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Effective generation for foliated surfaces:
Results and applications

By Calum Spicer at London and Roberto Svaldi at Milano

Abstract. We explore the birational structure and invariants of a foliated surface .X;F /
in terms of the adjoint divisor KF C �KX , 0 < � � 1. We then establish a bound on the auto-
morphism group of an adjoint general type foliated surface .X;F /, provide a bound on the
degree of a general curve invariant by an algebraically integrable foliation on a surface and
prove that the set of �-adjoint canonical models of foliations of general type and with fixed
volume form a bounded family.

1. Introduction

A central challenge in the study of the birational geometry of varieties is to understand
the behavior of the pluricanonical maps

�jmKX jWX Ü PH 0.X;mKX /

as a function of m 2 N, for those varieties which admit non-trivial pluricanonical forms.
In this paper, we are interested in studying this question for rank one foliations on surfaces

.X;F /. Already for surface foliations, the problem of understanding the maps induced by the
sections of mKF appears to be quite challenging. To remedy this issue, we instead consider
a slight perturbation of this problem: namely, we aim to understand the behavior of the maps

�jmKFCnKX jWX Ü PH 0.X;mKF C nKX /; m� n > 0:

Along the way, we prove several new results on the birational structure of foliations in terms
of the adjoint divisors KF C �KX , 0 < � � 1. Considering adjoint divisors of this form is
a natural approach to the study of foliated varieties as it allows us to apply classical results on
the positivity of the canonical bundle of varieties that may not hold if one just considers the
canonical bundle of the foliation, cf. [23].
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programme under the Marie Skłodowska-Curie grant agreement No. 842071.
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2 Spicer and Svaldi, Effective generation for foliated surfaces

Among other applications, these new structural results provide bounds on the automor-
phism groups of foliations (Theorem 1.6), bounds on the degree of curves invariant by an
algebraically integrable foliation (Theorem 1.7). Finally, we also prove a boundedness results
for generalizations of surface foliations of general type, which constitutes important progress
towards the construction of a moduli space of this class of foliations (Theorem 1.3).

1.1. Adjoint MMP. Our first main result is the proof of the existence and termina-
tion of the MMP for divisors of the form KF C �KX for 0 < � � 1. While the existence
(and termination) of the MMP for KX is classical and the MMP for KF is well known [20],
it is not a priori clear that the sum of these results automatically implies that one can run
a .KF C �KX /-MMP. Moreover, even assuming that it was possible to run such MMP, it is not
a priori clear how to bound the singularities of the foliation and variety on the minimal model.

Theorem 1.1 (= Theorem 3.1). Let X be a smooth projective surface and F a rank
one foliation with canonical singularities. Then, for any 0 < � < 1

5
, there exists a birational

morphism 'WX ! Y such that either

(1) KG C �KY is nef, where G D '�F ; or

(2) there exists a morphism f WY !Z such that �.Y=Z/D 1 and�.KG C �KY / is f -ample.

Moreover, Y has klt singularities and G has log canonical singularities.

We also prove the existence of �-adjoint canonical models.

Theorem 1.2 (= Corollary 3.4). Notation as in Theorem 1.1. Suppose in addition that
KF is big. Then there exists a birational morphism

pW .Y;G /! .Ycan;Gcan/

such that

(1) Ycan is projective;

(2) KGcan C �KYcan is an ample Q-Cartier divisor; and

(3) Ycan has klt singularities and Gcan has log canonical singularities.

This �-adjoint canonical model must be contrasted with McQuillan’s notion of a canoni-
cal model of a foliation where the underlying space is, a priori, only an algebraic space, and its
projectivity is not known. Our notion of an �-adjoint canonical model should also be compared
with the minimal partial du Val resolution of the canonical model of a surface foliation, see [7].

We are also able to provide a precise statement on the singularities of the underlying
variety which arise in this MMP, see Corollary 3.3. This control on the singularities which
arise in the course of the MMP is one of the key advantages of working with adjoint foliated
divisors rather than simply with the canonical divisor of a foliation.

1.2. Boundedness and effective birationality. Our next main result is a boundedness
result for �-adjoint canonical models of foliations of general type.

Theorem 1.3 (= Theorem 6.1). There exists a universal real constant � > 0 such that
the following statement holds.
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Fix positive real numbers C; 0 < � < � . The set of foliated pairs

M2;�;C ´ ¹.X;F / j X is a projective klt surface; F is rank one;
.X;F / is an �-adjoint canonical foliated pair; KF is big;

KF C �KX is ample, and .KF C �KX /
2
� C º

forms a bounded family.

We refer to Section 2.7 for the precise definition of �-adjoint canonical, but we remark
here that it is a natural assumption on the singularities of .X;F /. Analogous results for a more
restricted class of foliated pairs have recently appeared also in [8].

The key technical ingredient in the above statement is the following effective birationality
statement which follows from our results on the MMP and some new results of Birkar on
adjoint linear series [2].

Theorem 1.4 (= Corollary 4.8). Let � > 0 be the constant whose existence is established
in Theorem 1.3. Then, for all 0 < � < � , there exists a positive integer M DM.�/ such that
the following statement holds.

Let X be a smooth projective surface and let F be a rank one foliation on X with
canonical singularities. Suppose that KF is big. Then

(1) KF C �KX is big; and

(2) jM.KF C �KX /j defines a birational map.

In fact, we are able to prove versions of Theorems 1.1, 1.2, 1.3 and 1.4 which allow for
the presence of a boundary divisor.

Theorem 1.4 also supplies a partial answer to [23, Problem 6.8]. To provide a complete
answer to this problem would require an exact value on the universal constant � in Theorem 1.4.

Problem 1. Determine an effective upper bound for � .

We also remark that, as examples in [17] show, there does not exist a universal M such
that jMKF j defines a birational map, so to get an effective birationality statement, the small
perturbation by KX is necessary.

1.3. Numerical invariants of surface foliations. We are able to provide several appli-
cations of the above results to the study of numerical invariants of foliated surfaces, automor-
phism groups of foliations and to the study of curves invariant by foliations.

Given a big divisor Q-Cartier divisor D, the volume vol.D/ is defined to be

vol.D/´ lim sup
m!1

h0.mD/

mn=nŠ
:

By [16, Corollary 2.2.45], we may uniquely extend the volume to a function on R-Cartier
divisors. The volume is a fundamental invariant in birational geometry and, in analogy with the
classical MMP, cf. [14], we expect the set

Vn´ ¹vol.X;KF / j F is a rank one foliation of general type with canonical
singularities and X is a klt projective variety of dimension nº
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to be highly structured for each fixed dimension n. In particular, we expect Vn to be bounded
away from 0. This is a challenging problem, already for n D 2, but by perturbing KF slightly,
we can verify a related prediction.

Theorem 1.5 (= Theorem 5.2). Let � > 0 be the constant whose existence is established
in Theorem 1.3. Then, for all 0 < � < � , there exists 0 < v.�/ such that the following statement
holds.

IfX is a smooth projective surface, F is a rank one foliation with canonical singularities
and KF is big, then vol.KF C �KX / � v.�/.

In fact, we are able to prove the above statement allowing for a boundary divisor. As
a direct consequence of the above volume bound, we get another bound on the automorphism
group of a foliation of general type.

Theorem 1.6 (= Theorem 5.3). Let � > 0 be the constant whose existence is established
in Theorem 1.3. Then, for all 0 < � < � , there exists 0 < C D C.�/ such that the following
statement holds.

IfX is a smooth projective surface, F is a rank one foliation with canonical singularities
and KF is big, then

# Bir.X;F / � C � vol.KF C �KX /:

In analogy with the classical situation, it would be nice to find a bound which depends
only on vol.KF /. See also [9] for similar results in this direction.

We were also able to provide a refinement of the bound that is initially proven in [23],
cf. also [7, 13].

Theorem 1.7 (= Theorem 5.1). Let � > 0 be the constant whose existence is established
in Theorem 1.3. Then, for all rational numbers 0 < � < � , there exists 0 < C D C.�/ such that
the following statement holds.

Let X be a smooth projective surface and let F be a rank one foliation on X . Assume
that

(1) KF is big,

(2) .X;F / is �-adjoint canonical,

(3) F admits a meromorphic first integral, and

(4) the closure of a general leaf, L, has geometric genus g.

Then, for any nef divisor H ,

H � L � gCH � .KF C �KX /:

2. Preliminaries

Throughout, we work over an algebraically closed field k of characteristic 0. We refer to
[4] for basic notions regarding foliations, and we refer to [15] for basic notions regarding the
minimal model program. We will assume throughout that all of our foliations are of rank one.
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2.1. ACC/DCC sets. Given a subset I � R, we say that I satisfies the ascending
chain condition (resp. descending chain condition), in short, ACC (resp. DCC), provided any
increasing (resp. decreasing) sequence xn 2 I is eventually constant.

Given a subset I � Œ0; 1� and an R-Weil divisor � on a normal variety, we write � 2 I
to indicate that all the coefficients of � are in I .

We will denote with S the following subset of R:

S ´
°n � 1

n

ˇ̌̌
n 2 N>0

±
[ ¹1º:

2.2. Pairs and triples. Let X be a normal variety and let F be a foliation on X . LetD
be a R-divisor on X . We may uniquely decompose D D Dinv CDn-inv where the support of
Dinv is F -invariant and no component of the support of Dn-inv is F -invariant.

By a (log) pair .X;�/, we mean the datum of a variety X and an effective R-divisor �
such that KX C� is R-Cartier.

By a foliated (log) pair .F ; �/ on a variety X , we mean the datum of a foliation F on
X and an effective R-divisor � such that KF C� is R-Cartier. When we assume that X is
projective, we shall say that the foliated pair is projective.

By a foliated triple .X;F ; �/, we mean the datum of a variety X , a foliation F on X
and an effective R-divisor� such that bothKX C� andKF C�n-inv are R-Cartier. If� D 0,
then we will just write .X;F / in place of .X;F ; �/. When we assume thatX is projective, we
shall say that the foliated triple is projective.

2.3. Transform of a foliation under a rational map. LetX be a normal variety and let
F be a foliation on X and let �WX 0 Ü X be a dominant rational map. Following [10, § 3.2],
we may define the pulled back foliation, denoted ��1F , onX 0. In the case where � is birational
and G is a foliation on X 0, we will denote by ��G the pullback of G along the birational map
��1 and refer to it as the transform of G by �.

2.4. Foliation singularities. We are typically interested only in the case when � � 0,
although it simplifies some computations to allow � to have negative coefficients.

Given a birational morphism � W zX ! X and a foliated pair .F ; �/ on X , let zF be the
pulled back foliation on zX . We may write

K zF D �
�.KF C�/C

X
a.E;F ; �/E;

where the sum runs over all the prime divisors of zX and

��
X

a.E;F ; �/E D ��:

The rational number a.E;F ; �/ denotes the discrepancy of .F ; �/ with respect to E.

Definition 2.1. Let X be a normal variety and let .F ; �/ be a foliated pair on X . We
say that .F ; �/ is terminal (resp. canonical, klt, log canonical) if a.E;F ; �/ > 0 (resp. � 0,
> ��.E/ and b�c D 0, � ��.E/) for any birational morphism � W zX ! X and for any prime
divisor E on zX , where

�.E/´

´
1 if E is not F -invariant;

0 if E is F -invariant:
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Moreover, we say that the foliated pair .F ; �/ is log terminal if a.E;F ; �/ > ��.E/
for any birational morphism � W zX ! X and for any �-exceptional prime divisor E on zX .

We shall say that a foliated pair .F ; �/ on a normal variety X is strictly log canonical
at a point x 2 X if there exists a geometric valuation E centered at x such that �.E/ D 1 and
a.F ; �;E/ D �1. In particular, a strictly log canonical foliated pair is not canonical.

In the next sections, we will also work with the class of F-dlt foliated pairs .F ; �/ (in
short, F-dlt pairs). We refer the reader to [6, Definition 3.6] for the definition of this class of
foliated pairs.

Remark 2.2. Elsewhere in the literature, �.D/ is denoted by �.D/. However, in this
paper, we will frequently use � to denote a small positive real number, and so, to avoid confu-
sion, we have adopted this new notation.

Remark 2.3. The quantities �.E/ and a.E;F ; �/ are independent of � . If � D 0, we
will write a.E;F / for a.E;F ; �/.

In the case where F D TX , no exceptional divisor is invariant, i.e., �.E/ D 1, and so this
definition recovers the usual definitions of (log) terminal, (log) canonical, see [15]. In this case,
we will write a.E;X;�/ for a.E; TX ; �/.

Definition 2.4. Given a pair .X;�/ and � � 0, we say that .X;�/ has �-lc singularities
provided, for all birational morphisms � WX 0 ! X and �-exceptional divisors E, we have

a.E;X;�/ � �.1 � �/:

We say a foliated triple .X;F ;D/, where X is a surface and F has rank one, is foliated
log smooth provided .X;D/ has simple normal crossings and F has reduced singularities and
each component ofD which is not invariant is everywhere transverse to F . We recall that these
conditions entail that each component of D is disjoint from the singularities of F . By [24], it
is known that every surface foliated triple .X;F ;D/ admits a resolution � WX 0 ! X such that

.X 0; ��1F ; ��1� D CE/

is foliated log smooth, where E D exc.�/. We call such a resolution a foliated log resolution.
For a choice of � > 0, we define the �-adjoint log canonical divisor of a triple .X;F ; �/

to be
K.X;F ;�/;� ´ .KF C�n-inv/C �.KX C�/:

We say a triple .X;F ; �/ is adjoint general type (pseudo-effective, etc.) if, for all 0 < � � 1

sufficiently small, we have K.X;F ;�/;� is big (pseudo-effective, etc.).
Let P 2 X be a germ of a normal variety and let m be the maximal ideal of P . Let 𝜕 be

a vector field on X which leaves P invariant. Since 𝜕.m/ � m, we get an induced linear map
𝜕0Wm=m2 ! m=m2, which we call the linear part of 𝜕 at P .

We recall the following characterization found in [20, Fact I.1.8].

Proposition 2.5. Let F be a germ of a rank one foliation on a normal variety P 2 X ,
and suppose that KF is Cartier and that P is F -invariant. Let 𝜕 be a vector field generating
TF near P . Then F is log canonical at P if and only if 𝜕0 is non-nilpotent.
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2.5. Basic definitions of the MMP. We recall some of the main definitions commonly
used in the Minimal Model Program. Let X be a normal projective variety. We denote by
N1.X/ the R-vector space spanned by 1-cycles on X modulo numerical equivalence (e.g. see
[15, Definition 1.16]). We denote by NE.X/ � N1.X/ the subset of effective 1-cycles� kX

iD1

aiCi

�
;

where a1; : : : ; ak are positive real numbers and C1; : : : ; Ck are curves in X , and we denote
by NE.X/ its closure (e.g. see [15, Definition 1.17]). A ray is a 1-dimensional subcone R of
NE.X/ and it is called extremal if for any u; v 2 NE.X/ such that uC v 2 R, we have that
u; v 2 R. IfD is a Q-Cartier Q-divisor on X , then the extremal ray R is said to beD-negative
if D � C < 0 for any curve C such that ŒC � 2 R. A projective birational morphism f WX ! Y

between normal projective varieties is said to be an extremal contraction if the relative Picard
number �.X=Y / is equal to one. The extremal contraction is called a divisorial contraction if
its exceptional locus is a divisor. Given an extremal ray R � NE.X/, an extremal contraction
f WX ! Y is said to be associated to R if the locus of R coincides with the exceptional locus
of f .

2.6. Recollection on the foliated MMP. We summarize some basic results on the
existence of the MMP for surface foliations, as well as extending some well-known results
to the case of pairs .F ; �/ with log canonical singularities.

Lemma 2.6. Let P 2 X be a germ of a surface singularity and let F be a rank one
foliation onX which is strictly log canonical atP . Let�WY ! X be any foliated log resolution
which is an isomorphism over X n P . Then there is exactly one �-exceptional divisor which is
transverse to ��1F .

Proof. Let �WX 0 ! X be a foliated log resolution of F . Observe that � will extract
every �-exceptional divisor which is transverse to ��1F . We may write

��KF C F D KG C

kX
iD1

Ei ;

where G D ��1F , where theEi are the non-G invariant exceptional divisors and where F � 0.
By [25, Corollary 2.26], we may run a KG -MMP over X , call it �WX 0 ! X 00, set H D ��G

and let �WX 00 ! X be the induced map. Only curves tangent to G will be contracted by this
MMP, and so no component of

Pk
iD1Ei will be contracted.

By foliation adjunction, we see that

.KH CE
0
i / �E

0
i � 0; where E 0i D ��Ei ;

see [25, Proposition 3.4] (note that in the notation of [25, Proposition 3.4] the restricted folia-
tion HE 0

i
is the foliation by points on E 0i and so KHE0

i
D 0). In particular, KH C

P
E 0i is nef

over X . By the negativity lemma [15, Lemma 3.39], we have ��F D 0, and soKH C
P
E 0i is

numerically trivial over X . Since KH is nef over X , it likewise follows that

�

X
E 0i D KH �

�
KH C

X
E 0i

�
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is nef over X . Since � has connected fibers, exc.�/ D
P
E 0i , and so

P
E 0i is connected. This

together with the inequalities

0 � .KH CE
0
i / �E

0
i �

�
KH C

kX
iD1

E 0i

�
�E 0i D 0

implies that k D 1, as required.

Lemma 2.7. Let X be a normal projective surface with a rank one foliation F and
� � 0 such that .F ; �/ is log canonical. Suppose that KF is Q-Cartier. Let R � NE.X/ be
a .KF C�/-negative extremal ray and let C � X be an F -invariant curve such that

(1) ŒC � 2 R; and

(2) C contains a strictly log canonical singularity of F .

Then X is covered by curves spanning R and �.X/ D 1. In particular,KF C� is not pseudo-
effective.

Proof. Since .F ; �/ is log canonical by [25, Remark 2.12], we know that no component
of � is F -invariant. In particular, � � C � 0. So it follows that KF � C < 0.

Let P 2 C be a strictly log canonical singularity of F . If nWC ! C is the normalization,
then [5, Proposition 2.16] implies that we may write n�KF D KC C‚, where ‚ � 0 and
b‚c is supported exactly on the preimage of the non-terminal points of F contained in C . In
particular, sinceKC C‚ < 0, it follows that, for all otherQ 2 C ,Q ¤ P , F is terminal atQ.

To see that C moves, we may freely replace X by a smaller open neighborhood of C
so that F is strictly log canonical at only P . Let f WX 0 ! X be an F-dlt modification, which
exists by [6, Theorem 1.4]. Thus,KF 0 CE D f

�KF , where F 0 D f �1F andE is the unique
irreducible f -exceptional divisor which is not F 0-invariant, see Lemma 2.6, which implies that
KF 0 � C

0 < 0, where C 0 is the strict transform of C . Let us observe that .F 0; E/ is F-dlt, in
particular log canonical, in a neighborhood of E. But, since F 0 is non-dicritical, then for any
divisor F centered over a point in a neighborhood of E, a.F;F 0; E/ � �.F / D 0, which in
turn implies that F 0 is terminal in a neighborhood of E. Hence, F 0 is terminal at C 0 \E. As
.KF 0 CE/ � C

0 < 0, then, by adjunction [25, Lemma 8.9], F 0 is terminal at each point of C 0.
By Reeb stability [5, Proposition 3.3], C 0 moves in family covering X 0, and hence C moves in
a family covering X .

Finally, we claim that C 2 > 0. This follows because

.C 0/2 D 0; C 0 �E > 0 and f �C D C 0 C aE C F;

where a > 0 and F � 0 is f -exceptional. Thus, C is a big divisor, and so C , and hence R, is
contained in the interior of NE.X/. As R is also an extremal ray of NE.X/, then � D 1.

Theorem 2.8. Let X be a projective klt surface, let � � 0 and let F be a rank one
foliation such that .F ; �/ and .X;�/ are log canonical.

LetR � NE.X/ be a .KF C�/-negative extremal ray. Then there exists an F -invariant
curve C such that R D R>0ŒC � � NE.X/.

Moreover, there exists a contraction cRWX ! Y contracting exactly those curves in X
whose numerical classes are contained in R and such that the following conditions holds:
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(1) if cRWX ! Y is birational, then cR contracts only F -invariant curves;

(2) if cRWX ! Y is a fiber type contraction, then R is .KX C�/-negative;

(3) if there is a strictly log canonical singularity of F on C , then �.X/ D 1, �.KF C�/

and �.KX C�/ are ample.

Moreover, in all cases, the relative Picard number of the contraction is 1.
In particular, we may run a .KF C�/-MMP.

Proof. By the cone theorem for surface foliations [25, Theorem 6.3 and Remark 6.4],
a .KF C�/-negative extremal ray R � NE.X/ is spanned by the class of a curve C which is
F -invariant.

Let us consider the case where C 2 � 0. By [25, Theorem 6.3], there exists a nef Cartier
divisor HR such that HR �R D 0 and HR is positive on every other extremal ray. Since
C 2 � 0, it follows that HR cannot be big, i.e., H 2

R D 0. Arguing as in the proof of [25, Theo-
rem 6.3], using [25, Corollary 2.28], it follows that X is covered by a family of rational curves
tangent to F whose numerical class spans R.

Claim 1. Let † be a general choice of such a curve; then .KX C�/ �† < 0.

Proof of Claim 1. Let pWY ! X be an F-dlt modification, which exists by [6, Theo-
rem 1.4]. If G D p�1F and �0 D p�1� �, then

KG C�
0
C

X
i

�.Ei /Ei D p
�.KF C�/;

where Ei are the p-exceptional divisors. By construction, G is non-dicritical; hence, it is
induced by a fibration Y ! B such that †0 D p�1� † is a fiber of Y ! C . It follows that
KY �†

0 D KG �†
0 D �2. We may write

KY C�
0
C

X
i

aiEi D p
�.KX C�/;

where ai � 1 since .X;�/ is log canonical. If �.Ei / D 0, thenEi \†0 D ; since†0 is general,
and so Ei �†0 D 0. Hence,�X

i

�.Ei /Ei

�
�†0 �

�X
i

aiEi

�
�†0 and

0 > .KF C�/ �† D
�
KG C�

0
C

X
i

�.Ei /Ei

�
�†0

�

�
KY C�

0
C

X
i

aiEi

�
�†0 D .KX C�/ �†:

In view of Claim 1, then the existence of cR is immediate since cR can be constructed as
the contraction of a .KX C .1 � �/�/-negative extremal ray 0 < � � 1, see [15, Theorem 3.7].
Since cR is a fiber type contraction only if C 2 � 0, then item (2) above also follows at once.

Item (3) follows from Lemma 2.7 and (2).
Now consider the case where C 2 < 0. In this case, the contraction cR, if it exists, will be

birational and it will only contract C , which proves (1).
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From item (3), we know that F has canonical singularities in a neighborhood of C . We
may apply [20, Section III.1-2] to contract C ; strictly speaking, in [20] an entire chain of ratio-
nal curves is contracted, but the arguments provided work equally well to contract a singleKF -
negative curve. For the reader’s convenience, we will supply an alternate proof of the existence
of this contraction. By [6, Theorem 11.3], F has non-dicritical singularities in a neighborhood
of C , and so, by [25, Lemma 8.14]1), this implies that .X;�C C/ is a log canonical pair.

Claim 2. .KX C�C C/ � C < 0.

Proof of Claim 2. Let pWY ! X be an F-dlt modification, which can be performed
by [6, Theorem 1.4]. Let C 0 be the strict transform of C and let �0 D p�1� �. We write
.KY C�

0 C C 0 C
P
i Ei / D p

�.KX C�C C/C
P
i biEi , where the Ei are the p-excep-

tional prime divisors and bi � 0. Since F is non-dicritical, then for all i , Ei is invariant; thus,
KG C�

0 D p�.KF C�/. Since G is F-dlt, [6, Lemma 3.12] implies that G is terminal at the
singular points of X . We may then apply [25, Lemma 8.9] to conclude that

.KG C�
0/ � C 0 �

�
KY C�

0
C C 0 C

X
i

Ei

�
� C 0 � .KX C�C C/ � C:

Again, here, the cited results are stated for threefolds but apply equally well to surfaces as
explained above.

We conclude by observing that .X; .1 � �/.�C C// is klt for all 0 < � and

.KX C .1 � �/.�C C// � C < 0 for 0 < � � 1;

and so we may contract C by a .KX C .1 � �/.�C C//-negative extremal contraction, see
[15, Theorem 3.7].

Since all our contractions are .KX C‚/-negative contractions for a klt pair .X;‚/,
[15, Corollary 3.17] implies that they are of relative Picard number one.

Finally, it is a standard argument to show that the existence of divisorial contractions as
explained above implies the existence of the .KF C�/-MMP.

Remark 2.9. Let notation be as in Theorem 2.8. The above proof shows that if
P
i Ci is

any collection of reduced F -invariant curves such that F has canonical singularities in a neigh-
borhood of

P
i Ci , then each step of the KF -MMP is also a step of the .KX C�C

P
Ci /-

MMP. In particular, if .X;�C
P
Ci / is dlt and �WX ! X 0 is a run of the .KF C�/-MMP,

then .X 0; ��.�C
P
Ci // is again dlt.

Lemma 2.10. Let X be a normal surface, let D be a reduced Weil divisor and let F be
a rank one foliation on X such that

(1) KF is Cartier; and

(2) every component of D is F -invariant.

Then there exists a log resolution of .X;D/ which only extracts divisors E of foliation discrep-
ancy at most ��.E/.

1) Let us observe that both [6, Theorem 11.3] and [25, Lemma 8.14] are stated for threefolds. We can deduce
the analogous statement for rank one foliation on surfaces by applying the results to the threefold X � B , where B
is a smooth curve, and to the foliation ��1F , where � WX � B ! X is the projection.
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Proof. The problem is local about any point P 2 X , so we may freely assume .X;D/
is not log smooth at P and that F is generated by a vector field 𝜕. Since .X;D/ is not log
smooth at P , either X orD is singular at P , and so, by [5, Lemma 2.6], P is invariant under 𝜕.
By [3, Lemma 1.1.3], if bW zX ! X is the blow up in P , then 𝜕 lifts to a vector field z𝜕 on zX ,
which moreover leaves b�1.P / invariant.

A log resolution of .X;D/ may be achieved by repeatedly blowing up centers where
.X;D/ is not log smooth, so by applying the above observation and arguing by induction on
the number of blow ups in a log resolution, we may produce a log resolution � WX 0 ! X and
a lift 𝜕0 of 𝜕 which leaves ��1.P / invariant.

Because 𝜕0 leaves ��1.P / invariant, we see that if F is a �-exceptional divisor with
�.F / D 1, then 𝜕0 vanishes along F . Our first claim then follows by observing that the foliation
discrepancy along a divisor F is exactly �a, where a is the order of vanishing of 𝜕0 along F .

Lemma 2.11. Let P 2 X be a germ of a normal surface and let F be a rank one
foliation on X . Suppose that F is strictly log canonical at P . Then F is Gorenstein at P .

Proof. Let � WP 0 2 X 0 ! P 2 X be the index one cover associated to KF with Galois
group G Š Z=mZ, let F 0 D ��1F and let 𝜕 be a vector field defining F 0. By Lemma 2.20,
we have F 0 is strictly log canonical at P 0.

Let m denote the maximal ideal of X 0 at P 0. Since F 0 is strictly log canonical by
[21, Fact III.i.3] (up to renormalizing 𝜕 by a constant in C), we may write the linear part
of 𝜕 as

𝜕0 D
X

nixi
𝜕
𝜕xi

;

where n1; : : : ; nk are positive integers and x1; : : : ; xk 2 m give a basis of m=m2.
Let g 2 G. On one hand, by assumption, we may write g�𝜕 D �𝜕, where � is a primitive

m-th root of unity. On the other hand, from the equality g�.g�𝜕.x// D 𝜕.g�x/ for any x 2 m,
we see that linear parts of g�𝜕 and 𝜕 have the same eigenvalues. It follows that

¹n1; : : : ; nkº D ¹�n1; : : : ; �nkº;

and so � D 1, i.e., KF was Gorenstein to begin with.

2.7. .�; ı/-adjoint log canonical foliated singularities. We wish to measure singulari-
ties of triples .X;F ; �/ in terms of howK.X;F ;�/;� changes under birational transformations.
This idea was initially considered in [23], see Remark 2.13 below, and the approach here is
a natural extension of the ideas introduced there.

Definition 2.12. Let .X;F ; �/ be a foliated triple. Fix � > 0 and ı � 0.
We say that .X;F ; �/ is .�; ı/-adjoint log canonical (resp. .�; ı/-adjoint klt) provided

that, for any birational morphism � WX 0 ! X , if we write

.KF 0 C�
0
n-inv/C �.KX 0 C�

0/ D ��
�
.KF C�n-inv/C �.KX C�/

�
CE;

where

� E D
P
aiEi is �-exceptional, and

� �0´ ��1� �,
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then for all i ,
ai �.�.Ei /C �/.�1C ı/

.resp.; b�c D 0 and ai >.�.Ei /C �/.�1C ı//:

When ı D 1, we will refer to .�; ı/-adjoint log canonical as �-adjoint canonical. When
ı D 0, we will refer to .�; ı/-adjoint log canonical as �-adjoint log canonical.

Remark 2.13. In [23], the notion of �-canonical was defined whereby singularities
were measured by considering how the adjoint series KF C �N

�
F

transforms under blow ups.
By re-writing

KF C �N
�
F D .1 � �/KF C �KX ;

then it is immediate to see that if a foliated pair .X;F / is �
1C�

-canonical in the sense of [23],
then it is also .�; 1/-adjoint log canonical in the sense of Definition 2.12. For various computa-
tions we need to perform, working with KF C �KX seemed preferable to us, hence the slight
change in the definition.

The following three lemmata are immediate consequences of the definition of .�; ı/-ad-
joint log canonical singularities.

Lemma 2.14. Let .X;F ; �/ be a foliated triple and � > 0.

(1) Let 0 � ı0 < ı 2 Œ0; 1�. If .X;F ; �/ is .�; ı/-adjoint log canonical, then it also .�; ı0/-
adjoint log canonical.

(2) Assume that � D 0 and that .X;F / is �-adjoint canonical.

(a) If F has canonical singularities, .X;F / is �0-adjoint canonical for all 0 < �0 � �.
(b) If X has canonical singularities, .X;F / is �00-adjoint canonical for all �00 � �.

Proof. Follows from a direct computation.

Lemma 2.15. LetX be a smooth surface and let 0 � � be a Q-divisor with snc support
such that b�c D 0. Let F be a rank one foliation such that .F ; �n-inv/ is canonical. Let ı > 0
be such that all coefficients of � are at most 1 � ı.

Then .X;F ; �/ is .�; ı/-adjoint log canonical for all � > 0.

Proof. Follows from a direct computation.

Lemma 2.16. Let pWX ! Y be a birational morphism between surfaces, let .F ; �/ be
a foliated pair on X , where F is of rank one, and let G ´ p�F . Fix � > 0 and ı � 0. Assume
that

(1) the coefficients of � are at most 1 � ı;

(2) �K.X;F ;�/;� is p-nef; and

(3) .X;F ; �/ is .�; ı/-adjoint log canonical.

Then .Y;G ; p��/ is .�; ı/-adjoint log canonical.

Proof. This is a direct consequence of the negativity lemma [15, Lemma 3.38].
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Our goal for the last part of this subsection is to prove the following generalization of
[23, Proposition 4.9].

Proposition 2.17. Let I � Œ0; 1� be a subset satisfying the DCC. Then there exists
a positive real number E D E.I / such that the following statement holds.

Let 0 2 X be a germ of a klt surface singularity, let F be a rank one foliation on X
and let � � 0 be a divisor with � 2 I so that .X;F ; �/ is �-adjoint log canonical for some
0 < � < E.I /. Then .F ; �n-inv/ is log canonical.

We start by proving three ancillary lemmata that will be used in the proof.

Lemma 2.18. Let 𝜕 be a germ of a vector field on P 2 C2, and suppose that 𝜕 is singu-
lar at P and the linear part of 𝜕 at P is equal to 0. Let � WX ! C2 be the blow up at P with
exceptional divisor E and let F be the foliation generated by 𝜕. Then

K��1F D �
�KF � bE;

where b � �.E/C 1.

Proof. Using notation as in [4, Chapter 1, § 2], let ! be a one form with an isolated zero
at P and 𝜕.!/ D 0. Let a.P / denote the order of vanishing of ! at P and let l.P / denote the
order of vanishing of ��! along E.

A direct computation shows that l.P /D a.P /whenE is invariant and l.P /D a.P /C 1
when E is not invariant. Another straightforward calculation shows that the discrepancy of our
blow up is �.l.P / � 1/ D �.a.P /C �.E/ � 1/, and by assumption, a.P / � 2, from which
our claim follows.

Lemma 2.19. For 0 < � < 1
5

, the following holds.
Let F be a rank one foliation on P 2 C2, and suppose that .C2;F / is �-adjoint log

canonical at P . Then F is log canonical at P .

Proof. Suppose that F is not log canonical at P .
Following the proof of [23, Proposition 4.9] (see also the proof of [4, Theorem 1.1]), we

may find a sequence of at most 3 blow ups bi W .Xi ;Fi /! .Xi�1;Fi�1/ such that

(1) .X0;F0/´ .C2;F /;

(2) bi is a blow up in the singular locus of Fi�1; and

(3) on the last blow up, call it bn, we blow up a foliation singularity whose linear part is
equal to 0.

Let � WXn ! C2 denote the composition of these blow ups and let E be the exceptional divi-
sor of bn. By Lemma 2.18, a.E;F / � �.�.E/C 1/, and a direct computation shows that
a.E;X/ � 4. Thus,

a.E;F /C �a.E;X/ � �.�.E/C 1/C 4�:

For all � < 1
5

, we have �.�.E/C 1/C 4� < �.�.E/C �/, which in turn implies that

a.E;F /C �a.E;X/ < �.�.E/C �/;

contradicting the assumption that .X;F / is �-adjoint log canonical.
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We remark that if � > 0, then an �-adjoint canonical singularity is not necessarily a ca-
nonical foliation singularity, i.e., it could be strictly log canonical. Moreover, if we fix � > 0,
then a terminal singularity of F is not necessarily .�; 1/-adjoint log canonical. Consider for
instance the quotient of .C2; h 𝜕𝜕x i/ by the action of Z=mZ given by .x; y/ 7! .�x; �by/, where
.m; b/ D 1. This will always give a terminal foliation singularity; however, it is not �-adjoint
canonical for � > 1

m�2
.

Lemma 2.20. Let X be a normal variety and let F be a rank one foliation on X .
Let � WX 0 ! X be a finite morphism, étale in codimension 1, and set F 0´ ��1F . Write
�0 D ���, and note that �0n-inv D �

��n-inv. Fix � > 0 and ı � 0.

(1) Suppose that .X;F ; �/ is .�; ı/-adjoint log canonical. Then .X 0;F 0; �0/ is .�; ı/-ad-
joint log canonical.

(2) Suppose that .F 0; �0n-inv/ is (log) canonical. Then .F ; �n-inv/ is (log) canonical.

Proof. The proof of item (1) and the log canonical case of item (2) is essentially identical
to the proof of [15, Proposition 5.20], making use of the statement of foliated Riemann–
Hurwitz found in [10, Lemma 3.4] which gives us the following adjoint Riemann–Hurwitz
formula for a finite morphism � WY ! X for all � � 0:

K.Y;G ;���/;� D �
�K.X;F ;�/;� C

X
D2Div.Y /

.rD � 1/.�.D/C �/D;

where G D ��1F and rD is the ramification index of � along D.
We now explain the proof of item (2) in the canonical case. Let f WW ! X be a birational

morphism, and consider the following diagram:

W 0 W

X 0 X;

 ! g

 

!
�

 ! f

 

!
�

where W 0 is the normalization of the main component of W �X X 0. Set H ´ f �1F and
H 0´ g�1F 0. Let E � W be an exceptional divisor, let E 0 be a component of ��1.E/ and
let r be the ramification index of � along E 0. By assumption, F 0 has canonical singulari-
ties, and so, by [21, Corollary III.i.4], every g-exceptional divisor is H 0-invariant. Thus, every
f -exceptional divisor is H -invariant. Doing a calculation analogous to the one in [15, Propo-
sition 5.20] and making use of the foliated Riemann–Hurwitz formula [10, Lemma 3.4] and
noting that �.E 0/ D 0 gives us

a.E 0;F 0; �0/ D ra.E;F ; �/:

Since a.E 0;F 0; �0/ � 0, it follows that a.E;F ; �/ � 0 as required.

Proof of 2.17. Since 0 2 X is a klt singularity, it is a quotient singularity, and so, by
Lemma 2.20, we may freely reduce to the case where X D C2. We may also assume, without
loss of generality, that � D �n-inv, and by taking � < 1

5
and applying Lemma 2.19, we may

assume that F is log canonical at 0.
We now proceed by arguing in cases, based on whether or not F is singular at 0.
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Case 1. We assume that F is singular at 0. Since F is log canonical at 0, it suffices to
show that, for � sufficiently small, if .X;F ; �/ is �-adjoint log canonical, then � is disjoint
from 0.

So suppose that 0 is in the support of �, let � WX ! C2 be the blow up at 0 with excep-
tional divisor C , let i0 be the smallest strictly positive element of I , let G D ��1F and let
�0 D ��1� �.

Since F is log canonical and singular at 0, we have that the blow up at 0 has foliation
discrepancy equal to ��.C /, and soKG C�

0 D ��.KF C�/C aC , where a � ��.C / � i0,
and KX C�0 D ��.KC2 C�/C bC , where b � 1 � i0. It follows that

K.X;G ;�0/;� D �
�.K.C2;F ;�/;�/C .aC �b/C;

where aC �b � ��.C / � i0 C �.1 � i0/.
Now .C2;F ; �/ will fail to be �-adjoint log canonical if we have the inequality

��.C / � i0 C �.1 � i0/ < �.�.C /C �/ or equivalently
�.C /C i0 � �.1 � i0/

�.C /C �
> 1:

However, this inequality will hold for all � smaller than some constant depending only on i0.

Case 2. We assume that F is smooth at 0. Let 0 2 L be a germ of a leaf through 0, and
observe that the discrepancies of .F ; �/ are exactly the log discrepancies of .X;�C L/, see
[25, Lemma 8.14] and its proof (again, we remark that the cited lemma is proven for threefolds,
but holds for surfaces as well). Thus, to show that .F ; �/ is log canonical, it suffices to show
that .X;�C L/ is log canonical.

We now claim that .X;F ; �/ being �-adjoint log canonical implies that .X;�C 1
1C�

L/

is log canonical. Indeed, let � WY ! X be any birational morphism, and let �Y and LY
denote the strict transforms of � and L respectively, and let C D

P
Ci be the sum of the

�-exceptional divisors with coefficient equal to 1. Note that all the Ci are invariant. Thus, by
definition of �-adjoint log canonical and the above observation, we may write

.KY C�Y C LY C C/C �.KY C�Y / D �
�
�
.KX C�C L/C �.KX C�/

�
C

X
aiCi ;

where ai � ��. Dividing the above equality by 1C � gives

KY C�Y C
1

1C �
.LY C C/ D �

�
�
KX C�C

1

1C �
L
�
C

X ai

1C �
Ci :

Note that we always have the inequality 1�ai
1C�
� 1 for all i , so it follows that .X;�C 1

1C�
L/

is log canonical.
Let � be the log canonical threshold of .X;�/ with respect to L. We have just shown

� � 1
1C�

. By the ACC for log canonical thresholds [14, Theorem 1.1], we see that there is
a fixed �0 depending only on I so that if � � �0, then � D 1, in which case .X;�C L/ is log
canonical, which implies that .F ; �/ is log canonical.

Choose E.I / so that � < E.I / implies

(1) 1
1C�
� �0;

(2) � < 1
5

; and

(3) �.C/Ci0��.1�i0/
�.C/C�

> 1.

We therefore see that if � < E.I /, then .F ; �/ is log canonical.
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2.8. A general boundedness result.

Lemma 2.21. Fix positive real numbers �; � . Let X be a projective �-lc variety of
dimension n and let N be an R-divisor on X such that

(1) N is nef and big;

(2) N �KX is pseudo-effective; and

(3) N D P CE with P integral and pseudo-effective, and E � 0 is effective and all its
non-zero coefficients are at least � .

Then there exists an m D m.dim.X/; �; �/ such that, for any m0 � m, jbm0N cj defines a bira-
tional map.

Proof. This is [2, Theorem 4.2]

2.9. Boundedness and foliations. We make note of a simple result on the boundedness
of foliations in families.

We recall that a bounded family of proper normal surfaces is a proper and flat morphism
f WX ! T of finite type varieties such that any fiber of f is a normal surface. When T is
smooth (but not necessarily connected), then each connected component of X is normal.

Let X be a normal variety. By a Weil divisorial sheaf K , we mean a sheaf of the form
OX .K/, where K is a Weil divisor on X .

When discussing boundedness for foliated surfaces, we will use the following standard
technical result about families of such pairs.

Lemma 2.22. Let f WX ! T be a bounded family of normal surfaces and let K be
a Weil divisorial sheaf on X.

Assume that the following hold:

(1) T is smooth;

(2) f WX ! T is flat; and

(3) for all t 2 T , the restriction KjXt is reflexive.

Then there exists a bounded family of normal surfaces f 0WX0 ! T 0, with T 0 smooth, and
a rank one foliation F on X0 which is tangent to f 0 satisfying the following condition.

For all t 2 T and for any foliation Gt on Xt of canonical divisor KjXt
, there exists

t 0 2 T 0 such that
Xt ' X0t 0 ; F jXt0

' Gt :

The lemma follows from hypotheses (1)–(3) and from applying classical results on flat-
ness and base change.

The above result justifies the following definition a bounded family of foliated triples.

Definition 2.23. A bounded family of d -dimensional foliated triples is the datum of a
foliated triple .Y;G ; �/, where G has rank one, together with a projective morphism f WY ! T

to a variety of finite type T such that

(1) every fiber of f is normal and � does not contain any fiber of f ;
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(2) the singular locus of Y intersects every fiber in codimension at least 2;

(3) G � TY=T ; and

(4) for all t 2 T , .Yt ;Gt ; �t / is a projective foliated triple with dim Yt D d , where

Gt ´ .G jYt /
�� and �t ´ �jYt :

We will often use the streamlined notation f W .Y;G ; �/! T to denote bounded families
of triples. Given one such bounded family of triples and t 2 T , we will denote by .Yt ;Gt ; �t /
the projective foliated triple induced on the fiber over the point t .

We will also say that a collection D of projective d -dimensional foliated triples is bound-
ed (or forms a bounded family) if there exists a bounded family of foliations f W .Y;G ; �/! T

such that any triple .X;F ; �/ 2D appears as one of the fibers of family given by f .

3. Adjoint MMP

Let X be a smooth projective surface and F a foliation with reduced singularities. Under
this assumption, it is known that we may run either one of a KX -MMP or a KF -MMP start-
ing at X or at .X;F / respectively. The goal of this section is to show that we may also run
a K.X;F ;�/;�-MMP for � > 0 sufficiently small, see Theorem 3.1. We will show, moreover,
that the singularities that arise in the run of such MMP are relatively mild, cf. Corollary 3.3.

3.1. Running the K.X;F ;�/;�-MMP. We start by proving the existence and termina-
tion of the K.X;F ;�/;�-MMP.

Theorem 3.1. Let .X;F ; �/ be a projective foliated triple, where X is a surface,
.X;�/ is dlt and F is rank one. Fix ı � 0. Suppose that � 2 I \ Œ0; 1 � ı�, where I � Œ0; 1�
is a DCC set. Fix 0 < � < E.I /, whereE.I / is as in Proposition 2.17. Suppose that .X;F ; �/
is .�; ı/-adjoint log canonical.

Then we may run a K.X;F ;�/;�-MMP �WX ! Y . Moreover, setting

G ´ ��F and � ´ ���;

the following properties hold:

(1) .Y;G ; �/ is .�; ı/-adjoint log canonical;

(2) .G ; �n-inv/ has log canonical singularities and .Y; �/ is dlt;

(3) if K.X;F ;�/;� is pseudo-effective, then K.Y;G ;�/;� is nef;

(4) if K.X;F ;�/;� is not pseudo-effective, Y admits a fibration f WY ! Z with �.X=Y / D 1
and such that �K.Y;G ;�/;� is f -ample.

Proof. First, let us note that Lemma 2.14 (1) implies that .X;F ; �/ is �-adjoint log
canonical; thus, by our choice of �, Proposition 2.17 implies that .F ; �n-inv/ has log canonical
singularities. We now explain how to run the K.X;F ;�/;�-MMP on X .

If K.X;F ;�/;� is nef, then we immediately stop and define � to be the identity on X ; in
this case, properties (1)–(4) are straightforwardly satisfied. Thus, we may and will assume that
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K.X;F ;�/;� is not nef; hence, there exists an extremal ray

R0 � NE.X/ such that K.X;F ;�/;� �R0 < 0:

Since, by definition, K.X;F ;�/;� D .KF C�n-inv/C �.KX C�/, then

either .KF C�n-inv/ �R0 < 0; or .KX C�/ �R0 < 0:

We shall consider the two cases separately.

(i) .KF C�n-inv/ �R0 < 0: thenR0 is spanned by the class of an F -invariant rational curve
C0, [25, Theorem 6.3]; moreover, Theorem 2.8 shows that R0 can be contracted.

(ii) .KX C�/ �R0 < 0: then R0 can be contracted by the classical version of the Cone and
Contraction Theorem, e.g., [15, Theorem 3.7].

We denote the contraction constructed in (i)/(ii) by �1WX ! X1. If both

.KF C�n-inv/ �R0 < 0 and .KX C�/ �R0 < 0;

then the contraction �1 is independent of the choice of (i)/(ii) because the contracted curves
coincide.

If dimX1 < dimX , then we stop and take � to be the identity again. In this case, then
K.X;F ;�/;� is not pseudo-effective since R0 is contained in the cone of movable curves of X ,
as the fibers of �1 move and their classes all lie in R0.

If dimX1 D dimX , then �1 is birational and we set

F1´ �1�F ; �1´ �1��:

Lemma 2.16 implies that .X1;F1; �1/ is .�; ı/-adjoint log canonical.

Claim. If �1 is birational, then .X1; �1/ is dlt and .F1; �1;n-inv/ is log canonical.

Proof of the claim. We first deal with the singularities of .X1; �1/. If �1 is obtained
via (ii), then the conclusion follows at once from the negativity lemma since .X;�/ is dlt and
�1 is a .KX C�/-negative contraction. Hence, we can assume that �1 is a .KF C�n-inv/-
negative birational contraction. Denoting by C0 the rational invariant curve contracted by �1,
then F is canonical in a neighborhood of C0 by Lemma 2.7, and the conclusion then follows
from Remark 2.9 since �1 is a .KX C�C C0/-negative contraction and the pair .X;�C C0/
is dlt. To show that .F1; �1;n-inv/ is log canonical, it suffices to apply Lemma 2.17 since
.X1;F1; �1/ is .�; ı/-adjoint log canonical.

We may then substitute .X;F ; �/ with .X1;F1; �1/ and repeat the above process. We
therefore obtain a sequence of contractions

(3.1) X µ X0
�1
��! X1

�2
��! � � �

�i
��! Xi

�iC1
���! � � � :

We set, inductively, Fj ´ �j�Fj�1 and�j ´ �j��j�1. At each step, �j contracts an extremal
ray Rj�1 � NE.Xj�1/ having negative intersection with K.Xj�1;Fj�1;�j�1/;�. Since X is
a projective surface,Xj is projective as well for all j . Since the Picard number ofXj decreases
at each step, the above sequence of contractions cannot be infinite. Hence, there exists n 2 N
such that
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(a) either K.Xn;Fn;�n/;� is nef,

(b) or there exists a K.Xn;Fn;�n/;�-negative extremal ray Rn � NE.Xn/ whose contraction
induces a fibration Xn ! XnC1 with dimXn > dimXnC1. Thus, K.Xn;Fn;�n/;� is not
pseudo-effective since Rn is spanned by curves that move in Xn.

In both cases (a), (b), we set Y ´ Xn and � D �n�1 ı �n�2 ı � � � ı �2 ı �1, and in case (b), we
set Z´ XnC1. We are then ready to prove the four statements of the theorem.

(1) The conclusion follows inductively from Lemma 2.16 since, at each step of (3.1), �j
contracts the K.Xj�1;Fj�1;�j�1/;�-negative extremal ray Rj�1.

(2) As .Y;G ; �/ is .�; ı/-adjoint log canonical by (1), Lemma 2.14 (1) implies that it is also
�-adjoint log canonical; thus, by our choice of �, Proposition 2.17 implies that .G ; �n-inv/

has log canonical singularities. The conclusion on the singularities of .Y; �/ follows
applying inductively the same proof as that of the claim.

(3) If K.X;F ;�/;� is pseudo-effective, then K.Xj ;Fj ;�j /;� is also pseudo-effective for all
j D 1; : : : ; n sinceK.Xj ;Fj ;�j /;� is the pushforward ofK.Xj�1;Fj�1;�j�1/;�. Hence, the
sequence of contractions in (3.1) must conclude with case (a) above.

(4) If K.X;F ;�/;� is not pseudo-effective, then alsoK.Xj ;Fj ;�j /;� is not pseudo-effective for
all j D 1; : : : ; n by the negativity lemma. Hence, the sequence of contractions in (3.1)
must terminate with (b) above. By [15, Corollary 3.17] and Theorem 2.8, we then have
�.Xn=XnC1/ D 1.

Exactly as in the classical case, the proof of Theorem 3.1 can be adapted to yield a proof
of the following relative version of the statement. The interested reader can find a detailed
explanation of how to reduce from the MMP on a projective variety to the relative case in
[15, §§ 3.6–3.7].

Corollary 3.2. Let .X;F ; �/ be a foliated triple, where X is a surface, .X;�/ is dlt
and F is rank one, and let � WX ! S be a projective morphism. Fix ı � 0. Suppose that
� 2 I \ Œ0; 1 � ı�, where I � Œ0; 1� is a DCC set. Fix 0 < � < E.I /, where E.I / is as in
Proposition 2.17. Suppose that .X;F ; �/ is .�; ı/-adjoint log canonical.

Then we may run a K.X;F ;�/;�-MMP relative over S ,

X Y :

S

 

!
�

 

!
 !

Moreover, setting G ´ ��F , � ´ ���, the following properties hold:

(1) .Y;G ; �/ is .�; ı/-adjoint log canonical.

(2) .G ; �n-inv/ has log canonical singularities and .Y; �/ is dlt.

(3) If K.X;F ;�/;� is pseudo-effective over S , then K.Y;G ;�/;� is nef over S .

(4) If K.X;F ;�/;� is not pseudo-effective over S , then Y=S admits a fibration f WY ! Z

over S with �.X=Y / D 1 and such that �K.Y;G ;�/;� is f -ample.

When running the adjoint MMP, we have precise control of the singularities of the
underlying surface, as the following corollary shows.
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Corollary 3.3. Fix a positive real number ı and a DCC set I � Œ0; 1�. Fix a positive
real number � < E.I /, where E.I / is as in Proposition 2.17.

Let .X;F ; �/ be a projective log smooth foliated triple, where X is a surface and F is
rank one. Assume that � 2 I \ Œ0; 1 � ı�. Let �W .X;F ; �/! .Y;G ; ‚´ ���/ be a (finite)
sequence of steps of the K.X;F ;�/;�-MMP. Then .Y;‚/ has �-lc singularities, where � D �ı

1C�
.

Proof. We argue by induction on the number n of steps of the K.X;�;F /;�-MMP that
compose �,

X0´ X
�1
��! X1

�2
��! � � �

�n�1
���! Xn�1

�n
��! Xn D Y; � D �n ı � � � ı �1:

We denote inductively, Fi ´ �i;�Fi�1, F0´ F ,�i ´ �i;��i�1,�0´�. Since .X;�;F /
is log smooth and � 2 Œ0; 1 � ı�, then .X;�/ is ı-lc. As for ı > 0, ı > � D �ı

1C�
, the case

n D 0 is trivially settled. Hence, we will assume that n > 0. Moreover, the above observation
implies that it suffices to show that .Y;‚/ is �-lc at all P 2 Y at which ��1 is not an iso-
morphism, i.e., P 2 �.exc.�//. We fix one such point, and we distinguish two cases based on
whether or not P is a point at which .G ; ‚n-inv/ is terminal.

Case 1. P is terminal for .G ; ‚n-inv/. Let L be the unique germ of a leaf through P
and let E be the union of the curves Ei contracted by � to P with the reduced structure. The
Ei are all F -invariant since G is non-dicritical. Hence, ��1� ‚n-inv D �n-inv. Moreover, near
every point of E \ sing.F /, we know that F admits a holomorphic first integral. Thus, by
[5, Lemma 2.16], KX C ��1� .‚n-inv C L/CE is �-numerically equivalent to KF C�n-inv

over a sufficiently small neighborhood UP of P 2 Y . Moreover, ‚n-inv C L � ‚, as L is the
unique leaf of F through P . Writing � D ��1� ‚C

P
aiEi , then ai � 1 � ı by assumption

and K.X;F ;�/;� is �-numerically equivalent over UP to�
KX C �

�1
� .‚n-inv C L/CE

�
C �

�
KX C �

�1
� ‚C

X
aiEi

�
D .1C �/

�
KX C

1

1C �

�
��1� .‚n-inv C L/C ��

�1
� ‚

�
C

X 1C �ai

1C �
Ei

�
:

Since, for all i , �
��1� .‚n-inv C L/C ��

�1
� ‚

�
�Ei � .1C �/.�

�1
� ‚/ �Ei

and the support of L is not contained in E, it follows that, over UP , � coincides with a run of
the .KX C ��1� ‚C

P 1C�ai
1C�

Ei /-MMP. As .X; ��1� ‚C
P
Ei / is log smooth by assumption,

.X; ��1� ‚/ is ı-lc by assumption, and 1C�ai
1C�

�
1C�.1�ı/
1C�

, then

KX C �
�1
� ‚C

X 1C �ai

1C �
Ei � �.KX C �

�1
� ‚/C .1 � �/

�
KX C �

�1
� ‚C

X
Ei

�
for �´ �ı

1C�
. Thus, the pair .Y;‚/ is �-lc since it is the outcome of a run of the MMP over

UP for the �-lc pair .X; ��1� ‚C
P 1C�ai

1C�
Ei /.

Case 2. P is not terminal for .G ; ‚n-inv/. By the inductive hypothesis, we can assume
that .Xn�1; �n�1/ is �-lc. Moreover, we can assume that the step �nWXn�1 ! Y is the con-
traction of a K.Xn�1;Fn�1;�n�1/;�-negative rational curve Cn�1 with �n.Cn�1/ D P . If �n is
a .KXn�1 C�n�1/-negative contraction, then the proof terminates. Hence, we can assume that
�n is a .KFn�1 C�n�1/-negative contraction. This leads to an immediate following contra-
diction, by the next claim.
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Claim. If �n is a .KFn�1 C�n�1/-negative contraction, .G ; ‚n-inv/ is terminal at P .

Proof of the claim. By Lemma 2.7, .Fn�1; �n�1/ is canonical at any point Q 2 Xn�1
such that �n.Q/ D P since �n is birational. The negativity lemma readily shows that the ter-
minality of .G ; ‚n-inv/ at P follows from the hypothesis of the claim, cf. [15, Lemma 3.38].

This concludes the proof.

We can also show that .�; ı/-adjoint log canonical models exist in the projective category.

Corollary 3.4. Set up as in Theorem 3.1. Suppose in addition that .X;�/ is klt and that
K.X;F ;�/;� is big. Let .Y;G ; �/ be the output of a run of the K.X;F ;�/;�-MMP starting on X .
Then there exists a birational contraction

pW .Y;G ; �/! .Ycan;Gcan; �can/

such that

(1) Ycan is projective;

(2) K.Ycan;Gcan;�can/;� is an ample Q-Cartier divisor;

(3) .Ycan;Gcan; �can/ has .�; ı/-adjoint log canonical singularities;

(4) Ycan has �-lc singularities where � D �ı
1C�

.

Moreover, Ycan is uniquely determined.

Proof. First, note that .Y;G ; �/ has .�; ı/-adjoint log canonical singularities.
Let C � Y be a curve with K.Y;G ;�/;� � C D 0. Since K.Y;G ;�/;� is nef and big by con-

struction, then C 2 < 0 by the Hodge Index Theorem. There are three possibilities at this
point:

(i) .KG C �n-inv/ � C < 0,

(ii) .KY C �/ � C < 0, or

(iii) .KG C �n-inv/ � C D .KY C �/ � C D 0.

In case (i), .G ; �n-inv/ has canonical singularities in a neighborhood ofC , as otherwiseC would
move, cf. the proof of Theorem 3.1; thus, we may contract C by a .KG C �n-inv/-negative
contraction. In case (ii), we may contract C by a .KY C �/-negative contraction. In case (iii),
we perform a .KY C � C tC /-negative contraction for some t > 0 sufficiently small, which
does not constitute a problem since we are assuming that .X;�/ is klt to start with. In any case,
we obtain a morphism p0WY ! Y 0 which contracts C to a point. Then .Y 0; p0�G ; p

0
��/ is still

.�; ı/-adjoint log canonical, and the argument in Corollary 3.3 works equally well here to show
that Y 0 has �-lc singularities.

Repeating this process, we will eventually terminate in model .Y0;G0; �0/ such that
K.Y0;G0;�0/;� � C > 0 for all curves C , and hence K.Y0;G0;�0/;� is ample. That immediately
implies the final part of the statement of the corollary, as .p ı �/�K.Y0;G0;�0/;� realizes the
positive part of the Zariski decomposition of K.X;F ;�/;� which is uniquely determined.

Remark 3.5. Analogously to Corollary 3.2, also Corollary 3.4 has a relative version
with respect to a projective morphism � WX ! S .
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Following the notation of Corollary 3.2, we assume in addition that .X;�/ is klt and that
K.X;F ;�/;� is big over S . Denoting .Y;G ; �/ be the output of a run of the K.X;F ;�/;�-MMP
over S , starting from X , there exists a birational contraction pW .Y;G ; �/! .Ycan;Gcan; �can/

such that

(1) Ycan is projective over S ;

(2) K.Ycan;Gcan;�can/;� is an ample Q-Cartier divisor over S ;

(3) .Ycan;Gcan; �can/ has .�; ı/-adjoint log canonical singularities;

(4) Ycan has �-lc singularities where � D �ı
1C�

.

Moreover, Ycan=S is uniquely determined.

The last corollary motivates the following definition of an ample model.

Definition 3.6. We say that .Ycan;Gcan; �can/ is the .�; ı/-adjoint log canonical model
of .X;F ; �/ (or the �-adjoint canonical model when � D 0).

Corollary 3.4 marks a notable difference with the theory of the MMP for the canoni-
cal divisor of general type foliations with canonical singularities. We recall that the canonical
model of a surface foliation, in the sense of [20], is not necessarily projective, owing to the
presence of cusp type singularities arising from the contraction of elliptic Gorenstein leaves
(e.g.l.s) to points. We emphasize that the �-adjoint canonical model, by contrast, is always
projective and does not contract any e.g.l.s to points.

4. A bound on the pseudo-effective threshold in the big case

The goal of this section is to prove the following.

Theorem 4.1. Fix a DCC set I � Œ0; 1�. There exists a positive real number � D �.I /
satisfying the following property.

If .X;F ; �/ is a projective log smooth triple such that X is a surface, F is rank one,
KF C�n-inv is big and � 2 I , then K.X;F ;�/;� is big.

4.1. Outline of the proof of Theorem 4.1. We divide the outline of the proof into steps.

Step 0. As a preliminary step, we show that we may freely assume that� has coefficients
in some fixed finite subset J � I (Proposition 4.6).

For ease of exposition, we will assume that � D 0 for the remainder of the proof sketch.

Step 1. Fix some 0 < � < E.I /, where E.I / is the constant given by Lemma 2.17. If
K.X;F /;� is pseudo-effective, then we are done. Thus, we may assume that K.X;F /;� is not
pseudo-effective.

Step 2. Assume for the moment that there exists a bounded family M such that, for
every .X;F /withK.X;F /;� not pseudo-effective, there exist .Z;G / 2M and a birational mor-
phism .X;F /! .Z;G /. Assume moreover that Z is smooth at all the strictly log canonical
singularities of G .
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By boundedness, we may then find a � 0 (independent of .Z;G /) such that K.Z;G /;� 0 is
pseudo-effective.

In general, .Z;G / may not be � 0-adjoint canonical, and so we cannot lift sections to
.X;F /. However, if .Z;G / is not � 0-adjoint canonical using some computations from [23], see
Lemma 4.2, we show that the eigenvalues of the singular points of G belong to a finite set. In
particular, it follows that we may resolve the log canonical singularities of G in a bounded way.
Repeating the argument and using Noetherian induction allows us to conclude. This is achieved
in Proposition 4.3.

Step 3. We may run an adjoint MMP which terminates in a foliated pair .Z;G /, where
Z is a Fano surface with �-lc singularities, where � > 0 depends only on � and J . In particular,
.Z;G / belongs to a bounded family. If we can arrange it so that Z is smooth at all strictly log
canonical singularities of G , then we are done by Step 2; this is done in Proposition 4.5.

Step 4. Finally, we show that we may modify our family .Z;G / so that the condition that
Z is smooth at all strictly log canonical singularities of G holds (this is done in Lemma 4.4).

4.2. Proof of Theorem 4.1.

Lemma 4.2. Fix positive real numbers �0; ı. Then there exists a finite set ƒ � N �N
depending only on �0 such that the following holds.

Let .0 2 C2;F / be a germ of a rank one foliation such that F has log canonical singu-
larities, but is not .�0; ı/-adjoint log canonical. Then TF is generated by a vector field of the
form px 𝜕𝜕x C qy

𝜕
𝜕y , where .p; q/ 2 ƒ.

Proof. Observe that F is strictly log canonical at 0, and so TF is generated by a vector
field of the form px 𝜕𝜕x C qy

𝜕
𝜕y , where p; q are positive co-prime integers. Let Œu1; : : : ; uk� be

the continued fraction representation of p=q.
Next, observe that F is not �0-adjoint canonical. It follows by combining [23, Corol-

lary 4.10] – keeping in mind the slight difference of notations, Remark 2.13 – and [23, Lem-
ma 4.7] that

1

�0
�

kX
iD1

ui ;

which implies that k and ui are bounded in terms of �0. Hence, p=q can take on only finitely
many values, depending only on �0.

Proposition 4.3. Fix a finite subset J � Œ0; 1/ and a real number � > 0. Let D be a col-
lection of projective foliated log smooth triples .X;F ; �/ such that X is a surface, F is rank
one, � D �n-inv, � 2 J and KF C�n-inv is big. Suppose that there exists a bounded family
of 2-dimensional foliated triples

(4.1) f W .Y;G ; �/! T

such that, for all .X;F ; �/ 2D, there exists t 2 T such that

(1) there exists a contraction �t WX ! Yt and Gt D �t;�F , �t D �t;��;

(2) K.X;F ;�/;� D ��t K.Yt ;Gt ;�t /;� CE�, where E� � 0;
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(3) Yt is klt, .Gt ; �t / is log canonical and KGt C �t is big;

(4) .Yt ; �t / is log smooth at all strictly log canonical points of .Gt ; �t /.

Then there exists a positive real number �0 D �0.J; �/ such that, for all 0 � � 0 < �0 and all
.X;F ; �/ 2D, K.X;F ;�/;� 0 is big.

Proof. By boundedness of the family in (4.1) and by (3), there exists z�0 � � such that,
for all 0 � s � z�0 and all t 2 T , K.Yt ;Gt ;�t /;s is big. For a foliated triple .X;F ; �/ 2D,
a point t 2 T as in the assumption of the proposition and � 2 R�0, we define the effective
divisors E�;t ; F�;t by

E�;t � F�;t ´ K.X;F ;�/;� � �
�K.Yt ;Gt ;�t /;�;

where we assume that no prime divisor onX appears in the support of bothE�;t ; F�;t . Assump-
tion (2) implies that F�;t D 0; moreover, if Fz�0;t D 0, then K.X;F ;�/;z�0 is big.

Claim 1. Fix .X;F ; �/ 2D and t 2 T as in the statement of the proposition. Assume
that Fz�0;t ¤ 0. Then there exists a strictly log canonical singularity of Gt at which .Yt ;Gt ; �t /
is not z�0-adjoint canonical.

Proof. By item (2) and since Fz�0;t ¤ 0, there must exist a prime divisor C � X that is
�-exceptional and such that, for aC ´ �C�,

a.C;Gt ; �t /C �a.C;Yt ; �t / � �.�.C /C �/aC ;

a.C;Gt ; �t /C z�0a.C;Yt ; �t / < �.�.C /C z�0/aC :

Hence, a.C;Gt ; �t / < 0 and �.C / D 1, C is a strictly log canonical place of .Gt ; �t /, with
center P on Yt , and a.C;Gt ; �t / D �1, as otherwise Gt would be non-dicritical at P contra-
dicting that a.C;Gt ; �t / < 0. Moreover, P … supp.�t / and Gt is not z�0-adjoint canonical at P .

Consider the following subset Z0 � T :

Z0´ ¹t
0
2 T j there exists a strictly log canonical center P 0 2 Yt 0

for Gt 0 at which .Yt 0 ;Gt 0 ; �t 0/ is not z�0-adjoint canonical:º
(4.2)

By Lemma 4.2 and item (4) in the hypotheses of the proposition, the eigenvalues of Gt 0 at
a point P 0 2 Yt 0 as in (4.2) belong to a finite set; thus, Z0 � T is a Zariski closed subset –
with possible equality.

Given .X;F ; �/ 2D such that, for the foliated triple .Yt ;Gt ; �t / associated to it, we
have t 2 T nZ0, then Fz�0;t D 0 and, for all 0 � s � z�0, K.X;F ;�/;s is big.

Up to stratifying Z0 into a finite disjoint union of locally closed set, we may and will
assume that Z0 is the union of finitely many (disjoint) smooth irreducible components. We
denote by f W .Y;G ; �/! Z0 the restriction of .Y;G ; �/ to Z0.

Claim 2. There exists a surjective morphism eWZ00 ! Z0 finite onto its image and
a bounded family of foliated triples f0W .Y0;G 0; �0/! Z00 such that

(i) for any t 0 2 Z00, there exists a morphism �t 0 WY
0
t 0 ! Ye.t 0/ which is a foliated log reso-

lution in a neighborhood of any point of Ye.t 0/ at which .Ye.t 0/; �e.t 0// is not z�0-adjoint
canonical;
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(ii) if .X;F ; �/ corresponds to .Yt ;Gt ; �t /, t 2 Z0 as in the statement of the proposition,
then we may assume there exist t 0 2 e�1.t/ and a morphism �t 0 WX ! Y0t 0;

(iii) with the notation of item (ii), then �0t 0 D �t 0��, .Y0t 0 ;G
0
t 0 ; �

0
t 0/ is z�0-adjoint canonical at

all log canonical centers of .G 0t 0 ; �
0
t 0/, and KG0

t0
C �0t 0 is big.

Moreover,

(4.3) K.X;F ;�/;� D �
�
t K.Y0t ;G

0
t ;�

0
t /;�
C zEt;�;

with zEt;� � 0.

Proof. Passing to a stratification into locally closed subsets and a finite cover of Z0, we
may assume that the Zariski closed set S 0 defined by

S 0´ ¹s 2 Y j .Gf .s/; �f .s// is strictly log canonical at s 2 Yf .s/

and .Yf .s/;Gf .s/; �f .s// is not z�0-adjoint canonical at sº

is flat over Z0, all fibers of f jS 0 WS 0 ! Z0 are everywhere reduced and the ratio of the eigen-
values of Gf .s/ at s is constant on the components of S 0. The last claim is a simple consequence
of Lemma 4.2. Analogous reasoning shows also that there exists an upper bound on the number
of strictly log canonical singularities of .G t ; � t / independent of t .

Each of the log canonical foliated surface singularities parametrized by S 0 admits a foli-
ated log resolution by a bounded number of blow ups, and the bound on the number of blow ups
depends only on z�0, as shown in Lemma 4.2 and its proof, since such singularities are not z�0-
adjoint canonical. Moreover, as the ratio of the eigenvalues of Gf .s/ at s is constant on the
components of S 0, we can perform these blow ups in family and, thus, obtain a bounded family
of 2-dimensional triples

.Y0;G 0; .�0/�1� �/ .Y;G ; �/;

Z0

 

!

f 0

 

!
�

 

!

f

where � is the partial resolution whose construction we just explained and G 0´ ��1G . More-
over, possibly passing to a stratification of Z0 into locally closed sets, and a finite covering of
the irreducible components of the stratification, we may assume that, for any t 2 Z0, there
exists a 1-1 correspondence between the irreducible components of the exceptional locus of �
and those of �t , over the irreducible component of Z0 containing t ; moreover, we can assume
that if E 0 is a �-exceptional prime divisor, then �.E 0t / D �.E

0/ for any t contained in the image
of E 0. Let us denote by ¹E1; : : : ; Erº the �-exceptional divisors that are not G 0-invariant. We
defineW ´ J [ ¹0º. We define Z00´

F
.a1;:::;ar /2W r Z0 and eWZ00 ! Z0 to be the identity

on each copy of Z0 contained in Z00. Then we define

.Y0;G 0; �0/´
G

.a1;:::;ar /2W r

�
Y0;G 0; .�0/�1� � C

rX
iD1

aiEi

�
:

The morphism f 0 induces a morphism f0W .Y
0;G 0; �0/! Z00, which yields a bounded family

of 2-dimensional foliated triples.
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To prove items (ii)–(iii), let r WX 0 ! X resolve the indeterminacies of the rational map
X Ü Y0t so that

.X 0;F 0´ r�1F ; �0´ r�1� �/

is foliated log smooth. We denote by �0t WX
0 ! Y 0t the induced morphism. If K.X 0;F 0;�0/;t is

big, then K.X;F ;�/;t is big. Moreover, for any t > 0, we may write

K.X 0;F 0;�0/;t D r
�K.X;F ;�/;t CGt ;

where Gt � 0; thus, we are free to replace .X;F ; �/ by .X 0;F 0; �0/ in the statement of
the proposition. By construction, �t�� D �t . Since � 2 J and �0 D r�1� �, we then have
.�0t��

0 � ��1t� �t / 2 W , and its support is contained only on �t -exceptional components that
are not G 0-invariant, by the definition of triples in D; thus, there exists .a1; : : : ; ar/ 2 W r such
that �0t��

0 � .�0/�1t� �t D
P
i aiEi;t . This completes the proof of items (ii)–(iii).

We now prove (4.3). Away from ��1t .exc.�t //, this is clear; thus, let † be a connected
component of exc.�t / and letP ´ �t .†/. SinceP is a strictly log canonical singularity of Gt ,
P is not contained in the support of �t . Moreover, by Lemma 2.6, there is exactly one divisor
contained † which is transverse to G 0t . Hence, in a neighborhood of †, �0t is supported on at
most 1 curve. Since .Y 0t ;G

0
t ; �

0
t / is foliated log smooth in a neighborhood of†, it follows that

.Y 0t ;G
0
t ; �

0
t / is in fact �-adjoint canonical for all � > 0.

By boundedness of Z00, there exists z�1 < z�0 such that, for all t 2 Z00, K.Y 0t ;G0t ;�0t /;z�1 is
pseudo-effective. Let Z01 � Z

0
0 be the Zariski closed subset

Z1´ ¹t
0
2 Z00 j there exists a strictly log canonical center P 0 2 Y0t 0

for G 0t 0 at which .Y0t 0 ;G
0
t 0 ; �

0
t 0/ is not z�1-adjoint canonicalº

We may then repeat the above argument with Z01, and we define Z1´ e.Z1/. Iterating
this process, we produce a decreasing sequence of Zariski closed subsets Zi ¨ Zi�1 of T and
a decreasing sequence of positive real numbers 0 < z�i < z�i�1 such that if .X;F ; �/ 2D and
the corresponding point t 2 T given by the proposition satisfies t 2 Zi�1 nZi , then we have
that K.X;F ;�/;z�i is big; moreover, the foliated surface triples parametrized by points of Zi
admit a log canonical singularity which is not z�i�1-adjoint canonical.

This process must eventually terminate since, at each step of the process, we reduce
the number of strictly log canonical singularities on a foliated surface triple appearing in the
fibers of our family. Hence, we must eventually obtain that, for some n� 0, Zn D ; and
K.X;F ;�/;z�n�1 is big for all .X;F ; �/ 2D. Hence, we set �0´ z�n�1.

Lemma 4.4. Let hW .Z;L; „/! T be a bounded family of 2-dimensional projective
foliated triples .Zt ;Lt ; „t /. Assume that, for all t 2 T , „t;n-inv D „t and .Lt ; „t / is log
canonical.

Passing to a stratification of T into locally closed sets, and a finite covering of the
irreducible components of the stratification, there exists a bounded family of 2-dimensional
projective foliated triples j W .Y;G ; �/! T and a birational morphism over T , gWY ! Z,
such that, for all t 2 T ,

(1) Gt ´ g�1Lt and �t ´ g�1� „t ;

(2) .Yt ; �t / is log smooth in a neighborhood of g�1t .P /, where P is a strictly log canonical
point of .Lt ; „t /;



Spicer and Svaldi, Effective generation for foliated surfaces 27

(3) gt only extracts divisors of discrepancy (resp. foliation discrepancy) at most 0 (resp.
equal to ��.E/);

(4) any foliated log resolution �t WZ t ! Zt of .Zt ;Lt ; „t / factors as

Z t Yt Zt :

 

! 

!
�t

 

!
gt

Proof. Fix t 2 T and let P 2 Zt be a point, where .Lt ; „t / is strictly log canonical.
Thus, P … supp.„t / and Lt is strictly log canonical at P . By Lemmata 2.10 and 2.11, there
exists a resolution gt WY ! Zt by blowing up Zt in Lt -invariant centers. These blow ups
only extract divisors of foliation discrepancy equal to ��.E/; taking gt to be a minimal log
resolution of Zt around P , gt only extracts divisors of discrepancy at most 0. Thus, items
(2)–(4) are satisfied.

Substituting T with a stratification and taking finite covers of components, the mini-
mal resolutions gt WYt ! Zt fit together in family to form a bounded family j WY ! T of
resolutions gWY ! Z such that gjYt D gt . To conclude, it suffices to define G ´ g�1L,
� ´ g�1� „.

Proposition 4.5. Let J � Œ0; 1/ be a finite subset. Let DJ be the set of all triples
.X;F ; �/ such that

(1) .X;F ; �/ is a projective foliated log smooth triple, X is a surface, F is rank one,

(2) �n-inv D � 2 J , and

(3) KF C�n-inv is big.

Then there exists �0 D �0.J / > 0 such that, for all 0 � � < � and any triple .X;F ; �/ 2DJ ,
K.X;F ;�/;� is big.

Proof. Fix �0´ min¹minj2J
j
3
; E.J /º, cf. Lemma 2.17 for the definition of E.J /.

Clearly, �0 < E.J /.
Fix .X;F ; �/ 2DJ . As J is finite and 1 … J , there exists ı D ı.J /´ 1 �maxJ such

that J � Œ0; 1 � ı� and .X;F ; �/ is .�; ı/-adjoint log canonical for all � � 0, cf. Lemma 2.15.
If K.X;F ;�/;�0 is pseudo-effective, then there is nothing to show; hence, we may assume that
K.X;F ;�/;�0 is not pseudo-effective.

Let �WX ! Z be a run of the K.X;F ;�/;�0-MMP which exists and terminates by Theo-
rem 3.1. We set „´ �t�� and L´ �t�F . By Theorem 3.1, as K.X;F ;�/;�0 is not pseudo-
effective, Z is endowed with a Mori fiber space structure with respect to K.Z;L;„/;�0 , i.e.,
there exists a contraction  WZ ! B with dimZ > dimB , �.Z=B/ D 1 and �K.Z;L;„/;�0 is
 -ample. Moreover, the following properties hold.

(i) Z has �-lc singularities for 0 < � D �0ı
1C�0

, see Corollary 3.3. Here we need that 1 … J to
conclude that � > 0.

(ii) KZ C„ is not pseudo-effective: it is antiample over B .

(iii) K.Z;L;„/;�0 is antiample over B . Hence, it is not pseudo-effective on Z. The same holds
for KL C �0KZ .
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(iv) K.X;F ;�/;�0 D �
�K.Z;L;„/;�0 CE, where E � 0.

(v) .L; „t;n-inv/ is log canonical.

All of these claims are direct consequences of the negativity lemma and Theorem 3.1, Corol-
lary 3.3. We can also show that the geometry of Z is rather restrictive.

Claim 1. Z is a Fano surface and �.Z/ D 1, i.e., dimB D 0.

Proof of Claim 1. If dimB > 0, then B is a curve. Let F be a general fiber of  :
F is rational since  is a Mori fiber space. Then F is not L-invariant for the foliation as
.KL C„/ � F > 0 by the bigness of KL C„; thus, .KL C„/ � F � j0, where j0 D minJ ,
and .KZ C„/ � F � �2. Since �0 <

j0
2

by definition, then K.Z;L;„/;�0 � F � 0. On the other
hand, by item (iii), K.Z;L;„/;�0 � F < 0, which leads to the sought contradiction.

Let DJ;�0;Fano be the set of foliated triples .Z;L; „/ that appear as final outcomes (i.e.,
Mori fiber spaces) in a run of the K.X;F ;�/;�0-MMP for .X;F ; �/ 2DJ with K.X;F ;�/;�0
not pseudo-effective. Claim 1 readily implies the following conclusion for DJ;�0;Fano.

Claim 2. DJ;�0;Fano forms a bounded family.

Proof of Claim 2. For any triple .Z;L; „/ 2 DJ;Fano, (i) above implies that Z is �-lc
for some fixed � > 0. By [1, Theorem 6.9], �-lc Fano surfaces form a bounded family. Thus,
for any triple .Z;L; „/ 2 DJ;Fano, there exists t D t .�/ 2 N>0 such that �tKZ is very ample.
Furthermore, (ii)–(iii) imply that

(4.4) 0 < „ � .�KZ/ � �K
2
Z ; �„ � KL � �

1

�0
KZ :

Hence, .Z;„/ belong to a bounded family as„ 2 J (and J is finite) and deg�tKZ
„ � �tK2

Z
.

Moreover, thanks to the fact that KL is Weil and by (4.4), then the triples .Z;„;OZ.KL//

belong to a bounded family. Possibly stratifying T into a disjoint union of locally closed subsets
(which does not alter boundedness), we may assume that items (1) and (2) of Lemma 2.22 are
satisfied. By [12, Théorème 12.2.1 (v)], possibly after further stratification of the base, we may
assume that item (3) holds as well. We may then apply Lemma 2.22 to conclude.

Given .Z;L; „/ 2 DJ;�0;Fano, by Lemma 4.4, we may find a partial resolution gWY ! Z

together with a morphism � WX ! Y such that

(a) .Y; �/ is log smooth near all strictly log canonical singularities of G , where � ´ ���

and G ´ ��F ;

(b) g only extracts divisors E with a.E;Z;„/ � 0 and a.E;L; „/ D ��.E/; in particular,
there exists a g-exceptional divisor F � 0 so that K.Y;G ;�/;�0 C F D g

�.K.Z;L;„/;�0/;

(c) .G ; �/ is log canonical (this is a direct consequence of item (b)) and KG C � is big;

(d) .Y; �/ is log smooth at all strictly log canonical singularities of G ; and,

(e) if .X;F ; �/ 2 DJ , then Z is a Mori fiber space obtained from a run of a K.X;F ;�/;�0-
MMP and there exists a contraction � WX ! Y .
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Furthermore, by Lemma 4.4, the collection DJ;�0;Fano;res of all triples .Y;G ; �/ as above is
bounded. Thus, there exists a projective family of foliated triples f W .Y;GY ; �Y/! T over
a base of finite type T such that GY is tangent to f , and for any triple .Y;G ; �/ 2 DJ;�0;Fano;res,
there exist t 2 T and an isomorphism  WY ! Yt with  �� D �t and  �G D GY;t .

The conclusion of the proof then follows from the next claim.

Claim 3. Taking � D �0, we can apply Proposition 4.3 to D D DJ and to the family
f W .Y;GY ; �Y/! T .

At this point, we can conclude by defining �0 to be the number that Proposition 4.3
produces in the set-up of Claim 3.

Proof of Claim 3. It suffices to show that all the hypotheses (1)–(4) of Proposition 4.3
are satisfied.

Item (1) is (e) above. Item (3) follows from (a) and (c) above. Item (4) is (d) above. Thus,
we are left to show that item (2) holds.

Fix .X;F ; �/ 2 DJ , and let .Y;G ; �/ 2 DJ;�0;Fano;res be a triple obtained as the resolu-
tion of a Mori fiber space outcome of the K.X;F ;�/;�0-MMP. We adopt the same notation as in
the previous part of the proof.

Suppose first that every component of exc.g/ is G -invariant. In this case, by (b) above,
.KY C �/C F D g

�.KZ C„/ and .KG C �/ D g
�.KL C„/, where F � 0. In particular,

K.X;F ;�/;�0 D �
�K.Y;G ;�/;�0 C

zE, where zE � 0.
So suppose that some component of exc.g/ is not G -invariant. Let C be one such compo-

nent and letP D g.C /. Note thatP is a strictly log canonical singularity of .L; „/, and soP is
not contained in the support of „. By Lemma 2.6, C is the unique non-invariant g-exceptional
divisor mapping to P . Thus, in a neighborhood of g�1.P /, we see that � is supported on at
most one divisor. Note that, in this neighborhood, the support of � must be smooth; indeed, we
know that .G ; C / is log canonical, which implies that C is necessarily smooth. It follows that
.G ; �/ and .Y; �/ have canonical singularities, and so .Y;G ; �/ is �-adjoint canonical for all
� > 0; in particular, it is �0-adjoint canonical.

This completes the proof of the proposition.

Proposition 4.6. Let I � Œ0; 1� be a DCC set. Then there exists a finite subset

J � .I [ S/ n ¹1º

with the following property.
Let .X;F ; �/ be a projective foliated log smooth triple such that X is a surface, F

is rank one, KF C� is big and � 2 I . Then there exists �0 � � with �0 2 J such that
KF C�

0 is big.

Proof. If � D 0, then there is nothing to prove since KF is big in its own right. Hence,
we may assume that� ¤ 0. IfKF is pseudo-effective, then the result is straightforwardly true.
In fact, since I is a DCC set, then I n ¹0º admits a minimum; call it i1. It then suffices to take
J D ¹i1º: indeed, writing � D

P
k �DkDk the decomposition into prime components, then

for �0´
P
k i1Dk , 0 < �0 � �, �0 2 J and KF C�

0 is big. Hence, we may assume that
KF is not pseudo-effective.
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We first claim that there exists a finite set J � .I [ S/ n ¹1º such that if .C;‚/ is
a log canonical pair on a smooth curve with KC C‚ ample and ‚ 2 I , then there exists
‚0 � ‚ with ‚0 2 J so that KC C‚0 is ample. Indeed, by [14, Theorem 1.3], there exists
an m, depending only on I , so that the map induced by jm.KC C‚/j D jbm.KC C‚/cj is
birational. For all 1 � k � m, we set

Jk ´

´
min

®
.I [ S/ \

�
k�1
m
; k
m

�¯
if .I [ S/ \

�
k�1
m
; k
m

�
¤ ;;

1 otherwise:

When .I [ S/ \ Œk�1
m
; k
m
� ¤ ;, then min¹.I [ S/ \ Œk�1

m
; k
m
�º is well-defined since I [ S

satisfies the DCC. Then it suffices to set J ´ ¹Jk j 1 � k � mº and observe that J satisfies
all our required properties. When I D ¹1º, we cannot just work with I , but we really need to
work with the set .I [ S/ n ¹1º to guarantee that J � Œ0; 1/.

By [3], F is uniruled; moreover, since F has canonical singularities, then there exists
a morphism X ! B inducing F . Let C be a general fiber of X ! B , and set ‚´ �jC .
Thus, we may find �0 � � with �0 2 J such that �0jC D ‚0.

We claim that KF C�
0 is pseudo-effective, from which we may conclude. To see the

claim, observe that if KF C�
0 is not pseudo-effective, then X is covered by .KF C�

0/-
negative rational curves tangent to the foliation, see Theorem 2.8. However, by construction,
KF C�

0 is positive on a general rational curve tangent to F .

Corollary 4.7. Fix a DCC set I � Œ0; 1�. Let .X;F ; �/ be a projective foliated log
smooth triple such that X is a surface, F is rank one, KF C�n-inv is big and � 2 I . Then
there exists a positive real number � D �.I / such that, for all 0 � � < � , K.X;F ;�/;� is big.

Proof. We may assume without loss of generality that � D �n-inv. By Proposition 4.6,
we may assume without loss of generality that there exist a finite subset J � .I [ S/ n ¹1º

and �0 � � such that �0 2 J such that KF C�
0 is big. We may then conclude by Proposi-

tion 4.5, defining � ´ min.�0.J /; E.I //, where �0.J / is the positive real number produced
by Proposition 4.5 and E D E.I / is the positive real number defined in Proposition 2.17.

Corollary 4.8. Fix a DCC set I � Œ0; 1�. Then there exists a positive real number
� D �.I / such that, for all 0 < � < � , the following statement holds.

Let .X;F ; �/ be a �-adjoint log canonical projective foliated triple such that X is
a surface, KF C�n-inv is big and � 2 I . Then there exists an integer M DM.�/ for which
jMK.X;F ;�/;�j defines a birational map.

Proof. We define � ´ �.I /, where �.I / is the positive real number produced by Corol-
lary 4.7.

Fix 0 < � < � and a projective foliated triple .X;F ; �/ satisfying the hypotheses of the
statement. As � < E.I / by construction, cf. the proof of Corollary 4.7, Proposition 2.17 implies
that .F ; �n-inv/ is log canonical. Let pWX 0 ! X be a foliated log resolution of .X;F ; �/ and
let F 0´ p�1F , exc.p/´ E and � ´ p�1� �CE. Since

KF 0 C �n-inv D p
�.KF C�n-inv/C F;

where F � 0, then KF 0 C �n-inv is big. Moreover, K.X 0;F 0;�/;� D p�K.X;F ;�/;� CG, where
G � 0. Hence, for all m 2 N, jmK.X 0;F 0;�/;�j D jmK.X;F ;�/;�j, and if, for some m 2 N>0,



Spicer and Svaldi, Effective generation for foliated surfaces 31

jmK.X 0;F 0;�/;�j defines a birational map, then the same holds for jmK.X;F ;�/;�j. Therefore, we
are free to replace .X;F ; �/ by .X 0;F 0; �/, and thus, we may freely assume that .X;F ; �/
is a foliated log smooth triple.

By Proposition 4.6, we may assume without loss of generality that there exist a finite
subset J � .I [ S/ n ¹1º and�0 � � with�0 2 J , andKF C�

0 is big. Corollary 4.7 in turn
implies that K.X;F ;�0/;� is big. We run a K.X;F ;�0/;�-MMP, �WX ! Y , which must terminate
with the ample model Y for K.X;F ;�0/;�, see Corollary 3.4. By Corollary 3.3 and the fact that
J � Œ0; 1 � ı� \ I for some ı > 0, Y has �-lc singularities for �´ �ı

1C�
> 0.

We may then apply Lemma 2.21 to

N ´
1

�
��K.X;F ;�0/;�

to conclude since K.X;F ;�/;� � K.X;F ;�0/;�.

5. Applications

5.1. Bounding degrees of curves invariant by foliations. The following is an im-
provement on a bound proven in [23, Theorem 5.4].

Theorem 5.1. Let � D �.;/ > 0 be the real constant defined within Corollary 4.7.
Then, for all positive rational numbers 0 < � < � , there exists a positive integer C D C.�/
such that the following statement holds.

Let .X;F / be a projective foliated pair such that

(1) X is a surface,

(2) KF is big,

(3) .X;F / is �-adjoint canonical,

(4) F admits a meromorphic first integral, and

(5) the closure of a general leaf, L, has geometric genus g.

Then, for any nef divisor H on X ,

H � L � gC
�
H � .KF C �KX /

�
:

Proof. Let pWX 0 ! X be a foliated log resolution of F . We define F 0 D p�1F and
L0 D p�1� L. As F possesses a meromorphic first integral and by (5), we can assume that F 0

is given by a fibration in curves of genus g.
Since .X;F / is �-adjoint canonical,KF 0 C �KX 0 D p

�.KF C �KX /CE, whereE � 0
and is p-exceptional, and for all m 2 N,

H 0
�
X 0; m.KF 0 C �KX 0/

�
D H 0

�
X;m.KF C �KX /

�
:

Moreover, by Corollary 4.8, there exists a positive integer M DM.�/, that is, M independent
of X 0 and F 0, such that jM.KF C �KX /j defines a birational map. Thus,

h0
�
X 0; lM.KF 0 C �KX 0/

�
�

�
l C 2

2

�
:
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As m.KF 0 C �KX 0/jL0 D m.1C �/KL0 , then for all m > 1,

h0
�
L0; m.KF 0 C �KX 0/jL0

�
� m.1C �/.2g � 2/ � g C 1:

We therefore have inequalities

h0
�
X 0; l.KF 0 C �KX 0/ � L

0
�
� h0

�
X 0; l.KF 0 C �KX 0/

�
� h0

�
L0; l.KF 0 C �KX 0/

�ˇ̌
L0
> 1;

where the latter inequality holds for l � 4gM 2. Therefore, there exists

0 � D � l.KF 0 C �KX 0/ � L
0:

Since H is nef, then 0 � D � p�H . Hence, taking C.�/´ 4M 2, we obtain the desired result.

5.2. Lower bound on adjoint volumes.

Theorem 5.2. Fix a DCC set I � Œ0; 1�. Let � D �.I / > 0 be the real constant defined
within Corollary 4.7. Then, for all 0 < � < � , there exists 0 < v.�/ such that the following
statement holds.

If .X;F ; �/ is an �-adjoint log canonical foliated projective triple, where � 2 I , X is
a surface and KF C� is big, then

vol.K.X;F ;�/;�/ � v.�/:

Proof. This is a direct consequence of Corollary 4.8.

5.3. Upper bound on automorphism group of foliations.

Theorem 5.3. Let � D �.S/ > 0 be the real constant defined within Corollary 4.7.
Then, for all 0 < � < � , there exists C D C.�/ such that the following holds.

Let .X;F / be a projective foliated pair such that

(1) X is a surface,

(2) KF is big,

(3) .X;F / is �-adjoint canonical.

Then
# Bir.X;F / � C � vol.K.X;F /;�/:

Proof. By [22], we know that # Bir.X;F / < C1. Possibly replacing .X;F / by a
higher model, we may freely assume that .X;F / is log smooth,

Bir.X;F / D Aut.X;F / D G;

and that, if Y D X=G and G D F =G, then .Y;G ; �/ is log smooth, where

� D
X

D prime

rD � 1

rD
D

and rD is the ramification index of q over the prime divisor D � Y .
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By Riemann–Hurwitz and foliated Riemann–Hurwitz [10, Lemma 3.4], then

K.X;F /;t D q
�K.Y;G ;�/;t for all t � 0:

Thus,

#G �
vol.K.X;F /;t /

vol.K.Y;G ;�/;t /
:

Set � ´ �.S/ and C.�/´ 1
v.�/

for � < � , where �.S/ and v.�/ are as in Theorem 5.2.
This gives our desired bound.

6. Boundedness of ample models

In this section, we fix � to be �.;/, the real number whose existence has been shown in
Corollary 4.7.

Theorem 6.1. Fix positive real numbers C and �, with � < � .
The set M2;�;C of foliated pairs .X;F / such that

(1) X is a projective klt surface,

(2) F is a rank one foliation on X with KF big,

(3) .X;F / is an �-adjoint canonical foliated pair,

(4) KF C �KX is ample, and

(5) vol.X;KF C �KX / � C

forms a bounded family.

Proof. We shall divide the proof into several steps.

Step 1. Effective birational boundedness. By Corollary 4.8, we know that if .X;F / is
one of the pairs in M2;�;C , then there exists an integer M DM.�/ such that the morphism
jMK.X;F /;�j is birational onto the image.

Let Y be the Zariski closure of the image of X under the induced map. As

vol.X;K.X;F /;�/ � C;

then Y belongs to a bounded family. Let H 2 jOY .1/j be a general member.

Step 2. Normalization and boundedness. Let �WY � ! Y be the normalization of Y and
let H� D ��H . Then also Y � belongs to a bounded family, and we can assume that there
exists a positive integer l D l.�; C / such that lH� is very ample by Matsusaka’s big theorem
for normal surfaces, see [19, § 3].

Step 3. Relatively ample model. Let .X .1/;F .1// be a foliated log resolution of .X;F /
with morphism r WX .1/ ! X . The �-adjoint canonical condition for .X;F / implies that

K.X.1/;F .1//;� D r
�.K.X;F /;�/CE; E � 0 and r-exceptional, and

H 0.X;mK.X;F /;�/ D H
0.X .1/; mK.X.1/;F .1//;�/ for all m 2 N:
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We note thatKF .1/ is pseudo-effective. Indeed, if that was not the case, then F .1/ would
be induced by a fibration in rational curves �WX .1/ ! B . Given † a general fiber of �, then

.KF .1/ C �KX.1// �† D �2.1C �/;

a contradiction to the pseudo-effectivity of KF .1/ C �KX.1/ .
By taking X .1/ to be a sufficiently high model of X , we can assume that there exists

a morphism pWX .1/ ! Y which is a resolution of indeterminacies of the rational mapX Ü Y

constructed in Step 1. As X .1/ is smooth, then it automatically factors through the normaliza-
tion, thus inducing p1WX .1/ ! Y � . We will denote by FY � the strict transform of the foliation
on Y � . In view of this and by construction, cf. Step 1, then

jMK.X.1/;F .1//;�j D p
�
1 jH� j C F; F � 0:

In particular, for any t 2 R�0,

vol.X .1/; K.X.1/;F .1//;� C tp
�
1H�/ � vol

�
X .1/; .1C tM/K.X.1/;F .1//;�

�
� .1C tM/2C:

Let us run the K.X.1/;F .1//;�-MMP relatively over Y � , which exists by Corollary 3.2,

X .1/ X .2/

Y � :

 

!
s0

 

!p1

 !

p2

By Remark 3.5, we can pass to the ample model (over Y �) for theK.X.1/;F .1//;�-MMP, that is,
we can assume that X .2/ satisfies the following conditions:

(i) X .2/ is �-lc for some � D �.�/ > 0;

(ii) .X .2/;F .2// is �-adjoint canonical, where F .2/´ s0�F
.1/;

(iii) jMK.X.2/;F .2//;� � p
�
2H� j ¤ ;;

(iv) K.X.2/;F .2//;� is ample over Y � ;

(v) H 0.X .2/; mK.X.2/;F .2//;�/ D H
0.X .1/; mK.X.1/;F .1//;�/ for all m 2 N; moreover, for

any t 2 R�0,

vol.X .2/; K.X.2/;F .2//;� C tp
�
2H�/ � vol

�
X .2/; .1C tM/K.X.2/;F .2//;�

�
� .1C tM/2C:

Item (iv) and the Cone Theorem for surface foliations [25, Theorem 6.3] imply that

K.X.2/;F .2//;� C .1C d�e/7p
�
2H�

is ample on X .2/. Item (v) implies that

vol
�
X .2/; K.X.2/;F .2//;� C .1C d�e/7p

�
2H�

�
�
�
1C .1C d�e/7M

�2
C:

Step 4. Boundedness of intersection numbers. As

K.X.2/;F .2//;� C .1C d�e/7p
�
2H�
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is ample, then the same holds for

K.X.2/;F .2//;� C
�
.1C d�e/7C s

�
p�2H� for any s 2 R�0:

Denoting
f .s/ D vol

�
X .2/; K.X.2/;F .2//;� C

�
.1C d�e/7C s

�
p�2H�

�
;

then for all 0 � s < 1,�
1C .2C d�e/7M

�2
C � f .s/ � f .0/ D

Z s

0

f 0.x/ dx

D

Z s

0

d

dt

ˇ̌̌
tDx

�
vol
�
X .2/; K.X.2/;F .2//;� C

�
.1C d�e/7C t

�
p�2H�

��
dx

D

Z s

0

d

dt

ˇ̌̌
tDx

��
K.X.2/;F .2//;� C

�
.1C d�e/7C t

�
p�2H�

�2�
dx

D

Z s

0

�
2K.X.2/;F .2//;� � p

�
2H� C 2

�
.1C d�e/7C x

�
H 2
�

�
dx

D 2
�
.KF .2/ C �KX.2// � p

�
2H�

�
s C 2H 2

�

�
.1C d�e/7

�
s CH 2

� s
2:

(6.1)

As Y � is bounded, lH� is very ample andH 2
� � C , cf. Step 2,H 2

� can only take finitely many
values in the positive integers. Likewise, by the push-pull formula,KX.2/ � p�2H� D KY � �H�
can only take finitely many integral values. The boundedness of p�2H

2
� and of KX.2/ � p�2H� ,

together with the last line of (6.1), implies that also KF .2/ � p�2H� can only take finitely
many values in the positive integers: the positivity of KF .2/ � p�2H� follows from the pseudo-
effectivity of KF .2/ and since H� is big and nef. Hence, there exists a finite set

Lt;� D Lt;�.t; �; C / � N>0 C �N>0 C tN>0

such that
.K.X.2/;F .2//;� C tp

�
2H�/ � p

�
2H� 2 Lt;�:

Step 5. A new model. Starting with X .2/, we now run theKX.2/-MMP over Y � and then
pass to the canonical model over Y � , which exists by (i) in Step 3,

X .1/ X .2/ X .3/:

Y �

 

!
s0

 

!p1

 ! p2

 

!
s00

 

!

p3

Let F .3/´ s00�F
.2/. By Step 4 and the push-pull formula, there exists a positive real number

C 0t;� D C
0.t; �; C / such that

0 < .K.X.3/;F .3//;� C tp
�
3H�/ � p

�
3H� � C

0
t;�:

Hence, there exists a positive real number C 00t;� D C
00
t;�.t; �; C / such that

0 < .K.X.3/;F .3//;� C tp
�
3H�/

2
�

�
.K.X.3/;F .3//;� C tp

�
3H�/ � p

�
3H�

�2
.p�3H�/

2
� C 00t;�;

where the second inequality holds by the Hodge index theorem, i.e., .A2/.B2/ � .A � B/2,
where A is nef divisor.
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Step 6. Boundedness of X .3/. Let us observe that X .3/ is �-lc, by construction. We now
show that X .3/ belongs to a bounded family. By the classical version of the Cone Theorem,
[15, Theorem 3.7], KX.3/ C 7p�3H� is ample on X .3/; furthermore,

vol.X .3/; KX.3/ C 7p�3H�/

�
1

�2
vol.X .3/; K.X.3/;F .3//;� C 7�p

�
3H�/ ŒKF .3/ is pseudo-effective�

�
C 007�;�

�2
:

(6.2)

By Bertini’s theorem, taking a general (irreducible) divisorH 0 2 j7lp�3H� j, where l D l.�; C /
is the natural number defined in Step 2, we can ensure that .X .3/; H

0

l
/ is �0-lc, �0´ min.�; 1

l
/;

thus, [11, Theorem 1.3] and (6.2) together imply that

vol.X .3/; KX.3/ C 7p�3H�/ D vol
�
X .3/; KX.3/ C

H 0

l

�
belongs to a finite set; finally, by [18, Theorem 6], .X .3/;H 0/ is bounded. Thus, for any
s 2 R>0,

vol
�
X .3/; K.X.3/;F .3//;� C 6p

�
3H� C s.KX.3/ C 7p

�
3H�/

�
� vol

�
X .3/; .1C s/K.X.3/;F .3//;� C .6C 7s/p

�
3H�

�
ŒKF .3/ is pseudo-effective�

� .1C s/2 vol
�
X .3/; K.X.3/;F .3//;� C

6C 7s

1C s
p�3H�

�
� .1C s/2C 006C7s

1Cs
;�
:

Step 7. Boundedness of F .3/. By Step 3, the divisor

K.X.2/;F .2//;� C .1C d�e/7p
�
2H

is ample on X .2/; hence its pushforward

K.X.3/;F .3//;� C .1C d�e/7p
�
3H�

is big and nef on X .3/.
As in Step 4, we compute the derivative

d

ds
vol
�
X .3/; K.X.3/;F .3//;� C .1C d�e/7p

�
3H� C s.KX.3/ C 7p

�
3H�/

�
D

d

ds

�
K.X.3/;F .3//;� C .1C d�e/7p

�
3H� C s.KX.3/ C 7p

�
3H�/

�2
D 2

�
K.X.3/;F .3//;� C .1C d�e/7p

�
3H�

�
� .KX.3/ C 7p

�
3H�/

C 2s.KX.3/ C 7p
�
3H�/

2:

By boundedness and Steps 3–4, there exists a positive real number D D D.�; C / such that
K2X.3/ , KX.3/ � p

�
3H� , KF .3/ � p�3H� all belong to the interval Œ�D;D�. Repeating the same

argument about the derivative of the volume, as in Step 4, then we can show that there exists
a positive real number D0 D D0.�; C / such that

0 < KF .3/ � .KX.3/ C 7p
�
3H�/ � D

0:
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Since, for any � 2 N>0,

2KX.3/ CKF .3/ C
�
.2C d�e/7C �

�
p�3H�

D KX.3/ CK.X.3/;F .3//;� C .1C d�e/7p
�
3H�„ ƒ‚ …

big and nef

C .1 � �/KX.3/ C .7C �/p
�
3H�„ ƒ‚ …

ample

;

Kawamata–Viehweg vanishing implies that, for i D 1; 2,

hi
�
X .3/; 2KX.3/ CKF .3/ C

�
.2C d�e/7C �

�
p�3H�

�
D 0:

As H� is Cartier, then

�
�
X .3/; 2KX.3/ CKF .3/ C

�
.2C d�e/7C �

�
p�3H�

�
is a degree 2 polynomial in �, cf. [13, Theorem 1.6]. Thus, for at least one value of � 2 ¹0; 1; 2º,ˇ̌

2KX.3/ CKF .3/ C
�
.2C d�e/7C �

�
p�3H�

ˇ̌
¤ ;:

We fix such value of �. Let � 2 j2KX.3/ CKF .3/ C ..2C d�e/7C �/p�3H� j; then the argu-
ment from the start of this step shows that there exists a positive real number D00 D D00.�; C /
such that

� � .KX.3/ C 7p
�
3H�/ � D

00:

Hence, the couple .X .3/;Supp�/ constructed in this step belongs to a bounded family. More-
over, asX .3/ itself is bounded, then we can conclude that there is a bounded family parametriz-
ing the pairs .X .3/;OX .� � 2KX.3/ � ..2C d�e/7C �/p�3H�/ and

OX
�
� � 2KX.3/ �

�
.2C d�e/7C �

�
p�3H�

�
' O.KF .3//:

The dependence on � here does not constitute an issue since � 2 ¹0; 1; 2º; thus, up to working
with a larger family, we can assume that all three possible values of � are considered. Hence,
we have reconstructed the pair .X .3/;O.KF .3///, where F .3/ here is considered as an abstract
Weil divisorial sheaf on X .3/.

Finally, we want to reconstruct the foliation in a family. Indeed, the properties we proved
so far imply that there exist a projective morphism

zf3W
eX.3/
! zT ;

where zT is a quasi-projective variety, and a Weil divisorial sheaf zK on eX.3/ such that, for any
.X;F / in M2;�;C , there exists t 2 T such that�

X .3/;O.KF .3//
�
Š
�eX.3/

t ;O. zKjeX.3/
t
/
�
:

Possibly stratifying eT into a disjoint union of locally closed subsets (which does not alter
boundedness), we may assume that items (1) and (2) of Lemma 2.22 are satisfied for the couple
.eX.3/; zK/. By [12, Théorème 12.2.1 (v)], possibly after further stratification of the base, we
may assume that item (3) holds as well for .eX.3/; zK/. We may then apply Lemma 2.22 and
produce a foliated pair .X.3/;FX.3// given by a normal variety X.3/, a rank 1 foliation FX.3/

on X.3/, and a projective morphism f3WX
.3/ ! T of varieties of finite type such that

� f3W .X
.3/;FX.3/ ; 0/! T is a bounded family of surface foliated pairs; and,

� for any .X;F / 2M2;�;C , there exists t 2 T and an isomorphism t WX
.3/
t ! X .3/ iden-

tifying F .3/ with FX.3/ jX.3/
t

, where .X .3/;F .3// is the model constructed in Step 5 –
starting from .X;F /.
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Step 8. Resolutions in families: in this step, we show that then there exists a bounded
family .f4WX.4/ ! T;FX.4// of foliated pairs such that, for any pair .X;F / 2M2;�;C , there
exists t 2 T such that

� X .4/t is smooth;

� .X .4/t ;F .4/
t / is �-adjoint canonical; and,

� .X .4/t ;F .4/
t / is birational to .X;F /.

Continuing with the notation from the end of the previous step, up to passing to a finite
stratification of T into locally closed subsets, we can assume that T is smooth. By further
stratifying the base T into locally closed subsets and taking resolutions in families, we can
moreover construct a pair .f4WX.4/ ! T;FX.4// such that this gives a family of foliations on
smooth projective surfaces, in the sense of [23, Definition 7.1]. Applying [23, Proposition 7.4]
and further stratifying T into locally closed subsets yields a bounded family satisfying the
properties above. In fact, denoting for t 2 T the restriction of FX.4/ to X.4/

t by FX.4/
t

, then the
following properties hold:

(I) for all t 2 T , .X.4/
t ;FX.4/

t
/ is �-adjoint canonical and it is birational to .X.3/

t ;F .3/
t /;

(II) X.4/; g; T are all smooth and T is finite type;

Step 9. Properties of the family .f4WX.4/ ! T;FX.4//. We define the set W � T as

W ´ ¹t 2 T j .X.4/
t ;FX.4/

t
/ admits a birational morphism

.X.4/
t ;FX.4/

t
/! .X;F / to a foliated pair .X;F / 2M2;�;C º

Further stratifying T into locally closed subsets and possibly discarding some of the
components thus obtained, we can assume that also the following properties hold:

(III) W \ zT is Zariski dense in each connected component zT of T ; and,

(IV) for all t 2 T ,K.X.4/
t ;FX.4/t

/;� is big. To prove that this property holds, let us recall that, for
each t 2 W , jMK.X.4/

t ;FX.4/t
/;�j induces a birational map: indeed, since .X.4/

t ;FX.4/
t
/ is

birational equivalent to an �-adjoint canonical model .X;F / 2M2;�;C , then the con-
clusion follows at once from Corollary 4.8. As W is Zariski dense in each connected
component of T and T is finite type, by semicontinuity of cohomology groups in family,
we can assume that there exists a Zariski dense open subset W ı � W such that, for any
t 2 W ı, the natural restriction map

H 0
�
W ı; f�OX.4/.MK.X.4/;FX.4/ /;�/

�
! H 0

�
X.4/
t ;OX.4/

t
.MK.X.4/

t ;FX.4/t
/;�/
�

is surjective. In particular, this implies that, for t 2 W ı, the rational map over T given
by f�OX.4/.NK.X.4/;FX.4/ /;�/ is birational along X.4/

t , which then proves the claim, as
this is an open condition on T .

Step 10. Conclusion. Boundedness of ample models. Let T1 be an irreducible component
of T and let �1 2 T1 be its generic point. Let X

.4/
�1 be the fiber over �1 and X

.4/
N�1

the extension
of scalars to the algebraic closure k.T1/ of k.T1/. We denote by FX

.4/
N�1

the induced foliation on
X
.4/
N�1

. By Lemma 2.15, .X.4/
N�1
;FX

.4/
N�1
/ is �-adjoint canonical and K.X.4/

N�1
;FX

.4/
N�1
/;� is big. Hence,

by Theorem 3.1 and Corollary 3.4, we can run the K.X.4/
N�1
;FX

.4/
N�1
/;�-MMP

(6.3) X
.4/
N�1
´ yX0

g0
��! yX1

g1
��! yX2

g2
��! : : :

gn�1
���! yXn
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terminating with a projective model . yXn; yF / defined over k.T1/ on which K. yXn;F yXn /;� is
ample and it has �-adjoint canonical singularities. As we have a finite number of objects
involved in defining all varieties, morphisms and foliations involved in (6.3), there exists a finite
field extension k.T / � k0 over which the yXi , the morphisms gi and the strict transforms F yXi

of FX
.4/
N�1

are defined. Furthermore, as a line bundle L is ample over k0 if and only if its exten-
sion of scalars to k.T1/ is ample over k.T1/, then, by construction, K. yXn;F yXn /;� is defined
over k0 and already ample on that field.

The discussion in the previous paragraph implies that there exists a dominant étale mor-
phism qWU ! T1, with k.U / ' k0 and q.U / � T1 open such that there exist families of
foliated surfaces . zXi ; zFi / projective over U together with morphisms zgi W zXi !

zXiC1 and
a commutative diagram of morphisms over U ,

. zX0; zF0/ . zX1; zF1/ . zX2; zF2/ : : : . zXn; zFn/

U

 

!

 

!
zg0

 

!

 

!
zg1

 !

 

!
zg2  

!
zgn�1

 

!

Up to possibly shrinking U , we can assume, by construction and the previous obser-
vations, that

� for all i , the zgi are all birational morphisms over U and �.K
. zXi ; zFi /;�

/ is zgi -nef;

� for all i , all fibers of . zXi ; zFi /! U are �-adjoint canonical, by the negativity lemma
applied fiber-wise;

� K. zXn; zFn/;� is ample when restricted to any fiber of zXn ! U .

It follows that the fibers of . zXn; zFn/! U are �-adjoint canonical models and they are bira-
tional to the corresponding fiber of . zX0; zF0/ over the same point on U . By uniqueness of
ample models of �-adjoint canonical foliated pairs, cf. Corollary 3.4, they all yield elements of
M2;�;C . By Noetherian induction, it suffices to repeat the procedure of this step a finite number
of times, first on each connected component T1 n q.U / and then on all other connected compo-
nents to T , to show that every element in M2;�;C must appear as a fiber in the (finitely many)
families of surface foliations produced by this process.
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