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Abstract Training agents over sequences of tasks is often employed in deep
reinforcement learning to let the agents progress more quickly towards bet-
ter behaviours. This problem, known as curriculum learning, has been mainly
tackled in the literature by numerical methods based on enumeration strate-
gies, which, however, can handle only small size problems. In this work, we
define a new optimization perspective to the curriculum learning problem with
the aim of developing efficient solution methods for solving complex reinforce-
ment learning tasks. Specifically, we show how the curriculum learning problem
can be viewed as an optimization problem with a nonsmooth and nonconvex
objective function and with an integer feasible region. We reformulate it by
defining a grey-box function that includes a suitable scheduling problem. Nu-
merical results on a benchmark environment in the reinforcement learning
community show the effectiveness of the proposed approaches in reaching bet-
ter performance also on large problems.
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1 Introduction

Deep Reinforcement Learning is characterized by such a large and complex
environment that classical exploration methods designed for Markov Decision
Processes (MDPs) cannot be adequately implemented [14]. In this setting, an
increasingly popular approach is represented by curriculum learning, where
the knowledge gained in simple tasks is exploited to learn a similar but more
complex task. In particular, in curriculum learning, we are interested in defin-
ing sequences of simple tasks so that training the agent on these problems
allows us to reduce the overall training time for the final task and/or leads to
improvements of the agent’s performance over the final challenging task. Cur-
riculum learning, by exploiting knowledge transfer and generalization from
less complex tasks, represents an effective exploration strategy, which allows
the agent to advance towards better policies with better performance over the
final complex task. Curriculum learning is can be seen as two main challenges:
task generation, that is, the problem of defining the set of tasks on which to
train the agent before the final task; task scheduling, that is the problem of
choosing the schedule of tasks on which to train the agent [14]. Automatically
generating the set of potential tasks in a domain-independent way is currently
an open problem [14], and tasks are commonly created manually by domain
experts. Hereafter we focus on the sequencing problem and consider the set of
potential tasks as already available.

Curricula are often present in many deep reinforcement learning applica-
tions, in which either designers [15] or users [17] create subtasks that are intu-
itively expected to facilitate learning. However, given the set of potential tasks,
the curricula definition process can be improved by introducing more rigorous
techniques from both the fields of computer science and optimization. In [22]
an automated method for creating a curriculum graph is proposed where a
heuristic metric to estimate the relatedness between tasks is used to build the
graph. This method does not take into consideration the agent’s unique abili-
ties and learning progress during training, and does not explore the curricula
space, returning a solution with no quality guarantee. In [16] the design of a
curriculum is formulated as a Markov Decision Process, which directly mod-
els the accumulation of knowledge as the agent interacts with tasks but does
not gain knowledge on relations between tasks. More recently, [8] proposed a
set of greedy strategies to solve the task scheduling problem. This approach is
mainly based on enumeration strategies to find the best task schedule and can-
not be extended to cases where the number of potential curricula becomes too
large. We aim at developing a new optimization-based approach to efficiently
and effectively tackle the challenging problem of task scheduling in curriculum
learning.

We address the curriculum learning problem by modeling it as an opti-
mization program. We show its difficulty in being solved through standard
optimization techniques. Specifically, this problem is a highly nonconvex, non-
smooth optimization program with an integer feasible region whose dimensions
can easily blow up with the number of available tasks. To tackle this prob-
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lem numerically, we explicitly show how the applied curriculum influences the
final task performance. In particular, we apply several numerical methods to
determine a set of designing parameters that define the relationships between
tasks and then solve a linear scheduling problem to return tentative opti-
mal curricula. Numerical results suggest the effectiveness of all the proposed
methods in improving the performances on the final task with model-based
algorithms outperforming the other approaches mentioned above. This study
strongly extends the work done in the conference proceeding [9]. Specifically, in
this paper, we provide all theoretical foundations and guarantees of the pro-
posed approach. Moreover, we discuss new extensive numerical experiments
over large problems where curricula enumeration is not computationally feasi-
ble, and we benchmark the numerical performance of the curriculum learning
reformulation against a standard reinforcement learning framework.

In Section 2, after a brief introduction to reinforcement learning, see e.g.
[12,13], we define the curriculum learning problem and discuss the difficulty
in solving this optimization problem through standard methods for nonlinear
programming or through Derivative-Free (DF) algorithms. In Section 3, we
reformulate the curriculum learning problem as a new grey-box optimization
problem, including a suitable scheduling problem. In Section 4, several ap-
proaches for tackling this grey-box reformulation are discussed. Both heuristic
methods to determine approximate solutions of the grey-box problem, and DF
optimization methods that estimate the best parameters with a Bayesian ap-
proach are investigated. Lastly, in Section 5, numerical results on a benchmark
environment in the curriculum learning literature are shown, and in Section 6
conclusions on the proposed methods are drawn.

2 The curriculum learning problem

We start by describing the problem of learning one task through reinforcement
learning, and then consider the case of learning a sequence of tasks forming a
curriculum.

2.1 Reinforcement Learning

In order to describe the decision problem we are focusing on, we make use of a
classic GridWorld as a running example. In the GridWorld domain, shown in
Figure 1, we consider an agent that starts from a specific cell and has to find
a treasure while moving over free cells. The agent aims to reach the treasure
in the minimum number of steps, avoiding some obstacles represented by fires
and pits. In Figure 1 (a) one fire, one pit, and the treasure are depicted in the
8×8 cells board.

The agent can observe, at any given time, the position of the treasure and
the content of every cell that is at most 2 cells away from the agent (i.e., it
sees everything in the 5×5 square centred at the agent). All possible values
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(a) (b) (c)

Fig. 1 Example of a GridWorld interface: (a) task1, (b) task2, (c) taskF .

for the position of the agent and the content of the cells surrounding it form
the state space S. During an episode, the agent repeatedly chooses an action
from the action set A. In GridWorld, A contains four actions corresponding to
moving in one of the four cardinal directions. An episode starts in an initial
state s0 ∈ S, in which the agent chooses an action a1 ∈ A, resulting in the
environment transitioning into the next state s1 ∈ S. The agent receives a
reward r1 from a reward function r : S × A × S → R and the cycle repeats
from s1 until a maximum number of steps T is reached. Some states can be
absorbing, that is, they cannot be left with any action, and from them the
agent receives a reward of 0 until the end of the episode. In GridWorld, the
treasure and the pits are absorbing states and they result in the termination of
the episode, since no more reward can be collected from them. The behaviour
of the agent is encoded in a function π : S → A, returning an action for
each state, called the policy. The policy is learned over a number of training
episodes so as to maximize its expected return E[Gπ], that is, the expected
cumulative discounted reward obtained by the agent while following the policy
π: Gπ =

∑T
i=0 γ

i−1ri. The discount factor 0 ≤ γ ≤ 1 encodes a preference for
earlier rewards over later ones in the episode. In GridWorld, the reward the
agent receives is −2500, −500 and −250 respectively for reaching a pit, a fire
or for entering the cell next to a fire. Furthermore, the agent receives a reward
of +200 for reaching the treasure, and -1 in all the other cases. Episodes end
after 50 actions.

Reinforcement Learning (RL) has a number of algorithms widely used
to improve the policy. A formal description of this training process can be
found, e.g., in [21]. Here we just mention that a family of algorithms build a
parametrized approximation q̂π(s, a|θ) of the value function qπ(s, a) = E|s′ [
r(s, a, s′)+γq(s′, π(s′)], which represents the expected return for taking action
a in state s and following the policy π thereafter. The expectation is taken
with respect to the next state s′. The value function is used to compute an
improved policy, which in turn results in a higher value, in an optimization
process called policy iteration, culminating in the optimal policy π∗ of value
q∗(s, a) = E|s′ [r(s, a, s′) + γmaxa′q(s

′, a′). A policy can be obtained from a
value function by choosing greedily the action with the highest expected re-
turn in every state: πθ(s) = argmaxa q̂(s, a|θ). The function representation
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(for instance, a neural network) of q̂(s, a|θ), and initial value of the parameter
vector θ influence the speed and the point of convergence of the policy.

In the GridWorld domain we are considering, we represented the function
q̂π(s, a|θ) as |A| linear function approximators q̂π,a(s|θ) = θTφ(s). Different
choices are possible for the vector φ of basis functions. In GridWorld, we
used the Tile Coding basis [21], computed over the state vector s ∈ S, whose
variables are described a the beginning of this section.

2.2 Curriculum Learning

Let us assume that we want the agent to learn the GridWord task shown in
Figure 1 (c). We denote this environment as the final task, taskF . Figure 1
also contains two other easier GridWord environments, task1 and task2, which
we can use to build up to taskF . We denote T the set of the n available tasks
except the final task. We assume that we have an episode budget to train the
agent, by using an RL algorithm, given by N (number episodes per task) times
L (number of tasks that can be used to train the agent before the final task).

By way of example, consider the three tasks in Figure 1, and assume L = 2.
We have 5 different sequences for the RL training (including the execution of
the final task at the end)

1. taskF → taskF → taskF
2. task1 → taskF → taskF
3. task2 → taskF → taskF
4. task1 → task2 → taskF
5. task2 → task1 → taskF .

The sequence of the tasks in T used to train the agent before the final task is
called a curriculum. The first sequence consists in using the entire budget on
the final task, and corresponds to learning without a curriculum. The other
sequences are all possible curricula of length at most 2.

In a curriculum, we train the agent sequentially over the first L tasks
by using an RL algorithm. The agent knowledge is represented by the value
function q̂π(s, a|θ), whose parameters are transferred from one task to the
following one in the sequence, so that the final parameters at the end of one
task initialize the value function at the beginning of the next one.

After the learning procedure over a curriculum c of L tasks, we obtain the
value function parameter θ0(c). The quality of curriculum c can be measured
by considering the total return on the N episodes in the final task. Let Giθ be
the return obtained by the agent starting from a value function parameter θ
in episode i. The total return after N episode is:

U(c) ,
N∑
i=1

Giθi(c), (1)

where θi(c) is the policy parameter obtained by the RL algorithm at the end
of the ith episode of the final task.
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Our objective is to find a curriculum c∗ that maximize this cumulative
reward, i.e. an optimal solution of

maximize
c∈C

U(c), (2)

where C represents the set of all feasible curricula obtained from T .
Problem (2) presents two main drawbacks: (i) it is in general nonsmooth,

nonconvex, and even discontinuous with a black-box nature; (ii) it is a combi-
natorial optimization problem whose dimension sharply increases with respect
to the number n of the available tasks and the maximum length L of the cur-
ricula. In this respect, note that the dimension of the problem grows according
to the following formula

|C| =
n∑

k=n−L

n!

k!
. (3)

Thus, the lack of a closed analytical form of the objective function does not
allow us to resort to general methods for Mixed-Integer NonLinear Programs
(MINLP), see e.g. [2]. Furthermore, the combinatorial nature of the problem
and the large number of possible combinations make the application of stan-
dard Derivative Free methods unfeasible, see e.g. [6,7]. Some algorithms to
find good solutions of problem (2) are discussed in [8]. However, those meth-
ods cannot be efficiently applied to large problems (where enumeration is not
feasible) and constitute only a preliminary step to efficiently tackle the cur-
riculum learning problem.

In the next section we introduce a new grey-box reformulation for problem
(2) by modeling how learning each task, and the order with which these tasks
are learnt, influence the final performance, and then by defining an optimiza-
tion scheduling problem.

3 The grey-box reformulation

A curriculum c = (m0, . . . ,mL−1) is composed by at most L ≤ n tasks in
the set T organized in a specific order and without repetitions. It represents
the sequence of tasks on which the policy of the agent is optimized before
addressing the final task mL.

In order to define a feasible curriculum, let us introduce the binary variables
δ ∈ {0, 1}n and γ ∈ {0, 1}n×(n−1) for any curriculum c ∈ C. Each δi indicates
whether the ith task of T is in the curriculum c (δi = 1) or not (δi = 0). On
the other hand, γij , with i 6= j, models the order of the tasks in c: γij = 1 if
and only if both the ith and jth tasks of T are in the curriculum c and the ith
task is scheduled after the jth task. Moreover, we introduce integer variables
x ∈ [0, L − 1]n ∩ Nn indicating the order of the tasks in the curriculum c;
in this way, let ĉ = (m̂0, . . . , m̂L−1) be the curriculum under consideration,
then m̂j−1 = taski ∈ T where xi is the jth smallest value among the xk with
k : δk = 1. Note that (x, δ) uniquely determines a curriculum c, while γ can be
derived by (x, δ). Therefore also (δ, γ) can be used to identify any curriculum.



An Optimization-based approach for the CL problem 7

Below we provide the reader with an example that clarifies how the definition
of a tuple (x, δ) uniquely determines a curriculum c.

Example 1 Consider the set of available tasks T = {task1, task2, task3, task4,
task5}, the pair (x, δ) with x = (0, 0, 1, 3, 2) and δ = (0, 0, 1, 1, 1) defines the
curriculum c = (m0,m1,m2) = (task3, task5, task4) while γ could be derived
by (x, δ). ut

We are ready to define a feasible curriculum by introducing the following
definition.

Definition 1 (Feasible curriculum) A curriculum c defined by the vari-
ables (x, δ) is feasible, i.e. c ∈ C, if (x, δ) satisfies:

xi ≤ (L− 1)δi i = 1, . . . , n (4)

xi ∈ [0, L− 1] ∩ N δi ∈ {0, 1} i = 1, ..., n (5)

m(x, δ) ≥ 1 (6)

M(x, δ) ≤ |Aδ| − 1 (7)

where
Aδ , {i ∈ {1, ..., L} : δi = 1}

m(x, δ) , min
i,j∈Aδ

|xi − xj |

M(x, δ) , max
i,j∈Aδ

|xi − xj |.

ut

Namely, a curriculum c is feasible if (x, δ) defines an ordered set of tasks, (4)
and (5), which does not have two overlapping tasks, (6), and does not have
gaps in the defined order, (7).

Example 2 The pair (x̃, δ̃) with n = 5, L = 4, x̃ = [0, 0, 1, 2, 4] and δ̃ =

[0, 0, 1, 1, 1] cannot be a feasible curriculum because M(x̃, δ̃) = 3 > |Aδ̃| − 1 =
2. Indeed there is a gap between 2 and 4. ut

Now we introduce the following approximate linear function Û of the utility
U with the aim of reducing the complexity of Problem (2). The approximate
model is more mathematically tractable, while providing a reasonable repre-
sentation of the environment we are dealing with:

Û(δ, γ;u, p) ,
n∑
i=1

uiδi −
n∑
i=1

n∑
i 6=j=1

pijγij . (8)

The approximate linear function Û is defined in order to describe how the
curriculum c, defined by (δ, γ) (or equivalently by (x, δ)), influences the per-

formance over the final task. Specifically, with Û we consider the simpler case
in which every task mi ∈ c contributes to the value of U with a fixed individual
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utility ui ≥ 0. Moreover, considering all pairs (i, j) ∈ {1, . . . , n} × {1, . . . , n}
with i 6= j, if the ith task of T is in the curriculum c and it is scheduled after
the jth task of T , then there is a penalty in U equal to pij > 0. This concept of
utilities and penalties is exploited to model how a task mi can be preparatory
for another task mj . If the policy is not optimized in the preparatory task mi

before it is optimized in task mj , then the utility given by task mj has to be

reduced by the corresponding penalty pij . We observe that the function Û is
linear with respect to (δ, γ) and parametric with respect to the utilities u and
penalties p. Note that the values of u and p are not known a-priori but need
to be estimated through numerical methods as discussed in Section 4.

Given these utilities u and penalties p, we maximize the utility Û from
scheduling the tasks in a specific order (i.e. defining a curriculum) by modifying
the indicator variables δ and γ corresponding to feasible curricula in C.

After having introduced the approximate function Û and defined the feasi-
ble curriculum set, we can define the Integer Linear Program (ILP) scheduling
problem for curriculum learning as follows:

maximize
x,δ,γ

Û(δ, γ;u, p)− λ
n∑
i=1

xi (9)

subject to xi ≤ (L− 1)δi, i = 1, . . . , n (9a)

xi − xj + δj ≤ Lγij + (1− δj)L, i, j = 1, . . . , n 6= j (9b)

γij + γji ≤ 1, i, j = 1, . . . , n, i 6= j (9c)

x ∈ [0, L− 1]n ∩ Nn, δ ∈ {0, 1}n, γ ∈ {0, 1}n×(n−1), (9d)

where λ is a small positive real number. The term −λ
∑n
i=1 xi is added in the

objective function only with the aim of setting variables x to correct values.
As we will show in the following propositions, Problem (9) owns some

interesting properties which allow us to get feasible curricula when computing
one of its solutions (see Proposition 1). Moreover, we have the guarantee
that every optimal curriculum ĉ for Problem (2) can be obtained for some
specific values of (u, p) (see Proposition 2).

First of all, we prove that any optimal solution to Problem (9) defines a
feasible curriculum c ∈ C.

Proposition 1 Let (x̂, δ̂, γ̂) be an optimal point of Problem (9) with (u, p) ∈
Rn × Rn×(n−1). Then (x̂, δ̂) satisfies conditions (4) - (7).

Proof Conditions (4) and (5) are true because (x̂, δ̂) satisfies (9a) and (9d)
respectively.

Concerning condition (6), we cannot have m(x̂, δ̂) = 0 because this would

imply x̂i = x̂j and δ̂i = δ̂j = 1, then by (9b) we would have γij = γji = 1
which violates condition (9c).

Finally, to prove condition (7), we assume by contradiction that

M(x̂, δ̂) > |Aδ̂| − 1 (10)
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Thanks to the second term in the objective function, another solution (x̃, δ̃, γ̃)

with (δ̃, γ̃) = (δ̂, γ̂) and M(x̃, δ̃) ≤ |Aδ̃| − 1 could be found with a higher value

of the objective function (since
∑n
i=1 x̃i <

∑n
i=1 x̂i), proving that (x̂, δ̂) was

not optimal. ut

Note that, given the tuple (x̂, δ̂) satisfying conditions (4) - (7), there exists a

unique γ̂ such that (x̂, δ̂, γ̂) is feasible for Problem (9). That is, given the tuple

(x̂, δ̂) defining the curriculum ĉ, then the corresponding γ̂ is always univocally
determined.

Finally, we prove that any feasible curriculum can be computed by solving
Problem (9) for some (u, p).

Proposition 2 Let (x̂, δ̂) satisfy conditions (4) - (7). Then, there exist (û, p̂)

and γ̂ such that (x̂, δ̂, γ̂) is an optimal solution to Problem (9) with (u, p) =
(û, p̂).

Proof As already discussed, there exists a unique γ̂ such that (x̂, δ̂, γ̂) is feasible

for Problem (9). We observe that (x̂, δ̂, γ̂) is a solution to Problem (9) with
the following (û, p̂):

ûi =

{
0 if δ̂i = 0

2εn+ λL otherwise
, p̂ij =

{
ε if γ̂ij = 1

2ε otherwise
,

with ε > 0. In this way, tasks not in Aδ̂ cannot be chosen at the optimum,
because their utility is zero while their penalty is strictly positive, so that
choosing them would imply a reduction in the objective function. On the
other hand, tasks in Aδ̂ are chosen because their utility is always greater than
the maximum reduction in the objective function achieved when performing
that task and their order is determined by p̂ij . ut

Example 3 Consider the case ĉ = ∅, namely Aδ̂ = ∅. In this case, û = 0

and p̂ = ε, so an optimal solution to Problem (9) is (x̂, δ̂, γ̂) = (0, 0, 0) which
corresponds to the empty curriculum we were looking for. ut

Thanks to Proposition 1 and Proposition 2 we are able to reformulate
Problem (2) as a grey-box function Ψ : Rn×n → R, which takes the parame-
ters (u, p), computes a curriculum c by solving Problem (9) and returns the
cumulative reward U(c). By using the grey-box function Ψ , Problem (2) can
be equivalently reformulated as

maximize
(u,p)∈Rn+×R

n×(n−1)
+

U(u, p). (11)

Note that Proposition 2 ensures that a tuple (û, p̂) exists such that the
optimal solution to Problem (9) defines the curriculum ĉ, which in turn is an
optimal solution to Problem (2). In the next section we discuss the problem
of computing a good pair (û, p̂) in order to get a curriculum c that maximizes
the overall performance U(c).
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We conclude this section with a technical result. We can characterize the
optimal solutions by observing that if, at the optimum, some tasks are not
chosen, then all chosen tasks have a value of xi not less than 1. In particular,
the following proposition holds:

Proposition 3 Let (x̂, δ̂, γ̂) be an optimal point of Problem (9). If |Aδ̂| 6= L
then x̂i ≥ 1 for all i ∈ Aδ̂.

Proof |Aδ| 6= L implies that exists j such that δj = 0. Let (x̂, δ̂, γ̂) be a feasible

solution with two indices i, j such that x̂j = 0, δ̂j = 0 and x̂i = 0, δ̂i = 1,

i 6= j. By contradiction we can prove that (x̂, δ̂, γ̂) is not optimal. If (x̂, δ̂, γ̂)
was optimal then by constraint (9b) we would have γ̂ji = 1. However, we can

find another solution (x̃, δ̃, γ̃) = (x̂, δ̂, γ̂) except for x̃i ≥ 1 with γ̃ji = 0, that

is feasible but with a greater objective function. Therefore, (x̂, δ̂, γ̂) cannot be
optimal. ut

4 Numerical methods for estimating (u, p)

Different approaches can be applied in order to get good estimates of (u, p)
so that the grey-box function Ψ is maximized and the curriculum learning
problem is solved efficiently. We report three of them below.

– Since Problem (11) can be regarded as a black-box optimization problem,
we can resort to many DF algorithms in order to compute (approximate)
optimal points (û, p̂) of (11). We can rely on Sequential Model-Based Op-
timization (SMBO) methods, which define a probabilistic model of the
objective function and use the information gained during the iterations
to update the probabilistic model following a Bayesian approach. At each
iteration, the algorithm picks a new promising point by maximizing an ac-
quisition function, and uses the information gained with this new sample
to update the surrogate model. See [10,19,20] and references therein for
further details.

– An heuristic procedure can be implemented to compute a good estimate
(u, p) and then it can be used to get the value of the objective function,
Ψ(u, p).

– We can leverage the heuristic procedure described above to find a promising
region of confidence centered in (u, p). Thus we can further constraint the
black-box optimization problem to be within this confidence region and
resort to DF algorithms which allows us to define a probability distribution
on the parameters (u, p) to optimize and solve the problem as a sequential
model-based algorithm. This approach can be seen as a local-search method
to improve the estimate obtained by the heuristic method. In the rest of
this article we will consider Tree-structured Parzen Estimators (TPEs) [5]
as an example of a DF method implementing this approach.
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Computing a good estimate for (u, p) can be critical for obtaining a good
numerical performance. Here we propose a method that is justified by the way
the approximate function Û is defined in (8). In this regard, in the simpler case
in which the real utility function U is equivalent to the approximate function
Û (discussed in the previous section), we would have for any (i, j) with i 6= j:

U(mi,mj) = ui + uj −
n∑

k=1, k 6=i

pik −
n∑

k=1, j 6=k 6=i

pjk + U,

U(mi) = ui −
n∑

k=1, k 6=i

pik + U, U(mj) = uj −
n∑

k=1, k 6=j

pjk + U,

where U is an unknown constant. This implies

pji = U(mi,mj)− U(mi)− U(mj) + U, (12)

ui = U(mi) +

n∑
k=1, k 6=i

pik − U

= U(mi) +

n∑
k=1, k 6=i

(U(mk,mi)− U(mk)− U(mi)) + (n− 2)U. (13)

We observe that computing this estimate requires n(n + 1) evaluations of U .
However, these evaluations can be run in parallel over several processors and
each of them considers at most two tasks so that the computation time per
evaluation is usually quite small.

In the following section we test the effectiveness of the proposed method-
ologies on a benchmark environment from the curriculum learning community.

5 Experimental evaluation

We base our numerical experiments over the GridWorld domain, reinforce-
ment learning setting commonly used in the evaluation of curriculum learning
methods, see e.g. [22]. The dimension of each task is similar to the one shown
in Figure 1 but with a variable number of fires and pits so to easily control
the complexity of the environment.

We analyze different optimization techniques to solve the curriculum learn-
ing problem. In particular, we compare five different methods:

– C0: the agent is trained with the empty curriculum. This solution is con-
sidered as a benchmark to understand to what extent the application of
the curriculum learning procedure can improve the performance over the
final task.

– Heuristic: formulas (12) and (13) are implemented to obtain a good es-
timate for (u, p), with U computed so that min(i,j) pij ≥ 0 and mini ui ≥
10 max(i,j) pij . Then the scheduling problem (9) is solved to determine the
tentative curriculum c.
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– GREEDY Par: the curriculum is incrementally defined by the applica-
tion of a greedy heuristic as proposed in [8]. In particular, at each iteration
the n tasks which mostly improve the final performance are considered
and the one which leads to the best improvement in performance is taken.
Note that this method does not leverage the grey-box reformulation but
it aims at computing a good feasible point of problem (2). This method
can be considered as the state of the art and is used as a benchmark to
understand if the proposed methodology leads to any improvement.

– GP: a SMBO approach is implemented to tackle Problem (11). In par-
ticular, the optimization problem is modeled as a Gaussian Process where
new points are drawn by maximizing the Expected Improvement as the
acquisition function. The method searches for the best values (u, p) on the
box [0, 1000]n× [0, 100]n×(n−1) since no a priori knowledge is incorporated,
but 10 starting points are sampled to build the a priori distribution.

– TPE: a Tree-structured Parzen Estimator is used as surrogate model of
Problem (11). This method is employed as a local-search technique to im-
prove the estimates (u, p) obtained with the heuristic approach. In par-
ticular, a Gaussian distribution of (u, p) is defined that is centered in the
values (u, p) and with variance proportional to the variance within the
values (u, p).

The proposed framework is implemented in Python 3.6 on a Intel(R) Core(TM)
i7-3630QM CPU 2.4GHz. by means of the following libraries:

docplex (v 2.8.125): the CPLEX’s API [11] used for solving the ILP (9) with
the version 12.9 of CPLEX. We set the running time to 60 seconds per
iteration and the mipgap to 10−2.

GPyOpt (v 1.2.5): used for the implementation of the GP method described
above [1,18].

hyperopt (v 0.2): used for the implementation of the aforementioned TPE ap-
proach [3–5].

Burlap: used to model the GridWord domain along with the Sarsa(λ) code as
learning algorithm to update the policy and Tile Coding as the function
approximator (http://burlap.cs.brown.edu).

We consider three different experiments on the GridWorld domain. In the first
two experiments, the total number of feasible curricula is such that solving
the curriculum learning problem by enumeration is still feasible even if com-
putationally expensive. In the third problem, |C| increases so that enumeration
strategies are no longer feasible. While the first two experiments are discussed
together, the third one is treated separately since its analysis is done in a
different manner.

In the first example, n = 12 potential tasks are defined and the maximum
length of the curriculum is set to L = 4, obtaining 13345 feasible curricula
according to Formula (3). In the second case, n = 7 tasks are defined and all
of them can be considered together in a single curriculum, i.e. L = 7, for a
total of 13700 possible combinations of tasks. For the former example we set
N = 300 while for the latter we set N = 400 number of episodes per task.
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See [8] for further details about the problem settings. Algorithm C0 and the
Heuristic require respectively 1 and n(n+ 1) curriculum evaluation, while the
number of curriculum evaluations granted to the other algorithms is set to
300.

In Table 1 for each method we report:

Gain: the gain on the cumulative reward with respect to the benchmark per-
formance obtained with C0;

Rank: the ranking of the returned solution with respect to all the possible
curricula;

#Curr∗: the number of curriculum evaluations needed before the best per-
formance, computed by the algorithm, was achieved without considering
the number of curricula evaluated to get the starting point.

Table 1 Results obtained on the GridWorld domain problem (c∗ indicates any curriculum
that solves Problem (2)).

n = 12, L = 4, |C| = 13345 n = 7, L = 7, |C| = 13700

Method Gain Rank #Curr∗ Gain Rank #Curr∗

C0 1.000 11499 1 1.000 4535 1
GREEDY Par 1.215 144 373 1.210 260 155

Heuristic 1.217 121 144 1.181 417 49
GP 1.234 32 17 1.289 38 19

TPE 1.256 4 84 1.326 14 162
c∗ 1.275 1 - 1.430 1 -

Our numerical results show how the grey-box reformulation and the numer-
ical methods we introduced can improve the performance over the final task
if compared to the performance obtained when training the agent directly on
the final task (algorithm C0). As a proof of the effectiveness of the proposed
methods, we highlight how even the simple heuristic procedure is always able
to find better solutions than C0 with improvements ranging from 18.1% to
43.0% and similar solutions to those returned by GREEDY Par. Moreover,
the application of a Bayesian optimizer to estimate the utilities u and penal-
ties p seems to be a successful choice in order to further improve the final
performance. Finally, the local search performed by TPE around the tentative
point (u, p) leads to a remarkable improvement of the final performance by
finding, in both scenarios, one of the 15th best solutions out of the more than
13000 possible curricula.

In order to further assess the effectiveness of the introduced grey-box ap-
proach, in the third experiment we consider a far bigger setting, also based on
the GridWorld domain, where the number of potential tasks, n, and the max-
imum number of tasks used for building each curriculum, L, are both equal to
15. In this setting the overall number of potential curricula is bigger than 3.5
trillion so that an enumeration strategy in order to compute an curriculum c∗

solution to Problem (2) is not feasible. In this setting we compare the solution
returned by GREEDY Par, GP and TPE. The three algorithms are left run-
ning for 24 hours once the starting point has been found. In Figure 2 we plot



14 Ruggiero Seccia et al.

Fig. 2 Performance curve: gain in performance obtained by GREEDY par, GP and TPE
with respect to C0.

the best values found by the three methods over the iterations and reported
as the gain with respect to the solution returned when directly training over
the empty curriculum C0. All the methods outperform the solution returned
by C0. Both GP and TPE performs better than GREEDY par. Running GP
let us achieve a gain near of 70% in around 7 hours, while TPE a gain bigger
than 60% in 11 hours of computations. We finally remark how the long com-
putational time needed to achieve these results is neglectable if compared to
the gain we were able to achieve from a performance perspective.

6 Conclusions

We considered the problem of curriculum learning and propose a grey-box
approach to solve the difficult combinatorial decision problem behind it. A
parametric model that describes the relation among the preparatory tasks
and the final task to be learnt was introduced, and an ILP scheduling prob-
lem was formulated to obtain tentative optimal curricula. We show how the
introduced scheduling problem is well-defined: it is always able to return a
feasible curriculum, and with the property that any feasible curriculum can
be obtained by setting in the scheduling formulation the values defining tasks’
relations. Then, numerical methods were defined to determine the parameters
governing the relations among tasks, and to solve the underlying scheduling
problem. Experimental results demonstrate the effectiveness of the proposed
reformulation in modeling relations between tasks and improving the perfor-
mance on the final task, with model-based methods outperforming the previous
approaches suggested so far.
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