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Abstract   29 

Water commuting is a major urban transportation method in Thailand. However, urban boat 30 

commuters risk exposure to microbially contaminated bioaerosols or splash. We aimed to 31 

investigate the microbial community structures, identify bacterial and viral pathogens, and assess 32 

the abundance of antimicrobial resistance genes (ARGs) using next-generation sequencing 33 

(NGS) at 10 sampling sites along an 18 km transportation boat route in the Saen Saep Canal,, 34 

which traverses cultural, commercial, and suburban land-based zones. The shotgun metagenomic 35 

(Illumina HiSeq) and 16s rRNA gene amplicon (V4 region) (Illumina MiSeq) sequencing 36 

platforms revealed diverse microbial clusters aligned with the zones, with explicit segregation 37 

between the cultural and suburban sites. The shotgun metagenomic sequencing further identified 38 

bacterial and viral pathogens, and ARGs. The predominant bacterial pathogens (>0.5% relative 39 

abundance) were the Burkholderia cepacia complex, Arcobacter butzleri, Burkholderia 40 

vietnamiensis, Klebsiella pneumoniae, and the Enterobacter cloacae complex. The viruses 41 

(0.28%–0.67% abundance in all microbial sequences) comprised mainly vertebrate viruses and 42 

bacteriophages, with encephalomyocarditis virus (33.3%–58.2% abundance in viral sequences), 43 
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hepatitis C virus genotype 1, human alphaherpesvirus 1, and human betaherpesvirus 6A among 44 

the human viral pathogens. The 15 ARG types contained 611 ARG subtypes, including those 45 

resistant to beta-lactam, which was the most diverse and abundant group (206 subtypes; 17.0%–46 

27.5%), aminoglycoside (94 subtypes; 9.6%–15.3%), tetracycline (80 subtypes; 15.6%–20.2%), 47 

and macrolide (79 subtypes; 14.5%–32.1%). Interestingly, the abundance of ARGs associated 48 

with resistance to beta-lactam, trimethoprim, and sulphonamide, as well as A. butzleri and 49 

crAssphage, at the cultural sites was significantly different from the other sites (p<0.05). We 50 

demonstrated the benefits of using NGS to deliver insights into microbial communities, and 51 

antimicrobial resistance, both of which pose a risk to human health. Using NGSmay facilitate 52 

microbial risk mitigation and management for urban water commuters and proximal residents.  53 

  54 

KEYWORDS: freshwater, virus, bacteria, crAssphage, microbial diversity, antibiotic resistance 55 

 56 

1. Introduction 57 

Urban canal networks facilitate transportation, flood protection, agriculture, waste management, 58 

and human health and well-being (Anceno et al., 2007; Völker and Kistemann, 2011). Notably, 59 

inland water transportation has been an integral part of economic development and society in 60 

many countries as it is a component of human mobility, tourism, and leisure travel, as well as the 61 

transportation of commercial, agricultural and industrial goods and products (Cheemakurthy et 62 

al., 2017; Jurkovic et al., 2021; Tanko and Burke, 2017). Inland water transport has been 63 

promoted for its sustainability features and eco-friendliness in modern smart cities as an option 64 

to avoid land-based transit congestion at an economical cost (Iamtrakul et al., 2018; United 65 

Nations Economic Commission for Europe, 2011). Urban ferry and boat transits serve 66 
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commuters and passengers via large-scale transit networks such as those in Amsterdam, 67 

Brisbane, Hong Kong, and Istanbul, medium-scale transits such as those in Copenhagen, 68 

Gothenburg, and Hamburg, and small-scale services such as those in Boston, Oslo, and 69 

Rotterdam (Cheemakurthy et al., 2017). Remarkably, such services transported over 70 million 70 

passengers in Bangkok in 2019 (Marine Department of Thailand, 2020).  71 

 72 

Notwithstanding, many populated urban waterways have microbial pollution problems 73 

associated with human sewage contamination (Amin et al., 2020; Shahin et al., 2021; 74 

Sirikanchana et al., 2014; Wangkahad et al., 2015; World Health Organization [WHO], 2018). 75 

Boat passengers are thus at risk of being exposed to microbially contaminated bioaerosols or 76 

splash (Ginn et al., 2021; Pringsulaka et al., 2017). In addition to pathogenic organisms, 77 

antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have  emerged as 78 

waterborne microbial pollutants that pose a risk to human health (Amarasiri et al., 2020; 79 

Verhougstraete et al., 2020). Preventive and curative treatments of ARB-infected patients are 80 

immensely difficult. ARBs thus cause increased human illness and death as well as higher 81 

treatment costs and longer treatment duration (WHO, 2015). Moreover, antibiotic resistance 82 

acquisition of natural bacteria can be promoted via the horizontal gene transfer of ARGs through 83 

transformation (free DNA uptake), conjugation (gene transfer from another bacteria), and 84 

transduction (genes carried by bacteriophages) (Amarasiri et al., 2020). A number of studies 85 

have shown that a polluted surface water acts as an environmental reservoir for ARBs and ARGs 86 

contaminated by wastewater sources and stormwater pollution (Karkman et al., 2019; Lee et al., 87 

2020; Makkaew et al., 2021; Stange et al., 2016; Zheng et al., 2021). A health approach that 88 

takes into account the interlinkage of the human, animal, and environmental sectors has been 89 
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emphasized to tackle the problem of antimicrobial resistance (AMR) (Booton et al., 2021; 90 

European Commission, 2017; WHO, 2015), and AMR-related topics pertaining to water and the 91 

environment have been a research focus over the last two decades (Luz et al., 2022). It has also 92 

been shown that environmental characteristics, such as high suspended solids and low dissolved 93 

oxygen (DO) favor pathogen-related genera and ARGs (He et al., 2022; Ott et al., 2021), which 94 

increase the risks to public health. However, information regarding microbial contamination, 95 

including pathogenic bacteria and viruses, as well as emerging ARG contaminants in urban 96 

transportation canals, is limited.  97 

 98 

Next-generation sequencing (NGS) can be used to identify microbial communities from a wide 99 

range of environments and provides a method by which to capture unculturable organisms and 100 

determine the complex associations between such microorganisms in their natural environments 101 

(Caporaso et al., 2012; Jin et al., 2018; Lapierre et al., 2019). Specifically, 16S rRNA gene 102 

amplicon sequencing can elucidate bacterial and archaeal community structures, while shotgun 103 

metagenomic sequencing is able to assign microbial species, as well as genes of interest, such as 104 

viral communities and ARGs (Cui et al., 2019; Jantharadej et al., 2021; Ranjan et al., 2016). 105 

Consequently, the objectives of this study were (1) to determine the structure and abundance of 106 

the microbial communities in 10 transport canal locations in Thailand, (2) to investigate the 107 

presence in canal waters of pathogenic bacteria and viruses and ARGs that could pose a risk to 108 

human health, and (3) to examine the effects of designated land-based zoning on microbial and 109 

ARG diversity. The results of this study may support the application of NGS by elucidating the 110 

microbial health risks to boat commuters and proximal residents along polluted urban canals and 111 

thus informing measures for microbial risk mitigation and management.  112 
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  113 

2. Materials and methods 114 

2.1 Site description and water sampling  115 

The 53.5-km Saen Saep Canal, which was constructed in 1840, connects Bangkok and 116 

Chachoengsao Province, Thailand. Despite its deteriorating water quality and nuisance odors, 117 

with a history of 104–108 CFU/100 mL of total coliforms (Department of Drainage and 118 

Sewerage, 2011; Jantharadej et al., 2021; Pollution Control Department (PCD), 2018), the canal 119 

serves as one of the main transportation routes for urban commuters, with an average of 70,709 120 

people per day on weekdays and 40,283 people per day on weekends and national holidays in 121 

2019 (Marine Department of Thailand, 2020). In this study, one-time sampling of canal water 122 

samples were conducted from 10 sampling sites (sites A–J) along an 18 km transportation boat 123 

route in the Saen Saep Canal, Bangkok (Fig. 1; Table S1). The sampling sites were located in 124 

three zoning classifications from upstream to downstream, namely, cultural (sites A and B), 125 

commercial (sites C–F), and suburban residential (sites G–J), with different land uses according 126 

to the Department of City Planning, Bangkok Metropolitan Administration (Table S2) (BMA, 127 

2017). The cultural zone is located in the downtown area with its historical sightseeing 128 

attractions and has a population density of 23,667 people per km2 (BMA, 2017, 2018). The 129 

commercial area comprises commercial buildings, shopping malls, condominiums, hospitals, 130 

schools, and restaurants and has a population density of 5,434–10,097 people per km2. The water 131 

samples in both areas had a dark brown color and foul odor. The suburban residential area along 132 

the canal serves a large number of residents and includes many facilities, such as villages, 133 

condominiums, markets, informal settlements, and department stores. Its population density is 134 

5,148 people per km2. The water samples from this area had a dark green color and slightly foul 135 

odor. One-liter water samples were collected at the passenger ports, which intrude 1–2 m into the 136 
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10 m wide canal. The samples were captured in sterile containers placed 30 cm below the water 137 

surface in accordance with Thailand’s standard protocol for microbiological sampling (National 138 

Environment Board, 2017). The sample collection period was February 18–26, 2019, which 139 

represented the dry season. The samples were transported on ice to the laboratory within 3 h of 140 

collection. The physicochemical parameters, including the DO, conductivity, salinity, pH, and 141 

temperature, were measured on site using portable meters (YSI Pro2030 and YSI 60, YSI Inc., 142 

USA). The water samples were stored at 4°C until further processing. 143 

 144 

2.2 Sample preparation and DNA extraction  145 

One liter of water was centrifuged at 4,300 × g for 15 minutes at room temperature, and the pellet 146 

was kept in a 2 mL sterile microcentrifuge tube. The supernatant was then pH-adjusted to 3.5 147 

with 2N HCl and filtered through a 0.45 μm pore-size HAWP membrane (Merck Millipore, 148 

USA) (A. Kongprajug et al., 2019). The filtered membrane and sediment pellet were combined 149 

and the DNA extracted using a FastDNA SPIN kit for soil (MP Biomedicals, USA) in 150 

accordance with the manufacturer’s instructions. The DNA quality was assessed using agarose 151 

gel electrophoresis (2.0% agarose gel, 100V, 30 min), and the DNA concentrations were 152 

determined using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, USA). 153 

The DNA samples were stored at −20°C until use. 154 

 155 

2.3 16S rRNA gene sequencing and bioinformatics 156 

We performed 16S rRNA gene amplicon sequencing (MiSeq, Illumina, USA) for the V4 region 157 

using modified primers, namely, modified 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 158 

806R (5′-GGACTACHVGGGTWTCTAAT-3′), which improved the coverage of the archaeal 159 
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and bacterial 16S rRNA genes (Ding et al., 2015). The  50 µL PCR reaction was composed of 160 

each of 1 µM forward and reverse primers, 1.25 U Taq polymerase, 4 mM MgCl2, 5 µL of 10× 161 

buffer (Fermentas, Thermo Fisher Scientific, USA), 0.2 µM dNTPs, and 4 µL DNA template. 162 

The PCR reactions were run on a thermocycler (Bio-Rad, USA) using the following program: 3 163 

min of denaturation at 95°C; 23 cycles of 30 s at 95°C, 30 s for annealing at 56°C, and 30 s for 164 

elongation at 72°C; and a final extension at 72°C for 10 min. The resultant PCR products were 165 

checked for quality on agarose gel electrophoresis (2.0% agarose gel, 100V, 30 min) and further 166 

purified using AMPure XP beads (Beckman Coulter, USA) and indexed using 5 µL Nextera XT 167 

index primer in a 50 µL PCR reaction by following eight cycles of the aforementioned PCR 168 

cycling condition. Next, the purified amplicons were pooled in an equimolar proportion and 169 

paired-end sequenced at a 6 pM final loading concentration into an Illumina MiSeq sequencer 170 

(Illumina, USA) in accordance with the published protocol (Caporaso et al., 2012) at the Omics 171 

Sciences and Bioinformatics Center (Chulalongkorn University, Thailand). For the data analysis, 172 

the raw sequencing data in FASTQ format were processed to remove the PCR primer sequences. 173 

Quantitative Insights Into Microbial Ecology 2 (QIIME 2; version 1.6.0) was used to analyze the 174 

sequencing data (Bolyen et al., 2019). The DADA2 algorithm (version 1.10) as a QIIME 2 175 

plugin was applied to merge and denoise the sequences (Callahan et al., 2016). All the amplicon 176 

sequence variants (ASVs) with a frequency lower than 0.1% of the mean sample depth were 177 

removed, and the rest were grouped into taxa using a naive Bayes approach, which was 178 

implemented in the scikit-learn Python algorithms (Pedregosa et al., 2011). The representative 179 

sequence of each ASV was used to perform a taxonomy using the SILVA database (Quast et al., 180 

2013).  181 

 182 
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2.4 Shotgun sequencing and bioinformatics 183 

Sample DNA (100 ng) was subjected to sequencing library preparation using the QIAseq FX 184 

DNA Library Kit (QIAGEN, Germany). Briefly, the DNA was fragmented using an enzymatic 185 

reaction and cleaned with AMPure XP magnetic beads (Beckman Coulter, USA). An indexed 186 

adapter was ligated to the fragmented DNA. The quality and quantity of the indexed libraries 187 

were measured using an Agilent 2100 Bioanalyzer (Agilent, USA) and QFX fluorometer 188 

(Denovix, USA) and pooled in an equimolar quantity (Caporaso et al., 2012). Cluster generation 189 

and paired-end 2×150 nucleotide read sequencing were performed on one lane of the HiSeq 4000 190 

sequencer (Illumina, USA) at the Omics Sciences and Bioinformatics Center (Chulalongkorn 191 

University, Thailand). The quality and adaptor trimming of the FASTQ files were conducted 192 

using Trim Galore! version 0.4.4 (Babraham Bioinformatics, 2020). To profile the abundance of 193 

the microbial communities, the filtered sequence reads were classified using Centrifuge version 194 

1.0.4 (Kim et al., 2016) with the prebuilt index database and default settings. The sequence reads 195 

were assigned a taxonomy using the National Center for Biotechnology Information (NCBI) 196 

databases. The profiling of the viral metagenomic communities was completed using the 197 

Microbial Community Profiling method (MiCoP) (Lapierre et al., 2019). The MiCoP was set up 198 

to use the BWA-MEM mapping method to map the sequence reads (Li, 2013). Finally, the 199 

sequence reads were assigned virus species using the full NCBI Virus RefSeq databases, and 200 

these results were then filtered and profiled using the compute-abundances.py script. To predict 201 

the ARG, all the cleaned shotgun sequences were mapped into the AMR gene sequences from 202 

the ResFinder database (version 2022-02-04) (Bortolaia et al., 2020) using k-mer alignment 203 

(Clausen et al., 2018). The raw read count was converted to the percent relative abundance 204 

before further analysis. The ARG relative abundances from the different sampling sites were 205 
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clustered using the unweighted pair group method with the arithmetic mean agglomerative 206 

hierarchical clustering method. Hypothetical testing for significant differences was conducted via 207 

Welch’s t-test. The plot and statistical test for the ARG were performed in STAMP (version 208 

2.1.3) (Parks et al., 2014). 209 

 210 

2.5 Statistical data analysis  211 

The similarities within the microbial community were assessed using principal coordinate 212 

analysis (PCoA) via the Bray–Curtis dissimilarity matrix. The permutational multivariate 213 

analysis of variance (PERMANOVA) was computed to determine any significant differences 214 

between the land use groups. A comparison of the microbial diversity and abundance between 215 

the land use groups was performed using the linear discriminant analysis (LDA) effect size 216 

method (Segata et al., 2011) with an LDA score greater than 4.0. We conducted the correlation 217 

analysis using Spearman’s correlation (R package corrplot, version 0.84) on U-Score rank (R 218 

package ‘NADA2’ version 1.0.1). The agglomeration method ward.D2 was used for the 219 

hierarchical clustering (R package stat (R Core Team, 2019)). 220 

 221 

3. Results and discussion 222 

3.1 Microbial community structure and presumptive functions  223 

The PCoA analysis of the microbial sequencing profiles demonstrated separate clusters in the 224 

cultural and suburban zones, as supported by the PERMANOVA test (Fig. 2 and Table S3). 225 

Although the microbial diversity data for the shotgun sequencing included eukaryote and virus 226 

domains in addition to bacteria and virus domains (Fig. S1), we observed consistent microbial 227 

diversities between the two platforms, which was in line with a previous report (Caporaso et al., 228 
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2012). The bacteria domain was deemed predominant by both the shotgun and amplicon 229 

sequencing platforms, with the eukaryota and viruses additionally characterized via the shotgun 230 

sequencing (Fig. S1). Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and 231 

Cyanobacteria were the five most abundant phyla, within the bacterial domain, as determined by 232 

both sequencing platforms. Chordata phylum of the eukaryote domain was additionally 233 

predominant, as ascertained by the shotgun sequencing (Fig. S2). Epsilonbacteraeota is a newly 234 

established phylum, which was reclassified from a class of the Proteobacteria phylum, and was 235 

therefore identified as a separate phylum only in the amplicon sequencing due to differences in 236 

the databases used for the two sequencing platforms (Waite et al., 2017). These core phyla have  237 

also been found in other tropical and subtropical anthropogenically impacted freshwater (Ibekwe 238 

et al., 2016; Obieze et al., 2022; Ung et al., 2019; Wang et al., 2016). The shotgun sequencing 239 

indicated that the Pseudomonas and Burkholderia genera of the Proteobacteria phylum were 240 

most dominant, while the amplicon sequencing showed that C39 was most abundant (Fig. 3). 241 

The LDA scores indicated significant differences between the land-based zones for certain taxa 242 

(Fig. S3).  243 

 244 

Notably, we observed a significant correlation (p < 0.05) in the copresence of certain genera, 245 

such as Arcobacter (nitrogen-fixing bacteria) and Sulfurospirillum (nitrate-reducing bacteria), 246 

Acidovorax (nitrate-reducing bacteria) and Limnohabitans (planktonic bacteria), and Acidovorax 247 

and Hydrogenophaga (both nitrate-reducing bacteria) (Fig. S4). The water quality parameters of 248 

the canal water samples from sites A to J indicated narrow ranges comprising DO at 0.1–249 

1.6 mg/L, conductivity at 551–1,054 μS/cm, a pH of 7.14–7.56, a temperature of 28.7oC–30.1oC, 250 

and salinity of 0.1–0.5 parts per thousand (Table S1), which concurred with the canal’s historical 251 
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record (PCD, 2018). The PCA plot showed the following clusters of top 40 genera as identified 252 

by the shotgun sequencing (Fig. S5a) and water quality parameters: DO – Ralstonia, pH – 253 

temperature – Allochromatium – Cyanobium – Synechococcus, and salinity – conductivity – 254 

Rhodobacter. The top 40 genera analyzed by the amplicon sequencing (Fig. S5b) were also 255 

clustered with the water quality parameters as follows: DO – Pseudomonas, salinity – 256 

conductivity – uncultured bacterial in family Rikenellaceae, and pH – temperature – 257 

Hydrogenophaga – Dechlorobacter – unclassified genus in family Lentimicroblaceae.  258 

 259 

The associated microbial functions of the top 40 genera are summarized in Table S4. The nitrate-260 

reducing bacteria group represented the highest relative abundance in the canal water, which 261 

could be due to the denitrification process promoted by the low oxygen condition and high 262 

nitrate concentrations in the Saen Saep Canal (Jantharadej et al., 2021; PCD, 2018). Another 263 

dominant group, the nitrogen-fixing bacteria, can fix the nitrogen gas in the atmosphere and 264 

convert it into an ammonia form in water. Moreover, certain sampling points contained low DO 265 

and possibly had an anaerobic condition, which resulted in the presence of fermentative bacteria. 266 

Pathogenic genera, including Pseudomonas, Mycobacterium, Aeromonas, Acinetobacter, 267 

Arcobacter, and Bacteroides, have also been reported in urban lakes and rivers (Cui et al., 2019; 268 

Dong et al., 2019; Jin et al., 2018).  269 

 270 

3.2 Pathogenic bacterial species 271 

The shotgun metagenomic sequencing revealed the 35 most abundant pathogenic bacterial 272 

species (Fig. 4). The predominant species comprising more than 0.5% relative abundance in at 273 

least one canal water sample were the Burkholderia cepacia complex (0.6%–2.3%), Arcobacter 274 
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butzleri (0.03%–1.5 %), Burkholderia vietnamiensis (0.1%–1.2%), the Enterobacter cloacae 275 

complex (0.1%–1.2%), and Klebsiella pneumoniae (0.07%–0.7%). The Burkholderia cepacia 276 

complex and other abundant species in the Burkholderia group showed high abundance at canal 277 

sites G and H in the suburban area. The Burkholderia species are opportunistic pathogens that 278 

cause respiratory tract infections, especially in patients with cystic fibrosis. They have been 279 

found in municipal wastewater (Chu et al., 2018; LiPuma, 2005; Ragupathi and Veeraraghavan, 280 

2019), and their association with ARGs and high resistance to antiseptics and disinfectants has 281 

raised further concerns with respect to public health (Chu et al., 2018; McDonnell and Russell, 282 

1999).  283 

 284 

Arcobacter butzleri was the second most prevalent pathogenic species in the canal and the most 285 

abundant in the cultural zone (1.48% and 0.67% at sites A and B). This species can cause watery 286 

diarrhea and bacteremia and has been associated with fecal pollution from wastewater (Shrestha 287 

et al., 2022). A. butzleri has previously been isolated from canal water in Thailand (Morita et al., 288 

2004; Tomioka et al., 2021). The presence of this bacterial pathogen in environmental water 289 

could pose a risk to public health, especially with its relatively higher persistence to high organic 290 

matter concentrations and warm conditions compared to other enteric pathogens (Tomioka et al., 291 

2021; Van Driessche and Houf, 2008) and its reported AMR (Ferreira et al., 2019).  292 

 293 

The Enterobacter cloacae complex and Klebsiella pneumoniae showed the highest abundance at 294 

sites E and F in the commercial area (Fig. 4). The E. cloacae complex has been associated with 295 

infections of the urinary tract, respiratory tract, skin, and bloodstream in immunocompromised 296 

patients (Brisse et al., 2006; Selenic et al., 2003), and antibiotic resistance has increased the 297 
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significance of E. cloacae as a public health concern (Chen and Huang, 2013; Ebomah and 298 

Okoh, 2020) (Fig. 4). Klebsiella pneumoniae is an opportunistic pathogen that causes frequent 299 

outbreaks in hospitals (Wu and Li, 2015). A study reported closely related clinical and 300 

environmental Klebsiella pneumoniae isolates from hospital patients, hospital sewage, and the 301 

canals surrounding a hospital in Thailand. (Runcharoen et al., 2017). This species has been 302 

prioritized for AMR concern and included in the WHO’s (2017) global AMR surveillance 303 

system, GLASS.  304 

 305 

 306 

 307 

3.3 Viral community structure  308 

The relative abundance of viral communities in the canal water samples, as identified by shotgun 309 

metagenomic sequencing, represented 0.28%–0.67% of all the microbial communities (Fig. S1a). 310 

Overall, the viral community structures comprised five Baltimore classes, mostly single-stranded 311 

RNA (ssRNA) viruses (34.8%–60.4% of all virus sequences) and double-stranded DNA 312 

(dsDNA) viruses without an RNA stage (31.5%–58.9%) (Fig. S6a). Picornaviridae ssRNA, 313 

which are vertebrate-infecting viruses, were the most abundant family in all the canal water 314 

samples (33.8%–56.9%) (Fig. S6b). The dsDNA viruses comprised 10 predominant families, 315 

namely, Myoviridae, Podoviridae, Siphoviridae, Baculoviridae, Alloherpesviridae, 316 

Herpesviridae, Nudiviridae, Phycodnaviridae, Polydnaviridae, and Poxviridae. The families 317 

Myoviridae, Siphoviridae, and Podoviridae, which belong to the Caudovirales order, constituted 318 

the major bacteriophages in the canal water (8.8%–41.3%). Previous studies have reported the 319 

families Myoviridae, Siphoviridae, and Podoviridae as mainly dominant in freshwater (Gu et al., 320 
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2018; Mohiuddin and Schellhorn, 2015; Tseng et al., 2013). The Baculoviridae family, which 321 

infects invertebrates (i.e., insects), was also predominant at 0.7%–25.6%, while the 322 

Herpesviridae family, which infects vertebrates, was noticeable in the samples from sites E and 323 

F in the commercial area and sites H, I, and J in the suburban area, at up to 4% relative 324 

abundance. Moreover, almost all the dsRNA viruses were sorted into an unclassified family 325 

related to fungi-infecting viruses and accounted for 3.0%–12.2% of the total viral sequences. 326 

Seven virus groups were classified according to their host types, with a higher abundance of the 327 

vertebrate-infecting viruses, bacteriophages, invertebrate-infecting viruses, and fungi-infecting 328 

viruses, and a relatively lower abundance of the plant-infecting viruses, algae-infecting viruses, 329 

and protozoa-infecting viruses (Fig. S6c).  330 

 331 

The 35 most abundant virus species in the canal water samples are shown in Fig. 5. 332 

Encephalomyocarditis virus (EMCV), a vertebrate-infecting virus in the Picornaviridae family 333 

that causes a broad range of infections in mammals and humans, showed the highest relative 334 

abundance at 33.3%–58.2% of the total virus sequences. Alcelaphine gammaherpesvirus types 1 335 

and 2, which infect ruminants, were observed in the samples from sites E and F in the 336 

commercial area at up to 2% of the total virus sequences. Moreover, fish-infecting virus species 337 

such as the piscine myocarditis-like virus, Cyprinid herpesvirus types 1 and 3, and fathead 338 

minnow picornavirus were detected in the canal water. With a relative abundance greater than 339 

10% in the samples from sites A, C, E, G, I, and J, the invertebrate-infecting virus Orgyia 340 

pseudotsugata multiple nucleopolyhedrovirus, which belongs to the Baculoviridae family, was 341 

the most dominant of the insect-infecting viruses in all the canal water samples. Saccharomyces 342 
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cerevisiae killer virus M1, a fungi-infecting (yeast) virus, was detected in all the samples at a 343 

range of 3.0%–12.2% of the total virus sequences.  344 

 345 

Several bacteriophages, including Bacillus phage Stitch, were detected in the canal water and 346 

found to be highly abundant at sites A, C, D, and G, where they accounted for 9.2%–25.5% of 347 

the total virus sequences. A higher abundance of Planktothrix phage PaV-LD and Rhodobacter 348 

phage RcapNL at over 2% relative abundance was observed at sites G, H, I, and J, while 349 

Salmonella phage SJ46 and Escherichia virus P1 were detected at more than 2.5% at sites A and 350 

B. The Aeromonas phage vB_AsaM-56 had a relative abundance of 5% at site B, and 351 

Staphylococcus phage Team1 (4%) was dominant at site H. The other bacteriophages included 352 

Burkholderia virus phiE 125, Bordetella virus BPP1, uncultured crAssphage, Ralstonia phage 353 

RSS30, and various species of Pseudomonas phages. 354 

 355 

3.4 Pathogenic viruses 356 

The main human viral pathogen in the canal water was EMCV (33.3%–58.2%) across all the 357 

samples (Fig. 6). EMCV belongs to the Cardiovirus genus of the family Picornaviridae and can 358 

infect a broad variety of vertebrate species, including rodents, pigs, birds, cattle, wild animals, 359 

several species of non-human primates, and humans (Hammoumi et al., 2012). EMCV causes 360 

acute myocarditis outbreaks in piglets and pregnant sows on pig farms worldwide (Feng et al., 361 

2015). EMCV infection in humans is fairly common via the respiratory and oral routes and is 362 

mostly asymptomatic (Carocci and Bakkali-Kassimi, 2012; Oberste et al., 2009). It is likely that 363 

the rodents or infected rodent carcasses common in the city’s water pipes may be involved in the 364 
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spread of EMCV in the canal water. Rodents have been reported as a major source of EMCV 365 

outbreaks via water in pig farms (Alexandersen et al., 2019). 366 

  367 

Other human viral pathogens (i.e., hepatitis C virus genotype 1, human alphaherpesvirus 1, and 368 

human betaherpesvirus 6A) represented less than 1% across all the samples. The hepatitis C 369 

virus is a bloodborne pathogen that causes acute or chronic hepatitis. It can be transmitted by 370 

drug injection, blood transfusion, hemodialysis, organ transplantation, and less frequently, sexual 371 

relations (Modi and Liang, 2008). It is therefore less likely for the hepatitis C virus to be 372 

transmitted via contaminated canal water. Human alphaherpesviruses and betaherpesviruses 373 

belong to the Herpesviridae family, which contains dsDNA (i.e., no RNA stage). They primarily 374 

cause infections of the mouth, face, eyes, pharynx, and central nervous system and can be 375 

transmitted via skin exposure, oral secretions, and respiratory droplets (Chayavichitsilp et al., 376 

2009; Dockrell, 2003). Although waterborne transmission is not deemed the main route of 377 

hepatitis C and human herpesvirus infection, their genomes have been found in wastewater, 378 

polluted freshwater (Alexyuk et al., 2017; Corpuz et al., 2020; McCall et al., 2020), and sewage-379 

contaminated aerosols (Brisebois et al., 2018). In addition, the Herpesviridae family is persistent 380 

in water environments and aerosols at ambient temperatures (Sobsey and Meschke, 2003), which 381 

could be a risk factor for environmental transmission.  382 

 383 

Notably, the common enteric human pathogenic viruses, namely, noroviruses, hepatitis A and E 384 

viruses, rotaviruses, enteroviruses, adenoviruses, astroviruses, and caliciviruses, were not 385 

detected by shotgun metagenomic sequencing. CrAssphage, a bacteriophage used worldwide as a 386 

human fecal indicator (Sabar et al., 2022), showed the highest abundance at the cultural sites A 387 
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and B with a relative abundance of 2.14%–2.45%, while the relative abundance at the other sites 388 

was lower at 0.16%–0.78%. CrAssphage has been found in human sewage and 389 

anthropogenically impacted freshwater and seawater and is thus used as a human-specific fecal 390 

source tracker in Thailand (Akechai Kongprajug et al., 2019; Sangkaew et al., 2021). 391 

 392 

3.5 ARGs  393 

The water samples along the canal revealed a total of 611 ARG subtypes from 15 ARG types 394 

(Fig. 7a). Those related to resistance to beta-lactam (206 subtypes) were the most diverse ARG 395 

types, followed by the ARG types associated with resistance to aminoglycoside (94 subtypes), 396 

tetracycline (80 subtypes), macrolide (79 subtypes), trimethoprim (36 subtypes), phenicol (24 397 

subtypes), colistin (22 subtypes), sulphonamide (22 subtypes), quinolone (18 subtypes), and 398 

disinfectant (six subtypes), as well as other ARG types, namely, those linked to resistance to 399 

fusidic acid, glycopeptide, nitroimidazole, rifampicin, and fosfomycin, with a total of 24 400 

subtypes. The six most abundant ARG types were those related to resistance to beta-lactam 401 

(17.0%–27.5%), macrolide (14.5%–32.1%), tetracycline (15.6%–20.2%), aminoglycoside 402 

(9.6%–15.3%), sulfonamide (6.4%–10.9%), and quinolone (4.6%–13.1%) (Fig. 7a). These 403 

groups have been found to be widespread in municipal wastewater even after treatment (Ping et 404 

al., 2022; Raza et al., 2022; Zou et al., 2022). Moreover, macrolide-resistant genes had the 405 

highest abundance (32.1%) at site D in the commercial zone. The most abundant single gene 406 

subtype was the tlr(c) gene in the macrolide type, which encodes tylosin-resistance protein, with 407 

a 4.4% relative abundance at site B in the cultural zone. The prevalent genes with more than 1% 408 

relative abundance at almost all the sites were the quinolone resistance gene OqxB and 409 

sulphonamide resistance genes sul1 and sul2, while the aminoglycoside resistance genes aac(3)-410 
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VIII and aac(3)-IIIb, betalactam resistance genes blaSRT-2, blaPAU-1, blaOKP-B-8, POM-1, blaOXA-411 

455, and blaGES-23, macrolide resistance genes srm(B), erm(38), ole(C), car(A), and tlr(C), 412 

quinolone resistance genes qepA1, and qepA2, and tetracycline resistance genes tet(C), tet(M), 413 

tcr3, and otr(A)  were each present in the water at at least one site (Table S5). The abundance of 414 

ARG types was not significantly different between the commercial and suburban sites; however, 415 

it was different at the cultural sites (Fig. 7b). The cultural sites contained a higher abundance of 416 

trimethoprim resistance genes than the commercial sites and a higher abundance of beta-lactam 417 

and trimethoprim resistance genes than the suburban sites, although they had a lower abundance 418 

of sulphonamide resistance genes than the suburban sites (p < 0.05). As previously reported by 419 

Davis et al. (2020) and Liu et al. (2021), the different types and prevalence of anthropogenic 420 

activities from the three land-based zones (Table S2) could have contributed to the diverse levels 421 

of ARG contamination. 422 

 423 

3.6 Implications for canal water quality management and public health risk mitigation 424 

In this study, we utilized NGS analyses to characterize the microbial pollutants (i.e., bacterial 425 

and viral human pathogens and ARGs) in the canal water in Bangkok, Thailand, to determine the 426 

risks to boat commuters. Both 16s rRNA amplicon sequencing and shotgun metagenomic 427 

sequencing delivered similar taxonomic classifications at the sampling sites. Consequently, the 428 

amplicon sequencing method could serve as a more economical option for this purpose. Shotgun 429 

metagenomic sequencing could provide further information on the levels of microbial species, 430 

various genes of interest, and the molecular functions encoded in the metagenomes (Ibarbalz et 431 

al., 2016; Ranjan et al., 2016). Currently, the use of NGS technologies may present challenges, 432 

such as high costs and the need for specialized equipment and data analysis and interpretation 433 
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expertise (Garner et al., 2021). However, with the rapid development of new technologies and 434 

eventual lower costs, NGS offers considerable potential for an improved understanding of 435 

microbial ecology in the fields of water engineering and water quality management (Garner et 436 

al., 2021; McDaniel et al., 2021). Furthermore, during the COVID-19 pandemic, the NGS 437 

application proved to be useful in monitoring for SARS-CoV-2 and its variants to determine 438 

community outbreaks (Agrawal et al., 2022; Martínez-Puchol et al., 2021; Smyth et al., 2022). 439 

While NGS could offer a holistic approach to microbial community characterization, its limited 440 

resolution for taxonomic identification at a species or strain level needs to be addressed. This 441 

limitation could be countered by combining NGS with robust gene-targeted molecular detection 442 

method (e.g., quantitative or digital PCR) to monitor microorganisms of concern, such as 443 

waterborne pathogens and microbial source tracking markers, in wastewater and polluted water, 444 

as well as for SARS-CoV-2 surveillance in wastewater (Ho et al., 2022; Kongprajug et al., 445 

2021a; Sangsanont et al., 2022).  446 

 447 

This study demonstrated that the microbial pollutants identified in the canal water were mostly 448 

respiratory and gastrointestinal microorganisms, among them, the predominant pathogenic 449 

Burkholderia cepacia, Arcobacter butzleri, and encephalomyocarditis virus, as well as ARG 450 

groups related to resistance to beta-lactam, aminoglycoside, tetracycline, and macrolide. 451 

Epidemiological surveillance data for Bangkok in 2021 revealed that diarrhea was the leading 452 

cause of morbidity at 393.3 per 100,000 population, followed by pyrexia (160.3 per 100,000) and 453 

pneumonia (106.1 per 100,000) (Institute for Urban Disease Control and Prevention, 2022). 454 

Although no information on the routes of exposure for these morbidity rates was published, the 455 

risk of exposure to these pathogens and ARGs could be aggravated by aerosols and airborne 456 
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particulate matter (Ginn et al., 2021; Xie et al., 2022). At present, no mitigation measures aimed 457 

at preventing aerosol and urban particulate matter exposure are in place; however, such measures 458 

could lead to lower public health risks. Furthermore, quantitative microbial risk assessments 459 

could be conducted to determine the current risks and evaluate the performance of any mitigation 460 

measures (Dada and Gyawali, 2021; Denpetkul et al., 2022; Kongprajug et al., 2021b).  461 

 462 

This study further revealed that microbial compositions and ARG profiles can be associated with 463 

zoning. The Saen Saep Canal could be polluted by wastewater sources from various residential 464 

and communal facilities, 70% of whose untreated and treated effluent exceeds treated effluent 465 

standards (PCD, 2016). While the wastewater from a small area is connected through sewer lines 466 

to a municipal wastewater treatment plant, most of the areas along the Saen Saep Canal are not 467 

connected to sewer lines (PCD, 2016). The Saen Saep Canal reportedly receives approximately 468 

49,000 m3 wastewater per day, which corresponds to biochemical oxygen demand loading of 469 

2,630 kg per day (PCD, 2016). However, pinpointing the wastewater sources that could be 470 

contributing to the canal at each sampling site is a challenge due to the complexities of the city 471 

plans and the possibility of wastewater inputs from upstream activities and connecting canals. 472 

Notably, the cultural zone constitutes the highest population density compared to the other two 473 

zones and serves tourists visiting cultural attractions (Table S1). Tourists who are accommodated 474 

in the cultural area (sites A and B) could carry intestinal microbiomes that are different from 475 

those of the local residents, (Yatsunenko et al., 2012), and they could thus contribute to the 476 

differences in microbial diversity in the canal. In particular, crAssphage, which was detected at a 477 

higher relative abundance at the cultural sites, has been described as displaying different 478 

shedding rates among populations from different geographical regions (Cinek et al., 2018; 479 
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Stachler and Bibby, 2014). Furthermore, tourists, who reportedly also carry different patterns of 480 

ARB and ARGs, could account for the differences in ARGs at the cultural sites (Benenson et al., 481 

2018; Bokhary et al., 2021). Notwithstanding, contributions of microbial and gene diversity from 482 

tourists require further investigation due to tourists’ characteristically short-term stays and 483 

turnover dynamics. Hospital wastewater may further contribute to the dissimilarities in the canal 484 

microbial diversity as in vivo exposure to antibiotics affects the gut microbiome (Liu et al., 485 

2020). Age, lifestyle, and social networks also affect human gut microbiomes (Brito et al., 2019; 486 

Obregon-Tito et al., 2015; Xu et al., 2019). Environmental factors, as well as contaminated 487 

ARGs, could further influence the regrowth and persistence of contaminated microorganisms 488 

(Booncharoen et al., 2018; Dean and Mitchell, 2022; He et al., 2022; Ott et al., 2021; Yang et al., 489 

2022). The cultural sites showed high Arcobacter butzleri and crAssphage as well as beta-lactam 490 

and trimethoprim resistance genes . Our study thus indicates that further investigation of the 491 

wastewater treatment plants and interventions at those facilities may be required at the cultural 492 

sites. Furthermore, the effects of stormwater runoff on pollution contamination into the canal 493 

should be studied to provide insights into microbial pollution during wet weather conditions.  494 

 495 

In summary, similar to other locations worldwide, a better understanding of the microbial risks 496 

of polluted canal water in Thailand could facilitate appropriate interventions, such as commuter 497 

protective equipment, protective barriers on boats, and wastewater reduction at the source, with 498 

the aim of improving the quality of life of boat passengers and residents living near the canal. 499 

We supports the recently approved governmental agreement of Thailand’s 11-year Saen Saep 500 

Canal Environment Rehabilitation Development Plan (2021–2031) on water quality restoration 501 
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and the 20-year Thailand National Strategy with its focus on quality-of-life improvements based 502 

on green growth.  503 

 504 

4. Conclusions 505 

This study demonstrated the use of shotgun metagenomic sequencing and 16s rRNA amplicon 506 

sequencing to evaluate microbial water quality in an urban transportation canal. The microbial 507 

compositions and ARG profiles indicated associations with zoning. The main presumptive 508 

microbial functions were involved with anaerobic photosynthesis and fermentation, which 509 

corresponded to the low DO conditions in the canal. The main bacterial and viral pathogens 510 

identified were the Burkholderia cepacian complex, Arcobacter butzleri, the 511 

encephalomyocarditis virus, and the hepatitis C virus, all of which pose risks to public health. 512 

The antibiotic-resistance profiles in this study also indicated a risk of ARG transmission through 513 

the environment, with those associated with resistance to beta-lactam, aminoglycoside, 514 

tetracycline, and macrolide as the most abundant ARG types. This study emphasized that, while 515 

showing certain limitations in its ability to identify common waterborne bacteria and viruses, the 516 

application of NGS in elucidating microbial water quality could assist in the development of 517 

water quality restoration and mitigation measures to reduce the health risks to water 518 

transportation passengers and residents living near polluted canal water. 519 
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 940 

Figure legends 941 

Fig. 1. Map of the sampling sites along the Saen Saep Canal. Sites A and B (green) are located in 942 

the cultural zone, sites C–F (orange) in the commercial zone, and sites G–J (yellow) in the 943 

suburban residential zone.  944 

Fig. 2. Principal coordinate analysis of the microbial communities in the canal water samples 945 

from sites A–J when analyzed using shotgun metagenomic sequencing (a) and 16s rRNA 946 

amplicon sequencing (b)  947 

Fig. 3. The relative abundance of the 40 most abundant microorganisms in the genus levels in the 948 

canal water samples from sites A–J analyzed using shotgun metagenomic sequencing (a) and 949 

16S rRNA gene sequencing (b)  950 

Fig. 4. Relative abundance of the 35 most abundant pathogenic bacteria in the canal water 951 

samples from sites A–J using shotgun metagenomic sequencing  952 

Fig. 5. The relative abundance of the 35 most abundant viruses in the canal water samples from 953 

sites A–J using shotgun metagenomic sequencing  954 

Fig. 6. The relative abundance of the human viral pathogens in the canal water samples from 955 

sites A–J using shotgun metagenomic sequencing  956 

Fig. 7. The relative abundance of the ARG types in the canal water samples from sites A–J using 957 

shotgun metagenomic sequencing (a) and the ARG types that showed significant differences in 958 

line with the land use sites (b). The other ARG types include those related to resistance to fusidic 959 

acid, glycopeptide, nitroimidazole, rifampicin, and fosfomycin. 960 
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Fig. 3. The relative abundance of the 40 most abundant microorganisms in the genus levels in the 979 

canal water samples from sites A–J analyzed using shotgun metagenomic sequencing (a) and 980 

16S rRNA gene sequencing (b)  981 
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Fig. 4. Relative abundance of the 35 most abundant pathogenic bacteria in the canal water 984 

samples from sites A–J using shotgun metagenomic sequencing  985 
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Fig. 5. The relative abundance of the 35 most abundant viruses in the canal water samples from 987 

sites A–J using shotgun metagenomic sequencing  988 
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Fig. 6. The relative abundance of the human viral pathogens in the canal water samples from 991 

sites A–J using shotgun metagenomic sequencing  992 
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Fig. 7. The relative abundance of the ARG types in the canal water samples from sites A–J using 997 

shotgun metagenomic sequencing (a) and the ARG types that showed significant differences in 998 

line with the land use sites (b). The other ARG types include those related to resistance to fusidic 999 

acid, glycopeptide, nitroimidazole, rifampicin, and fosfomycin. 1000 
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