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Abstract 

 

Cardiovascular disease secondary to atherosclerosis is the leading cause of death worldwide. 

The pathophysiology of atherosclerosis is multifactorial and complex. This thesis offers insight 

into the regulation of several potential biomarkers of cardiovascular disease and explores the 

effects of anti-platelet therapy in modulating these pathways. 

 

CD14highCD16+ monocytes are elevated in patients with atherosclerosis and may be predictive of 

future cardiovascular events. The initial study in this PhD project assessed the effects of anti-

platelet drugs on the phenotype of circulating monocytes in 60 healthy volunteers in the 

presence of mild, systemic inflammation induced by the influenza immunisation. A significant 

rise in circulating CD14highCD16+ monocytes developed following immunisation and anti-platelet 

therapy was subsequently shown to exert an immunomodulatory action by counteracting this 

response.  

 

Netrin-1 is a laminin-like protein that is implicated in cardiovascular disease, including coronary 

artery disease. A series of experiments were performed to investigate the biomolecular 

mechanisms that regulate the synthesis of vascular netrin-1 in humans. Results showed that 

netrin-1 levels are directly modulated by changes in the production of vasoactive 

cyclooxygenase-derived molecules, such as prostaglandin E2, from the vascular endothelium. 

 

Oxidised low-density lipoprotein was the final biomarker that was investigated. Results 

indicated that CD16+ monocytes may regulate the clearance of oxidised lipoproteins and their 

systemic accumulation, possibly through the internalisation of circulating oxLDL / IgG 

immunocomplexes mediated by Fc γ receptors, including CD16.  
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1.1. The role of inflammation in atherosclerosis 

Cardiovascular disease secondary to atherosclerosis is now the leading cause of death 

worldwide 1. The pathophysiology of atherosclerosis is multifactorial and complex. This thesis 

will explore the inflammatory pathways that contribute to atherogenesis and assess the anti-

atherogenic effects of anti-platelet drugs in patients with silent atherosclerosis.  

 

1.1.1 Atherogenesis 

Atherosclerotic plaques develop over many years and frequently go unnoticed until a patient 

develops symptoms of ischaemia. The lesions typically develop in areas where there is a 

substantial change in blood flow velocity. The first stage of atherosclerosis occurs when serum 

lipoproteins accumulate within the arterial intima creating a state of chronic inflammation. The 

intimal cells become increasingly hypoxic as the arterial wall thickness increases. Monocytes are 

recruited to the subendothelial layer where the initial lesion, known as a fatty streak, develops. 

The monocytes differentiate into macrophages, which phagocytose the modified lipoproteins, 

in particular oxidised low-density lipoprotein (oxLDL) and form foam cells. Foam cells 

accumulate over time and aggregate into a necrotic, atheromatous core within the lesion. The 

plaque reduces the diameter of the vessel lumen, impairing arterial flow. Hypoxic conditions 

develop within the plaque and subsequent neovascularisation develops, increasing the 

likelihood of plaque haemorrhage. As the lesion increases in size, the endothelial shear stress to 

which it is subjected will rise accordingly.  If the plaque ruptures, the lipid-rich contents of the 

atheromatous core are released and the subendothelial layer is exposed. Both plaque-bound 

and circulating blood-borne tissue factor bind to, and activate, factor VII, initiating the clotting 

cascade and thus platelet activation and aggregation. Platelets adhere to the ruptured lesion, 

enhancing the production of platelet agonists, thrombin and thromboxane A2 (TXA2). Further 

platelet recruitment occurs and thrombus formation develops along with vasoconstriction of 

the already compromised vessels. Significant vessel occlusion will result in organ ischaemia and, 

ultimately, infarction, precipitating events such as stroke and myocardial infarction (MI) 2 3. 
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1.1.2 Inflammatory pathways associated with atherosclerosis 

The ‘Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating 

Rosuvastatin’ (JUPITER) study identified that elevated levels of high-sensitivity C-reactive 

protein (hs-CRP), a hepatically synthesised biomarker of inflammation produced in response to 

macrophage-derived interleukin-6  (IL-6), were associated with cardiovascular events, including 

MI and stroke in patients with no previously known cardiac disease 4 5. Hs-CRP was found to be 

a stronger predictor of cardiovascular disease than the traditionally used low-density lipoprotein 

(LDL) levels, demonstrating the importance of underlying inflammation in the development of 

cardiovascular disease. Hs-CRP, however, is a non-specific acute phase response protein, and 

rises in most pathologies where an inflammatory response is generated, including malignancy, 

auto-immune disease, late-stage pregnancy and bacterial infection.  Hs-CRP has yet to be 

causally related to coronary heart disease and a reduction in baseline levels has not been proven 

to improve prognosis 6 7. 

Patients with chronic inflammatory diseases, such as rheumatoid arthritis and inflammatory 

bowel disease have an increased risk of developing cardiovascular disease in later life, 

suggesting a possible link between inflammatory processes and atherogenesis 8. Pro-

inflammatory biomarkers have been shown to have significant prognostic value in MI 9, and a 

recent clinical trial has also identified potential benefits arising from administration of an anti-

inflammatory therapy (colchicine) in the management of acute ST-segment elevation MI (STEMI) 

10. This thesis will focus on three novel inflammatory biomarkers: intermediate CD14highCD16+ 

monocytes, netrin-1, and oxLDL, addressing their role in the development of cardiovascular 

disease and whether anti-platelet therapy can modify their expression. 

 

1.1.3 Oxidised low-density lipoprotein in atherosclerosis 

Clinical evidence has shown that dysregulation of the innate and adaptive immune systems 

occurs during atherogenesis, which is typically accompanied by accumulation of pro-

immunogenic factors, such as oxLDL, that are able to activate innate cell effectors (primarily 
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myeloid cells), subsequently leading to an adaptive immunological response with production of 

circulating autoantibodies (Immunoglobulin (Ig) M and IgG anti-oxLDL antibodies). Classical risk 

factors for cardiovascular disease are poorly correlated with the levels of these immunological 

mediators and thus the question arises as to whether pharmacological targeting of oxLDL and 

its autoantibodies, or reducing monocyte/macrophage activity, may represent a viable strategy 

to improve treatment in patients with cardiovascular disease.  

To date, LDL has been among the preferred therapeutic targets, and drugs such as 3-hydroxy-3-

methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors (statins) that reduce circulating 

oxLDL levels are prescribed abundantly in both primary and secondary prevention of 

cardiovascular disease. New immunomodulatory agents continue to be developed in order to 

reduce levels of circulating oxLDL, by either reducing synthesis of oxLDL, such as can occur with 

certain phospholipase A2 inhibitors 11 12, or increasing clearance of the molecules via passive 

immunisation strategies to shift the synthesis of anti-oxLDL autoantibodies away from IgM 

production and in favour of IgG that is thought to be protective 13 14. The effectiveness of these 

therapeutic strategies remains to be defined and whilst several lipoprotein-associated 

phospholipase A2 inhibitors have entered Phase III clinical trials, they have yet to demonstrate a 

significant reduction in cardiovascular events when used alongside conventional 

pharmacotherapy 15 16. Immunisation agents are still at the pre-clinical stage of development 

and further definition of their therapeutic potential is required 17. Characterisation of the 

modulatory effect of conventional therapy on oxLDL-induced immunological dysfunction may 

promote further advance in this field. 

Previous work by our group has demonstrated inflammation can lead to a change in the 

phenotype of circulating monocytes in terms of their expression of the CD16 molecule 18. This 

latter acts as a Fc ϒ receptor for IgG antibodies 19 and as such may mediate the phagocytosis of 

immune complexes consisting of IgG-opsonised oxLDL, thus contributing to their clearance and, 

in turn, regulating accumulation of pro-immunogenic LDL 20. Evidence has also emerged that 
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myeloid CD16 directly binds to oxLDL via the specific recognition of malondialdehyde (MDA) 

epitopes contained in modified lipoproteins by the Fc ϒ receptor 21.  

Expansion of the CD16+ monocyte pool occurs in the peripheral blood of patients with 

cardiovascular disease 22 23; whether this occurrence has pro-atherogenic implications or is 

rather a protective mechanism potentially implicated in the detoxification of the blood from 

oxLDL is unknown. 

 

1.1.4 Immunisation as a model of inflammation 

Over recent years, immunisation has become a well-established model to study the response to 

mild stimulation of the inflammatory system 24 25, and has been shown to generate a similar 

acute phase protein response to that of chronic systemic inflammatory conditions, such as 

rheumatoid arthritis 26. Salmonella typhi immunisation, in particular, has been used to 

investigate cardiovascular physiology, where the widespread inflammation induced by the 

immunisation causes profound dysfunction of the arterial endothelium in healthy volunteers, as 

evidenced by impaired vasodilatation in response to both physical and pharmacological dilator 

stimuli 27 28. These generalised inflammatory changes post-immunisation may be modified by 

systemic pre-treatment with aspirin, although locally administered aspirin is unable to reverse 

established immunisation-induced endothelial dysfunction 29. 

In 2004, Posthouwer et al showed that influenza immunisation can serve as an in vivo model to 

investigate a generalised pro-inflammatory state. Using healthy subjects, they demonstrated 

that following influenza immunisation, there is a consistent elevation in the inflammatory 

biomarker CRP 30. The same model was subsequently used to identify that acute inflammation 

leads to higher circulating levels of activated platelets and to formation of monocyte-platelet 

aggregates (MPA), which in turn promotes expansion of the CD14highCD16+ monocytic subset 31. 

A subsequent study to assess endothelial function, as measured by flow-mediated 

vasodilatation and soluble intracellular adhesion molecule-1 (ICAM-1) levels, in patients with 

human immunodeficiency virus infection undergoing either influenza A or sham immunisation 
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identified that the active immunisation cohort developed a leucocytosis, indicative of systemic 

inflammation, as well as impaired endothelial function 32. 

Acute infections, particularly with the influenza virus, are strongly associated with 

cardiovascular events 33. Despite the transient pro-inflammatory response generated post-

immunisation, influenza immunisation does not appear to increase the frequency of 

cardiovascular events in the short-term, and has consistently been shown to protect against MI 

in the medium to long-term 34 35. Patients with cardiovascular disease in both the UK and the 

USA are advised to undergo influenza immunisation on an annual basis 36 37. 

It is unclear whether anti-platelet therapy is able to modulate the effectiveness of the immune 

response following vaccination. Current guidelines advise against the use of paracetamol or 

ibuprofen in children post-immunisation as it is generally accepted that the use of antipyretics 

may result in a blunted immune response 38 39. Indeed, COX-2 function is a major determinant 

of antibody synthesis and both aspirin and ibuprofen have been shown to reduce IgM and IgG 

synthesis in human peripheral blood mononuclear cells 40. It would therefore stand to reason 

that aspirin use may reduce the effectiveness of immunisation against influenza and other 

infections, although a randomised controlled trial assessing the development of antibodies 

against influenza subtypes A and B post-vaccination in elderly participants taking either aspirin 

or a placebo showed that aspirin actually augmented the immune response, with higher levels 

of specific antibodies directed against influenza being generated 41. To date, there has been 

minimal research investigating the effect of anti-platelet drugs on immune responses to 

vaccination. 

 

1.2 Platelets 

Platelets, otherwise known as thrombocytes, are approximately 2.5 μm anuclear, disc-shaped 

cytoplasmic fragments whose primary physiological function is to contribute to haemostasis 42, 

although they play further roles in inflammatory processes. Platelets are derived from 

megakaryocyte precursor cells, which are present within the bone marrow. Thrombopoietin, a 
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glycoprotein growth factor, is the primary regulator of megakaryocyte production and 

development, alongside numerous cytokines and hormones. As megakaryocytes mature, they 

enlarge to allow high concentrations of ribosomes to accumulate, from which platelet-specific 

proteins will eventually be formed 43. Although this process has not been fully elucidated, in vitro 

data suggest that pseudopodial elongations, termed proplatelets, emerge from the mature 

megakaryocyte, and platelets are budded off from the ends of these processes 44. Each 

megakaryocyte can release thousands of platelets, which enter the systemic circulation or are 

reserved within the spleen 43. Circulating platelets have a life span of 8-10 days, and are typically 

present at a concentration of 150-400 x109 per litre of blood 45.  

The platelet structure is maintained by a complex actin cytoskeleton formation, while the cell 

surface is covered by invaginations of the plasma membrane forming a network of tubes termed 

the open canalicular system 46. This allows substances to be transported from the surface to 

within the platelet, whilst additionally providing a mechanism of secreting storage granules 47. 

The open canalicular system, along with the surface membranes of platelet storage granules, 

allows a 2-4 fold increase in platelet surface area 48. 

There are three main classes of storage granules within platelets. The most abundant, and most 

thoroughly characterised, are the alpha granules, which contain hundreds of soluble proteins, 

including: 

1) Haemostatic proteins, such as fibrinogen and von Willebrand factor.  

2) Coagulation factors, including Factors V, XI, and XIII. 

3) Cellular adhesion molecules, including P-selectin and CD63. 

4) Cytokines, including platelet-factor 4 and chemokine (C-C motif) ligand 5 (CCL5). 

5) Growth factors, including vascular endothelial growth factor (VEGF), platelet-derived growth 

factor (PDGF), and insulin-like growth factor (IGF) 48. 

Additionally, there are delta (also known as dense) granules, which contain platelet activation 

factors, such as adenosine diphosphate (ADP), adenosine triphosphate (ATP), serotonin, 
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histamine, and ionised calcium 49. Lysosomal granules contain hydrolytic enzymes, which are 

released upon platelet activation 50.  

 

1.2.1 Platelet activation and function 

The classically described function of platelets is to prevent haemorrhage. In the presence of an 

intact, healthy endothelium, circulating platelets remain in a resting state. Platelets move into 

an activated state in response to several factors that signal vascular trauma, whereby they 

adhere to damaged endothelium and locally mediate both thrombotic and inflammatory events 

via the secretion of cytokines and interaction with leucocytes. This results in chemotaxis and the 

development of an inflammatory milieu within the arterial wall.  

When endothelial damage has occurred, the extracellular matrix is exposed and collagens are 

released. Collagens stimulate a change in the conformation of platelets, which change from a 

discoid shape to a spherical one, and develop dendritic pseudopodia 51. The collagens bind to 

von Willebrand factor, which interacts with glycoprotein Ib/V/IX, a transmembrane protein 

complex on the surface of platelets that mediates the tethering of activated platelets to the site 

of vascular injury 52-55. The collagen receptor, glycoprotein VI, is also expressed on the platelet 

surface and binds to collagen to induce the release of secondary platelet agonists, including 

TXA2, ADP, thrombin, and adrenaline, which serve to stimulate further autocrine and paracrine 

platelet activation 54.  

Platelet agonists act on G-protein coupled receptors, including those linked to the Gq, G13, and 

Gi proteins, to activate the platelet integrin, glycoprotein IIb/IIIa 56. This receptor mediates 

platelet adhesion via binding to fibrinogen and forming bridges between platelets. A 

haemostatic platelet plug subsequently develops, which increases in size as further platelet 

activation is propagated.  
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1.2.1.1 Thrombin 

Thrombin forms a key part of the initiation of the coagulation cascade, and is produced upon 

cleavage of prothrombin by activated factor Xa. Thrombin acts as a serine protease to convert 

fibrinogen to fibrin, which subsequently polymerises into multimeric strands to create a mesh 

that, along with platelets, forms the haemostatic plug 57. Thrombin additionally converts factor 

XIII to XIIIa, which induces the formation of covalent cross-links between the fibrin strands, thus 

further stabilising and strengthening the clot 58.  

Thrombin binds to protease-activated receptors on endothelial cells, activating the cells and 

thus promoting platelet adhesion and cytokine release, and triggering endothelial cell 

production of platelet-activating factor 59. Thrombin can additionally modify vascular tone by 

direct and indirect effects on vascular smooth muscle cells and post-capillary vessels 60-62, 

partially via the promotion of Ca2+ release from intracellular stores and Ca2+ influx across the 

plasma membrane 63. This is of particular clinical relevance in the context of subarachnoid 

haemorrhage, where thrombin accumulates at the site of the bleed and amplifies cerebral 

vasospasm; the contractile response to thrombin is then typically augmented by the 

upregulation of protease-activated receptor-1 (PAR1) 64. 

 

1.2.1.2 Adenosine diphosphate 

ADP is a platelet agonist that interacts with platelet purinergic P2 receptors, including P2Y1, 

P2Y12, and P2X1 65. Upon binding to ADP, platelets undergo a conformational change, developing 

a spiculated, spherical shape, enabling the release of granular contents (containing additional 

ADP) and thus further potentiating platelet aggregation 66 67. As with thrombin, ADP enhances 

intracellular stored Ca2+ release through inositol phosphate production and rapid calcium influx 

via the plasma membrane 65. The P2Y1 Gq-protein coupled receptor mediates the platelet 

structural changes, mobilises calcium, and stimulates the phospholipase C and inositol 

phosphate signalling pathways. P2Y12 is a Gi-protein coupled receptor that blocks adenylyl 

cyclase signalling and reduces intracellular cyclic adenosine monophosphate (cAMP) levels. The 



26 
 

fall in cAMP inhibits phosphorylation of vasodilator-stimulated phosphoprotein, which 

subsequently induces activation of the GP IIb/IIIa receptor and platelet aggregation 68. P2X1 

functions as a ligand-gated ion channel, allowing rapid calcium influx upon binding of ADP 67. 

Patients with abnormal storage and release of ADP from dense granules typically present with 

prolonged bleeding times due to impaired platelet aggregation 69.  

 

1.2.1.3 Thromboxane A2 

Binding of ADP to P2Y12 stimulates phospholipase A2-induced release of arachidonic acid (AA) 

from phospholipid. AA is converted to prostaglandin (PG) G2 by cyclo-oxygenase-1 (COX-1), 

which is then reduced by a peroxidase to PGH2 and subsequently converted to TXA2 via TXA2 

synthase 65 66. The thromboxane/PGH2 receptor is present on platelets, as well as monocytes, 

erythrocytes and endothelial cells. TXA2 binds to the thromboxane/PGH2 receptor, which has 

two main isoforms: the Gq-coupled TP, and the Gi-coupled TPβ receptors. These two receptors 

differ in their C-terminal cytoplasmic domains 70, with the TP isoform primarily being expressed 

on platelets 71.  

TXA2 binding to the TP receptor leads to activation of both Gs and Gi proteins, with consequent 

activation of both phospholipase C and adenylyl cyclase, whilst its binding to TP results in Gi 

activation and consequent inhibition of adenylyl cyclase; the net result in platelets being their 

activation leading to the abovementioned conformational changes and aggregation 72. A series 

of experiments using transfected cell lines, showed that TXA2 binding to the TPα receptor 

stimulated adenylyl cyclase and thus increased cAMP formation, whilst opposite effects were 

seen with the TPβ receptor 73.  

Aside from platelet activation, TXA2 plays roles in atherogenesis, vascular remodelling, and 

immunogenicity 74 75, and is a potent vasoconstrictor 76. TXA2 increases the expression of 

endothelial adhesion molecules, such as ICAM-1 and vascular cell adhesion molecule-1 (VCAM-

1), and plays complex roles in endothelial cell migration 75. Mutations in the TP receptors result 

in a varied clinical picture, ranging from impaired haemostasis when reduced receptor activity 
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is present to predisposition to thrombosis and infarction 77 78. Due to the short half-life of TXA2, 

its metabolite, 11-dehydro TXB2 is commonly used when measured in urine as an indirect 

measure of TXA2 79.  

 

1.2.2 Anti-platelet agents 

Anti-platelet agents act via a variety of mechanisms to inhibit platelet aggregation. They are the 

cornerstone of treatment in cardiovascular disease and are used prophylactically in patients 

with significant atherosclerosis who are at risk of thrombotic events. Anti-platelet agents, 

particularly aspirin, have been used for decades and the drug class continues to evolve as novel 

agents with increasingly efficacious anti-platelet actions are identified. The main risk associated 

with all forms of anti-platelet therapy is bleeding, and physicians need to carefully weigh the 

possible adverse effects against the benefits of prescribing these drugs to patients with 

cardiovascular disease. Aspirin, which has been recognised to have anti-thrombotic effects since 

the 1960s, continues to be prescribed almost ubiquitously for patients with acute coronary 

syndrome (ACS), and P2Y12 antagonists are now often added in; such dual anti-platelet therapy 

(DAPT) confers greater anti-thrombotic efficacy but at the risk of increased bleeding. Over recent 

years, it has become apparent that these drugs may also exert powerful anti-inflammatory 

effects that provide additional benefit in the management of ACS.  

Anti-platelet therapy may improve outcomes not only through anti-thrombotic properties but 

also via their anti-inflammatory effects, although their relative contribution in this context 

remains a subject of debate. What is clear, however, is that increased anti-thrombotic efficacy 

improves outcomes post-ACS, but carries the price of increased bleeding risk, so that at some 

point diminishing returns accrue from ever more efficacious anti-platelet therapy. The challenge 

for the future is to better predict the benefit / risk ratio in individual patients, so that the 

intensity of anti-platelet therapy can be optimised on a personalised basis. The following 

sections of this thesis will discuss anti-platelet agents that are currently used in clinical practice. 
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1.2.2.1 Cyclo-oxygenase enzymes and eicosanoids 

The COX enzyme converts AA to PGs. There are 2 human isoforms – COX-1, which is expressed 

in most tissues and COX-2, which is typically present in areas of active inflammation 80. As 

mentioned above, the COX enzyme converts AA into PGG2, which is subsequently reduced to 

PGH2 81.  

Eicosanoids are a large group of signalling molecules derived from AA, including PGs, TXs, and 

leukotrienes; of these, prostacyclin (also known as PGI2) and TXA2, are important in maintaining 

platelet homeostasis. Prostacyclin inhibits platelet activation while TXA2 increases platelet 

activation. PGE2 is among the most abundantly expressed eicosanoids and plays complex and 

often contrasting roles in the modulation of inflammation, from initiation of pyrexia to 

resolution of inflammatory processes 82 83. 

 

 

 

                                  

 

 

 

 

 

Figure 1.2: Cyclo-oxygenase dependent pathways 

The figure shows the conversion of arachidonic acid to prostaglandins, prostacyclin, and thromboxane 

A2 via the cyclo-oxygenase enzyme. 
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1.2.2.1.1 Aspirin 

Aspirin, otherwise known as acetylsalicylic acid, irreversibly inhibits both COX enzymes through 

acetylation of a critical serine residue, although its effect on COX-1 is at least ten fold greater 

than that on COX-2 80. By predominantly inhibiting COX-1, TXA2-induced platelet activation and 

aggregation are blocked 84. Aspirin achieves maximum platelet inhibition within 2 hours 

following a loading dose and inhibits aggregation in circulating platelets for at least 5 days 85 86. 

There has been some debate over the past decade as to whether aspirin resistance is a clinically 

significant issue, requiring patients deemed to be ‘poor responders’ to switch to an alternative 

anti-platelet agent 87 88. It has since been shown that whilst platelet function assays may produce 

variable results, and thus suggest that aspirin resistance is present, platelet COX-1 activity, as 

reflected by TXA2 levels, is uniformly and persistently suppressed by low-dose aspirin 89 and it is 

now generally accepted that true pharmacological resistance to aspirin is rare 90. 

The analgesic and topical antiseptic properties of salicylates have been recognised since at least 

3000 BC, with the Ancient Egyptians and Sumerians documenting the medicinal benefits of 

willow and other salicylate-rich trees and plants, such as meadowsweet 91. Hippocrates 

prescribed willow tea to labouring women to relive pain in the fifth century BC 92 and the Roman 

encyclopaedist, Aulus Celsus, documented the anti-inflammatory effects of willow leaf in his De 

Medicina treatise in the first century AD 93.  

 Acetylsalicylic acid was initially synthesised by Charles Frédéric Gerhardt in 1853 94 and 

subsequently marketed as a commercially available drug in 1899 by the Bayer pharmaceutical 

company. The drug was named ‘aspirin’, with the ‘a’ representing the acetyl group that was 

added to salicylic acid to create the drug, the ‘spir’ deriving from the plant, Spiraea ulmaria, from 

which the salicylates were isolated, and ‘in’ being a common suffix for drugs at the time 95. The 

drug achieved prominence in the Spanish influenza pandemic of 1918 and remained 

unchallenged in its position as the leading analgesic agent until the 1950s, when paracetamol 

was brought to the market.   



30 
 

Alongside its analgesic and antipyretic effects, aspirin has been recognised as an inhibitor of 

platelet function for around 50 years 96 and, to date, remains the most commonly prescribed 

drug worldwide 97. The pharmacologists, John Vane and Priscilla Piper, established that 

administration of aspirin impaired the production of a compound that they termed ‘rabbit aorta 

contracting substance’ 98 99. Vane later identified this compound as a PG 100 101, finally elucidating 

aspirin’s mechanism of action, for which he was awarded the ‘Nobel Prize in Physiology and 

Medicine’ in 1982.  

 

1.2.2.2 Adenosine diphosphate receptor antagonists 

Clopidogrel, prasugrel and ticagrelor are all ADP antagonists, a class of therapeutic agents that 

bind selectively to the P2Y12 receptor to inhibit platelet function 102. The thienopyridine, 

ticlopidine was the first drug in this class but is seldom prescribed now, following reports of 

serious adverse reactions, in particular neutropaenia 103 and thrombotic thrombocytopaenic 

purpura 104.  

 

1.2.2.2.1 Clopidogrel 

The second generation thienopyridine prodrug, clopidogrel, is currently the most commonly 

prescribed ADP receptor antagonist. It is administered orally and up to 85 % of the absorbed 

drug undergoes hepatic metabolism by carboxyl esterases to form an inactive carboxylic acid 

derivative, clopidogrelic acid, whilst the remaining 15 % is metabolised into the active thiol 

product by cytochrome P450 isoenzymes 102 105; see Figure 1.3. Although clopidogrel has a 

relatively short half-life of 6 hours 106, the thiol metabolite covalently binds to the P2Y12 receptor, 

inducing an irreversible conformational change in the receptor and thus impairing thrombotic 

function for the remaining lifespan of the affected platelet. Genetic polymorphisms in 

cytochrome P450 enzymes, particularly CYP2C19 and CYP2C9, may result in impaired generation 

of the active thiol metabolite in patients taking clopidogrel, resulting in lack of efficacy 107. 
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Variable responses to clopidogrel may additionally result from mutations in the ABCB1 gene that 

encodes the P-glycoprotein involved in clopidogrel absorption 107. 

The standard dosing regime is a 300 mg loading dose and 75 mg daily maintenance dose. 

Following this, steady state ADP inhibition is typically achieved within 3-7 days, with a 40 – 60 % 

reduction in ADP-induced platelet aggregation from baseline 106. Randomised controlled trials 

have demonstrated that clopidogrel is more effective than aspirin in preventing cardiovascular 

events in patients with vascular disease 108, further reduces mortality in patients with MI when 

used alongside aspirin 109, and improves outcomes in patients undergoing PCI when used in 

combination with aspirin 110 111. The ‘Clopidogrel versus Aspirin in Patients at Risk of Ischaemic 

Events’ (CAPRIE) study showed that clopidogrel administration was associated with similar 

adverse effects to those observed with aspirin, including gastrointestinal discomfort and 

increased bleeding, but the overall safety profile of clopidogrel 75 mg daily was considered to 

be least as good as that of aspirin 325 mg daily 108. However, the inter-patient unpredictability 

in clopidogrel responsiveness (with some patients not responding at all) due to the 

abovementioned factors led to the development of newer P2Y12 antagonists. 
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1.2.2.2.2 Prasugrel 

Prasugrel is an oral thienopyridine prodrug that is hydrolysed by esterases to the metabolite, R-

95913. This inactive metabolite is then activated by cytochrome P450 enzymes, forming the 

active metabolite R-138727; Figure 1.4. As with clopidogrel , the active metabolite subsequently 

binds irreversibly via a covalent bond to the platelet P2Y12 receptor and thus inhibits platelet 

function 112. 

A loading dose of 60 mg is given, followed by 5 – 10 mg daily maintenance dosing 113. Peak 

plasma concentration is reached within 30 minutes and the drug has a half-life of 7 hours 112. 

Phase I and II studies have demonstrated that prasugrel has a faster onset of action than 

clopidogrel, as well as being more efficacious and more predictable in its anti-platelet action 114-

116.  The TRITON-TIMI 38 phase III study found that, in patients with ACS undergoing PCI, 

prasugrel was more effective than clopidogrel in reducing further ischaemic events although it 

conveyed a higher risk of major bleeding 117. Further analysis of a subgroup of patients with 

STEMI undergoing PCI found that prasugrel was more effective than clopidogrel in preventing 

additional cardiovascular events without any increased risk of minor or major bleeding 118. 

Among patients with ACS without ST-elevation who did not undergo PCI, prasugrel was not 

found to be superior to clopidogrel in preventing ischaemic events 119. 
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1.2.2.2.3 Ticagrelor 

Unlike clopidogrel and prasugrel, ticagrelor is a cyclo-pentyltriazolo-pyrimidine ADP antagonist 

that has distinct pharmacokinetic and pharmacodynamic properties. Ticagrelor binds directly to 

the P2Y12 receptor and alters its conformation, resulting in reversible inhibition. The drug does 

not require metabolic activation and thus exhibits a comparatively rapid onset and offset of 

effect, necessitating comparatively frequent dosing to achieve steady ADP inhibition 120. Plasma 

levels of ticagrelor peak at 1.5 – 3 hours post-ingestion and reach steady state after 2 – 3 days 

121. Although metabolic activation is not required for initiation of its anti-platelet effects, the 

drug does have an active metabolite, AR-C124910XX, which is produced following the 

interaction of the parent drug with cytochrome P450 120 121. 

Ticagrelor is administered as a loading dose of 180 mg, followed by maintenance dosing of either 

60 or 90 mg twice daily. The ‘PLATelet inhibition and patient Outcomes’ (PLATO) study showed 

that ticagrelor was superior to clopidogrel in reducing mortality and further cardiovascular 

events in patients presenting with ACS, regardless of the presence or absence of CYP2C19 and 

CYP2C9 polymorphisms 122. The DISPERSE-2 trial showed that there was no increase in major 

bleeding events in patients with non-ST segment ACS taking ticagrelor compared with 

clopidogrel, however there were significantly more minor bleeding events 123. Ticagrelor 

achieves higher levels of platelet inhibition than clopidogrel 124, likely due to a combination of 

factors, including the aforementioned genetic variations in absorption and metabolism of 

clopidogrel.  

Dyspnoea is a well-documented adverse effect of ticagrelor use, although to date the 

mechanism of this physiological response is unclear, particularly as this is not a prominent 

feature of other drugs in this class. Adenosine activates pulmonary vagal C nerve fibres, inducing 

dyspnoea 125. It has been postulated that ADP receptor inhibition results in higher levels of 

extracellular adenosine, due to drug-induced inhibition of a sodium-independent equilibrative 

nucleoside transporter and subsequent reduced adenosine clearance 126 127.  Although other 

ADP-receptor inhibitors, such as clopidogrel, bind irreversibly to P2Y12 receptors, they have a 
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comparatively short half-life and thus when they inhibit receptors on cells other than platelets, 

such as neurons, their effects are transient as the presence of a cell nucleus allows synthesis of 

new receptors 126. Additionally, twice daily dosing of ticagrelor may result in consistently higher 

plasma drug concentrations compared with other ADP-receptor antagonists that are dosed once 

daily 126.  

In view of the greater platelet inhibition and consequent improved outcomes that are observed 

with prasugrel and ticagrelor compared with clopidogrel, many cardiology centres now 

recommend that the latter is not used as a first line P2Y12 inhibitor in the management of acute 

STEMI 128.  

 

1.2.2.2.4 Cangrelor 

Cangrelor is a novel P2Y12 inhibitor that, like ticagrelor, binds directly to the receptor and induces 

reversible blockade. The drug is a non-thienopyridine adenosine triphosphate analogue that is 

administered intravenously and has shown promising results in clinical trials to date 129. The drug 

has a rapid onset and offset of action, reaches steady state within a few minutes, and achieves 

greater than 90 % inhibition of platelet activation resulting from the P2Y12 pathway 130.  

 In a series of randomised-controlled studies, when compared with current standard therapy, 

however, no significant differences in mortality or further MI were observed when patients were 

treated with either clopidogrel or cangrelor before 131 or during PCI 132. A double-blind placebo-

controlled trial involving 11,145 patients subsequently found that cangrelor significantly 

reduced the rate of ischemic events during PCI, with no increase in severe bleeding, compared 

with clopidogrel 133. At present, cangrelor has been approved by US and European regulatory 

agencies for use in patients undergoing PCI, although it has not yet been recommended by the 

National Institute for Health and Care Excellence (NICE) for use in the UK due to a relative lack 

of clear data 134 135 
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1.2.2.3 Glycoprotein IIb/IIIa inhibitors 

The platelet integrin complex glycoprotein IIb/IIIa represents the final common pathway of 

platelet activation 56 136. This molecule mediates platelet binding to fibrinogen thereby forming 

bridges between platelets. A haemostatic platelet plug subsequently develops, which increases 

in size as further platelet activation is propagated 56. Glycoprotein IIb/IIIa receptor inhibitors 

block this pathway and thus reduce thrombogenesis. Of the drugs in this class, abciximab (a 

monoclonal antibody fragment), tirofiban (a small, non-peptide molecule), and eptifibatide (a 

cyclic heptapeptide derived from rattlesnake venom) are used in clinical practice 136 137. 

Abciximab additionally binds to integrin receptors on leucocytes and endothelial cells, thus 

reducing the adhesion of platelets to these cells 137.   

Glycoprotein IIb/IIIa inhibitors have played varying roles as anti-platelet agents over the past 20 

years 136. Data from several large-scale meta-analyses looking at glycoprotein IIb/IIIa inhibitor 

clinical trials in the medical management of non-ST-elevation ACS indicate a significant reduction 

in further MI and overall mortality in patients treated with these agents 138 139, and although they 

were  formerly used as key therapies in the management of acute MI for several years, 

glycoprotein IIb/IIIa inhibitors have been gradually phased out in favour of the P2Y12 inhibitors.   

A similar trend has followed with regard to the use of glycoprotein IIb/IIIa inhibitors as 

prophylactic anti-thrombotic agents in patients undergoing PCI, where their use has been 

declining in favour of novel anti-thrombotic / anticoagulant drugs. The TRITON-TIMI 38 study 

found that prasugrel significantly reduced the risk of cardiovascular events in patients with ACS 

after PCI regardless of whether or not a GP IIb/IIIa inhibitor was used concurrently 140. The 

‘Intracoronary Stenting and Antithrombotic Regimen—Rapid Early Action for Coronary 

Treatment’ (ISAR – REACT) trial enrolled 2159 patients with coronary artery disease who 

underwent elective PCI following pre-treatment with clopidogrel 600 mg and either abciximab 

or placebo; there was no observable clinical benefit in those receiving abciximab over the 30 

days post-procedure 141. The ISAR – REACT 2 study subsequently assessed 2022 patients with UA 

or non-STEMI (NSTEMI) undergoing PCI who were pre-treated with 600 mg clopidogrel and 
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either abciximab or placebo, and found that abciximab significantly reduced the incidence of 

adverse events, although only in those patients with elevated troponin levels at presentation 

142. In the UK, current NICE guidance recommends glycoprotein IIb/IIIa inhibitors as an adjunct 

to PCI for all patients with diabetes undergoing elective PCI, and for those patients undergoing 

complex procedures, but not for the routine management of ACS or PCI 143.  

 

1.2.2.4 Dipyridamole 

Dipyridamole is a drug that alters platelet function via two main mechanisms. Firstly, it blocks 

the reuptake of adenosine into platelets, endothelial cells and erythrocytes, leading to increased 

extracellular concentrations of adenosine 144. This stimulates adenylyl cyclase activity, thus 

increasing cAMP levels. The rise in cAMP results in enhanced phosphorylation of vasodilator-

stimulated phosphoprotein and subsequent reduced GP IIb/IIIa receptor activity and platelet 

aggregation 145. Secondly, dipyridamole inhibits the platelet cAMP-phosphodiesterases that 

inactivate cAMP, further augmenting the reduction in platelet aggregation 144.  

Until relatively recently, dipyridamole, used in combination with aspirin, formed the mainstay 

of secondary prevention of ischaemic stroke. Data from the ‘Prevention Regimen For Effectively 

avoiding Second Stroke’ (PRoFESS) study published in 2008 found that there were no significant 

differences in outcome in treating patients with either aspirin plus extended-release 

dipyridamole or clopidogrel, although there were more bleeding events with the dipyridamole 

regime (4.1 % vs 3.36 %; hazard ratio 1.15)  146, and thus the general preference for monotherapy 

over combination therapy has led to a change in guidelines, favouring clopidogrel 147. 

Dipyridamole continues to be used in the secondary prevention of ischaemic stroke in patients 

who do not tolerate ADP-receptor inhibitors, and is frequently prescribed alongside the 

coumarin anticoagulant, warfarin, in the prevention of postoperative thromboembolic events in 

patients with mechanical heart valve replacements 148 149. 
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1.2.2.5 Cilostazol 

Cilostazol is a quinolinone inhibitor of the phosphodiesterase 3 isoenzyme that, as mentioned 

above, breaks down cAMP, and the drug therefore reduces platelet aggregation. Cilostazol is 

currently licensed for the treatment of intermittent claudication pain in patients with peripheral 

arterial disease, although the main benefits from the drug in this context are derived from the 

vasodilating, rather than anti-thrombotic, effects of elevated cAMP levels 150. Cilostazol is 

currently not recommended for use in patients with peripheral arterial disease in the UK, due to 

its apparent inferiority compared to other vasodilating agents 151.  

Cilostazol may potentially play a role in the future management of transient ischaemic attacks 

and ischaemic strokes. Recent meta-analysis data identified that the drug significantly reduces 

the recurrence of stroke compared to aspirin, with fewer occurrences of intracranial 

haemorrhage than with aspirin, clopidogrel, and DAPT as long-term therapy, although the 

majority of patients involved in these studies were from East Asia and it remains to be seen 

whether comparable results are obtained in Western populations 152 153. 
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Figure 1.5: Sites of action for anti-platelet agents 

This figure shows the pathways that are interrupted by anti-platelet drugs to impair platelet activation 

and aggregation. 1) Aspirin acts to inhibit the activity of the cyclo-oxygenase enzyme and thus 

attenuates the production of PGs and thromboxane; 2) The adenosine diphosphate (ADP) receptor 

antagonists bind to the P2Y12 receptor to prevent ADP-induced platelet activation; 3) Glycoprotein 

IIb/IIIa inhibitors impair platelet adhesion by preventing the formation of fibrinogen bridges between 

platelets; 4) Dipyridamole blocks the re-uptake of adenosine into platelets and inhibits the platelet 

cyclic adenosine monophosphate (cAMP)-phosphodiesterases, both of which lead to an increase in 

cAMP levels, thus reducing platelet aggregation; 5) Cilosazol inhibits the phosphodiesterase 3 

isoenzyme that breaks down cAMP.  
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1.2.3 Anti-platelet drugs in primary prevention  

Although guidelines vary throughout the world, it is generally accepted that anti-platelet 

therapy should not be given for primary prevention of cardiovascular disease in patients who 

have no comorbidities. Most physicians use a system, such as the Framingham risk score or the 

QRISK2 score, to calculate a patient’s individual risk of suffering a cardiovascular event based on 

a series of established risk factors before deciding whether the benefit of commencing anti-

platelet therapy outweighs the risks.  

Despite the fact that it is not licensed for this indication, aspirin is usually prescribed as the first-

line anti-platelet therapy in primary prevention in cases where anti-platelet therapy is thought 

to be of benefit154. The British Hypertension Society recommends that aspirin only be used in 

primary prevention in hypertensive patients who are aged over 50 years with 10 year 

cardiovascular risk of at least 20 % 155. In patients with type 2 diabetes mellitus, the current NICE 

recommendations are to consider aspirin therapy in patients who are aged over 50 years, or 

who otherwise have significant cardiovascular risk factors 26. The European Society of 

Cardiology, however, does not recommend the use of anti-platelet agents in primary prevention 

156, based on the findings of a meta-analysis published shortly after the aforementioned NICE 

guidelines, that reported no benefit from aspirin use in preventing major cardiovascular events 

in diabetic patients 157. 

 

1.2.4 The role of anti-platelet drugs in the management of myocardial infarction 

ACS is a term used to encompass unstable angina (UA) and MI with or without 

electrocardiographic (ECG) evidence of ST-segment elevation. Anti-platelet therapy has formed 

the backbone of ACS management for decades and current guidelines recommend that all 

patients routinely receive a loading dose of aspirin, followed by maintenance therapy unless 

contraindicated 158 159. There is a wide range of maintenance dosages of aspirin that are 

prescribed in this context, ranging from 75 to 325 mg daily in different countries 160, although in 

the UK, a loading dose of 300 mg aspirin is given, followed by a daily maintenance dose of 75 
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mg. In patients who have suffered ACS, recommended secondary prevention therapy typically 

entails twelve months of DAPT, followed by lifelong aspirin, whilst patients with stable angina 

are given aspirin monotherapy 36 37. Alongside aspirin therapy, patients with UA or NSTEMI who 

are considered to have a predicted 6-month mortality of greater than 1.5 % (which is the case 

for the vast majority of such patients) are usually treated with a loading dose of 300 mg 

clopidogrel 161. Those with acute STEMIs will go on to receive coronary reperfusion therapy, 

usually with percutaneous coronary intervention (PCI) or, less commonly now, with fibrinolytic 

therapy, and also receive a second anti-platelet agent, namely clopidogrel, prasugrel or 

ticagrelor depending on local guidelines.  

 

1.2.5 The role of anti-platelet drugs in the management of stroke 

NICE guidelines recommend that patients who present with signs of a transient ischaemic attack 

and are considered by the ABCD2 scoring system to have a high risk of stroke are immediately 

offered either 300 mg aspirin or 300 mg clopidogrel (although this would be an off-label use of 

the latter) 28, based on data suggesting that anti-platelet therapy conveys an 80 % reduction in 

the risk of early recurrent stroke 162. 

In the UK, patients who have a confirmed acute ischaemic stroke are typically managed in a 

highly specialist unit where thrombolytic therapy may be given depending on the clinical 

presentation. Otherwise, patients are immediately given 300 mg aspirin to continue for 14 days, 

followed by once daily 75 mg clopidogrel 31. 

 

1.2.6 Dual anti-platelet therapy in coronary artery disease 

DAPT is routinely commenced in patients who have undergone PCI, involving both drug-eluting 

and (more rarely these days) bare-metal stents, with the aim of reducing the risk of subsequent 

in-stent thrombosis. Although the introduction of drug-eluting stents has markedly decreased 

the occurrence of re-stenosis, in-stent thrombosis remains a significant complication. The 

presence of a foreign body within the coronary artery induces platelet adhesion and activation, 
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and potentially thrombus formation, until a layer of endothelial cells has covered the surface of 

the stent. 

Current guidelines recommend that DAPT should be continued for between 6 and 12 months 

post stent-insertion 163 164. Meta-analysis data have generally supported the use of short term 

DAPT (<12 months) regimes, in view of the reduced bleeding rates without an apparent increase 

in ischaemic complications 165-167.  

It is likely that these recommendations will soon be reviewed, following the recent publication 

of results from the ‘Dual Antiplatelet Therapy (DAPT) Study’, a large-scale randomised controlled 

trial, showing that the continuation of DAPT beyond 12 months post-PCI with drug-eluting stent 

placement yielded a reduction in the occurrence of in-stent thrombosis, although there was an 

increased bleeding risk 168. This data has since facilitated the development of a prediction score 

to enable clinicians to identify patients who are likely to receive greater benefit from continuing 

DAPT after 12 months, based on bleeding and ischaemic risk factors, although this has yet to be 

fully validated 169. 

Although a clear consensus on the optimal duration of DAPT post-PCI insertion may take some 

time to reach, a pragmatic approach at present is for clinicians to continue adhering to the 

national guidelines, whilst considering the bleeding and ischaemic risks of their individual 

patient and adjusting the recommended DAPT duration accordingly. 
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Table 1.1: Characteristics of anti-platelet drugs 

 

Drug Site of action Time to 
peak 
action 

Half-life  Typical dose 
administered 

Route / 
dosing 
interval 

Aspirin Inhibition of COX 
enzyme 

1-2 
hours 

15-20 
mins 

In Europe loading 
dose 300 mg, 
maintenance 
dose 75 mg 

Oral 
Once daily 

Clopidogrel Thienopyridine 
prodrug irreversibly 
binds to the P2Y12 
receptor 

45 mins 6 hours Loading dose 300 
– 600 mg, 
maintenance 
dose 75 mg 

Oral 
Once daily 

Prasugrel Thienopyridine 
prodrug, 
irreversibly binds to 
the P2Y12 receptor 

30 mins 7 hours Loading dose 60 
mg, maintenance 
dose 10 mg 

Oral 
Once daily 

Ticagrelor Cyclo-
pentyltriazolo-
pyrimidine drug, 
reversibly binds to 
P2Y12 receptor 

1.5 
hours 

7 hours Loading dose 180 
mg, maintenance 
dose 90 mg 

Oral 
Twice daily 

Cangrelor Adenosine 
triphosphate 
analogue, reversibly 
binds to P2Y12 
receptor 

2 mins 3-6 mins Bolus 30 mcg/kg 
injection then 4 
mcg/kg/min 
infusion 

Intravenous 
One-off 
treatment 

Abciximab Glycoprotein IIb/IIIa 
receptor inhibitor 

30 mins 30 mins Bolus 0.25 mg/kg 
injection then 
0.125 
mcg/kg/min 
infusion 

Intravenous 
One-off 
treatment 

Dipyridamole Inhibitor of platelet 
cAMP-
phosphodiesterase 

2-2.5 
hours 

10-12 
hours 

75 – 200 mg 
immediate 
release 
 
200 mg modified 
release 

Oral 
3-4 times 
daily 
 
Oral 
Twice daily 

Cilostazol Inhibitor of 
phosphodiesterase 
3 isoenzyme 

2-2.5 
hours 

11-13 
hours 

100 mg Twice daily 
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1.3 Monocytes 

Monocytes are mononuclear white blood cells that play a pivotal role in the human adaptive 

immune response. Monocytes comprise approximately 1-8 % of circulating leucocytes and have 

a half-life of around 1-3 days, after which they move into tissues and differentiate into 

macrophages or dendritic cells 170. Monocytes migrate to sites of local inflammation where their 

roles include phagocytosis and pro- or anti-inflammatory cytokine production. 

 

1.3.1 The role of monocytes in atherosclerosis 

Monocytes play a pivotal role in the development of atherosclerosis via formation and 

deposition of lipid-laden foam cells within the arterial tunica intima, which contribute to plaque 

instability 171. Monocytes are further implicated in the development of atherosclerosis and 

plaque rupture due to their involvement in plaque neovascularisation. As plaque size increases, 

impaired oxygen diffusion develops and the proximal cells of the tunica intima become hypoxic 

172. Cellular oxygen levels become depleted and hypoxia-inducible factor 1 (HIF-1) production is 

upregulated, which induces expression of angiogenic signalling molecules, including vascular 

endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS), which serve to 

enhance the development of adventitial vasa vasorum and intraplaque microvessels 172. 

Monocytes strongly express receptors to VCAM-1, which is produced by intraplaque 

microvessels 173-175. The chronic inflammation present in atherosclerosis triggers increased 

expression of endothelial markers of activation, including VCAM-1, ICAM-1 (also known as CD54) 

and P-selectin (CD62P). There is additional upregulation of monocyte chemoattractant protein-

1 (MCP-1), one of the primary chemokines involved in regulating migration and infiltration of 

monocytes, and its monocytic receptor, C-C chemokine receptor type 2 (CCR2) 176 177.  

Evidence suggests that circulating monocytes may also serve as endothelial progenitor cells, 

further amplifying angiogenesis 173 178. The newly-formed micro-vessels are fragile and prone to 

haemorrhaging. As erythrocytes extravasate from bleeding neo-vessels, their lipid-rich cellular 

contents contribute to further evolution of the atheromatous lesion, while the free haemoglobin 
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potentiates reactive oxygen species (ROS) generation and pro-inflammatory cytokine 

generation 179. Intraplaque haemorrhage is one of the principal determinants of plaque rupture 

180. 

 

1.3.2 Monocyte phenotypes and their differential contribution to atherosclerosis 

Until recently, human monocytes were divided into two major subsets based on their surface 

expression of CD14 and CD16: the CD14+CD16- and the CD14+CD16+ groups. Around 85-90 % of 

monocytes comprise the CD14+CD16- or ‘classical’ group, which are involved in phagocytosis and 

pro-inflammatory cytokine production 177 181. The CD14+CD16+ subgroup has since been 

subdivided into the CD14highCD16+ or ‘intermediate’ group and the CD14lowCD16+ or ‘non-

classical’ monocyte group. The CD14highCD16+ group express the monocyte chemoattractant 

protein-1 receptor, also known as CCR2, which enhances vascular monocyte recruitment and 

their subsequent transendothelial migration 177. CD14highCD16+ monocytes are highly pro-

inflammatory 182 while the CD14lowCD16+group express genes involved in cytoskeletal 

rearrangement and demonstrate high motility and patrolling behaviour 183. See Table 1.2 for 

further details regarding monocyte subsets. There are additional, smaller, poorly-characterised 

subsets of monocytes, including the CD56+ group, which may be associated with certain 

autoimmune diseases 184.  
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Table 1.2: Monocyte subset characteristics  

 

Monocyte subsets: Classical Intermediate Non-classical 

CD14 expression ++ ++ + 

CD16 expression - + + 

CCR2 expression + + - 

Population % 84.8 183 5.4 183 9.2 183 

Primary functions Phagocytosis 177 

Tissue repair 183 

Immune response 183 

185 

Angiogenesis 185  

Phagocytosis 183 

Cytoskeleton 

rearrangement 183 

Cytokine response Response to cell-

surface Toll-like 

receptors186 

Response to cell-

surface Toll-like 

receptors186 

Response to viruses 

via TLR7-TLR 8-

MyD88-MEK 

pathway186 

Inflammatory 

effects 

Weakly pro-

inflammatory (IL-6 

187, IL-1β 186, TNF-α 

correlation) 

1. Highly pro-

inflammatory (IL-6 

187, IL-1β 186, TNF-α 

correlation) 

2. Anti-inflammatory  

(IL-10 correlation 187) 

Weakly pro-

inflammatory (TNF-α 

correlation 183) 
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Prior to the subdivision of the CD16+ monocyte group, it was well-recognised that the CD16+ 

subset was a major producer of serum tumour necrosis factor alpha (TNF-α) in response to 

inflammatory challenges 182. It was subsequently found that CD16+ monocytes were expressed 

at relatively low levels in healthy individuals but showed amplified expression in the presence 

of coronary atherosclerosis, suggestive of a possible role for CD16+ monocytes in atherogenesis 

188. Recently, a correlation between intima-media thickness (IMT) and CD14highCD16+ cell counts 

has been observed 189. 

The association between an increased CD14highCD16+ phenotype and the presence of 

atherosclerosis may be partially explained by the presence of the CCR2 receptor on the surface 

of this particular monotype subset, which regulates the migration and infiltration of monocytes 

190. Our group has previously shown that in the context of acute inflammation the circulating 

CD14highCD16+ numbers expand, and that this cell subset exhibits increased adhesiveness to the 

vascular endothelium 31. 

A multitude of clinical studies have highlighted the association between raised levels of CD16+ 

monocytes and coronary disease. CD16+ monocyte counts were elevated in patients with UA 

compared to matched control subjects with stable CAD. Among the UA patients, those with 

intermediate-high risk of MI had significantly higher counts of the CD14highCD16+ subset 23.  Tapp 

et al found a correlation between CD14highCD16+ counts and peak troponin-T (TnT) levels post-

STEMI, as well as a correlation between CD14highCD16+ counts and left ventricular ejection 

fraction (LVEF) post-STEMI 187. A study by Rogacev et al in 2012 using 951 patients referred for 

elective coronary angiography showed that a higher CD14highCD16+ count was predictive of 

cardiovascular events, including MI, ischaemic stroke and death from all cardiovascular causes 

22.   

Conversely, Jaipersad et al showed that the CD14highCD16-, rather than CD14highCD16+ or 

CD14lowCD16+, subset was predictive of carotid and systemic atherosclerosis severity, and 

intraplaque neovascularisation 173. These differences may be partially explained by the 

heterogeneity of subject groups recruited to the studies, as well as differences in monocyte 
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gating strategies during flow cytometry. Certainly, the majority of studies suggest that the 

CD14highCD16+ subset is highly pro-inflammatory compared with its CD14highCD16-and 

CD14lowCD16+counterparts, and that this subset is strongly associated with the presence of 

cardiovascular disease. Whether CD14highCD16+ levels represent a more specific biomarker of 

cardiovascular risk than hs-CRP remains to be determined. 

 

1.3.3 Monocyte-platelet interactions 

Platelets move from a resting state to an activated state in response to endothelial-derived 

activating factors, such as ADP and thrombin. Activated platelets adhere to damaged 

endothelium and locally mediate both inflammatory and thrombotic events via the secretion of 

cytokines and interactions with leucocytes, which results in chemotaxis and development of an 

inflammatory milieu within the arterial wall.  

Activated platelets form complexes with leucocytes, particularly monocytes, as P-selectin, a 

platelet surface adhesion molecule expressed on platelet plasmalemma upon activation, binds 

to its ligand, P-selectin glycoprotein ligand-1 (PSGL-1) 191 192, which is constitutively expressed by 

circulating monocytes. These MPA are measurable in the peripheral blood and serve as an easily 

quantifiable marker of platelet activation and appear to predict cardiovascular events, such as 

MI 193 and ischaemic stroke 194. Functionally, MPA formed at the site of a vascular injury recruit 

circulating monocytes and facilitate their adhesion to the endothelium, where, following 

adhesion and migration into the subintima, they differentiate to macrophages and contribute 

further to atherogenesis 195. Platelet activation and subsequent MPA formation are increased in 

the presence of high shear stress within blood vessels, such as occurs around the site of 

atherosclerotic lesions 196, and circulating MPA levels in humans correlate with coronary plaque 

size 197. P-selectin levels are independently associated with carotid atherosclerotic lesions in 

humans 198.  

The aforementioned model of acute inflammation, influenza immunisation, has been used to 

demonstrate that acute inflammation leads to higher circulating levels of activated platelets and 
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MPA formation, which promotes expansion of the CD14highCD16+ subset 31. This evidence 

supports the hypothesis that the increased degree of circulating MPA formation reported in 

patients with cardiovascular risk factors or established atherosclerotic disease, could represent 

a key event in the expansion of circulating CD16+ monocytes, which also occurs in the presence 

of cardiovascular disease. Targeting platelet activation could therefore counteract the 

development of the more pro-atherogenic CD14highCD16+ phenotype with a subsequent 

beneficial effect on atherosclerosis progression. Consistent with this hypothesis, previous 

experiments conducted in apolipoprotein knockout (ApoE-/-) mice has demonstrated that 

platelet inhibition, as achieved by either aspirin or clopidogrel administration, counteracts the 

blood monocytosis that accompanies disease progression in this animal model of 

atherosclerosis, thus reducing inflammation 31.  

Although they have no effect on circulating lipid levels, anti-platelet drugs act to disrupt 

pathways in which platelets contribute to atherogenesis, including MPA-driven endothelial 

recruitment of monocytes and thrombus formation in areas of endothelial damage 199 200. The 

pharmacological efficacy of the multiple classes of anti-platelet agents in counteracting anti-

atherogenic mechanisms is variable. Administration of aspirin does not affect circulating levels 

of MPA, whereas clopidogrel appears to impair MPA formation 201 202. Their distinct mechanisms 

of action may have differing effects on the intracellular pathways that finally lead to P-selectin 

expression on activated platelets 203. 

 

1.4. Netrin-1 

Netrins are a class of laminin-like proteins, which were first identified as axonal guidance cues 

during embryonic development 204. The netrin family was named from the Sanskrit word ‘netr’ 

which means ‘one who guides’ 205. Netrin-1 is a secreted protein that mediates axonal 

chemoattractant activity via binding to the deleted in colorectal cancer (DCC) and neogenin 

receptors, and chemorepulsion via the uncoordinated-5 (UNC5) receptors 206-208. 
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The role of netrin-1 in cardiovascular disease and states of acute inflammation is an emerging 

area of research. The identification of DCC and UNC5 receptors on cell types other than neurons, 

has supported the hypothesis that netrin-1 could have additional functions outside the central 

nervous system.  Over the past decade it has become apparent that netrin-1 has involvement in 

multiple physiological responses, ranging from atherosclerosis to inflammation, as well as 

potentially functioning as a marker of renal function (Figure 1.6), making it an attractive 

potential therapeutic target. In recent years, netrin-1 has been identified as a key modulator of 

atherosclerosis, although its precise role in this disease – protective or deleterious – has been 

the subject of much debate. 

 

1.4.1 Netrin-1 in atherosclerosis 

van Gils et al have shown that human macrophage foam cells from human coronary artery 

plaques express netrin-1 and UBC5B, the latter being responsible for the inhibitory effect of 

netrin-1 on macrophage migration that ultimately results in netrin-1 dependent myeloid cell 

retention within plaques 209. In LDLR-/- mice fed a Western diet, deletion of netrin-1 in 

haematopoietic cells reduced atheroma size and complexity and promoted macrophage 

migration from plaques 209. This same group also showed that netrin-1 and UNC5B expression in 

macrophages is upregulated in hypoxic conditions and protects macrophages from apoptosis 210.  

As netrin-1 appears to stimulate progression of atherosclerosis by retaining macrophages within 

atheromatous lesions, thus amplifying the cycle of chronic inflammation, identifying a method 

of interrupting this pathway could prove to be of therapeutic benefit.  

This detrimental effect of netrin-1 on atherosclerosis progression contradicts the evidence 

provided by Khan et al, in which LDLR-/- mice underwent intravenous viral delivery of human 

netrin-1 copy DNA (cDNA) and, when compared with untreated control mice, were found to 

have lower levels of nitrotyrosine (a marker of ROS), as well as of CD68, integrin alpha M 

(ITGAM), and EGF-like module-containing mucin-like hormone receptor-like 1 (EMR-1), all of 

which are markers of macrophage and monocyte activity 211. The netrin-1 treated mice 
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demonstrated a reduction in plaque formation, presumably through the prevention of 

monocytes migrating into atherosclerotic plaques 211 212. Focal application of netrin-1 in this 

situation highlights another potential pathway in atherogenesis where modification of netrin-1 

expression may retard plaque formation. Of note, a reduction in the endothelial expression of 

netrin-1 under pro-atherogenic conditions has been reported by van Gils et al, suggesting that 

suppression of netrin-1 within the vasculature in response to pro-atherogenic factors could 

impede plaque development 209. 

In 2012, Delloye-Bourgeois et al identified that certain cancer cells produce a truncated 

intranuclear form of netrin-1, as opposed to the well-characterised, full-length, secreted netrin-

1 213. The majority of studies prior to this had not differentiated between these isoforms, and it 

has since been postulated that measurement of different isoforms of netrin-1 may explain some 

of the conflicting data surrounding its role in atherosclerosis 203. 

 

1.4.2 The relationship between netrin-1 and inflammation 

Murine models of myocardial ischaemia-reperfusion injury have shown that elevated netrin-1 

expression has a cardioprotective effect, partly achieved by reducing the infiltration of 

neutrophils and recruitment of macrophages that serve to further amplify the pro-apoptotic 

inflammatory response 214 215. Similar results have been shown in models of renal ischaemia-

reperfusion injury 216 as well as other pro-inflammatory states, including acute lung injury, 

peritonitis and sepsis 217 218.  

Both in vitro and in vivo studies have repeatedly demonstrated that netrin-1 and UNC5B 

modulate leucocyte migration in pro-inflammatory states 218. UNC5B is strongly expressed on 

leucocytes and increased netrin-1 expression attenuates leucocyte migration and leucocyte-

driven inflammatory responses 218-220. These findings have generated interest in a potential role 

for netrin-1 in the modification of inflammatory processes.  

Administration of netrin-1 supresses COX-2 expression via regulation of nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB). There is a subsequent reduction in COX-2 
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metabolites that mediate neutrophil infiltration, interferon-γ-induced macrophage-activation 

and TXA2 
221. Netrin-1 additionally supresses the production of Th1 helper cell cytokines, which 

generate interferon-γ 219. 

The degree to which suppression of the inflammatory response is desirable, and whether this 

could have detrimental effects in the context of infection, remain unclear.  
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Figure 1.6: Biological roles of netrin-1 

The diverse actions of netrin-1 in cardiovascular and renal disease. Netrin-1 directly modulates survival 

and migration of different cell types, including cardiomyocytes, leucocytes, and endothelial and tubular 

renal cells, through engagement of cell-specific receptors, as indicated. These effects result in netrin-1-

dependent cardioprotection and reduction of kidney damage in response to ischaemia. Netrin-1 also 

confers anti-atherogenic protection, by repelling monocyte arterial infiltration. However, netrin-1-

induced inhibition of resident macrophage egress from atherosclerotic plaques could be detrimental. 

The effect of netrin-1 on neoangiogenesis may be beneficial in the context of cardiac ischaemia but 

detrimental for atherosclerotic plaque destabilization. The anti-inflammatory action of netrin-1 is 
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mediated by direct inhibition of leucocyte motility, as well as by a protective effect on target organs 

that negatively feeds back on inflammatory cell trafficking within the tissue. UNC5B, unco-ordinated-5 

receptor B; DCC, deleted in colorectal cancer receptor; EC, endothelial cells. Figure taken from Layne et 

al., 2015 222. 

 

 

1.4.3 Anti-platelet therapy and netrin-1 

As mentioned above, netrin-1 modulates macrophage migration into and out of plaque sites 209 

and thus represents a potential target for modifying progression of atherosclerosis. In 2015, 

Passacquale et al published a series of experiments where the relationship between endothelial 

netrin-1 expression and anti-platelet therapy was explored using both in vitro and in vivo 

models. They found that aspirin, but not clopidogrel, reduced vascular endothelial permeability 

and increased netrin-1 production in the ApoE-/- mouse model of atherosclerosis, which in turn 

led to reduced monocyte infiltration of atherosclerotic plaques 203. These findings suggest that 

anti-platelet therapy with aspirin may have the potential to modify circulating netrin-1 levels 

and thus modulate atherosclerosis generation. This, together with the previously mentioned 

beneficial effect of platelet inhibition on blood monocytosis observed in ApoE-/- mice, points to 

the existence of a mutual interaction between platelet activity, endothelial chemorepulsion 

against monocyte infiltration, and monocyte phenotype that can be positively modulated by 

anti-platelet strategies.  

 

1.5 Aims 

The aims of this PhD were as follows: 

 Chapter Two: To assess the effects of anti-platelet drugs on the phenotype of circulating 

monocytes in healthy volunteers in the presence of mild, systemic inflammation 

 Chapter Three: To investigate the biomolecular mechanisms that regulate the synthesis 

of serum netrin-1 in humans 
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 Chapter Four: To explore the role of CD16 in the transduction of the signalling pathways 

triggered by oxLDL 
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CHAPTER TWO: 

THE EFFECT OF ANTI-PLATELET THERAPY ON 

CIRCULATING CD16+ MONOCYTES  

IN HEALTHY SUBJECTS 
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2.1 Introduction 

Circulating human monocytes consist of a heterogeneous cell population generally classified 

into three main subtypes: the ‘classical’ CD14highCD16−, ‘intermediate’ CD14highCD16+, and ‘non-

classical’ CD14lowCD16+ cells 223. The prevalence of these subpopulations in the peripheral blood 

changes under pro-inflammatory conditions, with an expansion of the ‘intermediate’ subset 

typically occurring in the context of atherosclerosis-related inflammation 188. The functional 

implications of such changes in terms of disease progression remain elusive, although a positive 

correlation between the level of CD14highCD16+ monocytes and the presence of subclinical 

atherosclerosis has been demonstrated 189. More importantly, intermediate monocytes have 

proved to be an independent predictive factor for future cardiovascular events 22, and a strong 

correlation between their blood level and coronary plaque vulnerability has been detected 224-

227. This indicates that CD14highCD16+ cells may represent a novel biomarker of cardiovascular 

risk and a potential target for preventative therapeutic strategies.  

In this respect, previous work undertaken by our group suggests that anti-platelet drugs may 

have a modulatory action on the phenotype of circulating monocytes, and additionally that 

platelet activation is a key determinant in the acquisition of a CD16+ profile by human monocytes 

31. Furthermore, using ApoE−/− mice, our group has demonstrated the efficacy of platelet 

inhibition in vivo, as achieved by either aspirin or clopidogrel administration, in counteracting 

the blood monocytosis and expansion of circulating Ly6Clow cells (the murine counterpart of 

CD16+ monocytes) that accompany disease progression in this well-established animal model of 

atherosclerosis 203. In the current clinical study, I have assessed the effect of anti-platelet drugs 

currently used in cardiovascular prophylaxis on the phenotype of circulating monocytes in 

healthy human subjects in the context of a pro-inflammatory stimulus. I have used influenza 

immunisation as an experimental model of acute inflammation, in line with our group’s previous 

report showing an increase in the pool of circulating CD14highCD16+ cells in response to this 

vaccine 31, and also in keeping with other researchers who have previously used immunisations, 
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particularly the seasonal influenza and Salmonella typhi vaccines, in clinical studies to generate 

mild, systemic inflammation and investigate its relevance to cardiovascular pathophysiology 27 

28 30. 

 

2.2 Hypothesis and aim 

Levels of circulating CD14highCD16+ monocytes increase in atherosclerotic patients and are 

predictive of future cardiovascular events. Platelet activation has been identified as a crucial 

determinant in the acquisition of a CD16+ phenotype by classical CD14highCD16− cells. I aimed to 

test the hypothesis that anti-platelet therapy modulates the phenotype of circulating monocytes 

in the context of systemic inflammation. 

 

2.3 Methods 

2.3.1 Participant recruitment 

Seventy five healthy subjects were studied, before and 48 hours after receiving seasonal 

influenza immunisation. Subjects were recruited from workers employed by Guy’s and St 

Thomas’ NHS Foundation Trust (GSTT) who attended the Occupational Health Department 

requesting influenza immunisation. None of the subjects were taking regular medications, aside 

from the combined oral contraceptive pill, and had not taken anti-platelet medication in the 

preceding fortnight. Participants were randomly assigned to receive either anti-platelet therapy 

or no treatment, according to the following scheme: 

- Group 1 (aspirin 300): aspirin 300 mg orally immediately following immunisation and another 

300 mg dose 24 hours later; n = 15. 

- Group 2 (aspirin 75): aspirin 75 mg orally immediately following immunisation and another 75 

mg dose 24 hours later; n = 15. 

- Group 3 (clopidogrel): clopidogrel 300 mg orally immediately following immunisation, with a 

further dose of clopidogrel 75 mg 24 hours later; n = 15. 
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- Group 4 (ticagrelor): ticagrelor 90 mg orally twice daily for 48 hours, the first dose being taken 

immediately following immunisation; n = 15. 

- Group 5 (untreated): no anti-platelet treatment given following immunisation; n = 15. 

I carried out ‘directly observed tablet’ taking with the first dose of each medication for each 

participant. 

 

2.3.2 Influenza immunisation 

The 2014/15 National Health Service (NHS) trivalent seasonal influenza immunisation, an 

inactivated (split virion) vaccination, specifically targeting ‘A/California/7/2009 (H1N1)pdm09-

like virus’, ‘A/Texas/50/2012 (H3N2)-like virus’, and  ‘B/Massachusetts/2/2012-like virus’, 

manufactured by  Sanofi Pasteur MSD Limited, was administered via intramuscular injection into 

the upper arm by a trained healthcare professional, as part of normal Occupational Health 

procedures. 

 

2.3.3 Collection of blood samples 

Blood samples were collected immediately prior to immunisation and again 48 hours later. 16 

ml whole blood was obtained from the antecubital vein using a 23-gauge butterfly needle and 

collected directly into three vacutainer tubes. 

The first vacutainer tube contained a serum gel separator, and blood was left to clot within this 

tube for 10 minutes at room temperature. The blood was centrifuged for 15 minutes, 1500 x g, 

at room temperature to obtain serum that was stored at -80 °C for subsequent analysis.   

The other two vacutainer tubes contained ethylenediaminetetraacetic acid (EDTA). One tube 

was processed by the ViaPath laboratory at GSTT, London, to obtain cell counts using a 

Beckmann DX 7 analyser, while the other was used for subsequent flow cytometry analysis and 

preparation of plasma aliquots for future use. Plasma was prepared by centrifuging the blood 

for 10 minutes, 1500 x g, at 4 ºC and was subsequently stored at -80 ºC for subsequent analysis. 
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2.3.4 Immunostaining 

100 μl whole blood was removed from the EDTA vacutainer tube and incubated with 5 µl of both 

R-phycoerythrin (PE)-mouse anti-human CD14 (BD Bioscience) and fluorescein isothiocyanate 

(FITC)-conjugated anti-human CD16 (3g8 clone, which reacts with both CD16a and CD16b 

isoforms of CD16; BD Bioscience) for 20 minutes at 4 ºC. 1 ml BD FACS lysing solution (BD 

Bioscience) was used to lyse the erythrocytes. The samples were incubated for 10 minutes, 

whilst protected from light, and then centrifuged for 5 minutes, 1500 x g, at room temperature. 

Supernatant was discharged and the pellets were washed twice with 1 ml phosphate-buffered 

saline (PBS) / 0. 2% bovine serum albumin (BSA) / 0.1 % sodium azide. Samples were again 

centrifuged for 5 minutes, 1500 x g, at room temperature, then fixed with 250 µl 1 % 

paraformaldehyde. Immunostaining took place within an hour of the samples being obtained. 

After processing, samples fixed in 1 % paraformaldehyde were stored at 4 ºC for up to 48 hours 

prior to flow cytometry analysis. 

 

2.3.5 Whole blood flow cytometry 

The immunostained samples were analysed using a BD FACSCalibur (BD Bioscience) flow 

cytometer to determine monocyte subset distribution. A total of 100,000 events were acquired 

and post-acquisition analysis was performed using FlowJo (version 10) software.  

Monocytes were identified on a forward (FSC) – versus side scatter (SSC) plot and gated to 

analyse expression of CD14 and CD16 fluorescence, in order to distinguish the different subsets 

of monocytes: “classical” CD14highCD16-, “intermediate” CD14highCD16+ and “non-classical” 

CD14lowCD16+ cells. The percentage of each monocyte subset with respect to total monocytes 

was calculated and absolute numbers were obtained based on the full blood count results. Every 

analysis was performed independently by two blinded researchers (Dr Gabriella Passacquale and 

I).   
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In a subgroup of 10 participants, Dr Gabriella Passacquale repeated measures of monocyte 

subset cell count on 2 consecutive measurements, 2 days apart and before immunisation 

administration, in order to assess variability in monocyte subset cell count in the absence of any 

intervention (immunisation either in the presence or absence of pharmacological treatment). 

Such an analysis showed inter-assay variation of <2 % for all the different monocytic subsets. 

Moreover, our gating strategy for monocyte characterisation (which was based on a FSC-versus 

SSC monocyte profile) was directly compared with a flow cytometry methodology that also 

included the pan-monocytic marker antibody allophycocyanin (APC)-mouse anti-human CD86, 

in the antibody panel 228. In this case, cells with a typical monocytic FSC versus SSC profile and 

positive to CD86 staining were gated to analyse CD14 and CD16 expression.  

Prevalence of the different monocyte subpopulations obtained with the two gating strategies 

were analysed on SPSS (version 23) to calculate the intraclass correlation coefficient (ICC) using 

an absolute agreement definition. The ICCs were 0.961 (95 % CI: 0.859-0.989; p<0.0001), 0.924 

(9 5% CI: 0.711-0.980; p<0.0001) and 0.915 (95 % CI: 0.695-0.977; p<0.0001) for the classical, 

intermediate and non-classical subset respectively; Figure 2.1.  

In order to increase robustness of data, we also analysed the level of CD16 expression on 

monocytes using a normalised median fluorescence intensity (nMFI) strategy, in agreement with 

previously published methods used to monitor changes in cell immunophenotype in repeated 

measures 229. A representative analysis of flow cytometry data is shown in Figure 2.1. 
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Figure 2.1: Flow cytometry analysis 

As a validation study of our methodology, a comparison was carried out between the gating strategy 

for monocytes used in the current study (panel A, technique 1) and the use of a pan-monocytic marker, 

namely CD86, (panel B, technique 2).  

In ‘Technique 1’, monocytes were identified based on their scatter properties using an autogating tool 

(as shown in the FSC vs SSC plot, A1). In ‘Technique 2’, they were initially identified as CD86+ cells using 
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manual rectangular gating (B1) followed by a SSC vs FSC dot plot to further gate monocytes with a 

typical scatter property using an autogating tool (SSC vs CD86 plot, B2). Within the gated populations 

(A2, B3), CD14high and CD14low monocytes were identified, with “high” denoting an expression of CD14 

approximately 100-fold higher and “low” as 10-fold higher than the isotype, as underlined in the 

corresponding histograms. Similarly, positivity for CD16 was evaluated based on the isotype control (in 

grey). The prevalence of each monocyte subset, obtained using a rectangular gating strategy, was 

calculated over the total monocytes. Data (median with IQR) are reported in the graph (C, classical 

CD14highCD16- in black, intermediate CD14highCD16+ in red and non-classical CD14lowCD16+ in blue). A 

high level of concordance between the two strategies was noted, as evidenced by an intra-class 

correlation coefficient (ICC) of 0.961 (95 % CI: 0.859-0.989; p<0.0001), 0.924 (95 % CI: 0.711-0.980; 

p<0.0001) and 0.915 (95 % CI: 0.695-0.977; p<0.0001) for the classical, intermediate and non-classical 

subsets respectively. The correlation analysis (Spearman’s correlation analysis) between the two 

techniques is graphed in D. Both gating strategies enabled restriction of analysis to the CD14+ 

population thus excluding potential interference from cell types such as neutrophils (blue, typically 

CD14-CD16high), and a subpopulation of lymphocytes (green, CD14-CD16low, likely NK cells) that are 

shown in the side panels (A3, A4) and overlaid with the analysed monocytes (black) and isotype control 

(grey).  

Dot plots representative of untreated and treated participants are shown in panels E and F respectively.    

Since significant differences between groups were observed in the prevalence and cell number of 

CD14highCD16- (black) and CD14highCD16+ (red) subsets, the level of CD16 expression was also specifically 

analysed within the CD14high population using a normalised  median fluorescence intensity (nMFI) 

strategy. The histograms (G and H) show overlay of the baseline (empty histogram) and post-

immunisation (filled histogram) intensity of fluorescence for CD16 of the stained samples (red). Also 

shown are the fluorescence levels of the antibody isotype controls (in grey, with dotted histogram and 

filled histogram for baseline and post-immunisation samples respectively). The median fluorescence 

intensity (MFI) calculated in CD14high monocytes at baseline (pre) and post-immunisation (post) were 

normalised by the MFI of the corresponding isotype control as indicated in the figure.   
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2.3.6 Serum clinical biochemistry 

All serum clinical biochemistry was measured by ViaPath laboratory at St Thomas’ Hospital, 

London. Serum creatinine levels were obtained by using the creatininase enzymatic method on 

a Roche C8000 analyser. Liver enzyme and lipid levels were also measured using a Roche Cobas 

8000 analyser. Hs-CRP was measured using a DadeBehring BN2 analyser. Glycosylated 

haemoglobin levels were measured from whole blood samples using a Menanarini Hb9210 

analyser. All of the aforementioned assays were performed by Viapath staff at St Thomas’ 

Hospital.  

 

2.3.7 Enzyme-linked immunosorbent assays 

Enzyme-linked immunosorbent assays (ELISAs) were carried out to measure plasma levels of P-

selectin using commercially available kits (BEK1189, Biospes), as per manufacturer instructions 

(inter-assay variability was found to be <5 %). 

Briefly, 100 µl of either plasma samples or standards ranging from 0 – 2000 pg/ml were loaded 

in duplicate onto a 96-well plate coated with anti-P-selectin polyclonal antibody. The plate was 

incubated for 90 minutes at 37 ºC. The liquid was then removed from the wells and 100 µl biotin-

conjugated anti-human P-selectin antibody was added to the wells.  The plate was incubated for 

60 minutes at 37 ºC and was then washed three times with wash buffer from the kit. 100 µl 

avidin-biotin-peroxidase complex was added to each well and the plate was incubated for 30 

minutes at 37 ºC. The plate was washed five times and 100 µl 3,3',5,5'-tetramethylbenzidine 

(TMB) was added to each well. The plate was incubated at 37 ºC in the dark for 15-30 minutes, 

until various shades of blue colouration could be detected within the standard wells. 100 µl stop 

solution (typically sulphuric acid, at a concentration of around 0.16 M) was added to each well 

to prevent the reaction from continuing, and the colour was observed to change from blue to 

yellow. The plate was subsequently analysed using a microplate optical density reader at 450 

nm wavelength. A standard curve was constructed by plotting the optical densities of the 

standards against the corresponding known P-selectin concentrations; Figure 2.2. Plasma P-



66 
 

selectin concentrations in the different samples were read from the standard curve using the 

respective optical density readings. 

ELISA kits were also used to measure serum levels of CD16a (SEB278Hu; Cloud-Clone Corp.), and 

CD16b (SEB271Hu; Cloud-Clone Corp.) using a similar technique to that stated above, with 

variations based on manufacturer instructions. ELISA kits to measure IL-1β (MBS263843; 

MyBioSource, USA), IL-6 (0Kaa00012_96W; Aviva Systems Biology, USA), and TNF-α (GWV-

SKR066; GenWay Biotech Inc, USA) were used but the cytokine levels in this healthy volunteer 

population were too low to be accurately detected, and thus a Luminex® ultrasensitive cytokine 

multiplex assay was performed instead (see below).  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: A representative standard curve from the P-selectin enzyme-linked 

immunosorbent assay 

The optical density reading (at 450 nm) was plotted against the P-selectin concentration to obtain a 

standard curve, from which sample concentrations were extrapolated.  
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2.3.8 Luminex assay 

A magnetic Luminex® ultrasensitive cytokine multiplex assay (Life Technologies Corporation) 

was performed to measure levels of IL-1β, IL-6 and TNF- in serum. Manufacturer instructions 

were followed.  

Briefly, a custom-made antibody bead solution was vortexed for 30 seconds and then sonicated 

for 30 seconds to prevent the beads from clumping. 25 µl of beads were added to each well in 

a 96 –well plate; the plate was protected from light to prevent photobleaching. The wells were 

washed twice with pre-prepared wash solution (using a handheld magnet underneath the plate 

to keep the beads in place). 50 µl pre-prepared incubation buffer was added to all wells. Either 

100 µl of diluted standards, or 50 µl of assay diluent followed by 50 µl of sample (diluted to 1:100 

with pre-prepared assay diluent) was added to each well and the plate was incubated at room 

temperature for 2 hours on an orbital shaker.  

The liquid was removed and the plate was washed twice. 100 µl biotinylated detector antibody 

was added to each well and the plate was incubated at room temperature for an hour on an 

orbital shaker. The wells were washed twice and 100 µl streptavidin-R-phycoerythrin conjugate 

was added to each well. The plate was incubated at room temperature for 30 minutes on an 

orbital shaker. The wells were washed four times and the plate was subsequently read using a 

Luminex® Flex Map 3D Analyser. 

 

2.3.9 Sample size calculation 

The sample size needed for the study was calculated in accordance with previously published 

data that showed a standard deviation for CD16+ monocytes and total monocytes within a 

healthy population of 5 %, with a difference in means between pre and post-immunisation 

values of 7.5 % 31. Using a minimum detectable difference in means between anti-platelet 

treatments and placebo at the end of the study of 4 %, at power 0.9 and significance level 0.05, 

this yielded a sample size of 15 per group. 
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2.3.10 Statistical analysis 

Statistical analyses were performed using SPSS (version 23) software. A Shapiro–Wilk normality 

test was run for all variables measured in the study. The effect of treatments on monocyte 

subtypes, inflammatory biomarkers (hs-CRP and cytokines), and platelet activation (soluble P-

selectin), which were all found not to be normally distributed, were compared using a non-

parametric analysis of co-variance (rank ANCOVA) with Bonferroni post hoc correction for 

multiple comparison analysis, using baseline values as a covariate. Baseline vs. post-

immunisation comparison of the analysed variables was also analysed within each group by 

Wilcoxon matched-pairs signed-rank test. Associations between variables were assessed by a 

Spearman's correlation analysis. A p value <0.05 was taken as statistically significant. Data are 

expressed as the mean ± standard error of mean (SEM) or median and interquartile ranges (IQR) 

for parametric and non-parametric variables, respectively. 

 

2.4 Results 

2.4.1 Anti-platelet drugs do not influence hs-CRP rise post-immunisation 

General characteristics of the study population stratified across groups are shown in Table 2.1. 

Influenza immunisation induced an acute inflammatory response as evidenced by an increase in 

hs-CRP post-immunisation in all study groups; Figure 2.3. None of the anti-platelet drugs 

modified the rise in hs-CRP in response to immunisation administration; Figure 2.3. 

As above, IL-1β, IL-6, and TNF- levels were measured using a Luminex® assay. There were no 

significant differences between post-immunisation and baseline levels of any of these pro-

inflammatory cytokines in any of the groups; Figure 2.4. 
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1.74  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: High-sensitivity C-reactive protein levels 

Panel A: absolute values of hs-CRP pre- and post-immunisation are shown for all groups. Panel B: the 

percentage change from baseline in hs-CRP is shown for all groups. 
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Figure 2.4: Cytokine levels pre- and post- immunisation 

The absolute values for IL-1β (A), IL-6 (B), and TNF-α (C) at baseline and post-immunisation are shown. 

Data are reported as median with IQR. Rank ANCOVA was used for between-group comparison and 

identified no significant differences. 

 

 

Table 2.2: Pre- and post-immunisation levels of hs-CRP and cytokines  

 Hs-CRP (mg/L) IL-1β (pg/ml) Il-6 (pg/ml) TNF-α (pg/ml) 

 Pre Post Pre Post Pre Post Pre Post 

Group 1 (aspirin 300) 0.40  
(0.18-0.70) 

0.70  
(0.38-1.25) 

70 
(40-123) 

62  
(45-130) 

0.37  
(0.14-0.80) 

0.53  
(0.21-0.64) 

0.50  
(0.43-0.81) 

1.58 
(0.29-3.61) 

Group 2 (aspirin 75) 0.51  
(0.35-1.00) 

1.05  
(0.63-1.65) 

71 
(46-142) 

66  
(63-122) 

0.50  
(0.22-0.96) 

1.12 
(0.41-1.27) 

0.77 
(0.21-1.45) 

0.69 
(0.39-0.74) 

Group 3 (clopidogrel) 0.58  
(0.18-0.93) 

0.65 
(0.48-1.78) 

95 
(48-171) 

79 
(61-102) 

0.87 
(0.38-1.39) 

1.06 
(0.58-2.54) 

0.47 
(0.31-0.53) 

0.41 
(0.26-0.74) 

Group 4 (ticagrelor) 0.63 
(0.28-1.33) 

0.73  
(0.35-2. 58) 

42  
(30-63) 

43 
(35-59) 

1.14 
(0.14-2.54) 

0.50 
(0.29-1.86) 

0.25 
(0.14-0.67) 

0.10 
(0.10-0.57) 

Group 5 (untreated) 0.45  
(0. 38-0.65) 

1.15  
(0.77-1.87) 

65  
(39-115) 

48 
(30-95) 

0.85 
(0.43-1.43) 

0.63 
(0.47-1.59) 

0.62 
(0.54-0.72) 

1.10 
(0.57-1.82) 
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2.4.2 Expansion of intermediate CD14highCD16+ monocytes in response to influenza 

immunisation is attenuated by all anti-platelet treatments 

The baseline monocyte phenotype was similar between groups, with a typical preponderance 

of the ‘classical’ CD14highCD16− subtype (median of 92.7 % of total monocytes) over the 

‘intermediate’ CD14highCD16+ (4.2 %) and ‘non-classical’ CD14lowCD16+ (3.2 %) subpopulations in 

all participants (Figures 2.5-2.6, Table 2.2). Whilst the total monocyte cell count remained stable 

post-immunisation in the whole study population, differences emerged between groups as 

regards the distribution of the different subsets. Results from the participants not treated with 

any anti-platelet drugs showed a significant increase in both percentage (from a median of 3.7 

to 7.8 %; p = 0.0002) and absolute number (from a median of 18.07 to 33.40 cells/µL; p = 0.0002) 

of the CD14highCD16+ subtype; and a concomitant reduction in both the percentage (from a 

median of 91 to 86 %; p = 0004) and cell count (from a median of 443.90 to 399.00 cells/µL; p = 

0.002) of classical CD14highCD16− monocytes was noted. No change in the non-classical 

CD14lowCD16+ population was observed (Figures 2.5-2.6, Table 2.2). 

All of the tested anti-platelet regimes abrogated the above changes in monocyte phenotype 

induced by immunisation. Although no statistically significant differences were observed 

between the treated groups, there was a trend towards aspirin 300 mg exerting a stronger effect 

in limiting the expansion of CD14highCD16+ count post-immunisation (median percentage change 

from baseline was −12.6 in Group 1 vs. +67.3 in untreated; p = 0.0010). Attenuation in the 

CD14highCD16+ increase post-immunisation was also observed in Group 2 (aspirin 75) (median 

percentage increase was 9.3; p = 0.0019 vs. untreated) and, although less pronounced, in Group 

3 (clopidogrel) (median percentage increase was 10.8; p = 0.0024 vs. untreated) and Group 4 

(ticagrelor) (median percentage increase was 16.0; p = 0.0027 vs. untreated). Typical monocyte 

phenotype profiles are shown in Figure 2.7. 
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Figure 2.5: Monocyte subset prevalence 

Graphs A, B and C show the prevalence of each monocyte subset (expressed as percentage over total 

monocytes) at baseline and post-immunisation in the different groups; A = CD14highCD16-, B= 

CD14highCD16+, and C = CD14lowCD16+. 
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Figure 2.6: Monocyte percentage change 

The percentage change from baseline of CD14highCD16−, CD14highCD16+, and CD14lowCD16+ cell count in 

each of the groups is reported in A, B, and C, respectively. 
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Table 2.3: Monocyte subsets expressed in absolute cell numbers 
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Figure 2.7: Typical monocyte phenotype profile 

Comparison of the typical changes in monocyte phenotype profile in a subject who did not receive anti-

platelet therapy (top images) with one who did (bottom images), showing with an increase in 

CD14highCD16+ monocytes and a reduction in CD14highCD16- monocytes post-immunisation in the 

untreated subject. 
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2.4.3 The rise in CD14highCD16+ monocytes in response to immunisation is directly correlated 

with CD16 expression  

CD16 expression, specifically analysed within the CD14high population, was studied using the 

nMFI strategy. Group 5 (untreated) showed a significant rise in monocytic CD16 levels post-

immunisation (median percentage change from baseline was +20.92; p = 0.002 vs. baseline) that 

was abolished by all anti-platelet drugs, with aspirin 300 mg daily appearing to be the most 

efficacious of the treatments in this regard (median percentage increase from baseline in Group 

1 was −2.1; p = 0.006 vs. Group 5; in Groups 2, 3 and 4, it was +0.5, +2, and +1.5 respectively; p 

= 0.018, 0.022, and 0.0021 respectively vs. untreated). Likewise, a strong direct correlation was 

found between the increase from baseline of CD14highCD16+ cell count and CD16 nMFI (r = 0.5; 

p = 0.0005) (Figure 2.8). While attenuating the increase in CD14highCD16+ cells, the anti-platelet 

regimes counteracted the reduction in CD14highCD16− monocytes observed in untreated 

participants post-immunisation (Figure 2.9). The two monocyte subsets showed a strong inverse 

correlation with each other (r = −0.8; p < 0.0001). 
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Figure 2.8: CD14highCD16+ cell count and CD16 normalised median fluorescence intensity 

correlation 

This graph shows the correlation between percentage change in CD14highCD16+ cell count and CD16 

nMFI. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: CD14highCD16+ and CD14highCD16- cell count correlation 

This graph shows the correlation between percentage change in CD14highCD16+ and CD14highCD16- cell 

count. 
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2.4.4 As monocytes acquire a CD14highCD16+ phenotype, there is upregulation of 

polymorphonuclear leucocyte cell surface expression of CD16 

In addition to the observed upregulation of CD16 on circulating monocytes, in Group 5 

(untreated) there was a rise in surface CD16 expression on PMNs in response to the influenza 

immunisation. PMN nMFI increased from 203.50 ± 17.93 to 332.50 ± 54.90 (p = 0.0262). This 

response was counteracted by all anti-platelet drugs, which in fact reduced the level of CD16 

expression on PMNs; see Table 2.3 and Figure 2.10 A.  

When the percentage change in PMN surface CD16 in Group 5 (untreated) was compared to the 

four anti-platelet therapy groups using a multiple comparison analysis, it was found to be 

significantly higher than each of the other groups; see Figure 2.10 A. 

 

2.4.5 As monocytes acquire a CD14highCD16+ phenotype, there is no change in soluble CD16a 

but a reduction in soluble CD16b levels 

As CD16 undergoes shedding, I measured levels of soluble CD16 in serum, using ELISA kits that 

specifically detect either monocyte-derived CD16a or PMN-derived CD16b isoforms.  Soluble 

CD16a levels remained unchanged in all groups; Table 2.3 and Figure 2.10 B. Conversely, soluble 

CD16b concentrations fell from 89.90 ± 11.29 ng/ml to 55.93 ± 7.259 ng/ml post-vaccination in 

Group 5 (untreated; p = 0.0143). This response was counteracted with similar efficacy by all anti-

platelet drugs; see Table 2.3 and Figure 2.10 C. 
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Figure 2.10: A comparison of CD16 levels between visits 1 and 2 

Figure 2.10 shows a comparison of CD16 levels between visits 1 and 2, including PMN cell surface CD16 

expression (A), measured as MFI with flow cytometry, as well as soluble CD16a (B) and CD16b (C) in 

serum. A multiple comparison analysis is shown for graph A, where the mean of Group 5 (untreated) is 

compared with the anti-platelet therapy groups. 
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2.4.6 Modulation of P-selectin is linearly related to the change in monocyte phenotype  

The level of P-selectin post-immunisation in Group 5 (untreated) increased by a median of +17.2 

% (p = 0.039 vs. baseline) (Figure 2.11, Table 2.4). A significant decrease in P-selectin was 

observed in participants on aspirin 300 mg (median percentage change from baseline was -30.7 

% in Group 1; p = 0.003 vs. baseline and p = 0.007 vs. untreated) and aspirin 75 mg (-34.7 % in 

Group 2; p = 0.011 vs. baseline and p = 0.002 vs. untreated). 

Treatment with clopidogrel led to a median change from baseline of P-selectin of 3.3 % (p = 

0.463 vs. baseline and p = 0.388 vs. untreated). Conversely, there was a significant rise in P-

selectin of 16.71 % (p = 0.0335 vs. baseline and p > 0.9999 vs. untreated) among participants 

taking ticagrelor, producing similar results to those in Group 5 (untreated). In a combined 

Spearman’s correlation analysis incorporating all study variables, monocyte phenotype changes 

correlated only with changes in P-selectin. Indeed, the increase in P-selectin values was directly 

correlated with an increase in CD14highCD16+ cell count (r = 0.5; p = 0.0003) and a reduction in 

CD14highCD16- absolute number (r = -0.4; p = 0.001) (Figure 2.12). No relationships emerged 

between P-selectin and any of the other variables analysed in the study population, including 

baseline characteristics of the participants, serum biochemistry and haematology results and 

cytokine levels. 
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Figure 2.11: Post-immunisation change in P-selectin levels for each group 

Figure 2.11 shows the percentage change from baseline of P-selectin in each group. The percentage 

changes of P-selectin in Groups 1-4 were compared with that of Group 5 (untreated). 
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Figure 2.12: Modulation of P-selectin correlates with change in monocyte phenotype 

Figure 2.12 shows the correlation between change in P-selectin and change in classical CD14highCD16- 

and intermediate CD14highCD16+ monocyte cell count, respectively. 

 

A 

B r = 0.4658 

p = 0.0003 
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2.5 Discussion 

Atheroma development in humans is accompanied by systemic immunological abnormalities 

that share homologies with autoimmune diseases 230. In the pathophysiology of atherosclerosis, 

the key contributing factors can be grouped into three main phases: (i) accumulation within the 

artery and in blood of immunogenic self-proteins, i.e. oxLDL derived from exposure to 

cardiovascular risk factors; (ii) consequent activation of innate immune mediators (primarily 

myeloid cells, but recent findings also point towards platelets playing a crucial role) through 

engagement of pattern recognition receptors; and (iii) a subsequent adaptive immunological 

response involving T and B cells 231.  

In this context, influenza immunisation provides a valuable experimental model to study the 

dynamics of monocyte phenotype in response to an immunogenic stimulus. In keeping with a 

previous study by this group 31, the current data confirm that immunisation generates a 

reduction in the proportion of ‘classical’ CD14highCD16- monocytes, which mirrors the increase 

in the ‘intermediate’ CD14highCD16+ subset, in peripheral blood samples from participants not 

receiving anti-platelet therapy. This shift in the profile of circulating monocytes towards a CD16+ 

phenotype mimics the inflammatory response that is characteristically seen in patients with 

atherosclerosis 22 188 189 224-227. Whether this shift in monocyte phenotype has functional 

implications as regards disease progression remains unclear.  

It is worth mentioning, however, that CD16 is an important signalling molecule with a key role 

in the innate response to immunogenic stimuli, in light of its demonstrated involvement in the 

phagocytosis of IgG-opsonised external particles by myeloid cell types that subsequently 

stimulates the adaptive immune system 19 232. Of note, polymorphism of CD16a, which is 

specifically expressed on monocytes, has been reported to influence susceptibility to, as well as 

severity of, CAD 20. Indeed, CD16a genetic variants exhibit distinct affinities for IgG molecules, 

with consequent effects on the efficiency of clearance of circulating immunogenic / pro-

atherogenic factors that would otherwise accumulate within the arterial wall to perpetuate 

inflammation 20. On this background, an increase in circulating CD14highCD16+ monocytes might 
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be regarded as a protective anti-atherogenic mechanism. On the other hand, ‘intermediate’ 

monocytes are known to more easily infiltrate the arterial wall compared with ‘classical’ 

CD14highCD16- cells thus suggesting a detrimental effect 31. However, in order to test the pro-

atherogenic relevance of ‘intermediate’ monocytes in human disease, interventional clinical 

trials would need to be conducted to establish whether therapeutic modulation of circulating 

monocyte profile impacts on plaque progression. To our knowledge, no such studies have been 

conducted to date.  

The biomolecular mechanisms underlying CD16 up-regulation on circulating monocytes have yet 

to be established. In the current study we found that induction of CD16 also occurs on PMNs 

post-immunisation in untreated participants, although the level of soluble CD16b, which is the 

isoform specifically produced by PMNs 19, decreased in the peripheral blood. This raises the 

possibility that expansion of the intermediate monocytic subset may be due to increased fixation 

of soluble CD16b (derived from PMNs) on the extracellular surface of circulating monocytes, 

rather than endogenous production of the CD16a isoform. Indeed, monocytes are known to 

absorb soluble CD16b on their extracellular membrane through engagement of CD11b/CD18 

and CD11c/CD18 molecules 233. Further work is required to characterise the mechanisms 

underlying CD16 upregulation in myeloid cells and to ascertain the functional consequences of 

this event in terms of monocyte biology. 

The present data are the first to show a therapeutic modulation of the phenotype of circulating 

monocytes induced by therapies conventionally used in primary and secondary prevention of 

cardiovascular disease, whose potential effect on plaque progression would therefore merit 

consideration in future clinical trials. In our study, all the tested anti-platelet regimes, namely 

the COX-inhibitor aspirin, used at high (300 mg) and low (75 mg) doses, and the P2Y12 antagonists 

clopidogrel and ticagrelor, were able to attenuate the expansion of ‘intermediate’ monocytes in 

the peripheral blood following immunisation. However, there appeared to be differences in 

efficacy between these treatments with respect to modulation of the phenotype of circulating 

monocytes that was found to be linearly correlated with their effectiveness in reducing soluble 
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P-selectin. We have previously shown that expression of P-selectin on activated platelets, and 

the consequent formation of MPA, is a key event in the acquisition of CD16 positivity by 

circulating monocytes 31. In this current study, I did not perform MPA measurement due to 

logistical limitations. While the monocytic phenotype remains stable in blood collected in EDTA 

tubes for up to 4 hours post-venepuncture 234, immediate blood processing is required for a 

reliable assessment of MPA in citrated plasma in order to avoid artefactual in vitro platelet 

activation 192. In this study, plasma separation could be performed soon after blood sampling, 

while the staining for flow cytometric assays was delayed by 30 min following venepuncture. 

Hence, soluble P-selectin was chosen as a platelet marker to provide a more reliable evaluation 

of platelet activity and an indirect measure of monocyte–platelet interaction, particularly in light 

of prior in vitro work conducted by our group that showed a significant rise in soluble P-selectin 

during MPA formation 31 and recent clinical evidence describing a significant contribution of P-

selectin to MPA formation in vivo 235.  

The different effects observed between treatments on the level of P-selectin, particularly 

between the two aspirin groups and the P2Y12 inhibitors, might be attributed to either a different 

pharmacological target, i.e. COX-inhibition vs. P2Y12 antagonism, or different pharmacokinetics. 

Indeed, aspirin achieves a dose-dependent maximum platelet inhibition within 2 hours post-

dose while clopidogrel requires 5 hours to reach a level of platelet inhibition of 60 % following a 

loading dose of 300 mg 86. These differences might have played a critical role particularly in a 

short-term study such as this. As regards to the two different aspirin groups, the slight apparent 

superiority of the 300 mg dose might be ascribed to dose-dependent inhibition of COX-activity 

with a consequent anti-inflammatory action greater than with low doses of aspirin (75 mg) 236. 

However, aspirin 300 mg did not modify the inflammatory biomarkers measured in this study, 

consistent with published evidence demonstrating a clinically relevant anti-inflammatory effect 

of aspirin only occurring at doses of 1 g or greater 237. 

In the large randomised-controlled PLATO trial, ticagrelor was found to be more effective than 

clopidogrel in reducing the incidence of cardiovascular events and all-cause mortality 122 238. 
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Although ticagrelor binds reversibly to the P2Y12 receptor and has a plasma half-life of only 

around 7 hours, it has previously been proven to be highly effective at inhibiting platelet 

activation 239. In our study, however, administration of ticagrelor did not achieve effective 

suppression of P-selectin, and indeed led to similar post-immunisation levels as in the untreated 

participants. The lack of efficacy of ticagrelor here may be related to the fact that we did not 

administer a loading dose (typically one dose of 180 mg, followed by maintenance 90 mg doses 

every 12 hours) in order to avoid further complicating the dosing regimen for this group, who 

already had a relatively high pill burden compared to the other groups. In retrospect, this may 

be responsible for the comparatively poor P-selectin inhibition observed in participants within 

this group, as it is likely that the 90 mg ticagrelor dose resulted in a slower onset of action and 

reduced inhibition of platelet activation stimulated by ADP compared with the loading 300 mg 

dose of clopidogrel.  

Overall, this evidence points towards platelet activity as the main determinant of monocyte  

phenotype shift in these results; this is particularly supported by the direct relationship found 

between amplitude of P-selectin reduction and change in monocyte phenotype in response to 

anti-platelet therapy. Similarity between the two groups of aspirin appears of particular 

relevance in light of the fact that aspirin 75 mg daily is the dose currently recommended for 

cardiovascular prevention, and no superior antithrombotic efficacy has been reported for aspirin 

300 mg daily 240-245.  

The lack of activity of anti-platelet therapy on the non-specific marker of inflammation, hs-CRP, 

suggests a targeted immunomodulatory action. Regarding production of pro-inflammatory 

cytokines, the phenotype of circulating monocytes did not influence the levels of TNFα, IL-1β, 

and IL-6 in our study participants, at least when measured 48 hours post-immunisation. There 

were no significant differences between their baseline and post-immunisation values in any of 

the groups. This is consistent with previously published reports showing an increase in hs-CRP 

in healthy subjects 2 days post-influenza immunisation that can be partly ascribed to an early 

rise in IL-6, but not TNF-α, 1 day post-immunisation 246 247. We cannot therefore exclude a change 
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in levels of inflammatory cytokines among groups at time points other than those analysed in 

the current study, particularly as a rise in IL-6 would be expected to precede the hs-CRP 

elevation. Due to logistical difficulties that resulted in a delay of up to 3 hours between taking 

blood samples and obtaining serum from these, levels of cytokines, and indeed P-selectin,  may 

have been affected. Also, the effect of treatment on monocyte distribution was not analysed 

beyond 48 hours post-immunisation; thus, the total duration of this effect remains to be 

established. 

 

2.6: Conclusion 

I have demonstrated in this proof-of-concept study that anti-platelet therapy can attenuate the 

development of a CD16+ profile by circulating monocytes under pro-inflammatory conditions. 

Modulation of P-selectin levels seems to be a principal factor in determining the extent of this 

pharmacological action on monocytes, possibly linked to an interference in MPA formation; 

however, this remains to be confirmed. Further work is needed to better understand the 

underlying biomolecular mechanisms. A limitation of this study was the lack of inclusion of 

additional platelet biomarkers and functional assays, since these may have highlighted 

modulatory actions of anti-platelet drugs on specific platelet-dependent pathways. Further 

research is also needed to clarify whether the effects observed here with anti-platelet therapy 

translate to clinically useful therapeutic effects on atherosclerosis progression. 
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CHAPTER THREE: 

NETRIN-1 – A POTENTIAL CARDIOVASCULAR 

TARGET 
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3.1 Introduction 

Netrins are a class of laminin-like proteins, which were initially isolated within the central 

nervous system and identified as regulators of embryonic axonal guidance. Netrin-1, by far the 

best-characterised member of the group, has subsequently been found to have a wide spectrum 

of regulatory roles in numerous pathological conditions, given its broad expression in 

inflammatory, vascular and tumour cell types and ability to control their survival, apoptosis and 

migration.  Netrin-1 has become particularly relevant within the field of oncology, where it has 

been shown to be of both diagnostic and prognostic value in many cancer subtypes 248 249, and 

there is much interest in the development of therapeutic antibodies that interfere with netrin-

1-dependent pathways as a potential novel chemotherapeutic approach 250. Netrin-1 is  also 

emerging as a therapeutic target in cardiovascular disease 222, having been shown in pre-clinical 

studies to modulate atherogenesis via the control of arterial inflammation 209, as well as exerting 

cardio- and renoprotective actions 251 252, and in this context, enhancing netrin-1 signalling may 

be desirable. 

To date, there has been limited characterisation of the in vivo pathways that regulate netrin-1 

expression in humans, limiting the development of targeted therapeutic strategies to achieve 

either a stimulatory or an inhibitory effect on the synthesis of this important molecule in the 

clinical setting.  

In vitro experiments in tumour cells have demonstrated that netrin-1 transcription is controlled 

by the NF-B and that NF-B-induced netrin-1 overexpression enhances cell survival 221. 

Subsequently, the existence of two distinct isoforms of netrin-1 has been reported, namely a 

nuclear truncated protein that promotes cell survival and a full-length isoform that undergoes 

secretion and induces proliferation 213.  

Previous work on the vascular endothelium by our group has shown that NF-B activation solely 

enhances expression of the nuclear isoform of netrin-1. On the contrary, pro-atherogenic 

vascular damage reduces the secretion of the endothelial-derived full-length isoform of netrin-

1 that protects against arterial inflammation by repelling myeloid cells and their plaque 
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infiltration 203. Administration of aspirin in a murine model of atherosclerosis counteracted the 

downregulation of secreted netrin-1 leading to a beneficial action in terms of plaque lipid 

content reduction. These experimental findings preceded the recently published clinical 

evidence showing reduced plasma levels of netrin-1 in patients with type 2 diabetes mellitus, 

thus suggesting that systemic pro-atherogenic inflammation downregulates circulating netrin-1 

in patients with cardiovascular disease, possibly via a detrimental effect on the vascular 

endothelium 253.  

In the current study, I investigated the effect of systemic inflammation on the circulating level 

of netrin-1 in relation to vascular function, and explored the therapeutic potential of aspirin in 

modulating netrin-1 in vivo in healthy subjects.  

 

3.2 Hypothesis and aim 

It has previously been demonstrated in animal models that aspirin preserves the synthesis of 

endothelial-derived netrin-1 under pro-inflammatory / pro-atherogenic conditions, thus 

reducing arterial inflammation. I explored the effect of aspirin on circulating netrin-1 levels in 

healthy volunteers and in the presence of endothelial dysfunction to test the hypothesis that 

anti-platelet therapy modulates netrin-1 levels in the presence of systemic inflammation. 

 

3.3 Methods 

3.3.1 Participant recruitment 

This was a post hoc study conducted on samples from 76 healthy volunteers previously recruited 

at Guy’s and St Thomas’ NHS Foundation Trust who underwent two separate clinical studies, 

and for whom serum samples were still available. All participants were aged 18 years or older 

(median: 31 years; IQR 25 - 38), had no significant past medical history, were not taking regular 

medications (aside from the combined oral contraceptive pill), and had not taken anti-platelet 

or anti-inflammatory drugs in addition to the study medications described below. 
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Cohort One comprised 36 participants from the clinical study described in Chapter Two of this 

thesis, wherein influenza immunisation was used as an experimental model of mild 

inflammation to evaluate the effect of different anti-platelet regimes on a number of 

inflammatory biomarkers, including cytokines, monocyte phenotype, and hs-CRP 18. Serum 

samples were collected before and 48 hours after receiving the seasonal influenza vaccine, and 

in the presence of one of the following treatment regimens:  

 

Group 1 aspirin 300 mg once daily (n = 9) 

Group 2: aspirin 75 mg once daily (n = 9) 

Group 3: clopidogrel with an initial loading dose of 300 mg followed by a further dose of 75 mg 

24 hours later (n = 9) 

Group 4: untreated participants (n = 9; serving as controls) 

 

We did not include data from participants who had been treated with ticagrelor in the original 

study, due to relatively poor platelet inhibition with this anti-platelet agent, which was 

demonstrated by an inability to suppress P-selectin levels in response to inflammation (see 

Chapter Two).  

Cohort Two comprised a separate group of 40 healthy volunteers. Participants were previously 

recruited into a clinical study which set out to identify novel biomarkers of aspirin resistance 

following 28 days of treatment with aspirin 300 mg once daily 254. Table 3.1 shows the pooled 

baseline characteristics of all participants from Cohorts One and Two. 

The clinical studies into which the participants were recruited had been reviewed and given 

favourable opinion by the NRES London—Dulwich Research Ethics Committee (ref. number 

13/LO/1664; South London network study identification number 16644) and the Riverside 

Research Ethics Committee, London, UK (ref. number 07/Q0401/1) and registered on the UK 

Clinical Research Network Portfolio. All participants gave informed consent. The studies were 

performed conforming to the Declaration of Helsinki. 
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3.3.2 Collection of serum 

For Cohort One participants, 12 ml serum was collected using methods described in Chapter 

Two. For Cohort Two participants, 7 ml whole blood was collected into a tube containing a serum 

gel separator and 10 μg/ml indomethacin was added to the tubes to inhibit further activity of 

the COX enzymes. The whole blood collection and preparation for Cohort Two subjects was 

performed by Dr Timothy Goodman, whilst I collected and prepared all whole blood samples for 

Cohort One.  

 

3.3.3 Enzyme-linked immunosorbent assays 

ELISAs were carried out to measure serum and urine levels of netrin-1 using commercially 

available kits (SEB827Hu, Cloud-Clone Corp.), as per manufacturer instructions (inter-assay 

variability was found to be <5 %).  

Briefly, 100 μl netrin-1 standards (0 - 2000 pg/ml) and neat serum or urine samples were added 

in duplicate to a 96-multi-well plate pre-coated with an antibody specific to netrin-1. Following 

incubation for 2 hours at 37 ºC, 100 μl biotin-conjugated polyclonal antibody specific for netrin-

1 was added to each well and the plate was incubated for 1 hour at 37 ºC. The plates were 

washed and subsequently incubated with 100 μl avidin conjugated to horseradish peroxidase 

for 30 minutes. The plates were washed again and 90 μl TMB substrate was added to the wells. 

After 10 minutes, 50 μl 0.16 M sulphuric acid was added to the wells to stop further colour 

change. The plates were analysed using a microplate optical density reader at 450 nm 

wavelength. A standard curve was constructed by plotting the optical densities of the standards 

against the corresponding known netrin-1 concentrations. Serum netrin-1 concentrations in the 

different samples were read from the standard curve on the basis of their optical density 

readings; Figure 3.1. 

ELISA kits were also used to measure serum levels of PGE2 (ID: MBS007171, MyBioSource, Inc., 

USA), TXB2 (ID: CSB-E08046h, Cusabio, China), pepsinogen I (ID: CSB-E17538h; Cusabio, China), 

renin (ID: E-EL-H0119, Elabscience), VCAM-1 (ID: DVC00, R&D Systems, UK), ICAM-1 (ID: 
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850.540.096, Diaclone, France), myeloperoxidase (MPO; ID: BMS2038INST; eBioscience, 

Austria), and E-selectin (ID: CSB-E04540h, Cusabio, China), in addition to urinary levels of 

cysteinyl leukotriene (ID: 10009291; Cayman Chemical Company, USA) using a similar technique 

to that stated above, with variations based on manufacturer instructions. Urinary TXB2 levels 

were measured for Cohort 2 participants by Dr Tim Goodman, using a commercially available kit 

(ID: 501020; Caymen Chemical Company, USA). 
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Figure 3.1: A representative standard curve from the netrin-1 enzyme-linked immunosorbent 

assay 

The optical density reading (at 450 nm) was plotted against the netrin-1 concentration to obtain a 

standard curve, from which sample concentrations were inferred. 

 

 

 

 

3.3.4 Serum biochemistry 

Methods for measuring serum renal profiles and lipid levels were described in Chapter Two of 

this thesis. Hs-CRP was measured by Quintiles Drug Research Unit laboratories, London. 

 

3.3.5 Measurement of serum salicylate levels 

Serum salicylate levels were measured by Dr Timothy Goodman and Professor Anthony 

Wierzbicki using a Roche Cobas Fara automated analyser at St Thomas’ Hospital, London. 5 μl of 

calibrator, control, blank (double-distilled water) or sample was added to a cuvette. Next 75 μl 
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nicotinamide adenine dinucleotide reagent was added to each sample or blank. The reaction 

was then activated through the addition of 150 μl salicylate hydroxylase and the absorbance at 

340 nm of each reaction mixture was measured. 

 

3.3.6 Calculation of creatinine clearance 

The Cockcroft-Gault equation, ((140 – age in years) x (weight in kg) x (0.85 if female)) / (72 x 

creatinine in µmol/l) was used to calculate creatinine clearance. 

 

3.3.7 Western blotting 

Western blotting of serum samples was performed with both rat anti-netrin-1 and goat anti-

netrin-1 primary antibodies as previously described 203. Prior to use, serum was treated, as per 

previously reported methodology 255, for lipid, IgG and albumin depletion. Briefly, samples were 

centrifuged for 15 minutes at 15000 x g at room temperature to remove the lipid component; 

IgG depletion was subsequently performed on the delipidated serum with a Protein G Sepharose 

bead suspension (10278424, GE Healthcare Ltd, UK), and was followed by centrifugation in cold 

ethanol to remove the albumin-rich serum fraction 255.  

Proteins were subsequently re-suspended in radioimmunoprecipitation assay buffer and their 

concentration measured by bicinchoninic acid assay; section 3.3.8. 10 mcg of each protein 

sample was separated on a SDS-PAGE gel (10 % acrylamide), and transferred to a polyvinylidene 

difluoride membrane. After 1 hour blocking in phosphate buffer saline containing 5 % milk / 0.1 

% Tween-20, the membranes were probed with either rat anti-netrin-1 or goat anti-netrin-1 

antibodies (both 1:100 in blocking solution; R&D System), for 2 hours at room temperature. After 

washing, membranes were incubated with goat anti-rat or donkey anti-goat secondary 

antibodies as appropriate (1:2000; Cell Signalling, UK). Bands were detected with enhanced 

chemiluminescence reagent on Hyperfilm (Amersham Biosciences, UK).  
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3.3.8 Bicinchoninic acid protein assay 

BSA standards were prepared from 2 mg/ml solution (ID: 500-0206, Bio-Rad) as follows: 

 

BSA mg/ml 0.0 0.1 0.3 0.6 0.9 1.2 1.5 1.8 2.0 

Volume of 2 mg/ml stock (µl) 0 25 75 150 225 300 375 450 400 

Volume of RIPA buffer 500 475 425 350 275 200 125 50 0 

 

10 µl of either standards or serum samples were added to each well of a 96-well plate. 

Bicinchoninic acid working solution was prepared by combining Reagent A (sodium carbonate, 

sodium bicarbonate, bicinchoninic acid and sodium tartrate in 0.1 M sodium hydroxide) and 

Reagent B (4 % cupric sulphate) in a 50:1 ratio (reagents from Thermo Scientific), and 200 µl of 

this was pipetted into each well. The plate was incubated for 30 minutes at 37 ºC and then 

analysed using a microplate optical density reader at 490 nm wavelength. A standard curve was 

constructed and the protein concentrations from the serum samples were calculated using this.  

 

3.3.9 Whole blood flow cytometry 

Whole blood was immunostained using the technique described in Chapter 2, with a peridinin-

chlorophyll-protein complex-cyanine 5 (PerCP-Cy5) goat anti-rat netrin 1 antibody (2BScientific, 

UK), in addition to the aforementioned PE-mouse anti-human CD14 and FITC-conjugated anti-

human CD16 antibodies.  

The samples were analysed using a BD FACSCalibur (BD Bioscience) flow cytometer to determine 

monocyte subset distribution. A total of 100,000 events were acquired and post-acquisition 

analysis was performed using FlowJo (version 10) software. Monocytes were identified on an 

FSC versus SSC plot and gated to distinguish the different subsets of monocytes based on CD14 

and CD16 surface expression, and to identify whether netrin-1 was expressed on the monocytic 

cell surface.  
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3.3.10 Measurement of netrin-1 levels in vitro 

Human umbilical vein endothelial cells (HUVEC) were isolated by Dr Virginia Tajadura-Ortega 

from umbilical cords donated by healthy mothers following uncomplicated deliveries using 

previously described methods 256. HUVEC were incubated with PGE2 (ID: 14010; Caymen 

Chemical Company, USA) re-suspended in dimethyl sulfoxide  (DMSO) at concentrations of 10 

nm and 100 nm for 4 hours and for 24 hours by Dr Virginia Tajadura-Ortega. HUVEC incubated 

with equivalent volumes of DMSO were used as control experiments. I subsequently measured 

netrin-1 levels in the cell supernatant from these experiments using an ELISA kit, as described in 

Section 3.3.3. 

 

3.3.11 Statistical analysis 

Statistical analyses were performed using GraphPad Prism (version 6.0) software. Parametric 

data are expressed as the mean ± SEM, whilst non-parametric data are expressed as the median 

with IQR. ANOVA was used to compare percentage variation of each study variable between the 

4 treatment groups in the influenza immunisation study. Baseline and post-treatment values 

were compared within each group using a paired parametric or non-parametric test as 

appropriate. Netrin-1 correlation with the other study variables was analysed by Spearman 

correlation test (since netrin-1 was not normally distributed). A p value of <0.05 was taken as 

statistically significant. 

 

3.4 Results 

3.4.1 Circulating levels of netrin-1 are reduced in the presence of endothelial dysfunction 

Influenza immunisation was previously reported to induce vascular dysfunction in healthy 

volunteers 27 32. In accordance with these data, our study showed an increase in the serum level 

of VCAM-1, which rose from a baseline level of 493.70 ± 44.34 ng/ml to 542.30 ± 49.60 ng/ml 

post-immunisation in participants not treated with anti-platelet medication (Group 4; p = 0.0022 

vs baseline); Figure 3.2. Levels of PGE2, which is known to have a protective effect on the vascular 
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endothelium under steady state conditions 257-260, fell from 320.90 ± 55.04 pg/ml to 189.50 ± 

30.37 pg/ml in the same group of participants (p = 0.0199 vs baseline); Figures 3.3 – 3.4. 

Similarly, there was a significant reduction of 29.25 % in the circulating level of netrin-1, from 

311.90 (IQR 248.00 – 316.30) pg/ml to 220.20 (IQR 202.20 – 287.70) pg/ml at baseline and post-

immunisation respectively, p = 0.0017; Figures 3.3 – 3.4.  

All anti-platelet treatment regimens suppressed this rise in VCAM-1, with the highest degree of 

suppression observed in those taking the daily 300 mg dose of aspirin, although there were no 

statistically significant differences in efficacy between the treatment groups (Figure 3.2). The 

reduction in PGE2 levels post-immunisation was attenuated by aspirin treatment, whilst in the 

clopidogrel-treated group a tendency towards an increase in PGE2 was observed. The changes 

in netrin-1 in response to immunisation followed the same pattern as the PGE2 changes in all 

three treatment arms. An increase in the level of netrin-1 reaching statistical significance was 

observed in the clopidogrel group (20.96 % change from baseline; p = 0.0033 vs untreated), 

whilst aspirin counteracted the suppression of netrin-1 post-immunisation in what appeared to 

be a dose-dependent manner (% change from baseline in Group 1 and Group 2 were -3.06 and 

-17.03 respectively; p = 0.0465 and p>0.05 vs untreated; Figure 3.3)  

Levels of TXB2, a marker of platelet activation and aggregation, fell significantly from 3416.0 ± 

285.7 ng/ml at baseline to 3130.0 ± 244.0 ng/ml post-immunisation in the group receiving 

aspirin 300 mg daily (p = 0.0296). There was an apparent reduction in TXB2 also in those 

participants on aspirin 75 mg daily, however this did not reach statistical significance (p = 

0.2103). Post-immunisation TXB2 levels remained stable in the participants not treated with anti-

platelet agents and in those taking clopidogrel; Figure 3.5. Of note, these TXB2 measurements 

were higher than previously reported TXB2 levels in healthy volunteers (16785341, 22098110), 

possibly due to a manufacturing issue with the standards used for the ELISA.  
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Figure 3.2: Percentage change in vascular cell adhesion protein 1-1 post-immunisation 

Graph to show the percentage change in VCAM-1 levels across groups. 
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Figure 3.3: Percentage change in prostaglandin E2 and netrin-1 post-immunisation 

Panels A and B show the percentage change in PGE2 and netrin-1 levels respectively across groups. P 

values are stated when the difference between pre- vs post-immunisation data is significant. 

 

A 

B 
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Figure 3.4: Prostaglandin E2 and netrin-1 absolute values pre- and post-immunisation 

Panels A and B show the absolute values of PGE2 and netrin-1 levels respectively pre- and post- 

immunisation. 
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Figure 3.5: Percentage change in thromboxane B2 post-immunisation 

Graph to show the percentage change in TXB2 levels across groups. 

 

 

 

3.4.2 Netrin-1 levels are directly related to prostaglandin E2 production 

In a multiple regression analysis of the correlation between netrin-1 levels and all other study 

parameters, including TXB2 and PGE2, as well as the previously measured hs-CRP, cytokines, P-

selectin levels and monocyte cell subset count, I found that changes in netrin-1 levels in response 

to immunisation were linearly and directly related with changes in PGE2 concentration only 

(r=0.6103; p=0.0002; Figure 3.6). No additional significant findings emerged.  

In order to further delineate the regulatory relationship between PGE2 and netrin-1 synthesis, I 

measured netrin-1 levels in Cohort Two – healthy volunteers following once daily treatment with 

300 mg aspirin, which is known to exert an inhibitory action on both COX isoforms when used 

at this dose, for 28 days.  Drug treatment in this cohort, as expected, led to a significant reduction 
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in both TXB2 and PGE2 levels (Figure 3.7). This latter fell from 331.9 ± 69.04 pg/ml at baseline to 

89.99 ±34.29 pg/ml post-aspirin therapy (p = 0.0114).  

There was a mild but consistent reduction in serum netrin-1 from a baseline level of 303.9 (IQR: 

218.4 – 386.0) pg/ml to 246.9 (IQR: 193.2 – 316.2) pg/ml post-aspirin therapy in all study 

participants (p = 0.0012), Fig 3.8. When combining baseline and post-treatment values of all 

study variables, a strong positive correlation was found between netrin-1 and PGE2 levels (r = 

0.3584; p = 0.0015) only; Figure 3.9. The percentage change in netrin-1 was found to be 

negatively correlated with serum salicylate levels (r = -0.5370; p = 0.0100), indicating that the 

reduction in netrin-1 was causally related to aspirin therapy; Figure 3.10. Of note, there was a 

wide variation in salicylate levels between participants, likely representing poor adherence with 

aspirin therapy in some individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Correlation between percentage change in prostaglandin E2 and netrin-1 levels 

post-immunisation 

There was a positive correlation between the percentage change in netrin-1 and PGE2 levels 
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Figure 3.7: Thromboxane B2 and prostaglandin E2 levels pre- and post-aspirin  

Graphs showing the reduction in both TXB2 (A) and PGE2 (B) following 28 days of treatment with aspirin 

300 mg once daily. 

 

 

 

 

 

 

A 

B 



109 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Serum netrin-1 levels pre- and post-aspirin 

Graph showing the reduction netrin-1 levels following 28 days of treatment with aspirin 300 mg once 

daily. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Correlation between netrin-1 and prostaglandin E2 levels 

There was a positive correlation between netrin-1 and PGE2 levels. 
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Figure 3.10: Correlation between percentage change in netrin-1 levels post-immunisation and 

serum salicylate levels 

The reduction in netrin-1 was associated with increased serum salicylate levels. 

 

 

3.4.3 Aspirin-induced inflammatory changes are not responsible for the observed reduction in 

netrin-1 levels  

Serum VCAM-1 remained unchanged from baseline levels of 527.32 ± 15.46 ng/ml to 519.10 ± 

15.76 ng/ml post-aspirin. ICAM-1 and E-selectin were also unmodified, indicating that there was 

no change in the inflammatory status of the endothelium in response to aspirin administration; 

Figure 3.8. Levels of hs-CRP were also not modified; Figure 3.11.  

Leukotrienes are members of the eicosanoid family that are produced at the sites of 

inflammation by numerous cells, including monocytes, as a result of AA metabolism 261. We 

measured urinary cysteinyl leukotriene levels in Cohort Two participants, as a mediator of the 

inflammatory response. Levels were unchanged post-aspirin treatment (baseline 1081.0 ± 110.1 

pg/ml to 984.1 ± 76.35 pg/ml post-aspirin; p = 0.3645), again confirming the lack of inflammatory 

response to aspirin therapy in these healthy subjects; Figure 3.12.  
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In view of the role that netrin-1 plays in monocyte trafficking and the pathophysiology of 

atherosclerosis, I measured MPO levels in Cohort Two participants pre- and post-aspirin therapy. 

MPO is a peroxidase enzyme that is found in the azurophilic granules of neutrophils and the 

lysosomes of monocytes, and plays a key role in their microbicidal activity. The enzyme may 

additionally mediate atherogenesis, via the oxidation of lipoproteins, and has been suggested 

to potentially represent a biomarker of coronary artery disease 262, as well as inflammation. I 

identified no statistically significant change in MPO levels after 28 days of aspirin therapy 

(baseline 1739 (IQR: 1099 – 2715) pg/ml to 870 (IQR: 530 – 2910) pg/ml post-treatment; p = 

0.4105); Figure 3.13.  

Lastly, as long term use of non-steroidal anti-inflammatory drugs, including aspirin, reduces 

prostaglandin synthesis, which is a key component in gastric mucosal defence, I wished to 

reasonably exclude gastric inflammation as a potential cause for the fall in netrin-1. I measured 

serum pepsinogen I levels, as a marker of gastritis that has been shown to rise following NSAID-

induced gastritis 263 and found no significant change from pre- to post-aspirin (baseline 302.5 

(IQR: 271.7 – 477.4) ng/ml to 325.6 (IQR: 260.4 – 413.7) ng/ml post-treatment; p = 0.6737); 

Figure 3.14. 
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Figure 3.11: Change in markers of endothelial dysfunction and inflammation 

There was no change in markers of endothelial dysfunction, VCAM-1 (A), ICAM-(B), or E-selectin (C). Hs-

CRP levels remained unchanged post treatment (D). 
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Figure 3.12: Cysteinyl leukotriene levels pre- and post-aspirin  

There was no significant change in cysteinyl leukotriene levels following 28 days of aspirin 300 mg once 

daily. 

 

 

 

 

 

 

 

 

 

Figure 3.13: Myeloperoxidase levels pre- and post-aspirin  

There was no significant change in myeloperoxidase levels following 28 days of aspirin 300 mg once 

daily. 
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Figure 3.14: Pepsinogen I levels pre- and post-aspirin  

There was no significant change in pepsinogen I levels following 28 days of aspirin 300 mg once daily. 

 

 

3.4.4 The reduction in netrin-1 is not related to renal function 

In view of numerous reports of circulating netrin-1 levels falling in response to renal impairment 

214 264-266, in addition to a previous study showing that long-term use of 300 mg aspirin daily leads 

to a reduction in creatinine clearance in healthy young adults 267, I assessed for potential changes 

in renal function from pre- to post-aspirin treatment in Cohort Two participants that may have 

contributed to the observed reduction in serum netrin-1 levels.  

There were no significant changes in creatinine levels (baseline 73.22 ± 1.36 µmol/l to 72.88 ± 

1.40 µmol/l post aspirin), creatinine clearance (baseline 114.10 ± 3.26 ml/min to 113.69 ± 3.47 

ml/min), or estimated glomerular filtration rate (baseline 95.57 (IQR: 86.80 – 107.00) 

ml/min/1.73 m2 to 96.16 (IQR: 85.54 – 110.00) ml/min/1.73 m2). There was also no correlation 

between netrin-1 levels and any of these measures of renal function. 

Murine ischaemia-reperfusion injury models have shown that down-regulation of circulating 

netrin-1 occurs concomitantly with its up-regulation in tubular cells, leading to increased urinary 

netrin-1 secretion 219 268 and urinary netrin-1 levels are known to be directly correlated with renal 

function and indeed function as a biomarker for renal injury in humans 264. I measured netrin-1 
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levels in the urine of Cohort Two participants and initially identified a reduction in urinary netrin-

1 levels post-aspirin therapy. When these values were normalised for urinary creatinine, 

however, there was no significant change; Graph 3.12. There was also no correlation between 

serum and urinary netrin-1 levels. 

 

 

 

 

 

 

 

 

 

Figure 3.15: Urinary netrin-1 levels pre- and post-aspirin (normalised for urinary creatinine) 

There were no significant changes in urinary netrin-1 levels post-aspirin treatment. Baseline levels were 

126.2 (IQR: 89.50 – 168.80) pg/ml and post-treatment levels were 116.8 (IQR: 100.6 – 178.9) pg/ml, p = 

0.9664. 
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3.4.5 Aspirin administration causes a reduction in serum renin levels 

It has previously been shown that plasma renin concentrations fall upon treatment with aspirin, 

albeit at higher doses than those used in our study 269. A reduction in plasma renin levels has 

also been observed in response to nocturnal administration of low dose (100 mg) aspirin 270. I 

measured serum renin levels in the Cohort Two participants and identified a significant 

reduction post-aspirin treatment. Renin levels fell by 26.97 % from a baseline level of 339.7 (IQR: 

95.91 – 519.4) pg/ml pre-aspirin, to 248.1 (IQR: 84.00 – 416.2) pg/ml post-aspirin, p = 0.0195; 

Figure 3.12. 

 

 

 

 

 

 

 

 

Figure 3.16: Renin levels pre- and post-aspirin 

Graph showing the significant reduction in serum renin levels following 28 days of treatment with 

aspirin 300 mg once daily.  
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3.4.6 Western blotting of serum netrin-1 isolated the truncated isoform only 

To characterise the netrin-1 isoform that was being measured in serum samples by ELISA, I 

performed Western blotting using a rat anti-netrin-1 antibody to specifically target the full 

length, 70 kDa protein, and a goat anti-netrin-1 antibody against the truncated, 55 kDa protein. 

Initially, I was unable to detect any antibody signal (Figure 3.13), however once I treated the 

serum to remove lipids, IgG, and albumin, the netrin- 1 protein was detected. I was only able to 

detect the truncated isoform of netrin-1 in serum samples with either antibody (Figure 3.13).  

 

3.4.7 Netrin-1 was not identified on the cell surface of monocytes 

Flow cytometry was performed to identify cell surface markers, including CD14, CD16, and 

netrin-1. There was no antibody signal from the PerCP-Cy5 goat anti-rat netrin 1 antibody, 

indicating that netrin-1 is not expressed on the monocytic surface. 
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Figure 3.17: Western blotting of serum for netrin-1 

I performed Western blotting of serum to measure netrin-1 levels. Prior to treating the serum to remove 

lipids, IgG, and albumin, the results were uninterpretable (A). Once the serum had been treated to 

remove lipids, IgG and albumin, netrin-1 signal was detected, although only the truncated isoform was 

observed (B). 
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3.4.8 Netrin-1 levels are not modified following exposure of endothelial cells to prostaglandin 

E2 in vitro 

In view of the observed correlation between changes in netrin-1 and PGE2, netrin-1 was 

measured in cell supernatant from HUVEC at baseline and following either 4 or 24 hours of 

incubation with PGE2 at 10 nM and 100 nM concentrations or DMSO. There was no detectable 

change from baseline in netin-1 levels following exposure to PGE2 or DMSO at either time point. 

Further concentrations of PGE2 were not tested, as higher concentrations have been shown to 

stimulate cell proliferation, which would thus render the data uninterpretable 271.  

 

3.5 Discussion 

Prior in vitro work and animal experimentation have demonstrated that a dysfunctional 

endothelium markedly loses its ability to secrete netrin-1, and this compromises the integrity of 

the vascular barrier against inflammatory cell infiltration 203. The current clinical study partly 

confirms these experimental data, whilst offering insight into the biomolecular mechanisms that 

regulate the synthesis of serum netrin-1 in humans. 

Endothelial dysfunction, which is a systemic perturbation of vascular homeostasis characterised 

by impaired endothelium-dependent vasodilation and an associated state of endothelial 

activation, is not only  triggered by pathological stimuli such as cardiovascular risk factors or 

immunological disorders but also occurs as part of physiological host defence mechanisms 272 

273, such as occurs in the context of inflammation. The evidence provided by other authors 

demonstrating endothelial activation induced by influenza immunisation, were confirmed by 

the increased level of VCAM-1 observed in our participants 48 hours post-immunisation, thus 

supporting the validity of the influenza immunisation as an experimental model to study the 

relationship between endothelial dysfunction and circulating levels of netrin-1 in humans. In 

accordance with prior research performed in several animal models of inflammation, I found 

that endothelial activation, as driven by inflammatory stimuli, is also paralleled by a reduction 

in the serum concentration of netrin-1 in healthy subjects. This effect was abolished by all anti-
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platelet treatments and was independent of their ability to inhibit platelet activation or to 

suppress systemic inflammation. Indeed, I have shown the lack of efficacy of both aspirin and 

clopidogrel in modulating the rise in hs-CRP with this experimental model of inflammation in 

data presented in Chapter Two. Moreover, whilst aspirin 300 mg exerted the strongest inhibition 

on platelet activity, as evidenced by a more effective suppression of P-selectin and TXB2 in 

response to vaccination compared to clopidogrel, this latter was better at restoring netrin-1 

synthesis in the peripheral blood of our immunised participants. The protective action of all anti-

platelet agents on the vascular endothelium was similar, as demonstrated by their comparable 

effects in terms of suppression of the rise in VCAM-1 induced by immunisation. Aspirin alone, 

however, induced COX inhibition and this was found to account for the changes in the 

production of netrin-1 in both the immunisation study and the 28-day aspirin 300 mg 

interventional study.  

These data demonstrate that netrin-1 reduction, as occurs in the presence of a dysfunctional 

endothelium caused by immunisation, occurs in parallel with PGE2 reduction. In the absence of 

endothelial dysfunction, pharmacological inhibition of the COX enzymes, resulting in reduced 

PGE2 production, also induced a small but significant decrease in netrin-1 levels. The TXA2 

pathway does not appear to be involved in netrin-1 regulation, as modulation of netrin-1, both 

in subjects receiving influenza immunisation and in those receiving high-dose aspirin for 28 days, 

was not related to changes in serum TXB2. Although I measured PGE2 here, I cannot exclude the 

possibility that additional COX-dependent endothelium-derived prostanoids, such as PGI2, that 

generally follow the same expression pattern in healthy endothelium 274, would show a similar 

association with netrin-1 under these experimental conditions. However, considering the prior 

demonstrated modulatory effect of netrin-1 on COX-2 expression and PGE2 synthesis, it is 

intriguing to note that there is a regulatory link between COX-activity, COX-dependent 

prostaglandin production, and netrin-1 that may have important functional and therapeutic 

implications. Numerous studies have demonstrated that PGE2 is protective against endotoxin 

injury, and promotes endothelial barrier enhancement 257-260 275 276 as well as cell survival 277 278. 
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PGE2 additionally has somewhat contradictory roles as both a direct mediator of early-stage 

inflammation and a suppressor of non-specific inflammation via modulation of IL-10 and pro-

inflammatory cytokines 279. The observed reduction in PGE2 in response to immunisation was 

abolished by all anti-platelet therapy regimes, likely due to their beneficial effect on the vascular 

endothelium that, in turn, preserved its ability to synthesise protective vasoactive molecules 

and / or reduced PGE2 consumption. 

Local levels of PGE2 derive from both its synthesis and degradation rates. Of note, there was a 

tendency towards an increase in PGE2 levels in those taking clopidogrel, which may be related 

to the suppression of endothelial activation driven by the anti-platelet drug, without the 

additional effect of COX inhibition and subsequent reduced prostanoid production, which occurs 

with aspirin therapy.  

The anti-inflammatory action exerted by anti-platelet agents on the vasculature that emerged 

in this study could partly be ascribed to their ability to suppress expansion of the pro-

inflammatory monocytes that we have previously demonstrated in this human model of 

inflammation 18. Several elements of discordancy were noted in this clinical study compared to 

previous research from our group in animal models of atherosclerosis treated with the same 

anti-platelet agents 203.  The superior effect of aspirin over clopidogrel in counteracting netrin-1 

reduction in atherosclerotic mice was not confirmed in this clinical study; rather, clopidogrel 

demonstrated a better ability to maintain circulating levels of netrin-1 under pro-inflammatory 

conditions in humans. This discrepancy may be attributable to the distinct modulation of the 

tested anti-platelet agents on PGE2 production, which has emerged as a potential factor 

implicated in the regulation of netrin-1 in human physiological settings.  

Moreover, we were only able to detect the truncated isoform of netrin-1 in the peripheral blood 

of our healthy subjects, whilst previous in vitro experiments on endothelial cells reported a 

specific action of aspirin exerted on the full-length secreted isoform of the protein through an 

epigenetic modification of chromatin. The possibility that lack of expression of full-length netrin-

1 is due to the phenomenon of protein truncation occurring in human serum cannot be 
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excluded. Furthermore, one of the limitations of the immunisation arm of this study was that 

serum samples were only available from two time-points, 48 hours apart, and we therefore have 

not established whether similar trends in netrin-1 and PGE2 levels would have been present in 

an earlier stage of the inflammatory response and how the relationship between the two 

markers would have progressed until resolution of inflammation. 

Further analysis of our group’s previously published in vitro data from human endothelial cells 

in fact revealed that stimulation of cells with aspirin alone (in the absence of TNF as a co-

stimulatory agent) showed a tendency, albeit not statistically significant, towards a reduction in 

netrin-1 release into serum supernatants compared to non-aspirin-treated cells. In light of the 

new data that have emerged from the current clinical study, it is possible that the aspirin-

induced PGE2 reduction, which was reported in the prior in vitro set of experiments, may have 

accounted for a subtle difference in netrin-1 that only became evident and statistically relevant 

in the in vivo human study here described. Furthermore, the cellular sources of both circulating 

netrin-1 and PGE2 measured in our clinical study, remain to be established. Our primary focus 

was on the vascular endothelium, whose function was assessed by measuring classical 

endothelial-derived adhesion molecules. However, the lack of a direct relationship between 

either netrin-1 or PGE2 and endothelial markers or monocyte subtype cell count implies a 

multicellular source for both molecules. Hence, PGE2 and netrin-1 may also be derived from cell 

types other than endothelial cells, such as inflammatory cells, and these could have contributed 

to the modulation of systemic inflammation and/or activation of the vascular endothelium.  

Interestingly, I observed a reduction in serum renin levels in response to aspirin treatment in 

the Cohort Two participants, who were treated with 28 days of aspirin 300 mg once daily, 

without any apparent effect of the drug on renal function. Renin is produced by the 

juxtaglomerular cells in the kidney, and is secreted as a homeostatic response to reduced arterial 

blood pressure. It has been suggested that aspirin treatment could lead to reduced renin 

secretion due to inhibition of prostaglandin-induced vasodilation, thus resulting in a higher 

baseline blood pressure 267 270. It appears that, in this instance, prostaglandin inhibition by aspirin 
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may have resulted in a subclinical change in vascular tone and renal perfusion, thus reducing 

renin secretion. We also sought to establish whether the observed netrin-1 reduction in Cohort 

Two was related to a change in the status of endothelial activation induced by aspirin treatment. 

Netrin-1 is expressed abundantly throughout the endothelium where it is downregulated by pro-

inflammatory cytokines and shear stress. The same stimuli induce ICAM-1 and E-selectin 

upregulation in endothelial cells 218 220. We found no change in markers of endothelial activation 

or systemic inflammation (as measured by hs-CRP), nor in specific pathways that were linked to 

COX inhibition and netrin-1 suppression, thus effectively excluding netrin-1 reduction being 

explained by a change in inflammatory status. 

PGE2 possesses important immunomodulatory properties that are concentration-related, and 

its levels are regulated by both synthesis, mainly sustained by COX-2 activity, and degradation 

rates 279. Hence, whilst PGE2 upregulation, as driven by NF-κB inducers in the context of an acute 

inflammatory response, has detrimental pro-inflammatory effects on the vasculature by 

enhancing endothelial permeability, a reduced bioavailability of PGE2 may also be damaging the 

endothelium by removing a pro-survival factor. In keeping with this, netrin-1 may represent the 

mediator of PGE2, particularly the truncated isoform that has been mainly related to cell survival, 

at least in cancer cells, further supporting the link between levels of PGE2 and truncated netrin-

1 that we have observed in this clinical study.  

This biomolecular interplay between COX inhibition and netrin-1 may have important 

therapeutic implications. Previous investigators have found that netrin-1 regulates COX-2 

expression within the kidney via NF-κB activation and thus directly modifies PGE2 production in 

a murine model of renal inflammation 221. The amplitude of PGE2 reduction in our immunised 

participants, both treated and untreated with anti-platelet agents, was strongly related to the 

extent of reduction in netrin-1. Similarly, the baseline and post-treatment levels of both markers 

in serum from healthy subjects who took aspirin 300 mg daily for 28 days were strongly 

correlated with one another, confirming the existence of a direct relationship between these 

two parameters. However, our data point towards a potential regulatory role exerted by PGE2 
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on netrin-1 synthesis. The 28-day treatment period with aspirin 300 mg daily primarily targeted 

prostaglandin production through COX-inhibition. The concomitant reduction in circulating 

netrin-1 levels, which occurred in the absence of any inflammatory stimulus (as confirmed by 

stable levels of hs-CRP) and endothelial dysfunction (as demonstrated by unmodified levels of 

endothelial markers), is likely to be secondary to this. The COX-dependent modulation of netrin-

1, with potential interactions with prostanoids, including PGE2, appears intriguing in 

consideration of the emerging role of netrin-1 as a cardiovascular target, as well as the recent 

evidence highlighting the pro-metastatic effect of PGE2 in adenocarcinoma cells 280, and the 

potential beneficial effect that was demonstrated with in vitro experiments using aspirin in this 

cancer subtype, for which netrin-1 overexpression was found to play important roles in terms 

of cell survival and proliferation as well as to have prognostic implications in clinical studies  

 

3.6 Conclusion 

Our data suggest that circulating netrin-1 levels appear to be directly modulated by changes in 

COX-dependent vasoactive molecules, such as PGE2. Given the emerging role of netrin-1 in 

cardiovascular disease and as an oncological target, we believe that further exploration of the 

pathways that control netrin-1 production and its relationship with clinical outcomes may be 

important and may carry potential therapeutic benefit.  
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CHAPTER FOUR: 

THE ROLE OF CD16+ MONOCYTES IN OXIDISED  

LOW-DENSITY LIPOPROTEIN CLEARANCE 
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4.1 Introduction 

Atherogenesis is strongly associated with chronic inflammatory states 8 and patients with 

elevated markers of inflammation have an increased risk of subsequent cardiovascular events 4 

5, indicating that dysregulation of immune function may be one of the key factors involved in 

plaque formation. OxLDL accumulates at sites of atherosclerosis, inducing an immunological 

response with generation of anti-oxLDL autoantibodies by B cells 281 282.  

HMG-CoA reductase inhibitors (statins), which act to reduce circulating LDL levels, are among 

the most commonly prescribed therapies for patients with cardiovascular risk factors 283 

although novel immunomodulatory drugs that reduce synthesis or increase clearance of LDL are 

currently in development 11 12. IgG and IgM autoantibodies against oxLDL have been assessed as 

potential biomarkers of coronary artery disease and whilst associations have been found, there 

is no definitive evidence that they represent independent predictors of atherogenesis or 

cardiovascular events 14 284 and the pathways linking oxLDL to plaque generation remain unclear. 

As shown in Chapter Two, anti-platelet agents are capable of modifying the phenotype of 

circulating monocytes, as denoted by their surface expression of CD14 and CD16 18. CD16 is a 

low affinity Fc γ receptor that is activated upon binding to IgG, thus initiating phagocytosis. 

Polymorphisms of Fc γ receptors for IgG may be associated with increased coronary 

atherosclerosis and it has been hypothesised that variations in these receptors may moderate 

the clearance of IgG antibodies by monocytes and macrophages and thus modify plaque 

formation 20. 

 

4.2 Hypothesis and aim 

Patients with cardiovascular disease are known to have increased levels of circulating 

CD14highCD16+ monocytes 22 23 but it has yet to be established whether this increase contributes 

directly to cardiovascular risk or is instead a protective mechanism that acts, for example, to 

modify oxLDL levels.  
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I evaluated the impact of CD16+ monocyte reduction on the circulating levels of oxLDL and IgG 

anti-oxLDL in the context of a non-atherogenic immunological reaction to test the hypothesis 

that CD16 plays a critical role in the transduction of signalling pathways triggered by oxLDL. 

 

4.3 Methods 

4.3.1 Participant recruitment 

This was a post hoc study conducted on samples obtained from 40 healthy volunteers previously 

recruited at Guy’s and St Thomas’ NHS Foundation Trust, who participated in the clinical study 

described in Chapter Two and for whom serum samples were still available. All participants were 

aged 18 years or older (median: 30.5 years; IQR 24.5 - 38), had no significant past medical 

history, were not taking regular medications (aside from the combined oral contraceptive pill), 

and had not taken anti-platelet or anti-inflammatory drugs in the preceding fortnight. 

Study volunteers received influenza immunisation, which is an established model of mild, 

systemic inflammation 30 and one of the 48 hour treatment regimens listed below. Serum 

samples were collected before and 48 hours after receiving the seasonal influenza 

immunisation, and in the presence of one of the following treatment regimens:  

 

Group 1 aspirin 300 mg once daily (n = 10) 

Group 2: aspirin 75 mg once daily (n = 10) 

Group 3: clopidogrel with an initial loading dose of 300 mg followed by a further dose of 75 mg 

24 hours later (n = 10) 

Group 4: untreated participants (n = 10; serving as controls) 

 

Once again, I did not include data from participants who had been treated with ticagrelor in the 

original study, due to relatively poor platelet inhibition with this anti-platelet agent, which was 

demonstrated by an inability to suppress P-selectin levels in response to inflammation (see 

Chapter Two).  
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4.3.2 Collection of serum 

Serum was collected at baseline and 48 hours later using methods described in Chapter Two. 

Serum was stored at -80 °C for 6-9 months until it was utilised for the experiments described 

below. 

 

4.3.3 Enzyme-linked immunosorbent assays 

ELISAs were performed using commercially available kits as per manufacturer instructions, to 

measure serum levels of oxLDL (ID: STA-369; Cell Biolabs, Inc., USA), MPO (ID: BMS2038INST; 

eBioscience Ltd., UK), and bone morphogenetic protein-4 (BMP-4) (ID: E-EL-H0012; Elabscience, 

USA).  Inter-assay variability of all kits was found to be <5 %. 

Serum IgG anti-oxLDL levels were measured by coating a 96 well plate with copper-oxidised LDL 

at 5 μg/ml in PBS and incubating overnight at 4 °C on a rocker. The plate was subsequently 

washed four times with 200 μl PBS per well. The wells were blocked for 1 hour with a solution 

containing 5 % BSA (Fisher Scientific) and 0.1 % Tween-20 (Sigma) in PBS (300 μl per well). The 

plate was washed twice, as above, and 200 μl serum samples were added to the coated wells 

and incubated for 2 hours at 37 °C. The wells were washed three times with a PBS / 0.5 % BSA / 

0.1 % Tween-20 solution. 200 μl horseradish peroxidase-conjugated rabbit anti-human IgG 

secondary antibody (Sigma-Aldrich, UK) was added to each well (1:2000 dilution in blocking 

buffer) and the plate was incubated for 30 minutes at 37 °C. The plate was washed 5 times and 

90 μl TMB was added to each well, with a subsequent 20 minute incubation at 37 °C. The 

reaction was stopped by the addition of 0.16M sulphuric acid. Absorbance at 450 nm was 

measured using a multi-well plate reader (SPECTRAmax M5; Molecular Devices). 
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4.3.4 Measurement of low-density lipoprotein levels 

Serum LDL measurements were conducted by the ViaPath laboratory at Guy’s and St Thomas’ 

NHS Foundation Trust. OxLDL levels stated in the results section of this chapter are expressed 

as the oxLDL/LDL ratio to adjust for serum LDL levels, as per commonly accepted practice 285 

286. 

 

4.3.5 Monocyte isolation: 

Monocytes were isolated from the peripheral blood mononuclear cells (PBMCs) of subjects using 

a commercially available pan-monocyte isolation kit for magnetic cell sorting (ID 130-096-537; 

Miltenyi Biotec, UK) and a magnet separator kit (MiniMACS Starting Kit ID: 130-090-312; 

Miltenyi Biotec, UK). 

A buffer solution (pH 7.2) was prepared with PBS, 0.5 % BSA, and 2 mM EDTA, and this was kept 

at 4 °C. To prevent capping of antibodies on the cell surface and non-specific cell labelling, pre-

chilled solutions were used throughout the experiment.   

4 ml whole blood was collected in a vacuum-tube coated with EDTA. The blood was diluted with 

an equal volume of 0.9 % saline. 6 ml diluted blood was layered over 3 ml LymphoprepTM solution 

(ID: 07851; STEMCELL Technologies, Canada) in a 15 mm centrifuge tube. The blood was 

centrifuged at 800 x g for 20 minutes at 20 °C to separate the blood components. The PBMC top 

layer was aspirated and transferred to a falcon tube. The cell suspension was centrifuged again 

at 300 x g for 10 minutes at 4 °C; the supernatant was removed and the cell pellet retained.  

The cell pellet was re-suspended in 30 µL of buffer. 10 µL FcR Blocking Reagent was added, along 

with 10 µL of Biotin-Antibody Cocktail. The solution was vortexed and incubated for 5 minutes 

at 4°C. 30 µL of buffer was added, followed by 20 µL of Anti-Biotin MicroBeads. The solution was 

vortexed and incubated for a further 10 minutes at 4 °C.  

The MACS magnetic column was attached to the MACS separator magnet. The column was 

rinsed with 500 µL of buffer and the cell suspension was applied onto the column. The flow-
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through containing unlabelled cells, representing the enriched monocyte fraction, was 

collected. 

The column was rinsed 3x with 500 µL buffer and the unlabelled cells were again collected and 

added to the previous yield.  

 

4.3.6 Stimulation of whole blood and isolated monocytes 

MDA-modified LDL (ID: STA-212; Cell Biolabs, Inc., USA) at a concentration of 100 μg/ml was 

used to stimulate whole blood and isolated monocytes.  

A mouse monoclonal fragment antigen binding (F(ab')2) antibody directed against human CD16 

cells (1mg/ml when reconstituted; Anti-CD16 human mAb 3G8 F(ab')2; ID: ANC165-520; Caltag, 

UK) was used at saturating concentrations 287 288 to specifically block CD16 Fc γ receptor 

activation and thus delineate CD16-dependent pathways.  

 

Whole blood: 

2 ml whole blood was collected in a vacuum-tube coated with EDTA. Four 250 μl aliquots of each 

blood sample were prepared as follows:  

  

Tube 1: Control sample – 250 μl whole blood 

Tube 2: 250 μl whole blood plus 12.5 μl MDA-LDL 

Tube 3: 250 μl whole blood plus 2.5 μl F(ab’)2  

Tube 4: 250 μl whole blood plus 12.5 μl MDA-LDL and 2.5 μl F(ab’)2  

 

The tubes were incubated at 37 °C for 60 minutes and then immediately processed for 

Ribonucleic acid (RNA) isolation. 
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Isolated monocytes: 

Monocytes were isolated, as per Section 4.3.5. Four monocyte suspension aliquots from each 

donor were prepared as follows: 

 

Tube 1: Control sample – 250 μl monocyte suspension 

Tube 2: 250 μl monocyte suspension plus 12.5 μl MDA-LDL 

Tube 3: 250 μl monocyte suspension plus 2.5 μl F(ab')2  

Tube 4: 250 μl monocyte suspension plus 12.5 μl MDA-LDL and 2.5 μl F(ab')2 

 

The tubes were incubated at 37 °C for 60 minutes and then immediately processed for RNA 

isolation. 

 

4.3.7 Ribonucleic acid isolation 

RNA was isolated from whole blood samples (collected in vacutainer tubes coated with EDTA to 

prevent coagulation) using a commercially available QIAamp RNA Blood Mini Kit (ID 52304; 

Qiagen) as per the manufacturer’s protocol. When isolated monocytes were used in place of 

whole blood, the protocol began from Step 2. 

 

Step 1: Cell lysis 

500 μl whole blood was mixed with 2500 μl erythrocyte lysis buffer in a falcon tube, and 

incubated on ice for 20 minutes. The tube was vortexed twice during incubation. The sample 

was then centrifuged at 400 x g for 10 minutes at 4 °C and the red cell supernatant was then 

discarded to retain the leucocyte pellet. 1000 μl erythrocyte lysis buffer was then added and the 

tube was vortexed to re-suspend the cells. Centrifugation was performed for the second time, 

at 400 x g for 10 minutes at 4 °C and the red cell supernatant was discarded.  
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350 μl RLT buffer (a buffer containing a high concentration of guanidine isothiocycanate to aid 

the binding of RNA to the silica membrane of the spin columns) was added to the pelleted 

leucocytes and repeatedly pipetted to re-suspend the cells.  

 

Step 2: Homogenisation 

The lysate was pipetted into a QIAshredder spin column in a 2 ml collection tube and centrifuged 

at 10,000 x g for 2 minutes at 4 °C. The spin column was discarded and the homogenised lysate 

was retained. 350 μl 70 % ethanol was added to the collection tube, and was mixed by repeated 

pipetting. The sample was pipetted into a new QIAamp spin column in a 2 ml collection tube and 

was centrifuged at 10,000 x g for 2 minutes at 4 °C. 

 

Step 3: DNA digestion 

Deoxyribonuclease (DNase) stock solution was prepared by dissolving lyophilized a DNase I 

(1500 Kunitz units) vial (ID 79254, Qiagen) in 550 µl nuclease-free water. 350 µl RW1 buffer (a 

wash buffer containing guanidine salt and ethanol that removes biomolecules from the silica 

membrane whilst retaining RNA molecules was added to the QIAamp spin column. The tube was 

centrifuged at 10,000 x g for 15 seconds at 4 °C.  

10 µl DNase I stock solution was added to 70 µl RDD buffer (a buffer that facilitates on-column 

digestion of DNA) in a 1.5 ml microcentrifuge tube. The tube was gently mixed and then 

centrifuged at 10,000 x g for 5 seconds to collect residual fluid from the sides of the tube. The 

80 µl DNase I mix was pipetted directly onto the QIAamp spin column membrane and placed on 

the benchtop for 15 minutes at room temperature. 

350 µl RW1 buffer was added to the spin column, and this was then centrifuged at 10,000 x g 

for 15 seconds at 4 °C. The flow-through was discarded and the membrane was retained.  
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Step 4: RNA extraction 

The spin column was placed in a new 2 ml collection tube. Ethanol was added to the RPE buffer 

(a buffer to remove residual traces of salts from previous buffers) that was provided with the 

kit. 500 µl of RPE buffer was pipetted into the spin column, which was then centrifuged at 10,000 

x g for 15 seconds at 4 °C. The flow-through and collection tube were discarded. 

500 µl RPE buffer was added to the spin column, which was then centrifuged at 20,000 x g for 3 

minutes at 4 °C. The collection tube and filtrate were discarded and the spin column was placed 

in a new collection tube, which was then centrifuged at 20,000 x g for 1 minute at 4°C to prevent 

any RPE buffer from being retained on the membrane. The spin column was transferred into a 

1.5 ml microcentrifuge tube and 50 µl nuclease-free water was pipetted directly onto the 

membrane. The tube was centrifuged at 8000 x g for 1 minute at 4 °C to obtain the RNA yield.  

RNA content and purity were assessed using a spectrophotometer (NanoDrop, Thermo 

Scientific, UK). 

 

 

 

4.3.8 Copy deoxyribonucleic acid synthesis  

cDNA was synthesised from the RNA samples by using a RevertAid H Minus First Strand cDNA 

Synthesis Kit (ID: K1631; Thermo Fisher Scientific, UK) as per the manufacturer’s protocol. 

 

Step 1: First strand cDNA synthesis 

Aliquots of each RNA sample were diluted with nuclease-free water to achieve a uniform 

concentration in a sterile, nuclease-free microcentrifuge tube, at a total volume of 11.5 µl and 

were kept on ice. 1.5 µl random hexamers were subsequently added to anneal to 

complementary sites on the RNA, thus serving as primers for cDNA synthesis.  

4 µl 5x reaction buffer (250 mM Tris-HCl (pH 8.3), 250 mM KCl, 20 mM MgCl2, 50 mM DTT) was 

added to the tube, followed by 1 µl RiboLock RNase Inhibitor (20 U/ µl). 2 µl of 10 mM 
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deoxynucleotide mix was then added, followed by 1 µl RevertAid H Minus M-MuLV reverse 

transcriptase (200 U/µl), bringing the total volume in each tube to 20 µl. The tubes were mixed 

gently and subsequently centrifuged.  

A 96 well thermal cycler (2920 Thermal Cycler; Applied Biosystems, UK) was used to conduct the 

polymerase chain reaction. The cycler was set to incubate the RNA for 5 minutes at 25 °C 

followed by 60 minutes at 42 °C. The cDNA synthesis reaction was terminated by heating the 

tubes to 70 °C for 5 minutes. 

 

Step 2: Real-time quantitative polymerase chain reaction amplification of cDNA 

A panel of genes related to biomolecular pathways involved in the activity of the adaptive 

immune system and synthesis of osteogenic molecules were studied, including BMPs, matrix 

metallopeptidases (MMPs) and the NLRP3 gene component of the inflammasome oligomer. 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a housekeeping gene. Primer 

sequences are listed in Table 4.1. 
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Table 4.1: Sequence of primers used for polymerase chain reaction 

 

Gene Forward primer (5’ – 3’) Reverse primer (5’ – 3’) 

GAPDH CAAGGTCATCCATGACAACTTTG GGGCCATCCACAGTCTTCTG 

CD16 GACAGTGTGACTCTGAAG GCACCTGTACTCTCCAC 

IL-1β ACAGATGAAGTGCTCCTTCCA GTCGGAGATTCGTAGCTGGAT 

IL-8 ACCGGAAGGAACCATCTCAC GGCAAAACTGCACCTTCACAC 

Inflammasome (NLRP3) TGAAGAAAGATTACCGTAAGAAGTACAGA GCGTTTGTTGAGGCTCACACT 

BMP-2 CCCCCTACATGCTAGACCTGT CACTCGTTTCTGGTAGTTCTTCC 

BMP-4 TGGTCTTGAGTATCCTGAGCG CACTCGTTTCTGGTAGTTCTTCC 

Caspase-1 TGCCTGTTCCTGTGATGTGG CTGGGAAGAGGTAGAAACATC 

c-Myc GGCGAACACACAACGTCTTG TCCGTTTTAGCTCGTTCCTC 

Cyclin D1 GATGGCGATCGTCCTGTCAT ACAGGCCGCTACAAGAAACA 

Beta catenin GTCAGCTCGTGTCCTGTGAA TTCAGGTACCCTCAGGCCC 

Netrin-1 (full length) CCCGGACTTTGTCAATGC GTTGTTGAGGTCGGRGAGGA 

Netrin-1 (truncated) ACTATGCCGTCCAGATCCAC TCTTGAGGGGCTTGATTTTG 

MMP-2 TATTTGATGGCATCGCTCAG GCCTCGTATACCGCATCAAT 

MMP-4 AGGTGGACCGGATGTTCC GGCACTGCAGGATGTCATAG 
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2 µl of the first strand cDNA synthesis reaction mixture (to be used as template for the 

subsequent polymerase chain reaction (PCR) step) was pipetted directly into each of the wells 

of a Rotor-Disc 100 plate (Qiagen). An 8 µl mixture containing 5 μl SYBR green mix (a nucleic acid 

fluorophore stain), 2.6 μl nuclease-free water, 0.2 μl of the relevant forward primer, and 0.2 μl 

of the relevant reverse primer was subsequently added to each well. The disc was sealed using 

a Rotor-Disc Heat Sealer (Qiagen).  

DNA was amplified using a real-time quantitative PCR cycler (Rotor-Gene Q; Qiagen), with 50 

cycles of the following thermal protocol, following an initial 10 minutes held at 95 ºC: 

 

1) 95 ºC for 10 seconds 

2) 58 ºC for 20 seconds 

3) 72 ºC for 10 seconds  

 

Data were analysed using Rotor-Gene Q (Qiagen) software. A typical analysis is shown in Figure 

4.1. 
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4.3.9 Evaluation of monocyte lipid content 

Monocyte subsets were identified according to their surface expression of CD14 and CD16 using 

fluorochrome conjugated antibodies, as per methodology described in Chapter Two. Dr 

Gabriella Passacquale characterised the lipid content within each subset of monocytes by flow 

cytometry, using Nile red (9-diethylamino-5-benzo[α]phenoxazinone) staining to localise and 

quantify intracellular lipid droplets.  

 

4.3.10 Statistical analysis 

Statistical analyses were performed using GraphPad Prism (version 6.0) software. Parametric 

data are expressed as the mean ± SEM, whilst non-parametric data are expressed as the median 

with IQR. ANOVA was used to compare percentage variation of each study variable between the 

4 treatment groups in the influenza immunisation study. Baseline and post-treatment values 

were compared within each group using a paired parametric or non-parametric test as 

appropriate. ANCOVA was used to compare percentage variation of each study variable 

between the 4 groups in the immunisation study. A p value of <0.05 was accepted as statistically 

significant.  

 

4.4 Results 

4.4.1 There is an inverse relationship between circulating oxidised low-density lipoprotein and 

IgG anti-oxidised low-density lipoprotein levels 

A highly significant reduction in baseline circulating oxLDL levels of 10.75 % post-immunisation, 

from 819.00 ± 38.68 ng/ml to 730.20 ± 49.37 ng/ml (p = 0.0015) was observed in participants 

who were not treated with anti-platelet agents. In those taking aspirin 300 mg (Group 1), 

circulating oxLDL levels fell by 10.50 %, from 735.8 ± 39.99 to 658.5 ± 27.68 (p = 0.03), whilst 

remaining unchanged in those taking aspirin 75 mg (Group 2). In participants taking clopidogrel 

(Group 3), oxLDL levels exhibited a non-significant reduction of 15.37 % from 852.70 ± 82.16 

ng/ml to 721.60 ± 74.10 ng/ml (p = 0.079), Figure 4.2. It is worth noting that although the 
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baseline level of oxLDL in this group was apparently higher than other groups, there were no 

statistically significant differences between groups for baseline levels of either oxLDL, IgG anti-

oxLDL. 

There were no significant changes in levels of IgG anti-oxLDL among all groups following 

immunisation (Figure 4.3). The levels of circulating IgG anti-oxLDL measured at baseline (before 

immunisation) in the total population were inversely related to baseline oxLDL levels (p = 0.0011, 

r = -0.4207); Figure 4.4. This inverse relationship was preserved post-immunisation, with a 

negative linear correlation between the percentage change in oxLDL and the percentage change 

in IgG anti-oxLDL; p = 0.0396, r = -0.3268 (Figure 4.4). 
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Figure 4.2: Change in oxidised low-density lipoprotein levels post-immunisation 

Panel A shows the absolute values of oxLDL pre- and post-immunisation. Panel B shows the percentage 

change in oxLDL across groups. 
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Figure 4.3: Change in IgG anti-oxidised low-density lipoprotein levels post-immunisation 

Panel A shows the absolute values of IgG anti-oxLDL pre- and post-immunisation. Panel B shows the 

percentage change in IgG anti-oxLDL across groups.  
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Figure 4.4: Correlation between percentage change in oxidised-low density lipoprotein and 

IgG anti-oxidised low-density lipoprotein levels  

Panel A shows the correlation between baseline levels of oxLDL and anti-oxLDL IgG. Panel B shows the 

correlation between the percentage change in oxLDL and IgG anti-oxLDL post-immunisation.  
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4.4.2 In the absence of inflammation, circulating IgG anti-oxidised low-density lipoprotein 

levels are inversely related to the percentage of CD16+ monocytes 

As described in Chapter Two, the percentage of CD16+ monocytes (specifically, the 

CD14highCD16+ subtype) increased significantly post-immunisation in non-anti-platelet treated 

(Group 4) participants. There was a strong negative correlation between baseline IgG anti-oxLDL 

levels and the baseline total percentage of CD16+ monocytes in the total population (p = 0.0038, 

r = -0.4280), whilst anti-oxLDL IgG was positively correlated with the percentage of CD16- 

monocytes (p = 0.0079, r = 0.3998); Figure 4.5. No correlation was found between either oxLDL 

or anti-oxLDL IgG and the marker of platelet activation, P-selectin, however.  

Baseline levels of oxLDL were not related to monocyte subtype percentage. There was no 

significant correlation between post-immunisation oxLDL levels and CD16+ monocytes in the 

untreated group (p = 0.8929, r = -0.103); nor was there any correlation between oxLDL levels 

and CD16 monocyte distribution in the total population. 
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Figure 4.5: Correlation between levels of IgG anti-oxidised low density lipoprotein and CD16- 

/ CD16+ monocytes 

Panels A and B show the correlation between baseline IgG anti-oxLDL levels and CD16- and CD16+ 

monocytes respectively 
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4.4.3 CD14highCD16+ monocytes have a higher intracellular lipid content than CD16- monocytes 

Evaluation of the in vivo lipid content of the different subsets of monocytes revealed that 

CD14highCD16+ cells are those with the higher amount of intracellular lipid droplets, thus 

suggesting their more avid phagocytosis of oxLDL; see Figure 4.6. 

 

4.4.4 Exposure of monocytes to oxidised low-density lipoprotein leads to induction of the 

inflammasome / IL-1β pathway 

In view of the fact that CD16 is expressed on both monocytes and CD56dim peripheral blood 

natural killer cells, I performed PCR analysis of RNA from both isolated monocytes and whole 

blood in each sample. Results did not differ significantly between the two methods, indicating 

that the observed CD16-dependent outcomes were primarily related to monocytic CD16.  

No association was identified between levels of circulating anti-oxLDL IgG and hs-CRP 18, nor was 

there a relationship between anti-oxLDL IgG and MPO, a peroxidase enzyme that is stored in 

neutrophil granules and is a key part of the inflammatory response. Baseline levels of IgG anti-

oxLDL were, however, linearly correlated with levels of the pro-inflammatory, inflammasome-

mediated cytokines, IL-1β (p = 0.0016, r = 0.4532) and IL-6 (p = 0.0044, r = 0.4902), as measured 

using the Luminex® technique; Figure 4.7. The relationship between anti-oxLDL IgG and the 

inflammasome pathway was further explored by stimulating isolated monocytes with MDA-LDL, 

which led to induction of IL-1β and NLRP3 inflammasome genes (at a rate of 2.30 ± 0.55 and 1.94 

± 0.36 times that of monocytes not exposed to MDA-LDL respectively). An amplification in IL-1β 

synthesis occurred in response to MDA-LDL in the presence of the anti-CD16 F(ab’)2; Figure 4.8. 
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4.4.5: Malondialdehyde-modified low-density lipoprotein stimulates CD16-dependent gene 

induction of osteogenic molecules 

Vascular calcification is directly related to plaque burden 289 290 and many studies have associated 

LDL levels with the presence and severity of vascular calcification 289 291. It has been widely 

demonstrated that inflammasome activation is required in the formation of intra-vessel calcium 

deposits 292 293 and calcified arteries express various regulatory factors, including BMPs 289. To 

further assess the immunomodulatory action of CD16 in the signal transduction pathways 

triggered by MDA-LDL, we stimulated isolated monocytes with MDA-LDL and measured levels 

of osteogenic markers. We found that exposure to MDA-LDL led to induction of BMP-4 RNA 

expression in monocytes at a rate of more than 4 times (4.05 ± 1.95) that of monocytes that 

were not exposed to MDA-LDL. Blockade of CD16 using the anti-CD16 F(ab’)2 inhibited BMP-4 

induction, indicating that the pathway was CD16-dependent; Figure 4.8. 

In light of this finding, BMP-4 protein levels were measured in the stored serum samples 

obtained from the vaccination study using the ELISA technique. The rise in CD16 and reduction 

in oxLDL in the untreated group post-immunisation was found to also be paralleled by a 

significant decrease in BMP-4 levels by 13.5 %, from 1270 (IQR: 1175 – 1563) pg/ml to 1151 (IQR 

852 – 1341) pg/ml (p = 0.0110). All anti-platelet therapy regimens tested counteracted this 

reduction in BMP-4; Figure 4.9. 
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Figure 4.6: Characterisation of lipid content within monocytes 

Panel A shows a typical monocyte phenotype profile using flow cytometry to sort the cells based on 

their CD14 and CD16 surface markers. Panel B shows the same cells now sorted based on their uptake 

of Nile red stain. Panel C shows the MFI of the Nile red fluorochrome for each monocyte subtype. 
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Figure 4.7: Correlation between levels of IgG anti-oxidised low-density lipoprotein and 

inflammasome-mediated cytokines 

Panels A and B show the correlation between IgG anti-oxLDL and IL-1β and IL-6 respectively, as 

measured by ELISA.  
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Figure 4.8: Gene induction following in vitro stimulation of monocytes with 

malondialdehyde-modified low density lipoprotein 

Stimulation of isolated monocytes with MDA-LDL in vitro led to induction of BMP-4 (A), IL-1β (B) and 

NLRP3 (C). Blockade of CD16 using anti-CD16 F(ab’)2 (10 μg/ml) inhibited gene induction of BMP-4 

only, either with or without MDA-LDL. Data were obtained by quantitative real-time quantitative PCR 

and expressed as fold changes compared with unstimulated cells (dotted line) (n=3; * p <0.05 vs 

untreated cells). 
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Figure 4.9: Bone morphogenetic protein 4 levels pre- and post-immunisation 

This graph shows the absolute values of BMP-4 pre- and post-immunisation. 

 

 

 

4.5 Discussion 

It has been hypothesised that the FC  receptor, CD16, may regulate oxLDL phagocytosis, as part 

of the homeostatic immunological response 294. I have explored the potential role of CD16+ 

monocytes in modulating levels of oxLDL and IgG anti-oxLDL autoantibodies in the context of an 

immunogenic response to influenza immunisation, which is known to generate systemic 

inflammation 30. Immunisation has been shown earlier in this thesis (see Chapter Two) to induce 

a rise in CD16+ monocytes, specifically the CD14highCD16+ subset, in the absence of lipid profile 

modifications. 

I found that in healthy subjects, the circulating level of IgG anti-oxLDL was inversely related to 

both circulating oxLDL concentration and the percentage of C16+ monocytes, in keeping with 

the hypothesis that C16+ cells act as scavengers for anti-oxLDL IgG antibodies, forming 

immunocomplexes with modified lipoproteins.  
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In the presence of mild, systemic inflammation induced by influenza immunisation, there was 

an expansion of the CD16+ monocyte subset that was paralleled by a downregulation of oxLDL 

in the non-anti-platelet treated participants, possibly indicating that a higher burden of 

inflammation leads to greater recruitment of CD16 cells to mediate the clearance of pro-

immunogenic molecules, such as oxLDL. Although there was no significant correlation between 

CD16 positivity within monocytes and oxLDL levels post-immunisation in this untreated group, 

the fact that the sample size was small (n = 10) and the reduction in oxLDL, although consistent, 

was small may account for this lack of significance.  

Of note, the post-immunisation attenuation in oxLDL levels observed in the untreated 

participants (Group 4) was also present in those taking aspirin 300 mg daily (Group 1) and 

clopidogrel (Group 3), but not in those on aspirin 75 mg daily (Group 2) despite all treatment 

groups having stable levels of CD16+ monocytes. The observed changes in oxLDL among all 

groups were contrasted by apparently opposite changes in anti-oxLDL IgG levels, although the 

increase in IgG anti-oxLDL did not reach significance. Despite the absence of a significant 

increase in IgG anti-oxLDL post-immunisation, the percentage reduction in circulating oxLDL 

levels was linearly related to the change from baseline of IgG antibodies post-immunisation, 

supporting the theory that IgG anti-oxLDL mediates the clearance of immunogenic lipoproteins 

in the presence of inflammation, and this process may be linked to CD16.  

Furthermore, the reduction in oxLDL observed in two treatment groups (aspirin 300mg daily and 

clopidogrel), may be attributed to the anti-platelet effect of the drugs inhibiting activated 

platelet-induced oxidation of LDL, in the context of acute inflammation 295. Activated platelets 

oxidise LDL molecules via NOX2 activation in the presence of oxidative stress 296 and the 

observed reduction in oxLDL in participants taking either aspirin 300 mg daily or a clopidogrel 

regime (including a loading dose) may represent effective platelet inhibition and thus reduced 

oxidation of lipoproteins. The fact that there was no reduction in oxLDL in the participants taking 

aspirin 75 mg daily (Group 2) could point towards a reduced effectiveness in achieving platelet 

inhibition with the lower dose of aspirin. Indeed, I previously discussed, in Chapter Two of this 
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thesis, the fact that aspirin 75 mg may be less efficacious than aspirin 300 mg both at reducing 

soluble the platelet-activation marker, P-selectin, and at modulating the phenotype of 

circulating monocytes in this model of inflammation 18. 

Evaluation of the in vivo lipid content of the different subsets of monocytes identified that 

CD14highCD16+ cells are those with the higher amount of lipid droplets, suggesting their more 

avid phagocytosis of oxLDL compared with other monocyte subtypes - as other authors have 

previously observed and reported to be independent from conventional scavenger receptors 294.  

As there is a higher number of circulating CD16+ monocytes present in acute inflammation, this 

could also explain the reduction in oxLDL in the untreated group. 

I subsequently assessed the immunomodulatory action of CD16 in the signal transduction 

pathways triggered by MDA-LDL. This latter was found to directly activate the CD16 Fc  receptor 

and to stimulate CD16-dependent gene induction of the osteogenic molecule, BMP-4. In the 

setting of immunisation-induced inflammation, the rise in CD16+ monocyte percentage that was 

associated with the reduction in oxLDL in the untreated group was paralleled by a reduction in 

BMP-4, whilst anti-platelet therapy counteracted the changes in both CD16 and BMP-4. These 

data suggest that CD16 plays a role in the regulation of monocyte/macrophage osteogenic 

pathways in response to MDA-LDL. Given the emerging role of BMPs, particularly BMP-2 and 

BMP-4, in promoting vascular calcification 297 298, modulation of these pathways via CD16 may 

provide a target in the prevention of chronic calcific arteriopathy.  

MDA-LDL also activated the inflammasome pathway, which controls IL-1β and thus IL-6 

production, although this was found to be in a CD16-independent manner. Of note, a slight 

amplification of the IL-1β gene occurred in the presence of CD16 blockade, indicating that CD16 

can cross-block MDA-LDL from binding to other receptors. In Chapter Two of this thesis, I 

previously identified a tendency towards a reduction in circulating IL-1β levels in the presence 

of CD16+ monocyte expansion, although this did not reach statistical significance, which was not 

present in those taking anti-platelet therapy 18.  CD16 is a natural ligand of the CR3 

(CD11b/CD18) receptor 299 that mediates the activation of the inflammasome pathway induced 
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by cholesterol crystals and modified LDL, which is not only implicated in foam cell formation, but 

is also required for T and B cell stimulation and consequent antibody production 300-302. Further 

research is required to establish whether similar changes in inflammasome activation are 

present in chronic inflammatory disease, such as atherosclerosis, and whether reduced CD16 

activity in this context can modulate the accumulation of oxLDL and IgG anti-oxLDL 

autoantibodies and thus modify the amplification of the adaptive immune response mediated 

by the inflammasome pathway. 

 

4.6 Conclusion 

CD16 is an FC γ receptor that is activated upon binding to IgG and may mediate the clearance of 

IgG antibodies against oxLDL. The present data indicate that CD16+ monocytes may regulate the 

clearance of oxidised lipoproteins and their systemic accumulation, possibly through the 

internalisation of circulating oxLDL / IgG immunocomplexes mediated by Fc γ receptors, 

including CD16. Furthermore, CD16 is directly activated by MDA-LDL and up-regulation of this 

biomolecular pathway (consequent to either reduced clearance of immunocomplexes via Fc γ 

receptors and/or abnormal synthesis of oxLDL) may be implicated in the induction of osteogenic 

signalling cascades, potentially leading to arterial calcification.   
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5.1 Introduction  

Until recent years, the pathophysiology of atherosclerosis has principally been described as a 

disorder of lipid storage, and pharmacological therapies have thus primarily been targeted at 

reducing serum cholesterol. As the underlying cellular mechanisms of atherogenesis have been 

gradually elucidated, it has become apparent that chronic inflammation is a key mediator of the 

processes that lead to plaque formation. 

This thesis has explored the potential role of several novel inflammatory biomarkers in the 

pathways governing the development of atherosclerosis and its complications, and provides 

evidence that anti-platelet agents may be beneficial in limiting further disease progression, 

through both their anti-platelet and anti-inflammatory actions.  

 

5.2 Intermediate monocytes as a potential therapeutic target 

The primary focus of this PhD was to assess the role of CD14highCD16+ monocytes in the context 

of an underlying inflammatory process and to ascertain whether the COX inhibitor, aspirin, or 

P2Y12 receptor inhibitors are able to modify the circulating levels of these pro-inflammatory 

monocytes. 

An important finding from my work was that anti-platelet therapy, namely aspirin, clopidogrel 

or ticagrelor, was capable of preventing a rise in circulating CD14highCD16+ monocytes in the 

presence of an inflammatory stimulus. The data obtained from this study was in accordance with 

previous work demonstrating an expansion in the intermediate monocyte subset in the 

presence of acute, systemic inflammation 31, and I have been able to show that all of the tested 

anti-platelet agents were able to counteract this response.  

Part of the rationale behind choosing both P2Y12 inhibitors and aspirin was to ascertain whether 

attenuation of the CD14highCD16+ subgroup was occurring primarily due to an anti-platelet 

effect, an anti-inflammatory effect, or a combination of these factors. The fact that all three 

treatments were effective in suppressing the rise in intermediate monocytes suggests that the 
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effect was primarily related to inhibition of platelet function, particularly as there was no 

reduction in hs-CRP levels post-immunisation in any of the treatment groups.  

Many studies have linked CD14highCD16+ monocytes to increased cardiovascular events 22 225 and 

previous work has shown a correlation between a reduction in this monocytic subset, and a 

decrease in subclinical atherosclerosis in obese patients undergoing rapid weight loss 189 but 

there is no evidence to date that a reduction in circulating CD14highCD16+ monocyte levels, 

without modifying cardiovascular risk factors, will result in attenuation of atherosclerosis. 

Having shown that anti-platelet therapy can suppress the rise in intermediate monocytes in the 

context of acute inflammation, the next step in this area of our research will be to assess 

whether anti-platelet therapy is capable of directly attenuating circulating intermediate 

monocytes in patients with atherosclerotic plaque disease, which could potentially indicate a 

role for these drugs in the long term management of atherosclerosis.  

 

5.3 The role of anti-platelet therapy in modifying biomarkers of cardiovascular risk 

Following on from the above research where I demonstrated that anti-platelet therapy can 

attenuate pro-inflammatory monocyte levels, I went on to assess whether these agents can 

similarly modify other novel biomarkers of cardiovascular risk. Data from the last 15 years 

suggests that traditional indicators of cardiovascular risk, such as LDL, may soon be superseded 

by measures of inflammation 303. Hs-CRP, as a non-specific marker of inflammation, now forms 

part of the standard assessment of cardiovascular risk in asymptomatic adults in the USA 304.  

In view of the emerging role of netrin-1 in both inflammatory pathways and as a novel 

therapeutic target in cardiovascular disease, we selected this protein for further assessment. A 

clinical study previously undertaken by other members of our research group involved 

administering aspirin for 28 days to healthy subjects 254 – there was frozen serum available from 

this cohort and I measured netrin-1 levels in these samples. I identified a small but consistent 

decline in netrin-1 levels in these healthy people following aspirin therapy. Previous work had 

shown that netrin-1 levels fall in the presence of acute inflammation 217 and thus these findings 
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were somewhat unexpected. I subsequently confirmed a reduction in netrin-1 levels in 

participants exposed to an inflammatory stimulus and was ultimately able to establish the 

presence of an interaction between netrin-1 and COX, possibly through COX-derived 

prostaglandin E2. Netrin-1 plays a complex role in leucocyte recruitment and, whilst this work 

has shown that it is possible to modify netrin-1 levels using anti-platelet therapy, whether 

pharmacological up- or downregulation of netrin-1 levels could have potential benefits in a 

clinical setting has yet to be determined.   

Having demonstrated the ability to manipulate the circulating levels of intermediate monocytes 

with anti-platelet agents, I then performed further experiments to determine whether this could 

induce changes in the levels of circulating oxLDL and IgG anti-oxLDL. Although I was unable to 

show a direct link between levels of these two key biomarkers of atherogenesis and monocytic 

CD16 positivity, the data did indicate that CD16+ monocytes may regulate the clearance of 

oxidised lipoproteins, and I have speculated that this may be via the internalisation of circulating 

oxLDL / IgG immunocomplexes mediated by CD16. In view of the differing effects of low-dose 

(75 mg daily) aspirin compared with higher doses of aspirin and with clopidogrel, I hypothesised 

that the latter two therapies were capable of inhibiting activated platelet-induced oxidation of 

LDL but a direct link was not proven and further work will need to be done to ascertain whether 

oxLDL levels can be modified by these drugs in the context of cardiovascular disease. 

 

6.4 Future work 

In view of the fact that atherosclerosis is a chronic, inflammatory process, my PhD has thus far 

investigated whether anti-platelet agents are able to modify the progression of atherogenesis 

via their anti-inflammatory effects.  Having established further information regarding some of 

the complex pathways involved in mild inflammation in healthy people, our next objective will 

be to determine whether the hypothesis that platelet inhibition, achieved via administration of 

anti-platelet drugs, reduces the activation of monocytes and the upregulation of pro-
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inflammatory CD14highCD16+ monocyte expression in patients with cardiovascular risk factors or 

indeed with established cardiovascular disease is correct. 

We are currently in the early stages of conducting a clinical study with the aim of  identifying 

whether anti-platelet therapy is capable of attenuating the expansion of circulating 

CD14highCD16+monocytes in patients with chronic inflammation related to atherosclerosis and, 

if so, whether this might be a potentially useful therapeutic strategy. The study design and 

preliminary data are discussed in Appendix One. 

Once the study proceeds, I hope to produce data that further elucidates the mechanisms 

underlying the attenuation of monocyte CD16+ acquisition following anti-platelet therapy by 

measuring additional biomarkers and conducting platelet function assays. If anti-platelet 

therapy is indeed capable of modifying the circulating monocyte phenotype in patients with 

cardiovascular risk factors, this could have important implications for the pharmacological 

management of atherosclerosis. 

Furthermore, when conducting the clinical study described above I will measure levels of netrin-

1 in patients with established cardiovascular risk factors with the aim of establishing whether 

their baseline levels differ from that of the general population and, if so, whether anti-platelet 

agents are capable of normalising this. Measurement of additional markers of COX function may 

enable a better understanding of how netrin-1 interacts with prostanoids and, given the proven 

role of netrin-1 in monocyte trafficking, could contribute to the development of future targeted 

therapies with the aim of modulating netrin-1 and thus leucocyte migration.  

Additionally, samples from patients with cardiovascular risk or with established atherosclerosis 

will allow us to establish whether alterations in baseline inflammasome activation are present 

in these subjects and to further study the interactions between CD16 and oxLDL / IgG anti-oxLDL 

antibodies. Such data could facilitate the ultimate development of techniques to modify the 

amplification of immune responses that lead to atherogenesis.  

In the future, it is hoped that the work described here may lead to a large-scale long-term 

longitudinal study to definitively ascertain the effect of anti-platelet therapy on atherosclerosis 
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progression. Identification of the molecular mechanisms underlying inflammation-driven 

monocytic CD16+ acquisition and their subsequent interactions with other markers of 

inflammation, including netrin-1 and oxLDL, may contribute to our understanding of the 

pathophysiology underlying atherogenesis as well as novel pharmacological options to interrupt 

the immunological pathways that lead to atheroma formation.  
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Appendix 1.1 Study design 

This study will aim to recruit up to 60 patients with cardiovascular risk factors but no prior 

cardiovascular events from hypertension clinics at Guy's and St Thomas' NHS Foundation Trust. 

Those with underlying cardiovascular risk factors, otherwise healthy, with no prior 

cardiovascular event and asymptomatic for atherosclerotic disease will be screened for 

recruitment. 

Patients will have blood samples taken at baseline and then receive 28 days of treatment with 

aspirin 75 mg once daily, at which point they will undergo further blood sampling. Participants 

will additionally be assessed for increased carotid IMT and/or carotid atherosclerotic plaque 

disease as diagnosed on carotid ultrasound. Those with evidence of carotid plaques will be 

advised to continue on lifelong aspirin and their general practitioners will be informed. 

Carotid ultrasonography will be performed by Dr Ben Yu Jiang at the Clinical Research Facility of 

St Thomas’ Hospital. Carotid IMT will be measured by ultrasonography (Accuson Sequoia 512 

machine with an 8-MHz transducer). IMT is taken as the distance between the blood / intima 

borderline and the media/adventitia borderline, and evaluated on the wall of the common 

carotid arteries bilaterally, specifically in the distal 1 cm of the artery just proximal to the bulb. 

Mean carotid IMT will be measured using a semi-automated computer analysis system, and 

confirmed by taking the mean of three manual readings at 20mm intervals along the CCA. Mean 

values of IMT in the anterior and posterior walls of both arteries are to be recorded for analysis. 

Blood samples will be collected as described in Section 2.3.3. A whole blood sample in EDTA will 

be sent to the Viapath laboratory at Guy's and St Thomas' NHS Foundation Trust to measure 

HbA1c levels and a full blood cell count. Similarly, a serum sample will be sent to Viapath to 

measure renal function, liver function, a cholesterol profile and CRP. I will retain serum and 

plasma aliquots for future use, the preparation of these samples is detailed in Section 2.3.3.  
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In order to assess monocyte phenotype, whole blood will be immunostained, as detailed in 

Section 2.3.4, with the following antibodies: PE-mouse anti-human CD14 (BD Bioscience), 5 FITC-

conjugated anti-human CD16 (BD Bioscience), APC-mouse anti-human CD86 (BD Bioscience). 

The immunostained samples will be analysed using a BD FACSCalibur (BD Bioscience) flow 

cytometer to determine monocyte subset distribution. A total of 50,000 leucocyte events are to 

be acquired and post-acquisition analysis will be performed using FlowJo (version 10) software. 

Cells that are positive for CD86 (a pan-monocytic marker) staining will be used to gate for cells 

with a typical monocytic FSC versus SSC profile, and this population will then be analysed based 

on CD14 and CD16 expression, as previously described in Section 2.3.5; Figure 5.1. The minor 

change in the flow cytometry methodology utilising CD86 to improve the quality of monocytic 

gating has been implemented following feedback from experts in the flow cytometry field, who 

explained that by gating for monocytes using CD14 and CD16 only, we would risk including 

natural killer cells. 
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Appendix Figure 1.1: Flow cytometry analysis 

Panel A shows the gating of cells that were positive for the pan-monocytic stain, CD86. These cells were 

then selected from the monocytic group, as identified on the typical FSC vs SSC plot shown in Panel B. 

Finally, this population of cells were then gated into the respective monocyte populations 

(CD14highCD16- - marked as 1, CD14highCD16+ - marked as 2, and CD14lowCD16+ - marked by 3). 
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ELISA kits to measure the following markers have been purchased: netrin-1 (SEB827Hu, Cloud-

Clone Corp.), PGE2 (ID: MBS007171, MyBioSource, Inc., USA), TXB2 (ID: CSB-E08046h, Cusabio, 

China), VCAM-1 (ID: DVC00, R&D Systems, UK), and ICAM-1 (ID: 850.540.096, Diaclone, France). 

All ELISA experiments will be carried out according to the manufacturer specifications. 

The standard deviation for total pro-inflammatory monocytes measured within a population of 

patients with cardiovascular risk factors and either increased IMT or carotid plaque disease was 

6 % in our pilot data. We therefore calculated a sample size of 20 patients per group for the 

clinical study described above, taking a minimum detectable difference in means between pre- 

and post-treatment of 4 %, with power 0.9 and significance level 0.05. All statistical analyses will 

be performed using GraphPad Prism (version 7.3) software. Parametric data will be expressed 

as the mean ± SEM, whilst non-parametric data will be expressed as the median with IQR. 

ANOVA will be used to compare percentage variation of each study variable between the 3 

treatment groups (aspirin, clopidogrel or untreated) in the study. Baseline and post-treatment 

values will be compared within each group using a paired parametric or non-parametric test as 

appropriate. 
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Participant demographics for the initial four patients recruited into the study are reported in 

Appendix Table 5.1. 

 

Appendix Table 1.1: Participant demographics 

 

 

 

 

 

  Participant Demographics (n = 4)  

Age (years) 62.00 (53.00 – 73.25) 

Sex 2 male, 2 female 

Smoking history 3 ex-smokers, 1 non-smoker 

BMI (weight kg/ height m2) 32.30 (26.85 – 37.22) 

Systolic blood pressure (mmHg) 158 (140 – 165) 

Diastolic blood pressure (mmHg) 95 (84 – 100) 

WCC (x109/l) 5.25 (4.43 – 6.60) 

CRP (mg/l) 0.5 (0.0 – 1.8) 

Triglycerides (mmol/l) 1.20 (0.51 – 2.34) 

HDL (mmol/l) 1.53 (1.16 – 2.08) 

LDL (mmol/l) 2.44 (1.67 – 2.58) 

HbA1c (mmol/mol) 39.5 (37.5 – 49.0) 

Mean IMT (mm) 0.79 (0.18 – 1.01) 
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Appendix Table 1.2: Preliminary data on monocyte subsets in hypertension patients  

Monocyte counts are also expressed in percentages rather than absolute cell counts due to a 

discrepancy with the data (results from the first participant that was studied show higher cell count 

values for the three monocytic subtypes due to larger total number of events being recorded for 

analysis). 

 

 CD14highCD16- % CD14highCD16+ % CD14lowCD16+ % 

Hypertension 

patients (n = 4) 

88.70 (83.70 – 92.35) 5.84 (2.34 – 11.84) 1.22 (0.67 – 1.44) 


