussed in greater detail in the general introduction. HOM NS embryos have 

severe atrial, atrioventricular or ventricular septal defects, double-outlet right 

ventricle, enlarged outflow tract and defective atrioventricular valve primordia 

which all contribute to heart failure and lethality by E13.5 78. Approximately 50 % 

of HET embryos also die mid-gestation, although with less severe cardiac defects 

78. The remaining HET embryos are born with less-severe non-cardiac 

abnormalities 78. As outlined in the introduction of this chapter, several studies 

identified roles for SHP2 in multiple stages of cardiac development. Through 

inducible knock-in approaches using NS mouse models with either a D61G/+ or 

D61Y/+ mutation, which cause hyperactivation of SHP2, the Neel group conclude 

all NS cardiac defects develop in utero and arise from the increased activity of 

the phosphatase in the endocardium.  Detection by ultrasound of excessive 
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amniotic fluid is suggestive of NS in the unborn child which can further be 

diagnosed through genetic testing 359. If the diagnosis was achieved prior to or in 

the early stages of cardiac development, perhaps inhibition of hyperactive foetal 

SHP2 may prove therapeutic in reducing cardiac structural defects along with 

other congenital phenotypes. Using concentrations previously shown as 

inhibitory to SHP2 of adult mice (2.5 mg/ml), foetal treatment with SFX-01 

resulted in all mothers from WT/WT conceiving and giving birth to healthy litter 

sizes. Detection of SFN adducted to a ~15 kDa protein in these neonates, which 

is likely Hgb β for reasons outlined in chapter 4, is indicative that the electrophile 

can cross the placenta. Although not statistically significant, this amount of drug 

did induce partial inhibition of SHP2 phosphatase activity in HET neonates from 

WT/HET breeding pairs. To achieve greater inhibition of SHP2, it is likely a higher 

amount of SFX-01 is required. However, unfortunately, treatment with the drug 

at these amounts resulted in no HOM NS offspring born from HET/HET breeding 

pairs. Litter size from WT/HET pairs was also reduced, with a lower number of 

HET neonates born and therefore this amount of SFX-01 exerted harmful effects 

upon foeti with this genotype. Foetal treatment with a lower amount of SFX-01 

(0.8 mg/ml) again had no effect on rates of conception, the number of births or 

litter size of WT mice. With this reduced amount of drug, offspring were also born 

from HET/HET breeding pairs, although again, unfortunately, this treatment was 

detrimental to NS foeti.  

Further analysis showed foetal treatment with this lower amount of SFX-01 

increased ERK phosphorylation in WT neonates born from HET/HET breeding 

pairs. As SHP2 activity was not significantly altered in neonates following foetal 

treatment with this lower amount of the drug, it is logical to assume the SFN-
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induced increase in ERK phosphorylation occurs independently of SHP2. An 

SFN-induced increase in the phosphorylation of ERK via SHP2-independent 

mechanisms was discussed in chapter 3. Basally, NS foeti have increased ERK 

phosphorylation in endocardial cushion cells as well as their face and limb buds 

compared to WT mice, which is causative of their developmental abnormalities 

for reasons outlined below 78. If SFX-01, therefore, increased ERK 

phosphorylation even further in NS foeti, perhaps severe cardiac and skeletal 

developmental defects were causative of their embryonic lethality. As mentioned 

previously, endocardial cushions evolve into semilunar and atrioventricular 

valves. During normal early and late stage valve development ERK activation is 

increased in the endocardial cushion cells overlaying distal tips of the 

atrioventricular canal and outflow tract valves and its hyperactivation has been 

shown to increase cushion explant outgrowth 74 360. Constitutive activation of ERK 

in mouse valve primordia replicates the valve phenotypes observed in embryos 

which have either the D61G/+ or D61Y/+ gain-of-function SHP2 mutation, whilst 

deletion of ERK completely rescued the endocardial cushion phenotype 361. It is 

therefore accepted that hyperactivation of ERK in SHP2 gain-of-function NS 

mouse models as well as patients is causative of their valvular septal defects, 

although the exact mechanism of action is still under investigation. Krenz et al 

have shown that increased ERK activation in the endocardial cushion cells of 

embryos who have the gain-of-function SHP2 mutation Q79R/+ causes 

excessive mesenchymal cell proliferation, with no effect on endocardial-

mesenchymal transformation 361. The Neel group, on the other hand, suggest 

ERK hyperactivation does extend the interval during which cardiac endocardial 

cells undergo an endocardial-mesenchymal transformation, likely by enhancing 
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ErbB RTK signalling, in particular, Erb3, which is a positive regulator of valve 

development 73 78 281. Nakamura et al also report increased ERK activation and 

enhanced cardiomyocyte proliferation in the trabecular myocardium which 

inhibits ventricular compaction and closure of the ventricular septum in their 

cardiomyocyte-specific Q79R/+ NS mouse model 362.  

These studies suggest SFX-01 could not prevent congenital skeletal and cardiac 

developmental defects in NS foeti. However, optimising the amount of the drug 

received by the parents, as well as the stage of embryogenesis which it is 

administered are worth pursuing. For example, foetal treatment with SFX-01 

post-gastrulation may avoid embryonic lethality by allowing initial skeletal and 

cardiac development to occur, with the electrophile then correcting SHP2 

dependent abnormalities associated with later stages of cardiac development 263. 

Whilst this would not allow for full correction of the cardiac phenotype, it may 

improve cardiac function. A pilot study administering SFX-01 post-gastrulation 

was unsuccessful, although only a higher, perhaps sub-optimal, dose of the drug 

was tested. The date of conception was also only an estimate, based on the 

presence of a vaginal plug, and so perhaps the SFX-01 was in fact administered 

pre- or mid-gastrulation in some mice. In future studies, conception and 

gastrulation should be confirmed using ultrasound. As ERK phosphorylation is 

increased in WT offspring from parents who received the drug and increased 

activity of the kinase is implicated in congenital phenotypes associated with NS, 

subsequent studies monitoring these offspring for skeletal and cardiac defects 

should be carried out.  

Finally, the phosphorylation and activation of ERK stimulate downstream 

upregulation of cell growth and proliferation. Therefore, although ERK 
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hyperactivation is detrimental in the context of embryonic development, perhaps 

the increase in the phosphorylation of this kinase which was observed in adult 

mice following SFX-01 treatment, as seen in chapter 3, may be beneficial 

regarding the impaired growth that NS patients face.  

Some NS patients also present with myeloproliferative disease, which can 

develop into JMML; a rare myeloproliferative neoplasm associated with 

excessive monocytic and macrophagic proliferation 363 364 365 366 367. Unlike 

cardiac complications, haematopoietic defects are completely penetrant in NS 

mice. As outlined in the introduction of this chapter, multiple studies have 

implicated SHP2 in HSC survival, proliferation and differentiation and both the 

Neel group and I have demonstrated elevated total white blood cell counts in 

adult NS mice 96-105. Further to this, SHP2 promotes progenitor cell differentiation 

of the myeloid cell lineage. Indeed, bone marrow haematopoietic progenitors 

from NS mice have cell-autonomous signalling defects, developing into myeloid 

colonies independently of factor-stimulation. They are also more sensitive to IL-

3 and GM-CSF, factors which promote differentiation and proliferation of the 

myeloid lineage 78. Flow cytometry analysis conducted by the Neel group showed 

myeloid count in the bone marrow and spleen of NS mice, which was conducted 

using a granulocyte receptor 1 antibody with affinity for both Ly6C and Ly6G cell 

surface markers, was elevated 78. Separate Ly6C or Ly6G antibodies were used 

in my analysis reported here, allowing for differentiation between inflammatory 

monocyte and neutrophil cell populations respectively 368. Using this method, I 

too identified adult NS mice had increased myeloid cell count in the spleen and 

blood but also made the novel observation this was predominantly due to an 

increased number of neutrophils. Although, there was only a slight increase in 
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neutrophil count in the bone marrow of NS mice compared to WT littermates. 

Using a mouse model with a gain-of-function SHP2 mutation which was pan-

haematopoietic cell-inducible, E76K/+, Xu et al similarly observed accumulation 

of neutrophils in the blood. Observations made following my own flow cytometry 

analysis support studies outlined in the introduction of this chapter which 

implicates a more specific role for SHP2 in differentiation and proliferation of the 

granulocyte lineage, which encompasses neutrophils 352.  

I also observed a trend towards an increase in levels of the chemokine MIP2 in 

the plasma of NS mice compared to WT. MIP2 is a potent chemoattractant for 

neutrophils, with intravenous injection of the chemokine causing selective and 

rapid mobilisation of neutrophils from the bone marrow 369 370. Perhaps in NS 

mice, this higher abundance of circulating MIP2 causes greater attraction of 

neutrophils from the bone marrow, thus, as soon as they are produced, they are 

rapidly released into the circulation. This may also explain why the number of 

neutrophils appears not to be elevated in the bone marrow. There was, however, 

a trend towards increased inflammatory monocytes in the bone marrow of NS 

mice compared to WT. This was coupled with no increase in plasma levels of the 

chemokine MIP1α, a chemoattractant known to drive recruitment and maturation 

of monocytes 371 372. These mice may, therefore, have increased production of 

monocytes and neutrophils within the bone marrow, with the former accumulating 

because of deficient chemoattractant signals that would otherwise trigger their 

release into the circulation. It would perhaps be illuminating to conduct an 

analysis of a broader range of monocyte chemoattractants, such as chemokine 

ligand 2 or protein expression levels of its receptor chemokine ligand receptor 2 

373, as this may further support this speculation. As differentiation between 
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inflammatory monocyte and neutrophil populations in the bone marrow or spleen 

of NS mice was not achievable by the Neel group, perhaps the elevated myeloid 

cell counts they identified in these mice also represented monocytes in the bone 

marrow and neutrophils within the spleen.  

Together with an increase in the number of neutrophils in the spleen, I have 

shown adult NS mice develop splenomegaly, a phenotype that characterises 

some NS patients 374 375. As total white blood cell count, including neutrophils, 

was increased in the circulation, perhaps this enlargement of the spleen occurs 

due to their accumulation within this organ. Such an idea is consistent with 

evidence outlined in the introduction of this chapter whereby the spleen can act 

as a reservoir for certain white blood cells 81, 82, 327, 330-333. A higher number of 

long- and short-term HSCs, as well as MPP cells, have been observed in spleens 

of mice carrying the gain-of-function SHP2 mutation E76K/+ 353. With this in mind, 

perhaps splenomegaly in the D61G/+ mouse model is a result of extramedullary 

haematopoiesis occurring in this tissue. As my flow cytometry analysis only 

assessed mature neutrophils, a more in-depth analysis of cell-surface markers 

of lymphocytes from the spleen may help elucidate if excessive extramedullary 

haematopoiesis is also occurring simultaneously to white blood cell production in 

the bone marrow.  

Consistent with the in vivo data described in chapter 3 where mice were treated 

chronically for 10 days with SFX-01, prolonged 10-week treatment with the drug 

significantly reduced SHP2 phosphatase activity in NS mice. Notably, inhibition 

of SHP2 occurs to a much greater extent in these mice compared to WT, which 

may be due to the gain-of-function SHP2 mutation alleviating N-terminal 

structural inhibition of the phosphatase domain allowing easier access to the 
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catalytic cysteine, an idea outlined in the general introduction. Also discussed 

previously was the logical assumption that SFN adducts multiple proteins in vivo 

and with this modification potentially altering their biological function. Even so, 

SHP2 plays essential roles in multiple stages of myeloid cell differentiation and 

progression, in particular, granulocytes. I therefore strongly suggest the reduction 

in neutrophil count in the blood, spleen and bone marrow of NS mice following 

treatment with SFX-01 was substantially mediated by inhibition of the 

phosphatase. To further confirm this, fluorescence-activated cell sorting could be 

utilised to isolate HSCs and progenitor cells from bone marrow and spleen 

following drug treatment. Subsequent culture and analyses of SHP2 inhibition, 

as well as cell proliferation, differentiation or apoptosis markers may uncover 

which haemopoietic cell type is most affected by SFN.  

Balasubramanian et al discovered SHP2 is a positive regulator of p38 MAPK-

dependent MIP2 production through the formation of a stable complex with the 

kinase and GRB2 376. Plasma levels of MIP2 are reduced in NS mice following 

treatment with SFX-01. MIP2 is produced in a range of tissue and blood cells. 

Perhaps SFN-dependent inhibition of SHP2 is also preventing its recruitment to 

GRB2 and p38 MAPK, resulting in reduced MIP2 expression levels. In turn, this 

may reduce the stimulation for neutrophils to exit the bone marrow, potentially 

explaining the reduced neutrophil counts in the blood and spleen. If this was the 

case, an accumulation of neutrophils within the bone marrow following SFX-01 

treatment may have been anticipated, which I did not observe. Perhaps 

neutrophils initially accumulate within the bone marrow, which may act as a 

feedback mechanism to reduce white blood cell production. Although, I anticipate 

a more rational explanation is SFN-dependent inhibition of SHP2 reduced both 
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MIP2-mediated release of neutrophils from the bone marrow as well as myeloid 

cell proliferation and differentiation.  

Studies have also shown that SHP2 can translocate to the mitochondria where it 

interacts with and dephosphorylates p135. This stimulates the production of ROS 

in myeloid progenitor cells and causes hypersensitivity to cytokines 377. 

Treatment of these cells with the antioxidant N-acetyl-cysteine prevents the 

biological effects caused by the modification of proteins by these ROS and in 

turn, reduces myeloid colony formation. Perhaps SFN is also lowering cytokine 

sensitivity and differentiation of myeloid progenitor cells in NS mice by reducing 

the intracellular levels of ROS, either through inhibition of SHP2 or activation of 

the KEAP1/Nrf2 signalling pathway.  

As SHP2 phosphatase activity was not significantly inhibited in WT tissue 

following 10-week treatment with SFX-01, the observed reduction in total white 

blood cells, as well as inflammatory monocytes in the spleen of these mice, may 

be caused by the modification of other proteins by SFN. Of course, biological 

events which may be stimulated by adduction of the electrophile to proteins other 

than SHP2 may also contribute towards the reduction in total white blood cell 

count and inflammatory monocytes in the spleen of NS mice. Multiple studies 

have demonstrated anti-inflammatory effects of the electrophile regarding the 

monoblast lineage. Particularly through suppression of tumour necrosis factor-α-

induced NF-кB transcriptional activity in monocytes, macrophages and 

endothelial cells by either adducting and inhibiting the catalytic cysteine within 

NF-кB β subunit or inhibiting the RhoA/ROCK signalling pathway 378 379. This 

leads to a subsequent reduction in gene expression of intracellular adhesion 

molecule 1 and vascular adhesion molecule 1 and reduces the adhesion of 
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monocytes to sites of inflammation 380 381 382. SFN also reduces the expression 

and release of macrophage migration inhibitory factor, IL-1β, IL-6, tumour 

necrosis factor-α and matrix metallopeptidase 9, which are pro-inflammatory 

cytokines that stimulate the release of monocytes from the bone marrow as well 

as their maturation to macrophages 248 379 383 384.  

As well as decreasing total white blood cell and myeloid cell populations, the 

prolonged treatment of SFX-01 also prevented excessive growth of the spleen 

and the incidence of splenomegaly in the NS mouse model. Analysis of the 

spleen size of mice was achieved using ultrasound. When only end-point 

ultrasound data was analysed, the spleen size of NS mice did not appear to be 

significantly reduced by SFX-01 treatment compared to water only controls. 

However, the ultrasound method enabled calculation of spleen size before, 

during and after drug treatment, allowing analysis of the amount of spleen growth 

of each mouse through the duration of the study. When analysed in this way, 

spleen growth was significantly reduced in NS mice when treated with SFX-01. I 

outlined in the introduction of this chapter that myeloid cells can reside within the 

spleen until they are stimulated by an inflammatory response. Perhaps the 

reduction in the growth of the spleen of NS mice who received the drug was due 

to a lower number of circulating, and as a result, spleen residing neutrophils, 

which prevented the expansion of this tissue. The necessity to analyse each 

mouse as an individual and not as a grouped cohort can be explained by the 

variability in the severity of the splenomegaly that is present in different NS mice, 

and the variable penetrance of different phenotypes in this mouse model is 

explained in greater detail in the general introduction.  
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6 The mechanism of sulforaphane-induced 

inhibition of SHP2 

6.1 Introduction 

6.1.1 Catalytic mechanism of SHP2  

Amino acid sequence alignment of PTPs showed an evolutionarily conserved 

catalytic domain with a signature motif (I/V)VHCXAGXGR(S/T)G, whereby X can 

be any amino acid 385 386 387. Site-directed mutagenesis and active site-labelling 

elucidated the invariant cysteine residue as essential for PTP activity 388 389 390. 

Several studies show PTPs, including SHP2, have a conserved catalytic 

mechanism involving a two-step process in which substrate binding is followed 

by phosphate monoester hydrolysis as shown in figure 6.1 387 391 392 393 394 395. 

The active site within the PTP domain of SHP2 forms a ‘pocket’ consisting of 

three loops; P, Q and WDP. The catalytic cysteine of SHP2, Cys459, resides within 

the P-loop of the active site along with a critical arginine 43. The pKa of this 

cysteine thiol is low, which facilitates the nucleophilic attack of the thiolate 

towards protein phosphate groups. This low pKa is maintained through 

electrostatic interactions between the negatively charged thiolate and the 

positively charged side chains of the critical arginine 43. H bonding has also been 

shown to stabilize the proton-dissociated state of the reactive cysteine residue to 

maintain the low pKa. This was demonstrated by Chigadze et al, who showed the 

side chains of Asp61 within the WDP-loop form multiple H bonds, including with 

Ser460 from the catalytic P-loop, a water-mediated H bond with the catalytic 

Cys459, two water-mediated H bonds with Arg465 and another water-mediated H 

bond with Asp425 392 397. The orientation of the positively charged critical arginine 
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within the P-loop facilitates correct binding of the phosphorylated substrate by 

coordinating with negatively charged oxygens of the phosphate group 398 399 400. 

The first step of the reaction involves nucleophilic attack of the catalytic cysteine 

thiolate towards the phosphorus atom 390 392 401. Concurrently with cleavage of 

this ester bond, an adjacent aspartic acid residue residing in the proteins WPD-

loop donates a proton to the leaving group oxygen upon the substrate 391 399 402 

403. This results in a cysteinyl-phosphorus intermediate covalently bound via a 

thioester linkage, which is stabilised by the P-loop arginine, and release of the 

dephosphorylated substrate 387 403. The second rate-limiting step involves 

positioning of a water molecule within the phosphatase domain by coordination 

with a glutamate in the Q-loop 404. The catalytic aspartate now acts as a general 

base by accepting a proton from the water molecule and facilitating hydrolysis of 

the scissile phosphorous-sulfur bond 402 405 406 407. This generates free-phosphate 

and also restores the reactive thiolate, allowing the PTP to engage in a new 

reaction cycle. As outlined in chapters 3 and 5, SFN inhibited SHP2 phosphatase 

activity in vitro and in vivo. Interestingly, the in vitro studies showed SFN 

adduction to SHP2 was followed by the loss of a detectable adduct, even though 

inhibition of the phosphatase was maintained. A possible explanation for this was 

that loss of the adduct was coupled with the formation of a residual modification 

within the active site that prevents the catalytic mechanism described above. 

Here I sought to investigate this incompletely understood mechanism of inhibition 

of SHP2 by SFN which unexpectedly and intriguingly cannot be accounted for by 

stable adduction by the electrophile.  
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Figure 6.1. Catalytic mechanism of cysteine-based PTPs, including SHP2. 
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6.2 Materials and methods 

6.2.1 SDS-PAGE and western immunoblotting  

SDS-PAGE and western immunoblotting were performed as outlined in the 

general methods. For this chapter the following primary antibodies were used: 

 

 

 

 

 

 

 

Table 6.1. List of primary antibodies used for western immunoblotting in chapter 

6. 

 

6.2.2 Immunoprecipitation  

Immunoprecipitation of proteins from tissue was performed as outlined in the 

general methods. For this chapter, the capture antibody was agarose-conjugated 

anti-SHP2 (Rabbit, Santa Cruz, #sc-7384 AC).  

6.2.3 H2O2 treatment of recombinant SHP2  

10 ng of recombinant SHP2 in 20 µl of PBS containing 0-250 µM H2O2 was 

incubated at room temperature for 15 minutes. 20 µl of 2X SDS-PAGE sample 

buffer was then added and western immunoblotting was performed as described 

in the general methods.   

6.2.4 Polyethylene glycol (PEG)-switch method 

The PEG-switch method was used to assess potential reversible oxidative 

modification of SHP2 following treatment with SFN. SHP2 was 

 

Primary antibody  

 

Company 

 

Species 

 

Sulforaphane 

 

In-house 

 

Rabbit 

 

SHP2 (for immunocapture) 

 

Santa Cruz #sc-280 

 

Rabbit 

 

SHP2 (for immunodetection) 

 

R&D Systems #AF1894 

 

Goat 
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immunoprecipitated from cardiac tissue of control WT or NS mice or following 

treatment with 2.5 mg/ml SFX-01 for 4 days in their drinking water and 

resuspended in 50 µl PBS. 50 µl of a maleimide containing buffer (100 mM 

maleimide, 100 mM Tris-HCl, 1 % SDS, pH 7.4) was then added to each SHP2 

containing mixture and incubated at 50 ˚C for 25 minutes. 200 mM TCEP was 

then added, and the mixture was incubated at room temperature for 30 minutes. 

Each reaction mixture was desalted using a 7 kDa cut-off 0.5 ml Zeba Spin 

desalting column (Thermo Fisher) and 20 µl of a PEG-maleimide containing 

buffer (70 mM PEG-maleimide, 500 mM Tris-HCl, 7 % SDS, pH 7.4) was added 

followed by incubation at room temperature for 2 hours rotating at 20 rpm. An 

equal volume of 2X SDS-PAGE sample buffer containing 50 mM maleimide was 

then added to quench the reaction. Samples were analysed under non-reducing 

conditions by SDS-PAGE and western immunoblotting using an anti-SHP2 

antibody. PEG-maleimide specifically reacts with free cysteine thiols and carries 

a pegylated tail with a molecular weight of 5 kDa. This method therefore 

potentially allows determination of the number of cysteines within SHP2 which 

had been subjected to reversible oxidative modification by analysis of the 

proteins banding pattern following western immunoblotting.   

6.2.5 Biotinylated iodoacetamide (BIAM) labelling method 

The BIAM labelling method was used to identify if the catalytic cysteine within 

SHP2 was post-translationally modified following treatment with SFN. SHP2 was 

immunoprecipitated from cardiac tissue of control WT or NS mice or following 

treatment with 2.5 mg/ml SFX-01 for 4 days in their drinking water and 

resuspended in 50 µl PBS, pH 6.4. 2 µl of a 10 mM BIAM stock (400  
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µM final concentration) was then added and the reaction mixture was incubated 

at room temperature for 30 minutes followed by addition of an equal volume 2X 

SDS-PAGE sample buffer containing 100 mM maleimide to quench the reaction. 

Samples were analysed under non-reducing conditions by SDS-PAGE and 

western immunoblotting. PVDF membranes were probed using HRP-conjugated 

streptavidin (1:10,000 in 5 % BSA in PBS-T) which was detected using ECL. If 

the catalytic cysteine is post-translationally-modified, BIAM is unable to adduct 

and loss of labelling is seen.  

6.2.6 Phenylarsinic acid (PAA) labelling method 

The PAA labelling method was used to identify if two vicinal thiols within the 

catalytic domain of SHP2 had been post-translationally-modified following 

treatment with SFN. SHP2 was immunoprecipitated from cardiac tissue of control 

WT or NS mice or following treatment with 2.5 mg/ml SFX-01 for 4 days in their 

drinking water and resuspended in 50 µl PBS followed by an equal volume of 2X 

SDS-PAGE sample buffer. Samples were analysed under non-reducing 

conditions by SDS-PAGE and far-western blotting. PVDF membranes were 

incubated with 1 mM biotinylated-PAA (Synlnnova) in 40 ml 5 % BSA in PBS-T 

for 1-hour at room temperature. Membranes were then washed for 5X 15 minutes 

with PBS-T and incubated for a further hour with HRP-conjugated streptavidin 

(1:10,000 in 5 % BSA in PBS-T) which was detected using ECL. If two vicinal 

thiols are post-translationally-modified, PAA is unable to adduct and loss of 

labelling is seen.  

6.2.7 Amplification and purification of WT and Cys459Ser SHP2 plasmid  

WT or Cys459Ser SHP2 plasmids were purchased from Addgene (plasmid #8381 

and #8382 respectively). Both plasmids comprised a cytomegalovirus (pCMV) 
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vector backbone with ampicillin resistance and human SHP2 inserted (with or 

without mutation). The WT plasmid can be visualised in figure 6.2. Plasmids were 

received in transformed bacteria in an agar stab. 5 ml Luria-Bertani (LB) broth 

supplemented with 100 mg/ml ampicillin was inoculated with the transformed 

bacteria and incubated for 7 hours at 37 ˚C shaking at 100 rpm. Transformed LB 

broth was then added to 245 ml fresh LB broth supplemented with 100 mg/ml 

ampicillin and incubated overnight at 37 ˚C shaking at 100 rpm. The following 

morning, the plasmid was extracted from the bacterial cells using a plasmid maxi-

prep kit (QIAGEN) following the manufacturer’s instructions. DNA was then 

sequenced by Eurofins Genomics and results were analysed using ApE software.  
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6.2.8 Site-directed mutagenesis of SHP2 plasmid 

Multiple cysteine to serine single or double SHP2 mutants, as named in table 6.2, 

were generated via site-directed mutagenesis.  

 

 

 

 

Figure 6.2. WT SHP2 plasmid used for site-directed mutagenesis. 
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Table 6.2. List of primers used to generate cysteine to serine SHP2 mutants. 

 

Site-directed mutagenesis was achieved via polymerase chain reaction (PCR) 

using a Q5 High-Fidelity DNA Polymerase kit (New England Biolabs), the 

oligonucleotide primers stated in table 6.2 and the PCR protocol stated in table 

6.3. 

 

Step Temperature Time 

Initial denaturation 98 ˚C 30 seconds 

35 cycles 98 ˚C 

60 ˚C 

72 ˚C 

10 seconds 

30 seconds 

15 minutes 

Final extension 72 ˚C 15 minutes 

Holding 4 ˚C Until removed 

 

Table 6.3. PCR protocol used for site-directed mutagenesis. 

Following PCR, 1 µl of the restriction enzyme DpnI (New England Biolabs) was 

added to the mixture and incubated at 37 ˚C for 1-hour.  

Mutant 

name 

Plasmid 

used 

Forward primer for PCR Reverse primer for 

PCR 

Cys333Ser SHP2  

WT 

5’ – ACACAAGGCTCCCTG 

CAAAAC - 3’ 

5’ - GGCAATGTAACT 

CTTTTTGG - 3’ 

Cys367Ser SHP2  

WT 

5’ - AAGAGTAAATCTGTC 

AAATACTGGC - 3’ 

5’ - TCCTCTCTCCAC 

TTCTTTC- 3’ 

Cys333/367Ser SHP2  

Cys333Ser 

5’ - AAGAGTAAATCTGTC 

AAATACTGGC - 3’ 

5’ – TCCTCTCTCCAC 

TTCTTTC - 3’ 

Cys333/459Ser SHP2  

Cys459Ser 

5’ - ACACAAGGCTCCCTG 

CAAAAC - 3’ 

5’ - GGCAATGTAACT 

CTTTTTGG - 3’ 
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6.2.9 Transformation of Escherichia coli and plasmid purification following 

mutagenesis 

Following incubation of the PCR mixture with Dpn1, 5 µl of PCR mix was added 

to one vial of 5-α competent Escherichia coli cells (New England Biolabs), 

incubated on ice for 30 minutes, heat shocked at 42 ˚C for 30 seconds followed 

by a final incubation on ice for 5 minutes. 500 µl of super optimal broth with 

catabolite repression (SOC) medium was added to the competent cells, 

incubated at 37 ˚C for 1-hour shaking at 300 rpm. 100 µl of the transformed 

competent cells were then spread evenly onto a LB agar plate supplemented with 

100 mg/ml ampicillin and incubated at 37 ˚C overnight. 5 ml of LB broth 

supplemented with 100 mg/ml ampicillin was then inoculated with single bacterial 

colonies which grew on the LB agar plate and incubated at 37 ˚C overnight 

shaking at 100 rpm. The following morning, the plasmid was extracted from the 

bacterial cells using a plasmid mini-prep kit (QIAGEN) following the supplied 

instructions. DNA was then sequenced by Eurofins Genomics and sequencing 

results were analysed using ApE software.  

6.2.10 Transfection of HEK293 cells with SHP2 plasmids 

For each well of a 6-well plate, the following was prepared; 4 µl Lipofectamine 

2000 (Thermo Fischer) was added to 100 µl opti-MEM reduced serum media in 

a microcentrifuge tube. In a separate tube, 0-500 ng of SHP2 plasmid was added 

to 100 µl Lipofectamine. Both tubes were incubated separately for 5 minutes at 

room temperature. The contents of the tubes were then combined and incubated 

for a further 15 minutes. During this time media was replenished upon HEK293 

cells. The DNA-containing transfection solution was then added drop-wise to 
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each well. Cells were placed back into the incubator and experiments were 

carried out 24 hours post-transfection.  

6.2.11 Cell treatment with SFX-01 

Media from HEK293 cells seeded into 6-well plates, either with or without prior 

transfection with an SHP2 plasmid was replaced with 2 ml warmed, serum-free 

media (DMEM plus GlutaMAX-I supplemented with penicillin/streptomycin (1 

unit/ml;1 µg/ml)). Cells were treated with varying amounts of SFX-01, 0-250 µM, 

and placed back into the incubator for 0.5-4 hours. Following this, if western 

immunoblotting was required, 200 µl of 2X SDS-PAGE sample buffer was added 

to each well. When immunoprecipitation of SHP2 was required, 200 µl of PBS 

was added instead. Cells were then detached from the well using a cell scraper, 

moved into a microcentrifuge tube and lysed via sonication for 7 seconds at 30 

kHz and 40 % amplitude. Western immunoblotting or immunoprecipitation 

protocols previous outlined were then followed. 

6.2.12 Generation of 5-thio-2-nitrobenzoic acid (TNB)  

To generate TNB, 0.5 g 5, 5-dithio-bis-2-nitrobenzoic acid (dTNB, Ellman’s 

reagent) was dissolved in 25 ml 0.5 M Tris-HCl pH 8.8 containing 2.5 ml β-

mercaptoethanol. The pH of the solution was adjusted to 1.5 with 6 M HCl. The 

solution was rotated at 4 ˚C to aid TNB crystal formation. The following morning, 

the bright orange TNB crystals were filtered and washed with 2 L cold 0.1 M HCl 

to remove β-mercaptoethanol. The crystals could be stored indefinitely at room 

temperature.   
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6.2.13 Treatment of TNB and analysis by HPLC 

1 mg of TNB crystals were dissolved in 200 µl deionised water followed by a 

further 1:500 dilution in water to make a 50 µM TNB solution which was incubated 

with or without 5 µM SFX-01 for 1-hour or overnight. An equivalent amount of 

dissolved TNB was also incubated with 100 µM H2O2 for 1-hour. The solutions 

were analysed by HPLC using the protocol outlined in the general methods but 

with the UV detector set to 320 nm to aid detection of TNB. A deionised water-

only sample was used as a negative control followed by TNB, dTNB alone or 

SFX-01 alone standards to determine their retention time.  

6.2.14 Liquid chromatography-mass spectrometry analysis of GSH 

following treatment with SFX-01 

LC-MS/MS was carried out by Dr Francesca Mazzacuva (Franklin-Wilkins 

Building, King’s College London). 10 or 100 µM of reduced GSH was incubated 

with 10 µM L-SFN (dissolved in DMSO) and incubated for 0.5-24 hours. 

Immediately prior to analysis, samples were diluted 1:50 with 1:1 H2O/1,1′-

azobis(cyclohexanecarbonitrile) + 0.1 % formic acid. 5 µl of sample was first 

separated by LC using a reverse-phase column (Luna Omega, C18, 1.6 µM, 100 

Å, 100 mm x 2.1 mm inner diameter, Thermo Fisher). An atomic absorption 

spectrometer was incorporated into the LC system which monitored the 

absorption of light (atomic absorbance), which was produced by a hollow cathode 

lamp, to measure the amount of each reaction product in the solution.  

Separated reaction products were then applied to an interfacing linear ion trap 

mass spectrometer with an electron transfer dissociation source (LTQ Orbitrap 

XL, Thermo Fisher) and collected from the analyser using full ion scan mode over 

an m/z range of 100-1000. MS conditions used were: capillary voltage 14 V, 
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capillary temperature 350 ˚C, tube lens 35 V. During the 15-minute run time the 

machine simultaneously performed several experiments: 

1) MS scan in positive ion mode, range 100-1000 m/z 

2) MS2 in positive ion mode of 613.3 m/z, collision energy 17, range 300-650 m/z 

for GSSG 

3) MS2 in positive ion mode of 308.3 m/z, collision energy 15, range 150-310 m/z 

for GSH 

4) MS2 in positive ion mode of 178.6 m/z, collision energy 15, range 50-150 m/z 

for SFN 

5) MS3 in positive ion mode of 485.2 m/z, collision energy 23, and then of 356 

m/z, collision energy 35, range 95-1000 m/z for GSH-SFN 
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6.3 Results  

6.3.1 An SFN adduct is not detected upon inhibited cardiac SHP2  

As outlined in figure 3.12 of chapter 3, immunoprecipitation of cardiac SHP2 from 

WT or NS mice revealed inhibition of the protein’s phosphatase activity following 

4-day treatment with 2.5 mg/ml SFX-01 in their drinking water. Re-analysis of 

immunocaptured SHP2 by SDS-PAGE followed by immunoblotting unexpectedly 

revealed the absence of an SFN adduct upon the inhibited phosphatase from WT 

or NS mice following treatment (figure 6.3).  

 

 

 

 

 

 

6.3.2 Recombinant SHP2 migrates faster by SDS-PAGE following H2O2 

treatment 

To investigate if oxidative modification induced an intramolecular disulfide within 

SHP2, recombinant protein was incubated with 0-500 µM H2O2 for 15 minutes. 

Immunoblotting revealed a proportion of the recombinant SHP2 protein migrated 

Figure 6.3. An SFN adduct is not detected upon SHP2 following chronic in vivo 

treatment with SFX-01. 

A representative immunoblot showing the absence of an SFN adduct upon 

immunocaptured cardiac SHP2 from WT or NS mice following 4-day treatment with 2.5 

mg/ml SFX-01 in their drinking water. 
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faster on a polyacrylamide gel following H2O2 treatment in a concentration-

dependent manner, consistent with the formation of an intramolecular disulfide 

(figure 6.4). 

 

 

 

 

 

 

6.3.3 SFN treatment induces a non-reducible molecular weight shift of 

SHP2 in vivo  

Immunoprecipitation of SHP2 from cardiac tissue of WT mice that received 2.5 

mg/ml SFX-01 in their drinking water for 4-10 days followed by western 

immunoblotting identified two lower molecular weight protein bands following 

drug treatment (as shown by the red arrows in figure 6.5). These bands were still 

present when the protein was incubated with 5 mM of the reducing agent DTT, 

indicating these molecular weight shifts are unlikely to result from SFN inducing 

an intramolecular disulfide within the phosphatase (figure 6.5). 

 

 

 

Figure 6.4. H2O2-treated recombinant SHP2 migrates faster on a polyacrylamide 

gel.  

A representative immunoblot showing a proportion of recombinant SHP2 protein 

migrated faster on a polyacrylamide gel in a concentration dependent manner following 

15-minute treatment with 10-500 µM H2O2.   
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6.3.4 SFN-induced inhibition of cardiac SHP2 is not reversed by treatment 

with DTT  

A fluorescence-based phosphatase activity assay showed cardiac SHP2 

immunoprecipitated from WT or NS mice was inhibited following 4-10-day 

treatment with 2.5 mg/ml SFX-01 in their drinking water (figure 6.6). Subsequent 

analyses with this assay revealed treatment of the inhibited SHP2 protein with 5 

mM DTT did not significantly rescue the phosphatase activity of SHP2 (figure 

6.6). 

 

 

Figure 6.5. A small portion of cardiac SHP2 migrates faster a polyacrylamide gel 

following SFX-01 treatment.  

A representative immunoblot showing SFN induces two molecular weight shifts in a 

small proportion of cardiac SHP2 (indicated by red arrows) following in vivo treatment of 

WT mice with 2.5 mg/ml SFX-01 in their drinking water for 4-10 days. Lower molecular 

weight protein bands were still present following treatment of immunoprecipitated SHP2 

with 5 mM DTT.   
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6.3.5 SFN treatment induces a small mobility shift of cardiac SHP2 

following the PEG-switch assay 

PEG-maleimide treatment of SHP2 immunoprecipitated from cardiac tissue of 

WT or NS mice that received 2.5 mg/ml SFX-01 in their drinking water for 4 days 

induced a mobility shift in a small but detectable proportion of the protein on a 

polyacrylamide gel, as detected by a 5 kDa increase in molecular weight by 

western immunoblotting (Figure 6.7).  

 

Figure 6.6. SFX-01 treatment inhibits SHP2 phosphatase activity in vivo, which is 

not recovered by DTT.  

A fluorescence-based assay using cardiac SHP2 immunoprecipitated from WT or NS 

mice following 4-10-day treatment with 2.5 mg/ml SFX-01 in their drinking water revealed 

inhibition of the phosphatases activity which was not recovered by treatment with 5 mM 

DTT. 
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6.3.6 In vivo treatment with SFX-01 reduces BIAM labelling of SHP2  

SHP2 immunoprecipitated from cardiac tissue of WT or NS mice following 4-day 

treatment with 2.5 mg/ml SFX-01 in their drinking water was incubated with BIAM. 

Figure 6.7. Analysis of the oxidative modification of cardiac SHP2 following in vivo 

treatment with SFX-01 using the PEG-switch method.  

An immunoblot showing a small but detectable increase in molecular weight of cardiac 

SHP2 immunoprecipitated from WT or NS mice who had received 2.5 mg/ml SFX-01 in 

their drinking water for 4 days when incubated with PEG-maleimide. (n = 4, *p<0.05 

versus untreated control). 
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Immunoblotting revealed reduced binding of BIAM to SHP2 in samples derived 

from mice exposed to SFX-01 (figure 6.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.7 In vivo SFX-01 treatment reduces PAA labelling of SHP2  

SHP2 immunoprecipitated from cardiac tissue of WT or NS mice following 4-day 

treatment with 2.5 mg/ml SFX-01 in their drinking water was incubated with 

Figure 6.8. BIAM labelling of cardiac SHP2 is reduced following SFN-induced 

inhibition of the protein.  

An immunoblot showing reduced binding of BIAM to SHP2 immunoprecipitated from 

cardiac tissue of WT or NS mice following 4-day treatment with 2.5 mg/ml SFX-01 in 

their drinking water. (n = 4, *p<0.05 versus water only control). 
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biotinylated-PAA. Far-western blotting revealed reduced binding of PAA to SHP2 

following drug treatment (figure 6.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.8 Cysteine to serine SHP2 mutants were successfully generated  

Using site-directed mutagenesis to exchange a guanine for a cytosine, two single 

mutants and two double mutants in which cysteine (TGC (Cys333) or TGT 

(Cys367)) was changed to serine (TCC (Cys333) or TCT (Cys367)) in an SHP2 

Figure 6.9. PAA labelling of cardiac SHP2 is reduced following SFN-induced 

inhibition of the protein.  

A far-western blot showing reduced binding of PAA to SHP2 immunoprecipitated from 

cardiac tissue of WT or NS mice following 4-day treatment with 2.5 mg/ml SFX-01 in 

their drinking water. (n = 4, *p<0.05 versus water only control). 
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expression plasmid were generated. These included: Cys333Ser and Cys367Ser 

(generated from the WT plasmid) Cys333/367Ser (made from Cys333Ser plasmid) 

and Cys333/459Ser (made from Cys459Ser plasmid). Successful mutagenesis was 

confirmed using nucleotide sequencing and a subsequent alignment comparison 

with WT SHP2 cDNA (figures 6.10-6.13).  
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Figure 6.10. Nucleotide sequence alignment of Cys333Ser SHP2 mutant with WT 

plasmid.   

Alignment of nucleotide sequences from WT SHP2 plasmid purchased from Addgene 

(top line) with Cys333Ser SHP2 plasmid generated by site-directed mutagenesis. The 

red highlighted # at position 998 represents exchange of a guanine for a cytosine, 

showing successful mutation of this cysteine (TGC) to a serine (TCC). The red sections 

at the beginning and end of the Cys333Ser sequence represent areas of primer binding. 
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Figure 6.11. Nucleotide sequence alignment of Cys367Ser SHP2 mutant with WT 

plasmid.   

Alignment of nucleotide sequences from WT SHP2 plasmid purchased from Addgene 

(top line) with Cys367Ser SHP2 plasmid generated by site-directed mutagenesis. The red 

highlighted # at position 1100 represents exchange of a guanine for a cytosine, showing 

successful mutation of this cysteine (TGT) to a serine (TCT). The red sections at the 

beginning and end of the Cys367Ser sequence represent areas of primer binding. 
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Figure 6.12. Nucleotide sequence alignment of Cys333/367Ser SHP2 mutant with WT 

plasmid.  

Alignment of nucleotide sequences from WT SHP2 plasmid purchased from Addgene 

(top line) with Cys333/367Ser SHP2 plasmid generated by site-directed mutagenesis. The 

red highlighted # at positions 998 and 1100 represents exchanges of guanine for 

cytosine, showing successful mutation of these cysteines (TGC or TGT) to serines (TCC 

or TCT). The red sections at the beginning and end of the Cys333/367Ser sequence 

represent areas of primer binding. 
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Figure 6.13. Nucleotide sequence alignment of Cys333/459Ser SHP2 mutant with WT 

plasmid.  

Alignment of nucleotide sequences from WT SHP2 plasmid purchased from Addgene 

(top line) with Cys333/459Ser SHP2 plasmid generated by site-directed mutagenesis. The 

red highlighted # at positions 998 and 1388 & 1389 represents exchanges of cysteines 

to serines. The red sections at the beginning and end of the Cys333/459Ser sequence 

represent areas of primer binding. 
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6.3.9 SFN adducts proteins in a concentration-dependent manner in 

HEK293 cells  

To establish if SFN could adduct protein targets in a cultured cell line, HEK293 

cells were treated with 0-250 µM SFX-01 for 30 minutes. An increase in SFX-01 

concentration correlated with an increased abundance of protein-SFN adducts 

(figure 6.14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14. SFN adducts proteins in HEK293 cells in a concentration-dependent 

manner.  

A representative immunoblot showing multiple proteins adducted by SFN in a 

concentration-dependent manner following treatment of HEK293 cells with 0-250 µM 

SFX-01. 
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6.3.10 Cellular transfection with SHP2 plasmid increases protein 

expression in an amount-dependent manner  

To determine if cellular transfection with increasing amounts of SHP2 plasmid 

correlated to an increase in the protein’s expression, HEK293 cells were 

transfected with 0-500 ng WT SHP2 plasmid and protein expression was 

analysed 24 hours later. Western immunoblotting revealed transfection with 

increasing amounts of SHP2 plasmid correlated with increased expression of the 

phosphatase (figure 6.15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. Cellular transfection with higher amounts of SHP2 plasmid generates 

increased protein expression.  

A representative immunoblot showing increased expression of SHP2 protein in HEK293 

cells 24 hours post-transfection with increasing amounts of WT plasmid.   
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6.3.11 Cys459Ser SHP2 mutation does not affect plasmid transfection 

efficiency or protein expression  

Western immunoblotting showed SHP2 protein expression was comparable 24 

hours following transfection of HEK293 cells with 0-500 ng of plasmid regardless 

of whether WT or Cys459Ser plasmid was used, suggesting transfection efficiency 

was unaffected by the mutation (figure 6.16).  

 

 

 

 

 

 

 

 

 
 

 

 

6.3.12 The phosphatase activity of SHP2 is lost following mutation of the 

protein’s catalytic cysteine  

I next assessed if site-directed mutagenesis of cysteines within the active site of 

SHP2 affected the phosphatase’s activity. To do so, HEK293 cells were 

transfected with 500 ng of WT, Cys459Ser, Cys333Ser, Cys367Ser, Cys333/367Ser or 

Cys333/459Ser SHP2 plasmid followed by protein immunoprecipitation 24 hours 

Figure 6.16. SHP2 protein expression is unaffected by a Cys459Ser mutation.  

A representative immunoblot showing comparable SHP2 protein expression in HEK293 

cells 24 hours after transfection with WT or Cys459Ser SHP2 plasmid. 
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later. Western immunoblotting identified comparable protein expression in input 

samples as well as captured protein between all plasmids (figure 6.17 A). A 

subsequent fluorescence-based activity assay revealed that mutants which did 

not contain Cys459Ser, such as Cys333Ser, Cys367Ser or Cys333/367Ser, had 

comparable phosphatase activity to WT SHP2. However, mutation of Cys459 to 

Cys459Ser resulted in the loss of the phosphatase’s activity (figure 6.17 B).  
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A) 

 

 

 

 

 

 
 

 

B) 

 

Figure 6.17. Cys459Ser SHP2 protein has no phosphatase activity  

 A) An immunoblot showing comparable SHP2 protein expression in HEK293 cells 24 

hours following transfection with 500 ng of WT, Cys459Ser, Cys333Ser, Cys367Ser, 

Cys333/367Ser or Cys333/459Ser plasmid. The amount of SHP2 protein immunocaptured 

from cells was also comparable between all plasmids. B) A fluorescence-based assay 

showing comparable SHP2 phosphatase activity between WT SHP2 and Cys333Ser, 

Cys367Ser and Cys333/367Ser mutants. The phosphatase activity of SHP2 was lost 

following mutation of the catalytic cysteine to a serine. (n = 5, *p<0.05 versus WT 

control).         
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6.3.13 Mutation of any cysteine pair within the active site of SHP2 results in 

retention of the SFN adduct  

I next explored if SFN that adducts to SHP2 in HEK293 cells can be removed 

from the phosphatase in a similar fashion to that observed in in vitro experiments. 

I hypothesised that retention of the electrophile upon SHP2 might be achieved if 

two of the triadic vicinal thiols in the catalytic domain of the phosphatase were 

mutated to serine. To assess this idea, HEK293 cells were transfected with 500 

ng WT, Cys333/367Ser or Cys333/459Ser SHP2 plasmid and 24 hours later cells were 

treated with 10 µM SFX-01.  Immunocapture followed by western immunoblotting 

revealed SFN adduction to WT, Cys333/367Ser or Cys333/459Ser SHP2 protein 2 

hours post-treatment with SFX-01 (figure 6.18). Whilst an SFN adduct was not 

detected 4 hours post-treatment on WT SHP2, adduction of the electrophile to 

SHP2 was observed at this time point on Cys333/367Ser or Cys333/459Ser protein. 

Immunoblotting also revealed comparable SHP2 protein expression 28 hours 

following transfection with each of the plasmids (figure 6.18). 
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Figure 6.18. SFN adduct upon SHP2 is stabilised following mutation of two active 

site cysteines.   

An immunoblot showing SFN adducted to WT, Cys333/367Ser or Cys333/459Ser SHP2 

immunoprecipitated from HEK293 cells 2 hours post-treatment with 10 µM SFX-01. The 

SFN adduct was not detected on WT SHP2 immunoprecipitated from HEK293 cells 4 

hours post-treatment with SFX-01 but was retained at this time point on Cys333/367Ser or 

Cys333/459Ser SHP2. (n = 3, *p<0.05 versus WT plasmid following 2-hour treatment with 

SFX-01).    
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6.3.14 dTNB is formed following incubation of TNB with SFX-01  

HPLC analysis following incubation of 50 µM TNB with 100 µM H2O2 identified a 

chromatographic peak at 11.27 minutes (figure 6.20 A), which was highly likely 

dTNB as this retention time was very similar to the retention time of an authentic 

standard, which was 11.21 minutes (figure 6.19 A). This showed oxidative 

modification of TNB by H2O2 could induce a disulfide between two TNB 

molecules. Further HPLC analysis identified a peak on the chromatogram at 

11.24 minutes following treatment of 50 µM TNB with 5 µM SFX-01 for 1-hour 

(figure 6.20 B). Again, this product was highly likely dTNB, as this retention time 

was very similar to the retention time of an authentic standard. The area under 

the hypothesised dTNB peak following incubation of SFX-01 with TNB increased 

following 24-hour incubation, whilst a peak at ~1.08 minutes, corresponding to 

TNB decreased (figure 6.20 C). A peak corresponding to SFN alone was also 

present on chromatograms from both the 1-hour and 24-hour incubation time 

points, as well as one at 10.87 minutes, which may represent TNB-SFN, although 

this could not be confirmed due to the lack of an authentic standard (figure 6.20 

B, C).  
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Figure 6.19. HPLC chromatograms of standards used for analysis.  

A) A dTNB standard. B) A TNB standard. C) A TNB standard left at room temperature 

for 24 hours. D) An SFX-01 standard. mAU represents absorbance using a UV detector 

set at a wavelength of 320 nm. 
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Figure 6.20. HPLC chromatograms showing SFN incubation with TNB inducing 

dTNB formation.  

A) 50 µM TNB incubated with 100 µM H2O2 for 1-hour. B, C) 50 µM TNB incubated with 

5 µM SFX-01 for 1- or 24-hours respectively. mAU represents absorbance using a UV 

detector set at a wavelength of 320 nm. 
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6.3.15 The identification of a dithiolethione was not achieved by mass 

spectrometry following incubation of GSH with SFN  

To identify if SFN could induce dithiolethione formation between two GSH 

molecules, 10 µM L-SFN was incubated with 10 µM GSH for 8 hours or 100 µM 

GSH for 0.5, 3, 18 or 24 hours and the resultant reaction products were analysed 

by LC-MS/MS. Chromatograms from LC of experiments containing 100 µM GSH  

are shown here which identified 4 major products within all reaction mixtures with 

retention times of 5.94, 1.46, 1.35 and 2.86 minutes (figure 6.21). LC 

chromatograms were the same for experiments using 10 µM GSH. Following 

injection into the linear ion trap mass spectrometer, subsequent MS2 analysis 

performed on the first three peaks identified base peaks of 114.09, 179.03 + 

308.15 and 484.18 m/z which correspond to SFN, GSH and GSSH respectively 

as calculated from standards (figure 6.22 A-C). MS3 was performed on the final 

peak identifying a base peak of 136.03 m/z (figure 6.22 D). Analysis of the base 

peaks formed following MS2 and MS3 of this latter peak strongly suggest this 

reaction product was GSH-SFN (figure 6.23-6.25).  Analysis of atomic 

absorbance (AA) of LC peaks identified a time-dependent increase in the amount 

of GSH-SFN or GSSG formed (figure 6.26 and 6.27 A). A time-dependent 

increase in AA of GSSG was also seen following incubation of 10 µM GSH alone 

at room temperature for 8 hours (figure 6.27 B).  
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Figure 6.21. Representative chromatograms from LC performed prior to linear ion 

trap MS.  

A) 10 µM L-SFN incubated with 100 µM GSH for 24 hours. B-E) Optimisation of 

chromatogram A showing peaks for different reaction products. B) A product with a 

retention time (RT) of 5.94 minutes. C) A product with a RT of 1.46 minutes. D) A product 

with a RT of 1.35 minutes. E) A product with a RT of 2.86 minutes. AA = atomic 

absorbance which represents amount of each product in the reaction. BP = 

corresponding base peak when analysed by MS which represents the most intense peak 

in the mass spectra for that product.     
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Figure 6.22. Representative mass spectrums from linear ion trap tandem MS 

performed following the incubation of GSH with L-SFN. 

A-D) Mass spectrums from linear ion trap MS performed after LC following 24-hour 

incubation of 10 µm L-SFN with 100 µm GSH. A) MS2 performed at an m/z range of 50-

150 identifying a base peak of 114.09 m/z which corresponds to SFN. B) MS2 performed 

at an m/z range of 150-310 identifying base peaks of 179.03 m/z and 308.15 m/z which 

correspond to GSH. C) MS2 performed at an m/z range of 300-650 identifying a base 

peak of 484.14 m/z which corresponds to GSSG. D) MS3 performed at an m/z range of 

95-1000 identifying a base peak of 136.03 m/z which corresponds to GSH-SFN.     
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Figure 6.23. Full MS performed following the incubation of GSH with L-SFN. 

A representative MS mass spectrum performed after LC following 24-hour incubation of 10 

µm L-SFN with 100 µm GSH at an m/z range of 100-1000. Peaks were identified which 

corresponded to SFN, GSH and GSSG as well as a new peak, circled in red, formed at an 

m/z of 485.14. 
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Figure 6.24. MS2 performed following the incubation of GSH with L-SFN.  

A representative MS2 mass spectrum performed at an m/z range of 130-1000 following 

fragmentation of an unidentified MS mass spectrum peak formed at an m/z of 485.14 

after LC following 24-hour incubation of 10 µm L-SFN with 100 µm GSH. A new base 

peak was formed at an m/z of 356.07, likely SFN adducted to fragmented GSH. Two 

smaller peaks formed at an m/z of 410.12 and 467.1, correspond to NH2CH2COOH and 

H2O respectively. 
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Figure 6.25. MS3 performed following the incubation of GSH with L-SFN. 

A representative MS3 mass spectrum performed at an m/z range of 95-1000 following 

fragmentation of a base peak formed at an m/z of 356.07 following MS2 after LC following 

24-hour incubation of 10 µm L-SFN with 10 µm GSH. A new base peak was formed at an 

m/z of 136.2, likely truncated SFN whereby the ITC group has been truncated to an amine. 
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Figure 6.26. The amount GSH-SFN formed following incubation of GSH with L-SFN 

increases in a time-dependent manner.  

AA of GSH-SFN calculated from LC performed following 24-hour incubation of 10 µm 

SFN with 100 µm GSH identified a time-dependent increase in abundance of GSH-SFN. 

Figure 6.27. The amount of GSSG formed following the incubation of GSH at room 

temperature increases in a time-dependent manner.  

A) AA of GSSG calculated from LC performed following 24-hour incubation of 10 µm 

SFN with 100 µm GSH identified a time-dependent increase in abundance of GSSG. B) 

AA of GSSG calculated from LC performed following 8-hour incubation of 10 µm SFN 

with 10 µm GSH identified a time-dependent increase in abundance of GSSG. 
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6.4 Discussion 

SFN can react with nucleophilic biomolecules and covalently adduct to them. 

Typically, covalent interactions are stable and permanent or only slowly reversed. 

Chapters 3 and 5 explained and characterised in detail the inhibition of 

recombinant or cardiac SHP2 phosphatase activity by SFN. Although 

unexpected, the in vitro studies showed that SFN initially forms an adduct with 

the recombinant SHP2, but over time the modification was lost. However, despite 

this loss of the electrophilic adduct, the phosphatase itself remained inhibited. 

Additional biochemical analyses outlined in this chapter showed that SFX-01 

treatment in vivo also induced inhibition of SHP2 phosphatase activity without a 

detectable SFN adduct. In this chapter, I sought to investigate the molecular 

mechanism of inhibition of SHP2 by SFN which occurs despite the absence of a 

stable covalent adduct that is initially observed when the phosphatase 

encounters this electrophile.  

As described in the general introduction, quantitative MS analysis of proteins 

immunocaptured with a pan-specific anti-SFN-protein antibody identified cardiac 

SHP2 as a significant target of the electrophile in vivo. For SHP2 to be 

immunocaptured, prior to its subsequent identification by MS, this required the 

presence of an SFN adduct to which the capture antibody binds. These initial 

studies involved an acute, large bolus dose of SFN being administered orally to 

mice, before isolation of the heart for analysis 3 hours later. The large dose and 

the relatively short exposure time would account for the presence of an SFN-

adduct, as it is likely a time point which captures the initial adduction of the 

electrophile. In the follow-up studies outlined above, this adduct was shown to be 

prone to removal or alteration such that is cannot be detected on SHP2 by the 
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anti-SFN antibody, depending on the conditions assessed. For example, the in 

vivo studies outlined in this chapter as well as those in chapter 3 were conducted 

using chronic 4-10-day exposure of mice to SFX-01 in their drinking water, which 

resulted in SHP2 inhibition, but no SFN adduct was detected. Considering the 

reversal of the adduct observed in the in vitro studies and the fact that the 

immunocapture-MS studies identified SHP2 as a target of the electrophile, it is 

rational to conclude SFN initially adducts, with the electrophile then somehow 

altered such that it cannot be detected but maintains the inhibition of the 

phosphatase. 

In line with the observations and considerations made in chapter 4, perhaps the 

loss of the adduct was achieved via trans-thiolation of the electrophile from SHP2 

to another cellular protein. Although this is considered unlikely, as typically this 

mechanism would result in phosphatase activity being regained as the catalytic 

thiolate would be reformed, whereas SHP2 remains inhibited following the loss 

of detectable SFN.  

Several studies have shown RTK stimulation is associated with an increase in 

cellular H2O2, which is necessary for maximal phosphorylation of the receptor 408. 

As H2O2 inhibits PTP activity, including SHP2, it has been strongly suggested this 

increase in oxidant levels serve as a regulatory mechanism to inhibit PTPs and 

optimise receptor phosphorylation 409 410 411 412 413. Indeed, H2O2-induced 

oxidative modification of SHP2 is observed following cellular stimulation with 

PDGF 414. PTPs with only one cysteine in their active domain, such as PTP1B, 

undergo oxidative modification of this residue forming a sulfenic acid intermediate 

415 416. To prevent higher irreversible oxidation to a sulfinic or sulfonic acid, the 

oxygen is rapidly eliminated via formation of a cyclic sulfenamide; a 5-atom ring 
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structure whereby a covalent bond is formed between the cysteine sulfur and the 

main chain nitrogen of an adjacent serine residue 417. This cysteine-serine link 

induces structural changes within the active site, exposing the oxidative 

modification to cellular reducing agents such as GSH and Trx, regenerating the 

active form of the enzyme 418. Some PTPs, on the other hand, have a second 

thiol within their active domain which is vicinal to their catalytic cysteine, including 

the cell cycle cdc25 phosphatases, low molecular weight-PTP and tensin 

homologue (PTEN). These are often termed ‘backdoor’ cysteines, and protect 

against irreversible oxidation of the sulfenic acid intermediate by facilitating the 

formation of an intramolecular disulfide 419 420 421. Again, the S-S bond can be 

readily reduced enabling reversibility of this inhibitory oxidative modification and 

so providing a mechanism of regulation. Crystallographic studies showed the 

active site of SHP2 contains two of these ‘backdoor’ cysteines at positions 333 

and 367, which are vicinal not only to the catalytic cysteine, Cys459, but also each 

other 43 422. The proximity of these cysteines was visualised using the computer 

software PyMol, as shown in figure 6.28. As mentioned, oxidative modification of 

the catalytic cysteine of SHP2 acts as an inhibitory mechanism to regulate 

downstream signalling pathways, such as MAPK and endothelin 1 423 424 425. 

Through biochemical and structural analysis, Machado et al propose a sulfenic 

acid intermediate forms upon Cys459, inhibiting the phosphatases catalytic 

activity, which is quickly resolved by Cys367 to form an intramolecular disulfide, 

maintaining inhibition of the protein as the catalytic cysteine is still unavailable 

426. A similar mechanism has been demonstrated for MAP kinase phosphatase 

3, whereby oxidative modification of its catalytic cysteine by H2O2 induces 

disulfide formation with one of the multiple cysteines distributed within the 



234 
 

proteins N- and C-terminal domains 427. Through kinetic and MS analysis, the 

Rudolph group demonstrate H2O2 treatment of SHP2 results in an inhibitory 

intramolecular disulfide between Cys333 and Cys367 142. Further to this, disulfide 

formation was not achieved following H2O2 treatment of Cys459Ser mutant protein 

142. They conclude a sulfenic acid intermediate is first formed upon Cys459 which 

is then resolved by the formation of an intramolecular disulfide with either Cys333 

or Cys367, with this S-S bond itself resolved by formation of a subsequent 

intramolecular disulfide between both of the ‘backdoor’ cysteines. They propose 

the resultant intramolecular disulfide acts as a protective mechanism to block 

Cys459 from further oxidative modification until itself is resolved by cellular 

disulfide reductases. Kinetic studies by the Gates group also support that SHP2 

phosphatase activity can be inhibited by an oxidant-induced intramolecular 

disulfide within the active domain of the protein 428.  

As demonstrated in chapter 3, in vitro treatment of recombinant SHP2 with low 

amounts of SFX-01 resulted in the formation of SHP2-SFN, followed by a loss in 

the detection of the electrophile adduct, even though inhibition of the 

phosphatase was maintained. With this in mind, I hypothesised that an SFN 

adduct may behave akin to a sulfenic acid intermediate, with this oxidative-like 

modification chemically transitioning to a secondary modification with resultant 

loss of the adduct, for example, an intramolecular disulfide. As shown in figure 

6.29, perhaps adduction of SFN at Cys459 causes initial inhibition of the 

phosphatase, with subsequent loss of the adduct due to a resolving 

intramolecular disulfide between Cys459 and Cys333 or Cys367 and maintaining 

inhibition as the catalytic cysteine remains unavailable. These ‘backdoor’ 

cysteines are also maintained in a reduced state and reside near the opening of 
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the active site pocket of SHP2. Perhaps due to its reactive nature, SFN can also 

adduct here. If so, inhibition of the phosphatase may occur due to reduced 

access of phosphorylated substrates to the catalytic cysteine of SHP2, firstly by 

the presence of an SFN adduct and subsequently due to a resolving intra-

disulfide between the backdoor cysteine (figure 6.29).  

Notably, in vitro treatment with high amounts of SFX-01 inhibited SHP2 

phosphatase activity with SFN adduction maintained over time. It was likely at 

such high abundance, SFN adducted the catalytic thiol as well as both ‘backdoor’ 

cysteines, making induction of an intramolecular disulfide within the active 

domain unachievable.  

 

 

 

 

 

 

 

 

 

Figure 6.28. A PyMol image of the active site of SHP2.  

The catalytic cysteine of SHP2, Cys459, can be visualised as vicinal to Cys333 and Cys367 

separated by 12.47 Å and 9.93 Å respectively. Cys333 and Cys367 are also vicinal to each 

other, separated by 4.98 Å. 
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However, SFN-induced intramolecular disulfide formation would require a 

concomitant reductive modification of the electrophile, which has not been 

reported and chemically is considered an unlikely reaction. Further to this, H2O2-

treated recombinant SHP2 migrated faster on an acrylamide gel, consistent with 

intra-disulfide formation, whilst inhibited cardiac SHP2 immunoprecipitated 

following in vivo SFX-01 treatment did not. Lower molecular weight protein bands 

were detected by immunoblotting following in vivo treatment with SFX-01, 

however, the shift in molecular weight was much greater than would be 

anticipated for the formation of an intra-disulfide and was perhaps more likely a 

result of protein degradation. Also, as SFN-induced inhibition of cardiac SHP2 

could not be reversed following treatment with DTT, this helps to rule out the 

formation of a disulfide by the direct reaction of the electrophile with the 

phosphatase. The PEG-switch method utilises a step in which oxidised thiols are 

chemically reduced to generate free-thiols which are then labelled with PEG-

maleimide 429. Only minimal amounts of inhibited cardiac SHP2 became labelled 

with PEG-maleimide following in vivo treatment with SFX-01, indicating further 

the inhibitory modification induced by SFN was not reducible. These observations 

together are consistent with SHP2 inhibition by SFN not being mediated by an 

active site intramolecular disulfide.  

However, whilst cardiac SHP2 from control mice was labelled by the thiol-reactive 

BIAM reagent 430, it failed to label the protein when mice were administered SFX-

01 for 4 days. BIAM-labelling was carried out under acidic conditions, driving 

protonation of thiols with a higher pKa whilst maintaining the reduced, 

deprotonated state of the catalytic cysteine. The loss of BIAM labelling, therefore, 

indicates the catalytic cysteine was likely covalently modified, although to 
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reiterate, this is unlikely to be a disulfide or a simple SFN adduct. Further analysis 

showed that the cardiac SHP2 that was inhibited following 4-day exposure to 

SFX-01 was also no longer able to bind PAA, a dithiol cross-linking reagent which 

can form stable dithioarsine rings with protein vicinal thiols 431. This suggests 

SFN-induced inhibition of SHP2 was most probably driven by an oxidative-like 

modification of two cysteines within its active domain. To explore this further, 

cysteine to serine double SHP2 mutants were generated, Cys333/367Ser and 

Cys333/459Ser, leaving only one available cysteine within the catalytic domain. As 

expected, catalytic activity was maintained in the former mutant and diminished 

in the latter. Following a 2-hour treatment of cells with SFX-01, SFN was detected 

upon WT, Cys333/367Ser or Cys333/459Ser SHP2. This is consistent with SFN 

adducting not only to the catalytic cysteine, but also one or both of the ‘backdoor’ 

cysteines. In line with in vitro experiments, the WT SHP2-SFN adduct was lost 

over time. In contrast, a stable adduct was maintained upon either double mutant. 

Again, this is consistent with SFN adducting and inhibiting SHP2, but with this 

modification subsequently reacting with an adjacent cysteine to form another 

oxidative modification that underlies the sustained inhibition of the phosphatase. 

The chemical nature of this inhibitory modification is an important consideration 

and the subject of the discussion below. 

Zhang et al have demonstrated a cyclocondensation reaction between ITCs and 

the vicinal dithiol-containing compound 1,2-benzenedithol 432. This results in the 

formation of a 1,3-dithiole-2-thione cyclic dithiolethione compound, with this 

stable and non-reducible modification occurring between the two vicinal thiols of 

1,2-benzenedithol and release of R-substituted nitrogen as an amine. In addition, 

this group showed ITC metabolites, including GSH-SFN, cysteinylglycine-, 
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cysteine- as well as N-acetylcysteine-conjugates can also undergo the same 

cyclocondensation reaction with 1,2-benzenedithol and produce a dithiolethione 

433. Perhaps SFN or its metabolites induced dithiolethione formation, which is 

characterised by two sulfur atoms linked by a C=S group, between two of the 

vicinal thiols in the active domain of SHP2 as shown in figure 6.30. Such an 

adduct would likely not be detectable by the anti-SFN antibody developed in-

house and used throughout these studies, as the dithiolethione is markedly 

different than an SFN adduct from a structural standpoint. This would initially 

involve adduction of SFN at Cys459 or either of the ‘backdoor’ cysteines, followed 

by nucleophilic attack by a second vicinal thiol at the same carbon atom of SFN 

as outlined in figure 6.31. A resulting sulfur-containing dithiolethione 

condensation product would then be formed between either Cys459 and a 

backdoor cysteine, driving inhibition as the catalytic cysteine is unavailable, or 

between the backdoor cysteines themselves, likely preventing access of 

phosphorylated proteins into the active domain.  

 

 

 

 

 

Figure 6.29. A proposed scheme of SFN-induced intra-disulfide formation.        

Following adduction of SFN to the catalytic cysteine of SHP2, or either of the proteins 

‘backdoor’ cystines, resolution of the adduct by an intramolecular disulfide would 

maintain inhibition of the phosphatase. This considered mechanism is unlikely to occur 

and the analogy with H2O2-induced disulfide formation, therefore, is not valid.  
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The premise that SFN may induce such a dithiolethione ‘chemical bridge’ 

between two thiols is supported by the generation of dTNB following incubation 

of TNB with L-SFN. However, MS analysis is required to confirm this idea, which 

was underway at the time of writing.  

Incubation of SFN with GSH resulted in a time-dependent increase in the 

formation of a compound which did not correspond to SFN, GSH or GSSG 

standards when analysed by MS. Subsequent MS3 analysis of this compound 

and review of resultant base peaks strongly suggested the formation of GSH-

SFN and not two GSH molecules linked via a dithiolethione. Nevertheless, the 

formation of GSH-SFN is the first step required for dithiolethione formation. A 

higher relative abundance of GSH or longer incubation times may increase the 

probability that a second tripeptide would contact and react with GSH-SFN to 

facilitate dithiolethione formation. Although perhaps generation of such a 

chemical structure between two thiol-containing proteins is unlikely and requires 

two thiols to be in close vicinal proximity, such as those found within the active 

domain of SHP2.  

Enzymatic digestion and analysis by MS of SHP2 exposed to SFN would be a 

rational way of assessing whether a dithiolethione condensation product does 

indeed form within the active site of the protein to causatively mediate 

phosphatase inhibition by this electrophile. The presence of a mass correlating 

to two peptide chains each containing Cys459, Cys333 or Cys367 linked by the 

dithiolethione structure would be robustly consistent with such an inhibitory 

mechanism.  
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Figure 6.30. A proposed scheme for SFN-induced dithiolethione formation 

between two vicinal thiols within the active site of SHP2.                

Following the adduction of SFN to either the catalytic cysteine of SHP2 or either of the 

‘backdoor’ cysteines, a cyclocondensation reaction may occur which forms a 

dithiolethione product, which may be responsible for maintaining the SFN-induced 

inhibition of the phosphatase.  

Figure 6.31. A possible cyclocondensation reaction of an SFN adduct with vicinal 

thiols within the active site of SHP2. 
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7 Summary and Conclusion 

7.1 Summary  

This thesis reports a comprehensive investigation of the inhibition of the PTP 

SHP2 by the electrophilic ITC SFN. Specific focus is given to how this inhibition 

may prevent the development and progression of phenotypes that NS patients 

present with.  

Cysteine thiols with a low pKa value, meaning they can ionise and so become 

reactive at cellular pH, are often involved in the catalytic activity of a protein, 

either through regulation of tertiary structure or conducting the catalytic events 

themselves. These thiolate moieties are susceptible to modification by oxidants, 

with their negative charge also enabling nucleophilic reactions with electrophilic 

compounds such as SFN, which mediates covalent adduction of such 

compounds that potentially modulates the activity and function of the protein.  

It is established SFN adducts to cysteines of multiple proteins and the biological 

effects of these interactions accumulatively contribute to the cancer prevention 

activity of the electrophile, which has sparked an increase in studies investigating 

this ITC 25 33 209 434 435. A comprehensive review of these events is not in the 

scope of this thesis; however, they include the induction of anti-inflammatory and 

pro-apoptotic responses 436. Data also suggest that SFN may alter epigenetic 

changes which occur in some cancers, which reverse aberrant changes in gene 

transcription through mechanisms of histone deacetylase inhibition, global 

demethylation, and microRNA modulation 437.  

SFN can also induce an antioxidant response by adducting cysteines within 

KEAP1 32 438 439. Upregulation of antioxidants in non-pathological conditions can 
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prevent homeostatic failures caused by an increase in cellular oxidants 440 441. 

Cancer cells, on the other hand, can activate the Warburg effect, which increases 

the conversion of glucose-6-phosphate into ribulose-5-phosphate and generates 

NADPH 442 443 444. NADPH is required for GSH production as well as some 

disulfide reductase systems and protects tumour cells from apoptosis by 

counteracting oxidative stress and facilitating DNA damage repair 445. Therefore, 

whilst cancer has been considered a result of increased oxidative stress, its 

treatment with antioxidants would contribute to the already increased reducing 

conditions of these cells. Indeed, successful cancer therapies such as 

radiotherapy or doxorubicin induce oxidant production 446 447 448 449. Although 

SFN induces an antioxidant response, the electrophile also adducts proteins at 

moieties which are otherwise modified by oxidants and therefore can mimic them. 

Further to this, whilst SFN rapidly conjugates with GSH which delineates the drug 

from modifying other cellular proteins, this interaction also prevents the reductive 

capabilities of the GSH 22. Therefore, even though SFN upregulates the 

production of antioxidants, their own adduction by the electrophile may alleviate 

this antioxidant response. Indeed, a number of human clinical trials have been 

performed with rigour using SFN with published study results indicating potential 

therapeutic benefit 450 451. The electrophile is structurally simple and small which 

underlies the ability of SFN to interact with and adduct to a large number of 

protein targets, some of which likely remain unknown, and may induce multiple 

biological events. Nevertheless, human clinical trials using SFN as well as SFX-

01, a chemically stabilised variant of SFN in which it is encapsulated in α-

cyclodextrin ring structure, to our knowledge, have shown little, if any, undesired 

biological outcomes at the therapeutic concentrations used 91 92 93 94 95 104 105. 
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Therefore, despite SFN adducting multiple cellular proteins, as can be observed 

with the anti-SFN antibody used throughout this study, the electrophile is 

tolerated and is considered a tractable therapeutic. 

Identifying protein targets of SFN may help define the impact of the electrophile 

on biological systems. For example, if SFN attenuates the development of a 

specific pathology, its adduction to one of the protein targets identified may 

mediate, at least in part, its therapeutic actions. Another prospect following target 

identification is it may highlight proteins which are functionally altered during 

pathological conditions, and perhaps their adduction by SFN may be therapeutic 

by modifying their function.  

Indeed, as reported herein, immunoprecipitation of SFN adducted to protein 

cysteines following in vivo treatment with SFX-01 and subsequent proteomic 

analysis identified cardiac SHP2 as a significant target. This then leads to the 

rational hypothesis, as considered below, that SFN likely adducts to the catalytic 

cysteine in SHP2 to inhibit it and so may prove therapeutic in pathologies 

mediated by hyperactivation of this phosphatase.  

Point mutations in Ptpn11, the gene which encodes SHP2, are causative of all 

phenotypes present in the multisymptomatic developmental disorder NS, 

including abnormal facial features, short stature and in some cases 

myeloproliferative disease 65 69 137 452. NS is also the most common non-

chromosomal pathology associated with congenital heart defects, which include 

pulmonary valve stenosis and atrial and ventricular septal defects, among others 

66 67. 12 missense, germline mutations of the Ptpn11 gene have been identified 

in NS patients, which all cause hyperactivation of SHP2 phosphatase activity. 
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Hyperactivation of the phosphatase, either because of a gain-of-function 

mutation in Ptpn11, or other dysregulated signalling events, have also been 

characterised in multiple cancers. Hyperactive SHP2 phosphatase activity is 

therefore associated with the initiation and progression of both pathologies. This 

has driven significant pharmacological programmes developing inhibitors of 

SHP2. Whilst some of these compounds are potent inhibitors of the phosphatase, 

their interaction with other off-target proteins has been observed which may 

cause undesired biological functions, and studies are still needed to evaluate 

potential side-effects of these interactions in vivo 79 82 83.  

Due to the electrophilicity of SFN, it was logical to assume its adduction to SHP2 

was occurring at the proteins negatively charged thiolate moiety of its catalytic 

cysteine, Cys459. This nucleophilic thiolate is required for the phosphatase activity 

of SHP2, so it was anticipated that adduction of SFN would inhibit its ability to 

dephosphorylate substrates. Consistent with this, incubation of recombinant 

SHP2 with SFX-01 resulted in adduction of SFN and concentration-dependent 

inhibition of the phosphatase’s activity. A rational implication was that SFN may 

be therapeutic in scenarios in which hyperactive SHP2 activity contributes to 

pathogenesis, such as NS. A logical next step was, therefore, investigating SFN-

mediated inhibition of the phosphatase in an NS mouse model engineered to 

express a heterozygous gain-of-function mutation, D61G/+, found to cause the 

highest level of SHP2 activation in human patients 452.  

Biochemical analysis showed multiple proteins had been adducted by SFN in a 

variety of tissue types in WT or NS mice that received an acute (30-minute) bolus 

dose of high amounts of SFX-01. This data provided evidence of successful 

absorption of SFN and transport into tissue cells when SFX-01 was used as the 
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source of the electrophile. Even so, western immunoblot analysis of SHP2 

immunoprecipitated from cardiac tissue of WT or NS mice following this 30-

minute treatment with SFX-01 did not show an SFN adduct upon the protein. 

Follow-up assays also revealed no inhibition of the phosphatase’s activity. 

Perhaps 30-minute post-treatment with SFX-01 was too short to allow adduction 

of the electrophile to cardiac SHP2, as initial identification of SFN as a target of 

the phosphatase in vivo was achieved using MS analysis 3-hours post-treatment 

with the drug.  

Data from biochemical analysis of SHP2 phosphatase activity following 

incubation of recombinant protein with varying concentrations of SFX-01 for 

different lengths of time showed chronic treatment with lower amounts of the 

electrophile caused the same level of inhibition of the phosphatase as when 

incubated with higher amounts of the drug for a much shorter duration. This 

corroborated studies by the Darley-Usmar group which show continual treatment 

with low amounts of an electrophilic compound over time caused its accumulative 

adduction to target proteins which was not achieved through short-term treatment 

regimens 144. Indeed, immunoprecipitation of cardiac SHP2 and analysis of its 

activity revealed the phosphatase was inhibited following chronic 4-, 7- or 10-day 

treatment with low amounts of SFX-01 continually in the drinking water of WT or 

NS mice, which otherwise was not seen following acute treatment with a high 

bolus amount of the drug. 

An increase in the phosphorylation of STAT5, an essential protein of the GH 

signalling pathway which acts downstream of SHP2 was also seen, which was 

logically assumed as a direct effect of SFN-induced inhibition of the phosphatase. 

The Ras/ERK pathway is another signalling event which occurs downstream of 
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SHP2, with activation of the phosphatase leading to increased phosphorylation 

of the kinase. It was therefore anticipated that inhibition of SHP2 by SFN would 

decrease phosphorylation of ERK, which has previously been observed with 

other inhibitors of the phosphatase 79 82 83. In fact, chronic in vivo SFX-01 

treatment caused an increase in ERK phosphorylation in cardiac tissue of WT 

mice, even though SHP2 was inhibited. This was perhaps a consequence of 

adduction of SFN to proteins other than SHP2 and this data corroborates 

previous studies showing an increase in ERK phosphorylation following 

treatment with the electrophile in a variety of cell types 151 152 153 154. Therefore, 

whilst SFN-induced inhibition of the phosphatase may reduce SHP2-mediated 

stimulation of the Ras/ERK signalling pathway, this might be outweighed by the 

electrophile adducting and modifying the activity of other proteins also 

responsible for regulating ERK activity, such as MAPK phosphatase 1, a 

phosphatase known to dephosphorylate ERK.  

As SFN-induced inhibition of SHP2 in vivo had been characterised it was rational 

to explore if this was therapeutic in the D61G/+ NS mouse model. Although the 

underlying mechanism remains unclear, NS patients and this mouse model often 

present with different phenotypes which can also be present with different 

severities 73. For example, short stature, cranial defects and myeloproliferative 

disease are present in 100 % of D61G/+ offspring, however, the severity of these 

phenotypes differs between mice. On the other hand, 100 % of homozygous foeti 

and 50 % of those that are heterozygous for this mutation die mid-gestation due 

to severe cardiac complications, as well as skeletal defects and liver necrosis, 

whilst the remainder are born with no cardiac phenotype. As these developmental 

defects are caused by a single gain-of-function SHP2 mutation, it was rational to 
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assume a reduction of the phosphatase’s activity by SFN could improve cardiac, 

skeletal and liver development in foeti with NS that would otherwise succumb to 

embryonic lethality. To address this, foeti were exposed to SFN via treatment of 

heterozygous parents with SFX-01 in their drinking water before and throughout 

pregnancy. Whilst foeti from WT/WT breeding pairs were unaffected, the number 

of homozygous or heterozygous neonates born from NS breeding pairs following 

treatment with SFX-01 was unfortunately decreased compared to water only 

controls. Analysis of the activity of SHP2 immunoprecipitated from NS neonates 

which were born from these studies revealed no inhibition of the phosphatase. 

Further biochemical analysis showed SFX-01 increased foetal ERK 

phosphorylation. As SHP2 is a positive regulator of the Ras/ERK signalling 

pathway, hyperactivation of the phosphatase causes an increase in 

phosphorylation of the kinase. Thorough studies conducted by the Neel group 

allowed the conclusion that this basal increase in ERK phosphorylation in the 

D61G/+ NS mouse model is causative of the majority of developmental defects 

occurring in these mice 78. It was, therefore, logical to assume that SFN increased 

ERK phosphorylation even higher in NS foeti which may have exacerbated 

developmental defects. Therefore, this may be responsible for the decreased 

number of heterozygous offspring born following foetal treatment with the 

electrophile. Nevertheless, it remains rational that reduction of SHP2 

phosphatase activity would improve the embryonic development of NS foeti and 

further studies of this nature should be conducted using inhibitors of the protein 

that do not result in elevated ERK phosphorylation.  

Activation of ERK leads to the stimulation of downstream transcription factors 

which positively regulate cell growth and proliferation. Although SFN-induced 
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increases in ERK phospho-activation induces undesired biological events during 

the embryonic development of NS foeti, perhaps this increase in the activity of 

this kinase in neonates would be therapeutic towards the growth retardation 

these patients present with. SFN-induced increase in STAT5 phosphorylation, 

which positively regulates the GH signalling pathway, may also contribute to an 

increase in growth of these patients post-birth.  

SHP2 regulates multiple stages of white blood cell production 345 346 347. It is 

therefore unsurprising that some children with NS develop JMML, characterised 

by increased myeloid and monocyte cell count which can sometimes escalate 

into leukaemia 68 69. Similarly, adult NS mice presented with elevated white blood 

cell count, myeloid cell count (myeloproliferative disease) and splenomegaly. As 

well as regulating the proliferation and survival of white blood cell progenitor cells, 

SHP2 has more specific roles in granulocyte lineage determination i.e. the 

differentiation of premature white blood cells into neutrophils, basophils or 

eosinophils 352 353. Flow cytometry analysis lead to the novel observation that 

increased myeloid cell count in the blood, spleen and bone marrow of NS mice 

was predominantly an increase in the number of neutrophils. As this 

myeloproliferative phenotype was caused by a single gain-of-function mutation 

in SHP2, it was logical to determine if SFN-induced inhibition of the phosphatase 

would prevent increased myeloid cell production and assess if this could be 

sustained over time. To do so, adult NS mice were treated with SFX-01 for a 

prolonged 10-week period which indeed reduced the phosphatase activity of the 

protein and fewer mice developed a myeloproliferative phenotype of the blood, 

spleen and bone marrow. Further analysis of this data showed that neutrophils 

were the predominant cell-type that was lower in SFX-01-treated NS mice 
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compared to water only controls. A reduction in the growth of the spleen of NS 

mice, which was monitored using ultrasound, was also observed when mice were 

treated with the drug. As the splenomegaly observed in NS mice is attributed in 

part to an increase in spleen-residing myeloid cells, it is logical that the reduced 

spleen growth observed when treated with SFX-01 was due to fewer circulating 

and spleen-residing myeloid cells. Perhaps if children with NS were treated with 

SFN or SFX-01 from birth this may prevent the hyperproliferation of myeloid cells 

and lower the incidence of JMML and leukaemia in these juvenile patients.  

The electrophilicity of SFN allows covalent interaction of the electrophile with 

nucleophilic moieties. Therefore, it was rationally anticipated that inhibition of 

SHP2 following 4-day or 10-week treatment with SFX-01 was caused by a stable 

SFN adduct upon the protein, likely at its negatively charged catalytic cysteine. 

However, immunoprecipitation of SHP2 and biochemical analysis showed that 

whilst the electrophile induced inhibition of the phosphatase’s activity, an SFN 

adduct was not seen upon the protein. It was logical to assume SFN did adduct 

SHP2 which inhibited the protein, due to its identification as a target of the 

electrophile being achieved by MS following immunoprecipitation of proteins with 

an SFN adduct. However, perhaps this adduction was followed by loss or 

chemical modification of SFN, which maintained the inhibition of the 

phosphatase.   

Spontaneous reversal of thiol-SFN adducts has previously been documented 176 

177. The Uchida group have also shown using MS analysis that as well as the 

spontaneous reversal of a GSH-SFN interaction, the electrophile can actively 

transfer directly from GSH to a second thiol-containing protein 182, a mechanism 

termed ‘trans-thiolation’ in this document. Data presented herein also shows 
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trans-thiolation of SFN can occur and perhaps this mechanism enables the 

electrophile to exert biological effects on multiple proteins in vivo. 

It is likely spontaneous reversal of a thiol-SFN interaction or trans-thiolation of 

the adduct regenerates a reactive form of the thiol that the electrophile was 

initially adducted to and as a result, the protein would regain its activity. As 

inhibition of SHP2 phosphatase activity was maintained following the loss of the 

SFN adduct it was perhaps unlikely removal of the electrophile occurs via either 

of these mechanisms. Indeed, biochemical assays carried out using the 

alkylating agent iodoacetamide, which readily adducts cysteine thiolates, showed 

chronic in vivo treatment with SFX-01 inhibited the phosphatase activity of SHP2 

and although no SFN adduct was detected, iodoacetamide could no longer 

adduct at the protein’s catalytic cysteine. To our knowledge, this is the first 

evidence that functional modifications of a protein’s activity induced by adduction 

of SFN can be maintained following the loss of the adduct. To reiterate, these 

data supported the hypothesis that loss of the SFN adduct from SHP2 was not 

achieved by spontaneous reversal of the electrophile-protein interaction or trans-

thiolation, as these mechanisms would regenerate a reactive thiolate at the 

protein’s catalytic cysteine.  

Analysis of the crystal structure of SHP2 showed the catalytic cysteine within its 

phosphatase domain is in proximity to two other vicinal cysteines, creating a triad 

of reactive thiols. Cellular oxidants can modify the catalytic cysteine of SHP2 and 

inhibit its phosphatase activity. One of the two other cysteines which reside 

nearby form an intramolecular disulfide with the catalytic cysteine which reduces 

the oxidative modification and prevents further irreversible oxidation. The 

catalytic cysteine remains unreactive as its thiolate moiety is participating in the 
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intramolecular disulfide and the proteins phosphatase activity remains inhibited 

until the bond itself is reduced by cellular disulfide reductases. PAA is a dithiol 

cross-linking agent which can only bind to proteins when two protein vicinal thiols 

are in a reduced and reactive state. Biochemical analysis utilizing this compound 

showed it could no longer adduct to cardiac SHP2 from mice following 4-day 

treatment with SFX-01, suggesting at least two of the three vicinal thiols within 

the phosphatase domain of SHP2 were impeded, which to reiterate was not by 

stable SFN adducts. To our knowledge, we have shown the novel observation 

that SFN can induce an oxidative-like modification between two vicinal thiols 

when adduction of the electrophile occurs at a cysteine which resides close to at 

least one other reactive thiol.  

 Whilst induction of an inhibitory intramolecular disulfide within the active domain 

of SHP2 following adduction of the electrophile to the proteins catalytic cysteine 

was a logical assumption, this would require a reductive modification of the 

electrophile upon its resolution from the catalytic cysteine, which chemically is 

unlikely. Data produced from biochemical assays carried out following the 

reduction of protein disulfide bonds, including the PEG-switch, also suggested 

that SFN-induced inhibitory modification of at least two of the three vicinal thiols 

within the phosphatase domain of SHP2 was not an intramolecular disulfide.  

It has been shown that a dithiolethione can be formed by a series of condensation 

reactions following adduction of SFN to a dithiol containing compound, which is 

characterised by two sulfur atoms linked by a C=S chemical structure  433.  It is 

rational to suggest SFN adducts the catalytic cysteine of SHP2, with a second 

vicinal thiol within the protein’s phosphatase domain subsequently attacking the 

electrophile, which results in the formation of a dithiolethione condensation 
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product between two of the vicinal thiols within the proteins active domain. 

Inhibition of SHP2 would, therefore, be induced by initial adduction of the 

electrophile at the catalytic cysteine, with the resolution of the adduct to a 

dithiolethione maintaining the inhibition of the phosphatase as the catalytic 

cysteine remains unreactive. The resultant dithiolethione epitope would be 

undetectable by the antibody developed in-house against SFN adducted to 

protein cysteines and may explain why no SFN adduct is detected upon inhibited 

SHP2 following chronic in vitro and in vivo treatment with the electrophile.  

Biochemical data collected following the treatment of different SHP2 cysteine to 

serine mutants in HEK293 cells with SFX-01 suggested SFN can adduct at the 

two thiols vicinal to the catalytic cysteine, as well as Cys459 itself. Further to this, 

when two of the three cysteines within the phosphatase domain of SHP2 were 

mutated to a serine, a stable SFN adduct was seen following treatment with SFX-

01, which was otherwise resolved when two reactive thiols were present. This 

data suggests SFN can also adduct SHP2 at one of the two non-catalytic vicinal 

thiols within its phosphatase domain, with either the catalytic cysteine or the 

second vicinal thiol inducing dithiolethione formation. If the latter were to occur, 

inhibition of SHP2 would be achieved as this chemical structure would prevent 

access of phosphorylated substrates to the catalytic cysteine of the protein.  

7.2 Conclusion 

Sulforaphane, or a formulation in clinical development called SFX-01, inhibits the 

catalytic activity of SHP2; a protein-tyrosine phosphatase which when 

hyperactivate causatively mediates multiple cancers as well as Noonan 

syndrome. Sulforaphane-mediated inhibition of SHP2 is not achieved by a stable 

adduct but likely by induction of a chemical modification of two vicinal thiols within 
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the protein’s catalytic domain, perhaps the formation of a dithiolethione. SFN-

induced inhibition of the phosphatase reduced the incidence of myeloproliferative 

disease and splenomegaly in a mouse model for Noonan syndrome which is 

genetically engineered with a single gain-of-function SHP2 mutation, D61G/+. 

Chronic treatment with SFN is well tolerated in adult mice and is a promising 

candidate to utilize as a therapy regarding not only Noonan syndrome but also 

cancers which are driven by hyperactivation of SHP2.  

7.3 Future work  

It is evident from published studies and data presented herein that SFN 

modulates multiple biological effects in vivo, due to the electrophile adducting 

many cell signalling proteins. An increase in ERK phosphorylation in NS embryos 

may have contributed to their embryonic lethality following foetal treatment with 

SFX-01. Therefore, identifying how SFN induced an increase in ERK 

phosphorylation may be beneficial if the electrophile is to be pursued as a therapy 

for this pathology. It was rational to speculate the increase in ERK 

phosphorylation occurred due to adduction of SFN to MAPK phosphatase 1 

which would inhibit its ability to dephosphorylate ERK. This could be assessed 

using the same biochemical techniques utilised to analyse the activity of SHP2 

and its adduction by SFN throughout this research project. It has also been 

shown SFN can increase the levels of cellular ROS, which in turn can promote 

ERK phosphorylation in an IGF1 dependent manner. Assays such as with 

dichlorodihydrofluorescein diacetate 453, dihydroethidium 454 or the HyPer probe 

455 could be used to analyse cellular levels of ROS following treatment with SFN.  

Perhaps treatment of NS foeti post-gastrulation would inhibit SHP2 phosphatase 

activity and allow correct development of the later stages of embryogenesis, 
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whilst the anticipated increase in ERK phosphorylation may not compromise key 

stages of foetal development as they would have already occurred. Although 

preliminary data suggested treatment of NS foeti post-gastrulation also 

decreased the number of NS neonates born, a definitive conclusion should not 

be taken from these studies. The date of conception was predicted by the 

presence of a vaginal plug and these studies should be repeated whereby 

gastrulation is confirmed using ultrasound, as perhaps SFN was administered 

before gastrulation was fully completed.  

During this research project, the pharmaceutical company Novartis documented 

a potent (IC50 = 71 nM), highly selective and orally bioavailable small-molecule 

SHP2 inhibitor named SHP099 456. SHP099 stabilises the closed and auto-

inhibited conformation of SHP2 by concurrently binding the interface of the N- 

and C-terminal SH2 domains and the PTP domain, thereby driving inhibition 

through an allosteric mechanism. Not only does SHP099 suppress downstream 

Ras/ERK signalling, but the drug has no significant effect on the biological activity 

of a panel of PTPs or kinases tested. However, subsequent studies by Sun et al 

identified SHP2 with gain-of-function mutations within the N- or C-SH2 domains, 

including D61G/+, were resistant to inhibition by SHP099 in cultured GM-CSF-

dependent TF 1 myeloid cells 457. Nevertheless, in vivo treatment with the drug 

has not been documented. Treatment of NS foeti with SHP099 may inhibit SHP2 

with no off-target biological effects, which may prevent the defects in embryonic 

development which are caused by hyperactivation of the phosphatase.  

NS patients are born with short stature and this growth retardation continues into 

adulthood. Studies reported herein showed that combined treatment of SFN and 

GH potentiated activation of the JAK/STAT GH signalling pathway compared to 
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GH alone, which is currently the only therapy available for NS patients. Therefore, 

as activation of ERK stimulates cell growth and proliferation, perhaps 

upregulation of this pathway as well as GH signalling using a combined SFN/GH 

therapy post-birth would be therapeutic in increasing the growth of NS patients 

and reducing the incidence of short stature.  

Proteomic analysis showed SFN adducted to Cys93 of Hgb β during chronic in 

vivo exposure to SFX-01. Published studies showed NO also readily adducts at 

Cys93 223 224. Although elucidation of the role and mechanism of NO binding at 

this reactive cysteine is still ongoing, it is suggested this interaction aids 

regulation of NO-mediated vessel relaxation and therefore blood pressure 225 226 

227. SFN adduction to Cys93 may impede binding and transport of NO to areas 

where vascular relaxation is required which could prevent NO-mediated 

regulation of blood pressure, and such physiological changes could be monitored 

in mice treated with SFX-01 using telemetry probes. However, the stoichiometry 

of the SFN modification at Hgb β Cys93 may be very low that it is functionally 

insignificant. 

Finally, observations from biochemical studies suggest SFN adduction at the 

catalytic cysteine of SHP2 inhibits its phosphatase activity, which is maintained 

by the induction of an oxidative-like modification between at least one other 

vicinal thiol, with resultant loss of a detectable adduct. This SFN-induced 

modification may be the formation of a dithiolethione condensation product and 

proteomic analysis using LC-MS/MS could be used to look for this theoretical 

modification. Following in vivo treatment with SFN, immunoprecipitation of SHP2 

and enzymatic digestion of the protein may preserve a dithiolethione between 

two peptides that each contain one of the discussed vicinal thiols. The 
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identification of a product with a mass that corresponds to two of these thiol-

containing peptides plus the mass of the dithiolethione would strongly suggest 

SFN induced such a chemical structure between two vicinal thiols within the 

phosphatase domain of SHP2. Such an analysis would also allow the 

identification of the two protein cysteines involved in this potential post-

translational modification that may mediate inhibition of SHP2 in vivo during 

chronic exposure to SFX-01. If a dithiolethione is indeed present, the generation 

of an antibody to detect this specific epitope may aid identification of other vicinal 

thiol-containing proteins which are also inhibited or activated by this chemical 

structure following treatment with SFN.  
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