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Abstract: In this article, the problem of exponential mean-square stability analysis is discussed for uncertain networked control systems
expressed by a stochastic T-S fuzzy model. In general, the characteristics of random occurrence for multipath packet dropouts often exist in the
signal transmission network. For dealing with this difficult point, a dynamic output feedback strategy combining stochastic Bernoulli theory is
employed. Then, delay-dependent stability conditions are derived and closed-loop system is exponentially mean-square stable by designing
fuzzy-basis-dependent Lyapunov functional. Furthermore, in terms of linear matrix inequalities (LMIs) technology, sufficient conditions are
gained to guarantee the prescribed H-infinity performance. Different from previous literatures, the congruence transformation method is
employed to determine controller gain matrices for reducing the computation complexity of solving LMIs. Finally, the proposed method is
applied in tunnel diode circuit model to verify the applicability.
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1. Introduction

The development of network communication technology expands the application range of the network control systems
(Ramirez, Minami, & Sugimoto, 2018; Khan, Khan, Igbal, Mustafa, Abbasi et al., 2021; Chiang, & Liu, 2021). Networked control
systems are very important control system, the system information and control signals are transmitted via the shared digital
networks (Khan, Khan, Igbal, Mustafa, Abbasi et al., 2021). Generally, the networked control systems include many devices, such
as the sensor units, controller units, actuator units and control objects (Chiang, & Liu, 2021). In recent years, with the rapid
development of network technology, the networked control systems have great advantages than the conventional control systems
(Haghighi, Tavassoli, & Farhadi, 2020). The networked control systems have some advantages, such as the signal transmission
flexibility, low installation cost, easy diagnosis maintenance and so on (Du, Kao, & Park, 2021). Thus, the networked control
systems have attracted much attention (Haghighi, Tavassoli, & Farhadi, 2020; Zhang, Wang, Jiang, & Zhang, 2015; Dhanalakshmi,
Senpagam, & Mohanapriya, 2021; Zheng, Zhang, Sun, & Wen, 2022). However, the wide application of networked control
systems will also bring some unexpected disadvantages (Du, Kao, & Park, 2021; Chandrasekaran, Durairaj, & Padmavathi, 2021;
Zheng, Zhang, Sun, Wen, Li et al., 2021; Yu, Dong, Li, & Li, 2017). Particularly, in the data transmitting process from remote
sensors to local controllers, multipath packet dropouts will arise in the communication channels (Du, Kao, & Park, 2021; Du, Kao,
& Zhao, 2021; Du, Kao, Karimi, & Zhao, 2020; Zhang, Zheng, Lam, Wen, Sun et al., 2020).

In practical applications, the nonlinearities always exist because of the influence of external or internal factors, thus many
achievements have been obtained in the research of nonlinear system (Cheng, Wang, Stojanovic, He, Shi et al., 2021; Zheng, Wang,
Zhang, & Yin, 2019; Liu, Lam, Ban, & Zhao, 2016). In order to deal with the nonlinearities, most of the methods are available for
investigation of qualitative behaviors of both nonlinear and linear dynamical systems, such as Jacobian method, T-S fuzzy
technique, and other techniques (Cheng, Wang, Stojanovic, He, Shi et al., 2021; Li, Sun, & Tong, 2019). In addition, there are
many nonlinearities in the physical systems, and there are serious difficulties in the stability analysis and controller design of
control systems (Fang, Zhu, Stojanovic, Nie, He et al., 2021; Ruangsang, & Assawinchaichote, 2019). For example, an online
adaptive optimal control was proposed for a class of nonlinear systems, and the system model was transferred to N coupled linear
subsystems by using subsystem transformation scheme (Fang, Zhu, Stojanovic, Nie, He et al., 2021). Furthermore, many methods
can be used to investigate the qualitative behavior of nonlinear and linear dynamical systems, such as sliding mode control, neural
network control, state feedback control, T-S fuzzy technique and so on (Lam, 2011; Wei, Qiu, & Karimi, 2017; Zhang, Wang,
Stojanovic, Cheng, He et al., 2021). Especially, the T-S fuzzy model is an efficient technique in describing the nonlinear systems
(Wei, Qiu, & Karimi, 2017; Li, Ma, & Tong, 2019). Compared with conventional linear submodel control methods, the main
advantage of T-S fuzzy technique is the high compatibility (Cheng, He, Stojanovic, Luan, & Liu, 2021; Wei, Qiu, Shi, & Lam,
2017; Cheng, He, Stojanovic, Luan, & Liu, 2021; Wei, Qiu, Shi, & Chadli, 2017 ). For example, the input state stabilizing problem
was investigated for a class of T-S fuzzy systems with multiple transmission channels under denial-of-service attacks (Wu, Yang,
& Wang, 2021). The integral sliding mode control was studied for a class of generalized T-S fuzzy singular stochastic systems by
involving the Markovian jump type of system parameters, and the matched/mismatched uncertainties can be approximated
effectively (Mani, Rajan, & Joo, 2021).

The system output is often measurable, thus the output feedback control strategy provides a feasible way to construct the
controller for the control system (Yu, Li, & Du, 2017). On the other hand, it is difficult to measure all the state variables
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information of the system (Wang, Tong, & Li, 2017). For example, the adaptive output feedback controller and a fuzzy observer
were employed to estimate unmeasured states (Li, & Tong, 2017). The robust output feedback control and fuzzy model were
employed to approximate unstructured uncertainties (Li, Tong, Liu, & Li, 2014). The results in (Li, & Tong, 2017; Li, Tong, Liu, &
Li, 2014) mean that the state variables information are unavailable in the measurement process. With above analysis, it can be seen
that the output feedback control is more effective for the control system (Tong, Sui, & Li, 2018; Wang, Qiu, Gao, & Wang, 2017).
In fact, the conventional output feedback control is easy to implement in practical applications, but it contains a small amount of
system state variables information (Hua, & Guan, 2016; Wang, Qiu, Fu, & Ji, 2017; Kwon, Park, Park, Lee, & Cha, 2017.). In
addition, the conventional output feedback can not satisfy the actual design requirements (Zheng, Wang, Wang, & Wen 2019; Wei,
Qiu, & Fu, 2015). Thus, the dynamic output feedback is proposed (Wei, Qiu, Karimi, & Wang, 2015; Zheng, Wang, Wang, & Wen,
2019).

Although there are some researchs about dynamic output feedback control have been studied on the networked control systems,
the problems of obtaining H-infinity controller by using cone complementarity linearization are not fully solved. Moreover, with
the development networked control systems, the packet dropouts problem often exist. Thus, multipath packet dropouts problem is
challenging to be solved. On the other hand, the robust adaptive fuzzy control was proposed for the nonlinear systems with induced
delay and data packet dropouts (Hamdy, Elhaleem, & Fkirin, 2017), without considering dynamic output feedback control. The
L-infinity stability analysis was proposed for the networked control systems subject to stochastic deception attacks (Wu, Xiong, &
Xie, 2021), without considering H-infinity stability analysis. Compared with (Hamdy, Elhaleem, & Fkirin, 2017; Wu, Xiong, &
Xie, 2021), both the dynamic output feedback control and H-infinity stability analysis are proposed for the uncertain networked
control systems with sector nonlinearities, time-varying delay and unmatched disturbance in this paper in this paper. The
contributions are presented below. (1) The system plant is approximated via the premise variables and fuzzy set. (2) The stochastic
Bernoulli theory is employed, and the characteristics of random occurrence for packet dropouts are described clearly. (3) By
designing the fuzzy-basis-dependent Lyapunov functional, the closed-loop system is exponentially mean-square stable.

Notations R" denotes n-dimensional Euclidean space, A>0 ( A>0) denotes positive (semi positive) definite matrix, A<0
(A<0) denotes negative (semi negative) definite matrix. “ *  denotes elements below main diagonal of symmetric matrix,

denotes Euclidean norm of “ « ”. sup{«} denotes minimum upper bound of *“ « , diag{r, r, ... r} denotes block diagonal
matrix with elements r,, r,, ... and r,.

2. System formulation

Consider the uncertain networked control systems
X(k+1) = (A+AA(K))x(k)+ (A + AA (k) x(k =d (k) +(E +AE (k)) f (x(K))+(E, +AE, (K)) fy (x(k —d (k)))+ B (k) + Dyo(k)
y(k)=Cx(k)+Cyx(k—d(k))+(Sx(k))+ D,a(k)

1)
z(k) = Lx(k)+Bu(k)
x(k)=w(k), k=-d,,-dy,+1...,0
Applying T-S fuzzy model, one can obtain
Plant rule iz if 6,(k) is My, 6,(k) is M;,, ... and 6,(k) is M,,, then

X(k+1) = (A +AA (K))x(K)+( Ay +AA; (K))x(k=d (k) +(E +AE; (k) f (x(K))+(Ey + A (K)) f, (x(k = d (K)))+ Byu (k) + Dy (k)
y(k)=Cx(k)+Cyx(k—d (k))+4(Sx(k))+ Dy (k) @
z(k)=Lx(k)+Byu(k)
x(k)=w(k), k=-d,,—d,+1...,0

A(k)=A+2A(K), Ay(k)=A;+AA;(k), E(k)=E+AE(k), Ey(k)=E4+AE,(k) @)

where 6,(k), 6,(k), ... and @,(k) are the premise variables, My (i=12,...,r and j=12,..., p) is the fuzzy set, r is the number
of fuzzy rules, and p is the number of premise variables. A, A;, E, E;, B;, D;, C;, C;, S;, D,, L, and B,, are the system
gain matrices with appropriate dimensions. x(k)eRR* is the state variable, y(k)eR" is the measured output, z(k)eR® is the
control output, u(k)eR" is the control input, y (k) is the initial condition with k=-d,,,-d,, +1,...,0.

AA(K), AA;(K), AE (k) and AE, (k) are the uncertainties satisfying (Guelton, Bouarar, & Manamanni, 2009)

:M'Fi(k)Ni (4)



M N
v N,

M, = MZ o Ni= N2 [ ) Fa(k) Fs(k) Fi4(k)]
M N

where F,(k), F,(k), F(k) and F,(k) satisfying

Fi(K)Fu(k)<1, Fi(k)F,(k)<I
{EAMF(MSI 1 ()R ()<
F(x(k)), f,(x(k-d(k))) and ¢(Sx(k)) satisfying (Benzaouia, 2012)

u> ,(0)=0, $(0)=0
(f(% ak» (%06 =% () (F (%)) = T (%, (K))=U, (3 (k) =, (K))) <O
(fa(x (% (k) =Va (3, () =3, (K)))' (£a (5. (K)) = 5 (%, (K)) =Va (%, (k) =%, (K))
(6(x myMuawr«xm»%maw»—ﬂnw»—wxaw»«xm»ﬁo

U,-U,>0, V,-V,>0, W,-W,>0

IA

0

where U, , U,, V;, V,, W, and W, are the known constant matrices.
d(k) is the time-varying delay and
d,<d(k)<d,, ad(k)<d

where d, is the lower bound of d(k), d, isthe upper bound of d(k), and d is upper bound of Ad (k).

o(k) is the unmatched disturbance and

Yo' (Ko(k)<o
k=0
The packet dropouts from sensor to controller are considered and y(k) can be rewritten

y(k)=a(k)(Cx(k)+Cyx(k—d (k))+4(Sx(k))+ Dyo(k))

According to Bernoulli probability distribution, one has

a(k)=1,  if signal transmission success
a(k)=0, if packet dropout

Prob{a(k)=1}=a, Prob{a(k)=0}=1-a, 0O<a<l
o’=a(l-a)

Q)

(6)

™

(®)

©)

(10)

(11)

(12)

(13)
(14)

where «(k)=1 denotes signal transmission success, and «(k)=0 denotes packet dropouts. Prob{a(k):l} is the Bernoulli

probability distribution of «(k)=1, and Prob{a(k)zo} is the Bernoulli probability distribution of «(k)=0. & is the value of

Prob{a(k)=1}, 1-& isthe value of Prob{a(k)=0},and o’ is the variance of c(k).

Substituting (11) into (2) yields

x(k+1) = (A + A (k) x(k) + (Ad.+AAd( ))x(k=d (k))+ (E; + A8, (K)) f (x(k))
+(Eq +AE, (k) f ( )+Bllu )+ Dy (k)

y(k) = (k) (Cx(K) + Cox(k - u>)¢@x(»+m@w»

z(k)=Lx(k)+Byu(k)

x(k)=y(k), k=-d,,—dy+1...,0

Applying T-S fuzzy inference, one has

(15)
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y(k)= (K))(e(k)(Cx(k) + Cyx(k = d (k) + (Sx(K)) + Dyeo(k) ) (16)

z(k)= h,(a(k))(hx )+ B,u(k))
x(k):y/(k), k=—dy,—dy +1...,0

T

where 0(k)=[6(k) 6,(k) ... 6,(k)] ,and

(60 =M, 6,0/ ST T, 6,0) an
n(0(0))=0, Y (0(k))-1 (18)

Remark 1. More precise approximation of the sector can be achieved by considering nonlinear bounds of the sector, which can
describe the specific nonlinearities better than using the sector with linear bounds (Lam, Liu, Wu, & Zhao, 2015). Furthermore, the
bounds of sector nonlinearities are allowed to change with the state variables, which can describe the wider range of nonlinearities
than the constant bounds (Lam, Liu, Wu, & Zhao, 2015). Thus, the sector nonlinearities are closer to the actual nonlinearities, and
the less conservative stability results can be obtained in the controller design. The T-S fuzzy model offers nice theory framework to
denote the system plant as average weighted sum of semi-linear subsystems (Sakr, Elnagar, Elbardini, & Sharaf, 2019; He, Liu, Wu,
& Li, 2020). Thus, the T-S fuzzy model is employed in this paper.

3. Controller design

The delay-dependent dynamic output feedback controller is designed as follows

X(k+1)=Ax(k—d(k))+B.y(k) 19)
u(k)=Cx(k)
Applying T-S fuzzy model, one has
Controller rule i: if ¢,(k) is M, 6,(k) is M,,, ... and g, (k) is M, , then
u(k):Cki)A((k)

where 6,(k), 6,(k), ... and ,(k) are the premise variables, M, (i=1 2 ..., r and j=12,..., p) is the fuzzy set, r is the number
of fuzzy rules, and p is the number of premise variables. A, B, and C, are the controller gain matrices, and %(k)eR* is the
controller state variable. The packet dropouts from controller to actuator are considered and u(k) is rewritten as follows

u(k)=B(k)Cyx(k) (21)
According to Bernoulli probability distribution, one has
B(k)=1,  if signal transmission success 22)
B(k)=0, if packet dropout
Prob{B(k)=1}=p8, Prob{p(k)=0}=1-5, 0<p<1 (23)
5°=p(1-B) (24)

where g(k)=1 denotes signal transmission success, and g(k)=0 denotes packet dropouts. Prob{,B(k):l} is the Bernoulli

probability distribution of g(k)=1, and Prob{ﬂ(k)zo} is the Bernoulli probability distribution of g(k)=0. g is the value of

Prob{p(k)=1}, 1- B is the value of Prob{s(k)=0},and & is the variance of p(k). Substituting (21) into (20) yields
{)”((k +1)= AR(k—d(k))+B,y(k) 25)
u(k)=B(k)Cyx(k)

Applying T-S fuzzy inference, one can obtain



- (26)
0()= (01K (A1, (K)
where 0(k)=[4,(k) 6,(k) ... 6,(k)] ,and
A (000) =TT (4,0) / STTM, (0,(6) @)
R (0(K))>0, gﬁi(e(k))zl (28)
Applying (26) to (16), the closed-loop system is obtained
{q(k+1):Aj(k)n(k)+Aﬂj(k)Hn(k—d(k))+Ei(k)f(x(k))+Edi(k)fd(x(k—d(k)))+a(k)Bki¢(Six(k))+Dijw(k) (29)
2(k)= ()
where
n(k){im Aj(k):zlljz;h(G(k))ﬁj(ﬁ(k))l:a(ﬁ)(;zci g (klf“c“] Ad,(k)=;§h(ﬁ(k))ﬁj(ﬂ(k))[a(f)ét)cj
o=/ £ (4)-S(006) 1) £, (- 20 (000) 1Y) 0)
-SR0[0 EENOMR 0 s | -SSR0 00 g |
Let us define
f Ak) B(K)BCs| & - A (k)
- S e o) ALl "E ] A 0-E S o) 4|
6= Z 3005 (00 g o G~ S50 (000 5. |
A-SEnomn ol A OB A EEnaonma] 2
£ -n(o00) 5| £, =300 7 o
A 0-Eno) A ] )= S o0) 4|
AEi(k):éhi(e(k)){AEio(k)} AEdi(k):iz;:hi(é’(k)){AE‘g(k)}
Mi:[MiT O]T: Nu:[Nn 0]

Definition 1 (Exponential mean-square stability) (Dong, Wang, Ho, & Gao, 2010). Under any initial condition and w(k)=0, if
there exist x>0 and 0< y <1 such that

B{[n(0) < sup Bllw(0[ ], @(k)=0 (32)
—dy <k<0
then the system is said to be exponentially mean-square stable, where 7(k) is the state variable, y (k) is the initial condition.

Definition 2 (H-infinite performance) (Burl, 1999). Under zero initial condition and e(k)=0, if z(k) satisfies

E{ZZT(k)z(k)}_m{gd(k)w(k)}so, (k) %0 (33)

then the prescribed H-infinite performance is guaranteed, where y >0 is H-infinity performance index.
Lemma 1 (Schur complement) (Marouf, Esfanjani, Akbari, & Barforooshan, 2016). For given matrices S, =S, and S,, =S, , the

following inequality
S, S
S=| 2 12} <0 (34)
|:82T1 Szz



is equivalent to

S, <0, S§,-8,5,5,<0 (35)
Lemma 2 (Guelton, Bouarar, & Manamanni, 2009). For given scalar ¢ >0 and matrices D, F and G, the following inequality
holds

DFG +(DFG) <e™DD" +£G'G (36)
F'F<l 37
Lemma 3 (Song, Niu, Lam, & Lam, 2018). For given X; e R*”, if there exist Y, e R™ satisfying
X;>0, Y,>0
{Xi '}zo, i=12,..,r (38)
Iy,
then the following inequalities hold
tr(X,Y;)>v
(39)
tr(XY,)=v, X, =Y, =1

Remark 2. The objectives in this paper can be summarized as follows
(i) closed-loop system (29) is exponentially mean-square stable under any initial condition and w(k)=0;

(i) prescribed H-infinity performance is guaranteed under zero initial condition and w(k)=0;

(iii) A;, B, and C, are determined by employing the proposed methods.

Remark 3. The dynamic output feedback control is easy to implement and required conditions are less conservative (Zhao, & Dian,
2018). The T-S fuzzy model has nice ability to facilitate controller design, thus it is more effective to design the controller in
practice (Choi, Ahn, Shi, Wu, & Lim, 2018; Wei, Qiu, Shi, & Wu, 2016; Wang, Wu, Wang, & Ma, 2020). Thus, the stochastic T-S
fuzzy delay-dependent dynamic output feedback controller is designed in this section.

4. Main results
4.1. Stability conditions

Theorem 1. For given scalars ¢>0, >0, d >0, 0>0, §>0, 0<a<l, 0<pB<1 and matrices N, , N,, N, N,
(i=12,...,r), U, U,, V,, V,, W,, W, satisfying U,-U, >0, V,-V, >0, W,-W, >0, there exist the matrices U, , U,, V,, V,, W,,
W, and fuzzy-basis-dependent matrices P(h)=P"(h)>0, Q(h)=Q" (h)>0, G,(h)=G/ (h)>0, G,(h)=G; (h)>0satisfying

G (UJu,+Uju,) G- (U +u7) @ (STW,W,S, +STW WS, )

! 2 2 2 ! 2

[

40
v A +v;v1), V.- _(vlT +V,) ) Wi - _(sfwlT +S/W,) (0
2 2 2

* * * * * * %

0 IT, * * * * * *

—U;H 0 1 * * ® * *

0 A 0 -Al =*= = * *
V= -W,'H 0 2 0 0o -1 = * * <0 “1)

Eﬁ] 'K‘dij Eu Edi 0 Hb * *

oC; oCy 0 0 6B, 0 -P*(h)G(h) =

| N, N, Ny N, 0 0 0 ¢l |
where

=-P(h)+(d, -d,+1)H'Q(h)G,*(h)H ~H'UH, II,=-Q(h)G,'(h)-AV,, I, =-P*(h)G,(h)+eMM/ w2

o=Ja(l-a), 5:#&(1—5), N, =[N, 0]
then the closed-loop system (29) is exponentially mean-square stable.

Proof. Consider V (k) as follows
V (k) =V (k) +V, (k) +V5 (k) (43)



Vi(k )=nT(k)P(h)G£1(h)n(k)
V()= 3 o (DHQ(NG (n) () w
V- 3 zn HTQn)G: (h) Hi ()
Taking the forward difference of (43) along (29), one has
AV (K)=AV, (k) +AV, (k) + AV, (k) (45)
where
AV, (k) =V, (k +1) =V, (k) (46)
AV, (K) =V, (k+1)-V, (k) (47)
AV, (k) =V, (k+1) -V, (k) (48)
Taking the mathematical expectation of (45) along (2), one has
B{AV (k)} =E{AV, (k)} +E{AV, (k)} + E{AV,(k)} (49)

Taking the mathematical expectation of (46) along (29), one has

E{AV, (k) =B{V, (k +1) -V, (k)}
E{/Sg (K)P(h)G(h) A (k) +o?B] (k)P (h)G.*(h)B, (k) - 1" (k)P(h)Gl’l(h)q(k)} (50)
E{AI(k)P(h)Gfl(h)/%(k)}+02E{!§J(k)P(h)Gf(h)éo(k)}—E{nT(k)P(h)Gfl(h)n(k)}

where
{&(k)= Ay () (K) + Ay (k) Hap (k= d (k) + E () £ (x(K)) + Eg (K) g (x(k = d (K))) + @Byg(Sx(k)) (51)
B, (k) =Cyn7(k)+CyHn(k —d(k))+B,gp(Sx(k))
Taking the mathematical expectation of (47) along (29), one has
E{AV, (k)} = E{V, (k+1) -V, (k)}

Bl OHRIE I S 7RG i)

=k—dy +1
From Theorem 1, one knows that Q(h)>0 and G, (h)>0. Since Gz(h)>0, one can obtain G,*(h)>0 . Both considering Q(h)>0
and G,'(h)>0, one can obtain H'Q(h)G,"(h)H >0, which implies the following inequality holds

7" (k=d(k))H'Q(h)G;* (h)Hn(k —d (k)) =0

then it can be verified that

E{sz(k)}:E{Vz(k+1)—V2(k)}
:E{ (K)HTQ(h)G," (h)Hn(k)+ :Z:: 177 Q(h)G, 1(h)Hﬂ(i)}
<E{7" (R QG (M) (I ()R QME (n(k-d(k) s 3 5 (HNG R0 (32
= B{y’ () HQUNG: (1) M (k)] B (kA () QNG (a3 ()]

E{ 5 nT(i)HTQ(h)G;(h)Hn<i>}

i=k—dy +1

Taking the mathematical expectation of (48) along (29), one has

E{AV, (K)f = E{V;(k+1) =V, (k)}

:E{(de )n" (k)HTQ(h)G, :Z:: 177 Q(h)G;, 1(h)H77(i)} (53)
:E{(dM —d, )" (K)HTQ(h)G,* (h)Ha( k)} { :Z:: 1;7 Q(h)G; 1(h)H77(i)}

Substituting (50), (52) and (53) into (49), one has



E{AV (K)} <B{E (K (K)& (k) + & (k) AT (K)P(h)Gy* (h) Ay (k)& (k) + o7& (K)BS P (h)Gr* () By (K )

& (K000 £ (A (PG (A KI5+ & (BIP(N)G; (1)85(0)
0|5 5 O |-l (0peh(0]-5{ 'S 77 (ot

i=k—dy +1

where
&(K)=[n7(0) ¥ (k=d()) £ (x()) 1 (x(k=d(k))) ¢ (sx(k))]
AK)=[AK) A, (k) E(k) Eq(k) 0]
vi(k)=diag{r;, -Q(h) 0 0 0}, B,=[C; C; 0 0 By]
I, =—P(h)G,*(h)+(dy, —d, +1))H'Q(h)G,"(h)H
From (7), one can obtain

el
fd)((f(kk (gkli))))} {VT I}[f)((f(lzk—d(glzli))))}<o
] (=

From (54) and (57), one has

B{aV (k)} <B{& (K)yi (k)& (k) + & (k) A (PG (h) A (k)& (k )+<f§o (K)Bs P (h)G,* (n)Bodo (k)

‘Eﬂw }{ o HM}L e } [ }T% %ﬂ 5@ ﬁﬁﬁ
e H L }}

where
I 0 -H'U, 0 -HW
0 —Q(h)G'(h)-A, 0 -A, 0
w,(k)=| -UJH 0 - 0 0 (<0
0 SA 0 -2l 0
-W,H 0 0 0 -
Applying Lemma 1 to (59), one has
H+50| * * * * * *
0 —Q(h)G,'(h)-av, = * * * *
_U;H 0 -1 * * * *
wy(k)=| O -V, 0 Al o« * * <0
-W,H 0 0 0o -l * *
A (k) Ay (K) E (k) Ea(k) 0 -P%(h)Gy(h) *
oC; oCy 0 0 6B, 0 ~P(h)G,(h)

and
V’s(k) =Y, +Al//3(k)
where

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)



_H+80| * * * * % %
0 QNG (h)-av, =* * % * *
-UJH 0 = * *
wv,=| 0 A 0 -Al = * *
-W,H 0 o 0 -l * *
A A E B 0 Pihg() -
oC, oCy, 0 0 o8B, 0 —P(h)G,(h)

[0 * * * * % % |

0 0 * * * % %

0 0 0 * N

Al//3(k)= 0 0 0 0 ok ok

0 0 0 0 0 *

AR(K) ARG(K) AE(K) AE,(K) 0 0 =

| 0 0 0 0 00 0

From (31) and (63), one can obtain
where
M=[0 0 0 0 0 M o], N=[N, N, N,

Applying Lemma 2 to (64), one has

From (60) and (66), one has

where
[T+ &l * % * * *
0 Ha * * * * *
_L]ZT H 0 -1 = * * *
wo=| 0 =AY, 0 -Al % *
W,H 0 0 0 -l = *
Ai EEH‘ Ei Edi o I, *

It can be verified that there exists ¢, >0 satisfying
v +gdiag{l 0}<0
where w <0 is a matrix with appropriate dimension.

In order to prove the exponential mean-square stability, one should prove that the inequality (69) holds.

According to Lemma 1, (60) is equivalent to (70)

oC; oCy 0 0 6B, 0 -P*(h)G(h)

N, 0 0 0]

v, (K)+&diag{l 0}+A (k)P(h)G*(h)A)(k)+c’B;P(h)G*(h)B, <0

The inequality (69) holds if , +s*N'N, satisfying (71)
w,+& NN, <0
Substituting (71) into (67), one can obtain y,(k)<0, and the inequality (70) holds
From (58) and (70), one has
B{AV (K)} <~ {7 (k)|
From (43) and (44), one has

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)



1 k—d,,

:E{UT(k)P(h)Gl—l(h);](k)}+E{k 7 (IVH'Q(h)G; (M Hn(i)+ Y kZf,f(i)HTQ(h)GZ—l(h)Hq(i)}

i=k—d(k) j=k—dy +1 i=]

<sfp(9f |+ 3 =)

From (44) and (72), one has

Blv ()} < B )+, 3, 5]}

™M

where p, >1 and p, >1 are the scalars.
From (72) and (74), one can obtain

ABY (kD) — BV ()} = BAV ()} + 4 (=D BV (K)} < () Bl () | + wz(u)i::Z:: wB{ln ()

with

ay(p)=—pey+(u+1)p, @, (1)=(u-1)p,
where x>1 is ascalar.
Taking the sum on both sides of (75) from k=0 to k=N -1, one has

NE{V(N)}—E{V(O)}Swl(y)gykE{Hn(k)Hz}+w2(y)§izzm A B{l (i)

where N >d,, +1.
For d,, =1, it can be verified that the following inequality holds

5 5 waluor)< 3 > w3 ZﬂE{n(')}+Z > w)

k=0i=k—dy

)

<d, Zl HMME{H”(i)HZ}-’-dM N—i‘:w HimME{H”(i)HZ}+dMi:NNZ;M ﬂHdME{HU(i)HZ}

i=0

<tuut e Blly )|+ dus Sl

—dy <i<0

Next, from (77) and (78), one has

NE{V(N)}S]E{V(O)}+(a)1(y)+dMydMa)z(y))gyk]E{Hn(k)Hz}+dMydMa)2(,u) max ]E{Ht//( H }

S0
Let us define
poz/lmin(P(h)Gl’l(h)), p=max{p, p,}
where A, (+) is the minimum eigenvalue value of ««
It is obvious that
BV (N)} 2 pB{ln(N)[ |
From (74) and (80), it can be verified that
1V (0)} = max B{Jv (1]

—dy <i<0
For (76), it can be seen that there exists the scalar x, >1 satisfying
a’l(ﬂo)"'dmﬂgM Q)Z(luo) =0
Substituting (81)-(83) into (79)
B{lr(N)[f <™ max Bl (0

—dy <i<0

where
Co = po_l(p +dy 45" @, (/10))
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(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

Then, it can be seen that closed-loop system (29) is exponentially mean-square stable. The objective (i) in Remark 2 is

achieved, and the proof of Theorem 1 is completed.
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Remark 4. From (40)-(42), it can be seen that fuzzy-basis-dependent matrices P(h), Q(h), G,(h), G,(h), the lower bounds d
and d,, are employed to derive the fuzzy-basis-dependent and delay-dependent stability conditions, thus the control design
conditions are relaxed by adjusting d,, and d,, . Moreover, the more important stability results can be obtained in the exponential

mean-square stability analysis, because it is used to investigate the exponential convergence performance of state variables (Guan,
& Liu, 2016). Thus, the exponential mean-square stability analysis is discussed in this paper. However, the prescribed H-infinity
performance is not guaranteed, and Theorem 2 is presented.

4.2. Less conservative stability conditions

Theorem 2. For given scalars ¢>0, >0, d_ >0, 0>0, >0, y>0, 0<& <1, 0<pg <1 and matrices N, , N,,, N;;, N,
(i=12,...,r), U, U,, V,, V,, W,, W, satisfying U,-U, >0, V,-V, >0, W,-W, >0, there exist the matrices U, , U,, V,, V,, W,,
W, and fuzzy-basis-dependent matrices P(h)=P"(h)>0, Q(h)=Q"(h)>0 satisfying

G (Ulu,+Uju,) G- (Ul +u7) @ (STWW,S, +S/WWS; )

! 2 o 2 2
(WY, +V)V,) (VT +v)) (STw," +siw,") (86)
\71: 172 2 1 ’ \72:_ 1 2 ’ A2:_ i 1 i 2
2 2 2
R * * * * * * * |
0 ]'[él * * * * * * *
-UJH 0 -1 * * * * * *
0 -A, 0 -Al = * * *
o(k)=|-W,H 0 0 0 I x % * * |<0 (87)
0 0 0 0 0 —4 = * *
A A E B 0 0 om s
oC; oCy; 0O 0 6B, 0 0 -P'h) =
L Nn Ni2 Ni3 Ni4 0 0 0 0 _gl,

where
Y=-P(h)+(d,, —d, +1)H'Q(h)H —H'UH —H'W,H + L
,=-Q(h)-A,, M,=-P*(h)+eMM/ 68)

o=Ja(l-a), 5:,[5(1—[3), N, =[N, 0]

then the prescribed H-infinity performance is guaranteed.
Proof. The proof of Theorem 2 is divided into Steps 1-2.

Step 1. In Theorem 2, » >0 is a given scalar. According to Lemma 1 (Schur complement), one knows that (87) is equivalent
to (41). Thus, the proof of Theorem 2 is converted into the proof of Theorem 1. Via similar method in Theorem 1, it can be seen
that the closed-loop system is exponentially mean-square stable. The proof of the objective (i) in Remark 2 is achieved, and the
proof of Step 1 is completed.

Step 2. Consider V(k) as follows

V(K)=30)+ () + B (K) (89)
% (K)=n" ()P (W) (K)

k-1

w(k)= 2, " (i))H'Q(h)Hn(i)

i=k—d (k) (90)
u(k)= 3 o ()HQHx()
Taking the forward difference of (89) along (29)
AV(k)=AR(k)+A1(k)+AY (k) (91)
AR (k) =R (k+1)-R(k) (92)

AV (K) =V (k+1) - (K) (93)
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A (k) =W (k+1)=1 (k) (94)
Taking the mathematical expectation of (91) along (29)
E{AV(k)} = E{AR(k)} + E{A) (k)} + E{AY(k)} (95)

Taking the mathematical expectation of (92) along (29)

E{A(k)} :E{))l(k+l)—))l(k)}:E{ﬁg (k)P(h)/:\U(k)+02I§g(k)P(h)éO(k)—nT(k)P(h)n(k)}

. . . R (96)
:E{A{(k)p(h)pb(k)}+az]E{Bg(k)p(h)so(k)}_E{nT(k)p(h)n(k)}
where
{'&n(k)_Ai(k)ﬂ(k)JrAﬁj(k)H”(k_d(k))’LEi(k)f(X(k))+Edi(k)fd(x(k_d(k)))+aBki¢(SiX(k)) 97)
B, (k) =Cyn(k)+CyHn(k—d(k))+Byg(Sx(k))
Taking the mathematical expectation of (93) along (29)
E{Amk)}—E{wmn—wn<E{rf(k)HTQ(h)Hn(k)—nT(k—d(k))HTQ( Hak-a()+ 3 7 QM)A ()}
» =k—dy +1 (98)
:E{UT(k)HTQ(h)Hq(k)}—E{nT(k—d(k))HTQ(h)Hn(k—d(k))}+1E{kzd: +177 (IYHTQ(h)Hn( )}
Taking the mathematical expectation of (94) along (29)
B89}~ B4 (25K} B{(0 -2 (DF QM- 3 7 Q)]
=B{(dy —d,,)7" (K)H'Q(h)Hn (k)] (99)
S RCECI)
Substituting (96), (98) and (99) into (95)
E{Av(k)}sE{g(k)ol(k)g(k)+5(k)AT(k)P(h)A(k)g(k)+gz§T( )B"P(h)B&(K)} (100
=B{& (k)@ (k)&(K)} +B{& (k) AT (k)P(h) A(k)&(K)} + o*B{ET (k)BTP(h)BE(K)}
where
£(k) —[T X (k=d(k)) f7(x(k)) x(k-d(k)) ¢ (sx(k)) o (k)]
() iag {~ () (dy -d,+1)H'QH —-Q 0 0 0 0} (101)
)=[Aj(k) Ay(k) E(k) E4(k) 0 D], B=[C; Cy 0 0 B, 0]
For (29), the H-infinity performance function J(n) is designed as follows
J(n)—E{an(;(zT(k)z(k)—;/zaf(k)a)(k))}, w(k)=0 (102)
Under zero initial condition, consider (57), (100) and (102), one has
J(n):E{kZ:;(zT(k)z(k)—yzcoT(k)w(k)+AV(k))}—E{V(n+1)}
sE{kno(nT(k)D”gﬂ(k)—ysz(k)w(k)+Av(k))} (103)
<B{ 3 (0),(02(0)-£ ()X (OP(IAK)(K) -0 (WEP(REL(K) |, ofk) 0
where
Y 0 -H'U, 0 -HW, o0
0 Q(h)-a, 0 -A, 0 0
E A A
-W,'H 0 0 0 -l 0
0 0 0 0 [
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From Theorem 2, one knows that

P(h)=P"(h)>0 (105)
£ () AT (K)P(h)A(K)&(K) >0, &% (k)BTP(h)BE(k)>0 (106)
Substituting (106) into (103)
J(n)gE{ggT(k)cbz(k)g(k)} (107)
Applying Lemma 1 to (87)
RS 0 -H'U, 0 -HW, 0 |
0 -Q(h)-a, 0 -, O 0
T A
-W, H 0 0 0 -1 0
e 0 0 0 (—
Substituting (108) into (107), one has
J(n)sE{k";gT(k)qaz(k)g(k)}<o (109)
and substituting (102) into (105), one has
E{g(f(k)z(k)—;/zaf(k)a)(k))}gE{égT(k)®z(k)§(k)}<0, (k) %0 (110)
which yields
E{g(f(k)z(k)—yzmT(k)az(k))}<O, (k) %0 (111)
Substituting n=oc into (111)
E{if(k)z(k)}ﬁm{id(k)m(k)}<o, o(k)#0 (112)

With above analysis, the prescribed H-infinite performance is guaranteed.
Remark 5. In this section, the less conservative stability conditions are derived by constructing fuzzy-basis-dependent Lyapunov
functional. Compared with (44), the cross product terms P(h)G;*(h) and Q(h)G,*(h) between P(h), Q(h), G,(h) and G,(h)

are avoided in (90), thus the design conditions can be relaxed. H-infinity performance index is one of the most important robust
control performance indicators (Zhang, Wang, Jiang, & Zhang, 2015). Specifically, y is the H-infinity performance index of the
system and it is often used to investigate the control problem of minimum sensitivity. Moreover, the H-infinity optimization control
is more significant in the practical control system (Zhang, Wang, Jiang, & Zhang, 2015; Yu, Dong, Li, & Li, 2017). Thus, the
Lyapunov-Razumikhin method will be considered for the stability analysis in the next study.

4.3. Determine controller gain matrices

Theorem 3. For given scalars ¢>0, >0, d_ >0, 0>0, §>0, y>0, 0<&<1, 0<g <1 and matrices N, , N,,, N, N,
(i=12,...,r), U, U,, V,, V,, W,, W, satisfying U,-U, >0, V,-V, >0, W,-W, >0, there exist matrices U,, U,, V,, V,, W, ,
W,, A, Q, T, X;>0,Y,>0 and fuzzy-basis-dependent matrices P(h)=P" (h)>0, Q(h)=Q" (h)>0 satisfying

G (U, +UjU,) G- (Ul +u7) @ (STWW,S; +STWWS; )

1 2 ! 2 2 ) I >
T T T, yT T L Ty T (113)
g VeV g (V) (S siw)
1 2 J 2 2 ) 2 >
D,
%{ w }o (114)
(I)Zli (DZZi

where



_1:[ % % % % % ]
0 —Q(h)—/?fl * % % *
i 0 -1 * * *
®,; = T
0 —P(h)—/IV2 0 -Al = *
By 0 0 0 -l *
| O 0 0 0 0 f)/zl_
_®1i 0, 0; 0, 0 ®5i_ [ O * * x ]
O, 6, 0 0 06, 0 0 I = = * *
=2, N, N, N 0 0 0 0 -l = * *
CI) = 3i 7|2 i3 i4 ’ CI) o
#lg, N, 0 0 0 0 2710 0 -1 * *
E; O 0 0 0 0 0 0 Q‘l(h) *
| 0 0 0 0 0 0 | Eq; 0 O 0 0 -

S ] B T O R RO R

__U [X I]v Ezi:_WzT[Xi I], ESi:Nil[xi |]
S, =[LX+Bya L], Ey=[X 1], Z,=¢eM] [1 Y]
N RO INAC R N
Q YA + TC Y,A; +al Cy YE Y.E,
0 0 0 0
0O = Oy =0 v O=0 » Oy =6
o) rox, o) o) ool

then A;, B, and C, can be determined
A= Ri_l(Q_YiAXi -’ CX; +YiBliA)Gi_T' B, = Ri_lrv O :AGi_T
RG' =1-Y,X;
where R and G, are the parameter matrices with appropriate dimensions.
Proof. From (116), one has
_ =X, -l
1= <0
{ -1 _YJ

Y, - X'>0

Applying Lemma 1 to (122), one has

which implies | -Y;X; is a nonsingular matrix. Thus, there exist nonsingular matrices G, and R such that the (121) holds.

Then, via similar method in (Gahinet, & Apkarian, 1994), let us define
P(h)=I1,I1"

I S
Mg o) ™70 &

ol

Substituting (125) into (124) yields

where

Z, =G X, (Y, - X" )XG,  Z—RYR =R (XY, = 1) (Y, = X")(,X, - 1) 'R,

Z,>0, Z,-R'Y,R >0

Consider (114) and (125), one has
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(115)

(116)

117)

(118)

(119)

(120)
(121)

(122)

(123)

(124)

(125)

(126)

(127)
(128)
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-1} P(h)]:[1 * * * * * * * * * * *
0 —Q(h) - 1\71 * * * * * * * * * *
_L]ZT Hﬁl 0 -1 * * * * * * * * %
0 -V, 0 Al * * * * * * * *
W, HIT, 0 0 0 -1 * * * x % * *
0 0 00 0 j72l ot * % * * |0 (129)
ﬁ; Ajﬁl H; A\iij H;E H; Edi 0 H; Dij —H; P_l(h)nz * * * * *
ol1,C,I, olT,Cy; 0 0 odB, O 0 LP*(h)I, * = * *
NI, N, N, N, 0 0 0 0 —&l  x * *
L, [0, 0 0 0 0 0 0 0 0 -l * *
Hf[1 0 0 0 0 0 0 0 0 0 _Q’l(h) *
| 0 0 0 0 0 0 eM/TI, 0 0 o0 0 —&7 |
Next, the congruence transformation matrices M, and M, are designed
M=diag{r," 1 I 1 I 1 1,7 Im" 1o (130)
My=diag{T,* | 1 I 1 | I I, 1111}

Taking the congruence transformation of (129) by M, and M,, the inequality (87) holds. With above analysis, A;, B, and C,
can be determined

Ai= Riil(Q_YiAxi —adCX; +Y, BliA)GiiT’ By = Riilrr Ci :AG;T (131)
Remark 6. From Theorem 3, it can be seen that the congruence transformation matrices M, and M, are employed to determine
A, B, and C, . However, it may be difficult to solve the nonconvex problem caused by fuzzy-basis-dependent LMI. Thus,
Corollary 1 is presented to convert the controller design problem into the nonlinear minimization constraints.

4.4. Cone complementarity linearization
Corollary 1. The nonlinear minimization constraints is described below

o)

(a) the equalities (113)
"|(b) the inequality (114)

(132)

The cone complementarity linearization algorithm is designed.
Table 1. The cone complementarity linearization algorithm.

Start

Step 1: Set the system gain matrices A, B, C; and the Bernoulli probability distribution a . Go to Step 2.

Step 2: Select 6,(k), 6,(k), ..., 8,(k) and design M (i=1 2, ..., r and j=12,..., p ) for (2). Go to Step 3.

Step 3: Select 6,(k), 6,(k), ..., 6,(k) and design M, (i=1 2, ..., r and j=12,...,p)for (20). Go to Step 4.

Step 4: Set , for the closed-loop system (29). Go to Step 5.

Step 5: Solve LMIs (38), (113) and (114) to obtain the initial feasible solutions A°, Q°, I’, X° and Y, then set A"=0, where
A is the iteration number. Go to Step 6.

Step 6: Solve LMIs (133) for the A, QY , TV, X,

¥ and Y,V satisfying (132), set A" =A, Q" =0, "=r, x\1=x,

and Y'*" =Y,. Go to Step 7.
Step 7: If (38), (113) and (114) are feasible for the A*, QY , TV, X' and Y," that obtained in Step 6, go to Step 8.

If (38), (113) and (114) are unfeasible for A", Q", I, X' and Y, that obtained in Step 6, where N<N and N is
the maximum iteration number, set N =N +1 and return to Step 6.
Step 8: Output A, @Y, TV, XV and YV, set A=A, Q" =0Q, V=T, X=X, and Y, =V, . Go to Step 9.

Step 9: Substitute A, B;, C, @, A, @, ', X; and Y, into (131), A;, B, and C, can be determined. Exit.

Remark 7. The controller gain matrices can be determined via cone complementarity linearization, and the nonconvex problem
can be solved.
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5. Simulation examples
5.1. Example 1

Consider a class of uncertain networked control systems
x(k +1) = (A+AA(K))x (k) + (A + AA, (K))x(k —d (k))+(E + AE (k)) f (x(k))
+(Ey +AE, (k)) fy (x(k—d (k)))+ B (k) + Dyo(k)
y(k)=Cx(k)+Cyx(k —d (k))+¢(Sx(k))+ Do (k)
z(k) = Lx(k)+B,u(k)
Applying T-S fuzzy model and stochastic Bernoulli theory, one has
X(k+2)= (A +8A (k))x(k) + (A + AR (K))x(k =d (k))+ (E; + AE, (k) f (x(k))
+(Eq +AEg (K)) £y (x(k —d (k)))+ Byu(k) + Dyo(k)
y(k)=a(Kk)(Cx(k)+Cax(k—d(k))+g(Sx(k))+ Dye(K))
z(k)=Lx(k)+Byu(k)
A 2-rules T-S fuzzy model is employed and A, A,, E, E;, B, D;, C;, C;, S, D,, L and B, (i=1,2) are given as follows

[o6 0 [o3 o0 5 o6 0 [o03 o0 E_o.z E_o.7 E_o.z E_o.1 135
A= 1 -01/ A= 1 -07 ¢ Aa= -1 1/ A“_—0.2 03| * o6 2 |o1| “ 7 |-01|" " |-03 (135)

0.8 0.9 02 0 0 01 06 0 06 0
By=-06 B,=-02 Du=| (| Da=loo &1 03 @701 02| % o 11 C=7| o 13| 39

(133)

(134)

0.1 0
D,, { 0 J, D,, —{ 0 J, L, =05 L,=03 B,=B, =066 S =03 S,=02 (137)
For (134), the stochastic controller is designed

{)‘((k +1)= AR(k—d(k))+B,y(k) (138)
u(k)=pB(k)Cyx(k)
Solve the LMIs, A4, 2, 7, X, and Y, (i=1 2) are solved

0.3171 0.0344 _[0.3816  0.7952 [-0.4898 0.6463
0.9502 0.4387 | “10.7655 -0.1869| | 0.4456 0.7094

« _| 00857 0.9340} :{0.7577 0.3922} :{0.2171 0.8130} {0.0640 0.6328} (139)
| 0 06787 * |07431 0.6555] * |0.0607 009672 * |0.1790 0.8496
Using the stability conditions, A;, B, and C, (i=1,2) are solved
-33.5128 32.8327 -35.1551 -31.6897 1.4061 1.3051
1{—1.2769 1.0836} 2{28.8847 26.2382} k1{—0.9050 1.1942} (140)
26355 -2.1794 7.8744 -7.9182 11.9478 10.4816
k2{—2.1779 0.8737] kl{6.1474 —5.7300] k2{1.8743 1.8885}

50

— (k)
o % (k) |

%,(k) and x, (k)

1 2 3 4 5 6 7 8 9 1
Time(s)
Figure 1. Responses of x, (k) and x, (k).
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Figure 2. Responses of control inputs.
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Figure 3. Response of \/E{gf (k)z(k)} / E{gd(k)w(k)} with o(k)=098k? (~1<k<3).

Magnitude

Figure 4. Response of \jm{if (k)z(k)}/E{in(k)w(k)} for different d,, and d.
The sector nonlinearities are given as follows
f(x(k))=x*(k)+1
o (x(k=d (k)))=x*(k—d (k)) (141)
#(S(x(k)))=tanh(x(k))-0.18
The responses of x, (k) and x,(k) are shown in Figure 1. The responses of control inputs are shown in Figure 2. The response
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f \/E{gf(k) }/ {Za} w(k} is shown in Figure 3. The response of \/E{;zT(k)z(k)}/E{gd(k)w(k)} for

different d,, and d is shown in Figure 4. From Figure 1, it can be seen that the closed-loop system is exponentially mean-square

stable. From Figure 2, it can be seen that the control inputs are bounded. From Figure 3, it can be seen that the response of

\/E{Zf(k)z(k)}/E{gd(k)w(k)} is smaller than » =0.70.

Remark 8. In Figure 4, d,, and d can affect the response of \/E{if(k)z(k)}/E{id(k)w(k)} , Which implies d,, and d
k=0

can affect H-infinity performance.

5.2. Example 2
Inductor
Ve(K) Vo(K)
'L(") W io(K)
J RE
Resistor Capacitor | Tunnel diode
Vin(k) _T_ -S’Lvom(k)
== GND1 GND2 = GND3 == GND4 =

Figure 5. Schematic diagram of tunnel diode circuit system.

Consider a class of tunnel diode circuit systems with networked control (Yu, Sun, & Li, 2018)

AV, (K) = Cl i (k) Cl io (k)
AiL(k)——LiEVc(k)—%ziL(kHLiEVm(k) (142)
Ip (k) - V[;;{(Dk)

where R; is the resistance, L; is the inductor, C; is the capacitor, and R, is the equivalent resistance of tunnel diode. i_(k),

ic (k) and i, (k) are the currents in the inductor, capacitor and tunnel diode, respectively. V,, (k) and V, (k) are the measured

out

output and control input of tunnel diode circuit system, respectively. Let us define
x (k) =V, (k), xl(k)e[—\/ﬁ, \/ﬁ] % (K)=i_(K), %(K)=ip(k), Y(K)=Ve(k), z(k)=i_(k), u(k)=V,(k) (143)

Substituting (143) into (142), one has

0, ()=~ 500~ (E () + (k) a0

then (144) is transformed as

) (145)
)



Consider the uncertainties, sector nonlinearities, time-varying delay and unmatched disturbance in (145), one has
x(k +1) = (A+AA(K))x(K) + (A + AA (K))x(k —d (k))+(E + AE (k)) f (x(k))
+(Ey + A (K)) g (x(k—=d (k))) + Bu(k) + Dyo(k)
y(k)=Cx(k)+Cyx(k —d(k))+¢(Sx(k))+ D,a(k)
z(k)=Lx(k)+Byu(k)
Applying T-S fuzzy model and stochastic Bernoulli theory, one has
X(k+12)=(A +8A (K))x(k)+ (A +8A, (K))x(k =d (k))+ (E; + AE; (K)) f (x(k))
+(Eg +AEg (K)) fy (x(k—d (k)))+ Byu(k)+ Dyo(k)
y(k)=a(K)(Cx(k)+Cyx(k—d (k))+#(Sx(k)) + Dyeo(k))
z(k)=Lx(k)+Bu(k)
A, A;, B, E;, By, D, G, Cy, S, Dy, L and B, (i=1 2) are given as follows

0.8147 0.9134 0.2785 0.6948 0.0344 0.7655 0.4898 0.7094 0.6797
A =|009058 06324 05469|, A, =|03171 04387 0.7952|, A, =|0.4456 0.7547 0.6551
01270 0.0975 0.9575 0.9502 0.3816 0.1869 0.6463 0.2760 0.1626
01190 0.3404 0.7513 ~0.6991 ~0.5472 0.2575 0.8143
A, =|04984 05853 0.2551|, E,=|0.8909 |, E,=| 01386 | E, =|08407| E,,=|0.2436
0.9597 0.2238 0.5060 0.9893 0.1493 0.1493 0.9293
0.3500 0.6160 [0.0759 0.7792 0.5688

B,=-09308, B,=-15856, D,=|0.1966 | D,=| 04733 |, C,=|0.0540 0.9340 0.4694
~0.2511 ~0.3517 105308 0.1299 0.0119

0.3371 0.3112 0.6020
C,=/0.1622 0.5285 0.2630 |,
0.7943 0.1656 0.6541

0.1818 0.1361
D, =[0.1616 |, D, =|0.5693|, L, =—
0.9999 05797

0.6892 0.0838 0.1524
C, =|-0.7482 02290 0.8258 |,
04505 09133 05382

Cdz =

For (148), the stochastic controller is designed

{)”((k +1)= A(k—d(k))+B,y(K)
u(k)=B(k)Cex(k)

Solving the LMIs, A, 2, ", X, and Y; (i=12) are solved

0.2769 0.8235
A=|0.0462 0.6948
0.0971 0.3171
0.2238  0.5060
X, =|0.7513 0.6991
0.2551 0.8909
0.0511 0.3417
Y,=|0.1600 0.8308
0.4733 0.5853

—-0.9502
—0.0344 |,
—0.4387
0.9593
0.5472 |,
0.1386
0.5497
0.9172 ],
0.2558

Using the stability conditions, A;, B, and C,

0.3816
Q=|0.7655
0.7952
[0.1493
X, =|0.2575
| 0.8407
[0.7572

~0.1869 0.6463

-0.4898 07094|, TI'=
~0.4456  0.7547

0.2543 0.9293]
0.8143 0.3500
0.2436 0.1966 |
0.5678 0.5308]
Y,=|0.7537 0.0759 0.7792
|0.3804 0.0540 0.9340 |

(i1=1,2) are solved as follows

[ 0.9961
-0.0782
| 0.4427

0.1067 0.7749
0.9619 0.8173
0.0046 0.8687

05499, L,=-0.1450, S, =0.0844, S,=0.8001, B, =0.8530, B,, =0.6222

-0.2760 0.1626  0.9597
0.6797 -0.1190 0.3404
0.6551 0.4984 —0.5853

19

(146)

(147)

(148)

(149)

(150)

(151)

(152)

(153)
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1.7575 22124 —2.8405 [-1.2843 —-12.4649 -8.9775 (33175 33307 -8.4658
A,=|9.2384 36696 40739 || A,=|-60799 80942 104646 |, B, =|-2.7984 57386 13.0819

22841 11832 0.5288 | 04077 -18.2948 -14.1395 | -0.8481 -0.2540 2.3967 154

-1.0849 -2.1917 4.9744 (06870 00673 0.1185 (27123 03729 -1.2584 (154)
B,=| 23801 19429 -4.7213|, C,=|-0.8144 —04770 —0.1540| C,=|1.2019 0.3383 —0.6030

-3.6696 —-1.6544 7.1568 | 03350 0.0521  0.0302 1.1672 0.0880 —0.5898

The response of & (k) with @ =0.95 is shown in Figure 6. The response of (k) with £ =0.90 is shown in Figure 7. The

3-dimentional response of x (k), x,(k) and x,(k) is shown in Figure 8. In Figures 6-8, it can be seen that the closed-loop system
is exponentially mean-square stable. The data comparison results of 5 with d =0.3000 and for d =0.2000 different d,, are

shown in Tables 2-3, respectively. In Tables 2-3, it can be seen that the smaller y can be obtained as d gets smaller. The data
comparison results corresponding to Table 3 is shown in Figure 9. In Table 3 and Figure 9, it can be seen that the smaller lower
bounds y are obtained by employing Theorem 3 than (Zheng, Wang, Wang, Wen, & Zhang, 2018) and (Zheng, Zhang, Wang,
Wen, & Wang, 2020). The data comparison results of d,, with d =0.3000 and d =0.2000 for different » are shown in Tables 4-5,

respectively. In Tables 4-5, it can be seen that the larger d,, can be obtained as d gets smaller. The data comparison results
corresponding to Table 5 is shown in Figure 10. In Table 5 and Figure 10, it can be seen that the larger d,, are obtained by

employing Theorem 3 than (Zheng, Wang, Wang, Wen, & Zhang, 2018) and (Zheng, Zhang, Wang, Wen, & Wang, 2020).

15+
1,
< o5t
E/O.S
0
05|
-1 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
Time(s)
Figure 6. Response of a(k) with & =0.95.
2
15+
| |
=
= 05 ‘
0
-05+

o 1 2 3 4 5 6 7 8 9 10
Time(s)
Figure 7. Response of B(k) with B=0.90.



Table 2. Data comparison results of lower bounds » with d =0.3000 for different d,, .
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Figure 8. 3-dimentional response of x, (k), x,(k) and x,(k).
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Figure 9. Data comparison results corresponding to Table 3.

3

25+

—6e— Zheng, etal., 2018
--©--- Zheng, etal., 2020
--0--- Theorem 3

0.5
0.1

0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.9

Figure 10. Data comparison results corresponding to Table 5.

Method il

0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000
Zheng, et al., 2018 2.1498 2.3614 2.5462 2.6299 2.7295 2.9688 3.0251
Zheng, et al., 2020 1.9386 2.1646 2.3727 2.4498 2.6286 2.7860 2.9443
Theorem 3 1.7778 1.9453 2.1674 2.2977 2.4738 2.5009 2.7735

21
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Table 3. Data comparison results of lower bounds 5 with d =0.2000 for different d,, .
dy
0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000

Zheng, et al., 2018 1.9661 2.1684 2.2520 2.4551 2.5476 2.7552 2.8278
Zheng, et al., 2020 1.7943 2.0646 2.1911 2.3660 2.4605 2.6083 2.7173
Theorem 3 1.6102 1.8446 1.9644 2.0624 2.3744 2.4636 2.5186

Method

Table 4. Data comparison results of upper bounds d,, with d =0.3000 for different » .

/4

Method

0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Zheng, et al., 2018 0.4806 0.6421 0.9941 1.3020 1.4268 1.8717 2.2213
Zheng, et al., 2020 0.6348 0.9020 1.1769 1.4331 1.6545 2.1199 2.4406
Theorem 3 0.7322 1.0021 1.2628 1.6376 1.9146 2.3742 2.6177

Table 5. Data comparison results of upper bounds d,, with d =0.2000 for different .
4

Method

0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000
Zheng, et al., 2018 0.6942 0.8682 1.1232 1.5822 1.6661 2.1881 24711
Zheng, et al., 2020 0.8527 1.1661 1.2524 1.6606 1.8626 2.3430 2.5932
Theorem 3 0.9602 1.3475 1.4182 1.8107 2.1902 2.5388 2.7601

6. Conclusions

In this paper, the stochastic fuzzy delay-dependent dynamic output feedback control is proposed for the uncertain networked
control system. The T-S fuzzy model is employed, and system plant can be deacribed effectively. The closed-loop system is
exponentially mean-square stable by designing stochastic T-S fuzzy dynamic output controller. Based on the time delay
information and fuzzy-basis-dependent Lyapunov functional, the delay-dependent stability conditions can be obtained. The
H-infinity performance function is constructed, and the H-infinity performance can be guaranteed. The congruence transformation
method is employed and the controller gain matrices can be determined. Usually, the wireless and wire communication networks
are used to transmit the data in the networked control system. Hence, the system control performance is easy to suffer from the
hacker attacks. Once the attack is successful, it may reduce the system control performance, destabilize the system or even cause
the system to crash. Hence, it is necessary to design the active defense algorithm for the hacker attacks in the future. Moreover, the
false data injection attacks often exist in the communication channels of networked control system, the necessary and sufficient
conditions for the insecurity will be investigate in the future.
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