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On the effective reconstruction of expectation values from ab initio quantum
embedding

Max Nusspickel, Basil Ibrahim, and George H. Bootha)

Department of Physics, King’s College London, Strand, London WC2R 2LS, U.K.

Quantum embedding is an appealing route to fragment a large interacting quantum system into several
smaller auxiliary ‘cluster’ problems to exploit the locality of the correlated physics. In this work we critically
review approaches to recombine these fragmented solutions in order to compute non-local expectation values,
including the total energy. Starting from the democratic partitioning of expectation values used in density
matrix embedding theory, we motivate and develop a number of alternative approaches, numerically demon-
strating their efficiency and improved accuracy as a function of increasing cluster size for both energetics
and non-local two-body observables in molecular and solid state systems. These approaches consider the
N -representability of the resulting expectation values via an implicit global wave function across the clus-
ters, as well as the importance of including contributions to expectation values spanning multiple fragments
simultaneously, thereby alleviating the fundamental locality approximation of the embedding. We clearly
demonstrate the value of these introduced functionals for reliable extraction of observables and robust and
systematic convergence as the cluster size increases, allowing for significantly smaller clusters to be used for
a desired accuracy compared to traditional approaches in ab initio wave function quantum embedding.

I. INTRODUCTION

Quantum chemical methods to describe explicit corre-
lations in an ab initiomany-electron system can be highly
accurate, though their applicability is often stymied by a
steep computational scaling with respect to system size
which (despite significant recent progress) limits their
use for extended systems1–6. To combat this, the lo-
cality of this correlated physics is increasingly exploited,
enabling a reduction in scaling to be competitive com-
pared to mean-field or density functional approaches,
whilst remaining free from empiricism7,8. The field of
‘local correlation’ methods in quantum chemistry gener-
ally build these locality constraints in the particle-hole
excitation picture of the system, localizing each of these
spaces separately9–11. While highly related, ‘quantum
embedding’ approaches from condensed matter physics
are also increasingly coming to the fore as an alternative
paradigm and applied to quantum chemical and ab initio
systems12.

A loose (and necessarily imperfect) characterization
of a key difference in these approaches could be that
quantum embedding does not build this locality from a
particle-hole picture—rather, a fully local set of ‘atomic-
orbital-like’ degrees of freedom are chosen initially (which
will in general have neither fully occupied or unoccupied
mean-field character), which we will call the ‘fragment’
space, though is also often called the ‘impurity’ space
for historical reasons in traditional quantum embedding
literature. A larger space is then constructed by aug-
menting these fragment orbitals with additional orbitals
(often called ‘bath’ orbitals). These are designed to re-
produce the quantum fluctuations, entanglement and/or
hybridization between the fragment and the rest of the
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system, as characterized by some tractable (generally
mean-field) level of theory which can be performed on
the full system. These individual local quantum prob-
lems of the fragment and bath orbitals define a ‘cluster’,
which is then solved to provide the correlated properties
of the original fragment space, potentially with a subse-
quent self-consistency then applied to update the original
mean-field/low-level theory on the full system.

The general algorithm in most quantum embeddings
is therefore summarized as a) fragment the system, b)
for each fragment, construct a bath space describing
the coupling to the wider system, c) solve an interact-
ing problem in the cluster space of each fragment via a
‘high-level’ correlated method, d) extract properties of
the system, e) optionally, a self-consistency is performed
to embed the correlated effects from the cluster model
back into the low-level full system method to update
the coupling between fragment and environment. There
are a large number of choices and variations within this
general framework, including (but not limited to) how
the bath space is defined (including the choice of ‘low-
level’ theory)13–15, how the interacting cluster Hamilto-
nian is constructed and solved16–19, and the choice of
self-consistent requirements20–22. Furthermore, the fun-
damental quantum variables by which these quantities
over the different spaces are characterized can vary, with
dynamical mean-field theory and its variants working
in a Green’s function (dynamical) formalism23–29, while
density matrix embedding theory (DMET) and its vari-
ants work in a wave function (static) formalism30–44, al-
though these two approaches are not fundamentally dis-
tinct, and can also be rigorously connected via a common
framework45–47.

Much recent progress has been made in these various
quantum embeddings and their application to ab initio
systems, including the use of quantum computation as
a high-level solver48–52. The key point in all of these
embedding approaches however, is that the scaling with
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respect to the full system size is defined by only the scal-
ing of the low-level (often mean-field) method, given the
local nature of the auxiliary cluster problems. Further-
more, the choice of high-level solver and arbitrary atomic-
orbital-like fragmentation allows for spaces which capture
strong (albeit still local) correlation effects, beyond the
traditional constraints of the particle-hole picture of most
local quantum chemistry.

In this work we focus on a critical aspect of quan-
tum embedding which we believe has received less at-
tention, but which has substantial ramifications for its
accuracy and applicability. This concerns how non-local
properties (including the total energy) of the full sys-
tem can be reconstructed from the independent cluster
solutions of each fragment. We will assess the effect of
the inherent locality approximation of quantum embed-
ding on the convergence of different functionals of these
non-local expectation values, and motivate and demon-
strate new approaches which substantially accelerate con-
vergence with respect to fragment and bath size in the
embedding. While this is quite a technical work, the out-
come is that general design principles by which different
functionals can be devised become clear, including the
N -representability of these estimates.

Here, we focus on wave function-based quantum em-
bedding (we believe that the ability and approach for
constructing appropriate functionals in a Green’s func-
tion perspective is clearer). We start from the density
matrix embedding theory as the parent wave function ap-
proach to quantum embedding30,33. We always consider
fragments consisting of a single atom only and, where we
seek to systematically improve expectation values, en-
large the cluster spaces by adding additional interact-
ing bath orbitals. We believe that this is an efficient
and ‘black-box’ approach, and avoids the ambiguities and
non-monotonic improvements in the alternative of defin-
ing a systematic expansion in the fragment sizes for ab
initio systems, which also can suffer from reducing the
symmetry of the problem53.

The expansion of the bath space is defined from the ap-
proximate interacting density matrix (or instantaneous
hybridization) between the fragment and environment
at a simple approximate second-order perturbation the-
ory (MP2), and is controlled by a single cutoff parame-
ter as detailed in Ref. 53. This provides cluster-specific
bath natural orbitals (BNOs) as a controllable, reli-
able and well-defined expansion of the bath space (and
hence overall cluster space) of a given fragment. Fur-
thermore, in this work we will neglect considerations of
self-consistency of the original mean-field (beyond where
self-consistency is required for meaningful extraction and
comparison of expectation values, e.g. to control to-
tal electron number). More extensive self-consistency to
qualitatively change the original full-system mean-field
will be considered in future work20,21, but is unlikely to
change the conclusions of this work, especially as conver-
gence with cluster size (either via expansion of the frag-
ment or, as in this work, an interacting bath) obviates

the effect of self-consistency.
We start the paper recapitulating the original DMET

‘democratic partitioning’ for expectation values, which
can be computed via fragment-projection of the reduced
density matrices of each fragment33. We then describe
an improved approach for the total energy based around
a cumulant functional for the two-body effects. We move
on to an approach based around direct projection of wave
function amplitudes, rather than density matrices, for-
mally satisfying N -representability conditions (not sat-
isfied in the aforementioned density-matrix approaches)
and substantially improving expectation values. Finally,
practical approaches and further approximations to these
will be described to define an efficient protocol for arbi-
trary expectation values and high-level wave function de-
scriptions. These different approaches are benchmarked
for energetics and other non-local properties (spin corre-
lation functions) on both molecular systems via the W4-
11 test set54, and periodic systems, finding an efficient
approach for reconstruction of non-local observables in
quantum embedding of general fragmented systems.

A. Summary of findings
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FIG. 1. Binding energy of the Chlorine dimer in a STO-6G
basis compared to FCI, with E[γx,Γx] corresponding to the
democratically partitioned energy expression of traditional
DMET33. Different energies correspond to different total
energy functionals, constructed from the same solutions to
the two DMET embedding problems (with fragment spaces
of the (Löwdin-orthogonalized) core and valence orbitals of
each Chlorine atom). The two cluster spaces are defined by
10 orbitals (9 fragment and 1 bath), with the full space com-
prising 18 orbitals. The motivation and definition of these
different energy functionals from the embedded wave func-
tions are given in the rest of this work, with more details on
this system (and others like it) discussed in section IV.

In Figure 1, we show results from the different total
energy functionals described in this work, as a represen-
tative illustration of the significant difference that this
choice can make in a simple system (Chlorine dimer, min-



3

imal basis, two atomic fragments). For all the different
total energy functionals shown in Fig. 1, the same iden-
tical fragment and DMET cluster space is used, and the
same (exact) solver and wave function are found from
each cluster30,31. The only difference is the choice of en-
ergy functional to reconstruct the total energy from the
two cluster solutions, with E[γx,Γx] representing the tra-
ditional ‘democratically partitioned’ DMET energy used
primarily in the literature to date33.
As a summary regarding the reconstruction of expec-

tation values from cluster solutions in this work, we find
the main conclusions to be the following:

1. It is advantageous to separate factorizable products
of lower-rank contributions to expectation values
where possible. In this way, we can construct e.g.
the two-electron energy from the one-body density
matrix and two-body cumulant, rather than the
two-body density matrix directly. We demonstrate
that this improves estimators via the inclusion of
implicit cross-cluster contributions to the expecta-
tion values. Many of the improvements in this work
arise from implicitly building in contributions to ex-
pectation values (or the wave function itself) from
products of different cluster contributions, coupling
the individual cluster solutions in a non-local fash-
ion, and minimizing the local approximations in-
herent to the embedding framework.

2. N -representability of estimators can be used as an
effective guiding principle, i.e. that they can be
derived from a valid ‘global’ wave function from
the combined cluster wave function solutions. We
show how this can be achieved exactly. Defining
this ‘global’ wave function ensures conservation of
many quantum numbers e.g. total electron number,
which removes the necessity for costly (and some-
times ill-defined) self-consistency conditions, and
can allow for variational estimators40. Beyond this,
enabling convergence with respect to bath size of
each fragment can render self-consistency entirely
unnecessary.

3. It is possible to construct estimators from this well-
defined global wave function by casting the expec-
tation value as a functional of the wave function
amplitudes of each cluster, rather than combining
density matrices or observables directly. Each fac-
tor of the wave function amplitudes in the expec-
tation value has their occupied indices (symmetri-
cally) projected onto the fragment spaces of each
cluster to avoid double-counting, and a sum over all
cluster solutions for each factor of the wave func-
tion parameters is introduced.

4. Along with dramatically improved estimates, this
wave function approach furthermore avoids the re-
quirement for optimizations of chemical potentials,
as the global electron number is strictly conserved,
and the condition of the union of the fragment

spaces is only that they span the occupied, rather
than the full orbital space of the original system
in order to converge to exact results (e.g. as the
(interacting) bath is expanded to completeness for
each cluster), vastly reducing the burden of large
fragment spaces spanning virtual orbitals for cal-
culations in realistic basis sets.

5. If the approach above results in an intractable scal-
ing with respect to number of fragments in the sys-
tem, then a principled approximation can be made,
which we show can fortuitously lead to effective
cancellation of errors and an even faster conver-
gence of the ground state energy to the exact global
expectation values.

We motivate and evidence these conclusions in the fol-
lowing sections, resulting in our final recommendation
for an approach to one- and two-body expectation val-
ues from DMET and related wave function quantum em-
beddings in ab initio systems, while retaining at most
an O(N3) scaling with system size in the evaluation of
these observables. We detail the practical implementa-
tion of these schemes for both an exact high-level solver,
and an (arbitrary order) coupled-cluster framework. All
results can be reproduced from our recently released
Vayesta codebase for quantum embedding55, which in-
terfaces with the PySCF code56,57, with scripts to gener-
ate many of the results of this work (including the input
required for Fig. 1) found in the Supplementary Informa-
tion (SI).

II. GLOBAL EXPECTATION VALUES FROM CLUSTER
DENSITY MATRICES

A. Democratic partitioning of density matrices

Expectation values in DMET derived from opera-
tors which span more than one fragment are calcu-
lated from ‘democratically partitioned’ reduced density-
matrices (RDMs)33. These can be written as

γpq =

Nfrag∑
x

(P̂xγx)pq (1)

Γpqrs =

Nfrag∑
x

(P̂xΓx)pqrs, (2)

where γ and Γ are one- and two-body reduced density
matrices formed from the high-level solution of each clus-
ter problem, as

γx
pq = ⟨Ψx|ĉ†pĉq|Ψx⟩ , (3)

Γx
pqrs = ⟨Ψx|ĉ†pĉ†r ĉsĉq|Ψx⟩ , (4)

where the high-level cluster wave function, |Ψx⟩, includes
the contribution from the doubly occupied environmen-
tal orbitals of each cluster. P̂x is an operator, which
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introduces a projection onto the fragment subspace of
the cluster x in a symmetrically averaged fashion, e.g.

(P̂xγx)pq =
1

2

Nmo∑
t

(Px
ptγ

x
tq + Px

qtγ
x
pt), (5)

(P̂xΓx)pqrs =
1

4

Nmo∑
t

(Px
ptΓ

x
tqrs + Px

qtΓ
x
ptrs (6)

+ Px
rtΓ

x
pqts + Px

stΓ
x
pqrt).

In these, x labels both the Nfrag fragments and clusters,
for which there is an unambiguous one-to-one correspon-
dence, and Px

pq is the fragment projection matrix acting
over the whole molecular orbital (MO) space, as

Px
pq =

Nx
cl∑
x

(
CTSCx

f

)
px

(
CTSCx

f

)
qx

, (7)

with C representing the MO coefficients, S the atomic
orbital (AO) overlap matrix, and Cx

f the coefficients of
the fragment orbitals in cluster x. Note that a post mean-
field cluster solver will only modify the 1-RDM in the
cluster–cluster part, whereas the 2-RDM also acquires
contributions in off-diagonal cluster–environment parts.
As a result, the projection in Eq. (1) can be performed
in the respective cluster spaces, whereas in Eq. (2) it has
to be performed in the full system space, in order to take
these changes in the off-diagonal parts into account.

The projection onto the fragment space of each clus-
ter is required since the bath spaces overlap significantly
between different clusters, and we must project out any
double counting arising from contributions from overlap-
ping bath spaces. In contrast, the partitioning of the sys-
tem into fragment spaces is considered to be a disjoint
fragmentation, where the set of all fragment orbitals are
an orthonormal set with no overlapping fragment spaces
in different clusters. From the democratically partitioned
density-matrices, the total energy can be calculated as

Etot = Enuc +

Nmo∑
pq

hpqγqp +
1

2

Nmo∑
pqrs

(pq|rs)Γpqrs. (8)

Note that in practice one can avoid forming the full sys-
tem density-matrices to calculate the total energy and
instead calculate energy contributions directly from the
individual cluster density-matrices over purely the clus-
ter degrees of freedom. The contribution from the doubly
occupied environmental orbitals can be integrated out, by
forming the Coulomb- and exchange potential of the un-
entangled occupied orbitals of each DMET cluster via an
effective one-electron potential. This leads to the more
common expression for the DMET energy33, equivalent
to Eq. (8) via construction of democratically partitioned

density matrices of Eq. (5), as

E[γx,Γx] = Enuc+

Nfrag∑
x

Nx
cl∑

pq

h̃x
pq(P̂

xγx)qp

+
1

2

Nx
cl∑

pqrs

(pq|rs)(P̂xΓx)pqrs

 ,

(9)

where γx and Γx refer to the cluster reduced density ma-
trices, with the projector purely acting in this cluster
space, and Nx

cl denoting the number of orbitals in the
cluster x. The energetic effect of these states (static
Coulomb and exchange contributions) is then included

via the construction of the h̃x, which includes the poten-
tial from these unentangled states to the one-body hamil-
tonian as 1

2

∑
mn(pq||mn)γx

core,mn where γx
core is the den-

sity matrix from these core states. We can exploit frag-
ments that are (by symmetry) in identical chemical en-
vironments by only computing the cluster solutions and
energy contributions of symmetry-unique fragments. In
the rest of this work, the expression E[γx,Γx] will de-
note this democratically partitioned energy functional,
shorthand for E[{γx}, {Γx}], denoting that the energy is
computed from the set of individually constructed cluster
one- and two-body RDMs.
This energy expression is exact when two conditions

are satisfied. First, it requires that the fragmentation
of the full system is complete, i.e. that the union of
the fragment spaces spans all degrees of freedom of the
system. This condition ensures that the trace of the sum
of the different fragment projectors is exactly equal to the
total number of orbitals in the system, or alternatively,
that

Nfrag∑
x

P̂x = 1̂. (10)

While it is a relatively mild condition to ensure that
the combined fragment spaces span the generally local-
izable occupied space, ensuring that they span the (gen-
erally much larger) high-energy virtual space is harder
to achieve and leads to much larger fragment spaces.
This has required DMET simulations in realistic basis
sets to augment fragment spaces with projected atomic
orbitals (PAOs)58 to ensure this condition is fulfilled for
reasonable results35. The second criteria which must be
fulfilled, is that the individual cluster density matrices
must be exact, which in general will require the clusters
of each fragment themselves to be enlarged to complete-
ness, either by increasing the size of the fragment or (in-
teracting) bath space. This ensures that |Ψx⟩ → |Ψ⟩ and
the projected density matrices of the clusters (Eq. 5) are
equivalent to the projections of the exact density matrix
over the whole system. Combined with the complete-
ness of the projector (Eq. 10), this will lead to the exact
energy from Eq. (9).
Away from this exact limit, there are a number of

drawbacks to this approach to compute properties from
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the DMET solutions. Firstly, the reconstructed full-
system density matrices (Eqs. (1) and (2)) from the pro-
jected cluster solutions are not N -representable, meaning
that they cannot be derived from a valid wave function.
This can be seen as the democratically partitioned 1-
RDM of Eq. (1),

γpq =

Nfrag∑
x

P̂x ⟨Ψx|c†pcq|Ψx⟩ , (11)

cannot be rewritten as a simple expectation
value ⟨Ψ̃|c†pcq|Ψ̃⟩ of some wave function |Ψ̃⟩. As a
specific consequence, this can result in eigenvalues
(occupation numbers) becoming negative or greater than
two (in a restricted basis), violating the Pauli principle,
and removing any variational guiding principle in the
method40. Furthermore, conserved quantities and good
quantum numbers in the individual cluster solutions
such as electron number (N), spin and its z-projection
(Sz, S2) and other symmetries are not maintained in
these composite full system descriptions.
To mitigate some of these effects, a global chemical

potential (or potentially a fragment-specific chemical po-
tential) is almost universally optimized in DMET to en-
sure that at least an exact, integer number of electrons
is recovered in these democratically partitioned density
matrices33,59. This can move electrons between the frag-
ment and bath of each correlated cluster solution, such
that the known global electron number is maintained as
a constraint. While this corrects one known global quan-
tum number in the density matrices, it does not correct
others, and does not in general restore N -representability
of the full system RDMs. Furthermore, this necessitates
costly additional self-consistent loops over the high-level
calculations. Furthermore, this requirement of a chemi-
cal potential optimization to a known total electron num-
ber further underlines the importance of the constraint
of Eq. (10), ensuring that the full (occupied and virtual)
space is spanned by the fragments, as all can be par-
tially occupied in the correlated state and the democrat-
ically partitioned density matrices must trace to the cor-
rect electron number. Numerical demonstration of the
breaking of these N−representability constraints in the
democratically partitioned RDMs will be given in Sec. IV
(with and without a global chemical potential optimiza-
tion), also showing the deleterious effect on properties
and computed energetics of the system that result.

B. Democratic partitioning of cumulants

In the following, we propose a simple alternative for
the construction of democratically partitioned two-body
density-matrices from DMET clusters, from which ex-
pectation values such as the energy can be calculated.
Instead of partitioning the 2-RDM directly as in Eq. (2),

we partition the two-body cumulant, K̃, defined (in a

restricted basis)60 via

Γpqrs = γpqγrs −
1

2
γprγsq + K̃pqrs. (12)

The non-cumulant (disconnected) contributions to the 2-
RDM can then be reconstructed from the democratically-
partitioned one-body density-matrix, given by Eq. (1),
such that Eq. (2) is replaced by

Γpqrs = γpqγrs −
1

2
γprγsq +

Nfrag∑
x

(P̂xK̃x)pqrs. (13)

The difference between Eq. (2) and (13) lies purely in
the non-cumulant contribution to the two-body density
matrix, which can be written as the product of demo-
cratically partitioned 1-RDMs. In the standard DMET
partitioning of Eq. (2) these are taken from a single em-
bedding problem at a time, whereas the partitioning of
Eq. (13) contains ‘cross-cluster’ contributions, which can
be seen by inserting Eq. (1) into the first term of Eq. (13):

γpqγrs =

Nfrag∑
x

Nfrag∑
y

(P̂xγx)pq(P̂
yγy)rs. (14)

In this way, the non-local (correlated) one-body physics
of two distinct clusters, x ̸= y, contribute to global
two body expectation values; the same is not possible in
Eq. (2). This is expected to be important in cases where
the orbitals p and q are far from the orbitals r and s,
and are not spanned together in any single DMET clus-
ter. In this case, the conventional DMET partitioning of
Eq. (2) will not account for the relaxation of the exter-
nal Coulomb- and exchange potential of a fragment due
to the (potentially correlation-induced) density changes
within the other orbital set. In contrast, this will be im-
plicitly included in the partitioning according to Eq. (13).
This is the key physics where we expect a partitioning
of cumulants to be superior for two-body physics to the
traditional democratic partitioning approach of Sec. II A
for non-local expectation values. We will denote any to-
tal energies resulting from the democratically partitioned
cumulant approach described in this section as E[γx,Kx]
in the rest of this work.
We present a simple example showing the difference

between the partitioned density matrices and the parti-
tioned cumulant approach in Fig. 2, for a representative
system of N2 in a minimal basis set. The fragment space
consists of the five symmetrically (Löwdin) orthogonal-
ized atomic orbitals of a single atom (the 1s, 2s, 2px,
2py, 2pz spaces) with the DMET bath consisting of an
additional three bath orbitals consistent with the bond
order of the dimer in a minimal basis. The DMET clus-
ter in this example therefore contains 10 electrons in 8
orbitals, which is compared to the full system of 14 elec-
trons and 10 orbitals, and is solved with exact diago-
nalization (FCI). It is found that regardless of whether
the fragment chemical potential is optimized or not, the
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FIG. 2. Dissociation curve of N2 in the STO-6G basis, cal-
culated from two atomic DMET embedding problems. The
same DMET-FCI cluster solution is used in both the parti-
tioned density matrix (Sec. IIA) and partitioned cumulant
(Sec. II B) energy expressions, E[γx,Γx] and E[γx,Kx] re-
spectively, defined as given by Eqs. (9) and (18). Plots of
the right have optimized a global chemical potential to en-
sure that the democratically partitioned 1RDM traces to the
correct number of electrons, while the plots on the left omit
this chemical potential optimization.

democratically partitioned cumulant results in a substan-
tial improvement in the energy, with the partitioned cu-
mulant being almost unaffected by this chemical poten-
tial optimization. This is further consistent with the Cl2
dimer shown in Fig. 1 and analyzed in more detail in
Sec. IV, while the improvement in non-energetic proper-
ties (the spin–spin correlation function) from the cumu-
lant partitioning will be shown in Sec. VIC.

A minor technical detail to mention is that we use
a slightly different partitioning in practice than that of
Eq. (12) throughout this work. The correlated cluster
1-RDM can be decomposed as γ = γ0 +∆γ, where γ0 is
the reference mean-field density-matrix. We then work
with a slightly modified cumulant definition, K, as

Γpqrs = γ0
pqγ

0
rs + γ0

pq∆γrs +∆γpqγ
0
rs

− 1

2
(γ0

prγ
0
sq + γ0

pr∆γsq +∆γprγ
0
sq) +Kpqrs.

(15)

The approximate cumulant K of Eq. (15) therefore con-
tains the (∆γ)2-terms which are not present in the true

cumulant K̃, with the relation between the two given as

Kpqrs = K̃pqrs +∆γpq∆γrs −
1

2
∆γpr∆γsq. (16)

The final expression for the 2-RDM is then

Γpqrs = γ0
pqγ

0
rs + γ0

pq∆γrs +∆γpqγ
0
rs

− 1

2
(γ0

prγ
0
sq + γ0

pr∆γsq +∆γprγ
0
sq)

+

Nfrag∑
x

(P̂xKx)pqrs,

(17)

where (in contrast to the democratically partitioned 2-
RDM of Eq. 2), the projection of the cumulants can be
performed in the cluster space only, since the correlated
cluster solver will only lead to a non-zero cumulant in this
space. This allows the total energy functional in terms
of γx and Kx to be written as

E[γx,Kx] = EHF[γ
0] +

∑
pq

Fpq[γ
0]∆γqp

+
1

2

Nfrag∑
x

Nx
cl∑

pqrs

(pq|rs)(P̂xKx)pqrs,

(18)

where EHF[γ
0] and F [γ0] are the Hartree–Fock energy

and Fock matrix corresponding to the reference mean-
field density-matrix γ0, and ∆γ is the correlated part of
the democratically-partitioned 1-RDM, formed from the
cluster density matrices, γx, as shown in Eq. (1). Note
that Eq. (18), in contrast to the conventional DMET en-
ergy functional (9) which it replaces, does not involve a
cluster-specific effective core-Hamiltonian.
We find that democratically partitioning the approxi-

mate cumulant instead of the true cumulant gives almost
identical results for all systems tested in this paper. How-
ever, in the case of the true cumulant, the Fock matrix
of the correlated 1-RDM, F [γ0 +∆γ], would need to be
constructed to calculate the energy, a step that scales
as O(N4) with respect to the system size N . For this
reason, we use the democratically-partitioned approxi-
mate cumulant and calculate the total energy according
to Eq. (18), referred to as E[γx,Kx] in the results of this
paper.

III. GLOBAL EXPECTATION VALUES FROM CLUSTER
WAVE FUNCTIONS

While the democratically-partitioned cumulant de-
scribed in the previous section can dramatically improve
two-body properties (as will be further shown later), it
still suffers from the same fundamental problem discussed
in Sec. II A. This is that the resulting density matrices
are not generally N -representable, i.e. they do not cor-
respond to a physical fermionic wave function over the
system. In this section, we go a step further and present
an alternative paradigm of directly combining the cluster
wave functions rather than RDMs to overcome this repre-
sentability issue. This was first proposed in a correlation
energy functional in Ref. 53 (described in Sec. III C), but
is now generalized and expanded.
The basic idea is to consider an implicit full-system

wave function reconstructed from the cluster wave func-
tions themselves, as

|Ψ⟩ =
Nfrag∑
x

P̂x |Ψx⟩ . (19)

From this global state, expectation values can be defined
which resolves N -representability issues and results in
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improved estimators. For instance, the 1-RDM can be
written as

γ(part. WF)
pq =

Nfrag∑
xy

⟨P̂xΨx|ĉ†pĉq|P̂yΨy⟩ (20)

As long as all projected cluster wave functions P̂x |Ψx⟩
are physical, fermionic wave function in their own right,
then the linear superposition of Eq. (19) is a physical,
fermionic wave function as well. As a result, the 1-
RDM of Eq. (20) is trivially N -representable, as it is
simply ⟨Ψ|c†pcq|Ψ⟩ with the “global” wave function |Ψ⟩
given by Eq. (19). Higher order density-matrices can
be constructed in the same way and are thus also N -
representable. Furthermore, the full system energy com-
puted from RDMs constructed in this fashion will be vari-
ational if the cluster solvers are themselves variational
methods. It is not difficult to rationalize that expecta-
tion values would also be improved from the formula-
tion as sketched for the 1-RDM in Eq. (20) compared
to the democratically partitioned RDMs. This is be-
cause a large number of ‘cross-cluster’ contributions to
these expectation values are included, where wave func-
tion amplitudes from different clusters are combined be-
yond their mean-field contributions found in Eq. (11).

A. Partitioning of general wave functions

So far we have not specified what we mean by the pro-
jection of a cluster wave function as P̂x |Ψx⟩ in prac-
tice. Since the DMET bath orbitals guarantee that the
mean-field reference determinant |Φ⟩ is represented ex-
actly in each cluster (ignoring the unentangled environ-

ment orbitals)30, it is convenient to define P̂x in terms
of its action on the correlated part of the wave function
only, i.e. our full system wave function can be written as

|Ψ⟩ = |Φ⟩+
Nfrag∑
x

P̂x |∆Ψx⟩ , (21)

where |∆Ψx⟩ = |Ψx⟩ − |Φ⟩ and intermediate normaliza-
tion is assumed.

We then choose to represent the correlated cluster
wave function part |∆Ψ⟩ in the basis of particle–hole ex-
citations around the reference determinant in a linear
wave function ansatz

|∆Ψ⟩ = (Ĉ1 + Ĉ2 + . . . ) |Φ⟩

=
∑
i

∑
a

cai |Φa
i ⟩+

∑
ij

∑
ab

cabij |Φab
ij ⟩+ . . . , (22)

where we use i, j, . . . (a, b, . . . ) to represent general occu-
pied (virtual) orbitals in this work. We choose the frag-
ment projection of this wave function to be defined by
its symmetric action on the occupied coefficient indices,

for example

(P̂xCx
1 )

a
i =

∑
k

Px
ik(C

x
1 )

a
k, (23)

(P̂xCx
2 )

ab
ij =

1

2

∑
k

[
Px
ik(C

x
2 )

ab
kj + Px

jk(C
x
2 )

ab
ik

]
, (24)

in the case of the single and double excitation coefficients
in the cluster, Cx

1 and Cx
2 , with generalization to higher-

order excitation levels straightforward. Indices in these
expressions correspond to the cluster canonicalized or-
bitals, with a critical consequence of the DMET (and
BNO) bath construction being that the n-fold excita-
tions of the cluster space are entirely spanned by the
n-fold excitations of the full system due to the coinci-
dence of their reference states. The fragment projection
operators acting in the occupied-only space of the cluster
can be formulated as

Px
ik =

∑
x∈x

[
(Cx)TSCx

f

]
ix

[
(Cx)TSCx

f

]
kx

(25)

where Cx
f represents the AO coefficients of the fragment

orbitals (x) of fragment x, and Cx represents the coeffi-
cients of the occupied cluster orbitals (in contrast to the
projector defined in the full-system MO space of Eq. 7),
with i, k representing occupied orbitals of cluster x. We
note that this projection operator is not diagonal in the
occupied orbital basis of the cluster. Furthermore, we
have crucially chosen to only apply the projection to
the occupied dimensions of the wave function coefficients
in Eqs. (23, 24). This is an important difference com-
pared to the projection of density matrices according to
Eq. (5), where the projector always needs to act on gen-
eral indices, which enumerate both occupied and virtual
orbitals. The significance of this is that the initial frag-
mentation of the system now only needs to ensure that
the entire occupied space is spanned by the union of all
fragments, in order for the projector to be complete. If
this is satisfied, the only remaining approximation re-
sults from the deviation of each cluster wave function
from exactness (which can be systematically resolved via
increasing the cluster/bath space).
This is a significant advantage, ensuring that the ex-

pectation values become exact as the bath space of
each cluster is increased, without requiring the fragment
spaces to span the virtual space of the system. The re-
quirement for completeness of the fragment projectors is
now relaxed from Eq. (10), and can be written as

Tr

Nfrag∑
x

P̂xγ
0P̂x

 = Ne, (26)

where Ne is the number of electrons. This quality is es-
pecially impactful in larger basis sets required for quan-
titative accuracy, as fragment sizes are now independent
of the size of this basis, with the required virtual space
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captured instead by the bath expansion. A fragmenta-
tion spanning the occupied space is for example guar-
anteed by the choice of intrinsic atomic orbitals (IAOs)
for the fragment spaces61, used in the main results of
this work unless otherwise specified. We note that nei-
ther the representation of the wave function amplitudes
in a particle–hole basis, nor the choice of projection of
just the occupied space in itself precludes the solver from
capturing strong correlation, since we do not assume a
truncation of the excitation levels which are represented
in the wave function. The ability to capture strong corre-
lation effects (for an exact high-level solver) is determined
by the suitability of the cluster space, and is invariant to
the choice of representation of the resulting wave func-
tion. It could however be possible that a more efficient
projection operator could be formulated for e.g. strongly
correlated lattice models, where the requirement of the
fragmentation spanning the virtual space is not difficult
to fulfil. However, for ab initio quantum embeddings, we
do not anticipate that this would be beneficial.

B. Partitioning of exponential wave function forms

While all wave functions can be written in the linear
form of Eq. (22), we now show that there are benefits in
casting the wave function to an exponential parameteri-
zation for partitioning in this space. This form (common
to coupled-cluster methods62) can be written as

|∆Ψ⟩ = (eT̂1+T̂2+... − 1) |Φ⟩ =
Nocc∑
i

Nvir∑
a

tai |Φa
i ⟩

+

Nocc∑
ij

Nvir∑
ab

(
tabij + tai t

b
j

)
|Φab

ij ⟩+ . . .

(27)

The amplitudes can be converted between the linear and
exponential forms more generally63 via the relations

Ĉ1 = T̂1, (28)

Ĉ2 = T̂2 +
(T̂1)

2

2
, (29)

Ĉ3 = T̂3 +
(T̂2T̂1 + T̂1T̂2)

2
+

(T̂1)
3

3!
, (30)

. . . .

For ground state wave functions, the norm of the T -
amplitudes of the exponential ansatz generally decays
more quickly with respect to the excitation rank than
the C-amplitudes of the linear ansatz. The exponen-
tial wave function ansatz thus allows for an alternative
way to partition the wave function by projecting the T -
amplitudes, rather than C-amplitudes, which by analogy

with Eqs. (23, 24) can be written as

(P̂xTx
1 )

a
i =

Nx
occ∑
k

Px
ik(T

x
1 )

a
k, (31)

(P̂xTx
2 )

ab
ij =

1

2

Nx
occ∑
k

[
Px
ik(T

x
2 )

ab
kj + Px

jk(T
x
2 )

ab
ik

]
, (32)

To illustrate the difference between the partitioning of
the global wave function via its C- and T -amplitudes,
we can compare the wave function ansätze truncated at
the double-excitation level. For the partitioning of the
linear C-amplitude representation of the wave function
(Sec. III A), we obtain

|∆Ψ⟩ =
Nfrag∑
x

Nx
occ∑
i

Nx
vir∑
a

(P̂xCx
1 )

a
i |Φa

i ⟩

+

Nfrag∑
x

Nx
occ∑
ij

Nx
vir∑
ab

(P̂xCx
2 )

ab
ij |Φab

ij ⟩

(33)

while for the exponential form of the wave function, we
achieve

|∆Ψ⟩ =
Nfrag∑
x

Nx
occ∑
i

Nx
vir∑
a

(P̂xTx
1 )

a
i |Φa

i ⟩

+

Nfrag∑
x

Nx
occ∑
ij

Nx
occ∑
ab

(P̂xTx
2 )

ab
ij |Φab

ij ⟩

+

Nfrag∑
xy

Nx
occ∑
i

Nx
vir∑
a

Ny
occ∑
j

Ny
vir∑
b

(P̂xTx
1 )

a
i (P̂

yTy
1 )

b
j |Φab

ij ⟩ .

(34)

While the first two terms in Eqs. (33, 34) are equiva-
lent and involve only a single summation over clusters,
the last term of Eq. (34) (representing disconnected dou-
ble excitations) has a double loop over pairs of clusters.
As a result, a single excitation in cluster x and a differ-
ent single excitation in cluster y can contribute together
to form a double excitation of the global wave function,
even if the two clusters are far apart and do not overlap.
Similarly, for wave functions truncated at the triple ex-
citation level, two independent clusters (e.g. in Tx

2 T
y
1 ),

or three independent clusters (e.g. in Tx
1 T

y
1 T

z
1 ) can com-

bine to contribute disconnected triple excitations to the
global wave function. The same is not possible for the lin-
ear wave function partitioning, for which both connected
and disconnected contributions must always come from
a single cluster only.

This partitioning of the global wave function at the
level of the T -amplitudes therefore results in non-local
‘cross-cluster’ information being built into the solution
from the quantum embedding – this time on the level
of the reconstructed global wave function itself, rather
than similar cross-cluster information being built into
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the 2-RDM (see Sec. II B) or other expectation values
(see Eq. 20). The beneficial impact of these cross-cluster
contributions is a key tenet of this work, and serves to
mitigate the impact of the local approximations inherent
to quantum embedding by not treating the cluster solu-
tions as contributing independently to final expectation
values.

Finally, we should stress that while this framework of
partitioning the global T -amplitudes of the wave func-
tion naturally fits with the use of coupled-cluster as a
high-level solver, we are not inherently constrained to
this. If we avoid truncating the rank of the T -operator,
then any wave function can be cast into the exponential
form of Eq. (27) for the high-level solution of the clus-
ter problems, and benefit in this way. In particular, a
linear wave function obtained from a FCI cluster solver
can be converted to the exponential representation via
Eqs. (28–30), projected, and finally recombined into a
global exponential wave function to benefit from these
cross-cluster contributions. Nevertheless, the partition-
ing of the global T -amplitudes of the wave function also
particularly suited to coupled-cluster high-level solvers,
which are increasingly being used as a compact and ac-
curate approach which enable access to larger fragment
and bath spaces, and have recently been shown to be
accurate in a variety of embedding contexts53,64–67.

C. Expectation values from linear functionals

In this section, we consider the use of this implicit
‘global’ wave function to compute expectation values of
operators which commute with the Hamiltonian, and
which can therefore be calculated from functionals which
are linear in the wave function. A trivial example of
this is the total energy, as its associated operator is
the Hamiltonian itself. Projecting the time-independent
Schrödinger equation from the left with the Hartree–Fock
determinant ⟨Φ| and assuming intermediate normaliza-
tion ⟨Φ|Ψ⟩ = 1, it follows that

E[Ψ] = ⟨Φ|Ĥ|Ψ⟩ , (35)

which is linear in Ψ. This is the traditional energy func-
tional of e.g. coupled-cluster theory, but holds for any
state.

Since the Hamiltonian operator of an electronic struc-
ture problem involves up to two-body interactions, only
the double excitations contribute to the correlation en-
ergy

Ecorr = E−EHF =

Nocc∑
ij

Nvir∑
ab

cabij [2(ia|jb)− (ib|ja)] , (36)

where the single excitations do not contribute for a
Hartree–Fock reference state, due to Brillouin’s theorem
(though a single-body contribution can easily be included
if using a non-Hartree–Fock reference). Projecting the

C2-amplitudes in Eq. (36) according to Eq. (24) enables
us to partition the correlation energy into cluster contri-
butions as

E[Ψx] = EHF +

Nfrag∑
x

Ex
corr

= EHF +

Nfrag∑
x

Nx
occ∑
ij

Nx
vir∑
ab

(P̂xCx
2 )

ab
ij [2(ia|jb)− (ib|ja)] .

(37)

These contributions can be formulated from the in-
dividual cluster solutions, where the orbital indices run
over the occupied or virtual states of each cluster, and
where the projection operator of Eq. (25) can be con-
structed in this cluster orbital space, to evaluate the en-
ergy efficiently in a cost linear in the number of clus-
ters. This is the energy functional introduced and used
in Ref. 53, and will be denoted by E[Ψx] throughout this
work, to indicate that it is constructed directly from the
cluster wave function amplitudes without requiring inter-
mediate cluster density matrices. The use of this func-
tional for energies is common to quantum chemical local
correlation methods, for example within the PNO68 or
cluster-in-molecules approaches69. However, the ‘frag-
ments’ in these methods are then generally defined in
terms of (localized) purely occupied orbitals, instead of
the general ‘atomic-orbital-like’ fragment spaces which
are used in the context of quantum embedding and which
in this work require the use of explicit (non-diagonal)
projection operators as described.
This functional can also be used within a fragment

projection of the T -amplitudes of an exponential rep-
resentation of the high-level cluster wave function (see
Sec. III B). In this case, inter-cluster contributions arise

from (P̂xTx
1 )(P̂

yTy
1 ) terms. This physics is neglected

in the C-amplitude projection of above in the case of
no overlap between clusters x and y. However, in
the examples in this work, the projection of the C-
and T -amplitudes gave almost indistinguishable results—
unsurprising given the small contribution of the overall
T 2
1 contribution to the energy and the fact that the local

portion of this is still included. For this reason, and to
reduce the computational cost of this energy functional
and keep consistency with Ref. 53, all results in this work
denoted E[Ψx] will correspond to the projection of the C-
amplitudes of the cluster state (even for coupled-cluster
high-level solvers) as shown in Eq. (37), though the pro-
jection of T -amplitudes may be preferred in the future.

D. Partitioned wave function density matrices

General expectation values, with operators that do not
commute with the Hamiltonian, require a quadratic func-
tional of the wave function, of the form ⟨Ψ|Ô|Ψ⟩. In the
case of one- and two-body expectation values, O1 and
O2, these can also be expressed in terms of the one-
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and two-body reduced density-matrices (which in turn
depend quadratically on the wave function) as

O1[Ψ] = ⟨Ψ|Ô1|Ψ⟩ = Tr [γpq ⟨p|Ô1|q⟩], (38)

O2[Ψ] = ⟨Ψ|Ô2|Ψ⟩ = Tr [Γpqrs ⟨pr|Ô2|qs⟩]. (39)

The one- and two-body RDMs are thus important quan-
tities to be able to compute for expectation values be-
yond the energy. Of course, with knowledge of the den-
sity matrices one can also calculate the total energy via
Eq. (8). For most quantum chemical methods, where a
globally stationary state is found, the result will be iden-
tical to the projected energy of Eq. (35). However, within
the quantum embedding framework the wave function is
partitioned into fragment contributions which are then
calculated in an approximate fashion and we do not ex-
pect this equivalency to hold. Therefore, while the indi-
vidual cluster wave functions are invariant to this choice
of energy functional, the reconstructed full system to-
tal energy may not be. Indeed, there is likely benefit in
calculating the total energy as a symmetric (quadratic)
expectation value (or equivalently from the RDMs), since
the error in the energy will reduce quadratically with the
error in the wave function, rather than linearly as in the
energy functional of Eq. (35).

In sections IIIA and III B we showed how global
wave functions can be defined in terms of contributions
of projected cluster wave functions. In principle, these
global wave functions then fully and uniquely determine
their corresponding full system reduced density-matrices.
For example, the 1-RDM of a partitioned linear wave
function can be written as

γpq = ⟨Ψ|ĉ†pĉq|Ψ⟩ = ⟨Φ+∆Ψ|ĉ†pĉq|Φ+∆Ψ⟩ (40)

= γ0
pq +

Nfrag∑
x

∑
λ∈x

(P̂xCx)λ ⟨Φ|ĉ†pĉq|Φλ⟩

+

Nfrag∑
x

∑
λ∈x

(P̂xCx)λ ⟨Φλ|ĉ†pĉq|Φ⟩

+

Nfrag∑
x,y

∑
λ∈x

∑
µ∈y

(P̂xCx)λ(P̂
yCy)µ ⟨Φλ|ĉ†pĉq|Φµ⟩ ,(41)

where λ and µ enumerate the excitations (to all included
orders) within the respective cluster in the particle-hole
basis. Note that in contrast to the democratically parti-
tioned 1-RDM of Eq. (11), the 1-RDM of a partitioned
wave function contains a summation over cluster pairs,
thus incorporating simultaneous excitations within two
different clusters, as indicated above and in Eq. (20).

For a partitioned exponential wave function the global
state itself already contains nested summations over pro-
jected cluster wave function T -amplitude contributions
(see Eq. (34)). The resulting 1-RDM will thus have even
higher order contributions than the C-amplitude projec-
tion (going up to three simultaneous cluster contributions
for a high-level wave function represented up to T2, and

up to five simultaneous clusters for the 2-RDM). Both ap-
proaches result in explicitly N -representable RDMs, but
again the T -amplitude projection can be argued to have
a larger number of physical non-local ‘cross-cluster’ con-
tributions and therefore represents a better approxima-
tion. In Sec. V we will detail the technical aspects of how
all of these cross-cluster contributions can be efficiently
computed while retaining no more than DFT scaling in
the full system size (or number of clusters). Total ener-
gies computed from these T -amplitude projected RDMs
as described in this section will be denoted E[(γ,Γ)[Ψx]]
throughout this work, to signify that these are density
matrices derived from the global partitioned wave func-
tion.

IV. A SIMPLE EXAMPLE: CHLORINE DIMER

Before describing specific implementational details in
Sec. V, we consider a simple example to corroborate the
claims in the work so far, before a more extensive set
of test systems is considered in Sec. VI. We consider
the binding of Cl2 in a minimal basis. The choice of
a minimal basis is intentional, since this means that we
can easily compare to exact FCI results, and that the
same (Löwdin orthogonalized) atomic orbital space can
be used for the fragments in all approaches. For larger
basis sets, the democratically partitioned density ma-
trix and cumulant approaches require all orbitals to be
spanned by the fragment spaces. However the projected
wave function approaches require only (at least) the oc-
cupied space to be assigned to fragments for the projec-
tor to be complete. Therefore for more realistic basis
sets, the fragment spaces would generally be chosen ac-
cording to different criteria, with the fragment spaces
of the former needing to grow with basis size. Using a
minimal basis therefore avoids this issue and allows the
different methods to be compared on the same footing.
The DMET cluster space in this example therefore con-
sists of 18 electrons in 9 fragment orbitals plus a single
DMET bath orbital (due to the minimal basis) in each of
the two symmetrically equivalent clusters, while the full
space consists of 34 electrons in 18 orbitals.
The interacting cluster Hamiltonian is solved exactly

via FCI70, and we compare the four different energy ex-
pressions outlined to far in Fig. 3: the democratically-
partitioned RDM energy common to DMET approaches
to date (E[γx,Γx] from Sec. IIA), the democratically
partitioned cumulant energy (E[γx,Kx] from Sec. II B),
the linear energy functional (E[Ψx] from Sec. III C) and
the energy from the RDMs of the T -amplitude projected
global wave function (E[(γ,Γ)[Ψx]] from Sec. IIID). We
include calculations with and without a global chemi-
cal potential optimization to ensure that the right num-
ber of electrons are conserved for the full system 1-
RDM, but no further optimization of a correlation po-
tential is considered here. When used (right column of
Fig. 3), this fragment chemical potential, µfrag, is added
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FIG. 3. Comparison of different proposed DMET energy ex-
pressions for the binding of Cl2 in a STO-6G basis. Each
cluster consists of the atomic orbitals of one atom, with a sin-
gle DMET bath orbital on the other, with all clusters solved
exactly. Right column results include a fragment chemical
potential optimization to constrain the total number of elec-
trons, while this is omitted in the left column.

to the one-electron cluster Hamiltonian within the frag-
ment space only, and optimized such that the density-
matrix traces to the correct number of electrons33 (these
µfrag-optimized results are the same as shown in Fig. 1).
All results are subject to identical locality approxima-
tion of DMET, whereby the full system is represented
only by the two wave functions in the cluster subspaces,
allowing for a faithful comparison of the quality of the
reconstructed expectation values. An example Python
script, showing how these calculations can be performed
using PySCF and Vayesta can be found in the SI.

We find in Fig. 3 that the democratically partitioned
RDM energy is changed significantly by the optimiza-
tion of the fragment chemical potential, but in neither
case are the results reasonable, with unphysical results
without µfrag-optimization, and substantial overbinding
of the dimer when this is included. These results are
also found in many other systems (barring hydrogen
dimers and chains, where we find the democratically
partitioned density matrix energy accurate, as has been
noted elsewhere21,31,33,46). The democratically parti-
tioned cumulant approach is also changed by the µfrag-
optimization, but is much less sensitive to this, with both
results already significantly improved over the democrat-
ically partitioned RDM energy. The chemical potential
optimization further drops the non-parallelity error of
the democratically partitioned cumulant approach from
∼ 6mEH to just over 1mEH in this system.

We also show the energies derived from partitioned
wave functions over the system, either calculating the en-
ergy from a linear or quadratic functional (via the RDMs)
of the wave function probability amplitudes. It is shown
that these are also very accurate, which we can ascribe to

two properties of these functionals. The first is that they
are intrinsically N -representable, ensuring that they ful-
fil the physical constraints of being derivable from a wave
function. As a consequence, they necessarily correspond
to the correct, integer number of electrons, and therefore
obviates the necessity of chemical potential optimization
which has no effect (therefore also substantially reducing
the cost of the calculations). The second rationalization
for the particularly good performance of the partitioned
wave function RDM energy is due to the introduction of
contributions from products of wave function amplitudes
from different clusters, coupling the cluster solutions to-
gether. Furthermore, for the E[(γ,Γ)[Ψx]] energy, these
contributions result in an error in the energy which is rig-
orously quadratic rather than linear in the wave function
error, and introduces a variationality (for a variational
method) into the results which results in the smallest
non-parallelity error of 0.5mEH .
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FIG. 4. Analysis of the 1- and 2-RDMs from direct democratic
partitioning (dotted lines) compared to RDMs constructed
from partitioning of the wave function (solid line), for the
same Cl2 system as Fig. 3. The results are shown without
(left) and with (right) chemical potential optimization over
the DMET clusters. Top to bottom rows show the errors in
the norm, trace and N -representability conditions (Eq. 42) of
the 1-RDM for the different approaches, with the bottom row
showing the norm error in the 2-RDM including the demo-
cratically partitioned cumulant approach.

In order to analyze the different approaches in more



12

detail, in Fig. 4 we compare the 1- and 2-RDMs result-
ing from the democratically partitioned RDMs (γ[γx] for
the 1-RDM, and Γ[Γx] or Γ[γx,Kx] for the 2-RDM from
the direct democratic partitioning and the cumulant par-
titioning respectively). We also compare to the RDMs
constructed from the partitioned wave function expan-
sion (γ[Ψx] and Γ[Ψx]). We consider the norm of the
errors compared to the exact full system 1- and 2-RDMs,
as well as the electron number error from the trace of
the 1-RDMs. We also introduce a measure of the N -
representability error of the 1-RDM, Ω, which sums the
deviation from allowable occupations of the system or-
bitals as

Ω =
∑

i:ni<0

|ni|+
∑

i:ni>2

|ni − 2|, (42)

where ni are the eigenvalues of γ.
While the overall norm error of the 1-RDMs seem

relatively similar between the approaches (especially af-
ter chemical potential optimization), it can be seen that
there is still a significant electron number error (without
chemical potential optimization), and N -representability
error in this quantity. While the chemical potential op-
timization fixes the electron number error, it is actually
found to increase the N -representability error. In con-
trast, the partitioned wave function approach ensures
that the electron numbers are exactly fulfilled even with-
out a chemical potential, and that the N -representability
error is strictly eliminated. For the 2-RDM errors, it is
clear that significant improvements are found by going
to a democratically partitioned cumulant compared to
the 2-RDM directly, further indicating that it is the non-
cumulant error in the 2-RDM which is contributing to the
significant energy errors in the standard DMET energy
functional.

V. FROM CONCEPTS TO PRACTICE

While the previous sections describe the principle and
numerical advantages behind the reconstruction of a
global wave function, in practice we will often want this
to be implicit as the reconstruction of the global corre-
lated wave function will in general be prohibitive in cost.
Instead, we want to directly compute the RDMs or expec-
tation values of interest from this state in low-polynomial
time with respect to system size, and without combining
the wave function amplitudes into an explicit global state.
This allows for the cluster wave functions to remain dis-
tributed in their fragmented cluster representations. We
focus in this section on the efficient computation of the 1-
and 2-RDMs, from which all two-body properties can be
computed, with the principle of an implicit global wave
function demonstrated in Sec. IIID underlying this con-
struction.

We restrict ourselves here to a projection of the T -
amplitudes of the global state, represented in an expo-
nential form. This is consistent with the approach in

the previous section, will maximize the number of non-
local combinations of cluster solutions, and is a natu-
ral choice for coupled-cluster high-level solvers (although
as explained in Sec. III B, other solvers can be cast in
this form). Furthermore, we focus on an efficient im-
plementation of the cluster solver truncated at the T2-
amplitudes, i.e. CCSD (or MP2), which is a cost-effective
high-level cluster solver for ab initio systems53,64–67, yet
is sufficiently computationally inexpensive for us to rig-
orously demonstrate the convergence of these function-
als with respect to bath size in Sec. VI. Extensions to
other high-level cluster solvers (e.g. FCI) can proceed
via Eq. 40, and will be described in future work. We
stress here that this approach to compute expectation
values from a global wave function with alternative (i.e.
strongly correlated) solvers would not lead to an increase
in scaling with respect to full system size compared to the
algorithm shown. Indeed, the fact that coupled-cluster
RDMs involve high-degree polynomials of the cluster so-
lution variables (i.e. Tn amplitudes) results in the for-
mal scaling with system size being generally larger than
solvers such as FCI (where the RDMs are just quadratic
in the cluster Cn variables).

Explicit reconstruction of the global CCSD T -
amplitudes (which we call the ‘global T2 algorithm’)
would require a memory overhead scaling as O(N4) and
computational scaling of O(N5) and O(N6) for the 1-
and 2-RDMs respectively (where N is a measure of full
system size) via the usual CCSD equations71. We re-
duce this scaling down to O(N2) cost in memory and
O(N3) time for the 1-RDM construction via direct use
of the cluster amplitudes and construction of appropri-
ate intermediates without introducing any additional ap-
proximations. This is described in Sec. VA, which we
denote the ‘distributed T2 algorithm’, and is crucial to
ensure that this step is a sub-leading scaling compared
to the initial mean-field calculation and for applicability
to large systems. For the construction of the 2-RDM and
properties derived from it, the requirement of a similar
quadratic scaling with system size necessitate the intro-
duction of a further approximation, which is described in
Sec. VB, with rigorous validation of this further approx-
imation demonstrated in Sec. VI.

A. One-RDM from cluster wave functions

In order to construct density-matrices at the CCSD
level, both wave function T -amplitudes and the Lagrange
multipliers (or Λ-amplitudes) are required. These are op-
timized within each cluster after the T -amplitudes are
found, giving rise to a set of Λx amplitudes for each clus-
ter, x. The principle of reconstruction of a ‘global’ set of
Λ-amplitudes follows symmetric projection of the occu-
pied indices of each cluster Λx-amplitudes onto the frag-
ment space (defined analogously to Eqs. 31 and 32), and
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a summation over the cluster solutions, as

λi
a =

Nfrag∑
x

(P̂xΛx
1 )

i
a, (43)

λij
ab =

Nfrag∑
x

(P̂xΛx
2 )

ij
ab. (44)

All expectation values in coupled cluster (including
the 1-RDM considered here) involve sums of expressions
which are polynomials in the T -amplitudes, and up to
linear in the Λ-amplitudes. The central idea of the effi-
cient ‘distributed’ approach is to avoid the explicit recon-
struction of the global T - and Λ-amplitudes entirely, and
instead iterate over tuples of cluster solutions, directly
summing in their corresponding contribution to the 1-
RDM. The number of clusters which needs to be looped
over in order to include all cross-cluster contributions to
the desired expectation value (or 1-RDM in this instance)
depends on the maximum order of the polynomial in the
expression, i.e. the total number of T - or Λ-amplitudes
which are contracted together.

For the 1-RDM, this maximum order is formally three,
corresponding to contractions of the type Λ1T

2
1 . This

corresponds to the maximum rank of simultaneous ‘cross-
cluster’ information in the construction of this quantity
(i.e. triplets of cluster solutions are required). How-
ever, we can reduce this by first explicitly constructing
the global T1- and Λ1-amplitudes from the cluster solu-
tions according to Eqs. (31, 43), since this will only re-
quire a scaling of O(N2) and O(N3) in memory and time
respectively, which is an acceptable overhead compared
with the initial mean-field calculation. This is in contrast
to the analogous explicit construction of the global T2-
amplitudes, which we have already argued is prohibitive.
The fragment projection for T1 and Λ1 is therefore per-
formed in each cluster, and then projected back into the
full system MO space and summed over all clusters. Fur-
thermore, we store these global T1- and Λ1-amplitudes
on every memory partition of a distributed memory par-
allel calculation. The key result is that we now only
need to loop over cluster tuples up to the maximum rank
of distributed (i.e. T2 or Λ2) amplitudes in the 1-RDM
expression, which is only quadratic, resulting from an
L2T2 contraction. This requires only an O(N2) double
summation over pairs of cluster amplitudes (which can
be further reduced asymptotically down to O(N) as de-
scribed later). If certain contractions require a T1 to be
contracted with a cluster distributed T2, then the global
T1 amplitudes can be projected into the required cluster
space of the T2.
We demonstrate this distributed amplitude algorithm

for the example of the CCSD contribution to the
occupied–occupied block of the 1-RDM, given as

∆γij = ∆γ
(Λ1,T1)
ij +∆γ

(Λ2,T2)
ij

=

Nvir∑
a

λi
at

a
j +

Nocc∑
k

Nvir∑
ab

λik
ab

(
2tabjk − tbajk

)
.

(45)

The first term of this contribution can readily be calcu-
lated from the explicitly combined global singles ampli-
tudes with O(N3) scaling. For the second term, we can
calculate the contribution arising from a specific cluster
pair (x,y), by using the Λ2- and T2-amplitudes corre-
sponding to these clusters, as

∆γxy
ixjy

=

Nx
occ∑
kx

Nx
vir∑

axbx

Ny
occ∑
ky

Ny
vir∑

ayby

Sxy
axay

Sxy
bxby

Sxy
kxky

[P̂xΛx
2 ]

ixkx

axbx

(
2[P̂yTy

2 ]
ayby
jyky

− [P̂yTy
2 ]

byay

jyky

)
,

(46)

where we use the notation ix (ax) to indicate an occu-
pied (virtual) orbital of cluster x, and Sxy to represents
the overlap matrix between the occupied (or virtual, as
indicated by the subscript indices) orbitals of cluster x
with cluster y, given by

Sxy
pxpy

=

Nao∑
α

Cx
αpx

Nao∑
β

SαβC
y
βpy

 . (47)

These Sxy matrices can be precomputed in O(N3) for
all cluster pairs, where the columns of Cx are the rele-
vant orbitals of cluster x in the AO representation, and
S is the AO overlap matrix. We then sum the 1-DM
contributions of Eq. (46) over all cluster pairs, according
to

∆γ
(Λ2,T2)
ij =

Nfrag∑
x

Nx
occ∑
ix

Rx
iix

Nfrag∑
y

Ny
occ∑
jy

Ry
jjy

∆γxy
ixjy

 , (48)

where R represents the overlap between cluster MOs and
MOs of the full system, i.e.

Rx
ppx

=

Nao∑
α

Cαp

Nao∑
β

SαβC
x
βpx

 . (49)

To analyse the computational scaling of the distributed
amplitude algorithm, we note that the number of clus-
ters, AOs, and full system MOs grows linearly with the
system size, whereas the number of cluster orbitals per
cluster remains constant. As a result, the calculation of
all cluster pair contributions (46) scales as O(N2), while
Eqs. (47–49) can be evaluated in O(N3) time, if interme-
diates are formed as indicated by the brackets. An anal-
ogous loop over cluster pairs can also be used to calculate
the virtual–virtual and mixed occupied-virtual blocks of
the 1-RDM, resulting in an overall O(N3) scaling algo-
rithm.

In Fig. 5 we compare the scaling of the global am-
plitude and distributed amplitude algorithms, for a se-
ries of alkanes between hexane (C6H14) and C22H46 in
a cc-pVDZ basis and atomic IAO fragmentation. To ex-
tend beyond a minimal DMET bath size, we augment
the bath expansion with ‘bath natural orbitals’ (BNO),
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which can be systematically enlarged in order to describe
the beyond-mean-field coupling of the fragment to the
environment at the level of approximate MP2 theory53.
This bath construction is similar to pair natural orbitals
(PNO)—though traditional PNOs are applied only for
the virtual coupling of a localized electron pair68,72,73.
The completeness of this bath space is controlled by a
threshold η, where the bath becomes complete as η → 0,
and is limited to just the traditional DMET bath as η
becomes large. More details on the construction and mo-
tivation of this bath expansion can be found in Ref. 53.
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FIG. 5. Timings for the construction of the full system
1-RDM from the partitioned wave function for two different
bath truncation thresholds, η = 10−4 and η = 10−6, for the
‘global’ and ‘distributed’ T2 algorithms. Increasing the bath
size has little effect on the global T2 algorithm, whereas it
leads to an increase in the prefactor (but not the exponent)
of the distributed T2 algorithm.

From the timing data for the 1-RDM construction in
Fig. 5 for two different bath space sizes, we fit the polyno-
mial t(N) = aN b to the last six data points of each curve
to determine the overall computational scaling. For the
global amplitude algorithm, this is close to the expected
scaling with b ∼ 5, whereas for the distributed ampli-
tude algorithm we find an exponent close to 2 indicating
a quadratically-scaling algorithm, instead of the expected
exponent of 3. This indicates the small prefactor of the
efficient O(N3) operations of Eqs. (47–49), whereas the
evaluation of Eq. (46), although scaling as O(N2), has a
significant larger prefactor and dominates the computa-
tional costs for the tested system sizes.

Despite this favorable scaling, we employ a number of
additional techniques, to further improve the efficiency
of this algorithm. These include a singular value decom-
position of each cluster overlap space, in order to find
the most compact domain for describing the inter-cluster
physics. In the large system limit, this also naturally
leads to a O(N) scaling in the 1-RDM construction, due
to the fact that each cluster will only have appreciable

overlap with O(1) other clusters. In addition, we con-
sider efficiency gains that can be made from k−point
sampled periodic systems, effective distributed memory
parallelism, and a compressed representation of the pro-
jected amplitudes. These technical improvements in the
1-RDM construction are detailed in Appendix A.

B. ‘In-cluster’ approximation to the two-RDM

In principle, an analogous approach to above can be
used to recover any expectation value from the implicit
partitioned wave function, with the scaling determined
by the maximum number of products of Tn or Λn in any
of the terms, where n > 1. For the 2-RDM, this in-
creases to three (from two for the 1-RDM), which would
necessitate looping over triplets of cluster solutions (not-
ing that a similar SVD approach to screen the overlap
would still asymptotically reduce to linear scaling). Note
that including the T1 and Λ1 contributions, the 2-RDM
would include simultaneous contributions of up to five
cluster amplitudes, but by explicitly reconstructing these
T1 and L1 amplitudes globally, only looping over three
clusters (x,y, z) would be required. However, includ-
ing the projections back to the full space and noting the
O(N4) storage of the global 2-RDM, these scalings are
likely prohibitive if we aim for the quantum embedding
to maintain a scaling with full system size which is no
more than mean-field theory.

To return to (at most) a O(N3) scaling approach, an
additional approximation is thus required. As a first
step, we split the 2-RDM into products of 1-RDMs and
an (approximate) cumulant, K, defined according to
Eq. (15). The non-cumulant part can be treated without
further approximations, using the efficient calculation of
the 1-RDM presented in the previous section. This en-
sures that all the cross-cluster contributions in the non-
cumulant part are exactly included from an implicit valid
wave function. The cumulant part, on the other hand,
will be treated in an ‘in-cluster approximation’, meaning
that all products of wave function amplitudes are taken
within a single cluster at a time, rather than explicitly
including triplets of clusters.

In order to illustrate this, let us consider a contribution
to the cumulant, δK, which involves a (Λ2T

2
2 ) triple prod-

uct of double (de)excitation amplitudes. If evaluated ex-
actly according to the implicit partitioned wave function,
this would require contributions from all triplets (x,y, z)
of clusters, as

δKxyz
iyazjybz

=
∑
kxlx

∑
cxdx

∑
cydy

∑
kzkz

Sxy
cxcyS

xy
dxdy

Sxz
kxkz

Sxz
lxlz

[P̂xΛx
2 ]

kxlx
cxdx

[P̂yTy
2 ]

cydy

iyjy
[P̂ zT z

2 ]
azbz
kzlz

.

(50)

In the in-cluster approximation, this contribution is re-
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placed by

δKx
ixaxjxbx =

∑
kxlx

∑
cxdx

[P̂xΛx
2 ]

kxlx
cxdx

[Tx
2 ]

cxdx
ixjx

[Tx
2 ]

axbx
kxlx

, (51)

which only contains amplitudes from cluster x. Note
that Eq. (51) only contains a single fragment-space pro-
jector, which is applied to the Λ-amplitude, compared to
Eq. (50), where every amplitude is projected. In general,
the number of projectors in a term has to agree to the
number of nested loops over clusters the given term is
summed over. This ensures preservation of a core princi-
ple of the embedding, that we guarantee an exact result,
free from double-counting, as the bath space increases to
completeness, as long as the sum of the fragment spaces
spans the entire occupied space (Eq. 26). Instead of
projecting the Λ-amplitude, we could have also chosen
to project the first or second T -amplitude in Eq. (51),
resulting in a different in-cluster approximation, which
nevertheless becomes exact in the full-bath limit. How-
ever, projecting the Λ-amplitudes yields a simple recipe,
since all contributions to the 2-RDM cumulant are at
most linear in Λ1 or Λ2. Some limited experimentation
with other options for the projected amplitudes did not
seem to significantly change the results. The only term
this prescription does not work for is the Λ0 terms of
coupled-cluster expressions, which results in a MP2-like
contribution

δKiajb = tabij + tai t
b
j −

1

2

[
tbaij + tbi t

a
j

]
, (52)

in which case we use projected T -amplitudes, according
to

δKx
ixaxjxbx = [P̂xTx

2 ]
axbx
ixjx

+ [P̂xTx
1 ]

ax
ix
[Tx

1 ]
bx
jx

− 1

2

(
[P̂xTx

2 ]
bxax
ixjx

+ [P̂xTx
1 ]

bx
ix
[Tx

1 ]
ax
jx

)
.

(53)

We note here that the ‘global’ T1- and Λ1-amplitudes
as defined in the last section are not used in this ‘in-
cluster’ cumulant approximation, ensuring that only a
single cluster summation is used for all terms. Relaxation
of this constraint will be investigated in the future.

This ‘in-cluster’ approximation to the two-body cumu-
lant reduces its computation to sums over single cluster
wave function contributions, avoiding the computational
effort associated with the fully non-local approach (as
used for the 1-RDM in Sec. VA). The computational
effort to compute the two-body cumulant contributions
is now negligible compared to the 1-RDM construction,
which requires contributions from all pairs of clusters.
However, we do not want to build the whole full-system
cumulant (which would require a prohibitive O(N4) scal-
ing in memory), but rather calculate expectation values
directly from this sum over the independent cluster wave
functions. We can therefore directly construct the energy
functional with this ‘in-cluster’ approximated cumulant,
which we denote E[(γ,K∗)[Ψx]) in this work (the asterisk

denoting the ‘in-cluster’ approximation to the two-body
cumulant), as

E[(γ,K∗)[Ψx]] = EHF[γ
0] +

∑
pq

Fpq[γ
0]∆γqp[Ψ

x]

+
1

2

Nfrag∑
x

Nx
cl∑

pqrs

(pq|rs)K∗[P̂xΨx])pqrs,

(54)

where K∗[P̂xΨx] indicates that each term in the ex-
pression for the (approximate) cumulant of Eq. (15) is
computed from products of contributions from the same
cluster solution (the ‘in-cluster approximation’). This al-
lows the two-body contributions from each cluster to be
computed entirely independently, as opposed to ∆γ[Ψx]
which is assumed to contain all relevant products of dif-
ferent cluster solutions (see Sec. VA). Other static two-
body expectation values can be derived using this ‘in-
cluster’ two-body cumulant analogously. In Sec. VIC and
Appendix B, we go beyond energetics to consider the two-
point instantaneous spin correlation function, which can
be computed in this same framework via reconstruction
of a global 1-RDM, with cluster-local two-body contribu-
tions via the ‘in-cluster’ approximated cumulant.
While this approach bears similarities to the demo-

cratically partitioned cumulant for two-body properties
of Sec. II B (specifically that the disconnected part of
the 2-RDM is treated separately to include cross-cluster
contributions), it has significant advantages. In particu-
lar, the 1-RDM part is treated in a fully N -representable
way, with contributions from all triplets of different clus-
ter wave functions, as well as the fact that the projections
acting on the occupied spaces mean that fragments only
need to span the complete occupied space to ensure con-
vergence to ‘in-method’ exactness as the bath spaces of
each fragment are enlarged. We consider this a critical
aspect to allow for practical extension of the embedding
to realistic basis sets.
Although this ‘in-cluster’ approximation is justified

primarily by numerical expediency, it is still a control-
lable approximation in the same fashion as the embed-
ding approximation itself, via an expansion of the bath
space, guaranteeing systematic improvability of the ap-
proximation to exactness. However, it is also clear that
the ‘in-cluster’ approximation to the two-body cumulant
does result in a loss of strict N -representability of the
resulting 2-RDM. This is because it is no longer deriv-
able from a full system wave function, since there is no
single set of ‘global’ T - and Λ-amplitudes used for all ex-
pressions. This can be seen in the first set of results in
Fig. 1 which presents all energy functionals used in this
work. While the error in the energy functional which
builds the RDMs from the explicit full system partitioned
wave function (E[(γ,Γ)[Ψx]]) is variational with respect
to the true solution, this is lost when the low-scaling ‘in-
cluster’ approximation is used for the two-body cumulant
(E[(γ,K∗)[Ψx]]).
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In the next section, we will rigorously benchmark
these different approaches to computing energies and
non-energetic spin–spin correlation functions, and ana-
lyze their convergence in realistic molecular and extended
systems with systematic expansion of the bath space of
each cluster. Surprisingly, we find that energies derived
with the ‘in-cluster’ cumulant approximation exhibit an
improved convergence to the exact complete bath limit of
the embedding theory, due to more favorable cancellation
of errors.

VI. RESULTS

We now turn to a larger selection of systems, to con-
sider the convergence of these different energy estimators
to their ‘in-method’ exact limit, as the size of the inter-
acting bath expansion of each cluster is enlarged. For
this expansion, we consider the ‘cluster-specific bath nat-
ural orbitals’ (BNO) introduced in Ref. 53, which can be
used as a systematic way to increase the orbital space
controlled by a single threshold parameter η, and we will
use CCSD as a cluster solver throughout. As η is reduced
towards zero, the bath space increases in size towards
completeness, capturing longer-ranged and higher-energy
coupling of the fragment to its environment. The use of
CCSD as a solver allows us to access bath sizes sufficient
to converge to ‘in-method’ exactness, and we will move to
consider stronger-correlation solvers in future work. We
will initially compare the energies from the three intro-
duced energy functionals which are derived from recon-
structed wave function forms. As a recap, these are:

• E[Ψx]: Introduced in Ref. 53 and Sec. III C, this
is the cheapest approach to energy computation of
Eq. (37), requiring no communication between in-
dependent additive cluster contributions.

• E[(γ,Γ)[Ψx]]: Described in Sec. IIID, this com-
putes the energy from the exact density matrices
from the reconstructed wave function partitioned
over the clusters. This scales worse than the mean-
field for the exact reconstructed Γ, and rapidly be-
comes the dominant cost in the calculation. It will
primarily be used for reference.

• E[(γ,K∗)[Ψx]]: Described in Sec. VB, this approx-
imates the cumulant contribution to the 2-RDM via
the ‘in-cluster’ approximation, which ensures low-
scaling with system size for this non-factorizable
two-body energy contribution. However, the 2-
RDM loses strict N -representability. The 1-RDM
contributions are still N -representable from the
partitioned wave function according to the efficient
algorithm of Sec. VA.

We do not compare the energies from the density ma-
trix derived expectation values of Sec. II, due to the dif-
ferent constraints on the fragment spaces imposed. For
the wave function derived expectation values above, all

of these will converge to in-method exactness as the bath
space increases as long as the combined fragment spaces
span the occupied space, while the density matrix expec-
tation values require the combined fragment spaces to
span all degrees of freedom. This allows us to consider
simple minimal-size atomic intrinsic atomic orbital frag-
ments, with the only convergence criteria now being the
bath size controlled by η.

A. Molecular results: W4-11 test set

We first consider the comparison of these energy func-
tionals for the W4-11 test set of 152 small molecules con-
sisting of first and second-row elements, which covers a
broad range of bonding character, with static as well as
dynamic correlated physics present, as well as a mix of
high-spin, low-spin and open-shell systems54. In a cc-
pVDZ basis, canonical CCSD calculations on the full test
set is tractable, to obtain a ‘ground-truth’ total energy
for all molecules, and we use ROHF/UHF and UCCSD
for open-shell cases. Using the information from the cor-
responding Hartree–Fock calculation, we then fragment
each molecule into a minimal basis set of IAOs on each
atom, which we use as the fragments of each clusters,
which ensures that the total occupied space of the full
system is spanned by the fragments61 (we omit the Beryl-
lium dimer test system, due to a lack of virtual orbitals
in the default IAO basis). The choice of single atom
fragments simplifies their selection, but future work to
consider larger (or smaller) disjoint fragmentation causes
no conceptual or practical difficulties. To complete the
cluster space of each atom, we augment this with the
DMET bath space (which must be at most equal in size
to the fragment space), and then with the BNOs defined
from a given threshold, η. Smaller η values correspond
to larger bath spaces, with η > 1 just returning to the
smallest (DMET) bath size. Each cluster is then solved
independently at the level of CCSD (restricted or unre-
stricted), and the total energies reconstructed from the
three wave function-based energy functionals provided
above, with no self-consistency or chemical potential op-
timization.
These results are shown in Fig. 6, with their absolute

per electron energy errors aggregated for different val-
ues of η in Fig. 7. It is clear that the bath expansion of
these IAO atomic fragments results in a rapid, monotonic
and systematic convergence of all energy estimates to in-
method exactness, obtaining agreement with canonical
CCSD calculations to within tight errors. The largest of
these errors, in both MAE and standard deviation over
the different molecules in the test set, arises from the
E[Ψx] functional, which is to be largely expected, since
this functional does not have any ‘cross-cluster’ contribu-
tions to the energy, relying on a sum over independent en-
ergy contributions from the fragments. A significant im-
provement in the rate of convergence can be found from
the E[(γ,Γ)[Ψx]] functional, which contains many prod-



17

20 30 40 50 60 70 80 90 100
Maximum cluster size

0.0

0.1

0.2

0.3

0.4
En

er
gy

 er
ro

r (
M

AE
) p

er
 el

ec
tro

n 
(E

H
)

= 10 4.5= 10 4.0= 10 3.5
= 10 3.0

DMET

88 89 90 91 92 93 94 95 96

0.000

0.005

0.010

0.015

= 10 6.5= 10 6.0
= 10 5.5

= 10 5.0

E[ x]
E[( , )[ x]]
E[( , K * )[ x]]

FIG. 6. Convergence of the reconstructed system energy from
individual cluster solutions to the canonical CCSD with re-
spect to the maximum cluster size for any atomic fragment
in any molecule in the W4-11 test set. Cluster sizes are
controlled by the bath threshold (η), starting from just the
DMET bath, for the wave function derived energy functionals.
Points indicate the mean absolute error (MAE) per electron
in the total energy, while error bars show the standard devia-
tion over the test set. Inset shows a magnified version of the
larger bath threshold results.
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FIG. 7. Violin plots showing the distribution of total energy
errors per electron over the W4-11 test set of molecules com-
pared to canonical CCSD calculations, for the different par-
titioned wave function energy estimators. This is performed
with a bath expansion of each IAO atomic fragment for dif-
ferent values of η, which corresponds to a maximum cluster
size as indicated in Fig. 6. Total distribution ranges show the
minimum and maximum errors over the test set.

ucts of contributions between different cluster solutions
in its construction. Furthermore, this energy is rigorously
Ψ-derivable, and is therefore expected to exhibit an error
which is quadratic in the implicitly reconstructed wave
function error. Though the energy is not strictly vari-
ational due to the non-variationality of coupled-cluster
theory, we also find it to be fully variational compared to
the canonical CCSD in all cases.

However, somewhat surprisingly, the E[(γ,K∗)[Ψx]]
energy functional converges to in-method exactness at
the fastest rate, obtaining the least energy error across
the test set for each bath truncation. This approach
was motivated as an efficient approximation to the
E[(γ,Γ)[Ψx]] energy, but due to favourable cancellation
of errors between the approximated cumulant energy con-
tribution and the inherent locality approximation in the
bath truncation, appears to be the preferred approach
(as well as being particularly efficient). For interme-
diate cluster sizes, the reduction in per-electron MAE
can be nearly an order of magnitude compared to the
E[Ψx] energy. Due to the approximation in this cumu-
lant non-variational total energies can result (compared
to the canonical result), however the appearance of these
non-variational results are very rare, and only observed
for already tightly converged energies. This is because
the bath truncation itself is a variational approximation
(since this defines a subspace of the full variational free-
dom of the cluster), which explains the favourable cancel-
lation of errors, and maintenance of generally variational
results, even in this approximation which breaks strict
N -representability in the 2-RDM.

B. Solid state results: Diamond

A key feature of the embedding approach proposed is
the applicability to both molecular and periodic systems,
enabled by ensuring all steps scale no worse than the ini-
tial Hartree–Fock calculation. We therefore also consider
the convergence of structural properties of crystalline fcc
diamond in an all-electron cc-pVTZ basis and a 5×5×5
k-point sampling. At 7500 orbitals and 1500 electrons,
this is well beyond the capabilities of canonical CCSD
for a direct comparison, but we can observe the relative
convergence of the different energy estimators, and the
resulting equation of state.
The supercell is split into 250 individual embedded

cluster problems, comprising of the minimal basis IAOs
of a single Carbon atom as the fragment (6 orbitals), the
DMET bath space (also 6 orbitals), and the BNOs whose
size depends on the η parameter. The size of the result-
ing clusters vary between 50 and ∼ 250 orbitals. Due to
the translational and rotational symmetry, all embedded
problems are symmetry-equivalent, and therefore only
a single cluster needs to be solved, with the linear en-
ergy functional trivially exploiting this symmetry, while
a slightly more involved exploitation of the symmetry to
avoid explicitly solving multiple cluster problems in the
accumulation of the long-range RDMs for other expec-
tation values is described in Appendix A. We note that
exploitation of this symmetry information is not required
and only used here for numerical efficiency, with identical
results achieved by computing all cluster contributions
independently.
Results are presented in Fig. 8 for the linear en-

ergy functional E[Ψx] and the ‘in-cluster’ cumulant func-
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tional, E[(γ,K∗)[Ψx]], for a range of lattice parameters
of the unit cell. The E[(γ,Γ)[Ψx]] functional is omit-
ted due to its unfavourable scaling to these system sizes.
The input to our Vayesta code to generate these results
is given in the SI, where periodic integrals for the sys-
tem are generated from PySCF5,74. Changing the lattice
vectors leads to an effective change in the basis set cover-
age at different cell sizes (since the same number of basis
functions span different volumes of the supercell, chang-
ing the effective completeness of the overall basis). To
compensate for this, we correct all energies for this ‘basis
set superposition error’ (BSSE) via an adaptation of the
counterpoise correction method75 as described in Ref. 53.
The BSSE per atom is estimated by computing two in-
dependent molecular sytems, the first for single carbon
atom (30 basis functions) and the second for a single atom
in addition to the basis functions of all carbon atoms
within a 3×3×3 supercell (1620 basis functions in total),
sufficient to describe the changing basis set coverage for
the carbon atom under consideration. The difference be-
tween the two energies is the estimated BSSE error, with
this correction changing across the shown lattice range
by ∼ 7.2 mEH, which slightly lowers the energy at large
lattice parameters relative to the more compressed cells,
leading to a small expansion of the equilibrium volume.

The equation of state for the two different energy func-
tionals and BNO bath threshold (η) values are shown in
Fig. 8. These demonstrate the systematic improvement
in the total energy as η decreases. However, while the
total energy is not fully converged, we can fit these equa-
tions of state to a Birch-Murnaghan form76 about ap-
proximately ±6% of the equilibrium value, in order to
estimate structural properties for each of these curves,
and gauge their convergence. We consider the con-
vergence of the equilibrium lattice parameter and bulk
modulus in Fig. 9, showing convergence to experimen-
tal values, corrected for zero-point vibrational effects5,77.
We find a small yet consistently improved convergence
for both of these properties from the in-cluster approx-
imated cumulant energy functional at each cluster size
compared to the linear energy functional derived prop-
erties, in keeping with the conclusions from the conver-
gence of the energy in the molecular test set of Fig. 7.
Our most accurate result (η = 10−7.5, resulting from
a single CCSD calculation on ∼ 330 orbitals), gives a
bulk modulus which agrees with experiment by less than
10GPa, while the equilibrium lattice parameter is in er-
ror by only ∼ 0.002Å. By way of comparison, literature
values from commonly used exchange-correlation func-
tionals of DFT for structural properties give equilibrium
lattice constants in error by between +0.02Å(PBE) and
−0.015Å (HSESol) compared to experimental values77,
an order of magnitude greater than these results.
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FIG. 8. Equation of state for diamond, using both the
linear energy functional (E[Ψx], purple) and the RDM
energy functional with in-cluster approximated cumulant
(E[(γ,K∗)[Ψx]], red). Data from different lattice parameters
are fit to a Birch-Murnaghan equation of state for different
values of η, systematically expanding the size of the cluster
space. 5 × 5 × 5 k-points are used in the supercell, with an
all-electron cc-pVTZ basis, while small energy corrections for
the basis set superposition error are also included. The calcu-
lated energies are shown as circles, the fits are solid lines and
the equilibrium lattice parameter from the fit is indicated by
pentagons.
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FIG. 9. Convergence of equilibrium lattice parameters (cir-
cles, left y-axis) and bulk modulus (diamonds, right y-axis)
for a 5×5×5 diamond supercell as the total number of cluster
orbitals increases (controlled by the η value). Values are es-
timated from a Birch-Murnaghan fit to the equation of state
shown in Fig. 8. Results are shown for both the linear en-
ergy functional (E[Ψx]) and the RDM energy functional with
in-cluster approximated cumulant (E[(γ,K∗)[Ψx]]), with ex-
perimental values shown as horizontal lines5,77.

C. Beyond energetics: Non-local spin correlation functions

While accurate energetics are important, they are far
from the only non-local expectation values of interest,
and we should also gauge the validity of the cumulant-
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approximated 2-RDM approach for other two-body ex-
pectation values. We therefore evaluate instantaneous
spin–spin correlation functions between pairs of atoms
(A, B), given by

⟨ŜA
z Ŝ

B
z ⟩ = 1

4

∑
ijkl

PA
ijP

B
kl

(
Γαα
ijkl − Γαβ

ijkl − Γβα
ijkl + Γββ

ijkl

)
+

1

4

∑
ijk

PA
ikP

B
jk

(
γα
ij + γβ

ij

)
,

(55)

where PA is a projector onto an appropriately chosen
subspace representing the atom A. We define these
atomic projectors via symmetrically (Löwdin) orthogo-
nalized atomic orbitals (SAO) for each atom, as given in
Appendix B. Note that while the total spin–spin correla-
tions of the full system, ⟨S2

z ⟩ =
∑

AB ⟨ŜA
z Ŝ

B
z ⟩, are neces-

sarily zero in a spin-restricted formalism (though not in
unrestricted), the local contribution from a given atom
pair is generally non-zero, indicating the conditional spin-
density between different points in the system.

We adapt the fragmentation and BNO bath expan-
sion procedure as detailed in Sec. VIA to use a spin-
broken UHF reference, spin-dependent bath orbitals, a
UCCSD solver, and generalizations of all expectation
value accumulation in a unrestricted formalism. We
can then consider the convergence of the spin–spin cor-
relation function with bath size for the n-propyl radi-
cal (shown in Fig. 10) in the cc-pVTZ basis between
the radical C1 position (atom A) and other atoms in
the system (atom B). In order to compare results

FIG. 10. Labels of the atoms in the n-propyl radical used in
this work.

from the traditional democratically partitioned 2-RDM
of Sec. IIA (Γ[Γx]), the democratically partitioned cu-
mulant of Sec. II B (Γ[γx,Kx]) and the in-cluster cumu-
lant approximated 2-RDM derived from the partitioned
wave function of Sec. VB (Γ[(γ,K∗)[Ψx]]), we choose a
complete fragmentation of the system via atomic IAO ⊕
PAO fragments, ensuring that the full virtual space of
the system is also spanned by the fragmentation. This
is a necessary condition for the democratically parti-
tioned approaches to approach exactness as the bath

space becomes complete, but is a sufficient but not neces-
sary condition for the Γ[(γ,K∗)[Ψx]], which only requires
fragments to span the occupied space. However, choos-
ing this common fragmentation will allow for results to
be compared on the same footing, despite requiring a
larger fragment space than would be most efficient for
the wave function partitioned RDMs. In appendix A,
we detail how an efficient in-cluster approximated form
for Γ[(γ,K∗)[Ψx]] can be utilized for this spin-spin corre-
lation function, ensuring that all four-index contractions
are performed within each cluster, to maintain cubic scal-
ing with system size.
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FIG. 11. S2
z -correlation functions in the n-propyl radical

between the radical position (C1) and other carbon (first col-
umn) and hydrogen atoms (second column) in the molecule
(see Fig. 10). Spin correlators are derived from the 2-RDM
computed in different ways; traditional democratic partition-
ing of Sec. IIA (denoted Γ[Γx], green), democratic partition-
ing of the cumulant of Sec. II B (denoted Γ[γx,Kx], yellow)
and the wave function derived 2-RDM with in-cluster approx-
imated cumulant of Sec. V (denoted Γ[(γ,K∗)[Ψx]], red). The
calculation was performed in the cc-pVTZ basis set (188 or-
bitals) with SAO projectors to evaluate the spin correlation
functions, and IAO ⊕ PAO atomic fragmentation.

Figure 11 plots the convergence of these spin correla-
tion functions from the various functionals as the average
cluster (bath) size increases. Beyond just convergence of
any single expectation value, these results also allow us to
consider the accuracy of these two-body spin-correlators
as a function of their range, indicating the ability of each
to compensate for the locality approximation inherent
in the embedding for smaller cluster sizes, and converge
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highly non-local two-point observables. While there is
only a small difference between the traditional partition-
ing of the 2-RDM and cumulant partitioning schemes
for the on-site correlation function (top left plot), this
changes for the longer-ranged correlations in the lower
rows of the figure, where the partitioned cumulant ap-
proach of Sec. II B converges significantly quicker and
more smoothly to the full system UCCSD limit, where
the direct democratic partitioning of the 2-RDM can be-
come highly erratic. It is particularly noteworthy that
the democratically partitioned 2-RDM results can be
worse than then uncorrelated UHF values, even when
going to average cluster sizes as large as ≈100, at which
point the partitioned cumulant results are almost indis-
tinguishable from full system CCSD values. However, as
expected, the wave function derived expectation values
are by far the most reliable across the range of cluster
sizes, even with the ‘in-cluster’ approximated cumulant,
with an improved and more systematic convergence even
for the fully local spin correlator. As such, our results
support the use of this approach for both energetics and
other one- and two-body properties where possible in this
wave function embedding context.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have critically assessed approaches to
reconstruct expectation values from wave function quan-
tum embedding methods. In doing so, we have moti-
vated and compared a number of approaches for calcu-
lating total energies across the fragmented system, as well
as considering the two-point spin correlation function as
an example non-energetic and non-local quantity via the
reconstructed reduced density matrices. A fundamen-
tal difference exists between two classes of approaches,
where expectation values are computed from either par-
titioned density matrices, or partitioned wave functions,
particularly due to the difference these approaches im-
pose on the choice of fragmentation if a bath expansion
of the cluster is to tend to exactness. In the former case,
it was found that partitioning the cumulant rather than
the 2-RDM directly gave rise to significantly improved
two-body properties and energies, and is likely to find
applications in solvers where access to wave function am-
plitudes is difficult (e.g. the increasing use of quantum
computing algorithms as high-level solvers48–52).
In the latter case where an implicit partitioned

wave function is considered, total energy expressions are
motivated and derived from a simple linear energy func-
tional, and from density matrices constructed directly
from this wave function. If obtained via these RDMs,
the total energy from the embedding is variational (for
a variational solver) and N -representable, but incurs sig-
nificant overhead in the 2-RDM construction. A rigor-
ous and efficient quadratically-scaling algorithm is de-
veloped for this N -representable 1-RDM, and an ‘in-
cluster’ approximation for the 2-RDM is motivated, ne-

glecting many of the cross-cluster contributions in the
2-cumulant. Taken together, these two developments are
found to provide the most efficient convergence of ener-
getics and non-local expectation values across a range of
systems via a systematic bath expansion of the cluster,
while only requiring an atomic IAO fragmentation of the
system. We believe that this approach will prove im-
portant going forward in the development of robust and
accurate wave function embedding techniques for both
chemical and extended systems.

There are a number of further directions we aim to ex-
plore as a result of these insights. In systems where the
electronic state is required to qualitatively change (e.g.
quantum phase transitions), it is possible that a brute-
force bath expansion (while necessarily still improvable
to exactness) is not going to be the most efficient route
in order to capture this changing physics, and feedback
from the correlated state to the underlying mean-field
reference is required. The identification of an implicit
wave function, as well as a formally N -representable 1-
RDM opens new avenues for robust and accurate self-
consistency conditions. For instance, the self-consistency
could maximize the overlap between this implicit par-
titioned wave function and a mean-field state by mini-
mizing the partitioned T1 amplitudes78. Alternatively,
coupling between wave function amplitudes of different
cluster are also being formulated. Additionally, the ap-
proach of ‘projected’-DMET could be reconsidered with
a full-system 1-RDM which contains more of the non-
local physics and is fully N -representable compared to
the standard democratic partitioning20. Finally, the ap-
plication of a broader range of solvers which can treat sig-
nificantly strongly correlated systems, as well as excited
states, spectra and analytic gradients or forces with these
new perspectives of an implicit embedded wave function
are ongoing avenues of investigation.
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APPENDIX

A. Further algorithmic efficiency in one-RDM construction

In Sec. VA we detail the specifics of the 1-RDM con-
struction from the implicit global T -amplitudes. There
are a number of further efficiency gains which we make
to further speed up the generation of this 1-RDM, and
which can also be used for other non-local quantities
which rely on combining different cluster solutions.

1) We perform a compact singular-value decomposition
of the overlap matrices Sxy in Eq. (47) and remove all left
and right singular vectors corresponding to singular val-
ues smaller than a cutoff (which we choose to be 10−3).
For every pair of clusters, the Λ- and T -amplitudes are
then rotated into the resulting SVD basis (scaled by the
corresponding singular value), except those open indices
which are not contracted with an overlap between the
cluster pairs (e.g. ix and jy in Eq. (46)). These singular
values characterize the overlap between the occupied or
virtual orbitals of clusters x and y. If no singular value is
above the threshold, the clusters are considered to have
negligible overlap and and the contribution ∆γxy is as-
sumed zero. In the asymptotic large system limit, each
cluster will only have an appreciable overlap with O(1)
other clusters due to their local nature. This effectively
screens the loop over cluster pairs to eventually only loop
over O(N) overlapping clusters.

2) When periodic boundary conditions are used, we al-
ways perform the embedding calculations at the Γ-point
of the N1×N2×N3 Born–von Karman supercell, corre-
sponding to original Monkhorst–Pack k-point mesh of
the same dimensions. In this case the summation over
clusters x is only performed over fragments within the
primitive cell atR0, whereas the summation over clusters
denoted y is unrestricted over all primitive cells within
the supercell (Ri). Note that even though density matrix
contributions between x in the primitive cell and y over
all clusters in the supercell are explicitly constructed, in-
dividual clusters only in the primitive cell R0 need to
be solved, as the resulting wave function amplitudes can
be transformed into the AO basis and translated (corre-
sponding to a permutation of the AO indices) to any
other, symmetry-equivalent position within the super-
cell. The remaining density matrix contributions from
clusters x outside of the primitive cell R0 can be simply
reconstructed via translation, as

γ =

Ncells∑
Ri

T̂ (Ri −R0)

Nprim
frag∑

x∈R0

Ncells∑
Rj

Nprim
frag∑

y∈Rj

∆γxy

 , (56)

where T̂ (R) is an operator which translates all atomic
orbitals in ∆γxy to the right by R, with ∆γxy denoting
the contribution to the correlated density matrix from
the cluster pair x and y in the AO basis. If desired, the
complete supercell density matrix can be readily Fourier-
transformed to k-space according to

γk,α̃β̃ =
1

Ncells

Ncells∑
Ri,Rj

eik(Rj−Ri)γ(Ri,α̃),(Rj ,β̃)
, (57)

where the AOs of the supercell, α, were enumerated in
terms of the composite label (Ri, α̃), with α̃ representing
an AO in the primitive cell, R0.
3) Embedding problems in Vayesta can be solved in

parallel using the Message Passing Interface (MPI) over
distributed memory. Symmetry unique fragments are as-
signed to each MPI rank (generally a node), with their
clusters built and solved independently on these MPI pro-
cesses, and OpenMP threading used within each rank for
the dense linear algebra on a shared memory basis. How-
ever, when constructing the 1-RDM, the cluster T - and
Λ-amplitudes need to be communicated. Classical point-
to-point or collective communications do not naturally fit
the existing algorithm. For this reason, we employ one-
sided communication (also called remote memory access,
RMA), which allow each MPI process assigned to a given
cluster to access the cluster amplitudes of all other MPI
processes, without the need to halt or synchronize with
the sending process.
4) When projecting T2- (or Λ2-) amplitudes, the pro-

jector is applied in a symmetrically averaged fashion be-
tween the first and second occupied index, as shown in
Eq. (32). When contracting (for example) a symmetri-
cally projected T2-amplitude with a symmetrically pro-
jected Λ2-amplitude, the result can be thought of in
terms of four contributions (each weighted by 1/4): first,
the T2-amplitude projected in the first index contracted
with the L2-amplitude projected in the first index, sec-
ond, the T2-amplitude projected in the first index con-
tracted with the L2-amplitude projected in the second
index, etc. In contrast to the symmetrically projected
amplitudes, which require (Ncl)

4 memory to be stored,
the amplitudes projected in a single index can be stored
in Nf(Ncl)

3 memory, where Nf is the number of frag-
ment orbitals in the cluster, when the projected index
is rotated to be represented in the fragment-bath basis
rather than the particle-hole basis of the cluster. More
crucially, contractions between two such amplitudes, such
as the one in Eq. (46), only scale as Nf(Ncl)

4, instead of
(Ncl)

5. Since the number of fragment orbitals is often
significantly smaller than the number of cluster orbitals
(sometimes by a factor of 100 or more), it is computation-
ally more efficient to perform this contraction four times
with the amplitudes projected in different indices and
then average the result, instead of first performing the
averaging of the projected amplitudes and then perform-
ing a single contraction. Furthermore, inter-node MPI
communication of these ‘single-index’-projected T2 and
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Λ2 cluster amplitudes can be significantly reduced by a
factor of Nf/Ncl utilizing this compressed representation.

B. Local spin-spin correlation functions

In Eq. 55, the two-point instantaneous spin–spin cor-
relation function is defined, ⟨ŜA

z Ŝ
B
z ⟩, between two local

subspaces denoted by A and B. We choose these atomic
spaces to be the set of symmetrically (Löwdin) orthog-
onalized atomic orbitals (SAO) for each atom, resulting
in a projector of the form

PA
ij =

NA
SAO∑

s∈A

[
CTSCSAO

]
is

[
CTSCSAO

]
js
, (58)

where CSAO is the coefficient matrix of the SAOs and
s runs over the NA

SAO orbitals associated with atom A.
However, for an efficient evaluation of this expectation
value via the wave function partitioned approach, we re-
quire the two-body contributions via the ‘in-cluster’ ap-
proximated cumulant to be constructed in each cluster
independently, to avoid the construction and subsequent
contraction over rank-4 quantities in the full space which
would lead to high computational scaling and memory
footprints. This can be achieved in a similar manner to
the computation of the E[(γ,K∗)[Ψx]] energy in 54. The
resulting working equations in a restricted basis are

⟨ŜA
z Ŝ

B
z ⟩[(γ,K∗)[Ψx]] =

1

4

Nmo∑
pqr

PA
pqP

B
rpγqr

− 1

4

Nmo∑
pq

Nocc∑
i

PA
pqP

B
ip

(
2γqi − γ0

qi

)
− 1

12

Nfrag∑
x

Nx
cl∑

pqrs

PA
pqP

B
rs

(
K∗

pqrs + 2K∗
psrq

)
,

(59)

while for an unrestricted formalism, they take the form

⟨ŜA
z Ŝ

B
z ⟩ [(γ,K∗)[Ψx]] =

1

4

{α,β}∑
σ

Nmo∑
pqr

PA
pqP

B
rpγ

σ
qr

− 1

4

{α,β}∑
σ

Nmo∑
pq

Nσ
occ∑
i

PA
pqP

B
ip

(
2γσ

qi − γ0σ
qi

)
+

1

8

{α,β}∑
σσ′

(2δσσ′ − 1)

Nσ
occ∑
i

PA
ii

Nmo∑
pq

PB
pq

(
2γσ′

qp − γσ′0
qp

)

+

Nσ
occ∑
i

PB
ii

Nmo∑
pq

PA
pq

(
2γσ′

qp − γσ′0
qp

)
+

1

4

Nfrag∑
x

Nαx
cl∑

pqrs

PA
pqP

B
rsK

αα∗
pqrs +

Nβx
cl∑

pqrs

PA
pqP

B
rsK

ββ∗
pqrs

−
Nαx

cl∑
pq

Nβx
cl∑
rs

PA
pqP

B
rsK

αβ∗
pqrs −

Nβx
cl∑
pq

Nαx
cl∑
rs

PA
pqP

B
rsK

βα∗
pqrs

 ,

(60)

where the factors of the type
(
2γσ′

qp − γσ′0
qp

)
arise due to

the specific definition of K, as given in Eq. (15).
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