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of Heart and Lungs, Department of Cardiology, University Medical Centre Utrecht, Utrecht, Netherlands, 4 Division
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Background: Artificial intelligence (AI) techniques have been proposed for automation
of cine CMR segmentation for functional quantification. However, in other applications
AI models have been shown to have potential for sex and/or racial bias. The objective
of this paper is to perform the first analysis of sex/racial bias in AI-based cine CMR
segmentation using a large-scale database.

Methods: A state-of-the-art deep learning (DL) model was used for automatic
segmentation of both ventricles and the myocardium from cine short-axis CMR. The
dataset consisted of end-diastole and end-systole short-axis cine CMR images of 5,903
subjects from the UK Biobank database (61.5 ± 7.1 years, 52% male, 81% white). To
assess sex and racial bias, we compared Dice scores and errors in measurements
of biventricular volumes and function between patients grouped by race and sex. To
investigate whether segmentation bias could be explained by potential confounders, a
multivariate linear regression and ANCOVA were performed.

Results: Results on the overall population showed an excellent agreement between
the manual and automatic segmentations. We found statistically significant differences
in Dice scores between races (white ∼94% vs. minority ethnic groups 86–89%) as well
as in absolute/relative errors in volumetric and functional measures, showing that the
AI model was biased against minority racial groups, even after correction for possible
confounders. The results of a multivariate linear regression analysis showed that no
covariate could explain the Dice score bias between racial groups. However, for the
Mixed and Black race groups, sex showed a weak positive association with the Dice
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score. The results of an ANCOVA analysis showed that race was the main factor that
can explain the overall difference in Dice scores between racial groups.

Conclusion: We have shown that racial bias can exist in DL-based cine CMR
segmentation models when training with a database that is sex-balanced but not
race-balanced such as the UK Biobank.

Keywords: cardiac magnetic resonance, deep learning, fair AI, segmentation, inequality fairness in deep learning-
based CMR segmentation

INTRODUCTION

Artificial intelligence (AI) is a rapidly evolving field in medicine,
especially cardiology. AI has the potential to aid cardiologists
in making better decisions, improving workflows, productivity,
cost-effectiveness, and ultimately patient outcomes (1). Deep
learning (DL) is a recent advance in AI which allows computers
to learn a task using data instead of being explicitly programmed.
Several studies in cardiology and other applications have shown
that DL methods can match or even exceed human experts in
tasks such as identifying and classifying disease (2–4).

In cardiology, cardiovascular imaging has a pivotal role
in diagnostic decision making. Cardiac magnetic resonance
(CMR) is the established non-invasive gold-standard modality
for quantification of cardiac volumes and ejection fraction
(EF). For decades, clinicians have been relying on manual or
semi-automatic segmentation approaches to trace the cardiac
chamber contours. However, manual expert segmentation
of CMR images is tedious, time-consuming and prone to
subjective errors. Recently, DL models have shown remarkable
success in automating many medical image segmentation
tasks. In cardiology, human-level performance in segmenting
the main structures of the heart has been reported (5,
6), and researchers have proposed to use these models for
tasks such as automating cardiac functional quantification (7).
These methods are now starting to move toward broader
clinical translation.

In the vast majority of cardiovascular diseases (CVDs), there
are known associations between sex/race and epidemiology,
pathophysiology, clinical manifestations, effects of therapy,
and outcomes (8–10). Furthermore, in clinically asymptomatic
individuals the Multi-Ethnic Study of Atherosclerosis (MESA)
study showed that men had greater right ventricular (RV)
mass and larger RV volumes than women, but had lower
RV ejection fraction; African-Americans had lower RV mass
than whites, whereas Hispanics had higher RV mass (11);
and the LV was more trabeculated in African-American and
Hispanic participants than white participants, and smoothest in
Chinese-American participants (12), but the greater extent of
LV trabeculation was not associated with an absolute decline in
LVEF during the approximately 10 years of the MESA study.
Similarly, the Coronary Artery Risk Development in Young
Adults (CARDIA) study (13) showed differences between races
(African American and white) and sexes in LV systolic and
diastolic function, which persist after adjustment for established
cardiovascular risk factors.

Although these physiological differences are associations and
not proven causative links with race/gender, their presence
raises a potential concern about the performance of AI models
in cardiovascular imaging. Although AI has great potential
in this area, no previous work has investigated the fairness
of such models. In AI, the concept of “fairness” refers to
assessing AI algorithms for potential bias based on demographic
characteristics such as race and sex. In general, AI models
are trained agnostic to demographic characteristics, and they
assume that if the model is unaware of these characteristics while
making decisions, the decisions will be fair. However, we have
recently shown, for the first time, that using this assumption there
exists racial bias in DL-based cine CMR segmentation models
when trained using racially imbalanced data (14). The previous
study aimed to identify the presence of bias and the technical
development of different bias mitigation strategies, in order to
reduce the bias effect between different racial groups. The object
of this study is to investigate in more detail the origin and
the effect of this bias on cardiac structure and function and to
assess whether the bias could be explained by any confounder
and therefore be linked with changes in subject characteristics,
anatomy or cardiovascular risk factors.

MATERIALS AND METHODS

Participants
The UK Biobank is a prospective cohort study with more than
500,000 participants aged 40–69 years of age conducted in the
United Kingdom (15). This study complies with the Declaration
of Helsinki; the work was covered by the ethical approval for
UK Biobank studies from the NHS National Research Ethics
Service on 17th June 2011 (Ref 11/NW/0382) and extended on
18th June 2021 (Ref 21/NW/0157) with written informed consent
obtained from all participants. The present study was performed
using a sub-cohort of the UK Biobank imaging database, for
whom CMR imaging and ground truth manual segmentations
were available. In this study, in order to minimize the effects of
physiological differences due to cardiovascular and other related
diseases, we only focus on the healthy population of the UK
Biobank database and analyze possible confounders that can
explain racial and sex bias.

Therefore, we excluded any subjects with known
cardiovascular disease, respiratory disease, hematological
disease, renal disease, rheumatic disease, malignancies,
symptoms of chest pain, respiratory symptoms or other diseases
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impacting the cardiovascular system, except for diabetes mellitus,
hypercholesterolemia and hypertension (see all exclusion criteria
in Supplementary List 1). We included these cardiovascular risk
factors to evaluate if or to what degree different cardiovascular
risk in otherwise healthy patients could explain a potential bias
in segmentation performance. We used the ICD-9 and ICD-10
codes and self-reported detailed health questionnaires and
medication history for the selection process.

In this paper, race was assumed to align with self-reported
ethnicity, which was the data collected in the UK Biobank.
From the total UK Biobank database (N = 501,642), the race
distribution is as follows: White 94.3%, Mixed 0.6%, Asian, 1.9%,
Black 1.6%, Chinese: 0.9%, Other: 0.4%. The UK Biobank cohort
has a similar ethnic distribution to the national population of
the same age range in the 2011 UK Census (16). The imaging
cohort used in this study (N = 5,660) has a slightly different
racial distribution (White 81%, Mixed 3%, Asian, 7%, Black 4%,
Chinese: 2%, Other: 3%), but it is still predominantly White
race, in line with the full cohort of the UK Biobank database.
Imaging centers of the UK Biobank are in Newcastle upon Tyne,
Stockport, Reading and Bristol. The same imaging protocol was
used in all imaging centers and no racial distribution difference
was found between them. More details of the image acquisition
protocol can be found in Petersen et al. (17).

Subject characteristics obtained were age, binary sex category,
race, body measures (height; weight; body mass index, BMI; and
body surface area, BSA), and smoker status (smoker was defined
as a subject smoking or smoked daily for over 25 years in the
previous 35 years). We also obtained the average heart rate (HR)
and brachial systolic and diastolic blood pressure (SBP and DBP)
measured during the CMR exam. These subject characteristics
were considered as possible confounders in the statistical analysis,
as they are directly or indirectly related to the measurements
made and therefore plausibly associated with the accuracy of
the measurements.

Automated Image Analysis
A state-of-the-art DL based segmentation model, the “nnU-Net”
framework (18), was used for automatic segmentation of the
left ventricle blood pool (LVBP), left ventricular myocardium
(LVMyo) and right ventricle blood pool (RVBP) from cine short-
axis CMR slices at end-diastole (ED) and end-systole (ES). This
model was chosen as it has performed well across a range of
segmentation challenges and was the top-performing model in
the “ACDC” CMR segmentation challenge (6). For training and
testing the segmentation model, we used a random split of 4,410
and 1,250 subjects, respectively, each with similar sex and racial
distributions. We refer the reader to our previous paper (14) for
further details of the model architecture and training.

Evaluation of the Method
For quantitative assessment of the image segmentation model,
we used the Dice similarity coefficient (DSC), which quantifies
the overlap between an automated segmentation and a ground
truth segmentation. DSC has values between 0 and 100%, where
0 denotes no overlap, and 100% denotes perfect agreement.
From the manual and automated image segmentations, we

calculated the LV end-diastolic volume (LVEDV) and end-
systolic volume (LVESV), and RV end-diastolic volume (RVEDV)
and end-systolic volume (RVESV) by summing the number
of voxels belonging to the corresponding label classes in
the segmentation and multiplying this by the volume per
voxel. The LV myocardial mass (LVmass) was calculated by
multiplying the LV myocardial volume by a density of 1.05 g/mL.
Derived from the LV and RV volumes, we also computed
LV ejection fraction (LVEF) and RV ejection fraction (RVEF).
We evaluated the accuracy of these volumetric and functional
measures by computing the absolute and relative differences
between automated and manual measurements. We define the
absolute and relative error as εabsolute = |vmanual − vauto|)
and εrelative(%) = 100∗ |vmanual − vauto|/vmanual, where v
corresponds to each clinical measure.

Analysis of the Influence of Confounders
To investigate whether a true bias between racial and/or sex
groups exists for automated DL-based cine CMR segmentation,
we conducted a statistical analysis to investigate if the
observed bias could be explained by the most common
confounders. In this study, we use as possible confounders
age, sex, body measures (i.e., height, weight and BMI), HR,
SBP, DBP, CMR-derived parameters (LVEDV, LVESV, RVEDV,
RVESV, LVmass), cardiovascular risk factors (i.e., hypertension,
hypercholesteremia, diabetes and smoking) and center (i.e.,
core lab where most of the segmentations were performed vs.
additional lab).

Statistical Analysis
Data analysis was performed using SPSS Statistics (version
27, IBM, United States). Continuous variables are reported
as mean ± standard deviation (SD) and tested for normal
distributions with the Shapiro–Wilk test. Log transformations
were applied to the (1-DSC) values to obtain an approximately
normal distribution. After transformation, all continuous
variables were normally distributed. Categorical data are
presented as absolute counts and percentages. Comparison of
variables between groups (i.e., races and sexes) was carried out
using an independent Student’s t-test.

Independent association between log-transformed DSC values
and race was performed using univariate linear regression
followed by multivariate adjustment for confounders. All
variables in the regression models were standardized by
computing the z-score for individual data points.

Finally, the differences in DSC values among different racial
groups were initially assessed by a 1-way ANOVA (Model 4)
followed by an analysis of covariance—ANCOVA (Model 5) to
statistically control the effect of covariates. In addition, we check
the assumption concerning regression residuals (19) as follows:
(1) Homoscedasticity tested by a Levene’s Test of quality of error
variance; (2) Normality of residuals tested by the Kolmogorov–
Smirnov and Shapiro–Wilk test; (3) Multicollinearity tested
by the Durbin Watson Test. For all statistical analysis, the
threshold for statistical significance was p < 0.01 and confidence
intervals (%) were calculated by non-parametric bootstrapping
with 1,000 resamples.
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Pairwise post hoc testing was carried out using Bonferroni
correction and Scheffé correction for multiple comparisons on
the t-test and ANOVA analysis, respectively.

MATERIALS

Subject Characteristics
The dataset used consisted of ED and ES short-axis cine CMR
images of 5,660 healthy subjects (with or without cardiovascular
risk factors). Subject characteristics for all participants were
obtained from the UK Biobank database and are provided in
Table 1.

For all subjects, the LV endocardial and epicardial borders
and the RV endocardial border were manually traced at ED
and ES frames using the cvi42 software (version 5.1.1, Circle
Cardiovascular Imaging Inc., Calgary, Alberta, Canada). 4,975
subjects were previously analyzed by two core laboratories based
in London and Oxford (20), the remaining 685 subjects were
analyzed by two experienced CMR cardiologists at Guy’s and
St Thomas’ Hospital following the same standard operating
procedures described in Petersen et al. (20). For all CMR
examinations that underwent manual image analysis, any case
with insufficient quality (i.e., presence of artifacts or slice location
problems, operator error or evidence of pathology, such as
significant shunt or valve regurgitation) were rejected (21). All
experts performing the segmentations were blinded to subject
characteristics such as race and sex. From our database, 4,410
subjects were used to train and validate the DL-based CMR
segmentation model, and 1,250 subjects were used as a test set
for the validation of the model and the statistical analysis (split
70/10/20 for training/validation/test set). The train and test sets
were stratified to contain approximately the same percentage of
samples for each racial group and sex. Supplementary Figure 1
shows the flow chart for selection of cases for this study.

RESULTS

Deep Learning-Based Image
Segmentation Pipeline
Table 2 reports the DSC values between manual and automated
segmentations evaluated on the test set of 1,250 subjects which
the segmentation model had never seen before. The table shows
the mean DSC for LVBP, LVMyo and RVBP for both the full
test set and stratified by sex and race. Overall, the average
(AVG) DSC was 93.03 ± 3.83% (94.40 ± 2.61% for the LVBP,
88.78 ± 3.08% for the LVMyo and 90.77 ± 3.96% for the RVBP).
Table 2 shows that the CMR segmentation model had a racial
bias for all comparisons but no sex bias (independent Student’s t-
test between each racial group and rest of the population;
p < 0.001 for LVBP, LVMyo, RVBP and AVG for all races).1

Supplementary Figure 2 shows in the first-row visual examples
of frames from a cine CMR sequence and their associated ground
truth segmentations, and in the two last rows some sample
segmentation results (on different frames) for different racial
groups with both high and low DSC.

Next, we evaluate the accuracy of the volumetric and
functional measures (LVEDV, LVESV, LVEF, LVmass, RVEDV,
RESV, RVEF). Table 3A reports the mean values based on
the manual segmentations, and Tables 3B,C report the mean
absolute differences and relative differences between automated
and manual measurements, respectively. The Bland-Altman plots
for agreement between the pipeline and manual analysis are
shown in Supplementary Figure 3. For the overall population,
results are in line with previous reported values (5, 22) and within
the inter-observability range (20).

These results show that for sex there is a statistically significant
difference in the absolute error for LVEF, LVmass and RVEF

1Table 2 differs from Table 1 of our previous work (14), as in the present study we
have excluded any case with cardiovascular disease.

TABLE 1 | Population characteristics for the train/validation and test sets.

Train/validation Test

Continuous variables Patients, n 4,410 1,250

Age (years; mean, SD) 62 (8) 61 (8)

Height (cm; mean, SD) 169 (9) 169 (9)

Weight (kg; mean, SD) 76 (15) 75 (14)

BMI (kg/m2; mean, SD) 27 (4) 26 (4)

BSA (m2; mean, SD) 1.86 (0.21) 1.85 (0.20)

Systolic blood pressure (mmHg; mean, SD) 136 (20) 136 (18)

Diastolic blood pressure (mmHg; mean, SD) 79 (11) 80 (10)

Heart rate (bpm; mean, SD) 63 (20) 63 (10)

Categorical variables Sex (males; n, %) 2,299 (52) 655 (52)

Racial group White (n, %) 3,570 (81) 1,025 (81)

Mixed (n, %) 136 (3) 34 (3)

Asian (n, %) 313 (7) 83 (7)

Black (n, %) 190 (4) 47 (4)

Chinese (n, %) 87 (2) 27 (2)

Other (n, %) 144 (3) 34 (3)

All continuous values are reported as mean(SD), while categorical variables are reported as number (percentage). SD, standard deviation.
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TABLE 2 | Dice similarity coefficient (DSC) values for the overall test set and by sex and race.

N = 1,250 LVBP LVMyo RVBP AVG

Total 94.39 (2.61) 88.68 (3.06) 90.77 (3.86) 91.28 (3.18)

Male 94.35 (2.55) 89.10 (2.84) 90.61 (3.96) 91.35 (3.12)

Female 94.44 (2.67) 88.59 (3.26) 90.94 (3.94) 91.32 (3.29)

White 95.13 (1.98)*** 89.81 (1.48)*** 92.24 (2.11)*** 92.39 (1.86)***

Mixed 89.79 (1.34)** 80.72 (2.38)** 82.95 (2.53)** 84.49 (2.08)**

Asian 92.15 (2.48)** 86.46 (2.18)* 86.27 (2.63)** 88.29 (2.43)**

Black 91.41 (1.53)*** 85.78 (1.73)*** 80.88 (2.10)*** 86.02 (1.79)***

Chinese 88.98 (2.43)* 79.75 (2.21)* 82.58 (2.32)* 83.77 (2.32)*

Others 90.46 (2.53)* 82.64 (5.44)* 84.77 (3.46) 85.96 (3.81)*

DSC reported for the LV blood pool (LVBP), LV myocardium (LVMyo) and RV blood pool (RVBP), and average DSC values across LVBP, LVM and RVBP (AVG column).
DSC is reported as mean and standard deviation (in parentheses). The first row reports the DSC for the full database, the second and third rows report DSC by sex and the
remaining rows report DSC by racial group. Values are reported as mean(SD). Comparison of variables between groups (i.e., male vs. female, white vs. non-white, mixed
vs. non-mixed, etc.) was carried out using an independent Student’s t-test. Pairwise post hoc testing was carried out using Bonferroni correction for multiple comparisons.
Asterisks indicate statistically significant differences between each group and the rest of the test set after correction (28 tests), where *p < 0.01/28, **p < 0.001/28,
***p < 0.0001/28. Exact p-values are reported in Supplementary Table 3. SD, standard deviation.

(independent Student’s t-test p < 0.001). For different racial
groups, they show that the White and Mixed groups have for all
clinical parameters a statistically significant difference in absolute
and relative error (except Mixed LVmass p = 0.66 and p = 0.15
for absolute and relative error, respectively). They also show that
there is a statistically significant difference in the absolute and
relative errors for LVEDV, LVESV, LVEF (except for absolute
error for Black and Other LVESV p = 0.25 and p = 0.01,
respectively, and Black LVEF p = 0.17; and relative error for
Black LVEDV p = 0.03, LVESV p = 0.53 and LVEF p = 0.20).
Interestingly, there is no statistically significant difference in
absolute or relative error for RV clinical parameters for the
Chinese and Other racial groups.

Multivariable Analysis
To analyze if there is any other factor (i.e., risk factors, patient
characteristics) that could explain the bias in DSC between
races, we performed a multivariate linear regression between the
DSC and race adjusted for patient size, cardiac parameters and
cardiovascular risk factors and taking the white group as control.
Table 4 shows the unadjusted [model 1—4(a)] and adjusted
[model 2—4(b)] standardized regression beta coefficients [with
95% confidence interval (CI)] for the association between DSC
and racial groups. Supplementary Table 1 shows the full list of
standardized regression beta-coefficients from the multivariate
analysis for each racial group (model 3), representing the z-score
change in variables with the associated factors. Our results
show that all associations remained significant after multivariate
adjustment and that there is no covariate that can explain the
DSC bias between racial groups (see Table 4B). For the Mixed
and Black race groups, sex shows a weak positive association
with DSC (see Supplementary Table 1), however, race remains
the main factor.

Analysis of Variance
We also compared change of marginal means of DSC
between different racial groups using a 1-way ANOVA
(F = 219.43, p < 0.0001, η2 = 0.47) and an ANCOVA adjusted for

patient size, cardiac parameters and cardiovascular risk factors
(F = 196.237, < 0.0001, η2 = 0.44, see Supplementary Table 2).
Estimated marginal means are given in Table 5, before and after
adjustment for the mean of covariates. The results show that
there is an overall difference between racial groups, and after
adjustment for covariates race still remains the main factor.

Effect of Bias on Heart Failure Diagnosis
The previous experiments have demonstrated that racial bias
exists in the DL-based CMR segmentation model. This final
experiment aims to provide an example of how this racial
bias could potentially have an effect on the diagnosis and
characterization of heart failure (HF). To this end, we trained
another nnU-Net segmentation model using both healthy
and cardiomyopathy subjects from the UK Biobank (training
and validation: 4,410 healthy subjects/200 cardiomyopathy
subjects and test: 1,250 healthy subjects/150 cardiomyopathy
subjects). For the cardiomyopathy test cases, we computed the
misclassification rate (MCR, %) between the manual LVEF and
the automated LVEF based on the standard classification of HF
according to LVEF (23, 24), i.e., HF with reduced EF (HFrEF): HF
with an LVEF of ≤ 40%; HF with mildly reduced EF (HFmrEF):
HF with an LVEF of 41–49%; HF with preserved EF (HFpEF):
HF with an LVEF of ≥ 50%. The results are presented in
Table 6. Overall, although the number of subjects in the minority
racial groups was relatively small, the misclassification rate using
the AI-derived segmentations for White subjects was low, with
generally much higher rates for minority races.

DISCUSSION

We have demonstrated for the first time the existence of racial
bias in DL-based cine CMR segmentation. The results show that
after adjustment for possible confounders such as cardiovascular
risk factors the bias persists, suggesting that it is related to
the balance of the database used to train the DL model. This
conclusion is supported by our earlier work (14), where a model
trained with a (much smaller) racially balanced database had
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TABLE 3 | Manual clinical measurements (top table) and absolute (middle table) and relative (bottom table) differences in volumetric and functional measures between
automated and manual segmentations, overall and by sex and race.

(A) Manual

iLVEDV
(mL/mm2)

iLVESV
(mL/mm2)

LVEF (%) iLVmass
(g/mm2)

iRVEDV
(mL/mm2)

iRVESV
(mL/mm2)

RVEF (%)

Total 79 (20) 33 (12) 60 (7) 51 (14) 86 (22) 38 (13) 57 (7)

Male 82 (20)* 36 (12) 59 (7)* 50 (12) 95 (21)* 45 (13) 54 (7)*

Female 72 (14)* 29 (8) 61 (7)* 42 (9) 77 (14)* 32 (8) 58 (6)*

White 83 (20) 35 (12) 59 (6) 51 (14)* 87 (22)* 39 (13)* 56 (6)
Mixed 76 (20)* 27 (9)* 64 (8)* 47 (14) 83 (20)* 35 (10)* 58 (8)*

Asian 70 (18)* 25 (10)* 65 (8)* 48 (12)* 76 (19)* 32 (11) 58 (6)

Black 87 (21) 33 (11) 63 (6) 59 (13) 94 (27)* 41 (14) 56 (6)

Chinese 66 (12)* 22 (7)* 66 (7)* 46 (11)* 75 (16) 32 (8) 58 (6)

Others 77 (19)* 28 (9) 64 (6)* 53 (15) 86 (23) 36 (13) 59 (7)

(B) Absolute difference

iLVEDV
(mL/mm2)

iLVESV
(mL/mm2)

LVEF (%) iLVmass
(g/mm2)

iRVEDV
(mL/mm2)

iRVESV
(mL/mm2)

RVEF (%)

Total 2.6 (1.7) 2.1 (1.8) 2.5 (2.4) 3.8 (3.9) 3.5 (2.6) 3.0 (2.2) 3.6 (3.0)

Male 2.7 (1.7) 2.1 (1.7) 2.1 (1.9)* 4.1 (4.2) 3.4 (2.6) 3.0 (2.1) 3.1 (2.7)*

Female 2.6 (1.7) 2.1 (1.8) 2.9 (2.8)* 3.5 (3.4) 3.5 (2.6) 4.6 (2.2) 4.1 (3.3)*

White 2.3 (1.5) 1.9 (1.5)* 2.1 (2.1)* 4.0 (3.3)* 3.2 (2.6)* 2.8 (2.2) 3.4 (2.9)*
Mixed 3.9 (2.1)* 3.4 (1.7)* 4.1 (2.7) 1.9 (1.7)* 4.6 (1.8)* 3.9 (1.8)* 4.9 (2.5)*

Asian 3.4 (1.9)* 2.8 (2.3)* 4.0 (2.9) 2.0 (2.3)* 4.4 (2.4)* 3.4 (1.9) 4.4 (3.3)

Black 3.6 (1.8)* 2.9 (2.8)* 3.3 (3.0)* 2.0 (2.2)* 4.4 (1.6)* 3.5 (1.9) 3.9 (2.6)

Chinese 4.4 (2.2)* 3.4 (2.1)* 4.7 (2.8)* 4.1 (3.6)* 4.8 (2.4) 4.0 (2.9)* 6.4 (5.4)*

Others 3.7 (1.9) 3.1 (2.0)* 4.3 (3.2) 2.3 (2.5) 4.6 (3.4) 3.6 (1.8)* 4.3 (2.8)

(C) Relative difference

iLVEDV
(mL/mm2)

iLVESV
(mL/mm2)

LVEF (%) iLVmass
(g/mm2)

iRVEDV
(mL/mm2)

iRVESV
(mL/mm2)

RVEF (%)

Total 3.4 (2.5) 7.1 (7.4) 4.1 (3.9) 8.7 (8.3) 4.3 (3.4) 8.8 (7.5) 6.4 (5.2)

Male 3.0 (2.3)* 6.2 (6.3)* 3.6 (3.1)* 7.8 (6.5)* 3.7 (3.0)* 7.3 (5.9)* 5.8 (5.0)*

Female 3.7 (2.7)* 7.9 (8.2)* 4.6 (4.4)* 9.6 (9.6)* 4.9 (3.7)* 10.2 (8.4)* 7.0 (5.4)*

White 3.0 (2.1)* 6.0 (6.1)* 3.7 (3.6) 8.4 (8.7) 4.0 (3.4)* 8.2 (7.3) 6.0 (5.1)*
Mixed 5.7 (3.1)* 14.1 (8.2)* 6.5 (4.2)* 10.3 (6.1)* 6.2 (2.4)* 13.3 (6.8)* 9.2 (5.1)*

Asian 5.1 (3.2)* 11.8 (11.6)* 5.8 (4.2)* 10.5 (5.4)* 6.1 (3.4)* 11.5 (6.8) 7.2 (4.9)

Black 4.1 (2.3) 7.7 (6.8) 5.1 (4.8)* 7.3 (4.1) 5.1 (2.2) 9.3 (5.9) 7.3 (4.7)

Chinese 7.0 (4.3)* 16.5 (10.6)* 6.9 (3.7)* 13.6 (7.1)* 6.2 (3.2) 13.8 (11.4)* 10.4 (9.4)*

Others 5.0 (2.9)* 12.6 (10.2) 7.7 (5.5)* 8.9 (4.2) 5.2 (3.9) 11.9 (7.0)* 8.1 (4.9)

Clinical measurements for the LV and RV end diastolic volume (EDV), end systolic volume (ESV), ejection fraction (EF), and left ventricular mass (LVmass). All cardiac
volumes were indexed to body surface area using the Dubois and Dubois formula (32). We define the absolute and relative errors asεabsolute = |vmanual − vauto|)
andεrelative(%) = 100∗ |vmanual − vauto|/vmanual , wherev corresponds to each clinical measure. Clinical measures are reported as mean and standard deviation (in
parentheses). The first row reports the clinical measurements for the full database, the second and third rows report the clinical measurements by sex and the remaining
rows report the clinical measurements by racial group. Values are reported as mean(SD). Comparison of variables between groups (i.e., male vs. female, white vs.
non-white, mixed vs. non-mixed, etc.) was carried out using an independent Student’s t-test. Pairwise post hoc testing was carried out using Bonferroni correction for
multiple comparisons. Asterisks indicate statistically significant differences between each group and the rest of the test set after correction (49 tests), i.e., p < 0.01/49.
Exact p-values are reported on Supplementary Table 4. SD, standard deviation.

much reduced bias (although poorer performance overall due to
the smaller training database).

Assessment of the Bias in the Deep
Learning-Based Cardiac Magnetic
Resonance Segmentation Model
For the overall population, the DSC values are in line with
previous reported values (5, 22) and with the inter-observer

variability range (20). DSC as well as absolute differences and
relative differences show a higher bias on the RV, however, this
is expected as previous studies have highlighted the difficulty in
manual contouring of the RV and the higher variability between
observers (20).

The bias we found in segmentation model performance
was near-exclusively based on race. Statistically significant
differences in some derived volumetric/functional measures (see
Table 3) were found by sex but these differences were small
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TABLE 4 | Associations between average DSC and racial group.

(A) Univariate
linear regression

Standardized beta-coefficients (95% CI)

N Model 1 p-value

Mixed 1,250 0.34 (0.30, 0.38)*** 6.30E-16

Asian 1,250 0.33 (0.29, 0.37)*** 1.57E-12

Black 1,250 0.36 (0.32, 0.40)*** 1.30E-19

Chinese 1,250 0.32 (0.28, 0.36)*** 1.08E-8

Other 1,250 0.30 (0.26, 0.34)*** 4.43E-14

(B) Multivariate linear regression

Standardized beta-coefficients (95% CI)

N Model 2 p-values

Age 1,250 0.03 (–0.02, 0.08) 0.210

Sex 1,250 0.02 (–0.03, 0.08) 0.364

Weight 1,250 0.10 (–0.36, 0.51) 0.699

Height 1,250 0.00 (–0.28, 0.29) 0.972

BMI 1,250 -0.02 (–0.36, 0.36) 0.944

HR 1,250 0.03 (–0.01, 0.07) 0.114

SBP 1,250 -0.01 (–0.07, 0.04) 0.579

DBP 1,250 -0.04 (–0.08, 0.01) 0.114

LVEDV 1,250 -0.02 (–0.21, 0.17) 0.855

LVESV 1,250 -0.07 (–0.20, 0.06) 0.284

RVEDV 1,250 0.12 (–0.09, 0.31) 0.235

RVESV 1,250 -0.11 (–0.24, 0.04) 0.127

Lvmass 1,250 -0.04 (–0.11, 0.02) 0.174

Diabetes 1,250 0.10 (–0.07, 0.27) 0.273

Hypertension 1,250 0.05 (0.00, 0.10) 0.034

Hyper
cholesterolemia

1,250 0.00 (–0.04, 0.05) 0.860

Smoking 1,250 0.00 (–0.05, 0.03) 0.812

Center 1,250 0.15 (0.09, 0.21) 9.99E-02

Mixed 1,250 0.38 (0.36, 0.41)** 9.99E-04

Asian 1,250 0.37 (0.34, 0.41)** 9.99E-04

Black 1,250 0.40 (0.38, 0.43)** 9.99E-04

Chinese 1,250 0.36 (0.34, 0.39)** 9.99E-04

Other 1,250 0.34 (0.30, 0.38)** 9.99E-04

Standardized regression beta-coefficients and CI are shown, representing the
z-score change in variables with increasing DSC. The White racial group was
selected as control. LV, left ventricle, EDV, end-diastolic volume, ESV, end-
systolic volume, SBP, systolic blood pressure, DBP, diastolic blood pressure, CI,
confidence interval. Model 1 is unadjusted; Model 2 is adjusted for sex, height,
weight, blood pressure at scan-time, heart rate at scan-time, LVEDV, LVESV,
RVEDV, RVESV, LVmass, diabetes, hypertension, hypercholesterolemia, smoking
and center. *p < 0.01, **p < 0.001, ***p < 0.00001.

compared to the differences observed in both DSC (Table 2)
and volumetric/functional measures (Table 3) by race. Therefore,
none of the confounders used in this study could explain the
differences by race. Results from the ANCOVA analysis show
that one factor that contributed more to the model was the
center where the segmentations were performed. This could
be explained by differences in CMR reporting between the
core lab and the additional lab. Similarly to the complete UK

Biobank database, the subcohort that we used is approximately
sex-balanced but not race-balanced, and the highest errors
were found for relatively underrepresented racial groups. This
phenomenon has been observed before in applications in
computer vision (25) and medical imaging (26, 27), but never
before reported in CMR image analysis.

We believe that this bias is due to the imbalanced nature of the
training data. Combined with previous studies that have shown
race-based associations with differences in cardiac physiology
using diverse databases (10, 11), the imbalance causes the
performance of the DL model to be biased toward the physiology
of the majority group (i.e., white subjects), to the detriment of
performance on minority racial groups.

Our last experiment showed that using the AI-based predicted
EF values will result in higher misclassification rates for the
minority races compared to the White subjects, which is in
line with the other experiments showing a higher bias for the
minority groups.

Consistent Reporting of Sex and Racial
Subgroups in Artificial Intelligence
Models
It is envisioned that AI will dramatically change the way doctors
practice medicine. In the short term, it will assist physicians
with easy tasks, such as automating measurements, making
predictions based on big data, and putting clinical findings into
an evidence-based context. In the long term, it has the potential
to significantly optimize patient care, reduce costs, and improve
outcomes. With AI models now starting to be deployed in the real
world it is essential that the benefits of AI are shared equitably
according to race, sex and other demographic characteristics. It
has long been known that current medical guidelines have the
potential for sex/racial bias due to the imbalanced nature of the
cohorts upon which they were based (28, 29). One might think
that AI can solve such problems, as they are “neutral” or “blind”
to characteristics such as sex and race. However, as we have shown
in this paper, when AI models are used naively, they can inherit
the bias present in clinical databases. It is important to highlight

TABLE 5 | The comparison of adjusted mean between racial groups based on
one-way ANOVA and ANCOVA.

Mean (95% CI)

N Model 4 Model 5

White 1,025 0.93 (0.93, 0.93) 0.93 (0.93, 0.93)

Mixed 34 0.84 (0.86, 0.82) 0.83 (0.85, 0.80)

Asian 83 0.89 (0.90, 0.88) 0.88 (0.89, 0.88)

Black 47 0.86 (0.87, 0.85) 0.85 (0.86, 0.83)

Chinese 27 0.84 (0.86, 0.81) 0.82 (0.84, 0.78)

Other 34 0.86 (0.88, 0.85) 0.85 (0.87, 0.83)

Model 4 is unadjusted; Model 5 is adjusted for sex, height, weight, blood pressure
at scan-time, heart rate at scan-time, LVEDV, LVESV, RVEDV, RVESV, LVmass,
diabetes, hypertension, hypercholesterolemia, smoking, and center. CI, confidence
interval. For model 4 and model 5, pairwise post hoc testing was carried out using
Scheffé’s method.
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TABLE 6 | Misclassification rate for HF diagnosis.

HFrEF HFmrEF HFpEF

LVEF < 40% LEF 40–49% LVEF ≥ 50%

n n GT MCR (%) n GT MCR n GT MCR (%)

White 107 5 3.74 14 5.61 88 7.48

Mixed 11 3 45.45 0 – 8 36.36

Black 8 0 – 4 12.05 4 25.00

Asian 14 4 21.43 2 7.14 8 14.29

Chinese 4 0 – 2 25.00 2 50.00

Other 6 1 33.33 5 16.67 0 –

Minority groups 43 8 23.26 13 9.30 22 23.26

The table summarizes numbers of subjects in each racial group and HF diagnosis (i.e., HFrEF, HFmrEF and HFpEF), as well as the misclassification rate (MCR,%) for
each racial group and diagnosis. The row Minority groups combines data from the Mixed, Black, Asian, Chinese and Other groups. The left column (n overall) shows the
number of subjects for each racial group used to compute the MCRs. For each HF diagnosis, the first column shows the number of ground truth positive subjects in that
group, and the second column shows the MCR. When computing the MCRs, the ground truth negative subjects were all subjects from the other HF diagnoses for that
racial group. HFrEF, HF with reduced EF; HFmrEF, HF with mildly reduced EF; HFpEF, HF with preserved EF. Blank cells show regions with missing data.

the potential shortcomings of AI at this stage before AI models
become more widely deployed in clinical practice.

For these reasons, we believe that it is necessary that
new standards are established to ensure equality between
demographic groups in AI model performance, and that there
is consistent and rigorous reporting of performance for new AI
models that are intended to be integrated into clinical practice.
Similar to Noseworthy et al. (30), we would recommend that any
new AI-based publication include a report of performance across
a range of demographic subgroups, particularly race/sex.

Strategies to Reduce Racial Bias
The obvious way to mitigate bias due to imbalanced datasets
(whether in current clinical guidelines or AI models) is to use
more balanced datasets. However, this is a multifactorial problem
and is associated with many challenges, such as historical
discrimination, research design and accessibility (22). We note
that AI has the potential to address/mitigate bias without
requiring such balanced datasets. A range of bias mitigation
strategies have been proposed that either pre-process the dataset
to make it less imbalanced, alter the training procedure or post-
process the model outputs to reduce bias (31). We have recently
proposed three algorithms to mitigate racial bias in CMR image
segmentation: (1) train a CMR segmentation algorithm that
ensures racial balance during training; (2) add an AI race classifier
that helps the segmentation model to capture racial variations;
and (3) train a different CMR segmentation model for each
racial group. For more detail of these models, we refer to the
reader to our previous work (14). All three proposed algorithms
result in a fairer segmentation model that aims to ensure that
no racial group will be disadvantaged when segmentations of
their CMR data are used to inform clinical management. Note
that, compared to our previous work (14), in this paper we have
excluded all subjects with cardiovascular disease to ensure that
racial bias was not influenced by this factor.

Limitations
This study utilizes the imaging cohort from the UK Biobank. UK
Biobank is a long-term prospective epidemiology study of over
500,000 persons aged 40–69 years across England, Scotland, and

Wales. Therefore, the data are geographically limited to the UK
population, which might not reflect geographic, socioeconomic
or healthcare differences among other populations. This work
uses the UK Biobank participants’ self-reported ethnicity, which
corresponds to them self-identifying as belonging to ethnic
groups based on shared culture and heritage. A possible
limitation is that ethnic groups are socially constructed and thus
may not serve as reliable proxies for analysis. Future work should
aim to perform a similar study using genetic ancestry data, which
will make the analysis more generalizable. In addition, Mixed
Race was considered to be a single category, whereas in reality
this encompasses many different subcategories.

Manual analysis of CMR scans was performed by three
independent centers using the same operating procedures
for analysis. For the three centers, inter- and intra-observer
variability between analysts was assessed by analysis of fifty,
randomly selected CMR examinations (20). However, one
limitation of this study is that inter- and intra-observer variability
was not assessed individually by race and sex. Also, this
study is limited by the lack of diversity and relatively small
sample sizes for certain racial groups and by the exclusion
criteria for comorbid and pre-morbid conditions. The study
only includes the following cardiovascular risk factors as
confounders: hypertension, hypercholesteremia, diabetes and
smoking. However, there are other clinically relevant risk factors
such as sedentarism, alcohol consumption or stress that could
potentially explain the bias found in our study. For instance,
a previous study showed an association between RV size and
living in a high traffic area (7). Another limitation is that current
analysis does not adjust for any measures of ventricular function,
which could explain the structural differences. Future work will
aim to extract echocardiographic measures of relaxation to assess
whether the current bias could be explained by changes in
subclinical diastolic dysfunction.

CONCLUSION

We have demonstrated that a DL-based cine CMR segmentation
model derived from an imbalanced database has poor
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generalizability across racial groups and has the potential to
lead to inequalities in early diagnosis, treatments and outcomes.
Therefore, for best practice, we recommend reporting of
performance among diverse groups such as those based on sex
and race for all new AI tools to ensure responsible use of AI
technology in cardiology.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: The UK Biobank datasets are publicly
available for approved research projects. Requests to access these
datasets should be directed to https://www.ukbiobank.ac.uk/.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the NHS National Research Ethics Service on 17th
June 2011 (Ref 11/NW/0382). The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

EP-A designed, developed the method, and analyzed the data.
AK, RR, BR, JM, PC, and EP-A conceived the study. BR, RR,
SKP, SN, and SEP provided the manual segmentation used for
the implementation of the method. PC, RR, and AK were part of
the supervision of EP-A. AK and EP-A wrote the manuscript with
input from all authors.

FUNDING

EP-A and AK were supported by the EPSRC (EP/R005516/1) and
by core funding from the Wellcome/EPSRC Centre for Medical
Engineering (WT203148/Z/16/Z). This research was funded in
whole, or in part, by the Wellcome Trust WT203148/Z/16/Z.
For the purpose of open access, the author has applied
a CC BY public copyright license to any author accepted
manuscript version arising from this submission. SEP, AK,
and RR acknowledge funding from the EPSRC through the
Smart Heart Programme grant (EP/P001009/1). EP-A, BR, JM,

AK, and RR acknowledged support from the Wellcome/EPSRC
Centre for Medical Engineering at King’s College London
(WT 203148/Z/16/Z), the NIHR Cardiovascular MedTech Co-
operative award to the Guy’s and St Thomas’ NHS Foundation
Trust and the Department of Health National Institute for
Health Research (NIHR) comprehensive Biomedical Research
Centre award to Guy’s & St Thomas’ NHS Foundation Trust
in partnership with King’s College London. SEP, SN, and SKP
acknowledged the British Heart Foundation for funding the
manual analysis to create a cardiovascular magnetic resonance
imaging reference standard for the UK Biobank imaging resource
in 5,000 CMR scans (www.bhf.org.uk; PG/14/89/31194). SEP
acknowledged support from the National Institute for Health
Research (NIHR) Biomedical Research Centre at Barts. SEP
has received funding from the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement No
825903 (euCanSHare project). SEP also acknowledged support
from the CAP-AI Programme, London’s First AI Enabling
Programme focused on stimulating growth in the capital’s AI
Sector. CAP-AI was led by Capital Enterprise in partnership
with Barts Health NHS Trust and Digital Catapult and was
funded by the European Regional Development Fund and
Barts Charity. SEP acknowledged support from the Health
Data Research UK, an initiative funded by UK Research and
Innovation, Department of Health and Social Care (England)
and the devolved administrations, and leading medical research
charities. SN and SKP were supported by the Oxford NIHR
Biomedical Research Centre and the Oxford British Heart
Foundation Centre of Research Excellence.

ACKNOWLEDGMENTS

This research has been conducted using the UK Biobank
Resource (application numbers 17,806 and 2,964) on a GPU
generously donated by NVIDIA Corporation. The UK Biobank
data are available for approved projects from https://www.
ukbiobank.ac.uk/.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcvm.
2022.859310/full#supplementary-material

REFERENCES
1. Constantinides P, Fitzmaurice DA. Artificial intelligence in cardiology:

applications, benefits and challenges. Br J Cardiol. (2018) 7:25–86.
2. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.

Dermatologist-level classification of skin cancer with deep neural networks.
Nature. (2017) 542:115–8. doi: 10.1038/nature21056

3. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D,
et al. Classification and mutation prediction from non–small cell lung cancer
histopathology images using deep learning. Nat Med. (2018) 24:1559–67. doi:
10.1038/s41591-018-0177-5

4. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali
M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. (2018)
71:2668–79.

5. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated
cardiovascular magnetic resonance image analysis with fully convolutional
networks. J Cardiovasc Magn Reson. (2018) 20:65. doi: 10.1186/s12968-018-
0471-x

6. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P-A, et al. Deep
learning techniques for automatic MRI cardiac multi-structures segmentation
and diagnosis: is the problem solved? IEEE Trans Med Imaging. (2018)
37:2514–25. doi: 10.1109/TMI.2018.2837502

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 859310

https://www.ukbiobank.ac.uk/
http://www.bhf.org.uk
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.859310/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2022.859310/full#supplementary-material
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1186/s12968-018-0471-x
https://doi.org/10.1186/s12968-018-0471-x
https://doi.org/10.1109/TMI.2018.2837502
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-859310 April 2, 2022 Time: 14:53 # 10

Puyol-Antón et al. Fairness in Deep Learning-Based CMR Segmentation

7. Yoneyama K, Venkatesh BA, Bluemke DA, McClelland RL, Lima JAC.
Cardiovascular magnetic resonance in an adult human population: serial
observations from the multi-ethnic study of atherosclerosis. J Cardiovasc Magn
Reson. (2017) 19:52. doi: 10.1186/s12968-017-0367-1

8. Holmes MD. Racial inequalities in the use of procedures for ischemic heart
disease. JAMA. (1989) 261:3242–3. doi: 10.1001/jama.1989.03420220056014

9. Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E,
Foryst-Ludwig A, et al. Gender in cardiovascular diseases: impact on clinical
manifestations, management, and outcomes. Eur Heart J. (2016) 37:24–34.
doi: 10.1093/eurheartj/ehv598

10. Oertelt-Prigione S, Regitz-Zagrosek V. Sex and Gender Aspects in Clinical
Medicine. London: Springer (2012).

11. Kawut SM, Lima JAC, Barr RG, Chahal H, Jain A, Tandri H, et al. Sex and
race differences in right ventricular structure and function. Circulation. (2011)
123:2542–51. doi: 10.1161/CIRCULATIONAHA.110.985515

12. Captur G, Zemrak F, Muthurangu V, Petersen SE, Li C, Bassett P, et al. Fractal
analysis of myocardial trabeculations in 2547 study participants: multi-ethnic
study of atherosclerosis. Radiology. (2015) 277:707–15. doi: 10.1148/radiol.
2015142948

13. Kishi S, Reis JP, Venkatesh BA, Gidding SS, Armstrong AC, Jacobs DR, et al.
Race–ethnic and sex differences in left ventricular structure and function: the
coronary artery risk development in young adults (CARDIA) study. J Am
Heart Assoc. (2015) 4:e001264. doi: 10.1161/JAHA.114.001264

14. Puyol-Antón E, Ruijsink B, Piechnik SK, Neubauer S, Petersen SE, Razavi R,
et al. Fairness in cardiac MR image analysis: an investigation of bias due to
data imbalance in deep learning based segmentation. In: Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2021. Cham: Springer (2021). p. 413–23.

15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK
biobank: an open access resource for identifying the causes of a wide range
of complex diseases of middle and old age. PLoS Med. (2015) 12:e1001779.
doi: 10.1371/journal.pmed.1001779

16. Office for National Statistics, National Records of Scotland, Northern Ireland
Statistics and Research Agency. 2011 Census Aggregate Data (Edition: February
2017). UK Data Service (2017). doi: 10.5257/census/aggregate-2011-2

17. Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R,
et al. UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc
Magn Reson. (2015) 18:8. doi: 10.1186/s12968-016-0227-4

18. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-
configuring method for deep learning-based biomedical image segmentation.
Nat Methods. (2021) 18:203–11. doi: 10.1038/s41592-020-01008-z

19. Barker LE, Shaw KM. Best (but oft-forgotten) practices: checking assumptions
concerning regression residuals. Am J Clin Nutr. (2015) 102:533–9. doi: 10.
3945/ajcn.115.113498

20. Petersen SE, Aung N, Sanghvi MM, Zemrak F, Fung K, Paiva JM, et al.
Reference ranges for cardiac structure and function using cardiovascular
magnetic resonance (CMR) in Caucasians from the UK biobank population
cohort. J Cardiovasc Magn Reson. (2017) 19:1–19. doi: 10.1186/s12968-017-
0327-9

21. Carapella V, Jiménez-Ruiz E, Lukaschuk E, Aung N, Fung K, Paiva J, et al.
Towards the semantic enrichment of free-text annotation of image quality
assessment for UK biobank cardiac cine MRI scans. In: Carneiro G, Mateus D,
Peter L, Bradley A, Tavares JMR, Belagiannis V, et al. editors. Deep Learning
and Data Labeling for Medical Applications. DLMIA 2016, LABELS 2016.
Lecture Notes in Computer Science. (Vol. 10008), Cham: Springer (2016). doi:
10.1007/978-3-319-46976-8_25

22. Ruijsink B, Puyol-Antón E, Oksuz I, Sinclair M, Bai W, Schnabel JA,
et al. Fully automated, quality-controlled cardiac analysis from CMR.
JACC Cardiovasc Imaging. (2020) 13:684–95. doi: 10.1016/j.jcmg.2019.
05.030

23. Bozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N,
et al. Universal definition and classification of heart failure. J Card Fail. (2021)
27:387–413.

24. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al.
2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart
failure. Eur Heart J. (2016) 37:2129–200.

25. Buolamwini J, Gebru T. Gender shades: intersectional accuracy disparities
in commercial gender classification. In: Friedler SA, Wilson C editors.
Proceedings of the 1st Conference on Fairness, Accountability and Transparency.
New York, NY (2018). p. 77—-91.

26. Seyyed-Kalantari L, Liu G, McDermott M, Chen IY, Ghassemi M. CheXclusion:
Fairness Gaps in Deep Chest X-Ray Classifiers. Singapore: World Scientific
(2020).

27. Larrazabal AJ, Nieto N, Peterson V, Milone DH, Ferrante E. Gender imbalance
in medical imaging datasets produces biased classifiers for computer-aided
diagnosis. Proc Natl Acad Sci USA. (2020) 117:12592–4. doi: 10.1073/pnas.
1919012117

28. Institute of Medicine (US) Committee on Understanding and Eliminating
Racial and Ethnic Disparities in Health Care. Unequal Treatment: Confronting
Racial and Ethnic Disparities in Health Care. Smedley BD, Stith AY, Nelson AR
editors. Washington, DC: National Academies Press (2003).

29. Smith Taylor J. Women’s health research: progress, pitfalls, and
promise. Health Care Women Int. (2011) 32:555–6. doi: 10.17226/12
908

30. Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, Kapa S,
et al. Assessing and mitigating bias in medical artificial intelligence. Circ
Arrhythm Electrophysiol. (2020) 13:e007988. doi: 10.1161/CIRCEP.119.00
7988

31. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on
bias and fairness in machine learning. In: Proceedings of the ACM Computing
Surveys (CSUR). (Vol. 54), New York, NY: Association for Computing
Machinery (2019), 1–35. doi: 10.1145/3457607

32. Du Bois D, Du Bois EF. A formula to estimate the approximate surface
area if height and weight be known. Arch Intern Med. (1916) 17:863–71.
doi: 10.1001/archinte.1916.00080130010002

Author Disclaimer: The views expressed are those of the author(s) and not
necessarily those of the NHS, the NIHR, EPSRC, or the Department of Health

Conflict of Interest: SEP provided consultancy to and is shareholder of Circle
Cardiovascular Imaging, Inc., Calgary, Alberta, Canada.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Puyol-Antón, Ruijsink, Mariscal Harana, Piechnik, Neubauer,
Petersen, Razavi, Chowienczyk and King. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 April 2022 | Volume 9 | Article 859310

https://doi.org/10.1186/s12968-017-0367-1
https://doi.org/10.1001/jama.1989.03420220056014
https://doi.org/10.1093/eurheartj/ehv598
https://doi.org/10.1161/CIRCULATIONAHA.110.985515
https://doi.org/10.1148/radiol.2015142948
https://doi.org/10.1148/radiol.2015142948
https://doi.org/10.1161/JAHA.114.001264
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.5257/census/aggregate-2011-2
https://doi.org/10.1186/s12968-016-0227-4
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.3945/ajcn.115.113498
https://doi.org/10.3945/ajcn.115.113498
https://doi.org/10.1186/s12968-017-0327-9
https://doi.org/10.1186/s12968-017-0327-9
https://doi.org/10.1007/978-3-319-46976-8_25
https://doi.org/10.1007/978-3-319-46976-8_25
https://doi.org/10.1016/j.jcmg.2019.05.030
https://doi.org/10.1016/j.jcmg.2019.05.030
https://doi.org/10.1073/pnas.1919012117
https://doi.org/10.1073/pnas.1919012117
https://doi.org/10.17226/12908
https://doi.org/10.17226/12908
https://doi.org/10.1161/CIRCEP.119.007988
https://doi.org/10.1161/CIRCEP.119.007988
https://doi.org/10.1145/3457607
https://doi.org/10.1001/archinte.1916.00080130010002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles

	Fairness in Cardiac Magnetic Resonance Imaging: Assessing Sex and Racial Bias in Deep Learning-Based Segmentation
	Introduction
	Materials and Methods
	Participants
	Automated Image Analysis
	Evaluation of the Method

	Analysis of the Influence of Confounders
	Statistical Analysis

	Materials
	Subject Characteristics

	Results
	Deep Learning-Based Image Segmentation Pipeline
	Multivariable Analysis
	Analysis of Variance
	Effect of Bias on Heart Failure Diagnosis

	Discussion
	Assessment of the Bias in the Deep Learning-Based Cardiac Magnetic Resonance Segmentation Model
	Consistent Reporting of Sex and Racial Subgroups in Artificial Intelligence Models
	Strategies to Reduce Racial Bias
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


