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1. Introduction

This article explores special features of the quaternionic projective plane HP 2 that are derived from 
a well-known action by the subgroup U(3) of its isometry group Sp(3). The cohomogeneity-one action 
by SU(3) was already highlighted by Gambioli in the context of quaternionic geometry [18]. It commutes 
with that of the centre U(1) of U(3), whose quotient was studied by Battaglia from the viewpoint of 
quaternionic geometry and Morse theory [7], and Atiyah and Witten in relation to G2 geometry and 
M-theory [3].

We show that these actions, and the resulting tensors they define, can shed new light on quaternionic 
Kähler moment maps and the holomorphic rank 3 vector bundle Y over CP5 discovered by Horrocks [26]
in 1977. The complex projective space CP5 admits a holomorphic contact form from a choice of symplectic 
form ω on C6, and the contact distribution is a twist of the related rank 4 null-correlation bundle S. The 
structure of CP5 can be reduced further by imposing additional forms on C6. In the Horrocks set-up, this 
means a 3-form ξ with an open orbit in GL(6, C), which is therefore stable in the sense of Hitchin [25]. The 
stabiliser of the pair (ω, ξ) is SL(3, C) and this action is what is needed to set up the monad realising Y . 
There is an analogy with the study of special geometries in real dimensions 6, 7 and 8, but in our context 
the stable forms characterise a reduction of the isometry group rather than that of a gauge or holonomy 
group.

In order to obtain our ‘real’ description, we impose the anti-holomorphic involution j of CP5 arising from 
an identification C3 = H3. This then exhibits CP5 as the twistor space of HP2 in the spirit of Roger Penrose 
[33]. Its j-invariant lines are the twistor fibres, and the kernel of the holomorphic contact form defines the 
horizontal space relative to the Levi-Civita connection on HP 2. The groups Sp(3, C) and SL(3, C) are 
now reduced to Sp(3) and SU(3) respectively. The Horrocks bundle can be defined as the pullback of a 
vector bundle V on HP2 equipped with an instanton connection, in a generalisation of the Atiyah-Ward 
construction [5]. This was outlined by Mamone Capria and the second author in [30], but in this paper we 
succeed in defining V more directly using knowledge gleaned in the intervening years. Our approach can 
be viewed as a mere reinterpretation of the Horrocks construction, but the definition of V is more natural 
from the viewpoint of differential geometry. In a nutshell, we exhibit a section ηE of the tautological bundle 
E over HP2 with fibre H2 whose derivative ∇ηE defines the Horrocks monad.

The cohomogeneity-one action of SU(3) on HP2 has singular orbits S5 and CP2. The former is the zero 
set of the Galicki-Lawson moment map for the action of U(1) [17], and fibres over a dual projective plane 
CP2∗, which is the quaternionic Kähler quotient. The twistor space F1,2 of CP2∗ (together with its isometry 
group SU(3)) can now be regarded as a Kähler quotient of HP2 \ CP2 using the approach of [19], but we 
do not pursue this aspect in the present article. Instead, we focus on global tensors that are invariant by 
U(1) and SU(3), and the sections of vector bundles that they give rise to. All these sections satisfy versions 
of the twistor equation, and distill holomorphic objects on CP5.

Gray and Green had long ago posed the problem of finding explicit Spin(7) structures on HP2, and our 
methods provide an effective solution. We exhibit nowhere-vanishing sections of the spinor bundle Δ+ over 
HP2. This already splits into real subbundles of rank 5 and 3, which can be further reduced to obtain 
various Spin(7) structures of cohomogeneity one. We construct families of such structures by modifying the 
locally symmetric metric.

Although HP2 cannot admit a metric with holonomy Spin(7), the rank-three subgroups Spin(7) and 
Sp(2)Sp(1) of SO(8) impose some common features on an 8-manifold. They both stabilise 4-forms on R8

whose coefficients differ only by certain sign changes, and our analysis involves the study of such 4-forms. 
This complements the approaches of [12,13], which characterise linear deformations of such forms described 
briefly in the final section.
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2. Instanton bundles over CP5

In his paper [26], Horrocks constructs a rank 3 holomorphic vector bundle Y over CP5. This is the parent 
bundle from which others are derived, but we shall only deal with Y . It fits naturally in the context of the 
fibration

π : CP5 −→ HP 2 (1)

that realises 5-dimensional complex projective space as the twistor space of the quaternionic projective plane 
[30]. To understand the latter, we first define the more general class of quaterion-Kähler manifolds in real 
dimension 8.

A quaternion-Kähler (QK) 8-manifold M is a Riemannian 8-manifold whose holonomy lies in 
Sp(2)Sp(1) := (Sp(2) × Sp(1))/{±1}. It is not in general Kähler in the usual complex sense. Its com-
plexified tangent bundle

TCM = E ⊗C H (2)

decomposes locally as the tensor product of the vector bundle E with fibre C4 ∼= H2 associated to the 
standard representation of Sp(2) and the vector bundle H with fibre C2 ∼= H associated to the standard 
representation of Sp(1). Globally speaking, these vector bundles are subject to a Z2 ambiguity. The holonomy 
condition implies that the quaternionic structures on these vector bundles are preserved by the Levi-Civita 
connection. The twistor space of a QK manifold can be identified with the total space of the bundle PC(H), 
which is well defined even if H is not.

The unifying features of quaternionic symmetric spaces and their twistor spaces was realised by Wolf 
[40], and the discovery by Alekseevsky [2] of homogeneous non-symmetric QK spaces was a first step in 
generalising Wolf’s theory. The only complete QK 8-manifolds with positive scalar curvature are the Wolf 
spaces HP2, G2/SO(4), and the Grassmannian Gr2(C4) (whose Kähler structure is largely irrelevant to the 
quaternionic geometry) [35]. These three manifolds share (along with the Lie group SU(3)) a cohomogeneity-
one action by SU(3), which gives them many features in common [12]. Moreover, their twistor spaces 
incorporate an open orbit of a complex Heisenberg group, and are all birationally equivalent [11].

When M = HP 2 has its standard QK structure, E and H are globally well defined, since the structure 
lifts to Sp(2) × Sp(1). In fact, there is a decomposition

U = E ⊕ H (3)

of the trivial bundle U = C6 × HP 2 = H3 × HP 2. Here H corresponds to the tautological quaternionic 
line bundle, and E = H⊥ is its orthogonal complement in U , when the latter is endowed with an Sp(3)
structure. The twistor space PC(H) can now be identified with PC(C6) = CP5, and (1) maps a complex 
line to its quaternionic span. We have highlighted (3) because we shall apply successive operations to it to 
derive new tensors on HP2 starting from constant sections.

Equation (3) merely expresses the decomposition of the standard Sp(3) module with respect to its 
subgroup Sp(2) × Sp(1). The geometries that we shall be concerned with all arise by imposing different 
structures on C6, and so on the trivial bundle U . We give an example in (5) below, though most interest 
will arise when we choose structures that are not invariant by Sp(3). The identification C6 ∼= H3 endows 
C6 with an anti-linear transformation j, and this extends (as ⊗dj) to any exterior product Λd(C6). The 
latter is again quaternionic when the degree d is odd, but it is the complexification of a real vector space 
when d is even; this is a basic observation in the study of representations of Lie groups [1].

The isometry group Sp(3) of HP2 is the stabiliser of the pair (ω, j), in which ω ∈ Λ2(C6)∗ is a real (i.e., 
j-invariant) symplectic form. We can choose a basis of (C6)∗, equivalently a constant basis of U∗, such that
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ω = u1 ∧ u4 + u2 ∧ u5 + u3 ∧ u6,

ju1 = u4, ju2 = u5, ju3 = u6.
(4)

At this juncture, the distinction between U and U∗ is immaterial, since they are identified via ω. In the 
sequel, we shall indicate ju by ũ, and further streamline the notation to write ω = 11̃ + 22̃ + 33̃ to make 
computational proofs easier to visualise. The stabiliser of ω is the complexification of Sp(3) that we shall 
denote by Sp(3, C), rather than the equally logical notation Sp(6, C).

We shall denote the total Chern class of H as c(H) = 1 −u in accordance with [36], where u is a generator 
of H4(HP 2, Z). Then the pullback of u to CP5 via π corresponds to x2, where c(O(1)) = 1 + x. Under 
pullback, we have an isomorphism

π∗H ∼= O(−1) ⊕ O(1)

of smooth vector bundles, though π∗H has no natural holomorphic structure. By contrast, E has an ‘in-
stanton’ connection, and this induces a holomorphic structure on π∗E. The latter can in fact be identified 
with the null-correlation bundle (see below), denoted S by Horrocks.

Definition 2.1 ([37,30]). A connection on a vector bundle over HP2 is called quaternionic or (better) a self-
dual instanton if its curvature 2-forms belong to the subbundle S2E of Λ2T ∗HP 2 whose fibres are isomorphic 
to sp(2).

It is an elementary fact (and part of the twistor space theory) that the pullback to CP 5 of such a 
connection has (1, 1) curvature, and is therefore integrable by a test case of the Newlander-Nirenberg 
theorem [15].

As a first application of (2), we take its second exterior power so as to obtain the decomposition

Λ2U ∼= Λ2E ⊕ EH ⊕ Λ2H (5)

In the sequel, we shall often denote tensor products (over C) by juxtaposition, and here EH is shorthand 
for E ⊗ H, to avoid confusion between ⊕ and ⊗. We may now decompose ω as a constant section of 
Λ2U∗ ∼= Λ2U relative to (5). In fact,

ω = ωE + 0 + ωH ,

where ωE and ωH are the sections of Λ2E and Λ2H invariant by the holonomy group Sp(2)Sp(1). This is 
because we can fix an origin x ∈ HP 2 for which Hx =

〈
1, 1̃

〉
and Ex =

〈
2, 2̃, 3, 3̃

〉
. At x, we have ωH = 11̃

and ωE = 22̃ + 33̃, so ω has zero component in E ⊗ H. The general statement holds because Sp(3) acts 
transitively on HP2. Using the subscript ‘0’ to indicate orthogonal complements to the various symplectic 
forms, we now have

Λ2
0U ∼= Λ2

0E ⊕ EH ⊕ C, (6)

where C = C×HP 2 denotes a trivial bundle. The observations in this paragraph are purely algebraic, and 
follow from the fact that Sp(2) × Sp(1) fixes two linearly independent symplectic form on C6.

In this paper, we shall be dealing frequently with the vector bundle Λ2
0E with fibre C5, and we shall 

denote it by F (for ‘fundamental’). It is the complexification of a real vector bundle associated to the 
Euclidean representation of SO(5) = Sp(2)/Z2 on R5. In Horrocks’s notation,

π∗F = π∗(Λ2
0E) ∼= S〈12〉,
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the symbol 12 representing the character defining F , whose highest weight vector is (1, 1). The null-
correlation bundle S ∼= π∗E is defined by the exact sequence

0 → S(1) −→ TCP 5 θ−−→ O(2) → 0

where θ is the contact 1-form that can be defined as follows. If we use U to denote also (its pullback) the 
trivial bundle on CP5, we have a holomorphic sequence

0 → T ∗CP 5(1) −→ U∗ −→ O(1) → 0, (7)

in which U∗ can be identified with the bundle of 1-jets of holomorphic sections of the hyperplane section 
bundle O(1). We can now define a sequence

O(−1) ι−−→ U
ω−−→ U∗ ι∗−−→ O(1).

Since ω is skew-symmetric it follows that the image of the tautological line bundle O(−1) lies in ker(ι∗), 
which we can identify with T ∗CP5(1), and θ arises from the dual of ι. As smooth vector bundles, we have 
U = O(−1) ⊕ O(1) ⊕ S.

A more concrete description can be given as follows: by dualising (7), we may identify TCP5(−1) with the 
quotient of U consisting of vectors 

∑6
i=1 aiui modulo the relation 

∑6
i=1xiui = 0 over the point [xi] ∈ CP5. 

Then S can be identified with the subbundle

{ 6∑
i=1

aiui : a1x4 − a4x1 + a2x5 − a5x2 + a3x6 − a6x3 = 0
}

of TCP5(−1). The symplectic form ω induces one on S, and we obtain the complex rank 5 vector bundle 
S〈12〉 = Λ2S/〈ω〉.

In order to introduce the Horrocks bundle Y , we fix a basis of U consistent with (4), and distinguish the 
element

ξ = u1 ∧ u2 ∧ u3 + u4 ∧ u5 ∧ u6 = u1 ∧ u2 ∧ u3 + ũ1 ∧ ũ2 ∧ ũ3 (8)

of Λ3U∗. In abbreviated form, we write

ξ = 123 + 1̃2̃3̃, ξ̃ = jξ = −123 + 1̃2̃3̃. (9)

The choice of ξ amounts to imposing a splitting

C6 = L ⊕ jL, (10)

where L =
〈
u1, u2, u3〉, but without distinguishing the Lagrangian subspaces L and jL. The next result can 

be found in [26], but is also well known in the context of special geometries, see [25]:

Proposition 2.2.

(i) The stabiliser of ξ in GL(6, C) is generated by SL(3, C) × SL(3, C) and j.
(ii) The stabiliser of the pair (ω, ξ) in GL(6, C) is SL(3, C) acting diagonally on (10), which is a subgroup 

of Sp(3, C).
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Having fixed (ω, j), the conditions ξ ∧ ω = 0 and ξ ∧ jξ �= 0 on a 3-form ξ allow us to find a basis of C6

for which the equations (4) and (8) are simultaneously valid, and so (ii) holds. It follows that GL(6, C) has 
a dense orbit in the subspace

{(ω, ξ) ∈ Λ2U∗ × Λ3U∗ : ω ∧ ξ = 0},

which is 28 dimensional.
The vector bundle Y is defined as the cohomology of a monad given by

O(−1) −→ S〈12〉 −→ O(1) (11)

where the two maps are induced by ξ and −ξ̃ respectively, as we shall explain below.
For background on monads, see [32]. Returning back to the construction we first see that twisting the 

first map of (11) by O(1) we get a trivial bundle embedding O → S〈12〉(1) and thus to construct the 
first map it suffices to find a nowhere vanishing section of S〈12〉(1). Since for this rank 5 vector bundle we 
have c5(S〈12〉(1)) = 0 and the base CP5 is also 5 dimensional it follows that a generic section is nowhere 
vanishing.

Horrocks then shows that as Sp(6, C) representations, using a generalisation of Borel-Weil Theorem, we 
have

H0(CP5,O(S〈12〉(1))) ∼= 〈13〉 = Λ3
0(C6) = {α ∈ Λ3(C6) : α ∧ ω = 0}.

Since the orbit of ξ in Λ3
0(C6) is dense (note that it includes −ξ̃) it follows that any element in this orbit 

defines a nowhere vanishing section of S〈12〉(1). Using the fact that S〈12〉 is self-dual the above argument 
also applies to the second map and thus any element in the orbit of ξ also defines a map S〈12〉 → O(1).

The final step of Horrocks’s construction is to ensure that the composition O(−1) → O(1) determined 
by the pair (ξ, −ξ̃) is zero. A simple computation now shows that the total Chern class of the Horrocks 
bundle is 1 + 3y2, see Corollary 5.1.

3. Twistor sections over HP2

We now investigate the geometry on HP2 that results from reducing its isometry group Sp(3) to a 
subgroup acting with cohomogeneity one.

Let us fix a non-zero vector in C6, or equivalently a constant section u of U . Using (3), we can write

u = uE + uH , (12)

where uE ∈ Γ(E), uH ∈ Γ(H), and Γ denotes a space of smooth sections over HP2.

Proposition 3.1. Up to Sp(2)Sp(1) equivariant mappings, ∇uE is a non-zero multiple of uH , whilst ∇uH is 
a non-zero multiple of uE.

Proof. Let D denote the flat connection on U , and let x be an arbitrary point of HP2. Referring to (3), let 
e be a section of E. We can decompose

(De)x = (∇e)x + A(e) ∈ T ∗ ⊗U ,

with (∇e)x ∈ T ∗ ⊗ E and A(e) ∈ T ∗ ⊗ H. Here, ∇ is an induced connection on E and A represents the 
second fundamental form of E as a subbundle of U . Because HP2 = Sp(3)/(Sp(2) ×Sp(1)) is a Riemannian 
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symmetric space, ∇ must coincide with the connection on E induced from the Levi-Civita connection on 
(2). Moreover A is a non-zero Sp(2)Sp(1) equivariant map (a tensor), and is therefore a multiple of the 
natural inclusion

E ↪→ T ∗ ⊗H = EH ⊗H ∼= E ⊕ E S2H. (13)

We can decompose DuH in the same way, and tabulate the results as follows:

DuE DuH

T ∗ ⊗ E ∇uE A(uH)
T ∗ ⊗H A(uE) ∇uH

Since u is a constant tensor,

0 = Du = DuE + DuH ,

and it follows that the sum of the terms in each row of the table is zero. �
In the context of twistor theory, the condition that ∇uH have no component in E⊗S2H is expressed by 

saying that uH is a solution of the ‘twistor equation’ [34]. Such solutions give rise to holomorphic data over 
CP5 as follows. Let x ∈ HP 2, so that Hx

∼= C2 is the fibre of H, and π−1(x) ∼= PC(Hx) is the corresponding 
twistor fibre in CP5. Then

Hx
∼= H∗

x
∼= H0(π−1(x),O(1)). (14)

It follows that uH defines a smooth section of O(1) over CP5. It is known that such a section will be 
holomorphic if and only if ∇uH ∈ Γ(E); see [24] for the analogous 4-dimensional statement.

Proposition 3.1 is asserting the existence of a complex 6-dimensional space of solutions of the twistor 
equation for sections of H. The twistor equation is analogous to the equation for Killing vector fields and 
is overdetermined; in fact any local solution must extend to uH for some constant u. Note that the twistor 
space CP5 is the associated projective space of such solutions. We can also speak of uE as a solution of 
a twistor equation, though a holomorphic interpretation would relate not to CP5 but to the flag manifold 
Sp(3)/(U(3)Sp(1)). We shall consider further variants of the twistor equations in this section.

The stabiliser of u in Sp(3) is the isotropy subgroup Sp(2) × Sp(1) of the point x0 of HP2 representing 
the quaternionic line 〈u, ju〉. This group acts on HP2 with generic orbit

Sp(2) × Sp(1)
Sp(1) × Sp(1)′

∼= S7, (15)

where Sp(1)′ embeds diagonally, and singular orbits

(i) {x0}, the ‘origin’, and the zero set of uE ;
(ii) the ‘line at infinity’ HP 1 ∼= S4, and the zero set of uH .

The existence of sections of E and H vanishing on disjoint subsets enables one to construct global Spin(7)
structures on HP2 and find their associated 4-forms. We shall explain this in detail in the sequel, but with 
reference to the subgroup U(3) of Sp(3) that has the advantage of acting irreducibly on C6.

First, we fix ω, j, ξ as defined in Section 2.
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Lemma 3.2. The stabiliser of the triple (ω, j, ξ) is isomorphic to SU(3).

Proof. Define a non-degenerate Hermitian inner product f by

f(X,Y ) = ω(X, jY ).

Since ω is j-invariant, we have

f(Y,X) = ω(Y, jX) = −ω(jX, Y ) = −ω(j2X, jY ) = f(X,Y ),

as required. The stabiliser of the pair (f, ξ) is therefore the intersection of U(6) with diagonal SL(3, C), 
which is SU(3). �

We shall now regard ω and ξ as constant sections of the trivial bundles Λ2U and Λ3U . Together with 
j : U → U , they define a reduction of the structure group from GL(6, C) to SU(3), and in particular a 
decomposition (10) in which each summand is distinguished. These summands are also the eigenspaces for 
an action eiθ �→ (eiθ, e−iθ) of U(1) on C6 that commutes with j. Then

U(1)SU(3) = U(3) ⊂ Sp(3).

We can choose constant sections u1, u2, u3 of U for which (4) and (8) hold, and the symmetric inner 
product g = Re f satisfies

g = i(u1 � ũ1 + u2 � ũ2 + u3 � ũ3). (16)

Note that, like ω, the tensor g is j-invariant.
Each point x ∈ HP2 is specified by the fibre Hx of the tautological subbundle H of U . At this point, 

we can choose a unitary basis {h, ̃h = jh} of Hx. Note that h ∧ h̃ is a globally-defined section of the trivial 
bundle Λ2H. Having chosen our standard basis of constant sections of U , we can write

h = a1 + b2 + c3 + a′1̃ + b′2̃ + c′3̃

for a, b, c, a′, b′, c′ ∈ C. Acting by SU(3) on a unit vector u ∈ 〈1, 2, 3〉 we can map u to 1, which itself 
has stabiliser isomorphic to SU(2). We can now act on 〈1̃, ̃2, ̃3〉 by this SU(2) and thus, we can map any 
v ∈ 〈1̃, ̃2, ̃3〉 to an element in 〈1̃, ̃2〉. It follows that at each point x, we can always choose a unitary basis of 
Ux = C6 leaving ω, ξ and ξ̃ unchanged so that

h = a1 + b1̃ + c2̃ (17)

and |a|2 + |b|2 + |c|2 = 1. It follows that h̃ = ā1̃ − b̄1 − c̄2.
The action of SU(3) on H3 = C6 induces a well-known cohomogeneity one action on HP2 with singular 

orbits a complex projective plane CP2 and a sphere S5 (see also Section 5) [3]. We can characterise these 
in terms of (17) as follows:

(i) A point x ∈ HP 2 belongs to CP2 = PC(L) iff dim(Hx ∩ L) = 1. Equivalently (since this dimension 
cannot exceed 1) h ∧ h̃ ∧ 123 = 0, which means that a = 0 or c = 0.

(ii) A point x ∈ HP 2 belongs to S5 iff Hx is g-isotropic. This means that b = 0 and |a| = |c|, so that we 
can set Hx = 〈1 + eit2̃, ̃1 − e−it2〉, and its projection to L equals 〈1, 2〉. Thus S5 fibres over the dual 
projective plane PC(L∗).
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The CP2 in (i) is the fixed point set for the U(1) action, whereas the S5 in (ii) is fibred by the maximal 
U(1) orbits. We shall quantify these facts below.

Consider the decomposition

S2U ∼= S2E ⊕ EH ⊕ S2H , (18)

analogous to (5), by writing

g = ζE + X + ζH , (19)

where ζE ∈ Γ(S2E), X ∈ Γ(E⊗H) and ζH ∈ Γ(S2H). These components are all real and X can be viewed 
as a vector field on HP2.

Proposition 3.3. Up to Sp(2)Sp(1) equivariant mappings, ∇X is a nontrivial linear combination of ζE and 
ζH , whilst ∇ζE and ∇ζH are both non-zero multiples of X.

Proof. This is completely analogous to that of Proposition 3.1. We apply the argument leading to (13) to 
deduce that

(DζE)x = (∇ζE)x + A(ζE) ∈ T ∗ ⊗ S2U ,

where (∇ζE)x ∈ T ∗ ⊗ S2E and A embeds ζE in T ∗ ⊗ EH (since T ∗ ⊗ S2H has no S2E component).
We can decompose DX and DζH in the same way, and tabulate their components in each of the three 

summands of T ∗ ⊗ U . For example, there are non-zero tensorial components A1(X) and A2(X) of DX in 
T ∗ ⊗ S2E and T ∗ ⊗ S2H, since both these tensor products contain EH as a submodule:

DζE DX DζH

T ∗ ⊗ S2E ∇ζE A1(X)
T ∗ ⊗EH A(ζE) ∇X A(ζH)
T ∗ ⊗ S2H A2(X) ∇ζH

Since g is a constant tensor,

0 = Dg = DζE + DX + DζH ,

and it follows that the sum of the terms in each row of the table is zero. �
Armed with Proposition 3.3 and SU(3) invariance, we can easily recognise the terms in (19). Namely, X

can be identified with the Killing vector field determined by the action of U(1). As a Killing vector field, its 
covariant derivative ∇X takes values at each point in the holonomy bundle with fibre sp(1) + sp(2), which 
is consistent with the equation

∇X = A(ζE) + A(ζH) ∈ S2E ⊕ S2H.

In particular, ζH is the section of S2H defined by the (Galicki-Lawson) analogue of the hyperkähler moment 
map for the action of U(1). We already know that X vanishes on CP2, the latter being the fixed point set 
for U(1). On the other hand it is well known that the zero set of the moment ‘map’ ζH is S5, and that 
S5/U(1) = CP2∗ is the QK quotient.

We can verify these facts using
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Lemma 3.4. With h of the form (17) we have

ζH = i(2āb̄)h⊗ h− i(2ab)h̃⊗ h̃ + i(|a|2 − |b|2 − |c|2)(h⊗ h̃ + h̃⊗ h)

and X = h ⊗ α1 + h̃⊗ α2 ∈ Γ(H ⊗ E) where

α1 = i((2ā|c|2)1̃ + (2|a|2c̄)2 + (−2āb̄c)2̃),
α2 = i((2a|c|2)1 + (−2abc̄)2 + (−2|a|2c)2̃).

Proof. Computing we have

h · g = (a1̃ − b1 − c2) · g = i(a1 − b1̃ − c2̃),
h̃ · g = (−ā1 − b̄1̃ − c̄2̃) · g = i(−ā1̃ − b̄1 − c̄2).

Therefore,

h · h̃ · g = h̃ · h · g = i(−|a|2 + |b|2 + |c|2),
h · h · g = i(−2ab),
h̃ · h̃ · g = i(2āb̄).

It is now just a matter of identifying the components of g. Observe that α2 = j(α1), confirming indeed that 
X is real. We can also directly check that h · α2 = h̃ · α2 = 0, confirming that αi ∈ E. �

It now follows that the zero set of X corresponds to a = 0 or c = 0, and that of ζH to b = 0 and |a| = |c|. 
These two zero sets correspond to the singular orbits CP2 and S5 respectively. Thus,

Corollary 3.5. X is nowhere zero on HP2 \CP2, and ζH is nowhere zero on HP2 \ S5.

An analogous result appears at the end of the next section.

4. Horrocks bundle revisited

Recall the definition of the Horrocks bundle Y over CP5 via the monad (11). The main result of this 
section is an application of (3) to construct Y (up to the action of Sp(3, C)) as the pullback of a vector 
subbundle V of F over HP2 with an instanton connection. We shall show that this subbundle is entirely 
determined by the covariant derivative of a suitable section of E.

We start from the third exterior power

Λ3U ∼= Λ3E ⊕ (Λ2EH) ⊕ (E Λ2H)

in place of (18), and consider the SU(3) invariant tensor ξ in place of g. Note that Λ3E ∼= E as Sp(2)
modules, and Λ2H is trivial, so Λ3U really contains two copies of E. The symplectic form ω embeds U in 
Λ3U and, by analogy to (6), its orthogonal complement is

Λ3
0U ∼= E ⊕ F H. (20)

The first summand E here sits diagonally across the subspaces Λ3E and E Λ2H of Λ3U . Since ω∧ξ = ω∧ξ̃ = 0
it follows that ξ, ξ̃ ∈ Λ3

0U .
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It is convenient to work with the simple SU(3)-invariant 3-form

η = 1
2 (ξ − ξ̃) = u1 ∧ u2 ∧ u3

(abbreviated to 123) in place of ξ. Set

η = ηE + ηH ,

where ηE ∈ E and ηH ∈ F H in (20).

Proposition 4.1. Up to Sp(2)Sp(1) equivariant mappings, ∇ηE is a non-zero multiple of ηH , whilst ∇ηH is 
non-zero multiple of ηE.

Proof. This proceeds almost exactly as in Proposition 3.1, with the table

DηE DηH

T ∗ ⊗ E ∇ηE A(ηH)
T ∗ ⊗ F H A(ηE) ∇ηH

Again, each column must sum to zero. �
Recall that the complex vector bundles H and F (equivalently, the underlying modules) are quaternionic 

and real respectively. In particular, there are Sp(1) and Sp(2) equivariant isomorphisms H∗ ∼= H and 
F ∗ ∼= F , and

H F ∼= Hom(H,F ) ∼= Hom(F,H).

This makes it easier to grasp the significance of the rank of the tensor ηH . The next result asserts that it is 
everywhere maximal:

Lemma 4.2. The section ηH has rank 2 at every point of HP2.

Proof. We can write

ξ = γ + (h ∧ β + h̃ ∧ β′) + (h ∧ h̃ ∧ α),

where γ ∈ Λ3
0E, β, β′ ∈ F and α ∈ E. We need to show that dim 〈β, β′〉 = 2. We shall denote contraction 

(interior product) using ω by a centred dot. Then

h̃ · ξ = −β − h̃ ∧ α,

so h̃ ∧ (h̃ · ξ) = −h̃ ∧ β, and

β = −h · (h̃ ∧ (h̃ · ξ))
= −h · (h̃ ∧ (h̃ · 123)) − h · (h̃ ∧ (h̃ · 1̃2̃3̃)),

using (9). Moreover,

β′ = −h̃ · (h ∧ (h · ξ))
= −j

[
h · (h̃ ∧ (h̃ · jξ))

]
= j

[
h · (h̃ ∧ (h̃ · 123)) − h · (h̃ ∧ (h̃ · 1̃2̃3̃))

]
.
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In the following computations, we separate the two terms 123 and 1̃2̃3̃, and effectively work out β and β′

simultaneously.
We have

h̃ · 123 = −ā23
h̃ · 1̃2̃3̃ = −b̄2̃3̃ + c̄1̃3̃,

and

h̃ ∧ (h̃ · 123) = −ā21̃23 + āb̄123
h̃ ∧ (h̃ · 1̃2̃3̃) = −āb̄1̃2̃3̃ + b̄212̃3̃ + b̄c̄22̃3̃ − b̄c̄11̃3̃ + c̄21̃23̃.

It follows that

h · (h̃ ∧ (h̃ · 123)) = −ā|a|223 − ā|b|223 − ā2c1̃3 + āb̄c13
h · (h̃ ∧ (h̃ · 1̃2̃3̃)) = −b̄|a|22̃3̃ + ab̄c̄13̃ + ac̄223̃ − b̄|b|22̃3̃ + c̄|b|21̃3̃ − b̄|c|22̃3̃ + c̄|c|21̃3̃.

Therefore

β = ā(|a|2 + |b|2)23 + ā2c1̃3 − āb̄c13
+ b̄(|a|2 + |b|2 + |c|2)2̃3̃ − ab̄c̄13̃ − ac̄223̃ − c̄(|b|2 + |c|2)1̃3̃

β′ = b(|a|2 + |b|2 + |c|2)23 + ābc1̃3 + āc22̃3 − c(|b|2 + |c|2)13
− a(|a|2 + |b|2)2̃3̃ + a2c̄13̃ + abc̄1̃3̃.

One can also check that

h · β = 0, h̃ · β = 0, h · β′ = 0, h̃ · β′ = 0

(the second and last equations are obvious), confirming that the elements β, β′ both belong to F .
Now suppose that β, β′ do not span 2 dimensions. Note that only β has a term 23̃, and only β′ has a 

term 2̃3, so both the coefficients must vanish. This means that a = 0 or c = 0. In the former case, it follows 
easily that b = c = 0, so h = 0. In the latter case, one obtains

det
(̄
a b̄

b −a

)
= 0,

so again h = 0, which is a contradiction. �
The Horrocks bundle V on HP 2 can now be defined as the

V = ker(ηH : F → H).

Since SO(5) ⊂ SU(5) acts on F and H has an SU(2)-structure it follows that V inherits an SU(3)-structure. 
Because the holonomy of HP2 lies in Sp(2)Sp(1), the Riemannian connection induced on F is self-dual in 
the sense of Definition 2.1: its 2-forms lie in the subspace sp(2) ∼= S2E of Λ2T ∗ at each point of HP2.

The next result also appears in [30, Theorem 6].

Theorem 4.3. The connection induced on V is itself self-dual.
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Proof. This follows from Proposition 4.1, because the section ηH that defines V as a subbundle of F satisfies 
the twistor equation, namely (∇ηH) = 0, where  is the projection

T ∗ ⊗ F H = EH ⊗ F H −→ (E ⊕ K) ⊗ S2H

obtained by symmetrising the factor H ⊗H. This fact can be used to prove directly that the subbundle V
of F admits a self-dual connection, using the methods of [4].

Alternatively, we can complete the circle by showing ηH defines the required holomorphic map over CP5

as follows. It follows from (14) that ηH defines a section of π∗F ⊗O(1). Such a section will be holomorphic 
if and only if ηH satisfies the twistor equation (∇ηH) = 0. �

Returning to the proof of Lemma 4.2, an easier calculation gives

α = h · (h̃ · (123 − 1̃2̃3̃) = āc3 − ac̄3̃,

which vanishes if and only if a = 0 or c = 0, i.e. on the singular orbit CP2.

Corollary 4.4. The section ηE is nowhere zero on HP2 \CP2.

One can use ηE to manufacture further tensors invariant by SU(3), namely

φE = (ηE ∧ jηE)0 ∈ Λ2
0E

∼= F,

ψE = iηE ∧ jηE ∈ S2E.
(21)

Observe that both are invariant by both i and j, meaning that the tensors are invariant by U(3), and are 
real, i.e. elements of the underlying real vector spaces. Like ηE itself, they will both be nowhere zero away 
from CP2.

Remark 4.5. The vector field X can be used to construct an invariant of the same type as φE, namely

ψE = π5(X ⊗X) ∈ F ⊂ S2T ∗,

where π5 denote projection to the 5-dimensional submodule of symmetric tensors. Calculations reveal that 
these two U(3) invariants are proportional. We also expect ψE and ζE to be proportional.

Corollaries 3.5 and 4.4 will be used to define explicit Spin(7) structures on the projective plane HP2.

5. Spinors and characteristic classes

It is well known that the quaternionic projective plane HP2 has zero integral cohomology in degrees 1 
and 2. In particular, its first and second Stiefel-Whitney classes vanish, so it has a unique Spin(8)-structure. 
Actually, the same is true for any 8-manifold whose structure reduces to the subgroup Sp(2)Sp(1) of SO(8). 
Its spinor bundle Δ = Δ+ ⊕ Δ− is given by

Δ+ ∼= F ⊕ S2H, Δ− ∼= EH, (22)

and there is a lifting Sp(2)Sp(1) ⊂ Spin(8). (Recall that F is shorthand for Λ2
0E, and EH for E ⊗H.) In 

particular, Δ− ∼= THP 2 ∼= T ∗HP 2.
The splitting (22) reflects the similarity between an almost quaternionic structure (defined by Sp(2)Sp(1)) 

on an 8-manifold, and a Grassmannian structure (defined by SO(3) ×SO(5)). Indeed, there is an isomorphism
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Spin(8)
Sp(2)Sp(1) −→ SO(8)

SO(3) × SO(5) (23)

of simply-connected symmetric spaces induced by triality. This theme was developed by Witt [39].
Let us recall the basic characteristic class computations for HP2, using Chern characters. In the absence 

of cohomology in degrees 1 and 3, the Chern character of a vector bundle W satisfies

chW = rk(W ) − c2 + 1
12 (c22 − 2c4).

In particular, with the previous notation in which u = −c2(H) generates H4(HP 2, Z), we have

ch(H) = 2 + u + 1
12u

2.

It follows from (3) that

ch(E) = 6 − ch(H) = 4 − u− 1
12u

2, (24)

or equivalently the total Chern class of E is given by

c(E) = (1 − u)−1 = 1 + u + u2.

We can now compute the Chern character of TC = TCHP 2 using (2):

ch(TC) = ch(E) ch(H) = 8 + 2u− 5
6u

2. (25)

Using standard techniques, it also follows that

ch(S2H) = ch(H)2 − 1 = 3 + 4u + 4
3u

2,

ch(F ) = ch(Λ2E) − 1 = 5 − 2u + 5
6u

2.
(26)

Since ch(V ) = ch(F ) − ch(H), we have

Corollary 5.1. The Horrocks instanton bundle has Chern character

ch(V ) = 3 − 3u + 3
4u

2.

Remark 5.2. As Horrocks points out, any rank 3 vector bundle on CP5 with c1 = c3 = 0 must have c2 = ax

with a one of 3, 8 or 11 modulo 12 [23, p. 166]. Working back down on HP2, had we not proved Lemma 4.2
nor the existence of an embedding H ⊂ F , we could have recognised the possibility that the K-theory 
element F −H is a genuine vector bundle by the fact that c4(F −H) = 0. It may be that there are other 
virtual Sp(2)Sp(1) modules or low rank that have vanishing higher Chern classes.

Adding the two lines in (26) together yields

ch(Δ+) = 8 + 2u + 13
6 u2.

From (25) and (26), we obtain

ch(Δ+ − Δ−) = ch(Δ+) − ch(TC) = 3u2,

which integrates to give the Euler number χ of HP2. The last equation is a version of the Gauss-Bonnet 
theorem, reflecting the fact that (Δ+)2 − (Δ−)2 equals (in the sense of K-theory) the de Rham complex, 
see forward to (28). We also record
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Proposition 5.3. The spinor bundles have Pontrjagin classes

p1(Δ+) = −2u, p2(Δ+) = −11u2,

p1(Δ−) = 2u, p2(Δ−) = 7u2.

The last two classes in the proposition are those of the quaternionic projective plane HP2 itself.
As regards Δ+ over HP2, its Euler class vanishes because of the odd-dimensional summands. Since the 

rank of Δ+ coincides with the dimension of the base, it must possess a smooth non-vanishing section. The 
choice of such a (say, unit) δ gives an explicit reduction of the structure group of HP2 to Spin(7), indeed 
to Sp(1)3/Z2, see Section 6. Now, S2H cannot admit a nowhere-zero section since it would then split as the 
sum of a complex line bundle and a trivial bundle and have zero Chern classes on HP2. The same is true 
of the other summand of Δ+:

Lemma 5.4. The vector bundle F has no nowhere-zero section over HP2.

Proof. Recall that F is the complexification of a real vector bundle. Without loss of generality, we may 
assume that any nowhere-zero section is real, and therefore determines a complex rank 4 subbundle F ′ with 
an SO(4) structure. By expressing F ′ = A ⊗ B locally as the tensor product of two spinor bundles, we 
obtain

ch(F ′) = (2 − au + 1
12a

2u2)(2 − bu + 1
12b

2u2)
= 4 − 2(a + b)u + 1

6 (a2 + 6ab + b2)u2,

where 4a, 4b ∈ Z. This incidentally shows that c4(F ′) = (a − b)2u2 is the square of an Euler class. From 
(26), we deduce that a + b = 1 and

5 = a2 + 6ab + b2 = 4a− 4a2 + 1,

so a2 − a + 1 = 0, which is impossible. �
The above proof is a variant of one given to the authors by Diarmuid Crowley. See [14] for related 

calculations.

Remark 5.5. Each fibre of unit elements in S2H is the 2-sphere {aI+bJ +cK} of almost complex structures 
defining the quaternionic structure of HP2 at that point. Thus, a section of S2H defines an almost complex 
structure wherever it is non-zero. It is well known that HP2 admits no almost complex structure, essentially 
because χ − σ = 2 is not divisible by 4, see for example [31]. See [20] for non-existence of almost complex 
structures on other QK symmetric spaces.

Using Proposition 5.3 and the fact that 
〈
HP 2, u2〉 = 1, the characteristic numbers of HP2 satisfy

4p2 − p1
2 = 8χ. (27)

In fact, any 8-manifold whose structure group reduces to Spin(7), Sp(2)Sp(1) or SU(4) satisfies (27), the 
SU(4) case being particularly easy [36]. The equality for Spin(7) dates back to [21] (except that ‘8’ is 
accidentally missing), and our remarks confirm that it also holds for the QK manifolds G2/SO(4) and 
Gr2(C4) ∼= Gr2(R6), cf. [21, Theorem 4.5]. In fact, it is known that (27) is both a necessary and sufficient 
condition for the existence of a Spin(7) structure [29, Theorem 10.7].
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Theorem 5.6. The Riemannian symmetric space HP2 admits families of Spin(7) structures (compatible with 
the QK metric) invariant by the cohomogeneity-one action of U(3) and depending on two arbitrary functions.

Proof. Corollaries 3.5 and 4.4 are tailored for this purpose. The former asserts that ζH vanishes only on S5, 
and latter furnishes a section φE of F that vanishes only on CP2. Then any non-trivial linear combination

δ = aφE + b ζH

is nowhere-zero on HP2. It remains to replace a and b by suitable functions.
One can parametrise the orbits of U(3) by the QK moment mapping f = ‖ζH‖2 as in [7]. The derivative 

df of this function is essentially ζH(X). Moreover, f vanishes on S5 and achieves a maximum f1 on CP2. 
We are therefore free to take a = a(f) and b = b(f) to be smooth functions of f such that a(0) �= 0 and 
b(f1) �= 0. �

An aim of the next two sections will be to realise the resulting Spin(7) structures more explicitly, and 
construct others compatible with different metrics.

6. Invariant 4-forms

A generalisation of (22) to higher dimensions was first described in [6]. At this juncture, let us work with 
representations rather than vector bundles, with little modification of notation. Recall that if Δ ∼= C2n

denotes the faithful representation of Spin(2n), there is an equivariant isomorphism

Δ ⊗ Δ ∼= Λ∗(R2n)∗ =
2n⊕
k=0

Λk(R2n)∗, (28)

with corresponding decompositions of Δ±⊗Δ± that split the exterior algebra into even and odd subspaces. 
In the case of n = 4, we can supplement (28) with the isomorphisms

Λ4
+
∼= S2

0(Δ+), Λ4
−
∼= S2

0(Δ−), (29)

where

Λ4(R8)∗ = Λ4
+ ⊕ Λ4

− (30)

is the decomposition into the ±1-eigenspaces of Hodge ∗.
Having fixed a spin structure on an 8-manifold, a nowhere-zero section δ of the positive spin bundle 

reduces the structure group from Spin(8) to Spin(7) (the pointwise stabiliser of δ). An application of (30)
to Theorem 5.6 is

Lemma 6.1 ([29]). If δ is a unit spinor, the corresponding Spin(7) 4-form equals the component of δ ⊗ δ in 
Λ4

+.

From now on, we indicate the SO(8) module R8 by T , so that its dual T ∗ represents the cotangent space 
at an arbitrary point of HP2. Whilst S2T ∗ has a submodule isomorphic to F , the summand S2H in (22) is 
of course isomorphic to the submodule of

Λ2T ∗ ∼= S2E ⊕ S2H ⊕ F S2H (31)

generated pointwise by a triple
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ω1 = 12 + 34 + 56 + 78,
ω2 = 13 + 42 + 57 + 86,
ω3 = 14 + 23 + 58 + 67

(32)

of 2-forms associated to the quaternionic structure. In this section and the next, the indices 1, . . . , 8 form 
an abbreviation for an orthonormal basis of real 1-forms (in contrast to previous sections, where they stood 
for elements of C3). It follows from (29) that

Λ4
+ = C ⊕ S4H ⊕ F S2H ⊕ S2

0F,

Λ4
− = F ⊕ S2E S2H.

(33)

The 1-dimensional summand of Λ4T ∗ is spanned by the QK 4-form

Ω = ω2
1 + ω2

2 + ω2
3 (34)

first studied extensively by Kraines [28]. The stabiliser of Ω in GL(8, R) is isomorphic to Sp(2)Sp(1).
The full decomposition of the exterior algebra under Sp(n)Sp(1) for arbitrary n was used by Swann [38]

to prove that the closure of the 4-form (34) is sufficient to imply that the holonomy reduces to Sp(n)Sp(1)
provided n � 3. That is, dΩ ≡ 0 implies ∇Ω ≡ 0 in dimensions 4n � 12, although this is not true in 
dimension 8. Indeed, G2/SO(4) admits an Sp(2)Sp(1) structure that is not locally symmetric but for which 
dΩ ≡ 0 [12]; the associated metric has a cohomogeneity-one action by SU(3). A corresponding statement 
for HP2 remains open.

We can present the decomposition (31) as

Λ2T ∗ = Λ2
10 ⊕ Λ2

3 ⊕ Λ2
15,

in which subscripts indicate the dimensions of irreducible summands for Sp(2)Sp(1). They can all be defined 
with reference to wedging with Ω:

Λ2
10 = {α : ∗(α ∧ Ω) = −6α}

Λ2
3 = {α : ∗(α ∧ Ω) = 10α}

Λ2
15 = {α : ∗(α ∧ Ω) = 2α}.

The subspace Λ2
3 is generated by the forms (32). Note that our definition of Ω has no constant 1

2 ; if this 
were adopted, the eigenvalues above would be −3, 5, 1.

We can likewise present the decompositions (33) as

Λ4
+ = Λ4

1 ⊕ Λ4
5+ ⊕ Λ4

15 ⊕ Λ4
14,

Λ4
− = Λ4

5′ ⊕ Λ4
30,

in which the spaces with subscripts 5+ and 5− are not isomorphic. Most of these spaces are distinguished 
by their parity (self or anti-self dual) and the action of Sp(1) via Λ2

3
∼= sp(1). In the lines below ‘ω’ stands 

for an arbitrary element 
∑3

1 aiωi in Λ2
3:

Λ4
1 = 〈 Ω 〉

Λ4
5 = {α ∈ Λ4

+ | ∗(α ∧ ω) ∧ Ω = 10α ∧ ω}
Λ4

15 = {α ∈ Λ4
+ | ∗(α ∧ ω) ∧ Ω = 2α ∧ ω}

Λ4
14 = {α ∈ Λ4

+ | α ∧ ω = 0}
Λ4

5′ = {α ∈ Λ4
− | ∗(α ∧ ω) ∧ Ω = 2α ∧ ω}

Λ4 = {α ∈ Λ4 | ∗(α ∧ ω) ∧ Ω = −6α ∧ ω}.
30 −
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In this section, we shall identify invariants in most of these subspaces, arising from a choice of section of 
Δ+.

Let us begin with the first summand of Δ+ in (22). Given a real unit spinor φ ∈ F (for example, 
φ = φE from (21)), its stabiliser in Sp(2) is Sp(1)σ × Sp(1)τ (where the Greek subscripts distinguish the 
two subgroups) acting as SO(4). Thus, a non-vanishing spinor with values in the rank 5 subbundle of Δ+
defines a reduction of structure group from Sp(2)Sp(1) to

Sp(1)3/Z2 = Sp(1)2Sp(1) = (Sp(1) × Sp(1))Sp(1)
{(1, 1, 1), (−1,−1,−1)} . (35)

This allows us to break the spaces of 4-forms and vector bundles (33) under the action of Sp(1)3/Z2.
Invariant sections will only occur in those summands that do not involve H, i.e. Λ4

1
∼= C, L4

14
∼= S2

0F

and Λ4
5−

∼= F . In order to identify these tensors, we work at a point and choose an Sp(2)Sp(1) orthonormal 
basis of 1-forms. Adopting shorthand, set

σ1 = 12 + 34, σ2 = 13 + 42, σ3 = 14 + 23,
τ1 = 56 + 78, τ2 = 57 + 86, τ3 = 58 + 67.

Then φ ⊗ω1 defines a 2-form in the submodule Λ2
15

∼= F S2H that we may identify with σ1−τ1. To obtain the 
reincarnation of φ as a 4-form, we merely have to take its wedge product with ω1, since ω1 ⊗ω1 ∈ S4H ⊕ C

yet Λ4T ∗ has no component F S4H. This gives

(σ1 − τ1) ∧ ω1 = σ2
1 − τ2

1 ,

which equals twice 1234 − 5678, and will be denoted in the next lemma by Ω−
5 . This 4-form calibrates the 

two 4-planes in the decomposition

T = R8 = R4
1234 ⊕ R4

5678, (36)

for which (σi) and (τj) are triples of self-dual 2-forms on the respective summands.

Lemma 6.2. Any 4-form invariant by Sp(1)3/Z2 is pointwise a linear combination of

Ω1 = 3(σ2
1 + τ2

1 ) + 2(σ1τ1 + σ2τ2 + σ3τ3) = Ω,

Ω14 = σ2
1 + τ2

1 − σ1τ1 − σ2τ2 − σ3τ3 ∈ Λ4
14,

Ω5− = σ2
1 − τ2

1 ∈ Λ4
5−.

Proof. The expression given for Ω can be verified directly.
Under the assumption that there exists a reduction from Sp(2)Sp(1) to Sp(1)3/Z2, there are decompo-

sitions

E = Aσ ⊕ Aτ ,

F ∼= AσAτ ⊕ C,

S2
0F

∼= (S2Aσ)(S2Aτ ) ⊕ (AσAτ ) ⊕ C,

(37)

where Aσ, Aτ are each isomorphic to C2 = H. It follows that F and S2
0F each contain a unique invariant up 

to scaling. We have already discussed Ω5−. The expression given for Ω14 is invariant by Sp(1)3/Z2, and one 
can verify that it belongs to Λ4

14 as defined above. Alternatively, observe that the wedge product (σ1 − τ1)2
must belong to Λ4

1 ⊕ Λ4
5+ ⊕ Λ4

14, and so
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(σ1 − τ1)2 − aΩ − bω2
1 ∈ Λ4

14

for some a, b. These constants can be found by wedging with ωi ∧ ωi, and setting the result zero (for 
i = 1, 2). �

Given a non-zero spinor in S2H, its stabiliser in Sp(1), acting as SO(3) on S2H, is U(1). Thus, a non-
vanishing spinor that values in the rank 3 subbundle of Δ+ defines a reduction of the structure group from 
Sp(2)Sp(1) to Sp(2)U(1). The unit spinor can be identified with a 2-form ω1, which we may express at a 
point as

ω1 = 12 + 34 + 56 + 78 = σ1 + τ1. (38)

Combining φE with ω1 enables us to construct more invariant 4-forms.
Suppose now that we have two spinors, one (such as ω1) in S2H and one (such as φE) in Λ2

0E, both 
nowhere zero on an open subset of HP2. Then we have a reduction of the structure group from Sp(2)Sp(1)
to Sp(1)2U(1).

Lemma 6.3. Any 4-form invariant by Sp(1)2U(1) is pointwise a linear combination of Ω, Ω14, Ω5−, together 
with

Ω5+ = −2(σ2
1 + τ2

1 ) + σ2τ2 + σ3τ3 ∈ Λ4
5+,

Ω15 = σ2τ3 − σ3τ2 ∈ Λ4
15.

Proof. The reduction from Sp(1)3/Z2 = Sp(1)2Sp(1) to Sp(1)2U(1) will give rise to a 1-dimensional trivial 
summand in any submodule S2kH, and therefore an extra invariant in both Λ4

5+ and L4
15. There is no new 

invariant in Λ4
30 because, further to (37),

S2E ∼= S2(Aσ ⊕ Aσ) ∼= S2Aσ ⊕ S2Aτ ⊕ AσAτ

has no trivial summand.
The expression for Ω5+ is the linear combination of 1

2 (Ω − 3ω2
1), which wedges to zero with W .

The expression for Ω15 is harder to pin down, but arises as follows. Fix again an invariant element φ ∈ F , 
and let φ̃i denote the 2-form in Λ2

15
∼= F S2H defined by φ ⊗ ωi. Then

φ̃2 = σ2 − τ2, φ̃3 = σ3 − τ3,

and

Ω15 = φ̃2ω3 = −φ̃3ω2,

since φ ⊗ω2⊗ω3 defines an element in F S4H ⊕ F S2H, yet the first summand does not appear in Λ4T ∗. �
7. Applications to Spin(7) geometry

In this section, we shall pursue similarities that arise in the definition of Sp(2)Sp(1) and Spin(7) structures.
At the algebraic level, the first (and better-known) link arises from fixing a 2-form ω1 on an open set of 

a QK 8-manifold M . This determines a reduction of structure groups

Sp(2)U(1) ⊂ Spin(7) ⊂ SO(8),
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for the tangent bundle, or equivalently negative spinor bundle Δ−. Meanwhile, the positive spinor bundle 
acquires a reduction

SO(5) × SO(2) ⊂ SO(7) ⊂ SO(8),

related to the previous one by triality, cf. (23). The associated Spin(7) 4-form is

−ω2
1 + ω2

2 + ω2
3 = Ω − 2ω2

1
= 2Ω5+ + ω2

1 ,
(39)

and was exploited by [8] in the context of hyperkähler geometry. The distinguished 7-dimensional subspace 
Λ2

7 of 2-forms defined by the Spin(7) structure splits as 5 + 2.
The second link (and more the focus of this paper) arises from fixing a section φ of F = Λ2

0E. This gives 
a different away of fitting Spin(7) ‘into’ a quaternionic structure, namely by means of the inclusions

Sp(1)3/Z2 ⊂ Spin(7) ⊂ SO(8)

of T ∼= Δ−, and

SO(4) × SO(3) ⊂ Spin(7) ⊂ SO(8)

of Δ+. In this case, the associated Spin(7) 4-form will be a linear combination of Ω and Ω14, and Λ2
7 splits 

as 4 + 3.
The description of both of these Spin(7) structures arises from special cases of Lemmas 6.2 and 6.3, and the 

4-forms are derived from Lemma 6.1. The SO(8) is fixed, in the sense that the underlying Riemannian metric 
remains the one defined by the Sp(2)Sp(1) reduction. Below, we shall consider particular linear combinations 
of the forms introduced in the previous section that deform the QK metric across 4-dimensional distributions 
defined by (36).

Of the invariants in Lemma 6.2, the one whose stabiliser is closest to Sp(1)3/Z2 is Ω14. Unlike an element 
of F , it does not enable us to distinguish the two summands of (36):

Proposition 7.1. The stabiliser of Ω14 in GL(8, R) is isomorphic to (Sp(1)3/Z2) � Z2, where the final Z2
flips the summands in (36).

Proof. Denote by G the stabiliser of Ω14, which we know contains Sp(1)3/Z2. Observe that G ⊂ SL(8, R)
since it preserves the volume form 1

20Ω14 ∧ Ω14. Consider now the G-equivariant map

L : Λ4 −→ Λ8 ∼= R

α �→ α ∧ Ω14.

The spaces Λ4
5+, Λ4

15, Λ4
30 belong to the kernel of L since they are acted on non-trivially by Λ2

3. From (37), 
we conclude that (as Sp(1)3/Z2 modules) the only elements of Λ4 that do not belong to the kernel of L must 
lie in the 3-dimensional subspace spanned by Ω14 and the simple forms 1234 and 5678. It also easy to see 
that Ω−

5 ∧Ω14 = 0 and thus, we have shown that the only 4-forms stabilised by G are Ω14 and 1234 + 5678. 
It also follows that G acts as −1 on Ω−

5 corresponding to the action of the outer Z2 automorphism. �
The Spin(7) 4-form (39) can be expressed as

σ2
1 + τ2

1 − 2σ1τ1 + 2σ2τ2 + 2σ3τ3. (40)
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We can flip the last two signs by changing those of the coordinates u3, u4. Since Sp(1)3/Z2 is a subgroup 
of Spin(7), it must be possible to define a Spin(7) 4-form by combining those of Lemma 6.2. We investigate 
this now. Let a, b, c be real constants. Consider the linear combination

Ψa,b,c = aΩ14 + bΩ + cΩ5−

= (3b + a + c)σ2
1 + (3b + a− c)τ2

1 + (2b− a)(σ1τ1 + σ2τ2 + σ3τ3).
(41)

Setting (a, b, c) = (8, −1, 0) in (41), we obtain the Spin(7) 4-form

1
5Ψ8,−1,0 = σ2

1 + τ2
1 − 2σ1τ1 − 2σ2τ2 − 2σ3τ3.

Up to scaling, this defines the same metric and orientation as the QK 4-form Ω, in accordance with 
Lemma 6.1. However, as promised, we can derive distinct metrics by choosing c �= 0:

Proposition 7.2. The stabiliser of Ψa,b,c is isomorphic to

(i) Spin(7) if a − 2b > 0, 3b + a − c > 0, 3b + a + c > 0 and

c2 = 1
4 (8b + a)(4b + 3a).

If instead a − 2b < 0 then the stabiliser is isomorphic to Spin(4, 3).
(ii) Sp(2)Sp(1) if a − 2b < 0, 3b + a − c > 0, 3b + a + c > 0 and

c2 = 5a(3b− 1
4a).

If instead a − 2b > 0 then the stabiliser is Sp(1, 1)Sp(1).

Proof. This follows by rescaling Ψa,b,c so that it can be expressed as

σ2
1 + 3b + a− c

3b + a + c
τ2
1 − 2 a− 2b

2(3b + a + c) (σ1τ1 + σ2τ2 + σ3τ3)

The condition for Spin(7) is that the numerators and denominators are positive and that

3b + a− c

3b + a + c
=

( a− 2b
2(3b + a + c)

)2
,

which simplifies to the equation in (i). If a −2b < 0, the result follows from the definition of Spin(4, 3) given 
in [9].

The condition for Ψa,b,c to define an Sp(2)Sp(1)-structure is that 3b + a − c > 0 and 3b + a − c > 0 as 
before, but now we need a − 2b < 0 and

3b + a− c

3b + a + c
=

( 3(a− 2b)
2(3b + a + c)

)2
.

This simplifies to the equation in (ii). If a − 2b > 0, then Ψa,b,c is pointwise equivalent to

(σ1 − τ1)2 + (σ2 − τ2)2 + (σ3 − τ3)2

after a change of coordinates. Since the stabiliser of the triple σi − τi is Sp(1, 1), it follows that Ψa,b,c is 
stabilised by Sp(1, 1)Sp(1). �
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Part (i) of the proposition supplies a 2-parameter family of Spin(7) structures at each point. One such 
instance is

1
10Ψ82,1,75 = (4σ1)2 + τ2

1 − 2(4σ1)τ1 − 2(4σ2)τ2 − 2(4σ3)τ3.

In both cases, the associated Riemannian metric has the form

g = (3b + a + c)1/2
4∑

i=1
dx2

i ± (3b + a− c)1/2
8∑

i=5
dx2

i .

This follows from the coefficients of σ2
1 and τ2

1 in (41).

Remark 7.3. The homogeneous space Spin(7)/(Sp(1)3/Z2) parametrises oriented 4-dimensional subspaces 
of R8 on which Φ restricts to give the volume form [22, p. 123]; these are the so-called ‘Cayley planes’. This 
space has dimension 12, compared to 16 for Gr4(R8). In a manifold (M8, Ψ) with holonomy Spin(7), the 
Φ-calibrated submanifolds are called Cayley submanifolds. The (Sp(1)3/Z2) � Z2 structure determined by 
Ω14 corresponds to choosing a pair of (undistinguished) orthogonal Cayley planes on each tangent space of 
M8 with respect to any of the Spin(7)-structures. Note that the deformation theory of Cayley submanifolds 
does not require dΦ = 0 [27, p. 274].

One can use the reduction to Sp(1)3/Z2 to give an explicit relation between the QK structure of HP2

and the complete metric with holonomy Spin(7) on the spin bundle S over S4 = HP 1 defined by Bryant 
and the second author. If we regard HP2 as the projectivisation of H2, then H2 \ {0} fibres over the line 
HP1 at infinity. The origin 0 defines a point x0 ∈ HP2, the structure group Sp(3) reduces to Sp(2) ×Sp(1), 
and we have an equivariant embedding S ↪→ HP 2. This exhibits HP 2 as a cohomogeneity-one manifold 
with principal orbits S7 and singular orbits S4 and {x0}, just as in the discussion around (15).

We continue to use Ω to denote the QK 4-form on HP2. Let

Ψ = f2ψ1 + fgψ2 + g2ψ3

denote the 4-form defining the Spin(7) metric in [10]. Here, ψ1 denotes the volume form of the fibre, ψ2
is a term that mixes 2-forms on the fibre and base S4, and ψ3 is the volume form of the base. Solving for 
dΦ = 0 gives

f(r) = 4(1 + r)−2/5, g(r) = 5(1 + r)3/5,

where r is a radial parameter on the fibre. In view of the pointwise descriptions of Ω and Φ in the previous 
sections, the 4-form

Ω = −3u2ψ1 + uvψ2 − 3v2ψ3

defines a QK structure on S. Solving for dΩ = 0 shows that

u(r) = 4(r + 1)−2, v(r) = (r + 1)−1.

The associated metrics are given by

gBS = 4(r + 1)−2/5(α2
0 + α2

1 + α2
2 + α2

3) + 5(r + 1)3/5(ω2
0 + ω2

1 + ω2
2 + ω2

3),
g = 4(r + 1)−2(α2 + α2 + α2 + α2) + (r + 1)−1(ω2 + ω2 + ω2 + ω2).
QK 0 1 2 3 0 1 2 3
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A coordinate transformation verifies that gQK extends smoothly to the one point compactification of S, 
whilst of course gBS does not.

From our earlier discussion of Sp(1)3/Z2-structures on (an open set of) HP2, we see that we can regard

Ω5− = −u2ψ1 + v2ψ3 ∈ Λ4
5−

∼= F

as a section of Δ+, one which only vanishes at the point at infinity. This spinor then determines

Ω14 = −u2ψ1 − v2ψ3 − 1
2uvψ2 ∈ Λ4

14.

After some computation (which are omitted here), we recover

Proposition 7.4. The metric gBS with holonomy Spin(7) on S is defined by the 4-form Ψ = Ψa,b,c, where

−5a = f2

u2 + g2

v2 + 6fg
uv

, −10b = f2

u2 + g2

v2 − 4fg
uv

, −2c = f2

u2 − g2

v2 .

We conjecture that the 4-form in this proposition is closely related to the section (uE∧juE)0 of F defined 
by (12) where x0 = 〈u, ju〉 is the point removed from HP2.

We shall leave a discussion of 4-forms arising from Lemma 6.3 and their stabilisers for future investigation. 
One aim would be to extend the approach of this paper to compute exterior derivatives of the 4-forms in 
Lemma 6.3, with a view to studying properties of a 4-form of type

Ψa,b,c,d,e = aΩ14 + bΩ + cΩ5− + dΩ5+ + eΩ15

= (a + 3b− 2d + c)σ2
1 + (a + 3b− 2d− c)τ2

1 + (2b− a)(σ1τ1)
+(2b− a + d)(σ2τ2 + σ3τ3) + e(σ2τ3 − τ3σ2),

with different coefficients (for example, c) set to zero. We conclude by describing one natural way of modi-
fying an Sp(2)Sp(1) structure.

Let {ei}, {ej} be dual orthonormal bases of R8, (R8)∗, compatible with a 4-form

Ω = e1 ∧ γ + Υ (42)

with stabiliser Sp(2)Sp(1), where γ = e1 · Ω and the dot indicates interior product. Then e1 · Υ = 0, and

Υ ∈ Λ3 〈e2, . . . , e8〉 .
We can now replace e1 in (42) by the 1-form ẽ1 = e1 +α, for any α, without affecting the stabiliser of Ω up 
to isomorphism. The modified 4-form equals

Ω̃ = Ω + α ∧ (X · Ω), (43)

where X = e1, and is associated with the metric

g̃ = ẽ1 ⊗ ẽ1 +
8∑

i=2
ei ⊗ ei.

This is a special case of a nilpotent perturbation, as defined in [12].
Now suppose that Ω denotes a parallel QK 4-form. If α = dh is exact and X is a Killing vector field (like 

the one that generates the U(1) action in Section 3) then the Lie derivative LhXΩ = dh ∧ (X ·Ω) coincides 
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with the deformation in (43), and the latter arises via diffeomorphism. A more subtle choice of X was used 
to establish the existence of continuous families of closed (non-parallel) 4-forms with stabiliser Sp(2)Sp(1)
on G2/SO(4) [12, section 5]. It remains an open question as to whether such a 4-form exists on HP2.

One might hope that the methods leading to Proposition 7.4 could be related to work in [16], or lead to 
new explicit incomplete metrics with holonomy Spin(7). However, there are no non-trivial Sp(2)-invariant 
linear deformations of the Spin(7) 4-form associated to gBS [13]. That leaves the question of whether one can 
define useful canonical Spin(7) metrics for which the 4-form Ψ is not closed, perhaps by specifying Spin(7)
orbits in which the intrinsic torsion dΨ should lie.
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