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Abstract 19 

The estimation of chronological age from biological fluids has been an important quest for 20 
forensic scientists worldwide, with recent approaches exploiting the variability of DNA 21 
methylation patterns with age in order to develop the next generation of forensic ‘DNA 22 
intelligence’ tools for this application. Drawing from the conclusions of previous work utilising 23 
massively parallel sequencing (MPS) for this analysis, this work introduces a DNA methylation-24 
based age estimation method for blood that exhibits the best combination of prediction 25 
accuracy and sensitivity reported to date. Statistical evaluation of markers from 51 studies using 26 
microarray data from over 4,000 individuals, followed by validation using in-house generated 27 
MPS data, revealed a final set of 11 markers with the greatest potential for accurate age 28 
estimation from minimal DNA material. Utilising an algorithm based on support vector 29 
machines, the proposed model achieved an average error (MAE) of 3.3 years, with this level of 30 
accuracy retained down to 5 ng of starting DNA input (~1 ng PCR input). The accuracy of the 31 
model was retained (MAE=3.8 years) in a separate test set of 88 samples of Spanish origin, while 32 
predictions for donors of greater forensic interest (<55 years of age) displayed even higher 33 
accuracy (MAE=2.6 years). Finally, no sex-related bias was observed for this model, while there 34 
were also no signs of variation observed between control and disease-associated populations 35 
for schizophrenia, rheumatoid arthritis, frontal temporal dementia and progressive 36 
supranuclear palsy in microarray data relating to the 11 markers. 37 
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Highlights 44 

• Evaluation of methylation age markers using microarray data and targeted sequencing 45 
revealed a set of 11 ‘optimal’ markers 46 

• The prediction model showed high prediction accuracy in both a UK (MAE=3.3 years) and 47 
Spanish sample cohort (MAE=3.8 years) 48 

• Prediction accuracy improved for under 55-year-olds (MAE=2.6), with 81% predicting with 49 
an error of less than 4 years 50 

• The accuracy of DNA methylation quantification and age prediction was retained down to 51 
5ng of DNA input (~1ng in PCR stage) 52 
 53 
 54 

Keywords:  age prediction, DNA methylation, machine learning, forensic, DNA intelligence 55 
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1 Introduction 61 

A key aspect of forensic science research is the inference of information regarding a person’s 62 
visible appearance, geographical origin and age using biological stains recovered from crime 63 
scenes. This information, commonly referred to as ‘DNA intelligence’, can provide law 64 
enforcement organisations with leads for investigations, taking on the role of a ‘biological 65 
witness’. Following the successful implementation of DNA-based methods for the inference of 66 
ancestry and phenotype (e.g. eye, hair, and skin colour) in forensic investigations, the focus of 67 
DNA intelligence research has recently shifted towards the accurate prediction of chronological 68 
age. Whilst multiple biomarkers, including protein and nucleic acid-based candidates, have been 69 
trialled for use in age estimation, recent studies have focused on the correlation between 70 
chronological age and methylation status at certain cytosine residues present in the human 71 
genome. Since methods for DNA methylation-based age prediction made their debut in forensic 72 
science in 2014[1], a significant amount of research has focused on forensically-relevant tissues 73 
as well as targeted sequencing technologies, that offer high potential for sensitivity and are 74 
more accessible to forensic laboratories than high-cost genome-wide analysis. However, while 75 
DNA methylation-based age prediction rose to become one of the priorities for forensic 76 
researchers worldwide, a consensus on the most informative marker sets has yet to be reached. 77 

Despite the domination of targeted sequencing in recent literature on age estimation, de novo 78 
marker discovery and evaluation are still highly dependent on microarray data available in online 79 
depositories. However, the use of such data does not come without challenge, with the presence 80 
of batch effects being one of the biggest issues. Batch effects observed between different 81 
methylation analysis platforms, as well as between different datasets developed using the same 82 
technology, have been shown to introduce bias when comparing data derived from multiple 83 
studies [2-4]. In efforts to account for known and unknown batch effects in the Illumina 84 
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methylation microarray platforms, multiple normalisation packages have been developed, as 85 
previously outlined by Dedeurwaerder et al. [5]. However, whilst the effect of some of these 86 
normalisation approaches can be beneficial for within-array normalisation, the available 87 
between-array normalisation methods have proven unsuitable for the Illumina arrays, 88 
producing no significant benefits [5]. In addition, large scale transformations of methylation data 89 
have been shown to result in an overall decline of data quality, often masking directional 90 
methylation patterns [5, 6]. Furthermore, the developed normalisation algorithms can only be 91 
applied to raw microarray data, not provided for most of the publicly available datasets, thus 92 
significantly limiting the number of available samples. On the other hand, whilst advanced 93 
normalisation can be crucial for training prediction algorithms, as batch effects present both 94 
within and between arrays could be interpreted as true variation and prevent the algorithm 95 
from identifying age-related patterns, its importance significantly decreases when microarray 96 
data is used for assessing correlation and identifying potential markers. In such cases, validation 97 
of the proposed marker sets using targeted methods and subsequent use of data solely deriving 98 
from this targeted analysis for the development of prediction models, can balance out the lack 99 
of extensive normalisation in the marker discovery stage. 100 

This stage has, so far, been based almost exclusively on the interrogation of the observed 101 
correlation between age and methylation for the different CpGs, usually according to Pearson’s 102 
or Spearman's correlation coefficient. However, neither of these measures considers the range 103 
of methylation over the human lifespan. Whilst not immediately obvious, the importance of this 104 
range becomes evident when addressing the issue of sensitivity, which remains one of the most 105 
important factors hindering the wider application of DNA methylation-based age prediction in 106 
forensic casework. Whilst non-binomial nature of CpG methylation, that represents a 107 
percentage, introduces a significant challenge, markers showing large differences between the 108 
different age groups can potentially allow for a certain loss of accuracy during the quantification 109 
of DNA methylation, offering an ‘escape’ from the 1000 sequencing reads limit per marker and 110 
sample, that has previously been set for this type of methods [7]. The fact that larger 111 
methylation ranges allow for higher method accuracy overall is evident in the success of CpG 112 
markers relating to the ELOVL2 gene. Since their discovery, the ELOVL2 markers have been 113 
incorporated in almost every DNA methylation-based age prediction method, while successful 114 
age estimation models have been also developed on ELOVL2 CpGs alone [8]. Looking at the 115 
characteristics of these markers, what sets them apart is the combination of high correlation 116 
with age and large methylation range over the human lifespan, rather than correlation alone. 117 
This indicates that the inclusion of methylation range as a factor during marker selection can 118 
increase the potential of a DNA methylation-based age prediction method in terms of its success 119 
with samples of low DNA content. 120 

In addition to correlation with age and sensitivity, another thing that needs to be considered 121 
when developing forensic age estimation tools is the potential association of the utilised 122 
biomarkers with factors other than age. Since their discovery, DNA methylation biomarkers have 123 
been widely investigated in medical studies for their association with medical conditions, 124 
infections and diseases such as cancer [9], Alzheimer’s disease and dementia [10-12], 125 
Huntington’s disease [13], Parkinson’s disease [14], Hutchinson Gilford progeria [15] and 126 
Werner syndrome [16].These associations, together with indications of correlation between 127 
DNA methylation biomarkers and smoking [17-19], body mass index [20, 21] and socioeconomic 128 
status and education [22-24], paved the path for the emergence of the term ‘epigenetic age’, 129 
the distance of which from chronological age has been proposed as a measure of ‘biological age’ 130 
[25]. 131 

Biological age, also referred to as functional, physiological or phenotypic age, has been the focus 132 
on many recent studies aiming to provide a measure of ‘health’ and life expectancy through the 133 
analysis of DNA methylation [22, 26]. Interestingly, it was also the estimation of biological rather 134 
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than chronological age that motivated Horvath’s work on the ‘human epigenetic clock’ [3], even 135 
though some of the 353 markers proposed in this study have been widely used for the 136 
estimation of chronological age in further studies [27, 28]. Whilst the high correlation between 137 
these two ‘ages’ has often blurred the lines between the terms, it is important to address them 138 
separately, especially in a forensic setting. 139 

Forensic science often deals with samples for which there is little or no information regarding 140 
the donor. Furthermore, strict ethical guidelines apply for the inference of intelligence-related 141 
information from human samples, in order to safeguard human privacy and wellbeing. These 142 
facts highlight the need to address potential biases in forensic DNA methylation-based age 143 
prediction, that could also result in significant inaccuracies.  144 

Drawing upon the recent literature, this work aims to take the first step towards reaching a 145 
much-needed consensus in terms of the most informative and sensitive markers for DNA 146 
methylation-based age prediction in forensics. Using independent microarray datasets 147 
addressing a total of over 4,000 samples, candidate markers were assessed on both their 148 
correlation and methylation range, providing a marker selection that was further validated by 149 
targeted sequencing using a separate sample cohort. Furthermore, this work represents one the 150 
first attempts to scrutinizing forensic DNA methylation-based age prediction markers in terms 151 
of their association with sex and disease on both a CpG and gene/protein level. 152 

2 Materials and methods 153 

2.1 Compilation of CpG sites associated with age 154 

A systematic review of the available literature up to 2017 was conducted to identify CpG markers 155 
exhibiting methylation patterns associated with chronological age in human samples. In cases 156 
where studies investigating large marker sets have provided a marker sub-selection that reveal 157 
superior correlation with age, only these most informative subsets were included in the analysis. 158 
A comprehensive list of the 51 studies [1, 3, 6, 8, 20, 21, 29-73] can be found in 159 
Supplementary_Table_S1. 160 

Following this analysis, a total of 36,137 CpG candidates were identified as potential biomarkers 161 
of aging. A subset of 5,364 CpGs, independently validated in at least 2 of the 51 studies or 162 
previously included in age-prediction algorithms were selected for further analysis. 163 

2.2 Collection of methylation data from publicly available datasets 164 

Methylation data for the 5,364 CpG candidates was extracted from datasets available in the 165 
public repository of the National Centre for Biotechnology Information Gene Expression 166 
Omnibus (NCBI GEO, [74]). The R Project for Statistical Computing software in combination with 167 
the R Studio platform was employed for this analysis. The 24 datasets used for this analysis had 168 
originally been developed using blood samples (including whole blood, blood leukocytes and 169 
blood lymphocytes samples) analysed with the Illumina microarray technology (including both 170 
the Illumina Infinium HumanMethylation 27K and 450K BeadChip arrays) [21, 30, 31, 36, 37, 39, 171 
43, 45, 50, 59, 75-81]. For studies investigating the methylome of diseased individuals, only data 172 
for the control samples was collected at this stage. More information on these datasets is 173 
detailed in Supplementary_Table_S2. 174 

As the two Illumina arrays offer different levels of coverage, samples analysed with the 27K array 175 
contained information for 1702 out of the 5364 CpGs, whilst those analysed with the 450K array 176 
provided with values for 5317 sites. Furthermore, in the 450K data 7 CpG sites containing missing 177 
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values for 600-1300 samples were removed from the analysis of this array and, as 2 of these 178 
CpGs were only available in the 450K array, the overall number of analysed CpGs was 179 
subsequently reduced to 5362. Finally, for samples with obvious familial relationships, such as 180 
twins or triplets, only one member of the relationship was retained in the dataset in order to 181 
avoid bias deriving from genetic similarities unrelated to age. 182 

2.3 Data normalisation 183 

Data for the two different platforms was analysed separately in order to avoid potential bias 184 
introduced by different sample sizes between the unique probes for 27K, the unique probes 185 
for 450K and the overlapping probes. Methylation data was extracted in the form of β-values 186 
(representing the percentage of methylation for a specific CpG site), but for the purposes of 187 
correlation analysis these were subsequently converted to M-values following the equation: 188 

𝑀𝑖 = 𝑙𝑜𝑔2(
𝛽𝑖

1 − 𝛽𝑖
) 189 

where Mi represents the M-value for a certain marker in a specific sample and βi represents the 190 
equivalent β-value. Whilst β-values have a direct biological meaning and were employed for 191 
addressing the methylation range of the different CpGs over the human lifespan, it has been 192 
shown that M-values are more appropriate for statistical analysis purposes as they are much 193 
more homoscedastic [2, 82]. 194 

Given the lack of consensus in the literature regarding the normalisation of microarray data and 195 
the fact that normalisation packages require raw microarray data that are not provided for most 196 
of the publicly available datasets, none of the previously developed normalisation packages 197 
were used in this study. As an alternative, methylation M-values were centred around the overall 198 
median value for each platform (27K or 450K) according to the equation: 199 

𝑀𝑖𝑐𝑒𝑛𝑡𝑟𝑒𝑑 = 𝑀𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛𝑀𝑣𝑎𝑙𝑢𝑒𝑓𝑜𝑟𝑡ℎ𝑒𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚(27𝐾𝑜𝑟450𝐾) 200 

where Mi represents the M-value for a certain marker in a specific sample and median M 201 
represents the median M-value for all samples for this marker in the relevant platform.  202 

2.4 Marker evaluation 203 

Using the normalised methylation data, a further shortlisting of markers was performed in order 204 
to identify a subset exhibiting the highest correlation with age (Pearson’s correlation coefficient 205 
r) and largest methylation range over the human lifespan (β-value range), while also maintaining 206 
functionality for a targeted sequencing approach based on multiplexing (ideally under 20 207 
markers). In order to achieve this, an original subset of 244 markers with │r│≥0.70, or │r│≥0.65 208 
and methylation range above 70% over the human lifespan in either the 27K or 450K dataset 209 
(Supplementary_Table_S3), was further reduced to 24 markers with │r│>0.70 and overall 210 
methylation range above 60%. Finally, following additional examination of the correlation plots 211 
that revealed ‘tailing’ of the data in the younger ages in 5 markers that, when taken into account, 212 
reduced the methylation range, this was reduced to a final set of 19 markers (Table 1). 213 
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Table 1. Chromosomal location (GRC37/hg19) and genetic information on the 19 selected markers. The 214 
Pearson’s correlation (R) calculated from the 450K and 27K data, as well as the absolute range of beta 215 

values observed for the relevant markers over the different ages are also displayed. 216 

CpG site Chromosomal 
location 

Associated 
Gene name 

Pearson’s 
correlation (r) 
in 450K data 

(n=2976) 

Pearson’s 
correlation (r) 

in 27K data 
(n=1299) 

Beta 
value 
range 

cg16867657 6:11044877 ELOVL2 0.9080 N.A. 0.7507 

cg22454769 2:106015767 FHL2 0.8713 N.A. 0.8346 

cg10501210 1:207997020 MIR29B2CHG 
(C1orf132) 

-0.8403 N.A. 0.8957 

cg19283806 18:66389420 CCDC102B -0.8265 N.A. 0.8744 

cg06639320 2:106015739 FHL2 0.8103 N.A. 0.7450 

cg24079702 2:106015771 FHL2 0.8029 N.A. 0.7767 

cg00329615 3:118706648 IGSF11 -0.8008 N.A. 0.6844 

cg24724428 6:11044888 ELOVL2, ELOVL2-
AS1 

0.7973 N.A. 0.6403 

cg21572722 6:11044894 ELOVL2 0.7970 N.A. 0.6226 

cg09809672 1:236557682 EDARADD -0.7877 -0.8091 0.7942 

cg07553761 3:160167977 SMC4, TRIM59 0.7847 N.A. 0.9193 

cg22796704 10:49673534 ARHGAP22 -0.7712 N.A. 0.6016 

cg08128734 1:206685423 RASSF5 -0.7619 N.A. 0.6873 

cg17372101 7:147500722 CNTNAP2 -0.7615 N.A. 0.6772 

cg18618815 17:48275324 COL1A1 -0.7590 N.A. 0.6928 

cg08160331 11:75140865 KLHL35 0.7571 N.A. 0.6999 

cg08262002 4:16575323 LDB2 -0.7565 N.A. 0.6576 

cg12934382 3:51741135 GRM2 0.7559 N.A. 0.7990 

cg17471102 19:5851255 FUT3 -0.7546 -0.7283 0.6109 

 217 

2.5 Sample collection and preparation 218 

Collection of tissues for the purposes of this study was conducted under ethical approval granted 219 
by the Biomedical Sciences, Dentistry, Medicine and Natural & Mathematical Sciences Research 220 
Ethics Subcommittee (BDM/13/14-30). Whole blood samples were collected from 112 unrelated 221 
volunteers, aged between 11 and 92.9 years, through venepuncture performed by a trained 222 
phlebotomist. Prior to sampling, full informed consent regarding the analysis was acquired from 223 
the donors, or their parents or legal guardians for the cases of under-aged individuals (<18 224 
years). No information on medical history was collected during this process in an attempt to 225 
create an inclusive, unbiased dataset, representative of the general population. Samples were 226 
stored at 4oC. 227 

Additionally, a set of 88 DNA extracts from whole blood samples deriving from adults (19-99 228 
years old) obtained from the ‘Carlos III’ Spanish National DNA Bank, University of Salamanca, 229 
under ethical approval granted by the ethics committee of investigation in Galicia, Spain (CAEI: 230 
2013/543), were shared by the Forensic Genetics unit of University of Santiago de Compostela 231 
(USC, Spain).  232 
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2.6 DNA methylation standards 233 

Premixed standards of known methylation were purchased from EpigenDx (Massachusetts, 234 
USA) for methylation levels of 0%, 5%, 10%, 25%, 50%, 75% and 100% at concentration of 50 235 
ng/µL.  236 

2.7 DNA extraction and quantification 237 

Genomic DNA extractions were carried out using a BioRobot EZ1 automated purification 238 
instrument (Qiagen, Hilden, Germany) in combination with the EZ1 Blood kit (Qiagen, Hilden, 239 
Germany). Following extraction, DNA samples were stored at -20°C. Quantification of DNA 240 
extracts was conducted using the Quantifiler Trio DNA Quantification kit in combination with 241 
the ABI PRISM® 7500 Sequence Detection System, both produced by Thermo-Fisher Scientific 242 
(Massachusetts, USA). The manufacturer’s guidelines [83] were followed throughout the 243 
protocol in half volumes and all samples were quantified in duplicate. 244 

2.8 Sodium bisulphite conversion 245 

Treatment with sodium bisulphite was employed for the conversion of unmethylated cytosines 246 
to uracils in the DNA samples. A total of 50ng of DNA from each sample or standard was 247 
converted using the MethylEdge Bisulphite Conversion System (Promega Corporation, 248 
Wisconsin, USA) and the treated DNA was eluted in 10µL of the elution buffer provided 249 
according to the manufacturer’s specifications [84]. Eluates were processed immediately (see 250 
next session). The approximate recovery of DNA following bisulphite conversion using this 251 
chemistry has been calculated as 52% [85] and therefore the final concentration of the eluate 252 
was estimated at approximately 2.6 ng/µL. 253 

2.9 Amplification of the bisulphite-converted DNA 254 

Primers for this study were designed using the MethPrimer online software [86] for bisulphite-255 
sequencing PCR based on the GRCh37/hg19 human genome (Ensembl genome browser [87]). 256 
Individual primer pairs were designed for each CpG of interest, with the exception of 257 
cg16867657, cg21572722, cg24724428 and cg06639320, cg22454769, cg24079702 that are 258 
located in close proximity inside the regulatory regions of ELOVL2 and FHL2 respectively and 259 
thus could be interrogated in the same amplicons. Furthermore, as the high abundance of CpG 260 
sites in the ELOVL2 regulatory region complicates primer design, two previously published 261 
primer pairs were tested [8, 88]. The primers suggested by Zbieć-Piekarska et al. [8] were 262 
selected as they exhibited lower amplification bias, but instead of the misalignment employed 263 
in the original design to account for the CpG in the primer location, a wobble site (equimolar mix 264 
of pyrimidines) was included for that location as suggested by Naue et al. [88] in their design. 265 
More information on the primers can be found in Supplementary_Table_S4). 266 

Optimum annealing temperature for each primer set was determined by analysing singleplex 267 
reactions for each pair at different annealing temperatures using agarose gel electrophoresis. 268 
Primers for cg12934382 (GRM2) failed to provide amplification products at this point and were 269 
therefore excluded from further analysis. Following this analysis, primers were combined in two 270 
multiplex reactions using the Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany) for both 271 
reactions in half volume (25 µL). Each reaction comprised of 12.5 µL of 2x Qiagen Multiplex PCR 272 
Master Mix (providing a concentration of 3 mM MgCl2), an additional 1 µL of 25 mM MgCl2 273 
solution for a final concentration of 4 mM, 2µL (~5 ng) of bisulphite treated DNA or calibration 274 
standard and 9.5 µL of primer mix. The final concentration of primers in the two multiplex 275 
reactions ranged from 0.08 to 0.7 µM depending on the efficiency of the primers (Table 2).  The 276 
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reaction conditions were: (1) 95°C for 15min, (2) 32 cycles consisting of 94°C for 30s, Tm (see 277 
Table 2) for 30s and 72°C for 30s, (3) 72°C for 4min followed by a hold at 4°C. 278 

Table 2. Details on the multiplex reactions employed in this study. 279 

CpG Associated Genes Primer concentration in 
PCR (µM) 

Annealing temperature 

cg16867657 

ELOVL2 

0.7 

 
59oC 

cg21572722 

cg24724428 

cg06639320 

FHL2 

0.4 

cg22454769 

cg24079702 

cg22796704 ARHGAP22 0.1 

cg17372101 CNTNAP2 0.2 

cg19283806 CCDC102B 0.5 

cg07553761 SMC4, TRIM59 0.2 

cg08262002 LDB2 0.08 

cg17471102 FUT3 0.3 

cg18618815 COL1A1 0.7 

cg00329615 IGSF11 0.2 

56oC 

cg08128734 RASSF5 0.2 

cg10501210 
MIR29B2CHG 

(C1orf132) 
0.6 

cg09809672 EDARADD 0.1 

cg08160331 KLHL35 0.4 

 280 

2.10 Post-PCR Purification and Quantification 281 

Following amplification, samples were purified using the MinElute PCR Purification kit (Qiagen, 282 
Hilden, Germany) in order to remove unincorporated primer residues [89]. Elution was 283 
performed in 11 µL PCR-grade water. Prior to library preparation all samples were quantified 284 
using the Qubit dsDNA HS Assay kit (ThermoFisher, Massachusetts, USA) according to the 285 
manufacturer’s guidelines [90] and in combination with the Qubit 2.0 Fluorometer instrument 286 
and clear thin-walled 0.5 mL PCR tubes. 287 

2.11 Library preparation and quantification 288 

The preparation of sequencing libraries was performed with the NEBNext Ultra II DNA Library 289 
Prep Kit for Illumina (New England BioLabs, Massachusetts, USA), starting with 50 ng of purified 290 
PCR product per sample. Library preparation was performed according to the manufacturer’s 291 
specifications [91] in half volumes, while the size selection steps were performed as per the 292 
KAPA Hyper Prep protocol [92]. For the size selection stages, AMPure XP Beads (Beckman 293 
Coulter Genomics, California, USA) and Illumina Resuspension Buffer (Illumina, California, USA) 294 
were used. Finally, library amplification was performed for 8 cycles (up to 15 cycles can be used 295 
at this stage according to the NEBNext Ultra II protocol).  296 

Quantification of the libraries was conducted with the KAPA Library Quantification Kit for 297 
Illumina platforms (Roche, Basel, Switzerland) [93]. Libraries were diluted 1:100,000 in PCR-298 
grade water prior to quantification and analysed in duplicate. Following quantification, DNA 299 
libraries were normalised to 20 nM using Tris-HCL 10 mM/pH 8.5 with 0.1% Tween (EBT buffer) 300 
and were pooled together in equal amounts to a final volume of 240 µL (for a typical 24-samples 301 
run). Following denaturation and dilution to 10 pM, 500 µL of library was mixed with 100 µL of 302 
denatured 20 pM PhiX control (Illumina, CA) and loaded in the MiSeqFGx instrument (Illumina, 303 
California, USA) using the MiSeq version 2 (300 cycles) cartridge and reagents. 304 
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2.12 Sequencing 305 

Sequencing of the libraries was performed using the Illumina MiSeqFGx benchtop instrument 306 
(Illumina, California, USA). Sample sheets and sample plates were created in the Illumina 307 
Experiment Manager software and the instrument was set to perform paired-end sequencing of 308 
201-101 bp for the forward and reverse directions, while the analysis workflow was set to 309 
‘FASTQ only’. The online platform Basespace (https://euc1.sh.basespace.illumina.com) was 310 
used for monitoring the performance of the runs as well as retrieve the sequencing files. 311 

2.13 Data analysis and normalisation 312 

Analysis of the FASTQ files was conducted with the Burrows-Wheeler Aligner (BWA) [94], 313 
Sequence Alignment/Map (SAMtools) [95], and Genome Analysis Toolkit (GATK, Broad Institute, 314 
Massachusetts, USA) [96] software. Reads were aligned to a custom genome containing only the 315 
18 (cg12934382 (GRM2) was removed from the analysis as primers failed to yield products) 316 
amplicon sequences, where all non-CpG cytosines were replaced by thymines. For CpG 317 
positions, information was collected for the presence of both cytosines and thymines. Files were 318 
exported in variant call format (VCF) using GATK and data was subsequently extracted from 319 
these files with the R Project for Statistical Computing software in combination with R Studio 320 
platform and were finally processed with Microsoft Office Excel software. The methylation 321 
percentage (β-values) for the 18 targeted CpGs was calculated by comparing the number of 322 
cytosine reads (suggesting the presence of methylation) to the combined total of cytosine and 323 
thymine (suggesting the absence of methylation) reads at each CpG. A similar analysis was 324 
carried out for all non-CpG cytosine sites in each amplicon in order to establish the conversion 325 
efficiency of the bisulphite treatment. Non-CpG cytosines are expected to be free of methylation 326 
[97, 98] and therefore should be converted to uracils and subsequently to thymines following 327 
bisulphite treatment and amplification. Any cytosines therefore detected in those positions 328 
were indicative of incomplete conversion and the methylation percentages for the relevant 329 
CpGs were corrected according to the formula: 330 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒𝑓𝑜𝑟𝐶𝑝𝐺𝑖 331 

= 1 − (
(1 − 𝐶𝑝𝐺𝑖𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒)

𝐴𝑚𝑝𝑙𝑖𝑐𝑜𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒
) 332 

where CpGi corresponds to a specific marker, and the amplicon conversion rate corresponds to 333 
the percentage of non-CpG cytosines successfully converted in the relevant amplicon. For blood 334 
samples analysed in duplicate, average methylation values between duplicates was calculated 335 
based on the number of sequencing reads for each duplicate and each marker, where the 336 
methylation value of the duplicate with the higher number of sequencing reads contributed 337 
accordingly high to the final methylation score for the relevant marker following the equation:  338 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑣𝑎𝑙𝑢𝑒𝑓𝑜𝑟𝐶𝑝𝐺𝑖339 

= (𝐶𝑝𝐺𝑖𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑎) ∗ (
(𝐶𝑝𝐺𝑖𝑅𝑒𝑎𝑑𝑠𝑎)

𝐶𝑝𝐺𝑖𝑅𝑒𝑎𝑑𝑠𝑎 + 𝐶𝑝𝐺𝑖𝑅𝑒𝑎𝑑𝑠𝑏
)340 

+ (𝐶𝑝𝐺𝑖𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒𝑏) ∗ (
𝐶𝑝𝐺𝑖𝑅𝑒𝑎𝑑𝑠𝑏

𝐶𝑝𝐺𝑖𝑅𝑒𝑎𝑑𝑠𝑎 + 𝐶𝑝𝐺𝑖𝑅𝑒𝑎𝑑𝑠𝑏
) 341 

Where CpGi corresponds to a specific marker and a and b correspond to the two replicates of 342 
the specific sample. Prior to statistical analysis and modelling, methylation β-values were 343 
converted to M-values as previously described (see section 2.3). Finally, the entire dataset was 344 
subsequently normalised by centring of the M-values around the median M-value according to 345 
the equation: 346 
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𝑀𝑖𝑐𝑒𝑛𝑡𝑟𝑒𝑑 = 𝑀𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛𝑀𝑣𝑎𝑙𝑢𝑒𝑓𝑜𝑟𝑡ℎ𝑒𝑑𝑎𝑡𝑎𝑠𝑒𝑡 347 

where Mi represents the M-value for a certain marker in a specific sample and median M 348 
represents the median M-value for all dataset samples for this marker. 349 

2.14 Marker elimination and age prediction 350 

Final marker elimination was performed based on the in-house developed dataset (n=112). 351 
Using the R project for statistical computing software version 3.3.3 [99] in combination with the 352 
caret package [100], CpG selection was based on the results obtained from 8 independent 353 
algorithms assessing marker informativeness. These included forward selection, backward 354 
elimination, Boruta, 2 separate genetic algorithms (one of 10 iterations and one with 200 355 
iterations), as well as LASSO, ridge and elastic net regression. These algorithms were used for 356 
assessing which CpG markers (variables) or marker sets were most useful in age estimation, with 357 
their results taking the form of suggested CpG subsets performing best for age estimation and/or 358 
ranking of the individual markers. Briefly, forward selection and backwards elimination 359 
produced subsets of ‘most important’ CpGs for age prediction selected through stepwise 360 
regression, Boruta produced a CpG ranking from most to least informative in regard to age 361 
through random forest regression, the genetic algorithms produced sets of ‘fittest’ CpG 362 
predictors using an algorithm that mimics the theory of natural selection and the three 363 
regression algorithms, LASSO, ridge and elastic net, defined subsets of most important CpG age 364 
predictors, while also assigning scores indicating the ‘importance’ of each individual CpG in age 365 
estimation. 366 

Analysis of the results produced by these marker selection algorithms, revealed a subset of 11 367 
markers that scored highly on all occasions. These markers were cg21572722 (ELOVL2), 368 
cg24724428 (ELOVL2), cg06639320 (FHL2), cg09809672 (EDARADD), cg22796704 (ARHGAP22), 369 
cg08128734 (RASSF5), cg17372101 (CNTNAP2), cg10501210 (MIR29B2CHG), cg19283806 370 
(CCDC102B), cg07553761 (SMC4, TRIM59) and cg08262002 (LDB2). 371 

Following a split of the dataset into training (n=77) and validation (i.e. blind, n=35) sets, two 372 
support vector machine models with polynomial function (SVMp) were trained simultaneously 373 
for all 18 markers and for the selection of 11 markers. The two models were assessed based on 374 
both the absolute prediction error (MAE) and root mean square error (RMSE) of the test set. 375 

In cases where samples failed to obtain reads for certain markers in the sensitivity experiment, 376 
an imputation of the missing values was performed based on K nearest neighbours. 377 

2.15 Sequencing adapter-tagged primers 378 

Following the formation of the 11-CpG marker set, the 10 primer pairs relating to these CpGs 379 
were re-designed in order to include the adaptor sequences used for the MiSeq platform. This 380 
re-design was performed in order to reduce the number of steps required for library 381 
preparation, allowing for reduced processing time, elimination of adaptor dimer formation 382 
issues and removal of one of the two clean-up steps that are associated with loss of product. 383 
This process included the addition of the relevant sequences in the 5’ end of the forward 384 
(ACACTCTTTCCCTACACGACGCTCTTCCGATCT) and reverse 385 
(GACTGGAGTTCAGACGTGTGCTCTTCCGATCT) primers. Primer concentrations in the protocol 386 
were adjusted based on the amplification efficiency of the new primers (Table 3), whilst 387 
amplification conditions remained the same. 388 
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Table 3. Details on the multiplex reactions for the final 11 markers, using the sequencing adapter-tagged 389 
primers. 390 

CpG Associated Genes Primer concentration in 
PCR (µM) 

Annealing temperature 

cg21572722 ELOVL2 0.7 

59oC 

cg24724428 

cg06639320 FHL2 0.4 

cg22796704 ARHGAP22 0.08 

cg07553761 SMC4, TRIM59 0.1 

cg19283806 CCDC102B 0.04 

cg17372101 CNTNAP2 0.04 

cg08262002 LDB2 0.08 

cg08128734 RASSF5 0.7 

56oC 
 

cg10501210 
MIR29B2CHG 

(C1orf132) 
0.5 

cg09809672 EDARADD 0.4 

 391 

As these primers were pre-tagged with the adaptor sequence, the first steps of the NEB Next 392 
Ultra II library preparation protocol, including end prep and adaptor ligation, were subsequently 393 
omitted. 394 

2.16 Sex association 395 

Following marker selection and method development, the need to conduct more extensive 396 
validation and address potential issues that can hinder the wider application of this method was 397 
identified. The first such issue investigated was that of potential bias introduced by the sex of 398 
the donors. Firstly, methylation data collected from the analysis of blood samples obtained from 399 
107 out of the 112 unrelated volunteers was also employed for this analysis (for the remaining 400 
5 samples data on sex was not available). Furthermore, given the limited number of samples in 401 
the targeted sequencing dataset, methylation data previously collected for the age markers 402 
from 14 studies conducted on the Illumina Infinium HumanMethylation 450K BeadChip 403 
technology were also utilised (Supplementary_Table_S5). This data was selected over that from 404 
the HumanMethylation 27K BeadChip due to the larger number of samples and more balanced 405 
ratio between male (n=1311) and female (n=1433) donors.  406 

2.17 Disease association using publicly available datasets 407 

Similarly, investigation of potential bias introduced in DNA methylation-based age estimation 408 
due to disease status was again conducted using methylation data collected from studies 409 
conducted with the Illumina Infinium HumanMethylation 450K BeadChip technology. This data 410 
derives from the non-control samples of studies previously used for the evaluation of age 411 
markers and relates to the conditions of schizophrenia (n=62) [37], rheumatoid arthritis (n=354) 412 
[78], frontal temporal dementia (FTD) (n=121) and progressive supranuclear palsy (PSP) (n=42) 413 
[80] (Supplementary_Table_S6). These datasets were chosen based on the facts that they 414 
contained data on over 30 samples covering a large age range, they were developed using blood 415 
samples, and they contained information on donor age, rather than there being a pre-416 
established link between the described conditions and the age-associated markers included in 417 
this model. 418 

Condition-related datasets were compared, at first instance, to the combined control dataset 419 
(n=2796) deriving from the 15 studies developed on the Illumina Infinium HumanMethylation 420 
450K BeadChip technology as previously described. Datasets showing potential deviation from 421 
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the combined controls were subsequently compared to control data from the same study in 422 
order to account for inter-study variability. Variability related to sex was not investigated at this 423 
instance as no evidence of sex-related bias in this marker set was observed in the previous 424 
section.  425 

2.18 Gene annotation and ontological analysis of age prediction markers 426 

Annotation of the CpG markers to their relevant genes was performed using the Epigenome-427 
Wide Association Study (EWAS) Data Hub [101] based on the cg numbers (e.g. cg17885226). The 428 
gene identifiers obtained through this process (in Ensembl format, e.g. "ENSG00000126243") 429 
were subsequently used as inputs for the PANTHER [102-104] and DAVID [105-107] online 430 
software. The gene list analysis function of PANTHER was primarily used for the functional 431 
classification of the relevant genes, while similar analysis was performed using the DAVID 432 
software’s functional annotation tool for comparison.  Furthermore, association of the relevant 433 
genes with biological pathway networks was conducted using the KEGG (Kyoto Encyclopedia of 434 
Genes and Genomes) [108] and GAD (Genetic Association Database) [109] pathway annotation 435 
in DAVID.  436 

This analysis was performed for both the initial selection of 244 CpGs identified for their 437 
association with age in blood and the sub-selection of 11 markers included in the final blood 438 
model. 439 

3 Results and discussion 440 

3.1 Marker selection 441 

3.1.1 Age-correlated CpG sites in the literature 442 

Review of the current literature on DNA methylation-based age prediction revealed a total of 443 
36,137 CpG sites exhibiting methylation patterns correlated with age in 51 independent studies. 444 
While this work focuses on whole blood, information on potential markers was collated 445 
independently of the tissue of focus for the different studies, as multi-tissue applicability of 446 
certain methylation markers has been previously demonstrated. A subset of 5,364 CpG markers 447 
identified by at least two studies or included in DNA methylation-based age prediction models 448 
were shortlisted for further analysis, while information on the 18 markers appearing most 449 
frequently in the literature can be found in Table 4.   450 
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Table 4. Information on the 18 age-associated CpGs appearing most times in the literature. 451 

 452 

3.1.2 Microarray datasets 453 

In total, methylation data from 1229 samples from individuals aged between 2-88 years were 454 
collated from studies employing the 27K platform, while 2796 samples from individuals aged 455 
between 8 months and 101 years were collated for the 450K platform. In the 27K data a 456 
minimum of 75 samples were collected per age decade up to the age of 80 years, whilst a 457 
minimum of 120 samples per age decade up to the age of 90 in the 450K data. For both datasets 458 
the oldest age group (80-90 years in the 27K and 90-100 years in the 450K) contained a limited 459 
number of samples (n<20). Finally, a balanced male to female ratio was observed for most age 460 
groups in the 450K data, as opposed to the 27K data where the majority of the samples in the 461 
younger age groups belong to male donors and a large number of samples containing no 462 
information on sex appear in the older age groups. 463 

No. of study 
mentions 

CpG site Associated 
Genes 

Associated Gene name No. of age prediction 
models CpG is present in 

14 [8, 38, 43, 45, 51, 
53, 59, 63-65, 68, 

71-73] 

cg16867657 ELOVL2 Fatty Acid Elongase 2 7 [8, 38, 43, 53, 63, 68, 71] 

12 [8, 38, 48, 53, 63-
65, 68, 69, 71-73] 

cg21572722 ELOVL2 Fatty Acid Elongase 2 10 [6, 8, 38, 48, 53, 63, 64, 
68, 69, 71] 

11 [8, 38, 48, 51, 53, 
63-65, 68, 71, 73] 

cg24724428 ELOVL2 Fatty Acid Elongase 2 7 [8, 38, 48, 53, 63, 68, 71] 

10 [3, 39, 51, 61, 63, 
64, 66, 68, 72, 73] 

cg09809672 EDARADD EDAR Associated Death 
Domain 

3 [3, 66, 68] 

9 [32, 35, 39, 40, 49, 
63-65, 69, 73] 

cg00059225 GLRA1 Glycine Receptor Alpha 3 [32, 49, 69] 

9 [43, 50, 63-65, 68, 
69, 71, 72] 

cg07553761 SMC4, 
TRIM59 

Structural Maintenance of 
Chromosomes 4, Tripartite 
Motif Containing 59 

4 [43, 68, 69, 71] 

9 [43, 51, 63-65, 69, 
71-73] 

cg10501210 C1orf132 Chromosome 1 Open 
Reading Frame 132 

3 [43, 69, 71] 

9 [48, 51, 61, 63-65, 
68, 69, 73] 

cg17110586 Unknown Unknown 3 [48, 68, 69] 

8 [39, 40, 49, 51, 53, 
63, 64, 66] 

cg02228185 ASPA Aspartocylase 5 [6, 49, 53, 64, 66] 

8 [43, 51, 63-65, 68, 
69, 73] 

cg07547549 MMP9, 
SLC12A5 

Matrix Metallopeptidase 9, 
Solute Carrier Family12 
Member 5 

2 [43, 69] 

8 [35, 39, 48, 49, 51, 
63, 68, 73] 

cg08090640 IFI35 Interferon-induced 35kDA 
protein 

2 [48, 49] 

8 [31, 35, 39, 49, 51, 
60, 61, 73] 

cg16363586 BST2 Bone Marrow Stromal Cell 
Antigen 2 

1 [49] 

8 [3, 39, 40, 59, 63-
65, 69] 

cg22736354 NHLRC1 E3 Ubiquitin-protein Ligase 2 [3, 69] 

7 [43, 51, 63-65, 68, 
69] 

cg04875128 OTUD7A OTU Deubiquitinase 7A 3 [43, 68, 69] 

7 [38, 43, 51, 63-65, 
73] 

cg06639320 FHL2 Four and a Half LIM Domains 
2 

4 [6, 38, 43, 64] 

7 [43, 63-65, 68, 69, 
71] 

cg08097417 KLF14 Krüppel-like factor 14 3 [43, 69, 71] 

7 [38, 43, 51, 63-65, 
73] 

cg22454769 FHL2 Four and a Half LIM Domains 
2 

2 [38, 43] 

7 [38, 43, 51, 63-65, 
68] 

cg24079702 FHL2 Four and a Half LIM Domains 
2 

2 [38, 43] 
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3.1.3 Marker evaluation 464 

In the first step of marker selection, using microarray data from the 27K and 450K Infinium 465 
platforms independently, a subset of 244 markers were identified for their high correlation with 466 
chronological age and large range of methylation values over the human lifespan. Evaluation of 467 
markers based on the observed methylation range over the human lifespan was included in this 468 
analysis in an effort to increase sensitivity, as larger methylation differences between the age 469 
groups can potentially eliminate the effect of technical noise during the quantification of DNA 470 
methylation from low quantities of template [53].  471 

Out of the 244 shortlisted markers, 88 have been already incorporated in published DNA 472 
methylation-based age prediction models. Whilst data from the two microarray platforms were 473 
analysed independently, 188 markers were unique for the 450K platform and 56 were present 474 
in both platforms but no markers unique for the 27K fulfilled the strict thresholds applied for 475 
this analysis. This result can be traced back to the fact that the number of unique probes for the 476 
27K is limited, as well as the fact that the dataset collated from this microarray is smaller and 477 
more unbalanced than the 450K one. Nonetheless, for the 56 common markers the observed 478 
methylation trends were consistent in the two datasets. 479 

Additionally, in the 244 CpG marker set, CpGs associated with the same promoter/gene, such as 480 
ELOVL2 (3 CpGs), FHL2 (3 CpGs) and ASPA (2 CpGs), showed consistent methylation trends 481 
(hyper- or hypomethylation with age). Furthermore, 210 markers (86%) exhibited 482 
hypomethylation trends with age, an observation that contradicts previous findings suggesting 483 
an enrichment of hypermethylation trends for age-associated CpGs [6]. The most likely origin of 484 
these opposing observations relates to the fact that the majority of the markers identified in this 485 
study are unique for the 450K platform, whilst the work by Koch et al. focuses exclusively on 486 
datasets developed with the 27K platform [6]. Looking at the main differences between the two 487 
microarray platforms, it is evident that the extended probe set of the 450K platform targets 488 
significantly more CpGs located outside CpG islands (CGIs) than the 27K probes, that mainly 489 
target CGIs. Annotation of the 244 selected markers, showed that only 14% were located in CGIs, 490 
94% of which showed hypermethylation with age, whilst the remaining 86% were located 491 
outside CGIs with 99% of them revealing age-related hypomethylation. These observations are 492 
concordant with previous reports suggesting that age-associated hypermethylation is enriched 493 
in CGIs and hypomethylation is predominant in CpGs outside CGIs [45, 51] and provide with an 494 
explanation for the discordance with the observations by Koch et al. [6].  495 

Finally, since this analysis focuses on blood, it is worth noting that whilst it has been suggested 496 
that hypomethylation trends with age in whole blood can represent changes in the cell 497 
composition of this tissue [41], studies have repeatedly proven that such effects, when present, 498 
are minor and do not affect the observed age-correlated methylation patterns [3, 36, 43, 48]. In 499 
this study, the use of multiple datasets, with some deriving from specific blood cell types rather 500 
than whole blood, combined with the investigation of markers that have been previously 501 
identified for their correlation with age by multiple independent studies, practically eliminates 502 
the chance of selecting markers with false association with age.  503 

3.1.4 Final marker set 504 

Further analysis of the data obtained for the 244 CpG marker set revealed a set of 19 markers 505 
with superior combination of correlation with age and methylation range over the human 506 
lifespan (Table 5). Comparison of this marker set with the set of 18 most popular markers in the 507 
literature (Table 4) reveals that the two sets are over 50% identical, sharing 10 markers, a finding 508 
that may be unsurprising. Notably, even though 86% of the markers in the 244 CpG selection 509 
were hypomethylated with age, in the final selection the markers are split almost 50-50 between 510 
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those exhibiting hypomethylation (10 CpGs) and hypermethylation (9 CpGs) trends. However, 511 
the 19 markers correspond to 15 different genes, with ELOVL2 and FHL2 genes represented by 512 
3 CpGs each that all exhibit hypermethylation trends with age. Taking this into account, when 513 
looking at the markers at the gene level, the ratio of hypomethylated to hypermethylated 514 
changes to 2:1, which is still higher than expected based on the low representation of markers 515 
exhibiting hypermethylation with age in the original selection. 516 

Out of the 19 markers 14 have been previously incorporated in DNA methylation-based age 517 
prediction models, while comparison of the correlation coefficients obtained for the selected 518 
markers in this study and that observed for the same markers in previous publications revealed 519 
high concordance of the results.   520 

Table 5. Information on the 19 markers selected for further analysis. Pearson’s correlation (r) for this 521 
study is based on data from the 450K array. This table also includes Pearson’s correlation (r) observed in 522 
previous studies, as well as the absolute range of beta values observed for the relevant markers over the 523 
different ages, and the number of times these markers have been used in age estimation models in the 524 
literature. *Highlighted markers were included in the final model proposed by this study after validation 525 

(see section 3.2.3) 526 

CpG site 
Associated 
Gene name 

Pearson’s 
correlation (r) 

in 450K 

Pearson’s 
correlation (r) 

in other 
studies 

Beta 
value 
range 

No. of age 
prediction models 
CpG is present in 

cg16867657 ELOVL2 0.91 0.83 0.7507 
7 [8, 38, 43, 53, 63, 

68, 71] 

cg22454769 FHL2 0.87 0.74 0.8346 2 [38, 43] 

cg10501210* 
MIR29B2CHG 

(C1orf132) 
-0.84 −0.74 0.8957 3 [43, 69, 71] 

cg19283806* CCDC102B -0.83 
−0.72, -0.89, -

0.64 
0.8744 4 [6, 43, 63, 64] 

cg06639320* FHL2 0.81 0.75, 0.90, 0.74 0.7450 4 [6, 38, 43, 64] 

cg24079702 FHL2 0.80 0.74, 0.66 0.7767 2 [38, 43] 

cg00329615 IGSF11 -0.80 -0.58 0.6844 0 

cg24724428* 
ELOVL2, ELOVL2-

AS1 
0.80 0.67 0.6403 

7 [8, 38, 48, 53, 63, 
68, 71] 

cg21572722* ELOVL2 0.80 0.79, 0.94 0.6226 
10 [6, 8, 38, 48, 53, 
63, 64, 68, 69, 71] 

cg09809672* EDARADD -0.79 -0.94, -0.61 0.7942 3 [3, 66, 68] 

cg07553761* SMC4, TRIM59 0.78 0.72, 0.65 0.9193 4 [43, 68, 69, 71] 

cg22796704* ARHGAP22 -0.77 -0.64 0.6016 1 [43] 

cg08128734* RASSF5 -0.76 -0.59 0.6873 0 

cg17372101* CNTNAP2 -0.76 -0.54 0.6772 0 

cg18618815 COL1A1 -0.76 -0.58 0.6928 0 

cg08160331 KLHL35 0.76 0.65 0.6999 1 [48] 

cg08262002* LDB2 -0.76 -0.55 0.6576 1 [48] 

cg12934382 GRM2 0.76 0.56 0.7990 0 

cg17471102 FUT3 -0.75 -0.59 0.6109 2 [49, 66] 

 527 
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3.2 Validation of the MPS-based assay 528 

3.2.1 Linearity 529 

Pre-mixed standards at 0%, 5%, 10%, 25%, 50%, 75% and 100% methylation were used in order 530 
to assess the ability of this 18-marker method (14 amplicons) to accurately quantify different 531 
levels of methylation at the selected CpG sites. All standards were processed in duplicate and 532 
sequenced simultaneously. Comparison between the expected and observed methylation 533 
fraction showed high coefficient of determination between the two for 8 out of 14 markers 534 
(markers present on the same amplicon, such as cg16867657, cg24724428, cg21572722 for 535 
ELOVL2 and cg06639320, cg22454769, cg24079702 for FHL2, were analysed together) with 536 
R2>0.87. Noticeable bias towards overestimation of methylation was observed for markers 537 
associated with the FHL2 gene (cg06639320, cg22454769, cg24079702, R2=0.72), cg08128734 538 
(RASSF5) (R2=0.69), cg10501210 (MIR29B2CHG) (R2=0.63), cg18618815 (COL1A1) (R2=0.44) and 539 
cg22796704 (ARHGAP22) (R2=0.19), while marker cg08160331 (KLHL35) failed to provide with 540 
any distinction between methylation levels and was thus excluded from further analysis 541 

(Supplementary_Fig_S1). Furthermore, a second primer set, previously described by Naue et al. 542 
[88], was investigated for the ELOVL2 markers but demonstrated higher bias (R2=0.75) compared 543 
to the design proposed here (R2=0.96). The bias towards the methylated allele observed for 544 
some of the markers did not result in a significant skewing of the overall linearity when results 545 
for 17 markers (excluding cg08160331 (KLHL35)) were combined (R2=0.96) (Figure 1). 546 
Furthermore, whilst high bias practically results in the observed methylation being 0 or 100%, 547 
eliminating the chance of distinction between the different methylation levels, a low level of 548 
bias can be accounted for in the subsequent analysis as long as it is consistent.  549 

 550 

Figure 1. Comparison between the expected and average observed methylation fraction (β-values 551 
expressed as percentage of methylation) for the 17 selected markers. The ‘observed’ methylation values 552 
represent the average observed methylation for all 17 CpGs for each of the standards (at 0%, 5%, 10%, 553 
25%, 50%, 75% and 100% methylation). Error bars represent the standard deviation for the different 554 

CpG sites and the R2 value for the linear correlation is displayed on the chart. 555 

3.2.2 Reproducibility 556 

The reproducibility of the developed assay for the quantification of DNA methylation at the 17 557 
CpGs was assessed by comparing the methylation values obtained for these sites in 20 blood 558 
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samples analysed in duplicate post DNA extraction and quantification. The average absolute 559 
difference observed between the duplicates for all markers was calculated at 4%, with 560 
approximately 71% of the markers (12 out of 17) exhibiting an average difference below that 561 
point (Supplementary_Fig_S2). The largest differences were observed at cg18618815 (COL1A1) 562 
and the 3 CpGs related to the ELOVL2 gene (cg16867657, cg24724428, cg21572722). This 563 
increased variation can potentially be traced back to the low amplification efficiency of the 2 564 
corresponding amplicons (cg16867657, cg24724428, cg21572722 are part of the same 565 
amplicon), that resulted in limited reads for one or both duplicates. The sequencing coverage 566 
obtained for those two amplicons (targeting ELOVL2 and COL1A1) averaged at 702 and 562 reads 567 
per sample respectively and was consistently lower than the remaining 11 amplicons that 568 
obtained an average of 3,841-34,178 reads per sample (Supplementary_Fig_S3). Nonetheless, 569 
despite the increased variation observed between duplicates for certain markers in this assay, 570 
the reproducibility results were considered satisfactory for this method given the fact that the 571 
overall methylation range over the human lifespan for these markers is at least 11 times higher 572 
than the relevant variation between replicates.  573 

3.2.3 Age prediction 574 

Following a final marker elimination, based on statistical predictor variable selection using the 575 
112-sample dataset analysed in-house with the previously outlined method, a set of 11 markers 576 

(cg24724428, cg21572722, cg06639320, cg09809672, cg22796704, cg08128734, cg17372101, 577 
cg10501210, cg19283806, cg07553761 and cg08262002) relating to 10 different genes (ELOVL2, 578 
ELOVL2, FHL2, EDARADD, ARHGAP22, RASSF5, CNTNAP2, MIR29B2CHG, CCDC102B, 579 
SMC4/TRIM59 and LDB2 respectively) were selected. Using the same split of the dataset as 580 
previously described by Aliferi et al. [28], a support vector machine model with polynomial 581 
function was trained on 77 samples and was further tested using the remaining 35 samples (2 582 
additional samples added in this set compared to previous work [28]). The mean absolute 583 
prediction error was calculated at 3.6 years (RMSE=5.1 years) for the training set and at 3.3 years 584 
(RMSE=4.4 years) for the test set, with the similarity between these values for the two sets 585 
suggesting high model generalizability and no presence of overfitting (Figure 2). Furthermore, 586 
over 71% of the samples present in the test set predicted with an absolute error of less than 4 587 
years, while 89% predicted with an absolute error of less than 7 years. Compared to the 588 
previously published model [28], this model does not only achieve increased accuracy, with the 589 
mean absolute error reduced by 0.4 and 0.7 years in the training and test sets respectively, but 590 
also demonstrates a ~1.4 times higher percentage of samples predicting with an error range of 591 
±4 years, as the relevant score for the previous model was 52%. 592 

Additionally, a separate SVMp model trained on all 18 markers and on the same dataset showed 593 
identical RMSE values with the 11-marker model (5.1 years for the training and 4.4 years for the 594 
test set), providing further evidence in support of the proposed marker elimination. 595 
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 596 

Figure 2. Comparison between the predicted and the given age for the training (green, n=77) and blind 597 
test set (purple, n=35) in the SVMp model. The mean absolute prediction error was calculated at 3.6 and 598 
3.3 years respectively. The equation of the linear trendline fitting the training set (green dashed line) can 599 

be seen on the graph, while the grey dotted line represents the ‘perfect’ predictions where predicted 600 
and true age overlap (y=x). 601 

Furthermore, a separate set of 88 DNA extracts from whole blood samples, obtained as part of 602 
a collaboration with the University of Santiago de Compostela in Spain (USC) [110], were also 603 
processed in-house following the previously outlined 11-marker method. Given that the number 604 
of samples in this set was larger than the original training set of the prediction model, the SVMp 605 
algorithm was re-trained using the entire KCL dataset (n=112) and the USC dataset was 606 
introduced as a blind test. The MAE for the USC set was calculated at 3.8 years (RMSE=5 years), 607 
closely matching the expected prediction accuracy based on the results obtained by the original 608 
training and test set. Further analysis of the predictions for this dataset revealed a loss of 609 
prediction accuracy for individuals aged over 60 years (Figure 3), possibly relating to the low 610 
number of samples for the age groups of 60-70 years (n=13), 70-80 years (n=6), 80-90 years 611 
(n=2) and 90-100 years (n=1) included in the training set. At the same time, a loss of accuracy in 612 
the prediction of age for older individuals has been reported by multiple studies [3, 8, 53, 64, 613 
71, 88, 111, 112] and has been associated with an increased effect of non-genetic factors in the 614 
methylation patterns of older individuals [3], as well as a lower variation in age-related 615 
methylation for older ages, that makes it hard to distinguish between them [112]. Nonetheless, 616 
according to the national DNA database for the UK, as of June 2019, 95% of the profiles belong 617 
to individuals under the age of 55 years at the time of inclusion [113]. Given the forensic scope 618 
of this work, age-estimation statistics were calculated for the ‘forensically-relevant’ age group 619 
(<55 years) from the USC dataset. The results reveal high accuracy with a MAE of 2.6 years 620 
(RMSE=3.1 years) and 81% of the samples predicting with an absolute error of less than 4 years.  621 
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 622 

Figure 3. Box plots representing the spread of absolute prediction error for samples in 7 distinct age 623 
groups separated by decade between the ages of 20 and 100 years. The vertical line inside each box 624 

represent the median absolute error for the relevant age group, while the x mark represents the 625 
average absolute error for the same group. 626 

3.2.4 Sensitivity 627 

In order to assess the sensitivity of the final 11-marker method (10 amplicons), six whole blood 628 
samples from the test dataset, belonging to individuals aged 17, 27, 36, 43, 53 and 61 years, 629 
were re-analysed starting with 6 different DNA inputs for bisulphite conversion. The DNA inputs 630 
used were 50 ng, as previously used for the initial analysis, 25 ng, 10 ng, 5 ng, 2.5 ng and 1 ng. 631 
Taking into account the loss of template in the bisulphite conversion state (~52% recovery [85]), 632 
the elution volume and the two multiplex reactions required for the amplification of all markers 633 
this translates to approximately 10, 5, 2, 1, 0.5 and 0.2 ng in the PCR stage.  634 

In terms of precision in the quantification of DNA methylation itself, the values obtained for 635 
most markers did not vary between the 50, 25, 10 and 5 ng inputs, but increased variation was 636 
observed for the 2.5 and 1 ng inputs in all markers (Supplementary_Fig_S4). This is also reflected 637 
in the average difference in methylation observed for the entire marker set at the different DNA 638 
inputs and correlates with a loss of sequencing reads at these levels (Figure 4). At this point it is 639 
worth noting that all 1 ng replicates obtained less than 100 reads in at least 3 markers, while for 640 
cg21572722 (ELOVL2), cg24724428 (ELOVL2) and cg19283806 (CCDC102B) virtually no reads 641 
(under 10) were obtained at this input with 6 methylation values requiring imputation in silico.  642 
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 643 

Figure 4. Average absolute difference between the methylation β-values observed when using inputs of 644 
50, 25, 10, 5, 2.5 and 1 ng and those observed during the original quantification of methylation (50 ng) 645 
for 6 whole blood samples at all 11 markers (blue line – note that the line is included to aid with visual 646 

representation and no measurements were taking between the 6 points). The bars represent the 647 
average number of sequencing reads obtained for each marker for the different inputs. Error bars 648 

represent the standard deviation observed at each point.  649 

In terms of accuracy in age prediction, this was successfully retained down to 5 ng of DNA input, 650 
whilst the error increased drastically at the 2.5 and 1 ng inputs following the trend seen in the 651 
precision analysis (Figure 5). An important observation at this point relates to the fact that, 652 
whilst both precision in the quantification of DNA methylation and prediction accuracy are highly 653 
retained down to 5ng of DNA input, the slight slope in the precision graph between 5 and 50 ng, 654 
relating to a slight increase in variation as the input is reduced, is not reflected in the predictions, 655 
with both the MAE and RMSE values remaining practically identical for the 25 (MAE=4.3 years, 656 
RMSE=5.6 years), 10 (MAE=4.3 years, RMSE=6.2 years) and 5ng (MAE=3.9 years, RMSE=5 years) 657 
inputs. These results suggest that the prediction algorithm is able to successfully cope with loss 658 
of accuracy in the quantification of DNA methylation, with issues only appearing when a 659 
significant loss of sequencing power, resulting in complete loss of reads for some markers, is 660 
observed. Furthermore, at these levels of DNA input, stochastic effects that can skew the 661 
observed methylation values are expected due to the low number of template molecules.  662 
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 663 

Figure 5. Average absolute error in age prediction observed for a set of samples (n=6) analysed at 664 
different DNA inputs corresponding to 50, 25, 10, 5, 2.5 and 1 ng. Error bars represent the standard 665 

deviation of the prediction error between the 6 samples. 666 

3.2.5 Sex association 667 

In order to investigate potential sex-specific bias for this method, prediction accuracy was 668 
assessed independently for the two sexes in the training and test sets of the SVMp age 669 
prediction model based on the same markers. The observed mean absolute prediction error 670 
(MAE) was similar for the two sexes in the training set (3.7 years for males and 3.6 years for 671 
females), however, the difference increased in the test set with females predicting with 672 
increased accuracy (MAE=3.7 years in males and 2.9 years in females). Despite this, the limited 673 
size of these datasets (n=34 in the test set) makes it hard to draw any conclusions from these 674 
results. Furthermore, the fact that 2 out of 3 individuals over the age of 65 years in the test set 675 
are males, introduces a potential bias as a decrease in prediction accuracy has previously been 676 
observed for samples deriving from older individuals. At the same time, a slight decrease in the 677 
accuracy of age estimation in males has been previously reported in the literature for DNA 678 
methylation-based age prediction, albeit not representing a statistically significant variation 679 
[88]. 680 

Furthermore, in order to investigate this in a larger scale, the correlation between age and 681 
methylation was examined separately for males and females for the 11 age-associated markers 682 
in the combined 450K microarray dataset (n=2,744). The correlation coefficient (r) values 683 
obtained, indicated strong (│r│>0.6) to very strong (│r│>0.8) correlation between age and 684 
methylation status for all markers independently of sex, in concordance with the results 685 
previously obtained for the combined dataset. However, with the exception of marker 686 
cg24724428 (ELOVL2), absolute correlation values obtained for the female cohort were slightly 687 
lower than those of the male cohort (Figure 6), an observation that further suggest that the 688 
slight decrease in the accuracy of age estimation in males observed in the targeted sequencing 689 
data is not of statistical significance. 690 
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 691 

Figure 6. Comparison between the methylation trends (β-values expressed as a methylation percentage, 692 
not normalised) of male (green, n=1311) and female (purple, n=1433) blood samples in the 450K 693 

microarray for the 11 markers selected for age prediction in this tissue. The Pearson correlation values 694 
(r) for each sex are included in the relevant graphs. 695 

3.3 Disease association 696 

3.3.1 Publicly available datasets 697 

Using data from publicly available datasets, methylation trends with age were compared for the 698 
11 age-associated markers between control samples and samples obtained from individuals 699 
suffering from conditions such as schizophrenia (n=62), rheumatoid arthritis (n=354), frontal 700 
temporal dementia (n=121) and progressive supranuclear palsy (n=42). Both control and 701 
diseased samples exhibited similar methylation trends and β-value range with age for each of 702 
the 11 markers (Figure 7), indicating an absence of additional variation in relation to these 703 
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conditions for this marker set. Methylation values obtained for schizophrenia samples in 704 
cg24724428 (ELOVL2), borderline falling out of range for this marker, were further compared to 705 
those obtained for control samples in the same study. This comparison revealed a clear overlap 706 
between the two sets, indicating the presence of a study-specific rather than condition-specific 707 
effect. 708 

 709 

Figure 7. Comparison between the methylation trends (β-values expressed as a methylation percentage) 710 
with age for control populations (grey) and cohorts of individuals diagnosed with schizophrenia (red), 711 
rheumatoid arthritis (light blue), frontal temporal dementia (dark blue) and progressive supranuclear 712 
palsy (yellow), for the 11 CpGs included in the DNA methylation-based age prediction model. For the 713 

control populations the data represent a compilation from control samples from 15 different datasets 714 
(n=2796), whilst data for each disease group originate from a single study. All data derive from Infinium 715 

450K arrays. 716 

Finally, the correlation between age and methylation values obtained for controls and condition-717 
related samples was compared for the different markers (Supplementary_Table_S7). Whilst, 718 
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when compared to the correlation observed for the combined controls dataset, weaker 719 
correlations were observed for all markers for the frontal temporal dementia and progressive 720 
supranuclear palsy samples, comparison with the same-study controls revealed similar r scores. 721 
These results further indicate that variation observed for these datasets derives from batch 722 
effects related to the relevant studies and no condition-related variation is observed for these 4 723 
conditions in this marker set. 724 

3.3.2 Biological pathways 725 

In addition to the disease association analysis conducted using microarray data, the involvement 726 
of the genes related to the age markers in biological pathways was also investigated. This 727 
analysis revealed association with a variety of diseases and conditions for the 164 genes relating 728 
to the 244 markers previously identified for their correlation with age in the tissue of blood. 729 
Over 40 different genes associated with this marker set were involved in biological pathways 730 
relating to metabolic (66 genes), cardiovascular (54 genes), chemical dependency (45 genes) and 731 
neurological (44 genes) conditions (Supplementary_Fig_S5).  732 

Furthermore, comparison of this gene list with the KEGG pathways, a collection of pathway maps 733 
that represent current knowledge of molecular interactions, reactions and relation networks, 734 
revealed association with T-cell leukaemia retrovirus infection (HTLV-I), non-alcoholic fatty liver 735 
disease (NAFLD), inflammatory bowel disease (IBD) as well as asthma, graft-versus-host 736 
disease/allograft rejection and type I diabetes (Supplementary_Fig_S6). Looking further into 737 
some of these conditions, such as graft-versus-host disease, it comes as no surprise that its 738 
prevalence has been previously associated with age in medical studies [114]. 739 

These results highlight a large number of conditions that could affect the methylation 740 
levels/trends at these age-correlated CpGs, potentially skewing the prediction accuracy of DNA 741 
methylation-based age estimation. This can be related to the use of markers for which the 742 
correlation with chronological age is not direct but rather stemming from their association with 743 
biological age. However, when this annotation was limited to the 11 markers (10 genes) included 744 
in the final age estimation model, association was only indicated for obesity (BMI) (4 genes) and 745 
tobacco use (6 genes). Both of these associations have been previously highlighted in the 746 
literature for age-related CpG sites [20-22, 26, 115, 116], suggesting that analysis of relevant 747 
sample cohorts might be beneficial in further addressing potential issues with this marker set. 748 

3.4 Gene ontology 749 

Annotation of the 244 markers previously identified for their correlation with age in the tissue 750 
of blood revealed association with 164 different genes involved mainly in cellular processes (58 751 
genes, 35%), biological regulation (37 genes, 23%) and metabolic processes (37 genes, 23%) 752 
(Supplementary_Fig_S7). In terms of molecular function, defined as the function that a protein 753 
performs on its direct molecular targets, the main activity categories identified for the proteins 754 
associated with this marker group related to binding (33 genes, 20%) and catalytic (31 genes, 755 
19%) activities (Supplementary_Fig_S8). 756 

Looking further into these associations, the two strongest links established for this this set of 757 
DNA methylation age markers relate to metabolism and cellular communication, processes that, 758 
unsurprisingly, have been previously associated with the 9 ‘hallmarks of aging’ as defined by 759 
López-Otín et al. [117]. Each of these hallmarks has been associated with undesirable metabolic 760 
alterations, with the strongest links observed with ‘deregulated nutrient sensing’ and 761 
‘mitochondrial dysfunction’ [118], while ‘altered intercellular communication’ is a hallmark of 762 
its own [117]. Furthermore, the association between various metabolic parameters and 763 
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longevity has been the focus of multiple studies, both in terms of investigating its underlying 764 
mechanisms [118, 119] and assessing the use of this connection to promote healthy aging [120].  765 

4 Conclusions 766 

This work describes an attempt to integrate current research outputs on DNA methylation-767 
based age prediction into an accurate and sensitive tool with high potential for application in 768 
forensic casework. 769 

Introducing a new approach to marker selection, aimed towards minimizing the required DNA 770 
input for DNA methylation-based age estimation, and combining analyses of both microarray 771 
and targeted-sequencing data, a set of 11 CpG sites were identified as the markers with the 772 
highest potential for forensically orientated age estimation. Drawing upon previous knowledge 773 
on targeted sequencing-based methylation analysis coupled with the use of machine learning 774 
for age estimation [28], the developed 11-marker support vector machine model trained on data 775 
from the MiSeq platform was able to predict the age of two independent test sets from the UK 776 
(n=35) and Spanish (n=88) populations with a MAEs of 3.3 and 3.8 years respectively. 777 
Additionally, investigating a more forensically relevant age range (<55 years), an even lower 778 
error of 2.6 years was observed, with 81% of the samples predicted with an absolute error of 779 
less than 4 years.  780 

Whilst similar levels of age estimation accuracy (MAE 2.9-3.7 years) have been previously 781 
recorded by similar studies, the accuracy of this model was successfully retained down to 5 ng 782 
of starting DNA material which is 4-1,400 times lower than any other published work to date 783 
and approximately half of the limit observed in our previous work conducted on a set of pre-784 
selected markers [28]. Furthermore, in addition to the model’s accuracy being retained despite 785 
environmental and lifestyle differences between individuals from Spain and the UK, there was 786 
also no indication of bias related to sex, in concordance to the relevant literature [32, 53, 54, 64, 787 
111, 121], or conditions such as schizophrenia, rheumatoid arthritis, frontal temporal dementia 788 
and progressive supranuclear palsy. 789 

Analysis of the markers at gene level revealed potential association with metabolic and 790 
cardiovascular diseases, with the main links highlighted for the 11 markers included in the final 791 
model relating to obesity and smoking. Whilst these associations do not necessarily translate to 792 
age-estimation bias for individuals with the relevant conditions, they raise questions worth 793 
exploring as age estimation panels move towards implementation in forensic casework. Finally, 794 
ontological analysis of the relevant genes also revealed strong association with various 795 
metabolic processes taking place at a cellular level, highlighting the close relationship between 796 
the age-informative markers and the hallmarks of human ageing [117] and raising questions 797 
regarding the overlap between methylation markers for chronological and biological age and its 798 
potential effect on the prediction accuracy of forensic DNA methylation-based age estimation. 799 
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SUPPLEMENTARY TABLES 1093 

 1094 

Supplementary_Table_S1. Literature investigated for the identification of age-related CpG 1095 

sites, presented in chronological order. 1096 

No. Study Tissue Number of CpGs Ref. 

1 Boks et al. 2009 Whole blood 6 [29] 

2 Rakyan et al. 2010 Whole blood 131 [30] 

3 Teschendorff et al. 2010 Whole blood 411 [31] 

4 Bocklandt et al. 2011 Saliva 3 [32] 

5 Koch et al. 2011 Multi-tissue 5 [6] 

6 Koch et al. 2011 Dermal fibroblasts 31 [33] 

7 Hernandez et al. 2011  Brain tissues 10 [34] 

8 Martino et al. 2011 Cord and Whole blood 1030 [35] 

9 Bell et al. 2012 Whole blood 490 [36] 

10 Horvath et al. 2012 Blood and Brain tissues 1000 [37] 

11 Garagnani et al. 2012 Whole blood 9 [38] 

12 Alisch et al. 2012  Whole blood 2078 [39] 

13 Numata et al. 2012 Prefrontal cortex 300 [40] 

14 Teschendorff et al. 2013 Multi-tissue 67 [41] 

15 Day et al. 2013  Multi-tissue 431 [42] 

16 Hannum et al. 2013 Whole blood 71 [43] 

17 Hollegaard et al. 2013 Whole blood 68 [44] 

18 Johansson et al. 2013 White blood cells 1 [45] 

19 Zykovich et al. 2013 Skeletal muscle 500 [46] 

20 Martino et al. 2013 Buccal 2632 [47] 

21 Horvath 2013 Multi-tissue 353 [3] 

22 Almen et al. 2014 Whole blood 25 [21] 

23 Florath et al. 2014 Whole blood 17 [48] 

24 Weidner et al. 2014 Whole blood 3 [49] 

25 Yi et al. 2014 Whole blood 16 [1] 
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26 Steegenga et al. 2014  Peripheral blood cells 719 [50] 

27 Marttila et al. 2014  Peripheral blood cells 8540 [51] 

28 McClay et al. 2014 Whole blood 70 [52] 

29 Zbiec-Piekarska et al. 2015 Whole blood 5 [8] 

30 Bekaert et al. 2015 Blood and Teeth 4 [53] 

31 Huang et al. 2015  Whole blood 4 [54] 

32 Lee et al. 2015 Semen 3 [55] 

33 Mansego et al. 2015 White blood cells 54 [20] 

34 Soares Bispo Santos Silva et 

al. 2015 

Blood and Saliva 2 [56] 

35 Yi et al. 2015 Blood and Saliva 3 [57] 

36 Zaghlool et al. 2015 Whole blood 674 [58] 

37 Xu et al. 2015 Whole blood 2965 [59] 

38 Acevedo et al. 2015 Blood leukocytes 794 [60] 

39 Peters et al. 2015 Whole blood 1497 [61] 

40 Zubakov et al. 2016 Whole blood 75 [62] 

41 Park et al. 2016  Whole blood 582 [63] 

42 Freire-Aradas et al. 2016  Whole blood 177 [64] 

43 Kananen et al. 2016 Whole blood 1202 [65] 

44 Vidal-Bralo et al. 2016  Whole blood 8 [66] 

45 Knight et al. 2016  Blood tissues 148 [67] 

46 Tan et al. 2016  Whole blood 2284 [68] 

47 Hong et al. 2017  Saliva 62 [69] 

48 Mayne et al. 2017  Placental tissue 62 [70] 

49 Cho et al. 2017 Whole blood 32 [71] 

50 Benton et al. 2017  Whole blood 497 [72] 

51 Xu et al. 2017  Whole blood 14150 [73] 

 1097 

 1098 

 1099 
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Supplementary_Table_S2. Datasets used for the collection of DNA methylation data on the 1100 

5364 selected CpGs. 1101 

No. 
Accession 

number 
Tissue 

Sample 

size 

Age 

range 

(years) 

Platform Ref. 

1 GSE41037 Whole blood 391 16 - 88 27k1 [37] 

2 GSE44763 
Peripheral whole 

blood 
46 41 - 70 27k [21] 

3 GSE57285 Whole blood 41 19 - 71 27k [75] 

4 GSE19711 Whole blood 268 52 - 78 27k [31] 

5 GSE20236 Whole blood 15 53 - 71 27k [30] 

6 GSE27097 
Peripheral blood 

leukocyte cells 
398 3 - 17 27k [39] 

7 GSE20242 
Sorted human 

blood cells 
20 16 - 69 27k [30] 

8 GSE23638 
Whole blood 

lymphocytes 
23 2 - 33 27k [76] 

9 GSE58045 Blood samples 97 32 - 80 27k [36] 

10 GSE67751 Blood samples 69 35 - 65 450k2 [77] 

11 GSE40279 Whole blood 656 19 - 101 450k [43] 

12 GSE41169 Whole blood 32 18 - 65 450k [37] 

13 GSE42861 Whole blood 335 20 - 70 450k [78] 

14 GSE32148 
Peripheral whole 

blood 
19 3 - 76 450k [79] 

15 GSE36064 Leukocytes 78 1 - 16 450k [39] 

16 GSE40005 Blood samples 10 53 - 68 450k N.A.3 

17 GSE53740 
Peripheral whole 

blood 
165 37 - 93 450k [80] 

18 GSE49064 
Peripheral whole 

blood 
10 30 - 66 450k [50] 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945475/#pgen.1004211.s012
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mononuclear cells 

(PBMCs) 

19 GSE65638 Blood samples 8 21 - 32 450k [59] 

20 GSE84624 Peripheral blood 24 0.5 - 6 450k N.A.3 

21 GSE87571 Whole blood 671 14 - 94 450k [45] 

22 GSE72775 Whole blood 335 36 - 91 450k [81] 

23 GSE72777 Whole blood 46 2 - 35 450k [81] 

24 GSE72773 Whole blood 310 35 - 92 450k [81] 

1 27k: assay conducted on Illumina Infinium HumanMethylation27 BeadChip platform 

2 450k: assay conducted on Illumina Infinium Human Methylation450 BeadChip platform 

3 N.A.: not applicable as no journal article is referenced with this dataset 

 1102 

 1103 

Supplementary_Table_S3. 244 CpG markers with │r│≥0.70, or │r│≥0.65 and methylation range 1104 

above 70% over the human lifespan. 1105 

cg16867657 cg08262002 cg24892069 cg19344626 cg27401724 cg21120249 

cg22454769 cg12934382 cg00602811 cg16193278 cg08877357 cg07164639 

cg10501210 cg17471102 cg11649376 cg18651026 cg26725076 cg01719405 

cg22736354 cg00503840 cg14359680 cg02867102 cg07027613 cg23320649 

cg01820374 cg26685941 cg27015931 cg23124451 cg11807280 cg09118625 

cg19283806 cg05308819 cg18150280 cg15804973 cg12580096 cg23341182 

cg25256723 cg20273670 cg23744638 cg10221746 cg08713098 cg14956327 

cg06639320 cg22016779 cg00101260 cg03224418 cg08644498 cg20067719 

cg09809672 cg06247837 cg01243823 cg20153322 cg18034299 cg22768222 

cg04875128 cg20822990 cg24847230 cg25538571 cg20988565 cg25809905 

cg02228185 cg15948836 cg19761273 cg05331060 cg18568843 cg05379350 

cg24079702 cg21296230 cg07388493 cg00863306 cg25994988 cg02838877 

cg00329615 cg13033938 cg14556683 cg04503319 cg21186955 cg09636661 

cg07082267 cg04604946 ch.2.30415474F cg12483947 cg16983588 cg03043157 

cg24724428 cg06268694 cg22580512 cg15037004 cg01234420 cg00308665 

cg21572722 cg20669012 cg06911110 cg26543112 cg18826637 cg27192248 
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cg07553761 cg20222376 cg23078123 ch.1.171672612F cg22943590 cg01812894 

cg16008966 cg17183905 cg13823169 cg10149533 cg08888956 cg23479922 

cg22156456 cg06419432 cg10247798 cg22947000 cg19991948 cg22082462 

cg14361627 cg12261786 cg06567855 cg27209729 cg18450254 cg25711003 

cg18933331 cg12939283 cg20052760 cg07583137 cg13221458 cg19663246 

cg08234504 cg02046143 cg02030542 cg26969888 cg10804656 cg18186343 

cg16762684 ch.6.33611621F cg04742397 cg21469505 cg02872426 cg04123409 

cg01974375 cg08468401 cg12711760 cg03746976 cg23836737 cg10872209 

cg03996822 cg20816447 cg18079948 cg26894354 cg15894389 cg05042708 

cg22796704 cg04581938 cg21990700 cg23715749 cg01459453 cg18797590 

cg11741201 cg22483030 cg15845821 cg04474832 cg01282174 cg00664406 

cg25533247 cg00573770 cg23950157 cg14042143 cg13327545 cg12317815 

cg03431918 cg27320127 cg08453194 cg14583999 cg20102280 cg09124496 

cg08090640 cg16054275 cg22730004 cg08553327 cg19848940 cg06493994 

cg26350754 cg05207048 cg25428494 cg07211259 cg10835286 cg20747538 

cg02286081 cg22273555 cg07080372 cg00292135 cg00548268 cg21801378 

cg08128734 cg18738190 cg12623930 cg11436113 cg24768561 cg17168836 

cg17372101 cg18215449 cg26608718 cg04411841 cg09552402 cg06285727 

cg16744741 cg05156137 cg18182399 cg05619598 cg10917602 cg13959344 

cg03725309 cg24212517 cg25537245 cg23500537 cg22737154 cg09278098 

cg14195318 cg11693709 cg26815395 cg04425624 cg05412028 cg20692569 

cg04208403 cg21922223 cg14314729 cg12079303 cg14747813 cg21878650 

cg18618815 cg17457912 cg05584950 cg11194994 cg27210390 cg06279276 

cg06874016 cg08097417 cg17721618 cg05404236 cg25413977  

cg08160331 cg19722847 cg04416734 cg10650821 cg15538427  

 1106 
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Supplementary_Table_S4. Primer sequences for the 19 markers. Amplicon lengths are also 1111 

displayed. 1112 

CpG site 
Associated 

Genes 
Primer Sequence (5'-3') 

Amplicon length 

(bp) 

cg16867657 

ELOVL2 

F AGGGGYGTAGGGTAAGTGAGG 

308 cg21572722 

R AACAAAACCATTTCCCCCTAATAT 
cg24724428 

cg06639320 

FHL2 

F GTTTTTGGGATTAGGTAGAGATTT 

165 cg22454769 
R TTTATTTACCAAAACTCCTTTCTTC 

cg24079702 

cg00329615 IGSF11 

F TATGTGTTTGAGATTTGGTAGGTT 

181 

R TTATTCATTCATTATTCTCCTTAAAAAAAT 

cg09809672 EDARADD 
F GGTTTGATTTTGGTTAGATAATTAG 

148 

R AAAAACTTTAATACCTCTCCCCATC 

cg22796704 ARHGAP22 

F GGATTTAGGGGTAGGTAGAATTTGT 

148 

R TCTAAACTAAACTTAACCACCTTCC 

cg08128734 RASSF5 

F ATTTTGGGTATTTGGAAGGTATTT 

189 
R TCCCAATTAAAACCAAAAATAAAAA 

cg17372101 CNTNAP2 

F GTTTTAAAGTAGGTTAAGAAGTGGGAGT 

124 

R AAAACAAAAAATATCCCTAAATTTCCT 

cg08160331 KLHL35 

F TATTAAGAGGTAGTATTAAAAGATGATGAA 

231 
R CTTACTTCCTAAAAAAAATAAAAAC 

cg10501210 
MIR29B2CHG 

(C1orf132) 

F AAGAAGGTGAGAAAGATAGAGTATTTATAT 
210 

R TAAAAAATTTAATAAAACCAAATTCTAAAA 

cg19283806 CCDC102B 

F GGGTTATAAGTTTTGTTTTGATGAAGT 

171 
R AATAAATTTCTCCTTAAACAATCCC 

cg07553761 SMC4, TRIM59 
F GTGGTTTGGGGGAGAGGT 

86 

R CCAAATAAAAAATAATTCCTCAAAAAC 

cg08262002 LDB2 

F TTTTGGGTATTGAGTGAGGTATAGG 

110 
R ACCATTCATACATTCTAACAAAACC 

cg12934382 GRM2 F GTTGGGTTGGGAGTAGGAGAT 284 
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R TAAAATAAAAACCAAAAAAATC 

cg17471102 FUT3 

F GGAGATTTTTTAGGAAAGGTTTTTT 

144 

R CTAACCACATTCCAAATCATAAACA 

cg18618815 COL1A1 

F GGTTGATAGGGATTTGTTTTTTAATT 

180 
R CCCCAAACCTAAAAATTCTTCTATAA 

*Y represents a degenerate or ‘wobble’ base that is an equimolar mix of pyrimidines (T+C). 

 1113 

 1114 

Supplementary_Table_S5. Information on the Illumina 450K datasets used for assessing sex 1115 

association in the age-correlated CpGs described in this work. 1116 

Accession number Tissue 
Sample 

size 
♀ ♂ 

Age range 

(years) 
Ref. 

GSE67751 Blood 69 45 24 35 - 65 [77] 

GSE40279 Blood 656 338 318 19 - 101 [43] 

GSE41169 Blood 32 12 20 18 - 65 [37] 

GSE42861 Blood 335 239 96 20 - 70 [78] 

GSE32148 Blood 19 12 7 3 - 76 [79] 

GSE36064 Blood 78 0 78 1 - 16 [39] 

GSE40005 Blood 10 4 6 53 - 68 - 

GSE53740 Blood 165 102 63 37 - 93 [80] 

GSE49064 Blood 10 0 10 30 - 66 [50] 

GSE65638 Blood 8 8 0 21 - 32 [59] 

GSE87571 Blood 729 388 341 14 - 94 [45] 

GSE72775 Blood 335 138 197 36 - 91 [81] 

GSE72777 Blood 46 31 15 2 - 35 [81] 

GSE72773 Blood 310 150 160 35 - 92 [81] 
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Supplementary_Table_S6. Information on the Illumina 450K datasets used for assessing 1121 

disease association in the age-correlated CpGs described in this work. 1122 

Accession number Disease/ Condition Tissue 
Sample 

size 

Age 

range 

(years) 

Ref. 

GSE41169 Schizophrenia Whole blood 62 18 - 65 [37] 

GSE42861 Rheumatoid arthritis Whole blood 354 18 - 69 [78] 

GSE53740 
Frontal temporal 

dementia 

Peripheral 

whole blood 
121 34 - 85 [80] 

GSE53740 
Progressive 

supranuclear palsy 

Peripheral 

whole blood 
42 54 - 85 [80] 

 1123 

Supplementary_Table_S7. Comparison between the Pearson’s correlation scores (r) observed 1124 

between methylation and age in the combined dataset of control samples, as well as within the 1125 

individual datasets for control samples (C) and samples obtained from individuals with 1126 

schizophrenia (SCZ), rheumatoid arthritis (RA), frontal temporal dementia (FTD) and progressive 1127 

supranuclear palsy (PSP). 1128 

CpG marker 
Associated 

Genes 

Controls 

combined 

GSE41169 GSE42861 GSE53740 

C SCZ C RA C FTD PSP 

cg24724428 ELOVL2 0.79 0.78 0.76 0.68 0.66 0.44 0.45 0.56 

cg21572722 ELOVL2 0.76 0.79 0.82 0.76 0.81 0.51 0.44 0.49 

cg06639320 FHL2 0.80 0.89 0.79 0.71 0.79 0.45 0.40 0.52 

cg09809672 EDARADD -0.78 -0.53 -0.51 -0.55 -0.60 -0.46 -0.40 -0.23 

cg22796704 ARHGAP22 -0.75 -0.72 -0.53 -0.53 -0.57 -0.38 -0.22 -0.21 

cg08128734 RASSF5 -0.74 -0.70 -0.72 -0.58 -0.58 -0.30 -0.26 -0.27 

cg17372101 CNTNAP2 -0.73 -0.59 -0.39 -0.50 -0.44 -0.34 -0.33 -0.55 

cg19283806 CCDC102B -0.83 -0.54 -0.78 -0.59 -0.71 -0.39 -0.37 0.14 

cg07553761 SMC4, TRIM59 0.75 0.84 0.88 0.61 0.60 0.41 0.32 0.50 

cg10501210 MIR29B2CHG -0.80 -0.90 -0.83 -0.68 -0.73 -0.50 -0.39 -0.52 

cg08262002 LDB2 -0.74 -0.70 -0.51 -0.54 -0.64 -0.32 -0.35 -0.34 

 1129 

 1130 
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SUPPLEMENTARY FIGURES 1131 

 1132 

Supplementary_Fig_S1. Comparison between the observed and expected methylation values 1133 

(β-values expressed as percentage of methylation) for the 18 markers analysed in this part of 1134 

the study. Markers present in the same amplicon such as cg16867657, cg24724428, cg21572722 1135 

for ELOVL2 and cg06639320, cg22454769, cg24079702 for FHL2 are represented in the same 1136 

graph. Primers for marker cg12934382 failed to yield amplification products and thus this 1137 

marker is not represented here. Standards of known methylation (at 0%, 5%, 10%, 25%, 50%, 1138 

75% and 100% methylation) were processed in duplicate and the average value represents the 1139 

‘observed’ methylation fraction in the graphs. Error bars represent the standard error observed 1140 

between duplicates and the R2 values for the linear trendline (intercept set at 0) are displayed 1141 

in each graph. 1142 

 1143 
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Supplementary_Fig_S2. Average absolute difference between the methylation β-values of 1144 

samples analysed in duplicate (n=20) for the 17 different markers. The error bars represent the 1145 

standard deviation. 1146 
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Supplementary_Fig_S3. Average sequencing reads obtained per amplicon in the 13-amplicon 1163 

(17 markers, blue) and 10-amplicon (11 markers, purple) assays. Data for the 13-amplicon 1164 

assay derive from the reproducibility study (section 3.2.2, n=40), whilst data from the 1165 

sensitivity study (section 3.2.4, n=6) represent the 10-amplicon assay using the adapter-tagged 1166 

primers (section 2.15). Error bars represent standard deviation. 1167 
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Supplementary_Fig_S4. Average absolute difference in the methylation β-values observed for 1171 

6 blood samples (from individuals aged 17, 27, 36, 43, 53 and 61 years) at each marker when 1172 

50, 25, 10, 5, 2.5 and 1 ng of DNA input was used as opposed to the original values obtained at 1173 

50 ng. The error bars represent the standard error of the difference between the methylation 1174 

observed for each of the six samples and the average methylation observed for the original 50 1175 

ng input for the same sample during the development of the test set. 1176 
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Supplementary_Fig_S5. Number of genes involved in biological pathway networks relating to 1186 

different disease classes out of the 164 genes associated with the 244 markers identified for 1187 

their correlation with chronological age in blood. 1188 
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Supplementary_Fig_S6. Number of genes involved in KEGG pathway networks out of the 164 1205 

genes associated with the 244 markers identified for their correlation with chronological age in 1206 

blood. 1207 
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Supplementary_Fig_S7. Number of genes involved in the different biological processes for the 1223 

164 genes associated with the 244 markers identified for their correlation with chronological 1224 

age in blood. In relation to the highest correlation groups (cellular process, biological 1225 

regulation and metabolic process), the majority of genes associated with cellular processes 1226 

(34/58 genes, 59%) were linked to proteins contributing to cellular metabolic and biosynthetic 1227 

processes with groups of 16-19 genes were also associated with cell communication, cellular 1228 

response to stimulus, signal transduction and cellular component organisation processes. 1229 

Genes involved in biological regulation also showed a strong link to metabolic processes (19 1230 

genes associated involved in the regulation of cellular metabolic processes), signal 1231 

transduction (17 genes) and the regulation of cellular communication (9 genes). Finally, 1232 

associations with the metabolism of different compounds such as organic substances (35 1233 

genes) and nitrogen compounds (30 genes) were identified for the genes involved in metabolic 1234 

processes. 1235 

 1236 

 1237 

 1238 

 1239 

0

10

20

30

40

50

60

70

N
u

m
b

er
 o

f 
ge

n
es

Biological processes cellular process

biological regulation

metabolic process

response to stimulus

signaling

cellular component organization or biogenesis

localization

developmental process

multicellular organismal process

biological adhesion

multi-organism process

immune system process

locomotion

cell population proliferation



 

47 
 

Supplementary_Fig_S8. Number of genes the associated proteins showing activity in the 1240 

various molecular functions. This graph relates to the 164 genes relating to the 244 markers 1241 

identified for their correlation with chronological age in blood. In relation to the highest 1242 

correlation groups (binding and catalytic activity), binding activity related heavily to protein 1243 

binding (19 genes) as well as binding of organic cyclic compounds (10 genes), heterocyclic 1244 

compounds (10 genes) and ions (8 genes). Catalytic activity related to hydrolase (13 genes) and 1245 

transferase (12 genes) activity as well as activity affecting proteins (11 genes), such as protein 1246 

kinase, peptidase and ubiquitin-like protein transferase activity. 1247 
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