
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Sartori, A., & Wigman, I. (Accepted/In press). The expected nodal volume of non-Gaussian random band-limited
functions, and their doubling index. FORUM OF MATHEMATICS SIGMA.

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 08. Oct. 2023

https://kclpure.kcl.ac.uk/portal/en/publications/a6c3a43f-95af-4f88-a626-aabf0bd2aba2


THE EXPECTED NODAL VOLUME OF NON-GAUSSIAN RANDOM
BAND-LIMITED FUNCTIONS, AND THEIR DOUBLING INDEX

ANDREA SARTORI AND IGOR WIGMAN

Abstract. The asymptotic law for the expected nodal volume of random non-Gaussian
monochromatic band-limited functions is determined in vast generality. Our methods
combine microlocal analytic techniques and modern probability theory. A particularly
challenging obstacle that we need to overcome is the possible concentration of nodal
volume on a small portion of the manifold, requiring solutions in both disciplines, and,
in particular, the study of the distribution of the doubling index of random band-limited
functions. As for the fine aspects of the distribution of the nodal volume, such as its
variance, it is expected that the non-Gaussian monochromatic functions behave qualita-
tively differently compared to their Gaussian counterpart. Some conjectures pertaining
to these are put forward within this manuscript.

1. Introduction

1.1. Band-limited functions. In recent years a lot of effort has been put into under-
standing the geometry of Laplace eigenfunctions on smooth manifolds. Let (M, g) be a
smooth compact Riemannian manifold of dimension n, and ∆ = ∆g the Laplace-Beltrami
operator on M . Denote {λi}i≥1 to be the (purely discrete) spectrum of ∆, with the
corresponding orthonormal system of Laplace eigenfunctions ϕi satisfying

∆ϕi + λ2
iϕi = 0.

An important qualitative descriptor of the geometry of ϕi is its nodal set ϕ−1
i (0), and,

in particular, the nodal volume V(ϕi) = Hn−1(ϕ−1
i (0)), that is the (n − 1)-dimensional

Hausdorff measure of ϕ−1
i (0).

The highly influential Yau’s conjecture [57] asserts that the nodal volume of ϕi is com-
mensurable with λi: there exists constants CM > cM > 0 so that

cM · λi ≤ V(ϕi) ≤ CM · λi.

Yau’s conjecture was established for the real analytic manifolds [13, 14, 21], whereas, more
recently, the optimal lower bound and polynomial upper bound were proved [36, 37, 38]
in the smooth case.

In his seminal work [9] Berry proposed to compare the (deterministic) Laplace eigen-
functions on manifolds, whose geodesic flow is ergodic, to the random monochromatic
isotropic waves, that is, a Gaussian stationary isotropic random field Fµ : Rn → R, whose
spectral measure µ is the hypersurface measure on the sphere Sn−1 ⊆ Rn, normalized by
unit total volume. Equivalently, Fµ(·) is uniquely defined via its covariance function

K∞(x, y) := E[Fµ(x) · Fµ(y)] =

∫
Sn−1

ei⟨x−y,ξ⟩dµ(ξ). (1.1)

For example, in 2d, the covariance function of Fµ : R2 → R is given by

E[Fµ(x) · Fµ(y)] = J0(|x− y|),
1
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with J0 the Bessel J function of order 0. Berry’s conjecture should be understood in some
random sense, e.g. when averaged over the energy level. Alternatively, one can consider
some random ensemble of eigenfunctions or their random linear combination, Gaussian
or non-Gaussian.

A concrete ensemble of the said type is that of band-limited functions [53]

fT (x) = f(x) = v(T )−1/2
∑

λi∈[T−ρ(T ),T ]

aiϕi(x), (1.2)

where ai are centred unit variance i.i.d. random variables, Gaussian or non-Gaussian, T →
∞ is the spectral parameter, and the summation is over the energy window [T − ρ(T ), T ]
of width ρ = ρ(T ) ≥ 1. Observe that, since the set of the energies is discrete, in reality,
the spectral parameter T is also discrete. The convenience pre-factor

v(T ) :=
(2π)n

ω(n) · Vol(M)
ρ(T )T n−1 = cMρ(T )T n−1, (1.3)

with ωn = πn/2

Γ(n/2+1)
being the volume of the unit ball in Rn, is introduced to ensure that

fT (x) is of asymptotic unit variance as T → ∞ at each x ∈ M , and has no impact on
the nodal structure of fT (·). Regardless of whether or not fT (·) in (1.2) is Gaussian, its
covariance kernel is the function KT : M ×M → R given by

KT (x, y) := E[fT (x) · fT (y)] =
1

v(T )

∑
λi∈[T−ρ(T ),T ]

ϕi(x) · ϕi(y), (1.4)

coinciding with the spectral projector in L2(M) onto the subspace spanned by the eigen-
functions {ϕi}λi∈[T−ρ,T ] (recall that ai are unit variance).

In what follows, we will focus on the most interesting (and, in some aspects, most
difficult) monochromatic regime 1 ≤ ρ(T ) = oT→∞(T ). In this case, it is well-known that,
under suitable assumptions on M and on ρ (explicated below), the covariance (1.4), after
scaling the variables by T , is asymptotic to (1.1), around (almost) every reference point x,
in the following sense. Let expx : TxM → M be the exponential map, that is a bijection
between a ball B(r) ⊆ Rn centered at 0 ∈ Rn and some neighborhood in M of x, with
r > 0 depending only on M , independent of x ∈ M . Then we have

KT (expx(y/T ), expx(y
′/T )) −→

T→∞
K∞(y, y′), (1.5)

uniformly for ∥y′∥, ∥y∥ ≤ 1, with K∞(·, ·) as in (1.1), with the convergence (1.5) holding
together with an arbitrary number of derivatives [16, 17, 51]. The convergence (1.5) hints
that one would expect, in the high energy limit, the nodal volume distribution of fT in
(1.2) to exhibit some aspects of universality.

For the linear combinations (1.2) of Laplace eigenfunctions on real analytic M , the
deterministic upper bound analogue

V(fT ) ≤ CM · T (1.6)

of Yau’s conjecture remains valid, thanks to the work of Jerison-Lebeau [41, Section 14],
see also the work of Lin [35]. The principal results of this manuscript determine the
precise asymptotic growth, in the high energy limit, in the monochromatic regime, of the
expected nodal volume of monochromatic random band-limited functions on generic real
analytic manifolds with no boundary, under the mere assumption that the ai have finite
third moment.
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1.2. Statement of a principal result. Let the dimensional constant

cn :=

(
1

πn

)1/2 Γ
(
n+1
2

)
Γ
(
n
2

) , (1.7)

n ≥ 2, and the exponent

ϑn :=

{
−n2+4n+1
2(n+1)

2 ≤ n ≤ 4

0 n ≥ 5
, (1.8)

i.e. ϑ2 =
5
6
, ϑ3 =

1
2
, ϑ4 =

1
10
, and ϑn = 0 for n ≥ 5.

Theorem 1.1. Let n ≥ 2, (M, g) be a real analytic compact n-manifold with empty
boundary. Suppose that ai are i.i.d. random variables so that

E
[
|ai|3

]
< +∞,

and let fT (·) be the band-limited functions (1.2) with

ρ(T ) = ρn(T ) = T ϑn(log T )2. (1.9)

Then one has
E[V(fT )] = cnVol(M) · T + oT→∞(T ),

with cn given by (1.7).

Although Theorem 1.1 gives some explicit power saving on the monochromatic bound
ρ(T ) = o(T ), one wishes to take ρ as small as possible in order to resemble a single
eigenfunctions to the highest extent. We are able to address this question in dimension
n ≥ 5 under some (likely redundant) geometric assumption on M , as we will describe in
the next section.

1.3. Constant energy windows in high dimensions. The following definition is use-
ful, as we will need to further restrict the class of manifolds, to allow to decrease the
energy window to constant width.

Definition 1.2. Let (M, g) be a smooth compact manifold with empty boundary, S∗M
the cotangent sphere bundle on M , and Gt : S∗M → S∗M the geodesic flow on M .

(1) The set of loop directions based at x is

Lx = {ξ ∈ S∗
xM : ∃t > 0. expx(tξ) = x}.

(2) The set of closed geodesics based at x is

CLx = {ξ ∈ S∗
xM : ∃t > 0. Gt(x, ξ) = (x, ξ)}.

(3) A point x ∈ M is self-focal, if |Lx| > 0, where | · | is the natural measure on S∗
x

induced by the metric gx(·, ·).
(4) The geodesic flow on M is periodic, if the set of its closed geodesics is of full

Liouville measure in S∗M . The geodesic flow on M is aperiodic if the set of its
periodic closed geodesics is of Liouville measure 0.

We observe that for M real analytic, the set of its periodic geodesics is of either full or
0 Liouville measure in S∗M (see either [51, Lemma 1.3.8] or Lemma 8.3 below). Hence,
in the real analytic case, the geodesic flow on M is either periodic or aperiodic.
The following principal result prescribes the precise asymptotic law, as T → ∞, of the
expected nodal volume for random band-limited functions with energy window of constant
width, for “generic” manifolds of dimension n ≥ 5.
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Theorem 1.3. Let n ≥ 5, and (M, g) be a real analytic compact n-manifold with empty
boundary, so that either the geodesic flow on M is periodic, or the geodesic flow on M is
aperiodic and the set of self-focal points of M is of measure 0. There exists a sufficiently
large constant ρ0 = ρ0(M, g) ≥ 1 such that the following holds. Suppose that ai are i.i.d.
random variables so that

E
[
|ai|3

]
< +∞,

and let fT (·) be the band-limited functions (1.2) with ρ(T ) ≡ ρ0. Then one has

E[V(fT )] = cnVol(M) · T + oT→∞(T ),

with cn given by (1.7).

As we were circulating this manuscript, we were informed by S. Zelditch that, as part
of a work in progress, he proved that the set of self-focal points of every real analytic
manifold with empty boundary, whose geodesic flow is aperiodic, is of measure 0. That
means that the assumptions of Theorem 1.1 imply the assumptions of Theorem 1.3, hence,
for n ≥ 5, the energy window in (1.9) could be made of constant width ρ ≡ ρ0.

The principal results of this manuscript, Theorem 1.1 and Theorem 1.3, stated for a
particular ρ = ρ(T ), remain valid, along with all our arguments, when ρ grows faster (but
not slower) than as explicitly stated, so long as it obeys the monochromatic condition
ρ(T ) = o(T ). For example, under the scenario of Theorem 1.3, ρ is allowed to grow
arbitrarily slowly, as long as ρ(T ) = o(T ). For the non-monochromatic regime

ρ ∼
T→∞

α · T,

with some α ∈ (0, 1], not pursued within this manuscript, our proofs show that the
statement of Theorem 1.1 holds, except that the limit random field is different, resulting
in a different, but explicit, constant depending on α.

It is plausible that the 3rd moment assumption E [|ai|3] < +∞, in Theorem 1.1 and
Theorem 1.3, could be weakened, possibly to E [|ai|2+ε] < +∞ or even to E [|ai|2] < +∞.
Indeed, the finiteness of the third moment of the ai is used exclusively for applying the
Berry-Esseen theorem on fT in Lemma 6.5. It is conceivable that the assumptions of
Lemma 6.5 could be weakened, by a more careful study of the characteristic function of
fT , leading to the said refinement. However, it was decided to keep the statements of
the principal results in their present form, for the sake of brevity of the arguments, and
better readability of the manuscript.

1.4. Doubling index. We wish to spend a couple of paragraphs on the doubling index,
a novel aspect of the proofs of the main results. The local universality suggested by the
convergence of the covariance function in (1.5) does not give sufficient local information
on the distribution of the nodal volume of the band-limited functions. This is due to the
(possible) concentration of nodal volume: Small probability events contributing positively
to the expectation of the nodal volume. In order to control such events, the (local) nodal
volume can be further analyzed by studying the doubling index, a local measure of the
growth of eigenfunctions [21, 35, 36, 37]:

NfT (x) := log
supBg(x,2/T ) |fT |
supBg(x,1/T ) |fT |

,

where Bg(x, r) is the geodesic ball centered at x ∈ M of radius r > 0.



NON-GAUSSIAN RANDOM BAND-LIMITED FUNCTIONS 5

The study of the distribution of the doubling index, as a function of x ∈ M , is a key
tool in understanding the zero set of Laplace eigenfunctions. In particular, Donnelly and
Fefferman demonstrated that N (·) is bounded for “most” x ∈ M [21], and used this result
to deduce a lower bound in Yau’s conjecture. Upper bounds on large values of N (·) have
also been used to derive a lower bound in the smooth case by Logunov [37]. In this paper,
we focus on the distribution of the doubling index for random band-limited functions.
One important result, instrumental for the rest of the paper, is proving that, for random
functions, with high probability, large values of the doubling index are very rare, beyond
the deterministic results of Donnelly and Fefferman, see section 6 for more details.

Some conventions. We write A ≲ B to designate the existence of some constant C > 0
such that A ≤ CB; if C depends on some auxiliary parameter β, then in this case we write
A ≲β B. If A ≲ B and B ≲ A, then we write A ≍ B. We also write C, c > 0 for constants
whose value may change from line to line. Further, for two functions A,B : R → R, we
will use the asymptotic notation A = o(B) if A(t)/B(t) → 0 as t → ∞, in particular o(1)
denotes a function tending to zero. Every constant implied in the notation may depend
on (M, g), that will be suppressed.

The notation B(x, r) and Bg(·) will stand for the (Euclidean) ball centered at x of radius
r > 0, and the geodesic ball on M respectively, and the shorthand B0 = B(0, 1) ⊆ Rn will
be employed. Given a ball B, Euclidean or geodesic, and some number r > 0, its closure
is B, whereas rB will stand for the concentric ball of r-times the radius.

We use the multi-index notation Dα = ∂α1
x1
...∂α2

x2
where α = (α1, ..., αn) and |α| =

α1 + ...+ αn. Furthermore, given a (C3) function g : B(x, r) → R and some r > 0, we let

V(g,B(x, r)) = Hn−1{x ∈ B(x, r) : g(x) = 0}
be the nodal volume of g in B(x, r). Finally, we denote by (Ω,P) the abstract probability
space where every random object is defined, by E[·] the expectation with respect to dP,
and by

dσ :=
dVol

Vol(M)
⊗ dP

the (normalized) probability measure on the space M × Ω.

Acknowledgements. This work started in collaboration with Z. Kabluchko, who was
a coauthor of the first incarnation of this manuscript, and from whom, in particular,
we have learned some of the applied techniques, for which we are indebted to him. To
our surprise, unfortunately he refused to be a coauthor of the present version of this
paper. We would also like to thank S. Zelditch for numerous useful discussions, and,
in particular, for sharing with us his unpublished results on self-focal points on analytic
manifolds, demonstrating that the class of real analytic manifolds, to which Theorem 1.3
applies, is unrestricted. In addition, we are grateful to the anonymous referees for helping
us improve the readability of this paper. A. Sartori was supported by the Engineering and
Physical Sciences Research Council [EP/L015234/1], ISF Grant 1903/18 and the IBSF
Start up Grant no. 2018341.

2. Outline of the proofs of the main results

2.1. Reconstructing the total nodal length from local patches. The starting point
of the proofs is the following observation: Since the nodal volume is a local quantity, i.e.,
it is additive w.r.t. (disjoint) subsets of M , one may asymptotically reconstruct it based
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on averaging the local nodal volume of fT restricted to small balls w.r.t. their centres.
That is,

V(fT ) = T (1 + o(1))

∫
M

V(Fx)dVolg(x), (2.1)

where Fx is a scaled local version

Fx,T (y) = Fx(y) = fT (expx(y/T ))

of fT in the vicinity of x ∈ M , defined on the unit Euclidean ball y ∈ B0(1). Thus, in
order to evaluate V(f), it is sufficient to understand the nodal volume V(Fx) on average
w.r.t. x ∈ M .

With this notion in mind, rather than working with fT as a random field defined on a
probability space Ω (where the random variables ai are defined), we may think of Fx(·)
as a random field indexed by B0(1), defined on the probability space M × Ω. Thus,
the local nodal volume V(Fx) is, in this sense, a random variable on the product space

M × Ω, w.r.t. the normalized probability measure dVolg
Vol(M)

⊗ dP. In light of the above, to

use the observation (2.1), the proofs of Theorem 1.1 and Theorem 1.3 will borrow from
two important preliminary steps: Local asymptotic Gaussianity of fT in Proposition 4.1
(regarding the growing energy windows case) and Proposition 9.1 (regarding the constant
energy windows case), and an anti-concentration estimate for V(Fx) in Proposition 6.1.
We now explicate the meaning of these preliminary steps, and give a sketch of their proofs.

2.2. Asymptotic Gaussianity. Since, under the assumptions on ρ, of either Theorem
1.1 or Theorem 1.3, the number of the summands within (1.2) is growing, and the ai are
i.i.d., the scaled version Fx,T of fT should asymptotically behave like a Gaussian random
field, with correlations given by (1.1). It will be rigorously proved for either the growing
window regime as in Theorem 1.1, or the constant width regime ρ ≡ ρ0, though for the
former case, our arguments are significantly simplified.

Let us first explain the proof under the assumptions of Theorem 1.1. In this case, the
asymptotic behavior of the correlation function of Fx,T , postulated in (1.5), is given by
the local Weyl’s law of Hörmander, see section 4.2 below. It also follows that all the
summands in (1.2) have size o(v(T )). Therefore, an application of Linderberg’s Central
Limit theorem, together with the Continuous Mapping Theorem, imply

V(Fx)
d−→ V(Fµ) T → ∞

where the convergence is in distribution uniformly w.r.t. x ∈ M (that is, for all continuous
and bounded functions h : R → R, E[h(V(Fx))] → E[h(V(Fµ))] uniformly for all x ∈ M).
This is the content of Proposition 4.1 below. Thus, in this case, for the asymptotic
Gaussianity, there is no need to make use of the extra averaging with respect to x ∈ M
(but this will be required for the rest of the proof). Due to such a simplification, we will
present the proof of Proposition 4.1 first, in Section 4, so that the probabilistic arguments
are easier to describe and can be separated from the more precise microlocal analysis
techniques required in the constant energy window case, which we are going to discuss
next.

In the case of constant energy windows ρ ≡ ρ0, there are at least two obstacles to the
described approach:
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(i) Around some “bad” points x ∈ M , the asymptotic behavior of the covariance kernel
of Fx may not coincide with (1.1).

(ii) Around some other “bad” points, some of the summands in (1.2) could be as large,
by order of magnitude, as v(T )1/2, occurring in reality, for example, on the sphere.
Around these points the Central Limit Theorem is not applicable.

To overcome obstacle (i), the spectral projector operator

L2(M) → Sp{ϕi}λi∈[T−ρ,T ]

is carefully studied in section 8. We show that, under the assumptions of Theorem 1.3 on
the self-focal points of M , the asymptotics (1.5) holds outside1 a set of points x ∈ M of
small measure. Sogge’s bound [54] is used to prove that all the summands in (1.2) are of
size o(v(T )1/2), for x outside of another set of small measure, though crucially depending
on T . Since, other than the vanishing measure of the bad sets no other useful property of
the family of bad sets is established (it would be useful if, for example, this family would
be monotone decreasing with T growing), the Central Limit Theorem is not applicable
with any fixed x ∈ M .

Instead, a “triangular” version of the Central Limit Theorem, allowing for the random
variables to depend on a parameter, is applied, with x varying with T ; as it was explained
above, the elegant way to express the outcome of its application as a single consolidated
result is by thinking of x random uniform on the good set, and, a forteriori, using the
asymptotic vanishing of the excised set, for x random uniform on M . Hence the conver-
gence of Fx(·) to the limit monochromatic random field is as a random field w.r.t. the

probability measure dVolg
Vol(M)

⊗ dP on M × Ω (and the convergence of Fx(·) w.r.t. dP on Ω

is not asserted for any given x ∈ M).

To the best of our knowledge, this aspect of our proofs, inspired by the de-randomization
techniques [12, 15], is novel in the context of the study of the geometry of random fields,
different from the rest of the literature on the subject, where the Central Limit Theorem is
normally applied for every x ∈ M fixed. The convergence, in distribution, of the random
variables V(Fx), also w.r.t. the probability measure dVolg

Vol(M)
⊗ dP on M × Ω, to V(Fµ),

follows directly from the convergence of the random fields Fx to the limit random field
Fµ, via the Continuous Mapping Theorem. This is the content of Proposition 9.1.

2.3. Anti-concentration. Since the outcome of Proposition 4.1 and Proposition 9.1 are
valid outside a set of small probability (and outside a set of x ∈ M of small volume), it is
essential to demonstrate that the contribution of the exceptional set to (2.1) is negligible.
In other words, we need to show that it is unlikely that a large proportion of the nodal
set concentrate in small portion of space, hence the term “anti-concentration”. This is
precisely the purpose of the anti-concentration Proposition 6.1, whose proofs will be now
discussed.

The required anti-concentration result is the existence of some function h : R>0 → R>0,
so that

h(t)

t
→ ∞,

1As a by-product of our analysis, it will follow that, around every “good” point in the complement of
the “bad”, there is a 1/T -neighbourhood, where (1.5) is satisfied, with no quantitative error term, see
Proposition 8.2
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and that satisfies the estimate∫
M

E[h(V(Fx))]dVolg(x) < C, (2.2)

for some constant C = C(M, g) > 1, independent of T .
In Proposition 6.1 we will show that (2.2) holds true with h(t) = t · log t provided that

the energy window satisfies

ρ = ρ(T ) ≥

{
T ϑn(log T )2 2 ≤ n ≤ 4

ρ0 n ≥ 5
,

with ϑn given by (1.8).

Following the approach of Donnelly-Fefferman [21], Lin [35] and Jerison-Lebeau [41,
Section 14], the nodal volume of f(·) = fT (·) can be controlled via the doubling index (of
the “harmonic lift” of f). The doubling index is defined for any function

h : 3B = B(x, 3r) ⊆ M → R
as

Nh(x, r) = Nh(B) = log
sup2B |h|
supB |h|

.

In section 5, we will show, appealing to the analyticity of M , that the nodal volume of f
in a ball of radius r > 0 can be bounded as

V(f,Br) ≲ rn−1NfH (B̃8r) = rn−1N (B̃8r),

where fH is the harmonic lift of f to the manifold M × R (at this stage it is instructive,
although slightly imprecise, to think of the harmonic lift as fH(x, t) = f(x) · exp(T · t)),
and B̃8r is the “ball”

B̃8r = B8r × [−8r, 8r].

The well-known bounds on the growth rate of eigenfunctions as in [21], give

NfH ((x, 0), c) =: N (x, c) ≲ T,

for some constant c = c(M, g) > 0. The monotonicity of the doubling index (w.r.t. the
radius r > 0) for harmonic function [35] implies

N (x, 8/T ) ≲ N (x, c) ≲ T.

Thus, the statement (2.2) of Proposition 6.1 is equivalent, in essence, to an estimate of
the type

(Vol⊗P) ({(x, ω) : V(Fx) > H}) ≤ 1

H(logH)2+ε
, (2.3)

for all 1 < H ≲ T . The asymptotic estimate (2.1), together with the global bound
V(fT ) ≲ T , give

Vol (x ∈ M : V(Fx) > H) ≲ H−1.

Therefore, the aspired bound (2.3), holding with high probability w.r.t. the product space,
is a logarithmic gain only over a bound holding deterministically for every band-limited
function. This is the most delicate, and, to our best knowledge, novel, aspect of the proof
of Proposition 6.1, described immediately below.

As discussed above, a large value of V(Fx) also implies a large value of the doubling index
on B̃ = B(x, 8/T )× [−8/T, 8/T ], which, in turn, may only happen if either the function
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has a large value on 2B̃, or has a small value on B̃, roughly speaking. The former case can
be dealt with via the second moment method. On the other hand, controlling the small
values of f (or, rather, of fH) is more delicate. Quantifying the Gaussian convergence
obtained in Section 4, it is possible to control the probability of f(x) being of “small”
depending on the L3-norm (cubed) of the eigenfunctions. After some computations, this
leads to the bound

sup
x∈M

P(N (x, 8/T ) > H) ≲ exp(−H) + sup
λi∈[T−ρ,T ]

||ϕi||3L3v(T )−1/2. (2.4)

Therefore, in order to obtain (2.3), it would be sufficient to control the second term on
the r.h.s. of (2.4). Unfortunately, appealing to Sogge’s bound [54] turns out to be not
quite sufficient to yield Proposition 6.1. Thus, we will use one last “trick” and, by using
the Gaussian convergence at various scales and the monotonicity of the doubling index,
we will show that

P(sup
x

N (x, 3/T ) ≤ T 1−c) ≥ 1 +O((log T )−1),

for some constant c = c(n) > 0. This will reduce the range of H in (2.3) and thus the
bound (2.4) will suffice to prove Propostion 6.1, in the appropriate range of ρ specified
above. This concludes the sketch of the proofs.

3. Discussion

3.1. Survey of non-Gaussian literature. To our best knowledge, the results presented
within this manuscript are the first universality results applicable in the asserted vastly
general scenario, in terms of both the underlying manifold M and the random coefficients
{ai}. Our approach is based on a blend of microlocal analytic techniques, missing from
the existing non-Gaussian literature, and purely probabilistic methods. The closest ana-
logue to Theorem 1.1 (and Theorem 1.3) we are aware of in the existing literature is [2],
dealing with 2d random non-Gaussian trigonometric polynomials: These are related to
the random band-limited Laplace eigenfunctions on the standard 2d torus, corresponding
to the long energy window ρ(T ) = T (here, the energies ordering is somewhat different,
to allow for separation of variables). The asymptotics for the expected nodal length was
asserted for centred unit variance random variables, in perfect harmony to Theorem 1.1
(though with a different leading constant, a by-product of a non-monochromatic scaling
limit).

Even though we didn’t meticulously validate all the details, we believe that their argu-
ments translate verbatim for the “pure” 2d toral Laplace eigenfunctions

gm(x) =
∑
µ∈Z2

∥µ∥2=m

aµ · e(⟨µ, x⟩), (3.1)

where the aµ are i.i.d., save for the relation a−µ = aµ making gm real-valued, and the
summation on the r.h.s. of (3.1) is w.r.t. to all standard lattice points lying on the radius-√
m centred circle. In the Gaussian context the gm are usually referred to as “arithmetic

random waves” (ARW), see e.g. [31, 46, 50]; they are the band-limited functions for
the standard flat torus corresponding to the “very short energy window” ρ(T ) ≡ 1 (in
fact, in this case, the energy window width could be made infinitesimal). Other than the
result for 2d random trigonometric polynomials all the literature concerning real zeros
of non-Gaussian ensembles is 1-dimensional in essence: real zeros of random algebraic
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polynomials or Taylor series, see e.g. [29, 30, 45] and the references therein, random
trigonometric polynomials on the circle [4], and the restrictions of 2d random toral Laplace
eigenfunctions (3.1) to a smooth curve [19].

3.2. Gaussian vs. non-Gaussian monochromatic functions: cases of study. Un-
like the non-Gaussian state of art concerning the zeros of the band-limited functions,
the Gaussian literature is vast and rapidly expanding, thanks to the powerful Kac-Rice
method tailored to this case, at times, combined with the Wiener chaos expansion. Here
the literature varies from the very precise and detailed results concerning the zero volume
distribution (its expectation, variance and limit law), restricted to some particularly im-
portant ensembles, such as random spherical harmonics [40, 56] or the arithmetic random
waves [31, 39], to somewhat less detailed results, but of far more general nature [18, 59],
to almost sure asymptotic result [26] w.r.t. a randomly independently drawn sequence of
functions {fT}T .

It is plausible, if not likely, that, under a slightly more restrictive assumptions on the
random variables, our techniques yield a power saving upper bound for the nodal length
variance of the type

Var

(
fT
T

)
= O

(
T−δ

)
for some δ > 0, but certainly not a precise asymptotic law for the variance, even for the
particular cases of non-Gaussian random spherical harmonics or the non-Gaussian Arith-
metic Random Waves. In the Gaussian case even some important non-local properties of
the nodal set were addressed: the expected number of nodal components [42, 43], their
fluctuations [5, 44], their fine topology and geometry, and their relative position [6, 53].

The aforementioned random ensemble of Gaussian spherical harmonics is the sequence
of functions fℓ : S2 → R, ℓ ≥ 1, where

fℓ(x) =
1√

2ℓ+ 1

ℓ∑
m=−ℓ

aℓ,mYℓ,m(x),

with {Yℓ,m}−ℓ≤m≤ℓ the standard basis of degree-ℓ spherical harmonics, and aℓ,m i.i.d.
standard Gaussian random variables. An application of the Kac-Rice formula yields [7]
the expected nodal length of fℓ(·) to be given precisely by

E[V(fℓ)] =
√
2π ·

√
ℓ(ℓ+ 1) ∼

√
2πℓ,

whereas a significantly heavier machinery, also appealing to the Kac-Rice method, yields
[56] a precise asymptotic law

Var(V(fℓ)) ∼
ℓ→∞

1

32
log ℓ,

smaller than what would have been thought the natural scaling ≈ c · ℓ would be (“Berry’s
cancellation phenomenon”).

In light of the non-universality result of [4], it is not unlikely that in the non-Gaussian
case (i.e. the aℓ,m are centred unit variance i.i.d. random variable), the variance satisfies
the 2-term asymptotics

Var(V(fℓ)) = c1 · ℓ+ c2 · log ℓ+O(1),

with c1, c2 depending on the law of aℓ,m and c1 vanishing for a peculiar family of distri-
butions, including the Gaussian one. It seems less likely, though conceivable, that c1 ≡ 0.
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For the 2d Gaussian arithmetic random waves (3.1), it was found that the expected
nodal length is given precisely by E[V(gm)] = π√

2
·
√
m, whereas the variance is asymptotic

to

Var(V(gm)) ∼ 4π2bm · m

r2(m)2
,

where r2(m) is the number of summands in (3.1). Here the numbers bm are genuinely
fluctuating in [1/512, 1/256], depending on the angular distribution of the lattice points
in the summation on the r.h.s. of (3.1), and the leading term corresponding to m

r2(m)

“miraculously” cancelling out precisely (“arithmetic Berry’s cancellation”).
Using the same reasoning as for the spherical harmonics, for the non-Gaussian case

(i.e. aµ are centred unit variance i.i.d. random variables), it is expected that the 2-term
asymptotics

Var(V(gm)) ∼ c̃1
m

r2(m)
+ c̃2

m

r2(m)2

holds with c̃1, c̃2 possibly depending on both the law of aµ and the angular distribution
of the lattice points {µ} in (3.1), with c̃1 vanishing for aµ a peculiar class of distribution
laws, including the Gaussian (whence c̃1 vanishes independent of the angular distribution
of the lattice points {µ}). The dependence of c̃1 and c̃2 on both the distribution law of
aµ and the angular distribution of {µ} is of interest, in particular, whether the vanishing
of c̃1 depends on the angular distribution of {µ} at all (which is not the case if aµ is
Gaussian). Again, it is conceivable that c̃1 ≡ 0. We leave all of the above questions to be
addressed elsewhere.

4. Asymptotics Gaussianity

The aim of this section is to show that nodal length of fT , as in (1.2), has a universal
limit law, in balls of radius ≍ T−1. In order to state this result precisely we need to
introduce some notation that will be used throughout the rest of the article.

4.1. Notation and goal of section 4. First, we will define the re-scaled version of fT ,
as in (1.2), in geodesic balls of radius T−1. Let x ∈ M and let Fx be fT rescaled to the
ball Bg(x, 1/T ) in normal coordinates. More precisely, we define:

FT,x(y) = Fx(y) = f(expx(y/T )) (4.1)

for y ∈ B(0, 1) =: B0 ⊆ Rn, where expx : Rn ∼= TxM → M is the exponential map.
Notice that, in the definition of the exponential map, we have tacitly identified Rn with
TxM , via an Euclidean isometry. Moreover, we observe that, since (M, g) is analytic,
the injectivity radius of M is uniformly bounded from below [20], thus, from now on, we
assume that 1/T is smaller than the injectivity radius so that the exponential map is a
diffeomorphism. Furthermore, thanks to [43, Section 8.1.2] due to Nazarov and Sodin
(see also [49, Section 2]), the map:

(x, ω) ∈ M × Ω → Fx(ω, ·) ∈ C∞(B0)

is measurable.

We now define the universal scaling limit for the nodal length of Fx. We denote Fµ to
be the monochromatic isotropic Gaussian field on B0 ⊆ Rn with spectral measure µ, the
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(normalised) Lebesgue measure on the n − 1 dimensional sphere Sn−1. Equivalently, Fµ

has the covariance function

E[Fµ(y) · Fµ(y
′)] =

∫
|ξ|=1

exp (i⟨y − y′, ξ⟩) dµ(ξ) = (2π)Λ
JΛ(|y − y′|)
|y − y′|Λ

, (4.2)

with Λ = (n − 2)/2, and where JΛ(·) is the usual Bessel J function of order Λ. In what
follows we will use the shorthands

V(Fx) := V
(
Fx,

1

2
B0

)
and V(Fµ) := V

(
Fµ,

1

2
B0

)
.

The aim of this section is to prove the following proposition:

Proposition 4.1. Let Fx be as in (4.1), Fµ be as above. Then, under the assumptions of
Theorem 1.1 on the energy window width ρ = ρ(T ), uniformly for all x ∈ M , we have

V(Fx)
d−→ V(Fµ) T → ∞

convergence in distribution.

Observe that in Proposition 4.1, the convergence to the Gaussian random field is claimed
for fixed x ∈ M , stronger than the average statement w.r.t. x ∈ M , required for the proof
of Theorem 1.1 (cf. Proposition 9.1 that is used for the proof of Theorem 1.3). This is
where the growing energy window assumption of Theorem 1.1 is also used. In particular,
Proposition 4.1 implies that

V(Fx)
d−→ V(Fµ) T → ∞ (4.3)

converges in distribution as a random variable on (M × Ω, dσ), where

dσ = (Volg(M))−1dVolg ⊗dP
(cf. Proposition 9.1).

Remark 4.2. The proof of Proposition 4.1 holds verbatim under the much weaker assump-
tion that the energy window ρ(T ) → ∞ as T → ∞. The full strength of the assumptions
of Theorem 1.1 will be needed only in Section 6 below. Nevertheless, we prefer to state
the assumptions of Proposition 4.1 in the precise form it will be used.

4.2. Hörmander’s local Weyl’s law. In order to study Fx as in (4.1), we will need the
well-known local Weyl’s law of Hörmander [28, Theorem 4.4], which we do not present
in its full generality, but in a form convenient for our purposes. In particular, there are
no restrictions on the width of the spectral windows ρ in the following result (for ρ too
small, the error term dominates):

Proposition 4.3. Let (M, g) be a compact, real analytic manifold with empty boundary.
Let x ∈ M and consider a (sufficiently small) coordinate patch Ωx around x in normal
coordinates then

sup
y,y′∈Ωx

∣∣∣∣∣∣
∑

λi∈[T−ρ,T ]

ϕi(y)ϕi(y
′)− cMT nJΥ(T )(Tdg(y, y

′))

∣∣∣∣∣∣ = OM,g(T
n−1)

where dg(y, y
′) is the geodesic distance between y, y′, cM > 0 is given in (1.3), Υ(T ) = 1− ρ

T
and

JΥ(T )(w) =

∫
Υ(T )≤|ξ|≤1

exp(i⟨w, ξ⟩)dξ. (4.4)
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Moreover, we can also differentiate both sides of (8.1) an arbitrary finite number of times,
that is

sup
y,y′∈Ωx

∣∣∣∣∑λi∈[T−ρ,T ] D
α
yϕi(y)D

α′

y′ ϕi(y
′)−

cMTnDα
y D

α′
y′ JΥ(T )(Tdg(y,y′))

(2π)n

∣∣∣∣
T |α|+|α′| = OM,g,α(T

n−1)

where α, α′ are multi-indices, and ξα = (ξα1
1 , ..., ξαn

n ) and the derivatives are understood
after taking normal coordinates around the point x.

The following corollary will be quite useful later:

Corollary 4.4. Let (M, g) be a compact, real analytic manifold with empty boundary,
there exists some ρ0 = ρ0(M, g) such that for all ρ ≥ ρ0 the following holds. Let v(T ) be
as in (1.3), then ∑

λi∈[T−ρ,T ]

|ϕi(x)|2 ≍ v(T ),

where A ≍ B means that there exist two constant 0 < c < C, depending only on (M, g),
such that cA ≤ B ≤ CA.

Although ρ0 does not appear in the proof of Proposition 4.1 (and Theorem 1.1), the
value of ρ0 is fixed from now till the end of the article, for the results building up to
Theorem 1.3. As a direct consequence of Proposition 4.3 and a straightforward calculation,
we also have the following result:

Lemma 4.5. Let (M, g) be a real analytic compact manifold with empty boundary of
dimension n, let fT (·) be as in (1.2), ρ(T ) be the width of the energy window, and cM and
v(T ) as in (1.3). Then, under the assumption of Theorem 1.1 on the width of the spectral
window ρ(T ), we have

E
[
|fT (x)|2

]
=

1

v(T )

∑
λi∈[T−ρ,T ]

|ϕi(x)|2 = (1 + o(1)),

where the error term is uniform for all x ∈ M . Moreover, for Fx as in (4.1), we have

sup
x∈M

y,y′∈B0

∣∣∣∣E[Fx(y) · Fx(y
′)]− (2π)Λ

JΛ(|y − y′|)
|y − y′|Λ

∣∣∣∣→ 0 T → ∞

with Λ = (n−2)/2 and JΛ(·) the Λ-th Bessel function. Further, one can differentiate both
sides an arbitrary finite number of times, that is

E[DαFx(y) ·Dα′
Fx(y

′)] = (−1)|α
′|i|α|+|α′|

∫
|ξ|=1

ξα+α′
exp (i⟨y − y′, ξ⟩) dµ(ξ) + oT→∞(1),

valid uniformly for all x ∈ M, y, y′ ∈ B0, where α, α′ are fixed multi-indices, and ξα =
(ξα1

1 , ..., ξαn
n ).

Proof. By the first claim in Proposition 4.3 and the compactness of M , we have∑
λi∈[T−ρ,T ]

|ϕi(x)|2 = cMρ(T )T n−1 +O(T n−1),

where the error term is uniform for all x ∈ M . Thus, the first claim in Lemma 4.5 follows
by dividing both sides by v(T ). In order to see the second claim in Lemma 4.5, let us take
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y, y′ ∈ B0 with y ̸= y′ and let us rewrite the integral in (4.4) in the spherical coordinates,
and use the identity ∫

Sn−1

exp (i⟨u, ξ⟩) dµ(ξ) = (2π)Λ
JΛ(|u|)
|u|Λ

,

to obtain ∑
λi∈[T−ρ,T ]

ϕi(y
′)ϕi(y) = cMρ(T )T n−1

∫
|ξ|=1

exp(i⟨Tdg(y′, y), ξ⟩)dµ(ξ)

+O
(
ρ(T )T n−1dg(y

′, y)
)
+O(T n−1)

= cMρT n−1(2π)Λ
JΛ(|Tdg(y′, y)|)
|Tdg(y′, y)|Λ

+O
(
ρ(T )T n−2

)
+O(T n−1), (4.5)

where Λ = (n − 2)/2. Thus, the second claim in Lemma 4.5 follows by dividing both
sides of (4.5) by v(T ) and compactness of M . The third claim in Lemma 4.5 follows
by the second claim in Proposition 4.3 and similar computation to (4.5) (and again the
compactness of M). □

4.3. Convergence of finite-dimensional distributions. In this section we state and
prove the following lemma about the convergence of finite-dimensional distributions of Fx

to the finite-dimensional distributions of Fµ.

Lemma 4.6 (Convergence of finite-dimensional distributions). Let m be some positive
integer, B0 = B(0, 1), Fx be as in (4.1), Fµ be the random monochromatic wave as in (4.2).
Then, under the assumptions of Theorem 1.1 on ρ(T ), for every y1, ...ym ∈ B0 ⊆ Rn, we
have

(Fx(y1), ..., Fx(ym))
d−→ (Fµ(y1), ..., Fµ(ym)) T → ∞,

where the convergence is in distribution, uniformly for all x ∈ M . Moreover, for every
α = (α1, ..., αn), with |α| ≤ 2, one has

(DαFx(y1), ..., D
αFx(ym))

d−→ (DαFµ(y1), ..., D
αFµ(ym)) T → ∞.

In order to prove Lemma 4.6, we will need a simple (not sharp) bound on the maximum
value of an eigenfunction in terms of its eigenvalue.

Claim 4.7. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 2
and let ϕλ be a solution to the eigenvalue problem

∆gϕλ + λ2ϕλ = 0.

Then, we have

sup
x∈M

|ϕλ|2 ≲ λn−1 log λ,

and

sup
x∈M

λ−2α|Dαϕλ|2 ≲ λn−1 log λ,

for all multi indices |α| ≤ 2.
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Proof. Observe that, by the first part of Lemma 4.5, we have

sup
x∈M

|ϕλ|2 ≤
∑

λj∈[λ−log λ,λ]

|ϕj|2 = cM(log λ)λn−1 +O(λn−1)

and the bound on the supremum of ϕλ follows. The bound on the derivatives can be
obtained similarly using the second part of Lemma 4.5. □

We also recall, for the convenience of the reader, the following multi-dimensional version
of Lindeberg-CLT, see for example [24, Proposition 6.2] and [10, Theorem 27.2]:

Lemma 4.8 (CLT). Let d > 0 be a positive integer and let {Vn,k}n,k be a triangular array
of Rd-valued random variables, so that the random vectors lying on each of its rows are
independent and of zero mean. That is, for any n, k, Vn,k = (V i

n,k)
d
i=1 is a d-dimensional

random vector with zero mean, and for every n fixed and every k1 ̸= k2, the vectors Vn,k1

and Vn,k2 are independent. The random variables V i
n,k are normalized by setting

(sin)
2 =

∑
k

E[(V i
n,k)

2],

and

Ṽ i
n,k = (sin)

−1V i
n,k.

We make the following two assumptions:

(1) The covariance matrices

(Σn,k))ij = E[Ṽ i
n,kṼ

j
n,k]

of the k-th vector of {Ṽn,k}n,k satisfy

lim
n→∞

∑
k

Σn,k = Σ0,

for some positive definite d× d-positive matrix.
(2) One has

max
i=1,...,d

1

(sin)
2

∑
k

E
[
(Ṽ i

n,k)
21Ṽ i

n,k>εsin

]
→ 0, n → ∞,

for any positive ε > 0, where 1 is the indicator function.

Then, we have

Wn :=
∑
k

Ṽn,k
d−→ N(0,Σ0) n → ∞,

where the convergence is in distribution, and the rate of convergence depends on the rates
of convergence in (1) and (2) only. That is, for every h : Rd → R bounded continuous,

E[h(Wn)] → E[h(Z)],

where Z ∼ N(0,Σ0), with rate of convergence depending on h, and the rate of convergence
in (1) and (2).

We are now ready to prove Lemma 4.6.



NON-GAUSSIAN RANDOM BAND-LIMITED FUNCTIONS 16

Proof of Lemma 4.6. First, we need a piece of notation that we will use through the proof.
Let by ϕi,x the scaled restriction of ϕi to Bg(x, 4/T ) via the exponential map, that is

ϕi,x(y) = ϕi(expx(y/T )),

for y ∈ B(0, 4) (here we tacitly assume that T is sufficiently large so that 4/T is less than
the injectivity radius). Before embarking on the proof of Lemma 4.6, we also observe
that, by Claim 4.7, we have

max
λi∈[T−ρ,T ]

sup
x∈M

sup
B0

|ϕi|2 ≲ T n−1 log T. (4.6)

Similarly, given a multi-index |α| ≤ 2, we also have

max
λi∈[T−ρ,T ]

sup
x∈M

sup
B0

|Dαϕi,x|2 ≲ T n−1 log T. (4.7)

We are going to first consider the distribution of the vector (Fx(y1), ..., Fx(ym)) for
x ∈ M . Thanks to Lemma 4.5, we have

sup
i,j∈{1,...,m}

x∈M

|E[Fx(yi) · Fx(yj)]− E[Fµ(yi) · Fµ(yj)]| → 0 T → ∞ (4.8)

Therefore, by the multidimensional version of Lindeberg’s Central Limit Theorem (Lemma
4.8), and upon using (4.8), it suffices to prove that, for every ε > 0, we have

sup
y∈B0
x∈M

1

v(T )

∑
λi

E[|aiϕi,x(y)|21|aiϕi,x(y)|>εv(T )1/2 ] → 0 T → ∞, (4.9)

where 1 is the indicator function and v(T ) = cMρT n−1(1 + o(1)).

Now we prove (4.9). Thanks to Lemma 4.5, we have

1

v(T )

∑
λi

E[|aiϕi,x(y)|21|aiϕi,x(y)|>εv(T )1/2 ] =
1

v(T )

∑
λi

|ϕi,x(y)|2E[|ai|21|aiϕi,x(y)|>εv(T )1/2 ]

≲ sup
λi∈[T−ρ,T ]

E[|ai|21|aiϕi,x(y)|>εv(T )1/2 ].

Therefore, to prove (4.9), it is sufficient to show that

supE[|ai|21|aiϕi,x(y)|>εv(T )1/2 ] → 0 T → ∞, (4.10)

where the supremum is over all λi ∈ [T −ρ, T ], all y ∈ B0 and all x ∈ M . Thanks to (4.6)
and the fact that v(T ) ≳ T n−1(log T )2, we have

1|aiϕi,x(y)|>εv(T )1/2 ≤ 1|ai|≳ε log T ,

hence, since the ai are i.i.d. with common distribution a0 (say), we have

lim
T→∞

supE[|ai|21|aiϕi,x(y)|>εv(T )1/2 ] ≤ lim
M→∞

lim
T→∞

∫ M

ε log T

t2dP(|a0| > t) = 0,

where we used Fubini and E[|a0|2] = 1 to switch the order of the limits. This concludes
the proof of (4.10) and thus of (4.9).
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In order to prove the convergence of the derivative vector, and upon recalling the second
part of Proposition 4.3, again by the multidimensional version of Lindeberg’s Central
Limit Theorem, it is sufficient to prove that for any ε > 0 and |α| ≤ 2 we have

sup
1

v(T )

∑
λi

E[|aiDαϕi,x(y)|21|aiDαϕi,x(y)|>εv(T )1/2 ] → 0 T → ∞. (4.11)

Similarly to the above argument, (4.7) implies (4.11) if |α| ≤ 2, thus concluding the proof
of Lemma 4.6. □

4.4. Tightness. The aim of this section is to show that Lemma 4.6 implies that Fx

converges, as a random function, to Fµ. To formally state the results of this section, let
us first introduce some notation. Let V = B0 and let νT being the sequence of probability
measures on C2(V ) induced by the pushforward measure of Fx, (recall that, since the law
of fT is locally constant, we may assume that T varies along a sequence) that is, for an
open set H ⊆ C2(V ), we set

νT (H) := (Fx)∗P(H) = P(Fx(ω, ·) ∈ H). (4.12)

Lemma 4.6 says that there exists a subsequence Tk such that vTk
converges to ν∞, the

pushforward of Fµ onto C2(V ). Thus, to obtain the convergence of the whole sequence,
it is enough to show that the sequence vT is tight.

A sequence of probability measures {νk}∞k=0 on some topological space X is tight if for
every ϵ > 0, there exists a compact set K = K(ϵ) ⊆ X such that

νk(X\K) ≤ ϵ,

uniformly for all k ≥ 0. We will need the following lemma, borrowed from [47, Lemma
1], see also [11, Chapter 6 and 7], which characterises the tightness in the space of con-
tinuously twice differentiable functions:

Lemma 4.9 (Tightness). Let V be a compact subset of Rn, and {νk} a sequence of
probability measures on the space C2(V ) of continuously twice differentiable functions on
V . Then {νk} is tight if the following conditions hold:

(1) There exists some y ∈ V such that for every ε > 0 there exists K > 0 with

max
|α|≤2

νk(g ∈ C2(V ) : |Dαg(y)| > K) ≤ ε,

for all k ≥ 0.
(2) For every |α| ≤ 2 and ε > 0, we have

lim
δ→0

lim sup
k→∞

νk

(
g ∈ C2(V ) : sup

|y−y′|≤δ

|Dαg(y)−Dαg(y′)| > ε

)
= 0.

Lemma 4.10. Let V = B0, and let νT be as in (4.12). Then the sequence νT is tight.

Proof. For condition (1) of Lemma 4.9, we observe that Lemma 4.5 implies the bound

E
[
|DαFx(0)|2

]
≲ 1,

for |α| ≤ 2 and uniformly for all x ∈ M . Thus Chebyshev’s inequality yields

P (|DαFx(0)| > K) ≲ K−2,

and condition (1) follows by taking K = ϵ−1/2.
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To check condition (2) of Lemma 4.9, we note that, since Fx is almost surely analytic,
we have

sup
|y−y′|≤δ

|DαFx(y)−DαFx(y
′)| ≲ sup

B0

|∇DαFx|δ. (4.13)

Therefore it is sufficient to prove the following claim:

P(sup
B0

|∇DαFx| > K) ≲ K−2, (4.14)

uniformly for all x ∈ M . Indeed, as above, (4.14) together with (4.13) imply condition
(2) by choosing K = ϵδ−1.

We are now going to prove (4.14). By Sobolev embedding, there exists some t = t(n) >
1, sufficently large depending on n only, so that C3(B0) embeds in H t(B0), the Sobolev
space. Thus, using Lemma 4.5, uniformly for all x ∈ M we have

E
[
||Fx||2C3(B0)

]
≲n E

[
||Fx||2Ht(B0)

]
≲ 1, (4.15)

where the constant implied in the ‘≲’-notation is independent of T (and x ∈ M). Now,
inequality (4.15) together with Chebyshev’s inequality implies (4.14), and this concludes
the proof of Lemma 4.10. □

As mentioned above, combining Lemma 4.6 and Lemma 4.9, we proved the following
lemma, see for example [11, Theorem 7.1]:

Lemma 4.11. Let V = B0, vT be as in (4.12) and let ν∞ be the pushforward of Fµ on
C2(V ), where Fµ is as in (4.2). Then, under the assumptions of Theorem 1.1, νT weak⋆

converges to ν∞ in the space of probability measures on C2(V ).

4.5. Concluding the proof of Proposition 4.1. To conclude the proof of Proposition
4.1, we just need the following Lemma, see for example [48, Lemma 6.2], which shows that
V(·), that is the nodal volume, is a continuous map on the appropriate space of functions:

Lemma 4.12. Let B ⊆ Rn be a ball, define the (open) set

C2
∗(2B) = {h ∈ C2(2B) : |h|+ |∇h| > 0}.

Then V(·, B) is a continuous functional on C2
∗(2B).

We are now in the position to prove Proposition 4.1.

Proof of Proposition 4.1. An application of Bulinskaya’s lemma (see e.g. [43, Lemma 6]),
on Fµ restricted to V = B0 yields that Fµ ∈ C2

∗(V ) almost surely. Therefore, Lemma 4.11
and the Continuous Mapping Theorem [11, Theorem 2.7] imply

V(Fx)
d→ V(Fµ) T → ∞,

as required. □

5. Nodal volume and the doubling index

Having shown convergence in distribution of the random variable V(Fx) in Proposition
4.1, we wish to pass to the convergence of expectations. In order to do this, we will need
to show that the random variable V(Fx) is uniformly integrable. Unfortunately, we will
not be able to achieve this for fixed x ∈ M , averaging with respect to ω ∈ Ω. However,
we will be able to show (Proposition 6.1 below) that V(Fx) is uniformly integrable as a
random variable defined on M × Ω, that is averaging with respect to both x ∈ M and
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ω ∈ Ω. This will be enough for our purposes as Proposition 4.1 directly implies that
V(Fx) has a universal limit as a random variable defined on M × Ω.

In this section we collect some results that will allow us to control the nodal volume
of fT , (1.2), in terms the doubling index of the harmonic lift of fT , defined below. In
doing so, we follow the work of Jerison and Lebeau [41, Section 14] and Lin [35], see also
Kukavica [32, 33, 34] for a different approach. For the sake of the reader’s convenience,
most of the proofs are reproduced here. However, the proof of the Cauchy uniqueness
result (Lemma 5.7 below) is beyond the scope of this article and we refer the reader
directly to [41, Section 14].

5.1. Bounding the nodal volume of sums of eigenfunctions. For a start we intro-
duce a few notions. Following [21] and [37, 36], the doubling index of a function h : M → R
on a ball B = Bg(x, r) ⊆ M is defined as

Nh(B) = N (x, r) := log
sup2B |h|
supB |h|

. (5.1)

The harmonic lift of fT in (1.2) is defined [41, Page 231] (see also [35, Section 4]) as the
unique solution fH : M × R → R of

(∆ + ∂2
t )f

H(x, t) = 0 fH(x, 0) = 0 ∂tf
H(x, 0) = fT . (5.2)

One may express fH explicitly as

fH(x, t) = v−1/2(T )
∑

λi∈[T−ρ,T ]

ai
sinh(λit)

λi

ϕi(x), (5.3)

where ai and ϕi are as in (1.2), and v(T ) is as in (1.3). We also introduce the following
piece of notation that we will use throughout this section:

B̃(x, r) := Bg(x, r)× [−r, r] ⊆ M × R

will stand for the “ball” of radius r > 0 centered at a point x ∈ M ∼= M × {0}, and the
doubling index of fH on B̃ is defined via (5.1) as above, with B̃ in place of B. Finally,
we recall that for any s > 0,

sB̃ := Bg(x, sr)× [−sr, sr]

is the radius-sr ball centred at the same point as B.

The aim of this section is to prove the following result:

Proposition 5.1. Let fT and fH be as in (1.2) and (5.3) respectively. Then there exists
some η = η(M, g) > 0 with the following property: For every ball

B̃r := Bg(x, r)× [−r, r] ⊆ M × R,

centered at a point x ∈ M ∼= M × {0} of radius 0 < r < η/10, we have

V
(
fT , B̃r/2 ∩M

)
· r−n+1 ≲ N (fH , B̃8r),

where the constant implied in the ≲ notation depends only on (M, g).

Before embarking on the proof of Proposition 5.1, we will recall some standard proper-
ties of the doubling index, which will be used throughout the rest of the paper.
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5.2. Monotonicity of the doubling index and a few consequences. The funda-
mental property of the doubling index of an harmonic function, shown in [25], is that
N (·) is an almost monotonic function of the radial variable, in the sense that

N (·, r1)− C ≤ (1 + ε) · N (·, r2) + C

for r2 ≥ 2r1 and some C = C(M, g) ≥ 1. Formally, we have the following, see [36, Lemma
1.3]:

Lemma 5.2. Let (M̃, g) be a smooth manifold. For any 0 < ε < 1 and any point O ∈ M̃ ,
there exists some C = C(M̃, g, O, ε) > 0 and r0 = r0(M̃, g, O, ε) > 0 such that

tN (x,r)(1−ε)−C ≤
supBg(x,tr) |u|
supBg(x,r) |u|

≤ tN (x,tr)(1+ε)+C ,

uniformly for all harmonic functions u : M̃ → R, for all x ∈ M̃ , and numbers r > 0,
t > 2 satisfying Bg(x, tr) ⊆ B(O, r0).

We apply Lemma 5.2 in the following convenient settings. Fix ε = 1/2 and M̃ =
M × [−10, 10] in Lemma 5.2, covering M × [−10, 10] by balls of radius r0, and upon using
the compactness of M̃ , we obtain the following:

Corollary 5.3. Let fH : M × [−10, 10] → R be as in (5.2). There exists some C =
C(M, g) > 0, independent of fH , such that

tN (x,r)/2−C ≤
sup

B̃(x,tr)

|fH |

sup
B̃(x,r)

|fH |
≤ t2N (x,tr)+C ,

for all x ∈ M × [−10, 10], and numbers r > 0, t > 2 satisfying

Bg(x, tr)× [−tr, tr] ⊆ M × [−10, 10].

We conclude this section with a useful consequence of the monotonicity formula for the
doubling index:

Lemma 5.4. Let fH : M× [−10, 10] → R be as in (5.2). There exist constants C1, C2 ≥ 1
depending only on M, g, such that

sup
dg(x,y)≤r/8

N (y, r/4) ≤ C1 · N (x, r) + C2,

where y ∈ M ∼= M × {0}, uniformly for all x ∈ M × [−10, 10] with

B̃(x, 2r) ⊆ M × [−10, 10].

Proof. Since, in the relevant range, dg(x, y) ≤ r/8, and by Corollary 5.3 applied with
t = 8 (say), we have

sup
B̃(y,r/2)

∣∣fH
∣∣ ≤ sup

B̃(x,r)

∣∣fH
∣∣ ≤ 82N (x,r)+C sup

B̃(x,r/8)

∣∣fH
∣∣ ≤ exp (C1N (x, r) + C2) · sup

B̃(y,r/4)

∣∣fH
∣∣ ,

as required. □
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5.3. Complexification of f . Since (M, g) is real analytic and compact, by the Bruhat-
Whitney Theorem [55] there exists a complex manifold MC where M embeds as a totally
real manifold. Moreover, it is possible to analytically continue any Laplace eigenfunction
ϕi to a holomorphic function ϕC

i defined on a maximal uniform Grauert tube, that is there
exists some η0 = η0(M, g) > 0 such that ϕC

i is an holomorphic function on

MC
η0

:= {ζ ∈ MC :
√
γ(ζ) < η},

where
√
γ(·) is the Grauert tube function, see [60, Chapter 14] for details. For notational

brevity, and in light of the fact that the precise value of η0 will be unimportant, from now
on we write MC in place of MC

η0
, and let fC, defined on MC, be the complexification of f .

The nodal volume of f can be controlled via the order of growth of fC using the following
classical fact, borrowed from [41, Theorem 14.7] and [21, Proposition 6.7]:

Lemma 5.5. Let BC ⊆ Cn be a ball of radius 1, and let H be a holomorphic function on
3BC. If, for some N > 1,

|H|L∞(2BC) ≤ eN · |H|L∞(BC∩Rn),

then

Hn−1

(
{H = 0} ∩ 1

2
BC ∩ Rn

)
≲n N.

5.4. Growth of fH and fC. In this section we wish to quantify the growth of fC in
terms of the doubling index of fH . Our proof will proceed by using fH to control the
derivatives of f so that we can bound the growth of fC by bounding each term in its
power series. Unfortunately, this approach requires to introduce an extra (small) constant
c = c(M, g) > 0 in the next result in order to control the radius of convergence of the
power series. We will then get rid of this extra technicality in the proof of Proposition
5.1 via a covering argument. All in all, the aim of this section is to prove the following
result:

Lemma 5.6. There exists some (small) numbers η1 = η1(M, g) > 0 and c = c(M, g) > 0
such that the following holds. Let f be as in (1.2), fH be as in (5.2) and fC be the
complexification of f Moreover, let B̃ ⊆ M × R be a ball centred at a point lying on
M ∼= M × {0} of radius less than η1/10. Suppose that, for some (large) N > 1, one has

||fH ||L∞(B̃) ≤ eN · ||fH ||L∞( c
2
B̃). (5.4)

Then we have

||fC||L∞((2cB̃∩M)C) ≤ C ′eCN · ||f ||L∞(cB̃∩M),

for some constants C,C ′ > 1 depending on M, g only.

To prove Lemma 5.6, we first need the following result on the unique continuation of
fH , borrowed from [41, Page 231], see also [35, Lemma 4.3].

Lemma 5.7. Let x ∈ M , there exist constants r0 = r0(M, g, x) > 0, C0 = C0(M, g, x, r0) >
0 and 0 < β = β(M, g, x, r0) < 1 so that the following holds. Let fH be as in (5.2), then
one has ∥∥fH

∥∥
L∞(B̃+)

≤ C0

∥∥r · ∂tfH
∥∥β
L∞(2B̃∩M)

·
∥∥fH

∥∥1−β

L∞(2B̃+)
,
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uniformly w.r.t. balls B̃, of radius r > 0 and centered at a point lying in M ∼= M × {0}
such that

B̃ ⊆ Bg(x, r0/4)× [−r0/4, r0/4] ⊆ M × R,
where B̃+ = B̃ ∩ (M × [0,∞)).

Note that, although not explicated in [41], the constant β in Lemma 5.7 depends only
on particular coordinate patch around the point x ∈ M , provided this is sufficiently small.
Therefore, β is uniform with respect to all the balls contained in the said coordinate patch
and well-separated from the boundaries, as stated in Lemma 5.7. We refer the reader to
[1, Theorem 1.7], for the details (in a much more general scenario).

We are now ready to prove Lemma 5.6.

Proof of Lemma 5.6. First, given x ∈ M , let r0 = r0(M, g, x) be given by Lemma 5.7.
Covering M by balls of radius r0 and using the compactness of M , we find that there
exists some η1 > 0, depending only on M and g, such that the conclusion of Lemma 5.7
is applicable on every ball

Bg(x, η1/2)× [−η1/2, η1/2].

Moreover, we may assume that η1 ≤ η0/2, with η0 as constructed in section 5.3. Now
observe that, appealing to the compactness of M again, it is sufficient to prove Lemma
5.6, in every coordinate patch of radius η1. That is, it is sufficient to prove that, for every
x ∈ M , there exists some c > 0 and some C ′, C ≥ 1, depending on M, g, x, η1, such that,
if (5.4) is satisfied, then one has

||fC||L∞(2(cB̃∩M)C) ≤ C ′eCN · ||f ||L∞(cB̃∩M),

uniformly w.r.t. balls B̃, of radius r > 0 and centered at a point lying in M ∼= M × {0},
such that

4B̃ ⊆ Bg(x, η1/2)× [−η1/2, η1/2].

In what follows this claim is established.

Since the supremum norm is scale invariant, we may re-scale the metric and assume
that B̃ has radius r = 1. Since fH satisfies

(∂2
t +∆)fH = 0,

the elliptic estimates for the operator ∂2
t + ∆ (see for example [27, Lemma 7.5.1 and

equation (4.4.1)] or [23, Page 330]) imply that there exists some constants C1, C2 =
C1, C2(M, g, η1, x) such that, for any k > 0, one has∥∥fH

∥∥
Ck( 1

2
B̃)

≤ Ck
1k! ·

∥∥fH
∥∥
L2( 3

4
B̃)

≤ Ck
2k! ·

∥∥fH
∥∥
L∞(B̃)

.

Moreover, by the definition (5.2) of fH , for any multi-index α so that |α| = k, we have

sup
1
2
(B̃∩M)

|Dαf | ≤ 2 · ∥fH∥Ck(B̃).

Therefore, we obtain the bound

sup
1
2
(B̃∩M)

|Dαf |
|α|!

≤ 2Ck
2 ·
∥∥fH

∥∥
L∞(B̃)

. (5.5)

Now we are going to bound the r.h.s. of (5.5) using the assumed doubling property (5.4).
First, observe that, since sinh(·) is an odd function, we have∥∥fH

∥∥
L∞(B̃+)

=
∥∥fH

∥∥
L∞(B̃)

.
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Thus, using the assumption (5.4) on the doubling of fH (for some c > 0 to be chosen
later), the assumption r = 1, and the equality∥∥∂tfH

∥∥
L∞(r′B̃∩M)

= ∥f∥L∞(r′B̃∩M)

that follows from (5.2) for any r′ > 0, Lemma 5.7 implies∥∥fH
∥∥
L∞(B̃+)

=
∥∥fH

∥∥
L∞(B̃)

≤ eN ·
∥∥fH

∥∥
L∞( c

2
B̃)

= eN ·
∥∥fH

∥∥
L∞( c

2
B̃+)

≲M eC3N · ∥f∥β
L∞(cB̃∩M)

·
∥∥fH

∥∥1−β

L∞(cB+)
≤ eC3N · ∥f∥β

L∞(cB̃∩M)
·
∥∥fH

∥∥1−β

L∞(B̃+)
(5.6)

for some 0 < β = β(M, g, x, η1) < 1 and some C3 = C3(M, g, x, η1) > 1. Since fH is an
analytic function, we have ||fH ||L∞(B̃+) ̸= 0, thus (5.6) implies

||fH ||L∞(B̃+) ≲β eC4N · ∥f∥L∞(cB̃∩M), (5.7)

for some C4 = C4(β,M, g) > 1. Therefore, combining (5.5) and (5.7), we obtain

sup
1
2
(B̃∩M)

|Dαf |
|α|!

≲ eC5N+C6|α| sup
cB̃∩M

|f |, (5.8)

for some C5, C6 > 1 depending only on M, g, x, η1. Since f is real analytic, we may expand

fC(z) =
∑
α

Dαf(y)

|α|!
z|α|

into an absolutely convergent Taylor series in (2cB̃ ∩ M)C, for some sufficiently small
0 < c = c(M, g, x, η1) < 1/2. Then, (5.8) gives

sup
(2cB̃∩M)C

|fC| ≤ C7 exp(C8N) sup
cB̃∩M

|f |,

for some constants C7, C8 > 1 depending only on M, g, x, η1, as required. □

5.5. Concluding the proof of Proposition 5.1. We are finally in a position to prove
Proposition 5.1:

Proof. First, we take η = cmin{η0, η1, r0(M)}, where η0 is given at the beginning of
section 5.3, η1 is given by Lemma 5.6, and r0(M) is the injectivity radius of M and
c = c(M, g) > 0 is as in Lemma 5.6. Next, denote

B̃r = Bg(x, r)× [−r, r]

to be the ball as in the statement of Proposition 5.1 and let c1 = c1(M, g) = c/8 with
c = c(M, g) given as in Lemma 5.6. We cover the ball 1

2
B̃r by balls B̃i of radius c1r/2

and center xi so that

V
(
f, B̃r/2 ∩M

)
≲ max

i
V
(
f, B̃i ∩M

)
,

where the constant implied in the ≲ notation depends only on (M, g) . Now let f i
c1r

be a

version of f , rescaled by a factor of c1r in the ball B̃i, in the normal coordinates, that is

f i
c1r

= f(expxi(c1ry)),

for y ∈ B0 ⊂ Rn, where B0 is the unit ball. The scaling property of the nodal volume
gives

V
(
f, B̃i ∩M

)
≲ rn−1V

(
f i
c1r

,
1

2
B0

)
, (5.9)
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where the constant implied in the ≲ notation depends only on (M, g). Thus Lemma 5.5
and invariance of the L∞-norm w.r.t. scaling imply

V
(
f i
c1r

,
1

2
B0

)
≲ log

sup2(B0)C |(f
i)Cc1r|

supB0
|f i

c1r
|

≲ log
sup2(B̃i∩M)C |fC|
sup(B̃i∩M) |f |

, (5.10)

where fC is the complexification of f . Then, denoting N i = NfH (2c−1
1 B̃i) with fH as in

(5.2), Lemma 5.6, applied under the assumption r < η/10, and Corollary 5.3 yield:

log
sup2(B̃i∩M)C |fC|
sup(B̃i∩M) |f |

≲ log
supc−1B̃i |fH |
sup 1

2
B̃i

r
|fH |

≲ N i. (5.11)

Since B̃i have, by construction, radius cr/8, we find that

N i = N (xi, r/4) ≲ NfH (B̃8r),

where the second inequality follows from Lemma 5.4. Hence, the statement of Proposition
5.1 follows by combining (5.9), (5.10) and (5.11). □

5.6. Estimates for the local nodal volume. In this section we deduce a bound on
V(Fx) from Proposition 5.1. We begin with the following estimate, see [41, page 231]:

Lemma 5.8. Let fH be as in (5.2) and let B̃ ⊆ M × R be a ball, centered at some point
on M ∼= M ×{0}, of any radius less than η/10 where η is given by Proposition 5.1. Then

||fH ||L∞(2B̃) ≲ eCT ||fH ||L∞(B̃),

with some C = C(M, g) > 1.

Although we do not wish to reproduce the proof of Lemma 5.8 in full details, for the sake
of completeness, we quickly indicate how Lemma 5.8 follows from Lemma 5.7. Indeed,
applying Lemma 5.7 to B = M with L2-norm instead of L∞-norm (which is possible by
elliptic estimates), upon observing that ||fH ||L2(M×[−a,a]) ≍ exp(T )

∑
i |ϕi|2 for a = 1, 2,

we obtain

||fH ||L∞(2B̃) ≲ eCT ||fH ||L∞(B̃),

at macroscopic scales. Now, Lemma 5.8 follows by Corollary 5.3. As a direct consequence
of Lemma 5.8, we have the following bound:

Lemma 5.9. For Fx as in (4.1), one has

sup
x∈M

V(Fx) ≲ T.

Proof. Applying Proposition 5.1 on f as in (1.2) with

B̃ = Bg(x, 1/T )× (−1/T, 1/T )

(where we tacitly assume that T is sufficiently large so that 1/T ≤ η/80 with η as in
Proposition 5.1), we obtain

V
(
f,

1

2
B̃ ∩M

)
T n−1 ≲ NfH (8B̃).

Lemma 5.8 gives NfH (8B̃) ≲ T . Therefore, Lemma 5.9 follows upon noticing that the
definition (4.1) of Fx, being the scaled version of fT , implies that

V(Fx) ≲ T n−1V
(
f,

1

2
B̃ ∩M

)
≲ NfH (8B̃) ≲ T.
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□

6. Anti-concentration

The aim of this section is to show that V(Fx(ω, ·)) is uniformly integrable as a random
variable on M ×Ω equipped with the measure dσ = dVol⊗dP/Vol(M), that is, we prove
the following result:

Proposition 6.1. Let Fx be as in (4.1), v(T ) be as in (1.3), ϑn as in (1.8), ρ(T ) the
energy window width, ρ0 as in Corollary 4.4, and h(t) = t log t.

(i) For n ≤ 4 assume that

ρ(T ) ≥ T ϑn(log T )2.

Then there exists a constant C = C(M, g) > 1, independent of T , such that∫
M×Ω

h(V(Fx))dσ < C.

(ii) For n ≥ 5, then the conclusions of (i) hold for all ρ ≥ ρ0, i.e. there exists a constant
C = C(M, g) > 1, independent of T , such that∫

M×Ω

h(V(Fx))dσ < C.

As discussed in section 2, the required estimates for a proof of Proposition 6.1 are of
the form

σ ({(x, ω) ∈ M × Ω : V(Fx) > H}) ≲ 1

H(logH)c
,

with c > 2 an absolute constant. We begin with a deterministic, weak L1-type estimate,
that will be improved later for random f .

6.1. Weak L1 estimate for the local nodal volume. We collect here a well-known
result about the locality of the nodal volume, which will also be useful later in the proof,
allowing for an L1-weak type estimate for the volume of x ∈ M with V(Fx) large.

Lemma 6.2. Let Fx and f be as in (4.1) and (1.2) respectively, and let ωn be the unit
n-ball volume. Then one has:

V(f) = 2nT

ωn

(1 + oT→∞(1)) ·
∫
M

V(Fx)dVol(x).

Proof. First, we observe that we may write

V
(
f,Bg

(
x,

1

2T

))
=

∫
f−1(0)

1Bg(x,1/(2T ))(y)dHn−1(y), (6.1)

where 1 is the indicator function and Hn−1 is the Hausdorff measure. Then, integrating
both sides of (6.1) and using Fubini’s Theorem, we have∫

M

V
(
f,Bg

(
x,

1

2T

))
dVol(x) =

∫
f−1(0)

Volg

(
Bg

(
y,

1

2T

))
dHn−1(y). (6.2)

Now, we observe that, in light of the definition of Fx in section 4.1, since 1/T is smaller
than the injectivity radius of M , we have

V(Fx) = V
(
f,Bg

(
x,

1

2T

))
· T n−1(1 + oT→∞(1)),
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where we have used the scaling property of the nodal volume

V(Fx) = V
(
Fx(·),

1

2
B0

)
= T n−1V

(
Fx(T ·), B

(
1

2T

))
.

Thus, the l.h.s. of (6.2) is∫
M

V
(
f,Bg

(
x,

1

2T

))
dVol(x) =

1

T n−1
(1 + oT→∞(1))

∫
M

V(Fx)dVolg(x). (6.3)

Moreover, for all y ∈ M , we also have

Volg

(
Bg

(
y,

1

2T

))
= VolRn

(
B

(
0,

1

2T

))(
1 +O

(
T−1

))
=

ωn

(2T )n
(1 +O(T−1)).

Thus, the r.h.s. of (6.2) is∫
f−1(0)

Volg

(
Bg

(
y,

1

2T

))
dHn−1(y) =

ωn

(2T )n
(
1 +O

(
T−1

))
· V(f) (6.4)

Hence, Lemma 6.2 follows upon inserting (6.3) and (6.4) into (6.2). □

As a direct consequence of Lemma 6.2, we have the following result:

Corollary 6.3. Let Fx be as in (4.1), then, uniformly for all t > 0,

Volg (x : V(Fx) > t) ≲ t−1.

Proof. We first aim to prove (1.6), that is claimed no novelty of, but was decided to be
included for the sake of completeness. Let η > 0 be as prescribed by Proposition 5.1.
Then, by Proposition 5.1 and Lemma 5.8, we have

V(fT , Bη) ≲ T,

for any ball Bη ⊆ M of radius η/20. Covering M by finitely many such balls, we obtain

V(fT ) ≲ T, (6.5)

which is (1.6). Inserting (6.5) into Lemma 6.2, we obtain∫
M

V(Fx)dVol(x) ≲ 1.

Hence, Corollary 6.3 follows from Markov’s inequality. □

6.2. A probabilistic anti-concentration inequality for the doubling index. The
aim of this section is to prove the following result, that, unlike Proposition 6.1 for n ≤ 4,
will not require the growth of ρ(T ):

Lemma 6.4. Let fH be as in (5.3), η > 0 as in Proposition 5.1, v(T ) as in (1.3), and ρ0
as in Corollary 4.4. Moreover, given a parameter 100/η ≤ A ≤ 50T , let

B̃A = Bg(x,A
−1)×

[
− 1

A
,
1

A

]
⊆ M × [−10, 10]

be a ball centered at some (x, 0) ∈ M × {0}. If ρ(T ) ≥ ρ0, then, for all Q ≥ 100, one has

P
(
NfH (B̃A) >

Q · T
A

)
≲ exp

(
−Q · T

50A

)
+ EA(x),
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where

EA(x) := v(T )−3/2 ·
∑

λi∈[T−ρ,T ]

An

∫
Bg(x,(2A)−1)

|ϕi(y)|3dVolg(y)

and the constant involved in the ‘≲’-notation may depend on M, g, but not on Q,A, T or
x.

Before giving a proof to Lemma 6.4, we would like to describe the intuition behind its
proof. By the definition (5.1) of the doubling index, a large doubling index of fH indicates
a rapid growth of fH on concentric balls. This could happen in two possible scenarios:
Either fH is large on the larger ball, or fH is small on the smaller ball. The probability
of the former event can be controlled using some L2-bounds and Chebyshev’s inequality,
whereas the probability of the latter one is controlled with the following lemma:

Lemma 6.5. Let fH(x) be as in (5.3), v(T ) as in (1.3), and ρ0 as in Corollary 4.4.
Denote

Ψ(t) =
1√
2π

∫ t

−∞
exp

(
−z2

2

)
dz

to be the standard Gaussian cumulative distribution function. Then, given x ∈ M denote
x̃ = (x, (100T )−1) ∈ M × [−10, 10]. If ρ(T ) ≥ ρ0, then one has

sup
t∈R

∣∣∣∣P( fH(x̃)

E[|fH(x̃)|2]1/2
≤ t

)
−Ψ(t)

∣∣∣∣ ≲ E(x),

where the constant implied in the ‘≲’-notation depends only on (M, g) and

E(x) := v(T )−3/2
∑

λi∈[T−ρ,T ]

|ϕi(x)|3.

Proof. For λi ∈ [T − ρ, T ], let us write

Xi = Xi(x̃) :=
ai

λ−1
i

sinh

(
λi

100T

)
· ϕi(x),

and, on recalling that λi/T = 1 + oT→∞(1),

σi = σi(x̃) := E
[
|Xi|2

]1/2
= λ−1

i

∣∣∣∣sinh( λi

100T

)
· ϕi(x)

∣∣∣∣ ≍ T−1 · |ϕi(x)|, (6.6)

where the constant in the ‘≍’-notation is absolute. Moreover, let

τi = τi(x̃) := E
[
|Xi(x̃)|3

]
≍ σ3

i (x̃).

On recalling (5.3), observe that we have

E
[
|fH(x̃)|2

]
=

∑
λi∈[T−ρ,T ]

σ2
i (x̃).

By the well-known Berry-Esseen Theorem [8, 22] applied to the sum of the Xi’s, we
have

sup
t∈R

∣∣∣∣P( fH(x̃)

E[fH(x̃)]1/2
< t

)
−Ψ(t)

∣∣∣∣ ≲
 ∑

λi∈[T−ρ,T ]

|σi(x̃)|2
−3/2 ∑

λi∈[T−ρ,T ]

τi(x̃)

≲

 ∑
λi∈[T−ρ,T ]

|σi|2
−3/2 ∑

λi∈[T−ρ,T ]

|σi|3, (6.7)
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where the constant implied in the ‘≲’-notation is absolute. Using (6.6), the r.h.s of (6.7)
may be bounded as ∑

λi∈[T−ρ,T ]

|σi(x̃)|2
−3/2 ∑

λi∈[T−ρ,T ]

|σi(x̃)|3 ≲

 ∑
λi∈[T−ρ,T ]

|ϕi(x)|2
−3/2 ∑

λi∈[T−ρ,T ]

|ϕi(x)|3.

Hence, Lemma 6.5 follows from Corollary 4.4, that is∑
λi∈[T−ρ,T ]

|ϕi(x)|2 ≍ v(T ).

□

Lemma 6.5 gives the following bound on the supremum of fH of the ball B̃A as in
Lemma 6.7:

Corollary 6.6. Let fH be as in (5.3), η > 0 as in Proposition 5.1, and ρ0 as in Corollary
4.4. Given a parameter 100/η ≤ A ≤ 50T , let

B̃A = Bg(x,A
−1)×

[
− 1

A
,
1

A

]
⊆ M × [−10, 10]

be a ball centered at some (x, 0) ∈ M × {0}. Moreover let us write c(x̃) := E[|fH(x̃)|2]
where x̃ := (x, (100T )−1). Suppose that ρ(T ) ≥ ρ0, then, for all τ > 0 (which may depend
on A), we have

P

(
sup
B̃A

∣∣∣∣ fH

c(x̃)1/2

∣∣∣∣ ≤ τ

)
≲ τ + EA(x),

where

EA(x) := v(T )−3/2 ·
∑

λi∈[T−ρ,T ]

An

∫
Bg(x,(2A)−1)

|ϕi(y)|3dVolg(y),

and the constant involved in the ‘≲’-notation may depend on M, g, but not on A, T or x.

Proof. Since, for every ỹ := (y, (100T )−1) with y ∈ Bg(x,A
−1), we have

P

(
sup
B̃A

∣∣∣∣ fH

c(x̃)1/2

∣∣∣∣ ≤ τ

)
≤ P

(∣∣∣∣ fH(ỹ)

c(x̃)1/2

∣∣∣∣ ≤ τ

)
,

we have the bound

P

(
sup
B̃A

∣∣∣∣ fH

c(x̃)1/2

∣∣∣∣ ≤ τ

)
≤ inf

y∈Bg(x,A−1)
P
(∣∣∣∣ fH(ỹ)

c(x̃)1/2

∣∣∣∣ ≤ τ

)
.

Bounding the infimum by the average (over, say, a slightly smaller ball), we obtain

P

(
sup
B̃A

∣∣∣∣ fH

c(x̃)1/2

∣∣∣∣ ≤ τ

)
≲ An

∫
Bg(x,(2A)−1)

P
(∣∣∣∣ fH(ỹ)

c(x̃)1/2

∣∣∣∣ ≤ τ

)
dVolg(y)

≲ An

∫
Bg(x,(2A)−1)

P
(∣∣∣∣ fH(ỹ)

c(ỹ)1/2

∣∣∣∣ ≤ c(x̃)1/2

c(ỹ)1/2
τ

)
dVolg(y).

Therefore, Lemma 6.5 yields

P

(
sup
B̃A

∣∣∣∣ fH

c(x̃)1/2

∣∣∣∣ ≤ τ

)
≲ c(x̃)1/2τAn

∫
Bg(x,(2A)−1)

1

c(ỹ)1/2
dVolg(y) + EA(x). (6.8)
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Now, using Lemma 4.5, for all y ∈ Bg(x,A
−1) (and so in particular for x), we have

c(ỹ) = E
[
|fH(y, (100T )−1)|2

]
=

∑
λi∈[T−ρ,T ]

∣∣∣∣λ−1
i sinh

(
λi

100T

)
ϕi(x)

∣∣∣∣2
≍ T−2

∑
λi∈[T−ρ,T ]

|ϕi(x)|2 ≍ T−2.

Thus, the first term on the r.h.s. of (6.8) is

c(x̃)1/2τAn

∫
Bg(x,(2A)−1)

1

c(ỹ)1/2
≍ τ,

and this concludes the proof of Corollary 6.6. □

We are finally ready to prove Lemma 6.4:

Proof of Lemma 6.4. To simplify notation, we will use the following shorthand: x̃ =
(x, (100T )−1) and B̃ = B̃A. First, we may re-normalize fH by dividing it by the non-
vanishing number c(x̃) := E[|fH(x, (100T )−1)|2], that is, by a slight abuse of notation, we
write fH in place of

fH

E[|fH(x, (100T )−1)|2]1/2
=

fH

c(x̃)1/2
=

1

c(x̃)1/2v(T )1/2

∑
λi∈[T−ρ,T ]

ai
sinh(λit)

λi

ϕi(x), (6.9)

throughout the proof of Lemma 6.4. We are now in a position to commence the proof of
Lemma 6.4.

To bound the probability that the doubling index us large, we note that it could occur
under two possible scenarios: Either sup

B̃

|fH | is small, or sup
2B̃

|fH | is large. Given some

τ > 0 to be determined later, we write

P
(
N (x̃, A−1) >

Q · T
A

)
= P

(
N (x̃, A−1) >

Q · T
A

and sup
B̃

|fH | < τ

)
+ P

(
N (x̃, A−1) >

Q · T
A

and sup
B̃

|fH | ≥ τ

)
.

(6.10)

The first term on the r.h.s. of (6.10) can be bounded as

P
(
N (x̃, A−1) >

Q · T
A

and sup
B̃

|fH | < τ

)
≤ P(sup

B̃

|fH | ≤ τ).

Thus, Corollary 6.6 gives

P
(
N (x̃, A−1) >

Q · T
A

and sup
B̃

|fH | < τ

)
≲ τ + EA(x). (6.11)

Now we bound the second term on the r.h.s. of (6.10). To this end we use the definition
(5.1) of the doubling index, and since, under the relevant event, supB̃ |fH | ≥ τ , we may
write under the same event

Q · T
A

< N (x̃, A−1) ≤ log
||fH ||L∞(2B̃)

τ
.
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Thus, we obtain

||fH ||L∞(2B̃) ≥ exp

(
Q · T
A

)
τ. (6.12)

Now we claim the following:

E
[
||fH ||2

L∞(2B̃)

]
≲ exp

(
8
T

A

)
, (6.13)

where the constant implied in the ‘≲’-notation may depend on (M, g) only. Upon using
the elliptic regularity [23, Page 330], we have

||fH ||2
L∞(2B̃)

≲ An+1||fH ||2
L2(4B̃)

,

where the constant implies in the ‘≲’-notation depends only on (M, g). Therefore, using
the formula (5.3), exchanging the order of the expectation and the summation, and upon
bearing in mind that fH is normalized via (6.9), we have

E
[
||fH ||2

L∞(2B̃)

]
≲ An+1E

[
||fH ||2

L2(4B̃)

]
≲ c(x̃)−1v(T )−1

∑
λi

sinh(8λi/A)

λ2
i

An

∫
Bg(x,4/A)

|ϕi(x)|2dVolg(x),

where the constant implied in the ‘≲’-notation may depend on (M, g) only. Switching the
sum with the integral, using Lemma 4.5, the obvious bound sinh(·) ≤ exp(·), and, again,
λi/T = 1 + oT→∞(1), we obtain

E
[
||fH ||2

L∞(2B̃)

]2
≲ c(x̃)−1T−2 exp

(
8
T

A

)
, (6.14)

where, again, the constant implied in the ‘≲’-notation may depend on (M, g) only. Since
c(x̃)−1 ≍ T−2, (6.13) follows from (6.14).

Using (6.13) together with Chebyshev’s inequality, (6.10), (6.11) and (6.12), we obtain

P
(
N (x̃, A−1) >

Q · T
A

)
≲ τ + exp

(
8
T

A
− 2Q · T

A

)
τ−2 + EA(x)

Hence, Lemma 6.4 follows by taking τ = exp(−QT/(50A)) and Q ≥ 100 (say). □

6.3. Sogge’s bound and the decay of the doubling index. The aim of this section
is to prove the following lemma, which shows that, outside an event of small probability,
the doubling index decreases uniformly for all x ∈ M . In accordance to the results in
the previous section except Proposition 6.1 for n ≤ 4, the following lemma is stated for
ρ(T ) ≥ ρ0, without the growth assumption of Theorem 1.1.

Lemma 6.7. Let fH be as in (5.3), and ρ0 as in Corollary 4.4. If ρ(T ) ≥ ρ0, then there
exists some constant C = C(M, g) > 1 such that

P
(
sup
x∈M

NfH

(
(x, 0), A−1

)
≥ C

T

A

)
≲ (log T )−1,

where

A = A(T ) =

T
n−1
4n ρ(T )

1
2n · 1

(log T )
1
n

n ≤ 4

T
1
nρ(T )

1
2n · 1

(log T )
1
n

n ≥ 5
.
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To prove Lemma 6.7 we use Lemma 6.4 together with the following bound on the Lp-
norm of eigenfunctions due to Sogge [54]. Let ϕi be an eigenfunction with eigenvalue λ2

i .
Then we have the following estimate on the Lp norms of ϕi, see also [60, Theorem 10.1]:

||ϕi||Lp(M) ≲ λ
σ(p)
i ||ϕi||L2(M), (6.15)

where

σ(p) =


n−1
2

(
1
2
− 1

p

)
2 < p ≤ 2(n+1)

n−1

n
(

1
2
− 1

p

)
− 1/2 p ≥ 2(n+1)

n−1
.

We are now in a position to prove Lemma 6.7.

Proof of Lemma 6.7. Let A = A(T ) be some parameter to be chosen later, and apply
Lemma 6.4 on the ball

B̃A = Bg(x,A
−1)× [−1/A, 1/A],

with Q = 100 (say) to yield

P
(
NfH (x̃, A−1) ≥ 100T

A

)
≲ exp

(
−2T

A

)
+ EA(x),

where x̃ := (x, 0). Using the monotonicity of the doubling index of Lemma 5.4 with
r = A, we deduce that there exists some (large) constant C1 = C1(M, g) ≥ 1 such that

P

(
sup

y∈Bg(x,(10A)−1)

NfH (y, (4A)−1) ≥ C1T

A

)
≲ exp

(
−2T

A

)
+ EA(x),

where we have tacitly assumed that T/A is sufficiently large depending on M, g only.
Taking the union bound over at most O(An) balls B(xj, (10A)

−1), we obtain

P
(
sup
x∈M

NfH (x̃, (4A)−1) ≥ C1T

A

)
≲ An exp

(
−2T

A

)
+
∑
j

EA(xj). (6.16)

Assuming that A is sufficiently large so that A−1 is smaller than the injectivity radius,
each ball B(xj, (10A)

−1) intersects finitely many (depending on n only) other balls in the
collection, therefore

v(T )3/2
∑
j

EA(xj) = An
∑

λi∈[T,T−ρ]

∑
j

∫
B(xj ,(10A)−1)

|ϕi|3dVol ≲ An
∑

λi∈[T,T−ρ]

||ϕi||3L3(M).

Using Sogge’s bound (6.15), we conclude that∑
j

EA(xj) ≲
∑

λi∈[T,T−ρ]

AnT 3σ(3)

v(T )3/2
, (6.17)

with σ(3) as in (6.15).
Finally, inserting (6.17) into (6.16) and summing over i, which gives a contribution of

v(T ), we obtain

P
(
sup
x∈M

NfH (x̃, 4−1A−1) ≥ C1T

A

)
≲ An exp

(
−2T

A

)
+ AnT 3σ(3)v(T )−1/2.
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Hence, Lemma 6.7 follows by observing that

3σ(3) =

{
n−1
4

n ≤ 4
n
2
− 3

2
n ≥ 5

,

v(T )1/2 ≍ T
n−1
2 ρ(T )1/2,

and taking, for n ≤ 4,

A = T
n−1
4n ρ(T )

1
2n · 1

4(log T )
1
n

and, for n > 5,

A = T
1
nρ(T )

1
2n · 1

4(log T )
1
n

.

□

6.4. Concluding the proof of Proposition 6.1.

Proof of Proposition 6.1. Since the proof of the Proposition 6.1 is somewhat long, we
break it up into a series of steps:

Step 1: Controlling the distribution of V(Fx).

Recall that dσ = dVolg
Vol(M)

⊗ dP. The aim of this step is to obtain some bounds on

σ (V(Fx) > t) for all t ≥ C0 for some C0 = C0(M, g) ≥ 1. First, by Proposition 5.1,
bearing in mind the rescaling factor, we have

V(Fx) ≤ C1NfH ((x, 0), 8T−1) and NfH ((x, 0), 8T−1) := NT (x) = N (x),

for some C1 = C(M, g) ≥ 1. Therefore, Lemma 6.4, applied with A = 4T and Q = c0t :=
C−1

1 t (which is larger than 100 taking C0 sufficiently large in terms of C1), gives

P(V(Fx) ≥ t) ≤ P(N (x) ≥ c0t) ≲ exp

(
−c0t

10

)
+ ET (x),

where ET is as in Lemma 6.4 (and we write ET in place of ET/8 as shorthand). Thus, we
have

σ (V(Fx) > t) =
1

Vol(M)

∫
M

P(V(Fx) ≥ t)dVolg

≲ exp

(
−c0t

10

)
+

∫
M

ET (x)dVolg . (6.18)

We are now going to bound the second term on the r.h.s. of (6.18). By Sogge’s bound,
we have ∫

M

|ϕi(x)|3dVolg ≲ T 3σ(3),

with σ(3) as in (6.15). Therefore, in light of the fact that the sum over i in the definition
of ET (x) in Lemma 6.5 has v(T )-terms, v(T ) ≍ ρ(T )T n−1 and exchanging the integrals,
we have ∫

M

ET (x)dVol ≲ Tα(n)ρ(T )−1/2, (6.19)
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with

α(n) := 3σ(3)− n− 1

2
=

{
−n−1

4
n ≤ 4

−1 n ≥ 5
.

Inserting (6.19) into (6.18), we see that

σ (V(Fx) > t) ≲ exp

(
−c0t

10

)
+ Tα(n)ρ(T )−1/2. (6.20)

Step 2: Sharpening the upper bound

By Lemma 5.9, we have

sup
x∈M

V(Fx) ≲ T.

Our task in this step is to obtain a better upper bound, outside an event of small prob-
ability, using Lemma 6.7. Let A = A(T ) be as in Lemma 6.7. Since the monotonicity of
the doubling index of Lemma 5.4 implies that

N (x) ≲ NfH

(
(x, 0), A−1

)
+ C3,

for some C3 = C3(M, g) > 1, an application of Lemma 6.7 gives

sup
x∈M

V(Fx) ≤ C4
T

A
=: p(T ), (6.21)

for some C4 = C4(M, g) > 0, outside an event Ω1 with P(Ω1) ≲ (log T )−1.

We now show that the event Ω1 does not positively contribute to the integral of Propo-
sition 6.1. Indeed, we write∫

M×Ω

h(V(Fx))dσ =

∫
M×(Ω\Ω1)

h(V(Fx))dσ +

∫
M×Ω1

h(V(Fx))dσ

≤
∫

M×Ω

h(V(Fx)) · 1V(Fx)≤p(T )dσ +O

(log T )−1 sup
ω∈Ω

∫
M

h(V(Fx))dVol(x)

 . (6.22)

Since h(t) = t log t and V(Fx) ≲ T , the second term on the r.h.s of (6.22) can be bounded
by

(log T )−1 sup
ω∈Ω

∫
M

h(V(Fx))dVol(x) ≲ sup
ω∈Ω

∫
M

V(Fx)dVol(x) = O(1),

where, in the last inequality, we have used Lemma 6.2, which is deterministic, in the form

sup
ω∈Ω

∫
M

V(Fx)dVol(x) = O(1).

Thus, we have shown that∫
M×Ω

h(V(Fx))dσ ≲
∫
M×Ω

h(V(Fx))1V(Fx)≤p(T )dσ +O(1), (6.23)

with p(T ) as in (6.21). This concludes step 2.

Step 3: Collecting the estimates.
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We begin by rewriting the integral on the r.h.s of (6.23) as∫
M×Ω

h(V(Fx))1V(Fx)≤p(T )dσ =

∫ p(T )

0

h(t)dσ (V(Fx) > t) .

Integrating by parts, we obtain∫
M×Ω

h(V(Fx))1V(Fx)≤p(T )dσ ≲
∫ 2p(T )

C0

h′(t)σ (V(Fx) > t) dt+O(1), (6.24)

with C0 as in Step 1. Now, recall that in Step 2, we had

A = A(T ) =

T
n−1
4n ρ(T )

1
2n · 1

(log T )
1
n

n ≤ 4

T
1
nρ(T )

1
2n · 1

(log T )
1
n

n ≥ 5
,

and in Step 1 we had

α(n) := 3σ(3)− n− 1

2
=

{
−n−1

4
n ≤ 4

−1 n ≥ 5
.

Since h(t) = t log t, we have h′(t) = log t + 1 ≤ 2 log t. Thus, using Step 1, namely
(6.20), Step 2, (6.24) and the definition of A(T ) above, we have∫

M×Ω

h(V(Fx))dσ ≲
∫
M×Ω

h(V(Fx))1V(Fx)≤p(T )dσ +O(1)

≲
∫ 2p(T )

C0

h′(t)σ (V(Fx) > t) dt+O(1) ≲ p(T )Tα(n)ρ(T )−1/2(log T ) +O(1)

≲
T 1+α(n)

A
ρ(T )−1/2(log T ) +O(1) ≲ q(T )ρ(T )−

n+1
2n (log T )

n+1
n +O(1), (6.25)

where the constant implied in the ≲ notation depend only on (M, g) and

q(T ) :=

{
T · T−n−1

4 (1+ 1
n) n ≤ 4

T− 1
n n ≥ 5.

Hence, taking

ρ(T ) ≥

{
T

−n2+4n+1
2(n+1) (log T )2 n ≤ 4

1 n ≥ 5
,

we see that the r.h.s. of (6.25) is bounded, as required. □

7. Proof of Theorem 1.1

Before concluding the proof of Theorem 1.1, we state a result, whose proof is a straight-
forward application of the Kac-Rice formula, performed below for the reader’s convenience.

Lemma 7.1. Let Fµ be as in (4.2), and ωn be the volume of the unit ball in Rn. Then,
we have

E[V(Fµ)] = 2−nωn

(
1

πn

)1/2 Γ
(
n+1
2

)
Γ
(
n
2

) .



NON-GAUSSIAN RANDOM BAND-LIMITED FUNCTIONS 35

Proof. Since the support of µ, being the unit sphere, is not contained in an hyperplane, the
distribution of (Fµ,∇Fµ) is non-degenerate. Thus, we may apply the Kac-Rice formula
[3, Theorem 6.1], to see that

E[V(Fµ)] =

∫
2−1B0

E
[
∥∇Fµ(y)∥

∣∣Fµ(y) = 0
]
· φFµ(y)(0)dy, (7.1)

where φFµ(y)(0) is the density of Fµ(y) at the point 0. Since E[|Fµ(y)|2] = 1, ∇Fµ and Fµ

are independent, and bearing in mind that Fµ is stationary, we have

E
[
∥∇Fµ(y)∥

∣∣Fµ(y) = 0
]
· φFµ(y)(0) = E [∥∇Fµ(0)∥] · φFµ(0)(0). (7.2)

The latter can be computed explicitly, see for example [50, Proposition 4.1], to be

E [∥∇Fµ(0)∥] · φFµ(0)(0) =

(
1

πn

)1/2 Γ
(
n+1
2

)
Γ
(
n
2

) . (7.3)

Hence, Lemma 7.1 follows upon inserting (7.3) into (7.1) via (7.2). □

Proof of Theorem 1.1. Thanks to Lemma 6.2 and Fubini’s Theorem, we have

E[V(f)] = 2nT

ωn

(1 + oT→∞(1)) ·
∫
M

E[V(Fx)]dVol(x)

=
2nVol(M)T

ωn

(1 + oT→∞(1)) ·
∫
M×Ω

V(Fx)dσ (7.4)

Thanks to Proposition 4.1, and since Proposition 6.1, valid under the hypotheses of The-
orem 1.1, implies the uniform integrability hypothesis [11, (3.15)] of [11, Theorem 3.5],
we have ∫

M×Ω

V(Fx)dσ = E[V(Fµ)] · (1 + oT→∞(1)). (7.5)

Combining (7.4), (7.5) and Lemma 7.1, we obtain

E[V(f)] = 2n

ωn

Vol(M)E[V(Fµ)] · (T + oT→∞(T ))

= Vol(M)

(
1

πn

)1/2 Γ
(
n+1
2

)
Γ
(
n
2

) T + oT→∞(T ),

as required. □

8. Asymptotic of the spectral projector for constant energy windows

The purpose of this section is to prove a substitute for Proposition 4.3 under the “less
restrictive” assumption on the energy window width ρ(T ) ≡ ρ0(M) (with arguments
working verbatim for ρ(T ) ≥ ρ0). Our result holds for all dimensions, provided that the
following assumption on M holds (cf. section 1.3 and Theorem 1.3):

Definition 8.1 (Assumption A0). Let n ≥ 2 and let (M, g) be a real analytic, compact
Riemannian n-manifold. We say that (M, g) satisfies assumption A0 if either the geodesic
flow on M is periodic, or the geodesic flow on M is aperiodic and the set of self-focal
points of M is of measure 0.

Since, in the case of constant energy windows, the local Weyl’s law may fail around
some “bad ”points x ∈ M , we will show that the set of such points is small. That is, we
prove the following result:
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Proposition 8.2. Let Fx(·) be as in (4.1) (with ρ ≡ ρ0) and µ the normalized Lebesgue
measure on the n− 1 dimensional sphere Sn−1. Then, if that M satisfies assumption A0

as in (8.1), there exists a (measurable) subset A1 = A1(T ) ⊆ M of volume Vol(A1) =
oT→∞(1) such that

sup
x∈M\A1

y,y′∈B0

∣∣∣∣E[Fx(y) · Fx(y
′)]− (2π)Λ

JΛ(|y − y′|)
|y − y′|Λ

∣∣∣∣→ 0 T → ∞

with Λ = (n−2)/2 and JΛ(·) the Λ-th Bessel function. Moreover, we can also differentiate
both sides any arbitrary finite number of times, that is

E[DαFx(y) ·Dα′
Fx(y

′)] = (−1)|α
′|i|α|+|α′|

∫
|ξ|=1

ξα+α′
exp (i⟨y − y′, ξ⟩) dµ(ξ) + oT→∞(1),

valid on x ∈ M\A1, y, y
′ ∈ B0, where α, α′ are multi-indices, and ξα = (ξα1

1 , ..., ξαn
n ).

8.1. Preliminaries: geodesic flow and the spectrum of
√
−∆. For a reference to

the facts contained in this section, we suggest the exposition in [60]. Let T ∗M and S∗M
be the co-tangent and the co-sphere bundle on M respectively. The geodesic flow

Gt : T ∗M → T ∗M

is the Hamiltonian flow of the metric norm function

H : T ∗M → R H(x, ξ) =
n∑

i,j=1

gijξiξj,

where g = gij is the metric on M and gij is its inverse. Since Gt is homogeneous, from
now on, we will consider only its restriction to S∗M . We will need the following simple
lemma, see also [51, Lemma 1.3.8]:

Lemma 8.3. If (M, g) is a real analytic manifold, then the set of closed geodesics, on the
co-sphere bundle equipped with the Liouville measure, has either full measure or measure
zero.

Proof. Since (M, g) is real analytic, the geodesic flow Gt(·, ·) is a real analytic function on
S⋆M . Therefore, for fixed t > 0, solutions to

Gt(x, ξ) = (x, ξ),

consist of the zero set of an analytic function. This must have co-dimension at least 1 or
be trivial. □

Lemma 8.3 implies that the geodesic flow, on a real analytic manifold, is either aperiodic
if the set of closed geodesics has measure zero, or periodic with (minimal) period H > 0 if
GH = id. For the former case, the two-term Weyl’s law of Duistermaat-Guilleimin(-Ivrii)
states

|{i > 0 : λi ≤ T}| = cMT n + o(T n−1).

For the latter case, the spectrum of
√
∆ is a union of clusters of the form

Ck :=

{
2π

H

(
k +

β

4

)
+ µki for i = 1, ..., dk

}
k = 1, 2...,

where µki = O(k−1) uniformly for all i, dk is a polynomial in k of degree n − 1 and β is
the common Morse index of the closed geodesics of M .
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8.2. Local Weyl’s law revisited. The aim of this section is to prove Proposition 8.2.
As we will see below, Proposition 8.2 is a direct consequence of Egorov’s Theorem and
the following:

Proposition 8.4. Let (M, g) be a compact, real analytic manifold with empty boundary,
ρ0 as in Corollary 4.4, and suppose that either the geodesic flow on M is periodic, or
x ∈ M is not a self-focal point (Definition 1.2). Then

sup
y,y′∈Bg(x,10/T )

∣∣∣∣∣∣
∑

λi∈[T−ρ0,T ]

ϕi(y)ϕi(y
′)− cMT nJΥ(T )(Tdg(y, y

′))

∣∣∣∣∣∣ = ox(T
n−1) (8.1)

where dg(y, y
′) is the geodesic distance between y, y′, cM > 0 is given in (1.3), Υ(T ) = 1−ρ0

T
and

JΥ(T )(w) =

∫
Υ(T )≤|ξ|≤1

exp(i⟨w, ξ⟩)dξ.

Moreover, we can also differentiate both sides of (8.1) an arbitrary finite number of times,
that is

sup
y,y′∈Bg(x,10/T )

∣∣∣∣∑λi∈[T−ρ0,T ] D
α
yϕi(y)D

α′

y′ ϕi(y
′)−

cMTnDα
y D

α′
y′ JΥ(T )(Tdg(y,y′))

(2π)n

∣∣∣∣
T |α|+|α′| = ox(T

n−1)

where α, α′ are multi-indices, and ξα = (ξα1
1 , ..., ξαn

n ) and the derivatives are understood
after taking normal coordinates around the point x.

The proof of Proposition 8.4 follows directly from the following two lemmas. In the
periodic case, we have a full asymptotic expansion for the spectral projector kernel [58,
Theorem 2], see also [59]. In particular, we have the following:

Lemma 8.5 (Zelditch). Let (M, g) be a compact, real analytic manifold with empty bound-
ary. Suppose that the geodesic flow on M is periodic (i.e. M is a Zoll manifold), then
the conclusions of Proposition 8.4 hold.

The second lemma is borrowed from Canzani-Hanin [16, 17], see also the preceding
work of Safarov [52]:

Lemma 8.6. Let (M, g) be a compact, real analytic manifold with empty boundary, and
suppose that x ∈ M is not self-focal. Then the conclusions of Proposition 8.4 hold.

We are finally ready to prove Proposition 8.2:

Proof of Proposition 8.2. First we observe that, under the assumptions of Theorem 1.3,
(8.1) and its term-wise differentiation hold for almost all x ∈ M , that is outside a set of
measure zero. Indeed, thanks to Lemma 8.3, the geodesic flow on M is either aperiodic
or periodic. In the latter case, the conclusion of Proposition 8.4 holds for all x ∈ M . In
the former case, Proposition 8.4 holds for almost all x ∈ M . Thus, it remains to show
that (8.1), and its term-wise differentiation, holding for almost all x ∈ M implies the
conclusion of Proposition 8.2.

Following along identical lines to the proof of Proposition 4.3 (which we do not repro-
duce here for the sake of brevity) shows that the function

h(x) := sup
y,y′∈B0

∣∣∣∣E[Fx(y) · Fx(y
′)]− (2π)Λ

JΛ(|y − y′|)
|y − y′|Λ

∣∣∣∣
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converges point-wise to 0 for almost all x ∈ M . Therefore, Egorov’s Theorem implies that
there exists a (measurable) set A1 = A1(T ) ⊆ M of volume Vol(A1) = o(1) such that h
converges to zero uniformly for all x ∈ M\A1. This concludes the proof of the first claim
of Proposition 8.2. (Recall that the set of relevant T is a discrete subset of R.) The proof
of the second claim is similar and therefore omitted. □

9. Proof of Theorem 1.3

In order to conclude the proof of Theorem 1.3, we need the following weaker, averaged
w.r.t. position, version of Proposition 4.1, valid in all dimensions. The proof of Theorem
1.3 is verbatim the proof of Theorem 1.1, with Proposition 9.1 in place of Proposition 4.1
(see the discussion immediately after Proposition 4.1, and (4.3) in particular).

Proposition 9.1. Let Fx be as in (4.1), ρ0 as in Corollary 4.4, and Fµ be as above.
Suppose that M satisfies assumption A0 as in Definition 8.1, and ρ ≡ ρ0, then one has

V(Fx)
d−→ V(Fµ) T → ∞ (9.1)

where the convergence is in distribution as a random variable on (M × Ω, dσ).

We stress that the convergence (9.1) is in the product space (M × Ω, dσ), rather than
for an individual x ∈ M w.r.t. dP. To the best of our knowledge, it is not known whether
there exist counter-examples for the latter, stronger convergence, i.e. whether, for some
M (that might or might not satisfy the assumptions of Theorem 1.3), there exist x ∈ M
with the convergence (9.1) failing as a random function on (Ω,P).
Assuming Proposition 9.1, we can conclude the proof of Theorem 1.3 along identical

lines to the proof of Theorem 1.1.

Proof of Theorem 1.3. Thanks to Lemma 6.2 and Fubini’s Theorem, we have

E[V(f)] = 2nVol(M)T

ωn

(1 + oT→∞(1)) ·
∫
M×Ω

V(Fx)dσ

Thanks to Proposition 9.1, and since Proposition 6.1, which remains valid under the
assumptions of Theorem 1.3, implies the uniform integrability hypothesis [11, (3.15)]
of [11, Theorem 3.5], we have∫

M×Ω

V(Fx)dσ = E[V(Fµ)] · (1 + oT→∞(1)).

Hence, Lemma 7.1 gives

E[V(f)] = 2n

ωn

Vol(M)E[V(Fµ)] · (T + oT→∞(T ))

= Vol(M)

(
1

πn

)1/2 Γ
(
n+1
2

)
Γ
(
n
2

) T + oT→∞(T ),

as required. □

The rest of the script is dedicated to the proof of Proposition 9.1.
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9.1. Sogge’s bound and large values of the eigenfunctions. In addition to the
possible failure of the local Weyl’s law around self-focal points, another difficulty of the
constant energy window regime is the possibility of

sup
x

|ϕi(x)| ≍ v(T )1/2,

for some ϕi in the summation (1.2) (for example, it might occur for the sphere Sn). This
problem was not present in the growing energy window case thanks to Claim 4.7. Thus
we would not be able to apply Lindeberg’s CLT as in the proof of Lemma 4.6. In order
to circumvent this difficulty, we show that |ϕi(x)| = o(T ) for all λi ∈ [T − ρ0, T ] and for
all x ∈ M outside a set of small measure. That is, the main result of this section is to
prove the following consequence of (6.15):

Lemma 9.2. Let T > 0 be given, v(T ) as in (1.3), ρ0 as in Corollary 4.4, and let
K = K ≥ 1 be some parameter (that may depend on T ). Then there exists a subset

A2 = A2(T,K) ⊆ M of volume at most O(K2n+1
n−1T−1) with the following properties:

(1) We have

sup
x∈M\A2

max
λi∈[T−ρ0,T ]

||ϕi||L∞(B(x,2/T )) ≲ K−1v(T )1/2.

(2) Uniformly for all multi-indices |α| ≤ 2, one has

sup
x∈M\A2

max
λi∈[T−ρ0,T ]

||T−αDαϕi||L∞(B(x,2/T )) ≲ K−1v(T )1/2.

In order to state a preliminary result towards the proof of Lemma 9.2, we recall some
notation. Given a Laplace eigenfunction ϕi, we denote by ϕi,x the scaled restriction of ϕi

to Bg(x, 4/T ) via the exponential map, that is

ϕi,x(y) = ϕi(expx(y/T )),

for y ∈ B(0, 4) (here we tacitly assume that T is sufficiently large so that 4/T is less than
the injectivity radius). With this notation in mind, we prove the following consequence
of elliptic regularity for harmonic functions:

Lemma 9.3. Let T ≥ 1, ρ0 as in Corollary 4.4, and let ϕi be a Laplace eigenfunction
with eigenvalue λi ∈ [T − ρ0, T ]. Then:

(1) Uniformly for all x ∈ M , we have

sup
Bg(x,2/T )

|ϕi|2 ≲
∫
B(0,4)

|ϕi,x(y)|2dy.

(2) Uniformly for all x ∈ M , we have

sup
Bg(x,2/T )

|T−αDαϕi|2 ≲
∫
B(0,4)

|ϕi,x(y)|2dy,

uniformly for all multi-indices |α| ≤ 2.

Before embarking on the proof of lemmas 9.2 and 9.3, we would like to briefly discuss
their statements. Lemmas 9.2 and 9.3 are stated in the precise form that will be used in
section 4.3. However, in the literature, the conclusions of lemmas 9.2 and 9.3 are often
stated as

sup
Bg(x,c/λi)

|ϕi| ≲ K−1v(T )1/2 sup
Bg(x,c/λi)

|ϕi|2 ≲
∫
B(0,2c)

|ϕi,x(y)|2dy (9.2)
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for some small c = c(M), with an analogous statement for the bounds on the derivatives.
Since ρ0 = OM(1), and for λi ∈ [T − ρ0, T ],

λ−1
i = T−1(1 + o(1)),

(9.2) is equivalent to Lemmas 9.2 and 9.3, up to the constant 2 and a simple covering
argument.

Proof of Lemma 9.3. Given ϕi, let us consider the function h(x, t) = ϕi(x)e
λit defined on

M × [−2, 2] and let us write hT (·) = h(T−1·) (where the rescaling is to be understood in
normal coordinates). Then, since the supremum norm is scale invariant, we have

sup
Bg(x,2/T )

|ϕi| ≲ sup
Bg(x,2/T )×[−2/T,2/T ]

|h| ≲ ||hT ||L∞(B̃) (9.3)

sup
Bg(x,2/T )

|Dαϕi| ≲ sup
Bg(x,2/T )×[−2/T,2/T ]

|Dαh| ≲ Tα||hT ||C1(B̃), (9.4)

where B̃ = Bg(x, 2)× [−2, 2] and |α| ≤ 2 is a multi-index. Since h is an harmonic function

(∆h = 0) and B̃ has radius 4, for any k ≥ 0, elliptic regularity [23, Page 330], gives

||hT ||Ck(B̃) ≲k ||hT ||L2(2B̃) (9.5)

the constant implied in the notation is independent of x ∈ M . Thus, Lemma 9.3 follows
by inserting (9.5) into (9.3) and (9.4), and noticing that ||hT ||L2(2B̃) ≲ ||ϕi,x||L2(B(0,4)). □

Proof of Lemma 9.2. First, we observe that, given p ≥ 2, the function x → xp/2 is convex
for x ≥ 0. Therefore, applying Jensen’s inequality to part (1) of Lemma 9.3, we obtain(

sup
Bg(x,2/T )

|ϕi|

)p

≲p

(∫
B(0,4)

|ϕi,x(y)|2dy
)p/2

≲p

∫
B(0,4)

|ϕi,x(y)|pdy (9.6)

and, similarly (
sup

Bg(x,2/T )

|T−αDαϕi|

)p

≲p

∫
B(0,4)

|ϕi,x(y)|pdy, (9.7)

where |α| ≤ 2 is a multi-index. We are now going to prove part (1) of Lemma 9.2. By
Sogge’s bound (6.15) with p ≤ 2(n + 1)/(n − 1), bearing in mind that ||ϕi||L2 = 1, we
have (∫

M

|ϕi(x)|pdVolg(x)
)1/p

≲ T
n−1
2 ( 1

2
− 1

p) =: T̃

for all λi ≤ T . Thus, integrating both sides of (9.6) with respect to x ∈ M and exchanging
the order of the integrals, we obtain∫

M

(
sup

Bg(x,2/T )

|ϕi|

)p

dVolg(x) ≲
∫
B(0,4)

∫
M

|ϕi,x(y)|pdVolg(x)dy ≲ T̃ p.

Therefore, by Chebyshev’s bound, for any K1 > 0, we have

Volg

({
x ∈ M : sup

Bg(x,2/T )

|ϕi| ≥ K1

})
≲ K−p

1 T̃ p,
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and, taking the union bound over the O(v(T )) choices for i, we deduce

Volg

({
x ∈ M : max

λi∈[T−ρ0,T ]
sup

Bg(x,2/T )

|ϕi| ≥ K1

})
≲ K−p

1 v(T ) · T̃ p. (9.8)

Thus, takingK1 = K−1v(T )1/2 ≳ K−1(T n−1)1/2 in (9.8) and recalling that T̃ = T
n−1
2 ( 1

2
− 1

p),
we have

Volg

({
x ∈ M : max

λi∈[T−ρ0,T ]
sup

Bg(x,2/T )

|ϕi| ≥ K−1v(T )1/2

})
≲p K

pT ν(n,p), (9.9)

where

ν(n, p) : = −p
n− 1

2
+ n− 1 +

n− 1

2

(p
2
− 1
)

=
n− 1

2

(
1− p

2

)
.

Hence, taking p = 2(n+ 1)/(n− 1) in (9.9), we have

Volg

({
x ∈ M : max

λi∈[T−ρ0,T ]
sup

Bg(x,2/T )

|ϕi| ≥ K−1v(T )1/2

})
≲ KpT−1,

as required. Thanks to (9.7), the proof of part (2) of Lemma 9.2 follows along the lines
of the proof of its part (1). □

9.2. Concluding the proof of Proposition 9.1. As we saw in the course of the proof
of Proposition 4.1, to prove Proposition 9.1, it is sufficient to consider the convergence of
finite-dimensional distributions. Indeed, Lemma 4.10 implies that the measure induced
by Fx (as a random variable on (M ×Ω, dσ)) onto C2(B0) is tight. Thus, to conclude the
proof of Proposition 9.1, it is sufficient to prove the following result:

Lemma 9.4 (Convergence of finite-dimensional distributions). Let m be some positive
integer, B0 = B(0, 1), ρ0 as in Corollary 4.4, Fx be as in 4.1 and Fµ be the random
monochromatic wave as in (4.2). Then, assuming that M satisfies the assumption A0 as
in (8.1) and ρ ≡ ρ0, for every y1, ...ym ∈ B0 ⊆ Rn, we have

(Fx(y1), ..., Fx(ym))
d−→ (Fµ(y1), ..., Fµ(ym)) T → ∞,

where the convergence is in distribution as a random vector defined on (M × Ω, dσ).
Moreover, for every α = (α1, ..., αn), with |α| ≤ 2, one has

(DαFx(y1), ..., D
αFx(ym))

d−→ (DαFµ(y1), ..., D
αFµ(ym)) T → ∞.

Using some classical probability language [11, Theorem 2.6], we may reformulate Lemma
9.4 as follows:

Lemma 9.5. Let B0 = B(0, 1), ρ0 as in Corollary 4.4, Fx be as in (4.1), and Fµ be as in
(4.2). Assuming that M satisfies assumption A0 of Definition 8.1 and ρ ≡ ρ0, there exists
a set A3 = A3(T ) ⊆ M of volume Vol(A3) = oT→∞(1), such that the following holds.
Given a uniformly continuous and bounded function g : Rm → R, as T → ∞, one has

sup
x∈M\A3

∣∣∣∣∫
Ω

g(Fx(y1), ..., Fx(ym))dP−
∫
Ω

g(Fµ(y1), ..., Fµ(ym))dP
∣∣∣∣→ 0,
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and, for all multi-index |α| ≤ 2, one also has

sup
x∈M\A3

∣∣∣∣∫
Ω

g(DαFx(y1), ..., D
αFx(ym))dP−

∫
Ω

g(DαFµ(y1), ..., D
αFµ(ym))dP

∣∣∣∣→ 0.

For the reader’s convenience, we provide a proof that Lemma 9.5 implies Lemma 9.4:

Proof of Lemma 9.4 assuming Lemma 9.5. By Portmanteau Theorem [11, Theorem 2.1]
Lemma 9.4 is equivalent to the following:∫

M×Ω

g(Fx(y1), ..., (Fx(ym))dσ →
∫
Ω

g(Fµ(y1), ..., (Fµ(ym))dP T → ∞ (9.10)

for all bounded and uniformly continuous functions g : Rm → R. Suppose that (9.10) fails
for some g. Then there exists some ε = ε(g) > 0 such that∣∣∣∣∫

M×Ω

g(Fx(y1), ..., (Fx(ym))dσ −
∫
Ω

g(Fµ(y1), ..., (Fµ(ym))dP
∣∣∣∣ ≥ ε,

along a subsequence Ti → ∞. Now, let A3 ⊆ M be as in Lemma 9.5, then∫
M×Ω

g(Fx(y1), ..., Fx(ym))dσ =

∫
(M\A3)×Ω

g(Fx(y1), ..., Fx(ym))dσ + og(1)

=

∫
(M\A3)×Ω

g(Fµ(y1), ..., Fµ(ym))dσ + og(1),

making use of g being bounded. Therefore, we have∣∣∣∣∫
M×Ω

g(Fx(y1), ..., (Fx(ym))dσ −
∫
Ω

g(Fµ(y1), ..., (Fµ(ym))dP
∣∣∣∣ < ε,

for all sufficiently large T ≥ T0. This contradiction concludes the proof of Lemma 9.4 □

We are now going to prove Lemma 9.5. The proof is similar to the proof of Lemma 4.6,
but we reproduce it for completeness:

Proof of Lemma 9.5. Let ϕi,x the restriction of ϕi to Bg(x, 1/T ) and let A3 = A1 ∪ A2

where A1 is the exceptional set prescribed by Proposition 8.2 and A2 is the set constructed

within Lemma 9.2 applied with K = (log T )
n−1

2(n+1) = (log T )c. By Lemma 9.2, for all
x ∈ M\A3, we have

max
λi∈[T−ρ,T ]

sup
Bg(x,2/T )

|ϕi| ≲
v(T )1/2

(log T )c
,

where the constant implied in the “≲” notation is absolute. Moreover, given and multi-
index |α| ≤ 2, bearing in mind that

sup
B0

|Dαϕi,x| ≲ sup
Bg(x,2/T )

|T−αDαϕi|,

we also have

max
λi∈[T−ρ,T ]

sup
B0

|Dαϕi,x| ≲
v(T )1/2

(log T )c
. (9.11)
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We are going to first consider the distribution of the vector (Fx(y1), ..., Fx(ym)) for
x ∈ M\A3. Thanks to Proposition 8.2, we have

sup
i,j∈{1,...,m}
x∈M\A3

|E[Fx(yi) · Fx(yj)]− E[Fµ(yi) · Fµ(yj)]| → 0 T → ∞. (9.12)

Therefore, by the multidimensional version of Lindeberg’s Central Limit Theorem (Lemma
4.8), and upon using (9.12), it suffices to prove that, for every ε > 0, we have

sup
y∈B0

x∈M\A3

1

v(T )

∑
λi

E[|aiϕi,x(y)|21|aiϕi,x(y)|>εv(T )1/2 ] → 0 T → ∞ (9.13)

uniformly for all y ∈ B0 and all x ∈ M\A3, where 1 is the indicator function and
v(T ) = cMρT n−1(1 + o(1)). Mind that the convergence of (Fx(y1), ..., Fx(ym)) is not
asserted for a single fixed x ∈ M , but rather, for any sequence of “good” x, and, therefore,
as a random variable on M × Ω, in accordance with the assertion of Lemma 9.5, see the
explanation in section 2. The calculation leading to (9.13) is identical to the calculation
in Lemma 4.6 and therefore omitted.

In order to prove the convergence of the derivative vector, and upon recalling the second
part of Proposition 8.2, again by the multidimensional version of Lindeberg’s Central
Limit Theorem, it is sufficient to prove that for any ε > 0 and |α| ≤ 2 we have

sup
1

v(T )

∑
λi

E[|aiDαϕi,x(y)|21|aiDαϕi,x(y)|>εv(T )1/2 ] → 0 T → ∞. (9.14)

Similarly to the above argument, (9.11) implies (9.14) if |α| ≤ 2, thus concluding the
proof of Lemma 9.5. □
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