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March 25, 2022

Abstract

This article characterizes topological duals of spaces of cadlag pro-
cesses. We extend functional analytic results of Dellacherie and Meyer
that underlie many fundamental results in stochastic analysis and opti-
mization. We unify earlier duality results on Lp and Orlicz spaces of
cadlag processes and extend them to general Fréchet functions spaces. In
particular, we obtain a characterization of the dual of cadlag processes of
class (D) in terms of optional measures of essentially bounded variation.
When applied to regular processes, we extend Bismut [5] on projections
of continuous processes. More interestingly, our argument yields charac-
terizations of dual spaces of regular processes.
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tional projection
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1 Introduction

Many fundamental results in the theory of stochastic processes are based on
characterizations of the topological dual of a space of stochastic processes. For
example, the Doob decomposition of a supermartingale is obtained by identify-
ing it with a continuous linear functional on a space of bounded cadlag processes
and then using the characterization of the dual space; see [9, Section VII.1].
The existence of Snell envelope is proved similarly; see [9, Appendix I]. Also,
Bismut’s characterization of regular processes and existence results on optimal
stopping are based on duality; see [5, 6] and the references therein. Moreover,
duality theory and optimality conditions for general convex stochastic control
problems are often derived in a functional analytic framework of paired spaces
of stochastic processes; see e.g. [4]. To extend such frameworks to singular
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stochastic control, one needs processes of bounded variation (BV) in separating
duality with a space of cadlag processes; see e.g. [20].

This paper studies Fréchet spaces (in particular, Banach spaces) of stochastic
processes whose dual can be identified with a space of optional Borel measures
(and thus with BV-processes). When dealing with raw (not necessarily adapted)
stochastic processes, the duality is fairly easy to establish. The dual of the
space Y(D) of raw cadlag processes whose pathwise supremum norms belong
to a Fréchet space Y of random variables turns out to be a space of pairs
of random measures whose pathwise total variation belongs to the dual of Y.
When applied to continuous processes, each dual element can be represented by
a single random measure.

The case of adapted cadlag processes is more involved and requires additional
techniques. This paper characterizes topological duals of spaces of adapted
cadlag processes via functional analysis of the optional projection on the space
Y(D) of raw stochastic processes. Our main results are based on the classical
closed range and closed graph theorems which are valid in general Fréchet spaces;
see e.g. [12]. We find that, as soon as the optional projection is continuous to
a Fréchet space D of adapted cadlag processes, its surjectivity is equivalent
the topological dual of D being identifiable with a space of optional random
measures. The equivalence is then applied in two directions.

When D is a subspace of Y(D), the surjectivity is clear, so we recover [9,
Theorem VII.65], where Y = Lp with p > 1, and its extension [1, Theorem 3.1]
where Y is the Morse heart of an appropriate Orlicz space. We obtain a further
extension to an arbitrary symmetric (rearrangement invariant) Fréchet function
space Y whose upper Boyd index is strictly less than one. Fréchet function
spaces are natural extensions of Lp and Orlicz spaces and they have been studied
extensively since they were introduced in Luxemburg; see [16, 17, 14, 3]. Boyd
indices were used e.g. in [18, 13] to extend martingale inequalities to Banach
function spaces.

In many interesting cases (e.g., when Y = L1), the optional projection may
take a process out of Y(D). When the polar seminorms of the Fréchet space Y
can be expressed as Choquet integrals, we can specify D so that its dual can
be identified directly with a space of optional random measures. The Choquet
property holds, in particular, when Y = L1. In this case, our general result
recovers [5, Theorem 4] on the surjectivity of the optional projection of L1(D) to
the space D1 of cadlag processes of class (D) and, more interestingly, it identifies
the topological dual of D1 in terms of optional measures of essentially bounded
variation. This characterization seems new. Our arguments are considerably
simpler than those of [5] and they also cover Marcinkiewicz spaces (see e.g.
[14, 3]) for which both the surjectivity and the duality results are new.

The main result also gives surjectivity and duality results on general spaces of
regular processes, i.e. adapted cadlag processes y of class (D) whose predictable
projections coincide with their left limits. In particular, we recover the main
result of [5] on the surjectivity of the optional projection from the space L1(C)
of integrable continuous processes to the space R1 of regular processes. As a
byproduct, we recover [20, Theorem 8] characterizing the topological dual of R1
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as the space of optional measures of essentially bounded variation. Both results
are extended by replacing L1 by a Fréchet space Y as in the main theorems on
cadlag processes.

The provided extensions are of interest e.g. in singular stochastic control
where one optimizes over spaces of optional processes of bounded variation.
Our results allow for formulations where the variation need not be essentially
bounded. One can then develop dual problems and optimality conditions for
convex singular stochastic control much like in [4] in the case of absolutely
continuous trajectories. This will be developed in a separate article.

The rest of this paper is organized as follows. Section 2 gives a quick review
on topological duals of Fréchet spaces of random variables. Section 3 character-
izes the topological dual of raw (nonadapted) cadlag processes whose pathwise
supremum belongs to a Fréchet space of random variables. Section 4 gives the
main result of the paper stating that the dual of a space D of adapted cadlag
processes has the desired structure if and only if the optional projection is a
continuous surjection on D. Sections 5, 6 and 7 then derive some fundamental
known and new duality results in the theory of stochastic processes. Section 8.1
gives a further application to decomposition of semimartingales.

2 Fréchet spaces of random variables

Let (Ω,F , P ) be a probability space. The duality theory for stochastic processes
developed in this paper assumes a Fréchet space Y of random variables whose
topological dual can be identified with another space U of random variables in
the sense that every element of the dual can be expressed uniquely as

〈ξ, η〉 := E(ξη) ξ ∈ Y

for some η ∈ U . This section gives a large class of such spaces Y along with
some well-known examples.

Let P be a countable collection of sublinear symmetric functions on L1 :=
L1(Ω,F , P ) and define

Ỹ :=
⋂
p∈P

dom p.

We endow Ỹ with the locally convex topology generated by P and assume that
each p ∈ P satisfies the following:

1. p is lower semicontinuous on L1,

2. there exists a constant c such that 1
c‖ξ‖L1 ≤ p(ξ) ≤ c‖ξ‖L∞ for all ξ ∈ L1,

3. p(ξ1) ≤ p(ξ2) whenever |ξ1| ≤ |ξ2|,

4. p(ξν)↘0 whenever (ξν)∞ν=1 ⊂ L∞ with ξν↘0 almost surely.
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We define Y as the closure of L∞ in Ỹ. The above setting covers, in particular,
Lp spaces with p ∈ [1,∞). Indeed, when P = {‖ · ‖Lp}, we have Y = Ỹ = Lp.
More interesting examples will be given at the end of this section.

For each p ∈ P, we define a sublinear symmetric function p◦ on L1 by

p◦(η) := sup
ξ∈L∞

{E(ξη) | p(ξ) ≤ 1}.

The following is from [22].

Theorem 1. The space Y is Fréchet and its dual may be identified with the
space

U :=
⋃
p∈P

dom p◦

under the bilinear form
〈ξ, η〉 := E(ξη).

For every ξ ∈ L1 and η ∈ L1,

E(ξη) ≤ p(ξ)p◦(η),

so p◦ is the polar of p on U . Each p◦ satisfies 1,2, and 3.

Remark 1. For any ξ ∈ Y, the pointwise projection ξν of ξ to [−ν, ν] converges
to ξ in Y as ν → ∞. Indeed, given an ε > 0, there exists ξ̄ ∈ L∞ such that
p(ξ − ξ̄) < ε, so, by 3 and 4,

p(ξν−ξ) ≤ p(1|ξ|≥νξ) ≤ p(1|ξ|≥ν(ξ− ξ̄))+p(1|ξ|≥ν ξ̄) ≤ p(ξ− ξ̄)+p(1|ξ|≥ν ξ̄) < ε

for ν large enough. In particular,

Y = {ξ ∈ Ỹ | lim
ν→∞

p(1|ξ|≥νξ) = 0}.

Example 2 (Banach function spaces). When P is a singleton, we are in the
setting of Banach function spaces and Theorem 1 characterizes the topological
dual of Y as its Koethe dual aka associate space; see e.g. [16, 3, 14].

Short proofs of the following (and more) can be found in [22]; see also [16,
14, 3].

Example 3 (Orlicz spaces). Let Φ be a nonzero nondecreasing finite convex
function on R+ with Φ(0) = 0 and assume that P contains only the Luxemburg
norm

p(ξ) := inf{β > 0 | EΦ(|ξ|/β) ≤ 1}.

Then Ỹ is the Orlicz space associated with Φ, p satisfies 1-4 and

Y = {ξ ∈ L1 | EΦ(|ξ|/β) <∞ ∀β > 0},
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the associated Morse heart. The polar of p can be expressed as

p◦(η) = sup
ξ∈L∞

{E(ηξ) | EΦ(ξ) ≤ 1} = inf
β>0
{βEΦ∗(η/β) + β}

and, moreover,
‖η‖Φ∗ ≤ p◦(η) ≤ 2‖η‖Φ∗ ,

where ‖ · ‖Φ∗ is the Luxemburg norm associated with the conjugate of Φ. Thus,
the dual of Y coincides with the Orlicz space

U = {η ∈ L1 | ∃β > 0 : EΦ∗(η/β) <∞}.

Given ξ ∈ L1, let
nξ(τ) := E1{|ξ|>τ}

and
qξ(t) := inf{τ ∈ R | nξ(τ) ≤ t}.

Note that τ 7→ 1− nξ(τ) is the cumulative distribution function of |ξ| and that
qξ is an inverse of nξ. Both nξ and qξ are nonincreasing.

Example 4 (Lorentz and Marcinkiewicz spaces). Let φ be a nonnegative con-
cave increasing function on [0, 1] and assume that P contains only the Marcinkiewicz
norm

p(ξ) := sup
t∈(0,1]

{
1

φ(t)

∫ t

0

qξ(s)ds

}
.

Assume that (Ω,F , P ) is atomless and that limt↘0 t/φ(t) = 0. Then Ỹ is the
Marcinkiewicz space associated with φ, p satisfies 1-4 and

Y = {ξ ∈ L1 | lim
t↘0

1

φ(t)

∫ t

0

qξ(s)ds = 0}.

The polar of p can be expressed as

p◦(η) =

∫ 1

0

qη(t)dφ(t).

Thus, the dual of Y coincides with the Lorentz space

U = {η ∈ L1 |
∫ 1

0

qη(t)dφ(t) <∞}.

3 Raw cadlag processes

This section characterizes the topological dual of a Fréchet space of raw (not
necessarily adapted) cadlag processes. This will provide the basis for the duality
theory of adapted cadlag processes in the subsequent sections. We will assume
from now on that (Ω,F , P ) is complete.
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The Banach space of cadlag functions on [0, T ] equipped with the supremum
norm will be denoted by D. We allow T = +∞ in which case [0, T ] is understood
as the one point compactification of the positive reals. The spaces of Borel
measures and purely discontinuous Borel measures on [0, T ] will be denoted by
M and M̃ , respectively. The dual of D can be identified with M × M̃ through
the bilinear form

〈y, (u, ũ)〉 :=

∫
ydu+

∫
y−dũ

and the dual norm is given by

sup
y∈D
{
∫
ydu+

∫
y−dũ | ‖y‖ ≤ 1} = ‖u‖+ ‖ũ‖,

where ‖u‖ denotes the total variation norm on M . This can be deduced from
[23, Theorem 1] or seen as the deterministic special case of [9, Theorem VII.65]
combined with [9, Remark VII.4(a)].

We assume that Y and U are as in Section 2 and define

Y(D) := {y ∈ L1(D) | ‖y‖ ∈ Y},

where L1(D) is the space of cadlag processes y with E‖y‖ < ∞. Throughout,
we identify processes that coincide almost surely everywhere on [0, T ]. We equip
Y(D) with the topology induced by the seminorms

y 7→ p(‖y‖), p ∈ P.

Theorem 5. The space Y(D) is Fréchet and its dual can be identified with

U(M × M̃) := {(u, ũ) ∈ L1(M × M̃) | ‖u‖+ ‖ũ‖ ∈ U}

through the bilinear form

〈y, (u, ũ)〉 := E

[∫
ydu+

∫
y−dũ

]
.

Moreover, L∞(D) is dense in Y(D), for every y ∈ L1(D) and (u, ũ) ∈ L1(M ×
M̃),

E

[∫
ydu+

∫
y−dũ

]
≤ p(‖y‖)p◦(‖u‖+ ‖ũ‖) (1)

and

p◦(‖u‖+ ‖ũ‖) = sup
y∈L∞(D)

{
E

[∫
ydu+

∫
y−dũ

] ∣∣∣∣ p(‖y‖) ≤ 1

}
. (2)

In particular, (u, ũ) 7→ p◦(‖u‖+ ‖ũ‖) is the polar of y 7→ p(‖y‖).

6



Proof. We start by showing that Ỹ(D) := {y ∈ L1(D) | ‖y‖ ∈ Ỹ} is complete
under the topology induced by the seminorms y 7→ p(‖y‖). If (yν) is a Cauchy
sequence in Ỹ(D), it is, by Property 2, Cauchy also in L1(D) which is complete
(see e.g. [9, Theorem VI.22]), so (yν) L1(D)-converges to an y ∈ L1(D). Being
Cauchy in Ỹ(D) means that for every ε > 0 and p ∈ P, there is an N such that

p(‖yν − yµ‖) ≤ ε ∀ν, µ ≥ N.

By the triangle inequality and property 3 of p,

p(‖yν − y‖ − ‖y − yµ‖) ≤ ε ∀ν, µ ≥ N.

Letting µ→∞ and using property 1 now gives

p(‖yν − y‖) ≤ ε ∀ν ≥ N.

Since p ∈ P and ε > 0 were arbitrary, we thus have y ∈ Ỹ(D) and that (yν) con-
verges in Ỹ(D) to y. Thus Ỹ(D) is complete. It is clear that Y(D) contains the
closure of L∞(D). On the other hand, given y ∈ Y(D), its pointwise projection
yν to the interval [−ν, ν] belongs to L∞(D) and, by Remark 1, converges to y.
Thus Y(D) is a closed subspace of a Fréchet space and thus, Fréchet as well.

We have [∫
ydu+

∫
y−dũ

]
≤ ‖y‖(‖u‖+ ‖ũ‖)

almost surely, so (1) follows from Theorem 1. Every element of U(M × M̃) thus
defines a continuous linear functional on Y(D). Conversely, a continuous linear
functional J on Y(D) satisfies property (5.1) in [9, Section VII.5] so, as in the
proof of [9, Theorem VII.65], there exists (u, ũ) ∈ L1(M × M̃) such that

J(y) = E

[∫
ydu+

∫
y−dũ

]
on L∞(D). Given δ ∈ (0, 1), a measurable selection argument gives the existence
of a y ∈ L1(D) such that

‖y‖ ≤ 1 and

∫
ydu+

∫
y−dũ ≥ δ(‖u‖+ ‖ũ‖)

almost surely1. Thus, for any p ∈ P and ξ ∈ L∞+ such that p(ξ) ≤ 1,

E[ξ(‖u‖+ ‖ũ‖)] ≤ E[

∫
(ξy)du+

∫
(ξy−)dũ]/δ

≤ sup
y∈L∞(D)

{
E

[∫
ydu+

∫
y−dũ

] ∣∣∣∣ p(‖y‖) ≤ 1

}
/δ.

1Indeed, (D,B(D)) = (S,B(S)), where S is the space of cadlag functions equipped with
the Skorokhod topology. The set

G := {(y, ω) ∈ S × Ω | ‖y‖ ≤ 1,

∫
ydu(ω) +

∫
y−dũ(ω) ≥ δ(‖u(ω)‖+ ‖ũ(ω)‖}

is B(S)⊗F-measurable (see the proof of [19, Lemma 3]) and each ω-section of G is nonempty.
Thus [7, Theorem III.18] gives the existence of a measurable selection.
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The definition of p◦ now gives p◦(‖u‖+‖ũ‖) ≤ p◦Y(D)(J)/δ. Since δ ∈ (0, 1) was

arbitrary, we see that the left hand side of (2) is less than the right side. The
reverse follows from (1).

4 Adapted cadlag processes

This section starts with some useful observations concerning optional and pre-
dictable projections. We then give our first main result which gives a necessary
and sufficient condition for the topological dual of a space of adapted cadlag
processes to be representable by random measures.

Let (Ft)t≥0 be a filtration satisfying the usual conditions. The set of stopping
times will be denoted by T . A measurable process y is said to be of class (D)
if the set {yτ | τ ∈ T } is uniformly integrable. Given such a y, we will denote
its optional and predictable projections by oy and py, respectively. That is, oy
is the unique optional process satisfying

E[yτ1{τ<∞} | Fτ ] = oyτ1{τ<∞} P -a.s.

for every τ ∈ T while py is the unique predictable process satisfying

E
[
yτ1{τ<∞} | Fτ−

]
= pyτ1{τ<∞} P -a.s.

for every predictable time τ . Here Fτ := σ(A | A ∩ {τ ≤ t} ∈ Ft ∀ t} and
Fτ− := F0 ∨ σ{A ∩ {t < τ} | A ∈ Ft, t ∈ R+}. Throughout the paper, we
identify processes that are equal almost surely everywhere, that is, y1 = y2 if,
almost surely, y1

t = y2
t for all t.

By [9, Remark VI.50.(f)], the optional projection of a cadlag process of class
(D) is a cadlag process of class (D) while the predictable projection of a caglad
process of class (D) is a caglad process of class (D).

Lemma 6. For any cadlag process y of class (D), we have (oy)− =
p
(y−).

Proof. Given bounded predictable time τ , it is enough to verify, by the pre-
dictable section theorem [11, Corollary 4.11], that ((oy)−)τ =

p
(y−)τ . By [11,

Theorem 4.16], there is a sequence (τν) of stopping times with τν < τν+1 and
τν ↗ τ almost surely. Let Aν ∈ Fτν , and τνj := τν+j on Aν and τνj := +∞
otherwise. We have Aν ∈ Fτν+j for each j [11, Theorem 3.4], so τνj are stopping
times [11, Theorem 3.9]. Since y and oy are of class (D),

E[(oy)τ−1Aν ] = lim
j
E[(oy)τνj 1Aν ] = lim

j
E[yτνj 1Aν ] = E[yτ−1Aν ].

By [11, Theorem 3.6], Fτ− =
∨
ν Fτν , which proves the claim, since A ∈ Fτν

was arbitrary.

Given (u, ũ) ∈ L1(M × M̃), there exist uo ∈ L1(M) and ũp ∈ L1(M̃) such
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that for every bounded measurable process y,

E

∫
oydu = E

∫
yduo,

E

∫
pydu = E

∫
ydup;

see, e.g., [9, Remark VI.74(b)]. The random measure uo is called the optional
projection of u while ũp is called the predictable projection of ũ. One says that
u is optional if u = uo and that ũ is predictable if ũ = ũp.

From now on, Y and U are as in Section 2. The optional projection is a
linear mapping from Y(D) to the space of adapted cadlag processes of class
(D). We denote this linear mapping by π and its kernel by

kerπ := {y ∈ Y(D) | oy = 0}.

The space
M̂ := {(u, ũ) ∈ U(M × M̃) | u = uo, ũ = ũp}

will play a central role in the remainder of this paper. Indeed, we will find it as
the topological dual of spaces of adapted cadlag processes.

Lemma 7. For every (u, ũ) ∈ M̂ and y ∈ Y(D),

E

∫
ydu = E

∫
oydu,

E

∫
y−dũ = E

∫
(oy)−dũ.

Proof. Let u be nonnegative. By [11, Theorem 5.16], E
∫
ydu = E

∫
oydu if y is

nonnegative. The random variables
∫
y+du,

∫
oy+du,

∫
y−du and

∫
oy−du are

integrable almost surely, so

E

∫
ydu = E

∫
(y+ − y−)du = E

∫
oy+du− E

∫
oy−du = E

∫
oydu.

For general u, the claim follows by taking differences. The second equality is
proved similarly after noting that (oy)− =

p
(y−), by Lemma 6.

The following characterizes M̂ in terms of the pairing of Y(D) and U(M×M̃)
obtained in Theorem 5 above. Given u ∈ M , we denote by uc and ud the
continuous and purely discontinuous parts of u, respectively.

Lemma 8. The space M̂ is the orthogonal complement of kerπ and thus, weakly
closed in U(M × M̃).

Proof. By Lemma 7, M̂ is contained in the orthogonal complement of kerπ.
It thus suffices to show that M̂ contains the orthogonal complement of kerπ ∩
L∞(D). We have that u ∈ U(M̂) belongs to this complement if and only if

E

[∫
(y − oy)du+

∫
(y − oy)−dũ

]
= 0 ∀y ∈ L∞(D). (3)
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The equation can be written as

0 = E

[∫
(y − oy)du+

∫
(y− − p

(y−))dũ

]
= E

[∫
yd(u− uo) +

∫
y−d(ũ− ũp)

]
= E

[∫
yd(u− uo − (ũp)c) +

∫
y−d(ũ− (ũp)d)

]
.

Since L∞(D) is dense in Y(D), the variational condition implies, by Theorem 5,
that ũ − (ũp)d = 0 and u − uo − (ũp)c = 0. The first equation implies that ũ
is predictable and that (ũp)d = 0. The second equation then implies that u is
optional.

The following is the first main result of this paper. It will yield, later on,
characterizations of topological duals of various more specific spaces of adapted
cadlag processes.

Theorem 9. Let D be a Fréchet space of adapted cadlag processes. The follow-
ing are equivalent:

1. the optional projection is a continuous surjection from Y(D) to D,

2. oY(D) ⊂ D and the dual of D can be identified with M̂ under the bilinear
form

〈y, (u, ũ)〉 = E

[∫
ydu+

∫
y−dũ

]
.

In this case, the adjoint of the projection is the embedding of M̂ to U(M × M̃),
M̂ = (kerπ)⊥ and the topology of D is generated by the seminorms

pD(y) := inf
z∈Y(D)

{p(‖z‖) | oz = y} p ∈ P

whose polars are given by

p◦D((u, ũ)) = p◦(‖u‖+ ‖ũ‖).

Proof. Assume 1. Continuity of π implies that kerπ is closed, so, by [12,
Lemma 11.3], Y(D)/ kerπ is a Fréchet space. Thus, by [12, Theorem 11.2]
(a corollary of the closed graph theorem), D is isomorphic to the quotient space
Y(D)/ kerπ. By [12, Theorem 17.14(ii)], the dual of Y(D)/ kerπ can be iden-
tified with the orthogonal complement (kerπ)⊥ of kerπ on the dual of Y(D)
which, by Theorem 5, is U(M × M̃). By Lemma 8, (kerπ)⊥ = M̂, so 2 holds.

Assume now 2. By the closed graph theorem, π : Y(D) → D is continuous
if it has a closed graph. Given u ∈ U(M̂) and ū ∈ M̂, Lemma 7 implies

(gphπ)⊥ = {(u, ū) ∈ U(M̂)× M̂ | 〈y, u〉+ 〈πy, ū〉 = 0 ∀y ∈ Y(D)}
= {(u, ū) ∈ U(M̂)× M̂ | 〈y, u〉+ 〈y, ū〉 = 0 ∀y ∈ Y(D)}
= {(u, ū) ∈ U(M̂)× M̂ | u = −ū},
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so, since M̂ ⊂ U(M̂), the bipolar theorem and Lemma 7 give

cl gphπ = {(y, ȳ) ∈ Y(D)×D | 〈y,−u〉+ 〈ȳ, u〉 = 0 ∀u ∈ M̂}
= {(y, ȳ) ∈ Y(D)×D | 〈oy,−u〉+ 〈ȳ, u〉 = 0 ∀u ∈ M̂}
= {(y, ȳ) ∈ Y(D)×D | oy = ȳ}
= gphπ

so the graph is closed and π is continuous. The above also shows that the
adjoint π∗ is indeed the embedding. Since (rgeπ)⊥ = kerπ∗ = {0}, the bipolar
theorem gives cl rgeπ = D, so it suffices to show that rgeπ is closed. By the
closed range theorem [12, Theorem 21.9], this is equivalent to rgeπ∗ being closed
in U(M × M̃). Since π∗ is the embedding, its range is M̂ which is closed, by
Lemma 8.

The isomorphism of D and Y(D)/ kerπ also implies that the topology of D is
induced by the quotient space seminorms pD. Since the adjoint of the optional
projection is the embedding of M̂, the polar of pD can be expressed for every
(u, ũ) ∈ M̂ as

p◦D((u, ũ)) = sup
y∈D
{〈y, (u, ũ)〉 | inf

z∈Y(D)
{p(‖z‖) | oz = y} ≤ 1}

= sup
z∈Y(D)

{〈oz, (u, ũ)〉 | p(‖z‖) ≤ 1}

= sup
z∈Y(D)

{〈z, (u, ũ)〉 | p(‖z‖) ≤ 1}

= p◦(‖u‖+ ‖ũ‖),

where the last equality follows from Theorem 5.

Remark 2. By the bipolar theorem,

pD(y) = sup{〈y, (u, ũ)〉 | p◦D((u, ũ)) ≤ 1}.

Restricting the supremum to ũ = 0 and u that only has mass at T , gives pD(y) ≥
p(yT ). On the other hand, if y is a martingale, it is the optional projection of
yT1, so pD(y) ≤ p(yT ). Thus, pD(y) = p(yT ) if y is a martingale. Moreover, by
the closed range theorem, the set of martingales is a closed subspace of D and
its dual can be identified with U via the bilinear form 〈y, η〉 = E[yT η].

Note also that y ∈ Y(D) does not imply oy ∈ Y(D), in general. In other
words, the optional projection need not be a projection in the sense of functional
analysis. Indeed, if y is a martingale, it is the optional projection of the constant
process 1yT ∈ L1(D) but it may happen that ‖y‖ /∈ L1. Similarly, (u, ũ) ∈
U(M × M̃) does not imply (uo, ũp) ∈ U(M × M̃), in general.

Example 10. Let y ∈ L1(D) be nonnegative such that oy /∈ L1(D). Let τ be a
random time such that E oyτ = ∞ and define u = δτ . We have u ∈ L∞(M),
but

E

∫
yduo = E

∫
oydu = E oyτ =∞,

so uo /∈ L∞(M).

11



5 Optional projection under Doob property

This section studies the case where the optional projection is a continuous linear
mapping of the space Y(D) to itself. Without loss of generality, we assume that
the collection P of seminorms forms a nondecreasing sequence. Continuity of
the projection then means that for each p ∈ P there exists a p′ ∈ P and a
constant q such that

p(‖ oy‖) ≤ qp′(‖y‖)

for all y ∈ Y(D). It turns out that this holds if and only if for each p ∈ P there
exists a p′ ∈ P and a constant q such that

p(‖m‖) ≤ qp′(mT )

for every martingale m. When this holds, we say that Y has the Doob property.
An Orlicz space has the Doob property if the conjugate of the defining Young

function satisfies the ∆2-condition; see [9, Section VI.103]. This generalizes the
better known case of Y = Lp with p > 1. More generally, we have the following
characterization of Banach function spaces with Doob property; see [13].

Recall that a seminorm p is rearrangement invariant if p(η) = p(η′) for all
η, η′ ∈ L0 whose distributions coincide.

Example 11. Let Y be a rearrangement invariant Banach function space with
the norm p on an atomless probability space. The upper Boyd index is given by

β := lim
s↗∞

log ‖D1/s‖p̄
log s

,

where D : L1([0, 1])→ L1([0, 1]) is the dilation operator defined by

Dsq(t) :=

{
q(st) if st ≤ 1

0 if st > 1,

p̄ is a sublinear symmetric function on L1([0, 1]) such that p(η) = p̄(q|η|) for all
η ∈ L1 and

‖Ds‖p̄ := sup
q∈L1([0,1])

{p̄(Dsq) | p̄(q) ≤ 1}

is the operator norm of Ds.
There exists a constant q such that

p(‖m‖) ≤ qp(mT )

for every martingale m if and only if β < 1.

In this section, we define D as the optional processes in Y(D). Since con-
vergence in Y(D) implies convergence almost surely everywhere, D is a closed
subspace of Y(D). The first statement of Theorem 5 thus gives the following.

Lemma 12. The space D is Fréchet.
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When the optional projection π is continuous on Y(D), it has an adjoint π∗

which is a continuous linear operator on the dual U(M × M̃) of Y(D) defined
by

〈πy, (u, ũ)〉 = 〈y, π∗(u, ũ)〉 ∀y ∈ Y(D), ∀(u, ũ) ∈ U(M × M̃).

Theorem 13. The conditions

(a) Y has the Doob property,

(b) the optional projection is continuous on Y(D),

are equivalent and imply that the adjoint of the optional projection is given by

π∗(u, ũ) = (uo + (ũp)c, (ũp)d).

and that the dual of D can be identified with M̂ through the bilinear form

〈y, (u, ũ)〉 = E

[∫
ydu+

∫
y−dũ

]
.

The topology of D is generated by the seminorms

pD(y) := inf
z∈Y(D)

{p(‖z‖) | oz = y} p ∈ P

whose polars are given by

p◦D((u, ũ)) = p◦(‖u‖+ ‖ũ‖).

Proof. As already noted, (b) implies (a). To prove the converse, let y ∈ Y(D)
and m =

o
(1‖y‖). Since |y| ≤ 1‖y‖, we have | oy| ≤ o|y| ≤ m, so ‖ oy‖ ≤ ‖m‖,

while (a) gives
p(‖m‖) ≤ qp′(‖y‖).

The monotonicity of p now gives (b).
If y ∈ L∞(D), Lemma 6 gives for all (u, ũ) ∈ U(M × M̃),

〈oy, (u, ũ)〉 = E

[∫
oydu+

∫
(oy)−dũ

]
= E

[∫
oydu+

∫
p
(y−)dũ

]
= E

[∫
yduo +

∫
y−dũ

p

]
= E

[∫
yd(uo + (ũp)c) +

∫
y−d(ũp)d

]
. (4)

Let p ∈ P be such that p◦(‖u‖+‖ũ‖) <∞ . Under (b), (4) and Theorem 5 give

E

[∫
yd(uo + (ũp)c) +

∫
y−d(ũp)d

]
≤ p(‖ oy‖)po(‖u‖+ ‖ũ‖)

≤ qp′(‖y‖)po(‖u‖+ ‖ũ‖).

13



Taking the supremum over {y ∈ L∞(D) | p′(‖y‖) ≤ 1}, gives, by Theorem 5,

(p′)◦(‖uo + (ũp)c‖+ ‖(ũp)d‖) ≤ qp◦(‖u‖+ ‖ũ‖).

Thus ‖uo + (ũp)c‖ + ‖(ũp)d‖ ∈ U , so (uo + (ũp)c, ũp) ∈ U(M × M̃). Thus the
density of L∞(D) in Y(D) implies that (4) extends to all of Y(D), so the adjoint
is given by

π∗(u, ũ) = (uo + (ũp)c, (ũp)d).

Clearly, π is a surjection to D, so, by Theorem 9, the dual of D can be identified
with M̂.

The characterization of the dual of D in Theorem 9 generalizes [9, Theo-
rem VII.65] and [1, Theorem 3.1] that dealt with Lp and Morse hearts of Orlicz
spaces, respectively. Indeed, [9, pages 166–169] establish the Doob inequality
when Y is the Orlicz space associated with a Young function whose conjugate
has the ∆2-property. In that case, we may apply Theorem 9 in the setting of
Example 3. Example 11 extends this to symmetric Banach function spaces.

6 Optional projection under Choquet property

When Y fails to have the Doob property, it may happen that yo /∈ Y(D) for an
y ∈ Y(D). Nevertheless, if

p(Eτξ) ≤ p(ξ) ∀ ξ ∈ Y, τ ∈ T (5)

for all p ∈ P, then

sup
τ∈T

p(oyτ ) ≤ p(‖y‖) ∀p ∈ P (6)

for all y ∈ Y(D), which means that the optional projection of a y ∈ Y(D)
belongs to the space D̃ of optional cadlag processes y for which the seminorms

pT (y) := sup
τ∈T

p(yτ )

are finite for all p ∈ P. We will assume (5) and equip D̃ with the topology
induced by the seminorms pT , p ∈ P, and define D as the closure in D̃ of
the space D∞ of bounded optional cadlag processes. By Remark 3 in the ap-
pendix, (5) holds whenever the underlying probability space is atomless and p
is rearrangement invariant.

It was shown in [5] and [9, Section VI.1] that when Y = L1, the space D̃ is
complete. The following extends this to general Y.

Lemma 14. The spaces D̃ and D are Fréchet and the elements of D are of
class (D).

14



Proof. We start by showing that D̃ is complete and thus, Fréchet. If (yν) is
a Cauchy sequence in D̃, it is, by property 2, Cauchy also in the space D̃1 of
optional cadlag processes equipped with the norm supτ∈T E|yτ |. By [9, Theo-

rem VI.22]), D̃1 is complete, so (yν) converges in D̃1 to a y. Being Cauchy in
D̃ means that for every ε > 0 and p ∈ P, there is an N such that

pT (yν − yµ) ≤ ε ∀ν, µ ≥ N.

By the triangle inequality and property 3 of p,

pT (|yν − y| − |y − yµ|) ≤ ε ∀ν, µ ≥ N.

Letting µ→∞ and using property 1 (and the fact that pointwise supremum of
lsc functions is lsc) now gives

pT (yν − y) ≤ ε ∀ν ≥ N.

Since p ∈ P and ε > 0 were arbitrary, we thus have y ∈ D̃ and that (yν)
converges in D̃ to y. Thus D̃ is complete. Since D is a closed subspace of a
Fréchet space, it is Fréchet as well.

Given y ∈ D and ε > 0, there exists yε ∈ D∞ such that supτ∈T E|yτ − yετ | <
ε/2. By Chebyshev’s inequality,

sup
τ∈T

E[|yτ |1{|yτ |≥ν}] ≤ sup
τ∈T

E|yτ − yετ |+ sup
τ∈T

E[|yετ |1{|yτ |≥ν}]

≤ ε/2 + ‖yε‖L∞ sup
τ∈T

E|yτ |/ν < ε

for ν large enough, which shows that y is of class (D).

We say that p has the Choquet property if p◦ is a Choquet integral in the
sense that, for every η ∈ U ,

p◦(η) =

∫ ∞
0

p◦(1{|η|≥s})ds.

This is clearly satisfied if Y = L1 or Y = L∞ (although the latter fails property 4
in Section 2). More generally, we have the following.

Example 15. In the setting of Example 4, the Marcinkiewicz norm has the
Choquet property and it satisfies (5). If a rearrangement invariant norm has
the Choquet property, then it is equivalent to a Marcinkiewicz norm.

15



Proof. Let p be the Marcinkiewicz norm. Since p◦(1A) = φ(P (A)), we get

p◦(η) =

∫ 1

0

q|η|(t)dφ(t)

= −
∫ 1

0

φ(t)dq|η|(t)

=

∫ ∞
0

φ(n|η|(s))ds

=

∫ ∞
0

φ(P ({|η| ≥ s}))ds

=

∫ ∞
0

p◦(1{|η|≥s})ds,

where the first equality follows from Example 4, the second from integration by
parts and the third from [9, Theorem VI.55]. Thus p◦ has the Choquet property.
Since the Marcinkiewicz norm is rearrangement invariant, it satisfies (5) by [22,
Remark 15].

Assume now that p is rearrangement invariant with the Choquet property.
By [3, Proposition 2.4.2], p◦ is rearrangement invariant, so there exists φ̃ such
that p◦(1A) = φ̃(P (A)) for all A ∈ F . Since p has the Choquet property,

p◦(η) =

∫ ∞
0

p◦(1{|η|≥s})ds =

∫ ∞
0

φ̃(n|η|(s))ds = −
∫ 1

0

φ̃(t)dq|η|(t) =

∫ 1

0

q|η|(t)dφ̃(t),

where the third equality follows from [9, Theorem VI.55] and the last from
integration by parts. By [14, Theorem 4.7], φ̃ is quasiconcave in the sense of
[14, Definition 1.1], so, by [14, Corollary 1.1], there exists a concave φ and
C ∈ R+ such that

1

C
φ(t) ≤ φ̃(t) ≤ Cφ(t).

Thus p◦ is equivalent to the Lorentz norm
∫ 1

0
q|η|(t)dφ(t), and hence p is equiv-

alent to a Marcinkiewicz norm.

The following is an extension of [24]; see also [10, Section 4.5].

Lemma 16. A real-valued function ρ on U with ρ(1) = 1 is a Choquet integral
on U if and only if it is monotone,

ρ(η ∧ ν)↗ ρ(η) ∀η ∈ U+,

and comonotone additive in the sense that

ρ(η + η′) = ρ(η) + ρ(η′)

whenever η, η′ ∈ U satisfy (η(ω)− η(ω′))(η′(ω)− η′(ω′)) ≥ 0 for all ω, ω′ ∈ Ω.
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Proof. The necessity is proved as in the proof of [10, Theorem 4.88] (their ar-
gument does not require U = L∞). As to sufficiency, [24, Theorem] says that,
ρ is Choquet integral on L∞. By monotone convergence,∫ ∞

0

ρ(1{η∧ν≥s})ds↗
∫ ∞

0

ρ(1{η≥s})ds

while ρ(η ∧ ν)↗ ρ(η), by assumption.

Theorem 17. Assume that each p ∈ P satisfies (5) and has the Choquet prop-
erty. Then the dual of D can be identified with M̂ under the bilinear form

〈y, (u, ũ)〉 := E

[∫
ydu+

∫
y−dũ

]
.

The optional projection is a continuous surjection of Y(D) to D, its adjoint is
the embedding of M̂ to U(M × M̃), and the topology of D is generated by the
seminorms

pD(y) := inf
z∈Y(D)

{p(‖z‖) | oz = y} p ∈ P

whose polars are given by

p◦D((u, ũ)) = p◦(‖u‖+ ‖ũ‖).

Proof. By (6), the optional projection is continuous from Y(D) to D̃ with norm
one. Since L∞(D) is dense in Y(D), the continuity of the projection implies
that its range is contained in D. By Theorem 9, it suffices to show that M̂ is
the dual of D.

Let y ∈ D and (u, ũ) ∈ M̂ and denote the corresponding total variations
processes by uTV and ũTV . By [8, Theorem IV.50], τs = inf{t |uTVt ≥ s} is a
stopping time, and, by [9, A on page xiii], τ̃s = inf{t | ũTVt ≥ s} is a predictable
time. By [9, Theorem 55] and Fubini-Tonelli,

E[

∫
ydu+

∫
y−dũ] ≤ E

∫
(|y|duTV + |y−|dũTV )

= E

∫ ∞
0

(|yτs |1{‖u‖≥s} + |yτ̃s−|1{‖ũ‖≥s})ds

=

∫ ∞
0

(E
[
|yτs |1{‖u‖≥s} + |yτ̃s−|1{‖ũ‖≥s})

]
ds

≤
∫ ∞

0

[p(yτs)p
◦(1{‖u‖≥s}) + p(yτ̃s−)p◦(1{‖ũ‖≥s})]ds.

By [11, Theorem 4.16], there is a sequence (τν) of stopping times with τν < τν+1

and τν ↗ τ̃s almost surely. Since y is of class (D) and p is weakly lsc in L1, we
get p(yτ̃s−) ≤ lim infν p(yτν ) ≤ supτ∈T p(yτ ). By Choquet property,

E[

∫
ydu+

∫
y−dũ] ≤ sup

τ∈T
p(yτ )

∫ ∞
0

[p◦(1{‖u‖≥s}) + p◦(1{‖ũ‖≥s})]ds

= pT (y)[p◦(‖u‖) + p◦(‖ũ‖)]
≤ 2pT (y)p◦(‖u‖+ ‖ũ‖).
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Thus (u, ũ) defines a continuous linear functional on D.
On the other hand, let J be a continuous linear functional on D. The

continuity implies that J is continuous on D∞ ⊆ D ∩ Y(D) also with respect
to the relative topology of Y(D). By Hahn–Banach, J extends to a continuous
linear functional on all of Y(D). Theorem 5 then gives the existence of a (w, w̃) ∈
U(M × M̃) such that

J(y) = E

[∫
ydw +

∫
y−dw̃

]
∀y ∈ D∞.

By the definitions of the projections,

J(y) = E

[∫
ydwo +

∫
y−dw̃

p

]
= E

[∫
ydu+

∫
y−dũ

]
∀y ∈ D∞,

where (u, ũ) := (wo + (w̃p)c, (w̃p)d) ∈ L1(M × M̃) with u optional and ũ pre-
dictable. The continuity of J on D means that there is a p ∈ P such that

p◦T (J) := sup
y∈D
{J(y) | pT (y) ≤ 1} <∞.

By (2), Lemma 6 and (6),

p◦(‖u‖+ ‖ũ‖) = sup
y∈L∞(D)

{
E

[∫
ydu+

∫
y−dũ

] ∣∣∣∣ p(‖y‖) ≤ 1

}
= sup
y∈L∞(D)

{
E

[∫
oydu+

∫
p
(y−)dũ

] ∣∣∣∣ p(‖y‖) ≤ 1

}
≤ sup
y∈L∞(D)

{
E

[∫
oydu+

∫
(oy)−dũ

] ∣∣∣∣ pT (oy) ≤ 1

}
= sup
y∈L∞(D)

{J(oy) | pT (oy) ≤ 1} ≤ p◦T (J),

where the last equality holds since oy ∈ D∞ for all y ∈ L∞(D). Thus, J is
represented on D∞ by a (u, ũ) ∈ M̂. By continuity, the representation is valid
on all of D = clD∞.

It is clear from the above proof that, instead of the Choquet property, it
would suffice that

∫∞
0
p◦(1{η≥s})ds is finite whenever η ∈ dom p◦.

When Y = L1, Theorem 17 can be written as follows.

Corollary 18. The space D1 of optional cadlag processes of class (D) equipped
with the norm

‖y‖D1 := sup
τ∈T

E|yτ |

is Banach and its dual can be identified with M̂∞ through the bilinear form

〈y, (u, ũ)〉 = E

[∫
ydu+

∫
y−dũ

]
.
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The optional projection is a continuous surjection of L1(D) to D1 and its adjoint
is the embedding of M̂∞ to L∞(M × M̃). The topology of D1 is generated by
the seminorm

pD(y) := inf
z∈L1(D)

{E‖z‖ | oz = y}

whose polar is given by

p◦D((u, ũ)) = ess sup(‖u‖+ ‖ũ‖).

Proof. Since Y = L1 has the Choquet property, it suffices, by Theorem 17, to
show that D1 is the closure of D∞ in D̃1. Let y ∈ D1 and define yν ∈ D∞ as
the pointwise projection of y to the Euclidean unit ball of radius ν = 1, 2, . . ..
By uniform integrability,

sup
τ∈T

E|yτ − yντ | ≤ sup
τ∈T

E[|yτ |1{|yτ |≥ν}]→ 0,

so y ∈ clD∞.

Corollary 18 complements [9, Theorem 67] which characterizes the dual of
the Banach space of cadlag processes whose pathwise sup-norm is integrable.
The larger space D1 in Corollary 18 was studied in [9, Section VI.1]. The above
characterization of its dual seems new. The surjectivity of the projection in
Corollary 18 was stated in [5, Theorem 4] without a complete proof.

7 Regular processes

Following [5] we say that an adapted cadlag process y of class (D) is regular if

py = y−.

According to Bismut [5, Theorem 3], regular processes are the optional projec-
tions of elements of L1(C). This section gives an easy derivation of Bismut’s
result while allowing for more general Y in place of L1. We assume that Y is as
in Section 2 and define

Y(C) := {y ∈ L1(C) | ‖y‖ ∈ Y}.

The following specializes Theorem 5 to continuous processes.

Corollary 19. The space Y(C) is Fréchet and its dual can be identified with

U(M) := {u ∈ L1(M) | ‖u‖ ∈ U}

through the bilinear form

〈y, u〉 := E

∫
ydu.
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For every y ∈ L1(C) and u ∈ L1(M),

E

∫
ydu ≤ p(‖y‖)p◦(‖u‖)

and

p◦(‖u‖) = sup
y∈L∞(C)

{
E

∫
ydu

∣∣∣∣ p(‖y‖) ≤ 1

}
.

In particular, u 7→ p◦(‖u‖) is the polar of y 7→ p(‖y‖).

Proof. Y(C) is a closed subspace of Y(D) and thus Fréchet. The elements of
U(M) define continuous linear functionals on Y(C). On the other hand, by
Hahn-Banach, a continuous linear functional l on Y(C) extends to a continuous
linear functional on Y(D), which, by Theorem 5, has the expression

l(y) = E[

∫
ydu+

∫
y−dũ]

for some (u, ũ) ∈ U(M × M̃). On Y(C), this can be written as

l(y) = E

∫
yd(u+ ũ),

where u + ũ ∈ U(M). The expression for the polar seminorm follows as in the
proof of Theorem 5.

We will assume that one of the equivalent conditions in Theorem 9 is satisfied
and denote

R := {y ∈ D | py = y−}.

We endow R with the relative topology it has as a subspace of D. Let

M := {u ∈ U(M) | u optional}.

The following is proved like Lemma 8 except that instead of Theorem 5 one
applies Corollary 19.

Lemma 20. The space M is the orthogonal complement of kerπ and thus,
weakly closed in U(M).

Combining this with Theorem 9 and the Hahn–Banach theorem, gives the
following.

Theorem 21. Under the assumptions of Theorem 9, R is Fréchet and its dual
can be identified with M under the bilinear form

〈y, u〉 := E

∫
ydu.
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The optional projection is a continuous surjection of Y(C) to R, its adjoint is
the embedding of M to U(M) and (kerπ)⊥ =M. Moreover, the topology of R
is generated by the seminorms

pR(y) = inf
z∈Y(C)

{p(‖z‖) | oz = y}

the polars of which are given by

p◦R(u) = p◦(‖u‖).

Proof. We start by showing that R is the orthogonal complement (with respect
to the pairing of D and M̂) of the linear space

L = {(u, ũ) ∈ M̂ |u+ ũ = 0}.

If y ∈ R and (u, ũ) ∈ M̂, we have

E

[∫
ydu+

∫
y−dũ

]
= E

[∫
ydu+

∫
pydũ

]
= E

∫
yd(u+ ũ),

so R ⊆ L⊥. On the other hand, if y ∈ D \ R, there exists, by the predictable
section theorem, a predictable time τ such that E(pyτ − yτ−) 6= 0. Defining
u = −ũ = δτ , we have (u, ũ) ∈ L while 〈y, (u, ũ)〉 = E(pyτ − yτ−). Thus,
R = L⊥.

Being a closed subspace of a Fréchet space, R is Fréchet. SinceM is isomor-
phic to a subspace of M̂, every u ∈ M defines a continuous linear functional
on R. On the other hand, by Hahn-Banach, a continuous linear functional on
R extends to a continuous linear functional l on D which, by assumption, has
the expression

l(y) = E

[∫
ydu+

∫
y−dũ

]
for some (u, ũ) ∈ M̂. On R, this can be expressed as

E

[∫
ydu+

∫
y−dũ

]
= E

[∫
ydu+

∫
pydũ

]
= E

∫
yd(u+ ũ),

so the dual of R can indeed be identified with M.
If y ∈ Y(C), we have oy ∈ D, by assumption, and then, by Lemma 6,

(oy)− =
p
(y−) = py =

p
( oy),

so oy ∈ R. By Lemma 20, the density of L∞(C) in Y(C) and the continuity of
π imply (kerπ)⊥ =M.

The claims about the surjectivity of π, its adjoint and the seminorms are
established like in the proof of Theorem 9.

When Y = L1, Corollary 18 implies that the assumptions of Theorem 9 hold,
so Theorem 21 gives the following refinement of Corollary 18, first derived in
[20] using the main result of [5].
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Corollary 22. The space R1 of regular processes equipped with the norm

‖y‖D1 := sup
τ∈T

E|yτ |

is Banach and its dual can be identified with M∞ through the bilinear form

〈y, u〉 = E

∫
ydu.

The optional projection is a continuous surjection of L1(C) to R1 and its adjoint
is the embedding of M∞ to L∞(M). The topology of R1 is generated by the
seminorm

pD(y) := inf
z∈L1(C)

{E‖z‖ | oz = y}

whose polar is given by
p◦D(u) = ess sup(‖u‖).

Corollary 22 applies Theorem 21 to Y with the Choquet property. Likewise,
Theorem 21 could be applied to cases when Y has the Doob property. This would
cover appropriate Orlicz spaces and the Fréchet space of random variables with
finite moments.

8 Applications

Duality theory of stochastic processes has many applications in stochastic anal-
ysis and optimization. For example, the existence of Doob decomposition and
Snell envelope in [9, Section VII.1 and Appendix I] were derived from the func-
tional analytic lemma of [9, Section VII.1]. More recently, [1] gave applications
to convex risk measures on Orlicz spaces of cadlag processes. These applica-
tions were based on [1, Theorem 3.1] which is a special case of Theorem 13.
Section 8.1 below uses Theorem 9 to show that the integrability properties of a
supermartingale are inherited by its Doob decomposition. Section 8.2 explains
how the most general existence results in optimal stopping follow directly from
functional analytic arguments in the setting of duality theory of stochastic pro-
cesses. Section 8.3 indicates how the present results yield extensions of duality
theory in stochastic singular control recently developed in [20, Section 6].

8.1 Doob decomposition

We will say that an optional cadlag process Z is a U-quasimartingale if for some
p ∈ P,

Varp(Z) := sup
(τi)ni=0⊂T

p◦

(
n−1∑
i=0

|Eτi [Zτi − Zτi+1
]|+ |Zτn |

)
<∞.

When U = L1 and p◦(ξ) = ‖ξ‖L1 , this reduces to the usual definition of a quasi-
martingale; see e.g. [9, Definition VI.38]. The space of quasimartingales contains
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e.g. supermartingales and their differences. The classical Doob-decomposition
expresses a quasimartingale of class (D) as a sum of a martingale and a pre-
dictable process of integrable variation; see e.g. [9, Appendix II.4]. Choosing
n = 0, we see that a U-quasimartingale is of class (D) as soon as the level sets
of some p◦ are uniformly integrable.

We will denote by ÑU0 the linear space of predictable cadlag processes that
start at 0 and whose pathwise variation is in U . Theorem 24 below shows that
a U-quasimartingale has a Doob decomposition where the the finite variation
part is in ÑU0 and the marginals of the martingale part are in U . It assumes
that the seminorms satisfy the “Jensen inequality” (5).

Lemma 23. If p satisfies (5), then p◦ satisfies it as well.

Proof. By properties of the conditional expectation,

p◦(Eτη) = sup
ξ∈L∞

{E[ξEτη] | p(ξ) ≤ 1} = sup
ξ∈L∞

{E[ηEτξ] | p(ξ) ≤ 1}

≤ sup
ξ∈L∞

{E[ηEτξ] | p(Eτξ) ≤ 1} ≤ sup
ξ∈L∞

{E[ηξ] | p(ξ) ≤ 1} = p◦(η),

for any τ ∈ T .

Theorem 24. Assume that the conditions of Theorem 9 are satisfied, that the
seminorms p ∈ P satisfy (5) and that the level sets of some p◦ are uniformly
integrable. Then a process Z is a U-quasimartingale if and only if there exists
a U-martingale M and an A ∈ ÑU0 such that

Zt = Mt −At.

Proof. If Z = M−A for a U-martingale M and A ∈ ÑU0 , then the monotonicity
of p◦, the Jensen’s inequality with | · | and Lemma 23 give

Varp(Z) = sup
(τi)ni=0⊂T

p◦

(
n−1∑
i=0

|Eτi [Aτi −Aτi+1 ]|+ |Mτn −Aτn |

)

≤ sup
(τi)ni=0⊂T

p◦

(
n−1∑
i=0

Eτi |Aτi −Aτi+1 |+ |Mτn |+ |Aτn |

)
≤ p◦(2‖A‖TV + |Mτn |)
≤ p◦(2‖A‖TV ) + p◦(M∞) <∞,

where ‖A‖TV denotes the total variation of A. On the other hand, let Ds ⊂ D
be the space of simple processes of the form

y =

n∑
i=0

1[τi,τi+1)η
i,

where (τi)
n
i=0 is an increasing sequence of stopping times with τ0 = 0 and

τn+1 =∞ and ηi ∈ L∞(Fτi). Define a linear functional l on Ds by

l(y) = E

[
n−1∑
i=0

yτiEτi [Zτi − Zτi+1 ] + yτnEτnZτn

]
.
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Given ȳ ∈ Ds,

l(ȳ) = E

∫
ȳdū(τi),

where the measure ū(τi) is given by

ū(τi) :=

n∑
i=0

Eτi [Zτi − Zτi+1
]δτi + EτnZτnδτn .

Thus, by Theorem 9,

l(ȳ) ≤ pD(ȳ)p◦(‖ū(τi)‖) ≤ pD(ȳ) Varp(Z)

so, l is continuous in the relative topology of Ds. By Hahn–Banach, l extends
to all of D so by, Theorem 9, there exists (u, ũ) ∈ M̂ such that

l(y) = E

[∫
ydu+

∫
y−dũ

]
.

Given τ ∈ T , let yν = 1[τ,τ+1/ν) ∈ Ds. Since Z is cadlag and of class (D),
we have l(yν) = E(Zτ − Zτ+1/ν)→ 0. On the other hand,

l(yν) = E

[∫
yνdu+

∫
yν−dũ

]
= E[u([τ, τ+1/ν))+ ũ((τ, τ+1/ν])]→ Eu({τ})

so Eu({τ}) = 0 for every τ ∈ T . Thus the purely discontinuous part of u is
zero and, in particular, u is predictable. We can thus express l in terms of the
predictable measure ū := u+ ũ as

l(y) =

∫
y−dū.

It now suffices to take At = u((0, t]) and Mt = E[A∞ | Ft]. Indeed, taking
y = 1[τ,∞) ∈ Ds, gives

E(Zτ1{τ<∞}) = E(A∞ −Aτ ).

Taking τ = τB for B ∈ Fτ gives Zτ = E[A∞−Aτ | Fτ ]. Here τB := τ on B and
+∞ otherwise. Finally, Lemma 23 gives p◦(Mt) = p◦(EtA∞) ≤ p◦(A∞), so M
is a U-martingale.

8.2 Optimal stopping

Given a regular procees R ∈ R1, consider the optimal stopping problem

maximize ERτ over τ ∈ T , (OS)

where T is the set of stopping times with values in [0, T ]∪{T+}. When T =∞,
the interval [0, T ] is interpreted as the one-point compactification of the positive
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reals. We define RT+ := 0, so the role of T+ is to allow not to stop at all. This
section shows how Theorem 21 yields the existence of optimal stopping times
for an arbitrary regular reward process R. More details and further extensions
can be found in [21].

We first write the optimal stopping problem (OS) as

maximize E[

∫
[0,T ]

Rdx] over x ∈ Ce,

where
Ce := {x ∈ N∞0+ |xt ∈ {0, 1}},

where N∞0+ denotes the set of nondecreasing processes in the space N∞0 of left-
continuous processes that start at zero and whose pathwise variation is in L∞.
The equation τ(ω) = inf{t ∈ [0, T ] | xt+(ω) ≥ 1}, where the infimum over
the empty set is defined as T+, gives a one-to-one correspondence between the
elements of T and Ce.

Consider also the convex relaxation

maximize E[

∫
[0,T ]

Rdx] over x ∈ C, (ROS)

where
C := {x ∈ N∞0+ |xT+ ≤ 1}.

Clearly, Ce ⊂ C so the optimum value of (OS) is dominated by that of (ROS).
Given x ∈ C with xT+ = 1, the function S : Ω × [0, 1] → [0, T ] given by
S(ω, α) := inf{t ∈ [0, T ] | xt(ω) ≥ α} is adapted, nondecreasing and left-
continuous in α, so it is a randomized stopping time in the sense of Baxter and
Chacon [2, Section 2].

The space N∞0 may be identified with the space M∞ of optional measures
whose pathwise total variation belongs to L∞. By Corollary 22, M∞ is the
Banach dual of the space R1 of regular processes. The set C is a closed convex
subset of the unit ball ofM∞ so, by Banach-Alaoglu, it is σ(M∞,R1)-compact.
It follows that the optimum in (ROS) is attained for any R ∈ R1. It is easy to
show that Ce is the set of extreme points of C (see [21, Lemma 2]) so, by the
Krein–Milman theorem, the optimum is attained in Ce as well.

We have thus proved the following existence result which was first proved
in Bismut and Skalli [6]. Theorem I.3 of [6] actually assumes that the pathwise
supremum of R is in L∞ but they point our afterwards that the existence result
can be extended to an arbitrary R ∈ R1.

Theorem 25. An optimal stopping time exists for every R ∈ R1.

The proof of [6] builds on the (nontrivial) existence of a Snell envelope and
further limiting arguments involving sequences of stopping times. In contrast,
our proof is based on elementary functional analytic arguments in the Banach
space setting of Theorem 21.
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8.3 Singular control

Consider the problem

minimize
c∈N∞0

E[G(ż) +H∗(Dc) + e(żT )]

subject to

{
z0 = 0,

żt = Azt +Bct +Wt,

(SCP)

where G, H∗ and e are convex functions on L1(Ω × [0, T ]), M∞ and L1(Ω),
respectively. Such problems were introduced in [20, Section 6] as generalizations
of more specific models on singular stochastic control such as that in Lehoczky
and Shreve [15]. Theorem 14 of [20], gives optimality conditions and a maximum
principle for (SCP). The analysis was based on convex duality in the Banach
space of regular processes. Theorem 21 allows for extending such arguments to
models where the control Dc can be chosen from a space of optional measures
larger than M∞. Such extensions are important e.g. if W /∈ L∞ and there are
constraints that require that zT ∈ L∞.

Appendix

Remark 3. Assume that (Ω,F , P ) is atomless. Every rearrangement invariant
seminorm p satisfies the “Jensen’s inequality”

p(EGu) ≤ p(u) ∀u ∈ L1

for every sub sigma-algebra G ⊂ F . Here EGu is the conditional expectation of u.
However, rearrangement invariance is not necessary for the Jensen’s inequality
to hold for every sub-σ-algebra G.

Proof. By Jensen’s inequality, E|EGu| ≤ E|u|, so [22, Lemma 30] implies∫ t

0

qEGu(s)ds ≤
∫ t

0

qu(s)ds.

By Hardy’s lemma ([3, Proposition 2.3.6]),∫
qEGu(s)qy(s) ≤

∫
qu(s)qy(s)

for any y ∈ L1. Thus the claim follows from [3, Corollary 2.4.4].
As to the necessity, let F = {∅, A,AC ,Ω}, where P (A) = P (AC) = 1/2.

Then the only strict sub-σ-algebra G of F is the trivial one. Let

p(u) := max{E|u|, E[1A|u|]/P (A)}.

Note that E[1A|EGu|]/P (A) = E[EG1A|EGu|]/P (A) = E[|EGu|] so that

p(EGη) = E|EGu| ≤ E|u| ≤ p(u),

and p satisfies the G-conditional Jensen’s inequality for every G ⊂ F . However,
p(1A) = 1 while p(1AC ) = 1/2, so p is not rearrangement invariant.
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spaces. In Function spaces (Poznań, 1989), volume 120 of Teubner-Texte
Math., pages 120–127. Teubner, Stuttgart, 1991.
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