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A Lookahead Matheuristic for the Unweighed
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Sergey Polyakovskiya, Rym M’Hallahb,∗

aSchool of Information Technology, Deakin University, Geelong 3216, Australia
bDepartment of Engineering, Faculty of Natural, Mathematical & Engineering Sciences,

King’s College London, UK

Abstract

The unweighed oriented variable-sized two-dimensional guillotine bin packing
problem consists in packing without overlap small rectangular items into large
non-identical rectangular bins, with the items obtained via guillotine cuts. It
minimizes the waste of the used bins. It is herein approximately solved us-
ing a hybrid matheuristic that applies a sequence of low-level mixed-integer
programs that reserve space for unpacked items and that are guided by feasi-
bility constraints and by upper bounds on the objective function. The embed-
ded constraints constitute a lookahead mechanism that prohibits the investiga-
tion of infeasible directions and constrains the search to improving ones. The
matheuristic further employs high-level diversification and intensification mech-
anisms. The diversification incorporates a sequential value correction algorithm
that tags a pseudo-price to each item to govern the fitness functions of mixed
integer programs and subsequently their solution construction process. The
intensification is a local search that investigates the neighbourhood of promis-
ing solutions. The extensive computational experiments provide evidence of
the good performance of the proposed matheuristic. For the variable-sized bin
packing benchmark instances, the matheuristic matches and improves 90.8% of
the upper bounds. For the single bin-size bin packing benchmark instances,
the matheuristic further proves the optimality of 82.6% upper bounds while it
matches 14.4% and improves 2.6% existing bounds.

Keywords: Cutting; Variable-Sized Bin Packing; Matheuristic; Lookahead
Search; Feasibility Constraints

1. Introduction

This paper addresses the unweighed oriented two-dimensional guillotine bin
packing problem with variable bin sizes (VS2BP). This problem consists in
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packing without overlap a set I = {1, . . . , n} of n distinct rectangular items
into large non-identical rectangular bins with the items obtained via guillotine
edge to edge cuts. An item i ∈ I of size ai = liwi is characterised by its length
li ∈ N>0 and its width wi ∈ N>0, where N>0 is the set of strictly positive
integers. There are m types of bins. Each bin type t ∈ T , T = {1, . . . ,m}, is
specified by its length Lt ∈ N>0, weight Wt ∈ N>0, and either its size At = LtWt

or its cost that is proportional to its size. There are at least n bins of type t ∈ T .
Any item i ∈ I can fit in at least one bin type, and any bin type t ∈ T can fit
at least one item. The problem searches for a feasible packing that minimizes
the total packing cost of the items. This total cost is simply the total area of
the bins selected to pack the items. Equivalently, the problem maximizes the
packing density, known also as the utilization of the bin, defined as the ratio of
the sum of the area of the items to the sum of the area of the used bins.

The unweighed guillotine VS2BP is academically challenging. It is an exten-
sion of the one-dimensional variant, which is in turn strongly NP-hard [8]. Thus,
it is unlikely that any efficient algorithm solves medium or large-sized instances
of VS2BP to optimality in a reasonable time. Yet, many problems -including
scheduling, cutting, and maintenance- are equivalent to VS2BP [9, 28] or con-
tain VS2BP as a subproblem. For example, glass cutting becomes a VS2BP in
the presence of defects [14, 22]. The glass panel is divided with the objective
of removing the defect. There are multiple ways of removing a defect; each of
them resulting in different variable sized bins and involving the resolution of
a VS2BP. In addition to its academic pertinence, VS2BP arises in numerous
industrial cases such as biscuit, wood, plastic, metal and paper manufacturing,
newspaper paging, telecommunication, shipping and transportation. For exam-
ple, in the paper industry, rolls of various dimensions are cut into different paper
sizes. In the apparel industry, patterns of different sizes of a garment are laid on
rectangles, which in turn are cut from rolls of cloth of equal width but different
lengths. In the delivery industry, boxes are assigned to a heterogeneous fleet
of vehicles. In marble cutting, rectangles are cut from different sized slices of
marble stones. In newspaper paging, advertisements are allocated rectangular
zones of pages and individual advertisements are then fitted in these zones.

The literature on VS2BP is rather limited. For the non-guillotine variant of
the problem, Pisinger and Sigurd [23] adapted a column generation approach,
and opted for an exact branch-and-price algorithm. Liu et al. [15] developed
two dynamic programming-based heuristics that aggregate the state space to
limit the storage requirements. Alvarez-Valdes et al. [1] presented a GRASP
algorithm for the (un)weighed two- and three-dimensional multiple bin-size bin
packing problems. They then applied path relinking to combine the best so-
lutions obtained in the iterative process. They also proposed two simple lower
bounds that improved those of Pisinger and Sigurd [23]. Wei et al. [27] proposed
a goal-driven approach.

Ortmann et al. [21] considered the unweighed oriented guillotine version of
VS2BP. They developed a two-stage heuristic that packs items into strips and
strips into large bins. It then tries to reposition items from larger bins into
smaller ones with the objective of increasing the filling ratio. Their results
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were improved by Hong et al. [12] who also considered the oriented case of
VS2BP. They dotted a mixed bin packing heuristic that fills single bins with
a backtracking capability. They then hybridized it with an iterative simulated
annealing and binary search. Their method is hereafter denoted as SA. To the
best of the authors’ knowledge, Ortmann et al. [21] and Hong et al. [12] are the
only references dealing with the same problem investigated in this paper.

VS2BP has a huge solution space with many alternative solutions whose
packing configurations are symmetric. Consequently, exact approaches generally
fail to solve its medium and large sized instances unless they employ symmetry
breaking constraints. In the presence of such constraints, exact approaches
such as mixed-integer programming (MIP), constraint programming (CP) and
decomposition techniques (e.g. column generation and Benders decomposition)
may find optima for instances with up to 100 items. However, they may neither
find the optima for instances with as few as 20 items nor guarantee a sufficiently
good convergence to a global optimum.

VS2BP is an extension of the classical two-dimensional bin packing problem
(2BP) [16]. Yet, the difficulty of 2BP restricted solution approaches to approxi-
mate ones that varied from simple best/first fit algorithms [6] to meta-heuristics
[16] to hyper-heuristics [18] to multi-agent based algorithms [25] to a combina-
tion of CP and iterative packing heuristics [24]. Obviously, any heuristic that
solves VS2BP solves 2BP, but not vice versa. In fact, VS2BP is harder than
2BP. Its larger number of variables and of constraints augment the problem’s
complexity. Subsequently, fewer VS2BP instances can be solved to optimal-
ity, and larger instances are much harder to solve than smaller ones. Thus, it
is important to design an effective approximate approach for VS2BP. For this
purpose, this paper proposes a matheuristic.

Matheuristics hybridize exact solution techniques with meta-heuristics. Their
wider spectrum of application is due not only to the advance of mathematical
solvers and computing technologies [20] but also to their success in identifying
(near-) global optima in reduced run times [3]. In general, they limit the role
of their mathematical programming component to iteratively solving a relaxed
model or to improving an incumbent or to tackling one of the many aspects of
the problem. This limitation is mainly imposed by the techniques employed by
off-the-shelf solvers –such as branch and bound–. Such techniques explore the
neighborhood of solutions obtained by the linear programming relaxation [14].
Thus, they tend to obtain integer solutions at leaf nodes; an aspect that makes
them very time and storage consuming. Even in the presence of strong bounds
/ pruning rules, off-the-shelf solvers may not prove optimality or converge to a
global optimum on large/difficult instances [14].

The proposed matheuristic (MH) avoids some of the limitations of MIP
solvers in general and of the model of VS2BP in particular. It obtains partial
solutions by iteratively pre-assigning some of the items, locks them, bounds the
value of the objective function, augments the model with feasibility constraints,
and complements solutions using a different mathematical program. It then ex-
plores the neighborhood of feasible integer solutions while restricting the search
to improving directions. It iteratively imposes stricter upper bounds on the
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objective function value. That is, MH embeds its mathematical models within
a heuristic that uses a proximity search [26] like concept. Yet, MH differs from
the matheuristic of Kollsker and Malaguti [13] for the LEGO two-dimensional
construction problem. Their matheuristic uses a constructive heuristic to pack
large elements into regular patterns and the mathematical models to fit the
small parts and ensure the stability of the solution. That is, as in many of
the available matheuristics, they feed an initial solution to a modified simpler
version of their mathematical model to address a component of their problem.

Because solving an instance of VS2BP is not trivial (i.e., every item has a
large number of alternative positions within the bins, and many solutions have
equal costs), MH enhances the chances of converging to a good-quality feasible
solution to VS2BP within a reasonable time by implementing three strategies to
its packing procedures. The first strategy reserves a free space for all unpacked
items while it explores all available free regions and alternative cuts to extract
the packed items. This feature distinguishes the proposed packing procedures
from most existing heuristics, which pack items sequentially into bins [16]. Even
though it enlarges the search space and the size of the MIP, reserving free space
dots the packing procedure with a futuristic vision. It makes the packing pro-
cedure consider only potentially feasible packing alternatives; thus, makes the
packing procedure less greedy. In addition, it decreases the number of iterations
necessary to pack all items at the cost of a slightly higher computational effort
per cycle. The second strategy augments the basic MIP model with a set of
feasibility constraints that prohibit partial (feasible) solutions that would lead
to infeasible solutions in future cycles. These constraints constitute a lookahead
mechanism that directs the search towards a feasible packing and enables cur-
rent decisions to account for their impact on future ones. It prunes infeasible
parts of the search space. The third strategy imposes an upper bound on the
total packing cost. It forbids the use of new bins when the sum of their costs
and the cost of already used bins exceeds the bound. Along with the second
strategy, it limits the number of candidate solutions. In summary, MH uses a
fast constructive heuristic and limits the MIP search space by (i) using bounds
on the objective function value; (ii) using regions to pack items thus limiting
the choices of positions for every item and reducing the symmetry embedded in
the problem, and (iii) by reinforcing improving search directions.

This paper is organized as follows. Section 2 presents the three guillotine
MIP-based packing procedures of MH. Section 3 details the lower and upper
levels of MH detailing how the three packing procedures are used. Section 4
describes the computational results. Finally, Section 5 concludes the paper and
presents future directions of research.

2. Guillotine MIP-based packing procedures

Section 2.1 describes the feasibility constraints used as a lookahead mech-
anism within MIP whereas Sections 2.2-2.4 detail the principles of three MIP-
based guillotine packing procedures that approximately solve VS2BP.
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2.1. Feasibility Constraints

In multi-dimensional bin packing, dual feasible functions (DFFs) are known
to yield tight lower bounds on the minimal number of bins required to orthog-
onally pack a given set of oriented items [2]. When applied to a single region
(which may be a bin), DFFs can detect the infeasibility of packing the items
into that region. When DFFs detect an infeasible assignment, MH rules out the
packing of this subset into this region from further examination.

A DFF is a function ϕ : [0, 1]→ [0, 1] such that
∑
q∈Q q ≤ 1⇒

∑
q∈Q ϕ (q) ≤

1 holds for any set Q ⊂ R≥0 of numbers. Let (ϕa, ϕb) be a pair of two DFFs.

Then (ϕa (li/L
′) , ϕb (wi/W

′)) ∈ (0, 1]
2

represents the transformed dimensions
of item i ∈ I calculated from its original dimensions (li, wi) with regard to a
single two-dimensional region (L′,W ′). A feasible packing into (L′,W ′) exists
if and only if the sum of the areas of the modified items does not exceed 1; that
is, when the following constraint holds∑

i∈I
ϕa

(
li
L′

)
ϕb

( wi
W ′

)
≤ 1. (1)

Various combinations of DFFs may yield different modified items. Let Fk be
a set of distinct combinations of two DFFs, ϕa and ϕb, and let k ∈ K be a
target region (or a bin) for packing of item i ∈ I, and K a set of regions.

Then λfik ∈ [0, 1] is a transformed area of item i obtained via the combination
f ∈ Fk for region k. Applying the set Fk, one can derive a set of valid feasibility
inequality constraints from Eq. (1). A feasibility constraint has the form∑

i∈I
λfikxik ≤ 1, f ∈ Fk, k ∈ K, (2)

where the binary decision variable xik = 1 if item i is assigned to region k and
0 otherwise.

Some of the |Fk| constraints of inequality (2) may be redundant. A constraint

f , f ∈ Fk, is redundant if either
∑
i∈I λ

f
ik ≤ 1 or there exists f ′, f ′ ∈ Fk, f 6= f ′,

such that λfik ≤ λf
′

ik for all i ∈ I. MH ignores redundant constraints. In fact,
to maintain a reasonable computation time, it only augments its mathematical
models with the strongest fmax non-redundant constraints for each region k ∈
K; i.e., with those that maximize the values of

∑
i∈I λ

f
ik, f ∈ Fk, |Fk| ≤ fmax.

To build the set Fk, MH applies the step functions proposed by Fekete and
Schepers [11] for 2BP, in particular u(1), U (ε), and φ(ε).

MH does not enumerate all possible combinations of DFFs for each region
that the algorithm may encounter during the search. Despite its constant run
time, frequently computing λfik for a given region k ∈ K and item i ∈ I in-
creases the overall computational time considerably. To reduce its runtime, MH
partitions the two-dimensional space (L,W ) into µ× µ zones, where each zone
is associated with a pair of indices (µl, µw), where µ is an integer number of
partitions of L = max

t∈T
{Lt} and W = max

t∈T
{Wt} such that 1 ≤ µ ≤ min{L,W}.
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Figure 1: Illustrating the two cutting patterns resulting from a different sequence of cuts. The
first cut is horizontal in pattern α (on the left) and vertical in pattern β (on the right).

Based on this partition, zone (µl, µw), µl = 0, . . . , µ− 1 and µw = 0, . . . , µ− 1,
corresponds to a subset Kµl,µw ∈ K of regions whose dimensions fall in the
range of (µl, µw); i.e.,

Kµl,µw =

{
k ∈ K :

⌊
µlL

µ

⌋
< Lk ≤

⌊
(µl + 1)L

µ

⌋
,

⌊
µwW

µ

⌋
< Wk ≤

⌊
(µw + 1)W

µ

⌋}
.

Regions k ∈ K with Lk > b (µ−1)Lµ c belong to a zone with µl = µ − 1 whereas

those with WK > b (µ−1)Wµ c are in a zone with µw = µ − 1. Thus, MH asso-
ciates the regions of set K with the zones according to size. It considers each
zone (µl, µw) as a potential region, and uses the upper bounds on this zone’s
dimensions as the input for DFFs. In this way, MH computes up to fmax best
combinations of functions for items that fit in this zone (µl, µw). During the
search, MH builds Fk for region k using the combinations of DFFs of its zone
(µl, µw) such that k ∈ Kµl,µw .

2.2. The MAXSUM packing procedure

The first packing procedure, labeled MAXSUM, is iterative. Its iterations stop
when it identifies either a feasible packing of the n items or an infeasible direction
of the search. At each iteration, it feeds an MIP with a set I of already packed
items and their current cost of packing U (i.e. the total size of the bins used in
the partial solution), a set I ′ of not-yet-packed items such that I ∪ I ′ = I and
I ∩ I ′ = ∅, an upper bound U∗ on the objective function cost, and three sets
R, S, and T of available regions. Whereas T is the set of regions whose sizes
correspond to those of bin types, the sets R and S consist respectively of paired
and simple active regions issued from the packing of the items of I. They are
dynamic sets obtained as explained below and updated in each call of MIP.

In guillotine packing, an item i ∈ I can be obtained from a new bin of type
t ∈ T or from a two-dimensional region (L′,W ′), L′ ≥ li, W

′ ≥ wi, within a
bin via a sequence of horizontal and vertical cuts.

– When i is the result of the first cut made horizontally, the region (L′,W ′) is
split -as shown in Figure 1.a- into two new regions: Rαti of size (L′,W ′ − wi)
above i and Rαri of size (L′ − li, wi) to its right. In this case, i is the product
of an α cutting pattern.
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– When i is the result of the first cut made vertically, the region (L′,W ′) is

cut -as depicted in Figure 1.b- into two new regions: Rβti of size (li,W
′ − wi)

at the top of i and Rβri of size (L′ − li,W ′) at the right of i. In this case, i is
the product of a β cutting pattern.

That is, the first cut applied to item i exclusively determines the pair of gen-
erated active regions: Either (Rαti , R

αr
i ) or (Rβti , R

βr
i ). Regardless, the selected

pair has one region above i and one to the right of i, with either or both being
possibly of zero size. Let R = R•t ∪R•r be a set of all regions derived from the
packing of items of set I, where R•t = ∪i∈I{R•ti } (resp. R•r = ∪i∈I{R•ri }) is a
set of regions at the top (resp. at the right) of items cut via a •, • = α, β, pat-
tern. When item i ∈ I fits tightly in region (L′,W ′) (i.e., li = L′ and wi = W ′),

all four resulting regions Rαti = Rαri = Rβti = Rβri are of zero size; thus, are

eliminated from R. In addition, when li = L′ (resp. wi = W ′), Rαti = Rβti
(resp. Rαri = Rβri ) because regions Rαri = Rβri (resp. Rαti = Rβti ) are of zero
size. Thus, a single region results from the cutting of item i. This region, la-
beled ‘simple’, is excluded from R and is attached to S. Furthermore, when no
item j ∈ I ′ fits Rαti (resp. Rβri ), region Rβti (resp. Rαri ) is redundant, and the

only useful region Rβri (resp. Rαti ) leaves R and enters S. Finally, when Rαti ,

Rαri , Rβti , and Rβri are of non-zero size but no item may fit in these regions, the
four regions are removed from R.

Let R̂ ⊆ R denote the subset of regions available for packing in the current
call of MIP and let Î ⊆ I be the subset of packed items that generated R̂.
Similarly, let Ŝ ⊆ S be a subset of currently active simple regions. Let K =
R̂ ∪ Ŝ ∪ T be the set of available regions and let Ki ⊆ K denote the subset of
regions that fit item i ∈ I ′. Subsequently, let I ′k ⊆ I ′ designate the subset of
free items that fit into region k ∈ K. Along with the above sets, MAXSUM feeds
two parameters to MIP:

� γi, the modifier adjusting the assignment cost of item i ∈ I for any region
k ∈ Ki, and

� Ω =
∑
i∈I′(γi

∑
k∈Ki(ai/Ak)) the penalty paid for each item that MIP

does not pack. With this cost Ω, if the solution of the model leaves some
items unassigned, no feasible solution with a cost less than U* can be
found.

MAXSUM feeds the above input to an MIP that employs three categories of
decision variables.

– The first category consists of three sets of binary variables:

– xik = 1 if item i ∈ I ′k is assigned to region k ∈ K, and 0 otherwise;

– yik = 1 if item i reserves free space in region k, and 0 otherwise; and

– ei = 1 if item i remains unassigned, and 0 otherwise.
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While xik determines whether i is packed during the current call of MIP, yik
allocates space that could be used to pack i during a subsequent call of MIP. In
addition, xik contributes the cost of packing i into k to the objective function
of MIP, while yik does not. Indeed, yik only reinforces the constraints. It is a
lookahead mechanism that reserves space for the not yet packed items of I ′.
Indicator variable ei signals when i is neither assigned to a bin nor reserved
a space for future assignment.

– The second category consists of the non-negative integer decision variables
zt, t ∈ T , which determine the number of new bins of type t required in
addition to the regions available in R̂ and Ŝ.

– The third category consists of binary decision variables vi, i ∈ Î, that select
the cutting pattern (α or β) for every packed item i and activate the respective
pair of regions: vi = 1 if i is the product of an α pattern and its packing creates
(Rαti , R

αr
i ), and 0 if i is the product of a β pattern resulting in (Rβti , R

βr
i ).

Using these three sets of variables, we model MIP as follows.
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max
∑
i∈I′

(
γi
∑
k∈Ki

ai
Ak

xik − Ωei

)
(3)

s.t.
∑
i∈I′k

xik ≤ 1 k ∈ K (4)

ei +
∑
k∈Ki

(xik + yik) = 1 i ∈ I ′ (5)

∑
i∈I′k

ai (xik + yik) ≤ Ak k ∈ R̂ ∪ Ŝ (6)

∑
i∈I′t

ai (xit + yit) ≤ Atzt t ∈ T (7)

∑
t∈T

Atzt ≤ U∗ − U − 1 (8)∑
k∈{Rαti ,Rαri }

∑
j∈I′k

(xjk + yjk) ≤ V αi vi i ∈ Î (9)

∑
k∈{Rβti ,Rβri }

∑
j∈I′k

(xjk + yjk) ≤ V βi (1−vi) i ∈ Î (10)

∑
i∈I′k

λfik (xik + yik) ≤ 1 k ∈ R̂∪Ŝ, f ∈Fk (11)

∑
i∈I′t

λfit (xit + yit) ≤ zt t ∈ T, f ∈ Ft (12)

ei ∈ {0, 1} i ∈ I ′ (13)

zt ∈ Z≥0 t ∈ T (14)

vi ∈ {0, 1} i ∈ Î (15)

xik, yik ∈ {0, 1} i ∈ I ′, k ∈ Ki (16)

Eq. (3) defines the objective function of MIP. It maximizes the net profit of
the solution. This net profit is the difference of the profit earned by assigning
items to regions and the penalty cost of non-assigned items. Eq. (4) prohibits
the packing of more than one item into region k, k ∈ K, during the current call.
However, there is no constraint on the number of items that can be allocated
to k during future calls. Eq. (5) either packs item i ∈ I ′ to one of the regions
(i.e., when xik = 1, k ∈ Ki) or assigns it to a region that can potentially fit i in
one of the later calls (i.e., when yik = 1, k ∈ Ki) or marks it as unassigned (i.e.,
when ei = 1). That is, xik and yik can’t be assigned a value 1 simultaneously;
differently stated, item i is assigned to at most one region in Ki. Eq. (6)
ensures that the area Ak of region k ∈ R̂ ∪ Ŝ is large enough to accommodate
all items assigned to it. Similarly, Eq. (7) ensures that the total area Atzt
of allocated bins of type t, t ∈ T , is sufficiently large for their assigned items.
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Obviously, if no bin is used (i.e., zt = 0), no items are assigned to the bin.
Eq. (8) requires the total size of new bins to be less than the known upper
bound U∗ minus the size U of previously used bins. Eqs. (9) and (10) select
the cutting pattern for item i ∈ Î; thus, choose between the respective pairs of
regions (Rαti , R

αr
i ) and (Rβti , R

βr
i ). When vi = 0, the first applied cut for i is

vertical; therefore, Eq. (9) forbids the assignment of any items into Rαti and

Rαri . Here, V αi =
∑
k∈{Rαti ,Rαri }

|I ′k|, i ∈ Î, is a “Big-M” value used to model

the disjunction. On the other hand, when vi = 1, the first applied cut for i is
horizontal; hence, Eq. (10) implies that no item can be assigned into Rβti and

Rβri . Similarly, V βi =
∑
k∈{Rβti ,R

βr
i }
|I ′k|, i ∈ Î, is a “Big-M” value required to

implement the disjunction.
Eqs. (11) and (12) are feasibility constraints. They strengthen the search for

a feasible packing and cut off futile partial solutions earlier during the search.
They reinforce the geometric feasibility of the MIP’s solution. In fact, nowhere
does MIP account for the geometric relationship. For instance, Eqs. (6) and
(7) overlook the geometric relationship between pairs of items assigned into the
same region. Jointly with Eq. (5), Eqs. (11) and (12) constitute a part of

the lookahead strategy. They rely on the values of transformed areas λfik pre-
computed for every region k ∈ Ki, an unpacked item i ∈ I ′k, and a combination
of DFFs f ∈ Fk. Eq. (11) requires that the sum of the transformed areas
of items being packed in the current MIP’s call (i.e., xik = 1) and those to
be packed in future calls (i.e., yik = 1) in selected region k be bounded by 1.
Similarly, Eq. (12) estimates the required bins imposing that, for each type
t ∈ T , the sum of the transformed areas of the items be less than the number
zt of allocated bins. Even though Eqs. (11) and (12) fathom many partial
solutions that eventually lead to an infeasible packing, they do not guarantee
that all not-yet-packed items get a feasible position during later calls. Finally,
Eqs. (16)-(15) declare the types of the decision variables. When MIP finds
a positive objective function value, it returns to MAXSUM a feasible (partial)
solution. Before calling MIP again, MAXSUM updates the set I ′ by moving the
packed items from I ′ to I. Let I” denote the set of items packed during the
current MIP’s call. MAXSUM then removes the regions that have been used in the
current call (i.e., those whose xik = 1 for some item i ∈ I ′) from Ŝ and R̂.

– It removes from Ŝ any simple region k that has been assigned an item, and
checks whether this packing has produced a pair of coupled regions or a simple
region. As a result, it adds new valid region(s) to the respective set R̂ or Ŝ.

– It discards from Ŝ any simple free region k that can’t fit any of the items of
the updated I ′.

– It examines the four regions
{
Rαti , R

αr
i , Rβti , R

βr
i

}
for each item i ∈ Î.

� When any of the four regions is assigned an item i ∈ Î, it removes the
four of them from R̂, and determines the active pair: either (Rαti , R

αr
i ) or

(Rβti , R
βr
i ). It further checks whether one or both regions of the active

10



pair are used. In the former case, it inserts the free region into Ŝ if
the free region may pack an item i ∈ I ′. For example, if Rαti contains
an assigned item and Rαri is empty, then the latter is a candidate for

inclusion into Ŝ.

� When none of the four regions are used, it proceeds depending on whether
there is an item i ∈ I ′ that fits into any of them.

* It excludes the four of them from R̂ when none fits any i ∈ I ′.
* If only one of the four regions can hold an item i ∈ I ′, it moves that

region to Ŝ and deletes the three others from R̂.

* Otherwise, it keeps the regions in R̂.

Next, MAXSUM checks the validity of the new pair of coupled regions (Rαti , R
αr
i )

and (Rβti , R
βr
i ) that emanated from packing item i ∈ I”. It discards all four re-

gions when they are either empty or too small to fit any item of I ′, but attaches
them to R̂ when they may fit at least one item of I ′. In addition, when either
Rαti or exclusively Rβri may pack an item in a future call, it adds this simple

region to Ŝ.
For any value zt > 0, MAXSUM treats bin t ∈ T as a single simple region. It

tests whether packing item i ∈ I ′ gives a pair of coupled regions or a simple
region, and adds the valid region(s) to the sets R̂ and Ŝ, respectively. It assimi-
lates any zt > 1 value to zt = 1, t ∈ T , because Eq. (4) restricts the assignment
to region t to at most one item. Indeed, variables z estimate the remaining
space and halt the packing procedure as soon as they detect an infeasible so-
lution (subject to the bound U∗). They further help MIP to locally select and
adjust the right combination of bins that are required to pack the items in I ′.
Even though the current solution may have several zt values greater than 1, not
all the selected bin types are utilized immediately. Indeed, the packing proce-
dure attempts to balance its greediness (using all allocated bins at once) and
its providence (gradually adding new allocated bins allowing their combinations
to change as its search progresses). Therefore, it sorts the selected bin types
in the ascending order of their sizes and adds the largest one to the current
(partial) solution. Each next largest bin is selected with a uniform probability
χ. If the bin at hand is declined, then the remaining smaller bins are discarded
straightaway.

MAXSUM iterates as long as the MIP solver returns a feasible solution (i.e., a
positive objective value). It stops when I ′ = ∅ and returns a new incumbent
solution. However, at one of the iterations, the solver may deem MIP infeasible;
implying that some of the not-yet-packed items may not be packed without
surpassing the current cost U∗. In such a case, any further search is futile.
Therefore, the procedure terminates immediately signaling infeasibility.

MAXSUM implements a common greedy packing policy: The chance to find a
suitable region for smaller items is higher than for larger ones, which therefore
should be positioned first. According to the assignment costs specified in Sec-
tion 3.2, the packing procedure treats larger items of VS2BP as complicated.
It therefore packs them earlier during the search. At the same time, using the
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yik assignment variables, it plans for space for other items too; thus, it aims to
increase the overall packing density of items in the resulting solution. In prac-
tice, MAXSUM finds high-quality solutions in a very short time and facilitates the
quick improvement of the upper bound U∗, which is fed back to the algorithm.

2.3. The MINSUM packing procedure

The second packing procedure, labeled MINSUM, generally outperforms MAXSUM
in terms of solution quality but at the cost of a larger run time. Its MIP drops
the terms involving the yik assignment variables from the inequalities (5)-(7)
and (9)-(12) of MAXSUM while it maintains all the other terms of the constraints.
It employs a real-valued variable C ∈ R≥0 that corresponds to the maximum
cost across all regions, where the cost associated with a region k ∈ Ki is the
total cost of the items assigned to k. It uses parameter

M =
∑
i∈I′ γi

(∑
k∈Ki max{ai/Ak, λ1ik, . . . , λ

|Fk|
ik }

)
that represents the penalty cost of an unassigned item.

The model of MINSUM is as follows.

minC +
∑
i∈I′

Mei (17)

s.t.
∑
i∈I′k

γiai
Ak

xik ≤ C k ∈ K (18)

∑
i∈I′k

(γiλ
f
ik)xik ≤ C k ∈ K, f ∈Fk (19)

Eqs. (5)− (15)

C ∈ R≥0 (20)

xik ∈ {0, 1} i ∈ I ′, k ∈ Ki (21)

Eq. (17) defines MIP’s objective function, which minimizes the sum of two
terms. The first term is the maximum, across the available regions of K, of the
sum of the costs of the items assigned to an available region. The second term
is the penalty cost of unassigned items. Both Eqs. (18) and (19) ensure that
the value C is larger than or equal to the sum of the item-to-region assignment
costs of the items packed in region k, for each k ∈ K. In Eq. (18), each cost
is proportional to the packing density ai/Ak of the item i assigned to region k.
On the other hand, in Eq. (19), each cost is proportional to the transformed

area of item i when i is packed in region k. Both ai/Ak and λfik are reals in
(0, 1]. Eqs. (5)-(15) are those of MAXSUM. Finally, Eqs. (20)- (21) declare the
decision variables’ types.

As for MAXSUM, the current call of MIP can either obtain a feasible solution or
indicate infeasibility. When there is a feasible (partial) solution, MINSUM filters
the unused regions and computes new ones for the next MIP’s call. Among all
the items assigned to a region k ∈ K (i.e., xik = 1), it selects one that maximizes
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the item-to-region assignment cost (γiai/Ak) while it treats the other items as
though they were not yet packed, keeping them in set I ′ for the next call. On
the other hand, in the presence of an item i, i ∈ I ′, whose ei = 1, MINSUM fails
to pack all items without violating the current cost U∗; therefore, the search
stops.

The packing procedure of MINSUM is diametrically opposed to that of MAXSUM.
Rather being greedy and trying to fill as much free space of the available regions,
MINSUM maximizes, over all regions of set K, the gap between the total size of
items (related to their packing cost) and the size of the region that holds them.
This rule strives to distribute the items evenly among the available regions and
avoid their overfilling in later MIP calls. Despite the tightness of the bounds
imposed by constraints (11) and (12), the would be needed space for packing
items in later calls is larger than the reserved space. Thus, MINSUM creates a
gap between the bound and the estimation to increase its chance of eventually
obtaining a feasible packing solution.

2.4. The MINMAX packing procedure

The third packing procedure, labeled MINMAX, succeeds in many instances
in finding hidden solutions that are reached by neither MAXSUM nor MINSUM.
Of course, this occurs at the cost of increased computational effort. It adds
the real-valued variables ck ∈ R≥0, which represent the largest item-to-region
assignment cost for region k ∈ K among all items i ∈ I ′k. In addition to these
variables, it uses parameter Θ =

∑
i∈I′

∑
k∈Ki

Ak
γiai

as the penalty of a non-

assigned item. MINMAX drops the yik decision variables from constraints (5)-(7)
and (9)-(12) of MAXSUM but maintains all the other terms. It is given as follows.

min
∑
k∈K

ck +
∑
i∈I′

Θei (22)

s.t.
Ak
γiai

xik ≤ ck k ∈ K, i ∈ I ′k (23)

Eqs. (5)− (15)

ck ∈ R≥0 k ∈ K (24)

xik ∈ {0, 1} i ∈ I ′, k ∈ Ki (25)

Eq. (22) defines the objective function of MINMAX. It minimizes the sum of
the maximal item-to-region assignment costs over all regions of set K and the
penalty cost of unassigned items. Eq. (23) calculates the maximal assignment
cost for each region k ∈ K: It sets ck larger than or equal to the cost Ak

γiai
of item

i ∈ I ′k when i is assigned to k. Eqs. (5)-(15) are those from MAXSUM. Finally,
Eqs. (24)-(25) declare the types of the decision variables.

As when solving MAXSUM, the MIP solver may identify either a feasible so-
lution or deem the problem infeasible. In the former case, MINMAX uses the
(partial) solution to determine a set of prospective regions for the next MIP’s
call. Furthermore, it chooses among all the items assigned to a region k ∈ K
(i.e., xik = 1) the one that gives the smallest item-to-region assignment cost
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Ak
γiai

while it discards the assignment of the other items to k and inserts them

back into the set I ′ for the next call. In the latter case (i.e., if there is an item
i ∈ I ′ such that ei = 1), MINMAX terminates the search as its MIP fails to pack
at least one item without exceeding the current cost U∗.

While MAXSUM focuses on maximising the sum of item-to-region assignment
costs of larger items, MINMAX strives to find better positions for items with low
packing coefficients. Because it bases its reservation of free space for such items
on a “worst-case assignment”, it enhances its chances of packing them during
subsequent MIP calls, and eventually obtaining a feasible solution. In this sense,
MINMAX is not as greedy as MAXSUM.

3. The Lookahead Matheuristic

MH is an iterative algorithm that searches for a minimal cost feasible guillo-
tine packing of the items of I. Its search applies diversification and intensifica-
tion strategies that evoke a series of MIP-based packing procedures. Section 3.1
details the solution construction process of MH. Section 3.2 describes a diver-
sification mechanism, achieved through a sequential value correction heuristic
(SVC).

3.1. The Solution Construction Process

MH, whose pseudo code is given in Algorithm 1, constructs a solution as
follows. Its input is an instance of VS2BP, defined by I and T , and a maximal
runtime limit τ . Its output is (P ∗, U∗) where P ∗ is the incumbent solution
expressed as a set of packed bins and U∗ is its corresponding cost. Its initial-
ization phase sets (P ∗, U∗) to (∅,∞). Its iterative phase strives to obtain a
(near-)global optimal guillotine packing. It is repeated as long as the runtime
of MH does not exceed τ . At each iteration, it calls SEARCH(I, U∗), a subroutine
that attempts to build a feasible packing of the set I of items such that the
packing’s cost is less than the upper bound U∗. SEARCH returns solution (P,U),
where P is either a new feasible (incumbent) solution of cost U < U∗ or an
infeasible solution recognized by its infinite cost U . In the former case, MH
updates (P ∗, U∗) while in the latter case, it simply discards P .

Subroutine SEARCH uses the input parameters (Ĩ , Ũ) fed from MH and three
iteration limits: η, η′, and η”, which, respectively, constrain the total number
of non-improving calls of packing procedures, and the number of times MINSUM

and MINMAX are called. SEARCH(Ĩ , Ũ) is looking for a feasible guillotine packing

of the set Ĩ such that the packing’s cost Û is less than Ũ . This packing can be
the result of one of the three packing procedures: MAXSUM, MINSUM, or MINMAX.
SEARCH is recursive. At each recursive step, it goes through an initialization
phase, an iterative phase, and an update phase.

The initialization phase of a recursive step of SEARCH sets its candidate solu-
tion (P̂ , Û) to (∅, Ũ). Initially, SEARCH opts for MAXSUM as its packing procedure:
PACK:=MAXSUM. It then initialises the set B of densest packed bins to the empty
set; i.e., no item has yet been assigned to any bin. Next, it initializes the set S̃
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of simple regions to the empty set and their maximal cost C̃:=Ũ . With S̃ = ∅,
PACK has no constraint on its selection mechanism of bins from T . Finally,
SEARCH initializes the counter q = 0, which keeps track of the maximal number
of bins in the packing solutions of PACK.

The iterative step of SEARCH repeats as long as the counter η of non-improving
calls to the packing procedure PACK does not exceed η. It calls procedure PACK

with three parameters: Ĩ, Û , and S̃ to obtain the solution (P,U), where P is
feasible if U < Û , and infeasible otherwise.

– When P is feasible, SEARCH updates (P̂ , Û) and decrements the counter of
iterations: η = η − 1. In addition, because Û ≤ U∗, P is a new global
incumbent solution.

– When P is infeasible, both the set S̃ and the bound C̃ are updated. Because
PACK failed to identify a feasible packing whose cost is less than Û , SEARCH
restarts PACK from a set of pre-allocated bins to guide the search towards
feasibility. In this way, SEARCH acts in a “conservative”manner; making slower
but steadier progress towards tighter bounds. To determine this specific set
of bins, it uses subroutine PREDEFINE, which determines a set S̃ whose cost
C of bins is as close as possible to C̃.

Let CP be the cost of bins used in the infeasible solution P , C̃ the maximal

cost of the current S̃ of simple regions. In addition, let the integer decision
variable ζt, t ∈ T , denote the number of bins of type t that should be included
in set S̃ to ensure a cost lower than C̃. Using these parameters and decision
variable, PREDEFINE follows.

maxC =
∑
t∈T

Atζt (26)

s.t.CP ≤ C ≤ C̃ − 1 (27)

ζt ∈ N≥0 t ∈ T (28)

Eq. (26) maximizes C, the total cost of selected bins. Eq. (27) bounds the

value of C to the discrete interval [CP , C̃ − 1]. Finally, Eq. (28) defines the

type of ζ variables. When PREDEFINE has a feasible solution, SEARCH sets S̃
to ζt bins of every type t, t ∈ T , and sets C̃ = C. Otherwise, SEARCH resets
S̃ to the empty set and C̃ to Û .

Independently of the feasibility of P , SEARCH records the maximum number
q of bins filled across all PACK’s solutions: q = max{q, |P |}. Next, it revises
its set B augmenting B with any densely packed bins of P . (The cardinality
of B is bounded according to a policy that only retains high-quality packing
patterns. That is, |B| is rather small.) Having updating B, SEARCH recalculates

the pseudo-costs of the items of Ĩ. Altering the pseudo-costs changes the struc-
ture of solutions obtained by future calls of PACK. That is, they are used for
diversification purposes. They are set using a sequential value correction (SVC)
heuristic as discussed in Section 3.2.
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When η′ successive calls to PACK fail to improve the local incumbent solution
and PACK=MAXSUM, SEARCH changes PACK to MINSUM and resets (S̃, C̃) = (∅, Û).
Similarly, when the incumbent solution is still not improved after η” calls and
PACK=MINSUM, SEARCH switches PACK to MINMAX and resets (S̃, C̃) = (∅, Û).
(This change of packing procedure is equivalent to a diversification strategy.)

After η non-improving calls to PACK, if q > 1, SEARCH applies an intensifi-
cation strategy that explores the neighbourhoods of the obtained solutions. It
exploits the promising parts of the search space in attempt to build a feasible
improving incumbent solution. Specifically, SEARCH iteratively fixes a highly
dense bin b ∈ B, and repacks all other items. Let I(b) denote the set of items
packed in b and let COST(b) be its cost. Then SEARCH calls itself recursively with

parameters (Ĩ \ I(b), Û − COST(b)) to obtain a solution P of cost U . When P is
feasible and U < Û − COST(b), P improves the local incumbent P̂ . Therefore,
(P̂ , Û) is updated. In this way, the recursive call not only decreases the solu-
tion’s cost but also enhances the algorithm’s performance. It investigates the
most promising parts of the search space by keeping the most successful packing
patterns fixed and rebuilding the solution’s parts whose packing can be signifi-
cantly improved. This strategy enhances the primal bound rapidly. Because it
does not spend any effort/time on improving already dense bins, it solves fewer
and smaller packing sub-problems; thus, requires less runtime while obtaining
faster improvements. When q ≤ 1, SEARCH applies its base case, where recursive
calls are prohibited.

Finally, SEARCH returns its output to MH. If P̂ 6= ∅, it returns the local
incumbent (P̂ , Û); otherwise, it returns the output (∅,∞) signaling the impos-
sibility of improving the current incumbent.

3.2. Sequential Value Correction

As a diversification strategy, subroutine SEARCH applies SVC to the pseudo-
costs of the items. Initially, the pseudo-cost of item i ∈ I is γi = 1. SVC alters the
pseudo-costs of items to propagate information regarding the success of previous
assignments to future iterations and to facilitate the packing of new dense bins.
It then randomizes and updates each pseudo-cost at every iteration to reflect
the unused area in the bin where the item is currently packed. These pseudo-
costs are part of the objective function that PACK optimizes. Altering them
makes PACK obtain different items to bins assignments. Their unequal values
allow PACK to randomly pack items; thus, diversify the search and overcome the
highly symmetric nature of bin packing solutions; an intrinsic feature of VS2BP
[17]. This diversification has been found effective in strip packing [5], in one-
and two-dimensional bin packing [4, 10], and in bi-objective bin packing with
due-dates where the objective is to minimize both the number of bins and the
maximum lateness of items [19].

When defining the pseudo-cost γi of item i ∈ I, two factors are of relevance:

– the portion ρi = ai
At

of the area of bin t that item i is using, and

– the relative size of item i with respect to the largest item in I, expressed as
ai

amax
where amax = maxj∈I {aj}.
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Algorithm 1 Solution process as a whole in MH for VS2BP

Input: A problem instance (I, T ), t, η, η′, η′′

routine MAIN(I, T )
1: initialise the global incumbent solution (P ∗, U∗):=(∅,∞)
2: while (τ is not exceeded) do
3: obtain solution (P,U):=SEARCH(I, U∗)
4: if (U < U∗) then update the incumbent solution (P ∗, U∗):=(P,U)

5: return the incumbent solution (P ∗, U∗)

subroutine SEARCH(Ĩ, Ũ)

1: initialise the local incumbent solution (P̂ , Û):=(∅, Ũ)
2: select the packing procedure PACK:=MAXSUM

3: initialise the set of most dense packed bins B:=∅
4: initialise the set of predefined bins and their maximal cost (S̃, C̃):=(∅, Ũ)
5: initialise the counter q:=0

6: for (counter = 1; counter ≤ η”; counter = counter + 1) do

7: obtain solution (P,U):=PACK(Ĩ, Û , S̃)
8: if (U < Û) then
9: update the local incumbent (P̂ , Û):=(P,U)

10: set counter = counter − 1
11: else
12: update (S̃, C̃):=PREDEFINE(T , COST(P ), C̃)

13: update q:=max{q, |P |}
14: update the set B with regard to the packed bins of P
15: update the pseudo-costs γi for every item i ∈ Ĩ
16: if (PACK=MAXSUM and P̂ = ∅ and η < counter ≤ η′ then)

17: select PACK:=MINSUM and set (S̃, C̃):=(∅, Û)

18: if (PACK=MINSUM and P̂ = ∅ and η′ < counter ≤ η” then)

19: select PACK:=MINMAX and set (S̃, C̃):=(∅, Û)

20: if (q > 1) then
21: for (each bin b ∈ B) do

22: obtain solution (P,U):=SEARCH(Ĩ \ I(b), Û − COST(b))
23: if (U + COST(b) < Û) then
24: update the local incumbent (P̂ , Û):=(P ∪ {b}, U + COST(b))

25: if (P̂ 6= ∅) then
26: return the local incumbent solution (P̂ , Û)
27: else
28: return the infeasible solution (P̂ , Û):=(∅,∞)

Based on these two factors, the pseudo cost γi of an item i ∈ I that has been
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recently positioned in a bin is reset to

γi = δiγi +

(
1 +

ai
amax

)ε′
(1− δi)
ρi

. (29)

ε′ > 1 is a constant that makes bigger items have higher costs. δi is generated
randomly from the uniform[0, ρ̄i), where ρ̄i is the average packing density of
bins where item i has been placed during the last κ iterations. That is, δi
allows items with a historically larger packing density ρ̄i to inherit a larger
fraction of their previous pseudo-costs. The first term of Expr. (29) reinforces
the information inherited from the previous patterns. On the other hand, the
second term extracts information from the current pattern. The value of γi
increases as ρi decreases; thus prioritizing the joint packing of an item i with
other items when i has a low packing density. In addition, packing a large item
is more challenging than packing a small one. Therefore, the class of large items
is given a higher priority than the class of small items. This is further reinforced
via parameter ε′.

On the other hand, the pseudo cost γi of an item i ∈ I that has not yet been
packed is reset at a higher value. This is to increase its chances of being packed
in the next call of PACK. Specifically, its

γi =
1

ρ̄i

(
1 +

ai
amax

)ε”
, (30)

where ε” > ε′.

4. Experiments and Results

The proposed MH is implemented in C# and run on a personal computer
with 16GB of RAM and an i7 2.8 GHz Intel Core processor. It is tested on
the benchmark set of [23]. The set has ten-classes. For classes 1-6, the item
sizes li and wi emanate from the same interval and the bins are squares as
described by Table 1. Classes 7-10, which use bins of size L = W = 100, reflect
a more realistic situation because their items emanate from a mixture of uniform
distributions. Indeed, the items are classified into four types, and are mixed as
indicated in Table 2. Uniformly distributed dimensions of items do not make
problems easy to solve as it is the case for the one-dimensional case. The cost
of a bin (L,W ) is its area LW . The instances of the variable bin sizes data
set use the same items as those for the single bin type. However, each instance
has five bin types where the bin dimensions are randomly generated from the
Uniform[L/2, L] and Uniform[W/2,W ], respectively, where L and W are the
instance’s original bin size obtained according to the class type. Regardless
of the number of bin types of the data set, each class has five problem sizes:
n = 20, 40, 60, 80, and 100, and ten instances per problem type.

For all instances, the performance measure is the overall utilization of the
used bins. The utilization, denoted hereafter u, is the ratio of the sum of the
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Table 1: Description of the benchmark instances of classes 1 to 6

Class li, wi L = W
1 [1, 10] 10
2 [1, 10] 30
3 [1, 35] 40
4 [1, 35] 100
5 [1, 100] 100
6 [1, 100] [1, 300]

Table 2: Description of the benchmark instances of classes 7 to 10

Class
Item type li wi 7 8 9 10

1 [ 2
3
L,L] [1, 1

2
W ] 70% 10% 10% 10%

2 [1, 1
2
L] [ 2

3
W,W ] 10% 70% 10% 10%

3 [ 1
2
L,L] [ 1

2
W,W ] 10% 10% 70% 10%

4 [1, 1
2
L] [1, 1

2
W ] 10% 10% 10% 70%

areas of the n items to the sum of the areas of the used bins. To obtain this
measure, we run MH for τ = 1 minute and for τ = 10 minutes. Let uMH1

and
uMH10

denote the corresponding obtained utilization. Both uMH1
and uMH10

are
compared to the existing upper bound uSA of [12] obtained using their SA based
heuristic within a 1-minute runtime. Running MH requires the specification of
its control parameters, which are detailed in Section 4.1. Section 4.2 presents
and analyzes the results of MH for the variable bin types benchmark set. Section
4.3 indicates the applicability of MH to the identical bin type benchmark set
too while proving the optimality of a large number of open problems. Finally,
Section 4.4 highlights the role of MH’s features.

4.1. Experimental Setup

The following settings, inferred from preliminary computational investiga-
tions, provide the best trade-off between MH’s solution quality and runtime. MH
evokes IBM CPLEX 12.10 to solve the MIP components of its three packing
procedures. The MIP solver uses a single core. It is configured such that it
generates more feasible solutions while optimizing the problem, at the cost of
a slower proof of optimality. Its relative optimality gap is set to 0.01 in lieu of
CPLEX’s default value of 10−6. This is consistent with the philosophy of MH.
Its PACK procedures favour high-quality feasible MIP solutions to optimal ones
when the former are obtained faster than the latter. In addition, their MIPs rely
on fitness functions that do not necessarily lead to VS2BP’s optimum. Thus, the
0.01 relative optimality gap does not affect the overall quality of MH’s solution.
Moreover, MIP’s node selection is set to prefer the node with the best progress
toward integer feasibility. This setting is recommended when it is difficult to
find feasible solutions or when a proof of optimality is not crucial. Furthermore,
we limit the execution time of the MIPs in PACK subroutines to 3 seconds. This
runtime limit does not affect the MIPs: Even the largest instances of the tested
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instances obtained a solution in less than 0.1 second. Finally, when MIP of
PACK selects several bin types as candidates to enter the partial solution, it adds
the bin of the largest size and decides on each subsequent bin with a uniform
probability χ = 0.5 (cf. Section 2.2). All smaller bins are immediately discarded
if the bin at hand is declined.

We generate the feasibility constraints of Eq. (2) according to the algorithm
of Fekete and Schepers [11] whose control parameters (p, q) are selected from

{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}2. From the set of constraints
generated for each entry Kµl,µw of the data structure of Section 2.1 (with par-
tition µ = 10), at most fmax = 10 strongest constraints are injected into MIP
while weaker constraints are discarded. A larger set of constraints does not
necessarily tighten the lower bound on the free space available for packing, but
does increase the time needed to solve MIP.

The three iteration limits, η, η′, and η”, of the SEARCH subroutine of MH are
set, respectively, to 11, 5, and 9. That is, MAXSUM is executed at least 5 times.
When MAXSUM is unsuccessful, MINSUM makes no less than 4 attempts to find
a feasible packing. When both packing procedures fail, MINMAX tries at least
twice to solve the problem. The total number of non-improving calls of packing
procedures cannot exceed 11. When tested on the benchmark set, MINMAX took
up to 1 second of run time. Therefore, it was rarely called. Because its goal is to
instantly improve both the incumbent solution and the primal bound U∗ when
both MAXSUM and MINSUM fail, there is no need to increase its number of calls.
The new bound U∗ that MINMAX obtains helps MAXSUM and MINSUM to focus on
subregions of the search space as guided by the findings of MINMAX.

SEARCH selects the size of the set B of densest packed bins adaptively. It
uses a threshold parameter min {0.97, 1.1

∑
i∈I ai/U

∗}, where
∑
i∈I ai/U

∗ is the
packing density of the current incumbent solution. When the packing ratio of
the candidate bin is larger than this threshold parameter, SEARCH allows B to
hold two best patterns; otherwise B holds only the best pattern. In this way,
the threshold parameter forces SEARCH to launch more recursive calls when the
bins in B have better than average density (i.e., when the bins in B exceed
the packing density of P ∗). Any pattern whose packing density exceeds 0.97 is
considered high-quality. Therefore, SEARCH explores the promising parts of the
solution space by having more recursive calls for items that are yet unassigned
and are causing low-density bins. This rule allows SEARCH to quickly improve
the primal bound and enhances MH’s performance: It focuses on smaller sub-
problems that lead to faster improvements.

The upper bound ρ̄i of the uniform distribution used to generate the weights
δi for updating the pseudo costs is the average packing density of bins where
item i has been placed during the last κ iterations. Herein, κ = 15. Finally,
ε′ = 2 in Expr. (29) whereas ε” = 3 in Expr. (30). Both values assign higher
costs to larger items; thus, prioritise the packing of larger items at the onset of
the packing procedures. ε” > ε′ so that items that remained unpacked during
the previous run of PACK increase their chances of getting packed during the
current call.
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4.2. Multiple-Sized Bins

Table 3 summarizes the MH results. Columns 1 and 2 specify the class and
number of items. Columns 3-5 report the average utilizations uSA, uMH1 and
uMH10

over each set of ten instances. Columns 6-8 give the number of times
uSA is better, the same, and worse than uMH1

whereas Columns 9-11 provide
the same information but for uSA versus uMH10

. Finally, Column 12 indicates
the number of time the longer runtime of MH improved its solution.

uSA and uMH1 are obtained within equal run times; yet, there is statistical
evidence that the mean of uMH1 is larger than the mean of uSA at any level of
confidence (p-value=0.0000), with a 1.42 difference. This is clearly depicted in
Figure 2, which displays the histogram of the paired differences uMH1

-uSA, the
null hypothesis H0 that stipulates that the mean difference of uMH1

-uSA is 0
versus being strictly positive, and the 95% one sided confidence interval for the
mean uMH1-uSA with a 1.26 estimate of its lower bound.

Increasing the runtime of MH from 1 to 10 minutes amplifies the aforemen-
tioned advantages. This is reflected by the five-point summaries of uMH1

-uSA
and uMH10

-uSA. (A five point summary consists of the minimum, first, sec-
ond and third quartiles, and the maximum observed difference over the 500 in-
stances.) For uMH1 -uSA, the five point summary is (−3.92, 0.00, 0.46, 2.57, 10.33).
It is shifted to the right for uMH10 -uSA: (−2.58, 0.00, 0.76, 3.14, 10.81). This shift
is depicted in Figure 3, which represents the same information as Figure 2 but
for uMH10

-uSA. Thus, increasing the runtime of MH reduces the gap for those
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Table 3: Results of MH for VS2BP

Number of times
Utilization uSA vs. uMH1

uSA vs. uMH10
uMH1

<uMH10
Class n uSA uMH1

uMH10
> = < > = <

1 20 90.18 90.74 90.74 8 2 8 2
40 93.70 95.17 95.32 2 8 2 8 3
60 91.95 95.14 95.70 1 9 10 8
80 90.25 94.87 95.19 10 10 6

100 91.47 96.01 96.36 10 10 7
Overall 91.51 94.39 94.66 1 10 39 0 10 40 24

2 20 86.62 86.62 86.62 10 10
40 97.42 96.81 97.20 3 7 2 8 1
60 98.90 98.50 98.63 3 7 2 8 1
80 98.70 98.17 98.36 7 3 6 4 3

100 99.62 99.17 99.41 8 2 5 5 3
Overall 96.25 95.85 96.04 21 29 0 15 35 0 8

3 20 84.38 86.09 86.09 4 6 4 6
40 88.08 89.93 90.04 2 1 7 1 1 8 4
60 87.08 89.74 90.27 2 8 1 9 7
80 85.55 90.32 90.81 10 10 6

100 88.13 91.90 92.38 10 10 6
Overall 86.65 89.59 89.92 4 5 41 2 5 43 23

4 20 80.82 80.82 80.82 10 10
40 91.93 91.93 91.93 10 10
60 94.99 94.22 94.60 5 5 2 8 3
80 95.12 94.50 94.86 6 2 2 4 3 3 2

100 95.82 95.20 95.26 6 3 1 5 4 1 2
Overall 91.74 91.34 91.50 17 30 3 11 35 4 7

5 20 82.05 83.06 83.18 1 4 5 5 5 1
40 85.64 87.40 87.85 2 2 6 1 2 7 6
60 84.70 89.13 89.57 1 9 10 6
80 84.49 89.33 89.80 10 10 8

100 86.25 90.59 91.45 10 10 8
Overall 84.63 87.90 88.37 4 6 40 1 7 42 29

6 20 81.25 81.25 81.25 10 10
40 90.18 90.01 90.18 1 9 10 1
60 92.18 92.10 92.33 1 9 1 8 1 2
80 93.49 92.99 93.25 5 5 4 4 2 3

100 94.09 94.06 94.14 4 3 3 3 4 3 2
Overall 90.24 90.08 90.23 11 36 3 8 36 6 8

7 20 83.99 84.13 84.17 1 5 4 1 5 4 1
40 87.74 89.19 89.52 1 9 1 9 3
60 89.52 90.83 91.07 1 9 1 9 3
80 86.23 88.76 89.27 10 10 5

100 87.19 89.94 91.17 10 10 8
Overall 86.93 88.57 89.04 1 7 42 1 7 42 20

8 20 82.27 83.64 83.64 6 4 6 4
40 86.04 87.67 87.79 1 1 8 1 9 2
60 87.92 89.82 90.03 1 9 1 9 4
80 86.66 90.28 90.41 10 10 3

100 86.41 90.32 90.75 10 10 5
Overall 85.86 88.35 88.52 2 7 41 1 7 42 14

9 20 74.42 75.49 75.49 6 4 6 4
40 73.42 75.16 75.17 1 9 1 9 1
60 73.07 74.15 74.15 1 9 1 9
80 74.67 75.84 75.84 10 10

100 75.84 77.23 77.27 10 10 1
Overall 74.29 75.58 75.58 8 42 8 42 2

10 20 83.46 84.81 85.33 6 4 5 5 1
40 90.86 91.56 91.77 1 5 4 3 7 3
60 92.20 92.26 92.39 3 3 4 4 2 4 2
80 92.39 93.04 93.24 3 7 2 8 4

100 92.64 93.18 93.60 1 1 8 1 9 6
Overall 90.31 90.97 91.27 8 15 27 7 10 33 16

Overall 87.84 89.26 89.51 69 153 278 46 160 294 151
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instances where uSA>uMH1 while it enlarges it for cases where uSA<uMH1 . So-
lutions of instances with uSA=uMH1=uMH10 are most likely optimal. Thus,
further increasing the runtime of MH does not affect them. A paired statistical
test confirms again that the mean of uMH10

is larger than the mean of uSA at
any level of confidence (p-value=0.0000), with a larger average difference of 1.67
versus 1.42, and a larger lower bound estimate of 1.50 of the lower bound of a
95% one sided confidence interval estimate of the mean uMH10 -uSA (versus 1.26
for uMH1 -uSA).

Figure 4 further explains the impact of runtime on MH. It presents the
box plots of the ratios

uMH1

uSA
,
uMH10

uSA
and

uMH10

uMH1

, as a function of the class of

the instances. The comparison of the box plots of
uMH1

uSA
and

uMH10

uSA
depicts

the impact of runtime on MH, and highlights the classes that are difficult for
MH. These are, in general, classes 2 and 4, which use fewer bins than other
classes. Therefore, the use of an extra bin or of a larger-sized bin makes a big
difference on the result. For these classes, MH is limited by the behavior of the
mathematical programming solver, which was observed to fail to identify feasible
solutions that reduce the number of bins of its current solutions. In addition,
DFF constraints appear loose for such instances. Their looseness weakens the
lookahead mechanism and its power to guide the search process to feasible areas
of the search space.

While
uMH10

uMH1

assesses the solution enhancement brought to MH by the ad-

ditional runtime for each class of instances,
uMH10

uSA
reflects the absolute solution
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quality enhancement with respect to the existing upper bound uSA. The anal-
ysis of the cases where MH neither matches nor improves the existing upper
bound uSA indicates that those instances of classes 2 and 4 are independent of
the problem size, as the box plots of Figure 5 further illustrate.

4.3. Single-Sized Bins

Table 4 gives the results of MH on the single bin size benchmark set, where
bMT denotes the best known bound on the number of identical bins needed (avail-
able from http://or.dei.unibo.it/general-files/best-known-solution-and-lower-bound-
each-instance) while bCHBP, bSA and bMH are the counterparts obtained by
CHBP, the constructive heuristic followed by a biased sufficiency criterion and
by post optimization of Charalambous and Fleszar [7], MH and SA, respectively.
Columns 1 and 2 specify the class and number of items. Columns 3-6 report
the sum of bMT, bCHBP, bSA and bMH over each set of ten instances. Columns
7 and 8 report the average utilization of uSA and uMH over each set of ten in-
stances. Finally, Columns 9 and 10 indicate the number of instances where bMH

exceeds the lower bound bMT of the number of bins and the number of times
MH improves the solution of SA by using fewer bins; i.e., the number of times
bSA exceeds bMH over each set of ten instances.

Table 4 shows that MH can be successfully applied to the case with iden-
tical bins. MH matches the lower bound on the number of bins for all but 85
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instances, using one additional bin for all but the first instance of class 5 and
n = 100 where it uses two additional bins. For all other 415 instances, MH
solution is optimal: It uses the lowest number of bins bMT. In addition, MH
succeeds in matching all solutions of SA and enhances the best known solution
of 13 instances.

4.4. MH’s Features

This subsection highlights the merit of the new features of MH by testing
MH

1. when only one of the three models MAXSUM, MINSUM, and MINMAX is used in
lieu of their sequential iterative application;

2. when the DFF constraints are omitted; and

3. when SVC is omitted.

It tests these MH variants on representative instances of size n = 20, 60, and
100 of classes 5 and 8. Table 5 reports the average packing coefficients over
each set of ten instances. Columns 1 and 2 indicate the class and size n of the
instances. Columns 3-5 report the average utilizations uSA, uMH1 and uMH10

over each set. Subsequent pairs of columns report the average utilization of MH
when it uses only MAXSUM, only MINSUM, only MINMAX, and when it omits DFF,
and SVC. The first and second columns of each pair correspond to the average
utilization after 10 minutes and 40 minutes of run time, respectively.

Table 5 suggests that the new features of MH speed its convergence toward
a (near-)global optimum. They amplify the diversification capabilities of MH
during the early stages of the search and refine its intensification power during
the later stages. Within 40 minutes of run time, the MH variants barely compete
with uMH1

.
Driven by their respective objective functions, MAXSUM, MINSUM, and MINMAX

explore the search space differently; thus, attain different bounds with distinct
convergence speeds. Within an equal run time, MINMAX performs fewer iterations
than MINSUM, which in turn undertakes less iterations than MAXSUM. The search
gets harder as the objective function is changed from MAXSUM to MINSUM to
MINMAX (simply because their MIPs become computationally more expensive).
Thus, the order of application of the models is important.

� MAXSUM obtains a good upper bound quickly; i.e., its search is greedy
but fast. It is ‘traditional’ in the sense that it focuses on the packing
coefficient. It speeds up the search when initiated from scratch or from a
‘balanced’ solution given by MINMAX.

� MINSUM is more pragmatic. It does not focus on the packing coefficient. It
allows a more uniform assignment of future items by reserving space for
not yet packed items evenly across all regions. Its tactic is to tolerate and
recover from packing mistakes made during early iterations of the search.
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Table 4: Results of MH for the identical bins case

Number of bins Utilization Number of times
Class n bMT bCHBP bSA bMH uSA uMH bMT < bMH bSA > bMH

1 20 71 71 71 71 82.16 82.16
40 134 134 134 134 87.61 87.61
60 197 201 200 200 90.05 90.05 3
80 274 275 275 275 90.26 90.26 1

100 317 321 320 317 93.86 94.78 3
Overall 993 1002 1000 997 88.79 88.97 4 3

2 20 10 10 10 10 64.30 64.30
40 19 20 19 19 69.42 69.42
60 25 26 25 25 81.76 81.76
80 31 33 31 31 89.30 89.30

100 39 39 39 39 85.74 85.74
Overall 124 128 124 124 78.10 78.10

3 20 51 52 52 52 74.08 74.08 1
40 92 97 94 94 83.08 83.08 2
60 136 140 140 140 86.30 86.30 4
80 187 196 191 190 87.43 87.91 3 1

100 221 230 227 225 88.92 89.79 4 2
Overall 687 715 704 701 83.96 84.23 14 3

4 20 10 10 10 10 60.92 60.92
40 19 19 19 19 66.15 66.15
60 23 25 25 25 78.77 78.77 2
80 30 33 32 32 83.99 83.99 2

100 37 39 38 38 85.09 85.09 1
Overall 119 126 124 124 74.98 74.98 5

5 20 65 65 65 65 74.31 74.31
40 119 121 119 119 82.40 82.40
60 179 183 181 181 84.21 84.21 2
80 241 247 247 247 84.96 84.96 6

100 279 288 287 285 88.40 89.05 5 2
Overall 883 904 899 897 82.85 82.99 13 2

6 20 10 10 10 10 53.15 53.15
40 15 19 18 18 62.37 62.37 3
60 21 22 22 22 77.56 77.56 1
80 30 30 30 30 77.67 77.67

100 32 35 35 35 81.07 81.07 3
Overall 108 116 115 115 70.37 70.37 7

7 20 55 55 55 55 77.95 77.95
40 109 112 111 111 82.61 82.61 2
60 156 160 159 159 84.43 84.43 3
80 224 233 232 232 83.44 83.44 8

100 269 275 273 273 85.55 85.55 4
Overall 813 835 830 830 82.79 82.79 17

8 20 58 58 58 58 75.42 75.42
40 112 114 113 113 81.59 81.59 1
60 159 163 162 161 84.11 84.59 2 1
80 223 226 225 224 84.86 85.27 1 1

100 274 279 279 278 84.76 85.02 4 1
Overall 826 840 837 834 82.15 82.38 8 3

10 20 42 44 43 43 75.54 75.54 1
40 74 74 74 74 85.56 85.56
60 98 103 102 102 88.34 88.34 4
80 123 130 130 129 90.25 90.93 6 1

100 153 163 160 159 91.95 92.51 6 1
Overall 490 514 509 507 86.33 86.57 17 2

Overall 7173 7312 7272 7259 79.36 79.46 85 13
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Table 5: Average utilization of bins of different variants of MH

Run time↘ SA MH MAXSUM MINSUM MINMAX No DFF No SVC

Class n 1 1 10 10 40 10 40 10 40 10 40 10 40
5 20 82.05 83.06 83.18 79.24 79.36 83.06 83.06 82.76 82.76 82.81 83.06 81.88 81.88
5 60 84.70 89.13 89.57 86.82 87.79 89.25 89.56 87.24 88.66 88.99 89.53 88.64 88.94
5 100 86.25 90.59 91.45 86.65 88.17 89.36 91.24 60.66 82.27 90.54 91.34 89.06 90.56
8 20 82.27 83.64 83.64 81.74 82.11 83.47 83.47 83.58 83.58 83.64 83.64 83.58 83.58
8 60 87.92 89.82 90.03 86.98 87.96 88.48 89.45 87.71 88.45 89.23 89.95 89.35 89.80
8 100 86.41 90.32 90.75 88.79 89.80 87.73 89.59 48.75 77.10 89.82 90.38 88.97 89.98

� MINMAX works generally well when applied on already existing upper bounds.
It can escape from local optima.

– It beats MAXSUM on smaller instances but does not work well for large
instances, for which it sometimes gets packing coefficients as low as
50%.

– It takes longer than MAXSUM. It progresses slowly but steadily, and
discovers ‘hidden’ solutions.

– It balances the worst and the average item to region costs ck, defined
by the right hand side of Eq. (23). A tight bound limits the flexibility
of the search while a loose bound gives the search a lot of freedom;
therefore, allows diversification.

– Starting MINMAX from scratch hinders its progress. It needs a long
time to find a balanced compromise among the ck variables that
minimize its objective function. Therefore, it appears more effec-
tive when applied together with a good bound developed by MAXSUM

and/or MINSUM.

In general, reaching the global optimum from a near-global optimum is very
hard. The DFF constraints and SVC help MH achieve that transition, in par-
ticular for large instances whose convergence is slow. Omitting the DFF con-
straints does not particularly worsen the performance of MH. However, including
them allows MH to reach the extra mile; getting better solutions fast. Similarly,
without SVC, MH works well too. It loses 1-2% on average, but these additional
few percents do matter. They are the hardest to get.

5. Conclusion

This paper approximately solves the unweighed fixed-orientation variable-
sized two-dimensional guillotine bin packing problem. It applies a hybrid matheuris-
tic that diversifies its search via three mixed-integer programs whose objective
function coefficients are determined by a sequential value correction algorithm.
The mathematical programs are dotted with lookahead mechanisms that re-
serve space for unpacked items while being guided by dual feasibility function
constraints and by no-good cuts imposed by upper bounds on the objective
function. These mechanisms make the mathematical programs focused on the
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most ‘productive’ part of the search space. This matheuristic is innovative in
terms of modeling and solution approach: It opts for item to region assignment
type (without explicitly considering the geometrical aspect of the problem), and
for many items to many bins (not necessarily identical) assignments in contrast
to existing sequential heuristics which pack items one by one filling one bin at a
time. It outperforms state-of-the-art methods. It proves the optimality of 415
solutions of the 500 identical-bin benchmark instances, matches the best known
results of another 72 instances, and improves the other 13. For the variable-size
bin packing, it matches 160 and improve 294 best known results (out of 500).

This matheuristic represents a general framework that can be applied to
other cutting and packing problems. It can be naturally adapted to the weighted
case where the cost of a bin is not proportional to its area and to the net profit
case where bins have costs and items generate profits. Similarly, it can be
extended to the case where pieces can be rotated, and to packing with defects.
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