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A B S T R A C T

In order to enable multiple agents to select the best gathering point dynamically, the design of a collaborative
and efficient method in real-time is crucial. The dynamic path planning problem from multiple sources to a
single destination (DMS-SD) without prior knowledge about the target is proposed in this paper. The modified
Dijkstra’s algorithm (Xiao et al., 2022) in the previous work can optimally address the DMS-SD problem, which
effectively generates an optimal solution in the small map. However, it requires more than 60s to compute
the result in our extensive map test, which is intolerable for real-time navigation users. Therefore, we have
proposed a hybrid optimisation method to address the problem more efficiently in this paper. The proposed
method integrates the Ant Colony Optimisation (ACO) with Monte Carlo Tree Search (MCTS) and modifies the
heuristic function to fit the hybrid algorithm. The pure MCTS algorithm can accelerate the randomised search
by only exploring unvisited nodes, instead of generating every possible solution. More importantly, benefiting
from limiting the maximum exploring depth, our method can approach an optimal point and generate a sub-
optimal solution without any prior training used in other neural network-based methods. Experiment results
show that our proposed algorithm demonstrates competitive performance with other existing state-of-the-art
methods, such as reinforcement learning-based approaches, without training the neural network model. Our
method also provides up to 98% reduction in computation time while obtaining sub-optimal results, comparing
with the modified Dijkstra’s algorithm.
1. Introduction

The term smart city has been proposed for more than 20 years since
1998 [1]. The goal of smart cities is to provide a safe, efficient and con-
venient environment for human settlements. Facilities and structures,
such as water, transportation and power, are designed with comput-
erised systems, including databases and decision-making algorithms,
where the data can be securely stored in the cloud [2,3]. Recently, the
user interaction and dynamic route planning [4] has been quite popular
in the smart city. Specifically, collaborative actions among users have
been considered vital in walking and driving navigation research [5–7].

Motivated by the collaborative computation, we have solved a
navigation problem that has yet to be well addressed. Specifically,
there is an emergent need for a group of friends to meet at a place
that fulfils most of their preferences. Based on real-time situations on
the roads, such as congestion or road accidents, the preferred meeting
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E-mail address: xinheng.wang@xjtlu.edu.cn (X. Wang).

point could be dynamically changed, and new routes to this point need
to be planned for individuals. We define this problem as a dynamic
Multi Sources to a Single Destination Problem (DMS-SD), which other
researchers have not discussed and addressed. We emphasise ‘dynamic’
in our problem because users may operate real-time software, and the
solver should not consume a significant amount of time on locating the
target. Consequently, the results of DMS-SD can then be easily applied
to the navigation recommendation system in the smart city, which helps
users choose their destination. For example, a group of users, as shown
in Fig. 1, in a city are planning to have a dinner, where each user may
choose their specific preference for the food and area; based on the
selected preference, the agent in the smart city can compute an initial
goal as their first destination. However, because of different speeds of
walking or driving, they may choose an alternative place to meet when
vailable online 14 January 2023
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Fig. 1. An example of DMS-SD of three users.
they are on the road. In this case, the dynamic feature is essential. We
also intend to reduce the load of the central server of the smart city.
This means the server will be only used to allocate tasks or goals, and
the computation of those tasks is performed on users’ mobile devices,
which should not require heavy computational resources. Moreover,
this algorithm can be environmentally friendly due to efficient comput-
ing. Specifically, the cost of electricity can be saved when one of the
main sources of electricity is thermal power generation. Meanwhile,
because the driving distance is minimised, there will be less vehicle
exhaust emission. As a result, the city contributes to protecting the
global environment by reducing greenhouse gas emissions and saving
non-renewable resources, which is the critical goal of the efficient smart
city.

Traditionally, classical path planning algorithms often focus on
choosing the path with the shortest time or the shortest distance from a
starting point to a destination point, called a Single Source to a Single
Destination Problem (SS-SD). Though this problem has variations, such
as from a source point to multiple destinations, the classical algorithms
can still be used by splitting the variant problems into multiple SS-SDs.
Most solutions can successfully find an optimal or near-optimal path
based on some performance indicators. Heuristic-based algorithms are
generally exploited to compute the entire path, such as A* [8] and
Dijkstra algorithm [9], which can guarantee to find an optimal solution.
However, as the search space becomes larger, those algorithms con-
sume much more computational resources because they visit all nodes
to find the best answer. For example, Floyd’s algorithm takes 𝑂(𝑛3𝑣) to
compute all pairs of distance, where 𝑛𝑣 is the number of nodes. To
address DMS-SD, Floyd’s algorithm needs additional loops to calculate
the shortest path in its Adjacent Matrix. When it is applied to a large
smart city, the computation time can be even days, which real-time
users cannot tolerate. The modified Dijkstra’s algorithm [10] solves
the DMS-SD problem using the Adjacent Matrix in Floyd’s algorithm to
store the shortest distance between nodes; therefore, it does not require
computing the shortest distance for all pairs as in Floyd’s algorithm.
Then, based on the calculations and operations of the Adjacent Matrix,
we can locate the temporary destination for the current users’ locations.
This algorithm provides an optimal solution for the current state and
does not require pre-training of the model. However, it spends much
time on computation when the number of nodes is big, which is
2

intolerable for real-time users. For example, it takes approximately
56 s1 to compute results in a 100 × 100 size map (10,000 nodes in
total). This time can be even longer on a mobile device.

We also argue that many existing state-of-the-art approaches, such
as 𝑄-learning-based reinforcement learning algorithms (e.g., Deep 𝑄
Network, Policy Proximal Optimisation), are difficult to be directly
applied to the DMS-SD. For example, 𝑄-learning algorithms to address
the path planning problem were deployed in [11] and [12], where
one is used to address the SS-SD, and another is based on multiple
users (sources). In our testing with the same parameter settings, such
as action space, state space and the reward function, the training agent
still assigns random movements to users because users are hard to
meet at the same place when the number of users is large. This can
be explained by the probability of meeting, 1

(𝑛𝑣)
𝑛𝑝 , where 𝑛𝑝 is the

number of users; it is obvious that the probability can be tiny if both
𝑛𝑣 and 𝑛𝑝 are large. Without the first meeting, the training agent does
not know the goal reward and thus cannot update the 𝑄-table (or
neural networks) based on the goal, leading to aimless movements.
We also test the training agent using Policy Proximal Optimisation
(PPO) algorithm in which the reward is the distance between users,
encouraging moving towards each other; the result shows the agent
does not converge to the optimal — there is still a big gap between
the current training result and the optimal solution. We will discuss
the details of the results in the evaluation section.

In this paper, a hybrid method, ACO-MCTS is proposed to solve the
DMS-SD problem, which integrates Ant Colony Optimisation (ACO) in
the Monte Carlo Tree Search (MCTS), and costs less time to compute the
result. This integration is different from the ordinary MCTS and ACO in
three ways. Firstly, ordinary methods tend to expand all possible nodes
to find the solution. However, those algorithms must deal with a large
search space in practice. The proposed hybrid method sets a maximum
exploring depth to avoid exhausting computing resources. Therefore,
the new method is likely to find a local optimal solution within the
exploring range instead of looking for the global optimum at the
beginning. Secondly, the ACO-MCTS can perform the training process

1 Using AMD Threadripper 3990X Desktop Processor



Sustainable Energy Technologies and Assessments 56 (2023) 103032Z. Xiao et al.

𝑛
T
t
t
o
s

a
A
(
c
s
s

t
T
[
t
i
f
a
m
s
a
T
e
a
i
p
D
M
a
t
M
a
r
d
s
c
t

a
t
m
p
M
a
o
u
t
f

a
p
d
a
m
b
r
T
o
n
D

3

(
w
t
w
a
t
o
i
D

along with their movement because of the fast training speed and only
record limited information for future usage. While the ordinary MCTS
relies on the pre-trained tree which takes a long time to retrain the
tree if the current state is significantly different from the existing state
in the trained tree. Thirdly, we introduce a new linear distance-based
reward function to calculate the score of each node, rather than a single
success rate. Thus, users move towards a temporary destination using
the node score as their priority.

The main contributions of this paper are listed as follows:

• We propose a hybrid algorithm: ACO-MCTS, to address DMS-SD
problem that other researchers have not discussed and addressed.
The proposed method can efficiently generate sub-optimal solu-
tions based on the maximum depth without prior training, which
shows faster computation speed than exhausting methods, such as
the modified Dijkstra’s algorithm. This can be particularly useful
to users in large cities.

• A linear distance-based reward function is proposed to estimate
the score of each visited node. The movement of users are guided
by the node score, which tends to move towards a temporary
destination. The temporary destination is the optimal solution for
the current understanding of the map, which is calculated by the
results of simulations.

The structure of the rest of the paper is as follows: firstly, we review
related work from past studies; secondly, details of the proposed meth-
ods are described and explained; thirdly, we implement the algorithm
and extensive experiments are conducted to evaluate the performance
of the new methods; finally, a brief conclusion and possible future
directions are given.

2. Related work

Existing navigation algorithms are broadly classified into three
categories: search-based, learning-based and model-based.

Search-based planning methods construct a feasible path from the
source to the destination that focuses on addressing problems based on
known surroundings and obstacles on the map. Visibility Graph (VG)
[13], Breadth First Search (BFS) [14], Depth First Search (DFS) [15],
Greedy Best-First Search (GBFS) [16], Dijkstra’s algorithm [9], A* [17],
Reduced A* [18] and [19] algorithms are examples of graph traversal
algorithms designed to find the optimal path via visiting or updating
each vertex in a graph or state space. Specifically, GBFS [16], Dijkstra’s
[9], A* [17] and Reduced A* [18] search algorithms are heuristic-based
search planning that typically use a predefined heuristic function and
a classical computing algorithm to address the fundamental planning
problems (SS-SD). Other variants of A* algorithm such as Lifelong Plan-
ning A* (LPA*) [20], Anytime Repairing A* (ARA*) [21], Real-Time
Adaptive A* (RTAA*) [22], Fringe Saving A* (FSA*) [23], Fringe-
Saving A* (FSA*) [23] and Generalised Adaptive A* (GAA*) [24] are
classified as incremental heuristic search algorithms, that reduce time
of computing the optimal path to a series of similar search problems
based on reused information from previous searches. D* [25], D* Lite
[26] and Anytime Dynamic A* (AD*) [27] algorithms search the map
by destination-started. Overall, these search-based methods attempt
to address the SS-SD path planning problem with a known goal. We
note that exhausting search methods, such as Dijkstra’s algorithm [9],
can potentially address DMS-SD with mathematical calculations [10].
However, since those methods try to visit every vertex in the graph,
the time complexity is based on the number of vertices (nodes), such
as 𝑂(𝑛𝑣 + 𝑛𝑒 log(𝑛𝑣)) for the standard Dijkstra’s algorithm, where 𝑛𝑣 and
𝑒 present the number of vertices and the number of edges, respectively.
his means that the computing time can be significantly long when
he size of the graph increases, which provides a delayed response
o real-time users. Other partial search methods, such as variations
f A* [18], can be trapped into a local optimal and produce a bad
olution because it relies on a fixed heuristic function, which cannot list
3

ll environment conditions. Notably, random search methods, such as
nt Colony Optimisation (ACO) [28] and Particle Swarm Optimisation

PSO) [29], are able to address DMS-SD with lower computation time
ompared with exhausting methods. However, these can be potentially
tuck in the local optimal due to ‘bad luck’; for example, the random
earch always selects the worst or sub-optimal choice.

Learning-based approaches learn control from past experience or
hrough simulations. Algorithms such as Rapidly Exploring Random
ree (RRT) [30] and its derivatives including RRT* [31], RRT*-smart
32], RRT*-AR [33], Theta*-RRT [34] and RRT* FND [35] are designed
o learn previous experience according to a built space-filling tree that
mplements random samples from the search space. Other deep rein-
orcement learning (DRL) based algorithms include RLGWO [36], and
ctor–critic experience replay (ACER) [37], which can generate with a
inimised distance at less time. Some learning-based approaches can

olve the static SS-SD problem, such as [38] using Double DQN (DDQN)
nd dynamic SS-SD problems, such as Real-Time RRT* (RT-RRT*) [39].
here are many multi-agents (multi-sources) path planning methods in
xisting studies, such as MAPPER [12] and GA3CCADRL [40], which
ttempt to solve MS-SD problem that the obstacles dynamically move
n the environment, but it is different from the concept of DMS-SD we
roposed in this work. Other DRL-based methods such as Multi-Agent
eep Deterministic Policy Gradient (MADDPG) [41] address the static
S-SD problem, where the target is fixed. Furthermore, learning-based

pproaches usually require a large amount of experience or data to train
he model well, especially for DRL methods, which are time-consuming.
ore importantly, existing state-of-the-art DRL approaches cannot offer
good choice of the reward function that can best fit our goal. Existing

eward functions can be static [12] or function-based [42]. Users are
ifficult to meet at the same point because of randomly moving using
tatic reward function, whereas existing function-based rewards cannot
onverge to optimal in our problem. This can be the main reason why
hose methods fail to address our DMS-SD problem.

Model-based methods need a defined model for the problem, such
s actions, initial state, goal state and sensors, then a solver computes
he controller automatically. For example, a probabilistic model-based
ethod [43] is proposed to design path planners based on transition
robabilistic matrices. Other methods such as Partially Observable
arkov Decision Processes (POMDPs) and Hermite interpolation are

pplied in [44] and [45], respectively, to plan paths in dynamic multi-
bstacle environments. Although this work focuses on solving SS-SD
nder a dynamic environment, model learning is difficult and computa-
ionally expensive since an iterative learning process is always required
or model-based methods.

In summary, there are a variety of multi-source path planning
lgorithms in past studies. Notably, existing studies focus on three main
ath planning areas: (i) users from multiple sources move to a fixed
estination with fixed obstacles; (ii) users move to a fixed destination
nd try to pass dynamically moving obstacles; (iii) users move to
ultiple destinations. However, in our problem, the destination can

e dynamically changed based on the current state of users, which
equires high computation speed to provide a fast response to users.
hose existing algorithms are difficult to be directly applied to solve
ur problem with high efficiency because of (i) time-consuming, (ii)
ot converging to optimal, and (iii) no suitable reward function for the
MS-SD problem.

. Methodology

Assume there are 𝑛𝑝 users locating at different positions (𝑥1, 𝑦1),
𝑥2, 𝑦2).. (𝑥𝑛𝑝 , 𝑦𝑛𝑝 ). Our goal is to locate a target point where all agents
ill arrive there with a similar time and travelling distance. Addi-

ionally, the target point can be updated dynamically and periodically
hile users are moving, because users may behave non-ideally such
s moving slowly or stopping at a point for a while. We also assume
hat the environment is known, including successors of a node, score
f a node, the goal state, and coordinate positions of other agents. We
ntroduce a hybrid method, namely ACO-MCTS, in our work to address
MS-SD.
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3.1. ACO

The ordinary ACO was able to solve DMS-SD problems with mod-
ifications. Thus, we apply several modifications to fit DMS-SD. When
each object moves to a new node, it sends out 𝑛𝑎𝑛𝑡 ants to find the
target point, where 𝑛𝑎𝑛𝑡 is fixed and customisable. At some point 𝑐𝑡,
𝑛𝑜 or more ants from different agents stick together and this can be
one of the best possible solutions. The path distance 𝑑𝑝𝑎𝑡ℎ of each ant
at the point 𝑐𝑡 is calculated and summed up as 𝑑𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 (choosing the
shortest path if there are multiple ants from the same object), where
𝑑𝑝𝑎𝑡ℎ is the sum of path distances from the start point to 𝑐𝑡. After that,
𝑑𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is compared with the best solution and overrides the best one
if the new one is better. Other configurations are the same as in the
ordinary ACO [28], we list two critical equations here for using in the
next method. The ant moves based on the probability of successors and
this is calculated by

𝑝𝑠𝑎 =
𝜏𝛼𝑎 × 𝜂𝛽𝑎

∑

𝑧∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑_𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝜏𝛼𝑧 × 𝜂𝛽𝑧 )
(1)

here the probability 𝑝𝑠𝑎 of the next action 𝑎 at the current state 𝑠
quals to the product of the pheromone 𝜏 to the action 𝑎 and the priori
nowledge 𝜂 of applying action 𝑎 to 𝑠 over the sum of those. Constants
and 𝛽 are parameters to control the influence of 𝜏 and 𝜂, respectively.
ypically, the ACO uses the reciprocal of the distance from 𝑠 to the state
pplied 𝑎 in 𝜂 and the pheromone 𝜏 decays with time. The equation
herefore can be expressed as

𝑎 = 𝜌𝜏𝑎 +
𝑚
∑

𝑘

𝑄
𝑑𝑘𝑡𝑜𝑡𝑎𝑙

(2)

where 𝜌 is the decaying coefficient of previous 𝜏, 𝑚 presents the total
number of ants, 𝑄 is a multiplier of the new pheromone, and 𝑑𝑘𝑡𝑜𝑡𝑎𝑙 is the
distance moved by the ant 𝑘 from its source point to the destination.
The initial value of the pheromone is zero and accumulated by the
reciprocal of 𝑑𝑡𝑜𝑡𝑎𝑙. Overall, the pseudo code of moving to the next
vertex is shown in Algorithm 2.

Algorithm 1 Probability Based Selection
𝑎 ← 𝑠𝑜𝑟𝑡(𝑎𝑟𝑟𝑎𝑦_𝑜𝑓 _𝑝𝑎)
for each item 𝑖 in 𝑎 do

𝑝 ← a random value between 0 and 1
if 𝑝 ≤ 𝑖 then

𝑖 is selected
return 𝑖

end if
end for
return the last item in 𝑎

Additionally, we limit the maximum moving steps of each ant.
pecifically, the ant tends to move towards to a node that has not been
isited before, and the maximum distance should not exceed half of the
ap size, assuming the distance between each neighbour node is 1.

.2. ACO-MCTS

The goal of our hybrid method is to improve the computing speed of
he ACO algorithm, though accuracy may be slightly sacrificed in some
ases. MCTS takes long time to learn, which violates our goal — fast
esponse. Therefore, we discard partial features from ordinary MCTS to
peed up learning. In specific, we apply three main steps in the ACO-
CTS algorithm. In the first step, we perform Pre-Actions to calculate

ome constants used in the later simulation. Secondly, the simulation is
erformed in a given times 𝑛𝑠 and a maximum exploring depth 𝑚𝑎𝑥𝑑 .
uring this step, node scores are updated. Finally, the object moves

o the next state based on nodes around it. Fig. 2 shows the overall
rocedure of ACO-MCTS algorithm. Details of this process are described
n following subsections.
4

Algorithm 2 ACO
𝑏𝑒𝑠𝑡𝑃 𝑎𝑡ℎ ← null
for each simulation do

𝑔 ← simulation group of ants
for each ant 𝑖 in 𝑔 do

𝑛𝑒𝑥𝑡 ← choose a successor from 𝑖 based on pheromone using
Algorithm 1
𝑖 move to 𝑛𝑒𝑥𝑡
update pheromone to 𝑛𝑒𝑥𝑡
𝑛𝑒𝑥𝑡 is added to 𝑖’s path

end for
decay pheromone using Eq. (2)
𝑔′ ← ants from different users at a node
for each 𝑔′ do
if size(𝑔′) ≥ size(users) then

𝑠𝑢𝑚 ← sum length of 𝑔′ path
if size(𝑏𝑒𝑠𝑡𝑃 𝑎𝑡ℎ) < 𝑠𝑢𝑚 then

bestPath ← 𝑔′ path
end if
stop current simulation

end if
end for

end for
apply path to corresponding users

3.2.1. Centroid
We estimate a destination that fulfils all users in this stage. There-

fore, users tend to move towards this point. The most outer nodes can
form vertices of polygon and the centre of gravity 𝑐𝑔 can be expressed
as

𝑥𝑝𝑔 =
∑𝑛𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑑𝑒

𝑖∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑥𝑖
𝑛𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑑𝑒

𝑦𝑝𝑔 =
∑𝑛𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑑𝑒

𝑖∈𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑦𝑖
𝑛𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑑𝑒

(3)

where 𝑥𝑝𝑔 and 𝑦𝑝𝑔 are 𝑥 and 𝑦 coordinates of the centre of gravity point
and 𝑛𝑜𝑢𝑡𝑒𝑟_𝑛𝑜𝑑𝑒 is the number of vertices to form the polygon. In most
scenarios, there may not be a node just at (𝑥𝑝𝑔 , 𝑦𝑝𝑔), we then select the
closest node as the 𝑐𝑔 . 𝑐𝑔 will be used in calculate the node score in the
later stage.

3.2.2. Play-out
Similar to the ordinary MCTS, the play-out stage creates a virtual

environment to perform simulations in a specific times 𝑛𝑠 and selects
the best action after all 𝑛𝑠 simulations are performed. The next action
selection is based on the node score:

𝑎𝑛𝑒𝑥𝑡 = 𝑎𝑐𝑡𝑖𝑜𝑛(max(𝑛𝑠0, 𝑛𝑠1,… , 𝑛𝑠𝑛)) (4)

where 𝑎𝑛𝑒𝑥𝑡 is the next action, 𝑛𝑠𝑖 are node scores from valid successors
from the current state and 𝑎𝑐𝑡𝑖𝑜𝑛 is a function finding the corresponding
action using a node score value. The algorithm will keep choosing the
next action until all agents are at the same place. Each play-out contains
four stages: Selection, Expansion, Simulation, and Back-Propagation.

Selection. In the selection stage, all next possible actions are selected
and compared. Specifically, we successively select valid actions in the
action space and apply the remaining stages on it. In the final stage,
there will be a comparison procedure based on generated scores to
assign the success state. This is different from the ordinary MCTS: (1).
the action space is small, whereas in other games, such as The Game of
Go, the successor space can be huge and therefore time and space will
be largely occupied. (2). the criteria of success are limited. The ordinary
method accumulates success times only when the selected action wins

the simulation.
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Fig. 2. Overall Process of ACO-MCTS.
Expansion. In this stage, the algorithm expands a leaf node of the
selected node in Selection stage. Similar to the ordinary MCTS, the
expansion action will initialise the node, which assigns the node score
to zero. Instead of performing a brand new simulation in the ACO, the
simulation starts from the leaf node, which is able to explore more
unvisited states and avoids duplicated explorations.

Simulation. This is the key stage integrating features from ACO and
MCTS, also called sampling, which is different from the simulation
concept of play-out and only a part of the entire play-out simulation.
We achieve this integration in the following steps. Firstly, we introduce
a maximum exploring depth to limit the computational resource con-
suming. While the current exploring depth is less than the maximum
explore threshold 𝑑𝑚𝑎𝑥, the algorithm moves to the Back-Propagation
stage. Otherwise, it goes to the next step. We apply this feature because
in practice, we are not likely to explore paths to the gathering point in
each simulation if the search space is huge; instead, the algorithm can
update and find the optimal solution within the maximum depth and
leads to locate the DMS-SD solution based on it. More importantly, the
computational speed is much faster, as the ACO method needs more
simulations, though this sacrifices some accuracy. In the second step,
all agents move one step like ACO algorithm. That is, each object selects
the best next action based on the probability transformed from the node
score, as similar to Eq. (1), but 𝜂𝑎 is defined as the node score in this
algorithm. 𝜏 for an ant 𝑎 is calculated by the total distance travelled by
the ant to the destination or the deepest point, and this can be expressed
as in Eq. (2) instead of the reciprocal of the travelling distance. It
should be noted that the action with the higher probability will have
higher priority to be selected, but this does not guarantee selection and
lower chance actions are also able to be chosen with lower priority.
The specific selection algorithm is shown in Algorithm 1. During the
second step, if all agents are at the same place, the current stage will
be terminated and move to the next stage. Algorithm 3 presents the
overall procedure of this stage.

Back-propagation. This stage updates the node score after each sim-
ulation. The node score acts as the heuristic function in the entire
algorithm and navigates each object to move to the best direction. This
score consists of three factors: (i) the distance travelled from the current
node to the best solution point, (ii) the sum distance from the current
object to others, (iii) the distance to the centre point of gravity and (iv)
the simulation success rate. For each node 𝑖, the node score 𝑛𝑠 can be
5

𝑖

Algorithm 3 Simulation Stage
𝑑 ← 0
while 𝑑 < 𝑑𝑚𝑎𝑥 do
if users meet at the same place then

move to Back-Propagation
end if
all users move one step
𝑑 ← 𝑑 + 1

end while
move to Back-Propagation

summarised as:

𝑛𝑠𝑖 =
𝜄

𝑑𝑝𝑎𝑡ℎ
+ 𝛿

∑

𝑗∈𝑎𝑔𝑒𝑛𝑡𝑠 𝑑𝑖𝑗
+ 𝜔

𝑑𝑖𝑔
+ 𝛾 × 𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 (5)

where 𝜄, 𝛿, 𝜔 and 𝛾 are constants controlling the influence rate of
corresponding variables, 𝑑𝑝𝑎𝑡ℎ is the distance travelled to the solution
point if there is any, 𝑑𝑖𝑗 is the travelling distance transmitting from
node 𝑖 to node 𝑗, 𝑑𝑖𝑔 is the distance from node 𝑖 to the centre point of
gravity 𝑐𝑔 computed in the Pre-Actions stage, and 𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 is calculated
based on the number of simulations:

𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑡𝑖𝑚𝑒𝑠
𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒𝑠 (6)

which is the same item as in the ordinary MCTS. 𝑑𝑝𝑎𝑡ℎ is updated only
if a target has been located, which is achievable by all agents and with
a smaller sum of their path distance. Specifically, we maintain the best
solution, but we only use its distance to nodes that ants visited as a term
in the node score function. Because we selected all possible actions in
the Selection stage, we are able to evaluate simulation results using
the node score of the leaf node and mark the best one as the success
simulation, whereas others will be marked as failed. The algorithm will
update all nodes where the node has been visited in the simulation
and override the old node score if the new score is better in the latest
simulation. However, the movement of each object in the simulation
will not be recorded and applied to those real agents. Additionally,
the agent marks the node and the path to the node as ’dead end’
nodes if there is only one way out of the node, which can escape from
those dead-end roads. After the update is completed, the current MCTS
simulation is ended and the next new simulation will be started again
from the Selection stage.
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We keep the same idea as in ACO algorithm that ants initially
move randomly and explore the shorter path if a path has been found.
Specifically, the agent randomly explores the nodes at the initial stage
and expand the tree, because users do not yet meet at the same location
(node) and not reach 𝑐𝑔 ; as shown in Fig. 3(a), all node scores are 0 and
ants therefore select random movements. Once one of goals is achieved
(either meeting at the same point or reach 𝑐𝑔), the leaf node score is
not 0 anymore and node scores of its parents are updated, as shown in
Fig. 3(b). The node score acts like a path and navigates ants or users
to the destination, where the navigation result is based on the current
best choice. For example, in Fig. 3(b), all nodes in the second path
shows 5 score and all other node scores are zero, thus nodes in this path
have the highest probability to be selected. Since there are many other
ants exploring different path in different directions, the new node score
from another leaf may be better than the current choice e.g., shorter
distance to travel or closer to other users; in this case, the node score
is updated again and overwrite the old scores if the current score is
better, like Fig. 3(c). Because of the expanding strategy of the MCTS,
ACO-MCTS can explore more states and therefore can reach further
nodes. For example, in 1000 simulations and 20 exploring depth, a user
can explore at most 20,000 further from the current node, if the agent
always tries to expand the new child in the most depth direction.

3.2.3. Complexity analysis
The time complexity of ACO during each move can be expressed as

𝑂(𝑛𝑝𝑛𝑠𝑛𝑎𝑛𝑡𝑛𝑣) (7)

where 𝑛𝑝 is the number of users, 𝑛𝑠 is the times of virtual simulations
that will be performed by ants, 𝑛𝑎𝑛𝑡 is the number of ants sent out from
each object, and 𝑛𝑣 is the number of vertices. The simulation time 𝑛𝑠 is
recommended to be greater than ( 𝑛𝑣

𝑛𝑎𝑛𝑡
)𝑛𝑜 or otherwise 𝑐𝑡 is difficult to

e located during the simulation, since the probability of locating the
arget point 𝑐𝑡 is

𝑐𝑡 = (𝑛𝑎𝑛𝑡)
𝑛𝑝 (𝑛𝑣)

𝑛𝑝 (8)

herefore, as the number of agents grows, the time complexity will be
ncreased significantly.

In another method ACO-MCTS, during each play-out action, the
lgorithm is expected to consume time with the complexity

(𝑛𝑝𝑛𝑠𝑛𝑎𝑛𝑡𝑑𝑚𝑎𝑥) (9)

here 𝑛𝑜 is number of agents, 𝑛𝑠 is number of play-out or simulations,
nd 𝑑 is the maximum exploring depth. Apparently, the expected
6

𝑚𝑎𝑥
ime consumed is less than the ACO, because 𝑛𝑎𝑐𝑡𝑖𝑜𝑛 and 𝑑𝑚𝑎𝑥 are
enerally small. We will analyse this specifically in the next section.
see Table 1).

. Implementation & evaluation

In this section, we mainly evaluate and compare the performance
f the modified Dijkstra’s algorithm [10], ACO and ACO-MCTS. We
lso implement and modify state-of-the-art deep reinforcement learning
DRL) approaches from literature, such as 𝑄-learning and DQN, to show
heir disadvantages and challenges in addressing DMS-SD.

We use OpenAI Gym to build the simulation environment. More
pecifically, the environment simulates a grid world map containing
ccessible routes and inaccessible walls. At each time step 𝑡, the training
gent sends the next locations of users (action 𝑎𝑡) to the environ-
ent and receives a new map (state 𝑠𝑡+1) after applying the action,

nvolving all information in the map, such as users’ new locations.
he reward 𝑟𝑡+1 is used to evaluate the new action passed to the
nvironment; for the modified Dijkstra’s algorithm, ACO and ACO-
CTS, the environment does not send the reward back to the agent

ecause these algorithms do not use the reward to calculate the next
tep. When all users meet at the same node, the environment also
eturns a 𝑑𝑜𝑛𝑒 = 𝑇 𝑟𝑢𝑒 signal, indicating that the current 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =
(𝑠0), (𝑎0, 𝑠1, 𝑟1), (𝑎1, 𝑠2, 𝑟2)...(𝑎𝑛−1, 𝑠𝑛, 𝑟𝑛)} is ended, then the environment
s reset to the original status and the initial positions of users are ran-
omised. In training DRL algorithms [12,42], the environment involves
wo more functionalities: (i) the corresponding rewards in the paper are
eturned to the agent to evaluate the sent action; (ii) for each episode
= 400-time steps), the partial 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 is also sent to the agent to
erform training.

omputational complexity. We have discussed the time complexity in
qs. (8) and (9). Regarding Big-O notation, the ACO costs more time
o calculate the next possible movement because it potentially visits
ll vertices and tends to compute the whole path to the destination.
n another word, 𝑛𝑠 should be greater than ( 𝑛𝑣

𝑛𝑎𝑛𝑡
)𝑛𝑜 as discussed before,

which could be significantly large if either the search space or agents
are big. Typically in practice, the search space can be a map of an
area that includes millions of nodes, and this could largely affect the
performance of ACO. Whilst the number of simulations 𝑛𝑠 in ACO-MCTS
is independent of 𝑛𝑜 and 𝑛𝑎𝑐𝑡𝑖𝑜𝑛, it is only related to the accuracy of
the target. Moreover, terms 𝑛𝑎𝑐𝑡𝑖𝑜𝑛 and 𝑑 are usually small numbers
comparing to 𝑛𝑣. From the perspective of space complexity, ACO-MCTS
also spends less memory to store the information, according to the
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Table 1
Constants in ACO-MCTS and ACO Algorithm.

Constant Description Value Range

𝛼 Control the influence of 𝜏 1 0 ∼ 1
𝛽 Control the influence of 𝜂 0.9 0 ∼ 1
𝜌 The decaying coefficient of previous 𝜏 0.9 0 ∼ 1
𝑛𝑠 The number of simulations 1000 any
𝑑𝑚𝑎𝑥 The maximum exploring depth 20 any
𝜄 Control the influence of the distance travelled to the solution 10 any
𝛿 Control the influence of the distance transmitting from 𝑖 to 𝑗 2 any
𝜔 Control the influence of the distance from 𝑖 to 𝑐𝑝 1 any
𝛾 Control the influence of the success rate 1 any
Fig. 4. Test of computation time. The lower computation time means a shorter time consumed to calculate the result.
table. Therefore, in theory, we expect ACO-MCTS to compute much
faster than ACO. While the modified Dijkstra’s algorithm exhausts all
possibilities of paths to achieve the optimal, it spends much more time
on the computation, compared with ACO-MCTS, which is highly de-
pended on the number of nodes: 𝑂(𝑛𝑣 + 𝑛𝑒 log(𝑛𝑣)). In our environment,
𝑛𝑒 is approximate 𝑛𝑣 because each node uses up to 4 edges (up, down,
left, right) to connect to its adjacent nodes. When the number of nodes
becomes large, the actual computation time can even be days.

Average computation time. Fig. 4 shows the average computation time
of the modified Dijkstra’s algorithm, ACO and ACO-MCTS to reach the
next node. Results are tested over three different size map environ-
ments, showcasing the model’s sensitivity to changes in the number
of agents and the size of the map. In Fig. 4(a), it is evident that the
average computation time is proportional to the number of users in
all three algorithms. We observe that the modified Dijkstra’s algorithm
only spends less than 5 s on smaller maps, which is acceptable by real-
time software users. However, it costs more than 60 s to compute the
result in the 109 × 128 nodes with seven users, though the result is
optimal. Additionally, the time of ACO to reach the next node consumes
more than 80 times than in ACO-MCTS when the number of users
increases; the gap between the two algorithms is significantly large
when the size of the map increases, whereas the time costs of ACO-
MCTS in all three environments are overlapped as a single line. This
situation is because we limit the maximum search depth of ACO-MCTS;
thus, the time cost is mainly related to the number of simulations
instead of the size of the map. Since the increase in the number of
agents is not significant as the map size does, the time taken by ACO-
MCTS is slightly affected. However, the increase in ACO’s performance
is not linear overall. Although we set limitations in the ACO to avoid
exploring the repeat path, the average computation time depends on
both parameters.
7

Distance to the optimal. The modified Dijkstra’s algorithm computes an
optimal result with the shortest and equivalent travelling distance to all
users because our calculations are based on the Adjacent Matrix, which
stores the shortest (optimal) distance from a user to all other nodes.
We use the modified Dijkstra’s algorithm as the baseline (distance
to optimal = 0) to evaluate the other two methods. ACO and ACO-
MCTS do not guarantee finding either the optimal point or the optimal
distance. In experiments, both algorithms are close to the optimal point,
the distance is acceptable (≤ 10 tiles), and the results are shown in
Fig. 5. Nevertheless, ACO-MCTS is closer to the optimal point while the
map size increases, though both methods share a similar performance
in changing the number of agents. Because of the expansion process,
ACO-MCTS can access more nodes precisely based on previous results,
whereas ACO explores a fresh new path from the beginning. Therefore,
ACO-MCTS typically costs less the number of simulations than ACO. In
this case, adjusting the ACO’s number of simulations is necessary, and
we will discuss this in the next paragraph.

The number of simulations. The number of simulations 𝑛𝑠 is one of
the critical factors affecting the result of ACO-based algorithms. The
total move steps and the accuracy can be improved by adjusting the
number of simulations. We set up an experiment by changing 𝑛𝑠 under
a fixed map size 50 × 50 with 4 agents. Fig. 5(c) shows the relationship
between the number of simulations and the incremental move steps of
two algorithms. For ACO, a more considerable value of 𝑛𝑠 can help the
algorithm find a better path to approach the optimal solution. There-
fore, it needs more computations to avoid unnecessary movements and
reach optimal. However, increasing 𝑛𝑠 will cost more computation time.
By contrast, 𝑛𝑠 = 1000 is sufficient for ACO-MCTS in those tests due to
the expansion process, and the increase in the number of simulations
does not contribute to significant improvements.
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Fig. 5. Tests over the maze environment, showing the performance in terms of the distance to the optimal point and the number of simulations by changing the number of agents
and size of the map. In all graphs, lower is better.
Fig. 6. DRL training statistics of [42] in solving DMS-SD for 22 × 10 nodes.

Choice of maximum exploring depth 𝑑𝑚𝑎𝑥. The purpose of 𝑑𝑚𝑎𝑥 is to
limit the exploring and the simulation part acts like pure ACO when
𝑑𝑚𝑎𝑥 → ∞. Thus, the simulation is able to be early terminated with-
out achieving the goal. Overall, 𝑑𝑚𝑎𝑥 can be a trade-off between the
performance and the computation speed. Specifically, this feature can
potentially limit the performance in some special cases. For example,
when the agent faces a complicated environment (e.g., needs 40 steps to
bypass the wall) and is only with a small exploring depth (e.g., 20), it is
hard to escape from the current state and can be potentially stuck in the
local optimal. Therefore, we usually select a small value for a familiar
environment (e.g., in city navigation), but it could be larger if the
environment is complex, such as a maze. However, increasing 𝑑𝑚𝑎𝑥 con-
sumes more computational resources and requires longer computation
time, as shown in Fig. 4(b).

DRL convergence problems. [12] are two approaches to solve the mul-
tiple users navigation problem in a dynamic environment. [12] uses
fixed rewards; for example, the training agent receives a −5 reward
on collisions and a −0.1 reward on movements, whereas [42] deploys
dynamic reward, such as calculating the distance from the user to the
target. We changed the goal of those two methods to fit our problem,
where the new goal is defined as users meeting at the same node. In our
tests, [12] is difficult to find the destination when the number of users
is big because the reward does not navigate the agent to the meeting
point. Specifically, the probability of users’ meeting at the same point
is 1

(𝑛𝑣)
𝑛𝑝 , which increases exponentially when 𝑛𝑝 increases. This means

users can only meet if they are ‘lucky’ enough. Consequently, the
training agent cannot learn the reward of achieving the goal because it
rarely reaches the meeting point. Nevertheless, the agent can learn to
approach the optimal in our tests when only two users are on the small
8

map. In this case, the modified Dijkstra’s algorithm is even faster as
it does not require training. Another method [42] does not converge
to the optimal solution if the environment is too complicated. For
example, our environment involves ‘walls’ to simulate buildings in the
real world, which are inaccessible to users. The agent fails to learn the
process when the user has to travel a long distance to bypass the wall.
This is because the reward is calculated by straight distance instead
of the actual path length to the destination and does not consider
the environment, which can be a complicated maze. However, apart
from the two disadvantages above, the final training result does not
converge to the optimal in both algorithms. They both generate sub-
optimal solutions that can reach the goal but are still far away from
the optimal (e.g., taking more steps to reach the goal). For example, as
shown in Fig. 6, the average step taken for an episode, the Steps Taken
Mean (STM), of [42] in solving DMS-SD decreases to around 200 steps
as more training is performed, where each step means users move once.
It shows that the DRL agent is trying to learn the optimal policy, and
the agent reaches its best solution at around 500 episodes. However, the
optimal STM should be approximately ten steps, indicating that there
is still a significant gap between the training results and the optimal
solution.

5. Conclusion

In this paper, we propose an emerging collaborative and dynamic
path planning problem: DMS-SD, which can be useful in the smart city
navigation. We then propose our method in this work, which sacrifices
the accuracy to achieve better computation speed. Different from the
ordinary MCTS, a maximum exploring depth is applied preventing
over-exploration of the map. In the sampling stage, we have used
ACO as the randomisation strategy to navigate movement and avoid
completely random. We have also introduced a new heuristic function
in calculating the node score, instead of a single success rate term.
ACO-MCTS may not be accurate enough if the training environment
is complicated and the maximum exploring depth sets to a small value.
In this case, a higher depth value should be considered. However,
increasing the depth leads to slow down the computation, which may
delay the response to users. As a result, the emission of CO2 and the
congestion can be potentially reduced using our efficient navigation
method.

However, our method still costs more computational resources than
a fixed model, such as DRL based methods, because it does not record
any computed results. In the evaluation, we show the difficulties and
challenges of two state-of-the-art DRL methods to be directly deployed
on solving DMS-SD. For future directions, we believe that the bad
performance in our evaluation is caused by an inappropriate reward
function. Therefore, a proper reward function and simulation environ-
ment settings that perfectly matches our goal for DRL algorithms can
be carefully considered in the future work.
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