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Abstract—Recently, several morphologies, each with its advan-
tages, have been proposed for the GelSight high-resolution tactile
sensors. However, existing simulation methods are limited to flat-
surface sensors, which prevents its usage with the newer sensors
of non-flat morphologies in Sim2Real experiments. In this paper,
we extend a previously proposed GelSight simulation method,
which was developed for flat-surface sensors, and propose a
novel method for curved sensors. In particular, we address
the simulation of light rays travelling through a curved tactile
membrane in the form of geodesic paths. The method is validated
by simulating the finger-shaped GelTip sensor and comparing
the generated synthetic tactile images against the corresponding
real images. Our extensive experiments show that combining
the illumination generated from the geodesic paths, with a
background image from the real sensor, produces the best results
when compared to the lighting generated by direct linear paths
in the same conditions. As the method is parameterised by
the sensor mesh, it can be applied in principle to simulate a
tactile sensor of any morphology. The proposed method not only
unlocks simulating existing optical tactile sensors of complex
morphologies, but also enables experimenting with sensors of
novel morphologies, before the fabrication of the real sensor.
Project website: https://danfergo.github.io/geltip-sim

I. INTRODUCTION

Tactile sensing is an important capability for robots that
interact with objects in unstructured environments. In such
challenging environments, vision often produces imprecise or
incomplete observations, due to occlusion of the objects by
the robot hands, changes of light conditions and object colours
variances, which makes tactile sensing vital in determining ob-
ject properties. However, the design of optimal tactile sensors
still remains an open challenge and there are open questions
for their morphology, the fitting of the necessary electronics
in compact volumes, and the required soft membrane resistant
to wear and tear, etc. To address these questions, in the past
decades a wide variety of working principles and designs have
been explored Dahiya et al. [6], Luo et al. [23], Li et al. [22].

One convenient and promising direction is the usage of
standard cameras behind a soft opaque membrane to capture
the up-close and colour-invariant tactile images. There are two
main families of such camera-based tactile sensors: marker-
based, represented by TacTip sensors Ward-Cherrier et al.

Figure 1. (A) and (B): The real and the simulated experimental setups
respectively, in each a GelTip tactile sensor is mounted onto a 3D printer
and contacts a 3D printed object (here is a cube with a hollow cylinder in
the centre). (C) and (D): The corresponding tactile images captured using the
GelTip sensor, real and simulated (with Plane light field) respectively.

[34], and image-based, represented by GelSight sensors Yuan
et al. [35]. The former tracks markers printed on the inner
side of the sensor’s membrane, while the latter considers the
entire raw image for photometric analysis. Both of the two
families started from the design of having the membrane
placed on a flat clear substrate. However, in recent years a
few variants, with varied morphologies, have been proposed to
accommodate the needs of different applications [11, 26, 28].

Similar to many other tactile sensors that use a soft mem-
brane to conform to sensed objects, camera-based tactile
sensors suffer from degeneration through use due to the wear-
and-tear of the membrane. To mitigate this issue, one solution
is to run experiments with such sensors in simulation first, and
then deploy the trained models for the final evaluation with
the real sensors. Compared to running the entire work using
the real setup, the Sim2Real approach is less damage-prone to
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the tactile sensors, and potentially less time-consuming by the
usage of parallel training in simulation. To this end, in recent
years simulation models have been proposed for camera-based
tactile sensors, particularly GelSight sensors Gomes et al.
[9, 12], Agarwal et al. [1], Wang et al. [33], Chen et al. [5],
which have been widely used Hogan et al. [14], Zhao et al.
[37], Jiang et al. [16] and are of our interest.

In this paper, we propose a novel geodesic-based approach
to simulate camera-based tactile sensors of complex morpholo-
gies, particularly ones in which the light travels in the mem-
brane placed on a curved surface. We consider the geodesic,
i.e., the shortest path on a curved surface, as a reasonable path
for the light to travel in the membrane. Since the light within
the entire sensor is constant, we pre-compute the light field that
is generated from each light-source beforehand, i.e., a process
that is commonly referred to in computer graphics as light
baking. In this way, we only need to compute the geodesic
once and we can generalise the previously proposed GelSight
simulation method Gomes et al. [9, 12] from a constant to
a non-linear light field, enabling to simulate curved sensors
such as Gomes et al. [11], Romero et al. [28]. Furthermore,
as we make use of geodesic paths for computing the light
field from a mesh description of the sensor, this method can
be used for simulating other existing optical tactile sensors
of a complex morphology or experimenting new morphology
designs in simulation before fabrication of the sensor.

To evaluate our proposed method, we collect a dataset
of real RGB tactile images using an improved GelTip sen-
sor Gomes et al. [11], and corresponding synthetic depth-maps
that are then used to generate synthetic RGB tactile images.
As shown in Figure 1, a 3D printer was augmented with two
additional servo motors to perform accurate tapping motions
throughout the entire sensor surface, and the corresponding
setup is implemented in the widely used simulator MuJoCo
Todorov et al. [31]. Both qualitative and quantitative analyses
are performed to compare the difference between real and
virtual tactile images, which is as low as 3.9% on average
in the Mean Absolute Error (MAE) and a similarity of 0.93 in
the Structural Similarity Index Measure (SSIM). Furthermore,
to demonstrate the capability of this method being applied
for Sim2Real learning, a contact localisation task is carried
out: The model is trained with tactile images generated by
our simulation method, and is then evaluated using the real
samples from the GelTip sensor.

II. RELATED WORKS

A. High-resolution optical tactile sensors

The GelSight working principle has been initially proposed
in Johnson and Adelson [19] as a method for reconstructing the
texture and shape of contacted objects. To that purpose, three
light sources are placed from opposite angles next to a trans-
parent elastomer that is coated with an opaque reflective paint,
resulting in three different shaded images of the in-contact
object texture. Because of the constrained setup, a direct
mapping between the observed image pixel intensities and the
elastomer surface orientation can be established, enabling the

Figure 2. The GelTip sensor used to capture the real tactile images. The
used sensor results from a few modifications over the previously proposed
GelTip Gomes et al. [11] sensor that aim at improving its practical robustness.
Specifically, the original camera mount is used to secure the camera boards
(A); the body of the sensor is simplified into a single cylindrical case (A, C);
and the positioning and quantity (from 3 to 6, per colour) of the LEDs (A,
B) are revised for improved illumination. (D) The sensor working principle:
light rays emitted by the LEDs travel through the elastomer, around the finger-
shaped membrane. An object contacting the elastomer membrane distorts the
elastomer, affecting the light path and resulting in the tactile imprint captured
by the sensor camera.

surface to be reconstructed using photometric analysis. Thanks
to its simple fabrication and the high-resolution of tactile
images for robots to extract rich information, a wide variety
of designs have been proposed to use this working principle
to construct robotic tactile sensors Dong et al. [7], Lambeta
et al. [20], Donlon et al. [8], Taylor et al. [30]. Most of these
designs focused on miniaturising the sensor and they have been
extensively investigated for various applications Cao et al.
[3], Jiang et al. [15], Lee et al. [21], Jiang et al. [16], Jing
et al. [18], Zhao et al. [37], Calandra et al. [2], Cao et al.
[4]. However, most of them are constrained with a single flat
sensing area, which limits the potential of these sensors being
used in unstructured environments where unexpected contacts
can occur either inside or outside of the grasp closure Gomes
et al. [10]. To this end, a few designs have been recently
proposed, in which a highly curved and/or domed finger-
shaped surface membrane is considered instead, e.g., the
GelTip sensor Gomes et al. [11, 10], the OmniTact sensor Pad-
manabha et al. [26] and a semi-round sensor Romero et al.
[28]. GelTip and Romero et al. [28] follow the original design
of the GelSight sensor Dong et al. [7], using glass spectres



to guide the light through the membrane. In contrast, the
OmniTact points the lights directly onto the membrane surface,
which was also applied in flat sensors such as Donlon et al.
[8], Lambeta et al. [20]. However, as argued and validated
in Wang et al. [32], it is highly desirable to have the light travel
through the membrane and tangent to the sensing surface,
so as to achieve a more homogeneous light distribution and
enable using methods such as Poisson surface reconstruction
for reconstructing the elastomer surface.

B. Simulation of GelSight sensors for Sim2Real learning

To save time and resources, it is desirable to develop and
test robotic agents initially within a simulator before their
deployment in real life. However, existing simulators lack
appropriate models to simulate optical tactile sensors. To
address this challenge, an approach was proposed to use a
depth sensor in simulation to capture the geometry of the
in-contact object and then render the obtained depth map to
get a realistic tactile image for simulating GelSight sensors
in Gomes et al. [9, 12], Chen et al. [5]. Some other works
used OpenGL directly Wang et al. [33] or physics based light
modelling Agarwal et al. [1] to simulate the GelSight sensors.
However, the latter methods are constrained to simulating
sensors in which the light is shone directly at the sensor’s
membrane Dong et al. [7], Lambeta et al. [20], Padmanabha
et al. [26], not through the membrane Dong et al. [7], Romero
et al. [28], Wang et al. [32]. It is vital to have the light travel
through the membrane, to ensure a homogeneous distribution
of light on the membrane for better surface reconstructions,
as argued in Wang et al. [32]. This has particular implications
for curved sensors such as Gomes et al. [11], Romero et al.
[28], as computing all the linear reflections within the curved
membrane is computationally infeasible, and thus it is neces-
sary to study the curved path through which the light travels
within the membrane.

III. METHOD

Starting from the method proposed in Gomes et al. [9, 12]
for the flat GelSight sensors, additional steps are needed to
address the curved geometry of the sensor and the light being
guided through the curved membrane when simulating optical
tactile sensors whose surface is not flat, for example the
GelTip sensor as illustrated in Figure 2. In these sensors,
the orthographic camera assumption is dropped, and the cam-
era is explicitly modelled using the standard camera model.
More importantly, the light directions are generalised from
constants to light fields. We compute the light fields using 4
different methods that we will refer throughout the paper as
Linear, Plane, Geodesic and Transport. The overall approach
of simulating optical tactile sensors consists of two steps:
the light fields of the sensor are first computed offline; with
the computed light fields, the simulation model is then run
online for each frame of the sensor simulation. The online
simulation model consists of three main steps: 1) smoothing of
the raw depth map, captured from the simulation environment,
to mimic the elastic deformation of the real sensor; 2) mapping

Figure 3. The four light fields L̂m, for a given light source represented by
the black sphere. The linear light field is highly non-tangent to the surface
of the sensor around the tip, which results in the bright illumination shown
in Figure 6. In contrast, the remaining Plane, Geodesic and Transport fields
are always tangent to the surface of the sensor, resulting in no illumination
in areas without deformation caused by contacts.

of the smoothed depth map onto a point-cloud in the camera
coordinates frame; 3) generation of the tactile image using
Phong’s illumination model and the pre-computed light fields.

A. Offline pre-computation of light fields

A light ray emitted by a point light source Lm to a
target point T in open space travels in a straight direction,
#»

L = Lm − T , resulting in a Linear light field of radial or
conical shape, or a uniform light field (of parallel rays) if
Lm is considered at the infinity. However, for some GelSight
sensors such as [11, 28, 7], because the illumination sources
are placed tangential to the tactile membrane, the light field
travels through the membrane and assumes the sensor surface
geometry. For curved sensors [11, 28], this results in a highly
non-linear light field L̂m(u, v) that must be computed taking
into consideration the sensor’s tactile membrane geometry:

L̂m(u, v) = f(Lm, P,M) (1)



where P is the point cloud derived from the depth map
Ddeform ([12] and detailed in Sub-section III-B) and M is
the sensor surface’s mesh description.

We assume that on a curved surface, the predominant ray
travelling from the point light source Lm to the target point T ,
through the transparent elastomer, follows the corresponding
shortest path possible, or geodesic that is a locally length-
minimising curve. To compute such light paths from the sensor
membrane mesh description, one naive approach is to intersect
the mesh of the tactile membrane with a Plane that contains
the light source position Lm and the corresponding target T
and is orthogonal to the mesh surface on Lm. The final sub-
segment between Lm and T can then be derived and sorted,
followed by extracting the final L̂m. Figure 3-A shows the
resulting light fields for a single light source over the mesh
using this Plane method.

A more accurate discrete Geodesic path can also be com-
puted, using the method proposed in Mitchell et al. [25].
The algorithm works similarly to the Dijkstra shortest path
algorithm for graphs, in which the distance between two
neighbouring vertices is incrementally propagated through
the graph. Figure 3-B shows the resulting light fields for a
single light source over the mesh using this Geodesic method.
However, the computation of such geodesic paths is com-
putationally expensive and while the light travels effectively
through such geodesic paths, for the illumination rendering
purposes we are only concerned with the vector at the end of
such paths. In other words, we are concerned with the problem
of vector Transport. In Sharp et al. [29], the vector heat method
was proposed, in which these vectors can be computed more
efficiently via short-time heat flow, resulting in a significantly
more efficient algorithm.

While the Transport method is highly more efficient than
the Planes and Geodesic methods, reducing the computation
time from around one and a few hours respectively, to a few
minutes (considering our working parameters, mesh, depth-
map resolution, parallelisation over an 8-core CPU, etc.), it is
still infeasible to be run in real time for processing the light
fields of each frame of the tactile images. Nonetheless, as
GelSight sensors are enclosed and immune to external light
variance, and that the elastomer membrane sits on top of a
rigid glass, the deformations of the membrane during contacts
would be insufficient to alter the overall light field, and as
such we can assume that the light field stays constant. To this
end, we can compute the entire light field only once, offline,
and store the resulting light map for later online use.

B. Elastomer elastic deformation approximation

While running online, a depth-map D is captured from the
simulation environment and its elastic deformation Ddeform is
approximated with a Gaussian filter, followed by an element-
wise minimum operation to ensure the in-contact protrusion
stays undeformed, similarly to Gomes et al. [9, 12]:

Ddeform = min(D,Dref + (Dref −D) ∗G) (2)

Figure 4. (A) The profile of the raw (in red) and Gaussian smoothed (green)
depth maps, for the row highlighted in red in (B). As shown in the figure, the
green smoothed profile resembles the real deformation more closely. (B) The
raw depth map captured from the depth camera installed inside the sensor
membrane in the MuJoCo environment, whilst a sphere protrudes the sensor
membrane.

where D is the depth map captured online within the simula-
tion, Dref is a reference depth map taken without any contact
occurring and G is the Gaussian kernel convolved over the
difference of D and Dref . Figure 4 shows an example of the
result of such operations over a profile of the depth map being
contacted by a sphere object.

C. Inverse camera projection model

The elastomer surface height map captured in the form
of a depth-map Ddeform is then converted into a point
cloud P (u, v) to enable the later application of the Phong’s
Illumination model Phong [27]:

P (u, v) =


x = (u− cx)

z
fu

y = (v − cy)
z
fv

z = Ddeform(u,v)

(3)

where (cx, cy) is the centre of the depth map Ddeform; fu
and fv are given by:

fu =
Dwidth

2 tan( fov2 )
, fv =

Dheight

2 tan( fov2 )
(4)

where Dwidth and Dheight are the width and height of the
depth map Ddeform in pixels; fov is the angular camera field
of view in radians.

D. Image Rendering using the Phong’s reflection model

The generation of RGB tactile images I from the height-
map H of the elastomer (obtained from Ddeform) can be
interpreted as the inverse problem of the surface reconstruction
problem Johnson and Adelson [19], as the former consists
of finding the mapping function H → I while the latter
I → H . In both cases, the relationship between the two can
be described by:

I(x, y) = R

(
∂H

∂x
,
∂H

∂y

)
(5)



where R(·) is the reflectance function that models both
the lighting conditions (i.e., illumination of the LEDs) and
the reflectance properties of the surface material (i.e., the
elastomer coating paint). Here, it should be noted that the
colour observed at a given pixel is directly correlated with
the orientation of the corresponding point on the elastomer.
In Johnson and Adelson [19], the mapping of the two points
in the image space and the elastomer is built through a
calibration process. In our case, we get R(·) using the Phong’s
illumination model Phong [27]. Phong’s model is an empirical
model of local illumination that has been developed in the
context of 3D Computer Graphics to describe how a given
surface reflects light as a combination of the diffuse and
specular reflections. From Phong’s model, I(x, y) observed
at a given point of the sensor elastomer is given by three
components: ambient, diffuse and specular light, as

I = kaia +
∑
m∈L

(kd(L̂m · N̂)im,d + ks(R̂m · V̂ )αim,s) (6)

R̂m = 2(L̂m · N̂)N̂ − L̂m (7)

where L is the set of light sources (i.e., LEDs), L̂m is the
emission direction of a given light source Lm; ia is the
intensity of the ambient light that is not caused by any of
the LEDs; im,d and im,s are the intensities of the diffuse and
specular reflections of light source m respectively; ka, kd, ks
and α are all reflectance properties of the surface; R̂m is the
direction that a perfectly reflected ray of the light would take;
V̂ is the direction pointing towards the camera. Given that our
camera is pointing perpendicularly to the elastomer, V̂ is set to
< 0, 0, 1 >. The normalised surface normals N̂ are computed
using the discrete partial derivatives of the height-map, as in
the surface reconstruction Johnson and Adelson [19]:

N̂ =

∂p
∂x × ∂p

∂y

∥∂P
∂x × ∂p

∂y∥
(8)

where the partial derivatives ∂p
∂x and ∂p

∂y are computed using the
Sobel edge detector over a point p in the point cloud P . Given
the closed design of optical tactile sensors, and to capture
unmodeled illumination, we set the background illumination
kaia to be an aligned image captured using a real sensor, when
no contact is being applied to it.

IV. EXPERIMENTAL SETUP AND GELTIP DATASET

To evaluate our simulation method, we collect aligned
datasets of contacts on the real and simulated GelTip sensors,
by tapping 8 3D printed objects used in Gomes et al. [12],
as shown in Figure 5, against the sensor. The data collection
motions consist of equidistant and perpendicular taps on 3
straight paths along the longer axis of the sensor, from the tip
to its base, with the sensor rotating π/2 in between each path.

In the real environment, the captured tactile images are the
RGB images from the sensor camera, while in simulation, are
from the depth maps in MuJoCo. Then, we experiment with

Figure 5. Set of 3D printed objects, used to collect the dataset of tactile
images. From left to right, top to bottom, “dots”, “sphere”, “indented prism”,
“cylinder”, “open cylinder”, “cone”, “pacman” and “random”.

the simulation model offline by setting its hyper-parameters,
e.g., the different light fields, and generate the corresponding
RGB synthetic tactile images. To capture the real samples,
we set up a GelTip sensor on a Fused Deposition Modelling
(FDM) 3D printer (Anet A30, model from Geeetech) and fix
the contacting object to the printer head. Due to the curvature
of the GelTip and the necessity of generating curved and down-
ward motions normal to the sensor surface, two additional
servos Hitec HS-422 are used to control the orientation of
the tactile sensor (Sg) and of the contacting object (Si). The
printer is controlled by issuing G-code commands through se-
rial communication. Similarly, the servos are controlled using
an Arduino Mega 2560 board. When setting up the simulation
in MuJoCo, the parameters to take into consideration are the
visual map znear and zfar attributes that set the minimum and
maximum depths of the OpenGL projection clipping planes,
as well as the camera’s Field of View (FoV). znear plane
is carefully adjusted to ensure that the GelTip membrane is
entirely rendered. Further, znear and zfar values must be later
used to un-normalise the initially normalised depth map D[0,1]

provided by the MuJoCo API following:

D =
znear

1−D[0,1]
1−znear

zfar

(9)

The simulation depth maps and real tactile images, are man-
ually aligned by visually finding the transform that produces
highest overlapping between real and simulated contacts.

To compute the light fields, a reference depth map (with
no contacts) is captured from the simulator and converted
into a point cloud. This point cloud is then used to align the
sensor elastomer mesh (that was used to construct the real and
simulated sensors). Finally, the light fields are computed. The
Linear light field is computed straightforward as L̂m = L−p

∥L−p∥ ,
where p is a point on the sensor surface and L is the position
of the light source. The Plane field is computed using the
Python library trimesh1 for solving the plane-mesh intersec-
tion, followed by a heuristic algorithm to extract the vector at
the target point, as described in Section III-A. The Geodesic
field is computed using pygeodesic2 and the Transport using

1https://pypi.org/project/trimesh/
2https://pypi.org/project/pygeodesic/



Figure 6. Samples of tactile images extracted from the real (aligned) and synthetic datasets. From left to right, contacts against the “sphere”, “cone”,
“indented prism”, “dots” and “open cylinder”, from the object set shown in Figure 5. From top to bottom: the real samples; the simulations using the Linear,
Geodesic and Transport light fields. As highlighted in the first column, with no ambient illumination applied, the Geodesic, Linear and Transport fields result
in illumination only in the in-contact areas and thus can successfully be combined with the real background image, to produce a realistic-looking simulated
image, as shown in the three columns on the right. In contrast to the results from the other three methods, the Linear light field results in a highly bright tip,
which is different from what occurs in real images.

the transport vector method from potpourri3d3. These real and
simulated datasets, together with object STL files, and source-
code can be found on our project website.

V. EXPERIMENTS

In this section we evaluate our method by firstly analysing
and comparing the synthetic datasets generated using the
different light fields, secondly demonstrating the usage of the
synthetic dataset to pre-train a neural network in Sim2Real
tasks and, finally, illustrating the application of the proposed
simulation model to explore possible future sensor designs.

A. Quantitative and qualitative comparison of the light fields

To assess the four different light fields, we generate the
corresponding version of the dataset, from the captured depth
maps in simulation, and quantify how similar the generated
tactile images are, when compared against the real corre-
spondences, by computing the Mean Absolute Error (MAE),
Structural Similarity (SSIM) Z. Wang et al. [36] and Peak
Signal-to-Noise Ratio (PSNR) over the entire dataset for the

3https://pypi.org/project/potpourri3d/

different scenarios. As reported in Table I, the Linear light
field results in better MAE and SSIM of 10.9% and 0.84,
when no ambient light is considered. However, if either a
solid ambient illumination, or the background image from the
real sensor is used, then the Plane, Geodesic and Transport
methods produce better results, with a small MAE of 3.9% and
a high SSIM of 0.93. This directly comes from the fact that the
Plane, Geodesic and Transport methods do not produce any
illumination in areas that are not being deformed by a contact,
which contrasts with the Linear method that generates bright
gradients throughout the entire sensor surface. This occurs
because when no ambient light is considered, kaia = 0, and
where no contacts are happening, with the light travelling
tangent through the surface, L̂m ⊥ N̂ =⇒ L̂m · N̂ = 0,
and the entire Phong’s illumination expression is zero. This
happens by design and follows directly from the GelSight
working principle Johnson and Adelson [19].

However, when compared against the real tactile images,
we find that in practice much light travels linearly from the
light sources through the membrane core, due to the sub-
optimal construction of the GelTip membrane. As shown in the



Table I
REAL AND GENERATED DATASETS COMPARISON

MAE SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR

NO BACKGROUND SOLID BACKGROUND REAL BACKGROUND

Linear 10.9% 0.84 14.83 17.6% 0.85 10.54 17.4% 0.85 10.90

Plane 37.5% 0.39 5.50 7.5% 0.93 18.28 3.9% 0.94 24.86

Geodesic 37.5% 0.34 5.50 7.6% 0.93 18.13 3.9% 0.93 24.20

Transport 37.6% 0.38 5.49 7.6% 0.93 18.10 4.0% 0.94 24.08

examples with a real background image in Figure 6, this results
in the highly bright and colourful gradients in areas without
any contacts and contrasting to an ideal lighting that would
only travel through the elastomer membrane. Nonetheless,
the Linear light field results in a highly bright tip of the
sensor, which heavily contrasts with the more homogeneous
(or even darker) tip observed in the real images. These
gradients in areas of no contact can also be observed in flat
GelSight sensors, due to their imperfect construction. In the
flat GelSight simulation method Gomes et al. [12], this issue
was addressed by using a real tactile image as background
illumination, which is captured when no contact is occurring.
Here, because the non-linear fields are tangent to the elastomer
surface, we can use the same approach, as shown in Figure 6.

B. Sim2Real transfer of contact perception

To evaluate the Sim2Real transfer of models optimised
using the synthetic tactile images we experiment with con-
tact localisation and classification. To this end, the real and
simulation RGB datasets are split into equal training (80%)
and validation (20%) splits, and then a ResNet from He et al.
[13][24] is trained and evaluated using either simulated or
real data to investigate how the models trained in simulation
will perform on the real data, compared to the performance
of evaluating the performance of the trained model in its
own domain. Specifically, we have three different scenarios:
Real2Real (R2R), Sim2Sim (S2S) and Sim2Real (S2R).

In all scenarios the network is trained with random batches
of 64 images, 8 batches per epoch, for 100 epochs, using
Adadelta, a learning rate of 0.1 and the mean squared error
loss. The dataset computed with the Plane light field and real
background image is used for the simulation data. Further,
to fully exploit the advantage of simulation, and given the
small Base real/sim datasets of 18 × 8 = 144 images, an
Extended simulated dataset is also collected, using the same
simulation model configuration, in which the number of rows
is increased to 5, the contacts per row to 16, and apply
small transformations to the sensor and indenter are applied,
resulting in a dataset of 2, 880 × 8 = 23, 040 synthetic
images. For the classification task, we also experiment with
cropping centred patches around the in-contact areas. For
the localisation task, the errors reported in millimetres are
computed using the camera model to project the predictions
of the network in the image space to points in the camera
coordinates, as in Gomes et al. [11].

As reported in Tables II and III, in general, performing these

Table II
SIM2REAL CLASSIFICATION ACCURACY (%)

Base Extended Base Extended

FULL IMAGE CROPPED PATCH

R2R 64.3 - 35.7 -
S2S 75.0 100.0 96.4 100.0

S2R 42.8 50.0 14.3 32.14

Table III
SIM2REAL LOCALISATION (MM)

Base Extended

R2R 8.4 -
S2S 3.7 5.4

S2R 11.8 13.3

tasks with the simulated images, Sim2Sim, results in signifi-
cantly better results than the corresponding Real2Real cases.
With the model achieving the overall highest accuracy of 100%
in the classification task, and the lowest contact localisation
error of 3.7mm. In contrast, in the Real2Real scenario the
model achieves only 64.3% accuracy and a localisation error
of 8.4mm. One possible reason could be that with the real
sensor, the contact forces between the in-contact object and
the sensor, results in some bending of the sensor membrane
and consecutive weaker imprints, as noticeable in the examples
shown in Figure 6. On the other hand, while the Extended
dataset and cropping of centred patches positively contribute
to a reduction in the Sim2Real gap, the Sim2Real gap is still
significant: with the model trained with the simulated data
achieving only a maximum classification accuracy of 50.0%,
in the classification task, versus the 64.3% obtained by the
model trained with the real data. In the Sim2Real contact
localisation, the model obtains a minimum localisation error of
11.8mm, worse than the 8.4mm obtained the model trained
with real data. Future research could address this Sim2Real
gap, as in Jianu et al. [17].

C. Application to non-existing sensor designs

With the exception of the real background image, the
proposed model only depends on the sensor’s mesh description
and light sources parameters. Hence, it can be applied to
explore future sensor morphologies, before their fabrication.
To demonstrate this application, we design an irregular shaped
membrane inspired by the human finger, and apply the pro-
posed simulation model to it. As shown in Figure 7, the



Figure 7. Application of the proposed model to a non-existing sensor. Since
no real sensor exists to capture the real background image, an image generated
using the Linear light field is used to create the ambient illumination for the
Transport field.

Linear and Transport light fields are rendered with the sensor
being contacted by a sphere, and two tactile images are
created in simulation using the the Linear and Transport
light fields respectively. Since no real sensor exists to capture
the real background image, an image generated using the
Linear light field is used to create the ambient illumination
for the Transport field. We can find that the Transport method
generates more realistic light paths, especially at the tip of the
finger. This example shows that the simulated tactile sensor
of different morphologies could be experimented to optimise
its morphology for a given task. For example, for a given
grasping task, the optimal morphology of the optical tactile
sensor could be obtained in the simulation using our proposed
simulation model.

VI. CONCLUSION

In this paper, we proposed a novel approach for simulating
GelSight sensors of complex geometry, such as the GelTip. The
development of the simulation models enables to more rapidly
prototype optical tactile sensors with low cost, which is an ad-
vantage for all kinds of research using optical tactile sensors. A
second benefit of our proposed method is that it enables rapid
design of new sensor geometries and also evolutionary designs
for specific applications. Finally, the specific considerations
of the light trajectories within the tactile membrane help us in
better verify whether our assumptions about the real sensor are
true. For instance, with the analysis of different types of light
fields, we verify that tactile images captured by the existing
GelTip sensors contain a high degree of light that does not
travel parallel to the sensor surface, as idealised by the early
GelSight working principle Johnson and Adelson [19].

From a different perspective, we can understand the tactile
image illumination as resulting from multiple reflections and
phenomena. By simulating the component that travels through

the membrane and only affects the deformed areas, it enabled
us to construct a simulation that can take advantage of the real
background image, and thus result in a highly realistic simula-
tion, as demonstrated by our quantitative results. Furthermore,
the proposed method not only unlocks simulating existing
optical tactile sensors of complex morphologies, but also
enables experimenting with sensors of novel morphologies,
before the fabrication of the real sensor.

In the future, we will compare the tactile images obtained
from a real sensor fabricated using the morphology design
optimised in the simulation, and also apply our proposed
simulation model in Sim2Real learning for tasks like robot
grasping and manipulation with optical tactile sensing.
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