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Fuzzy-Model-Based Asynchronous Fault Detection
for Markov Jump Systems with Partially Unknown

Transition Probabilities: An Adaptive
Event-Triggered Approach

Guangtao Ran, Jian Liu, Member, IEEE, Chuanjiang Li, Hak-Keung Lam, Fellow, IEEE,
Dongyu Li, Member, IEEE, and Hongtian Chen, Member, IEEE

Abstract—This paper addresses the event-triggered asyn-
chronous fault detection (FD) problem of fuzzy-model-based
nonlinear Markov jump systems (MJSs) with partially unknown
transition probabilities. For this objective, the nonlinear plant is
modeled as an interval type-2 (IT2) fuzzy MJSs with the aid of
the IT2 fuzzy sets capturing the uncertainties of the membership
functions. An adaptive event-triggered scheme (ETS) is intro-
duced to bring down the costs of the communication network
from the system to the fuzzy fault detection filter (FDF), in
which the triggering parameter can be adaptive tuned with the
system dynamics. A hidden Markov model (HMM) is employed to
characterize the asynchronous phenomenon between the system
and FDF. Unlike the existing results, the transition probabilities
of the plant and the FDF are allowed to be partially known.
By using the Lyapunov and the membership-function-dependent
(MFD) methods, the existence conditions of the FDF are derived.
Finally, the proposed FD methods are verified by a numerical
simulation.

Index Terms—Markov jump systems, fault detection, adaptive
event-triggered scheme, partially unknown transition probabili-
ties.

I. INTRODUCTION

OVER the past decades, Takagi-Sugeno (T-S) fuzzy sys-
tems have obtained remarkable attention due to their

widespread applications [1], and a type-1 T-S model is has
been proved that be a powerful tool to deal with the problems
in nonlinear systems. Some works can be found in [2], [3].
Nevertheless, the type-1 fuzzy sets do not work effectively
while the uncertainties are considered in nonlinear systems.
Fortunately, Lam et al. [4] have proposed an interval type-
2 (IT2) fuzzy modeling method to address the uncertainties
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problem. Since then, some outspread works on filtering, model
reduction, and control algorithms have been reported in [5]–
[9]. In [5], the imperfect premise matching problem was in-
vestigated for IT2 fuzzy systems, where the controller and the
plant do not require the identical premise variable information.
The model reduction problem was considered in [7]. In [8], an
adaptive filter was developed to address the signal processing
problems. An output feedback controller was designed for
IT2 fuzzy systems, in which time-varying delays and external
disturbance are considered [9].

Moreover, in many physical systems, some stochastic phe-
nomena are inevitable, such as abrupt environmental distur-
bance, irregular component breakdowns, etc. Markov jump
model is developed to catch these physical phenomena to
facilitate the theoretical research for physical systems. Some
results on the MJSs can be seen in [10]–[13]. In [10], an asyn-
chronous dissipative controller was designed for MJSs. In [11],
a new quantized feedback control algorithm was proposed for
MJSs. In [12], a dissipative controller was designed for the
IT2 nonhomogeneous MJSs. Additionally, an anti-disturbance
control method for singular MJSs was proposed in [13].

In practical systems, faults are common obstacles that hinder
the achievement of better performance. Hence, fault detection
(FD) problems in MJSs have been considered widely [14]–
[19]. In [14], the reliable dissipative control problem was
studied for IT2 fuzzy MJSs subject to actuator faults. In [15],
an asynchronous fault detection filter (FDF) was designed
for two-dimensional MJSs, and the corresponding results of
continuous-time fuzzy semi-MJSs were given in [16]. In [17],
a sliding-mode control approach was presented for MJSs with
actuator faults. In [18], a comprehensive control algorithm was
proposed by combining a fault compensation method and a
sliding-mode control approach. In [19], a type-1 fuzzy FD
method was proposed for MJSs. In the studies mentioned
above, all signals needed periodical transmitting through a
communication network. Since the communication network
resources are limited, an event-triggered scheme (ETS) was
designed to eliminate the unnecessary waste of resources
and save energy in [20]–[25]. Moreover, some works on
event-triggered control for MJSs were reported in [26]–[31].
The event-triggered H∞ and asynchronous extended passive
control problems were addressed in [26]. In [27], an event-
triggered sliding mode controller was designed for discrete-
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time MJSs. Lu et al. [28] have designed a mixed-triggered
scheme, which is applied to IT2 fuzzy nonlinear MJSs. Ran
et al. [29] have focused on the dissipative control problem of
IT2 fuzzy MJSs with sensor saturation. Su et al. [30] have
proposed a sliding mode control algorithm for MJSs based on
ETS. Although the mentioned event-triggered mechanism can
reduce the waste of network resources to a certain extent, its
triggering parameter is a fixed value. It cannot be automatically
adjusted as the system status changes, and it lacks flexibility.
Fortunately, an adaptive ETS was developed [32]–[35], which
increases the design flexibility by introducing an adaptive law
to adjust triggering parameters. In [32], the exponential stabi-
lization problem was addressed for a class of continuous-time
T-S fuzzy systems based on aperiodic sampling. In [33], a new
adaptive ETS was proposed for T-S fuzzy memristive neural
networks. The adaptive event-triggered finite-time dissipative
filtering problems were addressed for the IT2 fuzzy MJSs in
[34].

Considering the FD with the ETS, there are also some
results of the networked systems [36]–[40] and the MJSs [41],
[42]. In [36], the FD problem was investigated for discrete-
time networked systems based on ETS. In [37], an FD filter
was designed for IT2 fuzzy networked systems via ETS. The
repeated scalar nonlinearities and stochastic disturbance were
considered for nonlinear switched systems in [38]. An FDF
was designed for fuzzy stochastic systems via adaptive ETS,
and the missing measurements were considered in [39]. The
FD problem was studied for IT2 fuzzy systems with delays,
external disturbances, and asynchronous premise variables in
[40], but they did not consider jumping mode. In [41], the FD
problem was investigated for semi-Markovian jump systems
via an adaptive ETS, but they require that the modes of FDF
are synchronous and the transition probabilities are completely
known. An asynchronous FDF was developed for MJSs via
an ETS in [42], where a hidden Markov model (HMM) is
applied to handle asynchronous, but the information of the
transition probability matrix (TPM) are assumed to be fully
known. However, transition probabilities are hard to obtain in
practical situations.

Therefore, it is important to consider network resource
waste, uncertainty, and unknown transition probabilities in
practical scenarios. Overall, few results have dealt with the
event-triggered asynchronous FD problem of fuzzy-model-
based nonlinear MJSs with partially unknown transition prob-
abilities to the authors’ best knowledge. Motivated by these
existing studies, we investigate the asynchronous FD problem
for IT2 fuzzy MJSs through an adaptive event-triggered mech-
anism. The main contributions of this paper are classified as
follows.

1) Different from the existing studies [19], [42], we extend
the type-1 fuzzy FD to IT2 fuzzy FD, which can handle the
parameter uncertainties of the nonlinear MJSs.

2) Considering the difficulty of obtaining transition proba-
bilities, the information of TPM for MJSs is considered to be
incompletely known. Meanwhile, an HMM is constructed to
represent the asynchronous phenomenon between the FDF and
the original system, where the conditional probability matrix
(CPM) is allowed to be partially unknown.

3) An adaptive ETS is designed to improve transmission ef-
ficiency and save communication resources while guaranteeing
the FD performance for the IT2 fuzzy MJSs. The parameter
of the adaptive ETS can dynamically tune instead of a fixed
one in [29], [30], [42].

The rest of this paper is organized as follows: Sec. II
introduces the IT2 fuzzy MJSs model, the adaptive ETS,
FDF model, and the fault reference model for formulating
the FD problem tackled in this paper. Sec. III presents the
main results. Sec. IV furnishes an example that verifies the
effectiveness of the proposed algorithms. Sec.V concludes the
main work.

Table I shows the acronyms and abbreviations used in this
paper. The notations are provided in Table II, which will use
in this work.

TABLE I
ACRONYMS AND ABBREVIATIONS

Acronym Long Title
CPM Conditional probability matrix
ETS Event-triggered scheme
FD Fault detection
FDF Fault detection filter
FDS Fault detection system
HMM Hidden Markov model
IT2 Interval type-2
LGM Lower grade of membership
LKF Lyapunov-Krasovskii function
LMF Lower membership function
LMIs Linear matrix inequalities
MFD Membership-Function-Dependent
MJP Markov jump process
MJSs Markov jump systems
T-S Takagi-Sugeno
TPM Transition probability matrix
UGM Upper grade of membership
UMF Upper membership function
ZOH Zero-order hold

TABLE II
NOTATIONS

Notation Description
Rn n-dimensions Euclidean space
QT Transpose of a matrix Q
Q−1 Inverse of a matrix Q
I Identity matrix
0 Zero matrix
acot(·) Arccot function
diag{Q,A} Diagonal matrix of Q and A
∗ Symmetric term in a matrix
Ξ{·} Mathematical expectation operator
‖·‖ Euclidean norm
L2 [0,∞) The space of square summable infinite vector sequences
Bmax Maximum value of B
Bmin Minimum value of B
Q > 0(≥ 0) Positive (semi-positive)-definite matrix
Q < 0(≤ 0) Negative (semi-negative)-definite matrix

II. PROBLEM STATEMENT

A. System Description

Consider the following discrete-time IT2 fuzzy MJSs:
Original System Rule i: IF z1(x(k)) is Ti1, z2(x(k)) is
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Fig. 1. The diagram of the IT2 fuzzy MJSs under the adaptive ETS.

Ti2,. . ., and zp(x(k)) is Tip, THEN x(k + 1) = Aσ(k)i(k)x(k) +Bσ(k)i(k)w(k)
+Dσ(k)i(k)f(k),

y(k) = Eσ(k)i(k)x(k) +Hσ(k)i(k)f(k),
(1)

where x(k) ∈ Rnx , w(k) ∈ Rnw and f(k) ∈ Rnf stand for
the state, the external disturbance that belongs to L2 [0,∞),
and the fault signal, respectively; y(k) ∈ Rny represents the
measured output; Aσ(k)i, Bσ(k)i, Dσ(k)i, Eσ(k)i, and Hσ(k)i

are system matrices with appropriate dimensions; Tip̃ denotes
an IT2 fuzzy set of rule i corresponding to the function
zp̃(x(k)), p̃ = 1, . . . , p, i ∈ U1 = {1, 2, . . . , l}; Both p and l
are positive integers; The variable {σ(k) (k > 0)} is used to
represent a discrete-time Markov jump process (MJP) taking
value in an integer set O1 = {1, 2, . . . , o1}. Moreover, the
corresponding TPM is described as Ψ1 = {λab} with

Prob {σ(k + 1) = b |σ(k) = a} = λab, a, b ∈ O1, (2)

where λab ≥ 0 and
o1∑
b=1

λab = 1. Assume that the transition

probabilities of MJP are not entirely available. That means the
elements of the TPM Ψ1 are partially known. The following
example is given with three operation modes

Φ1 =

 ? λ12 λ13

? λ22 ?
λ31 ? ?

 , (3)

where “?” is applied to represent the unknown items in the
TPM Ψ1. To facilitate subsequent analysis, define that O1 =
Ok1 +Ouk1 with{

Ok1
∆
= {b : λab is known} ,

Ouk1
∆
= {b : λab is unknown} ,

(4)

where a, b ∈ O1. Furthermore, the firing strength correspond-
ing to the ith rule can be described as the following interval
sets:

W (x(k)) =
[
χLi (x(k)), χUi (x(k))

]
, i ∈ U1, (5)

where

χLi (x(k)) =
∏p

p̃=1
ηLTip̃

(zp̃(x(k))) ≥ 0,

χUi (x(k)) =
∏p

p̃=1
ηUTip̃

(zp̃(x(k))) ≥ 0,

ηUTip̃
(zp̃(x(k))) ≥ ηLTip̃

(zp̃(x(k))) ≥ 0, i ∈ U1,

in which χLi (x(k)), χUi (x(k)), ηLTip̃
(zp̃(x(k))), and

ηUTip̃
(zp̃(x(k))) stand for the lower grade of membership

(LGM), the upper grade of membership (UGM), the lower
membership function (LMF), and the upper membership
function (UMF), respectively. Let σ(t) = a. Afterwards, by
using approach in [4], [5], it can be inferred that{
x(k + 1) = Aam(k)x(k) +Bam(k)w(k) +Dam(k)f(k),
y(k) = Eam(k)x(k) +Ham(k)f(k),

(6)
where

Aam(k) =

l∑
i=1

χi(x(k))Aai, Bam(k) =

l∑
i=1

χi(x(k))Bai,

Dam(k) =

l∑
i=1

χi(x(k))Dai, Eam(k) =

l∑
i=1

χi(x(k))Eai,

Ham(k) =

l∑
i=1

χi(x(k))Hai,

l∑
i=1

χi(x(k)) = 1,

χi(x(k)) = ψLi (x(k))χLi (x(k)) + ψUi (x(k))χUi (x(k)) ≥ 0,

ψLi (x(k)) ≥ 0, ψUi (x(k)) ≥ 0, ψLi (x(k)) + ψUi (x(k)) = 1,

in which ψLi (x(k)) and ψLi (x(k)) are nonlinear functions.
Remark 1: Unlike the existing results, the constructed

system model (6) contains parameter uncertainties by using
the IT2 fuzzy sets. In addition, the information of the TPM
requires completely known in [19], [42], but this paper con-
siders the case where the information of the TPM is partially
unknown, which is more practical.

B. Adaptive ETS
As shown in Fig. 1, an adaptive ETS is employed to judge

whether the sampling data need to be sent, which can reduce
the consumption of network resources. Therefore, the current
sampling data will be sent through the communication network
if the following adaptive ETS condition is satisfied

eT (k)Gae(k) > ε(k)yT (k)Gay(k), (7)

where e(k) = y(k) − y(ks) denotes the difference between
the current sampling data y(k) and the latest transmitted data
y(ks); Ga (a ∈ O1) are positive matrices to be designed. In
addition, ε(k) is tuned by the following adaptive law

ε(k) = ε1 + (ε2 − ε1)
2

π
acot

(
κ ‖e(k)‖2

)
, (8)

where ε1 and ε2 are prescribed parameters with 0 < ε1 ≤
ε2 < 1; acot(·) denotes arccot function; κ is a positive scalar
to adjust the sensitivity of the function ‖e(k)‖2.

Assumption 1: The sampler is clock-driven.
Remark 2: It is worth noting that if ε(k) becomes constant

that belongs to (0, 1), the adaptive ETS (7) will degrade to
static ETS (i.e., the case in [29] and [42]). If ε(k) is always
equal to zero, the adaptive ETS (7) will change to traditional
time-triggered scheme. Therefore, the static ETS and time-
triggered scheme are special cases of the proposed adaptive
ETS.

Remark 3: It should be noticed that there is at least one
sampling time between adjacent triggers, so that the designed
adaptive ETS (7) can exclude Zeno behavior.
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C. Fault Detection Filter and Fault Weighting Model

In order to obtain the residual signal, an FDF is designed
as follows

FDF Rule j: IF g1(x(ks)) is Xj1, g2(x(ks)) is Xj2,. . .,
and gq(x(ks)) is Xjq, THEN{

x̂(k + 1) = Âδ(k)j(k)x̂(k) + B̂δ(k)j(k)ŷ(k),

r(k) = Êδ(k)j(k)x̂(k) + F̂δ(k)j(k)ŷ(k),
(9)

where x̂(k) ∈ Rnx̂ denotes the state of the FDF (9);
r(k) ∈ Rnr presents the residual signal; Âδ(k)j(k), B̂δ(k)j(k),
Êδ(k)j(k), and F̂δ(k)j(k) are the parameter matrices to be
determined. The variable δ(k) is applied to observe the orig-
inal system model, which takes the value in an integer set
{O2 = 1, 2, . . . , o2} and satisfies a CPM Ψ2 = {$ac} with

Prob {δ(k) = c |σ(k) = a} = $ac, (10)

where $ac ≥ 0 and
∑O2

c=1$ac = 1. Due to the information
of the CPM Ψ2 may not be fully available, thus, partially
unknown probabilities are considered. For example, when
o1 = o2 = 3, Ψ2 may be as

Φ2 =

 ? $12 $13

? ? $23

? $32 ?

 . (11)

Then, denote that O2 = Ok2 +Ouk2 with{
Ok2

∆
= {c : $av is known} ,

Ouk2
∆
= {c : $av is unknown} .

(12)

Analogous to (6), the IT2 FDF (9) with δ(k) = c can be
inferred as [5]{

x̂(k + 1) = Âcn(k)x̂(k) + B̂cn(k)ŷ(k),

r(k) = Êcn(k)x̂(k) + F̂cn(k)ŷ(k),
(13)

where

Âcn(k) =
l∑

j=1

ϑj(x(ks))Âcj(k),

B̂cn(k) =
l∑

j=1

ϑj(x(ks))B̂cj(k),

Êcn(k) =
l∑

j=1

ϑj(x(ks))Êcj(k) ,

F̂cn(k) =
l∑

j=1

ϑj(x(ks))F̂cj(k).

in which

ϑj(x(ks)) =
φL
j (x(ks))ϑL

j (x(ks))+φU
j (x(ks))ϑU

j (x(ks))∑l
j=1 (φL

j (x(ks))ϑL
j (x(ks))+φU

j (x(ks))ϑU
j (x(ks)))

,

0 ≤ φLj (x(ks)) ≤ 1, 0 ≤ φUj (x(ks)) ≤ 1,
φLj (x(ks)) + φLj (x(ks)) = 1,

∑l
j=1 ϑj(x(ks)) = 1.

Remark 4: Note that the modes of the FDF (13) do not need
to be consistent with the original system (6). The HMM is
employed to handle the asynchronous phenomenon. Moreover,
the information of CPM requires completely known in [19],
but this paper does not need to be fully known.

To obtain a better performance, inspired by [40], a reference
model is introduced as f̃(k) = R(k)f(k), where R(k) is a

weighting matrix. Thereby, the state-space can be represented
as {

x̃(k + 1) = AR(k)x̃(k) +BR(k)f(k),

f̃(k) = ER(k)x̃(k) + FR(k)f(k),
(14)

where x̃(k) ∈ Rnx̃ denotes the state vector of weighted fault;
f̃(k) ∈ Rnf̃ indicates the weighted fault; In addition, AR(k)
BR(k), ER(k), and FR(k) are known matrices.

D. Fault Detection System (FDS)

Considering the effect of the ZOH as shown in Fig. 1 and
assuming that there is no delay and packet loss in network
transmission, the real input of FDF (13) can be represented as

ŷ(k) = y(ks), k ∈ [ks, ks+1) , s ∈ N = {0, 1, . . . ,∞}.
(15)

For brevity, χi(x(k)) and ϑj(x(ks)) are respectively rep-
resented as χi and ϑj . Defining residual error as ρ(k) =
r(k)− f̃(k), and combining (6), (13), (14), and (15), the FDS
can be obtained as follows:{

ς(k + 1) = Af1 (k)ς(k) +Bf1 (k)µ(k),

ρ(k) = Ef1 (k)ς(k) + F f1 (k)µ(k),
(16)

where

ς(k) =
[
xT (k) x̂T (k) x̃T (k)

]T
,

µ(k) =
[
eT (k) wT (k) fT (k)

]T
,

Af1 (k) =
l∑
i=1

l∑
j=1

χiϑjA
f
ij , B

f
1 (k) =

l∑
i=1

l∑
j=1

χiϑjB
f
ij ,

Ef1 (k) =
l∑
i=1

l∑
j=1

χiϑjE
f
ij , F

f
1 (k) =

l∑
i=1

l∑
j=1

χiϑjF
f
ij ,

Afij =

 Aai 0 0

B̂cjEai Âcj 0
0 0 AR

,

Bfij=

 0 Bai Dai

−B̂cj 0 B̂cjHai

0 0 BR

,

Efij=
[
F̂cjEai Êcj −ER

]
,

F fij =
[
−F̂cj 0 F̂cjHai − FR

]
.

Based on the above description, the FD problem can be
represented as:
1) The designed FDF (13) can be guaranteed that the FDS
(16) is asymptotically stable for w(k) = 0; Moreover, under
the zero initial condition, the FDS (16) satisfies the H∞
performance shown below

Ξ

{ ∞∑
k=0

ρT (k)ρ(k)

}
< Ξ

{
γ2
∞∑
k=0

wT (k)w(k)

}
. (17)

2) To detect fault f(k), we define the evaluation function Je
and the threshold Jth as

Je =
1

F

√√√√ k1∑
k=k0

rT (k)r(k), Jth = sup
w(k)6=0,f(k)=0

Je, (18)

where F = k1− k0 + 1. According to (16), an FD task can be
described as

Je − Jth ≤ 0⇒ no faults,
Je − Jth > 0⇒ faults⇒ alarm.

(19)
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III. PERFORMANCE ANALYSIS AND FDF DESIGN

This section contains two parts. The first part is to analyze
the stability and H∞ performance for the FDS (16) with
partially unknown probabilities, the adaptive ETS (7), and
asynchronous jump modes. The second part is to design the
parameters of the FDF (13) such that the derived conditions
are in the form of linear matrix inequalities (LMIs).

A. Performance Analysis

We will now present Theorem 1 which involves the asymp-
totically stability conditions and satisfies the H∞ performance
for FDS (16).
Theorem 1: For given positive scalars κ, 0 < ε2 < 1, and
0 < δj ≤ 1, the FDS (16) is asymptotically stable with the
H∞ performance index γ > 0, if ϑj−δjχj ≥ 0 and there exist
matrices Âcj , B̂cj , Êcj , F̂cj , Maci > 0, Ga > 0, Pai > 0, Γi
for i ∈ U1, j ∈ U1, a ∈ O1, c ∈ O2, such that∑

c∈Ok
2

$acMaci +
∑

c∈Ouk
2

Maci − Pai < 0, (20)

Φij − Γi < 0, (21)

δiΦii + (1− δi) Γi < 0, (22)

δjΦij + δiΦji + (1− δj) Γi + (1− δi) Γj < 0, i < j, (23)

where

Φij =

 Υ11
ij Υ12

ij Υ13
ij

∗ Υ22
ij 0

∗ ∗ −I

 ,Υ11
ij =

[
Θ11 Θ12

∗ Θ22

]
,

Π1 = ε2

[
Eai 0 0

]T
Ga
[
Eai 0 0

]
,

Θ11 = −Maci + Π1,Θ22 = Π2 + Π3 + Π4,

Θ12 = ε2

[
Eai 0 0

]T
Ga
[

0 0 Hai

]
,

Π2 = ε2

[
0 0 Hai

]T
Ga
[

0 0 Hai

]
,

Π3 =
[
I 0 0

]T
Ga
[
I 0 0

]
,

Π4 = −
[

0 γ 0
]T [

0 γ 0
]
,

Υ12
ij =

[
Afij Bfij

]T
,Υ13

ij =
[
Efij F fij

]T
,

Υ22
ij = −P̃−1

bg , P̃bg =
∑

b∈Ouk
1

Pbg +
∑

b∈Ok
1

λabPbg.

Proof: Choose the following Lyapunov-Krasovskii func-
tional (LKF) for the FDS (16)

V (k) = ςT (k)Pam(k)ς(k), (24)

where Pam(k) =
∑l
i=1 χiPai. Along with the trajectory of

the FDS (16), it yields from (24) that

Ξ {∆ [V (k)]}
= Ξ

{
ςT (k + 1)P+

am(k + 1)ς(k + 1)− ςT (k)Pam(k)ς(k)
}
,

(25)
where

P+
am(k + 1) =

∑
b∈O1

λabPbm(k + 1),

Pbm(k + 1) =
∑l
g=1 χgPbg =

∑l
g=1 χg(k + 1)Pbg .

Considering the effect of the partially unknown element in the
TPM, we can calculate that∑
b∈O1

λabPbg =

∑
b∈Ok

1

λab +
∑
b∈Ouk

1

λab

Pbg < P̃bg. (26)

According to (20), one can get

Pam >
∑
c∈Ok

2
$acMacm +

∑
c∈Ouk

2
Macm

≥
∑
c∈O2

$acMacm,
(27)

where Macm =
l∑
i=1

χiMaci. In addition, recalling the adaptive

ETS (7) and the adaptive law (8), one has

0 < ε(k)yT (k)Gay(k)− eT (k)Gae(k)
< ε2y

T (k)Gay(k)− e(k)TGae(k)
= ε2ς

T (k)
∏

1ς(k) + 2ε2ς
T (k)

∏
2µ(k)

+ ε2µ
T (k)

∏
3µ(k)− eT (k)Gae(k).

(28)

Similar to [4], we introduce slack matrices Γi = ΓTi (i ∈
U1). By using the property of the fuzzy rule and membership-
function-dependent (MFD) method [43], we have

l∑
i

l∑
j

χi (χj − ϑj) Γi = 0. (29)

According to the above equation, combining (21)–(23) with
ϑj − δjχj ≥ 0, one can get

l∑
i

l∑
j

l∑
g
χgχiϑjΦij

=
l∑

g=1
χg

[
l∑
i=1

χ2
i (δiΦii + (1− δi) Γi)

]
+

l∑
g=1

χg

[
l∑
i=1

l∑
j=1

χi (ϑj − δjχj) (Φij − Γi)

]

+
l∑

g=1
χg

[
l−1∑
i=1

l∑
j=i+1

χiχj (δjΦij + δiΦji)

]

+
l∑

g=1
χg

[
l−1∑
i=1

l∑
j=i+1

χiχj ((1− δj) Γi + (1− δi) Γj)

]
< 0.

(30)
Define ξ(k) =

[
ςT (k) wT (k)

]T
, and it can be derived

from (23)–(27) that

Ξ
{

∆ [V1(k)] + ρT (k)ρ(k)− γ2wT (k)w(k)
}

< ξT (k)
l∑
i

l∑
j

l∑
g
χgχiϑj

×
{

Υ11
ij +

(
Υ12
ij

)T (
Υ22
ij

)−1 (
Υ12
ij

)
+
(
Υ13
ij

)T (
Υ13
ij

)}
ξ(k).

(31)
Since Υ11

ij +
(
Υ12
ij

)T (
Υ22
ij

)−1 (
Υ12
ij

)
+
(
Υ13
ij

)T (
Υ13
ij

)
< 0 is

equivalent to Φij < 0 by using Schur Complement, (31) can
be rewritten as

Ξ
{

∆ [V1(k)] + ρT (k)ρ(k)− γ2wT (k)w(k)
}
< 0. (32)

Then, under zero the initial condition, we have

Ξ

{ ∞∑
k=0

ρT (k)ρ(k)

}
< Ξ

{
γ2
∞∑
k=0

wT (k)w(k)

}
. (33)

The proof is completed. �
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B. FDF Design

Due to the conditions in Theorem 1 are not in the form
of LMIs, it is difficult to solve them. Thus, we will focus on
designing the FDF in the form of LMIs.

Theorem 2: For given positive scalars κ, 0 < ε2 < 1, and
0 < δj ≤ 1, the FDS (16) is asymptotically stable with the
H∞ performance index γ > 0, if ϑj−δjχj ≥ 0 and there exist
matrices Ãcj , B̃cj , Ẽcj , F̃cj , Maci > 0, Ga > 0, Pai > 0,
U1 > 0, U2 > 0, V > 0, Γi for i ∈ U1, j ∈ U1, a ∈ O1,
c ∈ O2, such that∑

c∈Ok
2

$acMaci +
∑

c∈Ouk
2

Maci − Pai < 0, (34)

Φ̃ij − Γ̃i < 0, (35)

δiΦ̃ii + (1− δi) Γ̃i < 0, (36)

δjΦ̃ij + δiΦ̃ji + (1− δj) Γ̃i + (1− δi) Γ̃j < 0, i < j, (37)

where

Φ̃ij =


Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗ Θ33 0
∗ ∗ ∗ −I

 ,

Θ13 =

 ATaiU1 + ETaiB̃
T
cj ATaiU2 + ETaiB̃

T
cj 0

ÃTcj ÃTcj 0
0 0 ATRV

 ,
Θ23 =

 −B̃Tcj −B̃Tcj 0
BTaiU1 BTaiU2 0

DT
aiU1 +HT

aiB̃
T
cj DT

aiU2 +HT
aiB̃

T
cj BTRV

 ,
Θ14 =

[
F̃cjEai Ẽcj −ER

]T
,

Θ24 =
[
−F̃cj 0 F̃cjHai − FR

]T
,

Θ33=P̃bg − 2Q, Γ̃i=GΓiG
T .

Furthermore, the FDF gains in (13) can be solved by

Âcj = U−1
2 Ãcj , B̂cj = U−1

2 B̃cj , Êcj = Ẽcj , F̂cj = F̃cj .
(38)

Proof: First of all, we define

Q =

 U1 U2 0
∗ U2 0
∗ ∗ V

 , G = diag {I, I,Q, I, } , (39)

and

Ãcj = U2Âcj , B̃cj = U2B̂cj , Ẽcj = Êcj , Ẽcj = F̂cj .
(40)

Then, multiplying the left and right hand sides of (21) with G
and GT , respectively, it yields

^

Φij − Γ̃i < 0, (41)

where

^

Φij=


Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗
^

Θ33 0
∗ ∗ ∗ −I

 , ^

Θ33=−QP̃−1
bg Q.

Moreover, since the inequality −QP̃−1
bg Q < P̃bg−2Q is hold,

it can be derived (35). Analogously, we can obtain (36) and
(37). We complete the proof. �

Remark 5: Note that the proposed algorithms do not need
to know the complete information of the TPM Φ1 and the
CPM Φ2. Moreover, the minimal H∞ performance γ can be
obtained by solving the following optimal problem:

min γ s.t. the LMIs (34)–(37) in Theorem 2.
Based on the above analysis, the solution method of FDF

gains (Âcj , B̂cj , Êcj , F̂cj) and the optimal H∞ performance
γ are given in Algorithm 1.

Algorithm 1 Solve for the FDF gain matrices Âcj , B̂cj , Êcj ,
F̂cj , and optimal H∞ performance γ

1: Given ε2 ∈ (0, 1), δi > 0, and κ ∈ (0, 1), i ∈ U1

2: Define variables Pai > 0, Ãcj , B̃cj , Ẽcj , F̃cj , Maci > 0,
Ga > 0, Pai > 0 U1 > 0, U2 > 0, V > 0, Γ̃i, i ∈ U1,
j ∈ U1, a ∈ O1, and c ∈ O2

3: Obtain Ãcj , B̃cj , Ẽcj , F̃cj , and U2 by solving the LMIs
(34)–(37) in Theorem 2

4: Set Âcj = U−1
2 Ãcj , B̂cj = U−1

2 B̃cj , Êcj = Ẽcj , F̂cj =
F̃cj

5: Find min γ̄ = γ2 by solving the conditions in Theorem 2
iteratively

6: Set γ =
√
γ̄

IV. SIMULATION RESULTS

In this section, an example is given to show the effectiveness
of the proposed adaptive event-triggered FD method.

Example: Consider the tunnel diode circuit system with the
following IT2 fuzzy model [19]:
Original System Rule 1: IF x1(k) is T11, THEN x(k + 1) = Aσ(k)1(k)x(k) +Bσ(k)1(k)w(k)

+Dσ(k)1(k)f(k),
y(k) = Eσ(k)1(k)x(k) +Hσ(k)1(k)f(k),

Original System Rule 2: IF x2(k) is T21, THEN x(k + 1) = Aσ(k)2(k)x(k) +Bσ(k)1(k)w(k)
+Dσ(k)2(k)f(k),

y(k) = Eσ(k)2(k)x(k) +Hσ(k)2(k)f(k),

where T11 and T21 are IT2 fuzzy sets. The LMF and UMF of
the original system are chosen as

χL1 (x1(k)) = 1−exp(− 0.1x2
1

∆max
), χL2 (x1(k)) = 1−χU1 (x1(k)),

χU1 (x1(k)) = 1−exp(−0.1x2
1

∆min
), χU2 (x1(k)) = 1−χL1 (x1(k)).

Notice that the LMF and the UMF can capture the uncertain-
ties parameter ∆ ∈ [0.5, 0.9], which is more general than the
existing type-1 fuzzy method in [19]. Moreover, assume that
σ(k) = 1, 2, and the system matrices are defined as follows.[
A11 B11

E11 H11

]
=

 0.9887 0.9024
−0.018 0.8100

0.0093
0.0181

1 0 0.2

 ,
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[
A12 B12

E12 H12

]
=

 0.90337 0.8617
−0.0172 0.8103

0.0091
0.0181

1 0 0.4

 ,
[
A21 B21

E21 H21

]
=

 0.998 1
−0.02 0.98

0
0.02

1 0 0.5

 ,
[
A22 B22

E22 H22

]
=

 0.908 1
−0.02 0.98

0
0.02

1 0 0.6

 ,
D11 =

[
0.9
−0.01

]
, D12 =

[
0.98

0

]
,

D21 =

[
0.86
−0.02

]
, D22 =

[
0.9
−0.01

]
.

The TPM and CPM are given as follows

Φ1 =

[
? ?

0.6 0.4

]
,Φ2 =

[
0.5 0.5
? ?

]
.

The LGM and UGM of the FDF are given as

ϑL1 (x1(k)) = 1− exp(
−x2

1

7
), ϑL2 (x1(k)) = 1− ϑU1 (x1(k)),

ϑU1 (x1(k)) = 1− exp(
−x2

1

6
), ϑU2 (x1(k)) = 1− ϑL1 (x1(k)),

and the nonlinear functions with i = 1, 2 are set as

ψLi (x1(k)) = sin2(x1(k)), ψUi (x1(k)) = 1− ψLi (x1(k)),

φLi (x1(k)) = cos2(x1(k)), φUi (x1(k)) = 1− φLi (x1(k)).

The parameters of (14) are chosen as

AR = 0.2, BR = 0.3, ER = 0.4, FR = 0.

Let ε1 = 0.2, ε2 = 0.7, δ1 = 0.3, and δ2 = 0.2. Based
on Theorem 2, the parameters of the IT2 fuzzy FDF and the
adaptive ETS are obtained as:

Âδ(k)1 =

[
−0.4518 −0.8298
−0.2709 −0.1835

]
, B̂δ(k)1 =

[
−0.1122
0.1925

]
,

Âδ(k)2 =

[
−0.3992 −0.6919
−0.2213 −0.0938

]
, B̂δ(k)2 =

[
−0.1957
0.2036

]
,

Ê11 =
[
−0.8911 −0.8911

]
,

Ê12 =
[
−1.0055 −1.0115

]
,

Ê21 =
[
−0.8853 −0.8911

]
,

Ê22 =
[
−1.0055 −1.0115

]
,

F̂δ(k)1 = F̂δ(k)2 = 0, G1 = −1.1568× 10−15,

G2 = −9.4328× 10−16, δ(k) = 1, 2.

The fault signal f(k) and the disturbance input w(k) are
selected as

w(k) =

{
sin(k), 20 ≤ k ≤ 30,
0, otherwise,
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Fig. 2. Plant modes and FDF modes.

and

f(k) =

{
0.3, 30 < k < 50,
0, otherwise.

By Algorithm 1, the optimal H∞ performance can be
obtained, i.e., γ = 1.0092. The initial state vectors of the
plant, the FDF, and the weighted fault are respectively set as

x0 =
[

0 0
]T
, x̂0 =

[
0 0

]T
, x̃0 =

[
0 0

]T
.

The modes for the plant and the FDF are depicted in Fig. 2.
As we can observe from Fig. 2, the modes of the FDF do not
require the same as the plant. Fig. 3 shows the trajectories of
the adaptive parameter ε(k). We can observe that ε(k) tunes
with time rather than a constant. The real transmitted instants
and intervals are shown in Fig. 4. It is obvious that there are
only 11 triggering points, which indicates that the sampled
data transmission is reduced by 81.7%. Under ε1 = 0.1, ε2 =
0.9, and e(k) = k, Fig. 5 depicts the trajectories of the adaptive
parameter ε(k) for different κ. It can be found that as the value
of κ increases, the value of ε(k) changes faster, which implies
that the larger the value of κ, the more sensitive the designed
adaptive ETS is to e(k). Under ε1 = 0.2, Table III depicts
the triggering times and transmission rates for different ε2.
From Table III, we can see that the transmission rates and the
triggering times increase as ε2 decreases, which means that
the bigger ε2, the lower consumption of network resources.
As shown in Table IV, we can observe that the adaptive ETS
proposed in this paper can reduce the number of transmissions
more than the existing methods in [29].

TABLE III
TRIGGERING TIMES AND TRANSMISSION RATES FOR DIFFERENT ε2

ε2 0.9 0.7 0.5 0.3
Triggering times 9 11 13 14

Transmission rates 15% 18.3% 21.6% 23.3%

Furthermore, there are two steps required to validate the
designed fault detection method. The first step is to calculate
the threshold Jth. We can find a reliable Jth, i.e., Jth =
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Fig. 3. The trajectories of the adaptive parameter ε(k).
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Fig. 5. The trajectories of the adaptive parameter ε(k) for different κ.

TABLE IV
TRIGGERING TIMES AND TRANSMISSION RATES FOR DIFFERENT ε2

ε1 0.1 0.3 0.5 0.7
Triggering times in [29] 18 14 12 11

Triggering times in this paper 10 10 9 9

6.2076 × 10−5 without the fault occurs. The second step is
to FD. When the fault occurs, the evaluation function can be
obtained, i.e., Je = 1

33

√∑33
k=1 r

T (k)r(k) = 7.5182 × 10−5

at k = 33. Based on the two steps, Fig. 6 depicts the fault
detection results for the proposed adaptive event-triggered FD
method. It can be observed that Je exceeds the threshold Jth at
k = 33. This indicates that once the fault occurs, the proposed
FD method can be effectively detected at k = 33. The
simulation results can prove that the proposed algorithms can
effectively realize FD and improve the transmission efficiency.
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Fig. 6. Detection results of f(k) using the proposed FD design.

V. CONCLUSIONS

The adaptive event-triggered FD problems were considered
for the IT2 fuzzy networked MJSs with partially unknown
transition probabilities and asynchronous modes. The FDF
was designed to generate the residual signal, where the
HMM models the asynchronous phenomenon. Considering the
limited bandwidth and communication burden, the adaptive
ETS was designed for IT2 fuzzy networked MJSs, where
the adaptive law can tune the adaptive parameter, and the
weighting matrices are mode-dependent. By using Lyapunov
function methods and inequality techniques, the parameter
existence conditions of the FDF are obtained. The simulation
results verified the effectiveness of this approach. It should
be noticed that the proposed approach focuses on designing
the adaptive event-triggered FDF, which furnishes a new view
for handling the FD problem of IT2 fuzzy networked MJSs.
This approach can be applied in many fields, such as circuit
systems, complex industrial systems, and automobile systems.
Although the FD approach for IT2 fuzzy networked MJSs
is proposed, a control strategy is not designed to recover



9

the system performance. Therefore, future work will focus
on event-based fault-tolerant control for IT2 fuzzy networked
MJSs. Besides, we are also devoted to designing the non-
periodical sampling ETS for nonlinear MJSs in the future.
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