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Background:  Preclinical and human data suggest that 
psychosis onset involves hippocampal glutamatergic 
dysfunction, driving hyperactivity and hyperperfusion 
in a hippocampal-midbrain-striatal circuit. Whether 
glutamatergic dysfunction is related to cerebral perfusion 
in patients at clinical high risk (CHR) for psychosis, and 
whether cannabidiol (CBD) has ameliorative effects on glu-
tamate or its relationship with perfusion remains unknown. 
Methods:  Using a double-blind, parallel-group design, 33 
CHR patients were randomized to a single 600 mg dose of 
CBD or placebo; 19 healthy controls did not receive any 
drug. Proton magnetic resonance spectroscopy was used 
to measure glutamate concentrations in left hippocampus. 
We examined differences relating to CHR status (controls 
vs placebo), effects of CBD (placebo vs CBD), and linear 
between-group effects, such that placebo>CBD>controls 
or controls>CBD>placebo. We also examined group × 
glutamate × cerebral perfusion (measured using Arterial 
Spin Labeling) interactions. Results:  Compared to 
controls, CHR-placebo patients had significantly lower 
hippocampal glutamate (P =.015) and a significant linear 
relationship was observed across groups, such that gluta-
mate was highest in controls, lowest in CHR-placebo, and 
intermediate in CHR-CBD (P =.031). Moreover, there 
was a significant interaction between group (controls vs 
CHR-placebo), hippocampal glutamate, and perfusion in 
the putamen and insula (PFWE =.012), with a strong pos-
itive correlation in CHR-placebo vs a negative correla-
tion in controls. Conclusions:  Our findings suggest that 
hippocampal glutamate is lower in CHR patients and 

may be partially normalized by a single dose of CBD. 
Furthermore, we provide the first in vivo evidence of an ab-
normal relationship between hippocampal glutamate and 
perfusion in the striatum and insula in CHR.

Key words: magnetic resonance spectroscopy/clinical high 
risk for psychosis/at-risk mental state/cerebral blood flow

Introduction

Preclinical and human data suggest that the onset of 
psychosis involves hippocampal glutamatergic dys-
function, driving hyperactivity and hyperperfusion in a 
hippocampal-midbrain-striatal circuit.1–3 Specifically, 
preclinical models demonstrate that NMDA receptor 
hypofunction on GABAergic interneurons leads to ele-
vated hippocampal glutamate and hypermetabolism.3 
In turn, hippocampal glutamatergic pyramidal cell dis-
inhibition is thought to lead to excess excitatory drive 
in projections to the midbrain-striatum, causing hyper-
responsivity of midbrain dopamine neurons,4 striatal 
hyperdopaminergia and the emergence of psychotic-like 
phenotypes (supplementary figure S1).1,3–5 Consistent 
with this, evidence from human studies suggests that 
across the psychosis continuum, patients have altered 
concentrations of hippocampal glutamate or Glx (a 
composite of glutamate and glutamine),6,7 hippocampal 
and striatal hyperperfusion3,8–11 and elevated striatal do-
pamine synthesis capacity (supplementary figure S1).12,13 
Importantly, these pathophysiological features appear to 
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emerge prior to the onset of psychosis in people at clin-
ical high risk (CHR), progressively worsening and/or 
spreading as they transition to full-blown psychosis.2,3,9,13

In CHR individuals, previous research has identified ab-
normal concentrations of hippocampal glutamate and/or 
Glx, although in contrast to the more consistent increases 
found in established psychosis,6,7,14–16 both increases,17 
decreases18,19 and often no differences20–23—including at the 
meta-analytic level24,25—have been reported. Nevertheless, 
within CHR groups, hippocampal glutamate is greater in 
those with poor vs good outcomes23 and (Glx) may be 
related to symptom severity.26 Separately, elevated perfu-
sion (or cerebral blood flow; CBF) has been observed in 
the hippocampus,8,10 striatum,8,27 and prefrontal cortex8 in 
CHR patients, and there is some evidence that this may 
be associated with altered neurochemistry. For example, 
previous work has linked prefrontal GABA levels28 and 
striatal dopamine function29 to hippocampal perfusion in 
CHR patients, and anterior cingulate glutamate/Glx to 
hippocampal perfusion in people with high schizotypy.30 
Although differences in hippocampal glutamate and re-
gional CBF have been identified (separately) in prior 
CHR studies, whether and how these parameters are as-
sociated with each other, and whether any such relation-
ship is abnormal in CHR patients, has yet to be directly 
tested. A deeper understanding of how hippocampal 
glutamatergic dysfunction is related to other pathophys-
iological features—particularly within the hippocampal-
midbrain-striatal circuit—would enhance understanding 
of the mechanisms underlying psychosis risk and may il-
luminate novel targets for preventative treatments. Given 
the current lack of effective pharmacotherapies for CHR 
patients,31,32 this remains a critical research priority.

One of the most promising candidate treatments is 
cannabidiol (CBD), a phytocannabinoid constituent 
of the cannabis plant.33 In contrast to the psychotomi-
metic and potential anxiogenic effects34–38 of delta-9-
tetrahydrocannabinol, the main intoxicating cannabinoid 
in cannabis, CBD is non-intoxicating and has anxio-
lytic39,40 and antipsychotic properties.41–43 CBD modulates 
brain activation in response to cognitive and emotional 
fMRI tasks, particularly in medial temporal cortex and 
striatal regions, in both healthy and established psychosis 
cohorts.44–49 In CHR patients, we previously demonstrated 
that a 600 mg dose of CBD partially normalizes 
hippocampal resting perfusion50 and mediotemporal 
and striatal function during various fMRI tasks,51,52 such 
that perfusion/activation in the CBD group was interme-
diate between that of healthy controls and CHR patients 
under placebo. Accumulating evidence further suggests 
that CBD may have effects on glutamate. In people with 
first-episode psychosis, we previously found that CBD 
increased hippocampal glutamate, an effect linked to the 
greater reduction of positive symptoms observed under its 
influence.53 Independent work shows that CBD modulates 
Glx in basal ganglia and prefrontal cortex across ASD 

and neurotypical individuals.54 Altogether, these findings 
suggest that CBD may have effects on glutamate and 
cerebral blood flow in humans, two pathophysiological 
features strongly implicated in psychosis onset. However, 
whether CBD can normalize glutamatergic dysfunction 
(or its relationship with blood flow) in CHR patients is 
yet to be examined.

To fill this gap in knowledge, we examined hippocampal 
glutamatergic dysfunction in the CHR state and the 
effects of CBD using Proton Magnetic Resonance 
Spectroscopy (1H-MRS) and three parallel groups: CHR 
patients randomized to a single oral 600 mg dose of CBD 
or placebo and healthy controls. We first established 
whether hippocampal glutamate levels are altered in 
CHR-placebo patients relative to controls. We then tested 
our primary hypothesis that CBD would at least partially 
normalize alterations in glutamate levels, such that a 
significant linear relationship (placebo>CBD>controls, 
or controls>CBD>placebo) would exist across groups. 
Finally, to probe the broader mechanistic relevance of 
glutamatergic dysfunction, we examined whether the re-
lationship between glutamate and regional CBF (meas-
ured using whole-brain Arterial Spin Labeling; ASL) 
differed between groups and assessed the effects of CBD 
on this interaction.

Methods

Participants

The study (ISRCTN46322781) received Research Ethics 
(Camberwell St Giles) approval and all participants 
provided written informed consent. Thirty-three 
antipsychotic-naive CHR55 individuals, aged 18–35, 
were recruited from early detection services in the 
United Kingdom (supplementary methods). Nineteen 
age (within 3 years), sex, and ethnicity-matched healthy 
controls were recruited locally. Exclusion criteria in-
cluded history of psychotic or manic episodes, current 
DSM-IV diagnosis of substance dependence, IQ < 70, 
neurological disorder, and contraindication to MRI or 
CBD. Participants were required to abstain from can-
nabis for 96 hours (supplementary material), other recre-
ational substances for 2 weeks, alcohol for 24 hours, and 
caffeine/nicotine for 6 hours before attending. Urine drug 
screening was conducted prior to scanning.

Design, Materials, and Procedure

Using a randomized, double-blind, placebo-controlled, 
3-arm parallel-group design, CHR participants were 
randomized to a single oral 600 mg dose of CBD 
(THC-Pharm, Germany) or a matched placebo capsule. 
Psychopathology was measured at baseline (before drug 
administration) using the Comprehensive Assessment 
of At-Risk Mental States55 and State-Trait Anxiety 
Inventory-State Subscale.56 Following a standard light 
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breakfast, participants were administered the capsule 
of CBD or placebo (at ~11 AM) and 180 minutes later, 
underwent a battery of MRI sequences. Healthy control 
participants were investigated under identical conditions 
but did not receive any drug. Plasma CBD levels were 
sampled at baseline and at 120 and 300 minutes after 
drug administration.

Magnetic Resonance Imaging

All scans were conducted on a General Electric Signa 
HDx 3T MR system with an 8-channel head coil. A 
whole-brain 3D sagittal T1-weighted scan (TE = 2.85ms; 
TR = 6.98 ms; TI = 400 ms; flip angle = 11°, voxel size 
= 1.0 × 1.0 × 1.2 mm) was acquired for voxel planning, 
coregistration and spatial normalization of the ASL data, 
and calculation of 1H-MRS voxel tissue content. 1H-MRS 
spectra were acquired in the left hippocampus (figure 1) 
using conventional Point-Resolved Spectroscopy acquisi-
tion (PRESS; TR = 3000 ms; TE = 30 ms; 96 averages) in 
a 6-minute scan. We employed the standard GE PROBE 
(Proton Brain Examination) sequence, which uses a 
standardized, chemically selective suppression (CHESS) 
water suppression routine. Unsuppressed water reference 
spectra (16 averages) were also acquired as part of the 
standard acquisition for subsequent eddy current correc-
tion and water scaling. Shimming was optimized, with 
auto-prescan performed twice before each scan. Using 
standardized protocols, the hippocampal voxel (right–
left, anterior–posterior, superior–inferior: 20 × 20 × 15 
mm) was prescribed from the structural T1-weighted 

scan, positioned over the center of the left hippocampus 
as consistently as possible (across subjects) by experi-
enced radiographers. The voxel size was fixed across 
participants. Structural T1-weighted images were seg-
mented using Statistical Parametric Mapping (SPM8) 
to enable calculation and correction for 1H-MRS voxel 
tissue content (supplementary methods). CBF was meas-
ured using 3D pseudo-Continuous ASL with acquisition 
parameters and preprocessing procedures in line with 
previous studies, as detailed in supplementary methods.

1H-MRS Data Processing

Spectra were analyzed using LCModel/6.3-0A57 using 
the standard basis set of 16 metabolites (supplementary 
methods). Poorly fitted metabolite peaks (Cramer-Rao 
minimum variance bounds [CRLB] > 20% as reported by 
LCModel) were excluded from further analysis. Water-
scaled glutamate (primary outcome), glutamate plus 
glutamine (Glx), myo-inositol, creatine, choline, and 
N-acetylaspartate values were corrected for voxel tissue 
composition (supplementary methods). Spectral quality 
was further assessed using signal-to-noise ratio and spec-
tral linewidths (full width at half-maximum; FWHM).

Statistical Analysis

Statistical analyses of  1H-MRS and other non-imaging 
data were performed in SPSS/27. Pairwise differences in 
clinical and demographic variables were examined using 
independent t-tests for continuous data and chi-square 

Fig. 1.  Illustrative example of 1H-MRS voxel positioning and spectra in left hippocampus. In panel (A), example voxel placement in 
the left hippocampus is indicated by the box. Panel (B) shows the 1H-MRS spectrum obtained (black line) from the voxel in A and the 
overlay of the spectral fit (red line). Glu indicates glutamate and ppm, parts per million. 
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tests for categorical data. Potential group differences in 
data quality, including FWHM, signal-to-noise ratio, 
CRLB, and voxel tissue proportions were examined 
using independent t-tests (pairwise), and one-way 
ANOVA for any differences between groups. Before 
testing our primary hypothesis, we used independent 
samples t-tests to first establish (1) whether hippocampal 
glutamate levels were altered in the CHR-placebo 
group vs controls, and (2) whether CHR patients under 
a single dose of  CBD had altered hippocampal gluta-
mate levels compared to CHR patients under placebo. 
Then, to test our primary hypothesis that glutamate 
levels in the CBD-treated group would be intermediate 
between that of  the healthy control and placebo-treated 
group, we examined whether a linear relationship 
(controls>CBD>placebo; or placebo>CBD>controls) 
existed across groups, using one-way ANOVA and 
unweighted polynomial contrasts for linear degree. 
Linear trend (ie, relationship) analyses are distinct from 
standard ANOVA in that they directly test for specific 
relationships (such as linear or quadratic) across group 
means, which are not tested by the standard F-test.58 
In the case of  unequal variances, the same ANOVA 
was run using manual group weights (coefficients −1, 
0, 1) which provides statistics (t-distribution) without 
assuming equal variances. Exploratory analyses of  the 
secondary metabolites (Glx, myo-inositol, creatine, 
choline, and N-acetylaspartate) were conducted using 
the same tests (described above) as for glutamate. The 
influence of  individual metabolite values whose corre-
sponding z-scores were >3 or <−3 (which may indicate 
outliers) were investigated by rerunning statistical tests 
without them in sensitivity analyses. Significance was 
set at P < .05 (2-tailed) and effect sizes were reported 
as Cohen’s d.

Glutamate × CBF × Group Interactions

Group differences in the relationship between 
hippocampal glutamate and cerebral blood flow (gluta-
mate × CBF × group interactions) were analyzed using 
SPM12 in Matlab/R2018b. Using CBF as the dependent 
variable, glutamate levels were entered as a covariate of 
interest in independent t-tests for the 2 pairwise contrasts 
(placebo vs control; CBD vs placebo), and a flexible fac-
torial ANCOVA model for the linear between-group 
analyses. In line with previous CHR studies of CBF,8,10 
mean-centered age, sex, smoking status, and years of 
education (the latter included due to significant group 
differences in our sample), as well as mean global CBF, 
were entered as nuisance covariates. We conducted a 
whole-brain search using an explicit gray matter mask 
(MNI152, thresholded at >.50) and cluster-level inference 
(cluster-forming threshold P < .005; clusters reported as 
significant at P < .05 using FWE cluster correction in 
SPM).

Results

There were no between-group differences in the ma-
jority of demographic and baseline clinical characteris-
tics, except for fewer years of education in the placebo 
group relative to controls (table 1), as previously re-
ported.51,52,59 None of the patients were currently taking 
antidepressants, anxiolytics or mood stabilizers, and all 
were antipsychotic naïve. Five CHR patients (15%) had 
a self-reported previous history of depression and one 
(3%) had a history of depression and anxiety. In the CBD 
group, mean plasma CBD levels were 126.4 nM (SD = 
221.8) and 823.0 nM (SD = 881.5) at 120 and 300 minutes 
after drug intake, respectively. 1H-MRS data were avail-
able for all participants. ASL data were available for n = 
14 in the placebo group, n = 14 in the CBD group, and n 
= 19 healthy controls.

1H-MRS Data Quality

Representative spectra for the hippocampal voxel are 
provided in figure 1. Spectra were of good quality: Aside 
from omission of choline data for 2 CHR subjects (see 
table 2) due to CRLB > 20%, no glutamate or other me-
tabolite data were excluded. No significant differences in 
spectral quality nor voxel tissue content were observed 
between groups (table 2). All metabolite values fell within 
a z-score of +/− 3.

Hippocampal Glutamate – Pairwise Effects of CHR 
Status and CBD

Compared to healthy controls, CHR patients in the pla-
cebo group had significantly lower hippocampal gluta-
mate (mean ± SD in controls = 8.41 ± 1.27; placebo = 
7.42 ± 1.02; t(34)= 2.55, P = .015, d = 0.85) (figure 2A, 
table 3). Although hippocampal glutamate levels were 
numerically higher in the CBD (7.83 ± 1.67) vs placebo 
(7.42 ± 1.02) group, the pairwise difference was not sig-
nificant (P = .41, d = 0.30; table 3).

Hippocampal Glutamate – Between-Group Linear 
Analyses

In our primary a priori analyses, we found a significant 
linear relationship across groups, such that hippocampal 
glutamate was highest in healthy controls, lowest in 
placebo-treated patients, and intermediate in patients 
treated with CBD (ANOVA unweighted linear term 
F(1,49) = 4.91, P = .031, d = 0.74) (figure 2A, table 3).

Glutamate × CBF × Group Interactions

There was a significant interaction between group (con-
trol vs placebo), hippocampal glutamate, and CBF in a 
cluster spanning the left putamen and insula (peak MNI 
coordinates X/Y/Z = −38/−12/10, T(24) = 5.63, k = 679, 
PFWE = .012). Post hoc analysis demonstrated that this 
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was characterized by a strong positive correlation in the 
placebo group (r = 0.68, P = .008, n = 14) vs a negative 
correlation in healthy controls (r = −0.51, P = .027, n = 
19) (figure 2B). There were no significant interactions 
in the CBD vs placebo contrast nor the 3-group linear 
analyses.

Exploratory Effects on Other Metabolite Levels

Analysis of the secondary/exploratory metabolites re-
vealed significantly lower myo-inositol in the placebo (M 

± SD= 5.86 ± 1.01) relative to the control (6.69 ± 1.01) 
group (t(34)=2.46, P = .019, d = 0.82). Although the direct 
pairwise CBD (6.09 ± 1.45) vs placebo comparison for 
myo-inositol was not significant (P = .59, d = 0.18), there 
was a significant linear relationship across groups, such 
that it was highest in healthy controls, lowest in placebo 
patients and intermediate in patients treated with CBD 
(ANOVA unweighted linear term F(1,49) = 4.58, P = .037, 
d = 0.72). There were no other significant effects in pair-
wise or linear contrast analyses for the other metabolites 
(Glx, N-acetylaspartate, choline, and creatine)(table 3). 

TABLE 1.  Sociodemographic and Clinical Characteristics at Baseline

Characteristic 
CBD

(n = 16) 
Placebo
(n = 17) 

Control
(n = 19)1 

Pairwise Comparison

Control vs Placebo Placebo vs CBD 

Age, years; mean (SD) 22.7 (5.08) 24.1 (4.48) 23.9 (4.15) p=.912 p=.422

Sex, N (%) male 10 (63) 7 (41) 11 (58) p=.323 p=.223

Ethnicity, N (%)
  White 10 (63) 7 (41) 11 (58)

p=.593

p=.433

  Black 2 (13) 5 (29) 5 (26)
  Asian 0 (0) 1 (6) 0 (0)
  Mixed 4 (25) 4 (24) 3 (16)
Education, years; mean (SD) 14.4 (2.71) 12.6 (2.76) 16.9 (1.58) p<.0012 p=.062

Handedness, N (%) right 14 (88) 17 (100) 18 (95) p=.373 p=.163

CAARMS Positive, mean (SD) 40.19 (20.80) 42.94 (29.47) NA NA p=.762

CAARMS Negative, mean (SD) 23.25 (16.49) 28.41 (20.49) NA NA p=.432

CHR Subtype6, N APS/BLIPS/GRD 13/1/2 13 / 0 / 4 NA NA p=.443

Transition to psychosis7, N yes 2 4 NA NA NA
STAI-S, mean (SD) 40.31 (9.07) 38.94 (10.18) NA NA p=.692

Urine drug screen results, N (%)
  Clean 10 (63) 8 (47) NA4 NC1 p=.453

  THC 2 (13) 5 (29) NA4

  Morphine 1 (6) 0 (0) NA4

  Benzodiazepines 0 (0) 1 (6) NA4

  PCP 0 (0) 1 (6) NA4

  Missing 3 (19) 2 (12) NA4

Current nicotine use, N (%) yes 9 (56) 5 (29) 2 (11)  p=.153 p=.123

Current alcohol use, N (%) yes 11 (69) 10 (59) NA NC1 p=.593

Lifetime cannabis use, N (%) yes 15 (94) 17 (100) NA5 NC1 p=.483

Current cannabis use, N (%) yes 7 (44) 7 (41) NA5 NC p=.883

Cannabis use frequency, N current users (% total group)8

  More than once a week 5 (31) 5 (29) NA NC1 p=.143

  Once/twice monthly 0 (0) 2 (12) NA
  Few times a year 2 (13) 0 (0) NA
  Only once/twice lifetime 0 (0) 0 (0) NA

Abbreviations: CAARMS, Comprehensive Assessment of At-Risk Mental States; CBD, cannabidiol; CHR, Clinical High Risk for Psy-
chosis; N, number of subjects; NA, not applicable; NC, not compared1; PCP, phencyclidine; STAI-S, State-Trait Anxiety Inventory-State 
Subscale; THC, Δ9-tetrahydrocannabinol. Bold text indicates significant difference (p<.05).
1Controls were selected to have minimal drug use and hence were not compared with CHR participants on these parameters;
2Independent t-test;
3Pearson chi-squared test;
4Controls tested negative on urine drug screen for all substances tested;
5Cannabis use less than 10 times lifetime (no current users);
6CAARMS subgroup: BLIPS brief  limited intermittent psychotic symptoms, APS attenuated psychotic symptoms, GRD genetic risk and 
deterioration;
7Data on later transition to psychosis was not systematically collected and thus these numbers should be interpreted with caution, partic-
ularly as transition is a time-dependent outcome;
8The count data (N) represent the number of current cannabis users (of which there were 7 in each CHR group) who reported typical 
cannabis use at each given frequency. The p-value shown relates to this count data. Percentages reflect the % of the total group sample 
who are current cannabis users and typically using at each frequency.
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Note that these results were not corrected for multiple 
testing as they are exploratory outcomes only.

Discussion

This is the first study to investigate the effects of CBD on 
hippocampal neurochemistry—and its association with 
regional cerebral perfusion—in people at CHR for psy-
chosis. We first established that hippocampal glutamate 
levels are lower in CHR patients under placebo relative 
to healthy controls. To examine our primary hypothesis 
that CBD would at least partially normalize any such 
glutamatergic alterations, we then tested for a linear re-
lationship across groups. In line with our predictions, our 
first key finding was that hippocampal glutamate levels in 

the CBD-treated CHR group were significantly interme-
diate between those observed in the placebo group and 
healthy controls. Finally, we provide the first in vivo ev-
idence that hippocampal glutamate is abnormally asso-
ciated with perfusion in the striatum and insula in CHR 
patients relative to controls. Together, these results provide 
novel insights into the neurobiological mechanisms under-
lying psychosis risk and suggest that CBD may partially 
normalize glutamatergic dysfunction in these patients.

Lower Hippocampal Glutamate in CHR vs Controls

Our finding that hippocampal glutamate was lower in the 
CHR-placebo group vs controls is consistent with several 
previous studies demonstrating lower hippocampal Glx19 

Table 2.  Spectral and Structural Voxel Data. Mean ± SD Estimates of Linewidths, Signal-to-Noise Ratios, CRLB, and Voxel 
Proportions of White Matter, Gray Matter, and CSF in the Hippocampus Across the 3 Groups

Control
(n = 19)

Placebo
(n = 17)

CBD
(n = 16) Control vs Placebo Placebo vs CBD ANOVA

Spectral and structural voxel data
FWHM 0.07 ± 0.02 0.07 ± 0.01 0.07 ± 0.01 P = .84 P = .18 P = .50
SNR 12.53 ± 2.57 13.53 ± 2.40 13.38 ± 2.13 P = .24 P = .85 P = .40
WM 0.33 ± 0.07 0.33 ± 0.06 0.36 ± 0.07 P = .94 P = .16 P = .27
GM 0.63 ± 0.06 0.63 ± 0.05 0.61 ± 0.07 P = .96 P = .30 P = .48
CSF 0.04 ± 0.02 0.04 ± 0.01 0.03 ± 0.02 P = .63 P = .09 P = .07
Cramér Rao Lower Bounds (CRLB)
Glu 9.53 ± 2.06 9.76 ± 1.68 9.81 ± 2.61 P = .71 P = .95  P = .91 b

Glx 10.26 ± 2.10 10.29 ± 2.14 10.38 ± 3.30 P = .97 P = .93  P = .99 b

NAA 4.21 ± 1.32 3.88 ± 0.70 3.50 ± 0.63 P = .35 P = .11  P = .09 b

Choa 4.00 ± 1.00 3.94 ± 0.77 3.93 ± 0.80 P = .84 P = .99 P = .97
ml 5.58 ± 1.22 5.76 ± 1.20 5.94 ± 2.11 P = .65 P = .77 P = .79
Cre 3.89 ± 0.66 4.06 ± 0.66 3.88 ± 0.72 P = .46 P = .45 P = .69

Abbreviations: FWHM, full width at half-maximum (linewidth) in ppm (parts per million); WM, white matter; GM, gray matter; CSF, 
cerebrospinal fluid; CRLB, Cramér Rao Lower Bounds; SNR, signal-to-noise ratio; Glu, Glutamate; Glx, Glutamate + Glutamine; 
NAA, N-acetylaspartate; Cho, Choline; ml, myo-Inositol; Cre, Creatine.
aCholine data for 2 CHR subjects (one from each of the CBD and placebo groups) was omitted due to CRLB >20%;
bWelch’s test due to inhomogeneity of variances.

Table 3.  Tissue-Corrected Metabolite Values in the Hippocampus (mean ± SD) Across the 3 Groups, With Pairwise Comparisons 
(Healthy Control vs Placebo; Placebo vs CBD) and 3-Way Contrasts for a Between-Group Linear Relationship (Controls > CBD > 
Placebo, or Placebo > CBD > Controls)

Metabolites
Control
(n = 19)

Placebo
(n = 17)

CBD
(n = 16)

Group Comparisons

Control vs Placebo Placebo vs CBD ANOVA Linear Contrast

A priori
Glu 8.41 ± 1.27 7.42 ± 1.02 7.83 ± 1.67 t(34) = 2.55, P = .015 * t(24.59) = 0.85, P = .41 F(1,49) = 4.91, P = .031 *
Exploratory
Glx 11.32 ± 1.79 10.35 ± 1.60 10.92 ± 3.02 t(34) = 1.70, P = .098 t(22.50) = 0.66, P = .51 t(34) = 1.71, P = .096 b

NAA 9.52 ± 0.77 8.96 ± 1.07 8.89 ± 0.90 t(34) = 1.84, P = .074 t(31) = 0.18, P = .86 F(1,49) = 3.44, P = .070
Cho a 2.44 ± 0.26 2.26 ± 0.41a 2.27 ± 0.44a t(24.4) = 1.49, P = .15 t(29) = 0.05, P = .96 F(1,47) = 1.94, P = .17
ml 6.69 ± 1.01 5.86 ± 1.01 6.09 ± 1.45 t(34) = 2.46, P = .019 * t(31) = 0.54, P = .59 F(1,49) = 4.58, P = .037 *
Cre 7.61 ± 0.77 6.92 ± 1.32 7.19 ± 1.36 t(25.28) = 1.88, P = .072 t(31) = 0.59, P = .56 t(25.28) = 1.88, P = .072 b

Abbreviations: Glu, Glutamate; Glx, Glutamate + Glutamine; NAA, N-acetylaspartate; Cho, Choline; ml, myo-Inositol; Cre, Creatine.
aCholine data for 2 CHR subjects (one from each of the CBD and placebo groups) was omitted due to CRLB>20%.
bLinear contrast accounting for unequal variances. *significant at P < .05 level.
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Fig. 2.  (A) Hippocampal glutamate levels across the three groups. CHR patients in the placebo group had significantly lower glutamate 
relative to healthy controls (P = .015) and there was a significant linear relationship across groups (such that controls > CBD > placebo; 
P = .031). In the left panel of (B), axial sections showing the significant cluster (in red) identified in the glutamate × CBF × group 
(placebo vs control) interaction analyses (peak MNI X/Y/Z = −38/−12/10, T(24) = 5.63, k = 679, PFWE = .012). The left side of the brain 
is shown on the left of the images. In the right panel of (B), scatterplot depicting the relationship between CBF (in the putamen-insula 
cluster shown in the left panel) and hippocampal glutamate by group. This post hoc analysis was used to determine the direction of the 
significant interaction: Covariate-adjusted CBF values (mean CBF over all voxels, arbitrary units) were extracted from the significant 
cluster (left panel) for each subject from the T-contrast using the MarsBaR toolbox in SPM.
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and glutamate18 (with additional findings at trend-level)19,60 
in these patients, as well as negative associations between 
hippocampal glutamate, striatal dopamine, and symptom 
severity, particularly in those who go on to transition61 (al-
though see62). However, other studies have found increased 
hippocampal Glx17 (also in those with genetic risk,63 but 
not always64,65), no differences,20–23,62,66 or differences only 
within CHR patients based on poor vs good clinical 
outcomes.23 The reasons for the disparity in the presence 
and/or direction of results are unclear, but sample charac-
teristics67 or methodological factors such as voxel location, 
metabolite correction (for voxel tissue content vs creatine-
scaled), as well as the heterogeneity inherent within 
CHR populations23,68,69 may contribute. These findings 
are compatible with the several meta-analyses that have 
synthesized this literature,6,24,25 which report numerically 
(but nonsignificantly) lower hippocampal glutamate levels 
in CHR individuals relative to controls (SMD[g] = −0.26, 
95% CI: −0.56 to 0.04, P = .09).25

On the other hand, our findings are somewhat at odds 
with preclinical circuit models of psychosis onset, which 
propose that NMDA receptor hypofunction ultimately 
leads to excess hippocampal glutamate.2,3 Numerous 
studies in patients with established psychosis7,14–16 (and 
at least one in CHR17) have corroborated this pattern of 
elevated glutamatergic metabolites, but it is noteworthy 
that several recent meta- and mega-analyses found no sig-
nificant differences (in hippocampal/mediotemporal re-
gions) in patients across the psychosis continuum relative 
to controls.24,25,70 One potential factor which may account 
for the differential findings in animals vs humans is that 
while extracellular glutamate can be measured proximally 
with invasive methods in rodents,3 clinical 1H-MRS studies 
at 3T require a large voxel size and the signal reflects in-
tracellular as well extracellular glutamate (and glutamine) 
involved in both neurotransmission and metabolism.71 
Interestingly, studies examining hippocampal Glx (rather 
than glutamate) appear to find more consistent increases in 
patients, with meta-analytic effect sizes24,25 tending to show 
numerically (albeit not significantly) increased Glx in CHR 
relative to controls (SMD[g] = 0.13, 95% CI: −0.43 to 0.69, 
P = .66),25 which contrasts with the aforementioned meta-
analytic findings for glutamate. This may suggest that glu-
tamine is contributing strongly to the observed increases 
in 1H-MRS-derived metabolite levels and potentially 
implicates aberrant glutamate-glutamine cycling.72 Higher 
MRI field strengths and advanced techniques (such as 
GluCEST and 13C-MRS) are now becoming available and 
will enable future research to more reliably separate spec-
tral components and further address these questions.73,74

CBD may Increase Hippocampal Glutamate in CHR

Our first key finding was that CHR patients treated 
with a single dose of CBD show intermediate levels of 
hippocampal glutamate relative to controls and patients 

under placebo. Although our study was cross-sectional 
with parallel groups, these results suggest that a single 
dose of CBD may partially normalize the altered glu-
tamate levels we observed in CHR patients. Supporting 
this view, in our previous within-subject study in people 
with first-episode psychosis, we showed that a 600 mg 
dose of CBD significantly increased hippocampal gluta-
mate relative to placebo.53 Moreover, CBD was associated 
with a significantly greater decrease in symptom severity, 
and a significant inverse relationship was found between 
hippocampal glutamate and the severity of psychotic 
symptoms posttreatment.53 This suggests that the anti-
psychotic effects of CBD in patients with psychosis42,43 
may be related to the increase in hippocampal glutamate 
observed under its influence.53 Outside of the hippo-
campus, CBD increases Glx in basal ganglia but reduces 
Glx in prefrontal cortex across ASD and neurotypical 
individuals.54 Preclinical studies demonstrate that CBD 
can increase prefrontal glutamate in depression models,75 
although attenuated hippocampal glutamate release has 
been observed in seizure models.76 CBD may also act on 
excitation-inhibition balance via the GABAergic system77 
(and see Supplement for discussion of anxiety78). In 
humans, CBD increases GABA in basal ganglia and pre-
frontal cortex in controls, but decreases GABA in these 
regions in ASD individuals.54 Overall, previous work 
points to effects of CBD on the glutamate system but the 
regions implicated and the direction of effects are some-
what mixed, potentially due to species-specific differences 
and the differential populations examined in humans. 
Our results therefore extend the limited body of existing 
literature (so far conducted in people with established 
psychosis, ASD, and neurotypical controls) by showing 
that CBD may also modulate hippocampal glutamate in 
people at risk of psychosis, and in a direction indicative 
of normalization. However, it should be noted that we 
did not find significant differences in the CBD vs placebo 
pairwise analysis. This may be due to the relatively modest 
sample sizes (n = 17/16 per CHR group) and thus lim-
ited power for detecting effects of smaller magnitude (see 
supplementary material for post hoc power calculations). 
This lack of differences is perhaps unsurprising, since it 
would be unlikely that a single dose of CBD would fully 
normalize glutamatergic dysfunction in CHR patients. 
Therefore, with this in mind, we tested our hypothesis of 
a partial normalization effect of CBD directly using the 
3-way linear analyses, as in our previous publications in 
this sample.51,52,59 Our findings lend support to the idea 
that CBD may hold value as a potential therapeutic av-
enue to be pursued in further clinical studies.

Abnormal Relationship Between Glutamate and 
Perfusion in CHR

In exploring the broader mechanistic relevance of 
glutamatergic dysfunction, our second key—and 
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novel—finding was of a significant group (control vs pla-
cebo) × glutamate × CBF interaction in a putamen-insula 
cluster, driven by a strong positive association in the CHR-
placebo group and a negative association in controls. 
Dysfunctional relationships between hippocampal and 
putaminal physiology are of particular interest as the 
striatum is a key node in circuit-based models of psy-
chosis.1 These propose that deficits in hippocampal in-
hibition lead to excess excitatory drive in projections 
to the midbrain-striatum, striatal hyperdopaminergia, 
and the emergence of psychotic symptoms.1,4,5 If, as our 
results in healthy controls suggest, the normative rela-
tionship is such that greater hippocampal glutamate is 
associated with lower striatal CBF, the positive associa-
tion we observed in CHR patients could reflect a disrup-
tion in inhibitory/homeostatic mechanisms within this 
hippocampal-midbrain-striatal circuit (supplementary 
figure S1). Our findings are thus broadly consistent with 
the aforementioned preclinical models.

In addition, our finding that glutamate was atyp-
ically related to perfusion in a cluster localized to 
the putamen-insula is interesting in light of  the pu-
tamen hyperperfusion documented in 2 previous CHR 
studies.8,27 Increased putamen CBF in CHR patients27 
also correlates with positive symptom severity, and 
lower striatal CBF at follow-up has been associated with 
greater longitudinal decreases in positive symptoms.8 
Greater perfusion in the putamen has also been identified 
as a potential marker of  genetic susceptibility for schiz-
ophrenia spectrum disorders.79 In terms of  the insula, 
perfusion abnormalities have not been definitively re-
ported here in the CHR state, but a recent meta-analysis 
found conjoint reductions in CBF and glucose metabo-
lism (indexing aberrant neurovascular coupling) within 
frontoinsular cortex in schizophrenia.80 In our previous 
study in the same sample, we focused exclusively on 
perfusion and found (during exploratory whole-brain 
analyses) significantly increased CBF in placebo-treated 
patients vs controls. This large cluster extended into the 
left putamen (but not the insula) and partially overlaps 
with the cluster found here.50 The present findings 
therefore extend our prior work to collectively suggest 
that (1) hippocampal glutamate is lower, (2) CBF in 
(clusters spanning) the striatum is greater,50 and (3) that 
the relationship between hippocampal glutamate and 
striatal-insular perfusion is abnormal in CHR patients 
relative to controls. While previous work has found 
CHR-associated dysfunction in the relationship be-
tween prefrontal GABA and hippocampal blood flow,28 
and between hippocampal glutamatergic metabolites 
and (i) striatal dopamine,61 (ii) hippocampal activation 
(by clinical outcomes),81 and (iii) hippocampal-striatal 
connectivity,81 the current study is the first to demon-
strate an aberrant relationship between hippocampal glu-
tamate and striatal blood flow in these patients. Given 
that hippocampal glutamatergic dysfunction is thought 

to drive hyperperfusion in the hippocampal-midbrain-
striatal circuit, our results provide new empirical evidence 
of  a potential link between these two pathophysiological 
features in CHR patients, which have so far only been re-
ported in isolation. Our findings therefore provide novel 
insights on potential mechanisms underlying psychosis 
risk from a complementary angle to previous literature, 
and provide a starting point for future research to un-
pack the nature of  these alterations on a more granular 
level.

Limitations

Several potential limitations warrant consideration. 
First, although we found commensurate results in our 
previous within-subject study,53 our parallel-group de-
sign means that any effects of  CBD should be interpreted 
with caution. Future within-subject studies would ad-
dress this issue. Second, CBF data were missing for sev-
eral CHR subjects, impacting the statistical power of  the 
combined glutamate-CBF analyses. As such, our group 
× glutamate-CBF results should be considered as initial 
evidence for hypothesis generation and confirmed by fu-
ture studies. Post hoc power calculations (supplementary 
material) also showed that for the glutamate analyses, 
effect sizes would have to be ~d = 1.0 to be detected with 
the current sample size. Therefore, CBD may have had 
effects of  smaller magnitude but we were unable to de-
tect them. We also administered a single dose of  CBD 
and it remains possible that repeated dosing would pro-
duce detectable effects at the current sample size. Going 
forward, future CBD studies should adopt crossover 
designs to ensure sufficient power while the number 
of  CHR patients undergoing pharmaco-MRI remains 
feasible. Finally, ~42% of  CHR participants were cur-
rent cannabis users. Although all were abstinent for >96 
hours and none were cannabis dependent, it is possible 
that the effects of  CBD may differ in users vs non-users. 
However, given that cannabis use is common in CHR 
cohorts82 (particularly in South London),83 selecting 
only non-users may have resulted in an unusual and 
non-generalizable sample. We therefore recruited a rep-
resentative CHR sample as typically found in UK serv-
ices.84,85 Post hoc analyses (supplementary material) also 
suggested that our results were unlikely to be driven by 
cannabis use, although we were unable to fully examine 
this for the placebo vs control contrast. Stratification by 
cannabis use and other potentially important factors—
such as the three subgroups of  the  Comprehensive 
Assessment of  At-Risk Mental States—should there-
fore be explored in future studies.

Conclusion

In summary, we found that hippocampal glutamate is 
lower in CHR patients and may be partially normalized 
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by a single dose of CBD. Furthermore, we provide the 
first in vivo evidence of an abnormal relationship be-
tween hippocampal glutamate and resting perfusion in 
the striatum and insula in this patient group. Together, 
these results provide novel insights into the neurobiolog-
ical mechanisms underlying psychosis risk and suggest 
that CBD warrants further investigation as a candidate 
novel treatment.

Supplementary Material

Supplementary data are available at Schizophrenia 
Bulletin Open online.
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