

King's Research Portal

DOI: 10.1016/j.clnu.2022.02.010

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):

Firman, S. J., Ramachandran, R., Whelan, K., Witard, O. C., & O'Keeffe, M. (2022). Protein status in phenylketonuria: A scoping review. *CLINICAL NUTRITION*, *41*(4), 894-922. https://doi.org/10.1016/j.clnu.2022.02.010

Citing this paper

Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights

Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

- •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the Research Portal

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 06. Oct. 2023

Protein status in phenylketonuria: A scoping review

Sarah J. Firman^{a,b,c}, Radha Ramachandran^c, Kevin Whelan^a, Oliver C. Witard^{a,d}, Majella

O'Keeffea,e

^a Department of Nutritional Sciences, King's College London, London, United Kingdom

^b Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust,

London, United Kingdom

^c Adult Inherited Metabolic Diseases, Guy's and St Thomas' NHS Foundation Trust, London,

United Kingdom

d Centre for Human and Applied Physiological Sciences, King's College London, London,

United Kingdom

^e School of Food and Nutritional Sciences, University College Cork, College Road, Cork, Ireland

Corresponding author:

Dr Majella O'Keeffe

School of Food and Nutritional Sciences

Biosciences Institute, Room 4.08

University College Cork

Cork, Ireland

Email: majella.okeeffe@ucc.ie

Word count: 5996

1

ABSTRACT

Background: The physical and functional outcomes of lifelong treatment with a phenylalanine restricted diet for the management of Phenylketonuria (PKU) remain unknown. Given that the mainstay of dietary management consists of modifying the sources of ingested protein, various aspects of body protein status could be compromised.

Objectives: To examine the existing evidence regarding the protein status of people with PKU and identify nutritional and lifestyle variables that influence protein status.

Eligibility criteria: Studies reporting anthropometric, biochemical and/or functional measurements of body protein status in people with PKU were eligible.

Source of evidence: MEDLINE (Ovid), Embase (Ovid), CENTRAL, Web of Science and Scopus, and conference abstracts.

Results: Seventy studies were included in the review. The majority of studies assessing protein status based on anthropometric measurements observed no differences between people with PKU and controls, although deficits in muscle mass were reported within PKU cohorts. Findings for biochemical assessment of protein status were mixed and limited studies assessed protein status using functional measures. Factors such as participant age, sex, metabolic control, protein source, type of protein substitute, and pharmacological treatments were found to modulate protein status of people with PKU.

Conclusions: Findings were inconclusive regarding body protein status in people with PKU. The relationship between diet and protein status outcomes remains unclear and further research is warranted to determine the impact of dietary regimens on physical and functional outcomes, and to understand the best clinical assessments to reliably monitor the protein status in people with PKU.

Keywords: amino acid kinetics; biochemical markers; body composition; muscle function; phenylketonuria; protein status

INTRODUCTION

Phenylketonuria (PKU; OMIM 261600) is an inherited metabolic disorder characterised by an accumulation of phenylalanine in the blood due to a deficiency in phenylalanine hydroxylase that converts phenylalanine to tyrosine. If left untreated, high serum phenylalanine levels result in irreversible neurocognitive disability. Dietary intervention remains the cornerstone management, and consists of limiting dietary phenylalanine intake through adherence to a low protein diet and inclusion of phenylalanine-free or low-phenylalanine protein substitutes to meet protein requirements (1,2).

Protein substitutes predominantly consist of L-amino acids (L-AA) and are an essential component of the dietary management of PKU. Studies that profile the blood amino acid kinetics in healthy individuals following ingestion of elemental amino acids have provided useful insight into increased amino acid oxidation rates and a decrease in whole-body protein retention compared with ingestion of whole protein sources (3–8). Accordingly, and as a compensatory measurement, dietary recommendations advise a correction factor of 20-40% in excess of the protein requirement guidelines for the general population (1,2,9). However, the scientific evidence underpinning protein requirement guidelines for people with PKU is limited and, as such, are based on extrapolations from studies that estimate protein requirements in healthy populations (10). Moreover, these studies utilised nitrogen balance methodology (11) that determines the minimum nitrogen requirement to balance nitrogen losses, as opposed to a requirement that serves to optimise health and functional outcomes in a given population group (12,13).

Whilst current dietary guidelines are effective in maintaining blood phenylalanine concentrations at levels to support neurological development, the impact of a lifelong PKU diet on physical and functional outcomes remains unknown. Concerns have been raised regarding the impact of standard dietary practices on growth, rates of obesity and bone health in people with PKU, with conflicting results reported (14–20). Limited attention has focused on the impact of a PKU diet on functional outcomes such as skeletal muscle mass (SMM) that serves as the major storage site for amino acids. Muscle mass is a key determinant of an individual's physical and functional ability, and plays an underappreciated metabolic role in

reducing risk of cardiometabolic diseases, including obesity, cardiovascular disease, diabetes and hyperlipidaemia (21). Moreover, the age-related decline in SMM begins as early as the fourth decade of life and continues to progress with age (22). However, it remains unknown whether existing protein requirement guidelines for people with PKU adequately offset age-related changes in protein metabolism across the adult lifespan in order to optimise functional and health outcomes (10).

The primary aim of this scoping review is to characterise the protein status of people with PKU across the lifespan, as determined by a combination of anthropometric, biochemical, and functional measurements. The secondary aim is to identify key nutritional and lifestyle variables that influence protein status in people with PKU. Understanding how PKU and associated dietary components facilitate or compromise the protein status of the individual is crucial to inform future research into personalising protein recommendations for individuals of all ages with PKU. In this regard, a scoping review is pertinent to enable the breadth of evidence to be mapped and synthesised given the wide focus of the research questions.

METHODS

This scoping review was undertaken in accordance with the five-stage framework outlined by Arksey and O'Malley (23), and is reported in accordance with the PRISMA Extension for Scoping Reviews checklist (24). A full peer-reviewed protocol is available (25).

Identifying relevant studies

Information sources and search strategy

MEDLINE (Ovid), Embase (Ovid), CENTRAL, Web of Science and Scopus were searched between June and July 2021 to identify relevant literature. No date restriction was applied and all articles up to July 2021 were included. Only English language articles were selected. Abstracts from relevant conferences held between 2010-2020 and reference lists of eligible full-text articles were manually searched for additional literature. Corresponding authors were contacted to request articles not available in full text. The search strategy was developed by

the research team, with guidance from a Librarian (see supplemental material for example of MEDLINE (Ovid) search strategy).

Eligibility criteria

The Joanna Briggs Institute population, concept, context (PCC) strategy was used to develop the inclusion and exclusion criteria (25). Studies were considered for inclusion if they included participants with PKU, and all age categories and study designs were considered (*Population*). Pregnancy and the presence other co-morbidities that could influence protein intake were excluded. Given that the focus of this scoping review was on body protein status, eligible studies reported anthropometric, biochemical and/or functional measurements of protein status in people with PKU (*Concept*). Studies from all geographical areas were considered (*Context*).

Study selection

All records were uploaded to Zotero 5.0 (George Mason University, USA). Following the removal of duplicate records, two independent reviewers (SF, MOK) applied the pre-defined eligibility criteria and independently assessed eligible titles and abstracts. In accordance with the published protocol (25), studies were excluded if they reported body weight, height, growth parameters (height, growth rate and head circumference), body mass index, fat mass (FM), or bone mineral density, with no other measurements of protein status. Full texts of eligible articles were retrieved and independently assessed by the same reviewers (SF, MOK). Studies were included if they reported at least one measurement of protein status (Table 1). Reasons for exclusion of full-text articles are outlined in Figure 1. Following each stage of the selection process, the reviewers compared results and reached a consensus.

[Insert Table 1: Examples of anthropometric, biochemical and functional measurements of protein status]

Data charting process and items extracted

Data from eligible full-text articles were independently tabulated by the reviewers (SF, MOK), using an extended version of the data charting tool outlined in the protocol. The tool was piloted and modified to ensure all relevant information was extracted. Only anthropometric, biochemical and functional data relevant to the measurement of protein status (Table 1) were extracted. Factors modulating protein status or variables (either controlled or stratified by) were extracted if relevant to the assessment of protein status. The majority of studies included multiple outcome measurements but only the findings pertinent to protein status were tabulated. Additionally, primary outcomes and pharmacological interventions (eg. BH4 or sapropterin) were extracted. Due to limited availability, these data were not tabulated, but will be discussed herein. Protein intake data were extracted (see supplemental material).

Data Synthesis

The data is synthesised and reported under three main sections: anthropometric, biochemical, and functional measurements of protein status and variables influencing protein status are discussed under each section. Age categories were defined as: 'children' <10 years of age, 'adolescents' 10-19 years of age, 'adults' >19 years of age, and 'older adults' >60 years of age. Prealbumin, otherwise known as transthyretin, will be referred to as prealbumin throughout the text.

[Insert Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) study flow diagram outlining the process of study selection]

RESULTS

The electronic database search identified 1353 papers and an additional 94 were obtained through manual searching (Figure 1). Following the removal of duplicates, 860 titles and abstracts were assessed resulting in 102 studies for full text review. Thirty-two studies were subsequently excluded, with reasons for exclusion outlined in Figure 1. Full data extraction was performed on 70 studies and sample size ranged from one (7) to 174 participants (26). Of

the 70 studies which reported outcomes relevant to protein status, 24 reported anthropometric, 32 biochemical, and 14 included mixed outcome measurements of body protein status. No studies measured protein status in older adults (>60 years of age). Twenty-six studies included participants that were diagnosed through newborn screening or defined as being early diagnosed for PKU. Six studies included both early and late diagnosed, but provided no further information, and 38 studies did not report time of diagnosis.

The extent to which protein status was reported varied between the 70 studies. Giovannini et al (2014) was the only study to state a primary outcome measurement that was related to protein status. Nineteen studies focused on investigating protein status or specific marker(s) of protein status and, of these, 6 included anthropometric methods (27–32), 11 included biochemical methods (7,33–42), and 2 included multiple methods (43,44). The remaining 50 studies were not primarily focussed on assessing protein status but included relevant markers.

What is the existing evidence of the protein status of people with PKU across the lifespan?

Anthropometric assessments of protein status

Study characteristics

Study characteristics are summarised in Table 2. Thirty-seven studies, including 24 full text papers and 13 conference abstracts, reported anthropometric assessments of protein status. Seven were interventional studies but only three reported the study design; two had a retrospective design (45,46) and one was a 3-year prospective longitudinal study (27). The remaining 30 studies were non-interventional, of which 53% were cross-sectional (28,29,31,43,44,47–57). Nine studies did not state the study design; however, based on the reported methods, all were non-interventional (30,32,58–64).

One study was conducted in children only (47), 15 in children and adolescents (aged 2 months to 19 years) (27,44,48,49,54–56,58,59,62,65–69), 11 in adolescents and adults (age range 15-50 years) (43,45,46,53,57,61,63,64,70–72), and one in adults only (60). Seven studies

included a mixed age cohort (age range 4 to 54.6 years) (28–31,50–52). Two studies did not report participants age (32,73).

How is body protein status measured?

Methods to assess body protein status are presented in Table 3. The majority of studies utilised bioelectrical impedance analysis (BIA) (32,45,46,49–52,57,64,65,70–72), dual-energy X-ray absorptiometry (DEXA) (27,29,30,53,56,62,63,68) or skinfold techniques (31,44,55,58,66,69) for the anthropometric assessment of protein status. Protein status was also measured using deuterium dilution technique (73), total body electrical conductivity (48), peripheral quantitative computed tomography (43), total body potassium (59), and prompt gamma neutron capture analysis for total body nitrogen (TBN) (44). Two studies used more than one method to assess protein status; Dobbelaere et al (2003) used skinfolds and BIA, whilst Wilcox et al (2011) used DEXA and gamma neutron activation analysis. Evans et al (2018) measured fat-free mass (FFM) using both BIA and total body water by deuterium dilution technique (TBWDeut) to determine the validity of BIA as a measurement of body composition in children and adolescents. This study reported no difference in FFM between the two measurements and confirmed that FFM calculated from BIA was correlated with FFM calculated from TBWDeut. Three studies did not report the method used for determining protein status (54,61,67).

Key findings from anthropometric assessments of protein status

Table 4 describes the main findings for anthropometric outcome measurements related to protein status. The majority of studies that compared cohorts of people with PKU to healthy controls reported no significant differences in protein status, regardless of age (32,44,47,48,50–52,56,62,65,71,73). However, in one study, TBN was lower in participants with PKU and, within each age, children with PKU accrued 53g less TBN compared to controls, equating to a six-month lag in TBN in the PKU group (44). Longitudinally, the annual accretion of nitrogen was comparable between groups. Moreover, in a similarly aged PKU population, lower total body potassium z-scores were reported compared to controls (59). A reduction in muscle cross-sectional area (MCA) was also reported in adolescent and adult

participants with PKU, with 30% exhibiting a MCA below the third percentile (43). Dietary adherence in this study was variable, whereby 59% of participants were following a PKU diet plus protein substitutes and a further 7% of participants were following a PKU diet with no supplementation. In contrast, Paci et al (2018) reported a greater FFM and total body water content in children and adolescents with PKU compared to controls, although neither the methods of assessments nor protein intake data were reported.

There was greater variation regarding the assessment of protein status within cohorts of people with PKU. In children and adolescents, total body protein and muscle mass were normal (55), and consistent findings were reported in adults (60). Two studies reported a lower protein status in people with PKU, with 30.8% of child and adolescent participants recording a deficit in fat-free mass index (FFMI) (54), whilst in a mixed-age cohort, a 41.5% overall deficit in muscle mass was identified (31). Of those participants that reported a deficit in muscle mass, the majority (87.5%) were of normal weight-for-age and of adolescent age (78%) (31). Regarding the relationship between body weight and protein status, Rocha et al (2010) found that adolescents and adults with PKU who were classified as overweight and obese reported a lower FFM percentage compared to other participants. No data regarding protein intakes were reported in the above studies; however, Rocha et al (2010) observed no difference in the median intakes of natural protein and protein substitute in participants classified as overweight/obese compared to other participants with PKU. Three studies revealed positive correlations between FFM and bone mineral density (BMD) (56,57) and bone strength (43) in people with PKU, and FFM rather than FM had a greater effect on BMD. In one study, these findings were limited to females only (57).

Factors modulating anthropometric outcomes of protein status

Gender

Several studies focused on factors known to influence protein status. Stratified by sex, Sailer et al (2020) found male children and adolescents to exhibited a lower percentage lean body mass (LBM) compared to healthy controls, whereas Allen et al (1995, 1996) found female children and adolescents to have lower total body FFM and TBN, respectively, when compared

to controls. Sailer et al (2020) reported no differences in total protein intake between people with PKU and controls, and no differences in total protein, natural protein and protein substitute intake were detected between males and females with PKU (see supplemental material). However, when considering percentage of total energy from protein and protein to energy ratio, protein intakes were lower in males with PKU compared with controls. These differences in protein intake were not observed in females. No sex comparisons of dietary protein intake were reported by Allen et al (1995, 1996). In contrast, one study reported no sex differences in body composition, although in the mild hyperphenylalaninemia (HPA) group, increased LBM was identified in pubertal compared to prepubertal participants (56).

Within a PKU cohort, adolescent and adult males reported a higher LBM and appendicular lean mass compared to females (53). However, no sex differences were observed in appendicular lean mass index (ALMI) or ALMI z-scores, although the mean ALMI among younger males was close to a cut-off point previously suggested to identify sarcopenia in older men. The mean total protein substitute consumed was greater in males compared to females but did not reach statistical significance. The intake of protein substitutes, expressed per kilogram of body weight or per kilogram of lean mass, were not statistically different between males and females.

Dietary factors

The impact of natural protein and/or protein substitute intake on protein status has also been examined. In children and adolescents, Huemer et al (2007) reported that natural protein intake correlated with FFM, explaining 47.7% of the variance in FFM. This relationship was also observed in a mixed-age cohort. Jani et al. (2017) correlated high natural protein intake with high FFMI and low FMI:FFMI ratio in adults with PKU, whereas in children, protein substitute and total protein intake were associated with FFMI. In a mixed-aged PKU cohort, the percent of total protein intake, expressed relative to DRI, positively correlated with muscle mass (52). Moreover, a similar relationship between protein intake and protein status in children and adolescents was reported but in the context of percentage of FM rather than percentage of FFM; with a decline in percentage FM there was an assumed proportionate

increase in FFM (65). A negative correlation was reported between total protein, natural protein and protein substitute intake and percentage of FM, that presumably translates to a positive correlation with percentage of FFM (65). In contrast, no differences in body composition parameters were reported in adolescents and adults with PKU that were consuming vegan diets, vegan diets plus protein substitutes, non-restricted diets (72) or PKU-diets (64,72).

Metabolic control

Metabolic control has been reported to impact protein status. Poorer metabolic control (i.e., higher phenylalanine levels) resulted in improved protein status (32,66). The cause for higher phenylalanine levels in participants included in these studies is unclear and could be related to increases in habitual dietary protein intake and / or reduced intake of protein substitutes. In contrast, one study reported no difference in LBM between the pubertal PKU sub-groups with high phenylalanine levels and participants with blood phenylalanine levels within target range (30). However, when analysed using LBM z-scores, a significant difference was reported with lower LBM z-scores in those participants with higher phenylalanine levels. No difference was reported in LBM z-scores between the pre-pubertal and the pubertal subgroup with recommended phenylalanine levels, indicating no impact of pubertal status on LBM z-scores. Choukair et al (2017) reported no relationship between MCA and classification of PKU or phenylalanine levels.

Type of protein substitute

Two studies investigated LBM in children and adolescents with PKU that consumed either casein glycomacropeptide (cGMP) or L-AA (27,68). No significant differences between groups were found at baseline; however, Daly et al (2019) reported higher FFM values in those participants taking cGMP compared to L-AA after 36 months. Whilst not significant, Daly et al (2021) demonstrated improved LBM in people with PKU taking a cGMP-based protein substitute. No differences in body composition parameters were reported in adolescents and adults taking L-AA compared to cGMP (45,46).

Pharmacological management and other factors

Two studies measured protein status outcomes in participants taking BH4 and reported no difference in percent FFM compared to participants on diet only (65), and in branchial muscle area compared to general population reference data (69). Genotype (29,53) nor socioeconomic status (66) were associated with protein status.

Biochemical assessments of protein status

Study characteristics

Forty-four eligible articles, 33 full text and 11 abstracts, included biochemical assessments of protein status (Table 2). Eighteen articles were intervention studies, of which seven reported the study design. Randomised control trials were conducted by Prince et al (1997), Giovannini et al (2014) and Ney et al (2016). Two studies were prospective (74,75), and two were retrospective longitudinal studies (45,46). The remaining 11 studies did not identify the study design; however, based on the reported methods, had an interventional design (7,36,39–41,69,72,76–79). Twenty-six studies were non-interventional and the majority utilised a cross-sectional design (44,56,57,80–82). Thirteen studies failed to state the study design, but were non-interventional based on the methods reported (33,34,38,42,62–64,83–88).

There was greater variation in participant age for studies including biochemical measurements of protein status than anthropometric measurements of protein studies. Six studies were conducted in children (age range 13.7 days to 10 years) (33,38,42,84,85,89), ten studies were in children and adolescents (age 2.4 months 18 range to years) (44,56,62,69,74,76,77,83,86,90),adolescents and 15 in adults (11-49 years) (7,39,40,45,46,57,63,64,70,72,75,79,91–93) and two in adults only (41,82). Seven studies included mixed-age cohorts (age range 7 months to 54 years) (26,36,37,80,81,94,95). Four studies failed to report participant age (34,78,87,88).

How is protein status measured using biochemical assessments?

A range of biochemical measurements were used to assess protein status, and most studies included multiple measurement (Table 3). Serum albumin (36,41,42,56,62,63,69,72,74,78,85,86,95), prealbumin (26,34,37,57,80,81,84,87,89) or both (33,38,40,45,46,76,77,82,83,88,90,91,93,94) were the most common measurements reported. Total protein (36,40-42,56,63,72,76,78,80,81,85,86,91,93,94) and blood urine nitrogen (BUN) (33,40,45,74,75,78,85,86,93) were also frequently used. Three acute phase studies were included: two studies measured whole-body protein metabolism using valine and leucine stable isotopes (39,41), and one measured nitrogen excretion and leucine kinetics (7).

Key findings from biochemical assessments of protein status

The key findings for biochemical assessments of protein status are summarized in Table 5. In children with PKU, no differences in albumin (33,38,42), total protein (42), retinol binding protein (33), BUN (33) or plasma essential amino acid (EAA) concentrations (except phenylalanine) were reported compared to healthy controls (89). In children and adolescents, studies reported albumin (56,62,83,85), total protein (56,83,85), creatinine (62), BUN (85) and/or plasma amino acid levels (44) were comparable to untreated HPA or controls. However, two studies identified lower concentrations of albumin (77,90), retinol binding protein (77), and higher amino acid ratios (90) in participants on a PKU diet compared to untreated HPA or controls. Furthermore, deficits in prealbumin (38,77,83,90) were found, and participants with low prealbumin levels were more likely to have an EAA deficiency (83). In contrast, Acosta et al (1999) and Prince et al (1997) observed prealbumin concentrations within normal reference ranges despite recording protein intakes below the recommended dietary allowance (RDA) (1980) and the Medical Research Council (1993) protein recommendations, respectively.

In two mixed-age cohorts, increased prealbumin concentrations were observed in PKU participants compared to controls, with no difference in albumin and total protein levels (88,94). In contrast, five studies reported low prealbumin levels in PKU participants (34,37,80,81,87); one study reporting prealbumin $\leq 20 \text{ mg/dL}$ in 60% of participants (34) and

another reported prealbumin levels below the third percentile for 15% of PKU participants, despite average total and natural protein intakes (g/kg/day) of 117% and 48% of RDA, respectively (80). Total protein levels were similar between people with PKU and controls (80). Despite normal levels of total protein, abnormal albumin (high) and BUN (low) were identified in children and adolescents where total protein intake was 62 ± 15 % of RDA (86). Low protein levels in adolescents and adults with low SMM, and normal protein levels in participants with high SMM were also observed (70). In contrast, Modan-Moses et al (2007) reported plasma albumin concentrations to be within range, and Prochazkova et al (2012) reported no significant differences in levels of prealbumin among a large mixed-age cohort of people with PKU and HPA.

Thompson et al (1990) and van Rijn et al (2007) investigated whole body protein metabolism in adolescents and adults with PKU compared to healthy participants. Both studies reported no differences in whole body protein metabolism between groups. In the study by van Rijn et al (2007), participants with PKU were prescribed total protein intakes (natural protein and protein substitute) to meet 120% of RDA. Half of the participants with PKU in the study by Thompson et al (1990) were consuming a normal diet, and plasma amino acid concentrations were at the lower end of the reference range compared to the participants on a PKU diet and controls. Thompson et al (1990) reported no association with plasma phenylalanine concentrations and protein synthesis rates.

Factors modulating biochemical outcomes of protein status

Type of protein substitute

Protein substitutes also modulated various biochemical markers of protein status. Studies reported no difference in BUN (45,74,75,93), albumin (45,46,74) and prealbumin (45,46) concentrations in a mixed age cohort of people with PKU taking cGMP versus L-AA protein substitutes. However, van Calcar et al (2009) reported lower BUN with cGMP compared to L-AA protein substitutes. Ney et al (2016) reported higher albumin concentrations with the ingestion of cGMP than L-AA. When habitual protein substitutes were replaced with a protein substitute utilising prolonged release technology, Giovannini et al (2009) reported an

improvement in prealbumin concentrations within three days, and demonstrated a significant increase in prealbumin (90), plasma protein, albumin, and some amino acids (36) in participants who received the prolonged release protein substitute. These changes were not observed in participants taking only 80% of protein requirements from a prolonged-release protein substitute (36).

Pharmacological management

Studies that implemented BH4 therapy resulting in a corresponding increase in natural protein intake and reduction in protein substitute dose reported no changes in the majority of biochemical markers of protein status (69,76,78,91). However, an increase in prealbumin levels in children on BH4 treatment was reported by Singh et al (2010), despite total protein intakes remaining stable. In contrast, two studies reported lower BUN (78) and prealbumin (81) in participants on BH4 treatment. Adults treated with pegvaliase that recorded protein intakes that met or exceeded the RDA for protein reported no deficiencies in albumin, prealbumin and essential amino acids (82).

Gender, age, metabolic control, dietary and other factors

Sumanszki et al (2019) reported prealbumin concentrations among adolescents and adults with PKU to be higher in males compared to females. Age and metabolic control were reported to correlate with prealbumin levels across all age-categories. Desloovere et al (2014) stated a correlation between prealbumin and age but provided no supporting data. Lower prealbumin levels were reported in participants who were younger (37,81,83,84,94) and those with better metabolic control (80,81,83,84,94). In contrast, Rocha et al (2010) and Desloovere et al (2014) reported no correlations between prealbumin levels and median blood phenylalanine levels. Furthermore, no significant correlations were reported between prealbumin levels and the amount of protein substitute prescribed (34,37) or classification of PKU (37), and between prealbumin or total protein and time of diagnosis (81). Prealbumin levels were observed to correlate with haemoglobin levels (87). Age was reported to positively correlate with serum

total protein levels (81) and albumin concentrations (95), whereas findings for metabolic control were inconsistent (42,81).

No associations between dietary protein intake and biochemical markers of protein status were reported across studies (42,62), although studies were limited. Moreover, whether participants consumed a vegan diet, vegan plus protein substitutes, unrestricted or PKU diets did not alter total protein levels (72). However, plasma amino acid levels were higher in those individuals on a PKU diet and serum urea concentration was low-to-normal in those on restricted protein diets (72), consistent with findings presented by Das et al. (2010). The only study to measure biochemical markers of protein status in response to exercise was conducted by Mazzola et al (2015). At baseline, participants with PKU reported lower levels of BCAA compared to controls, with BCAA levels not modified post exercise in both PKU participants and controls.

Functional assessments of protein status

Study characteristics

Three studies included functional assessments of protein status, with one study specifically related to muscle strength (43) and two studies including assessments of physical performance (71,79) (Table 3). One study was cross-sectional in design (43), and the other two studies did not state the study designs but were interventional according to the methodology. All studies included adolescents and adults with PKU, and made comparisons to healthy controls (71,79) or reference population data (43) (Table 2).

How is protein status measured using functional assessments?

Choukair et al., 2017 used handgrip strength as a functional measurement of protein status, whilst Sumanszki et al (2020) and Mazzola et al (2015) measured VO₂ max as a functional measurement of physical performance (Table 3).

Key findings and factors modulating functional protein status outcomes

Table 6 describes the main findings for functional assessments of protein status. Compared to a healthy population, handgrip strength was reduced in participants with PKU, with over one third of participants recording handgrip force below the third percentile (43). Regarding exercise performance, Sumanszki et al (2020) reported a lower VO₂ max and cumulative workload was lower in the PKU group compared to controls (71). In contrast, Mazzola et al (2015) reported no differences in VO₂ max between PKU and controls.

DISCUSSION

This scoping review is the first to examine the literature that describes the body protein status of people with PKU, with a specific focus on anthropometric, biochemical and functional assessments of protein status. Overall, the findings for anthropometric, biochemical and functional measurements of protein status were inconsistent. Whilst majority of studies reported no discernible differences in anthropometric parameters when comparing participants with PKU to healthy controls, a significant minority of studies reported deficits in muscle mass among PKU cohorts and warrant further investigation. Two studies identified 30-40% of participants with PKU to have deficiencies in muscle mass (31,43). In one study, 87% of participants with reduced levels of muscle mass were of normal body weight, thus emphasising the importance of body composition analysis in addition to body weight (31). This has been discussed in the literature in the context of body fat assessment in people with PKU (96), and our findings also support the recommendation of monitoring FFM in people with PKU across the lifespan.

BIA was the most common method for assessing body composition, likely due its practicality in the clinical setting and cost effectiveness. BIA has been validated for FFM assessment in children and adolescents with PKU (28); however, it remains unvalidated in adults and older adults with PKU. Given the increasing adult PKU population, validation is warranted. Furthermore, data from the general population demonstrates that skeletal muscle mass has an important role in bone health (21) and these findings are now corroborated in people with PKU (43,56,57). Concerns have been raised regarding the impact of the PKU diet on bone health, which will be further exacerbated with ageing. Therefore, monitoring, and optimising muscle mass in people with PKU play an important role in bone health outcomes.

Biochemical measurements of protein status are routinely used in monitoring patients with PKU, but a lack of consistency in the markers utilised has been identified. Most studies measured albumin and/or prealbumin concentrations. Albumin levels were predominantly comparable to healthy controls or reference data, whereas the prealbumin levels were generally lower in people with PKU than healthy controls or reference data. Due to its short half-life, prealbumin is favoured over albumin for monitoring changes in nutritional status

(97), and therefore findings related to prealbumin concentrations may provide greater insight into the protein status of people with PKU than plasma albumin concentrations. However, both markers are influenced by disease states, and therefore their specificity to protein status may be limited (97,98). Measurements such as D3-creatine dilution, 24-hour urinary creatinine and 3-methyhistidine concentrations have been recommended for monitoring protein status (97,99), but no studies have conducted these measurements in people with PKU, and their practicality for clinical use may be limited. Future research is warranted to determine the most effective biochemical markers for monitoring protein status in people with PKU. At the level of whole-body protein metabolism, two studies reported comparable outcomes to healthy controls and mean total protein intake exceeded RDA by 20%, which aligns with current dietary guidelines (1,2,9).

It is clear that the functional measurements of protein status remain scarce, with only one study measuring muscle strength. Two studies measured physical performance as an indirect measurement of protein status. In this regard, both physical performance and muscle strength were compromised in participants with PKU (43,57). Muscle mass does not directly translate to functional ability (100), and therefore outcomes from anthropometric studies in PKU cannot directly be extrapolated to functional ability. Accordingly, future studies are warranted to advance understanding regarding how PKU dietary guidelines translate to functional outcomes. Moreover, physical activity is known to modulate protein status in the general population, with exercise improving nitrogen retention (101) and postprandial rates of muscle protein synthesis (102). With the exception of one study that reported the impact of acute exercise on plasma BCAA concentrations in participants with PKU (79), no studies have directly investigated the impact of physical activity on protein status in people on a PKU diet. Studies included in this review were conducted between 1980 until 2021, a period that has seen significant advances in the dietary management of PKU. It is now recognised that protein requirements should exceed the RDA by 20-40% to compensate for the reduced uptake and utilisation of protein substitutes. Due to inconsistencies in studies reporting protein intake data, no conclusions could be made on whether differences in findings could be attributed to intakes of natural protein and protein substitutes. However, in studies reporting protein

intake data, dietary patterns did not translate to protein status outcome measurements, whereby protein intakes both above and below RDA had mixed findings. A limited number of studies utilised the current protein recommendation for PKU dietary management of 120-140% of RDA.

Several studies investigated the association between protein intake and protein status outcomes. Two studies reported that higher total protein intakes, as measured by 24 hour recalls and food records, resulted in improved protein status in children, adolescents and adults with PKU (52,65). In contrast, Huemer et al (2007) reported natural protein intake to be an important predictor of protein status in children and adolescents with PKU. Jani et al (2017) observed a similar association in adults with PKU, whereas total protein and protein substitute intake were shown to be of greater importance in children. In the context of a traditional PKU diet, there is limited scope for large increases in natural protein, thus highlighting the importance of preventing over-restriction by reassessing natural protein tolerance (103). Moreover, with pharmacological treatments there are now opportunities to improve natural protein intake. In addition to the amount of protein substitute, the type of protein substitute can modulate the protein status of an individual (27,36,40,45,46,68,74,75,77,90,93); however, findings were inconclusive and further research is warranted. A correlation between metabolic control and protein status was identified, whereby participants with poor metabolic control exhibited improved body composition parameters and higher prealbumin levels, possibility attributed to increases in natural dietary protein intake. Therefore, those individuals who have good metabolic control may be at greater risk of compromised protein status.

In addition to protein intake, participant sex and age were observed to modulate body protein status outcomes in people with PKU, consistent with data from a non-PKU population (104–106). However, the impact of sex on anthropometric outcomes in participants with PKU was inconsistent, whereas age was found to positively correlate with prealbumin and total protein levels, which has previously been described in the general population (107). The majority of studies were conducted in children, adolescents and younger adults, whereas no studies included older adults. This omission is likely due to when newborn screening of PKU was

introduced, limiting numbers within this cohort. However, individuals who have received dietary treatment for PKU are now approaching older age and therefore understanding the impact of dietary management on ageing is a key focus question.

Protocol deviations and study limitations

This scoping review was undertaken in accordance with the published protocol (25), with the only deviation being redefining the age categories to include adolescents. Limited studies had a primary focus on protein status outcomes, and therefore the majority of findings were extracted from studies where protein status measurements formed part of a wider nutritional status assessment or were reported as secondary findings. Almost a third of studies were abstracts and provided limited data. The heterogeneity in studies and outcomes restricted the conclusions that could be drawn on variables modulating protein status. However, studies that specifically investigated associations between natural protein intake, amount and type of protein substitutes, metabolic control and protein status provided some useful insight into areas that require further consideration in optimising the health outcomes of people with PKU. Some studies were impeded by small sample sizes, in that half of the studies had sample sizes of 30 or less participants. Additionally, the same patient populations may have been included in multiple studies and this may have affected the interpretation of results.

CONCLUSION

The maintenance of SMM and function with advanced age is critical in reducing the risk of chronic disease and obesity, as well as optimising bone health. These conditions have been highlighted as concerns in the PKU population. However, limited studies and clinical guidance have specifically focused on monitoring and optimising FFM in people with PKU. Accordingly, it is currently unknown what the functional outcomes are for people with PKU following a phenylalanine restricted diet whereby the majority of protein is derived from elemental amino acids. Further research is warranted to understand both, the impact of PKU diet on functional ability, and the significance of currently used anthropometric, biochemical and functional

markers when assessing protein status in people with PKU. None of the currently used markers adequately assess body protein status; thus, emphasising the urgent need for research to establish robust clinical and biochemical markers of protein status that can be reliably used to monitor the impacts of dietary interventions in people with PKU.

Dietary adherence is known to decline with age, and therefore, conducting research in adults with PKU with a focus on investigating the impact of dietary management of health outcomes can be challenging. This challenge may be a contributing factor to the limited number of studies of protein status conducted in adults with PKU. With the consensus for life long treatment and as a result, a growing adult and ageing PKU population on dietary management, there is an urgent need for research specifically in adults with PKU to ensure dietary management leads to optimal health outcomes across the life course.

Acknowledgments

To the Library Services at King's College London for their guidance in the development of the search strategy.

Funding

Sarah Firman is funded by Health Education England/National Institute for Health Research (NIHR300395). This review presents independent research funded by the HEE/NIHR. The views expressed are those of the author(s) and not necessarily those of HEE, the NHS, the NIHR or the Department of Health and Social Care.

Conflict of interest

Sarah Firman has received funding to attend conferences and study days from Nutricia, Vitaflo International and Dr. Schär UK Ltd, and consulting fees from Vitaflo International and Meta Healthcare Ltd. Kevin Whelan is in receipt of research funding from Danone and has acted as a consultant for Danone.

Author Contributions

SF, RR, KW, OW and MOK were involved in conceptualisation and development of the protocol. Database and manual searches were conducted by SF, and study selection, full text review and data extraction were completed by SF and MOK. SF led on preparing the original draft with support from MOK who was lead supervisor for this review. RR, KW, OW and MOK provided critical revision of the draft. SF, RR, KW, OW and MOK revised and approved the final manuscript.

REFERENCES

- 1. van Wegberg AMJ, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J Rare Dis. 2017 Oct;12(1).
- 2. Singh RH, Cunningham AC, Mo S, Douglas TD, Frazier DM, Geary D, et al. Updated, web-based nutrition management guideline for PKU: An evidence and consensus based approach. Mol Genet Metab. 2016;118:72–83.
- 3. Gropper SS, Acosta PB. Effect of simultaneous ingestion of L-amino acids and whole protein on plasma amino acid and urea nitrogen concentrations in humans. J Parenter Enter Nutr. 1991;15(1):48–53.
- 4. Metges CC, El-Khoury AE, Selvaraj AB, Tsay RH, Atkinson A, Regan MM, et al. Kinetics of L-[1-13C]leucine when ingested with free amino acids, unlabeled or intrinsically labeled casein. Am J Physiol Endocrinol Metab. 2000;278(6 41-6):1000-9.
- 5. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94(26):14930–5.
- 6. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol Endocrinol Metab. 2001;280(2 43-2):340–8.
- 7. Monch E, Herrmann ME, Brosicke H, Schoffer A, Keller M. Utilisation of amino acid mixtures in adolescents with phenylketonuria. J Pediatr. 1996 Jul;1:S115-120.
- 8. Jones BJM, Lees R, Andrews J, Frost P, Silk DB. Comparison of an elemental and polymeric enteral diet in patients with normal gastrointestinal function. Gut. 1983;24(1):78–84.

- 9. Inwood A, Lewis K, Balasubramaniam S, Wiley V, Kreis C, Harrigan K, et al. Australasian consensus guidelines for the management of phenylketonuria (PKU) throughout the lifespan [Internet]. 2017. p. 1–36. Available from: https://www.mdda.org.au/resources/handbooks-guidelines/
- 10. Firman S, Witard OC, O'Keeffe M, Ramachandran R. Dietary protein and protein substitute requirements in adults with phenylketonuria: A review of the clinical guidelines. [Review]. Clin Nutr. 2021 Mar;40(3):702–9.
- 11. Rand WM, Pellett PL, Young VR. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am J Clin Nutr. 2003;77(1):109–27.
- 12. Rodriguez NR. Introduction to Protein Summit 2.0: Continued exploration of the impact of high-quality protein on optimal health. Am J Clin Nutr. 2015;101(6):1317S-1319S.
- 13. Rodriguez N, Miller S. Effective translation of current dietary guidance: Understanding and communicating the concepts of minimal and optimal levels of dietary protein. Am J Clin Nutr. 2015;101(6):1353S-1358S.
- 14. Demirdas S, Coakley KE, Bisschop PH, Hollak CEM, Bosch AM, Singh RH. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis. 2015 Feb 15;10:17.
- de Castro MJ, de Lamas C, Sánchez-Pintos P, González-Lamuño D, Couce ML. Bone Status in Patients with Phenylketonuria: A Systematic Review. Nutrients. 2020 Jul 20;12(7):E2154.
- 16. Przyrembel H, Bremer HJ. Nutrition, physical growth, and bone density in treated phenylketonuria. Eur J Pediatr. 2000 Oct;159 Suppl 2:S129-135.

- 17. Lubout CMA, Arrieta Blanco F, Bartosiewicz K, Feillet F, Gizewska M, Hollak C, et al. Bone mineral density is within normal range in most adult phenylketonuria patients. J Inherit Metab Dis. 2020 Mar;43(2):251–8.
- 18. Burrage LC, McConnell J, Haesler R, O'Riordan MA, Sutton VR, Kerr DS, et al. High prevalence of overweight and obesity in females with phenylketonuria. Mol Genet Metab. 2012 Sep;107(1–2):43–8.
- 19. Aldamiz-Echevarria L, Bueno MA, Couce ML, Lage S, Dalmau J, Vitoria I, et al. Anthropometric characteristics and nutrition in a cohort of PAH-deficient patients. Clin Nutr. 2014 Aug;33(4):702–17.
- 20. Belanger-Quintana A, Martínez-Pardo M. Physical development in patients with phenylketonuria on dietary treatment: a retrospective study. Mol Genet Metab. 2011 Dec;104(4):480–4.
- 21. Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006 Dec 1;84(3):475–82.
- 22. Welch AA. Nutritional influences on age-related skeletal muscle loss. Proc Nutr Soc. 2014 Feb;73(1):16–33.
- 23. Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005 Feb;8(1):19–32.
- 24. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018 Sep 4;169(7):467–73.
- 25. Firman S, Ramachandran R, Whelan K, Witard OC, O'Keeffe M. Protein status of people with phenylketonuria: a scoping review protocol. BMJ Open. 2021 Sep 14;11(9):e049883.

- 26. Prochazkova D, Kolbova L, Jarkovsky J, Vinohradska H, Konecna P, Dolezel Z. Determination of prealbumin, selenium, zinc and iron concentration in serum for monitoring the nutrition status of phenylketonuric and hyperphenylalaninemic patients. Arch Dis Child. 2012;97:A297
- 27. Daly A, Hogler W, Crabtree N, Shaw N, Evans S, Pinto A, et al. Growth and body composition in PKU children- A three-year prospective study comparing the effects of L-amino acid to glycomacropeptide protein substitutes. Nutrients. 2021 Apr;13(4).
- 28. Evans M, Nguo K, Boneh A, Truby H. The validity of bioelectrical impedance analysis to measure body composition in Phenylketonuria. JIMD Rep. 2018;42(January):37–45.
- 29. Jani R, Coakley K, Douglas T, Singh R. Protein intake and physical activity are associated with body composition in individuals with phenylalanine hydroxylase deficiency. Mol Genet Metab. 2017 Jun;121(2):104–10.
- 30. Adamczyk P, Morawiec-Knysak A, Pludowski P, Banaszak B, Karpe J, Pluskiewicz W. Bone metabolism and the muscle-bone relationship in children, adolescents and young adults with phenylketonuria. J Bone. 2011 Mar;29(2):236–44.
- 31. Kanufre, VC, Soares, RDL, Alves, MRA, Starling, AL N RC, Camatta, GC, Mata, YA, et al. Evaluation of lean body mass in patients with phenylketonuria diagnosed and treated early. J Inherit Metab Dis. 2015;38(Suppl 1):S108.
- 32. Nalin T, Tonon T, Perry IDS, Castro K, Reyes AP, Brandorff T, et al. Body composition and phase angle by bioelectrical impedance analysis in patients with phenylketonuria (PKU) treated at hospital de clmnicas de Porto Alegre, Brazil. J Inherit Metab Dis. 2013 Sep.
- 33. Acosta PB, Yannicelli S, Marriage B, Steiner R, Gaffield B, Arnold G, et al. Protein status of infants with phenylketonuria undergoing nutrition management. J Am Coll Nutr. 1999 Apr;18(2):102–7.

- 34. Desloovere A, Wuyts B, Verloo P, Van Driessche M. Is prealbumin a valuable marker for protein energy malnutrition in patients with phenylketonuria in the metabolic centre of Ghent (Belgium)? J Inherit Metab Dis. 2014 Sep.
- 35. Douglas TD, Kennedy MJ, Quirk ME, Yi SH, Singh RH. Accuracy of six anthropometric skinfold formulas versus air displacement plethysmography for estimating percent body fat in female adolescents with phenylketonuria. JIMD Rep. 2013;10:23–31.
- 36. Giovannini M, Fiori L, Casero D, Lammardo AM, Bertolotti D, Bonza M, et al. Effects of a six month-supplementation of a new Phe-free powdered amino acid preparation on blood amino acid profile and levels of albumin, protein and transferrin in PKU patients.

 J Inherit Metab Dis. 2006 Aug;29:52–52.
- 37. Rocha JC, Almeida MF, Carmona C, Cardoso ML, Borges N, Soares I, et al. The use of prealbumin concentration as a biomarker of nutritional status in treated phenylketonuric patients. Ann Nutr Metab. 2010;56(3):207–11.
- 38. Shenton A, Wells FE, Addison GM. Prealbumin as an indicator of marginal malnutrition in treated phenylketonuria: A preliminary report. J Inherit Metab Dis. 1983;6(2 Supplement):109–10.
- 39. Thompson GN, Pacy PJ, Watts RW, Halliday D. Protein metabolism in phenylketonuria and Lesch-Nyhan syndrome. Pediatr Res. 1990 Sep;28(3):240–6.
- 40. van Calcar SC, MacLeod EL, Gleason ST, Etzel MR, Clayton MK, Wolff JA, et al. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am J Clin Nutr. 2009 Apr 1;89(4):1068–77.
- 41. van Rijn M, Hoeksma M, Sauer P, Szczerbak B, Gross M, Reijngoud DJ, et al. Protein metabolism in adult patients with phenylketonuria. Nutrition. 2007;23(6):445–53.
- 42. Schulpis KH, Gioni V, Platis D, Kalogerakou M, Karikas GA, Afordakou D, et al. The beneficial effect of adherence to the therapeutic diet on the main protein-energy wasting

- and several other biomarkers in children with phenylketonuria. J Pediatr Biochem. 2013;3(2):99–106.
- 43. Choukair D, Kneppo C, Feneberg R, Schonau E, Lindner M, Kolker S, et al. Analysis of the functional muscle-bone unit of the forearm in patients with phenylketonuria by peripheral quantitative computed tomography. J Inherit Metab Dis. 2017;40(2):219–26.
- 44. Allen JR, Baur LA, Waters DL, Humphries IR, Allen BJ, Roberts DC, et al. Body protein in prepubertal children with phenylketonuria. J Clin Nutr. 1996 Mar;50(3):178–86.
- 45. Pena MJ, Pinto A, de Almeida MF, de Sousa Barbosa C, Ramos PC, Rocha S, et al. Continuous use of glycomacropeptide in the nutritional management of patients with phenylketonuria: a clinical perspective. J Rare Dis. 2021;16(1):84.
- 46. Pinto A, Almeida MF, Ramos PC, Rocha S, Guimas A, Ribeiro R, et al. Nutritional status in patients with phenylketonuria using glycomacropeptide as their major protein source. J Clin Nutr. 2017;71(10):1230–4.
- 47. Dobbelaere D, Michaud L, Debrabander A, Vanderbecken S, Gottrand F, Turck D, et al. Evaluation of nutritional status and pathophysiology of growth retardation in patients with phenylketonuria. J Inherit Metab Dis. 2003;26(1):1–11.
- 48. Huemer M, Huemer C, Moslinger D, Huter D, Stockler-Ipsiroglu S. Growth and body composition in children with classical phenylketonuria: results in 34 patients and review of the literature. [Review] [22 refs]. J Inherit Metab Dis. 2007 Oct;30(5):694–9.
- 49. Sailer M, Elizondo G, Martin J, Harding CO, Gillingham MB. Nutrient intake, body composition, and blood phenylalanine control in children with phenylketonuria compared to healthy controls. Mol Genet Metab Rep. 2020;23.
- 50. Mazzola PN, Nalin T, Castro K, van Rijn M, Derks TGJ, Perry IDS, et al. Analysis of body composition and nutritional status in Brazilian phenylketonuria patients. Mol Genet Metab Rep. 2016 Mar;1:16–20.

- 51. Rocha JC, van Spronsen FJ, Almeida MF, Ramos E, Guimaraes JT, Borges N. Early dietary treated patients with phenylketonuria can achieve normal growth and body composition. Mol Genet Metab. 2013;1:S40-43.
- 52. Weng H-L, Yang F-J, Chen P-R, Hwu W-L, Lee N-C, Chien Y-H. Dietary intake and nutritional status of patients with phenylketonuria in Taiwan. Sci Rep. 2020;10(1).
- 53. Stroup BM, Hansen KE, Krueger D, Binkley N, Ney DM. Sex differences in body composition and bone mineral density in phenylketonuria: A cross-sectional study. Mol Genet Metab Rep. 2018 Jun;1:30–5.
- 54. Mexia S, Ferreira M, Jardim I, Asseiceira I, Rodrigues T, Nunes P, et al. Is BMI enough to assess body composition in phenylketonuric patients? J Inherit Metab Dis. 2015 Sep.
- 55. Torriente G, Soto D, Valle Torriente Valle J, Fuentes Y, Valle H, O'Farrill S, et al. Hyperphenylalaninemias, anthropometric evaluation, and body composition of a group of patients, Havana, Cuba. J Inborn Errors Metab Screen. 2017 Dec.
- 56. Doulgeraki A, Skarpalezou A, Theodosiadou A, Monopolis I, Schulpis K. Body composition profile of young patients with phenylketonuria and mild hyperphenylalaninemia. J Endocrinol Metab. 2014 Jul;12(3):e16061.
- 57. Sumanszki C, Kiss E, Simon E, Reismann P. The relationship between body composition, bone mineral density and nutritional status in adult phenylketonuria. J Inherit Metab Dis. 2019 Sep.
- 58. Allen JR, McCauley JC, Waters DL, O'Connor J, Roberts DC, Gaskin KJ. Resting energy expenditure in children with phenylketonuria. J Clin Nutr. 1995 Oct;62(4):797–801.
- 59. Bonifant CM, White MS, Davies PS, McGill JJ. A study of the body composition of children and adolescents with phenylketonuria (PKU). Twin Res Hum Genet. 2010 Dec.
- 60. Wilcox G, Smith N.J, Penman R, Cutler R.A, Le Quiniat A.D, Parisienne K.M, et al. Body composition in adults with phenylketonuria. J Inherit Metab Dis. 2011 Aug.

- 61. Rocha J.C, Almeida M.F, Soares G, Bastos J, Guimaraes J.T, Borges N, et al. Body composition and markers of metabolic syndrome in adults with PKU. J Inherit Metab Dis. 2010 Aug.
- 62. Hillman L, Schlotzhauer C, Lee D, Grasela J, Witter S, Allen S, et al. Decreased bone mineralization in children with phenylketonuria under treatment. J Pediatr. 1996 Jul;1:S148-152.
- 63. Modan-Moses D, Vered I, Schwartz G, Anikster Y, Abraham S, Segev R, et al. Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis. 2007 Apr;30(2):202–8.
- 64. Das A, Goedecke K, Meyer U, Kanzelmeyer N, Illsinger S, Lucke T, et al. Phenylketonuria in adults: Dietary habits, dietary deficits, body composition and MRI of the brain. J Inherit Metab Dis. 2010 Aug.
- 65. Evans M, Truby H, Boneh A. The relationship between dietary intake, growth and body composition in Phenylketonuria. Mol Genet Metab. 2017;122(1–2):36–42.
- 66. Nogueira ZD, Boa-Sorte N, Leite ME de Q, Toralles MBP, Amorim T. Metabolic control and body composition of children and adolescents with phenylketonuria. Rev Paul Pediatr. 2021;1:e2020095.
- 67. Paci S, Zuvadelli J, Re Dionigi A, Rovelli V, Morgano A.M, Montanari C, et al. Nutritional assessment and metabolic profile in children affected by phenylketonuria: A case-control study. J Inherit Metab Dis. 2018 Sep.
- 68. Daly A, Pinto A, Evans S, Rocha J.c, Jackson R, MacDonald A. Body composition and bone mineral density in PKU children- interim results from a 3 year study. J Inherit Metab Dis. 2019 Sep.
- 69. Lambruschini N, Pérez-Dueñas B, Vilaseca MA, Mas A, Artuch R, Gassió R, et al. Clinical and nutritional evaluation of phenylketonuric patients on tetrahydrobiopterin monotherapy. Mol Genet Metab. 2005;86(SUPPL.):54–60.

- 70. Boros F, Gyure E, Racz GZ, Papp F. Monitoring body composition of adult patients with classical phenylketonuria. J Inherit Metab Dis. 2015 Sep.
- 71. Sumanszki C, Kovacs K, Karvaly GB, Kiss E, Simon E, Patocs A, et al. Metabolic and catecholamine response to sympathetic stimulation in early-treated adult male patients with phenylketonuria. Horm Athens Greece. 2020;19(3):395–402.
- 72. Das AM, Goedecke K, Meyer U, Kanzelmeyer N, Koch S, Illsinger S, et al. Dietary habits and metabolic control in adolescents and young adults with Phenylketonuria: Self-imposed protein restriction may be harmful. JIMD Rep. 2013 Nov 13;13:149–58.
- 73. Alfheeaid H, Alghamdi N, Cochrane B, Adam S, Galloway P, Cozens A, et al. Contribution of thermic effect of feeding and fat oxidation to body fatness and prevalence of obesity in patients with PKU. J Inherit Metab Dis. 2018 Sep.
- 74. Zaki OK, El-Wakeel L, Ebeid Y, Ez Elarab HS, Moustafa A, Abdulazim N, et al. The use of glycomacropeptide in dietary management of Phenylketonuria. J Nutr Metab. 2016;2016:2453027.
- 75. Ahring KK, Lund AM, Jensen E, Jensen TG, Brøndum-Nielsen K, Pedersen M, et al. Comparison of glycomacropeptide with phenylalanine free-synthetic amino acids in test meals to PKU patients: No significant differences in biomarkers, including plasma phe levels. J Nutr Metab. 2018 Jan 8;2018:e6352919.
- 76. Singh RH, Quirk ME, Douglas TD, Brauchla MC. BH4 therapy impacts the nutrition status and intake in children with phenylketonuria: 2-Year follow-up. J Inherit Metab Dis. 2010;33(6):689–95.
- 77. Giovannini M, Carmine V, Agostoni C, Bonza M, Fiori L, Salvatici E, et al. Nutritional status in treated and untreated Pku patients: Value of protein substitutes with delayed absorption. Acta Paediatr. 2009 Oct;98:144–144.

- 78. Douglas TD, Coakley KE, Singh RH. Protein nutrition status across one year in phenylketonuria (PKU) patients with and without PHE response to sapropterin. J Inherit Metab Dis. 2013 Sep.
- 79. Mazzola PN, Teixeira BC, Schirmbeck GH, Reischak-Oliveira A, Derks TGJ, van Spronsen FJ, et al. Acute exercise in treated phenylketonuria patients: Physical activity and biochemical response. Mol Genet Metab Rep. 2015 Dec 1;5:55–9.
- 80. Andrade F, Lopez-Suarez O, Llarena M, Couce ML, Aldamiz-Echevarria L. Influence of phenylketonuria's diet on dimethylated arginines and methylation cycle. Medicine (Baltimore). 2017 Jul;96(27):e7392.
- 81. Crujeiras V, Aldamiz-Echevarria L, Dalmau J, Vitoria I, Andrade F, Roca I, et al. Vitamin and mineral status in patients with hyperphenylalaninemia. Mol Genet Metab. 2015 Aug;115(4):145–50.
- 82. Viau K, Wessel A, Martell L, Sacharow S, Rohr F. Nutrition status of adults with phenylketonuria treated with pegvaliase. Mol Genet Metab. 2021 Jun;1.
- 83. Arnold GL, Kirby R, Preston C, Blakely E. Iron and protein sufficiency and red cell indices in phenylketonuria. J Am Coll Nutr. 2001 Feb;20(1):65–70.
- 84. Arnold GL, Vladutiu CJ, Kirby RS, Blakely EM, Deluca JM. Protein insufficiency and linear growth restriction in phenylketonuria. J Pediatr. 2002 Aug;141(2):243–6.
- 85. Nord AM, McCabe L, McCabe ER. Biochemical and nutritional status of children with hyperphenylalaninaemia. J Inherit Metab Dis. 1988;11(4):431–2.
- 86. Graffin J, Kim Y, DeLamater P. Physical Growth and Nutritional Status of Children with Phenylketonuria. J Am Diet Assoc. 1995;95(9 SUPPL.).
- 87. Rocha JC, Almeida MF, Soares G, Soares I, Salcedo G, Tiago Guimaraes J, et al. Protein insufficiency and low hemoglobin in phenylketonuric patients. Mol Genet Metab. 2009 Oct.

- 88. Kose E, Arslan N. Assessment of nutritional parameters and micronutrient levels in classical phenylketonuria patients. J Inherit Metab Dis. 2016 Sep.
- 89. Prince AP, McMurray MP, Buist NR. Treatment products and approaches for phenylketonuria: improved palatability and flexibility demonstrate safety, efficacy and acceptance in US clinical trials. J Inherit Metab Dis. 1997 Aug;20(4):486–98.
- 90. Giovannini M, Riva E, Salvatici E, Cefalo G, Radaelli G. Randomized controlled trial of a protein substitute with prolonged release on the protein status of children with phenylketonuria. J Am Coll Nutr. 2014;33(2):103–10.
- 91. van Vliet K, Rodenburg IL, van Ginkel WG, Lubout CMA, Wolffenbuttel BHR, van der Klauw MM, et al. Biomarkers of micronutrients in regular follow-up for tyrosinemia type 1 and phenylketonuria patients. Nutrients. 2019;11(9).
- 92. Pena MJ, Pinto A, Daly A, MacDonald A, Azevedo L, Rocha JC, et al. The use of glycomacropeptide in patients with Phenylketonuria: A systematic review and meta-analysis. Nutrients. 2018 Nov 18;10(11):E1794.
- 93. Ney DM, Stroup BM, Clayton MK, Murali SG, Rice GM, Rohr F, et al. Glycomacropeptide for nutritional management of phenylketonuria: A randomized, controlled, crossover trial. Am J Clin Nutr. 2016;104(2):334–45.
- 94. Kose E, Arslan N. Vitamin/mineral and micronutrient status in patients with classical phenylketonuria. Clin Nutr. 2019;38(1):197–203.
- 95. Gokmen-Ozel H, MacDonald A, Daly A, Hall K, Ryder L, Chakrapani A. Long-term efficacy of 'ready-to-drink' protein substitute in phenylketonuria. J Hum Nutr Diet. 2009 Oct;22(5):422–7.
- 96. Rocha JC, van Rijn M, van Dam E, Ahring K, Belanger-Quintana A, Dokoupil K, et al. Weight Management in Phenylketonuria: What Should Be Monitored? Ann Nutr Metab. 2016;68(1):60–5.

- 97. Keller U. Nutritional laboratory markers in malnutrition. J Clin Med. 2019 May 31;8(6):775.
- 98. Lee JL, Oh ES, Lee RW, Finucane TE. Serum albumin and prealbumin in calorically restricted, nondiseased individuals: A systematic review. Am J Med. 2015 Sep 1;128(9):1023.e1-1023.e22.
- 99. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017 Feb;29(1):19–27.
- 100. Reggiani C, Schiaffino S. Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review. Eur J Transl Myol. 2020 Sep 9;30(3):9311.
- 101. Moore DR, Del Bel NC, Nizi KI, Hartman JW, Tang JE, Armstrong D, et al. Resistance training reduces fasted- and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J Nutr. 2007 Apr;137(4):985–91.
- 102. Dideriksen K, Reitelseder S, Holm L. Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans. Nutrients. 2013 Mar 13;5(3):852–76.
- 103. Pinto A, Almeida MF, MacDonald A, Ramos PC, Rocha S, Guimas A, et al. Over restriction of dietary protein allowance: The importance of ongoing reassessment of natural protein tolerance in Phenylketonuria. Nutrients. 2019 May;11(5):995.
- 104. Smith GI, Reeds DN, Hall AM, Chambers KT, Finck BN, Mittendorfer B. Sexually dimorphic effect of aging on skeletal muscle protein synthesis. Biol Sex Differ. 2012 May 23;3(1):11.
- 105. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al.

 Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative

- protein intakes in healthy older versus younger men. J Gerontol Ser Biol Sci Med Sci. 2015;70(1):57–62.
- 106. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. J Appl Physiol Bethesda Md 1985. 2009 May;106(5):1692–701.
- 107. Stabilini R, Vergani C, Agostoni A, Agostoni RPV. Influence of age and sex on prealbumin levels. Clin Chim Acta. 1968 May 1;20(2):358–9.

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) study flow diagram outlining the process of study selection

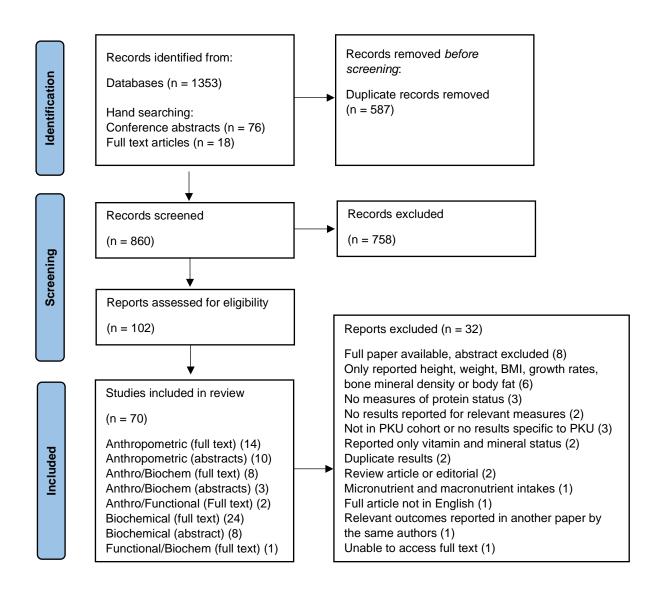


Table 1: Examples of anthropometric, biochemical and functional measurements of protein status

Anthropometric	Body composition (fat free mass, lean body mass and / or skeletal muscle mass)
	via dual-energy X-ray absorptiometry (DEXA), bioelectrical impedance
	analysis (BIA), total body electrical conductivity (TOBEC), BodPod whole body
	air-displacement plethysmography or skinfolds.
Biochemical	3-methylhistidine concentrations, albumin, pre-albumin, transthyretin,
	retinol-binding protein, urea production, blood urea nitrogen, urinary
	nitrogen, total body nitrogen, and whole-body protein metabolism. Plasma
	amino acids concentrations, urea production and creatinine where the
	author(s) have specifically used these as a measurement of protein status.
Functional	Hand-grip strength, the Short Physical Performance Test (SPPT; including tests
	of balance, gait speed, and timed sit-to-stand), one repetition max (1RM, or a
	five-repetition max for older adults), VO ₂ max tests (or VO ₂ peak for older
	adults) and other validated measurements of muscle function (i.e. isokinetic
	quadriceps strength using dynamometry and vertical jump performance using
	force platform technology).

Retrieved from the published protocol (Firman et al., 2021)

Table 2: Study characteristics classified by measurement category.

Author(s) (Year)	Study design	Participants	Intervention (duration of study)
Country		(N, age, sex)	
		ANTHROPOMETRIC MEASURES	
Daly et al. (2021)	Longitudinal	50 PKU (28 males, 22 females); 48 completed	2 types of protein supplements, allocation dependent on
UK	prospective (3y)	Age: AA 11.1y (range 5-15y); CGMP50 7.3y (range 5-15y); CGMP100	taste preference and phe levels:
		9.2y (range 5-19y).	(1) AA: protein substitute given as AA only;
			(2) CGMP50: combination of CGMP-AA and AA;
			(3) CGMP100: all their protein substitute as CGMP-AA.
Daly et al. (2019)	Longitudinal	28 PKU (18 on cGMP-AA (9 male) and 10 on L-AA (7 male). Median	Not applicable
UK	prospective (36	age at study end: CGMP-A: 11.2y (range 8-19y) and L-AA: 15.9y (range	
	mo)	9-18y).	
Evans et al. (2017)	Longitudinal	32 PKU on diet (D-PKU) (10 males, 22 females; Age y ± SD (range) 9.2	Not applicable
Australia	prospective	$\pm 4.7 y (0.83-18.0))$	
		5 PKU treated with BH4 \pm phe restricted diet (BH4-PKU) (3 males, 2	
		females; Age y \pm SD (range) 8.8 \pm 4.6y (0.64–10.9)).	
		37 All-PKU (13 male, 24 female; Age y \pm SD (range) 8.8 ± 4.6 (0.6–	
		18.0))	

_		21 controls (healthy sex and aged matched siblings): 8 males, 13	
		females, Age y \pm SD 8.8 ± 4.8 y	
Paci et al. (2018)	Case-control	25 PKU (aged 5-14y)	Not applicable
Italy		25 sex and aged matched controls	
Rocha et al. (2013)	Case control	89 PKU (age 14.4±6.6y; 46% females)	Not applicable
Portugal	cross-sectional	78 controls (age 15.9±7.1y; 58% females). 74.4% of controls were close	
		relatives.	
Huemer et al. (2007)	Cross-sectional	34 classical PKU (22 males, 12 females; mean age 8.7 ± 3.9 y, range 2	Not applicable
Austria	and longitudinal	months to 15y)	
		34 healthy age- and sex-matched controls (mean age 9.2 ± 3.7 y, range 1	
		month to 16y)	
Sailer et al. (2020)	Cross-sectional	30 PKU (age 5-16y (mean 11.6y ± 3.41); 12 females, 18 males)	Not applicable
USA		30 control age- and sex- matched (mean age 11.75 \pm 3.49y; 12 females,	
		18 males)	
Weng et al. (2020)	Cross-sectional	22 PKU (ages 8-27y, mean age 15.23 ± 5.23 y; 12 females, 10 males)	Not applicable
Taiwan		22 age- and gender-matched controls (ages 8-39y, mean $19.73 \pm 10.6y$;	
		12 females, 10 males)	
Evans et al. (2018)	Cross-sectional	16 PKU (7 males, 9 female). Median age 12.5y (range 5–20.6y)	Not applicable
Australia			

Stroup et al. (2018)	Cross-sectional	15 (6 males and 9 females) (12 adults (aged 19-50y) and 3 adolescents	Not applicable
USA		(aged 15-17y))	
Jani et al. (2017)	Cross sectional	86 PKU (59 children and 27 adults; 60.5% female)	Not applicable
USA	study	Age: Total sample: 16y (4 - 54.6y); Adults: 28.8 y (19.5-54.6), Children:	
		13.4y (4-18.9y))	
Torriente et al. (2017)	Cross-sectional	12 with PKU (aged 3-18y). Both genders (number not specified)	Not applicable
Cuba			
Mazzola et al. (2016)	Cross-sectional	27 PKU; 27 controls	Not applicable
Brazil		Aged (6-25y) and gender-matched (14 males and 12 females)	
Kanufre et al. (2015)	Cross-sectional	77 PKU (aged 5-25y)	Not applicable
Brazil			
Mexia et al. (2015)	Cross-sectional	30 PKU; 57% female; mean age 12.2 ± 3.6y	Not applicable
Portugal			
Dobbelaere et al.	Cross-sectional	20 PKU (11 females; 9 males), age 8mo-7y (4.5 ± 1.6 y/55 ± 19 mo).	Not applicable
(2003)		Controls: Age (53 \pm 19 mo) and sex matched	
France			
Nogueira et al. (2021)	Retrospective	53 PKU (aged 2-19y; (mean \pm SD, $10.4 \pm 4.6y$); with 33 (62.3%) <12y	Not applicable
Brazil	cohort study	old. 64% female (34/53)	

Alfheeaid et al. (2018)	Not reported	13 PKU and 10 health controls (matched for gender, age and BMI)	Intervention not reported, measurements taken over 3 hrs
UK			after isocaloric meal.
<i>Nalin et al.</i> (2013)	Not reported	23 PKU and 17 heathy, aged and gender matched controls	Not applicable
Brazil			
Adamczyk et al.	Not reported	45 PKU (aged 13.8 \pm 5.2y, range 4.9-21.9y), 25 males and 20 females	Not applicable
(2011)		PKU subgroups =	
Poland		1=pre-pubertal and normal phe levels, n=15	
		2a=pubertal and normal phe levels (n=18	
		2b=increased phe levels, n=12.	
		Compared to references for healthy children and adolescents ^a	
Wilcox et al. (2011)	Not reported	42 PKU (33 females, 9 males) mean age 32.2 ± 9.5 y	Not applicable
Australia			
Bonifant et al. (2010)	Not reported	20 PKU	Not applicable
Australia		Data compared with normative data using matched controls	
Rocha et al. (2010)	Not reported	27 PKU (aged 18-38y)	Not applicable
Portugal			
Allen et al. (1995)	Not reported	30 PKU (15 males, 15 females; aged 4.6-17.0y)	Not applicable
Australia		76 controls (23 male, 42 females; aged 4.3-18.4y).	
		7 unaffected siblings and 69 non-familial	

		BIOCHEMICAL MEASURES	
Ney et al. (2016)	2-stage,	30 PKU (18 females and 12 males) included 5 minors (aged 15–17 y)	11-week protocol: 1 week education; 3 weeks GMP-MF or
USA	crossover RCT	and 25 adults (aged 18–49 y)	AA-MF; 3 weeks on usual routine with AA-MF (washout),
			then cross-over to 1 week education and 3 weeks with
			either GMP-MF or AA-MF
Giovannini et al.	RCT	60 PKU (n=30 prolonged release group; n=30 in conventional substitute	Random allocation to prolonged-realise PHE-free protein
(2014)		group); 55 completers (24 males, 31 females; age 9.2y (3.4y))	substitute or current conventional substitute for 30 days.
Italy		60 mild HPA (MHP) (26 males; age 9.3y (3.3y);	Dose and frequency were tailored to needs of child.
		60 unaffected (26 males; age 9.2y (3.2y))	Unable to blind participants.
Prince et al. (1997)	Phase 1: RCT	Phase 1: n=28 aged 4-10y	Phase 1: Duration 2 years.
USA	Phase 2: A	25 participants continued to phase 2 (completed the 5-y study).	Interventional: Random allocation to new AA mixture or
	historic control	Compared to non-PKU data from Armstrong and Stave 1973	standard mixture.
	design		Phase 2: Compared the safety, efficacy, and acceptance of
			new treatment products developed with AA mixture tested
			in phase 1. Products nutritionally incomplete were taken
			with vitamin/mineral tablets
Ahring et al. (2018)	Single-blinded,	8 (7 female, 1 male), age 15–48 y (mean 33.25 ± SD 11.21)	24 h to 1 month
Denmark	prospective,		Intervention = 4 AA drink mixtures (DM)
	crossover		

	intervention		DM1: Lacprodan CGMP-20; DM2: FSAA (equivalent AA
	intervention		DM1: Lacprodan CGMP-20; DM2: FSAA (equivalent AA
	study		profile as DM1); DM3: Lacprodan CGMP-20 and
			synthetic AA; DM4: FSAA (equivalent AA profile as
			DM3 but without Phe. 4 visits per patient, random
			allocation. Bloods at T0, T15, T30, T60, T120 and T240
			min after meal. Test meal: total protein content was 25%
			of 1g /kg/day.
Zaki et al. (2016)	Prospective,	10 PKU (6 males, 4 females), aged 4-16y. Median IQR age 6.73 (5.02-	Two phases: Phase I was 9 weeks (50% GMP (cheese
Egypt	self-controlled,	11.79y)	spread) and 50% AAF) and Phase II was 9 weeks (100%
	clinical trial		AAF).
Kose et al. (2019)	Single center,	112 PKU (59 males, 53 females). Age: 136.8 ± 82.1 months (range: 18	Not applicable
Turkey	case-control	to 377 mo)	
		PKU categorised into two groups:	
		Low dietary adherence (n=71, 41 females, 30 males; age 138.9 ± 80.1	
		mo (18-377 mo)); High dietary adherence (n=41; 12 female, 29 males;	
		age 133.1 ± 84.4 mo(18-207 mo))	
		36 healthy controls (18 males, 18 females). Age: 119.7 \pm 37.3 mo (73 to	
		206 mo).	

Prochazkova et al.	Prospective	174 patients (113 children, 61 adults)	Not applicable
(2012)			
Czech Republic			
Viau et al. (2021)	Cross-sectional	18 (mean age, SD 38.2 \pm 8.8), 11 females,7 males	Not applicable
USA			
Andrade et al. (2017)	Cross-sectional	42 PKU (23 males, 19 females); Median age 10y (range 2-36y) 40 age	Not applicable
Spain		and sex-matched controls	
Crujeiras et al. (2015)	Cross-sectional	156 PKU (46.8% male; range age: 7 months-42y	Not applicable
Spain		old; 27.4% >18y)	
van Vliet et al. (2019)	Retrospective	12 with TT1 (mean age 13.5 ± 9.9, 75% male, 25% female)	Not applicable
The Netherlands		92 with PKU (mean age $24.5 \pm 13.9, 45\%$ male, 55% female)	
Rocha et al. (2010)	Retrospective	69 treated PKU; 30 females (43.5%) and 39 males (56.5%) aged 1–27y	Not applicable
Portugal		(mean = 10y; SD = 6.47y)	
Gokmen-Ozel et al.	Audit	34 PKU, 17 female, 17 male, median age of 15y (range 7–54y); 13	Not applicable
(2009)		participants aged >18y of age.	
UK			
Kose et al. (2016)	Not reported	112 PKU	Not applicable
Turkey		17 controls (age- and sex-matched)	

Desloovere et al.	Not reported	35 PKU	Not applicable
(2014)			
Belgium			
Schulpis et al. (2013)	Not reported	54 PKU divided into groups based on metabolic control	Not applicable
Greece		Group A: 24 (12 males, 12 females, mean age $6.78 \pm 1.5 \text{ y}$)	
		Group B: 30 (15 males, 15 females, mean age $5.0 \pm 3.2 \text{ y}$)	
		50 age-and sex-matched controls (25 males, 25 females, mean age 7.68 \pm	
		2.3 y)	
Douglas et al. (2013)	Not reported	57, unclear how many participants were responders	Sapropterin for 1 month, followed by phe challenge and
USA			classified as Definitive (DR) or Provisional (PR)
			Responders. Non-responders (NR) discontinued drug.
			Protein status assessed after 1 year
Singh et al. (2010)	Not reported	Stage 1: 10 (9 males and 1 female) mean (SD) age 8.7y (2.5y);	Stage 1: BH4 response testing. BH4 administered OD 20
USA		Stage 2: 6 (6 males).	mg/kg/d. If plasma phe decreased by at least 30% after 1
			wk = responsive. Dietary phe tolerance determined via
			milk challenge.
			Stage 2: Protein substitute and protein intake adjusted to
			keep phenylalanine in target.
			Follow-up for 24 months as per standard care.

Giovannini et al.	Not reported	28 treated HPA (aged 6–18 y)	Slow-release protein substitute given to 28 treated HPA
(2009)		56 untreated mild HPA	and dietary intake and biochemical parameters reassessed
Italy		56 controls matched for age and gender.	after 3 days.
Rocha et al. (2009)	Not reported	60 PKU	Not applicable
Portugal			
van Calcar et al.	Not reported	11 subjects (age range: 11–31y; 7 males and 4 females)	Two dietary treatments of 4 d each: AA diet (days 1–4)
(2009)			and GMP diet plus multivitamin as GMP nutritionally
USA			incomplete (days 5-8). Dietary menu (24-h) repeated on
			all days of diet treatment.
			Meals were timed to usual routine and PA was permitted
			but limited. Bloodspots taken d1-2. All blood samples
			drawn daily 3 h after the start of breakfast or 2.5 h after
			eating breakfast (days 3–8).
van Rijn et al. (2007)	Not reported	6 PKU (27 ± 7 y; 3 females and 3 males)	Isocaloric meal for 1 day providing 0.8g protein/kg/day,
The Netherlands		6 controls (32 \pm 4 y, 4 females and 2 males)	plus additional 20% from PKU3 supplement
			Baseline bloods and breath samples taken.
			T0-T60min whole-body NaH ₁₃ CO ₃ production was
			measured using a primed constant infusion of NaH ₁₃ CO ₃ .
			Regular breath samples taken.

		T60-T420 min: NaH ₁₃ CO ₃ infusion replaced with L-[1-
		¹³ C]-valine bolus followed by a continuous infusion
		Regular blood and breath samples taken. At 1200 h, the
		meal period was started by consumption of the first meal
		and continued for 4 h by consumption of a meal every 60
		min. After the start of the meal period, blood and breath
		samples were taken every 30 min for 3 h and during the
		last hour samples were taken every 15 min.
Not reported	13 PKU (7 females, 6 males; mean age 14y, range 5-26y)	Participants randomised to new AA mixture for 6 mo:
		Group 1: 100% daily N needs
		Group 2: 80% daily N needs
		Blood markers measured at baseline and 6mo.
Not reported	38 PKU (mean age was 8.9y)	Not applicable
Not reported	41 PKU (24 males, 17 females); age 1-16y; Age- and gender-matched	Not applicable
	patients (non-familial). Prealbumin controls were not available.	
Not reported	Study 3: 10 (aged 12-23y)	Study 3: Day 1: AA mixture in two divided portions; Day
	Study 4: 1 adult with PKU (female)	2: AA mixture in three divided portions
		Study 4: ¹³ C-L-leucine (3 mg/kg) was given as a single
	Not reported Not reported	Not reported 38 PKU (mean age was 8.9y) Not reported 41 PKU (24 males, 17 females); age 1-16y; Age- and gender-matched patients (non-familial). Prealbumin controls were not available. Not reported Study 3: 10 (aged 12-23y)

			bolus together with the AA mixture taken at breakfast. Day
			1: AA mixture taken in one single dose at breakfast. 5 days
			later: repeated with dividing the AA mixture into three
			portions per day.
Acosta et al. (1999)	Not reported	35 with PKU (15 females and 20 males). Subjects entered the study at	Not applicable
USA		13.7 (±1.9 SEM) days of age.	
		Data was compared to normal reference data	
Graffin et al. (1995)	Not reported	6 PKU (3 males,3 females, aged 3-16y)	Not applicable
USA			
Thompson et al.	Not reported	10 classical PKU (8 male, 2 females; mean age 19.3 y, range 14-24)	Radioisotope infusion: Isotope: priming bolus doses of L-
(1990)		2 HPA (1 male, 1 female; ages 22 and 45 y)	[1- ¹³ C]leucine and sodium [1- ¹³ C]bicarbonate followed
Australia		6 age-matched normal controls (all male, mean age 20.8 y, range 19-23)	by continuous infusion of L-[1-13C]leucine was then given
			over the next 4-6 h (6 h PKU and HPA; 4 h controls).
			Blood and expired air samples were collected at 15- to 20-
			min intervals in the final 2 h of each infusion and at 1/2-h
			intervals from 2-4 h in PKU participants.
Nord et al. (1988)	Not reported	50 children with PKU	Not applicable
USA		13 children with HPA	

Shenton et al. (1983)	Not reported	20 treated PKU (age 2-9y)	Not applicable
UK		58 controls (age 1-15y). Control group = children with mild neurological	
		disease, or children for elective operations or other admissions.	
Pena et al. (2018)	Systematic	72 participants included in the meta-analysis	Not applicable
Portugal and UKb	review & meta-		
	analysis of		
	observational &		
	interventional		
	studies		
		ANTHROPOMETRIC + BIOCHEMICAL MEASUREME	NTS
Boros et al. (2015)	Case-control	27 PKU (aged 16-44y). Compared to age and sex matched reference	Not applicable
Hungary		values	
Allen et al. (1996)	Cross sectional	37 PKU (aged 7.3 ± 2.0y, range 3.9-11y; 21 male, 16 female)	Not applicable
Australia	with	27 control children (aged 8.1 ± 1.9 y, range 4-11.5y; 15 male, 12 female)	
	longitudinal		
	cohort		
Sumanszki et al.	Cross-sectional	80 PKU (41 premenopausal women, 39 males (aged 18-49y))	Not applicable
(2019)			
Hungary			

Doulgeraki et al.	Cross-sectional	48 PKU (25 males,23 females; mean age 10.9 ± 3.43y)	Not applicable
(2014)		32 mild mHPA (18 male, 14 females; mean age $10.85 \pm 3.6y$)	
Greece		57 age and sex-matched controls	
Pena et al. (2021)	Retrospective	11 PKU (8 females, 3 males). Mean age at CGMP-AA onset 28y (range	cGMP-AA (mean of 29 months)
Portugal	longitudinal ^c	15-43y).	cGMP-AA either fully or partially replaced L-AA; cGMP-
			AA: 100%, n = 4, 50% to <100%, n=4, <50%, n = 3.
Pinto et al. (2017)	Retrospective,	11 PKU (8 females, 3 males) with PKU had a mean age of $27 \pm 10y$ (2	cGMP-AA (either completely or partially) replaced AA,
Portugal	longitudinal	patients <18y)	depending on patient preference when refusing to take AA
			(mean of 13 ± 7 mo).
Das et al. (2013)	Not reported	51 PKU (age range 16–44y, mean ± SD 26.6±6.6y; 32 females, 26.5±	All patients not taking AAM at the beginning of the study
Germany		6.2y; 19 males, $26.8 \pm 7.7y$)	subsequently agreed to supplement their original diet with
			an AAM.
Das et al. (2010)	Not reported	51 PKU (age 17–44y, 31 females, 20 males)	Not applicable
Germany			
Modan-Moses et al.	Not reported	31 PKU (18 females, 13 males; mean age 25 ± 5.3y (range 19–41))	Not applicable
(2007)			
Israel			

Lambruschini et al.	Not reported	14 PKU for BH4 treatment; 11 responders (aged 0.2-12.2y, 7 females, 4	BH4 treatment for 1 year. Initial dose 5mg/kg/day. Phe
	riotroported		
(2005)		males). Compared to age- and sex-specific percentiles for healthy	restricted diet was progressively liberalised by adding
Spain		population.	200mg Phe/day/week for 2 mo, while formula was
			gradually reduced until complete removal was achieved.
Hillman et al. (1996)	Not reported	11 PKU (mean age 10.9 ± 4.2y; 5 male, 6 female),	Not applicable
USA		64 controls (mean age $11.4 \pm 4.2y$; 32 male, 32 female) (11 were	
		matched to the PKU children for sex and age)	
		ANTHROPOMETRIC + FUNCTIONAL MEASUREMEN	NTS
Choukair et al. (2017)	Cross-sectional	56 PKU (16 male, 40 female), aged 26.0 ± 8.9y (range, 11.8–41.5y).	Not applicable
Germany	study	700 reference population data also used	
Sumanszki et al.	Not reported	12 PKU males (median age 26 (18-41y)	Day 1: Stress stimuli: cold pressor test (CPT) and
(2020)		10 healthy controls (median age 26 (24-27y))	isometric handgrip test (HGT).
Hungary			Day 2: peak treadmill test to exhaustion.
		FUNCTIONAL + BIOCHEMICAL MEASUREMENT	S
Mazzola et al. (2015)	Not reported	9 PKU (7 males and 2 females; age 21 ± 4y)	2 days intervention.
Brazil		17 controls (12 males, 5 females; aged $22 \pm 4y$)	Day 0: BMR test in fast state. VO2 peak test.
			Minimum 1 week interval.
			Day 1: Blood sampling (Moment 1 (M1), breakfast and

30-min rest, aerobic exercise session (30 min at a prescribed VO2) and blood sampling (M2).

Note: Authors in italics are abstract only papers. Not applicable: Not applicable, none interventional; PKU: phenylketonuria; HPA: hyperphenylalaninemia; Phe: phenylalanine; MUAC: Mid-upper arm circumference; UAMA: upper arm muscle area; ALMI: appendicular lean mass index; ALM: appendicular lean mass; PA: phase angle; BCM index: body cell mass index; NDR: nitrogen deposition rate; LBMDR: lean body mass deposition rate; MCA: muscle cross-sectional area; MM: muscle mass; LTM: lean tissue mass; TBW: total body water; FFMI: fat-free mass index; FMI: fat mass index; BUN: blood urine nitrogen; MF: medical food; PPS: Pretrial Protein Substitute; LPS: Liquid Protein Substitute.

^a Płudowski P et al (2005) Reference values for the indicators of skeletal and muscular status of healthy polish children. J Clin Densitom 8:164–177

^b Studies in the meta-analysis by Pena et al (2018) included participants from Denmark and USA.

^c Study includes data from Pinto et al. (2017) but an extended follow-up period of 2.9 years if patients remained on CGMP-AA.

Table 3: Protein status outcome measures

Reference	Ant	thropometric								Bio	chen	nical										Functional		
	DEXA	BIA	Skinfolds	TOBEC	Deuterium Isotopic Dilution	Total body potassium	Total body nitrogen	pQCT	Method not reported	Albumin	Prealbumin	Total protein	Retinol-binding protein	Urea production	Blood urea nitrogen	Whole-body protein metabolism	Amino acids	Creatinine	Nitrogen excretion	13C-leucine in CO2	Method not reported	Grip strength	VO _{2max}	
Mazzola et al, 2016		•																						
Adamczyk et al, 2011	•																							
Weng et al, 2020		•																						
Rocha et al, 2013		•																						
Dobbelaere et al, 2003		•	•																					
Huemer et al, 2007				•																				
Daly et al, 2021	•																							
Nogueira et al, 2021			•																					
Sailer et al, 2020		•																						
Jani et al, 2017	•																							
Stroup et al, 2018	•																							
Evans et al, 2017		•																						
Evans et al, 2018		•			•																			

Allt -l 1005							1					1		ı —	1	1		1	
Allen et al, 1995			•																
Bonifant et al, 2010					•														
Daly et al, 2019	•																		
Rocha et al, 2010								•											
Nalin et al, 2013		•																	
Wilcox et al, 2011	•					•													
Alfheeaid et al, 2018				•															
Torriente et al, 2017			•																
Mexia et al, 2015								•											
Boros et al, 2015		•															•		
Paci et al, 2018								•											
Kanufre et al, 2015			•																
Allen et al, 1996			•			•								•					
Doulgeraki et al, 2014	•								•		•				∙a				
Pena et al, 2021		•							•	•			•						
Hillman et al, 1996	•								•						•				
Lambruschini et al, 2005			•						•										
Pinto et al, 2017		•							•	•									
Modan-Moses et al, 2007	∙a								•		•								
Das et al, 2010		• b										•							
					<u> </u>		l									l			

0 1: 1 10010	I	-			1	ı		1					1		1			
Sumanszki et al, 2019		•						•										
Das et al, 2013		∙a					∙a		•		•			•	∙a			
Choukair et al, 2017						•											•	
Sumanszki et al, 2020		•																•
Singh et al, 2010							•	•	•									
van Vliet et al, 2019							•	•	•									
van Calcar et al, 2009							•	•	•			•		•				
Andrade et al, 2017								•	•									
Arnold et al, 2001							•	•	•					•				
Gokmen-Ozel et al, 2009							•											
Viau et al, 2021							•	•						•				
Shenton et al, 1983							•	•										
Arnold et al, 2002								•										
van Rijn et al, 2007							•		•				•	•				
Thompson et al, 1990													•	•				
Acosta et al, 1999							•	•		•		•		•				
Giovannini et al, 2014							•	•		•				•				
Schulpis et al, 2013							•		•									
Rocha et al, 2010								•										
Prince et al, 1997								•						•				
						l		l							<u> </u>			<u> </u>

																							,
Mönch et al, 1996																			•	•			
Crujeiras et al, 2015											•	•											
Kose et al, 2019										•	•	•											
Nord et al, 1988										•		•			•								
Kose et al, 2016										•	•												
Prochazkova et al, 2012											•												
Giovannini et al, 2006										•		•					•						
Desloovere et al, 2014											•						•						
Giovannini et al, 2009										•	•		•				•						
Graffin et al, 1995										•		•			•								
Rocha et al, 2009											•												
Douglas et al, 2013										•		•			•			•					
Ahring et al, 2018															•		•						
Pena et al, 2018															•								
Zaki et al, 2016										•					•		•						
Ney et al, 2016										•	•	•			•		•						
Mazzola et al, 2015																	•						•
Total of measures	9	15	7	1	2	1	2	1	3	27	23	17	3	2	10	2	18	4	1	1	1	1	2
included in studies																							

Authors in italics are abstract only papers; DEXA: Dual-energy X-ray absorptiometry; BIA: Bioelectrical impedance analysis; TOBEC: total body electrical conductivity; IVNAA: Gamma neutron activation analysis; pQCT: Peripheral quantitative computed tomography

^a Included in methods, but results not reported

^b Reports body composition measured by BIA, but unclear if FM or FFM measured

Table 3: Anthropometric measurements of protein status and key findings

A seal to see (N/ 1 mm)	Method	Modulating	To Cally a Date of the second	Variable	Group 1	Group 2	Group 3
Author (Year)	used	factors	Key findings: Protein status outcomes				
Daly et al.	DEXA	Type of	No significant differences in LBM between the Tx		AA (n=19):	GMP50 (n=13):	GMP100 (n=16):
(2021)		protein	groups, although a trend for improved LBM was	Lean mass at	26.7 (16.9-34.2)	16.3 (14.2-17.7)	20.1 (16.5-21.9)
		substitute	observed in the CGMP100 group. All body composition	baseline (kg)			
			parameters increased over 3 years.	Lean mass at end of	32.6 (5.9-40.5)	23.9 (22.7-26.5)	31.3 (25.6-35.9)
				study (kg)			
				Lean mass change	+5.9 (9.0-6.3)	+7.6 (8.4-8.8)	+11.2 (9.1-13.9)
				(kg)			
Daly et al.	DEXA	Type of	FFM not significantly different between groups at		CGMP-AA:	L-AA:	
(2019)		protein	baseline. At 36 mo, FFM was significantly greater in the	FFM (kg) at 36	9.05	6.47	
		substitute	CGMP-AA than for LAA group $(p = 0.01)$	months			
Evans et al.	BIA	BH4, dietary	%FFM was only measured at baseline. No significant		Diet-PKU:	BH4-PKU:	All PKU:
(2017)		parameters	difference in %FFM between groups (p=0.148 All-PKU	%FFM at baseline	84.1 ± 7.4 (64.1-	$83.5 \pm 3.1 \ (80.8$ -	$84 \pm 7 \ (64.0 \text{-} 92.1)$
			vs Controls)	(range)	92.1)	87.5)	Controls:
			Neither %EBMR nor P:E ratio contributed significantly				$80.9 \pm 4.2 (71.8$ -
			to %FFM				86.2)
Paci et al.	Method not	None assessed	Total body water and FFM (kg) were significantly higher	No data shown			
(2018)	stated		in PKU vs. controls.				

Boros et al.	BIA	None assessed	Decreased SMM were found in 2 patients (7%). In 7			
(2015)			patients (26%), SMM was higher than matching normal			
			reference values.			
Rocha et al.	BIA	None assessed	No significant differences were found between patients		PKU:	Controls:
(2013)			and controls.	%FFM	78.0 [71.1–85.7]	77.0 [71.2–83.7]
			Data as median [25th and 75th percentiles]	%Muscular mass	48.3 [43.0–53.3]	46.7 [43.5–53.2]
				PA	5.9 [5.2–6.5]	6.0 [5.5–6.6]
Huemer et al.	TOBEC	Dietary	Cross sectional: No significant difference in FFM		PKU:	Controls:
(2007)		parameters	between PKU and age- sex-matched controls.	%FFM at baseline	84.6 ± 16.9	85.2 ± 9.7
			Longitudinal: %FFM remained unchanged over time	%FFM at 6 mo	83.6 ± 15.8	
			Natural protein intake (g/kg per day) explained 47.7% of	%FFM at 12 mo	85.5 ± 13.8	
			the variance of FFM (R2 = 0.477 ; p < 0.0001). Total			
			protein intake (g/kg per day) and natural or total protein			
			intake (g/day) without reference to body weight			
			explained 8.8%, 7% and 26.1%, respectively of the			
			variance of FFM.			
Allen et al.	Skinfolds	Sex	Cross Sectional Data		PKU:	Controls:
(1996)	PGNA for		No diff in LBM between PKU and controls.	LBM (kg) (mean ±	19.7 ± 4.5	22.0 ± 4.8
	total body		Sig diff in TBN between PKU and controls (p<0.005)	SD)		
	nitrogen		TBN lower in females (data not shown)	TBN (g)	575 ± 200	710 ± 215
				$(\text{mean} \pm \text{SD})$		
		_		=		

	UAMA	-	PKU: had 35g less TBN than controls for same LBM. At	Annual accretion of	86 ± 45	77 ± 58
	were		each age children with PKU had 53g less TBN than	nitrogen (g/y)		
	derived		controls, representing 6mo lag in PKU vs. controls	NDR (g/y)		
	from the		Control: TBN significantly correlated LBM, weight,	Cross-sectional	93	98
	MUAC and		height and age ($r = 0.97, 0.95, 0.88$, respectively,	Longitudinal	86.1 ± 45.1	77 ± 57.9
	skinfolds		p<0.001).	LBMDR (kg/y)		
			UAMA similar between PKU and controls (data not	Cross-sectional	2.1	2.3
			shown). UAMA significantly correlated with TBN in	Longitudinal	1.8 ± 0.6	2.2 ± 0.9
			both PKU and controls (rs = 0.84, rs = 0.89, P < 0.001,			
			respectively).			
			Longitudinal Data (n=29 PKU, n=17 controls)			
			Similar increase in TBN and LBM in both groups			
			between the two time periods			
			Annual accretion of nitrogen, NDR and LBMR: Similar			
			between groups.			
			NDR was significantly correlated with the LBMDR in			
			the control but not in PKU.			
Sailer et al	BIA	Sex, dietary	No difference in LBM% in females ($p = 0.34$), but males		PKU:	Controls:
(2020)		parameters	with PKU had significantly lower LBM% ($p = 0.02$) than	Lean body mass %	85.38 ± 4.9	89.09 ± 5.94
			male controls.	males		
				-		

				Lean body mass %	77.87 ± 9	76.50 ± 9.87
				females		
Weng et al.	BIA	Dietary	Muscle mass %: No significant difference between PKU		PKU:	Controls:
(2020)		parameters	and controls (p = 0.37), and between PKU patients on	Muscle mass %	73.39 ± 8.79	75.51 ± 7.42
			phe-free formulas and those taking no PS (p=0.95),	Muscle mass %	PKU + PS:	PKU + no PS:
			although natural protein intake was significantly		73.15 ± 8.5	73.68 ± 9.56
			different.			
			Significant positive correlation between total protein			
			intake % of DRIs and muscle mass (r = 0.491, p= 0.020)			
			in PKU.			
			% natural protein had no correlation to muscle mass (r =			
			-0.007, p = 0.974).			
Sumanszki	BIA	Sex	Females: both lumbar spine and femoral BMD correlated			
et al. (2019)			positively with LBM (r = 0.53; p< 0.001, r = -0.31; p =			
			0.042, respectively). Lean mass had a greater effect on			
			BMD than fat mass. Observations not reported in males			
Evans et al.	BIA	None assessed	No difference between FFM measured by Deut and BIA		FFM by Deut:	FFM by BIA:
(2018)	TBW by		(p = 0.111)	FFM (kg):	31.81 (± 12.77)	32.93 (± 13.93)
	deuterium		Correlation analysis showed that FFM by BIA correlated	Mean (SD)		
	dilution.		significantly with FFM by TBWDeut ($r = 0.984$, $p <$			
			0.0001)			

Stroup et al.	DEXA	Sex, genotype	Males had significantly more lean mass ($p = 0.0008$) and		Male:	Female:
(2018)			ALM (p=0.0002) compared to females. No significant	Total Lean mass kg	55.3 ± 2.8	41.9 ± 1.4
			difference in the ALMI (and ALMI z-scores) between	$(mean \pm SE)$		
			males and females. Mean ALMI for our young male	ALM kg	24.8 ± 1.5	18.0 ± 0.8
			participants was close to the cut point of \leq 7.26 kg/m2, a	$(mean \pm SE)$		
			suggested cut-off to identify sarcopenia in older men.	ALMI kg/m2d	7.99 ± 0.31	6.96 ± 0.35
			All the above are not significant for genotype.	$(mean \pm SE)$		
Choukair et al.	pQCT to	Sex,	Mean MCA was decreased compared with the ref.			
(2017)	measure	classification	population (z-score -0.98 ± 1.19 ; p < 0.0001); observed			
	MCA	of PKU,	both in females and males. 30% had MCA <3rd			
		metabolic	percentile.			
		control	No relationship between MCA (z-scores) and PKU type			
			or mean phe concentrations. Bone strength were			
			significantly correlated to MCA. In PKU, the regression			
			line slope between SSI and MCA was significantly (p $<$			
			0.0001) less steep than in the reference population.			
Jani et al.	DEXA	Dietary	In adults (n=17), high intact protein intake was associated	Median(min,max)	Males (n = 9):	Females (n =17):
(2017)		parameters,	with high FFMI ($r_s = 0.75$, $p = 0.008$) and low FMI:FFMI	Adults	52.2 (45.5, 61.8)	38.9 (30.8, 64.3)
		genotype	$(r_s = -0.59, p = 0.04).$	Lean mass (kg)		
			In children, protein substitute ($r_s = 0.38$, $p = 0.04$) and	Children	Males (n = 25):	Females (n=32):
			total protein intake ($r_s = 0.39$, $p = 0.04$) were directly	Lean mass (kg)	25.7 (13.3, 64.4)	32.7 (15.5, 50.7)
				-		

			associated with FFMI.	FFMI	Total (n=83):	Adults (n=26):	Children (n=57):
			Genotype was not associated with body composition.		14.8 (11.3, 24.2)	17.4 (13.4, 24.2)	14.2 (11.3, 23.7)
Torriente et al.	Skinfolds	None assessed	Muscle area: normal 100%				
(2017)							
Mazzola et al.	BIA	None assessed	No differences in FFM, ECM/BCM ratio, and PA		PKU:	Controls:	
(2016)			between PKU patients and controls.	FFM %	80 ± 7	78 ± 9	
			3 patients with PKU and 3 controls were below the cut-				
			off values for PA				
Kanufre et al.	Skinfolds	None assessed	32 (41.5%) had muscle mass deficit of which 28 (87.5%)				
(2015)			were normal weight-for-age and 25 (78%) were				
			adolescents				
Mexia et al.	Method not	None assessed	Deficit of FFMI was found in 30.8% of patients				
(2015)	stated						
Doulgeraki et	DEXA	Sex, pubertal	No difference in LBM in PKU and controls. No effect for		mHPA pre-	mHPA pubertal:	
al.		status,	correction for height.	LBM z-scores	pubertal:		
(2014)		classification	MM of mHPA were comparable to controls. No	$(\text{mean} \pm \text{SD})$	-0.65 ± 1.5	0.7 ± 1.1	
		of PKU	significant difference was detected in body composition		PKU pre-pubertal:	PKU pubertal:	
			parameters between patient with PKU and mHPA.		-0.23 ± 1.1	-0.1 ± 1.3	
			No effect of gender on body composition Pubertal status				
			associated with increased in LBM in adolescents				
			(pubertal) in mHPA (p<0.01) but not in PKU.				

			and MM.			
Dobbelaere et	Skinfold	None assessed	No difference between PKU and controls.		PKU:	Controls:
al. (2003)	thickness			FFM (kg) via	12.4±3.2	12.8±2.1
	BIA			skinfold		
				FFM (kg) via BIA	14.1±1.4	12.9±2.3
Nogueira et al.	Skinfolds	Metabolic	Association between metabolic control and AMA (linear		Low AMA:	High AMA:
(2021)	Arm muscle	control, socio-	trend chi square; p=0.042). AMA classified as above	Metabolic control	70%	18.5%
	area	economic	average or adequate was associated with worse % of	with \geq 70% adequate		
		status	metabolic control.	Phe levels		
			No association between AMA with SES.			
Pena et al.	BIA	Type of	No difference in LM% and PA for all patients taking L-		CGMP-AA:	L-AA:
(2021)		protein	AA compared with CGMP-AA	LM (%) n=9	71.1 ± 13.4	74.5 ± 16.1
		substitute		PA (°) n=9	6.8 ± 0.6	6.8 ± 0.7
Pinto et al.	BIA	Type of	All parameters remained unchanged		CGMP-AA:	L-AA:
(2017)		protein		LM (%) (n =9)	71.4±15.0	74.5±16.1
		substitute		PA (°) (n =9)	6.7±0.7	6.8 ±0.7
Sumanszki et	BIA	None assessed	No difference in body composition parameters in PKU		PKU:	Controls:
al. (2020)			and controls $(p = 0.497)$	FFM (%)	47.5 (42.1–49.3)	47.3 (45.3–48.5)

PKU: a significant positive correlation between BMD

Alfheeaid et al.	Deuterium	None assessed	No difference in FFM between PKU vs. controls.	Data not shown.			
(2018)	dilution						
	technique						
Das et al.	BIA	Dietary	LBM/FFM: No results reported.	No data shown			
(2013)		parameters	PA: Normal in all dietary groups, no significant				
			difference between groups.				
			BCM increased in vegan + L-AA and reduced in vegan				
			patients compared to PKU-diet patients (non-significant).				
Nalin et al.	BIA	Metabolic	% FFM and PA: No difference in PKU vs. controls. A		PKU:	Controls:	
(2013)		controls	positive correlation between PA and phenylalanine levels	% FFM	80.9±7.7	80.7±7.3	
			in PKU (r=0.457, p=0.032)	PA (°):	6.35	6.89	
Adamczyk et	DEXA	Pubertal	No significant differences between LBM in 2a and 2b		Group 1:	Group 2a: pubertal/	Group 2b:
al.		status,	(both pubertal).		prepubertal/	normal phe	pubertal/high phe
(2011)		metabolic	Increased LBM for body height SD scores in adolescents		normal phe		
		control	with normal Phe levels.	LBM (g)		Data not shown	Data not shown
			LBM Z-scores: Sign. differences between 2a and 2b. No	LBM SD scores	-0.02 ± 1.31	$+1.94 \pm 3.21$	-0.20 ± 1.52
			difference between subgroups 2a and 1.	LBM Z-scores	-0.21 ± 1.26	$+0.51 \pm 1.59$	-0.69 ± 0.71
Bonifant et al.	TBK	None assessed	TBK z score was significantly lower (p < 0.05) in				
(2010)			patients with PKU				

Das et al.	BIA	Dietary	Body composition within target levels	No data shown		
		parameters				
(2010)		parameters				
Rocha et al.	Method not	BMI	Patients classified as overweight and obesity had lower		Overweight/	Normal weight:
(2010)	stated		FFM% (p<0.001)	FFM%	obese: 63.7	78.3
Wilcox et al.	IVANA for	None assessed	SMM was measured as height-adjusted ALTM; TBP		Females:	Males:
(2011)	total body		measured as age and sex adjusted nitrogen index (NI)	ALTM (kg/m ²):	5.77 ± 2.35	8.24 ± 0.45
	protein		SMM and TBP were normal PKU patients	Nitrogen Index:	0.98 ± 0.12	1.13 ± 0.13
	DEXA					
Modan-Moses	DEXA	None assessed	No data reported for lean body mass or FFM.	No data shown		
et al. (2007)						
Lambruschini	Skinfolds:	BH4	All values within age- and sex-specific percentiles for a		Before BH4:	After BH4:
et al.	Brachial		healthy population after 1 yr treatment. No difference in	BMA (mm ²)	984-4505	1167-4819
(2005)	muscular		brachial muscular area (BMA).	(range)		
	area					
Hillman et al.	DEXA	None assessed	No difference between PKU and controls ($p = 0.53$).	Lean body weight	PKU:	Controls:
(1996)				(kg)	27.98 ± 12.43	30.71 ± 17.47
Allen et al.	Skinfolds	Sex	No difference in FFM between males with PKU and		PKU:	Controls:
(1995)			control participants. Females with PKU were younger	FFM (kg) males	27.2 ± 7.6	27.1 ± 7
			than controls (P=0.006) and had a lower FFM (p=0.007).	FFM (kg) females	23.1 ± 8.1	30.9 ± 8.2

Note: Authors in italics are abstract only papers

PKU: phenylketonuria; HPA: hyperphenylalaninemia; Phe: phenylalanine; DEXA: Dual-energy X-ray absorptiometry; BIA: Bioelectrical impedance analysis; PGNA: Prompt gamma neutron capture analysis; pQCT: Peripheral quantitative computed tomography; IVANA: Gamma neutron activation analysis; LBM: lean body mass; LM%: lean mass percentage; FFM: fat-free mass; TBW: total body water; FFMI: fat-free mass index; FMI: fat mass index; PA: phase angle; BCM: body cell mass; ECM: extracellular mass; MUAC: Mid-upper arm circumference; UAMA: upper arm muscle area; ALMI: appendicular lean mass index; ALM: appendicular lean mass; NDR: nitrogen deposition rate; LBMDR: lean body mass deposition rate; MCA: muscle cross-sectional area; MM: muscle mass; SMM: skeletal muscle mass; SSI: Strength-Strain Index; TBP: Total body protein; TBK: Total body potassium; BUN: blood urine nitrogen; PAA: plasma amino acids; L-AA: L-amino acids; cGMP-AA: casein glycomacropeptide amino acid; PS: protein substitute

 Table 5: Biochemical measurements of protein status and key findings

Author (Year)	Method used	Modulatin g factors	Key findings: Protein status outcomes	Variable	Group 1	Group 2	Group 3	Group 4
Ney et al.	PAA, BUN,	Type of	No sig. differences between BUN, total protein and	Blood urea	L-AA:	cGMP-AA:		
(2016)	albumin,	protein	prealbumin for L-AA compared with cGMP-AA. Albumin	nitrogen,	11.2 ± 0.6	10.6 ± 0.6		
	prealbumin	substitute	was sig. higher with cGMP-AA than L-AA ($p = 0.027$).	mg/dL				
	and total		Mean values were within the normal range for both diets.	Total	7.35 ± 0.08	7.42 ± 0.07		
	protein		PAA: Except for Phe, all mean conc of AAs were within	protein, g/dL				
			the normal range for both groups. Thr (mean $\pm SE$) showed	Albumin,	4.24 ± 0.04	4.35 ± 0.04		
			sig. increase with cGMP-AA from 103 ± 4 mmol/L to 149	g/dL				
			$\pm 10 \text{ mmol/L } (p < 0.001).$	Prealbumin,	27 ± 1.0	27 ± 1.1		
			L-AA diet: sig. change from baseline to 3 weeks for Arg	mg/dL				
			(increased), Leu (increased), Phe (reduced)					
			cGMP-AA diet: sig. change from baseline to 3 weeks for					
			Gly (reduced), Lys (reduced), Met (increased), Thr					
			(increased), Val (reduced)					

Giovannini et	Albumin,	Type of	Baseline: PKU had lower albumin, prealbumin, and higher	Mean ± SD	Prolonged-	Conventio
al. (2014)	prealbumin,	protein	AA ratio than MHP (maximum $p = 0.01$) and unaffected		release	nal
	RBP, PAA	substitute	children (maximum $p < 0.001$). Albumin was within the		substitute	substitute
			reference range for all children. Children with MHP and	Albumin	(n=27)	(n=28)
			unaffected children: prealbumin within reference range,	g/dL		
			n=2 PKU had prealbumin levels below ref range. 29	Baseline	4.5 ± 0.2	4.5 ± 0.2
			(52.7%) PKU had prealbumin <20 mg/dL. The AA ratio	Albumin	4.6 ± 0.2	4.5 ± 0.2
			ranged from 1.7-3.5, 1.5- 3.0, 1.5-2.5 in PKU and MHP	g/dL		
			and unaffected children, respectively.	End of study		
			End of study: PKU has albumin and prealbumin within	Transthyreti	19.1 ± 6.4	19.0 ± 6.3
			range, except n=1 receiving the conventional substitute	n (mg/dL)		
			(prealbumin 18.3 mg/dL). No overall sig. difference	Baseline		
			between PKU groups was found for protein status.	Transthyreti	20.7 ± 6.8	19.2 ± 6.0
			Within-group analysis: sign. increase of prealbumin in	n (mg/dL)		
			children who received the test substitute ($p = 0.017$). The	End of study		
			change in albumin was close to statistical sig. in the test	AA ratio	2.6 ± 0.9	2.6 ± 0.8
			group ($p = 0.068$).	Baseline		
				AA ratio	2.7 ± 0.8	2.6 ± 0.8
				End of study		

Prince et al.	Prealbumin,	None	Phase 1: Baseline: All EAA (except phe) uniformly low	Mean (±SD)	Baseline:	End of	Controls	
(1997)	EAA	assessed	compared with controls. Mean EAA remained low	Prealbumin,		study:	(range):	
			compared to control. No sig diff in serum EAA between	mg/dL	17.3 ±2	21.0±4	17–42	
			control and experimental groups at entry or end.					
			Phase 2: Despite reductions in protein substitute intakes,					
			mean serum protein levels were not sig. different and					
			remained in the healthy (non-PKU) age-matched reference					
			range throughout the study.					
Ahring et al.	BUN, PAA	Type of	AUC (adjusted for baseline) for total AA: No differences	Peak AA	DM1: after	DM2: after	DM3: after	DM4: after
(2018)		protein	between DM1 and DM2 (p = 0.852), or between DM3 and	concentratio	30 min for	15 min for	30 min for	15 min for
		substitute	DM4 (p= 0.06). Significant differences for AUC for some	ns	90% of	71% of	67% of	71% of AA
			individual AA: DM1 and DM2: Lys (p = 0.0287), Asn (p =		AAs.	AAs	AAs.	
			0.0210), and Asp (p =0.0047) and DM3 and DM4:					
			citrulline ($p = 0.0162$).					
			BUN: no sig change from baseline to 240 min after meal					
			and DM.					
Zaki et al.	Amino	Type of	Phase I vs Phase II: Individual amino acids were generally	Mean (SD)	Baseline	Phase I	Phase II	
(2016)	acids,	protein	lower in phase I, with sig. low level of aspartic acid and	(min - max)				
		substitute	citrulline. Levels of all amino acids in phases I and II were	BUN:				
		_		_				

	11 '				20 (7 (6)	17.62	10.67
	albumin,		not significantly different.		20.6 (7.66),	17.63	19.67
	BUN		BUN and albumin: no sig. difference between phases of		(6-30)	(5.18), (8-	(9.75), (10-
			the study.			23)	37)
				Albumin:	4.6 (0.35),	4.5 (0.52),	4.52 (0.31),
					(4.2-5.2)	(4.0-5.3)	(4.0- 4.8)
Kose et al.	Prealbumin,	Dietary	Prealbumin was sig. higher in PKU compared to controls	Serum	PKU	Con	
(2019)	albumin and	adherence,	(p =0.013). Frequency prealbumin above the ref range was	prealbumin,	(n=112):	(n=36):	
	total protein	metabolic	higher in PKU than the controls (p=0.02).	mg/dL	24.1 ± 4.6	21.9 ± 3.9	
		control and	Albumin and total protein were not sig. different between	(Ref range:	(10.5-35.5)	(15.9-29.8)	
		age	PKU and controls.	21-41)			
			Prealbumin was sig. lower in those with high adherence to	Prealbumin,	21 (21.1)	14 (38.8)	
			diet compared to those with low adherence ($p = 0.011$).	(<21			
			Positive correlation between plasma phe level and	mg/dL), n%			
			prealbumin ($r = 0.256$, $p = 0.003$) and between age and	Serum	High	Low	
			prealbumin in PKU (r = 0.556, p < 0.0001) and control	prealbumin,	dietary	dietary	
			groups ($r = 0.682$, $p < 0.0001$).	mg/dL	adherence:	adherence:	
				(Ref range:	22.5 ± 4.4	24.9 ± 4.6	
				21-41)			

Boros et al.	Method not	None	Decreased protein levels in 2 found to have low SMM.	No data		
(2015)	reported	assessed	Normal protein levels in 7 with SMM above normal ref	provided		
			values.			
Prochazkova	Prealbumin	None	No sig. difference in the levels of serum prealbumin	No data		
et al. (2012)		assessed	among the respective groups.	provided		
Allen et al.	PAA		No difference in PAA between PKU and controls, except	No data		
(1996)			for phe.	provided		
Viau et al.	EAA,	Blood phe	No deficiencies were identified in EAA, prealbumin, or		Phe < 30	Phe ≥ 30
(2021)	prealbumin	levels	albumin. No sig differences in protein intake or		μmol/L	μmol/L
	and albumin		prealbumin in patients with blood Phe <30 μ mol/L vs. \geq 30	Prealbumin,	(n=11):	(n=7):
			μmol/L.	mg/dL	27.0 ± 1.7	30.6 ± 1.1
Sumanszki	Prealbumin	Sex	Pre-albumin levels were higher in males compared to	Prealbumin,	Females:	Males: 30.5
et al. (2019)			females with PKU ($p = 0.008$)	mg/dL	28 ± 4.1	± 3.8
				$(mean \pm SD)$		
Andrade et al.	Prealbumin	Metabolic	Prealbumin: 15% were below the normal range. Patients	Prealbumin,	PKU:	
(2017)	and total	control	with values >97th or <3rd percentile: 1/39>P97; 6/39 <p3< th=""><th>mg/dL (ref</th><th>22.6 [11.2–</th><th></th></p3<>	mg/dL (ref	22.6 [11.2–	
	protein		Plasma phe sig. correlated with prealbumin (r=0.479,	range 20–	53.1]	
			P=.002)	40)		
			/	,		

				Total	7.2 [6.0–	
				protein, g/dL	7.8]	
				(ref range:		
				6–8)		
Crujeiras et	Total	Age,	Total protein was in the normal range in almost all	Prealbumin,	mHPA:	PKU:
al. (2015)	protein and	dietary	patients. Prealbumin was <21mg/dL in 34.6% of patients,	mg/dL	21.2	24.5
	prealbumin	adherence,	(74% from PKU) with 94.4% of them <18y, 96.3% having	(ref range:		
		time of	an adequate adherence and 12.96% were on BH4	21–41)		
		diagnosis,	treatment.	Prealbumin,	Aged ≤18	Aged >18
		classificati	Prealbumin was sig. lower in mHPA vs. PKU ($p = 0.024$)	mg/dL	years:	years:
		on of PKU	Significant positive correlation between age and		21.9	28.5
		and BH4	prealbumin (p $<$ 0.001) and total protein (p $=$ 0.002).	Total	7.05	7.35
			Total protein (p = 0.0072) and prealbumin (p < 0.001) were	protein, g/dL		
			found sig. lower in the patients with high adherence vs.	(ref range:		
			low adherence to diet. More significantly altered in low	6.3-8.5)		
			adherence and >18 years compared to other participants.	Prealbumin,	High	Low
			Time of diagnosis: no differences found	mg/dL	dietary	dietary
					adherence:	adherence:
					22.6	29

_

	Albumin	Type of	-	Prealbumin	249± 28	245±53
	and	protein		(mg/dl)		
	prealbumin	substitute				
van Vliet et al.	Albumin,	BH4,	No significant differences between groups with relevant	Min-max	PKU-	PKU-BH4:
(2019)	total	dietary	biochemical measures.	(median)	nBH4:	
	protein, and	parameters	No correlations were found between natural protein intake	Albumin,	43-53 (48)	44-53 (49)
	prealbumin		and relevant biochemical markers	g/L		
				Patients with	0	0
				deficiency:		
				Patients with	4(24%)	3 (23%)
				excess:		
				Total	58-84 (73)	66-81 (74)
				Protein, g/L		
				Patients with	1 (2%)	0
				deficiency:		
				Patients with	1 (2%)	3 (10%)
				excess:		
				Pre albumin,	0.15-0.51	0.17–0.45
				g/L	(0.30)	(0.30)

				Patients with	6 (11%);	1 (4%)	
				deficiency:			
				Patients with	4 (8%)	3 (11%)	
				excess:			
Rocha et al.	Prealbumin	Age,	Prealbumin z-score was -0.5248 (1.09), significantly	Classificatio	Classical	mild PKU	HPA
(2010)		classificati	below z-score = 0 (p<0.001). 9 patients (13%) had a	n of PKU	PKU		
		on of PKU,	prealbumin z-score < 5th percentile (-1.64), and one >	with	5%	16%	21%
		amount of	95th percentile (+1.64). All patients with z-score of	prealbumin			
		protein	prealbumin <5th percentile were <15 years. No association	z-scores <			
		substitute,	between classification of PKU and prealbumin z-score $<5^{th}$	5th			
		metabolic	percentile ($p = 0.237$).	percentile			
		control	No sig correlation between prealbumin z-score and the	Prealbumin,	Aged <15	15 years	
			amount of protein substitute prescribed (R2 = 0.01 ; p =	mg/dL	years:	and over	
			0.38). Prealbumin z-score and blood phe were not sig.		18.38 ±	25.53 ±	
			correlated (R $2 = 0.003$; $p = 0.65$).		4.12	4.38	
			Prealbumin < 20 mg/dl: 38 patients (55%)				
			Association between prealbumin <20 mg/dl and age <15				
			years (p $<$ 0.0001). Prealbumin sig. higher in the group of				
			older patients vs. group of patients $<$ 15 years (p $<$ 0.001).				

Gokmen-Ozel	Albumin	Type of	>18 years taking LPS: sig. increase in albumin (p < 0.05),	Median	Aged ≤18	Aged >18
et al. (2009)		protein	although within the reference ranges	(range)	years:	years:
		substitute,	7–18 years taking LPS: median albumin sig. improved (p	Albumin		
		age	< 0.01), median values were within the reference range.	(g/L):	43 (35–48)	43.5 (38.5–
				Baseline:	(n=21)	48.0) (n=9)
				On LPS:	45 (42–49)	47 (41–49)
					(n=20)	(n=11)
				Median diff	2.5 (-3.0 to	2.8 (-2 to 7)
				between PPS	9.5)	
				and LPS		
Kose et al.	Albumin,	None	Albumin was not sig. different between PKU vs. controls.	No data		_
(2016)	prealbumin	assessed	Prealbumin was significantly higher in PKU vs. controls.	provided		
Mazzola et al.	BCAA	Exercise	In rest and fasted state, patients showed lower levels of	BCAA	PKU: 332	Controls:
(2015)			BCAA in comparison to controls ($p = 0.001$). Levels of	(µmol/L)	± 50	456 ± 86
			BCAA were not modified with exercise in PKU and			
			controls.			
Desloovere et	Prealbumin	Age,	Prealbumin levels were <20 mg/dL in 60 % of participants	No data		
al. (2014)	PAA	protein	Prealbumin correlated with age. No sig, correlation was	provided		

		metabolic	seen between prealbumin, protein substitute, PAA profile					
		control	or phenylalanine level.					
Schulpis et al.	Total	Metabolic	No sig difference in total protein or albumin between each		Group A:	Group B:	Controls:	
(2013)	protein,	control	group and controls. Natural protein intake differed sig.		poor	good		
	albumin		between groups (see supplemental material).		metabolic	metabolic		
				Total Protein	control	control		
				(g/L)	7.2 ± 0.8	7.5 ± 1.0	7.4 ± 1.0	
				Albumin	4.7 ± 0.3	4.8 ± 0.3	4.7 ± 0.3	
				(g/dL)				
Das et al.	Total	Dietary	PAA: Valine was higher in PKU-diet than in subjects	Total protein	Normal	Vegan + no	Vegan +	PKU diet:
(2013)	protein,	parameters	consuming normal food. All patients had reduced or low	(g/L)	food:	PS:	PS:	
	PAA,		normal urea.	(ref range	74	76	76	73
	albumin,			65–80)				
	albumin, urea			65–80) Urea (mM)	3.8	3.6	3.8	3.3
					3.8	3.6	3.8	3.3
				Urea (mM)	3.8	3.6	3.8	3.3

Douglas et al.	Creatinine,	BH4,	Classified as Definitive (DR) or Provisional (PR)	Baseline	PKU:	Controls:		
(2013)	BUN,	dietary	Responders to BH4. Non-responders (NR) discontinued	urine	74±40	141±61		
	albumin,	parameters	drug.	creatinine(m				
	total protein		Protein markers did not differ between groups or with	g/dL)				
			increased intact protein intake in Responders. Baseline					
			creatinine was sig. lower in PKU vs controls, but within					
			normal ranges. BUN declined in DR and albumin,					
			globulin, and total serum protein declined in NR over time					
			(p <0.05).					
Das et al.	Urea	Not	Urea concentrations were lower than normal in all patients.	No data				
(2010)		reported		provided				
	Prealbumin,	reported	Albumin and total protein: within reference range for all	provided Baseline:	6 months:	12 months:	18 months:	24 months:
(2010)	Prealbumin, total protein		Albumin and total protein: within reference range for all patients and remained stable		6 months:	12 months:	18 months:	24 months:
(2010) Singh et al.			•	Baseline:	6 months:	12 months:	18 months:	24 months:
(2010) Singh et al.	total protein		patients and remained stable	Baseline: Prealbumin	6 months: 21.0 (2.8)	12 months: 21.7 (3.1)	18 months: 23.0 (7.1)	24 months: 23.3 (3.4)
(2010) Singh et al.	total protein		patients and remained stable Prealbumin: lower end of ref range at baseline and	Baseline: Prealbumin (mg/dl):				
(2010) Singh et al.	total protein		patients and remained stable Prealbumin: lower end of ref range at baseline and increased during the first 12 mo of follow-up (p<0.001),	Baseline: Prealbumin (mg/dl): (ref range:				
(2010) Singh et al.	total protein		patients and remained stable Prealbumin: lower end of ref range at baseline and increased during the first 12 mo of follow-up (p<0.001),	Baseline: Prealbumin (mg/dl): (ref range: 19.0–38.0)				

				(ref range:				
				3.5–5.0) 4.7				
				(0.1)				
				Total protein	6.8 (0.2)	6.9 (0.3)	6.9 (0.2)	6.9 (0.3)
				(g/dl):				
				(ref range:				
				6.3–7.9) 6.9				
				(0.3)				
Giovannini et	Albumin,	Type of	Treated HPA vs. mild untreated HPA and controls: lower	No data				
al. (2009)	prealbumin,	protein	albumin, $p = 0.012$, prealbumin, $p = 0.005$, RBP, $p =$	provided				
	RBP, amino	substitute	0.001, and amino acid ratio, $p < 0.0001$, respectively.					
	acid ratio		Three days after introducing the new protein substitute					
			prealbumin improved ($p = 0.02$).					
Rocha et al.	Prealbumin	Age	8 (13%) revealed prealbumin z scores <5th percentile	No data				
(2009)			Significant linear correlation between prealbumin and	provided				
			haemoglobin conc (adjusted for age) (R ₂ =0.446; p=0.017)					
			Prealbumin z-score average was significantly lower in the					
			group with low haemoglobin (p=0.051).					

van Calcar et	PAA,	Type of	BUN was sig. lower with GMP diet on both day 7 and day	Blood urea	AA diet:	GMP diet:
al. (2009)	prealbumin,	protein	8 than with the AA diet on day 4. No sig. differences	nitrogen	4.2 ± 0.3	3.4 ± 0.2
	albumin,	substitute	among albumin, prealbumin, or total protein on the last	(mmol/L)		
	total		day of the AA diet (day 4) compared with the GMP diet	Total protein	68 ± 1.4	67 ± 1.4
	protein,		(day 8).	(g/L)		
	BUN		Total PAA was sign. greater, and BUN was sig. lower,	Albumin	44 ± 0.9	44 ± 0.8
			with the GMP diet compared with the AA diet when	(g/L)		
			measured 2.5 h after eating breakfast.	Prealbumin	317 ± 7.5	310 ± 7.3
			GMP vs AA diet led to 2.25- to 2.47-fold increase in	(g/L)		
			postprandial conc of isoleucine and threonine within 24 h			
			of ingesting the GMP diet (consistent with the high			
			concentrations of these AAs in GMP). No further sig			
			increases in isoleucine and threonine after days 5 and 7,			
			respectively.			
Modan-Moses	Total	Dietary	Total protein and albumin were normal in all patients and	No data		
et al. (2007)	protein and	adherence	did not differ between diet-adherent and non-adherent.	provided		
	albumin					
van Rijn et al.	Amino	None	Both groups were comparable in baseline albumin and		PKU:	Controls:
(2007)	acids,	assessed	total protein.		43 ± 2	45 ± 2
		_		_		

albumin,	Sig differences in PAA concentrations between the two	Albumin		
total	groups in the pre-prandial period for phe and cystine.	(g/L)		
protein,	Sig higher valine, isoleucine, leucine, phe, and lysine in	Total protein	70 ± 3	71 ± 3
whole-body	PKU vs. controls at the end of the meal period.	(g/L)		
protein	Whole-body protein metabolism:	Valine (Ox)	24 ± 6	28 ± 4
metabolism	The Ra of valine did not differ between groups before and	Pre-prandial		
	after meals. Sig higher oxidation rate during the prandial	Prandial	35 ± 2	33 ± 7
	vs pre-prandial period in PKU group (p <0.01).	R _a (dietary	51 ± 8	42 ± 4
	Prandial period, sig. difference in the Ra values of dietary	valine into		
	valine into the peripheral circulation in PKU vs controls	peripheral		
	(p=0.02). Meal decreased whole-body protein breakdown	circulation),		
	in both groups to a similar extent. Net protein balance: no	μmol		
	sig. difference between groups during pre-prandial or	valine/kg/h		
	prandial phase.	Net protein	-17 ±6	-21 ±4
		balance,		
		μmol		
		valine/kg/h		
		Pre-prandial		
		Prandial	23 ±8	16±9

Giovannini et	PAA, total	Type of	Baseline: AA profiles and blood levels of protein were	Mean ± SD	Group 1	Group 2
al. (2006)	protein and	protein	comparable between groups.		(100% N	(80% N
	albumin	substitute	Plasma proteins and albumin levels sig. increased from TO Plasma daily		daily	daily
			to T1 in Group 1. Changes in plasma protein and albumin proteins,		needs)	needs)
			in Group 2 were not significant. From T0 to T1 the amino mg/dL 6		6.9 ± 0.3	No data
			acid profiles showed an increased in methionine, lysine T0			provided
			and arginine concentrations (all p=0.02). At T1 there was a T1 7.3 ± 0.2		7.3 ± 0.2	No data
			sig. difference in tyrosine in Group 1 vs Group 2.		provided	
				Albumin,	4.3 ± 0.1	No data
				mg/dL		provided
				Т0		
				T1	4.5 ± 0.2	No data
						provided
				Tyrosine	80 ± 18	47 ± 17
				(µmol/L)		
				T1		
Lambruschini	Albumin	BH4	No sig. difference in albumin before and after BH4		Before	After BH4:
et al.			treatment.	Albumin,	ВН4:	45 ± 3
(2005)				g/L	46 ± 5	

Arnold et al.	Prealbumin	Height,	Mean prealbumin conc: 20.5 mg/dL					
(2002)		age,	Prealbumin conc was positively correlated with both					
		metabolic	height and age: children with higher prealbumin were					
		control	taller (r = 0.38, P < .02) and older (r = 0.65, P < .001).					
			Prealbumin was also positively correlated to plasma phe					
			levels ($r = 0.38$, $P < .03$). Both lower phe levels and					
			younger age were found in the low prealbumin group.					
			Multiple regression analysis: After controlling for age,					
			BMI, and mean phenylalanine level, children with					
			prealbumin <20 mg/dL had a mean height decrease of 44.9					
			percentiles.					
Arnold et al.	Prealbumin,	Age,	Albumin and total protein levels: normal in all 41 patients,		Aged <6	Aged >6		
(2001)	albumin,	metabolic	and did not differ sig. from the normal ranges.	Prealbumin,	years:	years:		
	total protein	control	Prealbumin was sig. lower in younger children ($p = 0.03$).	mg/dL	19.5	22.1		
	and PAA		Sig. positive correlation between prealbumin and phe level	Deficiency	PKU (n):	Controls		
			(r = 0.38, p = 0.02).	in at least		(n):		
			Prealbumin deficiency (<15 mg/dL) n= 2, both poorly	one EAA:	9	1		
			compliant with protein substitutes.					
			Marginal prealbumin (<20 mg/dL) n=12. All age ranges					

		-	and were among the most compliant patients.	-		
			The PKU children with low prealbumin were more likely			
			to have an EAA deficiency ($p = 0.05$).			
Mönch et al.	24h urinary	Dose of	Study 3: Reduced nitrogen excretion with PS taken in 3 vs.	Study 3:	PS in two	PS in three
(1996)	nitrogen	protein	2 doses.	24-h urinary	portions:	portions:
	excretion,	substitute	Study 4: Higher and later maximum 13C-enrichment of	nitrogen	6.3-12.4	4.7-10.8
	13C-		expired CO2 and high oxidation with PS taken as one large	excretion		
	enrichment		dose vs only one-third of PS taken. Increased nitrogen	(g/24 h)		
	of expired		excretion when taking one large portion compared to only	Study 4:	One large	1/3 of dose
	CO2		one-third of the total daily amount of PS.	Maximum	dose: 12	taken: 7%o
				13C-	%o after 3 h	after 2 h
				enrichment		
				of expired		
				CO2		
				13C-leucine	19.5%	9.5%
				(Ox) after 5		
				h		
				24-h urinary	6.9	4.3
				nitrogen		

		_						
				excretion				
				(g/24 h)				
Acosta et al.	PAA,	None	All mean plasma indices of protein status were in normal	Mean (SD)	1mo	3mo	6mo	During
(1999)	albumin,	assessed	reference ranges. Amino Acids: Mean conc of all amino	[n=]	3.6 (0.1)	4.1 (0.1)	4.1 (0.1)	study
	BUN, RBP,		acids except Cys, Gly and Phe were in the reference	Albumin,	[24]	[23]	[26]	3.9 (0.1)
	prealbumin		ranges. Amino acids below the lower limit of the ref: Arg	g/dL				
			(12%), Cys (71%), Ile (12%), Lys (14%) and Thr (11%).	(ref range:				
			Dietary intakes of Arg (month 3, $r = 0.36$, $p = 0.05$), Met	3.0-4.6)				
			(month 4, $r = 0.43$, $p = 0.05$), Phe (months 1, 2 and 5, $r =$	Baseline				
			0.65, p = 0.01; r = 0.42, p = 0.05; r = 0.33, p = 0.07), Trp	3.7 (0.1)				
			$(month\ 1, r=0.51, p=0.05), Tyr\ (month\ 4, r=0.37, p=0.05)$	[22]				
			0.05) and Val (month 3, $r = 0.51$, $p = 0.01$) were positively	RBP, mg/dL	NE	3.38 (0.2)	3.74 (0.2)	3.56 (0.2)
			correlated with the respective PAA conc.	Baseline:		[22]	[21]	
				NE				
				Prealbumin,	NE	17.6 (0.8)	17.9 (0.9)	17.8 (0.8)
				mg/dL		[22]	[22]	
				(ref range:				
				6.7-21)				

				Baseline:				
				NE				
				Urea	12.3 (0.8)	12.0 (0.6)	11.9 (0.5)	12.1 (0.6)
				nitrogen,	[23]	[24]	[24]	
				mg/dL				
				(ref range: 5-				
				17)				
				Baseline:				
				12.9 (1.2)				
				[23]				
Hillman et al.	Albumin,	Dietary	Serum albumin and creatinine were similar in children		PKU:	Controls:		
(1996)	creatinine	parameters	with PKU and controls. No sig. correlations between total	Albumin,	4.9 ± 0.5	$5.1 \pm .58$		
			protein intake, protein intake/kg, or serum albumin after	g/dL	(n=11)	(n=35)		
			age correcting.	Serum	0.97 ± 0.19	0.82±.0.10		
				creatinine	(n=11)	(n=18)		
Graffin et al.	Total	None	Children had normal levels of total protein; but abnormal	No data				
(1995)	protein,	assessed	values for albumin (high) and BUN (low)	shown				
	albumin,							
	BUN							

Thompson et	PAA,	Plasma phe	Rates of protein synthesis in PKU were similar to or above						
al. (1990)	whole-body	levels,	control values, as were rates of protein catabolism.						
	protein	classificati	Net protein loss during fasting tended to be lower in PKU						
	metabolism	on of PKU	than in controls (not statistically different). Protein	nan in controls (not statistically different). Protein					
			turnover values were similar in HPA to PKU and controls.	turnover values were similar in HPA to PKU and controls.					
			Protein synthesis did not change sig. with plasma						
			phenylalanine concentration.						
			Amino Acids: Mean conc of many AAs were in the lower						
			normal range in PKU on normal diets without PS. Those						
			with protein-restricted diets and PS, the mean conc of all						
			AAs other than phe were similar to controls.						
Nord et al.	Total	Dietary	Total protein, albumin and BUN were within normal limits	No data					
(1988)	protein,	adherence,	and no sig diff between groups.	provided					
	albumin and	diagnosis							
	BUN								
Shenton et al.	Prealbumin	None	No sig difference in albumin between groups. Significant	Mean (SD)	PKU:	Control:			
(1983)	and albumin	assessed	difference in prealbumin between groups (p<0.01)	(range)	44.4 (3.3)	44.6 (3.1)			
				Albumin	(40-53)	(37-50)			
				(g/l)					
				_					

				Prealbumin	168 (33)	216 (47)
				(mg/L)	(105-219)	(128-332)
Pena et al.	BUN	Type of	Meta-analysis for BUN reported no sig. differences			
(2018)		protein	between GMP-AAs and AAs (MD = -0.22 mg/dL (-1.49 ,			
		substitute	1.04); $I2 = 0\%$; $p = 0.73$)			

Note: Authors in italics are abstract only papers

PKU: phenylketonuria; HPA: hyperphenylalaninemia; Phe: phenylalanine; SMM: skeletal muscle mass; BUN: blood urine nitrogen; PAA: plasma amino acids; AA: amino acids; L-AA: L-amino acids; RBP: retinol-binding protein; cGMP-AA: casein glycomacropeptide amino acid; PS: protein substitute; PPS: Pretrial Protein Substitute; LPS: Liquid Protein Substitute; AUC: area under the curve; NE: Not evaluated

Table 6: Functional measurements of protein status and key findings

Author (Year)	Method used	Modulating factors	Key findings: Protein status outcomes	Variable	Group 1	Group 2	
Choukair et	Maximal	Sex, MCA,	Mean grip force z-score was significantly decreased compared with the reference				
al.	isometric grip	classification	population (-0.64 ± 1.26 ; p = 0.0004); observed both in female and male patients.				
(2017)	force (hand	of PKU,	38% a grip force <3rd percentile. A significant linear correlation between MCA				
	dynamometry)	metabolic	and grip force was found for PKU patients (r = 0.827, p < 0.0001) and reference	I grip force was found for PKU patients ($r = 0.827$, $p < 0.0001$) and reference			
		control	population (r = 0.66, p < 0.001). No relationship between grip force (z-scores) and	ulation ($r = 0.66$, $p < 0.001$). No relationship between grip force (z-scores) and			
			PKU type or mean phe.				
Sumanszki et	Maximum	None	Duration of aerobic or anaerobic exercise: No significant difference between		PKU:	Controls:	
al.	physical stress	assessed	groups (PKU vs controls, $p=0.883$ and $p=0.247$, respectively). VO_2max :	VO ₂ max (ml/min)	3080 (2813–	3970 (3758–	
(2020)	test: evaluated		Significantly lower in the PKU group vs. controls (p = 0.004); relative VO_2max		3768)	4108)	
	VO ₂ max		(adjusted for body weight) was similar between groups. Cumulative workload	Relative VO ₂ max	45 (36.3–52.8)	48.5 (46.5–59)	
			(watts): Significantly higher in the control compared with the PKU group	(ml/kg/min)			
			(p=0.002). Handgrip test: Used as a stress stimuli intervention and no outcome				
			data provided				
Mazzola et al.		Metabolic	Patients showed similar aerobic capacity and workload peak in the VO2peak test		PKU:	Controls:	
(2015)		control	in comparison to controls. PKU patients and controls showed similar values of	VO2peak (mL/kg/min)	28 ± 8	31 ± 6	

_	VO2peak	prescribed and actual VO2 during exercise. Poorly controlled patients showed the	Workload peak (W)	203 ± 31	216 ± 49
	Workload	lowest percentage of actual VO2 during exercise in relation to the prescribed	Prescribed VO2	21 ±6	22 ±4
	peak	value (not sig)	(mL/kg/min)		
			Actual VO2 (mL/kg/min)	18 ± 5	22 ± 4

Supplemental material: Protein intake data

ional comments	e	Protein substitute intake	Natural protein intake	Total protein intake	Protein	Author (Year)
					requirements	
	-	Š	ANTHROPOMETRIC MEASURE	-	-	
nd L-AA groups. All	1 c(Median daily dose of protein	Median amount of prescribed	Not reported	Not reported	Daly et al.
nt with protein	W	substitute: 60 g/day	natural protein: 5.5 g protein/day			(2021)
	su	(range 40–80 g)	(range $3-30$ g) or 275 mg/day of			
			phenylalanine (range 150–1500			
			mg)			
t patients' normal	U	Not reported	Not reported	Not reported	Not reported	Alfheeaid et
erns are.	di					al.
						(2018)
		Not reported	Phe intake ranged from 204-	Protein intake varied	RDAs (Comite de	Dobbelaere et
			768mg/day (based on 4DDD)	from 1.2 to 2.1 (mean	Nutrition 2001)	al.
				1.67±0.23) g/kg per day,		(2003)
				representing 109-191%		
				(146%±25%) of RDA		
orotein intake in PKU	e M	Mean Phe-free L-AA mixture	Mean natural protein intake: 0.3	Mean total protein	RDA + 20-40%	Huemer et al.
124% (range 77–	2, pa	intake: 0.9 g/kg/day (SD 0.2,	g/kg/day	intake: 1.2 ± 0.3 g/kg per	(DACH 2000)	(2007)
e RDA) 19	median 0.84, range 0.6–1.4)	(SD 0.2, median 0.24, range 0.1–	day (median 1.1, range		
			1.1)	0.8–2.4) in PKU patients.		
				Mean total protein		
12	2, pa	intake: 0.9 g/kg/day (SD 0.2,	g/kg/day (SD 0.2, median 0.24, range 0.1–	intake: 1.2 ± 0.3 g/kg per day (median 1.1, range $0.8-2.4$) in PKU patients.		

		intake: 33.7 ± 10.3 g/day			
		(median 32.5, range			
		11.3–32.5).			
Sailer et al.	Not reported	g/kg:	g/kg:	g/kg:	% total energy of protein among
(2020)		Female: PKU 1.3 ± 0.56	PKU	PKU	PKU male subjects was lower than
		vs Con 1.9 ± 0.96	Female: 0.36 ± 0.31	Female: 0.95 ± 0.65	male control subjects (10.4 \pm 2.1%
		Male: PKU 1.44 ± 0.48 vs	Male: 0.41 ± 0.32	Male: 1.03 ± 0.37	vs. 14.5 ± 3.7 ; p=0.003), but %
		$Con\ 2\pm0.77$	(no sig. difference)	(no sig. difference)	energy from protein was similar
					between PKU female participants
		No diff in the total grams			and controls (10.1 \pm 2.6% vs. 11.0 \pm
		of protein/ kg in PKU			5.2%; p = 0.63).
		compared to controls.			
					Protein to energy ratio was
					significantly lower among PKU male
					subjects compared to controls (2.51
					± 0.58 vs. 3.62 ± 0.92 ; p = .0003).
					This difference was not seen in
					females.
Allen et al.	Not reported	Not reported	Not reported	Not reported	
(1995)					
Evans et al.	FAO/WHO/UNU	Total protein: g/kg/d	Natural protein: g/kg/d (median ±	AAF g/kg/d: median ± SD	Reported that the median total-
(2017)	recommended	$(median \pm SD (range))$	SD (range))	(range)	protein intake exceeded the
	safe levels	D-PKU: 2.05 ± 0.60	D-PKU: 0.50 ± 0.18 (0.18–0.80);	D-PKU: 1.54 ± 0.50 (0.80-	

		(1.00-3.50); BH4-PKU:	BH4-PKU: 1.10 ± 0.60 (0.55–2.00);	2.70); BH4-PKU: 1.00 ± 0.61	FAO/WHO/UNU recommended
		$1.90 \pm 0.16 (1.70 - 2.10);$	All-PKU: $0.50 \pm 0.37 (0.17-2.00)$	(0.00–1.30); All-PKU: 1.43 \pm	safe levels (data not shown).
		All-PKU: 2.00 ± 0.56		0.59 (0.00-2.70)	
		(1.00-3.50)			
Nogueira et	Not reported	Not reported	Not reported	not reported	
al.					
(2021)					
Evans et al.	Not reported	Not reported	Not reported	Not reported	Reported participants used phe-free
(2018)					AA formula
Adamczyk et	Not reported	Not reported	Not reported	Not reported	L-AA PKU supplements
al.					
(2011)					
Mazzola et al.	Not reported	Not reported	Not reported	Not reported	No access to protein-enriched low-
(2016)					phe food
Rocha et al.	Not reported	Mean (SD): 1.92 (0.57)	Mean (SD): 0.76 (0.46) g/kg/day for	Mean (SD): 1.39 (0.44)	Total protein (g/kg/d)
(2013)		g/kg/day for patients	patients aged <19 years (n=63);	g/kg/day for patients aged	HPA and mild PKU 1.92 \pm 0.61
		aged <19 years (n=63)	0.57 (0.39) g/kg/day for patients	<19 years (n=63); 1.03	Classical PKU 1.88 ± 0.34
		and 1.43 (0.35) g/kg/day	aged ≥19 years (n=26)	(0.45) g/kg/day for patients	
		for patients aged ≥19		aged ≥19 years (n=26)	Natural Protein (g/kg/d): HPA and
		years (n=26)			mild PKU 0.82 ± 0.49 Classical PKU
					$0.49 \pm 0.14 \text{ g/kg/d}$

					AA Mix (g/kg/d): HPA and mild PKU 1.33 ± 0.45 Classical PKU 1.67 ± 0.3
Veng et al.	DRI	$1.265 \pm 0.592 \text{ g/kg/d}$	$0.874 \pm 0.602 \text{ g/kg/d}$	12 (55%) PKU pts phe-free	71% (70.90±31.24) of protein
2020)		(%DRIs 105.448 ± 33.41)		formula; 10 non-phe-free	consumed by PKU patients was
				formula (getting 100% of	from medical food and 29% from
				DRI from natural protein)	natural food
Stroup et al.	Not reported	Not reported	Not reported	g PE from AA-MF: Male: 67	Discussed the negative impact on
2018)				\pm 6; Female: 52 \pm 4	BMD with increase protein
				(p(sex)=0.057; p(gt)=0.09)	substitute
				g PE from AA-MF/kg: Male	
				0.89 ± 0.09 Female: $0.77 \pm$	
				0.08 (p(sex)=0.46;	
				p(gt)=0.21)	
				g PE from AA-MF/kg lean	
				mass:	
				Males: 1.20 ± 0.08 females:	
				$1.24 \pm 0.10 $ (p(sex)= 0.54;	
				p(gt) = 0.14)	

Jani et al.	120-140% RDA	Total Protein (g/day;	Intact protein (g/day); g/kg/day:	MF protein (g/day;	Majority of participants consumed
(2017)		g/kg/day):	Total: 13.4 (3.6, 79.4); 0.25 (0.07,	g/kg/day):	higher intact proteins (n= 76, 92.7%
		Total (n=83): 59.3 (10.1,	1.46)	Total (n=73): 45.0 (5.0,	vs $n = 6, 7.3\%$) than as prescribed. A
		119.7); 1.09 (0.19, 2.20)	Adults: 25.1 (8.2, 79.4); 0.33 (0.17,	90.0); 0.83 (0.31, 0.57)) g/d;	similar proportion consumed
		Adults (n=25): 69.9	0.50);		medical food protein as per
		(42.1, 119.6); 0.92 (0.86,	children: 11.3 (3.6, 74.7); 0.24	Adults (n=19): 53.8 (25.0,	prescription (n = 35 , 51.5%) or
		0.76)	(0.23, 0.61).	90.0); 0.71(0.51, 0.57) g/d;	lower than as prescribed (n=33,
		Children (n=58): 53.1	· , ,	,, , , , , , , , , , , , , , , , , , ,	48.5%).
		(10.1, 119.7); 1.12 (0.63,	Adults: higher median intakes of	Children (n=54): 43.2 (5.0,	,
		0.97)	intact protein (25.1 vs. 9.9 g/d , U =	79.6); 0.91 (0.31, 0.65) g/d	
		,	73.5, p < 0.001) compared to	, , , ,	
		Median total protein	prescribed intakes.	Adults: consuming lower	
		intake (g/d) was highest	1	actual median intakes of MF	
		among males (57.5,	Children: actual median intact	(53.8 vs. 60.0 g/d, U = 133.5,	
		range: 46.8, 76.2)	protein intake was higher than	p = 0.03) compared to	
		compared to PKU	prescribed	prescribed intakes	
		patients	(6.0 vs. 11.3 g/d, U=2549.5, p <	r	
		r	0.001).		
Paci et al.	Not reported	Not reported	Not reported	Not reported	Dietary data focus on glycaemic
(2018)	stroportou			sportou	index and glycaemic load
Mexia et al.	Not reported	Not reported	Not reported	Not reported	
(2015)	1.ot reported	rocreported	riotroportou	roctoportou	
(2010)					

Torriente et	Not reported	Not reported	Not reported	Not reported	
al.					
(2017)					
Daly et al.	Not reported	Not reported	Not reported	Not reported	
(2019)					
Kanufre et al.	Not reported	Not reported	Not reported	Not reported	
(2015)					
Bonifant et al.	Not reported	Not reported	Not reported	Not reported	
(2010)					
Rocha et al.	Not reported	Not reported	Not reported	Not reported	Medians of natural protein and
(2010)					protein substitute intake were not
					significantly different in patients
					with overweight/obesity compared
					to the others.
Wilcox et al.	Not reported	Not reported	Not reported	Not reported	
(2011)					
Nalin et al.	Not reported	Not reported	Not reported	Not reported	
(2013)					
			BIOCHEMICAL MEA	ASURES	
Prince et al.	(Phase 2) RDA	Not reported	Not reported	AA Intakes (g protein/kg)	Mean ages associated with these
(1997)	minus exchanges			Prescribed by clinician	intakes were 6.9 years at entry and
	and prescribing			Entry (yr. 1): 1.15 ±0.5	11.1 years at end, which results in
				End (yr. 5): 0.67 ± 0.2	the mean 'Received Intakes' of AA =

	difference as			P<0.001	75% RDA protein and 40% RDA
	protein substitute			Reported by participant	protein, respectively. Observed no
				Entry (yr. 1): 1.31 ± 0.8	significant reductions in protein
				End (yr. 5): 0.68 ± 0.2	status, with 'Received Intakes' 50-
				P<0.001	100% below prescribed intakes
				Received by participant	recommended by Medical Research
				Entry (yr. 1): 0.91 ± 0.4	Council (1993) for the mean age of
				End (yr. 5): 0.4 ± 0.3	subjects.
Singh et al.	Not reported	Total protein intake	At 3mo, phenylalanine increased	By 3mo of BH4 therapy, n=3	Stage 2: MF was reintroduced as
(2010)		remained at	from a baseline average of 11.9 \pm 4.1	were consuming a reduced	needed to stabilize plasma phe <360
		approximately 1.0±0.08	mg/kg to 39.9 \pm 11.5 mg/kg	MF prescription (50%, 20%,	$\mu mol/L$ and to keep serum
		g/kg per day (43.7±4.2	(p=0.001), and phenylalanine	and 38%, respectively). n=3	transthyretin within normal limits
		g/day) throughout the 24	intake from food increased	no longer required MF.	
		months of the study.	from 15.9 \pm 5.3 mg/kg to 34.2 \pm	n=1 who initially	
			13.8 mg/kg (p=0.007).	discontinued MF	
				consumption experienced a	
				growth spurt, MF was	
				reintroduced	
Giovannini et	Italian RDA	Children who received	Baseline mean (SD) PHE intake was	41 (68.3%) children had 3	Unaffected children: protein intakes
al. (2014)		the test or conventional	403 (213) vs 392 (227) mg/day in	doses/day (test substitute	were 150% higher than the Italian
		substitute: Baseline	children who received the test or	21/30; conventional	RDA
		protein intake was 1.9	conventional substitute,	substitute 20/30) and 19	
		(0.8) vs 2.0 (0.9)	respectively. End of the trial the	(31.7%) had 4 doses/day	

		g/kg/day; end of trial was	corresponding values were 392	(test substitute 9/30;	PKU: mean protein intake was
		1.8 (1.0) vs 2.0 (0.9)	(207) vs 400 (208) mg/day.	conventional substitute	around 120% of RDA
		g/kg/day		10/30).	
Zaki et al.	All patients	Not reported	Not reported	Phase I: 50 % GMP and 50%	Required to be compliant to
(2016)	received the			AAF and Phase II: 100% AAF	treatment for at least two months
	same total protein			(amounts not provided)	prior to start of study.
	intake to match				
	recommended				
	protein				
	requirement for				
	their age and				
	weight*				
Mönch et al.	Not reported	Not reported	Not reported	Not reported	Took their usual prescription
(1996)					divided in 2 and 3 doses
Thompson et	Not reported	Mean Protein (g/kg/d)	Unclear of current dietary protein	Not reported	n = 5 were on free diet; $n = 5$ were
al. (1990)		PKU: 1.06 ± 0.34	intake		on PKU diet + AA
		Range:			
		Free diet: 0.76-1.64			No alteration in dietary intake of
		g/kg/day			any subject in the 3 mo. prior to the
		Diet+AA: 0.5-1.36			study
		g/kg/day			
		HPA: 1.4 & 1.1 (n=2)			

		Control: 1.25 g/kg/d			
		(range 0.9-1.5)			
van Calcar et	DRI	Not reported	Phe allowance ranged from 5.8	Not reported	Two dietary treatments of 4 d each:
al. (2009)			mg/kg (subject 10) to 26.7 mg/kg		the AA diet (days 1–4) and the GMP
			(subject 2)		diet (days 5–8).
Ney et al.	Not reported	Protein g/d:	Classical: mean± SE 0.34 ± 0.04 g	Mean ± SE prescribed dose	Reduce intake of natural foods that
(2016)		AA-MF: 80 ± 3	protein	was 0.85 ± 0.03 g PEs from	contain Phe to offset the Phe intake
		GMP-MF: 79 ± 4	from natural food/kg/day; 15 \pm 2	AA-MF/kg/d.	in GMP-MFs and maintain constant
			mg Phe/kg/d/;		Phe intake.
		Protein g/kg/d:	Variant: 0.50 ± 0.07 g protein from	AA-MFs or GMP-MFs	Medical food logs: intake was higher
		AA-MF: 1.15 ± 0.05	natural food/kg/day, 22 ± 3 mg	provided 66–68% of total	for GMP-MFs during both stages of
		GMP-MF: 1.14 ± 0.06	Phe/kg/day	protein intake or 0.74–0.76 g	the study and significantly higher
				protein/kg/d	during visits 3 and 4 than it was
					with AA-MFs (3.74 servings GMP-
					MFs/d compared with 2.43 servings
					AA-MFs/d; $P = 0.001$)
Ahring et al.	Not reported	In each test meal, the	Not reported	Given test protein substitute	Intervention included four different
(2018)		total content of protein		to provide 25% of	drink mixtures:
		was equivalent to 25% of		requirements	DM1: 100% cGMP
		1 g/kg/d			DM2: 100% L-AA (equivalent AA
					profile to DM1)
					DM3: cGMP + L-AA (to ensure
					nutritionally complete)

					DM4: L-AA (equivalent AA profile
					as DM3, but without phe)
van Rijn et al.	RDA + 20%	Protein intake (g /kg/d)	Tolerances of dietary Phe: based on	Not reported	
(2007)		(mean, SD)	daily intake of natural protein at 5 y		
		PKU: 1.1 ± 0.1	of age were: 21 ± 9 and 11 ± 4 mg		
		Controls: 1.2 ± 0.1	Phe/kg/d at the time of the test.		
Giovannini et	Italian RDA	Reports nutrient intake	Not reported	Not reported	
al. (2009)		consistent with the			
		Italian RDA			
Giovannini et	Not reported	Not reported	Not reported	Not reported	Compliance with the new protein
al. (2006)					substitute mixture was 100%
Douglas et al.	Not reported	Definitive responders	DR increased intact protein (g/kg	Intake not reported, in DR	
(2013)		(DR): decrease in total	(Baseline:0.58±0.4, 1	group there was a 75%	
		protein intake (Baseline:	year:0.75±0.3)	decline in medical food	
		1.4±0.7, 1 year:1.0±0.7;		intake	
		p<0.001) due to 75%			
		decline in medical food			
		(MF) intake.			
		Total protein intake			
		declined significantly in			
		NR and PR without			
		change in Phe tolerance			

		or prescribed MF,			
		_			
		indicating nonadherence			
Acosta et al.	RDA (1980)	Protein (g/day) 17.3 ±	Not reported	Medical Food (g/day) 79 ± 4	17% of Phenex-fed infants had
(1999)		0.6			protein intakes below 100% of 1980
		Protein (g/kg/day) $2.7 \pm$			RDA.
		0.1			Mean intake of EAA/kg were greater
					than recommended.
Shenton et al.	Not reported	Not reported	Not reported	Not reported	
(1983)					
Schulpis et al.	Not reported	Total protein (g)	Natural protein (g)	Phe free formula dose	Group A - 'loose diet' and Group B
(2013)		Group A: 72 ± 20	Group A: 40 ± 20	depended on age, weight and	strictly adhered to diet
		Group B: 70 ± 18	Group B: 9 ± 1.2	residual activity of Phe	
		Controls: 73 ± 17	Controls: 73 ± 17	hydroxylase as related to	
		P= NS	A vs C P<0.001	their molecular analysis	
			B vs C p<0.001		
			A vs B p<0.001		
Arnold et al.	Not reported	Children ages 1-4 were	Not reported	Not reported	
(2001)		prescribed approx. 30 g			
		protein/day. Children			
		aged 4-7: 35 grams			
		protein; Children aged 7-			
		11: 40 grams protein;			
		Females ≥12 years: 50			

		grams protein; Males ≥12			
		years: 55 grams protein			
Arnold et al.	Not reported	Not reported	Not reported	Medical foods prescribed	
(2002)				accordingly: ages 2-4 years,	
				30 g/d; ages 4-7 years, 35	
				g/d; ages 7-11 years, 40 g/d;	
				ages ≥12 years, 50 g/d for	
				female and 55 g/d for male.	
Nord et al.	Not reported	Not reported	Not reported	Not reported	
(1988)					
Rocha et al.	MRC on PKU,	Not reported	Not reported	Not reported	
(2010)	adopted by the				
	Portuguese				
	guidelines				
Kose et al.	Not reported	Not reported	Not reported	Not reported	L-AA used as protein substitutes
(2019)					
Andrade et al.	RDA (0.8–1.3	Total proteins, g/kg/day	Natural proteins, g/kg/day	Not reported	
(2017)	g/kg/day)	PKU 1.0 [0.2-2.0]	PKU 0.5 [0.2-2.0]		
		117% RDA	48% RDA		
van Vliet et al.	Not reported	Significantly higher	Not reported	Not reported	
(2019)		natural protein intake for			
		PKU-BH4 patients vs.			
		PKU-nBH4 (p < 0.001))			

Crujeiras et	RDA	Not reported	Not reported	Not reported	
al. (2015)	(recommendation				
	was 1.3-1.5x				
	RDA)				
Viau et al.	DRIs 0.8 g	Mean protein intake:	Intact Protein, g/day	None	FFQ: participants ate a median of
(2021)	protein/kg/d	$73.2 \pm 17.6 \text{ g/d}$ (range:	Phe < 30 μ mol/L (n=11): 72.2 \pm		92.8% (IQR 70.0 – 111.1%) of the
		46.9-125.4 g/d) and 1.0	11.4		recommended daily servings of
		± 0.3 g/kg/d (range: 0.5–	Phe $\geq 30 \ \mu mol/L \ (n=7)$: 72.5 ± 25.8		protein foods
		1.8 g/kg/d).	P=0.97		(e.g., meat, poultry, seafood, eggs,
		Majority (16/18) of			soy, nuts, seeds and legumes) and
		participants' intake met	Intact Protein, g/kg		55.4% (IQR 32.1–85.7%) of dairy
		or exceeded the DRI, two	Phe < 30 μ mol/L (n=11): 1.0 \pm 0.2		foods. On average, animal proteins
		male participants	Phe $\geq 30 \ \mu mol/L \ (n=7)$: 1.0 ± 0.4		comprised $62 \pm 10\%$ of total protein
		consumed less at 0.5 and	P=0.84		intake.
		0.6 g/kg/d.			
Pena et al.	Not reported	Not reported	Not reported	Not reported	
(2018)					
Gokmen-Ozel	Not reported	Not reported	Median phenylalanine exchanges	Median protein substitute	
et al. (2009)			were 6 x 50mg daily (range 3–15).	dose was 60 g PE daily	
			n=6 adults were not following	(range 45–75 g day) both	
			measured phenylalanine exchanges	before and during the study.	
			but avoided high protein foods		

Graffin et al.	Not reported	Mean protein intake: 62	Not reported	Not reported	
(1995)		\pm 15 % of their			
		recommended levels			
Prochazkova	Not reported	Not reported	Not reported	Not reported	
et al. (2012)					
Rocha et al.	Not reported	Not reported	Not reported	Not reported	
(2009)					
Desloovere et	Not reported	Not reported	Not reported	Not reported	
al. (2014)					
Kose et al.	Not reported	Not reported	Not reported	Not reported	
(2016)					
		ANTHE	ROPOMETRIC + BIOCHEMICAL M	IEASURES	
Lambruschini	Not reported	Not reported	Phe-restricted diet initially. Phe	Stopped in 11/14 patients	All participants initially were
et al.			tolerance increased significantly	with BH4 treatment	treated with phe-restricted diet and
(2005)			from 356 \pm 172 mg/day (mean \pm		protein substitutes, prior to BH4
			SD; range: 201–600) to 1546 ± 192		treatment. Phe-restricted diet
			mg/day (range: 1240–1801)		unknown duration
			(Wilcoxon test; $p = 0.004$)		
Pena et al.	Not reported	Not reported	Natural protein intake (g/kg/day)	Amount of protein	At the last ANSE, CGMP-AA
(2021)			Baseline: 0.41 (0.26–0.62)	equivalent from protein	contributed a mean of
			When on cGMP-AA 0.34 (0.21-	substitute remained	$66 \pm 31\%$ (range 23 to 100) to the
			0.69)	unchanged [(0.86 \pm 0.24	total protein substitute intake.
				g/kg/day	

			$vs 0.74 \pm 0.23 \text{ g/kg/day; p} =$	
			0.126) and (50.8 \pm 16.3 g/	
			day vs 44.6 ± 12.8 g/day; p =	
			0.118)].	
Das et al.	DACH-	PKU: protein intakes Not reported	Not reported	Participants were grouped into the
2013)	recommendations	were below DACH-		following:
	(German-	recommendations	All patients not taking AAM	1. Normal food ("normal food") -
	Austrian-Swiss	Protein (g/kg/d)	at the beginning of the study	36%
	dietary	Baseline	agreed to supplement their	2. Vegan without amino acid
	association) (DGE	Protein reduced + AAM:	original diet with an AAM	mixture ("vegan") -14%
	2012)	1.1	subsequently.	3. Vegan with amino acid mixture
		Vegan + AAM: 0.9		("vegan + AAM") - 8%
		Vegan – AAM: 0.5		4. Protein reduced with amino acid
		Normal Food: 0.6		mixture which is the
				recommended form of nutrition
		Follow-Up		("PKU-diet") - 42%
		Protein reduced + AAM:		
		1.0		
		Vegan + AAM: 1.0		
		Vegan – AAM: 0.7		
		Normal Food: 1.0		

Pinto et al.	Not reported	Not reported	Natural protein intake (g/kg/day)	Protein substitute (g/kg/day)	Mean GMP contribution to the total
(2017)			AA diet: 0.47 ± 0.27 ; GMP diet:	AA diet: 0.85 (0.73–1.08);	protein substitute intake was 57%
			$0.59 \pm 0.49 (p = 0.241)$	GMP diet: 0.75 (0.61-0.99)	(27 to 100%) providing an
				(p = 0.182)	additional
					34 ± 12 mg of PHE per day.
Allen et al.	FAO/WHO/UNU,	Protein intake was	Median phe intake was significantly	Not reported	
(1996)	1985	similar for the PKU and	lower		
		controls (median):	in the PKU group (23 mg/kg) than		
		PKU: 2.11 g/kg	in		
		equivalent to 209% of	the controls (92 mg/kg)		
		recommended			
		Controls: 1.9 g/kg			
		equivalent to 193% of			
		recommended			
		FAO/WHO/UNU 1985			
Doulgeraki et	Not reported	Not reported	Not reported	Not reported	PKU - L-AA supplements
al.					
(2014)					
Hillman et al.	RDA	Mean intake: 46.1 ± 12.1	Not reported	Not reported	Protein intakes were above the RDA
(1996)		$g/d (1.5 \pm 0.6 g/kg)$			
Modan-Moses	RDA	Protein intake (g/day):	PHE intake (mg/day). All: 1394 ±	Not reported	All diet-adherent patients achieved
et al.		All: 72.7 ± 34.9; Diet-	982; Diet-adherent: 1097 ± 1063;		protein intake above RDA, only 3
(2007)		adherent: 86.8 ± 30 ;	non-adherent: 1859 ± 624 (NS)		

		non-adherent: 45.3 =	<u> </u>		non-adherent patients met
		22.2 (p = 0.011)			the RDA for protein intake
					the KDA for protein intake
		Protein intake was			
		significantly higher i	n the		
		diet-adherent patien	ts		
Boros et al.	Not reported	Not reported	Not reported	Not reported	
(2015)					
Das et al.	Not reported	Not reported	Not reported	Not reported	41% of PKU-patients followed
(2010)					recommended protein restriction
					supplemented with AM. 14% said
					they follow a less restricted 'vegan
					diet supplemented with AM. 45%
					claimed to have normal eating
					habits without AM.
Sumanszki et	Not reported	Not reported	Not reported	Not reported	
al.					
(2019)					
ANTHROPOM					
ETRIC +					
FUNCTIONAL					
MEASURES					

Choukair et	Not reported	Not reported	Not reported	Not reported	33 (4 adolescents and 29 adults)
al.					were on a PKU diet + protein
(2017)					substitute
					16 (2 adolescents and 14 adults) did
					not follow a diet or protein
					substitute
					3 adults had protein substitute only;
					1 adolescent and 3 adults followed a
					PKU diet exclusively.
Sumanszki et	Not reported	Not reported	Not reported	Not reported	
al.					

FUNCTIONAL + BIOCHEMICAL MEASURES					
Mazzola et al.	Not reported	Not reported	Not reported	Not reported	
(2015)					

Note: Authors in italics are abstract only papers

(2020)

^{*} V. R. Young and S. Borgonha, "Nitrogen and amino acid requirements: the Massachusetts Institute of Technology amino acid requirement pattern," The Journal of Nutrition, vol. 130, no.7, pp. 1841S–1849S, 2000

Supplemental material: Search strategy

Database: MEDLINE (Ovid)

(exp Phenylketonurias/ OR Phenylketonurias.mp. OR PKU.mp. OR Hyperphenylalanin?emia.mp. OR exp Phenylalanine Hydroxylase/ OR "Phenylalanine Hydroxylase".mp. OR "Phenylalanine Hydroxylase deficiency".mp.) AND (exp Nutritional Status/ OR "nutritional status".mp. OR "protein status".mp. OR exp Muscle Proteins/ OR "muscle proteins".mp. OR "protein metabolism".mp. OR "muscle protein metabolism".mp. OR exp Body Composition/ OR "body composition".mp. OR exp Muscle Strength/ OR "muscle strength".mp. OR "muscle function".mp. OR exp Prealbumin/ OR prealbumin.mp. OR Transthyretin.mp. OR exp Albumins/ OR albumin.mp. OR "3-methylhistidine concentrations".mp. OR exp Retinol-Binding Proteins/ OR "retinol-binding protein".mp. OR "urea production".mp. OR exp Nitrogen/ OR nitrogen.mp. OR exp Creatinine/ OR creatinine.mp. OR "VO2max" OR exp Physical Exertion/ OR "physical exertion".mp. OR exp Exercise Test/ OR "exercise test".mp.) [Limit to English language]