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Preliminary Results and a Road Map for Future Work
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Abstract

We evaluate four count-based and predict-001
ive distributional semantic models of Ancient002
Greek against AGREE, a composite benchmark003
of human judgements, to assess their ability to004
retrieve semantic relatedness. On the basis of005
the observations deriving from the analysis of006
the results, we design a procedure for a larger-007
scale intrinsic evaluation of count-based and008
predictive language models, including syntactic009
embeddings. We also propose possible ways010
of exploiting the different layers of the whole011
AGREE benchmark (including both human-012
and machine-generated data) and different eval-013
uation metrics.014

1 Introduction015

The application of Natural Language Processing to016

the study of Ancient Greek semantics is an emer-017

ging research area which has proven to be a fruitful018

avenue for our understanding of the Ancient Greek019

language and culture. Previous work has focused020

on the training of Distributional Semantic Mod-021

els (DSMs) on Ancient Greek corpora (Boschetti,022

2009; Rodda et al., 2017, 2019; McGillivray et al.,023

2019; Perrone et al., 2021a), a task enabled by the024

relatively large quantity of extant texts available for025

this language. DSM evaluation is a necessary step026

to properly assess the usefulness of applying these027

models to large-scale studies of Ancient Greek, but028

is made particularly challenging by the lack of nat-029

ive speakers and, compared to modern languages,030

a limited number of experts available.031

This paper offers an evaluation of DSMs for032

Ancient Greek against the newly created AGREE033

benchmark (Authors 2024, accepted) and a road034

map for further, wider evaluation. We exploit the035

layered nature of AGREE to assess at different036

levels four DSMs, and discuss results not only in037

terms of model comparison, but mostly in terms038

of best evaluation strategies, suggesting various039

precision- and recall-based options. On that basis,040

in Section 6 we propose a road map for a more 041

comprehensive evaluation campaign, which would 042

involve training a wider range of models, including 043

dependency-based embeddings (see, among others, 044

Padó and Lapata 2007; Levy and Goldberg 2014; 045

Lapesa and Evert 2017; Lenci et al. 2022), already 046

preliminarily tested in Authors (under review), and 047

studying their behaviour with respect to a number 048

of metrics. Specifically, we propose to assess the 049

difference in performance between syntactic em- 050

beddings trained on manually tagged and on auto- 051

matically tagged treebanks. We plan to evaluate the 052

DSMs, trained with different parameters, against 053

the full version of AGREE, including both human- 054

and machine-generated judgements. We also sug- 055

gest alternative ways to use the data collected for 056

AGREE and possible evaluation metrics. 057

2 Previous work 058

Few resources exist as gold standards for the evalu- 059

ation of DSMs on Ancient Greek. Vatri and Läht- 060

eenoja (2019) contains the manual annotation of 061

the senses of the lemmas μῦς, ἁρμονία, and κόσμος 062

(Vatri and McGillivray, 2018) and was used in Per- 063

rone et al. (2021a) and Perrone et al. (2021b) to 064

evaluate models for semantic change detection. 065

Rodda et al. (2019) evaluated count-based DSMs 066

for Ancient Greek against benchmarks obtained 067

from an ancient lexicon, a modern dictionary of 068

synonyms, and the computational lexicon Ancient 069

Greek WordNet (Boschetti et al., 2016). The data 070

they released represent the first benchmark for the 071

evaluation of Ancient Greek DSMs.1 Reusing 072

preexisting resources, as they did, allows incorpor- 073

ating in the evaluation the semantic knowledge of 074

real speakers of Ancient Greek (as in the case of the 075

ancient lexicon) and to leverage the semantic know- 076

ledge of highly specialized experts, from resources 077

that can be the product of years of work. This 078

1https://zenodo.org/record/3552763#
.YfAItOrMKWA
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data collection seems less biased by the aims of the079

research, however it also has downsides. Lexical080

resources, compiled by humans, can suffer from081

idiosyncrasies, for example being biased by the082

interests and language taste of their author, and if083

the author is not alive anymore, it is not possible to084

get explanations about specific choices. Moreover,085

ancient resources can reflect ideas of semantic rela-086

tionships between words (e.g. word similarity) that087

are different from the contemporary conceptualiz-088

ation, as also noticed by Rodda et al. (2019, 6–8)089

and discussed in Authors (2024, accepted).090

3 Training Data for DSMs of Ancient091

Greek092

The largest corpus of Ancient Greek, the Thesaurus093

Linguae Graecae (Pantelia, 2022), containing more094

than 110 million tokens,2 is only accessible through095

the web interface. However, scholars can use a096

number of open-access machine-readable Ancient097

Greek corpora, containing different ranges of text098

types.3 Some corpora are annotated, for example099

with lemma, POS, and syntactic information. The100

Diorisis Ancient Greek Corpus (Vatri and McGilli-101

vray, 2018), a portion of which was used as training102

data for the study presented in this paper, contains103

10,206,421 automatically lemmatized and POS-104

tagged tokens. But many corpora with syntactic105

annotation also exist: an overview of the most often106

used treebanks for Ancient Greek is in Table 1.107

As the case of GLAUx shows (see Table 1),108

automatic parsing allows for the creation of lar-109

ger treebanks, even if the syntactic annotation is110

expected to be less accurate. We thus plan to train111

syntactic embeddings on two corpora, GLAUx and112

the largest possible manually-annotated treebank,113

created from a collation of the available corpora.114

4 The AGREE Benchmark115

The AGREE benchmark contains pairs of lemmas116

semantically related to 36 selected ‘seed’ lemmas117

(12 nouns, 12 adjectives, and 12 verbs), for a total118

of 638 lemma pairs.4 The judgements were collec-119

ted via questionnaires distributed to a large number120

(> 50) of academic scholars of Ancient Greek. The121

final benchmark, AGREE, incorporates a mix of122

2https://wiki.digitalclassicist.org/
Thesaurus_Linguae_Graecae

3A review of most available open-access corpora for An-
cient Greek is in Keersmaekers (2021, 40).

4https://zenodo.org/record/8027490.

expert-elicited pairs and expert-assessed, machine- 123

generated pairs. The machine-generated items are 124

pairs of [seed lemma - nearest neighbour], with 125

nearest neighbours extracted from Word2Vec mod- 126

els (Mikolov et al., 2013) that underwent expert 127

judgement and were assessed as highly related. 128

For the experiments reported in this paper, we 129

only use the human-elicited portion of the bench- 130

mark: AGREE-task1. This portion can be further 131

divided into the subset of pairs that were proposed 132

by one expert only, and the subset of pairs that 133

were proposed by more than one annotator, under 134

the assumptions that the latter might be cases of a 135

stronger relatedness, and/or higher frequency. 136

5 Evaluation of DSMs of Ancient Greek 137

5.1 Procedure 138

For this study we evaluated two count-based and 139

two predictive DSMs trained on a portion of the 140

Diorisis corpus (Vatri and McGillivray, 2018), mer- 141

ging text from the Archaic, Classical and Hellen- 142

istic periods, since the AGREE benchmark (and 143

especially the pairs proposed by experts) is particu- 144

larly suited to the evaluation of models trained on 145

texts from those periods (Authors 2024, accepted). 146

The lemmatized version of Diorisis was used, to 147

reduce the impact of word sparsity. Stop word filter- 148

ing was performed, according to the list also used 149

in Rodda et al. (2019)5. Stop word filtering reduced 150

the size of the corpus from 5,768,916 to 2,960,459 151

tokens. The four models were evaluated against 152

AGREE-task1, by comparing the top 5, 10, 15 (k) 153

nearest neighbours of each of the 36 seed lemmas 154

in the benchmark with the lemmas related to the 155

same seed in AGREE-task1. The nearest neigh- 156

bours extracted from the models were compared 157

to: all the lemmas in AGREE-task1, the lemmas in 158

AGREE-task1 proposed by more than one expert, 159

and the lemmas in AGREE-task1 proposed by only 160

one expert. Precision and recall were adopted as 161

evaluation metrics and defined as follows: 162

Precision@K =
overlap model’s near. neighb. and benchmark

k
163

164

Recall@K =
near. neighb. model also in benchmark

n. related lemmas benchmark
165

5https://figshare.com/articles/
dataset/Ancient_Greek_stop_words/9724613,
by A. Vatri.
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Treebank N. tokens Manual annotation Texts

Ancient Greek Dependency Treebank
(Perseus, Bamman and Crane, 2011)

ca. 550K* yes Literary, full list at http://
perseusdl.github.io/
treebank_data/

PROIEL Treebank (Haug and Jøhndal,
2008)

ca. 250.5K yes The Greek New Testament, Histories
(Herodotus), Chronicles (Sphrantzes)

Gorman Trees (Gorman, 2020) ca. 240K* yes Literary prose, full list at https:
//perseids-publications.
github.io/gorman-trees/

Pedalion Trees (Keersmaekers et al.,
2019)

ca. 300K yes Literary, full list at https://
perseids-publications.
github.io/pedalion-trees/

Harrington Treebanks (Harrington, 2018) ca. 18K* yes Nicene Creed; Book of Susanna (Sep-
tuaginta), Verae historiae (Lucian of
Samosata), Vita Aesopi

PapyGreek (Vierros and Henriksson,
2021)

ca. 44K syntactic layer only Papyri

Aphthonius (Yordanova, 2018) ca. 7K* yes Progymnasmata (Aphtonius)

GLAUx corpus (Keersmaekers, 2021) ca. 11,860K no Literary, papyrological, epigraphical.
A sample was released at https:
//perseids-publications.
github.io/glaux-trees/

Table 1: Some available treebanks for Ancient Greek. If the size of the treebank is followed by a *, it is taken from
Keersmaekers et al. (2019, 110). The size of the PapyGreek treebanks has been calculated by summing up all the
‘word’ elements in the XML files.

5.2 Models166

The models selected for evaluation are two167

Word2Vec models, one SGNS and one CBOW, and168

two count-based models. The matrices of the count-169

based models were weighted with PPMI and one170

one of the two dimensionality reduction was per-171

formed with Singular Value Decomposition (SVD).172

The two count-based models were built by using173

the software provided by the LSCDetection repos-174

itory (Schlechtweg et al., 2019) with window = 5175

and the following other parameters: k = 1 and176

alpha = 0.75 for PPMI, 300 dimensions and177

gamma = 0.0 for SVD. The two Word2Vec mod-178

els were trained with the Gensim library (Řehůřek179

and Sojka, 2010) and the following parameters:180

size = 30, window = 5, min_count = 5,181

negative = 20.182

5.3 Results183

The average precision and recall are reported in184

Table 2. We immediately see that recall is gener-185

ally low. This can be explained by the fact that186

there are on average 14 neighbours per lemma6 in187

AGREE-task1, so that the denominator in recall@k188

6Min. = 6, max. = 24, standard deviation = 4.43.

is generally larger than the numerator when k = 5 189

or k = 10. The recall consequently increases (on 190

average) if k also increases, while the opposite hap- 191

pens for precision, which increases if k decreases. 192

Taking into account recall for k < 15 makes thus 193

little sense, since it is never possible to achieve full 194

recall when the lemmas related to a certain seed 195

in the benchmark are more than the extracted k- 196

nearest neighbours. Conversely, it is theoretically 197

possible to achieve 100% precision if all the ex- 198

tracted k-nearest neighbours are also in the bench- 199

mark. The higher precision with smaller values of 200

k seems to confirm that the closest neighbours in 201

the semantic space are actually more strictly related 202

to the seed lemma, while the strength of the seed- 203

neighbour relationship declines for neighbours that 204

are further away from the seed. 205

Model architecture also has an impact, with 206

count-based performing better than predictive mod- 207

els. This is in line with what is observed by Lenci 208

et al. (2022). Moreover, the model without dimen- 209

sionality reduction performs better than the one 210

to which SVD was applied, as shown in Table 3. 211

Further, Word2Vec CBOW seems to perform better 212

than Word2Vec SGNS. However, parameter op- 213

3

http://perseusdl.github.io/treebank_data/
http://perseusdl.github.io/treebank_data/
http://perseusdl.github.io/treebank_data/
https://perseids-publications.github.io/gorman-trees/
https://perseids-publications.github.io/gorman-trees/
https://perseids-publications.github.io/gorman-trees/
https://perseids-publications.github.io/pedalion-trees/
https://perseids-publications.github.io/pedalion-trees/
https://perseids-publications.github.io/pedalion-trees/
https://perseids-publications.github.io/glaux-trees/
https://perseids-publications.github.io/glaux-trees/
https://perseids-publications.github.io/glaux-trees/


k Precision Recall

5 0.20 0.06
10 0.16 0.09
15 0.13 0.11

Table 2: Average precision and recall calculated against
the whole AGREE-task1 benchmark and divided by k.

Model Precision Recall

SGNS 0.11 0.06
CBOW 0.15 0.08
SVD 0.16 0.09
PPMI 0.22 0.12

Table 3: Average precision and recall calculated against
the whole AGREE-task1 benchmark, divided by model.

timization was not performed for this preliminary214

study, and a limited number of model architectures215

was tested. In future, larger evaluation will prob-216

ably give a better picture of the differences between217

count-based and predictive models.218

For example, for the seed lemma εἰρήνη, ‘peace’,219

there are 9 related lemmas in AGREE-task1:220

πόλεμος, ‘war’, σπονδή, ‘drink-offering/treaty’,221

ἥσυχος, ‘quiet’ (adj.), ἡσυχία, ‘quiet’ (noun),222

σπένδω, ‘make a drink-offering’, μάχη, ‘battle’,223

γαληνός, ‘calm’, πολιτεία, ‘citizenship’, συγ-224

γραφή, ‘writing’, ὁμολογέω, ‘agree’, νίκη, ‘vic-225

tory’, ὄλβος, ‘happiness’, γαλήνη, ‘stillness’, and226

φιλία, ‘friendship’. Both the CBOW and the227

PPMI model have precision 0.2 with k = 5,228

i.e. among the first 5 nearest neighbours returned229

there is one that is also in AGREE-task1. The230

recall is 0.07 (1/14). The overlapping lemma231

is σπονδή, ‘drink-offering/treaty’ for the CBOW232

model, (which also returns as the other four nearest233

neighbours διάλυσις, ‘separating/ending’, συμ-234

μαχία, ‘alliance’, Λακεδαιμόνιος, ‘Spartan’, and235

πολεμέω, ‘fight’) and it is πόλεμος, ‘war’ for the236

PPMI, which also returns συμμαχία, ‘alliance’,237

Φίλιππος, ‘Philip’, πολεμέω, ‘fight’, and πρεσ-238

βεία, ‘embassy’. We notice that both models re-239

turn συμμαχία, ‘alliance’ among their first 5 neigh-240

bours. This word was not proposed by the experts241

in the first phase of data collection for the AGREE242

benchmark, but is however semantically related to243

εἰρήνη, ‘peace’. More in general, we deem all the244

top 5 nearest neighbours returned by both mod- 245

els as acceptable results, since they all are related 246

to εἰρήνη, ‘peace’; the two models just differ in 247

results from one other, as well as from the bench- 248

mark. Of course, there are also cases in which 249

the overlapping lemma(s) are the same between 250

models. One example is μέγας, ‘big’, for which 251

there are 15 related lemmas in AGREE-task1.7 252

Both the CBOW and the PPMI model have pre- 253

cision 0.2 (1/5) and recall 0.07 (1/14) with k = 5. 254

However, the lemma overlapping with the AGREE- 255

task1 benchmark is the same for both models, 256

μέγεθος, ‘greatness’. Again, the extracted nearest 257

neighbours that are not in the benchmark are not 258

necessarily unrelated to the seed μέγας, ‘big’. The 259

CBOW model also returns τηλικοῦτος, ‘of such an 260

age/so large’, ἄξιος, ‘weighing as much/worthy’, 261

ῥοπή, ‘weight’, and ὑπερβάλλω, ‘surpass/exceed’, 262

while the PPMI model also returns ἐλάσσων, ‘smal- 263

ler’, ἴσος, ‘equal’, ἄρος, ‘use/profit’, and πολύς, 264

‘many’. Except from ἄρος, ‘use/profit’, they all 265

relate to μέγας, even if, intuitively, with a different 266

strength and with different types semantic relations. 267

The internal layering of the benchmark AGREE- 268

task1, which accounts for the number of experts 269

who proposed a specific lemma, allows for other 270

observations (Table 4). On average, the lemmas 271

returned by only one expert (AGREE-task1-only1 272

in 4) are more (13.02 per seed lemma) than those 273

returned by several experts (AGREE-task1-more1, 274

4.69 per seed). We could hypothesize that the re- 275

latedness among the latter may be stronger or more 276

evident, since more than one expert independently 277

had proposed the same lemmas as related to the rel- 278

evant seed word. When we evaluate against lemma 279

pairs proposed by more than one expert higher pre- 280

cision and recall scores are observed, possibly sug- 281

gesting that pairs proposed by more experts are 282

more closely related to their seed lemma, and pos- 283

sibly more frequent. This is particularly true for 284

the PPMI model, which achieves an average of 285

0.22, 0.14, and 0.09 precision, and an average of 286

0.12, 0.07, and 0.05 recall against, respectively, the 287

whole AGREE-task1, the pairs proposed by more 288

than one expert, and the pairs proposed by only 289

one expert (the results are averaged across the three 290

7They are μικρός, ‘small’, ὅρκος, ‘oath’, βασιλεύς,
‘king’, θαῦμα, ‘wonder’, θεός, ‘god’, μακρός, ‘long’, ὀλί-
γος, ‘little’, βραχύς, ‘short’, μέγεθος, ‘greatness’, αὐξάνω,
‘increase’, μεγαλοψυχία, ‘greatness of soul’, ἥρως, ‘hero’,
γίγας, ‘giant’, καλός, ‘beautiful’, and μεγαλοφροσύνη,
‘greatness of mind’.
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Benchmark subset Prec Rec

AGREE-task1 0.16 0.09
AGREE-task1-more1 0.09 0.05
AGREE-task1-only1 0.07 0.04

Table 4: Average precision and recall calculated against
different subsets of the AGREE-task1 benchmark. The
results with the three values of k were averaged.

values of k). This is observed when averaging the291

results of all models, but it does not necessarily292

hold for each model. The CBOW model, for ex-293

ample, achieves a higher precision against the set294

of pairs proposed by only one expert than against295

those proposed by more experts. Both Word2Vec296

models instead achieve the same precision and re-297

call on both subsets of AGREE-task1. The results298

discussed until now are summarised in Table 5.299

Another dimension of the benchmark is the part-300

of-speech (POS) of the seed lemmas. In Table 6 we301

see that evaluating against pairs including an adject-302

ive seed lemma the highest precision is achieved,303

followed by noun seeds and verb seeds. The recall304

is higher when evaluated against pairs including305

adjective or noun seeds. However, the differences306

in precision and recall are very small.307

Finally, dividing the results by lemma reveals308

a great variety in precision and recall among the309

different lemmas. For example, with k = 5 the310

highest precision is achieved. The average pre-311

cision per lemma calculated against the whole312

AGREE-task1 is 0.20, with standard deviation 0.16.313

There is indeed a large variability between the av-314

erage precision against the “best” and the “worst-315

performing” lemmas. Those yielding the highest316

precision are some nouns and adjectives: ἅρμα,317

‘chariot’, average precision 0.6; ψευδής, ‘false’,318

0.55; ἐλεύθερος, ‘free’, 0.45; πατήρ, ‘father’, 0.45;319

and ἄγριος, ‘wild’, 0.45. However, they are im-320

mediately followed by verbs, ἔρχομαι, ‘go’ and321

ὁράω, ‘see’, both with average precision 0.4. The322

lowest precision, 0, is achieved with the seed lem-323

mas ἀκτή, ‘headland’, κλυτός, ‘renowned’, ναίω,324

‘dwell’, ῥῆσις, ‘speech’, σῆμα, ‘sign/mark’, and325

τεύχω, ‘make/build’, all with average precision 0.326

Nevertheless, as we already observed, a low preci-327

sion does not necessarily correspond to bad results328

(i.e. unrelated lemmas), even if it is true that some329

of the nearest neighbours returned by the models330

to these are unrelated or intuitively less strictly331

related to the seed lemmas. Moreover, a higher 332

precision seems to correspond to higher-frequency 333

words, while the lemmas yielding the lowest preci- 334

sion also have a low frequency in the corpus.8 In 335

Table 7 the average precision and recall for each 336

lemma are reported, calculated against the whole 337

AGREE-task1 and with k = 15. Note that changing 338

the value of k the order of the seed lemmas, ranked 339

by precision, also changes. 340

6 Road Map for Future Work 341

We plan a larger evaluation including more model 342

architectures, different parameters and different 343

evaluation metrics, with the aim of understand- 344

ing the differences between model types, rather 345

than finding the ‘best’ model (see also Lenci et al., 346

2022), and evaluation adequacy. More investiga- 347

tion is needed to understand whether the difference 348

between count-based and predictive models trained 349

on Ancient Greek lies in the quality of results (i.e., 350

if some architectures actually return less relevant 351

nearest neighbours), or only in the kind of relation- 352

ships they capture. Further experiments will also 353

concern dependency-based embeddings. 354

Moreover, this extended study will exploit the 355

full dataset produced for the AGREE benchmark, 356

including the second part of the dataset, not used 357

for the current evaluation. Since in the second 358

phase of the data collection the experts assigned re- 359

latedness scores to human- and machine- generated 360

lemma pairs, these items items allows ranking the 361

lemma pairs according to their degree of related- 362

ness, and thus for a more nuanced evaluation. 363

6.1 Models 364

We will test a selection of popular DSMs belonging 365

to the first two generations defined by Lenci et al. 366

(2022), i.e. count-based models (PPMI and GloVe) 367

and predictive models (Word2Vec and FastText). 368

In particular, we will test: 369

1. two count-based models trained by using Pos- 370

itive Pointwise Mutual Information (PPMI) as 371

association measure,9 with and without dimen- 372

sionality reduction with the Singular Value De- 373

composition (SVD); 374

8The frequency in the subcorpus of the mentioned
“best performing” lemmas is: ἅρμα: 541, ψευδής: 1048,
ἐλεύθερος: 940, πατήρ: 5685, ἄγριος: 348, ἔρχομαι: 5251,
ὁράω: 4987, while the frequency of the mentioned “worst-
performing lemmas is: ἀκτή: 177, κλυτός: 142, ναίω: 283,
ῥῆσις: 48, σῆμα: 213, τεύχω: 255.

9About association measures, see Evert et al. (2008).
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Precision Recall

Bench. subset k PPMI SVD CBOW SGNS PPMI SVD CBOW SGNS Tot. prec. Tot. rec. Tot. pairs

AGREE-task1 all k 0.22 0.16 0.15 0.11 0.12 0.09 0.08 0.06 0.16 0.09 638

k = 5 0.28 0.19 0.19 0.14 0.08 0.06 0.05 0.04 0.20 0.06

k = 10 0.22 0.16 0.14 0.11 0.12 0.09 0.08 0.07 0.16 0.09

k = 15 0.17 0.13 0.11 0.09 0.15 0.11 0.10 0.08 0.13 0.11

AGREE-task1-more1 all k 0.14 0.09 0.07 0.06 0.07 0.05 0.04 0.03 0.09 0.05 169

k = 5 0.19 0.11 0.08 0.07 0.06 0.03 0.02 0.02 0.11 0.03

k = 10 0.13 0.10 0.06 0.05 0.08 0.06 0.04 0.03 0.09 0.05

k = 15 0.10 0.08 0.06 0.04 0.09 0.07 0.05 0.04 0.07 0.06

AGREE-task1-only1 all k 0.09 0.07 0.08 0.06 0.05 0.04 0.04 0.03 0.07 0.04 469

k = 5 0.09 0.08 0.11 0.07 0.03 0.02 0.03 0.02 0.09 0.02

k = 10 0.09 0.07 0.08 0.06 0.05 0.04 0.04 0.03 0.07 0.04

k = 15 0.07 0.06 0.06 0.04 0.06 0.05 0.05 0.04 0.06 0.05

Table 5: Average precision and recall calculated against different subsets of the AGREE-task1 benchmark, divided
by model type and by k. The recall for values of k lower than 15 has been reported for completeness, but it has
limited usefulness (see above). The column ’Tot. pairs’ contains the total number of pairs in the relevant subsets.

POS Precision Recall

A 0.18 0.09
N 0.15 0.09
V 0.15 0.08

Table 6: Average precision and recall calculated against
the whole AGREE-task1 benchmark and divided by
POS of the seed lemmas.

2. GloVe (Pennington et al., 2014));375

3. FastText (Bojanowski et al., 2017);376

4. the two architectures of word2vec (Mikolov377

et al., 2013), the Skip-gram with Negative378

Sampling (SGNS) and the Continuous-Bag-of-379

Words (CBOW);380

5. two ‘syntax-filtered’ models (Padó and Lapata,381

2007; Lapesa and Evert, 2017; Lenci et al.,382

2022), a SGNS one but using direct dependency383

between tokens to extract co-occurrences rather384

than mere token windows and one trained using385

the SuperGraph approach described in Al-Ghezi386

and Kurimo (2020). The latter method consists387

in using dependency relations between tokens388

to generate graph structures for every sentence389

in a treebank, before merging all graphs into390

one SuperGraph. The SuperGraph then serves391

as input to Node2Vec (Grover and Leskovec, 392

2016), a modification of the SGNS architecture 393

which enables the training of word representa- 394

tions starting from nodes in a graph. 395

Contextual models will not be included, instead. 396

Even if some work exists on the training of contex- 397

tual models of Ancient Greek (Singh et al., 2021; 398

Keersmaekers and Mercelis, 2021; Yamshchikov 399

et al., 2022; Riemenschneider and Frank, 2023) 400

(despite the fact that contextual models require 401

huge quantities of training data (Lenci et al., 2022, 402

1274)), the only existing evaluation datasets for 403

semantic models of Ancient Greek (Rodda et al., 404

2019 and Authors 2024, accepted) were created 405

for the evaluation of static (type-based) embed- 406

dings. Although type-based embeddings can be 407

obtained from contextualized token embeddings, 408

e.g. by averaging the model representations of 409

each word (see the discussion in Lenci et al., 2022, 410

1290–1291), their superiority over type embed- 411

dings obtained from static DSMs has been ques- 412

tioned (Lenci et al., 2022, 1289–1293). This evalu- 413

ation will thus be limited to the evaluation of static 414

embeddings, leaving the training and evaluation 415

of contextual embeddings for future work.10 All 416

the models will be trained with two different con- 417

10It should be noted that the training corpus of Lenci et al.
(2022, 1279) are English texts from the Web. Their con-
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Lemma Precision Recall Lemma Precision Recall

ἅρμα, ‘chariot’ 0.32 0.22 εἰρήνη, ‘peace’ 0.10 0.11

ὁράω 0.30 0.24 Ἀθηναῖος, ‘Athenian’ 0.08 0.08

ναῦς, ‘ship’ 0.27 0.25 νόστος, ‘return’ 0.08 0.07

χρυσός, ‘gold’ 0.27 0.27 παλαιός, ‘old’ 0.08 0.07

ἄγριος, ‘wild’ 0.23 0.17 ζεύγνυμι, ‘yoke’ 0.08 0.09

ἐλεύθερος, ‘free’ 0.23 0.17 μέγας, ‘big’ 0.08 0.08

ἔρχομαι, ‘go’ 0.23 0.19 μῦθος, ‘word/story’ 0.07 0.07

πατήρ, ‘father’ 0.22 0.30 ἀκτή, ‘headland’ 0.07 0.07

ψευδής, ‘false’ 0.20 0.18 μοχθέω, ‘labour’ 0.07 0.07

κακός, ‘bad’ 0.17 0.12 Σάμος, ‘Samos’ 0.07 0.06

οἰκέω, ‘inhabit’ 0.17 0.11 ἄλκιμος, ‘brave’ 0.05 0.04

αὐξάνω, ‘increase’ 0.17 0.14 ῥῆσις, ‘speech’ 0.05 0.04

ὀρφανός, ‘orphan’ 0.17 0.14 τέμνω, ‘cut’ 0.03 0.03

πόντος, ‘sea’ 0.15 0.12 κλυτός, ‘renowned’ 0.02 0.01

φιλέω, ‘love’ 0.15 0.15 λείπω, ‘leave/quit’ 0.02 0.01

αἴθω, ‘light up’ 0.13 0.10 τεύχω, ‘make/build’ 0.02 0.01

πρέσβυς, ‘old man, elder’ 0.13 0.11 ναίω, ‘dwell’ 0.00 0.00

ἑνδέκατος, ‘eleventh’ 0.13 0.11 σῆμα, ‘sign/mark’ 0.00 0.00

Table 7: Average precision and recall calculated against the whole AGREE-task1 benchmark and with k = 15,
divided by seed lemma. The lemmas are ranked by average precision.

text windows, e.g. 5 and 10. According to the418

large-scale evaluation of Lenci et al. (2022), model419

architecture and context window size are the two420

parameters that significantly affect model perform-421

ance (especially model architecture). We thus con-422

centrate on testing of these two.423

6.2 Dependency-based embeddings424

Ancient Greek syntactic embeddings obtained with425

the SuperGraph method have already been com-426

pared with window-based models by Authors (un-427

der review), clearly suggesting that the former cap-428

ture functional rather than topical similarity, as429

had already been shown at least since Levy and430

Goldberg (2014) on the basis of English mod-431

els. Given this ontological difference between432

the two, an open question, then, is whether syn-433

tactic embeddings should be evaluated on a par434

with traditional count-based and word2vec mod-435

els, namely whether there are arguments for us-436

ing the same benchmark to judge the quality of437

models regardless of whether syntactic informa-438

clusions could thus not entirely apply to Ancient Greek, a
language with a different syntax and morphology.

tion is integrated in their training or not. Previ- 439

ous large-scale comparisons of dependency-based 440

and window-based DSMs suggested that the latter, 441

when fine-tuned, generally outperform the former 442

in most downstream tasks (Kiela and Clark, 2014; 443

Lapesa and Evert, 2017). Given the generally 444

greater computational costs associated with de- 445

pendency parsing and the extraction of syntactic 446

collocates (i.e. tokens with a direct dependency 447

relation), it has been questioned whether the train- 448

ing of dependency-based embeddings is justifiable 449

after all. However, there is evidence, at least as 450

far as high-resource languages such as English are 451

concerned, that dependency-based embeddings out- 452

perform window-based models in a limited but co- 453

herent number of tasks. This has been shown to be 454

consistently the case, for instance, of categoriza- 455

tion tasks, namely grouping lexical items into se- 456

mantically coherent categories (Rothenhäusler and 457

Schütze, 2009; Lapesa and Evert, 2017; Lenci et al., 458

2022), as well as thematic fit estimation, namely 459

evaluating the typicality of the argument of a verb 460

given a thematic role (e.g., agent or patient) (Baroni 461

and Lenci, 2010; Chersoni et al., 2017). Different 462

7



tasks such as categorization and synonymity tests463

present, in many ways, the same ontological differ-464

ences occurring between dependency- and window-465

based models as a whole. This alone would seem466

to warrant the training of different models (and, as467

a result, the development of different evaluation468

methods) depending on the task at hand. Classic469

distributional semantic models (i.e. window-based)470

are generally fined-tuned to capture attributional471

similarity (Turney, 2006), namely the number of472

attributes, or properties, shared by the referents of473

two given words. As pointed out by Baroni and474

Lenci (2010), words that share many collocates will475

show a high attributional similarity since common476

collocates can be seen as a proxy for some of the477

attributes that the two words denote. Pairs such as478

dog-puppy will then have a high attributional simil-479

arity but not necessarily a high relational similarity480

(Turney, 2006), which in turns refers to sharing481

similar semantic relations to their nearest neigh-482

bours. In Baroni and Lenci’s 2010 example, the483

pair dog-tail will be more similar to car-wheel than484

it is to dog-animal, even though attributionally that485

is clearly not the case.486

Building on the preliminary observation made487

in Authors (in review) about the relational, rather488

than attributional, similarity captured by Ancient489

Greek dependency-based models, we thus plan to490

test different Ancient Greek models on different491

tasks depending on the kind of similarity the model492

is trained to capture. Categorization and thematic493

fit task, for example, can be set up with the help of494

the richly annotated resources for the language (e.g.495

the verbal semantic annotation in the PROIEL tree-496

bank) for dependency-based models, in addition to497

similarity judgement tasks, which may be instead498

better suited to evaluate window-based DSMs.499

6.3 Evaluation Metrics500

We observed above how precision and recall only501

provide an absolute evaluation against the bench-502

mark, capturing whether the words in the bench-503

mark are returned by the models or not, but they do504

not allow us to take into account the strength of the505

semantic relationship between lemmas. Moreover,506

only the first k neighbours returned by the model507

are evaluated, while there is no information about508

how close to the seed lemma in a semantic space509

the related lemmas in the benchmark are which510

are not among the first k neighbours. Furthermore,511

the use of recall in this kind of evaluation can be512

problematic when the number of k is lower than 513

the number of pairs in the benchmark. 514

To overcome these limitations, we plan to in- 515

clude additional evaluation strategies. One option 516

is to use the evaluation items that were rated on a 0- 517

100 relatedness scale (AGREE-task2), to calculate 518

for each seed lemma the correlation between: (i) 519

the scores assigned to pairs including that lemma 520

in the benchmark; (ii) the cosine distances between 521

the same word pairs in a semantic space. The scores 522

can also be used to rank the items, and a correlation 523

can be calculated between ranks and cosine dis- 524

tances. Taking into account degrees of relatedness 525

may be a more adequate way to evaluate models 526

on a phenomenon such as semantic relatedness. 527

Another possibility is to exploit the information 528

about the number of raters who proposed the words 529

collected in the first phase (AGREE-task1), for ex- 530

ample by giving greater weight to pairs suggested 531

by multiple raters. However, this will first require a 532

deeper investigation on the nature of the pairs pro- 533

posed by one versus several experts, and the impact 534

this might have on evaluation. Relatedly, frequency 535

should also be considered to verify the ways and 536

extent to which precision and recall are impacted 537

by high-frequency items (both the human-elicited 538

ones and those returned by the models). 539

7 Conclusion 540

We presented and discussed the results of an eval- 541

uation of four Distributional Semantic Models of 542

Ancient Greek, two count-based and two predict- 543

ive models. The gold standard was a subset of 544

the AGREE benchmark, AGREE-task1, including 545

pairs of related lemmas proposed by experts of 546

Ancient Greek. The evaluation showed that count- 547

based models achieved higher precision and recall 548

on AGREE-task1, and higher precision and recall 549

were also achieved on average when evaluating 550

against pairs of related lemmas proposed by more 551

than one expert. Another important finding was 552

the great difference in performance between dif- 553

ferent lemmas. We also presented a plan for a 554

more extended evaluation, including more model 555

architectures, parameters, and evaluation metrics. 556

This evaluation will take into account different de- 557

grees of relatedness between lemmas and allow for 558

a better understanding of the differences between 559

DSMs of Ancient Greek and of the possible im- 560

pact of such differences on computational studies 561

in Ancient Greek lexical semantics. 562
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