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Abstract: In this article, the problem of exponential mean-square stability analysis is discussed for uncertain networked control systems 

expressed by a stochastic T-S fuzzy model. In general, the characteristics of random occurrence for multipath packet dropouts often exist in the 

signal transmission network. For dealing with this difficult point, a dynamic output feedback strategy combining stochastic Bernoulli theory is 

employed. Then, delay-dependent stability conditions are derived and closed-loop system is exponentially mean-square stable by designing 

fuzzy-basis-dependent Lyapunov functional. Furthermore, in terms of linear matrix inequalities (LMIs) technology, sufficient conditions are 

gained to guarantee the prescribed H-infinity performance. Different from previous literatures, the congruence transformation method is 

employed to determine controller gain matrices for reducing the computation complexity of solving LMIs. Finally, the proposed method is 

applied in tunnel diode circuit model to verify the applicability.  

Keywords: Lyapunov functional, stability analysis, disturbance, linear matrix inequalities. 

1. Introduction  

The development of network communication technology expands the application range of the network control systems 

(Ramirez, Minami, & Sugimoto, 2018; Khan, Khan, Iqbal, Mustafa, Abbasi et al., 2021; Chiang, & Liu, 2021). Networked control 

systems are very important control system, the system information and control signals are transmitted via the shared digital 

networks (Khan, Khan, Iqbal, Mustafa, Abbasi et al., 2021). Generally, the networked control systems include many devices, such 

as the sensor units, controller units, actuator units and control objects (Chiang, & Liu, 2021). In recent years, with the rapid 

development of network technology, the networked control systems have great advantages than the conventional control systems 

(Haghighi, Tavassoli, & Farhadi, 2020). The networked control systems have some advantages, such as the signal transmission 

flexibility, low installation cost, easy diagnosis maintenance and so on (Du, Kao, & Park, 2021). Thus, the networked control 

systems have attracted much attention (Haghighi, Tavassoli, & Farhadi, 2020; Zhang, Wang, Jiang, & Zhang, 2015; Dhanalakshmi, 

Senpagam, & Mohanapriya, 2021; Zheng, Zhang, Sun, & Wen, 2022). However, the wide application of networked control 

systems will also bring some unexpected disadvantages (Du, Kao, & Park, 2021; Chandrasekaran, Durairaj, & Padmavathi, 2021; 

Zheng, Zhang, Sun, Wen, Li et al., 2021; Yu, Dong, Li, & Li, 2017). Particularly, in the data transmitting process from remote 

sensors to local controllers, multipath packet dropouts will arise in the communication channels (Du, Kao, & Park, 2021; Du, Kao, 

& Zhao, 2021; Du, Kao, Karimi, & Zhao, 2020; Zhang, Zheng, Lam, Wen, Sun et al., 2020).  

In practical applications, the nonlinearities always exist because of the influence of external or internal factors, thus many 

achievements have been obtained in the research of nonlinear system (Cheng, Wang, Stojanovic, He, Shi et al., 2021; Zheng, Wang, 

Zhang, & Yin, 2019; Liu, Lam, Ban, & Zhao, 2016). In order to deal with the nonlinearities, most of the methods are available for 

investigation of qualitative behaviors of both nonlinear and linear dynamical systems, such as Jacobian method, T-S fuzzy 

technique, and other techniques (Cheng, Wang, Stojanovic, He, Shi et al., 2021; Li, Sun, & Tong, 2019). In addition, there are 

many nonlinearities in the physical systems, and there are serious difficulties in the stability analysis and controller design of 

control systems (Fang, Zhu, Stojanovic, Nie, He et al., 2021; Ruangsang, & Assawinchaichote, 2019). For example, an online 

adaptive optimal control was proposed for a class of nonlinear systems, and the system model was transferred to N coupled linear 

subsystems by using subsystem transformation scheme (Fang, Zhu, Stojanovic, Nie, He et al., 2021). Furthermore, many methods 

can be used to investigate the qualitative behavior of nonlinear and linear dynamical systems, such as sliding mode control, neural 

network control, state feedback control, T-S fuzzy technique and so on (Lam, 2011; Wei, Qiu, & Karimi, 2017; Zhang, Wang, 

Stojanovic, Cheng, He et al., 2021). Especially, the T-S fuzzy model is an efficient technique in describing the nonlinear systems 

(Wei, Qiu, & Karimi, 2017; Li, Ma, & Tong, 2019). Compared with conventional linear submodel control methods, the main 

advantage of T-S fuzzy technique is the high compatibility (Cheng, He, Stojanovic, Luan, & Liu, 2021; Wei, Qiu, Shi, & Lam, 

2017; Cheng, He, Stojanovic, Luan, & Liu, 2021; Wei, Qiu, Shi, & Chadli, 2017 ). For example, the input state stabilizing problem 

was investigated for a class of T-S fuzzy systems with multiple transmission channels under denial-of-service attacks (Wu, Yang, 

& Wang, 2021). The integral sliding mode control was studied for a class of generalized T-S fuzzy singular stochastic systems by 

involving the Markovian jump type of system parameters, and the matched/mismatched uncertainties can be approximated 

effectively (Mani, Rajan, & Joo, 2021).  

The system output is often measurable, thus the output feedback control strategy provides a feasible way to construct the 

controller for the control system (Yu, Li, & Du, 2017). On the other hand, it is difficult to measure all the state variables 
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information of the system (Wang, Tong, & Li, 2017). For example, the adaptive output feedback controller and a fuzzy observer 

were employed to estimate unmeasured states (Li, & Tong, 2017). The robust output feedback control and fuzzy model were 

employed to approximate unstructured uncertainties (Li, Tong, Liu, & Li, 2014). The results in (Li, & Tong, 2017; Li, Tong, Liu, & 

Li, 2014) mean that the state variables information are unavailable in the measurement process. With above analysis, it can be seen 

that the output feedback control is more effective for the control system (Tong, Sui, & Li, 2018; Wang, Qiu, Gao, & Wang, 2017). 

In fact, the conventional output feedback control is easy to implement in practical applications, but it contains a small amount of 

system state variables information (Hua, & Guan, 2016; Wang, Qiu, Fu, & Ji, 2017; Kwon, Park, Park, Lee, & Cha, 2017.). In 

addition, the conventional output feedback can not satisfy the actual design requirements (Zheng, Wang, Wang, & Wen 2019; Wei, 

Qiu, & Fu, 2015). Thus, the dynamic output feedback is proposed (Wei, Qiu, Karimi, & Wang, 2015; Zheng, Wang, Wang, & Wen, 

2019).  

Although there are some researchs about dynamic output feedback control have been studied on the networked control systems, 

the problems of obtaining H-infinity controller by using cone complementarity linearization are not fully solved. Moreover, with 

the development networked control systems, the packet dropouts problem often exist. Thus, multipath packet dropouts problem is 

challenging to be solved. On the other hand, the robust adaptive fuzzy control was proposed for the nonlinear systems with induced 

delay and data packet dropouts (Hamdy, Elhaleem, & Fkirin, 2017), without considering dynamic output feedback control. The 

L-infinity stability analysis was proposed for the networked control systems subject to stochastic deception attacks (Wu, Xiong, & 

Xie, 2021), without considering H-infinity stability analysis. Compared with (Hamdy, Elhaleem, & Fkirin, 2017; Wu, Xiong, & 

Xie, 2021), both the dynamic output feedback control and H-infinity stability analysis are proposed for the uncertain networked 

control systems with sector nonlinearities, time-varying delay and unmatched disturbance in this paper in this paper. The 

contributions are presented below. (1) The system plant is approximated via the premise variables and fuzzy set. (2) The stochastic 

Bernoulli theory is employed, and the characteristics of random occurrence for packet dropouts are described clearly. (3) By 

designing the fuzzy-basis-dependent Lyapunov functional, the closed-loop system is exponentially mean-square stable.  

Notations n  denotes n-dimensional Euclidean space, 0A   ( 0A  ) denotes positive (semi positive) definite matrix, 0A   

( 0A  ) denotes negative (semi negative) definite matrix. “ * ” denotes elements below main diagonal of symmetric matrix,  

denotes Euclidean norm of “  ”.  sup  denotes minimum upper bound of “  ”,  1 2 ndiag r r r  denotes block diagonal 

matrix with elements 1r , 2r , … and nr .  

2. System formulation 

Consider the uncertain networked control systems 
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Applying T-S fuzzy model, one can obtain 

Plant rule i: if  1 k  is 1iM ,  2 k  is 2iM , … and  p k  is ipM , then  

                             

           

     

   

1 1

2

2

1

, , 1, , 0

i i di di i i di di d i i

i di i i

i i

M M

x k A A k x k A A k x k d k E E k f x k E E k f x k d k B u k D k

y k C x k C x k d k S x k D k

z k L x k B u k

x k k k d d



 



                 

     


 


    

   (2) 

               , , ,i i i di di di i i i di di diA k A A k A k A A k E k E E k E k E E k                                    (3) 

where  1 k ,  2 k , … and  p k  are the premise variables, ijM  ( 1, 2, ,i r  and 1, 2, ,j p ) is the fuzzy set, r is the number 

of fuzzy rules, and p is the number of premise variables. iA , diA , iE , diE , 1iB , 1iD , iC , diC , iS , 2iD , iL  and 2iB  are the system 

gain matrices with appropriate dimensions.   xx k   is the state variable,   yy k   is the measured output,   zz k   is the 

control output,   uu k   is the control input,  k  is the initial condition with , 1, , 0M Mk d d    .  

 iA k ,  diA k ,  iE k  and  diE k  are the uncertainties satisfying (Guelton, Bouarar, & Manamanni, 2009)  
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where  1iF k ,  2iF k ,  3iF k  and  4iF k  satisfying  
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  f x k ,    df x k d k  and   Sx k  satisfying (Benzaouia, 2012) 
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1 2 1 2 1 20, 0, 0U U V V W W                                                                          (8) 

where 1U , 2U , 1V , 2V , 1W  and 2W  are the known constant matrices.  

 d k  is the time-varying delay and  

   m Md d k d , d k d                                                                             (9) 

where md  is the lower bound of  d k , Md  is the upper bound of  d k , and d  is upper bound of  d k .  

 k  is the unmatched disturbance and 

   
0
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The packet dropouts from sensor to controller are considered and  y k  can be rewritten  

              2i di i iy k k C x k C x k d k S x k D k                                                        (11) 

According to Bernoulli probability distribution, one has  
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where   1k   denotes signal transmission success, and   0k   denotes packet dropouts.   1Pr ob k   is the Bernoulli 

probability distribution of   1k  , and   0Prob k   is the Bernoulli probability distribution of   0k  .   is the value of 

  1Pr ob k  , 1   is the value of   0Prob k  , and 2  is the variance of  k .  

Substituting (11) into (2) yields  
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Applying T-S fuzzy inference, one has 
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where        1 2
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pk k k k       , and 
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Remark 1. More precise approximation of the sector can be achieved by considering nonlinear bounds of the sector, which can 

describe the specific nonlinearities better than using the sector with linear bounds (Lam, Liu, Wu, & Zhao, 2015). Furthermore, the 

bounds of sector nonlinearities are allowed to change with the state variables, which can describe the wider range of nonlinearities 

than the constant bounds (Lam, Liu, Wu, & Zhao, 2015). Thus, the sector nonlinearities are closer to the actual nonlinearities, and 

the less conservative stability results can be obtained in the controller design. The T-S fuzzy model offers nice theory framework to 

denote the system plant as average weighted sum of semi-linear subsystems (Sakr, Elnagar, Elbardini, & Sharaf, 2019; He, Liu, Wu, 

& Li, 2020). Thus, the T-S fuzzy model is employed in this paper.  

3. Controller design 

The delay-dependent dynamic output feedback controller is designed as follows  
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Applying T-S fuzzy model, one has  
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where  1 k ,  2 k , … and  p k  are the premise variables, 
ijM ( 1, 2, ,i r  and 1, 2, ,j p ) is the fuzzy set, r is the number 

of fuzzy rules, and p is the number of premise variables. kiA , kiB  and kiC  are the controller gain matrices, and  ˆ xx k   is the 

controller state variable. The packet dropouts from controller to actuator are considered and  u k  is rewritten as follows  

     ki
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According to Bernoulli probability distribution, one has  
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where   1k   denotes signal transmission success, and   0k   denotes packet dropouts.   1Pr ob k   is the Bernoulli 

probability distribution of   1k  , and   0Prob k   is the Bernoulli probability distribution of   0k  .   is the value of 

  1Pr ob k  , 1   is the value of   0Prob k  , and 2  is the variance of  k . Substituting (21) into (20) yields  
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Applying T-S fuzzy inference, one can obtain 
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Applying (26) to (16), the closed-loop system is obtained  
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Definition 1 (Exponential mean-square stability) (Dong, Wang, Ho, & Gao, 2010). Under any initial condition and   0k  , if 

there exist 0   and 0 1   such that  

       
2 2
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then the system is said to be exponentially mean-square stable, where  k  is the state variable,  k  is the initial condition.  

Definition 2 (H-infinite performance) (Burl, 1999). Under zero initial condition and   0k  , if  z k  satisfies  
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then the prescribed H-infinite performance is guaranteed, where 0   is H-infinity performance index.  

Lemma 1 (Schur complement) (Marouf, Esfanjani, Akbari, & Barforooshan, 2016). For given matrices 11 11
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is equivalent to  
1

22 11 12 22 210, 0T                                                                           (35) 

Lemma 2 (Guelton, Bouarar, & Manamanni, 2009). For given scalar 0   and matrices ,  and , the following inequality 

holds  

  1T T T                                                                       (36) 

T I                                                                                       (37) 

Lemma 3 (Song, Niu, Lam, & Lam, 2018). For given iX   , if there exist iY    satisfying  
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then the following inequalities hold  
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Remark 2. The objectives in this paper can be summarized as follows 

(i) closed-loop system (29) is exponentially mean-square stable under any initial condition and   0k  ;  

(ii) prescribed H-infinity performance is guaranteed under zero initial condition and   0k  ;  

(iii) kiA , kiB  and kiC  are determined by employing the proposed methods. 

Remark 3. The dynamic output feedback control is easy to implement and required conditions are less conservative (Zhao, & Dian, 

2018). The T-S fuzzy model has nice ability to facilitate controller design, thus it is more effective to design the controller in 

practice (Choi, Ahn, Shi, Wu, & Lim, 2018; Wei, Qiu, Shi, & Wu, 2016; Wang, Wu, Wang, & Ma, 2020). Thus, the stochastic T-S 

fuzzy delay-dependent dynamic output feedback controller is designed in this section.  

4. Main results 

4.1. Stability conditions 

Theorem 1. For given scalars 0  , 0  , 0md  , 0  , 0  , 0 1  , 0 1   and matrices 1iN , 2iN , 3iN , 4iN  
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then the closed-loop system (29) is exponentially mean-square stable.  

Proof. Consider  V k  as follows  

       1 2 3V k V k V k V k                                                                              (43) 
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1

1 1

1
1

2 2

1
1

3 2

1

m

M

T

k
T T

i k d k

k d k
T T

j k d i j

V k k P h G h k

V k i H Q h G h H i

V k i H Q h G h H i

 

 

 






 

 


   

 






 





 

                                                             (44) 

Taking the forward difference of (43) along (29), one has 

       1 2 3V k V k V k V k                                                                          (45) 

where  

     1 1 11V k V k V k                                                                                  (46) 

     2 2 21V k V k V k                                                                                 (47) 

     3 3 31V k V k V k                                                                                 (48) 

Taking the mathematical expectation of (45) along (2), one has  

           1 2 3V k V k V k V k                                                                 (49) 

Taking the mathematical expectation of (46) along (29), one has  

       

                        

                          

1 1 1

1 2 1 1

0 1 0 0 1 0 1

1 2 1 1

0 1 0 0 1 0 1

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

T T T

T T T

V k V k V k

A k P h G h A k B k P h G h B k k P h G h k

A k P h G h A k B k P h G h B k k P h G h k

  

  

  

  

   

  

  

                    (50) 

where  

                        

         

0

0

ˆ

ˆ

ij dij i di d ki i

ij dij ki i

A k A k k A k H k d k E k f x k E k f x k d k B S x k

B k C k C H k d k B S x k

   

  

       


   

                      (51) 

Taking the mathematical expectation of (47) along (29), one has  

       

               

2 2 2

1 1

2 2

1

1

m

M

k d
T T T T

i k d

V k V k V k

k H Q h G h H k i H Q h G h H i   


 

  

   

  
  

  


                                        

From Theorem 1, one knows that   0Q h   and  2 0G h  . Since  2 0G h  , one can obtain  1

2 0G h  . Both considering   0Q h   

and  1

2 0G h  , one can obtain    1

2 0TH Q h G h H  , which implies the following inequality holds  

         1

2 0T Tk d k H Q h G h H k d k     

then it can be verified that  

       

               

                         

                   

   

2 2 2

1 1

2 2

1

1 1 1

2 2 2

1

1 1

2 2

1

m

M

m

M

k d
T T T T

i k d

k d
T T T T T T

i k d

T T T T

T T

V k V k V k

k H Q h G h H k i H Q h G h H i

k H Q h G h H k k d k H Q h G h H k d k i H Q h G h H i

k H Q h G h H k k d k H Q h G h H k d k

i H Q h G

   

     

   




 

  


  

  

 

   

  
  

  

  
     

  

   







   1

2

1

m

M

k d

i k d

h H i




  

  
 
  


   (52) 

Taking the mathematical expectation of (48) along (29), one has  

       

                 

                  

3 3 3

1 1

2 2

1

1 1

2 2

1

1

m

M

m

M

k d
T T T T

M m

i k d

k d
T T T T

M m

i k d

V k V k V k

d d k H Q h G h H k i H Q h G h H i

d d k H Q h G h H k i H Q h G h H i

   

   


 

  


 

  

   

  
   

  

  
    

  





                           (53) 

Substituting (50), (52) and (53) into (49), one has  
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1 2 1

0 1 0 0 0 1 0 0 0 0 1 0 0

1 1

0 1 0 0 0 1 0 0 0 0 1 0 0

1
2 2

1

2 2

m

M M

T T T T T

T T T T T

k dk
T T T

i k d i k d

i

V k k k k k A k P h G h A k k k B P h G h B k

k k k k A k P h G h A k k k B P h G h B k

k i k P h k i H Q h H i

k i

       

      

     

 

 

 



    



   

  

      
      

      

 

 

1

M

k

k d





  
 
  


                    (54) 

where  

                

         

    

0

0

1 1 0

0

0 0 0 , 0 0

T
T T T T T

d i

ij dij i di

ij dij ki

k k x k d k f x k f x k d k S x k

A k A k A k E k E k

k diag Q h B C C B

  



    
  


   


      


                                       (55) 

         1 1

1 1 21 T

M mP h G h d d H Q h G h H                                                               (56) 

From (7), one can obtain  

 

  
 

  

  

   

  

   

 

  
 

  

1 2

2

1 2

2

1 2

2

0

0

0

T
T T

T

T

T

d d

T
T T

T
i i

k kH U H H U

f x k f x kU H I

x k d k x k d kV V

V If x k d k f x k d k

k kH W H H W

S x k S x kW H I

 

 

 

    
     
       

     
      
         

    
     
       

                                                        (57) 

From (54) and (57), one has  

                             

 

  
 

  

  

   

  

   

 

  

1 2 1

0 1 0 0 0 1 0 0 0 0 1 0 0

1 2 1 2

2 2

1

T T T T T

T
T

T T

T T

d d

T
T

i

V k k k k k A k P h G h A k k k B P h G h B k

x k d k x k d kk kH U H H U V V

f x k f x kU H I V If x k d k f x k d k

k H W H

S x k

       

 






    

                       
                 

 
  
  

 

  

                   

2

2

1 2 1

0 2 0 1 0 0 1 0 0

T

T
i

T T T

kH W

S x kW H I

k k A k P h G h A k B P h G h B k





    

   
  
    

  

                  (58) 

where  

 
   

2 2

1

2 1 2

2 2

2

2

0 0

0 0 0

00 0 0

0 0 0

0 0 0

T T

T

T

T

H U H W

Q h G h V V

k U H I

V I

W H I

 



 



   
 

   
   
 

  
   

                                               (59) 

Applying Lemma 1 to (59), one has  

 

   

           

   

0

1

2 1

2

23

2

1

1

1

1

0

0

0 0 0

0 0 0

0

0 0 0

T

T

T

ij dij i di

ij dij ki

I

Q h G h V

U H I

V Ik

W H I

A k A k E k E k P h G h

C C B P h G h





 

  







        
 

      
 
      
 

      
    
 

  
  

                       (60) 

and  

   3 3 3k k                                                                                    (61) 

where  
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0

1

2 1

2

23

2

1

1

1

1

0

0

0 0

0 0 0

0

0 0 0

T

T

T

ij dij i di

ij dij ki

I

Q h G h V

U H I

V I

W H I

A A E E P h G h

C C B P h G h





 

  







        
 

      
 
      
 

      
    
 

  
  

                                   (62) 

 

       

3

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0

0 0 0 0 0 0 0

i di i d

k

A k A k E k E k



      
 

    
 
    
 

     
  
 
     
 
 

                                                        (63) 

From (31) and (63), one can obtain 

      3

T

i i i i i ik M F k N M F k N                                                                          (64) 

where  

1 2 3 40 0 0 0 0 0 , 0 0 0
T

T

i i i i i i iM M N N N N N                                                (65) 

Applying Lemma 2 to (64), one has  

     1
T

T T

i i i i i i i i i iM F k N M F k N M M N N                                                                    (66) 

From (60) and (66), one has 

  1

3 4

T

i ik N N                                                                                        (67) 

where  

   

0

2

24

2

1

1

0

0

0 0

0 0 0

0

0 0 0

a

T

T

ij dij i di b

ij dij ki

I

U H I

V I

W H I

A A E E

C C B P h G h



 

   

        
 

     
 
      
 

      
    
 

  
  

                                                     (68) 

It can be verified that there exists 0 0   satisfying  

 0 0 0diag I                                                                                     (69) 

where 0   is a matrix with appropriate dimension.  

In order to prove the exponential mean-square stability, one should prove that the inequality (69) holds. 

According to Lemma 1, (60) is equivalent to (70) 

               1 2 1

2 0 0 1 0 0 1 00 0T Tk diag I A k P h G h A k B P h G h B                                               (70) 

The inequality (69) holds if 1

4

T

i iN N    satisfying (71) 

1

4 0T

i iN N                                                                                         (71) 

Substituting (71) into (67), one can obtain  3 0k  , and the inequality (70) holds  

From (58) and (70), one has  

     2

0V k k                                                                                (72) 

From (43) and (44), one has  
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1 1
1 1 1

1 2 2

1

1 1
1 1 1

1 2 2

1

1
2 2

m

M

m

M

M

k dk k
T T T T T

i k d k j k d i j

k dk k
T T T T T

i k d k j k d i j

k

i k d

V k k P h G h k i H Q h G h H i i H Q h G h H i

k P h G h k i H Q h G h H i i H Q h G h H i

k i

     

     

 

 
  

     

 
  

     



 

  
   

  

  
   

  

 

  

  



         (73) 

From (44) and (72), one has  

        
1

2 2

1 2

M

k

i k d

V k k i   


 

                                                                (74) 

where 1 1   and 2 1   are the scalars.  

From (72) and (74), one can obtain  

                       
1

2 21 1

1 21 1
M

k
k k k k k k

i k d

V k V k V k V k k i            


 

 

                     (75) 

with  

       1 0 1 2 21 1,                                                                         (76) 

where 1   is a scalar.  

Taking the sum on both sides of (75) from 0k   to 1k N  , one has  

               
1 1 1

2 2

1 2

0 0

0
M

N N k
N k k

k k i k d

V N V k i        
  

   

                                             (77) 

where 1MN d  .  

For 1Md  , it can be verified that the following inequality holds  

           

        

  

11 1 1 1 1
2 2 2 2

0 0 0 1 1 1

11 1
2 2 2

0 1

2

0
0

M M M

M M M

M

M M M

M M

M M

M

i d N d i dN k N N
k k k k

k i k d i d k i k i i N d k i

N d N
i d i d i d

M M M

i d i i N d

N
d d i

M M
d i

i

i i i i

d i d i d i

d max i d

       

     

   

       

            

  
  

    



  


  

  

 

       

  

  
1

2

i

                    (78) 

Next, from (77) and (78), one has  

                  
1

2 2

1 2 2
0

0

0 M M

M

N
d dN k

M M
d i

k

V N V d k d max i           


  


                           (79) 

Let us define  

      1

0 1 1 2= ,min P h G h max                                                                       (80) 

where  min  is the minimum eigenvalue value of “ ”. 

It is obvious that  

     2

0V N N                                                                              (81) 

From (74) and (80), it can be verified that  

     2

0
0

Md i
V max i 

  
                                                                         (82) 

For (76), it can be seen that there exists the scalar 0 1   satisfying  

   1 0 0 2 0+ 0Md

Md                                                                                 (83) 

Substituting (81)-(83) into (79)  

     2 2

0 0
0M

N

d i
N c max i  

  
                                                                   (84) 

where  

  1

0 0 0 2 0
Md

Mc d                                                                              (85) 

Then, it can be seen that closed-loop system (29) is exponentially mean-square stable. The objective (i) in Remark 2 is 

achieved, and the proof of Theorem 1 is completed.    
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Remark 4. From (40)-(42), it can be seen that fuzzy-basis-dependent matrices  P h ,  Q h ,  1G h ,  2G h , the lower bounds md  

and Md  are employed to derive the fuzzy-basis-dependent and delay-dependent stability conditions, thus the control design 

conditions are relaxed by adjusting md  and Md . Moreover, the more important stability results can be obtained in the exponential 

mean-square stability analysis, because it is used to investigate the exponential convergence performance of state variables (Guan, 

& Liu, 2016). Thus, the exponential mean-square stability analysis is discussed in this paper. However, the prescribed H-infinity 

performance is not guaranteed, and Theorem 2 is presented.  

4.2. Less conservative stability conditions  

Theorem 2. For given scalars 0  , 0  , 0md  , 0  , 0  , 0  , 0 1  , 0 1   and matrices 1iN , 2iN , 3iN , 4iN  

( 1, 2, ,i r ), 1U , 2U , 1V , 2V , 1W , 2W  satisfying 1 2 0U U  , 1 2 0V V  , 1 2 0W W  , there exist the matrices 
1U , 

2U , 
1V , 

2V , 
1W , 

2W  and fuzzy-basis-dependent matrices     0TP h P h  ,     0TQ h Q h   satisfying 

     

     

1 2 2 1 1 2 1 2 2 1

1 2 1

1 2 2 1 1 2 1 2

1 2 2

, ,
2 2 2

, ,
2 2 2

T T T T T T T T

i i i i

T T T T T T T T

i i

U U U U U U S W W S S W W S
U U W

V V V V V V S W S W
V V W

   
    



  
    



                                        (86) 

 

 

2

2

2

2

1

1 2 3 4

0

0

0 0

0 0 0 0

0 0 0 0 0

0 0

0 0 0 0

0 0 0 0

a

T

T

T

ij dij i di b

ij dij ki

i i i i

U H I

V I

k W H I

I

A A E E

C C B P h

N N N N I

 



  





         
 

       
 
        
 

       
         
 

    
   
 
  
 

 

                                         (87) 

where  

     

   

     

1 1

1

1

1 1

1

,

1 , 1 , 0

T T T T

M m ij ij

T

a b i i

i i

P h d d H Q h H H U H H W H L L

Q h V P h M M

N N

 

     



        

       


    

                                                (88) 

then the prescribed H-infinity performance is guaranteed.  

Proof. The proof of Theorem 2 is divided into Steps 1-2.  

Step 1. In Theorem 2, 0   is a given scalar. According to Lemma 1 (Schur complement), one knows that (87) is equivalent 

to (41). Thus, the proof of Theorem 2 is converted into the proof of Theorem 1. Via similar method in Theorem 1, it can be seen 

that the closed-loop system is exponentially mean-square stable. The proof of the objective (i) in Remark 2 is achieved, and the 

proof of Step 1 is completed.      

Step 2. Consider  k  as follows 

       1 2 3k k k k                                                                              (89) 

       

       
 

       

1

1

2

1

3

1

m

M

T

k
T T

i k d k

k d k
T T

j k d i j

k k P h k

k i H Q h H i

k i H Q h H i

 

 

 



 

 

   

 






 





 

                                                                  (90) 

Taking the forward difference of (89) along (29) 

       1 2 3k k k k                                                                          (91) 

     1 1 11k k k                                                                                 (92) 

     2 2 21k k k                                                                                (93) 



 12 

     3 3 31k k k                                                                                (94) 

Taking the mathematical expectation of (91) along (29)  

           1 2 3k k k k                                                                   (95) 

Taking the mathematical expectation of (92) along (29) 

                          

                    

2

1 1 1 0 0 0 0

2

0 0 0 0

ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ

T T T

T T T

k k k A k P h A k B k P h B k k P h k

A k P h A k B k P h B k k P h k

  

  

      

  
                          (96) 

where  

                        

         

0

0

ˆ

ˆ

ij dij i di d ki i

ij dij ki i

A k A k k A k H k d k E k f x k E k f x k d k B S x k

B k C k C H k d k B S x k

   

  

       


   

                      (97) 

Taking the mathematical expectation of (93) along (29) 

                           

                     

2 2 2

1

1

1
m

M

m

M

k d
T T T T T T

i k d

k d
T T T T T T

i k d

k k k k H Q h H k k d k H Q h H k d k i H Q h H i

k H Q h H k k d k H Q h H k d k i H Q h H i

     

     



  



  

  
         

  

  
      

  





  (98) 

Taking the mathematical expectation of (94) along (29) 

                     

        

     

3 3 3

1

1

1
m

M

m

M

k d
T T T T

M m

i k d

T T

M m

k d
T T

i k d

k k k d d k H Q h H k i H Q h H i

d d k H Q h H k

i H Q h H i

   

 

 



  



  

  
       

  

 

  
  

  





                     (99) 

Substituting (96), (98) and (99) into (95) 

                         

                        

2

1

2

1

T T T T T

T T T T T

k k k k k A k P h A k k k B P h B k

k k k k A k P h A k k k B P h B k

      

      

    

   
                       (100) 

where  

                 

      

         

1 1 0 0 0 0

0 , 0 0 0

T
T T T T T T

d i

T

M m

ij dij i di ij ij dij ki

k k x k d k f x k f x k d k S x k k

k diag P h d d H QH Q

A k A k A k E k E k D B C C B

        

      


        

                                 (101) 

For (29), the H-infinity performance function  J n  is designed as follows  

            2

0

, 0
n

T T

k

J n z k z k k k k   


 
   

 
                                                      (102) 

Under zero initial condition, consider (57), (100) and (102), one has  

               

          

                        

2

0

2

0

2

2

0

1

, 0

n
T T

k

n
T T T

ij ij

k

n
T T T T T

k

J n z k z k k k k n

k L L k k k k

k k k k A k P h A k k k B P h B k k

  

    

       







 
      

 

 
    

 

 
     

 







                    (103) 

where  

 

 
2 2

1 2

2

2

2

2

2

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

T T

T

T

T

H U H W

Q h V V

U H I
k

V I

W H I

I

 

 



   
 

   
  

   
  

  
 
  

                                                (104) 
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From Theorem 2, one knows that  

    0TP h P h                                                                                    (105) 

               20, 0T T T Tk A k P h A k k k B P h B k                                                    (106) 

Substituting (106) into (103)   

       2

0

n
T

k

J n k k k 


 
  

 
                                                                       (107) 

Applying Lemma 1 to (87) 

 

 
2 2

1 2

2

2

2

2

2

0 0 0

0 0 0 0

0 0 0 0
0

0 0 0 0

0 0 0 0

0 0 0 0 0

T T

T

T

T

H U H W

Q h V V

U H I
k

V I

W H I

I

 

 



   
 

   
  

   
  

  
 
  

                                        (108) 

Substituting (108) into (107), one has  

       2

0

0
n

T

k

J n k k k 


 
   

 
                                                                    (109) 

and substituting (102) into (105), one has  

                2

2

0 0

0, 0
n n

T T T

k k

z k z k k k k k k k     
 

   
       

   
                                   (110) 

which yields  

          2

0

0, 0
n

T T

k

z k z k k k k   


 
   

 
                                                      (111) 

Substituting n   into (111) 

         2

0 0

0, 0T T

k k

z k z k k k k   
 

 

   
     

   
                                                   (112) 

With above analysis, the prescribed H-infinite performance is guaranteed.   

Remark 5. In this section, the less conservative stability conditions are derived by constructing fuzzy-basis-dependent Lyapunov 

functional. Compared with (44), the cross product terms    1

1P h G h  and    1

2Q h G h  between  P h ,  Q h ,  1G h  and  2G h  

are avoided in (90), thus the design conditions can be relaxed. H-infinity performance index is one of the most important robust 

control performance indicators (Zhang, Wang, Jiang, & Zhang, 2015). Specifically,   is the H-infinity performance index of the 

system and it is often used to investigate the control problem of minimum sensitivity. Moreover, the H-infinity optimization control 

is more significant in the practical control system (Zhang, Wang, Jiang, & Zhang, 2015; Yu, Dong, Li, & Li, 2017). Thus, the 

Lyapunov-Razumikhin method will be considered for the stability analysis in the next study.  

4.3. Determine controller gain matrices  

Theorem 3. For given scalars 0  , 0  , 0md  , 0  , 0  , 0  , 0 1  , 0 1   and matrices 1iN , 2iN , 3iN , 4iN  

( 1, 2, ,i r ), 1U , 2U , 1V , 2V , 1W , 2W  satisfying 1 2 0U U  , 1 2 0V V  , 1 2 0W W  , there exist matrices 
1U , 

2U , 
1V , 

2V , 
1W , 

2W ,  ,  ,  , 0iX  , 0iY   and fuzzy-basis-dependent matrices     0TP h P h  ,     0TQ h Q h   satisfying  

     

     

1 2 2 1 1 2 1 2 2 1

1 2 1

1 2 2 1 1 2 1 2

1 2 2

, ,
2 2 2

, ,
2 2 2

T T T T T T T T

i i i i

T T T T T T T T

i i

U U U U U U S W W S S W W S
U U W

V V V V V V S W S W
V V W

   
    



  
    



                                      (113) 

11

0

21 22

0
i

i

i i

  
   

  
                                                                            (114) 

where  
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1

1

11

2

2

2

1 2 3 4 5

6 7 8

3 2 3 4

21 22

4 1

5

0

0

0 0

0 0 0

0 0 0 0 0

0

00 0 0

00 0
,

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

i

i T

i

i i i i i

i i i

i i i i

i i

i i

i

Q h V

I

P h V I

I

I

N N N

N



 



      
 

      
     

   
     

   
 
  

          
        
 
 

    
 
 
 
  

 1

1

6

0

0 0 0

ˆ0 0 0 0

0 0 0 0i

I

I

Q h

I




















 
 
 
    
 

   
    
    

                            (115) 

       1 1 1 1, 0 , 1
i

i i M m

i

X I ˆN N Q h d d Q h U W
I Y


  

       
  

                                            (116) 

     

     

1 2 2 2 3 1

4 2 5 6

T T

i i i i i i i

T

i i i i i i i i i i

U X I , W X I , N X I

L X B L , X I , M I Y

  

    

     


   

                                              (117) 

1

1 2 3 4

1

5 6 7 8

1 2

, , ,

0 0 0 0
, , ,

i i i i di i di

i i i i

i i i i di di i i i di

i

i i i i

i i i i i i di i

A X B A A E E

Y A C Y A C Y E Y E

D

Y D D C X C C X

 

  

         
               

            


       
                           

                        (118) 

   1 1,                                                                               (119) 

then kiA , kiB  and kiC  can be determined   

 1 1

1 , ,T T

ki i i i i i i i i i ki i ki iA R Y A X C X YB G B R C G                                                   (120) 

T

i i i iR G I Y X                                                                                    (121) 

where iR  and iG  are the parameter matrices with appropriate dimensions.  

Proof. From (116), one has  

0
i

i

X I

I Y

  
   

  
                                                                             (122) 

Applying Lemma 1 to (122), one has  
1 0i iY X                                                                                       (123) 

which implies i iI Y X  is a nonsingular matrix. Thus, there exist nonsingular matrices iG  and iR  such that the (121) holds.  

Then, via similar method in (Gahinet, & Apkarian, 1994), let us define  

  1

2 1P h                                                                                    (124) 

1 2= , =
0 0

i i

T T

i i

X I I Y

G R

   
    

   
                                                                     (125) 

Substituting (125) into (124) yields 

  i i

T

i i

Y R
P h

R Z

 
  
 

                                                                               (126) 

where  

      
1 11 1 1,T T T

i i i i i i i i i i i i i i i i i i iZ G X Y X X G Z R Y R R X Y I Y X Y X I R
                                   (127) 

0, 0T

i i i i iZ Z R Y R                                                                           (128) 

Consider (114) and (125), one has  
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1 1

1

2 1

2

2 1

2

2 2 2 22 1

2 22 1

2 3 41 1

1

1

0

0

00

0 0 0

0 0 0 00

0

0 0 0

0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 00

T

T

T

T T T TT
dij i di ijij

T TT
dij kiij

i i ii

ij

P h

Q h V

IU H

V I

IW H

I

A E E DA

C BC

N N NN

L

H



 



 

     

     

    

   

  



    

  







 

 

 

1

2 2

1

2 2

1

1

2

0

0

0 0

0 0 0

ˆ0 0 0 0

0 0 0 0

T

T

T

i

P h

P h

I

I

Q h

M I



 









    
 

    
    
 

    
    
 

    
       

     
 

   
  
 

 
 

  

 (129) 

Next, the congruence transformation matrices 1  and 2  are designed  

 

 

1 1 2 2

1 1 1

2 1 2 2

T T Tdiag I I I I I I I I I

diag I I I I I I I I I

  

  

    


   

                                                 (130) 

Taking the congruence transformation of (129) by 1  and 2 , the inequality (87) holds. With above analysis, kiA , kiB  and kiC  

can be determined  

 1 1

1 , ,T T

ki i i i i i i i i i ki i ki iA R Y A X C X YB G B R C G                                                    (131) 

Remark 6. From Theorem 3,  it can be seen that the congruence transformation matrices 1  and 2  are employed to determine 

kiA , kiB  and kiC . However, it may be difficult to solve the nonconvex problem caused by fuzzy-basis-dependent LMI. Thus, 

Corollary 1 is presented to convert the controller design problem into the nonlinear minimization constraints.  

4.4. Cone complementarity linearization  

Corollary 1. The nonlinear minimization constraints is described below 

   

   

1

113

114

r

i i

i

min tr X Y

a the equalities
s. t.

b the inequality



   
    

   




 


                                                                        (132) 

The cone complementarity linearization algorithm is designed.  
Table 1. The cone complementarity linearization algorithm.  

Start  

Step 1: Set the system gain matrices iA , 1iB , iC  and the Bernoulli probability distribution  . Go to Step 2. 

Step 2: Select  1 k ,  2 k , …,  p k  and design ijM ( 1, 2, ,i r  and 1, 2, ,j p ) for (2). Go to Step 3.  

Step 3: Select  1 k ,  2 k , …,  p k  and design 
ijM ( 1, 2, ,i r  and 1, 2, ,j p ) for (20). Go to Step 4.  

Step 4: Set   for the closed-loop system (29). Go to Step 5.  

Step 5: Solve LMIs (38), (113) and (114) to obtain the initial feasible solutions 0 , 0 , 0 , 0

iX  and 0

iY , then set 0 , where 

 is the iteration number. Go to Step 6.  

Step 6: Solve LMIs (133) for the  ,  ,  , iX  and iY  satisfying (132), set 1   ,           1   , 1   , 1

i iX X   

and 1

i iY Y  . Go to Step 7. 

Step 7: If (38), (113) and (114) are feasible for the  ,  ,  , iX  and iY  that obtained in Step 6, go to Step 8.  

If (38), (113) and (114) are unfeasible for  ,  ,  , iX  and iY  that obtained in Step 6, where   and  is 

the maximum iteration number, set 1   and return to Step 6.  

Step 8: Output  ,  ,  , iX  and iY , set    ,    ,    , i iX X  and i iY Y . Go to Step 9.  

Step 9: Substitute iA , 1iB , iC ,  ,  ,  ,  , iX  and iY  into (131), kiA , kiB  and kiC  can be determined. Exit. 

Remark 7. The controller gain matrices can be determined via cone complementarity linearization, and the nonconvex problem 

can be solved.  
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5. Simulation examples  

5.1. Example 1 

Consider a class of uncertain networked control systems  

                  

          

           

     

1 1

2

2

1 + d d

d d d

d

x k A A k x k A A k x k d k E E k f x k

E E k f x k d k B u k D k

y k Cx k C x k d k Sx k D k

z k Lx k B u k



 

          

      


    


 

                                     (133) 

Applying T-S fuzzy model and stochastic Bernoulli theory, one has 

                  

          

              
     

1 1

2

2

1 i i di di i i

di di d i i

i di i i

i i

x k A A k x k A A k x k d k E E k f x k

E E k f x k d k B u k D k

y k k C x k C x k d k S x k D k

z k L x k B u k



  

           

      


    


 

                                 (134) 

A 2-rules T-S fuzzy model is employed and iA , diA , iE , diE , 1iB , 1iD , iC , diC , iS , 2iD , iL  and 2iB  ( 1, 2i  ) are given as follows  

1 2 1 2 1 2 1 2

0 6 0 0 3 0 0 6 0 0 3 0 0 2 0 7 0 2 0 1
, 6, , , , , ,

1 0 1 1 0 7 1 1 0 2 0 3 0 6 0 1 0 1 0 3
d d d d

. . . . . . . .
A A A A E E E E

. . . . . . . .

               
                      

                    
  (135) 

11 12 11 12 1 2 1 2

0 8 0 9 0 2 0 0 0 1 0 6 0 0 6 0
0 6, 0 2, , , , , ,

0 1 0 7 0 1 0 3 0 1 0 2 0 1 1 0 1 3
d d

. . . . . .
B . B . D D C C C C

. . . . . . . .

            
                    

            
   (136) 

21 22 1 2 21 22 1 2

0 1 0
, , 0 5, 0 3, 0 66, 0 3, 0 2

0 1 0 1

.
D D L . L . B B . S . S .

. .

   
          

    
                                (137) 

For (134), the stochastic controller is designed  

      

     

1 ki ki

ki

ˆ ˆx k A x k d k B y k

ˆu k k C x k

    




                                                                    (138) 

Solve the LMIs,  ,  ,  , iX  and iY  ( 1, 2i  ) are solved  

1 2 1 2

0.3171 0.0344 0.3816 0.7952 0.4898 0.6463
, ,

0.9502 0.4387 0.7655 0.1869 0.4456 0.7094

0.0357 0.9340 0.7577 0.3922 0.2171 0.8130
, , ,

0 0.6787 0.7431 0.6555 0.0607 0.9672
X X Y Y

     
          

     

     
        
     

0.0640 0.6328

0.1790 0.8496






 
 
 

                    (139) 

Using the stability conditions, kiA , kiB  and kiC  ( 1, 2i  ) are solved  

1 2 1

2 1 2

33 5128 32 8327 35 1551 31 6897 1 4061 1 3051
, ,

1 2769 1 0836 28 8847 26 2382 0 9050 1 1942

2 6355 2 1794 7 8744 7 9182 11 9478
, ,

2 1779 0 8737 6 1474 5 7300

k k k

k k k

. . . . . .
A A B

. . . . . .

. . . . .
B C C

. . . .

       
       

      

    
     

    

10 4816

1 8743 1 8885

.

. .






 
 
 

                              (140) 
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Figure 1. Responses of  1x k  and  2x k . 
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Figure 2. Responses of control inputs. 
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   with   20.98k k   ( 1 3k   ).  
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Figure 4. Response of        
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   for different Md  and d .  

The sector nonlinearities are given as follows 

    

      

      

2

2

+1

0 18

d

f x k x k

f x k d k x k d k

S x k tanh x k .

 



  


 


                                                                   (141) 

The responses of  1x k  and  2x k  are shown in Figure 1. The responses of control inputs are shown in Figure 2. The response 
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of        
0 0

T T

k k

z k z k k k 
 

 

   
   
   
   is shown in Figure 3. The response of        

0 0

T T

k k

z k z k k k 
 

 

   
   
   
   for 

different 
Md  and d  is shown in Figure 4. From Figure 1, it can be seen that the closed-loop system is exponentially mean-square 

stable. From Figure 2, it can be seen that the control inputs are bounded. From Figure 3, it can be seen that the response of 

       
0 0

T T

k k

z k z k k k 
 

 

   
   
   
   is smaller than 0.70  .  

Remark 8. In Figure 4, Md  and d  can affect the response of        
0 0

T T

k k

z k z k k k 
 

 

   
   
   
  , which implies Md  and d  

can affect H-infinity performance.  

5.2. Example 2 

Vin(k) Vout(k)

iD(k)iC(k)
iL(k)

Inductor

Resistor Capacitor Tunnel diode

VC(k) VD(k)

LE

GND1 GND2 GND3 GND4

CE RDRE

 
Figure 5. Schematic diagram of tunnel diode circuit system.  

Consider a class of tunnel diode circuit systems with networked control (Yu, Sun, & Li, 2018) 

     

       

 
 

1 1

1 1

C L D

E E

E
L C L in

E E E

D

D

D

V k i k i k
C C

R
i k V k i k V k

L L L

V k
i k

R


  

    






                                                              (142) 

where ER  is the resistance, EL  is the inductor, EC  is the capacitor, and DR  is the equivalent resistance of tunnel diode.  Li k , 

 Ci k  and  Di k  are the currents in the inductor, capacitor and tunnel diode, respectively.  outV k  and  inV k  are the measured 

output and control input of tunnel diode circuit system, respectively. Let us define  

                         1 1 1 1 2 3, , , , , , ,C L D out L inx k V k x k m m x k i k x k i k y k V k z k i k u k V k        
 

      (143) 

Substituting (143) into (142), one has  

     

       

     

       

1 2 3

2 1 2

3 2 3

1 2

1 1

1 1

1 1

,

E E

E

E E E

D E D E

x k x k x k
C C

R
x k x k x k u k

L L L

x k x k x k
R C R C

y k x k z k x k


  


    


  



 

                                                                (144) 

then (144) is transformed as 

     

   

   

1x k Ax k B u k

y k Cx k

z k Lx k

  







                                                                            (145) 
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Consider the uncertainties, sector nonlinearities, time-varying delay and unmatched disturbance in (145), one has  

                  

          

           

     

1 1

2

2

1 + d d

d d d

d

x k A A k x k A A k x k d k E E k f x k

E E k f x k d k B u k D k

y k Cx k C x k d k Sx k D k

z k Lx k B u k



 

          

      


    


 

                                     (146) 

Applying T-S fuzzy model and stochastic Bernoulli theory, one has   

                  

          

              
     

1 1

2

2

1 i i di di i i

di di d i i

i di i i

i i

x k A A k x k A A k x k d k E E k f x k

E E k f x k d k B u k D k

y k k C x k C x k d k S x k D k

z k L x k B u k



  

           

      


    


 

                                 (147) 

iA , diA , iE , diE , 1iB , 1iD , iC , diC , iS , 2iD , iL  and 2iB  ( 1, 2i  ) are given as follows  

1 2 1

0 8147 0 9134 0 2785 0 6948 0 0344 0 7655 0 4898 0 7094 0 6797

0 9058 0 6324 0 5469 , 0 3171 0 4387 0 7952 , 0 4456 0 7547 0 6551

0 1270 0 0975 0 9575 0 9502 0 3816 0 1869 0 6463 0 2760 0 1626

d

. . . . . . . . .

A . . . A . . . A . . .

. . . . . . . . .

     
    

  
    
        

2 1 2 1 2

0 1190 0 3404 0 7513 0 6991 0 5472 0 2575 0 8143

0 4984 0 5853 0 2551 , 0 8909 , 0 1386 , 0 8407 , 0 2436

0 9597 0 2238 0 5060 0 9893 0 1493 0 1493 0 9293

d d d

. . . . . . .

A . . . E . E . E . E .

. . . . . . .





          
        

    
        
                





                 (148) 

11 12 11 12 1

0 3500 0 6160 0 0759 0 7792 0 5688

0 9308, 1 5856, 0 1966 , 0 4733 , 0 0540 0 9340 0 4694

0 2511 0 3517 0 5308 0 1299 0 0119

. . . . .

B . B . D . D . C . . .

. . . . .

     
     

      
     
           

                  (149) 

2 1 2

0 3371 0 3112 0 6020 0 6892 0 0838 0 1524 0 9961 0 1067 0 7749

0 1622 0 5285 0 2630 , 0 7482 0 2290 0 8258 , 0 0782 0 9619 0 8173

0 7943 0 1656 0 6541 0 4505 0 9133 0 5382 0 4427 0 0046 0 8687

d d

. . . . . . . . .

C . . . C . . . C . . .

. . . . . . . . .

    
    

    
   
       




 
 

                (150) 

21 22 1 2 1 2 21 22

0 1818 0 1361

0 1616 , 0 5693 , 0 5499, 0 1450, 0 0844, 0 8001, 0 8530, 0 6222

0 9999 0 5797

. .

D . D . L . L . S . S . B . B .

. .

   
   

         
   
      

       (151) 

For (148), the stochastic controller is designed   

      

     

1 ki ki

ki

ˆ ˆx k A x k d k B y k

ˆu k k C x k

    




                                                                  (152) 

Solving the LMIs,  ,  ,  , iX  and iY  ( 1, 2i  ) are solved  

0.2769 0.8235 0.9502 0.3816 0.1869 0.6463 0.2760 0.1626 0.9597

0.0462 0.6948 0.0344 , 0.7655 0.4898 0.7094 , 0.6797 0.1190 0.3404

0.0971 0.3171 0.4387 0.7952 0.4456 0.7547 0.6551 0.4984 0.5853

      
   

        
   
        

1 2

1

0.2238 0.5060 0.9593 0.1493 0.2543 0.9293

0.7513 0.6991 0.5472 , 0.2575 0.8143 0.3500

0.2551 0.8909 0.1386 0.8407 0.2436 0.1966

0.0511 0.3417 0.5497

0.1600 0.8308 0.9172

0.4733 0.5853 0.255

X X

Y


 
 
  

   
   

 
   
      

 2

0.7572 0.5678 0.5308

, 0.7537 0.0759 0.7792

8 0.3804 0.0540 0.9340

Y











    
    

    
       

             (153) 

Using the stability conditions, kiA , kiB  and kiC  ( 1, 2i  ) are solved as follows  
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1 2 1

1 7575 2 2124 2 8405 1 2843 12 4649 8 9775 3 3175 3 3307 8 4658

9 2384 3 6696 4 0739 , 6 0799 8 0942 10 4646 , 2 7984 5 7386 13 0819

2 2841 1 1832 0 5288 0 4077 18 2948 14 1395 0 848

k k k

. . . . . . . . .

A . . . A . . . B . . .

. . . . . . .

       
   

     
   
         

2 1 2

1 0 2540 2 3967

1 0849 2 1917 4 9744 0 6870 0 0673 0 1185 2 7123 0 3729 1 2584

2 3801 1 9429 4 7213 , 0 8144 0 4770 0 1540 , 1 2019 0

3 6696 1 6544 7 1568 0 3350 0 0521 0 0302

k k k

. .

. . . . . . . . .

B . . . C . . . C .

. . . . . .

 
 
 
  

     
   

      
   
       

3383 0 6030

1 1672 0 0880 0 5898

. .

. . .







 
  
 
   

       (154) 

The response of  k  with 0 95.   is shown in Figure 6. The response of  k  with 0 90.   is shown in Figure 7. The 

3-dimentional response of  1x k ,  2x k  and  3x k  is shown in Figure 8. In Figures 6-8, it can be seen that the closed-loop system 

is exponentially mean-square stable. The data comparison results of   with 0 3000d .  and for 0 2000d .  different Md  are 

shown in Tables 2-3, respectively. In Tables 2-3, it can be seen that the smaller   can be obtained as d  gets smaller. The data 

comparison results corresponding to Table 3 is shown in Figure 9. In Table 3 and Figure 9, it can be seen that the smaller lower 

bounds   are obtained by employing Theorem 3 than (Zheng, Wang, Wang, Wen, & Zhang, 2018) and (Zheng, Zhang, Wang, 

Wen, & Wang, 2020). The data comparison results of Md  with 0 3000d .  and 0 2000d .  for different   are shown in Tables 4-5, 

respectively. In Tables 4-5, it can be seen that the larger Md  can be obtained as d  gets smaller. The data comparison results 

corresponding to Table 5 is shown in Figure 10. In Table 5 and Figure 10, it can be seen that the larger Md  are obtained by 

employing Theorem 3 than (Zheng, Wang, Wang, Wen, & Zhang, 2018) and (Zheng, Zhang, Wang, Wen, & Wang, 2020).  
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Figure 6. Response of  k  with 0.95  .  
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Figure 7. Response of  k  with 0.90  .  
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Figure 8. 3-dimentional response of  1x k ,  2x k  and  3x k .  
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Figure 9. Data comparison results corresponding to Table 3.  
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Figure 10. Data comparison results corresponding to Table 5.  

Table 2. Data comparison results of lower bounds   with 0.3000d   for different Md .  

Method 
 

 
 Md     

0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 

Zheng, et al., 2018 2.1498 2.3614 2.5462 2.6299 2.7295 2.9688 3.0251 

Zheng, et al., 2020 1.9386 2.1646 2.3727 2.4498 2.6286 2.7860 2.9443 

Theorem 3 1.7778 1.9453 2.1674 2.2977 2.4738 2.5009 2.7735 
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Table 3. Data comparison results of lower bounds   with 0.2000d   for different Md .  

Method 
 

 
 Md     

0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 

Zheng, et al., 2018 1.9661 2.1684 2.2520 2.4551 2.5476 2.7552 2.8278 

Zheng, et al., 2020 1.7943 2.0646 2.1911 2.3660 2.4605 2.6083 2.7173 

Theorem 3 1.6102 1.8446 1.9644 2.0624 2.3744 2.4636 2.5186 

Table 4. Data comparison results of upper bounds Md  with 0.3000d   for different  .  

Method 
 

 
      

0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 

Zheng, et al., 2018 0.4806 0.6421 0.9941 1.3020 1.4268 1.8717 2.2213 

Zheng, et al., 2020 0.6348 0.9020 1.1769 1.4331 1.6545 2.1199 2.4406 

Theorem 3 0.7322 1.0021 1.2628 1.6376 1.9146 2.3742 2.6177 

Table 5. Data comparison results of upper bounds Md  with 0.2000d   for different  .  

Method 
 

 
      

0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 

Zheng, et al., 2018 0.6942 0.8682 1.1232 1.5822 1.6661 2.1881 2.4711 

Zheng, et al., 2020 0.8527 1.1661 1.2524 1.6606 1.8626 2.3430 2.5932 

Theorem 3 0.9602 1.3475 1.4182 1.8107 2.1902 2.5388 2.7601 

6. Conclusions  

In this paper, the stochastic fuzzy delay-dependent dynamic output feedback control is proposed for the uncertain networked 

control system. The T-S fuzzy model is employed, and system plant can be deacribed effectively. The closed-loop system is 

exponentially mean-square stable by designing stochastic T-S fuzzy dynamic output controller. Based on the time delay 

information and fuzzy-basis-dependent Lyapunov functional, the delay-dependent stability conditions can be obtained. The 

H-infinity performance function is constructed, and the H-infinity performance can be guaranteed. The congruence transformation 

method is employed and the controller gain matrices can be determined. Usually, the wireless and wire communication networks 

are used to transmit the data in the networked control system. Hence, the system control performance is easy to suffer from the 

hacker attacks. Once the attack is successful, it may reduce the system control performance, destabilize the system or even cause 

the system to crash. Hence, it is necessary to design the active defense algorithm for the hacker attacks in the future. Moreover, the 

false data injection attacks often exist in the communication channels of networked control system, the necessary and sufficient 

conditions for the insecurity will be investigate in the future.  
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