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� Ultra long-term subcutaneous EEG offers a novel option for the recording of electrographic epileptic
seizures in everyday life.

� A semi-automatic seizure detection process is proposed to limit the time spent on review to periods of
potential seizure activity.

� The algorithm of the semi-automatic detection process had a sensitivity of 86% and a false detection
rate of 2.4 per 24 hours.

a b s t r a c t

Objective: Ultra long-termmonitoring with subcutaneous EEG (sqEEG) offers objective outpatient record-
ing of electrographic seizures as an alternative to self-reported epileptic seizure diaries. This methodol-
ogy requires an algorithm-based automatic seizure detection to indicate periods of potential seizure
activity to reduce the time spent on visual review. The objective of this study was to evaluate the perfor-
mance of a sqEEG-based automatic seizure detection algorithm.
Methods: A multicenter cohort of subjects using sqEEG were analyzed, including nine people with epi-
lepsy (PWE) and 12 healthy subjects, recording a total of 965 days. The automatic seizure detections
of a deep-neural-network algorithm were compared to annotations from three human experts.
Results: Data reduction ratios were 99.6% in PWE and 99.9% in the control group. The cross-PWE sensi-
tivity was 86% (median 80%, range 69–100% when PWE were evaluated individually), and the corre-
sponding median false detection rate was 2.4 detections per 24 hours (range: 2.0–13.0).
Conclusions: Our findings demonstrated that step one in a sqEEG-based semi-automatic seizure detec-
tion/review process can be performed with high sensitivity and clinically applicable specificity.
Significance: Ultra long-term sqEEG bears the potential of improving objective seizure quantification.
� 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Seizures are the primary symptom of epilepsy. Clinical
management aims to avoid seizures and reduce complications.
Repetitive seizures present significant challenges to people with
refractory epilepsy entailing lifestyle limitations and potential
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seizure-related injuries. Accurate seizure documentation is para-
mount to quantify the burden of people with epilepsy (PWE), but
the current standard assessment using seizure diaries based on sei-
zure self-reports by the PWE or by the caregivers have been shown
to be unreliable with an average accuracy below 50 percent
(Blachut et al. 2017; Elger and Hoppe 2018; Fisher et al. 2012).
As seizure quantification constitutes the basis of clinical manage-
ment of refractory epilepsy and the evaluation of new therapies,
more accurate methods are needed. Objective and accurate seizure
monitoring using mobile devices during everyday life activities is
likely to become a game changer in managing patients with
epilepsy.

Currently marketed seizure detection devices typically take
advantage of the measurement of motor activity (reflected in
video, accelerometry and electromyography) or changes in auto-
nomic measures (reflected in heart rate parameters and electroder-
mal activity) (Bruno et al. 2020). However, the devices on the
market are restricted to detection of convulsive seizures, whereas
the detection of focal seizures without major motor components
remains a clear gap (Bruno et al. 2020).

EEG shows well-described characteristics associated with
epileptic seizures and constitutes a cornerstone in the diagnostic
process of any epileptic syndrome. Therefore, multiple seizure
detection algorithms have been developed for EEG (Fürbass et al.
2015, 2017; Baumgartner and Koren 2018) – in particular for scalp
EEG. While scalp electrodes are not feasible for long-term record-
ings, minimally invasive subcutaneous EEG (sqEEG) recording
devices provide reliable ultra long-term continuous monitoring
in patients’ habitual environment and during everyday life activi-
ties (Duun-Henriksen et al. 2020). Ultra long-term outpatient
sqEEG monitoring has been demonstrated to be feasible and
well-tolerated for nine PWE with temporal lobe epilepsy
(Weisdorf et al. 2019). No serious adverse events were reported
and none of the PWE felt constrained in their ability to carry out
jobs and leisure activities. In addition, the ability to detect electro-
graphic seizures from sqEEG in real-life settings was demon-
strated. Furthermore, the sqEEG signal has been demonstrated to
be of high quality and highly stable throughout months of record-
ing (Viana et al. 2021).

Ultra long-term outpatient sqEEG monitoring accommodates
needs where traditional routine video-EEG and hospitalization
at epilepsy monitoring units are inadequate. This includes record-
ing of rare seizures (e.g. frequency < 1/month) and the ability to
capture the temporal fluctuations in seizure patterns present in
most PWE. It is well-known that the timing of seizure occur-
rences is not random – rather both circadian and multi-day cyclic
seizure timing patterns exist (Karoly et al. 2018; Baud et al.
2018). Ultra long-term recordings could improve the monitoring
of treatment effects by eliminating the effect of high variability
of seizure occurrence, when the seizure cycles are known
(Goldenholz et al. 2017).

Visual assessment by human experts, to annotate epileptic sei-
zures in ultra long-term sqEEG recordings lasting several months is
not feasible as it is extremely time consuming. Therefore, auto-
mated seizure detection algorithms are required for clinical imple-
mentation, to decrease the huge workload. A hybrid (semi-
automatic) approach where an automatic detector marks candi-
dates for electrographic seizures and then an EEG expert validates
detections by visual inspection using the sqEEG, could combine the
high sensitivity from the algorithm with the high specificity from
the expert, yet, decreasing considerably the workload. The UNEEGTM

EpiSight Analyzer software (hereafter referred to as ‘‘EpiSight”) is a
visualization tool with a computational algorithm that automati-
cally detects potential electrographic epileptic seizures and
reduces the required amount of sqEEG data to be reviewed to these
selected events.
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Our goal was to evaluate the EpiSight seizure detection algo-
rithm. Our performance assessment aimed to answer two questions
of clinical relevance: 1)what are the detection sensitivities and false
detections rates? and 2) is data reduced to an amount that is clini-
cally applicable for visual review, in a subsequent step? For ultra
long-term sqEEG to become a true game changer in epilepsy man-
agement by delivering accurate objective seizure monitoring in
real-life settings, the key process of automatic seizure detection/re-
view is of utmost importance. Comparisons will be carried out in
order justify the minimally invasive semi-automatic sqEEG-based
review process over the self-reported diaries.
2. Methods

2.1. Data

Two separate datasets were included in the current work, both
of which were recorded with a preliminary version of the novel,
minimally invasive sqEEG solution for ultra long-term outpatient
recording (24/7 EEGTM SubQ, UNEEG medical A/S, Allerød, Den-
mark). The ‘‘epilepsy” dataset included nine PWE with temporal
lobe epilepsy. All PWE were medically refractory – except from
one, who was only recently diagnosed with epilepsy. The sqEEG
solution was applied for epileptic seizure monitoring throughout
2–3 months, resulting in a total of 490 days of recorded sqEEG in
the epilepsy dataset. All PWE were using manual seizure diaries
with a precision limited to date of seizure events. For a detailed
account on the study design, data collection procedures and demo-
graphics of the PWE, please refer to (Weisdorf et al. 2019) (clinical-
trials.gov NCT02946151). Information on seizure onset zone,
semiology, and counts for each PWE is included in Table 1, which
holds the main results of the current work. Mostly, non-
convulsive seizures were represented, but also a few convulsive
seizures (focal to bilateral tonic-clonic seizures).

In addition, a ‘‘normal control” dataset including 12 healthy
subjects was collected. This constituted a total of 475 real-life
recording days of previously unpublished sqEEG data (clinicaltri-
als.gov NCT02402153). Each study was approved by their regional
committee of science ethics and participants provided written
informed consent.

The lead of the sqEEG device providing two bipolar EEG chan-
nels (3-contact electrode) was implanted unilaterally over the
focus on the temporal lobe of the PWE, while it was pointing from
behind the ear in a vertical direction towards vertex for the healthy
subjects (see Fig. 1). The sqEEG device records data at 207 Hz and
has the following filter characteristic: 0.5–48 Hz equiripple FIR
bandpass filter with a sidelobe attenuation of 40 dB and passband
ripple of < 0.1 dB.
2.2. Validation strategy – the gold standard

The 490 days of sqEEG recording of the epilepsy dataset was
reviewed and labelled manually to establish a gold standard of
electrographic epileptic seizures to be able to evaluate the perfor-
mance statistics of the automatic detection algorithm. In a first
step, three independent clinical experts from three different insti-
tutions reviewed and labelled the dataset with three different
labelling approaches, each of which will be described below.

Zealand University Hospital: sqEEG data was reviewed based on
10-min time–frequency epochs as described in detail before
(Weisdorf et al. 2019). Whenever the existence of a potential sei-
zure pattern was identified, the sqEEG was reviewed in the time
domain to confirm or reject the event of a seizure. Prior to the
review process, all available previous scalp EEG recordings and/or
reports for each PWE were thoroughly reviewed to establish one

http://clinicaltrials.gov
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Fig. 1. Illustration of the placement of the implanted recording lead. The dashed green line represents the lead inserted subcutaneously in an almost horizontal direction,
recording from the temporal lobe (people with epilepsy). The dashed brown line represents the direction of the recording lead towards vertex (healthy subjects).
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or more personal spectrographic seizure signatures. The entire
review was performed by a physician with experience in visual
EEG review (SW) using Nervus EEG Reader v. 5.95 (Pleasanton,
USA). All seizure annotations and events of doubt underwent sec-
ondary review by a board-certified clinical neurophysiologist
(TWK), who made the final decision.

The Danish Epilepsy Centre, Filadelfia: sqEEG data was
reviewed by visual inspection in the time-domain by a certified
neurophysiology technician with experience in visual EEG review
(AMKO). A previous version of the EpiSight software (v. 1.9.2)
was applied for the task, but without enabling the automated sei-
zure detection algorithm for data reduction. All seizure annota-
tions and events of doubt underwent secondary review by a
board-certified clinical neurophysiologist (SB), who made the final
decision.

King’s College London: A previous version of the EpiSight soft-
ware (v. 1.9.2) was applied as prescribed, reducing the sqEEG data
to be reviewed manually for each PWE to the events automatically
88
detected by the seizure detection algorithm (clinically validated
detector described in (Fürbass et al. 2015, 2017). The reviewer
either discarded or accepted the potential seizure annotations. This
was performed by a trained neurologist with experience in EEG
review (PFV). This review process constitutes the use case of the
UNEEG solution.

In a second step, all three review teams were asked to review all
sqEEG patterns, labelled with a seizure annotation by either of the
remaining teams, which they had not labelled and/or seen them-
selves, see Fig. 2. Reviewers were asked to either accept or discard
the potential electrographic seizures labelled by a first review
team. In this way, all review teams were presented with all poten-
tial seizures disregarding the specific review process they per-
formed in the first step. Thereby, the base for a majority decision
was established to determine the gold standard of electrographic
seizures to which the automatic algorithm could be evaluated
against. As three review teams contributed, at least two votes were
required to classify an electrographic seizure.



Fig. 2. Illustration of the stepwise review and labelling process. Three independent clinical experts from three different institutions reviewed and labelled data. Review step I:
Three different approaches of labelling, each reducing the large data amount to several seizure annotations represented by ‘‘X”. Each institution holds a color code (green–
blue, blue, orange) and the sequences of 0’s and X’s are aligned in time. The seizure annotations (X’s) from each institution are passed to the next step. Review step II: Each
reviewer is presented unseen and/or ‘‘extra” seizure annotations from the two other reviewers (red ‘‘?” in black dashed outlined datasets). Each reviewer either discards (a
light gray ‘‘0”) or accepts the extra seizures (a color coded ‘‘X”), resulting in three labelled datasets (solid outlined datasets). Majority vote: the three labelled data sequences
are ‘‘summed” (green, dashed outlined), and whenever at least two reviewers agree on a seizure annotation, it is considered a true electrographic seizure, representing the
gold standard of this study (green X’s of solid outlined data sequence).
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2.3. The automatic seizure detection algorithm

For automatic seizure detection in EpiSight a deep neural net-
work model was designed, trained, and deployed using the open-

source machine learning platform TensorFlow (https://www.ten-

sorflow.org). The model consists of a deep stack of convolutional
layers and ResNet blocks extracting high level features, a feature
pyramid network combining features with different levels of
abstraction and scale (Tan et al. 2020), an onset position estimation
network creating proposals for potential seizure onset times, and a
multi-layer perceptron as a classifier distinguishing seizure EEG
from interictal background EEG. For a detailed description of the
model, please refer to (Hartmann et al. 2022).

To train this model a training dataset including scalp EEG from
490 patients of the Temple University Hospital Seizure Detection
Corpus (Shah et al. 2018) and ultra long-term sqEEG from ten
healthy subjects (unpublished data; clinicaltrials.gov
NCT04513743) were used (not the healthy subjects included in
the validation dataset). The sqEEG data included nocturnal home
monitoring recordings only. The scalp EEGs, recorded at 10–20
electrode positions, were organized in 14 bipolar channel pairs,
each of them mimicking ‘‘virtual recordings” of three subcuta-
neously implanted electrodes. For each seizure annotated in the
10–20 scalp EEG recordings the corresponding training goal was
set to achieve at least one detection in one of these 14 bipolar
channel pairs. High similarity between EEG from subcutaneous
and proximate scalp electrodes in PWE has been demonstrated
(Weisdorf et al. 2018), justifying the use of scalp recordings to train
the sqEEG seizure detection algorithm.

The described automatic seizure detection algorithm of EpiSight
is inherently different from that of the previous version of EpiSight
(described in (Fürbass et al. 2015, 2017)) which was applied in the
data labelling process.
2.4. Statistical analysis

The sqEEG data of both datasets (epilepsy and normal control)
were analyzed with the EpiSight automatic seizure detection algo-
rithm. The resulting EpiSight annotations constituted the index
test to be evaluated.
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For each PWE, the seizure detection sensitivity and the false
detection rate (per 24 h) were reported. An EpiSight detection
had to be within a 2-min window when compared to the estab-
lished gold standard of electrographic seizures to be considered a
true positive.

When calculating the data reduction ratio (the proportion of
data to discard from the semi-automatic visual review process),
it was considered that two minutes of sqEEG are needed for
reviewers to assess whether a detection is a true electrographic
seizure or not. Thereby, for each PWE, the data reduction ratio
was determined as LsqEEG � 2min� NEpiSight=LsqEEG, where LsqEEG rep-
resents the total sqEEG length [min] and NEpiSight represents the
total number of EpiSight annotations.

Cohen’s kappa statistic was calculated to determine the degree
of agreement between the self-reported diaries and the electro-
graphic seizures as identified in the review process described
above. To make the comparison possible, the accuracy in time of
the electrographic seizures was reduced to the date of occurrence.

For the normal control dataset, the data reduction ratios and
false detection rates were reported.

3. Results

One PWE was excluded from the validation dataset (PWE D)
due to an unusual abundance of interictal findings. All three review
teams agreed that it was not possible to separate ictal sqEEG from
interictal sqEEG and establish a meaningful gold standard of elec-
trographic seizures.

3.1. Automatic seizure detection and data reduction

An overall electrographic seizure detection sensitivity of 86%
was demonstrated, evaluating a total of 94 seizures. All seven sev-
ere seizures (focal to bilateral clonic-tonic) were detected. Table 1
summarizes and outlines the main results when evaluating each
PWE individually. The cross-PWE sensitivity showed a median of
80% (range: 69–100%), with three PWE having 100% sensitivity
(43 seizures in total). The demonstrated sensitivity levels were
obtained with a median false detection rate of 2.4 detections per
24 hours (range: 2.0–13.0). In clinical practice, that is just below
five minutes of non-seizure sqEEG to be reviewed per 24 recording

https://www.tensorflow.org
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Table 1
Epilepsy characteristics and EpiSight automatic seizure detection performance measures for each participant. The top part includes the people with epilepsy (PWE), whereas the
lower part includes the normal control. Cohen’s kappa values, comparing self-reported seizures with gold standard electrographic seizures for each PWE, are included in the
rightmost column.

ID Onset
Zone

Semiology Self-
reported
seizures

Cohen’s
kappa diary

EEG data
length [h]

EEG data reduced to
[h/month]

Data reduction
ratio [%]

Electrographic
seizures

SE
[%]

FDR [per
24 h]

Epilepsy dataset
A LT FAS 0 – 627 2.2 99.6 0 – 2.4
B LT FAS 55 0.51 1552 10.9 98.1 25 100 13.0
C RT FIAS w/FBTCS 0 0 975 4.8 99.0 9 78 7.3
E LT FIAS w/FBTCS 0 0 1147 1.9 99.6 17 100 2.2
F LT FAS 21 0.29 1808 8.9 98.7 5 80 9.6
G LT Uncertain 13 0.53 1516 2.1 99.7 13 69 2.2
H LT FIAS w/FBTCS 1 1.0 1364 1.7 99.7 1 100 2.0
I LT FIAS w/FBTCS 133 0.0056 1605 2.0 99.6 24 75 2.3

Median 0.29 1440 2.2 99.6 80 2.4

Normal control dataset
01 – – – – 1007 0.75 99.9 – – 0.93
02 – – – – 1010 3.0 99.5 – – 3.3
03 – – – – 1024 0.53 99.9 – – 0.63
04 – – – – 988 2.8 99.4 – – 4.1
05 – – – – 1056 0.80 99.9 – – 0.89
06 – – – – 968 0.82 99.9 – – 1.0
07 – – – – 974 0.19 99.9 – – 0.25
08 – – – – 981 1.1 99.9 – – 1.5
09 – – – – 888 2.1 99.8 – – 2.4
10 – – – – 527 0.46 99.7 – – 0.55
11 – – – – 990 0.46 99.9 – – 0.65
12 – – – – 1002 0.27 99.9 – – 0.41

Median – 989 0.78 99.9 – – 0.91

Abbreviations: FAS, focal aware seizure; FBTCS, focal to bilateral tonic-clonic seizure; FDR, false detection rate; FIAS, focal impaired awareness seizure; LT, left temporal; RTF,
right frontotemporal; RT, right temporal; SE, sensitivity.
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hours (when assuming the required two minutes per event). An
ictal sqEEG example from each PWE is included in the Supplemen-
tary Material.

The algorithm reduced the amount of data to be reviewed with
a median of 99.6% (range: 98.1–99.7%) in the epilepsy dataset,
evaluating each PWE individually. In absolute hours, the data load
was reduced to a median of 2.2 hours of EEG data to be reviewed
per month for each PWE (considering the individual user adher-
ence). For the normal control dataset, the EEG data amount was
reduced by a median of 99.9% (range: 99.4–99.9%) and had a med-
ian false detection rate of 0.91 pr. 24 hours (range: 0.25–4.1).

The three reviewers were asked to report their actual review
time, necessary for the evaluation of the whole recording (serving
as gold standard in this study). SW reported a total review time of
approximately-three months (12 weeks of 40 h work = 480 h),
AMKO estimated a total review time of 432 hours, whereas PFV
(who performed an EpiSight-assisted semi-automatic review pro-
cess) reported 26 hours of review time. Thus, the conservative esti-
mation of the review time consumption reduction ratio is (432 h–
26 h)/432 h = 94%, when applying the semi-automatic review pro-
cess (with the previous version of the detection algorithm).

3.2. sqEEG-based annotations vs diary

Fig. 3 visualizes the backbone of the analysis results. For each
PWE, all EpiSight annotations (true and false positives) are plotted
together with the electrographic seizures, and self-reported diary
entries. It is demonstrated that the ability to actively self-report
seizures varies across the PWE. Likewise does the agreement with
the electrographic seizures and the sensitivity of the automatic
algorithm. PWE C and E showed empty diaries (since they were
not aware of their seizures), but numerous electrographic seizures,
and high seizure detection sensitivities at reasonable levels of false
detections. On the other hand, PWE B, F, G, and I were active self-
90
reporters. PWE I reported heavily, PWE B and F reported about
twice as many seizure days as electrographic seizures, whereas
the self-reports of PWE G sum to the true number of electrographic
seizures. Lastly, PWE A and H demonstrated full agreement
between diary and electrographic seizures – though data was lim-
ited to zero and one electrographic seizure, respectively.

The observations are formalized in Cohen’s kappa values of
Table 1, which support the general understanding that self-
reported seizure diaries are inaccurate, since the agreements
between the diary and the electrographic seizures are low
(kappa < 0.6 (Landis and Koch 1977)) for all but one PWE (median:
0.29; range: 0–1.0).
4. Discussion

The EpiSight automatic seizure detection algorithm was evalu-
ated on 490 days of outpatient sqEEG data from eight PWE, includ-
ing 94 electrographic seizures (mainly non-convulsive). An overall
seizure detection sensitivity of 86% was demonstrated. False detec-
tion rates were found to be a median of 2.4 false detection per 24
hours for PWE (range: 2.0–13.0) and 0.91 per 24 hours (range:
0.25–4.1) for the normal control group. This means that on its
own (unsupervised) the fully automated detection does not meet
clinical requirements, due to the false alarms. However, it
decreases dramatically the dataset, without significant drop in sen-
sitivity, hence making this suitable for a semi-automatic (hybrid)
approach, where experts review only the epochs detected by the
algorithm.
4.1. The automatic seizure detection algorithm

Available scalp-EEG based seizure detection algorithms applied
in a clinical setting provide sensitivities of 75–90% and false detec-



Fig. 3. Chart for all people with epilepsy showing electrographic seizures (red circles), false positive (FP) EpiSight annotations (black dots), true positive (TP) EpiSight
annotations (black crosses), and self-reported diary events (shaded lines; light blue = 1 seizure, medium blue = 2 seizures, dark blue = 3 + seizures).

L.S. Remvig, J. Duun-Henriksen, F. Fürbass et al. Clinical Neurophysiology 142 (2022) 86–93
tion rates of 2.4–120 per 24 hours (Baumgartner and Koren 2018).
Thus, the performance of this work is indeed comparable – espe-
cially considering that the EpiSight algorithm was evaluated on
ultra long-term real-life data, which could be expected to generate
more false detections. Noteworthy too is that the evaluated data-
base only included seven convulsive seizures (focal to bilateral
clonic-tonic), distributed in four different PWE, which are usually
the easiest to detect. These were all detected, but most seizures
were of other types, challenging the algorithm further.

A walk-through of the false negatives (distributed among half
of the PWE) by manual inspection reveals no unique tendency
and explanation. However, common for the missing detections
of PWE F and I is that these are the seizures of shortest duration.
There was no particular distribution in time of occurrence of the
false negatives; they occurred in accordance with the circadian
distribution of the true positives of the given PWE. A similar
manual inspection of a subset of the false detections reveals
subject-specific patterns: e.g., chewing artefacts for one PWE,
and other high frequent patterns for the other. Homogeneity
exists within subjects, but not across subjects. This also holds
91
when considering the distribution of false detections throughout
the day: some PWE experience most false detections during day-
time (PWE A, E, F), while it is during sleep for another (PWE G).
One can imaging taking advantage of such insights of the circa-
dian distribution of both false detections and true seizures in the
future, tailoring subject-specific algorithms. PWE G, who demon-
strated the lowest sensitivity of this study (9/13 = 69%), could
very well benefit from this as the electrographic seizures occurs
at times 7–19, whereas the false detections mainly occur outside
this time span.

Even without tailoring subject-specific solutions, the general
algorithm performance is expected to be improved significantly
when more relevant labelled sqEEG real-life data is available for
training. For development of the current detection algorithm nei-
ther ictal nor interictal sqEEG data were included in the training
set as such was not available – only (nocturnal) sqEEG from sub-
jects without epilepsy. A major challenge in the development of
seizure detection systems is the difficulty in validating perfor-
mance, since validation requires a gold standard of true seizures.
Thus, when data is available, it still needs to be labelled.
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4.2. The data reduction ratio

Comparing the data reduction ratios of the two validation data-
sets indicates a small difference in the efficiency of a semi-
automatic review process for the two groups, since the reduction
ratio is higher for the normal control dataset. This difference might
be driven by both independent variables: group (healthy vs PWE)
and electrode placement (vertical vs optimal to seizure location).
The midline implantations in the healthy subjects likely had less
muscle artefacts and hence less false detections. In addition, the
sqEEG of PWE might include interictal epileptiform discharges
and paroxysms, potentially elevating the number of false detec-
tions. However, the clinicians might benefit from the review of
such events even though they are not classified as electrographic
seizures.

The data reduction level of both datasets seems at a fair level for
the semi-automatic seizure detection/review process to work in
practice. The accepted level of false detections is much higher,
when applied in a semi-automatic review context as opposed to
an incorporation in a real-time alarm system. In general, when
evaluating epileptic seizure detection algorithms, the application
must be kept in mind. The sensitivity might be compromised if
the purpose is monitoring of changes in (non-rare) seizure occur-
rence rates to clarify multi-day seizure rhythms or responses to
changes in AED prescriptions. If the ultimate purpose is replace-
ment of self-reported diaries, the most important is: does the given
solution outperform the diary?

4.3. The sqEEG-based annotations vs the diary: adding clinical value?

The Cohen’s kappa values reporting on the agreement between
the self-reported seizure entries and the recorded electrographic
seizures supported the general understanding that diaries are inac-
curate – and examples of both underreporting and potential over-
reporting were demonstrated. However, concerning the
electrographic seizures the gold standard is controversial, when
evaluating diary performance – especially regarding the potential
cases of overreporting (subjects B, F, and I). Given the limited spa-
tial coverage of the brain (and the missing video) it is not clear
whether they overreport or the two-channel electrode failed to
catch seizure activity at a different location. In addition, there are
periods of outpatient monitoring where no sqEEG is recorded –
and the existence of clinical seizures outside the monitoring period
cannot be excluded. The total adherence was moderate (73%) with
high individual variability (45% � 91%) (Weisdorf et al. 2019).

The demonstrated low diary agreement and performance of the
sqEEG-based seizure detection algorithm indicate that the new
approach is a valuable alternative for the future, potentially out-
Table 2
Could the ultra long-term sqEEG-based method including semi-automated seizure/revie
comparison with diary.

ID (number of
electrographic
seizures)

Could the ultra long-term sqEEG-based method, including semi-

A (0) No reported seizures, neither in diary nor electrographic. Too short
B (25) Active self-reporter. Low/moderate diary agreement (kappa 0.51), bu

clinical value.
C (9) Empty diary = no diary agreement. EpiSight sensitivity of 78%. Add
E (17) Empty diary = no diary agreement. Perfect EpiSight sensitivity. Add
F (5) Active self-reporter. Low diary agreement (kappa 0.29). EpiSight se
G (13) Active self-reporter. Low/moderate diary agreement (kappa 0.53). M

reported dairy days and the days with electrographic seizures. Add
H (1) Only one reported seizure in diary and electrographically. Complet
I (24) Very active self-reporter. Very low diary agreement (kappa 0.0056)

Total Adds clinical value for six out of eight PWE.
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performing the diary. That said, being (minimally) invasive the
sqEEG-based method must add solid clinical value to PWE. This
is considered the case for six out of eight PWE, see summary com-
ments in Table 2. Of the six, PWE B could be questioned (kappa
0.51), but shedding light on potential overreporting is relevant
even though it seems to have received less attention than underre-
porting, traditionally. Psychogenic non-epileptic seizures could be
considered a kind of overreporting where there is a great need for
new diagnostic tools. Another to question is PWE G (kappa 0.53),
who self-reported the true number of seizures, but 5 out of 13 were
reported on the wrong day. A glance at the overview chart of Fig. 3
indicates that an analysis of change in seizure occurrence rate of
PWE G could yield the same results irrespective of diary use or
sqEEG. However, if small scale multi-day cycles are of interest,
annotation on the correct weekday matters.

A limitation of the current investigation is not being able to con-
clude on a potential direction of the disagreement between the
diary and the electrographic seizures (reflecting diary under- or
overreporting) due to the limited sample size. This constitutes a
direction for future research, just as more trials are needed to
assess the real value of the sqEEG-based seizure detection over
the traditional diary.

4.4. The clinical review process of ultra long-term sqEEG

As demonstrated, when comparing the reported actual time
consumptions reviewing the ultra long-term sqEEG with three dif-
ferent approaches, a semi-automatic review processes is a prereq-
uisite for sqEEG to become clinical practice. In this case, the semi-
automatic process reduced the review time consumption by 94%.

The reviewers found the electrographic seizure patterns of the
two-channel sqEEG recognizable as compared to the traditional
scalp EEG setup. Occasionally, they missed the information con-
tained within a usual simultaneous video-EEG. However, all
reviewers reported adapting very well to the modality at quite a
fast pace. In the occasional events of doubt, reviewers expressed
that they could have benefitted from examples of typical two-
channel sqEEG artefacts (e.g., eye blinking) and seizure paradigms
to better separate potential electrographic seizures from artefacts.

4.5. The validation strategy

It is very likely that a confirmation bias was introduced when
reviewers evaluated seizure-annotated sqEEG traces in the second
review step. The review processes were diverse, and thus direct
comparisons were not possible. Nonetheless, the goal was not to
compare the review teams and quantify interrater variabilities.
Instead, the goal was to establish the best possible labelled dataset
w add clinical value for the given people with epilepsy (PWE)? Summing up and

automatic seizure detection/review, add clinical value for the PWE?

recording time to conclude.
t perfect EpiSight sensitivity. Shed light on potential overreporting in diary. Adds

s clinical value.
s clinical value.
nsitivity of 80%. Adds clinical value.
oderate EpiSight sensitivity (69%). Shed light on the mismatch between the

s clinical value.
e diary agreement and perfect EpiSight sensitivity.
. EpiSight sensitivity of 75%. Adds clinical value.
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and gold standard of electrographic seizures. Applying different
review processes supports this. However, a level of agreement
was extracted by counting the number of raters to agree in identi-
fying each electrographic seizure as accepted by majority vote (ei-
ther three or two raters). For two PWE all electrographic seizures
were agreed upon by three raters, for four PWE all but one electro-
graphic seizure were accepted by three raters, while for a single
PWE, 13 of 24 electrographic seizures were annotated by all three
raters. For this latter PWE, the sqEEG included brief interictal rapid
discharges (BIRDs) with durations between 4–10 s. The duration of
seizures and BIRDs seemed to be the factor of doubt among the
raters.

5. Conclusions

Ultra long-term subcutaneous EEG is a novel option for the
recording of electrographic seizures in an outpatient setting. How-
ever, interaction with a supportive solution of a data reduction
algorithm is a prerequisite to make data review possible in clinical
practice. The EpiSight automatic seizure detection algorithm was
demonstrated to be very efficient, reducing the amount of data
to be reviewed by 99.6% in PWE and 99.9% in the normal control
group. This with a cross-PWE sensitivity of 86% (median 80%, range
69–100% when PWE were evaluated individually) and a median
false detection rate of 2.4 detections per 24 hours (range 2.0–
13.0), which is considered a clinical applicable specificity for a
semi-automatic review process. In comparison with self-reported
seizure diaries, six of eight PWE were considered examples of clin-
ical cases where the objective sqEEG-based seizure monitoring
would provide valuable insights to optimize epilepsy treatment
strategy.
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