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Abstract—Quantum computers promise a potentially disrup-
tive approach to improving computation in fields such as physics,
chemistry, cryptography, optimisation, and machine learning.
However, testing quantum computations for faults is currently
impractical because of the existence of noise and errors associated
with the output. Executing in a quantum system a circuit with
only a few valid output states can generate a significant number
of implausible states that have zero probability in an ideal
computation. Among other sources of noise, readout errors come
from the difficulty of discriminating a measurement between 0
and 1 for the different qubits. These issues are affected by readout
drift, requiring regular recalibration of the process.

In this paper, we provide a novel technique for post-
computation analysis of the output probability distributions that
permits better discrimination of kerneled data, delaying the
need for recalibration. We achieve this by altering the linear
discrimination of the final output states by way of a dynamic state
selection process that combines Gaussian mixture models with a
probability threshold. As an initial assessment of the technique we
examine its effect on three to five qubits GHZ states. Our results
on almost every one of nine IBM quantum computers show that
the number of implausible states is reduced significantly and that
the resulting probability distribution is closer to the expected one.

Index Terms—quantum computation, error mitigation, cluster-
ing.

I. INTRODUCTION

This new decade is bringing remarkable steps forward in
terms of computation. One of the most relevant is quantum
computers, new systems that leverage the power of quantum
mechanics to solve complex problems that can be encoded in
a probabilistic framework. There are significant applications
of quantum computers to different fields of science [3]. One
such step forward is the possibility of implementing new
efficient quantum algorithms that deal with classical compu-
tational problems, such as Shor’s algorithm for factorisation
[8], Grover’s algorithm for search problems [6] and Quantum
Annealing algorithms for optimisation [4].

Conventional computations are typically deterministic.
Defining an oracle for such a computation requires checking
the input/output behaviour However, this is not the case for
quantum computations, where a single input produces a prob-
ability distribution on outputs defined by the quantum circuit.

Creating testing oracles for quantum programs requires sam-
pling the output multiple times. Quantum computers change
the computing paradigm from bits to quantum bits or qubits.
Data in a qubit can be thought of as a probability distribution
between two possible states ‘0’ and ‘1’. Every time the qubit
is measured, we will get an output state and this corresponds
with a classical bit. However, this state might change in
each measurement, therefore, understanding the probability
distribution of the qubit requires multiple measurements.

Quantum programs can be modelled as quantum circuits,
which are similar to logical circuits. They describe a quantum
state that defines a probabilistic computational output. Each
quantum circuit is composed of a set of gates that manipulate
this probability distribution. For instance, the Hadamard gate
(H) puts a qubit in a superposition state where each possible
output state has the same probability (i.e., creates a uniform
distribution). Another non-classical example is that qubits can
also be entangled in the circuit, meaning that the measurement
of one defines the value of the other.

Although these quantum circuits work as expected on quan-
tum simulators, their performance on real quantum computers
is affected by noise, making the output of the circuit unre-
liable. This noise, even though provoked by different physi-
cal phenomena, grows significantly as a consequence of the
entanglement process within the quantum computers, which
is performed by cross-resonance [14] (Section VI). Current
quantum computers require daily calibration to mitigate the
effect of drift that is generated by the physics of the machines.
During the calibration time, normally performed twice a day,
the quantum computer is not operative. The calibration needs
to decide several parameters, like the frequency and microwave
tone amplitude values for the qubits, to distinguish states [14]
and, for some experiments, it can take up to 24 hours. For
example, Google’s 53-qubit Sycamore can take 4 hours of
calibration per day for a 2-qubit gate [9]. Reducing calibration
cost is not only useful for improving the efficient use of
quantum computers but also improves the possibility of testing
actual quantum computations on these machines [18].

On the other hand, apart from the problem of calibration,
previous work has also identified issues with the quantum
output state classification [15]. Computers perform this to
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Fig. 1. Example of GHZ state

decide the qubit measurements. The output state classification
process is based on the following steps: 1) Define a sample
from the |0⟩ state of the qubit; 2) rotate the sample π
radians on x (Rx(π)) to estimate the |1⟩ state; 3) Create a
linear discrimination on the complex space to separate both
states. This final discrimination is then used to determine the
classification of the |0⟩ and |1⟩ states during the decision-
making process of the quantum computer until recalibration
(see Section II).

Our technique aims to improve output states’ classification
to alleviate problems that the drift produces. We propose a
new methodology based on Gaussian mixture models and
a probability threshold (Section III). Our initial evaluation
is performed on GHZ circuits. These circuits suffer from
entanglement noise and are characterised by having only 2
possible output states. Every other state, even if is implausible
because it has 0 probability, tends to appear in real quantum
computers as a consequence of noise (see Section II). These
gates allow us to see more clearly the way these implausible
states manifest in the output.

In the evaluation we have three goals: 1) reduce the im-
plausible states (i.e., the error); 2) find a sensible threshold
value for our Gaussian mixture models; and, 3) guarantee
that the final probability distribution is closer to the expected
one. The latter is assessed via the Kullback-Liebler divergence
(Section IV). Our results show that we obtain significantly
better results for the GHZ circuits. We reduce the probability
of implausible states by up to 70 points. We identify a
good compromise for the optimum threshold value (0.99999),
although we recommend to estimate it empirically. Finally, the
empirical probability distribution of the GHZ circuits is closer
to the expected one after our methodology is applied, even
achieving no-divergence in one of the optimized circuits.

II. MOTIVATIONAL EXAMPLE

We discuss an example with 3 qubits and describe the
discrimination problems that kerneled data can have during
the readout process.

Figure 1 shows a circuit for a GHZ state, where q0, q1
and q2 are entangled and there are only these two possible
ideal outputs – 000 or 111, i.e all the qubits are either in the
|0⟩ state or |1⟩ after measurement. However, the execution
of such circuit on actual quantum hardware results in the
measurements with some other states. For instance, Figure 2
shows the result of executing the circuit in Figure 1 on
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Fig. 2. Histogram of 1000 shots for the 3 qubit GHZ circuit of Figure 1 in
the ibm_nairobi quantum computer.
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Fig. 3. Example of an IQ plane for 3 different qubits (blue, red and green).
Each qubit defined two clear clusters around the computational state, |0⟩ on
the left and |1⟩ on the right.

ibm_nairobi, producing several implausible other states
beyond 000 and 111, therefore the resulting probability distri-
bution is significantly different to the expected one.

Among other sources of noise, unexpected results come
from the readout process: the digitized time-series signal (raw
data) coming from the readout resonator is processed by a
kernel method that removes its time dependency (kerneled
data). Lastly, a discriminator is applied on a so-called IQ plane
by which each qubit state is classified. [2], [7]

The goal of a discriminator acting on kerneled data is to
classify each execution (shoot) and evaluate if this readout
state for each qubit is a 0 or a 1. Figure 3 shows each
shoot represented in the IQ plane, for each individual qubit,
depending on its kerneled state. Because IQ points drift over
time, the discriminator needs to be recalibrated periodically.

Considering that the decision boundary for the discriminator
is static between calibrations, the drifting phenomenon can
sometimes produce significant misclassifications during the
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Fig. 4. Example of Gaussian mixture models applied to IQ plane of 1 qubit.
The Gaussian parameters are optimized to identify the best position during
the discrimination process. Also, the intensity colour for the Gaussian shows
different probability levels to define ownership.

measurement, this being one of the reasons for implausible
states such as the ones in Figure 2. To alleviate this problem
and to reduce the effect of implausible states, we here define
a new output analysis methodology, based on clustering,
where we define a dynamic classifier that creates a Gaussian
mixture model around the kerneled data and filters on-the-
edge measurements, preserving the probability distribution of
the outputs and resisting IQ point drift (see Figure 4).

Our model also allows us to define boundaries for the
probabilities of belonging that detects and discards particularly
noisy shots from the quantum circuit execution(Figure 4),
aiming to improve the likelihood of the Gaussian distributions.

III. DYNAMIC OUTPUT STATE CLASSIFICATION

The output of a quantum circuit produced during quantum
computation is noisy. The main problem with this noise
is its entropic nature, making it unpredictable. Additionally,
qubit decay can make it hard to rely on the outcome of a
quantum computation. On top of this, we also have static
discrimination of the final state performed on the kerneled data
output by quantum computers (as explained in Section II. All
of these factors make testing quantum computers extremely
challenging.

Testing quantum computation requires reliability in the
computer’s output. To obtain a useful testing oracle for the
input/output, we need to guarantee that the output probability
distribution is not affected by the qubit decay factor, or
at least alleviate this effect. Thus, our approach aims to
clean the output post computation by applying a dynamic
discrimination mechanism to the kerneled data of the output’s
quantum states. The proposed methodology is divided into
three steps: 1) Obtain the kerneled data from the measurment
process of the quantum computation, 2) Establish the energy
centres by applying Gaussian mixture models, 3) Improve the
discrimination between quantum states by using probability
thresholds on the outputs.

A. Overview

Assume P is a quantum circuit or program. We submit
the program to a quantum computer that will compute it
and it will generate N outputs, where N is the number of
measurements or shots (X) for the circuit. Instead of using
the final classification of the outputs we read the IQ point for
each shot, therefore every x ∈ X satisfies x ∈ CQ, because
the IQ points are represented by complex numbers, and Q
represents the number of qubits used in P .

Considering that all measurements are obtained at the
same time, we consider the optimization space X the set of
outputs produced from measurements as energy levels (see
Algorithm 1, line 1), after the execution of P . Current quantum
computers have a static classifier, therefore we replace the
classifier, which is static, with two Gaussian distributions that
are calculated per qubit. In the algorithm, we can see that
for every qubit q we create a projection N q

|0⟩ for state |0⟩,
and the equivalent for state |1⟩. The parameters of these
distributions (µ,Σ) are optimised following the expectation
maximisation algorithm (see Section III-B). Algorithm 1 cal-
culates the distributions in line 3. Considering the likelihood,
we can calculate the probability of an element belonging
to the specific probabilities distributions (see Section III-B),
as we do in line 5. If the probability is smaller than the
provided threshold T for any of the qubits, we consider that
measurement noise and discard it, otherwise, we assign the
state according to the closest Gaussian. Once all the output
values oqi have been assigned, we compose the final output O
as a probability distribution of all of the quantum states.

Algorithm 1 Dynamic Optimization Algorithm
Require: N ≥ 0 number of measurements
Require: P Quantum Program
Require: T probability threshold
Ensure: O the probability distribution of outputs

1: X = [P (N)]energy
2: for q ∈ Q do
3: {N q

|0⟩,N
q
|1⟩} = GMM(Xq)

4: for xq
i ∈ Xq do

5: if Prob(xq
i ∈ N q

|0⟩) < T & Prob(xq
i ∈ N q

|1⟩) < T
then

6: Remove xi

7: else
8: oqi = argmaxj Prob(xq

i ∈ N q
|j⟩)

9: end if
10: end for
11: end for

B. Expectation Maximisation on Gaussian Mixture Models

Our proposed approach starts with the expectation max-
imization of a Gaussian mixture model. This methodology
is frequently applied in clustering problems. It defines some
Gaussian distributions and optimises their parameters, i.e., a



Gaussian mixture model (GMM) with N normal distributions
is defined as a set:

GMM = {N1(µ1,Σ1), . . . ,NN (µN ,ΣN )} (1)

The expectation maximisation process provides an opti-
misation for the parameters of the GMM based on their
likelihood with respect to the sampled data, defined as X =
{x1, . . . , xM}. The sample data in this case are the kerneled
data from shots of the output from the quantum computers’
executions (as shown in Figure 3). The process performs the
following two steps:

• Expectation step: It fixes a model θ (i.e., it sets values
for the parameters µi and Σi for i ∈ [1, N ], and estimates
for each xj ∈ X , which Ni is the closest to the point.
This assigns a label i to each point xj .

• Maximization step: Once the labels are assigned, this
step recalculates the parameters µi and Σi with respect to
the points they have been assigned, to define a new model
θ. This step is performed using the likelihood function
L(θ), defined as:

L(θ) = p(X, y|θ) =
∏
j

p(xj , yj |θ) (2)

The algorithm starts with an initial model θ(0) and it creates
a sequence of models θ(1), θ(2), . . . , θ(t), . . . , satisfying that
the likelihood of each model L(θ(t)) ≥ L(θ(t−1)).

C. Selecting the Probability Threshold based on Likelihood
The GMM is based on the mean value, therefore the indi-

vidual normal distributions will be affected by noise and some
of the values may be outliers with respect to the model θ. Our
methodology defines a probability threshold that we will study
in Section V-B. For each qubit, our methodology discards
every measurement or shot whose probability to belong to any
of the states defined by the Gaussian models is smaller than
the threshold. Therefore, we need to calculate the probability
for each point to belong to the Gaussian models.

During the expectation step, each point is assigned to each
Gaussian Ni according to Bayes’ theorem. We use the concept
of responsibility rij which is the probability for the point xj

to belong to Ni, and it is defined as:

rji = p(yj = k|xj , πk, µk,Σk) =
πkN (xj |µk,Σk)∑N
i=1 πiN (xj |µi,Σi)

,

(3)
where yj is the final classification of sample xj , µk and σk

are the parameters of the Gaussian Nk and πk is the weight of
the Gaussian model k inside of the Gaussian mixture models
learned.

Once we have defined the Gaussian mixture models, we
calculate the responsibility for every measurement xj and, for
each qubit q ∈ Q, each of the two distributions representing
the states N q

|0⟩ and N q
|1⟩. If the maximum responsibility, with

respect to the Gaussian mixture model, for any of the shots
xj at any of the qubits q is smaller than the threshold T , that
shot will be discarded as noise. The rest will define the output
probability distribution O, as stated in Algorithm 1.

IV. EXPERIMENTAL SETUP

Our experiments aim to measure how well the method-
ology reduces the error generated by noise within quan-
tum computers. This should help alleviate the need for
calibration by making the computers’ outputs reliable for
longer, weakening the effect of the qubit decay process.
For the experiments, we used 9 different quantum comput-
ers from IBM, concretely: ibm_lagos, ibm_nairobi,
ibm_oslo, ibm_perth, ibmq_belem, ibmq_jakarta,
ibmq_lima, ibmq_manila, ibmq_quito. To evaluate
the capabilities of the methodology, we measure (1) how well
we reduce the influence of implausible states and (2) how close
we are to the expected distribution. Measuring the first goal
requires us to use circuits whose implausible states are easy to
detect, therefore we apply our experimentation to GHZ circuits
as shown in Figure 1. To guide our evaluation experiments,
we answer the following research questions:

RQ1. Can the GMM methodology reduce the probability
of implausible states output by the GHZ circuits? To answer
this question we sequentially run 20 executions of the same
GHZ circuit on each machine and obtain their kerneled data.
We create a linear classification method based on a Voronoi
tessellation to provide the output energies classification that
assigns each IQ point to a computation state. Then, we apply
the GMM approach to these point, initially without using the
threshold, then subsequently with the threshold. We apply
this process for different numbers of qubits, from three to
five (depending on the computers’ limitations), to every IBM
computer.

RQ2. What is the effect of the probability threshold in
the provided methodology?

We manipulate the probability threshold to reduce the
number of implausible states and study how much these can
be reduced depending on the threshold. The threshold starts
from 0 to 0.9 and then it is increased to 0.9 for each order of
magnitude to make it closer to 1. This evaluation is performed
on top of the first set of experiments.

RQ3. How close is the obtained probability to the
expected CNOT probability distribution?

Here, we use the notion of Kullback-Leibler (KL) diver-
gence to understand how far the final probability distribution
diverges from the expected one. This divergence is calculated
with the formula:

DKL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(4)

where P is the obtained probability distribution and Q is
the expected one. When Q(x) is 0, the value is not considered
in the summation. This evaluation is performed on top of the
first set of experiments.

A. Implementation

Every GHZ circuit is implemented by applying a Hadamard
gate in the first qubit and entanglement for the others, there-
fore, the expected probability distribution is 50% probability
for the states where every qubit is equal (e.g, for a 3 qubit



GHZ circuit, 50% for each of the states ’000’ and ’111’). All
the other states have 0% probability and they are therefore
implausible states. We implemented every circuit using Qiskit
1.

Our implementation of the linear separation is performed
by using a K-means [12] algorithm with 2 clusters, whose
implementation is extracted from Sklearn2. This generates a
linear Voronoi tessellation and provides an optimum separation
following the same principles of the static separation normally
performed by the quantum computers, which is not retrievable
once the kerneled data is obtained. Our implementation of the
GMM models is based on the Expectation-Maximization [13]
implementation from Sklearn3.

V. RESULTS

The evaluation focuses on three main aspects. The first
aspect is related to the ability to reduce the percentage of
shots or measures that lead to implausible states (Section V-A),
by using the general methodology for discrimination, namely
the initial GMM and then the GMMs with the threshold.
Considering that the final discrimination criterion depends on
the threshold, we study its effect after (Section V-B). Finally,
success for the methodology would be to guarantee that the
probability distribution on the output states is closer to the
expected distribution compared to that obtained without using
our technique. Hence we compare KL divergences from the
expected distribution for three distributions: produced by the
static threshold, produced by the initial application of GMM,
and produced by the application of GMM with an optimal
threshold.

A. Reducing Implausible States

We evaluate the ability of the GMM methodology to reduce
the probability of implausible states. For that we consider the
GHZ circuit using 3, 4 and 5 qubits. This is computed on each
of the IBM computers as each has its own physical limitations.
We had neither control over the calibration time nor the
final classification for each quantum computer, therefore we
applied an optimised linear estimator (based on the K-means
algorithm) that simulates the existing one in the quantum
computer after the calibration.

Table I shows the results for the 9 computers, for the
different scenarios where Nq represent the linear separation,
Nq∗ represents the Gaussian model and Nq∗∗ represents the
Gaussian model with the probability threshold. We can see
in almost all of the cases that the methodology with a lower
probability of generating implausible states is the GMM with
threshold.

Comparing the usual state discrimination with the GMM
there is a small improvement for the 3 qubits circuits, where
the highest improvement reduces the error up to 1.2 points.
These results are similar for 4 qubits where, in some cases,

1https://qiskit.org/
2https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.

html
3https://scikit-learn.org/stable/modules/mixture.html

the GMM model is worse than the normal discrimination.
However, the results are different in the 5 qubit cases. For
5 qubits, we can see three cases showing major improvements
over the baseline, and they are ibm_nairobi (from 61.9%
to 34.9% of implausible states), ibm_jakarta (from 95%
to 24.7%) and ibm_lima (from 93.8% to 37.0%).

When we compare the original results with the
GMM+threshold optimiser (applying a probability threshold of
0.99999), we can see stronger improvements in almost every
single scenario. For 3 qubits, we reduce the implausible states
probability up to 5.6 points (in the case of ibm_quito), for
4 qubits, these improvements go up to 7 points (in the case of
ibm_jakarta) and for 5 qubits, it goes up to 80.7 points
(in the case of ibm_jakarta). It is important to remark that
in the case of ibm_oslo there is no improvement but the
results are very similar to the original ones. Our methodology
has a non-negative empirical impact on the results in every
case.

These results strongly suggest that our methodology can
help alleviate the noise generated during the measurement
process and the GHZ circuit, and reduce the frequency of
calibration. Considering that our methodology is reducing
shots, we also provided a measure of effort reduction that is
in Table II. The table shows the number of samples that pass
the threshold after it is applied. We can see that the effect
significantly varies among different computers and that the
filter is more aggressive as the number of qubits increases.
In some cases, such as ibmq_quito and ibm_nairobi,
the threshold leaves only 1% and 10% respectively of the
measurements, wastes several shots. In these cases, even if
the output is reliable it is worth recalibrating the computer,
considering that a significant number of shots are noisy.

RQ1: The GMM methodology reduces implausible states
making the final state classification of the quantum circuit
more reliable. This reduction is improved by a threshold
value of 0.99999 in the probability of assigning points to
the Gaussians. The improvements are more significant when
the number of qubits increases. They reach an 80.7 points
reduction in implausible states on average for 5 qubits.

B. The Probability Threshold

Our methodology reduces the probability of implausible
states based on a Gaussian mixture model combined with a
probability threshold. Even though the methodology obtains
better results by reducing implausible states, there is still a
threshold parameter associated with the methodology which
nature directly affects the results. This parameter is the prob-
ability of a shot belonging to a specific Gaussian.

To understand the effect of the parameter, we show in
Figure 5 some different values for the probability threshold
and the resulting probability of implausible states. These plots
start with no threshold (or a threshold of 0) which is similar
to the case of using GMMs alone and go up to 0.999999.
This logarithmic plot shows that the threshold starts reaching
improvements after 0.5 probability and it reaches a minimal



Computer 3q 3q* 3q** 4q 4q* 4q** 5q 5q* 5q**

ibm_lagos 4.1 ± 20.8 4.1 ± 20.8 3.9 ± 20.9 9.20 ± 39.6 8.4 ± 27.5 7.5 ± 27.8 20.5 ± 27.4 20.4 ± 27.4 20.1 ± 27.8
ibm_nairobi 8.9 ± 39.3 8.8 ± 35.9 3.3 ± 39.2 15.5 ± 25.4 15.4 ± 18.5 9.7 ± 19.3 61.9 ± 34.0 34.9 ± 33.7 27.3 ± 38.7
ibm_oslo 5.6 ± 28.6 5.6 ± 28.6 5.3 ± 28.8 25.5 ± 28.9 25.3 ± 23.4 23.5 ± 23.9 82.2 ± 8.9 82.6 ± 9.5 82.6 ± 9.6
ibm_perth 7.0 ± 36.9 6.8 ± 32.9 6.0 ± 33.0 13.9 ± 40.5 14.0 ± 40.5 12.1 ± 40.9 29.7 ± 31.4 29.8 ± 29.4 28.9 ± 29.8
ibmq_belem 12.2 ± 41.0 12.1 ± 41.0 8.3 ± 43.5 17.7 ± 38.0 17.7 ± 38.0 12.9 ± 41.9 37.6 ± 29.2 38.2 ± 28.1 35.1 ± 31.9
ibmq_jakarta 10.6 ± 41.4 9.7 ± 32.3 5.1 ± 35.0 14.9 ± 33.0 14.6 ± 18.0 7.9 ± 21.3 95.0 ± 37.9 24.7 ± 35.0 14.3 ± 42.9
ibmq_lima 7.7 ± 0.8 7.9 ± 0.8 4.0 ± 1.5 13.8 ± 34.3 13.8 ± 34.2 9.8 ± 37.5 93.8 ± 32.7 37.0 ± 30.3 31.3 ± 34.8
ibmq_manila 8.0 ± 36.3 7.9 ± 36.3 4.9 ± 38.4 21.1 ± 37.4 21.5 ± 37.2 14.9 ± 41.4 31.2 ± 33.9 30.1 ± 31.0 25.7 ± 33.5
ibmq_quito 15.6 ± 38.9 14.4 ± 30.5 10.0 ± 36.8 - - - - - -

TABLE I
THE PERCENTAGE OF IMPLAUSIBLE STATES (MEDIAN AND STANDARD DEVIATION) IN THE 20 RUNS FOR EACH CIRCUIT IN EACH QUANTUM COMPUTER

BY APPLYING THE LINEAR DISCRIMINATION (3Q, 4Q, AND 5Q), THE GMM MODEL (3Q*, 4Q* AND 5Q*) AND THE MODEL WITH THE THRESHOLD (3Q**,
4Q**, 5Q**).
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Fig. 5. Error rate under different threshold values for 3, 4 and 5 qubits.

Computer 3q 4q 5q

ibm_lagos 950.0 ± 16.9 927.0 ± 15.7 787.5 ± 26.4
ibm_nairobi 97.5 ± 20.8 58.5 ± 17.1 41.0 ± 17.0
ibm_oslo 978.0 ± 7.1 942.5 ± 13.3 884.5 ± 38.0
ibm_perth 375.0 ± 54.8 358.0 ± 37.7 321.0 ± 37.2
ibmq_belem 164.5 ± 32.8 112.5 ± 26.4 99.0 ± 29.7
ibmq_jakarta 129.0 ± 27.9 24.5 ± 9.3 7.0 ± 4.6
ibmq_lima 237.5 ± 43.0 39.5 ± 12.6 16.0 ± 8.5
ibmq_manila 356.5 ± 45.8 103.5 ± 19.6 73.0 ± 20.4
ibmq_quito 10.0 ± 5.9 - -

TABLE II
THE NUMBER OF SAMPLES (OUT OF THE 1,000 MEASUREMENTS OR

SHOTS) USED AFTER THE THRESHOLD IS APPLIED. THE LEFT SIDE OF
EVERY VALUE SHOWS THE MEDIAN WHILE THE RIGHT SIDE SHOWS THE

STANDARD DEVIATION.

error rate, in general, between 0.999 and 0.99999. This
tendency is the same for 3, 4 and 5 qubits. However, we can
appreciate that there are some cases, when the threshold is
more restrictive, where the probability of implausible states
increases. For example, in the case of ibm_quito for 3
qubits. This suggests that the threshold needs to be optimised
for each specific case, which is a problem that we will explore
in future work. However, setting the threshold to 0.99999 is
a good compromise in the GHZ scenario.

RQ2: The threshold value tends to improve the reduction of
implausible states as it becomes more restrictive, but there is a
limitation. If the optimal value is surpassed, the percentage of
implausible states increases again. This optimal value needs
to be discovered but 0.99999 is a good compromise.

C. The Probability Distribution
The last step of our evaluation is to compare the divergences

from the expected probability distribution for the distributions
that result from our methodology and the usual static thresh-
old approach. Table III shows this comparison between the
expected probability distribution and the obtained one after
the sampling by using the Kullback-Liebler divergence.

Table III shows similar positive results concerning the
probability distribution for the different number of qubits. For
3 qubits, we can see that the results with and without the GMM
model are very similar. The maximum improvement obtained
with the new methodology is with the ibmq_quito machine,
where the KL distance is reduced by one point. However, when
we apply the probability threshold, the results are significantly
better. The improvements are between 0.2 points (in the case
of ibm_lagos and ibm_oslo) to up to almost 10 points
in the case of ibmq_quito).

For 4 qubits, the results obtained by applying the GMM are
similar, and usually achieve a small improvement. While for
5 qubits, the methodology generates worse results in terms
of divergence for a significant number of cases. The most
representative cases are ibmq_belem (1.1 points worse),
ibmq_jakarta (3.6 points worse), ibmq_lima (6.8
points worse), and ibmq_manila (1.8 points worse). When
we include the threshold, the results improve significantly for
almost all of the cases (and better than the baseline for all
of them). Some of the most relevant cases for 4 qubits are
ibmq_jakarta (where the divergence value is 0.1, very
close to the original distribution, from an original value of
13.1), ibmq_lima (where the divergence goes from 12.1
to 0.8) and ibmq_belem (where the divergence goes from
13.3 to 4.9). In the 5 qubits cases, results are similar, having



Computer 3q 3q* 3q** 4q 4q* 4q** 5q 5q* 5q**

ibm_lagos 3.8 ± 1.6 3.8 ± 1.6 3.6 ± 1.6 8.5 ± 2.5 7.9 ± 1.5 7.0 ± 1.6 17.3 ± 3.2 17.3 ± 3.3 16.8 ± 3.2
ibm_nairobi 8.1 ± 1.1 8.1 ± 1.6 1.3 ± 3.8 13.4 ± 2.0 13.4 ± 1.8 7.4 ± 8.9 19.8 ± 7.0 20.6 ± 6.2 9.1 ± 9.6
ibm_oslo 5.3 ± 0.9 5.3 ± 0.9 5.1 ± 0.9 20.2 ± 4.4 20.3 ± 3.3 19.1 ± 3.2 21.5 ± 7.0 21.1 ± 7.9 21.4 ± 8.2
ibm_perth 6.4 ± 2.5 6.3 ± 2.3 5.2 ± 3.4 9.6 ± 3.5 9.5 ± 3.5 9.0 ± 3.8 22.4 ± 5.8 22.5 ± 5.1 21.5 ± 4.8
ibmq_belem 10.8 ± 2.0 10.9 ± 1.8 7.1 ± 4.4 13.3 ± 3.5 13.5 ± 3.6 4.9 ± 5.8 25.3 ± 6.9 26.4 ± 5.6 20.9 ± 7.0
ibmq_jakarta 8.6 ± 1.4 8.6 ± 1.2 2.2 ± 3.2 13.1 ± 1.5 13.2 ± 1.2 0.1 ± 9.2 14.4 ± 7.4 18.0 ± 6.2 0.0 ± 27.6
ibmq_lima 7.2 ± 0.8 7.2 ± 0.8 2.0 ± 2.9 12.1 ± 2.8 12.2 ± 2.8 0.8 ± 11.4 17.3 ± 9.1 24.1 ± 8.0 11.4 ± 15.8
ibmq_manila 7.5 ± 2.2 7.4 ± 2.2 4.3 ± 2.5 15.9 ± 3.8 15.8 ± 3.8 9.5 ± 5.6 19.8 ± 6.9 21.6 ± 6.6 14.7 ± 5.8
ibmq_quito 14.0 ± 2.6 13.0 ± 2.0 3.16 ± 16.3 - - - - - -

TABLE III
THE KULLBACK-LEIBLER DIVERGENCES BETWEEN OBTAINED PROBABILITY DISTRIBUTIONS AND THE EXPECTED ONE OVER 20 RUNS. FOR EACH

COLUMN, THE LEFT VALUE SHOWS THE MEDIAN AND THE RIGHT ONE SHOWS THE STANDARD DEVIATION. THE THREE COLUMNS FOR EACH NUMBER OF
CUBITS ARE AS IN TABLE TABLE I. FOR VISUALISATION PURPOSES VALUES ARE SCALED UP BY 2 ORDERS OF MAGNITUDE.

special relevance in the case of ibmq_jakarta where the
divergence goes from 14.4 to 0.

RQ3: The GMM methodology alone has no significant impact
on improving the output probability distribution and making it
closer to the expected one, according to the Kullback-Liebler
divergence. However, combined with the threshold, it obtains
improvements in every case, reaching the point of almost up
to no divergence in some cases.

D. Discussion and limitations

Our methodology for making the final output state dis-
crimination is effective. It improves the results and corrects
errors provoked by noise. However, this methodology may be
expensive in cases where the number of necessary measure-
ments grows by orders of magnitude. This is conceivable for
computers using hundreds of qubits and complex probability
distributions.

In our experiments, we have resorted to the use of the
GHZ circuit, the probability distribution of which is well-
known and easy to model in terms of quality metrics, but
we have yet to understand how effective our methodology can
be when applied to different circuits. In addition to measuring
the effect that different types of gates can have on the results,
it is interesting to check the history of the results of the
new methodology with respect to the calibration times, above
all to evaluate whether the Gaussian models can improve,
lengthening, the recalibration times.

The methodology itself strongly depends on the number of
shots or measurements considered, as happens in the case of
any distribution of probabilities generated by quantum circuits.
This is especially relevant under very noisy conditions, where
only a few measurements remain (Table II). Therefore, apart
from optimizing the threshold, it might be important to keep
as many datasets as possible, so as to reduce associated effort.

This methodology and similar ones can potentially lead to
reducing the calibration frequency and improving the reliabil-
ity of quantum computers.

VI. RELATED WORK

Quantum computers with superconducting Transmon qubits,
based on Josephson Junction, are sensitive to noise. In this
architecture, qubits are entangled with coupling resonators,
which produces significant noise for gates with 2 or more

qubits [14]. Also, the readout operators for the resonators
increase the error rate, apart from other factors that affect the
general physics of the computers and can hardly be modelled.
Besides, qubits can only maintain their states or coherence for
a limited period of time, which is the reason we are forced to
regularly recalibrate. The length of this period is not currently
clear, but it is associated with the decay of the qubit.

The problem of reducing the effect of noise in quantum
computers is not new and covers different perspectives that go
from calibration to error correction and variational quantum
computers. Resch and Karpuzcu focused on understanding
the problem of benchmarking quantum computers with regard
to their performance [16]. The authors acknowledge the sig-
nificant impact that noise has on quantum circuits and the
difficulties it has in modeling them, as is widely recognised
in the literature. After testing a significant amount of classical
methodologies, the authors conclude that computational mod-
els applied to noise require a significant amount of detail to
be accurate and must be adapted to specific circumstances.

Identifying the correlations between the various physical
phenomena revolving around (quantum) computers, with their
specific effects, is important to understand how to model
appropriate filters to mitigate the resulting noise in qubits [1].
Understating noise allows the development of packages like
Mitiq [10], which reduces the effect of noise by combining
different postprocessing and noise cancellation techniques.
The main contributions of this tool are noise scaling through
unitary folding [5], Clifford data regression [11] and proba-
bilistic error cancellation [17], all of the techniques limited
by their abilities to generalize to multiple different circuits
and gates, considering that they depend on the sample size or
the data used. This is also a limitation of the technique that
we introduce here especially considering that understanding
the probability distribution of complex circuits requires an
unknown number of shots or measurements. Given that all
of these techniques work directly on the output states, our
approac is complementary to them rather than an alternative.

VII. CONCLUSIONS AND FUTURE WORK

A crucial step to delivering the promise of reliable quantum
computers is to understand their physics and how their outputs
can be made more reliable. This paper has shown how analysis
and manipulation of the output state discrimination process can
significantly improve the readout results, reducing the need for



calibration and making the computers more accurate. However,
there are still other techniques that need to be explored in this
area to make this discrimination process more reliable in the
future and reduce the number of shots or measurements that
need to be discarded.

Our future work will focus on three fundamental problems
that we have identified in our methodology: 1) Find an
optimisation method that can provide a good threshold value,
2) experiment with other techniques that can discriminate
among the kerneled data, and 3) understand how the drift
factor affects the output and identify patterns among them.
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