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ABSTRACT
Smart devices, such as smart speakers, are becoming ubiquitous,

and users expect these devices to act in accordance with their prefer-

ences. In particular, since these devices gather and manage personal

data, users expect them to adhere to their privacy preferences. How-

ever, the current approach of gathering these preferences consists

in asking the users directly, which usually triggers automatic re-

sponses failing to capture their true preferences. In response, in

this paper we present a collaborative filtering approach to predict

user preferences as norms. These preference predictions can be

readily adopted or can serve to assist users in determining their

own preferences. Using a dataset of privacy preferences of smart

assistant users, we test the accuracy of our predictions.
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1 INTRODUCTION
Artificial intelligence (AI) technologies are making their way into

our daily lives and into our homes. We have grown accustomed

to using our devices to call friends, set reminders, or check the

weather.However, for these technologies to be adopted and trusted

by users, theymust act as users expect, and this problem is especially

apparent in the area of privacy preferences. Studies show that users

are deeply concerned about how their data is being collected online

[10]. Interestingly, while they expect AI to act as they desire, they

are unwilling to spend time setting their preferences. For example,

despite users’ concerns about privacy, studies show that they ignore

or blindly accept cookie banners [8] and privacy policies in social

networks [16]. Furthermore, in social networks, a large proportion

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

of users do not change default privacy settings [9]. This can be

explained as a result of privacy fatigue [4], the sensation of loss

of control and futility over protecting one’s privacy. This leads to

privacy cynicism, when users do not adopt a privacy protecting

behaviour even if they are concerned about their privacy [6]. Thus,

the current approach of directly asking the user when a preference

is unknown but needed fails to capture the user’s true preferences.

Additionally, continual questioning prevents users from achieving

their objectives with the device. In response, this paper advocates

for an approach that can understand user preferences with less user

involvement, in turn bringing more importance to user interactions

whenever such preferences are needed.

A particular platform in which capturing privacy preferences is

challenging and yet essential is that of smart speakers and other

smart personal assistants. These devices have benefited from wide-

spread early adoption, and it is estimated that 500 million units

were installed in the last quarter of 2021 [23]. Nonetheless, the early

adoption of these technologies means that they still have several

vulnerabilities that pose a threat to the security and privacy of their

users [5]. Indeed, there have already been cases reported in which

smart assistants have not functioned as expected; for example, a

smart speaker recorded and sent a private conversation without

the user’s consent [27]. These situations hinder user trust in the

technology and can ultimately lead users to limit the functionalities

of the devices used, or even to adopting coping mechanisms [1].

This paper describes an alternative approach that addresses the

issues outlined above. The critical observation underpinning our

approach is that smart devices are just one part of a larger ecosystem

(e.g. see [5] for a description of the ecosystem of smart speakers),

and they interact and share data with agents like services, apps,

and other devices. For example, a smart watch might send a voice

recording to a smart speaker, or might share the wearer’s heart rate

with a health app. In this respect, we can understand this ecosystem

as a multi-agent system in which the use of norms can help to

regulate these interactions, implementing privacy preferences.

Norms can effectively summarise complex privacy preferences

into simple sets of regulations, as shown by Abdi et al. [2], who

gathered over 800 privacy preferences on data transmissions, yet

produced just 17 norms. Moreover, although here we assume no

knowledge of the domain, if such knowledge is available there exist

techniques to generalise norms (see [13, 14] for an example) or find

and resolve inconsistencies among them [26]. Furthermore, norms

are also used by people, and are naturally understood by them,

representing a good base upon which to construct explanations.
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This can be used not only to generate explanations for a user if

something unexpected happens, but also to tailor interactions with

a user to validate predicted norms. Norms are regarded as expected

patterns of behaviour [28], causing agents (each component in the

smart device ecosystem) to coordinate better and function more

efficiently. As an example with smart devices, imagine a service

knows in advance the privacy norms of a user with regard to each

component of the ecosystem. If this service needs to interact with

other components, it can use the user’s norms to adapt its behaviour

to avoid violating norms or to avoid performing unregulated trans-

missions of information, which might require consent.

As informally outlined in [18], we can exploit the large user

bases of smart devices to use knowledge of previously specified

privacy preferences to infer new preferences or to assist users

in specifying their preferences. In particular, we aim to exploit

similarities between users to make privacy preference predictions

using collaborative filtering [7]. Effectively, we see the smart device

ecosystem as a multi-layered multi-agent system. The lower level

represents themulti-agent system associatedwith a single user (that

is, the user’s device, and the other devices, skills, and services that

can be accessed from it). The higher level is that of the multi-agent

system composed of all the users. Our approach is centred on the

norm creation stage in the lower level multi-agent systems related

to each user. Therefore, each device user has its own associated set

of norms, and all agents within its lower level multi-agent system,

be they devices, skills, or other services, are informed and affected

by the norms whenever they want access to the user’s personal

data. While many researchers have studied different approaches to

constructing norm systems, like norm synthesis [12, 13] or norm

emergence [17, 21, 24], we are not aware of any similar approach

like the collaborative filtering presented here.

In taking this approach, we make the following contributions.

• Formalisation of the problem of predicting norms to ensure

that computational behaviour aligns with user preferences.

This is divided into two subproblems, namely preference

approximation (predicting unknown user preferences) and

norm inference (inferring norms from predicted preferences).

• Formalisation of preference prediction functions. We provide

a specific example of this type of function based on the

preferences of similar users.

• Inference of norms from the predicted preferences, and speci-

fication of different methods to do so based on the confidence

of the prediction or other variables.

The paper is structured as follows: Section 2 formalises the core

problems we aim to address in the paper. In Section 3 we detail the

process of predicting preferences. We then use these predictions

to infer norms in Section 4. Section 5 is dedicated to validate our

findings. In Section 6 we discuss related work. Finally, in Section 7

we discuss conclusions and future work.

2 PROBLEM DEFINITION
Consider a set of users𝑈 and a set of agents𝐴𝑔, such that 𝑎𝑔𝑢 ∈ 𝐴𝑔
is the agent (i.e. the smart device) of 𝑢 ∈ 𝑈 1

. Consider also a

1
To simplify, and without loss of generality we assume that for each 𝑢 ∈ 𝑈 there is

only one 𝑎𝑔𝑢 ∈ 𝐴𝑔. Note that if one user had more than one device, we could consider

a mock second user.

finite number of elements 𝑋 = {𝑥1, . . . , 𝑥 |𝑋 |} over which users

have preferences. These elements will commonly be actions an

agent can perform, but can also be more complex, for example

containing the context in which an action happens (e.g. “share if

the user is notified”). For generality purposes, we do not specify the

formalisation of these elements since, for the problem definition

(and our proposed resolution), it is not necessary. This not only

allows our notation to be kept simple, but it also allows us to define

the preference domain with as much or as little complexity as

needed. Given an element 𝑥 ∈ 𝑋 , we assume the user’s preference

towards 𝑥 is a number in [−1, 1], where 1 means the user totally

approves of 𝑥 , -1 means the user totally disapproves of 𝑥 , and 0

means neutrality towards 𝑥 . Note that we can make this assumption

without loss of generality as we can always transform any user

preferences into [−1, 1]2
For each user 𝑢 and agent 𝑎𝑔𝑢 , we consider the following tuples

of preferences.

• The user’s preference profile 𝑝𝑢 represents the real prefer-

ences of user 𝑢 ∈ 𝑈 . Note that 𝑝𝑢 ∈ [−1, 1] |𝑋 |
, and the

𝑖𝑡ℎ position in the tuple represents the preference of user 𝑢

towards element 𝑥𝑖 .

• The agent’s preference profile 𝑝𝑎𝑔𝑢 represents the prefer-

ences of user 𝑢 known by agent 𝑎𝑔𝑢 . This tuple has the same

structure as 𝑝𝑢 , but unlike 𝑝𝑢 , this tuple has gaps of knowl-

edge. We represent an unknown preference as ⃝, therefore

𝑝𝑎𝑔𝑢 ∈ ([−1, 1] ∪ {⃝}) |𝑋 |
.

Having introduced these elements, we now present a running

example with smart personal assistants, which we use throughout

the paper to illustrate the concepts we introduce.

Example 1. We consider users 𝑢1, 𝑢2 and 𝑢3, who have smart
personal assistants 𝑎𝑔𝑢1

, 𝑎𝑔𝑢2
and 𝑎𝑔𝑢3

respectively. We consider three
elements over which users have preferences: sharing data with the
AI assistant manufacturer (𝑥1), with internet provider (𝑥2), and with
developers of third party skills (𝑥3). When it comes to the user’s real
preferences, we have: 𝑝𝑢1

= (−1,−1,−1), 𝑝𝑢2
= (−1,−1,−1), 𝑝𝑢3

=

(1,−1, 1). As for the agent’s known preferences, we have: 𝑝𝑎𝑔𝑢
1

=

(−1,−1,⃝), 𝑝𝑎𝑔𝑢
2

= (−1,⃝,−1), 𝑝𝑎𝑔𝑢
3

= (1,⃝, 1).

Finally, we define a process to complete preferences, noted as

𝑐𝑜𝑚𝑝 . This process takes 𝑝𝑎𝑔𝑢 and completes it, producing 𝑝∗𝑎𝑔𝑢 ∈
[−1, 1] |𝑋 |

. Note that in [−1, 1] |𝑋 |
we can assess distances between

preference tuples (which are points in the space). With this in mind,

we can formalise the first problem we address in this paper.

Def. 1 (Preference approximation problem). Consider the
space [−1, 1] |𝑋 | , and 𝑑𝑖𝑠 a distance function in this space, the pref-
erence approximation problem consists of finding the process 𝑐𝑜𝑚𝑝 ,
with the aim of minimising the distance 𝑑𝑖𝑠 (𝑝𝑢 , 𝑝∗𝑎𝑔𝑢 ).

Example 2. The process to complete preferences could be, for exam-
ple, asking the users about their preferences directly. For example, user
𝑢1 interacts with a third party skill that requires unknown preferences
and therefore asks the user about them. The user might want to use

2
On the one hand, numerical preferences can be re-scaled into [−1, 1], because the
number of users and the number of elements is finite and therefore preferences will

always be bounded. On the other hand, ordinal preferences will also be bounded and

can be transformed into numerical preferences in [−1, 1].
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the skill and responds affirmatively automatically (against their real
preferences), thus 𝑝∗𝑎𝑔𝑢

1

= (−1,−1, 1). Then, considering the euclidean
distance, we would have 𝑑𝑖𝑠 (𝑝𝑢1

, 𝑝∗𝑎𝑔𝑢
1

) = 2, which means that, in
this case, this process can be improved.

Our final aim is to align agent behaviour to user preferences. To

that end, we resort to norms to regulate how each agent𝑎𝑔𝑢 behaves.

Note that there is no standard definition of norm; for example, [29]

considers rewards and punishments in norms, whereas [12] ignores

these and instead considers the context of application of the norm.

In our case, we use a very simple definition of norm in support

of generality, as a more complex definition would require domain

knowledge which would hinder the applicability of our approach.

Def. 2 (Norm). Given an element 𝑥 ∈ 𝑋 , a norm is a structure
\ (𝑥), where \ ∈ {𝑃𝑟ℎ, 𝑃𝑒𝑟 }, where 𝑃𝑟ℎ(𝑥) is the norm prohibiting 𝑥 ,
whereas 𝑃𝑒𝑟 (𝑥) is the norm permitting 𝑥 .

Having defined our notion of norm, we can now define the

second problem we address in this paper, as follows:

Def. 3 (Norm inference problem). Given an agent 𝑎𝑔𝑢 ∈ 𝐴𝑔
and its completed preferences 𝑝∗𝑎𝑔𝑢 , the norm inference problem con-
sists of enacting preferences in 𝑝∗𝑎𝑔𝑢 as norms, such that when follow-
ing them, the agent will behave as expected by user 𝑢.

Example 3. Supposing we correctly completed the preferences of
user 𝑢3 (𝑝∗𝑎𝑔𝑢 = (1,−1, 1)), our aim would be to find a way to encode
these preferences as norms, those close to 1 into permission norms, and
those close to -1 into prohibition norms. In this case, 𝑃𝑒𝑟 (𝑥1), 𝑃𝑟ℎ(𝑥2),
and 𝑃𝑒𝑟 (𝑥3).

3 PREFERENCE PREDICTION
In this section we consider how to predict a user’s preference to-

ward an element 𝑥 for which we don’t know their preference. To do

so, we will infer preferences from similar users. As argued above,

we can assume that users who share similar views on known prefer-

ences will also share similar views on unknown ones. Our aim is to

formally define a separation measure between users so that we can

build predictions based on a set of users deemed similar enough.

This can be an aggregation of the preferences of similar users over

the element in question. First, however, we must introduce some

preliminary notation and definitions and, to simplify, we reuse the

notation introduced above. Given a user 𝑢 ∈ 𝑈 with corresponding

agent 𝑎𝑔𝑢 and an element 𝑥 ∈ 𝑋 , we note the real preference of 𝑢
towards 𝑥 as 𝑝𝑢 (𝑥), the known preference of 𝑢 towards 𝑥 by agent

𝑎𝑔𝑢 as 𝑝𝑎𝑔𝑢 (𝑥), and the preference of𝑢 towards 𝑥 by agent 𝑎𝑔𝑢 after

the prediction process as 𝑝∗𝑎𝑔𝑢 (𝑥). First, we define common known

preference elements. Given a pair of users, the common known

preference elements are those elements for which we know both

users’ preferences, and can be used to measure their separation.

Def. 4 (Common known preference elements). Consider two
users 𝑢1, 𝑢2, their agents 𝑎𝑔𝑢1

, 𝑎𝑔𝑢2
, and the users’ known preferences

𝑝𝑎𝑔𝑢
1

and 𝑝𝑎𝑔𝑢
2

. We call the common known preference elements of
𝑎𝑔𝑢1

and 𝑎𝑔𝑢2
, the set of elements for which we know both agents’

preferences. If 𝑝𝑎𝑔𝑢
1

= (𝑝1
1
, . . . , 𝑝

|𝑋 |
1

) and 𝑝𝑎𝑔𝑢
2

= (𝑝1
2
, . . . , 𝑝

|𝑋 |
2

),
this is formalised as:

𝐶 (𝑎𝑔𝑢1
, 𝑎𝑔𝑢2

) = {𝑥𝑖 |𝑝𝑢1
(𝑥𝑖 ), 𝑝𝑢2

(𝑥𝑖 ) ≠ ⃝}

With these preliminary definitions, we now turn to formalising a

measure of separation between users. While we can define distance

functions in the space of real user preferences [−1, 1] |𝑋 |
, our aim

here is to assess distances between users with only partial knowl-

edge of their preferences. Therefore, we want to define a distance

in the space of known preference tuples ( [−1, 1] ∪ {⃝}) |𝑋 |
, though

in this case we do not want a strict distance function, but a more

relaxed version of a distance function. Consider, for example, the

points (1,⃝, . . . ,⃝) and (⃝, . . . ,⃝, 1), where a distance function
would have to assign a distance between these two points, but there

are no commonly known preferences between them, so we choose

not to assign a distance in this case. In other words, the separation

between two users should only depend on their commonly known

preferences. Hence, instead of defining a formal distance we define

a function, called a preference separation function, for which we

require similar properties to those of distances, albeit more relaxed.

Def. 5 (Preference separation). Given a set of pairs of users
with common elements 𝑈𝑐𝑜𝑚 = {(𝑢,𝑢 ′) ∈ 𝑈 × 𝑈 |𝐶 (𝑢,𝑢 ′) ≠ ∅}, a
user separation measure is a function 𝑠𝑒𝑝 : 𝑈𝑐𝑜𝑚 → R that measures
the separation of two users (𝑢1, 𝑢2) ∈ 𝑈𝑐𝑜𝑚 , based on their known
preferences by the agent (i.e. 𝑝𝑎𝑔𝑢

1

and 𝑝𝑎𝑔𝑢
2

). This function must
satisfy the following properties:

• Dependence of commonly known preferences: 𝑠𝑒𝑝 (𝑢1, 𝑢2)
only depends of 𝑝𝑎𝑔𝑢

1

(𝑥) and 𝑝𝑎𝑔𝑢
2

(𝑥), ∀𝑥 ∈ 𝐶 (𝑎𝑔𝑢1
, 𝑎𝑔𝑢2

)
• No-negativity: 𝑠𝑒𝑝 (𝑢1, 𝑢2) ≥ 0.
• Symmetry: 𝑠𝑒𝑝 (𝑢1, 𝑢2) = 𝑠𝑒𝑝 (𝑢2, 𝑢1).
• Zero separation for equal known common preferences:
𝑠𝑒𝑝 (𝑢1, 𝑢2) = 0 ⇔ 𝑝𝑎𝑔𝑢

1

(𝑥) = 𝑝𝑎𝑔𝑢
2

(𝑥)∀𝑥 ∈ 𝐶 (𝑎𝑔𝑢1
, 𝑎𝑔𝑢2

).
• Triangle inequality for known commonpreferences:Given
a third user𝑢3, if we note𝐶 = 𝐶 (𝑎𝑔𝑢1

, 𝑎𝑔𝑢2
), then 𝑠𝑒𝑝 (𝑢1, 𝑢2) ≤

𝑠𝑒𝑝
��
𝐶
(𝑢1, 𝑢3) + 𝑠𝑒𝑝

��
𝐶
(𝑢3, 𝑢2). where 𝑠𝑒𝑝

��
𝐶
is the separation

function restricted to only the common elements of 𝑎𝑔𝑢1
and

𝑎𝑔𝑢2
(i.e. applying 𝑠𝑒𝑝 as if 𝑋 = 𝐶).

As argued earlier, the first property ensures that user separation

only depends on the commonly known preferences of the users.

The next four properties correspond to the properties of distances

adapted to our case, as follows. First, we require that the sepa-

ration measure is positive, as 0 is the closest possible separation,

disallowing negative separations. Second, this function must be

symmetric as the separation between two preferences should be

the same no matter the order. Third, two users have separation of

0 if and only if their commonly known preferences are the same.

This property is more general than 𝑠𝑒𝑝 (𝑢1, 𝑢2) = 0 ⇔ 𝑢1 = 𝑢2 as

we do not want to take into account what happens with not com-

monly known preferences. The fourth property is a general version

of the triangle inequality where we only consider the commonly

known preferences. Again, we want to be more general because we

want to disregard preferences for which we do not have complete

knowledge of both users. To illustrate, we provide an example of

such a function, which we call cumulative user separation.

Def. 6 (Cumulative user separation). The cumulative user
separation function is a function 𝑠𝑒𝑝+ : 𝑈𝑐𝑜𝑚 → R that, for users
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(𝑢1, 𝑢2) ∈ 𝑈𝑐𝑜𝑚 and respective agents 𝑎𝑔𝑢1
, 𝑎𝑔𝑢2

, assesses their sepa-
ration as follows:

𝑠𝑒𝑝+ (𝑢1, 𝑢2) =
∑︁

𝑥𝑖 ∈𝐶 (𝑎𝑔𝑢
1
,𝑎𝑔𝑢

2
)
|𝑝𝑎𝑔𝑢

1

(𝑥𝑖 ) − 𝑝𝑎𝑔𝑢
2

(𝑥𝑖 ) |

Proving that 𝑠𝑒𝑝+ satisfies the properties inDefinition 5 is straight-
forward, but omitted due to space constraints.

The following example illustrates the concepts introduced so far,

in context of the scenario introduced in Example 1.

Example 4. We assess the separation between 𝑢1 and the other
users. For both 𝑢2 and 𝑢3, we have 𝐶 (𝑎𝑔𝑢1

, 𝑎𝑔𝑢2
) = 𝐶 (𝑎𝑔𝑢1

, 𝑎𝑔𝑢3
) =

{𝑥1}, as for 𝑢1 we know preferences over 𝑥1 and 𝑥2, but for the other
users we know preferences over 𝑥1 and 𝑥3, but not 𝑥2. Thus, in this case
the cumulative separation is 𝑠𝑒𝑝+ (𝑢1, 𝑢2) = 0 and 𝑠𝑒𝑝+ (𝑢1, 𝑢3) = 2.

Given a user for which we want to predict a preference over

𝑥 , we can gather a set of similar users for which we know their

preferences over 𝑥 considering their separation with regard to the

original user. With this set of similar users, we can then predict the

targeted preference by aggregating the preferences of similar users

towards that element. With this aim, we define the set of similar

users. Since we build this set to make predictions, we must require

that we know the preference of the users in the set with regard to

the targeted element. Ideally, similar users should be those with

separations less or equal to a maximum 𝜖 . However, since our aim

is to use similar users to build predictions, we require a minimum

number of similar users a (those with the least separation), so that

predictions are founded on a reasonable number of users.

Def. 7 (𝜖a-similar users). Given a user 𝑢, an element 𝑥 , and pa-
rameters a ∈ N and 𝜖 ∈ R, we call 𝜖a-similar users the set 𝑆𝑖𝑚𝜖

a (𝑢, 𝑥)
of similar users to𝑢, such that they have preferences over 𝑥 , and which
contains at least the a most similar users and all users that are closer
than 𝜖 (in terms of separation). Hence, if 𝐾 (𝑥) = {𝑢 |𝑝𝑎𝑔𝑢 (𝑥) ≠ ⃝} is
the set of users for whomwe know their preference over 𝑥 , we formalise
𝑆𝑖𝑚𝜖

a (𝑢, 𝑥) = 𝑆𝑖𝑚𝜖 (𝑢, 𝑥) ∪ 𝑆𝑖𝑚a (𝑢, 𝑥), where:
• 𝑆𝑖𝑚𝜖 (𝑢, 𝑥) = {𝑢 ′ ∈ 𝐾 (𝑥) |𝑠𝑒𝑝 (𝑢,𝑢 ′) ≤ 𝜖} is the set of users
with known preference over 𝑥 who have a separation with 𝑢
less or equal to 𝜖 .

• 𝑆𝑖𝑚a (𝑢, 𝑥) = {𝑢1, . . . , 𝑢a ∈ 𝐾 (𝑥) |𝑠𝑒𝑝 (𝑢,𝑢1) ≤ · · · ≤ 𝑠𝑒𝑝 (𝑢,𝑢a )
and �𝑢 ′ ∈ 𝐾 (𝑥) \ {𝑢1, . . . , 𝑢a }s.t. 𝑠𝑒𝑝 (𝑢,𝑢 ′) < 𝑠𝑒𝑝 (𝑢,𝑢a )} is
the set of the a closer users to 𝑢 with known preference over 𝑥 .

Using the set of similar users, we can predict the targeted prefer-

ence, for which we use a prediction function, defined as follows.

Def. 8 (Preference prediction function). A preference predic-
tion function is a function 𝑝𝑟𝑒 : 𝑈×𝑋 → [−1, 1] which, given a pair of
a user𝑢 ∈ 𝑈 and elements 𝑥 ∈ 𝑋 , predicts the preferences of𝑢 towards
𝑥 . Given a ∈ N and 𝜖 ∈ R, this function must depend only on the pref-
erences towards 𝑥 of similar users to 𝑢, {𝑝𝑎𝑔𝑢′ (𝑥) |𝑢 ′ ∈ 𝑆𝑖𝑚𝜖

a (𝑢, 𝑥)}

We provide an example of a preference prediction function called

average preference prediction function. This function builds a pre-

diction of the preference of 𝑢 towards 𝑥 as the average of the pref-

erences over 𝑥 of similar users to 𝑢. Formally:

Def. 9 (Average preference prediction function). Given a
separation measure 𝑠𝑒𝑝 , the average preference prediction function

𝑝𝑟𝑒𝑎𝑣𝑔 : 𝑈 × 𝑋 → [−1, 1], takes a user 𝑢 ∈ 𝑈 (with 𝑝𝑎𝑔𝑢 (𝑥) = ⃝)
and an element 𝑥𝑖 ∈ 𝑋 , and predicts the preference of 𝑢 towards 𝑥 in
[−1, 1], as follows:

𝑝𝑟𝑒𝑎𝑣𝑔 (𝑢, 𝑥) =
∑
𝑢′∈𝑆𝑖𝑚𝜖

a (𝑢,𝑥) 𝑝𝑎𝑔𝑢′ (𝑥)
|𝑆𝑖𝑚𝜖

a (𝑢, 𝑥) |
We continue with the following illustration of a prediction.

Example 5. We want to predict the preference of 𝑢1 with regard
to 𝑥3. Considering the separations found in Example 4, we aim at
selecting the similar users. To do so, we require at least one user (i.e.
a = 1) and we consider them similar if the separation is less than
0.5 (i.e. 𝜖 = 0.5), then 𝑆𝑖𝑚𝜖=0.5

a=1
(𝑢1, 𝑥3) = {𝑢2}. Then, to predict

the preference of 𝑢1 towards 𝑥3, we average the preferences of the
similar users towards 𝑥3. In the case of Example 4, the result would
be 𝑝𝑟𝑒𝑎𝑣𝑔 (𝑢1, 𝑥3) = −1

Given a prediction function, we can complete the unknown

preferences of the user as follows.

Def. 10 (Complete predicted preferences). Given a prefer-
ence prediction function 𝑝𝑟𝑒 and user 𝑢 with known partial prefer-
ences 𝑝𝑎𝑔𝑢 , the tuple of complete predicted preferences for the user is

𝑝∗𝑎𝑔𝑢 = (𝑝∗1𝑎𝑔𝑢 , . . . , 𝑝∗
|𝑋 |
𝑎𝑔𝑢 ), composed of the known preferences and

predictions of the unknown ones. Formally:

𝑝∗𝑖𝑎𝑔𝑢 =

{
𝑝𝑖𝑎𝑔𝑢 if 𝑝𝑖𝑎𝑔𝑢 ≠ ⃝
𝑝𝑟𝑒 (𝑢, 𝑥𝑖 ) if 𝑝𝑖𝑎𝑔𝑢 = ⃝

Note that in Example 5, the preference predicted along with the

known preferences form the complete predicted preferences for 𝑢1.

Using Definition 10, we obtain the complete preferences of the

user from the already known preferences and the newly predicted

ones. This offers a solution to the preference approximation prob-

lem, and we show the validity of our approach in Section 5. First,

however, we tackle the norm inference problem in the next section.

4 NORM INFERENCE FROM PREDICTIONS
At this point, we can predict user preferences from similar users.

However, our broader aim is to build norms from these preferences

so that agents can follow them. This means transforming numerical

preferences in [-1, 1] into norms. In this section, we propose several

methods to perform this transformation and discuss under which

circumstances these methods would be appropriate to be used.

4.1 Hard thresholds
The simplest method we can use to transform numbers in [-1, 1]

into norms is through hard thresholds. Thus, we would consider

two thresholds 𝜖𝑝𝑟ℎ , and 𝜖𝑝𝑒𝑟 that divide [-1, 1] into three blocks,

referring to (in the following order): prohibition, no norm, and

permission. Hence, for consistency, we require that the threshold of

prohibition must be on the negative side of the preferences interval,

and the permission threshold on the positive side, 𝜖𝑝𝑟ℎ ∈ [−1, 0],
and 𝜖𝑝𝑒𝑟 ∈ [0, 1]. Then, considering the completed preferences

𝑝∗𝑎𝑔𝑢 , we would build norm 𝑃𝑟ℎ(𝑥) if 𝑝 ∗𝑎𝑔𝑢 (𝑥) ≤ 𝜖𝑝𝑟ℎ , no norm

if 𝜖𝑝𝑟ℎ < 𝑝 ∗𝑎𝑔𝑢 (𝑥) < 𝜖𝑝𝑒𝑟 , or 𝑃𝑒𝑟 (𝑥) if 𝜖𝑝𝑒𝑟 ≤ 𝑝 ∗𝑎𝑔𝑢 (𝑥).

Example 6. If we have thresholds 𝜖𝑝𝑟ℎ = −0.25 and 𝜖𝑝𝑒𝑟 = 0.25,
then elements 𝑥 with preferences in [−1,−0.25] would be prohibited
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(𝑃𝑟ℎ(𝑥)), those in [−0.25, 0.25] would not be regulated, and those in
[0.25, 1] would be permitted (𝑃𝑒𝑟 (𝑥)).

4.2 Thresholds based on prediction confidence
Note that hard thresholds can be problematic when predictions are

not particularly accurate (for example, due to 𝑝𝑎𝑔𝑢 having many

unknown preferences). In this case, for unknown preferences that

are close to the threshold our prediction can easily fall on either side.

Thus, in these cases we can consider variable thresholds depending

on the confidence of our predictions.

Here, we consider thresholds to be a function of prediction con-

fidence. If we consider confidence to be a number in [0, 1], then
we formalise thresholds as functions: 𝜖𝑝𝑟ℎ : [0, 1] → [−1, 0] and
𝜖𝑝𝑒𝑟 : [0, 1] → [0, 1].

The remaining task now is to define prediction confidence. Note

that we would consider a prediction based on other very similar

agents, with very similar preferences, as being accurate, whereas a

prediction obtained from agents close in opinion but not entirely

similar, and whose preferences span over an array of options, likely

not very accurate. If we do not know the real preference we cannot

be entirely sure of the quality of predictions but confidence gives

us an intuition on the quality of the data they are drawn from.

Formally, we define a prediction confidence function as follows.

Def. 11 (Confidence function). A prediction confidence func-
tion 𝑐𝑜𝑛𝑓 : 𝑈×𝑋 → [0, 1] is a function that takes a pair of user and el-
ement and gives the confidence of prediction 𝑝𝑟𝑒 (𝑢, 𝑥) in [0, 1], where
0 means no confidence and 1 is absolute confidence. Note that in gen-
eral 𝑐𝑜𝑛𝑓 (𝑢, 𝑥) > 𝑐𝑜𝑛𝑓 (𝑢 ′, 𝑥 ′) should imply |𝑝𝑟𝑒 (𝑢, 𝑥) − 𝑝𝑢 (𝑥) | <
|𝑝𝑟𝑒 (𝑢 ′, 𝑥 ′) − 𝑝𝑢′ (𝑥 ′) |. In other words, a higher confidence should
correlate with a better prediction (one closer to the real preference).

We provide an example prediction confidence function called

𝜌`-Confidence based on the following two measures:

• The separation between 𝑢 and users in 𝑆𝑖𝑚𝜖
a (𝑢, 𝑥) (for some

separation measure 𝑠𝑒𝑝)

• The distribution of preferences of users in 𝑆𝑖𝑚𝜖
a (𝑢, 𝑥) to-

wards 𝑥 (i.e. their standard deviation).

We define 𝜌`-Confidence as the weighted average of these two

measures where 𝜌 and ` are the weights.

Def. 12 (𝜌`-Confidence). Let 𝑠𝑒𝑝 be a separation measure as in
Def. 5 and 𝑆𝑖𝑚𝜖

a (𝑢, 𝑥) be the set of similar users to user 𝑢 (using 𝑠𝑒𝑝).
We can then define the confidence of prediction 𝑝 (𝑢, 𝑥) as:

𝑐𝑜𝑛𝑓𝜌,` (𝑢, 𝑥) = 1−𝜌 ·min(
∑
𝑢′∈𝑆𝑖𝑚𝜖

a (𝑢,𝑥) 𝑠𝑒𝑝 (𝑢,𝑢
′)

|𝑆𝑖𝑚𝜖
a (𝑢, 𝑥) |

, 1)−`·min(𝑠𝑑 (𝑆𝑃), 1)

Where 𝜌, ` ∈ [0, 1], 𝜌 + ` = 1, 𝑠𝑑 refers to the standard deviation of
a set, and 𝑆𝑃 = {𝑝𝑎𝑔𝑢′ (𝑥) |𝑢 ′ ∈ 𝑆𝑖𝑚𝜖

a (𝑢, 𝑥)}.
Note that, in order to have confidence between 0 and 1, we set

an upper bound of 1 to each of the two parts. The first part of

the 𝜌`-Confidence refers to the separation between the users for

the prediction, and the higher this separation, the less confidence

in the prediction. In this case, we measure the average separation

between𝑢 and the users in 𝑆𝑖𝑚𝜖
a (𝑢, 𝑥). The second part refers to the

distribution of the real preferences of the similar users, hence the

more these preferences differ, the lower confidence in our prediction.

Here, we use the standard deviation of the preferences.

Once we have a confidence function, we can use it to define vari-

able thresholds to create norms from preferences. One possibility is

to favour the creation of norms whenwe have confident predictions,

while limiting their production when we have low confidence. In

other words, we can consider variable thresholds that are closer

to the middle point (0) when confidence is high, and closer to the

extremes (-1 and 1) when confidence is low.

Def. 13 (Confident norm thresholds). Given a confidence
function 𝑐𝑜𝑛𝑓 (𝑢, 𝑥), we define confident norm thresholds as\𝑝𝑟ℎ (𝑢, 𝑥) =
−1 + 𝑐𝑜𝑛𝑓 (𝑢,𝑥)

3
, \𝑝𝑒𝑟 (𝑢, 𝑥) = 1 − 2

𝑐𝑜𝑛𝑓 (𝑢,𝑥)
3

.

We use confident norm thresholds for our running example.

Example 7. We want to infer a norm for 𝑢1 and element 𝑥3, in
Example 5 where we predicted a preference of −1. Note that, if we
consider 𝜌 = 1

2
, ` = 1

2
, in this case we have 𝑐𝑜𝑛𝑓𝜌,` (𝑢1, 𝑥3) = 1 (as

both parts of the function are 0). Hence, we would have \𝑝𝑟ℎ (𝑐𝑜𝑛𝑓 ) =
− 2

3
, \𝑝𝑒𝑟 (𝑐𝑜𝑛𝑓 ) = 1

3
, and would infer 𝑃𝑟ℎ(𝑥3) in this case, because

−1 < \𝑝𝑟ℎ .

4.3 Thresholds based on other variables
Much like with prediction confidence, threshold functions can also

depend on other relevant variables like the context of the elements

(assuming they have contexts). For generality purposes, we have

avoided defining formally any type of these variables, and have

considered them implicitly in each 𝑥 ∈ 𝑋 . However, in some appli-

cations it might be important to consider them when setting norm

thresholds. For example, if we want to avoid inappropriate actions

in sensitive contexts, we can consider the sensitivity of the context

as a variable to set the thresholds. Then, 𝜖𝑝𝑟ℎ (𝑐) would be closer to
0 for contexts 𝑐 that are considered sensitive than for non-sensitive

ones. Formally, in this case, we would consider thresholds as func-

tions depending on multiple variables 𝜖𝑝𝑟ℎ : 𝑉1 × 𝑉𝑛 → [−1, 0]
and 𝜖𝑝𝑒𝑟 : 𝑉 ′

1
×𝑉 ′

𝑚 → [0, 1], where we consider 𝑛 and𝑚 variables

respectively and𝑉1×𝑉𝑛 and𝑉 ′
1
×𝑉 ′

𝑚 are the possible values of these

𝑛 and𝑚 variables. As for hard thresholds, we require that the 𝜖𝑝𝑟ℎ
and 𝜖𝑝𝑒𝑟 functions have ranges in [−1, 0] and [0, 1] respectively.

4.4 The suitability of the different approaches
The suitability of each of the previous approaches depends largely

on the domain of application. Apart from particular application

requirements, when deciding which method to apply we should

also consider the accuracy and distribution of predictions. To be

concise, we discuss this in relation to two general measures: the

average prediction distance from the real preference (denoted as

APD), as well as the standard deviation of these predictions (denoted

PSD). The average prediction distance tells us the accuracy of our

predictions, while the standard deviation gives us an indication

of the polarisation of predictions with regard to average distance.

These two measures lead to the following four differentiated cases:

• Low APD and low PSD: This is the ideal scenario in which

predictions work best, where any method is valid. Hard

thresholds are useful for cases that demand an easily ex-

plainable method. Function thresholds can also be useful,

especially if required by the application (for example, one

that explicitly demands consideration of environmental vari-

ables like context sensitivity when determining norms).
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• Low APD and high PSD: Here, the predictions seem accurate

but not reliable enough, so hard thresholds are best avoided.

Instead, the other approaches prevent norms being enacted

in cases of vague predictions coming from bad quality data.

• HighAPD and low PSD: Here the predictions are consistently

wrong, and consistently deviate from the truth. This case

should not usually arise and tells us that there is something

wrong with the prediction formula, so predictions should

not be used to build norms.

• High APD and high PSD: Here, the predictions are seem-

ingly random. This can be a consequence of insufficient in-

formation (e.g., when known preferences are far fewer than

unknown ones). At this stage, norms could be built using

function thresholds, but if more information is collected this

scenario should then settle into one of the other three, and

norms would be selected using the relevant advice. Predic-

tions at this stage may not be reliable so the resulting norms

should be rebuilt once more information is known.

5 PROOF OF CONCEPT: PRIVACY NORMS FOR
SMART PERSONAL ASSISTANTS

In order to validate the preference prediction and norm inference

models presented here, we return to the problem of Smart Per-

sonal Assistants. We consider this case by virtue of the privacy

preferences dataset used by [2], which is available at [3].

5.1 Description of the dataset
The dataset contains the responses of 1737 participants in a survey

concerning privacy preferences when using Smart Personal Assis-

tants (SPAs). The questions in the survey
3
ask participants how

acceptable it is to share data in a particular context. More specifi-

cally, the survey considers 15 data types (e.g. emails, banking data,

healthcare data, voice recordings) and presents 8 scenarios for each.

These scenarios or contexts consider different recipients of the data

(e.g. parents, friends, visitors), the purpose of sharing the data, dif-

ferent conditions on data transmission, etc. Each scenario has a

different number of associated questions, amounting to 55 for all 8

scenarios. Overall, the survey consists of 825 different preference

questions, for each of which participants answer on a 1 to 5 Likert

scale (1 meaning the sharing of that datatype is completely unac-

ceptable in that context, and 5 meaning it is completely acceptable).

Participants did not answer all questions, with each participant

answering questions related to 4 scenarios for 6 datatypes (both

selected randomly). Note that different scenarios have different

amounts of associated questions, so participants responded to dif-

ferent questions and different numbers of questions, ranging from

144 to 199, with an average of 170 questions answered.

5.2 Prediction validation
In this section we assess the accuracy of our predictions using the

previously described dataset
4
. We show that our predictions are

more accurate than random guesses and also more accurate than

3
For our tests, we only use the main block of questions in the survey, so to not consider

data from questions on demographics, IUIPC, and security attitudes

4
The code necessary to run these experiments can be found at: https://github.com/

secure-ai-assistants/norm-prediction

the preferences found by Abdi et al. in [2]. Finally, we record the

confidence measure for each prediction and show that there is a

correlation between confidence and prediction quality.

First, we describe the experiments on accuracy. Out of the 1737

participants, we selected 20% of participants (347) randomly to test

the accuracy of our predictions. The remaining 80% of participants

(1390) represent our base of knowledge to build predictions. For

each test participant, we randomly picked 20% of their answers as

the test set we sought to predict (this was an average of 35). We did

not consider all remaining answers to assess user similarity, but

instead used only 40% of answers (an average of 71), and applied this

reduction to all participants. To proceed, for each test participant

and answer to predict, we filtered the pool of 1390 participants

to keep only those relevant; we needed to filter out participants

who did not answer the question we aim to predict. In addition,

we discarded participants with less than 5 questions in common

with the test participant (as we wanted to finding similar users with

a certain degree of reliability). Then, we assessed the separation

between users using the cumulative user separation measure of

Def. 6. Using this separation measure, we selected participants

similar to our test participant as in Def. 7, with 𝜖 = 0, and a = 5. In

other words, we selected all users at distance 0, and then selected

those with the least distance until we had 5 participants. Then, we

predicted the test participant’s answers to the test questions using

the average preference prediction function (see Def. 9).

To test our prediction, we calculated the distance between our

predicted answer and the real answer, and collected all these dis-

tances for all test participants and test questions. Below, we report

the mean distance and the standard deviation. Apart from the ex-

periment considering all participants (which we now refer to as

the regular experiment) we wanted to test accuracy for two further

levels of difficulty. First, we hypothesised that participants that

responded similarly to all questions would be easiest to predict.

Thus, when selecting test participants we avoided those with small

standard deviations on their given answers (but retained them in

the pool of possible similar participants). Here, we required the stan-

dard deviation of any selected test participant to be no less than 1.

We repeated the experiments as explained above, and refer to this as

the medium hardness experiment. Second, to test the extreme case,

we selected the 100 participants with highest standard deviation

in their answers and repeated the experiments as explained above.

These are arguably the most difficult participants to predict. By

selecting many of them, we limit the chances of finding very similar

participants in the remaining pool (since, to be similar, they also

need to have a large standard deviation and therefore might have

been selected as test participants). We call this the hard experiment.

Table 1 provides the mean distance as well as the standard devi-

ation for each run of tests. We provide a histogram for the regular

experiments to better understand the distribution of distances be-

tween prediction and reality (the histograms for medium and hard

experiments are almost identical, so we omit them to save space).

The regular experiment resulted in 12007 predicted answers

with a mean distance from the real answer of 0.5954 and a standard

deviation of 0.6757. Figure 1 shows the distribution of these 12007

distances between prediction and reality. We can see that most

predictions fall within 0.25 of the real answer, while only a small

number of predictions have distances larger than 1 with regard

https://github.com/secure-ai-assistants/norm-prediction
https://github.com/secure-ai-assistants/norm-prediction
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Figure 1: Histogram of distances between our predictions
and the real preferences

to the real answer. The medium hardness experiment resulted in

12015 predicted answers
5
; as expected, the mean distance grows a

little to 0.6538 and the standard deviation to 0.7207. Overall, while

distances grow slightly, we can see that predictions are still of good

quality. Finally, the hard experiment resulted in 3461 predicted

answers
6
with a mean distance of 0.7480 and a standard deviation

of 0.8707. While the mean distance has increased from the distance

of the regular experiment it has increased by less than 0.2. The

standard deviation has increased by almost 0.2, confirming that the

predictions of these participants may lead to more outliers.

Thus, while increasing the difficulty of predictions slightly in-

creases the distance between the prediction and the real answer,

we have seen that our predictions are still reliable with the hardest

participants to predict. Furthermore, our predictions improve the

preferences presented by Abdi et al. in [2], which are the average

preferences for all participants in their survey. Most notably, our

model can capture preferences outside the majority view; for ex-

ample, Abdi et al. point out that people are less inclined to share

video call data with assistant providers (the average preference

for sharing this while being able to delete it is 2.44), yet in many

instances we correctly predicted favourable preferences towards

sharing. Table 2 shows the results of our experiments considering

their preferences, and as an additional point of reference, Table 3

provides results for the experiments with random predictions.

When it comes to confidence, we tested how 𝜌`-Confidence cor-

relates with prediction quality (its closeness to the real preference)

5
Different experiments have different numbers of predictions because we selected

as test answers 20% of a participants’ answers and different participants answered

different numbers of questions

6
Note that the hard experiment has fewer predicted answers because it consists of 100

test participants instead of 347

Regular Medium Hard

Mean distance from real answer 0.5954 0.6538 0.7480

Standard deviation 0.6757 0.7207 0.8707

Table 1: Results for regular, medium and hard experiments

Regular Medium Hard

Mean distance from real answer 1.0437 1.0611 1.2895

Standard deviation 0.7069 0.7093 0.7765

Table 2: Results with preferences found by Abdi et al. [2]

using Spearman’s correlation coefficient
7
. Note that the coefficient

must be a negative number as we should have an inverse correlation

(the higher the confidence, the lower the distance between the real

and predicted preferences). While our confidence formula considers

two weights 𝜌 and `, these depend on each application and could

be adjusted at runtime to maximise correlation (i.e. to minimise

the correlation coefficient). For regular experiments, we have a

correlation coefficient of -0.67 with 𝜌 = 0 and ` = 1. With medium

hardness experiments, the minimum was -0.63 with 𝜌 = 0.01 and

` = 0.99. Finally, for hard experiments, the minimum was -0.74

when 𝜌 = 0.15 and ` = 0.85. We can therefore detect an inverse

correlation between confidence and prediction quality. We also see

that in this case, confidence largely depends on the distribution of

preferences from which the prediction is made, whereas the sep-

aration between the user and the similar users is not pertinent to

assess confidence. Importantly, we see that our confidence function

is more reliable for hard predictions. We believe this is because

since confidence is always in [0,1] it is easier for it to correlate with

prediction quality in cases where the quality has more variability

(i.e. in the case of hard experiments).

5.3 Evaluating inferred norms with real users
To test the norm inference process with real users we performed

a user study with the scenarios from [2] and the preference data

collected in [3], with the aim of validating user perceptions of our

predicted norms. Through Prolific,
8
we recruited 50 participants

matching the demographics of the original data set who answered

32 preference questions over 5 randomly selected scenarios from

[2, 3]. We then selected three unknown preferences at random and

made predictions for them, inferring the norms using the hard

thresholds function (see Section 4.1); if no norm was generated for

a preference we randomly selected another unknown preference
9
.

We also interleaved three control norms with the same structure but

randomly generated outcomes. Participants rated these norms using

5 point Likert items from completely inappropriate (1) to completely

appropriate (5) and could leave a text comment explaining their

reasoning. After discarding 3 incorrect responses to the included

attention check, the remaining 47 participants had an average age

7
We cannot ensure that our data follows a normal distribution, hence Spearman’s is

the appropriate correlation test to use

8
prolific.co

9
Note that this does not compromise our results as we only aim to validate the gener-

ated norms. If we do not predict a clear preference, our approach does not produce

any norm and instead we resort to other approaches (like asking for consent).

Regular Medium Hard

Mean distance from real answer 1.6083 1.578 1.8768

Standard deviation 1.0864 1.080 1.1286

Table 3: Results with random predictions

prolific.co
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Figure 2: Comparison between mean participant ratings of
predicted and control norms

of 37.5 (𝜎 = 13.8), and 49% identified as women. The study was

approved by our Institutional Review Board (IRB).

Figure 2 shows the mean ratings of the 141 predicted and 141 con-

trol norms, showing a substantial improvement of predicted norms

over the control set. Overall we predicted 126 unique preferences

covering 15% of the original set. A follow up t-test (t=2.88, p=0.003)

confirms that participants’ higher agreement with our predicted

norms compared to the control norms is statistically significant,

with the prediction process eliminating almost a quarter (24%) of

the difference between the control ratings and the perfect accep-

tance score of 5. As in similar user studies (e.g., [25]), we emphasise

that it is very unlikely that even ground truth preferences would

receive a perfect score of 5 given the variability of self-ratings and

the tendency for participants to bring in outside context when

evaluating norms (as seen in accompanying text comments).

6 RELATEDWORK
Some previous approaches have addressed the problem of privacy

norms in AI assistants. For example, Abdi et al. [2] surveyed users

on how acceptable some information exchanges are under some

context (this survey produced the data we used for our experiments

[3]) and then crowd-sourced norms that aligned with their answers.

While this work is useful to understand the general preferences

of users towards privacy, it is restricted in terms of the scenarios

covered. Nonetheless, it could be useful as a default set of prefer-

ences when information about the user is sparse (e.g. when the

user first uses the assistant). The work of Zhan et al. [30] instead

proposes to construct AI assistant privacy norms using an approach

based on rule mining and machine learning (exploiting the idea of

contextual integrity [15]). Unfortunately, we cannot compare our

norm prediction approach with their approach as [30] reports test

results as percentages of accuracy which cannot be compared with

our acceptability rates. While this approach achieves an accuracy

of 70-80% it requires domain knowledge. In contrast our work in

this paper can customise norms to each user without the need for

specifying or formalising contexts. Note that the elements in our

set 𝑋 can be actions, or tuples of actions and contexts, and in both

cases our method is able to predict preferences and infer norms

without the need for additional knowledge of the elements in 𝑋 .

Closely related to this is the area of AI ethics and norms. We can

assume that morality influences a user’s preferences towards AI

so that, for example, a user that highly values privacy will be less

inclined to share data. Works like [19, 20] have investigated the

selection of norms with regard to their promotion of moral values

and preferences over these values. Similarly, [22] proposes to enact

those norms that will benefit those state transitions leading to an

increase in value alignment with the considered values and prefer-

ences. In this direction, Montes et al. [11] describe how these norms

can be synthesised. While these approaches could produce privacy

norms (provided privacy is a value considered) we argue that in

practice this would not be possible since they require knowledge

that is hardly attainable by smart devices, like states of the world,

contexts, the user’s value preferences, or a measurement of value

alignment (with regard to privacy and other desirable values).

7 CONCLUSIONS
Collaborative filtering is a useful tool in recommender systems.

For example, online stores use it to recommended products by con-

sidering purchases of similar users. This paper provides a novel

application of collaborative filtering, with the aim of predicting user

preferences towards AI. However, our approach offers far more than

just recommending preferences to the user. Indeed, while users ex-

pect smart devices to act as they desire, constant interaction not

only annoys the user but fails to capture their true preferences.

Hence, our approach has two purposes: understanding user pref-

erences while minimising interaction, and bringing more value to

interactions regarding preferences by considering predictions. Thus,

coupling collaborative filtering with norms allows us to both add a

component of explainability to user preferences, and to propagate

user preferences to other parts of the AI ecosystem. For example,

in the case of privacy in smart assistants, norms could govern the

management of data not only by the device itself but also for other

components of the ecosystem, like skills.

Admittedly, our approach requires large quantities of users and

partial preferences for each of these users to function properly, and

the more information the more accurate the predictions. Thus, our

approach might be better suited to smart devices with a reasonable

number of users. Even if the number of users is sufficient, it is

also possible that predictions could be unreliable. However, we can

detect this using a confidence measure, such as that of Definition 12.

Crucially, however, as the number of users grows, and as knowledge

of their preferences increases, low confidence preferences can be

recalculated, which should increase the confidence in the prediction.

In addition, we have assumed a single user for each device, but it

is unclear how this method would apply when multiple users share

the same device (for example, a family sharing a smart speaker).

This will be the subject of future work. Other interesting aspects

we plan to investigate include the addition of rewards or punish-

ments associated with norms (which could be derived from context

sensitivity), and how to produce explanations from norms.
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