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Abstract. First-pass perfusion cardiac magnetic resonance (FPP-CMR)
is becoming an essential non-invasive imaging method for detecting deficits
of myocardial blood flow, allowing the assessment of coronary heart dis-
ease. Nevertheless, acquisitions suffer from relatively low spatial reso-
lution and limited heart coverage. Compressed sensing (CS) methods
have been proposed to accelerate FPP-CMR and achieve higher spa-
tial resolution. However, the long reconstruction times have limited the
widespread clinical use of CS in FPP-CMR. Deep learning techniques
based on supervised learning have emerged as alternatives for speeding
up reconstructions. However, these approaches require fully sampled data
for training, which is not possible to obtain, particularly high-resolution
FPP-CMR images. Here, we propose a physics-informed self-supervised
deep learning FPP-CMR reconstruction approach for accelerating FPP-
CMR scans and hence facilitate high spatial resolution imaging. The
proposed method provides high-quality FPP-CMR images from 10x un-
dersampled data without using fully-sampled reference data.
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1 Introduction

Coronary artery disease (CAD) is the occlusion of the coronary arteries usually
caused by atherosclerosis, which causes abnormalities in blood flow to the heart.
Non-invasive imaging techniques that are widely used clinically for the evalu-
ation of CAD are single photon emission computerized tomography (SPECT)
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and positron emission tomography (PET), but the reference for non-invasive
myocardial perfusion quantification is PET [8]. However, the clinical value of
first-pass perfusion cardiac magnetic resonance (FPP-CMR) has been shown in
comparison to these techniques [6–8, 20], having emerged as an alternative way
of detecting blood flow anomalies without the use of potentially harmful ionising
radiation. In addition, FPP-CMR has other advantages, such as higher spatial
resolution, wider availability and lower scan cost compared to PET.

FPP-CMR time frames must be acquired in real-time to capture the rapid
passage of a contrast agent bolus through the heart, and hence, the spatial
resolution and coverage of the heart is compromised. Thus, undersampled re-
construction methods have been proposed to accelerate FPP-CMR acquisitions
as a means to improve spatial resolution and heart coverage [14, 16, 21]. However,
these methods can lead to long reconstruction times. In this work, we aim to
speed up reconstructions and obtain the contrast-enhanced dynamic image series
from undersampled FPP-CMR using deep learning (DL). Then, these images will
be used to generate quantitative perfusion maps using a tracer kinetic model [4,
9, 11]. DL techniques have already been used in magnetic resonance image (MRI)
reconstruction. Work has been reported on knee [2, 13, 22], brain [2, 5, 13, 22] and
cardiac [10, 19] MRI, using both supervised [2, 5, 13] and self-supervised learning
[15, 22]. Occasionally, the network is unrolled to mimic a compressed sensing
(CS) iterative reconstruction problem, giving rise to a cascade of convolutional
neural networks (CNNs) [2, 13, 19]. The problem with supervised learning tech-
niques is the need to have fully sampled reference images to train the network,
which are not available in FPP-CMR, particularly at high spatial resolutions.

Even though the field of MRI reconstruction with DL is currently an active
area, to our knowledge, self-supervised DL techniques have not been applied
to FPP-CMR reconstruction. In this work, a SElf-Supervised aCcelerated RE-
consTruction (SECRET) DL framework for FPP-CMR is proposed to directly
reconstruct contrast-enhanced dynamic image series from undersampled (k,t)-
space data.

2 Methods

For completeness, a conventional FPP-CMR CS reconstruction will be described.
We will also describe our proposed method, SECRET, as well as the Model Based
Deep Learning Architecture for Inverse Problems (MoDL) [2], which will be used
for comparison.

2.1 Conventional FPP-CMR reconstruction

CS methods can be used to reconstruct dynamic images from undersampled
data. For example, FPP-CMR images s can be obtained from undersampled
data du using CS by solving the following optimisation problem:

ŝ = arg min
s
{‖du −Es‖22 + λ1‖∇ss‖1 + λ2‖∇ts‖1} (1)
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where E = AF , A is the (k,t)-space sampling trajectory, F is the Fourier trans-
form, λ1 and λ2 are regularization parameters and ∇s and ∇t are the finite
differences operators along the spatial and temporal dimensions, respectively.

2.2 Supervised learning reconstruction: MoDL

MoDL combines the power of DL with model-based approaches [2]. It uses a CNN
as a denoiser and applies it as a regulariser to solve the optimisation problem
given by:

sk+1 = arg min
s
‖du −Es‖22 + λ‖s− zk‖22 (2)

sk+1 =
(
EHE + λI

)−1 (
EHdu + λzk

)
(3)

where k denotes the k-th iteration and zk is the denoised version of sk, obtained
through a CNN network. MoDL requires supervised learning to optimise the
denoiser network. The data consistency layer is immediate by conjugate gradient
blocks, but as the input is zk and the output is sk+1, which, in turn, generates a
zk+1, this requires iterating until convergence. The iterative algorithm is unrolled
for a fixed number of iterations, K, in which the weights or parameters to be
optimised are shared.

The MoDL method has the zero-filled reconstruction, the coil sensitivities and
the subsampling mask as inputs, but it also needs the fully sampled images —
which are hardly available for the case of FPP-CMR at high spatial resolution—
for training. The loss is defined as the mean square error between sK and the

desired image t: C =
Nsamples∑

i=1

‖sK(i)−t(i)‖2, where t(i) is the i-th target image.

2.3 SECRET reconstruction

The proposed SECRET method directly reconstructs contrast-enhanced dy-
namic images from the undersampled (k,t)-space data. Considering only the
undersampled (k,t)-space data when enforcing data consistency, we can train
networks without the need for fully sampled images, simply by making use of
the physical models in the reconstruction [15]. This framework can be formulated
as follows:

θ̂ = arg min
θ
‖du −AFC(su|θ)‖2 (4)

where C(su|θ) is the output of a CNN, with θ the parameter vector to be op-
timised. Figure 1 shows the steps necessary for training our proposed SECRET
method for FPP-CMR. First, undersampled (k,t)-space data du is transformed
to the image domain, obtaining su. Then, su enters the CNN to provide the re-
constructed contrast-enhanced dynamic images ŝ. These images are then trans-
formed back to (k,t)-space d̂ and subsampling masks are applied, thus obtaining
the undersampled version d̂u. Finally, the loss is computed with d̂u and the
input du, to guide the training phase.
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The CNN is based on the well-known U-Net [18], widely used in medical
imaging. Skip connections are included to maintain information from previous
layers, as well as to avoid the problem of vanishing gradients during backpropa-
gation. At the end of the CNN, residual learning has been appended as in [15],
adding the average image of the input su.
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Fig. 1. Flow chart illustrating the proposed SECRET method for FPP-CMR. Blue
lines represent steps that only take place during training. The inputs of the framework
are the undersampled (k,t)-space data du and the (k,t)-sampling masks A, resulting in
the reconstructed contrast-enhanced dynamic images ŝ as output, and d̂u if required.

2.4 Dataset

Rest and stress FPP-CMR acquisitions were performed in 21 patients using a
single-bolus injection of 0.05 mmol/kg Gadobutrol (Gadovist; Bayer, Germany)
and a 1.5T CMR scanner (MAGNETOM Aera, Siemens Healthineers, Erlan-
gen, Germany) with an 18-channel chest-coil and a 32-channel spine coil. A
free-breathing FLASH perfusion dual-sequence [11] was used to acquire a low-
resolution image with low T1-sensitivity for estimating the arterial input function
and three short-axis slices (basal, mid and apical) for high resolution myocardial
perfusion imaging using the following parameters: FOV = 340 × 308 mm2, in-
plane resolution = 2.2× 2.2 mm2, slice thickness = 10mm, TR/TE = 2.1/1ms,
flip angle = 8◦, parallel imaging acceleration factor 3, saturation recovery time
= 100 ms, total scan duration = 60s, contrast agent relaxivity = 5.0L/mmol s.
Undersampled datasets were generated for 3×, 6× and 10× acceleration factors,
following a radial (k,t)-sampling trajectory.
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Preprocessing A first step to ensure that all data had the same size, both
spatially and temporally, prior to being fed to the CNN, consisted of resizing
the DICOM images to obtain a spatial resolution of 2× 2 mm2, padding the k-
space to obtain an image size of 256×256 pixels, and interpolating each slice to a
fixed number of frames (60 frames). A final step included intensity normalisation
so that all contrast-enhanced dynamic image series present intensities between 0
and 1, without losing the contrast variation between frames. In addition, image
pre-registration was also carried out to correct for respiratory motion.
Image quality metrics Image quality was assessed in terms of peak signal-to-
noise ratio (PSNR), structural similarity index measure (SSIM) and normalized
root mean square error (NRMSE) between the reference images and reconstruc-
tions obtained with the SECRET, MoDL and CS (10x only) methods.

2.5 Implementation details

Patients were randomly split into training, validation and test subsets (60%,
16% and 24%, respectively). Each slice is fed into the SECRET framework so
that the time frames are stacked in depth, creating a multi-channel image. The
proposed method is implemented in Python with Tensorflow [1] and Keras [3],
and it took about half an hour of training using the Adam optimizer [12] with a
learning rate of 10−4 consuming about 3 GB of GPU memory for 100 epochs on
one Intel® CoreTM i7-4790 CPU @ 3.60GHz with 16 GB RAM and one NVIDIA
GeForce RTX 2080 Ti GPU. The MoDL training for K=1 and 100 epochs took
one hour and a half and the MoDL training for K=10 and 200 epochs took
forty-five hours using the same hardware. Note that after training the SECRET
method, it provides a reconstruction of a complete contrast-enhanced dynamic
image series in less than a second.

3 Results and discussion

Figure 2 shows the SECRET reconstructions obtained for two representative
patients from 6× and 10× undersampled (k,t)-space data together with the
reference and MoDL (K=1) reconstructions. CS reconstruction is also shown for
10×. Three different time frames are shown, corresponding to right ventricle
(RV), left ventricle (LV) and myocardial enhancement. Although the SECRET
reconstructions are slightly blurred, due to residual learning from the average
image of the CNN input (which is blurred due to residual motion), it can be seen
that they have better quality than the images obtained with MoDL trained in
the same amount of time. Moreover, SECRET images maintain the variability
of contrast that exists between frames in addition to not losing the structure of
the heart.

Figure 3 shows results of the FPP-CMR reconstructions in terms of PSNR,
SSIM and NRMSE. While the performance of MoDL becomes noticeably worse
as the acceleration rate increases, SECRET maintains good image quality even
at high acceleration rates. For the 10x accelerated reconstructions, the median
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Fig. 2. SECRET and MoDL (K=1) reconstructions obtained from 6× and 10× un-
dersampled FPP-CMR data for two representative subjects. The reference images are
displayed for comparison, in addition to CS reconstruction for 10×. The right ventricle
(RV), left ventricle (LV) and myocardial enhancement time frames are shown for one
short axis slice.
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Fig. 3. PSNR, SSIM and NRMSE between the reference images and the reconstructions
obtained with SECRET and MoDL methods, for 3×, 6× and 10× acceleration factors,
for all patients in the test dataset.

(interquartile range): PSNR was 34.66 (3.47), 31.46 (3.81), 34.52 (5.43), 30.67
(5.52); SSIM was 0.94 (0.04), 0.92 (0.07), 0.96 (0.06), 0.92 (0.06); NRMSE was
0.12 (0.06), 0.16 (0.10), 0.11 (0.09), 0.17 (0.11) for CS, MoDL (K=1), MoDL
(K=10) and SECRET methods, respectively. The image quality metrics indicate
that SECRET images maintain a more stable agreement with the reference as
the acceleration factor is increased than MoDL images, which deteriorate with
higher acceleration. CS and MoDL (K=10) show the best agreement with the
reference, but reconstructions take ∼87.08s and ∼1.99s, respectively, whereas
MoDL (K=1) takes ∼0.21s and SECRET only 0.15s.

Figure 4 shows a 1D projection of the dynamic images through time, for
a given slice. Note that although the images have been pre-registered, there is
still some residual motion. SECRET does not include any explicit regularisa-
tion term, however, due to the residual learning performed by the network all
reconstructions provided by the framework are inherently corrected. Such good
PSNR, SSIM and NRMSE values obtained when the reference images are affected
by little respiratory motion, would certainly improve if some regularisation were
added. This would enable even higher acceleration rates. Regularisation schemes
will thus be investigated in a future study.
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Fig. 4. Representative image profile across the heart demonstrating that the SECRET
framework improves consistency across time frames.

Quantitative parameter maps were estimated from the FPP-CMR recon-
structions, showing the potential of the technique for an objective and operator-
independent analysis of myocardial perfusion. Figure 5 displays the contrast
transfer coefficient (KTrans) map estimated from fully sampled, 6× and 10× un-
dersampled patient data using the MoDL and SECRET methods, through the
Patlak model [17]. The image quality of the quantitative maps obtained from
the SECRET reconstruction at accelerations 6× and 10× is comparable to the
reference images, showing less blurring than MoDL maps.

Reference MoDL SECRET
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Fig. 5. Quantitative maps (KTrans) obtained from 6× and 10× undersampled data
using MoDL and the SECRET methods. The reference image is displayed for compar-
ison.
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4 Conclusion

A physics-informed self-supervised deep learning reconstruction framework for
accelerating FPP-CMR scans has been described. The proposed SECRET method
provides FPP-CMR reconstructions directly from the undersampled (k,t)-space
data and does not require fully sampled reference data. Compared with state-of-
the-art approaches, the SECRET method maintains good quality reconstructions
for higher acceleration rates, with low training times and very fast reconstruc-
tion times. The proposed SECRET method shows promising results, with the
potential for improvement coupled with explicit regularization, which will be
explored in future work.
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