
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Algorithms and Models for Optimal Power Management on Smartphones

Dobson, Richard Mark

Awarding institution:
King's College London

Download date: 06. Oct. 2023



Algorithms and Models for Optimal Power

Management on Smartphones

PhD Thesis

Richard Dobson

May 11, 2014



Abstract

Smartphones are potent mobile devices which are required to operate for ex-

tended periods of time on battery power. In this thesis smartphone power

management issues are addressed using algorithmic techniques.

Firstly, we consider power efficient scheduling for heterogeneous multi pro-

cessor systems that allow dynamic speed scaling. We propose the Virtual Single

Processor (VSP) approach which involves computing and utilising optimal sys-

tem configurations. The VSP is used in combination with an efficient single

processor dynamic speed scaling scheduling algorithm to compute highly power

efficient schedules. We find that there is an average power saving of between

4.4% (2 processor system) and 8.175% (16 processor system) when compared

to an alternative algorithm. Simulations also showed that the VSP approach

reduced the objective function of
∑

Weighted Flow + Energy by 2.31% more

than the best known alternative. This work was published as a full paper at

MISTA 2011.

Secondly, we discuss low energy Field Programmable Gate Array (FPGA)

function mapping. A substantial FPGA power drain is caused by dynamic

switching of the routing edges; this can be vastly reduced by mapping the input

boolean function such that switching activity is minimised. We formulate the

combinatorial optimisation problem, develop a complete neighbourhood func-

tion and apply simulated annealing to minimise cumulative switching. We find

that our algorithm reduces the cumulative switching activity by an average of

27.44% compared to a genetic algorithm. This work appeared at GreenGEC

2013.

Finally, we examine the sleep state management problem in terms of advice

complexity. We begin by showing the advice complexity of the problem is r log s

where r is the number of idle periods and s is the number of sleep states. We

design an algorithm which uses a single bit of advice to solve the single sleep

state problem and show it to be 1.8-competitve. This is 20% better than the

best possible deterministic algorithm. We also show that our algorithm can

be improved by adding more advice but only until we have dlog be advice bits.

Finally, in the case with more than 2 states our algorithm uses 1 bit of advice

to improve on the deterministic algorithm.



Contents

List of Figures 3

List of Tables 4

1 Introduction 6

2 Related Work 10

2.1 Energy and Power in Computing . . . . . . . . . . . . . . . . . . 10

2.1.1 Energy Consumption in Computational Devices . . . . . . 11

2.1.2 Power Reduction . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Power Consumption in Processing Units . . . . . . . . . . . . . . 15

2.2.1 Sleep States . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Dynamic Speed Scaling . . . . . . . . . . . . . . . . . . . 19

2.2.3 Multiprocessor Systems . . . . . . . . . . . . . . . . . . . 28

2.3 Boolean Algebra, Circuits and FPGAs . . . . . . . . . . . . . . . 29

2.3.1 Field Programmable Gate Arrays . . . . . . . . . . . . . . 31

2.4 Optimisation Techniques . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Local Search . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . 38

3 Low Power Scheduling for Power Heterogeneous Multiproces-

sor Systems 43

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Power Heterogeneous Multiprocessor Systems . . . . . . . 45

3.1.2 Low Energy Scheduling . . . . . . . . . . . . . . . . . . . 46

3.2 The Virtual Single Processor . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Power Function . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Our VSP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 52

1



3.4 Using the Virtual Single Processor . . . . . . . . . . . . . . . . . 53

3.4.1 Migratory . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Non-Migratory . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Speed Matching Results . . . . . . . . . . . . . . . . . . . 54

3.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 SA based Power Efficient FPGA LUT Mapping 62

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Move Set and Neighborhood Function . . . . . . . . . . . . . . . 68

4.3.1 Slightly Restricted Boolean Circuits . . . . . . . . . . . . 68

4.3.2 Unrestricted Boolean Circuit . . . . . . . . . . . . . . . . 71

4.4 Simulated Annealing Parameters . . . . . . . . . . . . . . . . . . 75

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Advice Complexity for Sleep State Management 79

5.1 Online Algorithms with Advice . . . . . . . . . . . . . . . . . . . 80

5.2 Sleep States Problem Definition . . . . . . . . . . . . . . . . . . . 81

5.3 Online Algorithms with Advice for Sleep

State Management . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Optimal Advice Complexity . . . . . . . . . . . . . . . . . 82

5.4 A Single Bit of Advice . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Slightly More Advice . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 More Sleep States . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions 95

7 Bibliography 99

2



List of Figures

2.1 A sample of results from Mahesri and Vardhan . . . . . . . . . . 12

2.2 Power consumption of an FPGA circuit [140, 141] . . . . . . . . 14

2.3 Multiple sleep states energy consumption . . . . . . . . . . . . . 18

3.1 A system tree showing the system and processor levels . . . . . . 47

3.2 System speed vs. power consumption for the best case and worst

case processor combinations. . . . . . . . . . . . . . . . . . . . . . 48

3.3 The VSP solution after applying Observation 1 . . . . . . . . . . 49

3.4 The VSP solution after applying Observation 1 & 2 . . . . . . . . 51

3.5 Non-optimal processor configurations used by [72] vs. number of

processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 The percentage energy saving compared to [72] vs. number of

processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Results of a test for a 16 processor system . . . . . . . . . . . . . 59

3.8 Average results from the simulations with and without outliers . 60

4.1 Power consumption of a Xilinx Spartan-3 device [140, 141] . . . . 63

4.2 A: boolean circuit. B: LUT mapping of A. . . . . . . . . . . . . . 65

4.3 A complex partition as a combination of p1 partitions . . . . . . 71

4.4 A circuit adhering to Lemma 3 . . . . . . . . . . . . . . . . . . . 73

4.5 Repeated application of Local Move 2 . . . . . . . . . . . . . . . 75

5.1 Energy consumption of Optimal Algorithm, Lower Envelope and

Sleep Sooner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Reduction in competitive ratio for increasing amounts of advice. 90

3



List of Tables

2.1 Results from Carroll and Heiser [35] . . . . . . . . . . . . . . . . 13

3.1 Randomly Generated Heterogeneous Multiprocessor Systems . . 55

3.2 Results for the randomly generated processors experiment . . . . 56

4.1 In degree and out degree of node types . . . . . . . . . . . . . . . 64

4.2 Restricted in-degree and out-degree of node types . . . . . . . . . 69

4.3 Results Comparison [130, 122] . . . . . . . . . . . . . . . . . . . . 78

4



Acknowledgments

This thesis and the work contained within is the result of several years of work;

there have been many people and organisations who have helped me reach this

point who I would like to thank here. Firstly I would like to thank my supervisor

Dr Kathleen Steinh́’ofel for making this opportunity available to me and for

the support I have received along the way. I have learnt so much over the

past few years and this would not have been possible with out your help and

expertise. I would also like to thank the EPSRC and Nokia UK for funding,

King’s College London for the learning environment and Hong Kong travel grant

and the Department of Informatics for the exciting research environment and

wealth of knowledge contained within.

I am grateful to Professor Andreas Albrecht for sharing his experience sur-

rounding low powered boolean circuit design amongst other topics. I must

also thank Dr Hans-Joachim B́’ockenhauer for his collaboration on the advice

complexity research; it was fantastic to work with such an expert in the area.

Thanks are extended to all who I have worked with throughout my study who

have helped to broaden my research horizons.

I would like to express my gratitude to my examiners Professor Iain Stewart

and Dr Prudence Wong for the time and effort it took to read and examine my

thesis. I thoroughly enjoyed discussing my work during the examination process

and truly appreciate Dr Wong’s extra effort to attend the oral examination

despite difficult circumstances. Along with many useful comments about style

and presentation they also highlighted ways to improve the work for which I am

very grateful.

Heartfelt appreciation goes to my family who have supported me throughout

my life and have offered me many opportunities and chances to achieve my goals.

Finally I thank my wife and best friend Amy: for encouraging me to make the

jump into research, proof reading countless copies of this thesis and her unending

support along the way. I truly could not have done this without you.

Thank you all.

Richard Dobson

5



Chapter 1

Introduction

Since their inception mobile phones have been transformed. Once large, bulky

devices with very limited functionality, they have become sleek, powerful tools

with a plethora of additional utilities; from cameras to web browsers. In 1977

Ken Olsen (co-founder of Digital Equipment Corporation) stated that “there is

no reason for any individual to have a computer in his home”. In contrast to

this statement almost all modern households today contain at least one com-

puter. Access to computers has become a crucial part of everyday life and a

large proportion of individuals now carry a portable computer (in the form of

a smartphone) on their person at all times.

Such is the popularity and prevalence of mobile devices that the number of

mobile phone subscriptions has climbed to an estimated 6.8 billion; almost equal

in number to the global population [142]. Every device both consumes energy

and requires energy to manufacture, cumulatively resulting in a significant level

of expenditure worldwide. Energy is expended by mobile devices in two ways;

operational energy: required for all components from CPUs to screens and

embodied energy: required to research, design and manufacture the device itself.

Reducing operational and embodied energy consumption is an ongoing challenge

and can be affected by multiple factors such as product lifespan, number of

devices manufactured and materials used in the device.

In this thesis we consider the problem of energy efficiency within compu-

tational systems, with a focus on mobile devices. Energy efficiency problems

are receiving a significant amount of research interest as they are very com-

plex problems and of great importance from a number of perspectives. We can

consider the problems’ importance on a number of levels.

6



From a smartphone user’s perspective we know that poor battery life is a very

common complaint. Whilst the technology inside smart phones has advanced

rapidly, battery development has been significantly slower. This has resulted in

a power gap which means that if a user makes the most of their smart phone’s

advanced features such as large touch screens, mobile internet and processor

intensive applications then battery life can be just a few hours. Research which

improves the use of the available power would enable the battery life to be

extended; it would also have the added benefit of reducing the wear on hardware

components. This is because a significant amount of power is converted into

heat which can have a damaging effect on components if it cannot be dissipated

effectively.

Energy efficiency problems clearly have a global environmental importance.

If power consumption can be reduced then less power has to be produced, there-

fore less fossil fuels are used which in turn means less carbon enters the atmo-

sphere. According to most research this is a key cause of global warming and

climate change.

In addition to the environment impact or pollution related to energy pro-

duction we also need to consider the energy supply problem. The number and

density of devices requiring energy is increasing at an alarming rate; this is forc-

ing the total energy consumption of the earth upwards at an unsustainable rate.

If we can ensure that the devices which already exist are as energy efficient as

possible then we will not stifle innovation of or access to computational devices

due to the lack of or cost of energy.

For these reasons and many others we consider energy efficiency problems

to be of the utmost importance. If they are not addressed through research and

innovation it is highly likely that society will face serious energy related issues

in the near future. We hope that the work in this thesis will help to address a

subset of energy efficiency problems.

In this thesis we primarily focus on minimising the ongoing energy consump-

tion but have also considered the impact on embodied energy. Three different

energy efficiency problems are discussed: multi processor scheduling, FPGA

mapping and sleep state management. In the following chapters we consider

their very different characteristics and suggest novel solutions to each.

7



Structure of the Thesis

This thesis is structured as follows. First we give a comprehensive overview of

literature related to harnessing or reducing the energy which computer systems

(with a focus on mobile devices) consume. We begin by discussing how energy

is consumed within a range of computational devices such as mobile phones

and Field Programmable Gate Arrays (FPGAs). We then consider the work

conducted in two of the most promising areas of research. Firstly, algorithms

and approaches which reduce the energy consumption of processing units with

a focus on sleep states and dynamic speed scaling for multi processor systems;

secondly we move onto mapping algorithms which reduce the energy consumed

by the dynamic routing of FPGAs.

In Chapter 3 we consider low energy scheduling for heterogeneous multi-

processor systems which allow dynamic speed scaling. We develop the ‘Virtual

Single Processor’ approach to multiprocessor scheduling which combines a set

of disparate processors in a pareto optimal way according to energy consump-

tion and overall system processing power. This enables us to produce the same

overall processing power as an alternative algorithm [72] whilst consuming be-

tween 4.4% and 8.2% less energy with no reduction in total speed. When a

VSP is combined with a single processor
∑

Weighted Flow + Energy scheduling

algorithm we find that it can bind more tightly to the objective function than

the best alternative [72].

Chapter 4 considers low energy FPGA circuit design. We study the problem

of mapping an input boolean function onto a look-up table based Field Pro-

grammable Gate Array such that the overall energy consumed is minimised.

This is an NP-hard problem and has been subject to much previous study. Our

approach applies local search techniques as these have had success in similar

areas. We find that when compared to a genetic algorithm approach [122] we

can reduce the average switching activity (which is analogous to energy con-

sumption) by an average of 27.44%.

In Chapter 5 we are concerned with the sleep state problem. We consider the

problem in terms of advice complexity, where we have an all knowing adviser

who can deliver information to the algorithm as needed. In this type of problem

there are two goals: firstly to calculate the smallest amount of energy which

is required to reach an optimal solution; and then to know how competitive

an algorithm can be with a limited amount of energy. We solve the first of

these two problems and present an algorithm which uses a small amount of

8



advice to improve on the best known deterministic algorithm. We find that

with just one bit we can improve the competitive ratio to 1.8; more advice bits

can be used to reduce the competitive ratio until we have dlog be advice bits

when the competitive ratio converges onto a sub-optimal solution related to

the characteristics of the power functions of each state. Finally we show that

using a single bit of advice can improve the competitive ratio of the multi-state

algorithm.

In the final chapter we summarise the contributions, outline the possible

directions for future work and conclude the thesis.

Within the three contribution chapters there are large portions of novel

work. The virtual single processor is the first algorithm to consider a multipro-

cessor system as a harmonised unit rather than disjoint processors. This enables

our approach to find solutions that are significantly more efficient than other

approaches. In our FPGA chapter we define the combinatorial optimisation

problem, present a complete local search neighbourhood function and tailor the

simulated annealing algorithm to find very high quality solutions to a NP-hard

problem. In our final chapter we find the advice complexity of the sleep state

management problem, then present a novel algorithm which uses advice and

analyse it to discover it’s time complexity. This work is all new and has been

conducted during the course of the PhD study.

The VSP work has appeared at 2 international conferences initially as an ex-

tended abstract [54] and then as a full paper [55]. We have since been extending

the work to submit to an international journal. The FPGA work has appeared

at an international conference [56] and we are currently working on extending

this approach to other similar problems. Finally, our advice complexity research

is being presented here for the first time but will be submitted later this year.

9



Chapter 2

Related Work

In this chapter we give a comprehensive overview of existing research which has

motivated and inspired the work of this thesis. We outline the fundamental

concepts which underpin the thesis and discuss seminal works and their place

within the academic landscape of low power algorithmic techniques.

In the first section we begin by discussing the motivating factors and breadth

of approaches which can be employed to reduce the power consumption of com-

puter systems. We move on to discuss techniques employed to reduce the energy

consumption of processing units, the penultimate section discusses power reduc-

tion techniques for Field Programmable Gate Arrays and finally we consider the

a number of global optimisation techniques with a focus on Simulated Anneal-

ing.

2.1 Energy and Power in Computing

In this section we discuss the breath of research which has the aim of reducing

the power requirement or energy consumption of computational devices and the

seminal papers which inspired large and dynamic areas of research; we begin by

defining some fundamental terms.

The Oxford English Dictionary [147] defines energy and power as:

Definition 1 Energy: “The power of doing work possessed at any instant by a

body or system of bodies”

Definition 2 Power: “Any form or source of energy or force available for ap-

plication to work”

10



Energy is measured in a variety of units but the SI unit is Joules (J). In

computer science (and throughout this thesis) we are most often referring to

energy in the context of electrical energy. The energy consumption of a computer

system (or constituent component) can be used to refer to the energy which the

system (or component) has used over a period of time. Power is measured

using the SI derived unit watts (W). A watt is defined by the following equation

W = J
s where W is watts, J is joules and s is seconds; therefore power is

energy over time. If we reduce the (average) power consumption of a device

we are in turn reducing the energy consumption of that device. When we have

a fixed energy source such as a battery we wish to reduce the average power

consumption as this increases the length of time the device will be operational.

The above definitions show that energy and power are intrinsically linked;

therefore if research states that the goal is to reduce the energy consumption of a

device then this is much the same as reducing the (average) power consumption.

Therefore we discuss research papers which use either of these terms as the

problems which they each address are strongly linked.

2.1.1 Energy Consumption in Computational Devices

Computational devices require energy to operate: electrical impulses are used

to transfer signals, energy is required to power the CPU, memory and storage

devices in addition, auxiliary input and output devices all demand energy [124].

Mahesri and Vardhan [110] analysed the power consumption of a laptop com-

puter (an IBM ThinkPad R40) and its associated components. They managed

to directly measure the power consumption of a number of components using an

Agilent Oscilloscope and indirectly measure the power consumption of others.

Figure 2.1 is a graph which shows the results for a number of their experiments.

The authors were able to draw a number of interesting conclusions from their

work: firstly the CPU consumes a large proportion of the total energy (> 50%)

especially when a CPU heavy task is being performed; the power consumed

from the display back light is relatively high; and finally the power requirement

of the memory system is relatively low even when it is in high demand.

The CPU has been subject to further research and power modelling as it

has the potential to consume such large amounts of energy, especially when

it operates at higher speeds. Brooks et al. [30] stated the common cube-root

rule which asserts that the power consumption of a processor is equivalent to

P = Sα where P is the power, S is the speed the processor is operating at and

11



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CPU HDD Power 
Supply

Wireless LCD Backlight HDD Memory Graphics Rest of 
System

W
at

ts

Laptop Power Analysis

Idle (no DVS, bright screen) Idle (DVS, bright screen) Idle (DVS, dim screen) PCMark 2002 CPU Test

PCMark 2002 Memory Test PCMark 2002 HDD Write Test PCMark 2002 HDD Read Test

Figure 2.1: A sample of results from Mahesri and Vardhan

α is a constant which the authors suggest to be 3 but is defined by the specific

processor and often falls in the range [2, 3].

Carroll and Heiser [35] analysed the power consumption of a typical smart

phone (circa 2009) in terms of components. The researchers physically attached

voltage and current measuring equipment to the individual components of the

Openmoko Neo Freerunner but only to the battery terminals of the HTC Dream

and Google Nexus One; this is because the electrical schematics are available

for the Freerunner and not for either the HTC or Nexus. They found that the

Freerunner consumed 68.8 mW whilst in suspended state, with the GSM modem

requiring 31mW which is by far the largest proportion of the power consumption.

When the device was placed in idle mode it demanded 268.8 mW; the graphics

used the most power 82mW but the GSM (59mw), LCD (48mW), CPU (37mW)

and audio (28mW) all consumed significant amounts of power. The authors

performed several actions to find out which components consumed the most

and least power when different tasks were being performed. When writing

to the internal NAND flash memory they found the CPU used 99mW, when

using the WiFi and GSM modules the energy consumption was 720mW and

630mW respectively and when making a phone call the GSM module required

12



820mW. The authors compare the 3 smartphones using a set of macro and micro

benchmarks; the results are shown in Table (2.1). Carroll and Heiser’s analysis

states that the components which use the most power are the GSM module

and the display (including the LCD and graphics processing) with the processor

using a smaller but still significant proportion of the energy.

Benchmark
Average System Power (mW)
Freerunner G1 N1

Suspend 103.2 26.6 24.9
Idle 333.7 161.2 333.9

Phone Call 1135.4 822.4 746.8
Email (cell) 690.7 599.4 -

Email (WiFi) 505.6 349.2 -
Web (cell) 500.0 430.4 538.0

Web (WiFi) 430.4 270.6 412.2
Network (cell) 929.7 1016.4 825.9

Network (WiFi) 1053.7 1355.8 884.1
Video 558.8 568.3 526.3
Audio 419.0 459.7 322.4

Table 2.1: Results from Carroll and Heiser [35]

In addition to ‘standard’ computer systems we also consider integrated logic

circuits. These are widely used in mobile devices as they can be very small

but incredibly powerful for certain tasks such as signal processing. Tuan, Kao,

Rahman, Das and Trimberger [140] analysed a Field Programmable Gate Array

in terms of power consumption. The authors divide the power consumption

into 2 parts: static power (38%); and dynamic power (62%). Static power is

consumed any time the FPGA is connected to a power source; this is mostly

related to the hardware, therefore other approaches only have a very limited

role in reducing this. Dynamic power is consumed when the FPGA is active;

planning, placement and software can be employed to reduce this dramatically.

Figure 2.2 outlines the power consumption of the static and dynamic power

consumption of a Xilinx Spartan-3 FPGA.

We can see that static power is split into config, routing and logic; dynamic

power is split into routing, clock and logic. Config refers to the power required to

save, load and store the system config, clock power is consumed by signal timing

when there is activity in the circuit, routing refers to the power consumed by

the routing edges which connect the logic blocks and logic power is consumed by

the Look Up Table (LUT) logic blocks. By far the largest proportion of power

13



consumption is due to the dynamic routing; this is almost entirely caused by

the switching activity on the routing edges [140].

Routing
36%

Config
44%

Logic
20%

Static Power

Routing
62%

Clock
19%

Logic
19%

Dynamic Power

Figure 2.2: Power consumption of an FPGA circuit [140, 141]

Mobile devices depend on mobile energy sources which are often high pow-

ered battery technology. Since mobile devices were first invented there has been

the ever-present challenge to provide enough power to sustain the device for a

reasonable length of time; although battery technology has come a long way in

the past decade, the gap between energy demands of the mobile devices and

battery capacity has become even greater. Lahiri et al. [90] have illustrated the

widening gap by plotting the improved power density of battery technology vs.

the growing power demands of processors alone. Even with the latest develop-

ments in 3d battery technology introduced by Pikul et al. [126] we still expect

there to be a sizable battery gap caused by the industry’s insatiable need for

increased processor speed and improved graphics performance. When this is

combined with the growing environmental concerns about the energy consumed

by computing equipment (which in 2008 was estimated to be 168 kW, 2.6% of

the global energy consumption [125]) we see a clear motivation to consider the

use of algorithms and optimisation techniques to reduce the energy consumption

of mobile devices.

2.1.2 Power Reduction

Ellis [57], Brooks et al. [30], Mudge [118], Kant [80] and many others have

argued the case for greater power management in computer systems. They

14



make the point that for many years increased computational power has been

the driver of technology developments with energy efficiency and reduced power

consumption being very much secondary objectives. As more computational

devices are developed which rely on batteries or some other restricted power

source the need for efficient power management is becoming more and more

crucial. Mahesri & Vardhan [110] and Carroll & Heiser [35] show that different

computer components consume differing amounts of energy. If we can learn how

to optimise the use of each component and in turn the whole system in terms

of power consumption then the impact will be incredible.

There are countless ways in which a computer system can be managed in

order to reduce power consumption and extend battery life. Each and every

component can be optimised and utilised in ways which can either waste or save

energy; to discuss all types of computational systems and components would be

unwieldy so in this thesis we concentrate on two of the areas we feel have great

potential. First we consider the power consumed by the processing unit of a

computer system and second the power consumed by the dynamic routing of

FPGAs. We shall therefore discuss these components in detail in the following

sections perhaps touching upon other related concepts and components as they

are relevant.

2.2 Power Consumption in Processing Units

Over the last few years energy efficiency has become a design constraint for all

computer systems ranging from mobile phones to server farms (the vast majority

of these systems make use of some kind of processing unit) leading to a wealth

of research which aims to reduce the energy consumption of processors. Brooks

et al. [30] initiated the research in this area, motivated by the ‘cube root rule’

which states that the speed of the processor is equal to the cube root of the

energy input, P = S3. This is usually presented in the more generalised form

P = Sα + c where P is the power consumption, S is the speed (or frequency)

of the processor and α & c are constants with α usually being between 2 and 3.

Throughout this section and the remainder of the thesis we discussing many

algorithms. Offline algorithms solve problems where all of the relevant informa-

tion is available at the start of the computation. An online algorithm on the

other hand is used to solve a problem where information becomes available over

time.

15



In 1985 Sleator et al. [133] introduced the idea of assessing the worst case

performance of an online algorithm by comparing it to the optimal offline solu-

tion. This is commonly known as competitive analysis. For an online problem

P we have: O(I) which is the optimal solution for input I; A(I) is the online

algorithm’s solution for the same input. Each algorithm’s solution has a cost

C(O(I)) and C(A(I)). We state that A is c-competitive if there exists some

constant φ ≥ 0 such that for any I the following holds:

C(A(I)) ≤ c · C(O(I)) + φ (2.1)

If φ = 0 then we can state that A is strictly c-competitive. Furthermore if c = 1

and φ = 0 then A is optimal.

In the remainder of this section we focus on 2 common methods for reducing

the energy consumption of processors: Sleep States; and Dynamic Speed Scaling.

Within each of these methods we look at the various algorithms and techniques

which have been suggested to reduce energy consumption and weigh up the

merits and downfalls of each method.

2.2.1 Sleep States

A very popular technique for reducing the energy consumption of a computer

system is to power down various hardware components. In their study of the

power consumption of a smart phone Carroll and Heiser [35] note that powering

down the screen during a phone call is a very effective way to reduce the overall

energy consumption with very little inconvenience to the user.

The processor is one of the most energy demanding parts of a computer

system, with some estimates suggesting that between 50% and 60% of the over-

all energy consumption is due to the processing unit [8, 110]. This suggests

processor sleep states have the potential to facilitate large energy savings. In

this section we look at the technique of reducing the energy consumption of the

processing units in idle periods by putting the processor into one of a number

of low power modes.

We define a set of states {s0, s1...sn} each of which has an ongoing energy

consumption of p(si) and a wake energy of w(si).

• w(s0) = 0

• p(sn) = 0

16



• ∀i<n p(si) > p(si+1)

• ∀i>0 w(si) < w(si+1)

• s0 is the active, working state

• {s1...sn} are sleep states

The task is to minimise the total amount of energy consumed by utilising

sleep states during idle periods. The problem can be considered either in the

offline situation where the lengths and locations of idle periods are known be-

forehand or in the online situation where we only know the length of an idle

period after it has occurred. We can further split this problem into two natural

sub-problems, the first being where we have just 1 sleep state and the second

being where we have many sleep states.

If there exists just 1 sleep state then by definition the available states must

be on and off. This means that the problem is reduced to choosing between an

ongoing cost and or a fixed cost. Irani et al. [77] remarked that this is simply

an instance of the ski rental problem: a skier must decide whether to rent skis

at a daily cost or buy skis outright at a higher fixed cost where the skier does

not know the length of their ski trip. In this case the offline problem is simple

and can be solved optimally using the following rule: if p(s1) · t > w(s0) then

sleep, otherwise wait. In the online case the best possible deterministic online

algorithm is 2-competitive [62, 77, 78].

Algorithm 1 Irani et al.

If p(s1) · t > w(s0) then sleep.
Otherwise idle.

If idle periods are generated by a known probabilistic distribution then Kar-

lin [81] has shown that a randomised online algorithm (ALG-P) can be e
e−1 -

competitive (where e is the base of the natural logarithm) for the average case

and that this is optimally competitive.

The Ski rental problem is a perfect analogy if a system has just 1 sleep state

but most modern processors have many different levels of sleep states and trying

to solve this problem is more complex. Figure 2.3 shows a system with 4 sleep

states and their energy efficiency over an idle period.

Irani et al. [77] defined the optimal offline algorithm OPT which calculates

17



0 

20 

40 

60 

80 

100 

120 

140 

0 2 4 6 8 10 12 

En
e

rg
y 

Time 

S0 

S1 

S2 

S3 

Figure 2.3: Multiple sleep states energy consumption

which is the best sleep state to use for any idle period using equation (2.2).

OPT (t) = min
1≤i≤n

{p(si) · t+ w(si)} (2.2)

Equation (2.2) is a logical extension of the offline solution for the 2 state

problem and can be visualised using Figure 2.3, if we draw a vertical line up

through the graph at the time period we are considering then the first power

function line that we intersect corresponds to the optimal sleep state. Irani et

al. used the logic which underpins equation (2.2) to inform the development of

Lower-Envelope, their online algorithm. The algorithm states that as the length

of the idle period increases the lower envelope of the graph should be followed,

i.e. when the line corresponding to the current state intersects another line

then the system should transition into that state. This algorithm has been

shown to be 2-competitive and this was shown to be the best solution any

deterministic algorithm can achieve. In the same paper Irani et al. also studied

the case where the idle periods are probabilistically distributed. They developed

the algorithm ALG-P(l) which is an extension of the solution for probabilistic 2

state systems ALG-P, first presented in [81]. Augustine et al. [16] considered the

18



more generalised case where transition energies can take arbitrary values. The

authors extended Lower-Envelope and showed that it is (3 + 2
√

2)-competitive

and that this is true for any state based system.

Naturally this problem has been extended to the multiprocessor case where

each processor can be in a sleep state at any one time. Demaine et al. [52] con-

sider the situation where each processor has just 2 states. The authors attempt

to minimise the total power consumption and develop a (1+ 2
3w(s))-competitive

algorithm and show that the dependence on w(s) (the cost of sleeping) is es-

sential. Sze-Hang Chan et al. [41] consider the sleep state problem for data

centre provisioning to minimise the combination of response time and energy

and find O(1)-competitive algorithms in the offline case. Sze-Hang Chan et al.

have since extended this research to the non clairvoyant dynamic data centre

provisioning problem [42]. They show that for any ε > 0 their SATA algorithm

is (1 + ε)-speed O( 1
ε2 )-competitive for the objective of minimising

∑
Flow and

Energy.

Sleep state management has been very impressive but can only save energy

when a system is not in use or the jobs it is required to process are not time

critical; this has its limitations in many situations. For example some systems

have very few idle periods in which to enter sleep states or high priority systems

may be configured to never sleep to increase response time and reliability. In

the next subsection we will discuss another energy saving system which can be

developed (in some cases in collaboration with sleep states) to reduce the energy

consumed while the system is active.

2.2.2 Dynamic Speed Scaling

Dynamic Speed Scaling (or Dynamic Voltage Scaling) is a technique which al-

lows the speed of a processor to be modified at runtime. Reducing the operat-

ing speed (or frequency) also reduces the power consumption as Power (P) and

Speed (S) are intrinsically linked through the equation P = Sα + c. The well

known cube root rule [30] asserts that α = 3, suggesting that even small changes

in the operating speed can have large changes in the power consumption. The

main challenge of systems implementing Dynamic Speed Scaling (DSS) is to

manage the conflicting goals of minimising energy consumption whilst max-

imising quality of service; this is an area where much research has been focused

and there are many different approaches and results.

Many modern processors are equipped with Dynamic Speed Scaling (DSS)

19



through systems such as the Intel SpeedStep and AMD’s Cool’n’Quiet or Pow-

erNow!. Mahesri et al. [110] noted that the use of Dynamic Speed Scaling can

significantly reduce the power consumption when the system is idle. Carroll et

al. [35] stated that DSS has the ability to severely reduce the power consumption

of the CPU but found that it was limited in reducing the power consumption

of the whole device for their particular smart phone. This is likely to have been

because the smartphone under test has a significantly less powerful processor

than modern day devices; in cases with higher power processors with more cores

we would expect to see DSS having a greater overall effect on the device.

In general, real world implementations of DSS do not allow infinite control

over the precise speed of the processor but allow the speed to be set to one of

a number of available speeds which the processor has been designed and tested

to run at. Bansal [18] has argued that a model which considers a continuous

speed function can still be of practical use in this situation as any speed can be

simulated by flipping between 2 different speeds in the correct ratio. We shall

discuss the work of Bansal et al. in more detail later, but this shows that the

following theoretical models are applicable to real world situations.

When DSS is implemented it is crucial to define an objective function which

balances power savings against the quality of service. In research, there are 3

main groups of objective functions: jobs have hard deadlines, bounded energy

budget or response time and balance energy consumption and response time.

We shall consider each of these approaches in the following sub-sections.

Deadline Scheduling

Deadline Scheduling is the task of managing the speed of the processor through

DSS whilst scheduling the available jobs such that all jobs meet their deadlines

but the overall energy consumption is minimised. The scheduler must define the

speed of the processor(s) and schedule each job onto a processor such that all

jobs meet their deadlines. This is a non-trivial problem which has been studied

for many years. Yao et al. [151] presented their seminal paper in 1995 which

initiated research into this fascinating area. The paper starts by defining the

model which has been extensively used in subsequent research. For a fixed time

interval [t0, t1] the task is to schedule a set of jobs J which need to be processed

within that time period. Each job j ∈ J has:

• an arrival time aj

• a deadline bj where bj > aj

20



• a required number of CPU cycles Rj

• and an interval [aj , bj ]

Furthermore each interval ∆ = [z, z′] has an intensity g(∆) which is calcu-

lated using the following equation:

g(∆) =

∑
Rj

z′ − z
(2.3)

where the sum is taken over all jobs j with [aj , bj ] ⊆ [z, z′].

A schedule is a pair of H = (S, job) defined over [t0, t1] where:

• S(t) ≥ 0 is the speed of the processor at time t

• job(t) defines the job being processed at time t or idle if S(t) = 0

s(t) and job(t) must be piecewise constant with finitely many discontinuities.

A feasible schedule for an instance J is a schedule H that satisfies:

∀j∈J
∫ bj

aj

s(t)δ(job(t), j)dt = Rj (2.4)

where δ(x, y) is 1 if x = y and 0 otherwise. The energy consumption per unit

time P is assumed to be a convex function of the processor speed. The goal of

any deadline scheduling algorithm is to minimise the following:

E(S) =

∫ t1

t0

P (s(t))dt (2.5)

After defining the model the authors move on to describe the optimal offline

algorithm (YDS).

Algorithm 2 YDS

For a list of jobs J
While J 6= ∅{
Calculate interval I which has the maximum intensity
JI is the set of jobs in I
Process jobs in JI according to EDF at speed S = 1

|I|
∑
Ji∈JI Ri

J = J\JI Remove I from timeline and update release times and deadlines of
unscheduled jobs
}

where EDF is earliest deadline first.

21



Yao et al. [151] show that YDS produces an optimal schedule for any job

set, minimising the overall energy consumption. Yao et al. also calculates the

worst case running time of YDS to be O(j3) but Li et al. [106] reduced this

to O(j2 log j) where j is the number of jobs. Yao et al. also develop two nat-

ural online heuristic algorithms: Average Rate Heuristic (AVR); and Optimal

Available (OA). We outline both below.

Algorithm 3 AVR

Each job has a density: dj =
Rj

bj−aj
The processor speed should equal: s(t) =

∑
j dj(t)

AVR is analysed in [151] and if the power function holds for P = Sα where

α ≥ 2 the authors prove the algorithm to be (2α−1αα)-competitive and they

show the lower bound of competitiveness to be αα.

Algorithm 4 OA

Compute the optimal schedule each time some new jobs arrive using the new
jobs and the remaining portion of the existing jobs as if it were a offline problem

The Optimal Available algorithm was not analysed in [151] but was later

proven to be (αα)-competitive by Bansal et al. [20].

It is also clear that Yao, Demers and Shenkers’ contribution has been in-

credible and sparked a wealth of DSS deadline scheduling papers including

[6, 9, 17, 38, 37, 40, 74, 92, 152]. These papers and many others consider a

plethora of different models of computer systems and all manner of extensions

on the original problem proposed by Yao et al.

Deadline scheduling has significantly influenced research into DSS but it has

some fundamental drawbacks. Firstly it is not always possible to calculate a

feasible schedule for any set of jobs on a standard processor with a maximum

speed. Theoretically we can either consider a system with no maximum speed

or we can restrict the input set such that we can always guarantee that all

deadlines can be met given the maximum speed of the processor(s). Clearly if

we are using a real processor then removing the maximum speed is not possible.

This means that we must artificially modify job deadlines such that a feasible

schedule is possible which undermines the whole system.

Perhaps the most significant issue is that it is not always natural to assign

each and every job a deadline. For example many maintenance tasks need to

22



be performed at some point but it is not vital they are processed when the

computer is in high demand. If we were to assign an arbitrary deadline to a

task we could end up forcing the computer to perform this work during a very

high demand period in order to hit its deadline. Many jobs share this property

of needing to be processed at some point but not by a specific deadline, for

this reason deadline scheduling is not prominent in common operating systems

although it does have its place in real time systems where energy considerations

are very much a secondary objective.

Bounded Energy or Bounded Performance

Perhaps as a reaction to the issues of deadline scheduling, many researchers

have considered other ways of managing the balance between quality of service

and energy efficiency. Bunde [33] was one of the first to consider this; he stated

that reducing energy consumption whilst achieving a certain level of service was

a bi-criteria problem. A common approach to bi-criteria problems is to bound

one factor and achieve the best value for the other. He went on to outline two

different types of problem: the ‘laptop problem’ and the ‘server problem’. In the

laptop problem we have a fixed energy budget and we wish to provide the best

quality of service. In the server problem we have a fixed level of performance

and we wish to use the least amount of energy to achieve this.

Pruhs et al. [127] first tackled the problem of minimising the average response

time of a set of jobs given a fixed energy budget in 2004; this paper was later

updated in 2008 [128]. Pruhs et al. consider the problem of scheduling a set of

foreknown, equi-work jobs onto a single processor capable of DSS. The authors

develop an algorithm which calculates the optimal schedule for a huge energy

budget such that all jobs are completed before the next arrives. They then lower

the energy budget and make changes to the schedule such that the makespan

increase is minimised but the budget is not breached. The authors show that

this algorithm is O(1)-competitive for equi-work jobs providing that the energy

budget is relaxed to (1 + ε).

Bunde [33, 34] has published 2 versions of his paper 3 years apart: an ex-

tended abstract in 2006 and a journal article in 2009. He considers the offline

problem where the release time and quantity of work is known for all jobs at the

start. The paper first tackles the problem of energy efficient makespan schedul-

ing on a uniprocessor. This is a version of the laptop problem where the energy

is bounded and the makespan is the measure of the quality of service. Bunde

23



starts by formalising the problem and then moves on to develop an optimal

offline algorithm IncMerge which runs in linear time.

In many bi-criteria situations bounding one of the factors and optimising the

other factor within this is a good option. It allows the problem to be simplified

such that an effective solution can be found. On the surface both the laptop

problem and the server problem seem logical but they are both inherently flawed

in an online situation.

Firstly we discuss the laptop problem where we bound the energy and wish

to maximise the performance. Consider a situation where we have some fixed

energy budget and a processor with unbounded speeds. Upon the arrival of the

first job we have to make a choice of how much energy we use. We could use

all of the energy budget and process the job as fast as possible which would be

optimal for just one job but would fail to process the remaining jobs if any more

arrive. Alternatively we can choose to use a portion of our energy and save the

rest for jobs which may never arrive. In this situation we would be far from

optimal if no more jobs arrive, but better if more do. This scenario shows that

for the general laptop problem it is not possible to bound the competitive ratio

for the online situation. The server problem provides the same conundrum but

in reverse.

The final issue with this approach is that using makespan to measure the

quality of service is not ideal. The concept of makespan is that we wish to

minimise the finish time of the final job. This means that the release time

of the final job has far more power to influence the energy consumption and

performance of the overall system. Minimising makespan is good for situations

with batch work which needs to be processed in a reasonable time but in real

life situations it is unlikely that we want to minimise the makespan of the whole

input rather than bounding the performance of certain important jobs.

∑
Flow + Energy

In 2007 Albers and Fujiwara [8] developed an objective function which is flexible

enough to mean a feasible solution is always possible but still keeps a large

emphasis on energy consumption. In their paper they describe an objective

function which combines two conflicting measures of
∑

Flow + Energy and

attempts to minimise the total. The
∑

Flow is the sum of the difference between

a job’s release and completion time; Energy refers to the energy consumption

of the processing unit.

24



The flow, or more generally weighted flow [21], has been considered as a

good measure of quality of service for some time with many researchers studying

minimisation of flow in cases where the speed of the processor is fixed. Kellerer

[82, 83] showed that minimising the unweighted flow non-preemptively on a

single processor is n
1
2−ε hard and many researchers have developed solutions to

solve this and many other related problems [31, 63, 123, 102, 43, 23].

Albers and Fujiwara [7, 8] pioneered the development of algorithms that

minimise
∑

Flow + Energy. The authors first show that if the jobs are allowed

to have arbitrary sizes then there can be no algorithm which achieves a constant

competitive ratio; they therefore presented 2 main algorithms which focus on

job scheduling problems with fixed job size. The online algorithm, Phaseball,

is a batch processing algorithm which links the processor speed to the number

of jobs waiting within the current batch and the value of α within the equation

P = Sα. The speed of the processor is specified by the equation α
√
q/c where

α is from P = Sα, q is the number of jobs waiting within the current batch

and c is a value which depends on the value of α. If α < (19 +
√

161)/10) then

c = α− 1 else c = 1.

In [8] Albers and Fujiwara proved this algorithm to have a constant com-

petitive ratio for all values of α.

(1 + Φ)(1 + Φ α
(2α−1)

(α−1) αα

(α−1)α−1 min{ 5α−2
2α−1 ,

4
2α−1 + 4

α−1}

where Φ = (1 +
√

5)/2 ≈ 1.618 (the golden ratio)
(2.6)

Bansal et al. [21] show that when the cube root rule holds (i.e. α = 3) this

equates to a bit over 400-competitive; in the same paper Bansal et al. improve

the competitive ratio of Phaseball to 4-competitive.

In 2007 Bansal, Pruhs and Stein [21] presented an alternative version of∑
Flow + Energy which incorporates job weights. The weight of a job is similar

to the priority; a job with higher weight should be processed more quickly than

another job with the same amount of work. This is a more general term than

basic flow as it allows each job to have a weight which refers to its relative

importance; this means that we prioritise jobs accordingly. This allows more

control over which job will be processed next and which jobs are allowed to

wait for long periods of time. If we set the priority of all jobs to the same

value it is the same as standard Flow as suggested by Albers and Fujiwara. The

authors present an algorithm Highest Density First (HDF) which is O( α2

log2 α
)-

competitive for the minimisation of
∑

Weighted flow + Energy.

25



Lam et al. [93] presented 2 algorithms to address the
∑

Flow + Energy

minimisation problem in both the clairvoyant (where job sizes are known) and

non-clairvoyant (where job sizes are known only after they have been processed)

cases. For the clairvoyant case they develop AJC: the processor is set to speed

n
1
α where n is the number of active jobs and α is from the power function. The

jobs are processed according to shortest remaining processor time first (SRPT).

This algorithm is shown to be more effective than Bansal’s existing algorithms

for both the bounded and infinite speed models: for the bounded speed model

the algorithm is  2(α+ 1)

α−
(

α−1

α+1(
1

α−1 )

)
 -competitive (2.7)

For the non-clairvoyant case the authors minimise
∑

Flow + Energy in the

situation where all jobs are released at time 0. The algorithm AJC* uses pro-

cessor speed ( n
α−1 )

1
α and round robin to schedule the jobs. They show this to

be 2-competitive for the model where the maximum speed of the processor is

bounded. Lam et al. [96] later produced an improved algorithm ‘Shortest Re-

maining Processor Time’ (SRPT) which reduced the competitive ratio to α
logα

which equates to 3.25-competitive when α = 3.

Bansal et al.[18] describe solutions where an arbitrary power function dic-

tates the relationship between processor speed and power consumption instead

of the usual P = Sα + c which other papers have considered. The authors

present 2 algorithms: the first uses shortest remaining processor time; and the

second uses highest density first. They show the former to be (3+ε)-competitive

for minimising
∑

flow + energy and the latter to be (2+ε)-competitive for min-

imizing fractional weighted flow + energy. The fractional weighted flow of a job

is the sum of the fraction of the total work remaining multiplied by the job

weight for each time step.

Andrew, Weirman and Tang [14] further improved the best known solution

to
∑

Weighted Flow + Energy minimisation under arbitrary power functions.

The authors develop an algorithm which uses SRPT instead of HDF and sets

the speed of the processor to P−1(Length of Queue) where P−1 is the inverse

of the power function. They show this to be 2-competitive for a wide range of

power functions. Furthermore they prove that no online algorithm can obtain

a worst case competitive ratio of less than 2.

Andrew, Weirman and Lin [15] consider the problem of minimising

26



∑
Response time + Energy. They provide an algorithm which they prove to

be 2-competitive and show that no natural speed scaling algorithm can do bet-

ter. They also demonstrate that dynamic speed scaling allows systems to be

robust against uncertain workloads. Finally they show that speed scaling in-

creases unfairness when shortest remaining processor time is used to schedule

jobs but that processor sharing remains fair. The authors assert that it is not

possible (according to their results and existing systems) for speed scaling algo-

rithms to be optimal, robust and fair but they can be any 2 of these objectives

simultaneously.

Recently Bansal et al. [19] discussed speed scaling systems which minimise∑
Flow + Energy where only certain speeds are allowed. Li and Yao [107]

first considered a dynamic speed scaling model where only certain speeds were

allowed but this was for deadline scheduling. Bansal et al. showed that when

the power is set to j′+1 (where j′ is the number of unfinished jobs) and shortest

remaining processor time is used for scheduling, the competitive ratio is 3 for

minimising total flow + energy. They also show that using highest density first

and setting the power to fractional weight of unfinished jobs is 2-competitive

for minimising fractional weighted flow + energy.

There are countless other papers which address variations of the single pro-

cessor dynamic speed scaling problem which focus on minimising
∑

Flow + En-

ergy. There have also been many reviews of dynamic speed scaling algorithms

[76, 78, 3, 4, 5] and an analysis of algorithms and techniques [48].

Sleep States and Dynamic Speed Scaling

Algorithms which use Sleep States and DSS have existed for some time now but

they are rarely considered as a pair of techniques which can be used together

for even better results. Irani et al. [77, 78] were the first to look at this problem

which they call DSS-S. The authors define an offline algorithm in [78] which they

show to be 2-competitive compared to the optimal solution. It has yet to be

proven whether the problem is NP-hard. They also define an online algorithm

which is based upon a standard DSS algorithm.

Lam et al. [91] considered the use of DSS with deadline scheduling and sleep

states. The authors define an algorithm IdleLonger which is based upon AJC

[95] if it is clairvoyant and LAPS [40] if it is non-clairvoyant. They show that this

algorithm is O(1)-competitive if it is clairvoyant regardless of maximum speed

and O(1)-competitive if it is non-clairvoyant providing the maximum speed is

27



unbounded.

2.2.3 Multiprocessor Systems

Over the past few years the prevalence of multiprocessor computer systems has

increased at an astounding rate. Multiprocessor systems have the potential to

be much more computationally powerful compared to a single processor system

as the maximum speed of a single processor is limited by the cube root rule

which makes further speed increases unfeasible. Single processors also struggle

to disperse heat as they operate at higher rates. These are both problems which

can be overcome by using a multiprocessor system; this has led to a widespread

increase in the use of multiprocessor systems.

Multiprocessor energy efficient scheduling was first considered by Bunde [34]

who proved that the offline problem of power aware scheduling with multipro-

cessor systems to minimise the makespan is NP-Hard if all jobs require different

amounts of work even if all jobs arrive at time 0.

Lam et al. [93, 94, 96] were the first to consider the online problem where the

number of processors or cores is not bounded. They design a Classified Round

Robin (CRR) algorithm which distributes jobs to processors based on their size

in an attempt to balance the load to each processor. They then use the BPS

algorithm [21] to define which job should be processed first on each processor

and what speed that processor should operate at. This algorithm works best

with homogeneous multiprocessor systems, where all processors /cores are equal.

Other researchers have considered variations on the multiprocessor low en-

ergy scheduling problem including [39, 136].

Heterogeneous Multiprocessor systems

Morad et al. [116] and Kumar et al. [87] have both argued for the development

of heterogeneous multiprocessor systems in order to reduce energy consumption.

Morad et al. suggest that heterogeneous multiprocessor chips could be the way in

which we can get the most performance for a given power budget. They suggest

that the chip should be configured to have a large proportion of low energy low

performance cores, a smaller number of medium speed and medium performance

cores and few high energy and high performance cores. The system would use

the low energy cores for less urgent or demanding jobs and the medium and

high speed processors for more demanding or urgent jobs. This would allow the

system to combine performance and energy efficiency.

28



Bower et al. [28] outlined the need to consider the power efficient heteroge-

neous multiprocessor system, where processors can differ in available speed and

power function amongst other things. In the position paper the authors outline

the importance of considering this issue and go on to break this down into three

main challenges:

1. ‘The OS must discover the status of each processor’,

2. ‘The OS must discover the resource demand of each job’,

3. ‘Given this information about processors and jobs, the OS must match

jobs to processors as well as possible’.

Gupta et al. [72] were the first to take up the problem outlined in [28]. In

their paper the authors look at the third challenge: distributing jobs and cal-

culating the processor speeds. They do this in a similar way to Lam et al.

[96] by maintaining processor independence. The jobs are distributed to the

processor which will result in the least increase in the projected flow assuming

that no more jobs are to arrive. Then each processor calculates its own oper-

ational speed using P−1(
∑

Fractional Density) = S as in [18] and finally the

job with the highest density is run on the processor at any given time. The

authors show that this algorithm is ‘scalable for scheduling jobs on a heteroge-

neous multiprocessor with arbitrary power functions to minimize the objective

function of weighted flow plus energy’. Gupta et al. [71] later extended their

work to non-clairvoyant cases and showed that their solution is bounded speed,

bounded competitive against the optimal solution.

Gupta, Im, Krishnaswamy and Moseley [70] have also published a paper

which discusses the issues with low energy scheduling over heterogeneous multi-

processor systems. They find that many of the common scheduling techniques

used for single processor algorithms are not bounded by a constant to the op-

timal solution for minimisation of weighted flow even when the special case of

fixed speed processors are considered. They also suggest the first scalable non-

clairvoyant algorithm for heterogeneous multiprocessor systems which uses late

arrival processor sharing.

2.3 Boolean Algebra, Circuits and FPGAs

In this section we describe how energy is consumed within boolean circuits,

integrated circuits and FPGAs. We also survey the techniques used to reduce

29



the power consumption of FPGAs.

Boolean algebra was first proposed by George Boole in 1854 [27] in his sem-

inal work in ‘Investigation of the Laws of Thought: On which are Founded the

Mathematical Theories of Logic and Probabilities’. Wegener’s [145] famous Blue

Book defines a boolean function as f : {0, 1}n → {0, 1}m. A boolean function

can be expressed in a number of ways but the most fundamental is through the

use of logical gates:

• Conjunction (and): iff x = y = 1 then 1 else 0

• Disjunction (or): iff x = y= 0 then 0 else 1

• Inversion (not): iff 1 then 0 else 1

Through the use of these few logical gates we can express all boolean func-

tions [145]. There are combination gates (NAND, NOR, XOR etc.) but as we

can express all functions (including the function of each combination gate) us-

ing the three gates listed above we shall not discuss the others here. Boolean

algebra has formed the foundation for all of modern computing.

In 1937 Shannon [131] extended the logic of boolean algebra to form a new

model called a boolean circuit. A boolean circuit is a model which is used to

implement a boolean function. Boolean circuits use physical implementations

of logical gates to realise boolean functions in circuit form. In electronic circuits

the value 1 is usually represented as a higher voltage than 0. The gates can

be implemented in a variety of different technologies which differ based on the

desired use.

From very early on in the development of boolean circuits the energy con-

sumption has been a significant consideration. Initially this may have been

motivated by other related issues such as reducing the peak power consumption

or improving reliability by reducing heat but this has since become a priority in

its own right. Boolean circuits consume energy whilst charging and discharging

the connections between the gates [109]. If the value of an edge has to switch

from 1 to 0 then it must disperse the energy. Equally if the value has to switch

from 0 to 1 then additional energy must be added.

In the 1950s many researchers began to consider the problem of reducing the

energy consumption of boolean circuits. Much of this material was only ever

published in German or Russian so we are unable to provide a comprehensive

survey of the seminal work here. More recently research has been reinitialised

30



into reducing the energy consumption of VLSI circuits; for overviews and survey

articles see [86, 2, 120, 53].

2.3.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are an extension of integrated logic

circuits and were introduced in 1988 when Freeman [61] filed a US patent on

behalf of Xilinx Inc.. The patent describes a configurable logic circuit similar

to modern day FPGA circuits. An FPGA is a logic circuit which can be pro-

grammed (and depending on the technology used to implement the logic blocks

normally reprogrammed) after it has been printed. This was revolutionary at

the time and provided a circuit which could implement a wide variety of func-

tions which saved time, money and energy in producing different boards for

different uses and also enabled users to fix errors in the circuits logic without

requiring new circuit boards.

There are a number of different technologies which can be used to implement

a boolean circuit and a number of ways to implement different functionality. For

example the logic sections of an FPGA were originally simple logic gates but

have since been developed into configurable logic blocks which can represent

small logic functions; and then into Look Up Table (LUT) logic blocks which

can implement any boolean function with up to l inputs. In this thesis we shall

concentrate on LUT based FPGAs as they are some of the most common at

this time.

The problem of minimising the energy consumption of an FPGA has been

considered for some time. Much research has been dedicated to developing

accurate power estimation models for various components in an FPGA circuit

[12, 13, 24, 101, 148]. Researchers have considered many different techniques to

reduce the power consumption of an FPGA including utilisation of power down

techniques [115], low power logic synthesis techniques [139] and glitch reduction

techniques [47, 51]. There are many other low power techniques including [45,

50, 65, 99, 111, 119]. For a review of many different low power FPGA techniques

see [97].

In an earlier section we saw that many components of an FPGA consume

significant amounts of energy but by far the largest single consumer is dynamic

routing [140]. Routing refers to the connections between the input, output and

logic blocks (Look up Tables / LUTs) and the infrastructure used to implement

the re-routability of the circuit. The majority of energy is consumed on these

31



edges when the circuit is active and they switch from 1 to 0 or the reverse. If the

connection has a certain voltage then it is implied that the value is 1; if we wish

to remove the value 1 then we need to disperse some energy. If the connection

has a low voltage then the value 0 is implied and to switch the value to 1 we

must apply more power. It is clear to see that if we increase the frequency

of switching (known as switching activity) then the power consumption will

increase; hence much of the research aimed at reducing the energy consumed by

dynamic routing is aimed at reducing the switching of the edges.

One method suggested to reduce the average power consumption caused by

dynamic routing involves altering the function of each LUT such that the overall

circuit functionality is the same but the switching activity of the LUTs (and

hence the power consumption) is reduced. Chen, Hwang and Liu [44] considered

this problem in 1997. They utilise Roth Karp decomposition and local search

techniques (Simulated Annealing and Kernighan-Lin) to modify the individual

functions that each LUT implements whilst maintaining the same circuit func-

tion. The authors found that after applying their algorithms they achieved a

greater than 9% average power reduction in comparison to the standard SIS

mapping [130]. There are several other papers which present alternative solu-

tions to the same problem [75, 88, 89].

Mashayekhi, Jeddi and Amini [111] introduced methods which reduce switch-

ing within each LUT block by inserting fake registers and then using a re-timing

method. The authors implemented their methods for two ISCAS89 bench-

mark circuits and achieved a 25% power reduction over similar re-timing meth-

ods without power reduction considerations. Finally, Tinmaung, Howland and

Tessier [139] developed logic synthesis methods to reduce power consumption.

They achieved an average power reduction rate of 13% for Altura Cyclone II

devices compared to the standard SIS logic synthesis methods.

These techniques have been shown to reduce the power consumption of FP-

GAs but in the following section we shall consider another approach which

creates an initial mapping that considers the power consumption from the start

rather than as a post layout optimisation.

Low Power LUT based FPGA Mapping

Since the advent of LUT based FPGAs researchers have been considering the

best way to map an input function or circuit onto the available LUT based cir-

cuit. Algorithms have been developed which aim to minimise the area (physical

32



size), depth (speed of signal propagation), switching activity (power consump-

tion) or a combination of any of the above [60, 49, 121, 45, 138].

Farrahi and Sarrafzadeh [59, 58] showed that the decision version of the

problem is NP-complete even for simple classes of circuits (e.g. 3 level circuits).

They then extended this to show that even restricted cases of LUT minimization

for FPGA technology mapping are NP-complete [58]. Farrahi and Sarrafzadeh

[59] considered mapping boolean circuits onto LUT based FPGAs in 1994. The

authors developed a heuristic algorithm (Power Min) which maps the nodes onto

k feasible cones (which are analogous to k feasible LUTs) whilst attempting to

minimise average power consumption. It is shown that the heuristic described

can reduce the power consumption by an average of 14.8% whilst using only

7.1% more LUTs compared to an algorithm designed to minimise area.

Wang and Kwan [143] suggested a heuristic mapping algorithm with the

aim of reducing the power consumption whilst maintaining optimal area. The

authors’ algorithm first generates the LUT mapping which results in the least

number of LUTs possible. The algorithm then adjusts the solution to hide the

high transition paths inside LUTs which results in reduced power consumption

whilst maintaining the number of LUTs. The algorithm reduces the power

consumption by 10.38% compared to an alternative bin packing algorithm which

guarantees minimum number of LUTs but does not attempt to reduce power.

Wang, Liu, Lai and Wang [144] proposed Power-Map: a heuristic algorithm

which relies on a restricted cut enumeration technique to generate many possible

solutions and select the best. Once the initial solution is built there is a brief

search for a better solution before the final mapping is returned. The authors

compare their Power-Map algorithm to the Power Min algorithm from [59]:

Power-Map reduced the power consumption by between 14.03% - 14.18% and

the number of LUTs by between 6.31% - 6.99% depending on the number of

cuts the algorithm is allowed to consider.

Li, Mak and Katkoori [104] developed a multi objective technology mapping

algorithm which aims to reduce the power consumption whilst ensuring that the

circuit depth is kept optimally small. The authors exploit the fact that LUTs

on the non-critical path (the longest path from input to output) can be modified

without affecting the depth of the circuit. PowerMap first generates a minimum

depth mapping solution and then computes min-height k-feasible nodes which

are not on the critical path. The authors compare their algorithm (which is

implemented in conjunction with SIS) to a minimum depth mapping algorithm,

FlowMap. They find that PowerMap reduces the power consumption by 17.8%

33



and the number of LUTs by 9.4% with no depth penalty.

Anderson and Najm [11] developed a mapping algorithm which draws on a

number of techniques and observations to reduce the power consumption of FP-

GAs. The authors attempt to map the boolean circuit such that high transition

nets (areas with high switching activity) are removed from the routing infras-

tructure. They also consider logic duplication which has been previously shown

to be essential for minimum depth LUT circuits. The algorithm is compared

to FlowMap (which minimises depth) and FlowMap-r (which minimises depth

whilst trying to reduce the total number of LUTs), both of which are combined

with either FlowPack or MP-Pack. The researchers find that their algorithm

uses less power, area and connections than any of the alternatives. The power

reduction is less than other approaches (8% average) although the experimental

analysis includes additional optimization on top of FlowMap which will affect

the results.

Li, Mak and Katkoori [105] [103] develop a heuristic algorithm which at-

tempts to minimise the power consumption of the mapping solution. The al-

gorithms (Power Min Map and Power Min Map -d) first generate possible cut

based solutions but take a global view when deciding which cut to accept at any

point, opting for the cut which is more likely to reduce the power consumption

of the overall circuit rather than just the best local cut. A network flow min-cut

method is used to compute the initial solution which is then adjusted to fur-

ther reduce the power consumption using the author’s ‘cut frontier refinement’

method. Power Min Map is compared to Power-Map [144]: Li et al. find that on

average Power Min Map reduces the energy by 12.2% and the number of LUTs

by 10.6%.

Pandey and Chattopadhyay [122] present the first stochastic algorithm to

address the problem of FPGA LUT circuit mapping. The authors begin by

reducing the problem to a binate covering problem and then use a genetic al-

gorithm to search for a good solution. The authors compare their algorithm to

a basic SIS map and find that they reduce the power consumption by 25.51%.

The authors claim that the algorithm in [144] only reduces switching activity

by 10% in comparison to the SIS solution which suggests this is a good solution.

Mashayekhi [111] consider a solution which inserts fake registers (which can-

not be within the LUTs) into the circuit to force the mapping solution to contain

certain low transition edges with the hope that this will hide the high transition

edges from the routing edges. Finally the solution is optimised using re-timing

methods to further increase the quality of the solution. The authors analyse

34



their solution using randomised input variables instead of the probabilistic ap-

proach used in many other papers. The experiments are limited in their scope

as they only consider 2 benchmark circuits and do not compare to any viable al-

ternative solution; instead the authors first apply their algorithm without power

optimisation and then again with power optimisation. The experiments show

the authors’ algorithm reduces the power consumption by 25% for one circuit

and 11% for the second circuit.

Bucur, Stefanescu, Supateanu and Cupcea [32] design a mapping tool which

builds on the SIS circuit tool. This approach differs from others in that it uses

a Monte Carlo simulation to estimate the energy consumption rather than a

probability-based approach which most publications use. The tool attempts to

minimise the power consumption whilst also considering depth and area. The

authors present 3 different solutions and compare them to one another; this

makes it hard to compare this approach to others listed here.

Chen, Wei, Zhou and Cai [46] have developed a heuristic algorithm, Pow-

erMap er which considers both power consumption and edge count simultane-

ously. The algorithm first generates all cuts for all nodes and maps a solution. It

then applies an area-edge recovery method ‘depth slack distribution’ and finally

it recomputes the edge cost. The authors compare the algorithm to Power Min

Map -d [103] (Power = -8.5%, Area = -8.4%) and MacroMap (an area optimal

algorithm) [146] (Power = -18%, Area = -7%). We must bear in mind that

the figures quoted in this paper are maximum improvement rather than average

improvement as quoted in many other papers.

2.4 Optimisation Techniques

Minimising the power consumption of a computer system is a hard problem.

There are many different components to optimise individually and collectively.

There are numerous optimisation techniques which have been applied to var-

ious parts of the overall power optimisation process. In this section we give

an overview of some global optimisation techniques with a particular focus on

Simulated Annealing as this is the method which we employ later in the thesis.

The Oxford English Dictionary [147] defines optimisation as:

Definition 3 The action or process of making the best of something; (also) the

action or process of rendering optimal; the state or condition of being optimal.

When we talk about optimising the power (or energy) consumption of a

35



computational system we wish to make it such that the average power (or total

energy) consumption is minimal in comparison to the level of performance being

achieved such that we either use the least possible energy for a given level of

performance or maximise the performance for any amount of energy.

Some optimisation problems can be relatively simple either because the input

size is small or due to the configuration of the problem domain. For these

problems there have been many simple heuristic algorithms which have solved

the problem to optimality in a reasonable time. In general, global combinatorial

optimisation problems are much more complex. Many have been proved to be

NP-hard or NP-complete and require much more sophisticated algorithms to

reach optimal or near optimal solutions in reasonable time. There have been

many optimisation algorithms suggested and below we discuss a small number

of those which we feel have been important or influential.

Branch and bound algorithms were first proposed as a method for solving

discrete and combinatorial optimisation problems by Land et al. in 1960 [98].

Branch and bound begins by assuming that any solution could be the optimal

solution. It then divides the solution space into 2 or more separate ‘branches’

according to some criteria and finally it computes the upper and lower bounds

for each branch: if the lower bound of any branch is greater than the upper

bound of any other branch then that branch is rejected as it cannot contain the

optimal solution. This process is repeated until only the set of optimal solutions

remains. Branch and bound is a particularly powerful deterministic algorithm

and has been used to solve many hard problems to optimality [100].

Evolutionary algorithms are a set of algorithms which take their inspira-

tion from the way in which biological evolution occurs i.e. natural selection. An

evolutionary algorithm first generates a number of solutions; this is the first gen-

eration. From this point each solution is assessed using a fitness function. Some

solutions (usually the weaker solutions) are rejected and the others (usually the

strongest) remain. The remaining solutions are then combined with each other

using inheritance, crossover and/or mutation to produce the next generation.

This process is repeated until some threshold has been reached which could be

quality of the solution, time elapsed or number of generations. At this point the

best solution which has been found will be returned. The term Evolutionary

Algorithm (EA) is now also used to refer to a category of algorithms which are

inspired by natural selection. Genetic algorithms fall within evolutionary algo-

rithms and have been applied to many hard optimisation problems and found

many optimal or good results [122, 22, 132].

36



Particle Swarm optimisation [84] is another school of algorithms which takes

their inspiration from nature, in this case the movement of large groups of

animals. Again a number of initial solutions (particles) are generated which are

called the swarm. Each particle then moves through the search space looking

for better solutions based on the best solution it has found and the best solution

the whole swarm has found. This enables the swarm as a whole to find very

good solutions for hard problems with very little knowledge of the problem

domain [150] (this is a trait common to many meta-heuristics). Particle swarm

optimisation relies on the particles moving around the solution space to discover

good solutions. Many other algorithms have used a similar idea to find good

solutions; these algorithms are often referred to as local search algorithms.

2.4.1 Local Search

Local search algorithms explore the solution space using local moves. A local

move is defined as a small change in an existing solution such that the overall

solution is changed; for example in scheduling this may be swapping the order in

which 2 jobs are scheduled. A neighbourhood function is the combination of a

number of local moves which is used to explore the solution space of a problem.

A neighbourhood function is of most use when it is complete: where the local

move set can be used to traverse the entire solution space from any solution to

any other solution. This ensures that the local search algorithm which utilises

the neighbourhood function has a chance to reach each and every solution and

therefore to find a globally optimal solution. Defining a neighbourhood function

and proving its completeness can be a hard problem in itself [1].

There are a number of local search algorithms which have been deployed to

find optimal solutions to hard problems. The most simple is the hill climb (or

decent) algorithm which operates as follows. From the current state we make a

local move; if the new solution improves the objective function then the move is

accepted, otherwise look for an alternative move. This is repeated until we reach

a state where no local move can improve the function. This is said to be a locally

optimal solution or if the problem is convex (or concave) the globally optimal

solution. Hill climb algorithms have been adapted to find better solutions by

running the algorithm many times (possibly in parallel) using multiple (possibly

random) start points. Hill climb based algorithms have been shown to find good

solutions for a number of different problems [69, 137, 149].

Tabu search [66, 67] is another example of an optimisation algorithm which

37



uses the local search method. Tabu search explores the solution space using

local search but uses a short term memory to avoid settling in a local minima or

visiting the same solution many times in quick succession. This has the effect of

helping the algorithm to overcome local optima and give the algorithm a better

chance of finding the global optimum solution. Tabu search has been used to

find good solutions for many different problems and has had numerous positive

results [64, 117, 68].

2.4.2 Simulated Annealing

Simulated Annealing is a local search based global optimisation technique which

was first proposed by Kirkpatrick et al. [85] in 1983, later independently by

Ĉerny [36] in 1985 and is based on the METROPOLIS’ method [113]. The

general idea behind the algorithm is to utilise the method in which metal is

cooled to aid the optimisation of hard problems. In order to ensure the metal

is strong it is important that the crystalline structure is free from defects. This

is achieved by heating the metal until it is liquid and then allowing it to cool

slowly such that the molecules can move around to find their optimal position

before they become fixed. When the temperature is high the metal molecules

move around freely into configurations which are less optimal but as the metal

gets cooler and the metal begins to set the molecules become less likely to move

to a position which would result in more defects.

In hard optimisation problems it is common to have many locally optimal

solutions (where any local move would result in an increase to the objective func-

tion) but a very small number of globally optimal solutions. In these situations

a simple greedy heuristic algorithm which only accepts moves which improve

the solution would have a high chance of terminating in a non optimal solution.

Kirkpatrick et al. use the analogy with metal annealing to inform their choice

to allow the algorithm to accept transitions from one state to another which

result in a less optimal solution depending on a certain algorithmic parameter

called the temperature. This allows the algorithm to find very good solutions

and the optimal solution in cases where the algorithm converges.

A simulated annealing algorithm consists of the following components:

• Initial Solution

• Neighbourhood Function

• Acceptance criteria

38



• Cooling schedule

• Stopping criteria

The initial solution is usually randomly generated but can be chosen based on

some criteria to improve the quality or speed of solution. The neighbourhood

function should be complete and allow the algorithm to navigate through all

possible solutions. The acceptance criteria is the probability that any generated

solution will be accepted, this usually takes the following form.

a = min(e
(f(x)−f(x′))

c(k) , 1) (2.8)

where a is the probability of acceptance, e is the base of a natural logarithm,

f is the objective function, x is the current solution, x′ is the new solution, c

is the cooling schedule and k is the current step. This equation always accepts

a solution which improves the objective function and accepts worse solutions

with a probability linked to the current temperature and change in objective

function.

The cooling schedule should be slow, ideally such that the algorithm has

enough time to converge onto the optimal solution. Simulated annealing algo-

rithms can be categorised by their cooling schedule and if one or many steps are

made for each temperature. Those algorithms which make many steps at each

temperature are modelled by a homogeneous Markov chain which under some

natural assumptions tends to the Boltzmann distribution [10, 79]. If the tem-

perature is changed after each step the system is modelled by an inhomogeneous

Markov chain as the probabilities change for each step.

There are many general cooling schedules, such as equation (2.9) below,

which have been tweaked and applied to a number of unconnected problems

and have found many good and optimal results. There are also many cooling

schedules which have been developed with particular problems in mind; these

have also found good and optimal solutions for hard problems.

c(0) = Starting Temperature

c(k) = c(k − 1) · 1
β

(2.9)

where c(0) is the manually set starting temperature, c(k) is the temperature at

step k and β is a user set parameter which controls the speed of the cooling.

Simulated annealing has been applied to many combinatorial optimisation

problems and has been responsible for improving the upper bound and finding

39



optimal / near optimal results for many hard problems where other algorithms

have failed. For example Steinhöfel, Albrecht and Wong [134] applied heuris-

tic simulated annealing to the job shop scheduling problem. In the paper they

showed that the algorithm could find optimal solutions for a number of bench-

mark problems and improved the best known solutions for several more.

Simulated annealing algorithms fall into the category of meta-heuristic algo-

rithms which find very good solutions for hard problems but do not by nature

guarantee that the optimal solution will be found. If the convergence of an

algorithm can be proved then we can be sure that the algorithm will find the

optimal solution before termination.

Convergence

Lundy and Mees [108] studied the convergence of homogeneous simulated an-

nealing algorithms. They developed a formal model and then showed that the

algorithm must converge on the optimal solution with probability arbitrarily

close to 1. We outline the general model and theory below.

We begin by defining F to be the set of feasible solutions and Fmin ⊆ F to

be the set of optimal feasible solutions.

Consider a pair of feasible solutions [s, s′] where s′ ∈ η(s). G[s, s′] denotes

the probability of making a transition from s to s′ and η is the neighbourhood

function. This is calculated according to equation (2.10):

G[s, s′] =

{
1
|η(s)| if s′ ∈ η(s)

0 otherwise

}
(2.10)

where |η(s)| is the size of the neighbourhood i.e. number of feasible local moves

from s.

A[s, s′] denotes the probability that the transition from s to s′ will be ac-

cepted; this is calculated according to equation (2.11):

A[s, s′] =

{
1 if f(s′) < f(s)

a = e
f(x)−f(x′)

c(k) otherwise

}
(2.11)

where f is the objective function and c(k) is the temperature at step k as defined

above.

Therefore the probability of picking and accepting a solution s′ when in state

40



s is given by Pr{s→ s′} which is defined in equation (2.12) below:

Pr{S → S′} =

{
G[s, s′] ·A[s, s′] if s 6= s′

1−
∑
s6=QG[s,Q] ·A[s,Q] otherwise

}
(2.12)

We also define as(k) which denotes the probability of being in solution s

after k moves. This is set according to equation (2.13) below:

as(k) =
∑
Q

aQ(k − 1) · Pr{Q→ s} (2.13)

This recursive definition allows us to incorporate all routes from any starting

solution to s.

One can consider equation (2.13) as a Markov chain of probabilities for any

route from any starting solution to the final solution s. If the optimal solution

is reachable from any starting solution with a non-zero probability then the

following convergence probability can be shown for an infinite Markov chain:

lim
c→0

 lim
k→∞

∑
s∈F 6=Fmin

as(k)

→ 0 (2.14)

lim
c→0

(
lim
k→∞

∑
s∈Fmin

as(k)

)
→ 1 (2.15)

Theorem 1 The Markov chain defined by equations 2.11, 2.10 and 2.13 has a

probability of 1 to be in an optimal feasible solution smin ∈ Fmin after ∞ steps

and for a decreasing temperature c→ 0

Lundy and Mees [108] show that although a simulated annealing algorithm

will converge they allow an infinite number of steps at each temperature and

therefore the convergence time is not bounded.

Mitra et al. [114] suggested the assumption that infinite time can be spent at

each temperature was unrealistic. Mitra et al. [114] presented their own proof

which considers the time-inhomogeneous model and shows that the algorithm

will converge on the optimal solution without the need for time freezing used in

[108].

Albrecht showed that a logarithmic cooling schedule c(k) = γ/ ln(k + 2)

converges onto the optimal solution with a probability 1−σ after k > (n/σ)O(γ)

steps [10].

41



There are many textbooks and reviews of simulated annealing algorithms

which have been used extensively throughout this thesis [73, 129, 135].

42



Chapter 3

Low Power Scheduling for

Power Heterogeneous

Multiprocessor Systems

Mobile computing has advanced considerably over the past decade. Hardware

development and minimisation of smart-phones has been broadly consistent

with the well known Moores Law which states that the price will halve or per-

formance (number of transistors on a chip) will double every 18 months. The

major exception to this has been the development of the battery technology,

which has sorely fallen behind advances in other technologies. This forms a

design challenge which must be addressed through research into both battery

technology and power reduction techniques. In this chapter we consider the

problem of reducing the power required.

One of the largest drains of energy in a computer system is the processing

unit. In most modern processors, energy consumption and processing speed are

intrinsically linked; this is normally through the relationship

P = Sα + c (3.1)

where α is a constant which is typically between 2 and 3, c is some constant,

S is speed and P is power. A very effective way of reducing the amount of

energy a processor uses is by lowering the operational speed. For this we can

use Dynamic Speed Scaling.

43



This chapter discusses Dynamic Speed Scaling with power heterogeneous

multiprocessor systems. Power heterogeneous multiprocessor systems have a

collection of processing units all of which have one or more cores. Each processor

or core has a power function and set of valid operating speeds. The variety of

possible operational speeds and power functions makes the systems significantly

more complex than homogeneous multiprocessor systems which have been the

focus of the majority of existing work.

The remainder of this chapter is organised as follows: in Section 3.1 we

present an overview of the problem being discussed; in Section 3.2 we explain

the motivation of the VSP approach; in Section 3.3 we present the DynaVSP

algorithm; in Section 3.4 we explain how a VSP can be used in conjunction with

other algorithms; the results of our experiments are presented in Section 3.5;

and Section 3.6 concludes the chapter.

3.1 Background

Dynamic Speed Scaling (DSS) allows the operating speed of a processor to

be modified at runtime. Due to the polynomial relationship between speed

and power a sustained small reduction in processor speed can result in a large

reduction in total energy consumption. Using DSS to lower the operational

speed of a processor or processors is simple but deciding by how much the

speed should be reduced is complex. An objective function is used to manage

the relationship between energy consumption and performance.

We recall from 2.2.2 that Albers and Fujiwara [8] presented
∑

Flow + En-

ergy: an objective function which balances the quality of service against energy

consumption. Bansal, Pruhs and Stein [21] extended Albers and Fujiwara’s ob-

jective function to include job weights
∑

Weighted Flow + Energy; this allows

for jobs to be differentiated by importance.

Andrew, Wierman and Tang [14] presented an algorithm which has obtained

the best competitive ratio to date. The algorithm considers a wide range of

power functions and has a competitive ratio of (2 + ε). The authors also show

that there exist some trade-off functions for which no algorithm can be better

than (2)-competitive.

44



3.1.1 Power Heterogeneous Multiprocessor Systems

Power heterogeneous multiprocessor systems is a term used to refer to any multi

processor or multi-core computer system which contains processors or cores

which are not identical with regards to their power function and possibly their

set of available speeds. The beauty of this type of system is that it can contain

a complementary set of processors which can be utilised in a very efficient way.

Heterogeneous multiprocessor systems have the potential to be very adaptable

allowing the computer to be both energy efficient and computationally pow-

erful. Power heterogeneous multiprocessor systems are not currently the most

common type of multiprocessor systems but they are more common than one

might think. Many multi-processor systems may be heterogeneous due to man-

ufacturing discrepancies or system setup.

We recall from 2.2.3 that Bower, Sorin and Cox [28] identified 3 main hurdles

for heterogeneous multiprocessor scheduling:

1. the OS must find the status of the processor,

2. the OS must find the demands of each job and

3. the OS must match jobs to processors as well as possible using the available

information.

Gupta, Krishnaswamy and Pruhs [72] were first to suggest a solution for

scheduling weighted jobs onto speed scaling processors. The authors focus on

the 3rd problem identified in [28] of organising which jobs should be processed

on which processor and when. They suggest a simple algorithm which they

describe in three parts:

1. Job Selection (which job should run on each processor): Highest Density

First

2. Speed Scaling (what speed should each processor run at): The speed is

set so the power is the fractional weight of the unfinished jobs

3. Assignment (which processor should each job be assigned to): A new job is

assigned to the processor that results in the least increase in the projected

future weighted flow, assuming the adopted speed scaling and job selection

policies and ignoring the possibility of jobs arriving in the future

The approach which Gupta et al. [72] suggest involves distributing jobs to

various processors based on which one would provide the smallest increase in

45



the projected flow providing no more jobs arrive and the speed of the processors

does not change. The processors are then allowed to manage their own speed

based on the volume of work they are carrying and the speed scaling policy

defined by the algorithm. In the paper the authors prove this algorithm to be

‘scalable for scheduling jobs on a heterogeneous multiprocessor with arbitrary

power functions to minimize the objective function of weighted flow plus energy’.

Gupta, Krishnaswamy and Pruhs [71] subsequently published a paper which

considers the problem of scheduling unweighted jobs non-clairvoyantly over

power heterogeneous processors. The authors show the natural non-clairvoyant

algorithm they present is bounded-speed and bounded-energy competitive.

3.1.2 Low Energy Scheduling

In [72] the authors present a solution for power heterogeneous multiprocessor

systems using
∑

Weighted Flow + Energy as their objective function. This

solution has been shown to be theoretically sound with the authors proving

that the approach is scalable. When we consider a real multiprocessor computer

system we often find that there are constraints which complicate the problem

domain. For example many multi-core processors require the cores to always run

at the same speed. This could be a particular problem as we could include multi-

core processors within a heterogeneous multiprocessor system. The approach

suggested is not currently compatible with this kind of architecture as the speed

of each processor is linked to the number of jobs and not to any other processor.

Another potential issue with the [72] approach is that it requires a significant

amount of runtime computation. Each time a job needs to be assigned to

a processor the algorithm states that we must calculate which processor will

provide the smallest increase in the projected total weighted flow. The authors

do not describe an exact algorithm for calculating which processor which will

result in the least increase in the total weighted flow; we therefore cannot state

an exact amount of run time computation but we can outline a lower bound.

In order to calculate the total weighted flow we must know at what time

each active job will finish processing, which has a worst case running time of

at least O(j′) where j′ is the total number of active jobs. The algorithm would

then have to compare the increase in projected weighted flow for each processor

which would take O(p) time where p is the number of processors. Any algorithm

must therefore have a worst case running time of at least O(j + p) and must

run every time a new job is being assigned to a processor.

46



We present a solution that has the ability to overcome both of these issues:

the Virtual Single Processor (VSP) approach. A VSP is essentially a collection

of processors which have been combined together in a pareto optimal way with

regards to overall system speed and power. The VSP is presented (as a single

processor) to a DSS algorithm which controls the speed of the overall VSP and

specifies which job should be processed first. The VSP in turn translates the

VSP speed into speeds for each processor such that the sum of all processor

speeds is equal to the VSP speed.

3.2 The Virtual Single Processor

We can think of a multiprocessor system as being a tree graph. The root of

the tree is the system level: this is where jobs arrive to be passed down to

a processor or core to be processed. The leaves of the tree are the processor

level; each leaf represents a processor or core which can be used to process

work. Finally the internal nodes represent connections between processors; for

example a multi-core processor would have a number of cores connected by an

internal node which is then connected to the root (e.g. MC0 in the Figure 3.1).

System 

MC0 

P0 C0 C1 

Processor Level 

System Level 

Figure 3.1: A system tree showing the system and processor levels

When using a heterogeneous multiprocessor system the existing solutions

47



suggest that we distribute the jobs at system level and control the processor

speeds at individual processor level as in [96] and [72]. We present an alternative

solution where we consider controlling processor speeds and assigning jobs to

processors from a system level according to processor speed and job priority.

Consider an example of a 4 processor system (P0, P1, P2, P3). Each pro-

cessor has a set of speeds and a simple power function in the form of P = Sα,

the attributes of which are outlined below.

P0 (0, 200,300,400, 500) α=2.3

P1 (0, 600, 700,800,900) α=2.35

P2 (0, 100, 300, 500, 700, 900) α=2.5

P3 (0, 1200) α=2.2

System Speed (sum of processors’ speeds) 

P
o

w
er

 

Figure 3.2: System speed vs. power consumption for the best case and worst
case processor combinations.

In this simple example there are many ways to combine these processors

with 300 unique combinations of processors and speeds. Each combination can

be represented by total power requirement and system speed (the total of all

individual processors’ speeds). There are 14 different combinations which make

up the overall system speed of 1400 alone. If we consider the best and worst

ways of achieving the system speed of 1400 (with regards to power) we find

48



that the worst case uses 487% of the power consumed by the most efficient

combination. If we look at Figure 3.2 we can see the difference between the

most and least power is largest in mid range speeds and the graph converges

at either end of the system speed range. All processors must be at speed 0 for

the system speed to be 0 and all at maximum speed for the system speed to be

maximised.

This simplified case highlights how crucial it is to use the best processor

combinations. If we pre-compute the optimal processor combinations before

attempting to use a multiprocessor system we can ensure that we always use

the most efficient processor combinations. To simplify the search we describe 2

observations which help to find the optimal processor combinations.

Observation 1 A processor combination can only exist in the optimal VSP if

there is no other processor combination which requires less power for an equal

or greater system speed.

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200

P
o

w
e

r
Th
o
u
sa
n
d
s

System Speed (sum of processors' speeds)

Figure 3.3: The VSP solution after applying Observation 1

Observation 1 is intuitively correct. If a solution V contains a processor

combination Vx which can be replaced with another Vx′ which uses less power

and provides an identical or higher system speed then we have found a new

solution V ′ which is more efficient than V , hence V cannot be optimal.

Observation 1 severely reduces the amount of combinations but does not

always result in the set of optimal combinations. Some system speeds can

49



be more efficiently implemented by alternating between two different systems

speeds rather than using a combination which is allowable if we only apply

Observation 1.

The final method which we use to further reduce the lower envelope of the

power function is speed simulation which is described in [18]. Bansal et al. first

defined this method in order to show that a processor with a restricted set of

speeds could simulate any speed in the range of 0 - max by alternating between

2 different speeds. For example if we have a processor with 2 available speeds

(0 and 10) then we can simulate the speed 5 by alternating between the two

available speeds in equal amounts. If we wished to simulate the speed 7.5 then

we would use speed 10 for 3
4 of the time and speed 0 for 1

4 of the overall time.

We use this method in order to potentially lower the power required by the VSP.

Observation 2 If a VSP speed s can be simulated by alternating between two

different speeds and the simulated speed requires less power then s is not part of

the optimal VSP.

Figure 3.4 shows an instance in which Observation 2 is used to lower the

overall power function of the resulting VSP; the lighter section of the line shows

the improvement over applying Observation 1 alone. After applying both Ob-

servation 1 and Observation 2 we have computed the optimal VSP as it is not

possible to achieve a higher system speed for any power. The remaining set of

processor combinations are pareto optimal with regards to power and system

speed.

A major advantage of the VSP approach is that it provides a level of ab-

straction between the single processor algorithm and the multiprocessor system.

This abstraction allows us to hide the complexity of the multiprocessor system

behind the VSP front. We can hide a multitude of requirements such as proces-

sors or cores which always need to operate at the same speed by first producing

a small VSP which encapsulates these parameters and then nesting this inside

the overall VSP as if it was a single processor.

By pre-computing the VSP we can also remove the burden of calculating

which processor is best for each job. This is made possible as the VSP hides

the fact that more processors exist and only assigns jobs when a processor has

a speed greater than 0 and no job. This means that there is no need for the

algorithm to perform costly calculations at run time, which is clearly a great

advantage.

50



0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200

P
o

w
e

r
Th
o
u
sa
n
d
s

System Speed (sum of processors' speeds)

Figure 3.4: The VSP solution after applying Observation 1 & 2

3.2.1 Power Function

When a VSP is computed we obtain a pareto optimal set of processor combi-

nations that can be queried in two ways:

1. Given a system speed the VSP will respond with the processor combina-

tion which uses the least amount of power.

2. Given a power level the VSP will deliver the highest possible system speed

and the processor combination to achieve it.

We can see 1 as the system power function and 2 as the inverse of the

system power function. This is crucial as it allows us to apply a variety of single

processor energy reduction algorithms to a power heterogeneous multiprocessor

system. For example the single processor
∑

Weighted Flow + Energy algorithm

suggested by Bansal et al. [18] states that the speed of the processor is set to

P−1(ntA + 1) where P−1 is the inverse of the power function and ntA is the

number of unfinished jobs at time t when applying algorithm A. This algorithm

can now be applied to a multiprocessor system if used in conjunction with the

VSP approach. Instead of consulting the inverse of the power function we query

the VSP to find the maximum speed which can be achieved using ntA+1 power.

51



3.3 Our VSP Algorithm

In this section we define our DynaVSP algorithm which calculates an optimal

VSP given a set of processors as an input.

Algorithm 5 DynaVSP

DynaVSP(List[ ] P)

Input: A set of processors or VSPs P of length n

if n == 1 then
return P[0]

end if
if n == 2 then

VSP v = new VSP
for each speed x in P[0] do

for each speed y in P[1] do
v.addSystemSpeed(x, y)

end for
end for
for each SystemSpeed x in v do

Check if x is optimal using Observation 1 and 2
end for
Return v

end if
if n > 2 then

Return DynaVSP( [DynaVSP(P[0...n/2]),DynaVSP(P[((n/2) + 1)...n])] )
end if
if n < 1 then

return null
end if

Output: A single VSP

A simple implementation of the DynaVSP algorithm has a worst case run-

ning time of O(s2p) based on p processors, with each processor having s speeds

and an unrestricted power function; in the worst case this is no better than a

naive algorithm. The difference is that the naive algorithm performs at this

level consistently whereas the DynaVSP algorithm only performs at this level

in very few specific situations. The only time the DynaVSP algorithm takes

O(s2p) time is when every possible processor combination can be part of the

optimal VSP. This is because every possible sp processor combination must be

assessed which takes O(n2) time.

52



This rare case only occurs when all of the possible combinations are arranged

on one strictly non-decreasing line. In the vast majority of situations we find

that the points are fairly evenly distributed within an elliptical shape which

joins the maximum and minimum speeds, i.e. between the low and high lines

in Figure 3.2. In the majority of cases we find that the DynaVSP algorithm

calculates the optimal VSP in a reasonable amount of time.

3.4 Using the Virtual Single Processor

It is important that the VSP is not seen as a complete scheduling algorithm. It is

a platform which allows scheduling algorithms to be applied to or developed for

heterogeneous multiprocessor systems more easily. Once we have constructed

our VSP we need three things to utilize it:

1. A job selection policy.

2. A speed scaling policy.

3. To know whether the computer system will allow migration between pro-

cessors or not (this point is crucial to job selection and processor speed

changes).

In the two following subsections we outline how the VSP can be used. This is

split into two parts based on whether the multiprocessor system allows migration

or not.

3.4.1 Migratory

Incoming jobs are sorted according to their ranking as judged by the job selection

policy. The job with the highest rank is always assigned to the fastest processor,

the second highest rank with the second fastest processor and so on. This is

maintained even when more jobs arrive or processor speeds change. This ensures

that the job with the highest priority always finishes quickly. The speed scaling

policy is used in conjunction with the system power function to determine what

speed our system should operate at. This is then translated into individual

processor speeds by the VSP. If a processor is directed to use speed 0 then the

job it is currently processing is interrupted and returned to the list of incoming

jobs.

53



3.4.2 Non-Migratory

Once again the incoming jobs are sorted according to their rank as judged by

the job selection policy but we also keep a note of 2 things for each processor:

1. The time required to finish the current job being processed if the processor

speed stays constant.

2. The current speed of the processor.

We then calculate which processor will allow the highest priority job to

finish first, providing processor speeds stay constant, and the second highest to

finish second and so on. Jobs are then assigned to the ‘correct’ processors when

they become available. When the speed scaling algorithm decides that the

system speed should change, the VSP converts this into individual processor

speed changes: if the speed of a processor should rise then this happens straight

away; if the speed of a processor should drop then this action is taken after the

processor has finished processing the current job. This ensures that no job is

trapped on a processor which has speed 0 as this could result in the job never

being finished.

3.5 Experimental Analysis

In this section we describe our experimental methods and then state and inter-

pret our results. We test the VSP approach in 2 ways. First we assume the

VSP can know and match the speed of an alternative algorithm [72] at any time;

we record the total energy consumption and compare the 2 approaches. The

second test is a straight simulation test: we implement the VSP and alternative

algorithm, simulate a range of processor architectures and input sets and record

the total energy consumption and total weighted flow.

We begin by discussing the speed matching results and then move onto the

simulation results.

3.5.1 Speed Matching Results

We have shown in Section 3.2 that there exist optimal processor combinations

that allow us to get the maximum possible system speed for our energy outlay.

By using optimal processor combinations we can either gain a free system speed

upgrade with no additional power cost or reduce the power with no degradation

54



in speed. Conversely if we do not use optimal processor combinations then

we are needlessly wasting energy or reducing quality of service. It therefore

follows that if we can show that [72] does not consistently use optimal system

speeds then the VSP can provide a better solution by simply mirroring the

overall system speed decided by [72] but using optimal system speeds. This

would reduce the energy consumption whilst maintaining the system speed. We

shall assess the efficacy of the VSP approach in comparison to that of the [72]

approach by showing that the above is true.

We checked to see if the [72] approach consistently used optimal system

speeds through simulation based testing. First we generated and stored a num-

ber of heterogeneous multiprocessor systems. The systems were generated at

random within the given constraints of maximum speed, number of processors

and number of speeds. Table 3.1 shows a breakdown of the types of multipro-

cessor systems. We generated 3 systems of each type to further broaden the

diversity of our test set and bring the total number of test systems to 36.

Processors Number of Available Speeds
2 3

4
5

4 3
4
5

8 3
4
5

16 3
4
5

Table 3.1: Randomly Generated Heterogeneous Multiprocessor Systems

The set of randomly generated heterogeneous multiprocessor systems used

in the experiments can be downloaded here:

http://www.dcs.kcl.ac.uk/pg/dobsonr/HeteroMultiProcessors.zip

For each test we took one of the heterogeneous multiprocessor systems and

created increasing numbers of identical unit size jobs. The [72] algorithm as-

signed jobs to the processor which would result in the least increase in projected

future weighted flow. Each processor then specified its own speed based on the

55

http://www.dcs.kcl.ac.uk/pg/dobsonr/HeteroMultiProcessors.zip


number of jobs currently assigned to it. At regular intervals we noted the total

number of jobs, the overall system speed and the overall energy consumption of

the system; we then calculated the energy consumption that would be required

to achieve the same system speed if we were using the VSP approach and stored

the data.

The test was terminated once the number of jobs had increased to such a

volume that the [72] approach had forced all of the processors to reach their

maximum speed i.e. maximum system speed.

Number of Average amount of Average energy reduction
processors non-optimal processor across range

combinations
2 51.07% 4.427%
4 81.708% 5.935%
8 87.527% 7.114%
16 92.371% 8.175%

Average 78.169% 6.413%

Table 3.2: Results for the randomly generated processors experiment

Raw data can be accessed here:

http://www.dcs.kcl.ac.uk/pg/dobsonr/SpeedMatchingData.zip

Table 3.2 and Figure 3.5 and Figure 3.6 present the results from the experi-

ments using the randomly generated heterogeneous multiprocessor systems. We

can see from Figure 3.5 that the [72] approach does not consistently use optimal

system speeds: on average they were not used for 78.169% of the system speed

range. In addition to this we can also see the detrimental effect this has on the

energy consumption with the VSP approach reducing the energy consumption

by an average of 6.413%. Interestingly, as the number of processors increases,

the [72] approach uses a decreasing amount of optimal system speeds. This is

most likely due to the growing number of possible processor combinations which

makes it less likely that the optimal system speed and processor combinations

will be used.

Figure 3.6 shows that as the number of processors increases, the energy

saving gained through using the VSP approach also increases. This is of great

interest as future projections are that the number of processors could reach as

high as 16 within mobile devices over the next few years. Figure 3.7 is a graph

showing an example of a typical test. We can see that the [72] line converges to

56

http://www.dcs.kcl.ac.uk/pg/dobsonr/SpeedMatchingData.zip


Figure 3.5: Non-optimal processor configurations used by [72] vs. number of
processors

the VSP line at either end of the system speed range and the largest difference

appears in the mid-range. We would expect a multiprocessor system to operate

in the mid-range for the majority of time so the potential energy saving is

maximised.

Our results show that the VSP approach can consistently reduce the energy

used by a heterogeneous multiprocessor system in comparison to the existing

approach in [72]. This means that we can bind more tightly to the objective

function (Quality of Service + Energy Consumption) as we can match the sys-

tem performance whilst reducing the energy consumption.

3.5.2 Simulation Results

In this section we combine the VSP system with the speed scaling policy and job

selection policy from the [72] algorithm. We then compare the two approaches

using simulations. If the results from the two differing approaches are similar

then this will show that the VSP has the potential to be a favourable alternative.

We define 2 multiprocessor systems, which have identical processor configu-

rations and neither allow migration. The first system is used in conjunction with

the [72] approach and speed scaling algorithm A. The second system is used as

a VSP and also uses speed scaling algorithm A. The VSP approach takes the

57



Number of Processors 

P
er

ce
n

ta
ge

 e
n

er
gy

 r
ed

u
ct

io
n

 

Figure 3.6: The percentage energy saving compared to [72] vs. number of pro-
cessors

system and uses the VSP algorithm to convert it into an optimal VSP.

We consider a batch of t tasks arriving over time we can compare how each

approach will deal with these. The [72] approach will sort the jobs by their

density and then calculate which processor will provide the least increase in

projected flow for each job. The job is then assigned to this processor. Each

processor will calculate the speed it should be running at based on the fractional

weighted flow of its work.

The VSP approach will sort the jobs by their density and then calculate what

the speed of the VSP should be. The VSP will then instruct the processors as

to what speed they should be running at. Jobs are assigned to a processor if

its speed is greater than 0 and it does not already have a job. Jobs with higher

priorities will be assigned to faster processors. Note that the VSP approach has

allowed us to remove the majority of the computation from run time due to the

pre-computation of the optimal processor configurations.

Simulations of both approaches were developed in Java and a number of tests

were run with a variety of processor configurations and job sets. Java source

code can be accessed at the location below:

http://www.dcs.kcl.ac.uk/pg/dobsonr/VSP_JavaSim.zip

In this section we will highlight the tests regarding a processor configuration

58

http://www.dcs.kcl.ac.uk/pg/dobsonr/VSP_JavaSim.zip


System Speed

Po
w
er

Figure 3.7: Results of a test for a 16 processor system

outlined in [71].

We use the processor configuration from [71] as the authors suggest this is an

architecture which allows the system to be both energy efficient and powerful.

We have y high powered processors, 2y medium powered processors and 4y high

powered processors (and y = 1). Therefore our system setup is:

• 1 High speed processor: S = {0, 1000, 2000} α = 2.8

• 2 Medium speed processors: S = {0, 250, 500, 750, 1000} α = 2.55

• 4 Low speed processor: S = {0, 50, 100, 150, 200, 250} α = 2.25

We split the test data into 3 different categories all of which contain jobs

with random weights and sizes:

• Immediate: all jobs are all released at time 0.

• Uniformly random: jobs are released randomly over time.

• Peaks and troughs: jobs are released in surges which are similar to the

action of a computer system.

Covering these categories allows us to see how the system performs under a

variety of conditions this gives the tests significant experimental validity. The

59



set of jobs used in these experiments can be downloaded here:

http://www.dcs.kcl.ac.uk/pg/dobsonr/VSP_Test_Jobs.zip

Our results are reported in terms of VSP performance in comparison to

the [72] algorithm. We found that there were some jobs which were severely

throwing the average finish time for both the VSP and [72] algorithms. We

therefore have included additional results where a few outlying jobs have been

disregarded; these jobs have both a very low weight and a very large size. After

removing the outlying jobs we recalculate the averages and have reported this

in Figure 3.8.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

Basic Remove 
Outliers

Basic Remove 
Outliers

Basic Remove 
Outliers

Basic Remove 
Outliers

Flow Energy ∑Flow + Energy Finish Time

Figure 3.8: Average results from the simulations with and without outliers

The results graph shows that the VSP approach has bounded tighter to the

objective function of
∑

Weighted Flow + Energy minimisation as it has reduced

this by a small margin. We find that in this situtation the VSP algorithm has

used more energy but reduced the average weighted flow; this is due to the

algorithm which the VSP is teamed with rather than the VSP system itself.

The results show us that the VSP platform is very promising as it has

bounded 2.31% tighter to the objective function than a competitive alternative.

Our test results are based on using the same speed scaling and job selection

algorithm as the [72] approach to allow for a fair comparison but if used in

conjunction with the Andrew et al. [15] algorithm we may well have found even

better results.

60

http://www.dcs.kcl.ac.uk/pg/dobsonr/VSP_Test_Jobs.zip


3.6 Conclusions

In this chapter we presented the Virtual Single Processor (VSP) approach to low

energy scheduling for power heterogeneous multiprocessor computer systems.

We showed that this approach has many advantages over the existing solution:

• A significant reduction in runtime computation.

• The ability to cater for multiprocessor systems with complex requirements.

• Significant reduction in energy consumption.

We defined a recursive algorithm (DynaVSP) to calculate the optimal VSP,

showed that the VSP approach is theoretically sound and that it can address

many drawbacks of [72]. Our experimental results show that [72] does not consis-

tently use optimal processor configurations and the VSP approach reduced the

average energy consumption by between 4.4% (2 processor system) and 8.175%

(16 processor system) compared to [72]. In addition we found that the VSP

approach can reduce the objective function of
∑

Weighted Flow + Energy by

2.31% compared to the best alternative [72]. This shows that the VSP approach

is a favourable option when looking to use a heterogeneous multiprocessor sys-

tem in an energy efficient way.

61



Chapter 4

SA based Power Efficient

FPGA LUT Mapping

Logic circuits are an integral part of computer science and ubiquitous in every-

day life. Many logic circuits take the form of Application Specific Integrated

Circuits (ASICs) which are developed for a specific purpose and once manufac-

tured their function is fixed. Field Programmable Gate Arrays (FPGAs) are

logic circuits with additional technology which allows them to be programmed

(and reprogrammed, depending on the technology) after being manufactured.

FPGAs have a number of significant advantages over ASICs: they can be

reprogrammed such that one physical board can be used for many different

applications, reducing the number of boards which need to be manufactured.

Also, if a defect in a logic circuit is found it can be corrected without the cost

and energy required to print another physical circuit. This makes FPGAs ideal

for a multitude of applications including mobile and distributed computing.

The technology which allows FPGAs to be programmed after manufacturing

means that they are more complex, can require more physical chip space, cost

more to produce and consume more power than an equivalent ASIC. As a result

they have to be programmed very carefully. As mobile or distributed devices

usually rely on a limited power supply unit, such as a battery or renewable

power source, it has become increasingly important to develop FPGAs which

are exceptionally power efficient.

The power consumption of an FPGA can be broken down into static power

and dynamic power. Static power is consumed whenever there is power running

62



through the circuit regardless of activity. Dynamic power is consumed when the

circuit is active and accounts for 62% of total power consumption for a Xilinx

Spartan-3 device [141]. Figure 4.1 outlines the power consumption of various

components.

Routing
36%

Config
44%

Logic
20%

Static Power

Routing
62%

Clock
19%

Logic
19%

Dynamic Power

Figure 4.1: Power consumption of a Xilinx Spartan-3 device [140, 141]

By far the largest proportion of the power consumption is the cost of dynamic

routing which accounts for 38.44% of the total power consumption of a Xilinx

Spartan-3 device. Power consumed by dynamic routing is dependent on the

switching activity of the routing edges which is dictated by the switching activity

of each logic block and the length of each connecting path. In the majority of

modern FPGAs logic blocks are implemented using Look Up Tables (LUTs)

which take kin inputs and return a single result.

There have been many algorithms developed which aim to reduce the amount

of power consumed by dynamic routing. One of the most fruitful areas under

consideration is the computationally hard problem of mapping an input boolean

function (usually in the form of a boolean circuit) onto an LUT-based FPGA

such that the power consumption is minimised.

The vast majority of existing solutions (which are outlined in the literature

review) make use of greedy heuristic algorithms which have the disadvantage

of often finding only locally optimal solutions rather than the global optimum.

Simulated annealing-based algorithms have had significant success with other

hard problems with similar properties and have found globally optimal or near

optimal solutions in an acceptable time period. We anticipated that they can

provide equally strong results for our problem.

In this chapter we develop a complete local search move set and present a

simulated annealing-based algorithm which maps a boolean function onto an

63



LUT-based FPGA such that the power consumed through dynamic routing is

minimised.

We begin by formally defining the problem considered and outlining the

power estimation technique used to evaluate solutions. We introduce our local

moves and neighbourhood function, prove they are complete and present the

Simulated Annealing algorithm which is tailored to the problem at hand. Finally

we compare our results to both SIS mapping [130] and a genetic algorithm

[122] and show that our algorithm finds better solutions than both of these

approaches.

4.1 Problem Definition

A boolean circuit is defined as a directed, acyclic graph G(N,E) where N is a

set of nodes and E is a set of edges. Each node ni ∈ N is either a primary input,

an output or a logical gate (although a logical gate can also be an output node).

Node types are distinguished by their in-degree and out-degree (see Table 4.1).

Each node also has a transition density td(ni) which is the number of times the

signal changes in unit time. Each directed edge ei ∈ E connects one node to

another. Figure 4.2(A) is an example of a boolean circuit. The total estimated

average power consumption of a boolean circuit is shown in equation (4.1).

Pavg(B) =
∑nin
i=0( 1

2CinV
2
ddfitd(ni))+∑n

i=nin+1( 1
2 (Cin + Cout)V

2
ddtd(ni))

(4.1)

where Pavg(B) is the average power consumption of boolean circuit B, nin is

the number of input nodes, Cin and Cout are the circuit capacitances, Vdd is the

circuit voltage, n is the total number of nodes, fi is the fan out of input i and

td(ni) is the transition density associated with node ni. The transition density

of a node is defined to be the number of times that it’s logical value switches in

unit time.

In degree Out degree
Primary input 0 ≥ 1
Output ≤2 0
Logical Gate 2∗ 1

Table 4.1: In degree and out degree of node types

64



h 

f 

a 

b 

c 

i2 

i4 

i7 

i6 g 

d 

e 

j 

i3 

i5 

i1 

o 

5 

7 

8 

4 

7 

5 

4 

8 

4 

6 

4 

7 

2 

2 

10 

10 

6 

4 

6 

A 

h 

f 

a 

b 

c 

i2 

i4 

i7 

i6 g 

d 

e 

j 

i3 

i5 

i1 

o 
5 

7 

8 

4 

7 

5 

4 

8 

4 

6 

4 

7 

2 

2 

10 

10 

6 

4 

6 

B 

Figure 4.2: A: boolean circuit. B: LUT mapping of A.

A Look Up Table (LUT) circuit can be defined as a directed, acyclic graph

C(N ′, L, kin, E
′) where N ′ is a set of nodes, L is a set of LUTs and E′ is a

set of edges. Each node n′i ∈ N ′ is either a primary input node or an output

node and has a transition density td(n′i). Each li ∈ L is an LUT. An LUT is

defined as a special node that can represent any boolean function with up to

kin distinct inputs (where kin ≥ 2) and a single output i.e. an LUT node can

replace a boolean circuit (or sub-circuit) with no more than kin input nodes and

one output node. Every LUT has a transition density td(li) which is analogous

to the switching activity of the LUT. Each directed edge e′i ∈ E′ connects

one node or LUT to another node or LUT. The total estimated average power

consumption of an LUT circuit is described in equation (4.2).

Pavg(L) =
∑n
i=0( 1

2CinV
2
ddfitd(n′i))+∑l

i=0( 1
2 (Cin + Cout)V

2
ddtd(li))

(4.2)

where all terms are the same as in equation (4.1) with the following additions:

L is an LUT-based circuit and l is the total number of LUTs.

A boolean circuit can be implemented by an LUT circuit. A single LUT can

represent any boolean circuit (or sub-circuit) with kin or less input nodes and

one output node; an LUT circuit can therefore implement the same function

as a boolean circuit by substituting sub-circuits for LUTs. The average power

consumption of the equivalent LUT circuit is equal to the boolean circuit that

∗We state that the in degree of a logical gate is 2 and the out degree is 1. This does not

restrict the power of the circuit as any circuit with unbounded gates can be decomposed into

an equivalent boolean circuit with bounded gates [145]

65



contains only the input nodes and output node of each sub-circuit. Figure 4.2(B)

shows an example of how boolean circuit 4.2(A) can be mapped onto an LUT

circuit where kin = 4 and the grey areas represent LUTs. An LUT circuit is

considered to have mapped a boolean circuit if the LUT circuit implements the

same function as the boolean circuit.

We wish to find a kin feasible LUT mapping of any boolean circuit such that

the average expected power consumption is minimised.

4.2 Simulated Annealing

In this section we describe the simulated annealing algorithm which is applied

to the problem described above. We begin by outlining a general homogeneous

simulated annealing algorithm and a basic implementation of a simulated an-

nealing algorithm (Algorithm 6) which incorporates all of the features discussed

in this section.

A simulated annealing algorithm attempts to find an optimal (or at least

good approximate) solution to a hard problem by searching the solution space

using local moves. Each time a local move is made the new solution is evaluated

according to the objective function. If the new solution is better than the

current solution it is accepted; if not the new solution is accepted according to

the equation (4.3).

a = e
f(x)−f(x′)

c(k) (4.3)

where a is the probability the solution will be accepted, f is the objective

function, x is the current solution, x′ is the new solution and c(k) is the current

temperature.

Equation (4.3) relies on c(k) which is defined as the current temperature but

more accurately it is the temperature at step k (which in equation (4.3) is the

current step). The temperature is defined in 2 parts: c(0) which is the starting

temperature; and c(k) which recursively defines the temperature at any step

k > 0. c(k) also describes the cooling schedule.

We have chosen to define c(k) (equation (4.4)) using a cooling schedule which

has been shown to have be very successful for similar problems. Steinhöfel et

al. [134] suggest that c(0) should be set such that even the worst possible move

has a high probability of being accepted; this depends on the problem being

considered.

66



c(k) = c(k − 1) · 1

β
(4.4)

where β is an algorithm parameter and k is the step of the algorithm.

The temperature is lowered at each iteration of the algorithm according to

equation (4.4) until c(k) < c(τ) where c(τ) is the threshold. The threshold

should be set such that there is a very low possibility that even the least bad

move will be accepted; this again depends on the problem being considered.

The homogeneous simulated annealing model states that a number of local

moves should be performed at each temperature rather than adjusting the tem-

perature after each move. The length of the Markov chain U (number of moves

made and accepted) at each step is determined by the following equation.

U = hη (4.5)

where h is an algorithm parameter and η is the size of the neighborhood.

Finally we require a complete neighborhood function which is defined in

Section 4.3 below.

Algorithm 6 Simulated Annealing

bestSol = currentSol = a random solution
k=0
while c(k) > c(τ) do

moveCount = 0
while moveCount < U do

newSol = LocalMove(currentSol)
if newSol is accepted by equation (4.3) then

moveCount++
currentSol = newSol
if f(currentSol) < f(bestSol) then

bestSol = currentSol
end if

end if
end while
k++

end while
Return bestSolution

67



4.3 Move Set and Neighborhood Function

In this section we define a complete move set which allows us to transform one

kin feasible LUT mapping to any other kin feasible LUT mapping through a

series of local moves and describe a method to evaluate the energy consumption

of the new covering.

We considered a number of possible local move solutions: node collapsing

(and dividing); graph cutting (as used in existing heuristic algorithms); and

finally node flag flipping which is the solution we settled on for a number of

reasons. Firstly node collapsing (where adjacent logical nodes are combined)

requires a significant amount of internal representation, manipulation and val-

idation to execute each move which hampers the performance. Graph cutting

(where the tree of logical nodes is iteratively split into disjoint sections) is pow-

erful but requires the set of possible moves (which for larger values of kin can

be cumbersome) to either be generated at run time or precomputed and stored,

both have major disadvantages including time and space complexity. We de-

cided to use node flag flipping (which is defined in the remainder of this section)

as it can be implemented very efficiently in terms of space and time complexity

which allows our algorithm to run at the speed required.

In the remainder of this section we describe our local moves and neighbour-

hood function. We also show that they are complete for traversing the set of all

possible solutions. We begin with some definitions.

Definition 4 Let a each node have a flag which denotes if the outgoing edge is

cut or uncut, where all input nodes and the output node must be labeled cut.

Definition 5 Let the state of a boolean circuit be an array of all node flags.

Definition 6 Let a partition be a boolean circuit which is divided into distinct

sections by cut edges. A partition can be represented by a state.

Definition 7 Let a kin Feasible Partition be a partition where each section can

be implemented by a single kin input LUT.

A boolean circuit with l logical gates has 2l different states but not all of

these correspond to a kin feasible partition.

4.3.1 Slightly Restricted Boolean Circuits

We begin by considering a slightly restricted version of a boolean circuit where

each input node may have only one outgoing edge; see Table 4.2.

68



In-degree Out-degree
Primary input 0 1
Output 1 0
Logical Gate 2 1

Table 4.2: Restricted in-degree and out-degree of node types

Local Move 1 Given a boolean circuit and a state which represents a kin feasi-

ble partition: pick a single Logical Gate and invert the flag. This gives 2 distinct

moves:

• Cut node: flip the flag on a node from uncut to cut

• Uncut node: flip the flag on a node from cut to uncut

If the resulting state(s) correspond to kin feasible partition(s) then the move is

valid.

To make a valid move we can compute all possible moves which result in a

kin feasible partition. This can be achieved in O(l) time using a simple BFS

based algorithm (a stripped down version of Algorithm 7). Each time a move is

made the initial list of all possible moves can updated to reflect the new circuit;

this requires worst case time O(l). The worst case only occurs when the local

move affects every LUT within the circuit which can only happen when the

circuit is trivially small. With sufficiently large circuits the average case the

performance in the region of O(kin).

Completeness

For a neighbourhood under Local Move 1 to be complete over the set of re-

stricted boolean circuits we need to show that any kin feasible partition can be

transformed into any other kin feasible partition through the repeated appli-

cation of local moves within Local Move 1. To simplify this problem we can

consider the following sub-problems:

1. Is the move set directly reversible?

2. Can we use the local move to transition from an initial kin feasible parti-

tion to any other kin feasible partition.

If we can prove that the both of the above are true then we have shown that

we can move from any kin feasible partition to any other kin feasible partition.

69



Showing that Local Move 1 is reversible is simple. We begin in kin feasible

partition px, make a cut (or uncut) node move by flipping the flag on node ni

and transition to another kin feasible partition px′ ; if the new partition is not

kin feasible then the move is not valid. We know that by making the opposite

uncut (or cut) node move by flipping the flag on node ni we must transition

back to the original kin feasible partition px; hence Local Move 1 is directly

reversible.

Definition 8 Let p0 be the state where all nodes in a boolean circuit are cut.

This corresponds to a kin feasible partition where each node is implemented by

a separate LUT.

Definition 9 Let p1 be the state where all logical gate nodes in a boolean circuit

are uncut. If there are kin or less inputs this corresponds to a kin feasible

partition where all nodes are implemented in a single LUT.

In order to show that we can use Local Move 1 to reach any kin feasible

partition we first simplify the initial problem. We can consider any kin feasible

partition as a combination boolean circuits with kin or fewer input nodes and

where all logical gates are uncut, i.e. the circuit contains a single kin feasible

LUT. See Figure 4.3 for an example of how a Boolean circuit in a complex kin

feasible partition can be considered as separate circuits each in state p1.

By using this method we can, without loss of generality, just consider the

situation where we take a boolean circuit with up to kin inputs in state p0 and

use Move Set 1 to transform it into state p1. This proves that the move set is

complete.

Lemma 1 There exists a chain of uncut moves (swapping a node from cut to

uncut) which can transform a boolean circuit with kin or less inputs from state

p0 into state p1.

Lemma 2 A boolean circuit as defined in Section 4.3.1 which has n− 1 logical

gates must have n input nodes and 1 output node.

The boolean circuit that we define in Section 4.3.1 adheres to a tree structure

and a tree with v leaves will have v − 1 non-leaf nodes where one is the root,

therefore Lemma 2 must be true. Lemma 2 shows that the number of input

nodes is directly proportional to the number of logical gates. If the maximum

number of input nodes allowed is less than or equal to kin then we can have at

70



Figure 4.3: A complex partition as a combination of p1 partitions

most kin−1 logical gates. If the maximum number of logical gates is kin−1 then

any intermediate states must have less then kin − 1 logical gates and therefore

less than kin inputs, i.e. a sub-tree cannot have more leaves than the original

tree. We can therefore use the uncut move to transition a boolean circuit from

state p0 to state p1.

We have proved that we can transition a boolean circuit from state p0 to

state p1 using Local Move 1 and that Local Move 1 is reversible. By combining

these two elements we know that any kin feasible partition can be reached from

any other kin feasible partition and hence we have proved that the Local Move

1 is complete.

4.3.2 Unrestricted Boolean Circuit

In the previous sub-section we showed that Local Move 1 is complete over our

initial restricted definition of a boolean circuit. We now consider the original

boolean circuit definition where each input node has unrestricted out degree.

The neighbourhood over Local Move 1 is not complete over the unrestricted

definition of a boolean circuit. This is because Lemma 2 cannot hold as nodes

71



can now share input nodes; therefore a partition may have more than k − 1

nodes. To account for this we include additional moves which are defined in

Local Move 2.

Local Move 2 Given a boolean circuit and a state which represents a kin fea-

sible partitioning: pick both children of a node; if the children are not marked

that they should always be cut and are either both cut or both uncut then we can

invert both flags. This gives 2 distinct moves:

• Cut Children: flip the flag on the nodes from uncut to cut

• Uncut Children: flip the flag on the nodes from cut to uncut

If the resulting state(s) are kin feasible partition(s) then the move is valid.

We can use an extended BFS based algorithm to produce a list of all valid

moves in O(l) time (Algorithm 7). For brevity we assume that when we refer

to the neighbourhood over local move 2 we are implicitly referring to any move

which is valid in Local Move 1 or 2.

Algorithm 7 FindValidMoves

Input: Boolean circuit B, State S, Set of valid moves M , Current node c

Find all LUTs (output, inners and inputs)
for each LUT (can be multi threaded) do

for each inner node do
if |LUTi.inputs \ node.inputTree.inputs| ≤ kin then
M = M∪ node

end if
end for
for each input node do

if |LUTi.inputs ∪ LUTnode.inputTree.inputs| ≤ kin then
M = M∪ node

end if
end for

end for
Return current

Completeness

In order to prove the completeness of Move Set 2 we need to show that:

• the move set is reversible

72



b 

c d 

f g h i 

l m n o 

e 

j k 

a 

Figure 4.4: A circuit adhering to Lemma 3

• the move set works in situations where Lemma 2 does not hold

In section 4.3.1 we showed that the cut and uncut node moves were reversible

very simply. This case is very similar as we are just applying 2 cut node moves at

the same time and hence the logic remains the same. We can only use a cut (or

uncut) children move if the resulting partition is kin feasible and by applying

the opposite move we transition back into the original kin feasible partition.

Hence Local Move 2 is directly reversible.

For Lemma 2 to not hold the number of nodes must be greater than or equal

to the number of inputs. This can only happen when at least one input node

has a fan out greater than 1 and more than one of the fan out edges are inputs

of the same LUT.

Definition 10 O is the set of circuits which have a kin feasible partition where

at least one section (LUT) has kin input nodes and at least kin logical gates, i.e.

the set of circuits with kin feasible partitions where Lemma 2 does not hold.

Lemma 3 There exists a boolean circuit B ∈ O in p1 with the set of input

nodes I, the set of logical gates W and a single output node o where |I| ≥ |W |.

Figure 4.4 is an example of a circuit in partition p1 where the number of

logical gates {a, b, c, d, e, f, g, h, i, j, k} is greater than the number of input nodes

{l,m, n, o}. We have therefore found an a circuit where the conditions of Lemma

3 hold and hence Lemma 3 is true.

73



Lemma 4 There exists a boolean circuit b1 (from Lemma 3) in a kin feasible

partition p1. We label the logical gate which is closest to the output node g. If

both child nodes of g are cut then the resulting partition must be kin feasible.

The children of g (which we label gl and gr) may be input nodes or logical

gates. This gives 3 distinct possibilities:

1. gl is an input node and gr is a logical gate,

2. gl is a logical gate and gr is an input node,

3. Both gl and gr are logical gates.

Note that we have omitted the case where both gl and gr are input nodes as

the input nodes by definition must be cut so there is no local move is possible.

Cases 1 and 2 are equivalent as they both contain one input node and one

logical gate. The description of a boolean circuit states that an input node

must be cut so only the logical gate needs to be cut and therefore we can apply

Local Move 1. By cutting the logical gate node we are left with a new partition

with 2 sections; the first contains only one node g and the second contains all

other logical gates. The first section containing g only can have only 2 inputs

and hence must be kin feasible. The second section (containing all logical gates

apart from g) has an input set I ′ ⊆ I therefore the number of inputs can be at

most kin; the partition is therefore kin feasible.

In case 3 both children are logical gates and hence they both need to be

cut and we must apply the cut children move (Local Move 2). Once both cuts

are applied we reach a new partition with 3 sections; the first contains only g,

the second contains the sub-circuit attached to gl and the third contains the

sub-circuit attached to gr. The first section containing g only can have only 2

inputs and hence must be kin feasible. The second and third may have between

1 and |L| − 2 logical gates in each sub-circuit. Each section has an input set

which we will label Il and Ir where Il ⊆ I and Ir ⊆ I and Il ∪ Ir = I. As each

section may have at most |I| inputs the partition must be kin feasible.

We have shown that all cases lead to a new kin feasible partition and hence

Lemma 4 must be true. We can now apply Lemma 4 recursively to decompose

a circuit from partition p1 to partition p0 as is shown in Figure 4.5 (1 → 4:

uncut children and 4 → 1: cut children). We have shown that the move set

is reversible and any kin feasible partition can be reached from any other kin

feasible partition; therefore the Move Set 2 is complete.

74



b 

c d 

f g h i 

l m n o 

e 

j k 

a 

b 

c d 

f g h i 

l m n o 

e 

j k 

a 

b 

c d 

f g h i 

l m n o 

e 

j k 

a 

b 

c d 

f g h i 

l m n o 

e 

j k 

a 
1 2 

3 4 

Figure 4.5: Repeated application of Local Move 2

4.4 Simulated Annealing Parameters

In this section we formally define the parameters used in the simulated annealing

algorithm.

The starting temperature is set such that any move should be accepted with

a high probability. We calculate this by rearranging the acceptance probability

to make the c(0) the object:

a = e
f(c)−f(n)

c(k)

c(0) = ∆w

ln pr(∆w)

(4.6)

where ∆w is the increase in the objective function when the worst possible

move is made (which can be simply computed in O(l) time before the simulated

annealing algorithm begins) and pr(∆w) is the probability that the move is

accepted. When pr(∆w) is set to 0.999 (i.e. 0.01% chance that the move would

not be accepted) the equation becomes:

c(0) = 1000∆w (4.7)

The algorithm stops looping once the temperature drops below a threshold

75



at which point it is unlikely (< 0.05) that even the least bad move would be

accepted. The definition of the problem is such that the least bad move is never

very bad so requiring that this has less than a 5% chance of being accepted

gives the algorithm ample time to ensure the algorithm has not halted during

a gradient descent. This again is defined by rearranging the acceptance criteria

equation:

a = e
f(c)−f(n)

c(k)

c(τ) = ∆l

ln pr(∆l)

(4.8)

where c(τ) is the threshold, pr(∆l) is the probability that the current solution

will be accepted and ∆l is the increase in cost caused by the least bad move

possible. When we set pr(∆l) to 0.05 we get the following equation:

c(τ) = 0.33381∆l (4.9)

In the general simulated annealing definition above we define the c(k) (equa-

tion (4.4)) and L (equation (4.5)) both of which take additional parameters. The

parameter β from equation (4.4) is set to be a small number such that the cool-

ing is slow. For our tests we experimentally set β = 2. The parameter h from

equation (4.5) is set such that the number of moves at a given temperature is

sufficiently large. For our tests we experimentally set h = 20.

Implementation and Analysis

The simulated annealing algorithm can be implemented very efficiently which

is essential due to the number iterations the algorithm requires. We outline the

running times of various parts of the simulated annealing algorithm in Algorithm

8. The only possible point of contention is that it takes up to O(l) time to update

the list of possible moves. Our analysis shows that in the majority of cases this

can be achieved in a small amount of time but for small circuits it is possible

that this takes O(l) time as one local move can have ramifications for the entire

circuit. When this is the case it is highly likely that the value of l is sufficiently

small that the algorithm can still compute all possible moves in a very short

time.

76



Algorithm 8 Simulated Annealing Analysis

Generate random solution - O(l)
Evaluate initial solution - O(l)
Calculate all possible moves - O(l)
while temperature > threshold do

while movesMade < L do
Pick random move - O(1)
Generate new solution - O(1)
Evaluate new solution and possibly accept - O(1)
Update list of possible moves - O(l)

end while
end while
Return Best Solution

4.5 Results

For our experiments we implemented the Simulated Annealing algorithm us-

ing Python, although there are many very good implementations of Simulated

Annealing algorithms which are freely available. We tested the algorithm with

a combination of randomly generated and MCNC benchmark boolean circuits

(which are commonly used in related research). We utilized the MVSIS [29]

strash command to convert the MCNC circuits (in blif format) into 2 bounded

AND2 & INVERTER boolean circuits which were then saved as ‘bench’ files.

In order to compare our results with those from Pandey et al. [122] and SIS

[130] we present our findings in terms of cumulative switching which is the total

edge switching activity of the whole circuit. Cumulative switching is calculated

using equation (4.10) which is quoted from [122].

2 · pr(s) · (1− pr(s)) (4.10)

where pr(s) is the probability of signal s being 1.

We initialized the simulated annealing algorithm with β = 2 and h = 20

and mapped the input boolean circuits onto LUTs with kin = 5. Each test is

run once until completion and the best solution found is reported. The genetic

algorithm from [122] took an average of 3.2 seconds to produce the results in

Table 4.3. The simulated annealing algorithm used considerably more time to

produce our results (2 1
4 hours for 5xp1) but they provide such a great reduction

in power consumption that we consider this to be a reasonable time cost.

In Table 4.3 we report the best results our Simulated Annealing algorithm

77



Cumulative switching Comparison

Circuit SIS GA SA SA
SIS

SA
GA

Misex2 3.59 2.85 2.37 66.01% 83.16%
Sao2 8.36 7.24 5.22 62.44% 72.10%
Con1 1.53 1.19 0.49 32.02% 41.17%
5xp1 2.24 1.71 1.24 55.36% 72.51%
Rd53 4.32 3.05 2.50 57.87% 81.97%
Z4ml 6.98 5.56 4.72 67.62% 84.89%

Average 57.04% 72.56%

Table 4.3: Results Comparison [130, 122]

found for each circuit alongside the results for SIS and the Genetic algorithm

quoted in [122]. We can see that as expected our SA based algorithm has the

ability to severely reduce the power consumption of SIS: in the case of circuit

Con1 by 67.98% and by an average of 42.96%. Furthermore we see that the SA

algorithm has reduced the power consumption of the genetic algorithm by an

average of 27.44% and in the case of Con1 by 58.83%.

4.6 Conclusions

In this chapter we have formally defined the problem of low power LUT-based

FPGA mapping as a combinatorial optimisation problem. We introduced lo-

cal moves and showed the resulting neighbourhood function to be complete for

traversing all possible solutions in our problem domain. Experimental results

for our proposed simulated annealing procedure have been compared to two

alternative approaches and we have demonstrated that the SA algorithm finds

significantly better results than both. Most notably our results decrease the cu-

mulative switching (which is analogous to power consumption) by up to 27.44%

when compared to an alternative genetic algorithm [122]. These results motivate

further investigations of simulated annealing (and other local search algorithms)

possibly in combination with more tailored / dedicated cooling schedules.

78



Chapter 5

Advice Complexity for

Sleep State Management

When a computer is turned on, it consumes energy. Even if the system is idle, it

will continue to consume energy despite not being actively in use. Many modern

devices are equipped with various low-power sleep states, which can reduce the

amount of energy consumed when the system is idle. One of the most common

low-power states is to dim or turn off the screen of the device. This has been

shown to significantly reduce power consumption in smart phones [35].

Sleep state management is a fundamental energy efficiency problem. It is

considered to be of great importance as it has the potential to significantly

reduce the energy consumption of a computer system without reducing the

performance of the system when it is in use. Any offline sleep state problem

can be solved optimally using a simple algorithm, but the online version of the

problem is much harder.

In this chapter, we design novel algorithms with advice to find optimal and

near optimal solutions to sleep state problems. We consider algorithms which

use advice from an oracle to find optimal and near optimal solutions to online

problems. We devise an algorithm with advice which can optimally solve any

sleep state problem using r log s advice bits where r is the length of the interval

and s is the number of states. We also present algorithms which can use small

amounts of advice to solve sleep state problems with a better competitive ratio

than the best possible deterministic algorithms.

We begin by outlining the preliminaries of the problem and discussing pre-

79



vious research in the areas of sleep state problems and advice complexity. We

then present an algorithm which uses advice to find the optimal solution to

the problem. Finally, we discuss algorithms which use small amounts of advice

bits to find solutions which are better than those found by the best possible

deterministic algorithm.

5.1 Online Algorithms with Advice

We recall from Section 2.2. An online algorithm is used to solve a problem

where information becomes available over time. In 1985 Sleator et al. [133]

introduced the idea of assessing the worst case performance of the online algo-

rithm by comparing it to the optimal offline solution. This is commonly known

as competitive analysis. For an online problem we have: O(I) which is the op-

timal solution for input I; A(I) is the online algorithm’s solution for the same

input. Each algorithm’s solution has a cost C(O(I)) and C(A(I)). We state

that A is c-competitive if there exists some constant φ ≥ 0 such that for any I

the following holds:

C(A(I)) ≤ c · C(O(I)) + φ (5.1)

If φ = 0 then we can state that A is strictly c-competitive. Furthermore if c = 1

and φ = 0 then A is optimal.

There are many problems where it has been proven that the competitive

ratio of a deterministic online algorithm cannot be lower than a certain bound,

but where the offline algorithm is optimal. In these cases, it is interesting to

study the advice complexity of the problem.

Advice Complexity was first introduced by Böckenhauer et al. in [26]. Roughly

speaking, the advice complexity of a problem is the number of bits of informa-

tion required to allow an online algorithm with advice to find the optimal offline

solution. An online algorithm with advice is an online algorithm which can re-

quest information from an all-knowing oracle. The advice is delivered by means

of an infinite tape and the aim is to use the fewest advice bits to ensure the

optimal solution is found. An algorithm with advice is formally defined in [25]

as:

Definition 11 An online algorithm with advice computes the output sequence

Aφ = Aφ(I) = (y1, ..., yn−1) such that yi is computed from φ, x1, ..., xn, where

φ is the content of the advice tape, i.e., an infinite binary sequence and I =

(x1, . . . , xn).

80



The advice complexity of a problem is the upper bound on the number of

bits of information an algorithm with advice A′ requires to be 1-competitive.

Advice complexity is formally defined in [25] as:

Definition 12 Algorithm A is c-competitive with advice complexity s(m) if

there exists some constant a such that, for every m and for each input sequence

I of length at most m, there exists a φ such that C(Aφ(I)) ≤ c ·C(Opt(I)) + φ′

and at most s(m) bits of φ have been accessed during the computation of Aφ(I).

If φ′ = 0, then A is strictly c-competitive with advice complexity s(m).

In some cases, an algorithm with advice may need to know the entire input

in advance to find the optimal solution. In other cases, very few bits can be

sufficient to find the optimal solution.

It is also interesting to consider the improvement which can be gained by

the addition of a small amount of advice. Böckenhauer et al. [25] studied the

classic knapsack problem, for which no deterministic online algorithm can have

a bounded competitive ratio. They designed an algorithm that uses a single

advice bit to be 2-competitive compaired to the optimal offline algorithm.

5.2 Sleep States Problem Definition

We consider a computer system which, whilst in the wake state, consumes energy

at a linear rate. There also exist a number of sleep states which consume energy

more slowly, but require additional energy to move back into the wake state.

The computer system has a set of states S = {s0, . . . , sk} where s0 (the wake

state) is the only state where work can be processed and all other states are

sleep states. Each state has an ongoing power function p(si) and a wake power

function w(si).

The function p(si) describes how much energy is used per unit time and

w(si) describes how much energy is required to return the computer system to

s0.

The state power functions are are defined as follows:

p(si) > p(si + 1)

p(sk) = 0
(5.2)

w(s0) = 0

w(si) < w(si + 1)
(5.3)

81



We assume that, for each time step, a unit-size job may arrive on a random

basis; therefore the idle periods are also randomly distributed and of random

length. We assume that at the end of an idle period the processor will be

automatically awoken such that it cannot sleep whilst a job is available. We

wish to minimise the energy consumption during the idle periods by selecting

the best possible state.

We recall from 2.2.1 that Irani et al. [77, 78] presented the optimal offline

algorithm and deterministic algorithm for the 2 and multi-state models. They

showed that by using the following equation their algorithms for the 2-state

model and multi-state model are both 2-competitive and that this is the best

possible competitive ratio for any deterministic algorithm.

OPT (t) = min
1≤i≤n

{p(si) · t+ w(si)} (5.4)

5.3 Online Algorithms with Advice for Sleep

State Management

In this section, we consider online algorithms with advice which solve the sleep

state management problem. We shall begin by outlining the amount of advice

which is needed to be optimal and then consider how good an algorithm can be

with less advice.

5.3.1 Optimal Advice Complexity

We begin by considering a system with s states where for each idle period it is

possible that any one of the s states may be optimal. Therefore, for a single

idle period, we need log s bits of advice to know which is the optimal state ‡. In

the case where we have r idle periods, we require at most r log s bits of advice

to find the optimal solution. This strategy is described by Algorithm 9.

Algorithm 9 Optimal online algorithm with advice

For each idle period use at most log n advice bits to pick the optimal state.

Therefore, this problem has an advice complexity of s(r) = r log n.

‡Within this chapter please assume that log implies log2.

82



5.4 A Single Bit of Advice

In this subsection, we wish to establish how competitive an algorithm can be

when using just a single bit of advice where there are only two states (active

and sleep). We begin by defining the break-even point;

b =

⌈
w(s1)

p(s0)

⌉
(5.5)

The break-even point is the length of idle period where the cost of sleeping

immediately and idling are equal and therefore both optimal. The well known

Irani et al. [77] algorithm Lower Envelope can be expressed in terms of b.

Algorithm 10 Lower Envelope [77]

Sleep after b time steps

In order to find an algorithm which performs better than Lower Envelope,

we propose the creation of a second algorithm which can be used to complement

Lower Envelope. We define an alternative algorithm Sleep Sooner in terms of b

and an input variable δ.

Algorithm 11 Sleep Sooner

Sleep after δb time steps, where 0 ≤ δ ≤ 1

Algorithm 10 sleeps when the idle period is longer than b; this algorithm has a

well-known competitive ratio of 2 [77]. The worst-case for this algorithm occurs

when the idle period stops immediately after the algorithm has transitioned into

the sleep state s1.

Algorithm 11 is a slightly modified algorithm which enters the sleep state

earlier than Algorithm 10 where the performance is linked to the input pa-

rameter δ. The worst-case competitive ratio 1+δ
δ occurs when the idle period

ends immediately after transferring to the sleep state, e.g., if δ = 0.5, then the

algorithm has a competitive ratio of 3.

We propose the following algorithm which combines Algorithm 10 and Al-

gorithm 11 to improve on the competitive ratio of either of them in isolation.

Algorithm 12 Combined

Use a single advice bit to inform whether Algorithm 10 or Algorithm 11 will be
more efficient for the upcoming set of idle periods.

83



To find the competitive ratio of Algorithm 12, we first need to understand

the behavior and nuances of Algorithms 10 and 11.

Algorithm 10 has been analysed may times before and its behaviour is well

known. If λ ≤ b (where λ is the length of the idle period), then the algorithm

emulates the optimal offline algorithm and is therefore 1-competitive. When

λ = b, the algorithm has allowed the system to idle for b time steps and has

therefore used b · p(s0) energy. Once λ > b, it transfers to the sleep state, which

costs w(s1) energy. This means the algorithm has spent b · p(s0) + w(s1). We

recall the definition of b = w(s1)
p(s0) . If we substitute this into our equation, we find

that Algorithm 10 has consumed 2 ·w(s1) energy, which is twice as much as the

optimal algorithm; Algorithm 11 is therefore 2-competitive when λ > b.

CR(Algorithm 10) =

{
1 if λ ≤ b
2 otherwise

}
(5.6)

where CR(A) is the competitive ratio of an algorithm A.

We know that Algorithm 11 must be optimal when λ ≤ bδ, as it has remained

in the idle state in the same way that the optimal offline solution would. Algo-

rithm 11 enters the sleep state when λ > bδ; therefore, when bδ < λ ≤ b holds,

we know that the algorithm has committed to using w(s1) + (bδ · p(s0)) energy

at that point. We rearrange the equation by substituting w(s1) = b · p(s0): the

energy consumed by this algorithm is

w(s1) + (bδ · p(s0))

b · p(s0) + (bδ · p(s0))

(δ + 1) · (bp(s0))

(5.7)

where δb < λ. When the system stays in the wake state the optimal energy

consumption is equal to λ · p(s0) (where λ is the length of the idle period) and

therefore the competitive ratio is:

CR(Algorithm 11) = (δ+1)·bp(s0)
λ·p(s0)

= (δ+1)·b
λ

= (δ + 1) · bλ , where δb < λ ≤ b

(5.8)

84



Finally, when λ > b, the competitive ratio is formed as follows.

CR(Algorithm 11) = (δ+1)·bp(s0)
w(s1)

= (δ+1)·bp(s0)
bp(s0)

= (δ + 1), where λ > b

(5.9)

Therefore,

CR(Algorithm 11) =


1 if λ ≤ δb
(1 + δ) · bλ if δb < λ ≤ b
(1 + δ) otherwise

 (5.10)

As we can see from Equations (5.6) and (5.10), both algorithms perform

optimally when λ < δb. Therefore, we do not consider this situation in our

analysis. Algorithm 10 performs optimally up until λ > b, where its competitive

ratio goes up to 2. Algorithm 11 performs worse for the critical interval [δb, b],

but better when λ > b. We therefore wish to use Algorithm 11 in situations

where there are many long idle periods and Algorithm 10 where many idle

periods have a length in the critical interval.

A certain fraction γ = [0, 1] of the idle periods which occur will have a length

in the critical interval. The competitive ratio of Lower Envelope and Sleep

Sooner can be calculated in terms of γ. We begin by setting w(s1) = 1 and

calculating the energy consumption of each algorithm for the 2 cases where λ =

δb (the start of the critical interval where Sleep Sooner has the worst competitive

ratio) and λ ≥ b (the end of the critical interval where Lower Envelope has the

worst competitive ratio). See Figure 5.1 for the energy consumption for each

combination of case and algorithm.

Case Optimal Lower Envelope Sleep Sooner
λ = δb δ δ 1 + δ
λ ≥ b 1 2 1 + δ

Figure 5.1: Energy consumption of Optimal Algorithm, Lower Envelope and
Sleep Sooner

Therefore the competitive ratio of Lower Envelope and Sleep Sooner are

calculated using Equations (5.11) and (5.12) respectively.

85



CR(Algorithm 10) = γδ+2(1−γ)
γδ+(1−γ) (5.11)

CR(Algorithm 11) =
1 + δ

γδ + (1− γ)
(5.12)

We can therefore use the following equation to express the competitive ratio

of Algorithm 12.

CR(Algorithm 12) = min

(
γδ + 2(1− γ)

γδ + (1− γ)
,

1 + δ

γδ + (1− γ)

)
(5.13)

The fraction γ can be used to decide which algorithm is best to use in any

given situation. To know where the trade-off point is (i.e., the point where it

is more cost-effective to use Algorithm 11 than Algorithm 10) we calculate the

optimal value of γ. We can use Equation (5.14) to calculate the optimal value

of γ.

1+δ
γδ+(1−γ) = γδ+2(1−γ)

γδ+(1−γ)

1 + δ = γδ + 2(1− γ)

1 + δ = γδ + 2− 2γ

δ − 1 = γδ − 2γ

δ − 1 = (δ − 2)γ

γ = δ−1
δ−2

(5.14)

At this point, we need to find the optimal value for δ such that we can

implement the algorithm and find the competitive ratio. We now substitute our

value for γ back into our original equation and simplify.

86



CR(Algorithm 10) = γδ+2(1−γ)
γδ+(1−γ)

= (δ−2)γ+2
(δ−1)γ+1

=
(δ−2)·( δ−1

δ−2 )+2

(δ−1)·( δ−1
δ−2 )+1

= δ+1

(δ−1)·( δ−1
δ−2 )+1

= δ+1(
(δ−1)2+(δ−2)

δ−2

)

= (δ+1)·(δ−2)
(δ−1)2+(δ−2)

= δ2−δ−2
δ2−δ−1

(5.15)

We differentiate Equation (5.15) (using the quotient rule) to find the turning

point and hence, the optimal value of δ.

f ′(δ) = (δ2−δ−1)·(2δ−1)−(2δ−1)·(δ2−δ−2)
[δ2−δ−1]2

f ′(δ) = (2δ3−2δ2−2δ−δ2+δ+1)−(2δ3−2δ2−4δ−δ2+δ+2)
[δ2−δ−1]2

f ′(δ) = (2δ3−3δ2−δ+1)−(2δ3−3δ2−3δ+2)
[δ2−δ−1]2

f ′(δ) = 2δ−1
[δ2−δ−1]2

(5.16)

By setting f ′(δ) = 0 we find the turning point.

f ′(δ) = 2δ−1
[δ2−δ−1]2

0 = 2δ−1
[δ2−δ−1]2

0 = 2δ − 1

2δ = 1

δ = 0.5

(5.17)

Our calculations show that the optimal value of δ is 0.5. We then substitute

87



this back into Equation (5.14) to find γ.

γ = δ−1
δ−2

γ = 0.5−1
0.5−2

γ = −0.5
−1.5

γ = 1
3

(5.18)

therefore γ = 1
3 which can now be used to inform the tuning of Algorithm 12

as follows.

Algorithm 13 Combined: δ = 0.5, γ = 1
3

If 1
3 or more of the idle periods fall within the critical interval, use Algorithm

10 else use Algorithm 11

The competitive ratio of Algorithm 13 (and therefore Algorithm 12) is de-

scribed in the equation below.

CR(Algorithm 13) = 1+δ
γδ+(1−γ)

= 1+0.5
1
3 ·0.5+(1− 1

3 )

= 1.5
5
6

= 9
5

= 1.8

(5.19)

Algorithm 12 is 1.8-competitive with just 1 bit of advice, an improvement

of 20% over the algorithm with no advice.

5.5 Slightly More Advice

Now we have addressed the case where we have a single bit of advice. We now

consider the case where we allow our algorithm to use a bits of advice where

1 < a < m log n. This allows us to design an algorithm which can select the best

from 2a deterministic algorithms. We have shown that the special case where

a = 1 has a competitive ratio of 1.8, but we wish to find out if we can receive

further benefit from more advice.

88



Algorithm 14 Sleep Sooner i

If λ ≤ bδi then idle otherwise sleep

where δi = i+1
2a

We begin by defining 2a algorithms:

We know from our previous calculations (Equations (5.7), (5.8), (5.9) and

(5.10)) that the competitive ratio of Algorithm 14 for an idle period of length

λ is:

CR(Algorithm 14(λ)) =


1 if λ ≤ bδi
(1 + δi) · bλ if bδi < λ ≤ b

1 + δi otherwise

 (5.20)

The competitive ratio of an algorithm for a sequence of idle periods is:

CR(Algorithm 14) =
1 + δi

γ′δi + (1− γ′)
(5.21)

where γ′ is the proportion of idle periods which fall in the interval [δib, b].

We devise an algorithm (similar to Algorithm 12) which efficiently combines

2a instances of Algorithm 14.

Algorithm 15 Sleep Sooner Multi

Use a advice bits to indicate which of the 2a instances of Algorithm 14 is the
most efficient.

As we have multiple algorithms, we also introduce the vector of fractions

Γ = (γ0, ...γa) where
∑a
i=0 γi = 1, γi is the fraction of idle periods with a length

λ such that δi ≤ λ < δi+1 and γa is the fraction of idle periods with length

λ > b.

When we introduce Γ, the competitive ratio of any instance of Algorithm 14

can be calculated by the following equation:

CR(Algorithm 14(Γ)) =

∑i−1
j=0(γjδj) +

∑a
j=i γj · (1 + δi)∑a

j=0(γjδj)
(5.22)

Therefore, Algorithm 15 has the following competitive ratio.

CR(Algorithm 15) = max
Γ

(min(A0(Γ), ...An(Γ))) (5.23)

89



1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

0 1 2

C
o

m
p

e
ti

ti
ve

 R
at

io

Number of Advice bits

Figure 5.2: Reduction in competitive ratio for increasing amounts of advice.

We know the competitive ratio for this algorithm when a = 0 and have

proven the competitive ratio for the case where a = 1. In addition, we have used

a simple deterministic algorithm to estimate (with a high degree of accuracy)

the competitive ratio when a = 3. These points are plotted in Figure 5.2. Note

that the downwards curve has a slowing gradient which suggests there is a limit

on the improvement that can be achieved.

As the value of a increases so does the number of algorithms and the interval

[1, b] becomes divided into increasingly smaller sections. Once 2a ≥ b, we have

divided the interval into the smallest pieces possible and any additional advice

would be wasted. This imposes a natural upper bound on the number of advice

bits which are useful to Algorithm 15.

Theorem 2 The upper bound on the advice bits Algorithm 15 can make use of

is dlog be.

When Algorithm 15 is used, it groups idle periods into bins according to

their length. The more advice bits we use, the narrower the range of each bin

is. If we consider a discrete time model and we have dlog be advice bits, then

we can express the optimal value for δ which minimises the following equation.

90



CR(A) =

∑i−1
j=0(γjδj) +

∑a
j=i γj · (1 + δi)∑a

j=0(γjδj)
(5.24)

Therefore, the number of advice bits which are of use when using this algo-

rithm which is upper bounded by dlog be.

5.6 More Sleep States

So far we have considered the case where there is just one sleep state. In this

section, we consider a system with multiple sleep states.

In Equations (5.2) and (5.3) we defined a series of states in terms of their

relationship to one another; as the sleep state becomes deeper, the gradient of

each line becomes less steep but the starting point rises. We begin by defining

a series of break-even points (b0, ...bn) by.

bi =

{
0 if i = 0

w(si)−w(si+1)
p(si+1)−p(si) otherwise

}
(5.25)

We outline the multi-sleep-state version of Lower Envelope in terms of bi.

Algorithm 16 Lower Enveloper (multi-state)

Transition to state si when λ > bi

We now describe a new algorithm based on Algorithm 11 which allows for

multiple sleep states.

Algorithm 17 Sleep Sooner δ Multi-state

Transition to state si when λ > δ · bi

Algorithm 16 has an established general competitive ratio of 2; here we

precisely outline the algorithm’s competitive ratio for idle periods of variable

lengths. We begin by stating that Algorithm 16 is optimal for any λ ≤ b1 as it

will remain in s0 as will the optimal offline algorithm. The following equation

describes the energy which is consumed if bi < λ ≤ bi+1.

λ · p(si) + 2w(si) (5.26)

91



The optimal energy consumption is described by.

λ · p(si) + w(si) (5.27)

As with Algorithms 10 and 11, the worst cases occur immediately after the

algorithm has transitioned to a deeper sleep state, therefore the worst cases for

bi < λ ≤ bn are:
bi · p(si) + 2w(si)

bi · p(si) + w(si)
∈ (1, 2] (5.28)

Finally, when λ > bn, we find the special case where.

bn · p(sn−1) + w(sn−1) = w(sn) (5.29)

Hence.
bi·p(sn−1)+w(sn−1)+w(sn)

w(sn−1)

2w(sn)
w(sn−1) = 2

(5.30)

cr(Algorithm 16) =


1 if λ ≤ b1

(bi·p(si))+2w(si)
(bi·p(si))+w(si)

if b1 < λ ≤ bk
2 otherwise

 (5.31)

We now move on to analyse Algorithm 17; for any λ ≤ δ1 · b1, Algorithm

17 will remain in s0 as will the optimal offline algorithm and hence it is 1-

competitive. When bi < λ ≤ bi+1, the following amount of energy is consumed.

λ · p(si) + w(si) + w(sj), where j ≥ i (5.32)

The optimal energy consumption is described by Equation (5.27). As with

Algorithms 10 and 11, the worst cases occur immediately after the algorithm

has transitioned to a deeper sleep state, therefore the worst cases for bi < λ ≤ bn
are bounded from above by:

δibi · p(si) + w(si) + w(sj)

δibi · p(si) + w(si)
= [1,

1 + δi
δi

] (5.33)

Finally, when λ > bn, we know that bn ·p(sn−1)+w(sn−1) = w(sn) (Equation

(5.29)) and Algorithm 17 therefore always transfers to the deeper sleep state at

92



δibi.
δi(bi·p(sn−1)+w(sn−1))+w(sn)

w(sn−1)

= (1+δi)·w(sn)
w(sn−1)

= (1 + δi)

(5.34)

cr(Algorithm 17) =


1 if λ ≤ δ1b1

Ω(
(δibi·p(si))+w(si)+w(sj)

(δibi·p(si))+w(si)
) if b1 < λ ≤ bk

(1 + δi) otherwise

 (5.35)

The exact competitive ratio of both algorithms depends on the characteristics

of the sleep states.

We now outline an algorithm which combines Algorithm 16 and 17 to per-

form better than either in isolation.

Algorithm 18 Combined δ Multi-state

Use a single advice bit to inform whether Algorithm 16 or Algorithm 17 will be
more efficient for the upcoming set of idle periods.

Algorithm 18 is particularly difficult to analyse as it is so highly dependent on

the characteristics of the states that there are so many possibilities to consider.

We can perform a initial analysis by considering the simplified Algorithm 19.

Algorithm 19 Simplified Combined δ Multi-state

use Algorithm 16 if λ < bk
use Algorithm 17 otherwise

Algorithm 19 allows us to eliminate the worst cases for each algorithm in-

dividually and hence reduce the overall competitive ratio. By combining the

competitive ratios of Algorithms 16 and 17 we can find the following competi-

tive ratio for Algorithm 19.

cr(Algorithm 19) =


1 if λ ≤ δ1b1

(bi·p(si))+2w(si)
(bi·p(si))+w(si)

if b1 < λ ≤ bk
(1 + δi) otherwise

 (5.36)

93



We know (bi·p(si))+2w(si)
(bi·p(si))+w(si)

< 2 therefore;

CR(Algorithm 18) < 2. (5.37)

5.7 Conclusions

In summary, we have considered the sleep state management problem in terms

of advice complexity. We have shown the level of advice necessary to produce

an optimal solution is dr log se. We show that a single bit of advice is sufficient

to improve the competitive ratio for the single sleep state problem by 20% and

that adding more advice can improve the performance, but only until we have

dlog be advice bits. Finally, we show that, when there is more than one sleep

state, we can improve the performance of the algorithm with a single bit of

advice.

94



Chapter 6

Conclusions

In this thesis we considered optimal power management within smartphones.

We began by reviewing a large amount of relevant literature to understand the

nuances of the problem domain and we then identified problems which have not

been previously considered or where existing solutions leave room for improve-

ment. Subsequently we developed novel solutions which exploit insight to find

superior results.

Our first contribution chapter focused on low energy scheduling for hetero-

geneous multiprocessor systems with DSS. In contrast to existing solutions we

consciously chose to control the speed of processors and schedule jobs whilst

considering the energy consumption and performance of the entire system. Ex-

isting solutions first divide the jobs between processors and then control the

speed of each processor individually. This disjointed approach often results in

the system as a whole operating sub-optimally with regards to energy consump-

tion. The Virtual Single Processor (VSP) approach ensures we are efficiently

utilising the system as a whole which can save time and energy.

We found that the VSP approach consumed between 4.4% (in a 2 processor

system) and 8.2% (in a 16 processor system) less energy than the best alternative

algorithm [72] with no reduction in speed. When combined with an existing

single processor DSS scheduling algorithm simulations showed that the VSP

approach reduced the objective function of
∑

Weighted Flow + Energy by an

average of 2.31% compared to [72]. This shows that the VSP approach can save

energy and bound tighter to the objective function than [72] which suggests it

is a viable alternative with real potential to reduce energy consumption.

There are a number of interesting open problems related to this area. One of

95



the most interesting is the combination of sleep states and DSS for heterogeneous

multiprocessor systems. The current VSP model does not consider the costs

associated with sleeping and waking. If these costs were introduced then we

may find that the system operates quite differently. Processors which are awake

may be utilised more readily and those which are sleeping would only be roused

if there is sufficient demand to warrant the energy cost. This problem needs to

be formalised and solved if we are to develop the most efficient multiprocessor

computer systems.

There are also many interesting open problems surrounding the energy cost

of computing solutions for energy efficiency problems. This is somewhat of a

paradox and is similar to the amount of time used to compute a schedule to

minimise makespan [112]. In the case of energy efficiency it may make more

sense to design scheduling algorithms which find reasonable solutions with a

low energy overhead rather than near optimal solutions with a large time and

energy cost. This is particularly of interest with mobile devices or any device

with a restricted power resource. There is also a great amount of insight to be

gained by analysing existing algorithms in terms of their energy cost.

The second problem we considered was mapping an input boolean function

onto an LUT based FPGA, such that the energy consumed by the dynamic

switching is minimised: this is an NP hard problem. We formulated a combina-

torial optimisation problem, developed a complete neighbourhood function and

applied a simulated annealing algorithm. We found that our approach solved the

benchmark problems to a higher standard than an alternative genetic algorithm

[122]. Our solution reduced the average switching activity (which is analogous

to energy consumption) by an average of 27.44%. These findings motivate fur-

ther research into this area with regards to developing a more tailored simulated

annealing algorithm and considering alternative local search algorithms which

could produce better results or converge onto the solution more quickly.

FPGAs are used for much more than implementing logic circuits; many

system on a chip devices integrate FPGAs or are based on FPGAs. It would be

of great interest to consider these from an energy efficient perspective, as many

system on a chip devices are deployed as mobile or embedded systems which

have restricted access to power.

Finally, we studied the advice complexity of the sleep state management

problem. The advice complexity of a problem is the amount of information

required to enable an online algorithm with advice to produce solutions which

are 1-competitive with regard to the optimal offline solution. We found that

96



the sleep state management problem has an advice complexity of r log2 s where

r is the number of idle periods and s is the number of states. We went on to

design an algorithm that needs just one bit of advice to be 1.8-competitive for

the 2 state problem; this is a reduction of 20% compared to the best possible

deterministic algorithm. More advice can help to reduce the competitive ratio

further, but only until we have dlog be advice bits, at which point it converges

onto a sub-optimal solution. We also considered the case where there is more

than one sleep state and found that a single bit of advice could improve the best

known algorithm, but only marginally. This is the first time an energy efficiency

problem has been considered in terms of advice complexity.

It would be of great interest to harness the insight gained from our advice

complexity work to develop online algorithms. We could develop an algorithm

which uses the distribution and length of past idle periods to out perform a de-

terministic algorithm. It would be especially interesting to see if this algorithm

could be designed to efficiently gather data and control the sleep patterns within

a real smart phone and find out if it could produce a significant reduction in

energy consumption.

Future Work

This thesis has touched on a number of distinct areas; power heterogeneous mul-

tiprocessor scheduling with DSS, simulated annealing to solve the LUT based

FPGA mapping and advice complexity of the sleep state management problem.

In each of these areas we strove to make advances towards the ultimate goal

of improving the energy efficiency of mobile devices. There are many related

problems which we would have loved to work on as we could apply our domain

knowledge and techniques to find good solutions; we outline a few of the related

problems below.

Development of energy efficient algorithms. Many algorithms are designed

with speed in mind but there could be great potential in analysing and design-

ing key algorithms according to energy efficiency. An energy efficient sorting

algorithm could help to save huge amounts of energy, especially as we are see-

ing vast increases in the amount of data being stored and manipulated. There

have been some tentative steps into this direction but this is something which I

believe has a very strong potential for energy saving.

Mobile devices use a significant amount of energy whilst transferring data,

especially when the signal is weak [35]. This is because the device has to use

97



more energy to generate a more powerful transmission or boost the incoming

signal; also more transmissions get lost or distorted due to interference which

means duplicate messages have to be sent. If we could design an algorithm to

only perform essential or time critical tasks when the signal is low then we could

potentially save vast amounts of energy, not only for the device but also for the

cell towers.

Summary

This thesis is the culmination of almost four years of work; in that time we have

extensively studied how energy is consumed in computational devices, identified

areas where improvements can be made and studied these problems further. We

have performed detailed research in three areas, produced novel solutions and

used experiments, simulations and theoretical work to show that our solutions

are better alternative algorithms. I hope that our solutions and alternative

approaches can help to forward the research in this growing area.

98



Chapter 7

Bibliography

[1] Emile Aarts and Jan Korst. Simulated annealing and Boltzmann machines

- a stochastic approach to combinatorial optimization and neural comput-

ing. Wiley-Interscience series in discrete mathematics and optimization.

Wiley, 1990.

[2] Alok Aggarwal, Ashok Chandra, and Prabhakar Raghavan. Energy con-

sumption in VLSI circuits. In Proceedings of the twentieth annual ACM

symposium on Theory of computing, pages 205–216, 1988.

[3] Susanne Albers. Algorithms for energy saving. In Efficient Algorithms:

Lecture Notes in Computer Science, pages 173–186. Springer Berlin / Hei-

delberg, 2009.

[4] Susanne Albers. Energy-efficient algorithms. Communications of ACM,

53:86–96, 2010.

[5] Susanne Albers. Algorithms for dynamic speed scaling. In 28th Interna-

tional Symposium on Theoretical Aspects of Computer Science (STACS

2011), volume 9, pages 1–11. Schloss Dagstuhl, 2011.

[6] Susanne Albers, Antonios Antoniadis, and Gero Greiner. On multi-

processor speed scaling with migration. In Proceedings of the 23rd ACM

symposium on Parallelism in algorithms and architectures, pages 279–288.

ACM, 2011.

99



[7] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow

time minimization. In 23rd International Symposium on Theoretical As-

pects of Computer Science (STACS 2006), pages 621–633. Springer, 2006.

[8] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow

time minimization. ACM Transactions on Algorithms, 3:49–66, 2007.

[9] Susanne Albers, Fabian Müller, and Swen Schmelzer. Speed scaling on

parallel processors. In Proceedings of the nineteenth annual ACM sym-

posium on Parallel algorithms and architectures, pages 289–298. ACM,

2007.

[10] Andreas Albrecht. A problem-specific convergence bound for simulated

annealing-based local search. In Computational Science and Its Applica-

tions (ICCSA) 3, pages 405–414, 2004.

[11] Jason Anderson and Farid Najm. Power-aware technology mapping for

LUT-based FPGAs. In In Proceedings of 2002 IEEE International Con-

ference on Field-Programmable Technology, pages 211–218, 2002.

[12] Jason Anderson and Farid Najm. Switching activity analysis and pre-

layout activity prediction for FPGAs. In Proceedings of the 2003 inter-

national workshop on System-level interconnect prediction, pages 15–21,

2003.

[13] Jason Anderson and Farid Najm. Power estimation techniques for FP-

GAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

12(10):1015–1027, 2004.

[14] Lachlan Andrew, Adam Wierman, and Ao Tang. Optimal speed scaling

under arbitrary power functions. In ACM SIGMETRICS Performance

Evaluation Review, volume 37, pages 39–41, 2009.

[15] Lachlan LH Andrew, Minghong Lin, and Adam Wierman. Optimality,

fairness, and robustness in speed scaling designs. In ACM SIGMETRICS

Performance Evaluation Review, volume 38, pages 37–48, 2010.

[16] John Augustine, Sandy Irani, and Chaitanya Swamy. Optimal power-

down strategies. SIAM Journal on Computing, 37(5):1499–1516, 2008.

[17] Nikhil Bansal, David Bunde, Ho-Leung Chan, and Kirk Pruhs. Average

rate speed scaling. In Proceedings of the 8th Latin American conference

100



on Theoretical informatics (LATIN’08), pages 240–251. Springer-Verlag,

2008.

[18] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an

arbitrary power function. In Proceedings of the twentieth Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA ’09), pages 693–701.

Society for Industrial and Applied Mathematics, 2009.

[19] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an

arbitrary power function. ACM Transactions Algorithms, 9(2), 2013.

[20] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to

manage energy and temperature. In Proceedings of the 45th Annual IEEE

Symposium on Foundations of Computer Science, pages 520–529. IEEE,

2004.

[21] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. Speed scaling for weighted flow

time. In Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms (SODA ’07), pages 805–813. Society for Industrial

and Applied Mathematics, 2007.

[22] John Beasley and Paul Chu. A genetic algorithm for the set covering

problem. European Journal of Operational Research, 94(2):392–404, 1996.

[23] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, and

Kirk Pruhs. Online weighted flow time and deadline scheduling. Jour-

nal of Discrete Algorithms, 4(3):339–352, 2006.

[24] Shilpa Bhoj and Dinesh Bhatia. Pre-route interconnect capacitance and

power estimation in FPGAs. In International Conference on Field Pro-

grammable Logic and Applications, 2007, pages 159–164. IEEE, 2007.

[25] Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, and Pe-

ter Rossmanith. On the Advice Complexity of the Knapsack Problem.

Springer, 2012.

[26] Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Krlovi, Richard

Krlovi, and Tobias Mmke. On the advice complexity of online problems. In

Algorithms and Computation, volume 5878 of Lecture Notes in Computer

Science, pages 331–340. Springer Berlin Heidelberg, 2009.

101



[27] George Boole. An Investigation of the Laws of Thought: On which are

Founded the Mathematical Theories of Logic and Probabilities. Walton

and Maberly, 1854.

[28] Fred Bower, Daniel Sorin, and Landon Cox. The impact of dynamically

heterogeneous multicore processors on thread scheduling. IEEE Micro,

28:17–25, May 2008.

[29] Robert Brayton and Sunil Khatri. Multi-valued logic synthesis. In VLSI

Design, 1999. Proceedings. Twelfth International Conference On, pages

196–205. IEEE, 1999.

[30] David Brooks, Pradip Bose, Stanley Schuster, Hans Jacobson, Prab-

haka Kudva, Alper Buyuktosunoglu, J Wellman, Victor Zyuban, Man-

ish Gupta, and Peter Cook. Power-aware microarchitecture: Design and

modeling challenges for next-generation microprocessors. IEEE Micro,

20:26–44, 2000.

[31] James Bruno, Edward Coffman Jr, and Ravi Sethi. Scheduling inde-

pendent tasks to reduce mean finishing time. Communications ACM,

17(7):382–387, 1974.

[32] Ion Bucur, Nicolae Cupcea, Adrian Surpateanu, Costin Stefanescu, and

Florin Radulescu. Power-aware, depth-optimum and area minimization

mapping of K-LUT based FPGA circuits. WSEAS Transactions on Com-

puters, 8(11):1812–1824, 2009.

[33] David Bunde. Power-aware scheduling for makespan and flow. In Pro-

ceedings of the eighteenth annual ACM symposium on Parallelism in al-

gorithms and architectures (SPAA ’06), pages 190–196. ACM, 2006.

[34] David Bunde. Power-aware scheduling for makespan and flow. Journal of

Scheduling, 12:489–500, 2009.

[35] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a

smartphone. In Proceedings of the 2010 USENIX conference on USENIX

annual technical conference, pages 21–21, 2010.

[36] Vladimı́r Černỳ. Thermodynamical approach to the traveling salesman

problem: An efficient simulation algorithm. Journal of optimization theory

and applications, 45(1):41–51, 1985.

102



[37] Ho-Leung Chan, Joseph Wun-Tat Chan, Tak-Wah Lam, Lap-Kei Lee,

Kin-Sum Mak, and Prudence Wong. Optimizing throughput and energy

in online deadline scheduling. ACM Transaction Algorithms, 6(1):10:1–

10:22, 2009.

[38] Ho-Leung Chan, Wun-Tat Chan, Tak-Wah Lam, Lap-Kei Lee, Kin-Sum

Mak, and Prudence Wong. Energy efficient online deadline scheduling. In

Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms (SODA ’07), pages 795–804. Society for Industrial and Applied

Mathematics, 2007.

[39] Ho Leung Chan, Jeff Edmonds, and Kirk Pruhs. Speed scaling of pro-

cesses with arbitrary speedup curves on a multiprocessor. In Proceedings

of the twenty-first annual symposium on Parallelism in algorithms and

architectures, pages 1–10. ACM, 2009.

[40] Ho-Leung Chan, Tak-Wah Lam, and Rongbin Li. Tradeoff between en-

ergy and throughput for online deadline scheduling. In Proceedings of

the 8th international conference on Approximation and online algorithms

(WAOA’10), pages 59–70. Springer-Verlag, 2011.

[41] Sze-Hang Chan, Tak-Wah Lam, Lap-Kei Lee, Chi-Man Liu, and Hing-

Fung Ting. Sleep management on multiple machines for energy and flow

time. In Proceedings of the 38th international colloquim conference on Au-

tomata, languages and programming - Volume Part I (ICALP’11), pages

219–231. Springer-Verlag, 2011.

[42] Sze-Hang Chan, Tak-Wah Lam, Lap-Kei Lee, and Jianqiao Zhu. Nonclair-

voyant sleep management and flow-time scheduling on multiple processors.

In Proceedings of the 25th ACM symposium on Parallelism in algorithms

and architectures, pages 261–270. ACM, 2013.

[43] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for mini-

mizing weighted flow time. In Proceedings of the thirty-third annual ACM

symposium on Theory of computing, pages 84–93. ACM, 2001.

[44] Chau-Shen Chen, TingTing Hwang, and Chang Liu. Low power FPGA

design - a re-engineering approach. In Proceedings of the 34th annual

Design Automation Conference (DAC ’97), pages 656–661, New York,

NY, USA, 1997. ACM.

103



[45] Deming Chen and Jason Cong. Daomap: a depth-optimal area optimiza-

tion mapping algorithm for FPGA designs. In Proceedings of the 2004

IEEE/ACM International conference on Computer-aided design, pages

752–759. IEEE Computer Society, 2004.

[46] Juanjuan Chen, Xing Wei, Qiang Zhou, and Yici Cai. Power optimization

through edge reduction in lut-based fpga technology mapping. In Proceed-

ings of the International Communications of Circuits and Systems, 2009.

(ICCCAS 2009), pages 1087–1091. IEEE, 2009.

[47] Lei Cheng, Deming Chen, and Martin Wong. Glitchmap: an FPGA tech-

nology mapper for low power considering glitches. In Proceedings of the

44th annual Design Automation Conference, pages 318–323. ACM, 2007.

[48] Daniel Cole, Dimitrios Letsios, Michael Nugent, and Kirk Pruhs. Opti-

mal energy trade-off schedules. In 2012 International Green Computing

Conference (IGCC), pages 1–10. IEEE, 2012.

[49] Jason Cong and Yuzheng Ding. Flowmap: An optimal technology map-

ping algorithm for delay optimization in lookup-table based FPGA de-

signs. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 13(1):1–12, 1994.

[50] Jason Cong, Chang Wu, and Yuzheng Ding. Cut ranking and pruning:

enabling a general and efficient FPGA mapping solution. In Proceedings

of the 1999 ACM/SIGDA seventh international symposium on Field pro-

grammable gate arrays, pages 29–35. ACM, 1999.

[51] Tomasz Czajkowski and Stephen Brown. Using negative edge triggered

ffs to reduce glitching power in FPGA circuits. In Proceedings of the 44th

annual Design Automation Conference, pages 324–329. ACM, 2007.

[52] Erik Demaine, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, Amin

Sayedi-Roshkhar, and Morteza Zadimoghaddam. Scheduling to minimize

gaps and power consumption. In Proceedings of the nineteenth annual

ACM symposium on Parallel algorithms and architectures, pages 46–54.

ACM, 2007.

[53] Srinivas Devadas and Sharad Malik. A survey of optimization techniques

targeting low power VLSI circuits. In Proceedings of the 32nd annual

ACM/IEEE Design Automation Conference, pages 242–247. ACM, 1995.

104



[54] Richard Dobson and Kathleen Steinhöfel. Low energy scheduling with

power heterogeneous multiprocessor systems. In VII ALIO/EURO, VII

ALIO/EURO, 2011.

[55] Richard Dobson and Kathleen Steinhöfel. Low energy scheduling with

power heterogeneous multiprocessor systems. In In proceedings of the 5th

Multidisciplinary International Conference on Scheduling : Theory and

Applications (MISTA 2011), pages 297–307, 2011.

[56] Richard Dobson and Kathleen Steinhöfel. Sa based power efficient FPGA

LUT mapping. In Proceeding of the fifteenth annual conference companion

on Genetic and evolutionary computation conference companion, GECCO

’13 Companion, pages 1545–1552. ACM, 2013.

[57] Carla Schlatter Ellis. The case for higher-level power management. In Hot

Topics in Operating Systems, 1999. Proceedings of the Seventh Workshop

on, pages 162–167. IEEE, 1999.

[58] Amir Farrahi and Majid Sarrafzadeh. Complexity of the lookup-

table minimization problem for FPGA technology mapping. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

13(11):1319–1332, 1994.

[59] Amir Farrahi and Majid Sarrafzadeh. FPGA technology mapping for

power minimization. In Field-Programmable Logic Architectures, Synthe-

sis and Applications, volume 849 of Lecture Notes in Computer Science,

pages 66–77. Springer Berlin / Heidelberg, 1994.

[60] Robert J Francis, Jonathan Rose, and Kevin Chung. Chortle: a technology

mapping program for lookup table-based field programmable gate arrays.

In Proceedings of the 27th ACM/IEEE Design Automation Conference,

pages 613–619. ACM, 1991.

[61] Ross Freeman. Configurable electrical circuit having configurable logic

elements and configurable interconnects, 1989.

[62] Hiroshi Fujiwara and Kazuo Iwama. Average-case competitive analyses

for ski-rental problems. In Algorithms and Computation, pages 476–488.

Springer, 2002.

105



[63] Michael Garey, David Johnson, and Ravi Sethi. The complexity of

flowshop and jobshop scheduling. Mathematics of operations research,

1(2):117–129, 1976.

[64] Michel Gendreau, Alain Hertz, and Gilbert Laporte. A tabu search heuris-

tic for the vehicle routing problem. Management science, 40(10):1276–

1290, 1994.

[65] Anandaroop Ghosh, Somnath Paul, and Swarup Bhunia. Energy-efficient

application mapping in FPGA through computation in embedded memory

blocks. In 25th International Conference on VLSI Design 2012, pages

424–429. IEEE, 2012.

[66] Fred Glover. Tabu search - part I. ORSA Journal on computing, 1(3):190–

206, 1989.

[67] Fred Glover. Tabu search - part II. ORSA Journal on computing, 2(1):4–

32, 1990.

[68] Fred Glover and Manuel Laguna. Tabu search, volume 22. Springer, 1997.

[69] Stephen Goldfeld, Richard Quandt, and Hale Trotter. Maximization by

quadratic hill-climbing. Econometrica: Journal of the Econometric Soci-

ety, pages 541–551, 1966.

[70] Anupam Gupta, Sungjin Im, Ravishankar Krishnaswamy, Benjamin Mose-

ley, and Kirk Pruhs. Scheduling heterogeneous processors isn’t as easy

as you think. In Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA ’12), pages 1242–1253. SIAM,

2012.

[71] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Nonclair-

voyantly scheduling power-heterogeneous processors. In Proceedings of

the International Conference on Green Computing (GREENCOMP ’10),

pages 165–173. IEEE Computer Society, 2010.

[72] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Scalably

scheduling power-heterogeneous processors. In Proceedings of the 37th in-

ternational colloquium conference on Automata, languages and program-

ming (ICALP’10), pages 312–323. Springer-Verlag, 2010.

106



[73] Bruce Hajek. A tutorial survey of theory and applications of simulated

annealing. In Decision and Control, 1985 24th IEEE Conference on, vol-

ume 24, pages 755–760. IEEE, 1985.

[74] Xin Han, Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong.

Deadline scheduling and power management for speed bounded processors.

Theoretical Computer Science, 411(40):3587–3600, 2010.

[75] Jan-Min Hwang, Feng-Yi Chiang, and TingTing Hwang. A re-engineering

approach to low power FPGA design using spfd. In Proceedings of the

35th annual Design Automation Conference (DAC ’98), pages 722–725,

New York, NY, USA, 1998. ACM.

[76] Sandy Irani and Kirk R Pruhs. Algorithmic problems in power manage-

ment. ACM SIGACT News, 36(2):63–76, 2005.

[77] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power

savings. In Proceedings of the fourteenth annual ACM-SIAM symposium

on Discrete algorithms (SODA ’03), pages 37–46. Society for Industrial

and Applied Mathematics, 2003.

[78] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power

savings. ACM Trans. Algorithms, 3, 2007.

[79] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algo-

rithms for the ising model. SIAM Journal on computing, 22(5):1087–1116,

1993.

[80] Krishna Kant. Toward a science of power management. Computer,

42(9):99–101, 2009.

[81] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Ow-

icki. Competitive randomized algorithms for non-uniform problems. In

Proceedings of the first annual ACM-SIAM symposium on Discrete algo-

rithms (SODA ’90), pages 301–309. Society for Industrial and Applied

Mathematics, 1990.

[82] Hans Kellerer, Thomas Tautenhahn, and Gerhard Woeginger. Approx-

imability and nonapproximability results for minimizing total flow time

on a single machine. In In Preceedings of the 38th Annual Symposium on

Theory of Computing, pages 418–426, May 1996.

107



[83] Hans Kellerer, Thomas Tautenhahn, and Gerhard Woeginger. Approx-

imability and nonapproximability results for minimizing total flow time

on a single machine. SIAM Journal on Computing, 28(4):1155–1166, 1999.

[84] James Kennedy and Russell Eberhart. Particle swarm optimization. In

Neural Networks, 1995. Proceedings., IEEE International Conference on,

volume 4, pages 1942–1948. IEEE, 1995.

[85] Scott Kirkpatrick, Daniel Gelatt, and Mario Vecchi. Optimization by

simulated annealing. Science, 220(4598):671–680, 1983.

[86] Gloria Kissin. Measuring energy consumption in VLSI circuits: a founda-

tion. In STOC, pages 99–104, 1982.

[87] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ran-

ganathan, and Dean M Tullsen. Single-isa heterogeneous multi-core ar-

chitectures: The potential for processor power reduction. In Microarchi-

tecture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM Inter-

national Symposium on, pages 81–92. IEEE, 2003.

[88] Balakrishna Kumthekar, Luca Benini, Enrico Macii, and Fabio Somenzi.

In-place power optimization for LUT-based FPGAs. In Proceedings of the

35th annual Design Automation Conference (DAC ’98), pages 718–721.

ACM, 1998.

[89] Balakrishna Kumthekar, Luca Benini, Enrico Macii, and Fabio Somenzi.

Power optimisation of FPGA-based designs without rewiring. In Comput-

ers and Digital Techniques, IEE Proceedings-, volume 147, pages 167–174.

IET, 2000.

[90] Kanishka Lahiri, Sujit Dey, Debashis Panigrahi, and Anand Raghunathan.

Battery-driven system design: A new frontier in low power design. In

Proceedings of the 2002 Asia and South Pacific Design Automation Con-

ference (ASP-DAC ’02), pages 261–. IEEE Computer Society, 2002.

[91] Tak-Wah Lam, Lap-Kei Lee, Hing-Fung Ting, Isaac K. To, and Prudence

Wong. Sleep with guilt and work faster to minimize flow plus energy. In

Proceedings of the 36th International Colloquium on Automata, Languages

and Programming: Part I (ICALP ’09), pages 665–676. Springer-Verlag,

2009.

108



[92] Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong. Energy effi-

cient deadline scheduling in two processor systems. In Takeshi Tokuyama,

editor, Algorithms and Computation, volume 4835 of Lecture Notes in

Computer Science, pages 476–487. Springer Berlin Heidelberg, 2007.

[93] Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong. Competitive

non-migratory scheduling for flow time and energy. In Proceedings of the

twentieth annual symposium on Parallelism in algorithms and architec-

tures (SPAA ’08), pages 256–264. ACM, 2008.

[94] Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong. Nonmigra-

tory multiprocessor scheduling for response time and energy. Parallel and

Distributed Systems, IEEE Transactions on, 19(11):1527–1539, 2008.

[95] Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong. Speed scaling

functions for flow time scheduling based on active job count. In Proceedings

of the 16th annual European symposium on Algorithms (ESA ’08), pages

647–659. Springer-Verlag, 2008.

[96] Tak-Wah Lam, Lap-Kei Lee, Isaac To, and Prudence Wong. Improved

multi-processor scheduling for flow time and energy. Journal of Scheduling,

pages 1–12, 2009. 10.1007/s10951-009-0145-5.

[97] Julien Lamoureux and Wayne Luk. An overview of low-power techniques

for field-programmable gate arrays. In Adaptive Hardware and Systems,

2008. AHS’08. NASA/ESA Conference on, pages 338–345. IEEE, 2008.

[98] Ailsa Land and Alison Doig. An automatic method of solving discrete pro-

gramming problems. Econometrica: Journal of the Econometric Society,

pages 497–520, 1960.

[99] Siobhán Launders, Colin Doyle, and Wesley Cooper. Switching-activity

directed clustering algorithm for low net-power implementation of FPGAs.

In Integrated Circuit and System Design. Power and Timing Modeling,

Optimization and Simulation, pages 415–424. Springer, 2005.

[100] Eugene Lawler and Davi Wood. Branch-and-bound methods: A survey.

Operations research, 14(4):699–719, 1966.

[101] Hyung Gyu Lee, Sungyuep Nam, and Naehyuck Chang. Cycle-accurate

energy measurement and high-level energy characterization of FPGAs. In

109



Quality Electronic Design, 2003. Proceedings. Fourth International Sym-

posium on, pages 267–272. IEEE, 2003.

[102] Stefano Leonardi and Danny Raz. Approximating total flow time on paral-

lel machines. In Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, pages 110–119. ACM, 1997.

[103] Hao Li, Srinivas Katkoori, and Wai-Kei Mak. Power minimization al-

gorithms for LUT-based FPGA technology mapping. ACM Trans. Des.

Autom. Electron. Syst., 9(1):33–51, 2004.

[104] Hao Li, Wai-Kei Mak, and Srinivas Katkoori. Lut-based FPGA technology

mapping for power minimization with optimal depth. In VLSI, 2001.

Proceedings. IEEE Computer Society Workshop on, pages 123 –128, 2001.

[105] Hao Li, Wai-Kei Mak, and Srinivas Katkoori. Efficient LUT-based

FPGA technology mapping for power minimization. In Proceedings of the

Asia and South Pacific Design Automation Conference, 2003 (ASP-DAC

2003), pages 353–358, 2003.

[106] Minming Li, Andrew Yao, and Frances Yao. Discrete and continuous min-

energy schedules for variable voltage processors. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 103(11):3983–

3987, 2006.

[107] Minming Li and Frances Yao. An efficient algorithm for computing opti-

mal discrete voltage schedules. SIAM Journal on Computing, 35(3):658–

671, 2005.

[108] Michel Lundy and Alistair Mees. Convergence of an annealing algorithm.

Mathematical programming, 34(1):111–124, 1986.

[109] Walter H Macwilliams. Gating circuits, 1953. US Patent 2,627,039.

[110] Aqeel Mahesri and Vibhore Vardhan. Power consumption breakdown

on a modern laptop. In Power-aware computer systems, pages 165–180.

Springer, 2005.

[111] Morteza Mashayekhi, Zahra Jeddi, and Esmail Amini. Power optimization

of LUT based FPGA circuits. In Optimization of Electrical and Electronic

Equipment, 2008. OPTIM 2008. 11th International Conference on, pages

37–40, 2008.

110



[112] Andrew McGregor. A problem in scheduling: Your time starts now...

In Proceedings of Fun with Algorithms, Fun with Algorithms 2004, pages

34–40, 2004.

[113] Nicholas Metropolis, Arianna Rosenbluth, Marshall Rosenbluth, Augusta

Teller, and Edward Teller. Equation of state calculations by fast comput-

ing machines. The journal of chemical physics, 21:1087, 1953.

[114] Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. Con-

vergence and finite-time behavior of simulated annealing. In Decision and

Control, 1985 24th IEEE Conference on, volume 24, pages 761–767, 1985.

[115] José Monteiro, Srinivas Devadas, Pranav Ashar, and Ashutosh Mauskar.

Scheduling techniques to enable power management. In Design Automa-

tion Conference Proceedings 1996, 33rd, pages 349–352. IEEE, 1996.

[116] Tomer Morad, Uri Weiser, Avinoam Kolodny, Mateo Valero, and Eduard

Ayguade. Performance, power efficiency and scalability of asymmetric

cluster chip multiprocessors. Computer Architecture Letters, 5(1):14–17,

2006.

[117] Hiroyuki Mori and Yuichiro Goto. A parallel tabu search based method for

determining optimal allocation of facts in power systems. In Power System

Technology, 2000. Proceedings. PowerCon 2000. International Conference

on, volume 2, pages 1077–1082. IEEE, 2000.

[118] Trevor Mudge. Power: A first-class architectural design constraint. Com-

puter, 34(4):52 –58, April 2001.

[119] Rajarshi Mukherjee and Seda Ogrenci Memik. Power-driven design par-

titioning. In Field Programmable Logic and Application, pages 740–750.

Springer, 2004.

[120] Farid Najm. A survey of power estimation techniques in VLSI circuits.

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

2(4):446–455, 1994.

[121] Kuo-Rueih Ricky Pan and Massoud Pedram. FPGA synthesis for mini-

mum area, delay and power. In European Design and Test Conference,

1996. ED TC 96. Proceedings, page 603, 1996.

111



[122] Rohit Pandey and Santanu Chattopadhyay. Low power technology map-

ping for LUT based FPGA - a genetic algorithm approach. In VLSI De-

sign, 2003. Proceedings. 16th International Conference on, pages 79–84,

2003.

[123] SS Panwalkar and Wafik Iskander. A survey of scheduling rules. Opera-

tions research, 25(1):45–61, 1977.

[124] David Patterson and John Hennessy. Computer organization and design:

the hardware/software interface. Morgan Kaufmann, 2005.

[125] Mario Pickavet, Willem Vereecken, Sofie Demeyer, Pieter Audenaert,

Brecht Vermeulen, Chris Develder, Didier Colle, Bart Dhoedt, and Piet

Demeester. Worldwide energy needs for ict: The rise of power-aware net-

working. In Advanced Networks and Telecommunication Systems, 2008.

ANTS ’08. 2nd International Symposium on, pages 1–3, 2008.

[126] James Pikul, Hui Gang Zhang, Jiung Cho, Paul Braun, and William

King. High-power lithium ion microbatteries from interdigitated three-

dimensional bicontinuous nanoporous electrodes. Nature communications,

4:1732, 2013.

[127] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting

the best response for your erg. In In Scandanavian Workshop on Algo-

rithms and Theory, pages 14–25, 2004.

[128] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard Woeginger. Getting

the best response for your erg. ACM Trans. Algorithms, 4:38:1–38:17,

2008.

[129] Rob A Rutenbar. Simulated annealing algorithms: An overview. Circuits

and Devices Magazine, IEEE, 5(1):19–26, 1989.

[130] Ellen Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Rajeev

Murgai, Alexander Saldanha, Hamid Savoj, Paul Stephan, Robert Bray-

ton, and Alberto Sangiovanni-Vincentelli. Sis: A system for sequential

circuit synthesis. 1992.

[131] Claude Shannon. A symbolic analysis of relay and switching cir-

cuits. American Institute of Electrical Engineers, Transactions of the,

57(12):713–723, 1937.

112



[132] SN Sivanandam and SN Deepa. Introduction to genetic algorithms.

Springer Publishing Company, Incorporated, 2007.

[133] Daniel Sleator and Robert Tarjan. Amortized efficiency of list update and

paging rules. Commun. ACM, 28(2):202–208, February 1985.

[134] Kathleen Steinhöfel, Andreas Albrecht, and Chak-Kuen Wong. Two sim-

ulated annealing-based heuristics for the job shop scheduling problem.

European Journal of Operational Research, 118(3):524–548, 1999.

[135] Balram Suman and Prabhat Kumar. A survey of simulated annealing as a

tool for single and multiobjective optimization. Journal of the operational

research society, 57(10):1143–1160, 2005.

[136] Hongyang Sun, Yuxiong He, and Wen-Jing Hsu. Energy-efficient multi-

processor scheduling for flow time and makespan. CoRR abs/1010.4110,

2010.

[137] T Tanaka, T Toumiya, and T Suzuki. Output control by hill-climbing

method for a small scale wind power generating system. Renewable En-

ergy, 12(4):387–400, 1997.

[138] Maxim Teslenko and Elena Dubrova. Hermes: LUT FPGA technology

mapping algorithm for area minimization with optimum depth. In Pro-

ceedings of the 2004 IEEE/ACM International conference on Computer-

aided design, pages 748–751. IEEE Computer Society, 2004.

[139] Kevin Oo Tinmaung, David Howland, and Russell Tessier. Power-aware

FPGA logic synthesis using binary decision diagrams. In Proceedings of the

2007 ACM/SIGDA 15th international symposium on Field programmable

gate arrays (FPGA ’07), pages 148–155. ACM, 2007.

[140] Tim Tuan, Sean Kao, Arif Rahman, Satyaki Das, and Steve Trimberger.

A 90nm low-power FPGA for battery-powered applications. In Proceed-

ings of the 2006 ACM/SIGDA 14th international symposium on Field

programmable gate arrays, pages 3–11. ACM, 2006.

[141] Tim Tuan, Arifur Rahman, Satyaki Das, Stephen Trimberger, and

Sean Kao. A 90-nm low-power FPGA for battery-powered applications.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 26(2):296–300, 2007.

113



[142] International Telecommunications Union. The world in 2013: Ict facts

and figures. Telecommunication Development Bureau, 4, 2013.

[143] Chua-Chin Wang and Cheng-Pin Kwan. Low power technology mapping

by hiding high-transition paths in invisible edges for LUT-based FPGAs.

In Proceedings of 1997 IEEE International Symposium on Circuits and

Systems, 1997 (ISCAS ’97), volume 3, pages 1536 –1539, 1997.

[144] Zhi-Hong Wang, En-Cheng Liu, Jianbang Lai, and Ting-Chi Wang. Power

minimization in LUT-based FPGA technology mapping. In Proceedings of

the Asia and South Pacific Design Automation Conference, 2001 (ASP-

DAC 2001), pages 635 –640, 2001.

[145] Ingo Wegener. The complexity of Boolean functions. Eiley-Teubner, 1987.

[146] Xing Wei, Juanjuan Chen, Qiang Zhou, Yici Cai, Jinian Bian, and Xi-

anlong Hong. Macromap: A technology mapping algorithm for heteroge-

neous FPGAs with effective area estimation. In International Conference

on Field Programmable Logic and Applications, 2008. (FPL ‘08), pages

559–562. IEEE, 2008.

[147] Edmund Weiner and John Simpson, editors. Oxford English Dictionary.

Oxford University Press, Oxford, oed online edition, 2013.

[148] Francis Wolff, Michael Knieser, Dan Weyer, and Chris Papachristou. High-

level low power FPGA design methodology. In National Aerospace and

Electronics Conference, 2000. NAECON 2000. Proceedings of the IEEE

2000, pages 554–559. IEEE, 2000.

[149] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H Xia, and Li Zhang.

A smart hill-climbing algorithm for application server configuration. In

Proceedings of the 13th international conference on World Wide Web,

pages 287–296. ACM, 2004.

[150] Xiao-feng Xie, Wen-jun Zhang, and Zhi-lian Yang. Overview of particle

swarm optimization. Control and Decision, 18(2):129–134, 2003.

[151] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for re-

duced cpu energy. In Proceedings of the 36th Annual Symposium on Foun-

dations of Computer Science (FOCS ’95), pages 374–382. IEEE, IEEE

Computer Society, 1995.

114



[152] Sushu Zhang, Karam Chatha, and Goran Konjevod. Approximation al-

gorithms for power minimization of earliest deadline first and rate mono-

tonic schedules. In Proceedings of the 2007 international symposium on

Low power electronics and design (ISLPED ’07), pages 225–230. ACM,

2007.

115


	List of Figures
	List of Tables
	Introduction
	Related Work
	Energy and Power in Computing
	Energy Consumption in Computational Devices
	Power Reduction

	Power Consumption in Processing Units
	Sleep States
	Dynamic Speed Scaling
	Multiprocessor Systems

	Boolean Algebra, Circuits and FPGAs
	Field Programmable Gate Arrays

	Optimisation Techniques
	Local Search
	Simulated Annealing


	Low Power Scheduling for Power Heterogeneous Multiprocessor Systems
	Background
	Power Heterogeneous Multiprocessor Systems
	Low Energy Scheduling

	The Virtual Single Processor
	Power Function

	Our VSP Algorithm
	Using the Virtual Single Processor
	Migratory
	Non-Migratory

	Experimental Analysis
	Speed Matching Results
	Simulation Results

	Conclusions

	SA based Power Efficient FPGA LUT Mapping
	Problem Definition
	Simulated Annealing
	Move Set and Neighborhood Function
	Slightly Restricted Boolean Circuits
	Unrestricted Boolean Circuit

	Simulated Annealing Parameters
	Results
	Conclusions

	Advice Complexity for Sleep State Management
	Online Algorithms with Advice
	Sleep States Problem Definition
	Online Algorithms with Advice for Sleep State Management
	Optimal Advice Complexity

	A Single Bit of Advice
	Slightly More Advice
	More Sleep States
	Conclusions

	Conclusions
	Bibliography

