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SS-ADMM: STATIONARY AND SPARSE GRANGER CAUSAL DISCOVERY FOR
CORTICO-MUSCULAR COUPLING

Farwa Abbas†, Verity McClelland∗, Zoran Cvetkovic∗, and Wei Dai†

†Imperial College London, ∗King’s College London

ABSTRACT

Cortico-muscular communication patterns reveal important informa-
tion about motor control. However, inferring significant causal re-
lationships between motor cortex electroencephalogram (EEG) and
surface electromyogram (sEMG) of concurrently active muscles is
challenging since relevant processes involved in muscle control are
relatively weak compared to additive noise and background activi-
ties. In this paper, a framework for identification of cortico-muscular
linear time invariant communication is proposed that simultaneously
estimates model order and its parameters by enforcing sparsity and
stationarity conditions in a convex optimization program. The exper-
imental results demonstrate that our proposed algorithm outperforms
existing techniques for autoregressive model estimation, in terms of
computational speed and model identification for causality estima-
tion.

Index Terms— Autoregressive model, Granger causality, sta-
tionarity, sparsity

1. INTRODUCTION

Exploring temporal dependencies in multivariate time series is
a long-standing problem in applications ranging from statistics,
through econometrics and predictive maintenance, to neuroscience.
This provides a systematic framework to perform causal inference
and extract useful insights about underlying physical processes.
Autoregressive models have been used to model the association be-
tween different processes to determine directional causality [1], [2],
[3]. The notion of causality involved with autoregressive models
was first introduced by Granger [4], the main idea being to quantify
the extent to which knowledge of a certain process limits the uncer-
tainty associated with another one. Causal inference on non-invasive
biomedical signals collected from human subjects, such as EEG and
sEMG, is important for neuroscientists and biomedical engineers
since these signals indicate neurophysiological changes in the state
of a subject’s central nervous system or muscles. Understanding the
causality of brain-muscle interactions has applications in rehabili-
tation engineering [5], designing brain-computer interfaces [6], and
identifying biomarkers for motor disorders [7].

The primary motor cortex is responsible for planning goal-
directed movements, hence, it is adequate to predict motor behaviour
based on past brain activity. Several studies have explored this line
of research by analysing synchronously recorded primary motor
cortex EEG and limb muscle sEMG to extract cortico-muscular cou-
pling [8], [9], [10] . In the context of Granger causality estimation,
the EEG signal recorded at a particular time-point is represented by
the linear combination of lagged values of muscle signals (sEMG)
and past brain activity. Consider y(t) is the EEG signal and x(t) is
the corresponding sEMG signal at time t. They can be represented

mathematically as:

y(t) =

m̄∑
k=1

a(k)
yy y(t− k) +

m̄∑
k=1

a(k)
yx x(t− k) + ny(t), (1)

x(t) =

m̄∑
k=1

a(k)
xy y(t− k) +

m̄∑
k=1

a(k)
xx x(t− k) + nx(t), (2)

where ny(t) and nx(t) are time-dependent white noise signals and
m̄ indicates the maximum dependency on past instants or order of
the autoregressive model. The objective is to fit an autoregressive
model to estimate parameters a(k)

yy , a
(k)
yx , a

(k)
xy , a

(k)
xx ∀k = 1, · · · , m̄

where m̄ is known a priori. However, in practice, determining the
order of the autoregressive model is a non-trivial problem.

1.1. Model Identification by Hierarchical Sparsity

Various studies propose different ways to estimate the order of the
autoregressive model. The optimal model order should be small
enough so that the forecasts are only based on observations, and not
on intermediate forecasts. It should also be large enough to capture
the underlying trend of the process. In practice, Granger causality
estimated from a small model order limits the frequency resolution
of physiological signals and hence the frequency ranges cannot be
distinguished adequately [7]. In existing literature, model identifi-
cation has been performed either by relying on visual inspection of
the autocorrelation function or by minimizing a loss function such
as negative loglikelihood or least squares loss. Akaike Information
Criterion [11] and Bayesian Information Criterion [12] are the most
popular methods that use this approach. However, these approaches
are unable to accurately infer the true data distribution [13] and may
overfit in practice [14]. Authors in [15] proposed to alternatively
identify the model and estimate the parameters.

Recently, a simultaneous model identification and parameter es-
timation method for ARMA models has been proposed in [16] that
makes use of a hierarchical sparsity-based regularization approach.
The authors proposed an ADMM-based method to compute a proxi-
mal operator for Latent Overlapping Group (LOG) lasso regularizer
[17] and the proximal operator is then used inside a Block Coordi-
nate Descent method to estimate parameters. Inspired by the work
in [16], we propose to extend this approach to a convex optimization
problem that can guarantee global optimality.

1.2. Stationarity in VAR Model

Autoregressive models are characterized by their distinctive ability
of being self-explanatory. However, this ability makes them prone
to instability if the estimation process is not appropriately regulated.
Estimation of Granger causality also requires the stationarity as-
sumption for the underlying process as a prerequisite. Most existing



works either assume the process to be stationary [18] or use heuris-
tics such as detrending [19] and differencing [2] to induce stationar-
ity in the model. Recently, in [16], an improved method is proposed
that computes parameter estimates and project onto a stationary sub-
space, which may not be unique. In this paper, we propose a novel
way to encourage stable estimates by efficiently enforcing station-
arity on the underlying process. The proposed approach improves
on [16] by penalizing unstable estimates. To our knowledge, this is
the first work that explicitly enforces stationary condition in a con-
vex program to ensure stability. In this paper we make the following
contributions:

1. Propose a unified approach to simultaneously determine
model order and parameter estimates in a convex optimiza-
tion framework solved by ADMM.

2. Efficiently evaluate the proximal operator of regularization
based on stationarity condition.

3. Adaptively identify model orders for different sets of param-
eters in VAR model up to an upper bound.

2. PROBLEM FORMULATION

The system of equations in (1-2) can be compactly represented as a
bivariate vector autoregressive model (VAR) as follows:

[
y(t)
x(t)

]
=

[
a
(1)
yy · · · a(m̄)

yy a
(1)
yx · · · a(m̄)

yx

a
(1)
xy · · · a(m̄)

xy a
(1)
xx · · · a(m̄)

xx

]


y(t− 1)
...

y(t− m̄)
x(t− 1)

...
x(t− m̄)


+

[
ny(t)
nx(t)

]
,

(3)

Y = AH +N , (4)

where the matrices in Equation (3) are assigned to corresponding
variables in Equation (4) and t = m̄ + 1, ..., m̄ + T . Hence, Y ∈
R2×T , A ∈ R2×2m̄, H ∈ R2m̄×T and N ∈ R2×T . The model in
Equation (1) is the termed as unrestricted model. On the other hand,
a restricted model would be the one that does not involve any cross-
coupling between x(t) and y(t) i.e. off-diagonal terms are zero.
Mathematically, the restricted model amounts to the one below:

[
y(t)
x(t)

]
=

[
a
(1)′
yy · · · a(m̄)′

yy 0 · · · · · · · ·0
0 · · · · · · · ·0 a

(1)′
xx · · · a(m̄)′

xx

]


y(t− 1)
...

y(t− m̄)
x(t− 1)

...
x(t− m̄)


+

[
ny(t)
nx(t)

]
,

(5)

Y = A′H +N ′, (6)

where the matrices in Equation (5) are assigned to corresponding
variables in Equation (6) and A′ ∈ R2×2m̄ and N ′ ∈ R2×T are the
coefficients and noise matrices for restricted model. Granger causal-
ity can be tested using an F-test [20] comparing the two models as:

GCx→y =
RSSyres

− RSSyunr/(p − p′)

RSSyunr/(T − p)
, (7)

GCy→x =
RSSxres

− RSSxunr/(p − p′)

RSSxunr/(T − p)
, (8)

where RSS means residual sum of squares, p and p′ are the num-
ber of parameters in unrestricted and restricted models, respectively.
This metric used to determine Granger causality quantifies the im-
pact of cross-coupling terms in prediction of a variable. Note that the
bivariate VAR model in Equation (3) can also be written as follows:

ξt = A1ξt−1 +A2ξt−2 + · · ·+Am̄ξt−m̄ + nt,

where ξt :=

[
y(t)
x(t)

]
, Ai :=

[
a
(i)
yy a

(i)
yx

a
(i)
xy a

(i)
xx

]
and nt :=

[
ny(t)
nx(t)

]
. The

m̄-th order VAR process can be written as a first order VAR process
VAR(1) by stacking the variables as:

ξt
ξt−1

ξt−2

...
ξt−m̄+1

 =


A1 A2 · · · Am̄−1 Am̄

I 0 · · · 0 0
0 I · · · 0 0
...

...
...

...
...

0 0 · · · I 0




ξt−1

ξt−2

ξt−3

...
ξt−m̄

+


nt

0
0
...
0

 ,

ξt = Γ(A)ξt−1 + vt,

where Γ(·) : R2×2m̄ → R2m̄×2m̄ is the transformation to extract
the companion matrix corresponding to A. For the VAR model to
be stationary, the eigenvalues of Γ(A) must lie inside the unit circle.

3. PROPOSED METHOD

In this paper, we propose to simultaneously identify model order
by enforcing sparsity on autoregressive coefficients in a hierarchical
fashion. We assume the knowledge of the upper bound m̄ on the
model order m. The hierarchical sparsity structure is induced by
regularizing the objective function by the LOG penalty discussed in
[16, 17]. Let c = [a

(1)
yy · · · a(m̄)

yy a
(1)
yx · · · a(m̄)

yx a
(1)
xy · · · a(m̄)

xy a
(1)
xx

· · · a(m̄)
xx ]T ∈ R4m̄×1 be the vector containing all of the parameters

of the VAR model. Then the LOG penalty function is defined as:

ΩLOG(c) = min
l(g),g∈G

{
∑
g∈G

wg∥l(g)∥2 |
∑
g∈G

l(g) = c, l
(g)
gc = 0},

where G = {{1}, · · · {1, .., m̄}, {m̄+ 1}, · · · {m̄+ 1, .., 2m̄},
{2m̄+ 1}, · · · {2m̄+ 1, .., 3m̄}, {3m̄+ 1}, · · · {3m̄+ 1, .., 4m̄}}
is the set of all groups g ∈ G, l(g) ∈ R4m̄×1 is a latent vector in-
dexed by g, and wg is the weight for set g. As a result of ΩLOG(c),
model order for ayy, ayx, axy, axx will be chosen adaptively instead
of using the same order. The hierarchical sparsity term is paired
with a stationarity constraint for the model to be stable. Unlike the
approach in [16], that finds a Euclidean projection using an iterative
minimization of the objective over a feasible set, we propose suitable
constraints on the companion matrix of the parameters. We propose
a spectral norm based regularization technique ΨSP to restrict the
eigenvalues of the companion matrix associated with estimated pa-
rameters inside the unit circle. Spectral norm of a matrix is defined
as the largest singular value of the matrix

∥Γ(A)∥2 := max
i

| σi | .

Hence, the condition for stationarity is ∥Γ(A)∥2 < 1. The proximal
operator for spectral norm can be written as follows:

ΨSP(A) := argmin
A

γ∥Γ(A)∥2 +
ρ

2
∥X − Γ(A)∥2F .



The above problem amounts to finding the proximal operator for ℓ∞
norm i.e. if X = Udiag(σ)V T then

v∗ = argmin
v

γ/ρ∥v∥∞ +
1

2
∥v − σ∥22,

= σ − γ/ρP∥·∥1≤1(
σ
γ/ρ

),

Πγ/ρ(X) := Γ−1(Udiag(v∗)V T),

where the above operations are stacked inside Π(·) for brevity,
Γ−1(·) : R2m̄×2m̄ → R2×2m̄ can be computed by inverting the
transformation Γ, and P∥·∥1≤1 is the projection inside the unit ℓ1
norm ball. This can be done in a non-iterative fashion and exactly by
using the approach in [21]. Here, we discuss two useful properties
of Γ(·) operator that will be referenced later.

Property 1: ∥Γ(X)∥2F = ∥X∥2F +2(m̄−1) for any X ∈ R2×2m̄

Property 2: Γ(X − Y ) = 2Γ( 1
2
X) − Γ(Y ) for any X , Y ∈

R2×2m̄.
In addition to reconstruction error, the optimization program will

include the ΩLOG and ΨSP terms to enforce sparsity and stationarity
respectively.

min
1

2
∥Y −AH∥2F + λΩLOG(c) + γ∥Γ(Z)∥2

+
1

2
∥Y ′ −A′H ′∥2F + λ′ΩLOG(c

′) + γ′∥Γ(Z′)∥2

s.t. c = vec(AT), c′ = vec(A′T), A = Z, A′ = Z′.

More precisely, by expanding ΩLOG(c) it becomes:

min
1

2
∥Y −AH∥2F +

1

2
∥Y ′ −A′H ′∥2F + γ∥Γ(Z)∥2

+ γ′∥Γ(Z′)∥2 + λ
∑
g∈G

wg∥P .g∥2 +
1

2
∥
∑
g∈G

Q.g − c∥22

+ λ′
∑
g∈G

wg∥P ′
.g∥2 +

1

2
∥
∑
g∈G

Q′
.g − c′∥22

s.t.

c = vec(AT),P = Q, c′ = vec(A′T),P ′ = Q′,A = Z,

A′ = Z′, (P .g)gc = 0, a(j)′
yx = a(j)′

xy = 0 ∀j = 1, · · · , m̄.

The update for parameter matrix A can be computed by finding the
gradient of objective with respect to A as follows:

A = [ρ(Z −U3 + vec−1(c− u1)
T
) + Y HT](HHT + ρI)−1,

where ρ := ρ1 + ρ3. Cholesky decomposition has beeen used to
compute the inverse once. To estimate A′ for restricted model, there
is an additional constraint a(i)′

xy = a
(i)′
yx = 0 ∀i = 1, · · · , m̄.

There are two approaches to address the assumption of known sup-
port. First, by intensifying hierarchical sparsity λ′, particularly on
cross-coupling terms such that they become zero. Second, by dis-
carding the cross-coupling terms in each iteration after solving the
ordinary least squares problem. To avoid difficulties associated with
both approaches, we shift the sparsity from A′ to data matrices Y
and H such that cross-coupling terms do not play any role in opti-
mization. By redefining matrices in Equation (3) we can write:

Y ′ = A′H ′ +N ′,

Y ′ :=

[
y(t) 0
0 x(t)

]
∈ R2×2T ′

, H ′ :=


y(t−1)

... 0
y(t−m̄)

x(t−1)

0

...
x(t−m̄)

 ∈

R2m̄×2T ′
and A′ :=

[
a
(1)′
yy · · · a

(m̄)′
yy a

(1)′
yx · · · a

(m̄)′
yx

a
(1)′
xx · · · a

(m̄)′
xx a

(1)′
xy · · · a

(m̄)′
xy

]
∈

R2×2m̄, and N ′ :=

[
ny(t)

′ 0
0 nx(t)

′

]
∈ R2×2T ′

. Now we can

update A′ by the equation below.

A′ = [ρ′(Z′ −U ′
3 + vec−1(c′ − u′

1)
T
) + Y ′H ′T ]

(H ′H ′T + ρ′I)−1,

where ρ′ := ρ′1 + ρ′3. After computing A′ we can safely discard
cross-coupling terms without any loss of information. Closed-form
solutions for hierarchical sparsity terms P ,Q and P ′,Q′ are ob-
tained as discussed in [16]. For details, refer to Algorithm 1. To find
the update for Z, Property 1 and Property 2 are leveraged to find
the closed-form solution:

Z = argmin
Z

γ∥Γ(Z)∥2 +
ρ3
2
∥A+U3 −Z∥2F ,

= argmin
Z

γ∥Γ(Z)∥2 +
ρ3
2
∥2Γ(1

2
(A+U3))− Γ(Z)∥2F ,

Z = Πγ/ρ3(2Γ(
1

2
(A+U3))).

Unrestricted and restricted models are evaluated by Algorithm 1. For
initialization phase one-time cost is O(8m̄3 + 4Tm̄), however, the
total computational cost for the iterative process is O(8m̄2+8m̄3+
2m̄ log(2m̄))× number of iterations.

Algorithm 1 SS-ADMM for GC Estimation
Input: Y ,H, m̄, λ, γ, ρ1, ρ2, ρ3

while stopping criterion not met do
B := ρ(Z −U3 + vec−1(c− u1)

T
)

A = (B + Y HT)(HHT + ρI)−1

for g = 1, ..., 4m̄ do
P gg = proxλwg∥·∥(P gg + qg − u2g − pg)
P gcg = 0

end for
p = 1/4m̄

∑
g∈G P

q = 1/(ρ2 + 4m̄)(c+ ρ2(u2 + p))
c = vec(AT) +

∑
g∈G P + vec(U1)

Z = Πγ/ρ3(2Γ(
1
2
(A+U3)))

u1 = u1 + vec(AT)− c
u2 = u2 + p− q
U3 = U3 +A−Z
mi = card(P (i−1)m̄+1:im̄ ̸= 0) ∀i = 1, 2, 3, 4

end while
Output: A,m1,m2,m3,m4

4. EXPERIMENTAL RESULTS

In this section, we perform a comparative study to investigate the
performance of proposed method Stationary and Sparse ADMM
(SS-ADMM) on both synthetic and real data. All the experiments
have been performed on MATLAB 2022b with Core i7 CPU (2.90
GHz), 8 GB RAM, and Windows 11 operating system.



4.1. Results on Synthetic Data

Data has been generated randomly using an underlying mathemati-
cal model governing Y , A, and H . Results obtained by repeating
the experiment several times are compared to assess performance
for both stationarity and sparsity. The performance for model iden-
tification is compared with BIC [12] in Figure 1. Upper bound on
order was set to m̄ = 40. It can be observed that SS-ADMM esti-
mates model order either equal or higher than the true order whereas
BIC usually underestimates model order losing significant informa-
tion about the process. It is worth noting that SS-ADMM also allows
flexibility by fine-tuning the hyperparameter λ to precisely estimate
the model order. Proposed method SS-ADMM disentangles four dif-
ferent model orders instead of two (as in BIC) for a bivariate model.
It must be noted that our approach is flexible. I

Fig. 1. Comparison of performance for model identification with
BIC [12]. Blue bar graphs in a row are equal.

Fig. 2. Log of normalized error of HS-ADMM [16] vs SS-ADMM.
The results obtained by enforcing stationarity by finding eu-

clidean projections as in Hierarchical Sparsity ADMM (HS-ADMM)
[16] compared with our proposed approach ΨSP are depicted in Fig-
ure 2. The projection based approach takes longer to execute. On the
other hand, our proposed approach SS-ADMM achieves a speedup
of 2× or more and the error decreases more smoothly as shown in 2
when executed for same number of iterations.

4.2. Results on Physiological Data

The proposed method is tested on physiological data collected from
nine healthy subjects in a previously published study [22]. The

subjects performed a controlled motor task, grasping a ruler be-
tween thumb and index finger. An electromechanical tapper pro-
vided mechanical perturbations of lateral displacement to the ruler
at pseudorandom intervals of 5.6 - 8.4 s (mean 7 s). The experi-
ment comprised 8 blocks of 25 trials. sEMG was recorded from first
dorsal interosseous and bipolar scalp EEG was recorded over left
sensorimotor cortex. Both signals were sampled at 1024 Hz, am-
plified and band-pass filtered (0.5-100 Hz for EEG; 5-500 Hz for
(sEMG). Offline, data were divided into 5 s epochs (1.1 s pre- and
3.9s post-stimulus). Epochs containing movement or blink artefacts
were eliminated. Granger causality across the 5 second epoch is
shown for 4 subjects in Figure 3. An F-test applied with 95% sig-
nificance level tests the null hypothesis that the first time series does
not jointly Granger-cause the second.

Fig. 3. Left: Blockwise GC [2], Right: SS-ADMM. Green and
pink lines show stimulus onset and critical values of F-distribution
respectively.

In this active task we expect causality between brain and mus-
cles, so the observed pre-stimulus causality in some subjects (Figure
3), is not unanticipated. A post-stimulus increase in Granger causal-
ity can be observed in subjects B and D using SS-ADMM which
was not detected using Blockwise GC [2]. Similar findings were ob-
served in five out of nine subjects by tuning the hyperparameters,
indicating the effectiveness of our approach.

5. CONCLUSION

To conclude, we proposed a novel way to incorporate stationarity
assumption in autoregressive model identification and parameter
estimation. We used a convex optimization framework to guaran-
tee global optimality that leads to improved estimation of Granger
causality in physiological data to extract cortico-muscular coupling.
Experimental results demonstrate the effectiveness of our approach
for both synthetic and real-world data.
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