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Abstract 
Striatal dopamine is important to paranoid attributions, although its computational 
role in social inference remains elusive. We employed a simple game theoretic 
paradigm and computational model of intentional attributions to investigate the 
effects of dopamine D2/D3 antagonism on ongoing mental state inference following 
social outcomes. Haloperidol, compared to placebo, enhanced the impact of partner 
behaviour on beliefs about harmful intent, and increased learning from recent 
encounters. These alterations caused significant changes to model covariation and 
negative correlations between self-interest and harmful intent attributions. Our 
findings suggest haloperidol improves flexibility in model-based beliefs about others 
and simultaneously reduces the self-relevance of social observations. Our results 
may reflect the role of D2/D3 dopamine in supporting self-relevant mentalisation. Our 
data and model bridge theory between general and social accounts of value 
representation. We demonstrate initial evidence for the sensitivity of our model and 
short social paradigm to drug intervention and clinical dimensions, allowing 
distinctions between mechanisms that operate across traits and states. 
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Introduction 

Dysregulated striatal dopamine has been identified as a key causal component in 
psychosis. Influential work proposed that striatal dopamine mediates aberrant 
salience leading to atypical perceptual experiences (Howes & Kapur, 2009; Kapur, 
2004; Kapur et al., 2005) and more recent social-developmental models have 
highlighted the role of dopamine as a key point of convergence for a number of 
causal social and developmental factors, such as trauma, genetic vulnerability, and 
cannabis use (Howes & Murray, 2014). This has been supported by molecular and 
neuroimaging studies suggesting that developmental adversities (e.g., Dahoun et al., 
2019; Egerton et al., 2016) increases pre-synaptic turnover of dopamine in striatal 
regions that may fuel the onset (Howes et al., 2011a; 2011b; Jauhar et al., 2019) and 
exacerbation (Laruelle et al., 1996; 1999) of psychosis symptoms.  

Antipsychotics are the first-line treatment for psychosis and have good evidence for 
their efficacy (Schneider-Thoma et al., 2022). The exact mechanism by which their 
pharmacological effect reduces symptoms through the modulation of neurocognitive 
processes is still poorly understood. Understanding these pathways holds the 
promise of a better mechanistic understanding of psychosis and new targets for 
treatment development (Yip et al., 2022). A potential barrier to this process is that 
traditional verbally expressed mechanistic accounts of psychosis lack symptom-level 
and system-level specificity. Theorists must develop robust, falsifiable, empirical 
models of phenomena of interest (Haslbeck et al., 2022) and carefully map model 
parameters to the specific phenomenology of symptoms (Hitchcock et al., 2022) 
under a range of conditions.  

Computational modelling bridges gaps between neuroscience and clinical 
expression (Huys et al., 2016; Montague et al., 2012), offering precise accounts of 
complex behaviour. Within this framework, dopaminergic alterations have been 
linked to core computational processes related to psychosis, such as aberrant 
salience (Howes et al., 2020), slower belief updating (Adams et al., 2013; Ashinoff et 
al., 2022), increased expectations of volatility (Diaconescu et al., 2020; Hauke et al., 
2023; Reed et al., 2020), and model-based control (Mikus et al., 2022a).  

One particularly disabling core symptom of psychosis is paranoia, the unfounded 
belief that others are trying to cause you harm (Freeman, 2016; Brakoulias & 
Starcevic, 2008). Psychologically, paranoia is characterised by sensitivities to 
interpersonal threat (Raihani & Bell, 2019), attributing negative outcomes to external, 
personal causes (Bentall et al., 1994), and overly complex mentalisation (Fonagy & 
Target, 1996). Developing computational theories to bridge the gap between the 
phenomenology and the neurocognitive mechanisms of paranoia requires particular 
considerations. Computational approaches in the social domain must sufficiently 
account for large, and often recursive, action spaces (Feldman Hall & Nassar, 2021; 
Velez & Gweon, 2021). These structural principles may be more appropriate for 
psychiatric symptoms which inherently involve alterations to interpersonal beliefs 
concerning the self and others (Barnby et al., 2023).  

Models of intentional attributions – explicit inferences of the self about the mental 
state of others - allow for analyses that are theoretically related to ongoing paranoia. 
Current models include mechanistic explanations for perceived changes in the 



harmful intent and self-interest that might motivate the actions of another. Prior work 
suggests high trait paranoia is associated with rigid priors about the harmful intent of 
partners, and a belief that a partner’s actions are not consistent with their true 
intentions (Barnby et al., 2020; 2022a). Several predictions can be made concerning 
the influence of dopamine D2/D3 antagonism on paranoia. Synthetic, in silico models 
(Adams et al., 2022), neuroimaging evidence (Nour et al., 2018), prior predictions 
(Barnby et al., 2022a), and parallel psychopharmacological work (Mikus et al., 
2022a; 2022b) predict that D2/D3 antagonism will increase belief flexibility and 
improve consistency of the self’s model of others, which in turn should reduce self-
relevant attributions of harmful intent following social outcomes. However, this has 
yet to be tested. 

We examine the causal influence of D2/D3 dopamine receptor antagonism on 
computational mechanisms governing intentional attributions within a simple game 
theoretic context. Using a formal model of intentional attributions and an iterative 
Dictator game (Barnby et al., 2020a; 2022a), we test the impact of haloperidol, a 
D2/D3 antagonist, on paranoid beliefs using past data (Barnby et al., 2020b). We 
assess whether dopamine antagonism alters key computational processes involved 
in mental state inferences, allowing distinctions between trait representational 
changes (priors) and state learning processes (policy flexibility, uncertainty) along 
each dimension. 

Methods 

Participants 

This study was approved by KCL ethics board (HR-16/17-0603). All data were 
collected between August 2018 and August 2019. Participants were recruited 
through adverts in the local area, adverts on social media, in addition to adverts 
circulated via internal emails. 

Eighty-six participants were preliminarily phone screened. 35 participants were given 
a full medical screen. Thirty healthy males were recruited to take part in the full 
procedure. Two failed to complete all experimental days, leaving 28 participants for 
analysis. Inclusion criteria were that participants were healthy males, between the 
ages of 18 and 55. Participants were excluded if they had any evidence or history of 
clinically significant medical or psychiatric illness; if their use of prescription or non-
prescription drugs was deemed unsuitable by the medical team; if they had any 
condition that may have inhibited drug absorption (e.g. gastrectomy), a history of 
harmful alcohol or drug use determined by clinical interview, use of tobacco or 
nicotine containing products in excess of the equivalent of five cigarettes per day, a 
positive urine drug screen, or were unwilling or unable to comply with the lifestyle 
guidelines. Participants were excluded who, in the opinion of the medical team and 
investigator, had any medical or psychological condition, or social circumstance, 
which would impair their ability to participate reliably in the study, or who may 
increase the risk to themselves or others by participating. Some of these criteria 
were determined through telephone check for non-sensitive information (age, 
gender, general understanding of the study, and overall health) before their full 
screening visit. 



Procedure 

This study was part of a larger study that assessed the role of dopaminergic 
modulation on personality, beliefs, and social interaction. Here, we focus on the role 
of dopamine antagonism and pre-synaptic increases in the attribution of mental state 
inferences during a Dictator game (described below; see Figure 1a). 

The full procedure for participant screening is documented in a prior publication 
(Barnby et al., 2020). Briefly, participants who passed the brief phone screening 
were invited to attend an on-site screening day (see above). Participants were tested 
for drugs of abuse (SureScreen Diagnostics Ltd) and alcohol (breath test) prior to 
each experimental day and were excluded if any test was positive. Participants were 
given at least 7 days, but no more than two months, in between experimental days to 
allow for drug washout.  

On experimental days, participants were randomised to be initially administered 
either a placebo or 3mg haloperidol in two capsules, and 10mg of domperidone in 
one capsule (3 caps total). After half an hour, participants were dosed a second time 
with either 150mg of co-beneldopa (herein referred to as L-DOPA) or placebo in two 
capsules. Participants would never receive haloperidol and L-DOPA in the same 
day.  

The Sharing Game 

Participants were asked to play a within-subjects, multi-trial modification on the 
Dictator game design used in previous studies to assess paranoia (Barnby et al., 
2019; 2020), hereafter called ‘The Sharing Game’ (Figure 1b). In the game, 
participants played six trials against three different types of partner who are assigned 
the role of Dictator. In each trial, participants were told that they have a total of £0.10 
and their partner (the Dictator) had the choice to take half (£0.05) or all (£0.10) the 
money from the participant. Partner policies were one of three types: always take 
half of the money, have a 50:50 chance to take half or all of the money, or always 
take all of the money. These policies were labelled as fair, partially fair, and unfair, 
respectively. The order that participants were matched with partners was 
randomised. Each partner had a corresponding cartoon avatar with a neutral 
expression to support the notion that each of the six trials was with the same partner. 

After each trial, participants were asked to rate on a scale of 1–100 (initialised at 50) 
to what degree they believed that their partner was motivated (a) by a desire to earn 
more (self-interest), and (b) by a desire to reduce their bonus in the trial (harmful 
intent). From the participants perspective, the actions of the partner can be framed 
as either arising from motivations that concern the gain of value for the partner 
irrespective of the participant (other-relevant) or arising from motivations that 
concern the loss of value for the participant (self-relevant). 

After making all 36 attributions (two trial attributions for each of the six trials over 
three partners), participants were put in the role of the Dictator for six trials—whether 
to make a fair or unfair split of £0.10. Participants were first asked to choose an 
avatar from nine different cartoon faces before deciding on their six different splits. 
These Dictator decisions were not used for analysis but were collected to match 



subsequent participants with decisions from real partners. Participants were paid a 
baseline payment for their completion, plus any bonus they won from the game. 

Analysis 

Behavioural data has been previously published (Barnby et al., 2020). Here, we 
apply three computational hypotheses which could explain the data, centred around 
a Bayesian model (Barnby et al., 2020; 2022) developed to explain mental state 
inference dynamics during social observation, where recursive, strategic social 
action is not a process of interest (Barnby et al., 2023). Model 1 allowed separate 
uncertainties and likelihood weights for each attribution, identical to our prior work 
(Barnby et al., 2020). In line with general theories of belief updating, Model 2 
hypothesised that beliefs would be updating with the same likelihood weight. Model 3 
hypothesised that prior beliefs share a single uncertainty free parameter over each 
distribution. Descriptions of the parameters within the winning model are in Table 1. 

All computational models were fitted using the Hierarchical Bayesian Inference (HBI) 
algorithm which allows hierarchical parameter estimation while assuming random 
effects for group and individual model responsibility (Piray et al., 2019). This process 
is shown to be most robust to outliers versus non-hierarchical inference or standard 
hierarchical inference with fixed effects, and minimises parameter and model 
confusion (Piray et al., 2019). Parameters were estimated using the HBI in native 
space drawing from broad priors (𝜇! = 0, 𝜎! = 6.5; where 𝑚 = {𝑚", 𝑚#, 𝑚$}). This 
process was run independently for each drug condition due to the dependency of 
observations between conditions (the same participants were in each condition). 
Parameters were transformed into model-relevant space for analysis. All models and 
hierarchical fitting was implemented in Matlab (Version R2022B). All other analyses 
were conducted in R (version 4.2.3; x86_64 build) running on Mac OS (Ventura 
13.0). All statistics are reported as: (X, 95%CI: Y, Z), where X is the regression 
coefficient, and Y and Z are the 95% lower and upper confidence intervals (CI), 
respectively. All dependent regressors were centred and scaled. To consider the 
uncertainty of estimates we conducted Bayesian paired sample t-tests to assess 
individual-level parameter changes. This used JAGS as a backend MCMC sampler 
(Bååth, 2014); differences in the mean are additionally reported with their 
corresponding effect sizes (Cohen’s d) and posterior 95%HDI (High Density 
Interval). The raw output of this is listed in Table S1. Bayesian paired sample t-tests 
were also used to assess differences between attributional coupling over time. To 
note, in the original behavioural analysis (Barnby et al., 2020a) we excluded one 
extra participant due to their extreme trait psychometric paranoia score (leaving 27 
participants), however trait paranoia was not the subject of this analysis, and 
hierarchical model fitting constrains group behaviour during parameter estimation. 
Nevertheless, for transparency, we include analytic estimates with the original 27 
individual included for comparison. This did not change conclusions (Table S2). 

We also sought to examine model covariance. Exploratory factor analysis used 
oblique rotation, including all parameter estimates for each individual within placebo 
and haloperidol conditions. Optimal factors were determined from observation of the 
scree plot and cross-validated model accuracy (Figure S9). Cross-validation used 10 
folds with three repeats within a logistic general linear model. Parameter loadings 
and individual factor scores >|0.4| were retained for analysis.  



 
  



Figure 1. Experimental design and model space.  
 
(A) Participants were entered into a double-blind, placebo-controlled, within-subject 
experimental design. (B) Participants engaged in a three-partner version of the 
sharing game. Here, partners were assigned the role of Dictator and on each trial 
could either take £0.10 for themselves (unfair outcome) or take £0.05 and give the 
participant £0.05 (fair outcome). Participant reported two types of attributional intent 
concerning the motivations of the partner after each outcome. These included 
harmful intent attributions and self-interest attributions. Partner order was 
randomised, and partner change was signalled. (C) Model space used to test 
whether dopamine manipulations were best explained by the full model (M1), a 
model that constrained policy updating to a single sensitivity parameter for each 
attribution (M2), or a model that constrained prior uncertainty to a single parameter 
(M3; Table 1).  



Table 1. Winning model parameters and their causal structure. 𝑁𝐵 = number of 
discretised bins of each attributional response. 𝐵𝑖𝑛 = binominal distribution with an 
added precision parameter, i.e. in the case of HI: 𝑝(𝐻𝐼)%&'	~	𝐵(𝐻𝐼; 𝒑𝑯𝑰𝟎, 𝑁𝐵)"/𝒖𝑷𝒓𝒊 
 
Parameter Generative Purpose 

𝒑𝑯𝑰𝟎 Magnitude of the prior that the actions of others are generally 
motivated by harmful intent (HI) toward the self, 𝑝(𝐻𝐼)%&'	. 
Increasing this parameter increases the belief that a partner is 
motived by harmful intent before any actions are observed. 

𝒑𝑺𝑰𝟎 Magnitude of the prior that the actions of others are generally 
motivated by self-interest (SI) irrespective of the self, 
𝑝(𝑆𝐼)%&'.	Increasing this parameter increases the belief that a 
partner is motived by self-interest before any actions are observed. 

𝒖𝑷𝒓𝒊 Uncertainty over priors. Increasing this parameter broadens the 
prior distribution of both 𝑝(𝐻𝐼)%&' and 𝑝(𝑆𝐼)%&'. 

Prior 𝑝(𝐻𝐼)%&'		~	𝐵𝑖𝑛(𝐻𝐼; 𝒑𝑯𝑰𝟎, 𝒖𝑷𝒓𝒊, 𝑁𝐵) 
𝑝(𝑆𝐼)%&'		~	𝐵𝑖𝑛(𝑆𝐼; 𝒑𝑺𝑰𝟎, 𝒖𝑷𝒓𝒊, 𝑁𝐵) 
𝑝(𝐻𝐼, 𝑆𝐼)%&' =	𝑝(𝐻𝐼)%&'𝑝(𝑆𝐼)%&' 

𝑁𝐵 = 9 
𝒘𝟎 Intercept of the likelihood matrix, 𝜋./0, that calibrates the magnitude 

of attributional change when a fair or unfair action is made by a 
partner.  

𝒘𝑯𝑰 Impact on beliefs that an outcome (r) is motivated by harmful intent. 
Increasing this parameter leads to greater influence of a partner’s 
behaviour on attributions of harmful intent (belief flexibility). 

𝒘𝑺𝑰 Impact on beliefs that an outcome (r) is motivated by self-interest. 
Increasing this parameter leads to greater influence of a partner’s 
behaviour on attributions of self-interest (belief flexibility). 

Likelihood 𝜋./0(𝑟 = 0;𝐻𝐼, 𝑆𝐼) = 	𝜎(𝒘𝟎 + [𝒘𝑯𝑰 ∗ 𝐻𝐼 − 𝛿] + [𝒘𝑺𝑰 ∗ 𝑆𝐼 − 	𝛿]) 
𝜋./0(𝑟 = 0.5; 𝐻𝐼, 𝑆𝐼) = 1 − 𝜋./0(𝑟 = 0;𝐻𝐼, 𝑆𝐼) 

𝛿 =
𝑁𝐵 + 1
2 	 

𝜎(𝑥) =
1

1 + 𝑒45 
Update 

𝑝(𝐻𝐼, 𝑆𝐼)N % =	
𝜋./0(𝑟; 𝐻𝐼, 𝑆𝐼)𝑝(𝐻𝐼, 𝑆𝐼)%4"

∑ 𝜋./0(𝑟; 𝐻𝐼′, 𝑆𝐼′)𝑝(𝐻𝐼′, 𝑆𝐼′)%4"678,:78
	 

𝒖𝝅 The consistency with which partners were believed to act in 
accordance with their character. Higher values reduce consistency, 
causing a partner’s behaviour to have less impact on beliefs. 

Consistency 
rule 𝑝(𝐻𝐼, 𝑆𝐼)% ∝ 	𝑝(𝐻𝐼, 𝑆𝐼)N %	 "𝒖𝝅 + 	𝜉 

𝜉 = 0.02/𝑁𝐵#	 
𝜼 Controls the mixture of prior and posterior beliefs used as a starting 

point for each new encounter. Higher values indicate more reliance 
on information gathered from the last encounter, rather than 
reverting to prior beliefs. The product from the below equation, 
𝑝(𝐻𝐼, 𝑆𝐼)VVVVVVVVVVVV%&= replaces 𝑝(𝐻𝐼, 𝑆𝐼)%4" when beginning a new encounter. 

Change 
point 

𝑝(𝐻𝐼, 𝑆𝐼)VVVVVVVVVVVV%&= =	𝑝(𝐻𝐼, 𝑆𝐼)%&'	 ∗ [1 − 𝜼] +	𝑝(𝐻𝐼, 𝑆𝐼)%&= ∗ 	𝜼 
𝐶 = 𝑓𝑖𝑛𝑎𝑙	𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑎𝑛	𝑜𝑡ℎ𝑒𝑟	𝑖𝑛	𝑎𝑛	𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 



Results 

Behavioural results 

Behavioural results were published previously (Barnby et al., 2020). To summarise, 
when averaged over all Dictators, haloperidol caused a reduction in harmful intent 
attributions versus placebo (-0.17, 95%CI: -0.28, -0.05), but L-DOPA did not. 
Haloperidol also increased self-interest attributions versus placebo (0.16, 95%CI: 
0.05, 0.27), but L-DOPA did not. Unfair and partially fair Dictators both elicited higher 
harmful intent (Partially fair = 0.28, 95%CI: 0.16, 0.40; Unfair = 0.75, 95%CI: 0.63, 
0.87) and self-interest attributions (Partially fair = 0.59, 95%CI: 0.63, 0.87; Unfair = 
1.16, 95%CI: 1.05, 1.27) versus fair Dictators. 

Model comparison and recovery 

Bayesian hierarchical fitting and comparison identified that at the group level (Figure 
2A), participants under placebo and haloperidol were best fitted by model 3. This 
model assumed agents use a single uncertainty over both attributional priors, 
although used separate likelihood weights to update their beliefs about their partners 
policy. In contrast, participants under L-DOPA were best fit by model 2. This model 
assumes participants hold individual uncertainties over their prior beliefs, although 
use the same likelihood weight to update both attributional dimensions.  

For each condition we examined model generative performance and reliability. We 
extracted parameters for each individual under each condition according to the 
model that bore most responsibility for their behaviour (Figure 2B). We then 
simulated data for each participant with their individual-level parameters for each 
condition and model and re-estimated model comparison, recovered each model, 
generated attributions for each trial and dictator condition, and fitted regression 
models for main effects. Bayesian hierarchical fitting and comparison on simulated 
data demonstrated excellent similarity to group and individual level model 
responsibility and exceedance probabilities from real data (Figure S1A). Likewise, 
individual level parameters demonstrated excellent recovery (all Pearson r values > 
0.71, p values ~ 0; Figure S1B, C & D). Simulated and real attributions demonstrated 
excellent recovery across all drug and dictator conditions (all Pearson r values > 
0.62, p values ~ 0; Figure S1E). Simulated attributions also recovered the main 
effects of drug and dictator condition on attributional dynamics: haloperidol 
demonstrated reductions in harmful intent versus placebo (-0.26, 95%CI: -0.36, -
0.16), but L-DOPA did not, and haloperidol increased self-interest attributions versus 
placebo (0.26, 95%CI: 0.15, 0.37), but L-DOPA did not. 

We were most interested in examining the effect of haloperidol versus placebo in 
order to understand the mechanism behind the observed descriptive behavioural 
results. As model 3 achieved group-level dominance across both placebo and 
haloperidol conditions we were able to directly compare all individual-level, winning 
model parameters between-conditions {𝑝𝐻𝐼', 𝑝𝑆𝐼', 𝑢𝑃𝑟𝑖, 𝑢𝜋, 𝜂, 𝑤', 𝑤67 , 𝑤:7} (Table 1; 
see below). 



 



Figure 2. Model comparison, recovery, and generative performance.  

(A) Model responsibility across all three drug conditions. Greater model responsibility 
at the group and individual level indicates that a particular formulation was the most 
likely generative model to explain the data. Ex. Prob = Exceedance probability that a 
single model best defines group behaviour. Freq = Model frequency that each model 
is the best fitting model for participants. (B) Model recovery. All recovery analyses 
used n=28 synthetic participants – one for each real parameter set approximated 
from the data. The HBI algorithm correctly identified the correct model for most 
participants with trivial differences between model frequencies. (C) Correlation matrix 
of common parameters across all drug conditions for simulated (y axis) and real (x 
axis) data. All correlations were over 0.71 (p values < 0.001). ‘X’ indicates a non-
significant association. (D) Individual correlations between common parameters 
across haloperidol and placebo conditions for simulated (y axis) and real (x axis) 
data. All correlations were over 0.71 (p values < 0.001). Black lines indicate the 
linear model of perfect association (r=1). (E) Individual correlations between common 
parameters across all drug conditions for simulated (y axis) and real (x axis) data. 
Black lines indicate the linear model of perfect association (r =1). (F) Top panel: 
Correlation between simulated and real harmful intent (right) and self-interest (left) 
attributions across all Dictator policies. Bottom panel: Simulated harmful intent (left) 
and self-interest (right) attributions for each drug condition and Dictator policy. 

  



Haloperidol reduces the influence of priors and the precision of harmful intent  

We examined the differences between individual level parameters within-subjects for 
haloperidol versus placebo (Figure 3A; see Figure S4 [Supplementary Materials] for 
effect sizes). This suggested that haloperidol increased reliance on learning about a 
partner just encountered, relative to pre-existing prior beliefs about partners in 
general (𝜂; mean diff. = 0.15, 95%HDI: 0.03, 0.26; effect size = 0.66, 95%HDI: 0.22, 
1.10). Haloperidol did not influence the consistency with which partners were 
believed to act in accordance with their character (𝑢𝜋). 

Haloperidol increased learning flexibility over harmful intent attributions only. 
Haloperidol increased the impact of partner behaviour on harmful intent attributions 
(𝑤67; mean diff. = 0.10, 95%HDI: 0.06, 0.13; effect size = 1.20, 95%HDI: 0.64, 1.75), 
but not over self-interest (𝑤:7); a partner’s actions had more impact on a participant’s 
beliefs about their true motivations of intentional harm. Haloperidol also caused the 
intercept of the policy matrix to be drawn toward 0, allowing greater updating parity 
for each unfair or fair partner action (𝑤'; mean diff. = 0.58, 95%HDI: 0.01, 1.10; 
effect size = 0.43, 95%HDI: 0.02, 0.82). The 𝑤' effect size should be treated with 
caution; the posterior distribution is within the region of practical equivalence (Figure 
S4).  

We sought to further probe the model-based implications of drug differences on 
attributional flexibility in detail. Simulations on the marginal effect of 𝑤67 on 
attributional dynamics are suggestive of its role in modulating the precision (1/s2; 
inverse variance) of attributions over all trials, irrespective of Dictator policy (Figure 
3B). A regression model including 𝑤67 as a linear term and 𝑤' as a quadratic term 
was most parsimonious compared to using 𝑤' as a linear term (AIC = 568 vs. 1123). 
There was a main effect of 𝑤67 on the precision of harmful intent attributions (-6.13, 
95%CI: -6.28, -5.97; effect size = -0.88, 95%CI: -0.92, -0.85). There was a small 
effect of 𝑤' within the same model (-0.06, 95%CI: -0.064, -0.056, effect size = -0.11, 
95%CI: -0.14, -0.08). There was a significant but small interaction of 𝑤' and 𝑤67 on 
the precision of harmful intent (-0.22, 95%CI: -0.25, -0.20; effect size = -0.05, -0.08, -
0.02). Importantly, reductions in precision as a result of increased 𝑤67 reduced 
harmful intent (-0.93, 95%CI: -0.95, -0.92; effect size = -0.13, 95%CI: -0.14, -0.13).  

We found evidence that a greater 𝑤67 (cf. effect of haloperidol) may reduce precision 
most under conditions of ambiguity. Specifically, the precision of harmful intent 
attributions is lower in partially fair vs fair Dictators (-0.24, -0.33, -0.15; effect size = -
0.24, 95%CI: -0.33, -0.15), but unfair vs fair Dictators produced equivalent precision. 
Dictator policy interacts with 𝑤67: higher 𝑤67 is associated with lower precision under 
partially fair vs. fair dictators (-0.77, 95%CI: -1.42, -0.42; effect size = -0.11, 95%CI: -
0.21, -0.02). Thus, higher 𝑤67 accentuates flexibility within and between partners, but 
most in ambiguous social contexts where paranoia often flourishes. There was no 
interaction for unfair dictators vs. fair dictators (Figure S5). 

Haloperidol had no net significant influence on 𝑝𝐻𝐼', 𝑢𝑃𝑟𝑖, or 𝑝𝑆𝐼' (see Table S1). 
Individual parameter analysis suggests that haloperidol has a predominant net 
influence on the flexibility of belief updating about a specific context, here, that of our 
task. Under the influence of haloperidol, participants’ assumptions about each new 
encounter are more amenable to change under the influence of recent encounters. 



 



Figure 3. Influence of haloperidol on the winning model.  

(A) Bayesian t-test results in assessing the difference and uncertainty (distribution of 
values) of the change in mean (∆𝜇) in parameter estimates between placebo and 
haloperidol. Red distributions indicate that the High-Density Interval (HDI) of the 
mean difference in distributions do not cross 0, suggesting reasonable certainty that 
the mean difference is not an artefact of statistical noise. ‘d’ values indicate the 
median effect size (Cohen’s d) for each mean difference (See Figure S4 for 
distributions). The red box indicates parameters where effect size distributions were 
most robust, where the 95%HDI and lay outside of the region of probable 
equivalence with the null hypothesis. (B) Simulations of the marginal effect of 
likelihood parameters on the precision (1/s2; inverse variance) of harmful intent (red) 
and self-interest (black) attributions over all trial, controlling for Dictator style. Vertical 
lines are indicative of the median individual parameter estimates from both 
haloperidol and placebo groups, with the blue arrow indicating the difference from 
placebo to haloperidol. For trial-wise and within-Dictator precision changes see 
Figure S3; to note, simulations are consistent with the notion that 𝑤67 reduces 
increases flexibility within and between contexts, accentuating smooth learning. To 
note, there was no significant correlation between 𝑤',	𝑤:7 , and 𝑤67 in our parameter 
estimation from our real data (ps > 0.05; Figure S2) suggesting independent 
contributions of each to attributional dynamics. (C) Factor loading of each parameter 
on flexibility (factor 1) and learning (factor 2) dimensions. A loading filter of |0.4| was 
applied. Both of these factors were able to discriminate most effectively between 
drug conditions.	𝑤:7 	is not featured in this plot as it was not meaningfully loaded onto 
either factor. (D) Factor scores for each individual participant (n=28) for both 
haloperidol (red) and placebo (blue) conditions ordered from low to high factor 
loading. The panels on the right of each graph demonstrate the marginal loading 
across participants. (E) Candyfloss plot of joint factor scores for each individual 
participant. Grey lines indicate that the same participant was responsible for each 
connected point under placebo (blue) and haloperidol (red) (F) Receiver Operating 
Characteristic curve describing the sensitivity and specificity of the combination of 
flexibility and learning factors on differentiating drug conditions. Area Under the 
Curve = 0.91. Sensitivity = 0.8. Specificity = 0.78. 

  



Alterations to single parameters drive model covariation that differentiates 
haloperidol from placebo 

From our analysis we can conclude that the model is accounting for the true 
observed data relatively well. Isolated parameter changes between conditions 
suggest this effect is primarily driven by increases in the impact of partner behaviour 
on beliefs about harmful intent, 𝑤67, and increased learning from experience, 𝜂. 
Considered separately, these key parameters did not fully explain how the model 
accounted for behaviour changes induced by haloperidol (Figure S4). We therefore 
sought to identify, through exploratory factor analysis, meaningful patterns over the 
covariation induced by Haloperidol. 

We found that three factors best accounted for the data (Figure S9) with the first 
demonstrating the greatest eigenvalue (factor 1=2.82; factor 2=1.36; factor 3=1.13). 
K-fold cross-validation within a logistic model demonstrated that a two-factor solution 
provided the best median accuracy to discriminate between drug condition (mean 
accuracy = 0.86) and had the lowest AIC (40.3; see Fig S9). Each factor was able to 
predict drug condition independently (Factor 1 = 1.52, 95%CI: 0.50, 2.91; Factor 2 = 
3.08, 95%CI: 1.72, 5.03), and there was a large effect found between conditions 
using Bayesian paired t-tests (factor 1: mean diff. = 0.76, 95%HDI = 0.37, 1.17; 
effect size = 0.94, 95%HDI = 0.35, 1.59; factor 2: mean diff. = 1.34, 95%HDI = 0.87, 
1.85; effect size = 1.23, 95%HDI = 0.64, 1.84; Figure 3F). 

Factor 1 (Flexibility; Figure 3C) was typified by high values of 𝑤67, and greater 
consistency between beliefs that a partner’s actions are indicative of their true 
motivations, 𝑢>. Factor 2 (Learning; Figure 3C) comprised high values of 𝜂, larger 
intercepts over the policy matrix, 𝑤', and higher values over priors 𝑝𝑆𝐼'. 𝑝𝐻𝐼' and 
𝑢?@A were oppositely loaded onto each factor and would likely nullify each other in 
cases where participants scored strongly on both (Figure 3E). We note that 𝑝𝐻𝐼', 
and 𝑢?@A load with slightly more absolute value on the Flexibility factor. 

Haloperidol compresses the dimensionality of partner policies 

Finally, we explored the impact of haloperidol on attributional coupling; this allows 
analysis into the dependency of different intentional components. To calculate this 
we estimated Spearman correlations between harmful intent and self-interest for 
each trial across the sample, controlling for the type of Dictator policy affiliated. This 
revealed that while harmful intent and self-interest are attributed independently of 
one another under placebo (mean r[sd] = 0.03 [0.07]) replicating prior work (Barnby 
et al., 2020), under haloperidol they are negatively associated (mean r[sd] = -0.22 
[0.08]), and this difference is significant (mean diff. = -0.26, 95%CI: -0.32, -0.20; 
effect size = 2.22, 95%HDI: 1.22, 3.24). This relationship was replicated using 
simulated model predictions (mean diff. = -0.25, 95%CI: -0.34, -0.17; effect size = -
1.53, 95%HDI: -2.28, -0.78); see Figure 4A. There was evidence that the negative 
association induced under haloperidol decays over time (Pearson r = 0.52, p = 
0.029). The same is not true under placebo (see Figure 4A). This interaction was not 
significant (regression coef. = -0.06, 95%CI: -0.12, 0.03). In sum, haloperidol causes 
harmful intent and self-interest attributions to become less independent. This means 
that under haloperidol participants are more likely to believe someone must be more 
self-interested if they are perceived to be less intentionally harmful.  



 

Figure 4. Association of mental state attributions between drug condition.  

(A) In both real and simulated data, haloperidol (red) versus placebo (blue) induced 
a trial-wise negative association between harmful intent and self-interest which 
decayed over time. The right panel shows the marginal effect of trial-wise 
correlations between conditions. *** = p<0.001. (B) There was a general negative 
association between harmful intent and self-interest (Pearson correlation) found 
under haloperidol (red) for average attributions across all 18 trials. This was not true 
for placebo (blue). (C) Summary of main effects between drug conditions on self and 
other oriented intentional attributions following social outcomes. Both trial-wise and 
averaged associative analyses indicate that other-oriented attributions concerning 
self-interest of others (black) and self-oriented attributions concerning the harmful 
intent of others (red) are independent under placebo (PLAC) but coupled under 
haloperidol (HALO). Under haloperidol this coupling is biased toward exaggeration of 
other-oriented attributions and diminishment of self-oriented attributions.  

  



Discussion 

We sought to identify the computational mechanisms that explain how 
pharmacological alteration of dopamine function alters attributions of harmful intent, 
an important feature of paranoia, given our previous findings that haloperidol, but not 
L-DOPA, reduced harmful intent attributions and increased self-interest attributions 
in healthy participants (see Barnby et al., 2020a for previously published behavioural 
analysis). Here, we tested different computational hypotheses to account more 
mechanistically for these effects. The data were best fit by a model utilising a 
common uncertainty parameter over priors, but separate likelihood weights for 
updating attributions. Using this model, we found evidence that haloperidol reduced 
the precision of harmful intent (but not self-interest) attributions allowing more belief 
flexibility between partners. Haloperidol also increased the impact of learning from 
each encounter; participants relied less on their prior beliefs about the population as 
a whole. These individual parameter effects were embedded within covariational 
model alterations that together accounted for attributional change under haloperidol. 
These changes also caused self-interest and harmful-intent attributions to become 
negatively associated, suggesting a compression of attributions into a single 
interpersonal dimension under haloperidol. Together our findings indicate haloperidol 
promotes flexibility regarding attributions of harmful intent to others by reducing the 
perceived relevance of the actions of others to the self (Figure 5). In clinical 
environments this may allow space to reframe beliefs. 

Our findings indicate a reduction in the influence of priors and more flexible beliefs 
under haloperidol. Previous research links tonic dopamine at D2/D3 receptors to 
efficient encoding of meaningful stimuli and Bayes optimality (Nour et al., 2018), 
cognitive control (Cools & D’Esposito, 2011), and sustained attention (Saeedi et al., 
2016). Under the model-based, model-free control framework (Daw et al., 2005), 
recent work showed D2/D3 antagonism increased model-based control and decision 
flexibility (Mikus et al., 2022a) and increased belief flexibility during a trust game 
(Mikus et al., 2022b). This may be particularly useful in ‘climbing out’ of paranoia, 
where one is reluctant to take in positive information about others for fear of ‘false 
reassurance’. At face value our results conform with previous work: under 
haloperidol, posteriors are more flexible and less influenced by priors, suggesting 
more confidence in beliefs about the motivation of partners. However, this general 
account does not explain why our data show asymmetric decreases in harmful intent 
and increases in self-interest. 

One hypothesis is that haloperidol reduces the perceived self-relevance of outcomes 
under uncertainty. Social behaviours can rapidly develop complex action spaces. 
Humans try to reduce this uncertainty by relying on available heuristics, such as 
using self-preferences as an easily accessible prior belief about others (Anderson & 
Chen, 2002; Barnby et al., 2022b; Tarantola et al., 2017). When ambiguity increases, 
greater uncertainty about others (Barnby et al., 2020; 2022a; Hauke et al., 2023) and 
environments (Reed et al., 2022) can increase the perception of social threat. Our 
analysis suggests that haloperidol may attenuate the relationship between 
uncertainty and attributions of harmful intent by reducing the perceived self-
relevance of others’ actions; attributions of harmful intent, by definition, are 
inferences about the relevance of threat to the self from another. Given the role of 
the striatum and medial prefrontal cortex in regulating threat evaluation under stress 



(Vaessen et al., 2015), this reduction in self-relevance may also interact with 
common neural implementations of self-other modelling (Nicolle et al., 2012); 
haloperidol may modulate the degree to which information is modelled as self- or 
other-relevant. The degree to which D2/D3 dopamine receptor function is specific to 
harmful intent or all attributions that are relevant to the self (e.g. altruistic intent of 
another) can be tested by including an extra dimension within our model; there are a 
number of hypotheses that can be made with such a modification (see Figure S7).  

This pattern leads to a further, complimentary proposition: haloperidol may reduce 
self-relevance through reductions in the complexity or depth of recursive mentalising 
(how a self thinks about another’s model of the self). In general, the ability to 
recursively mentalise is computationally expensive (Devaine et al., 2014; Guenounni 
& Speekenbrink, 2022; de Weerd et al., 2018); humans try to use cheaper strategies 
when possible. Recursive mentalising is context dependent: in simple, competitive 
social scenarios humans are more likely to plan ahead more deeply and entertain 
recursive beliefs about another’s model of the self (Goodie et al., 2012). 
Mentalisation gone awry has also been posited as a core driver of relationship 
difficulties in clinical populations: paranoia in borderline personality disorder and 
psychosis are explained as hyper-mentalisation – the inference of overly complex 
mental states based on sparse data (Fonagy & Bateman, 2006; Fonagy & Target, 
1996; Sharp, 2014). An alteration in mechanisms that support self-relevant 
mentalising may explain our findings. This notion is consistent with reported 
amotivation under haloperidol (individuals are less concerned by outcomes), the role 
of D2/D3 receptors in promoting cognitive control (Cools & D’Esposito, 2011; Saeedi 
et al., 2016), and prior work on the causal role of D2/D3 antagonism in trust 
behaviours (Mikus et al., 2022b); reductions in the immediate value (and therefore 
relevance) for the self may facilitate longer term reciprocal trust behaviours without 
any need to engage deliberate reasoning about future outcomes. A core test of the 
hypothesis that D2/D3 dopamine is crucial for self-relevant, recursive mentalisation 
is to use models of hierarchical mentalisation in future experiments that allow 
estimation of recursive depth in joint social contexts. 

The data presented here may be relevant beyond psychiatry. In behavioural 
economics, there have been several studies on the role of dopamine, reward, and 
decision making in both social and non-social contexts (Cox & Witten, 2019). 
Increasing dopamine availability has been shown to increase risky non-social 
decisions when self-gain is at stake (Rutledge et al., 2015), suggesting that 
dopamine may inflate the attributed value of outcomes to the self. Our data imply 
that this role of dopamine in modulating monetary value to the self may reflect a 
broader role in representing the self-relevance of stimuli. The direction of this 
relationship (self-relevance precedes self-value, or vice versa) is a fruitful target for 
future research. Our data may also be relevant to the role of dopamine in moral 
behaviour. In one study, boosting D2/D3 dopamine with pramipexole reduced 
generosity, especially with close others (Oroz Artigas et al., 2019). Our data 
compliments this work, suggesting that D2/D3 dopamine is involved in calibrating the 
valuation of self-gain in social decision-making.  

On a theoretical level, our formal model distinguishes between computational 
changes that result from prior representational biases (e.g., higher trait paranoia) 
and acute state changes during social interaction where potential harm from others 



is a possibility (Figure 5). Previous modelling with the same task (Barnby et al., 
2020b) or a reversal variant of the task (Barnby et al., 2022) provided evidence that 
trait paranoia increases the magnitude of priors over harmful intent, the subsequent 
increase in the belief that the actions of others are not reflective of their true 
motivations and a reduced willingness to believe that changes to a partner’s 
behaviour are motivated by changes to their harmful intent. Naturally, this suggested 
that prior representations bias how social behaviour is interpreted. On the other 
hand, the present models suggest that haloperidol acts through increased reliance 
and impact of likelihoods on the formation of beliefs. Creating phenomenologically 
plausible formal models that are sensitive to different explanations of behavioural 
data has been a core aspiration of computational psychiatry (Hitchcock et al., 2022; 
Huys et al., 2016). Models like ours may be useful in distinguishing between longer 
term development and near-term alterations in learning that may explain paranoia. 
Model parameters are constant at the timescale of tasks while potentially evolving at 
the timescale of personal development, illness and recovery, while learning and 
inference can be dissected in the timescale of task conditions and trials. Much like 
prior work distinguishing interventions of representational change (psychotherapy) 
and emotion modulation (antidepressants; Nord et al., 2021) our model may support 
similar distinctions following intervention. We thus hypothesise that successful 
therapeutic use of haloperidol in paranoia will be associated with large changes in 
likelihood parameters described above but may leave intact, at least in the short 
term, prior beliefs about the harmful intent of others. D2/D3 independent processes 
may underpin ongoing vulnerability and may require further psychosocial learning. In 
our case, our task may only pick up long term representational (prior) changes 
following extended pharmacological therapy, or in combination with psychological 
therapy.  

We note some limitations. First, we did not use a patient population which means the 
extent to which the findings generalise to a population with persecutory delusions, 
rather than non-delusional paranoia, remains unclear. Second, we did not include 
any non-social comparator (e.g. model-based decision making or volatile 
environments) when assessing the role of haloperidol on cognition. This leaves a 
divide between how dopamine influences non-social cognition and mental state 
inferences. Prior work suggests some shared variance between more foundational 
computations (e.g. decision temperature, belief updating) and paranoia (Barnby et 
al., 2022; Nour et al., 2019; Reed et al., 2020). Replicating the present work with 
non-social comparators of our social task, e.g. using a slot machine partner, may 
help understand the relations between formal theories of general decision making 
and how this is expressed at a recursive and intentional level in the same individuals. 
Third, we did not use a design that probes how dopamine may facilitate 
generalisation of social knowledge outside of our game theory task. Prior work has 
demonstrated that representations about learned partners can pass on from one 
context to another (Guenounni & Speekenbrink, 2022); once a representation is 
learned using computationally intensive resources, a cheaper, heuristic model can 
be used. This relates to the question of whether an associative model of updating 
may be more efficient once a policy is known, and given our findings, whether 
haloperidol causes a faster transition. Finally, despite the difference in model 
responsibility, we did not find any influence of L-DOPA on behaviour. This may be 
due to insufficient doses used to increase dopamine, or the unspecific activity of L-
DOPA at specific sites.  



 

Figure 5. Summary of experimental parameter changes from current and past 
work.  

(A) Experimentally observed effects on our model. Overall illustration of the impact of 
haloperidol on model parameters are illustrated in green. Prior results from the 
impact of high trait paranoia (Barnby et al., 2020; Barnby et al., 2022) are illustrated 
in red.  
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